
HAL Id: tel-04852602
https://theses.hal.science/tel-04852602v1

Submitted on 21 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performance of a Neural Network Accelerator
Architecture and its Optimization Using a

Pipeline-Based Approach
Ali Oudrhiri

To cite this version:
Ali Oudrhiri. Performance of a Neural Network Accelerator Architecture and its Optimization Using
a Pipeline-Based Approach. Neural and Evolutionary Computing [cs.NE]. Sorbonne Université, 2023.
English. �NNT : 2023SORUS658�. �tel-04852602�

https://theses.hal.science/tel-04852602v1
https://hal.archives-ouvertes.fr

Thèse présentée pour l’obtention du grade de

DOCTEUR de SORBONNE UNIVERSITÉ

École Doctorale Informatique, Télécommunications et Électronique
réalisée entre

STMicroelectronics, Crolles
Laboratoire d’Informatique de Paris 6

Performance of a Neural Network Accelerator Architecture and
its Optimization Using a Pipeline-Based Approach

Ali OUDRHIRI

Frédéric PETROT, Prof., UGA, CNRS, Grenoble INP, TIMA, Grenoble Président du jury

Angeliki KRITIKAKOU, Assoc.Prof, Inria, Univ Rennes, CNRS, IRISA, Rennes Rapporteur

Philippe COUSSY, Prof., Lab-STICC, Univ. de Bretagne-Sud, Lorient Rapporteur

Roselyne CHOTIN, Assoc.Prof, Sorbonne Univ., CNRS, LIP6, Paris Examinateur

Maxime PELCAT, Assoc.Prof, IETR, INSA Rennes Examinateur

Pascal URARD, Directeur innovation, STMicroelectronics, Crolles Invité

Alix MUNIER KORDON, Prof., Sorbonne Univ., CNRS, LIP6, Paris Directeur de thèse

ABSTRACT

In recent years, neural networks have gained widespread popularity for their ver-

satility and effectiveness in solving a wide range of complex tasks. Their ability to

learn and make predictions from large data sets has revolutionized various fields. How-

ever, as neural networks continue to find applications in an ever-expanding array of do-

mains, their significant computational requirements become a pressing challenge. This

computational demand is particularly problematic when deploying neural networks in

resource-constrained embedded devices, especially within the context of edge comput-

ing for inference tasks.

Nowadays, neural network accelerator chips emerge as the optimal choice for sup-

porting neural networks at the edge. These chips offer remarkable efficiency with their

compact size, low power consumption, and reduced latency. Moreover, the fact that

they are integrated on the same chip environment also enhances security by minimizing

external data communication. In the frame of edge computing, diverse requirements

have emerged, necessitating trade-offs in various performance aspects. This has led

to the development of highly configurable accelerator architectures, allowing them to

adapt to distinct performance demands.

In this context, the focus lies on Gemini, a configurable inference neural network ac-

celerator designed with imposed architecture and implemented using High-Level Syn-

thesis techniques. The considerations for its design and implementation were driven by

the need for parallelization configurability and performance optimization.

Once this accelerator was designed, demonstrating the power of its configurability

became essential, helping users select the most suitable architecture for their neural

networks. To achieve this objective, this thesis contributed to the development of a per-

formance prediction strategy operating at a high-level of abstraction, which considers

the chosen architecture and neural network configuration. This tool assists clients in

making decisions regarding the appropriate architecture for their specific neural net-

work applications.

During the research, we noticed that using one accelerator presents several limits

and that increasing parallelism had limitations on performances. Consequently, we

i

adopted a new strategy for optimizing neural network acceleration. This time, we took

a high-level approach that did not require fine-grained accelerator optimizations. We

organized multiple Gemini instances into a pipeline and allocated layers to different

accelerators to maximize performance. We proposed solutions for two scenarios: a user

scenario where the pipeline structure is predefined with a fixed number of accelerators,

accelerator configurations, and RAM sizes. We proposed solutions to map the layers on

the different accelerators to optimize the execution performance. We did the same for

a designer scenario, where the pipeline structure is not fixed, this time it is allowed to

choose the number and configuration of the accelerators to optimize the execution and

also hardware performances. This pipeline strategy has proven to be effective for the

Gemini accelerator.

Although this thesis originated from a specific industrial need, certain solutions

developed during the research can be applied or adapted to other neural network ac-

celerators. Notably, the performance prediction strategy and high-level optimization of

NN processing through pipelining multiple instances offer valuable insights for broader

applications.

Keywords: Neural Network Accelerators, ASIC, Output Stationary, Estimation, Opti-

mization, Throughput Enhancement, Latency, Area, Power, Pipeline Configuration.

ii

Résumé

Introduction

Depuis l’histoire de l’humanité, la résolution de problèmes a toujours été une capacité

naturelle de l’homme, façonnant sa compréhension du monde à travers la pensée ra-

tionnelle et l’art de la résolution de problèmes. Cette capacité a conduit au développement

d’approches algorithmiques, puis à l’utilisation d’ordinateurs pour améliorer nos ca-

pacités à résoudre des problèmes complexes. Cependant, le cerveau humain n’est

pas strictement basé sur des instructions rigides. En effet, l’être humain est capa-

ble d’apprendre par l’observation, l’expérience et l’entrainement, ce qui lui permet

d’exécuter des tâches en se fondant sur ces apprentissages. Cette approche flexible

pour résoudre des problèmes a été une grande source d’inspiration pour le domaine de

l’intelligence artificielle, en particulier pour le développement des réseaux de neurones.

Au sein de l’IA, les réseaux de neurones se sont distingués en résolvant de manière

autonome des problèmes complexes, notamment dans des applications telles que les

assistants personnels virtuels, les systèmes de recommandation et les véhicules au-

tonomes. Le regain d’intérêt pour les NN est en partie dû aux avancées significatives en

matière de matériel, en particulier les accélérateurs sur puce (ASIC).

La compétition pour le développement d’accélérateurs spécifiques à l’inférence de

réseaux de neurones est en cours, en particulier dans le domaine des accélérations en

périphérie, un environnement contraignant en termes de surface et d’énergie. L’optimisation

des architectures matérielles revêt une importance cruciale pour répondre aux besoins

d’applications diverses. Cette concurrence a stimulé le développement d’architectures

configurables, capables de s’adapter à plusieurs applications. La prédiction précise

des performances de ces accélérateurs pour diverses configurations est essentielle pour

leur sélection. De plus, l’utilisation de multiples instances de ces accélérateurs afin

d’optimiser leur efficacité et leur configurabilité est une avenue prometteuse, notam-

ment grâce à l’utilisation de pipelines d’accélérateurs.

Cette thèse est le fruit d’une collaboration CIFRE entre STMicroelectronics et le

iii

laboratoire LIP6 de Sorbonne Université. En résumé, cette thèse apporte des contribu-

tions majeures dans quatre domaines principaux :

• Le développement d’un accélérateur d’inférence de réseaux de neurones config-

urables appelé Gemini.

• La mise en place d’un cadre de prédiction des performances de Gemini en fonc-

tion du réseau de neurones et de la configuration matérielle.

• L’utilisation d’un shéma fixe de pipelines d’accélérateurs pour optimiser l’exécution

d’un réseau de neurone, où l’affectation des tâches aux différents accélérateurs est

optimisée.

• Utilisation de pipelines d’accélérateurs non fixes, permettant d’adapter la struc-

ture du pipeline pour une optimisation plus fine de l’exécution des réseaux de

neurones et du matériel.

Les deux derniers axes de recherche sont illustrés à travers l’exemple de Gemini.

La thèse couvre les fondements des réseaux de neurones, l’architecture matérielle de

Gemini, la conception de Gemini, la configurabilité, les pipelines d’accélération fixes

et non fixes, et se termine par une conclusion mettant en avant les contributions de la

recherche et les futures perspectives.

Généralité sur les réseaux de neurones utilisés

Le premier objectif de cette thèse consiste à concevoir un accélérateur matériel spécifiquement

dédié à l’inférence de réseaux de neurones. Ces réseaux, inspirés du fonctionnement du

cerveau humain et de sa capacité d’apprentissage, opèrent grâce à des ajustements dy-

namiques des poids synaptiques, mimant ainsi la capacité d’apprentissage humaine. La

prédiction dans ce contexte s’appuie sur l’utilisation de ces ajustements pour effectuer

une inférence précise.

L’histoire des réseaux de neurones remonte aux années 1940, avec les travaux no-

vateurs de Donald Hebb sur le renforcement des voies neuronales par l’utilisation, un

concept fondamental dans le processus d’apprentissage humain. Au fil des décennies,

iv

ces réseaux ont évolué en passant par différentes phases de développement, notam-

ment avec l’introduction du réseau de neurones convolutif et d’autres avancées nota-

bles. Cependant, la résurgence actuelle des réseaux de neurones est attribuable à trois

facteurs déterminants : le développement de matériel spécifique pour supporter les al-

gorithmes, la disponibilité de données partagées pour l’entraı̂nement de ces réseaux et

la croissance d’outils en accès libre. Ces facteurs combinés ont favorisé l’émergence

d’une multitude de réseaux, chacun présentant des structures diversifiées composées de

couches variées et orientés vers une grande variété d’applications, chacune exigeant des

spécifications spécifiques.

Dans le cadre de cette thèse, notre attention se porte sur l’inférence de réseaux de

neurones feed-forward, caractérisés par une structure en cascade, où chaque couche

suit la précédente, et est séparée par une fonction d’activation. Dans cette étude, nous

avons choisi d’utiliser la fonction ReLu comme fonction d’activation. Nous nous con-

centrons en particulier sur les réseaux comportant des couches de convolution, con-

volutions séparables, pooling et couches entièrement connectées. En ce qui concerne

les applications, notre intérêt se porte principalement sur les réseaux de neurones qui

possèdent un nombre de poids modéré. Cette orientation s’explique par notre objectif

de les utiliser dans des contextes de calcul en périphérie, où les contraintes liées à la

taille et à la consommation d’énergie sont particulièrement prédominantes. Nous avons

identifié trois réseaux spécifiques qui seront au cœur de nos études tout au long de

cette thèse. Le premier, MobileNet x0.25 [61], est composé de 27 couches, principale-

ment constituées de convolutions séparables. Ensuite, nous avons VGG-like inspiré du

modèle VGG-16 [115] et comprend 11 couches combinant des convolutions, des max-

pools, et des couches entièrement connectées (relativement grandes). Enfin, PNet, avec

ses 7 couches [130], partage la même structure que les précédents. Ces réseaux ont

des tailles de poids de 850 000, 526 000 et 7 900, respectivement, et des dimensions

d’images d’entrée (ifmaps) de 224x224x3, 128x128x1 et 32x32x1, respectivement.

La figure 1 résume les notations utilisées tout au long de la thèse pour décrire les

entrées, les sorties et les paramètres des différentes couches des réseaux de neurones :

un réseau de neurones (NN) prend en entrée un lot de k images ou activations d’entrée

(ifmap) en 3D. Chaque ifmap est constituée de C canaux, avec W pixels de largeur et

H pixels de hauteur dans une image 2D. Les sorties du NN sont un lot de k activa-

v

……
……

…
…

……
……

…
…

.

.

.

.

.

.

H

W

H

W

Q

Q

P

P

C M

C M

k ifmaps k ofmaps

ofmap pixel2D ofmap
pixel2D ifmap

pixel

W00W01w02W10W11W12 =
B0
B1

O0
O1

I0
I1
I2

+*

O1

O0
I0

I1

I2

W
10

W00

W01
W11

W 0
2

W12

Nin Nout

poids bias

Couches entièrement connectées Couches de convolutions

Fig. 1 Notations adoptées pour les paramètres des couches des réseaux de neurones

tions de sortie (ofmaps) en 3D, ayant les dimensions P × Q × M pour la hauteur, la

largeur et les canaux respectivement. La valeur de M correspond au nombre de filtres

pour les couches de convolution, convolution séparables et maxpool. Pour les couches

entièrement connectées, les ifmaps et ofmaps en 3D sont aplaties en une dimension pour

donner les neurones d’entrée (Nin) et de sortie (Nout).

Support matériel des réseaux de neurones

Au sein du projet Gemini, nous étions contraints par une architecture matérielle prédéfinie.

Celle-ci était basée sur une mémoire SRAM intégrée, qui stocke les informations liées

au réseau de neurones, associée à une unité de traitement de neurones (NPU) respon-

sable de l’exécution des calculs nécessaires pour les sorties de chaque couche. Les

opérations clés consistent principalement en des multiplications et accumulations (MAC).

Le NPU se compose d’unités de processeurs (PE) qui fonctionnent en parallèle. Chaque

unité de processeur est équipée de la logique nécessaire pour effectuer des opérations

de type MAC (ou autres) et dispose de registres de stockage.

Cette architecture s’inscrit dans le cadre du paradigme de calcul en mémoire proche.

En ce qui concerne le flux de données, nous étions contraints d’utiliser un schéma où

la sortie est stationnaire [118]. Cette stratégie de flux de données repose sur le fait que

les opérations de multiplication et d’accumulation sont stationnaires au sein des reg-

istres des unités de processeurs. Chaque processeur calcule ainsi un pixel de sortie.

Cette approche est particulièrement intéressante, car elle permet d’exécuter des calculs

simultanément, améliorant la latence, tout en réutilisant les données pour minimiser les

opérations d’accès et de transfert de données, ce qui a un impact direct sur la consom-

vi

mation énergétique des puces.

La figure 2 illustre cette architecture, mettant en évidence la structure de l’accélérateur

comprenant le NPU, la SRAM, ainsi que les PEs (où ALU désigne le bloc réalisant les

MACs ou autres opérations de calculs). Le flux de données à sortie stationnaire est

également représenté, montrant que la somme des sorties reste constamment dans les

registres des PEs, tandis que les données d’entrée (ifmaps et poids) sont transférées aux

PEs à chaque cycle.

NPU

Puce

Unité de processeur

(SRAM)

n-chip

PU

Strategie de sorties stationnaires

 Pixels
d'ifmaps

Poids

Somme partielle

Paradigm imposé pour l'architecture

Fig. 2 Architecture imposée pour un accélérateur ayant un flux de données à sortie stationnaire

Au cours de cette étude, nous avons examiné les indicateurs clés de performance

(KPI) essentiels pour comparer les accélérateurs de réseaux de neurones. Parmi eux,

la latence (nombre de cycles d’exécution) et le débit (nombre d’inférences par sec-

onde) sont cruciaux. Nous avons également pris en compte la surface de la puce, la

consommation (puissance ou énergie), et des KPI combinant plusieurs aspects, tels que

l’efficacité énergétique mesurée en TOPS/W (opérations en téra par seconde par watt).

vii

Gemini, un accélérant configurable pour l’inférence de réseaux

de neurones

Dans le cadre du projet Gemini, nous avons dû concevoir un accélérateur de réseaux de

neurones basé sur l’architecture présentée précédemment, en utilisant une stratégie de

flux de données à sortie stationnaire. Cet accélérant devait en outre satisfaire plusieurs

spécifications garantissant le succès du projet. Tout d’abord, Gemini doit être con-

figurable, capable de changer d’architecture pour s’adapter aux différentes contraintes

de surface, de consommation et de latence. De plus, Gemini doit traiter des données

quantifiées et avoir des sorties au format compatible avec TensorFlow [64]. Gemini

doit également répondre à certaines spécifications relatives aux KPIs. Enfin, Gemini

doit être validé de manière exhaustive, et la conception doit être maintenable. Ces

différentes spécifications imposent des contraintes au niveau de la conception et de

l’implémentation.

Les entrées et les sorties de l’accélérateur sont celles du réseau de neurones présenté

précédemment. Cependant, au niveau du matériel, il a fallu choisir leur représentation.

Pour cela, nous avons opté pour la quantification TensorFlow en 8 bits pour les poids et

les fmaps.

En ce qui concerne la conception, nous avons suivi les directives imposées, en util-

isant une architecture composée d’une RAM pour les fmaps appelé FMAP RAM et une

RAM pour les poids appelée WEIGHTS RAM. Le NPU contient un tableau d’unités

de traitement (PEs) organisées en 2D, avec des paramètres configurables, notamment

WPAR pour la parallélisation en largeur des ofmaps et MPAR pour la parallélisation

des filtres. Ces paramètres structurels sont cruciaux pour la conception globale et la

planification des opérations, en particulier pour optimiser les convolutions. La Figure

4.1 illustre ces notations avec (WPAR,MPAR) = (2, 4).

En ce qui concerne le NPU, il est composé de trois composants. Tout d’abord, les

unités de traitement (PE) de Gemini: ces PEs sont organisées en parallèle, et comme

décrit précédemment, la somme partielle est stationnaire, tandis que les poids et les

fmaps leur sont diffusés à chaque cycle. Dans le cas des couches entièrement con-

nectées, ces PEs calculent simultanément N = WPAR × MPAR pixels de sortie.

Pour les couches de convolution, les PEs sont organisés en un tableau bidimensionnel,

viii

WPAR = 2

MPAR = 4

Number of filters (M): 3PEs array

IFMAP OFMAP

(2,4)

Fig. 3 Unités de traitements pour (WPAR,MPAR) = (2, 4)

ce qui permet de calculer WPAR pixels d’ofmap pour MPAR ofmaps en parallèle.

L’architecture de chaque PE comprend deux étapes pipelinées: la première effectue

des opérations primaires telles que les MAC pour les calculs de couches, tandis que la

deuxième étape se concentre sur la quantification des pixels de sortie.

Le deuxième composant est les mixeursd’entrée :ils réorganisent les données (ifmaps

et poids pour les adapter aux besoins des PEs. Le dernier composant est l’étage d’écriture.

Il permet la réorganisation des données en sortie des PEs et leur écriture en mémoire.

En ce qui concerne les RAMs, la RAM WEIGHTS contient les poids du réseau de

neurones ainsi que certains paramètres de la couche, tels que le type de couche. Pour

un réseau de ℓ couches, les poids et les paramètres des couches sont répartis couche

par couche. Pour la RAM FMAP, elle contient initialement les ifmaps, puis pendant

l’exécution, elle contient les sorties des couches intermédiaires qui sont de nouveau

réécrites dans cette RAM. Enfin, à la toute fin de l’exécution, elle contient les ofmaps.

Il est important de préciser que l’ordonnancement est conçu de manière à ce qu’il n’y

ait jamais de lecture et d’écriture simultanées dans cette SRAM. Cela est possible car

pendant la lecture, on lit des données utilisées pendant plusieurs cycles, ce qui évite de

lire les données à chaque cycle, libérant ainsi des cycles auxquels l’écriture est possible.

Enfin, il est important de préciser que pour les deux RAMs, la géométrie des RAMs

ainsi que l’organisation des données dépendent des paramètres architecturaux WPAR

et MPAR.

Concernant l’implémentation de Gemini, il convient de noter que le NPU est conçu

en utilisant la synthèse à haut niveau (HLS). Ce choix est justifié par le fait qu’elle utilise

un langage de description de haut niveau comme le C++, ce qui facilite la configura-

bilité, la maintenabilité et la validation exhaustive (étant donné que les simulations sont

ix

plus rapides qu’en RTL). De plus, la HLS permet d’accomplir efficacement certaines

tâches telles que le déroulement de boucles et le pipeline. Toutefois, il est important

de préciser que la description de l’architecture en HLS requiert une certaine adapta-

tion du code pour obtenir des résultats optimisés. Seules les RAMs n’ont pas pu être

décrites en HLS, elles ont été instanciées en RTL en utilisant les RAMd SPREGHD de

STMicroelectronics.

La conception et l’implémentation de Gemini ont abouti à un tape-out en P18, qui a

servi de premiers démonstrateurs. De plus, nous avons pu effectuer des simulations sur

la netlist placée et routée, démontrant que Gemini est compétitif par rapport à d’autres

accélérateurs, comme le montre le tableau 1.

Accelerator PEs Freq & Bits Area TOPs/W GOPs/mm²
Envision (28nm) [92] 512 200 MHz & 8 1.87 mm² 3.80 -

ShiDiaNao (65nm) [40] 64 1 GHz & 16 0.66 mm² - 293
Eyeriss(65nm) [25] 384 200 MHz & 8 12.25 0.246 -
UNPU (65nm) [79] - 200 MHz & 8 16 mm² 4.30 43
QNAP (28nm) [91] 144 470 MHz & 8 1.9mm² 11.3 745

COMPAC(65nm) [107] (128) 25 MHz & 8 1.74mm² 1.044 -
SCNN (65nm) [100] 64 1 GHz & 16 7.9mm² - -
Orlando (28nm) [38] - 1.75 GHz & 8 and 16 34mm² 2.9 -

Gemini (18nm) 128 350 MHz & 8 0.655mm² 1.9/3.1 2560

Table 1 Comparaison de KPI pour différent accelerateurs

Évaluation des performances de Gemini

Comme présenté ci-dessous, Gemini possède une architecture configurable avec

(WPAR,MPAR), deux paramètres architecturaux qui dimensionnent l’ensemble du

circuit et agissent donc sur les KPIs. Grâce à ces deux paramètres, Gemini peut être

adapté pour différents marchés nécessitant différents compromis en termes de KPI. Pour

cela, nous avons décidé de concevoir un évaluateur de performance à haut niveau per-

mettant de prédire, pour un NN donné, la surface de la puce, la latence de l’exécution

d’un NN et la consommation en fonction de (WPAR,MPAR).

La méthodologie pour construire cet estimateur repose sur les principes suivants :

• Comme l’exécution d’un NN sur Gemini est prédictive, nous évaluons la latence

Lat grâce à des formules analytiques. Il a été établi que

x

Lat =
∑L

l=1

(⌈
αl

MPAR

⌉
×
⌈

βl

WPAR

⌉
γl
)
+

∑K
l=1

⌈
δl
N

⌉
ϵl. Avec L le nombre de

couches de convolution, K le nombre de couches entièrement connectées, et αl,

βl, γl, δl, ϵl sont des constantes dépendant du type de couche l.

• La consommation statique et la surface ont été évaluées en prenant en compte

la complexité des composants de Gemini, qui sont les unités de processeurs, les

mixeurs d’entrée et l’étage d’écriture. La consommation statique et la surface

sont donc modélisées par :

G = c0 + c1 ×N + c2 ×N⌈log2WPAR⌉+ c3 ×WPAR; avec ci, i ∈ [0, 4], des

constantes à déterminer.

• Pour la consommation dynamique, nous avons convenu de modéliser la consom-

mation de chaque couche en fonction des différents paramètres qui la constituent.

La consommation de l’ensemble du NN sera donnée par la moyenne des con-

sommations des couches pondérées par leurs latences. Le principe pour prédire

la consommation de chaque couche est obtenu avec la même équation que pour la

consommation statique et la surface, sauf que les constantes sont désormais des

fonctions dépendant du NN à exécuter.

Afin de déterminer ces constantes, nous avons recueilli des données en simulant

214 configurations différentes de (WPAR,MPAR) et environ 100 NN à une couche.

La détermination des constantes s’est faite par régression linéaire. L’estimateur a été

validé pour tous les types de réseaux supportés et son efficacité a été illustrée sur le

réseau VGG-like.

Grâce à cet estimateur, un utilisateur de Gemini peut déterminer quelle architecture

choisir pour son réseau (en calculant des fronts de Pareto, par exemple).

Accélération de réseaux de Neurones en utilisant un pipeline

fixé

Au cours de nos différentes évaluations de KPI, nous avons constaté qu’utiliser un seul

NPU présentait des inconvénients. En effet, l’augmentation de la parallélisation ne

résulte pas toujours en une réduction de latence. De plus, dimensionner un accélérateur

par rapport à un NN fait que certains PEs ne sont utiles que pour les grandes couches,

xi

et l’accélérateur se retrouve sous-utilisé pour les autres couches. Enfin, cette approche

d’utiliser un seul NPU fait que les images sont traitées une par une.

Après une réévaluation de la structure du réseau de neurones, nous avons constaté

qu’il fonctionnait tel un pipeline. Par conséquent, nous avons proposé un système de

pipeline composé de n accélérateurs Gi, i ∈ [0, n−1], séparés par des RAM Ri. Chaque

NPU dispose d’un nombre fixe de PE, noté Ni, et les RAM ont une taille prédéfinie,

notée si. Les données d’entrée (ifmaps) et de sortie (ofmaps) sont stockées dans les

RAM IFMAP RAM et OFMAP RAM.

L’idée est que chaque NPU traite qu’une partie des couches de NN pour une image

puis donne le relais au NPU suivant pour d’autres couches. Les poids sont répartis en

différentes RAMs en fonction des couches supportées par chaque NPU. Le schéma 6.4

illustre ce principe.

D

WEIGHTS
RAM W₀

WEIGHTS
RAM W₁

WEIGHTS
RAM Wₙ_₁

NPU NPU NPU
G G G

NPU
 G₁

D D

NPU
 Gₙ_₁

NPU
 G₀

RAM R₀ RAM R₁ RAM Rₙ_₁

Fig. 4 Description du pipeline de n NPUs

L’objectif dans cette étude est de déterminer l’allocation de chaque couche sur le

système, c’est-à-dire de déterminer quelle couche est traitée par quel NPU du pipeline.

Ce mapping doit prendre en compte les contraintes liées aux tailles des RAMs. Ce

problème s’apparente au problème d’assemblage SALBP [18], qui est prouvé comme

étant NP difficile [10]. Cependant, dans notre cas, où nous avons des simplifications,

nous pouvons le résoudre de façon polynomiale en nous inspirant de [57].

Nous avons donc modélisé le problème en programmation linéaire en nombre entier,

pour lequel nous avons proposé des algorithmes polynomiaux permettant de résoudre

trois sous-problèmes :

• Trouver le mapping permettant d’optimiser la latence Lat2 du système si l’on

considère que l’application repose sur des inférences ponctuelles. Ce qui signifie

que les images sont traitées séquentiellement comme si l’on avait un seul NPU.

xii

• Trouver le mapping permettant d’optimiser le débit du traitement. C’est équivalent

à optimiser la latence Lat1 pour une application de flux où les images peuvent être

traitées simultanément.

• Enfin, comme les deux approches précédentes sont antagonistes, nous avons vu

qu’il est possible d’optimiser la latence Lat2 pour un débit donné.

Nous avons illustré ces algorithmes sur un pipeline de plusieurs Gemini où nous

avons montré qu’en fonction de l’objectif, le mapping peut changer.

Accélération de réseaux de Neurones en utilisant un pipeline

non-fixé

Nous avons proposé d’étendre le pipeline vu précédemment au cas où la structure

matérielle du pipeline ne serait pas fixée. Le nombre de NPU, ainsi que leur nom-

bre de PEs et leurs tailles, ne sont plus figés. Avec cette liberté supplémentaire,

il est désormais possible d’optimiser des KPI liés au matériel, souvent en conflit

avec des critères de vitesse, tels que le débit.

Nous avons donc proposé d’optimiser, pour un débit donné, plusieurs KPIs, tels

que la réduction du nombre total de processeurs, la surface, la puissance, l’énergie

et une combinaison linéaire convexe de ces différents KPIs.

Pour résoudre ce problème, nous l’avons modélisé en utilisant un modèle linéaire

en nombre entier. Ensuite, nous avons proposé un schéma de programmation

dynamique fournissant une solution en complexité polynomiale.

Nous avons testé ces méthodes sur Gemini en comparant les solutions du pipeline

aux solutions que nous aurions pu obtenir en utilisant un seul NPU avec un nom-

bre élevé de processeurs. Le pipeline s’avère être très efficace pour réduire le

nombre de PEs ou la surface afin d’atteindre un débit donné. Cependant, le plus

impactant réside dans la possibilité d’atteindre des débits impossibles à atteindre

en utilisant un seul NPU, notamment grâce au traitement simultané des images.

De plus, cela permet de fonctionner à une fréquence plus basse, minimisant ainsi

la puissance nécessaire pour un traitement à un débit donné.

xiii

Conclusion, contributions et perspectives

Cette thèse a apporté des contributions significatives à la fois sur le plan industriel

et académique. Du côté industriel, au cours de cette thèse, j’ai participé à la

conception et à l’implémentation de Gemini, un accélérateur matériel dédié à

l’inférence de réseaux de neurones feed-forward comportant un certain nombre

de couches standard. Cet accélérateur cible un marché de calcul en périphérie et

répond aux contraintes spécifiques de ce domaine. De plus, Gemini a été conçu

avec une grande flexibilité pour s’adapter aux besoins variés de différents clients.

Il était donc naturel de développer un outil permettant aux clients de choisir la

configuration de Gemini la plus adaptée à leur application.

Sur le plan académique, certaines des méthodes et outils développés au cours

de cette thèse peuvent être réutilisés dans des contextes plus larges. Par exem-

ple, l’outil de prédiction des KPIs peut être adapté pour d’autres accélérateurs en

ajustant la méthodologie. De plus, le schéma de pipeline optimisant différentes

KPIs pour l’exécution de réseaux de neurones est générique et peut être appliqué

à divers accélérateurs. Ces travaux ont déjà donné lieu à une publication [12] et à

un article soumis à une conférence internationale.

Plusieurs perspectives s’ouvrent pour améliorer davantage le support matériel de

l’exécution des réseaux de neurones. Au cours de cette thèse, l’architecture de

Gemini était prédéfinie, mais il est possible d’explorer le paradigme du calcul

en mémoire, offrant une meilleure réutilisation des données et un potentiel de

parallélisme accru. L’outil de prédiction développé peut également être adapté

pour prendre en charge plusieurs réseaux de neurones, au lieu d’un seul. De

même, le schéma de pipeline pourrait être conçu pour être adaptable à plusieurs

réseaux de neurones plutôt qu’à un seul.

Ces perspectives s’inscrivent parfaitement dans l’idée d’améliorer à la fois l’optimisation

locale (architecture) et globale (pipeline haut niveau), ce qui s’avère être la meilleure

approche pour obtenir une optimisation complète du système.

xiv

ACKNOWLEDGEMENT

Je tiens tout d’abord à exprimer ma gratitude envers les membres du jury pour

avoir évalué mes travaux et pour les discussions enrichissantes qui ont émergé

lors de la défense. Je suis honoré que le sujet ait suscité votre intérêt. Mes re-

merciements s’adressent en premier lieu à M. Coussy et Mme. Kritikakou pour

avoir accepté d’être mes rapporteurs. Je vous suis reconnaissant pour vos remar-

ques et appréciations. Je souhaite également remercier M. Petrot et M. Pelcat

pour avoir été examinateurs. Je tiens particulièrement à remercier Roselyne, non

seulement pour son rôle d’examinatrice, mais aussi pour tout ce qu’elle a fait pour

moi afin que cette thèse puisse aboutir. Sans l’opportunité qu’elle m’a offerte, je

n’aurais pas pu finaliser administrativement ma thèse. Je te suis également recon-

naissant pour le soutien que tu m’as apporté, ainsi que pour ta gentillesse et ton

sens de l’aide, non seulement à mon égard, mais également envers tous ceux qui

ont bénéficié de ton dévouement au laboratoire au quotidien. Ta présence au sein

du laboratoire est d’une valeur inestimable et jamais suffisamment soulignée. Je

tiens à exprimer ma profonde gratitude envers ma directrice de thèse, Alix. J’ai

rencontré des difficultés lors de la rédaction de ce paragraphe, car il m’était diffi-

cile de trouver les mots justes pour exprimer à quel point je te suis reconnaissant

pour avoir sauvé ma thèse. Sans ton intervention pour me motiver à poursuivre

la thèse, à me redonner espoir et à retrouver ma bonne humeur, je ne serais pas

parvenu à maintenir le cap durant cette période. Tes nombreuses interventions

pour résoudre les problèmes administratifs ont été cruciales, et bien des fois, je

n’aurais pas pu soutenir ou même rester en France sans ton intervention. Je tiens

également à te remercier pour nos échanges fréquents, tant sur le plan scien-

tifique où j’ai été passionné par ton expertise en recherche opérationnelle, que

sur le plan personnel, où tu m’as permis d’avancer sereinement dans mes travaux

au LIP6. Tes conseils et nos discussions sur d’autres sujets passionnants ont été

d’une grande valeur pour moi.

Je remercie STMicroelectronics pour avoir cofinancé ma thèse. Je remercie Pas-

cal pour avoir accepté de faire partie du jury. Mes remerciements vont également

à Roberto pour son accompagnement et ses précieux conseils, ceux que j’ai déjà

xv

suivis et ceux que j’espère pouvoir suivre à l’avenir. Je tiens également à re-

mercier Bruno, Vincent, José, Mathieu, Carlo et tous les autres ingénieurs que

j’ai eu l’opportunité de croiser à ST.

Je tiens à remercier mes amis grenoblois avec qui j’ai passé de bons moments et

qui ont fait que mon déménagement à Paris n’était pas évident. En commençant

par Soufiane et Thomas, qui ont été à mes côtés depuis le début jusqu’à la fin,

et qui m’ont chaleureusement accueilli à chaque passage à Grenoble. Je souhaite

également remercier mes amis rencontrés à ST, les Narvalos Clément, Emilien,

Nathan et Fidel, avec qui j’ai partagé d’énormes fous rires, ainsi que de nom-

breuses discussions théoriques et d’optimisation sur divers sujets (le fromage

blanc revenait souvent quand même ...). Je suis reconnaissant d’avoir passé

tant de moments agréables avec vous en dehors du travail, et je vous remercie

d’avoir réussi, par votre sympathie, à me faire rester lorsque j’envisageais de

partir. Je tiens également à exprimer ma reconnaissance envers mes autres amis

rencontrés pendant mon séjour à Grenoble, qui m’ont ruiné avec les nombreux

allers-retours : Jésus, Chloé, Cécile, Lilia, Emma, Cédric, Nader, Anaı̈s, Florian,

Stéphane, Marouane, Thibault, Marie, Paul, Simon, Eva, Gaëtan, Yura, Loı̈c,

Quentin, Pauline, Martin et Félix.

Je souhaite exprimer ma gratitude envers mes amis parisiens qui m’ont accueilli,

en commençant par ceux que j’ai rencontrés au laboratoire. Un grand merci à

Maxime pour m’avoir immédiatement intégré et accueilli au sein du laboratoire.

Je souhaite également remercier les autres avec qui j’ai partagé de nombreux mo-

ments de bonne humeur: Baptiste, Garance, Nathan, Clara, Mathuran, Theophi-

los, Habib, Rieul, Ilyas, Noé, Jonathan, Xin Yue, Adrien, Marie-Minerve, Ger-

gana et Ouassim. Je suis reconnaissant d’avoir retrouvé les fantômes du passé,

Anas.T et Abdou, mes meilleurs amis, que j’ai la chance de revoir très souvent

maintenant. Mes remerciements vont également envers mon ami Ketsana, qui

m’a beaucoup aidé et soutenu pendant mon séjour à Paris. Je remercie également

ses amis et sa famille qui ont toujours été adorables avec moi. Je tiens également

à exprimer ma gratitude envers mes autres amis chers, Anas B, Simo et Jad, que

je n’ai pu voir que brièvement ces derniers temps, mais qui ont su remplir mon

cœur à chaque rencontre.

xvi

Je souhaite exprimer ma gratitude envers mes parents et mon petit frère, qui sans

eux, rien de tout cela n’aurait été possible. J’espère qu’ils sont fiers de moi et que

cette thèse justifie ne serait-ce que peu le manque que l’on a pu ressentir. J’ai eu

la chance d’avoir un petit frère aussi encourageant et aimant, qui se préoccupait

de moi et de mes problèmes, et qui prenait tout son temps pour passer de bons

moments avec moi lorsque je rentrais au Maroc. Mon père, qui a consenti à

d’énormes sacrifices dès mon plus jeune âge et m’a transmis sa passion pour

les sciences et les mathématiques, ce qui a guidé mon parcours. Je remercie

également ma mère pour ses sacrifices, son soutien et sa présence lors de ma sou-

tenance, malgré toutes les difficultés. Je présente mes excuses pour les épreuves

qu’ils ont dû traverser et je leur suis reconnaissant pour leur soutien dans les mo-

ments difficiles.

Finalement, je tiens à exprimer ma gratitude envers mon grand-père, qui m’a

toujours soutenu et qui a toujours fait l’impossible pour être présent dans les

moments importants de ma vie. Sa place est incontestablement ici, parmi ceux

que je remercie aujourd’hui.

xvii

TABLE OF CONTENTS

ABSTRACT . i

Resumé . iii

ACKNOWLEDGEMENT . xv

LIST OF FIGURES . xxiii

LIST OF TABLES . xxv

LIST OF LISTINGS . xxvi

LIST OF TERMS AND ABBREVIATIONSxxvii

1 Introduction 1

1.1 Context and Contributions . 2

1.2 Dissertation organization . 5

2 Introduction to Neural Networks 7

2.1 Neural Networks History . 9

2.2 Neural Networks Overview . 10

2.2.1 Inputs and Outputs . 10

2.2.2 Neural Networks Layers Connection 11

2.2.3 Neural Network Layers Supported 13

2.2.4 Non-linear Activation . 18

2.2.5 Training VS Inference . 18

2.3 Neural Network Applications . 20

2.3.1 Diverse Use-cases . 20

2.3.2 Benchmarked and Utilized Neural Network 21

2.4 Conclusion . 22

3 Neural Networks Hardware Accelerators 24

3.1 Principles of Neural Network Accelerator Architectures 25

xviii

TABLE OF CONTENTS

3.2 Neural Network Accelerators Data-flows 26

3.3 Key Performance Indicators of the Design 29

3.3.1 Latency and Throughput . 29

3.3.2 Chip Area . 30

3.3.3 Power and Energy Consumption 30

3.3.4 Other KPIs . 31

3.4 Quantization . 31

3.5 Conclusion . 32

4 Gemini Design and Implementation 34

4.1 Gemini Data Representation and Quantization 36

4.2 Gemini Configurable Architecture . 37

4.2.1 Presentation of Gemini Structural Parameters 37

4.2.2 NPU Architecture . 38

4.2.3 RAMs Organization . 40

4.2.4 FMAPS RAM Organization . 43

4.2.5 Layers Execution Scheduling . 44

4.3 Implementation . 46

4.3.1 HLS overview . 46

4.3.2 NPU Design in HLS . 48

4.3.3 RTL Wrapper . 53

4.4 Gemini Tape-outs and Benchmark . 54

4.4.1 Tape-outs . 54

4.4.2 Benchmark . 55

4.5 Conclusion . 57

5 Gemini Performances Evaluation 58

5.1 Importance of Performance Estimators 59

5.2 State of the Art . 59

5.3 Methodology . 60

5.4 Building the Simulation Data set . 62

5.4.1 Simulation Environment . 62

5.4.2 Architectures and NNs to Build the Data set 64

xix

TABLE OF CONTENTS

5.5 Key Performance Indicators Estimation 65

5.5.1 Latency Modeling . 66

5.5.2 Area and Leakage Modeling . 68

5.5.3 Dynamic Power Modeling . 71

5.6 Configuration Choice . 78

5.7 Conclusion . 79

6 Fixed Pipelined Neural Network Accelerators 81

6.1 Single NPU Limits . 82

6.2 Description of the Pipeline Environment 84

6.2.1 NPU Accelerator Working Principle Reminder 84

6.2.2 Description of the NN and Intermediary Feature Maps 85

6.2.3 Description of the Pipeline Architecture 85

6.2.4 Layers Mapping on NPUs . 86

6.2.5 Intermediary SRAMs Capacity 87

6.2.6 Execution Time . 88

6.3 Objective Functions Considered (or KPIs) 89

6.3.1 Throughput and Period . 89

6.3.2 Latency . 90

6.4 Formal Description of the Problem . 90

6.5 Related Work . 91

6.5.1 Mapping General Algorithms onto Heterogeneous Machines . . . 91

6.5.2 Mapping NNs onto Heterogeneous Machines 92

6.5.3 Simple Assembly Line Balancing Problem 94

6.6 Optimizing Throughput and Latency Separately 96

6.6.1 Integer Linear Model with Variables in {0,1} 97

6.6.2 Dynamic Programs . 98

6.7 Latency and Throughput Co-optimization 103

6.7.1 Integer Linear Model with Variables in {0, 1} Optimizing Latency

Lat2 for a Specific Period . 104

6.7.2 Dynamic Program Optimizing the Latency for a Given Throughput 105

6.8 Applications to Gemini . 106

6.8.1 Hardware Feasibility on Gemini and Execution Time 107

xx

TABLE OF CONTENTS

6.8.2 Results of Separate Throughput and Latency Optimization on Gem-

ini . 110

6.8.3 Results of Co-optimized Latency and Throughput on Gemini . . . 111

6.9 Conclusion . 113

7 Non-Fixed Pipelined Neural Network Accelerators 115

7.1 Description of the Non-fixed Hardware Scenario and Literature Review . 116

7.2 Lower Bounds to Respect Allocations Constraints 117

7.2.1 Lower bound on the Number of NPU PEs Required to Execute a

NN within a Given Execution Time Constraint 118

7.2.2 Min RAMs Capacity for an Allocation 118

7.3 Objective Functions Considered (or KPIs) 119

7.4 Formal Description of the Problem . 120

7.5 Integer Linear Model with Variables in {0,1} to Minimize φ while Ad-

hering to a Throughput Constraint P ⋆ 121

7.6 Description of the Dynamic Programming Algorithm Minimizing φ while

Adhering to a Throughput Constraint P ⋆ 122

7.7 Applications on Gemini . 123

7.7.1 Gemini Features for Non-fixed Hardware Scenario 124

7.7.2 Optimization of Throughput and Latency 126

7.7.3 Minimization of Processing Elements Number 126

7.7.4 Minimization of Area . 127

7.7.5 Minimization of Power . 129

7.7.6 Minimization of Energy . 130

7.7.7 Minimization of a Convex Linear Combination of KPIs 131

7.8 Extension of the NPUs Pipeline Methodology 133

7.8.1 Extension to Non-monotonic-KPIs with Respect to PEs Number . 133

7.8.2 Cyclic Pipeline of NPUs . 134

7.8.3 Parallelizing NPUs . 135

7.9 Conclusion . 136

8 Conclusion 139

REFERENCES . 142

xxi

TABLE OF CONTENTS

Appendices

Appendix A Gemini 1 Testchip P18 158

Appendix B Dynamic program to Optimize the Latency Lat2 for a Given

Throughput Using States Representation in the Fixed Hardware Sce-

nario 159

Appendix C MPAR Choice For Gemini Pipeline 160

Appendix D Dynamic Program to Optimize φ for a Given Throughput

Using States Representation in the Non-fixed Hardware Scenario 161

Appendix E Optimizing the Latency Lat2 for a Given Throughput in

The Non-fixed Hardware Scenario Using Gemini NPUs 162

xxii

LIST OF FIGURES

1 Notations adoptées pour les paramètres des couches des réseaux de neu-

rones . vi

2 Architecture imposée pour un accélérateur ayant un flux de données à

sortie stationnaire . vii

3 Unités de traitements pour (WPAR,MPAR) = (2, 4) ix

4 Description du pipeline de n NPUs . xii

2.1 Neurons connection in the brain and its mathematical model. Figure

inspired by [118] . 7

2.2 Neural Network’s ifmaps and ofmaps. Inspired by [118] 10

2.3 Structure of a neural network . 11

2.4 Fully connected layer VS sparsely-connected layer (from [118]) 12

2.5 Feed-forward and recurrent NN . 12

2.6 Residual blocks connexion . 13

2.7 Convolutional layer computation . 14

2.8 Maxpool example . 15

2.9 Example of depthwise separable convolution 16

2.10 Example of fully connected layer . 17

2.11 ReLu function . 18

2.12 VGG-like network structure . 22

2.13 MobileNet network structure . 23

2.14 PNet network structure . 23

3.1 Generic architecture for an NN accelerator. Figure adapted from [118] . 26

3.2 Most common NN accelerators data-flows. From [118] 28

4.1 PEs array organization for (WPAR,MPAR) = (2, 4) 37

4.2 NPU hardware blocks . 38

4.3 Architecture of one Processing Element 39

xxiii

LIST OF FIGURES

4.4 WEIGHTS RAM organization for a ℓ layers NN {L0, L1, Lℓ−1} 41

4.5 Example of convolution weights placement in the RAM 42

4.6 Example of fully connected weights placement in the RAM 43

4.7 Example of fmaps pixels placement in the RAM 44

4.8 Gemini Design steps . 47

4.9 Maximum, minimum, and average time usage for different categories

with RTL and HLS. From [72] . 48

4.10 Different fmap types used in Gemini architecture 49

5.1 Simulation environment . 62

5.2 VGG-like estimated and simulated latencies for MPAR = 8 68

5.3 Area and leakage estimations and simulations for MPAR = 5 70

5.4 Dynamic power of NPU and RAMs on VGG-like for MPAR = 8 72

5.5 Dynamic power of the NPU executing convolutions sweeping 2D ifmap

pixels . 74

5.6 Dynamic power of the NPU executing convolutions with different filters

sizes for MPAR = 8 . 75

5.7 Dynamic power of the Processing Elements executing convolutions with

different filters sizes for MPAR =8 . 76

5.8 Dynamic Power of the NPU executing fully connected layers with dif-

ferent number of input neurons for MPAR = 8 77

5.9 VGG-like network sweet spots . 79

6.1 Latency as function of PEs number N for three NNs 83

6.2 Accelerator general architecture . 84

6.3 A feed-forward NN of ℓ = 4 layers and the corresponding intermediary

IFMAP . 85

6.4 Description of pipeline of n NPUs with their correspond RAMs 86

6.5 Pipeline execution principle with 4 ifmaps 87

6.6 Graph H = (V,E,w) for n = 3 and ℓ = 5 107

6.7 FMAPS RAMs geometry adaptation 109

6.8 Latency as function of period constraint, considering PNet on architec-

ture A . 112

xxiv

6.9 Latency as function of period constraint considering MobileNet on ar-

chitecture B . 113

7.1 A state graph H for ℓ = 4. The valuations are not presented. 123

7.2 Minimal Ni for an execution time specification 125

7.3 PEs number under throughput constraints for 3 NNs 127

7.4 Total area comparison between one and several pipelined NPUs 128

7.5 NPU power comparison between one and several pipelined NPUs 129

7.6 Energy under throughput constraint for VGG-like 130

7.7 Area as function of the period for 3 mappings 131

7.8 Power as function of the period for 3 mappings 132

7.9 NPUs in cyclic pipeline . 134

7.10 NPUs in cyclic pipeline example . 135

7.11 6 ifmaps processed by 3 NPUs in parallel 136

E.1 Latency under throughput constraints on Mobilenet 162

LIST OF TABLES

1 Comparaison de KPI pour différent accelerateurs x

2.1 Table summarizing outputs pixels computation for different NN layers . 17

2.2 Benchmarked and used neural networks, along with their parameters. . . 22

4.1 KPIs comparison for different accelerators 56

4.2 MobileNet latency of different accelerators 56

5.1 Gemini’s configurations considered building the data set 64

5.2 Simulated fully connected layers . 65

5.3 Simulated convolution layers . 66

5.4 Leakage and area estimation characteristics 70

6.1 Table representing dynamic program states optimizing latency without

considering RAMs constraints . 99

6.2 Table representing dynamic program states optimizing latency consid-

ering RAMs constraints . 99

xxv

6.3 Table representing dynamic program states optimizing the throughput

without considering RAMs constraints 102

6.4 Solutions optimizing Lat2 and P separately 111

6.5 Optimal solutions for throughput and latency for RAMs A scenario . . . 112

7.1 Minimal reachable period P and the corresponding latency for a pipeline

architecture vs. a single NPU (in cycles) 126

LIST OF LISTINGS

4.1 NPU function in C++ . 50

4.2 Layers execution function in C++ . 51

4.3 PEs array function in C++ . 52

6.1 Step2 pseudo code . 102

xxvi

xxvii

CHAPTER 1

Introduction
Throughout human history, individuals have always been natural problem solvers, shap-

ing their understanding of the world through rational thinking and the art of problem-

solving. Over time, this logical progression led to the development of algorithmic

approaches, and subsequently, the use of computers to enhance our problem-solving

capabilities. These machines played a crucial role in speeding up and improving our

abilities, making it easier for us to handle complex challenges. As a result, we ac-

complished what was once considered impossible, breaking through the limits of what

we thought we could achieve. Problems that seemed too difficult to solve due to their

complexity became more manageable. From simulating weather patterns to modeling

detailed molecular structures, these computer systems gave us the ability to take on

tasks we could not have imagined before.

However, at one point, we realized that the human brain does not operate strictly

based on rigid instructions. In fact, we could learn through observation, experience,

and training, surpassing the boundaries of classical algorithms. This revelation paved

the way for Artificial Intelligence (AI), a discipline that aimed to replicate the flexible

and adaptable nature of human thinking. Within the field of Artificial Intelligence, what

truly excels are neural networks (NN). These systems, inspired by the human brain,

have demonstrated exceptional abilities in autonomously handling complex problems,

such as those encountered in various AI applications. Some of today’s widely renowned

applications include virtual personal assistants like Siri and Alexa, recommendation

systems like those used by streaming platforms, and even autonomous vehicles, which

rely heavily on NNs to make critical decisions.

While the concept of neural networks (NNs) is not new, their recent resurgence

can be partly attributed to significant hardware advancements [75]. The computational

requirements of NNs are considerable, and a few decades ago, the required processing

power simply was not available. Central Processing Units (CPUs), Field-Programmable

Gate Arrays (FPGAs), and especially Graphics Processing Units (GPUs) played a piv-

otal role in reviving the potential of NNs by addressing these computational needs [76].

However, for NNs, Application-Specific Integrated Circuits (ASIC) accelerators have

emerged as the most promising hardware candidates. They offer the potential to fur-

ther reduce latency while maintaining a compact footprint and low power consumption.

1

1.1. CONTEXT AND CONTRIBUTIONS

These characteristics make ASIC accelerators particularly appealing for edge comput-

ing devices and the broader embedded systems market.

The competition to develop accelerators, specifically tailored for neural network in-

ference, is underway. While training can be conducted on the cloud, the demand for

efficient inference in this rapidly expanding market has led to the exploration of vari-

ous architectures. Extensive hardware architecture optimizations at fine-grained levels,

focusing on parallelization and data management, have given rise to a plethora of com-

petitive accelerators. Moreover, as these accelerators serve a multitude of applications,

the necessity of configuring their designs to adapt to markets with diverse used NNs

and trade-off requirements has become important. Therefore, accurately predicting the

performance of an accelerator across various configurations is crucial to selecting the

most suitable one for each application.

With the availability of all these high-performance accelerators, a natural question

arises: can we further optimize their use even more through high-level strategies? one

approach involves using multiple instances of these accelerators to push performance

boundaries even further and enhance configurability. For this task, the accelerator

pipeline provides an excellent opportunity, notably due to its structure aligning with

that of a neural network. Perhaps employing multiple accelerators with lower degrees

of parallelism could yield greater efficacy than attempting to augment parallelization

within a singular accelerator.

1.1 Context and Contributions

This thesis is conducted within a collaboration involving STMicroelectronics and the

LIP6 laboratory at Sorbonne Université (CIFRE contract) supervised by Alix Munier

Kordon. I spent the initial two years of my research journey exclusively at STMicro-

electronics, where I was welcomed into the Innovation Team.

For nearly 19 months, I worked in a team dedicated to the Gemini project. The team

consisted of one manager Pascal Urard, a senior technical manager Roberto Guizzetti,

two other PhD students (Nathan Bain and Emilien Taly), an apprentice (Fidel Ro-

driguez Monteiro), and several interns. The project’s objective was to design a config-

urable neural network inference accelerator (also called Gemini) for an internal client.

The client specified the supported neural network type—specifically, feed-forward net-

works—along with the hardware architecture, and strict requirements for the accelera-

tor, including constraints related to latency, chip area, power, and validation. Addition-

ally, we were required to use High-Level Synthesis for configurability, prototyping, and

validation facilities.

In the initial two months, we focused on creating the first version of an architecture

2

1.1. CONTEXT AND CONTRIBUTIONS

named Gemini-1, which did not have the optimal parallelization discussed in this thesis.

Over the next 17 months, we worked on improving it, eventually arriving at the archi-

tecture described in the thesis. While the main emphasis of the Gemini project was on

designing this Intellectual Property (IP), we had the added responsibility of delivering

the complete package to the client. This included the source code that generated netlists

and the validation environment. We also took on additional tasks, such as Tape-outs,

using advanced ST technology. This allowed us to test the technology and, in exchange,

gave us access to silicon for measuring the IP’s performance. We performed these ac-

tivities for both Gemini-1 and the more advanced architecture, referred to as Gemini-2,

which is detailed in this thesis.

After completing the design and satisfying the initial client’s needs, the accelera-

tor became available for potential use by other clients. This presented the challenge of

configuring the accelerator effectively to meet diverse clients’ requirements. To address

this, I collaborated with the laboratory, in conjunction with STMicroelectronics. To-

gether, we devised a strategy to efficiently estimate performance such as area, power,

and latency—of an accelerator at a high-level, considering specific neural network and

architecture combinations. These performance estimation models were developed us-

ing industrial tools available at STMicroelectronics.

These performances estimations rely on just two architectural parameters and neural

network parameters. This enabled us to select the most suitable architecture for each

client’s application. This developed tool predicts performances in CMOS C40, facil-

itating the selection of the optimal configuration based on performance requirements.

This work also resulted in a publication set for the SBAC-PAD 2023 conference [98].

The entire task, including writing the paper, spanned approximately one year.

Furthermore, while analyzing the performance and its variations based on configu-

rations, we identified several barriers limiting fine-grained optimizations of accelerator

architectures. By delving deeper into the neural network structure, we realized the

potential for pipelining multiple neural network accelerators to further optimize pro-

cessing. We initially explored a scenario where the pipeline architecture was fixed, as

if we were end-users of a chip with multiple fixed pipeline accelerators, seeking to de-

termine which neural network layer to execute on each accelerator for each incoming

neural network, optimizing latency, throughput, or finding trade-offs among them. Sub-

sequently, we expanded this problem from a user’s perspective to that of a designer,

who had the freedom to choose the accelerators’ number and their architectures. In this

context, we aimed to optimize not only execution speed but also hardware performance.

As these criteria often conflicted, we decided to optimize several performance metrics

at a fixed throughput. Specifically, for a given neural network and a fixed throughput

requirement, we aimed to determine the number of accelerators, their architectures, and

3

1.1. CONTEXT AND CONTRIBUTIONS

the allocation of layers to these accelerators to optimize multiple performance metrics.

For both pipeline problems, we provided a tool to solve them efficiently. Note that the

fundamental building block of this tool is the performance estimator mentioned in the

previous paragraph.

The problem related to non-fixed hardware led to a submission to an international con-

ference.

The work on the pipeline was conducted at LIP6, where I physically joined the

team in March 2023. Upon the conclusion of the CIFRE contract in May 2023, I found

myself without sufficient material to draft the manuscript due to the incomplete status

of the pipeline study. In response, LIP6 provided me with a part-time 6-month contract

to support my thesis. During this period, I was able to finalize the pipeline study and

complete the manuscript and conference papers writing.

In summary, this thesis has made significant contributions in four main areas:

Development of a feed-forward configurable neural network inference accel-
erator: this thesis has actively contributed to the implementation of an efficient and

configurable neural network accelerator using High-Level Synthesis. This included the

creation of a validation framework. This IP is currently in use at STMicroelectronics.

Performance prediction framework: the research work resulted in the design of

a performance prediction framework that facilitates the estimation of latency, area, and

power at a high-level of abstraction for various neural networks and hardware configu-

rations of the Gemini accelerator. This framework assists in selecting the most suitable

configuration for specific applications. It is currently utilized within the innovation

team, particularly for the CMOS C40 technology. Additionally, this research served as

the foundation for a publication at the SBAC-PAD 2023 conference [98].

Fixed pipelined neural network accelerator framework: the thesis has made a

significant contribution by developing a framework to enable the utilization of acceler-

ators in a fixed pipeline configuration. In this configuration, various parameters such

as the number of accelerators, their specific arrangement, the size of RAMs, and their

architecture are fixed. The framework finds the best neural network layers mapping on

the accelerators to optimize either the throughput or the latency, or a trade-off between

them.

Non-fixed pipelined neural network accelerator framework: in contrast to the

previous scenario, this framework addresses a dynamic design challenge where the

pipeline configuration is not fixed. The primary objective here is to determine the op-

timal hardware parameters, including the number of accelerators, their configurations,

order, and RAM sizes as well as the neural network layers mapping to this pipeline. This

optimization process targets a range of performance metrics, encompassing latency, the

total number of processing elements, power consumption, area utilization, energy, or a

4

1.2. DISSERTATION ORGANIZATION

combination of these factors, all while adhering to predefined throughput constraints.

Additionally, the aim is to assess whether this flexible pipeline approach outperforms a

single accelerator with a high number of processing elements.

While this strategy has shown promising results for a Gemini accelerator pipeline, it

has not yet been implemented on a chip. However, the overall pipeline strategy applied

to any accelerator and its effectiveness on Gemini has resulted in a submission to an

international conference and the presentation of a poster at GDR SOC2 2023.

1.2 Dissertation organization

This dissertation is structured into eight chapters:

In Chapter 2, we provide a foundational understanding of neural networks. We begin

with a brief historical overview of their development and then delve into the core fea-

tures and components of neural networks, including various types of networks, common

layers, and activation functions. We also highlight key applications and benchmarked

neural networks, emphasizing those relevant to the Gemini project.

Chapter 3 focuses on the hardware foundations of the Gemini IP architecture. We

start with an overview of hardware accelerator architectures, followed by a detailed ex-

ploration of dataflow strategies. Key Performance Indicators (KPIs) used in the domain

are discussed, and we elucidate how quantization affects these KPIs.

Chapter 4 details the design and implementation of Gemini to meet customer re-

quirements. We explain data representation within Gemini, provide an architectural

overview, including the neural processing unit (NPU) and RAMs, and briefly discuss

layer scheduling. We also highlight the impact of design choices leveraging High-Level

Synthesis tools. It concludes with a comparison of Gemini’s KPIs with state-of-the-art

accelerators.

Chapter 5 focuses on the critical aspect of configurability within the Gemini ac-

celerator architecture. It aims to build a high-level of abstraction model that predicts

Gemini KPIs (including latency, area, and power) based on hardware architecture and

supported neural networks. It starts by describing the environment used for collecting

simulation data used for the model. Furthermore, the chapter explains how the KPI

model is constructed and utilized, employing Pareto fronts to facilitate hardware con-

figuration selection.

In Chapter 6, we tackle the problem of fixed pipelined neural network accelerators.

We explore the potential of using multiple fixed instances of accelerators in a pipeline

structure to enhance execution KPIs (latency and throughput). This chapter presents the

pipeline environment, mapping layers onto accelerators, and related literature. We then

introduce linear models and polynomial solutions to different sub-problems, illustrating

5

1.2. DISSERTATION ORGANIZATION

the methodology through a pipelined scenario with Gemini instances.

Chapter 7 transitions from fixed hardware to a scenario of non-fixed pipelined neural

networks accelerators. We explore the environment, related works, and new optimiza-

tion objectives, including hardware performance. This chapter offers modeling and

resolution approaches and presents solutions tailored to the Gemini accelerator. Addi-

tionally, we discuss potential extensions of this paradigm.

Finally, in Chapter 8, we conclude this manuscript by summarizing the key findings

and contributions of the research presented throughout the dissertation. We provide

insights into the implications of our work and suggest avenues for future research in the

field.

6

CHAPTER 2

Introduction to Neural Networks
The initial objective of my thesis was to contribute to the design of Gemini, a hardware

accelerator for neural network inference.

Deep Neural Networks, a subset of Artificial Intelligence (AI), enable machines to

learn without explicit programming, revolutionizing the field. Brain-inspired compu-

tation, drawing inspiration from the human brain, plays a crucial role in shaping these

algorithms. Neurons, the fundamental units of the brain, are interconnected through

dendrites and axons, receiving and transmitting signals, known as activations, across

synapses, of which there are approximately 1014 to 1015 in the human brain. Impor-

tantly, synapses possess the capacity to modulate signals by adjusting weights (wi). It

is through these dynamic synaptic weight modifications that the brain is believed to

learn. This property of dynamically adjusting weights within a relatively stable neural

structure provides a promising foundation for the development of machine learning al-

gorithms. The basic mathematical representation of a neuron is illustrated in Figure 2.1.

With y the output of the neuron, wi the weights, xi the inputs of the neurons, b the bias

Fig. 2.1 Neurons connection in the brain and its mathematical model. Figure inspired by [118]

and f the nonlinear activation function detailed later. This mathematical representation

is the one that must be implemented efficiently in hardware.

In the field of brain-inspired computing, there is a specialized area known as spiking

computing. This area draws inspiration from the way the brain communicates, where

7

signals resemble spike-like pulses. What makes spiking computing unique is that it

recognizes that the conveyed information is not solely determined by the size of these

spikes. Instead, it depends on factors like when the pulse arrives and how the neuron

processes it. This processing is not just based on a single value but also considers the

width of the pulse and the timing of different pulses. An example of this research is the

IBM TrueNorth project [90]. Our focus in on classical artificial NN as imposed by the

project (presented in Section 1.1).

On the other hand, machine learning, in general, is primarily divided into supervised

and unsupervised learning. Supervised learning deals with labeled data, where the al-

gorithm learns from a dataset for which both the inputs and their corresponding outputs

are known. The objective is to construct a model that can generalize observations from

the known data to make predictions on unseen data. Examples of supervised learning

tasks include classification (e.g., image recognition) and regression. In unsupervised

learning, the data is unlabeled. Here, the goal is not to make predictions, but rather to

explore the data’s structure and identify correlations among its elements. A notable ap-

plication of unsupervised learning is clustering, where common characteristics within

the dataset are discovered. Finally, there is the semi-supervised that combines elements

of both supervised and unsupervised learning by using a mixture of labeled and unla-

beled data. This approach aligns more closely with real-world scenarios, where labeling

data involves experts participation. Typically, a preliminary unsupervised learning step

is employed to clean the data before applying supervised learning methods.

In the vast majority of cases, neural networks are primarily utilized for supervised

learning, where a data for training phase is necessary.

In this chapter, we will provide a comprehensive understanding of the neural net-

work that serves as the foundation for the Gemini accelerator. Our exploration begins

with a brief historical context of neural networks in Section 2.1. Subsequently, in Sec-

tion 2.2, we present an overview of key aspects of neural networks, discussing their

fundamental features and associated challenges. This section also serves as an opportu-

nity to establish the necessary vocabulary and notation. Topics covered here encompass

the structure of neural networks, including their inputs and outputs, layer configura-

tions, and details regarding training and inference processes. Then, Section 2.3 delves

into the practical applications of neural networks, providing insights into various use

cases, benchmarked neural networks, and NNs used within the Gemini project. Finally,

we provide a concise conclusion in Section 2.4.

8

2.1. NEURAL NETWORKS HISTORY

2.1 Neural Networks History

The journey of Artificial Neural Network research started as far back as the 1940s.

It was Donald Hebb who laid the foundation by emphasizing that neural pathways

strengthen with use, a fundamental concept in human learning [20]. However, it was

not until 1965 that Ivakhnenko and Lapa proposed an early working learning algo-

rithm with a multi-layer neuron structure [63]. Throughout the 1980s, neural network

research showed promise, but traditional von Neumann computer architecture [113]

continued to dominate the computing landscape. A significant turning point arrived in

1989 when LeCun et al. [77, 73] introduced a Convolutional Neural Network (CNN)

using the back-propagation for digit recognition. This pioneering network structure be-

came the prototype for modern neural networks. The early 2010s witnessed a surge

in applications based on NNs, marked by notable achievements like Microsoft’s speech

recognition system in 2011 [37] and the introduction of AlexNet, a NN for image recog-

nition in 2012 [71]. These advancements participate in the growing impact and potential

of NNs utilization in various domains. More recently, deep learning techniques have

found application in increasingly challenging and futuristic domains, achieving perfor-

mance levels previously unattainable with conventional approaches, and in some cases,

even surpassing human performance (in image recognition [46]). Several key factors

have contributed to the rapid progress of Deep Neural Networks (DNNs) in recent years

[118, 75]:

• Abundance of training data: the availability of vast amounts of training data has

played a pivotal role. Companies like Facebook, Walmart, and YouTube handle

immense volumes of data, providing the substantial datasets needed to effectively

train these algorithms.

• Advancements in computing power: progress in semiconductor technology and

computer architecture has significantly increased computing power. This advance-

ment enables the efficient computation of the complex weighted sums required for

DNNs, both during training and inference (detailed in Subsection 2.2.5).

• Development of open-source frameworks: the early successes in NN applications

spurred the development of open-source frameworks. These frameworks have

made it more accessible for researchers and practitioners to work with NNs. These

collective efforts, coupled with evolving algorithmic techniques, have greatly im-

proved accuracy and expanded the range of domains in which NNs can be applied.

9

2.2. NEURAL NETWORKS OVERVIEW

2.2 Neural Networks Overview

In this section, we will discuss all the essential features of a neural network that must

be supported by the Gemini accelerator.

We will start with an explanation of neural network inputs and outputs, along with

their respective notations, in Section 2.2.1. Subsequently, in Subsection 2.2.2, we will

delve into the various layer connections within a neural network, specifying the NN

types defined by their connectivity. Among these layers, we will provide descriptions of

those utilized in the neural networks supported by Gemini in Subsection 2.2.3. Moving

forward, we will discuss activation functions, which are crucial for separating layers

within a neural network structure, in Subsection 2.2.4. Lastly, in Subsection 2.2.5, we

will cover the challenges posed by the training and inference phases of neural networks,

particularly in terms of accuracy.

2.2.1 Inputs and Outputs

Before explaining NNs architecture, we will describe their inputs and outputs:

The inputs of a NN are 3D input feature maps (ifmap). A NN can receive a batch of k

ifmaps to process. The figure 2.2 shows that an ifmap is composed of C channels, each

channel has W ×H pixels with W the width and H the height of the 2D image.

……
……

…
…

……
……

…
…

.

.

.

.

.

.

H

W

H

W

Q

Q

P

P

C M

C M

k ifmaps k ofmaps

ofmap pixel2D ofmap
pixel2D ifmap

pixel

Fig. 2.2 Neural Network’s ifmaps and ofmaps. Inspired by [118]

Output feature maps (ofmap) are the output of the NN model, they have M channels,

P height and Q width. So each channel has P ×Q pixels.

Similarly, these neural network inputs and outputs are the ones employed throughout

every layer comprising the network.

10

2.2. NEURAL NETWORKS OVERVIEW

Figure 2.3 shows the structure of a NN with its corresponding inputs and outputs.

Inputs
W x H x C

Hidden layers

Outputs
P x Q x M

Fig. 2.3 Structure of a neural network

2.2.2 Neural Networks Layers Connection

Neural networks are composed of successive layers, potentially separated by an acti-

vation function. The first and last layers, referred to as the input and output layers,

respectively, while the intermediate layers are known as hidden layers. A layer in an

NN is characterized by two key elements [118]:

• Connections between inputs and outputs: these connections determine the nature

of the layer. There are fully connected layers where all input elements are con-

nected to all output elements, as illustrated on the left side of Figure 2.4 between

the input layer and the hidden one. Conversely, there are sparsely-connected lay-

ers where not all inputs are connected to all outputs, as depicted on the right side

of the same figure, where the hidden layer is not connected to all outputs. This

type of connection is associated with a receptive field, where outputs are sensitive

only to specific inputs. For example, an output can be specific to an input and its

nearby neighbors. Sparsely-connected layers encompass various layer types, such

as convolutions, pooling, depthwise layers, and more.

• Connection weights: connection weights represent the unique values associated

with connections between inputs and outputs within a layer. These weights can be

either zero or non-zero and do not alter the fundamental nature of the layer.

It is essential to note that the absence of connections in sparsely-connected layers is

not represented by a zero-weight value. Instead, the structure itself determines which

inputs affect the outputs. For convolutions, this is achieved through the use of filters,

as we will detail later. On the other hand, the nature of connections between layers

characterizes the type of NN. There are primarily two types:

11

2.2. NEURAL NETWORKS OVERVIEW

Fig. 2.4 Fully connected layer VS sparsely-connected layer (from [118])

• Feed-forward NNs: the output of one layer is connected to the input of the fol-

lowing layer, and there are no backward connections from the output to the input

(no loops). This implies that feed-forward NNs lack memory; once the output of

a layer is fed to the next one, it can be discarded as it is no longer needed.

• Recurrent NNs (RNNs): in contrast, RNNs allow an output of a layer to be used

as input, creating a loop within the network. This means that the output of a

layer depends not only on the current input but also on its previous output. This

mechanism introduces a form of memory within the NN. RNNs are particularly

suited for handling sequential data because they can incorporate information from

previous inputs. One well-known type of RNN is the Long Short-Term Memory

(LSTM) NN, commonly used for processing sequential data such as text or speech

modeling and processing [116]. Figure 2.5 illustrates the difference between feed-

forward and recurrent NNs, with a loop in the recurrent NN indicating the use of

previous output in the calculation of subsequent outputs.

Fig. 2.5 Feed-forward and recurrent NN

Throughout this thesis, our focus will primarily be on feed-forward NNs, for several

reasons. Feed-forward NNs are not only the most commonly used type for our project

12

2.2. NEURAL NETWORKS OVERVIEW

(as specified in Section 1.1), but they also enjoy widespread popularity across various

applications, particularly in image processing.

Furthermore, the resurgence of feed-forward NNs in recent years can be attributed

to the development of transformers, which provide a viable alternative to the use of

RNNs for processing sequential data, as demonstrated by Vaswani et al. in their work

on attention mechanisms [122]. Transformers employ encoders and decoders that are

implemented using feed-forward NNs paradigm.

However, feed-forward NNs definition has evolved to encompass other types of

layers that preserve data throughout the network. This extension includes NNs with

residual blocks, where the output of an NN is produced and used for the subsequent

layer without overwriting it; instead, it is summed with the outputs of other layers.

This approach gained popularity with networks like ResNet [54]. Figure 2.6 illustrates

this concept where data x of a layer has to be further summed to the output F (x).

Additionally, there are NNs that concatenate layer outputs instead of adding them, as

exemplified by [81]. Although our study may not encompass these specific types of feed

Fig. 2.6 Residual blocks connexion

forward NNs, their implementation does not require a fundamentally different strategy

from what we will explore. The necessary features can be easily incorporated to our

different studies.

2.2.3 Neural Network Layers Supported

As highlighted in Section 1.1, Gemini is specifically designed for feed-forward neu-

ral networks, as detailed in Subsection 2.2.2. It offers support for a range of layer

types, encompassing convolutional-like layers (comprising convolutional layers, depth-

wise layers, and pooling layers), as well as fully connected layers. These various layer

types will be further detailed in this subsection.

13

2.2. NEURAL NETWORKS OVERVIEW

2.2.3.1 Convolutional-like Layers

These layers are characterized by sparse connections (detailed in Subsection 2.2.2).

They process 3D images, referred to as input feature maps (ifmaps), with dimensions

including height H , width W , and the number of channels C. The primary operation,

apart from pooling as discussed in the following paragraph, involves Multiplication and

ACcumulation (MAC) (it is the fundamental operation of a neuron as seen in Figure

2.1).

The convolution layer’s weights are structured as 3D filters with dimensions com-

prising height R, width S, and the number of input channels C, which matches the

ifmaps’ channel number. Additionally, a 1D scalar known as bias is added to the re-

sult. To compute a single output feature map ofmap pixel, each filter convolves with the

corresponding ifmap region. Specifically, each ifmap pixel is multiplied by the corre-

sponding filter weight. In Figure 2.7, the red section illustrates the computation of first

the top-left ofmap pixel, denoted as O0. This corresponds to the result of the convolu-

tion between the filter and the top-left ifmap region: O0 =
∑S×R×C−1

i=0 Wi × Ii + B0.

Here, Wi represents the filter weights, and Ii represents the ifmap pixels. Other pixels

from the same ofmap are generated by sliding the filter to cover all ifmap pixels. In our

study, following conventions inspired by [118], the filter traversal begins from the top-

left and proceeds to the bottom-right of the ifmap. It should be noted that the output of

Fig. 2.7 Convolutional layer computation

convolving an 3D ifmap with a filter results in a single-channel 2D ofmap. To obtain an

3D output feature map with M channels, a set of M filters is required. Consequently,

the number of channels in the ofmap corresponds to the number of filters applied.

The size of the resulting 2D ofmap depends on several key parameters:

• Stride: this parameter determines the step size at which the filter is shifted to

compute the next portion of the ofmap. It is important to note that using a stride

greater than one reduces the channel size of the ifmap in comparison to the origi-

nal ifmap. We differentiate between vertical stride (stridev) and horizontal stride

(strideh), depending on whether we are sliding vertically (bottom) or horizontally

(rightward).

14

2.2. NEURAL NETWORKS OVERVIEW

• Padding: there are two types of padding:

– Valid padding: in this mode, only the valid pixels of the ifmap are consid-

ered, meaning the filter window does not extend beyond the boundaries of the

ifmap. This results in a reduction of the channel size of the ofmap compared

to its original size.

– Same padding: the goal here is to maintain the same 2D size as the original

ifmap after convolution. To achieve this, the filter may extend beyond the

ifmap boundaries. In this case, the value assumed by the ifmap pixels outside

the boundaries is typically set to zero.

For both types of padding, we distinguish between vertical padding padv when

crossing the boundaries of the ifmap in the top and bottom directions, and hori-

zontal padding padh when the filter extends beyond the ifmap boundaries on the

left and right. For both padh and padv, they are set to 0 for valid padding and 1

for same padding.

Similarly, other parameters, such as dilation (well explained in [53]), could be consid-

ered, but they are not within the scope of our study.

In summary, after a convolution operation, we obtain an ofmap consisting of M

channels, with the size of each channel determined by the formula: W−(S−1)×padh
strideh

×
H−(R−1)×padv

stridev
.

Pooling layers are also crucial in feed-forward NNs. They share similarities with

convolutions, particularly in their use of filters with similar parameters such as stride

and padding. These layers reduce the spacial resolution of a feature map (down-

sampling). Several pooling operations can be operated (average, maximum, minimum);

in our study, the maxpool is the most used. In contrast to convolution, where the op-

eration involves the multiplication of the filter weights with the ifmap pixels, pooling

layers do not employ weights. The pooling operation, such as maximum pooling, is

computed among the various pixels covered by the filter. For instance, in Figure 2.8,

the ofmap pixel 20 is computed by taking the maximum value among the ifmap pixels

covered by the red filter: max(12, 20, 8, 12). To calculate the remaining ofmap pixels,

the filter is moved through the ifmap. Another distinct characteristic of pooling layers

Fig. 2.8 Maxpool example

is that the filter has a single dimension, and the number of filters M must match the

15

2.2. NEURAL NETWORKS OVERVIEW

number of ifmap channels: pooling preserves the same number of channels. The size of

the ifmap channel is also contingent on the padding and stride and can be determined

by the following formula: W−(S−1)padh
strideh

(H−(R−1)padv
stridev

.

Another convolution-like layer that has gained widespread use is the depthwise sepa-
rable convolution. This layer type gained popularity following the introduction of the

MobileNet architecture by Chollet [28]. The primary objective was to replace standard

convolutions, which involve multiple parameters, with depthwise separable convolu-

tions. The depthwise separable convolution is divided into two distinct operations: the

depthwise operation and the pointwise operation:

• Depthwise: the depthwise layer is similar to convolution in that it also involves

weights grouped into filters. However, there is a distinction in the calculation

process. In this layer, each ifmap channel is processed separately, with one filter

dedicated to each channel (where each filter has a single channel). Consequently,

each filter is slid across a single ifmap channel. The result of the depthwise opera-

tion is then an ofmap with the same number of channels as the original ifmap. The

size of the channels follows the same equation as in convolution, with the only

difference being that the number of filters is set to C, and each filter has just one

channel.

• Pointwise: this is a traditional convolutional layer employing filters with dimen-

sions of 1×1×C. To generate an ofmap with M channels, M filters are required.

Figure 2.9 shows an example of depthwise separable convolution, the ifmap channels

are processed separately and the ofmap of the depthwise layer has also 3 channels.

During the pontwise, filters with 1 × 1 × 3 dimensions are used. The utilization of

Fig. 2.9 Example of depthwise separable convolution

this layer enables NNs to possess fewer parameters compared to those employing full

convolutions. Moreover, when properly trained, networks with depthwise separable

convolutions can achieve high accuracy, even with a reduced parameter count [14].

16

2.2. NEURAL NETWORKS OVERVIEW

2.2.3.2 Fully connected Layers

This is the most standard layer type. The 3D ifmap is flattened into Nin 1D input

neurons, and the output is also represented as a 1D flattened ofmap referred to as output

neurons, with a total of Nout output neurons.

Each output neuron is connected to all input neurons through synapse weights. Con-

sequently, every output neuron is the sum of the weight values of the input neurons, to

which a bias (there are Nout biases) is added. The number of weights in a fully con-

nected layer is therefore Nin ×Nout.

This layer is commonly viewed as a matrix multiplication between the weights and

the input neurons, followed by the addition of biases. Figure 2.10 illustrates a fully

connected layer and its representation in a matrix product for Nin = 3 and Nout = 2.

The computation of the output pixel for each layer is summarized in Table 2.1. Note

W00W01w02W10W11W12 =
B0
B1

O0
O1

I0
I1
I2

+*

O1

O0
I0

I1

I2

W
10

W00

W01
W11

W 0
2

W12

Nin Nout

Weights bias

Fig. 2.10 Example of fully connected layer

Table 2.1 Table summarizing outputs pixels computation for different NN layers

Layer type Ofmap pixel equation

Convolution Os,r,m =
∑S−1

i=0

∑R−1
j=0

∑C−1
c=0 Wi,j,c × Is+i,j+i,c +Bm

Maxpool Os,r,m = maxi∈[0,R1],j∈[0,S−1] Is+i,r+j,c

Depthwise Os,r,c =
∑S−1

i=0

∑R−1
j=0 Wi,j,c × Is+i,r+j,c +Bc

Fully connected Ni =
∑S×R×C−1

j=0 Ij ×Wj +Bi

that for convolution, we have omitted the stride and padding for the sake of readability.

17

2.2. NEURAL NETWORKS OVERVIEW

For an ifmap or ofmap pixel Om,s,r, r represents the width, s the height, and m the

channel index. In the case of fully connected layers, for input or output neurons Ni, i

is the index of the neuron, considering a flattening order of channels, rows, and then

columns.

2.2.4 Non-linear Activation

A NN model consists of several consecutive layers, with a non-linear activation function

applied between each pair of layers. Specifically, inserting two layers without any non-

linear activation functions between them is equivalent to having just one single layer.

Adding a non-linear activation function effectively separates these two layers.

Fig. 2.11 ReLu function

Traditionally, activation functions such as sigmoid and hyperbolic tangents were

commonly used. However, in hardware implementations, the rectified linear unit (ReLU)

is preferred due to its simplicity. In Figure 2.11, a ReLU is represented, where negative

values are set to zero, and positive values follow the identity function. There are other

alternatives that can be used as well, such as the ”swish” [104] or ”exponential ReLU”

activation functions. Finally, note that activation is not always required after pooling

layers. In this thesis, we will utilize the ReLU activation function.

2.2.5 Training VS Inference

As mentioned in the chapter’s introduction, the Gemini project is focused on supervised

learning, which necessitates both training and inference phases. As a reminder, the NN

model consists of several layers characterized by weights. These weights, as highlighted

in Section 2.1, mimic the human ability to learn. This learning process involves adjust-

ing the values of weights (as well as biases), which is accomplished during the training
phase. Once this phase is completed, the NN is fixed and can be used for predictions, a

step referred to as inference. Here is an overview of these two phases:

18

2.2. NEURAL NETWORKS OVERVIEW

Training: the goal of training is to find the weights that maximize the probability of

the NN making accurate predictions. In the case of supervised learning, this is achieved

by maximizing the probability of correctly predicting the outputs while minimizing the

probability of incorrect predictions. In supervised learning, training is conducted on a

dataset where the correct output for each input is known. The difference between the

ideal correct probabilities and the probabilities computed by the NN based on its cur-

rent weights is referred to as the loss (L). There are several ways to define the loss, with

one of the most common being mean squared error: L = 1
m

∑m−1
i=0 (yi − ŷi)

2, where yi

represents the prediction of the NN, ŷi is the ideal value provided by the dataset, and

m is the number of predicted classes. The weights are updated to minimize the loss.

This update of weights for the purpose of minimization is achieved through optimizers.

A survey by Abdulkadirov et al. [5] covers several optimization methods, but one of

the most well-known and widely used is gradient descent. For each iteration t in the

range [0, T − 1], the weight wi,j (where i is the layer index and j is the index within the

same layer) is updated as follows: wt+1
i,j = wt

i,j +
∂L

∂wi,j
. This equation is computed in

two steps: first, forward propagation (similar to the inference process described later) is

performed to calculate the predictions and loss, and then, a second step of backpropa-

gation calculates the gradients and propagates the loss backward through the network’s

layers, tuning the weights of each layer accordingly [50].

An important consideration in training is the selection of the framework and dataset.

To facilitate the development of NNs and promote the exchange of pre-trained models,

numerous deep learning frameworks have emerged from various origins. These open-

source libraries encompass a range of software tools designed for NNs. For instance,

Caffe [65], originating from UC Berkeley in 2014, provides support for programming

languages such as C, C++, Python, and MATLAB. On the other hand, Google introduced

TensorFlow [3] in 2015, which is compatible with both C++ and Python. TensorFlow

also offers versatility by accommodating multiple CPUs and GPUs. It also stands out

for its flexibility of adapting features. Finally, there is also Torch, which was developed

by Facebook and NYU and supports C, C++, and Lua. PyTorch [101] is its successor

and is built in Python. In the context of our thesis, TensorFlow was imposed as the

framework of choice since it is used by our customers for designing their NN. Sev-

eral datasets were used for training networks in the context of this thesis. The most

commonly used ones include CIFAR [70], MNIST [74], and CELEbA [83].

Inference: in this step, the weights are already fixed, and the inference is performed

by computing the NN layers in a forward manner.

In supervised learning, the initial dataset is typically divided into two subsets: one

for learning and another for inference, which is used to assess the model’s quality.

The quality of inference, which can also be evaluated at the end of training, is of-

19

2.3. NEURAL NETWORK APPLICATIONS

ten measured in terms of accuracy. Accuracy quantifies how well a neural network

performs in making correct predictions or classifications and is calculated as follows:

Accuracy = (Number of Correct Predictions)
(Total Number of Predictions

In this calculation, the predicted class is typically determined by the highest prob-

ability. A higher accuracy value indicates better performance. Additionally, other

metrics, such as the F1-score, can be employed (although not used in this thesis).

The F1-score offers a more comprehensive assessment, as it considers both precision

and recall: Precision = (True Positives)
(True Positives + False Positives) ; Recall = (True Positives)

(True Positives + False Negatives) .

F1− Score = 2 ∗ (Precision×Recall)
(Precision+Recall)

.

The F1-score is particularly useful when dealing with imbalanced datasets.

For this thesis, only the inference phase is considered, as the Gemini IP project

(described in Section 1.1) solely focuses on inference. This approach is logical because

the project targets edge computing for fast, low-power, and small-area applications.

Therefore, there is no need to implement the training process on such devices; training

is typically performed offline and involves fixing the weights for the inference phase

executed at the edge.

2.3 Neural Network Applications

In our modern world, Neural Networks are widely employed in various areas, and their

effectiveness is unquestionable. Every day, we witness the emergence of fresh applica-

tions, highlighting their continuous expansion. However, the complexity required for

different NNs varies depending on their specific use cases. In this section, we will start

in Subsection 2.3.1 by presenting the wide-ranging applications of Neural Networks.

Then, in Subsection 2.3.2 we will present some bench-marked NNs with a focus on the

ones used for the Gemini project.

2.3.1 Diverse Use-cases

Numerous fields benefit from the extensive utilization of Neural Networks, with some

of the most renowned ones including:

• Computer vision: it is a field dedicated to enabling computers to efficiently pro-

cess and understand visual data, including images and videos. Its ultimate goal is

to replicate human-like visual perception. In this context, neural networks have

emerged as invaluable tools for advancing computer vision applications by pro-

cessing videos [29] or images [88, 26] for several applications: object detection

[48], recognition, estimation, positioning, event detection [114], scene reconstruc-

tion, image restoration [94], editing, video enhancement, and statistical learning

20

2.3. NEURAL NETWORK APPLICATIONS

[6]. This field is even more appealing when considering that 70% of the data

comprises videos [30].

• Speech and language: this field encompasses several applications, including trans-

lation, audio generation [131], natural language processing [59], and chatbots

[66]. Its popularity has been on the rise, especially with the advent of tools like

ChatGPT or Google Bard that could answer questions and provide text-based an-

swers [34].

• Biomedical and medicine: neural networks have proven their effectiveness in med-

ical diagnosis. This is primarily due to their capacity to process and analyze ex-

tensive patient data, outperforming the diagnostic capabilities of individual doc-

tors over a human lifetime. Actually, they have demonstrated remarkable perfor-

mance in the diagnosis of cancers [112]. In the biomedical sector, NNs have made

substantial contributions to various domains, with a noteworthy breakthrough ob-

served in the field of DNA sequencing [129].

The Gemini project, as described in Section 1.1, was originally conceived to support

computer vision NNs but, in reality, can accommodate any feed-forward neural network

and, consequently, any application.

2.3.2 Benchmarked and Utilized Neural Network

In this section, we will focus on famous NNs especially used for computer vision.

Some NNs gained popularity through the ImageNet Large Scale Visual Recognition

Challenge (ILSVRC) [106]. In this competition, the objective was object detection and

classification, leading to the emergence of several widely used NNs: AlexNet [71] in

2012, GoogLeNet [120], VGG [115] in 2014 and, ResNet [55] in 2015. These NNs rely

on using numerous layers with millions of parameters to maximize accuracy, and their

performance has driven their widespread usage.

Another field that influences the design of specific NN architectures is edge comput-

ing. NNs are designed with a limited number of operations to cater to the edge market,

which includes embedded devices running on batteries or requiring on-chip RAM, lim-

iting the number of operations and parameter storage. Examples of such edge-friendly

architectures include MobileNet [61] and SqueezeNet [62]. Furthermore, pruning tech-

niques, as presented by He and Xiao [56] in a survey, enable the reduction of parameters

in a NN. With these techniques, the number of NN parameters can be reduced to be sup-

ported by embedded devices.

Table 2.2 provides an overview of some benchmark NNs, including those used in

the context of this thesis.

In this project, the neural networks used are primarily designed for edge computing

21

2.4. CONCLUSION

Neural Network Number of operations
LENET-5 60,000

GoogLeNet 6,800,000
AlexNet 60,000,000
VGG-16 138,000,000

SqueezeNet 1,250,000
Tiny YOLO 6,000,000
YOLO v3 62,375,348

MobileNet x0.25 850,000
PNet 7,900

VGG-like 526,000

Table 2.2 Benchmarked and used neural networks, along with their parameters.

applications, with a specific focus on embedded computer vision tasks. This introduces

a constraint on the choice of neural networks, as they must be suitable for efficient

computation on edge devices. Given the limited area available on such devices, it is

not feasible to employ gigantic SRAM that could store large NNs with millions of

weights. Therefore, the application is constrained to NNs of moderate size that can be

accommodated within the hardware limitations.

Some of the NNs used for validation and study in Gemini project (Section 1.1)

include: MobileNet x0.25 [61] with 27 layers predominantly comprising depthwise

separable convolutions, VGG-like (shown in Figure 2.12), which is inspired by VGG-16

[115] and consists of 11 layers combining convolution, maxpools, and fully connected

layers (that are relatively large), and P-Net with 7 layers [130], containing the same

layers as the previous ones. These networks have weights sizes of 850,000, 526,000,

and 7,900, respectively, and input feature map (fmaps) sizes of 224x224x3, 128x128x1,

and 32x32x1, respectively.

3x
3x

4

2x
2x

4

3x
3x

8

3x
3x

8

2x
2x

8

3x
3x

16

3x
3x

16

16
38

4x
32

32
x3

2

32
x1

V
G

G
-l

ik
e

12
8x

12
8x

1

3
x3

x4

Convolution
filters

Fully
connected

Maxpool
window

Fig. 2.12 VGG-like network structure

2.4 Conclusion

In this chapter, we have provided an overview of all the neural networks features used in

this thesis. These networks have evolved significantly since their modest introduction

22

2.4. CONCLUSION

Fig. 2.13 MobileNet network structure

3x
3x
10

2x
2x
10

3x
3x
32

1x
1x
6

72
6x
10

P
N
e
t

3
2
x
3
2
x
1

Convolution
filters

Fully
connected

Maxpool
window

3x
3x
16

Fig. 2.14 PNet network structure

in the 1940’s, now featuring complex multi-layer architectures that demand extensive

computations.

Within the context of the Gemini project, our focus lies on feed-forward neural

networks that support various layers, including convolution, depthwise, pooling, and

fully connected layers. The ReLU activation function is applied between these layers.

Note that this project exclusively handles inference, while training is conducted offline.

Although neural networks find diverse applications, our study concentrates on edge

computing with moderate-sized neural networks. The primary models studied include

MobileNet, VGG-like, and P-Net.

Now that we have identified the features of the neural networks to processed, the

next step is selecting the appropriate hardware support to efficiently implement these

networks. This hardware must optimize several key performance indicators, which we

will delve into in Chapter 3.

23

CHAPTER 3

Neural Networks Hardware Accelerators
The evolution of Neural Network (NN) inference acceleration has been marked by a

decisive shift away from traditional Central Processing Units (CPU) and Graphics Pro-

cessing Units (GPU) technologies employed in server environments towards specialized

hardware solutions known as Application-Specific Integrated Circuits (ASICs) finely

tuned to operate at the edge

The development of edge computing accelerators was driven by the need to min-

imize both area and power consumption. In comparison to solutions based on GPUs

and CPUs, these accelerators offer compact, energy-efficient alternatives. Additionally,

having the accelerator integrated on the same chip as sensors and actuators results in

power savings by eliminating the need to transfer data externally. This integration al-

lows for immediate processing following data acquisition, reducing latency, enhancing

safety, and addressing security risks associated with data transfer.

In this chapter, we are solely focused on integrated circuit accelerators, particularly

ASICs, even though similar considerations apply to Field Programmable Gate Arrays

(FPGAs). The optimization of GPUs or CPUs is beyond the scope of this study.

The selection of the Gemini architecture, which was mandated for our project, was

made specifically to enable support for multiple feed-forward Neural Networks. It is

important to note that designing an efficient accelerator for multiple NNs is a consid-

erably more complex task than developing hardware tailored to a specific NN. In the

latter case, the order of operations is predetermined, leading to a simpler and fundamen-

tally different implementation compared to hardware that must accommodate various

NNs whose parameters (layers and layers parameters) are not known in advance. Ad-

ditionally, our target is configurable architecture, which allows for tuning the level of

parallelization to adapt the hardware to specific applications. This flexibility is essential

in ensuring optimal performance across a range of use cases.

Additionally, the choice of the RAM paradigm for Gemini was indirectly influenced

by certain constraints. Given our target for embedded devices with limitations on area

and power, we made the decision to exclusively utilize on-chip SRAMs, avoiding the

use of DRAM due to its costly communication and larger footprint. This choice of

relying solely on on-chip RAMs necessitates that the RAM stores the entire Neural

Network without a progressive filling approach of the RAMs. Additionally, it is im-

24

3.1. PRINCIPLES OF NEURAL NETWORK ACCELERATOR ARCHITECTURES

portant to note that In-Memory Computing implementation was not feasible at the time

due to the unavailability of the corresponding RAM technology. Hence, our focus is

directed towards architectures where on-chip RAMs, along with the Neural Processing

Unit (NPU), are utilized, following the Near Memory Computing (NMC) approach. In

this paradigm, computations performed by the NPU are carried out directly on the data

supplied by the RAMs located on the same chip.

Crucially, this accelerator was developed within the constraints of an industrial

project, driven by the company’s desire to obtain silicon and have it ready for test-

ing during the thesis. This prioritized rapid implementation and low-level optimization

over exploring various architectural possibilities, which explains why the architecture

was mandated.

In this chapter, our focus is on an architecture that adhere to these considerations.

It should support various NNs, offers configurability, and adopts a near-memory com-

puting approach (with NPUs and RAMs). To structure our exploration, this chapter is

divided into several sections: in Section 3.1, we will begin by discussing the funda-

mental aspects of NN accelerators. Following that, in Section 3.2, we will explore the

different categories of data-flows typically selected for NN accelerators. Our exami-

nation continues in Section 3.3, where we will discuss the key performance indicators

commonly used to evaluate and compare accelerator performance. Section 3.4 will pro-

vide a detailed look at the critical topic of data quantization within accelerators and its

role in achieving improved performance. Finally, in Section 3.5, we will conclude this

chapter by summarizing the key insights and implications discussed throughout.

3.1 Principles of Neural Network Accelerator Architectures

As mentioned in the preceding paragraph, the accelerators studied comprise both NPUs

and SRAMs. While optimization efforts are primarily focused on NPUs, adjustments

in SRAM organization are necessary. The NPU serves as the engine responsible for

performing the computations required to generate the ofmaps. A basic overview of the

accelerator architectures is illustrated in Figure 3.1.

Let us provide a top-down description: we have both off-chip DRAM and on-chip

components. Typically, DRAM stores the entire neural network. On the chip, there is

a global buffer, which serves as a second hierarchical memory level with limited stor-

age. In our example, this could be an SRAM. Since we are not considering DRAM

in this context, the global buffer needs to store the entire neural network. Next, we

have the NPU itself, which includes all Processing Elements (PEs) and the intercon-

nections which encompass connections between the global buffer and PEs, and among

the PEs themselves. In the literature [118], these interconnections are referred to as the

25

3.2. NEURAL NETWORK ACCELERATORS DATA-FLOWS

(SRAM)
On-chip

NPU

Fig. 3.1 Generic architecture for an NN accelerator. Figure adapted from [118]

Network On Chip (NOC). The Processing Elements are the blocks responsible for exe-

cuting operations within the layers, such as MACs for convolutions, depthwise and fully

connected layers, and maximum operations for maxpools, for example. They contain

the necessary operators (multipliers, adders), control logic (to determine which oper-

ations to perform), and a register file for storing locally processed data, constituting a

third hierarchical memory level.

3.2 Neural Network Accelerators Data-flows

The data-flow within the accelerator is optimized to improve performance, taking into

account two crucial aspects. Firstly, the optimization efforts are centered on power re-

duction, driven by the fact that data movement governs dynamic power consumption,

as highlighted by Sze et al. [118] and Horowitz [60]. To address this issue, the archi-

tectures maximize data reuse, thereby minimizing data movement. Secondly, latency is

optimized by fully exploiting parallelization opportunities within the layers to achieve

optimal computation. The potential parallelization within NNs are detailed in [118, 4].

Three traditional classes of data-flow architectures enable parallelization and data

reuse: the input, weight, and output stationary paradigms. It is important to acknowl-

edge the existence of alternative paradigms that combine principles from these three

classes, as row stationary seen in Eyeriss [25], as well as paradigms that do not rely on

data reuse [128]. These three paradigms are illustrated in Figure 3.2. Here is a brieve

26

3.2. NEURAL NETWORK ACCELERATORS DATA-FLOWS

explanation of them:

In the input stationary data-flow, the register file of the Processing Elements (PEs)

stores fmap pixels, as illustrated in Figure 3.2 (c). For convolution-like layers, each

input feature map (ifmap) pixel is reused for all MACs (or maximum for maxpools)

that use it before flushing it: actually, each ifmap pixel is used for all M filters and for

each filter it can be used for a maximum of S × R when sliding the filter window on

the ifmap. This maximum utilization is feasible only when the padding is same. In this

paradigm, the filter weights are broadcasted every cycle, and the accumulation of partial

sums contributing to onput feature map (ofmap) pixel calculation is distributed across

different PEs. This introduces complexity in managing the sharing of partial sum flow

among the PEs, which varies depending on the sizes of the filters. For fully connected

layers, an input neuron can be reused for all Nout output neurons. Finally, the latency is

increased as several MACs are operated simultaneously. The input stationary data-flow

has been applied in the SCNN accelerator [100].

In the weight stationary data-flow, each PE stores a weight in its local register,

while ifmaps pixels are broadcasted every cycle, as seen in Figure 3.2 (a). Each weight

can potentially be used for all 2D ofmap pixels (W × H , when padding is same).

Similar to the previous paradigm, partial sums flow across multiple PEs to produce the

final ofmap pixel. For fully connected layers, an output neuron can be reused for all Nin

input neurons. Latency is enhanced as each PE performs a MAC operation. Several

works have explored this data-flow approach [24, 49, 67, 135].

The Output stationary data-flow is the one imposed by the Gemini project. It is the

most regular data-flow. In this paradigm, each PE calculates its own ofmap pixel, and

the partial sum of each ofmap pixel remains stationary inside the PE and is not shared

among PEs, as shown in Figure 3.2 (b). Unlike the two previous paradigms, there is no

need for control mechanisms to determine which PEs should share information. The

execution is predictable for all PEs working simultaneously. Additionally, there is no

need for additional operators to combine the results of different PEs. Parallelization

is achieved for all simultaneously calculable outputs. For fully connected layers, a

maximum of Nout outputs can be processed concurrently. In convolution-like layers, it

can be applied to P ×Q pixels of the same 2D ofmap and each pixel of the M filters to

process. Some architectures implement simultaneous computing of P ×Q for the same

2D ofmap [40], while others process only one pixel of each ofmap channel [103]. Some

architectures combine both approaches, such as [93] or Gemini (presented in Chapter

4).

Furthermore, in output stationary data-flows, in addition to the reuse of partial sums, it

is also possible to reuse ifmaps pixels and weights with an efficient scheduling. In this

approach, the data is not stored in the register files of PEs. Instead, data read from the

27

3.2. NEURAL NETWORK ACCELERATORS DATA-FLOWS

global buffer during one cycle can be utilized in subsequent cycles without requiring

another read, as long as the data remains unchanged (for SRAMs, this means reading

from the same address twice). Since the data remains stationary in the global buffer, it

can be reused across different cycles. This data reuse is less regular compared to the two

previous data-flows, but can still offer benefits in terms of reducing power consumption.

Fig. 3.2 Most common NN accelerators data-flows. From [118]

In conclusion, the output stationary architecture was indeed imposed for Gemini,

primarily due to its advantages in terms of data reuse and parallelization , as well as

its regularity. However, this regularity also presents its primary drawback. Since all

outputs are calculated uniformly, it becomes challenging to effectively leverage data

sparsity and prevent redundant calculations for specific PEs and specific data instances.

This challenge becomes particularly pronounced when the data being processed con-

tains a significant number of zero values in both fmaps and weights (when quantized)

[118]. This limitation arises because all PEs simultaneously perform identical opera-

tions on all data.

28

3.3. KEY PERFORMANCE INDICATORS OF THE DESIGN

3.3 Key Performance Indicators of the Design

The objective of the Gemini team is to design an accelerator that implement efficiently

neural networks. In order to evaluate Gemini performance and compare it with other

state-of-the-art accelerators (done in Subsection 4.4.2), several Key Performance Indi-

cators (KPI) must be taken into account.

In this section, we start by highlighting the difference between latency and through-

put in Subsection 3.3.1. Following that, Subsection 3.3.2 provides an explanation of

chip area metrics. In Subsection 3.3.3, we delve into the characterization of power and

energy aspects, and lastly, in Subsection 3.3.4, we spotlight additional KPIs employed

to characterize neural network accelerators.

3.3.1 Latency and Throughput

Latency, denoted as Lat, represents the time taken by a system, measured in clock

cycles, to produce an output from a given input. In the context of NN inference, latency

corresponds to the duration required to calculate the inference of an input feature map

(ifmap) by a NN model. It can also be expressed in seconds by dividing the number of

clock cycles by the frequency of processing.

On the other hand, throughput, denoted as T , refers to the volume of data processed

within a specified time frame, typically expressed as the number of frame inferences

per second. In our context, each frame corresponds to a single inference. It is important

to note that latency and throughput are distinct concepts. In some scenarios, they may

be related, such as when a new input is loaded only after the previous one has been fully

processed.

The definition of throughput is dependent on the specific NN being processed. It

can be derived as shown by [118]: T = operations
second

× 1
operations

second

. The first term, denoted

as T ′ = operations
second , is independent of the particular NN and is often used to compare

accelerators without the need to run the same NN. Several papers prefer to use T ′ as

the definition of throughput to eliminate the dependence on the specific NN being pro-

cessed. However, calculating T ′ can be complex. While calculating T only requires

counting the number of cycles needed for an inference (and then compute the num-

ber of inferences per second), T ′ necessitates counting operations. Unfortunately, the

definition of an operation can vary from one paper to another. Some count only the op-

erations in the processing elements, while others include those used in scheduling (such

finite state machines operations or the mixers used for data transfer). Additionally,

processing elements (PEs) are not always fully utilized during the whole processing,

so cycles when they are unused need to be considered or not, depending on conven-

tions. The definition that takes these considerations into account is given by [118]:

29

3.3. KEY PERFORMANCE INDICATORS OF THE DESIGN

T ′ = operations
second

= operations/second for 1 PE × number of PEs × utilisation of PEs.

To prevent any confusion and ensure meaningful comparisons, we will use the first

definition of throughput, denoted as T , and use it for comparisons whenever possible.

This approach will help eliminate discrepancies arising from different definitions and

provide a consistent basis for evaluation.

3.3.2 Chip Area

The area of an NN accelerator is a crucial consideration. It is generally encompassing

storage (RAMs) and the NPU. It is typically expressed in mm². RAM sizing depends

on the NN and processed ifmaps, while NPU area relies on its hardware architecture.

Comparing accelerator area becomes complex when some include RAMs while others

do not. Such comparisons lack meaning, as complexity can shift from NPUs to RAMs.

For instance, data replication in RAMs inflates their size, whereas efficient scheduling

and data reuse require extra NPU hardware resources. Moreover, technology differ-

ences further complicate area comparisons. Although gate count comparisons abstract

away technology specifics, it is essential to acknowledge that technology also influences

scheduling and resource allocation, impacting this parameter.

3.3.3 Power and Energy Consumption

Power and energy consumption are critical factors for NN accelerators, especially in

battery-powered devices. Power is the sum of leakage and dynamic power:

• Leakage power: also known as static power, it is the power consumed by a digital

circuit when it is not actively performing computation. This power is due to sub-

threshold leakage current in transistors. It flows even when transistors are in the

off state. It is exponential with temperature for several technologies [137]. In NN

accelerators, minimizing leakage power is essential for energy efficiency when the

accelerator is in an IDLE state.

• Dynamic Power: this is the power consumed by a digital circuit when actively per-

forming computation or transitioning between different logic states. It primarily

results from the charging and discharging of capacitances in the circuit as data is

processed and signals change. Dynamic power is measured during NN inference

and depends on the specific NN being used. It can be quantified for each clock

cycle, but it is typically measured as an average over the entire execution, which

is the most commonly used approach.

As it was highlighted for the area, the power is dependent on the technology. Addition-

ally, different papers may or may not consider the power of RAMs in their evaluations.

30

3.4. QUANTIZATION

The energy E in joules for an accelerator is also crucial. In this study, we focus

on the energy consumed during one inference, representing the energy dissipated when

an ifmap is entirely processed to produce the corresponding ofmap. For a specific task,

energy can be computed directly from the power P using the formula: E =
∫
Lat

P (t)dt

where Lat is the latency of the task. If power is constant over time, this simplifies to:

E = Lat× P . It is the case when considering the average power.

3.3.4 Other KPIs

Additional Key Performance Indicators (KPIs) are emerging, such as energy efficiency

metrics that combine throughput and power. These metrics are often expressed in units

like Ops/s
W or Ops

Watt×mm2 , where Ops represents the number of operations, W is for watts,

and mm2 represents the area unit. These custom KPIs serve several purposes:

• Independence from NN: by dividing throughput by power, these metrics abstract

away the specific neural network being used, allowing for comparisons across

different networks.

• Trade-off evaluation: these metrics help capture the trade-off between different

aspects of performance. For instance, increasing throughput often involves in-

creasing parallelization, which can result in higher area and power consumption.

Observing only the throughput will mask the cost in hardware. By taking into

account a combination of all KPIs, the trade-off is effectively evaluated.

• Highlighting specific accelerators: some custom KPIs may emphasize specific

strengths of an accelerator compared to competition, so they are preferred for

publications.

Additionally, there are KPIs that aim to abstract from the impact of technology by

normalizing the values with respect to the technology node. These metrics provide a

more technology-agnostic perspective for evaluation.

3.4 Quantization

Quantization is the process of reducing the precision of data (including weights and

fmaps) used in calculations, by representing them as a restricted set of discrete values

in fixed-point notation. While this technique enhances hardware performance, it does

so at the expense of reduced precision. It involves the conversion of floating-point data

into fixed-point representations within a specified bit-width and value range. Quantiza-

tion plays a crucial role in optimizing neural network accelerators for edge computing,

offering several key benefits:

31

3.5. CONCLUSION

• Reduced storage and data transfer: quantization decreases the amount of data that

needs to be stored in RAMs and transferred between the NPU and RAMs. This

reduction in data size can lead to the use of smaller RAMs, resulting in decreased

area and leakage power. Furthermore, since data movement is a major contributor

to dynamic power consumption, quantization saves a significant amount of power

by minimizing the data that needs to be moved [118, 60].

• Simplified operations: fixed-point operations with lower bit widths are less com-

plex and require less power and area compared to full floating-point operations.

For example, consider the energy consumption and area requirements of differ-

ent multipliers: a 32-bit floating-point multiplier consumes around 3.7pJ , a 32-

bit fixed-point multiplier consumes approximately 3.2pJ , and an 8-bit fixed-point

multiplier only requires about 0.2pJ . In terms of area, they occupy approximately

7700µm2, 3485µm2, and 282µm2, respectively. These figures highlight the ben-

efits of using low bits fixed-point representation for reducing energy and area re-

quirements for operators [118, 60].

• Maintained accuracy: interestingly, despite the reduction in arithmetic precision,

quantization often does not lead to a substantial loss in accuracy [47]. This makes

it an attractive technique for edge computing scenarios where power and area ef-

ficiency are crucial, and a minor reduction in accuracy is acceptable

The objective then of quantization is to reduce precision while maintaining high accu-

racy.

Quantization involves converting floating-point data into a range of possible inte-

gers, and it is characterized by the number of bits used for both weights, denoted as

weightbits, and feature maps, referred to as fmapbits. Various types of quantization

methods exist [12], all aiming to decrease the number of values (number of quantization

bits) while simultaneously minimizing quantization errors, which represent the average

difference between the original full-precision data and the quantized reduced-precision

representation.

3.5 Conclusion

In this chapter, we introduce hardware accelerators designed to support the neural net-

works discussed in Chapter 2. This description is framed within the context of the Gem-

ini project, where a Near-Memory Computing architecture was selected. The chapter

begins by outlining the principles of such hardware accelerator architectures. Subse-

quently, we explore the data-flow strategies used to enhance parallelization, facilitating

speed improvements and data reuse, which, result in power savings. It is important

32

3.5. CONCLUSION

to note that the architecture mandated for the Gemini accelerator aligns with output-

stationary data-flows.

Following this, we present various key performance indicators (KPIs) commonly

employed in this field to characterize accelerator performance and facilitate compar-

isons. We also delve into the details of data representation within accelerators, with a

focus on quantization, which offers further performance optimization.

Once the foundational aspects of hardware accelerators are covered, we can delve

deeper into design choices and challenges in realizing output-stationary data-flows for

Gemini. Furthermore, having a well-conceived design is not sufficient; an efficient

implementation is equally crucial. Chapter 4 will provide an explanation of the design

and implementation of Gemini. Subsequently, we can evaluate the performance of the

Gemini accelerator using the KPIs described earlier.

33

CHAPTER 4

Gemini Design and Implementation
Gemini neural network accelerator is designed as an industrial Near Memory Com-

puting (NMC) solution for Neural Network (NN) inference tasks (all NN weights are

pre-computed). It was initiated as part of an internal project at STMicroelectronics,

with the primary goal of creating a configurable NN accelerator for the edge computing

market. As elucidated in Chapter 3, the architecture was predefined for this design.

It adheres to a near memory computing paradigm, featuring a Neural Processing Unit

(NPU) and RAMs integrated within the same chip. Furthermore, it has to operate on an

output stationary data-flow model. The success of the project relies on meeting a set of

customer-specified specifications, which must be considered throughout the design and

implementation phases:

• Gemini must generate accurate outputs in TensorFlow-compatible [3] format and

handle 8-bit data for both feature maps (fmaps) and weights, following Tensor-

Flow’s quantization. However, exhaustive validating Gemini’s correctness is a

challenging task due to its support for multiple neural networks and diverse archi-

tectural configurations.

• Despite its primary focus on edge computing, particularly for embedded devices,

Gemini must remain configurable to meet customer-specific requirements. It can

serve different customers with diverse needs in terms of speed, area, and power,

achieved through simple adjustments in hardware architectural parameters.

• Performance optimization is imperative, addressing key performance indicators in

this domain, including power consumption, area, and processing speed, all while

maintaining high inference accuracy.

• Gemini must support multiple types of NN layers, including convolutions, depth-

wise layers, fully connected layers, and pooling layers.

• Finally, ensuring the design’s readability and maintainability is crucial. Given that

Gemini serves as a prototype solution intended for internal customers, it is im-

perative that the design be thoroughly comprehensible. Additionally, the rapidly

evolving nature of the NN domain necessitates the ability to incorporate new fea-

tures to remain in step with advancements.

34

This chapter will delve into how these constraints influence design and implemen-

tation choices.

Gemini’s purpose is to support the processing of a batch of k ifmaps (in 3D) by a

NN to produce a batch of k ofmaps (in 3D). The inputs of Gemini can be divided into

two categories: the NN description and the ifmaps.

The NN description refers to all information relative to the NN. For each layer of

the NN, it encompasses the weights and the layers parameters:

• The weights used during processing: in the case of convolutional and depthwise

layers, they correspond to the filter weights and biases. For fully connected layers,

they correspond to the synaptic weights and biases.

• Parameters: for each layer, some information must be given to the hardware to

process the ifmap by the NN. For example, we have the ifmap dimensions, the

NN parameters (as filter sizes for convolutions or output neurons number for fully

connected ones) and parameters specific to each layer (as padding type or stride

value for convolutions).

The ifmaps: Gemini receives a batch of k ifmaps to be processed sequentially by

the NN. The ifmaps received directly by Gemini are the ones to be processed by the

first layer. The ifmaps can be different according to the NN layer: for convolutional,

dephtwise and pooling layers the ifmap is an image of C channels, each channel has a

width W and a height H . For fully connected layers, the ifmaps are flattened into 1D

arrays of input neurons (Nin).

The outputs of Gemini are the ofmaps: Gemini produces a batch of k ofmaps (that

are the outputs of the last layer of the NN). For convolutional layers (as well as maxpool

and depthwise ones), each ofmap is an image of M channels, each channel is an 2D

image that has a width Q and a height P . For fully connected layers, each ofmap is

flattened into an 1D array of output neurons (Nout).

This chapter outlines the design and implementation challenges encountered in the

Gemini project. We start in Section 4.1 by discussing the data quantization used in

the Gemini IP, then Section 4.2 provides an in-depth examination of the Gemini accel-

erator’s architecture, starting with an exploration of the structural parameters defining

its design. Subsequently, we present the NPU architecture, describing its constituent

blocks. Further elaboration is offered on the RAM organization, concluding with a

broad overview of layer scheduling and its interplay with the NPU architecture and

RAM organization. It is important to note that certain aspects, such as layer schedul-

ing, remain not detailed, as they were predetermined by the project requirements and

fell outside the scope of my research. Section 4.3 explains the implementation chal-

lenges of Gemini. It starts by explaining how High-Level Synthesis (HLS) was useful

for the Gemini implementation, then we explain the different challenges encountered

35

4.1. GEMINI DATA REPRESENTATION AND QUANTIZATION

to implement the NPU for different hierarchical levels using this method, additionally

an explanation of the RTL wrapper allowing the use of real RAM is given. Finally, in

Section 4.4, we highlight the project’s achievements, detailing the tape-outs conducted

and comparing Gemini with other benchmark accelerators.

4.1 Gemini Data Representation and Quantization

The decision was made to quantize the data within Gemini in order to optimize power

and area, even though it involves a slight sacrifice in accuracy, as described in Subsec-

tion 3.4. For the quantization method, we were required to use TensorFlow quantization

[64] as part of the project.This method involves converting initial floating-point data into

integers within the range of 0 to 255. This quantization process is uniform and follows

the equation: q = (f − z)s, where q represents the quantized integer value, f is the

initial floating-point value, z is the zero point, and s is the scaling factor.

To ensure that the quantized values fall within the [0, 255] range, we use a multi-

plication by the scaling factor s. The scaling factor is calculated as the inverse of the

difference between the maximum and minimum float values. The zero point corre-

sponds to the quantized value of zero in the floating-point domain. Since all quantized

integers are positive, it is necessary to determine the corresponding value of zero in the

quantized domain.

So, the inputs, specifically fmaps and weights, processed by the accelerators are

quantized. However, following all the required multiplications and accumulations for

layer computations, the ofmaps pixels surpass the quantization range. To resolve this is-

sue, we perform a rescaling of the output by multiplying it with the scaling factor. This

rescaling process requires the presence of a dedicated hardware block within PEs, as

elaborated in Subsection 4.2.2. It is important to highlight that multiplying the ofmaps

pixels by the known scaling factor before processing opens up the possibility of effi-

cient hardware implementation. For instance, we opt to represent the scaling factor as a

multiple of a power of two: s = k× 2−scalingbits, where k is an integer, and scalingbits

is the number of bits for the scaling factor. This approach enables us to implement mul-

tiplication by a power of two at a significantly lower cost than a general multiplication

in the hardware. It is done using shifts.

The customer required the use of 8 bits for both fmaps and weights to achieve great

performance while maintaining accuracy suitable for their application.

36

4.2. GEMINI CONFIGURABLE ARCHITECTURE

4.2 Gemini Configurable Architecture

In this chapter, we begin by introducing in Subsection 4.2.1 the two structural param-

eters configuring Gemini. Following that, we describe the accelerator’s architecture in

Subsection 4.2.2, starting with an overview of the processing elements and progressing

to the entire accelerator blocks. Additionally, we provide details in Subsection 4.2.3 on

the RAM organization and explain the scheduling process for convolution-like layers

and fully connected layers in Subsection 4.2.5.

4.2.1 Presentation of Gemini Structural Parameters

Gemini is composed of a Neural Processing Unit (NPU) and two single port SRAM

modules: the features maps (fmaps) RAM and the weights RAM. The NPU contains

the block in charge of calculations, called the processing elements (PEs) array. There

are N parallel PEs organized in 2D (WPAR,MPAR) with N = WPAR×MPAR.

These two structural parameters are configurable before the logic synthesis. They size

all the designs from the PEs array to top-level RAMs, and they fix the scheduling of

the operations. They were introduced to optimize the convolutions processing. WPAR

stands for width parallelization of the output feature map (ofmap) and MPAR is the

filter parallelization (since the number of filters is usually called M in literature [25]).

Fig.4.1 illustrates the notations with (WPAR,MPAR) = (2, 4).

WPAR = 2

MPAR = 4

Number of filters (M): 3PEs array

IFMAP OFMAP

(2,4)

Fig. 4.1 PEs array organization for (WPAR,MPAR) = (2, 4)

37

4.2. GEMINI CONFIGURABLE ARCHITECTURE

4.2.2 NPU Architecture

The NPU architecture is composed of the PEs array, the input mixers (ifmaps mixer and

weights mixer) and the storing stage. Fig.4.2 shows the NPU hardware blocks in the

top-level architecture.

I fmap s mixer

Weights mixer

PE0 PE1 PE2 PE3

PEs array

Storing stage

FMAPS RAM

2 Banks

WEIGHTS RAM
weights: N pixels

Ifmaps: N pixels

Ofmaps: N pixels

Fig. 4.2 NPU hardware blocks

• The processing elements array is composed of N PEs. PEs are organized fol-

lowing an output stationary data-flow, each processor then computes an ofmap

pixel. The partial sums contributing to the output pixels are stored in the accu-

mulator (register) of each PE when new weights and fmaps pixels are broadcasted

to the PEs every cycle. This paradigm is described in [119] and used by several

accelerators, such as [40] or [93].

Output calculations are optimized for parallel processing with N PEs. In the case

of fully connected layers, these N PEs simultaneously compute N output pixels

from the total of Nout output neurons. For convolutional layers, the N PEs are

organized in a two-dimensional array. They calculate WPAR pixels from the 2D

ofmap channel (P × Q) simultaneously. This simultaneous computation is ap-

plied to MPAR ofmaps from the total of M 2D ofmap channels that need to be

processed. Consequently, this configuration allows for the concurrent calculation

of N ofmap pixels during convolutions. For instance, in Figure 4.1, 8 pixels are

computed concurrently: 2 pixels per filter (WPAR), and this is done for 4 filters

(MPAR).

The decision to parallelize the PE array in a 2D fashion (rather than 1D) is driven

by two key factors. Firstly, it is a practical choice. NNs often process fmaps

that start large with a low channels number at the first layers and then progres-

38

4.2. GEMINI CONFIGURABLE ARCHITECTURE

sively shrink while the number of channels increases. Employing two levels of

parallelization ensures that PEs are utilized effectively across a wider range of

scenarios. Without this, some PEs would remain unused when dealing with small

fmaps. Secondly, several operators do not scale directly with MPAR. Instead,

they scale with WPAR and are shared among the MPAR processing units. This

save area and power.

In Figure 4.1, we illustrate an example where 2 pixels are computed simultane-

ously for 4 2D ofmaps. It is important to note that in this example, as MPAR

exceeds M , the last two WPAR processing units are not utilized.

Regarding the architecture of a single processing element (PE), each PE consists

of two pipelined stages, as illustrated in Figure 4.3:

ifmap pixel

Weight

accum-
ulator
register

pipeline
register

scaling
register

scaling factor

 Ofmap
computing
stage

Quantization
 stage

Fig. 4.3 Architecture of one Processing Element

– The first stage, located on the left side of Figure 4.3, encompasses the logic re-

sponsible for performing the primary operation for layer computations. This

involves MACs (Multiply-ACcumulate) between fmaps pixels and weights

for convolutions and fully connected layers, as well as the maximum oper-

ation for maxpools. The accumulator register accumulates partial sums (or

maximums for maxpool) across the required cycles.

– The second one is the quantization stage. It is triggered when ofmaps pixels

are calculated (such as after completing all MAC operations in a convolution

layer). Its purpose is to put the ofmaps pixels in the desired range of quanti-

zation by multiplying them by a scaling factor and taking only fmapbits bits

from the most significant bits. Further details were given in Subsection 3.4.

The quantization stage always takes 5 clock cycles and necessitates a scal-

ing register to preserve the output throughout these 5 calculation cycles. This

block also performs the application of the ReLu function following the scal-

ing.

A pipeline register is positioned between the two stages to enable communication

and simultaneous operation in a pipeline fashion.

39

4.2. GEMINI CONFIGURABLE ARCHITECTURE

• Input mixers: in general, mixers are combinational blocks that receive disordered

data as input and produce sorted data as output. It is crucial for the PEs array to

perform regular operations in every cycle, while the complexity of data manage-

ment is handled by the mixers. These mixers ensure that in each cycle, every

PE receives the correct fmap pixel and the appropriate weight for its operation.

Typically, they are implemented as shifters mapped to multiplexers (in RTL). As

observed in Figure 4.2, inside the NPU, these mixers are positioned at the inter-

face with the RAMs, responsible for transferring data to the PE array. There are

two input mixers within the NPU:

– The ifmaps mixer is connected to the read buffer of the FMAPS RAM. Its

function is to sort the N pixels being read to ensure that, during each cycle,

the N processing elements (PEs) in the array receive the correct fmap pixel

for computation.

– The weights mixer is connected to the read buffer of the WEIGHTS RAM.

It functions similarly to the ifmaps mixer, sorting weights and biases. During

each cycle, it delivers the necessary weights and biases to the PEs array based

on the layer being computed.

The details of the mixer functions are not given, as they were imposed and not

studied during my thesis.

• Finally, the storing stage is located at the output of PEs array. It eliminates

some useless PEs computations that should not be written in the fmaps RAM.

For convolutions, the PEs array calculates ofmaps pixels corresponding to hori-

zontal padding and strides even if they are not necessary for the ofmap (they are

eliminated by the storing stage). A design choice allowing a few useless opera-

tions done by PEs was made to simplify the mixers and to optimize the power and

area.

The storing stage also writes the quantized outputs into the FMAPS RAM in the

correct order upon receiving a signal, preventing conflicts with reading during the

same cycle. This function is mapped to a mixer. This stage is pipelined with the

PEs.

4.2.3 RAMs Organization

In this paragraph, we provide a detailed explanation of how the RAMs are organized

within Gemini. In fact, data organization within the RAMs must follow a specific for-

mat to enable Gemini’s processing. This data reorganization is performed prior to Gem-

ini’s execution and is managed by an external element. For the fmaps, it can be executed

directly by the sensor itself (for example, if an FPGA is provided with the sensor), or

40

4.2. GEMINI CONFIGURABLE ARCHITECTURE

WEIGHTS RAM
Layer parameters

Layer parameters

Layer

Layer
L ℓ−1

L0
Weights(including biases)

Weights(including biases)

.

.

.

.

.

.

Fig. 4.4 WEIGHTS RAM organization for a ℓ layers NN {L0, L1, Lℓ−1}

we can employ a microcontroller to handle this operation before initiating the NN exe-

cution on Gemini.

Furthermore, it is important to note that Gemini’s capabilities are limited to NNs

that can entirely fit within its RAM. Consequently, at the start of the execution, all the

data required for processing must already be present in the RAM. There is no gradual

filling of RAM through mechanisms like DMA (Direct Memory Access) [2].

Gemini utilizes RAMs developed by STMicroelectronics, specifically of the SPREGHD

type, operating in CMOSC40. These RAMs are single-port, meaning reads and writes

cannot occur simultaneously within the same cycle.

The organization of WEIGHTS and FMAPS are explained in the following para-

graphs:

4.2.3.1 WEIGHTS RAM Organization

The WEIGHTS RAM stores the NN’s layer weights (including biases) and layer pa-

rameters in a compact format. Figure 4.4 illustrates the RAM’s organization for a ℓ-

layer NN. The data for each layer is arranged sequentially in the RAM.

For each layer, the first lines are dedicated to the layer parameters. These parameters

are specific to the layer. For convolutional layers, these parameters include M , W , H ,

P , Q, R, and S, and for fully connected layers, they include Nin and Nout. Addition-

ally, these parameters may encompass constants used during NPU execution, which are

stored in memory for reading instead of allocating specific hardware within the NPU to

calculate them. It is done for costly operations as constants obtained by divisions.

After storing the layer parameters, the RAM holds the layer weights. For convolutional

layers, this corresponds to the M×S×R×C filter weights along with M biases. In the

case of fully connected layers, we have Nin ×Nout synapses in addition to Nout biases.

41

4.2. GEMINI CONFIGURABLE ARCHITECTURE

This process continues for each subsequent layer until all layer parameters and weights

are placed.

A WEIGHTS RAM word consists of N × weightbits bits. The number of words re-

quired depends on the size of the NN and should be sufficient to accommodate all the

parameters and weights of the network.

Concerning the weights placement inside the memory, it is done in a judicious way to fa-

cilitate the NPU execution and data reuse. The approach differs between convolutional

and fully connected layers.

W1 W2

W3 W4

W5 W6

W7 W8

B1

W21 W22

W23 W24

W25 W26

W27 W28
B3

W11 W12

W13 W14

W15 W16

W17 W18

B2

W1 W11 W21 0 W5 W15 W25 0

W2 W12 W22 0 W6 W16 W26 0

W3 W13 W23 0 W7 W17 W27 0

W4 W14 W24 0 W8 W18 W28 0

B 1 B 2 B 3 0 0 0 0 0

WEIGHTS RAM representation

WPAR = 2

MPAR = 4

Filters:
S = R = C =2
M = 3

Filter weights Bias

Adresses
(words)

Fig. 4.5 Example of convolution weights placement in the RAM

For convolutional layers, filter weights are organized as follows: they are grouped

into sets of MPAR pixels and interleaved. This means that the weights of the first

MPAR filters are placed in an interleaved manner before moving on to the remaining

filter weights. If MPAR is greater than M , the set is completed with zeros. Addi-

tionally, each RAM line contains WPAR pixels from each of the MPAR sets of filter

weights. In Figure 4.5, we illustrate an example with a hardware configuration of (2, 4)

and M = 3 filters of size S × R × C respectively equal to 2 × 2 × 2 weights. Each

RAM line in the figure contains WPAR = 2 pixels from each of the MPAR filters,

and the weights of the three filters are interleaved. The last pixel in each MPAR set is

set to zero because MPAR > M .

Regarding the pixel order placement within a filter, we begin by organizing the pixels of

each channel, followed by columns, rows, and finally, the bias starting from the top-left

filter weight. In the example from Figure 4.5, for the blue filter, the order is as follows:

W1,W5,W2,W6,W3,W7,W4,W8, B1. This arrangement is chosen to facilitate the si-

multaneous processing of MPAR filters.

Depthwise layers are adopting the same memory placements for weights.

For fully connected layers, the weights or synapses are organized into groups of

N = WPAR × MPAR sets, corresponding to each RAM line. This means that we

place all N values for Nout before moving on to the next set. If N exceeds Nout, the set

42

4.2. GEMINI CONFIGURABLE ARCHITECTURE

is filled with zeros. In Figure 4.6, we provide an example for a hardware configuration

of (2, 4), resulting in N = 8, with Nout = 2. Here, only two pixels from the N set

(corresponding to a RAM line) have non-zero values.

Regarding the placement order, we arrange the weights for each output neuron row by

row, starting from the top of the matrix. In Figure 4.6, for the first Nout, the order is

W00,W01,W02, B0. This arrangement is chosen to efficiently process N output neurons

simultaneously.

W00W01w02W10W11W12
B0
B1

Weights bias

Synapses:

= 3

= 2

Nin
Nout

W00 W10 0 0 0 0 0 0

W01 W11 0 0 0 0 0 0

W02 W12 0 0 0 0 0 0

B0 B1 0 0 0 0 0 0

N = 8
WEIGHTS RAM representation for fully connected layers

Fig. 4.6 Example of fully connected weights placement in the RAM

4.2.4 FMAPS RAM Organization

The FMAPS RAM contains the fmaps pixels: before the beginning of the executions,

this RAM contains ifmaps pixels; during the executions, intermediary fmaps are also

stored inside this RAM overwriting non-meaningful data, and finally, at the end of the

execution, it contains the final ofmaps.

The FMAPS RAM, in reality, consists of WPAR memory banks, that are WPAR

separate RAMs. One FMAPS RAM corresponds then to the concatenation of one word

of each WPAR RAM word. Each bank’s word consists of MPAR×fmapbits bits. The

number of words is determined to ensure that the largest fmap in the NN fits in the RAM

without overwriting essential pixels from the preceding fmap, which are necessary to

complete its processing.

Similar to the weights, the placement of fmaps is optimized for parallel execution

on WPAR and MPAR. The fmap pixels are grouped into sets of interleaved MPAR

channels. This means that MPAR channels from the total C channels are placed before

the other sets. If C is less than MPAR, the set is completed with zeros. Regarding the

order of 2D pixels (within the same channel), we start by arranging them in columns

and then in rows, beginning with the top-left pixel.

In Figure 4.7, we provide an example for a hardware configuration of (2, 4) with a fmap

size of W ×H ×C, where W ×H ×C is equal to 2× 4× 2 pixels. In this illustration,

each of the WPAR = 2 banks holds MPAR = 4 pixels. The last two pixels in each

43

4.2. GEMINI CONFIGURABLE ARCHITECTURE

bank are set to 0 because C = 2 < 4. The arrangement shows that for each channel,

pixels are stored first by columns and then by rows. It is required that the entire NN fits

I 1 I 11 0 0 I 2 I 12 0 0

I 4 I 14 0 0

I 5 I 15 0 0

I 3 I 13 0 0

I 6 I 6 0 0

FMAPS RAM representation

FMAP:
W = C =2
H = 4

WPAR = 2
 (2 banks)

MPAR = 4
(4pixels per Bank)

Addresses
 (words)

I 1 I 2

I 3 I 4

I 5 I 6

I 1 I 2I 12I 11

I 3I 13 I 14

I 5I 15 I 16

Fig. 4.7 Example of fmaps pixels placement in the RAM

into the on-chip RAMs, including weights and intermediate ifmaps. Note that the pixels

of the ifmaps are shuffled in such a way to be processed efficiently by the NPU.

In this section, we introduced the organizational principles of Gemini RAMs. In

certain specific cases, additional complex optimizations were implemented to reduce

the RAMs’ footprint, particularly by eliminating unnecessary zeros. However, I was

not directly involved in these optimizations.

4.2.5 Layers Execution Scheduling

This subsection explains at a high-level abstraction the sequence of operations required

for Gemini to produce an output.

The NPU processes the NN layer by layer. It begins by reading the parameters from

the WEIGHTS RAM for the current layer. After this, multiple execution cycles are

carried out depending on the specific layer’s requirements. Finally, there is a transition

cycle to prepare for processing the next layer, which also starts with parameters read-

ing. The execution cycles follow distinct scheduling patterns for convolutions and fully

connected layers. This scheduling is facilitated by the RAM organization introduced in

Subsection 4.2.3:

For convolution-like layers, as discussed in Subsection 4.2.2, MPAR 2D ofmap

channels out of a total of M are processed simultaneously. Within each channel, pixel

calculations are organized into sets of WPAR. This allows for simultaneous process-

ing of a total of N ofmap pixels. Once all the channel pixels (P × Q) are computed

(requiring
⌈

P×Q
WPAR

⌉
sets of WPAR), MPAR ofmap channels are ready for quantiza-

tion. The NPU then process the following MPAR channels until all M ofmap channels

are generated.

To compute the N ofmap pixels by the ofmap computing stage of the PE array (Figure

44

4.2. GEMINI CONFIGURABLE ARCHITECTURE

4.3), a word is fetched from the WEIGHTS RAM read buffer during each cycle. Sub-

sequently, the weights mixer selects one weight for each MPAR filter and broadcasts it

to the PEs, where WPAR PEs receive the same weight. Within the PEs’ computation

stage, these weights are multiplied with N fmaps chosen by the ifmap mixer, following

the fetch of one word from the FMAPS RAM read buffer (with one word per bank).

The results are accumulated within the PE register. Within a single filter, the execution

order follows that of the RAMs (refer to Subsection 4.2.3): columns take precedence

over rows, starting from the top-left edge of the filter.

It is important to highlight that this scheduling optimize the data reuse. The word

fetched from the RAMs serves multiple cycles and does not necessitate more than one

read. For example, a word line from the WEIGHTS RAM is employed for WPAR

cycles, since the mixer selects only one weight per cycle. The same principle applies to

the fmaps, where the same word is employed for different cycles, with the mixer being

the sole component changing the data fed to the PEs.

Once all filter MAC operations are completed, the N ofmap pixels undergo quantization

and ReLu application (Figure 2.11 in Subsection 2.2.4). All these steps operated by the

PEs are the same for all padding and stride values (see Subsection 2.2.3), the non-used

pixels are eliminated in the following step.

After quantization, the ofmap pixels undergo processing in the storage stage, which fil-

ters out non-useful data (resulting from padding and strides) and then writes them into

the FMAPS RAM. As a reminder, the computation stage, quantization stage, and stor-

ing stage are pipelined and operate on different pixels concurrently.

Depthwise layers follow the same scheduling as convolutions, while pooling layers fol-

low a similar scheduling pattern, with the weight multiplication being replaced by the

pooling operation.

For fully connected layers, N among the Nout output neurons are processed con-

currently. During each cycle, one word is fetched from the FMAPS RAM and then one

input neuron from the set of Nin is broadcasted to the PEs by the ifmap mixer. It is then

multiplied with N weights selected by the weights mixer (after accessing the read buffer

of the WEIGHTS RAM) and accumulated within the PE accumulator each cycle. Sub-

sequently, similar to convolution, the N output pixels are quantized and directed to the

storing stage, which writes them into the FMAPS RAM.

Once again, this scheduling facilitates data reuse, particularly for the FMAPS RAM,

where the word read is utilized over N cycles, with only the mixer changing the single

input neuron provided to the PE array.

Finally, it is important to highlight that even though data fetching and writing into

FMAPS occur during the same cycles, it does not lead to conflicts when using single-

port RAM. As mentioned in Subsection 4.2.2, the storing stage can only write when it

45

4.3. IMPLEMENTATION

receives a signal, indicating the absence of a read during the same cycle. This absence

of read operation is common because, as explained below, there are several cycles where

data is fetched from the RAM’s read buffer without resulting in an actual read, as the

data was already present in the buffer following a previous read in preceding cycles. It

is only reused.

4.3 Implementation

Some aspects of the Gemini architecture were determined during my thesis, but my

primary focus for the past two years, along with the other PhD students, has been the

implementation and addressing all the challenges it presents.

Actually, once the architectural design is finalized, the implementation becomes a

critical task, entailing various challenges. Figure 4.8 provides an overview of the entire

process. The initial design phase involves creating a synthesizable C++ code represen-

tation of the NPU architecture. At this step, RAMs are mapped to naive models. During

this phase, extensive simulations are conducted to validate the correctness of the out-

puts. To achieve this, we compare the results with those obtained from the Tensorflow

library. Subsequently, this code is utilized by a High-Level Synthesis tool SIEMENS

CATAPULT to generate RTL code for the NPU. This RTL code is then integrated with

real (SPREGHD models) RAM instantiation to produce the RTL code for the Gemini

accelerator. At this stage, RTL simulations are performed using CADENCE XCELIUM

to verify the correctness of the generated RTL. Next, the RTL undergoes synthesis using

the logic synthesis tool SYNOPSYS DCSHELL, and the gate netlist is simulated using

CADENCE XCELIUM. The final circuit is obtained after placement and routing, car-

ried out by CADENCE INNOVUS, resulting in the final GDS layout. Back-annotated

simulations, taking into account real cell and interconnect delays, are then conducted to

verify the proper functioning of Gemini.

Subsection 4.3.1 introduces the HLS and its importance in Gemini design, the Sub-

section details the NPU’s implementation using HLS across various abstraction levels,

spanning from the NPU itself to the abstract blocks and within the PEs array. Section

4.3.3 then outlines the integration of the NPU into the Gemini top-level structure to

generate the ultimate Gemini RTL description.

4.3.1 HLS overview

HLS is a commonly employed method to generate a synthetizable RTL design [87, 32,

105] (in a hardware description language such as V HDL or V erilog) from a high-level

programming language such as C/C++ or SystemC. The fundamental objective of

HLS is to automate the conversion of algorithmic abstractions into hardware concrete

46

4.3. IMPLEMENTATION

C++

RTL

Gate Level

GDS

Simulation

RAMs wrapper

High-level Synthesis

Logic Synthesis

Physical Synthesis

Fig. 4.8 Gemini Design steps

configurations, thereby streamlining the design process and reducing time-to-market

for complex digital systems. By using HLS, designers can explore multiple architec-

tural alternatives, optimize for various performance metrics (e.g., power consumption,

throughput, area utilization), and explore trade-offs between them. Lahti et al. [72] in

Figure 4.9 illustrates a meta-analysis on 46 different papers comparing HLS and clas-

sical RTL design. It shows that HLS enables a considerable time saving for each step

of the chip making process. It also reduces the necessary design expertise, as vari-

ous steps are automated and managed by the HLS tool. For instance, with SIEMENS

CATAPULT, loop pipelining or unrolling [58] can be effortlessly accomplished using

commands. HLS is also well-suited for configurable designs due to its high-level lan-

guage, which simplifies automation and is technology-agnostic, making it easier for

re-targeting. Additionally, HLS provides useful tools for easy debugging; for instance,

it allows for RTL simulations directly from test-benches written for the high-level de-

scription. Furthermore, HLS provides all the estimations typically available when RTL

is generated, including timing, area, and power analysis. Finally, the choice of using

C/C++ for the design offers significant advantages in terms of readability. It enables

object-oriented coding practices that abstract complexity and improve comprehensibil-

ity, for instance. Moreover, it greatly facilitates code maintenance, allowing for the easy

addition of new features without extensive modifications to existing code. Furthermore,

C/C++ is compatible with documentation tools like Doxygen, which simplifies the pro-

cess of creating documentation within the code, as explained in [99].

The primary stages involved in generating RTL from a high-level language like

C/C++ (or any other language) include:

• Code Compilation: this initial phase involves compiling the code.

• Allocation: in this step, libraries containing primitive components are chosen and

47

4.3. IMPLEMENTATION

mapped to operations. This stage also defines the design hierarchy and incorpo-

rates features such as loop unrolling or pipelining.

• Scheduling: the scheduling phase determines when each operation is executed

within the cycle. It plays a critical role in handling dependencies among opera-

tions.

• Binding: the binding step is responsible for optimizing resource sharing and mak-

ing necessary adjustments.

These stages collectively lead to the creation of RTL designs from high-level descrip-

tions. Nevertheless, while HLS offers numerous advantages, it involves giving up some

control over the design. Throughout various stages, such as allocation and scheduling,

the tool makes several decisions. Therefore, to generate RTL with the desired architec-

ture, it requires writing the code with careful consideration and taking into account the

tool’s decision-making process.

0

2

4

6

8

10

12

Designing
RTL

Designing
HLS

Implementing
RTL

Implementing
HLS

Searching
information

RTL

Searching
information

HLS

Simulating
RTL

Simulating
HLS

Debugging
RTL

Debugging
HLS

H
ou

rs

Fig. 4.9 Maximum, minimum, and average time usage for different categories with RTL and
HLS. From [72]

4.3.2 NPU Design in HLS

In the context of designing Gemini, HLS proved to be exceptionally beneficial. Given

that the Gemini IP was initially intended to be configurable, HLS proved invaluable

for transitioning between different (WPAR,MPAR) configurations. It also played

a crucial role in the validation process, as Gemini needed to be delivered to a client,

requiring exhaustive verification involving random NNs across various configurations.

They were efficiently performed through C++ simulations, making debugging quick

and straightforward. Achieving the same results using RTL simulations would have

been virtually impossible due to the significant time constraints.

In this subsection, we will describe the challenges encountered while describing

Gemini in HLS, with the help of an illustration using a very simplified version of the

C++ code to be synthesized. To aid comprehension, Figure 4.10 illustrates the different

data types used for feature maps (fmaps). Please note that the same applies to weights.

48

4.3. IMPLEMENTATION

In C++, IFMAPS RAM is modeled through the type NPU memory type, representing

the fmap RAM, including all its banks (as shown in Listing 4.1). The IFMAPS variable,

which is of type N fmaps type (as seen in Listing 4.2), corresponds to one line within

IFMAPS RAM. This data is handled by the PEs array and contains a total of N fmap

pixels (in this example, N is equal to 8). Finally, SINGLE IFMAP (presented in Listing

4.3) is of type fmap type, representing a single pixel with fmapbits bits (here equal to

8). This data is used by an individual PE.

00000001 00000010 00000011 00000100 00000101 00000110 00000111 00001000

X X X X

X X X X

X X X X

X X X X

WPAR = 2
 (2 banks)

Addresses
(words)

IFMAPS_RAM

IFMAPS

SINGLE_IFMAP

fmapbits = 8

... ...

Fig. 4.10 Different fmap types used in Gemini architecture

4.3.2.1 NPU Top Level Function in HLS

Concerning Gemini design, the top level contains the NPU and RAMs. The HLS is

targeting the NPU. The RAMs are set as external. It means that they are considered as

external blocks and are not handled by the HLS. This is operated thanks to a CATAPULT

command. The RAMs will be instantiated when the NPU RTL is generated (Subsection

4.3.3). This choice is made because, in HLS, the C++ arrays are mapped to a standard

RAM model (with only D, Q, clk, reset pins) that does not correspond well to the

SPREGHD RAMs that we are using. As is it was mentioned in Subsection 4.2.5, there

is no simultaneous read and write from the FMAP RAM during the execution. We made

the choice to design Gemini with two separate RAMs for fmaps: an IFMAP RAM for

reading fmaps and an OFMAP RAM for writing them. Opting for a single RAM in

the design would have introduced potential issues when attempting simultaneous reads

and writes during the same cycle or when scheduling them in different cycles to prevent

conflicts. It is important to note that in practice, such conflicts would never occur, as

the scheduling prevents their occurrence (Subsection 4.2.5) and in case of conflict they

are resolved outside the HLS process (Subsection 4.3.3). In Listing 4.1, we can observe

the top-level function that outlines the design of the NPU. In this context, three RAM

variables are employed: IFMAPS RAM, OFMAPS RAM, and WEIGHTS RAM.

However, at the RTL level, where actual RAM instances (SPREGHD) are instantiated,

49

4.3. IMPLEMENTATION

the same physical RAM is utilized for both IFMAPS RAM and OFMAPS RAM.

Listing 4.1: NPU function in C++

void execute_NPU(NPU_memory_type& IFMAPS_RAM,

NPU_memory_type& OFMAPS_RAM,

NPU_memory_type& WEIGHTS_RAM,

bool START) {

NPU_state_type NPU_STATE = INITIALIZATION;

bool END_MODEL = FALSE;

#pragma hls_pipeline_init_interval 1

WHILE (1) {

SWITCH (NPU_STATE) {

CASE INITIALIZATION:

NPU_STATE=initialize_NPU(START);

BREAK;

CASE READ_LAYER_PARAMETERS:

NPU_STATE=read_layer_parameters(

WEIGHTS_RAM);

BREAK;

CASE EXECUTE_LAYER:

NPU_STATE=execute_layer(IFMAPS_RAM,

OFMAPS_RAM,WEIGHTS_RAM);

BREAK;

CASE END_LAYER:

NPU_STATE=prepare_next_layer();

BREAK;

CASE END_EXECUTION:

END_MODEL=TRUE;

BREAK;

}

if (END_MODEL) {

BREAK;

}

}

}

As observed in Listing 4.1, the NPU function is described thanks to a while(1) loop,

it helps to ensure that each loop will be executed during one clock cycle. The loop is

pipelined with an initiation interval of 1 (i.e. the pipeline input is updated every cycle)

thanks to the CATAPULT library line #pragma hls pipeline init interval 1. Within the

50

4.3. IMPLEMENTATION

loop, there exists a finite state machine that describes the execution of the NN. This

state machine operates as follows:

• INITIALIZATION: in this state, all NPU variables are initialized.

• READ LAYER PARAMETERS: this state corresponds to the phase where layer

parameters are read before commencing layer execution (as stated in Subsection

4.2.5)

• EXECUTE LAYER: this is the primary state where the actual layers are computed.

• END LAYER: as a transitional state, it serves to update variables in preparation

for launching a new layer computation by transitioning to the

READ LAYER PARAMETERS state.

• END EXECUTION: this final state marks the conclusion of NPU execution.

4.3.2.2 NPU Blocks in HLS

During the EXECUTE LAYER phase, the function responsible for executing the layer

on Gemini is called. In Listing 4.2, the function execute layer is detailed. Within

this function, all NPU block functions (refer to Subsection 4.2.2) are called sequen-

tially. First, we encounter the ifmap mixer and weight mixer functions, which re-

spectively read a line and perform mixing operations from the IFMAPS RAM and

WEIGHTS RAM. Their purpose is to ensure that the PE array has the correct data for

the layer computation. The behavior of these mixers depends on the type of layer being

computed. Following the mixer operations, the PE array performs computations using

the data provided by the mixers (IFMAPS and WEIGHTS), and it generates an output

(ACCU OUT) that is stored within the OFMAPS RAM.

Listing 4.2: Layers execution function in C++

void execute_layer(NPU_memory_type& IFMAPS_RAM,

NPU_memory_type& OFMAPS_RAM,

NPU_memory_type& WEIGHTS_RAM) {

PEs_command_type CMD = layers_control(); gives

address

N_fmaps_type IFMAPS = ifmaps_mixer(IFMAPS_RAM);

N_weights_type WEIGHTS = weights_mixer(WEIGHTS_RAM);

N_accu_type ACCU_OUT = 0;

ACCU_OUT=PEs_execution(IFMAPS,WEIGHTS,CMD);

storing_stage(OFMAPS_RAM,ACCU_OUT); update the

boolean LAST_EXECUTION

if (LAST_EXECUTION == True){

51

4.3. IMPLEMENTATION

NPU_STATE = EXECUTE_LAYER;}

else{

NPU_STATE = EXECUTE_LAYER;}

}

4.3.2.3 Processing Elements in HLS

As described in Subsection 4.2.2, the PEs array is responsible for executing the oper-

ations required for layer computation. It comprises N PEs, each handling an output

pixel calculation. Listing 4.3 illustrates a simplified version of the PEs array function.

To begin with, the CATAPULT command #pragma hls design ccore indicates that this

function will be synthesized as a CCORE (Catapult C Optimized Reusable Entity [58]).

This designation means that it is a reusable block synthesized and optimized indepen-

dently of the rest of the design. This decision was made to enhance hierarchy control

and reduce synthesis time. On the other hand, the function involves a loop iterating over

the N PEs, where each operation is performed individually for every PE. For example,

in the case of the MULTIPLICATION command (CMD), each of the N PEs within the

array computes the multiplication between a weighbits weight and fmapbits fmap.

It is crucial to note that the CATAPULT command #pragma hls unroll yes is applied

above the for loop. This signifies that the loop is unrolled, and the N loop iterations

are mapped to N operators that execute the tasks within the loop simultaneously. To

achieve this, it is essential to ensure that the tasks inside the loop are independent.

This function operates also the output scaling and the activation seen in Subsection

4.2.2

Finally, we encountered numerous challenges during the optimization of the code

with the objectives of reducing chip area and improving latency. The coding style sig-

nificantly influenced the performance of the synthesized NPU. The main difficulties

were about the need to rewrite the code to minimize data dependencies and promptly

utilize available data. This strategic adjustment resulted in a notable reduction in the

critical path and the removal of unnecessary registers storing data. Other optimizations

included the reduction of multiplier sizes by employing smaller ones and the execution

of multiplications over multiple cycles (in pipeline).

Listing 4.3: PEs array function in C++

#pragma hls_design ccore

N_accu_type PEs_execution(N_fmaps_type& IFMAPS,

N_weights_type& WEIGHTS,

52

4.3. IMPLEMENTATION

PEs_command_type CMD) {

static N_accumulator_type ACCU_IN = 0;

#pragma hls_unroll yes

for (int p=0, p<N, p++){

fmap_type SINGLE_IFMAP = IFMAPS.slc<fmapbits>

(p*fmapbits);

weight_type SINGLE_WEIGHT = WEIGHTS.slc<

weightbits> (p*weightbits);

accumulator_type SINGLE_ACCU = ACCU_IN.slc<

accubits> (p*accubits);

SWITCH (CMD){

CASE MULTIPLICATION:

SINGLE_ACCU = SINGLE_WEIGHT *

SINGLE_IFMAP;

CASE MAC:

SINGLE_ACCU = SINGLE_ACCU + SINGLE_WEIGHT

* SINGLE_IFMAP;

CASE MAX:

if (SINGLE_ACCU < SINGLE_IFMAP){

SINGLE_ACCU = SINGLE_IFMAP;

};

...

}

ACCU_IN.set_slc(p*accubits,SINGLE_ACCU)

ACCU_IN= output_scaling_stage(ACCU_IN,

scaling_factor,offset,relu);

...

return ACCU_IN;

}

4.3.3 RTL Wrapper

As described in Subsection 4.2.1, the top level of the Gemini architecture comprises

the NPU, along with WEIGHTS RAM, IFMAPS RAM, and OFMAPS RAM. The RAM

models generated by HLS for array mapping do not match the actual RAMs used in

practice. Additionally, the Gemini top level produced by HLS includes two separate

RAMs for the fmaps, whereas in the real design outlined in Subsection 4.2.3, there is

only one RAM. This disparity led us to wrap the Gemini RTL generated by CATAPULT

53

4.4. GEMINI TAPE-OUTS AND BENCHMARK

within a top-level structure, using SPREGHD RAMs for WEIGHTS RAM to replace

the basic array model provided by HLS. We also introduced a logic block that com-

bines the signals shared by the NPU with IFMAPS RAM and OFMAPS RAM, allowing

them to communicate exclusively with a single FMAPS RAM containing the data for

both read and write operations. This process transforms the two RAMs into a single

one of SPREGHD type. During HLS, the use of two RAMs was to prevent conflicts

between read and write operations within the same RAM during synthesis.

Furthermore, we introduced a logic block that deactivates the chip select of a RAM if

the address being read in a particular cycle matches the address read in the previous

cycle. This approach deactivates the read operation, giving the opportunity to write in-

side the same RAM without conflicts due to simultaneous read and write. It also save

dynamic power.

Finally, although the scheduling ensures that in most cases, read and write operations

occur in different cycles, we implemented the capability to stall the NPU if simultane-

ous read and write operations are detected, with a priority given to write operations.

In conclusion, the implementation of Gemini, considering its configurability and ex-

tensive validation, was greatly facilitated through HLS design. However, it is important

to note that only the NPU was fully designed using HLS, which presented its own set of

challenges due to the need for optimization. The RAMs, which were not well-handled

by HLS, had to be incorporated through a wrapping of the NPU RTL. This provided an

opportunity to address and resolve potential read and write conflicts that might occur

during execution but also enabled the use of a single RAM for fmaps.

4.4 Gemini Tape-outs and Benchmark

The Gemini architecture, as discussed in Section 4.2 and implemented to tackle the

challenges outlined in Section 4.3, has successfully undergone a tape-out in the P18

STMicroelectronics technology [123], as detailed in Subsection 4.4.1. Furthermore, its

performance can be effectively compared to benchmark NN accelerators in Subsection

4.4.2.

4.4.1 Tape-outs

The Gemini project completed two tape-outs, both utilizing the advanced P18 technol-

ogy.

The first tape-out, conducted at the beginning of my thesis, employed an earlier

version of the Gemini architecture (only WPAR parallelization was possible), not the

final one described in this chapter. It was based on the Gemini-1 project outlined in

Section 1.1. Thanks to this tape-out, with had our first Gemini demonstrator. However,

54

4.4. GEMINI TAPE-OUTS AND BENCHMARK

We encountered several complications during this initial tape-out. Firstly, the technol-

ogy was not yet ready to support SRAMs, so the FMAP and WEIGHTS RAMs were

mapped to registers instead of SRAMs. Additionally, there were issues with the setup

measurement, preventing us from accurately measuring the performance of Gemini.

Nevertheless, this tape-out proved to be highly efficient in promoting the P18 technol-

ogy, as it facilitated a pipe-clean of the design flow and collected vital information for

technology development. I was responsible for several implementation steps during this

process, as detailed in Appendix A.

The second tape-out, carried out for the Gemini-2 project (Section 1.1), was more

efficient and featured an architecture very similar to the one presented in this chapter

for (WPAR,MPAR) = (16, 8). Additional optimizations were implemented; how-

ever, they are not presented in this work because I was not directly involved in their

implementation. This tape-out benefited from a more mature technology than the first

one, making measurements more accessible. For this tape-out, my involvement was

primarily in the design of the NPU, and I was not part of the entire process as with the

first tape-out. The chip is ready, but we cannot present its performance measurements

at this time. Nevertheless, we can extract key performance indicators from gate-level

simulations on the placed and routed netlist, taking into account the routing, including

back-annotations [95].

4.4.2 Benchmark

In this section, we conduct a comparative analysis between Gemini and various ac-

celerators using the KPIs described in Section 3.3. Gemini offers configurability with

different possible architectures, but for this comparison, we have chosen to focus on

the test-chip of Gemini-2 with the configuration (WPAR,MPAR) = (16, 8), which

utilizes P18 technology, and offering the most precise estimations. Estimations and

simulations for other architectures discussed in Chapter 5 are less accurate as they are

operated before placement and routing.

However, it is important to note that this comparison is not entirely equitable due

to variations in technology and metrics used by different accelerators, as discussed in

Section 3.3. For example, in Table 4.1, Eyeriss, UNPU, and Orlando consider the entire

chip for area measurement, whereas all others focus solely on the accelerator. This

discrepancy poses challenges because not all accelerators are designed to accommodate

all types of neural networks. For instance, our Gemini accelerator has RAM limitations

that make it incompatible with networks like AlexNet, unlike Eyeriss. Furthermore,

for some accelerators such as UNPU, ORLANDO, and COMPAC (for which it is not

explicitly specified), determining the number of PEs posed challenges because they do

not adhere to any of the standard data-flow paradigms presented in Section 3.2.

55

4.4. GEMINI TAPE-OUTS AND BENCHMARK

Regarding Gemini’s area efficiency, it is very competitive due to the regularity of

its architecture and, honestly speaking, advances in technology. This advantage is also

evident in the GOPs/mm2 KPI.

In terms of energy efficiency (TOPs/W), as mentioned in Subsection 3.3.4, the mea-

surement can be complex due to variations in how operations are counted. When count-

ing 2 operations per PE (equivalent to MAC operations), Gemini achieves an energy

efficiency of 1.9TOPs/W . However, if we count 3.1 operations per PE, accounting for

the scaling operation within the PE (which is specific to Gemini and not performed by

all accelerators), we achieve an efficiency of 3.1TOPs/W .

Accelerator PEs Freq & Bits Area TOPs/W GOPs/mm²
Envision (28nm) [92] 512 200 MHz & 8 1.87 mm² 3.80 -

ShiDiaNao (65nm) [40] 64 1 GHz & 16 0.66 mm² - 293
Eyeriss(65nm) [25] 384 200 MHz & 8 12.25 0.246 -
UNPU (65nm) [79] - 200 MHz & 8 16 mm² 4.30 43
QNAP (28nm) [91] 144 470 MHz & 8 1.9mm² 11.3 745

COMPAC(65nm) [107] (128) 25 MHz & 8 1.74mm² 1.044 -
SCNN (65nm) [100] 64 1 GHz & 16 7.9mm² - -
Orlando (28nm) [38] - 1.75 GHz & 8 and 16 34mm² 2.9 -

Gemini (18nm) 128 350 MHz & 8 0.655mm² 1.9/3.1 2560

Table 4.1 KPIs comparison for different accelerators

As discussed in Section 3.3, in my opinion, energy efficiency is not consistent for

bench-marking, as different papers measure it for different NNs and for different setups.

Some use peak performance on specific layers [107], others like us use averages, and

still others base their measurements on pruned and adapted NNs to exploit sparsity.

To address this, we conducted a comparison with accelerators using MobileNet for

latency in Table 4.2, where Gemini proves to be highly advantageous. This is primarily

because Gemini follows an output stationary architecture using WPAR and MPAR,

which aligns well with the depthwise layers found in MobileNet (Figure 2.13). We also

measured power consumption while processing this network, resulting in 3.4mW of

leakage and 4.8mW at 35MHz.

Accelerator Throughput (Fps) on Mobilenet
Eyeriss 1282

Edge TPU [96] 416
Gemini 1976

Table 4.2 MobileNet latency of different accelerators

Although direct comparisons may be challenging, it is evident that Gemini remains

competitive. In general, its specifications align well with the requirements of low area,

low power, and high speed essential for the edge computing domain. More specifically,

56

4.5. CONCLUSION

our customer has adopted the IP because it meets their requirements as outlined in their

specifications.

4.5 Conclusion

In conclusion, this chapter has presented an overview of the design considerations for

the Gemini IP architecture and its implementation. Gemini is purposefully designed to

meet specific customer constraints. Firstly, it adheres to the quantization requirements

following the TensorFlow paradigm. Additionally, Gemini is designed to support the

processing of various layers used in feed-forward neural networks. The design of this

accelerator was motivated by the need for configurability to accommodate the typical

performance trade-offs required by different NNs applications. This configurability

is achieved by adjusting just two key parameters, namely (WPAR,MPAR), which

configure the entire design. While the design choices were made to ensure configura-

bility, it is important to note that they also maintain efficiency in optimizing area, power

consumption, and latency for each specific configuration. The chapter provides a com-

prehensive description of the NPU architecture, elucidating each component, from PEs

to mixers, and encompassing the storing stage. Additionally, the RAM organization

is detailed, considering its adaptation to the NPU architecture and layer scheduling re-

quirements. The chapter also addresses the implementation challenges of Gemini. As

a reminder, the RAM data reorganization before execution is not managed by Gemini.

NPUs are synthesized using High-Level Synthesis for different facilities. The NPU is

then encapsulated within a top-level structure that instantiates the actual RAM modules.

The preference for employing HLS as much as possible was driven by the flexibility it

brings to the environment. Once the coding style is mastered, it improves readability,

maintainability, configurability, and exhaustive validation capabilities.

Ultimately, this project resulted in a P18 tape-out, which provided a Gemini demon-

strator. Furthermore, Gemini’s performance demonstrates its strong competitiveness in

the embedded AI domain due to its compact size, low power consumption, and impres-

sive latency for a specific configuration. All these compelling attributes that led to the

client’s adoption of Gemini.

Thanks to a comprehensive understanding of Gemini architectural aspects and their

practical implementation, it becomes feasible to derive precise close formulas that char-

acterize Gemini. This enables the efficient selection of (WPAR,MPAR) values to

tailor the architecture to specific performance trade-offs and effectively target diverse

markets.

57

CHAPTER 5

Gemini Performances Evaluation
Neural network accelerators are designed to optimize three key performance indicators

(KPIs) in processing Neural Networks (NN): latency, power consumption, and chip

area. Typically, there is a trade-off among these KPIs. Within the scope of the Gemini

project, a configurable hardware NN accelerator (whose design, implementation, and

benchmark are presented in Chapter 4), sharing its name with the project, was devel-

oped for the edge computing market. Its configurability aimed to make it versatile and

adaptable to various NN applications with differing performance requirements, leading

to specific trade-offs among the KPIs. However, determining the appropriate config-

uration for a client’s NN application can be challenging. This challenge is magnified

by the fact that measuring the KPIs requires time-consuming and resource-intensive

simulations.

To address this client need, this chapter introduces a high-level practical estimator

capable of rapidly predicting the KPIs based on the NN and the Gemini configuration.

The latency is accurately derived using an analytical model based on the architecture,

the operators scheduling and the NN characteristics. The power and the chip area are

computed analytically, and the models are calibrated using simulations. Finally, we

show how to use the estimator to derive Pareto optima for choosing the best Gemini

configurations for a VGG-like NN. The research has resulted in a publication scheduled

to appear at the SBAC-PAD conference in 2024 [98].

This chapter is organized as follows. We start in Section 5.1 by explaining the im-

portance of having an estimator capable of predicting the KPIs of a NN execution based

on accelerator architecture and neural network characteristics. This is followed by a

comprehensive review of existing research in predicting KPIs for accelerators (Section

5.2). We then delve into the methodology adopted for this study in Section 5.3. Sub-

sequently, Section 5.4 exposes the simulation environment used to gather data (thanks

to industrial tools) used in determining KPIs model. Section 5.5 details the estimation

model of the KPIs as well as its accuracy. Section 5.6 illustrates how the configuration

can be chosen once the performances have been estimated. Finally, the conclusion is

made in Section 5.7.

58

5.1. IMPORTANCE OF PERFORMANCE ESTIMATORS

5.1 Importance of Performance Estimators

Deep Neural Networks (NN) have become incredibly popular [76]. We can find NN-

based solutions in every field, which led it to become a field on its own. NNs present

various structures and have different hardware requirements [75]: some applications

need very low latency chips, such as cloud computing, while others require low power

and small area, such as the edge computing market. Then, for each application, the

designer has to usually find a compromise between the 3 KPIs: latency, chip area and,

power.

The architecture of Gemini was imposed and primarily designed to be streamlined

and highly configurable, facilitating effortless adaptation to various applications. There-

fore, achieving pure performance on a specific NN was not the objective. As afore-

mentioned in Section 4.2, Gemini is a configurable output stationary NN accelerator

[119] with mainly two structural architectural parameters (WPAR,MPAR). Chip

area, latency, and power consumption depend on both the NN to be used and the two

architectural parameters. The configurability of Gemini allows it to adapt to the NN

structure.

Choosing the best configuration according to the NN for Gemini is too time-consuming.

There are around 1000 possible Gemini configurations. For a fixed NN, measuring the

KPIs requires simulating the NN execution. It cannot be done for all the configurations

in a reasonable time, as it takes in average 2 hours to obtain the netlist and 3 min for the

NN execution simulation. However, using accurate KPIs models, one could rapidly esti-

mate all the possible configurations for a fixed NN. Thus, the challenge lays in obtaining

the best KPIs estimation depending on the NN and the two structural parameters.

In this chapter, we consider only the scenario where the entire NN can fit into on-

chip RAM. Consequently, only the accelerator’s performance will be investigated. Con-

siderations regarding off-chip communications are not taken into account, since they are

not influenced by the choice of the Gemini configuration.

5.2 State of the Art

If the chip is available, the accelerators’ KPIs are typically measured directly on the

system for specific neural networks, eliminating the need for high-level KPI estima-

tions. Complications may arise during the design phase when measurements are not yet

possible. An important research area is the one dealing with the Design Space Explo-

ration of accelerators (generally using FPGAs) [68, 9, 133, 16, 52, 4]. Their objective

is to find the best architectural parameters according to KPIs. They use KPIs models

and optimizing algorithms to find the best design solutions.

Most of the authors evaluate the latency using analytical formulas based on opera-

59

5.3. METHODOLOGY

tions scheduling, accelerator architecture, and NN parameters [89, 42]. For example,

Erdem et al. [42] evaluate the latency of the computation according to channel and

kernel parallelization. The predictability of a NN execution renders this analytical ap-

proach the most commonly employed, it is even used by authors interested into eval-

uating the latency of a NN on heterogeneous machines composed of CPUs and GPUs

[23].

Concerning the power or energy consumption, we cannot draw inspiration from what is

typically done with GPUs and CPUs since they can directly measure task consumption,

which is not the case for ASICs for which we cannot have a chip for each hardware

configuration. In the context of ASICs, the strategies are often based on the power

estimation of components [121, 124, 133]: for example, Wu et al. [124] developed Ac-

celergy, a tool that evaluates the energy of different architectures accelerators. Firstly, a

designer describes the architecture with compound components characterized by primi-

tives components for which the power is known; RAMs power is evaluated with CACTI

[13] and other primitives such as Multiplications And ACcumulations (MACs) are given

by libraries. Secondly, the designer lists the actions of each component and their use

rate. Accelergy estimates the total energy by combining all these data. Zhao et al. [133]

also evaluate the consumption by listing the accelerator components but with more sim-

plified energy models. They use also CACTI for RAMs power estimation, and they

consider registers, MACs, and communication networks for the other components.

Concerning the chip area, Shahshahani and Bhatia [110] rely on machine learning mod-

els to predict it. The main drawback of this method is its lack of interpretability. For

instance, the impact of each resource is difficult to estimate. Wu et al. [125] and Tang

et al. [121] simply consider the area contribution of each component to evaluate the

chip area.

5.3 Methodology

This section presents a method to estimate KPIs of an NN output stationary accelerator

based on its configuration and NN parameters. The study aims to provide insights into

the performance metrics without optimizing the architecture.

The proposed estimation methodology can be utilized by anyone using output station-

ary accelerator architectures. This is due to the fact that the estimation methods rely on

principles inherent to this type of architectures, which are universal across all accelera-

tors classified as such.

In Gemini, the latency is estimated analytically depending on the architecture, the

operators scheduling, and the NN parameters. This estimation comes from the pre-

dictability and the regularity of the operations schedule.

60

5.3. METHODOLOGY

In this study, we choose to model the power rather than the energy. The energy

is impacted by the power of the system as well as its latency. Considering then the

energy is less efficient when dealing with trade-offs between consumption and speed

(the energy combines both of them). The power will be split into leakage and dynamic

power. As a reminder, the leakage is the power dissipated when the device is powered

up, but the gates are not toggling; it does not depend on the inputs. The dynamic one

is the power dissipated when the gates switch their states; it depends on the inputs.

Splitting the power allows us to estimate the power as a function of the clock frequency

because the dynamic power scales linearly with the clock frequency while the leakage

remains constant [35]. This statement holds true since we are operating with a constant

voltage VDD. Below the maximum frequency (chosen during the synthesis), there is no

requirement to adjust VDD in order to achieve the desired frequencies.

The power consumption of Gemini cannot be measured using tools such as Accelergy

[124]. Indeed, the computing part of Gemini is designed using High-Level Synthesis

(HLS); the number, the type and the use rate of components are then difficult to predict

because operators schedule and optimizations (such as resource sharing) depend on the

configurations. However, we assume that main compound operators such as registers,

MACs or multiplexers must be synthesized during the HLS. A power model for Gemini

is then exhibited based on a linear equation of the complexity of main operators and

calibrated through simulations of NNs executions. An advantageous characteristic of

this model resides in its inherent simplicity, as it necessitates a minimal quantity of data

regarding the architecture and the NN (accessible from a high-level of abstraction) for

its effective utilization. Conversely, this model also possesses the advantage of being

explainable. The power estimator is based on gate-level simulations, which is sufficient

to have accurate power values to compare several configurations.

Finally, the chip area will also be modeled with the area contribution of main oper-

ators multiplied by constants.

To evaluate the estimator accuracy, it is chosen to consider the Root Mean Square

Error (RMSE). It has the advantage to be homogenous to the modeled parameter. The

estimated RMSE for area and leakage is 0.005 mm² and 0.57 µW, respectively. The

latency and power models of an NN are derived from the models of its individual con-

stituent layers, encompassing all potential parameters. Therefore, these models are

validated and universally applicable to any feed-forward NN. Latency is generally es-

timated with an error of less than 10 cycles, and dynamic power with a RMSE of less

than 20 µW. We illustrate our results on a VGG-like NN, as presented in Figure 2.12,

which is inspired by VGG-16 [115]. This network offers the advantage of encompass-

ing diverse NN layer types and, notably, is extensively employed for evaluating NN

accelerator performance [19, 133].

61

5.4. BUILDING THE SIMULATION DATA SET

5.4 Building the Simulation Data set

The objective is to gather data on KPIs (latency, area, and power) via simulations for

several NNs and (WPAR,MPAR) couples. These data will be used to build an esti-

mator based on analytical models predicting those indicators.

In this section, we will start by introducing the simulation environment in Subsec-

tion 5.4.1, which serves for collecting the essential data required for constructing our

model. Following this, in Subsection 5.4.2, we will outline our methodology for choos-

ing specific configurations and neural networks to create the data set.

5.4.1 Simulation Environment

For our utilization, both WPAR and MPAR vary from 2 to 32 (N = WPAR ×
MPAR could then vary from 4 to 1024). Each (WPAR,MPAR) couple is called

a configuration. As aforementioned, it was chosen to perform simulations at the gate

level stage directly before the Placement and Routing (P&R).

We choose to work with 8 bits for both fmapbits and weightsbits since it is the most

used quantization mode. As a reminder, fmapbits represents the number of bits allo-

cated for feature maps (fmaps) pixels, while weightsbits represents the number of bits

allocated for weights.

The SRAM capacity is fixed (65KB for fmaps RAM and 16KB for WEIGHTS RAM),

only the aspect ratio between RAMs width and depth undergoes variation across differ-

ent configurations.

The technology chosen is CMOSC40. The simulation environment is summarized in

Figure 5.1.

 C++
Description

RTL

GATES

C++ Simulation

GATES Simulation
 with activity

RAMs choice

Dynamic power
 consumption

Neural network

Neural network

Latency

Area and leakage

 HLS
(Catapult C)

Logic Synthesis
 (DCSHELL)

WPAR/MPAR

Fig. 5.1 Simulation environment

As a reminder, the design of the NPU is described in C++ and the HLS is performed

by SIEMENS CATAPULT®. The NPU execution is described using loops, ensuring that

62

5.4. BUILDING THE SIMULATION DATA SET

one loop execution in C++ corresponds to one clock cycle. Then the latency of a NN

processing can already be measured at this level by counting the number of loops.

Once the NPU RTL is obtained for each configuration, the top level of the accelerator

is built, instantiating the NPU and its corresponding RAMs. If several cuts are possible

for one RAM, we choose the option giving the smallest area. Once the full RTL is

ready (including NPU and RAMs), we operate the logic synthesis using the SYNOPSYS

DCSHELL® tool with the same constraints and corners for all configurations: the syn-

thesis is done at 200 MHz, 1 V, and 125 °C for the slowest corner. This corner represents

the worst case in terms of timing. The library used is RVT (regular threshold voltage)

in CMOSC40. It was decided to not mix different threshold voltage libraries to prevent

the introduction of complex optimization by the synthesis tool that are challenging to

model. Finally, when the gate netlist is ready, area and leakage power estimations are

given by DCSHELL® without any simulation as they do not depend on the NN to be

computed.

Latency and dynamic power estimations can be obtained by doing gate-level simula-

tions. Tailored test benches are employed to fill the RAMs with requisite data and to

launch the NPU. Gate simulations are performed using CADENCE XCELIUM® envi-

ronment. The simulations are run at 1 MHz for the typical corner at 1.1 V and 25°C. The

toggle rate is then exploited by SYNOPSYS PRIMEPOWER® to evaluate the dynamic

power on the NN execution: the cycles where the RAMs are filled are not taken in ac-

count. Utilizing SYNOPSYS PRIMEPOWER®, accurate power estimation is achieved

by employing an activity file that contains toggle rates for all cells and nets. It is more

accurate than choosing arbitrarily a constant switching activity for all signals. Different

methods exist for estimating dynamic power, with the most accurate being the time-

based mode at the gate netlist level. This mode calculates power per cycle, accounting

for all signal states during this cycle. However, this approach is time-intensive. An

alternative mode is the average mode, which takes 10 to 20 times less time than the

time-based mode. It computes the average power consumption over the entire simula-

tion by considering the total toggling count of each signal. A limitation is that certain

signal toggles might not result in power consumption, as demonstrated by scenarios

like RAM operations where certain pins’(D and S) toggling does not lead to power

use when chip select or clock enable pins are inactive. Comparing both modes in our

simulation environment, we achieved under 2% on power estimation difference, de-

spite significant differences in simulation time. Consequently, we opted for the average

mode. More accurate modes are available, necessitating the generation of (Standard

Delay Format) SDF files containing extensive delay data (paths, interconnects, etc.).

However, as our study does not involve Placing and Routing the circuit, these modes lie

beyond its scope.

63

5.4. BUILDING THE SIMULATION DATA SET

5.4.2 Architectures and NNs to Build the Data set

A total of 214 (WPAR,MPAR) configurations were meticulously selected to con-

stitute the simulation data set. These configurations are detailed in Figure 5.1. They

offer a comprehensive insight into how the structural parameters impact various KPIs.

When considering which configurations to include, we had different approaches avail-

able. Initially, a straightforward strategy was considered, involving the uniform sam-

pling of KPIs throughout the entire range where WPAR and MPAR vary from 2 to

32. However, this method assumes a linear behavior of circuits, which is not accurate

given the known optimizations involving powers of two or exceptions for prime num-

bers. Moreover, such an approach would involve performing resource-intensive synthe-

sis and simulation processes, especially for high WPAR and MPAR values, which

might be unnecessary. Instead, we adopted a more gradual strategy, incrementally sim-

ulating configurations and observing their impact on KPIs. This approach allowed us to

capture nuanced behaviors while also incorporating specific points like power-of-two

and prime-number configurations. This progressive methodology led to the systematic

construction of the final data set comprising 214 configurations. It will be used for

interpolation and extrapolation to cover all the possible Gemini configurations.

WPAR MPAR Number of architectures
2 7→ 32 4 33

4 2 7→ 32 33
2 7→ 24 5 25

5 2 7→ 24 25
2 7→ 20 6 21

6 2 7→ 20 21
2 7→ 16 8 17

8 2 7→ 16 17
2 7→ 8 16 9

8 2 7→ 16 9
16 16 1
32 16 1
16 32 1
32 32 1

Table 5.1 Gemini’s configurations considered building the data set

For gate-level simulations, we choose wisely which NN must be run to extrapolate

the result of simulations into other NNs. For that, we run simulations on single-layer

NNs varying all the possible parameters to cover all cases. The performance of any

multi-layer NN is then obtained from the information of single-layer ones. The chosen

NNs were run for the 214 architectures.

For fully connected layers, the number of input neurons Nin and output neurons

64

5.5. KEY PERFORMANCE INDICATORS ESTIMATION

Nout are the parameters characterizing the layer. Table 5.2 presents the various NNs

under consideration for this specific layer type, along with the objective behind their

selection.

Nin Nout Objective
25 7→ 500 1 Observe the impact of Nin, Nout is fixed.

11 NNs tested.
50 1, 4, 8, 16, 32 Observe the impact of Nout, Nin is fixed.

5 NNs tested.

Table 5.2 Simulated fully connected layers

For convolutions, we vary the number of filters, filter sizes, 2D ifmap sizes, strides,

and padding. Table 5.3 summarizes all the NN simulated and their objective. For depth-

wise and pooling layers, different ifmap sizes, strides and, padding are chosen. Their

values coincide with those chosen for convolutions for the simulation data set. In total,

94 single-layer NNs are taken into account to build the data set: 16 for fully connected

layers, 56 for convolutions, 11 for depthwise layers, and 11 for pooling layers. This

selection suffices for depthwise and pooling layers since certain observations are analo-

gous to convolutions, for which the scheduling approach is highly similar. Overall, the

number of tests for each parameter was not predetermined. Instead, it was progressively

increased to capture various behaviors. As a consequence, the parameters range was not

consistently linear.

Finally, the NNs usually used by Gemini (in Subsection 2.3.2) were used to illustrate

the accuracy of the estimations. However, they were not taken in account to build the

model.

To offer a time estimate for assembling all this data, on average, the combined dura-

tion of HLS and logic synthesis is approximately two hours, and NN execution within

an optimized simulation environment takes around 3 minutes. Data collection is a one-

time process, necessitating repetition solely if the environment undergoes changes. For

instance, opting for a different technology or quantization would mandate re-performing

this step.

5.5 Key Performance Indicators Estimation

The objective of this section is to estimate the performances of the accelerator accord-

ing to its configurations for each NN. Those estimations are done thanks to an analytical

model based on simulations discussed in Section 5.4. This model gives latency (Sub-

section 5.5.1), area (Subsection 5.5.2), leakage (Subsection 5.5.2) and, dynamic power

(Subsection 5.5.3).

65

5.5. KEY PERFORMANCE INDICATORS ESTIMATION

M W.H S.R.C stride padding Objective
X X X X valid/same Observe the padding

impact on 6 random
convolutions.

24 1024 9 s× s, s ∈ {1, 2, 3} same Observe the stride im-
pact. 3 tests

7, 14, 24 1024 9 1× 1 same Observe the impact of
filters number. 3 tests

24 80 7→ 4096 9 1× 1 same Observe the impact of
large ifmaps size. 18
tests

24 16 7→ 80 9 1× 1 same Observe the impact of
small ifmaps size. 10
tests

24 1024 9256 1× 1 same Observe the impact of
filters size. 16 tests

Table 5.3 Simulated convolution layers

5.5.1 Latency Modeling

Latency in cycles is obtained at the C++ description level. As the design is fully

pipelined, the difference between the number of cycles given by the C++ execution

and the one obtained after gates simulations corresponds only to the ramp-up of the

pipeline. This was observed for several NNs. As the NN’s layers are processed serially

and separately, the latency of the neural network execution corresponds to the sum of

the layers’ latencies added to a constant overhead independent of the NN (it includes

the pipeline ramp-up). For this work, only the meaningful terms will be detailed. For

example, the bias cycles will be neglected.

The following paragraphs detail the latency modeling of each layer type and the latency

behavior of a NN of multiple layers.

5.5.1.1 Convolution Latency

The execution of the convolution is fully predictive. It can be computed based on the

output stationary paradigm where WPAR (among 2D ofmap pixels) pixels of MPAR

filters (among M filters) are processed simultaneously. The number of 2D ofmap pixels

calculated corresponds to the size of the 2D ifmap excluding the vertical padding padv.

This is a consequence of the execution duration being unaffected by the stride and the

horizontal padding usage. Only the vertical padding is impacting the number of pixels

calculated. So the number of 2D ofmap image pixels is W (H − (R − 1)padv), with,

W and H the width and height of the ifmap and R the height of the filter. Thus, the

66

5.5. KEY PERFORMANCE INDICATORS ESTIMATION

number of cycles Ncycconv needed to compute a convolution is:

Ncycconv =

⌈
W (H − (R− 1)padv)

WPAR

⌉⌈
M

MPAR

⌉
×Kc (5.1)

where Kc is the number of cycles required for one-pixel computation. As stated in

Subsection 4.2.1, 3 stages are pipelined for the computation of one pixel; the latency of

the full system is then approximately the latency of the slowest stage. The slowest one

is the output computation stage of the PEs array. Every cycle, one filter weight is read,

so the number of cycles needed to compute one pixel is Kc = S.R.C where S, R, and

C are respectively the filter width, height and, channels. The latency of maxpool and

depthwise layers are derived from the same formula.

5.5.1.2 Fully connected Latency

Concerning fully connected layers, Nout output neurons are processed simultaneously

by N processors. It takes Nin cycles to process them; Nin is the number of input

neurons. So the latency Ncycfc of a fully connected is:

Ncycfc =

⌈
Nout

N

⌉
Nin

5.5.1.3 Estimator Validation

Combining the last equations, the general shape of the latency Lat of a NN of L +K

layers follows Equation.5.2:

Lat =
L∑
l=1

(⌈ αl

MPAR

⌉
×
⌈

βl

WPAR

⌉
γl

)
+

K∑
l=1

⌈
δl
N

⌉
ϵl (5.2)

with L the number of convolution layers, K the number of fully connected layers and

αl, βl, γl, δl, ϵl are constants depending on the layer l type.

We deduce from Equation 5.2 that the latency is a decreasing curve with N .

Given the predictive nature of the execution, there are only few clock cycles differ-

ence (that can be calibrated) between predictions and simulations across all conceiv-

able layer types and their associated parameters. Consequently, this characteristic ex-

tends to multi-layer NNs as well. We illustrate this result using the VGG-like network

for MPAR = 8 shown in Figure 5.2. This choice is made for the sake of clarity in

the curves, even though the observation remains consistent when varying MPAR and

WPAR. The estimation and simulation curves are nearly indistinguishable.

67

5.5. KEY PERFORMANCE INDICATORS ESTIMATION

Estimated latency
Simulated latency

Fig. 5.2 VGG-like estimated and simulated latencies for MPAR = 8

5.5.2 Area and Leakage Modeling

In this paragraph, we will discuss the area and leakage model for RAMs and NPU as

well as the calibration of the model by the identification of constants.

5.5.2.1 RAM Modules Area and Leakage

RAM modules leakage and area are dependent on the memory capacity chosen (total

number of KBs). Even if the organization of RAMs (width × depth) changes with

configurations, the difference of leakage and area is only impacted by RAMs technology

variation. Then RAM modules area and leakage will be considered as constants and

only the NPU will be considered. A simple model of area and power is computed by

multiplying the capacity K by a constant C determined by linear regression on several

examples of RAM areas and power.

5.5.2.2 NPUs’ Area and Leakage Modeling

5.5.2.2.1 NPU main operators’ complexities Estimating the NPU power and area

knowing only (WPAR,MPAR) is challenging. The RTL is obtained by HLS, so the

tool can adapt the number and types of operators and their scheduling to optimize the

synthesis performance for each configuration; HLS can then generate different netlists

for two close but different configurations.

68

5.5. KEY PERFORMANCE INDICATORS ESTIMATION

It was decided to model the leakage and area with a linear combination of the expected

main operators’ complexities and then identify the constants thanks to a linear regres-

sion (which are different for area and leakage). These constants (c0, c1, c2, and c3) are

all positive values that represent the consumption of fundamental operators. They are

set positives to prevent negatives values for power and area. The compound operators

taken into account are:

• Operators that do not depend on the configuration: the term c0 corresponds to all

the constant operators. As a matter of example, there are all the registers and logic

units of finite state machines.

• PEs array input registers (fmaps and weights registers, accumulators) and arith-

metic logic units (MACs): all these components scale with N . They will then be

modeled with c1 ×N .

• Mixers: there are 3 mixers in the circuit (ifmap, weight and storing stage mixers)

ensuring that the data is well sorted at the input and output of PEs array and RAMs.

These mixers are mapped into shifters implemented with multiplexers that have a

complexity of N⌈log2K⌉ with N is the total number of data sorted and K is

the number of possible shifts for each data. Mixers are then modeled by: c2 ×
N⌈log2WPAR⌉.

Their power and area cannot be neglected, especially for a large N .

• Storing stage operators: they eliminate the non-useful pixels (due to stride or

padding). They scale with WPAR. They are modeled with c3 ×WPAR.

Area and leakage follow Equation.5.3 with different constants (G represent the area or

the leakage):

G = c0 + c1 ×N

+ c2 ×N⌈log2WPAR⌉+ c3 ×WPAR
(5.3)

This modeling method can be adapted to any output stationary accelerator as the

compound operators (except the storing stage that was optimized for Gemini) are con-

sistently necessary: MACs and registers for computation and storage are always syn-

thesized along with mixers used for data transfer from RAMs to PEs. Furthermore, the

FSM operators are also present in any design. If a user has a customized accelerator

with additional significant operators, their complexity can be included in Equation 5.3

by adding the complexity of the operators multiplied by a constant factor, which can

also be determined during regression.

5.5.2.2.2 Identification of constants and validation of area and leakage models
The constants c0, c1, c2 and c3 are identified using the data set of 214 configurations.

69

5.5. KEY PERFORMANCE INDICATORS ESTIMATION

They are determined quasi-instantly by linear regression optimizing the RMSE and

the correlation coefficient (R²). For linear regression, we experimented with various

tools and ultimately settled on the Python library Scikit-learn [102], which was slightly

customized to ensure that the constants are forced to be positive.

Table 5.4 Leakage and area estimation characteristics

NPU LEAKAGE ESTIMATION
NPU LEAKAGE SIMULATION

NPU AREA SIMULATION
NPU AREA ESTIMATION

Fig. 5.3 Area and leakage estimations and simulations for MPAR = 5

Figure 5.3 illustrates the modeling results for MPAR = 5 configurations (chosen

for clarity in the curves). It is observed that the significant increases in leakage and

area, such as those observed at 40 and 80 Ns, are accurately captured by the modeling:

they correspond to an increase of the value of ⌈log2WPAR⌉ (WPAR is a power of

2). Table 5.4 displays the modeling results of all the 214 Gemini configurations. The

low RMSE validates the accuracy of the estimation. The correlation coefficient R² close

to 1 confirms that our modeling with Equation.5.3 is meaningful. The same approach

can be applied in case of changes in the number of bits (fmapbits or weightsbits) or

70

5.5. KEY PERFORMANCE INDICATORS ESTIMATION

the process technology. Only the regression step needs to be rerun, using the updated

simulation data.

5.5.3 Dynamic Power Modeling

This paragraph describes how the dynamic power of the execution of a NN on Gemini

can be evaluated for each architecture configuration. The dynamic power is calculated

by summing the internal power (consumption due to the power dissipation of the ca-

pacitance inside a standard cell) and the switching one (dissipation of load capacitance)

[33].

First, the RAMs dynamic power will be discussed, then the NPU dynamic power for

each layer type will be detailed. The dynamic power of any NN can then be estimated

by combining the power consumption of its layers.

5.5.3.1 RAM Modules’ Dynamic Power

For all NNs tested, the dynamic power of both RAMs (FMAPS and WEIGHTS) re-

mains almost constant while sweeping (WPAR,MPAR). It is since for each RAM,

the number of KB is fixed for all configurations, thus the total amount of data read is

the same; only the RAM modules widths and depths are changing affecting the number

of read cycles and the size of the buffer to be read: for example, several reading cycles

are needed when the RAM modules width is small while only a few of them are needed

to read the same memory amount when the width is large.

Figure 5.4 shows the dynamic power of RAMs and NPU for the VGG-like NN for the

configurations MPAR = 8 (WPAR is swept from 2 to 16). For this example, the

SRAMs capacity is 1.3 MB. For our study, we neglect the impact of RAMs, as they do

not impact the configuration choice.

However, a simple model of RAMs dynamic power consumption can be given based

on their capacity K in KB. As done in Section 5.5.2.1 the dynamic power is obtained

multiplying K by a constant C ′ determined also by linear regression.

5.5.3.2 NPU Dynamic Power Modeling

For estimating the dynamic power consumption of the NPU, we employed the same

compound operators discussed in Section 5.5.2.2. However, in this case, the constants

ci in Equation 5.3 should be functions dependent on the specific NN parameters. It

is important to highlight that individual models for each NN were not constructed by

running separate regressions. Instead, a dynamic power single model, valid for all NNs,

was developed through regression performed only once. This model incorporates data

from all simulated NNs and is universally applicable across all NNs.

71

5.5. KEY PERFORMANCE INDICATORS ESTIMATION

NPU dynamic power
RAMs dynamic power

N

p
o
w

e
r

(µ
W

/M
H

z)

Fig. 5.4 Dynamic power of NPU and RAMs on VGG-like for MPAR = 8

The first statement is that the dynamic power of the NPU is globally increasing

with N for all the NNs tested (as shown in Figure.5.4). Furthermore, there are some

local optimums reached for some (WPAR,MPAR). They are the same for all NNs

tested, but they change according to the architecture. It means that they depend only on

the architecture and not on the NN. However, the power magnitude of those optimums

depends on the NN.

The identification of ci is different between convolutions and fully connected layers, as

they have different parameters.

For Convolutions, there are 5 different parameters characterizing the layer: ifmap

2D dimensions (W ×H), filter dimensions (S.R.C), number of filters (M), strides and,

padding.

Firstly, as was specified in Subsections 4.2.2 and 4.2.5, all the blocks except the stor-

ing stage work, in the same way, considering different strides or paddings. Then a low

dynamic power dependency on those parameters is expected. For the 214 configura-

tions of (WPAR,MPAR), we choose 6 different parameters NNs. We run them with

and without the padding to evaluate their impact on the dynamic power. The RMSE is

2.94 µW for an average of 157.2 µW.

Concerning the stride, we took one NN with a stride of 1x1, another with 2x2, and

another with 3x3. All the other parameters are the same. The RMSE is 0.72 µW for an

average of 155.6 µW.

72

5.5. KEY PERFORMANCE INDICATORS ESTIMATION

Due to this low RMSE (compared to the average), it was then decided to neglect the

impact of stride and padding on dynamic power consumption.

The number of filters M should also be neglected. Actually, the mixers and PEs

array are duplicated in MPAR; it means that the execution is the same considering

any number of filters between 1 and MPAR; additionally, when M > MPAR several

same executions are operated which is not affecting the average dynamic power. Con-

sidering 3 different NNs, fixing all the parameters except M (respectively set to 7, 14,

24), the RMSE is: 6.04 µW for an average of 152.5 µW. This parameter can also be

neglected because of this low RMSE value.

The dynamic power is increasing with the 2D ifmap pixels number (W ×H) before

reaching a saturation level where the dynamic power consumption is almost the same

for all ifmap 2D pixels number.

As it was specified before, WPAR 2D pixels from the 2D ofmap are processed si-

multaneously. Considering the padding to simplify calculations, the number Nexec of

executions to calculate all the 2D ofmap pixels is the following:

Nexec =

⌈
W ×H

WPAR

⌉
=

⌊
W ×H

WPAR

⌋
+ r + o. (5.4)

with r equal to 0 when W×H
WPAR

is an integer and 1 otherwise. o corresponds to the

few overhead cycles. They do not consume a significant amount of power. The term⌊
W×H
WPAR

⌋
corresponds to executions where 100% of WPAR are working and r to the

execution where only a few of them are used (because there are less than WPAR

pixels to calculate). Thus, when W ×H is large (large 2D ifmap), Nexec is quasi equal

to
⌊

W×H
WPAR

⌋
. As the dynamic power is measured with an average on all the convolution

processing, the dynamic power will then correspond to the power of the executions

where all WPAR are working (because it is repeated
⌊

W×H
WPAR

⌋
times). It explains the

power saturation when the ifmap is large enough (number of pixels higher than 80).

Figure 5.5 shows the dynamic power of the NPU sweeping the number of the ifmap

pixels for some configurations of (WPAR,MPAR), all the other NN parameters are

the same. The saturation comes with relatively small images for small WPARs; Nexec

becomes quasi equal to
⌊

W×H
WPAR

⌋
. For a large WPAR value, the saturation happens for

bigger images (higher W ×H).

For the power modeling, it was decided to consider the saturation by modeling the

power of all ifmaps having more than 80 pixels by the power of 1024 pixels ifmap.

Tested on 28 NNs with different ifmap sizes, the RMSE is 11.5 µW for an average of

134 µW. This assumption is relevant because the ifmaps used are usually in the range of

saturation (even for a large WPAR). For small images (below 80 2D pixels), we have

2 models corresponding to ifmaps with respectively 16 and 36 pixels. The maximum

73

5.5. KEY PERFORMANCE INDICATORS ESTIMATION

0 500 1000 1500 2000 2500 3000 3500
I fmap pixels

25

50

75

100

125

150

175

200

225
D

y
n
a
m

ic
 p

o
w

e
r

(µ
W

/M
H

z)
Dynamic power 16 NPE (8,2)

Dynamic power 32 NPE (8,4)

Dynamic power 64 NPE (8,8)

Dynamic power 96 NPE (8,12)

Dynamic power 128 NPE (8,16)

Fig. 5.5 Dynamic power of the NPU executing convolutions sweeping 2D ifmap pixels

RMSE is 10 µW.

Regarding the influence of filter dimensions, the dynamic power demonstrates a de-

scending trend as the filter size (S×R×C) increases. The major impact is on the general

slope. Figure 5.6 exhibits this statement on 3 NNs having the same parameters except

the filter size. The dynamic power of convolutions is decreasing with filter dimensions

because, as one weight is processed each cycle, the larger the filter dimensions, the

higher the number of accumulation cycles required before the 5 scaling factors cycles.

Thus, on average, the 5 cycles of scaling (see Subsections 4.2.2 and 4.2.5) do not have

an impact on the overall power of big filters; on the opposite, for small filters, the 5 cy-

cles have more impact because there are fewer accumulation cycles. This interpretation

is confirmed observing the power consumption of the PEs array: Figure 5.7 depicts the

dynamic power of the PEs array block as a function of the number of PEs executing

a convolution, with varying filter sizes. The observation aligns with the NPU’s behav-

ior. The larger the filter window, the lower the average dynamic power consumption.

Hence, this block is responsible for the observed behavior. To model this behavior, we

choose to make the function multiplying N dependent on the filter dimensions, as it is

the function affecting the slope. We estimated it for different filter sizes, and we gen-

eralize it with a regression (a power function was chosen as it gives the lowest RMSE

74

5.5. KEY PERFORMANCE INDICATORS ESTIMATION

T
P
U

 d
y
n
a
m

ic
 p

o
w

e
r

(µ
W

/M
H

z)

N

TPU dynamic power for different filter dimensions for MPAR = 8

convolution with SRC = 16

convolution with SRC = 36
convolution with SRC = 64

Fig. 5.6 Dynamic power of the NPU executing convolutions with different filters sizes for
MPAR = 8

and highest correlation coefficient). The model explained below was tested on 16 NNs

with different filter sizes for the 214 configurations: the RMSE is 16 µW for an average

of 152 µW.

Finally, Equation.5.5 models the dynamic power of convolution layers Pc (as well

as maxpool and depthwise layers):

Pc = c0 + c1 × S.R.Cc2 ×N

+ c3 ×N⌈log2WPAR⌉+ c4 ×WPAR
(5.5)

Constants ci, i ∈ [0, 4] were determined by linear regression. The maximum error is the-

oretically lower than the sum of the errors of each approximation. The error generated

using Equation.5.3 is impacting all the estimations.

Fully connected layers are characterized by Nin and Nout. The parameter Nout

should not impact drastically the power consumption because as the architecture is

output stationary, each PE calculates one Nout;
⌈
Nout
N

⌉
executions are then needed to

compute all the Nout. The N processors work the same way, even if Nout are less than

N . 5 NNs are run with the same Nin varying Nout from 1 to 32. Only 5 µW of RMSE

was observed (the average dynamic consumption is 78 µW). The impact of Nout is then

75

5.5. KEY PERFORMANCE INDICATORS ESTIMATION

convolution SRC = 16
convolution SRC = 36
convolution SRC = 64

P
E
s

d
y
n

a
m

ic
 p

o
w

e
r

(µ
W

/M
H

z)

N

Fig. 5.7 Dynamic power of the Processing Elements executing convolutions with different
filters sizes for MPAR =8

neglected.

For our applications involving fully connected layers, the value of Nin ranges from

25 to 500. The dynamic power model was developed based on simulations that en-

compassed this entire Nin range. As Nin increases, the dynamic power also increases.

Nevertheless, this upward trend in power becomes less important as Nin reaches higher

numerical values. It is due to the increase of the number of accumulations that are

leading to higher nets activities. When Nin is already high, more accumulations are not

affecting drastically the activity, so the dynamic power does not increase excessively.

Figure 5.8 illustrates the dynamic power behavior of the NPU as a function of N when

MPAR = 8, with Nin ranging from 200 to 500. Notably, we discern that as Nin in-

creases, there is a corresponding increase in power (for the same N). Additionally, a

comparison between the curves for Nin values of 400 and 500 reveals a less substan-

tial difference compared to the contrast between 200 and 300, for instance. Given that

this behavior primarily affects the PEs array, the associated constant will be adjusted

accordingly. We opt for a logarithmic function (in terms of Nin) due to its gradual

76

5.5. KEY PERFORMANCE INDICATORS ESTIMATION

Fully connected layer:200 input neurons
Fully connected layer:300 input neurons
Fully connected layer:400 input neurons
Fully connected layer:500 input neurons

N
P

U
 d

y
n

a
m

ic
 p

o
w

e
r

(µ
W

/M
H

z)

N

Fig. 5.8 Dynamic Power of the NPU executing fully connected layers with different number of
input neurons for MPAR = 8

increase. Equation.5.6 models fully connected layers power consumption Pfc:

Pfc = c0 + (c1 + c2 × log(Nin))×N

+ c3 ×N⌈log(WPAR)⌉+ c4 ×WPAR
(5.6)

Constants ci, i ∈ [0, 4] were determined by regression. Tested on 9 fully connected

NNs with Nin varying from 25 to 500 for 214 configurations of (WPAR,MPAR),

the RMSE is 12.3 µW and the average is 110 µW.

The dynamic power of ℓ-layers NN is estimated by combining the dynamic power

of each layer. Once the dynamic power is estimated for each type of layer, the dynamic

power PdynNN(f) of a NN composed of ℓ layers at the frequency f is calculated thanks

to the average power of each layer weighted by its latency.

PdynNN(f) =

∑ℓ
l=1 Latl × Pdynl × f∑L

l=1 Latl
(5.7)

Latl is the latency of the layer l calculated with Equation.5.2 and Pdynl is the dynamic

power calculated with Equation.5.5 or Equation.5.6 according to the layer type.

Since the model has been validated (with low RMSE) across all layer types with all

possible parameters, and considering that the dynamic power of a multi-layer NN is

a combination of the individual layer powers, the model remains valid for the entire

77

5.6. CONFIGURATION CHOICE

NN as well. The model was subsequently tested on multiple NNs, yielding low errors.

For example, on the VGG-like network (Figure 2.12) on 214 (WPAR,MPAR), the

RMSE is 16 µW for an average of 150.4 µW (11.6% of error). While our power model

exhibits a higher RMSE when compared to alternative methods (such as [124]), it offers

the distinct advantage of simplicity. The model relies solely on two structural param-

eters and raw information from NN characteristics, accessible at a high-level design

abstraction. Despite the method’s slightly elevated RMSE, it remains sufficiently low

for effectively selecting the optimal configuration. Consequently, it continues to serve

as a valuable tool in practical scenarios.

The estimation error arises from underestimating the influence of structural parameters,

which likely affect operators with behaviors that are not consistently explainable (and

thus not incorporated into the model). For instance, the local minimum at 80 in Figure

5.3 was excluded from the model (resulting in estimation errors) due to a lack of com-

plete understanding (observed only for fixed MPAR at 8). This could potentially be

attributed to complex optimizations during High-Level Synthesis, which involve divid-

ing operators into multiple units to allocate portions for non-concurrent tasks.

Finally, the energy E can be computed combining the latency and power models P

(sum of dynamic and leakage power) as stated in Subsection 3.3.3 :

E = P (f)× Lat (5.8)

No estimation of error is required when approximating energy. The latency error is

nearly negligible, so the overall error in energy estimation aligns with that of power

modeling.

5.6 Configuration Choice

Some of the considered KPIs have antagonistic behaviors. By increasing N , the latency

decreases but the power and area increase. To find the best trade-offs when selecting the

(WPAR,MPAR), we use Pareto fronts to determine the optimal architectures. Figure

5.9 shows sweet spots for the VGG-like NN considering the latency and power. The area

is usually a specification, so only the points below a certain area could be considered.

For each point of the curve, there are no other points that simultaneously have lower

power and latency. The final choice between these (WPAR,MPAR) points is made

according to the application’s specifications.

Finally, while the Pareto plot helps select (WPAR,MPAR) for a specific technol-

ogy (CMOS C40), we believe that the evolution of KPIs with respect to structural pa-

rameters may remain consistent across different technologies. Therefore, the choice of

78

5.7. CONCLUSION

(4,2)

(4,4)

(4,8)

(8,22) (17,32)

0

2e5

4e5

6e5

8e5

10e5

12e5

14e5

16e5

0 200 400 600 800 1000

LA
TE

N
C

Y
 in

 c
yc

le
s

POWER (µW/MHz)

VGG-like Pareto front: latency vs power

pareto front

Less optimal (WPAR,MPAR)

 configurations

Fig. 5.9 VGG-like network sweet spots

(WPAR,MPAR) could potentially be applicable across various technologies. How-

ever, the KPIs predictions are valid only for the chosen technology, and the models need

adjustment when estimating for other technologies.

5.7 Conclusion

In this chapter, we presented a practical and explainable method to estimate three KPIs,

latency, area, and power consumption of Gemini, which is, as a reminder, an output

stationary near memory computing configurable accelerator for NN inference. Its ar-

chitecture can be easily configured thanks to two parameters, WPAR and MPAR.

This method is based on simulations obtained with industrial tools. In fact, KPIs esti-

mations are specific to any feed-forward NN specified as input of the estimator. They

are accurate for all the KPIs but the dynamic power. The error is small enough to allow

the user to determine the most accurate configuration for their application (NN).

This estimator is used at STMicroelectronics to evaluate Gemini’s performance in

the CMOS C40 technology. It is important to note that the company is transitioning

to other technologies for different projects. Unfortunately, this estimator cannot be

directly applied to estimate performance in these new technologies; it must be rebuilt

using the same approach. However, even without reconstruction, it remains valuable for

architectural decisions, as KPI behavior, relative to structural architectural parameters,

is expected to remain consistent across technologies.

The KPI estimation method presented in this chapter is adaptable for utilization

with any output stationary accelerator (except few optimizations done for Gemini). Fi-

79

5.7. CONCLUSION

nally, this method can be extended to applications based on the execution of several

NNs with different use rates. It also opens up possibilities for high-level optimizations

of accelerators, since we can derive closed-form performance formulas, especially the

pipeline-based optimizations presented in Chapters 6 and 7.

80

CHAPTER 6

Fixed Pipelined Neural Network Accelerators
As previously discussed, Neural Networks (NN) accelerators have been introduced with

optimized architectures aimed at enhancing the performance of NN executions. By in-

creasing parallelization through the addition of more Processing Elements (PEs), the

processing latency (i.e. the number of cycles required to process one image) of the

Neural Processing Unit (NPU) is improved until a point where further parallelization of

PEs does not yield more efficient processing.

However, when using a unique NPU, the images are usually processed one by one,

which limits the throughput (i.e. the number of images inferred per second). This lim-

itation becomes especially significant for stream applications, where throughput plays

a crucial role. In this chapter, unlike the traditional approach of enhancing paralleliza-

tion within the NPU for general Key Performance Indicators (KPI) optimization, our

approach involves utilizing multiple NPU instances with fewer NPUs. These instances

are organized into a pipeline to concurrently process multiple images. To clarify, this is

a pipeline involving multiple accelerators, not to be confused with an execution pipeline

within the same layer of a single accelerator, as presented in Subsection 4.2.2.

We focus on addressing the problem that we call the fixed hardware scenario: it

pertains to the user’s perspective where the NPUs and RAMs in the pipeline are pre-

determined and fixed (the NPUs number, order, and parallelization along with RAMs

capacities are fixed). The aim is then to determine, for each NN, the allocation of each

layer on NPUs ensuring that the NN is executed in an optimal manner. This problem is

known and referenced as a Simple Assembly Line Balancing Problem [18]. Neverthe-

less, it is important to note that it encompasses additional constraints and incorporates

more objectives than the initial description of the Simple Assembly Line Balancing

Problem.

The objective of this study is not to conduct a direct comparison with state-of-the-

art hardware acceleration solutions. Instead, our aim is to present a methodology that

can be applied to accelerators for more optimizing KPIs. In this regard, our investiga-

tion will be illustrated through the implementation of a pipeline scenario using Gemini

NPUs.

With this perspective in mind, our approach begins in Section 6.1 by examining the

limitations of utilizing a single NPU, which subsequently leads us to the concept of a

81

6.1. SINGLE NPU LIMITS

pipeline. We will then delve into the details of the pipeline’s structure in Section 6.2,

along with an explanation of the KPIs objective to optimize in Section 6.3, supported by

pertinent references from the literature on analogous challenges (in Section 6.5). Once

this foundation is laid, we formalize the problem in Section 6.4, and we detail strate-

gies for optimizing throughput and latency separately in Section 6.6, or simultaneously

in Section 6.7 for the fixed hardware scenario. This will encompass the presentation

of a linear modeling, polynomial solutions. Finally, empirical results on the Gemini

architecture for each case (separate and joint optimization) are performed in Section

6.8.

6.1 Single NPU Limits

In this chapter, we will present the limits of processing input feature maps ifmaps by a

NN on a single NPU.

Feed-forward NNs constrain the NN accelerators to process the layers sequentially.

The drawback is that they usually allocate the same number of PEs to all layers. These

accelerators typically utilize multiple parallelized PEs to reduce latency until a certain

stage where further increases are no longer as efficient. Initially, the PEs are useful for

all layers, but as the parallelization increases further, they become beneficial only for

large layers (as the smaller layers are not impacted by the increase in parallelization).

However, eventually, they reach a saturation point where the latency no longer decreases

when N is too large. A majority of PEs could be then underused as they are working

only when they process large layers. It has an even more significant impact on regular

accelerators like Gemini, where PEs are not deactivated when they are not actively

used for computing. As a result, these PEs continue to consume power unnecessarily,

regardless of the computing necessity.

In addition, enhancing parallelization by significantly increasing N presents challenges.

The need to increase N may demand additional resources that could be complex to

handle during the placement and routing step or might lead to an increase in the critical

path, making it impossible to achieve the targeted sign-off frequency.

Considering the Gemini latency model described by Equation 5.2, we deduce that

when MPAR is higher than αi, increasing MPAR will not result in lowering more

the latency. The conclusion is the same for WPAR > βi and NPE > δi. Figure 6.1

illustrates the latency of the NNs P-Net (Figure 2.14), VGG-like (Figure 2.12), and Mo-

bileNet (Figure 2.13) as a function of N with MPAR fixed at 8. It is evident that for

all three NNs, the latency experiences a significant reduction initially before gradually

slowing down and reaching saturation: the augmentation of WPAR impacts all layers

with βi greater than WPAR. Initially, when WPAR is increased, the latency is signif-

82

6.1. SINGLE NPU LIMITS

icantly reduced as it affects all layers. As the increase continues, several layers reach a

state of saturation, and only layers with large βi values are affected. Consequently, the

latency reduction becomes less important, benefiting only the larger layers (it is useless

for the layers already in saturation). The saturation points occur at different stages for

each NN. The observation is the same when fixing WPAR and varying MPAR.

In addition to latency, as the ifmaps are processed sequentially, this latency wall is

also impacting the throughput (inverse of latency) that also reaches a saturation point.

These observations question the PEs utilization: for a given NN, the number of PEs

is chosen according to all NN layers. With this strategy, some PEs are useless for certain

layers. Considering Gemini processing the VGG-like network, only 1 PE is necessary

for the last fully connected layer (as only one output neuron is calculated). Processing

the entire Network with large PEs number is beneficial for the other layers, but for this

one, all the PEs except one are not working. A strategy where PEs are assigned per

layer and not per NN is more optimal.

Fig. 6.1 Latency as function of PEs number N for three NNs

83

6.2. DESCRIPTION OF THE PIPELINE ENVIRONMENT

6.2 Description of the Pipeline Environment

In this section, we will explain the pipeline structure, which can be used with a wide

range of accelerators. Subsection 6.2 will give a brief overview of how NN accelerators

work, emphasizing the important requirements for our pipeline. Moving on to Subsec-

tion 6.2.2, we will focus on the NNs that will be run on the accelerator pipeline and

provide clear notation for the layers and the intermediate fmaps. Subsection 6.2.3 will

provide a detailed look at the pipeline’s architecture, including the NPUs and RAMs.

In addition, Subsection 6.2.4 will discuss the constraints for mapping the NN layers in

the pipeline system. To wrap up, Subsections 6.2.5 and 6.2.6 will cover the capacity of

the RAMs and the time it takes for the NPUs to execute, which are crucial details for

our study of this issue.

6.2.1 NPU Accelerator Working Principle Reminder

Evaluating the potential performances of using multiple accelerator instances becomes

a logical step after designing an instance (Chapter 4) and evaluating its proper KPIs

(Chapter 5). While this approach was initially developed with a primary focus on Gem-

ini, it is important to note that the applicability of accelerators to the pipeline extends

beyond Gemini. It can be effectively applied to various other accelerators featuring dis-

tinct architectures, as the ones published by Zhou et al. [135], Parashar et al. [100], Sze

et al. [119] and Du et al .[39]. The building block of the pipeline system can be any

Near Memory Computing accelerator. It consists of a NPU responsible for layer com-

putations. The NPU contains N parallelized PEs, and on-chip RAMs for storing NN

weights and fmaps as illustrated by Figure 6.2. The partitioning of RAMs into multiple

PEs Array

Weights RAM

NPU

Fig. 6.2 Accelerator general architecture

cuts or considering them as multi-bank instances does not affect the problem at hand.

The NPU reads and writes fmaps in the FMAPS RAM. The weights are read from the

84

6.2. DESCRIPTION OF THE PIPELINE ENVIRONMENT

WEIGHTS RAM. To streamline the study, we consider that the input fmaps and the

NN weights are preloaded into their corresponding RAMs. This means that any time

required for gradual writing of these data into the RAMs, such as through the use of a

DMA (Direct Memory Access), is not taken into consideration. Typically, this gradual

writing process is employed for large-sized NNs. If taken into account, it would impose

limitations on the throughput but would not affect the problem’s description, modeling,

or solution. Finally, it is assumed that the NPU process the NN layers sequentially.

6.2.2 Description of the NN and Intermediary Feature Maps

The fixed feed-forward NN to be processed is composed by a set of ℓ > 0 successive

layers L = [L0, Lℓ−1], as presented by Figure 6.3. The intermediary fmaps are denoted

by I = [I1, Iℓ−1]; for any j ∈ [1, ℓ − 1], Ij is the fmap of size sj (corresponding to the

number of pixels) produced by the layer Lj−1 and input of Lj .

L0 → L1 → L2 → L3 → L4

I1 I2 I3 I4

Fig. 6.3 A feed-forward NN of ℓ = 4 layers and the corresponding intermediary IFMAP

6.2.3 Description of the Pipeline Architecture

The pipeline is composed of n NPUs instances G = [G0, Gn−1] and n + 2 SRAMs

R ∪ {IFMAP, OFMAP} with R = [R0, Rn−1] linked following Figure 6.4. All these

components are integrated into a same chip. The two SRAMs IFMAP and OFMAP con-

tain respectively the successive input and output fmaps; the other SRAMs are dedicated

to intermediary fmaps. Each NPU Gi ∈ G contains Ni processing elements, while each

SRAM Ri ∈ R has a capacity denoted as Ki (in KB). Each SRAM Ri is used by Gi

for reading and by Gi+1 for both reading and writing operations. If Ri is a single-port

RAM, it is imperative that simultaneous access to the SRAM Ri from both NPUs Gi

and Gi+1 is not scheduled by the execution algorithm. However, if dual-port RAMs are

85

6.2. DESCRIPTION OF THE PIPELINE ENVIRONMENT

used, this condition is not necessary as dual-port RAMs allow for simultaneous access

from multiple sources. For example, the NPU G0 process the layer L0 producing the

intermediate fmap I1 (having a size of s1) stored in the RAM R0.

On the other hand, our study does not consider WEIGHTS RAMs since they do not

impact the optimization: indeed, the quantity of NN weights remains constant (using

the pipeline or not). For the pipeline system, they are distributed into the multiple

RAMs instead of being stored inside one WEIGHTS RAM: for instance, each NPU

communicates with a dedicated WEIGHTS RAM (Wi in Figure 6.4), which stores the

weights of the layers processed by that particular NPU.

D

WEIGHTS
RAM W₀

WEIGHTS
RAM W₁

WEIGHTS
RAM Wₙ_₁

NPU NPU NPU
G G G

NPU
 G₁

D D

NPU
 Gₙ_₁

NPU
 G₀

RAM R₀ RAM R₁ RAM Rₙ_₁

Fig. 6.4 Description of pipeline of n NPUs with their correspond RAMs

6.2.4 Layers Mapping on NPUs

As the NN layers are consecutive, the natural way to distribute them to G is using a

pipeline scheme. Let us consider π : [0, ℓ − 1] 7→ [0, n − 1] the function that maps the

layers to the NPUs that process them: π(j) = i means that the layer Lj is processed by

the NPU Gi. The allocation function π must fulfil the following conditions:

• The layers L0 and Lℓ−1 are processed respectively by G0 and Gn−1;

• Each NPU processes at least one layer;

• Each layer is processed by one NPU exactly;

• The mapping π is non-decreasing, i.e. if the NPU Gi processes the layer Lj , then

any subsequent layer Lj′ with j′ > j is assigned to an NPU Gi′ with i′ ≥ i.

This way, the ifmaps can be processed simultaneously: when the pipeline ramp-up is

completed, the n NPUs are processing at the same time n different fmaps. Each NPU

executes a set of NN layers for each fmap: for instance, as soon as NPU Gi completes

processing the allocated layers for image j, it can begin processing the same layers for

image j + 1, while NPU Gi+1 simultaneously processes the allocated layers for image

j.

86

6.2. DESCRIPTION OF THE PIPELINE ENVIRONMENT

IFMAPS OFMAPS

RAM R₀

RAM R₀

RAM R₀

RAM R₀

RAM R₁

RAM R₁

RAM R₁

RAM R₁

RAM R₂

RAM R₂

RAM R₂

RAM R₂

NPU G₀

NPU G₀

NPU G₀

NPU G₀

NPU G₁

NPU G₁

NPU G₁

NPU G₁

NPU G₂

NPU G₂

NPU G₂

NPU G₂

STEP 0

STEP 2

STEP 1

STEP 3

Fig. 6.5 Pipeline execution principle with 4 ifmaps

Figure 6.5 illustrates the operational principle for 3 NPUs processing 4 ifmaps (red,

blue, green and yellow). During step 0, the first ifmap (colored in red) is read and

processed by NPU G0. It executes the layers assigned to it and stores the resulting

ofmap in RAM R0. At this stage, only G0 is active. In step 1, after completing the

processing of the red ifmap, G0 proceeds to process the second ifmap (colored in blue).

Simultaneously, NPU G1 starts processing the red ifmap, while G2 remains idle. During

Step 2, NPU G1 completes processing the red ifmap and transitions to the blue one. At

the same time, NPU G2 begins processing the red ifmap, and G0 initiates processing

the next one (colored in green). In Step 3, the pipeline is fully engaged, with all three

NPUs operating concurrently, processing 3 ifmaps simultaneously. The initial three

steps represent the pipeline’s ramp-up phase. From Step 3 onward, three ifmaps are

processed simultaneously in a repeating pattern until all the ifmaps have been processed.

6.2.5 Intermediary SRAMs Capacity

The two SRAMs, namely IFMAP and OFMAP store respectively the ifmaps and

weights of the NN. Their capacity (measured in KB) will not be taken into account.

This is since their size is exclusively predetermined by the NN. It is entirely indepen-

dent of the mapping process or the architecture of the NPUs. However, it is crucial for

the intermediate memories Ri for (i ∈ [0, n − 1]), to have sufficient capacities to store

the intermediary feature maps effectively. According to Figures 6.4 and 6.5, if a layer

Lj−1 is mapped to a NPU Gi (it means that π(j − 1) = i), then Ij the output fmap of

87

6.2. DESCRIPTION OF THE PIPELINE ENVIRONMENT

the layer Lj−1 is stored by Ri. Therefore, we can establish the following Property:

Property 1. For any couple (i, j) ∈ [0, n − 1] × [1, ℓ − 1] and any layers mapping π,

the intermediary fmap Ij is stored by Ri if and only if π(j − 1) = i.

Thanks to this property, we can determine if a RAM has enough capacity to store

the intermediate fmaps. We distinguish two scenarios:

• The NPU Gi processes at least the layers Lj and Lj+1. It reads then the inter-

mediate feature map Ij from RAM Ri and subsequently writes the intermediate

feature map Ij+1 into the same RAM. In this situation, it is imperative to prevent

the unintended overwriting of Ij by Ij+1, as Ij is still required to complete the

computation of all Ij+1 pixels. To achieve this, the condition (sj + sj+1) ≤ Ki

must be satisfied.

• The NPU Gi is processing only the layer Lj (it means that π(j +1) = π(j) + 1 =

i + 1). Then, the RAM Ri exclusively holds Ij . It suffices to verify that only

(sj) ≤ Ki.

These considerations are succinctly summarized by Property 2.

Property 2. For allocations where π(j) = π(j + 1) = i, it is necessary to verify

(sj + sj+1) ≤ Ki. If, there exists a unique j ∈ [0, ℓ− 1] such that π(j) = i, it must be

ensured that (sj) ≤ Ki holds.

This Property can be adapted for a set of layers [Lg, Lh] ∈ [0, ℓ − 1]2, g < h,

processed by Gi, to determine an upper bound on the size of RAM Ri that should

accommodate the layers [Lg, Lh]. This upper bound is denoted as K̂i,[g,h].

Theorem 6.2.1. Let us consider a set of layers [Lg, Lh] ∈ [0, ℓ− 1]2, g < h, processed

by Gi. Then, K̂i,[g,h[= maxj∈[g,h](sj + sj+1)) is the minimum feasible size of the SRAM

Ri.

Proof. All the layers Lj for j ∈ [g, h[, g < h are executed by Gi, and their output

fmaps Ij are stored in Ri. Therefore, each Lj must satisfy Property 2. Consequently,

the maximum of (sj + sj+1) is the minimum required size for Ri.

6.2.6 Execution Time

We assume that the execution time (or latency on a single NPU) of a layer Lj by the

NPU Gi can be represented as pi,j = y(Lj, Ni) + c, where y is a monotone function

of Ni, and c is a constant value. The function y characterizes the execution of NN

on the accelerator, and it depends on the NPU architecture and operators scheduling:

naturally, regardless of the parallelization, increasing the parallelization level Ni leads

88

6.3. OBJECTIVE FUNCTIONS CONSIDERED (OR KPIS)

to a reduction in latency (or remains unchanged if no further parallelization is possible).

Thus, it is expected that y does not increase in all cases. The constant c corresponds

to the cycles required for initiation and execution that are independent of the specific

NN or the value of Ni. The execution time of a set of consecutive layers [Lg, Lh] for

0 ≤ g ≤ h ≤ ℓ− 1 by Gi is then expressed as:

pi,[g,h] =
h∑

j=g

y(Lj, Ni) + (h− g).c (6.1)

For any mapping π, we also note pi,π the total execution time of the successive layers

mapped to Gi.

6.3 Objective Functions Considered (or KPIs)

In the context of the fixed hardware scenario, there exists no flexibility in terms of

choosing the architecture of each NPU or their placement within the system. This sce-

nario is regarded as a user-centric challenge, where only KPIs that remain independent

of the hardware configuration can be considered in order to determine π. In Subsec-

tion 6.3.1, we provide an explanation of how the throughput of a pipeline system is

calculated and characterized in terms of the period. Subsequently, in Subsection 6.3.2,

the focus shifts to latency, highlighting that it may possess two distinct interpretations

contingent upon the specific use case and the objectives of the application.

6.3.1 Throughput and Period

In a pipeline system, n fmaps are processed simultaneously (when the pipeline is filled).

Actually, an NPU can start executing the layers assigned to it only when its inputs are

ready, otherwise, the NPU is stall waiting for the preceding NPU to finish its execution.

This way, the slowest NPU determines the throughput because it fixes the cycles that

other NPUs have to wait. The throughput T of a mapping π is then given by the

execution time of the slowest NPU, i.e., T (π) = mini∈[0,n−1]
1

pi,π
. The associated period

P is then defined as P (π) = 1
T

= maxi∈[0,n−1] pi,π and has to be minimized. In the

following, P ⋆ denotes a fixed upper bound of the period. It is expressed in clock cycles.

An important remark is that aiming to maximize the throughput results in accelerat-

ing the processing of the slowest NPU, which intuitively corresponds to balancing the

execution times across NPUs. Accelerating the slowest NPU means slowing down the

fastest ones and vice versa, which results in balancing time executions.

89

6.4. FORMAL DESCRIPTION OF THE PROBLEM

6.3.2 Latency

The latency (expressed in clock cycles number) corresponds to the total execution time

of the NN. Two different definitions Lat1 and Lat2, can be considered according to the

utilization:

Lat1: if the NN processes a flow (or stream) of fmaps, several successive executions

of the NN are launched and fmaps are processed simultaneously by the pipeline. The

execution time of the treatment for each NPU is fixed to the maximum period P (due to

other NPUs needing to wait for the slowest NPU for synchronization), resulting in a to-

tal latency of Lat1(π) = n.P . In this context, optimizing the latency Lat1 is equivalent

to optimize the throughput. An application example is a wake-up system that operates

continuously, such as face detection.

Lat2: if the NN processes particular fmaps that are not part of a continuous flow, we

can treat them as being processed sequentially (as if we were using only a single NPU).

In this case, we consider the latency Lat2 as the number of cycles taken from input to

output for each individual processing: Lat2(π) =
∑n−1

i=0 pi,π An application example is

a system that only needs to process certain images if they have already been selected

(through the wake-up system for example) such as face recognition.

Intuitively, when optimizing Lat2 (in scenarios where ifmaps are processed one by one),

an optimal approach for layer mapping is to utilize the fastest NPU for the maximum

feasible number of layers while adhering to the specified π constraints. This strategy

of grouping layers onto a single NPU may potentially conflict with the objective of

optimizing throughput (or Lat1), which involves balancing the load across all NPUs.

Consequently, optimizing throughput or Lat1 may present challenges when concur-

rently aiming to optimize Lat2.

Lastly, it is essential to emphasize that the strategy involving multiple NPUs is inher-

ently less advantageous when the goal is to optimize Lat2 compared to using a single

NPU with the combined PEs of all NPUs in the pipeline. This difference arises because

adding more NPUs introduces an additional overhead factor (c in Equation 6.1). Never-

theless, it is important to acknowledge that our analysis is conducted within the context

of a fixed system architecture, which may have been designed to target objectives be-

yond the sole optimization of Lat2.

6.4 Formal Description of the Problem

An instance of our fixed hardware problem is characterized by several fixed parameters:

the structure of a NN with a specific number of layers ℓ and the dimensions of interme-

diate fmaps (sj, j ∈ [0, ℓ− 1]), a predetermined pipeline architecture with fixed NPUs’

architectures (n and Ni, i ∈ [0, n − 1]) and RAMs’ capacities Ki, i ∈ [0, n − 1], and

90

6.5. RELATED WORK

an optimization objective denoted as φ. The order of NPUs is also predefined. This

objective can be selected from among the KPIs outlined in Section 6.3. The problem

consists then to compute a mapping π that minimizes φ.

The described pipeline approach is versatile and can be applied to any accelera-

tor that sequentially processes NN layers, regardless of the hardware architecture and

operator scheduling. With this consideration, we can optimize objectives.

6.5 Related Work

The fixed hardware problem, despite being centered on the organization of NN accel-

erators into a pipeline, is actually part of a broader issue related to task mapping on

computational machines (that could be accelerators or not). In this section, we will re-

fer to the computing machines as processors In this context, two distinct research areas

emerge: one that focuses on mapping a wide class of algorithms onto processors and

another that is particularly concerned with the mapping of NNs specifically.

The first research community deals with general-purpose algorithms, often using

less optimized mapping solutions compared to NN-specific approaches. In these cases,

the use of CPUs or GPUs is expected, as the applications are generally applicable and

not tied to a specific accelerator.

Conversely, the second community is more likely to develop mapping algorithms

that leverage the inherent structure of NNs. In such cases, the utilization of pipelines

across layers becomes a more prevalent approach. Here, NN accelerators are typically

deployed, as the applications are restricted to NNs.

In this section, we present the literature relevant to the topic of NN accelerators in

pipelines. Subsection 6.5.1 provides a brief overview of strategies for mapping general

algorithms, whether they are NNs or not, onto multiple processors. Following that,

Subsection 6.5.2 delves deeper into the literature, specifically focusing on mapping

NNs to processors, whether in a pipelined configuration or not. Finally, Subsection

6.5.3 concentrates on the classification of the problem as a research operational issue

known as the Simple Assembly Line Balancing Problem, and it presents its resolution

for optimizing KPIs equivalent to throughput (or Lat1).

6.5.1 Mapping General Algorithms onto Heterogeneous Machines

Research on optimizing algorithm execution speed (corresponding to throughput or la-

tency as defined in Sections 6.3.2 and 6.3.1) in heterogeneous computing environments

(comprising GPUs, CPUs, and accelerators) is a vast area of study. Two main categories

of mapping heuristics exist: those that assign one task at a time and those that map all

tasks simultaneously[8]:

91

6.5. RELATED WORK

Heuristics assigning one task at a time: in the first category, heuristics like Op-

portunistic Load Balancing, Minimum Execution Time, Minimum Completion Time,

or K-Percent Best [27] are characterized by low algorithmic complexity and short map-

ping times. However, they tend to yield suboptimal results. Researchers such as Li et al.

[80] and Zhou and Liu [136] represent algorithms as graphs, with or without precedence

constraints, and map them onto heterogeneous systems to minimize completion time.

To achieve this, they employ optimization algorithms like heterogeneity ratio-based

mapping algorithms, structure rank-based heuristic algorithms, and data partition algo-

rithms, resulting in optimal Integer Programming solutions (IP) [41]. Their approach

can be applied within the context of NN mapping, which is relevant to our scenario:

feed-forward NNs can be easily represented as graphs, where each layer corresponds

to a task. There are precedence constraints, as each layer Lj, j ∈ [0, ℓ − 1], must be

executed after the preceding layer. In this context, completion time (of the last layer)

corresponds to Lat2 due to the interdependence of each layer on its predecessor.

Heuristics mapping all tasks simultaneously: on the other hand, mapping heuris-

tics like Min-Min, MaxMin, Simulated Annealing, or Genetic Algorithms [27, 36] yield

significantly better solutions but tend to take longer to execute. For example, Alexan-

drescu et al. [7] employ genetic algorithms with two fitness objectives: makespan,

which corresponds to the total duration required to complete a set of tasks (equivalent to

latency Lat2 in our context), and load balance, which pertains to throughput optimiza-

tion (as it involves optimizing the slowest processor, contributing to overall throughput

optimization). The execution time of these algorithms depends on genetic algorithm

parameters, such as initial population size and the number of generations. However,

they are well-suited for obtaining acceptable solutions within a reasonable time-frame.

In this paragraph, we have demonstrated that general methods used for task mapping

on heterogeneous machines can be adapted for mapping NNs onto multiple accelerators.

In fact, heterogeneous systems that combine GPUs and CPUs serve a similar function

to our system comprising diverse accelerators with varying levels of parallelization and

computing capability. Nevertheless, these general methods seem to be less efficient

when contrasted with algorithms that take into account the inherent structure of NNs.

6.5.2 Mapping NNs onto Heterogeneous Machines

Several researchers have explored the mapping of NNs onto heterogeneous processors,

with strategies categorized as either parallelization of individual layers or layer pipelin-

ing:

The parallelization of individual layers involves dividing the computation of a sin-

gle layer among multiple processors. This approach relies on techniques to distribute

the matrix multiplications required for convolutions or fully connected layers across

92

6.5. RELATED WORK

different processing units. However, this method has certain drawbacks. Firstly, it ne-

cessitates communication between processors handling image boundaries. Secondly,

synchronization is required among processors processing pixels at different speeds.

Lastly, it entails duplicating some NN data, such as the weights, which are used by

all the processors.

For instance, Zhong et al. [134] parallelize NN execution across various processors,

including FPGAs, NEON SIMD engines, and dual-core ARM processors. They have

developed a scheduler that partitions different threads across the processors. Addition-

ally, Liu et al. [82] convert the computation of convolutional and fully connected layers

into large-scale matrix multiplications and pooling layers into row computations that

can be effectively parallelized across multicore machines. Their accelerator achieves

a 36.1% speedup compared to NVIDIA V100 GPUs for inferences. Finally, more ad-

vanced methods not only parallelize layer execution but also fine-tune the NN to better

suit their heterogeneous systems. Actually, Odema et al. [97] have developed MAG-

NAS. This framework relies on genetic algorithms to schedule operations on processors

and simultaneously fine-tunes the NN parameters to better align with their respective

processors.

The pipelining layer method shares similarities with the approach outlined in Sec-

tion 6.2.3. Following this execution strategy reduces runtime without introducing addi-

tional memory space requirements compared to a standard execution utilizing a single

processor. This is because there is no need to duplicate NN data, as the processors han-

dle distinct data for processing.

For instance, Kim et al. [69] introduce NeuroPipe, a technique that divides the NN

into groups of consecutive layers and pipelines their executions using various types of

processors. This approach accelerates NN inference, particularly enhancing through-

put. Their primary focus lies in optimizing energy efficiency: the acceleration either

enables processors to operate at lower voltage and frequency while achieving a targeted

throughput, or it can deliver faster inferences at the same energy consumption. Simi-

lar considerations in a different context are explored in Subsection 7.7.6. On a system

consisting of NVIDIA Jetson AGX Xavier with 64 tensor cores and an eight-core ARM

CPU, NeuroPipe demonstrates an average reduction of energy consumption by 11.4%

without sacrificing performance, or it can achieve 30.5% greater performance for the

same energy consumption. Scheduling is performed after a batch of tests on the differ-

ent processors, involving adjustments like moving layers from one processor to another,

although no specific optimization algorithm is applied to manage the scheduling. Mean-

while, Maleki et al. [85] develop a high-level heterogeneous multicore processing chip

scheme for efficient NN processing. Layer mapping onto the various cores is carried

out through an algorithm inspired by the branch and bound algorithm to optimize the

93

6.5. RELATED WORK

load balance across processors [84] (equivalent to optimize the throughput).

Lastly, Symons et al. [117] also group layers and execute them on multicore accel-

erators, essentially acting as heterogeneous machines. They have developed the Stream

scheduler (based mainly on genetic algorithms), which optimizes NN execution with a

goal of minimizing energy consumption, reducing latency, and/or minimizing memory

footprint for constrained edge devices, including both single and multicore architec-

tures.

Certain studies, such as Yang et al. [126], employ a combination of both techniques.

They first divide the NN into groups, which they refer to as stages, managed by dis-

tinct sets of processors. Within each stage, they further divide the calculations among

different processors, a strategy they term ”Parallel-pipeline execution.” Their specific

focus is on the Tiny Yolo algorithm, making them less reliant on general scheduling

methodologies for mapping other NNs.

6.5.3 Simple Assembly Line Balancing Problem

We observe that the fixed hardware problem represent specific variants of the Simple

Assembly Line Balancing Problem (SALBP), as defined by Boysen et al. [18]. The

SALBP has been extensively applied to describe industrial problems since the last cen-

tury [1, 44, 17, 21, 43]. The SALBP problem is characterized by the following inputs:

• The presence of multiple workstations, labeled as k = {1, ...,m}, which are typ-

ically arranged along a conveyor belt or a comparable material handling device.

Work-pieces or jobs move sequentially through these workstations until they reach

the end of the production line. In our specific context, based on the definitions pro-

vided in Section 6.2.3, the workstations align with the n NPUs, while the conveyor

belt facilitating communication between jobs corresponds to the RAMs. Lastly,

the work-pieces correspond to the ifmaps that need to be processed.

• At each workstation, a specific set of operations is carried out on the work-piece,

and the duration between two entries of a work-piece at a station is referred to as

the cycle time. The fundamental objective of the SALBP is to efficiently allocate

the assembly work across all stations, guided by certain optimization criteria. In

the context of our challenge, the cycle time aligns with the execution time pi,π of

the slowest NPU. The objectives we aim to optimize correspond to those described

in Section 6.3.

• The work required to assemble a work-piece is subdivided into elementary op-

erations referred to as tasks, denoted by the set V = {1, ..., n}. Each task is

associated with a processing time, designated as tj . In the context of NN process-

ing in a pipeline, these elementary tasks correspond to NN layers (a layer cannot

94

6.5. RELATED WORK

be shared by two NPUs as explained in Subsection 6.2.4). However, the task time

tj in our specific case varies depending on the NPU responsible for processing the

task. It is equal to pi,j for a layer Lj processed on the NPU Gi. The SALBP is not

describing this feature.

• Tasks are subject to precedence constraints, indicating that they must be executed

in a particular sequence due to technological or organizational prerequisites. In the

context of feed-forward NNs , these constraints align with the inherent order stip-

ulating that a layer Lj, j ∈ [1, ℓ− 1], is processed only if Lj−1 has been processed

in advance.

The set Sk of tasks assigned to a station k constitutes its station load or work content,

the cumulated task time t(Sk) =
∑n−1

j∈Sk
tj is called station time. It corresponds to the

execution time of a machine: pi,[g,h] for an NPU Gi processing the layers [Lg, Lh].

A feasible Line Balance must respect the following constraint: all stations have

the same cycle time (paced assembly line) c, allowing all stations to start and pass

workpieces at the same rate. It means that all stations are synchronized on the slowest

one that has a cycle time equal to c. However, if a workstation is completed in less than

c, it has an unproductive idle time.

Naturally, the pipeline problem that we deal with add more constraints than the one

described in the SALBP, as the ones highlighted in Subection 6.6.1. The SALBP is

categorized in different types according to the objective:

• SALBP-1: it minimizes the sum of idle times. The number of stations is not fixed.

It involves maximizing the throughput as it balances the loads.

• SALBP-2: it also minimizes the sum of idle times for a fixed number of stations.

• SALBP-E: the number of stations and the cycle time remain variable and are not

fixed. The quality of balance is determined based on the ”line efficiency,” which

is calculated as: E = tsum
m×c

, where tsum represents the total operating time of a

station (corresponding to Lat2 in our scenario), and m and c denote the number of

workstations and the cycle time, respectively.

• SALBP-F consists in finding a feasible balance for a given number of stations and

a given cycle time. It corresponds to the problem that we deal with (fixed hardware

problem) when optimizing the throughput.

Additional details and assumptions have been introduced to further refine the problem

description. This was initially undertaken by Baybars [15] and Scholl and Becker [108],

and subsequently expanded upon by Boysen et al. [18]. For instance, new classifications

such as ”fix” were introduced to account for scenarios where certain tasks must be

allocated to specific workstations, aligning with the first three constraints outlined in

Subsection 6.2.4. Additionally, the ”spec” classification may be added to specify that

95

6.6. OPTIMIZING THROUGHPUT AND LATENCY SEPARATELY

the assembly line possesses a particular structure, such as a pipeline in our context.

Consequently, the problem can be classified as SALBP − F, fix, spec.

As shown by Álvarez-Miranda and Pereira [10], assembly line balancing problems

are NP-hard, particularly the SALBP-1. However, Held et al. [57] showed that under

certain conditions, this problem can be exactly solved using dynamic programming.

These simplifying conditions encompass:

• Precedence graph: it must be serial, meaning each job (j) can only be executed

after another job (j′) is completed. Simultaneous operation of workstations on the

same unit are prohibited. This description is similar to the accelerator pipeline.

• Cycle time: it should be constant, which is equivalent to a condition where all

NPUs should operate in fewer than a certain number of cycles.

• Execution time and workstations: each job is performed once for each unit, and

the execution time is uniform across all workstations. Furthermore, each job can

be assigned to any workstation. It is important to note that in the fixed hardware

problem, only the first of these three conditions related to execution time is ad-

hered to.

These conditions streamline the problem, enabling a polynomial resolution, primarily

because of the serial graph structure, which facilitates the grouping of tasks on a same

work station.

Therefore, the prior classification does not totally adhere to the fixed hardware sce-

nario. The aforementioned dynamic program should be tailored to address this issue. It

must incorporate additional constraints specific to our problem, such as mapping con-

straints (in Subsection 6.2.4) and the capacity constraints of the RAMs detailed in Sub-

section 6.2.5 that limit the flexibility of job-to-workstation assignments. Moreover, the

classification and resolution methods do not take into account variable task execution

times influenced by the executing NPU, which depends on its parallelization. In terms

of objectives, we must also seek solutions that could optimize latency (Lat2), an aspect

that cannot be achieved through pipeline balancing. The co-optimization of throughput

and Lat2 requires also a refinement of the dynamic algorithm to find optimal solutions.

6.6 Optimizing Throughput and Latency Separately

In this section, our objective is to optimize the KPIs of throughput and latency, as de-

scribed in Section 6.3, separately. We will present two distinct solutions: the first aims

to minimize throughput without taking latency Lat2 into consideration, while the sec-

ond focuses solely on minimizing latency Lat2, which pertains to the objective of pro-

cessing ifmaps one by one.

96

6.6. OPTIMIZING THROUGHPUT AND LATENCY SEPARATELY

To achieve these goals for both objectives, we will introduce linear models to ad-

dress the mentioned issues in Subsection 6.6.1. Consequently, solutions can be ob-

tained through the utilization of linear solvers. Furthermore, in Subsection 6.6.2, we

will present polynomial-time solutions employing dynamic programming.

6.6.1 Integer Linear Model with Variables in {0,1}

As previously mentioned, the pipelined architecture is fixed, with parameters n, Ni, and

ki for i ∈ [0, n−1] predefined. The objective is to optimize either latency or throughput.

In this subsection, we propose an integer linear model in {0, 1} for the fixed hardware

scenario to optimize one of the two KPIs. In Subsubsection 6.6.1.1, our focus will be on

minimizing latency Lat2, and we exclude the scenario where feature maps (fmaps) are

processed simultaneously. This specific case will be automatically addressed in Subsub-

section 6.6.1.2, which is dedicated to optimizing throughput (equivalent to optimizing

Lat1).

6.6.1.1 Model for Minimizing Lat2

In this subsection, we formulate an integer linear model with binary {0, 1} variables to

minimize Lat2. As discussed in Subsection 6.3.2, the ifmaps are processed sequentially

as if a single NPU were employed. We introduce the Boolean decision variables xi,j for

(i, j) ∈ [0, n − 1] × [0, ℓ − 1] defined as xi,j = 1 if and only if π(j) = i, i.e. the layer

Lj is performed by Gi. Otherwise, xi,j = 0. We observe that ∀j ∈ [0, ℓ − 1], π(j) =∑n−1
i=0 i.xi,j . The constraints of the problem may be expressed by linear equations. First,

there are the mapping constraints presented in 6.2.4:

• L0 (resp. Lℓ−1) is performed by G0 (resp. Lℓ−1), thus x0,0 = xn−1,ℓ−1 = 1;

• Each layer is processed by exactly one NPU, so ∀j ∈ [0, ℓ− 1],
∑n−1

i=0 xi,j = 1;

• π is non-decreasing, then ∀j ∈ [0, ℓ− 2], π(j) ≤ π(j + 1);

• Each NPU processes at least one layer, then ∀i ∈ [0, n− 1],
∑ℓ−1

j=0 xi,j > 0;

Then, there is the SRAMs constraint expressed by Property 2. It can be formulated

using the xi,j variables: ∀j ∈ [0, ℓ−2], sj +sj+1(1+π(j)−π(j+1)) ≤
∑n−1

i=0 Ki.xi,j .

Let us verify that this constraint is adhering to Property 2: in the scenario where both

consecutive layers Lj and Lj+1 are processed by Gi (π(j) = π(j+1) = i), the condition

sj + sj+1 ≤ Ki holds true. Moreover, when only Lj is processed by Gi (when π(j) =

π(j + 1)− 1), the condition sj ≤ Ki is also satisfied.

Using the Boolean variables, the latency Lat2 (that is the objective) can be then

expressed as: Lat2(π) =
∑n−1

i=0

∑ℓ−1
j=0 xi,jpi,j .

97

6.6. OPTIMIZING THROUGHPUT AND LATENCY SEPARATELY

6.6.1.2 Model for Optimizing the Throughput

In this subsubsection, we will optimize the throughput of the pipeline system processing

several ifmaps. It is done by minimizing the period P , as stated in 6.3.1. It will automat-

ically minimize the latency by considering that the ifmaps are processed simultaneously

(as highlighted in Subsubsection 6.3.2). The model described in Subsubsection 6.6.1

still remains valid. Only Lat2 objective is replaced by the throughput maximization

that should be expressed linearly using the variables defined in Subsubsection 6.6.1: as

seen in Subsubsection 6.3.1, maximizing the throughput is equivalent to minimize P ,

the objective is then to compute:

P = min(max
i∈[0,n−1]

(
ℓ−1∑
j=0

xi,jpi,j)). (6.2)

6.6.2 Dynamic Programs

Since the pipeline problem can be mathematically represented as a linear model, it

allows for the derivation of an optimal solution using solvers. Many of these solvers are

available as open source tools [45]. However, we have crafted a more efficient approach

for finding a mapping π optimizing throughput or latency. This method employs a

polynomial-time algorithm based on a dynamic programming scheme to allocate the

NN layers within the specified pipeline architecture. Subsubsection 6.6.2.1 details the

algorithm that seeks an optimal mapping to minimize Lat2, while Subsection 6.6.2.2

outlines the algorithm that identifies an optimal mapping to maximize throughput.

6.6.2.1 Dynamic Program Optimizing Lat2

The algorithm takes as input the parameters of the NN (including layer number, type

and parameters, image and filter dimensions) as well as the pipeline architecture details

(such as the number of NPUs, their order, the number of PEs per NPU, denoted as Ni

for i ∈ [0, n− 1], and the RAM sizes Ki for i ∈ [0, n− 1]). The output of the algorithm

is an allocation, specifying which NPU processes each NN layer, aiming to minimize

latency Lat2.

Let us consider Mi,j, i ∈ [0, n− 1], j ∈ [0, ℓ− 1] defined as the latency of the layers

[L0, Lj] on the NPUs [G0, Gi] assuming that Lj is processed by Gi. Two cases must be

considered to compute Mi,j:

• If Lj−1 is processed by Gi: Gi is then processing at least Lj and Lj−i. The execu-

tion time of the layers [L0, Lj] on Gi is γi,j = pi,j+M(i, j−1). If sj+sj+1 ≤ Ki,

this solution is considered (Property 2 is respected). Otherwise, γ = +∞ because

the RAM Ri cannot store both Ij−1 and Ij .

98

6.6. OPTIMIZING THROUGHPUT AND LATENCY SEPARATELY

• If Lj−1 is not processed by Gi, it is subsequently handled by Gi−1. The processing

time of the layers [L0, Lj] on Gi is δ = pi,j + M(i − 1, j − 1). If sj ≤ Ki this

solution is considered (Property 2). Otherwise, δ = +∞ (Ri is too small to hold

Ij).

M(i, j) limits are the following:

• If s0 > K0, M(0, 0) = +∞ (and there is no solution for π), otherwise, M(0, 0) =

p0,0; This is because the first layer is always processed by G0, as detailed in Sub-

section 6.2.4;

• For j ∈ [0, ℓ− 1], if sj + sj+1 ≤ R0, M(0, j) = +∞, otherwise, M(0, j) = γ0,j ;

• M(i, j) = +∞ if j = 0 and i ∈ [1, n − 1] or if l − j > i > j. This final

condition pertains to situations in which a mapping fails to satisfy the conditions

defined for π (as described in 6.2.4). If this condition is not adhered to, it may lead

to scenarios in which an NPU processes zero layers or violating the constraint of

non-decreasing layer allocation.

M(i, j) is computed for i ∈ [1, n− 1], j ∈ [1, ℓ− 1] with M(i, j) = min(δi,j, γi,j).

The minimum latency is given by M(n−1, ℓ−1) and layers allocations is obtained

backtracking the choices done for M(i, j) between δi,j and γi,j .

Table 6.1 Table representing dynamic program states optimizing latency without considering
RAMs constraints

L0 L1 L2 L3 L4 L5

G0 4815 5914 14847 35748 +∞ +∞
G1 +∞ 5373 9937 20397 20936 +∞
G2 +∞ +∞ 14306 30838 21432 21673

Table 6.2 Table representing dynamic program states optimizing latency considering RAMs
constraints

L0 L1 L2 L3 L4 L5

G0 4815 5914 14847 35748 +∞ +∞
G1 +∞ +∞ +∞ +∞ 36287 +∞
G2 +∞ +∞ +∞ +∞ +∞ 37024

Tables 6.1 and 6.2 represent the states of a system with 3 Gemini NPUs, each

equipped with {4, 8, 4} PEs, while processing the PNet NN. In this context, ℓ is set to 6.

In Table 6.1, each RAM has the capacity to store the entire NN, whereas in Table 6.2,

the RAMs have more constrained sizes, specifically configured as {16500, 2750, 10000}
KBs. In Table 6.1, cells marked as M(i, j) = +∞ correspond to impossible allocations

99

6.6. OPTIMIZING THROUGHPUT AND LATENCY SEPARATELY

due to mapping conditions. The calculation of each cell follows dynamic equations to

compute M(i, j). For instance, in Table 6.1, M(2, 5) is calculated by adding p2,5 to the

minimum value between γ(2, 5), that use M(2, 4), and δ(2, 5), that use M(1, 4). This

process is repeated until arriving at M(i, j) values that are known (limits). Once all

cells are computed, backtracking is employed to determine the mapping π. In general,

this corresponds to finding the shortest path from the bottom-right cell M(2, 5) to the

top-left cell M(0, 0), with movement options to the left (using the same NPU as before)

or diagonally left-down (using the NPU placed at the left following Figure 6.4). In Ta-

ble 6.1, multiple paths are possible. Starting at M(2, 4), we observe that L5 is processed

by G2 due to the first mapping constraint in Subsection 6.2.4. Moving to layer L4, we

note that M(1, 4) < M(2, 4), indicating that it is processed by G1. The same reasoning

is applied to L3, where M(1, 3) < M(0, 3), leading to processing on G1. This pattern

continues for L2 and L1, for which it is more efficient to utilize G1. Finally, L0 is pro-

cessed by G0 according to the mapping constraints. This sequence results in obtaining

the optimized mapping π⋆ for minimizing Lat2. Thus, Lat2(π⋆) = M(2, 5). The opti-

mal path that yields mapping π⋆ is depicted in green.

Table 6.2 operates similarly. However, the RAM constraints lead to the elimination

of several paths, ultimately resulting in only one feasible mapping, represented by the

green path.

Theorem 6.6.2. The complexity of this algorithm is linear, bound by O(n× ℓ).

Proof. It corresponds to the number of calculated states. The calculation of each cell is

done using Equation 6.1 that have a constant complexity.

In cases where there are no constraints on RAMs, assuming that all layers can fit

into any RAM Ri (where i ∈ [0, n − 1]), a heuristic approach can also be employed

using more intuitive algorithms. The idea behind this heuristic is to assign the ℓ −
n − 1 possible tasks dictated by π constraints to the fastest NPU and then allocate

the remaining tasks to the other NPUs. This can be accomplished with constant time

complexity O(1). However, it is important to note that this method does not yield

the optimal solution. Assigning layers to the fastest NPU fixes the scheduling of the

other NPUs independently of the layers and NPUs’ capabilities. If a critical, highly

computational layer is among the assigned tasks, it would have been more efficient to

place it on the fastest NPU. This heuristic approach is expected to produce the same

mapping as the green cells in Table 6.1. It may be useful primarily for significantly

high values of ℓ and/or n.

100

6.6. OPTIMIZING THROUGHPUT AND LATENCY SEPARATELY

6.6.2.2 Dynamic Program Maximizing the Throughput

The process of determining the allocation of NN layers that optimizes the throughput

when processing a NN on the pipeline architecture can be broken down into two key

steps. Firstly, we establish an allocation that guarantees the NN can operate on the

pipeline architecture within a specified upper bound of the period denoted as P ⋆ (the

period is defined in Subsection 6.3.1), measured in cycles: if all NPUs in the pipeline

process their assigned layers in less than P ⋆, the throughput will be then higher than

1/P ⋆. The second step consists in employing a binary search method [86] to identify

the smallest value of P ⋆ that fulfills the requirements.

In the initial step (which we refer to as ”step 1”), we employ a dynamic program-

ming approach, with the algorithm’s input parameters mirroring those outlined in Sec-

tion 6.6.2.1. Additionally, an extra parameter, the upper bound P ⋆, is introduced. The

algorithm’s output is an allocation that ensures the NN’s execution occurs within a time

frame of less than P ⋆. Let us consider M(i, j), i ∈ [0, n−1], j ∈ [0, ℓ−1] defined as the

minimal execution time of the NPU Gi assuming that Lj is processed by Gi and all the

NPUs Gi′ , i
′ ∈ [0, i] have a processing time pi′,π ≤ P ⋆. Two cases must be considered

to compute M(i, j):

• If Lj−1 is processed by Gi, the execution time of the layers [L0, Lj] on Gi is

γi,j = pi,j + M(i, j − 1). If γi,j ≤ P ⋆ (to respect the constraint that the NPU is

processing its assigned layers in less than P ⋆ cycles) and sj + sj+1 ≤ Ki (RAM

constraint characterized by Property 2), this solution is considered. Otherwise

γ = +∞.

• If Lj−1 is processed by Gi−1, the execution time of the layers [L0, Lj] on Gi is

δ = pi,j . If M(i − 1, j − 1) ̸= +∞ (period constraint) and sj ≤ Ki (Property

2) and pi,j < P ⋆ (period constraint for the layer Lj) this solution is considered.

Otherwise, δ = +∞.

M(i, j) has the following limits:

• M(0, 0) = p0,0; if p0,0 ≤ P ⋆ (Period constraint) or s0 ≤ K0 (RAM constraint)

then M(0, 0) = +∞;

• For j ∈ [0, ℓ−1], if sj+sj+1 ≤ K0 (RAM constraint), M(0, j) = +∞, otherwise,

M(0, j) = γ0,j ;

• M(i, j) = +∞ if j = 0 and i ∈ [0, n− 1] or if l − j > i > j. This last condition

correspond to cases where a mapping does not fulfill π conditions (described in

Subsection 6.2.4)

M(i, j) is computed for i ∈ [1, n− 1], j ∈ [1, ℓ− 1] with M(i, j) = min(δi,j, γi,j).

The mapping π is obtained backtracking the decisions made to compute M(i, j).

101

6.6. OPTIMIZING THROUGHPUT AND LATENCY SEPARATELY

Table 6.3 represents the states of the algorithm that identifies an allocation π capable

of achieving a period shorter than P ⋆ = 14847 cycles for n = 3, on PNet (ℓ = 6). In

this example, Gemini NPUs are used with respectively {4, 8, 4} PEs. The RAMs are

equipped with a capacity sufficiently large to avoid imposing additional constraints on

the allocation process. Once all cells have been computed, with the selection between

γ and δ made at each step, the backtracking process can proceed as follows:

• L5 is assigned to G2 in accordance with Subsection 6.2.4. It specifies that the last

layer is processed by the last NPU.

• For L4, as p1,4 < 14847, it is allocated to G1.

• The same allocation process is followed for L3.

• In the case of L2, where p1,2 > 14847, it is assigned to G0.

• Finally, L0 must be executed by G0 as per the mapping constraints.

In Table 6.3, the green path represents the allocation that optimizes throughput, while

the latency Lat2 for each NPU is indicated in bold characters.

Table 6.3 Table representing dynamic program states optimizing the throughput without con-
sidering RAMs constraints

L0 L1 L2 L3 L4 L5

G0 4815 5914 14847 +∞ +∞ +∞
G1 +∞ 558 4564 10460 10999 +∞
G2 +∞ +∞ 8933 +∞ 1035 737

The throughput maximization is obtained by minimizing P ⋆. It is done performing a

binary search on P ⋆ between Pmin = mini∈[0,n−1]minj∈[0,ℓ−1] pi,j and Pmax = Pa with

Pa the execution time of the system using an arbitrary feasible allocation (respecting

π and RAM constraints). ”Step 1” is reiterated as many times as necessitated by the

binary search process. A pseudocode of this binary search (which we refer to as ”step

2”) is given in Listing 6.1:

Listing 6.1: Step2 pseudo code

step2_function(P_min,P_a)

if step1_function(P_min) has a solution:

return P_min

delta = (P_a - P_min)

if delta = 1:

return P_a

P_max = P_a

while delta>1:

102

6.7. LATENCY AND THROUGHPUT CO-OPTIMIZATION

P*= int(P_min+P_max)/2

if step1_function(P*) has a solution:

P_max= P*

else:

P_min = P*

delta = P_max-P_min

return P_max

In practice, the ”step1 function” corresponds to the mapping search for a given period,

and it is solved by the dynamic algorithm presented in the preceding paragraph. The

”Step2 function” begins by testing if a valid mapping is achievable for the Pmin con-

straint. If it is not feasible, we check whether the difference between Pa and Pmin is

exactly 1, which represents the desired precision for the optimal period. If this condition

is met, Pa is considered the optimal period. Otherwise, we employ the standard binary

search algorithm [86], with the stopping condition being that our precision is less than

1. At each step of this binary search, we assess if a valid mapping solution exists for a

specific period P ⋆.

The final step of the binary search yields the solution, providing both the optimal

period and, consequently, the optimal throughput. As a reminder, the mapping is deter-

mined by backtracking the decisions to identify the values of M(i, j) between γi,j and

δi,j in ”step1.”

Theorem 6.6.3. The complexity of the algorithm is bounded by O(n× ℓ(logPmax)).

Proof. The algorithm’s complexity for ”step 1” is bounded by O(n × ℓ), while ”step

2” is constrained by O((logPmax)). Since the calculations for the cells in ”step 1” and

the conditions evaluated during the binary search in ”step 2” are constants, the overall

complexity of the algorithm is the product of the complexities of these two steps.

As stated in Subsection 6.3.2, this throughput optimization also optimizes the la-

tency Lat1 that consider a simultaneous processing ifmaps (for a streaming application

for example).

6.7 Latency and Throughput Co-optimization

In Section 6.6, we demonstrated the potential for optimizing both the latency and

throughput of NN execution on a pipeline system by identifying optimal allocations

based on each criterion. This approach proves particularly valuable in applications

where the same pipeline is designed to support NNs prioritizing either throughput

(streams) or latency Lat2 (punctual fast inferences). Then, the same pipeline can be

103

6.7. LATENCY AND THROUGHPUT CO-OPTIMIZATION

adapted to target a specific KPI or another, with only the layer allocation being ad-

justed.

However, in Section 6.3, we intuited that the allocation solution that optimizes la-

tency may not necessarily be the same as the one that optimizes throughput. This intu-

ition is later confirmed in Section 6.8. In some scenarios, certain requirements may ne-

cessitate the optimization of both factors simultaneously. With this perspective in mind,

we have developed a method to enhance latency (Lat2) while simultaneously taking

into account a specific throughput requirement, characterized by an upper bound period

P ⋆, which the overall processing should not exceed. The optimization of throughput T

is achieved by subsequently reducing the upper bound period P ⋆ : P = 1/T ≤ P ⋆. It

is important to note that the latency Lat2 assumes that ifmaps are processed one by one.

If Lat1 is considered, the solution that optimizes throughput will also optimize Lat1.

In this section, we will begin by introducing a new linear model that is better suited

for co-optimizing Lat2 and P . Subsequently, we will propose a solution based on

dynamic programming to address this problem.

6.7.1 Integer Linear Model with Variables in {0, 1} Optimizing La-
tency Lat2 for a Specific Period

The models introduced in Section 6.6.1 are no longer applicable because, in this new

problem, throughput is as a constraint rather than an objective. For this model, we

consider Boolean decision variables xi,[g,h], defined as xi,[g,h] = 1 if and only if, for all

j ∈ [g, h], π(j) = i. In other words, it indicates that layers Lg to Lh are executed by

Gi. Otherwise, xi,[g,h] = 0. These variables are defined for i ∈ [0, n − 1] and 0 ≤ g ≤
h ≤ ℓ− 1. The constraints for the pipeline structure (as expressed in Subsection 6.2.4),

RAMs size (highlighted in Subsection 6.2.5), and the period upper bound constraint are

all formulated using linear equations:

• L0 (resp. Lℓ−1) is performed by G0 (resp. Lℓ−1), thus:∑ℓ−1
g=0 x0,[0,g] =

∑ℓ−1
h=0 xn−1,[h,ℓ−1] = 1;

• Each layer is processed by exactly one NPU, so:

∀j ∈ [0, ℓ− 1],
∑n−1

i=0

∑j
g=0

∑ℓ−1
h=j xi,[g,h] = 1;

• π is non-decreasing:

∀j ∈ [0, ℓ− 2],
∑n−1

i=0

∑j
g=0

∑ℓ−2
h=j i.xi,[g,h] ≤

∑n−1
i=0

∑j+1
g=1

∑ℓ−1
h=j+1 i.xi,[g,h]

• Each NPU processes at least one layer (it means that at least one subset of L is

processed by each NPU): ∀i ∈ [0, n− 1],
∑l−1

j=0

∑j
g=0

∑l−1
h=j xi,[g,h] > 0;

• Each NPU processes its layers in less than P ⋆ cycles:

∀i ∈ [0, n− 1],
∑ℓ−1

j=0

∑j
g=0

∑ℓ−1
h=j xi,[g,h]pi,[g,h] ≤ P ⋆

104

6.7. LATENCY AND THROUGHPUT CO-OPTIMIZATION

• The RAMs constraint originally expressed by Property 2 and particularly Property

1 in Subsection 6.2.5: ∀j ∈ [0, ℓ− 1]:

n−1∑
i=0

j∑
g=0

l−2∑
h=j+1

xi,[g,h] max
k∈[g,h]

.(sk + sk+1) + xi,[j,j].sj

≤
n−1∑
i=0

j∑
g=0

l−2∑
h=j+1

xi,[g,h].Ki + xi,[j,j]Ki.

(6.3)

Indeed, thanks to Theorem 6.2.1, we are aware that for g < h, maxj∈[g,h](sj+sj+1)

represents the minimum feasible size requirement for the RAM storing layers

[Lg, Lh], which must be validated. On the other hand, if j = g = h (corre-

sponding to a single layer processed by Gi), we solely need to confirm that RAM

Ri has a size Ki greater than sj .

The latency to be minimized corresponds to the total number of cycles needed for pro-

cessing one image, thus:

Lat2(π) =
∑n−1

i=0

∑ℓ−1
j=0

∑j
g=0

∑ℓ−1
h=j xi,[g,h]pi,[g,h]. This model exhibits certain similari-

ties with the one introduced by Boysen et al. [18] to represent the SABLP-1 problem (as

presented in Subsection 6.5.3). However, it incorporates novel constraints, particularly

those related to RAMs, and introduces the objective of optimizing Lat2, which cannot

be resolved through load balancing alone.

6.7.2 Dynamic Program Optimizing the Latency for a Given Through-
put

We developed a polynomial-time algorithm based on a dynamic programming scheme

that provides a solution for optimizing latency Lat2 under specific throughput con-

straints, defined by an upper bound on the period, denoted as P ⋆. To clarify, throughput

is determined by T = 1/P with the constraint P ≤ P ⋆. This algorithm is inspired

by [57] with more constraints and different objectives. The algorithm inputs are: the

period’s upper bound P ⋆, the NN layers L, their parameters, and NPUs G and RAMs R
parameters. The outputs are the latency Lat2, the throughput (T (π) = mini∈[0,n−1]

1
pi,π

)

and the layers allocations.

The main idea of our algorithm is to build a valued directed state graph H =

(V,E,w) defined as follows: the set of vertices is V = {s, p}∪V1 with V1 = {[i, g, h], i ∈
[0, n − 1], 0 ≤ g ≤ h ≤ ℓ − 1}. Each vertex u = [i, g, h] ∈ V1 models the successive

layers [Lg, Lh] mapped to the NPU Gi. It is important to note that certain layer sets

[Lg, Lh] may not possibly mapped to certain Gi if they do not satisfy the conditions

outlined in Sections 6.2.4 and 6.2.5. The set of arcs E = Es ∪ Ep ∪ E1 is defined as:

105

6.8. APPLICATIONS TO GEMINI

• E1 = {a = (u, u′) ∈ V 2
1 , u = [i, g, h] and u′ = [i + 1, h + 1,m] for pi,[g,h] ≤ P ⋆

and: if g = h, sg ≤ Ki or if g < h: K̂i,[g,h[≤ Ki}. It models that [g, h] can be

mapped to NPU Gi and [h+ 1,m] can be mapped Gi+1 with h+ 1 ≤ m ≤ ℓ− 1.

However, the vertex is built only if the processing of [Lg, Lh] on Gi satisfy the

period constraint P ⋆ and that the RAM Ri is large enough to store the intermediary

fmaps ;

• Es = {(s, u), u = [0, 0, h] ∈ V1} it models that the layers [L0, Lh] are mapped to

G0;

• Ep = {(u, p), u = [n − 1, g, ℓ − 1] ∈ V1} it models that the layers [Lg, Lℓ−1] are

mapped to Gn−1.

The valuation w : E 7→ N of the arcs is defined based on the objective φ, which

represents latency. It is formulated as follows:

• For each arc a = (u, p) ∈ Ep, w(a) = 0;

• Each arc a = (u, v) ∈ Ep ∪ E1 with u = [i, g, h] is valued based on the execution

time: a = pi,[g,h]

Figure 6.6 displays the graph for 3 NPUs and 5 layers. For example, the path s →
[0, 0, 0] → [1, 1, 3] → [2, 4, 4] → p is associated to the mapping π : [0, 4] → [0, 2] with

π(0) = 0, π(1) = π(2) = π(3) = 1 and π(4) = 2. As the arcs are valued based on the

assumption that all π and RAM properties remain valid, and that all NPUs complete

their execution within P cycles, the path with the minimum value from s to p represents

a feasible mapping that minimizes latency. Consequently, our algorithm constructs the

state graph H and identifies the shortest path within it using the Dijkstra algorithm [31].

Theorem 6.7.4. The time complexity of the algorithm belongs to O(ℓ4 log ℓ).

Proof. The number of vertices (resp. arcs) of the state graph belong to O(ℓ2) (resp.

O(ℓ4)). Moreover, the complexity of computing the value of each arc (u, u′) ∈ E1

is linear. The equivalent complexity is then bounded by to O(ℓ4 + ℓ × l2). Now, the

complexity of Dijsktra algorithm Cormen et al. [31] is bounded by O(ℓ4 log ℓ), thus the

theorem holds.

This algorithm is implemented thanks to the Python library Networkx [51]. It can

also be represented using states (without using graphs based approach), as shown in

Appendix B.

6.8 Applications to Gemini

In this section, we will apply the pipeline structure, as described in Section 6.2, to en-

hance the performance of the Gemini accelerator, whose design is detailed in Chapter 4.

106

6.8. APPLICATIONS TO GEMINI

Inputs OutputsL 0, L 1

L 0

L 2

L 2, L 3

L 3

L 1, L 2, L 3

L 1, L 2

L 1

L 2, L 3, L 4

L 3, L 4

L 4

P[ℓ2]

P[ℓ4]

P[ℓ0 ,ℓ1]

NPU
 G₀

NPU
G₁

NPU
 G₂

Fig. 6.6 Graph H = (V,E,w) for n = 3 and ℓ = 5

Our approach will begin by illustrating how multiple instances of Gemini can be inter-

connected to align with the fixed hardware scenario (as explained in Subsection 6.8.1).

Subsequently, we will employ the algorithms to optimize KPIs described in Subsec-

tion 6.3. Our optimization will start with the separate optimization of latency Lat2 and

throughput T (characterized by the period P), following the methodologies outlined in

Section 6.6. This will be elaborated upon in Subsection 6.8.2. Following this, we will

delve into the joint optimization of latency Lat2 and throughput in Subsection 6.8.3,

utilizing the methodology presented in Section 6.7.

6.8.1 Hardware Feasibility on Gemini and Execution Time

As a reminder, when utilizing a single Gemini NPU, a single FMAPS RAM instance

with a single port suffices for both reading and writing purposes (as explained in Section

4.2.3). This is due to the fact that NPU execution does not necessitate reading the fmaps

during every cycle. As highlighted in Section 4.2.5, during reading cycles, the NPU

fetches sufficient data to sustain multiple execution cycles, thereby avoiding the need

for continuous reading. The cycles during which fmaps are not read are utilized for

107

6.8. APPLICATIONS TO GEMINI

writing the ofmaps into the RAM.

In a pipelined system, the utilization of the same RAM for both reading and writing

purposes across two distinct NPUs does not present a concern, as the aforementioned

principle can still be applied: consider a NPU Gi (i ∈ [0, n − 1]). It reads its initial

fmaps from RAM Ri−1. During a certain number of cycles, the reading operation is

not performed by NPU Gi. During this time, NPU Gi−1 can utilize these cycles to

write the subsequent (feature maps) fmaps into Ri−1. As emphasized in Section 4.3.3,

a few exceptions exist where continuous reading can occur for multiple cycles. In such

scenario, the operation of NPUs Gi−1 and Gi is temporarily stopped, resulting in a stall

in reading. This pause is just long enough to facilitate the writing of the output fmap,

preventing any inadvertent overwriting.

However, the architecture of Gemini depends on the (WPAR,MPAR) configu-

ration (as outlined in Section 4.2.1), which introduces complexity when attempting to

share RAMs between two NPUs. The geometry of the RAMs is intrinsically tied to the

values of WPAR and MPAR. As a reminder, the WEIGHTS RAM is composed of

WPAR ×MPAR × weightbits bits and the fmaps RAMs are composed of WPAR

memory banks, each encompassing MPAR× fmapbits bits.

Given that the width of the FMAPS RAM instances is determined by the parameter

MPAR, it can be challenging to dynamically adjust the RAM width to meet the con-

straints of the two NPUs that share it. Therefore, our solution involves having the same

MPAR value for all NPUs. The only differing parameter for these NPUs is WPAR.

Fortunately, the WEIGHTS RAM does not pose any challenges in this context, as it is

not shared among the NPUs.

The parameter WPAR determines the the FMAPS RAM banks number. Implement-

ing distinct NPUs Gi with varying WPAR values demands adjustments, given that an

NPU Gi handles WPARi memory banks, whereas another NPU Gi+1 operates with

WPARi+1 memory banks.

To address this concern, a solution was implemented by introducing an extra logic block

denoted as L. This logic block facilitates the translation of addresses and memory banks

identifiers (IDs) requested by NPU Gi into addresses and banks IDs that correspond

physically to a RAM containing WPARi+1 banks. This unit takes the memory bank

ID and the address specified by NPU Gi as input and outputs the appropriate bank ID

and address within a system comprising WPARi+1 memory banks. The two equations

managed by the logic block L, responsible for this conversion, are as follows:

Banki+1 = (WPARi × ADDRi +BANKi) mod (WPARi+1) (6.4)

ADDRi+1 = ⌊WPARi × ADDRi +BANKi

WPARi+1

⌋ (6.5)

108

6.8. APPLICATIONS TO GEMINI

For a RAM Ri positioned between NPUs Gi−1 and Gi, this logic block L is inserted in

two feasible locations, always selecting the configuration with the larger WPAR:

• After the RAM Ri, if WPARi < WPARi−1, it means that this block will adapt

the fmaps read by WPARi.

• Before the RAM Ri, if WPARi > WPARi−1, it means that this block will adapt

the fmaps written by WPARi−1.

In every scenario, the adaptation of the address and bank IDs is consistently imple-

mented for the NPU with a smaller WPAR. Figure 6.7 provides a visual representation

of this system for the two scenarios mentioned earlier. As illustrated, the block labeled

as L is strategically positioned to adapt either the reading operation when WPARi <

WPARi−1 or the writing operation when the opposite condition holds.

NPU G

RAM R

... L

RAM R i

...L

CASE: WPAR > WPAR

CASE: WPAR < WPAR i

WPAR

WPARi

i-1

i-1

i

i

i-1

i-1

NPU G
i-1

NPU G
i

NPU G
i

Fig. 6.7 FMAPS RAMs geometry adaptation

To sum up, with the utilization of Gemini NPUs, implementing a pipeline is entirely

feasible. It necessitates the integration of a logical block to accommodate FMAPS

RAMs when NPUs possess different WPAR values. Nevertheless, it is essential that all

NPUs share the same MPAR. For illustrative purposes, in the forthcoming examples

involving Geminis, the number of PEs will exclusively refer to WPAR. Appendix C

gives an idea on how MPAR can be chosen. The WEIGHTS RAMs, which are not

shared among NPUs, do not require any adjustments.

As observed in Subsection 4.2.1, the PEs number can be adjusted before the logic

synthesis. The execution time pi,[g,h] on a Gemini NPU Gi of a set of consecutive lay-

ers [Lg, Lh] with (g, h) ∈ {[0, ℓ − 1]2g ≤ h} is given by Equation 5.2 in Subsection

5.5.1. Since MPAR is constant (as explained in the preceding paragraph) and Ni refers

109

6.8. APPLICATIONS TO GEMINI

exclusively to WPARi: pi,[g,h] =
∑h

j=g f(Ni) + (h− g).Cst. In this context, Cst rep-

resents a constant value that remains independent of the specific layer being processed.

The function f is dependent on the number of PEs and the parameters of the layer Lj .

These parameters include factors such as the layer type, fmap sizes, the number and

sizes of filters (for convolution-like layers), stride, padding, and other relevant charac-

teristics. As established in Subsection 5.5.1, for a fixed layer Lj , the function f(Ni) is

expressed as follows:

• For convolution-like layers: f(Ni) =
⌈
W (H−(R−1)padv)

Ni

⌉ ⌈
M

MPAR

⌉
×Kc;

• For fully connected layers: f(Ni) =
⌈

Nout
Ni×MPAR

⌉
Nin.

It is essential to emphasize that pi,[g,h] exhibits a decreasing (monotone) trend as Ni

increases, as elaborated upon in Subsection 6.2.6.

6.8.2 Results of Separate Throughput and Latency Optimization
on Gemini

In this subsection, Gemini NPUs are used within a pipeline configuration to optimize

either the latency Lat2 or the period P . To illustrate this, we use the PNet neural

network architecture depicted in Figure 2.14. The pipeline structure employed here is

the same as briefly described in Subsubsections 6.6.2.1 and 6.6.2.2. Specifically, the

pipeline consists of three NPUs, each equipped with a different number of processors,

namely {4, 8, 4} (notably, these values correspond to WPAR, as MPAR is fixed at

8). Additionally, the FMAPS RAMs have capacities of {16500, 2750, 10000} KBs,

respectively.

We start by implementing the algorithm outlined in Subsubsection 6.6.2.1 to deter-

mine the mapping that optimize latency Lat2 (ifmaps are processed sequentially), taking

into account or disregarding the RAM constraints. This results in two solutions: So-

lution S1 (ignoring RAM constraints) and Solution S2 (RAMs capacities considered).

Following that, we utilize the algorithm described in 6.6.2.2 to identify the optimal

layers’ allocation on the NPUs, maximizing throughput (and consequently improving

Lat1). We label this solution as S3 when disregarding RAM constraints and S4 other-

wise. The solutions are presented in Table 6.4. The results clearly show that S1 and

S2 produce different outcomes, highlighting that the same pipeline can be adjusted to

prioritize either Lat2 or P . However, when RAM constraints are considered, fewer

mapping options are available, and it is possible to find the same solution given the two

dynamic algorithms.

To put it simply, S1 can reduce latency Lat2 by around 40% (best vs. worst map-

ping) without RAM constraints and approximately 11% with RAM constraints (S2).

110

6.8. APPLICATIONS TO GEMINI

Solution Latency
(Lat2)
in cy-
cles

Period
(P) in
cycles

Mapping (π)

S1 21673 16121 π(0) = 0, π(1) = π(2) = π(3) = π(4) = 1, π(5) = 2
S2 27079 14847 π(0) = π(1) = π(2) = 0, π(3) = π(4) = 1, π(5) = 2
S3/S4 33151 22673 π(0) = π(1) = 0, π(2) = 1, π(3) = π(4) = π(5) = 2

Table 6.4 Solutions optimizing Lat2 and P separately

On the other hand, S3 can reduce the period by up to 59% across various allocations

without RAM constraints and up to 36% with RAM constraints (S4).

In summary, these algorithms work well for optimizing one KPI individually, mak-

ing them suitable for scenarios where the same pipeline is used for streaming applica-

tions (favoring throughput) or for single-image inferences where minimizing latency is

crucial. However, finding a balance between both criteria in scenarios requiring simul-

taneous optimization is challenging with these solutions.

6.8.3 Results of Co-optimized Latency and Throughput on Gemini

We initially applied the algorithms described in Subsection 6.7.2 and Appendix B

(which are essentially the same algorithm) to the PNet network. The same pipeline

architecture, as discussed in Subsections 6.8.2, 6.6.2.1, and 6.6.2.2, was used, utilizing

Gemini NPUs. Figure 6.8 illustrates the minimum latency Lat2 (with the assumption

of sequential ifmap processing) achieved by the pipeline for a given throughput, repre-

sented by the period P : Each point correspond to the minimum latency that we could

have for the given P . This figure reflects the solutions previously discussed in Subsec-

tion 6.8.2

Unfortunately, utilizing PNet on this configuration does not yield insightful conclusions.

The limited number of feasible allocations and the RAM constraints overly restrict the

available scenarios. Therefore, we conducted tests using MobileNet x0.25 (presented

in Figure 2.13) on an alternative configuration B, featuring larger and less restrictive

RAMs (though still eliminating certain allocations). This pipeline architecture com-

prises five Gemini NPUs, each with a corresponding number of PEs: {20, 7, 7, 7, 7}.

These NPUs are complemented by RAMs with capacities of {300000, 120000, 15000,
15000, 15000} KB respectively. The allocation options are limited by the smaller sizes

of the last three RAMs. First of all, we observe in Figure 6.9 that obviously the scenario

where RAMs sizes are considered has less solutions than the one ignoring them. It is

since some layers allocation are no more possible on the last three RAMs. In a broader

context, it is observed that throughput and latency exhibit contradictory characteristics.

Latency is optimal when there are no stringent constraints on throughput, whereas it

111

6.8. APPLICATIONS TO GEMINI

La
te

n
cy

 (
La

t
)

in
 c

y
cl

e
s

Min latency under a period constraint
 without RAM consideration

Min latency under a period constraint
 with RAM consideration

S1

S3 /S4

S2

Fig. 6.8 Latency as function of period constraint, considering PNet on architecture A

is minimized when strict criteria are imposed on throughput. The staircase-like shape

of the curve is a result of the presence of ceiling operators in the execution time equa-

tion of Gemini (Equation 5.2). Table 6.5 presents the three optimal solutions depicted

in Figure 6.9. The solution S’2 achieves the best throughput by allocating layers in a

manner that balances the execution time on each NPU. On the other hand, the solution

S’1 achieves the best latency (Lat2) by maximizing the number of layers on the most

powerful NPU (the first one) and minimizing the layers on the less powerful one (as ob-

served in other examples). These two strategies are contradictory, thus explaining the

antagonistic relationship between latency and throughput. The solution S’3 is more dif-

ficult to interpret because of RAMs constraints however the algorithm seems to balance

the execution times also when the allocations are possible.

Table 6.5 Optimal solutions for throughput and latency for RAMs A scenario

NPU 0 NPU 1 NPU 2 NPU 3 NPU 4

S’1 L allocation 0 → 22 23 24 25 26

S’1 latencies 258608 2305 29009 67 274

S’2 L allocation 0 → 9 10 → 12 13 → 16 17 → 20 21 → 26

S’2 latencies 113852 91979 124792 124792 94037

S’3 L allocation 0 → 16 17 → 22 23 24 25 → 26

S’3 latencies 191516 187186 2305 29009 337

112

6.9. CONCLUSION

S'1

S'3

S'2
Min latency under a period constraint
 without RAM consideration

Min latency under a period constraint
 with RAM consideration

La
te

n
cy

 (
La

t
)

in
 c

y
cl

e
s

Fig. 6.9 Latency as function of period constraint considering MobileNet on architecture B

To sum up, the algorithm outlined in Subsection 6.7.2 provides an effective method

to determine the optimal balance between latency and throughput for a predefined archi-

tecture of pipelined NPUs, tailored to a specific neural network. This approach accounts

for RAM constraints and allows us to target to applications requiring fast punctual in-

ferences while still meeting desired throughput targets (for streams).

6.9 Conclusion

This chapter introduces the concept of pipelining multiple accelerators to process neu-

ral networks more efficiently. We explore this idea after realizing that using a single

accelerator reaches a limit where further increasing parallelization becomes ineffective.

Additionally, this approach is suboptimal because the level of parallelization suits some

layers but not others, leading to limited throughput as images are processed sequen-

tially. Given these considerations, and in light of the serial structure of feed-forward

neural networks, we opt to employ several instances of NPUs in a pipeline. The chapter

outlines this approach within a fixed pipeline scenario, where the number and order of

accelerators, along with their various architectures and RAM sizes, are predetermined.

The only variable is the mapping of layers to the accelerators. Nevertheless, the map-

ping is constrained by the pipeline structure and the size of the RAMs. This pipelining

strategy is employed to optimize either throughput or latency. Latency optimization

is applicable in cases where images are processed in a streaming fashion, and in such

113

6.9. CONCLUSION

cases, it is indirectly optimized with throughput. Conversely, latency can also be de-

fined for individual inferences when images are processed sequentially, where latency

and throughput are in competition.

Throughout the chapter, we review relevant literature on similar problems, encom-

passing the mapping of general tasks to fixed machines and the specific mapping of

neural networks to machines. We also examine related literature in different contexts

over the last century. We classify the pipeline optimization problem as reassembling

SALBP-1 and provide an integer linear model to formalize the pipeline. We propose dy-

namic programs that polynomially optimize throughput or latency independently when

they are not antagonistic or jointly when they are. This optimization is based on the

availability of closed formulas for evaluating accelerators performances, as detailed in

Chapter 5. The chapter concludes by illustrating these algorithms for Gemini, for which

the study is significant for adjusting the layer mapping based on the target objective.

This study is entirely generic and can be tested on other accelerators and other NNs to

confirm its practical efficiency.

We observe that this pipelining method is efficient for optimizing throughput as it

allows for simultaneous image processing. Additionally, by distributing layers across

the best NPUs, processing elements within NPUs are better utilized. In reality, the

potential of this pipeline could be further enhanced if we could adapt the architecture

of each accelerator to the layers being processed. The ability to tailor the architecture

of each accelerator to the specific layers being used is a promising idea explored in

Chapter 7, where the pipeline is not fixed, and designers can modify the number of

accelerators, their parallelization, and RAM sizes. This flexibility enables the selection

of suitable hardware, further optimizing the performance of NN processing.

114

CHAPTER 7

Non-Fixed Pipelined Neural Network Accel-
erators

In this chapter, we delve into an extended version of the challenge presented in Chapter

6, known as the non-fixed hardware scenario. This variation is particularly oriented

toward hardware designers, and it involves pipelining the layers of a Neural Network

(NN) across multiple Neural Processing Units (NPUs), similar to what was discussed

in Section 6.2. However, in this case, the number of NPUs (n), their parallelization

configuration (Ni, i ∈ [0, n − 1]), and the RAM storage (Ki, i ∈ [0, n − 1]) are not

predefined or fixed. Note that all the NPUs along with their RAMs are placed on the

same chip. The objective remains the optimization of the key performance indicators

(KPIs) of the NN. The pipeline was primarily designed to optimize throughput more

efficiently than using a single NPU. Therefore, our primary focus in this chapter is on

throughput characterized by the period P (as detailed in Subsection 6.3.1). The goal is

to determine the optimal pipeline architecture that processes the NN within a specified

throughput target while optimizing a specific criterion, such as latency, chip area, power

consumption, energy efficiency, and more. The layers’ allocation on NPUs has also to

be determined. This will also provide an opportunity to evaluate the relevance of the

pipeline-based solution compared to a single NPU solution with an equivalent number

of PEs.

As previously mentioned in the preceding chapter, the idea of the pipeline is intu-

ited from observing the feedforward neural network structure. The notion behind the

pipeline is to allocate layers or groups of layers on NPUs based on their specific require-

ments, rather than employing a one-size-fits-all approach for the entire neural network.

This approach enhances the efficiency of processing elements within the NPUs (Section

6.1).

In this chapter, we present a methodology to solve the problem for any accelerator

that adheres to the description provided in Section 6.2. This methodology facilitates

the determination of the optimal architecture (number of NPUs, number of PEs per

NPU, size of RAMs) and the mapping π (Subsection 6.2.4) of the NN layers to NPUs

based on a given throughput requirement characterized by an upper bound of the period.

This paradigm is illustrated using Gemini accelerators, for which closed-formulas were

115

7.1. DESCRIPTION OF THE NON-FIXED HARDWARE SCENARIO AND
LITERATURE REVIEW

derived in Chapter 5.

Similar to the preceding chapter, the objective is not to conduct direct comparisons

of the KPIs in the pipeline implementation against other optimized accelerators. In-

stead, our focus remains on presenting a high-level optimization methodology applica-

ble to a broad range of configurable accelerators (already optimized or not).

It is important to point out that the methodology presented in this chapter is com-

plementary to the non-fixed hardware problem discussed in Chapter 6. Thanks to the

methodology of the non-fixed hardware scenario, we can design a pipeline and deploy

a mapping that optimizes a KPI, such as area, for example. After the design step is

completed and the chip is ready, this same pipeline can be retargeted for other NNs

with different applications. In this context, it can be treated as a fixed hardware prob-

lem, and a new mapping can be targeted to optimize one of the criteria presented in the

previous chapter in Section 6.3, either for the same NN or for a new one.

To begin, in Section 7.1 we reference how this problem can be classified as a Sim-

ple Assembly Line Balancing Problem and mention relevant literature that addresses

related topics. Following that, in Section 7.2, we introduce essential lower bounds nec-

essary for optimization. In Section 7.3, we introduce the new objectives that become

relevant when the hardware is not fixed, allowing for the optimization of new multiple

key performance indicators (KPIs). Then, in Section 7.4, we provide a formal descrip-

tion of the problem. In Section 7.5, we formulate the problem using a Boolean linear

model, enabling the utilization of solvers to obtain optimal solutions. Additionally, we

have developed a polynomial-time algorithm based on a dynamic programming scheme

in Section 7.6, which provides a solution to the problem. For improved readability, we

represent the dynamic algorithm as a shortest path problem in a directed graph. In Sec-

tion 7.7, we utilize the Gemini accelerator to illustrate the effectiveness of the pipeline

strategy. In comparison to a solution based on a single NPU, it not only maximizes

throughput beyond what a single NPU can achieve but also offers optimization pos-

sibilities for KPIs including latency, the number of processing elements, area, power,

energy, and more. This is particularly advantageous in terms of power efficiency, as it

enables operation at lower frequencies. In Section 7.8, we explore potential extensions

of this problem. A conclusion is finally given in Section 7.9.

7.1 Description of the Non-fixed Hardware Scenario and

Literature Review

In this chapter, the hardware is no more fixed: thus, for a given throughput, we can

optimize various hardware KPIs φ that are impacted by the allocation.

Considering the Simple Assembly Line Balancing Problem (SALBP) classification

116

7.2. LOWER BOUNDS TO RESPECT ALLOCATIONS CONSTRAINTS

introduced by Boysen et al. [18], the non-fixed hardware problem is classified as a

particular case of SALBP-1. It has been proved to be polynomially solved using a

specific dynamic programming algorithm inspired by Held et al. [57] under certain

conditions (detailed in 6.5.3). However, the problem that we are interested in has more

objectives than only minimizing the sum of idletimes. The objective is, for a given

throughput, to find the optimal balancing that optimizes another KPI that is dependent

on the line balance. Thus, the dynamic algorithm has to be adapted for this purpose.

Many researchers and designers are actively exploring similar problems where the

hardware is not fixed. For instance, they pipeline ASICs or FPGAs to enhance NNs

processing performance. Actually, compared to using existing machines, being at the

accelerator’s design level allows for adapting the hardware architecture to the applica-

tion, optimizing both the architecture and the execution of the considered application.

As examples, various approaches have been explored for implementing FPGA-based

pipelines between layers [127, 11, 109, 132]. Additionally, NeuroSim V1 leverages

In-Memory Computing accelerators, with each layer assigned to a specific tile [111].

These instances focus on optimizing resources on a layer-by-layer basis. However,

significant enhancements can be achieved by distributing computations across grouped

layers, rather than isolating them. This approach can be particularly challenging when

dealing with layers that have significantly different computational workloads.

Our approach for optimizing the pipeline architecture and NN layers allocation

(which layers are processed by which NPU) involves efficient layer grouping into sets.

Recently, Cai et al. [22] developed Autoseg, a new approach that optimizes KPIs by

grouping layers onto different configurable NPUs. They demonstrate experimentally

that it provides a speedup of 1.2× to 6.3× compared to benchmarked ASICs. How-

ever, the optimization problem is modelled and solved using a Mixed Integer Linear

Programming, and they developed a heuristic to get an efficient method. In this chap-

ter, we show that this problem can be solved exactly using a polynomial time efficient

algorithm.

7.2 Lower Bounds to Respect Allocations Constraints

As detailed in Subsections 6.2.6 and 6.2.5, certain features of NPUs and RAMs are

crucial for the optimization process. Specifically, knowledge of the execution time

required for a specific set of NN layers on a given processor and an estimation of the

RAM size needed to store all intermediate images for a set of NN layers are essential.

These considerations were previously discussed in the context of the fixed hardware

scenario in the previous chapter.

However, the non-fixed hardware scenario introduces new requirements. These in-

117

7.2. LOWER BOUNDS TO RESPECT ALLOCATIONS CONSTRAINTS

clude determining the minimum number of PEs within an NPU needed to process a

set of NN layers in less than a specified number of cycles. Additionally, it necessitates

establishing a lower bound on the minimum RAM size required to store intermediate

feature maps for a given set of layers. These new features are essential for address-

ing the hardware variability in the non-fixed scenario and ensuring optimal hardware

design. In Subsection 7.2.1, we discuss how to compute the minimum number of PEs

required for a given execution time, while in Subsection 7.2.2, we present a lower bound

for RAM size that is better suited to the non-fixed hardware scenario.

7.2.1 Lower bound on the Number of NPU PEs Required to Exe-
cute a NN within a Given Execution Time Constraint

An important aspect is the capability to determine the minimum number PEs required

to process a layer set [Lg, Lh] within a specified time frame of Ts cycles. We introduce

N̂([g, h], T s) as the minimum number of PEs needed to process the layers within the

range [Lg, Lh] in less than Ts cycles. This is achieved by finding Ni in Equation 6.1

while setting pi,[g,h] = Ts. When we set g = 0 and h = ℓ − 1, we can determine the

minimum number of PEs required to process the entire NN within Ts cycles, utilizing

only one NPU.

Likewise, we can introduce the notation N̂i(π, Ts), which denotes the minimum

number of PEs required to process the consecutive layers mapped to Gi within a time-

frame of Ts cycles. This notation is particularly useful when working with mappings π

that specify which layers are processed on each NPU.

Theorem 7.2.5. Let us consider that for i ∈ [0, n − 1], the layers Lj mapped to Gi

follow q ≤ j ≤ h. Let also suppose that a maximum time frame Ts is fixed. Then,

the minimum number of PEs of Gi, denoted by N̂i(π, Ts), can be computed in time

complexity O(logNmax) where Nmax is an upper bound of the number of PEs.

Proof. Since y is a monotone function of Ni, N̂i(π, Ts) can be computed by simply

using a binary search [31] on Ni.

Note that this complexity is an upper bound, for some architectures, N̂i(π, Ts) can

be computed with linear complexity.

7.2.2 Min RAMs Capacity for an Allocation

In the subsequent discussion, we demonstrate that it is possible to establish a minimum

size K̂([g,h]) for the intermediate memories Ri that stores the layers [Lg, Lh] while ad-

hering to Property 2. In a broader context, K̂i(π), where i ∈ [0, n − 1], denotes the

118

7.3. OBJECTIVE FUNCTIONS CONSIDERED (OR KPIS)

minimum size necessary for the intermediate memories Ri to accommodate the layers

where π(j) = i for j ∈ [0, ℓ− 1]. We can state then the following theorem::

Theorem 7.2.6. Let us consider a layers mapping π and i ∈ [0, n − 1]. Let us also

consider the value j̄ (resp. j) as the maximum (resp. minimum) value j ∈ [1, ℓ−1] such

that π(j − 1) = i. Then, K̂i(π) = max(sj,maxj∈[j,j̄−1](sj + sj+1)) is the minimum

feasible size of the SRAM Ri.

Proof. According to Property 1, all the layers Lj−1 for j ∈ [j, j̄] are performed by Gi

and their output fmap Ij are stored by Ri.

Now, the output Ij is first solely stored by Ri. Then, for j ∈ [j, j̄ − 1] the fmap

Ij and Ij+1 need to be stored in Ri simultaneously to evaluate the layer Lj . Thus, the

lower bound on the memory size of Ri is proved. The introduced notations will be

particularly useful when describing the KPIs of an NPU and finding solutions to the

non-fixed hardware problem.

7.3 Objective Functions Considered (or KPIs)

The objective of this chapter is to find an NPU pipeline architecture, along with the al-

location of the NN layers on the accelerators, to optimize a KPI for a given throughput

t expressed in period P . This is achieved by identifying an architecture capable of pro-

cessing the NN within a period constraint denoted as P ⋆ (upper bound of the period).

In this chapter, the throughput, as discussed in Section 6.3.1, transitions from being an

objective to becoming a constraint.

Several objectives φ can be taken into consideration to determine π and the associated

pipeline architecture. φi(π) denotes the objective constrained to the layers allocated to

NPU Gi. The only requirements are that φi can be evaluated (either through a closed

formula or a polynomial-time algorithm), that it demonstrates monotonicity with re-

spect to the number of PEs, and that it is aggregable: φ(π) =
∑n−1

i=0 φi(π). Thus, the

objective φ(π) encompasses latency as presented in Subsection 6.3.2, as well as hard-

ware design KPIs that were not possible to optimize in the previous chapter where the

hardware was fixed. Several hardware KPIs can be then considered:

• A first KPI to consider is the total PEs number N̂ that is the sum of the PEs of

each NPU: N̂ =
∑n−1

i=0 N̂i(π). Implicitly, this KPI also characterizes the efficiency

of the PEs: for example, completing execution under throughput constraints with a

minimum number implies that the PEs are being used efficiently (adding more PEs

can lead to a situation where some of them may not be used to their full capacity).

• The area of the pipeline system is the sum of the area of each NPU Gi with

the corresponding SRAM. For i ∈ [1, n − 1], they depend on the size K̂i(π)

119

7.4. FORMAL DESCRIPTION OF THE PROBLEM

of the SRAM Ri and the number of PEs N̂i(π) of Gi. We thus note a(π) =

aNPU(π) + aRAM(π).

• Another commonly considered objective is the NPUs power consumption pw(π);

it is computed summing up the static and dynamic power of each NPU in the

pipeline system. The static power depends only on the PEs number, whereas the

dynamic power varies also according to the layers being executed. The NPUs’

power can be aggregated as NPUs operate simultaneously.

• Lastly, the energy consumed by frame is aggregable and computed by summing

the product of latency and power: considering that fmaps are processed simultane-

ously (Lat1), the energy is computed by: e(π) = P.pw(π). If they are processed

sequentially (Lat2): e(π) =
∑n−1

i=0 pi,π.pw(π).

• Other types of objectives could be considered to jointly optimize multiple KPIs.

Actually, a solution that is optimal for one KPI might not necessarily be the best

for another. To find a solution that optimizes both aspects, one could optimize

a convex linear combination of these KPIs. If there are m KPIs denoted as

ϕi(π), i ∈ [0,m − 1] to be optimized, we can start by normalizing all of them

between 0 and 1, denoted as Nϕi(π) (N refers to normalized). The function to be

optimized is then φ(π) =
∑m−1

i=0 λi ×Nφi(π) with
∑m−1

i=0 λi = 1. It allows us to

combine multiple criteria and strike a balance between them.

7.4 Formal Description of the Problem

The flexibility of the hardware involves having an extended characterization of a prob-

lem instance compared to the one presented in Section 6.4. An instance of our problem

is then defined by a fixed NN with the number of layers ℓ and the size of the intermedi-

ary fmaps (sj, j ∈ [0, ℓ− 1]), the description of the configurable NPU engine, an upper

bound of the period P ⋆ that the processing period should not exceed and an objective

function φ to minimize. The problem consists then to compute a mapping π that min-

imizes φ. As stated by Theorems 7.2.5 and 7.2.6, the pipeline architecture and layers

mapping is deduced from π.

The described pipeline approach is versatile and can be applied to any accelerator

that sequentially processes NN layers, regardless of the hardware architecture and oper-

ator scheduling. With this consideration, we can optimize objectives. The optimization

objective can be diverse, with the only prerequisites being that their evaluation and

aggregability are feasible.

120

7.5. INTEGER LINEAR MODEL WITH VARIABLES IN {0,1} TO MINIMIZE φ
WHILE ADHERING TO A THROUGHPUT CONSTRAINT P ⋆

7.5 Integer Linear Model with Variables in {0,1} to Mini-

mize φ while Adhering to a Throughput Constraint P ⋆

Firstly, we tried to start from the preceding model formulated in Subsection 6.7.1 and

generalize it for other KPIs. As the architecture is no more fixed, this naive model will

not be linear anymore. For example, the latency equation will not be linear if the Ni are

no more fixed.

In order to optimize φ(π) while executing a NN of ℓ layers in less than P ⋆ cycles, we

consider the Boolean variables xg,h ∈ {0, 1} with (g, h) ∈ [0, ℓ − 1]2, g ≤ h. xg,h = 1

if there is one NPU that processes only the layers [Lg, Lh], and xg,h = 0 otherwise. If

xg,h = 1, the NPU will possess N̂([g, h]) PEs which constitutes the minimal number

of PEs required to process these layers as stated in Subsection 7.2.1. Additionally, the

RAM will encompass K̂([g, h]) KB, representing the minimum required size for storing

these layers as indicated in Subsection 6.2.5. The system will execute then the NN in

less than P ⋆ cycles, since all NPUs are respecting this condition by definition.

The linear constraints are the following: ∀j ∈ [0, ℓ − 1],
∑j

g=0

∑l−1
h=j x[g,h] = 1. By

construction all the applicable constraints in Subsection 6.2.4 and 6.2.5 are satisfied:

• The layers L0 and Lℓ−1 are inherently processed by G0 and Gn−1, respectively, as

the NPU handling the layers [L0, Lh] is referred to as G0, and the one executing

[Lh′ , Lℓ−1] is designated as Gn−1 (with h and h′ in [1, ℓ− 1]× [0, ℓ− 2]). Further-

more, it is important to note that, by definition, the mapping cannot be decreasing,

as x[g,h] is defined for g ≤ h.

• Each NPU process at least one layer per definition, as each set of layers is assigned

to one NPU per definition.

• Each layer is processed by exactly one NPU: if there were at least two NPUs

processing the same layer Lj , it would imply the existence of two layer sets:

x[g,h] = x[k,l] = 1 with j ∈ [g, h] and j ∈ [k, l]. Consequently, the sum in the

constraint would exceed 1 for j.

• Finally, the throughput constraint and RAMs capacity constraints are, by defini-

tion, respected, as the number of PEs of each NPU (N̂([g, h], P ⋆) and the size of

RAMs K̂([g, h]) are chosen in such a way as to respect these constraints.

The objective is to minimize φ(π). Let us introduce φ̂[g,h](π) the restriction of φ to

the layers [Lg, Lh] computed on the NPU N̂([g, h], P ⋆): since φ is monotonous with

respect to the number of PEs, φ̂[g,h](π) is the minimal φ of an NPU exclusively pro-

cessing [Lg, Lh]. φ(π) can be then expressed using the boolean variables: φ(π) =∑l−1
j=0

∑j
g=0

∑l−1
h=j xg,h × φ̂[g,h](π).

121

7.6. DESCRIPTION OF THE DYNAMIC PROGRAMMING ALGORITHM
MINIMIZING φ WHILE ADHERING TO A THROUGHPUT CONSTRAINT P ⋆

7.6 Description of the Dynamic Programming Algorithm

Minimizing φ while Adhering to a Throughput Con-

straint P ⋆

Similar to what was mentioned in the previous chapter, integer linear modeling is suf-

ficient to provide heuristics, but we prefer to use a polynomial-time algorithm to ex-

actly and quickly solve the non-fixed hardware scenario problem. The inputs of the

algorithm are: P ⋆, the period constraint characterizing the throughput, the NN layers

L and their parameters. The output is the pipeline hardware architecture (n, Ni and

Ki, ∀i ∈ [0, n− 1]), and the layers allocations π optimizing φ while executing the NN

in less than P ⋆ cycles. This intuitive dynamic programming algorithm is inspired from

[57] as mentioned in 7.1.

The main idea of our algorithm is to build a valued directed state graph H =

(V,E,w) defined as follows: the set of vertices is V = {s, p}∪V1 with V1 = {[g, h], 0 ≤
g ≤ h ≤ ℓ − 1}. Each vertex u = [g, h] ∈ V1 models the successive layers [Lg, Lh]

mapped to a same NPU. The set of arcs E = Es ∪ Ep ∪ E1 is defined as:

• E1 = {a = (u, u′) ∈ V 2
1 , u = [g, h] and u′ = [h + 1,m]} models that u′ can be

mapped to an NPU just after u;

• Es = {(s, u), u = [0, h] ∈ V1};

• Ep = {(u, p), u = [g, ℓ− 1] ∈ V1}.

Lastly, the valuation w : E 7→ N of the arcs is defined following the objective φ as

follows:

• For each arc a = (u, p) ∈ Ep, w(a) = 0;

• Each arc a = (u, v) ∈ Ep ∪ E1 with u = [g, h] is valued by the restriction of φ to

the layers [Lg, Lh] assuming that these layers are mapped to a same NPU and that

this NPU computes the layers [Lg, Lh] in less than P ⋆. The number of PEs of this

NPU will be N̂([g, h], P ⋆) to fulfill this last condition, and the RAM size should

be K̂([g, h]) to adhere to the RAMs constraints.

Figure 7.1 presents the state graph H for ℓ = 4 without the valuation of the arcs.

One can observe that paths of the state graph H from s to p model all the feasible

mapping π. For our example, the path s → [0, 1] → [2, 2] → [3, 3] → p is associated

to the mapping π : [0, 3] → [0, 2] with π(0) = π(1) = 0, π(2) = 1 and π(3) =

2. The minimum number of PE’s for each NPU and the minimum memory size are

evaluated using Theorems 7.2.5 and 7.2.6. Since the arcs are valued from the criteria

restriction on each NPU, the path of minimum value from s to p models a feasible

mapping minimizing φ. Thus, our algorithm simply builds the state graph H and finds

122

7.7. APPLICATIONS ON GEMINI

s p[0, 0] [1, 1] [2, 2] [3, 3]

[0, 1] [2, 3]

[0, 3]

[1, 2]

[0, 2] [1, 3]

Fig. 7.1 A state graph H for ℓ = 4. The valuations are not presented.

its shortest path using Dijsktra algorithm [31]. The implementation of the graph was

done using Networkx [51].

Theorem 7.6.7. The time complexity of the dynamic programming algorithm belongs

to O(ℓ4 log ℓ+ ℓ2 logNmax) where Nmax is an upper bound on the number of PEs.

Proof. The number of vertices (resp. arcs) of the state graph belong to O(ℓ2) (resp.

O(ℓ4)). Moreover, for each vertex u ∈ V1, determining the minimum number of PEs re-

quired to reach a given throughput takes O(logNmax) instructions (see Theorem 7.2.5),

while determining the minimum memory size requires O(ℓ) instructions (see Theorem

7.2.6). So, the computation of H belongs to O(ℓ4+ ℓ2(ℓ+logNmax)), which is equiva-

lent to O(ℓ4+ ℓ2 logNmax). Now, the complexity of Dijsktra algorithm [31] is bounded

by O(ℓ4 log ℓ), thus the theorem holds.

This algorithm could generate solutions based on a single NPU, as the path exists

within H = (V,E,w). Finally, a state version of this algorithm is presented in Ap-

pendix D.

7.7 Applications on Gemini

This section aims to present our experiments for the non-fixed hardware scenario. Gem-

ini for which analytical close formulas for execution times and KPIs are available

(Chapter 5) is used. As a reminder, Gemini is designed for edge applications. It is

tailored for NNs with low RAM requirements. Our experiments do not serve demon-

strations, they highlight the practicality of our generic approach. Importantly, while

Gemini is limited to moderate size NNs, there should be no expected issues when us-

ing larger ones with other accelerators, as our allocation algorithm (Subsection 7.6)

123

7.7. APPLICATIONS ON GEMINI

maintains polynomial complexity. The aim of this section is to demonstrate the rele-

vance of this methodology for optimizing KPIs for a given throughput constraint. To

achieve this, we compare the solutions provided by the pipeline architecture with those

achievable by a single NPE: we calculate the KPIs for a single NPU configured with

the minimum number of PEs required to meet the throughput constraint.

Subsection 7.7.1 discusses the adaptation of Gemini features to the non-fixed hard-

ware scenario, explaining how the lower bound of NPEs is calculated and how KPIs are

tailored to this problem. In Subsection 7.7.2, the pipeline architecture’s ability to sig-

nificantly reduce the period while increasing latency is demonstrated. Subsection 7.7.3

proves that the pipeline architecture provides flexibility in adjusting the total number of

PEs. Subsequently, Subsections 7.7.4, 7.7.5, and 7.7.6 delve into area, power, and en-

ergy minimization, respectively. These sections illustrate that, even when considering

SRAM constraints, the pipeline architecture outperforms single NPE configurations,

especially for small period values. Finally, Subsection 7.7.7 outlines how to find a

mapping that targets the optimization of multiple KPIs simultaneously. In this section,

we utilize the three neural networks described in Subsection 2.3.2. When considering

RAMs for some optimizations, we prefer to use VGG-like as an illustration. PNet has

too few weights to significantly impact the optimization, while MobileNet, on the other

hand, requires extensive RAM support, which obscures several aspects.

7.7.1 Gemini Features for Non-fixed Hardware Scenario

As aforementioned in Subsection 6.8.1, in the case of Gemini instances, the PEs num-

ber N exclusively refers to WPAR, while MPAR remains fixed. As mentioned in

Subsection 7.2, the ability to calculate N̂([g, h], T s) is crucial. It is achieved thanks to

a binary search [86] between a lower bound Nmin and an upper bound Nmax of pi,[g,h]
(it is possible because pi,[g,h] is monotonous). The bounds are given by the property of

the ceiling function:∀x ∈ N − {0}, x < ⌈x⌉ ≤ x + 1. N̂ is then found with a binary

search between Nmin =
∑h

j=g f(Lj)

Ts−(h−g).Cst
and Nmax =

∑h
j=g f(Lj)

Ts−(h−g).Cst−1
.

Figure 7.2 represents the latency pi,[0,7] of PNet network (see Figure 2.14) on a Gemini

Gi as a function of Ni as well as the lower and the upper bound of pi. For example,

finding N̂([0, 7], 4000) is done by binary search between the Nmin([0, 7], 4000) and

Nmax([0, 7], 4000) depicted in 7.2.

Area and power are obtained thanks to the models presented in Section 5.5.

For a mapping π restricted to an NPU Gi, they are set respectively to ai(π) = ai,RAM(π)+

ai,NPU(π) and, pwi(π) = pwi,RAM(π) + pwi,NPU(π) where ai,RAM (resp. pwi,RAM)

corresponds to the area (resp. the power) associated to the SRAM Ri and ai,NPU (resp.

pwi,RAM) corresponds to the area (resp. the power) associated to the NPU Gi. As stated

in Subsubsection 5.5.2.1 and 5.5.3.1, the RAM area ai,RAM(π) and power pwi,RAM(π)

124

7.7. APPLICATIONS ON GEMINI

Ni

Nmin([0,7],4000)

Nmax([0,7],4000)

N([0,7],4000)^

Fig. 7.2 Minimal Ni for an execution time specification

depend solely on the RAM capacity K̂i(π) determined following Theorem 7.2.6. The

area, power, and energy of the NPU Gi are given by Equations 5.3, 5.7, and 5.8.

The area and power of the logic blocks (L in Figure 6.7) responsible for connect-

ing the RAMs and NPU, as discussed in Subsection 6.8.1, were not considered due to

our limited access to simulation tools that help us to derive closed-formulas. Nonethe-

less, if such models become accessible in the future, they can be integrated into the

RAMs power and area models. However, considering that these blocks are on the same

chip, we do not expect excessive power consumption or area in comparison to the other

components (NPU and RAMs). It will not affect then the optimized solution.

Finally, it is important to highlight that, in reality, according to the simulations in

Figures 5.4 and 5.3, the area and power were not strictly monotonic. However, they

were eventually modeled this way due to our understanding of the phenomenon. The

non-monotonicity was not fully understood and could potentially be attributed to High-

Level Synthesis optimizations that cannot be predicted. Furthermore, in Subsection

7.8.1, we see that this hypothesis can actually be eliminated, but it introduces more

computational complexity into the process.

125

7.7. APPLICATIONS ON GEMINI

7.7.2 Optimization of Throughput and Latency

We start our experimentation by considering the latency minimization. In this para-

graph, the latency is computed for the scenario where fmaps are processed simultane-

ously. For a fixed period, we execute the algorithm outlined in Section 7.6, selecting

φ(π) = Lat1(π) = n.P . We then compare this latency value (Lat2) to the latency

achieved by using a single NPU to meet the period constraint (it has N̂([0, ℓ − 1], P)

PEs calculated in Subsection 7.7.1).

We observe that smaller values of the period P are unattainable with a single NPU

and that a pipeline allows to decrease drastically the period. In what follows, we limit

the solutions to fewer than 700 PEs to remain realistic.

Table 7.1 compares the minimum period obtained for a single NPU (note that in this

case the latency and the period are equal as the images are processed sequentially) vs.

the minimum period for a pipeline (obtained with the algorithm in Section 7.6) with its

corresponding minimum latency.

Table 7.1 Minimal reachable period P and the corresponding latency for a pipeline architec-
ture vs. a single NPU (in cycles)

Pipeline Solution

NN Single NPU Min. P Corresp.
Lat1.

MobileNet 26810 8400 176400

VGG-like 117890 34000 102000

PNet 2720 1470 5880

Throughput can be optimized 3.2 times, 3.5 times, and 1.85 times respectively for

MobileNet, VGG-like, and PNet using a pipeline architecture. However, the pipeline’s

latency is significantly higher; for MobileNet, using 21 NPUs results in a latency 6.6

times higher than the best single NPU latency. In general, using one NPU is optimal for

the latency when feasible, but for unattainable periods, the pipeline becomes necessary.

The consequence is that the pipeline is a way to heavily reduce the period of the system,

but with the increasing of the latency. The conclusion found are the same if the fmaps

were processed sequentially (Appendix E).

7.7.3 Minimization of Processing Elements Number

We tackle in this section the minimization of the whole number of PEs (N̂). Figure 7.3

presents N̂ depending on the period for the three NNs. The green curves correspond

to the optimal pipeline solution obtained using our dynamic program algorithm; the

red ones correspond to the solution using a unique NPU (N̂([0, ℓ− 1], P) given by the

binary search detailed in 7.7.1).

126

7.7. APPLICATIONS ON GEMINI

N
um

be
r o

f P
ro

ce
ss

in
g

El
em

en
ts

 (N
)

min NPE using the pipeline for P-net
min NPE using the pipeline for Mobilenet
min NPEusing a single NPU for VGG-like
min NPE using a single NPU for P-net
min NPE using a single NPU for Mobilenet
min NPE using the pipeline for VGG-like

150 PEs:
@10 MHz
Single NPU:
202 FPS
Pipeline:
275 FPS

Period P =1/throughput (cycles/inference)

^

Fig. 7.3 PEs number under throughput constraints for 3 NNs

As mentioned earlier, smaller values of the period cannot be achieved considering

only one single NPU. Furthermore, we observe that the green curves are always under

their corresponding red ones. The consequence is that PEs are underutilized for many

layers for the single NPU, while the pipeline optimal solution adjusts as possible the

PEs number.

Let us consider that a frame corresponds to the total execution of the NN for one im-

age. For example, we observe that for MobileNet, with 150 PEs operating at 10MHz, a

single NPU can process 202 frames per second (FPS). However, the optimal pipeline so-

lution for 150 PEs obtained by our algorithm is given by n = 5, Ni = {20, 56, 18, 49, 7},

and the grouping of the layers [0], [1, 11], [12, 14], [15, 22] and [23, 26]; the image’s pro-

cessing rate is then 275FPS for the same frequency, resulting in a significant accelera-

tion of 36%.

7.7.4 Minimization of Area

The optimization criterion in this case is the area. The algorithm was applied to the

VGG-like network to optimize either the NPU area aNPU(π) or the chip area a(π) =

aNPU(π) + aRAM(π) (the sum of the NPUs’ areas in the pipeline configuration), which

includes the NPUs and FMAPS RAMs. The WEIGHTS RAMs are not included, as

127

7.7. APPLICATIONS ON GEMINI

min total area (RAMs+NPUs) for a pipeline

min total area (RAMs+NPUs) for a single NPU
min NPUs area for a pipeline

min NPUs area for a single NPU

4.12 mm²
128500 cycles
@10 MHz
77.8 Fps

4.12 mm²
145500 cycles
@10 MHz
68.7 Frames/s

A
re

a
 (

m
m

²)

Period P =1/throughput (cycles/inference)

Fig. 7.4 Total area comparison between one and several pipelined NPUs

they do not impact the choice of the architecture: the weights number is fixed. Note that

the two solutions are not necessary the same.

In Figure 7.4, the green curves correspond to the area of the pipelined NPUs solu-

tion that satisfies the throughput constraint. The solid line represents the smallest chip

area achieved, while the dashed line represents the solution minimizing only the NPUs

area. Meanwhile, the red curve corresponds to the area of the single NPU solution. It

represents the area of an NPU configured with the minimum number of PEs required to

process the NN within P cycles: N̂([0, ℓ − 1], P). The solid line represents the lowest

chip area achieved, while the dashed line represents the NPU area. The total area curve

has the same shape as the NPU curve, but it is shifted upwards due to the additional size

of the RAM (that is larger for the pipeline). The general observation is that the pipeline

is interesting for high throughput applications: actually, the pipeline is efficient to en-

hance the throughput for the same NPUs area. However, the pipeline requires more

RAMs than the single NPU solution. Consequently, this leads to a substantial overall

area increase. The applicability of the pipeline solution becomes pertinent when the

NPU’s area attains a sufficient magnitude to become the limiting factor, outweighing

the influence of RAMs’ area. This scenario aligns with high-throughput applications

characterized by a low P . For example, for an area budget of 4.12 mm² and a frequency

of 10 MHz, a single NPU achieves 67 FPS, while a pipeline configuration with multiple

128

7.7. APPLICATIONS ON GEMINI

NPUs achieves 77.8 FPS (13% higher throughput).

7.7.5 Minimization of Power

min chip power (RAMs+NPUs) using the pipeline
min NPUs power using the pipeline
min chip power (RAMs+NPUs) for a single NPU
min NPUs power for a single NPU

Min Ts: 33 000 cycles
4022 µW @ 1MHz

142000 cycles
@1 MHz
7 FPS for 329 µW
@ 5.49 MHz
38.4FPS for 1197µW

104500 cycles
@1 MHz
9.6 FPS for 329 µW
@ 4 MHz
38.4 FPS for 839 µW

p
o
w

e
r

(µ
W

)
L
e
a
k
a
g

e
+

 D
y
n

a
m

ic
 (

fo
r

1
 M

H
z
)

Period P =1/throughput (cycles/inference)

Fig. 7.5 NPU power comparison between one and several pipelined NPUs

Let us consider the power minimization considering VGG-like network. Two ob-

jective functions were studied: pwNPU(π) and pw(π,) = pwNPU(π) + pwRAM(π) to

take the SRAMs into consideration (WEIGHTS RAMs are not taken in consideration).

Figure 7.5 presents the minimum values pwNPU (dashed lines) and pw (solid lines)

depending on the period P at 1MHz for the optimum pipeline (green curves) or a sin-

gle NPU approach (red curves). The single NPU solution is the power for an NPU

having N̂([0, ℓ − 1], P) PEs. The main observation is that the pipeline remains inter-

esting for higher throughput. As an example, the pipeline architecture given by n = 2,

Ni = {16, 6} along with the layers mapping [0, 7], [8, 10] can achieve a processing

rate of 9.6FPS at 1MHz and consuming pw = 329µW; the single NPU configuration

can only process 7FPS under the same power budget. As aforementioned, the pipeline

method reduces the whole number of PEs, or the power dedicated to NPUs. The down-

side is that the pipeline requires much more memory than a single NPU. Therefore,

the same conclusion as outlined in Subsection 7.7.4 holds true: the pipeline solution is

usually interesting when there is a significant enough reduction in the NPU’s power to

compensate for the increase due to the added RAMs. However, the range of applica-

tions where the pipeline architecture is beneficial extends beyond high-throughput ap-

plications. Indeed, since dynamic power is linear with respect to frequency (as shown

129

7.7. APPLICATIONS ON GEMINI

in [35]), it is possible to lower the frequency (voltage fixed) to decrease the power:

when targeting a throughput of 38.4FPS, the optimum pipeline architecture consumes

839µW at 4MHz. The single NPU would need to operate at 5.49MHz to achieve the

same throughput, resulting in a power of 1197µW (43% higher than the pipeline). Fur-

thermore, running the circuit at a low frequency allows for low-speed clock constraints,

facilitating the use of low-power operators and leading to overall power savings.

7.7.6 Minimization of Energy

Figure 7.6 presents our experiments on the minimization of the energy depending on a

fixed period P . The energy is computed considering Lat2 as a definition of the latency.

Similar results are obtained considering Lat1).

In Fig 7.6, the x-axis represents the target period, and the y-axis shows the minimal

energy achieved to meet this constraint. The solid lines represent the solutions minimiz-

ing the chip energy, while the dashed lines represent the ones minimizing NPUs one. In

green, we have the pipeline solutions and in red the single NPU ones. Overall, we ob-

min (NPU+RAMs) energy using the pipeline
min NPUs energy using the pipeline
min (NPU+RAMs) energy a single NPU
min NPUs energy using a single NPU

E
n

e
rg

y
 (

µ
j)

 (
fo

r
1
 M

H
z
)

Period P =1/throughput (cycles/inference)

Pipeline minimal
energy: 24 µj
66 000 cycles

Pipeline minimal
energy: 44 µj
119700 cycles

Fig. 7.6 Energy under throughput constraint for VGG-like

serve that optimal solutions pipelining multiple NPUs consume less energy than single

NPU ones even when the SRAMs are taken into account, particularly when facing high

throughput constraints. This is attributed to the fact that the power of a single NPU is

high under such constraints. The minimum energy of 24µJ is achieved for P = 66000

130

7.7. APPLICATIONS ON GEMINI

cycles (the pipeline configuration is n = 3, Ni = {26, 11, 1} along with the mapping

[0, 1, 2, 3, 4, 5, 6, 7], [8], [9, 10] =), which cannot be attained with a single NPU. It is

nearly two times lower than the best energy achieved with one NPU (44µJ). Addition-

ally, since the green curve is consistently below the red one, it is possible to optimize

energy for a specific throughput. Finally, the optimization can be further improved by

reducing the frequency, as described in the previous paragraph.

7.7.7 Minimization of a Convex Linear Combination of KPIs

A
re

a
 (

m
m

²)

Period P =1/throughput (cycles/inference)

Fig. 7.7 Area as function of the period for 3 mappings

It is important to remind that the best solution for optimizing one criterion φ(π) may

not necessarily be the best for optimizing another criterion φ′(π). In certain situations, it

becomes necessary to optimize simultaneously both criteria. One approach could be to

use a convex linear combination of KPIs as the criterion. Without loss of generality, we

consider area a(π) and power pw(π, P) of NPUs as criteria. We start by normalizing

them within the range [0, 1] by subtracting the minimum value and divide the result

by the range (maximum - minimum), we obtain the normalized are Na(π) and the

normalized power Npw(π, P ⋆). The criterion to optimize become ϕ(π, P) = λ ×
Na(π, P ⋆) + (1 − λ)) × Npw(π, P ⋆), where λ ∈ [0, 1] is a weighting factor. The

normalization is mandatory as the two criteria does not have the same range of values.

131

7.7. APPLICATIONS ON GEMINI

p
o
w

e
r

(µ
W

)
L
e
a
k
a
g

e
 +

 D
y
n

a
m

ic
 (

fo
r

1
 M

H
z
)

Period P =1/throughput (cycles/inference)

Fig. 7.8 Power as function of the period for 3 mappings

Figure 7.7 displays the power, and figure 7.8 displays the area of NPUs for three

solutions considering VGG-like network: one optimized for area (orange), one opti-

mized for power (blue), and one with a balanced approach (using λ = 0.5) that seeks an

equitable trade-off between power and area (green). The x-axis represent the targeted

period P . Notably, optimizing ϕ(π) with λ = 0.5 strikes the best compromise between

optimizing power and area. It yields a solution that outperforms the power-focused ap-

proach in optimizing area, while still surpassing the area-focused solution in optimizing

power. the weight factor λ is adjusted based on the importance assigned to one criterion

over the other.

We have shown in this section the application of a generic methodology for op-

timizing various KPIs using Gemini accelerators, while adhering to throughput con-

straints. We demonstrated that the pipeline structure enables optimizing the throughput

beyond what a single NPU can achieve. Additionally, it offers important optimization

for hardware resources, area, power, and energy. The most significant advantage is

low-frequency operation, resulting in substantial power gains.

132

7.8. EXTENSION OF THE NPUS PIPELINE METHODOLOGY

7.8 Extension of the NPUs Pipeline Methodology

In the preceding sections, as well as in Chapter 6, we presented the non-fixed hardware

scenario and the fixed-hardware scenario, along with the defined hypotheses, modeling,

and solutions. In this section, we will explore potential extensions to broaden the scope

and improve performance. In Subsection 7.8.1, we will begin by discussing the elim-

ination of the assumption of monotonicity for the KPIs to optimize, which introduces

additional computational complexity. Next, in Subsection 7.8.2, we will explore the

potential for extending the pipeline architecture by considering cyclic processing, al-

lowing for data circulation from the last NPU back to the first one. Then, in Subsection

7.8.3, we will investigate the possibility of parallelizing the NPUs to further optimize

the execution process.

7.8.1 Extension to Non-monotonic-KPIs with Respect to PEs Num-
ber

For the non-fixed hardware scenario, the methodology presented in Section 7.1 can be

applied to any KPI φ respecting the constraints detailed in Section 7.3. However, the

criterion of monotonicity is in reality not mandatory; although, it is frequently satisfied.

Yet, there are cases where it might not hold true. For example, in the case of Gemini,

the area and power were not strictly monotonic (see Figures 5.4 and 5.3), although they

were eventually modeled as such. Indeed, the linear model and solutions can be adapted

for non-monotonic criteria, even though this increases the complexity of the process.

Concerning the model in Section 7.5, the function φ is no more monotonous with

respect to the number of PEs, then φ̂[g,h](π) is no more the minimum value achievable

by a single NPU processing [Lg, Lh]. To address this issue, the new objective to mini-

mize will be: φ(π) =
∑l−1

j=0

∑j
g=0

∑l−1
h=j xg,h × φ̃[g,h](π), where φ̃[g,h](π) is computed

solving: mini∈Aφi(πgh) with πgh the allocation such as ∀(j, j′) ∈ [g, h]2, π(j) = π(j′)

and A = {i ∈ N − {0}, Pi,[g,h] ≤ P ⋆}. In simpler terms, we select φ̃[g,h](π) as the

minimum KPI for the layer set [Lg, Lh], ensuring that the period constraint is met (the

minimum PEs number is not necessary the one achieving the minimum as there is no

more monotonicity hypothesis).

In the dynamic program presented in 7.6, u will be valuated by φ̃[g,h](π). The lim-

itation here lies in the fact that the complexity of u is dependent on the specific KPI

targeted for optimization. For the case where φ is monotonic with PEs, the computa-

tion of u were always at most logarithmic.

133

7.8. EXTENSION OF THE NPUS PIPELINE METHODOLOGY

7.8.2 Cyclic Pipeline of NPUs

The idea of the pipeline can be extended to a cyclic pipelining. Using the pipeline

described in Section 6.4, there are ℓ.ℓ(ℓ+1)
2

possible layer sets. By incorporating the pos-

sibility to cycle from Lℓ−1 to L0, the number of possible layer sets becomes ℓ.ℓ(ℓ+1)
2

× ℓ.

This is because the number of possibilities increases by a factor of ℓ due to the presence

of ℓ cycling options (from L0 to Lℓ−1). This implies that the dyanimic programming al-

gorithm described in Section 7.6 can be implemented the same way, and the complexity

will still be polynomial, bounded by O(ℓ5 log ℓ). Finally, the implementation effort is

minimal, as only the connection between RAM Rn−1 and NPU G0 is introduced. This

NPU
 G₀

OFMAP
 RAM

IFMAP
 RAM

NPU
 G₁

NPU
 Gₙ_₂

NPU
 Gₙ_₁

RAM
 R₁

RAM
 Rₙ_₂

RAM
 Rₙ_₁

RAM R₀
A

D
Q

A
D

Q A D
Q

A

D
Q

A

D
Q

A

D
Q

...

Fig. 7.9 NPUs in cyclic pipeline

approach is depicted in Figure 7.9, where the NPU G0 is communicating with Gn−1.

The cycling is beneficial if merging the last layers with the first one could help

balance the execution times. However, the drawback of this method is that it introduces

an additional latency to the execution time of each image to synchronize the NPUs.

For instance, in Figure 7.10, with three NPUs G0, G1, and G2 processing layer sets:

L0, L3, L1, and L2 respectively. Three images can be then processed simultaneously.

However, once an ifmap from the three is processed (the yellow one, for example, in

Figure 7.10), the next ifmap (green) can only be loaded when the three first ifmaps are

completely processed. This is because G0 is used to process L0 for the new ifmap, but

134

7.8. EXTENSION OF THE NPUS PIPELINE METHODOLOGY

Cycles

0

1

2

3

4

5

6

7

8

 G₁ G₂

 I₄,I₁ I₂Layers
allocation

NPU
 G₁

NPU
 G₀

NPU
 G₂

 G₀ G₁ G₂

 G₀

 I₄,I₀

Fig. 7.10 NPUs in cyclic pipeline example

also the layer L3 for the other two ifmaps (magenta and blue) from the first load. As a

result, it leads to 2 cycles where G1 and G2 are IDLE. Unfortunately, the benefice of

merging last layers with firsts is not advantageous enough to balance the added latency

for NPUs synchronization. When considering this additional latency, the cyclic pipeline

was never chosen as the optimal solution for any NN tested.

7.8.3 Parallelizing NPUs

In this subsection, we inquire whether parallelizing the processing of ifmaps across

NPUs would be judicious.

The advantage of parallelizing the NPUs is processing n ifmaps simultaneously us-

ing n NPUs. As illustrated in Figure 7.11, in the case of 3 NPUs, the ifmaps will be di-

vided into 3 distinct batches. Each of these batches is then written into the fmaps RAMs

corresponding to its respective NPU. The three batches are concurrently processed by

their respective NPUs, although within a batch, the ifmaps are processed sequentially.

Since the NPUs might not necessarily possess the same Ni values, their execution at

each cycle differs. Consequently, weights sharing among them is not feasible, except in

the scenario where all NPUs have identical Ni values.

The key question is how this method is more efficient compared to using a single

NPU equipped with the total number of PEs. Within a single PE, N PEs can process

N pixels simultaneously. Thus, if all PEs are fully utilized, sequentially processing

n ifmaps by employing N pixels per NPU is equivalent to concurrently processing N

ifmaps with N/n PEs for each NPU. Therefore, parallelization becomes advantageous

only when PEs are not optimally utilized for all layer (when there is a latency saturation,

as observed in Figure 6.1 for Gemini). This scenario, however, does not exist in the de-

signer problem (non-fixed hardware scenario), as we never consider utilizing more PEs

than necessary. However, as elaborated in Section 6.1, the latency and then throughput

is bounded when using a single NPU. With this method, the throughput upper bound

135

7.9. CONCLUSION

NPU
 G₀

NPU
 G₁

NPU
 G₂

A

D
Q

FMAP
RAM
 R₀

FMAP
RAM
 R₁

FMAP
RAM
 R₂

A

D
Q

A

D
Q

A

Q

WEIGHTS
RAM₀

WEIGHTS
RAM₁

WEIGHTS
RAM₂

A

Q

A

Q
Fig. 7.11 6 ifmaps processed by 3 NPUs in parallel

can be improved if adding an extra hardware is not a concern, reaching a configuration

of 1
n×Nifmap

, where Nifmap represents the number of ifmaps to be processed. This

unfeasible solution entails processing each ifmap using a different NPU, which, in re-

ality, is impractical for stream applications where a high amount of ifmaps need to be

processed.

Compared to the pipeline approach, parallelization is less optimal. It shares the

same drawback as the single NPU solution, where the number of processors is deter-

mined based on all NN layers, while in the pipeline, it is optimized for a specific set of

layers. Hence, the pipeline approach will consistently hold an advantage.

Finally, the additional hardware costs of this parallelization solution need to be con-

sidered. Compared to a single NPU, we need to account for the expense in area and

power of adding an NPU (c0 in Equation 5.3), as well as having a WEIGHTS RAM

for each NPU when they do not share the same PEs number.

7.9 Conclusion

This chapter revisits the pipeline introduced in Chapter 6, which overcomes the limi-

tations of using a single accelerator. It adopts a high-level optimization approach that

does not require optimization within the NPUs themselves. The particularity of this

chapter lies in its focus on the design level, allowing us to customize the pipeline struc-

ture, including the number of accelerators, their parallelization (number of processing

136

7.9. CONCLUSION

elements), their arrangement, and the sizes of RAMs

In this chapter, we present related works on pipelines, along with similar research on

the topic. We also classify the pipeline as a Single Assembly-Line Balancing Problem

(SALBP). We then discuss the prerequisites for this optimization, including the ability

to have closed formulas for calculating the minimum RAM size required to store a layer

and the minimum number of NPU processing elements needed to achieve an inference

within the execution time.

The chapter delves then into the Key Performance Indicators (KPIs) that can be

optimized. These encompass the ones presented in Chapter 6, but they now include

hardware KPIs as the pipeline structure can be modified. There is a multitude of KPIs

available for optimization, with the only requirement being adherence to the aggrega-

bility constraint and the condition of monotonicity with respect to parallelization. Since

throughput is the primary focus and was limited by the single accelerator approach, we

introduce a constraint where the optimization objective is to enhance certain KPIs while

adhering to a throughput constraint. This strategy is particularly interesting because the

KPIs are often antagonistic to throughput.

In this chapter, we also present an integer linear model of the problem and a polyno-

mial dynamic algorithm that precisely solves the problem. This algorithm is illustrated

in a study involving Gemini’s accelerator, with the objective of demonstrating the ad-

vantages of the pipeline over the use of a single NPU with high parallelization levels

for optimizing various KPIs. Within this framework, we show that the pipeline can

achieve throughputs that were unattainable with a single NPU. Furthermore, for a given

throughput, it excels in efficiently reducing area, power consumption, energy usage, and

other KPIs that encompass the aforementioned factors. The power reduction aspect is

particularly crucial because in certain cases, achieving a high throughput is unnecessary

when other system components are limiting, as happens when using accelerators with

low-throughput cameras. However, this strategy allows us to operate at lower frequen-

cies, thereby reducing dynamic power consumption.

Finally, we explore the possibility of extending this pipeline strategy. We show that,

at the cost of complexity, we can optimize KPIs that do are not necessarily monotone

with increased parallelization. We also demonstrate that the idea of cycling the pipeline

or using NPUs in parallel is, in reality, not efficient.

The simplicity of the pipeline approach is efficient for optimizing the processing of

feed-forward neural networks inference, as it aligns perfectly with the serial structure

of NNs. The approach described in this chapter is entirely complementary to the one

outlined in the previous chapter, where the pipeline structure is fixed. In fact, a pipeline

can be designed for a one specific NN and then reused for another. In these cases, the

pipeline is fixed for the second NN, and algorithms from Chapter 6 must be employed.

137

7.9. CONCLUSION

However, there is potential to directly design a pipeline that is well-suited for several

given NNs, specifying an optimized mapping for each NN according to the desired

KPIs. This pipeline strategy could also be adapted to recent NNs that are more complex,

with features like residual connection layers, for instance.

138

CHAPTER 8

Conclusion
In the course of this thesis, we ventured into the complexities of neural network hard-

ware acceleration, driven by an industrial project within STMicroelectronics called

Gemini, which shares its name with the accelerator under design. This research trajec-

tory encompassed activities ranging from the design and implementation of neural net-

works on ASICs for edge computing to the evaluation of Gemini’s performance, and ul-

timately, the exploration of advanced optimization techniques using a multi-accelerator

pipeline.

This research was driven by the rapid evolution of neural networks, a field that

has seen a profound transformation. Today, after this revolution, a multitude of neu-

ral network types with various architecture and different applications have emerged.

In Chapter 2, we define the scope of our investigation, focusing on the inference of

feed-forward neural networks that support conventional layers such as convolutions,

depthwise operations, pooling, and fully connected layers. Furthermore, among the

myriad neural networks serving various domains, we concentrate on those of moderate

size designed for edge computing applications. Notably, we delve into the specifics

of MobileNet, VGG-like, and PNet, which serve as benchmark models throughout our

research journey.

Once we have identified the target of the hardware, it was crucial to gain an under-

standing of the architecture used to implement these neural networks (In Chapter 3).

We discovered that the architecture imposed for Gemini aligns with the paradigm of

near-memory computing accelerators, employing an output-stationary data-flow strat-

egy. This approach optimizes data reuse and enhances parallelization, leading to speed

improvements while also efficiently reducing power consumption. This strategy can be

complemented by quantization techniques, which further optimize performance. Addi-

tionally, we conducted a comprehensive review of various Key Performance Indicators

(KPIs) used to characterize accelerators, facilitating their comparative analysis.

In Chapter 4, we delve into the specific requirements that the Gemini architecture

must meet, encompassing aspects such as configurability, performance criteria, and val-

idation processes. We also address the design and implementation challenges, resolv-

ing them through architectural optimizations and high-level synthesis (HLS) techniques

wherever such methods are applicable.

139

These concerted efforts culminated in the development of a competitive Intellectual

Property (IP) that stands up to benchmark references, as affirmed by our KPIs estima-

tions. The practical validation was confirmed through the successful execution of a

Gemini version in the initial tests on P18.

In addition to performance considerations, configurability has always been a central

focus of the Gemini project. The architecture’s flexibility is designed to adapt to various

applications with differing trade-offs. However, to fully leverage this valuable feature,

it is essential to simplify the process for the end-user when selecting the architecture.

Often, their requirements are expressed through the used neural network and the specific

performance trade-offs desired.

In this context, we have developed in Chapter 5, a strategy to estimate the KPIs

(such as latency, area and power) as a function of two architectural parameters, which

are known at a high-level of design abstraction. This strategy is based on predictive

models based on a data set of simulations obtained using industrial tools.

Thanks to this performance prediction tool, we gained valuable insights into the

evolution of KPIs as function of the architectural parameters. We observed that the

initial strategy of scaling accelerators and increasing parallelization was inefficient in

achieving scalable performance. This approach had inherent limitations, particularly in

its sequential image processing methodology.

After a closer look at the structure of feed-forward neural networks, we recognized

that a pipeline of accelerators could offer an interesting high-level optimization com-

plementary to the fine-grained one within individual accelerators. In Chapter 6, we

implemented this concept within a fixed pipeline scenario. Here, the number and order

of accelerators, along with their specific architectures and RAM sizes, were predeter-

mined. The objective of this approach was to optimize either throughput or latency

separately or jointly. In this optic, we developed dynamic programming solutions (as

well as integer linear models) that exactly solve the problem for each case. We tested

this approach on the Gemini accelerator and found that we could adjust efficiently the

neural network layers mappings to optimize the execution KPIs. The key to efficiency

lay in our ability to adapt layers or groups of layers to the parallelization of the Neural

Processing Units, rather than the entire neural network. This approach could further be

improved by fine-tuning the number of processing elements used within each accelera-

tor.

In Chapter 7, we expanded upon the promising pipeline strategy by introducing even

more flexibility into the pipeline’s design. This approach allowed us to customize the

pipeline’s structure, including the number of accelerators, their parallelization, arrange-

ment, and RAM sizes. We also introduced additional hardware-related performance

metrics that could be optimized within the pipeline. The objective is to identify an

140

optimal pipeline structure and layer mappings that enhanced various KPIs, all while

adhering to throughput constraints. This approach, illustrated on Gemini, enabled the

efficient optimization of various aspects, such as the minimization of processing ele-

ments within the entire circuit, area, power consumption, energy, and various combi-

nations of these KPIs. Notably, this novel pipeline solution outperformed the previous

approach that employed a single accelerator with a high number of processing elements.

If there are two key takeaways from this study of the Gemini pipeline, it is the ability to

achieve a throughput beyond what could be attained with a single accelerator, which is

particularly valuable for applications that demand exceptionally high throughput. Addi-

tionally, for applications that do not prioritize high throughput, it is possible to maintain

a suitable throughput while operating at low frequencies to reduce power consumption

(and energy consumption as a result).

This thesis has made contributions to both research and industry. In the industrial

context, during my thesis, I actively participated in the design and implementation of

a configurable neural network accelerator tailored for feed-forward neural network in-

ference, along with the development of an efficient KPI evaluation tool. This tool aids

customers in finding the appropriate architecture for their specific applications. From a

research perspective, while this prediction tool addresses an industrial need, it is based

on a strategy that can be adapted to other accelerator architectures. Additionally, the

pipeline optimization method we introduced in this work is a high-level approach with

the potential for adaptation to various accelerators beyond the Gemini project. These

two aspects have led to two publications, one submitted and one to be published [98],

as well as the presentation of a poster at GDR SOC2 2023.

As I conclude this thesis, I have come to realize that there are several opportunities

for further optimizing the hardware acceleration of neural network inference.

In terms of the accelerator’s architecture, although I could not explore it within the

scope of my thesis, the In-Memory Computing paradigm shows great promise for edge

applications due to its potential for low power consumption and high throughput. More-

over, it allows for finer control over the pixels being processed, potentially eliminating

the constraints posed by the current scheduling program that hinders our ability to ex-

ploit sparsity effectively.

Another area of improvement within the accelerator involves revisiting the quantization

process and finding more efficient hardware implementations for various quantization

techniques. It is worth mentioning that my PhD student colleagues at STMicroelectron-

ics have delved into these aspects in their own research.

Regarding coarse-grained optimization, especially within the context of the pipeline,

there is room for further research. It would be beneficial to investigate the adaptation of

this strategy to support jointly a multitude of neural networks, as well as its application

141

to other neural network layers, such as residual connections or even recurrent neural

networks.

I believe that continuing to optimize hardware at both the fine-grained and coarse-

grained levels represents the best approach, as it leverages the advantages of each.

142

REFERENCES
[1] A. AGNETIS, A. CIANCIMINO, M. L. and PIZZICHELLA, M. [1995], ‘Balanc-

ing flexible lines for car components assembly’, International Journal of Produc-

tion Research 33(2), 333–350.

URL: https://doi.org/10.1080/00207549508930152

[2] Aarno, D. and Engblom, J. [2015], Chapter 7 - dma: A concrete modeling

example, in D. Aarno and J. Engblom, eds, ‘Software and System Development

using Virtual Platforms’, Morgan Kaufmann, Boston, pp. 211–236.

URL: https://www.sciencedirect.com/science/article/pii/B978012800725900007X

[3] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghe-

mawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S.,

Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu,

Y. and Zheng, X. [2016], Tensorflow: A system for large-scale machine learning,

in ‘Proceedings of the 12th USENIX Conference on Operating Systems Design

and Implementation’, OSDI’16, USENIX Association, USA, p. 265–283.

[4] Abdelouahab, K., Pelcat, M., Sérot, J. and Berry, F. [2018], ‘Accelerating CNN

inference on fpgas: A survey’, CoRR abs/1806.01683.

URL: http://arxiv.org/abs/1806.01683

[5] Abdulkadirov, R., Lyakhov, P. and Nagornov, N. [2023], ‘Survey of optimization

algorithms in modern neural networks’, Mathematics 11(11).

URL: https://www.mdpi.com/2227-7390/11/11/2466

[6] Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Mohamed, N. A. and

Arshad, H. [2018], ‘State-of-the-art in artificial neural network applications: A

survey’, Heliyon 4(11).

[7] Alexandrescu, A., Agavriloaei, I. and Craus, M. [2011], A genetic algorithm for

mapping tasks in heterogeneous computing systems, in ‘15th International Con-

ference on System Theory, Control and Computing’, pp. 1–6.

[8] Alexandrescu, A. and Craus, M. [2010], Improving mapping heuristics in het-

erogeneous computing, in ‘Proceedings ECIT2010 6th European Conference on

Intelligent Systems and Technologies’, pp. 7–9.

143

REFERENCES

[9] Ali, N., Philippe, J.-M., Tain, B. and Coussy, P. [2021], Exploration and generation

of efficient fpga-based deep neural network accelerators, in ‘2021 IEEE Workshop

on Signal Processing Systems (SiPS)’, pp. 123–128.

[10] Álvarez-Miranda, E. and Pereira, J. [2019], ‘On the complexity of assembly line

balancing problems’, Computers & Operations Research 108, 182–186.

[11] Bacis, M., Natale, G., Del Sozzo, E. and Santambrogio, M. D. [2017], A pipelined

and scalable dataflow implementation of convolutional neural networks on fpga, in

‘2017 IEEE International Parallel and Distributed Processing Symposium Work-

shops (IPDPSW)’, pp. 90–97.

[12] Bain, N., Guizzetti, R., Taly, E., Oudrhiri, A., Paille, B., Urard, P. and Pétrot, F.

[2023], Quantization modes for neural network inference: Asic implementation

trade-offs, in ‘2023 International Joint Conference on Neural Networks (IJCNN)’,

pp. 01–08.

[13] Balasubramonian, R., Kahng, A. B., Muralimanohar, N., Shafiee, A. and Srinivas,

V. [2017], ‘Cacti 7: New tools for interconnect exploration in innovative off-chip

memories’, ACM Trans. Archit. Code Optim. 14(2).

URL: https://doi.org/10.1145/3085572

[14] Bao, G., Graeber, M. B. and Wang, X. [2020], Depthwise multiception convo-

lution for reducing network parameters without sacrificing accuracy, in ‘2020

16th International Conference on Control, Automation, Robotics and Vision

(ICARCV)’, pp. 747–752.

[15] Baybars, [1986], ‘A survey of exact algorithms for the simple assembly line bal-

ancing problem’, Management Science 32(8), 909–932.

URL: https://doi.org/10.1287/mnsc.32.8.909

[16] Bohm Agostini, N., Dong, S., Karimi, E., Torrents Lapuerta, M., Cano, J.,

Abellán, J. L. and Kaeli, D. [2020], Design space exploration of accelerators

and end-to-end dnn evaluation with tflite-soc, in ‘2020 IEEE 32nd International

Symposium on Computer Architecture and High Performance Computing (SBAC-

PAD)’, pp. 10–19.

[17] Boysen, N. and Fliedner, M. [2008], ‘A versatile algorithm for assembly line bal-

ancing’, European Journal of Operational Research 184(1), 39–56.

URL: https://www.sciencedirect.com/science/article/pii/S0377221706011362

[18] Boysen, N., Fliedner, M. and Scholl, A. [2007], ‘A classification of assembly line

balancing problems’, European Journal of Operational Research 183(2), 674–

144

REFERENCES

693.

URL: https://www.sciencedirect.com/science/article/pii/S0377221706010435

[19] Brown, G., Tenace, V. and Gaillardon, P.-E. [2021], Nemo-cnn: An efficient near-

memory accelerator for convolutional neural networks, in ‘2021 IEEE 32nd Inter-

national Conference on Application-specific Systems, Architectures and Proces-

sors (ASAP)’, pp. 57–60.

[20] Brown, R. [2020], ‘Donald o. hebb and the organization of behavior: 17 years in

the writing’, Molecular Brain 13.

[21] BURNS, L. D. and DAGANZO, C. F. [1987], ‘Assembly line job sequencing prin-

ciples’, International Journal of Production Research 25(1), 71–99.

URL: https://doi.org/10.1080/00207548708919824

[22] Cai, X., Wang, Y., Ma, X., Han, Y. and Zhang, L. [2022], Deepburning-seg: Gen-

erating dnn accelerators of segment-grained pipeline architecture, in ‘2022 55th

IEEE/ACM International Symposium on Microarchitecture (MICRO)’, pp. 1396–

1413.

[23] Carballo-Hernández, W., Pelcat, M., Bhattacharyya, S. S., Galán, R. C. and Berry,

F. [2023], ‘Flydeling: Streamlined performance models for hardware acceleration

of cnns through system identification’, ACM Trans. Model. Perform. Eval. Com-

put. Syst. 8(3).

URL: https://doi.org/10.1145/3594870

[24] Chakradhar, S., Sankaradass, M., Jakkula, V. and Cadambi, H. [2010], A dynami-

cally configurable coprocessor for convolutional neural networks, pp. 247–257.

[25] Chen, Y.-H., Yang, T.-J., Emer, J. and Sze, V. [2019], ‘Eyeriss v2: A flexible

accelerator for emerging deep neural networks on mobile devices’, IEEE Journal

on Emerging and Selected Topics in Circuits and Systems 9(2), 292–308.

[26] Cho, D., Tai, Y.-W. and Kweon, I. S. [2018], ‘Deep convolutional neural network

for natural image matting using initial alpha mattes’, IEEE Transactions on Image

Processing 28(3), 1054–1067.

[27] Choi, S. C. and Youn, H. Y. [2005], Task mapping algorithm for heterogeneous

computing system allowing high throughput and load balancing, in V. S. Sun-

deram, G. D. van Albada, P. M. A. Sloot and J. Dongarra, eds, ‘Computational

Science – ICCS 2005’, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 1000–

1003.

145

REFERENCES

[28] Chollet, F. [2016], ‘Xception: Deep learning with depthwise separable convolu-

tions’, CoRR abs/1610.02357.

URL: http://arxiv.org/abs/1610.02357

[29] Choon, L. S., Samsudin, A. and Budiarto, R. [2004], ‘Lightweight and cost-

effective mpeg video encryption’, Proc. of Information and Communication Tech-

nologies: From Theory to Applications pp. 525–526.

[30] Cisco [2016], Complete visual networking index (vni) forecast, cisco, june 2016,

Technical report, Cisco.

[31] Cormen, T. H., Leiserson, C. E., Rivest, R. L. and Stein, C. [2022], Introduction

to algorithms, MIT press.

[32] Coussy, P., Gajski, D. D., Meredith, M. and Takach, A. [2009], ‘An introduction

to high-level synthesis’, IEEE Design Test of Computers 26(4), 8–17.

[33] Dananjaya, M. [2015], ‘Vlsi power in a nutshell’.

[34] Dao, X.-Q. [2023], ‘Performance comparison of large language models on vnhsge

english dataset: Openai chatgpt, microsoft bing chat, and google bard’, arXiv

preprint arXiv:2307.02288 .

[35] Darwish, T. and Bayoumi, M. [2005], 5 - trends in low-power vlsi design, in

W.-K. CHEN, ed., ‘The Electrical Engineering Handbook’, Academic Press,

Burlington, pp. 263–280.

URL: https://www.sciencedirect.com/science/article/pii/B9780121709600500220

[36] Davis, L. [1987], ‘Genetic algorithms and simulated annealing’.

URL: https://www.osti.gov/biblio/5037281

[37] Deng, l., Li, J., Huang, J.-T., Yao, K., Yu, D., Seide, F., Seltzer, M., Zweig, G., He,

X., Williams, J., Gong, Y. and Acero, A. [2013], Recent advances in deep learning

for speech research at microsoft, pp. 8604–8608.

[38] Desoli, G., Chawla, N., Boesch, T., Singh, S., Guidetti, E., Ambroggi, F., Majo,

T., Zambotti, P., Ayodhyawasi, M., Singh, H. and Aggarwal, N. [2017], 14.1 a

2.9tops/w deep convolutional neural network soc in fd-soi 28nm for intelligent

embedded systems, pp. 238–239.

[39] Du, Z., Fasthuber, R., Chen, T., Ienne, P., Li, L., Luo, T., Feng, X., Chen, Y. and

Temam, O. [2015], ‘Shidiannao: Shifting vision processing closer to the sensor’,

SIGARCH Comput. Archit. News 43(3S), 92–104.

URL: https://doi.org/10.1145/2872887.2750389

146

REFERENCES

[40] Du, Z., Fasthuber, R., Chen, T., Ienne, P., Luo, T., Feng, X., Chen, Y. and Temam,

O. [2015], ‘Shidiannao’, ACM SIGARCH Computer Architecture News 43, 92–

104.

[41] Elmaghraby, S. E. [2003], Operations research, in R. A. Meyers, ed., ‘Encyclope-

dia of Physical Science and Technology (Third Edition)’, third edition edn, Aca-

demic Press, New York, pp. 193–218.

URL: https://www.sciencedirect.com/science/article/pii/B0122274105005135

[42] Erdem, A., Silvano, C., Boesch, T., Ornstein, A. C., pal Singh, S. and Desoli,

G. S. [2020], ‘Runtime design space exploration and mapping of dcnns for the

ultra-low-power orlando soc’, ACM Transactions on Architecture and Code Opti-

mization (TACO) 17, 1 – 25.

[43] Erel, E. and Sarin, S. C. [1998], ‘A survey of the assembly line balancing proce-

dures’, Production Planning & Control 9(5), 414–434.

URL: https://doi.org/10.1080/095372898233902

[44] FUMIO AKAGI, H. O. and KIKUCHI, S. [1983], ‘A method for assembly line

balancing with more than one worker in each station’, International Journal of

Production Research 21(5), 755–770.

URL: https://doi.org/10.1080/00207548308942409

[45] Gearhart, J. L., Adair, K. L., Durfee, J. D., Jones, K. A., Martin, N. and Detry,

R. J. [2013], ‘Comparison of open-source linear programming solvers.’.

URL: https://www.osti.gov/biblio/1104761

[46] Geirhos, R., Janssen, D. H. J., Schütt, H. H., Rauber, J., Bethge, M. and Wich-

mann, F. A. [2018], ‘Comparing deep neural networks against humans: object

recognition when the signal gets weaker’.

[47] Gholami, A., Kim, S., Dong, Z., Yao, Z., Mahoney, M. W. and Keutzer, K. [2021],

‘A survey of quantization methods for efficient neural network inference’.

[48] Girshick, R., Donahue, J., Darrell, T. and Malik, J. [2014], Rich feature hier-

archies for accurate object detection and semantic segmentation, in ‘2014 IEEE

Conference on Computer Vision and Pattern Recognition’, pp. 580–587.

[49] Gokhale, V., Jin, J., Dundar, A., Martini, B. and Culurciello, E. [2014], A 240

g-ops/s mobile coprocessor for deep neural networks, in ‘2014 IEEE Conference

on Computer Vision and Pattern Recognition Workshops’, pp. 696–701.

[50] Goodfellow, I., Bengio, Y. and Courville, A. [2016], Deep Learning, MIT Press,

Cambridge, MA.

147

REFERENCES

[51] Hagberg, A., Swart, P. J. and Schult, D. A. [2008], ‘Exploring network structure,

dynamics, and function using networkx’.

URL: https://www.osti.gov/biblio/960616

[52] Haris, J., Gibson, P., Cano, J., Agostini, N. B. and Kaeli, D. R. [2021], ‘Secda:

Efficient hardware/software co-design of fpga-based dnn accelerators for edge in-

ference’, 2021 IEEE 33rd International Symposium on Computer Architecture and

High Performance Computing (SBAC-PAD) pp. 33–43.

URL: https://api.semanticscholar.org/CorpusID:238253107

[53] Hassani, I. K., Pellegrini, T. and Masquelier, T. [2021], ‘Dilated convolution with

learnable spacings’, CoRR abs/2112.03740.

URL: https://arxiv.org/abs/2112.03740

[54] He, K., Zhang, X., Ren, S. and Sun, J. [2015a], ‘Deep residual learning for image

recognition’, CoRR abs/1512.03385.

URL: http://arxiv.org/abs/1512.03385

[55] He, K., Zhang, X., Ren, S. and Sun, J. [2015b], ‘Deep residual learning for image

recognition’.

[56] He, Y. and Xiao, L. [2023], ‘Structured pruning for deep convolutional neural

networks: A survey’.

[57] Held, M., Karp, R. M. and Shareshian, R. [1963], ‘Assembly-line balanc-

ing—dynamic programming with precedence constraints’, Operations research

11(3), 442–459.

[58] High-Level Synthesis(HLS) Blue Book [n.d.].

https://resources.sw.siemens.com/en-US/

e-book-high-level-synthesis-hls-blue-book.

[59] Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r., Jaitly, N., Senior, A.,

Vanhoucke, V., Nguyen, P., Sainath, T. N. and Kingsbury, B. [2012], ‘Deep neural

networks for acoustic modeling in speech recognition: The shared views of four

research groups’, IEEE Signal Processing Magazine 29(6), 82–97.

[60] Horowitz, M. [2014], 1.1 computing’s energy problem (and what we can do about

it), in ‘2014 IEEE International Solid-State Circuits Conference Digest of Techni-

cal Papers (ISSCC)’, pp. 10–14.

[61] Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T.,

Andreetto, M. and Adam, H. [2017], ‘Mobilenets: Efficient convolutional neural

148

https://resources.sw.siemens.com/en-US/e-book-high-level-synthesis-hls-blue-book
https://resources.sw.siemens.com/en-US/e-book-high-level-synthesis-hls-blue-book

REFERENCES

networks for mobile vision applications’, CoRR abs/1704.04861.

URL: http://arxiv.org/abs/1704.04861

[62] Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J. and Keutzer,

K. [2016], ‘Squeezenet: Alexnet-level accuracy with 50x fewer parameters and

¡0.5mb model size’.

[63] Ivakhnenko, A. G. and Lapa, V. G. [1965], Cybernetic Predicting Devices, CCM

Information Corporation.

[64] Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., Adam, H. and

Kalenichenko, D. [2018], Quantization and training of neural networks for effi-

cient integer-arithmetic-only inference, in ‘Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR)’.

[65] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadar-

rama, S. and Darrell, T. [2014], Caffe: Convolutional architecture for fast feature

embedding, in ‘Proceedings of the 22nd ACM International Conference on Mul-

timedia’, MM ’14, Association for Computing Machinery, New York, NY, USA,

p. 675–678.

URL: https://doi.org/10.1145/2647868.2654889

[66] Jiao, A. [2020], An intelligent chatbot system based on entity extraction using rasa

nlu and neural network, in ‘Journal of physics: conference series’, Vol. 1487, IOP

Publishing, p. 012014.

[67] Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates,

S., Bhatia, S., Boden, N., Borchers, A., Boyle, R., luc Cantin, P., Chao, C., Clark,

C., Coriell, J., Daley, M., Dau, M., Dean, J., Gelb, B., Ghaemmaghami, T. V.,

Gottipati, R., Gulland, W., Hagmann, R., Ho, C. R., Hogberg, D., Hu, J., Hundt,

R., Hurt, D., Ibarz, J., Jaffey, A., Jaworski, A., Kaplan, A., Khaitan, H., Koch,

A., Kumar, N., Lacy, S., Laudon, J., Law, J., Le, D., Leary, C., Liu, Z., Lucke,

K., Lundin, A., MacKean, G., Maggiore, A., Mahony, M., Miller, K., Nagarajan,

R., Narayanaswami, R., Ni, R., Nix, K., Norrie, T., Omernick, M., Penukonda,

N., Phelps, A. and Ross, J. [2017], In-datacenter performance analysis of a tensor

processing unit.

URL: https://arxiv.org/pdf/1704.04760.pdf

[68] Kedia, R., Goel, S., Balakrishnan, M., Paul, K. and Sen, R. [2021], ‘Design space

exploration of fpga-based system with multiple dnn accelerators’, IEEE Embed-

ded Systems Letters 13(3), 114–117.

149

REFERENCES

[69] Kim, B., Lee, S., Trivedi, A. R. and Song, W. J. [2020], ‘Energy-efficient accel-

eration of deep neural networks on realtime-constrained embedded edge devices’,

IEEE Access 8, 216259–216270.

[70] Krizhevsky, A., Nair, V. and Hinton, G. [2009], ‘The cifar-10 dataset’, https:

//www.cs.toronto.edu/kriz/cifar.html.

[71] Krizhevsky, A., Sutskever, I. and Hinton, G. E. [2012], Imagenet classification

with deep convolutional neural networks, in F. Pereira, C. Burges, L. Bottou

and K. Weinberger, eds, ‘Advances in Neural Information Processing Systems’,

Vol. 25, Curran Associates, Inc.

URL: https://proceedings.neurips.cc/paperf iles/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b−
Paper.pdf

[72] Lahti, S., Sjovall, P., Vanne, J. and Hämäläinen, T. [2018], ‘Are we there yet? a

study on the state of high-level synthesis’, IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems PP, 1–1.

[73] Le Cun, Y., Jackel, L., Boser, B., Denker, J., Graf, H., Guyon, I., Henderson, D.,

Howard, R. and Hubbard, W. [1989], ‘Handwritten digit recognition: applications

of neural network chips and automatic learning’, IEEE Communications Magazine

27(11), 41–46.

[74] LeCun, C. J. C. Y. and Cortes, C. [1998], ‘The mnist database of handwritten

digits’, http://yann.lecun.com/exdb/mnist/.

[75] LeCun, Y. [2019], 1.1 deep learning hardware: Past, present, and future, in ‘2019

IEEE International Solid- State Circuits Conference - (ISSCC)’, pp. 12–19.

[76] LeCun, Y., Bengio, Y. and Hinton, G. [2015], ‘Deep learning’, nature

521(7553), 436–444.

[77] LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard,

W. and Jackel, L. D. [1989], ‘Backpropagation applied to handwritten zip code

recognition’, Neural Computation 1(4), 541–551.

[78] LeCun, Y. and Cortes, C. [2010], ‘MNIST handwritten digit database’.

URL: http://yann.lecun.com/exdb/mnist/

[79] Lee, J., Kim, C., Kang, S., Shin, D., Kim, S. and Yoo, H.-J. [2019], ‘Unpu: An

energy-efficient deep neural network accelerator with fully variable weight bit pre-

cision’, IEEE Journal of Solid-State Circuits 54(1), 173–185.

150

https://www.cs.toronto.edu/kriz/cifar.html
https://www.cs.toronto.edu/kriz/cifar.html
http://yann.lecun.com/exdb/mnist/

REFERENCES

[80] Li, Z., Zhang, Y., Ding, A., Zhou, H. and Liu, C. [2021], ‘Efficient algorithms

for task mapping on heterogeneous cpu/gpu platforms for fast completion time’,

Journal of Systems Architecture 114, 101936.

URL: https://www.sciencedirect.com/science/article/pii/S1383762120301934

[81] Liang, X., Hu, P., Zhang, L., Sun, J. and Yin, G. [2019], ‘Mcfnet: Multi-layer

concatenation fusion network for medical images fusion’, IEEE Sensors Journal

19(16), 7107–7119.

[82] Liu, Z., Xiao, X., Li, C., Ma, S. and Rangyu, D. [2022], ‘Optimizing convo-

lutional neural networks on multi-core vector accelerator’, Parallel Computing

112, 102945.

URL: https://www.sciencedirect.com/science/article/pii/S0167819122000424

[83] Liua, Z., P.Luo, Wang, X. and TANG, X. [2010], ‘Large-scale celeb-

faces attributes (celeba) dataset’, https://mmlab.ie.cuhk.edu.hk/

projects/CelebA.html.

[84] Luling, R. and Monien, B. [1992], Load balancing for distributed branch bound

algorithms, in ‘Proceedings Sixth International Parallel Processing Symposium’,

pp. 543–548.

[85] Maleki, M. A., Kamal, M. and Afzali-Kusha, A. [2022], ‘Heterogeneous multi-

core array-based dnn accelerator’.

[86] Manna, Z. and Waldinger, R. [1987], ‘The origin of a binary-search paradigm’,

Science of Computer Programming 9(1), 37–83.

URL: https://www.sciencedirect.com/science/article/pii/0167642387900256

[87] Martin, G. and Smith, G. [2009], ‘High-level synthesis: Past, present, and future’,

IEEE Design Test of Computers 26, 18–25.

[88] Mayer, R. E. [2014], ‘Introduction to multimedia learning.’.

[89] Mei, L., Liu, H., Wu, T., Sumbul, H. E., Verhelst, M. and Beigne, E. [2022], A uni-

form latency model for dnn accelerators with diverse architectures and dataflows,

in ‘2022 Design, Automation,Test in Europe Conference, Exhibition (DATE)’,

pp. 220–225.

[90] Merolla, P., Arthur, J., Alvarez-Icaza, R., Cassidy, A., Sawada, J., Akopyan, F.,

Jackson, B., Imam, N., Guo, C., Nakamura, Y., Brezzo, B., Vo, I., Esser, S.,

Appuswamy, R., Taba, B., Amir, A., Flickner, M., Risk, W., Manohar, R. and

Modha, D. [2014], ‘Artificial brains a million spiking-neuron integrated circuit

151

https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

REFERENCES

with a scalable communication network and interface’, Science (New York, N.Y.)

345, 668–673.

[91] Mo, H., Zhu, W., Hu, W., Wang, G., Li, Q., Li, A., Yin, S., Wei, S. and Liu, L.

[2021], 9.2 a 28nm 12.1 tops/w dual-mode cnn processor using effective-weight-

based convolution and error-compensation-based prediction, in ‘2021 IEEE Inter-

national Solid-State Circuits Conference (ISSCC)’, Vol. 64, IEEE, pp. 146–148.

[92] Moons, B., Uytterhoeven, R., Dehaene, W. and Verhelst, M. [2017], 14.5 envi-

sion: A 0.26-to-10tops/w subword-parallel dynamic-voltage-accuracy-frequency-

scalable convolutional neural network processor in 28nm fdsoi, in ‘2017 IEEE

International Solid-State Circuits Conference (ISSCC)’, IEEE, pp. 246–247.

[93] Moons, B. and Verhelst, M. [2016], ‘An energy-efficient precision-scalable con-

vnet processor in a 40-nm cmos’, IEEE Journal of Solid-State Circuits PP, 1–12.

[94] Mou, C., Wang, Q. and Zhang, J. [2022], ‘Deep generalized unfolding networks

for image restoration’.

[95] Navabi, Z. and Massoumi, M. [1991], ‘Investigating simulation of hardware at

various levels of abstraction and timing back-annotation of dataflow descriptions’,

SIMULATION 57(5), 321–332.

URL: https://doi.org/10.1177/003754979105700511

[96] Ni, Y., Kim, Y., Rosing, T. and Imani, M. [2022], Online performance and power

prediction for edge tpu via comprehensive characterization, in ‘Proceedings of the

2022 Conference & Exhibition on Design, Automation & Test in Europe’, DATE

’22, European Design and Automation Association, Leuven, BEL, p. 612–615.

[97] Odema, M., Bouzidi, H., Ouarnoughi, H., Niar, S. and Al Faruque, M. A. [2023],

‘Magnas: A mapping-aware graph neural architecture search framework for het-

erogeneous mpsoc deployment’, ACM Trans. Embed. Comput. Syst. 22(5s).

URL: https://doi.org/10.1145/3609386

[98] Oudrhiri, A., Taly, E., Bain, N., Munier-Kordon, A., Guizzetti, R. and Urard, P.

[2023], Performance Modeling and Estimation of a Configurable Output Station-

ary Neural Network Accelerator. working paper or preprint, in press.

URL: https://hal.science/hal-04168803

[99] Palmer, J. D. and McAddis, N. [2019], Documentation as a cross-cutting concern

of software, in ‘Proceedings of the 37th ACM International Conference on the

Design of Communication’, SIGDOC ’19, Association for Computing Machinery,

152

REFERENCES

New York, NY, USA.

URL: https://doi.org/10.1145/3328020.3353949

[100] Parashar, A., Rhu, M., Mukkara, A., Puglielli, A., Venkatesan, R., Khailany,

B., Emer, J., Keckler, S. W. and Dally, W. J. [2017], ‘Scnn: An accelerator for

compressed-sparse convolutional neural networks’.

[101] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,

T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E. Z.,

DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai,

J. and Chintala, S. [2019], ‘Pytorch: An imperative style, high-performance deep

learning library’, CoRR abs/1912.01703.

URL: http://arxiv.org/abs/1912.01703

[102] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., VanderPlas, J., Passos, A.,

Cournapeau, D., Brucher, M., Perrot, M. and Duchesnay, E. [2012], ‘Scikit-learn:

Machine learning in python’, CoRR abs/1201.0490.

URL: http://arxiv.org/abs/1201.0490

[103] Peemen, M., Setio, A., Mesman, B. and Corporaal, H. [2013], Memory-centric

accelerator design for convolutional neural networks, pp. 13–19.

[104] Ramachandran, P., Zoph, B. and Le, Q. V. [2017], ‘Searching for activation func-

tions’, CoRR abs/1710.05941.

URL: http://arxiv.org/abs/1710.05941

[105] Ren, H. [2014], A brief introduction on contemporary high-level synthesis, in

‘2014 IEEE International Conference on IC Design Technology’, pp. 1–4.

[106] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,

Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C. and Fei-Fei, L. [2015], ‘Ima-

genet large scale visual recognition challenge’, International Journal of Computer

Vision 115(3), 211–252.

URL: https://doi.org/10.1007/s11263-015-0816-y

[107] Sayal, A., Fathima, S., Nibhanupudi, S. T. and Kulkarni, J. P. [2021], ‘Compac:

Compressed time-domain, pooling-aware convolution cnn engine with reduced

data movement for energy-efficient ai computing’, IEEE Journal of Solid-State

Circuits 56(7), 2205–2220.

[108] Scholl, A. and Becker, C. [2006], ‘State-of-the-art exact and heuristic solution

procedures for simple assembly line balancing’, European Journal of Operational

153

REFERENCES

Research 168(3), 666–693. Balancing Assembly and Transfer lines.

URL: https://www.sciencedirect.com/science/article/pii/S0377221704004795

[109] Shafiee, A., Nag, A., Muralimanohar, N., Balasubramonian, R., Strachan, J. P.,

Hu, M., Williams, R. S. and Srikumar, V. [2016], Isaac: A convolutional neu-

ral network accelerator with in-situ analog arithmetic in crossbars, in ‘2016

ACM/IEEE 43rd Annual International Symposium on Computer Architecture

(ISCA)’, pp. 14–26.

[110] Shahshahani, M. and Bhatia, D. [2022], Ppa based cnn architecture explorer, in

‘2022 IEEE 13th Latin America Symposium on Circuits and System (LASCAS)’,

pp. 01–04.

[111] Shanshi Huang, Shimeng Yu, X. P. [2019], ‘Neurosim v1’.

[112] Shen, L., Margolies, L., Rothstein, J., Fluder, E., McBride, R. and Sieh, W.

[2019], ‘Deep learning to improve breast cancer detection on screening mammog-

raphy’, Scientific Reports 9, 1–12.

[113] Shipley, C. and Jodis, S. [2003], Programming languages classification, in

H. Bidgoli, ed., ‘Encyclopedia of Information Systems’, Elsevier, New York,

pp. 545–552.

URL: https://www.sciencedirect.com/science/article/pii/B0122272404001386

[114] Simonyan, K. and Zisserman, A. [2014], Two-stream convolutional networks

for action recognition in videos, in Z. Ghahramani, M. Welling, C. Cortes,

N. Lawrence and K. Weinberger, eds, ‘Advances in Neural Information Process-

ing Systems’, Vol. 27, Curran Associates, Inc.

URL: https://proceedings.neurips.cc/paperf iles/paper/2014/file/00ec53c4682d36f5c4359f4ae7bd7ba1−
Paper.pdf

[115] Simonyan, K. and Zisserman, A. [2015], ‘Very deep convolutional networks for

large-scale image recognition’, arXiv preprint arXiv:1409.1556 .

[116] Soutner, D. and Müller, L. [2013], Application of lstm neural networks in lan-

guage modelling, in I. Habernal and V. Matoušek, eds, ‘Text, Speech, and Dia-

logue’, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 105–112.

[117] Symons, A., Mei, L., Colleman, S., Houshmand, P., Karl, S. and Verhelst, M.

[2022], ‘Towards heterogeneous multi-core accelerators exploiting fine-grained

scheduling of layer-fused deep neural networks’.

154

REFERENCES

[118] Sze, V., , Chen, Y.-H., Yang, T.-Y. and Emer, J. [2020], Efficient Processing of

Deep Neural Networks, Synthesis Lectures on Computer Architecture, Morgan

and Claypool.

[119] Sze, V., Chen, Y., Yang, T. and Emer, J. S. [2017], ‘Efficient processing of deep

neural networks: A tutorial and survey’, CoRR abs/1703.09039.

URL: http://arxiv.org/abs/1703.09039

[120] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,

Vanhoucke, V. and Rabinovich, A. [2014], ‘Going deeper with convolutions’.

[121] Tang, T., Li, S., Nai, L., Jouppi, N. and Xie, Y. [2021], Neurometer: An inte-

grated power, area, and timing modeling framework for machine learning accel-

erators industry track paper, in ‘2021 IEEE International Symposium on High-

Performance Computer Architecture (HPCA)’, pp. 841–853.

[122] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,

Kaiser, Ł. and Polosukhin, I. [2017], ‘Attention is all you need’, Advances in

neural information processing systems 30.

[123] Weber, O., Min, D., Villaret, A., Park, J., Lee, I., Vandenbossche, E., Kim, D.,

Yun, J., Park, J., Lee, M., Kang, J., Lee, H., Choi, Y., Kim, I., Kim, J., Kedar, D.,

Janardan, D. K., Haendler, S., Elghouli, S., Puget, S., Bernicot, C., Bernard, E.,

Wacquant, F., Nimsgern, F., Choi, J., Maeda, S., Lee, J. and Arnaud, F. [2022],

18nm fdsoi enhanced device platform for ulp/ull mcus, in ‘2022 International

Electron Devices Meeting (IEDM)’, pp. 27.2.1–27.2.4.

[124] Wu, Y. N., Emer, J. S. and Sze, V. [2019], Accelergy: An architecture-level

energy estimation methodology for accelerator designs, in ‘2019 IEEE/ACM In-

ternational Conference on Computer-Aided Design (ICCAD)’, pp. 1–8.

[125] Wu, Y. N., Sze, V. and Emer, J. S. [2020], An architecture-level energy and area

estimator for processing-in-memory accelerator designs, in ‘2020 IEEE Interna-

tional Symposium on Performance Analysis of Systems and Software (ISPASS)’,

pp. 116–118.

[126] Yang, M., Wang, S., Bakita, J., Vu, T., Smith, F. D., Anderson, J. H. and Frahm,

J.-M. [2019], Re-thinking cnn frameworks for time-sensitive autonomous-driving

applications: Addressing an industrial challenge, in ‘2019 IEEE Real-Time and

Embedded Technology and Applications Symposium (RTAS)’, pp. 305–317.

[127] Yi, Q., Sun, H. and Fujita, M. [2021], ‘FPGA based accelerator for neural net-

works computation with flexible pipelining’, CoRR abs/2112.15443.

URL: https://arxiv.org/abs/2112.15443

155

REFERENCES

[128] Zhang, C., Li, P., Sun, G., Guan, Y., Xiao, B. and Cong, J. [2015], Optimizing

fpga-based accelerator design for deep convolutional neural networks, pp. 161–

170.

[129] Zhang, J. X., Yordanov, B., Gaunt, A., Wang, M. X., Dai, P., Chen, Y.-J., Zhang,

K., Fang, J. Z., Dalchau, N., Li, J. et al. [2021], ‘A deep learning model for pre-

dicting next-generation sequencing depth from dna sequence’, Nature communi-

cations 12(1), 4387.

[130] Zhang, K., Zhang, Z., Li, Z. and Qiao, Y. [2016], ‘Joint face detection and align-

ment using multitask cascaded convolutional networks’, IEEE Signal Processing

Letters 23(10), 1499–1503.

[131] Zhao, Y., Xia, X. and Togneri, R. [2019], ‘Applications of deep learning to audio

generation’, IEEE Circuits and Systems Magazine 19(4), 19–38.

[132] Zhao, Y., Yu, Q., Zhou, X., Zhou, X., Li, X. and Wang, C. [2016], Pie: A

pipeline energy-efficient accelerator for inference process in deep neural networks,

in ‘2016 IEEE 22nd International Conference on Parallel and Distributed Systems

(ICPADS)’, pp. 1067–1074.

[133] Zhao, Z., Kwon, H., Kuhar, S., Sheng, W., Mao, Z. and Krishna, T. [2019],

mrna: Enabling efficient mapping space exploration for a reconfiguration neural

accelerator, in ‘2019 IEEE International Symposium on Performance Analysis of

Systems and Software (ISPASS)’, pp. 282–292.

[134] Zhong, G., Dubey, A., Tan, C. and Mitra, T. [2018], ‘Synergy: A HW/SW

framework for high throughput cnns on embedded heterogeneous soc’, CoRR

abs/1804.00706.

URL: http://arxiv.org/abs/1804.00706

[135] Zhou, G., Zhou, J. and Lin, H. [2018], Research on nvidia deep learning accelera-

tor, in ‘2018 12th IEEE International Conference on Anti-counterfeiting, Security,

and Identification (ASID)’, pp. 192–195.

[136] Zhou, H. and Liu, C. [2014], ‘Task mapping in heterogeneous embedded systems

for fast completion time’, 2014 International Conference on Embedded Software

(EMSOFT) pp. 1–10.

URL: https://api.semanticscholar.org/CorpusID:14574851

[137] Zhou, P., Ma, Y., Zhou, Q. and Hong, X. [2007], Thermal effects with leakage

power considered in 2d/3d floorplanning, pp. 338 – 343.

156

Appendices

157

Appendix A

Gemini 1 Testchip P18
During the project of implementing Gemini-1 on the new p18 technology, which under-

went testing for two years, several tasks were completed, including:

• Delivery of the gate netlist of Gemini-1 test-chip accelerator: it includes some

modifications that has to be done in order to test the new STMicroelectronics

technology. The main modification was to implement an auto test that consists

of loading an image of a handwritten digit from the MNIST [78] data-set and

executes a neural network that recognize the digit and check if the result is correct.

• Use synthesized latches to model RAMS unavailable in this technology.

• Add a design to test the logic (design for testability).

• Simulations:

– Functional at C++ level.

– Functional at RTL level.

– Functional at gates level.

– Functional at back-annotated gates level after placement and routing.

– Generate test vectors by automatic test pattern generation tools for the design

for testability to test stuck at and transition faults.

• Follow the test of the chip:

– Functional at different voltages and frequencies.

– Stuck at faults.

– Leakage and power consumption.

– Yields.

– Identifications of bugs on the circuits and technology issues.

158

Appendix B

Dynamic program to Optimize the Latency
Lat2 for a Given Throughput Using States
Representation in the Fixed Hardware Sce-
nario

The algorithm that we are describing is equivalent to the one presented in Subsection

6.7.2. The inputs and outputs remain unchanged.

M(i, g, h), (i, g, h) ∈ [0, n − 1] × [0, ℓ − 1] × [0, ℓ − 1] is defined as the minimum

latency of the pipeline system from G0 to Gi assuming that Gi processes the layers Lg

to Lh and ∀i′, 0 ≤ i′ < i, Gi′ processes its layers in less than the upper bound period

P ⋆ cycles (i.e pi′,π ≤ P). M(i, g, h) is computed as follows:

• M(i, g, h) = +∞ if:

– pi,[g,h] > P ⋆

– K̂i,[g,h[> Ki if g ̸= h and sj > Ki otherwise.

– l− j > i > j. This condition correspond to mapping properties (presented in

Section 6.2.4);

• M(0, g, h) = p0,[g,h];

• M(i, g, h) = minj∈[0,g−1](M(i− 1, j, g − 1)) + pi,[g,h] for i > 0.

The latency Lat2 of the system is then given by minj∈[0,ℓ−1] Mn,j,ℓ−1. The mapping

π is obtained by backtracking which layer set [Lg, Lh], (g, h) ∈ [0, ℓ − 1] was min-

imizing M(i, g, h),∀i ∈ [0, n − 2]. Finally, the throughput is obtained by T (π) =

mini∈[0,n−1]
1

pi,π

159

Appendix C

MPAR Choice For Gemini Pipeline
As a reminder, Equation 5.2 in Section 5.5.1 shows that the latency, when the NN has

convolution layers, is sensitive to MPAR. Intuitively, it is evident that the convolution

latency remains unaltered if M × k ≤ MPAR < (k + 1)M , with, k being a constant

integer. Consequently, MPAR reaches an optimum when M is a multiple of MPAR.

Therefore, the selection of MPAR must be made from the divisors of M for each layer.

Area and power do not have a particular behavior that could limit the MPAR choice.

160

Appendix D

Dynamic Program to Optimize φ for a Given
Throughput Using States Representation in
the Non-fixed Hardware Scenario

The inputs and outputs of the algorithm are identical to the ones described in Section

7.6. For clarity purposes and without loss of generality φ will be considered as the

NPU area aNPU . Let us define M(g, h), (g, h) ∈ E = {[0, ℓ − 1]2g ≤ h} the area of

all the pipeline system processing the layers L0 to Lh assuming that [Lg, Lh] are pro-

cessed on the last NPU. This NPU has N̂([g, h], P ⋆) PEs and the associated RAM has

K̂([g, h]) KBs). Additionally, all layers [L0, Lg] are processed on NPUs that complete

their processing within P ⋆ cycles. M(g, h) can be computed as follows:

• For g = 0 and h ≤ ℓ − 1: M(0, h) = a0,NPU(π0,h) where π0 is the allocation

where ∀(j, j′) ∈ [0, h]2, π(j) = π(j′) = 0. The number of PEs of NPU G0 is

equal to N̂([0, h], P ⋆).

• For 0 < g ≤ h− 1 and h ≤ ℓ− 1:

M(g, h) = minj∈[0,g−1](M(j, g − 1)) + ai,NPU(πg,h) where πg,h is the allocation

where ∀(j, j′) ∈ [g, h]2, π(j) = π(j′) = i. The number of PEs of the NPU Gi is

equal to N̂i([g, h], P ⋆). The index i here is arbitrary, as the number of PEs is not

fixed.

The minimum NPUs area of the system processing all the layers [L0, Lℓ − 1] is given

by ming∈[0,ℓ−1]N(g, ℓ− 1). The NPUs used, their processing elements number and the

layers’ allocation are obtained backtracking the minimums at each step. The system by

construction produces one inference in less than P ⋆ cycles.

161

Appendix E

Optimizing the Latency Lat2 for a Given Through-
put in The Non-fixed Hardware Scenario Us-
ing Gemini NPUs

In this paragraph, we focus on optimizing, for a given throughput, the latency in the

case where fmaps are processed sequentially (as if we were using a single NPU). As

reminder, the latency Lat2 is computed summing the execution time of all NPUs:

Lat2(π) =
∑n−1

i=0 pi,π. We illustrate this study on the MobileNet network (Figure 2.13).

We observe that for high throughput (small load) constraints, one single NPU can not

meet this constraint (below 27 000 cycles). However, as soon as the single-NPU so-

lution meets the throughput constraint, it is chosen by the algorithm. This is logical

because maximizing latency occurs when all layers are placed on a single NPU (intu-

ited in Subsection 6.3.2) to avoid the cycle cost of adding additional NPUs. Thus, for

optimizing the latency, the pipeline is useful only if the single NPU solution cannot

achieve its throughput objective. Note that the stair-shaped curves are a result of using

ceiling operations (Subsection 7.7.1)

P =

M
in

 L
at

 i
n

cy
cl

es

MobilenetN
N Mobilenet

2

Fig. E.1 Latency under throughput constraints on Mobilenet

162

	Cover
	ABSTRACT
	Resumé
	ACKNOWLEDGEMENT
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF LISTINGS
	LIST OF TERMS AND ABBREVIATIONS

	Introduction
	Context and Contributions
	Dissertation organization

	Introduction to Neural Networks
	Neural Networks History
	Neural Networks Overview
	Inputs and Outputs
	Neural Networks Layers Connection
	Neural Network Layers Supported
	Non-linear Activation
	Training VS Inference

	Neural Network Applications
	Diverse Use-cases
	Benchmarked and Utilized Neural Network

	Conclusion

	Neural Networks Hardware Accelerators
	Principles of Neural Network Accelerator Architectures
	Neural Network Accelerators Data-flows
	Key Performance Indicators of the Design
	Latency and Throughput
	Chip Area
	Power and Energy Consumption
	Other KPIs

	Quantization
	Conclusion

	Gemini Design and Implementation
	Gemini Data Representation and Quantization
	Gemini Configurable Architecture
	Presentation of Gemini Structural Parameters
	NPU Architecture
	RAMs Organization
	FMAPS RAM Organization
	Layers Execution Scheduling

	Implementation
	HLS overview
	NPU Design in HLS
	RTL Wrapper

	Gemini Tape-outs and Benchmark
	Tape-outs
	Benchmark

	Conclusion

	Gemini Performances Evaluation
	Importance of Performance Estimators
	State of the Art
	Methodology
	Building the Simulation Data set
	Simulation Environment
	Architectures and NNs to Build the Data set

	Key Performance Indicators Estimation
	Latency Modeling
	Area and Leakage Modeling
	Dynamic Power Modeling

	Configuration Choice
	Conclusion

	Fixed Pipelined Neural Network Accelerators
	Single NPU Limits
	Description of the Pipeline Environment
	NPU Accelerator Working Principle Reminder
	Description of the NN and Intermediary Feature Maps
	Description of the Pipeline Architecture
	Layers Mapping on NPUs
	Intermediary SRAMs Capacity
	Execution Time

	Objective Functions Considered (or KPIs)
	Throughput and Period
	Latency

	Formal Description of the Problem
	Related Work
	Mapping General Algorithms onto Heterogeneous Machines
	Mapping NNs onto Heterogeneous Machines
	Simple Assembly Line Balancing Problem

	Optimizing Throughput and Latency Separately
	Integer Linear Model with Variables in {0,1}
	Dynamic Programs

	Latency and Throughput Co-optimization
	Integer Linear Model with Variables in {0,1} Optimizing Latency Lat2 for a Specific Period
	Dynamic Program Optimizing the Latency for a Given Throughput

	Applications to Gemini
	Hardware Feasibility on Gemini and Execution Time
	Results of Separate Throughput and Latency Optimization on Gemini
	Results of Co-optimized Latency and Throughput on Gemini

	Conclusion

	Non-Fixed Pipelined Neural Network Accelerators
	Description of the Non-fixed Hardware Scenario and Literature Review
	Lower Bounds to Respect Allocations Constraints
	Lower bound on the Number of NPU PEs Required to Execute a NN within a Given Execution Time Constraint
	Min RAMs Capacity for an Allocation

	Objective Functions Considered (or KPIs)
	Formal Description of the Problem
	Integer Linear Model with Variables in {0,1} to Minimize while Adhering to a Throughput Constraint P
	Description of the Dynamic Programming Algorithm Minimizing while Adhering to a Throughput Constraint P
	Applications on Gemini
	Gemini Features for Non-fixed Hardware Scenario
	Optimization of Throughput and Latency
	Minimization of Processing Elements Number
	Minimization of Area
	Minimization of Power
	Minimization of Energy
	Minimization of a Convex Linear Combination of KPIs

	Extension of the NPUs Pipeline Methodology
	Extension to Non-monotonic-KPIs with Respect to PEs Number
	Cyclic Pipeline of NPUs
	Parallelizing NPUs

	Conclusion

	Conclusion
	 REFERENCES

	Appendix Gemini 1 Testchip P18
	Appendix Dynamic program to Optimize the Latency Lat2 for a Given Throughput Using States Representation in the Fixed Hardware Scenario
	Appendix MPAR Choice For Gemini Pipeline
	Appendix Dynamic Program to Optimize for a Given Throughput Using States Representation in the Non-fixed Hardware Scenario
	Appendix Optimizing the Latency Lat2 for a Given Throughput in The Non-fixed Hardware Scenario Using Gemini NPUs

