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Preface 
 

This thesis is conducted within the framework of a co-supervision program between the 

University of Sfax and the University of Lyon 1. It was partially financed through a scholarship 

awarded by the Ministry of Higher Education and Scientific Research of Tunisia under a work-

study program. The remaining funding was obtained through part-time teaching positions at the 

University of Lyon 3, the Centrale Lyon School, and the Institute of Industrial Pharmacy at 

Lyon University-Lyon1. During the last two years of this journey, I held two temporary 

teaching and research contracts at the University of Lyon 2. 

To approach the thesis topic from various angles and to align with the evolving themes 

in academic and professional research, this work is structured as an essay-based thesis. Each 

chapter represents an individual essay, all of which are currently being submitted for review to 

academic journals with a rigorous peer-review process. The structure of these chapters does not 

correspond to the production order of the essays, but rather to a coherent succession of ideas 

highlighted in the general introduction. 

This thesis comprises four essays, each providing a deeper insight into the researched 

topic. Before the thesis defense, some of these essays have already undergone the publication 

process. Specifically, the second essay was published in "The Journal of Economic 

Asymmetries," and the third in the "Global Finance Journal." The remaining essays have been 

submitted to academic journals and are currently under review by a scientific committee. 

For both administrative and policy reasons, this thesis started on December 14, 2017. 

This thesis represents the culmination of extensive research and analysis spanning 

several years in the field of finance, with a specific focus on currency option valuation. The 

study delves into the influence of information costs on the valuation of currency options, 

examining both static and dynamic information within this context. The inspiration for this 

thesis arose from my keen interest in applying option pricing theory to the foreign exchange 

market. During my research, it became apparent that the existing literature did not adequately 

address the impact of information costs on option valuation. To conduct this analysis, I 

leveraged a variety of data sources, including financial databases, academic research, and 

industry professionals' reports. Consequently, this thesis embodies years of research, analysis, 

and reflection in the realm of finance, particularly in the area of currency option pricing. 
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Résumé 
Évaluation des options sur devises en présence des coûts 

d'information statiques et dynamiques : Modèles 

théoriques et validation empirique 

 

  La littérature montre l'importance cruciale de l'information dans l'évaluation des actifs 

financiers, en soulignant deux catégories d'anomalies : statiques (ou classiques) et dynamiques. 

Les anomalies classiques enveloppent des modèles qui défient les suppositions relatives à 

l'évolution des prix des actifs, tandis que les anomalies dynamiques sont axées sur des 

suppositions orientées marché. Ces dernières proviennent souvent de recherches qui réfutent 

l'hypothèse de l'efficacité en admettant les imperfections du marché, tout en préservant la notion 

de rationalité des acteurs. Ceci couvre une variété de facteurs comme les coûts de transaction 

et d'information statiques, le sentiment du marché, les coûts d'information dynamiques, 

l'asymétrie d'information, les restrictions de vente à découvert, les primes de liquidité, et 

certains délais.... 

  Le modèle fondamental pour évaluer les options sur devises, proposé par Garman et 

Kohlhagen (1983), repose sur l'hypothèse de l'efficacité des marchés financiers. Cette 

hypothèse est bâtie sur deux piliers : premièrement, elle présume que les acteurs économiques 

sont parfaitement rationnels ; et deuxièmement, elle suppose une absence d'imperfections du 

marché. Ces hypothèses entraînent une réaction immédiate des prix des actifs face à une 

nouvelle information, reflétant ainsi toutes les données disponibles. 

  L'objectif principal de cette thèse est d'évaluer si l'intégration des coûts d'information 

statiques et dynamiques dans le modèle fondamental de Garman et Kohlhagen (1983), améliore 

l'efficacité des modèles d'évaluation des options sur devises étrangères. Autrement dit, la 

recherche explore si la tarification des options sur devises étrangères, façonnée par cette 

intégration, offre une approximation plus proche du prix du marché d'une option européenne 

sur devises étrangères que celle obtenue en utilisant le modèle de base de Garman et Kohlhagen 

(1983). Cette thèse se déploie au travers de quatre chapitres interconnectés. À travers ces 

chapitres exhaustifs, ce travail de recherche entrelace minutieusement des narrations détaillées, 

soulignant astucieusement les interactions subtiles et les impacts des coûts d'information 
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statiques et dynamiques au sein du modèle de tarification des options sur devises, en particulier 

dans le modèle de Garman et Kohlhagen (1983). 

  Le premier chapitre introduit le concept de coûts d'information statiques dans le modèle 

de tarification des options sur devises de Garman et Kohlhagen (1983) dans le cadre de 

l'information incomplète de Merton (1987). En employant l'algorithme de l'Évolution 

Différentielle (ED) et en examinant un vaste ensemble de données, les résultats mettent en 

lumière la nature impérative de prendre en compte les coûts d'information statiques, alignant 

de manière cohésive les résultats de l'algorithme avec les observations du marché et soulignant 

le dialogue essentiel entre les coûts d'information et la tarification des actifs. 

  Le deuxième chapitre s'immerge dans les répercussions de la pandémie de COVID-19 

sur le comportement des investisseurs au sein du marché des options de change, introduisant 

les "imperfections du marché" comme une nouvelle variable pour encapsuler les écarts entre 

les prix des options du marché théorique et observé. L'utilisation du modèle de changement de 

régime de Markov révèle des modèles de divergence et de convergence dans le comportement 

des investisseurs, offrant une vue globale sur la dynamique et les ramifications de tels 

comportements pendant les périodes de crise, avec la pandémie agissant comme un exemple 

illustratif puissant. 

  Le troisième chapitre navigue à travers le domaine complexe des coûts dynamiques et 

leur impact profond sur la tarification des options de change européennes. L'intégration d'une 

fonction d'intensité pour mesurer les coûts d'information dynamiques non seulement améliore 

la compétence du modèle à gérer la volatilité implicite, mais met également en lumière 

l'impératif d'incorporer ces coûts d'information dynamiques pour assurer la précision et la 

fiabilité des modèles de tarification des options de change en terme de maturité et de 

moneyness. 

  Enfin, le quatrième chapitre revisite les coûts d'information dynamiques dans le contexte 

du modèle de Garman et Kohlhagen et s'immerge dans des approches méthodologiques 

innovantes. En utilisant l'algorithme DE et en mettant en œuvre une technique d'apprentissage 

automatique, à savoir la régression de forêt aléatoire, pour prédire les taux d'intérêt intérieurs 

et étrangers effectifs, le chapitre illustre la robustesse et la précision améliorée du nouveau 

modèle lorsque les coûts d'information dynamiques sont incorporés. Cette dernière étape de la 

recherche souligne le rôle pivot de l'intégration des techniques d'apprentissage automatique, 

contribuant ainsi de manière substantielle au domaine de la tarification des options. 
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  En résumé, cette thèse explore en profondeur le monde complexe de la tarification des 

prix des options sur devises. Elle introduit de nouvelles idées et mélange des méthodes 

classiques avec des approches plus modernes, donnant ainsi un outil plus complet et détaillé 

pour comprendre et se déplacer dans les marchés financiers. En reliant des théories avec des 

données de marché concrètes et en mélangeant différentes sortes de coûts d'information avec le 

comportement des investisseurs, cette recherche met non seulement en avant, mais aussi 

renforce les discussions sur comment fixer justement les prix des actifs et gérer les risques 

efficacement dans le domaine complexe de la finance. 

  Mots clés : Modèle de Garman et Kohlhagen ; Options de change ; Coûts 

d'information Statiques/ Dynamiques ; Imperfections ; Fondamentalistes-Chartistes ; Covid-19 

; Sensibilité ; Simulation ; Evolution Différentielle ; Apprentissage Automatique 
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Abstract 
Assessment of European Currency Options in the Presence 

of Static and Dynamic Information Costs: Theoretical 

Models and Empirical Validation 

 

Prevalent literature substantiates the pivotal role of information in financial asset 

evaluation, highlighting two distinct anomaly types: static (or classical) and dynamic. While 

classical anomalies encapsulate models challenging asset price evolution assumptions, dynamic 

anomalies focus on market-centric assumptions. The latter often stem from research opposing 

the efficiency hypothesis by acknowledging market imperfections while maintaining the 

rationality of participants. This spans various factors such as static transaction and information 

costs, market sentiment, dynamic information costs, asymmetrical information, short selling 

restrictions, liquidity premiums, and certain delays... 

The fundamental model for evaluating currency options, proposed by Garman and 

Kohlhagen (1983), is grounded in the financial market efficiency hypothesis. This hypothesis 

rests on two pillars: firstly, it presumes that economic actors are perfectly rational; and 

secondly, it assumes an absence of market imperfections. These assumptions lead to an 

immediate response of asset prices to new information, reflecting all available data.  

The primary goal of this thesis is to evaluate the potential benefits of integrating both 

static and dynamic information costs into the foundational Garman and Kohlhagen (1983) 

model for foreign currency option evaluation. In simpler terms, the research seeks to determine 

if this integration allows for more accurate pricing of European foreign currency options, 

bringing the results closer to actual market prices than when using the original Garman and 

Kohlhagen (1983) model. This exploration is spread across four cohesive chapters. Throughout 

these chapters, the research delves deep, highlighting the nuanced interactions between static 

and dynamic information costs within the currency option pricing model, especially in the 

context of the Garman and Kohlhagen (1983) framework. 

  Chapter One introduces the concept of static information costs into the Garman and 

Kohlhagen (1983) currency option pricing model within Merton's (1987) incomplete 

information framework. Through the employment of the Differential Evolution (DE) algorithm 
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and scrutiny of a vast dataset, the results spotlight the imperative nature of considering static 

information costs, aligning algorithm results cohesively with market observations and 

underscoring the essential dialogue between information costs and asset pricing.  

  The second chapter delves into the repercussions of the COVID-19 pandemic on 

investor behavior within the currency option market, introducing "market imperfections" as a 

novel variable to encapsulate discrepancies between theoretical and observed market option 

prices. The utilization of the Markov switching model unveils patterns of divergence and 

convergence in investor behavior, offering a comprehensive view into the dynamics and 

ramifications of such behaviors during crisis periods, with the pandemic serving as a potent 

illustrative example. 

  Chapter third Chapter navigates through the intricate domain of dynamic costs and their 

profound impact on the pricing of European currency options. The integration of an intensity 

function to gauge dynamic information costs not only enhances the model's proficiency in 

handling implied volatility but also illuminates the imperative of incorporating dynamic 

information costs to assure the accuracy and reliability of currency option pricing models. 

  Lastly, Chapter Four revisits dynamic information costs within the context of the 

Garman and Kohlhagen model and delves into innovative methodological approaches. Utilizing 

the DE algorithm and implementing a machine learning technique, namely the random forest 

regression, to predict effective domestic and foreign interest rates, the chapter illustrates the 

robustness and enhanced accuracy of the new model when dynamic information costs are 

incorporated. This final leg of research underscores the pivotal role of integrating machine 

learning techniques, thereby contributing substantively to the field of option pricing. 

  In synthesis, this thesis traverses the multifaceted landscapes of currency option pricing, 

introducing novel variables, and blending traditional models with contemporary methodologies, 

thereby providing a richer, more nuanced framework for understanding and navigating the 

financial markets. By bridging theoretical models with practical market data and interlacing 

static and dynamic information costs with investor behavior, this research not only underscores 

but also elevates the dialogue around accurate asset pricing and effective risk management in 

the nuanced domain of financial economics. 
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  Keywords: Garman and Kohlhagen’s model; Currency options; Static/Dynamic 

information costs; Imperfections; Market sentiment; Fundamentalists-Chartists; Covid-19; 

Sensitivity; Simulation; Differential Evolution; Machine Learning 
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General Introduction 

1. Background and Motivation for Study 

Economic and financial models always aim to provide a simplified framework that 

captures the main analytical or numerical ideas in a manageable way. However, it is important 

to acknowledge that certain details are overlooked at this stage, as their impact is considered 

negligible and confined to "second-order effects." While these ideas generally do not 

significantly alter the overall message, the traditional approach of finance simplifies the 

behavior of all participants in the financial market by favoring a perfectly rational economic 

agent. This approach assumes that the calculation of the fundamental value of financial assets 

incorporates all relevant information and that all other agents are also perfectly rational. Such 

assumptions form the basis of the market efficiency hypothesis. Nonetheless, dealing with 

additional characteristics, like information costs in the evaluation of financial assets, proves to 

be technically challenging. Subsequent studies on these imperfections reveal that their effects 

are often more significant than initially anticipated. At times, this realization leads to radical 

changes in well-established results, paving the way for new developments and improvements 

in underlying theories. 

In recent decades, there has been substantial growth in hedge instruments, particularly 

derivatives, within global financial markets. These instruments serve a pivotal role in mitigating 

unfavorable or uncertain fluctuations and changes in underlying asset prices. They are traded 

either through over-the-counter (OTC) platforms or organized markets with a clearinghouse 

that ensures transaction counterparties and maintains market liquidity. The options market, in 

particular, has experienced significant development due to the inherent flexibility of these 

contingent assets. Options, as conditional assets, provide holders with the right, though not the 

obligation, to buy or sell the underlying asset at a predetermined price before the expiration 

date. In addition to enabling coverage, speculation, and arbitrage strategies, options offer 

adaptability to changing circumstances and unfavorable shifts, while also providing the 

opportunity to capitalize on favorable market fluctuations. However, ongoing research 

endeavors are currently dedicated to proposing various models for option evaluation. 

Louis Bachelier (1900) is the pioneering figure who introduced a model that laid the 

foundation for the first option evaluation formula. However, a major breakthrough came in 
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1973 when Fischer Black, Myron Scholes, and Robert Merton derived a formula to evaluate 

European call options on non-dividend paying stocks. This groundbreaking discovery paved 

the way for the evaluation of various types of options, including those on stocks, indices, and 

currencies. Building upon the work of Black, Scholes, and Merton, subsequent studies have 

focused on the evaluation of call or put options on currencies. Notably, the work of Garman 

and Kohlhagen (1983) explores the evaluation of options on currencies from a similar 

perspective. These developments in option evaluation have significantly advanced the field, 

allowing for a more comprehensive understanding and assessment of different financial 

instruments. The contributions of these researchers have shaped the way options are evaluated 

and have opened new avenues for financial analysis and decision-making. The work conducted 

by Garman and Kohlhagen (1983) is widely regarded as the starting point for numerous 

theoretical research articles focused on the evaluation of currency options. In their model, they 

assume a constant interest rate for both the domestic and foreign currencies. Similar to the 

Black, Scholes, and Merton model, they consider the exchange rate as the underlying asset. The 

model offers a theoretical and empirical framework for evaluating European-style currency 

options. However, it is important to acknowledge that like all economic and financial models, 

the Garman and Kohlhagen model relies on certain assumptions that may not align perfectly 

with the actual conditions of option trading. As a result, the application of this model has 

revealed the presence of evaluation biases associated with these underlying assumptions. This 

model is based on certain assumptions. One of these assumptions is that the foreign exchange 

market is perfectly efficient, disregarding information costs and market sentiment. 

Incorporating these additional features into the evaluation of financial assets proves to be 

technically challenging. Despite these limitations, the Garman and Kohlhagen model has 

provided valuable insights into the evaluation of currency options and has served as a 

foundational framework for further research in this area. As the field continues to evolve, 

ongoing efforts are being made to refine and enhance these models by incorporating additional 

factors and addressing the shortcomings of existing assumptions. 

In the context of my thesis, I intend to incorporate these factors into the evaluation of 

currency options. The complexity arises from the difficulty of quantifying and incorporating 

information costs and market sentiment into the model. These factors introduce subjective 

elements that are not easily captured within the framework of the model. As a result, the Garman 

and Kohlhagen model focuses primarily on the more tractable aspects of option evaluation, 
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such as interest rates and exchange rates. However, the role of information costs in the 

evaluation of financial assets is crucial, and its impact on asset prices varies depending on the 

timing of acquisition. Further research has revealed that these imperfections have a more 

significant effect than initially anticipated, sometimes leading to radical changes in well-

established results and driving advancements and improvements in underlying theories. In the 

literature, two types of anomalies have been identified: static or classic anomalies and dynamic 

anomalies. Classic anomalies encompass models that challenge assumptions regarding the 

evolution of underlying asset prices, while dynamic anomalies focus on assumptions related to 

the market. Nevertheless, the applicability of the Garman and Kohlhagen (1983) model is 

limited, prompting academic researchers to delve into the challenges of options evaluation. 

Developing a new theoretical model that provides a more reliable evaluation has become an 

important endeavor for them. Conversely, practitioners are in search of a simpler and more 

accurate model that can effectively replace the Garman and Kohlhagen model in practical 

applications. For a considerable period, options have been viewed as assets requiring advanced 

mathematical calculations for evaluation, often disregarding other economic and behavioral 

concepts. Furthermore, the pricing of options fails to capture desires, information costs, or 

trader predictions. Consequently, the influx of mathematicians and physicists into the field of 

financial mathematics has resulted in the generation of increasingly complex option evaluation 

models that deviate from reality. 

The Garman and Kohlhagen (1983) base model relies on the market efficiency 

hypothesis, which is a fundamental concept in modern finance. This hypothesis is built upon 

two assumptions. Firstly, it assumes the absence of market imperfections. Secondly, it assumes 

that economic agents behave perfectly rationally. According to this view, asset prices promptly 

adjust to the arrival of new information, reflecting the totality of available information (Fama, 

1991). There are two key characteristics of efficient markets. Firstly, they rapidly eliminate any 

arbitrage opportunities through pure and perfect competition, making it virtually impossible to 

outperform the market. Secondly, asset prices in financial markets are considered to be equal 

to their fundamental values, implying that prices are fair. However, when it comes to evaluating 

currency option prices, errors can arise due to various constraints within the financial market. 

Market imperfections can be attributed to multiple factors, including static information costs 

(Merton, 1987; Bellalah & Jacquillat, 1995; Kim & Konishi, 2001; Pour, 2017; Kim, 2022), 

dynamic information costs (Ben Hamad & Eleuch, 2008a and 2008b; Li & Xiong, 2016; Zghal 
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et al., 2020; Dammak et al., 2023), transaction and information costs (Jensen, 1978; Grossman 

& Stiglitz, 1980; Longjin et al., 2016; Blankespoor et al., 2020; Baek, 2022), information 

asymmetry (Allen and Gorton, 1993; Zghal et al., 2020), and short selling restrictions (Duffie 

et al., 2002; Harrison, Scheinkman, & Xiong, 2006; Feng & Fhan, 2016; Bohl et al., 2016; He 

et al., 2022; Duong et al., 2023), among others. These imperfections lead to the unprofitability 

of arbitrage operations. Another approach from behavioral finance questions the efficiency of 

financial markets due to unrealistic rationality of participants. Moreover, there are behavioral 

finance studies that show the impact of psychology on decisions made by investors, which can 

influence the market and make it inefficient. Many studies have shown that evaluation errors 

occur when rational investors face irrational investors such as noisy traders (De Long et al., 

1990) or investors suffering from overconfidence (Abreu and Brunnermeier, 2003). 

Therefore, it becomes apparent that the market efficiency assumptions underlying the 

Garman and Kohlhagen model may not hold in practice, as there are various factors that 

introduce imperfections and constraints within financial markets. Recognizing and accounting 

for these imperfections is crucial in developing more accurate models for evaluating currency 

option prices. By doing so, we can improve our understanding of market dynamics and enhance 

decision-making in the field of financial markets. 

" Information is power. However, like any power, there are those who want to keep it for 

themselves." 

Aaron Swartz 

This quote is directly relevant, highlighting the importance of information availability 

in improving the evaluation of financial asset models, especially options. In the field of finance, 

information is a valuable resource that enables individuals and organizations to make informed 

decisions and gain a competitive advantage. Recognizing that some individuals or entities seek 

to monopolize information, we acknowledge the importance of promoting openness and 

accessibility of information. In the context of options evaluation, having access to 

comprehensive and reliable information is essential for developing accurate and robust models. 

Through our research, we aim to emphasize the significance of information availability 

and its positive impact on the evaluation of currency options models. By advocating for 

transparency and open access to relevant data and information, we can enhance the precision 

and reliability of these models. The ability to access and analyze a wide range of information 
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allows for a deeper understanding of market dynamics, influencing the development and 

refinement of financial asset models. It enables researchers and practitioners to incorporate 

relevant factors such as information costs, market sentiment, and other essential elements into 

their models, leading to more precise evaluations and improving decision-making processes in 

financial markets. In summary, the options market, with its flexible nature, has seen significant 

advancements, allowing market participants to navigate changing conditions and capitalize on 

favorable opportunities. Nonetheless, ongoing research focuses on refining option evaluation 

models to further enhance understanding and decision-making in this dynamic financial 

landscape. 

2. Objectives  

“Even modest recognition of institutional structures and information costs can go a 

long way toward explaining financial behavior...” 

Merton 

In this quote, Merton's insight on the significance of recognizing institutional structures 

and information costs offers a foundational perspective. He asserts that even a slight 

acknowledgment of these factors can unravel and elucidate much about financial behavior. If 

Merton's views hold true, even marginal incorporations related to information costs might 

greatly improve the accuracy of financial asset evaluation models. 

Therefore, the main objective of this thesis is to determine if the introduction of either 

static or dynamic information costs into the Garman and Kohlhagen (1983) base model 

improves the performance of foreign currency option evaluation models. In other words, does 

the price of foreign currency options generated by this introduction provide a better 

approximation of the market price of a European foreign currency option compared to that 

obtained using the Garman and Kohlhagen (1983) base model. 

This research undertakes a multifaceted investigation into currency option pricing 

model of Garman and Kohlhagen (1983) and investor behavior, with the following interrelated 

sub-objectives and research questions guiding the study. First, it seeks to calibrate static 

information cost parameters using the Differential Evolution (DE) algorithm within the 

Merton's capital market equilibrium model with incomplete information, addressing the 

question of whether static information costs can be effectively determined. Second, this study 
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investigates how investor behavior impacts the precision of currency option pricing. 

Furthermore, in the context of the COVID-19 pandemic, the research examines changes in 

investor behavior, distinguishing specifically between fundamentalists and chartists within the 

currency options market. Third, it assesses the incorporation of dynamic information costs 

through an intensity function, evaluating whether this integration improves pricing accuracy 

and implied volatility management. Finally, the research investigates the calibration of dynamic 

information cost parameters through the DE algorithm, combined with machine learning 

techniques, aiming to enhance the precision and stability of currency option pricing models. 

These objectives collectively form the framework for a comprehensive exploration of the 

intricate dynamics within the currency options market. 

More specifically, the main objective of this thesis is to answer the following questions: 

 Does the inclusion of either static or dynamic information costs in the Garman and 

Kohlhagen (1983) model enhance the performance of currency option evaluation 

models? In simpler terms, do these additions result in currency option prices that more 

accurately reflect the market price of a European currency option compared to the 

original Garman and Kohlhagen (1983) model? 

 Does the introduction of dynamic information costs in the Garman and Kohlhagen 

(1983) model reduce the estimation errors caused by the model, i.e., reduce the biases 

of under- and over-evaluation and thus approach the prices observed in the market? 

 Does the integration of dynamic information costs via an intensity function lead to 

improvements in pricing accuracy and the effective management of implied volatility? 

 Are the new parameters estimated using the DE algorithm of the option assessment 

perfectly observed or measured?  

 How does introducing these imperfections affect the economic agent’s behavior? 

 Does the discrepancy in evaluation errors within the Garman and Kohlhagen (1983) 

model influence the behavior of economic agents during distinct periods, particularly 

prior to and amid crises? 

 Can the utilization of the DE algorithm in conjunction with machine learning techniques 

enhance the precision and stability of currency option pricing models through the 

calibration of dynamic information cost parameters? 



   

General Introduction 

 

 

 
   

 
8 

 Finally, among all the models studied in this thesis, which is the most performant 

between parametric and non-parametric models? 

3. Methodology 

In this research, a comprehensive methodology was employed to advance the 

understanding of currency option pricing models and their accuracy. To address the critical 

issue of static information costs, the Differential Evolution (DE) algorithm, renowned for its 

proficiency in numerical optimization, was utilized to calibrate static information cost 

parameters. This calibration was conducted within the context of Merton's capital market 

equilibrium model with incomplete information. The assessment of option pricing values 

involved the utilization of metaheuristic algorithms, as exemplified by Kumar et al., (2009). In 

this study, we have opted for the Differential Evolution (DE) algorithm, a metaheuristic 

employed in prior research by Jebaraj et al., (2017), Pant et al., (2020), and Hu et al., (2021) 

across diverse optimization and engineering applications. Notably, the DE algorithm is 

recognized for its ease of implementation and robust capabilities in terms of exploration and 

exploitation strategies. While numerous studies and practical evaluations of derivative 

instruments have enriched quantitative techniques, including works by Brennan and Schwartz 

(1978), Jiang and Li (2005), Cerny (2004), and Hull (2014), these methods often fall short in 

delivering solutions closely aligned with market values. To enhance both accuracy and 

efficiency in option pricing, we propose this technique that frames option pricing as an 

optimization problem. This approach finds precedence in studies conducted by Deb et al. 

(2002), Deb (2011), Singh et al. (2018), and Febrianti et al. (2023). Daily data from a diverse 

range of currency call option pairs spanning a specific timeframe were harnessed to ensure 

robust results.  

To explore investor behavior dynamics during the COVID-19 pandemic, we applied a 

Markov switching model, which unveiled unique market patterns. In this empirical analysis, we 

recognized the Markov Switching model as a highly effective tool for detecting these behavioral 

shifts Markov Switching models are conventionally employed to account for structural breaks 

that can significantly alter the trajectory of variables. They operate on the principle that the 

likelihood of transitioning to a particular regime is dependent on past observations of the 

variables of interest (Engel and Hamilton, 1990). Furthermore, owing to the dynamic nature of 

transition probabilities in Markov models, they enable the calculation of probabilities 
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associated with future regime realizations and the prediction of future values of the endogenous 

variable, regardless of the prediction horizon's duration. This approach initially took shape with 

the pioneering work of Goldfeld and Quandt (1973) and has since been expanded upon and 

refined by Hamilton (1989, 1990, and 1994). We applied this model to study the change in 

beliefs between the fundamentalists and the chartists in the currency market. We used variable 

named market imperfections, which represents the valuation errors of the theoretical model of 

Garman and Kohlhagen (1983) and helps to detect the change in the investors’ behaviour 

between the chartists and the fundamentalists following the Covid-19 health crisis. 

Additionally, dynamic information costs were tackled by introducing an intensity 

function inspired by the Beer-Lambert law into interest rates, leading to a marked reduction in 

pricing errors and improved implied volatility management. Through our empirical approach, 

we apply an inductive technique to verify the presence and impact of dynamic information costs 

in financial markets. By analyzing real-world data and market dynamics, we seek to provide 

empirical evidence supporting dynamic information costs and their influence on currency 

option pricing. This approach bridges the gap between theoretical insights and empirical 

observations, enhancing our understanding of financial market dynamics. Our approach was 

structured as follows: Firstly, we calculate the price of the currency call option using both 

models. Secondly, we evaluate the models’ performance through the analysis of valuation gaps, 

considering errors reported by maturity and skewness, as well as overall errors, and comparing 

theoretical prices with market prices. Finally, we delve into the effects of introducing dynamic 

imperfections on the behavior of market participants in the financial sector, focusing on errors 

categorized by maturity, skewness, and overall errors. We also explored the incorporation of 

investor behavior, as a refinement to conventional models. To determine the Garman-

Kohlhagen implied volatility, we employed the Newton algorithm, programmed in Visual Basic 

(VBA). This approach calculates the implied volatility using the Garman-Kohlhagen formula 

based on the option's market value.  

Moreover, machine learning techniques, such as random forest regression, were applied 

to predict effective interest rates, enhancing the overall robustness and accuracy of the model. 

The Random Forest Regression is a method in machine learning that enhances prediction 

accuracy by combining multiple decision trees. In this technique, each tree in the ensemble 

depends on the values of a randomly sampled vector from the training set, which is independent 

and has a similar distribution with all the trees in the forest (Breiman, 2001). This algorithm 
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has been applied in various fields, including machine learning, pattern recognition, 

bioinformatics, and big data modeling. Several financial literature studies have used the RF 

algorithm in the forecasting of stock price and in developing investment strategies (Theofilatos 

et al., 2012; Qin et al., 2013;  Basak et al., 2019), forecasting Bitcoin price (Basher &  Sadorsky,  

2022), risk management (Chang et al., 2018; Arora &  Kaur, 2020) and option pricing (Ivașcu, 

2021; Li & Yan, 2023). 

In sum, these methodological approaches collectively contribute to a more 

comprehensive and insightful understanding of currency option pricing, emphasizing the 

importance of considering both static and dynamic factors, as well as investor behavior, in 

achieving more accurate and reliable pricing outcomes. 

4. Contribution 

This thesis offers multiple contributions to current literature in unique ways. First, we 

notably incorporate a range of market imperfections into the financial markets, especially 

within the currency option pricing model. This includes the integration of static information 

costs following Merton's framework, and dynamic information costs using an intensity function 

drawn from the Beer-Lambert law. Both of these haven't been jointly used in previous empirical 

studies. Second, we adopt diverse methodologies and present new frameworks that haven't been 

applied to this specific topic before. 

Certainly, we utilized artificial intelligence, specifically Differential Evolution (DE) and 

Machine Learning (ML), in our methodologies. Moreover, the impact of various crises—such 

as the health crisis posed by COVID-19 and geopolitical crises exemplified by the Ukrainian 

conflict—is underscored in its influence on the dynamics of currency option markets throughout 

these studies. Furthermore, each econometric exercise is followed by an extensive economic 

discussion to elucidate the findings and implications therein. 

To sum up, this dissertation holds dual significance from both theoretical and empirical 

perspectives. 

At the theoretical level, first, this research stands at the forefront of academic inquiry by 

seamlessly intertwining various market imperfections - including static information costs, and 

dynamic information costs - into the currency option pricing models, thereby furnishing a 

revitalized perspective to decode the underlying behaviors and patterns in pricing. Additionally, 

https://www.sciencedirect.com/science/article/pii/S266682702200055X
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our work ventures into uncharted territories by developing and introducing new models, which 

have not been illuminated in previously published works. These models, transcending 

conventional paradigms, proffer groundbreaking approaches and methodologies for 

comprehending the intricate dynamics of financial markets. Furthermore, we have meticulously 

determined the 'Greek letters' for the new variables integrated into these innovative models, 

providing a robust analytical framework for assessing the sensitivity and exposure related to 

each incorporated market imperfection. Therefore, not only does our research enrich the 

academic dialogue by providing a novel and holistic lens to view and explore market 

imperfections and their impacts on pricing, but it also lays down a potential practical pathway 

for financial practitioners, offering them new tools and strategies to navigate through the 

convoluted corridors of the financial markets, especially amidst the varied challenges rendered 

by market imperfections. 

Additionally, the innovative aspect of our study lies in its multifaceted exploration of 

investor behavior within the currency market, particularly focusing on the divergence and 

convergence between exchange rates and currency options. We break new ground by 

introducing a unique 'market imperfections' proxy variable, ingeniously designed to encapsulate 

shifts in investor behavior by measuring the discrepancy between observed option prices in the 

market and theoretical prices deduced from the Garman and Kohlhagen model (1983). This 

meticulous examination and introduction of the 'market imperfections' proxy not only pave the 

way for a nuanced understanding of the influences that market imperfections can have on 

investor behavior but also illuminate the pivotal role these imperfections play, especially amid 

times brimming with instability and uncertainty, exemplified by periods like the COVID-19 

pandemic. Thus, our study provides a fresh, theoretical scaffold upon which future research and 

practical financial strategies can be constructed, thereby enhancing both academic and 

pragmatic discourses in finance. 

On the empirical level, this dissertation pioneers the use of innovative methodologies, 

specifically Differential Evolution and Machine Learning models, within groundbreaking 

frameworks. This approach enhances our understanding of currency options pricing in the face 

of varied market conditions and imperfections. Beyond just applying these methodologies, the 

research merges strong theoretical bases with hands-on empirical analysis, shedding light on 

the intricate dynamics of currency option pricing amidst market anomalies. Our journey into 

these untapped areas is marked by rigorous empirical methods. We dissect and interpret data 
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through the prism of our novel models, offering a deeper insight into the intricacies of financial 

markets. By venturing through the complex landscape of market imperfections and investor 

behavior, this research elevates existing literature and paves the way for future studies in the 

realm of financial markets. The empirical results not only affirm the theoretical constructs but 

also serve as a guiding light for future research and practical applications, enriching the 

multifaceted world of global financial markets. 

From a policy perspective, these results carry significant implications. They highlight 

the criticality of these imperfections during the pricing and trading of currency options. By 

recognizing the impact of information costs, market participants can more adeptly navigate the 

complex arena of the currency options market and make more informed decisions. These 

findings bolster the importance of incorporating dynamic information costs into option pricing 

models and shed light on the complexities introduced by information asymmetry. Furthermore, 

by identifying and accommodating these elements, market participants can enrich their 

understanding of option pricing and augment their risk management practices within the 

currency options market 

5. Research design and structure 
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Chapter 1. European Currency Option Assessment with Static Information Costs Using a Differential Evolution Algorithm 

Objectives: 

- Provide an overview and critique of Merton’s and Garman-Kohlhagen’s models 

- Propose an extension to the G-K model. 

- Calibration of novel static information cost parameters using the DE algorithm. 

- Compare the traditional G-K model with the new G-K model. 

- Compare Algorithm Results with Observed Market Data. 

 

-  

Chapter 3. Investor Behavior in the Currency Option Market During the COVID-19 Pandemic 

Objectives: 
- Examine the effects of the pandemic on investor behavior, emphasizing its 

relationship with underlying exchange rates. 

- Differentiate between fundamentalists and chartists in the market to understand their 

specific roles and behaviors during the pandemic. 

- Observe and analyze behavioral convergence and divergence before and during the 

COVID-19 period to underline the significant influence of the pandemic on investor 

behavior 

Chapter 4. Pricing of European Currency Options Considering the 

Dynamic Information Costs 

Objectives: 

- Offer a detailed description of existing literature on 

anomalies in financial market and underline the 

limitations of the G-K model. 

- Integrate an intensity function into the interest rates 

within G-K model to adequately measure and account for 

dynamic information costs. 

- Present a new derivation of the standard currency option 

formula which has not been previously published. 

- Provide a comprehensive overview of the methodology, 

including a detailed explanation of variables and 

empirical models used for analysis 

- Emphasize the crucial role of considering dynamic 

information costs in enhancing the accuracy and 

reliability of currency option pricing consistent across 

different categories of maturity 

Chapter 5. Dynamic Information Costs in Currency Option Pricing: A 

Differential Evolution and Random Forest Approach 

Objectives: 

- Explore the effect of dynamic information costs on the 

Garman and Kohlhagen currency option pricing 

model. 

- Utilize the Differential Evolution algorithm to 

effectively calibrate the novel information cost 

parameters. 

- Analyze data from various currency call option pairs to 

achieve a satisfactory approximation of real market 

currency option prices. 

- Establish an efficient framework using random forest 

regression for accurate prediction of domestic and 

foreign interest rates. 

- Contribute significantly to option pricing by 

emphasizing the role of machine learning techniques in 

solving complex financial problems. 

General introduction 

General conclusion 

Figure 1. Thesis Structure 
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The structure of the remainder of this thesis is organized as follows: 

Chapter 1 studies the impact of static information costs on the evaluation of European 

currency options using a differential evolution algorithm. This chapter lays the foundation by 

introducing the Garman and Kohlhagen (1983) model as well as its limitations, various 

anomalies present in the financial market, and the key principles and methods used, such as the 

differential evolution algorithm, which will be utilized in the following chapters. It is essential 

to understand how static information costs affect the evaluation of currency options before 

examining more complex factors.  

After understanding the influence of static information costs, it becomes essential to 

explore other factors that influence the pricing of currency options, such as investor behavior. 

In Chapter 2, we highlight how the backdrop of the COVID-19 pandemic offers a unique 

opportunity to study the shifts in investor behavior between exchange rates and currency 

options. This deepens the analysis initiated in the previous chapter regarding the impact of 

information costs on the currency options market. The insights from this chapter led to the 

publication of an article in the academic journal “The Journal of Economic Asymmetries”. 

Investor behavior can be dominated by both rational and irrational actions. The 

optimism of irrational investors, exercising dominance in the market, creates difficulties for 

rational investors trying to restore market balance. This situation underscores the asymmetric 

effect of sentiment and the dynamism observed in financial markets, thus showing that 

information costs are not static but genuinely dynamic. Indeed, irrational investors, guided by 

their optimism, can often disproportionately influence market prices. This influence can 

sometimes overwhelm the attempts of rational investors to keep asset prices aligned with their 

fundamental values, thereby exacerbating market volatility and making market balancing even 

more challenging. This dynamic highlights the critical importance of considering not only static 

information costs but also their dynamic nature, which evolves in response to market 

fluctuations and changes in investor behavior. It is therefore essential for market actors and 

regulators to consider these dynamic elements to implement effective risk management and 

asset evaluation strategies. 
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After exploring the effects of static information costs and investor behavior, it is logical 

to question the impact of dynamic information costs. Examining the pricing of European 

currency options by considering these costs, a more sophisticated element, is the subject of 

Chapter 3. The study conducted in this chapter was the subject of an article published in the 

journal “Global Finance Journal” 

Finally, in Chapter 4, we apply advanced methods to evaluate dynamic information 

costs in option pricing. This last chapter builds on the methods and analyses of previous 

chapters to deeply examine dynamic information costs using machine learning techniques. 

Each chapter in the following sections begins with a comprehensive review of the 

literature, followed by an exposition of the data characteristics and the methodology employed. 

Furthermore, each chapter concludes with an extensive economic discourse aimed at 

emphasizing the implications of our findings. 

6. Results 

As mentioned before, we begin this dissertation by investigating the impact of static 

information costs on the evaluation of European currency options using a differential evolution 

algorithm. While considering these new parameters of static information in the Garman and 

Kohlhagen model (1983), it is found that it has a significant impact on the valuation of currency 

options. Thus, we assume that incorporating these imperfections into the model can lead to 

more accurate and reliable evaluations of currency options. The findings of this study show that 

these costs, which differ from transaction costs, are necessary to account for the considerable 

expenses incurred by institutional and individual investors in analyzing, evaluating, and 

processing fundamental information for asset price determination. Consequently, these 

information costs refer to the expenses incurred by investors to obtain and process information 

about domestic and foreign markets, which can impact investment decisions and financial asset 

prices. Consequently, investors must carefully monitor information cost trends to adapt to 

changes in the economic climate. 

In the second chapter, we explore investor behavior during the COVID-19 pandemic by 

analyzing the divergence and convergence between exchange rates and currency options. We 

found that the health crisis instigated a role reversal between fundamentalist and chartist 

investors across different currency pairs. Our analysis reveals that investor strategies 
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demonstrated significant variations, rather than being uniform, and were notably responsive to 

distinct market conditions during different timeframes. Prior to the pandemic, fundamentalist 

investors largely influenced market trends. However, with the emergence of COVID-19, 

chartists gained more influence, significantly impacting market dynamics. These shifts 

underscore the diversity in market strategies, indicating that investors adapt to a multitude of 

influencing factors, including information costs and the distinctive characteristics of various 

investment periods. Furthermore, our findings suggest that market imperfections played a 

substantial role in shaping investor behavior, particularly during times of crisis. The COVID-

19 pandemic triggered a sudden and palpable transformation in strategies across all studied 

currency pairs. This observation highlights the diverse reactions that crises can provoke, 

encompassing mimetic behavior, risk aversion, and loss aversion, often driven by information 

deficits and pervasive uncertainty. 

Having delved into the influences of static information costs, and investor behavior, the 

inquiry naturally progresses to the implications of dynamic information costs. These results are 

considered in the third chapter. The research findings have proven that the revised model 

incorporating dynamic information costs surpasses the classical model in pricing accuracy. This 

superior accuracy, highlighted in longer-term and out-of-the-money options, is a testament to 

the profound impact of dynamic information costs. By calibrating the new parameters of 

information costs, we have successfully minimized the discrepancies between our model’s 

predictions and the actual market values of currency options, augmenting the precision of our 

estimations. The maturity and moneyness-based analysis conducted post-simulation reveals a 

significant error reduction for our model that integrates dynamic information costs. This 

enhancement reinforces the model’s validity and practicability for accurately valuing currency 

options. Furthermore, the analysis further showed that the extended model persistently displays 

a higher average implied volatility than the classical model. This finding supports the 

hypothesis that integrating information costs into option pricing correlates with a surge in 

implied volatility. These results are congruent with existing literature, emphasizing the role of 

informed investors and the destabilizing effect of information asymmetry in the options market. 

In the fourth and final chapter, which builds upon the third study, the DE parameters for 

dynamic information costs are utilized to construct a robust machine learning model, the 

Random Forest Regression, that accurately predicts the values of effective domestic and foreign 

interest rates. By integrating these imperfections into the valuation of currency options, our 
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study demonstrates that the novel model, which incorporates dynamic information costs, 

achieves improved accuracy and stability in pricing outcomes. This enhancement enables us to 

provide more precise forecasts for currency option prices, thereby contributing to a deeper 

understanding of financial markets. This approach provides a comprehensive understanding of 

the dynamics of information costs in the currency options market. The experimental results 

indicate that the Random Forest model fits the data well and provides valuable insights for 

investors. Overall, this research establishes a framework for pricing various options with 

different characteristics, enhancing the understanding and application of option pricing models. 
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Chapter 1. European Currency Option Assessment with 

Static Information Costs Using a Differential Evolution 

Algorithm 

 

Abstract 
 

This research addresses the impact of static information costs in the currency option 

pricing model proposed by Garman and Kohlhagen (1983) within the framework of Merton's 

(1987) capital market equilibrium model with incomplete information. Previous academic 

literature has extensively criticized the theory of rational asset pricing, emphasizing the 

significance of considering information costs for accurate asset evaluation and effective risk 

management. In this study, we propose a new partial differential equation for currency options 

and focus on the calibration of novel static information cost parameters. To accomplish this, we 

employ the Differential Evolution algorithm, an evolutionary metaheuristics algorithm known 

for its effectiveness in solving numerical optimization problems. By utilizing this algorithm, 

we aim to solve objective optimization problems associated with the calibration process. By 

analyzing daily data from various currency call option pairs spanning from January 1, 2018, to 

November 24, 2022, our findings demonstrate a satisfactory level of agreement between the 

algorithm's results and the observed market data in terms of currency option prices. These 

results highlight the significance of considering static information costs and offer insights into 

the correlation between information costs and asset pricing within the currency option market. 

Keywords: Currency Options; Garman and Kohlhagen’s model; Static Information 

Costs; Derivatives; Differential Evolution Algorithm. 

JEL classification: C63, G13, G14, G15, G17  
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1.1. Introduction 

Over the years, the concept of information cost has been refined and applied to a broad 

spectrum of decision problems, including those related to price competition, investment 

decisions, and product differentiation. 

In fact, static information costs refer to the costs associated with acquiring and 

processing information that remains constant over time. These costs are important because they 

impact decision-making processes and can affect the accuracy and efficiency of outcomes. For 

example, in markets where there is a high static information cost, it may be more difficult for 

buyers to find the information they need to make informed decisions, leading to inefficiencies 

and potentially suboptimal outcomes. Additionally, high static information costs can also limit 

competition, as firms with greater resources for acquiring and processing information may have 

an advantage over those with limited resources. As a result, it is important to minimize static 

information costs in order to promote more efficient and effective decision-making processes.   

Static information cost has been extensively studied in the fields of economics and game 

theory as a way to understand the complexity of decision problems and to analyze the optimal 

strategies for decision-makers. Empirical studies have shown that the level of static information 

cost can affect the behavior of firms and consumers, and can play a key role in determining 

market outcomes. For example, in markets with high static information cost, firms may have 

greater incentives to engage in price differentiation or to invest in advertising and other forms 

of information provision. Theoretical work on static information cost has also shed light on the 

relationship between information and incentives. For example, the presence of strategic 

uncertainty can lead to higher levels of static information cost, which can affect the incentives 

of decision-makers and influence the outcomes of the decision-making process. Overall, the 

literature on static information cost has contributed to our understanding of the role of 

information in decision-making and the way it affects market outcomes. The concept continues 

to be an active area of research, with ongoing studies exploring new applications and refining 

existing models. 

The Garman and Kohlhagen (G-K) (1983) model is a widely used framework for pricing 

currency options. To incorporate the impact of static information costs into this model, 

researchers would need to modify the underlying assumptions and calculations used in the 

model to account for the costs of acquiring and processing information. One way to do this 
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would be to include a term in the model that reflects the static information cost of obtaining 

exchange rate data. For example, the cost of acquiring exchange rate data could be represented 

as a percentage of the option's notional value, and this cost could be subtracted from the option's 

expected return in order to account for the impact of information costs on pricing. Additionally, 

the model could be modified to take into account the impact of information costs on volatility, 

which is a key factor in the pricing of currency options. For example, if the static information 

cost of obtaining volatility data is high, it may be more difficult for market participants to 

accurately estimate the volatility of exchange rates, leading to mispricing and inefficiencies in 

the market. 

Incorporating static information costs into the G-K (1983) model necessitates a thorough 

evaluation of the costs and benefits associated with acquiring and processing information. It 

also requires a deep understanding of the factors influencing the pricing of currency options. 

Our study extends into exploring the consequences of introducing static information costs into 

the valuation of currency options using the G-K model within the framework of Merton's (1987) 

Capital Market Equilibrium Model with Incomplete Information (CAPMI). Furthermore, the 

expected information cost linked to a currency option varies based on specific circumstances 

and an investor's situation. Thus, a prudent approach involves a careful assessment of these 

associated information costs before committing to any investment. The Merton model can 

effectively accommodate information costs when pricing options by integrating these costs into 

the option's expected return. 

In the context of currency options, static information costs hold significant relevance as 

they impact the pricing and valuation of these financial instruments. Various factors such as 

exchange rates, interest rates, and volatility can influence currency option pricing and can be 

influenced themselves by static information costs. When it comes to option pricing models like 

the Black-Scholes model, they serve as tools for calculating the anticipated option payoff. 

Simultaneously, estimating the expected information cost hinges on evaluating the information 

required for making a decision about the option and the accompanying costs. After establishing 

the expected return on the option, a comparison with the expected return on a risk-free 

investment, such as a government bond, provides insight into whether the option merits 

investment. 
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To empirically analyze pairs of Currency call options spanning from January 1, 2018, 

to November 24, 2022, we employed the Differential Evolution algorithm to estimate 

parameters associated with static information costs in both the domestic and foreign markets 

within our model. This methodology will enable us to gain a more comprehensive 

understanding of the dynamics of the currency options market. By accounting for the effect of 

static information costs on currency option valuation, we can offer more precise forecasts for 

currency call prices, ultimately contributing to a better understanding of financial markets. The 

results showed that the pricing outcomes of the new model, which considers static information 

costs, are more accurate and stable. Ultimately, the practical implication is that both investors 

and policymakers should prioritize a comprehensive understanding of static information costs 

and their multifaceted impact on financial markets. This awareness can lead to more informed 

investment decisions, improved market regulation, and a more accurate representation of asset 

values, benefiting both individual investors and the broader economy. 

Therefore, the paper follows this structured outline: In Section Two, we offer a 

comprehensive literature review on information costs, delve into Merton's Model of Capital 

Market Equilibrium with incomplete information (CAPMI), and pinpoint the limitations of the 

G-K model. Additionally, we introduce the Differential Evolution Algorithm as a tool for 

modeling option pricing within an optimization framework. Section Three outlines our 

contributions, presenting an extended G-K model that accommodates static information costs. 

We also provide a novel derivation of the standard currency option formula, a unique aspect of 

our work. Furthermore, we explore the sensitivity of currency option prices to their 

determinants, particularly in the context of static information costs, and detail our research 

methodology, including the utilization of the Differential Evolution algorithm for parameter 

estimation. In Section Four, we offer insights into our empirical analysis, which involves a 

comparison between the traditional G-K model and the enhanced G-K model considering static 

information costs. Section Five synthesizes our key findings and delves into their implications 

for the field. Finally, in the concluding Section Six, we summarize our research and highlight 

potential future research directions in this domain. 
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1.2. Literature review  

1.2.1. Information Costs 

Static information costs pertain to the expenses linked to obtaining and analyzing 

information essential for making decisions within a financial market. This concept has received 

extensive scrutiny in the literature, with an emphasis on comprehending how these costs 

influence market dynamics, including pricing efficiency, competition, and market dominance. 

In recent times, researchers have extended their investigation of static information costs to 

various financial markets, encompassing the stock market, currency option market, and credit 

market. 

Fama (1970) made a noteworthy discovery, revealing that efficient markets tend to 

exhibit reduced information costs. Moreover, the pace at which information gets integrated into 

prices plays a pivotal role in determining market efficiency. Building upon this, Fama and 

Kenneth (1989) established a connection between higher information costs in the foreign 

exchange (forex) market and the subsequent consequences of reduced trading volume and less 

precise option pricing. In a related vein, Wu et al. (1996) expanded upon Merton's (1987) asset-

pricing model by considering scenarios in which investors hold differing beliefs and short 

selling is constrained. Their study uncovered that the presence of diverse beliefs contributes to 

greater inefficiency in the mean-variance of the market portfolio and an escalation in the 

shadow cost of information. They also demonstrated that this shadow cost of information 

becomes more pronounced, and equilibrium security returns rise when expectations among 

investors diverge. Additionally, their research highlighted an inverse relationship between the 

impact of differing beliefs on both information costs and the required rates of return and the 

relative size of the investor base for a specific security. 

Bellalah et al. (2019) delve into the realm of optimal portfolio selection in the context 

of labor income risk, retirement horizon, and the associated shadow costs tied to incomplete 

information and short selling. Their findings reveal that employed investors, when factoring in 

idiosyncratic labor income risk, incomplete information, and short selling constraints, tend to 

allocate a larger portion of their portfolios to stocks compared to retired investors. This research 

builds upon existing literature by incorporating the supplementary considerations of 

information costs and restrictions on short selling. 
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The theory of financial markets places substantial emphasis on the presence of 

information costs, encompassing various expenses. These costs include expenditures related to 

short selling constraints, as examined by Scheinkman and Xiong (2003), Sobaci et al. (2014), 

and Kim et al. (2016). Additionally, the costs associated with research and information 

acquisition, as explored by Grossman and Stiglitz (1980), Easly and O'Hara (1987), Bellalah 

(1999), Argenziano et al. (2016), Weller (2018), Maclennan and Wood (2021), the cost of 

information transmission as discussed by Bhuyan et al. (2016), Ahmed and Huo (2019) and 

Dammak et al. (2023) and the expenses tied to adverse selection or asymmetric information, as 

scrutinized by Ahmad et al. (2021) and Ranaldo and Somogyi (2021), all play pivotal roles 

within financial asset pricing models and in the determination of international portfolio 

selections. 

These studies are interrelated in their exploration of the consequences of static 

information costs on financial markets. They collectively underscore the significance of taking 

into account the expenses and advantages associated with obtaining and analyzing information 

when devising mechanisms. Furthermore, they emphasize how these costs can exert influence 

on market efficiency, market concentration, and competition dynamics. Consistently, these 

studies affirm that the reduction of information costs has the potential to enhance market 

efficiency and effectiveness. These insights offer a comprehensive perspective on the 

ramifications of static information costs and can offer valuable guidance for policymaking 

endeavors aimed at fostering greater efficiency within financial markets. 

Numerous studies have delved into the influence of static information costs on option 

pricing. For instance, Bellalah and Jacquillat (1995) introduced a model that integrated 

information costs into the Black-Scholes option pricing model. They discovered that 

information costs have the potential to reduce option prices and alter the pattern of the implied 

volatility smile. These investigations underscore the importance of factoring in information 

costs when pricing options. They also caution against the omission of such costs, as doing so 

can result in pricing discrepancies. 

In his paper, Bellalah (2016) investigates how the shadow costs associated with 

incomplete information and short sales impact the valuation of real options and capital 

budgeting models. He aligns these shadow costs with Merton's (1987) concept of sunk costs 

within the framework of capital market equilibrium marked by incomplete information. The 
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outcomes of his study hold substantial implications for pricing derivative assets and various 

forms of real options. This framework proves valuable for making investment decisions and 

evaluating the inherent flexibility in real projects. Furthermore, it enables the reframing of 

investment decisions in uncertain scenarios, with applications even in cases involving 

incomplete information and investment constraints. In his 2018 work, Bellalah presents a 

straightforward framework for the assessment of exotic derivatives, considering shadow costs 

arising from incomplete information and short sales. The methodology applied accommodates 

these shadow costs in both the options themselves and their underlying securities. The authors 

provide formulas that utilize either the conventional Black and Scholes method or the 

martingale method. Given the importance of shadow costs in the context of illiquidity, these 

formulas prove particularly beneficial for valuing over-the-counter (OTC) derivatives. 

Hence, in a study by Zghal et al. (2020) focusing on S&P 500 options, it was observed 

that incorporating imperfections like market sentiment and information asymmetry into the 

Black-Scholes model yielded more precise outcomes compared to the traditional model. 

Similarly, Dammak et al. (2023) conducted research concerning EUR/USD currency call 

options, utilizing the G-K model while accounting for dynamic information costs. Their 

examination of daily data spanning from September 21, 2012, to September 23, 2022, resulted 

in more accurate and reliable findings for the analysis of currency options. Collectively, these 

studies underscore the significance of factoring in information costs in the analysis of financial 

markets. They also suggest that future research endeavors should continue to explore the 

influence of these costs on option pricing and various other outcomes within financial markets 

1.2.2.  Merton’s Model of Capital Market Equilibrium with incomplete 

information, CAPMI 

The Merton Model of Capital Market Equilibrium with Incomplete Information 

(CAPMI), developed by Robert Merton in the 1970s, builds upon the foundation of the Capital 

Asset Pricing Model (CAPM), originally formulated by William Sharpe in the 1960s. However, 

unlike the CAPM, which assumes that investors possess complete information regarding future 

stock returns, Merton's model acknowledges the reality that investors do not have perfect 

information. Consequently, CAPMI incorporates a risk premium associated with investments. 

It's crucial to highlight that both the Merton Model (1970) and the Black-Scholes model (1973) 

rest on a set of assumptions. These assumptions encompass the absence of transaction costs, 
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market frictions, and the assumption of constant volatility. These conditions may not 

necessarily hold true in the real world, making it imperative to exercise caution when applying 

these models to real-world scenarios. Moreover, the expected information cost of an option is 

contingent on the specific circumstances of the option and the individual investor. Therefore, it 

is of utmost importance to meticulously assess the information costs associated with a particular 

option before making any investment decisions. 

The Merton (1987) model revolutionized financial theory by introducing the concept of 

incomplete information, specifically by injecting uncertainty into the dynamics of underlying 

assets in the capital market. Merton's key premise was that investors possess only partial 

information concerning the future cash flows and risks associated with the assets they invest in. 

Consequently, they make investment decisions based on this limited information. Merton 

formulated a dynamic optimization problem within this framework. In this model, investors 

base their decisions on their subjective beliefs about the distribution of future cash flows and 

associated risks. He then proceeded to derive equilibrium prices and investment strategies, all 

while accounting for the influence of incomplete information and the impact of investors' 

beliefs and expectations. The fundamental behavioral assumption underlying this model is that 

an investor contemplates adding security S to their portfolio only when they possess certain 

information about this particular security. This model can be expressed in the following manner:  

�̅�𝑠 − 𝑟 = 𝛽𝑠[�̅�𝑚 − 𝑟] + 𝜆𝑠 − 𝛽𝑠𝜆𝑚 (1.1) 

where, �̅�𝑠 is the equilibrium expected return on security S, �̅�𝑚 is the equilibrium expected 

return on the market portfolio, r is equal to 1 + the riskless rate of interest, 𝛽𝑠 = 
𝑐𝑜𝑣(�̃�𝑆 �̃�𝑚)⁄

𝑣𝑎𝑟(�̃�𝑚)
 is 

the beta of security S, 𝜆𝑠 is the equilibrium aggregate “shadow cost” for the security S and 𝜆𝑚 

is the weighted average shadow cost of incomplete information over all securities.  

Merton's model illustrates that market prices are reflective of the collective beliefs held 

by investors regarding underlying assets, and these prices adapt as fresh information emerges. 

This model offers a structured framework for examining the consequences of information 

asymmetry and uncertainty in financial markets, offering insights into the impact of incomplete 

information on market prices and investment choices. It plays a pivotal role in elucidating the 

dynamics of capital markets, providing valuable understanding into how investors maneuver 
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through uncertainty and formulate investment decisions rooted in their subjective assessments 

of asset cash flows and associated risks.  

1.2.3.  Garman and Kohlhagen (1983) model 

Based on the assumptions that include the neutral delta hedging technique, the G-K 

(1983) model suggested that the sale of a call option for a foreign currency can be perfectly 

hedged by the purchase of a quantity of foreign government bonds with rf as the interest rate. 

On the other hand, according to the G-K model and under a number of assumptions based on 

the market efficiency, the value of a European currency call according to this model can be 

calculated through the partial differential equation on condition that there is no arbitrage 

opportunity: 

1

2
. σ2. S

2
δ2V
δS2 + (rd − rf)S

δV

δS
− rdV +

δV

δt
= 0 (1.2) 

 

where, V represents the price of the currency option which is considered as a function of two 

variables: the exchange rate ‘𝑆’ and the time ‘t’, δ²V/δS2   is the second derivative of 𝑉 relative 

to S, δV/δS      is the first derivative of V relative to 𝑆, δV/δt       is the first derivative of 𝑉 

relative to 𝑡, σ is the exchange rate volatility, 𝑟𝑑 is the domestic risk-free interest rate and 𝑟𝑓 is 

the foreign risk-free interest rate. 

In fact, equation (1) can be rewritten: 

1

2
. σ2. S

2
δ2V
δS2 +

δV

δt
=  rdV − (rd − rf)S

δV

δS
(1.3) 

  

Looking at equation (2), we noticed that the left-hand side represents the change in the value of 

the currency option V due to the effect of time while the right-hand side represents the risk-free 

return of a long currency option position and a short position consisting of 
𝛿𝑉

𝛿𝑆
   the exchange 

rate. 

With the boundary condition that the European currency call option must be verified at maturity 

(T). In fact, it is a condition to get the value of the call at maturity, which is equal to: 

𝐶𝑇 = 𝑚𝑎𝑥[𝑆𝑇 − 𝑋; 0] (1.4) 

 Moreover, the value of a put is equal to: 
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𝑃𝑇 = 𝑚𝑎𝑥[𝑋 −  𝑆𝑇; 0] (1.5)

where, 

𝑆𝑇 represents the value of the exchange rate at maturity and X is the exercise price. 

Then, the analytical solution that coincides with that of the B-S model through the partial 

derivatives of the equation of the call price can be written as follow:  

Ct = Ste
−rfτN(d1) − Xe

−rdτN(d2)  (1.6)

where, Ct is the value of a European currency call paying an interest rate rf, St is the price of 

the underlying asset, 𝑋 is the strike price of the call, rf is the interest rate of the foreign currency, 

rd is the interest rate of the domestic currency, τ is the period of time calculated in year or 

fraction of year and 𝑁(. ) is the cumulative distribution function of a normal distribution: 

𝑁 (0,1). 

Finally, d1 and d2 can be calculated as follow: 

d1 =
ln (

S
X) +

(rd − rf)τ +
1
2σ

2τ

σ√τ
 (1.7) 

and,              

d2 = d1 − σ√τ (1.8) 

where   σ  represents the volatility of the underlying asset. 

Moreover, using the parity relationship, we noticed that the price of a European currency put 

is:  

Pt = Ste
−rfτN(−d1) + Xe

−rdτN(−d2)  (1.9)     

1.2.4.  Differential Evolution (DE) algorithm applications 

The assessment of option pricing values involves the application of metaheuristic 

algorithms, as exemplified by Kumar et al. (2009). For our study, we have chosen the 

Differential Evolution (DE) algorithm as one of the metaheuristic tools. Notably, previous 

research, such as the work of Jebaraj et al. (2017), Pant et al. (2020), and Hu et al. (2021), has 

also effectively utilized the DE algorithm across various optimization and engineering 

applications. This algorithm, inspired by Darwin's theory of evolution, has gained widespread 

popularity and undergone extensive scrutiny since its inception by Storn in 1997. 
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DE is well-regarded as one of the foremost optimization algorithms for tackling intricate 

problems. It falls within the realm of Evolutionary Algorithms (EA) and is a population-based 

method used to address a diverse range of optimization challenges. Unlike other EAs that create 

offspring by perturbing solutions with scaled difference vectors, DE generates new offspring 

through solution recombination under specific conditions. Given that our option pricing model 

in this study encompasses multiple parameters, conventional parameter estimation techniques 

like least squares and maximum likelihood methods are unsuitable. Instead, we employ the DE 

algorithm for parameter estimation. This algorithm proves robust and efficient in seeking 

minimum solutions for complex option pricing problems. Furthermore, it is straightforward to 

implement and possesses strong capabilities for both exploration and exploitation strategies. 

Numerous studies and practical evaluations of derivative instruments have contributed 

to enhancing various quantitative techniques, as demonstrated by works from Brennan and 

Schwartz (1978), Jiang and Li (2005), Cerny (2004), and Hull (2014). However, these methods 

often fall short in providing accurate solutions closely aligned with market values. To enhance 

the precision and efficiency of option pricing, we propose an approach that frames option 

pricing as an optimization problem. This approach has previously been employed in research 

conducted by Deb et al. (2002), Deb (2011), Singh et al. (2018), and Febrianti et al. (2023). In 

our study, we embrace this approach and leverage the DE algorithm to explore and identify 

potential solutions. 

1.3. A valuation formula for currency option considering static 

information costs and Methodology  

1.3.1. The actual discount rate in the presence of static information costs 

We have developed a pricing model for currency options that incorporates static 

information costs. To do so, we made use of the same assumptions as the G-K model, with the 

exception of market efficiency. By departing from the market efficiency hypothesis, we were 

able to derive a formula for evaluating currency options that takes into account the impact of 

static information costs.  

“When investors move from a risk-neutral world to a risk-averse world, two things happen: the 

expected growth rate in the stock price changes and the discount rate that must be used for any 

pay-off from the derivative changes.” (John Hull, 2008). 
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Thus, when considering static information costs, the expected growth rate of the 

underlying rate and the discount rate are assumed to include the risk-free rate as well as the 

costs incurred due to these imperfections. In a market where there are both informed and 

uninformed but rational investors, the effect of static information can be likened to the 

application of an extra discount rate. This is supported by several studies, including those 

conducted by Merton (1987), Bellalah and Jacquillat (1995), Ben Hamad and Eleuch (2008a, 

2008b), Zghal et al. (2020), and Dammak et al. (2023). Then, we have:  

𝑟1  =  𝑟 +  𝑡ℎ𝑒 𝑐𝑜𝑠𝑡𝑠 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑠𝑡𝑎𝑡𝑖𝑐 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡𝑠  (1.10) 

where,𝑟1 Means the effective risk-free interest rate and 𝑟 Refers to the real risk-free interest 

rate. 

To incorporate the impact of static information, the costs associated with these imperfections 

are defined as follows: 

𝑟1 = r + λ  (1.11)   

where, λ  represents the amplitude of static information costs, which ranges from 0 to 1. If the 

information is not significant and the market is efficient (i.e., there is no private information), 

𝜆 takes a value of 0. On the other hand, if the information is relevant, 𝜆 tends to approach 1. 

In our cases, we consider two amplitudes of static information costs: λd  for the domestic market 

and λf for the foreign market. 

Therefore,  𝑟1𝑑 presents the effective domestic interest rate in the presence of static information 

costs associated with the domestic market, with:  

𝑟1𝑑 = 𝑟𝑑 + 𝜆𝑑  (1.12)

where, 𝑟𝑑 is the domestic risk-free rate and 𝜆𝑑  presents the static information costs related to 

the domestic market. 

And, 𝑟1𝑓 presents the effective foreign interest rate in the presence of static information costs 

associated with the foreign market, with:  

𝑟1𝑓 = 𝑟𝑓 + 𝜆𝑓 (1.13) 

where, 𝑟𝑓 is the foreign risk-free rate and  𝜆𝑓 presents the static information costs related to the 

foreign market. 
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1.3.2.  Derivation of the currency option pricing model in the presence of 

static information costs 

A short position composed of selling an 
1

𝜕𝐶(𝑆,𝑇)

𝜕𝑆

 option against a long position on the 

shares can be created according to the G-K model. 

By adopting a similar methodology to G-K (1983) model and incorporating static information 

costs, it is evident that a small change in the share price (𝛿𝑆) results in a corresponding change 

in the option value
𝜕𝐶(𝑆,𝑇)

𝜕𝑆
 𝛿𝑆. Therefore, the change in the long position on the currency is 

approximately compensated by the 
1

𝜕𝐶(𝑆,𝑇)

𝜕𝑆

 options variation. 

Next, consider what occurs at any time for a portfolio that consists of a currency and 

1
𝜕𝐶(𝑆,𝑇)

𝜕𝑆

options. 

At the initial time, the position value is:     

𝑉 = 𝑆 −
1

𝜕𝐶(𝑆, 𝑇)
𝜕𝑆

𝐶(𝑆, 𝑇)  (1.14) 

During an infinitesimal interval 𝛿𝑆, the change of this position is given by: 

𝛿𝑉 − 𝑟𝑓 𝑆 −
1

𝜕𝐶(𝑆, 𝑇)
𝜕𝑆

𝑟𝑓 𝐶(𝑆, 𝑇) (1.15) 

where: 

𝑟𝑓 𝐶(𝑆, 𝑇) = 𝐶(𝑆 + 𝑟𝑓𝑆, 𝑇 + 𝑟𝑓 𝑇) − 𝐶(𝑆, 𝑇) (1.16) 

Geometric Brownian motion governs the currency price: i.e. the differential representation of 

the spot price movements is: 

𝑑𝑠 =  𝜇 𝑆 𝑑𝑡 +  𝜎 𝑆 𝑑𝑍 (1.17) 

Where, 𝜇 is the drift of the spot currency price, 𝜎 is the volatility of the spot currency price and 𝑑𝑧 

represents the standard wiener process. 

Using the differential stochastic calculation and Itô's lemma, we get:  
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∆C =
∂C

∂t
∆S +

∂C

∂t
dt +

1

2
σ2S2

∂2C

∂S2
dt (1.18) 

In order to ensure a risk-free covered position, the return must be equal to (𝑟1𝑑 − 𝑟1𝑓), where 

r1d represents the effective domestic risk-free interest rate and r1f represents the effective foreign 

risk-free interest rate. To derive the partial derivative equation, it is necessary to satisfy the 

condition of absence of arbitrage opportunity resulting from continuous changes in portfolio 

composition, thereby maintaining a risk-free portfolio. 

We get the following equation: 

1

2
𝜎2𝑆2

𝜕2𝐶

𝜕𝑆2
+ (𝑟1𝑑 − 𝑟1𝑓)𝑆

𝜕𝐶

𝜕𝑆
+
𝜕𝐶

𝜕𝑡
− 𝑟1𝑑𝐶 = 0 (1.19) 

So, equation (8) can be written as follows: 

1

2
𝜎2𝑆2

𝜕2𝐶

𝜕𝑆2
+ ((𝑟𝑑 + 𝜆𝑑 ) − (𝑟𝑓 + 𝜆𝑓))𝑆

𝜕𝐶

𝜕𝑆
+
𝜕𝐶

𝜕𝑡
− (𝑟𝑑 + 𝜆𝑑 )𝐶 = 0 

1

2
𝜎2𝑆2

𝜕2𝐶

𝜕𝑆2
+ ((𝑟𝑑 − 𝑟𝑓 ) + (𝜆𝑑 − 𝜆𝑓)) 𝑆

𝜕𝐶

𝜕𝑆
+
𝜕𝐶

𝜕𝑡
− (𝑟𝑑 + 𝜆𝑑 )𝐶 = 0 

1

2
𝜎2𝑆2

𝜕2𝐶

𝜕𝑆2
+ (𝑟𝑑 − 𝑟𝑓 )𝑆

𝜕𝐶

𝜕𝑆
+ (𝜆𝑑 − 𝜆𝑓)𝑆

𝜕𝐶

𝜕𝑆
+
𝜕𝐶

𝜕𝑡
− (𝑟𝑑 + 𝜆𝑑 )𝐶 = 0 (1.20) 

The equation (11) will be considered the new partial derivative equation in the G-K model in 

the presence of static information costs. 

Under this condition:  

𝐶(𝑆, 𝑡∗) = 𝑚𝑎𝑥[0; 𝑆𝑡∗ − 𝑋] (1.21) 

Where, t* designates the maturity.  

The search for the solution requires a change of variables that leads to the heat equation. Let's 

start by writing the currency option price in this following form:  

𝐶(𝑆, 𝑡) = 𝑓(𝑡)𝑦(𝑢1, 𝑢2) (1.22) 

Where 𝑓(𝑡) and 𝑦(𝑢1, 𝑢2)  are unknown functions that need to be found. 

Let's then calculate the derivatives of the currency option price with respect to time and with 

respect to the underlying asset price: 
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𝜕𝐶

𝜕𝑡
=
𝜕𝑓

𝜕𝑡
𝑦 + 𝑓

𝜕𝑦

𝜕𝑢1

𝜕𝑢1
𝜕𝑡

+ 𝑓
𝜕𝑦

𝜕𝑢2

𝜕𝑢2
𝜕𝑡

 (1.23) 

𝜕𝐶

𝜕𝑆
= 𝑓 (

𝜕𝑦

𝜕𝑢1

𝜕𝑢1
𝜕𝑆

+
𝜕𝑦

𝜕𝑢2

𝜕𝑢2
𝜕𝑆
) (1.24) 

𝜕2𝐶

𝜕𝑆2
= 𝑓 (

𝜕2𝑦

𝜕𝑢12
(
𝜕𝑢1
𝜕𝑆
)
2

+
𝜕𝑦

𝜕𝑢1

𝜕2𝑢1
𝜕𝑆2

) + 𝑓 (
𝜕2𝑦

𝜕𝑢22
(
𝜕𝑢2
𝜕𝑆
)
2

+
𝜕𝑦

𝜕𝑢2

𝜕2𝑢2
𝜕𝑆2

) + 2𝑓 (
𝜕2𝑦

𝜕𝑢1𝜕𝑢2

𝜕𝑢2
𝜕𝑆

𝜕𝑢1
𝜕𝑆
 )   (1.25) 

 Let's then substitute these derivatives into the equation (11):  

1

2
𝜎2𝑆2𝑓 (

𝜕2𝑦

𝜕𝑢12
(
𝜕𝑢1
𝜕𝑆
)
2

+
𝜕𝑦

𝜕𝑢1

𝜕2𝑢1
𝜕𝑆2

) +
1

2
𝜎2𝑆2𝑓 (

𝜕2𝑦

𝜕𝑢22
(
𝜕𝑢2
𝜕𝑆
)
2

+
𝜕𝑦

𝜕𝑢2

𝜕2𝑢2
𝜕𝑆2

)

+ 𝜎2𝑆2𝑓   (
𝜕2𝑦

𝜕𝑢1𝜕𝑢2

𝜕𝑢2
𝜕𝑆

𝜕𝑢1
𝜕𝑆
 ) + (𝑟𝑑 − 𝑟𝑓 )𝑆 𝑓 (

𝜕𝑦

𝜕𝑢1

𝜕𝑢1
𝜕𝑆

+
𝜕𝑦

𝜕𝑢2

𝜕𝑢2
𝜕𝑆
)

+ (𝜆𝑑 − 𝜆𝑓)𝑆𝑓 (
𝜕𝑦

𝜕𝑢1

𝜕𝑢1
𝜕𝑆

+
𝜕𝑦

𝜕𝑢2

𝜕𝑢2
𝜕𝑆
) +

𝜕𝑓

𝜕𝑡
𝑦 + 𝑓

𝜕𝑦

𝜕𝑢1

𝜕𝑢1
𝜕𝑡

+ 𝑓
𝜕𝑦

𝜕𝑢2

𝜕𝑢2
𝜕𝑡

 

−(𝑟𝑑 + 𝜆𝑑  )𝑓𝑦 = 0   (1.26) 

It is possible to solve the equation by using the heat transfer equation for the function 𝑦:  

𝜕𝑦

𝜕𝑢2
=
𝜕2𝑦

𝜕𝑢12
 (1.27) 

Let's now search for 𝑓(𝑡), 𝑢1(𝑆, 𝑡), 𝑢2(𝑆, 𝑡), so that: −(𝑟𝑑 + 𝜆𝑑)𝑓𝑦 +
𝜕𝑓

𝜕𝑦
= 0                      (1.28) 

=> (𝑟𝑑 + 𝜆𝑑)𝑓 =
𝜕𝑓

𝜕𝑦
  

=> 𝑓(𝑡) = 𝑒(𝑟𝑑+𝜆𝑑)(𝑡−𝑡
∗) (1.29) 

Let's designate by: 

𝑎2 =
1

2
𝜎2𝑆2 (

𝜕𝑢1
𝜕𝑆
)
2

 (1.30) 

Simplifying by 𝑓(𝑡) and rewriting the equation to identify the different terms. 

The term: 
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1

2
𝜎2𝑆2 (

𝜕2𝑦

𝜕𝑢12
(
𝜕𝑢1
𝜕𝑆
)
2

) +
1

2
𝜎2𝑆2 (

𝜕𝑦

𝜕𝑢2

𝜕2𝑢2
𝜕𝑆2

) + (𝑟𝑑 − 𝑟𝑓 )𝑆 (
𝜕𝑦

𝜕𝑢2

𝜕𝑢2
𝜕𝑆
) +

(𝜆𝑑 − 𝜆𝑓)𝑆 (
𝜕𝑦

𝜕𝑢2

𝜕𝑢2
𝜕𝑆
) +

𝜕𝑦

𝜕𝑢2

𝜕𝑢2
𝜕𝑡

 (1.31)

 

cancels out when:  

−𝑎2 = 
1

2
𝜎2𝑆2 (

𝜕2𝑢2
𝜕𝑆2

) + (𝑟𝑑 − 𝑟𝑓 )𝑆 (
𝜕𝑢2
𝜕𝑆
) + (𝜆𝑑 − 𝜆𝑓)𝑆 (

𝜕𝑢2
𝜕𝑆
) +

𝜕𝑓

𝜕𝑡
𝑦 +

𝜕𝑢2
𝜕𝑡

 (1.32) 

Assuming that:  

𝜕𝑢2
𝜕𝑆

=
𝜕2𝑢2
𝜕𝑆2

= 0 (1.33) 

We find that:  
𝜕𝑢2

𝜕𝑡
= −𝑎2, then,  

𝑢2 = −𝑎2(𝑡 − 𝑡∗) (1.34) 

Under these conditions, the partial derivative equation of G-K in the presence of static 

information costs is written as follows: 

1

2
𝜎2𝑆2

𝜕2𝑢1
𝜕𝑆2

+ (𝑟𝑑 − 𝑟𝑓 )𝑆
𝜕𝑢1
𝜕𝑆

+ (𝜆𝑑 − 𝜆𝑓)𝑆
𝜕𝑢1
𝜕𝑆

+
𝜕𝑢1
𝜕𝑡

= 0 

1

2
𝜎2𝑆2

𝜕2𝑢1
𝜕𝑆2

+ ((𝑟𝑑 − 𝑟𝑓 ) + (𝜆𝑑 − 𝜆𝑓)) 𝑆
𝜕𝑢1
𝜕𝑆

+
𝜕𝑢1
𝜕𝑡

= 0 (1.35) 

Using the expression for 𝑎2 , it follows that: 

𝜕𝑢1
𝜕𝑆

= √2
𝑎

𝜎

1

𝑆
 (1.36) 

Where, 𝑢1 = √2
𝑎

𝜎
𝑙𝑛 (

𝑆

𝑋
) + 𝑏(𝑡) 

By replacing 𝑢1 by (21), it follows that: 

1

2
𝜎2𝑆2 (−

1

𝑆2
√2

𝑎

𝜎
+
𝜕𝑏

𝜕𝑡
) + ((𝑟𝑑 − 𝑟𝑓 ) + (𝜆𝑑 − 𝜆𝑓)) 𝑆√2

𝑎

𝜎

1

𝑆
= 0 (1.37)

Or: 

−
1

2
𝜎√2 +

𝜕𝑏

𝜕𝑡
+ ((𝑟𝑑 − 𝑟𝑓 ) + (𝜆𝑑 − 𝜆𝑓))

𝑎

𝜎
√2 = 0 (1.38) 

then, 



Chapter 1  

 

  

   

 
36 

𝜕𝑏

𝜕𝑡
=
𝜎√2

𝜎
(
𝜎2

2
− ((𝑟𝑑 − 𝑟𝑓 ) + (𝜆𝑑 − 𝜆𝑓))) (1.39) 

=> 𝑏(𝑡) =
𝜎√2

𝜎
(
𝜎2

2
− ((𝑟𝑑 − 𝑟𝑓 ) + (𝜆𝑑 − 𝜆𝑓))) (𝑡 − 𝑡

∗) (1.40) 

=> 𝑢1 =
𝜎√2

𝜎
 [𝑙𝑛

𝑆

𝑋
+ (

𝜎2

2
− ((𝑟𝑑 − 𝑟𝑓 ) + (𝜆𝑑 − 𝜆𝑓))) (𝑡 − 𝑡

∗)] (1.41) 

Using the fact that: 𝐶(𝑆, 𝑡∗) = 𝑓(𝑡)𝑦( 𝑢1, 𝑢2)   and  
𝜕𝑦

𝜕𝑢2
=

𝜕2𝑦

𝜕𝑢12
    , 

The result at maturity is written as: 

𝐶(𝑆, 𝑡∗) = [𝑦(𝑢1(𝑆, 𝑡
∗), 𝑢2(𝑆, 𝑡

∗))] = 𝑦 [
𝑎√2

𝜎
𝑙𝑛
𝑆

𝑋
, 0] (1.42) 

The solution to the heat equation is in the following form:  

𝑦( 𝑢1, 𝑢2)  =  
1

√2𝜋𝑢2
∫ 𝑢0(∈)

+∞

−∞

𝑒
−∈2

2𝑢2𝑑𝑞 (1.43) 

The value of the option at maturity is written as: 

𝐶(𝑆, 𝑡∗) = 𝑦(𝑘, 0) = {𝑋
[𝑒

−∈2

𝑎√2 − 1] , 𝑖𝑓 𝑘 ≥ 0

0, 𝑖𝑓 𝑛𝑜𝑡

   (1.44)  

Where, 𝑘 =
𝑎√2

𝜎
𝑙𝑛 (

𝑆

𝑋
) 

Using this condition and the solution (29), we obtain: 

𝑦( 𝑢1, 𝑢2)  =  
1

√2𝜋𝑢2
∫ 𝑋 [𝑒

(𝑢−∈)(
1
2𝜎2

)(((𝑟𝑑−𝑟𝑓 )+(𝜆𝑑−𝜆𝑓))−
1
2𝜎2

)
− 1]

𝑢1

−∞

𝑒
∈2

2𝑆  𝑑𝑞 (1.45) 

By using a change of variables, the equation (31) becomes:  

𝑦( 𝑢1, 𝑢2)  =  
1

√2𝜋𝑢2
∫ 𝑋 [𝑒

(𝑢1−𝑞√2𝑆)(
𝜎

𝑎√2
)
− 1]

+∞

−𝑢1
√2𝑆

𝑒
𝑞2

2  𝑑𝑞 (1.46) 
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By using (20) and (27), we have:  

−𝑢1

√2 𝑢2
=
𝑎

𝜎
√2 [𝑙𝑛 (

𝑆

𝑋
) + (

𝜎2

2
− ((𝑟𝑑 − 𝑟𝑓 ) + (𝜆𝑑 − 𝜆𝑓))) (𝑡 − 𝑡

∗)] (
1

√2𝑎√𝑡 − 𝑡∗
) 

−𝑢1

√2 𝑢2
=

−
1
𝜎 [𝑙𝑛 (

𝑆
𝑋) + (

𝜎2

2 ((𝑟𝑑 − 𝑟𝑓 ) + (𝜆𝑑 − 𝜆𝑓)))
(𝑡 − 𝑡∗)]

√𝑡∗ − 𝑡
 

−𝑢1

√2 𝑢2
=

−
1
𝜎 [𝑙𝑛 (

𝑆
𝑋) + (

𝜎2

2 (
(𝑟𝑑 + 𝜆𝑑 ) − (𝑟𝑓 + 𝜆𝑓))) (𝑡 − 𝑡

∗)]

√𝑡∗ − 𝑡
 (1.47)

 

and,  
𝜎

𝑎√2
[
𝑎√2

𝜎
(𝑙𝑛 (

𝑆

𝑋
) + (

𝜎2

2
− ((𝑟𝑑 + 𝜆𝑑) − (𝑟𝑓 + 𝜆𝑓))) (𝑡 − 𝑡

∗)) + 𝑞√2𝑎√𝑡∗ − 𝑡] 

= (𝑙𝑛 (
𝑆

𝑋
) + (

𝜎2

2
− ((𝑟𝑑 + 𝜆𝑑) − (𝑟𝑓 + 𝜆𝑓))) (𝑡 − 𝑡

∗)) + 𝑞𝜎√𝑡∗ − 𝑡  (1.48) 

We designate by d the following term (34). By replacing these values in the heat equation, we 

obtai 

𝑦(𝑢, 𝑡) =
𝑘

√2𝜋
[∫ 𝑒

𝑙𝑛(
𝑆
𝑋
)+(

𝜎2

2
−((𝑟𝑑+𝜆𝑑)−(𝑟𝑓+𝜆𝑓)))(𝑡−𝑡

∗)+𝑞𝜎((𝑟𝑑+𝜆𝑑)−(𝑟𝑓+𝜆𝑓))
∞

𝑑

− 1] 𝑒
−𝑞2

2 𝑑𝑞 (1.49) 

In other words, the heat equation can be written as: 

𝑦(𝑢, 𝑡) = 𝑒
((𝑟𝑑+𝜆𝑑)−(𝑟𝑓+𝜆𝑓))(𝑡−𝑡

∗)
[
𝑋

√2𝜋
∫ (𝑒𝑞𝜎√𝑡

∗−𝑡) 𝑒
−𝑞2

2 𝑑𝑞 
𝑆

𝑋
𝑒
((
𝜎2

2
 − ((𝑟𝑑+𝜆𝑑)−(𝑟𝑓+𝜆𝑓)))(𝑡−𝑡

∗))
∞

𝑑

]

− ∫ 𝑒
−𝑞2

2 𝑑𝑞

∞

𝑑

                                                                                                                        (1.50) 

By making the change of variable 𝑝 =  −𝑞, then the equation becomes: 
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𝑦(𝑢, 𝑡)

= 𝑒
((𝑟𝑑+𝜆𝑑)−(𝑟𝑓+𝜆𝑓))(𝑡−𝑡

∗)
(
𝑋

√2𝜋
)(

𝑆

𝑋
𝑒
((
𝜎2

2
 − ((𝑟𝑑+𝜆𝑑)−(𝑟𝑓+𝜆𝑓)))(𝑡−𝑡

∗))

)∫ (𝑒−𝑝𝜎√𝑡
∗−𝑡) 𝑒

(
−𝑝2

2
)
𝑑𝑞

∞

𝑑

− 𝑋𝑒
((𝑟𝑑+𝜆𝑑)−(𝑟𝑓+𝜆𝑓))(𝑡−𝑡

∗)
 𝑁(𝑑′2)                                                                                                                  (1.51) 

If we use the fact that: 

1

2
(𝑞 − 𝜎 ((𝑟𝑑 + 𝜆𝑑) − (𝑟𝑓 + 𝜆𝑓))√𝑡

∗ − 𝑡)
2

=
1

2
𝑞2 + 2𝑞𝜎√𝑡∗ − 𝑡 +

1

2
𝜎2√𝑡∗ − 𝑡

= −
1

2
(𝑞 + 𝜎√𝑡∗ − 𝑡)

2
−
1

2
𝑞2 + 𝑞𝜎√𝑡∗ − 𝑡 +

1

2
𝜎2√𝑡∗ − 𝑡                                (1.52) 

And by setting, 𝑝 = 𝑞 + 𝜎√𝑡∗ − 𝑡 , the integral becomes: 

∫ 𝑒
([−

𝑞2

2
](−𝑞𝜎√𝑡∗−𝑡))

𝑑𝑞

−𝑑+𝜎√𝑡∗−𝑡

−∞

= ∫ 𝑒
([−

𝑞2

2
](−𝑞𝜎√𝑡∗−𝑡))

𝑑𝑞 = 𝑒
𝜎2

2
(𝑡∗−𝑡)

−𝑑

−∞

∫ 𝑒
(−
1
2(
𝑞+𝜎√𝑡∗−𝑡)

2
)
𝑑𝑞

−𝑑

−∞

                         (1.53) 

Finally, we have: 

𝑦(𝑢, 𝑡) = 𝑒
((𝑟𝑑+𝜆𝑑)−(𝑟𝑓+𝜆𝑓))(𝑡−𝑡

∗)
𝑒
((

𝜎2

2
−((𝑟𝑑+𝜆𝑑)−(𝑟𝑓+𝜆𝑓)))(𝑡−𝑡

∗))

𝑒
𝜎2

2
(𝑡∗−𝑡)

𝑆𝑁(𝑑′1)

− 𝑋𝑒
((𝑟𝑑+𝜆𝑑)−(𝑟𝑓+𝜆𝑓))(𝑡−𝑡

∗)
𝑁(𝑑′2)                                                                     (1.54) 

In other words, the calla of currency option considering static information costs is presented as 

follow:  

C(S, t) = Se−(𝑟𝑓+𝜆𝑓)(𝑡−𝑡
∗)N(d′1) − Xe

−(𝑟𝑑+𝜆𝑑)(𝑡−𝑡
∗)N(d′2) (1.55)               

with:  

d′1 =

ln (
S
X) + (

σ2

2 + (
(𝑟𝑑 + 𝜆𝑑) − (𝑟𝑓 + 𝜆𝑓))) (𝑡 − 𝑡

∗)

σ√𝑡∗ − 𝑡
  (1.56)
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and              

d′2 =
ln(

S

X
)+(((𝑟𝑑+𝜆𝑑)−(𝑟𝑓+𝜆𝑓))−

σ2

2
)(𝑡−𝑡∗)

σ√𝑡∗−𝑡
= d′1 − σ√𝑡

∗ − 𝑡 (1.57)
                    

1.3.3.  The new parity relationship and the price of a currency put 

considering the static information cost 

The parity relationship in the presence of static information cost is: 

𝐶𝑡 − 𝑃𝑡 = 𝑆𝑒
−𝑟1𝑓𝑇 + 𝑋𝑒−𝑟1𝑑𝑇 (1.58)    

Here, we have the variables 𝐶 representing the price of a call option, 𝑃 representing the price 

of a put option, 𝑇 denoting the time to maturity, 𝑟1𝑓representing the effective foreign (riskless) 

interest rate with foreign information cost, which can be calculated as 𝑟1𝑓 = 𝑟𝑓 + 𝜆𝑓. Similarly, 

we have 𝑟1𝑑 representing the effective domestic (riskless) interest rate with domestic 

information cost, which can be calculated as 𝑟1𝑑 = 𝑟𝑑 + 𝜆𝑑. 

From this relationship, we can deduct the value of European currency put in the presence of 

static information costs as 

𝐶𝑡 − 𝑃𝑡 = 𝑆𝑒
−𝑟1𝑓𝑇 + 𝑋𝑒−𝑟1𝑑𝑇 (1.59)           

𝐶𝑡 = 𝑆𝑡𝑒
−𝑟1𝑓𝑇𝑁(𝑑′1) − 𝑋𝑒

−𝑟1𝑑𝑇𝑁(𝑑′2) (1.60) 

         

So, we can write: 

𝑆𝑡𝑒
−𝑟1𝑓𝑇𝑁(𝑑′1) − 𝑋𝑡𝑒

−𝑟1𝑑𝑇𝑁(𝑑′2)−𝑃𝑡 = 𝑆𝑒
−𝑟1𝑓𝑇 − 𝑋𝑡𝑒

−𝑟1𝑑𝑇 (1.61) 

 => 𝑃𝑡 = −𝑆𝑡𝑒
−𝑟1𝑓𝑇[1 − 𝑁(𝑑′1)] + 𝑋𝑒

−𝑟1𝑑𝑇[1 − 𝑁(𝑑′2)] (1.62) 

We know that:𝑁(𝑑) + 𝑁(−𝑑) = 1  . 

Furthermore, the price of the European currency put considering the static information costs is: 

𝑃𝑡 = 𝑆𝑡𝑒
−𝑟1𝑓𝑇𝑁(−𝑑′1) + 𝑋𝑒

−𝑟1𝑑𝑇𝑁(−𝑑′2) (1.63)    

1.3.4. The sensitivity of the currency option price considering the static 

information costs to its determinants 

Understanding the impact of changes in various determinants on the currency option 

price, considering static information costs, is crucial, particularly when devising hedging 

strategies for option portfolios. Traders operating in the options market navigate a world of 

uncertainty as option prices fluctuate with variations in their determinants. Greeks, including 
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Delta, Theta, Gamma, Vega, Omega and Rho, serve as indicators that quantify the sensitivity 

of an option's premium to specific determinants such as the underlying price, time, volatility, 

risk-free rate, and static information costs. These metrics assist traders in assessing and 

managing the risks associated with their option positions. 

1.3.4.1. The Delta 

The delta of a European currency call option, taking into account static information 

costs, quantifies the sensitivity of the option's premium to a small variation in the underlying 

currency's price. Mathematically, it corresponds to the slope of the curve connecting the option 

price and the underlying price. More precisely, the delta represents the partial derivative of the 

currency option's value with respect to the underlying's value. In the context of considering 

static information costs, the delta can be expressed as follows: 

∆𝐶=
𝜕𝐶

𝜕𝑆
 (1.64) 

∆𝑐=
𝜕𝐶

𝜕𝑆
= 𝑒−𝑟1𝑓𝑇𝑁(𝑑′1) = 𝑒

−𝑟1𝑓𝑇∫
1

√2𝜋

𝑑′1

−∞

𝑒−
𝑥2

2 𝑑𝑥 (1.65) 

Based on the Black-Scholes model, the delta of a European call option on a non-dividend paying 

stock, considering static information costs, is given by: 

∆𝐶= 𝑁(𝑑
′
1) (1.66) 

Furthermore, the delta of a European put option on a non-dividend paying stock, taking into 

account static information costs, is given by: 

∆𝑃= 𝑁(𝑑
′
1) − 1 (1.67) 

The delta of a currency call option with static information costs is consistently positive and 

ranges between 0 and 1. This indicates a direct relationship between the currency's exchange 

rate and the option's premium value. Consequently, as the currency rate increases, it is expected 

that the premium price will also rise. This aligns with the notion that a higher currency rate 

would naturally entail a greater cost for the privilege of purchasing it at a fixed price. Within 

this context, when there is an increase (decrease) in foreign information costs, the delta 

increases (decreases). 
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The formula for calculating the delta of a currency put option, taking into account static 

information costs, is as follows: 

∆𝑃=
𝜕𝑃

𝜕𝑆
(1.68) 

∆𝑝=
𝜕𝑃

𝜕𝑆
= −𝑒−𝑟1𝑓𝑇𝑁(−𝑑′1) = −𝑒−𝑟1𝑓𝑇∫

1

√2𝜋

−𝑑′1

−∞

𝑒−
𝑥2

2 𝑑𝑥 (1.69) 

The delta of a put option with static information costs is consistently negative and ranges 

between -1 and 0. This indicates an inverse relationship between the exchange rate of the 

underlying currency and the premium value. Hence, when the exchange rate of the currency 

increases, the premium value of the put option decreases. In this scenario, when there is an 

increase in foreign information costs, the delta tends to decrease. Conversely, when there is a 

decrease in foreign information costs, the delta tends to increase. 

The delta serves as a measure of the probability that an option will be in-the-money and 

therefore exercisable at expiration. For an in-the-money option, the delta is nearly 1 (for a call 

option) or -1 (for a put option). As a result, any change in the underlying's price is reflected in 

the option premium. Conversely, for an out-of-the-money option, the delta approaches 0 as the 

likelihood of exercise is very low. Moreover, the delta also represents the hedge ratio, indicating 

the number of shares to be bought or sold to establish a perfect hedge. In the case of a short 

position in a call option, hedging with a delta hedge involves taking a long position of ∆𝐶 units 

of the underlying asset. Conversely, in the case of a long position in a call option, hedging with 

a delta hedge involves taking a short position of  ∆𝐶units of the underlying asset. For put 

options, a long position is covered by taking a long position of ∆𝑃units of the underlying asset, 

while a short position is covered by taking a short position of ∆𝑃units of the underlying asset 

(considering ∆𝑃as negative). 

1.3.4.2. The Gamma 

The gamma quantifies how sensitive the delta of an option is to changes in the 

underlying price. Mathematically, the gamma corresponds to the partial derivative of the delta 

with respect to the underlying price. In simpler terms, it can be understood as the second 

derivative of the option price with respect to the underlying price. 

The mathematical representation of the gamma is given by:𝛤𝐶 =
𝜕∆𝐶

𝜕𝑆
=

𝜕2𝐶

𝜕𝑆2
 and 𝛤𝑝 =

𝜕∆𝑃

𝜕𝑆
=

𝜕2𝑃

𝜕𝑆2
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According to the model, the gamma for a European call and put option with static information 

costs on a foreign currency is as follows: 

Γ𝑐 = 𝛤𝑝 =
𝑒−𝑟1𝑓𝑇

𝑠σ√𝑇
 .
𝑒−

𝑑1
′2

2

√2𝜋
 (1.70) 

When the gamma is low, the delta of an option exhibits relatively low sensitivity to 

changes in the underlying currency price. Consequently, frequent adjustments to maintain a 

delta-neutral portfolio may not be necessary. This results in a flat curve depicting the changes 

in the overall position value. Conversely, when the gamma has a high absolute value, the delta 

becomes highly responsive to variations in the underlying asset price. In such instances, the 

curve representing the portfolio value exhibits convexity if the gamma is positive and concavity 

if the gamma is negative. Thus, the gamma is sensitive to changes in effective foreign interest 

rate. Within this context, when there is an increase (decrease) in foreign information costs, the 

gamma increases (decreases). 

1.3.4.3.  The Theta  

It represents the rate at which the value of the currency option with static information 

costs changes in relation to its life. Mathematically, this is determined using the following 

equation: 

 𝜃𝐶 =
𝜕𝐶

𝜕𝑇
  for a currency call option. 

et 𝜃𝑃 =
𝜕𝐶𝑃

𝜕𝑇
 for a currency put option. 

In the model that takes into account static information costs, the theta of a European call option 

on a foreign currency is equal to: 

Θ𝑐 =
𝜕𝐶

𝜕𝑇
= −𝑟1𝑓. 𝑆𝑒

−𝑟1𝑓𝑇𝑁(𝑑′1) + 𝑟1𝑑. 𝑋𝑒
−𝑟1𝑑𝑇𝑁(𝑑′2) +

σ

2√𝑇
 𝑆. 𝑒−𝑟1𝑓𝑇

𝑒
−
𝑑1
′2

2

√2𝜋
 (1.71)  

Furthermore, for a currency put option considering static information costs, the theta is equal 

to: 

Θ𝑐 =
𝜕𝐶

𝜕𝑇
= −𝑟1𝑓 . 𝑆𝑒

−𝑟1𝑓𝑇𝑁(−𝑑′1) + 𝑟1𝑑. 𝑋𝑒
−𝑟1𝑑𝑇𝑁(−𝑑′2) +

𝜎

2√𝑇
 𝑆. 𝑒−𝑟1𝑓𝑇

𝑒−
𝑑1
′2

2

√2𝜋
 (1.72) 
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The theta of a call option (put option) can be divided into three components. The first 

component is negative (positive), while the second component is positive (negative). The 

second component reflects that as the option's lifetime increases, the disbursement (inflow) of 

the exercise price is delayed, thereby increasing (reducing) the value of the currency call option 

(put option). The third component is the most significant, with a positive value that is identical 

for both call and put options. This component represents the time value of the option and 

increases with maturity and information costs related to the foreign market. It implies that a 

holder or buyer of short-term options, which are the most liquid in the market, would experience 

losses (gains) as the maturity approaches, assuming all other factors remain constant. Generally, 

the theta of an option is negative as it loses its time value as the maturity date approaches. A 

parity option typically has a higher theta than an in-the-money or out-of-the-money option since 

it carries the highest time value. 

1.3.4.4.  The Vega 

In practical trading, the volatility of assets tends to fluctuate, and traders must consider 

this source of risk when formulating their strategies. The vega serves as a measure of the 

sensitivity of the option value, considering static information, to changes in volatility. 

Mathematically, it represents the rate at which the option value changes in response to 

alterations in the underlying asset's volatility. This can be expressed as: 

For a call option : 𝜗𝐶 =
𝜕𝐶

𝜕σ
 , and for a Put option :  𝜗𝑃 =

𝜕𝑃

𝜕σ
      

In the G-K model with static information costs, the Vega of both currencies call and put options 

is equal and positive. The formula for calculating the Vega is as follows: 

𝑉é𝑔𝑎𝑐 = 𝑉é𝑔𝑎𝑝 =
𝜕𝐶

𝜕σ
=
𝜕𝑃

𝜕σ
=  𝑆𝑒−𝑟1𝑓𝑇 .

𝑒−
𝑑1
′

2

√2𝜋
. √𝑇 > 0 (1.73) 

The Vega is at its highest level when the currency option is at parity, meaning when the 

strike price is equal to the current price of the underlying currency. As the options move deeper 

into either in-the-money or out-of-the-money territory, the Vega approaches zero. A high Vega 

indicates that the value of the currency option, considering static information costs, is highly 

sensitive to even small changes in volatility. Conversely, a low Vega suggests that the value of 
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the currency option, taking into account static information costs, is relatively less influenced by 

changes in volatility. 

1.3.4.5. The Omega: sensitivity of the currency option price to changes 

in domestic and foreign static information costs 

Mathematically, it is represented as the partial derivative of the currency option price 

with respect to the domestic static  information costs (𝜆𝑑)  and the foreign static  information 

costs (λ𝑓). 

Either :  Ω𝐶 =
𝜕𝐶

𝜕𝜆
 for a currency call option and  Ω𝑃 =

𝜕𝑃

𝜕𝜆
 for a currency put option. 

The calculation of options on foreign currencies requires determining two Omega values for 

each option, whether it is a call or a put option. The first value, represented by 𝑝𝜆𝑑 , measures 

the risk associated with the domestic information costs, while the second value, represented by 

𝑝𝜆𝑓 ,, measures the risk associated with the foreign information costs. The calculation of the 

derivatives of the currency  call option and  currency put option in relation to λ𝑑 and λ𝑓 results 

in the following values:   

𝑝𝑐
𝜆𝑑 =

𝜕𝐶

𝜕𝛌𝒅
= 𝑋𝑒−𝛌𝒅𝑇𝑁(𝑑′2)𝑇 > 0 (1.74) 

𝑝𝑝
𝜆𝑑 =

𝜕𝑃

𝜕𝛌𝒅
= 𝑋𝑒−𝛌𝒅𝑇𝑁(−𝑑2)𝑇 > 0 (1.75) 

𝑝𝑐
𝛌𝒇 =

𝜕𝐶

𝜕𝛌𝒇
= 𝑆𝑒−𝛌𝒇𝑇𝑁(𝑑′1)𝑇 > 0 (1.76) 

𝑝𝑝
𝛌𝒇 =

𝜕𝑃

𝜕𝛌𝒇
= 𝑆𝑒−𝛌𝒇𝑇𝑁(−𝑑′1)𝑇 > 0 (1.77) 

The value of a call option increases (or decreases) with rising (or falling) domestic static 

information costs, primarily because it impacts the present value of the exercise price to be paid 

(or received). Conversely, the value of a put option behaves oppositely—it rises (or falls) with 

declining (or increasing) domestic static information costs. In contrast, the influence of foreign 

static information costs on option values follows a different pattern. Due to the concept of 

interest rate parity, an increase in foreign static information costs corresponds to an elevated 

likelihood of the underlying currency depreciating. Consequently, for a fixed exercise price, the 

value of the right to buy (or sell) a depreciating currency must decrease (or increase). 
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To assess the overall risk of an option portfolio concerning both domestic and foreign 

information costs, a global Omega measure can be calculated using the following formula: 

Ω𝐺 =
𝜕𝑉

𝜕𝜆
=∑𝑛𝑖

𝑖

ρ𝑖 =∑𝑛𝑖
𝑖

𝜕𝑉𝑖
𝜕𝜆
 (1.78) 

1.3.4.6. The Rhô: sensitivity of the currency option price to a variation 

of static information costs 

The rho measures the sensitivity of the currency option price to changes in the domestic 

and foreign interest rates considering the static information costs. Mathematically, it is 

represented as the partial derivative of the currency option price with respect to the effective 

domestic interest rate (𝑟1𝑑) and the effective foreign interest rate (𝑟1𝑓). 

 Either :  𝜌𝐶 =
𝜕𝐶

𝜕𝑟
 for a currency call option and  𝜌𝑃 =

𝜕𝑃

𝜕𝑟
 for a currency put option.  

The calculation of options on foreign currencies requires determining two rho values for each 

option, whether it is a call or a put option. The first value, represented by 𝑝𝑑1, measures the risk 

associated with the effective domestic interest rate, while the second value, represented by 𝑝𝑓1, 

measures the risk associated with the effective foreign interest rate. The calculation of the 

derivatives of the currency  call option and  currency put option in relation to 𝑟1𝑑 and 𝑟1𝑓results 

in the following values:   

𝑝𝑐
𝑑1 =

𝜕𝐶

𝜕𝑟1𝑑
= 𝑋𝑒−𝑟1𝑑𝑇𝑁(𝑑′2)𝑇 > 0 (1.79) 

𝑝𝑝
𝑑1 =

𝜕𝑃

𝜕𝑟1𝑑
= 𝑋𝑒−𝑟1𝑑𝑇𝑁(−𝑑2)𝑇 > 0 (1.80) 

𝑝𝑐
𝑓1 =

𝜕𝐶

𝜕𝑟1𝑓
= 𝑆𝑒−𝑟1𝑓𝑇𝑁(𝑑′1)𝑇 > 0 (1.81) 

𝑝𝑝
𝑓1 =

𝜕𝑃

𝜕𝑟1𝑓
= 𝑆𝑒−𝑟1𝑓𝑇𝑁(−𝑑′1)𝑇 > 0 (1.82) 

The value of a call option (put option) increases (decreases) with the domestic interest 

rate due to the decrease (increase) in the present value of the exercise price to be paid (received). 

Conversely, the value of the call option (put option) decreases (increases) with the foreign 

interest rate. In fact, due to the interest rate parity, the probability of a depreciation of the 
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underlying currency increases when the effective foreign interest rate increases. As a result, for 

a fixed exercise price, the value of the right to buy (sell) a depreciating currency must decrease 

(increase).  

It is also possible to calculate a global rho measuring the risk of an option portfolio with respect 

to the domestic interest rate or the foreign interest rate. It can be given by the following formula 

P𝐺 =
𝜕𝑉

𝜕𝑟
=∑𝑛𝑖

𝑖

ρ𝑖 =∑𝑛𝑖
𝑖

𝜕𝑉𝑖
𝜕𝑟
 (1.83) 

1.3.5.  Methodology: A Differential Evolution algorithm 

The basis of the differential evolution algorithm lies in evolutionary computation, where 

it simulates the survival of the fittest among a population of individuals. Each individual is 

denoted as a point in the solution space of an optimization problem (Storn 1997, Zaheer et al. 

2017). The DE algorithm, being a swarm intelligence-based optimization approach, exploits the 

synergy between cooperation and competition among individuals to iteratively evolve and 

converge towards the optimal solution. Its purpose is to address multi-objective optimization 

problems and to discover the most favorable solution across multiple dimensions. The 

initialization of the population involves generating NP random variables with D dimensions 

(where NP represents the number of variables to generate and D signifies the dimensionality of 

each variable). The fitness function value is then calculated for each vector. If the conditions 

for obtaining the optimal parameter value are met, the algorithm terminates. Otherwise, the 

algorithm proceeds with mutation, crossover, and selection operations on the newly generated 

vector, followed by recalculating the fitness function value. These steps are repeated until the 

fitness function value fulfills the conditions, ultimately yielding the optimal parameter value. 

In fact, individuals in the algorithm are represented by data structures known as 

chromosomes, specifically vectors referred to as Gen-chromosomes. Each chromosome 

comprises undetermined parameters 𝑝𝑘 that correspond to the static domestic and foreign 

information cost parameters, denoted as S: 𝐺𝑒𝑛 = {𝑃} = {𝑝1, 𝑝2, … , 𝑝𝑘}, 𝑘 ≥ 0. In the context 

of this paper, these parameters play a crucial role in currency option pricing assessment, denoted 

as 𝑆 (𝐺𝑒𝑛). Consequently, a population is essentially a collection of chromosomes represented 

by Gen, and it establishes a corresponding set of static information costs denoted as 𝑆 (𝐺𝑒𝑛). 
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The main idea of the algorithm revolves around evolutionary transformations applied to sets of 

chromosomes, which represent the parameters of the static information cost. This 

transformation is driven by natural selection, where only the fittest individuals survive. In our 

specific case, these individuals represent the parameters of the static domestic and foreign 

information costs that yield the best possible value for the objective (fitness) function. 

The algorithm begins with the generation of an initial population, where all individuals 

are randomly created. The best individuals are then selected and preserved. To create the next 

generation, new solutions are formed through genetic operations, including selection, mutation, 

and crossover. This entire process is depicted in Figure 1 and can be summarized as follows: 

 STEP1: Population initialization 

In the D-dimensional space, a population of NP real-valued parameter vectors is generated 

randomly for each generation. The initial population is uniformly distributed, ensuring a general 

representation across the space. The value of the 𝑗𝑡ℎ dimension of the 𝑗𝑡ℎ vector is denoted as:   

𝑥𝑖,𝑗
𝐺 (𝑖 = 1,2, … ,𝑁𝑃; 𝑗 = 1,2, … , 𝐷) (1.84) 

 STEP2: Mutation operation 

The mutation vector is generated using the following formula: 

𝐻𝑖
𝐺+1 = 𝑋1

𝐺 + 𝐹(𝑋2
𝐺 − 𝑋3

𝐺) (1.85) 

Here, 𝐻𝑖
𝐺+1  represents the𝑖𝑡ℎ vector in the next generation. The scaling factor, denoted by F 

and ranging from 0 to 2, acts as a mutation operator. It controls the extent to which the deviation 

vector is amplified, thus influencing the algorithm's ability to find optimal solutions. A smaller 

F value indicates better local search capability, allowing the algorithm to explore nearby 

solutions effectively. Conversely, a larger F value allows the fitness function to escape local 

minimum points, but it can slow down the convergence speed. 𝑋1
𝐺 , 𝑋2

𝐺 , 𝑋3
𝐺  represent three 

individuals in the population that have the best fitness function values. 

 STEP 3: Crossover operation 

To enhance the diversity of vectors within the population, an additional crossover operation is 

implemented: 
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𝑉𝑖,𝑗
𝐺+1 {

𝐻𝑖,𝑗
𝐺+1, 𝑟𝑎𝑛𝑑(0,1) ≤ 𝐶𝑅 𝑜𝑟 𝑗 = 𝑟𝑎𝑛𝑑(1, 𝐷)

𝑋𝑖,𝑗
𝐺+1, 𝑒𝑙𝑠𝑒                                                           

  (1.86) 

when, 𝑉𝑖,𝑗
𝐺+1 represents the value of the 𝑗𝑡ℎdimension in the 𝑖𝑡ℎ vector. The function 𝑟𝑎𝑛𝑑(0,1) 

generates random numbers within the range of [0, 1]. The crossover operator CR, which ranges 

from 0 to 1, is used. A higher value of CR leads to a faster convergence speed of the algorithm. 

This paper adopts a crossover operator that involves randomly selecting values within a 

specified range, and it is implemented as follows: 

                      

𝐶𝑅 = 0.5[1 + 𝑟𝑎𝑛𝑑(0,1)] (1.87)                                           

By maintaining a mean value of the crossover operator around 0.75, this approach effectively 

preserves the diversity within the population. 

 STEP 4: Selection operation 

To determine whether a vector in the population qualifies for inclusion in the next generation, 

a comparison is made between the test vector and the current target vector. The fitness function 

value, 𝐹(𝐾), is then calculated for each vector. Subsequently, a selection operation is carried 

out based on these fitness function values. 

𝑋𝑖
𝐺+1 = {

𝑉𝑖
𝐺+1, 𝑖𝑓 𝐹 (𝑉𝑖

𝐺+1 < 𝐹(𝑋𝑖
𝐺))

𝑋𝑖
𝐺 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                        

 (1.88) 

The chosen fitness function in this paper is: 

          

𝐹(𝐾) =
1

𝑛
∑ (𝐶𝑖

𝑦
− 𝐶𝑖

𝑀)
2𝑛

𝑖=1  (1.89)                                            

with 'n' representing the sample size, 𝐶𝑖
𝑦

 denoting the predicted currency call option price for 

the i-th data point, and 𝐶𝑖
𝑀 indicating the corresponding market currency  call option price, the 

fitness value 𝐹(𝐾) of the 𝐾𝑡ℎis calculated for each individual. The vector with the lowest 

fitness function value is selected to appear in the next generation. 
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Figure 1. 1. Flowchart of differential evolution algorithm 

 

1.4. Applications 

1.4.1.  Data sources and variable measures  

  The initial step in our methodology is to collect data. Our dataset consists of daily 

observations of four pairs of currency call options collected from the Thomson Reuters over 

the period running from January 1, 2018, to November 24, 2022. The options under 

consideration in this study are of the European type. Daily data is employed to examine the 

impact of static information costs on currency option prices. A substantial sample of 1279 daily 

observations is utilized for each currency pair, covering multiple variables including the 

underlying price (S), exercise price (𝑋), time remaining until maturity (𝑇), risk-free domestic 

interest rate (r𝑑), risk-free foreign interest rate (r𝑓), volatility (𝜎) and market price (𝐶𝑀) . A 

detailed presentation of these variables is provided in Table 1. 

Table 1. 1. Variable description 

Variables  Description  

 The price of the underlying asset 𝑆   The currency pairs included in our dataset are EUR-

USD, EUR-JPY, EUR-RUB, and USD-RUB, 

representing the exchange rates. The closing price 

of the exchange rate is used because it reflects the 

day's market activity and serves as a reliable 

indicator for the currency option's valuation. 

The strike price of the currency 

option 𝑋   

The currency  option strike price and its data type  

indicate the price at which the option is set, 

particularly focusing on the at-the-money level. 

The time to maturity 𝑇  The remaining days until maturity is a known 

contractual characteristic. We calculate T as the 

number of days remaining divided by 360, 
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representing the fraction of the year remaining until 

maturity. 

the domestic interest rate r𝑑  

  

The domestic interest rate with a constant time to 

maturity of 90 days is given by: LIBOR for the 

EUR/USD pair, TIBOR for  the EUR/JPY pair and 

MowIBOR for the EUR/RUB and USD/RUB pairs. 

 The foreign interest rate  r𝑓  The foreign interest rate by with a constant time to 

maturity of 90 days is given by EURIBOR for the 

EUR/USD, EUR/QAT, EUR/JPY and EUR/RUB 

pairs, and by LIBOR  for  the USD/RUB pair. 

The volatility of the underlying 

asset  σ   

A constant maturity 3-month implied volatility 

related to the underlying is used. It represents the 

implied volatility at the at-the-money (ATM) level, 

with a fixed time to maturity of 90 days. 

The market price  𝐶𝑀 The observed price of a European currency call 

option on the market is used. It  represents the 

market prices of the currency option series at the at-

the-money (ATM) level. 

 

1.4.2.  Derivatives Pricing  

  This study examines the impact of information costs on the evaluation of currency call 

options within the G-K (1983) model framework. The introduction of static information costs 

introduces a level of irrationality into the model, which can influence option prices. To address 

this, we delve into how investor strategies are influenced by the availability of information in 

both domestic and foreign markets. To evaluate the performance of the G-K model in pricing 

currency options with static information costs, we conducted an empirical analysis. This 

analysis involved calculating the price of a currency call option using both the conventional G-

K model and the modified version that accounts for static information costs. 

  In particular, our research aims to answer the following key question: Can the modified 

G-K model effectively reduce the evaluation errors that may arise from the standard G-K model 

(1983)? 

Our approach will involve the following sequential steps: 

i. Parameter Simulation: As an initial step in implementing the new currency option 

pricing model, we will employ a metaheuristic approach known as Differential 
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Evolution to simulate the values of 𝜆𝑑 and  λ𝑓. These parameters represent the static 

information costs associated with the domestic and foreign markets, respectively. The 

primary goal here is to minimize the disparity between the currency call option price 

projected by the new model and the market-observed price. 

ii. Parameter Estimation: Following the simulation of the new parameters, we will utilize 

them to estimate the price of the currency call option. This estimation will be performed 

within the G-K model, accounting for the static information costs. The computation of 

the currency call price necessitates input factors including the underlying price, exercise 

price, domestic and foreign risk-free interest rates, time to maturity (expressed as a 

fraction of a year), and volatility. 

iii. Model Comparison: To assess and compare the performance of the two models, we 

will utilize the mean square error (MSE) criteria. In our pursuit to gauge the 

effectiveness of this approach relative to the standard G-K model, we conducted a 

valuation error analysis using the MSE criteria across all the pairs studied in this 

research. Additionally, we compared the results by calculating the MSE variation and 

the relative change in MSE between the two models. It's noteworthy that negative MSE 

variation and relative change in MSE values indicate the superiority of the G-K model 

that accounts for static information costs over the standard G-K model. This is due to 

its ability to provide estimated currency option prices that closely align with market 

prices. To facilitate this comparison, we will define the following variables, which will 

require calculation: 

 CGK: the price of a European currency call option calculated using the G-K model (1983) 

formula. 

 CGKSIC: the price of a European currency call option calculated using the model in the 

presence of the static information costs. 

 CM: the observed price of a European currency call option on the market. 

  Hence, in order to calculate the price of a currency call option using both the standard 

G-K model formula and the G-K model with static information costs, we have developed a 

Visual Basic (VBA) procedure named "Currency Call_GK" and "Currency Call_GKSIC." 

These procedures have been created to streamline the calculation process. 
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1.5. Empirical Results and Discussion 

1.5.1.  Calculation of Optimized Parameters and Model Analysis 

In this section, we embark on a series of steps to analyze the impact of incorporating 

static information costs into the G-K (1983) model for currency option valuation. Our initial 

step involves simulating the values of 𝜆𝑑 and λ𝑓 using the DE algorithm. The objective here is 

to minimize the disparity between the currency call option price estimated by the new model 

and the price observed in the market. Following this, we calculate the currency call option 

prices, both with and without considering static information costs. A comparative analysis of 

these results allows us to gauge the influence of these imperfections on the model's outcomes. 

Table 2 presents the static information costs for both the domestic and foreign markets 

concerning the currency call option pairs under study. Specifically, the data reveals that for the 

EUR/USD pair, the domestic static information cost is 0, while for the EUR/JPY pair, it stands 

at 0.76695. Similarly, for the EUR/RUB pair, the domestic static information cost is 0.72858, 

and for the USD/RUB pair, it reaches 0.92322. Conversely, the foreign static information costs 

are 0.090994 for the EUR/USD pair, 0.76606 for the EUR/JPY pair, 0.78469 for the EUR/RUB 

pair, and 1 for the USD/RUB pair. These findings hold notable practical significance, as they 

can be utilized by market participants to determine currency option prices across various strike 

prices. Furthermore, they offer a means to mitigate errors in the evaluation process that may 

arise from employing the standard G-K model (1983). It's noteworthy that our study's results 

align with earlier research conducted by Bellalah and Jacquillat (1995), Ben Hamad and Eleuch 

(2008), Zghal et al. (2020), and Dammak et al. (2023). 

Table 1. 2. Domestic and Foreign Static Information Costs for Studied Currency Call 

Option Pairs in % 

 

 

 

 

 

 

 

Pairs 𝜆𝑑 λ𝑓 

EUR/USD 0 0,090994 

EUR/JPY 
 

0,76695 
 

0,76606 

EUR/RUB 
 

0,72858 
 

0,78469 

USD/RUB 0,92322 
 
1 
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Figure 2 shows the CGK, CGKSIC, and CM of the selected currency call option pairs in the 

study. Based on the graphs displaying estimated currency call prices calculated from the G-K 

model, both with static information costs (CGKSIC) and without (CGK), it's evident that the 

values of currency call options across all studied pairs closely align with observed market prices 

when static information costs are incorporated. This is in stark contrast to the standard G-K 

model (1983), where there is a noticeable divergence from observed prices. This observation 

underscores the notion that factoring in static information costs can significantly enhance the 

accuracy of currency option valuation. By accounting for the impact of static information, 

which has the potential to introduce irrationality into the pricing model, we achieve a more 

precise valuation of currency options. The incorporation of these imperfections into the model 

allows us to better capture the intricacies of investor strategies, which are influenced by 

information availability in both domestic and foreign markets. Through simulating static 

information costs via the DE algorithm, the resulting currency call prices closely align with 

observed market prices, leading to enhanced accuracy in option valuation. 

The identification of negative MSE variation and relative change in MSE values 

strongly supports the assertion that the G-K model, when integrated with static information 

costs, outperforms the standard G-K model. This superiority is particularly evident in its 

ability to provide currency option price estimates that closely match market prices. For a 

comprehensive breakdown of these findings, please consult Table 3. 

Table 1. 3. the MSE and its relative change 

 

                                                           
1 The relative change in the MSE in percentage is calculated as follows:

(𝑴𝑺𝑬(𝑪𝑮𝑲𝑺𝑰𝑪)−𝑴𝑺𝑬(𝑪𝑮𝑲))

𝑴𝑺𝑬(𝑪𝑮𝑲)
∗ 𝟏𝟎𝟎 

 

Pairs MSE Call_GK 
MSE 

Call_GKSIC 
MSE Variation 

Relative change 
in MSE in %1 

EUR/USD 
 

0,00029086 
 

 
0,00016831 

 

 
-0,00012256 

 

 
-42,1359% 

 

EUR/JPY 
 

0,00717496 
 

 
0,00553311 

 

 
-0,00164185 

 

 
-22,883101% 

 

EUR/RUB 
 

1,82885803 
 

 
1,11927428 

 

 
-0,70958375 

 

 
-38,79928% 

 

USD/RUB 
 

0,30154363 
 

 
0,07456212 

 

 
-0,2269815 

 

 
-75,273188% 

 



Chapter 1  

 

  

   

 
54 

  Table 3 provides a performance comparison between the G-K model, which integrates 

static information costs, and the standard G-K model. The results reveal a relative change in the 

Mean Squared Error (MSE) ranging from 23% to 75% for all the examined currency call option 

pairs. For instance, in the case of the EUR/RUB pair, the MSE decreased from 0.00029086 to 

0.00016831, representing an approximate 42% relative change. These findings offer clear 

evidence that the G-K model excels when static information costs are considered, outperforming 

the basic G-K model (1983). Notably, the USD/RUB pair exhibited a MSE variation exceeding 

75%, primarily due to its high sensitivity to market conditions, including information 

availability. The incorporation of static information costs into the G-K model magnifies this 

sensitivity, resulting in more significant fluctuations in currency call option prices. These results 

underline that the presence of static information costs has a more pronounced impact on the 

valuation of currency call options for the USD/RUB pair compared to other pairs examined in 

the study. Consequently, for a comprehensive assessment of the model's accuracy incorporating 

static information costs versus the basic G-K model, we present a comparison of their Mean 

Squared Error (MSE) values for the currency option pairs analyzed in this research. 
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Figure 1. 2. Values of the currency call option according to the GK model, GK_SIC model and the call market price for the studied pairs of the call 

currency options 
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  The outcomes are visually represented in Figure 3, which effectively illustrates the 

enhanced performance of the G-K model when static information costs are factored in while 

estimating currency call options within the period spanning from January 1, 2018, to November 

24, 2022. This observation solidifies the notion that static information costs exert a substantial 

influence on currency option valuation, and their neglect can introduce inaccuracies into the 

pricing model. Static information costs encapsulate the expenses borne by investors in their 

pursuit of gathering and processing information regarding domestic and foreign markets. Their 

inclusion in the pricing model contributes to a more realistic portrayal of market dynamics. The 

integration of static information costs into the G-K model yields notably more precise 

estimations of currency call options for the four pairs under examination in this research, as 

compared to the basic G-K model. In summary, the G-K model with static information costs 

emerges as a more reliable reflection of the market price for a European currency option. 

Figure 1. 3. The Mean Squared Deviation (MSD) of the standard G-K model and the 

model taking into account the static information costs for the pairs of currency call 

options studied in the sample 

 

1.5.2.  Discussion and Practical Implications  

In the real world, static information cost, which encompasses the expenses incurred by 

investors when they seek to gather and analyze information about domestic and foreign markets, 
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exerts a tangible impact on investment decisions and financial asset prices. Consequently, static 

information cost assumes a pivotal role in comprehending market trends and making informed 

investment choices. It's worth noting that static information cost can exhibit high volatility and 

rapid fluctuations in response to economic events. Therefore, investors must remain vigilant, 

attuned to the ever-changing landscape of static information costs, and adapt their strategies to 

evolving economic conditions. 

In the presence of information asymmetry within the market and the presence of 

irrational investors, the influence of informed investors possessing positive or negative private 

information about underlying assets can significantly sway prices. Irrational investors, often 

referred to as "noise traders" in studies such as De Long et al. (1990a) and Ramiah et al. (2015), 

or overconfident investors in works like Daniel et al. (2002) and Abreu and Brunnermeier 

(2003), can cause prices to deviate from their equilibrium values, leading to increased valuation 

errors in environments marked by limited information. These studies have consistently revealed 

that valuation errors are prone to arise when rational investors interact with their irrational 

counterparts. Asset prices respond promptly to the arrival of new information, aligning with the 

principle underscored by Fama (1991) that prices reflect all available information. This 

underscores the paramount importance of considering investor irrationality in asset valuation 

and recognizing the profound impact of information availability on market prices. 

However, it's essential to recognize that the foundational assumptions of the G-K (1983) 

model, which presume market informational efficiency and investor characteristics like risk 

neutrality, expected rate of return equality, and a discount rate equal to the risk-free rate, have 

faced challenges from research in economics and neuroeconomics. This body of research has 

revealed that the discount rate can be influenced by subjective factors such as beliefs, 

psychology, emotions, and the costs associated with acquiring information. To address these 

anomalies, we have introduced an effective discount rate that accommodates both factors—

specifically, the real risk-free rate adjusted for the costs linked to these anomalies. 

Our study has demonstrated that the incorporation of static information costs exerts a 

substantial impact on the valuation of currency options when utilizing the G-K (1983) model. 

By integrating these costs into the model, we observe a more precise valuation of currency 

options, one that more accurately aligns with market expectations regarding future exchange 

rate movements. This influence on the value of currency options becomes particularly 

significant, contingent on the nature of private information (whether it's positive or negative 
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regarding the future evolution of the underlying asset). In cases where private information is 

positive, we observe an increase in the price of a call option and a decrease in the price of a put 

option. 

Ultimately, the effect of integrating static information into the valuation of currency 

options is subject to various intricate factors and may vary based on the specific currency and 

prevailing market conditions. Nevertheless, by accounting for these imperfections, the 

assessment of currency options attains greater precision, aligning more closely with market 

expectations concerning future exchange rate fluctuations. 

The most crucial practical implication for both investors and policymakers is the 

recognition of the profound influence of static information costs on investment decisions and 

asset prices. Investors should be acutely aware of these costs and their potential volatility, as 

they can significantly affect financial outcomes. Acknowledging the impact of informed 

investors and the irrational behavior of market participants is also essential, as it underscores 

the importance of a nuanced approach to asset valuation. For policymakers, understanding the 

dynamic nature of static information costs and their role in market inefficiencies is vital. It 

highlights the need for regulatory frameworks that promote transparency, reduce information 

asymmetry, and enhance market efficiency. Policymakers should also consider the implications 

of information-related costs on discount rates and the accuracy of asset valuation when 

formulating economic policies. 

1.6. Conclusion and Perspectives 

In conclusion, our study underscores the significant impact of static information costs 

on currency option valuation within the G-K model (1983). The incorporation of these costs 

enhances the accuracy and reliability of our evaluations. Our approach amalgamates the G-K 

model with Merton's framework, accounting for static information costs. These costs, distinct 

from transaction costs, account for the substantial expenses borne by both institutional and 

individual investors when analyzing fundamental information to determine asset prices. 

Incomplete and limited information often characterizes the available data, omitting crucial 

details like expected return and its variability. 

Our model extends the G-K model for European currency options by introducing two 

additional parameters calibrated to market prices. These parameters effectively address biases 

present in the G-K model and reduce discrepancies between model prices and market values. 
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Utilizing a Differential Evolution optimization method, we estimate these new parameters, 

resulting in a notable reduction in mean squared error and an improved accuracy in currency 

option valuation. 

The model's optimization approach for parameter estimation offers a promising avenue 

to enhance currency option pricing by accounting for static information costs associated with 

domestic and foreign markets. These information costs represent expenses incurred by investors 

in acquiring and processing market information, ultimately influencing investment decisions 

and asset prices. Thus, vigilant monitoring of information cost trends is essential to adapt to 

dynamic economic conditions. 

In the continuum of our research, it is imperative to acknowledge that future research 

prospects offer fertile ground for enhancing the accuracy of currency option valuation models. 

Our current findings rely on simplifying assumptions that, while necessary to establish a 

working framework, can be further refined. An intriguing research avenue would involve 

exploring the possibility of modeling volatility and interest rates more realistically, taking into 

account their temporal variations. Additionally, quantifying information costs more precisely 

remains a significant challenge, and novel methods could be developed for this purpose. 

Furthermore, it would be relevant to extend our model to account for market irrationality by 

incorporating elements of behavioral finance to better grasp market reactions to information 

and economic events. Another fruitful research path would be to investigate information costs 

in a dynamic context, analyzing how they evolve in response to specific economic and financial 

events. Finally, a more in-depth analysis of the microstructure of the foreign exchange market 

and its impact on information costs, liquidity, and bid-ask spreads could provide additional 

insights into understanding the complexity of currency option pricing. Overall, these future 

research prospects aim to enhance the accuracy of currency option valuation models and 

strengthen our understanding of international financial markets for the benefit of investors and 

policymakers. 
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Abstract 

This study investigates the COVID-19 pandemic's impact on investor behavior in the 

currency options market, emphasizing its relationship with underlying exchange rates. Using a 

sample of daily data from select futures continuous calls from September 22, 2016, to December 

31, 2021, we introduce a novel variable, "market imperfections," to quantify the gap between 

observed and theoretical currency option prices based on the Garman and Kohlhagen model. 

Through the application of a Markov switching model, we identify pandemic-related changes 

in investor behavior, characterized by patterns of divergence and convergence. Our research 

distinguishes between two key behavioral types in the market: fundamentalists and chartists. 

This study enriches the literature by clarifying how crises, specifically the COVID-19 period, 

influence investor dynamics and affect market responses. Overall, we provide critical insights 

into the factors shaping behavior during challenging periods.  

JEL classification: F37, G01, G15, G41 

Keywords: Behavioural Finance; Market Imperfections; Garman and Kohlhagen’s 

Model; Two-State Markov Switching Model; Fundamentalists and Chartists; COVID-19 
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2.1. Introduction 

On March 11, 2020, the World Health Organization declared COVID-19 a global 

pandemic, setting off an unprecedented disruption to economies worldwide, including those of 

the USA, Europe, Russia, Japan, and Qatar. This event triggered extensive research into the 

pandemic's wide-ranging effects on financial markets. Zhang et al. (2020) were among the 

pioneers in highlighting the substantial shockwaves that COVID-19 sent through global 

financial markets, resulting in significant increases in market volatility worldwide. Building on 

these findings, Gao et al. (2021) identified the pandemic as the primary driving force behind 

the pronounced fluctuations in the U.S. stock market. Interestingly, in contrast to China, the 

U.S. market displayed reduced sensitivity to the pandemic due to a continued increase in daily 

cases. 

Baker et al. (2020) attributed the notable reaction of the U.S. stock market to 

government restrictions and voluntary social distancing, underscoring the pandemic's unique 

impact when compared to previous global health crises. This unprecedented global crisis, as 

comprehensively described by Boubaker et al. (2023), resulted in simultaneous shocks with the 

potential to alter risk assessments and future outlooks in global finance. In alignment with this, 

Bossman et al. (2022) emphasized the significant influence of increasing COVID-19 cases on 

Real Estate Investment Trust (REIT) returns, further illustrating the far-reaching financial 

impact of the pandemic. 

Akhtaruzzaman et al. (2021) pinpointed China and Japan as major sources of financial 

spillover during the turbulent phase of the pandemic. Adding to these findings, Hoshikawa & 

Yoshimi (2021) underscored additional challenges arising as new waves of infections 

contributed to heightened volatility in stock price indices and the depreciation of the South 

Korean won. Vuong et al. (2022) provided crucial insights into the increased transmission of 

volatility from China's equity market to the U.S. equity market in March 2020, Broadening the 

global financial perspective, Akhtaruzzaman, Abdel-Qader et al. (2021) and Zorgati & Garfatta 

(2021) further expanded our understanding by revealing heightened spillover effects from 

Chinese and U.S. financial institutions and a notable spatial contagion effect connecting China 

with several other countries. 

Zehri (2021) offered a more expansive view of the global scene by observing heightened 

spillover effects from the US to East Asian stock markets during the pandemic era. This 

observation is complemented by further insight from Sharif et al. (2020) and Liu et al. (2020), 
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who emphasized the economic ramifications of COVID-19, highlighting its significant and 

negative influence on worldwide stock markets. The economic impact of the pandemic was 

further elucidated by Mishra et al. (2020) and Narayan (2020), who reported widespread 

negative stock returns during the COVID-19 period and a notable change in the Yen's ability to 

negative shocks, respectively. 

When examining the financial dynamics in the early stages of the COVID-19 pandemic, 

research by Al-Nassar, Boubaker et al. (2023) and Akhtaruzzaman, Boubaker et al. (2023) 

sheds light on the roles of gold and the Oil Volatility Index (OVX) as significant hedges, 

potentially serving as somewhat subdued safe havens for investors. Simultaneously, 

Akhtaruzzaman, Boubaker et al. (2022) emphasize the heightened interconnections within 

cryptocurrency systemic networks, contributing to an expansion of systemic contagion 

channels. This insight is complemented by a focused analysis of gold's position. As per 

Akhtaruzzaman, Boubaker et al. (2021), gold showcased its ability as a secure asset for stock 

markets in the initial phase of the pandemic. These diverse roles and impacts underscore the 

multifaceted financial repercussions of the COVID-19 pandemic across various asset types, as 

demonstrated by these comprehensive studies. 

Consequently, Investors experienced substantial losses within a short timeframe as a 

result of the COVID-19 pandemic. To address both the health and economic consequences, 

governments worldwide implemented a range of strategies, including lockdowns and 

restrictions, which had a profound impact on economic activities and financial landscapes on a 

global scale. Zhou et al. (2021) underscored that the repercussions of the pandemic surpassed 

even those of the 2009 global recession. 

This global health crisis brought about significant changes in currency demand and 

supply, directly affecting exchange rates. The substantial shifts in the foreign exchange market, 

a critical component of the global financial system, garnered considerable attention from 

researchers and policymakers alike. Their primary objective is to comprehend and navigate the 

pandemic's far-reaching impact on economic growth and exchange rate stability across nations. 

The universal reach of COVID-19 has undeniably left a lasting impact on the economic 

structures of countries, underscoring the importance of a robust understanding and effective 

management of exchange rate dynamics during these challenging times 

To comprehend the impact of pandemics such as COVID-19 on decision-making within 

foreign exchange markets, this study leverages the heterogeneous market participants' 
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hypothesis introduced by Muller (1993). This concept gains further support from the work of 

Bossman et al. (2022), which underscores the influence of prevailing market conditions on 

decision-making during the COVID-19 era. It accentuates the pivotal roles played by both types 

of agents in shaping dynamics within the foreign exchange market. This theory challenges the 

traditional assumption of uniformity among investors. 

Within this framework, two primary categories of market participants emerge: 

fundamentalists and chartists. Fundamentalists formulate their strategies based on market 

fundamentals such as dividends and macroeconomic indicators, whereas chartists rely solely 

on past price movements for their speculative activities. Reflecting this dichotomy, studies by 

De Grauwe and Dewatcher (1993), Vigfusson (1997), and Youssefmir et al. (1998) illustrate 

the dynamic interplay between chartists and fundamentalists in the foreign exchange market. 

Chartists have the potential to induce deviations in the exchange rate from its equilibrium value, 

while fundamentalists aim to align the exchange rate with fundamental economic factors. It is 

crucial to acknowledge the adaptability of market participants in transitioning between chartist 

and fundamentalist roles over time 

Furthermore, this study delves into the concept of market efficiency, as initially 

proposed by Fama (1965), which suggests that all available information is efficiently 

incorporated into asset prices. Despite its theoretical significance, this notion has faced scrutiny 

from a growing body of research that has unveiled market anomalies and inconsistencies in 

financial markets. This critique against the efficiency of financial markets and the rationality of 

economic agents has given rise to the field of behavioral finance, which combines elements of 

social psychology and economic decision-making (Kahneman & Tversky, 1979; Barberis et al., 

1998). 

In tandem with these developments, numerous factors contribute to the evident 

imperfections in the market, leading to inaccuracies in evaluations. These factors encompass 

constraints on short selling (Feng & Fhan, 2016; Bohl et al., 2016; He et al., 2022; Duong et 

al., 2023), transaction and information costs (Jensen, 1978; Grossman & Stiglitz, 1980; Longjin 

et al., 2016; Blankespoor et al., 2020; Baek, 2022; Dammak et al., 2023), as well as issues 

related to asymmetric and incomplete information (Pour, 2017; Kim, 2022; Bellalah & 

Jacquillat, 1995). Additionally, factors like liquidity premium (Bellalah, 2006) and market 

sentiment (Yang et al., 2016; Zghal et al., 2020; Ryu et al., 2023) have been identified as 
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potential sources of market imperfections, which are further exacerbated during global crises 

(Arfaoui et al., 2022). 

By examining the behavior and decision-making of market participants within this 

framework and taking into account the comprehensive array of market imperfections, this 

research aims to provide a comprehensive understanding of foreign exchange market dynamics 

during the COVID-19 pandemic. 

Our perspective begins with the Garman and Kohlhagen model (1983), applied to 

European currency option pricing. This model is based on the assumption of market efficiency, 

presuming perfect rationality among economic agents and the absence of financial market 

imperfections. However, the theoretical currency option price derived from this model incurs a 

valuation error, failing to consider existing market flaws. Operating under these assumptions, 

individuals optimize their decisions based on available market information (Dammak et al., 

2023). Despite this, the substantial growth of the options market since the 1970s, driven by 

factors like excessive volatility and financial crises, has prompted researchers to explore more 

adaptable methods beyond conventional techniques. This shift aims to ensure effective hedging 

for economic agents against unforeseen market movements.  

The primary objective of this research is to investigate how the COVID-19 pandemic 

has influenced investor behavior in the currency option market and its connection with 

underlying exchange rates. To achieve this, we conduct an analysis using a dataset of daily data 

from currency call options on pairs like EUR/USD, EUR/RUB, EUR/QAT, and EUR/JPY. This 

dataset spans from September 22, 2016, to December 31, 2021. 

Our study contributes significantly to the existing body of research. It is the first of its 

kind to delve into the divergence and convergence of investor behavior specifically in the 

currency market, focusing on both exchange rates and currency options. We introduce a novel 

"market imperfections" proxy variable to capture shifts in investor behavior. This proxy 

measures the difference between observed option prices in the market and theoretical prices 

based on the Garman and Kohlhagen model (1983). By thoroughly examining this variable, our 

study offers a comprehensive exploration of how these market imperfections might impact 

investor behavior, especially during periods of significant instability and uncertainty, such as 

the COVID-19 pandemic. To estimate market imperfections and exchange rates, we employ 

the two-state Markov switching model. This approach enables us to assess the diversity in 

investor behavior within the currency market before and during the COVID-19 pandemic. 
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Our research highlights the substantial impact of the COVID-19 pandemic on investor 

behavior, particularly emphasizing the differences between fundamentalists and chartists. We 

observe both behavioral convergence and divergence for the variables we studied, both before 

and during the COVID-19 period. This underscores the significant influence of the pandemic 

on investor behavior in both foreign exchange and currency options markets. Our examination 

of these dynamics contributes to a deeper understanding of how investors make decisions in the 

foreign exchange market. This insight is valuable not only for market participants but also for 

policymakers and regulators. It can help in effectively managing and mitigating the effects of 

market imperfections on financial markets 

The rest of the paper is organized as follows. Section 2 provides an extensive review of 

the existing literature. Section 3 outlines the data used and the econometric framework 

employed in the analysis. Section 4 presents the empirical results and provides a discussion of 

their implications. Finally, Section 5 concludes the paper by summarizing the main findings, 

discussing the limitations of the study, and suggesting directions for future research. 

2.2. Literature Review 

Our literature review is divided into two subsections. Firstly, we provide an overview 

of the literature concerning the impact of crises on the foreign market. Secondly, we discuss the 

literature on behavioral finance and the heterogeneity between fundamentalists and chartists. 

2.2.1. The Foreign Exchange Market (Forex) and Covid-19 

The relationship between the COVID-19 pandemic and its impact on underlying 

exchange rates plays a pivotal role in comprehending changes in the behavior of economic 

agents within the foreign exchange market (Forex). Existing literature offers numerous 

hypotheses aimed at explaining the behavior of exchange rates. 

For instance, Muth (1961) introduced the concept of rational expectations, suggesting 

that asset values fluctuate in response to agents' expectations of the future. MacDonald and 

Taylor (1992) underscored the influence of current expectations on future movements in 

exchange rates. Additionally, Frenkel (1981) drew attention to the transformative effect of 

unprecedented events and crises on the behavior of economic agents as well as exchange rates. 

In light of its unexpected and unparalleled nature, the COVID-19 pandemic was anticipated to 

exert a substantial impact on global exchange rates and the behavior of investors in the Forex 
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market. This recognition underscores the significance of studying the relationship between the 

pandemic and exchange rate dynamics. 

The efficiency of foreign exchange markets and the behavior of exchange rates have 

been extensively studied. Fama (1970) posits that an efficient foreign exchange market 

accurately reflects all available information. Echoing this view, Firoj and Khanom (2018) argue 

that the level of information is crucial in determining market efficiency and in shaping exchange 

rate behaviors. The impact of the COVID-19 pandemic serves as a critical test case for these 

theories. Government interventions like worldwide lockdowns have significantly impacted the 

expectations of economic agents, consequently influencing their behavior in financial markets. 

Aslam et al. (2020) found that despite monetary policy adjustments made to mitigate the 

pandemic's impact, market fluctuations didn't align with these interventions, leading to 

decreased market efficiency during the outbreak. In light of Narayan's observations (2020), the 

Covid-19 pandemic had a significant global impact, disrupting the economy and leading to 

substantial changes in the supply and demand for currencies, as well as exchange rates. 

The impact of the COVID-19 pandemic on exchange rate volatility has also been a 

prominent focus of researchers. Konstantakis et al. (2021) employed a two-regime Markov 

switching model to elucidate alterations in the determinants and an escalation in the volatility 

of the EUR/USD exchange rate during the pandemic. In addition, Corbet et al. (2021) provided 

further evidence, illustrating that the pandemic had a noteworthy and statistically significant 

effect in elevating exchange rate volatility. Taking a broader perspective, Sethi et al. (2021) 

conducted a comprehensive study encompassing 37 countries. They utilized metrics such as the 

global pandemic uncertainty index (WPUI), daily confirmed cases, and deaths. Their fixed-

effects regression model revealed a positive impact of the pandemic on exchange rates and 

highlighted currency depreciation in emerging economies while noting currency appreciation 

in advanced economies. These findings collectively contribute to our understanding of how the 

pandemic has influenced exchange rate dynamics across the globe. 

Other research extends beyond exchange rates to explore the pandemic's impact on 

various financial variables. Benzid and Chebbi (2020) focused on the volatility of U.S. 

exchange rates using Covid-19 intensity measures and found a positive and significant impact 

on multiple USD exchange rates. Ozturk and Cavdar (2021) expanded the scope to include 

variables like gold, oil prices, and Bitcoin. Using the ARMA-EGARCH model, they found 

statistically significant effects on the conditional variability of these financial variables. In a 
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similar vein, Akhtaruzzaman et al. (2021) delved into the occurrence of financial contagion 

during the pandemic. They observed highly volatile trading days across international stock and 

foreign exchange markets. Their research yields valuable insights that can aid investors, 

policymakers, and regulators in gaining a better understanding of the transmission of financial 

contagion across markets during global disruptions, such as the COVID-19 crisis. 

All these studies provide an explanation for the fluctuations in exchange rates caused 

by the shocks of the COVID-19 pandemic. It is therefore evident that this pandemic has had a 

major impact on both the currency market and investor behavior.  

2.2.2. Behavioural Finance and Heterogeneity Between Fundamentalists 

and Chartists 

Because of the anomalies observed in the market, which contradict the efficiency theory, 

there are many opportunities for researchers in this field to find new solutions for regulation. 

At that time the notion of behavioral finance was emerging. In fact, in the late 1980s, several 

studies tried to develop new models or approaches to describe the dynamics of financial markets 

in a better way than the assumption of the market efficiency and the homogeneity anticipation 

of the agents. This led to the emergence of the agents’ heterogeneity models that take into 

account the differences among the agents, in terms of beliefs and preferences.  For their part, 

De Long et al. (1990) demonstrated the presence of diverse investor types in their model in 

which rational investors look for opportunities.  

The existing body of literature highlights the presence of diverse agent types in the 

financial market, emphasizing the significance of models that incorporate agent heterogeneity 

as an alternative to the rational expectation approach. This diversity among investors allows for 

the categorization of various economic agents and an exploration of their respective strategies. 

Chiarella (2001) contributes significantly to this field by centering on asset price and wealth 

dynamics, shedding light on the interplay of different agents, notably fundamentalists and 

chartists, within a discrete-time stationary model. De Grauwe and Grimaldi (2005) echo this 

perspective, underscoring the utilization of simple forecasting rules by heterogeneous agents 

and the subsequent transition to more profitable rules based on their evaluations. 

LeBaron (2006) further delves into this theme, examining the importance of investor 

heterogeneity in various financial contexts. Chiarella et al. (2009) build on this foundation by 

exploring diverse risk preferences and expectations among agents, moving beyond the confines 
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of a homogeneous rational expectation framework. They emphasize the pivotal role of 

information and beliefs in shaping agents' expectations. Nappo et al. (2023) bridge theory and 

practice by establishing a link between traders' heterogeneous expectations and the emergence 

of the implied volatility skew. Additionally, Owusu Junior et al. (2021) explore the complex 

transmission of information during the COVID-19 pandemic and its implications for investor 

behavior and global equity markets. These collective contributions enrich our understanding of 

agent diversity and its profound impact on financial markets 

The literature on trading behaviors often categorizes traders into two main groups: 

fundamentalists and chartists. Fundamentalists base their decisions on underlying economic 

factors, whereas chartists prioritize patterns in historical price movements. This conceptual 

framework was initially proposed by Frankel and Froot (1990) and has since been enriched by 

subsequent studies. Brock and Hommes (1998, 2001) introduced a dynamic element to this 

framework, suggesting that agents can transition between being fundamentalists and chartists 

based on their performance. This dynamic aspect adds complexity and non-linearity, 

challenging traditional models that assume fixed and homogenous agents. Shiller (2015) further 

nuanced this concept by presenting a model that incorporates both rational and irrational agents, 

acknowledging the presence of rational investors in historical periods. 

Empirical support for these ideas was provided by Westerhoff and Reitz (2003) and 

Boswijk et al. (2007), who demonstrated disruptions in the fundamentalist regime and 

confirmed the heterogeneity between the two groups. Hommes (2017) centered their analysis 

on these primary types of agents, offering insights into their distinct market beliefs and 

behaviors. Li & Miu (2022) expanded on this exploration by identifying new factors that 

influence the ratio of fundamentalists to chartists in the market. Collectively, these diverse 

studies contribute to a comprehensive understanding of the nature and role of behavioral agents 

in financial markets. They underscore the importance of recognizing these varied perspectives 

and approaches in market analysis and prediction 

In a similar vein to these studies, the influence of heterogeneous beliefs on option 

pricing has been explored. Guo (1998) was among the pioneers to integrate this heterogeneity 

into option pricing, identifying two groups based on their outlook: bulls and bears. Shefrin 

(2001) further delineated how such diversity could prompt deviations from the Black-Scholes 

model. His study elucidated that the equilibrium price of an option is a weighted average of 
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diverse opinions, which assists in explaining phenomena like the "smile" observed in implied 

volatilities. 

Several studies have expanded our understanding of market dynamics by examining 

how traders with diverse perspectives are attracted to various types of options. Research by 

Benninga and Mayshar (2000) and Buraschi and Jiltsov (2006) has shown how traders' differing 

views lead them to gravitate towards specific options. The concept of heterogeneous beliefs 

extends to foreign currency option markets and their underlying markets as well. Rzepkowski 

(2001) and Ziegler (2002) provided empirical evidence supporting the idea that traders hold 

varying levels of confidence and distinct outlooks regarding future exchange rates and 

dividends, respectively. 

Frijns et al. (2010) took this a step further by developing a model for the option market 

that accounted for the presence of different types of agents and their shifting behaviors. 

Kawakubo et al. (2014) explored how these diverse expectations played out between the option 

market and its underlying asset market, shedding light on the impact of factors like volatility 

mean reversion and the presence of chartists on option pricing. Lastly, Boutouria et al. (2020) 

refined the classic Black and Scholes (1973) model by incorporating sentiment, reaffirming the 

persistent market heterogeneity between fundamentalists and chartists. These studies 

collectively contribute to a deeper understanding of how market participants with varying 

beliefs and behaviors interact within financial markets. 

2.3. Data and Methodology 

2.3.1. Sample and Data Description 

The aim of our study is to analyze changes in investor behavior within the currency 

options market. To achieve this, we utilize a comprehensive database comprising continuous 

currency option series for the EUR/USD, EUR/RUB, EUR/QAT, and EUR/JPY pairs provided 

by Thomson Reuters. Unlike individual series, the continuous series do not expire until the 

corresponding option class expires. Our sample encompasses 1378 daily observations of 

continuous call options on the aforementioned currency pairs traded on the Russian Trading 

System. The data spans from September 22, 2016, to December 31, 2021. It is important to note 

that these foreign currency options follow the European type. We have gathered a range of data 

for our analysis, the underlying price (S), the option strike price (X), the current date, the 

number of days remaining to maturity (T), the price of the currency call option (Price), the 
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implied volatility at 3 months, the transaction volume, the foreign interest rate (EURIBOR) for 

each currency pair in our sample, and domestic interest rates (LIBOR, MowIBOR, TIBOR and 

QIBOR for EUR/USD, EUR/RUB, EUR/JPY, and EUR/QAT pairs respectively).  

The use of currency options relies on the premise that individual behavior changes 

during periods of crisis, and investor behavior may vary depending on the study period (pre-

crisis or post-crisis). To examine investor behavior before and during the COVID-19 health 

crisis, we divided the sample into two sub-periods based on criteria established by the World 

Health Organization (WHO), Zhang et al. (2020), and GAO et al. (2021): 

- Pre-Covid-19: our sample is composed of 904 daily observations of futures continuous 

call on the studied pairs from 22 September 2016 to 10 Mars 2020. 

- During Covid-19, our sample is composed of 474 daily observations of futures 

continuous call on the studied pairs from 11 Mars 2020 to 31 December 2021. 

2.3.2.  Methodological Issues 

Firstly, we calculated a proxy variable named market imperfections2, which represents 

the difference between the theoretical price of the currency option according to the GK (1983) 

model3  and the price observed on the market. This variable helps to evaluate the importance of 

the investors' behaviour in the currency option market and deduce the behavioural typology that 

characterizes the strategies of the fundamentalists and the chartists. Subsequently, we used the 

Markov switching model to analyse the heterogeneity between the fundamentalists and the 

chartists in the currency options market before and during the Covid-19. However, the 

traditional assumption made by Garman and Kohlhagen (1983)4 suggests that the market is 

efficient, investors are rational, and market imperfections are not considered in their model. In 

reality, markets are often inefficient, and investors can display irrational behaviour, leading to 

                                                           
2 The introduction of market imperfections in the currency option valuation formula, led to theoretical prices closer to the 

market price. 

3 The equation of call price can be written as follow: Ct = Ste
−rfτN(d1) − Xe

−rdτN(d2), where: d1 =
ln(S/X)+(rd−rf)τ+

1

2
σ²τ

σ√τ
        

and              d2 = d1 − σ√τ.  To facilitate the calculation of the currency call option price according to this formula, we have 

developed a procedure on Visual Basic (VBA), named Currency Call_GK.       

4Garman-Kohlhagen model (1983) is a pricing model used to determine the fair price for a currency call option or a currency 

put option based on the following variables: type of option, strike price, underlying exchange rate price, volatility, time, strike 

price, domestic risk-free rate and foreign risk-free rate. This model was employed to the case of European currency call option. 
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valuation errors. To account for this, we propose using this proxy variable to validate the 

presence of heterogeneous investor behaviour during the study period. 

4.3.2.1. Specification and Diagnostic Test: Unit Root Test 

For this purpose, the Augmented Dickey-Fuller (1979) test was employed, consisting of 

three equations to test for unit roots. 

 No constant, no trend:   ∆𝑦𝑡 =  𝛾𝑦𝑡−1 + ∑ 𝛼𝑖∆𝑦𝑡−𝑖
𝑛
𝑖=1 + 𝜀𝑡    (2.1) 

 Constant, no trend:  ∆𝑦𝑡 =  𝐶 + 𝛾𝑦𝑡−1 + ∑ 𝛼𝑖∆𝑦𝑡−𝑖
𝑛
𝑖=1 + 𝜀𝑡   (2.2) 

 Constant and Trend:  ∆𝑦𝑡 =  𝐶 + 𝛾𝑦𝑡−1 + 𝛿𝑡  ∑ 𝛼𝑖∆𝑦𝑡−𝑖
𝑛
𝑖=1 + 𝜀𝑡   (2.3) 

4.3.2.2. Econometric Methodology: Two State Markov Switching Model 

The primary aim of this paper is to investigate the diversity in behavior exhibited by 

economic agents within the currency market. We hypothesize that this behavior may undergo 

changes during times of crisis. In our empirical analysis, we have identified the Markov 

Switching model as a highly suitable tool for detecting these shifts in behavior. 

Markov Switching models are conventionally employed to account for structural breaks 

that can significantly alter the trajectory of variables. They operate on the principle that the 

likelihood of transitioning to a particular regime is dependent on past observations of the 

variables of interest (Engel and Hamilton, 1990). Furthermore, owing to the dynamic nature of 

transition probabilities in Markov models, they enable the calculation of probabilities 

associated with future regime realizations and the prediction of future values of the endogenous 

variable, regardless of the prediction horizon's duration. This approach initially took shape with 

the pioneering work of Goldfeld and Quandt (1973) and has since been expanded upon and 

refined by Hamilton (1989, 1990, and 1994). 

We applied this model5 to study the change in beliefs between the fundamentalists and 

the chartists in the currency market. We used variable named market imperfections, which 

represents the valuation errors of the theoretical model of Garman and Kohlhagen (1983) and 

helps to detect the change in the investors’ behaviour between the chartists and the 

fundamentalists following the Covid-19 health crisis. Therefore, we have taken into account an 

                                                           
5 We consider in this paper the two states, Markov switching models, as we have divided investors in two types: 

fundamentals and chartists. These models allow greater flexibility to accommodate for different behaviors in the 

time series data. 
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autoregressive two-regime Markov switching model of order 𝑝, denoted 𝑀𝑆 (2) −  𝐴𝑅(𝑝), 

which is presented as follows:  

𝑋𝑡 − 𝜇(𝑆𝑡) = 𝜑1[𝑋𝑡−1 − 𝜇(𝑆𝑡−1)] + 𝜑2[𝑋𝑡−2 − 𝜇(𝑆𝑡−2)] + ⋯+ 𝜑𝑝[𝑋𝑡−𝑝 − 𝜇(𝑆𝑡−𝑝)] + 𝜀𝑡  (2.4) 

Where:𝜑1, 𝜑2… 𝜑𝑝 represent the coefficients of the process 𝐴𝑅 (𝑝),  𝜀𝑡~ 𝑖𝑖𝑑 (0, 𝜎𝜖
2) and 

𝜇 (𝑆𝑡) are constants which depend on the states / regimes (𝑆𝑡) and represent: 

 𝜇1 ∶  𝑖𝑓 𝑡ℎ𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑖𝑠 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 / 𝑟𝑒𝑔𝑖𝑚𝑒 1 (𝑆𝑡  =  1) 𝑓𝑜𝑟 𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙𝑖𝑠𝑡 

 𝜇2 ∶  𝑖𝑓 𝑡ℎ𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑖𝑠 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 / 𝑟𝑒𝑔𝑖𝑚𝑒 2 (𝑆𝑡  =  2) 𝑓𝑜𝑟 𝑐ℎ𝑎𝑟𝑡𝑖𝑠𝑡 

The transition from one state to another is governed by the first-order Markov chain of 

state 𝑆 with transition probabilities that can be expressed as: 

𝑝𝑖𝑗 = 𝑝(𝑆𝑡 = 𝑗\𝑆𝑡−1 = 𝑖), 𝑖, 𝑗 = 1,2 (2.5) 

where pij presents the probability of going from state 𝑖 at time 𝑡 − 1 to state 𝑗 at time 𝑡, using 

the fact that: 

 𝑝1𝑖 + 𝑝2𝑖 = 1 (2.6) 

In this study, two states are assumed and the underlying 𝑀𝑆𝐼𝐴𝐻(2) − 𝐴𝑅(𝑝) model is 

given by: 

𝑋𝑡 =

{
 

 𝑐1 +∑ 𝜑1,𝑖𝑋𝑡−𝑖 + 𝜀1,𝑡 𝑤𝑖𝑡ℎ 𝑆𝑡 = 1 
𝑝

𝑖=1
 

𝑐2 +∑ 𝜑2,𝑖𝑋𝑡−𝑖 + 𝜀2,𝑡 𝑤𝑖𝑡ℎ 𝑆𝑡 = 2 
𝑝

𝑖=1

 (2.7) 

The 𝑀𝑆𝐼𝐴𝐻 − 𝐴𝑅 can be used to obtain the value of the observed regime,𝑆𝑡, through 

the observed behavior of 𝑋𝑡. 

4.3.2.3. Test for Linearity in MS Models: The Hansen Test 

Hansen (1992, 1996) presents a theoretical framework for hypothesis testing that 

enables the evaluation of linearity in the presence of nuisance parameters and scores that are 

zero under the null hypothesis, as observed in MS models. In this framework, the likelihood 

function is viewed as a function of unknown parameters, and the empirical process theory is 

utilized to establish bounds on the asymptotic distribution of a standardized LR statistic. Our 



Chapter 2 

  

 
   

 
79 

objective is to test the adequacy of a linear model compared to a specified non-linear model and 

the null hypothesis can be presented as:  

𝐻0 : 𝑙𝑖𝑛𝑒𝑎𝑟 𝑚𝑜𝑑𝑒𝑙  𝑣𝑠 𝐻1: 𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 𝑚𝑜𝑑𝑒𝑙  (2.8) 

2.4. Empirical Results 

2.4.1.  Data Analysis 

Table 1 provides a summary of key statistics for various variables, including daily 

exchange rates, call options calculated using Garman and Kohlhagen's model (1983), observed 

market call options, and the daily proxy for the market imperfections (MI) variable. These 

variables pertain to futures continuous calls on the EUR/USD, EUR/RUB, EUR/QAT, and 

EUR/JPY pairs, spanning from September 22, 2016, to December 31, 2021. The study period 

is further divided into two distinct sub-periods: the pre-Covid-19 period, comprising 904 

observations, and the Covid-19 period, consisting of 473 observations. The table reveals that 

most variables exhibit significant variation between their minimum and maximum values. 

Additionally, all skewness coefficients differ from zero, indicating that these variables possess 

asymmetric distributions. Furthermore, kurtosis coefficients vary, with some indicating thick-

tailed distributions (playkurtotic) and others suggesting leptokurtosis, characterized by fatter 

tails. It is evident from these observations that the variables do not follow a Gaussian 

distribution, thus corroborating the results of the Jarque Bera test. 

To assess the stationarity of the variables, the Augmented Dickey Fuller (ADF) test was 

employed. The results demonstrate that the application of the first difference procedure to non-

stationary variables achieved stability. 

From figure 1, we observe a significant change in the quotations of the different 

exchange rate pairs studied from the end of 2019. This change is due to the spread of the Covid-

19 pandemic in the world, which became more serious on March 10, 2020 when the World 

Health Organization (WHO) declared the covid-19 as a global pandemic. 

From figure 2, we observed a significant change in the studied proxy variable from the 

end of 2019, especially for the EUR/USD and the EUR/RUB pairs when the Covid-19 appeared 

at the end of 2019. 
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Table 2. 1. Descriptive statistics and non-stationarity tests of the sample 

Notes: The table reports descriptive statistics for the daily exchange rate ‘S’, the daily market imperfections proxy variable 

‘MI’, the theoretical currency call price according to the Garman and Kohlhagen model (1983) ‘Call-GK’ and the currency call 

price observed on the market of the EUR/USD, EUR/RUB, EUR/QAT and EUR/JPY pairs from 22 September 2016 to 31 

December 2021.  Max., Min. and Std. Dev. denote respectively the maximum, the minimum and the standard deviation. J-B is 

Jacque Berra test. Prob is the Probability. Then, the Augmented-Dickey Fuller is a unit root test that inform about the 

stationarity of the time-series with a null hypothesis of the presence of a unit root in the process. *, ** and *** refer to the 

statistical significance at respectively 10%, 5% and 1% levels. 

Variable Mean Max Min Std.Dev Skewness Kurtosis J-B Prob ADF 

Pair 1 : EUR /USD Futures Continuous Call 

Panel 1 : EUR/USD Pre-Covid-19 

MI -0.003 0.026 -0.028 0.009 -0.396 2.879 24.165 0.000 -3.619** 

S 1.136 1.251 1.039 0.047 0.309 2.623 19.751 0.000 -1.535 

Call-GK 0.020 0.041 0.001 0.008 0.026 2.908 0.417 0.812 - 

Call-Mkt 0.023 0.040 0.000 0.012 0.253 1.821 61.954 0.000 - 

Panel2  : EUR/USD During Covid-19 

MI -0.002 0.012 -0.030 0.010 -1.424 4.370 196.872 0.000 -2.680** 

S 1.168 1.233 1.069 0.040 -0.709 2.607 42.693 0.000 -1.383 

Call-GK 0.017 0.040 0.004 0.006 1.000 4.322 113.309 0.000 - 

Call-Mkt 0.019 0.040 0.010 0.011 0.921 2.516 71.429 0.000 - 

Pair 2 : EUR / QAT Futures Continuous  Call 

Panel 3 : EUR/QAT Pre-Covid-19 

MI 0.147 1.221 -4.811 1.095 -3.259 13.586 5821.108 0.000 -5.005** 

S 156.467 172.800 145.000 6.794 0.649 2.255 84.428 0.000 -0.281 

Call-GK 1.134 2.183 0.539 0.239 0.560 3.540 58.175 0.000 - 

Call-Mkt 0.988 5.650 0.020 1.110 2.997 12.170 4520.533 0.000 - 

Panel 4  : EUR/QAT During Covid-19 

MI 0.037 1.210 -6.782 1.478 -3.959 17.781 5541.490 0.000 -3.441** 

S 165.519 171.800 158.000 3.254 -0.632 2.248 42.637 0.000 -2.628 

Call-GK 1.098 2.332 0.546 0.281 1.123 4.969 175.766 0.000 - 

Call-Mkt 1.061 7.830 0.020 1.516 3.834 16.997 5020.286 0.000 - 

Pair 3 : EUR / RUB Futures  Continuous  Call 

Panel 5 : EUR/RUB Pre-Covid-19 

MI 1.062 3.726 -1.471 0.714 0.722 3.443 85.939 0.000 -3.965** 

S 72.434 85.500 60.500 5.390 0.013 2.478 10.304 0.006 -0.999 

Call-GK 2.276 4.106 0.698 0.785 0.129 2.078 34.509 0.000 - 

Call-Mkt 1.214 4.611 0.015 0.522 0.352 4.673 124.109 0.000 - 

Panel 6  : EUR/RUB During Covid-19 

MI 0.498 2.518 -2.292 0.870 -0.628 3.194 31.852 0.000 -3.848** 

S 87.341 94.250 78.000 4.022 -0.629 2.379 38.743 0.000 -2.067 

Call-GK 2.559 5.009 0.781 0.853 0.165 2.452 8.077 0.018 - 

Call-Mkt 2.061 5.091 0.253 0.791 1.016 4.769 143.099 0.000 - 

Pair 4 : EUR  / JPY Futures  Continuous  Call 

Panel 7 : EUR/JPY Pre-Covid-19 

MI 0.048 0.409 -0.386 0.167 -0.132 1.935 45.328 0.000 14.686** 

S 151.573 155.500 149.500 1.424 0.835 2.708 108.147 0.000 -1.009 

Call-GK 0.340 0.941 0.116 0.122 0.633 4.032 100.522 0.000 - 

Call-Mkt 0.292 0.930 0.040 0.141 0.712 3.492 85.615 0.000 - 

Panel 8  : EUR/JPY During Covid-19 

MI 0.056 0.384 -0.605 0.157 -0.408 2.926 13.219 0.001 15.049** 

S 151.874 155.000 150.500 0.485 0.715 7.901 513.736 0.000 -5.811** 

Call-GK 0.380 1.361 0.108 0.163 1.831 8.622 887.220 0.000 - 

Call-Mkt 0.324 1.290 0.080 0.182 2.123 8.732 1003.030 0.000 - 
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Figure 2. 1. Daily exchange rates for the four pairs of currencies over the entire study 

period, from 22 September, 2016 to 31 December, 2021 
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Notes: This figure shows the charts of data on the daily EURO’s exchange rates, USD, RUB, JPY and QAT on the studied 

period from 22 September 2016 to 31 December 2021. Horizontal (vertical) axis presents the date (value); blue lines are for 

the evolution of the studied exchange rates over the entire period. 

Figure 2. 2. Daily market imperfections for the four pairs of currencies over the entire 

study period from 22 September 2016 to 31 December 2021. 
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Notes: This figure shows the charts of data on the daily EURO’s Market Imperfections, USD, RUB, JPY and QAT on the 

studied period from 22 September 2016 to 31 December 2021. Horizontal (vertical) axis presents the date (value); green lines 

are for the evolution of the studied Market Imperfections over the entire period. 
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2.4.2.  Empirical Findings 

For the exchange rate, we use the Markov switching model in which we specify a 

𝑀𝑆𝐼𝐻(2) − 𝐴𝑅(0)6 process for both periods where we have assumed common variance for 

each regime and no autoregressive lags in order to avoid the replication and degradation of the 

stylised facts of the cycles. 

Table 2. 2. Markov switching estimation results of the Exchange rate 

 

In Table 2, we conduct a test to assess the null hypothesis regarding the uniformity of 

investors' beliefs regarding the exchange rate for the four currency pairs studied, both before 

and during the Covid-19 pandemic. 

Upon examination, it becomes evident that the null hypothesis proposed by the linear 

model is rejected. This rejection signifies the presence of non-linearity in the data, a 

characteristic attributed to inherent asymmetries within the time series. These asymmetries 

further emphasize the distinction between fundamentalists and chartists in the foreign exchange 

                                                           
6 The two - state Markov switching intercept heteroscedasticity model. 

  µ1 µ2 σ1 σ2 ρ11 ρ22 ρ12 ρ21 
Duration 

State1 

Duration 

State2 

Linearity  

test 

Pair 1 : EUR /USD Exchange rate 

EUR/USD 

 Pre-Covid-19 
1.1071** 1.187** 0.0268 0.028 0.9982 0.9969 0.0018 0.0031 568.01 327.2 971.0484** 

EUR/USD  

During Covid-19 
1.1218** 1.1929** 0.02666 0.0173 0.9939 0.9967 0.0061 0.0033 163.24 307.22 626.5562** 

Pair 2 : EUR / QAT Exchange rate 

EUR/QAT 

 Pre-Covid-19 
152.02** 164.52** 2.6527 4.0244 0.9966 0.9938 0.0034 0.0062 290.4 160.66 1393.4353** 

EUR/QAT  

During Covid-19 
161.24** 167.46** 1.5963 1.4603 0.9862 0.9908 0.0138 0.0092 72.55 108.58 683.9123** 

Pair 3 : EUR / RUB  Exchange rate 

EUR/RUB  

Pre-Covid-19 
69.537** 78.969** 3.5147 2.2291 0.9968 0.9964 0.0032 0.0036 313.36 275.08 993.2831** 

EUR/RUB  

During Covid-19 
84.051** 90.566** 3.0273 1.4026 0..9955 0.9955 0.0045 0.0045 220.85 224.43 615.3981** 

Pair 4 : EUR / JPY Exchange rate 

EUR/JPY  

Pre-Covid-19 
150.54** 153.08** 0.4004 0.9669 0.9981 0.9973 0.0019 0.0027 534.2 367.23 1620.6010** 

EUR/JPY  

During Covid-19 
151.39** 152.14** 0.2742 0.3564 0.9625 0.9778 0.0375 0.0222 26.66 44.95 292.9489** 

Notes: The table displays the estimation of the Markov switching models for the exchange rate during the two study periods. µ1, µ2, σ1, σ2, ρ11, 

ρ22, ρ12 and ρ21 are respectively the estimated coefficients of the intercepts of state 1 and 2, the standard errors of state 1 and 2, the probabilities 

of staying in the same regime and the probabilities of switching from one regime to another. 

** indicates that the null hypothesis is not accepted at 5% significance level. 
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market. It suggests that each group adopts a specific strategy tailored to these underlying 

asymmetries. 

Additionally, we identify significant disparities between the chartist and fundamentalist 

regimes. The results align with the findings of Menkhoff et al. (2009) and are supported by the 

positive and statistically significant coefficients of the intercepts, probabilities, and standard 

errors. These outcomes corroborate the existence of differential behaviors between chartists and 

fundamentalists within the foreign exchange market, consistent with the study by Chen et al. 

(2020). 

Before the covid-19, we obtained the following results. For the EUR/USD pair, the first 

regime (fundamentalist) exhibited higher volatility compared to the second regime (chartist), 

with the first regime having a longer duration than the second regime. Concerning the 

EUR/QAT pair, the second regime displayed greater volatility than the first regime, while the 

first regime had a longer duration in comparison to the second regime. In the case of the 

EUR/RUB pair, the first regime demonstrated higher volatility than the second regime, and the 

duration in the first regime exceeded that in the second regime. Finally, for the EUR/JPY pair, 

the second regime exhibited higher volatility than the first regime, with the first regime having 

a longer duration than the second regime. 

Conversely, during the Covid-19 pandemic, our observations reveal the following 

dynamics. For the EUR/USD pair, the first regime (fundamentalist) continues to exhibit higher 

volatility than the second regime (chartist), while the duration in the second regime surpasses 

that in the first regime. Regarding the EUR/QAT pair, the first regime maintains higher 

volatility than the second regime, but the duration in the first regime shortens in comparison to 

that of the second regime. In the case of the EUR/RUB pair, the first regime remains more 

volatile than the second regime, while the duration in the second regime extends beyond that in 

the first regime. Lastly, for the EUR/JPY pair, the second regime consistently exhibits higher 

volatility than the first regime, and the duration in the second regime becomes longer than that 

in the first regime. 

In summary, our comprehensive analysis of the four studied currency pairs revealed the 

presence of two distinct regimes in each period examined. Notably, our estimations indicated 

that during the pre-Covid-19 period, fundamentalists exhibited greater persistence in their 

behavior compared to chartists. However, this pattern underwent a significant reversal during 

the Covid-19 period, with investors adopting chartist strategies characterized by higher 
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persistence than fundamentalists. This outcome serves as compelling evidence of the profound 

influence of the pandemic on investor behavior within the foreign exchange market. 

Furthermore, our research unveiled a striking heterogeneity in the behaviors of chartists 

and fundamentalists. Remarkably, during the health crisis, investors experienced a sudden and 

substantial shift in their strategies, a phenomenon observed across different exchange rate pairs. 

This phenomenon highlights the adaptability of market participants in response to information 

shortages and heightened uncertainty. 

Therefore, our findings firmly reject the null hypothesis that posits uniformity in beliefs 

within the foreign exchange market. Instead, our results align with the existing financial 

literature, underlining the significance of the heterogeneous market hypothesis, as evidenced 

by studies such as those conducted by Li and Miu (2022), Owusu Junior et al. (2021), Hommes 

(2017), Dick & Menkhoff (2013), and De Jong et al. (2010). Moreover, our research aligns with 

empirical studies emphasizing the diverse and heterogeneous impacts of COVID-19 on 

financial markets, as exemplified by Bossman et al. (2022) and Hashmi et al. (2021). 

In our analysis of market imperfections, we employed the Markov-switching model, 

specifically specifying an 𝑀𝑆𝐼𝐻(2) − 𝐴𝑅(0) process for both periods. We assumed a common 

variance for each regime, except for the EUR/USD pair during the Covid-19 period and the 

EUR/QAT pair during the pre-Covid-19 period. In these exceptional cases, we utilized the 

Markov-switching model with an 𝑀𝑆𝐼(2) − 𝐴𝑅(0) specification, also assuming a common 

variance for the two regimes. Therefore, for both estimation models, no autoregressive lags are 

included to prevent the replication and degradation of the stylized fact s of the cycles (Ferrara, 

2003). 

Our modeling approach deliberately excluded autoregressive lags to prevent the 

replication and degradation of the stylized facts of market cycles. The results of our estimation 

of the Markov-switching models for market imperfections during the two study periods are 

presented in Table 3. 

In line with our research objectives, we initially tested the null hypothesis, examining 

the homogeneity of investors' beliefs regarding the proxy variable (market imperfections) for 

the four currency pairs across the two sub-periods. Notably, our findings revealed a rejection 

of the null hypothesis, decisively confirming the presence of heterogeneity in the beliefs of 

fundamentalists and chartists within the currency options market. These results align with our 
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expectations and are further substantiated by the significant coefficients of the intercepts, 

probabilities, and standard errors, which collectively support the existence of this heterogeneity. 

These results provide valuable insights into the distinct beliefs and strategies employed by 

fundamentalists and chartists in the currency options market, underlining the complexity and 

diversity of investor behavior in this context. 

During the Covid-19 pandemic, our analysis revealed significant findings regarding the 

behavior of the different regimes for the four currency pairs. For the EUR/USD pair, we 

observed that regime 1 (fundamentalists) exhibited higher volatility compared to regime 2 

(chartists). However, regime 2 displayed greater persistence than regime 1. In the case of the 

EUR/QAT pair, both regime 1 and regime 2 demonstrated similar levels of volatility. However, 

regime 2 exhibited higher persistence compared to regime 1. For the EUR/RUB pair, regime 1 

displayed greater volatility than regime 2. Conversely, regime 2 exhibited higher persistence 

than regime 1. Regarding the EUR/JPY pair, we found that regime 2 was characterized by 

higher volatility than regime 1. However, regime 2 also displayed greater persistence compared 

to regime 1, with shorter durations for both regimes. 

These observations shed light on the nuanced dynamics of investor behavior in response 

to the Covid-19 pandemic within the context of these currency pairs. The variations in volatility 

and persistence between fundamentalists and chartists highlight the complex interplay of factors 

influencing their strategies and decisions during this unprecedented global crisis. 

In contrast, our analysis during the Covid-19 pandemic yielded different results for the 

behavior of the different regimes in the four currency pairs. For the EUR/USD pair, we found 

that both regime 1 and regime 2 exhibited similar levels of volatility. However, the persistence 

of investors' behavior was predominantly observed in regime 1. In the case of the EUR/QAT 

pair, a notable shift occurred during the pandemic. Regime 2 became more volatile than regime 

1, and the persistence of investors' behavior switched from regime 2 to regime 1. For the 

EUR/RUB pair, there was a reversal in both volatility and persistence. Regime 2 displayed 

higher volatility, while investors' persistence was primarily observed in regime 1 during the 

Covid-19 period. Regarding the EUR/JPY pair, regime 2 continued to exhibit higher volatility 

than regime 1. However, investors' persistence shifted to regime 1, with relatively short 

durations for both regimes. 
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These findings underscore the dynamic nature of investor behavior, particularly during 

the Covid-19 crisis, highlighting significant shifts in volatility and persistence patterns among 

fundamentalists and chartists in these currency pairs. The pandemic-induced uncertainties 

appear to have influenced investors' strategies and decisions in unique ways, reflecting the 

evolving nature of financial markets during such challenging times. 

Based on the findings obtained from our analysis, our research confirms the presence of 

two distinct regimes in each of the study periods, indicating that investors' behavior in the 

currency option market exhibits a dynamic and changing nature over time. Interestingly, when 

examining the proxy variable known as "market imperfection," our results show a reversal in 

estimates compared to those for the exchange rate. Specifically, during the pre-Covid-19 period, 

investors' persistence was higher among chartists than fundamentalists, but this pattern reversed 

during the Covid-19 period. This abrupt shift in strategy across the four currency pairs 

underscores the significant impact of the health crisis on investor behaviors in the currency 

option market. These findings strongly support the notion that market imperfections, such as 

information costs and market sentiment, play a substantial role in shaping investor strategies. 

The Covid-19 pandemic acted as a catalyst for changing investor behavior, highlighting the 

phenomenon of strategy adaptation within the currency options market. 

Based on the observed heterogeneity in behavior, we reject the null hypothesis that 

posits uniform investor behavior in the currency option market. Our results align with the 

existing financial literature, which emphasizes the diverse and heterogeneous nature of options 

markets, as evidenced by studies like Nappo et al. (2023), Li et al. (2023), Boutouria et al. 

(2020), and Frijns et al. (2010). These findings contribute to a deeper understanding of the 

intricacies of options markets and highlight the need to consider the evolving strategies of 

market participants when analyzing currency options. 
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Table 2. 3. The Markov-switching estimation results of the market imperfections 

  µ1 µ2 σ1 σ2 ρ11 ρ22 ρ12 ρ21 
Duration 

State1 

Duration 

State2 

Linearity  

test 

Pair 1 : EUR /USD Futures  Continuous  Call 

EUR/USD 

 Pre-Covid-19 
-0.0165** 0.0016** 00.0859 0.0455 0.9831 0.9955 0.0169 0.0045 59.12 220.76 939.5392** 

EUR/USD  

During Covid-

19 

0.0011** -0.0219** 0.0308 0.0308 0.9955 0.9823 0.0045 0.0177 223.001 56.5 666.6526** 

Pair 2 : EUR / QAT Futures Continuous  Call 

EUR/QAT 

 Pre-Covid-19 
-4.3183** 0.3697** 0.0467 0.0467 0.9525 0.9977 0.0475 0.0023 21.04 440.02 1969.4314** 

EUR/QAT  

During Covid-

19 

0.3544** -6.4793** 0.0335 0.1517 0.9979 0.9527 0.0021 0.0473 470.18 21.14 1400.5342** 

Pair 3 : EUR / RUB Futures  Continuous  Call 

EUR/RUB  

Pre-Covid-19 
1.7904** 0.6177** 0.0399 0.0344 0.9744 0.9856 0.0256 0.0144 39.1 69.48 860.8896 ** 

EUR/RUB  

During Covid-

19 

0.9708** 0.4468** 0.0447 0.0584 0.9907 0.9833 0.0093 0.0167 108.03 59.85 398.0205  ** 

Pair 4 : EUR / JPY Futures  Continuous  Call 

EUR/JPY  

Pre-Covid-19 
-0.1117** 0.1716** 0.0583 0.0505 0.7177 0.7807 0.2823 0.2191 3.54 4.57 302.3390** 

EUR/JPY  

During Covid-

19 

0.1232** -0.1092** 0.247 0.1191 0.8699 0.6796 0.1301 0.3204 7.69 3.12 137.6731  ** 

Notes: The table displays the estimation of the Markov switching models for the market imperfections during the two study periods. µ1, µ2, σ1, 

σ2, ρ11, ρ22, ρ12 and ρ21 are respectively the estimated coefficients of the intercepts of state 1 and 2, the standard errors of state 1 and 2, the 

probabilities of staying in the same regime and the probabilities of switching from one regime to another. 

** indicates that the null hypothesis is not accepted at 5% significance level. 

 

2.4.3.  Discussion   

The Covid-19 pandemic has profoundly influenced the dynamics of global financial 

markets, with particular emphasis on the foreign exchange markets. The outbreak has triggered 

a twofold response: firstly, a decline in economic activities due to government-imposed 

lockdowns; and secondly, a significant impact on financial indicators such as exchange rates. 

This has necessitated a reconsideration of long-term investment strategies, particularly for 

hedging against potential losses. Amidst this backdrop, our study delves into shifts in investor 

behavior, highlighting divergences and convergences across both exchange rates and currency 

options. We found that the health crisis has instigated a role reversal between fundamentalist 

and chartist investors in different currency pairs. Simultaneously, there were corresponding 

changes in the behavior relating to our proxy variable, Market Imperfections (MI). These 

observations underscore the complex, fluid nature of investor behavior in today's uncertain 
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economic climate, compelling a nuanced understanding of both converging and diverging 

tendencies among market participants. 

The profound impact of the pandemic extended its reach to Europe, where a surge in 

COVID-19 cases prompted the implementation of stringent measures. These measures, aimed 

at curbing the spread of the virus, disrupted supply chains and economic activities on a 

significant scale. As a consequence, the region experienced a staggering 40% decline in real 

GDP during the second quarter of 2020. Notably, countries like France and Italy grappled with 

a host of vulnerabilities, including mounting levels of debt, a rising inflationary trend, and 

declining stock market indices. In the midst of this economic turbulence, the U.S. dollar 

emerged as a prominent safe haven currency, garnering considerable attention and demand. 

This shift had a profound impact on the EUR/USD currency pair, reshaping the dynamics of 

exchange rates in the European and American context. 

Commodity-producing nations, such as Russia, faced significant challenges during the 

pandemic, primarily stemming from a dramatic drop in oil prices. The Russian economy, which 

was already grappling with pre-existing difficulties, found itself in a recessionary phase. 

However, it demonstrated a degree of resilience amidst these adverse circumstances. This 

resilience can be attributed to Russia's strategic emphasis on vital industries that remained 

relatively unaffected by the pandemic's disruptions. 

In contrast, Qatar exhibited remarkable resilience throughout this period of turbulence. 

Despite facing challenges such as a regional embargo and plummeting oil prices, the nation's 

substantial natural gas reserves and robust export infrastructure played a pivotal role in 

preserving its economic stability. Furthermore, Qatar's future growth outlook remains 

promising, buoyed by several factors, including its role as the host of the 2022 World Football 

Cup and the continuous progress of key infrastructure projects. 

In Japan, the world's third-largest economy, the pandemic's influence was indeed 

palpable, although it was relatively milder when compared to the challenges faced by some 

other advanced nations. The economic downturn resulted from Japan's heavy dependence on 

exports, which experienced a significant slump. However, the anticipated impact on inflation 

was deemed to be less severe than what was witnessed following the 2011 Tohoku Earthquake. 

This suggests that both demand and supply were impacted by the pandemic. Notably, sectors 

such as tourism and leisure bore the brunt of the crisis. Nevertheless, Japan has recently taken 
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steps to reopen its borders to foreign tourists, hinting at the possibility of an eventual recovery 

in these areas. 

In summary the pandemic has highlighted the limited persistence in trading strategies, 

notably between fundamentalists and chartists, in the forex markets. This suggests that traders 

continually adapt their approaches in response to changing economic conditions, emphasizing 

the need for flexible, adaptive strategies in turbulent times. 

2.4.4.  Practical Implications  

This study carries several policy implications that warrant careful consideration. First 

and foremost, policymakers must take a proactive stance in anticipating potential future 

uncertainties and devising preemptive measures to shield financial markets and exchange rates 

from impending crises. This proactive approach could encompass the implementation of 

economic support initiatives, interventions to stabilize markets, and the adoption of 

accommodating monetary policies. Enhancing preparedness is paramount for both governments 

and financial institutions, achieved through improved risk assessment, reinforcement of 

institutional resilience, and the formulation of robust crisis management protocols. 

Secondly, there is an urgent need for comprehensive investigations into the factors 

influencing exchange rates and the aftermath of crises like the COVID-19 pandemic on 

financial landscapes. Gaining a thorough understanding of investor behavior, particularly 

during tumultuous periods, holds significant importance. Economic actors and policymakers 

should devote attention to the divergent behaviors of investors in both the currency market and 

currency options. Emphasis should also be placed on portfolio diversification and hedging 

strategies to mitigate financial losses during crisis episodes. 

Lastly, fostering international coordination and collaboration is indispensable to 

mitigate the adverse effects of crises and stimulate economic recovery. Nations should consider 

sharing crucial information, extending mutual support through synchronized policies, and 

aligning financial market regulations. Such unified global efforts are vital for addressing shared 

challenges and ensuring both economic and financial stability. 

These key points underscore the critical necessity of prudent risk management, stringent 

regulatory frameworks, and judicious economic policies to cushion the detrimental impacts of 

crises on financial markets and exchange rates. In summary, proactive strategies are imperative 
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to instill resilience and maintain stability in an inherently uncertain and volatile economic 

landscape. 

2.5. Conclusion 

Several months after the COVID-19 pandemic began, its negative consequences reached 

far beyond global health, causing significant disruptions in international financial markets, 

including foreign exchange and currency options. Recognizing the lasting impact of the 

pandemic, we conducted an investigation to understand its influence on investor behavior. Our 

study relied on an extensive dataset covering foreign exchange markets across Europe, the 

United States, Japan, Russia, and Qatar. 

Our research makes a significant contribution to the existing body of knowledge by 

examining the shifts in investor behavior within the context of the pandemic, with a particular 

focus on the foreign exchange and currency options markets. We introduced an innovative 

metric, labeled "Market Imperfections," to gauge the disparities between theoretical and actual 

call option prices, drawing from the Garman and Kohlhagen (1983) model. 

To validate our discoveries, we employed a two-state Markov switching model, which 

provided nuanced insights into the contrasting behaviors exhibited by fundamentalist and 

chartist investors. Our dataset, spanning from September 22, 2016, to December 31, 2020, 

encompasses four currency option pairs: EUR/USD, EUR/JPY, EUR/QAT, and EUR/RUB. 

Our analysis reveals that investor strategies exhibited significant variations rather than being 

uniform. These variations were notably responsive to distinct market conditions during 

different timeframes. Prior to the onset of the pandemic, fundamentalist investors largely 

influenced market trends. However, with the emergence of COVID-19, chartists gained more 

influence, significantly impacting market dynamics. These shifts underscore the diversity in 

market strategies, indicating that investors adapt to a multitude of influencing factors, including 

information costs and the distinctive characteristics of various investment periods. 

Furthermore, our findings suggest that market imperfections played a substantial role in 

shaping investor behavior, particularly during times of crisis. The COVID-19 pandemic 

triggered a sudden and tangible transformation in strategies across all studied currency pairs. 

This observation highlights the diverse reactions that crises can provoke, encompassing 

mimetic behavior, risk aversion, and loss aversion, often driven by information deficits and 

pervasive uncertainty. 
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Contrary to the assumption of universally shared investor beliefs, our study reveals 

evidence of both convergence and divergence in investor behavior during specific sub-periods 

preceding and during the pandemic. This supports our assertion that the COVID-19 crisis has 

significantly reshaped investor behavior, prompting adjustments in their risk profiles and 

hedging strategies. 

Nonetheless, it's important to acknowledge the constraints of our study. One major 

limitation relates to the availability of extensive, long-term data covering currency options 

across various markets. These data gaps present an opportunity for future research to explore. 

To address this limitation, future studies might consider widening the scope of investigation by 

incorporating a broader historical timeframe and incorporating additional market factors. 

Expanding the research in this manner would serve a dual purpose: enhancing the reliability of 

our findings and facilitating comparative examinations of investor conduct during various 

critical events, including but not limited to the global financial crisis, Brexit, and geopolitical 

conflicts like the Russia-Ukraine situation. 
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Appendices 

Appendix 2.A.  Regime classification for the four pairs of Exchange rate 

Pair 
Pre-Covid-19 During Covid-19 

State 1 State 2 State 1 State 2 

EUR/USD 1:1 - 212:1 

[0.9945] 

543:1 - 904:1 

[0.9971] 

213:1 - 542:1 

[0.9961] 

1:1 - 97:1 [0.9948] 

407:1 - 473:1 

[0.9886] 

98:1 - 406:1 

[0.9966] 

EUR/QAT 26:1 - 289:1 

[0.9950] 

319:1 - 636:1 

[0.9954] 

1:1 - 25:1 

[0.9793] 

290:1 - 318:1 

[0.9213] 

637:1 - 904:1 

[0.9980] 

4:1 - 7:1 [0.9341] 

248:1 - 385:1 

[0.9930] 

468:1 - 473:1 

[0.9036] 

1:1 - 3:1 

[0.9998] 

8:1 - 247:1 

[0.9966] 

386:1 - 467:1 

[0.9933] 

EUR/RUB 1:1 - 376:1 

[0.9989] 

648:1 - 897:1 

[0.9956] 

377:1 - 647:1 

[0.9969] 

898:1 - 904:1 

[0.8506] 

1:1 - 117:1 

[0.9953] 

357:1 - 473:1 

[0.9919] 

118:1 - 356:1 

[0.9930] 

EUR/JPY 38:1 - 572:1 

[0.9998] 

1:1 - 37:1 

[0.9846] 

573:1 - 904:1 

[0.9974] 

6:1 - 9:1 [0.9601] 

62:1 - 64:1 

[0.5527] 

 

121:1 - 130:1 

[0.9460] 

235:1 - 327:1 

[0.9960] 

332:1 - 341:1 

[0.9138] 

399:1 - 447:1 

[0.8922] 

472:1 - 473:1 

[0.6271] 

1:1 - 5:1 

[0.9999] 

10:1 - 61:1 

[0.9697] 

65:1 - 120:1 

[0.9946] 

131:1 - 234:1 

[0.9976] 

328:1 - 331:1 

[0.8613] 

342:1 - 398:1 

[0.9869] 

448:1 - 471:1 

[0.9474] 
 

Notes: This appendix displays the regime classification for the four studied pairs of Exchange rate into the two sub-periods 

(pre and during Covid-19) 

https://doi.org/10.1016/S0014-2921(01)00200-8
https://doi.org/10.1016%2Fj.jeca.2021.e00223
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Appendix 2.B.  Markov Switching Smoothed Regime Probabilities of Market Imperfections for the studied pairs  
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Notes: This appendix shows the Markov Switching Smoothed Regime Probabilities of Market Imperfections for the studied pairs during the pre-COVID-19 and COVID-19 sub-periods. 

Horizontal (vertical) axis presents the date (probability); blue lines and spots are for the smoothed regime 1 Probabilities and red lines and spots are for the smoothed regime 2 Probabilities
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This paper is published in International the Global Finance Journal. 

 

Abstract   

Dynamic costs arising from the variable impact of information on asset pricing present 

a challenge for accurate European currency option pricing. The Garman and Kohlhagen model, 

though influential in the literature, does not adequately account for these costs. This study 

extends the model by integrating an intensity function into the interest rates to measure dynamic 

information costs. Inspired by the Beer–Lambert law, the function is applied to a decade-long 

dataset of daily futures continuous calls on the EUR/USD pair from September 21, 2012, to 

September 23, 2022. The augmented model reduces pricing errors and manages implied 

volatility better than the 1983 model, consistent across different categories of maturity and 

moneyness. Our findings emphasize the need to consider dynamic information costs in asset 

pricing, demonstrating that their inclusion can significantly enhance the accuracy and reliability 

of currency option pricing. 

JEL classification: C61, F47, G13, G14 

Keywords: Currency options; Garman and Kohlhagen’s model; Dynamic information 

costs; Derivatives; Market imperfections; Beer–Lambert law  
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3.1. Introduction  

Using options for hedging or speculative purposes has gained popularity in recent 

decades. Consequently, businesses have adopted options to mitigate interest rate risk and 

minimize price fluctuations in real commodities and securities. Furthermore, options are 

employed in foreign exchange as a derivative instrument based on a fixed amount of foreign 

currency. Firms with substantial international operations and exposure to currency exchange 

rates often utilize foreign exchange options, commonly called “forex” options. Forex options 

have gained popularity as both speculative tools and components of investment portfolios; 

however, the widely acclaimed Black–Scholes model (1973), which won the Nobel Prize, is 

unsuitable for pricing forex options. The Black–Scholes model is primarily designed for non-

dividend paying stocks following geometric Brownian motion, and it considers only the 

domestic risk-free interest rate in its calculations. Currency exchange pricing requires a more 

comprehensive approach incorporating both domestic and foreign risk-free rates. To address 

this, Garman and Kohlhagen proposed a forex option pricing model in 1983, which accounts 

for interest rate parity and the equalization of forward premiums with interest rate differentials. 

This model is grounded on several key hypotheses. First, it assumes that exchange rate changes 

evolve gradually and do not exhibit abrupt jumps (H1). Second, the model assumes continuous 

exchange in the market (H2). Additionally, it assumes constant interest rates in both the 

domestic and international markets (H3). Moreover, the model assumes an ideal foreign 

exchange market where transaction and information costs are absent (H4). Lastly, it posits that 

option prices are determined by a single stochastic variable, denoted as S. Consequently, the 

exchange rate price follows a geometric Brownian motion or the Gauss–Wiener process (H5). 

The pioneering Garman and Kohlhagen model (G–K model) and its subsequent 

extensions exhibit several limitations closely tied to the validity of its underlying assumptions. 

These assumptions include the hypothesis of constant interest rates, constant volatility, absence 

of transaction and information costs, and the assumption of market sentiment. In contrast, the 

growth of the options market can be attributed to various factors, primarily driven by episodes 

of excessive volatility and financial crises during the era of internationalization. These 

circumstances created a demand for more flexible risk coverage beyond traditional techniques; 

thus, significant theoretical research on currency option pricing can be traced back to the 

pioneering work of Garman and Kohlhagen (1983). Subsequently, the research conducted by 

Black, Scholes, and Merton served as a source of inspiration for both this study and the work 
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of Grabbe (1983). Over time, these models underwent further development and improvement, 

with various researchers making notable advancements (Melino & Turnbull, 1990; Hilliard et 

al., 1991; Heston, 1993; Blenman & Ayadi, 1997; Sarwar & Krehbiel, 2000; Carr & Wu, 2007, 

Hoque et al., 2008; Xiao et al., 2010; Van Haastrecht & Pelsser, 2011; Swishchuk et al., 2014; 

Liu et al., 2015; Shokrollahi et al., 2016; Lv et al., 2016; Liu et al., 2016; Wang & Ning, 2017; 

Liu et al., 2022). Each model has contributed to the refinement of currency option evaluation. 

Still, empirical studies based on surveys of the G–K model have revealed the presence 

of biases in the derived theoretical prices. The hypotheses of Garman and Kohlhagen’s model 

(1983) do not hold in the financial market, prompting the need to develop more suitable and 

realistic new valuation models. Nonetheless, pricing financial instruments, including options, 

relies on an accurate assessment of various factors, with information being critical. In the 

context of European currency options, the influence of pricing information is particularly 

significant; however, the impact of information on option pricing is not static but varies over 

time, leading to dynamic information costs. These dynamic costs reflect the changing nature of 

information availability, market conditions, and investor behavior. Existing literature has 

recognized the importance of information in asset pricing, but limited research has explicitly 

focused on its time-dependent nature and the associated dynamic information costs in the 

context of option pricing; therefore, there is a need to examine how these dynamic costs affect 

the performance of currency option pricing models. This situation raises the following questions 

for which we endeavor to provide a preliminary response: 

i. Would Garman–Kohlhagen’s modified model, considering the dynamic information 

costs, reduce the evaluation mistakes caused by the standard G–K model?  

ii. How does introducing these imperfections affect the economic agent’s behavior? 

iii. Are the parameters of the option assessment perfectly observed or measured?  

This study addresses this research gap by proposing extending the Garman and 

Kohlhagen (G–K) model for pricing European currency options. The extension incorporates an 

intensity function based on interest rates to measure dynamic information costs. This approach 

draws inspiration from the Beer–Lambert law, an empirical relationship between light 

absorption and the properties of the medium it passes through. By analogy to the Beer−Lambert 

law, we introduce the dynamic information costs into the interest rates in the G–K model. 
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This paper employs a specific methodology to address the questions above. Our analysis 

focuses on the pricing of options, considering their dependence on maturity and moneyness. To 

evaluate the performance of the pricing models, we utilize the average mean squared errors 

(MSE) in option prices and implied volatility. We conduct a comprehensive empirical analysis 

by categorizing the data based on maturity and moneyness. Our empirical methodology utilizes 

daily data from future continuous calls on the EUR/USD pair from September 21, 2012, to 

September 23, 2022. We compare the pricing errors and implied volatility obtained from the 

proposed model, which incorporates dynamic information costs, with those derived from the 

original G–K model. This approach allows us to assess the effectiveness and accuracy of the 

extended model in currency option pricing. By employing the average MSE in option prices 

and implied volatility across different maturity and moneyness categories, we gain valuable 

insights into the performance of the pricing models under various conditions. This method 

comprehensively assesses the models’ ability to accurately estimate option prices and implied 

volatility in different market scenarios. The significance of this research lies in its contribution 

to a more comprehensive understanding of the relationship between information costs and 

currency option pricing. By considering the time-dependent nature of information and 

incorporating dynamic costs, we aim to enhance the accuracy and reliability of currency option 

pricing models. This enhanced model approach has practical implications for investors and 

market participants, enabling more informed decision-making in currency options trading. 

The structure of this paper is as follows. Section 2 provides a descriptive overview of 

existing literature on real anomalies in currency options pricing, highlighting the limitations of 

the G–K model. Section 3 introduces an extended version of the G–K model that incorporates 

dynamic information costs, and it presents a novel derivation of the standard currency option 

formula, which has not been published. Section 4 of this study presents a comprehensive 

overview of the adopted methodology, providing a detailed explanation of the data utilized, the 

variables considered, and the empirical models employed for the analysis. In Section 5, the 

empirical results are presented and discussed. Finally, the paper concludes in Section 6, where 

the main findings are summarized, the study’s limitations are discussed, and suggestions are 

provided for future research directions. 

3.2. Literature review 

Numerous theoretical and empirical research has demonstrated the significance of 

imperfections in option valuation. The literature in this field distinguishes between classic 
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anomalies and real anomalies. Classic anomalies are models that scrutinize factors associated 

with the underlying asset’s price movement. Conversely, real anomalies encompass models that 

focus on assumptions related to the market. 

3.2.1. Classic Anomalies: Models for Assessment Under Stochastic 

Volatility and Interest 

As employed by Black and Scholes (1973) for asset pricing, the geometric Brownian 

motion has faced criticism for multiple reasons. One significant criticism stems from the 

assumption that the instantaneous profitability of the underlying asset follows a Gaussian 

distribution with a constant variance. In light of this limitation, researchers have sought to 

generalize the geometric Brownian motion by incorporating stochastic volatility. Black (1976) 

argues that if volatility changes over time, an assessment formula based on constant volatility 

is inaccurate. Moreover, the Black–Scholes model is unsuitable for valuing all options 

simultaneously in a given market due to the observed skew effect commonly encountered in 

practice. Various researchers have thoroughly investigated the issue of stochastic volatility 

(Aït-Sahalia & Kimmel, 2007; Heston, 1993; He & Lin, 2021; He & Lin, 2023; Hull & White, 

1987; Hurn et al., 2015; Johnson & Shanno, 1987; Kirkby & Nguyen, 2020; Lyu et al., 2022; 

Schobel & Zhu, 1999; Wiggins, 1987; Wang et al., 2017). Empirical research commonly 

addresses the stochastic volatility problem through the solutions proposed by Hull and White 

(1987) and Heston (1993). Hull and White (1987) propose the assumption of constant volatility 

for the underlying asset price and suggest using a geometric Brownian motion with uncorrelated 

increments for the variance process. In contrast, Heston (1993) presents an alternative approach 

by advocating for the direct modeling of volatility instead of the variance. In this framework, 

the variance is governed by a process that exhibits mean-reversion, often called the “squared 

root” process. 

Furthermore, some consider the presence of a stochastic interest rate in option 

assessment models. This area of research focuses on extending the Black and Scholes (B&S) 

model by questioning the assumption of a constant interest rate. Assuming that the interest rate 

is deterministic can be overly restrictive since anticipated interest rate fluctuations constitute a 

significant source of market uncertainty for bondholders. Merton (1973) relaxed the restrictive 

assumption of interest rate stability by generalizing the B&S formula for risk-free interest rates 

that vary according to a Gaussian Wiener process. Following the works of Merton (1973) and 

Vasicek (1977), subsequent models have been developed (Amin & Jarrow, 1991, 1992; 
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Brennan & Schwartz, 1980; Grabbe, 1983; He & Zhu, 2018; Ho & Lee, 1986; Jaimungal & 

Wang, 2006; Liang & Xu, 2020; Liu et al., 2016; Lyu et al., 2022; Pearson & Sun, 1994; Van 

Haastrecht & Pelsser, 2011; Zhang & Wang, 2013). 

3.2.2. Real Anomalies 

The assumption of market efficiency plays a significant role in the framework proposed 

by Black and Scholes (1973) and is also an essential assumption in Garman and Kohlhagen’s 

model (1983). This assumption implies that the absence of imperfections in financial markets 

is assumed and that economic agents are perfectly rational.  

The market microstructure theory reveals the presence of information costs, which play 

a crucial role in forming international portfolios. Consequently, these costs should be 

considered in pricing financial asset models. Thus, the underlying asset’s price reflects the 

availability or arrival of new information, as Fama (1991) highlighted. Indeed, several factors 

contribute to the imperfections observed in the market, including information asymmetry (Allen 

& Gorton, 1993; Benkraiem et al., 2022; De Long et al., 1990; Kadan et al., 2018; Leland & 

Pyle, 1977; Pan & Misra, 2022; Pour, 2017; Zghal et al., 2020), transaction and information 

costs (Ardalan, 1999; Govindaraj et al., 2020; Grossman & Stiglitz, 1980; Gu et al., 2012; 

Hansen Henten & Maria Windekilde, 2016, Jensen, 1978; Li & Fang, 2022), and restrictions 

on short selling (Bohl et al., 2016; Duffie et al., 2002; Duonget et al., 2023; Feng & Chan, 2016; 

He, 2022; Scheinkman & Xiong, 2003). Incorporating these imperfections is crucial as it 

prevents arbitrage operations from eliminating evaluation errors. Additionally, behavioral 

finance plays a role in investors’ decision-making, contributing to market inefficiency and 

challenging the assumptions of investor rationality. Research has shown that evaluation errors 

can arise when rational investors interact with irrational ones, such as the presence of noise 

traders (Gao & Ladley, 2022; Ramiah et al., 2015; Ryu & Yang, 2020) and over-confident 

investors (Abreu & Brunnermeier, 2003; Du & Budescu, 2018). 

The extant literature also shows that several studies on option pricing models have 

overlooked the impact of information costs, highlighting the need to examine various types of 

information costs and investor motivations. These costs can be categorized into search and 

information acquisition costs, where Grossman and Stiglitz (1980) highlight the equilibrium 

price implications of acquiring costly information. Easley and O’Hara (1987) emphasize the 

additional costs of learning and experience in assessing information quality. Bellalah and 

Jacquillat (1995) introduce a new cost of information, considering its indispensable role in 
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collection and analysis. Gu et al. (2012) and Hansen Henten and Maria Windekilde (2016) 

demonstrate that information costs can lead to evaluation errors. As studied by Marin and Rahi 

(2000), information transmission costs correlate with the number of informed investors, while 

Duffie and Rahi (1995) highlight the importance of private information transmission in asset 

allocation decisions. Gul et al. (2010) and Pour (2017) find a positive correlation between 

transaction volume and information. Furthermore, adverse selection or asymmetric information 

costs, explored by Grossman (1976), Harrison and Kreps (1978), and Hellwig (1980), assume 

heterogeneous information among investors, with some possessing specific knowledge about 

future asset performance. Kovalenkov and Vives (2014) extend this to endogenous information 

acquisition, while Easley et al. (1998), Cremers et al. (2015), and Goncalves et al. (2020) show 

that informed investors in the options market can cause deviations in the call-put relationship. 

Gapeev and Li (2022) highlight the incorporation of asymmetric information into option pricing 

models and introduce dynamic exercise strategies based on stochastic boundaries. Market 

sentiment, as examined by Mahani and Poteshman (2008) and Bauer et al. (2009), influences 

option pricing without a specific theoretical model. Moreover, empirical findings reveal 

systematic effects of sentiment metrics from underlying and options markets on option pricing 

(Boutouria et al., 2021; Daniel et al., 2002; Maghyereh et al., 2022; Nagarajan & Malipeddi, 

2009; Yang et al., 2016; Zghal et al., 2020). 

Therefore, the extension of option pricing models is motivated by the lack of 

transparency and liquidity observed in certain markets, resulting in the search for costly 

information. This extension introduces the dynamic nature of information costs, highlighting 

that the cost depends on the speed of information acquisition. Consequently, investors who 

receive information earlier can reduce their risk exposure; however, conventional option pricing 

methods neglect the impact of information costs. Building upon this notion, previous studies 

by Bellalah (2006), Minehan and Simons (1995), Bellalah and Jacquillat (1995), and Merton 

(1987) incorporated the costs associated with statistical information. Additionally, Ben Hamad 

and Eleuch (2008a, 2008b) addressed the dynamic imperfections related to information costs. 

These studies provide valuable insights into the biases present in option pricing models. 

3.3. The Garman and Kohlhagen model considering the 

dynamic information costs  

Developing a new model in the presence of dynamic information costs highlights the 

significance of introducing the theoretical model of Garman and Kohlhagen (1983). This model 
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suggests that the sale of a call option for a foreign currency can be effectively hedged by 

purchasing a specific quantity of foreign government bonds, considering the interest rate on 

these bonds (rf). The effectiveness of this hedging strategy is based on the assumptions 

mentioned earlier. Consequently, under these assumptions, the price of a European currency 

call can be determined using the following formula: 

Ct = Ste
−rfτN(d1) − Xe

−rdτN(d2). (3.1) 

Then, the price of a European currency put is given by this formula:    

Pt = Ste
−rfτN(−d1) + Xe

−rdτN(−d2). (3.2) 

In this context, the variables used in the currency option pricing framework are defined 

as follows. 𝐶𝑡 Is the value of a European currency call paying an interest rate 𝑟𝑓, 𝑃𝑡 is the value 

of a European currency put, and 𝑆𝑡 is the price of the underlying asset. 𝑋 is the strike price of 

the call, 𝑟𝑓 is the interest rate of the foreign currency, and 𝑟𝑑 is the interest rate of the domestic 

currency. Finally, 𝜏 is the time calculated in years or a fraction of a year, and 𝑁(. ) is the 

cumulative distribution function of a normal distribution: 𝑁(0,1); 𝑑1 and 𝑑2 are calculated as 

follows: 

𝑑1 =
𝑙𝑛 (

𝑆
𝑋
) + (𝑟𝑑 − 𝑟𝑓)𝜏 +

1
2
𝜎2𝜏

𝜎√𝜏
 (3.3) 

and, 

𝑑2 = 𝑑1 − 𝜎√𝜏 . (3.4) 

3.3.1.  Study of the New Function of Dynamic Information Costs by 

the Analogy of Beer–Lambert Law 

The extension of the classical model in this study builds upon most of its assumptions; 

however, it introduces a new hypothesis that considers the presence of dynamic information 

costs. Accordingly, we propose to expand Garman and Kohlhagen’s model by incorporating 

these dynamic imperfections, utilizing the risk-neutral framework established by Black and 

Scholes (1973). Therefore, we propose a function inspired by the Beer–Lambert law, also 

known as the Beer–Lambert–Bouguer law. This empirical relationship describes light 

absorption as it passes through different media. The law was initially discovered by Pierre 

Bouguer in 1729 and published in his book “An Optical Essay on the Gradation of Light” 

(Claude Jombert, Paris, 1729). Later, in 1760, Johann Heinrich Lambert reformulated the law, 
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further developed by August Beer in 1852. This reformulation establishes that the intensity of 

light propagating through an optical medium is given by the following: 

It(l) = I0e
−αl. (3.5) 

Therefore, the absorbed light through the medium can be expressed by the following: 

Iab = I0 − It = I0(1 − e
−αl). (3.6) 

where α is the light absorption coefficient, and l is the optical length in the medium. 

Drawing on the principles of this law, we propose introducing a function in our extended 

model that captures the dynamic characteristics of information costs. This function is referred 

to as the temporal advantage function of information, denoted as 𝑤 (𝑙), and can be defined as 

follows: 

W: ]−∞,+∞[  → ]−∞,+∞] 

𝑙 → 1 − 𝑒𝛼𝑙 . (3.7)                                                                                                                             

where “𝑙” represents the temporal advantage, defined as the difference between the time of 

information acquisition and the maturity of a currency option. The quality of the acquired 

information influences the value of this temporal advantage. To quantify its impact on the 

currency option value, we introduce a coefficient “𝛼” that ranges between zero and one. 

Specifically, when the information is deemed less significant, the coefficient approaches zero, 

while it tends toward one for highly relevant information. 

The derivative of 𝑤 (𝑙) concerning 𝑙 is given by the following formula: 

 

𝑤′(𝑙) = 𝛼𝑒−αl > 0. (3.8)                                                                                                       

 

Then,  𝑤(𝑙) is strictly increasing on ℝ,  

and,  

{
Lim
𝑙→−∞

𝑤(𝑙) = −∞

lim
𝑙→+∞

𝑤(𝑙) = 1    
. (3.9) 

The temporal advantage function w(l) is enhanced by increasing the temporal advantage 𝑙 or 

reducing the coefficient 𝛼. 

Table 1 includes values for the temporal advantage “𝑙” going from 0 to 21 and for different 

coefficients of the temporal advantage “𝛼” ( 𝛼 = 1;  𝛼 = 0.85;  𝛼 = 0.65, 𝛼 = 0.5 and 𝛼 =

0.25).   
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Table 3. 1. The evolution of the values acquired by the time advantage function 

 

𝐥 

𝐰(𝐥) 𝐟𝐨𝐫 𝛂 

=  𝟏  

𝐰 (𝐥)𝐟𝐨𝐫 𝛂 

=  𝟎. 𝟖𝟓 

𝐰(𝐥)𝐟𝐨𝐫 𝛂 

=  𝟎. 𝟔𝟓 

w(𝐥)𝐟𝐨𝐫 𝛂 =

 𝟎. 𝟓 

𝐰(𝐥)𝐟𝐨𝐫 𝛂 

=  𝟎. 𝟐𝟓 

0 0 0 0 0 0 

1 0.632120559 0.572585068 0.477954223 0.39346934 0.221199217 

2 0.864664717 0.817316476 0.727468207 0.632120559 0.39346934 

3 0.950212932 0.921918334 0.857725928 0.77686984 0.527633447 

4 0.981684361 0.96662673 0.925726422 0.864664717 0.632120559 

5 0.993262053 0.985735766 0.961225792 0.917915001 0.713495203 

6 0.997521248 0.993903253 0.979758089 0.950212932 0.77686984 

7 0.999088118 0.997394159 0.989432796 0.969802617 0.826226057 

8 0.999664537 0.998886225 0.994483436 0.981684361 0.864664717 

9 0.99987659 0.999523956 0.997120101 0.988891003 0.894600775 

10 0.9999546 0.999796532 0.998496561 0.993262053 0.917915001 

11 0.999983298 0.999913035 0.999215136 0.995913229 0.936072139 

12 0.999993856 0.99996283 0.999590265 0.997521248 0.950212932 

13 0.99999774 0.999984113 0.9997861 0.998496561 0.961225792 

14 0.999999168 0.99999321 0.999888334 0.999088118 0.969802617 

15 0.999999694 0.999997098 0.999941705 0.999446916 0.976482254 

16 0.999999887 0.99999876 0.999969568 0.999664537 0.981684361 

17 0.999999959 0.99999947 0.999984113 0.999796532 0.985735766 

18 0.999999985 0.999999773 0.999991706 0.99987659 0.988891003 

19 0.999999994 0.999999903 0.99999567 0.999925148 0.991348305 

20 0.999999998 0.999999959 0.99999774 0.9999546 0.993262053 

21 0.999999999 0.999999982 0.99999882 0.999972464 0.994752482 

 

 
Note: The table below illustrates the values obtained by the time advantage function for the temporal advantage “𝑙” ranging 

from 0 to 21, with varying coefficients of the temporal advantage “𝛼.” 
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Figure 3. 1. The evolution of the temporal advantage function 𝐰(𝐥) 

 

Note: This figure shows the evolution of the temporal advantage function w(l). The horizontal (vertical) axis presents the 

advantage temporal (l) and the temporal advantage function w(l) 

 

Figure.1 shows the evolution of the temporal advantage function, indicating that the 

temporal advantage function increases as “l” increases and tends to 1, whatever the value of the 

temporal advantage coefficient “α” is. Nevertheless, the speed of evolution of w (l) varies 

depending on the value of “α”; In fact, w (l) tends more quickly toward 1 when α increases. We 

also see that the value of w(l) for a temporal advantage l increases when α tends toward 1. For 

example, for the same temporal advantage of 5, the value of the temporal advantage function is 

0.993262053 for α = 1, 0.629633437 for α = 0.5, and 0.467212935 for α = 0.25. The effect of 

obtaining information five days before the maturity date varies depending on the degree of 

relevance of this information as measured by α. This means that the obtained information’s 

relevance modifies the temporal advantage’s impact on the option value. 

3.3.2.  The Actual Discount Rate in the Presence of Dynamic 

Information Costs 

Consequently, it is necessary to include dynamic information costs in the Garman and 

Kohlhagen formula by incorporating them alongside the risk-free domestic and foreign interest 

rates. The effect of information costs on currency option prices can be likened to applying an 

additional discount rate. “When investors move from a risk-neutral world to a risk-averse 

world, two things happen: the expected growth rate in the stock price changes and the discount 

rate that must be used for any pay-off from the derivative changes.” (John Hull 2008).   
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In this context, Thaler (1981), Merton (1987), Bellalah and Jacquillat (1995), Ben Hamad and 

Eleuch (2008), and Zghal et al. (2020) assert that the discount rate and expected growth rate of 

the underlying asset are presumed to be equal to the risk-free rates plus the costs associated 

with these anomalies. By deviating from the market efficiency hypothesis, including dynamic 

information costs in the model is akin to applying an additional discount rate that accounts for 

the dynamic information costs. It can be written as follows:  

 r1  =  r +  dynamic Information Costs.  (3.10) 

 r1 = r + λw(l). (3.11) 

where,  rf is the effective interest rate, r represents the nominal interest rate, l is the temporal 

advantage, w (l) =  1 − e−αl represents the temporal advantage function, and λ designates the 

information costs. Furthermore, several information-related costs arise: search, acquisition, 

transmission, and adverse selection. These costs are represented in the new model by “𝜆. ” If 𝜆 

is equal to zero, then there are no information costs; therefore, we are in an efficient market in 

which we find the initial model of Garman and Kohlhagen (1983). 

In our case, we define two functions of dynamic information costs, denoted as 𝑤 (𝑙) and 

𝑤 ( 𝑙1), which are related to the domestic and foreign markets, respectively. These functions 

capture the varying nature of information costs over time, considering each market’s specific 

dynamics and characteristics. By incorporating these functions into our model, we aim to reflect 

the impact of dynamic information costs on currency option pricing. 

In this scenario, the effective domestic interest rate   𝑟1𝑑 is presented as follow:                      

𝑟1𝑑 = 𝑟𝑑 + 𝜆 𝑤(𝑙). (3.12)

where, 𝑟𝑑 is the real risk-free domestic interest rate, and λ is the information costs amplitude 

associated with domestic information. The function 𝑤(l) corresponds to the advantage function 

related to domestic information and is equal to 1−𝑒−𝛼l. Here, 𝛼 is the advantage coefficient 

related to domestic information, and 𝑙 is the temporal advantage associated with domestic 

information. 

Therefore, the effective foreign interest rate 𝑟1𝑓 is presented as follows: 

𝑟1𝑓 = 𝑟𝑓 + 𝜆1 𝑤(𝑙1). (3.13)                                                                        

where, rf is the real risk-free foreign interest rate and 𝜆1is the information cost amplitude 

associated with foreign information. The function w(l1) corresponds to the advantage function 

related to foreign information and is equal to 1−e−α1l1. Here, α1 is the advantage coefficient 
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related to foreign information and lf is the temporal advantage associated with foreign 

information. 

3.3.3.  Derivation of the Model in the Presence of Dynamic 

Information Costs 

 

The extension of the new model relies on most of the assumptions of the classical model. 

We introduce a new assumption based on dynamic information costs in the currency options 

pricing. 

According to the Black–Scholes’s model7, it is possible to create a short position 

composed of the sale of 
1

∂C(S,T)

∂S

 for an option against a long position on the shares. 

Following the same approach of Black and Scholes (1973) and replacing Se−δτ of the 

model of Black, Scholes, and Merton by Se−τrf of the model of Garman, we can deduce that if 

the price of the active support changes by a small amount ∆S, the option will change by 

∂C(S,T)

∂S
∆S. This cover can be maintained without interruption so that the return of the short 

position becomes completely independent of the change of the value of the active support, i.e., 

the return to the covered position becomes sure. 

As a result, the change in the long position of the currency is approximately offset by 

the change in 
1

∂C(S,T)

∂S

  options. 

 

The value of PF is composed of the purchase of a currency and the sale of 
1

∂C(S,T)

∂S

 options, 

is as follows::  

                                                           
7 The derivation of Black–Scholes is founded on arbitration, which constitutes a covered position formed 

by a long one (or purchase) on the actions and a short position (or sale) on the options, and vice versa. 

Then, the composition of the PF of arbitration depends on the type of the option:  

• Case of option of purchase “call”: the position detained on the action must be the inverse to that 

of the call [purchase (sale) of the call + sale (purchase) of the action]. 

• Case of sale “option”: the same position detained on the action and the option of sale [purchase 

(sale) of the call+ purchase (sale) of the action]. 
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V = S −
1

∂C(S, T)
∂S

C(S, T). (3.14) 

 

During one-time intervals, the change of this position is given by the following: 

∆V − rf S −
1

∂C(S, T)
∂S

rf C(S, T) (3.15) 

where: 

rf C(S, T) = C(S + rfS, T + rf T) − C(S, T) (3.16) 

Geometric Brownian motion governs the currency spot price, i.e., the differential 

representation of the spot price movements is as follows: 

ds =  μ S dt +  σ S dZ (3.17) 

where 𝑑𝑆 is the evolution of the spot currency price. The 𝜇 between 𝑡 and 𝑑𝑡 is the mathematical 

expectation of equity return, and 𝑑𝑍 is the Gauss–Wiener standard process, 𝑁 (0, 𝑑𝑡), 𝑉 (𝑑𝑧) =

 ∅ 𝑑𝑡 Finally, 𝜎 is the standard deviation of instantaneous equity return, which is supposed to 

be a known constant.  

Using the differential stochastic calculation and Itô’s lemma, we get:  

∆C =
∂C

∂t
∆S +

∂C

∂t
dt +

1

2
σ2S2

∂2C

∂S2
dt. (3.18) 

The return to the covered position is sure and must be equal to (r1d − r1f), where r1d is 

the effective risk-free domestic interest rate and r1f is the effective risk-free foreign interest 

rate. 

A specific condition is required to deduce the partial derivative equation: the lack of 

arbitrage opportunity from the continuous change in portfolio composition (it remains risk-

free). 

We get: 

(−
∂C

∂t
−
1

2
σ2S2

∂2C

∂S2
)dt = (r1d − r1f) (−C +

∂C

∂S
S) dt  (3.19) 
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1

2
𝜎2𝑆2

𝜕2𝐶

𝜕𝑆2
+ (𝑟1𝑑 − 𝑟1𝑓)𝑆

𝜕𝐶

𝜕𝑆
+
𝜕𝐶

𝜕𝑡
− (𝑟1𝑑 − 𝑟1𝑓)𝐶 = 0, (3.20) 

which is the partial differential equation in the presence of dynamic information costs.  

The problem is solving this partial differential equation (PDE) (see Appendix 1: the 

resolution of the PDE); thus, to determine the value of the currency call option, we can proceed 

as follows. First, we assume that the underlying asset’s return equals the effective risk-free rate, 

accounting for dynamic information costs. Next, we calculate the expected pay-off of the 

derivative asset at the option’s maturity. This expectation is then discounted using the effective 

risk-free domestic interest rate (r1d) and the effective, risk-free foreign interest rate (r1d), 

considering the dynamic information costs. As a result, the modified pricing formula for 

European currency call options in the presence of dynamic information costs can be expressed 

as follows: 

𝐶(𝑆, 𝑡) = 𝑆𝑒−𝑟1𝑓𝑇𝑁(𝑑′1) − 𝑋𝑒
−𝑟1𝑑𝑇𝑁(𝑑′2) (3.21) 

with, 

𝑑′1 =

𝑙𝑛 (
𝑆
𝑋) + (

𝜎2

2 + (𝑟1𝑑 − 𝑟1𝑓))𝑇

𝜎√𝑇
 (3.22)

 

and,  

𝑑′2 = 𝑑′1 − 𝜎√𝑇. (3.23) 

Then, the parity relationship in the presence of dynamic information is as follows: 

𝐶𝑡 − 𝑃𝑡 = 𝑆𝑒
−𝑟1𝑓𝑇 + 𝑋𝑒−𝑟1𝑑𝑇 (3.24) 

where 𝐶 is the price of the call, 𝑃 is the price of the put, and 𝑆 is the price of the underlying 

asset. 𝑋 is the strike price, 𝑇 is the time to maturity, 𝑟1𝑓 is the effective foreign (riskless) interest 

rate, and 𝑟1𝑑 is the effective domestic (riskless) interest rate. 

Therefore, we can write: 

𝑆𝑡𝑒
−𝑟1𝑓𝑇𝑁(𝑑′1) − 𝑋𝑡𝑒

−𝑟1𝑑𝑇𝑁(𝑑′2)−𝑃𝑡 = 𝑆𝑒
−𝑟1𝑓𝑇 − 𝑋𝑡𝑒

−𝑟1𝑑𝑇 (3.25) 

As a result, we can deduct the value of the European currency put in the presence of dynamic 

information costs as follows: 



Chapter 3 

 

 
   

 
119 

𝑃𝑡 = −𝑆𝑡𝑒
−𝑟1𝑓𝑇[1 − 𝑁(𝑑′1)] + 𝑋𝑒

−𝑟1𝑑𝑇[1 − 𝑁(𝑑′2)] (3.26) 

We know that 𝑁(𝑑) + 𝑁(−𝑑) = 1. 

The price of the European currency put is then: 

𝑃𝑡 = 𝑆𝑡𝑒
−𝑟1𝑓𝑇𝑁(−𝑑′1) + 𝑆𝑒

−𝑟1𝑑𝑇𝑁(−𝑑′2) (3.27) 

3.4. Methodological issues 

This section empirically tests the modified Garman and Kohlhagen model in dynamic 

imperfections. Our objective is to assess the accuracy of the modified model in approximating 

currency option prices compared to the theoretical Garman–Kohlhagen model (1983); 

therefore, we formulated a set of research questions that guide our empirical analysis, aiming 

to evaluate different aspects of the modified model’s performance and its ability to capture 

market dynamics. Through our empirical approach, we apply an inductive technique to verify 

the presence and impact of dynamic information costs in financial markets. By analyzing real-

world data and market dynamics, we seek to provide empirical evidence supporting dynamic 

information costs and their influence on currency option pricing. This approach bridges the gap 

between theoretical insights and empirical observations, enhancing our understanding of 

financial market dynamics. 

Our approach will be structured as follows: 

 We calculate the price of the currency call option using both models. 

 We evaluate the models’ performance through analysis of the valuation gaps. 

 We examine the impact of introducing dynamic imperfections on market participants’ 

behavior in the financial market. 

3.4.1.  Data Sources and Variables 

Our sample comprises 2.612 observations of currency call options on the EUR/USD 

pair traded on the Russian Trading System. Specifically, we focus on the prices of European-

type foreign currency options obtained from the DATASTREAM database. The study period 

spans September 9, 2012, to September 9, 2022, and the options included in our analysis are at 

the money and out-of-the-money options. We utilize daily data to conduct our empirical 

analysis and examine the performance of the modified model in capturing the dynamics of these 

currency options. 
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We use currency option evaluation formulas with and without information costs and 

their corresponding variables to implement our analysis. The variables include the underlying 

price (𝑆), exercise price (𝑋), time remaining until maturity (𝑇), risk-free domestic interest rate 

(𝑟𝑑), risk-free foreign interest rate (𝑟𝑓), and volatility (𝜎). These variables are identified and 

specified as follows: 

 The underlying price (EUR/USD exchange rate), represented by a continuous series 

with the data type (OU), reflects the closing price of the underlying asset in the options 

market, providing daily activity information. 

 The option strike price, represented by the data type (OS), indicates the option’s strike 

price at the money. 

 The implied volatility with a constant maturity of 3 months, represented by the data type 

(O3), displays the ATM implied volatility with a fixed time to maturity of 90 days. 

 The market price, represented by the data type (OM), shows the price of the option 

series at the money. 

 The number of days remaining to maturity is a known contract characteristic, denoted 

as T, calculated as the number of days until maturity divided by 360. 

 The domestic interest rate is derived from the “LIBOR,” with a constant time to maturity 

of 90 days. 

 The foreign interest rate is derived from the “EURIBOR,” with a constant time to 

maturity of 90 days. 

Hull (2008) posits that these rates serve as accurate estimators of the risk-free rate. 

3.4.2. Study of the Model Performance 

This study primarily aims to assess the performance of the extended model in capturing 

market prices compared to the standard Garman–Kohlhagen model (1983). Our methodology 

encompasses multiple steps: first, we simulate the dynamic information cost parameters; next, 

we calculate option prices using the modified Garman–Kohlhagen and standard G-K model. 

We then analyze the model’s performance by examining evaluation errors, including errors 

reported by maturity, skewness, and overall errors, and comparing theoretical prices with 

market prices. To compare the models, we define the following variables that need to be 
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calculated. CGK is the price of a European currency call option calculated using the G–K model 

(1983) formula. Furthermore, CGKDIC is the price of a European currency call option calculated 

using the model in the presence of the dynamic information costs, and CM is the observed price 

of a European currency call option on the market. 

To simplify the calculation of the currency call option using the formula derived from 

the theoretical model of Garman–Kohlhagen, we have created a Visual Basic (VBA) procedure 

called 𝐶𝑎𝑙𝑙_𝐺𝐾 (refer to Appendix 2). This procedure allows us to use the function in Excel 

just like any other calculation function. Additionally, considering the dynamic information 

costs, we need to simulate the values of 𝜆, 𝜆1, 𝑤(𝑙) and 𝑤 (𝑙1) to calculate the value of the 

currency call option using the new model. We have utilized a simulation method in Excel using 

VBA. Initially, we assign initial values to 𝜆, 𝜆1, 𝛼, 𝛼1, 𝑙, and 𝑙1, and then calculate the effective 

interest rates “𝑟1𝑑” and “𝑟1𝑓.” Next, we iteratively adjust these parameters to minimize the 

average difference. This statistical procedure aims to reduce the difference toward zero by 

modifying the values of the information cost parameters. To achieve this, we utilize the “goal 

seek” feature available in the tools menu of Excel. This method helps us estimate the implicit 

values of 𝜆, 𝜆1, 𝛼, 𝛼1, 𝑙, and 𝑙1that minimize the average difference. Lastly, to simplify the 

calculation of the currency call option using the formula derived from the new model, we have 

developed a Visual Basic procedure named 𝐶𝑎𝑙𝑙_𝐺𝐾𝐼𝐶 (refer to Appendix 3). 

Then, to compare the models, we consider the following variables. GK represents the 

price of a European currency call option calculated using the Garman–Kohlhagen (G–K) 

theoretical model formula. GKIC represents the price of a European currency call option 

calculated using the modified model with information costs, and VM represents the observed 

market prices of the currency options. Subsequently, we define the following variables: 

 𝐸𝐺𝐾  𝐺𝐾  𝑉𝑀, which represents the deviation of the price obtained by the 

Garman–Kohlhagen (G–K) model (1983) compared to the market prices of the 

currency options. 

 𝐸𝐺𝐾𝐼𝐶  𝐺𝐾𝐼𝐶  𝑉𝑀, which represents the deviation of the price obtained by the model 

considering dynamic information costs compared to the market prices of the currency 

options. 

Then, if we observe a positive (negative) difference, it indicates that the option is 

overvalued (undervalued), suggesting that the theoretical model of G–K (1983) either 
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overestimates or underestimates the market price. These differences are computed for each call 

on every sample day, allowing us to determine the average error for each call. Moreover, since 

option prices are influenced by factors such as maturity and moneyness, we calculate the 

average squared deviation by considering maturity and skewness, in addition to overall errors, 

across the entire sample of currency calls. This approach enables us to derive the average 

squared error evaluation 𝐸𝐺𝐾𝑀 and 𝐸𝐺𝐾𝐼𝐶𝑀, respectively: 

𝐸𝐺𝐾𝑀  (𝐸𝐺𝐾2) (3.28) 

𝐸𝐺𝐾𝐼𝐶𝑀  (𝐸𝐺𝐾𝐼𝐶2). (3.29) 

To demonstrate that our new model provides a more accurate approximation of currency option 

values compared to the basic G–K model, we aim to test the null hypothesis as follows: 

𝐻0: 𝐸𝐺𝐾𝐼𝐶𝑀  𝐸𝐺𝐾𝑀 ˂ 0. 

We must establish our expectations regarding this type of test, considering how the question is 

posed moving forward: 

In the case of rejecting the null hypothesis (H0), several reasons can be considered: 

 The model incorporating dynamic information costs is either equivalent or less effective 

than the Garman–Kohlhagen (1983) model. 

 The estimation of the variables 𝐸𝐺𝐾𝑀 and 𝐸𝐺𝐾𝐼𝐶𝑀 in the presence of dynamic 

information costs and Garman–Kohlhagen’s model may have resulted in distortions. 

 The data quality may have affected the results, including issues such as the 

synchronization of the call option value with the underlying asset, exchange rate, and 

simultaneous measurement of the interest rate. 

If the null hypothesis (H0) is not rejected, both models are adequately estimated, which suggests 

that the new model provides a better average approximation of currency options’ market value 

than the Garman–Kohlhagen (1983) model. 

To further explore the comparison between the model considering dynamic information costs 

and the G–K model, we utilize the relative deviation of the average errors (𝑅𝐷𝐴𝐸), which is 

calculated as follows: 

𝑅𝐷𝐴𝐸 =
𝐸𝐺𝐾𝐼𝐶𝑀  𝐸𝐺𝐾𝑀

𝐸𝐺𝐾𝐼𝐶𝑀
 (3.30) 
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where 𝐸𝐺𝐾𝑀 represents the average errors of Garman and Kohlhagen’s model (1983). 

Additionally, 𝐸𝐺𝐾𝐼𝐶𝑀 represents the average errors of our modified model considering 

dynamic information costs, and 𝑅𝐷𝐴𝐸 denotes the relative deviation of the average errors of 

the model considering dynamic information costs compared to the Garman–Kohlhagen’s 

theoretical model (1983). 

3.4.3. Analysis of Implied Volatility and Its Implications for Economic 

Agent Behavior in Financial Markets 

Implied volatility refers to the volatility implied by an option’s market price. It plays a 

crucial role as it reflects the market’s collective perception of the expected future volatility of 

the underlying asset (Poterba & Sammers, 1986). The supply and demand dynamics in the 

currency options market influence this measure of volatility; thus, by introducing dynamic 

information costs into the assessment of currency options, we can examine how it affects the 

behavior of economic agents. This comparative study analyzes the impact of these dynamic 

information costs on implied volatility and compares it with the implied volatility derived from 

both the modified and basic models. 

We follow a systematic procedure to calculate implied volatility. First, we input the 

relevant parameters into the currency option assessment model, including the underlying price, 

domestic and foreign interest rates, dynamic information costs, strike price, and time to 

maturity. The goal is to align the calculated value with the observed market value, with the only 

unknown parameter being the volatility. We employ the Newton algorithm to estimate this 

implied volatility, which can be implemented through a VBA script named IVGKICM (refer to 

Appendix 4). By iteratively adjusting the volatility parameter, we can find the value that brings 

the calculated model price in line with the market price. This process is repeated daily in our 

sample, enabling us to derive implied volatility for the entire dataset. 

To further analyze the impacts of introducing these imperfections on the behavior of 

economic agents in financial markets, we examine the relative deviation of the average implied 

volatility, referred to as “DAIVM,” in the model incorporating dynamic information costs 

compared to the theoretical Garman–Kohlhagen (1983) model. This relative deviation allows 

us to assess the extent to which dynamic information costs affect the implied volatility and, 

consequently, the behavior of economic agents in the currency options market. It is defined as 

follows: 
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DAIVM =
IVGKICM −  IVGKM

VIVGKICM
 (3.31) 

where IVGKM represents the average implied volatility extracted from the Garman–Kohlhagen 

(1983) model, while IVGKICM represents the average implied volatility extracted from the 

model considering dynamic information costs. Comparing these two averages allows us to 

analyze the impact of introducing dynamic information costs on the implied volatility.  

3.5. Empirical Results and Discussion 

3.5.1.  Evaluating Performance of the Extended Model and Analyzing 

Valuation Discrepancies 

We first assign initial values to the parameters 𝜆, 𝜆1, 𝛼, 𝛼1, 𝑙, and 𝑙1. Then, we employ 

a simulation method in Excel to optimize the average difference between EGKICM and EGKM. 

We utilize the “goal seek” feature located in the tools menu. This approach allowed us to refine 

the estimations of the new parameters. After performing the simulation, we obtained the 

following values: λ = 0.8, 𝜆1 = 0.01, α = 0.8, 𝛼1 = 0.7, l = 1, and 𝑙1= 4. Using these adjusted 

parameter values, we calculate the prices of currency options using both the modified and basic 

models. The resulting MSE are then computed for each combination of maturity and 

moneyness, and these MSE values are presented in Table 2. 

Table 3. 2. Mean squared errors by maturity and moneyness 

Moneyness Total Observations/ Category At the Money  Out of the Money  

Maturity (in 

days) 

N° of 

obs 

EGKICM - 

EGKM 

RDAE in 

% 

N° of 

obs 

EGKICM–

EGKM 
RDAE in % 

N° of 

obs 

EGKICM - 

EGKM 
RDAE in % 

1–14  12  6.031E-06  18.189%  3  6.037E-06  19.338%  9  6.029E-06  17.835% 

15–30  356 −0.0036  −41.105%  161  −0.005  −39.393%  195  −0.002  −44.594% 

31–60  747  −0.013  −44.492%  419  −0.015  −45.484%  328 −0.009  −42.514% 

61–90  1021 −0.045  −47.05%  437  −0.033  −46.846%  584 −0.055  −47.151% 

91–112  475 −0.078  −46.384%  263 −0.091  −45.548%  212  −0.061  −48.018% 

Total  2612  −0.036  −45.816%  1283  −0.036  −45.816%  1329 −0.036  −47.035% 

 
Note: The table below illustrates the Mean Squared Errors by maturity and moneyness. N° of obs is the number of studied 

observations. EGKICM – EGKM represents the difference between the average errors of our modified model considering 

dynamic information costs and the average errors of Garman and Kohlhagen’s model (1983). RDAE denotes the relative 

deviation of the average errors of both models. 
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An in-depth review of Table 2 reveals how our new model, incorporating dynamic 

information costs, performs relative to the traditional Garman–Kohlhagen model. The primary 

goal was to prove that our model yields a more accurate valuation of currency options. To 

support this, we examined the average errors (EGKICM – EGKM) and the relative deviation 

of average errors (RDAE) over various maturity and moneyness categories. 

The EGKICM – EGKM values indicate negative differences in all categories, signifying 

that our advanced GK model produces fewer average errors than the original model, indicating 

a better approximation of the real currency option values. Figure 2 graphically demonstrates 

this finding. Evaluating the RDAE, we found negative figures throughout all categories, 

corroborating that our novel model provides enhanced accuracy regarding percentage error than 

the original. These negative figures suggest that our model incorporating dynamic information 

costs tends to undervalue option values, implying a closer approximation to the true currency 

option values. This outcome is beneficial for market participants and investors, as the increased 

precision of our model aids better risk evaluation and decision-making for currency options 

trading strategies. 

Moving on to a more detailed analysis, we observe that the RDAE values generally 

increase as the options’ term lengthens, suggesting that the models’ estimates and market prices 

deviate more for longer-term options. This result indicates the more significant impact of 

dynamic information costs on long-term options. 

Examining the maturity categories, for 1–14 days, with a small sample size of 12, we 

have an RDAE of 18.189% for “at the money” and 17.835% for “out of the money” options, 

showing our model undervalues option prices. For the 15–30 days’ maturity category, we find 

negative RDAE values across all moneyness categories, ranging from –39.393% to –44.594%, 

indicating a consistent underestimation of option values. This pattern continues for the 31–60 

days, 61–90 days, and 91–112 days’ maturity categories, with negative RDAE values of up to 

–48.018%, signifying a continued underestimation of option values. 

In terms of moneyness, the RDAE values vary. For instance, “at the money” options 

show relatively low RDAE values, suggesting close approximations to market prices; however, 

“out of the money” options reveal higher RDAE values, indicating greater disparities between 

the models’ estimates. 
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Looking at “at the money” options, we see negative RDAE values across all maturities, 

increasing from −41.105% for 15−30 days’ maturity to −47.05% for 61−90 days’ maturity, 

indicating price underestimations. Similarly, for “out of the money” options, negative RDAE 

values continue across all maturities, with values ranging from −39.393% to −48.018%. This 

finding means our model consistently undervalues these options compared to market 

observations. Overall, the variability in RDAE values is influenced by the moneyness category, 

with “at the money” options showing closer alignment with market prices than “out of the 

money” options. 

Our data indicates that our extended model, which incorporates dynamic information 

costs, outperforms the basic model across all option categories and maturities. The consistent 

underestimation of prices, as evidenced by the negative RDAE values, underscores the model’s 

capacity to effectively integrate dynamic information costs in pricing currency options. As such, 

it offers a more precise approximation of the real-world values of currency options compared 

to the basic model. These findings underscore the benefits for investors and market participants, 

as the extended model can provide a more accurate valuation of currency options. The results 

reiterate the importance for market participants to acknowledge the influence of information 

costs when pricing options across diverse currency pairs. This analysis is in harmony with 

existing financial literature that posits the role of informed investors in the options market can 

cause a deviation from the call-put parity relationship driven by privately held information 

(Anand et al., 2023; Alexander et al., 2023; Cremers & Weinbaum, 2010; Easley et al., 1998; 

Gapeev & Li, 2022; Goncalves-Pinto et al., 2020; Wu et al., 2022; Zhou, 2022). The amplified 

precision offered by our extended model can facilitate superior risk assessments and inform 

decision-making in currency options trading strategies. 

These results bear considerable implications for professionals operating in the currency 

options market, offering a model that enables more accurate trading and risk management 

decisions. The data suggests that incorporating dynamic information costs can substantially 

impact longer-term and out-of-the-money options, which could reflect the higher levels of 

uncertainty and potential for larger price swings inherent in these categories. Thus, from a 

practical standpoint, market professionals need to consider the maturity and moneyness of 

options when making trading evaluations. Utilizing our extended model could aid in garnering 

more accurate estimations of market prices by integrating dynamic information costs into the 

calculation.  
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Figure 3. 2. Comparison of currency call option prices: Base model vs. extended model 

by moneyness 

 

Note: This figure displays charts comparing call options calculated using the Garman–Kohlhagen model (GK in gray), the 

extended model (GKIC in orange), and the observed market call prices (VM in blue) categorized by moneyness. 

3.5.2.  Analyzing Implied Volatility 

Table 3 presents the IVGKICM – IVGKM values for the “at the money” and “out of the 

money” categories across various maturities. These values are uniformly positive across all 

maturities, illustrating that the average implied volatility values are consistently higher in the 

revised model compared to the traditional model, a conclusion that is further corroborated by 

Figure 3. This discovery lends empirical credence to our initial supposition that integrating 

information costs in the valuation process of European currency call options results in escalated 

implied volatility. The integration of dynamic information costs signifies that the market 

anticipates a more pronounced future volatility of the underlying price compared to a market 

scenario devoid of these costs. This finding is consistent with Stein’s (1987) model, which 

asserts that the participation of informed agents can cause a surge in volatility due to their 

potential destabilizing impact. Similarly, Easley and O’Hara (1987) observed that the 

involvement of uninformed investors can engender surplus volatility. In situations of 

information asymmetry, economic agents tend to foresee a higher volatility in markets where 

information costs are present compared to those with perfectly symmetric information. 

Consequently, the pricing of currency options in the presence of information costs intimates the 

existence of informational asymmetry, culminating in elevated implied volatility values. 
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Table 3. 3. Deviation of the average of implied volatility by maturity and moneyness 

Moneyness Total Observations/Category At the Money  Out of the Money  

Maturity (in 

days) 

N° of 

obs 

IVGKICM - 

IVGKM 

DAIVM in 

% 

N° of 

obs 

IVGKICM - 

IVGKM 

DAIVM in 

% 

N° of 

obs 

IVGKICM - 

IVGKM 

DAIVM in 

% 

1–14  12 0.006 8.295%  3 0.014 12.038%  9 0.004 5.962% 

15–30  356 0.109 52.378%  161 0.143 58.289%  195 0.081 45.606% 

31–60  747 0.146 61.987%  419 0.170 65.058%  328 0.115 56.921% 

61–90  1021 0.197 66.982%  437 0.170 69.092%  584 0.218 65.805% 

91–112  475 0.191 64.891%  263 0.180 61.646%  212 0.205 68.848% 

Total  2612 0.169 63.643%  1283 0.169 64.881%  1329 0.168 62.483% 

 
Notes: The table below illustrates the deviation of the average of implied volatility by maturity and moneyness. N° of obs is 

the number of studied observations. IVGKICM – IVGKM represents the difference between the average implied volatility 

extracted from the model considering dynamic information costs and the average implied volatility extracted from the 

Garman–Kohlhagen (1983) model. DAIVM denotes the relative deviation of the average implied volatility. 

 

Our assessment of implied volatility values by maturity highlights distinct patterns that 

elucidate the effect of the modified Garman and Kohlhagen’s model compared to the traditional 

one. A closer look at the different maturity categories yields the following insights. In the 1–14 

days’ maturity category, the “at the money” and “out of the money” observations all yield 

positive IVGKICM – IVGKM values, indicating an increase in implied volatility in the 

modified model. The DAIVM percentages span from 5.962% to 19.338%, signifying a notable 

surge in implied volatility relative to the traditional model. We observe the same trend in the 

15–30 days’ maturity category, with both “at the money” and “out of the money” options 

displaying positive IVGKICM – IVGKM values, thus pointing to heightened implied volatility 

in the modified model. The accompanying DAIVM percentages fall between 45.606% and 

58.289%, representing a substantial jump in implied volatility relative to the traditional model. 

A similar pattern persists in the 31–60 days’ maturity category, with both “at the money” and 

“out of the money” options registering positive IVGKICM – IVGKM values, suggesting 

increased implied volatility in the modified model. The DAIVM percentages, ranging from 

56.921% to 65.058%, underscore a marked increase in implied volatility relative to the 

traditional model. The 61–90 days and 91–112 days’ maturity categories also consistently yield 

positive IVGKICM – IVGKM values for both “At the Money” and “Out of the Money” options, 

insinuating a higher implied volatility in the modified model. The DAIVM percentages vary 

from 61.646% to 69.092% for the 91–112 days’ category and from 65.805% to 69.092% for 
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the 61–90 days’ category. These percentages demonstrate a sizable increase in implied volatility 

relative to the traditional model for these extended maturities. 

Our examination across different maturity categories reveals a consistent trend of the 

modified Garman and Kohlhagen’s model exhibiting higher implied volatility than the 

traditional model. This finding bolsters the theory that integrating information costs in the 

valuation of currency options leads to a rise in the anticipated volatility of the underlying price. 

Our results align with the understanding that the involvement of informed investors and the 

existence of information asymmetry can drive volatility levels higher in financial markets 

(Attanasio, 1990; Dávila, & Parlatore, 2023; Vlastakis & Markellos, 2012) and specifically in 

the currency options market (Baek, 2022; Jin et al., 2012; Zhou, 2022). These detailed insights 

underscore the importance of accounting for the impact of information costs on implied 

volatility when pricing and trading currency options across different maturities. Market 

participants should recognize the escalated volatility linked to information asymmetry and fine-

tune their risk management strategies accordingly. 

When analyzing the implied volatility values by moneyness, we encounter unique 

patterns illuminating the impact of the dynamic information costs-infused Garman and 

Kohlhagen model concerning the traditional model.  

In the realm of “at the money” options, we consistently register positive IVGKICM – 

IVGKM values across all maturity categories, signifying a higher level of implied volatility in 

the modified model. Within the 1–14 days’ maturity segment, DAIVM percentages fluctuate 

between 5.962% and 8.295%. Progressing toward the 15–30 days, 31–60 days, 61–90 days, and 

91–112 days’ maturity segments, DAIVM percentages span from 45.606% to 66.982%. This 

notable uptick in implied volatility underscores the considerable impact of integrating 

information costs into the valuation model for “at the money” options. Mirroring this pattern, 

“out of the money” options also demonstrate consistently positive IVGKICM – IVGKM values 

across all maturity categories, indicative of heightened implied volatility in the modified model. 

Within the 1–14 days’ maturity bracket, DAIVM percentages vary from 12.038% to 19.338%. 

Shifting toward the 15–30 days, 31–60 days, 61–90 days, and 91–112 days’ maturity brackets, 

DAIVM percentages extend from 58.289% to 69.092%. These figures underline the 

pronounced increase in implied volatility when contrasted with the traditional model for “out 

of the money” options. In summary, the moneyness-centered examination reveals that both “at 

the money” and “out of the money” options display higher implied volatility within the 
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modified Garman and Kohlhagen model than the classical one. This insinuates that 

incorporating information costs escalates the perceived volatility for both types of options. 

These meticulous findings accentuate the significance of considering the influence of 

information costs on implied volatility when valuing and trading currency options across 

varying levels of moneyness. It is crucial for market participants to acknowledge the inflated 

volatility associated with the inclusion of information costs and to subsequently calibrate their 

risk management strategies. The elevated implied volatility within the modified model implies 

a heightened perception of risk that should be considered when valuing and transacting options 

across diverse moneyness. When pricing and trading options across a range of moneyness 

categories, we notice a larger increase in implied volatility for “at the money” options versus 

“out of the money” options when dynamic information costs are factored in. This phenomenon 

can be attributed to several contributing elements. First, “at the money” options possess strike 

prices closely aligned with the underlying asset’s current price. Consequently, even minor shifts 

in the asset’s price can significantly influence the option’s value. In the presence of dynamic 

information costs, an augmented sense of volatility within the marketplace can instigate larger 

fluctuations in the option’s value, yielding a higher implied volatility for “at the money” 

options. Second, dynamic information costs infer the presence of informed traders who hold 

private, market-influencing information. Due to their superior comprehension of market trends 

and anticipated price shifts, these traders can inject additional volatility into the market. As a 

result, the implied volatility of “at the money” options may be more profoundly impacted than 

“out of the money” options. Additionally, “at the money” options are generally seen as more 

susceptible to market conditions changes and tend to carry a higher risk level than “out of the 

money” options. When dynamic information costs are woven into the pricing model, the 

market’s perception of risk may be elevated, leading to higher implied volatility for “at the 

money” options. Lastly, “at the money” options draw higher trading volumes and more market 

engagement than “out of the money” options. In situations where dynamic information costs 

are present, increased trading activity and the involvement of informed traders can culminate 

in higher implied volatility for “at the money” options. 

The subsequent examination of implied volatility values indicates that the modified 

Garman and Kohlhagen’s model, which accounts for information costs, consistently generates 

higher average implied volatility than its classical counterpart. This revelation underscores the 

criticality of acknowledging information costs in pricing currency options and amplifies the 

ramifications of information asymmetry within the market. 
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From a policy standpoint, these outcomes hold substantial implications. They 

underscore the urgency of factoring in information costs and their impact on implied volatility 

during the pricing and trading of currency options. Market players must understand the 

escalated volatility resulting from information asymmetry and calibrate their risk management 

strategies accordingly. By acknowledging the influence of information costs on implied 

volatility, market participants can better navigate the complex landscape of the currency options 

market and make more informed decisions. These findings fortify the significance of integrating 

dynamic information costs into option pricing models and illuminate the intricacies that 

information asymmetry introduces. Moreover, by identifying and accounting for these 

elements, market participants can deepen their comprehension of implied volatility and enhance 

their risk management practices within the currency options market. 

 

Figure 3. 3. Comparison of implied volatility: Base model vs. extended model by 

maturity and moneyness 

 

Notes: The histograms presented in this figure depict the volatility for two different models; the Garman–Kohlhagen model 

with dynamic information costs (IVGKICM) is displayed in blue, and the new model with dynamic information costs 

(IVGKICM) is displayed in orange. The data is presented based on moneyness (ATM = at the money, and OTM = out of the 

money) and maturity (1–14 days, 15–30 days, 31–60 days, 61–90 days, and 91–112 days). 

3.6. Conclusion and Perspectives 

This study thoroughly examined the pricing of European currency options, uniquely 

incorporating dynamic information costs into the traditional Garman and Kohlhagen model. 

This research utilized an intensity function inspired by the Beer–Lambert law, which was 
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integrated into domestic and foreign interest rates to effectively capture the variable nature of 

information costs. We analyzed daily data from EUR/USD futures continuous calls from 

September 21, 2012, to September 23, 2022. This analysis provided a wide-lens perspective on 

the fluctuations in currency option pricing over a considerable period. This empirical 

examination, focused on understanding the currency options market in greater depth, adds a 

valuable dimension to the prevailing discourse on option pricing. The research findings have 

proven that the revised model incorporating dynamic information costs surpasses the classical 

model in pricing accuracy. This superior accuracy, highlighted in longer-term and out-of-the-

money options, is a testament to the profound impact of dynamic information costs. By 

calibrating the new parameters of information costs, we have successfully minimized the 

discrepancies between our model’s predictions and the actual market values of currency 

options, augmenting the precision of our estimations. The maturity and moneyness-based 

analysis conducted post-simulation reveals a significant error reduction for our model that 

integrates dynamic information costs. This enhancement reinforces the model’s validity and 

practicability for accurately valuing currency options. Furthermore, the analysis further showed 

that the extended model persistently displays a higher average implied volatility than the 

classical model. This finding supports the hypothesis that integrating information costs into 

option pricing correlates with a surge in implied volatility. These results are congruent with 

existing literature, emphasizing the role of informed investors and the destabilizing effect of 

information asymmetry in the options market. 

From a practical standpoint, these findings are pivotal for the currency options market. 

They improve the accuracy of option pricing and refine risk assessment. Market participants 

must take note of the elevated volatility due to information asymmetry and adjust their risk 

management strategies. 

Although this research underscores the necessity of considering dynamic information 

costs in currency option pricing and offers valuable insights for stakeholders, it has some 

limitations. The study does not compare the extended model with other potential extensions 

like stochastic volatility models or those incorporating stochastic interest rates. Moreover, it 

relies on daily data, which might not fully capture intraday market dynamics and potential 

changes in implied volatility. Future research should overcome these limitations by delving into 

comparisons with other model extensions and utilizing more granular, high-frequency data to 

deepen the understanding of the effects of dynamic information costs on option pricing. While 

this study primarily evaluates the extended Garman and Kohlhagen model vis-à-vis the baseline 
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model, the inclusion of other model extensions and intraday data in future research could further 

illuminate the dynamics of option pricing in the presence of dynamic information costs.  
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Appendices 

Appendix 3.A. The resolution of the PDE 

The value of the purchase option must fill the condition to the boundary mark, expressing the 

value of the call at the date of maturity: 

C(S, t∗ ) = Max[0; S(t∗) − X] (3A. 1) 

The search for the solution requires a change of the variables that lead to the equation of heat. 

We start by writing the price of the option in the following form: 

C(S, t) = f(t)y(u1, u2) (3A. 2) 

where, f(t) and y(u1, u2) are unknown functions. 
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Therefore, we calculate the derivative of the option price regarding time and compared it to the 

price of the underlying asset: 
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Then, we replace these derivatives in equation (20). We get: 
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Now, we can solve equation (26) by using the « Head Transfer » equation for the function y: 
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  (3A. 7) 

Let us search f(t), u1(S, t), u2(S, t); thus: 
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→ f(t) = er1dT.                                                                (3A. 8) 

We designate by the following: a2 =
1

2
σ2S2 (

∂u1

∂S
)
2

, simplify by f(t), and rewrite the equation 

to identify the different terms. 
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 We find that 
∂u2

∂t
= −a2, then, 

u2 = −a
2T (3A. 10) 

In these conditions, the EDP is written as follows: 
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Using the expression of a2 , we get: 
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Then, 
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Replacing (33) in (31), we get: 
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σ√2 +

∂b

∂t
+ (r1d − r1f)

a

σ
√2 = 0 (3A. 15) 

Then, 

∂b

∂t
=
σ√2

σ
(
σ2

2
− (r1d − r1f)) (3A. 16) 

=> b(t) =
σ√2

σ
(
σ2

2
− ((r1d − r1f)))T (3A. 17) 

=> u1 =
σ√2

σ
 [ln

S

X
+ (

σ2

2
− (r1d − r1f))T] . (3A. 18) 

Because C(S, t∗) = f(t)y( u1, u2) and
∂y

∂u2
=

∂2y

∂u12
, the result at maturity is written as follows: 

C(S, t∗) = [y(u1(S, t
∗), u2(S, t

∗))] = y [
a√2

σ
ln
S

X
, 0] . (3A. 19) 
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The solution of the Head Transfer equation is of the following form: 

y( u1, u2)  =  
1

√2πu2
∫ u0(∈)

+∞

−∞

e
−∈2

2u2d ∈ (3A. 20) 

 The value of the call at the date of maturity can be expressed as follows: 

C(S, t∗) = y(k, 0) = {X[e
−∈2

a√2 − 1] , if k ≥ 0

0, otherwise

 (3A. 21) 

where, k =
a√2

σ
ln (

S

X
) 

 

 

Appendix 3.B. Visual Basic program for computing European currency call 

option by using the standard G–K model 

Function Call_GK(S, K, rd, rf, sigma, T) 

d1 = ((Application.Ln(S / (K))) / ((sigma) * Sqr(T)) + (rd - rf) * T / ((sigma) * Sqr(T)) + (0.5 * sigma) 

* Sqr(T)) 

d2 = d1 - sigma * Sqr(T) 

nd1 = Application.NormSDist(d1) 

nd2 = Application.NormSDist(d2) 

Call_GK = (S * Exp(-rf * T) * nd1) - (K * Exp(-rd * T) * nd2) 

End Function 

Appendix 3.C. Visual Basic program for computing European currency call 

option by using the new G–K model 

Function Call_GKIC(S, K, r1d, r1f, sigma, T) 

d1 = ((Application.Ln(S / (K))) / ((sigma) * Sqr(T)) + (r1d - r1f) * T / ((sigma) * Sqr(T)) + (0.5 * 

sigma) * Sqr(T)) 

d2 = d1 - sigma * Sqr(T) 

nd1 = Application.NormSDist(d1) 

nd2 = Application.NormSDist(d2) 

Call_GKIC = (S * Exp(-r1f * T) * nd1) - (K * Exp(-r1d * T) * nd2) 

End Function 
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Appendix 3.D. Visual Basic program for computing implied volatility 

Function IVGKICM (Market_Call As Double, K As Double, S As Double, r1d As Double, r1f As 

Double, T As Double) 

sigma = 0.2 

dv = 0.0001 + 1 

While Abs(dv) > 0.0001 

d1 = ((Application.Ln(S / (K))) / ((sigma) * Sqr(T)) + (r1d - r1f) * T / ((sigma) * Sqr(T)) + (0.5 * 

sigma) * Sqr(T)) 

d2 = d1 - sigma * Sqr(T) 

nd1 = Application.NormSDist(d1) 

nd2 = Application.NormSDist(d2) 

erreurprice = (S * Exp(-r1f * T) * nd1) - (K * Exp(-r1d * T) * nd2)–Market_Call 

Vega = S * Sqr(T / 3.1415926 / 2) * Exp(−0.5 * d1 ^ 2) 

dv = erreurprice / Vega 

sigma = sigma - dv 

Wend 

IVGKICM = sigma 

End Function 
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Chapter 4. Enhancing Currency Option Pricing Models: 

Incorporating Dynamic Information Costs and Machine 

Learning Techniques 

 

 

Abstract 

The concept of information cost has evolved over time and has been applied to various 

decision problems, including currency option pricing. This research delves into the impact of 

dynamic information costs on the currency option pricing model, innovatively developed by 

Dammak et al. (2023). We utilize the Differential Evolution algorithm to calibrate the novel 

information cost parameters, using data from various currency call options pairs from January 

1, 2018, to November 24, 2022. A satisfactory approximation of real market currency option 

prices is achieved through this methodology Additionally, we harness the power of machine 

learning, specifically the random forest regression technique, to predict the values of effective 

domestic and foreign interest rates within a changing information cost landscape. By 

partitioning our dataset into training and test sets, our study demonstrates that the new model, 

incorporating dynamic information costs, generates more accurate and stable pricing outcomes.  

This research marks a substantive contribution to the evolving field of option pricing, 

emphasizing the potential of machine learning techniques in solving complex financial 

problems. 

Keywords: Dynamic Information Costs; Currency Options; Garman and Kohlhagen’s 

model; Machine Learning; Random Forest Regression; Differential Evolution 

JEL classification: C45, C63, G14, G15, G17 
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4.1. Introduction 

Financial derivative problems consistently manifest as complex, dynamic, and 

uncertain, inherently complicating their resolution. Nevertheless, the derivative market 

provides a distinctive avenue to evaluate the potential benefits of option pricing. A detailed 

analysis of factors, including price, maturity time, rate of return, and neutral interest rate risk, 

permits investors to anticipate the value of real market data prior to making a decision to buy 

or sell an option value contract. This pivotal information is integral for making informed 

decisions and maximizing profits amidst the capricious and competitive milieu of financial 

markets. By leveraging mathematical models and advanced analytical tools, investors can 

unravel a more comprehensive understanding of the intricate relationships amidst various 

financial variables, subsequently making informed decisions that augment their returns while 

concurrently minimizing their risks. 

As financial markets inexorably advance in complexity and dynamism, the demand for 

sophisticated analytical tools and adept financial knowledge is projected to perpetually escalate, 

thereby positioning financial derivatives as a stimulating and formidable area of study. Notably, 

options, being instruments derived from other financial instruments, inherently encapsulate 

additional complexity and risk. Regardless, their pivotal role in shaping the financial system 

and fueling economic growth is indisputable. Option pricing emerges as a focal point of interest 

within finance and mathematics, magnetizing attention from academics, financial corporations, 

and investors. 

The Garman and Kohlhagen (1983) model (G-K model) pioneered providing an 

analytical solution for currency option pricing using the traditional arbitrage argument and has 

been widely utilized. It has often been fine-tuned through numerical methods like Monte Carlo 

simulations. Nevertheless, with the advent of breakthroughs in computing power and machine 

learning techniques, promising alternatives have emerged for navigating complex problems.  

The G-K model, while seminal, has encountered obstacles particularly in accounting for both 

domestic and foreign interest rates, electing to treat the foreign interest rate as the dividend rate 

on the underlying exchange rate. Notably used for pricing European currency options, the 

model is not without its limitations. It operates under the presumption of market efficiency, 

which inherently implies that economic agents behave rationally and that financial markets are 

devoid of imperfections. Furthermore, it assumes the existence of only one risky asset and one 
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risk-free asset, a scenario that isn’t wholly reflective of real-world contexts. Consequently, the 

market efficiency assumption is challenging to validate empirically. 

Elaborating on its foundation, the G-K model’s assumption of market efficiency rests 

principally on two pillars: rational economic agents and an absence of imperfections within 

financial markets. Under this framework, as posited by Fama (1991), asset prices are presumed 

to instantaneously adapt to new information and accurately encapsulate all available data. A 

market adhering to these characteristics would inherently exhibit two pivotal features. Firstly, 

the competitive nature of the market nullifies opportunities for profitable arbitrage, rendering 

market outperformance an impossibility. Secondly, prices are deemed fair, implying that the 

market price of each asset equates to its fundamental value, defined as the present value of its 

anticipated future cash flows. 

However, Biases in evaluation can emerge due to various market constraints, as 

financial market theory acknowledges the existence of imperfections within the market, 

attributable to several types of information costs. These include costs tied to short selling 

constructions (Scheinkman and Xiong, 2003; Kim et al., 2016; Bohl et al., 2016), and those 

arising from research and information acquisition (Grossman and Stiglitz, 1980; Easley and 

O'Hara, 1987; Bellalah, 1999; Argenziano et al., 2016; Weller, 2018; Maclennan and Wood, 

2021). These market imperfections can inadvertently lead to pricing evaluation errors, which 

become particularly crucial when pricing financial asset models and selecting an international 

portfolio. Additional facets of market imperfections comprise transmission costs (Bhuyan et 

al., 2016; Ahmed and Huo, 2019), as well as costs related to adverse selection or asymmetric 

information (Ahmad et al., 2021; Ranaldo and Somogyi, 2021). However, it’s paramount to 

recognize that the impact of these imperfections on option pricing is time-varying. This implies 

that their dynamic costs and resultant implications oscillate over time, as explicated by Dammak 

et al. (2023). 

In this study, we focus on the dynamic information costs, which vary over time, in the 

currency options market as proposed by Dammak et al. (2023). The currency options market is 

characterized by high volatility, with information that can change rapidly and unpredictably. 

Consequently, information costs can fluctuate, depending on market circumstances, and exert 

a significant impact on option valuation. Our objective is to comprehend how information costs 

evolve over time and how they influence the valuation of currency options. This innovative 
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approach aims to enhance our understanding of the dynamics within the currency options 

market and propose more apt solutions for financial risk management. 

This research combines machine learning, statistics, and mathematical finance to 

forecast option prices using contemporary financial technology. We begin in our experimental 

section by simulating new parameters of information costs via the Differential Evolution (DE) 

algorithm. This approach was chosen for its robustness in identifying minimum solutions for 

option value problems and for its straightforward implementation and efficacy in exploration 

and exploitation strategies. Though popular, this method sometimes struggles to provide 

accurate solutions that mirror real-world market values. 

Therefore, the DE parameters optimized for information costs are employed to construct 

a potent machine learning model that predicts the values of effective domestic and foreign 

interest rates with precision. This model, attuned to the dynamic nature of information costs, is 

applied to various currency call options, such as EUR-RUB, EUR-QAT, USD-RUB, RUR-

JPY, and EUR-USD, from January 1, 2018, to November 24, 2022. Over recent years, the utility 

of machine learning (ML) in addressing real-world problems has seen a remarkable rise, 

spawning a plethora of techniques and applications. 

Focusing on financial industry applications, ML has brought forth flexible and robust 

predictive capabilities, outperforming classical mathematical and econometric models, and has 

offered pivotal advantages to financial decision-makers and market participants, especially in 

the realms of financial modeling and data forecasting. Specifically, our study utilizes the 

Random Forest Regression ML technique, amalgamating multiple decision trees to bolster 

prediction accuracy, to anticipate the values of effective domestic and foreign interest rates 

while accounting for the dynamic information costs. Furthermore, we introduce three binary 

variables – Before Covid-19, During Covid-19, and Russia-Ukraine Conflict – to demarcate the 

observation period. This inclusion aids in evaluating and interpreting outcomes for any region 

or period under scrutiny. To attain a comprehensive understanding of the dynamics of 

information costs within the currency options market, we conducted experiments with five 

distinct Random Forest Regression models, utilizing five disparate datasets for both the training 

and test data. 

Our findings, incorporating these imperfections into currency option valuation, unveiled 

that the novel model’s pricing outcomes, which embed dynamic information costs, 

demonstrated heightened accuracy and stability. Consequently, we are enabled to furnish more 
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precise forecasts for currency option prices, thus enriching the comprehension of financial 

markets. By employing the DE algorithm and incorporating the random forest method, we forge 

a coherent and efficient framework for currency option pricing, ultimately aiding investors, 

financial institutions, and policymakers in making informed decisions regarding currency 

options, risk mitigation, and investment strategy optimization. 

The subsequent sections of this study are structured as follows: Section 2 offers a 

thorough review of pertinent literature. In Section 3, we highlight the contributions of the 

research. Section 4 introduces the extended Garman-Kohlhagen model, which integrates 

dynamic information costs as proposed by Dammak et al. (2023). Section 5 discusses the 

sensitivity of the currency option price to the new variables of dynamic information costs, a 

topic not previously published. Section 6 explains the data utilized in this study and the 

predictive models. Section 7 presents our analysis's key findings, and finally, Section 8 provides 

a conclusion to the research, encapsulating the key findings, addressing the limitations of the 

study, and proposing directions for forthcoming research. 

4.2. Literature review 

4.2.1. Information Costs 

While standard financial theory's Efficient Market Hypothesis (EMH) posits that 

financial markets are 'informationally efficient,' with rational arbitrage neutralizing irrational 

impacts on asset prices, aligning them more closely with fundamentals, various anomalies—

viewed as EMH paradoxes—have surfaced since the 1970s, presenting a contrasting reality. 

Indeed, investors in tangible financial markets might find their actions swayed by these 

imperfections. Notably, the nexus between informed trading and option prices has garnered 

extensive research attention. A number of studies have scrutinized the implied volatility (IV) 

spread between call and put options—having identical exercise prices and maturity—as a 

surrogate for informed investor activities, with researchers like Cremers and Weinbaum (2010) 

and Yigit (2014) employing this approach. Contrary to the foundational Black-Scholes (1973) 

model, which presumes a zero IV spread, these investigations reveal that this presupposition 

does not hold in actual market conditions.  

Findings indicate that when investors are privy to positive (negative) information 

regarding an event, the demand for call (put) options surges relative to put (call) options, 

causing a departure from the zero IV spread. Several research initiatives, including those by 
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Xing et al. (2010), Cremers and Weinbaum (2010), Jin et al. (2012), An et al. (2014), and 

Govindaraj et al. (2015), advocate that the engagement of informed investors in the options 

market can provoke a shift in the call-put parity relation towards private information, as outlined 

by Easley et al. (1998). Additionally, a considerable body of literature exists, elucidating the 

influence of information costs on option pricing, including works by Bellalah and Jacquillat 

(1995), Bellalah (2006), Ben Hamad and Eleuch (2008), Bellalah (2018), Zghal et al. (2020), 

Ryu and Yu (2021), Lee et al. (2021), Luo et al. (2022), Lockwood et al. (2022), Song et al. 

(2023), and Dammak et al. (2023). 

Traditional options pricing models, such as those proposed by Black and Scholes 

(1973), Garman and Kohlhagen (1983), Bick (1987), Ricardo (2002), and Guo and Yuan 

(2014), typically assume that investors are rational and risk-neutral, positing that the expected 

growth rate of the underlying asset and the discount rate should both equate to the risk-free rate. 

However, a myriad of studies presents a contrast, indicating that when information costs are 

considered, the expected growth rate of the underlying asset and the discount rate incorporate 

not only the risk-free rate but also costs emerging from related imperfections. In a market 

populated by both informed and uninformed—yet rational—investors, the impact of 

information can be likened to the application of an additional discount rate. This viewpoint has 

been corroborated by various research efforts, including works by Merton (1987), Bellalah and 

Jacquillat (1995), Ben Hamad and Eleuch (2008), Zghal et al. (2020), and Dammak et al. 

(2023). 

4.2.2.  Materials and Methods 

Financial derivatives present inherent complexity, dynamicity, and uncertainty. A focal 

point in the derivative market is the determination of option pricing values. Investors can 

forecast the value of real market data prior to engaging in buying or selling option value 

contracts by considering various factors, such as price, maturity time, rate of return, and risk-

neutral interest rate. Metaheuristic algorithms, such as the Differential Evolution (DE) 

algorithm showcased by Kumar et al. (2014), have been utilized to determine option pricing 

values. While this issue has been scrutinized in previous studies (Deb et al., 2002; Deb, 2011; 

Ardia et al., 2011; Singh et al., 2018; Hu et al., 2022; Febrianti et al., 2023), they also illustrate 

that employing the DE algorithm can significantly amplify the robustness and efficiency of the 

option pricing process amidst complex scenarios. 
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Much of the existing research in currency option pricing has primarily concentrated on 

formulating equations and enhancing numerical methods to minimize errors, while a subset 

explores machine learning (ML) applications using historical data. The integration of ML into 

option pricing models has been pivotal in fortifying and refining pricing techniques for financial 

derivatives. For instance, Fang and George (2017) advocated for ML's use alongside Levy 

approximation to sharpen the accuracy of Asian option valuation techniques. Similarly, 

Chowdhury et al. (2020) reconfigured the Monte Carlo method, adjusting parameters like strike 

price, time, and volatility, and employed decision trees, neural networks, and ensemble learning 

to predict call and put option values, providing insights into the correlation between stock price 

and volatility. In another approach, Klibanov et al. (2021) leveraged the method of quasi-

reversibility and ML to foresee option prices in corporations using the Black-Scholes model. 

In the broader literature, models such as classification and regression tree models, 

alongside various ML techniques, have been developed to create prediction rules for classifying 

and regressing outcome variables. Breiman (2001) unveiled the random forests (RF) algorithm, 

an ensemble strategy that serves as a form of nearest neighbor predictor, initiating with a 

prevalent ML method known as "decision trees." This algorithm has found applications across 

diverse fields like machine learning, bioinformatics, and big data modeling, with numerous 

financial studies employing the RF algorithm for stock price forecasting and strategizing 

investments (Theofilatos et al., 2012; Qin et al., 2013; Basak et al., 2019), Bitcoin price 

prediction (Basher and Sadorsky, 2022), and risk management (Chang et al., 2018; Arora and 

Kaur, 2020). 

In a related exploration, Ivașcu (2021) scrutinized the efficacy of popular ML algorithms 

in option pricing, evaluating the potency of Support Vector Regressions and Genetic 

Algorithms, and introducing three additional Decision Tree methods: Random Forest, 

XGBoost, and LightGBM, focusing on European call options with WTI crude oil futures as the 

underlying asset. Independent of contract moneyless and maturity, ML algorithms noticeably 

surpass traditional methods by a significant measure. Lastly, Li and Yan (2023) compared 

various ML methods for option pricing, concluding that random forest and artificial neural 

network methods notably yield superior fitting and performance with minimized prediction 

errors. 
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4.3.  Research Objectives and Contributions 

The objective of the present paper is to shed light on the intricate realm of currency 

option pricing, specifically within the framework of dynamic information costs. As currency 

markets continuously evolve, understanding the nuanced impact of dynamic information costs 

becomes increasingly crucial. Our key contributions include: 

i. Analyzing the impact of dynamic information costs on currency option pricing to 

unravel their multifaceted role in shaping market dynamics. 

ii. Comparing the traditional currency option pricing model with a modified version 

incorporating dynamic information costs, allowing us to discern the value of 

incorporating real-time data into pricing strategies. 

iii. Exploring the integration of machine learning techniques for predicting interest rates 

while considering dynamic information costs, bridging the gap between traditional 

financial models and cutting-edge technology. 

iv. Evaluating the stability and precision of the enhanced pricing model, providing insights 

into its robustness under varying market conditions. 

v. Highlighting practical implications for financial risk management, offering actionable 

strategies for investors, financial institutions, and policymakers in navigating the 

complexities of currency options within a dynamic information cost landscape. 

These contributions collectively illuminate the intricate interplay between dynamic information 

costs and currency option pricing while offering tangible insights for financial decision-makers 

and market participants. 

4.4. The Garman–Kohlhagen Model Considering Dynamic 

Information Costs 

According to Dammak et al. (2023), the value of a European currency call can be 

determined through the partial differential equation, ensuring no arbitrage opportunity and 

amidst dynamic information costs. The equation is presented as follows:  

1

2
𝜎2𝑆2

𝜕2𝐶

𝜕𝑆2
+ (𝑟1𝑑 − 𝑟1𝑓)𝑆

𝜕𝐶

𝜕𝑆
+
𝜕𝐶

𝜕𝑡
− 𝑟1𝑑𝐶 = 0  (4.1) 

 

where,   the effective domestic  interest rate   𝑟1𝑑 is presented as follow:                      

𝑟1𝑑 = 𝑟𝑑 + 𝜆𝑑 𝑤(𝑙𝑑) (4.2)

where, 𝑟𝑑 represents the actual risk-free domestic interest rate, while 𝜆𝑑 denotes the amplitude 
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of information costs related to domestic information. The function 𝑤 𝑤(𝑙𝑑) is the advantage 

function associated with domestic information, defined as 1−𝑒−𝛼𝑑𝑙𝑑. Here, 𝛼𝑑 is the coefficient 

pertaining to the advantage related to domestic information, and 𝑙𝑑  signifies the temporal 

advantage associated with domestic information. 

Therefore,   the effective foreign   interest rate   𝑟1𝑓 is presented as follow 

𝑟1𝑓 = 𝑟𝑓 + 𝜆𝑓 𝑤(𝑙𝑓) (4.3)                                                                        

where, rf is the actual risk-free foreign interest rate, and λf is the amplitude of information costs 

connected with foreign information. The function w(lf) represents the advantage function tied 

to foreign information and is defined as 1−e−αflf. In this equation, αf  is the coefficient related 

to the advantage associated with foreign information, and lf indicates the temporal advantage 

connected with foreign information. 

To calculate the currency call option, a specific process has employed. Initially, it is 

assumed that the underlying return is analogous to the effective risk-free rate, taking into 

account the dynamic information costs. Following this, the expected payoff of the derivative 

asset at maturity is computed. In the concluding step, this expected value is discounted at both 

the effective risk-free domestic and foreign interest rates (𝑟1d and 𝑟1f respectively), factoring in 

dynamic information costs. By following this procedure, a redefined formula for European 

currency call option pricing emerges. This updated formula, an adaptation of the Garman and 

Kohlhagen model, has been revised to consider the role of dynamic information costs and can 

be represented as follows:  

𝐶𝑡 = 𝑆𝑡𝑒
−𝑟1𝑓𝑇𝑁(𝑑′1) − 𝑋𝑒

−𝑟1𝑑𝑇𝑁(𝑑′2) (4.4)             

where, 

𝑑′1 =
𝑙𝑛
𝑆

𝑋
+((𝑟1𝑑−𝑟1𝑓 )+

1

2
𝜎2)𝑇

𝜎√𝑇
 (4.5)                                                                                                             

and, 

𝑑′2 = 𝑑′1 − 𝜎√𝑇 (4.6)                                                                                                       

where, 𝑆 is the underlying spot price; 𝑋 is the strike price;𝜎 represents the underlying 

volatility;𝑇 corresponds to time to maturity; 𝑁(𝑥) is the distribution function of the normal 

centered reduced law 𝑁 (0,1);𝑟1𝑑 is the effective domestic interest rate and 𝑟1𝑓 is the effective 

foreign interest rate.                                                                              

Then, using the new parity relationship: 

𝐶𝑡 − 𝑃𝑡 = 𝑆𝑒
−𝑟1𝑓𝑇 + 𝑋𝑒−𝑟1𝑑𝑇 (4.7)                              
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We find the new formula of the European currency put option pricing of Garman and Kohlhagen 

modified in the presence of dynamic information costs. 

𝑃𝑡 = 𝑆𝑡𝑒
−𝑟1𝑓𝑇𝑁(−𝑑′1) + 𝑋𝑒

−𝑟1𝑑𝑇𝑁(−d′2) (4.8) 

Dammak et al. (2023) propose that the function for the propagation of light intensity, 

introduced by Beer-Lambert (1729), is analogous to the spread of information in financial 

markets. This is referred to as the temporal advantage function of information, 𝑤 (𝑙). This 

function consistently rises over ℝ, implying that as the temporal advantage 𝑙 escalates, 

𝑤 (𝑙) similarly advances. However, the growth rate of 𝑤 (𝑙) is reliant on the coefficient of 

information advantage, 𝛼. Consequently, an enhancement in the information advantage 

culminates in a more accelerated growth of 𝑤 (𝑙), underlining the significant influence of 

private information. 

The temporal advantage function, 𝑤 (𝑙), increases as ' 𝑙 ' rises, approaching 1 regardless 

of the ' 𝛼’ value. However, the speed at which 𝑤 (𝑙) progresses varies with ' 𝛼 '; 𝑤 (𝑙)  tends 

more swiftly to 1 as 'α' grows. If ' 𝑙 ' equals zero, information asymmetry vanishes irrespective 

of 'α' value, causing the disappearance of the 𝑤 (𝑙)  function, signaling an efficient market 

scenario. In such a condition, the absence of private information ensures all available 

information is seamlessly integrated into the price, eliminating the scope for information 

advantage. This situation aligns with the assumptions of Garman and Kohlhagen, leading to the 

application of the same formula as proposed by Garman and Kohlhagen (1983). 

Hence, the advantage coefficient α, varying between 0 and 1, denotes the significance 

of information. It is 0 when the information holds no importance and approaches 1 as the 

information becomes increasingly relevant. The 'l' parameter symbolizes the temporal 

advantage based on its value, reaching its peak at T, equivalent to the remaining time until 

maturity. This means that as the option matures, information is fully garnered, resetting the 

parameter to 0. The information costs amplitude λ, also fluctuating between 0 and 1, is 0 when 

no private information is held by the investor, and approaches 1 as information is obtained. 
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4.5. The sensitivity of the option price to the new variables 

4.5.1.  Sensitivity of the option price to '𝒍𝒅': the temporal advantage 

related to domestic information 

This concerns the study of the sensitivity of the option price to the variation in the temporal 

advantage related to domestic information. 

For a call, we have:  

𝜕𝐶

𝜕𝒍𝒅
=

𝜕𝐶

𝜕𝑟1𝑑

𝜕𝑟1𝑑

𝜕𝒍𝒅
                                                                                                                                    (4.9) 

    =
∂(𝑆𝑒

−𝑟1𝑓𝑇𝑁(𝑑′1)−𝑋𝑒
−𝑟1𝑑𝑇𝑁(𝑑′2))

∂r1d

∂(𝑟𝑑+𝜆𝑑(1−e
−𝛼𝑑𝑙𝑑))

∂𝑙𝑑
                                                                            (4.10) 

     = 𝑇𝑋𝑒𝑟1𝑑𝑇𝑁(d′2)𝛼𝑑𝜆𝑑𝑒
−𝛼𝑑𝑙𝑑 > 0                                                                                              (4.11) 

Thus, an increase in the domestic temporal advantage parameter '𝑙𝑑' results in an increase in the 

currency call price, as denoted by the partial derivative of the call option price with respect to 

'𝑙𝑑' being positive. This suggests that if an investor has private information about the domestic 

underlying rate, the price of the currency call option will be positively affected. 

For a put, we have: 

𝜕𝑝

𝜕𝒍𝒅
=

𝜕𝑃

𝜕𝑟1𝑑

𝜕𝑟1𝑑

𝜕𝒍𝒅
                                                                                                                                  (4.12) 

      =
𝜕(𝑆𝑒

−𝑟1𝑓𝑇𝑁(−𝑑′1)+𝑋𝑒
−𝑟1𝑑𝑇𝑁(−d′2))

∂r1
 
∂(𝑟𝑑+𝜆𝑑(1−e

−𝛼𝑑𝑙𝑑))

∂𝑙𝑑
                                                                       (4.13) 

      = −𝑇𝑋𝑒𝑟1𝑑𝑇𝑁(−d′2)𝛼𝑑𝜆𝑑𝑒
−𝛼𝑑𝑙𝑑 < 0                                                                                       (4.14)  

Unlike the currency  call option, 
𝜕𝑃

𝜕𝑙
< 0 i.e., the increase in ‘𝑙𝑑' implies a decrease in the 

currency put price. Indeed, if an investor possesses optimistic private information regarding the 

domestic underlying rate, it will result in a decrease in the currency put price. 

4.5.2.  Sensitivity of the option price to '𝒍𝒇': the temporal advantage 

related to foreign information 

This concerns the study of the sensitivity of the option price to the variation in the temporal 

advantage related to foreign information. 
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For a call, we have:  

𝜕𝐶

𝜕𝒍𝒇
=

𝜕𝐶

𝜕𝑟1𝑓

𝜕𝑟1𝑓

𝜕𝒍𝒇
                                                                                                                                    (4.15) 

  =
∂(𝑆𝑒

−𝑟1𝑓𝑇𝑁(𝑑′1)−𝑋𝑒
−𝑟1𝑑𝑇𝑁(𝑑′2))

∂r1f

∂(𝒓𝒇+𝝀𝒇(1−e
−𝜶𝒇𝒍𝒇))

∂𝒍𝒇
                                                                        (4.16) 

      = −𝑇𝑆𝑒𝑟1𝑓𝑇𝑁(d′1)𝛼𝑓𝜆𝑓𝑒
−𝛼𝑓𝑙𝑓 < 0                                                                                          (4.17) 

Thus, an increase in the foreign temporal advantage parameter '𝑙𝑓' results in a decrease in 

the currency call price, as denoted by the partial derivative of the currency call option price 

with respect to '𝑙𝑓 ' being negative. This suggests that if an investor has private information 

about the foreign underlying rate, the price of the currency call option will be negatively 

affected. 

For a put, we have: 

𝜕𝑃

𝜕𝒍𝒇
=

𝜕𝑃

𝜕𝑟1𝑓

𝜕𝑟1𝑓

𝜕𝒍𝒇
                                                                                                                              (4.18) 

    =
∂(𝑆𝑒

−𝑟1𝑓𝑇𝑁(−𝑑′1)+𝑋𝑒
−𝑟1𝑑𝑇𝑁(−𝑑′2))

∂r1f

∂(𝒓𝒇+𝝀𝒇(1−e
−𝜶𝒇𝒍𝒇))

∂𝒍𝒇
                                                                (4.19) 

     = −𝑇𝑆𝑒𝑟1𝑓𝑇𝑁(−d′1)𝛼𝑓𝜆𝑓𝑒
−𝛼𝑓𝑙𝑓 < 0                                                                                         (4.20) 

Thus, an increase in the foreign temporal advantage parameter '𝑙𝑓' results in a decrease in the 

currency put price, as denoted by the partial derivative of the currency put option price with 

respect to '𝑙𝑓 ' being negative. This suggests that if an investor has private information about the 

foreign underlying rate, the price of the currency put option will be negatively affected. 

4.5.3.  Sensitivity of the option price to '𝜶𝒅': the advantage coefficient 

related to domestic information 

For a call, we have:  

𝜕𝐶

𝜕𝛼𝑑
=

𝜕𝐶

𝜕𝑟1𝑑

𝜕𝑟1𝑑

𝜕𝛼𝑑
                                                                                                                            (4.21) 

       =
∂(𝑆𝑒

−𝑟1𝑓𝑇𝑁(𝑑′1)−𝑋𝑒
−𝑟1𝑑𝑇𝑁(𝑑′2))

∂r1d

∂(𝑟𝑑+𝜆𝑑(1−e
−𝛼𝑑𝑙𝑑))

∂𝛼𝑑
                                                                (4.22) 

       = 𝑇𝑋𝑒𝑟1𝑑𝑇𝑁(d′2)𝑙𝑑𝜆𝑑𝑒
−𝛼𝑑𝑙𝑑                                                                                              (4.23) 
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The sign of 
𝜕𝐶

𝜕𝛼𝑑
 depends on the sign of 'ld'. 

If 𝑙𝑑 >  0, there is a time advantage.; then, the increase in the advantage coefficient related to 

domestic information '𝛼𝑑 ' leads to an increase in the call price. Indeed, if the advantage 

coefficient related to domestic information is increasing (αd increases), in the same sense as the 

temporal advantage related to domestic information (𝑙𝑑 >  0), then the transactions of the 

informed (those who own the private information go in the same direction, which pushes the 

price of the call to increase faster. 

In contrast, if 𝑙𝑑  <  0, i.e., there is a temporal disadvantage, then the increase in the advantage 

coefficient related to domestic information '𝛼𝑑 ' does not increase the price of the call. Therefore, 

if the coefficient of advantage related to domestic information (𝛼𝑑) increases in the opposite 

direction to the temporal advantage related to domestic information (𝑙𝑑  <  0), the value of the 

call option decreases. 

For a put, we have: 

𝜕𝑝

𝜕𝛼𝑑
=

𝜕𝑃

𝜕𝑟1𝑑

𝜕𝑟1𝑑

𝜕𝛼𝑑
                                                                                                                             (4.24) 

      =
𝜕(𝑆𝑒

−𝑟1𝑓𝑇𝑁(−𝑑′1)+𝑋𝑒
−𝑟1𝑑𝑇𝑁(−d′2))

∂r1

∂(𝑟𝑑+𝜆𝑑(1−e
−𝛼𝑑𝑙𝑑))

∂𝛼𝑑
                                                            (4.25) 

      = −𝑇𝑋𝑒𝑟1𝑑𝑇𝑁(−d′2)𝑙𝑑𝜆𝑑𝑒
−𝛼𝑑𝑙𝑑                                                                                            (4.26)  

As in the case of the call, the sign of 
𝜕𝑃

𝜕𝛼𝑑
  depends on that of '𝑙𝑑 '. If 𝑙𝑑 > 0, then  

𝜕𝑃

𝜕𝛼𝑑
< 0 i.e., if 

𝛼𝑑 increases, then it reduces the currency put price. On the other hand, if 𝑙𝑑  <  0then 
𝜕𝑃

𝜕𝛼𝑑
> 0 

which means that an increase in the coefficient of advantage related to domestic information 

'𝛼𝑑 ' leads to an increase in the price of the currency put. Indeed, if the coefficient of advantage 

related to domestic information (𝛼𝑑 increases) in the opposite direction of the temporal 

advantage related to domestic information (𝑙𝑑  <  0), which increases the gain in the put price. 

Hence, an increase in 𝛼𝑑 leads to an increase in the value of the currency put. 

4.5.4.  Sensitivity of the option price to '𝜶𝒇': the advantage coefficient 

related to foreign information 

For a call, we have:  

𝜕𝐶

𝜕𝛼𝑓
=

𝜕𝐶

𝜕𝑟1𝑓

𝜕𝑟1𝑓

𝜕𝛼𝑓
                                                                                                                               (4.27) 
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       =
∂(𝑆𝑒

−𝑟1𝑓𝑇𝑁(𝑑′1)−𝑋𝑒
−𝑟1𝑑𝑇𝑁(𝑑′2))

∂r1f

∂(𝑟𝑓+𝜆𝑓(1−e
−𝛼𝑓𝑙𝑓))

∂𝛼𝑓
                                                                (4.28) 

       = −𝑆𝑋𝑒𝑟1𝑓𝑇𝑁(d′1)𝑙𝑓𝜆𝑓𝑒
−𝛼𝑓𝑙𝑓                                                                                            (4.29) 

The sign of 
𝜕𝐶

𝜕𝛼𝑓
  depends on that of '𝑙𝑓'. If 𝑙𝑓  >  0, then  

𝜕𝐶

𝜕𝛼𝑓
< 0 i.e., if  αf increases, then it 

reduces the currency call price. On the other hand, if lf < 0 then 
𝜕𝐶

𝜕𝛼𝑓
> 0 which means that an 

increase in the coefficient of advantage related to foreign information '𝛼𝑓 ' leads to an increase 

in the price of the  currency call. Indeed, if the coefficient of advantage related to foreign 

information (𝛼𝑓 increases) in the opposite direction of the temporal advantage related to foreign 

information (𝑙𝑓 <  0), which increases the gain in the call price. Hence, an increase in 𝛼𝑓 leads 

to an increase in the value of the currency call. 

For a put, we have: 

𝜕𝑃

𝜕𝛼𝑓
=

𝜕𝑃

𝜕𝑟1𝑓

𝜕𝑟1𝑓

𝜕𝛼𝑓
                                                                                                                                (4.30)                                 

              =
∂(𝑆𝑒

−𝑟1𝑓𝑇𝑁(−𝑑′1)+𝑋𝑒
−𝑟1𝑑𝑇𝑁(−𝑑′2))

∂r1f

∂(𝑟𝑓+𝜆𝑓(1−e
−𝛼𝑓𝑙𝑓))

∂𝛼𝑓
                                                            (4.31)  

               = −𝑆𝑋𝑒𝑟1𝑓𝑇𝑁(−d′1)𝑙𝑓𝜆𝑓𝑒
−𝛼𝑓𝑙𝑓                                                                                                    (4.32) 

As in the case of the currency call, the sign of 
𝜕𝑃

𝜕𝛼𝑓
  depends on that of '𝑙𝑓'. If 𝑙𝑓 >  0, then  

𝜕𝑃

𝜕𝛼𝑓
<

0 i.e., if the increase in αf increases, then it reduces the currency put price. On the other hand, 

if 𝑙𝑓  <  0 then 
𝜕𝑃

𝜕𝛼𝑓
> 0 which means that an increase in the coefficient of advantage related to 

foreign information '𝛼𝑓 ' leads to an increase in the price of the currency put. Indeed, if the 

coefficient of advantage related to foreign information (𝛼𝑓 increases) in the opposite direction 

of the temporal advantage related to foreign information (𝑙𝑓 <  0), which increases the gain in 

the put price. Hence, an increase in 𝛼𝑓 leads to an increase in the value of the currency put. 

4.5.5.  Sensitivity of the currency option price to '𝝀𝒅': the information 

costs related to domestic information amplitude 

For a call, we have:  

𝜕𝐶

𝜕𝜆𝑑
=

𝜕𝐶

𝜕𝑟1𝑑

𝜕𝑟1𝑑

𝜕𝜆𝑑
                                                                                                                                    (4.33) 
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       =
∂(𝑆𝑒

−𝑟1𝑓𝑇𝑁(𝑑′1)−𝑋𝑒
−𝑟1𝑑𝑇𝑁(𝑑′2))

∂r1d

∂(𝑟𝑑+𝜆𝑑(1−e
−𝛼𝑑𝑙𝑑))

∂𝜆𝑑
                                                                        (4.34) 

       = 𝑇𝑋𝑒𝑟1𝑑𝑇𝑁(d′2)(1 − 𝑒
−𝛼𝑑𝑙𝑑)                                                                                                  (4.35) 

The sign of 
𝜕𝐶

𝜕𝜆𝑑
  depends on the sign of '𝑙𝑑 '.  If 𝑙𝑑 >  0, in other words, if the temporal advantage 

coefficient  is positive, 
𝜕𝐶

𝜕𝜆𝑑
> 0 then the increase in '𝜆𝑑 ', the amplitude of information costs 

related to domestic market, leads to an increase in the price of the currency call. Indeed, if the 

amplitude of domestic information costs increases, the gain relative to the positive private 

information increases, which generates an increase in the currency call value. However, if 𝑙𝑑 <

0, i.e., if the temporal advantage coefficient is negative, the sensitivity of the currency call price 

is 
𝜕𝐶

𝜕𝜆𝑑
< 0, then the increase in '𝜆𝑑 ' does not increase the currency  call price, but there is a 

decrease in its value. Indeed, the loss relative to the domestic temporal disadvantage, (𝑙𝑑  < 0), 

multiplies if the amplitude of information costs related to domestic market increases, which 

results in a decrease in the currency call value. 

For a put, we have: 

𝜕𝑝

𝜕𝜆𝑑
=

𝜕𝑃

𝜕𝑟1𝑑

𝜕𝑟1𝑑

𝜕𝜆𝑑
                                                                                                                                        (4.36) 

      =
𝜕(𝑆𝑒

−𝑟1𝑓𝑇𝑁(−𝑑′1)+𝑋𝑒
−𝑟1𝑑𝑇𝑁(−d′2))

∂r1
 
∂(𝑟𝑑+𝜆𝑑(1−e

−𝛼𝑑𝑙𝑑))

∂𝜆𝑑
                                                                    (4.37) 

      = −𝑇𝑋𝑒𝑟1𝑑𝑇𝑁(−d′2)(1 − 𝑒
−𝛼𝑑𝑙𝑑)                                                                                            (4.38)  

Similarly, the sign of 
∂P

∂𝜆𝑑
 depends on the sign of 'ld'. If 𝑙𝑑  >  0, i.e., if the domestic advantage 

temporal coefficient is positive, 
∂P

∂𝜆𝑑
< 0 , then the increase in '𝜆𝑑 ', the amplitude of information 

costs related to domestic market, results in a decrease in the currency put price.  Therefore, if 

the amplitude of the domestic information costs increases, the loss relative to the positive 

private information related to the domestic market increases, which leads to a decrease in the 

currency put value. 

However, if 𝑙𝑑 < 0, i.e., if the domestic temporal advantage coefficient is negative, the price 

sensitivity of the currency put is 
∂P

∂𝜆𝑑
> 0 , then the increase in '𝜆𝑑 ' increases the currency put 

price. Indeed, the gain relative to the negative domestic advantage temporal coefficient (𝑙𝑑 <
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0) multiplies if the amplitude of information costs related to domestic market increases, which 

gives rise to an increase in the value of the currency put option. 

4.5.6.  Sensitivity of the currency option price to '𝝀𝒇': the information 

costs related to foreign information amplitude 

For a call, we have:  

𝜕𝐶

𝜕𝜆𝑓
=

𝜕𝐶

𝜕𝑟1𝑓

𝜕𝑟1𝑓

𝜕𝜆𝑓
                                                                                                                                      (4.39) 

       =
∂(𝑆𝑒

−𝑟1𝑓𝑇𝑁(𝑑′1)−𝑋𝑒
−𝑟1𝑑𝑇𝑁(𝑑′2))

∂r1f

∂(𝑟𝑓+𝜆𝑓(1−e
−𝛼𝑓𝑙𝑓))

∂𝜆𝑓
                                                                        (4.40) 

       = −𝑆𝑋𝑒𝑟1𝑓𝑇𝑁(d′1)(1 − 𝑒
−𝛼𝑓𝑙𝑓)                                                                                               (4.41) 

The sign of 
∂C

∂𝜆𝑓
 depends on the sign of ′𝑙𝑓'.  If 𝑙𝑓 >  0, i.e., if the foreign advantage temporal 

coefficient is positive, 
∂C

∂𝜆𝑓
< 0 , then the increase in '𝜆𝑓', the amplitude of information costs 

related to foreign market, results in a decrease in the currency call price.  Therefore, if the 

amplitude of the foreign information costs increases, the loss relative to the positive private 

information related to the foreign market increases, which leads to a decrease in the currency 

call value. 

However, if 𝑙𝑓 < 0, i.e., if the foreign  temporal advantage coefficient is negative, the price 

sensitivity of the currency call is 
∂C

∂𝜆𝑓
> 0 , then the increase in '𝜆𝑓' increases the currency call 

price. Indeed, the gain relative to the negative foreign advantage temporal coefficient (𝑙𝑓 < 0) 

multiplies if the amplitude of information costs related to foreign market increases, which gives 

rise to an increase in the value of the currency call option.                                                                       

For a put, we have: 

𝜕𝑃

𝜕𝜆𝑓
=

𝜕𝑃

𝜕𝑟1𝑓

𝜕𝑟1𝑓

𝜕𝜆𝑓
                                                                                                                                        (4.42) 

       =
∂(𝑆𝑒

−𝑟1𝑓𝑇𝑁(−𝑑′1)+𝑋𝑒
−𝑟1𝑑𝑇𝑁(−𝑑′2))

∂r1f

∂(𝑟𝑓+𝜆𝑓(1−e
−𝛼𝑓𝑙𝑓))

∂𝜆𝑓
                                                                   (4.43) 

       = −𝑆𝑋𝑒𝑟1𝑓𝑇𝑁(−d′1)(1 − 𝑒
−𝛼𝑓𝑙𝑓)                                                                                           (4.44)               
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The sign of 
∂P

∂𝜆𝑓
 depends on the sign of '𝑙𝑓'.  If 𝑙𝑓 >  0, i.e., if the foreign advantage temporal 

coefficient is positive, 
∂P

∂𝜆𝑓
< 0 , then the increase in '𝜆𝑓', the amplitude of information costs 

related to foreign market, results in a decrease in the currency put price.  Therefore, if the 

amplitude of the foreign information costs increases, the loss relative to the positive private 

information related to the foreign market increases, which leads to a decrease in the currency 

put value. However, if '𝑙𝑓 < 0, i.e., if the foreign  temporal advantage coefficient is negative, 

the price sensitivity of the currency put is 
∂P

∂𝜆𝑓
> 0 , then the increase in '𝜆𝑓' increases the 

currency put price. Indeed, the gain relative to the negative foreign advantage temporal 

coefficient (𝑙𝑓 < 0) multiplies if the amplitude of information costs related to foreign market 

increases, which gives rise to an increase in the value of the currency put option. 

4.5.7.  The sensitivity of the option price to changes in the domestic 

and foreign interest rates considering dynamic costs: The Rhô 

Mathematically, this sensibility is represented as the partial derivative of the currency option 

price with respect to the domestic interest rate considering information costs (𝑟1𝑑) and the 

foreign interest rate considering the information costs (𝑟1𝑓). 

The calculation of options on foreign currencies requires determining two rhô values for each 

option, whether it is a call or a put option. The first value, represented by 𝑝𝑐/𝑝
𝑑1 , measures the 

risk associated with the domestic interest rate considering the information costs, while the 

second value, represented by 𝑝𝑐/𝑝
𝑓1

, measures the risk associated with the foreign interest rate 

considering the information costs. The calculation of the derivatives of the currency call and 

put options in relation to 𝑟1𝑑and 𝑟1𝑓results in the following values:   

𝑝𝑐
𝑑1 =

𝜕𝐶

𝜕𝑟1𝑑
= 𝑋𝑒−𝑟1𝑑.𝑇𝑁(𝑑′2)𝑇 > 0 (4.45)        

𝑝𝑝
𝑑1 =

𝜕𝑃

𝜕𝑟1𝑑
= 𝑋𝑒−𝑟1𝑑.𝑇𝑁(−𝑑′2)𝑇 > 0 (4.46)   

𝑝𝑐
𝑓1
=

𝜕𝐶

𝜕𝑟1𝑓
= 𝑆𝑒−𝑟1𝑓.𝑇𝑁(𝑑′1)𝑇 > 0 (4.47)     

𝑝𝑝
𝑓1
=

𝜕𝑃

𝜕𝑟1𝑓
= 𝑆𝑒−𝑟1𝑓.𝑇𝑁(−𝑑′1)𝑇 > 0 (4.48)    
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The value of a currency call option (put option) increases (decreases) with the domestic interest 

rate considering the information costs due to the decrease (increase) in the present value of the 

exercise price to be paid (received). Conversely, the value of the currency call option (put 

option) decreases (increases) with the foreign interest rate considering the information costs. In 

fact, due to the interest rate parity, the probability of a depreciation of the underlying currency 

increases when the effective foreign interest rate 𝑟1𝑓 increases. As a result, for a fixed exercise 

price, the value of the right to buy (sell) a depreciating currency must decrease (increase). It is 

also possible to calculate a global rhô measuring the risk of an option portfolio with respect to 

the effective domestic and foreign interest rate. It can be given by the following formula: 

P𝐺 =
𝜕𝑉

𝜕𝑟1
= ∑ 𝑛𝑖𝑖 ρ𝑖 = ∑ 𝑛𝑖𝑖

𝜕𝑉𝑖

𝜕𝑟1
  (4.49)        

4.6. Methodological issues 

4.6.1.  Data Description 

In this study, a dataset comprising five pairs of currency call options (EUR/USD, 

EUR/QAT, EUR/JPY, EUR/RUB, and USD/RUB) is utilized. The options chosen are of the 

European type, and the dataset comprises 1279 daily observations recorded at market close for 

each pair. The time span covered in the dataset ranges from January 1, 2018, to November 24, 

2022. The observation data are the exchange rate value, the strike price, the time to maturity, 

the volatility of the underlying asset and the option market value. 

An interest rate with a constant time to maturity of 90 days is also used as a risk-free 

rate estimator. Hull (2008) assumes that such a rate is a correct estimator of the risk-free rate. 

To obtain this, three-month daily Inter Bank Offered Rates (IBOR) data are utilized in this 

research. The specific IBOR rates used are as follows: EURIBOR for Europe, LIBOR for the 

USA, QIBOR for Qatar, TIBOR for Japan, and MowIBOR for Russia. 

To ensure the validity of the analysis, two filters were applied to this sample. First, 

options that do not satisfy the arbitration condition, as outlined by Merton (1973), are excluded 

from the sample. This condition states that for call options, 𝐶 must be greater than or equal 

to  𝑆 − 𝑋𝑒𝑟𝑇. By removing these options from the sample, the implied volatilities are calculated 

only for those that adhere to the arbitration condition, providing more accurate and reliable 

results for further analysis. Furthermore, in accordance with the methodology proposed by 

Bakshi and Kapadia (2003), certain data filtering criteria are applied. This includes the 
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exclusion of days with missing observations and the removal of implied volatilities that are 

below 1% or above 100%. These extreme volatilities are often associated with synchronization 

bias and are therefore eliminated from the analysis to ensure the reliability and integrity of the 

data. 

4.6.2.  Study of the model performance 

Numerous research studies have aimed to enhance the accuracy of option pricing models 

by challenging the underlying assumptions of existing models. In line with these studies, we 

propose enhancing the Garman-Kohlhagen model by considering dynamic information costs, 

as proposed by Dammak et al. (2023). 

Our methodology encompasses several steps: simulating dynamic information cost 

parameters using the Differential Evolution metaheuristic approach; calculating the option price 

using both the modified and standard Garman-Kohlhagen models; analyzing the model's 

performance by assessing evaluation errors and correlation coefficients between theoretical and 

market prices; and developing a high-performing machine learning model to predict effective 

domestic and foreign interest rates that account for dynamic information costs. 

The primary objective of this study is to assess the performance of a model that 

considers dynamic information costs in approximating market prices, in comparison to the 

standard Garman-Kohlhagen model. The refined model seeks to diminish estimation errors 

from the theoretical model, thus minimizing biases in undervaluation and overestimation, and 

enhancing market price approximation. 

To address our research question and achieve our objective, this empirical study is 

organized as follows: An initial step in utilizing the new currency option pricing model involves 

simulating the parameters of the temporal advantage function related to both domestic and 

foreign markets, using the Differential Evolution algorithm. After estimating the implied 

parameters, we will utilize them to calculate the price of the currency call option, employing 

the G-K model that accounts for dynamic information costs. Subsequently, we will compare 

the performance of the two models using the Mean Square Error (MSE) criteria and the 

correlation coefficient between theoretical and market prices. To compare the models, we 

define the following variables which need to be calculated: CGK: the price of a European 

currency call option calculated using the G-K model (1983) formula, CGKDIC: the price of a 
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European currency call option calculated using the model in the presence of the dynamic 

information costs and CM: the observed price of a European currency call option on the market. 

Then, we define: 

{
𝐸𝐶𝐺𝐾 = 𝐶𝐺𝐾 − 𝐶𝑀

𝐸𝐶𝐺𝐾𝐷𝐼𝐶 = 𝐶𝐺𝐾𝐷𝐼𝐶 − 𝐶𝑀
 (4.50) 

where, 𝐸𝐶𝐺𝐾represents the difference between the currency call price calculated by the 

theoretical model of Garman and Kohlhagen  (1983) and the currency call market price and 

𝐸𝐶𝐺𝐾𝐷𝐼𝐶  represents the difference between the currency call price calculated by the model in 

the presence of dynamic information costs  and the currency call  market price. 

If the difference is positive (negative), then the currency option is overvalued 

(undervalued). In other words, the theoretical models use overestimated (underestimated) 

market prices. These differences are calculated for each option and each day of the sample to 

calculate the mean square error MSE for the two models for each currency option of the sample 

as follow:  

{
𝑀𝑆𝐸 𝐶𝐴𝐿𝐿𝐺𝐾 =

1

𝑛
∑(𝐶𝐺𝐾−𝐶𝑀)

𝑀𝑆𝐸 𝐶𝐴𝐿𝐿𝐺𝐾𝐷𝐼𝐶 =
1

𝑛
∑(𝐶𝐺𝐾𝐷𝐼𝐶−𝐶𝑀)

 (4.51)

where, 𝑀𝑆𝐸 𝐶𝐴𝐿𝐿𝐺𝐾  represents the mean square error for the Garman and Kohlhagen (1983) 

and 𝑀𝑆𝐸 𝐶𝐴𝐿𝐿𝐺𝐾𝐷𝐼𝐶  represents the mean square error for the model in the presence of dynamic 

information costs. 

Another measure of the model efficiency is the correlation of the prices calculated by the two 

models with those of the market. We then define the following: 

 𝜌 𝐶𝐴𝐿𝐿𝐺𝐾/ 𝐶𝑀 : the correlation coefficient of the currency call options calculated by 

the models of Garman and Kohlhagen with those of the market 

 𝜌 𝐶𝐴𝐿𝐿𝐺𝐾𝐷𝐼𝐶/ 𝐶𝑀: the correlation coefficient of the currency call options calculated by 

the models in the presence of dynamic information costs with those of the market 

Then, we calculate the 𝜌𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛  as below: 

𝜌  𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 = 𝜌 𝐶𝐴𝐿𝐿𝐺𝐾𝐷𝐼𝐶/ 𝐶𝑀 −  𝜌 𝐶𝐴𝐿𝐿𝐺𝐾/ 𝐶𝑀                                                            (4.52)  

Furthermore, to argue that the model in the presence of dynamic information costs 

constitutes, on average, a better approximation of the market values of currency options 
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compared with those obtained using the Garman -Kohlhagen model (1983) amounts to testing 

the following null hypothesis: 

𝐻0:𝑀𝑆𝐸 𝐶𝐴𝐿𝐿𝐺𝐾𝐷𝐼𝐶 −𝑀𝑆𝐸 𝐶𝐴𝐿𝐿𝐺𝐾 < 0, 𝑎𝑛𝑑𝜌 𝐶𝐴𝐿𝐿𝐺𝐾𝐷𝐼𝐶/ 𝐶𝑀 −  𝜌 𝐶𝐴𝐿𝐿𝐺𝐾/ 𝐶𝑀 > 0  

Finally, we employ the Random Forest Regression machine learning technique, which 

integrates multiple decision trees to enhance predictive accuracy, aiming to forecast the values 

of effective domestic and foreign interest rates while considering dynamic information costs. 

Additionally, we incorporate three binary variables – 'Before Covid-19', 'During Covid-19', and 

'Russia-Ukraine Conflict' – to segment the observation period, assisting in the assessment and 

interpretation of results across various regions or periods. For a thorough exploration of the 

dynamics of information costs in the currency options market, experiments were conducted 

using five unique Random Forest Regression models, each utilizing distinct datasets for both 

training and testing phases. 

4.6.3.  Materials and Methods 

4.6.3.1. Differential Evolution algorithm 

Differential Evolution (DE) is a well-known evolutionary algorithm inspired by 

Darwin's theory of evolution and extensively studied for solving optimization problems in 

various fields of engineering and optimization applications. It is considered a global 

optimization method and was initially introduced by Storn and Price in 1997. DE encompasses 

different schemes, such as 𝐷𝐸/𝑎/𝑏/𝑐, where "𝑎" represents the mutation vector, "𝑏" denotes 

the total number of distinct pair vectors in the mutation, and "𝑐" signifies the type of crossover. 

Further details on these schemes can be found in the work of Febrianti et al. (2021). 

The DE algorithm consists of several steps, namely mutation, crossover, and selection. 

In the classic 𝐷𝐸/𝑟𝑎𝑛𝑑/1/𝑏𝑖𝑛 mutation strategy, the formula for a generation "𝐺" of 

populations can be expressed as follows: 

     

𝑉𝑖,𝐺+1 = 𝑥𝑟1,𝐺 + λ(𝑥𝑟2,𝐺 − 𝑥𝑟3,𝐺) (4.53)                                  

In the mutation algorithm, three distinct vectors are involved. The base vector, denoted 

as 𝑥𝑟1,𝐺, serves as the reference, while the vectors 𝑥𝑟2,𝐺and 𝑥𝑟3,𝐺  are utilized to compute the 

difference. These vectors are randomly selected from the population, denoted as "rand". The 

scale factor 𝜆, which ranges between 0 and 1, is responsible for controlling the magnitude of 
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mutation. The term "bin" signifies the binomial crossover, and the number "1" denotes the total 

number of pairs of different vectors utilized in the crossover operation. 

When the base vector (𝑥𝑟1,𝐺) is updated to the best vector (𝑥𝑏𝑒𝑠𝑡,𝐺), the algorithm yields 

improved results in the pursuit of optimal solutions. In our mutation algorithm, a constant scale 

factor of λ = 0.5 is chosen, and the mutation strategy is as follows: 

    DE/best/1/bin: 

𝑉𝑖,𝐺+1 = 𝑥𝑏𝑒𝑠𝑡,𝐺 + λ(𝑥𝑟1,𝐺 − 𝑥𝑟2,𝐺) (4.54)             

    DE/current-to-best/1/bin: 

𝑉𝑖,𝐺+1 = 𝑥𝑖,𝐺 + λ(𝑥𝑏𝑒𝑠𝑡,𝐺 − 𝑥𝑖,𝐺) + λ(𝑥𝑟1,𝐺 − 𝑥𝑟2,𝐺) (4.55) 

A vector's target, denoted as (𝑥𝑖,𝐺), can potentially be influenced by a mutant vector, 

(𝑣𝑖,𝐺+1), resulting in the creation of a trial vector, (𝑢𝑖,𝐺+1).. The acceptance of this trial vector 

as the new target is determined by a binomial uniform formula with the probability of crossover, 

𝐶𝑟. The value of 𝐶𝑟 is selected from the range between 0 and 1. 

                

𝑢𝑖,𝐺+1 = {
𝑣𝑖,𝐺+1
𝑗

;  𝑟𝑎𝑛𝑑 < 𝐶𝑟 𝑜𝑟 𝑗𝑟𝑎𝑛𝑑 = 𝑗

𝑥𝑖,𝐺
𝑗
 ;   𝑜𝑡ℎ𝑒𝑟                                 

 (4.56)        

Subsequently, the fitness function value of the trial vector is compared to that of the 

target vector. If the fitness function value of the trial vector is lower than that of the target 

vector, the trial vector is incorporated as a new generation in the population. Conversely, if the 

fitness function value is higher, the trial vector is not included. In this research, the iteration 

process is terminated once the maximum iteration limit is reached. These criteria ensure that 

the results obtained are optimized for the selected data. Specifically, in this study, the Absolute 

Error (AE) is utilized to measure the discrepancy between the numerical solution 𝑥𝑎𝑝𝑝and the 

corresponding market price x. 

                                            

𝐴𝐸 = |𝑥𝑎𝑝𝑝 − 𝑥| (4.57)  

This error metric quantifies the differences between the currency call prices predicted 

by the Garman-Kohlhagen with dynamic information costs model and the actual currency call 

market prices. 
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4.6.3.2. Random Forest Regression 

The Random Forest Regression is a method in machine learning that enhances 

prediction accuracy by combining multiple decision trees. In this technique, each tree in the 

ensemble depends on the values of a randomly sampled vector from the training set, which is 

independent and has a similar distribution with all the trees in the forest (Breiman, 2001). To 

improve its predictive ability and accuracy, the random forest regression uses averaging. We 

define 𝑓(𝑋; 𝛽𝑛) as a set of tree predictors, where 𝑛 = 1,2, … ,𝑁 represents the number of trees. 

In this context, 𝑋 is the input vector observed from the random vector 𝑋, and 𝛽𝑛 represents 

independent and identically distributed random vectors. 

The random forest prediction is given by 

𝑓(̅𝑋) =
1

𝑁
𝑓(𝑋; 𝛽𝑛) (4.58) 

where 𝑓(̅𝑋) is the unweighted average over the tree collection 𝑓(𝑋).  As the number of trees in 

the ensemble increases, the tree structure converges, leading to a limiting value of the 

generalization error. This convergence property ensures that the random forest model does not 

over fit the data, and it has improved prediction accuracy (Breiman, 2001; Segal, 2004). 

Thus, we have that as 𝑛 → ∞, the law of large numbers ensures that 

𝐸𝑋,𝑌[𝑌 − 𝑓(̅𝑋)]
2
→ 𝐸𝑋,𝑌 [𝑌 − 𝐸𝛽[𝑓 ̅(𝑋; 𝛽)]]

2

 (4.59) 

Here, the response variable 𝑌 is the outcome of the training data, which is assumed to 

be independently drawn from the joint distribution of (𝑋, 𝑌). Subsequently, we employ train-

test splitting techniques to divide the complete dataset into distinct training and testing sets. 

Ultimately, we initialize the regression model, train the model by fitting it to the training data, 

and subsequently utilize it to predict the target values. 

In order to assess the performance of these machine learning methods, it is necessary to 

analyze the discrepancies between the predicted outcomes and the actual values within both the 

training and test sets. The magnitude of prediction errors serves as an indicator of model 

performance, with smaller errors suggesting better performance. One commonly used statistical 

measure for evaluating models is the R-squared, also known as the coefficient of determination. 

It quantifies the proportion of variance in the dependent variable that can be explained by the 

independent variables in a regression model. Ranging from 0 to 1, higher values indicate a 

better fit of the model to the data. The specific threshold for an acceptable R-squared value may 
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vary depending on the field and complexity of the problem. However, a general guideline 

suggests that an R-squared value of 0.7 or higher is considered good, while a value of 0.5 or 

lower is regarded as poor. The formula for calculating R-squared is as follows: 

𝑅 − 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 = 1 − 
∑(𝑦𝑖 − �̂�𝑖)

2

∑(𝑦𝑖 − �̅�)2
 (4.60) 

where, 𝑦𝑖 represents the actual value, �̂�𝑖 represents the predicted value, and �̅� represents the 

mean value of the variable within the models.  

The Random Forest Regression has several advantages, including robustness, accuracy, 

adaptability, interpretability, and generalization. It is more robust and reliable than other 

machine learning algorithms when it comes to handling outliers and missing values. It is also 

highly accurate, especially for datasets with many features. Additionally, it can be used for both 

regression and classification problems, and for datasets of different sizes. Moreover, it can 

provide feature importance measures, which help to understand the relative importance of 

different variables in predicting outcomes. Finally, it is less likely to over fit training data and 

can effectively generalize to unknown test datasets. 

4.7. Empirical results and discussion 

4.7.1.  Validation of the model considering dynamic information costs 

In this section, start by employing the DE algorithm to simulate the parameters of the 

temporal advantage function associated with the domestic and foreign markets. This simulation 

aims to minimize the disparity between the estimated currency call option price using the new 

model and the price observed in the market. The resulting parameter values of the advantage 

function, including the amplitude of information costs (𝜆𝑑, 𝜆𝑓), advantage coefficients (𝛼𝑑 , 𝛼𝑓), 

and temporal advantages (𝑙𝑑 , 𝑙𝑓) for domestic and foreign information costs, are presented in 

Table 1. 
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Table 4. 1. Parameters of the advantage function related to domestic and foreign 

information costs for Studied Currency Call Option Pairs 

 

Pairs  

advantage function related to domestic 

information 

advantage function related to foreign 

information 

𝜆𝑑 𝛼𝑑 𝑙𝑑 𝜆𝑓 𝛼𝑓 𝑙𝑓 

EUR/USD 0 0 8,34092 0,08910008 0,9973 31,529 

EUR/QAT 1 0,409484 13,9023 1 1 38 

EUR/JPY 1 0,255755 37,5252 1 0,540735 15,5454 

EUR/RUB 0,72966 0,328883 47,4453 0,785761 0,707197 46,9293 

USD/RUB 0,923224 0,777331 32,5822 1 0,87552 32,2961 
 

Next, we calculate the currency call option prices considering both the dynamic 

information costs and without considering them8. To evaluate the effectiveness of incorporating 

dynamic information costs into the standard GK model, a comprehensive analysis of valuation 

errors was conducted. The mean square error (MSE) and correlation coefficient were calculated 

for all the pairs studied in this research. Specifically, the deviations 𝑀𝑆𝐸 𝐶𝐴𝐿𝐿𝐺𝐾𝐷𝐼𝐶 and 

𝑀𝑆𝐸 𝐶𝐴𝐿𝐿𝐺𝐾, along with the correlation coefficients 𝜌 𝐶𝐴𝐿𝐿𝐺𝐾𝐷𝐼𝐶/ 𝐶𝑀 and 𝜌 𝐶𝐴𝐿𝐿𝐺𝐾/ 𝐶𝑀, 

were determined for the entire sample. These results are presented in Tables 2 and 3 for further 

analysis and interpretation. 

Table 4. 2. Correlation coefficient of the theoretical prices calculated from the two 

models studied and the market prices 

 

Pairs ρ CALLGK/ CM ρ CALLGKDIC/ CM ρ  Variation 
ρ  Variation 

in %9 

EUR/QAT 0,39730133 0,40058651 0,00328517 0,826872% 

EUR/JPY 0,92841866 0,9290443 0,00062564 0,067387% 

EUR/RUB 0,90354774 0,9183055 0,01475775 1,633312% 

USD/RUB 0,96616312 0,97215014 0,00598702 0,61967% 

 

                                                           
8 The Garman-Kohlhagen model (1983) serves as a pricing model devised to ascertain the fair price of a currency call option 

or a currency put option, utilizing several variables: option type, strike price, underlying exchange rate price, volatility, time, 

and both domestic and foreign risk-free rates. This model was applied to European currency call options. The equation of call 

price following to this model can be written as follow: 𝐶𝑡 = 𝑆𝑡𝑒
−𝑟𝑓𝜏𝑁(𝑑1) − 𝑋𝑒

−𝑟𝑑𝜏𝑁(𝑑2), where: 𝑑1 =
𝑙𝑛(𝑆/𝑋)+(𝑟𝑑−𝑟𝑓)𝜏+

1

2
𝜎²𝜏

𝜎√𝜏
        

and              𝑑2 = 𝑑1 − 𝜎√𝜏 
9 The relative change in the ρ in percentage is calculated as follows:

(𝜌 𝐺𝐾𝐷𝐼𝐶/𝑀−𝜌 𝐺𝐾/𝑀)

𝜌 𝐺𝐾/𝑀
∗ 100 
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Table 4. 3. MSE of the two models, the variation of MSE and the relative variation of 

MSE 

Pairs MSE CALLGK MSE CALLGKDIC MSE Variation 

Relative 

change in 

MSE in %10 

EUR/USD 0,00029086 0,00016831 -0,00012256 -42,1359% 

EUR/JPY 0,00717496 0,00553311 -0,00164185 -22,883101% 

EUR/RUB 0.01828858 0,01119274 -0,07095838 -38,79928% 

USD/RUB 0,30154363 0,07456212 -0,2269815 -75,273188% 

Upon examining Table 3, we noted a substantial correlation between the prices 

generated from both theoretical models and their respective market values, except for the 

EUR/QAT pair, which exhibited a comparatively lower correlation relative to the other pairs. 

Nonetheless, incorporating dynamic information costs into the currency option valuation model 

amplified the correlation. The correlation coefficient ascended across all analyzed pairs. 

Findings depicted in Table 2 reveal notable fluctuations in the Mean Squared Error 

(MSE) across all analyzed currency call option pairs, with variations ranging from 23% to 75%. 

For instance, the EUR/RUB pair underwent an MSE reduction from 0.00029086 to 0.00016831, 

translating to a relative change of roughly 42%. This underscores the enhanced performance of 

the modified Garman-Kohlhagen model introduced by Dammak et al. (2023) in contrast to the 

foundational G-K model (1983), particularly when dynamic information costs are considered. 

A standout observation is the notably high MSE variation of over 75% for the USD/RUB pair, 

which can be attributed to its acute sensitivity to market conditions and information availability. 

Incorporating dynamic information costs into the Garman-Kohlhagen model accentuates this 

sensitivity, precipitating more pronounced fluctuations in currency call option prices. Thus, 

dynamic information costs appear to exert a more substantial impact on the valuation of 

currency call options for the USD/RUB pair compared to other pairs examined in this study. 

Figures 1 and 2 visually encapsulate the optimized performance of the G-K model, evidencing 

its enhanced efficacy in estimating currency call options when dynamic information costs are 

integrated. 

                                                           
10 The relative change in the MSE in percentage is calculated as follows:

(𝑀𝑆𝐸(𝐶𝐺𝐾𝑆𝐼𝐶)−𝑀𝑆𝐸(𝐶𝐺𝐾))

𝑀𝑆𝐸(𝐶𝐺𝐾)
∗ 100 
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Figure 4. 1. Mean square error of the Garman and Kohlhagen model and the model in 

the presence of Dynamic information costs 

 

Figure 4. 2. Correlation coefficient of theoretical prices calculated from the two models 

studied and the market prices 

 

 

Hence, it is clear that the model with dynamic information costs performs better for the 

currency call options. For the whole sample, we find: 𝑀𝑆𝐸 𝐶𝐴𝐿𝐿𝐺𝐾𝐷𝐼𝐶 −𝑀𝑆𝐸 𝐶𝐴𝐿𝐿𝐺𝐾 <

0, 𝑎𝑛𝑑𝜌 𝐶𝐴𝐿𝐿𝐺𝐾𝐷𝐼𝐶/ 𝐶𝑀 −  𝜌 𝐶𝐴𝐿𝐿𝐺𝐾/ 𝐶𝑀 > 0. Thus, the hypothesis Ho is confirmed. This 

finding highlights the substantial impact of dynamic information costs on the valuation of 

currency options, drawing attention to the potential inaccuracies that may emerge when these 

costs are overlooked. Dynamic information costs, which represent the expenses borne by 

investors to acquire and process information about domestic and foreign markets, enhance the 

model's capability to precisely estimate currency call options when they are incorporated. By 

integrating dynamic information costs into the Garman-Kohlhagen model, this research attains 

more accurate estimations for the four pairs studied, surpassing the basic G-K model in terms of 

accuracy. This superior performance of the Garman-Kohlhagen model, when incorporating 
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dynamic information costs, compared to the basic G-K model aligns with theoretical 

expectations. This underscores the concept that the integration of relevant and current 

information into pricing models yields more accurate estimates and enriches understanding of 

market dynamics. The findings of this research align with existing theories in financial markets 

(e.g., De Fontnouvelle, 2000; Ahearne et al., 2004; Huber et al., 2008; Greenwood, 2010; 

Bonaparte & Kumar, 2013; Guo & Mota, 2021; Kim, 2022; Baek, 2022; Arora and Chauhan, 

2023) and, more specifically, in the field of option pricing (e.g., Merton, 1987; Bellalah and 

Jacquillat, 1995; Bellalah, 2006; Jin et al., 2012; Zghal et al., 2020; Gapeev & Li, 2022; Augustin 

et al., 2023; Dammak et al., 2023). 

Moving on to a more detailed analysis of the various parameters of the dynamic 

information cost function presented in Table, we observe that:  

The advantage coefficient, denoted by α, spans from 0 to 1, reflecting the importance of 

information. A value of 0 for α indicates insubstantial information, while a value approaching 

1 signifies its relevance. The results reveal that the impact of domestic information is notably 

significant for the EUR/QAT, EUR/JPY, and USD/RUB currency pairs. In contrast, it is less 

significant for the EUR/RUB pair and is not statistically significant for the EUR/USD pair. 

Conversely, foreign information shows significance across all the currency option pairs 

examined. 

The amplitude of information cost, denoted by 𝜆, ranges between 0 and 1. A value of 0 

implies the absence of private information for the investor, while a value nearing 1 suggests its 

availability. Findings indicate that, in the case of the USD/RUB currency pair, the investor has 

access to more private information compared to other pairs. Conversely, no domestic private 

information is available for the EUR/USD pair. Nonetheless, for all investigated currency 

option pairs, private information related to the foreign market is available. 

The parameter 𝑙 symbolizes the temporal advantage, varying in its value. When it attains 

its maximum value of 𝑇 (the time remaining until maturity), the information is fully acquired, 

thus assigning the parameter a value of 0. An examination of the time to maturity for the 

analyzed currency call option pairs, as depicted in Table 4, reveals that investors secure the 

information before the full maturity time in both the domestic and foreign markets for all pairs. 

This observation underscores the existence of a temporal advantage in both domestic and 

foreign markets, highlighting the criticality of timely decision-making predicated on accessible 

information. 
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Table 4. 4. Mean of time to maturity for Studied Currency Call Option Pairs 

Pairs Time to maturity 

EUR/USD 70 

EUR/QAT 38 

EUR/JPY 45 

EUR/RUB 63 

USD/RUB 33 

 

These findings suggest that investors must consider the presence or absence of private 

information when pricing options across various currency pairs. Our results reinforce existing 

financial literature, positing that informed investors' participation in the options market leads to 

a deviation from the call-put parity relation influenced by private information (Easley et al., 

1998; Xing et al., 2010; Cremers & Weinbaum, 2010; An et al., 2014; Andreou et al., 2018; 

Goncalves-Pinto et al., 2020; Wu et al., 2022; Zhou, 2022; Cao et al., 2023; Anand et al., 2023; 

Alexander et al., 2023). In practice, these results imply that market participants should consider 

the significance of domestic and foreign market factors, assess the availability of private 

information, and make timely decisions based on acquired information when pricing currency 

options. Understanding the interplay of these factors can help investors optimize their option 

pricing strategies and improve their decision-making processes in the currency options market. 

This study augments existing literature by supplying empirical evidence that underscores the 

significance of dynamic information costs in currency option pricing. The enhanced precision 

in estimations provided through this research delivers valuable insights for investors and 

financial institutions, aiding in informed investment decisions, risk management, and the 

optimization of trading strategies. By incorporating dynamic information costs, market 

participants gain a clearer understanding of how the availability and costs of information impact 

currency option prices, thereby facilitating improved investment performance and the 

maximization of returns. 

4.7.2.  Predicting domestic and foreign interest rates using the 

Random Forest Regression 

The primary focus of this section is to develop highly effective machine learning models 

capable of accurately predicting the values of effective domestic and foreign interest rates ( 



Chapter 4 

 

 
   

 
178 

𝑟1𝑑 and 𝑟1𝑓),  while taking into account the dynamic information costs for five currency option 

pairs (EUR-RUB, EUR-QAT, USD-RUB, RUR-JPY, and EUR-USD). In our case study, we 

initially considered five explanatory variables, including exchange rate value, strike price, time 

to maturity, volatility of the underlying asset, and option market value. Additionally, we 

incorporated three binary variables: "Before Covid-19," "During Covid-19," and "Russia-

Ukraine Conflict," which indicate the observation period. This approach allows us to evaluate 

and interpret the outcomes for specific currency pairs or time periods of interest. We employed 

five Random Forest Regression models on the respective datasets for training and testing. The 

results of R-squared for this machine learning method are presented in Table 5. 

Table 4. 5. R-squared of Random Forest Regression models in train and test sets 

 

 effective domestic 

interest rate  
𝑟1𝑑 

effective foreign 

interest rate  
𝑟1𝑓 

Pairs Train Test Train Test 

EUR - RUB - - 0.991 0.940 

EUR - QAT 0.991 0.958 0.984 0.938 

USD - RUB - - 0.996 0.965 

EUR – JPY 0.973 0.791 0.970 0.663 

EUR - USD 0.986 0.974 0.985 0.950 
 

The results presented in Table 5 demonstrate the effectiveness of the Random Forest 

method, as evidenced by the R-squared values exceeding 0.9. This high level of R-squared, 

observed in both the training and test sets for the EUR-RUB, EUR-QAT, USD-RUB, and EUR-

USD cases, indicates excellent model performance. The Random Forest method exhibits 

superior fitting capabilities with lower prediction errors, highlighting its suitability for the given 

dataset. Our findings align with the existing literature, confirming the effectiveness of the 

Random Forest method in option pricing (Ivașcu, 2021; Li and Yan ,2023), in forecasting 

Bitcoin price (Basher and  Sadorsky,  2022) and in the forecasting of stock price and in 

developing investment strategies (Theofilatos et al., 2012; Qin et al., 2013;  Basak et al., 2019). 

It is worth noting that with the integration of dynamic information costs into the domestic risk-

free interest rate for the EUR-RUB and USD-RUB currency pairs, the effective interest rate has 

remained nearly constant throughout the study period. Due to this stability, we deemed it 

unnecessary to develop a specific prediction model for these two cases. In the case of RUR-

JPY, the Random Forest model demonstrates excellent performance in the training data, as 

https://www.sciencedirect.com/science/article/pii/S266682702200055X
https://www.sciencedirect.com/science/article/pii/S266682702200055X


Chapter 4 

 

 
   

 
179 

indicated by the high R-squared values for both the domestic and foreign effective interest rates. 

However, the model's performance is slightly lower in the test data, with R-squared values of 

0.79 for the domestic effective interest rate and 0.66 for the foreign effective interest rate. 

Although these values are lower compared to the other cases, they are still considered 

acceptable, indicating reasonable predictive capabilities of the model. Overall, we can conclude 

that the models are generally performing well for all cases and excellent for the majority of 

cases. To confirm the results, additional metrics, MSE (Mean Square Error) and MAE (Mean 

Absolute Error), were calculated. It is noteworthy that all values are close to zero, which 

reaffirms the findings obtained by the R-squared. Detailed results for these metrics are 

presented in Tables 6 and 7. 

Table 4. 6. Results of MSE 

 𝒓𝟏𝒅 𝒓𝟏𝒇 

 Train Test Train Test 

EUR –  RUB - - 1.654 e-07 8.678 e-07 

EUR – QAT 6.567 e-07 2.669 e-06 2.970 e-07 9.041 e-07 

USD –  RUB  - - 2.043 e-07 1.706 e-06 

EUR – JPY 4.345 e-10 3.467 e-09 5.499 e-07 4.913 e-06 

EUR –  USD 3.214 e-09 5.892 e-09 2.778 e-07 7.249 e-07 

 

Table 4. 7. Results of MAE 

 𝒓𝟏𝒅 𝒓𝟏𝒇 

 Train Test Train Test 

EUR - RUB - - 9.853 e-05 2.641 e-04 

EUR - QAT 3.322 e-04 7.279 e-04 1.517 e-04 3.156 e-04 

USD - RUB  - - 2.140 e-04 6.010 e-04 

EUR – JPY 7.557 e-06 2.357 e-05 2.448 e-04 6.777 e-04 

EUR - USD 3.020 e-05 4.948 e-05 1.663 e-04 2.541 e-04 

 

Finally, the models developed in this study have undergone rigorous validation and 

demonstrate accurate predictions of domestic and foreign effective interest rates for each of the 

five currency pairs studied. By incorporating specific binary variables such as Before Covid-

19, During Covid-19, and Russia-Ukraine Conflict, we have obtained even more precise 

forecasts and conducted comprehensive testing across different periods. This approach has 

allowed us to compare forecast results in normal contexts, during the Covid-19 pandemic, and 

during the Russia-Ukraine conflict, to evaluate the impact of each period on the predictions. 

These models provide powerful tools for finance professionals and investors, enabling them to 

make informed investment decisions, optimize their strategies, and manage risks more 

effectively. From a policy perspective, the results of this study offer valuable insights for 
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policymakers. By gaining a better understanding of interest rate dynamics, the factors that 

influence them, and incorporating dynamic information costs, policymakers can formulate 

more effective and tailored economic policies for different currency pairs. They can also take 

measures to mitigate risks associated with events such as the Covid-19 pandemic or geopolitical 

conflicts. In summary, this study confirms the effectiveness of the developed prediction models, 

particularly when utilizing specific binary variables and incorporating dynamic information 

costs. These models provide practical benefits for finance professionals and investors, while 

also offering valuable information for policymakers in shaping appropriate economic policies. 

4.8. Conclusion and Perspectives 

Information exerts a pivotal role in asset pricing, notably with its impact on option 

pricing being time-variant, indicating that dynamic information costs fluctuate over time. 

Contrary to the foundational assumptions of the Garman-Kohlhagen base model (1983)—

which presumes investor neutrality, market efficiency, and equivalence between rates of return 

and discount rates—our research incorporates the sway of subjective, psychological, and 

informational factors on the discount rate, as suggested by Dammak et al. (2023). These 

anomalies, coupled with information costs, can affect the expected rate of return. To 

accommodate these anomalies, our approach involves testing the impact of dynamic 

information costs into the new model, culminating in an effective discount rate that mirrors the 

real risk-free rate, adjusted for these variables. 

In analyzing specific currency call options—namely EUR-RUB, EUR-QAT, USD-

RUB, RUR-JPY, and EUR-USD—from January 1, 2018, to November 24, 2022, this study sets 

out to juxtapose the Garman and Kohlhagen currency option pricing model with an augmented 

model that weaves in dynamic information costs. A fusion of machine learning, statistics, and 

mathematical finance techniques forms the methodological core of our approach. The 

Differential Evolution (DE) algorithm, renowned for its robustness in pinpointing solutions for 

option value problems and efficacy in exploration and exploitation strategies, is employed to 

simulate the parameters of domestic and foreign information costs. Our aim is to narrow the 

gap between the option price estimated via the new model and the price observed in the market. 

And, for that, as we integrate these imperfections, estimated by the DE algorithm, into the 

currency option valuation, the model, characterized by the incorporation of dynamic 

information costs, demonstrates an enhancement in the accuracy and stability of pricing 

outcomes and bolsters its evaluative performance. 
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We then harness the optimized DE parameters for information costs to deploy a potent 

machine learning method—Random Forest Regression—to forecast the currency option prices, 

all while accounting for the dynamic nature of information costs. By partitioning our dataset 

into a training set and a test set, our study demonstrates that the novel model, enriched with 

dynamic information costs, consistently yields more accurate and stable pricing outcomes than 

traditional methods. Notably, in a market defined by information asymmetry and the activity of 

irrational investors, prices can be swayed by informed actors. 

This research contributes to advancing our understanding of option pricing models and 

their practical implications in the field of finance. By adopting this innovative approach, we 

gain valuable insights into the dynamics of the currency options market and propose more 

effective solutions for financial risk management. This refined predictive capability, in turn, 

facilitates more accurate currency option price forecasts, enriching our comprehension of 

financial markets and serving investors, financial institutions, and policymakers by aiding more 

astute decision-making related to currency options and investment strategies. 

While our research provides valuable insights, it encounters several significant 

limitations worth noting. Firstly, the lack of data primarily constrained our empirical study on 

currency options, limiting the evaluation to errors and correlation coefficients as performance 

indicators. Furthermore, applying our study to intra-day data, which might potentially yield 

different or even enhanced results, was not feasible due to the aforementioned data constraints.  

Nonetheless, our work opens up several promising avenues for future research. We advocate 

for a further exploration of the models' performance, particularly by examining the volatility 

smile and scrutinizing the relationship between volatility and the S/X ratio. Furthermore, to 

bolster the applicability of our findings, we suggest extending the research to encapsulate 

intraday data and diverse underlying assets, including options on stocks and futures, as well as 

American and exotic options. Such an expansion would illuminate the models' functionality 

and relevance across various market contexts, thereby enhancing their practical utility in 

financial analyses. Furthermore, in continuously evolving financial landscape, the role of 

machine learning in option pricing continues to grow. It is crucial to further explore the 

capabilities of this technology and its potential to enhance the accuracy of pricing models. 

Interdisciplinary collaboration between mathematics, finance, statistics, and machine learning 

is essential for developing more robust option pricing models. 
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General Conclusion 

The fundamental model for evaluating currency options, proposed by Garman and 

Kohlhagen (1983), is grounded in the financial market efficiency hypothesis. This hypothesis 

rests on two pillars: firstly, it presumes that economic actors are perfectly rational; and 

secondly, it assumes an absence of market imperfections. These assumptions lead to an 

immediate response of asset prices to new information, reflecting all available data.  

The existing literature proves that information plays a crucial role in the process of 

evaluating financial assets. The literature distinguishes two types of anomalies: static (or 

classical) anomalies and dynamic anomalies. Classical anomalies encompass models that 

challenge assumptions related to the evolution of the asset price. Conversely, dynamic 

anomalies group models that center on assumptions related to the market. 

This may arise from research that challenges the efficiency hypothesis by considering 

market imperfections while assuming the rationality of participants. This involves factors such 

as static transaction and information costs, dynamic information costs, information 

asymmetries, restrictions on short selling, liquidity premium, delays, and so forth. 

In this thesis, our objective is to introduce the study of static and dynamic information 

costs in the evaluation of currency options. Specifically, we examined the evaluation 

performance by comparing several currency option evaluation models, including the theoretical 

model of Garman and Kohlhagen (1983), the model with static information costs and the model 

with dynamic information costs. This performance comparison among these different currency 

option evaluation models is analyzed using mean squared error. We aimed to provide decision-

making tools for investors to accurately apprehend the evaluation of currency options in the 

presence of these imperfections. In order to conduct a comparison between the different models, 

we utilized daily data of five pairs of European call options on currencies, which are traded on 

the Russian currency exchange market, spanning a study period from November 21, 2012, to 

November 24, 2022. 

The primary objective of this thesis is to more accurately mirror the realities of financial 

markets by rejecting the market efficiency hypothesis and testing the impact of incorporating 

static and dynamic information costs on the performance of models for evaluating European 

currency options. Within the scope of this thesis, the goal is to identify the optimal model for 

assessing European currency options utilizing two methods. First, beginning with the Garman 
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& Kohlhagen model, we endeavored to modify the assumptions to bring them closer to actuality 

through the use of parametric models. Secondly, in order to attain a model that is both accurate 

and rapid, we explored a non-parametric model capable of capturing the nuances of the currency 

options market, employing techniques such as evolutionary algorithms, physical simulations, 

fuzzy sets, neural networks, etc. These models do not necessitate assumptions regarding asset 

price dynamics, distinguishing them from parametric models. Through our investigations, we 

strive to highlight the importance of the availability of information and its beneficial impact on 

the evaluation of currency options models. By championing transparency and unrestricted 

access to pertinent data and information, we can amplify the accuracy and dependability of 

these models. 

An alternative avenue for research may emerge from the field of behavioral finance, 

shedding light on how psychology influences investor decisions. Behavioral finance has 

become a crucial component in the study of financial markets, providing insights into the 

behavior of option investors and aiding in the adoption of appropriate strategies. Thus, the 

ability to gauge investor sentiment is essential for accurately assessing options, emphasizing 

the importance of the sentiment variable. This variable remains one of the most effective means 

of interpreting the theoretical price of an option in comparison to its market price. If the 

objective of utilizing options is to protect against market fluctuations and stand out by 

capitalizing on underlying asset volatility, it becomes imperative to reevaluate investors' 

strategies and behaviors. When formulating their strategies, investors take into account market 

disruptions to identify periods of high and low volatility and assess their investment capabilities. 

In this context, the diversity in investor behavior not only reflects overall investor sentiment 

but also highlights variations in strategies. Our study aligns with previous research in behavioral 

finance and option evaluation, aiming to illustrate the diversity in economic agents' behavior in 

the options market during different periods, including both normal market conditions and times 

of crisis. 

Consequently, the study we propose is conducted through four complementary research 

projects, each based on different sub-objectives. 

In Chapter One, we explore the impact of static information costs in the currency option 

pricing model proposed by Garman and Kohlhagen (1983), situated within the framework of 

Merton's (1987) capital market equilibrium model with incomplete information. The theory of 

rational asset pricing has faced extensive criticism in existing academic literature, which 
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emphasizes the crucial importance of accounting for information costs for accurate asset 

valuation and effective risk management. In this study, we introduce a new partial differential 

equation for currency options and focus our attention on the calibration of new static 

information cost parameters. To achieve this, we employ the Differential Evolution (DE) 

algorithm, a metaheuristic evolutionary algorithm renowned for its efficacy in solving 

numerical optimization problems. This algorithm is utilized with the objective of solving 

optimization problems associated with the calibration process. Analyzing daily data of various 

currency call option pairs from January 1, 2018, to November 24, 2022, our findings exhibit a 

commendable level of concurrence between the results of the algorithm and the observed 

market data in terms of currency option prices. Consequently, these results underscore the 

importance of accounting for static information costs and provide insights into the relationship 

between information costs and asset pricing within the currency option market. 

In the second chapter, we explore the impact of the COVID-19 pandemic on investor 

behavior within the currency option market and its association with underlying exchange rates. 

Utilizing a sample of daily data from futures continuous calls on EUR/USD, EUR/RUB, 

EUR/QAT, and EUR/JPY pairs, which spans from September 22, 2016, to December 31, 2021, 

we introduce a novel variable, "market imperfections." This variable captures the discrepancy 

between observed market option prices and theoretical prices derived from the Garman and 

Kohlhagen model (1983). By employing the Markov switching model, our analysis unveils the 

pandemic's influence on investor behavior, evident in divergence and convergence patterns, 

thereby illuminating the heterogeneity between fundamentalists and chartists within the 

currency market. This study augments existing literature by scrutinizing the dynamics and 

implications of investor behavior during crisis periods and illuminating the divergence and 

convergence of investor behavior in the currency market between the exchange rate and the 

currency options. By elucidating a clear mechanism, this research illuminates the underlying 

factors and repercussions of these behavioral shifts, utilizing the COVID-19 crisis as an 

exemplary instance. 

In the third chapter, we begin by addressing dynamic costs, which arise from the variable 

impact of information on asset pricing and present a challenge for accurately pricing European 

currency options. The Garman and Kohlhagen model, while pivotal in the literature, does not 

adequately accommodate these costs. This study enhances the model by integrating an intensity 

function into the interest rates to measure dynamic information costs. Inspired by the Beer–

Lambert law, the function is applied to a decade-long dataset of daily futures continuous calls 
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on the EUR/USD pair, spanning from September 21, 2012, to September 23, 2022. The refined 

model mitigates pricing errors and manages implied volatility more adeptly than the 1983 

model, exhibiting consistency across different maturities and moneyness categories. Our 

findings underscore the importance of considering dynamic information costs in asset pricing 

and demonstrate that their inclusion can significantly enhance the accuracy and reliability of 

currency option pricing models. 

In the final chapter, chapter four, we also investigate the impact of dynamic information 

costs on the currency option pricing model proposed by Garman and Kohlhagen. The concept 

of information cost has evolved over time and has been applied to various decision-making 

problems, including investment decisions. To tackle this, we utilize the Differential Evolution 

algorithm to calibrate the novel information cost parameters. By using data from various 

currency call options pairs, which spans from January 1, 2018, to November 24, 2022, we 

achieve a satisfactory approximation of real market currency option prices. Additionally, we 

employ a machine learning technique—specifically, the random forest regression—to 

accurately predict the values of effective domestic and foreign interest rates. In this instance, 

our dataset is divided into a training set and a test set for the random forest analysis, illustrating 

that the new model, which incorporates dynamic information costs, yields more accurate and 

stable pricing outcomes. The significance of our findings lies in the notable improvement in 

approximating real market currency options prices and the robustness of this new model. By 

employing the DE algorithm and integrating the random forest method, we establish a logical 

and efficient framework for currency option pricing. This research contributes to the evolving 

field of option pricing, underscoring the potential of machine learning techniques in solving 

complex financial problems. 

In summary, this research does not merely demystify the complexities related to the 

pricing of currency options and investor behavior. More than a mere exploration, it establishes 

itself as a noteworthy landmark in both academic and practical realms, introducing innovative, 

empirically validated methods to the fore. This study does not only shed new light on current 

market mechanisms but also provides insights that will undoubtedly shape and steer future 

strategies in risk management and asset pricing within international financial settings. By 

melding advanced algorithms with a deep understanding of investor behavior and the influence 

of information costs, both static and dynamic, this work bridges financial theory and market 

practice, suggesting pathways toward more accurate pricing and shrewder risk management in 

the volatile currency markets. Essentially, it does not simply reflect the current state of 
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knowledge but pushes the boundaries of our understanding of the currency option market, 

thereby creating a valuable legacy for future research and applications in the field. 

1. Contributions  

This research has yielded several significant contributions and findings that enhance the 

field of finance, particularly in the context of currency option pricing across varied market 

conditions. Firstly, it delves into a multi-dimensional analysis of various market imperfections, 

such as static information costs within the Merton model and dynamic information costs within 

the intensity function. These imperfections are integrated simultaneously into the currency 

option pricing model, marking a novel approach in empirical investigations. Furthermore, the 

adoption of innovative methodologies and frameworks, including Artificial Intelligence, 

Differential Evolution (DE), and Machine Learning (ML), has opened up uncharted territory in 

the exploration of this subject matter. These approaches have paved the way for groundbreaking 

insights and advancements in the field. 

Moreover, the significance of various crises, notably the health crisis triggered by 

COVID-19 and geopolitical crises like the Ukrainian conflict, is illuminated, revealing their 

considerable influence on the dynamics of currency option markets. Our thesis goes beyond a 

mechanical application of methodologies, intertwining robust theoretical foundations with 

practical empirical analysis, hence shedding light on the nuanced undercurrents of currency 

option pricing amidst multifaceted market anomalies and imperfections. 

In our exploratory journey, several salient findings have been deduced. The research 

identified significant impacts of static information costs on the valuation of currency options, 

revealing their necessity to account for the substantial expenses incurred by both institutional 

and individual investors in information analysis and processing.   

As we probed into the influence of investor behavior, especially during the turbulent 

period of the COVID-19 pandemic, we observed a notable role reversal between fundamentalist 

and chartist investors, which varied across different currency pairs and timeframes. The crisis 

instigated a significant impact on investor strategies and market dynamics, highlighting the 

considerable role of market imperfections in shaping investor behavior during times of crisis 

and uncertainty. 

Pivoting to dynamic information costs, our investigations unveiled that integrating them 

into our pricing model dramatically enhanced pricing accuracy, notably for longer-term and 
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out-of-the-money options. Calibration of new parameters minimized discrepancies between 

predictive and actual market values, enhancing estimation precision, and correlating a surge in 

implied volatility with the incorporation of information costs into option pricing. 

In a subsequent effort, we harnessed the DE parameters for dynamic information costs 

to construct a robust machine learning model, namely, the Random Forest Regression, which 

adeptly predicts the values of effective domestic and foreign interest rates, thereby achieving 

improved accuracy and stability in pricing outcomes. This enhanced precision allows for more 

accurate currency option price forecasts, contributing to a richer understanding and application 

of option pricing models. 

From a policy viewpoint, these findings carry substantial implications, highlighting the 

urgency of considering these imperfections during the pricing and trading of currency options. 

The results not only validate the theoretical frameworks but also act as a beacon, guiding and 

informing subsequent research and practical applications in the intricate, ever-evolving tapestry 

of global financial markets. Moreover, by identifying and accommodating the static and 

dynamic information costs, market sentiment, and related imperfections, market participants 

can deepen their understanding of option pricing, thereby enhancing their risk management 

practices within the currency options market. 

In summary, this thesis stands both as a significant theoretical contribution and a 

practical guide in the complex domain of financial markets, providing a multifaceted 

examination and understanding of investor behavior, pricing, and the intricate dynamics 

introduced by various market imperfections. This research not only elevates existing literature 

to new heights but also forges robust pathways for future explorations and applications within 

the complex realm of financial market studies, providing academia and practitioners with new 

tools, strategies, and insights to navigate the multifaceted world of financial markets. 

2. Limits and future work avenues  

While this research underscores the importance of considering both static information 

costs and dynamic information costs in the pricing of currency options, offering valuable 

insights for stakeholders, it is essential to acknowledge its limitations. The most significant 

limitation pertains to data availability and the application of our study to intra-day data. The 

study relies on daily data, which might not fully encapsulate the intra-day market dynamics and 

potential shifts in implied volatility that could alter and enhance the obtained results. 
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Furthermore, the study does not compare the extended model with other potential extensions, 

such as stochastic volatility models or those incorporating stochastic interest rates. 

Additionally, the foreign exchange options markets are currently undergoing significant 

expansion and are becoming an indispensable instrument for hedging, speculation, and 

arbitrage strategies. In this context, it becomes imperative to scrutinize the performance of the 

models highlighted in these various strategies, not only to comprehend but also to optimize risk 

management mechanisms and decision-making processes within these flourishing financial 

markets. 

Despite the limitations encountered, our research opens avenues for prospective work 

in several directions. Firstly, it advocates for extending the study by comparing our proposed 

model with other model extensions and employing high-frequency data, which could provide 

deeper insights into the impact of dynamic information costs on option pricing across various 

underlying assets like stock options, futures, and American and exotic options. Secondly, 

further analysis on model performance could involve examining the volatility smile and 

exploring the relationship between volatility and the S/K ratio. Thirdly, while this study 

primarily assesses the extended Garman and Kohlhagen model against the baseline model, 

future research could embrace the inclusion of other model extensions, such as those featuring 

stochastic volatility models or stochastic interest rates, and explore the implications of using 

intra-day data. Fourthly, the data gaps acknowledged in our research pave the way for future 

studies to delve deeper by incorporating a wider historical timeframe and additional market 

factors, thereby not only strengthening the reliability of our findings but also facilitating 

comparative examinations of investor behavior across various pivotal events such as the global 

financial crisis, Brexit, and geopolitical confrontations like the Russia-Ukraine conflict. Fifthly, 

there is scope to analyze the model's performance in financial risk hedging, speculation, and 

arbitrage strategies. Finally, deploying genetic programming with varying configurations may 

serve as beneficial extensions to the basic algorithm. Employing alternative selection methods, 

such as tournament selection, and applying dynamic, non-static crossover and mutation 

operators could potentially enhance the learning performance of the genetic program and 

provide nuanced insights into financial modelling. 
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