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École doctorale no543
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Christophe PAUL
Directeur de recherche, CNRS, Univer-
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Abstract

Intersection graphs represent the patterns of intersection of a family of sets. Depending
on the nature of these sets, different subclasses can be defined. One of the most important
is the class of interval graphs, which are the intersection graphs of intervals on the real
line. Situations arising naturally in scheduling and allocation motivated the study of
a generalization of interval graphs known as multiple interval graphs. For any natural
number d, a (disjoint) d-interval is the union of d (disjoint) intervals on the real line,
and a graph G is a (disjoint) d-interval graph if it is the intersection graph of a family
of (disjoint) d-intervals. Such a family is then called a d-interval representation of G.
In particular, a d-interval graph is unit if it admits a d-interval representation where all
the intervals have unit length, and balanced if there exists a representation where all the
intervals of a same d-interval have the same length.

In the first part of this manuscript, we study the class of (disjoint) unit d-interval
graphs form a structural point of view, with the aim of generalizing Roberts’ character-
ization of unit interval graphs to unit multiple interval graphs. Roberts proved that an
interval graph is unit if and only if it does not contain the complete bipartite graph K1,3
as an induced subgraph. Here, we generalize this result by proving that for any d ⩾ 2,
if G is a K1,2d+1-free interval graph, then G is a unit d-interval graph. However, some-
how surprisingly, under the same assumptions G is not always a disjoint unit d-interval
graph, which implies that the class of disjoint unit d-interval graphs is strictly included
in the class of unit d-interval graphs. We also study the relationships between the classes
of intersection graphs obtained when we consider disjoint and non-disjoint d-intervals in
the balanced case, and show that the classes of balanced and disjoint balanced 2-interval
graphs coincide, but for d > 2, this is no longer true.

We then continue by investigating the complexity of recognizing unit multiple inter-
val graphs. Whereas it is known that recognizing 2-interval graphs and other related
classes such as 2-track interval graphs is NP-complete, the complexity of recognizing
unit 2-interval graphs is a longstanding open question. We settle it by proving that the
recognition of (disjoint) unit 2-interval graphs is also NP-complete. Furthermore, we
extend the hardness result for (disjoint) unit d-interval graphs for any d ⩾ 2 (which does
not follow directly in graph recognition problems), and obtain other implications of this
result.

In the last part of this manuscript, we focus on an editing problem on interval graphs:
PIG-completion. Given an interval graph G, PIG-completion asks to find the minimum
number of edges that we need to add to G so that it becomes a unit interval graph.
We prove that if G contains a vertex that is adjacent to every other vertex in the graph
(and in some other specific settings), there exists a dynamic programming algorithm
in the modified PQ-tree of G (a well-known data structure used to represent interval
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graphs) that solves the problem in polynomial time. Finally, we extend this algorithm for
arbitrary interval graphs, where the complexity becomes exponential in the maximum
number of non-disjoint centers of claws of G.
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VIALETTE: Parity Permutation Pattern Matching. Algorithmica, volume 86,
number 8, pages 2605–2624. Springer, 2024. DOI: 10.1007/s00453-024-01237-0.

In proceedings of conferences
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1. Introduction

Consider the schedule of courses depicted in Figure 1.1, where every course is represented
by a time interval indicating its duration, and suppose that we want to solve two different
problems. The first one is computing the maximum number of courses that a student
can register for, assuming that attendance is mandatory and they must be present for
the entire duration of each lecture. The second one is computing the minimum amount
of professors that we need to hire so that every course can take place, assuming that
every professor is competent in every subject and can teach any set of courses as long
as they do not overlap on time.

To solve these problems, one can give a modelization in graph-theoretical terms by
representing every course by a vertex and adding an edge between two vertices if and
only if the corresponding courses clash, i.e., they overlap in time (see the graph on the
right of Figure 1.1). Then, the solution to our problems is given by two very well-known
graph problems: Maximum Independent Set and Minimum Coloring, respectively.
Indeed, Maximum Independent Set asks for a set of pairwise non-adjacent vertices of
maximum cardinality, so given an optimal solution, the courses associated to the chosen
vertices comprise a largest set of courses that a student can register for at the same
time. On the other hand, Minimum Coloring asks to color the vertices of a graph
with the minimum amount of colors such that no two adjacent vertices have the same
color. Thus, an optimal solution can be translated to a solution of our original problem
by assigning each color to a different professor, and considering that a professor teaches
the courses associated to vertices of their color.

In general, both Maximum Independent Set and Minimum Coloring are hard to
solve, but in this particular example, the input graph has a very specific structure that
allows us to easily compute an optimal solution. Indeed, if the input graph is an interval
graph, given an interval representation (for example, the schedule in Figure 1.1), we can

9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 Time

Game Theory
Complexity Theory
Graph Theory
Deep Learning
Social Choice

Figure 1.1.: On the left, a schedule of courses. On the right, the graph representing the
incompatibilities between the courses. Such a graph is an interval graph.
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9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 Time

L

L

L

L

L P

P

P

P

P

Game Theory
Complexity Theory
Graph Theory
Deep Learning
Social Choice

Figure 1.2.: On the left, a schedule of courses where every course is divided into a lecture
(L) and a problem session (P). On the right, the graph representing the
incompatibilities between courses. Such a graph is a 2-interval graph.

compute an optimal solution of Maximum Independent Set by greedily choosing the
interval that finishes first among the intervals that do not intersect any of the already
chosen ones, starting from the leftmost interval of the representation. Similarly, we can
compute an optimal solution of Minimum Coloring by considering the intervals in
the order given by their right endpoints and greedily assigning the first available color
to each interval (where a color becomes available if the considered interval does not
intersect an interval of this color).

One can also ask for additional constraints in the schedule of the courses. For example,
a very natural constraint would be to enforce that all the lectures have the same duration,
which means that the time intervals representing the courses would all have the same
length. The graph representing the incompatibilities of such a schedule is called a unit
interval graph.

Let us now consider a different scenario where every course is divided into two classes:
a lecture and a problem session, each scheduled at a different time (see Figure 1.2). In
this new setting, to register for a course, a student is required to attend both classes for
their entire duration. Likewise, to teach a course a professor must be available during
the lecture and the problem session.

Now, in order to model this as a graph problem, we need to add an edge between two
courses if either part of one course clashes with either part of the other (see the graph
on the right of Figure 1.2). This graph is called a 2-interval graph, because it is the
intersection graph of 2-intervals (the union of the two intervals representing a course).
As before, we can also enforce that all the classes have the same duration, which would
yield a unit 2-interval graph. However, when our graph is not interval but 2-interval,
computing the maximum number of courses that we can take or the minimum number
of professors that we need is not as easy!

Of course, this example can be extended: if every course is divided in three classes,
a lecture, a problem session, and a computer session, then the graph representing the
incompatibilities would be a 3-interval graph; and in general, for any natural number
d, if the course is divided in d separate classes, then the incompatibilities graph is a
d-interval graph.

The class of d-interval graphs, and more specifically, the class of unit d-interval graphs,
is the main focus of this thesis. Given any graph class, the first fundamental question
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that arises is how to determine whether an arbitrary graph belongs to the class. This is a
question of theoretical importance, but has also been motivated by practical applications
In particular, Maas gave the following application of the recognition of d-interval graphs
in scheduling [115]:

“In a laboratory there is a machine that can be used for a variety of exper-
iments. For every type of experiment, the configuration of the machine has
to be changed by a specialized staff. For every day, we know which groups of
scientists want to carry out their experiments and which configurations they
need. We look for a time-table for the laboratory that equally minimizes the
number of times each configuration has to be implemented, and the number
of times each team is interrupted by another one. Such a time-table is a
d-interval model for the bipartite graph G whose vertices are the teams of
researchers and the configurations of the machine, and whose edges connect
teams with the configurations they need.”

In this thesis, we study (multiple) interval graphs from a structural and algorithmic
point of view, with many of the results being closely related to the recognition of unit
multiple interval graphs. The main content of Chapter 5 appeared in [7], and is the
result of joint work with Romeo Rizzi, which began while he was visiting Paris as an
invited professor, and Abdallah Saffidine. The main content of Chapter 6 appeared in
[9] and is also joint work with Romeo Rizzi. Finally, Chapter 7 is the result of joint work
with Andrea Craco and Romeo Rizzi, which started while I was visiting them in Italy,
and will appear in a future publication.

During this thesis I have also worked on other problems which are not related to inter-
val graphs. These results, which correspond to publications [10] and [8], are presented
in the appendix. Finally, I have also carried out research in a topic related to intersec-
tion graphs, though not to interval graphs: readability, a graph parameter introduced
in [38], motivated by applications of overlap graphs in bioinformatics. The readability of
a digraph D is the smallest integer r such that there exists an injective overlap labeling
of D (a labeling l of the vertices such that there exists an edge (u, v) if and only if l(u)
and l(v) overlap) with strings of length r. However these results are not dicussed here
as they are still preliminary.
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2. Preliminaries
In this chapter, we introduce some basic notions of graph theory and give a brief overview
of complexity theory. For more background on these topics, we refer to [52] and [70]
respectively.

2.1. Basic notions of graph theory
Definitions. A graph G = (V,E) consists of a set of vertices V and a set of edges
E ⊆ V × V , formed by pairs of vertices. We will write V (G) and E(G) to denote the
vertex and edge set of graph G when the graph is not clear from the context. We denote
an edge between vertices u and v by (u, v). Throughout this manuscript, all the graphs
considered are simple (without loops or multiple edges) and undirected (the set of edges
is formed by unordered pairs of vertices), unless explicitly stated otherwise.

Two vertices u and v are adjacent if there exists an edge joining them, that is, an edge
of the form (u, v). Given an edge (u, v), the vertices u and v are called its endpoints,
and we say that the edge is incident to both u and v.

Given a vertex v ∈ V , the neighborhood of v is the set of vertices adjacent to it,
formally defined as N(v) := {u ∈ V | (u, v) ∈ E}. The closed neighborhood of v is the
set N [v] := {v} ∪N(v).

A vertex v is universal if it is adjacent to every other vertex of the graph, that is,
N [v] = V . A vertex v is a private neighbor of vertex u if N(v) = {u}.

The degree of a vertex v, denoted deg(v), is the cardinality of N(v), i.e., deg(v) :=
|N(v)|. The maximum degree ∆ of a graph is defined as the highest degree over all the
vertices of the graph, i.e., ∆ := maxv∈V {deg(v)}.

A graph is regular if every vertex has the same degree.
A subgraph of G is a graph G′ = (V ′, E′) with V ′ ⊆ V and E′ ⊆ E such that (u, v) ∈ E′

implies that u and v are both contained in V ′.
An induced subgraph ofG is a graphG′ = (V ′, E′) with V ′ ⊆ V and E′ = {(u, v) | (u, v) ∈

E, u, v ∈ V ′}. We say that G′ is the subgraph induced by V ′, and we denote it by G[V ′].
The complement of a graph G = (V,E) is the graph with vertex set V and edge set

E := {(u, v) |u, v ∈ V, (u, v) /∈ E}, and we denote it by G.
A path of length n is a set of vertices Pn+1 = (v1, . . . , vn+1) such that (vi, vi+1) ∈ E

for every i ∈ {1, . . . , n}. A cycle of length n is a path Pn+1 with v1 = vn+1.
A graph is connected if there exists a path between every pair of vertices.
A clique or complete graph of size n, denoted Kn, is a set of n pairwise adjacent

vertices.
A maximal clique of a graph is a complete subgraph that is not properly contained in

any other complete subgraph.
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2. Preliminaries

Some fundamental graph classes. A class of graphs C is the set of graphs satisfying a
certain property Π, that is, C := {G |G satisfies Π}. Many graph theoretical problems
involve characterizing the members of a class, whether by enumerating the members of a
class, characterizing the class in terms of forbidden structures, studying the relationships
among different classes, or finding efficient algorithms to decide membership in a class.

A class of graphs C1 is a subclass of the class C2, denoted C1 ⊆ C2, if every graph that
belongs to C1 also belongs to C2. If C1 ⊆ C2 and there exists a graph that belongs to C2
but not to C1, we say that C1 is a proper subclass of C2, and we denote it by C1 ⊊ C2.
On the other hand, if C1 ⊆ C2, we also say that C2 is a superclass of C1 (resp., proper
superclass if C1 ⊊ C2).

A class of graphs C is hereditary if for every graph G ∈ C and every induced subgraph
H of G, we have that H ∈ C. A minimal forbidden induced subgraph for C is a graph F
such that for every induced subgraph H of F , H ∈ F . Every hereditary graph class C is
characterized by its set of minimal forbidden subgraphs.

We now describe some well-known classes of graphs that will appear throughout this
manuscript. The more specific classes that constitute the focus of this thesis will only
be introduced in Chapter 3.

A graph is bipartite if its vertex set can be partitioned into two sets, V1, V2 such that
no edge connects vertices within the same set.

A graph is co-bipartite if its complement is bipartite.
A graph G = (V1 ∪V2, E) is a complete bipartite graph if E = {(u, v) |u ∈ V1, v ∈ V2}.

When |V1| = m and |V2| = t, we denote the complete bipartite graph by Km,t. In
particular, if m = 1, we call the graph K1,t a t-claw. The unique vertex contained in
V1 is then called the center of the claw, and the other t vertices are called leaves. For
any t ⩾ 3, if the set of vertices {v0, v1, . . . , vt} induces a K1,t with center v0, we will
sometimes denote it by [v0; v1, . . . , vt]. We say that a graph is K1,t-free if it does not
contain any induced K1,t’s, and we say that an induced t-claw is maximal if it is not
contained in an induced K1,t′ with t′ > t.

A tree is an undirected connected graph without cycles. A tree is rooted if one of its
vertices has been designated as the root. Given a rooted tree, the parent of a vertex v
is the vertex connected to v in the path to the root. If u is the parent of v, we say that
v is a child of u, and every other child of u is called a sibling of v. A vertex is a leaf if
it has no children, and an internal vertex otherwise. The ancestors of a vertex v are the
vertices in the path from the root to v. The root is an ancestor of every vertex. If u is
an ancestor of v, we say that v is a descendant of u. Given a vertex v, the subtree rooted
at v is the subgraph of the tree induced by v and all its descendants.

A tree T is a caterpillar if removing all its leaves results in a path.

2.2. Algorithms and complexity

Algorithms are sets of rules to be followed in order to solve a specific problem. They
take an input, called an instance of the problem, and return an output: the solution.
These problems can be classified into two categories: decision problems and optimization
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2.2. Algorithms and complexity

problems. In the first case, we aim to answer a yes or no question, while in the second
one, we seek to find a solution that minimizes or maximizes a certain objective. For
example, consider the well-known graph coloring problem, where the goal is to color all
the vertices of a graph in such a way that no two vertices are given the same color if
there is an edge connecting them. Determining whether a graph can be properly colored
with k different colors is a decision problem, while finding the minimum number of
colors required to obtain a proper coloring is an optimization problem. Note that every
optimization problem has an associated decision problem, defined by adding a parameter
k to the input, which consists on determining whether there exists a solution of value at
most k (or at least k for maximization problems).

A particular type of decision problems are graph recognition problems, where given a
graph G as input, we ask whether G belongs to a specific class of graphs:

Instance: A graph G = (V,E).
Goal: Decide whether G belongs to C.

Graph Recognition for class C

In order to be able to solve these problems for any given input, we need to design
algorithms. However, this is not always an easy task, as there are multiple factors that
need to be considered. Indeed, when designing an algorithm, we are not only interested
in the fact that it returns an acceptable solution: it is also crucial to study its efficiency.
There are different aspects that play an important role in this matter, such as the
memory usage or the execution time. In this thesis, we focus only in measuring the
complexity in terms of the running time of the algorithm, which is the number of basic
operations it performs for the worst case input scenario, measured as a function of the
input length. However, the exact number of operations performed is inconsequential: our
interest lies in the asymptotic behavior of this function. This allows us to understand
how the running time of the algorithm scales with the size of the input, which is the
key factor when comparing the efficiency of different algorithms. Thus, we generally use
the “big-O” notation to express the running time of an algorithm. That is, let n be the
input size and f(n) the function that describes the number of operations executed by the
algorithm. Using the big-O notation, we can express f(n) as O(g(n)) for some function
g(n) if there exists a constant c such that f(n) ⩽ c · g(n) for every sufficiently large n.
Intuitively, this means that f(n) is smaller or equal to g(n) if we ignore constant factors.

We say that an algorithm is polynomial if it has a time complexity of O(nc) for some
constant c. In particular, we say that the algorithm is linear if c = 1, and quadratic if
c = 2. If c = 0, that is, if the algorithm has a complexity of O(1), we say that it runs
in constant time. On the other hand, if the complexity of the algorithm is of the form
O(cn) for some constant c, we say that the algorithm is exponential.

P vs NP. Computational complexity allows us to categorize problems into different
classes according to the running time of an algorithm that solves them optimally.

A problem is in the class P if there exists a polynomial-time algorithm that solves it. To
prove that the problem belongs to the class P, it suffices to provide such an algorithm. On
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the other hand, we say that a problem is in the class NP (non-deterministic polynomial
time) if given a solution of an instance, one can verify in polynomial time whether it is
a correct solution. Equivalently, NP is the class of all problems that can be solved by
a non-deterministic algorithm (that is, an algorithm that can return different solutions
given the same input) in polynomial time.

Clearly, P⊆ NP. However, whether NP⊆ P is one of the most important open questions
in computer science, although it is widely believed that P ̸= NP. This believe is motivated
by the fact that there exist many problems for which nobody has been able to provide a
polynomial-time algorithm, despite decades of effort. For such problems, we can attempt
to prove that they are NP-hard, that is, they are as hard as the hardest problem in NP,
and so we do not expect a polynomial-time algorithm to exist. To prove that a problem is
NP-hard, one generally seeks to give a polynomial-time reduction from a known NP-hard
problem. Given two problems P1 and P2, we say that P1 is polynomial-time reducible to
P2 if for every instance I1 of P1, we can construct in polynomial time an instance f(I1)
of P2 such that I1 is a yes-instance if and only if f(I1) is a yes-instance.

A decision problem is said to be NP-complete if and only if it is in NP and it is NP-hard.
The first problem that was proven to be NP-complete is Satisfiability [41], i.e., the
problem of determining whether there exists a variable assignment that satisfies a given
Boolean formula. Shortly after, Karp extended the knowledge of this class by providing a
list of problems that were also NP-complete [98]. Since then, a large number of problems
has been proven to belong to this class, supporting the belief that P ̸= NP. Some of
the most important ones have been gathered by Garey and Johnson in Computers and
Intractability [70], which stands as a cornerstone reference in the field.

As a final remark, note that if an optimization problem on graphs is polynomial-time
solvable, then every instance of the problem on any graph can be solved efficiently. How-
ever, when a problem is NP-hard, it doesn’t necessarily imply that it is intractable for all
graphs: there might exist certain graphs where the problem can still be solved efficiently.
In particular, if we restrict the problem to a specific class of graphs, then it might be-
come polynomial-time solvable within that class. This polynomial-time solvability then
extends to all of its subclasses. Conversely, if the problem is NP-hard when restricted to
a specific class, then it will remain NP-hard in every superclass.

Recognition problems are quite different: being able to recognize a particular class of
graphs in polynomial time does not guarantee that every subclass will also be recogniz-
able in polynomial time. Likewise, if the recognition of a certain class is an NP-complete
problem, we cannot infer anything about the complexity of recognizing a superclass. As
a trivial example, note that the class of all graphs can be recognized in polynomial time,
while the class of graphs that can be properly colored with 3 colors does not admit an
efficient recognition algorithm.

ETH. Suppose now that we have proven that a problem is NP-complete and we have
an exponential-time algorithm to solve it. For practical applications, whether we have
an O(2n) algorithm or an O(2

√
n) algorithm has a big significance. Therefore, one might

be interested in knowing whether an exponential time algorithm can be improved or
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not. The Exponential Time Hypothesis (ETH) was proposed to tackle this problem [91].
Intuitively, much as the theory of NP-hardness is based in the assumption that Satis-
fiability cannot be solved in polynomial time, the ETH is based on the assumption
that 3-SAT (Satisfiability restricted to formulas where every clause has three literals)
cannot be solved in time significantly better than 2n, where n is the number of variables
in the input formula.

Definition 2.1 (Exponential Time Hypothesis). Let δ be the infimum of the set of
constants c for which there exists an algorithm solving 3-SAT in time O(2cn). Then
δ > 0.

Equivalently, the ETH states that 3-SAT cannot be solved in subexponential time,
i.e., in time 2o(n), where o(n) stands for “small-o” of n and means that there cannot
exist a function f such that for every ϵ > 0, f(n) < ϵn for n sufficiently large.

Suppose now that the ETH holds and we want to use it to infer lower bounds on
other problems. Since most reductions from 3-SAT output instances that depend on
the size of the formula (not just the size n of the variable set) and an arbitrary instance
of 3-SAT can have up to O(n3) clauses, the ETH can only exclude an algorithm for
the target problem with a running time of O(2|x|1/3), where x is the input of the target
problem. To exclude an algorithm with running time O(2|x|), the number of clauses
would actually need to be linear in terms of n. The sparsification lemma allows us to
make this assumption [92], which yields the following result:

Lemma 2.1. Unless the ETH fails, 3-SAT cannot be solved in time 2o(n+m).

Now, if we assume that the ETH is true and we have reduced an instance Φ of 3-
SAT to an instance of a problem whose size is linear in the size of Φ, then the target
problem cannot be solved in time 2o(|x|). For a more detailed introduction to the ETH,
see Chapter 14 of Parameterized Algorithms [49].

Circumventing NP-hardness. Different approaches have been proposed to deal with
NP-hard problems. One of them is parameterized complexity, where the aim is to confine
the exponential explosion of the runtime of an algorithm to some well-chosen parameter.

A parameterized problem consists of an instance X and a parameter k. The standard
parameterization takes k to be the size of the desired solution (for example, the size of a
maximum independent set), but the parameter can also be chosen to be some structural
property of the instance (for example, the maximum degree of a graph).

A parameterized problem is in the class XP if it can be solved in time nf(k) for some
computable function f that depends on the parameter. In particular, a problem is fixed-
parameter tractable (FPT) if there exists an algorithm with running time f(k) · nc for
some computable function f and some constant c (that is, the running time is exponential
on the parameter but polynomial on the size of the input). Nevertheless, not every
problem in XP admits an FPT algorithm: problems that are in XP but not in FPT
belong to the W-hierarchy. It is widely believed that W[1] ̸= FPT, and so being W[1]-
hard is strong evidence against being in FPT.
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To prove that a problem is FPT, it suffices to provide an algorithm with running time
f(k) · nc. One of the most useful techniques to design FPT algorithms is kernelization.
Given an instance (X, k) of a parameterized problem, a kernelization algorithm com-
putes an equivalent instance (X ′, k′) whose size is bounded by a function of the original
parameter. That is, given an instance (X, k), we construct an instance (X ′, k′) such
that:

• (X ′, k′) is a yes-instance if and only if (X, k) is a yes-instance.

• |X ′| ⩽ f(k) for some computable function f depending only on k.

• k′ ⩽ g(k) for some function g.

The constructed instance is then called a kernel. To design efficient algorithms, one
generally seeks a kernel of small size, that is, we want the function f(k) to be polyno-
mial in k. If this holds, we say that (X ′, k′) is a polynomial kernel. It is well-known
that a parameterized problem is in FPT if and only if it admits a kernelization algo-
rithm [123]. However, not every problem admits a polynomial kernel under reasonable
assumptions [20].

On the other hand, when a problem does not admit an FPT algorithm, we can attempt
to prove that it is W[1]-hard. Just as NP-hardness is established through polynomial
time reductions, to prove that a parameterized problem P2 is W[1]-hard, one needs
to provide an FPT-reduction from a known W[1]-hard problem P1. That is, for every
instance (X1, k1) of P1, one needs to construct an instance (X2, k2) of P2 such that:

• (X1, k1) is a yes-instance for P1 if and only if (X2, k2) is a yes-instance for P2.

• k2 = g(k1) for some function g that depends only on k1.

• The construction of (X2, k2) can be carried out in time f(k1) · |X1|c for some
function f depending only on k1 and some constant c.

Finally, problems which are already NP-hard for a constant value of k are not in XP.
We refer to [49] for more background on parameterized complexity.
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3. State of the Art
All the results presented in the main body of this manuscript are related to structural
and algorithmic questions on interval and multiple interval graphs, two subclasses of
intersection graphs. In this chapter, we give an condensed overview of the landscape of
known results related to these topics. We begin Section 3.1 with a general introduction
to intersection graphs and one of its most important subclasses, the class of chordal
graphs. Then, in Section 3.2, we introduce interval graphs, present the most relevant
characterizations and structural properties of this class, and discuss some results related
to their recognition. Finally, in Section 3.3, we define multiple interval graphs and other
generalizations of interval graphs, and provide an overview of the known structural
properties and recognition results.

3.1. Intersection graphs
Intersection graphs have been widely studied in the literature, as they are important
both from a theoretical and a practical point of view. For an extended introduction to
the topic, see [118].

Definition 3.1. Given a family of sets F = {S1, . . . , Sk}, we define the intersection
graph of F , denoted Ω(F), as the graph having F as vertex set and vertex Si adjacent
to vertex Sj if and only if i ̸= j and the intersection of the sets is non-empty, i.e.,
Si ∩ Sj ̸= ∅. A graph is an intersection graph if there exists a family F such that
G = Ω(F). The family F is then called a set representation or model of G.

It is well known that every graph is an intersection graph [143].
The family of sets used to define intersection graphs can contain objects of very differ-

ent types: intervals, arcs on a circle, trapezoids, unit disks, curves of a plane, axis-parallel
boxes in dimension k, edges of a graph, intervals with varying tolerances... This diversity
gives raise to many important subclasses of intersection graphs, such as interval graphs,
circular arc graphs, trapezoid graphs, unit disk graphs, string graphs, graphs with box-
icity k, line graphs, or tolerance graphs. Even some classes of graphs whose original
definition is not given in terms of intersection graphs can also be defined in this way.
That is the case of chordal graphs, which are intersection graphs of subtrees of a tree,
or permutation graphs, which can be viewed as the intersection graphs of line segments
whose endpoints lie on two parallel lines.

Before moving on to the study of intersection graphs of intervals, let us briefly present
the class of chordal graphs (also called triangulated graphs or rigid circuit graphs), which
properly contains the class of interval graphs, and possesses some interesting properties
that are inherited by interval graphs.
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Definition 3.2. A graph G is chordal if every cycle of length greater than three has a
chord, that is, an edge connecting two non-consecutive vertices on the cycle.

The previous definition implies that a graph is chordal if and only if it does not contain
any induced cycles of length strictly greater than three. Alternatively, chordal graphs can
be characterized as graphs that admit a perfect or simplicial elimination ordering [66].
A vertex v of graph G is simplicial if its neighborhood induces a complete subgraph of
G. An ordering {v1, . . . , vn} of the vertices of G is a simplicial elimination ordering if
for 1 ⩽ i ⩽ n, the vertex vi is simplicial in the graph induced by {vi, . . . , vn}. Chordal
graphs are also perfect.

Rose, Tarjan and Lueker proved that chordal graphs can be recognized in linear time
by showing that a graph is chordal if and only if the ordering of the vertices produced by
a lexicographic breadth first search algorithm (see Algorithm 1) is a perfect elimination
ordering [135]. Furthermore, the structural properties of this class of graphs allows
many optimization problems to be solved efficiently in chordal graphs, such us minimum
coloring, maximum independent set or maximum clique [71].

Algorithm 1 Lexicographic Breadth-First Search (LexBFS)
1: Assign an empty label to all vertices.
2: for i = n down to 1 do
3: Select an unnumbered vertex v with lexicographically the largest label.
4: Assign the number i to vertex v: α(i) := v.
5: for each unnumbered vertex w adjacent to v do
6: Add the current value of i to the label of w.
7: end for
8: end for
9: return α (the numbering of vertices obtained)

As we mentioned before, chordal graphs can also be characterized as the intersection
graphs of a family of subtrees of a tree [30, 72, 147]. In fact, a graph G is chordal if and
only if it has a clique tree, that is, a tree on the set M of maximal cliques of G such
that for every pair of distinct cliques Mi,Mj ∈M , the set Mi∩Mj is contained in every
clique on the path connecting them in the tree. Clique trees also satisfy the property
that for every vertex v of the graph, the set of cliques containing it induces a connected
subtree of the tree.

Subclasses of chordal graphs. Two of the most important subclasses of chordal graphs
are split graphs and interval graphs. A graph G = (C ∪ I, E) is a split graph if its vertex
set can be partitioned into a set C of pairwise adjacent vertices and set I of pairwise
nonadjacent vertices, while a graph G is interval if it is the intersection graph of a family
of intervals. The classes of split and interval graphs are incomparable: a path of length
5 is interval but not split, and a net (see Figure 3.6c) is split but not interval.

Within interval graphs, there exists an important subclass known as trivially perfect
graphs. A graph G = (V,E) is a trivially perfect graph or quasi-threshold graph if each
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Chordal

IntervalSplit

Trivially perfect

Threshold

Figure 3.1.: Containment relationships between some subclasses of chordal graphs. An
arrow from class C1 to a class C2 indicates that C2 ⊊ C1.

of its connected components admits a rooted tree T = (V,E(T )) on the same vertex
set, rooted at a vertex r ∈ V , such that (u, v) ∈ E if and only if there is a path in
T starting in r and containing both u and v. The class of trivially perfect graphs is
also incomparable with split graphs. However, both split and trivially perfect graphs
properly contain a common subclass: the class of threshold graphs.

A graph G is a threshold graph if it can be constructed from the empty graph by
repeatedly adding either an isolated vertex (nonadjacent to every other vertex) or a
dominating vertex (adjacent to every other vertex). Equivalently, it is a split graph in
which any two independent vertices satisfy that the neighborhood of one is contained in
the neighborhood of the other.

A summary of the containment relations between these subclasses of chordal graphs
can be seen in Figure 3.1.

3.2. Interval graphs
Let us start by formally defining intervals and interval graphs.

Definition 3.3. A closed interval is a set of real numbers of the form [a, b] := {x ∈ R |
a ⩽ x ⩽ b}. All the intervals considered throughout this manuscript are closed, unless
indicated otherwise, so in the following, we will refer to them simply as intervals. Given
an interval I = [a, b], we denote its left endpoint a by l(I), and its right endpoint b by
r(I).

Note that many references do not actually specify whether the intervals considered for
the intersection representation of interval graphs are open or closed, probably because
both definitions lead to the same class of finite graphs [65], even for unit interval graphs.
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Here, we define the intervals to be closed, but note that this equivalence implies that all
of the results still hold if we let the intervals be open. However, if we allow the use of
both open and closed intervals within one representation, then the class of unit interval
graphs obtained is not the same as if we only allowed open or closed intervals within one
representation [130]. Thus, the results of this thesis only hold if all the intervals within
a representation are closed or all the intervals are open.

Definition 3.4. A graph G = (V,E) is an interval graph if there exists a bijection
from the vertices of G to a set of intervals, f : V → I, such that there exists an edge
between two vertices u and v if and only if their corresponding intervals intersect, i.e., if
f(u) ∩ f(v) ̸= ∅. The set I is called an interval representation of G (or interval model
in some references).

The notion of interval graphs originated in the 50s. In 1957, Hajös defined the in-
tersection graph of intervals on a straight line, and proposed studying the recognition
of such graphs [87]. Independently, in 1959, Benzer suggested modeling the topology
of the subelements of genes mathematically [15]. The modeling he proposed actually
corresponds to the notion of interval graphs. Since then, this class of graphs has been
extensively studied, mainly due to its numerous applications in scheduling, resource
allocation and bioinformatics [12, 151, 39], but also because of its algorithmic advan-
tages: many NP-hard problems become solvable in linear time when restricted to this
class of graphs, for example, dominating set [23] or Hamiltonian cycle [100] (which are
NP-complete even on chordal graphs). One of the few classical problems that remains
NP-complete in this class of graphs is maximum cut [2].

3.2.1. Characterizations
From a structural point of view, there exist several characterizations of interval graphs.
The first one dates back to 1962 and was given by Lekkerkerker and Boland [109]. It
highlights a new forbidden structure which differentiates them from chordal graphs:
asteroidal triples.

Definition 3.5. A set of three vertices of a graph forms an asteroidal triple if for each
pair of vertices, there exists a path containing them that does not pass through a neighbor
of the third vertex.

In the words of Golumbic, asteroidal triples represent a well-known law of business:
“every shipment from a supplier to the consumer must pass by the middle man” [77].

Theorem 3.1 ([109]). An undirected graph G is an interval graph if and only if the
following two conditions are satisfied:

1. G is a chordal graph.
2. G does not contain any asteroidal triples.

Lekkerkerker and Boland also characterized all the minimal graphs that contain an
asteroidal triple, which allows us to reformulate the previous theorem to obtain a char-
acterization of interval graphs in terms of forbidden induced subgraphs.
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(a) C4 (b) T2 (c) X31 (d) XFn+1
2

(e) XFn
3

Figure 3.2.: Forbidden induced subgraphs for interval graphs.

Theorem 3.2 ([109]). A graph G is an interval graph if and only if it does not contain
any of the graphs Cn+4, T2, X31, XF

n+1
2 or XFn

3 as an induced subgraph (see Figure 3.2
for an illustration of the forbidden induced subgraphs).

Later on, in 1964, Gilmore and Hoffman [75] gave a different characterization of inter-
val graphs, which stems from their relationship to comparability graphs. Comparability
graphs can be used to represent strict partial orders.

Definition 3.6. A strict partial order is a binary relation P on a set X that satisfies
the following conditions:

1. Irreflexivity: not aPa for every a ∈ X
2. Asymmetry: for every pair of elements a, b ∈ X, if aPb then not bPa.
3. Transitivity: for every triple of elements a, b, c ∈ X, if aPb and bPc, then aPc.

Two elements a, b ∈ X are comparable in the ordered set (X,P ) if xPy or yPx, and
incomparable otherwise. Given an ordered set (V, P ), the comparability graph G = (V,E)
associated to it has edge set E = {(a, b) | aPb or bPa}.

Definition 3.7. A graph G is a comparability graph if and only if there exists a strict
partial order relation P on the vertices of G such that G is the comparability graph of
(V, P ).

Equivalently, a graph is a comparability graph if and only if it has a transitive orien-
tation, that is, we can replace every edge (u, v) by a directed edge, i.e., (u, v) or (v, u),
in such a way that if there exist two directed edges (v1, v2) and (v2, v3), then there also
exists the directed edge (v1, v3). We can also define the incomparability graph associated
to (V, P ) as G = (V,E).

The characterization of interval graphs in terms of comparability graphs introduced
by Gilmore and Hoffman is the following.

Theorem 3.3 ([75]). Let G be an undirected graph. Then, the following are equivalent:
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1. G is an interval graph.

2. G is chordal and its complement is a comparability graph.

3. The maximal cliques of G can be linearly ordered such that, for every vertex v of
G, the maximal cliques of v occur consecutively.

The third statement can be translated into a matrix formulation, as it implies some
properties on the clique matrix of a graph, which is a matrix with a row for each maximal
clique of the graph and a column for each vertex, and with an entry being 1 if and only
if the vertex belongs to the clique and 0 otherwise. This new formulation was given by
Fulkerson and Gross in 1965 [66].

Theorem 3.4 ([66]). A graph G is an interval graph if and only if its clique matrix M
has the consecutive 1’s property for columns, that is, its rows can be permuted in such a
way that the 1’s in each column occur consecutively.

Equivalently, a graph is an interval graph if and only if it has a clique tree that is
a path. In particular, much as chordal graphs can be viewed as intersection graphs of
a family of subtrees of a tree, interval graphs can be seen as the intersection graphs of
subpaths of a path.

The previous characterization led to the first linear-time algorithm to recognize in-
terval graphs: Booth and Lueker proved in 1976 that testing for the consecutives 1’s
property can be done in linear time [24]. To do so, they introduced a novel data struc-
ture called PQ-trees, used to represent all permutations of a set X which are consistent
with a set of constraints of consecutivity. More details on PQ-trees are given in the next
subsection.

The last characterization that we present is based on the observation that given an
interval graph, there exists a linear order on its vertices that satisfies a specific property.

Theorem 3.5 ([128, 125]). A graph is an interval graph if and only if there exists a
linear order ≺ on V such that, for every choice of vertices u, v, w with u ≺ v ≺ w,
(u,w) ∈ E implies (u, v) ∈ E.

It is easy to see that given an interval representation of a graph, the ordering of
the left (resp. right) endpoints of the intervals satisfies the previous condition. This
characterization has been used to design efficient algorithms for problems like dominating
set or coloring [128, 125].

3.2.2. Recognition algorithms

In this subsection, we discuss some of the most relevant recognition and isomorphism-
testing algorithms for interval graphs. We start by presenting the PQ-tree structure
introduced by Booth and Lueker in 1976, which gave the first linear-time recognition
algorithm, and a simplification of this structure called modified PQ-trees. We finish with
a brief overview of more recent recognition algorithms.

22



3.2. Interval graphs

{1, 2, 3} {1, 4} {4, 5}

{5, 6, 7} {5, 6, 8} {5, 6, 9}

Figure 3.3.: PQ-tree of an interval graph. Q-nodes are represented by blue rectangles,
and P-nodes are represented by red circles. Each maximal clique is contained
in a leaf and represented by the set of vertices it contains.

PQ-trees Given a finite set X and a collection I of subsets of X, PQ-trees serve to
represent all the permutations of X in which the members of each subset I ∈ I appear
as a consecutive subsequence of the permutation. Formally, a PQ-tree T is a rooted
tree whose leaves are bijectively labeled by the elements of the set X and whose internal
nodes are of two types, each giving a different constraint on the ordering of its children:

• P-nodes: its children can occur in an arbitrary order.
• Q-nodes: its children must occur in the given order (up to reversal).

P-nodes are represented by a circle and Q-nodes by a square. The frontier of a tree T
is the permutation of X obtained by reading the labels of its leaves from left to right.
Two PQ-trees are equivalent if one can be obtained from the other by a sequence of two
operations: arbitrarily permuting the children of a P-node, or reversing the children of
a Q-node. In the words of Golumbic, “we obtain an equivalent tree by regarding T as a
mobile and exposing it to a gentle summer breeze” [78].

As we mentioned before, PQ-trees can be used to test the consecutive 1’s property of
the clique matrix of an interval graph. To do so, we represent an interval graph as a
PQ-tree where the set X is the set of maximal cliques (the rows of the matrix), and the
family I is composed of sets of all the cliques that share a same vertex v (the subsets
of X consisting of rows that contain a 1 in the same column), for every vertex v ∈ V .
If there exists a PQ-tree satisfying the consecutivity constraints imposed by I, then
the graph is an interval graph. This yields an O(n + m) algorithm to test whether a
graph is interval, where n and m are the number of vertices and edges, respectively. An
example of a PQ-tree is given in Figure 3.3, and the interval representation of the graph
associated to it is given in Figure 3.4.

Modified PQ-trees Modified PQ-trees were introduced by Korte and Möhring in 1985
to give fast solutions to the seriation with order constraints problem [104] and applied
later on to design a simpler algorithm for the recognition of interval graphs [105]. The
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Figure 3.4.: Interval representation of the graph associated to the PQ-tree in Figure 3.3.

1, 41 4, 5 5

2, 3 6

7 8 9

∅ ∅

Figure 3.5.: MPQ-tree of the interval graph associated to the representation in Fig-
ure 3.4. Each section of a Q-node is represented by a blue rectangle, P-nodes
are represented by red circles, and leaves are represented by green circles.
Here, leaves contain vertices instead of maximal cliques, and inner nodes
also contain a (possibly empty) set of vertices.

modified PQ-tree model (MPQ-tree) is a simplification of the standard PQ-tree model.
It assigns a (possibly empty) set of vertices to each node of the PQ-tree: P-nodes are
assigned one set while Q-nodes are assigned one set for each of its children (and each set
is ordered from left to right according to the ordering of the children, which is unique
up to reversal).

More concretely, to a P-node P , we assign the set of vertices of G contained in all
the maximal cliques represented by the subtree rooted at P but which do not appear in
any other cliques. On the other hand, to a Q-node Q with children Q1, . . . , Qk, (ordered
from left to right), we assign a set Si, called a section, for every Qi. Section Si contains
all the vertices that are contained in all maximal cliques of the subtree rooted at Qi

and in at least one other subtree rooted at some Qj (j ̸= i), but which do not appear
in any clique belonging to some other subtree that is not below Q. The MPQ-tree
has the property that every vertex of G appears exactly in one leaf, in one P-node or in
consecutive sections of a Q-node. This data structure also yields an O(n+m) recognition
algorithm for interval graphs, but allows for a simpler algorithm and a more informative
representation of interval graphs. An example of an MPQ-tree can be seen in Figure 3.5.

Other recognition algorithms Habib et al. gave the first linear-time recognition algo-
rithm that did not make use of any complicated pre-processing steps (such as computing
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PQ-trees or modular decompositions) [86]. To do so, they employed LexBFS and a
clique partition refinement approach. This was later improved by Corneil, Olariu and
Stewart, who proposed an algorithm that recognizes interval graphs by six iterations of
LexBFS [45]. Li and Wu simplified it to only four sweeps [111]. Cao proposed a simpler
self-contained proof of the algorithm [33].

3.2.3. Proper and unit interval graphs

Two of the most important subclasses of interval graphs are proper and unit interval
graphs.

Definition 3.8. An interval graph is proper if it has an interval representation where
no interval is properly contained in another one, and it is unit if it has a representation
where all the intervals have unit length (equivalently, the same length).

Proper interval graphs were introduced by Roberts in 1969 as “indifference” graphs,
motivated by the theory of preference and indifference in economics and psychology [133].
When trying to model preference between a set of elements, the most traditional model
considers that given a pair of distinct elements, one can be preferred over the other or
there can be indifference between them. That is, we equip the set of elements X with
two binary relations:

• An asymmetric preference relation P : (a, b) ∈ P if “a is preferred to b”.

• A reflexive and symmetric indifference relation I: (a, b) ∈ I if “a and b are indif-
ferent”.

The starting point of Roberts work was the characterization of semiorders given by
Scott and Suppes [139], which states that a binary relation P on a finite set X is a
semiorder if and only if there exists a real-valued function f on X such that for all
x, y ∈ X,

xPy ⇐⇒ f(x) > f(y) + 1

Before going any further, let us give Scott-Suppes definition of semiorder, which sim-
plifies the original definition given by Luce in 1956 [114].

Definition 3.9. A partial order relation I defined on a set X is a semiorder if the
following conditions hold:

1. I is irreflexive (i.e., (x, x) /∈ I).

2. (x, y) ∈ I and (z, w) ∈ I imply (x,w) ∈ I or (z, y) ∈ I.

3. (x, y) ∈ I and (y, z) ∈ I imply that for every w, (x,w) ∈ I or (w, z) ∈ I.

Roberts extended the work of Scott and Suppes for indifference relations. That is,
given a graph (S, I), viewed as a finite set of points S and a reflexive, symmetric binary
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(a) Ck with k ⩾ 4 (b) K1,3 (c) Net (d) Tent

Figure 3.6.: Forbidden induced subgraphs for unit interval graphs.

relation I on S (which represents indifference), he addressed the question of whether
there exists a real-valued function f on S such that for all x, y ∈ S,

xIy ⇐⇒ |f(x)− f(y)| ⩽ 1

He proved that graphs which are representable in that way correspond exactly to unit
interval graphs, along with other characterizations of this class of graphs. Below, we
summarize these results.

Theorem 3.6 ([131]). Let G = (V,E) be an undirected graph. Then, the following are
equivalent:

1. There exists a function f : V −→ R such that (u, v) ∈ E if and only if |f(u) −
f(v)| ⩽ 1.

2. There exists a semiorder I on the vertices V such that (u, v) ∈ I if and only in
(u, v) /∈ E.

3. G is a comparability graph and every transitive orientation of G is a semiorder.

4. G is an interval graph with no induced K1,3.

5. G is a proper interval graph.

6. G is a unit interval graph.

Constructive proofs of the implications K1,3-free =⇒ proper =⇒ unit have been
then provided in [21] and [69], the later giving a linear time algorithm to construct a unit
interval representation given a proper one, while the former is quadratic in the number
of vertices.

Roberts also strove to find all the minimal not representable graphs (graphs that do
not admit a proper interval representation), yielding the famous characterization of unit
interval graphs in terms of a family of forbidden induced subgraphs.

Theorem 3.7 ([131]). Let G be a unit interval graph. Then, G does not contain the
graphs K1,3, the tent, the net or a Cn with n > 3 as an induced subgraph (see Figure 3.6
for an illustration of the list of forbidden subgraphs).

As for arbitrary interval graphs, we can also study the properties of the clique matrix
of unit interval graphs. In fact, a connected unit interval graph has a unique clique path,
up to reversal [126]. This can be expressed in terms of the clique matrix.
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Theorem 3.8 ([51]). A graph G is a proper interval graph if and only if its clique matrix
has the consecutive ones property for both rows and columns.

Finally, a graph is a unit interval graph if and only if it admits a specific ordering of
its vertices called an umbrella ordering.

Theorem 3.9 ([113]). A graph G is a unit interval graph if and only if there exists a
linear order ≺ of V such that for every choice of vertices u, v, w, if u ≺ v ≺ w and
(u,w) ∈ E, then (u, v), (v, w) ∈ E.

Given a proper interval representation, the left endpoints of all vertices, from the
smallest to the largest with ties broken arbitrarily, induce an umbrella ordering of the
vertices.

Finally, with respect to the recognition, proper interval graphs can also be recognized
in linear time [113, 44, 33].

Generalizations of unit and proper interval graphs. There are different graph classes
that lie between interval and proper and unit interval graphs. The class of k-lengths
interval graphs aims to generalize unit interval graphs by allowing k different interval
lengths within the representation [34, 108, 62]. The class of mixed unit interval graphs
allows all the combinations of open and closed endpoints of the intervals within the rep-
resentation [53]. The class of k-proper interval graphs generalizes proper interval graphs
by allowing an interval to be properly contained in at most k intervals [127]. On the
other hand, k-nested interval graphs forbid chains of more than k nested intervals [103].
Finally, rigid interval graphs are those that have a unique clique tree [110].

Forbidden patterns. To conclude this section, note that all the families of intersection
graphs satisfy the hereditary property, so they can be characterized by the set of their
minimal forbidden subgraphs. However, this set can be infinite, like in the case of
chordal or interval graphs, where we exclude every Ck for k ⩾ 4. To address this issue,
characterizations of hereditary graph classes in terms of forbidden patterns in a vertex
ordering or layout have also been studied [142, 50].

An ordered graph is a pair (G,≺G) such that ≺G is a total ordering of V (G). An
ordered graph (H,≺H) is a pattern on (G,≺G) if H is an induced subgraph of G and
for every pair of vertices x and y of H, x ≺G y if and only if x ≺H y. Patterns are
often denoted as a set of (ordered) edges and non-edges. A graph G excludes a pattern
(H,≺H) if there exists a layout ≺G of G such that (H,≺H) is not a pattern of (G,≺G).
As an example, the class of chordal graphs can be characterized by excluding the pattern
{(12, 13, 23)}, while interval graphs and proper interval graphs can be characterized by
excluding the sets of patterns {(12, 13, 23), (12, 13, 2, 3)} and {(12, 13, 23), (12, 13, 23)},
respectively [50, 125].
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3.3. Generalizations of interval graphs
We have seen that not every graph is an interval graph: already simple graphs as cycles
of length four fail to belong to this class. Thus, a natural question arises: can we extend
the idea of representing graphs by intersections of intervals to all graphs? One approach,
introduced by Roberts, is to consider higher dimensional intervals. He defined a new
graph-parameter, called boxicity, that measures the smallest integer t such that a graph
can be represented by the intersection of t-dimensional boxes which have their edges
parallel to the coordinate axes [132]. Interval graphs are those graphs with boxicity at
most one. Another approach, which is the one that we will study here, is allowing each
vertex to be represented by the union of several intervals. This yields another natural
graph parameter, the interval number, which is closely related to the class of multiple
interval graphs.

3.3.1. Multiple interval graphs
Before giving an overview of the most important results concerning the interval number
of a graph, let us give some preliminary definitions:

Definition 3.10. For any natural number d > 0, a (disjoint) d-interval is the union of
d (disjoint) intervals on the real line.

Definition 3.11. For any natural number d > 0, a graph G is a (disjoint) d-interval
graph if there exists a bijection from the vertices of G to a set of (disjoint) d-intervals,
f : V → I, such that there exists an edge between two vertices if and only if their
corresponding d-intervals intersect. The set I of d-intervals is called a d-interval repre-
sentation of G, and the family of all intervals that compose the d-intervals in I is called
the underlying family of intervals of I.

Note that in the literature, d-interval graphs have been defined both as the union of d
disjoint intervals [13, 31, 148], as the union of d not necessarily disjoint intervals [145],
and simply as the union of d intervals, without specifying whether they are disjoint or
not [58, 138]. When there are no length restrictions on the intervals, this ambiguity
is not relevant, as both definitions lead to the same class of graphs, as one can simply
stretch the intervals associated to a same vertex that intersect to make them disjoint
without changing any of the other intersections.

Observation 3.1. The classes of disjoint d-interval and d-interval graphs are equivalent.

Proof. It is clear that the class of disjoint d-interval graphs is contained in the class
of d-interval graphs. To see the other direction, it suffices to notice that if we have
a d-interval representation, we can represent every pair of intersecting intervals [a, b]
and [c, d] (with a < c < b < d), associated to the same vertex v, by a single interval
[a, d] to obtain an equivalent disjoint d-interval representation (note that since we have
decreased the number of intervals associated to vertex v by one, to obtain a d-interval
representation, one would technically need to add a “dummy” interval associated to v
which does not intersect any other interval in the representation).
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Let us now define the depth of a multiple interval graph, which measures a property
of its interval representations.

Definition 3.12. The depth of a family of intervals is the maximum number of intervals
that share a common point, and for every d ⩾ 1, the representation depth of a d-interval
graph is the minimum depth of any d-interval representation of the graph. We use the
term “depth-r” as an abbreviation of “representation depth at most r”.

Now, given the definition of d-interval graphs, we can define the interval number of a
graph as follows.

Definition 3.13. Given a graph G, the interval number i(G) is the smallest integer d
such that G is a d-interval graph.

The interval number i(G) of a graph G is well-defined, as it is always smaller than
the number of vertices of G, and a graph is an interval graph if and only if its interval
number is one. This definition was first introduced by R. McGuigan in 1977 [117], and
independently, by Trotter and Harary [145], who motivated its study with situations
arising naturally in scheduling and allocation problems. The two seminal papers on the
interval number of a graph, by Trotter and Harary [145] and Griggs and West [80], study
different bounds on the interval number of some classes of graphs. We gather the most
important results below.

Theorem 3.10 ([145]). The interval number of a tree is 1 if it is a caterpillar and 2
otherwise.

Theorem 3.11 ([145]). The interval number of the complete bipartite graph Km,n is⌈
mn+1
m+n

⌉
.

Theorem 3.12 ([80]). Let G be a simple graph on n vertices and m > 0 edges which
contains no K3. Then i(G) ⩾

⌈
m+1

n

⌉
.

Theorem 3.13 ([80]). Let G be a simple graph on n vertices and m > 0 edges. Then,
i(G) ⩽ ⌈

√
m⌉.

Theorem 3.14 ([80]). Let G be a graph with maximum degree ∆, then i(G) ⩽
⌈

1
2(∆ + 1)

⌉
.

Both Trotter and Harary and, independently, Griggs and West, established the fol-
lowing upper bound on the interval number for general graphs: i(G) ⩽

⌈
1
3n

⌉
, where

n = |V (G)|. This was then improved by Griggs.

Theorem 3.15 ([79]). Let G be a graph with n > 1 vertices. Then i(G) ⩽
⌈

1
4(n+ 1)

⌉
.

This bound is the best possible.

Finally, both left as an open problem to find a minimal family of graphs that are
not representable by d-intervals. However, in the 1980s, West and Shmoys proved that
for any fixed value of d with d ⩾ 2, determining whether the interval number of a
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graph is smaller or equal to d is NP-complete [148], which made the possibility of the
existence of a “nice” characterization of graphs with interval number 2 (and greater than
2) unlikely. They proved that the recognition problem is NP-hard for d = 2, by reducing
from Hamiltonian cycle in 3-regular triangle-free graphs, and then reduced from the
case d− 1 to d. As a corollary, they obtained the following theorem.

Theorem 3.16 ([148]). For any d ⩾ 2 and any r ⩾ 3, determining whether a graph G
has a d-interval representation of depth at most r is NP-complete.

They also motivated the study of d-interval graphs with a new biological problem.
They observed that new discoveries had shown that many genes are not represented as a
single unbroken sequence, but rather as a collection of them [35], and so multiple interval
graphs could be a useful tool for studying the structure of genes, since finding interval
numbers could be used to test gene compositions if an upper bound could be given on
the number of intervals used for each gene.

From the algorithmic point of view, the class of multiple interval graphs does not share
the algorithmic advantages of interval graphs. Different optimization problems have
been studied in multiple interval graphs, both from the classical complexity perspective
[31, 64, 83] and the parameterized complexity one [59, 95]. It is known that Maximum
Clique remains NP-complete in multiple interval graphs, even for unit 2-intervals [64],
and so do other problems such as Independent Set or Dominating Set [13, 31].
Some of the hardness results, for example, for vertex cover or coloring, follow because
the problems are already NP-complete on graphs of maximum degree three or cubic
graphs, which are properly contained in the class of 2-interval graphs. With respect to
the parameterized complexity, Fellows et al. proved that the problems k-Independent
Set and k-Dominating Set are both W[1]-hard even in unit 2-interval graphs, whereas
k-Clique, which is W[1]-hard on general graphs, becomes FPT in multiple interval
graphs [59].

Subclasses of multiple interval graphs As for classical interval graphs, the study of
d-interval graphs soon drew attention to some of its subclasses, such as proper d-interval
graphs and unit d-interval graphs, which as for interval graphs, are equivalent. Let us
first give the formal definitions.

Definition 3.14. A (disjoint) d-interval graph is proper if there exists a representation
where no interval of the underlying family is properly contained in another one, and it
is unit if there exists a (disjoint) d-interval representation where all the intervals of the
underlying family have unit length.

We have seen in Observation 3.1 that the classes of d-interval and disjoint d-interval
graphs are equivalent. However, if there are length restrictions on the intervals (like in
the case of unit d-interval graphs), this observation does not hold. For unit intervals,
one cannot replace two intersecting intervals [a, b] and [c, d], with a < c < b < d, by
[a, d], as the resulting interval would not be of unit length, and stretching it to make it
unit might disrupt the rest of the intersections. Thus, in this case, it cannot be inferred
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that both definitions of d-intervals lead to the same class of graphs. In fact, throughout
this thesis we will prove that they do not, so we will always distinguish between both
definitions of d-intervals. Nevertheless, this distinction has not always been explicit in
the literature.

The unit interval number was formally introduced by Andreae in 1985 [6].

Definition 3.15. The unit interval number of a graph, denoted iu(G), is the minimum
d such that G has a d-interval representation that is proper.

However, this notion had already been studied before by Maas [115], who proved the
following result.

Theorem 3.17 ([115]). A connected triangle-free graph of maximum degree ∆ has a
proper d-interval representation if and only if d > ∆/2, and there is a vertex u with
degree smaller than 2d.

Andreae then studied the unit interval number on general graphs, and gave the fol-
lowing upper bound.

Theorem 3.18 ([6]). Let G be an arbitrary graph on n vertices. Then, iu(G) ⩽⌈
1
2(n+ 1)

⌉
.

The concrete applications of 2-intervals, namely in bioinformatics, motivated the study
of another interesting restriction of 2-intervals: balanced 2-intervals. In [48], the authors
introduced families of balanced 2-intervals to model RNA. This led, later on, to the
study of balanced 2-interval graphs [67]. Let us first give the formal definitions:

Definition 3.16. A (disjoint) d-interval graph is balanced if there exists a (disjoint)
d-interval representation where the d intervals of a same d-interval have the same length,
but intervals of different d-intervals can differ in length.

Definition 3.17. A graph G is a (disjoint) balanced d-interval graph if it is the inter-
section graph of a family of (disjoint) balanced d-intervals.

Gambette and Vialette noticed that the proof of NP-completeness given by West and
Shmoys for the recognition of 2-interval graphs could be adapted for the recognition
of balanced 2-interval graphs. They also showed that the class of balanced 2-interval
graphs is properly contained in the class of 2-interval graphs, and initiated the study of
the complexity of recognizing unit 2-interval graphs [67].

The last important restriction of d-interval graphs that we will introduce here is the
class of (x1, . . . , xd) d-interval graphs.

Definition 3.18. A disjoint d-interval is a (x1, . . . , xd) d-interval if the d disjoint in-
tervals are open, have integer endpoints, and have lengths x1, . . . , xd, respectively.

Gambette and Vialette showed that the class of disjoint unit 2-interval graphs is equal
to the union of the classes of (x, x)-interval graphs, for every x ∈ N [67]. However, they
left the recognition of both (disjoint) unit 2-interval graphs and (x, x)-interval graphs
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for x ⩾ 2 as an open question (notice that (1, 1)-interval graphs are exactly line graphs,
which can be recognized in linear time [136]).

These open questions were partially addressed by Jiang [96], who managed to prove
that depth-two disjoint unit d-interval graphs can be recognized in linear time, and gave
an approximation algorithm for recognizing depth-two unrestricted d-interval graphs
with an additive error of one, that is, an algorithm that determines either that G is not
a depth-two d-interval graph, or that it is a depth-two (d+ 1)-interval graph. Neverthe-
less, whether arbitrary (disjoint) unit d-interval graphs or (x, x)-interval graphs can be
recognized in polynomial time remained as the two main open questions.

3.3.2. Multiple track interval graphs
Multiple interval graphs are not the only generalization of interval graphs where every
vertex is represented by more than one interval. We now present another closely related
class of graphs, the class of multiple track interval graphs, where each of the intervals
that represent a same vertex must be placed in a different track.

Definition 3.19. For any natural number d > 0, a d-track interval is the union of
d intervals, each placed in a separate parallel line, called track, with each track being
disjoint from the others.

Definition 3.20. A graph G is a d-track interval graph if it is the intersection graph
of a family of d-track intervals.

Definition 3.21. Given a graph G, we define the multitrack interval number or track
number of a graph G, denoted t(G), as the minimum positive integer d such that G is a
d-track interval graph.

The term multiple track interval was coined by Gyárfas and West [85], although the
concept had already been proposed by Tibor Gallai in 1968, and studied by Gyárfás and
Lehel in [84]. On the other hand, the study of multiple track interval graphs was initiated
by Kumar and Deo in [107]. Kumar and Deo gave a lower bound on the track number
of complete bipartite graphs, analogous to the bound given by Trotter and Harary for
the interval number.

Theorem 3.19 ([107]). Let Km,n be a complete bipartite graph. Then t(Km,n) ⩾⌈
mn

(m+n−1)

⌉
.

They also stated that it was likely that the recognition of graphs with fixed track
number could be solved in polynomial time. However, this was proven false by Gyárfás
and West [85].

Theorem 3.20 ([85]). Recognizing 2-track interval graphs is NP-complete.

Gyárfás and West adapted the proof given by West and Shmoys for 2-interval graphs
to prove the previous theorem. Nevertheless, they did not manage to extend the hardness
result for d-track interval graphs with d > 2, which was left as an open question, together
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d-Interval Graphs d-Track Interval Graphs
Unrestricted NP-complete NP-complete
Balanced NP-complete (d = 2) NP-complete
Unit ? NP-complete
(2, . . . , 2) ? NP-complete
Depth-two ? (+1 approximation) NP-complete (d = 2)
Depth-two, Unit Linear-time NP-complete (d = 2)

Table 3.1.: Complexity of recognizing different subclasses of d-interval and d-track inter-
val graphs before the results presented in this manuscript [67, 96].

with the recognition of depth-2 multitrack interval graphs. It took almost twenty years
to close the gap between d = 2 and d > 2. In 2010, Jiang finally proved that recognizing
d-track interval graphs is NP-complete for every d ⩾ 2, even for proper subclasses like
balanced, unit, depth-two, depth-two unit and (2, . . . , 2) d-track interval graphs.

We finish this section with a summary of the complexities of recognizing the different
subclasses of d-interval graphs (see Table 3.1), and a summary of the known containment
relations between some of these subclasses (see Figure 3.7).

3.4. Structure of the thesis

The remaining of the manuscript is dedicated to the original results obtained during
this thesis. Before presenting the core results, we discuss in Chapter 4 how to certify
that a given graph belongs to the class of (disjoint) unit d-interval graphs. We give a
characterization based on splitting vertices to obtain a unit interval graph and explain
how to encode it in Answer Set Programming to solve the recognition problem efficiently
in practice. Chapter 5 is dedicated to investigating whether we can generalize Roberts
characterization of unit interval graphs to higher dimensions. After observing that this
is not possible in the general case, we restrict ourselves to d-interval graphs that are
also interval. We generalize Roberts characterization for (non-disjoint) unit d-interval
graphs, and prove that it cannot be done for disjoint unit d-interval graphs, which
implies that the two classes are not equivalent. We also study the relations between
the classes of disjoint balanced d-interval graphs and (non-disjoint) balanced d-intervals.
Then, in Chapter 6, we address the two main open questions regarding the complexity
of recognizing subclasses of d-interval graphs: the complexity of recognizing unit and
(x, . . . , x) d-interval graphs. We prove that it is NP-hard to recognize unit (disjoint) d-
interval graphs and obtain, among other implications, that the recognition of (x, . . . , x)
d-interval graphs is also NP-hard for every x ⩾ 11. Finally, in Chapter 7 we study the
complexity of PIG-completion on interval graphs, an editing problem that consists on
finding the minimum amount of edges that we need to add to a given interval graph to
make it proper. We prove that the problem is polynomial-time solvable on graphs that
contain a universal vertex and other specific settings. For the general case, we provide
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(x, . . . , x)

(x+ 1, . . . , x+ 1)

unit d-interval

balanced d-intervaldisjoint balanced d-interval

disjoint unit d-interval

d-interval

(d+ 1)-interval

(d− 1)-track interval

d-track interval

Figure 3.7.: Containment relations between some subclasses of d-interval graphs for any
d ⩾ 2 (before the results presented in this thesis). An arrow from class C1
to a class C2 indicates that C2 ⊊ C1.

an algorithm which is exponential on the number of non-disjoint maximal centers. We
conclude with a summary and open questions in Chapter 8.
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2-interval graph

In this chapter, we discuss the different certificates that we can use in order to establish
that a graph is a (disjoint) unit 2-interval graph, which will be a fundamental task
throughout the rest of the manuscript. We first highlight, in Section 4.1, the drawbacks
of providing a (disjoint) unit 2-interval representation of the graph, and then present in
Section 4.2 a combinatorial certificate based on splitting vertices in order to obtain a
unit interval graph. Finally, in Section 4.3, we combine this approach with the semiorder
characterization of unit interval graph to obtain a recognition algorithm and explain how
to encode it in Answer Set Programming (a form of declarative programming oriented
towards difficult search problems) to design an efficient software that checks whether a
given graph belongs to the class of (disjoint) unit 2-interval graphs. All of the results
generalize naturally for (disjoint) unit d-interval graphs with d > 2.

Forbidden induced subgraphs. First of all, let us remark that even though there does
not exist a characterization of 2-interval graphs by forbidden induced subgraphs, there
exist some graphs that are known to be forbidden induced subgraphs. Indeed, Trotter
and Harary showed that a forbidden subgraph characterization of 2-interval graphs must
include the complete bipartite graphs K4,4 and K3,6 [145]. Although such a characteri-
zation is not complete and seems hard to find if it exists, a partial characterization can
be a useful tool to quickly determine that some graphs do not belong to this class.

For (disjoint) unit 2-interval graphs, it is straightforward to see that we have an
additional forbidden induced subgraph: the complete bipartite graph K1,5. Roberts
showed that a unit interval graph cannot contain an induced K1,3, as it is impossible
for an interval of unit length to intersect three pairwise disjoint intervals of length one
(see Figure 4.1). This observation can be generalized for (disjoint) unit 2-interval graphs.
Indeed, if a graph contains an induced K1,5, then it cannot be a (disjoint) unit 2-interval
graph, as the two intervals associated to the center of the claw would have to intersect
five pairwise disjoint intervals. Then, by the pigeonhole principle, one of the intervals
associated to the center would have to intersect at least three pairwise disjoint intervals,
which we already know to be impossible (see Figure 4.2). Naturally, this extends to
(disjoint) unit d-interval graphs for any d > 2: if we try to give a (disjoint) unit d-interval
representation of a graph that contains a K1,2d+1 as an induced subgraph, then the d
intervals associated to the center must intersect 2d+ 1 pairwise disjoint intervals, which
again implies that we must have an interval of length one intersecting three pairwise
disjoint intervals of length one.
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Figure 4.1.: A unit interval graph cannot contain an induced K1,3.
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Figure 4.2.: A (disjoint) unit 2-interval graph cannot contain an induced K1,5.

Observation 4.1. Let G be a (disjoint) unit d-interval graph for some natural number
d ⩾ 1. Then, G does not contain the graph K1,2d+1 as an induced subgraph.

Proof. Towards a contradiction, suppose that there exists a graph G that is (disjoint)
unit d-interval and contains a K1,2d+1 as an induced subgraph. Then, there exists a
(disjoint) unit d-interval representation of the induced K1,2d+1, which means that the
d-interval associated to the center must intersect 2d + 1 pairwise disjoint d-intervals.
Since the d intervals associated to the center all have unit length, each of them can
intersect at most two different d-intervals. That is, in total, the d-interval associated to
the center can intersect at most 2d pairwise disjoint d-intervals, which contraadicts the
assumption that G is (disjoint) unit d-interval.

4.1. Exhibiting a (disjoint) unit 2-interval representation

The most straightforward way to prove that a given graph G = (V,E) is a (disjoint)
unit 2-interval graph is to provide a (disjoint) unit 2-interval representation of the graph.
That is, to every vertex v ∈ V , we assign two unit intervals Iv1 and Iv2 , and for every edge
(u, v) ∈ E, we require the interval Iui to intersect the interval Ivj , for some i, j ∈ {1, 2}.
This can be manufactured easily for some small graphs, but if we want to determine
whether an arbitrary graph is (disjoint) unit 2-interval, exploring by brute-force all the
possible such representations of a graph is not an efficient approach. In fact, without
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additional constraints, this is simply impossible: just by translating a single interval we
can obtain an infinite number of representations.

From K1,3-free to unit. In the case of small graphs for which it is easy to give a
representation, the simplest procedure is to provide a (disjoint) 2-interval representation
where no interval of the underlying family intersects three pairwise disjoint intervals.
Then, if we regard the interval representation given by the underlying family, it will
correspond to a representation of a K1,3-free interval graph, or equivalently, as Roberts
showed, to a unit interval graph. We can thus claim directly that the graph is (disjoint)
unit 2-interval, or transform the representation into a unit one. Recall that there exists
a constructive proof of Roberts characterization that provides an algorithm to convert
an interval representation of a K1,3-free interval graph into a proper one, and then to a
unit one [21].

We describe the algorithm below for completeness. Given an interval representation
of a K1,3-free graph, we know that no interval intersects three pairwise disjoint intervals.
Thus, if there is an interval J = [a, b] properly contained in an interval I = [c, d], with
c < a ⩽ b < d, then one of the segments [c, a] or [b, d] will be free of endpoints of
intervals that don’t intersect J . Thus, we can extend J past one of the endpoints of
I without altering the intersections. Doing so for every interval properly contained in
another one yields a proper representation. The next step is to transform the obtained
representation into a unit one. Note that, given a proper interval representation, the
right endpoints of the intervals follow the same order as the left endpoints. Therefore,
we can process the representation from left to right, and at each step, we consider the
interval I = [a, b] with the leftmost left endpoint that has not been converted to a unit
interval and we make it unit. The goal is to stretch I without altering the lengths of
the already processed intervals, so we will only stretch the part of the interval that does
not intersect any already processed intervals. Thus, suppose that I contains the right
endpoint of some other interval and let α be the largest such right endpoint. This interval
must have been processed before, and so it is already of length one, which implies that
α < min{a + 1, b}. If no such interval exists, we simply let α = a. We can then adjust
the part of the representation in [α,∞) by shrinking or expanding [α, b] to [α, a + 1],
and translating [b,∞) to [a+ 1,∞). After we have processed every interval, we obtain a
unit interval representation. The procedure described above is quadratic on the number
of intervals.

Gardi proposed a more efficient procedure that yields a linear time algorithm, as it
avoids translating all the remaining intervals at each step [69]. To do so, he exploited the
fact that the clique-vertex incidence matrix of a proper interval graph has the consecutive
1’s property for columns and rows. The algorithm starts with the vertex ordering given
by the order of the left endpoint of the intervals. From the consecutive 1’s property,
we know that the vertices of a maximal clique appear consecutively in this ordering.
For a clique Ci, we denote by a(i) and b(i) the indices of the first and last vertex on
the ordering that belongs to the clique, respectively. The clique Ci is then formed by
the vertices a(i), . . . , b(i). We start by representing the vertices of clique C1 by b(1)
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4. Certificates for being a (disjoint) unit 2-interval graph

pairwise intersecting unit intervals, whose left endpoints are ordered as in the vertex
order v1, . . . , vb(1). Now, suppose we have assigned unit intervals to every vertex in
the cliques C1 until Cj−1 and consider clique Cj . To add the remaining intervals of
Cj − Cj−1, for every vertex v in the aforementioned set, we construct Iv = [l(Iv), r(Iv)]
as follows. We consider the order of the vertices of Cj − Cj−1 in the vertex ordering
and put the left endpoints of the intervals associated to them in said ordering (that
is, l(Ivb(j−1)+1), . . . , l(Ivb(j))) between r(Iva(j)−1) and r(Iva(j)). In other words, all the
intervals start after the last interval that is in Cj−1 but not in Cj , and before the first
interval of Cj finishes. This algorithm yields a unit interval representation of the graph.

In the remaining of the manuscript, we will often provide a proper 2-interval repre-
sentation or a 2-interval representation that satisfies the property that no interval of the
underlying family intersects three pairwise disjoint intervals as a certificate that a graph
is unit 2-interval.

Computer search. For larger graphs, one can seek to find a (disjoint) unit 2-interval
representation by computer search. As mentioned before, in this case the search space
can explode, so additional constraints must be imposed to reduce it.

The first essential step is to discretize the real line by requiring all intervals to have
integer endpoints. This will also likely force us to modify the length of the intervals: if
the initial representation consisted of intervals of length one, discretizing the real line
will have as consequence that an interval can only intersect another one if it starts/end
at one of its endpoints. Thus, we will not be able to represent graphs that we could
represent before, for example, a triangle with two of its vertices connected each to
a private neighbor. Therefore, we need to force all the intervals to have the same
length, but this length must be larger than one. In order to fix a length that maintains
expressivity, i.e., that ensures that we can represent every graph that we could represent
before discretizing the real line, we can choose as an upper bound 2n, where n is the
number of vertices in the original graph G. Indeed, in a unit 2-interval representation of
G, there will be exactly 2n intervals, and so in the worst case, an interval can intersect
all the other intervals at different endpoints.

The other fundamental step to reduce the search space is to force all the intervals to
start at the first available integer. This allows us to compress the size of the section of
the real line that we need to explore. Since we consider every interval to have length
2n, the length of a compact representation (a representation where every interval starts
in the first available integer) is at most 2n · (2n+ 1) (we have 2n intervals of length 2n,
and since the intervals are closed, disjoint intervals need to start at the next integer, so
we account for a section of the real line of length 2n + 1 for each interval). That is, in
total it suffices to consider a section of the real line of length 4n2 + 2n.

If we impose these two constraints, then we can reduce the problem to finding the
starting point of every interval (which completely determines the representation since
all the intervals have the same length) among 4n2 + 2n possibilities (the number of
integers in the section of the real line we are considering). A brute-force algorithm to
solve this problem would require 2n variables, each indicating the starting point of an
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interval and taking 4n2 + 2n possible values. In total, that gives roughly (4n2 + 2n)2n

possible representations. Such a brute-force algorithm can be modeled as an ILP, but
its running time already anticipates a limited efficiency.

4.2. Vertex splitting to make the graph unit interval
We have seen the drawbacks of providing an interval representation as a certificate to
show that a graph is (disjoint) unit 2-interval. We now present a characterization of unit
and disjoint unit 2-interval graphs that has the advantage of being a truly combinatorial
certificate, and which will be an essential tool for proving that a graph belongs to these
classes throughout the rest of the manuscript. On a high level, this characterization
states that a graph is a (disjoint) unit 2-interval graph if and only if one can obtain a
unit interval graph by splitting some (or all) of its vertices.

The vertex splitting operation replaces a vertex v by two copies v1 and v2 such that
the union of the neighborhoods of the copies is equal to the neighborhood of the original
vertex. We will differentiate between splits, where the two copies can be adjacent, and
disjoint splits, where the two copies must be non-adjacent.

Vertex splitting was first introduced in the context of circuit design and graph draw-
ing [116, 56]. Since then, it has been studied with different purposes, most notably in the
visualization of non-planar graphs [124, 57] and in graph modification problems [1, 11].
However, the notion of vertex splitting has also been applied to the recognition of trape-
zoid graphs [36, 119] and tolerance and bounded tolerance graphs [120]. In this context,
the definition of this operation is more restrictive, as additional constraints are imposed
in the neighborhoods of the two copies of a vertex so that it can be used as a tool to
transform a trapezoid graph into a permutation graph with specific properties.

In a similar fashion, we apply the notion of vertex splitting to the recognition of
(disjoint) unit d-interval graphs. We will first present the characterization of (disjoint)
unit 2-interval graphs in terms of splits of a graph, and then generalize if for any d ⩾ 2.
Let us thus formalize the notions of split and disjoint split that we use here.

Definition 4.1. Given a graph G, a pair (S, f) formed by a graph S and a function
f : V (S) 7→ V (G) is a split of G if f satisfies the following conditions:

• 1 ⩽ |f−1(v)| ⩽ 2 for every v ∈ V (G).

• For every edge (s, t) of S, (f(s), f(t)) is an edge of G.

• For every edge (u, v) of G, there exist two vertices s and t in f−1({u, v}) such that
(s, t) is an edge of S.

Definition 4.2. Given a graph G, a pair (S, f) formed by a graph S and a function
f : V (S) 7→ V (G) is a disjoint split of G if f satisfies the conditions in Definition 4.1
and the following extra condition:

• For every vertex v of G, f−1(v) is an independent set in S.
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4. Certificates for being a (disjoint) unit 2-interval graph

Given a split (S, f) of G and a vertex v ∈ V (G), we call the set f−1(v) the set of
representatives of the vertex v. Similarly, given an edge (u, v) ∈ E(G), the edge (s, t) of
S with s and t in f−1({u, v}) is called a representative of (u, v). If |f−1(v)| = 1, we say
that the vertex v has not been split.

As we anticipated before, among all the splits of a graph G, we are actually interested
in those splits that yield a unit interval graph.

Definition 4.3. The family of splits of G that lead to a unit interval graph is S∗
U (G) :=

{(S, f) | (S, f) is a split of G and S is a unit interval graph}.

Definition 4.4. The family of disjoint splits of G that lead to a disjoint unit interval
graph is SU (G) := {(S, f) | (S, f) is a disjoint split of G and S is a unit interval graph}.

The next lemma shows how a (disjoint) split (S, f) of a graph G can be used to certify
that G is a (disjoint) unit 2-interval graph.

Lemma 4.1. We can characterize (disjoint) unit 2-interval graphs as follows:

1. A graph G is a unit 2-interval graph if and only if the family S∗
U (G) is not empty.

2. A graph G is a disjoint unit 2-interval graph if and only if the family SU (G) is not
empty.

Proof. 1. Suppose that G is a unit 2-interval graph. Then, by assumption, there exists
a collection of unit 2-intervals D = {(I1(v), I2(v)) | v ∈ V } such that G ≃ Ω (D). Let F
be the family of intervals formed by the underlying family of D. Let S be the interval
graph defined as the intersection graph of the family F , i.e., S ≃ Ω(F). Consider the
function f : V (S) 7→ V (G) such that:

• For every pair (I1(v), I2(v)) ∈ D, f(I1(v)) = f(I2(v)) = v.

By construction, f satisfies all the conditions in Definition 4.1. Indeed, the first two
conditions follow directly by definition, while the last two conditions follow because if
we have an edge (Ij(u), Ik(v)) in S, for some j, k ∈ {1, 2}, this is equivalent to the 2-
intervals associated to vertices u and v of G intersecting, so there is an edge (u, v) in G.
Therefore, (S, f) is a split of G.

Conversely, suppose that there exists a split (S, f) of G that satisfies the property of
being a unit interval graph. Then, there exists a collection of unit intervals I = {I1(s) |
s ∈ V (S)} such that S ≃ Ω (I). Since (S, f) is a split of G, we know that there exists a
map f : V (S) 7→ V (G) satisfying the conditions in Definition 4.1. We construct a unit
2-interval representation of G, i.e., a collection of unit 2-intervals D = {(I1(v), I2(v)) |
v ∈ V } as follows:

• For every v ∈ V (G), we let I1(v) = I1(s) and I2(v) = I1(t), where {s, t} = f−1(v).

By construction, this is a unit 2-interval representation of G, as the last two properties
of f ensure that we preserve the same edges.
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2. Similarly, suppose that G is a disjoint unit 2-interval graph and define the split
(S, f) as before. Since the family D is now a family of disjoint unit 2-intervals, the
map f satisfies the confition that f−1(v) is an independent set for every vertex v, and
so (S, f) is a disjoint split. Conversely, given a disjoint split (S, f), defining the family
of disjoint 2-intervals D as before, we obtain a disjoint unit 2-interval representation of
G.

Note that we could also ask the map f of a (disjoint) split of a graph G to satisfy
|f−1(v)| = 2 for every vertex v, as given a split (S, f) such that S is a unit interval
graph, if |f−1(v)| = 1, the split (S′, f) defined by adding an isolated representative
of v to the graph S also belongs to S∗

U (G) (resp., SU (G)). However, we allow the
possibility to discard isolated representatives for simplicity, as generally we will use this
characterization to do case analysis on the possible splits, and reducing the number of
total representatives reduces the search space.

Vertex splitting to recognize (disjoint) unit d-interval graphs. The previous charac-
terizations can be generalized for higher dimensions, that is, for (disjoint) unit d-interval
graphs with d > 2. To do so, it suffices to extend the notion of (disjoint) split of a graph
as follows.

Definition 4.5. Given a graph G and a natural number d > 0, we say that a pair (S, f)
formed by a graph S and a function f : V (S) 7→ V (G) is a d-split of G if f satisfies the
following conditions:

• 1 ⩽ |f−1(v)| ⩽ d for every v ∈ V (G).
• For every edge (s, t) of S, (f(s), f(t)) is an edge of G.
• For every edge (u, v) of G, there exist two vertices s and t in f−1({u, v}) such that

(s, t) is an edge of S.

If furthermore, for every vertex v of G, f−1(v) is an independent set in S, we say that
(S, f) is a disjoint d-split.

Then, a graph G is a (disjoint) unit d-interval graph if and only if there exists a
(disjoint) d-split (S, f) of G such that S is a unit interval graph. If we define the family
of (disjoint) d-splits verifying that property as Sd∗

U (G) (resp., Sd
U (G)), we can restate the

characterization as follows.

Lemma 4.2. A graph G is a (disjoint) unit d-interval graph if and only if the family
Sd∗

U (G) (resp., Sd
U (G)) is not empty.

As a remark, the reader can observe that we can also apply a similar characterization
to verify whether a graph is a d-interval graph or not, by considering the family

Sd
I(G) := {(S, f) | (S, f) is a d-split of G and S is an interval graph}

instead of the family S∗
U (G).
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4. Certificates for being a (disjoint) unit 2-interval graph

Brute-force recognition algorithm. We conclude this section by pointing out that the
previous characterizations can be used to obtain a brute-force recognition algorithm for
(disjoint) unit d-interval graphs. Indeed, the brute-force algorithms based on the previ-
ous characterizations consist on considering all the possible d-splits or disjoint d-splits
(S, f) of the input graph and checking in linear time whether S is a unit interval graph
or not. We show that these algorithms are considerably more efficient that exploring all
the possible (disjoint) unit d-interval representations.

Theorem 4.1. Disjoint Unit d-interval recognition can be solved in time O(2d2m).

Proof. We consider the brute-force algorithm that tests whether a given graph is a
disjoint unit d-interval graph by considering all the possible disjoint d-splits of G =
(V,E). Let (S, f) be a disjoint d-split of G. Let S have vertex set V ′ := {u1, . . . , ud|u ∈
V }. For every edge (u, v) ∈ E, E(S) will contain at least one edge (ui, vj), with i, j ∈
{1, . . . , d}. There are d2 such possibilities. However, these edge representatives are not
mutually exclusive. Thus, in the worst case, we can have up to 2d2 different sets of
representatives for each edge of G. Since we have to guess the representatives for every
edge in the original graph, this yields 2(d2m) possible disjoint d-splits. It then suffices to
check in linear time whether each of the graphs is a unit interval graph, and return yes
if at least one of the graphs is unit interval, and no otherwise. This yields an algorithm
running in time O(2d2m).

Theorem 4.2. Unit d-interval recognition can be solved in time O(2d2(m+n)).

Proof. We can design a similar brute-force algorithm for Unit d-interval recogni-
tion by considering all the possible d-splits of the input graph G. Again, for every edge,
we have 2d2 possible sets of representatives, but now we also need to consider all the
possible edges between representatives of a same vertex. Since there are d representa-
tives, we have d(d − 1)/2 possible edges for every vertex of G. This implies that the
number of different d-splits of G is upper-bounded by 2d2(m+n), and so the brute-force
algorithm runs in time O(2d2(m+n)).

4.3. Encoding the recognition problem in ASP
In this section, we exploit the semiorder characterization of unit interval graphs given
in [131] to provide an efficient encoding of the problem of recognizing disjoint unit d-
interval graphs. Recall that Roberts proved that an interval graph G = (V,E) is unit if
and only if there exists a semiorder (V, P ) on the vertex set V such that (u, v) ∈ P if and
only if (u, v) /∈ E. Building upon the previous characterization in terms of the disjoint
d-splits of a graph, given a graph G = (V,E), we want to check whether there exists a
semiorder (S, P ) on the set S := {vi|v ∈ V, i ∈ {1, . . . , d}} that satisfies the following
properties:

• For every edge (u, v) ∈ E, the pairs (ui, vj) do not belong to P for any i, j ∈
{1, . . . , d}.
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• For every non-edge (u, v) ∈ E, at least one pair (ui, vj) belongs to P for some
i, j ∈ {1, . . . , d}.

We can use these constraints to guess a possible semiorder. That is, for every pair
of vertices u, v that is not connected by an edge, we guess whether (ui, vj) belongs
to P ; (vi, uj) belongs to P ; or neither pair belongs to P , for every pair ui, vj with
i, j ∈ {1, . . . , j}.

Here, we explain how to obtain an efficient solver to recognize disjoint unit 2-interval
graphs by encoding this modelization of the problem in Answer Set Programming (ASP)
language. Answer Set Programming is a form of declarative programming oriented to-
wards difficult search problems, where problems are reduced to computing stable models
(a set of statements that are true and don’t contradict each other), and answer set solvers
–programs for generating stable models– are used to perform the search [112].

Before explaining how to encode our modelization, let us give an overview of the
different expressions that we can have in the ASP language LPARSE (front-end of the
answer set solver SMODELS).

• Rules: a rule of the form head:- body means that body implies head, or equiva-
lently if body is in the stable model then so is head. If the body is empty, the rule
is called a fact.

• Constraints: they are rules without a head, written as :- body. They serve to
eliminate stable models, for example, :- s, not t prohibits generating s if t is
not generated (all the conditions in the body cannot happen at the same time).

• Choice rules, which can include numerical bounds. For example, 1 {s,t}:- p
means that if p is generated then at least one of s or t is generated.

• Variables: denoted by an uppercase letter, they are used to represent unknown
values or to express general rules. For example, p(X) :- q(X), r(X), is a rule
that states that p(X) is true if both q(X) and r(X) are true, for any value of X.

• Literals: an atom or a negated atom, such as not p(X).

Encoding the semiorder constraints. We can encode the constraints to check whether a
relation P on a set S is a semiorder with the following constraints (where semiorder(X,Y)
denotes that the pair (X,Y ) of elements of S belongs to P ):

• Transitivity: :- semiorder(X,Y), semiorder(Y,Z), not semiorder(X,Z).

• Irreflexivity: :- semiorder(X,Y), semiorder(Y,X).

• (x, y) ∈ P and (z, w) ∈ P imply (x,w) ∈ P or (z, y) ∈ P :
:- semiorder(X,Y), semiorder(Z,W), not semiorder(X,W), notsemiorder(Z,Y).

• (x, y) ∈ P and (y, z) ∈ P imply (x,w) ∈ P or (w, z) ∈ P for every w:
:- semiorder(X,Y), semiorder(Y,Z), element(W), not semiorder(X,W), not
semiorder(W,Z).
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Encoding a unit interval checker. Recall that Roberts proved that an interval graph
G = (V,E) is unit if and only if there exists a semiorder P on the set of vertices V
such that (u, v) ∈ P if and only if (u, v) /∈ E. To check whether a given graph is unit
interval, we will see whether such a semiorder P exists. First of all, we need to encode
that for every pair of distinct elements X and Y (wich are vertices of the graph), the
pairs (X,Y ) or (Y,X) can be in P . We can do so with the following choice rule (where
element(X) means that X is an element of V , i.e., a vertex):

• { semiorder(X,Y) } :- element(X), element(Y), X != Y.

Then, we add the constraint that ensures that if there is an edge between two elements
X and Y , then (X,Y ) is not in P (where theedge(X,Y) means that there is an edge
between X and Y in G):

• :- element(X), element(Y), X!=Y, semiorder(X,Y), theedge(X,Y).

Note that, as formulated here, to capture an undirected edge (X,Y ), we need to define
theedge(X,Y) and theedge(Y,X), but we will deal with this issue when we encode the
graph from the input.

Finally, we add the constraint that if there is no edge between X and Y , then at least
one of (X,Y ) or (Y,X) is in P :

• :- element(X), element(Y), X != Y, not semiorder(X,Y),
not semiorder(Y,X), not theedge(X,Y).

The previous rules encode how to test whether a graph is a unit interval graph.

Encoding the splits of a graph. It only remains to encode the vertex splitting operation
on the input graph G. We present the constraints required to verify that a graph is
disjoint unit 2-interval.

For every vertex V (vertex(V)), we need to generate two new elements of S, which
we denote by element(x(V)) and element(y(V)), and impose the constraint that every
edge has a representative (the representative of an edge in the disjoint split are denoted
by theedge()).

• element(x(V)) :- vertex(V).

• element(y(V)) :- vertex(V).

• 1 { theedge(x(U), x(V)); theedge(x(U), y(V)); theedge(y(U), x(V));
theedge(y(U), y(V))} :- edge(U,V), U < V.

• 1 { theedge(x(U), x(V)); theedge(x(U), y(V)); theedge(y(U), x(V));
theedge(y(U), y(V))} :- edge(V,U), U < V.

Finally, we impose that the two intervals associated to a same vertex are disjoint, and for
every edge in the resulting graph, we generate both theedge(V,U) and theedge(U,V),
as we anticipated before.
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• semiorder(x(V), y(V)) :- vertex(V).

• theedge(V,U) :- theedge(U,V).

To provide an instance for this solver, vertices must be indicated as vertex(V) and
edges as edge(U,V) (only one pair per edge is needed). The implementation of this
solver can be found in the following git repository: https://github.com/AbdallahS/
unit-graphs. The reader can observe that this program can be adapted to test whether
a graph belongs to the class of (disjoint) unit d-interval graphs or unit d-track interval
graphs, for any d ⩾ 2.

The brute-force algorithm proposed in this chapter to recognize (disjoint) unit d-
interval graphs and the characterization in terms of splits will be essential tools through-
out the reminder of the manuscript. Furthermore, we also make use of the implemen-
tation in ASP to verify some results computationally and obtain counterexamples by
computer search.
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5. Generalizing Roberts’ characterization of
unit interval graphs

In this chapter, we study the generalization of Roberts characterization of unit interval
graphs to higher dimensions. Recall that Roberts characterization states that the classes
of proper and unit interval graphs coincide, and are exactly K1,3-free interval graphs.
Furthermore, there exist short constructive proofs of this result [21, 69]. This is a
remarkable result as it gives a simple characterization of unit interval graphs.

As explained in Chapter 4, the necessary condition of being K1,3-free extends naturally
to multiple interval graphs: a (disjoint) unit 2-interval graph cannot contain a K1,5 as an
induced subgraph; and more generally, a (disjoint) unit d-interval graph cannot contain
a K1,2d+1 as an induced subgraph. Thus the following natural question arises: can we
generalize Roberts characterization of unit interval graphs to multiple interval graphs?
Perhaps the most straightforward generalization would be to characterize unit d-interval
graphs as K1,2d+1-free d-interval graphs, but this has already been proven false in [141]:
there exists a graph which is 2-interval and K1,5-free, but not unit 2-interval. But not
all hope of generalizing Roberts characterization must be lost yet! What if we add some
additional constraints?

Already in 2016, Durán et al. decided to focus on d-interval graphs which are also
interval [55]. In a presentation at VII LAWCG, they claimed that if G is an interval
graph, then G is a disjoint unit d-interval graph if and only if it is K1,2d+1-free 1. In this
chapter, we show that the aforementioned statement is actually false, and that, perhaps
surprisingly, Roberts characterization can only be generalized depending on the chosen
definition of d-interval graphs! In particular, this implies that the classes of disjoint unit
d-interval and unit d-interval graphs are not equivalent (see Figure 5.1 for a summary
of the main results).

The outline of the chapter is the following. In Section 5.1, we generalize Roberts
characterization for unit d-interval graphs. In Sections 5.2 and 5.3 we highlight the
problems encountered when trying to generalize it for disjoint unit d-interval graphs and
prove that it cannot be done. Then, in Section 5.4, we give an approximation algorithm
with an additive error of one to recognize disjoint unit d-interval graphs which are also
interval. Finally, in Section 5.5, we study the subclasses of graphs obtained under
the two definitions of d-intervals in the balanced case, expanding the knowledge of the
containment relations between the different subclasses of 2-interval graphs.

1Note that they refer to disjoint unit d-intervals simply as unit d-intervals, but they are explicitly
defined beforehand as the union of d disjoint intervals.
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K1,5-free intervaldisjoint unit
2-interval

unit 2-interval

Figure 5.1.: K1,5-free interval graphs are not contained in the class of disjoint unit 2-
interval graphs. The class of unit 2-interval graphs is a superclass of disjoint
unit 2-interval graphs, and spans the whole intersection of K1,5-free and
interval graphs.

5.1. Generalization for unit d-interval graphs
In this section, we generalize Roberts characterization of unit interval graphs for d-
interval graphs. Recall that by d-interval graphs we refer to intersection graphs of
d-intervals where the d intervals are not necessarily disjoint.

Theorem 5.1. Let G be an interval graph. Then, for any natural number d ⩾ 2, G
is a unit d-interval graph if and only if G does not contain a copy of a K1,2d+1 as an
induced subgraph. Furthermore, given a K1,2d+1-free interval graph, a unit d-interval
representation can be constructed in O(n+m) time, where n and m are the number of
vertices and edges of the graph, respectively.

We present a polynomial-time algorithm that, given an arbitrary interval representa-
tion I of a K1,2d+1-free graph, returns a d-interval representation I ′ of the graph where
no interval of the underlying family of I ′ intersects three or more pairwise disjoint in-
tervals. This ensures that the underlying family of intervals returned corresponds to an
interval representation of a K1,3-free graph, so we can use the algorithm described in [21]
to turn it into a proper representation (and then to a unit one in linear time [69]). Note
that if an interval representation of the graph is not given, we can always compute it in
linear time [45].

Before presenting the algorithm formally, let us give the idea behind it. The algorithm
constructs a family I ′ of d-intervals in the following way: for every interval I ∈ I that
intersects m (and no more than m) pairwise disjoint intervals, we create a t-interval
I1 ∪ . . . ∪ It, where t = ⌈m

2 ⌉. Note that for every interval I that intersect only two
disjoint intervals, we have t = 1, and the interval I1 added to I ′ will be exactly I.
We will refer to such intervals as original intervals, as they are equal to the ones in I.
After creating the t-intervals described above, to obtain a d-interval representation of
the graph, it suffices to add d− t “dummy” intervals for each vertex that is represented
by t < d intervals (where by “dummy” intervals we mean that they do not intersect
any other interval from the representation). Each d-interval I1 ∪ . . .∪ Id introduced will
preserve the same intersections as the interval I ∈ I, and each Ii will possess three key
properties: it intersects at most two disjoint original intervals, it contains an original
interval, and each of its endpoints coincides with an endpoint of an original interval.
These properties ensure that the representation I ′ can be made unit.
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Algorithm. Let the family of intervals I be an interval representation of G. For every
interval I ∈ I, let l(I) and r(I) stand for its left and right endpoint, respectively.
Furthermore, define a partial order as follows: given two intervals I, J ∈ I, let I ≺ J if
and only if r(I) < l(J) (i.e. interval J is fully to the right of interval I). Two intervals
are incomparable if they intersect.

Step 1 Initialize a set of intervals C with all the intervals of I, set I ′ := ∅, and go to Step
2.

Step 2 Pick an interval I of C, remove it from the set and define its neighborhood N (I) =
{J ∈ I : J ∩ I ̸= ∅}. Let m be the maximum number of pairwise disjoint intervals
that I intersects. If m ⩽ 2, go to Step 3; if m = 3, go to Step 4; and if m > 3,
go to Step 5.

Step 3 If m ⩽ 2, add the interval I1 = I to the family I ′ and call I1 an original interval.
Then go to Step 6.

Step 4 If m = 3, define four auxiliary intervals:

A1 = arg min
J∈N (I)

{r(J)} A2 = arg min
{J∈N (I) : A1≺J}

{r(J)}

A4 = arg max
J∈N (I)

{l(J)} A3 = arg max
{J∈N (I) : J≺A4}

{l(J)}

Then add to I ′ the 2-interval I1 ∪ I2, with I1 = [l(I), r(A2)] and I2 = [l(A3), r(I)].
Note that A2 and A3 necessarily intersect, as otherwise we would have m ⩾ 4, so
I1 ∪ I2 is not a disjoint 2-interval. After adding it to I ′, go to Step 6.

Step 5 If m > 3, define two families of auxiliary intervals. The first family A := {Ai | i ∈
{1, . . . ,m}} forms a maximum set of pairwise disjoint intervals intersecting I, and
it will ensure that all the intersections are preserved. It is defined as follows:

A1 = arg min
J∈N (I)

{r(J)} Ai = arg min
{J∈N (I) : Ai−1≺J}

{r(J)} , ∀ i ∈ {2, . . . ,m− 2}

Am = arg max
J∈N (I)

{l(J)} Am−1 = arg max
{J∈N (I) : J≺Am}

{l(J)}

The second family B := {Bi | i ∈ {1, . . . ,m}} is a tool to ensure that each new
interval Ii intersects only two disjoint intervals in I ′. Note that restricting each
Ii to intersect only two disjoint intervals from the family A is not enough: for
example, in Figure 5.2, if I2 were defined as [l(A3), r(A4)], then it would intersect
three pairwise disjoint intervals in I ′ (as all the intervals except I are original
intervals in this example), whereas if the left endpoint of I2 were chosen as r(A2i−1),
then an original interval that was not the center of a claw in I might become the
center of a new claw in I ′. Thus, for every i ∈ {1, . . . ,m}, Bi is defined as follows:

Bi = arg max
J∈N (Ai)∪Ai

{l(J)}
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I

I1 I2 I3 I4

A1 A2 A3 A4 A5 A6 A7 A8

B3

Figure 5.2.: Interval I intersects 8 disjoint intervals. In red, the 4-interval returned by
the algorithm. Note that if l(I2) were defined as l(A3) instead of l(B3), it
would intersect three pairwise disjoint original intervals.

In other words, Bi is the interval in the closed neighborhood of Ai starting the
latest. Note that if there does not exist any interval intersecting Ai which starts
after Ai, then Bi = Ai since we are considering the closed neighborhood. Now,
add to I ′ the t-interval I1 ∪ ... ∪ It, defined as follows. We distinguish two slightly
different cases:

a) If m is even, i.e., m = 2t for some t > 1, define I1 = [l(I), r(A2)], Ii =
[l(B2i−1), r(A2i)] for every i ∈ {2, . . . , t− 1}, and It = [l(A2t−1, r(I)].

b) If m is odd, i.e., m = 2t − 1 for t > 2, define It−1 and It differently, as
It−1 = A2t−3 and It = [l(A2t−2, r(I)], and the rest of the intervals as before.

Notice that by definition, the intervals Ii, ..., It are actually pairwise disjoint, so if
m > 3, the t-interval added to I ′ is a disjoint t-interval. After adding the t-interval,
go to Step 6.

Step 6 If C = ∅, return I ′, else go to Step 2.

Figure 5.2 illustrates the algorithm on a concrete interval which intersects eight pair-
wise disjoint intervals.

Before proceeding to the proof of correctness of the algorithm, we highlight the prop-
erties of the intervals constructed that will be useful to prove the next three lemmas.
In the following, we say that an interval I of I has been transformed into a t-interval
I1 ∪ · · · ∪ It by the algorithm after it has been processed.

Observation 5.1. Let I ∈ I be an interval transformed into I1∪· · ·∪It by the algorithm,
for some 1 < t ⩽ d. Then, for every i ∈ {1, . . . , t}:

1. The left (resp., right) endpoint of every interval Ii coincides with the left (resp.,
right) endpoint of an original interval.

2. There is an original interval contained in Ii.

Now, to prove the correctness of the algorithm, we need to show that for every interval
I ∈ I, the t-interval I1 ∪ ... ∪ It ∈ I ′ preserves the same intersections as I, and that no
interval in the underlying family of I ′ intersects three pairwise disjoint intervals. In the
next claim, we prove that intersections are preserved:
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5.1. Generalization for unit d-interval graphs

Lemma 5.1. Let I be an interval transformed into I1 ∪ · · · ∪ It by the algorithm, for
some 1 ⩽ t ⩽ d. Then, the t-interval I1 ∪ . . . ∪ It preserves the intersections of I.

Proof. It is clear that no new intersections are created as I1 ∪ . . . ∪ It ⊆ I. To see
that no intersection is lost, suppose that there exists an interval L that intersects I in
the original representation I, and after the algorithm finishes, L is transformed into a
t0-interval L1 ∪ . . . ∪ Lt0 (for some 1 ⩽ t0 ⩽ d, where if t0 = 1, the interval remains as
in the original representation) such that the t-interval I1 ∪ . . .∪ It does not intersect the
t0-interval L1 ∪ . . . ∪ Lt0 in I ′. Since l(I1) = l(I) and r(It) = r(I) (and the same holds
for L), this means that there exists an Lj (with 1 ⩽ j ⩽ t0) such that Ii ≺ Lj ≺ Ii+1 for
some 1 ⩽ i ⩽ t− 1.

For 1 ⩽ t ⩽ 2, this cannot occur because I ⊆ I1 ∪ . . . ∪ It. For t > 3, since the
set of intervals Ak used to defined the t-interval associated to I forms a maximal set
of pairwise disjoint intervals intersecting I, we cannot have that Ak ≺ Lj ≺ Ak+1 for
any 1 ⩽ k ⩽ 2t − 1. Indeed, this would contradict maximality, as Lj is either an
original interval or it contains an original interval (by Observation 5.1). Thus, the only
possible option is that there exists an i such that A2i ≺ Lj ≺ B2i+1 (where B2i+1 is
different from A2i+1). Then, since B2i+1 intersects A2i+1 and Lj ≺ B2i+1, we have that
r(Lj) < r(A2i+1). But this contradicts the choice of A2i+1, which should have been Lj

or the original interval contained in Lj , as A2i ≺ Lj .

The next two lemmas are dedicated to proving that no interval in the underlying
family of I ′ intersects three or more pairwise disjoint intervals. We distinguish the cases
when the center of the claw is an original interval and when it is not.

Lemma 5.2. Let I ∈ I be an original interval (i.e., transformed to I1 by the algorithm).
Then, I1 intersects at most two disjoint intervals in the underlying family of I ′.

Proof. Suppose, towards a contradiction, that there exists an original interval I1 that
intersects three pairwise disjoint intervals L1, L2 and L3 in the underlying family of
I ′, with L1 ≺ L2 ≺ L3. By Observation 5.1, there exists an original interval L′

1 with
the same right endpoint as L1, an original interval L′

2 contained in L2, and an original
interval L′

3 with the same left endpoint as L3. Note that if any of the Li are original,
then L′

i = Li. But then, L′
1 ≺ L′

2 ≺ L′
3 are three pairwise disjoint original intervals that

intersect I1, which contradicts the fact that it is an original interval. Indeed, this implies
that the interval I intersects three pairwise disjoint intervals in I, and so the algorithm
would have transformed it into a t-interval with t strictly greater than 1.

Lemma 5.3. Let I ∈ I be an interval transformed into the t-interval I1 ∪ · · · ∪ It by the
algorithm, for some 1 < t ⩽ d. For every 1 ⩽ i ⩽ t, Ii intersects at most two disjoint
intervals of the underlying family of I ′.

Proof. We proceed by contradiction. Suppose that there exists an interval Ii, with
1 ⩽ i ⩽ t that intersects three pairwise disjoint intervals L1, L2, L3, with L1 ≺ L2 ≺ L3.
By Observation 5.1, there exists an original interval L′

1 with the same right endpoint as
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5. Generalizing Roberts’ characterization of unit interval graphs

L1, an original interval L′
2 contained in L2, and an original interval L′

3 with the same
left endpoint as L3.

Assume first that t = 2. Then, if i = 1, this contradicts the choice of the interval A2
(resp. A3 if i = 2), which should have been L′

2.
Let us now study the general case for t > 2. Suppose first that 1 < t < d and Ii is

defined as [B2i−1, A2i] with B2i−1 ̸= A2i−1. We distinguish two cases:

1. r(L1) > r(A2i−1). Then, since we are assuming that L1 and L2 are disjoint,
l(L2) > r(A2i−1). Furthermore, as L3 also intersects Ii, we need r(L2) < r(A2i).
But this contradicts the choice of A2i, which should have been L′

2.

2. r(L1) < r(A2i−1). If l(L2) > r(A2i−1), we are in the same case as before. Thus, L2
and A2i−1 must intersect. However, we have l(L2) > l(B2i−1) (since otherwise Ii

would not be able to intersect L1 on its left extreme). This contradicts the choice
of B2i−1 if L′

2 intersects A2i−1, or the choice of A2i otherwise.

On the other hand, if B2i−1 = A2i−1, then by construction, since we take the two disjoint
intervals that finish first, we cannot have three pairwise disjoint intervals intersecting Ii.
This is also the case for I1 and It (although in the latter case, we take the two disjoint
intervals starting last). Finally, for odd claws, it is also clear that It−1 intersects at most
two disjoint intervals, as it is equal to an original interval.

Combining Lemmas 5.1, 5.2 and 5.3, plus the fact that we can trivially transform
a t-interval with t < d into a d-interval, we obtain that the algorithm returns a d-
interval representation of the input graph where no interval of the underlying family
intersects more than two disjoint intervals, which as explained before can be converted
into a unit representation. The last part of Theorem 5.1 follows because an efficient
implementation of the algorithm described above requires O(1 + deg(v)) operations for
each vertex v (where deg(v) denotes the degree of vertex v), as it suffices to iterate over
the neighborhood of a given interval to transform it into the corresponding d-interval.
Finally, the obtained representation can be converted to a unit representation in linear
time, which yields the stated runtimeO(n+m). This concludes the proof of Theorem 5.1.

We have proven that the algorithm constructs a unit d-interval representation, but it
is not a disjoint one. Indeed, as mentioned before, in the case of maximal K1,3’s, the
constructed intervals I1 and I2 intersect each other. However, in the case of maximal
K1,m’s with m > 3, the t intervals of the t-interval created are actually pairwise disjoint.
Thus, we can infer the following direct corollary.

Corollary 5.1. Let G be a K1,2d+1-free interval graph that does not contain any maximal
K1,3. Then G is a disjoint unit d-interval graph.

Proof. If the interval graph given as input of the algorithm does not contain any maximal
K1,3, by construction, all the d-intervals returned are formed by d disjoint intervals.
Thus, we obtain a unit d-interval representation which is also a disjoint unit d-interval
representation.
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5.2. Limits of the algorithm

However, with a more careful analysis, we can infer an even stronger corollary, which
instead of requiring the absence of maximal 3-claws altogether, only forbids a subset
of them. We refer to these forbidden claws, which are exactly those maximal 3-claws
contained in an induced E graph, as E-claws. Recall that an E graph (or star1,2,2) is
a graph on six vertices which has as edge set a path v1, v2, v3, v4, v5 and an additional
edge (v3, v6).

Definition 5.1. A maximal 3-claw is an E-claw if it is contained in an induced E graph.

Theorem 5.2. Let G be a K1,2d+1-free graph that does not contain any E-claws. Then,
G is a disjoint unit d-interval graph.

Proof. To prove the theorem, we modify Step 4 of the previous algorithm so that it
produces a disjoint 2-interval.

Step 4’ Let I be an interval and let m = 3 be the maximum number of pairwise disjoint
intervals that it intersects. By assumption, the vertex associated to I is a center
of a maximal claw which is not an E-claw. We define

A1 = arg min
J∈N (I)

{r(J)}

A2 = arg min
{J∈N (I) : A1≺J}

{r(J)}

A4 = arg max
J∈N (I)

{l(J)}

A3 = arg max
{J∈N (I) : J≺A4}

{l(J)}

Note that A2 and A3 necessarily intersect (or are the same interval). Now, since
the vertex associated to I is a center of a claw that is not an E-claw, this means
that at least one of A1 or A4 does not intersect an interval which is disjoint from I.
Thus, we can modify the representation so that A1 (resp. A4) is properly contained
in I without loosing any intersections, by simply stretching them. Then, if A1 is
properly contained in I, we define I1 = A1 and I2 = [l(A3), r(I)]. On the other
hand, if A4 is properly contained in I instead, we define I1 = [l(I), r(A2)] and
I2 = A4. If both of them are properly contained in I, we can define I1 and I2
either way. After adding I1 and I2 to I ′, go to Step 6.

Notice that the 2-intervals introduced in this step have the same properties as in Obser-
vation 5.1, so the proof of correctness of the previous algorithm can be directly adapted
for this extension.

5.2. Limits of the algorithm
In this section, we explore the limits of the algorithm. We have just seen that if an inter-
val graph G which is K1,2d+1-free does not contain any induced E-claws, we can extend
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Figure 5.3.: Interval representation of the graph G for which the algorithm does not
return a disjoint unit 2-interval representation.

the algorithm in Section 5.1 so that it returns a disjoint unit d-interval representation of
G. But what happens when the graph contains an E-claw? A natural question to pose
is whether the extension of the algorithm returns a solution for every graph that is a
disjoint unit d-interval graph.

In this section, we show that this is not the case. We provide a K1,5-free interval graph
that contains an E-claw and is a disjoint unit 2-interval graph (see Figure 5.3), for which
the extension of the algorithm does not work. Furthermore, we observe with another
example (see Figure 5.5) that it is not always straightforward to obtain a disjoint unit
2-interval representation even when one exists.

The algorithm and the extension of the algorithm for graphs without E-claws both
process the intervals in the same manner: “cutting” them. That is, given an interval I,
they find two points x and y in I and define two intervals [l(I), x] and [y, r(I)] which
comprise the 2-interval associated to I in the output representation. We first show that
there exists a K1,5-free interval graph that contains an induced E-claw, and is disjoint
unit 2-interval, for which the extension of the algorithm does not work and cannot be
modified naturally, in the sense that no matter the points x and y that we choose in the
interval I associated to the center, no intervals [l(I), x], [y, r(I)] will lead to a disjoint unit
representation. In other words, given an interval representation of the graph, we cannot
“cut” the interval I associated center of the claw in order to obtain a representation that
can be transformed into a unit one.

Consider an interval graph G which has the interval representationM = {I1, I2, I3, I4,
I5, I6, I7, I8, I9, I10, I11, I12} displayed in Figure 5.3. The reader can observe that the
graph is almost rigid, as the order of its maximal cliques is unique up to reversal and
up to permuting the cliques that contain I1 and I3 and the cliques that contain I11 and
I12 (the representation is unique if we ignore labels). In particular, this implies that no
matter what interval representation of the graph we start with, the same situation will
arise.

The graph does not contain any induced K1,5’s, so it is a unit 2-interval graph. How-
ever, it contains an induced E-claw, so we cannot apply the previous algorithm to obtain
a disjoint unit 2-interval representation. Suppose that we want to extend the algorithm
in the most natural way, that is, we want to find points x, y ∈ [l(I6), r(I6)] such that
defining I1

6 = [l(I6), x] and I2
6 = [y, r(I6)] and processing every other interval as in the

previous algorithm results in a disjoint unit 2-interval representation of the graph.
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Figure 5.4.: Interval representation of the graph G with the 2-intervals representing non-
original intervals in red. No way of “cutting” I6 leads to a disjoint unit
2-interval representation.

We prove here that points x and y do not exist. Towards a contradiction, suppose
that they exist. Then, if x < l(I8), there would be three disjoint intervals intersecting
I2

2 : I4, I
1
6 and I1

8 . On the other hand, if x ⩾ l(I8), since I1
6 and I2

6 cannot intersect (as
we aim to obtain a disjoint unit 2-interval representation), then there would be three
pairwise disjoint intervals intersecting I1

8 : I1
6 , I2

6 and I10 (see Figure 5.4). Thus, we
cannot obtain a disjoint unit 2-interval representation of G in this manner. Note that
in both cases, the problem arises because either I1

6 or I2
6 do not properly contain an

original interval of the representation. This highlights the importance of this property
of the d-intervals defined in Observation 5.1.

However, the graph G is a disjoint unit 2-interval graph. One can simply define
I1

6 = [l(I6), r(I7)], I1
9 = I9 and let I2

6 and I2
9 be two intersecting intervals that do not

intersect any other interval in the representation. This yields a 2-interval representation
of the graph where no interval intersects more than two disjoint interval, which can then
be transformed into a unit one.

On the other hand, note that if we consider the graph G′ obtained from G by suppress-
ing edge (I2, I8), thenG′ still contains an E-claw, but now we can define I1

6 = [l(I6), r(I2)]
and I2

6 = [l(I8), r(I6)], and the other 2-intervals as before, and this would yield a rep-
resentation that can be transformed into a disjoint unit 2-interval one, that is, we can
“cut” I and obtain a representation with the desired properties.

The two previous examples demonstrate that the presence of E-claws by themselves
does not necessarily pose a problem, as there exist graphs with E-claws that are disjoint
unit 2-interval graphs and for which such a representation can be easily found. Thus, the
next natural question is whether we can shed more light into the forbidden structures
that cause difficulty in finding a disjoint unit representation, and whether we can always
overcome this difficulty in a simple manner.

These questions remain open. However, we show with another example that it is not
always as straightforward to find a disjoint unit 2-interval representation, even when
one exists. We provide a K1,5-free interval graph G that contains an E-claw and has a
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Figure 5.5.: Interval representation of a K1,5-free interval graph for which the algorithm
does not return a disjoint unit 2-interval representation. In this particular
case, it is not straightforward to find such a representation, even though it
exists.
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Figure 5.6.: Disjoint 2-interval representation of the graph in Figure 5.5. The fact that
no interval intersects three pairwise disjoint intervals implies that the input
graph is disjoint unit 2-interval.

disjoint unit 2-interval representation, but this representation can only be obtained by
permuting the order of the intervals (as opposed to before, where we only “cut” inter-
vals and place new copies in a separate part of the line). The interval representation
of the graph (again, unique if we ignore labels) is depicted in Figure 5.5, and a dis-
joint 2-interval representation of the graph where no interval intersects three pairwise
disjoint intervals is given in Figure 5.6. The reader can observe that in the original
representation, the maximal cliques that contain vertex 7 must appear in the following
order: {8, 1, 7, 3, 5}, {8, 9, 7, 3, 10, 5}, {8, 7, 11, 10, 5} and, up to reversal, {11, 7, 12, 10}
and {7, 11, 10, 13}. However, in the disjoint unit 2-interval representation, the order of
the cliques changes: the cliques containing vertices {1, 7} and vertices {7, 11, 13} are ad-
jacent in the clique path, which is not possible in an interval representation. Although
the representation shown here might not be unique, we conjecture that there does not
exist a disjoint unit 2-interval representation where the cliques appear in the same order
as the maximal cliques of the interval representation. This highlights new difficulties for
determining whether a disjoint unit 2-interval representation exists.
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Figure 5.7.: One of the 6 graphs with 14 vertices (the one with the fewest edges) which
is an interval graph (see Figure 5.8) and K1,5-free, but not disjoint unit 2-
interval.
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Figure 5.8.: An interval representation of the graph in Figure 5.7.

5.3. Counterexample for disjoint unit d-interval graphs
We have seen that there are some K1,2d+1-free interval graphs that contain E-claws that
are still disjoint unit d-interval graphs, even if the algorithm proposed in Section 5.1
does not return a unit representation. In this section, we prove that this is not always
the case, that is, Theorem 5.1 cannot be generalized for disjoint unit d-interval graphs.
In particular, we prove the following theorem.

Theorem 5.3. There exists a K1,5-free interval graph that is not a disjoint unit 2-
interval graph.

To prove Theorem 5.3, we offer the graph G in Figure 5.7 as a certificate. The reader
can check that G has no induced K1,5, and an interval representation of G is provided
in Figure 5.8. The proof that G is not a disjoint unit 2-interval graph is the challenging
part. Indeed, checking whether a graph is disjoint unit 2-interval is a computationally
expensive task, as discussed in Section 4.1, and even with the aid of computer search, a
naive ILP implementation already takes too much time to consider an exhaustive search.
Needless to say, checking manually by brute force leads to a very long branching process.

The proof presented here uses the characterization of disjoint unit 2-interval graphs
in Lemma 4.1 and is based on a careful analysis of the graph. We also verify the proof
computationally, using the encoding in answer set programming based on the semiorder
characterization of unit interval graphs proposed in Section 4.3, which proves to be way
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Figure 5.9.: The five other graphs on 14 vertices which are interval and K1,5-free but not
disjoint unit 2-interval. In dashed red, the edges that differ from the graph
that we analyze here.

more efficient than an ILP encoding in practise (note that the theoretical analysis of the
running time of both algorithms already anticipated this). Furthermore, we provide 5
other K1,5-free interval graphs on the same number of vertices, and with a very similar
structure, that are not disjoint unit 2-interval (see Figure 5.9). The proof that they are
not disjoint unit 2-interval is omitted, but it is analogous to the one presented here.
These six graphs are the only such graphs on 14 vertices, and there does not exist a
graph satisfying the conditions of Theorem 5.3 with fewer vertices. These assertions
were verified by computer search over all interval graphs of a given size without induced
K1,5’s [149]. Our code and experimental setting can be found on our git repository 2.

Theorem 5.3 follows directly from the next lemma.

Lemma 5.4. The graph G in Figure 5.7 is not a disjoint unit 2-interval graph.

Proof. By Lemma 4.1, we know that a graph G is a disjoint unit 2-interval graph if and
only if the family of disjoint splits of G that lead to a unit interval graph, SU (G), is
not empty. Thus, to prove that G is not a disjoint unit 2-interval graph, we need to
show that there is no disjoint split of G in SU (G), that is, there is no way to obtain a
unit interval graph G′ from G by splitting some or all of the vertices v of G into two

2https://github.com/AbdallahS/unit-graphs
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non-adjacent vertices v1 and v2 so that (u, v) ∈ E(G) if and only if (ui, vj) ∈ E(G′) for
some i, j ∈ {1, 2}. Recall that v1 and v2 comprise the set f−1(v) and they are called the
representatives of v, while the edges (ui, vj) in E(G′) are called the representatives of
edge (u, v) ∈ E(G). Furthermore, given a disjoint split (G′, f) that belongs to SU (G),
we will refer to the graph G′ as a solution. In particular, note that if a representative
of a vertex that has been split in G′ is a center of a 3-claw and has as leaves vertices
that are not adjacent to the other representative, then we cannot obtain a solution by
splitting the rest of the vertices of G′. Likewise, if any vertex in G′ is a center of a
5-claw, we cannot obtain a solution from G′. We say that a solution is canonical if for
every vertex v that has been split into v1 and v2, none of the following hold:

• vi is isolated in G′ (if this happened, we could remove vi from G′ and end up with
another solution with fewer split vertices).

• vi is adjacent to u1 or u2 for every (u, v) ∈ E(G) (in this case, we could remove
vertex v3−i from G′ and end up with another solution with fewer split vertices).

Note that if there exists a solution, then a canonical solution also exists. We now list
some properties that a solution G′ must satisfy:

Observation 5.2. The number of representatives of an edge must satisfy the following
conditions:

• No edge (u, v) ∈ E(G) can have 4 representatives in G′. Otherwise, the subgraph
induced by (u1, v1, u2, v2) would form a C4 in G′, contradicting the fact that G′ is
an interval graph.

• Every edge (u, v) ∈ E(G) that is part of a 4-claw of G must have precisely one
representative in G′, since G′ cannot contain any 3-claws.

• Every edge (u, v) ∈ E(G) that is part of a 3-claw of G has at most two represen-
tatives.

After these preliminary observations, we proceed to the detailed analysis of the graph
G presented in Figure 5.7 and we show that it does not have a canonical solution. We
begin with three observations that follow directly from the structure of G.

Observation 5.3. The following statements hold:

• No leaf vertex (vertex of degree 1) is split by a canonical solution. Hence, vertices 2
and 14 are not split in a canonical solution.

• The centers of an induced 3-claw in G must be necessarily split in every solution.
Therefore, if there exists a solution for G, then the vertices 1, 3, 7, 8 and 10 must
all be split.

• The graph G has a unique non-trivial automorphism π, which is an involution and
described by Table 1 (and it corresponds to the symmetry with respect to the y-axis
in Figure 5.7).
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5. Generalizing Roberts’ characterization of unit interval graphs

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14
π(i) 10 14 7 13 11 12 3 8 9 1 5 6 4 2

Table 5.1.: The unique non-trivial automorphism of G.

Next, we observe that the 4-claws offer particularly strong constraints. Indeed, if a
vertex v is the center of a 4-claw [v; a, b, c, d] and it is split into two vertices v1 and
v2 (that is, f−1(v) = {v1, v2}), then, in any solution G′, there must be precisely two
vertices in a, b, c, d, say a and b, such that (v1, a) and (v1, b) are the edges representing
(v, a) and (v, b), whereas (v2, c) and (v2, d) are the edges representing (v, c) and (v, d). In
the following claims we examine and list some of the constraints on the possible disjoint
splits of G.

Claim 5.1. Vertex 1 imposes the following constraints:

1. There exist three indices i, j, k (i, j, k ∈ {1, 2}) such that:
• (1i, 7j) is the unique representative of edge (1, 7),
• (1i, 8k) is the unique representative of edge (1, 8) and
• (7j , 8k) is the unique representative of edge (7, 8).

2. There exist three indices i, j, k (i, j, k ∈ {1, 2}) such that:
• (1i, 5j) is the unique representative of edge (1, 5)
• (1i, 6k) is the unique representative of edge (1, 6) and
• (5j , 6k) is a representative of edge (5, 6).

Proof. Vertex 1 is the center of three different 4-claws: A = [1; 2, 4, 6, 7], B = [1; 2, 4, 6, 8]
and C = [1; 2, 4, 5, 8]. The first point of the claim follows from comparing claws A and B.
Towards a contradiction, assume without loss of generality that the representatives of
(1, 7) and (1, 8) are incident to vertices 11 and 12, respectively. Then, by the pigeonhole
principle, it is impossible to place the remaining representatives of the edges (1, 2), (1, 4)
and (1, 6) without creating a 3-claw with center either 11 or 12 (we can have at most
one of them incident to each of the vertices, and we have three edges and two vertices).
Furthermore, if they were both incident to 11 (w.l.o.g.) but there was no representative
of edge (7, 8) incident to 11, then it would still be impossible to place the remaining edges
without creating a claw. The proof of the second point of the claim follows similarly by
comparing claws B and C, but now the representative of (5, 6) is not necessarily unique
because neither vertex is the center of a 4-claw. ◁

Claim 5.2. Vertex 10 imposes the symmetric constraints of vertex 1.

Proof. The proof is analogous to the previous one, comparing the symmetric 4-claws.
◁

Claim 5.3. Vertex 3 imposes the following constraints:
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1. There exist three indices i, j, k (i, j, k ∈ {1, 2}) such that:
• (3i, 5j) is the unique representative of edge (3, 5),
• (3i, 6k) is the unique representative of edge (3, 6) and
• (5j , 6k) is a representative of edge (5, 6).

2. There exist three indices i, j, k (i, j, k ∈ {1, 2}) such that:
• (3i, 10j) is the unique representative of edge (3, 10),
• (3i, 11k) is the unique representative of edge (3, 11), and
• (10j , 11k) is the unique representative of edge (10, 11).

3. There exist three indices i, j, k (i, j, k ∈ {1, 2}) such that:
• (3i, 8j) is the unique representative of edge (3, 8),
• (3i, 9k) is the unique representative of edge (3, 9), and
• (8j , 9k) is a representative of edge (8, 9).

Proof. Vertex 3 is the center of four different 4-claws: A = [3; 4, 5, 9, 10], B = [3; 4, 6, 9, 10],
C = [3; 4, 6, 9, 11] and D = [3; 4, 6, 8, 11]. The first point follows by comparing claws A
and B; the second one, by comparing claws B and C; and the third one, by comparing
claws C and D. ◁

Claim 5.4. Vertex 7 imposes the symmetric constraints of vertex 3.

Proof. The proof is analogous to the proofs of the previous claims. ◁

We now use the previous claims to deduce that the way to split vertex 8 is actually
unique up to symmetry. First, it is clear that vertex 8 must be split because of the
3-claw [8; 1, 9, 10]. Assume vertex 8 is the first vertex of G to be split.

Claim 5.5. Let G′ be a solution. Then, the neighborhoods of the two representatives of
vertex 8 are uniquely determined, up to symmetry.

Proof. Let 81 be the representative of 8 adjacent to 10. Then 81 is also adjacent to
3 (by Claim 5.2, as otherwise there would be an induced 5-claw: [10; 81, 3, 14, 13, 12]).
Moreover, 81 is also adjacent to 9 (by Claim 5.3, as otherwise there would be an induced
5-claw: [3; 81, 9, 4, 6, 11]). As such, vertex 1 cannot be adjacent to 81 (because it would
create a 3-claw) and has to be adjacent to 82 instead. We have now the symmetric
deductions. Let 82 be the representative of 8 adjacent to 1, then 82 is also adjacent
to 7 (by Claim 5.1, otherwise we have a 5-claw [1; 82, 7, 2, 4, 6]). Moreover, 82 is also
adjacent to 9 (by Claim 5.4, otherwise we get a 5-claw [7; 82, 9, 13, 12, 5]). Note that
vertex 10 cannot be made adjacent to 82. This shows that the neighborhoods of the
representatives of vertex 8 are fully determined before splitting the other vertices: one
representative needs to be adjacent to 10, 3 and 9, while the other needs to be adjacent
to the vertices 1, 7 and 9. The graph resulting from splitting vertex 8 can be seen in
Figure 5.10. ◁
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82

1 9 10

81

4 13
3 7

14

1211
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6 5

Figure 5.10.: The graph G after the split of vertex 8

If we consider the graph obtained by splitting vertex 8 in the only possible way, we
observe that there is a new 4-claw centered at vertex 3 (and, symmetrically, at vertex 7).
These 4-claws introduce the following new constraints.

Claim 5.6. Vertex 3 imposes now the following additional constraints:

1. There exist three indices i, j, k (i, j, k ∈ {1, 2}) such that:
• (3i, 7j) is the unique representative of edge (3, 7),
• (3i, 11k) is the unique representative of edge (3, 6) and
• (7j , 11k) is the unique representative of edge (7, 11).

Adding this to the previous constraints, we have that the unique representatives of the
edges (7, 11) and (10, 11) should both be adjacent to either 31 or 32.

Proof. This follows from comparing the 4-claws D = [3; 4, 6, 8, 11] and E = [3; 81, 7, 4, 6].
◁

At this step, the constraints on vertex 3 allow us to derive the following result.

Claim 5.7. Let G′ be a solution. Then, the neighborhoods of the two representatives of
vertex 3 are uniquely determined, up to symmetry.

Proof. By the above, we already know:

1. The representatives of (3, 7) and (3, 11) are incident to each other (because of the
4-claws [3; 4, 6, 81, 7] and [3; 4, 6, 81, 11]).

2. The representatives of (3, 11) and (3, 10) are incident to each other (because of the
4-claws [3; 4, 6, 9, 11] and [3; 4, 6, 9, 10]).

3. The representatives of (10, 3) and (10, 81) are incident to each other (because of
the 4-claws [10; 14, 13, 12, 3] and [10; 14, 13, 12, 81]) and to a representative of (3, 8).
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Figure 5.11.: Graph resulting from the split of vertex 3

4. The representatives of (3, 81) and (3, 9) are incident to each other (because of the
4-claws [3; 4, 6, 11, 81] and [3; 4, 6, 11, 9]).

5. There is an unique pair i, j such that 3i and 10j are adjacent (since the edge
belongs to a 4-claw [10; 14, 13, 12, 3]).

Points 1 and 2 imply that one of the vertices representing 3, w.l.o.g., 31, is adjacent
to vertices 7, 11 and 10. Let 101 be the vertex representing 10 and adjacent to 31 (well
defined by point 5). Then 101 is adjacent to 81 and it must also be the case that 31
and 81 are adjacent. Otherwise, we would obtain the 5-claw [10; 14, 12, 13, 31, 81] in the
original certificate graph. By point 3, vertex 31 is adjacent to 81, so point 4 implies that
it must also be adjacent to 9. Now, 31 cannot have any more neighbors, as otherwise
there would be an induced K1,3. Therefore, the neighborhoods of the two representatives
of vertex 3 are uniquely determined up to symmetry: one of the representatives of 3 is
adjacent to 7, 11, 10, 8 and 9; and the other one, to the rest of its neighbors. The graph
resulting from splitting vertex 3 can be seen in Figure 5.11. ◁

Finally, we consider vertex 7 and we state that it cannot be split without creating a
K1,3.

Claim 5.8. There is no way to split vertex 7 without creating a K1,3 with center either
71 or 72.

Proof. If we apply the symmetry of the graph before splitting vertex 3, we would obtain
that one of the representatives of vertex 7, say 71 has to be adjacent to 1, 8, 9, 3 and
5. However, since vertices 3 and 8 have already been split, these five edges now create
the 3-claw [7; 82, 31, 5]. Furthermore, note that 31 cannot be made adjacent to the other
representative of vertex 7, as it also creates a 3-claw ([7; 31, 12, 13]). Thus, it is not
possible to split vertex 7 maintaining G′ as a unit interval graph. ◁

The last claim concludes the proof that the K1,5-free interval graph presented is not
disjoint unit 2-interval.
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To conclude this section, we show that Theorem 5.3 can actually be generalized for
disjoint unit d-interval graphs for any d > 2.

Corollary 5.2. There exists a K1,2d+1-free interval graph that is not a disjoint unit
d-interval graph.

Proof. One can extend the example for d = 2 (displayed in Figure 5.7) by adding 2d− 4
common neighbors to vertices 1 and 3 and 2d − 4 common neighbors to vertices 7 and
10. The proof that this graph is not disjoint unit d-interval is analogous to the proof for
d = 2.

5.4. Approximation algorithm
Since we know that given a K1,2d+1-free interval graph G, we cannot easily determine
whether it is disjoint unit d-interval or not, we now try to give a bound on the value t
such that G is always a disjoint unit t-interval graph. We prove that for t = d + 1, G
is always disjoint unit t-interval. To do so, we modify the algorithm of Section 5.1 so
that given an arbitrary interval representation of graph G, it constructs a disjoint unit
(d + 1)-interval representation I ′. First, we let the set of intervals C initialized to I be
a queue of the intervals in I ordered by their left endpoints. Then, we replace Step 4
by the following steps.

Step 4.1 If m = 3 and I is not the center of an E-claw, go to Step 4.2. If I is the center
of an E-claw, go to Step 4.3.

Step 4.2 In this case, the step is defined as in Step 4’ in the proof of Theorem 5.2.

Step 4.3 If I is an interval associated to a center of an E-claw, we define:

A1 = arg min
J∈N (I)

{r(J)} A2 = arg min
{J∈N (I) : A1≺J}

{r(J)}

and we add the interval I1 = [l(I), r(A2)] to I ′. Then, we define the set E(I) :=
{J ∈ I | r(A2) < l(J) ⩽ r(I)}. If E(I) is not empty, all the intersections between
I and intervals from E(I) are still not present in the target representation I ′. To
display them, we will do so in a separate part of the representation, that we will
refer to as auxiliary part of the representation, and starts at pointM , whereM−1 is
the length of the original representation I (equivalently, M − 1 = maxJ∈I{r(J)}).
In the auxiliary part, we add the interval I2 = [r(A2) + M, r(I) + M ], associated
to I, and then we distinguish two different cases:

• No interval from E(I) is already represented by an auxiliary interval in I ′. In
this case, for every J ∈ E(I), we define Ja = [l(J) +M,min{r(I) +M, r(J) +
M}]. Note that every Ja is contained in I2.

• Otherwise, let El(I) be the set of intervals of E(I) which are already rep-
resented by an auxiliary interval. That is, J ∈ El(I) if there is an interval
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Figure 5.12.: Interval representation of a graph with two vertices that are centers of an
E-claw, represented by intervals I and I ′.
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Figure 5.13.: The representation I ′ returned by the algorithm for the input representa-
tion in Figure 5.12. In blue, the intervals that belong to the auxiliary part
of I ′. The interval Ja, which is in El(I ′) and was added while processing
interval I, intersects I ′

2.

Ja which was already added to the auxiliary part while processing a cen-
ter I ′ with J ∈ E(I ′). For every interval J ∈ E(I) \ El(I), we define
Ja = [l(J) + M,min{r(I) + M, r(J) + M}] as before. On the other hand,
the intersections between intervals of El(I) and I are already present in I ′,
since the auxiliary intervals associated to intervals of El(I) that were already
present intersect I2, because the left endpoints of the intervals follow the same
order as in I. This step is illustrated in Figure 5.13, which shows the output
of the algorithm when the input is the interval representation in Figure 5.12.

Note that we do not check whether there is an interval associated to the center
already in the auxiliary part, which could happen if the interval I belonged to
E(I ′) for some interval I ′ processed before, because in that case we add another
auxiliary interval associated to the center. Note that when we process an interval
I as a center of an E-claw, we denote the corresponding auxiliary interval by I2,
while when we process it as an inteval of E(I ′), we denote the auxiliary interval
added by Ia, so we will not have two intervals with the same label.
After adding all the intervals to I ′, go to Step 6.

It is then clear, by construction, that the intersections of I are preserved. We now
prove that the representation I ′ constructed in this modified algorithm is indeed a dis-
joint unit (d+ 1)-interval representation. We start with two simple observations.
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5. Generalizing Roberts’ characterization of unit interval graphs

Observation 5.4. Let I be a center of an E-claw. There do not exist two intervals J
and J ′ in E(I) that are disjoint.

Proof. Suppose J and J ′ are two intervals of E(I) that are disjoint. Without loss of
generality, we can assume that J ≺ J ′. Then, A1, A2, J and J ′ would be four pairwise
disjoint intervals that intersect I, contradicting the fact that I was the center of a
maximal 3-claw. ◁

Observation 5.5. Let J be an interval contained in the sets E(I) and E(I ′) for two
centers I and I ′. Then, I and I ′ intersect.

Proof. Let A1, A2 be the intervals defined in Step 4.3 when processing I, and A′
1, A

′
2

the intervals defined when processing I ′. By definition, r(A2) < l(J) ⩽ r(I) and r(A′
2) <

l(J) ⩽ r(I ′). Without loss of generality, suppose that r(A2) ⩽ r(A′
2). Then, l(I ′) ⩽

r(A2), as otherwise the intervals A1, A2, A
′
2 and J would form a set of four pairwise

disjoint intervals intersecting I, which contradicts the fact that it is a maximal 3-claw.
◁

The previous observation implies that given a set of centers {Ii | i ∈ {1, . . . , n}}
(for some n ∈ N) such that J belongs to E(Ii) for every i, all the centers are pairwise
intersecting (i.e., they form a clique).

Lemma 5.5. No interval in the auxiliary part of I ′ intersects three pairwise disjoint
intervals.

Proof. Recall that in Step 4.3, an interval J processed as an interval of E(I) for some
center I which is added to the auxiliary part of I ′ is denoted by Ja, while an interval I
processed as a center of an E-claw added to the auxiliary part is denoted by I2. Since
every interval Ja is contained in an interval I2 for some I ∈ I, it suffices to prove that for
every center I ∈ I, the auxiliary interval I2 (if it exists) does not intersect three pairwise
disjoint intervals. To prove this, notice that when the interval I2 is added to I ′, by
Observation 5.4, it cannot intersect two disjoint intervals. In a later iteration, the only
intersections that can arise are with centers of E-claws. However, by Observation 5.5,
the set of these intervals cannot contain two disjoint intervals. Thus, I2 can intersect at
most two disjoint intervals.

Lemma 5.6. No interval of I ′ intersects three pairwise disjoint intervals.

Proof. Every interval which is not in the auxiliary part satisfies the properties of Obser-
vation 5.1, so we already know that this part of the representation does not contain an
interval intersecting three pairwise disjoint intervals. On the other hand, in the auxiliary
part of the representation, the result follows by Lemma 5.5.

Since we have proven that the representation can be transformed into a disjoint unit
multiple interval representation, it only remains to show that every vertex is represented
by at most d+ 1 intervals.
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Lemma 5.7. For every vertex v, the multiple interval associated to v has at most two
auxiliary intervals. In particular, if it has two auxiliary intervals, then v is the center
of an E-claw.

Proof. Fix a vertex v and let I be the interval representing it in I. We will distinguish
two different cases:

• Let v be a center of an E-claw that has been processed in an iteration of the algo-
rithm. Then, an auxiliary interval I2 has potentially been added to I ′. However,
no other auxiliary interval can be added, since I cannot belong to a set E(J) for
any interval J not processed yet, as l(I) ⩽ l(J). Thus, the statement holds.

• Let I ∈ E(J) for some J . If I is in E(J ′) for some other J ′, then J and J ′ intersect,
and the same auxiliary interval Ia is used to display the intersections with J and
J ′. The only way a new auxiliary interval of I can be added is if it is processed in
a later step as center of an E-claw. In that case, a new auxiliary interval I2 will be
potentially added to display the intersections with the intervals in E(I), but then
we would be in the first case, so at most two auxiliary intervals will be added in
total.

The correctness of the previous algorithm implies the following result.

Theorem 5.4. Given a K1,2d+1-free interval graph, there exists a polynomial-time al-
gorithm that either determines that the graph is disjoint unit d-interval or returns a
disjoint unit (d+ 1)-interval representation.

Proof. The algorithm first checks the existence of E-claws. If there are no E-claws, it
determines that the graph is disjoint unit d-interval by Theorem 5.2. Otherwise, using
the previous algorithm, it constructs a disjoint unit (d+ 1)-interval representation (it is
clear that every vertex is represented by at most d+ 1 intervals since every vertex that
is not a center of an E-claw has a single auxiliary interval, while centers, which have
a single non-auxiliary interval, can have at most two auxiliary intervals no matter the
value of d).

As a final remark, notice that even if the previous algorithm returns a (d+ 1)-interval
representation, the input graph could be a disjoint unit d-interval graph. Thus, the
algorithm is actually an approximation algorithm with an additive error of one.

5.5. Containment relations between different subclasses of
multiple interval graphs

In this section, we analyze the relations between different subclasses of multiple interval
graphs. We have already seen that 2-interval graphs and disjoint 2-interval graphs are
equivalent. Furthermore, the results from the previous sections imply that the class of

67



5. Generalizing Roberts’ characterization of unit interval graphs

disjoint unit 2-interval graphs is properly contained in the class of unit 2-interval graphs.
In the following, we summarize the containment relations between unit 2-interval graphs,
disjoint unit 2-interval graphs, balanced 2-interval graphs and disjoint balanced 2-interval
graphs (see Figure 5.14 for a graphical illustration).

disjoint 3-interval
= 3-interval

balanced 3-interval

disjoint balanced 3-interval

disjoint 2-interval
= 2-interval

disjoint balanced 2-interval
= balanced 2-interval

unit 2-interval

disjoint unit 2-interval

Figure 5.14.: Landscape of graph subclasses of 3-interval graphs. An arrow from a graph
class C to a C′ indicates that C′ ⊂ C.

Theorem 5.5. There exist the following containment relations between the subclasses
of 2-interval graphs:

1. The classes of 2-interval and disjoint 2-interval graphs are equivalent.

2. The classes of balanced 2-interval and disjoint balanced 2-interval graphs are
equivalent.

3. The class of unit 2-interval graphs is properly contained in the class of disjoint
balanced 2-interval graphs.

4. The class of disjoint unit 2-interval graphs is properly contained in the class of
unit 2-interval graphs.

Proof. 1. See Observation 3.1.

2. To see that the classes of balanced and disjoint balanced 2-intervals are equivalent,
it suffices to observe that if we have a balanced 2-interval representation, then for
every pair of intersecting intervals [a, b] and [c, d] (with a ⩽ c ⩽ b ⩽ d) associated
to the same vertex, we can stretch both intervals until the middle point of their
intersection, i.e., we can replace both intervals by [a, a+ b−c

2 −ϵ] and [a+ b−c
2 +ϵ, d],

respectively, for some ϵ sufficiently small. This procedure yields a disjoint balanced
2-interval representation.
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81

82

11 12 9 101 102

2 4 6
5

141312
11

31 32
71 72

Figure 5.15.: Unit 2-interval representation of the graph in Figure 5.7.

3. To see that unit 2-interval graphs have a disjoint balanced 2-interval representation,
it suffices to apply the same procedure as in 2. Now the two obtained intervals
won’t have unit length any longer, but the length of both intervals will be the
same. The inclusion is proper because K5,3 is disjoint balanced 2-interval (see [68,
Fig. 3]) but not unit 2-interval (the latter follows from the fact that every vertex of
degree 3 is adjacent to 5 independent vertices, so one of the intervals must intersect
more than two disjoint intervals).

4. As shown before, the graph in Figure 5.7 is not disjoint unit 2-interval, but ap-
plying the algorithm presented in Section 5.1, one can obtain a unit 2-interval
representation (see Figure 5.15) of it. This proves that the class of disjoint unit
2-interval graphs is properly contained in the class of unit 2-interval graphs.

We finish by showing that the previous theorem cannot be completely generalized
for the subclasses of d-interval graphs, as the class of balanced d-interval graphs is not
equivalent to the class of disjoint balanced d-interval graphs for d > 2. We first construct
a graph that is balanced 3-interval but not disjoint balanced 3-interval and then show
how to generalize this construction for every d > 3.

Theorem 5.6. The class of disjoint balanced 3-interval graphs is properly contained in
the class of balanced 3-interval graphs.

Proof. We construct a graph G which is balanced 3-interval but not disjoint balanced
3-interval. The high-level idea of the construction is that for a particular vertex, one
of its intervals is forced to a given length, while the other two are forced to be placed
somewhere where there is not enough space for both of them, and thus they cannot be
disjoint (note that the difference with the case d = 2 is that now, if we stretch two of the
intervals so that they do not intersect, we also have to modify the length of the third
interval, and as we show here, this is not always possible). To enforce these constraints,
we use the complete bipartite graph K11,4 as a gadget and exploit the fact that any 3-
interval representation of this gadget must be continuous (i.e., the union of the intervals
in its underlying family is an interval) [148, Lemma 2] (see also [68, Fig. 3] for the idea
of its representation).
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5. Generalizing Roberts’ characterization of unit interval graphs

We construct G as follows: we connect in a chain five K11,4’s, to which we add six
vertices v1, v2, v3, v4, v5, v6 (Figure 5.16 shows how to link v1, v2, v3, v4 to the chain,
while vertices v5 and v6 mimic the behavior of v3 and v4 with a different set of neighbors,
namely, v5 is connected to the corresponding vertices of the first two K11,4’s, and v6 is
connected to the corresponding vertices of the second and the third K11,4’s). More
precisely, let Ci, with i ∈ {1, . . . , 5}, be the five K11,4’s forming the chain, enumerated
from left to right. Moreover, for every Ci, let f j

i with j ∈ {1, . . . , 11} be the eleven
vertices of one side of the bipartition, and tki , with k ∈ {1, 2, 3, 4}, the four vertices of
the other side of the bipartition. We assume that the chain is connected such that f11

i is
linked to f1

i+1. Then, v1 is connected to all the vertices of C2 and C4, and to f11
3 and f1

5 ,
plus another independent vertex. Similarly, v2 is connected to all the vertices of C2 and
C4, to v1 and to f11

1 and f1
3 . On the other hand, v3 is connected to f11

3 , t43, t14 and f j
4

for j ∈ {1, . . . , 9}; while v4 is connected to f1
5 , t44, t15 and f j

4 for j ∈ {3, . . . , 11}. Finally,
v5 is connected to f11

1 , t31, t12 and f j
2 for j ∈ {1, . . . , 7}, as well as f8

4 and f9
4 , whereas v6

is connected to f1
3 , t42, t13 and f j

2 for j ∈ {5, . . . , 11}, as well as f8
4 and f9

4 . The vertices
v1 and v2 are both connected to v3, v4, v5 and v6.

Now, as any 3-interval representation of a K11,4 is continuous, any realization of G
groups the five K11,4’s in a block [148]. For j ∈ {1, 2, 3}, let Ij be the intervals associated
to v1, Jj the intervals associated to v2, and Kj the intervals associated to v3. First, it
is clear that we need three different intervals to cover the neighbors of v1 (and these
three intervals must be disjoint). Instead, the neighbors of v2 could be covered only
with two intervals. However, we will see that the two segments of the real line that need
to be covered cannot have the same length (assuming that the 3-interval associated to
v1 is balanced). We will show that we need two intersecting intervals to cover the first
segment.

Suppose that only two intervals are needed to represent the adjacencies of v2, and let
J be the interval displaying the edges between C2 and v2, and J3 the interval displaying
the edges between C4 and v2. Similarly, let I1 be the interval associated to v1 used to
represent the edges with C2, let I2 the interval used to represent the edges with C4, and
I3 the interval displaying the edge with the isolated vertex. One can easily see that J3
is properly contained in I2 (since I2 must also intersect an interval associated to f11

3 on
its left and an interval associated to f1

5 on its right), while I1 is properly contained in J
(by an analogous argument). Thus, len(J3) < len(I2) = len(I1) < len(J). In order for
the representation to be balanced, the segment of the real line covered by J needs to be
covered by two different intervals, say J1 and J2. To prove that G is balanced 3-interval
but not disjoint balanced 3-interval, we need to bound len(J) − len(J3). In particular,
we need len(J) − len(J3) < len(J3). Vertices v3 and v4 will allow us to find constants
a and a′ to bound len(I2)− len(J3) ⩽ a+ a′, while vertices v5 and v6 will serve to find
constants b and b′ to bound len(J)− len(I1) ⩽ b+ b′. By showing that we can force the
constants such that a + a′ + b + b′ < len(J3), we have the result. This will follow since
we will have eight pairwise disjoint intervals properly contained in J3: two of length a,
two of length a′, two of length b and two of length b′.

Indeed, let a and a′ be the lengths of the intervals associated to v3 and to v4, re-
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spectively. The next claim implies that there are two disjoint intervals associated to
v3 properly contained in J3, and another disjoint interval that properly contains the
segment between l(I2) and l(J3), and so l(J3)− l(I2) < a.

Claim 5.9. Let G be a graph formed by the union of a K11,4 and a vertex v which is
adjacent to nine vertices in S11, where S11 denotes the side of the bipartition with eleven
vertices. Then, vertex v must be represented by three pairwise disjoint intervals, two of
which are each properly contained in an interval representing a vertex of S11.

Proof. Let S11 and S4 denote the two sides of the bipartition of the K11,4, and let f j

with j ∈ {1, . . . , 11} denote the vertices of S11 and tj with j ∈ {1, . . . , 4} denote the
vertices of S4. Since every interval of S11 intersects four pairwise disjoint intervals, every
f j must be represented by three intervals: one that intersects two intervals ti, tj , with
i, j ∈ {1, . . . , 4}, and two intervals contained each in one of the remaining ti’s. Indeed, if
an interval associated to fj intersected three intervals ti with i ∈ {1, . . . , 4}, then there
would only be nine gaps between intervals of the form ti. That is, only nine intervals of
the form fj would be able to intersect two intervals ti at the same time, which implies
that one vertex of S11 needs to intersect four pairwise disjoint intervals, but no interval
associated to that vertex can intersect two of those intervals at the same time. Since we
only have three intervals associated to each vertex, this leads to a contradiction. Thus,
for any given ti, there are at least four vertices f j such that no interval associated to
them is contained in an interval of ti. Since there are eleven vertices in S11 and nine are
adjacent to v, at least two of these nine vertices will not be contained in t1. In particular,
they will also not intersect the first interval of t1. Thus, one of the intervals of v must
intersect t1 and seven of the f j

4 , while the other two intervals of v are contained each
in one of the intervals of the remaining f j ’s, w.l.o.g., f8 and f9 (recall that the two
remaining f j ’s fill the gaps in between intervals of the from ti, and so it is possible to
display these intersections without creating any new ones).

Finally, the reader can observe that this gadget admits a balanced 3-interval represen-
tation, as one can dilate the two holes that are covered by f8 and f9 as needed (and since
no interval of these vertices is contained in an interval of t1, modifying their length will
have no effect on the length of the first interval of v). More precisely, consider a repre-
sentation where an interval of t1 contains intervals of f1, f2, f3, f4, f5, f6 and intersects
f7; an interval of t4 contains f3, f4, f5, f7, f10, f11 and intersects f6; and an interval of
v contains t1. Then, t2 and t3 must contain an interval of f8 and f9, which must have
length at least the length of v plus one (because another interval associated with them
contains an interval of v). On the other hand, t2 also contains f1, f2, and f6, while t3
contains f7, f10, and f11. Thus, let all f i have length three except f8 and f9. We can
then take t1 and t2 to have length 6(3 + 1) + 1 = 25. Therefore, l(v) ⩾ 25, and it suffices
to take l(f8) = l(f9) = l(v)+4. Finally, we can take l(t2) = l(t3) = 2(l(v)+5)+3(4)+3.
In fact, note that we can take l(f8) and l(f9) arbitrarily large, and so, in the complete
construction, an interval associated to f8

4 and an interval associated to f9
4 can each con-

tain intervals associated to v4, v5 and v6, while still maintaining the balanced property.
◁
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v1v2

v3 v4

v1v2

v3 v4

v1v2

v3 v4

v1v2

v3 v4

v1v2

v3 v4

Figure 5.16.: G is balanced 3-interval but not disjoint balanced 3-interval. K11,4 graphs
are drawn abstractly and are chained. A thick edge stopping at the border
of the ellipse means that the vertex is connected to every vertex in the cor-
responding part of the K11,4. Vertices v5 and v6 are omitted for readability
purposes.

Similarly, the segment between r(I2) and r(J3) is also contained in an interval asso-
ciated to v4, which has the same properties as v3 and does not intersect any interval
associated to v3. This proves that there are two intervals of length a and two intervals of
length a′ (all pairwise disjoint) contained in J3. Doing the same to bound l(I1)−l(J) and
r(J) − l(I1), we get the result. Thus, to represent v2, we need two intervals associated
to v2 to intersect. If we do not allow intersection, the length of these two intervals will
be smaller than the length of the third interval associated to v2, contradicting the fact
that they are balanced.

Corollary 5.3. The class of disjoint balanced d-interval graphs is properly contained in
the class of balanced d-interval graphs for every natural number d ⩾ 3.

Proof. The construction used in the proof of Theorem 5.6 can be modified to yield a
balanced d-interval graph by adding new isolated neighbors to v1 and v2 and replacing the
chain ofK11,4’s by a chain ofKd2+d−1,d+1’s, as any d-interval representation of this gadget
must be continuous [148]. Furthermore, we modify the adjacencies of vertices v3, v4, v5
and v6: vertex v3 is now connected to f11

3 , t43, t14 and f j
4 for j ∈ {1, . . . , d2−d+1−2d+4};

while v4 is connected to f1
5 , t44, t15 and f j

4 for j ∈ {2d−3, . . . , d2+d−1}, and the adjacencies
of v5 and v6 are also modified accordingly. The same arguments used in Theorem 5.6
prove that this constructed graph is not a disjoint balanced d-interval graph.
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The results of this chapter highlight the importance of expliciting whether we define
d-intervals as the union of d disjoint or d not necessarily disjoint intervals when we
impose length restrictions on them. Indeed, both definitions lead to different classes of
graphs. We have completely characterized unit d-interval graphs that are also interval
as K1,2d+1-free interval graphs, but it is still unclear how to recognize disjoint unit d-
interval graphs that are also interval. It remains as an open question whether they can be
characterized by a list of forbidden induced subgraphs, or even if they can be recognized
in polynomial time. Finally, we have obtained a relatively complete landscape of the
containment relations between different subclasses of 2-interval graphs, that cannot be
fully generalized for d > 2. In particular, for d > 2, it is still unknown whether the class
of unit d-interval graphs is contained in the class of disjoint balanced d-interval graphs.

73





6. Complexity of Recognition

In this chapter, we study the complexity of recognizing unit (disjoint) d-interval graphs,
which was the major open question in [96]. We start with a small discussion in Section 6.1
on why the unit case is so different from the rest of subclasses of multiple interval graphs,
and why the existing hardness proofs cannot be easily adapted. We then move on to
the main result of the chapter, presented in Section 6.2: the NP-hardness of Disjoint
unit 2-interval recognition, which is obtained with a completely different approach
from the one used for the rest of the subclasses of multiple interval graphs. We extend
this hardness result to disjoint unit d-interval graphs for any d ⩾ 2 (recall that this
does not follow directly in graph recognition problems, as discussed in Section 2.2) and
obtain two important corollaries, namely that recognizing (x, . . . , x) d-interval graphs
and depth r disjoint unit 2-interval graphs is NP-complete for every x ⩾ 11 and every
r ⩾ 4. Then, in Section 6.3, we show that the construction used in the NP-hardness proof
of Disjoint unit 2-interval recognition can also be adapted for the non-disjoint
case. Finally, in Section 6.4, we observe that recognizing (disjoint) balanced d-interval
graphs is NP-hard for every d ⩾ 2 (while only the case d = 2 had been studied).

6.1. Why is the unit case different?

To prove the NP-hardness of recognizing disjoint d-interval graphs, West and Shmoys
gave a reduction from the problem Hamiltonian circuit in cubic triangle-free graphs [148].
This proof was then adapted by Gyárfás and West to prove the NP-hardness of recogniz-
ing 2-track interval graphs [85], and by Gambette and Vialette to extend the hardness
result of recognizing disjoint 2-interval graphs to balanced 2-interval graphs [68]. Later
on, Jiang also used the problem Hamiltonian circuit in cubic triangle-free as a starting
point to extend the hardness of recognizing 2-track interval graphs to d-track interval
graphs [95]. All these reductions are based on the same simple observation: if a cubic
graph G has a Hamiltonian path between two vertices of some edge (u, v), then (u, v)
closes the Hamiltonian path into a Hamiltonian circuit, and the edges not in the circuit
form a perfect matching. The challenging part of the reduction is to separate the circuit
from the matching.

In [148], [68] and [85], the separation is achieved by constructing a supergraph of the
original graph G with a special vertex z which is adjacent to the n vertices of G and to
some additional gadgets. In the words of Jiang: “the edges of the circuit are enclosed
in a “cage” formed by z and some additional gadgets in the supergraph, and the edges
of the matching stay outside” [95]. Since the special vertex z is adjacent to n different
vertices of a triangle-free graph, it has to be represented by a long interval, and so these
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reductions cannot be easily adapted to the case where the intervals need to have unit
length.

Instead, in the hardness proof of recognizing d-track interval graphs, Jiang managed
to avoid the use of such special vertex by restricting the edges of the circuit and of
the matching to two separate tracks. This also worked in the case of balanced and
unit d-track interval graphs. However, once again, this technique cannot be adapted for
(disjoint) unit d-interval graphs, as we cannot use different tracks for the separation.

Therefore, given the difficulty of achieving the separation of the matching and the
circuit in a (disjoint) unit d-interval representation, we approach the problem from a
different perspective and we reduce directly from Satisfiability.

6.2. Hardness of recognizing disjoint unit multiple interval
graphs

In this section, we show that recognizing disjoint unit 2-interval graphs is NP-complete,
and use this to prove the hardness of recognizing unit d-intervals for every d ⩾ 2. The
result for d = 2 is obtained in two steps. First, we define a more general version of the
problem, which we call colored disjoint unit 2-interval representation, and
prove that it is NP-complete. Then, we reduce this new problem to Disjoint unit
2-interval recognition.

Let us introduce the more general problem, colored disjoint unit 2-interval
representation.

Instance: A graph G = (V,E) and a coloring γ : V → {white, black}.
Goal: Decide whether G has a representation where:

• each white vertex is represented by a disjoint unit 2-interval,

• each black vertex is represented by a single unit interval.

We refer to this representation as a colored disjoint unit 2-interval
representation.

colored disjoint unit 2-interval recognition

6.2.1. Hardness of Colored Unit 2-Interval Recognition
To prove that colored disjoint unit 2-interval recognition is NP-complete, we
reduce from a variant of satisfiability. Let us first introduce this variant of satisfi-
ability. In the following, we use the term “j-clause” to refer to a clause that contains
exactly j literals.

Lemma 6.1 ([60]). Satisfiability is NP-complete even when restricted to CNF-formulae
such that:

1. Every clause contains either 3 literals (3-clause) or 2 literals (2-clause).
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2. Each variable appears in exactly one 3-clause.

3. Each 3-clause is positive monotone, i.e., is comprised of three positive literals.

4. Each variable occurs exactly in three clauses, once negated and twice positive.

Proof. This lemma is proven in [60, Lemma 2.1]. Note that condition (2) is not explicitly
stated in the Lemma’s original statement. However, upon close examination of the proof
of Lemma 2.1 given in [60], one can see that condition (2) holds for all the instances of
Satisfiability produced by the proposed reduction if we reduce from an instance of
3-SAT. Specifically, in the proof, each occurrence of a variable in the original formula is
replaced by a new variable, and each new variable (which corresponds to an occurrence
of an original variable) also appears in two new 2-clauses. Since the new variable occurs
only in these three clauses, it follows that there is exactly one occurrence in a 3-clause
if the original instance is an instance of 3-SAT.

We can now proceed to the proof of hardness of Colored disjoint unit 2-interval
recognition.

Theorem 6.1. Colored disjoint unit 2-Iinterval recognition is NP-complete,
even for graphs where the white vertices have degree at most 6 and the black vertices
have degree at most 5.

The rest of the subsection is dedicated to the proof of Theorem 6.1. We first describe
the construction used for the reduction and then prove its correctness.

Construction Let Ψ be an instance of the variant of SAT described in Lemma 6.1,
formed by a set of Boolean variables x1, . . . , xn and a set of clauses C1, . . . , Cm. We con-
struct an equivalent instance (GΨ, γΨ) of colored disjoint unit 2-interval recog-
nition as follows.

For every variable xi, we introduce the variable gadget V̂i (truth setting component),
which is the vertex-colored graph on three black vertices Ai, Bi, Ci and three white
vertices x1

i , x2
i and xN

i , with all edges between a black vertex and a white vertex, plus
the edges (x1

i , x
2
i ), (Ci, Ai) and (Ci, Bi). We anticipate that the white vertices of V̂i will

be adjacent also to vertices outside V̂i; in order to underline this distinction, these three
vertices are called public, and the black vertices are called private.

The variable gadget V̂i is illustrated in Figure 6.1. Notice that the three white vertices
x1

i , x
2
i , x

N
i correspond each to precisely one of the occurrences of the represented variable

xi: vertex x1
i represents the positive occurrence in a 3-clause, vertex x2

i represent the
positive occurrence in a 2-clause and vertex xN

i represents the negated occurrence of xi.
Therefore, we refer to them as literal vertices. Furthermore, note that a vertex of V̂i is
adjacent to Ai if and only if it is adjacent to Bi; and being private, these two vertices
will remain false twins also in G. We will exploit this symmetry to simplify the case
analysis.

To conclude the construction, we show how to encode each clause Cα, for α = 1, . . . ,m.
If Cα is a 3-clause, then it is monotone positive, i.e., Cα = (xi ∨ xj ∨ xk) for some
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Ai
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x1
i

x2
i

xN
i

Figure 6.1.: Variable gadget V̂i corresponding to a variable xi. Black vertices are dis-
played with a black background.
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Figure 6.2.: Clause gadget Ĉα associated to a 3-clause Cα = (xi ∨ xj ∨ xk). Note that
in the final graph, each vertex xm

i , x
m
j , x

m
k , for every m ∈ {1, 2, N}, will be

incident to exactly 2 edges linking them to vertices outside their variable
gadget.
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j

Lα
i,j
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Figure 6.3.: Gadget for a 2-clause Ĉα of the form Cα = (xi ∨ xj).

i, j, k ∈ {1, . . . , n}. In this case, we introduce the three edges (x1
i , x

1
j ), (x1

j , x
1
k), (x1

k, x
1
i ),

which comprise the clause gadget (see Figure 6.2).
If Cα is a 2-clause, say Cα = (xr

i ∨xs
j) with i, j ∈ {1, . . . , n} and r, s ∈ {2, N}, then we

introduce a public black vertex Lα
i,j with a private black neighbor pα

i,j and we add the
four edges (xr

i , x
s
j), (xr

i , L
α
i,j), (xs

j , L
α
i,j) and (Lα

i,j , p
α
i,j). These four edges together with

the two vertices added comprise the clause gadget (see Figure 6.3).
The description of the reduction is now complete. Clearly, GΨ has at most 6n + 2m

vertices and at most 12n + 4m edges. Next, we introduce a few notions to ease the
proof that GΨ is a colored disjoint unit 2-interval graph if and only if Ψ is satisfiable.
In particular, we extend the notion of split given in Definition 4.2 to colored graphs.

Definition 6.1. Given a colored graph (G, γ), we say that a pair (S, f) formed by a
graph S and a function f : V (S) 7→ V (G) is a disjoint split of (G, γ) if f satisfies the
following conditions:

• |f−1(v)| = 1 for every v ∈ V (G) with γ(v) = black.

• |f−1(v)| = 2 for every v ∈ V (G) with γ(v) = white.

• For every vertex v of G, f−1(v) is an independent set in S.

• For every edge (s, t) of S, (f(s), f(t)) is an edge of G.

• For every edge (u, v) of G, there exist two vertices s and t in f−1({u, v}) such that
(s, t) is an edge of S.

Definition 6.2. We define the family of disjoint splits of a colored graph G that lead to a
unit interval graph as SU (G) := {(S, f) | (S, f) is a split of G and S is a unit interval graph}.

Note that the assumption that the 2-interval used to represent a white vertex is com-
posed of two disjoint intervals is enforced by the third condition of Definition 6.1.

The next lemma shows how a disjoint split (S, f) of a colored graph G can be used to
certify that G is a colored disjoint unit 2-interval graph.
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Lemma 6.2. A colored graph (G, γ) is a colored disjoint unit 2-interval graph if and
only if the family SU (G) is not empty.

Proof. Suppose that G is a colored disjoint unit 2-interval graph with V = Vwhite∪Vblack.
Then, by assumption, there exists a collection of disjoint unit 2-intervals Dwhite =
{(I1(v), I2(v)) | v ∈ Vwhite} and a collection of unit intervals Iblack = {I1(v) | v ∈
Vblack} such that G ≃ Ω (Dwhite ∪ Iblack). Let F be the family of intervals formed by
the underlying family of Dwhite ∪ Iblack. Let S be the interval graph defined as the
intersection graph of the family F , i.e., S ≃ Ω(F). Consider the function f : V (S) 7→
V (G) such that:

• For every I1(v) ∈ Iblack, f(I1(v)) = v.

• For every pair (I1(v), I2(v)) ∈ Dwhite, f(I1(v)) = f(I2(v)) = v.

By construction, f satisfies all the conditions in Definition 6.1. Indeed, the first three
conditions follow directly by definition, while the last two conditions follow because if
we have an edge (Ij(u), Ik(v)) in S, for some j, k ∈ {1, 2}, this is equivalent to the 2-
intervals associated to vertices u and v of G intersecting, so there is an edge (u, v) in G.
Therefore, (S, f) is a split of (G, γ).

Conversely, suppose that there exists a disjoint split (S, f) of (G, γ) that satisfies the
property of being a unit interval graph. Then, there exists a collection of unit intervals
I = {I1(s) | s ∈ V (S)} such that S ≃ Ω (I). Since (S, f) is a split of (G, γ), we know
that there exists a map f : V (S) 7→ V (G) satisfying the conditions in Definition 6.1.
We construct a colored disjoint unit 2-interval representation of G, i.e., a collection of
disjoint unit 2-intervals Dwhite = {(I1(v), I2(v)) | v ∈ Vwhite} and a collection of unit
intervals Iblack = {I1(v) | v ∈ Vblack}, as follows:

• For every v ∈ V (G) with γ(v) = black, we let I1(v) = I1(s), where s = f−1(v).

• For every v ∈ V (G) with γ(v) = white, we let I1(v) = I1(s) and I2(v) = I1(t),
where {s, t} = f−1(v).

By construction, this is a colored disjoint unit 2-interval representation of G, as the last
two conditions of f ensure that we preserve the same edges.

We can now proceed to study the shape of the possible splits (S, f) ∈ SU (GΨ). Since
all the splits considered in this section are disjoint, in the remaining we will refer to
them simply as splits. Let (S, f) be a split of a colored graph G. For every vertex
v ∈ V (G), we call each element of the set f−1(v) a representative of v. In particular,
if v is a white vertex, we denote its two representatives in V (S) by f−1

1 (v) and f−1
2 (v).

For simplicity, when we refer to an arbitrary representative of a vertex or to the unique
representative of a black vertex, we abuse notation and denote it by its label in V (G).
Likewise, given an edge (u, v) ∈ G, we call the edge (s, t) ∈ S, a representative of (u, v)
if s ∈ f−1(u) and t ∈ f−1(v). Furthermore, given a split (S, f) of the graph GΨ, we
denote by S[V̂i] the subgraph of S induced by the vertices of the variable gadget V̂i (i.e.,
vertices Ai, Bi, Ci, f−1

1 (xN
i ), f−1

1 (x1
i ), f−1

1 (x2
i ), f−1

2 (xN
i ), f−1

2 (x1
i ) and f−1

2 (x2
i )). Finally,
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we say that a representative of a literal vertex is an isolated vertex if it is not adjacent
to any of the private vertices of its variable gadget (i.e., it is not adjacent to Ai, Bi or
Ci).

Lemma 6.3. Let (S, f) be an arbitrary graph in SU (GΨ). Then, none of the black
vertices of S[V̂i] can be adjacent to both representatives of a literal vertex. Furthermore,
if a black vertex is adjacent to a representative of x1

i and to a representative of x2
i , these

two representatives must be adjacent to each other.

Proof. Suppose that the two representatives of a literal vertex are adjacent to the same
black vertex. If the literal vertex is x1

i or x2
i , the black vertex would be a center of a K1,3

with these two representatives plus a representative of the vertex xN
i as leaves. If the

literal vertex is xN
i , the black vertex would be a center of a K1,3 with the two represen-

tatives of xN
i and one of x1

i or x2
i as leaves. Since the graph K1,3 is a forbidden induced

subgraph for unit interval graphs, this contradicts the fact that S belongs to SU (GΨ).
Finally, if a black vertex is adjacent to a representative of x1

i and to a representative of
x2

i which are not adjacent, the black vertex would be a center of a K1,3 with these two
representatives plus a representative of xN

i as leaves.

From now on, since we know that Ai is adjacent to a single representative of a literal
vertex, we will denote by f−1

1 (xs
i ) the representative that is adjacent to Ai, for s ∈

{1, 2, N}.

Lemma 6.4. Let (S, f) be an arbitrary split in SU (GΨ). Then, for every variable xi with
i ∈ {1, . . . , n}, the subgraph S[V̂i] satisfies at least one of the following two conditions:

1. The vertex f−1
1 (xN

i ) is adjacent to Ai and the vertex f−1
2 (xN

i ) is adjacent to Bi.

2. The vertices f−1
1 (x1

i ) and f−1
1 (x2

i ) are adjacent to each other and to Ai, and the
vertices f−1

2 (x1
i ) and f−1

2 (x2
i ) are adjacent to each other and to Bi.

Proof. By the properties of f , for every edge (u, v) ∈ GΨ, there exist elements s, t ∈ V (S)
with f−1(u) = s and f−1(v) = t such that (s, t) is an edge in S.

Suppose condition 1 does not hold, i.e., f−1
1 (xN

i ) is adjacent to both Ai and Bi. We will
show that if condition 2 does not hold either, S cannot be a unit interval graph. Assume
that one of the representatives of x1

i or x2
i , f−1

1 (x1
i ) (resp. f−1

1 (x2
i )), is adjacent to both

Ai and Bi. Then, S contains an induced cycle of length four:
(
f−1

1 (xN
i ), Bi, f

−1
1 (x1

i ), Ai

)
(resp.

(
f−1

1 (xN
i ), Bi, f

−1
1 (x2

i ), Ai

)
). This is a forbidden induced subgraph for unit inter-

val graphs, so it contradicts the hypothesis. Thus, it follows that vertices f−1
1 (x1

i ) and
f−1

1 (x2
i ) need to be adjacent to Ai, and vertices f−1

2 (x1
i ) and f−1

2 (x2
i ), to Bi. Finally, by

Lemma 6.3, f−1
1 (x1

i ) and f−1
1 (x2

i ) need to be adjacent to each other, so condition 2 must
hold.

The previous lemma implies that there are four possible configuration of S[V̂i] such
that it does not contain any induced cycles of length greater or equal to 4.
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Lemma 6.5. Let (S, f) be a split of GΨ such that S[V̂i] does not contain any induced
cycles of length greater or equal to 4. Then, S satisfies one of the following conditions:

1. The vertex f−1
1 (xN

i ) is adjacent to Ai and the vertex f−1
2 (xN

i ) is adjacent to Bi,
while for the rest of the literal vertices, there exists an element in the image via
f−1 that is an isolated vertex.

2. The vertices f−1
1 (x1

i ) and f−1
1 (x2

i ) are adjacent to each other and to Ai, and the
vertices f−1

2 (x1
i ) and f−1

2 (x2
i ) are adjacent to each other and to Bi, while f−1(xN

i )
contains an isolated vertex.

3. The images of x1
i and x2

i via f−1 are as in Case 2 and f−1(xN
i ) is as in Case 1

(see the graph in Figure 6.4).

4. Either the image of x1
i or the image of x2

i via f−1 is as in Case 2 (w.l.o.g., assume
it is f−1(x1

i )) so that both representatives of x1
i are adjacent to the non-isolated

representative of x2
i ; and f−1(xN

i ) is as in Case 1.

Proof. We have already shown that one of the conditions of Lemma 6.4 must hold. If
condition 1 holds, then we have three possible configurations of f−1(x1

i ) and f−1(x2
i ):

either both literal vertices have a representative that is isolated (Case 1), only one of
them has a representative that is isolated (Case 4), or none of them has an isolated
representative (Case 3). On the other hand, if condition 2 holds, then we only have
two possible configurations of f−1(xN

i ): one representative of xN
i is isolated (Case 2), or

none of them is (Case 3). Finally, note that in Case 4, both representatives of x1
i need

to be adjacent to the non-isolated representative of x2
i by Lemma 6.3.

The next two lemmas are devoted to proving that if (S, f) is a split of (GΨ, γ) contained
in the family SU (GΨ), then Cases 3 and 4 of Lemma 6.5 are not possible. To do so,
observe that by construction, since every variable appears exactly in three clauses (twice
positive and once negated), we know that in GΨ, the vertices x1

i , x2
i and xN

i all have two
incident edges linking them with vertices outside of the variable gadget, called external
edges in the following. The neighbors outside of the variable gadget are called external
vertices, and they constitute private neighbors of the vertices of the variable gadget, as
it is not possible for two different vertices of the variable gadget to be incident to the
same external neighbor. We will see that if S is as in Case 3 or Case 4, then the vertices
of S[V̂i] create an induced net with the external neighbors. Since nets are a forbidden
induced subgraph for (unit) interval graphs, then S cannot be a unit interval graph.

Lemma 6.6. Let S be an arbitrary graph in SU (GΨ). Then, for every variable xi with
i ∈ {1, . . . , n}, the subgraph S[V̂i] cannot be as in Case 3 of Lemma 6.5.

Proof. Suppose that S[V̂i] is as in Case 3 of Lemma 6.5, i.e., as in Figure 6.4 (where Ci

could be in the neighborhood of the other representatives of the vertices, but thanks to
the symmetry, these cases are equivalent). We distinguish two cases:
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6.2. Hardness of recognizing disjoint unit multiple interval graphs

Ai

Bi

Ci

f−1
1 (x1

i ) x1
l

f−1
1 (x2

i )

f−1
2 (x1

i ) x1
j

f−1
2 (x2

i ) x1
k

f−1
1 (xN

i )

f−1
2 (xN

i )

Figure 6.4.: Configuration of S[V̂i] described in Case 3 of Lemma 6.5. In red, the net
created if both f−1

2 (x1
i ) and f−1

2 (x2
i ) have an external neighbor. In blue, the

net created if f−1
1 (x1

i ) has an external neighbor.

• At least one of f−1
1 (x1

i ) or f−1
1 (x2

i ) is incident to an external edge. Then, Ci, Ai, f
−1
1 (x1

i )
or Ci, Ai, f

−1
1 (x2

i ) will create a net together with Bi, f
−1
1 (xN

i ), and the correspond-
ing external neighbor of f−1

1 (x1
i ) or f−1

1 (x2
i ), respectively (see the blue net in

fig. 6.4).

• Otherwise, the two external edges incident to x1
i and x2

i are incident to f−1
2 (x1

i ) and
f−1

2 (x2
i ), respectively. Then, f−1

2 (xN
i ), Bi, f

−1
2 (x1

i ), f−1
2 (x2

i ), a private neighbor of
f−1

2 (x1
i ) and a private neighbor of f−1

2 (x2
i ) form a net (see the red net in fig. 6.4).

In both cases, we have a forbidden induced subgraph for (unit) interval graphs, con-
tradicting the hypothesis that S is a unit interval graph.

Lemma 6.7. Let (S, f) be an arbitrary split in SU (GΨ). Then, for every variable xi

with i ∈ {1, . . . , n}, the subgraph S[V̂i] cannot be as in Case 4 of Lemma 6.5.

Proof. Suppose that S[V̂i] is as in Case 4 of Lemma 6.5, i.e., as in Figure 6.5. By
construction, x2

i and at least one of f−1
1 (x1

i ) or f−1
2 (x1

i ) have an external neighbor. We
distinguish two cases:

• The vertex f−1
1 (x1

i ) has an external neighbor. Then, verticesAi, f
−1
1 (x1

i ), x2
i , f

−1
1 (xN

i ),
and the external neighbors of x2

i and f−1
1 (x1

i ) form a net (see the red net in Fig-
ure 6.5).

• The vertex f−1
2 (x1

i ) has an external neighbor. Then, verticesBi, f
−1
2 (x1

i ), x2
i , f

−1
2 (xN

i ),
and the external neighbors of x2

i and f−1
2 (x1

i ) form a net (see the blue net in Fig-
ure 6.5).
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Ai

Bi

Ci

f−1
1 (x1

i ) x1
j

x1
k

x1
l

f−1
2 (x1

i )

x2
i

f−1
1 (xN

i )

f−1
2 (xN

i )

Figure 6.5.: Configuration of S[V̂i] described in Case 4 of Lemma 6.5. In red, the net
created if f−1

1 (x1
i ) has an external neighbor, and in blue, the net created if

f−1
2 (x1

i ) has an external neighbor (edge (x2
i , x

1
l ) is part of both nets and is

depicted in purple).

In both cases, we have a forbidden induced subgraph for (unit) interval graphs, con-
tradicting the hypothesis that S is a unit interval graph.

We have shown that only Cases 1 and 2 of Lemma 6.5 are possible. Recall that in
Case 1, one of the representatives of x1

i and one of the representatives of x2
i are isolated;

and in Case 2, one of the representatives of xN
i is isolated. Therefore, we obtain the

following result.

Lemma 6.8. Let (S, f) be an arbitrary split in the family SU (GΨ). Then, for every
variable xi with i ∈ {1, . . . , n}, the subgraph S[V̂i] satisfies exactly one of the following
two conditions:

1. There is a representative of x1
i and a representative of x2

i that are isolated vertices
(they are either two non-adjacent vertices or they form a K2).

2. One of the representatives of xN
i is an isolated vertex.

Proof. Combining Lemma 6.5 with Lemmas 6.6 and 6.7, it follows that S[V̂i] is either as
in Case 1 or as in Case 2 of Lemma 6.5, which means that either one representative of
each of x1

i and x2
i is isolated, or that one representative of xN

i is isolated, respectively.
These options correspond to the interval representations in Figure 6.6a and Figure 6.6b,
respectively. The reader can check the previous assertion observing the figures, and verify
that the external edges incident to each of the vertices x1

i , x
2
i and xN

i can be added in
both representations, as we always have either a whole free interval (not depicted in the
figures) or one extreme of the interval free for each of the vertices.
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6.2. Hardness of recognizing disjoint unit multiple interval graphs

I1(Ci)

I1(Ai) I1(Bi)

I1(xN
i ) I2(xN

i )

I1(x1
i )

I1(x2
i )

(a)

I1(Ci)

I1(Ai) I1(Bi)

I1(x1
i ) I2(x1

i )

I1(x2
i ) I2(x2

i )

I1(xN
i )

(b)

Figure 6.6.: Representation of the variable gadget associated to the true value (left, 6.6a)
or false value (right, 6.6b).

The correctness of the reduction now follows from the two lemmas below.

Lemma 6.9. If Ψ is satisfiable, then the constructed graph GΨ = (V,E), V = Vwhite ∪
Vblack, admits a colored disjoint unit 2-interval representation.

Proof. Given a satisfying assignment Φ of Ψ, we explain how to construct a colored
disjoint unit 2-interval representation of GΨ, i.e., a collection of disjoint unit 2-intervals
Dwhite = {(I1(v), I2(v)) | v ∈ Vwhite} and a collection of unit intervals Iblack = {I1(v) |
v ∈ Vblack} such that G ≃ Ω (Dwhite ∪ Iblack). To do so, we show how to construct a
colored proper 2-interval representation, that is, a representation where no interval of
the underlying family is properly contained in another one, which can then be trans-
formed into a unit representation using the algorithm described in [21] Note that by
Lemma 4.1, if GΨ is a colored disjoint unit 2-interval graph, then there exists a split
(S, f) in the family SU (GΨ), and we know how to construct a colored disjoint unit 2-
interval representation of GΨ given a unit interval representation of S by defining the
2-interval associated to a white vertex v ∈ Vwhite as the union of the interval associated
to f−1

1 (v) and the interval associated to f−1
2 (v); and the interval associated to a black

vertex v ∈ Vblack as the interval associated to the single vertex f−1(v).
For each variable xi with i ∈ {1, . . . , n}, if Φ(xi) = true, we represent the variable

gadget V̂i as shown in Figure 6.6a, which corresponds exactly to Case 1 of Lemma 6.8.
On the other hand, if Φ(xi) = false, we represent V̂i as in Figure 6.6b, which corresponds
to Case 2 of Lemma 6.8. Notice that in both representations, the literals that are true
have an isolated representative, i.e., one of the intervals associated to them is unused
in the representation of V̂i and remains completely free to display intersections with
external neighbors.

After this, it only remains to explain the connections introduced by the clauses.

Claim 6.1. Given a 3-clause (xi ∨ xj ∨ xk), there exists a unit interval representation
of the subgraph of GΨ induced by the vertices of the variable gadgets V̂i, V̂j and V̂k.

Proof. Each of the variable gadgets can be represented as in Figure 6.6a or Figure 6.6b.
To represent the edges associated to the 3-clauses, we first notice that, since the 3-clauses
are positive monotone, true literals correspond to true variables. As we are assuming
that we have a satisfying assignment, we only have three cases (up to symmetry), which
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I1(Ci)

I1(Ai) I1(Bi)

I1(x1
i ) I2(x1

i )

I1(x2
i )

I2(x2
j )

I2(x1
k)

I2(x2
i )

I1(xN
i )

Figure 6.7.: Representation of a 3-clause (xi ∨ xj ∨ xk), where xi is set to false while
xj , xk are set to true.

I1(Ci)

I1(Ai) I1(Bi)
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I1(x1
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I2(x1
j )

I2(x1
i )

I1(xN
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I1(Ck)

I1(Ak) I1(Bk)

I1(x2
k) I2(x2

k)

I1(x1
k)

I2(x1
k)

I1(xN
k )

Figure 6.8.: Representation of a 3-clause (xi ∨ xj ∨ xk), where xi and xk are set to false
and xj is set to true.

correspond to the three variables being true; exactly two variables being true; and only
one variable being true. The literals that are true have a whole free interval to display
the intersection, whereas the literals that are false only have the extreme of an interval
(while the other extreme is glued to the rest of the representation of the gadget, see
Figure 6.6b). Let (xi ∨ xj ∨ xk) be a 3-clause, with i, j, k ∈ {1, . . . , n}. If the three
variables are true, we can easily represent the clause by making the three free intervals
of the variables – w.l.o.g. I2(x1

i ), I2(x1
j ), I2(x1

k) – intersect at the same time. On the
other hand, if only one variable – say xi – is false, we can add the two free intervals
–I2(x1

j ), I2(x1
k) – to the corresponding extreme of the gadget of the false variable, as in

Figure 6.7. Finally, if two variables are false – say xi, xk –, then we need to merge the
two interval representations associated to their gadgets and add the free interval – I2(x1

j )
– in the middle, as shown in Figure 6.8. Note that, as pointed out before, the interval
representations given in the figures are not unit, but they are proper. ◁

After representing all the 3-clauses, we can assume that the representations of some
of the variable gadgets have been merged two by two (we will never have to merge a
gadget more than once since a variable occurs in exactly one 3-clause in Ψ) and we can
fix them all in the real line separated from one another. The separation between them
can be arbitrarily large, and needs to be at least greater than the space needed to place
the remaining intervals. The variable gadgets that have not been merged can also be
fixed in the real line, while the unused free intervals (corresponding to true literals), the
intervals I1(Lα

i,j), and the intervals I1(pα
i,j) remain unplaced.

Now, to display the 2-clauses, we distinguish two cases. First, if both literals are true,
then there exists a free interval for each, and we can represent the clause in a separate
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Figure 6.9.: Representation of a longest contiguous block of intervals, where each color
represents the intervals associated to a different variable. A longest contigu-
ous block occurs when there is a clause (xi ∨ xj ∨ xk), where xi and xk are
set to false and both of them also appear as positive literals in a 2-clause.

part of the real line (there is one Lα
i,j and one pα

i,j per clause, so these intervals will
never cause a problem). Secondly, if one of the literals is false, then the free interval
associated to the true literal needs to be glued to the extreme of the representation of
the variable gadget of the false one. Note that there is always one free extreme because
the 3-clauses use at most one extreme per variable gadget (and we can extend Ij(x2

i )
to allow the intersection while keeping the representation proper). Note also that we
will never need more than two extremes to obtain a representation because, since each
variable occurs twice positive and once negated, we can have at most two false literals
(when the variable is set to false).

Since we have constructed a proper interval representation, we can now use the algo-
rithm described in [21] to turn the representation into a unit one, as explained before.

Let us now prove the converse implication.

Lemma 6.10. If the constructed graph GΨ = (V,E), V = Vwhite ∪ Vblack, admits a
colored disjoint unit 2-interval representation, then the original formula Ψ is satisfiable.

Proof. Assume that the constructed graph GΨ admits a colored disjoint unit 2-interval
representation where black vertices are represented by unit intervals and white vertices
are represented by disjoint unit 2-intervals. As in Lemma 6.8, we study the splits (S, f) ∈
SU (GΨ).

We have already seen in Lemma 6.8 that there are only two possible configurations
for S[V̂i], up to symmetry. Let us assign a truth value to each of the configurations. If
S[V̂i] satisfies condition 1 of Lemma 6.8, we set Φ(xi) = true. Otherwise, if it satisfies
condition 2 of Claim 6.8, then we set Φ(xi) = false. Recall that this implies that there
is a representative of the vertices representing true literals which remains isolated from
its variable gadget.

The following claims restrict the structure of a representable clause gadget. Both use
similar arguments, so only the first proof is included here. Given a clause gadget Ĉα in
G, we define the clause gadget S[Ĉα] in S as the set of representatives of the edges and
vertices of Ĉα.
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6. Complexity of Recognition

Claim 6.2. Let (S, f) be an arbitrary split in SU (GΨ). Then, for every 3-clause, at least
one of the representatives of the literal vertices incident to the clause gadget in S must
be an isolated vertex.

Proof. Towards a contradiction, we assume that there exists a 3-clause gadget in S such
that none of the representatives of the literal vertices adjacent to the clause gadget are
isolated. Let Cα = xi ∨ xj ∨ xk, with i, j, k ∈ {1, . . . , n} be a (monotone positive) 3-
clause. Each of the literal vertices has two external neighbors. In S, either the two
external neighbors are incident to the same representative of the literal vertices (and
thus only one representative is incident to the clause gadget), or each of them is incident
to a different representative. We distinguish two cases, depending on whether only one
representative of each literal vertex is incident to the clause gadget, or whether there is
at least one literal vertex such that both of its representatives are incident to the clause
gadget:

• If only one representative of each literal vertex is incident to the clause gadget
in S, then w.l.o.g., the clause gadget is formed by edges {(f−1

1 (x1
i ), f−1

1 (x1
j )),

(f−1
1 (x1

j ), f−1
1 (x1

k)), (f−1
1 (x1

k), f−1
1 (x1

i ))}. By assumption, none of the vertices inci-
dent to the clause gadget in S are isolated, so they are all connected to at least one
black vertex of their variable gadget. Thus, without loss of generality, {f−1

1 (x1
i ),

f−1
1 (x1

j ), f−1
1 (x1

k), Ai, Aj , Ak} form a net (the readers can convince themselves look-
ing at Figure A.1). Note that when we say without loss of generality, we are using
the symmetry between Ai and Bi.

• If there is at least one literal vertex such that both of its representatives are in-
cident to the clause gadget, then w.l.o.g., the clause gadget in S contains edges
{(f−1

1 (x1
i ), f−1

1 (x1
j )), (f−1

1 (x1
k), f−1

2 (x1
i ))} (and eventually, edges between represen-

tatives of x1
j and x1

k). Then, since one of the representative of x2
i also has a

private neighbor outside of the variable gadget, either the subgraph induced by
{Ai, f

−1
1 (x1

i ), f−1
1 (x2

i )} or the subgraph induced by {Bi, f
−1
2 (x1

i ), f−1
2 (x2

i )} (and
one private neighbor of each of the three vertices, where the private neighbor of
Ai and Bi is xN

i ) is a net. This situation is depicted in Figure 6.10.

In both cases, the resulting graph S would not be a unit interval graph, contradicting
the hypothesis. ◁

Claim 6.3. Let (S, f) be an arbitrary split in SU (GΨ). Then, for every 2-clause, at least
one of the representatives of the literal vertices incident to the clause gadget in S must
be an isolated vertex.

Proof. Towards a contradiction, we assume that there exists a 2-clause gadget in S such
that none of the representatives of the literal vertices adjacent to the clause gadget are
isolated. Let Cα = xr

i ∨ xs
j , with i, j ∈ {1, . . . , n}, be a 2-clause, where the indices

r, s ∈ {2, N} indicate which occurrence of the variable appears in the clause. Again,
there are two options:
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Ai
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1 (x2
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i )

f−1
2 (x2

i )

xN
i

Figure 6.10.: In red, the net created if both representatives of x1
i are incident to the

clause gadget in S and f−1
1 (x2

i ) is incident to an external edge.

• The clause gadget in S forms a triangle, i.e., the two edges that are incident to a
literal of a variable gadget are incident to the same representative. In this case,
w.l.o.g., the clause gadget in S comprises edges {(f−1

1 (xr
i ), f−1

1 (xs
j)), (f−1

1 (xs
j), Lα

i,j),
(Lα

i,j , f
−1
1 (xr

i ))}. Then, without loss of generality, we will have a net induced by
{xr

i , x
s
j , L

α
i,j , Ai, Aj , p

α
i,j} (since Lα

i,j is black and f−1(Lα
i,j) consists of a single ele-

ment, this unique representative will be incident to the clause gadget and adjacent
to pα

i,j at the same time). The readers can convince themselves looking at Fig-
ure 6.3.

• Otherwise, there is a literal vertex such that both representatives are incident
to an edge of the clause gadget. W.l.o.g., the clause gadget in S contains edges
{(f−1

1 (xr
i ), f−1

1 (xs
j)), (Lα

i,j , f
−1
2 (xr

i ))}. Suppose first that xr
i is x2

i . As in the case of
3-clauses, either the subgraph induced by {Ai, f

−1
1 (x1

i ), f−1
1 (x2

i )} or by {Bi, f
−1
2 (x1

i ),
f−1

2 (x2
i )} (and one private neighbor of each of the three vertices, where the private

neighbor of Ai and Bi is xN
i ) is a net. On the other hand, if xr

i is xN
i , since this

literal only occurs in 2-clauses and the vertex Lα
i,j for 2-clauses is black, then it

cannot be the case that f−1
1 (xN

i ) is adjacent to xs
j , and f−1

2 (xN
i ) is adjacent to

Lα
i,j . Indeed, if this happened, Lα

i,j would be the center of an induced K1,3 with
leaves pα

i,j , f−1
2 (xN

i ), and a representative of xs
j (which is not adjacent to f−1

2 (xN
i )

by assumption). This would contradict the fact that S is a unit interval graph.
The illustration of the K1,3 created can be seen in Figure 6.3 removing the edge
(x1

i , x
2
i ), and replacing x1

i with xN
i .

In both cases, the resulting graph S would not be a unit interval graph, contradicting
the hypothesis. ◁

The previous claims imply that there is an isolated literal vertex incident to every
3-clause and to every 2-clause. Since literal vertices that have an isolated representative
correspond to true literals in the assignment fixed before, it follows that there is a true
literal per clause, and thus, all clauses are satisfied. This finishes the proof of the converse
direction.
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As the problem is clearly in NP, the polynomial-time construction together with Lem-
mas 6.9 and 6.10 conclude the proof of Theorem 6.1. The bound on the degree follows
because the constructed graph G has maximum degree 6 (the positive literal vertices
have degree 4 in the variable gadget and are incident to 2 external edges).

6.2.2. Hardness of Disjoint Unit 2-Interval Recognition

Here, we show that colored disjoint unit 2-Interval Recognition is polynomial-
time reducible to Disjoint Unit 2-Interval Recognition, which yields the main
result of the section:

Theorem 6.2. Disjoint Unit 2-Interval Recognition is NP-complete, even for
graphs of degree at most 7.

Proof. We reduce from colored disjoint unit 2-Interval Recognition, which is
NP-hard by Theorem 6.1. Given any instance (G, γ) of colored disjoint unit 2-
Interval Recognition, where G = (V,E) is a graph and γ : V → {white, black} is
a vertex-coloring map, we construct an equivalent instance G′ = (V ′, E′) of Disjoint
Unit 2-Interval Recognition. Define n = |V | and Vc = {u | u ∈ V ∧ γ(u) = c} for
c ∈ {white, black} (so that n = |Vwhite|+ |Vblack|).

We obtain G′ = (V ′, E′) from G by replacing every vertex v ∈ Vblack by the gadget
Bv depicted in Figure 6.11, which we also call black vertex gadget. Formally, for every
v ∈ Vblack, we add the vertices Vv = {ai

v, b
i
v | 0 ⩽ i ⩽ 3} and the edges Ev = {(v, a0

v),
(a0

v, a
i
v), (v, b0

v), (b0
v, b

i
v), (a0

v, b
0
v) | 1 ⩽ i ⩽ 3}. The gadget Bv is exactly the graph induced

by the union of Vv and vertex v. Note that the vertex v of Bv is public, that is, it is
adjacent to vertices of Bv and to vertices outside of Bv, while the rest of the vertices of
Bv are private, i.e., they are only adjacent to vertices of Bv.

We have thus constructed a graph G′ with vertex set V ′ = V ∪ {Vv | v ∈ Vblack}
and edge set E′ = E ∪ {Ev | v ∈ Vblack}. Note that G′ contains G as an induced
subgraph, as G′[V ] = G. Combining this with the replacement of every vertex in Vblack
by a gadget with 9 vertices and 9 edges, it follows that |V ′| = |Vwhite| + 9 |Vblack| and
|E′| = |E|+ 9 |Vblack|.

The purpose of the black vertex gadget Bv used to replace every v ∈ Vblack in the
construction of G′ is to restrict the disjoint unit 2-interval representations of G′. Indeed,
we will see that it forces one of the intervals associated to v to be used exclusively to
represent the gadget, while the other interval is used exclusively to represent the rest
of the neighborhood of v (which is exactly its neighborhood in the original graph G).
Figure 6.12 shows a disjoint unit 2-interval representation DBv = {(I1(x), I2(x)) | x ∈
Vv ∪{v}} of Bv such that I1(v) does not have any points in common with the rest of the
intervals of DBv (i.e., only I2(v) is used to represent the gadget). Furthermore, in the
given representation, I2(v) cannot intersect any interval associated to a vertex outside
of the gadget, as there is no point of I2(v) that does not intersect either I1(a0

v) or I1(b0
v),

and both a0
v and b0

v are private vertices for v. The next claim proves that any disjoint
unit 2-interval representation of Bv is as in Figure 6.12, up to symmetry.
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v
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v

Figure 6.11.: Gadget Bv used to replace every black vertex v of G in the construction of
G′. Vertex v is a public vertex, as it is adjacent to vertices of the gadget
(a0

v and b0
v) and vertices outside the gadget (namely, its neighbors in the

original graph G), whereas the rest of the vertices are private, as their only
neighbors are vertices from the gadget (the ones shown in the figure).

I1(a1
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I2(v)
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I1(b1
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I1(a2
v)
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v)
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Figure 6.12.: A unit 2-interval representation of Bv (Figure 6.11), i.e., DBv for an arbi-
trary v ∈ Vblack. Note that only one interval of v is used (I2(v)), while the
other one remains free to display the rest of the neighborhood of v (and is
not represented here).

Claim 6.4. Let {(I1(x), I2(x)) | x ∈ Vv∪{v}} be a disjoint unit 2-interval representation
of Bv. Then, there exist some indices i, j, k ∈ {1, 2} such that the representation of
Ii(v), Ij(a0

v), Ik(b0
v) is continuous (i.e., the union of the three intervals is an interval)

and Ii(v) is properly contained in the union Ij(a0
v) ∪ Ik(b0

v).

Proof. In the following, we denote an interval associated to a vertex by the name of the
vertex if it refers to an arbitrary interval from the corresponding disjoint 2-interval (i.e.,
we will write v to denote I1(v) or I2(v) when the choice of interval is irrelevant).

Since a0
v and b0

v are both centers of an induced K1,4, one of the intervals associated
to a0

v, say I1(a0
v), needs to intersect v, b0

v and one of the ai
v for some i ∈ {1, 2, 3}, say

a1
v without loss of generality (because of the symmetry). Furthermore, the intervals of v

and b0
v that intersect I1(a0

v) also need to intersect each other, as otherwise I1(a0
v) would

intersect three disjoint intervals, contradicting the fact that the representation is unit.
On the other hand, I2(a0

v) has to intersect the two remaining ai
v, that is, a2

v and a3
v.

Similarly, one of the intervals associated to b0
v, say I1(b0

v), needs to intersect v and a0
v

(which also intersect each other), and one of the bi
v for some i ∈ {1, 2, 3}, whereas I2(b0

v)
intersects the two remaining bi

v. Again, without loss of generality, we can assume that
I(b0

v) intersects b1
v while I2(b0

v) intersects b2
v and b3

v.
Thus, we have that I1(a0

v) intersects v and I1(b0
v) (which also intersect each other),

and a1
v; while I(b0

v) intersects v and I1(a0
v) (which also intersect each other), and b1

v. This
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implies that the representation of a1
v, I1(a0

v), b1
v, I1(b0

v) has to be contiguous. Finally,
since vertex v is not adjacent to either a1

v nor b1
v, the only possibility to represent the

edges (v, a0
v) and (v, b0

v) is by placing an interval associated to v, say I2(v), properly
contained in the union I1(a0

v) ∪ I1(b0
v), as in Figure 6.12. ◁

The next two claims now prove the correctness of the reduction.

Claim 6.5. If G is a colored disjoint unit 2-interval graph, then G′ is a disjoint unit
2-interval graph.

Proof. Suppose that G is a colored disjoint unit 2-interval graph. Then, by assumption,
there exists a collection of unit 2-intervals Dwhite = {(I1(v), I2(v)) | v ∈ Vwhite} and a col-
lection of unit intervals Iblack = {I1(v) | v ∈ Vblack} such that G ≃ Ω (Dwhite ∪ Iblack).

From D = (Dwhite ∪ Iblack), we show how to construct a disjoint unit 2-interval rep-
resentation D′ of G′. Recall that (Vwhite∪Vblack) = V ⊂ V ′. Similarly, we will construct
D′ such that D ⊂ D′. In fact, we will have that D′ = D ∪

(⋃
v∈Vblack

DBv

)
, where for

every v ∈ Vblack, DBv is the interval representation of the gadget Bv. More precisely,
we construct D′ as follows:

• For every v ∈ Vwhite, we add to D′ the 2-interval (I1(v), I2(v)) from D.

• For every v ∈ Vblack, we add to D′ the interval I1(v) from D together with DBv ,
i.e., the interval I2(v) plus the 2-intervals (I1(ak

v), I2(ak
v)) and (I1(bk

v), I2(bk
v)) for

0 ⩽ k ⩽ 3 as defined in Figure 6.12.

By construction, D′ is a collection of disjoint unit 2-intervals. It is now a simple matter
to verify that G′ ≃ Ω(D′). ◁

Claim 6.6. If G′ is a dijsoint unit 2-interval graph, then G is a colored disjoint unit
2-interval graph.

Proof. Suppose that G′ is a disjoint unit 2-interval graph. Then, by assumption, there
exists a collection of disjoint unit 2-intervals D′ = {(I1(v), I2(v)) | v ∈ V ′} such that
G′ ≃ Ω(D′). From D′, we show how to construct a set D of |Vwhite| disjoint unit
2-intervals and |Vblack| unit intervals.

Recall that V ⊂ V ′. Similarly, we will take D to be a subset of D′. Let v ∈ V ⊆ V ′

be a vertex of G′. We distinguish two cases depending on the color of v in G:

• γ(v) = white. We add to D the unit 2-interval (I1(v), I2(v)) of D′.

• γ(v) = black. In D′, we have a pair of intervals (I1(v), I2(v)). By Claim 6.4,
w.l.o.g, I2(v) is used to display the gadget for black vertices, and cannot be used
to represent any other edges. This means that all the remaining neighbors of v,
which are exactly its neighbors in G, are displayed by I1(v). Thus, we add to D
the unit interval I1(v) from D′.

◁
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6.2. Hardness of recognizing disjoint unit multiple interval graphs

As the problem is clearly in NP, combining the fact that the construction of G′ can
be carried out in polynomial time with Claims 6.5 and 6.6, we obtain that Disjoint
unit 2-Interval Recognition is NP-complete. The bound on the degree given in the
statement of the theorem follows by the bound on the degrees given in Theorem 6.1,
since only black vertices get two more neighbors (from adding the black vertex gadgets in
Figure 6.11), while white vertices preserve their neighborhood. The bound on the degree
given in the statement of the theorem follows from the bound on the degrees given in
Theorem 6.1, since only black vertices get two more neighbors (from adding the black
vertex gadgets in Figure 6.11), while white vertices preserve their neighborhood.

6.2.3. Consequences and generalizations
We now generalize the result for disjoint unit d-interval graphs, with d ⩾ 2, which is not
directly implied in graph recognition problems. We also extend the hardness result for
some specific cases of disjoint unit d-interval graphs.

Corollary 6.1. Recognizing disjoint unit d-interval graphs is NP-complete for every
d ⩾ 2.

Proof. We reduce recognition of disjoint unit (d − 1)-interval graphs to recognition of
disjoint unit d-interval graphs, hence the result holds by Theorem 6.2.

The idea is similar to the proof of Theorem 6.2. Given a graph G = (V,E), we
construct in polynomial-time a graph G′ by adding to each vertex a gadget similar to
the one in Figure 6.11. Indeed, for every vertex v in G, we create a triangle with vertices
v, a0

v and b0
v, but now a0

v and b0
v are adjacent to 2d − 1 independent vertices instead of

just 3 (which is the case in Figure 6.11). Formally, for every v ∈ V , we add the vertices

Vv = {ai
v, b

i
v | 0 ⩽ i ⩽ 2d− 1}

and the edges

Ev = {(v, a0
v), (a0

v, a
i
v), (v, b0

v), (b0
v, b

i
v), (a0

v, b
0
v) | 1 ⩽ i ⩽ 2d− 1}

We now prove thatG has a disjoint unit (d−1)-interval representation if and only ifG′ has
a disjoint unit d-interval representation. First, given a unit (d−1)-interval representation
of G, we can build a unit d-interval representation of G′ as in Figure 6.12. However,
in this case, instead of having two intervals I1(v), I2(v) associated to every vertex v, we
have d intervals, say I1(v), . . . , Id(v). W.l.o.g., the intervals I1(v), . . . , Id−1(v) are the
d− 1 intervals of the unit (d− 1)-interval representation of G, while Id(v) plays the role
of I2(v) in Figure 6.12. Similarly, I1(a0

v) plays the role of I1(a0
v) in Figure 6.12, while

every Ij(a0
v), with 1 < j ⩽ d is represented as I2(a0

v) in Figure 6.12, each intersecting
two different ai

v, with 1 < i ⩽ 2d− 1. The same holds for b0
v.

For the converse implication, if we have a disjoint unit d-interval representation of
G′, then, using the same argument as in the proof of Claim 6.4, we see that for every
vertex v, we need to use a complete interval of v to represent the gadget added in the
construction of G′. Therefore, the remaining edges (which correspond exactly to the
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6. Complexity of Recognition

edges of G), need to be displayed using only d− 1 intervals associated to v. This implies
that G has a disjoint unit (d− 1)-interval representation.

Corollary 6.2. Recognizing (x, . . . , x) d-interval graphs is NP-complete for every x ⩾ 11
and every d ⩾ 2.

Proof. The result follows because the graph constructed in the reduction is a (11, 11) 2-
interval graph, and every (11, 11) 2-interval graph is also a disjoint unit 2-interval graph
(so the same reduction can be applied). To see this, the reader can verify the (11, 11)
2-interval representation of the largest contiguous block in Figure 6.13, and check that
the black vertex gadget used in the proof of Theorem 6.2 is also a (11, 11) 2-interval
graph.

To generalize for d > 2, it suffices to check that the gadgets added in the reduction
of Corollary 6.1 are (11, . . . , 11) d-interval. Finally, as any (x, . . . , x) d-interval graph
can be turned into a (x+ 1, . . . , x+ 1) d-interval graph (by partitioning the dn intervals
into the minimum number of maximal cliques and stretching the intersection of the
intervals in each clique by one unit, as described in [96]), the graph constructed in the
main reduction is an (x, . . . , x) d-interval graph for every x ⩾ 11. However, the graph
constructed is not a (x, . . . , x) d-interval graph for any x < 11 (this has been checked
with the help of an ILP solver 1).

Corollary 6.3. Recognizing depth r disjoint unit d-interval graphs is NP-complete for
every r ⩾ 4 and every d ⩾ 2.

Proof. The result follows because the depth of the representation constructed in the
hardness proof of Theorem 6.1 is 4 (this can be verified by looking at Figure 6.9), and the
depth of the representation of the black vertex gadget added in the proof of Theorem 6.2
is 3 (as can be seen in Figure 6.12). Furthermore, the gadgets added to prove the result
for d > 2 have a representation of depth at most 3. The corollary generalizes for any
depth r > 4, as for any r > 4, it is true that there exists a satisfying assignment if and
only if the constructed graph G′ has a disjoint unit 2-interval representation of depth at
most r.

The following corollary is based on the Exponential Time Hypothesis (ETH).

Corollary 6.4. Unless the ETH fails, Disjoint Unit d-interval recognition does
not admit an algorithm with running time 2o(|V |+|E|).

Proof. We have provided a polynomial-time reduction from 3-SAT to Unit 2-interval
recognition such that given an instance of 3-SAT of n variables and m clauses, it
outputs an equivalent instance of Unit 2-interval recognition whose size is bounded
by O(n+m). Indeed, given an instance of 3-SAT of n variables and m clauses, we first
build an equivalent instance of a special case of SAT with at most 3m variables and 7m
clauses, and then an instance of colored disjoint unit 2-interval recognition
with at most 18m vertices and 232m edges. Finally, to construct an equivalent instance

1https://gist.github.com/fsikora/9c98e210af0c93487cc81e3d70891814
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Figure 6.13.: An (11, 11) 2-interval representation of a longest contiguous block of the
graph constructed in the main reduction. 95



6. Complexity of Recognition

of Unit 2-interval recognition, we also add a linear number of vertices and edges
(at most 9|V | and 9|E|, respectively). Therefore, if Unit 2-interval recognition
admitted an algorithm with running time 2o(|V |+|E|), composing the reduction with such
an algorithm would yield an algorithm for 3-SAT running in time 2o(n+m), which would
contradict the ETH. To generalize the result for d > 2, notice that the number of vertices
and edges that we add in the proof of Corollary 6.1 is also linear.

This implies that we cannot hope for a significantly better algorithm than the brute-
force one for recognizing unit d-interval graphs, which has running time O(2d2m) as
shown in Theorem 4.1.

6.3. Hardness of recognizing (non-disjoint) unit d-interval
graphs

In this section, we prove that recognizing unit d-interval graphs is also NP-complete by
adapting the previous reduction. Recall that by unit d-interval graphs, we refer to the
intersection graphs of not necessarily disjoint d-intervals.

We start by introducing a variation of the problem Colored unit disjoint 2-
interval recognition, called Colored unit 2-interval recognition, where we
drop the condition that the unit 2-interval that represents a white vertex must be dis-
joint. That is, given a graph G = (V,E) and a coloring γ : V → {white, black},
the task is to determine whether there exists a colored unit 2-interval representation of
(G, γ), i.e., a representation where every white vertex is represented by a (not necessarily
disjoint) unit 2-interval, and every black vertex is represented by a single unit interval.

We can again characterize colored unit 2-interval graphs in terms of splits. We define
a (non-disjoint) split of a colored graph (G, γ) as a pair (S, f) formed by a graph S and
a function f : V (S) → V (G) satisfying all the conditions of Definition 6.1 except the
third one. That is, for every vertex v ∈ V (G), f−1(v) is not necessarily an independent
set in S. Similarly, we define the family of (non-disjoint) splits of a colored graph G that
lead to a unit interval graph as S∗

U (G). We then obtain a characterization analogous to
the one in Lemma 4.1.

Lemma 6.11. A colored graph (G, γ) is a colored unit 2-interval graph if and only if
the family S∗

U (G) is not empty.

Theorem 6.3. Deciding whether a graph is a colored unit 2-interval graph is NP-
complete.

Proof. We use the same reduction as in the proof of NP-hardness of recognizing colored
disjoint unit 2-interval graphs in Theorem 6.1. The reader can observe that one of the
directions of the proof still holds directly for the non-disjoint case: if the formula is
satisfiable and there exists a colored disjoint unit 2-interval representation, then there
also exists a colored unit 2-interval representation, as the class of disjoint unit 2-interval
graphs is contained in the class of unit 2-interval graphs. Thus, Lemma 6.9 still holds
for colored unit 2-interval graphs.
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6.3. Hardness of recognizing (non-disjoint) unit d-interval graphs

On the other hand, to prove the converse direction, we need to adapt the proof of
Lemma 6.10, since it relies on case analysis where we have excluded the possibility that
the vertices in f−1(v) are adjacent, for some white vertex v. Indeed, the fact that we
can have an edge between the two representatives of a vertex invalidates the current
proof of the first statement of Lemma 6.3, where it is shown that no black vertex can
be adjacent to two representatives of the same literal vertex because it would form an
induced K1,3. This is no longer true in the non-disjoint case, as there could be an edge
between the two literal vertices. However, the result still follows when we consider the
whole construction.

Claim 6.7. Let (S, f) be an arbitrary split in S∗
U (GΨ). Then, for every i ∈ {1, . . . , n},

no black vertex of V̂i can be adjacent to two representatives of the same vertex.

Proof. Suppose that a black vertex, say Ai, is adjacent to two representatives of the
same literal vertex. Then the two representatives must be adjacent to each other, and
one of them needs to have a private neighbor in GΨ. This leads to two possible scenarios:

• There exists a representative that has a private neighbor and is adjacent to both Ai

and Bi. Then, it is the center of an induced K1,3. Note that both representatives
could be adjacent to the private neighbor outside the gadget, but it suffices that
one satisfies the condition.

• There exists a representative of the literal vertex (w.l.o.g., we can assume that it
is a vertex representing a positive literal) that has a private neighbor and is not
adjacent to Bi. Then, the other representative must be adjacent to Bi (and has
no private neighbor, because otherwise we would be in the first case). Since we
cannot have an induced C4, vertices Ai and Bi must both be adjacent to different
representatives of the negated literal vertex (this is proven in Lemma 6.4, which
still holds in the non-disjoint case). Thus, there exists a net induced by the two
representatives adjacent to Ai, the private neighbor, Ai, Bi, and the representative
of the negated literal vertex adjacent to Ai (see Figure 6.14).

◁

This shows that the statement of Lemma 6.3 still holds. We will now prove that if two
representatives of the same literal vertex are adjacent to each other, then the constructed
graph GΨ cannot be a colored unit 2-interval graph. This claim implies that the rest of
the proof of Lemma 6.10 holds in the non-disjoint case.

Claim 6.8. Let (S, f) be an arbitrary split in S∗
U (GΨ). Then, no two representatives of

the same literal vertex can be adjacent in S.

Proof. Assume that both representatives of a same literal vertex are adjacent. Then, we
can have two possible situtations:
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Ai

Bi

Ci

f−1
1 (x1

i ) x1
l

f−1
2 (x1

i )

f−1
1 (xN

i )

f−1
2 (xN

i )

Figure 6.14.: If a black vertex is adjacent to two representatives of a same literal vertex
(in this case, Ai is adjacent to f−1

1 (x1
i ) and f−1

2 (x1
i )), then S is not a

unit interval graph (there is an induced net, highlighted in blue). The
representatives of literal vertex x2

i are omitted for clarity.

• Both Ai and Bi are adjacent to the same representative of a literal vertex. Then,
this representative induces a K1,3 together with Ai, Bi and the other represen-
tative, as we have just shown that neither Ai nor Bi can be adjacent to both
representatives (see Claim 6.7).

• Vertex Ai is adjacent to one representative and vertex Bi is adjacent to the other
representative. Assume, without loss of generality, that these representatives are
f−1

1 (x1
i ) and f−1

2 (x1
i ). Then, since we are assuming that the two representatives

are adjacent, vertex Ci needs to be adjacent to both representatives. Indeed,
if Ci is not adjacent to any of them, then there is a cycle induced by the two
representatives f−1

1 (x1
i ) and f−1

2 (x1
i ) together with the black vertices Ci, Ai, Bi.

On the other hand, if Ci is only adjacent to one of the representatives, then Ci

and one other black vertex (for example vertex Ai if there was an edge between Ci

and the representative of the literal vertex adjacent to Bi) would induce a cycle
together with the two representatives.
We will now see that Ci becomes the center of an induced K1,3. First, observe
that there cannot be a representative of xN

i adjacent to both Ai and Bi, as then it
would induce a cycle together with f−1

1 (x1
i ) and f−1

2 (x1
i ), Ai and Bi. Thus, there

is one representative adjacent to Ai, say f−1
1 (xN

i ), and one representative adjacent
to Bi, say f−1

2 (xN
i ). Assume Ci is adjacent to f−1

1 (xN
i ) (it must be adjacent to at

least one representative). Then, Ci would be the center of an induced K1,3 with
leaves f−1

1 (xN
i ), Bi and the representative of x1

i adjacent to Ai. On the other hand,
if Ci were adjacent to f−1

2 (xN
i ), the leaves of the K1,3 would be f−1

2 (xN
i ), Ai, and

the representative of x1
i adjacent to Bi (see Figure 6.15 for an illustration of this

last situation).
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Figure 6.15.: Two representatives of the same literal vertex cannot be adjacent. In this
case, there is an induced K1,3 caused by the fact that f−1

1 (x1
i ) and f−1

2 (x1
i )

are adjacent. The representatives of literal vertex x2
i are omitted for clarity.

In both cases, GΨ would not be a unit interval graph. ◁

Since both directions of the theorem hold, this concludes the proof.

Theorem 6.4. Unit d-interval recognition is NP-complete for every d ⩾ 2, even
for graphs of depth at most 4.

Proof. We use the same reductions as in Theorem 6.2 and Corollary 6.1. It is straight-
forward to see that both proofs generalize for the non-disjoint case.

The lower bound under the ETH obtained in Corollary 6.4 also applies for Unit
d-interval recognition.

6.4. Recognition of (disjoint) balanced d-interval graphs
In this section, we show that recognizing (disjoint and not necessarily disjoint) balanced
d-interval graphs is also NP-complete. Gambette and Vialette [68] adapted the proof of
West and Shmoys [148] to prove that recognizing disjoint balanced 2-interval graphs is
NP-complete. Here, we adapt the reduction of West and Shmoys from the recognition
of (d− 1)-interval graphs to d-interval graphs [148, Theorem 2] to extend the result for
every d ⩾ 2. In the previous chapter, we showed that the classes of balanced 2-interval
and disjoint balanced 2-interval graphs are equivalent, but this is not the case for d > 2
(see Corollary 5.3). We prove that the construction given by West and Shmoys leads to
a hardness result for recognizing both balanced and disjoint balanced d-interval graphs.

Theorem 6.5. Recognizing (disjoint) balanced d-interval graphs is NP-complete for ev-
ery d ⩾ 2.
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Proof. Given a graph G, we prove that the construction in [148, Theorem 2] yields a
graph G′ that is balanced d-interval if and only if G is balanced (d− 1)-interval.

The graph G′ is constructed by creating three copies, Hi(v) with i ∈ {1, 2, 3}, of the
gadget Kd2+d−1,d+1 for every vertex v; and connecting v to a vertex of H2(v), and gadget
H2(v) to both H1(v) and H3(v) by adding just two edges, each incident to a different
gadget (see Figure 6.16 for an illustration). For a more detailed description, the reader
is referred to [148]. Let Sd2+d−1 and Sd+1 denote the two sides of the bipartition of the
graph Kd2+d−1,d+1. We denote the vertices of Sd2+d−1 by f i, i ∈ {1, . . . , d2 + d− 1}, and
the vertices of Sd+1 by vi, i ∈ {1, . . . , d + 1}. Given a d-interval representation of the
complete bipartite graph, we refer to the d-interval associated to vertex vi (resp., f i) as
(vi

1, . . . , v
i
d) (resp., (f i

1, . . . , f
i
d)).

We start by showing that the union of the three gadgets Hi(v), H2(v) and H3(v) has
a balanced d-interval representation. First, notice that each of the gadgets Hi(v) has
a balanced d-interval representation. Indeed, the complete bipartite graph Kd2+d−1,d+1
has a balanced d-interval representation where every vertex of Sd2+d−1 is represented by
d intervals of length 3 and every vertex of Sd+1 is represented by d intervals of length
4(d− 1) + 3. To construct it, place the intervals of Sd+1 in a line, leaving a space of one
in between them, in the following order: v1

1, v
2
1, . . . , v

d
1 , v

1
2, v

2
2, . . . , v

1
d, . . . , v

d+1
d . Then, in

each of the holes of size one between two contiguous intervals, place an interval associated
to a vertex of Sd2+d−1. More precisely, place f1

1 so that it intersects one unit of interval
v1

1 and one unit of interval v2
1, and then continue placing the intervals f2

1 , . . . , f
d2+d−1
1

in order, one in each of the holes.
Now, the d-interval associated to a vertex of Sd+1 has intersected at least 2d − 1

intervals, each associated to a different vertex of Sd2+d−1 (that is, 2d − 1 d-intervals).
It still needs to intersect d2 + d − 1 − (2d − 1) = d − 1 d-intervals. Thus, it suffices to
consider that the intervals associated to vertices of Sd2+d−1 have length 4(d − 1) + 3.
That way, they can contain d − 1 disjoint intervals of length 3 (with a space of one in
between contiguous intervals), and they can also intersect by one unit an interval in
each of their extremes. This implies that the whole gadget (the union of H2(v), H1(v)
and H3(v)) also has a balanced representation, as the edges between them are realized
overlapping the intervals at the extremes of the Hi(v)’s.

Now, we want to show that if the input graph G is balanced d − 1 interval, the
construction leads to a balanced d-interval graph. We will show that, for every vertex v
of the original graph, we can represent the intersections between v and the gadget using
a single interval associated to v, and given the length of this interval, the representation
of the gadget can be modified so that it remains balanced. In the construction, vertex v
and H2(v) are connected by a single edge, say (v, vi). West and Shmoys proved that this
edge must be represented by adding an interval associated to v contained in a portion
of the interval associated to vi. Let l(v) be the length of the intervals that comprise
the (d − 1)-interval associated to v in the balanced (d − 1)-interval representation of
G. Then, it suffices to increase the length of the intervals associated to its neighbor in
H2(v), vi, by l(v) + 2. This yields a balanced d-interval representation of the union of
the gadget with vertex v. Doing this for every vertex of G leads to a balanced d-interval
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H1(v)

v

H2(v)

v

H3(v)

v

Figure 6.16.: Illustration of the gadget added to every vertex v of the original graph for
the case d = 3. K11,4’s are represented schematically: an edge stopping at
the border of an ellipse indicates that it is incident to every vertex within
the ellipse.

representation of G.
Conversely, if the constructed graph G′ has a balanced d-interval representation, then

the d − 1 intervals used to represent the adjacencies in G must have the same length.
Since the adjacencies of every vertex with the gadget added are represented by a single
disjoint interval, disregarding this interval and the d-intervals representing the gadgets,
we obtain a balanced (d− 1)-interval representation of G.

To show that the result holds also for disjoint balanced d-interval graphs, it suffices to
observe that in any representation of G′, the new interval added associated to a vertex
v is disjoint from the other d − 1 intervals, as it is properly contained in an interval
associated to one of the vertices of the gadget added.

The results of this chapter represent a significant step towards settling the landscape
of the complexity of the recognition of the different subclasses of d-interval graphs.
However, some questions still remain open. Since we have shown that recognizing depth
4 unit d-interval graphs is NP-complete and it is known that the recognition of depth 2
unit d-interval graphs is polynomial-time solvable [96], it still remains to delineate the
exact boundary, i.e., study the case of depth 3 unit d-interval graphs. On the other
hand, the complexity of recognizing (x, . . . , x) d-interval graphs for 2 < x < 11 is also
unknown (for x = 1, the class of graphs obtained is exactly line graphs, which can be
recognized in polynomial time). Another interesting direction for future research is to
study the fixed parameter tractability of the problem, parameterized by the number of
vertices that are allowed to be represented by a 2-interval, and its approximability.
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7. Proper interval completion on interval
graphs

In this chapter, we study the problem of proper interval completion on interval graphs,
which is a graph modification problem that consists on adding edges in order to make a
given interval graph proper. We start with a brief overview of related modification prob-
lems in Section 7.1, and then present our results. In Section 7.2, we give a polynomial-
time algorithm to solve the aforementioned problem on interval graphs that have a
universal vertex and in some other specific cases. The algorithm is based on dynamic
programming on the MPQ-tree of the input interval graph, and can be generalized to
obtain an algorithm for arbitrary interval graphs, with the drawback of becoming ex-
ponential on the number of non-disjoint centers of maximal claws. In Section 7.3, we
present this generalization.

7.1. Completion problems
Graph modification problems study how to transform an input graph into a graph that
satisfies a particular property. They are fundamental in graph theory, and they have a
large number of applications in different disciplines such as machine learning, molecular
biology or numerical algebra [76, 134]. The operations allowed in order to transform the
input graph can be diverse, but the most well-studied operations are arguably adding
or/and deleting edges or/and vertices.

Here, we focus on the operation of adding edges. Such graph modification problems
are referred to as edge completion problems. More precisely, given a property Π, a
Π-completion of the graph G = (V,E) is a supergraph H = (V,E ∪ F ) such that H
satisfies property Π and E ∩ F = ∅. The edges in F are called fill edges. A completion
H = (V,E ∪ F ) is minimum if for every supergraph H ′ = (V,E ∪ F ′) that satisfies Π,
it holds that |F | ⩽ |F ′|. The problem of computing such a completion is called the
minimum Π-completion problem and its associated decision version consists on deciding
whether there exists a Π-completion of G with at most k fill edges.

Often, the property Π that we want to satisfy is that the graph belongs to a given class
of graphs. Among such completion problems, three well-known examples are chordal
completion, interval completion and proper interval completion, which consist on de-
termining whether there exists a completion with at most k fill edges that is chordal,
interval or proper interval, respectively. These problems arise naturally in different
domains: among other applications, chordal completion has been well studied due to
its importance in sparse matrix computation [134], while interval and proper interval
completion find applications in molecular biology [76].
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Trivially perfect
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Figure 7.1.: Summary of the complexity of proper interval completion on different sub-
classes of chordal graphs. A rectangle in red indicates that the problem is
NP-hard in this class, while a green rectangle means that it is polynomial.
A white rectangle indicates that the complexity is unknown. In bold, the
results proven here.

In particular, one of the most well known applications of proper interval completion
is physical mapping of DNA. Given a set of clones (contiguous intervals of the DNA
chain) and information on their pairwise overlap, the goal of this problem is to build
a map describing the relative position of the clones. Since this information is obtained
experimentally, there can be some errors, i.e., unidentified overlaps. If we model this as
a graph where clones are represented by vertices and overlaps by edges, the problem of
building a map assuming the fewest errors possible when all the clones have equal length
is equivalent to proper interval graph completion.

Chordal, interval and proper interval completion are all known to be NP-complete [150,
99, 76]. Furthermore, Dross et al. showed that proper interval completion remains
NP-complete when the input graph is a split graph, and becomes polynomial if it is
a threshold graph or a caterpillar [54]. Since the problem is hard on chordal graphs
(as it is hard on split graphs) and polynomial on some subclasses of interval graphs
(threshold and caterpillar), a very natural question to pose is whether it remains hard
when the input graph is an interval graph. The reminder of the chapter will be dedicated
to addressing this question. Figure 7.1 illustrates the complexity of proper interval
completion on different subclasses of chordal graphs.
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The hardness of the aforementioned completion problems, together with the fact that
optimal solutions can be found among inclusion-minimal completions, has also moti-
vated the study of minimal chordal, interval and proper interval completion, that is,
finding a completion such that the set of fill edges is minimal for inclusion, but not
necessarily minimum. As opposed to minimum completions, these three problems are
polynomial [135, 47, 129].

On the other hand, chordal, interval and proper interval completion have also been
studied from the perspective of parameterized complexity, parameterized by the number
k of fill edges. The parameterized complexity approach is specially relevant in practical
scenarios such as physical mapping of DNA, since usually the number of errors, which
corresponds to k, is relatively small. Kaplan, Shamir and Tarjan showed that chordal
completion and proper interval completion are both FPT parameterized by the number
of fill edges [97]. The fixed-parameter tractability of interval completion took longer to
be settled, and was finally proven by Villanger et al. [146]. Bliznets et al [18] presented
the first subexponential parameterized algorithm for proper interval completion. As ev-
ery FPT problem admits a kernel but not necessarily a polynomial kernel, the search for
polynomial kernels arised as an interesting path of research. When the target class Π is
hereditary and can be characterized by a finite set of forbidden induced subgraphs, Cai
showed that the corresponding graph modification problem is always FPT [32]. How-
ever, even in such cases, the problem might not admit a polynomial kernel [106]. Kaplan,
Shamir and Tarjan proved in their seminal paper that chordal completion has a polyno-
mial kernel [97]. Similarly, proper interval graph completion also admits a kernel with
O(k3) vertices [17], but the kernelization status of interval completion remains an open
question.

Here, we study Proper Interval Graph-completion (PIG-completion) on interval
graphs. Note that before, proper interval completion referred to the problem with no
restrictions on the input graph, but henceforth PIG-completion will always refer to the
completion problem on interval graphs. Let us recall the problem formally.

Instance: An interval graph G = (V,E).
Goal: A set of edges F such that:

• E ∩ F = ∅.

• H = (V,E ∪ F ) is a proper interval graph.

• The cardinality of F is minimum among all such sets.

Proper Interval Graph-completion

The completion H will sometimes be called a solution, while the number of fill edges,
|F |, will be referred to as the cost of the solution. Before presenting our results, let us go
over some notation. Recall that in Section 3.2, we defined the MPQ-tree of an interval
graph G as the tree obtained from the PQ-tree of G by assigning to a P-node P the
(possibly empty) set of vertices of G contained in all the maximal cliques represented by
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the subtree rooted at P but which do not appear in any other cliques; and assigning to
a Q-node Q with children t1, . . . , tk ordered from left to right (recall that this ordering is
unique up to reversal, so we fix one of the two possible orderings arbitrarily), a section Si

for every ti, i ∈ {1, . . . , k}. Section Si contains the set of vertices that are contained in
all maximal cliques of the subtree rooted at ti and in at least one other subtree rooted at
some tj (j ̸= i), but which do not appear in any clique belonging to some other subtree
that is not below Q. Since a given vertex can only appear in consecutive sections, it
suffices to represent it in the leftmost and rightmost sections in which it appears. We
denote the occurrence of vertex u1 in the leftmost section by ul

1, and in the rightmost
section by ur

1.
Furthermore, recall that given an MPQ-tree T , we refer to the vertices of T as nodes

and we let V (T ) stand for the set of nodes of T , while the vertices of G are referred to
as vertices. We denote by Tv the subtree of T rooted at node v, and we define Tv∗ as
the subtree obtained from Tv by replacing node v with a node containing the empty set
(that is, we consider Tv without the vertices contained in node v). Given a set of sections
S = {Si, . . . , Sj} of a Q-node with children t1, . . . , ti, . . . , tj , . . . , tk, we also define the
subtree rooted at S, TS , as a Q-node with sections Si until Sj and children Tti until Ttj

(in the same order). Given a subtree Tv, we denote the subgraph of G induced by the
vertices contained in the nodes of Tv as G[V (Tv)].

The size of node v, denoted by |v|, is defined as the number of vertices contained in
node v; while |Tv| stands for the total number of vertices contained in the nodes of Tv,
i.e., ∑

x∈V (Tv) |x|; and |Tv∗ |, for the number of vertices of Tv∗ , i.e., |Tv| − |v|. On the
other hand, given a set of nodes B := {b1, . . . , bk}, we denote by |TB| the sum of the
vertices in all subtrees, ∑

bi∈B |Tbi
|.

Finally, given a Q-node v with children t1, . . . , tk and with sections S1, . . . , Sk, in the
ordering given by the Q-node, we define a partial ordering on the vertices contained in
the nodes of Tv as follows. Given two vertices u1 and u2, we say that u1 ≺ u2 if one of
the following holds:

• u1 ∈ Tti and u2 ∈ Ttj with i < j.

• ur
1 ∈ Si and ul

2 ∈ Sj , with i < j.

• u1 ∈ Tti and ul
2 ∈ Sj with i < j.

• ur
1 ∈ Si and u2 ∈ Ttj with i < j.

7.2. A polynomial-time algorithm for interval graphs with a
universal vertex

In this section, we study the problem PIG on interval graphs that have a universal
vertex. The following observation yields light into the structure of a completion of such
graphs.
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Observation 7.1. Let G be an interval graph with a universal vertex and let H be a
PIG-completion of G. Then, the vertices of H can be partitioned into two sets C1 and
C2 such that each set induces a clique in H.

Proof. Suppose otherwise. Then, there must exist three pairwise non-adjacent vertices
x, y and z in H. But then, the universal vertex of G (which is also universal in H) would
be the center of an induced K1,3 in H with leaves x, y and z. Since the K1,3 is a forbidden
induced subgraph for proper interval graphs, we have reached a contradiction.

Given a PIG-completion H of G = (V,E), we say that it partitions V into (C1, C2) if
C1 and C2 form a partition of V and each set induces a clique in H. Note that C1 and
C2 are not necessarily unique. We denote by C1 the smallest of such sets. Conversely,
given a partition (C1, C2) of V , we refer to the graph H obtained by adding edges so
that each of C1 and C2 induce a clique as the completion associated to (C1, C2), and we
say that the partition (C1, C2) yields completion H.

However, note that not every partition yields a valid PIG-completion. Indeed, notice
that Observation 7.1 also holds when the input graph is restricted to the class of threshold
graphs [54], but unlike for threshold graphs, PIG-completion on interval graphs is not
equivalent to minimum co-bipartite completion (that is, the problem of adding as few
edges as possible in order to make the graph co-bipartite). This was already shown
by Dross et al., who provided a quasi-threshold graph where a minimum co-bipartite
completion returns a graph with an induced C4, and so it is not a proper interval
completion (see Figure 2 of [54]). Since the class of quasi-threshold graphs is a proper
subclass of the class of interval graphs with a universal vertex, minimum co-bipartite
completion is also not equivalent to minimum proper interval completion on interval
graphs with a universal vertex.

Thus, in our setting, PIG-completion is a special case of co-bipartite completion
where we also need to forbid cycles of length greater than three (note that none of
the other induced fobidden subgraphs of proper interval graphs can be present if we
have a completion to co-bipartite). In the following, we prove a necessary and sufficient
condition to obtain a valid partition of the vertices (that is, a partition that yields a PIG-
completion). This condition gives enough structure to develop a dynamic programming
algorithm on the MPQ-tree of the input graph.

Lemma 7.1. Let G = (V,E) be an interval graph with a universal vertex and let T be its
associated MPQ-tree. Let (C1, C2) be a partition of V . Let w be an arbitrary P-node of T
and let b1, . . . , bk be the children of w and TB := {Tb1 , . . . , Tbk

} the set of subtrees rooted
at each of the children. Then, partition (C1, C2) yields a completion without induced
cycles of length greater than 3 if and only if the following three conditions are satisfied:

• For every P-node w, there exists at most one subtree in the set TB that contains a
pair of vertices v1, v2 such that v1 belongs to C1 and v2 to C2.

• For every Q-node q, there do not exist two sections Si and Sj with children ti and
tj such that both children are non-empty and Tti contains a pair of vertices v1, v2
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Figure 7.2.: If a node w has two children bi and bj such that Tbi
and Tbj

both contain
a pair of vertices with one vertex in C1 and the other in C2, the partition
yields a completion with an induced C4. A node in red indicates that the
vertex contained inside belongs to C1, while a node in blue indicates that it
belongs to C2. To the right of the MPQ-tree we depict the induced C4 in
the completion: full edges represent edges already present in G while dashed
edges represent fill edges.

with v1 ∈ C1 and v2 ∈ C2, while subtree Ttj contains a pair of vertices u1, u2 with
u1 ∈ C1 and u2 ∈ C2.

• For every Q-node q, there do not exist two sections Si and Sj such that the subtree
TSi contains a pair of vertices v1, v2 with v1 ∈ C1 and v2 ∈ C2 and the subtree
TSj contains a pair of vertices u1, u2 with u1 ∈ C1 and u2 ∈ C2, with v1 ≺ u2 and
v2 ≺ u1. Notice that if neither vertex is contained in a section, this condition is
equivalent to the second one.

Proof. Let us first prove that the conditions are necessary. Towards a contradiction,
assume the first condition does not hold. Fix a P-node w and let b1 and b2 be two children
of Tw such that both Tb1 and Tb2 contain a pair of vertices satisfying the condition that
one vertex is in C1 and the other in C2. Note that the root of subtree Tb1 is not empty
(that is, it contains at least one vertex) because it is a child of a P-node. Thus, it is clear
that there is either one node of Tb1 that contains a vertex u ∈ C1 and a vertex v ∈ C2
or there is a pair of nodes in Tb1 such that one is the ancestor of the other and one of
the nodes contains a vertex u ∈ C1 and the other contains a vertex v ∈ C2 (otherwise,
every vertex contained in node b1 would be in the same side of the partition, say C1,
and every other vertex of Tb1 would be contained in a node which is a descendant of b1,
so it would also be in C1). In both cases, we have that the vertices u and v are adjacent
in the graph G. By the same reasoning, there exist two vertices u′ ∈ C1 and v′ ∈ C2
contained in the nodes of Tb2 that are adjacent in G.

Now, by the definition of MPQ-tree, there cannot exist an edge in the graph G between
a vertex contained in a node of the subtree Tb1 and a vertex contained in a node of Tb2 .
Thus, since u and v′ (resp., v and u′) are each in a different subtree and belong to different
sides of the partition, they will not be adjacent in the PIG-completion associated to
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partition (C1, C2). On the other hand, since u and u′ (resp., v and v′) are in the same
side of the partition, they will be adjacent in the PIG-completion. Therefore, in the
completion, we will only have the edges (u, v) and (u′, v′) of G plus the added edges
(u, u′) and (v, v′). But then, the set of vertices {u, v, v′, u′} forms an induced cycle
of length four, which contradicts the fact that the solution is a proper interval graph
(see Figure 7.2).

The proof that the second condition is necessary is analogous.
Next, assume that the third condition doesn’t hold. Without loss of generality (by

symmetry), assume that v1 is in Si. Then, edge (v1, v2) is present in graph G. On the
other hand, if u1 and u2 are not adjacent in G, then by the same argument as before,
there must exist two vertices u′

1 ∈ C1 and u′
2 ∈ C2 contained in the subtree rooted at the

child of Sj . Furthermore, these two vertices also satisfy the property that v1 ≺ u′
2 and

v2 ≺ u′
1, which means that edges (v1, u

′
2) and (v2, u

′
1) are not present in G. But then, in

the completion we only have edges (v1, v2), (v2, u
′
2), (u′

1, u
′
2), (v1, u

′
1), which means that

there is an induced C4. Note that if u1 and u2 were already adjacent in G, we replace
u′

1 and u′
2 by them.

To prove the converse direction, assume that the completion contains an induced cycle
of length greater than three. First of all, it is clear that the completion associated to
partition (C1, C2) cannot contain an induced cycle of length greater than four, since it
must admit a partition of the vertex set into two cliques. Thus, suppose that there exists
a C4 induced by vertices v1, v2, v3 and v4 with edges (v1, v2), (v2, v3), (v3, v4), (v4, v1), and
suppose that v1 and v2 are in C1 and v3 and v4 are in C2, w.l.o.g.. Since v2 and v3 are
adjacent in the completion and in different sides of the partition, they must have been
adjacent in G, which implies that they are both in the same node of the MPQ-tree, or
one is in a node that is an ancestor of the other. The same holds for v1 and v4. On the
other hand, the pair v1 and v3 and the pair v2 and v4 are not adjacent in the completion,
which means that they were also not adjacent in G. Since v2 and v3 are adjacent in G,
then they are either on the same node or in nodes that are in an ancestor/descendant
relationship. But then, in G, v1 cannot be in a node that is an ancestor of v2 (as otherwise
the edge (v1, v3) would also be present in G), nor in a node which is a descendant of the
node that contains v2 (as otherwise edge (v2, v4) would be present in G). Thus, there
are two possibilities:

• There exists a node of the MPQ-tree with two children u and w such that v1 and
v4 are contained in Tu, while v2 and v3 are contained in Tw (violating the first or
the second condition).

• There exists a section Si such that TSi contains v1 and v4 and a section Sj such
that TSj contains v2 or v3, and it holds that v1 ≺ v3 and v4 ≺ v2, or the other way
around (violating the third condition).

This analysis concludes the proof.

The previous lemma gives the key of the dynamic programming algorithm that we
will devise: for each node v of the MPQ-tree of the input graph, we will “guess” the
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subtree that can be split (that is, have vertices in both sides of the partition associated
to the completion). Then, for every r ∈ {0, . . . , ⌊|Tv|/2⌋+ 1}, we compute the minimum
cost of a completion associated to a partition having r vertices in the smallest set when
we restrict the input to the subgraph of G induced by the vertices contained in Tv.

Algorithm Let G be an interval graph with a universal vertex. Given the MPQ-tree T
of G, we compute the optimal cost of a PIG-completion of G in a bottom-up fashion,
by solving a subproblem for each node. In the following, we write [k] to denote the set
of integers {1, . . . , k} and we let G[V (Tv)] be the subgraph of G induced by the vertices
contained in subtree Tv.

We consider the following family of subproblems: for every node v ∈ V (T ) and every
r ∈ [⌊|Tv|/2⌋+ 1], we define:

Mv,r = min{|F | : F is a set of fill edges of G[V (Tv)] that yields a partition
(C1, C2) with |C1| = r}

Then, the completion of G will be given by the minimum over all the values of r of
Mroot,r, where root is the root of T . In the following, we describe how to compute these
subproblems in detail.

Base case: leaves. For every leaf v of T ,

Mv,r =
{

0 r ⩽ |v|,
+∞ otherwise.

This follows because the vertices of node v all form a clique (by definition of MPQ-tree),
and so in any solution that partitions the vertices of node v into two cliques, the cost
of the solution is zero. On the other hand, having a partition where the smallest clique
has size r is not feasible if we are considering a subgraph with less than r vertices.
Unfeasibility is represented by the value +∞.

Step for P-nodes. Let v be a P-node with k + 1 children. For every child u of v, we
denote its siblings by b1, . . . , bk, and we define the set Bi := {u, b1, . . . , bi} for every
i ∈ [k] (with B0 := {u}). For every child u and every r ∈ [⌊|T ∗

v |/2⌋ + 1], we define the
following auxiliary subproblem:

Wu,i,r = min{|F | : F is a set of fill edges of G[V (TBi)] that yields a partition
(C1, C2) with |C1| = r and where only subtree Tu is split }

The high level idea is that given a P-node, we will guess which of the children can be
split into the two cliques (unique by Lemma 7.1). Recall that we say that a subtree Tw

is split into the two cliques if there exists a pair of vertices u, v contained in the nodes
of Tw with u ∈ C1 and v ∈ C2.
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• Base case. The base case of these subproblems is when i = 0. In that case, we
set

Wu,0,r := Mu,r

Indeed, Wu,0,r represents the cost of a solution of G[Tu] that yields a partition with
|C1| = r, which is exactly what we compute in the original subproblem.

• Step. For every 1 ⩽ i ⩽ k, we compute Wu,i,r recursively. That is, given the
costs of the completions of G[V (TBi−1)] which split only subtree Tu (recall that we
have one cost per r), we compute the cost when we add the vertices contained in
subtree Tbi

. To do so, we determine the optimal way of adding Tbi
to the existing

solution by computing the minimum between the cost of adding it to the smallest
clique and to the largest one.

– If Tbi
is added to the largest clique and |TBi−1 | − r ⩾ 0, then the cost is

Wu,i−1,r + (|TBi−1 | − r) · |Tbi
| + Mbi,0. That is, we take the cost of having

r vertices in the smallest clique (computed in the previous iteration), and
we add the cost of adding the new subtree to the largest clique. Since in
iteration i − 1 we have added all the subtrees in the set Bi−1, this cost is
exactly (|TBi−1 |− r) · |Tbi

| plus the cost of making Tbi
a clique, which is Mbi,0.

If |TBi−1 | − r < 0, the cost is set to infinity, since adding bi to the largest
clique would result in the smallest clique having size less than r, and so there
is no feasible solution for the value of r considered.

– If Tbi
is added to the smallest clique and r − |Tbi

| ⩾ 0, then the cost is
Wu,i−1,r−|Tbi

| + (r − |Tbi
|) · |Tbi

| + Mbi,0. That is, we consider the cost of
a solution with the smallest clique having size r − |Tbi

| (computed in the
previous iteration) and we add the cost of adding all the edges between the
new subtree considered, Tbi

, and the r− |Tbi
| vertices already in the smallest

clique. On the other hand, if r − |Tbi
| < 0, the cost remains infinity, as there

is no feasible solution (again, we cannot place all the vertices of the subtree
in the smallest clique under the constraint that the smallest clique has size
r).

Then, for every i ∈ [k] and for every r, we set Wu,i,r to be the minimum between
these two costs or +∞ if none of them exist for the value of r considered. That is,
for every i ∈ [k],

Wu,i,r = min{Wu,i−1,r + (|TBi−1 | − r) · |Tbi
|+Mbi,0,

Wu,i−1,r−|Tbi
| + (r − |Tbi

|) · |Tbi
|+Mbi,0}

We can now solve our original subproblem as follows:

Mv∗,r = min{Wu,k,r | u child of v}
Mv,r = min{Mv∗,r−i | i ∈ [|v|]}
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In other words, we first compute the value Mv∗,r, which is defined as the minimum
over every child u of v of Wu,k,r, and corresponds to the optimal cost of a completion
of G[V (Tv∗)] that yields a partition with |C1| = r. Once we have the optimal cost of a
solution for the subtree Tv∗, we incorporate the vertices in node v to the solution and
get Mv,r. Since these vertices are adjacent to every other vertex in the subtree, adding
them to either clique will have a cost of zero. The correctness of the step for P-nodes
follows from the next lemma.

Lemma 7.2. Let v be a P-node and let u be the child of v such that Tu is allowed to
split. Let b1, . . . , bk be the siblings of u. Then, the values Mv∗,r give the optimal cost of
a completion of Tv∗ where the smallest clique has size r.

Proof. The solution is feasible because it satisfies Lemma 7.1. Now suppose we have an
optimal solution. Without loss of generality, suppose that in the solution, all the vertices
of the subtrees Tb1 , . . . , Tbl

, for some 1 ⩽ l ⩽ k are placed in the clique C1 and the rest
of the vertices are placed in the clique C2. Then, the total cost of this solution, Wu,k,r,
is equal to

i=k∑
i=1

Mbi,0 +W
u,0,r−

∑i=l

i=1 |Tbi
| +

i=l∑
i=1

(r −
j=l∑
j=i

|Tbj
|)|Tbi

|+
i=k∑

i=l+1
|Tbi
|(

j=k∑
j=i+1

|Tbj
|)

The expression of the total cost, obtained by summing the previously described costs
and substituting at each step the value of Wu,i−1,r by the cost computed in the previous
iteration, does not depend on the order in which we add the subtrees. Finally, since at
each iteration we compute the cost of having r vertices in the smallest clique for every
r, the value obtained at the end is the minimum cost.

Step for Q-nodes. Let v be a Q-node with children t1, . . . , tk and with sections S1, . . . , Sk,
ordered from left to right in the ordering given by the Q-node. Since the order of the
subtrees is fixed up to reversal, in a Q-node we do not need to guess the subtree that
is allowed to split, as we can greedily compute the cost of having exactly r vertices in
the smallest clique. Indeed, to do so, we will go through an intermediate step, where
instead of C1 and C2, we consider a left-clique and a right-clique (again, note that in
some sense, this notion of left and right is artificial, as the Q-node gives a unique order
up to reversal), and we compute the costs of having r vertices in the left clique. That is,
for the Q-node v, we define an auxiliary family of subproblems, where for every r ∈ [|Tv|],
we introduce:

Wr = min{|F | : F is a set of fill edges of G[V (Tv)] that yields a partition
with the left clique having size r}

To compute these costs, we first introduce a left cost and a right cost for each vertex,
which represent the number of vertices strictly to their left/right. These costs are mono-
tone, in the sense that if we have a pair of vertices v1 and v2 with v1 ≺ v2, then the left
cost of v1 will be smaller than the left-cost of v2, and the right cost of v2 will be greater
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than that of v1. Monotonicity will guarantee that we can compute the optimal cost of
having r vertices in the left clique in a greedy-like manner without creating forbidden
induced subgraphs. Formally, for every subtree Tti rooted at a child of the Q-node v, we
compute the left cost (resp. right cost) of Tti as follows:

• The left cost of a subtree Tti , l(Tti), is defined as the sum over all subtrees Ttj with
j < i of the number of vertices of Ttj plus the sum over all the sections Sj with
j < i of all the vertices that are contained in Sj but not in Si. That is,

l(Tti) :=
∑
j<i

|Ttj |+
∑

xr∈Sj

1

 (7.1)

• Similarly, the right cost of a subtree Tti , r(Tti) is the sum over all subtrees Ttj with
j > i of the number of vertices of Ttj plus the sum over all the sections Sj with
j > i of all the vertices contained in Sj but not in Si. That is,

r(Tti) :=
∑
j>i

|Ttj |+
∑

xl∈Sj

1

 (7.2)

The left (resp. right) cost of a vertex q contained in a section of the Q-node v is defined
similarly:

• To define the left cost of a vertex q, we let Si be the section containing ql. Then,
the cost l(q) is equivalent to the left cost of subtree Ti:

l(q) := l(Tti), for i such that ql ∈ Si (7.3)

• Similarly, to compute the right cost of q, we let Si be the section containing qr and
let r(q) = r(Ti).

r(q) := r(Tti), for i such that qr ∈ Si (7.4)

The high level idea to compute Wr is the following. We start with all the vertices in
the right clique, and then, we compute Wr by iteratively swapping the r vertices with
the smallest “swapping cost”. The cost of swapping a vertex q of a section is equal to
l(q) − r(q), while the cost of swapping a vertex x of a subtree Tti assuming that we
have already swapped k vertices of Tti is equal to Mti,k+1 −Mti,k + l(Tti) − r(Tti) for
0 ⩽ k ⩽ |Tti | − 1 (in this case, we also need to account for the cost of splitting Tti into
two cliques, since only k + 1 of its vertices are in the left clique). Note that the cost
of swapping can be negative. Formally, we define a function update(x, k) which returns
either the cost of swapping k+1 vertices of subtree x given that we have already swapped
k, or the cost of swapping vertex x. If a vertex of a section or all the vertices of a subtree
have already been swapped, we set this value to +∞ to ensure that we never choose it
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again:

update(x, k) :=


l(x)− r(x) if x is a vertex and k = 0,
Mx,k+1 −Mx,k

+l(x)− r(x) if x is a subtree and 0 ⩽ k ⩽ |x| − 1,
+∞ otherwise.

(7.5)

Additionally, for every r and every x in the union of the sets of subtrees and vertices
of a section, we define:

cr,x := cost of swapping a vertex of x given that the left clique has size r
ur,x := number of vertices of x swapped given that the left clique has size r

Note that when x is a vertex, vertex of x refers simply to x, and then the only possible
value of ur,x is 1. Now, we compute Wr as follows:

• Base case. If r = 0,
W0 = ∑

iMti,0 + r(Tti) · |Tti |+
∑

xl∈Si
r(x)

c0,x = update(x, 0), ∀x
u0,x = 0, ∀x

(7.6)

Indeed, when we consider a partition where every vertex is in the clique of the right,
for every subtree Tti we need to account for the cost of having all the vertices of
Tti in the same clique plus the cost of adding all the edges between these vertices
and every vertex to its right; and for every vertex in a section, we have a cost of
r(qi).

• Step. If r > 0, 
x = arg minx cr−1,x

Wr = Wr−1 + cr−1,x, r > 0
ur,x = ur−1,x + 1 and ur,y = ur−1,y, ∀y ̸= x

cr,x = update(x, ur,x) and cr,y = cr−1,y, ∀y ̸= x

(7.7)

That is, we iteratively swap the vertex with smallest cost: we choose the vertex or
subtree x with smallest cost, add it to the left-clique and update the cost cr,x of
swapping a vertex of x and the number ur,x of vertices of x swapped.

The correctness of this step follows from the next lemma.

Lemma 7.3. For every r, the solution computed is feasible and optimal.

Proof. We first prove that the costs are monotone, i.e., given two vertices u1 ≺ u2 in
the partial order defined before, the cost of swapping u1 is always smaller than the cost
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of swapping u2. This ensures that when we choose to swap a vertex x, we have already
swapped every vertex strictly to its left (i.e., every vertex y such that y ≺ x), and so
Lemma 7.1 is satisfied. Let x, y be two vertices such that y ≺ x. we distinguish different
cases:

• Vertex y belongs to a section Si, while x belongs to a section Sj with i < j.
Then, by the definitions of the left and right costs, we have that l(y) < l(x) and
r(y) > r(x), so −r(x) + l(x) > −r(y) + l(y), i.e., the cost of swapping x is strictly
greater than the cost of swapping y.

• Vertex y belongs to Tti and x belongs to Ttj , with i < j. Then the cost of swapping
y is Mti,k −Mti,k−1 + l(Tti)− r(Tti). But l(Ttj ) > l(Tti) +Mti,r+1 −Mti,r for any
r, as Mti,r+1 −Mti,r is upper bounded by |Tti |. On the other hand, by definition,
r(tj) > r(ti), so combining the inequalities we obtain that the cost of swapping x
is strictly greater than the cost of swapping y.

The cases when one of the vertices is in a subtree and the other is in a section are
analogous. The optimality follows because the cost of swapping a vertex is constant
(note that when we update the costs of the subtrees, it is actually the cost of a different
vertex in the subtree).

The solution of our original subproblem Mv,r (i.e., the cost of having r vertices in
the smallest clique) is given by the minimum between the cost of having r vertices in
the left clique and the cost of having r vertices in the right clique. That is, for every
r ∈

[⌊
|Tv |

2

⌋
+ 1

]
,

Mv,r = min{Wr,W|Tv |−r}

Finally, as we anticipated before, the final solution of the problem is given by

min
r∈[|Troot|]

Mroot,r

To sum up, we write the algorithm in a compact manner:
pt

Algorithm

For every node v of the MPQ-tree and every value r ∈ [⌊|Tv|/2⌋+ 1], we define:

Mv,r = min{|F | : F is a set of fill edges of G[V (Tv)] that yields a partition
of the subgraph into two cliques with the smallest one having size r}

• Base case: If v is a leaf,

Mv,r =
{

0 r ⩽ |v|
+∞ otherwise
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• Step if v is a P-node. Let v be a P-node with k + 1 children. For every
i ∈ [k], every r ∈ [⌊|T ∗

v |/2⌋ + 1], and every children u of of v with siblings
b1 . . . , bk, we define an auxiliary subproblems:

Wu,i,r =


Mu,r if i = 0,
min

{
Wu,i−1,r + (|TBi−1 | − r) · |Tbi

|+Mbi,0,

Wu,i−1,r−|Tbi
| + (r − |Tbi

|) · |Tbi
|+Mbi,0

}
if i > 0.

The recurrence for the original subproblem is then given by :

Mv∗,r = min{Wu,k,r | u child of v}
Mv,r = min{Mv∗,r−i | i ∈ [|v|]}

• Step if v is a Q-node. Let v be a Q-node with children t1, . . . , tm and with
sections S1, . . . , Sm. For every r in [|Tv|], we define an auxiliary subproblem:

– Base case: 
W0 = ∑

iMti,0 + r(Tti) · |Tti |+
∑

xl∈Si
r(x)

c0,x = update(x, 0), ∀x
u0,x = 0∀x

– Step: 
x = arg minx cr−1,x

Wr = Wr−1 + cr−1,x, r > 0
ur,x = ur−1,x + 1 and ur,y = ur−1,y, ∀y ̸= x

cr,x = update(x, ur,x) and cr,y = cr−1,y, ∀y ̸= x

Then, the recurrence for the original subproblem is given by:

Mv,r = min{Wr,W|Tv |−r}

This concludes the presentation of the algorithm and the proof of correctness, which
implies the following theorem.

Theorem 7.1. Let G be an interval graph with a universal vertex. Then, there exists
an O(n3) algorithm that computes the PIG-completion of G.

The complexity claimed in the statement of the theorem follows because for every
node v of the tree, in the worst case, to compute the array Mv,r we need to iterate over
the children of v twice. Since we need to compute Mv,r for every r and both r and
the number of children of v are upper-bounded by n = |V (G)|, the complexity of the
algorithm is O(n3).
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1, 21 2, 3 3

∅ ∅

4 5

6

7 8 9

∅ ∅

Figure 7.3.: MPQ-tree of an interval graph. Each section of a Q-node is represented by a
blue square, P-nodes are represented by red circles and leaves are represented
by green circles. Vertices 1 and 3 are disjoint maximal centers, while vertex
6 is a center but not a maximal one. For an example of two intersecting
centers, the reader is referred to Figure 7.5.

Corollary 7.1. PIG-completion is polynomial-time solvable when the input graph is
restricted to the class of trivially perfect graphs.

Proof. Any connected trivially perfect graph contains a universal vertex, so we can apply
the previous algorithm to every connected component.

In the remainder of this section, we extend the previous positive result to a more
general setting, namely the case of interval graphs that do not contain intersecting
centers of claws. Let us formally define what we mean by intersecting centers. In the
following, given an interval graph G, we say that a vertex v is a maximal center if it is
a center of a claw and v is contained in some node w of the MPQ-tree of G such that
every section or P-node which is an ascendant of w contains the empty set.

Definition 7.1. Let u and v be two vertices of G that are maximal centers and let T be
the MPQ-tree of G. We say that the centers u and v are disjoint if one of the following
holds:

• The subtrees of T rooted at the nodes that contain vertices u and v are disjoint
(they do not share any nodes).

• Vertices u and v belong to the same Q-node but there does not exist a section that
contains both vertices simultaneously (equivalently, ur ≺ vl or vr ≺ ul).

Figure 7.3 illustrates the MPQ-tree of an interval graph with two disjoint centers (the
associated interval representation is given in Figure 7.4).

Corollary 7.2. Let G = (V,E) be an interval graph and let T be its associated MPQ-
tree. Suppose that for every pair of vertices u, v ∈ V such that u and v are both maximal
centers in G, centers u and v are disjoint. Then, we can compute a PIG-completion of
G in time O(n3).
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1

2

3

4 5 6

7 8 9

Figure 7.4.: Interval representation of the graph represented by the MPQ-tree on Fig-
ure 7.3.

Proof. Let u be a maximal center. If u is contained in a P-node p, we consider the subtree
rooted at p and apply the previous algorithm to Tp in order to obtain a completion of
the graph induced by the vertices contained in Tp, G[V (Tp)]. Such a completion will
transform the neighborhood of u into the union of at most two cliques. Instead, if
u is contained in a Q-node q, we apply the algorithm to the subtree rooted at the
sections that contain u. For any vertex w, let us denote by Tn(w) the subtree rooted at
the node/sections that contain w. Following the previous procedure for every maximal
center, we obtain a PIG-completion of the graph G. To prove that it is optimal, it
suffices to see that for every pair of centers u and v, the set of vertices that are adjacent
to the two forms a (possibly empty) clique. Thus, a completion of G[V (Tn(u))] will
not contain any edge such that both endpoints are in the closed neighborhood of v.
That means that G[V (Tn(v))] remains unchanged after adding the fill edges necessary to
partition N(u) into two cliques.

Finally, we obtain a positive result for rigid interval graphs. An interval graph G is a
rigid interval graph if it has a unique clique tree and that tree is a path.

Corollary 7.3. PIG-completion is polynomial-time solvable on rigid interval graphs.

Proof. A rigid interval graph contains no P-nodes, in particular, it contains a single Q-
node at the root. Thus, we can apply the greedy step for Q-nodes to obtain an optimal
solution.

7.3. An algorithm for the general case
We have seen in the previous section how to extend the polynomial-time algorithm to
interval graphs such that their maximal centers are all pairwise disjoint. In this section,
we propose a variation of the algorithm, with the same flavor, that solves the problem
for interval graphs that contain non-disjoint centers. First, we analyse the case of split-
interval graphs, whose structure allows us to adapt the algorithm and still obtain a
polynomial runtime, and then extend the idea used for this case to design an exponential
algorithm that works for arbitrary interval graphs.

As a motivation, let us first give an explicit example of a graph that contains two
non-disjoint maximal centers where applying the algorithm in the proof of Corollary 7.2
fails. Let G be a graph whose MPQ-tree is composed of a Q-node with sections S1 =
1, S2 = {1, 2}, S3 = 2, with children q1, q2, q3, respectively. Let q1 be a Q-node with

118



7.3. An algorithm for the general case
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∅ ∅

{3, 4, 5, 6} {7, 8}
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Figure 7.5.: MPQ-tree of an interval graph with two intersecting centers: vertices 1 and
2.
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Figure 7.6.: Interval representation of the graph represented by the MPQ-tree on Fig-
ure 7.5.

two sections containing both of them the empty set and with two leaves as children, one
containing four vertices 3, 4, 5, 6, and another containing vertices 7, 8. Let q2 be a leaf
containing the empty set and let q3 be another Q-node with two sections containing the
empty set and with two leaves as children, one containing a single vertex 9, and the
other one comprised of two vertices 10, 11. The MPQ-tree of G is depicted in Figure 7.5,
and an interval representation of the graph is given in Figure 7.6.

Graph G contains two non-disjoint centers: vertices 1 and 2. Then, applying the
algorithm to the subtree rooted at S1 ∪ S2 (the sections that contain center 1) returns
as an optimal solution the edges (2, 7) and (2, 8), while applying it to the subtree rooted
at S2 ∪ S3 (the sections that contain center 2) returns as an optimal solution the edge
(1, 9). However, the union of these two solutions is not a valid completion, since vertex
1 is still the center of a K1,3. In order to have a PIG-completion, we would need to add
edges (9, 7) and (9, 8) on top of the edges already added. Instead, the reader can observe
that the global optimum is comprised of the set of edges {(2, 7), (2, 8), (9, 10), (9, 11)},
of size four instead of five. This example highlights why we need to treat the case of
non-disjoint centers differently.
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7.3.1. Split-interval graphs
In this subsection, we study PIG-completion on split-interval graphs. Recall that a
graph G = (C ∪ I, E) is a split graph if its vertex set can be partitioned into a set C of
pairwise adjacent vertices and a set I of pairwise non-adjacent vertices, and it is split-
interval if it is both a split graph and an interval graph. We will see that the structure
of split-interval graphs constraints the intersections between maximal centers, so we can
easily adapt the previous dynamic programming algorithm. Thus, let us first study the
structure of a completion of a split-interval graph.

Lemma 7.4. Let G = (C ∪ I, E) be a split-interval graph. Then, every vertex that is a
center of a claw belongs to C, and at most two vertices of C have private neighbors.

Proof. Let [v;u1, u2, u3] be a claw. Since G is split, vertex v cannot be in I, as this would
imply that u1, u2 and u3 would have to be in C, which is a contradiction because they
are not adjacent to each other. This implies that every vertex which is a center of a claw
belongs to C. To see that at most two vertices of C have private neighbors, the reader
can observe that otherwise there would be an induced net (formed by the three vertices
in the clique with private neighbors and the three private neighbors), which contradicts
the interval assumption.

Lemma 7.5. Let G = (C ∪ I, E) be a connected split-interval graph. Then, any PIG-
completion of G admits a partition of its vertices into three sets C1, C2 and C3 such that
each of them induce a clique in the completion.

Proof. Let G = (C∪I, E) be a split-interval graph that has k vertices which are maximal
centers. By Lemma 7.4, the k centers will belong to C, and at most two vertices in the
clique will have a private neighbor. If k = 1, the center constitutes a universal vertex
of the single connected component, so we already know by Observation 7.1 that any
completion admits a partition into two sets such that each induces a clique.

Otherwise, the MPQ-tree of G consists of a Q-node with sections S1, . . . , Sm containing
the k centers v1, . . . , vk. Sections S1 and Sm contain the vertices with a private neighbor.
Note that the two private neighbors cannot be adjacent to any vertex outside of C
(otherwise, these vertices cannot belong to C nor I, contradicting the assumption that
G is a split graph). In this case, in any valid completion, the neighborhood of each
individual center is partitioned into two cliques. Since the set C induces a clique, if the
neighborhood of the first center, v1, contains two independent vertices x and y, then one
of these vertices, say y, will also be adjacent to the last center, vn. Indeed, otherwise
vn, x and y would form a set of three independent vertices all adjacent to c1, which
contradicts the fact that we have a valid completion. Thus, the neighborhood of vn

cannot contain two non-adjacent vertices which are both not adjacent to y. Let z be a
vertex contained in N(vn) which is not adjacent to y.

Suppose, towards a contradiction, that there exist four pairwise non-adjacent vertices
in the completion of G. That, is, there exists a vertex w independent from x, y and z,
and adjacent to some center v2, . . . , vn−1. Since the closed neighborhood of every vi, for
i ∈ {2, . . . , n − 1}, is contained in the union of N(vi) ∩ N(v1) and N(vi) ∩ N(vn), this
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would mean that w is adjacent to one of v1 or vn. Therefore, we do not have a valid
completion, as one of v1 or vn is adjacent to three independent vertices.

The previous lemma, together with what we already know about the structure of
completions of subtrees rooted at a Q-node, implies that in order to find a completion
of a split-interval graph, it suffices to guess the sizes of the first two cliques. We will see
that we can do this in polynomial time. Let us first introduce some additional notation.
Given a Q-node with sections S1, . . . , Sm containing centers v1, . . . , vk, we denote by
TS(vi) the subtree rooted at the sections that contain vi, and we define ni = |TS(vi)|, and
ni,j = |TS(vi) ∩ TS(vj)|.

Theorem 7.2. Let G be a split-interval graph. Then, we can compute its PIG-completion
in polynomial-time.

Proof. Let G be a split-interval graph with k maximal centers. If k = 1, then the
center is a universal vertex of one connected component, while the rest of the connected
components are formed by isolated vertices. Thus, we can compute a completion in
polynomial time using the algorithm from the previous section. Otherwise, if k > 1, we
know that the root of G is a Q-node with sections S1, . . . , Sm containing all the centers
v1, . . . , vk, and by Lemma 7.5, any completion of G partitions the vertex set into three
cliques. Since the root of the MPQ-tree of G is a Q-node, we consider that the cliques
are ordered from left to right, and we denote them by C1, C2 and C3, from left to right.

We proceed as follows. For every r ∈ [|V (G)|] and every s ∈ [|V (G)|], we define the
subproblem:

Wr,s := min{|F | : F is a set of fill edges of G[V (Tv)] that yields a partition(C1, C2, C3)
with |C1| = r, |C2| = s}

Note that not every pair of values of r and s is feasible, for starters, we need r + s ⩽
|V (G)|. We will filter the feasible pairs in a later step. The high-level idea of the
algorithm is similar to that of the original algorithm: we start with every vertex in
the third clique, C3, and then swap r vertices to the first clique and s to the second
clique. To compute the “swapping costs”, we need to compute the left and right costs
of every subtree/vertex as in the step for Q-nodes of the orginal algorithm, that is, as in
Equations 7.1, 7.2, 7.3 and 7.4. Then, the cost of swapping a vertex to the first clique
is given by the same function as in the original algorithm, Equation (7.5), whereas to
compute the cost of swapping a vertex to the second clique, we need to update the left
costs of every vertex/subtree that remains in C3, since now we do not need to account
for vertices which are already placed in the first clique. We define:

c1
r,x := cost of swapping a vertex of x to the first clique when |C1| = r

c2
r,s,x := cost of swapping a vertex of x to the second clique when |C1| = r, |C2| = s

ur,s,x := number of vertices of x in C1 or C2 when |C1| = r, |C2| = s
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• Initialization. For every child ti of a section Si, with i ∈ [m], and every r ∈[⌊ |Tti |
2

⌋
+ 1

]
we precompute the values Mti,r as in the original algorithm. Indeed,

G[V (TSi)] contains a universal vertex for every i, since no section Si is empty
(otherwise, every center to the left of the empty section would be disjoint from
every center to the right of the empty section), so the vertices of subtree Tti will
be split into at most two cliques. Thus, it suffices to know the cost of a completion
that yields a partition with the smallest clique having r vertices.

• Base case. When r = 0 and s = 0:
W0,0 = ∑

i

(
Mti,0 + r(Tti) · |Tti |+

∑
xl∈Si

r(x)
)

c1
0,x = update(x, 0) , ∀x
c2

0,0,x = update(x, 0) , ∀x
u0,0,x = 0 ,∀x

• Step for Wr,0. We compute Wr,0 from Wr−1,0 as follows. We will set c2
r,0,x = +∞

to indicate that there is a vertex of x already placed in C1.

x = arg minx c
1
r−1,x

Wr,0 = Wr−1,0 + c1
r−1,x

ur,0,x = ur−1,0,x + 1 and ur,0,y = ur−1,0,y, ∀y ̸= x

c1
r,x = update(x, ur,0,x) and c1

r,y = c1
r−1,y, ∀y ̸= x

c2
r,0,x = +∞ and c2

r,0,y = c2
r−1,0,y, ∀y ̸= x

(7.8)

• Step for Wr,s. We compute Wr,s from Wr,s−1. First note that we might not
always be able to compute Wr,1. Indeed, there can exist a subtree x such that
c2

r,0,x = ∞ and ur,0,x < |x| (that is, some of its vertices have been placed in the
first clique, but not all). Then, the remaining |x| − ur,0,x vertices must all be
placed in the second clique (recall that every subtree can be split into at most
two cliques). Furthermore, we cannot compute the value of swapping a single one
of the remaining vertices to the second clique, since this would split x into three
cliques, and we have not precomputed these values. Thus, we will swap all of the
remaining vertices of x at once. By monotonicity, at most one subtree can satisfy
this condition. Let t be such subtree. Then, for s = |t| − ur,0,x, we have

Wr,s = Wr,0 − r(t) · s
ur,s,t = |t|

It just remains to establish the value of c2
r,s,x for every x. To do so, we need to

update the left costs of every remaining vertex/subtree, that is, every x such that
c2

r,0,x ̸= +∞. Indeed, we need to substract from their left cost the number of
vertices in the first clique that are strictly to their left. Formally, for every x with
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c2
r,0,x ̸= +∞,

lr,x = l(x)−
∑
{|y| | y ̸= t, y ≺ x, c2

r,0,y = +∞}

For s = |t| − u(r, t), we let

c2
r,s,x =

{
+∞ if c2

r,0,x = +∞,
updatelr (x, 0) otherwise.

Where updatelr is defined as Equation (7.5) but replacing the left cost of x by lr,x.
Then, for every s > |t| − u(r, t),

x = arg minx c
2
r,s−1,x

Wr,s = Wr,s−1 + c2
r,s−1,x

ur,s,x = ur,s−1,x + 1 and ur,s,y = ur,s−1,y, ∀y ̸= x

c2
r,s,x = updatelr (x, ur,s,x) and c2

r,s,y = c2
r,s−1,y, ∀y ̸= x

We have computed Wr,s for almost every possible value of r and s. However, some of
this pairs might still not be feasible. Indeed, if the value of s is too small, there can be
a vertex of a section that is contained in the first clique that is also adjacent to vertices
of the other two cliques. Let us thus compute the feasible values of r and s. Once we
have fixed r, we need to ensure that the first center v1 does not intersect more than two
independent vertices. That is, if r is smaller than n1, then s needs to be large enough
to contain every vertex that belongs to the subtree rooted at the sections that contain
v1. Thus, we distinguish two cases:

• If r > n1 − n1,2, then the second clique must contain every other vertex (because
center v2 is already adjacent to an independent vertex in this partial solution).
Thus, the only feasible value of s is n1 + n2 − n1,2 − r.

• If r < n1 − n1,2, then we only have the constraint that s must be greater or equal
to n1 − r (because every other vertex that is adjacent to v1 must belong to the
second clique). Thus, the possible values of s are in the range [n1 − r, |V (G)|].

Then, the optimum cost of a completion of G is given by the minimum among the feasible
pairs r and s of Wr,s.

7.3.2. Arbitrary interval graphs

In this section, we explain how to modify the previous algorithm to return an optimal
solution when the input graph is an arbitrary interval graph.

Definition 7.2. We say that a set of maximal centers {v1, . . . vk} is non-disjoint if there
exists a Q-node q with sections S1, . . . , Sm such that every center is contained in a section
of q and for every pair vi, vi+1, with i ∈ [k − 1], there exists a section Sj of q such that
vi ∈ Sj and vi+1 ∈ Sj.
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7. Proper interval completion on interval graphs

Let G be an interval graph and let K denote a maximum-cardinality set of maximal
centers that are non-disjoint. Given the set K, we define Nb(K) = ⋃

vi∈K Nb(vi). Let
k = |K|. We call k the maximum number of non-disjoint centers.

Lemma 7.6. Let G be an interval graph. Let K be a maximum cardinality set of maximal
centers of that are non-disjoint. Let |K| = k. Then, a completion of G partitions the
neighborhood of K in at most k + 1 different cliques.

Proof. Let v1, . . . , vk be the k centers of K. By assumption, the intersection of the closed
neighborhoods of vi and vi+1 is non-empty for every i ∈ {1, . . . , k − 1}. Thus, if x and
y are two independent vertices adjacent to v1, then v2 can be adjacent to at most one
vertex z that is independent from both x and y. Similarly, v3 can be adjacent to at most
one vertex independent from x, y and z. By induction, a completion of G restricted
to the subtrees rooted at the sections that contain centers v1 until vi−1 can contain i
independent vertices. When we add the vertices of the subtrees rooted at the sections
that contain vi, since vi can be adjacent to at most one more independent vertex, we
get that the completion of G restricted to the new subtrees can contain at most i + 1
independent vertices.

We will devise an algorithm running in time O(nk) to solve PIG-completion. In
particular, this implies that the problem is in XP parameterized by the maximum number
of non-disjoint centers.

Theorem 7.3. PIG completion is in XP parameterized by the maximum number of
non-disjoint centers. In particular, given an interval graph G whose maximum number
of non-disjoint centers is k, there exists an O(nk) algorithm that solves PIG-completion,
where n = |V (G)|.

Proof. We provide an explicit algorithm. Suppose that we have a set K of k vertices
v1, . . . , vk that are non-disjoint maximal centers. Since they are all in the same Q-node,
suppose that they are ordered according to the order given by the Q-node. Note that
since every vi is a maximal center, we have vl

1 ≺ . . . ≺ vl
k and vr

1 ≺ . . . ≺ vr
k. Let us refer

to the set of sections that contain vertices of K as SK . By Lemma 7.6, if we consider
the subtree rooted at SK , we know that its vertices will be partitioned into at most k+1
cliques, C1, . . . , Ck+1, ordered from left to right. As in the proof of Corollary 7.2, the
completion of G is given by summing up the completions of the subgraphs G[V (TSK

)]
for every maximum set K of non-disjoint maximal centers. Thus, we explain how to
obtain a completion of G[V (TSK

)].
Let v be the Q-node that contains all the centers of K. Due to the partial order

induced by v, we can again exploit the monotonicity of the costs to obtain an optimal
greedy-like algorithm. For every ri ∈ [n], i ∈ [k], we will compute the cost Wr1,...,rk

,
which represents the cost of a solution of the subtree rooted at SK which partitions the
vertices into k+ 1 cliques in such a way that the i-th clique contains ri vertices (and the
rightmost clique contains n −∑

i∈[k] ri vertices). Notice that we label the cliques from
left to right according to the ordering given by the Q-node.

Formally, we define:
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7.3. An algorithm for the general case

Wr1,...,rk
:= min{|F | : F is a set of fill edges of G[V (TSk

)] that partitions the vertices
into (C1, . . . , Ck+1) with |Ci| = ri, i ∈ [k]}

ci
r1,...,ri,x := cost of swapping a vertex of x to clique i when |Ci| = ri, i ∈ [k]

ur1,...,rk,x := number of vertices of x not in Ck+1 when |Ci| = ri, i ∈ [k]

To compute the costs Wr1,...,rk
, we first compute the left/right cost of every subtree and

every vertex in a section as in Equations 7.1, 7.2, 7.3 and 7.4, and then proceed as
follows:

• Base case. When ri = 0 for every i ∈ [k]:
W0,...,0 = ∑

i

(
Mti,0 + r(Tti) · |Tti |+

∑
xl∈Si

r(x)
)

ci
0,...,0,x = update(x, 0) for i ∈ [k]
u0,...,0,x = 0

• Step for Wr1,0,...,0. We compute Wr1,0,...,0 from Wr1−1,0,...,0 by adapting Equa-
tion (7.8).

x = arg minx c
1
r1−1,0,...,0,x

Wr1,0,...,0 = Wr1−1,0,...,0 + c1
r1−1,0,...,0,x

ur1,0,...,0,x = ur1−1,0,...,0,x + 1 and ur1,0,...,0,y = ur1−1,0,...,0,y, ∀y ̸= x

c1
r1,x = update(x, ur1,x) and c1

r1,y = c1
r1−1,y, ∀y ̸= x

ci
r1,0,...,0,x = +∞ and ci

r1,0,...,0,y = ci
r1−1,0,...,0,y, ∀y ̸= x

• Step for Wr1,...,ri,ri+1,...,0. To compute Wr1,...,ri,1,...,0 from Wr1,...,ri,0,...,0, we pro-
ceed in a similar manner as in Section 7.3.1. We only compute valueWr1,...,ri,ri+1,0...,0
for the tuples of values (r1, . . . , ri) which are feasible. Given a feasible set of values
(r1, . . . , ri−1), whether combination (r1, . . . , ri−1, ri) is feasible depends only on the
value of ri−1:

– If ri−1 is larger than ni−1 − ni,i−1, then this means that center vi is already
adjacent to vertices of two different cliques, and so every other vertex that is
adjacent to vi and not in the intersection must be in the i-th clique. That is,
the only feasible value of ri is ri−1 − (ni−1 − ni−1,i).

– Otherwise, ri can take values between ni − ni−1,i and ni (the vertices in the
intersection must all be in the right-clique of vi−1).

Now, given a feasible set of values (r1, . . . , ri−1, ri), if there exists a subtree t such
that ci

r1,...,ri,x = +∞ and ur1,...,ri,0,...,0,x < |x|, we know that ri+1 must be greater
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7. Proper interval completion on interval graphs

than |t| − ur1,...,ri,0,...,0,x. For ri+1 = |t| − ur1,...,ri,0,...,0,x, we let:

Wr1,...,ri+1,0,...,0 = Wr1,...,ri,0,...,0 − r(t) · ri+1

ur1,...,ri+1,0,...,0,t = |t|

Before computing Wr1,...,ri+1 for ri+1 > |t| − ur1,...,ri,1,...,0,x, we need to update the
left costs of every remaining vertex/subtree, that is, every x such that ci

r1,...,ri,x ̸=
+∞. Indeed, we neew to substract from their left cost the number of vertices
in the first i cliques that are strictly to their left. Formally, for every x with
ci

r1,...,ri,x ̸= +∞,

lr1,...,ri,0,...,0,x = l(x)−
∑
{|y| | y ̸= t, y ≺ x, ci

r1,...,ri,x = +∞}

For ri+1 = |t| − ur1,...,ri,0,...,0,x, we let

ci+1
r1,...,ri+1,x =

{
+∞ if ci

r1,...,ri,0,...,0,x = +∞,
updatelr1,...,ri,0,...,0,x(x, 0) otherwise.

Where updatelr1,...,ri,0,...,0,x is defined as Equation (7.5) but replacing the left cost
of x by lr1,...,ri,0,...,0,x. Then, for every ri+1 > |t| − ur1,...,ri,0,...,0,x,

x = arg minx c
i+1
r1,...,ri+1−1,0,...,0,x

Wr1,...,ri+1,0,...,0 = Wr1,...,ri+1−1,0,...,0,x + ci+1
r1,...,ri+1−1,0,...,0,x

ur1,...,ri+1,0,...,0,x = ur1,...,ri+1−1,0,...,0,x + 1
ur1,...,ri+1,0,...,0,y = ur1,...,ri+1−1,0,...,0,y, ∀y ̸= x

ci+1
r1,...,ri+1,x = updatelr1,...,ri+1

(x, ur1,...,ri+1,0,...,0,x)
ci+1

r1,...,ri+1,0,...,0,y = ci+1
r1,...,ri+1−1,0,...,0,y, ∀y ̸= x

cj
r1,...,ri+1,0,...,0,x = +∞
cj

r1,...,ri+1,0,...,0,y = cj
r1,...,ri+1−1,0,...,0,y, ∀y ̸= x, ∀j > i+ 1.

The optimal cost of a completion of G[V (TSK
)] is given by the minimum over the

feasible k-tuples (r1, . . . , rk) of Wr1...,rk
.

We conclude this section by pointing out that even though we have provided an algo-
rithm which is exponential in the maximum number of non-disjoint claws, the complexity
of PIG-completion on arbitrary interval graphs remains unsettled. In fact, even whether
the problem is FPT parameterized by the maximum number of non-disjoint centers re-
mains as an open question. It would also be interesting to explore whether the dynamic
programming approach on the MPQ-tree of the interval graph can be applied when we
allow other operations, such as edge deletion.
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8. Conclusion and future work

In this manuscript, we have studied multiple interval graphs from a structural and
algorithmic perspective, as well as a graph modification problem on interval graphs.

We started Chapter 4 by providing a useful characterization of (disjoint) unit 2-interval
graphs and an efficient software to test whether a graph belongs to this class of graphs.
Then, in Chapter 5, we showed that the classes of disjoint unit and unit d-interval graphs
are not equivalent and we obtained a complete characterization of unit d-interval graphs
that are also interval. However, for the class of disjoint unit d-interval graphs which are
also interval, only a partial characterization was obtained. This raises the question of
whether we can obtain an analogous result, or whether we can even recognize this class
in polynomial time. We also studied the containment relations between the classes of
balanced and disjoint balanced d-interval graphs. Nevertheless, some relations between
the subclasses obtained with the two different definitions of d-interval remain unknown,
such as whether the class of unit d-interval graphs is contained in the class of disjoint
balanced d-interval graphs for d > 2.

In Chapter 6, we proved that recognizing both unit and disjoint unit d-interval graphs
of representation depth r is NP-complete for every d ⩾ 2 and every r ⩾ 4, and obtained
as a corollary that recognizing (x, . . . , x) d-interval graphs is NP-complete for x ⩾ 11.
Apart from closing the gap to settle the complexity of recognizing (x, . . . , x) d-interval
graphs for 2 ⩾ x ⩾ 10, or depth 3 d-interval graphs, other interesting lines of research
would be to investigate whether there exists a constant-ratio approximation of the unit
interval number of a graph, or to study the following parameterized problem:

Instance: An arbitrary graph G and a parameter k.
Goal: Determine whether we can transform G into a unit interval graph

by splitting at most k of its vertices.

Parameterized (disjoint) unit d-interval recognition

Finally, in Chapter 7, we focused on the graph modification problem Proper inter-
val graph-completion on interval graphs. Even though we developed a polynomial-
time algorithm for various cases, including interval graphs with a universal vertex, split-
interval graphs, or interval graphs with no intersecting centers of maximal claws, the
complexity in the general case remains open. Nevertheless, we provided an XP algorithm
for arbitrary interval graphs, parameterized by the maximum number of non-disjoint cen-
ters of maximal claws. Given that the problem is FPT parameterized by the number of
fill edges, it would be worth studying whether it is also FPT by this structural parameter
(which is incomparable to the natural parameter). Additional research could focus on
exploring whether the approach based on dynamic programming on the MPQ-tree of
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the interval graph that we have developed here could be adapted for the edge deletion
version of the problem, or for variants that also admit vertex addition/deletion.



Outline of appendix

The following appendices contain the papers not related to interval graphs as they were
originally published. In Appendix A we discuss the classical and parameterized complex-
ity of the problem Parity permutation pattern matching, while in Appendix B,
we prove the strong NP-hardness of the problem Balanced Mobiles.

A. Parity Permutation Pattern Matching

Given two permutations, a pattern σ and a text π,Parity Permutation Pattern
Matching asks whether there exists a parity and order preserving embedding of σ into
π. While it is known that Permutation Pattern Matching is in FPT, we show that
adding the parity constraint to the problem makes it W[1]-hard, even for alternating
permutations or for 4321-avoiding patterns. However, the problem remains in FPT if
π avoids a fixed permutation, thanks to a recent meta-theorem on twin-width. On the
other hand, as for the classical version, Parity Permutation Pattern Matching
remains polynomial-time solvable when the pattern is separable, or if both permutations
are 321-avoiding, but NP-hard if σ is 321-avoiding and π is 4321-avoiding.
A.1. Introduction
Permutations are one of the most fundamental objects in discrete mathematics, and in
concrete terms, deciding if a permutation contains another permutation as a pattern is
one of the most natural decision problems. More precisely, in the well-known Permu-
tation Pattern Matching (PPM) problem, given two permutations σ and π, the
task is to determine if σ is a pattern of π, or equivalently, if π contains a subsequence
which is order-isomorphic to σ. For example, if π = 3 1 5 4 2, it contains σ = 2 3 1, since
3 5 2 is a subsequence of π with the same relative order as σ, but π does not contain
σ = 1 2 3, as there are no three left-to-right increasing elements in π. In the latter case,
we say that π avoids 1 2 3. The notion of avoidance allows to define various classes
of permutations as sets of permutations that avoid some given patterns. For example,
321-avoiding permutations, or (2413, 3142)-avoiding permutations, which are known as
separable permutations.

PPM has been proved to be NP-complete by Bose, Buss, and Lubiw in 1998 [25].
However, some special cases, such as Longest Increasing Subequence, or the cases
where both σ and π are separable or 321-avoiding, are known to be polynomial time solv-
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A. Parity Permutation Pattern Matching

able [43, 25, 82, 4, 29]. In fact, it was shown in [93] that PPM is always polynomial-time
solvable if the pattern avoids any fixed permutation τ ∈ {1, 12, 21, 132, 231, 312, 213},
and NP-complete if it avoids any other fixed permutation. This result was then extended
in [94]. Furthermore, exact exponential time issues have been considered [3, 16, 73, 27].

A breakthrough result of Guillemot and Marx [81] shows that PPM is fixed parameter
tractable when parameterized by the size of the pattern σ. The key element is the use of
a new width measure structure theory of permutations. They proved that the problem
can be solved in time 2O(k2 log k)n, and later on, Fox improved the running time of the
algorithm by removing a log k factor from the exponent [63]. This led to the question
of whether a graph-theoretic generalization of their permutation parameter could exist.
This was answered positively in [22], by introducing the notion of twin-width, which has
proven huge success recently. It was shown that graphs of bounded twin-width define
a very natural class with respect to computational complexity, as FO model checking
becomes linear in them.

Pattern matching for permutations, together with its many variants, has been widely
studied in the literature (the best general reference is [101], see also [26]). Here we intro-
duce a natural variation of PPM, called Parity Permutation Pattern Matching,
that incorporates the additional constraint that the elements of σ have to map to ele-
ments of π with the same parity, i.e., even (resp. odd) elements of σ have to be mapped
to even (resp. odd) elements of π. For one, pattern avoidance with additional con-
straints [5, 28], including parity restrictions [144, 74, 102], has emerged as a promising
research area. For another, Parity Permutation Pattern Matching aims at pro-
viding concrete use cases of the 2-colored extension of PPM introduced in [82]. Note that
Parity Permutation Pattern Matching can be viewed as a variant of 2-colored
PPM where the colors encode the parity of the elements.

Surprisingly, we show that it does not fit into the twin-width framework, and this
increases the complexity of the problem, as it becomes W[1]-hard parameterized by the
length of the pattern. In fact, the approach used by Guillemot and Marx [81] to prove
that PPM is FPT is based on a result that states that given a permutation π, there exists
a polynomial time algorithm that either finds an r × r-grid of π or determines that the
permutation has bounded width (and returns the merge sequence of the decomposition,
which is used to solve the PPM problem in FPT time). This win-win approach works
because, if π contains an r × r-grid, it’s not hard to see that it contains every possible
pattern σ. However, this cannot be generalized to Parity PPM, as here we have no
information on the parity of the elements of the grid, and thus, it is not guaranteed that
every pattern maps via a parity respecting embedding into the grid.

Structure of the paper The paper is organized as follows. Section A.2 briefly intro-
duces the necessary concepts and definitions. Section A.3 is devoted to proving that
Parity PPM parameterized by the length of the pattern is W[1]-hard but remains in
FPT when the twin-width of the host permutation is bounded. Section A.4 is concerned
with P vs NP issues and we show that Parity PPM and PPM behave similarly. A
summary of the complexity of the problems is given in Table A.1. An extended abstract
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A.2. Preliminaries

PPM Parity PPM

General case NP-hard, FPT W[1]-hard
Separable permutations P P
321-av σ and 321-av π P P
321-av σ and 4321-av π NP-hard NP-hard
4321-av σ FPT W[1]-hard
Alternating π and σ FPT W[1]-hard
π is fixed pattern avoiding FPT FPT

Table A.1.: Summary of known results (for PPM) and our results (for Parity PPM).
All the results regarding the parameterized complexity consider the size of
the pattern σ as the parameter.

of this paper appeared in [10].

A.2. Preliminaries
We let [n] stand for the set {1, 2, . . . , n}. A permutation of length n is a bijection
π : [n] → [n] and we write Sn for the set of all bijections of length n. Given two
permutations σ ∈ Sk and π ∈ Sn, we say that π (the text, or the host) contains σ (the
pattern) if there is an embedding from the elements of σ into the elements of π, i.e., an
injective function f such that for every pair of elements x and y of σ, their images f(x)
and f(y) of π are in the same relative order as x and y. Otherwise, we say that π avoids
σ. If π contains σ, we write σ ⪯ π.

A permutation class is a set C of permutations such that for every permutation π ∈ C,
every pattern of π is also contained in C. Every permutation class can be defined by the
minimal set of permutations that do not lie inside it, and we define this as C = Av(B),
where B is the minimal set of avoided permutations. Alternating permutations are those
permutations σ ∈ Sn such that σ1 > σ2 < σ3 > . . . .

In this manner, we can define the class Av(4321), which is the set of permutations that
avoid 4321, Av(321), which is the set of permutations that avoid 321, and Av(2413, 3142),
i.e., the class of permutations that avoid both 2413 and 3142. As we mentioned in the
introduction, the latter is known as the class of separable permutations, and it can also
be characterized as the set of permutations that have a separating tree. In other words,
a permutation is separable if there exists an ordered binary tree T in which the elements
of the permutation appear in the leaves and such that the descendants of a tree node
form a contiguous subset of these elements.

The problem of determining whether a fixed pattern is contained in a permutation
has been well studied in the literature, and it is referred to as Permutation Pat-
tern Matching. Here, we study a natural variation of PPM, Parity Permutation
Pattern Matching, which is defined below.

Definition A.1. Given two permutations, a pattern σ ∈ Sk and a text π ∈ Sn, Per-
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A. Parity Permutation Pattern Matching

mutation Pattern Matching asks whether π contains σ.

Definition A.2. An injective function f from σ to π is a parity respecting embedding
if for all elements x and y of σ, f(x) and f(y) are in the same relative order as x and
y, and for every element x of σ, f(x) has the same parity as x.

We say that an occurrence of a pattern σ in a permutation π respects parity if there
is a parity respecting embedding of σ into π. Furthermore, if there is an occurrence of
σ in π which respects parity, we say that π parity contains σ, and we write σ ⪯P π.
Otherwise, we say that π parity avoids σ.

Definition A.3. Given a pattern σ and a text π, Parity PPM is the problem of
determining whether there exists a parity respecting embedding of σ into π.

As a remark, note that if instead of considering the problem PPM with the constraint
that even (resp. odd) elements have to map to even (resp. odd) elements, we require
that elements in even (resp. odd) indices (positions) map to elements in even (resp.
odd) indices, the problem is equivalent. Indeed, σ parity avoids π if and only if σ−1

parity index avoids π−1. For example, the parity + order preserving embedding of
σ = 2 4 1 3 into π = 4 2 7 6 3 1 5 yields the parity-index + order-preserving embedding of
σ−1 = 3 1 4 2 into π−1 = 6 2 5 1 7 4 3 (occurrences are depicted with bold integers).

To see this, assume that there is a parity respecting embedding of σ into π. Denote by
Pσ(i) the position in σ of the element with value i and by f the parity respecting injective
map between σ and π associated to the embedding. Since σ−1 = Pσ(1) ... Pσ(k), and f
respects parity, if f(i) = j, both i and j have the same parity, and thus, the indices in
the inverses will also have the same parity (by definition, odd elements are placed in odd
indices in the inverses, and vice versa). Furthermore, since f is an embedding, for i < j,
σi < σj if and only if f(σi) < f(σj). Thus, P (σi) is to the left of P (σj) in both σ−1

and π−1, and by assumption, we also have i < j, so f induces a parity index respecting
embedding between the inverses.

In this paper, we focus mainly on the parameterized complexity of the above-mentioned
problem. Parameterized complexity allows the classification of NP-hard problems on a
finer scale than in the classical setting. Fixed parameter tractable (FPT) algorithms are
those with running time O(f(k) · poly(n)), where n is the size of the input and f is a
computable function that depends only on some well-chosen parameter k. On the other
hand, problems for which we believe that there does not exist an algorithm with that
running time belong to the W-hierarchy. Indeed, it is widely believed that W[1] ̸= FPT,
and so being W[1]-hard is strong evidence against being in FPT. We refer to [49] for
more background on the topic.

A.3. Parameterized complexity

We already saw in the introduction that PPM is in FPT in general, and why the win-win
approach of Guillemot and Marx for the parameterized algorithm for PPM doesn’t work
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for Parity PPM. This intuition is correct and we prove that Parity PPM is W[1]-
hard. In fact, we prove something stronger, which is that Parity PPM is W[1]-hard
even when restricted to alternating permutations or when the pattern is 4321-avoiding.
Note that both results are independent, as alternating permutations and 4321-avoiding
permutations are not comparable, but they both imply the W[1]-hardness of the general
case. However, we see that the twin-width framework (of which the parameterized
algorithm of Guillemot and Marx is an initial step) will be useful to prove that Parity
PPM is FPT when the text avoids a fixed pattern.

A.3.1. Parameterized hardness for alternating permutations
Theorem A.1. Parity PPM is W[1]-hard parameterized by the length k of the pattern,
even for alternating permutations σ and π.

Proof. We reduce from k-Clique in general graphs, which is known to be W[1]-hard
parameterized by the size k of the clique [49]. Given as input a graph G and a positive
integer k, k-Clique asks whether G contains a clique of size k. For our reduction, let
G = (V,E) be a graph with |V | = n and |E| = m, and a parameter k. We construct a
permutation σ that depends only on the parameter k, and a permutation π that depends
on G, such that there exists a clique of size k in the graph G if and only if there is a
parity respecting embedding of σ into π.

Construction We describe the construction of π from G. The high-level idea is to
construct different gadgets to represent the vertices and the edges of the graph, and
to link each edge gadget to the corresponding vertex gadgets. More precisely, we link
the gadget associated to edge (u, v) to the gadgets associated to vertices u and v by
placing elements of value greater than the minimum element of each vertex gadget and
smaller than the maximum element of each vertex gadget between the elements of the
edge gadget.

We define the following gadgets (see also Figure A.1):

• A vertex gadget π[V ] that is a direct sum of n decreasing permutations, all order-
isomorphic to 21 and composed of odd elements. It contains 2n elements, starts
at position 1 and has as smallest element 8m+ 3.

• An edge gadget π[E] that is a direct sum of m permutations, all order-isomorphic to
435261 and composed of odd elements. It contains 6m elements, starts at position
2n+ 5 and has as smallest element 3.

• The separator gadget is composed of the four even integers 4(n+ 3m) + 4, 8m+ 2,
4(n+3m)+2 and 2 (and hence is order-isomorphic to 4231). The separator gadget
lies between the vertex gadget and the edge gadget.

• Let even be the 2(n + 3m) − 2 even integers between 4 and 4(n + 3m) that do
not appear in the vertex gadget, the separator gadget or the edge gadget. The even
garbage gadget is the alternating sequence composed of the even integers of even.
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1
3
5
7
9

11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

Figure A.1.: Illustration of the construction introduced in the proof of Theorem A.1.
The permutation in the figure corresponds to a clique of size 3 with vertices
v1, v2, v3 and edges (v1, v2), (v1, v3), (v2, v3). Odd elements are represented
with black dots and even elements with red squares. Furthermore, blue
lines delimit the vertex boxes.

It is constructed recursively from left to right as follows: place (and remove from
even) the maximum of even, place (and remove from even) the minimum of
even and recurse. It is placed to the right of the edge gadget.

• Let odd be the two odd elements 4(n+ 3m) + 3 and 1 that do not appear in the
vertex gadget, the separator gadget or the edge gadget. The odd garbage gadget is
the decreasing sequence composed of the two odd integers of odd. It is constructed
as the even garbage gadget and placed directly to its right.

Formally, define,
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∀vi ∈ V, π[vi] = 8m+ 2 + 2 ∑
j<i(deg(vj) + 2) + 2(deg(vi)) + 3

8m+ 2 + 2 ∑
j<i(deg(vj) + 2) + 1 (A.1)

∀ek = (i, j) ∈ E, π[ek] = 8k + 1 8k − 1 8m+ 2 + 2 ∑
j′<i(deg(v′

j) + 2) + 2 ∑
(i,j′)/j′<j(1) + 3

8k − 3 8m+ 2 + 2 ∑
j′<j(deg(v′

j) + 2) + 2 ∑
(i′,j)/i′<i(1) + 3 8k − 5 (A.2)

π = π[v1] . . . π[vn] 4(n+ 3m) + 4 4(n+ 3m) + 2 8m+ 2 2

π[e1] . . . π[em] EVEN ODD (A.3)

(boxes are used for readability purposes only and denote individual elements).
The permutation σ is constructed similarly to the permutation π but using Kk in-

stead of graph G. Clearly, this construction can be carried out in polynomial time and σ
depends only on the parameter k, i.e., the new parameter |σ| is a function of k. Further-
more, both σ and π are alternating permutations. We claim that there exists a clique of
size k in the graph G if and only if there is a parity respecting embedding of σ into π.

Notation Before proving the correctness of the reduction, we need to define some no-
tation for the elements of the permutations. Let us denote by wi and w′

i (i ∈ {1, 2, 3, 4})
the four even elements of the separator gadget, placed in between the vertex gadget and
the edge gadget of σ and π, respectively. For each vertex vi, with i ∈ {1, . . . , n}, we will
refer to the decreasing subsequence of length two associated to it, σ[vi], as the vertex box
associated to vi. For each edge ei, with i ∈ {1, . . . ,m}, we will refer to the decreasing
subsequence of length four associated to it (i.e., the elements of σ[ei] which correspond
to 4321 in the permutation 435261) as the edge box of ei.

We will denote the elements of the vertex box associated to vertex vi as vi,1 and vi,2,
from left to right (i.e., vi,1 > vi,2), and the elements of the edge box associated to edge
ei as ei,1, ei,2, ei,3 and ei,4, again from left to right. On the other hand, for each edge,
we denote the two elements placed in between ei,2 and ei,3, and between ei,3 and ei,4, as
hi,1 and hi,2, respectively, where here hi,1 < hi,2 (these are the elements that correspond
to the subsequence 56 in σ[ei]).

Finally, the even elements to the right of the edge gadget placed below w2 are referred
to as wi,1, wi,2, wi,3 and wi,4, for every edge ei with i ∈ {1, . . . ,m}, where wi,1 is the
element ei,4 + 1, wi,2 is ei,3 + 1, wi,3 is ei,2 + 1, and wi,4 is ei,1 + 1. Note that wi,4 is not
defined for the last edge. On the other hand, the even elements to the right of the edge
gadget placed above w2 are denoted as xi,t, for every vertex vi with i ∈ {1, ..., n} and for
every edge et incident to vi, t ∈ {1, ...,mi}, (note that xi,t = ha,b + 1 for some pair a, b).
Furthermore, we denote by xi,0 and xi,mi+1 the even elements in the extremes such that
xi,0 = vi,2 + 1 and xi,mi+1 = vi,1 + 1. Again, note that xn,mn+1 is not defined.
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For the elements of π, we follow an analogous notation denoting the elements by v′
i,1,

e′
i,1, etc.

Direct Implication

Claim A.1. If there exists a clique of size k in the graph G, then there is a parity
respecting embedding of σ into π.

Proof. We will assume that there exists a clique and prove that there is a parity re-
specting order isomorphism between the two permutations. Let f be the injective map
associated to it. Note that the vertices of the clique and the graph are both ordered
according to the same linear ordering. Similarly, the edges are ordered according to the
ordering of the vertices, as we say that (u1, v1) < (u2, v2) if u1 < u2 or u1 = u2 and
v1 < v2. Fix a clique in G and denote by v′

1, . . . , v
′
k the k vertices of the clique in G, and

by e′
1, ..., e

′
l its l =

(k
2
)

edges.
The idea is to map each vertex box (resp. each edge box) of σ to a vertex box (resp.

edge box) associated to a vertex (resp. edge) of a k-clique in G.
We define f with the following properties:

• f(vi,j) = v′
i,j , for i ∈ {1, ..., k} and j ∈ {1, 2}.

• f(ei,j) = e′
i,j , for i ∈ {1, ..., l} and j ∈ {1, 2, 3, 4}.

• f(wi) = w′
i for i ∈ {1, 2, 3, 4}.

• f(hi,j) = h′
i,j , for i ∈ {1, ..., l} and j ∈ {1, 2}.

• f(wi,1) = f(ei,4) + 1, f(wi,2) = f(ei,3) + 1, f(wi,3) = f(ei,2) + 1, and f(wi,4) =
f(ei,1) + 1, for every edge ei, with i ∈ {1, . . . , l} (except the last edge el, for which
only wi,1, wi,2 and wi,3 are defined).

• For every vertex vi, with i ∈ {1, ..., n}, and every edge et with t ∈ {1, . . . , li}
incident to vertex vi, we have f(xi,0) = f(vi,2) + 1; f(xi,t) = f(ht) + 1 (where
ht corresponds to some ht,j with et the edge incident to vi in position t); and
f(xi,t+1) = f(vi,1) + 1. (Note that for the last vertex, xn,t+1 is not defined).

• f(1) = 1 and f(N − 1) = N ′ − 1 (where N and N ′ are the lengths of σ and π,
respectively).

It is clear that f is well-defined and it is a parity respecting embedding between σ
and π. ◁

Reverse implication Suppose now that there exists a parity respecting embedding
between σ and π and let f be the associated injective mapping. We want to show that
we have enough structure in the permutations to infer that there must be a clique of
size k in the graph G. In order to do so, we will prove the following sequence of claims
that will restrict the map f .

136



A.3. Parameterized complexity

Claim A.2. Any parity respecting embedding f from σ to π must map wi to w′
i, for

i ∈ {1, 2, 3, 4}.

Proof. Since the pattern matching needs to respect parity, f must map the wi’s to even
elements of π. Towards a contradiction, assume first that f(wi) ̸= w′

j , i, j ∈ {1, 2, 3, 4}.
That means that f(wi) = w′

i′,j or x′
i′,t, for some indices i′, j or i′, t. But then, the odd

elements to the right of wi in σ cannot map to elements to the right of f(wi) in π
(as there would be at most 2 odd elements to the right of f(wi) and there are strictly
more than 2 odd elements to the right of wi), so f cannot be an embedding of σ into
π. Finally, since both the wi’s and the w′

i’s form 4231 subsequences, it is clear that
there exists a unique way to embed the wi’s into the w′

i’s, which is mapping each wi

to its corresponding w′
i, for every i ∈ {1, 2, 3, 4}. Thus, if f(wi) ̸= w′

i, f cannot be an
embedding. ◁

Claim A.3. All the elements to the left (resp. to the right) of the wi’s in σ map to
elements to the left (resp. to the right) of w′

i’s in π. Similarly, the elements above (resp.
below) w2 in σ map to elements above (resp. below) w′

2 in π.

Proof. This is a direct corollary of Claim A.2. ◁

Claim A.4. Any parity respecting embedding f from σ to π must map vertex blocks of
σ to vertex blocks of π.

Proof. By Claim A.3, since elements to the left of w2 in σ map to elements to the left
of w′

2 in π, we have that f(vi,j) = v′
i′,j′ , for i ∈ {1, ..., k}, i′ ∈ {1, ..., n} and j, j′ ∈ {1, 2}.

Assume that f(vi,1) = v′
i′,j′ and f(vi,2) = v′

i′′,j′′ , with i′ ̸= i′′. Since vi,1 is to the left of
vi,2, it means that f must map vi,2 to an element placed to the right of f(vi,1) = v′

i′,j′ .
But vi,1 > vi,2 and every element which is to the right of v′

i′,j′ and which does not belong
to the vertex block of v′

i′ , is greater than v′
i′,j′ . Thus, if i′′ ̸= i′, then f would not be an

embedding. ◁

Claim A.5. Any parity respecting embedding f from σ to π must map edge blocks of σ
to edge blocks of π.

Proof. Again, we have that f(ei,j) = e′
i′,j′ for some pair i′, j′, and since the structure of

the gadget has the same properties as the vertex gadget, we can use the same argument
as in the proof of Claim A.4. ◁

Claim A.6. Any parity respecting embedding f from σ to π must map hi,j to h′
i′,j, where

e′
i′ is the edge associated to the edge block where ei,1 maps to.

Proof. By Claim A.3, we have that necessarily, f(ei,j) = e′
i′,j , for i ∈ {1, ..., l}, i′ ∈

{1, ...,m} and j ∈ {1, 2, 3, 4}.
First, since f(ei,2) = e′

i′,2 and f(ei,3) = e′
i′,3, and f is an embedding, the fact that hi,1

is in between ei,2 and ei,3 implies that it must map to an element between e′
i′,2 and e′

i′,3.
Similarly, hi,2 must map to an element in between e′

i′,3 and e′
i′,4. Since edge blocks map
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to edge blocks, there is at most one element that satisfies each of these conditions. And
these elements are h′

i′,1 and h′
i′,2, respectively. ◁

Claim A.7. All the even elements to the right of the edge gadgets in σ must map to
even elements to the right of the edge gadgets in π.

Proof. This follows from Claim A.2. Since f(wi) = w′
i for i ∈ {1, 2, 3, 4} and f has to

respect parity, the rest of the even elements cannot map anywhere else. ◁

Now, suppose that there is a parity respecting embedding f of σ into π and assume,
towards a contradiction, that G does not contain a clique of size k. Since there is no
clique of size k, it means that we cannot have l =

(k
2
)

edges between the k vertices of G
which are in the image of f (that is, the vertices associated to the images of the k vertex
boxes of σ).

We know that the k vertex blocks of σ map to k vertex blocks in π and the
(k

2
)

edge
blocks of σ map to

(k
2
)

edge blocks of π. Since G does not contain a clique, one of
the k vertices corresponding to the k vertex blocks in the image of f will have degree
strictly smaller than k − 1 when we restrict G to the k selected vertices. Let i′ be the
vertex with degree strictly smaller than k − 1 and suppose it is the image of vertex
block i in σ. Then, there are two possible cases. The first case is that in the image
of f , between the values f(vi,1) and f(vi,2), there are less than k odd elements (these
elements are necessarily of the form h′

i,j). Since in between vi,1 and vi,2 in σ there are
k odd elements of the form hi,j , this would imply that f cannot be a parity respecting
embedding. The second possibility is that in between the values f(vi,1) and f(vi,2) there
are k odd elements (which again are necessarily of the form h′

i,j) but one of them is not
in between f(el,2) and f(el,3), or f(el,3) and f(el,4), for some l ∈ {1, . . . ,m}. This would
also contradict the fact that f is a parity respecting isomorphism, as all the hi,j in σ are
between some pair el,2, el,3, or el,3, el,4 (with respect to the x-axis). Therefore, if there
is a parity respecting embedding of σ into π, it must map the k vertex boxes of σ into
k vertex boxes of π associated to k vertices that form a clique in G.

Corollary A.1. Given a pattern σ ∈ Sk and a text π ∈ Sn, Parity PPM cannot be
solved in time f(k) · no(

√
k) for any computable function f , under the Exponential Time

Hypothesis (ETH).

Proof. Suppose that there exists an algorithm that solved Parity PPM in time f(|σ|) ·
no(
√

|σ|). Therefore, since we have a reduction from k-Clique to Parity PPM that
outputs instances with the parameter |σ| bounded by O(k2), Clique is solvable in time
f(k2) ·no(k). But, Clique is not solvable in time f(k) ·no(k) for any computable function
f , under the Exponential Time Hypothesis, as proven in [37].

A.3.2. Parameterized hardness for 4321-avoiding patterns
In this subsection, we extend the previous hardness result by showing that the problem
remains hard for 4321-avoiding patterns. Our proof uses a colored version of PPM that
was shown to be W[1]-hard parameterized by k = |σ| in [82].
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Definition A.4. Given a 321-avoiding permutation σ ∈ Sk and an arbitrary permu-
tation π such that both σ and π are 2-colored permutations, 2-colored 2IPP (2 In-
creasing Permutation Pattern) asks to find a color-preserving embedding of σ into
π.
Theorem A.2. Parity PPM is W[1]-hard parameterized by the length k of the pattern,
even if the pattern is 4321-avoiding.
Proof. We reduce from 2-colored 2IPP. Given two 2-colored permutations σ ∈ Sk

and π ∈ Sn, with σ 321-avoiding, we will construct a 4321-avoiding permutation σ′ ∈
S2k+1 and an arbitrary permutation π′ ∈ S2n+1 such that there exists a color-preserving
embedding of σ into π if and only if there is a parity respecting embedding of σ′ into π′.

The high level idea is to build two permutations such that all the elements of color
c1 are embedded into even elements, all the elements of color c2 are embedded into odd
elements, and the remaining elements needed to have a valid permutation are placed to
the right separated by a delimiter element.

We construct both permutations as follows. Let c1 and c2 be the two colors in the
coloring of the original permutations. For every element j, if it is colored with c1, we
replace j by 2j (it is now always even), and if it is colored with c2, we replace it by
2j − 1 (it is now always odd). Then, we place the element 2k + 1 (resp. 2n + 1 for
π) to the right of all these elements (the delimiter element). Finally, we place all the
remaining elements that have not appeared (i.e., 2j− 1 for every element j colored with
c1, and 2j for every j colored with c2) to the right of 2k + 1 forming an increasing
subsequence (these elements are needed to construct a valid permutation). It is clear
that this construction can be carried out in polynomial time and that the new parameter
k′ = |σ′| = 2k + 1 is a function of k. Furthermore, σ′ is 4321-avoiding. Indeed, the left
part is order isomorphic to σ and the right part contains decreasing subsequences of
length at most two, formed by the element 2k + 1 and an element of the increasing
subsequence to its right. Thus, the maximum length of a decreasing subsequence is 3: a
decreasing subsequence of length two of the left part followed by a smaller element from
the increasing subsequence placed to the right.

To illustrate this construction, suppose that we have the permutations

σ = 2 1 3 4 6 5 and π = 1 3 2 4 5 8 7 6

colored with c1 = blue and c2 = black. Then

σ′ = 4 1 6 7 12 9 13 2 3 5 8 10 11 and π′ = 1 6 3 8 9 16 13 11 17 2 4 5 7 10 12 14 15

where 13 and 17 are our delimiters here (see also Figure A.2).
We will first show that if there exists a color-preserving embedding of σ into π, then

there is a parity respecting embedding of σ′ into π′. Let f : [σ] −→ [π] be the injective
mapping associated to the color-preserving embedding. We construct the parity respect-
ing embedding f ′ : [σ′] −→ [π′] as follows. For an element j, we denote by Pσ(j) the
position of j in the permutation σ, and given an index i, we denote by σ[i] the value of
the element in position i.
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Figure A.2.: The 4321-avoiding permutation π′ = 1 6 3 8 9 16 13 11 17 2 4 5 7 10 12 14 15
from the initial 2-colored 321-avoiding permutation π = 1 3 2 4 5 8 7 6.
Red squares correspond to even elements and black dots to odd elements,
while the two blue lines are used to indicate the presence of the element
that serves as the delimiter.
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f ′(i) =



f(i) if i ⩽ k

n+ 1 if i = k + 1

Pπ′(π′[f ′(Pσ′(σ′[i] + 1))]− 1) if i > k + 1 and i is odd

Pπ′(π′[f ′(Pσ′(σ′[i]− 1))] + 1) if i > k + 1 and i is even

(A.4)

First of all, note that if we have an even element 2j to the right of the delimiter, that
means that the element 2j − 1 must be to its left. Similarly, if the element 2j − 1 is to
the right of the delimiter, then 2j must be on the left. This is because given an element
j of the original permutation, we either transform it into 2j or into 2j − 1, according to
its color, and since elements are unique in value, we cannot have both to the left of the
delimiter. We call 2j the pair of 2j − 1 (and vice versa).

It is clear that f ′ is well defined and that it is a parity respecting embedding. Indeed,
the elements j < k + 1 and j < n + 1 in σ′ and π′ are order isomorphic to σ and π,
respectively, and even elements correspond to one color and odd elements to another,
so the fact that there is a parity respecting embedding of this part follows from the
assumption that there is a color preserving embedding of σ into π. On the other hand,
since there is a parity respecting embedding of the elements to the left of the delimiter
of σ′ into the elements to the left of the delimiter of π′, this implies that there also exists
a parity respecting embedding of the right part. Indeed, for every element j to the right
in σ′, we can look where its pair j′ maps to in π′ and then map j to the pair of f ′(j′).
Since every element has a pair and f ′ defines a parity respecting embedding between
the left parts of both permutations, then this extension of f ′ to the right part is well
defined and respects parity as well. Furthermore, it is clear that it is also an embedding,
because if an element j is greater than i, then the pair of j is also greater than the pair
of i.

For the converse implication, let us assume that there is a parity respecting embedding
f ′ of σ′ into π′. It is enough to see that every element j with Pσ′(j) < k + 1 needs to
map to an element j′ with Pπ′(j) < n+ 1. Indeed, suppose that there exists an element
in position j < k + 1 in σ such that f ′(j) ⩾ n + 1. Then the element 2k + 1 of σ,
which is to the right of j, cannot map anywhere, as it is greater than j and followed by
a smaller element (i.e., we need to find a decreasing subsequence of size two, with the
first element greater than j′). But all the elements to the right of n + 1 in π′ form an
increasing subsequence, so f ′ would not be an embedding. Thus, the elements to the left
of 2k + 1 in σ′ must map to the elements to the left of 2n+ 1 in π′. But these elements
are order isomorphic to σ and π, respectively, and the even elements correspond to the
ones colored with c1 and the odd ones to the ones colored with c2, so the fact that there
is a parity respecting embedding of σ′ into π′ implies that there is a color-preserving
embedding of σ into π.
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A.3.3. Parameterized algorithm when the text avoids a fixed pattern

In the previous subsection, we showed that restricting the pattern does not necessarily
reduce the complexity of the problem. However, we now prove that restricting the text
allows us to use the twin-width meta-theorem [22] to obtain a positive result. In fact, to
see that Parity PPM is FPT if the text avoids a fixed pattern x, it suffices to show that
we can describe the problem using first-order (FO) logic, i.e., that we can express it as a
formula which uses quantified variables over non-logical objects, and sentences (formulas
without free variables) that contain the variables. Indeed, adding unary relations to mark
the odd and even values preserves bounded twin-width, and therefore FPT tractability.
The result follows from [22]:

Lemma A.1 ([22]). FO model checking is FPT on every hereditary proper subclass of
permutation graphs.

This implies that FO model checking is FPT in the class of permutations avoiding
a fixed pattern. Here, FO model checking refers to the problem of, given a first-order
sentence ϕ of FO and a finite modelM of FO (which specifies the domain of disclosure of
the variables), deciding whetherM satisfies ϕ, i.e., whether there exists an assignment of
the variables which respects the domain imposed by M and that satisfies ϕ. Therefore,
we can state the following theorem:

Theorem A.3. Parity PPM is FPT if the text π avoids a fixed permutation.

Proof. As stated above, we only need to express Parity PPM using FO logic.
Let us consider the permutations σ = σ1 . . . σk and π = π1 . . . πn. Let U = [n] be

the universe. We receive as input σ, π and the following relations:

• A binary relation ⩽π1 , which indicates the left-to-right ordering of the elements in
π (i.e., the ordering of the elements with respect to their position in π).

• A binary relation ⩽π2 , which indicates the ordering of the elements of π according
to the natural linear ordering.

• A unary relation R such that u ∈ R if and only if u is in an even position when
ordered by ⩽π2 .

We define the FO logic formula ∃ x1, . . . , xk (ϕ), where x1, . . . , xk represent the images
of σ1, . . . , σk under a parity respecting embedding of σ into π, and where ϕ is the
conjunction of the following clauses:

• For every pair i, j, with 1 ⩽ i < j ⩽ k, σi ⩽ σj , we add the clause ψij = xi ⩽π2 xj .

• For every pair i, j, with 1 ⩽ i < j ⩽ k, σi > σj , we add the clause ¬ψij .

• The clause x1 ⩽π1 x2 ⩽π1 . . . ⩽π1 xk.

• For every i ∈ {1, . . . , k} such that σi is even, we add the clause xi ∈ R.
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The first three types of clauses model the definition of an embedding of σ into π, while
the latter defines the parity constraint.

Since the problem can be expressed using FO logic, it follows by Lemma A.1 that
Parity PPM is FPT if π avoids a fixed pattern.

A.4. Classical complexity
A.4.1. Hardness
A nice quite recent result showed that PPM remains NP-hard, even if the pattern is
321-avoiding and the text is 4321-avoiding [93]. In the following, we show that it remains
true for Parity PPM.

Theorem A.4. Parity PPM is NP-hard, even if σ is a 321-avoiding permutation and
π is a 4321-avoiding permutation.

Proof. We reduce from PPM for 321-avoiding pattern and 4321-avoiding text, which was
proven to be NP-hard in [93]. Let π ∈ Sn and σ ∈ Sk be two arbitrary 4321-avoiding
and 321-avoiding permutations, respectively. We construct a 4321-avoiding permutation
π′ ∈ S2n and a 321-avoiding permutation σ′ ∈ S2k such that σ ⪯ π if and only if σ′ ⪯P π′

(i.e., there is a parity respecting embedding of σ′ into π′). The idea is to construct two
permutations that have an embedding of the original permutations into its even elements
and such that its odd elements are placed in a manner that does not create 321 (resp.
4321) subsequences.

We construct σ′ as follows. We first multiply each element σ(i) by two, for every
i ∈ {1, . . . , k}. Then, we place each (missing) odd element j ∈ {3, ..., 2k − 1} to the
right of j − 1 and we let 1 be the leftmost element of the permutation. The text π′

is also constructed following the same procedure. This construction is clearly done in
polynomial time.

Claim A.8. The constructed permutations σ′ and π′ are indeed 321-avoiding and 4321-
avoiding, respectively.

Proof. We will only prove it for σ′ as the argument for π′ is the same. Suppose towards
a contradiction that there is a 321 subsequence in σ′. Since σ is 321-avoiding and
there is an embedding of σ into the even elements of σ′ (by construction), we have that
there must be at least one odd element in the 321 subsequence. We will prove that
we can replace each of the odd elements j of the 321 subsequence by the even element
j − 1 and still preserve said decreasing subsequence, which contradicts the fact that
the original permutation σ was 321-avoiding. Indeed, if an odd element j belongs to a
321 subsequence, then its left neighbour j − 1 cannot be part of this subsequence, as
j − 1 < j. Thus, any element to the left of j in the subsequence is also to the left of
j − 1 in σ′, and it has to be greater than both j and j − 1. On the other hand, every
element to the right of j is trivially to the right of j − 1, and since there are no values
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between j − 1 and j, every element smaller than j in a 321 subsequence, is also smaller
than j − 1. Both conditions imply that we could replace the odd element j by j − 1
in the subsequence and preserve the existing decreasing subsequence of length 3, which
contradicts the assumption that σ is 321-avoiding. ◁

To finish the proof, we will show that σ′ ⩽P π′ if and only if σ ⩽ π. To see that if
σ′ ⩽P π′ then σ ⩽ π, notice first that there is an embedding of σ into the even elements
of σ′ and an embedding of π into the even elements of π′. Thus, since there is a parity
respecting embedding of σ′ into π′, then the even elements of σ′ are mapped to π′, which
implies that, by construction, there is an embedding of σ into π.

For the converse implication, assume that there is an order isomorphism from σ to π
and let f : [k] −→ [n] be the associated injective mapping. Then, we build f ′ : [2k] −→
[2n] as follows:

f ′(i) =


1 if i = 1
2 f

(
i
2

)
if i is even

2 f
(

i−1
2

)
+ 1 if i is odd

(A.5)

It is clear that f ′ is well defined and it is an order isomorphism. Indeed, f is an order
isomorphism from the even (resp. odd) elements of σ′ to the even (resp. odd) elements
of π′.

A.4.2. Polynomial-time solvable cases

For some specific cases of Permutation Pattern Matching, polynomial time algo-
rithms that solve the problem exactly have been proposed. Here, we show that some of
these algorithms can be adapted to solve the problem Parity Permutation Pattern
Matching while still running in polynomial time.

Theorem A.5. Let σ be a permutation in Sk and π be a permutation in Sn. Parity
PPM can be solved in polynomial time in the following cases:

1. The pattern σ is separable. In particular, if both permutations are (231, 213)-
avoiding, it can be solved in linear time.

2. Both permutations are 321-avoiding.

Proof. 1. For separable patterns, we adapt the algorithm by Bose et al. [25]. As
in the original algorithm, we use the separating tree T of the pattern σ, and
we solve one subproblem for each node V and for each substring (πi, ..., πj) of π
and each subrange a, a + 1, ..., b of the range 1, ..., n. For each subproblem, we
count the number of matches M(V, i, j, a, b) of the pattern σl, ..., σm (the substring
corresponding to the subtree rooted at V ) into text πi, ..., πj , using πi, and using
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text values in the range a, . . . , b (i.e., a ⩽ πk ⩽ b for all k with i ⩽ k ⩽ j), including
a.
The solutions to the subproblems for the leaves of the tree T are immediately
obtained: we have a parity match if and only if there is a regular match and the
two elements have the same parity, that is, M(V0, i, j, a, b) = 1 if and only if πi = a
and the parity of the element corresponding to leaf V0 is the same as the parity of
πi.
The way to compute M(V, i, j, a, b) based on the values of M for the children of
node V is exactly the same as in the original algorithm. The correctness of the
algorithm follows directly from the fact that we can view the parity respecting
embeddings of σ into π as a subset of the general embeddings.
Since we only introduce an operation on the leaves that can be carried out in
constant time, the running time of this modified algorithm is still O(kn6).
In particular, if both σ and π are (231, 213)-avoiding permutations, we can adapt
the algorithm for general PPM by Neou et al. [122], which still runs in linear time
for the parity version. Indeed, instead of considering a bijection between the set
of wedge permutations of size n and the set of binary words of size n − 1, we
can consider a bijection between the set of wedge permutations of size n and the
set of quaternary words, that is, words over an alphabet of size 4. We follow the
same notation as in [122] and we say that an element πi is a right-to-left maximum
(RLMax) of π if it is the topmost element of πi . . . πn, and a right-to-left minimum
(RLMin) if and only if it is the bottommost element of πi . . . πn. Then, given a
subsequence s, the quaternary word B(s) is the word where the letter at position i
indicates whether s[i] is an even RLMax element, an odd RLMax element, an even
RLMin element or an odd RLMin element. To solve the problem, we can follow
the same procedure and read both B(σ) and B(π) from left to right, and when
two letters are equal, we match them and move to the next in both words (if they
exist). Otherwise we stay at the same letter of B(σ) but move to the next one in
B(π) (if it exists). We accept exactly when all letters of B(σ) have been matched.
This algorithm runs in linear time.

2. For 321-avoiding permutations, we adapt the polynomial-time algorithm for general
PPM given by Albert et al. in [4] and show that it can be extended to the parity
version. Following the notation of the paper, we define the set of upper and lower
elements of π, Uπ and Lπ, respectively. An element x belongs to Uπ (resp., Lπ)
if there exists an embedding of 21 into π such that x is the image of 2 (resp., 1).
The union of upper and lower elements forms the set of rigid elements, and we say
that a permutation is rigid if all of its elements are rigid, while elements that are
neither upper or lower are referred to as fluid, and a permutation is said to be fluid
if it contains fluid elements. We also say that a map f : σ −→ π is a rigid mapping
if f maps upper (resp., lower) elements of σ to upper (resp., lower) elements of π.
Furthermore, we define x◀T (x),p(x) as the rightmost element that is to the left of x
and has the same type (i.e., upper or lower) and parity as x, and similarly for the
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other directions (right, up and down). We refer the reader to [4] for more detailed
definitions.
As in the original paper, we first see how to adapt the algorithm for rigid permu-
tations, and then extend it for fluid elements. The main result that the algorithm
makes use of gets transformed into:
Proposition A.6. Suppose that e : σ −→ π is a parity respecting embedding,
f : σ −→ π is a rigid mapping respecting parity, and, for all x ∈ σ, f(x) ⩽ e(x).
Then, for all x ∈ σ:

max
{
f(x◀)▶T (x),p(x), f(x▼)▲T (x),p(x)

}
⩽ e(x)

Proof. Let us first see that f(x◀)▶T (x),p(x) ⩽ e(x). Since x lies strictly to the
right of x◀ (and e is a parity respecting embedding), e(x) lies strictly to the
right of e(x◀), and is of the same type and parity as x, so it cannot lie to the
left of e(x◀)▶T (x),p(x). Thus, e(x◀)▶T (x),p(x) ⩽ e(x). But f(x◀) ⩽ e(x◀) and so
f(x◀)▶T (x),p(x) ⩽ e(x◀)▶T (x),p(x) ⩽ e(x).
The other case is analogous. ◁

We say that element x is a problem if f(x) < max
{
f(x◀)▶T (x),p(x), f(x▼)▲T (x),p(x)

}
and we denote by P (f) the set of problems for f .
Corollary A.2. Let σ be a rigid permutation and π a 321-avoiding permutation.
A rigid mapping f respecting parity is a parity respecting embedding of σ into π if
and only if the set of problems P (f) is empty.

Proof. The proof is analogous to the one on [4] replacing f(x◀)▶T (x) by f(x◀)▶T (x),p(x).
If f is a parity respecting embedding, it follows from the proposition above that
no element x ∈ σ violates the condition, and thus P (f) is empty. For the converse
implication, assume that f is not a parity respecting embedding. Then, there
exists x ∈ σ such that f(x) is below or equal to f(x▼) or such that f(x) is left
or equal to f(x◀). In the first case, we would have that f(x) is strictly below
f(x▼)▲T (x),p(x) and so x ∈ P (f). In the second case, if f(x) is left or equal to f(x◀),
then f(x) is strictly left of f(x◀)▶T (x),p(x). Now, for f(x), f(y) ∈ σ of the same
type and parity, f(x) is left of f(y) if and only if f(x) is below f(y). And since f
preserves types and parity, f(x) and f(x◀)▶T (x),p(x) have the same type and parity,
so f(x) < f(x◀)▶T (x),p(x), which implies x ∈ P (f). ◁

We now describe the adaptation of the original algorithm, which given a rigid
permutation σ and a 321-avoiding permutation π as input, returns the minimum
parity respecting embedding emin of σ into π if it exists and fails otherwise. Note
that there exists a minimum parity respecting rigid embedding emin since these
rigid embeddings form a distributive lattice. Let f0 be the map that sends all the
even elements of Uσ to the least even element of Uπ and all the odd elements of Uσ

to the least odd element of Uπ, and similarly for Lσ and Lπ. It is clear that f0 is a
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parity respecting rigid mapping of σ into π. The algorithm is shown in Algorithm
1.

Algorithm 2 Algorithm
Initialise f as f0
Compute P (f)
while f is defined everywhere and P (f) is not empty do

Choose x ∈ P (f)
Update:
f(x)←− max{f(x◀)▶T (x),p(x), f(x▼)▲T (x),p(x)}
Recompute P (f)

end while
return f

The proof of correctness and run-time analysis of the modified algorithm are anal-
ogous to those of the original one. Thus, the running time remains O(kn).

Finally, we extend the algorithm to fluid elements, using the fact that any 321-
avoiding permutation has a unique decomposition as a direct sum, where each
term is either rigid or a singleton. Given a parity respecting embedding ei of
σ1

⊕
σ2

⊕
· · ·

⊕
σi into π, we will construct a pair of parity respecting embeddings

of σ1
⊕
σ2

⊕
· · ·

⊕
σi+1 into π such that at least one extends to a parity respecting

embedding of σ into π. Let Ti be the set of elements that lie above and to the right
of the image of ei. Then, the image of e restricted to the elements corresponding
to σi+1 is contained in Ti. There are three cases:

• σi+1 is rigid: in this case, we use the algorithm above to find the minimal
parity respecting embedding of σi+1 into Ti.

• σi+1 is a singleton and Ti restricted to the elements with the same parity
begins with its least element: we map σi+1 to that element.

• σi+1 is a singleton and the first element of Ti with the same parity is not
its minimum: then we can extend ei in two ways, either to the leftmost
element of Ti with the same parity or to the minimum element with the same
parity. Note that given two partial embeddings of σ1

⊕
σ2

⊕
· · ·

⊕
σi, they

might extend to three or four candidate embeddings of σ1
⊕
σ2

⊕
· · ·

⊕
σi+1,

but we only need to keep the ones where the image of the singleton σi+1 is
minimal within either Uπ or Lπ.

The running time of the modified algorithm is again O(kn), as checking the parity
of the elements can be done in constant time.

As a final remark, note that other polynomial-time algorithms for specific cases of
PPM might also be adaptable for Parity Permutation Pattern Matching. For ex-
ample, the algorithm of Berendsohn et al. that formulates PPM as a CSP instance [16],
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with runtime O(ntw(σ)+1), where tw(σ) is the tree-width of the incidence graph of σ,
can also be modified for the parity-respecting case by restricting the domain of the vari-
ables of the CSP problem so that the domain of each variable contains only the indices
corresponding to elements of the same parity (note that this algorithm is more general,
but can have a worse running time in the specific cases studied here, as the tree-width
of separable permutations can be as high as 7 [3], and the tree-width of 321-avoiding
permutations is not upper-bounded by a constant [16]).

148



B. Hardness of Balanced Mobiles

Measuring tree dissimilarity and studying the shape of trees are important tasks in
phylogenetics. One of the most studied shape properties is the notion of tree imbalance,
which can be quantified by different indicators, such as the Colless index. Here, we study
the generalization of the Colless index to mobiles, i.e., full binary trees in which each
leaf has been assigned a positive integer weight. In particular, we focus on the problem
Balanced Mobiles, which given as input n weights and a full binary tree on n leaves,
asks to find an assignment of the weights to the leaves that minimizes the Colless index,
i.e., the sum of the imbalances of the internal nodes (computed as the difference between
the total weight of the left and right subtrees of the node considered). We prove that
this problem is strongly NP-hard, answering an open question given at IWOCA 2016.

B.1. Introduction

Phylogenetics is the study of evolutionary relationship among biological entities (taxa).
Its main task is to infer trees whose leaves are bijectively labeled by a set of taxa
and whose patterns of branching reflect how the species evolved from their common
ancestors (phylogenetic trees). The inferred trees are often studied by comparing them
to other phylogenetic trees or to existing models. Thus, it is important to be able to
formally quantify how different trees differ from each other and to have measures that
give information about the shape of the trees. With respect to the latter, one of the
most studied shape properties of phylogenetic trees is that of tree balance, measured by
metrics such as the Sackin index [137] or the Colless index [40] (see also the survey of
Fischer et al. [61]). The Colless index is defined for binary trees as the sum, over all
internal nodes v of the tree, of the absolute value of the difference of the number of
leaves in the two children of v. It is one of the most popular and used metrics, see for
example [14, 121, 46, 19, 140].

The natural generalization with weights on the leaves has later been studied within
mobiles1, defined as full binary trees with positive weights on their leaves. In particular,
given a set of n integer weights {w1, . . . , wn}, the problem Balanced Mobiles asks
to find a mobile whose n leaves have weights w1, . . . , wn, and which minimizes the total
Colless index (i.e., the sum of the imbalances |x − y| of every internal node, where x
and y represent the total weight of the leaves on the left and right subtrees of the node
considered) [89]. Despite being a natural generalization, the complexity of this problem

1The term ”mobile” comes from what can be found in modern art (e.g. the ones of Calder, well known
in TCS being the illustration of the cover of the famous book CLRS’ Introduction to Algorithms [42])
or the toy above toddler beds [89].

149



B. Hardness of Balanced Mobiles

is still not yet known. In fact, it was proposed as an open problem by Hamoudi, Laplante
and Mantaci in IWOCA 2016 [88].

Still, some results are known for some specific cases. For example, if all the leaves
have unit weight, it is known that building a partition tree or a left complete tree are
both optimal solutions, and their imbalance can be computed in polynomial time using
a recursive formula. On the other hand, if all the weights are powers of two or if a
perfectly balanced mobile can be constructed, the well known Huffman’s algorithm [90]
is optimal. This algorithm recursively builds a mobile by grouping the two smallest
weights together (where the weight of the constructed subtree is added to the list of
weights in each step).

With respect to the complexity, it is only known that the problem is in the parame-
terized class XP, parameterized by the optimal imbalance [89] (i.e. it is polynomial for
constant values of the parameter). This result was obtained by using a relaxation of
Huffman’s algorithm, which gives an algorithm of complexity O(log(n)nC∗), where C∗

is the optimal imbalance. An ILP is also given to solve the problem [89]. However, no
polynomial time approximation algorithm has been proposed for this problem, although
it is known that Huffman’s algorithm does not construct an approximate solution in the
general case, being arbitrarily far away from the optimum for some instances [89].

In this paper, we shed some light into the complexity of the problem by showing that
Balanced Mobiles is strongly NP-hard when both the full binary tree and the weights
are given as input.

B.2. Preliminaries

We first give the necessary definitions to present the problem.

Definition B.1. A full binary tree is a rooted tree where every node that has at least
one child has precisely two children. A full binary tree is said to be perfect when all its
leaves are at the same depth. The depth d(v) of a node v is defined by

d(v) :=
{

0 if v = r, the root,
1 + d(F (v)) otherwise,

where F (v) denotes the father of node v. Also, for every non-leaf node v, L(v) (resp.,
R(v)) denotes the left (resp., right) child of node v.

Definition B.2. A binary tree is said to be leaf-weighted when a natural number w(v) is
assigned to each one of its leaf nodes v. Then, the recurrence w(v) := w(L(v))+w(R(v))
extends w defining it also on every internal node v as the total weight over the leaves of
the subtree rooted at v. A leaf-weighted full binary tree is also called a mobile.

In this paper, we focus only on the Colless index to measure the balance of mobiles.
Thus, we will just refer to the cost at each node as imbalance, and to the total Colless
index of the tree as the total cost.

150



B.3. Balanced Mobiles is NP-hard in the strong sense

Definition B.3. The imbalance of an internal node v is defined as imb(v) := |w(L(v))−
w(R(v))|. The total cost of a leaf-weighted full binary tree (mobile) is the sum of the
imbalances over the internal nodes. If the total cost is equal to 0, the mobile is said to
be perfectly balanced.

We can now define the problem Balanced Mobiles studied in this paper.

Instance: n natural numbers and a full binary tree T with n leaves.
Goal: Assign each number to a different leaf of the given full binary tree

in such a way that the sum of the imbalance over the internal
nodes of the resulting leaf-weighted binary tree is minimum.

Balanced Mobiles

B.3. Balanced Mobiles is NP-hard in the strong sense
We prove that Balanced Mobiles as formulated above is NP-hard in the strong sense.

To do so, we will reduce from ABC-partition, a variant of the problem 3-partition
which we define below.

Instance: A target integer T , three sets A,B,C containing n integers each
such that the total sum of the 3n numbers is nT .

Goal: Construct n triplets, each of which contains one element from A,
one from B and one from C, and such that the sum of the three
elements of each triplet is precisely the target value T .

ABC-partition

The ABC-partition problem is known to be strongly NP-hard, that is, it is NP-hard
even when restricted to any class of instances in which all numbers have magnitude
O(poly(n)). This fact is reported in [70], where the problem, labeled as [SP16], is also
called Numerical 3-D Matching, as it can also be reduced to the 3-Dimensional
Matching problem.

B.3.1. Preliminary steps on the ABC-partition problem
As a first step in the reduction, given an instance of ABC-partition, we will reduce it
to an equivalent instance of the same problem with some specific properties that will be
useful for the final reduction.

A class of instances is called shallow when it comprises only instances all of whose
numbers have magnitude O(poly(n)). Since we aim at proving strong NP-hardness of the
target problem, we need to make sure that, starting from any shallow class of instances,
the classes of instances produced at every step remain shallow.

We start with some easy observations.

Observation B.1. For any natural constant k, we can assume that all numbers are
divisible by 2k, simply by multiplying all of them by 2k.
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Note that, since k is a constant, after this first reduction we are still dealing with a
shallow class of instances.

For the next step, we assume all numbers are greater than 1, which follows from the
above with k = 1.

Observation B.2. We can then assume that n is a power of two, otherwise, let h be
the smallest natural such that 2h > n, we can just add 2h−n copies of the number T −2
to the set A, and 2h − n copies of the number 1 to both sets B and C.

Note that we are still dealing with a shallow class of instances.
The next step requires to be more formal. Assume the three given sets of natural

numbers to be A = {a0
1, a

0
2, . . . , a

0
n}, B = {b0

1, b
0
2, . . . , b

0
n} and C = {c0

1, c
0
2, . . . , c

0
n}, the

target value to be T 0 and let M0 be the maximum number in A ∪ B ∪ C. Here, M0 =
O(poly(n)) since this generic instance is taken from a shallow class. Consider the instance
of the problem where the n input numbers and the target value T 0 are transformed as
follows:

a1
i := a0

i + 8n2M0 for every i = 1, 2, ..., n
b1

i := b0
i + 4n2M0 for every i = 1, 2, ..., n

c1
i := c0

i + 2n2M0 for every i = 1, 2, ..., n
T 1 := T 0 + 14n2M0

M1 := T 1

Notice that the new M1 does not represent any longer the maximum value of the
numbers of the input instance because it is equal to T 0 + 14n2M0, while the value of
ever number is bounded above by a0

i + 8n2M0. The role that parameter M1 plays in
our reduction will be seen only later.

Clearly, this new instance is equivalent to the previous one in the sense that either
both or none of them are yes-instances of ABC-partition. Moreover, this reduction
yields a shallow class of instances C1 when applied to a shallow class of instances C0.
Therefore, thanks to Observation B.2 and this transformation, we can assume that we
are dealing with a shallow class of instances each of which satisfies the following two
properties:

n is a power of two (B.1)
b > c and a > b+ c for every a ∈ A, b ∈ B and c ∈ C. (B.2)

B.3.2. ABCDE-partition problem

Once Properties (B.1) and (B.2) are in place, we create a next equivalent instance
through one further reduction, this time yielding an instance of a slightly different version
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of the multi-dimensional partition problem, the ABCDE-partition problem, which we
define below.

Instance: A target integer T , five sets A,B,C,D,E, with n integers in each,
such that the sum of the numbers of all sets is nT .

Goal: Construct n 5-tuples, each of which contains one element of each
set, with the sum of these five elements being precisely T .

ABCDE-Partition

If not known, the next transformation in our reduction proves that this variant is also
strongly NP-hard. In fact, where a1

i , b
1
i , c

1
i ,M

1, T 1 comprise the modified input of the
ABC-partition problem after the last transformation detailed just above, consider the
equivalent instance of the ABCDE-partition problem where the input numbers and
the target value are defined as follows:

ai := a1
i + 8n2M1 for every i = 1, 2, ..., n

bi := b1
i + 4n2M1 for every i = 1, 2, ..., n

ci := c1
i + 2n2M1 for every i = 1, 2, ..., n

di := n2M1 for every i = 1, 2, ..., n
ei := n2M1 for every i = 1, 2, ..., n
T := T 1 + 16n2M1

M := M1

Notice that, once again, the new M parameter does not represent the maximum value
of the numbers comprising the new input instance. In fact, it is significantly smaller.

Thanks to this last transformation, we see that the ABCDE-Partition problem is
NP-hard even when restricted to a shallow class of instances each of which satisfies the
following three properties:

n is a power of two (say n = 2h) (B.3)
the numbers in D ∪ E are all equal (B.4)

c > d+ e, b > c+ d+ e and a > b+ c+ d+ e,

for every (a, b, c, d, e) ∈ A×B × C ×D × E (B.5)

This instance also possesses other useful properties that we will exploit in the reduction
to the Balanced Mobiles problem we are going to describe next.

B.3.3. Reduction to Balanced Mobiles
To the above instance (T,A,B,C,D,E) of ABCDE-Partition, we associate the fol-
lowing instance (T ,W ) of Balanced Mobiles:
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Weights (W ). Besides the weights ai, bi, ci, di, ei defined above for every i = 1, 2, ..., n,
we also introduce n = 2h copies of the number T . Notice that all these numbers have
magnitude O(poly(n)) since it was assumed that M = O(poly(n)).

Full binary tree (T ). Before describing how to construct the tree T , which completes
the description of the instance and the reduction, we still have one proviso.

While describing how to obtain the instance of the target problem from the instance
of the source problem, it often helps to describe simultaneously how to obtain a yes-
certificate for the target instance from a hypothetical yes-certificate for the source in-
stance. Hence, let σB and σC be two permutations in Sn meant to encode a generic
possible solution to the generic ABCDE-partition problem instance (since all the ele-
ments in D and E are equal, it is enough to consider these two permutations). The pair
(σB, σC) is a truly valid solution, i.e., a yes-certificate, iff ai +bσB(i) +cσC(i) +di +ei = T
for every i = 1, 2, ..., n. We are now going to describe not only how to construct an
instance of the target problem but also a solution S = S(σB, σC) for it, which depends
solely on the hypothetical yes-certificate (σB, σC).

The tree T and the solution S = S(σB, σC) are constructed as follows:
1. Start with a perfect binary tree of height h + 1, with 2n = 2(h+1) leaves. Its n

internal nodes at depth h are called test nodes, denoted ti, i ∈ [n] (also called r0
i ).

This tree is a full binary tree thanks to Property B.3. Moreover, each test node
ti will next become the root of a subtree of depth 5, all these subtrees having the
very same topology, described in the following and illustrated in Figure B.1.

2. For i = 1, ..., n, the left child of the test node ti is a leaf of the subtree rooted at
ti (and hence also of the global tree under construction). The certificate assigns
one different copy of T to each left child of a test node. These n nodes will be the
only leaves at depth 2n = 2(h+1) in the final tree under construction. However, the
right child of ti, called r1

i , has two children described next.

3. The left child of r1
i is a leaf, and the certificate assigns to this leaf the number ai.

On the other hand, the right child of r1
i , which we denote r2

i , will not be a leaf,
which means that it has two children, described next.

4. In the next step, we also let the left child of r2
i be a leaf. The certificate assigns

the number bσB(i) to the left child. On the other hand, the right child of r2
i , called

r3
i , will have two children, described next.

5. As before, the left child of r3
i is also a leaf, and the certificate assigns the number

cσC(i) to it. The right child of r3
i , called r4

i , will also have two children, but, finally,
both of them are leaves: to the left (resp., right) child leaf, the certificate associates
the number di (resp., ei).

The set I of the internal nodes of T partitions into I< and I⩾, those of depth less
than h and those of depth at least h, respectively. In other words, all the strict ancestors
of test nodes ti versus I⩾ = ⋃

i=1,...,n{ti, r1
i , r

2
i , r

3
i , r

4
i }. We also define I> as the set of

internal nodes at depth strictly greater than h.
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Figure B.1.: Subtree rooted at the test node ti with a canonical weight assignment.
Recall that in the full tree T , a full binary tree connects all the test nodes
ti.

Definition B.4. A weight assignment is called canonical if it is of the form S(σB, σC)
for some pair (σB, σC). Equivalently, the canonical assignments are those where all 2n
leaf nodes at depth h + 5 have been assigned one different copy of weight Mn2, and all
n leaf nodes at depth h+ 1 (resp., h+ 2, h+ 3, or h+ 4) have weight precisely T (resp.,
falling in the interval (8n2M, 8n2M +M), (4n2M, 4n2M +M), or (2n2M, 2n2M +M)).

The NP-hardness result now follows from the following discussion.

Lemma B.1. The total imbalance cost of S(σB, σC) in the nodes I< ∪ {ti | i ∈ [n]} is
equal to 0 if and only if S(σB, σC) encodes a yes-certificate.

Proof. First of all, the imbalance at the internal node ti is equal to 0 if and only if

T = ai + bi + ci + di + ei

or equivalently,
T 1 = a1

i + b1
i + c1

i

for every i ∈ [n]. That is, every 5-tuple (resp., every triplet) needs to sum up to T
(resp., T 1), the target value. To complete the proof, we just need to observe that nodes
at depth h− 1 have as children two test nodes. Thus, their imbalance is 0 if and only if
the two test nodes have exactly the same weight (equivalently, the triplets associated to
them sum to the same value). Going up the (full binary) tree, it is easy to see that we
need all the test nodes to have exactly the same weight, i.e., all the 5-tuples to sum up
to the same value.

Lemma B.2. The total imbalance cost of S(σB, σC) is greater or equal to
∑n

i=1(a1
i −c1

i )
and equality holds if and only if S(σB, σC) encodes a yes-certificate.

Proof. We have already seen in B.1 that ∑
v∈I<∪{ti} imb(v) = 0 if and only if S(σB, σC)

encodes a yes-certificate. We will now prove that ∑
v∈I>

imb(v) = ∑n
i=1(a1

i − c1
i ) for

canonical assignments, from where the result follows. First, for any canonical assignment,
imb(r4

i ) = n2M − n2M = 0 for every i = 1, . . . , n. We will next see that, for every
canonical assignment, ∑

v∈{r1
i ,r2

i ,r3
i : i=1,...,n} imb(v) = ∑n

i=1(a1
i − c1

i ).
First of all,

n∑
i=1

imb(r3
i ) =

n∑
i=1
|ci − w(r4

i )| =
n∑

i=1
|(c1

i + 2n2M)− 2n2M | =
n∑

i=1
c1

i
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Similarly,
n∑

i=1
imb(r2

i ) =
n∑

i=1
|bi − w(r3

i )| =
n∑

i=1
|b1

i − c1
i | =

n∑
i=1

(b1
i − c1

i )

where the last equality follows from the property that bi > ci. Finally,
n∑

i=1
imb(r1

i ) =
n∑

i=1
|ai − w(r2

i )| =
n∑

i=1
|a1

i − (b1
i + c1

i )| =
n∑

i=1
(a1

i − b1
i − c1

i )

where again we use the property that a1
i > b1

i + c1
i . Thus, summing all the costs below

every test node, we get that the total cost is
n∑

i=1
((a1

i − b1
i − c1

i ) + (b1
i − c1

i ) + c1
i ) =

n∑
i=1

(a1
i − c1

i )

Before continuing, note that ∑n
i=1(a1

i − c1
i )≪ n2M . Indeed,

n∑
i=1

(a1
i − c1

i ) ⩽
n∑

i=1
(M0 + 8n2M0 − 2n2M0) ⩽ nM

The last inequality follows since M = T 0 + 14n2M0, which is clearly greater than the
term in the sum.

Lemma B.3. Any assignment f of cost less than n2M is canonical.

Proof. Let f be any assignment of cost less than n2M . Notice that the constructed tree
has precisely n internal nodes whose two children are both leaves (those labeled r4

i ).
At the same time, we have 2n weights of value n2M , whereas all other weights exceed
2n2M . Therefore, all copies of weight n2M should be assigned to the leaves that are
children of some r4

i , that is, to the 2n nodes of largest depth h + 5. Indeed, if at least
one of the copies of weight n2M were assigned to a node which is not at largest depth,
then the imbalance at its parent node would be |n2M −wr|, with wr being the weight of
the right child, which is always greater or equal than 2n2M . Thus, the imbalance would
be already at least n2M .

After this, we can go up the tree. The n nodes of weight in the interval [2n2M, 2n2M+
M ] are mapped to nodes that are left children of r3

i nodes (all leaf nodes at depth h+4).
Otherwise, the weight of that node would be at least 4n2M , yielding an imbalance of
at least 2n2M . Similarly, the n nodes of weight in the interval [4n2M, 4n2M + M ] are
mapped to nodes that are left children of r2

i nodes (all leaf nodes at depth h + 3), and
the n nodes of weight in the interval [8n2M, 8n2M +M ] are mapped to nodes that are
left children of r2

i nodes (all leaf nodes at depth h + 2). Finally, the n nodes of weight
T are mapped to nodes that are left children of test nodes ti (all leaf nodes at depth
h+ 1).
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B.4. Conclusion

This shows that if we want an assignment of cost less than n2M , then every weight,
while it can be assigned to the leaves of a subtree rooted at any of the test nodes ti, it
has to be assigned to a leaf node of the right depth/category. But then f is a canonical
assignment.

Theorem B.1. Balanced Mobiles is strongly NP-hard.

Proof. We have described a log-space reduction that, given a generic instance I of
ABCDE-partition yields an instance (T ,W ) of Balanced Mobiles and a lower
bound L := ∑n

i=1(a1
i − c1

i ) such that:

1. Every possible solution to (T ,W ) has total imbalance cost at least L.

2. (T ,W ) admits a solution of cost L iff I is a yes-instance of the ABCDE-partition
problem.

This already shows that the Balanced Mobiles optimization problem is NP-hard. The
Balanced Mobiles problem is strongly NP-hard because the ABCDE-partition
problem is strongly NP-complete, and when the reduction is applied on top of any
shallow class of instances of ABCDE-partition, it yields a shallow class of instances
of Balanced Mobiles.

Note that this implies that the decision version of the problem is (strongly) NP-
complete. Indeed, one can check that the problem is in NP because given a potential
solution, it can be verified in polynomial time whether it is valid or not.

B.4. Conclusion
We have shown that Balanced Mobiles is strongly NP-hard when the full binary tree
is given as input. However, note that the complexity when the tree is not given remains
open. Indeed, our reduction cannot be directly extended to this case since then, there
is no structure to ensure that weights of set A are grouped with weights of sets B and
C. On the other hand, the complexity when the weights are constant is also unknown,
as in our proof, the constructed weights depend on n. Finally, with respect to the
parameterized complexity, as we mentioned before, it is only known that the problem
is in the parameterized class XP, parameterized by the optimal imbalance [89], so other
future work includes to study whether there exists a fixed parameter algorithm or not.
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[7] Virginia Ardévol Mart́ınez, Romeo Rizzi, Abdallah Saffidine, Florian Sikora, and
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tation Pattern Matching for Doubly Partially Ordered Patterns. In Proc. of CPM,
volume 223 of LIPIcs, pages 21:1–21:17, 2022.

[29] Laurent Bulteau, Romeo Rizzi, and Stéphane Vialette. Pattern Matching for k-
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[68] Philippe Gambette and Stéphane Vialette. On restrictions of balanced 2-interval
graphs. In WG 2007, volume 4769 of LNCS, pages 55–65. Springer, 2007. doi:
10.1007/978-3-540-74839-7\_6.

[69] Frédéric Gardi. The Roberts characterization of proper and unit interval graphs.
Discret. Math., 307(22):2906–2908, 2007. doi:10.1016/j.disc.2006.04.043.

164

https://doi.org/10.1007/s00453-017-0328-y
https://doi.org/10.1007/s00453-017-0328-y
https://doi.org/10.1007/S00453-017-0328-Y
https://doi.org/10.1016/j.tcs.2008.09.065
https://doi.org/10.1007/BF01190507
https://arxiv.org/abs/2109.12281
https://arxiv.org/abs/2109.12281
https://doi.org/10.48550/ARXIV.2109.12281
https://doi.org/10.1007/s00453-013-9828-6
https://doi.org/10.1007/s00453-013-9828-6
https://doi.org/10.1007/978-3-540-74839-7_6
https://doi.org/10.1007/978-3-540-74839-7_6
https://doi.org/10.1007/978-3-540-74839-7_6
https://doi.org/10.1016/j.disc.2006.04.043


Bibliography

[70] M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.
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matching in (213, 231)-avoiding permutations. Discret. Math. Theor. Comput.
Sci., 18(2), 2016. URL: http://dmtcs.episciences.org/3199.

[123] Rolf Niedermeier. Invitation to fixed-parameter algorithms, volume 31. OUP Ox-
ford, 2006.
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Résumé étendu en français

Dans ce qui suit, certains termes techniques resteront en anglais. Les graphes d’intersection
ont été largement étudiés dans la littérature, car ils sont importants à la fois d’un point de
vue théorique et pratique [118]. Étant donnée une famille d’ensembles F = {S1, . . . , Sk},
nous définissons le graphe d’intersection de F , noté Ω(F), comme le graphe ayant F
comme ensemble de sommets, où le sommet Si est adjacent au sommet Sj si et seule-
ment si i ̸= j et que l’intersection des ensembles est non vide, c’est-à-dire Si ∩ Sj ̸= ∅.
Un graphe est un graphe d’intersection s’il existe une famille F telle que G = Ω(F). La
famille F est alors appelée une représentation en ensembles ou modèle de G.

Il existe de nombreux types différents de graphes d’intersection. Dans cette thèse,
nous étudions des sous-classes particulières des graphes d’intersection, notamment, les
graphes d’intervalles et leurs généralisations.

Graphes d’intervalles
Définition. Un graphe G = (V,E) est un graphe d’intervalles s’il existe une bijection des
sommets de G vers un multiensemble d’intervalles, f : V → I, telle qu’il existe une arête
entre deux sommets u et v si et seulement si leurs intervalles correspondants se croisent,
c’est-à-dire, si f(u) ∩ f(v) ̸= ∅. Le multiensemble I est appelé une représentation
d’intervalles de G (ou modèle d’intervalles dans certaines références).

Cette classe de graphes a été largement étudiée, principalement en raison de ses nom-
breuses applications en planification, allocation de ressources et bioinformatique [12, 151,
39], mais aussi en raison de ses avantages algorithmiques : de nombreux problèmes NP-
difficiles deviennent résolubles en temps linéaire lorsqu’ils sont restreints à cette classe
de graphes, par exemple, dominating set [23] ou Hamiltonian cycle [100]. L’un des rares
problèmes classiques qui reste NP-complet dans cette classe de graphes est maximum
cut [2].

La première caractérisation des graphes d’intervalles a été donnée par Lekkerkerker et
Boland [109].

Théorème ([109]). Un graphe non orienté G est un graphe d’intervalles si et seulement
si les deux conditions suivantes sont satisfaites :

1. G ne contient pas de cycles induits de longueur supérieure à trois.
2. G ne contient aucun triplet astéröıdal (un ensemble de trois sommets d’un graphe

forme un triplet astéröıdal si, pour chaque paire de sommets, il existe un chemin
les contenant qui ne passe pas par un voisin du troisième sommet).
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(a) C4 (b) T2 (c) X31 (d) XFn+1
2

(e) XFn
3

Figure 1.: Sous-graphes induits interdits pour les graphes d’intervalles

Théorème ([109]). Un graphe G est un graphe d’intervalles si et seulement s’il ne
contient aucun des graphes Cn+4, T2, X31, XF

n+1
2 ou XFn

3 comme sous-graphe induit
(voir Figure 1 pour une illustration des sous-graphes induits interdits).

Arbres PQ Étant donné un ensemble fini X et une collection I de sous-ensembles de
X, les arbres PQ servent à représenter toutes les permutations de X dans lesquelles les
membres de chaque sous-ensemble I ∈ I apparaissent comme une sous-suite consécutive
de la permutation. Formellement, un arbre PQ T est un arbre enraciné dont les feuilles
sont étiquetées de manière bijective par les éléments de l’ensemble X et dont les nœuds
internes sont de deux types, chacun imposant une contrainte différente sur l’ordre de ses
enfants :

• Nœuds P : ses enfants peuvent apparâıtre dans un ordre arbitraire.
• Nœuds Q : ses enfants doivent apparâıtre dans l’ordre donné (jusqu’à inversion).

Les nœuds P sont représentés par un cercle et les nœuds Q par un carré. Nous pouvons
représenter un graphe d’intervalles comme un arbre PQ où l’ensemble X est l’ensemble
des cliques maximales (les lignes de la matrice de cliques), et la famille I est composée
des ensembles de toutes les cliques partageant un même sommet v (les sous-ensembles
de X constitués des lignes contenant un 1 dans la même colonne), pour chaque sommet
v ∈ V .

Arbres PQ modifiés Le modèle d’arbre PQ modifié (arbre MPQ) est une simplification
du modèle standard d’arbre PQ. Il assigne un ensemble (éventuellement vide) de sommets
à chaque nœud de l’arbre PQ : les nœuds P reçoivent un ensemble tandis que les nœuds
Q reçoivent un ensemble pour chacun de ses enfants (et chaque ensemble est ordonné de
gauche à droite selon l’ordre des enfants, lequel est unique jusqu’à renversement).

Plus concrètement, à un nœud P appelé P , nous assignons l’ensemble des sommets
de G contenus dans toutes les cliques maximales représentées par le sous-arbre enraciné
en P mais qui n’apparaissent dans aucune autre clique. D’autre part, à un nœud Q
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appelé Q avec des enfants Q1, . . . , Qk, (ordonnés de gauche à droite), nous assignons un
ensemble Si, appelé section, pour chaque Qi. La section Si contient tous les sommets
qui sont contenus dans toutes les cliques maximales du sous-arbre enraciné en Qi et dans
au moins un autre sous-arbre enraciné en un certain Qj (j ̸= i), mais qui n’apparaissent
dans aucune clique appartenant à un autre sous-arbre qui n’est pas sous Q.

Sous-classes des graphes d’intervalles Deux des sous-classes les plus importantes des
graphes d’intervalles sont les graphes d’intervalles propres et les graphes d’intervalles
unitaires.

Définition. Un graphe d’intervalles est propre s’il possède une représentation d’intervalles
où aucun intervalle n’est proprement contenu dans un autre, et il est unitaire s’il possède
une représentation où tous les intervalles ont une longueur unitaire.

Roberts a donné une caractérisation célèbre des graphes d’intervalles unitaires :

Théorème ([131]). Soit G = (V,E) un graphe non orienté. Alors, les propriétés suiv-
antes sont équivalentes :

1. G est un graphe d’intervalles sans K1,3 induit (étoile avec trois feuilles).

2. G est un graphe d’intervalles propre.

3. G est un graphe d’intervalles unitaire.

Graphes d’intervalles multiples
Puisque tous les graphes ne sont pas des graphes d’intervalles, il est naturel de se
demander si nous pouvons étendre l’idée de représenter des graphes par des intersec-
tions d’intervalles à tout graphe. Cela a motivé l’introduction d’un nouveau paramètre
de graphe : l’interval number, qui est en relation directe avec la classe des graphes
d’intervalles multiples.

Définition. Pour tout entier naturel d > 0, un d-intervalle (disjoint) est l’union de d
intervalles (disjoints) sur la ligne réelle.

Définition. Pour tout entier naturel d > 0, un graphe G est un graphe de d-intervalles
(disjoints) s’il existe une bijection entre les sommets de G et un multiensemble de (dis-
joints) d-intervalles, f : V → I, telle qu’il existe une arête entre deux sommets si
et seulement si leurs d-intervals correspondants s’intersectent. Le multiensemble I de
d-intervalles est appelé une représentation de d-intervalles de G, et la famille de tous
les intervalles qui composent les d-intervalles dans I est appelée la famille sous-jacente
d’intervalles de I.

Une fois ces concepts définis, nous pouvons simplement définir l’interval number i(G)
d’un graphe G comme le plus petit entier d tel que G soit un graphe de d-intervalles. De
plus, étant donné un graphe d’intervalles (multiples), nous pouvons également définir sa
profondeur, qui est une propriété structurelle de ses représentations :
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Définition. La profondeur d’une famille d’intervalles est le nombre maximum d’intervalles
qui partagent un point commun, et pour tout entier naturel d ⩾ 1, la profondeur
de représentation d’un graphe de d-intervalles est la profondeur minimale de toute
représentation de d-intervalles du graphe. Nous utilisons le terme profondeur-r comme
abréviation de profondeur de représentation au plus r.

West et Shmoys ont prouvé que déterminer si un graphe a un interval number au plus
2 (ou de manière équivalente, reconnâıtre les graphes de 2-intervalles) est un problème
NP-difficile, et ont obtenu le théorème suivant :

Théorème ([148]). Pour tout d ⩾ 2 et tout r ⩾ 3, déterminer si un graphe G admet une
représentation par d-intervalles de profondeur au plus r est un problème NP-complet.

Comme pour les graphes d’intervalles classiques, l’étude des graphes de d-intervalles
a ensuite été restreinte à certaines de ses sous-classes, telles que les graphes à intervalles
unitaires, propres, équilibrés ou (x1, . . . , xd) d-intervalles.

Définition. Un graphe de d-intervalles (disjoints) est propre s’il existe une représentation
où aucun intervalle de la famille sous-jacente n’est proprement contenu dans un autre,
et il est unitaire s’il existe une représentation de d-intervalles (disjoints) où tous les
intervalles de la famille sous-jacente ont une longueur unitaire.

Définition. Un graphe de d-intervalles (disjoints) est équilibré s’il existe une représentation
de d-intervalles (disjoints) où les d intervalles d’un même d-intervalle ont la même
longueur, mais les intervalles de différents d-intervalles peuvent différer en longueur.

Définition. Un d-intervalle disjoint est un d-intervalle (x1, . . . , xd) si les d intervalles
disjoints sont ouverts, ont des extrémités entières, et ont respectivement des longueurs
x1, . . . , xd.

Gambette et Vialette ont remarqué que la preuve de la NP-complétude donnée par
West et Shmoys pour la reconnaissance des graphes de 2-intervalles pouvait être adaptée
pour la reconnaissance des graphes de 2-intervalles équilibrés. Ils ont également montré
que la classe des graphes de 2-intervalles équilibrés est proprement contenue dans la classe
des graphes de 2-intervalles, et ont initié l’étude de la complexité de la reconnaissance des
graphes à 2-intervalles unitaires [67]. Plus tard, Jiang a réussi à prouver que les graphes
de d-intervalles unitaires de profondeur deux peuvent être reconnus en temps linéaire,
et a donné une approximation pour la reconnaissance des graphes de d-intervalles non
restreints de profondeur deux avec une erreur additive d’un [96]. Cependant, savoir si
les graphes de d-intervalles unitaires arbitraires et les graphes de d-intervalles (x, . . . , x)
peuvent être reconnus en temps polynomial est restée une question ouverte importante.
Un résumé des complexités de reconnaissance des différentes sous-classes de graphes
de d-intervalles est présenté dans Table 1, ainsi qu’un résumé des relations d’inclusion
connues entre certaines de ces sous-classes dans Figure 2.
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graphe de d-intervalles
sans restriction NP-complet
équilibré NP-complet (d = 2)
unitaire ?
(2,...,2) ?
profondeur 2 ? (+1 approximation)
profondeur 2, unitaire temps linéaire

Table 1.: Complexité de la reconnaissance de différentes sous-classes de graphes d-
intervalles avant les résultats présentés dans ce manuscrit [67, 96].

(x, . . . , x)

(x+ 1, . . . , x+ 1)

d-intervalle unitaire

d-intervalles équilibréd-intervalles disjoint équilibré

d-intervalles disjoints unitaire

d-intervalles

(d+ 1)-intervalles

Figure 2.: Relations de contenance entre certaines sous-classes de graphes d’intervalles
d pour tout d ⩾ 2 (avant les résultats présentés dans cette thèse). Une flèche
de la classe C1 à la classe C2 indique que C2 ⊊ C1.
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Discussion sur la définition des d-intervalles Dans la littérature, les graphes de d-
intervalles ont été définis à la fois comme l’union de d intervalles disjoints [13, 31, 148],
comme l’union de d intervalles pas nécessairement disjoints [145], et simplement comme
l’union de d intervalles, sans spécifier s’ils sont disjoints ou non [58, 138].

Lorsqu’il n’y a pas de restrictions sur la longueur des intervalles, cette ambigüıté n’est
pas pertinente, car les deux définitions conduisent à la même classe de graphes (puisqu’il
est possible d’étirer les intervalles associés à un même sommet qui s’intersectent pour
les rendre disjoints sans changer aucune des autres intersections).

Observation. Les classes des graphes de d-intervalles disjoints et des graphes de d-
intervalles sont équivalentes.

Cependant, si des restrictions de longueur sont imposées, l’observation précédente ne
tient pas. Pour les intervalles unitaires, on ne peut pas remplacer deux intervalles qui
s’intersectent [a, b] et [c, d], avec a < c < b < d, par [a, d], car l’intervalle résultant ne
serait pas de longueur unitaire, et l’étirer pour le rendre unitaire pourrait perturber les
autres intersections. Ainsi, dans ce cas, il ne peut être déduit que les deux définitions
des intervalles multiples conduisent à la même classe de graphes. En fait, dans cette
thèse, nous prouverons qu’elles ne le font pas. Par conséquent, nous distinguerons entre
les graphes de d-intervalles et les graphes de d-intervalles disjoints.

Un certificat pour être un graphe de 2-intervalles unitaire
Dans le Chapitre 4, nous présentons un certificat combinatoire pour déterminer si un
graphe est un graphe de 2-intervalles (disjoints) unitaire. Bien que la manière la plus di-
recte de prouver qu’un graphe donnéG appartient à cette classe de graphes soit de fournir
une représentation de de 2-intervalles (disjoints) unitaire du graphe, ce n’est pas toujours
la plus efficace. Nous prouvons qu’un graphe G est un graphe de 2-intervalles (disjoints)
unitaire si et seulement si nous pouvons obtenir un graphe d’intervalles unitaire à partir
de G en divisant chaque sommet v en deux représentants de sorte que le voisinage de
v soit contenu dans l’union des voisinages des représentants. Nous définissons formelle-
ment les divisions (disjoint) d’un graphe et l’ensemble des divisions qui mènent à des
graphes d’intervalles unitaires comme suit.

Définition. Étant donné un graphe G, une paire (S, f) formée d’un graphe S et d’une
fonction f : V (S) 7→ V (G) est une division de G si f satisfait les conditions suivantes :

• 1 ⩽ |f−1(v)| ⩽ 2 pour tout v ∈ V (G).

• Pour chaque arête (s, t) de S, (f(s), f(t)) est une arête de G.

• Pour chaque arête (u, v) de G, il existe deux sommets s et t dans f−1({u, v}) tels
que (s, t) soit une arête de S.

Définition. Étant donné un graphe G, une paire (S, f) formée d’un graphe S et d’une
fonction f : V (S) 7→ V (G) est une division disjointe de G si f satisfait les conditions de
la définition précédente ainsi que la condition supplémentaire suivante :
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• Pour chaque sommet v de G, f−1(v) est un ensemble indépendant dans S.

Étant donnés une division (S, f) de G et un sommet v ∈ V (G), nous appelons
l’ensemble f−1(v) l’ensemble des représentants du sommet v. Si |f−1(v)| = 1, nous dis-
ons que le sommet v n’a pas été divisé. De même, étant donnée une arête (u, v) ∈ E(G),
l’arête (s, t) de S avec s et t dans f−1({u, v}) est appelée un représentant de (u, v).

Parmi tous les divisions d’un graphe G, nous nous intéressons à ceux qui produisent
un graphe d’intervalles unitaire :

Définition. La famille des divisions de G qui conduisent à un graphe d’intervalles uni-
taire est S∗

U (G) := {(S, f) | (S, f) est une division de G et S est un graphe d’intervalles
unitaire}.

Définition. La famille des divisions disjointes de G qui conduisent à un graphe d’intervalles
unitaire est SU (G) := {(S, f) | (S, f) est une division disjoint de G et S est un graphe
d’intervalles unitaires}.

Le lemme suivant montre comment une division (disjointe) (S, f) d’un graphe G peut
être utilisé pour certifier que G est un graphe d’intervalles 2-unitaires (disjoint).

Lemme. Nous pouvons caractériser les graphes de 2-intervalles (disjoints) unitaires
comme suit :

1. Un graphe G est un graphe de 2-intervalles unitaire si et seulement si la famille
S∗

U (G) n’est pas vide.

2. Un graphe G est un graphe de 2-intervalles disjoints unitaire si et seulement si la
famille SU (G) n’est pas vide.

Les caractérisations précédentes peuvent être généralisées à des dimensions supérieures,
c’est-à-dire aux graphes de d-intervalles (disjoints) unitaires pour d > 2.

Enfin, nous expliquons comment obtenir un logiciel efficace pour reconnâıtre les graphes
de 2-intervalles disjoints unitaires en encodant cette modélisation du problème dans le
langage de programmation Answer Set Programming (ASP), une forme de programma-
tion déclarative orientée vers les problèmes de recherche difficiles.

Généralisation de la caractérisation des graphes d’intervalles
unitaires de Roberts

Dans le Chapitre 5, nous cherchons à généraliser la caractérisation des graphes d’intervalles
unitaires de Roberts aux graphes de intervalles multiples. Il est clair que la condition
nécessaire de la caractérisation de Roberts, à savoir être sans K1,3 induit, s’étend na-
turellement aux graphes d’intervalles multiples : un graphe de 2-intervalles unitaire ne
peut contenir un K1,5 comme sous-graphe induit ; et plus généralement, un graphe de
d-intervalles unitaire ne peut contenir un K1,2d+1 comme sous-graphe induit.
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Pour obtenir une caractérisation complète, la généralisation la plus simple consisterait
peut-être à caractériser les graphes de d-intervalles unitaires comme des graphes de d-
intervalles sans K1,2d+1 induit, mais cela a déjà été prouvé faux dans [141] : il existe
un graphe qui est de 2-intervalles et sans K1,5 induit, mais qui n’est pas de 2-intervalles
unitaire. Ainsi, nous étudions des cas plus restreints.

Déjà en 2016, Durán et al. ont décidé de se concentrer sur les graphes de d-intervalles
qui sont également d’intervalle [55]. Dans une présentation au VII LAWCG, ils ont
affirmé que si G est un graphe d’intervalle, alors G est un graphe de d-intervalles disjoints
unitaire si et seulement s’il est sans K1,2d+1 induit2.

Nous montrons ici que cette affirmation est en réalité fausse, et que, de manière
peut-être surprenante, la caractérisation de Roberts ne peut être généralisée que selon
la définition choisie des graphes de d-intervalles ! (Voir Figure 3 pour un résumé des
principaux résultats).

sans K1,5 induit intervalles2-intervalles

disjoints unitaires

2-intervalles unitaires

Figure 3.: Les graphes d’intervalles sans K1,5 induit ne sont pas contenus dans la classe
des graphes de 2-intervalles disjoints unitaires. La classe des graphes de 2-
intervalles unitaires est une superclasse des graphes de 2-intervalles disjoints
unitaires, et s’étend à toute l’intersection des graphes sans K1,5 induit et des
graphes d’intervalles.

Nous commençons par prouver que la caractérisation de Roberts des graphes d’intervalles
unitaires peut être généralisée aux graphes de d-intervalles. Rappelons que par graphes
de d-intervalles, nous faisons référence aux graphes d’intersection de d-intervalles où les
d intervalles ne sont pas nécessairement disjoints.

Théorème. Soit G un graphe d’intervalles. Alors, pour tout nombre naturel d ⩾ 2, G
est un graphe de d-intervalles unitaire si et seulement si G ne contient pas une copie de
K1,2d+1 comme sous-graphe induit. De plus, étant donné un graphe d’intervalles sans
K1,2d+1 induit, une représentation de d-intervalles unitaire peut être construite en temps
O(n+m), où n et m sont respectivement le nombre de sommets et d’arêtes du graphe.

Pour prouver le théorème, nous présentons un algorithme en temps polynomial qui,
étant donnée une représentation d’intervalles I d’un graphe sans K1,2d+1 induit, ren-
voie une représentation de d-intervalles I ′ du graphe où aucun intervalle de la famille
sous-jacente de I ′ n’intersecte trois intervalles disjoints ou plus. Cela garantit que la
famille sous-jacente d’intervalles retournée correspond à une représentation d’un graphe

2Notez qu’ils se réfèrent aux d-intervalles disjoints unitaires simplement comme des d-intervalles uni-
taires, mais ils sont explicitement définis au préalable comme l’union de d intervalles disjoints.
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sans K1,3 induit, donc nous pouvons utiliser l’algorithme décrit dans [21] pour le trans-
former en une représentation correcte (et ensuite en une représentation unitaire en temps
linéaire [69]).

Algorithme Soit la famille d’intervalles I une représentation d’intervalles de G. Pour
chaque intervalle I ∈ I, notons l(I) et r(I) ses extrémités gauche et droite, respective-
ment. De plus, définissons un ordre partiel comme suit : étant donné deux intervalles
I, J ∈ I, notons I ≺ J si et seulement si r(I) < l(J) (c’est-à-dire que l’intervalle J
est entièrement à droite de l’intervalle I). Deux intervalles sont incomparables s’ils
s’intersectent.

Étape 1 Initialiser un ensemble d’intervalles C avec tous les intervalles de I, définir I ′ := ∅,
et passer à Étape 2.

Étape 2 Choisir un intervalle I de C, le retirer de l’ensemble et définir son voisinage N (I) =
{J ∈ I : J ∩I ̸= ∅}. Soit m le nombre maximum d’intervalles deux à deux disjoints
que I intersecte. Si m ⩽ 2, passer à Étape 3 ; si m = 3, passer à Étape 4 ; et si
m > 3, passer à Étape 5.

Étape 3 Si m ⩽ 2, ajouter l’intervalle I1 = I à la famille I ′ et appeler I1 un intervalle
original. Puis passer à Étape 6.

Étape 4 Si m = 3, définir quatre intervalles auxiliaires :

A1 = arg min
J∈N (I)

{r(J)} A2 = arg min
{J∈N (I) : A1≺J}

{r(J)}

A4 = arg max
J∈N (I)

{l(J)} A3 = arg max
{J∈N (I) : J≺A4}

{l(J)}

Ensuite, ajouter à I ′ le 2-intervalle I1∪I2, avec I1 = [l(I), r(A2)] et I2 = [l(A3), r(I)].
Notez que A2 et A3 s’intersectent nécessairement, sinon nous aurions m ⩾ 4, donc
I1 ∪ I2 n’est pas un 2-intervalle disjoint. Après l’avoir ajouté à I ′, passer à Étape
6.

Étape 5 Si m > 3, définir deux familles d’intervalles auxiliaires. La première famille
A := {Ai | i ∈ {1, . . . ,m}} forme un ensemble maximum d’intervalles deux à deux
disjoints intersectant I, et elle garantira que toutes les intersections sont préservées.
Elle est définie comme suit :

A1 = arg min
J∈N (I)

{r(J)} Ai = arg min
{J∈N (I) : Ai−1≺J}

{r(J)} , ∀ i ∈ {2, . . . ,m− 2}

Am = arg max
J∈N (I)

{l(J)} Am−1 = arg max
{J∈N (I) : J≺Am}

{l(J)}

La deuxième famille B := {Bi | i ∈ {1, . . . ,m}} est un outil pour garantir que
chaque nouvel intervalle Ii intersecte seulement deux intervalles disjoints dans I ′.
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I

I1 I2 I3 I4

A1 A2 A3 A4 A5 A6 A7 A8

B3

Figure 4.: L’intervalle I intersecte 8 intervalles disjoints. En rouge, le 4-intervalle re-
tourné par l’algorithme.

Ainsi, pour chaque i ∈ {1, . . . ,m}, Bi est défini comme suit :

Bi = arg max
J∈N (Ai)∪Ai

{l(J)}

Autrement dit, Bi est l’intervalle dans le voisinage fermé de Ai qui commence le
plus tard. Notez que s’il n’existe aucun intervalle intersectant Ai qui commence
après Ai, alors Bi = Ai car nous considérons le voisinage fermé. Maintenant,
ajouter à I ′ le t-intervalle I1 ∪ ... ∪ It, défini comme suit. Nous distinguons deux
cas légèrement différents :

a) Si m est pair, c’est-à-dire m = 2t pour un t > 1, définir I1 = [l(I), r(A2)],
Ii = [l(B2i−1), r(A2i)] pour chaque i ∈ {2, . . . , t− 1}, et It = [l(A2t−1, r(I)].

b) Si m est impair, c’est-à-dire m = 2t − 1 pour t > 2, définir It−1 et It

différemment, comme It−1 = A2t−3 et It = [l(A2t−2, r(I)], et les autres in-
tervalles comme précédemment.

Remarquez qu’en vertu de la définition, les intervalles Ii, ..., It sont effectivement
deux à deux disjoints, donc si m > 3, le t-intervalle ajouté à I ′ est un t-intervalle
disjoint. Après avoir ajouté l’intervalle t-intervalle, passer à Étape 6.

Étape 6 Si C = ∅, retourner I ′, sinon passer à Étape 2.

Figure 4 illustre l’algorithme appliqué à un exemple.
L’algorithme construit une représentation de d-intervalles unitaire, mais elle n’est pas

disjointe : dans le cas des K1,3 maximaux, les intervalles construits I1 et I2 s’intersectent.
Cependant, dans le cas des K1,m maximaux avec m > 3, les t intervalles du t-intervalle
créé sont en fait disjoints deux à deux, donc si G est un graphe d’intervalles et ne contient
pas de K1,2d+1 et ne contient aucun K1,3 maximal, alors c’est également un graphe de
d-intervalles disjoints unitaire. Avec une analyse plus attentive, nous pouvons inférer un
corollaire encore plus fort, qui au lieu d’exiger l’absence totale de 3-griffes maximales,
interdit seulement un sous-ensemble d’entre elles. Nous faisons référence à ces griffes
interdites, qui sont exactement celles des 3-griffes maximales contenues dans un graphe
E induit, comme les griffes E. Rappelons qu’un graphe E (ou star1,2,2) est un graphe
sur six sommets qui a comme ensemble d’arêtes un chemin v1, v2, v3, v4, v5 et une arête
supplémentaire (v3, v6).
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Théorème. Soit G un graphe sans K1,2d+1 induit qui ne contient aucune griffe E.
Alors, G est un graphe de d-intervalles disjoints unitaire.

Nous continuons en montrant qu’il n’y a aucun moyen d’étendre l’algorithme pour le
faire fonctionner dans le cas général pour les graphes de d-intervalles disjoints unitaires.
En particulier, nous prouvons le théorème suivant.

Théorème. Il existe un graphe d’intervalles sans K1,5 induit qui n’est pas un graphe de
2-intervalles disjoints unitaire.

Pour prouver le théorème précédent, nous proposons le graphe G dans Figure 5 comme
certificat.

8

91 10

4 13
3 7

14

1211

2

6 5

Figure 5.: Un graphe d’intervalles qui est sans K1,5 mais pas un graphe de 2-intervalles
disjoints unitaire.

Enfin, nous montrons que le théorème précédent peut en fait être généralisé pour les
graphes de d-intervalles disjoints unitaires pour tout d > 2.

Corollaire. Il existe un graphe d’intervalles sans K1,2d+1 qui n’est pas un graphe de
d-intervalles disjoints unitaire.

Malgré ce résultat négatif, nous donnons une borne sur le nombre t tel que G soit un
graphe de t-intervalles disjoints unitaires.

Théorème. Soit G un graphe d’intervalles ne contenant aucun K1,2d+1 induit. Alors,
G est un graphe de (d+ 1)-intervalles disjoints unitaires.

Pour conclure le Chapitre 5, nous résumons les relations d’inclusion entre les graphes
de 2-intervalles unitaires, les graphes de 2-intervalles disjoints unitaires, les graphes de
2-intervalles équilibrés et les graphes de 2-intervalles disjoints équilibrés (voir Figure 6
pour une illustration graphique); et montrons qu’ils ne se généralisent pas pour les sous-
classes de graphes de d-intervalles, car la classe des graphes de d-intervalles équilibrés
n’est pas équivalente à la classe des graphes de d-intervalles disjoints équilibrés pour
d > 2.

Théorème. 1. Les classes des graphes de 2-intervalles et des graphes de 2-intervalles
disjoints sont équivalentes.
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graphes de 3-intervalles
disjoints = graphes

de 3-intervalles

graphes de 3-
intervalles équilibrés

graphes de 3-intervalles
disjoints équilibrés

graphes de 2-intervalles
disjoints = graphes

de 2-intervalles

graphes de 2-intervalles
disjoints équilibrés = graphes

de 2-intervalles équilibrés

graphes de 2-
intervalles unitaires

graphes de 2-intervalles
disjoints unitaires

Figure 6.: Paysage des sous-classes de graphes de 3-intervalles. Une flèche allant d’une
classe de graphes C à une classe C′ indique que C′ ⊂ C.

2. Les classes des graphes de 2-intervalles équilibrés et des graphes de 2-intervalles
disjoints équilibrés sont équivalentes.

3. La classe des graphes de 2-intervalles unitaires est proprement contenue dans la
classe des graphes de 2-intervalles disjoints équilibrés .

4. La classe des graphes de 2-intervalles disjoints unitaires est proprement contenue
dans la classe des graphes de 2-intervalles unitaires.

Théorème. La classe des graphes de 3-intervalles disjoints équilibrés est proprement
contenue dans la classe des graphes de 3-intervalles équilibrés.

Corollaire. La classe des graphes de d-intervalles disjoints équilibrés est proprement
contenue dans la classe des graphes de d-intervalles équilibrés pour tout nombre naturel
d ⩾ 3.
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Complexité de la Reconnaissance

Dans le Chapitre 6, nous prouvons d’abord que Disjoint Unit 2-Interval Recogni-
tion, c’est-à-dire, la reconnaissance des graphes de 2-intervalles disjoints unitaires, est
NP-complet, et nous utilisons cela pour prouver la difficulté de reconnâıtre les graphes
de d-intervalles disjoints unitaires pour tout d ⩾ 2. Le résultat pour d = 2 est obtenu
en deux étapes. Nous définissons d’abord une version plus générale du problème, que
nous appelons Colored disjoint unit 2-interval recognition, et prouvons qu’il
est NP-complet. Ensuite, nous réduisons ce nouveau problème à la Disjoint Unit
2-Interval Recognition. Le problème plus général, Colored disjoint unit 2-
interval recognition, est défini comme suit :

Instance: Un graphe G = (V,E) et une coloration γ : V → {white, black}.
Goal: Décidez si G possède une représentation de 2-intervalles disjoints

unitaire où :

• chaque sommet blanc est représenté par un 2-intervalle uni-
taire,

• chaque sommet noir est représenté par un intervalle unitaire.

Nous faisons référence à cette représentation comme une
représentation de 2-intervalles coloré unitaire.

Colored disjoint unit 2-interval recognition

Pour prouver que la Colored disjoint unit 2-interval recognition est NP-
complet, nous procédons par réduction à partir d’une variante du problème SAT (dans ce
qui suit, le terme j-clause fait référence à une clause qui contient exactement j littéraux) :

Lemme ([60]). Satisfiability est NP-complet même lorsqu’elle est restreinte aux for-
mules CNF telles que :

1. Chaque clause contient soit 3 littéraux (3-clause), soit 2 littéraux (2-clause).

2. Chaque variable apparâıt dans exactement une 3-clause.

3. Chaque 3-clause est monotone positive, c’est-à-dire qu’elle est composée de trois
littéraux positifs.

4. Chaque variable apparâıt exactement dans trois clauses, une fois négative et deux
fois positive.

Théorème. Colored disjoint unit 2-interval recognition est NP-complet, même
pour les graphes où les sommets blancs ont un degré au plus 6 et les sommets noirs ont
un degré au plus 5.

185



Étant donné une instance Ψ de la variante de SAT précédemment introduite, formée
par un ensemble de variables booléennes x1, . . . , xn et un ensemble de clauses C1, . . . , Cm,
nous construisons une instance équivalente (GΨ, γΨ) du problème Colored disjoint
unit 2-interval recognition comme suit.

Pour chaque variable xi, nous introduisons le gadget de variable V̂i, qui est le graphe
coloré composé de trois sommets noirs Ai, Bi, Ci et trois sommets blancs x1

i , x2
i et xN

i ,
avec toutes les arêtes entre un sommet noir et un sommet blanc, ainsi que les arêtes
(x1

i , x
2
i ), (Ci, Ai) et (Ci, Bi) (voir Figure 7)

Ai

Bi

Ci

x1
i

x2
i

xN
i

Figure 7.: Gadget de variable V̂i

Soit Cα une clause, pour α = 1, . . . ,m. Si Cα est une clause à 3 littéraux, alors elle est
positive monotone, c’est-à-dire que Cα = (xi ∨ xj ∨ xk) pour certains i, j, k ∈ {1, . . . , n}.
Dans ce cas, nous introduisons les trois arêtes (x1

i , x
1
j ), (x1

j , x
1
k), (x1

k, x
1
i ), qui composent

le gadget de la clause (voir Figure 8).
Si Cα est une clause à 2 littéraux, disons Cα = (xr

i ∨ xs
j) avec i, j ∈ {1, . . . , n} et

r, s ∈ {2, N}, alors nous introduisons un sommet noir public Lα
i,j avec un voisin noir

privé pα
i,j et nous ajoutons les quatre arêtes (xr

i , x
s
j), (xr

i , L
α
i,j), (xs

j , L
α
i,j) et (Lα

i,j , p
α
i,j).

Ces quatre arêtes ainsi que les deux sommets ajoutés composent le gadget de la clause.
Nous prouvons que Ψ est satisfiable si et seulement si le graphe construit GΨ = (V,E),

avec V = Vwhite ∪ Vblack, admet une représentation de 2-intervalles coloré unitaire.
Nous montrons ensuite que Colored disjoint unit 2-interval recognition est

réductible en temps polynomial à la Disjoint Unit 2-Interval Recognition (le
problème qui consiste en déterminer si un graphe est un graphe de 2-intervalles disjoints
unitaire), ce qui conduit au résultat principal du chapitre :

Théorème. Disjoint Unit 2-Interval Recognition est NP-complet, même pour
des graphes de degré au plus 7.

Enfin, nous généralisons le résultat pour les graphes de d-intervalles disjoints unitaires,
avec d ⩾ 2, qui n’est pas directement impliqué dans les problèmes de reconnaissance de
graphes, et nous étendons le résultat de difficulté pour certains cas spécifiques de graphes
à d-intervalles disjoints unitaires.

Corollaire. La reconnaissance des graphes de d-intervalles disjoints unitaires de pro-
fondeur r est NP-complet pour tout r ⩾ 4 et tout d ⩾ 2.

Corollaire. La reconnaissance des graphes de d-intervalles (x, . . . , x) est NP-complet
pour tout x ⩾ 11 et tout d ⩾ 2.
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Figure 8.: Gadget de la clause à trois littéraux.

Corollaire. À moins que l’ETH ne soit invalidé, Disjoint Unit d-Interval Recog-
nition n’admet pas d’algorithme avec un temps d’exécution 2o(|V |+|E|).

Le dernier corollaire implique que nous ne pouvons espérer un algorithme significative-
ment meilleur que celui par force brute pour la reconnaissance des graphes de d-intervalles
disjoints unitaires, car cela est optimal sous l’ETH pour un d fixé.

Théorème. Disjoint Unit d-Interval Recognition peut être résolue en temps
O(2d2|E|).

Finalement, nous prouvons également que la reconnaissance des graphes de d-intervalles
(non nécessairement disjoints) unitaires est également NP-complet, en adaptant la réduction
précédente.

Théorème. Unit d-interval recognition est NP-complet pour tout d ⩾ 2, même
pour les graphes de profondeur au plus 4.

PIG-completion

Dans le Chapitre 7, nous étudions le problème d’édition suivant :

Instance: Un graphe G = (V,E).
Goal: Retourner un ensemble d’arêtes F (appelés arêtes de remplissage)

tel que G = (V,E ∪ F ) soit un graphe d’intervalles propre, avec
F ∩ E = ∅ et la cardinalité de F soit minimale parmi tous les
ensembles d’arêtes possibles.

Proper Interval Graph Completion (PIG-completion)
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Figure 9.: Complexité de PIG-completion sur différentes sous-classes de graphes chor-
daux.

L’une des applications les plus connues de PIG-completion est la cartographie physique
de l’ADN. Étant donné un ensemble de clones (intervalles contigus de la châıne d’ADN)
et des informations sur leurs chevauchements par paires, l’objectif de ce problème est de
construire une carte décrivant la position relative des clones. Étant donné que ces in-
formations sont obtenues expérimentalement, il peut y avoir des erreurs, c’est-à-dire des
chevauchements non identifiés. Si nous modélisons cela comme un graphe où les clones
sont représentés par des sommets et les chevauchements par des arêtes, le problème de
construire une carte en supposant le moins d’erreurs possibles lorsque tous les clones ont
une longueur égale est équivalent à PIG-completion.

Dross et al. ont montré que le problème PIG-completion reste NP-complet lorsque le
graphe d’entrée est un graphe split, et devient polynomial s’il s’agit d’un graphe threshold
ou d’un arbre caterpillar [54]. Étant donné que le problème est difficile sur les graphes
chordaux (comme il l’est sur les graphes split) et polynomial sur certaines sous-classes
de graphes d’intervalles (threshold et caterpillar), une question très naturelle à poser
est de savoir si PIG-completion reste difficile lorsque le graphe d’entrée est un graphe
d’intervalles. Le chapitre est consacré à la réponse à cette question. La Figure 9 illustre
la complexité de PIG-completion) sur différentes sous-classes de graphes chordaux.

Nous étudions d’abord le problème de PIG-completion lorsque le graphe d’entrée est
restreint aux graphes d’intervalles ayant un sommet universel (un sommet adjacent à
tous les autres sommets du graphe). Dans ce cas, nous savons que la solution a une
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forme très spécifique.

Observation. Soit G un graphe d’intervalles avec un sommet universel et soit H une
PIG-completion de G. Alors, les sommets de H peuvent être partitionnés en deux
ensembles C1 et C2 tels que chaque ensemble induit une clique dans H.

Lemme. Soit G = (V,E) un graphe d’intervalles avec un sommet universel et soit T son
arbre MPQ associé. Soit (C1, C2) une partition de V . Soit w un nœud P arbitraire de
T et soient b1, . . . , bk les enfants de w et TB := {Tb1 , . . . , Tbk

} l’ensemble des sous-arbres
enracinés à chaque enfant. Alors, la partition (C1, C2) induit une complétion sans cycles
induits de longueur supérieure à 3 si et seulement si les trois conditions suivantes sont
satisfaites :

• Pour chaque nœud P w, il existe au plus un sous-arbre dans l’ensemble TB qui
contient une paire de sommets v1, v2 telle que v1 appartienne à C1 et v2 à C2.

• Pour chaque nœud Q q, il n’existe pas deux sections Si et Sj avec des enfants ti
et tj tels que les deux enfants soient non vides et que Tti contienne une paire de
sommets v1, v2 avec v1 ∈ C1 et v2 ∈ C2, tandis que le sous-arbre Ttj contienne une
paire de sommets u1, u2 avec u1 ∈ C1 et u2 ∈ C2.

• Pour chaque nœud Q q, il n’existe pas deux sections Si et Sj telles que le sous-
arbre TSi contienne une paire de sommets v1, v2 avec v1 ∈ C1 et v2 ∈ C2, et que
le sous-arbre TSj contienne une paire de sommets u1, u2 avec u1 ∈ C1 et u2 ∈ C2,
avec v1 ≺ u2 et v2 ≺ u1. Remarquez que si aucun des sommets n’est contenu dans
l’une des sections, cette condition est équivalente à la deuxième.

En utilisant le lemme précédent, nous concevons un algorithme de programmation
dynamique qui exploite la structure du graphe d’intervalles d’entrée. L’optimalité de
l’algorithme donne le résultat suivant.

Théorème. Soit G un graphe d’intervalles avec un sommet universel. Alors, il existe
un algorithme polynomial qui calcule la PIG-completion de G en temps O(n3).

Algorithm

Pour chaque nœud v de l’arbre MPQ et chaque valeur r ∈ [⌊|Tv|/2⌋ + 1], nous
définissons :

Mv,r = min{|F | : F est un ensemble d’arêtes de remplissage de G[V (Tv)] qui donne
une partition du sous-graphe en deux cliques avec la plus petite de taille r}

• Cas de base: Si v est une feuille,

Mv,r =
{

0 r ⩽ |v|
+∞ sinon
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• Étape si v est un nœud P. Soit v un nœud P avec k + 1 enfants. Pour
chaque i ∈ [k], et chaque enfant u de v avec des frères et sœurs b1, . . . , bk,
nous définissons des sous-problèmes auxiliaires :

Wu,i,r =


Mu,r si i = 0,
min

{
Wu,i−1,r + (|TBi−1 | − r) · |Tbi

|+Mbi,0,

Wu,i−1,r−|Tbi
| + (r − |Tbi

|) · |Tbi
|+Mbi,0

}
si i > 0.

La récurrence pour le problème original est alors donnée par :

Mv∗,r = min{Wu,k,r | u enfant de v}
Mv,r = min{Mv∗,r−i | i ∈ [|v|]}

• Étape si v est un nœud Q. Soit v un nœud Q avec des enfants t1, . . . , tm
et des sections S1, . . . , Sm. Pour chaque r dans [|Tv|], nous définissons un
sous-problème auxiliaire :

– Cas de base :
W0 = ∑

iMti,0 + r(Tti) · |Tti |+
∑

xl∈Si
r(x)

c0,x = update(x, 0), ∀x
u0,x = 0∀x

– Étape : 
x = arg minx cr−1,x

Wr = Wr−1 + cr−1,x, r > 0
ur,x = ur−1,x + 1 et ur,y = ur−1,y, ∀y ̸= x

cr,x = update(x, ur,x) et cr,y = cr−1,y, ∀y ̸= x

Ensuite, la récurrence pour le problème original est donnée par :

Mv,r = min{Wr,W|Tv |−r}

Corollaire. Soit G = (V,E) un graphe d’intervalles et soit T son arbre MPQ associé.
Supposons que pour chaque paire de sommets u, v ∈ V tels que u et v soient tous deux
des centres maximaux dans G, les centres u et v soient disjoints. Alors, nous pouvons
calculer une PIG-completion de G en temps O(n3).

Nous terminons en montrant que l’algorithme peut être étendu pour donner une solu-
tion optimale lorsque le graphe d’intervalles d’entrée est arbitraire, mais la complexité
devient exponentielle par rapport au nombre de centres des griffes maximales non dis-
joints. En particulier, cela implique que la PIG-completion est dans XP paramétré par
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le nombre de centres d’intersection des griffes maximales. Cela implique un algorithme
polynomial pour la classe des graphes d’intervalles split.

Théorème. Soit G un graphe d’intervalles split. Alors, nous pouvons calculer sa PIG-
completion en temps polynomial.

Théorème. La PIG-completion est dans XP paramétré par le nombre de centres des
griffes maximales non disjoints du graphe d’entrée.

Conclusion
Dans ce manuscrit, nous avons étudié les graphes d’intervalles (multiples) sous un angle
structurel et algorithmique, ainsi qu’un problème de modification de graphes sur les
graphes d’intervalles.

Nous avons commencé le Chapitre 4 en fournissant une caractérisation utile des
graphes de 2-intervalles disjoints unitaires et un logiciel efficace pour tester si un graphe
appartient à cette classe de graphes. Ensuite, dans le Chapitre 5, nous avons montré que
les classes des graphes de d-intervalles disjoints unitaires et des graphes de d-intervalles
unitaires ne sont pas équivalentes et nous avons obtenu une caractérisation complète des
graphes de d-intervalles unitaires qui sont également des graphes d’intervalles. Cepen-
dant, pour la classe des graphes de d-intervalles disjoints unitaires qui sont également
des graphes d’intervalles, seule une caractérisation partielle a été obtenue. Cela soulève
la question de savoir si nous pouvons obtenir un résultat analogue, ou si nous pou-
vons même reconnâıtre cette classe en temps polynomial. Nous avons également étudié
les relations entre les classes des graphes de d-intervalles équilibrés et des graphes de
d-intervalles disjoints équilibrés. Néanmoins, certaines relations entre les sous-classes
obtenues avec les deux définitions différentes de d-intervalle restent ouvertes, comme la
question de savoir si la classe des graphes de d-intervalles unitaires est contenue dans la
classe des graphes de d-intervalles disjoints équilibrés pour d > 2.

Dans le Chapitre 6, nous avons prouvé que la reconnaissance des graphes de d-
intervalles unitaires et des graphes de d-intervalles disjoints unitaires de profondeur de
représentation r est NP-complet pour chaque d ⩾ 2 et chaque r ⩾ 4, et nous avons
obtenu comme corollaire que la reconnaissance des graphes (x, . . . , x) d-intervalles est
NP-complete pour x ⩾ 11. En plus de combler le fossé pour régler la complexité de la
reconnaissance des graphes de d-intervalles (x, . . . , x) pour 2 ⩾ x ⩾ 10, ou des graphes de
d-intervalles de profondeur 3, une autre piste de recherche intéressante serait d’étudier
le problème paramétré suivant :

Instance: Un graphe arbitraire G et un paramètre k.
Goal: Déterminer si nous pouvons transformer G en un graphe

d’intervalles unitaire en divisant au plus k de ses sommets.

Parameterized (disjoint) unit d-interval recognition

Une autre piste de recherche pertinente serait de savoir si, étant donné un graphe,
nous pouvons obtenir une approximation à ratio constant de son unit interval number.
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Enfin, dans le Chapitre 7, nous étudions le problème de modification de graphes
Proper interval graph-completion sur les graphes d’intervalles. Bien que nous
obtenions un algorithme en temps polynomial pour divers cas, y compris les graphes
d’intervalles avec un sommet universel, les graphes d’intervalles split, ou les graphes
d’intervalles sans centres intersectants de griffes maximales, la complexité dans le cas
général reste ouverte. Néanmoins, nous fournissons un algorithme XP pour le cas général,
paramétré par le nombre maximum de centres non disjoints de griffes maximales. Étant
donné que le problème est FPT paramétré par le nombre d’arêtes à ajouter, il serait
intéressant d’étudier s’il est également FPT par ce paramètre structurel. Une recherche
supplémentaire pourrait se concentrer sur l’étude de la possibilité d’adapter l’algorithme
basé sur la programmation dynamique sur l’arbre MPQ du graphe d’intervalles que nous
avons développé ici pour la version de suppression d’arêtes du problème, ou pour des
variantes qui admettent également l’ajout/suppression de sommets.
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MOTS CLÉS

Graphes d’intervalles, graphes d’intervalles multiples, graphe d’intervalles multiples unitaires, complexité,
algorithmes

RÉSUMÉ

Les graphes d’intervalles multiples sont une généralisation bien connue des graphes d’intervalles, où chaque sommet
d’un graphe est représenté par un d-intervalle (l’union de d intervalles) pour un certain nombre naturel d > 1, et il existe
une arête entre deux sommets si et seulement si leurs d-intervalles correspondants se croisent. En particulier, un graphe
de d-intervalles est unitaire si tous les intervalles de la représentation ont une longueur unitaire.
Dans cette thèse, nous étudions les graphes de d-intervalles unitaires d’un point de vue structurel et algorithmique. Dans
la première partie, nous essayons de généraliser la caractérisation de Roberts des graphes d’intervalles unitaires, qui
affirme qu’un graphe est un graphe d’intervalles unitaire si et seulement s’il est un graphe d’intervalles et ne contient
pas le graphe biparti complet K1,3 comme sous-graphe induit. Ensuite, nous passons à l’étude de la complexité de
la reconnaissance des graphes d’intervalles multiples unitaires. Nous prouvons que, étant donné un graphe G, il est
NP-difficile de déterminer si G est un graphe de d-intervalles unitaires, et nous étendons ensuite ce résultat de difficulté
à d’autres sous-classes de graphes de d-intervalles unitaires. Dans la dernière partie de ce manuscrit, nous nous
concentrons sur le problème de PIG-completion, qui étant donné un graphe d’intervalles G, demande de trouver le
nombre minimum d’arêtes à ajouter à G pour qu’il devienne un graphe d’intervalles unitaire. Nous obtenons un algorithme
polynomial lorsque G contient un sommet adjacent à tous les autres sommets du graphe, et un algorithme XP paramétré
par une propriété structurelle du graphe.

ABSTRACT

Multiple interval graphs are a well-known generalization of interval graphs, where each vertex of a graph is represented
by a d-interval (the union of d intervals) for some natural number d > 1, and there exists an edge between two vertices
if and only if their corresponding d-intervals intersect. In particular, a d-interval graph is unit if all the intervals on the
representation have unit length.
In this thesis, we study unit d-interval graphs from a structural and an algorithmic perspective. In the first part, we try
to generalize Roberts characterization of unit interval graphs, which states that a graph is unit interval if and only if it is
interval and it does not contain the complete bipartite graph K1,3 as an induced subgraph. Then, we move on to study
the complexity of recognizing unit multiple interval graphs. We prove that given a graph G it is NP-hard to determine
whether G is a unit d-interval graph, and then extend this hardness result to other subclasses of unit d-interval graphs. In
the last part of this manuscript, we focus on the PIG-completion problem, where given an interval graph G, we are asked
to find the minimum number of edges that we need to add to G so that it becomes a proper interval graph. We obtain a
polynomial algorithm when G contains a vertex that is adjacent to every other vertex of the graph, and an XP algorithm
parameterized by a structural property of the graph.

KEYWORDS

Interval graphs, multiple interval graphs, unit multiple interval graphs, complexity, algorithms
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