
HAL Id: tel-04857268
https://theses.hal.science/tel-04857268v1

Submitted on 28 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysis of AES-based and arithmetization-oriented
symmetric cryptography primitives

Augustin Bariant

To cite this version:
Augustin Bariant. Analysis of AES-based and arithmetization-oriented symmetric cryptography
primitives. Cryptography and Security [cs.CR]. Sorbonne Université, 2024. English. �NNT :
2024SORUS182�. �tel-04857268�

https://theses.hal.science/tel-04857268v1
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE
SORBONNE UNIVERSITÉ

Spécialité

Informatique

École Doctorale Informatique, Télécommunications et Électronique (Paris)

Présentée par

Augustin Bariant

Pour obtenir le grade de

DOCTEUR de SORBONNE UNIVERSITÉ

Analysis of AES-based and arithmetization-oriented
symmetric cryptography primitives

soutenue publiquement le 27 juin 2024

devant le jury composé de :

Gaëtan Leurent Inria, Paris, France Directeur
Anne Canteaut Inria, Paris, France Co-directrice
Pierre-Alain Fouque Université de Rennes, Rennes, France Rapporteur &

Président du jury
Willi Meier FHNW, Windisch, Suisse Rapporteur
Martin Albrecht King’s College, Londres, Angleterre Examinateur
Magali Bardet Université de Rouen, Rouen, France Examinatrice
Carlos Cid Simula UiB, Bergen, Norvège Examinateur
Patrick Derbez Université de Rennes, Rennes, France Examinateur
Reynald Lercier DGA, Rennes, France Invité

Remerciements

Ainsi s’achèvent trois superbes années de thèse. Superbes, car elles ont été truffées
de rencontres enrichissantes, sur le plan scientifique comme humain. Superbes
aussi car elles m’ont donné des amis qui le resteront après cette thèse, que nos
chemins professionnels se recroisent ou non. Superbes surtout car elles m’ont
donné le temps de me plonger dans le monde de la recherche et de pleinement
l’apprécier - elles ont même réussi à me convaincre de ne pas le quitter totalement !
Je n’aurais cependant pas aussi bien vécu ces années sans toutes les personnes qui
m’ont soutenu tout au long de cette épopée. Merci à tous d’avoir égayé cette thèse.

Merci à ceux qui ont rendu cette thèse scientifiquement possible. Merci à Willi
Meier et Pierre-Alain Fouque d’avoir accepté de rapporter cette thèse. Merci aux
autres membres du jury, Anne Canteaut, Carlos Cid, Gaëtan Leurent, Magali
Bardet, Martin Albrecht, Patrick Derbez et Reynald Lercier. Merci aux membres
de mon comité de suivi de thèse, Charles Bouillaguet et Yann Rotella.

Merci plus particulièrement à Gaëtan de m’avoir introduit à la cryptographie
symétrique en 2019, puis d’avoir accepté de m’accueillir en thèse. J’ai énormément
apprécié ces après-midi passés dans ton bureau, devant ton tableau, à investiguer
de nouvelles pistes - sans aucune garantie de résultat. J’ai toujours trouvé tes
idées extrêmement claires et bien pensées. Merci également pour les mille et un1

conseils concernant linux, latex, la programmation ou l’art de la présentation, je
les garde précieusement en tête. Merci Anne d’avoir accepté d’être ma directrice
de thèse, avant que Gaëtan ne reprenne le flambeau depuis quelques mois. Merci
également d’avoir avancé mes frais d’inscription à Sorbonne Université, ce geste
plein d’altruisme ne sera jamais oublié !

Plus généralement, c’est toute l’équipe COSMIQ qui a rendu les moments passés
à l’Inria si spéciaux. Merci à tous ses membres ainsi qu’à ses satellites pendant ces
trois années de thèse : Agathe, André, Anne, Anthony, Antonio, Aurélie, Aurélien,
Axel, Charles, Christelle, Christina, Clara, Clémence, Daniel, Dounia, Gaëtan,
Johanna, Jean-Pierre, Jules, Justine, Kévin, Léo, Loïc, Magali, María, Matthieu,
Margot, Maxime, Nicholas, Nicolas le grand, Nicolas l’autre grand, Pascale, Paul,
Pierre, Quentin, Rachelle, Rocco, Simon, Simona, Thomas, Valentin, Virgile, et
Yann. Merci Christelle, je n’étais pas un cas spécialement facile à gérer2, mais tu
as toujours été d’une précieuse aide, et ce même après mon départ de l’Inria.

1Je pense que je ne suis pas très loin du vrai compte.
2En particulier quand je partais à l’autre bout du monde.

i

Merci à la team mots croisés pour tous ces moments passés après le repas
autour de grilles toujours plus difficiles. Grâce à vous, j’ai appris qu’une esse était
à la fois un crochet et un trou3. Merci aussi à la team baby-foot, qui a rendu
le temps passé en salle AGOS si drôle et plein de compétition. J’en profite pour
m’excuser, Jean-Pierre, pour toutes ces fois où tu es reparti de mauvaise humeur
après avoir perdu contre un adversaire trop fort pour toi. Merci aussi à tous ceux
qui connaissent le chemin éclairé vers l’AGRAF, et qui alimentaient la pause midi
de discussions intéressantes, de débats parfois enflammés et aussi (surtout !) de
drama. Merci à l’ALJCC de m’avoir initié à la course. Merci à Clara, Nicolas, Paul
et Dounia d’avoir fait de notre bureau C233 un lieu de convivialité et de partage.
On a même réussi l’exploit de ne lui faire perdre ni chaise ni table pendant ces
trois ans4.

Merci Clara, l’ancienne queen du bureau, aide irremplacable pour obtenir des
bons plans nourriture, cinéma, opéra, parc Astérix, prime d’activité, et j’en passe.
Sans toi, je pense que je n’aurais toujours pas validé mon PIF. Merci Nicolas pour
tes partages de pépites à tout moment de la journée, et pour ton sourire si facile
et communicatif. Il n’y a pas de mauvaises occasions pour de bonnes boutades.
Clémence, merci pour toutes les initiatives que tu prenais : l’ALJCC, l’Ekiden,
les différents groupes sociaux et sportifs de l’Inria. J’ai toujours été impressionné
par ton sérieux et ta détermination, et j’ai hâte de te recroiser pour de futures
recherches.

Merci Jules, mon fidèle partenaire de voyage, compagnon de course, camarade
de travail, sans qui la thèse aurait été bien différente. Tu as toujours bien fait
les choses, et tu as été un exemple à suivre sur bien des points. Et Charles, il y
aurait plein de façons de te montrer à quel point je te suis reconnaissant d’avoir
été toi-même, mais aucune n’égale la confiance que je t’accorde en te confiant mes
clés d’appartement. Tu m’as souvent fait me sentir moins seul en prenant toute
l’attention pour toi, là où en réalité tu n’étais pas toujours le seul à blâmer.

Merci Thomas de m’avoir si bien accueilli à Singapour, avec ouverture et
enthousiasme, et pour l’ami que tu es rapidement devenu. Merci à tous les membres
de l’équipe SyLLab que j’ai pu côtoyer : Adrien, Kai, Minghui, Mustapha, Quan
Quan, Trevor et Tristan. En particulier, merci Tristan de m’avoir fait découvrir
Singapour, les secrets de NTU et bien sûr les bières à la cerise devant une Tania
sauvage.

Merci à tous mes coauteurs, Aurélien, Axel, Clara, Clémence, Gaëtan, Håvard,
Irati, Jules, Léo, Morten, Nathan, Nicolas, Orr, Thomas et Victor. Vous m’avez
tous offert une vision différente et intéressante du travail de recherche, et je vous
en suis très reconnaissant.

Merci à toute ma nouvelle équipe à l’ANSSI : Ange, Henri, Hugues, Guirec,
Louiza, Jean-René, Jérémy, Jérome, Julien, Maxime, Mélissa et Rachelle de m’avoir
accompagné pendant toute cette fin de thèse. Je me réjouis de passer mes prochaines
années avec vous.

3Ça sert parfois pour briller en société.
4En contre-partie il a perdu une serrure et un double des clés.

ii

Merci infiniment Papa et Maman de m’avoir soutenu depuis ma plus tendre
enfance et de m’avoir offert la possibilité d’arriver là où j’en suis. Je vous dois
tout. Merci aussi Mamie, Cyprout, Magui, Thibaut, Loulou, Thibault, et toute la
famille de m’avoir laissé parler de cryptographie pendant les repas. Je remercie
tout particulièrement Stan pour la très jolie illustration qui orne la couverture de
ce manuscrit.

Je ne veux pas me lancer dans le remerciement des amis hors thèse, car il y
aurait trop à dire et ça ne logerait pas ici ; je vous remercie donc tous un grand
coup. Je vais cependant faire une exception pour ceux avec qui j’ai partagé un toit
et des souris pendant 2 ans et demi, Louise et Théo, merci du fond du cœur, vous
êtes les meilleurs. Et il y a maintenant officiellement votre nom dans la thèse.

Et comment écrire ces mots sans te remercier Gilles, toi qui es finalement à
l’origine du commencement de cette thèse, en m’ayant mis en contact avec Anne
en 2018 pour amorcer un stage de recherche, après nous avoir vus tous les deux à
quelques semaines d’intervalle. Maintenant que j’y repense, je me dis que le hasard
fait plutôt bien les choses.

iii

Résumé

La cryptographie joue un rôle clé dans la communication numérique, en assurant
que des utilisateurs malveillants ne soient pas en mesure d’obtenir des informations
sensibles qui ne leur appartiennent pas. En cryptographie symétrique, deux
utilisateurs s’accordent sur une clé secrète partagée, et sur un algorithme de
chiffrement pour chiffrer leurs communications, le plus utilisé étant l’AES. La
sécurité de tels chiffrements symétriques n’est pas prouvable mathématiquement, ce
qui implique qu’un grand effort doit être alloué à la cryptanalyse, i.e. la recherche
des meilleures attaques cryptographiques.

Dans ce contexte, cette thèse améliore des techniques de cryptanalyse contre
des chiffrements basés sur l’AES. Premièrement, nous présentons une attaque sur
une version complète de ForkAES et une attaque différentielle impossible améliorée
sur ForkSkinny. Deuxièmement, nous montrons de nouvelles attaques boomerang
sur 6 tours d’AES et sur plusieurs chiffrements basés sur l’AES. En particulier, nous
introduisons un nouveau framework d’attaque boomerang, l’attaque boomerang
tronquée, qui produit les meilleures attaques connues contre Kiasu-BC, Deoxys-BC
et TNT-AES.

Nous présentons ensuite un framework de fonctions de hachage universelles
basées sur l’AES, duquel nous dérivons deux MACs basés sur l’AES, LeMac et
PetitMac. Les performances de LeMac sont les meilleures de la littérature sur les
processeurs récents.

Enfin, nous étudions les attaques algébriques contre une nouvelle génération
de primitives symétriques, dites Orientées-Arithmétisation (OA). Nous montrons
que ces attaques peuvent être améliorées avec des techniques de cryptanalyse
symétrique, et soulignons que les attaques univariées sont bien moins coûteuses que
les attaques multivariées. Dans ce cadre, nous présentons l’attaque FreeLunch, un
nouveau type d’attaque algébrique qui remet en question la sécurité de plusieurs
primitives OA récentes.

v

Abstract

Cryptography plays a critical role in digital communication, by ensuring that
malicious users cannot obtain sensitive information that does not belong to them.
In symmetric cryptography, two users agree on a secret key, and use a cipher to
encrypt their communication, the most used of which being AES. However, the
security of symmetric ciphers is not mathematically provable, therefore a lot of
effort needs to be dedicated to cryptanalysis, i.e. the search for the best attacks.

In this context, this thesis improves on some cryptanalysis techniques against
AES-based ciphers. First, we present an attack on full ForkAES, together with an
improved impossible differential attack on ForkSkinny. Second, we show some new
boomerang attacks on 6-round AES and on several AES-based ciphers. In particular,
we introduce a new boomerang attack framework, the truncated boomerang attack,
that yields the best known attacks against Kiasu-BC, Deoxys-BC and TNT-AES.

Then, we present an AES-based universal hash function framework, from
which we design two AES-based MACs, LeMac and PetitMac. LeMac has the best
performance among existing MAC algorithms on recent desktop CPUs.

We finally study algebraic attacks against a new generation of symmetric
primitives, called Arithmetization-Oriented (AO). We show that these attacks can
be improved with symmetric techniques, and highlight that univariate attacks are
much cheaper than multivariate attacks. We also present the FreeLunch attack,
a new type of algebraic attack that challenges the security of several recent AO
primitives.

vii

Résumé des Travaux

La cryptographie est l’étude des techniques de chiffrement des communications, afin
que des utilisateurs malicieux soient dans l’incapacité d’obtenir une information
qui ne leur est pas destinée. Les deux entités souhaitant communiquer sont
communément dénommées Alice et Bob, et l’attaquant, qui a accès aux
communications chiffrées entre Alice et Bob, s’appelle Eve (voir Figure 1).

Bob AliceE E´1

Eve

Figure 1: Illustration du modèle de sécurité en cryptographie symétrique.

Chapitre 1 : Introduction à la Cryptographie
Ce premier chapitre est destiné à introduire le lecteur à l’histoire de la cryptographie
et aux enjeux actuels portés par ce domaine. La cryptographie doit être différenciée
de la stéganographie, cette dernière étant l’étude de la dissimulation d’un message
caché sous différentes formes, dans un message intelligible par exemple. La
cryptographie, de son côté, assure un des principes fondamentaux d’Auguste
Kerckhoffs énoncé dans son ouvrage La Cryptographie Militaire [Ker83]:« Il faut
que [le moyen de chiffrement] n’exige pas le secret, et qu’il puisse sans inconvénient
tomber entre les mains de l’ennemi ». L’algorithme cryptographique doit être
considéré comme public et connu de tous, et la sécurité du chiffrement doit reposer
sur un secret court, que l’on appelle une clé cryptographique.

Historiquement, la cryptographie s’est avérée d’une importance cruciale pendant
la deuxième guerre mondiale, où elle a été une des principales raisons de la victoire
des Alliés, grâce au cassage par les Polonais et les Britanniques de la machine
Enigma, utilisée par les nazis.

ix

La deuxième partie du XX-ème siècle s’illustre par l’introduction de cryptosys-
tèmes asymétriques : le protocole d’échange de clé de Diffie-Hellman [DH76] et le
système de chiffrement à clé publique RSA [RSA83]. Dans RSA, chaque utilisateur
génère à une clé publique, connue de tous, dont la clé privée n’est connue que
de l’utilisateur en question. La clé privée doit être dure à calculer à partir de la
clé publique. Cette difficulté repose sur des problèmes mathématiques difficiles à
résoudre, telle que la factorisation de grands entiers, ou le calcul du logarithme
discret.

Chapitre 2 : La Cryptographie Symétrique
En cryptographie symétrique, les deux utilisateurs, Alice et Bob, possèdent une
information secrète commune, une clé de chiffrement. La sécurité d’un chiffrement
symétrique repose sur le fait que Eve, ne connaissant pas la clé, ne peut déduire
aucune information sur les messages transmis entre Alice et Bob. En particulier,
Eve ne doit pas être en capacité de recouvrer la clé à partir des communications
écoutées entre Alice et Bob. Nous représenterons Eve par un attaquant qui fait
des requêtes à un oracle de chiffrement, lui donnant des chiffrés à partir d’un
texte clair qu’elle choisit. C’est le modèle à texte clair choisi, qui existe sous
différentes variantes. Une attaque par recouvrement de clé est ainsi un algorithme
pouvant utiliser cet oracle, qui recouvre la clé plus rapidement que la recherche
exhaustive sur l’ensemble de clés. D’autres types d’attaques existent, tels que les
distingueurs. L’étude de l’ensemble des attaques contre un chiffrement s’appelle la
cryptanalyse, et certaines techniques générales s’appliquent à différents algorithmes
de chiffrement. Une des techniques les plus connues est la cryptanalyse différentielle,
qui traque une différence injectée dans les textes clairs et estime la probabilité que
les chiffrés correspondants possèdent une différence fixée.

Les algorithmes de chiffrement symétriques sont généralement construits à partir
de briques élémentaires, les primitives cryptographiques, qui sont plus petites et
plus faciles à analyser. Une des primitives cryptographiques les plus étudiées est
le chiffrement par bloc. Au lieu de chiffrer un message de taille arbitraire, le
chiffrement par bloc chiffre un bloc de message, de taille typique n P t64, 128u bits.
Le chiffrement par bloc a la signature suivante:

E : t0, 1uk ˆ t0, 1un ÞÑ t0, 1un

K , P ÞÑ C.

La première entrée est une clé K, la deuxième entrée un texte clair P , et la
sortie le chiffré C. La fonction à clé fixée qui envoie le texte clair sur le chiffré est
une permutation, ce qui permet de déchiffrer C en utilisant la permutation inverse,
sous connaissance de la clé. Le chiffrement par bloc le plus utilisé de nos jours
est l’AES [DR02], standardisé par l’Institut National (Américain) des Standards
et de la Technologie (NIST) en 2001. Une variante du chiffrement par bloc est le
chiffrement par bloc avec tweak, qui prend une entrée additionnelle, le tweak T .

x

Chapitre 3 : Attaques contre les Forkciphers
Les Forkciphers [ALP+19b] sont des primitives avec la signature:

E : t0, 1uk ˆ t0, 1un ÞÑ t0, 1un ˆ t0, 1un

K , P ÞÑ C1 , C2.

Ces primitives sont telles qu’à clé K fixée, E1
K : P ÞÑ C1 et E2

K : P ÞÑ C2 sont
toutes deux des permutations, et dans les instances proposées de Forkciphers,
E1

K correspond exactement à un chiffrement par bloc de la littérature. Elles
peuvent servir à construire un chiffrement authentifié avec données additionnelles
(AEAD), destiné à des messages extrêmement courts (typiquement moins de 128
bits), et introduits pour la compétition des chiffrements à bas coût du NIST. Dans
ce chapitre, nous présentons des attaques améliorées présentées dans [BDL20]
sur deux instances des Forkciphers: ForkAES [ARV+18] basé sur l’AES (plus
précisément dans sa variante tweakée Kiasu-BC [JNP14a]), et ForkSkinny, basé
sur Skinny [BJK+16].

L’attaque sur ForkAES exploite le manque de diffusion dans les tours du milieu
des requêtes de reconstruction (C1 ÞÑ C2), propres aux Forkciphers. Cela mène à
une attaque sur les 10 tours de ForkAES, comme illustré par la Table 1.

Algorithme Attaque Trs. D. Tps. Mem. ϵ Réference
AES-128 MitM 7 297 299 298 1 [DFJ13]
Kiasu-BC Boomerang 8 2103 2103 260 1 [DL17]
Kiasu-BC Boomerang 8 283 283 280 1 [BL23b]
ForkAES-˚-4-4 Diff. Imp. 8 239.5 247 235 1 [BBJ+19]
ForkAES-˚-4-4 Diff. Refl. 8 235 235 233 1 [BBJ+19]
ForkAES-˚-5-5 Diff. Tronq. 10 274.5 274.5 259.5 2´32 Cette thèse
ForkAES-˚-5-5 Diff. Tronq. 10 2100.5 2114 280.5 2´4 Cette thèse
ForkAES-˚-5-5 Diff. Tronq. 10 2119 2125 283 1 Cette thèse

Table 1: Résultats de cryptanalyse contre AES, Kiasu-BC, et ForkAES. ϵ est la
fraction des clés faibles attaquée.

Nos attaques sur ForkSkinny exploitent un cycle dans les Linear Feedback Shift
Registers (LFSR) utilisés dans le cadencement de clé et de tweak, et nous permettent
d’augmenter la longueur des caractéristiques de différentielles impossibles. Les
résultats de nos attaques sont présentés dans la Table 2.

Nos attaques montrent que les Forkciphers n’héritent pas directement de la
sécurité du chiffrement par bloc sous-jacent, contrairement à l’idée des concepteurs,
et qu’une analyse dédiée est nécessaire, pour chaque instance de Forkciphers.

xi

Algorithme Mod. κ Attaque Trs. D. Tps. Mem. Ref.
ForkSkinny-128-256 RTK2 128 DI 24 2126.5 2126.5 2101.5 Cette thèse
ForkSkinny-128-256 RTK2 128 Rect. 25 2118.9 2118.9 2119.2 [QDW+21]
Skinny-128-˚ RTK2 256 DI 23 2124.5 2243.5 2163.4 [SMB18]
Skinny-128-˚ RTK2 256 Rect. 26 2126.5 2241.4 2136 [DQS+22]
ForkSkinny-128-256 RTK2 256 DI 26 2125 2254.6 2160 Cette thèse
ForkSkinny-128-256 RTK2 256 DI 26 2127 2250.3 2160 Cette thèse
ForkSkinny-128-256 RTK2 256 Rect. 28 2118.9 2224.8 2118.9 [DQS+22]

Table 2: Résultats de cryptanalyse sur Skinny et ForkSkinny. La colonne κ
indique la taille de clé.

Trs. Type Donnée Tps. Ref
Kiasu-BC 8 Boomerang (RC) 2103 ACC 2103.1 [DL17]

8 Boomerang Tronqué (RC) 283 ACC 283 Cette thèse
TNT-AES ˚-5-˚ Boomerang (dist.) 2126 ACC 2126 [BGG+20]

5-˚-˚ Diff Imp. (RC) 2113.6 CP 2113.6 [GGL+20]
˚-˚-˚ Generic (dist.) 299.5 CP 299.5 [GGL+20]
˚-5-˚ Boomerang Tronqué (dist.) 276 ACC 276 Cette thèse
5-5-˚ Boomerang Tronqué (RC) 287 ACC 287 Cette thèse
˚-6-˚ Boomerang Tronqué (dist.) 2127.8 ACC 2127.8 Cette thèse

Table 3: Attaques en recouvrement de clé (RC) et distingueurs (dist.) contre
Kiasu-BC and TNT-AES.

Chapitre 4 : Attaques Boomerang sur AES et ses
Variantes
Dans ce chapitre, nous présentons de nouvelles attaques boomerangs sur l’AES et sur
des chiffrements basés sur l’AES, dont une partie a été présentée à EUROCRYPT
2023 [BL23b]. L’attaque boomerang est une attaque introduite par Wagner en
1999 [Wag99], qui utilise des messages clairs et chiffrés choisis adaptativement (en
fonction des réponses précédentes de l’oracle).

Dans un premier temps, nous proposons une nouvelle variante de l’attaque
boomerang, l’attaque boomerang tronquée, en prenant en compte les structures de
textes clairs et de chiffrés et en analysant l’attaque boomerang comme une attaque
complète sur tous les tours du chiffrement, au lieu de l’analyse traditionnelle
partant d’une caractéristique sur un nombre de tours réduits et ajoutant des tours
de recouvrement de clé. L’attaque boomerang tronquée permet d’améliorer les
attaques boomerang sur 6 tours d’AES, et d’obtenir les meilleures attaques contre
Kiasu-BC [JNP14a], TNT-AES [BGG+20] et Deoxys-BC [JNP+21].

xii

Attaque Donnée Tps. Mem. Ref.

Distingueur Attaque Échange ACC 284 283 232 [Bar19]
Boomerang Tronqué ACC 287 287 266 Cette thèse

Recouvr. de clé Square CP 233 240 232 [DGK+24]
Boomerang Retraçant ACC 255 280 231 [DKR+20]
Boomerang Tronqué ACC 259 261 259 Cette thèse
Boomerang ACC 251 268 232 Cette thèse
Boomerang ACC 251 266 242 Cette thèse
Boomerang ACC 257 261 233 Cette thèse

S-boîte secrète Square CP 264 290 269 [TKK+15]
Boomerang Tronqué ACC 294 294 256 Cette thèse

Table 4: Attaques contre 6 tours d’AES dans différents scénarios.
CP: Clairs choisis / ACC: Clairs et chiffrés choisis adaptativement.

Dans un deuxième temps, nous présentons deux variantes de l’attaque
boomerang sur 6 tours d’AES, améliorant les précédentes attaques boomerangs.
Ce ne sont pas les attaques les plus compétitives sur 6 tours d’AES car elles sont
moins performantes que l’attaque Square [DKR97] et ses améliorations [FKL+01;
TA14], mais elles sont plus avantageuses que les autres classes d’attaque sur 6 tours
d’AES. Les résultats de ce chapitre sont présentés dans les Tables 3, 4 et 5.

Ancien Cette thèse
Mod. Trs. Donnée Tps. Mem. Ref. Donnée Tps. Mem.
RTK1 8 B 288 288 273

9 B 2135 2174 2129

RTK2 8 B 228 228 227 [Sas18a] B 227 227 227

9 B 298 2112 217 [Sas18a] B 255.2 255.2 255.2

10 B 298.4 2109.1 288 [ZDJ19] B 294.2 295.2 294.2

11 R 2122.1 2249.9 2128.2 [ZDJ19] B 2129 2223.9 2129

RTK3 10 B 222 222 217 [Sas18a] B 219.4 219.4 218

11 B 2100 2100 217 [Sas18a] B 232.7 232.7 232.7

12 B 298 298 264 [ZDJ19] B 267.4 267.4 265

13 R 2125.2 2186.7 2136 [ZDJ+19] B 2126.7 2170.2 2126.7

14 R 2125.2 2282.7 2136 [ZDJ+19] B 2129 2278.8 2129

Table 5: Attaques boomerang (B) et rectangle (R) contre des variantes de Deoxys-
BC. La plupart des attaques ont une probabilité de succès de 1{2. Dans le modèle
RTKi, l’attaquant contrôle i blocs de tweakey de 128 bits.

xiii

Chapitre 5 : Conception de Fonctions de Hachage
Universelles et de MACs basés sur AES
Dans ce chapitre, nous concevons un framework de fonctions de hachage
universelles basées sur l’AES, vouées à atteindre une vitesse ultrarapide en
implémentation logicielle. Nous proposons ensuite deux constructions de codes
d’authentification de messages (MACs) à partir de fonctions de hachage universelles
respectant certaines propriétés de sécurité. Pour cela, nous exploitons le jeu
d’instructions AES-NI [Gue08], introduit par Intel en 2008, qui offre une accélération
matérielle à la fonction de tour de l’AES et qui augmente sa vitesse d’un
ordre de grandeur. La fonction de tour de l’AES possède donc des propriétés
cryptographiques remarquables comparées à celles des instructions processeur ayant
une vitesse d’exécution similaire. Pour cette raison, la conception d’algorithmes
cryptographiques basés sur l’AES est très populaire, comme l’illustrent AEGIS-
128 [WP14] et Deoxys-BC [JNP+21], sélectionnés dans le portefeuille CAESAR.

De façon surprenante, la conception de fonctions de hachage universelles et
de MACs basés sur l’AES n’a pas été directement considérée dans la littérature.
Certains chiffrements authentifiés avec données additionnelles peuvent être convertis
en MACs, mais ils ne sont pas optimisés pour cet usage. C’est dans ce contexte
que nous avons conçu les premiers MACs basés sur l’AES, LeMac et PetitMac. Les
performances de LeMac sont comparées à celles de la littérature dans la Table 6.

Pour la conception de ces deux MACs, nous nous sommes basés sur la
construction EWCDM [CS16], pour obtenir 128 bits de sécurité contre les attaques
par forge. Cette construction requiert une primitive nommée fonction de hachage
universelle, qui possède des propriétés statistiques très simplement formulables.
Ces propriétés sont facilement dérivables à partir de la connaissance de la meilleure
différentielle existant sur la primitive. En partant d’un candidat de notre framework,
nous avons mis au point un outil automatique basé sur de la progammation linéaire
en nombres entiers (MILP) pour borner la probabilité du meilleur chemin différentiel,
qui permet donc d’estimer la probabilité de la meilleure différentielle. En outre,
nous avons implémenté un outil automatique qui génère une implémentation de
candidats de notre framework en C, la compile et mesure sa performance. Cela
nous permet donc, automatiquement, de générer des candidats et de vérifier leur
sécurité et leur rapidité, afin de conserver les candidats sécurisés les plus rapides.
Cette stratégie nous a permis d’avoir les meilleures performances de la littérature
pour un MAC sécurisé (LeMac).

Chapitre 6 : Cryptanalyse Algébrique de Primitives
Orientées Arithmétisation
Dans ce chapitre, nous introduisons le lecteur aux primitives orientées arithmétisa-
tion (OA) et à la cryptanalyse algébrique, et présentons des attaques algébriques

xiv

Speed (c/B)

CPU Cipher 1kB 16kB 256kB

Intel Ice Lake (Xeon Gold 5320) GCM (AD only) 0.699 0.311 0.286
Rocca (AD only) 0.528 0.171 0.149
Rocca-S (AD only) 0.478 0.172 0.151
AEGIS128L (AD only) 0.416 0.208 0.195
Tiaoxin-346 v2 (AD only) 0.328 0.131 0.121
Jean-Nikolić 0.307 0.126 0.113
LeMac 0.289 0.082 0.068

AMD Zen3 (EPYC 7513) GCM (AD only) 0.794 0.470 0.451
Rocca (AD only) 0.393 0.139 0.124
Rocca-S (AD only) 0.417 0.157 0.141
AEGIS128L (AD only) 0.358 0.183 0.173
Tiaoxin-346 v2 (AD only) 0.311 0.121 0.109
Jean-Nikolić 0.312 0.111 0.098
LeMac 0.309 0.085 0.072

Table 6: Résultats de benchmark de MACs pour différentes tailles de message.

sur des primitives OA, qui ont été publiées à ToSC 2022 [BBL+22] et soumises
pour publication à SAC 2024 [Bar24].

Depuis plus d’une dizaine d’années, une attention particulière en cryptographie
a été portée sur les protocoles avancés pour le chiffrement entièrement homomorphe
(FHE), le calcul multipartite (MPC), ou les preuves à divulgation nulle de
connaissance (ZK). Ces protocoles ont un point commun majeur: ils opèrent
sur des grands corps finis5 Fq, avec q typiquement plus grand que 263, et le coût est
très fortement lié au nombre de multiplications dans le corps en question. Dans ce
cadre, l’utilisation d’algorithmes de chiffrement symétrique nécessite leur conversion
en séquences d’opérations dans Fq, et cela engendre souvent un surcoût important.

LowMC [ARS+15] a été une première tentative de minimiser le nombre de
multiplications binaires dans un chiffrement classique, afin de réduire le nombre
de multiplications dans Fp. Mais une nouvelle approche, dont MiMC [AGR+16]
a été le précurseur, offre une accélération particulièrement importante comparé
à LowMC : au lieu d’opérer sur des bits, un chiffrement peut directement opérer
sur des éléments de Fq, de sorte à entièrement rentabiliser chaque multiplication
dans Fq. Un tel chiffrement est dit orienté arithmétisation (OA). La liste des
chiffrements orientés arithmétisation est longue, mais ils ont tous moins de 10
ans d’ancienneté : nous pouvons citer Jarvis [AD18], Vision, Rescue [AAB+20],
Poseidon [GKR+21], Ciminion [DGG+21b], Anemoi [BBC+23], Griffin [GHR+23],
Hydra [GØS+23], XHash8, XHash12 [AKM23] et Arion [RST23].

5Certains protocoles FHE sont construits sur des anneaux, mais nous ne considérons que les
corps dans cette thèse.

xv

Securité estimée Cxté (log2) de
Algorithme Paramètres par la FE (log2) Résolu notre attaque

Rescue–Prime
[AAB+20]

N “ 4, m “ 3 38 ✓ 43
N “ 6, m “ 2 38 53
N “ 7, m “ 2 44 62
N “ 5, m “ 3 45 57
N “ 8, m “ 2 50 72

Feistel–MiMC
[AGR+16]

(challenges originaux)

r “ 6 18 ✓ 19
r “ 10 30 ✓ 26
r “ 14 44 ✓ 33
r “ 18 56 ✓ 40
r “ 22 68 47

Poseidon
[GKR+21]

RP “ 3 45 ✓ 26
RP “ 8 53 ✓ 35
RP “ 13 61 ✓ 44
RP “ 19 69 54
RP “ 24 77 62

Table 7: Challenges proposés par la Fondation Ethereum (FE).

L’objectif des primitives OA étant de minimiser le nombre de multiplications
dans Fq afin d’offrir les meilleures performances, les attaques algébriques deviennent
particulièrement avantageuses comparées aux attaques statistiques classiques telles
que les attaques linéaires et différentielles. L’impact de ces attaques algébriques
doit être bien compris afin de correctement calibrer les nouveaux algorithmes OA.
C’est dans cette perspective que la Fondation Ethereum (FE) a lancé une série de
challenges, en 2021, rémunérant les attaques à entrée et sorties contraintes (CICO)
contre des permutations OA. Nous listons certains challenges dans la Table 7, en
indiquant ceux que nous avons résolus.

Il existe un certain nombre d’attaques algébriques : les attaques par
interpolation [JK97], les attaques Cube [DS09], l’attaque PGCD [AGR+16], et les
attaques par résolution de système (univarié ou multivarié). Ce sont ces dernières
qui nous intéressent particulièrement, et que nous exploitons dans ce chapitre et
dans le suivant. Dans cette attaque, l’attaquant modélise la primitive avec des
équations, i.e. il écrit les équations liant l’entrée et la sortie (et potentiellement
la clé), en ajoutant des variables intermédiaires si nécessaires. Si le système
polynomial obtenu est univarié, il existe un algorithme relativement efficace pour
trouver ses solutions. S’il est multivarié, l’attaquant le résout en calculant une base
de Gröbner [Buc76] de ce système.

Nous combinons ces techniques algébriques avec des techniques de cryptanalyse
symétrique pour gagner plusieurs tours de plusieurs permutations OA et obtenir
des attaques améliorées sur Rescue–Prime [AAB+20], Feistel–MiMC [AGR+16]
et Poseidon [GKR+21]. Ces résultats montrent que les estimations de sécurité
faites par la fondation Ethereum étaient erronées. De plus, nous montrons deux
modélisations astucieuses de Ciminion qui permettent d’obtenir des attaques
contredisant les revendications de sécurité de ses concepteurs.

xvi

Chapitre 7 : L’Attaque FreeLunch sur des Primi-
tives Orientées Arithmétisation
Ce dernier chapitre est dédié à la présentation d’une nouvelle classe d’attaques
algébriques sur des primitives OA, travail accepté à CRYPTO 2024 et disponible
sur e-print [BBL+24b]. Dans cette attaque, nous choisissons un ordre monomial
pondéré, de telle sorte qu’une base de Gröbner est automatiquement obtenue dès
la modélisation de la primitive (étape nommée sysGen). En outre, nous améliorons
une partie (nommée polyDet.) de la deuxième phase de l’attaque par base de
Gröbner, traditionnellement appelée FGLM [FGL+93]. Néanmoins, cette deuxième
phase comporte toujours une étape dont l’estimation de la complexité semble
non-triviale, que nous appelons matGen. Nous avons seulement une borne lâche de
la complexité de cette étape.

Nous appliquons l’attaque FreeLunch au problème CICO sur trois permutations
OA, Griffin [GHR+23], Arion [RST23] and Anemoi [BBC+23], en utilisant des
techniques de cryptanalyse symétrique pour réduire la complexité de l’attaque,
et montrons que la sécurité de Griffin et de α-Arion est compromise malgré la
borne lâche pour matGen. Cela semble aussi montrer que dans le cas où la borne
pour la complexité de matGen venait à s’améliorer, Anemoi pourrait aussi voir sa
sécurité compromise, car la complexité de polyDet est trop faible pour la sécurité
revendiquée.

Nous présentons nos estimations de complexité de l’étape polyDet pour ces
trois permutations OA dans les Tables 9, 8, 10 (nombre de tours entre parenthèses) :
la complexité de cette étape ne suffit pas pour garantir la sécurité de la plupart
des variantes des trois permutations.

De plus, nous avons implémenté cette attaque sur des versions réduites de ces
trois permutations, et avons obtenu les temps d’attaques décrits dans les Tables 11
et 12. En particulier, nous résolvons en pratique le problème CICO sur 7 des 10
tours de Griffin.

Arion-π & ArionHash α-Arion& α-ArionHash

Branches Complexité (log2) Complexité (log2)
e “ 3 e “ 5 e “ 3 e “ 5

3 128 (6) 132 (6) 104 (5) 83 (4)
4 134 (6) 113 (5) 84 (4) 87 (4)
5 114 (5) 118 (5) 88 (4) 91 (4)
6 119 (5) 122 (5) 92 (4) 94 (4)
8 98 (4) 101 (4) 98 (4) 101 (4)

Table 8: Complexité estimée en temps de polyDet pour les différentes instances
complètes d’ArionHash, où α “ 121 et ω “ 2.81.

xvii

Branches Complexité (log2)
α “ 3 α “ 5

3 120 (16) 141 (14)
4 112 (15) 110 (11)
8 76 (11) 81 (9)

12,16,20,24 64 (10) 74 (9)

Table 9: Complexité estimée en temps de polyDet pour les différentes instances
complètes de Griffin, où l’exposant de multiplication matricielle ω “ 2.81.

Sécurité attendue α “ 3 α “ 5 α “ 7 α “ 11
128 118 (21) 156 (21) 174 (20) 198 (19)
256 203 (37) 270 (37) 307 (36) 358 (35)

Table 10: Complexité estimée en temps de polyDet pour les différentes instances
complètes d’Anemoi sur Fp avec ℓ “ 1.

Nombre de Complexité Temps (s) Mémoire
tours de polyDet sysGen matGen polyDet (MB)

5 26 0.17 0.02 0.53 14
6 34 4.0 6.67 50.78 471
7 41 2, 558 3, 361 5, 727 27, 600

Table 11: Résultats experimentaux sur Griffin avec pt, αq “ p12, 3q.

Nombre de Complexité Temps (s) Mémoire
tours de polyDet sysGen matGen polyDet (MB)

3 20 ă 0.01 ă 0.01 0.02 ă 400
4 26 ă 0.01 0.34 0.24 ă 400
5 32 0.07 23.3 7.6 ă 400
6 37 2.52 2, 127 292 2, 863
7 43 128 156, 348 10, 725 42, 337

Table 12: Résultats experimentaux sur Anemoi avec pℓ, αq “ p1, 3q.

Nombre de Complexité Temps (s) Mémoire
branches de polyDet sysGen matGen polyDet (MB)

3 32 1.31 ă 0.01 6.8 3, 387
4 33 1.46 0.07 18.7 7, 551
5 35 9.54 0.08 64.5 15, 903
6 36 247 0.31 215 32, 626
8 39 24, 872 4.86 2, 545 134, 165

Table 13: Résultats experimentaux sur 2 tours d’Arion, avec pe, αq “ p3, 121q.

xviii

Contents

Contents xix

List of Figures xxiii

List of Tables xxv

Publications and Preprints xxvii

I Preliminaries 1

1 Introduction to Cryptography 3
1.1 A Short History . 3
1.2 Modern Cryptography . 5
1.3 Cryptography Nowadays . 7

2 Symmetric Cryptography 9
2.1 Symmetric Primitives and Constructions 10

2.1.1 (Tweakable) Block Ciphers 10
2.1.2 Cryptographic Hash Functions and Sponges 11
2.1.3 Constructions Based on Iterated Round Functions 12
2.1.4 Round Function Constructions 13
2.1.5 MACs and Related Constructions 15
2.1.6 Stream Ciphers . 16

2.2 Cryptanalysis . 16
2.2.1 Attacker Models . 17
2.2.2 Differential Cryptanalysis 19
2.2.3 Other Cryptanalysis Techniques 26

2.3 The Block Cipher AES . 28
2.3.1 Description . 28
2.3.2 Properties of the Components 29
2.3.3 Security . 31
2.3.4 AES-based Constructions 33

2.4 MILP: an Automatic Tool for Cryptography 36
2.4.1 Description of a MILP model 36

xix

2.4.2 Example on AES . 37

II Contributions 41

3 Improved Attacks against the Forkcipher Framework 43
3.1 Description of Forkciphers . 44

3.1.1 The Forkcipher Framework 44
3.1.2 ForkAES . 45
3.1.3 ForkSkinny . 45

3.2 Cryptanalysis of full ForkAES . 47
3.2.1 Results . 47
3.2.2 Previous Attack Against ForkAES-˚-4-4 49
3.2.3 Attack Against Full ForkAES for 296 Weak Keys 51
3.2.4 Larger Classes of Weak Keys 57

3.3 Cryptanalysis of ForkSkinny . 62
3.3.1 Related-tweakey Attacks on Skinny 64
3.3.2 Related-tweakey Attacks on ForkSkinny 64
3.3.3 A 24-round Attack on ForkSkinny-128-256 with 128-bit Key 67
3.3.4 A 26-round Attack on ForkSkinny-128-256 with 256-bit Key 68

3.4 Conclusion . 76

4 Boomerang Attacks on AES and AES-based Ciphers 79
4.1 Summary . 80
4.2 The Boomerang Attack . 82

4.2.1 Description of the Boomerang Attack 82
4.2.2 Analysis . 83
4.2.3 Improvements of the Boomerang Attack 85

4.3 Boomerang Attacks on AES in the Literature 92
4.3.1 Biryukov’s Original Boomerang Attack 93
4.3.2 The Yoyo Attack . 96
4.3.3 The Retracing Boomerang Attack 99
4.3.4 Other Boomerang-like Attacks on AES 104

4.4 Truncated Boomerang Attacks . 105
4.4.1 Truncated Boomerang Distinguisher 106
4.4.2 Truncated Boomerang Key-recovery Attack 109
4.4.3 Optimized Boomerang Attacks on 6-round AES 114
4.4.4 Application to 8-round Kiasu-BC 119
4.4.5 Application to TNT-AES 121
4.4.6 Modeling the Framework using MILP 128
4.4.7 Application to Deoxys-BC 133

4.5 Improved Boomerang Attacks on AES 151
4.5.1 A Key-Recovery Attack With Low Data Complexity 152
4.5.2 A Key-Recovery Attack With Low Time Complexity 157
4.5.3 Incompatibility in a 6-Round Distinguisher 161

xx

4.6 Conclusion . 162

5 Design of Fast AES-based UHFs and MACs 165
5.1 Introduction . 166
5.2 Design Goals and First Observations 168

5.2.1 AES-based Round Functions 168
5.2.2 Instruction Scheduling . 168
5.2.3 Security . 171
5.2.4 A Roadmap to Achieve these Goals 171

5.3 A Specific Family of Universal Hash Functions 172
5.3.1 Overall Structure . 172
5.3.2 Round Function and Message-schedule 174

5.4 A Searchable Space of UHFs . 175
5.4.1 A Normal Form for Transition Matrices 175
5.4.2 Equivalent Injected-value Sequences 177
5.4.3 Constraints on the Linear Layer 180
5.4.4 The Actual Explored Space 180

5.5 Turning Collision Resistance into a MILP Problem 180
5.5.1 Prior Works . 180
5.5.2 Our Model . 181

5.6 Experimental Results of the Search for Good Candidates 184
5.6.1 Search Strategy . 184
5.6.2 Results of the Search . 186

5.7 Concrete MAC Instances . 188
5.7.1 Specifications . 188
5.7.2 Benchmarks . 193

5.8 Conclusion . 193

6 Algebraic Cryptanalysis of Arithmetization-Oriented Primitives 195
6.1 Arithmetization-Oriented Ciphers 196

6.1.1 Context . 196
6.1.2 Security . 197

6.2 Algebraic Attacks . 198
6.2.1 Interpolation Attacks . 200
6.2.2 Cube Attacks . 200
6.2.3 The GCD Attack . 201
6.2.4 Polynomial Solving Attacks 202

6.3 Background in Algebraic Geometry 203
6.4 Solving Polynomial Systems . 207

6.4.1 Solving Univariate Systems 207
6.4.2 Solving Multivariate Systems 208

6.5 CICO Cryptanalysis of some AO Hash Functions 210
6.5.1 Attacks Against Round-Reduced Feistel–MiMC 210
6.5.2 Bypassing SPN Steps . 212
6.5.3 Application to Round-Reduced Poseidon 214

xxi

6.5.4 Application to Round-Reduced Rescue–Prime 216
6.5.5 Experimental Results . 220

6.6 Algebraic cryptanalysis of Ciminion 222
6.6.1 Specification and Security Analysis of Ciminion 224
6.6.2 Multivariate Algebraic Attack on Ciminion 227
6.6.3 Experimental Results . 230
6.6.4 Univariate Algebraic Attack on Ciminion 231

7 The FreeLunch Attack 235
7.1 The Algebraic FreeLunch Attack 236

7.1.1 FreeLunch Systems . 236
7.1.2 Extracting a Univariate Equation from a FreeLunch System 237
7.1.3 Ordering a FreeLunch . 240
7.1.4 FreeLunch Systems From Iterated Functions 241
7.1.5 Summary of the FreeLunch Attack 247

7.2 Using FreeLunch Systems Directly 248
7.2.1 A Detailed Example: Griffin 249
7.2.2 Applicability Beyond Griffin: ArionHash 254
7.2.3 Last Example: XHash8 . 257

7.3 Forcing the Presence of a FreeLunch for Anemoi 260
7.3.1 Description of Anemoi . 260
7.3.2 Failure of the Direct FreeLunch Approach 261
7.3.3 Constructing FreeLunch Systems From Anemoi 262

7.4 Discussion on the FreeLunch Attack 266
7.4.1 Discussion on Experimental Results 266
7.4.2 Preventing the FreeLunch Attack 267
7.4.3 Open Problems for Future Work 268

Bibliography 271

xxii

List of Figures

2.1 Secure communication via an unsecure channel. 10
2.2 Scheme of the sponge construction. 12
2.3 Block cipher built with the iterated round function strategy. 13
2.4 Public permutation built with the iterated round function strategy. . . 13
2.5 Round function constructions. 14
2.6 Attacker models for block ciphers. 18
2.7 Preimage attack on a Sponge construction from a CICO solution. . . . 19
2.8 A Super S-box on 2-round AES. 31
2.9 Example of a truncated differential trail on 3-round AES. 32
2.10 The TWEAKEY construction for tweakable block ciphers. 34

3.1 Illustration of an encryption by a forkcipher. 44
3.2 Skinny round function. 46
3.3 Skinny tweakey schedule. 47
3.4 Truncated differential characteristic for ForkAES-5-4-4. 50
3.5 Differential characteristic for very weak keys. 53
3.6 Truncated differential characteristic for 2119 weak keys against ForkAES 59
3.7 Truncated differential characteristic for 2124 weak keys against ForkAES. 61
3.8 Differential trail construction on Skinny in the RTK1 model. 65
3.9 Differential trail construction on Skinny in the RTK2 model. 65
3.10 Impossible differential characteristic on 18-round ForkSkinny-128-256. 69
3.11 Key-recovery of the impossible differential attack of ForkSkinny-128-256. 71

4.1 Construction of a boomerang quartet. 83
4.2 Illustration of a boomerang incompatibility. 89
4.3 The Sandwich attack. 90
4.4 Biryukov’s boomerang characteristic on 5-round AES. 94
4.5 Yoyo distinguisher on a S ˝ A ˝ S permutation. 97
4.6 Retracing boomerang on 5-round AES (distinguisher). 101
4.7 Retracing boomerang on 6-round AES (key-recovery). 102
4.8 A truncated boomerang trail on 6-round AES (non-optimized). 109
4.9 Truncated boomerang trail on 8-round Kiasu-BC. 120
4.10 Scheme of our boomerang attack on the full TNT-AES. 123
4.11 Truncated boomerang trail on 6-round AES. 134
4.12 Truncated boomerang attack on 8-round Deoxys-BC (RTK1). 137

xxiii

4.13 Truncated boomerang attack on 9-round Deoxys-BC (RTK1). 138
4.14 Truncated boomerang attack on 8-round Deoxys-BC (RTK2). 140
4.15 Truncated boomerang attack on 9-round Deoxys-BC (RTK2). 141
4.16 Truncated boomerang attack on 10-round Deoxys-BC (RTK2). 142
4.17 Truncated boomerang attack on 10-round Deoxys-BC (RTK3). 144
4.18 Truncated boomerang attack on 11-round Deoxys-BC (RTK3). 145
4.19 Truncated boomerang attack on 12-round Deoxys-BC (RTK3). 146
4.20 Truncated boomerang attack on 13-round Deoxys-BC (RTK3). 149
4.21 Truncated boomerang attack on 14-round Deoxys-BC (RTK3). 150
4.22 Boomerang characteristic on 6-round AES with low data complexity. . 152
4.23 Boomerang characteristic on 6-round AES with low time complexity. . 161
4.24 An impossible forward pattern for a distinguishing attack. 163

5.1 Overview of our UHF family. 173
5.2 Specification of some UHF candidates. 187
5.3 Five rounds of the UHF used in LeMac. 191
5.4 Processing one message block in the UHF used in PetitMac. 191

6.1 Round i of Feistel–MiMC. 211
6.2 A 2-staged trick. 213
6.3 Bypassing Two SPN Steps (m “ 3). 214
6.4 Bypassing Two SPN Steps (general case). 215
6.5 Overview of the construction of Poseidon. 215
6.6 Round i of Rescue–Prime. 217
6.7 How to bypass the first round of Rescue–Prime. 219
6.8 Benchmarks of univariate root finding with NTL. 221
6.9 Benchmarks of multivariate root finding with Magma. 224
6.10 The Ciminion encryption over Fp. 225
6.11 Components of Ciminion. 225
6.12 A new multivariate modelization of Ciminion. 227
6.13 Benchmarks of multivariate root finding with Magma. 232
6.14 A new univariate modelization of Ciminion. 233
6.15 Recovery of keystream elements K3 and K4. 233

7.1 Quasi-triangular system for a simple SPN. 242
7.2 First round function of Griffin-π with t “ 4. 250
7.3 Evolution of chosen set of input states to Griffin with 12 branches. . 251
7.4 First round function of Arion-π with t “ 4. 255
7.5 Evolution of chosen set of input states to Arion-π with 4 branches. . . 256
7.6 Round i of XHash8 preceded by an pIq step: pIqpF qpiqpB1qpiqpP3qpiq. . . 259
7.7 Description of Anemoi over prime fields with ℓ “ 1. 261
7.8 Experimental time complexity of our attacks on Griffin and Anemoi. 267

xxiv

List of Tables

2.1 Best key-recovery attacks on reduced-round AES. 33

3.1 ForkSkinny parameters. 47
3.2 Cryptanalysis results against AES, Kiasu-BC, and ForkAES. 48
3.3 Cryptanalysis results against Skinny and ForkSkinny. 63
3.4 Tweakey difference in a differential trail of Skinny (RTK2). 65
3.5 Tweakey difference in a differential trail on ForkSkinny (RTK2). 66
3.6 Tweakey difference in a differential trail when r0 “ 27. 67

4.1 Attacks against 6-round AES in different settings. 80
4.2 Attacks against Kiasu-BC and TNT-AES. 81
4.3 Boomerang and rectangle attacks against variants of Deoxys-BC. . . . 81
4.4 Transition and connection probability for the AES S-box. 132
4.5 Summary of our improved key-recovery attacks on 6-round AES. . . . 151

5.1 Scheduling of AESENC and XOR instructions on modern processors. . 169
5.2 Table of the retained candidates over different parameters sets. 186
5.3 Number of tested and filtered candidates for different settings. 188
5.4 Benchmark results. 194

6.1 Sets of challenges proposed by the Ethereum Foundation. 199
6.2 Complexity of our attack against Feistel–MiMC. 212
6.3 Complexity of our attack against Poseidon. 217
6.4 Complexity of our attack against Rescue–Prime. 220
6.5 Benchmarks of univariate root finding with NTL. 223
6.6 Benchmarks of multivariate root finding with Magma. 223
6.7 Number of rounds N and R in different instances of Ciminion. 226
6.8 Benchmarks of multivariate root finding with Magma. 232

7.1 Theoretical time complexity of polyDet in FreeLunch-based attacks. . 248
7.2 Expected time complexity of polyDet for full-round instances of Griffin. 254
7.3 Experimental results on Griffin with pt, αq “ p12, 3q. 254
7.4 Expected time complexity of polyDet for full-round instances of Arion. 258
7.5 Experimental results on 2-round Arion, with pe, αq “ p3, 121q. 258
7.6 Expected time complexity of polyDet for full-round instances of Anemoi. 266
7.7 Experimental results on Anemoi with pℓ, αq “ p1, 3q. 266

xxv

Publications and Preprints

[Bar24] Augustin Bariant. A Univariate Attack against the Limited-Data
Instance of Ciminion. Cryptology ePrint Archive, Paper 2023/1283,
Accepted to Selected Areas in Cryptography 2024. https://eprint.
iacr.org/2023/1283. 2024.

[BBL+22] Augustin Bariant, Clémence Bouvier, Gaëtan Leurent, and Léo
Perrin. “Algebraic Attacks against Some Arithmetization-Oriented
Primitives”. In: IACR Transactions on Symmetric Cryptology 2022.3
(2022), pp. 73–101. doi: 10.46586/tosc.v2022.i3.73-101.

[BBL+24a] Augustin Bariant, Jules Baudrin, Gaëtan Leurent, Clara Pernot,
Léo Perrin, and Thomas Peyrin. “Fast AES-Based Universal Hash
Functions and MACs Featuring LeMac and PetitMac”. In: IACR
Trans. Symmetric Cryptol. 2024.2 (2024), pp. 35–67. doi: 10.46586/
TOSC.V2024.I2.35-67.

[BBL+24b] Augustin Bariant, Aurélien Boeuf, Axel Lemoine, Irati Manterola
Ayala, Morten Øygarden, Léo Perrin, and Håvard Raddum. “The
Algebraic FreeLunch: Efficient Gröbner Basis Attacks Against
Arithmetization-Oriented Primitives”. In: Advances in Cryptology –
CRYPTO 2024, Part IV. Lecture Notes in Computer Science. Santa
Barbara, CA, USA, Aug. 2024, pp. 139–173. doi: 10.1007/978-3-
031-68385-5_5.

[BDK+24] Augustin Bariant, Orr Dunkelman, Nathan Keller, Gaëtan Leurent,
and Victor Mollimard. Improved Boomerang Attacks on 6-Round
AES. Cryptology ePrint Archive, Paper 2024/977. 2024.

[BDL20] Augustin Bariant, Nicolas David, and Gaëtan Leurent. “Cryptanaly-
sis of Forkciphers”. In: IACR Transactions on Symmetric Cryptology
2020.1 (2020), pp. 233–265. issn: 2519-173X. doi: 10.13154/tosc.
v2020.i1.233-265.

[BL23b] Augustin Bariant and Gaëtan Leurent. “Truncated Boomerang
Attacks and Application to AES-Based Ciphers”. In: Advances in
Cryptology – EUROCRYPT 2023, Part IV. Ed. by Carmit Hazay
and Martijn Stam. Vol. 14007. Lecture Notes in Computer Science.
Lyon, France: Springer, Heidelberg, Germany, 2023, pp. 3–35. doi:
10.1007/978-3-031-30634-1_1.

xxvii

https://eprint.iacr.org/2023/1283
https://eprint.iacr.org/2023/1283
https://doi.org/10.46586/tosc.v2022.i3.73-101
https://doi.org/10.46586/TOSC.V2024.I2.35-67
https://doi.org/10.46586/TOSC.V2024.I2.35-67
https://doi.org/10.1007/978-3-031-68385-5_5
https://doi.org/10.1007/978-3-031-68385-5_5
https://doi.org/10.13154/tosc.v2020.i1.233-265
https://doi.org/10.13154/tosc.v2020.i1.233-265
https://doi.org/10.1007/978-3-031-30634-1_1

Notation

Z The set of integers
N The set of positive integers
Fq The finite field with q elements

|S| The cardinality of a set S
Supp(V) The set of indices where the vector V is non-zero

Ji, jK The set ti, i ` 1, . . . , j ´ 1, ju if i ď j are integers
a ` b Bitwise addition (XOR) if a and b are bit vectors
a } b The concatenation of a and b

xa, by Given a, b P Fn
2 , the scalar product of a and b

1F Equals 1 if the predicate F is true, and 0 otherwise
Frxs The set of univariate polynomials defined over the field F

Frx0 . . . xn´1s The set of multivariate polynomials defined over the field F
P | Q Polynomial P divides polynomial Q

Sn The symmetric group of size n
MnˆmpFq The set of matrices of size n ˆ m over the field F

GLnpFq The set of invertible matrices among MnˆnpFq

DiagpA0 ¨ ¨ ¨ Aℓq A diagonal block matrix composed of matrices A0, ¨ ¨ ¨ Aℓ

Poissonpλq The Poisson law with parameter λ

xxix

PartIPreliminaries

1

Chapter1Introduction to Cryptography

In this chapter, we introduce the reader to the world of cryptography. This chapter
remains high-level, and explains some challenges related to cryptography without
technical details.

Contents
1.1 A Short History . 3
1.2 Modern Cryptography . 5
1.3 Cryptography Nowadays . 7

1.1 A Short History
The term cryptography originates from the Greek words kryptós (meaning “secret”)
and graphein (meaning “to write”), and refers to the study of encryption techniques
that provide secure communication in the presence of adversarial behavior. It is to
be differentiated with the word steganography, from the Greek steganos (“conceal”).
Steganography, instead of encrypting the communication, involves techniques to
conceal a hidden message, physically or within a dummy message. Whereas an
adversarial party knowing the employed steganography technique can recover the
hidden message, cryptography techniques ensure that an adversarial party can not
recover the secret information, even if he knows the encryption technique.

In its simplest form, an encryption technique transforms a message, called
plaintext, into an encrypted version of it, called ciphertext, which is then sent
to the correspondent. Though a malicious eavesdropper can perceive that the
ciphertext is unintelligible, and therefore that an encryption mechanism is used, he
is not capable to decrypt the ciphertext. The ciphertext can however be decrypted
by the legitimate correspondant using a secret information shared with the sender:
a secret key.

The earliest records of cryptographic applications point to Mesopotamia around
1500 BC, when a craftsman wrote an encoded recipe on a clay tablet to protect
the secrecy of the recipe. The cipher used was a monoalphabetic substitution
cipher: each letter is replaced deterministically with another letter. Other use cases
of cryptography were documented in Ancient Greece, in India or in the Roman
Empire during the Antiquity. In the latter, Julius Caesar gave its name to one of

3

4 Chapter 1. Introduction to Cryptography

the most famous encryption process: the Caesar cipher. The generalized Caesar
cipher consists in shifting each letter by a fixed position in the alphabet. Caesar
used a shift of 3 letters (A is encrypted to D, B is encrypted to E. . .) in his private
correspondences.

In the 8th century, the Arabs made drastic advancements in cryptography.
An Arab mathematician, Al-Kindi, invented frequency analysis to break all
monoalphabetic substitution ciphers. He started with the observation that certain
letters in the Arabic alphabet occurred more often than others. For a sufficiently
long ciphertext, the most frequent letter of the ciphertext is likely to be decrypted
to the most frequent letter of the alphabet. This is the first known cryptanalysis
technique.

Most ciphers could not resist frequency analysis, until the polyalphabetic ciphers
introduced in the 15th century by Alberti, an Italian polymath. The work of Alberti
was followed by a new design of one of his compatriots, Bellaso, which remained
unbroken until the second half of the 19th century. This cipher acquired the name
of Vigenere cipher, giving the credit to the French Blaise de Vigenere, although he
only invented a variant of the cipher decades after Bellaso. The Vigenere cipher is
an extension of the Caesar cipher, where a sequence of letters is used as a secret key,
and the secret key is repeated enough times to match the length of the plaintext;
each letter of the plaintext is shifted by a position depending on the key letter
at the same index. This cipher had the particularity of being easy to use and
remaining strong at the time, although it is now broken.

The theory behind cryptography strengthened consequently in the 19th century.
Auguste Kerckhoffs, a Dutch cryptographer, proposed a set of rules for cipher
design in his paper La Cryptographie Militaire [Ker83]. Although some rules are
outdated with the huge technological advances of this last century, cryptographers
still agree with some seminal principles of his work: the security of a cipher should
not depend on the secrecy of the encryption method, but rather on the secrecy of
the key, a piece of information known only by the sender and the receiver.

In essence, this is the foundation of the cryptography we know today, where
encryption methods rely on the use of a secret key to transform a message into
ciphertext. From there, encryption algorithms are commonly designed to take
two inputs: the plaintext and the secret key, and to output the ciphertext. The
corresponding decryption algorithm uses the same secret key to recover the plaintext
from the ciphertext. The use of a secret key offers some important advantages: it
can be easily changed if it has fallen into the hands of the wrong person, and the
cipher can be disclosed publicly so that it can be rightfully cryptanalysed.

The first and the second World War played crucial roles in the development of
a robust cryptography. For fast long distance coordination, most communications
were transmitted through telegramms or radio; these are channels that the enemy
could easily read. In the first World War, the German navy used codes that
substituted words and punctuation with large numbers, where the correspondence
between the coded numbers and their signification was shared beforehand, physically.
With an access to a sufficient number of coded messages, the cryptanalysis team of
the British Admiralty, Room 40, successfully cracked the code. The decryption

1.2. Modern Cryptography 5

of the Zimmermann Telegram, sent by the Germans to Mexico to propose an
alliance if the United States were to enter the war, was one of the reason which
lead the United States to take part in the war. This highlighted the need for strong
cryptographic algorithms for secure communication, in particular for military
purposes. The first cryptographic machines emerged after the end of the first
World War. Among them, the Enigma machine would later be used by the German
army throughout the Second World War. Before the war, the Polish Intelligence
cryptographic team found some advanced techniques to decrypt some messages
encrypted with Enigma. During the war, the British Intelligence continued the
work of the Polishs to successfully break the Enigma machine. According to some
estimations, this would have shortened the war by approximately 2 years.

1.2 Modern Cryptography
In 1945, the American cryptographer Claude Shannon wrote a seminal paper
entitled “A mathematical theory of cryptography” [Sha45], further declassified in
1949. In his work, Shannon defined a desirable property for a secure cipher: the
perfect secrecy. A cipher satisfying the perfect secrecy property does not allow an
attacker to learn any information on the message or the key from the ciphertext.
Shannon proved that for an attacker to learn absolutely zero information on the
key or the message, the key size must be at least the size of the message. However,
very long secret keys are unpractical in most scenarios, and Shannon’s perfect
secrecy property can rarely be satisfied.

In the next decades, the development of computers highly influenced the
design of cryptographic primitives. Instead of being built on character-based
machines, the encryption algorithms were designed to be efficient on software, as
well as integrated circuits, which are both bit-oriented. The older character-based
encryption techniques (Enigma, Vigenere, Caesar. . .), in addition of being broken
in the majority, were also unsuited for the new use cases. IBM designed in 1975 the
Data Encryption Standard (DES) [Des], a cryptographic primitive which became
in 1978 the first cryptography standard of the American governement. DES is a
block cipher, that takes a 64-bit plaintext and a 56-bit key as input and outputs a
64-bit ciphertext. In the big picture, messages longer than 64 bits need to be split
into chunks of 64 bits (after being padded if necessary), the chunks are assembled
and encrypted using DES in a special manner, defined with a mode of operation.
During this process, the same 56-bit key is used to encrypt multiple blocks, and
this directly contradicts the perfect secrecy property defined by Claude Shannon.
Therefore, the security of a block cipher relies on the non feasability for an attacker
to retrieve the key: even though he theoretically possesses enough information to
confirm that a given key is used for the encryption, recovering the right key is
expected to require a brute force search. In the case of DES, the bruteforce search
for the right key takes 256 operations. It should be noted that 256 operations is a
significant amount of computation, but it is computable in practice; it is widely
believed the National Security Agency (NSA) purposely reduced the key size of

6 Chapter 1. Introduction to Cryptography

DES from 264 to 256 to be able to recover secret keys by brute force.

In 1976, Diffie and Hellman proposed the first key exchange protocol [DH76].
This ground-breaking protocol allows two parties to communicate via an unsecure
channel and to guarantee at the end of the communication that they know a shared
secret key that any eavesdropper on the unsecure channel is unable to recover.
The security of the Diffie-Hellman protocol relies on the hardness of the discrete
logarithm problem. This makes it possible to fully communicate on the internet
without the need to share a secret key with a secure physical channel. But the
question of authenticity remains: how to make sure that you are talking to the
right person?

To answer this question, Diffie and Hellman introduced the concept of public key
cryptography [DH76]. Each user generates a secret key and shares to the world a
public key derived from the secret key, which is associated to its identity. Messages
encrypted under a public key of can be decrypted by the intended recipient, using
the associated private key. The security of a public key cryptosystem relies on the
difficulty to compute the secret key from the public key. One year later, Rivest,
Shamir and Adleman presented the first asymmetric (a.k.a. public key) algorithm:
RSA [RSA83], whose security relies on the hardness of large integer factorization.

In the late 1970s and in the 1980s, multiple other public key algorithms were de-
signed, such as the McEliece cryptosystem [McE78], Elgamal cryptosystem [Gam84]
or elliptic curve cryptosystems [Mil85; Kob87]. This new genre of algorithms, the
asymmetric algorithms, led to the rise of public key infrastructures: when navigating
on the internet, we can be ensured to communicate with the holder of the private
key associated to the public key of a given website. The link between the public keys
and the identities is performed and guaranteed by trusted Certificate Authorities.

The study of symmetric ciphers (where the same key is shared between the
sender and the recipient) made a lot of progress in the 1990s. New cryptanalysis
techniques were discovered, such as differential cryptanalysis [BS92b] and linear
cryptanalysis [Mat94]. Raising concerns about the low key size of DES pushed the
National Institute of Standard and Technology (NIST) to organize a standardization
competition in 1997: the Advanced Encryption Standard (AES). AES was won
by the Rjindael algorithm, designed by Daemen and Rijmen [DR02], and the
competition gave the name to the cipher.

In the meantime, Shor made in 1994 a major breakthrough in cryptography:
he presented very efficient quantum algorithms to factor large numbers or to
solve the discrete logarithm problem [Sho94]. Although the quantum computer
technology was (and still is) not advanced enough to make these attacks practicable,
most asymmetric key algorithms were nonetheless potentially vulnerable to the
“Store now, decrypt later” strategy. A party can indeed store current encrypted
communications, and decrypt them in the future, when it has access to a quantum
computer. A few years after Shor, Grover proposed a quantum algorithm to reduce
the complexity of the brute-force search on N elements to

?
N [Gro96].

1.3. Cryptography Nowadays 7

1.3 Cryptography Nowadays
Undoubtedly, the quantum algorithms proposed by Shor pose a big threat to
asymmetric cryptography. Some core problems in asymmetric cryptography
have been broken by quantum computers, but some hard asymmetric problems,
such as the Learning With Error (LWE) problem in lattices, or code-based
cryptography, are still safe from quantum attacks. Schemes based on these
quantum-resistant problems are said to be post-quantum. As RSA is still
one of the most widely used asymmetric algorithms despite being broken by
quantum computers, the NIST launched a competition to standardize post-quantum
asymmetric cryptosystems, won by CRYSTALS-Kyber [SAB+22], CRYSTALS-
Dilithium [LDK+22], Falcon [PFH+22] and SPHINCS+ [HBD+22]. The migration
from quantum-broken to post-quantum cryptography is currently a major challenge
in applied cryptography.

In the scope of symmetric cryptography, Grover’s algorithm offers a speed-up
from 2128 classical operations to 264 quantum operations on symmetric ciphers with
128-bit key. Although it will remain out of reach by quantum computers for decades
(or more probably centuries), it is recommanded to use ciphers with 256-bit key for
quantum-resistance. Moreover, the AES still has a confortable security margin after
more than 25 years of cryptanalysis. If AES is indeed trusted to be secure, it is not
the best suited algorithm for all computing environnements. The growing usage
of the Internet of Things (IoT), connected micro-chips, tiny sensors, or implanted
medical devices has raised a demand for very efficient encryption methods in
micro-architectures. The performance metrics of these new types of algorithms,
called lightweight algorithms, vary depending on the use case. The NIST launched
in 2019 a lightweight cryptography competition, won by ASCON [DEM+21] in
2023. This competition led to the design of many structurally different ciphers,
whose cryptanalysis is still making progress, several years after their publications.

Many other cryptographic primitives fall under the umbrella of symmetric
cryptography, such as hash functions, universal hash functions, or Message
Authentification Codes (MACs); their design and analysis is still the subject
of active research.

Chapter2Symmetric Cryptography

Symmetric cryptography is a field of cryptography relative to the study of secure
communication through an unsecure channel using a shared secret key, a so-called
symmetric key.

Contents
2.1 Symmetric Primitives and Constructions 10

2.1.1 (Tweakable) Block Ciphers 10
2.1.2 Cryptographic Hash Functions and Sponges 11
2.1.3 Constructions Based on Iterated Round Functions . . 12
2.1.4 Round Function Constructions 13
2.1.5 MACs and Related Constructions 15
2.1.6 Stream Ciphers . 16

2.2 Cryptanalysis . 16
2.2.1 Attacker Models . 17
2.2.2 Differential Cryptanalysis 19
2.2.3 Other Cryptanalysis Techniques 26

2.3 The Block Cipher AES . 28
2.3.1 Description . 28
2.3.2 Properties of the Components 29
2.3.3 Security . 31
2.3.4 AES-based Constructions 33

2.4 MILP: an Automatic Tool for Cryptography 36
2.4.1 Description of a MILP model 36
2.4.2 Example on AES . 37

In this section, we denote the two users Alice and Bob and the malicious
eavesdropper Eve, as highlighted by Figure 2.1. Eve can intercept all the trafic
between Bob and Alice, encrypted with an encryption algorithm E using a key
K, denoted EK , and we further suppose that she is aware of some of the clear
messages that Bob sends to Alice: typically, each day, the first message that Bob
sends to Alice is likely to be “Hello”. Thus, it is commonly assessed that the
attacker Eve has access to some pairs of plaintext/ciphertext encrypted with EK .
A secure symmetric encryption algorithm guarantees that Eve is unable to recover

9

10 Chapter 2. Symmetric Cryptography

Bob AliceE E´1

Eve

Figure 2.1: Secure communication via an unsecure channel.

any information on K or on the unkown messages. Moreover, we expect that
Eve should not be able to recover any information on the key even if she chooses
the messages that Bob sends to Alice. In this thesis, we consider the black-box
model, where Eve only has access to inputs and outputs of EK . Other models exist
where Eve is able to intercept additional pieces of information on the execution
of the algorithm, such as its running time, power consumption, electromagnetical
radiations, or even variables used during the execution of the algorithm. These
models encompass the grey-box and the white-box models.

Section 2.1 presents different cryptographic primitives studied in this thesis.
Section 2.2.1 defines the notion of cryptanalysis and presents the main cryptanalysis
techniques. The AES is described in Section 2.3, along with some AES-based
constructions studied in this thesis. In Section 2.4, we describe how Mixed Integer
Linear Programming (MILP) can be used in cryptography.

2.1 Symmetric Primitives and Constructions
Cryptographic schemes are often built from small building blocks, called
cryptographic primitives, which are easier to analyse. Each primitive is designed to
have specific and precise properties, and they can be combined to create a larger
and more sophisticated construction. The security of the scheme can be proven,
under the hypothesis that the primitives satisfy the required properties. In this
section, we describe the main symmetric cryptography primitives.

2.1.1 (Tweakable) Block Ciphers
Block ciphers are one of the most popular types of primitives, and can be extended
to encryption schemes using a mode of operation. The two most famous symmetric
primitives, DES and AES, are both block ciphers.

Definition 2.1 (Block Cipher). A block cipher is a family of n-bit permutations
indexed with a k-bit key (choosing a key corresponds to choosing a member in the
family), of signature:

2.1. Symmetric Primitives and Constructions 11

E : t0, 1uk ˆ t0, 1un Ñ t0, 1un

K, P ÞÑ C.

For any fixed key K, EK : P ÞÑ C is a permutation of n bits (typically,
n P t64, 128u). In the corresponding encryption algorithm, long messages are
padded to a length multiple of n, split into chunks of n bits, and assembled and
encrypted with E and a mode of operation.

Modes of operation. Block ciphers are used jointly with modes of operation.
Among them, we can list the cipher block chaining (CBC), the cipher feedback
(CFB), the output feedback (OFB) and the counter mode (CTR). Most modes
of operation have proven security up to 2n{2 queries [Rog11, p. 36], due to the
birthday bound.

Definition 2.2 (Tweakable Block Cipher [LRW02]). A tweakable block cipher is
a family of n-bit permutations indexed with a k-bit key and a t-bit tweak, with
signature:

E : t0, 1ut ˆ t0, 1uk ˆ t0, 1un Ñ t0, 1un

T, K, P ÞÑ C.

The tweak, as opposed to the key, is public and supposed to be controlled
by the attacker. This offers more freedom for an attacker to mount an attack,
therefore tweakable block ciphers are usually slightly heavier than block ciphers
with similar security. One of the advantages of tweakable block ciphers is that the
security of modes of operation can easily be proven up to 2n queries.

Notation. In a block cipher, EK denotes the n-bit permutation under the key
K. When the choice of K is unambiguous, we may use the notation E instead
of EK to denote the n-bit permutation. In a tweakable block cipher, the pair
composed of the tweak and the key pT, Kq is commonly called tweakey and denoted
TK. Similarly to the block cipher, we denote ET K the n-bit permutation under a
tweakey pT, Kq and denote it E if the tweakey choice is unambiguous.

2.1.2 Cryptographic Hash Functions and Sponges
Definition 2.3 (Cryptographic Hash Functions). A hash function is a function
that maps arbitrary messages to a fixed size (n bits) digest, of signature:

H : t0, 1u˚ Ñ t0, 1un

M ÞÑ D.

A cryptographic hash function should have the following three properties:

12 Chapter 2. Symmetric Cryptography

0

0

c

r

M0

P

M1

P P

Mn´1

P

Absorption

Z0

P

Z1

Squeezing

Figure 2.2: Scheme of the sponge construction.

• Preimage Resistance: given a digest D, it should be hard to find a message
M P t0, 1u˚ such that HpMq “ D.

• Second Preimage Resistance: given a message M0 P t0, 1u˚, it should be hard
to find a message M1 P t0, 1u˚ such that M1 ‰ M0 and HpM0q “ HpM1q.

• Collision Resistance: it should be hard to find a pair of messages pM0, M1q P

pt0, 1u˚q2 such that M0 ‰ M1 and HpM0q “ HpM1q.

In particular, a cryptographic hash function should be hard to invert.
Cryptographic hash functions find numerous applications in cryptography, from
password storage to digital signatures, and are used in advanced protocols, such as
Fiat-Shamir for zero-knowledge proofs. In the following, we refer to them as hash
functions, omitting the "cryptographic" adjective.

Hash functions are commonly built with the sponge construction, introduced
in 2007 by Daemen et al. [BDP+07]. The sponge construction relies on a public
permutation P and splits the state in two parts: the r-bit outer part and c-bit
inner part, where r and c are respectively the rate and the capacity. The hash
function consists in two phases: first, in the absorbtion phase, the message is added
to the outer part between each iteration of P . Second, when the whole message has
been ingested, the squeezing phase iterates P and outputs the outer part between
each iteration. The sponge construction is depicted in Figure 2.2. The security
of the sponge construction is proven up to 2 c

2 . To guarantee 128-bit security, the
state size r ` c should be greater than 256, which makes hash functions heavier
than block ciphers.

2.1.3 Constructions Based on Iterated Round Functions
Building a secure cryptographic primitive from scratch is a difficult task. Instead,
designers often start from a round function, and iterate it a sufficient number of
time so that the primitive possesses the required security properties.

Block ciphers. A common choice to design a secure block cipher is to iterate
a round function over a certain number of rounds r, and to add a round key Ki

2.1. Symmetric Primitives and Constructions 13

P F F . . . F F C

K0 K1 K2 Kr´2 Kr´1 Kr

Key schedule

K

Figure 2.3: Block cipher built with the iterated round function strategy.

M F0 F1 . . . Fr´2 Fr´1 D

Figure 2.4: Public permutation built with the iterated round function strategy.

before each round and after the last round. The round keys are derived from the
master key K, using a key schedule, and are also called subkeys. Such an approach
is depicted in Figure 2.3. In the case of a tweakable block cipher, the key schedule
is replaced by a tweakey schedule, and a round tweakey (or subtweakey) TKi is
added before each round and after the last round, derived from the master tweakey
pT, Kq.

In order to obtain a permutation from P to C when the (twea)key is fixed, the
round function F needs to be a permutation. The round i is defined as the key
addition Ki followed by the round function F , and an additionnal round (twea)key
addition pT qKr is performed after the last round.

Public permutations. Likewise, public permutations can be designed with the
iterated round strategy. The round function is a permutation iterated with no key
addition, and to avoid some attacks, the round function Fi of round i slightly differs
from F0 (typically with a constant addition). Figure 2.4 depicts this construction
for public permutations.

Security benefits. An advantage of the iterated round function strategy is its
convenience for cryptanalysis: cryptanalysts can try to mount attacks on reduced
versions of the primitives with a lower number of rounds. The gap between the
number of attacked rounds and the total number of rounds defines the security
margin. If the security margin remains high enough after significant cryptanalysis,
the primitive is thought to be secure.

2.1.4 Round Function Constructions
Multiple design strategies exist to build a round function, among which three stand
out by the amount of analysis they have received.

14 Chapter 2. Symmetric Cryptography

Xi

Ki

S

S

S

S

L Xi`1

((a)) SPN.

Xi

Yi

f Ki

Xi`1

Yi`1

((b)) Feistel.

Figure 2.5: Round function constructions.

Substitution-Permutation Networks (SPN). In SPNs, the n-bit state is
divided into t words of ℓ bits (with typically ℓ “ 4 or ℓ “ 8). The round key Ki

is first added to the state or to part of the state. Each word then goes through
a fixed permutation of ℓ bits, called S-box. This layer is called the S-box layer
or the non-linear layer. Then, the state is mixed by multiplying it by a binary
matrix (defined over F2); the corresponding step in the round function is called the
linear layer. SPN are very popular among cryptographic designs, as highlighted
by the numerous candidates using this strategy: AES [DR02], Serpent [BAK98],
Present [BKL+07], Rectangle [ZBL+15], Skinny [BJK+16], Gift [BPP+17], among
others.

Feistel Networks. Feistel networks are an older but still popular design strategy
for block ciphers, first applied to Lucifer [Fei73] in 1973. In the big picture, Feistel
networks allow to transform functions into permutations. In Feistel networks, the
state is split in two parts, commonly named the left and right part. At round
i, the left part goes through a function f , keyed with the round key Ki, and is
XORed to the right part. Then, the left and right parts are swapped. Figure 2.5(b)
depicts one Feistel round. Among ciphers built on Feistel Networks, we can cite
the Data Encryption Standard (DES) [Des], GOST [Gos], CAST-128 [Ada97],
Simon [BSS+13], and Simeck [YZS+15], among others.

Addition-Rotations-XORs (ARX). ARX constructions developed from a
more practical perspective. These operations can be implemented with a low
cost in software and in hardware and the addition provides the construction
with non-linearity. Multiple hash functions use this strategy, such as two SHA-3
finalists Blake [AMP+14] and Skein [FLS+10], as well as stream ciphers, such as
Salsa20 [Ber08b], ChaCha [Ber08a] (supported by TLS 1.3), and block ciphers
TEA [WN95] and XTEA [WN98].

2.1. Symmetric Primitives and Constructions 15

2.1.5 MACs and Related Constructions
Definition 2.4 (Message Authentification Code (MAC)). A MAC is a key-
dependent tag associated to a message, with the following signature:

MAC : t0, 1uk ˆ t0, 1u˚ Ñ t0, 1un

K, M ÞÑ T.

In order to be secure, a MAC should be hard to forge by a party that does
not know the key K. In order to guarantee the authenticity and integrity of a
message, Bob can send a message with the corresponding MAC under the shared
secret key K. Upon receipt, Alice checks if the MAC of the message under the key
K corresponds to the MAC sent by Bob. If so, Alice is ensured that Bob sent this
message and that the message was not modified.

MACs can be combined with encryptions algorithms, with three main
approaches:

• Encrypt-then-MAC : the plaintext is encrypted to a ciphertext, and the MAC
is performed on the ciphertext.

• MAC-and-Encrypt: the plaintext is encrypted to a ciphertext, and the MAC
is performed on the plaintext in parallel.

• MAC-then-Encrypt: the MAC is performed on the plaintext, and the MAC
and the plaintext are encrypted into a ciphertext.

More generally, encryption schemes that provide authenticity are called Au-
thenticated Encryptions (AE). Multiple other constructions exist for Authenticated
Encryption, such as the Duplex construction [BDP+12], the Galois Counter Mode
(GCM), or the Counter with Cipher Block Chaining-Message Authentication Code
(CCM) [Dwo07b] modes of operation.

MACs can be constructed from mathematical constructions, known as Universal
Hash Functions (UHFs). UHFs take as input a secret key and a plaintext, and
map them to a fixed-length digest. Formally, we consider them as a family of
functions indexed by a key, with two different security notions: almost-universal
hash functions (ε-AU), and almost-XOR-universal hash functions (ε-AXU), defined
as follows:

Definition 2.5 (ε-AU). A family of functions HK : A Ñ B for K P K is ε-almost-
universal if:

@m ‰ m1 P A, |tK P K : HKpmq “ HKpm1qu| ď ε|K|.

Definition 2.6 (ε-AXU). A family of functions HK : A Ñ Fb
2 for K P K is

ε-almost-XOR-universal if:

@m ‰ m1 P A, @d P Fb
2, |tK P K : HKpmq ‘ HKpm1q “ du| ď ε|K|.

16 Chapter 2. Symmetric Cryptography

The ε-AU notion only requires collision resistance on average over a random
key. The ε-AXU notion is a stronger variant to cover an arbitrary output difference,
rather than just collisions. In particular, if H is an ε-AXU family, it is also an
ε-AU family.

UHF security notions are relatively weak, so that they can be fulfilled by
purely combinatorial constructions. For instance, GHASH (used in GCM [MV04]),
Poly1305 [Ber05], and NH (used in UMAC [BHK+99]), rely on finite-field
multiplications; they are quite fast and have provable security. UHF are on
the other hand quite versatile: a UHF can be turned into a MAC with a few extra
components. For instance, GMAC [Dwo07a] and Poly1305 [Ber05] are two popular
MACs using the Wegman-Carter-Shoup construction [CW79; Sho96] to turn the
UHF into a MAC.

In Chapter 5, we will construct a ε-AU Universal Hash Function framework,
and will propose two MACs based on UHFs of the framework.

2.1.6 Stream Ciphers
Stream ciphers are, together with block ciphers, one of the two most popular
families of symmetric ciphers. Instead of processing the plaintext, stream ciphers
generate keysteam bits to be XORed to the plaintext. The keysteam bits should
differ for each encryption, therefore an Initialisation Vector (IV) is generated at
each encryption and used to derive keystream bits independent from one message
encryption to another. In short, a stream cipher has the following signature:

S : t0, 1un ˆ t0, 1uk Ñ t0, 1u˚

IV, K ÞÑ pZiqiPZ.

Ciphertext bits are obtained by XORing plaintext bits pPiqiPZ with keystream
bits:

@i P Z, Ci “ Pi ‘ Zi.

Examples of stream ciphers include Snow [EJ00], Trivium [De 06], Salsa20 [Ber08b]
and ChaCha [Ber08a].

2.2 Cryptanalysis
Unfortunately, the security properties of most constructions presented in Section 2.1
cannot be proven. Instead, these security properties are studied by cryptographers
through cryptanalysis: cryptographers look for the best cryptographic attacks
against cryptographic algorithms under different attacker models. Cryptographic
attacks are algorithms that break a security property, by for instance recovering
the secret key used in a block cipher.

The confidence in a particular cryptographic primitive is gained after a sufficient
amount of cryptanalysis is performed against this primitive, if the best attack does
not threaten its security. A cryptographic attack is valid if its time complexity is

2.2. Cryptanalysis 17

less than 2s, where s is the claimed security of the underlying algorithm. Common
security parameters are s “ 128, as it is unlikely that at any time in the future, a
party will be capable of running 2128 classical operations. For sensitive encryption,
s “ 256 can be used to further mitigate the risks.

The goals and types of cryptographic attacks heavily depend on the crypto-
graphic constructions under consideration and on the attacker models. These
attacker models are chosen to represent the capabilities of an attacker in the real
world. Naturally, different use cases of cryptography lead to different attacker
models. In Section 2.2.1, we describe different types of attacks and attacker
models against symmetric cryptographic constructions. We then detail differential
cryptanalysis in Section 2.2.2, a concept that will be extensively studied in this
thesis, and finally introduce other cryptanalysis techniques in Section 2.2.3.

2.2.1 Attacker Models
2.2.1.1 Cryptanalysis of block ciphers

Let us denote E a block cipher with a k-bit key K, claiming a security of k. In
real world scenarios, an attacker may have access to pairs of plaintext/ciphertext
values of E. For example, the attacker may know that the plaintext sent is a TLS
packet, and by another way capture the corresponding ciphertext. Using pieces of
information on the structure of a TLS packet, the attacker may recover pairs of
corresponding plaintext/ciphertext through E.

Attacker model. A common attacker model assumption is to consider that the
attacker has access to an oracle which gives the attacker pairs of plaintext/ciphertext
values. From there, three attacker models are described in Figure 2.6. In the known
plaintext model, the attacker gets access to a series of plaintext/ciphertext pairs
under the key K, but does not choose either of them. In the chosen plaintext (resp.
ciphertext) models, the attacker chooses a set of plaintexts (resp. ciphertexts) to
encrypt (resp. decrypt) through EK (resp. E´1

K) and gets the results. In the CP
and CC models, the attacker is supposed to query the data once and for all: the
plaintexts P0 . . . Pn (resp. ciphertext C0 . . . Cn) are queried at the beginning of the
attack as a single big query. A variant of this attacker model is the Adaptatively
Chosen Plaintext (ACP) or Ciphertext (ACC) models, in which the attacker
may ask for queries which depend on previous output queries. Combinations of
previously mentionned models are also possible. Although these attacker models
may relate differently to real-world scenarios, they are often all considered in the
cryptanalysis of block ciphers, since they all give important insights on the security
of a block cipher. Another special yet important attacker model is the Related
Key (RK) model. The attacker has access to encryption and decryption oracle
under the secret key, and may also ask to add a chosen difference to the key.

We will now present the different goals of an attack against block ciphers. Two
main types of attack exist against block ciphers: distinguishing and key-recovery
attacks.

18 Chapter 2. Symmetric Cryptography

EK

Eve

P0
...

Pn

C0
...

Cn

((a)) Known plaintext
(KP).

EK

Eve

P0
...

Pn

C0
...

Cn

((b)) Chosen plaintext
(CP).

EK
´1

Eve

C0
...

Cn

P0
...

Pn

((c)) Chosen ciphertext
(CC).

Figure 2.6: Attacker models for block ciphers.

Distinguishing attacks. In distinguishing attacks, the attacker is given one of
two possible oracles, each with probability 1{2:

• The first oracle corresponds to encryptions/decryptions of the block cipher
under a secret key K.

• The second oracle is an oracle simulating a random permutation.

The goal of the attacker is to distinguish between both cases, with success
probability p ą 1{2.

Key-recovery attacks. In key-recovery attacks, the attacker has access to an
oracle depending on its attacker model, and its goal is to recover the key K. A
variant of the key-recovery attack is the equivalent-key-recovery attack, where a
key-dependent piece of information is recovered by the attacker, which is enough
to compute part of the plaintext from the ciphertext or vice-versa.

Complexity of an attack. The complexity of an attack against a block cipher
has 3 components: the data complexity, corresponding to the number of queries
made to the oracle, the time complexity, corresponding to the number of operations
performed by the algorithm (without taking into account parallelization), and
the memory complexity, corresponding to the maximum amount of storage space
needed to mount the attack. In cryptography, it is standard to measure the time
complexity as the number of equivalent encryptions, as this allows to compare
the time complexity of the attack to the bruteforce search, which requires 2k

encryptions for a success probability of 1. In this thesis, these three complexity
components are referred as pD, T, Mq.

Attacking weak keys. An attacker can mount an attack by hoping that a key
belongs to a set of weak keys of size 2w. In this case, the attack has a low success
probability p “ 2w´k, and is acceptable if the time complexity T is such that
T ă 2w, since 2w corresponds to the complexity of the brute-force over the weak
key space.

2.2. Cryptanalysis 19

0

0

c

r

M0

0

M0

P
C

0

0

Figure 2.7: Preimage attack on a Sponge construction from a CICO solution.

2.2.1.2 Cryptanalysis of cryptographic permutations
As mentionned in Section 2.1.2, some constructions, such as the Sponge
construction [BDP+07], rely on strong cryptographic permutations. The authors
of Keccak propose to analyse the security of such permutations with the Constraint
Input Constraint Output (CICO) problem [BDP+09]. The CICO problem has
become a standard for the analysis of cryptographic permutations. A natural
instance of the problem can be stated in the following form:

Problem 2.1 (CICO problem). Let F : Fn
2 Ñ Fn

2 be a permutation and 1 ď ℓ ă n
an integer. The goal is to find x P t0uℓ ˆ Fn´ℓ

2 such that F pxq P t0uℓ ˆ Fn´ℓ.

The generic approach to solve the CICO problem is to generate many inputs
x P t0uℓ ˆ Fn´ℓ

2 , then apply F on them and check whether F pxq P t0uℓ ˆ Fn´ℓ

holds. After 2ℓ applications of F on average, a CICO solution is found. Therefore,
we often consider the CICO problem with a large ℓ so that the generic attack is
infeasible (typically ℓ ě 128). Note that the generic CICO attack can also be
considered the other way around: generate random y P t0uℓ ˆ Fn´ℓ

2 , apply F ´1

and check whether F ´1pyq P t0uℓ ˆ Fn´ℓ
2 , which should happen on average after 2ℓ

iterations. This is the reason that led us to fix the same number of bits in input
and output in our formulation of the CICO problem. Note that the l-bit prefix of
x and F pxq are arbitrarily fixed to 0 in the original CICO problem, but we expect
the same difficulty with any other input/output values.

In practice, a variant to the CICO problem (with fixed bits in the c-bit input
suffix and fixed bits in the r-bit output prefix) can be solved to find a preimage of
0 under a sponge function, as described in Figure 2.7.

2.2.2 Differential Cryptanalysis
Differential cryptanalysis is one of the main attack families against cryptographic
algorithms. It was introduced by Biham et Shamir in 1991 [BS92a] to break 15
out of 16 rounds of DES. The idea is to introduce a difference in a message or
another public input controlled by the attacker, and to track the propagation of
this difference through the cryptographic algorithm. By carefully analysing the
probability of the difference propagation, it is possible to estimate the probability

20 Chapter 2. Symmetric Cryptography

that a certain difference occurs in the output of the cryptographic algorithm, and
use this knowledge to mount an attack.

2.2.2.1 Formalisation of differential cryptanalysis
The following definition is a formal description of a differential over a function.

Definition 2.7 (Differential probability). Let F : Fi
2 Ñ Fo

2 be a function, ∆in P Fi
2

and ∆out P Fo
2 be differences. A differential ∆in ÝÑ

F
∆out through a function F has

a probability defined as:

p “ Prr∆in ÝÑ
F

∆outs “ Pr
XPFi

2

rF pXq ` F pX ` ∆inq “ ∆outs

“
1
2i

ˇ

ˇ

␣

X P Fi
2 | F pXq ` F pX ` ∆inq “ ∆out

(ˇ

ˇ .

In this case, we denote the differential ∆in
p

ÝÑ
F

∆out.

The probability of a differential can theoretically be computed by counting the
number of inputs X that satisfy the differential; in practice, the number of possible
inputs X is too large and counting the number of such inputs naïvely is infeasible.

When considering block ciphers, the function F is a permutation (i “ o) and
depends on the key K. We define the expected differential probability as an average
on all keys:

Definition 2.8 (Expected differential probability). Let E be a block cipher
EK : Fn

2 Ñ Fn
2 with K P K, and let ∆in P Fn

2 , ∆out P Fn
2 be differences. A

differential ∆in ÝÑ
E

∆out through E has an expected differential probability p
defined as:

Prr∆in ÝÑ
E

∆outs “ Avg
KPK

„

Pr
XPFn

2
rEKpXq ` EKpX ` ∆inq “ ∆outs

ȷ

“
1

2n|K|
|tpK, Xq P K ˆ Fn

2 | EKpXq ` EKpX ` ∆inq “ ∆outu| .

In this case, we denote the differential ∆in
p

ÝÑ
E

∆out.

For permutations, the probability of the backward differential is the same as the
probability as the forward differential. This is highlighted by the following lemma,
easily provable by counting the elements satisfying the differential transition:

Lemma 2.1. Let ∆in
p

ÝÑ
E

∆out be a differential over a family of permutation E.
The differential ∆out ÝÝÑ

E´1 ∆in has a probability p.

Computing the exact probability of a given differential over an arbitrary
family or permutations is challenging. Therefore, to estimate the probability
of a differential of a SPN cipher, a common method is to assume that the cipher is
a Markov cipher.

2.2. Cryptanalysis 21

Definition 2.9 (Markov cipher [LMM91]). A Markov cipher is an iterated cipher
EK “ Er´1

K ˝ ¨ ¨ ¨ ˝ E0
K operating on Fn

2 , such that:

@i P J0, r ´ 1K, ∆in, ∆out P Fn
2 , Pr

KPK
rEi

KpXq ` Ei
KpX ` ∆inq “ ∆outs

is independent of X. This typically happens when Ei
K starts with a subkey addition

and if the subkey is uniformly distributed over Fn
2 when K is uniformly distributed

of K.

If the round subkeys of a Markov ciphers are independent, the probability of a
multiple SPN rounds can be computed using differential trails.

Definition 2.10 (Differential trails). Let EK “ Er´1
K ˝ ¨ ¨ ¨ ˝ E0

K be an iterated
cipher on Fn

2 . Let us denote Ẽi
K “ Ei

K ˝ ¨ ¨ ¨ ˝ E0
K for i P J0, r ´ 1K. A differential

trail ∆0 ÝÝÑ
E0

K

∆1 ÝÝÑ
E1

K

. . . ∆r´1 ÝÝÝÑ
Er´1

K

∆r over EK has a probability defined as:

Prr∆0 ÝÝÑ
E0

K

. . . ÝÝÝÑ
Er´1

K

∆rs “ Pr
K,X

r@i P J1, rK, Ẽi´1
K pXq ` Ẽi´1

K pX ` ∆0q “ ∆is.

In particular, it follows from the definition that:

Prr∆0 ÝÝÑ
E0

K

∆1 ÝÝÑ
E1

K

. . . ∆r´1 ÝÝÝÑ
Er´1

K

∆rs ď Pr
K,X

rEKpXq ` EKpX ` ∆0q “ ∆rs

“ Prr∆0 ÝÝÑ
EK

∆rs,

and it can easily be proven that:
ÿ

∆1...∆r´1PFn
2

Prr∆0 ÝÝÑ
E0

K

∆1 ÝÝÑ
E1

K

. . . ∆r´1 ÝÝÝÑ
Er´1

K

∆rs “ Prr∆0 ÝÝÑ
EK

∆rs. (2.1)

If EK is a Markov cipher with independent round keys, the round transitions are
independent, so the expected probability of the differential trail can be computed
as the product of all round transition probability:

Prr∆0 ÝÝÑ
E0

K

∆1 ÝÝÑ
E1

K

. . . ∆r´1 ÝÝÝÑ
Er´1

K

∆rs “

r´1
ź

i“0
Pr

„

∆i ÝÝÑ
Ei

K

∆i`1

ȷ

.

The Markov cipher assumption is very convenient as it allows to multiply the
differential probabilities of each round and obtain a lower bound on the probability,
but its accuracy needs to be carefully analysed. For unkeyed functions, computing
the probability of differential trails as the product of round transition probabilities
is questionnable, as no subkey addition occurs, and the notion of Markov cipher
lacks sense. This is discussed by Beyne and Rijmen for ciphers in the fixed key
model [BR22b]. Even for keyed ciphers, the Markov cipher assumption has been
challenged, for instance on ARX ciphers when multiple operations are performed
with no key addition [XLJ+22], or when the subkey addition is partial and when
the subkeys are not independent [PT22]. Despite these inaccuracies, differential
trails are still the most popular way of finding high probability differentials over
iterated ciphers.

22 Chapter 2. Symmetric Cryptography

Differential transitions over simple components. One can compute
probabilities of differentials over simple components of the iterated cipher, and
multiply the probabilities to give a lower bound of the probability of the full-round
differential. For some special components, computing the exact probability of
differential trails is feasible:

• When the function F is linear (and independent of the key), the differential
∆in ÝÑ

F
∆out occurs with probability 1F p∆inq“∆out .

• When the function F is a constant addition or a key addition, the differential
∆in ÝÑ

F
∆out occurs with probability 1∆in“∆out .

• When the function F is an S-box layer (independent of the key), i.e. there
exists an integer k such that ℓ “ n

k is a small integer (typically ℓ P t4, 8u)
and:

X “ X0} . . . }Xk´1 F pXq “ S0pX0q} . . . }Sk´1pXk´1q,

we denote:
∆in “ ∆0

in} . . . }∆k´1
in ∆out “ ∆0

out} . . . }∆k´1
out .

For i P J0, k ´ 1K, we may compute si the number of partial solutions for Xi

by enumerating all 2ℓ possible Xi:

si “

ˇ

ˇ

ˇ
tXi P Fℓ

2 | SipXi ` ∆i
inq “ ∆i

outu
ˇ

ˇ

ˇ
.

Then, it follows that:

Prr∆in ÝÑ
F

∆outs “
1
2n

|tX P Fn
2 | F pXq ` F pX ` ∆inq “ ∆outu|

“

śk´1
i“0 si

2n
.

(2.2)

In a differential trail, S-boxes which have a non-zero difference in input and
output are called active S-boxes. We now study in more detail the differential
transitions over an S-box S.

2.2.2.2 Differential properties of S-boxes

Let us first define S-boxes.

Definition 2.11 (S-box). An ℓ-to-k-bit S-box is a function of signature Fℓ
2 Ñ Fk

2.

In this thesis, we only consider bijective S-boxes with ℓ “ k; we call them ℓ-bit
S-boxes. In the following, S denotes the S-box of a cipher, and ℓ the bit size of the
S-box.

2.2. Cryptanalysis 23

Definition 2.12 (Difference Distribution Table). The Difference Distribution
Table (DDT) of an S-box S is a 2ℓ ˆ 2ℓ table DDTS such that for all ∆in, ∆out P Fℓ

2,

DDTSr∆in, ∆outs “ |tX P Fℓ
2|SpXq ` SpX ` ∆inq “ ∆outu|

“ 2ℓ Prr∆in ÝÑ
S

∆outs.

The DDT is an important tool for cryptographers since it keeps the information
of all the differential transitions over an S-box. It can be precomputed in 22ℓ

lookups, and is a great tool for designers to find S-boxes with good properties, or
for cryptanalysts to efficiently mount attacks based on differential trails. A first
property of the DDT of an S-box over Fℓ

2 is that each entry of the DDT is even.
Indeed, if X is a solution to SpXq ` SpX ` ∆inq “ ∆out, then X ` ∆in is also
solution: all solutions go by pair if ∆in ‰ 0 (the case ∆in “ 0 is trivial).

Definition 2.13 (Differential Uniformity [Nyb94]). The Differential Uniformity
of an S-box S is defined as:

DUS “ max
∆inPFℓ

2zt0u

∆outPFℓ
2zt0u

rDDTSr∆in, ∆outss .

The differential uniformity relates to the strength of an S-box. Over Fℓ
2, S-boxes

have differential uniformities of at least 2; an S-box with differential uniformity
exactly 2 is said to be Almost Perfectly Non-linear (APN).

Property 2.1. Let S be a ℓ-bit S-box. We have:

Avg
∆inPFℓ

2zt0u

∆outPFℓ
2zt0u

DDTSr∆in, ∆outs “
2ℓ

2ℓ ´ 1 .

Proof.

Avg
∆inPFℓ

2zt0u

∆outPFℓ
2zt0u

DDTSr∆in, ∆outs “

ˇ

ˇtpX, ∆in, ∆outq P Fℓ
2 ˆ pFℓ

2zt0uq2 | SpX ` ∆inq ` SpXq “ ∆outu
ˇ

ˇ

p2ℓ ´ 1q2 ,

Given X P Fℓ
2 and ∆in P Fℓ

2zt0u, it is easy to see that there is exactly one ∆out ‰ 0
verifying SpX ` ∆inq ` SpXq “ ∆out, therefore:

Avg
∆inPFℓ

2zt0u

∆outPFℓ
2zt0u

DDTSr∆in, ∆outs “
1

p2ℓ ´ 1q2 |tpX, ∆inq P Fℓ
2 ˆ Fℓ

2zt0uu|

“
2ℓp2ℓ ´ 1q

p2ℓ ´ 1q2

“
2ℓ

2ℓ ´ 1 .

24 Chapter 2. Symmetric Cryptography

This implies the following lemma, that we extensively use in Chapter 3.

Lemma 2.2. Let S be a 8-bit S-box. For two random difference ∆in ‰ 0, ∆out ‰ 0,
the equation SpX ` ∆inq ` SpXq “ ∆out has approximately one solution X on
average.

Precisely, the number of solutions of the equation is 256
255 on average, but it is

reasonable to approximate it to 1, as it greatly simplifies the writing of the attacks.
Equation 2.2 can now be revisited with the DDT of an S-box S, when F is an

S-box layer using a single S-box S. Let

∆in “ ∆0
in} . . . }∆k´1

in ∆out “ ∆0
out} . . . }∆k´1

out .

We have:

Prr∆in ÝÑ
F

∆outs “
1
2n

k´1
ź

i“0
DDTSr∆i

in, ∆i
outs. (2.3)

Computing the probability of a differential through an S-box layer being done
efficiently, we can now compute the probability of a differential through a SPN
round function F “ L ˝ SB ˝ AK, where AK is the key addition, SB is the
S-box layer, and L is the linear layer. First, the key addition does not change the
difference of the input. Then, we remark that:

tX P Fn
2 | L ˝ SBpX ` ∆inq “ ∆outu “ tX P Fn

2 | SBpX ` ∆inq “ L´1p∆outqu.

The size of the second set is related to the differential probability through a
S-box layer from a difference ∆in to a difference L´1p∆outq and can be computed
efficiently with Equation 2.3.

2.2.2.3 Truncated differential cryptanalysis

In some cases, the probability of a differential is well estimated by the highest
probability differential trail with the given input/output differences. However, for
some ciphers, there is not a single dominant differential trail, but instead many
small probability ones, whose probabilities can be summed up to better estimate
the probability of the full differential, using Equation 2.1; this is known as the
clustering effect. In addition, there are some cases where many high probability
differentials exist over a cipher with different input and output differences. These
observations lead to the introduction of truncated differential cryptanalysis by
Knudsen in 1994 [Knu95]. Instead of considering pairs with fixed input/output
differences, a truncated differential tracks pairs whose input and output differences
belong to predefined sets of differences. Truncated differentials are constructed to
be of probability higher than standard differentials, since they include differentials
with multiple input/output differences. The same holds for truncated differential
trails, which include many differential trails.

2.2. Cryptanalysis 25

Definition 2.14 (Truncated differential). Let E be a block cipher EK : Fn
2 Ñ Fn

2 ,
with K P K. Let Din and Dout be sets of elements of Fn

2 . The probability of the
truncated differential Din ÝÝÑ

EK
Dout is defined as:

Pr
”

Din ÝÝÑ
EK

Dout

ı

“ Avg
KPK

∆inPDin

Pr
X

rEKpXq ` EKpX ` ∆inq P Douts.

The probability of a truncated differential trail can also be written as:

Pr
”

Din ÝÝÑ
EK

Dout

ı

“
ÿ

∆outPDout

¨

˝ Avg
KPK

∆inPDin

Pr
X

rEKpXq ` EKpX ` ∆inq “ ∆outs

˛

‚

“ |Dout| Avg
KPK

∆inPDin
∆outPDout

Pr
X

rEKpXq ` EKpX ` ∆inq “ ∆outs.

It follows straightforwardly that the probabilities of forward and backward
truncated differentials are linked:

Lemma 2.3. Let E be a block cipher EK : Fn
2 Ñ Fn

2 , with K P K. Let Din and
Dout be sets of elements of Fn

2 . We have:

Pr
”

Din ÝÝÑ
EK

Dout

ı

|Dout|
´1 “ Pr

„

Dout ÝÝÑ
E´1

K

Din

ȷ

|Din|´1.

The probability of truncated differentials is easily computable on a single round,
similarly to standard differentials. Therefore, we introduce truncated differential
trails whose probability give a lower bound to the full truncated differential.

Definition 2.15 (Truncated differential trails). Let EK “ Er´1
K ˝ ¨ ¨ ¨ ˝ E0

K be an
iterated block cipher EK : Fn

2 Ñ Fn
2 , with K P K. We denote Ẽi

K “ Ei
K ˝ ¨ ¨ ¨ ˝ E0

K

for i P J0, r ´ 1K. Let D0 . . . Dr be sets of elements of Fn
2 . The truncated differential

D0 ÝÝÑ
E0

K

D1 ÝÝÑ
E1

K

. . . Dr´1 ÝÝÝÑ
Er´1

K

Dr is of probability:

PrrD0 ÝÝÑ
E0

K

. . . ÝÝÝÑ
Er´1

K

Drs“ Avg
KPK

∆0PD0

”

Pr
X

r@i P J1, rK, Ẽi´1
K pXq ` Ẽi´1

K pX ` ∆0q P Dis

ı

.

And straightforwardly, we have:

PrrD0 ÝÝÑ
E0

K

D1 ÝÝÑ
E1

K

. . . Dr´1 ÝÝÝÑ
Er´1

K

Drs ď PrrD0 ÝÝÑ
EK

Drs.

By abuse of notation, we denote Din ÝÝÑ
EK

∆out (resp. ∆in ÝÝÑ
EK

Dout) the
truncated differential from a set of differences Din (resp. a single difference ∆in) to
the set of the single element ∆out (resp. a set of differences Din).

Unlike for differential trails, the Markov cipher and subkey independence
assumptions do not suffice to state that the probability of a truncated differential
trail is the product of the transition probabilities of the truncated differentials
composing it. In addition to those two hypotheses, we need the condition that
each internal truncated differential are well-distributed, a notion that is not defined
in the literature but that we briefly introduce here.

26 Chapter 2. Symmetric Cryptography

Definition 2.16 (Well-distributed truncated differentials). Let E be a block cipher
EK : Fn

2 Ñ Fn
2 , with K P K. A truncated differential Din ÝÝÑ

EK
Dout is said to be

well-distributed if the output differences are all equally reached, i.e.:

@∆out P Dout, Pr
”

Din ÝÝÑ
EK

∆out

ı

“
1

|Dout|
Pr

”

Din ÝÝÑ
EK

Dout

ı

.

This allows to define the following lemma:

Lemma 2.4. Let E be an iterated Markov cipher with independent subkeys EK “

Er´1
K ˝¨ ¨ ¨˝E0

K of Fn
2 Ñ Fn

2 indexed with K P K, and D0 ÝÝÑ
E0

K

D1 ÝÝÑ
E1

K

. . . Dr´1 ÝÝÝÑ
Er´1

K

Dr be a truncated differential trail. If Di ÝÝÑ
Ei

K

Di`1 is well-distributed for all i,
then the truncated differential trail probability can be computed:

Pr
„

D0 ÝÝÑ
E0

K

D1 ÝÝÑ
E1

K

. . . Dr´1 ÝÝÝÑ
Er´1

K

Dr

ȷ

“

r´1
ź

i“0
Pr

„

Di ÝÝÑ
Ei

K

Di`1

ȷ

.

Most of the truncated differentials are not well-distributed in practice, but
it is still common in the literature to use the above formula to approximate the
probability of truncated differential trails.

2.2.3 Other Cryptanalysis Techniques
Other cryptanalysis families exist and need to be considered by the designers
of cryptographic algorithms. We here present an overview of the most popular
cryptanalysis techniques.

2.2.3.1 Linear cryptanalysis
Matsui introduced linear cryptanalysis in 1993 [Mat94], inspired by a work from
Tardy-Corfdir and Gilbert [TG92]; it is the analysis of biased linear relations
between the input, the output and the key of a cipher. Matsui proposed two
algorithms in his original paper, and applied them on full-round DES.

Definition 2.17 (Linear approximation). Let EK : Fn
2 ÞÑ Fn

2 be a block cipher
with a k-bit key K. The masks γP P Fn

2 , γC P Fn
2 and γK P Fk

2 constitute a biased
linear approximation of the cipher EK if there exists a non-negligible ϵ such that:

Pr
K,X

rxX, γP y ` xEKpXq, γCy ` xK, γKy “ 0s “
1
2 ` ϵ.

If |ϵ| ąą 2´n{2, one can use this approximation to recover a linear relation
on the key bits (xK, γKy), by generating enough data X, EKpXq and checking if
xX, γP y ` xEKpXq, γCy takes the value 0 or 1 more frequently.

Linear approximations are commonly found with linear trails by combining
the linear approximations of each round. A variant of linear cryptanalysis is the
differential-linear cryptanalysis introduced in 1994 by Langford and Hellman [LH94],
which combines a differential with a linear approximation to yield longer attacks.

2.2. Cryptanalysis 27

2.2.3.2 Algebraic cryptanalysis

Algebraic cryptanalysis is the study of the algebraic representation of a cipher
EK and its derivated attacks. The bits of the output of a cipher EKpXq can
always be represented with polynomial Boolean equations from the input bits
of X and the bits of the key K, using the Algebraic Normal Form (ANF) of
EK . However, the polynomials at play are often too large to be computable in
practice. Some properties of the algebraic representation of the cipher can still be
used to derive attacks. If the ANF is of low degree, interpolation attacks [JK97],
integral attacks [KW02] or cube attacks [DS09] can be mounted. A deeper look
into algebraic attacks is given in Chapter 6.

2.2.3.3 Impossible differential cryptanalysis

In contrast to differential cryptanalysis, impossible differential attacks exploit
differentials that happen with probability 0 on EK for all keys, i.e. ∆in ÝÝÑ

EK

∆out such that Pr
”

∆in ÝÝÑ
EK

∆out

ı

“ 0. Usually, such a property is used as a
distinguisher inside the cipher, and key-recovery rounds are added before and after
the distinguisher. Keys that lead to differences ∆in in input and ∆out in output
of the distinguisher are impossible thus are discarded, and the attack proceeds
until most keys are discarded, and only a few key candidates remain. We point the
reader to the paper of Boura et al. [BNS14] for detailed explanations.

2.2.3.4 Boomerang attacks

Boomerang attacks, introduced by Wagner in 1999 [Wag99], split a cipher E in two
sub-ciphers E “ E1 ˝ E0, and exploits two short differential trails on E0 and E1 to
yield an adaptatively chosen ciphertext (ACC) attack. The boomerang attack is
decribed in details in Chapter 4.

2.2.3.5 Meet-in-the-Middle attacks

In Meet-in-the-Middle (MitM) attacks, the attacker divides the cipher EK in two
parts, EK “ E1

K ˝ E0
K , and recovers a known plaintext/ciphertext pair P, C “

EKpP q. The equality pE1
Kq´1pCq “ E0

KpP q holds. In its simplest form, the MitM
applies when E0

K does not depend on the full k-bit key K but rather on t ă k key
bits, and similarly for E1

K . In this case, the attacker can iterate over all t key bits
allowing to compute E0

KpP q, and store the different values of E0
KpP q encountered.

Then he exhaustively tries all t key bits allowing to compute pE1
Kq´1pCq and looks

for collisions between E0
KpP q and pE1

Kq´1pCq, among which the right key will be
found. This basic attack requires 2t key guesses, instead of 2k, to recover the key.
It was first applied by Diffie and Hellman as an attack in roughly 256 operations
against double DES [DH77] with 112-bit key, and this led to the spread of triple
DES with 168-bit key (and 112-bit security) to replace single DES.

28 Chapter 2. Symmetric Cryptography

2.3 The Block Cipher AES
AES (previously Rjindael) [RD01] is an SPN cipher that won in 2001 the Advanced
Encryption Standard competition launched by the National Institute of Standards
and Technology (NIST) in 1997, and therefore became the AES. The AES block
cipher has remained the most widely used block cipher for 20 years, and it is the
cipher that received the most cryptanalysis in the literature. Three instances of the
cipher exist, for key sizes of 128, 196 and 256 bits. They all share the same round
function, with different key schedules and different numbers of rounds. AES-128
(resp. AES-192, AES-256) has r “ 10 rounds (resp. r “ 12, r “ 14 rounds).

2.3.1 Description
The AES block cipher operates on a 128-bit state, represented as a 4 ˆ 4-byte
matrix. The bytes are ordered as follows:

0
1
2
3

4
5
6
7

8
9
10
11

12
13
14
15

If s is an AES state, the j-th byte of s is denoted sj or srjs.

Key schedule of AES. As standard SPNs, the AES has a key schedule to
produce r ` 1 round keys of 128 bits. Since we do not exploit the key schedule
of the AES throughout this thesis, we will not describe it here and consider that
it generates independent subkeys in our attacks. The key schedule is non-linear,
and its properties are mostly relevant in related-key attacks, which are in fact very
powerful against AES [BK09; BKN09]. Some single-key attacks also take advantage
of the key schedule properties, such as the key-bridging technique [DKS15]. More
recently, an alternative representation of the AES key schedule has been described
to explain some of its properties [LP21].

Round function of AES. The round function of the AES is composed of the
following operations, for round 0 ď i ď r ´ 1:

• SubBytes (SB): The AES S-box is applied to each byte of the state. The
properties of the AES S-box are discussed in Section 2.3.2.1. We denote xi

the state before SubBytes, and yi the state after the SubBytes.

x0
i

x1
i

x2
i

x3
i

x4
i

x5
i

x6
i

x7
i

x8
i

x9
i

x10
i

x11
i

x12
i

x13
i

x14
i

x15
i

SubBytes
Spxj

i q “ yj
i

y0
i

y1
i

y2
i

y3
i

y4
i

y5
i

y6
i

y7
i

y8
i

y9
i

y10
i

y11
i

y12
i

y13
i

y14
i

y15
i

2.3. The Block Cipher AES 29

• ShiftRows (SR): The second row is shifted by 1 byte to the left, the third
row by 2 bytes, and the fourth row by 3 bytes. We denote zi the state after
SubBytes.

y0
i

y1
i

y2
i

y3
i

y4
i

y5
i

y6
i

y7
i

y8
i

y9
i

y10
i

y11
i

y12
i

y13
i

y14
i

y15
i

ShiftRows

y0
i

y5
i

y10
i

y15
i

y4
i

y9
i

y14
i

y3
i

y8
i

y13
i

y2
i

y7
i

y12
i

y1
i

y6
i

y11
i

• MixColumns (MC): Each column is multiplied by a Matrix MC (the
multiplications are in F28), whose properties are discussed in Section 2.3.2.2.
We denote wi the state after MixColumns.

MC “

»

—

—

–

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

fi

ffi

ffi

fl

,

»

—

—

—

–

w4j
i

w4j`1
i

w4j`2
i

w4j`3
i

fi

ffi

ffi

ffi

fl

“ MC ˆ

»

—

—

—

–

z4j
i

z4j`1
i

z4j`2
i

z4j`3
i

fi

ffi

ffi

ffi

fl

.

• AddRoundKey (AK): Each byte is XORed with a byte of the round key
ki, i.e. for all j P J0 . . . 15K, xj

i`1 “ wj
i ` kj

i .

There is one extra AddRoundKey operation before the first round, and the last
round omits the MixColumns operation.

Decryption. The decryption of the AES is performed by inverting all the
operations of AES, step by step. The inverse of the SubBytes step is a S-box
layer with the inverse of the AES S-box. The ShiftRows is trivially invertible, and
the MixColumns is invertible by multiplying each column by the inverse of MC:

MC´1 “

»

—

—

–

14 11 13 9
9 14 11 13
13 9 14 11
11 13 9 14

fi

ffi

ffi

fl

.

Finally, the AddRoundKey is its own inverse.

2.3.2 Properties of the Components
2.3.2.1 AES S-box

The AES S-box S is a 8-bit S-box defined from the inverse mapping x ÞÑ x´1 in
F28zt0u, and from an affine permutation A in F8

2 (which is not affine in F28):

Spxq “

"

Apx´1q if x ‰ 0,
Ap0q else.

30 Chapter 2. Symmetric Cryptography

This construction offers advantageous properties for a cryptographic S-box.
First, its differential uniformity is 4:

DUS “ 4.

Indeed, let us denote L the bijective linear part of A (Lpxq “ Apxq ´ Ap0q).
For non-zero differences ∆in, ∆out, the equation Spxq ` Spx ` ∆inq “ ∆out can be
re-written, for x R t0, ∆inu as:

x´1 ` px ` ∆inq´1 “ L´1p∆outq, or equivalently,
px ` ∆inq ` x “ L´1p∆outq ˆ xpx ` ∆inq,

where the multiplications are performed in F28 . This yields an equation of degree
exactly 2 in x (since Lp∆outq ‰ 0), which has at most 2 solutions. In the worst case,
x “ 0 and x “ ∆in are also solutions to Spxq ` Spx ` ∆inq “ ∆out, which makes 4
solutions at most. This furthermore shows that for any non-zero difference ∆in (resp.
∆out), there exists at most single ∆out (resp. ∆in) such that DDTSr∆in, ∆outs “ 4
(it is verified experimentally that such a ∆out (resp. ∆in) always exists).

Therefore, the optimal differential transition through the AES S-box happens
with probability 4 ˆ 2´8 “ 2´6, and the possible differential transition probabilities
are t0, 2´7, 2´6u. The inverse of the AES S-box has the same properties.

In addition, the AES S-box has good linear properties, as the linear correlation
between the inputs and outputs of S does not exceed 2´3. This mitigates linear
attacks presented in Section 2.2.3.1.

2.3.2.2 AES MixColumns

The AES MixColumns matrix MC was chosen such that it is Maximal Distance
Separable (MDS): for all α P F4

28 , either α “ p0, 0, 0, 0q or the number of non-zero
bytes among α}MCpαq is at least 5. The MDS property is a good security property
against differential cryptanalysis, as it guarantees that a single-byte difference in
input is propagated to a difference in the 4 output bytes. Similarly, this is a good
security property to prevent linear attacks. This property was chosen following the
wide-trail strategy, a design strategy adopted by Daemen and Rijmen [DR01] to
guarantee that differential or linear trail with a low number of active S-boxes do
not exist after iterating a few rounds of AES.

2.3.2.3 Super S-box

Daemen and Rijmen analysed the differentials on 2-round AES in 2006 [DR06],
and introduce Super boxes. They presented a new way to represent the AES, by
concatenating two rounds of AES, and considering 32-bit key-dependent S-boxes.
Later, Gilbert and Peyrin used Super boxes to improve the different cryptanalysis
of AES-like permutations [GP10], which they call Super S-boxes. We use the
notation Super S-box in this thesis.

2.3. The Block Cipher AES 31

x0
SB

y0
SR

z0
MC

w0

k1
AKi`1

x1
SB

y1
SR

z1

Figure 2.8: A Super S-box on 2-round AES.

Two rounds of AES are composed of the following operations:

MC ˝ SR ˝ SB ˝ AKi`1 ˝ MC ˝ SR ˝ SB ˝ AKi.

Because the ShiftRows and SubBytes operations commute, Daemen and Rijmen
rewrote the 2-round AES as:

MC ˝ SR ˝ SB ˝ AKi`1 ˝ MC ˝ SB
looooooooooooooomooooooooooooooon

Super S-box layer

˝SR ˝ AKi.

The middle part SB ˝ AKi`1 ˝ MC ˝ SB operates independently on each 32-bit
column, and is considered as 4 parallel applications of a 32-bit Super S-box. The
ShiftRows operations before and after are sometimes included in the Super S-box
layer, in which case a Super S-box maps a diagonal to an anti-diagonal, as depicted
in Figure 2.8.

Unlike traditional S-boxes, the AES Super S-box is dependent on the key,
and the notion of difference distribution table needs to be averaged on the keys.
Furthermore, the inputs and outputs (32 bits) are too large to compute the fixed-key
DDT in practice: this would require 264 operations. On the other hand, it is easy
to estimate the probability of Super S-box transitions for truncated differentials.

The Super S-box modelization of AES is useful when mounting generic attacks
against several rounds of SPN ciphers, such as the yoyo attack [RBH17].

2.3.3 Security
AES has been the subject to a considerable amount of cryptanalysis. We describe
some basic blocks that will be used in this thesis, and we present the complexity of
the best existing attacks against AES in the literature.

2.3.3.1 Security against differential cryptanalysis
Because of the low differential uniformity of the AES S-box and the MDS property
of the AES MixColumns, the attacker does not have a lot of freedom when choosing
a differential trail on AES. Daemen and Rijmen proved minimal bounds on the
number of active S-boxes in any active differential trail for less than 4 rounds of
AES [DR02]. Later, Mouha et al. used automatic tools to give a tight lower bound
on the minimal number of active S-boxes for a greater number of rounds [MWG+11].
The proven bounds are:

32 Chapter 2. Symmetric Cryptography

Number of AES rounds 1 2 3 4 5 6 7 8
Minimal number of active S-boxes 1 5 9 25 26 30 34 50

The expected probability of a single differential trail can be estimated
by multiplying the probabilities of each round differential transition assuming
independent subkeys. Moreover, this probability is bounded by the highest
probability of a differential transition through a single S-box, 2´6 in the case
of the AES, raised to the power of the number of active S-boxes. Therefore, it is
proven that the best differential trail has a probability at most 2´6ˆ25 “ 2´150

on 4 rounds, with independent subkeys. However, due to the strong alignment
of the AES, truncated trails gather many good differential trails. The truncated
trail of Figure 2.9 (working both for forward or backward 3-round AES) reaches
a probability of 2´24 (instead of the bound of 2´54 for the best differential trail).
The forward probability is indeed the probability that given any input active in the
main diagonal of x0, the difference cancels on the second, third and fourth bytes of
state w0 (probability 2´8 for each).

x0
SB

y0
SR

z0
MC

2´24

w0

KS

k1
AK1

x1
SB

y1
SR

z1
MC

2´24

w1

k2
AK2

x2
SB

y2
SR

z2
MC

w2

Figure 2.9: Example of a truncated differential trail on 3-round AES.

2.3.3.2 State-of-the-art attacks against AES

Table 2.1 sums up the best cryptanalytic results on AES-128 in the single-key
model. In particular, it should be noted that the best attacks in the single key
model reach 7 out of 10 rounds of AES-128.

Some attacks against AES have been defined in attacker models that differ from
standard attacker models against block ciphers. Key-recovery attacks against AES
with secret S-boxes were defined by Tiessen et al. [TKK+15]; the goal is to recover
the secret key and the secret S-box used in an AES where the AES S-box is unkown
by the attacker. Structural distinguishers were defined by Grassi et al. [GRR17]
as distinguishing attacks that are “independent of the secret key”. In particular,
those distinguishers are typically applicable with unkown S-boxes The best attacks
in these two settings are given in Section 4.1.

2.3. The Block Cipher AES 33

Rounds Attack type Model Data Time Mem Ref
5 Retracing Boomerang ACC 29 223 29 [DKR+20]

6

Square CP 235 245 232 [FKL+01]
Square CP 233 240 232 [DGK+24]
Truncated Boomerang ACC 259 261 259 This thesis
Boomerang ACC 251 268 232 This thesis
Boomerang ACC 251 266 242 This thesis
Boomerang ACC 257 261 233 This thesis

7

Meet-in-the-middle CP 297 299 298 [DFJ13]
Impossible Differential CP 2105 2113 274 [BLN+18]
Impossible Differential CP 2105 2111 272 [LP21]
Related Differential CP 2110 2110 2110 [BR22a]

Table 2.1: Best key-recovery attacks on reduced-round AES.
CP: chosen plaintexts / ACC: chosen plaintexts and adaptively-chosen ciphertexts.

2.3.4 AES-based Constructions
Since its standardization, the AES has deeply influenced the design of symmetric-
key cryptographic primitives. This trend even accelerated after the introduction
in modern CPUs of AES-NI [Gue08], a set of dedicated hardware accelerated
instructions implementing the AES encryption and decryption. This directly
improves modes using AES [MV04; RBB03; KR21b]. Yet, since AES-NI granularity
lies at the round level, many new cryptographic designs actually use the AES round
function as a building block, either for hash functions [BBG+08; IAC+08; BD08;
GK08], for authenticated encryption schemes [WP14; Nik14; JNP+21; SLN+21;
NFI24], for permutations [IIL+23; GM16; KLM+16; BLL+22], or for collision
resistant building blocks [JN16; Nik17], among other applications.

We now present some AES tweakable variants that we study in this thesis:
Kiasu-BC [JNP14b] and Deoxys-BC [JNP+21]. These constructions are part of
the TWEAKEY framework.

2.3.4.1 The TWEAKEY framework

The TWEAKEY framework was introduced by Jean et al. [JNP14b] to give a general
construction for tweakable block cipher designs. In the TWEAKEY framework,
the key and the tweak form a master tweakey TK of the tweakeable block cipher.
The block cipher is then built with the iterated round function strategy; the
tweakey goes through a tweakey schedule, and the subkey addition of each round is
replaced with a subtweakey addition. The TWEAKEY construction is depicted in
Figure 2.10. The framework specifies a tweakey schedule construction: the master
tweakey TK goes iteratively through a tweakey state update function h, to produce
the round tweakey states TKj . The round tweakeys tkj are extracted from the
round tweakey state TKj with a function g.

34 Chapter 2. Symmetric Cryptography

P F F . . . F F C

tk0 tk1 tk2 tkr´2 tkr´1 tkr

TK g

h

TK0 g

h

TK1 . . .

h

TK2 g

h

TKr´2
g

h

TKr´1

h

TKr

Figure 2.10: The TWEAKEY construction for tweakable block ciphers.

The STK construction. Along with this generic constructions, the designers
proposed STK, a subclass of the TWEAKEY framework where “the tweak and
the key are treated almost the same way”. The tweakey TK is composed of a
concatenation of the key and the tweak of k ` t bits (where k ` t is supposed to be
a multiple of n), and is represented as p states of n bits TK1 . . . TKp. The STK
construction assumes that the cipher has an ℓ-bit S-box operating in parallel on
m “ n{ℓ nibbles. The round tweakey states TKi are iteratively updated from the
master tweakey as follows:

Let r denote the number of rounds of the cipher and let h1 denote a nibble
permutation. The round tweakey states are initialized with TKi

0 “ TKi for
i P J1, pK and for all j P J0, r ´ 1K:

$

’

’

’

’

&

’

’

’

’

%

TK1
j`1 “ h1pLFSR1pTK1

j qq

TK2
j`1 “ h1pLFSR2pTK2

j qq

...
TKp

j`1 “ h1pLFSRppTKp
j qq,

where the functions LFSRi are defined from elements αi of F2ℓzt0u and operate
independently on the m nibbles of the state as:

@i P J1, pK, LFSRipX0}...}Xm´1q “ pαi ˆ X0} . . . αi ˆ Xm´1q,

the multiplications being performed in F2ℓ . LFSRi are based on Linear Feedback
Shift Registers (LFSR) and are linear. The function g is the sum of all round
tweakey states:

tkj “

p
ÿ

i“1
TKi

j .

Two widely studied ciphers, Deoxys-BC [JNP+21] and Skinny [BJK+16], follow
the STK construction. Ciphers designed with the STK construction are often
studied in the related tweakey model (RTK). In this model, the attacker can inject
chosen differences in the master tweakey, with no special consideration of whether
it corresponds to the tweak or to the key part. In particular, the RTK model is a
related key (RK) model. Variants of the RTK model exist, named RTKi, where

2.3. The Block Cipher AES 35

the attacker can inject chosen differences only in i out of the p master tweakey
states. If i ď t{n, this is a single key model, with chosen tweaks. The RTKi model
can be analyzed with mathematical properties, and the construction ensures that
a difference in the tweakey is reinjected regularly into the cipher, thus limiting the
differential trails with a large number of inactive rounds.

2.3.4.2 Deoxys-BC

Deoxys-BC [JNP+21] is a tweakable block cipher proposed by Jean et al. following
the STK construction, which was selected in the CAESAR portfolio. Deoxys-BC
re-uses the round function of the AES, and it has two variants: Deoxys-BC-256
with a 256-bit tweakey and 14 rounds, and Deoxys-BC-384 with a 384-bit tweakey
and 16 rounds. The tweakey material is composed of a variable length key and
tweak summing to 256 or 384 bits; for simplicity, we assume that the key length is
a multiple of 128. The tweakey material is divided in words of 128 bits, denoted
TKi. LFSR1 is defined as the identity. The others LFSRs are chosen so that in the
RTKi model, for each nibble u, the tweakey nibbles th1´jptkjqrus for j P J0, rKu

are either all inactive, or inactive at most i ´ 1 times every 15 rounds.

2.3.4.3 Kiasu-BC

Kiasu-BC is a cipher presented by Jean et al. [JNP14a], as part of the TWEAKEY
framework, with a 128-bit key and 64-bit tweak. The round function of Kiasu-BC
is the round function of the AES, and the key-schedule of Kiasu-BC is very similar
to that of the AES, with a tweak addition: the round tweakeys are computed as
tki “ ki ` t where ki is the round key following the AES key schedule, and t is the
tweak T encoded in the first two rows. In particular, Kiasu-BC with T “ 0 is the
AES-128.

2.3.4.4 TNT-AES

TNT-AES is a tweakable block cipher reusing the AES round function published at
EUROCRYPT 2020 [BGG+20]. It is part of the Tweak-aNd-Tweak framework,
building a tweakable block cipher Ẽ from a block cipher E:

ẼK0,K1,K2 : P, T ÞÑ C “ EK2

´

T ` EK1

`

T ` EK0pP q
˘

¯

.

In order to improve its efficiency, TNT-AES uses a 6-round AES as building block
E. The designers of TNT proved its security up to 22n{3 queries, and conjectured
a higher security bound. Later work [GGL+20] proved the bound to be at least
Ωp23n{4q queries, and exhibited a distinguisher with Op

?
n ¨23n{4q queries. However,

a recent work from Jha et al. [JKN+24] showed that these proofs were flawed and
exhibited an attack in Op2n{2q. In particular, TNT-AES is vulnerable to an attack
with complexity 269.

36 Chapter 2. Symmetric Cryptography

2.4 MILP: an Automatic Tool for Cryptography
One of the most groundbreaking changes in cryptanalysis in the past decade is
the systematisation of the usage of automated tools. Automated tools thrive
because they can find cryptographic characteristics (linear, differential, boomerang,
differential-linear,impossible differential . . .) that would be tedious to compute by
hand. They are great companions to the cryptanalyst since they can be used to
improve existing attacks. They are at the same time very helpful for designers,
since they can often be used to derive bounds of the complexity of attacks whithin
a framework. Bouillaguet et al. [BFL11] first successfully used an Integer Linear
Programming (ILP) tool to find bounds on the probability of differential trails on
SIMD. One year later, Mouha et al. [MWG+11] generalised the technique to search
for good differential or linear trails on multiple ciphers, using Mixed Integer Linear
Programming (MILP). Since then, other automated tools have been experimented,
such as SAT solvers [MP13], or Constraint Programming (CP) [MSR14]. Multiple
recent works have been conducted to compare the efficiencies of the different tools
for the search for differential trails on several primitives [DDH+20; BPF+23].
Although these works tend to show that CP and SAT modeling can offer good
performances on bit-oriented ciphers, we focus on AES-based primitives at the
byte-level, and choose MILP as a first-choice automated tool in this thesis.

Overall, MILP has been used for the search for many types of characteristics:
differentials characteristics [FWG+16; AST+17; ZDY19; ZZD+19], linear character-
istics [FWG+16; ZZD+19], differential-linear trails [BGG+23; HDE24], impossible
differentials [LKH+16; ZD19; LXC+23], meet-in-the-middle attacks [Sas18b;
SSD+18] or boomerang characteristics [ZDJ19; DDV20; QDW+21]. These works
are by no mean bound to be exhaustive, but they give an overview on the importance
of MILP modeling in cryptanalysis.

2.4.1 Description of a MILP model
A MILP model is composed of three types of objects:

• variables, representing either real numbers or integers1.

• constraints, defined as inequalities between affine combinations of variables.

• An objective function which is a linear combination of variables that needs to
be maximized (or minimized) when subjected to the given constraints2.

A MILP solver takes as input a MILP model and returns, if it exists, values
for the variables that both satisfy the constraints and maximizes (or minimizes)
the objective function. Many MILP solvers exist, and Bellini et al. [BPF+23]

1“Mixed” in MILP actually highlights the different natures of variables. In Integer Linear
Programming (ILP), the variables are only integers.

2In the Gurobi MILP solver [Gur23], this objective function can be quadratic.

2.4. MILP: an Automatic Tool for Cryptography 37

compared the efficiency of GLPK [Oki12] and Gurobi [Gur23], out of which Gurobi
had better performance. In this thesis, we use the MILP solver Gurobi.

In the literature, several strategies exist to find good differential trails on SPN
with MILP. The most generic method is to set a binary MILP variable for each
bit of each state. The MILP variable representing a bit equals 1 if and only if
this bit is active in the differential trail. Each S-box is modelized with a set of
inequalities on the input/output bits, encoding the DDT of the Sbox. Multiple
works have been conducted to find efficient MILP modelings of S-boxes [AST+17;
BC20]. Then, the linear layer is modelized with a set of linear equalities, and some
MILP variables can even be removed because of redundancy, though Gurobi does
it automatically in its pre-solving step. The objective function to maximize is the
sum of all DDT values (taken in logarithm scale) of each S-box transition. In
addition, an inequality is set to force at least one variable to be active, in order to
avoid the trivial trail fully inactive. The set of variables maximizing the objective
function of the model represents a differential trail that has an maximal probability
among all existing trails. This approach is generic, but involves a lot of variables
and of constraints, because of the heavy S-box modeling.

Another strategy for word-aligned ciphers, such as AES, is to create a variable
for each word of each state, instead of a variable for each bit. This reduces
significantly the number of variables and constraints of the model, thus reducing
the solver time by a big factor. The MILP variable corresponding to a state word
equals 1 if the word is active in the differential trail, but the exact value of the
difference is not fixed. The S-box transition is simple: the input word is active
if and only if the output word is active. The linear layer is then modelized with
a set of constraints depending on its structure. Similarly to the first method, an
inequality is set to force at least one variable to be active. The objective function
to minimize is the number of active words in input of the S-box; it is a sum of
all binary variables representating the state words before the S-box layer. Unlike
the bit-oriented approach, this approach minimizes the number of active S-boxes
in the trail, but does not guarantee that the differential trail can be instantiated
with concrete differences satisfying the DDT transition of the S-box. However, if
S is the ℓ-bit S-box of the SPN, and DUS is its differential uniformity, then the
maximal transition probability around an active S-box is DUS ˆ2´ℓ. Therefore, if t
is a lower bound on the number of active S-boxes in all differential trails, it ensures
that the best differential trail has a probability of at most pDUS ˆ 2´ℓqt under
the Markov cipher assumption; this allows designers to give convincing arguments
relating to the protection of a cipher against differential attacks.

2.4.2 Example on AES
We now describe a MILP model, aiming at finding the minimal number of active
S-boxes in a differential trail on r-round AES. As we only want to minimize the
number of active S-boxes, we use the byte-oriented approach. In the following
model, we set a variable for each byte, and do not care for the redundancy of the
variables; the variables can be removed subsequently if redundant.

38 Chapter 2. Symmetric Cryptography

Variables. We create a binary variable for each of the 16 bytes of each internal
state of r rounds. In the following, i P J1, rK and j P J0, 15K:

• xi
j represents the j-th byte of the state before SubBytes of the i-th round.

• yi
j represents the j-th byte of the state before ShiftRows of the i-th round.

• zi
j represents the j-th byte of the state before MixColumns of the i-th round.

• wi
j represents the j-th byte of the state after MixColumns of the i-th round.

Constraints. Now we modelize the operations with MILP constraints:

• SubBytes: the input of a S-box is active if and only if the output is active,
therefore:

@i P J1, rK, j P J0, 15K, yi
j “ xi

j .

• ShiftRows: the bytes in row k are shifted by k columns to the left:

@i P J1, rK, j P J0, 3K, k P J0, 3K, zi
4j`k “ yi

4ppj`kq mod 4q`k.

• MixColumns: because of the MDS property of the AES MC matrix, we are
ensured that either a column is inactive, or at least 5 bytes among the 8
input/output bytes are active. To encode this relation, we add a binary
variable αi

c for c P J0, 3K and i P J1, rK representing the activity of the column
c of the MixColumns of round i: αi

c “ 1 if and only if the column c has at
least one active difference in the input or output of the MixColumns of round
i. This is encoded by:

@i P J1, rK, c P J0, 3K, 8αi
c ě

3
ÿ

j“0
pz4c`j ` w4c`jq.

In addition, if αi
c “ 1, we want to ensure that at least 5 input/output bytes

are active. This is encoded by:

@i P J1, rK, c P J0, 3K, 5αi
c ď

3
ÿ

j“0
pz4c`j ` w4c`jq.

• AddRoundKey: the key addition does not change the activity pattern,
therefore we add the constraints:

@i P J1, r ´ 1K, j P J0, 15K, wi
j “ xi`1

j .

In addition, to remove the trivial fully inactive differential trail, we add the
constraint that at least one byte is active in the differential trail. For AES in
the single-key setting, this is equivalent to asking that the initial state is not
fully-inactive, therefore we add the following constraint:

15
ÿ

j“0
x0

j ě 1.

2.4. MILP: an Automatic Tool for Cryptography 39

Objective function. The objective function to minimize is the number of active
S-boxes. The activity of the S-box inputs are represented with the variables xi

j ,
therefore the objective function simply is:

Obj “

r
ÿ

i“1

15
ÿ

j“0
xi

j .

If this MILP model is solved, the optimal value of the objective corresponds to
the minimal number of active S-boxes in a differential trail on r-round AES.

PartIIContributions

41

Chapter3Improved Attacks against the
Forkcipher Framework

The forkcipher framework was introduced by Andreeva et al. [ALP+19b] to
provide efficient authenticated encryption for short messages. Two dedicated
ciphers were proposed in this framework: ForkAES [ARV+18] based on the AES
(more precisely on its tweakable variant Kiasu-BC [JNP14a]), and ForkSkinny
based on Skinny [BJK+16]. Multiple instances of ForkSkinny were part
of ForkAE [ALP+19a], a second round candidate of the NIST lightweight
competition1.

In this chapter, we present a joint work with Nicolas David and Gaëtan Leurent,
“Cryptanalysis of Forkciphers”, published in IACR Transactions on Symmetric
Cryptoglogy (ToSC) [BDL20]. Notably, we show an attack on full ForkAES and
we show how the best attacks on Skinny can be extended by several rounds
on ForkSkinny by exploiting tweakey schedule modifications. The attacks on
ForkSkinny have been further improved recently [HGS+24], and the same idea has
been used to improve rectangle attacks [QDW+21; DQS+22].

Contents
3.1 Description of Forkciphers . 44

3.1.1 The Forkcipher Framework 44
3.1.2 ForkAES . 45
3.1.3 ForkSkinny . 45

3.2 Cryptanalysis of full ForkAES 47
3.2.1 Results . 47
3.2.2 Previous Attack Against ForkAES-˚-4-4 49
3.2.3 Attack Against Full ForkAES for 296 Weak Keys . . . 51
3.2.4 Larger Classes of Weak Keys 57

3.3 Cryptanalysis of ForkSkinny 62
3.3.1 Related-tweakey Attacks on Skinny 64
3.3.2 Related-tweakey Attacks on ForkSkinny 64
3.3.3 A 24-round Attack on ForkSkinny-128-256 with 128-bit

Key . 67
3.3.4 A 26-round Attack on ForkSkinny-128-256 with 256-bit

Key . 68

1https://csrc.nist.gov/projects/lightweight-cryptography

43

https://csrc.nist.gov/projects/lightweight-cryptography

44 Chapter 3. Improved Attacks against the Forkcipher Framework

P

rinitTKinit

r0

C0

TK0

BC

r1

C1

TK1

Figure 3.1: Illustration of an encryption by a forkcipher. A box represents several
rounds of a block cipher round function.

3.4 Conclusion . 76

3.1 Description of Forkciphers

3.1.1 The Forkcipher Framework
Definition 3.1. A forkcipher is a variant of a tweakable block cipher that takes
one n-bit plaintext as input and outputs two n-bit ciphertexts:

rF : t0, 1uk ˆ t0, 1ut ˆ t0, 1un Ñ t0, 1un ˆ t0, 1un

K, T, P ÞÑ C0, C1.

Each forkcipher instance is based on an underlying tweakable block cipher. To
this day, the two proposed instances are ForkAES [ARV+18], based on an AES
tweakable variant Kiasu-BC [JNP14a], and ForkSkinny, based on Skinny [BJK+16].
The forkcipher framework was designed on the Iterate-Fork-Iterate (IFI) paradigm:
the underlying tweakable block cipher round-function is iterated rinit times in an
initialisation phase, then forked, then iterated r0 and r1 respectively in each branch
to produce two ciphertexts, as described in Figure 3.1. Right after the fork, a
branch constant BC is added to the second branch. The tweakey material used in
the initialisation phase and in both branches differs. The underlying block cipher
tweakey schedule is iterated to produce a sequence of subtweakeys, interpreted as
TKinit}TK0}TK1.

The forkcipher can be used directly for authenticated encryption of short
messages of less than one block, without needing a mode of operation (using the
nonce as tweak). The cost to process the message will be roughly 1.5 block cipher
calls, while block cipher-based modes require at least 2 block cipher calls.

3.1. Description of Forkciphers 45

Security Analysis. For each key and tweak, the functions from the input P to
each half of the output (P ÞÑ C0 and P ÞÑ C1) should be permutations, and the
corresponding families should be secure tweakable block ciphers (See Figure 3.1).
In addition to encryption queries (P ÞÑ C0}C1) and decryption queries (Ci ÞÑ P),
the security model of forkciphers also considers so-called reconstruction queries,
which take C0 as input and output C1 or vice-versa.

In ForkAES and ForkSkinny, the numbers of rounds are chosen such that
r0 “ r1 ě rtot

2 and rinit ` r0 “ rtot, where rtot is the number of rounds of the
underlying block cipher. This ensures that all encryption and reconstruction
queries go through at least rtot rounds. In particular, encryption queries P ÞÑ C0
correspond exactly to an encryption query of the underlying block cipher.

Notation. For cryptanalysis, there are multiple ways to derive reduced versions
of a Forkcipher. In the general case, we say that ForkAES-a-b-c (resp. ForkSkinny-
a-b-c) corresponds to the version of ForkAES (resp. ForkSkinny) with a rounds
before the forking point, b rounds in the first branch and c rounds in the second
branch.

3.1.2 ForkAES
ForkAES is an instance of the forkcipher framework based on Kiasu-BC, an
AES-based tweakable block cipher introduced in [JNP14a] and presented in
Section 2.3.4.3. In the version of ForkAES presented by Andreeva et al. in
2018 [ARV+18], the numbers of rounds are the following:

rinit “ r0 “ r1 “ 5.

It should be noted that Kiasu-BC is composed of 10 rounds, and that the best
attack on Kiasu-BC reaches 8 rounds [BL23b].

The initialisation phase does not perform the AddRoundTweakey operation
before the forking point, therefore uses rinit subtweakeys. The branch constant
BC is set to 0. Each branch i P t0, 1u performs a subtweakey addition at the
beginning (after the forking point) and at the end; TKi is therefore composed of
ri ` 1 subtweakeys. In total, rinit ` r0 ` r1 ` 2 subtweakeys are computed using
the Kiasu-BC tweakey schedule. We refer to [ARV+18] for implementation details.

3.1.3 ForkSkinny
ForkSkinny is an instance of the forkcipher framework based on Skinny [BJK+16].

Skinny. Skinny is an SPN cipher following the TWEAKEY framework [JNP14b],
whose operations are optimized to reduce the hardware requirement. In particular,
the S-box does not have optimal properties, the round keys are added to only
half of the state (without whitening keys in the first and last rounds), and the
MixColumns operation does not use an MDS matrix (it only has branch number 2).

46 Chapter 3. Improved Attacks against the Forkcipher Framework

SC AC

AT

ąą 1

ąą 2

ąą 3

ShiftRows MixColumns

Figure 3.2: Skinny round function.

There are several variants of Skinny, with a state size of n “ 64 or n “ 128
bits, and a tweakey size of n bits, 2n bits, or 3n bits. The state is considered as a
4 ˆ 4 matrix of cells (bytes or nibbles depending on the state size), and the round
function (shown in Figure 3.2) follows roughly the AES structure:

• SubCells applies an S-box on each cell of the state;

• AddConstants adds round constants to the state;

• AddRoundTweakey adds tweakey material to the first two rows of the state;

• ShiftRows shifts the second row of the state by 1 cell, the third row by 2 cells,
and the last row by 3 cells;

• MixColumns multiplies each column of the state by an invertible matrix.

Tweakey schedule. The tweakey schedule of Skinny is inspired by the STK
construction of [JNP14b], but slightly differs from it by only adding the round
tweakey to half of the state each round. The tweakey input (concatenation of
the key and tweak) is divided into tweakey words of n bits, each word follows an
independent schedule, and the subkeys are created by xoring elements from each
word. For instance, with a tweakey size of 2n bits, the tweakey state has two words
TK1 and TK2, and the subkeys are constructed from the values TK1 ‘ αipTK1q,
where α is a linear transformation implemented with an LFSR2. This limits the
number of steps where tweakey differences can cancel out if the LFSR has a large
order.

Since Skinny uses only n{2 bits of key material in each round, the value
TK1 ‘ αipTK2q is used for the subtweakeys of rounds 2i and 2i ` 1. Step 2i uses
the first two rows of TK1 ‘ αipTK2q and permutes the cells, while step 2i ` 1 uses
the last two rows and permutes the cells.

Formally, the tweakey schedule for each chunk is defined as shown is Figure 3.3,
where PT is the following permutation, mapping the first two rows on the last two
rows and vice-versa:

PT “ r9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7s.

The key schedule uses different LFSRs for each word (with the identity for TK1),
but the same permutation PT .

A version of Skinny with a n-bit state and a t-bit tweakey is denoted Skinny-n-t.
2With a tweakey of 3n bits, subkeys are constructed from the values T K1

‘αi
pT K2

q‘βi
pT K3

q.

3.2. Cryptanalysis of full ForkAES 47

Extracted
8s-bit subtweakey

PT

LFSR

LFSR

Figure 3.3: Skinny tweakey schedule.

Primitive block tweak tweakey rinit r0 r1

ForkSkinny-64-192 64 64 192 17 23 23
ForkSkinny-128-192 128 64 192 21 27 27
ForkSkinny-128-256 128 128 256 21 27 27
ForkSkinny-128-288 128 128 288 25 31 31

Table 3.1: ForkSkinny parameters.

ForkSkinny. ForkSkinny was designed after the first attacks were published
on ForkAES [BBJ+19], and uses r0 “ r1 ą rtot{2 to limit the impact of the
reduced diffusion in reconstruction queries. For instance, the original Skinny-128-
256 possesses 48 rounds, but reconstruction queries against ForkSkinny-128-256
go through a total of 54 rounds: 27 decryption rounds and 27 encryption rounds.
The parameters suggested by the designers are given in Table 3.1.

3.2 Cryptanalysis of full ForkAES
3.2.1 Results
Banik et al. [BBJ+19] showed an almost-practical truncated differential attack
against ForkAES-˚-4-4 with a time complexity of 235 encryptions, using recon-
struction queries following 8 rounds of Kiasu-BC (4 decryption rounds followed
by 4 encryption rounds). In comparison, the best attack on 8-round Kiasu-BC,
from [BL23b] and presented in Section 4.4.4, is a boomerang attack of complexity
283. This already shows that ForkAES is not as robust as the underlying cipher
Kiasu-BC.

In this section, we extend the attack of Banik et al. from ForkAES-˚-4-4 to the
full ForkAES-˚-5-5 rounds by introducing two new ideas. First, we consider weak
keys which diffuse very poorly in the middle rounds. Second, instead of considering
a single pair satisfying the truncated differential characteristic, we consider two
related pairs simultaneously, such that if one pair follows the characteristic, then
the second pair also follows it with high probability.

We give several attacks with varying weak key spaces, as shown in Table 3.2;
for each attack the expected complexity is lower than 2127 ˆ ϵ, where ϵ corresponds
to the fraction of weak keys among the full key space. In particular, the last attack
targets the full keyspace with an expected time complexity of 2125 encryption.

48 Chapter 3. Improved Attacks against the Forkcipher Framework

Algorithm Attack Type Rds. Data Time Mem. ϵ Reference
AES-128 Square 6 232 271 232 1 [DKR97]
AES-128 Imp. Diff. 7 2106.2 2110.2 290.2 1 [MDR+10]
AES-128 MitM 7 297 299 298 1 [DFJ13]
Kiasu-BC Square 7 248.5 243.6 241.7 1 [DEM16]
Kiasu-BC MitM 8 2116 2116 286 1 [TAY16]
Kiasu-BC Imp. Diff. 8 2118 2120.2 2102 1 [DL17]
Kiasu-BC Boomerang 8 2103 2103 260 1 [DL17]
ForkAES-˚-4-4 Imp. Diff. 8 239.5 247 235 1 [BBJ+19]
ForkAES-˚-4-4 Refl. Diff. 8 235 235 233 1 [BBJ+19]
ForkAES-˚-5-5 Trunc. Diff. 10 274.5 274.5 259.5 2´32 Section 3.2.3
ForkAES-˚-5-5 Trunc. Diff. 10 2100.5 2114 280.5 2´4 Section 3.2.4.2
ForkAES-˚-5-5 Trunc. Diff. 10 2119 2125 283 1 Section 3.2.4.3

Table 3.2: Cryptanalysis results against AES, Kiasu-BC, and ForkAES. ϵ is the
fraction of weak keys targeted by the attack.

Even though the attacks are not practical, these are the first that break the
security claim of the full ForkAES. In particular, it shows that ForkAES offers a
significantly lower security that the underlying block cipher Kiasu-BC, where the
best attacks reach only 8 rounds.

Notation. The first branch takes round keys k5 to k10 (resp. k5 to k9) and the
second branch takes round keys k11 to k16 (resp. k10 to k14) for ForkAES-5-5-5 (resp.
ForkAES-5-4-4), derived from the master key k with an extended key schedule.
We denote the ciphertext obtained from the first branch as C0 and the ciphertext
obtained from the second branch as C1.

Equivalent last rounds. For the following attacks, we denote pC0 (resp. pC1) the
state after partial inversion of the last round of the first (resp. second) branch (we
invert AddRoundTweak, MixColumns and ShiftRows), and pki the equivalent round
key corresponding to ki, where ki is typically a whitening key in the output of a
branch. We point out that ForkAES does not omit the MixColumns operation in
the last round. The equivalent operation is denoted by AKeq

i . In other words,

pC0pT q “ SR´1pMC´1pATpC0qqq, pki “ SR´1pMC´1pkiqq,

pC1pT q “ SR´1pMC´1pATpC1qq.

Although pCipT q depends on the tweak used for reconstruction, if there is no
ambiguity, we allow ourselves to omit the tweak in the notation and denote the
equivalent ciphertext pCi.

3.2. Cryptanalysis of full ForkAES 49

3.2.2 Previous Attack Against ForkAES-˚-4-4
We start by explaining the details of the previous reflection differential attack of
Banik et al. [BBJ+19] on ForkAES-5-4-4, although it can trivially be extended to
ForkAES-*-4-4 with a reindexing of subkeys. This attack is a truncated differential
attack exploiting reconstruction query.

3.2.2.1 Truncated differential characteristic and probability

The attack uses the truncated differential characteristic of Figure 3.4. For each byte
of the input, output, and internal state, the characteristic specifies whether there
should be a difference or not. We approximate the probability of the characteristic as
the product of the probability of each rounds, using the Markov Cipher Assumption.
The attack has two phases:

1. We build a structure S on the first column of C0 and the first byte of the
tweak T : for each tweak T and ciphertext C0 in the structure, the different
pC0pT q have the same values on the last three columns and differ only on the
first one.

2. Among S, look for pairs with the correct difference pattern in pC1pT q. If we
identify a pair, we assume that the internal states follow the characteristic,
and we use this assumption to recover part of the key.

We can compute the probability of the characteristic as follows:

• Prpw8 Ñ z8q “ 2´24 since three bytes become inactive after inverse
MixColumns.

• Prpx8 Ñ w7q “ 2´8 since the difference in byte 0 cancels out the tweak
difference.

• Prpz10 Ñ w10q “ 2´24 since three bytes become inactive after MixColumns.

• Prpw10 Ñ x11q “ 2´8 since the difference in byte 0 cancels out the tweak
difference.

In total, the probability of the characteristic is 2´64.

3.2.2.2 Attack procedure

While the description given in [BBJ+19] uses a fixed tweak difference, we will
not fix it in advance, but we use structures on the tweak to further reduce the
complexity of the attack. Moreover, we will show in Section 3.2.4.1 that fixing the
tweak does not ensure the above probability of going through the characteristic,
as the middle rounds can only be satisfied if the tweak difference and the key are
compatible.

50 Chapter 3. Improved Attacks against the Forkcipher Framework

pk9

AKeq
9

pC0

KS

tk8
ATK8

y9x9
SB´1

Round 9

Legend

Zero Difference
Non-zero Difference

KS

tk7
ATK7

2´8

w8

Round 8

z8
MC´1

2´24

y8
SR´1

x8
SB´1

tk6
ATK6

w7

Round 7

z7
MC´1

y7
SR´1

x7
SB´1

Round 9 to 6

w6

Round 6

z6
MC´1

y6
SR´1

x6
SB´1

k5`k10 AKeq
5`10x10

SB

y10
SR

z10
MC

2´24

w10

Round 10

KS

tk11
ATK11

2´8
x11

SB

y11
SR

z11
MC

w11

Round 11

KS

tk12
ATK12

x12
SB

y12
SR

z12
MC

w12

Round 12

tk13
ATK13

x13
SB

y13

Round 13

pk14

Round 10 to 13

AKeq
14

pC1

Figure 3.4: Truncated differential characteristic for ForkAES-5-4-4.

Construction of the structure. First, we choose arbitrary values for the last
three columns of C0, along with arbritrary values for all bytes of the tweak except
the first one. Iterating over the first byte of the tweak and the values of the first
column of C0 gives us a set of 240 pT, C0q values. Among them, we query 232.5

randomly chosen elements. This gives us 232.5 ˆ p232.5 ´ 1q{2 « 264 pairs of inputs
verifying the input difference pattern of the characteristic. On average, one pair
satisfies the characteristic.

Filtering the pairs. We can distinguish the right pair from the wrong ones
by storing the corresponding pC1pT q ciphertexts into a hash table, indexed by the
values of the three last columns. If a pair of inputs satisfies the characteristic, we
detect it as a collision in the hash table. For random pairs of outputs, there is a

3.2. Cryptanalysis of full ForkAES 51

collision with probability 2´96. As we have 264 pairs stored in the hash table, a
random collision occurs with probability 2´32, which can be neglected. The only
collision is therefore the right pair.

Reducing the key space. Supposing that the pair follows the characteristic,
the difference in state x12 is exactly the tweak difference. As mentioned in
Section 2.2.2.2, there are only 27 possible output differences through the S-box if
the input difference is fixed. We can compute these differences from the known
tweak difference, and propagate the differences through SR, MC and ATK13 since
they are linear operations, in order to get 27 candidates for the x13 difference. We
also know the difference in pC1, therefore the difference in y13. Using Lemma 2.2, we
recover the value of the first column of y13 for each of the 27 potential differences.
Then we can deduce 27 candidates for the first column of the key pk14, from the
value of y13 and pC1.

Full key-recovery. No operation depends specifically on the column position in
AES, Kiasu-BC and ForkAES. Consequently, we can iterate this attack by shifting
the entire characteristic to another column. We can therefore recover 27 candidates
for each column of pk14. We can invert the key schedule to recover the master key
from pk14. The 228 candidates are ultimately tested exhaustively.

3.2.2.3 Complexity evaluation

We require 232.5 queries per column, which induces a data complexity of 234.5. The
memory complexity is equivalent to 232.5 AES states to store 232.5 values of pC1 in the
hash table. The time complexity is 228 encryptions for the final exhaustive search
and 234.5 memory accesses for the data processing. Eventually the complexity is:

pD, T, Mq “ p234.5, 234.5, 232.5q.

3.2.3 Attack Against Full ForkAES for 296 Weak Keys
We now describe new attacks against ForkAES-˚-5-5, by improving the previous
techniques. Again, the key indexing corresponds to ForkAES-5-5-5 but the attack
can trivially be adapted to ForkAES-˚-5-5. A reconstruction query from C0 to C1
now starts with the whitening key k10, goes through 5 inverse rounds with round
keys k9, k8, k7, k6, then key k5 ` k11 is xored at the forking point followed by 5
forward rounds with keys k12, k13, k14, k15 and k16 (final whitening key).

Our first attack targets weak keys such that k5 ` k11 only has zero values on
the diagonal; this happens with probability 2´32. Our attack uses a differential
characteristic with high probability, shown in Figure 3.5. An important particularity
of this characteristic is that if one pair satisfies this characteristic, then it is easy to
construct another pair that has a very high chance of satisfying the characteristic
as well.

52 Chapter 3. Improved Attacks against the Forkcipher Framework

Notation. To describe our attacks, we use θ to denote a non-zero byte difference
such that Prpθ ÝÝÑ

SB
θ{2q “ 2´7, and λ to denote the unique value such that

Prpθ ÝÝÑ
SB

λq “ 2´6. There are 123 values of θ satisfying this condition. We use Θ
to denote the state difference active only on the first byte with Θr0s “ θ. Typically,
Θ corresponds to the tweak difference in our attacks. For instance, we can use
θ “ 10, θ{2 “ 08, λ “ a9.

3.2.3.1 Differential characteristic for the first pair

First, we guess the first byte of the equivalent key pk10 and denote it K, and we
consider input pairs p “ ppC0, T q, pC 1

0, T 1qq of the form:

pC0 “

¨

˚

˚

˝

Sp0q ` K
0
0
0

u

˛

‹

‹

‚

, T “ 0, pC 1
0 “

¨

˚

˚

˝

Spθq ` K
0
0
0

v

˛

‹

‹

‚

, T 1 “ Θ.

for any 96-bit vectors u and v (seen as 4 ˆ 3 byte matrices). By construction, the
first byte difference at state x10 is exactly the tweak difference, so that the state
w9 has an inactive first column. Therefore, the probability of the characteristic
can be computed as

• Prpw9 Ñ z9q “ 2´72 since 9 bytes become inactive after the MixColumns
operation.

• Prpw8 Ñ z8q “ 2´24 since 3 bytes become inactive after the MixColumns
operation. Moreover, since the difference in w8r0s is θ, cancelling three byte
implies that the difference in the first column of w8 must be rθ, θ{2, θ{2, θ `

θ{2s. Alternatively, we can consider that Prpy9 Ñ x9q “ 2´24 if the difference
in the first column of x9 is fixed in advance to r0, θ{2, θ{2, θ ` θ{2s.

• Prpy8 Ñ x8q “ Prpθ ÝÝÑ
SB

θ{2q because of the choice of θ.

• Round 7 is then inactive.

• Values in the diagonals of both elements of the pair in state x6 do not change
with the AKeq

5`11 operation, because of the hypothesis we made on the key.
Consequently, both elements of the pair have the same diagonal values in
state y6 and in state y11. The difference in state w11 is therefore the tweak
difference with probability 1.

• Round 12 is then inactive.

• Prpx13 Ñ y13q “ 2´7 because of the choice of θ.

• Prpx15 Ñ y15q “ 2´6 because we are looking for pairs with a first byte
difference of λ.

3.2. Cryptanalysis of full ForkAES 53

K
pk10

AKeq
10

pC0

KS

tk9
ATK9

y10x10
SB´1

Round 10

Legend

Zero Difference
x Fixed value x

Non-zero Difference
θ Difference

θ{2 Difference
λ Difference

Fixed Difference

KS

tk8
ATK8

w9

Round 9

z9
MC´1

2´72

y9
SR´1

x9
SB´1

KS

tk7
ATK7

w8

Round 8

z8
MC´1

2´24

y8
SR´1

x8
SB´1

2´7

tk6
ATK6

w7

Round 7

z7
MC´1

y7
SR´1

x7
SB´1

Round 10 to 6

w6

Round 6

z6
MC´1

y6
SR´1

x6
SB´1

0
0

0
0

k5`k11 AKeq
5`11x11

SB

y11
SR

z11
MC

w11

Round 11

KS

tk12
ATK12

x12
SB

y12
SR

z12
MC

w12

Round 12

KS

tk13
ATK13

x13
SB

2´7

y13
SR

z13
MC

w13

Round 13

KS

tk14
ATK14

x14
SB

y14
SR

z14
MC

w14

Round 14

tk15
ATK15

x15
SB

2´6

y15

Round 15

pk16

Round 11 to 15

AKeq
16

pC1

Figure 3.5: Differential characteristic for very weak keys.

54 Chapter 3. Improved Attacks against the Forkcipher Framework

In summary, for the first pair, Prp pC0 Ñ pC1q “ 2´72´24´7´7´6 “ 2´116. Since a
random pair has the prescribed output difference with probability 2´32, this is too
low for a direct attack, but we use an amplification technique using twin pairs.

3.2.3.2 Construction of twin pairs

We build a twin pair ppC0, T q, pC 1
0, T 1qq from the pair ppC0, T q, pC 1

0, T 1qq so that
the twin pair follows the first three rounds of the characteristic with probability 1
assuming that the original pair follows it. The probability of the total characteristic
for ppC0, T q, pC 1

0, T 1qq will therefore be 2´13:

xC0 “

¨

˚

˚

˝

Spτ r0sq ` K
0
0
0

u

˛

‹

‹

‚

, T “ τ,
x

C 1
0 “

¨

˚

˚

˝

Spτ r0s ` θq ` K
0
0
0

v

˛

‹

‹

‚

, T 1 “ τ ` Θ.

where τ is the tweak active only on the first byte, such that τ r0s “ θ{1c. By
construction, the twin pair satisfies:

w9r0s “ ATK9pSB´1pAKeq
10pSBpτ r0s q ` Kqqq “ 0 “ w9r0s,

w1
9r0s “ ATK9pSB´1pAKeq

10pSBpτ r0s ` θq ` Kqqq “ 0 “ w1
9r0s.

Up to this point, neither MixColumns nor ShiftRows have been applied on the
states, therefore each byte of the state has a specific value depending only on the
corresponding byte of the input. This implies w9 “ w9 and w1

9 “ w1
9. This equality

of states is satisfied for the whole round 9, up to x9. After the next tweak addition,
we have the following property:

w8 “ w8 ` τ, w1
8 “ w1

8 ` τ.

In particular, the differences of both pairs in state w8 are equal. Because w8 Ñ y8
consists only in linear operations, the differences in state y8 of both pairs are equal,
in particular the difference y8 ` y1

8 is only active on the first byte, with difference
θ{2.

More precisely, we have:

y8 “ y8 ` SR´1pMC´1pτqq, y1
8 “ y1

8 ` SR´1pMC´1pτqq.

Note that τ was chosen so that the first byte of SR´1pMC´1pτqq is θ{2. Therefore
the pair py8r0s, y1

8r0sq is the same as the pair py8r0s, y1
8r0sq and follows the S-box

transition with probability 1:

y8r0s “ y8r0s ` θ{2 “ y1
8r0s, y1

8r0s “ y1
8r0s ` θ{2 “ y8r0s.

3.2. Cryptanalysis of full ForkAES 55

3.2.3.3 Filtering twin pairs
The main step of the attack is to build quartets of oracle queries corresponding
to a pair and its twin, and to filter the candidates that follow the truncated
characteristic. The differential characteristic for both pairs has a total probability
of 2´129, and the filter on the output is satisfied with probability 2´64 (32 bits of
fixed difference in each pair).

We strengthen the filter using the fact that both pairs follow the characteristic
with the same key: for each pair, we can deduce four candidates for pk16r0s so
that the transition θ Ñ λ is followed in the last round, and the two sets should
have a common value. More precisely, we know that there are exactly four
possible values for y15r0s, corresponding to the four values following the S-box
transition θ Ñ λ; we denote them as a0, a1, a2 and a3. If both pairs go through the
characteristic, the four values pC1r0s, pC 1

1r0s, xC1r0s and x

C 1
1r0s must be in the same

coset pk16 ` ta0, a1, a2, a3u. We can build a linear function φ that identifies the
coset uniquely,3 and we use an additional 6-bit filter φp pC1r0sq “ φp

xC1r0sq. Note
that we already have φp pC1r0sq “ φp pC 1

1r0sq and φp
xC1r0sq “ φp

x

C 1
1r0sq by definition

if the pairs satisfy the output difference.
Random twin pairs pass the complete filter with probability 2´70.
However, a good quartet satisfies much more restrictive conditions: the

difference at the end of round 14 is in a space of 224 output differences. In
the following, we try to find efficiently good quartet.

3.2.3.4 Using structures
We now explain how to build structures on C0 and identify candidates pairs
efficiently. Following the previous notation, for 96-bit vectors u and v, we make
four reconstruction queries:

pC0puq, 0 ÞÑ pC1puq, xC0puq, τ ÞÑ
xC1puq,

pC 1
0pvq, Θ ÞÑ pC 1

1pvq,
x

C 1
0pvq, Θ ` τ ÞÑ

x

C 1
1pvq.

and we want to identify u and v such that the output satisfy a 70-bit condition:

pC1puqr0, 1, 2, 3s “ pC 1
1pvqr0, 1, 2, 3s ` rλ, 0, 0, 0s, (3.1)

xC1puqr0, 1, 2, 3s “
x

C 1
1pvqr0, 1, 2, 3s ` rλ, 0, 0, 0s, (3.2)

φp pC1puqr0sq “ φp
xC1puqr0sq. (3.3)

The last condition depends only on u and we can filter out values that do not
satisfy it. The three conditions imply another 6-bit condition that can be used to
filter v values:

φp pC 1
1pvqr0sq “ φp

x

C 1
1pvqr0sq. (3.4)

3Such as the orthogonal projection with the dimension 2 kernel xa0 ` a1, a0 ` a2, a0 ` a3y.

56 Chapter 3. Improved Attacks against the Forkcipher Framework

We store the remaining values in two hash tables:

• H indexed by pC1puqr0, 1, 2, 3s}
xC1puqr0, 1, 2, 3s;

• H 1 indexed by pC 1
1pvqr0, 1, 2, 3s}

x

C 1
1pvqr0, 1, 2, 3s ` rλ, 0, 0, 0, λ, 0, 0, 0s.

Let us assume that we have a match between an element of the first table and
an element of the second one, corresponding to vectors u and v. Our twin pairs
are pp pC0puq, 0q, p pC 1

0pvq, Θqq and pp
xC0puq, τq, p

x

C 1
0pvqq, Θ ` τqq.

A match in the table ensures that conditions (3.1) and (3.2) are satisfied, and
condition (3.3) was checked before filling the table.

Both hash tables have 64-bit hash keys. However, a pair pu, vq matches
with probability 2´58 due to redundancy: conditions (3.1), (3.2) and (3.3) imply
condition (3.4).

Therefore, we have a 70-bit filter implemented with a 6-bit pre-filter and two
64-bit hash tables. The filter has a memory complexity of only 2 ˆ D ˆ 2´6 96-bit
blocks if D is the number of candidate vectors.

3.2.3.5 Extended filtering

The probability that twin pairs satisfy the characteristic is 2´129. Therefore, we
need two sets of 264.5 96-bit vectors to form 2129 twin pairs in order to expect one
right pair. After the 70-bit filter, we will still have 2129´70 “ 259 pairs, and we
need to distinguish the right pair from the wrong ones.

The difference in z13 is θ{2, and z13 Ñ x14 is composed of linear operations,
so we can compute the fixed difference in state x14. Then, we precompute the 27

possible difference values of a byte difference in state y14, for instance y14r1s. We
then compute the possible differences of the last column of the state x15. Knowing
the differences in pC1, we can deduce 27 possible values for the last column of
pk16. We can perform this deduction for both twin pairs and check whether the
intersection of the possible column values is empty or not. If it is, the pairs are
incompatible. This costs 28 operations at most, and the probability of having a
non-empty intersection is approximately 27 ˆ27 ˆ2´32 “ 2´18. When this happens,
there is on average one element in the intersection. We repeat the process with
the two remaining columns, and obtain another filter, which a random pair passes
with probability 23ˆp´18q “ 2´54.

Using precomputed tables. In the following sections, this filtering is the most
expensive part of the attack, with a complexity of 28 elementary operations per
candidates. Instead of computing the sets of pk16 candidates on the fly, we can
build a table indexed by bytes of pC1, pC 1

1, xC1 and x

C 1
1 that contains a boolean value

indicating whether the pairs are compatible or not. This implementation of the
filter requires a single table access instead of 28 operations.

3.2. Cryptanalysis of full ForkAES 57

More precisely, we can deduce 27 candidates for pk16r12, 13s from pC1r12, 13s and
pC 1

1r12, 13s. Therefore, we can check if the candidates for pk16r12, 13s have a non-
empty intersection using only the values of pC1r12, 13s, pC 1

1r12, 13s, xC1r12, 13s and
x

C 1
1r12, 13s. After pre-computing a table indexed by these 8 bytes (of size 264), we

filter candidates with complexity 1, keeping only a fraction 27`7´16 “ 2´2. We can
actually reduce the table size to 248 because the valid values of pC1r12, 13s, pC 1

1r12, 13s,
xC1r12, 13s and x

C 1
1r12, 13s are invariant by translation. Therefore, we create a table

indexed by xC1r12, 13s ` pC1r12, 13s, xC 1
1r12, 13s ` pC 1

1r12, 13s, pC1r12, 13s ` pC 1
1r12, 13s.

We generate 4 such tables checking for intersection of different key bytes, in
order to keep only a fraction 2´8 of the candidates, and then apply the full filter to
the remaining candidates. Therefore, in the description of our attacks, we consider
that this filter costs only one operation per candidate.

After this extended filter, we only have 259´54 “ 25 twin pairs left. For each of
them, there are on average one key guess for the three last columns and four key
guesses for the first byte. We then iterate over the bytes pk16r1, 2, 3s to proceed in
an exhaustive search for the key. This has a complexity of 25`2`24 “ 231 which is
significantly lower than the complexities of other steps of this attack.

3.2.3.6 Complexity of the attack

First, we guess K of the first byte of the equivalent round key pk10. For each
guess, we query two structures of size 264.5, corresponding to 266.5 encryptions,
which makes a total data complexity of 274.5. The memory complexity is 259.5,
because the average number of vectors written in each hash table is 258.5. The
time complexity of the pair processing of Section 3.2.3.5 corresponds 259 simple
operations for each guess of K, hence a total of 28 ˆ 259 “ 267. Therefore, the time
complexity is bounded by the data complexity.

Therefore, the complexity is:

pD, T, Mq “ p274.5, 274.5, 259.5q.

3.2.4 Larger Classes of Weak Keys
We now describe attacks with larger classes of weak keys, by relaxing the constraint
that k5 ` k11 should have a diagonal of zeroes. However, without this constraint
the path becomes impossible to satisfy for some tweak differences.

3.2.4.1 Incompatibility between the tweak difference and the key

We focus on the middle rounds of the previous characteristic, with a tweak difference
Θ active only in the first cell. As explained earlier, we want to have rounds 7 and
12 inactive, so that the difference in y6 and y11 is completely determined:

py11 ` y1
11qr0, 5, 10, 15s “ MC´1prθ, 0, 0, 0sq “ py6 ` y1

6qr0, 5, 10, 15s. (3.5)

58 Chapter 3. Improved Attacks against the Forkcipher Framework

Moreover, we have the following relation between y6 and y11:

x6ris “ x11ris ` k5ris ` k11ris,

S´1py6risq “ S´1py11risq ` k5ris ` k11ris.

Therefore, for each i P t0, 5, 10, 15u, the value of y11ris must satisfy the following
equation:

SpS´1ptq ` κq “ SpS´1pt ` αq ` κq ` α, (3.6)

with unknown t, where κ and α are parameters (corresponding respectively to
k5ris ` k11ris and MC´1prθ, 0, 0, 0sqri{5s). This equation admits solutions if and
only if the coefficient pα, κq of the Boomerang Connectivity Table of S´1 is non-
zero [CHP+18]. Following the analysis of [BC18], there are exactly 128 such values
of κ for each α ‰ 0 when S is the AES S-box.

This implies that for each choice of θ there is a probability of 2´4 that the key
is compatible with the tweak difference (2´1 for each diagonal byte). When the
key is compatible we have Prpx7 Ñ x12q ě 2´28, because Equation 3.6 has at least
2 solution. In other cases, the probability of passing the total characteristic is zero.

3.2.4.2 A class of 2119 weak keys
We now assume that the key k5 ` k11 has at least one diagonal byte equal to
zero. This happens with probability 2´6. Without loss of generality, we consider
that the first byte of the key is zero. We also assume that the tweak difference
θ is compatible with the key, which happens with probability 2´3 (2´1 for each
non-zero diagonal key byte).

This variant of the attack is very similar to the previous one. The main
difference is that the characteristic (Figure 3.6) now has a probability 2´21 of
following the middle rounds (2´7 for each of the three rightmost columns).

As in the previous attack, we start by guessing the first byte of pk10, denoted by
K. The probability of following the characteristic is 2´116 ¨ 2´21 “ 2´137 for the
first pair and 2´13 ¨ 2´21 “ 2´34 for its twin pair, which induces a total probability
of 2´171. We therefore build structures of size 285.5. After the 70-bit filter, 2101

twin pairs remain. The extended filtering costs a single operation per pair (using
tables) and keeps a fraction 2´54 of the pairs, which gives 247 remaining twin pairs.
On average, each remaining twin pair has one key guess for the three last columns,
four key guesses for the first byte, and 224 key guesses for bytes 1,2,3. Exhaustively
testing these candidates has a complexity of 247`2`24 “ 273.

This attack covers 2119 keys and has complexity pD, T, Mq “ p295.5, 2109, 280.5q

after iterating over K, with success probability 1 ´ 1{e « 0.63.
In order to cover more keys, we can repeat the attack with different choices of

θ, to cover other keys with a zero byte. We can also modify the characteristic by
using a tweak active in a different column and rotating the whole characteristic.
For instance, let us assume that we repeat the attack with 32 characteristics,
8 active in each column. If the key has at least one byte of k5 ` k11 equal
to zero, then 8 of these characteristics correspond to the correct column and

3.2. Cryptanalysis of full ForkAES 59

K
pk10

AKeq
10

pC0

KS

tk9
ATK9

y10x10
SB´1

Round 10

Legend

Zero Difference
x Fixed value x

Non-zero Difference
θ Difference

θ{2 Difference
λ Difference

Fixed Difference

KS

tk8
ATK8

w9

Round 9

z9
MC´1

2´72

y9
SR´1

x9
SB´1

KS

tk7
ATK7

w8

Round 8

z8
MC´1

2´24

y8
SR´1

x8
SB´1

2´7

tk6
ATK6

w7

Round 7

z7
MC´1

y7
SR´1

x7
SB´1

Round 10 to 6

w6

Round 6

z6
MC´1

y6
SR´1

x6
SB´1

0
k5`k11 AKeq

5`11x11
SB

2´21

y11
SR

z11
MC

w11

Round 11

KS

tk12
ATK12

x12
SB

y12
SR

z12
MC

w12

Round 12

KS

tk13
ATK13

x13
SB

2´7

y13
SR

z13
MC

w13

Round 13

KS

tk14
ATK14

x14
SB

y14
SR

z14
MC

w14

Round 14

tk15
ATK15

x15
SB

2´6

y15

Round 15

pk16

Round 11 to 15

AKeq
16

pC1

Figure 3.6: Truncated differential characteristic for 2119 weak keys against ForkAES-
˚-5-5.

60 Chapter 3. Improved Attacks against the Forkcipher Framework

succeed with probability 2´3 ¨ p1 ´ 1{eq. Therefore the success probability is
1 ´

`

1 ´ 2´3 ¨ p1 ´ 1{eq
˘8

« 0.48 for this class of 2123.95 keys, with an attack
complexity pD, T, Mq “ p2100.5, 2114, 280.5q.

3.2.4.3 Attacking all keys
We can extend the weak key class to the set of keys compatible with the tweak
difference. A random key is compatible with probability 2´1 on each diagonal byte,
which makes a total probability of 2´4. In order to apply the attack to all keys,
we repeat the attack with different choices of θ and different structures, until it
succeeds.

The characteristic is still essentially the same, but the middle rounds now have
a probability of 2´28 (Figure 3.7). Again, we start by guessing the first byte of
pk10, denoted by K. The first pair satisfies the total characteristic with probability
2´116 ¨ 2´28 “ 2´144, and the twin pair with probability 2´13 ¨ 2´28 “ 2´41, so that
the quartet satisfies the characteristic with probability 2´185. With structures
of size 292.5, we are left with 2115 candidates after the 70-bit filter. Using the
table-based variant of the extended filtering of Section 3.2.3.5, we can filter the
2115 pairs down to 261 with a complexity of 2115, but since this attack only covers
2116 keys with a given guess of K, it is not faster than exhaustive search.

More efficient filtering. In order to reduce the time complexity of the attack,
we use a time-data trade-off, increasing the data complexity in order to have a
stronger filtering. More precisely, we start with two structures of size 296 (the
maximum size possible within this framework) and we only keep the 288 values with
pC1puqr12s “ 0 and pC 1

1pvqr12s “ 0, respectively. As explained in Section 3.2.3.4, we
keep 282 values after the 6-bit pre-filter of conditions (3.3) and (3.4). We store the
first structure in a hash table indexed by

i “ pC1r0, 1, 2, 3s}
xC1r0, 1, 2, 3s, j “ pC1r13s}

xC1r12, 13s,

and the second structure in a hash table indexed by

i1 “ pC 1
1r0, 1, 2, 3s}

x

C 1
1r0, 1, 2, 3s ` rλ, 0, 0, 0, λ, 0, 0, 0s, j1 “ pC 1

1r13s}
x

C 1
1r12, 13s.

Because of the 6-bit pre-filter, there are only 258 values of i and i1 with non-empty
buckets, and each bucket with a fixed pi, jq (respectively pi1, j1q) contains on average
1 element.

We can now generate efficiently the pairs that pass both the 70-bit filter, and
the first 2-bit filter used in the extended filtering of Section 3.2.3.5. We first
iterate over all 258 choices of i “ i1 with non-empty buckets, corresponding to
the 70-bit filter. For each i “ i1, we iterate over the 246 choices of j and j1 such
that the 2-bit filter is satisfied, and generate the corresponding pairs. Since we
have pC1r12s “ pC 1

1r12s “ 0, the 2-bit filter only depends on j and j1, and we can
pre-compute the 246 values that satisfy it. This generates 2104 pairs for a cost of
258 ¨ 246 “ 2104.

3.2. Cryptanalysis of full ForkAES 61

K
pk10

AKeq
10

pC0

KS

tk9
ATK9

y10x10
SB´1

Round 10

Legend

Zero Difference
x Fixed value x

Non-zero Difference
θ Difference

θ{2 Difference
λ Difference

Fixed Difference

KS

tk8
ATK8

w9

Round 9

z9
MC´1

2´72

y9
SR´1

x9
SB´1

KS

tk7
ATK7

w8

Round 8

z8
MC´1

2´24

y8
SR´1

x8
SB´1

2´7

tk6
ATK6

w7

Round 7

z7
MC´1

y7
SR´1

x7
SB´1

Round 10 to 6

w6

Round 6

z6
MC´1

y6
SR´1

x6
SB´1

k5`k11 AKeq
5`11x11

SB

2´28

y11
SR

z11
MC

w11

Round 11

KS

tk12
ATK12

x12
SB

y12
SR

z12
MC

w12

Round 12

KS

tk13
ATK13

x13
SB

2´7

y13
SR

z13
MC

w13

Round 13

KS

tk14
ATK14

x14
SB

y14
SR

z14
MC

w14

Round 14

tk15
ATK15

x15
SB

2´6

y15

Round 15

pk16

Round 11 to 15

AKeq
16

pC1

Figure 3.7: Truncated differential characteristic for 2124 weak keys against ForkAES-
˚-5-5. The weak key space can be further increased by changing the value of θ.

62 Chapter 3. Improved Attacks against the Forkcipher Framework

Then we apply the rest of the extended filter to reduce to 252 pairs, and
exhaustively test the suggested keys (for a cost of 252`2`24). This attack covers
2124 keys and has complexity pD, T, Mq “ p2106, 2112, 283q, after iterating over K.
However, since the structures are smaller than required, the success probability is
only 1 ´ e´1{512 (we consider 2176 quadruples, but the probability of following the
characteristic is 2´185).

Expected complexity. For a random key, the previous attack succeeds with
probability 2´4¨p1´e´1{512q « 1{8200. Therefore, the full attack succeeds after 8200
repetitions on average,4 with a total complexity of pD, T, Mq “ p2119, 2125, 283q.

We can also slightly reduce the data complexity (at the expense of memory
complexity) by reusing the structures of 296 queries with different constraints on
pC1puqr12s and pC 1

1pvqr12s.

3.3 Cryptanalysis of ForkSkinny
ForkSkinny has more rounds than Skinny in reconstruction queries to limit the
impact of the weaker diffusion, but the parameters used by the designers have
a bad interaction with the tweakey schedule. In Section 3.3.3 and Section 3.3.4,
we show attacks against several variants of ForkSkinny exploiting this weakness.
We rely on two well-known properties of the Skinny tweakey schedule. First, each
round uses only key material from one half of the key (depending on the parity of
the round number). Second, some tweakey differences lead to inactive round keys
every 30 rounds because differences cancel out (the tweakey schedule is linear).

In particular, when r0 is odd, encryption queries for C1 have two consecutive
rounds that use key material from the same half of the master key. Moreover,
when r0 “ 27, encryption queries for C1 have 27 rounds of “blank” key schedule;
this allows to have two consecutive cancellation events (cancellation at round i
is followed by a round using the inactive half of the key, then 27 blank rounds,
another round with the inactive half, and a second cancellation event). Since
ForkSkinny-128-256 uses r0 “ 27, this allows to extend the best attacks by three
rounds: we have a related-key attack against 24-round ForkSkinny-128-256 with a
128-bit key (corresponding to the parameters used in the NIST submission) and a
related-key attack against 26-round ForkSkinny-128-256 with a 256-bit key. These
results do not affect the security of the full ForkSkinny because it was designed
with a large security margin (the full version of ForkSkinny-128-256 has 48 rounds),
but they show that bad parameter choices make it significantly weaker than Skinny.

At the time of the publication of our work [BDL20], no previous third-
party cryptanalysis of ForkSkinny existed. However, the different analysis of
Skinny can directly be applied to ForkSkinny, since the ForkSkinny encryption
P ÞÑ C0 corresponds exactly to a Skinny encryption. Since our publication

4Note that we can use 492 different characteristics (with 123 choices of θ and using the four
rotations), so that the probability of success of each attempt is mostly independent.

3.3. Cryptanalysis of ForkSkinny 63

Algorithm Model κ Attack Rds. Data Time Mem. Reference
ForkSkinny-128-256 RTK2 128 Imp. Diff. 24 2126.5 2126.5 2101.5 Section 3.3.31

ForkSkinny-128-256 RTK2 128 Imp. Diff. 24 2118 2126.3 2121 [HGS+24]1,2

ForkSkinny-128-256 RTK2 128 Rectangle 25 2118.9 2118.9 2119.2 [QDW+21]2

Skinny-128-˚ RTK2 256 Imp. Diff. 23 2124.5 2251.5 2248 [LGS17]
Skinny-128-˚ RTK2 256 Imp. Diff. 23 2124.4 2243.6 2163.4 [SMB18]1
Skinny-128-˚ RTK2 256 Rectangle 26 2126.5 2241.4 2136 [DQS+22]2

ForkSkinny-128-256 RTK2 256 Imp. Diff. 26 2125 2254.6 2160 Section 3.3.4
ForkSkinny-128-256 RTK2 256 Imp. Diff. 26 2127 2250.3 2160 Section 3.3.4
ForkSkinny-128-256 RTK2 256 Imp. Diff. 26 2128.6 2238.5 2179.6 [HGS+24]1,2

ForkSkinny-128-256 RTK2 256 Rectangle 28 2118.9 2247 2136 [QDW+21]2
ForkSkinny-128-256 RTK2 256 Rectangle 28 2118.9 2224.8 2118.9 [DQS+22]2
ForkSkinny-128-256 RTK2 256 Rectangle 28 2123.9 2212.9 2123.9 [SYC+24]2

Table 3.3: Cryptanalysis results against Skinny and ForkSkinny. The column κ
denotes the key size. Since our work, the best attacks on the different versions of
Skinny and ForkSkinny have improved.

1 As pointed out by [BL24], the complexity of the original attack is flawed, following an
inaccuracy in [SMB18].

2 These results were found after our publication.

however, the cryptanalysis of ForkSkinny was improved with other impossible
differential [HGS+24] and rectangle attacks [QDW+21; DQS+22; SYC+24].
Results on Skinny and ForkSkinny are listed in Table 3.3.

Notation We denote the state at the input of round i as xi, the state after
SubCells as yi, after AddRoundTweakey as zi and after ShiftRows as wi. The
output of MixColumns is xi`1. In our description of the attack we ignore the
AddConstants operation and the branch constant for simplicity, since they do not
impact differential attacks. The round subkey of round i (generated from the
tweakey by the tweakey schedule) is denoted as tki, while the input tweakey words
are denoted as TK1 and TK2.

For a 128-bit state s, we denote by srjs the j-th byte of the state, with the
following byte-order (following the Skinny specification):

0
4
8
12

1
5
9
11

2
6
10
14

3
7
11
15

Equivalent first and last round. Since there are no whitening keys in Skinny,
we can ignore the SubCells operation of the first round, and the ShiftRows and
MixColumns operations in the last round, because they can be evaluated without
knowing the key.

64 Chapter 3. Improved Attacks against the Forkcipher Framework

We also define an equivalent first round key that is applied after ShiftRows and
MixColumns, so that we can also ignore those operations:

ptk1 “ MCpSRptk1qq.

3.3.1 Related-tweakey Attacks on Skinny
As described in Section 2.3.4.1, multiple attacker models exist in the TWEAKEY
framework. In related-tweakey models RTKi (for i P t1, 2, 3uq, the attacker may
introduce differences in i tweakey states. He can use the tweakey difference to
cancel the state difference and obtain inactive rounds in the middle of a differential
characteristic. Furthermore, some attacks, such as the impossible differential attack,
use two independent trails, and each trail can take advantage of inactive rounds.

On Skinny, half of the tweakey state is XORed to the state each round. In this
subsection, we briefly analyse the possible state cancelations in differential trails
under the RTK1 and RTK2 attacker models.

Differential trails with two inactive rounds in the RTK1 attacker model.
When there is a single tweakey word with a difference, the analysis is rather simple.
If there is an active byte in the master tweakey, it will alternatively move to
the top and bottom half of the tweakey state, and every second round key has a
non-zero difference. Therefore, we can have two consecutive inactive rounds. This
is illustrated on Figure 3.8.

Differential trails with four inactive rounds in the RTK2 attacker model.
When the attacker can introduce a difference in two tweakey states, the analysis is
more complex. The attacker can choose differences in each tweakey word that will
cancel at some intermediate round. This gives three consecutive inactive round
keys, and four consecutive inactive rounds. Since all tweakey words have the same
cell permutation in the tweakey schedule, the difference stays in a single cell of the
round keys. This is illustrated on Figure 3.9.

The LFSR construction used in the tweakey schedule makes it possible to prove
that such a cancellation can only happen every 30 rounds. More precisely, the
smallest i such that there exist values δ ‰ 0 with αipδq “ δ is i “ 15.

Alternatively, Table 3.4 represents the tweakey differences of a differential trail
construction in the RKT2 attacker model.

3.3.2 Related-tweakey Attacks on ForkSkinny
The analysis of Skinny differential trail in related tweakey attacker models is
also applicable to ForkSkinny. Encryption queries from P to C0 correspond
exactly to Skinny encryption queries, but encryption queries from P to C1 use
a slightly different tweakey schedule: the subkeys used are taken from indices
0, 1, . . . , rinit ´ 1, rinit ` r0, rinit ` r0 ` 1, . . . rinit ` r0 ` r1 ´ 1. To put it another
way, there are r0 “blank” rounds of tweakey schedule at the forking point. This is

3.3. Cryptanalysis of ForkSkinny 65

Difference:

TK1 δ δ δ δ δ δ δ

Round tweakey

State ¨ ¨ ¨ ¨ ¨ ¨R R R R R R

Figure 3.8: Differential trail construction on Skinny in the RTK1 model.

Difference:

TK1 δ δ δ δ δ δ δ

TK2 α´2pδq α´1pδq α´1pδq δ δ αpδq αpδq

Round tweakey

State ¨ ¨ ¨ ¨ ¨ ¨R R R R R R

Figure 3.9: Differential trail construction on Skinny in the RTK2 model.

Round 2 3 4 5 6
TK1 δ rδs δ rδs δ
TK2 α´1pδq rα´1pδqs δ rδs αpδq

Subtweakey α´1pδq ` δ 0 0 0 αpδq ` δ

Table 3.4: Tweakey difference in a differential trail of Skinny in the RTK2 attacker
model. Values in square brackets indicate that the difference is in the lower part of
the state.

a weakness if the value of r0 is poorly chosen, because cancellation in the round
keys can occur more frequently than in the original Skinny tweakey schedule.

66 Chapter 3. Improved Attacks against the Forkcipher Framework

3.3.2.1 Extending attacks by one round when r0 is Odd

When r0 is odd, the round keys before and after the forking point are taken from
the same half of the master tweakey. In particular, if there is no difference in this
half, there are two consecutive inactive round keys. This allows to extend most
differential trails (and therefore differential attacks) by one round.

For instance, attacks in the RTK2 setting can use the differential trail pattern
represented in Table 3.5.

Round 1 2 3 4 p2t`1q`5 p2t`1q`6
TK1 δ rδs δ rδs rδs δ
TK2 α´1pδq rα´1pδqs δ rδs rαt`1pδqs αt`2pδq

Subtweakey α´1pδq ` δ 0 0 0 0 αt`2pδq`δ

Table 3.5: Tweakey difference in a differential trail on ForkSkinny in the RTK2
attacker model. Values in square brackets indicate that the difference is in the
lower part of the state and the vertical line represents the forking point.

In particular, all parameters proposed for ForkSkinny use odd values of r0
which make this type of attack possible. This is a deliberate choice of the designers,
because an even value of r0 would give a similar property for reconstruction queries.

In general, taking advantage of this property requires to design a dedicated
attack on the primitive because the blank rounds move the position of the active
tweakey. However, the use of r1 “ 31 in ForkSkinny-128-288 makes it easier to
reuse existing attacks because the cell permutation PT has a period of 16. More
precisely, the first active step after the blank rounds is step 2t ` 7 “ 37 in the
previous figure. Therefore the active tweakey is in the same position as at round 5,
which would be the first active step in an attack on Skinny. This allows to reuse
the same trails when extending an existing attack by one round (the same type of
reuse will be shown in detail in Section 3.3.3).

3.3.2.2 Extending attacks by three rounds when r0 “ 27

For some specific values of r0, there might exist differential trails with more than
one additional consecutive inactive round. In particular, the pattern of Table 3.5
leads to 6 inactive round keys if αt`2pδq “ δ. For the α corresponding to the LFSR
used in Skinny, there are some choices of δ such that α15pδq “ δ. We denote by S
the set of those values5 (15 non-zero values, and the zero value). When r0 “ 27,
and using such a δ, we have differential characteristics with 6 inactive round keys
rather than 3 in the RTK2 setting, as highlighted by Table 3.6.

As it turns out, ForkSkinny-128-256 uses precisely r0 “ 27, therefore it is
possible to extend attacks against Skinny-128-256 by three rounds. However, this
generally requires to adapt the Skinny attacks and to repeat the analysis, because

5This corresponds to all values for ForkSkinny variants with 4-bit cells.

3.3. Cryptanalysis of ForkSkinny 67

Round 1 2 3 4 27+5 27+6 27+7 27+8
TK1 δ rδs δ rδs rδs δ rδs δ
TK2 α´1pδq rα´1pδqs δ rδs rα14pδqs α15pδq rα15pδqs α16pδq

Subtweakey α´1pδq`δ 0 0 0 0 0 0 α16pδq`δ

Table 3.6: Tweakey difference in a differential trail when r0 “ 27. Values in square
brackets indicate that the difference is in the lower part of the state and the vertical
line represents the forking point.

the difference at round 27 ` 8 against ForkSkinny is at a different position than
the round 5 difference in the original Skinny attack.

We now present two explicit related-key attacks taking advantage of this
property: a 24-round attack against ForkSkinny-128-256 when used in the RTK2
model with a 128-bit key, and a 26-round attack against ForkSkinny-128-256 in the
RTK2 model with a 256-bit key. Both attacks reach about 3 more rounds than the
best existing attack at publication time against Skinny with the same parameters.

3.3.3 A 24-round Attack on ForkSkinny-128-256 with 128-
bit Key in the RTK2 Model

We first focus on ForkSkinny-128-256 with a 128-bit key under the RTK2 model.
In this setting, we have a very interesting result: we can exactly reproduce the

impossible differential attack against Skinny-128-128 in the RTK1 model presented
in [SMB18, Appendix A] to attack ForkSkinny-128-256 in the RTK2 model, gaining
5 rounds. However, as noted by Bonnetain & Lallemand [BL24], the complexity of
the attack of [SMB18, Appendix A] possesses a slight inaccuracy, which we take
into account in this thesis. A description of impossible differential attacks is given
in Section 2.2.3.3. The initial attack is based on trails with two inactive rounds
(following the general idea of Figure 3.8). We turn it into an impossible differential
attack with trails with seven inactive rounds as given in Section 3.3.2.2, by relaxing
the attacker model from RTK1 to RTK2.

More precisely, the existing attack on Skinny-128-128 in the RTK1 model uses
a 13-round impossible differential distinguisher built with the miss-in-the-middle
technique, where the upper characteristic starts with 2 inactive rounds [SMB18,
Figure 3]:

Ñ , with tweakey difference

There are 255 specific values of input/output differences for which the impossible
differential holds (see [SMB18] for details). The full impossible differential is shown
in Figure 3.10. The 13-round distinguisher is used to attack 19 rounds, by adding
three rounds at the top, and three at the bottom.

In our attack, we reuse this distinguisher, but there are 7 inactive rounds at
the beginning, using two cancellations in the tweakey schedule (taking advantage
of r0 “ 27). The new distinguisher has 5 extra rounds, plus 27 blank rounds in the

68 Chapter 3. Improved Attacks against the Forkcipher Framework

key schedule. Since we add 32 key schedule rounds compared to the initial attack,
the position of the active tweakey differences after the cancellations are the same
as in the original attack, because the order of PT is 16. Therefore, the following
18-round impossible differential distinguisher holds for ForkSkinny-128-256 versions
with r0 “ 27, with the forking point after 4 rounds:

Ñ , with tweakey difference , .

The tweakey differences must be chosen in S, therefore in total, there are 15
impossible differentials: when the difference in TK1 is δ ‰ 0 P S, the difference in
TK2 is α´1pδq, the difference at the input is α´1pδq ` δ, and the difference at the
output is α6pδq ` δ.

Since the impossible differential has the same shape as in the original Skinny
attack, we can almost reuse entirely the key-recovery part of the attack of [BL24],
adding 3 rounds in the backward and forward directions. The only difference lies
in the additionnal requirement of our impossible differential distinguisher: the
tweak difference should belong to S. This implies that we can not use 8-bit tweak
structures like in the corrected analysis of Bonnetain and Lallemand [BL24], but
we can only build 4-bit structures on the tweak, using differences belonging to the
vectorial subspace S. We therefore lose 4 bits in data complexity and gain 4 bits
in memory complexity compared to the analysis of [BL24].

This leads to an attack on a 24-round reduced version of ForkSkinny-128-256
with 128-bit key where rinit “ 7, r0 “ 27 and r1 “ 17, with complexity:

pD, T, Mq “ p2126.5, 2126.5, 2101.5q.

Unfortunately, we did not find an impossible differential attack against Skinny-
128-˚ in the RTK2 model with 128-bit key in the literature to directly compare
the security of Skinny and ForkSkinny, but it seems reasonable to expect that this
type of attack would reach 21 rounds.6

More generally, we can reuse most of the differential attacks on Skinny-128-128
in the RTK1 model based on trails with two inactive rounds, and extend them by
5 rounds when attacking ForkSkinny-128-256 with a 128-bit key and r0 “ 27.

3.3.4 A 26-round Attack on ForkSkinny-128-256 with 256-
bit Key in the RTK2 Model

In order to show an attack against more rounds, we assume the use of a 256-bit key
(without tweak) in the RTK2 model. In this settings, the attacks which cost up to
2256 in time complexity are valid. This setting has been studied by several previous
works in the case of Skinny-128-256 [SMB18; LGS17], and the best known attack
reaches 23 rounds. We extend and adapt the key-recovery step of the attack of

6Using a cancellation in the key schedule allows trails with four inactive rounds, so this type
of impossible differential attack should reach 21 rounds. However, building the concrete attack
requires some tedious work to verify the impossible differential and the key-recovery.

3.3. Cryptanalysis of ForkSkinny 69

∆in

y4

Encryption rounds

tk4

T S

AC

AT

z4
SR

w4
MC

SC

y5

tk5

T S

AC

AT

z5
SR

w5
MC

SC

y6

tk6

T S

AC

AT

z6
SR

w6
MC

SC

y7

tk7

T S28

AC

AT

z7
SR

w7
MC

SC

y8

FORKING POINT

tk8

T S

AC

AT

z8
SR

w8
MC

SC

y9

tk9

T S

AC

AT

z9
SR

w9
MC

SC

y10

tk10

T S

AC

AT

z10
SR

w10
MC

SC

y11

tk11

T S

AC

AT

z11
SR

w11
MC

SC

y12

tk12

T S

AC

AT

z12
SR

w12
MC

SC

y13

tk13

T S

AC

AT

z13
SR

w13
MC

SC

y14

tk14
AC

AT

z14
SR

w14
MC

SC

y15

Decryption rounds

tk21

T S

AC

AT

∆out

x22w21
MC´1

z21
SR´1

tk20

T S

AC

AT
y21w20

MC´1

SC´1
z20

SR´1

tk19

T S

AC

AT
y20w19

MC´1

SC´1
z19

SR´1

tk18

T S

AC

AT
y19w18

MC´1

SC´1
z18

SR´1

tk17

T S

AC

AT
y18w17

MC´1

SC´1
z17

SR´1

tk16

T S

AC

AT
y17w16

MC´1

SC´1
z16

SR´1

tk15
AC

AT
y16w15

MC´1

SC´1
z15

SR´1

y15

Contradiction

Inactive tweakey difference
Active difference
No difference
Unknown
Fixed difference

Figure 3.10: Impossible differential characteristic on 18-round ForkSkinny-128-256
in the RTK2 model, using the second branch (4 rounds before forking point, 14
rounds after forking point).

70 Chapter 3. Improved Attacks against the Forkcipher Framework

Section 3.3.3 to propose a 26-round attack on ForkSkinny-128-256. The impossible
differential attack is based on the impossible differential chararacteristic shown
in Figure 3.10. The chararacteristic spans 18 round, but the first round does not
include the SubCells operation (the S-Box layer). This distinguisher gains 3 rounds
compared to the attack on Skinny-128-256 in the RTK2 model of [SMB18].

Next, we use the distinguisher in a key-recovery attack. As explained above,
there are 3 rounds before the distinguisher, and 5 rounds after. The key-recovery
part of our attack is slightly different to the key-recovery part of the attack on
Skinny-128-256 of [SMB18], since the input difference of our characteristic is in
cell 0 instead of cell 1. The new key-recovery is illustrated by Figure 3.11 and is
detailed in the next subsections.

3.3.4.1 Description of the attack

An impossible differential attack starts from an impossible differential distinguisher.
Following [SMB18], there are 15 related-key impossible differences for 18 rounds,
of the form:

Ñ , with tweakey difference ,

when the difference in TK1 is δ ‰ 0 P S, the difference in TK2 is α´1pδq, the
difference at the input is α´1pδq ` δ, and the difference at the output is α6pδq ` δ.

The distinguisher is placed at rounds 4 to 21. We collect a number of
plaintext/ciphertext pairs under related tweakeys with the input/output differences
described in the tweakey-recovery part (Figure 3.11). Then, we process each pair
to find whether some keys would lead to the input and output differences of the
impossible differential characteristic at rounds 4 and 21; such keys can not be the
encryption key. After processing enough data, we expect that only a small fraction
of the keyspace remains. More precisely, the attack will process several structures
of plaintexts, such that each structure will rule out a number of key candidates.

A structure is generated by fixing all bytes of the plaintext except bytes
1,4,11,14 to a random value, and taking the 232 possible values of bytes 1,4,11, and
14. Since the attack uses related keys, we encrypt each structure under several
keys. More precisely, we use 16 different keys, and we encrypt each plaintext under
key k˚

1 ` r0, . . . , 0, δs, k˚
2 ` r0, . . . , 0, α´3pδqs (where k˚

1 }k˚
2 is the secret key), for

all δ P S, because byte 15 of the master key moves to byte 0 at round 4 for the
impossible differential distinguisher.

By linearity of the LFSR α, any pair of tweakey in this set satisfies the conditions
for the impossible differential distinguisher, with a difference δ in both words of
the tweakey state tk6 (the TK1 word is updated three times through the LFSR).

Each structure contains 236 plaintext and values, and there are roughly 236`35 “

271 useful pairs in each set. In total, we denote N the number of pair produced,
with N{271 different structures.

3.3. Cryptanalysis of ForkSkinny 71

Values and difference
needed

Difference needed
Value needed
Key bytes recovered
Known difference
Active difference
No difference

P

SC

y1

AC

AT
z1

» 1

» 2

» 3

ShiftRows
w1 MixColumns

x2

0

7

0

0

1

4

1

1

2

5

2

2

3

6

3

3

ptk1

x2

SC

y2

AC

AT
z2

» 1

» 2

» 3

ShiftRows
w2 MixColumns

x3

10

9

14

15

12

8

11

13

tk2

x3

SC

y3

AC

AT
z3

» 1

» 2

» 3

ShiftRows
w3 MixColumns

x4

2

1

6

7

4

0

3

5

tk3

x4

SC

y4

AC

AT
z4

» 1

» 2

» 3

ShiftRows
w4 MixColumns

x5
15 11 9 14

8 12 10 13

tk4

x21

SC

y21

AC

AT
z21

» 1

» 2

» 3

ShiftRows
w21 MixColumns

x22
8 9 10 11

12 13 14 15

tk21

18 rounds Dinstiguisher
- 4 before forking point
- 14 after forking point

x22

SC

y22

AC

AT
z22

» 1

» 2

» 3

ShiftRows
w22 MixColumns

x23

0

1

2

3

4

5

6

7

tk22

x23

SC

y23

AC

AT
z23

» 1

» 2

» 3

ShiftRows
w23 MixColumns

x24

10

9

14

15

12

8

13

11

tk23

x24

SC

y24

AC

AT
z24

» 1

» 2

» 3

ShiftRows
w24 MixColumns

x25

2

1

6

7

4

0

3

5

tk24

x25

SC

y25

AC

AT
z25

» 1

» 2

» 3

ShiftRows
w25 MixColumns

x26

8

15

12

11

10

9

13

14

tk25

x26

SC

y26

AC

AT
z26

» 1

» 2

» 3

ShiftRows
w26 MixColumns C

0

7

4

3

2

1

5

6

tk26

Figure 3.11: Key-recovery of the impossible differential attack of ForkSkinny-128-
256 on 26 rounds.

72 Chapter 3. Improved Attacks against the Forkcipher Framework

3.3.4.2 Processing the pairs
We now explain how to process each pair to identify the keys that lead to the
impossible differential. The following key-recovery procedure is inspired by [SMB18].
We attach partial key information to each of the N pairs collected, initially empty,
and we will incrementally fill up the key information.

1. Round 1. From the fixed difference ∆y2r1s “ ∆tk2r1s and the difference
∆x2r1s derived from the plaintext, use Lemma 2.2 to deduce ptk1r1s (TKr1s).
We can represent the knowledge about the key graphically:

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Cells colored in light gray have been recovered once by the attacker (he does
not know the values of both tweakey states TK1 and TK2). Cells colored in
dark gray have been recovered twice by the attacker, so he can freely recover
this tweakey byte at any round (he knows the corresponding cells in TK1

and TK2 by linearity). We will use this representation after each step of the
process.

2. Round 26. Because ∆w25r4, 10, 11, 14s “ 0, the MixColumns operation gives
us four equations on ∆x26:

(i) ∆w25r4s “ ∆x26r4s ` ∆x26r12s ` ∆x26r8s “ 0.

From the knowledge of the ciphertext, we can compute ∆x26r8, 12s since no
key material is added on bytes 8 and 12. Then, we compute the quantity
∆x26r4s. Therefore we know both ∆x26r4s and ∆y26r4s. Using Lemma 2.2,
we can determine tk26r4s (TKr0s).

∆w25r14s “ ∆x26r2s ` ∆x26r14s “ 0,(ii)
∆w25r10s “ ∆x26r6s ` ∆x26r14s “ 0.(iii)

∆x26r14s can be computed from the ciphertext to derive ∆x26r2s and ∆x26r6s.
Then we can apply Lemma 2.2 and determine tk26r2, 6s (TKr1, 2s).

(iv) ∆w25r11s “ ∆x26r7s ` ∆x26r15s “ 0.

∆x26r15s can be computed from the ciphertext to derive ∆x26r7s. We use
Lemma 2.2 to determine tk26r7s (TKr5s).
We then guess tk26r0, 1, 3, 5s (TKr3, 4, 6, 7s) to compute the full state x26.
This step has a complexity of N ˆ 24ˆ8 and we are left with N ˆ 24ˆ8

candidates.

3.3. Cryptanalysis of ForkSkinny 73

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

3. Round 25. We have ∆w24r8, 9, 14s “ 0, the following equations can be
derived:

∆w24r14s “ ∆x25r2s ` ∆x25r14s “ 0,(i)
∆w24r8s “ ∆x25r4s ` ∆x25r12s “ 0,(ii)
∆w24r9s “ ∆x25r5s ` ∆x25r13s “ 0.(iii)

Since we can compute ∆x25r12, 13, 14s from x26, we can deduce ∆x25r2, 4, 5s

and apply Lemma 2.2 to recover tk25r2, 4, 5s (TKr8, 9, 12s).
We then guess tk25r3, 6, 7s (TKr10, 13, 14s) and compute the rightmost two
columns of w24. We can then compute ∆x24r8, 12s from the values and
differences of w24r10, 15s. Since w23r0, 4s “ 0, we have an 8-bit filter:

∆w23r0s ` ∆w23r4s “ ∆x24r8s ` ∆x24r12s “ 0.

Next, we guess tk25r0, 1s (TKr11, 15s), which allows to compute the full state
x25.
The complexity of this step is 24ˆ8 per candidate left after the previous step,
therefore N ˆ 28ˆ8, and there are N ˆ 28ˆ8 remaining candidates.

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

4. Round 24. Having ∆w23r9, 10, 12, 14s “ 0, the following equations can be
derived:

∆w23r14s “ ∆x24r14s ` ∆x24r2s “ 0,(i)
∆w23r10s “ ∆x24r14s ` ∆x24r6s “ 0.(ii)

We can compute ∆x24r14s from x25, deduce ∆x24r2, 6s and recover tk24r2, 6s

(TKr0, 4s) using Lemma 2.2.

(iii) ∆w23r9s “ ∆x24r5s ` ∆x24r13s “ 0.

We can compute ∆x24r13s from x25, deduce ∆x24r5s and recover tk24r5s

(TKr6s) using Lemma 2.2. Since the difference ∆w23r1s cancels out with the
tweakey, we have an 8-bit filter:

∆tk23r1s “ ∆w23r1s “ ∆x24r5s.

74 Chapter 3. Improved Attacks against the Forkcipher Framework

Since tk24r0s (TKr1s) has already been recovered twice, the attacker can
compute ∆x24r0s and the last equation becomes an 8-bit condition:

(iv) ∆w23r12s “ ∆x24r0s ` ∆x24r12s “ 0.

We then guess tk24r1, 4, 7s (TKr2, 3, 7s), and compute the values and difference
of x23r10, 14s from w24r8, 13s. Because ∆w22r2, 6s “ 0, we have an 8-bit filter:

∆w22r2s ` ∆w22r6s “ ∆x23r10s ` ∆x23r14s “ 0.

This step has a complexity of 25ˆ8 per candidate from the previous step,
therefore a total complexity of N ˆ 29ˆ8. At the end of this step, there are
N ˆ 28ˆ8 candidates.

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

5. Round 1. Since we know ptk1r4, 11, 14s (TKr0, 2, 6s) from the previous steps,
we can compute ∆w2r5, 9, 13s. Because ∆x3r1, 5, 9s “ 0, we have a 16-bit
filter:

∆x3r9s “ ∆w2r5s ` ∆w2r9s “ 0,(i)
∆x3r1s ` ∆x3r5s “ ∆w2r9s ` ∆w2r13s “ 0.(ii)

This step has a complexity of 1 per candidate, therefore a total complexity
of N ˆ 28ˆ8. We are left with N ˆ 26ˆ8 candidates.

6. Round 23.Because ∆w22r14s “ 0, the following equation can be derived:

(i) ∆w22r14s “ ∆x23r2s ` ∆x23r14s “ 0.

We can compute ∆x23r14s from x24 and deduce ∆x23r2s. Using Lemma 2.2,
we recover tk23r2s (TKr8s).
Next, we guess tk23r6s (TKr12s). ∆z21r7s cancels out with the tweakey,
therefore we have an 8-bit filter:

∆tk21r7s “ ∆z21r7s “ ∆x22r8s.

This step has a complexity of 28 per candidate, therefore a total complexity
of N ˆ 27ˆ8, and we are left with N ˆ 26ˆ8 candidates.

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

3.3. Cryptanalysis of ForkSkinny 75

7. Round 1. Guess ptk1r10s (TKr5s). Since ptk1 is fully known, we can fully
compute y2. This step has a complexity of 28 per candidate, therefore a total
complexity of N ˆ 27ˆ8, and we are left with N ˆ 27ˆ8 candidates.

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

8. Round 2 and 3. Guess tk2r1, 5s (TKr14, 15s). We know w3r8, 12s and
∆w3r12s from x3r8, 13s and ∆x3r13s. From ∆w3r12s we can compute ∆x4r0s.
Additionally, we know ∆y4r0s “ ∆tk4r0s, so we can apply Lemma 2.2, giving
us one possible value on average for x4r0s. We derive the following equation
from the round 3 MixColumns operation:

x4r0s “ w3r0s ` w3r8s ` w3r12s.

Knowing w3r8, 12s and x4r0s, we can deduce w3r0s. We also know tk3r0s

(TKr1s) from the previous steps, so we can compute y3r0s then x3r0s. We
derive the following equation from the round 2 MixColumns operation:

x3r0s “ w2r0s ` w2r8s ` w2r12s.

Knowing w2r8, 12s we can recover w2r0s “ z2r0s. We get tk2r0s (TKr9s).
This step has a complexity of 22ˆ8 per candidate, therefore a total complexity
of N ˆ 29ˆ8, and we are left with N ˆ 29ˆ8 candidates.

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

3.3.4.3 Complexity analysis
The total number of key bytes recovered is 29, and we deduce 29ˆ8 impossible
keys from each pair. In order to reduce the key space by at least a factor 1{e, the
number of pairs N should be such that:

N ˆ 29ˆ8 ě 229ˆ8.

This implies N ě 2160, therefore we need to construct at least 2160´71 “ 289 sets,
using D “ 289`36 “ 2125 plaintexts. The analysis phase has a complexity of N ˆ

29ˆ8 “ 2232 so the time complexity will be dominated by the exhaustive search over
the remaining key space, with T “ 2256{e « 2254.6. A naive implementation would
require a memory of 229ˆ8 to store all the potential keys and remove impossible
ones. However an implementation using the early abort technique of [LKK+08]
only requires to store the plaintext/ciphertext pairs. Indeed, Algorithm 3.1 gives an

76 Chapter 3. Improved Attacks against the Forkcipher Framework

implementation of the attack were we store the pairs and iterate over the possible
key bytes values to perform the key-recovery.

Therefore, we end up with a complexity of

pD, T, Mq “ p2125, 2254.6, 2160q.

Complexity parameters from [BNS14]. We can verify our complexity analysis
using the generic formula of [BNS14]. The parameters corresponding to our attack
are:

|∆in| “ 4.5 ˆ 8 |∆out| “ 16 ˆ 8
cin “ 4 ˆ 8 cout “ 16 ˆ 8

|kin Y kout| “ 29 ˆ 8.

The formula for the minimum data complexity Dmin given in [BNS14] confirms our
analysis:

Dmin “ Nmin ˆ 2n`1´|∆in|´|∆out| “ 2cin`cout ˆ 2n`1´|∆in|´|∆out| “ 2125.

We can also reduce the time complexity, at the expanse of an increase in the
data complexity. For instance with a data complexity of D “ 2127, we reduce the
fraction of remaining keys to P « e´4 « 2´5.7, so that the time complexity is
reduced to 2250.3.

3.4 Conclusion
In this chapter, we showed that the security of Forkciphers can not automatically
be derived from the security of the underlying ciphers. We presented an attack on
full ForkAES exploiting the weak diffusion in the middle rounds of reconstruction
queries. We therefore approve the designers choice to propose a higher number of
rounds r0 and r1 compared to rinit in ForkSkinny [ALP+19a] .

However, the chosen number of rounds (27) for some variants of ForkSkinny
leads to improved characteristics on the second branch, by exploiting properties of
the tweakey schedule. In particular, we extend an existing impossible differential
characteristic on Skinny-128-256 by 3 rounds to attack ForkSkinny-128-256, thus
reaching 26 rounds. Our attack is however outperformed by some recent rectangle
attacks: the state-of-the-art rectangle attacks of Song et al. [SYC+24] reach 26
rounds of Skinny-128-256 and 28 rounds of ForkSkinny-128-256 on the second
branch. This nonetheless highlights that the weakness due to the number of rounds
r0 “ 27 can be exploited in other types of attack.

3.4. Conclusion 77

Algorithm 3.1: Implementation of this attack with early abort and low memory.
tk represents the accumulated knowledge about the key.
Input: L0 with |L0| “ N

for all tk26r0, 1, 3, 5s, tk25r3, 6, 7s do
L1 Ð tu

for all pp, cq P L0 do Ź 27s ˆ N iterations
Deduce ptk1r1s, tk26r2, 4, 6, 7s, tk25r2, 4, 5s

if ∆x24r8s “ ∆x24r12s then
AppendpL1, pp, c, tkqq

Ź |L1| “ 2´s ˆ N
for all tk25r0, 1s do

L2 Ð tu

for all pp, c, tkq P L1 do Ź 28s ˆ N iterations
Deduce tk24r2, 5, 6s

if ∆x24r13s “ ∆tk23r1s and ∆x24r0s “ ∆x24r8s then
AppendpL2, pp, c, tkqq

Ź |L2| “ 2´3s ˆ N
for all tk24r1, 4, 7s do

L3 Ð tu

for all pp, c, tkq P L2 do Ź 29s ˆ N iterations
Deduce tk23r2s

if ∆x23r10s “ ∆x23r14s and ∆w2r5s “ ∆w2r9s “ ∆w2r13s then
AppendpL3, pp, c, tkqq

Ź |L3| “ 2´6s ˆ N
for all tk23r6s do

L4 Ð tu

for all pp, c, tkq P L3 do Ź 27s ˆ N iterations
if ∆x22r8s “ ∆tk21r7s then

AppendpL4, pp, c, tkqq

Ź |L4| “ 2´7s ˆ N
for all ptk1r10s, tk2r1, 5s do

Create hash table H indexed by 13 deduced keys words
for all pp, c, tkq P L4 do Ź 29s ˆ N iterations

Deduce tk2r0s

Hrtks Ð 1
for all tk do Ź 229s iterations

if Hrtks “ 0 then
Run exhaustive search over 23s keys

Chapter4Boomerang Attacks on AES and
AES-based Ciphers

In this chapter, we propose a thorough description of the boomerang attack, an
overview of boomerang attacks against the AES in the literature, and present a new
boomerang attack framework, with applications to AES-based ciphers. The new
framework, the truncated boomerang attack, is described in a paper coauthored
with Gaëtan Leurent: “Truncated Boomerang Attacks and Application to AES-
based Ciphers” [BL23b], published at EUROCRYPT 2023. This framework leads to
new distinguishing, key-recovery or secret S-box key-recovery attacks against round-
reduced AES [DR02], Kiasu-BC [JNP14a], Deoxys-BC [JNP+21], and a marginal
distinguisher against full TNT-AES [BGG+20]. We also present a dedicated
boomerang attack on 6-round AES based on a joint work with Orr Dunkelman,
Gaëtan Leurent, Nathan Keller and Victor Mollimard, submitted at ToSC 2024,
leading to improved boomerang key-recovery attacks on 6-round AES.

Contents
4.1 Summary . 80
4.2 The Boomerang Attack . 82

4.2.1 Description of the Boomerang Attack 82
4.2.2 Analysis . 83
4.2.3 Improvements of the Boomerang Attack 85

4.3 Boomerang Attacks on AES in the Literature 92
4.3.1 Biryukov’s Original Boomerang Attack 93
4.3.2 The Yoyo Attack . 96
4.3.3 The Retracing Boomerang Attack 99
4.3.4 Other Boomerang-like Attacks on AES 104

4.4 Truncated Boomerang Attacks 105
4.4.1 Truncated Boomerang Distinguisher 106
4.4.2 Truncated Boomerang Key-recovery Attack 109
4.4.3 Optimized Boomerang Attacks on 6-round AES 114
4.4.4 Application to 8-round Kiasu-BC 119
4.4.5 Application to TNT-AES 121
4.4.6 Modeling the Framework using MILP 128
4.4.7 Application to Deoxys-BC 133

4.5 Improved Boomerang Attacks on AES 151

79

80 Chapter 4. Boomerang Attacks on AES and AES-based Ciphers

4.5.1 A Key-Recovery Attack With Low Data Complexity . 152
4.5.2 A Key-Recovery Attack With Low Time Complexity . 157
4.5.3 Incompatibility in a 6-Round Distinguisher 161

4.6 Conclusion . 162

4.1 Summary
We start with an overview of the results of our boomerang attacks on AES and AES-
based ciphers, presented in the following sections of the chapter. The results are
compared to state-of-the art attacks on reduced-round AES in Table 4.1, Table 4.2,
and Table 4.3.

Type Data Time Mem. Ref
Distinguisher Yoyo ACC 2123 2123 261 [RBH17]

Exchange attack CP 288 288 288 [BR19]
Exchange attack ACC 284 283 232 [Bar19]
Truncated differential CP 289.4 296.5 233 [BGL20]
Truncated boomerang ACC 287 287 266 Section 4.4.3.1

Key-Recovery Square CP 232 272 232 [DKR97]
Square CP 235 244 232 [FKL+01]
Square CP 233 240 232 [DGK+24]
Mixture CP 231 273 231 [BDK+18]
Mixture CP 244 263 244 [YTX+24]
Boomerang ACC 271 271 233 [Bir04]
Retracing boomerang ACC 255 280 231 [DKR+20]
Boomeyong ACC 280 280 228 [RSP21]
Truncated boomerang ACC 259 261 259 Section 4.4.3.2
Boomerang ACC 251 268 232 Section 4.5.1
Boomerang ACC 251 266 242 Section 4.5.1
Boomerang ACC 257 261 233 Section 4.5.2

Secret S-box KR Square CP 264 290 269 [TKK+15]
Truncated boomerang ACC 294 294 256 Section 4.4.3.3

Table 4.1: Attacks against 6-round AES in different settings.
CP: chosen plaintexts / ACC: chosen plaintexts and adaptively-chosen ciphertexts.

4.1. Summary 81

Rounds Type Data Time Ref
Kiasu-BC 7 Square (KR) 243.6 CP 248.5 [DEM16]

8 Meet-in-the-Middle (KR) 2116 CP 2116 [TAY16]
8 Imposs. Diff (KR) 2118 CP 2118 [DL17]
8 Boomerang (KR) 2103 ACC 2103.1 [DL17]
8 Truncated boomerang (KR) 283 ACC 283 Section 4.4.4

TNT-AES ˚-5-˚ Boomerang (dist.) 2126 ACC 2126 [BGG+20]
5-˚-˚ Impossible differential (KR) 2113.6 CP 2113.6 [GGL+20]
˚-˚-˚ Generic (dist.) 299.5 CP 299.5 [GGL+20]
˚-˚-˚ Generic (dist.) 269 ACC 269 [JKN+24]
˚-5-˚ Truncated boomerang (dist.) 276 ACC 276 Section 4.4.5
5-5-˚ Truncated boomerang (KR) 287 ACC 287 Section 4.4.5
˚-6-˚ Truncated boomerang (dist.) 2127.8 ACC 2127.8 Section 4.4.5

Table 4.2: Attacks against Kiasu-BC and TNT-AES.

Previous New
Model Rnd Data Time Mem Ref Data Time Mem Ref
RTK1 8 B 288 288 273 Figure 4.12

9 B 2135 2174 2129 Figure 4.13
RTK2 8 B 228 228 227 [Sas18a]1 B 227 227 227 Figure 4.14

9 B 298 2112 217 [Sas18a] B 255.2 255.2 255.2 Figure 4.15
10 B 298.4 2109.1 288 [ZDJ19] B 294.2 295.2 294.2 Figure 4.16
11 R 2122.1 2249.9 2128.2 [ZDJ19] B 2129 2223.9 2129 Figure 4.16

RTK3 10 B 222 222 217 [Sas18a] B 219.4 219.4 218 Figure 4.17
11 B 2100 2100 217 [Sas18a] B 232.7 232.7 232.7 Figure 4.18
12 B 298 298 264 [ZDJ19] B 267.4 267.4 265 Figure 4.19
13 R 2125.2 2186.7 2136 [ZDJ+19] B 2126.7 2170.2 2126.7 Figure 4.20
14 R 2125.2 2282.7 2136 [ZDJ+19] B 2129 2278.8 2129 Figure 4.21

1The probability of Sasaki’s trail is 2´56 with structures, thus we believe that the complexity
of the attack is actually 230 in data and time and 229 in memory.

Table 4.3: Boomerang (B) and rectangle (R) attacks against variants of Deoxys-
BC. Most attacks succeed with probability 1{2. In the RTKi model, the attacker
controls i blocks of 128-bit tweakey.

82 Chapter 4. Boomerang Attacks on AES and AES-based Ciphers

Truncated Boomerang Attacks. In Section 4.4, we present a generic framework
to describe boomerang attacks based on truncated differentials. Our framework
allows to easily evaluate the complexity of an attack based on properties of
the truncated differentials, and to compare different settings. We first apply
our framework to reduced AES in Section 4.4.3. On 6-round AES, we obtain
a distinguisher with complexity 287, and a key-recovery with complexity 261,
improving the previous best boomerang attack with complexity 271 [Bir04].

We adapt the key-recovery attack to 8-round Kiasu-BC in Section 4.4.4 by
revisiting a previous boomerang attack with complexity 2103 [DL17]. Using
structures of ciphertexts, we obtain the best attack against Kiasu-BC, with
complexity 283.

We also apply a variant of the 6-round attack to the full TNT-AES [BGG+20],
and obtain a marginal distinguisher with complexity slightly below 2128 in
Section 4.4.5. The attack is not competitive with the recent generic attack against
TNT with complexity Op2n{2q (or Õp2n{2q in its memory-efficient variant) [JKN+24],
but it uses a lower memory (232 instead of 264), and it can distinguish TNT with
6-round AES from TNT with a PRP. Moreover, this is the first property of 6-round
AES that can be used to target a generic construction using 6-round AES as a
building block, to the best of our knowledge. We also provide an attack on reduced
TNT-AES, using a 5-round boomerang trail.

Finally, we apply the framework to Deoxys-BC using MILP, and obtain improved
attacks against most variants. We present the detailed attacks in Section 4.4.7.

Improved Boomerang Attacks on AES. In Section 4.5, we improve on the
retracing boomerang attack [DKR+20] and present the second best key-recovery
attack on 6-round AES (after the Square attack [DKR97; FKL+01; DGK+24])
with complexity 261. We use insights from the truncated boomerang attack to
decrease the time complexity of the retracing boomerang attack, without the
memory overhead of the truncated boomerang attack. We also show two other
attacks against 6-round AES with different data/time/memory trade-offs.

4.2 The Boomerang Attack

4.2.1 Description of the Boomerang Attack
The boomerang attack was introduced by Wagner in 1999 [Wag99] to attack
the ciphers COCONUT98 [Vau03], KHUFU [Mer91], 6-round FEAL [Miy91] and
CAST [Ada97]. The attack uses chosen plaintext and adaptative ciphertext queries
to generate quartets with specific differences at an intermediate state of the cipher.
The attacker decomposes the full cipher E into two subciphers E0 (the upper part)
and E1 (the lower part), with E “ E1 ˝ E0, with high probability differentials
on E0 and E1 (of probabilities p and q), denoted respectively ∆in

p
ÝÑ
E0

∆out and

4.2. The Boomerang Attack 83

P

P

P 1

P 1

C

C

C 1

C 1

E0 E0

E0 E0

E1 E1

E1 E1

X
X 1

X
X 1

∇out ∇out

∇ in ∇ in
∆out

∆out

∆in

∆in

Figure 4.1: Construction of a boomerang quartet.

∇in
q

ÝÑ
E1

∇out, using the notation introduced in Section 2.2.2. The attack proceeds
as follows, as highlighted in Figure 4.1:

1. Generate pairs of plaintexts pP, P 1q such that P ` P 1 “ ∆in, and query the
corresponding ciphertexts pC, C 1q “ pEpP q, EpP 1qq.

2. Shift the ciphertexts pairs into new pairs pC̄, C̄ 1q “ pC ` ∇out, C 1 ` ∇outq
and query their decryptions pP̄ , P̄ 1q “ pE´1pC̄q, E´1pC̄ 1qq.

3. Look for pairs with P̄ ` P̄ 1 “ ∆in.

4.2.2 Analysis
We here present the analysis of this attack, as performed by Wagner [Wag99]. We
denote pX, X 1, X̄, X̄ 1q the middle states of the four plaintext/ciphertext pairs, as
described in Figure 4.1. We have the following relations:

X “ E0pP q, X 1 “ E0pP 1q, X̄ “ E0pP̄ q, X̄ 1 “ E0pP̄ 1q,

C “ E1pXq, C 1 “ E1pX 1q, C̄ “ E1pX̄q, C̄ 1 “ E1pX̄ 1q.

The differentials in E0 and E1 imply that:

PrrX ` X 1 “ ∆out|P ` P 1 “ ∆ins “ p

PrrX ` X̄ “ ∇in|C ` C̄ “ ∇outs “ q

PrrX 1 ` X̄ 1 “ ∇in|C 1 ` C̄ 1 “ ∇outs “ q,

(4.1)

84 Chapter 4. Boomerang Attacks on AES and AES-based Ciphers

where the probabilities are averaged on the keys and on respectively P, C, and
C 1.

When X ` X 1 “ ∆out and X ` X̄ “ X 1 ` X̄ 1 “ ∇in, we obtain:

X̄ ` X̄ 1 “ X̄ ` X ` X ` X 1 ` X 1 ` X̄ 1

“ ∇in ` ∆out ` ∇in

“ ∆out.

Eventually, the differential on E0 gives:

PrrP̄ ` P̄ 1 “ ∆in|X̄ ` X̄ 1 “ ∆outs “ p. (4.2)

Wagner pointed out that if the four events in Equation 4.1 and Equation 4.2
are independent, the boomerang trail probability pb can be computed as follows:

pb “ PrrE0pP q ` E0pP ` ∆inq “ ∆out,

E0pP q ` E´1
1 pEpP q ` ∇outq “ ∇in,

E0pP ` ∆inq ` E´1
1 pEpP ` ∆inq ` ∇outq “ ∇in,

E´1pEpP q ` ∇outq ` E´1pEpP ` ∆inq ` ∇outq “ ∆ins “ p2q2.

In particular, pb is a lower bound of the probability that P̄ ` P̄ 1 “ ∆in:

Pr
“

E´1pEpP q ` ∇outq ` E´1pEpP ` ∆inq ` ∇outq “ ∆in
‰

ě pb. (4.3)

When p2q2 ąą 2´n, this gives a distinguisher for the cipher using Opp´2q´2q

quartets. Indeed, the probability that P̄ `P̄ 1 “ ∆in is 2´n for a random permutation,
and a simple distinguisher consists in counting the number of thrown boomerang
quartets before the event P̄ ` P̄ 1 “ ∆in occurs; it should be roughly 2n for a
random permutation and roughly p´1

b for the target cipher. In most cases, the
distinguisher can be converted into a key-recovery by exploiting key dependencies
in the distinguisher.

However, Murphy presented in 2011 [Mur11] some incompatible boomerang
trails on AES and DES. In Murphy’s boomerang, the independence assumption
between the four events (Equation 4.1 and Equation 4.2) does not hold, and the four
events are actually incompatible. Since then, a special interest has been dedicated
to the analysis of the middle round transition. This middle round transition is also
called the boomerang switch.

In the following, we say that a quartet of plaintexts pP, P 1, P̄ , P̄ 1q is a boomerang
quartet if P ` P 1 “ P̄ ` P̄ 1 “ ∆in and EpP q ` EpP̄ q “ EpP 1q ` EpP̄ 1q “ ∇out;
in this case the thrown boomerang returns. From a high level point a view, a
boomerang attack exploits the fact that there are more boomerang quartets in the
cipher E than for a random cipher.

4.2. The Boomerang Attack 85

4.2.3 Improvements of the Boomerang Attack
Several variants and improvements of the boomerang attack have been proposed
since Wagner’s original work, both from a conceptual point of view and in the
analysis of the attack. In the past years, there has been a regain of interest
for this type of attack, as highlighted by numerous works [CHP+17; Sas18a;
ZDJ+19; ZDM+20; DDV20; QDW+21; HBS21; RSP21; ZCJ21; HNE22; SZY+22;
LWL22; DQS+22; BL23b; LTX23a; LTX23b], and this can be explained with
two main reasons. First, lightweight tweakable block ciphers with linear tweakey
schedules, such as Skinny [BJK+16], Craft [BLM+19] or Deoxys-BC [JNP+21]
usually allow the introduction of inactive rounds in differential trails in related
tweakey models. This leads to very high probability differentials on multiple rounds,
while the differential probability highly decreases for subsequent rounds. This
type of property is favourable to attacks using boomerang characteristics: to the
best of our knowledge, the current best attacks in most related-tweakey models on
Skinny, ForkSkinny, Craft and Deoxys-BC are boomerang-based attacks [SZY+22;
BL23b; ZZY+23; LTX23b; SYC+24]. Second, computer-aided tools, such as
MILP, SAT or CP, whose applicability in cryptography was demonstrated by
Bouillaguet et al. [BFL11] in 2010 and later by Mouha et al. [MWG+11], offer
new approachs to improve attacks. These tools allow to find optimal differential
trails, and can be adapted to find optimal boomerang trails. In addition, mounting
key-recovery attacks using MILP programming is not trivial, and has seen a series
of improvements recently.

We will now describe some variants and improvements of the boomerang attack,
commonly used in recent works.

4.2.3.1 Multiple differentials
Since the differences ∆out and ∇in are not used by the attacker, boomerang quartets
can be detected with any internal difference, as long as the same difference is
obtained with both pairs. This was spotted by Wagner in his original work [Wag99].
The probability of a boomerang trail can be approximated to the sum of the
probabilities of each trail:

pb “
ÿ

∆out,∇in

Prr∆in ÝÑ
E0

∆outs
2 Prr∇in ÝÑ

E1
∇outs

2.

We can then define equivalent probabilities p̂ and q̂:

pb “ p̂2q̂2, p̂ “

d

ÿ

∆out

Prr∆in ÝÑ
E0

∆outs2, q̂ “

d

ÿ

∇in

Prr∇in ÝÑ
E1

∇outs2.

In addition, as performed in the boomerang attack of Biryukov against the
AES [Bir04], it is common to allow several differences for the returning pair pP̄ , P̄ 1q,
in order to increase the boomerang probability. We accept the boomerang quartet
if P̄ ` P̄ 1 P D0

in, where D0
in is a set of differences. The boomerang probability

becomes:

86 Chapter 4. Boomerang Attacks on AES and AES-based Ciphers

pb “
ÿ

∆̄inPD0
in

∆out,∇in

Prr∆in ÝÑ
E0

∆outs Prr∇in ÝÑ
E1

∇outs
2 Prr∆̄in ÝÑ

E0
∆outs

“
ÿ

∆out,∇in

Prr∆in ÝÑ
E0

∆outs Prr∇in ÝÑ
E1

∇outs
2 Prr∆out ÝÝÑ

E´1
0

D0
ins.

This sum is a bit heavy to compute in practice. Let us denote D0
out the set

of differences ∆out such that a high probability differential ∆in ÝÑ
E0

∆out exists.
Instead of computing the aforementioned formula, if differentials ∆in ÝÑ

E0
∆out have

similar probabilities for ∆in P D0
in and ∆out P D0

out, the following approximation
can be performed:

ÿ

∆out

Prr∆in ÝÑ
E0

∆outs Prr∆out ÝÝÑ
E´1

0
D0

ins

« Prr∆in ÝÑ
E0

D0
outs ˆ PrrD0

out ÝÝÑ
E´1

0
D0

ins.

Similarly, if D1
in denotes the set of differences ∇in such that a high probability

differential ∇in ÝÑ
E1

∇out exists, and if the corresponding probabilities are
similar, the following truncated approximation can be performed, using truncated
differentials:

d

ÿ

∇inPD1
in

Prr∇in ÝÑ
E1

∇outs2 «
ÿ

∇inPD1
in

Prr∇in ÝÑ
E1

∇outs

“ Prr∇out ÝÝÑ
E´1

1
D1

ins.

These approximations are only acceptable if all differential probabilities involved
are close to the average differential probability; this approximation is extensively
used in truncated differential cryptanalysis. With well chosen sets of differences,
this is the case on AES, which will be our main point of focus in this sections. The
boomerang probability can then be computed under these approximations:

pb “ p⃗ ⃗q2 ⃗p, p⃗ “ Prr∆in ÝÑ
E0

D0
outs,

⃗q “ Prr∇out ÝÝÑ
E´1

1
D1

ins, ⃗p “ PrrD0
out ÝÝÑ

E´1
0

D0
ins.

In counterpart, since we accept returning quartets with P̄ ` P̄ 1 P D0
in, there is

less filter and it is more likely that random quartets are accepted, i.e. quartets that
do not follow the boomerang characteristic but randomly possess a right returning
difference. Therefore, if we want to get more boomerang quartets than random
quartets, we need the following relation:

pb ě
|D0

in|

2n
.

4.2. The Boomerang Attack 87

4.2.3.2 Structures

Biham, Dunkelman and Shamir introduced a variant of the boomerang attack
using structures for the key-recovery [BDK02]. They start from a boomerang
distinguisher with fixed differences ∆in and ∇out, and add extra rounds at the
beginning and at the end. By propagating the differences ∆in and ∇out, they
obtain a set of possible input differences Din and output differences Dout. In a
typical SPN cipher, these sets are vector spaces.

The attacker builds a structure P ` Din “ tP ` δ : δ P Dinu, and uses it as
starting point for the attack. A structure of |Din| elements defines |Din|2{2 pairs,
and |Din|{2 of them lead to the fixed difference ∆in. Therefore, a structure requires
|Din| queries and produces |Din|{2 pairs; the use of structures covers additional
rounds without increasing the data complexity, under the assumption that the
additional filter to discard wrong quartets is not costly. When combined with
multiple differentials, the structure vector space Din might be different from the set
of returning differences D0

in defined in the previous subsubsection. This is typically
the case on most boomerang attacks against AES.

Structures can also be used on the ciphertext side, by shifting each ciphertext
with all differences in Dout. However, many later works do not use structures on
the ciphertext side. We provide an analysis of boomerang attacks with truncated
trails in Section 4.4, where we improve the standard boomerang analysis, using
plaintext and ciphertext structures.

4.2.3.3 Plaintext-only attacks

The amplified boomerang attack [KKS01], later improved to the rectangle
attack [BDK01], are variants of the boomerang attack using only encryption
queries (without adaptively chosen decryption queries). The complexity of these
attacks increase from ppqq´2 to roughly 2n{2ppqq´1 (with the same condition that
pq ąą 2´n{2). These attacks benefit from the improvements of the computation of
boomerang trail probabilities (with fixed ∆in) discussed earlier in this subsection,
since they use the exact same boomerang characteristic.

In short, the standard boomerang attack builds candidate quartets that satisfy
three out of the four the boomerang conditions (P ` P 1 “ ∆in and EpP q ` EpP̄ q “

EpP 1q ` EpP̄ 1q “ ∇out), and looks for quartets that follow the last equality
(P̄ ` P̄ 1 “ ∆in). On the other hand, the rectangle and amplified boomerang attacks
build candidate quartets that satisfy two of those conditions (P `P 1 “ P̄ `P̄ 1 “ ∆in)
and look for quartets satisfying the two last equalities (EpP q ` EpP̄ q “ EpP 1q `

EpP̄ 1q “ ∇out). The same boomerang characteristic is used, but the way to generate
the data changes. When the boomerang probability is high, the boomerang attack
achieves much better complexities than the rectangle attack. However, the rectangle
attack becomes interesting when the boomerang probability is low: a large amount
of data is needed, and very large structures can be built on the plaintext side in
rectangle attacks, decreasing drastically the complexity of the attacks. An in-depth
analysis of rectangle attacks including key-recovery was performed recently by

88 Chapter 4. Boomerang Attacks on AES and AES-based Ciphers

Song et al. [SZY+22].
In this thesis however, we mainly focus on standard boomerang attacks.

4.2.3.4 Towards a better understanding of the boomerang switch

The boomerang incompatibility. Murphy showed in 2011 that the boomerang
switch might never happen [Mur11], and highlighted this fact with incompatible
boomerang characterstics on AES and DES: for any key, there exists no
boomerang quartet satisfying the boomerang characteristic. To understand why
an incompatibility can occur, we need to dive into differentials. Let us consider a
cipher ẼK and a differential ∆in

p
ÝÝÑ
ẼK

∆out. Let us define the sets of input (resp.
output) values that satisfy the differential for a fixed key K:

SK,in “ tP |ẼKpP q ` ẼKpP ` ∆inq “ ∆outu,

SK,out “ tC|Ẽ´1
K pCq ` Ẽ´1

K pC ` ∆outq “ ∆inu.

The probability p is an average probability on the keys and on the plaintexts:

p “ Avg
K

|SK,in| ¨ 2´n “ Avg
K

|SK,out| ¨ 2´n.

By definition, pP, P `∆inq is a correct input pair of the differential ∆in
p

ÝÝÑ
ẼK

∆out

if and only if P P SK,in. Similarly, pC, C ` ∆outq is a correct output pair of
the differential if C P SK,out. This highlights that satisfying a differential adds
constraints on the input P and output C.

In standard differential cryptanalysis of iterated block ciphers, it is a common
practice to ignore the constraints induced by the differentials and to concatenate
the differential transitions of each round by multiplying the transition probabilities.
This is the Markov cipher assumption defined in Section 2.2.2. It is justified if the
subkeys added each round are unrelated, but some subkey dependences can lead
to incompatible differential trails [BR22b; PT22].

However, this constraints on the input/output pairs satisfying a differential trail
can lead to incompatible boomerangs, even if we consider independent subkeys. To
demonstrate the concept of boomerang incompatibility, we will consider an SPN
cipher, where the upper differential (resp. lower) on E0 (resp. E1) is based on a
single differential trail. We assume that we can divide the lower part:

E1 “ E1
1 ˝ E0

1 .

such that E0
1 does not depend on the key. This happens for instance if E0

1
consists of a round function without the key addition (which is encompassed in
E0).

The boomerang characteristic is illustrated in Figure 4.2.

4.2. The Boomerang Attack 89

P

P

P 1

P 1

C

C

C 1

C 1

E0 E0

E0 E0

E0
1 E0

1

E0
1 E0

1

E1
1 E1

1

E1
1 E1

1

X
X 1

X
X 1

∇out ∇out

∇mid ∇mid

∇ in ∇ in
∆out

∆out

∆in

∆in

Figure 4.2: Illustration of a boomerang incompatibility.

Let us denote S1
K,in the sets of input states satisfying the differential ∇in ÝÝÑ

E0
1

∇mid. Since E0
1 is independent on the key, we omit the K and denote the set S1

in
in the rest of the analysis.

Let us consider a boomerang quartet pP, P 1, P̄ , P̄ 1q following the boomerang
characteristic and denote pX, X 1, X̄, X̄ 1q its internal states between E0 and E1, as
illustrated by Figure 4.2. From the boomerang characteristic, we have the following
relations:

X ` X 1 “ ∆out, X̄ ` X̄ 1 “ ∆out, X ` X̄ “ ∇in, X 1 ` X̄ 1 “ ∇in,

X P S1
in, X 1 P S1

in.

In particular:

X P S1
in, X ` ∆out P S1

in ùñ X P S1
in X pS1

in ` ∆outq.

The boomerang incompatibility appears when the set S “ S1
in X pS1

in ` ∆outq
is empty: no solution exists for X. After Murphy’s work, multiple works were
conducted to better analyse the boomerang switch and avoid incompatibilities.

The Sandwich attack. Instead of splitting the cipher E into two parts E “

E1 ˝ E0, Dunkelman, Keller and Shamir [DKS10] proposed in 2010 to split it in

90 Chapter 4. Boomerang Attacks on AES and AES-based Ciphers

P

P

P 1

P 1

C

C

C 1

C 1

E0 E0

E0 E0

Em Em

Em Em

E1 E1

E1 E1

X X 1
X X 1

Y Y 1

Y Y 1

∇out ∇out

∇ in ∇ in

∆out

∆out

∆in

∆in

Figure 4.3: The Sandwich attack [DKS10].

three parts E “ E1 ˝ Em ˝ E0 with a small Em in the middle, as illustrated in
Figure 4.3. For the analysis, they evaluate the probability of the boomerang trail
using the connection probability r of Em:

Pr
“

P̄ ` P̄ 1 “ ∆in
‰

ě pb “ p2q2r,

r “ Pr
“

E´1
m pEmpXq ` ∇inq ` E´1

m pEmpX ` ∆outq ` ∇inq “ ∆out
‰

.

The connection probability r can be evaluated experimentally, and some specific
choices of Em result in r “ 1 (in particular, when Em is the identity, we fall back
to the standard analysis of boomerangs). Although this is an attempt to improve
the boomerang analysis, the sandwich analysis does not ensure by itself that there
is no boomerang incompatibility.

The Boomerang Connectivity Table. The Boomerang Connectivity Table
(BCT) was introduced by Cid et al. [CHP+18] in 2018 to analyze the case of the
sandwich attack where Em is an S-box layer.

Definition 4.1. The Boomerang Connectivity Table (BCT) of a ℓ-bit S-box S is
defined as a bidimensional table of size ℓ ˆ ℓ such that:

BCTra, bs “ |tx P Fk
2|S´1pSpxq ` bq ` S´1pSpx ` aq ` bq “ au|.

Let us assume that the n-bit state is composed of n
ℓ words of ℓ bits, and the

S-box layer consists of the application of a ℓ-bit S-box S on each word independently.

4.2. The Boomerang Attack 91

Let us restrict ourselves to the first word. For i P J0, . . . n
ℓ ´ 1K, we define ∆out

i

(resp. ∇in
i) as ∆out (resp. ∇in) restricted to the i-th word of the state. In this

case, we can count the number of n-bit states satisfying the middle constraints:

|tx P Fn
2 |E´1

m pEmpxq ` ∇inq ` E´1
m pEmpx ` ∆outq ` ∇inq “ ∆outu|

“

n
k

´1
ź

i“0
BCTr∆out

i, ∇in
is.

The probability r is exactly:

r “ 2´n ¨

n
k

´1
ź

i“0
BCTr∆out

i, ∇in
is.

As part of the sandwich attack, this analysis improves the standard boomerang
probability estimation but does not ensure than no middle round incompatibility
exists. Recent works show for instance that setting Em to a single S-box layer
might lead to unaccurate, or even incompatible connection probabilities [YSS+22].

Analysis of multiple rounds. The case where Em is composed of several
rounds has been analyzed in recent works [SQH19; WP19; DDV20]. Several similar
cryptographic tools were introduced: a new framework in [SQH19], the Boomerang
Difference Table (BDT) in [WP19] and the Extended (resp. Upper and Lower)
Boomerang Connectivity Table EBCT (resp. UBCT and LBCT) in [DDV20].
There are different names for the same concept, so we will chose to use the notation
of Delaune et al. in [DDV20], i.e. EBCT, UBCT and LBCT, as we believe that
their names accurately represent the concept.

Definition 4.2. The Extended Boomerang Connectivity Table (EBCT) of a ℓ-bit
S-box S is defined as a quadridimensional table of size ℓ ˆ ℓ ˆ ℓ ˆ ℓ such that:

EBCTra, b, c, ds “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

$

&

%

x P Fℓ
2

Spxq ` Spx ` aq “ b
Spxq ` Spx ` cq “ d
S´1pSpxq ` dq ` S´1pSpx ` aq ` dq “ a

,

.

-

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

Definition 4.3. The Upper Boomerang Connectivity Table (UBCT) of a ℓ-bit
S-box S is defined as a tridimensional table of size ℓ ˆ ℓ ˆ ℓ such that:

UBCTra, b, ds “

ˇ

ˇ

ˇ

ˇ

"

x P Fℓ
2

Spxq ` Spx ` aq “ b
S´1pSpxq ` dq ` S´1pSpx ` aq ` dq “ a

*
ˇ

ˇ

ˇ

ˇ

.

Definition 4.4. The Lower Boomerang Connectivity Table (LBCT) of a ℓ-bit
S-box S is defined as a tridimensional table of size ℓ ˆ ℓ ˆ ℓ such that:

LBCTra, c, ds “

ˇ

ˇ

ˇ

ˇ

"

x P Fℓ
2

Spxq ` Spx ` cq “ d
S´1pSpxq ` dq ` S´1pSpx ` aq ` dq “ a

*ˇ

ˇ

ˇ

ˇ

.

92 Chapter 4. Boomerang Attacks on AES and AES-based Ciphers

The properties of these tables are described in [DDV20] but will not be explained
in details in this thesis. We will use these tables in Section 4.4.6.

When Em is composed of several rounds, the analysis of three works [SQH19;
WP19; DDV20] is to fix a 2-differential trail in Em: throughout Em, we keep
track of the (potentially truncated) differences of X ` X 1 and X ` X̄, assuming
that X ` X 1 “ X̄ ` X̄ 1 throughout Em. Similarly to standard differential trails
or truncated differential trails, the transition probabilities of the 2-differential
trail in Em can be computed around each Sbox layer, under the Markov Cipher
assumption, using the three tables aforementioned. We refer to [DDV20, Section
3.2] for a deeper analysis of the boomerang probability in this framework.

It is good to note that a generalization of the 2-differential trail exists,
where X ` X 1 “ X̄ ` X̄ 1 is not assumed throughout Em. These trails are
called 3-differential trails, and have been analyzed by very recent works [KT22;
WSW+23].

4.3 Boomerang Attacks on AES in the Literature
In this section, we present an overview of notable boomerang attacks on AES. The
first boomerang attack on 5-round and 6-round AES, presented by Biryukov in
2004 [Bir04], is detailed in Section 4.3.1. The yoyo attack, a chosen plaintext and
adaptatively chosen ciphertext attack against AES presented by Rønjom et al. in
2017 [RBH17], is detailed in Section 4.3.2. The yoyo attack offers a surprising
attack on 4-round AES with a data complexity of 4, and we stress out that it is
related to the boomerang attack. In particular, the retracing boomerang attack,
presented in 2020 by Dunkelman et al. [DKR+20], revisits and extends the yoyo
attack to yield boomerang attacks against 5-round and 6-round AES; it is presented
in Section 4.3.3. Finally, we shortly describe other similar attacks against AES,
such as the Exchange attack [BR19; Bar19], the Boomeyong attack [RSP21], and a
7-round AES attack using related differences [BR22a].

Unified analysis. In this section, we will analyse all attacks with the same
notation, for readability concerns. In all attacks, we divide E in two part E “

E1 ˝ E0, and consider the sets of differences D0
in, D̄0

in, D0
out, D1

in, D1
out, and the

following following truncated differentials:

D0
in

p⃗
ÝÑ
E0

D0
out, D0

out
⃗p

ÝÝÑ
E´1

0
D̄0

in,

D1
out

⃗q
ÝÝÑ
E´1

1
D1

in.

Also, we consider the truncated boomerang switch probability r defined as:

4.3. Boomerang Attacks on AES in the Literature 93

r “ Pr

»

—

–

E0pP q ` E0pP 1q P D0
out

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E0pP q ` E0pP 1q P D0
out

E´1
1 pCq ` E´1

1 pCq P D1
in

E´1
1 pC 1q ` E´1

1 pC 1q P D1
in

fi

ffi

fl

.

Under independence assumptions, the event E´1
1 pCq ` E´1

1 pCq “ E´1
1 pC 1q `

E´1
1 pC 1q happens with probability |D1

in|´1, and implies that E0pP q ` E0pP 1q “

E0pP q ` E0pP 1q P D0
out, therefore we consider that r ě |D1

in|´1. In some cases,
when independence assumption do not hold, the probability r can be equal to
1. We discuss this further in the yoyo and retracing attacks of Section 4.3.2 and
Section 4.3.3.

Using this notation, the boomerang probability can be estimated:

pb “ p⃗ ⃗p r ⃗q2.

Note that this analysis is sufficient for the boomerang attacks on AES that
we present in this section, but we improve upon it using plaintext and ciphertext
structures in the truncated boomerang framework of Section 4.4.

4.3.1 Biryukov’s Original Boomerang Attack
In 2004, Biryukov presented the first boomerang attack on AES. He started with a
distinguisher on 5-round AES, and extended it to an attack on 6-round AES.

4.3.1.1 A 5-round boomerang key-recovery attack against AES
Biryuokov’s boomerang attack on 5-round AES decomposes the cipher E into
E “ E1 ˝ E0; E0 is composed of 3 AES rounds, and E1 of 2 AES rounds. The
trail is depicted in Figure 4.4. Note that in standard boomerang characteristics,
the top part represents the differences P ` P 1 and P̄ ` P̄ 1, while the bottom part
represents the differences P ` P̄ and P 1 ` P̄ 1; this will be used in all subsequent
boomerang characteristics.

In his work, Biryukov used multiple trails in the upper forward trail. Instead of
requiring the first byte to be active on state w0 ` w1

0, any byte on the first column
of w0 ` w1

0 can be active, as long as a single one is active. In short, four different
patterns are accounted for x0 ` x1

0, x1 ` x1
1, and x2 ` x1

2 (recall that xi ` x1
i is the

difference P ` P 1 on state xi):

!

, , ,
)

.

Similarly, the returning pair states x̄2 ` x̄2
1, x̄1 ` x̄1

1, and x̄0 ` x̄0
1 might take

3 different patterns (we ask for P̄ ` P̄ 1 to be active on the first diagonal). If we
suppose that x2 ` x1

2 is active on the first column:
!

, ,
)

.

94 Chapter 4. Boomerang Attacks on AES and AES-based Ciphers

P

KS

k0
AK0

x0
SB

y0
SR

z0

4¨2´24

MC

w0

KS

k1
AK1

x1
SB

y1
SR

z1

3¨2´16

MC

w1

k2
AK2

x2
SB

y2
SR

z2
MC

w2

2´32

KS

k3
AK3

x3
SB

y3
SR

z3
MC

w3

KS

k4
AK4

x4
SB

y4
SR

z4

k5
AK5

C

Active bytes
Active only while returning
Inactive bytes

P `P 1

P `P 1

P `P

P 1`P 1

Parameters for the
basic 5-round distinguisher:

p⃗ “ 2´22 ⃗p “ 2´14.4

⃗q “ 1 r “ 2´32

pb “ 2´68.4

Figure 4.4: Biryukov’s boomerang characteristic on 5-round AES.

If x2 ` x1
2 is active on a different column, 3 different patterns with 2 active

S-boxes in x̄1 ` x̄1
1 would be used. Note that we require P̄ ` P̄ 1 and P ` P 1 to

have a common active diagonal. This assumption was not performed by Biryukov.
Although it reduces the number of different patterns for the returning pair from
6 to 3, it greatly simplifies the analysis and only slightly decreases the success
probability. For additional details on the original attack, we refer to [Bir04].

The boomerang probability is:

p⃗ “ 2´22, ⃗p “ 2´14.4, pb “ p⃗ ⃗p r ⃗q2 “ 2´68.4.

Biryukov’s attack on 5-round AES can be performed by repeating the following
process 26 times:

1. Select a random plaintext P and encrypt a structure P ` ∆in for ∆in P Din,
where Din is the set of differences over the main diagonal. We denote the
plaintexts Pi for 0 ď i ď 232 ´ 1 and Ci “ EpPiq.

2. Shift Ci by a fixed difference ∇out over the first byte: C̄i “ Ci ` ∇out.

3. For 0 ď i ď 232 ´ 1, decrypt C̄i: P̄i “ E´1pC̄iq.

4.3. Boomerang Attacks on AES in the Literature 95

4. Look for i, j such that P̄i ` P̄j is inactive on two diagonals (excluding the
main diagonal). The collisions can be found efficiently using a hash table. If
no collision is found, go back to step 1.

5. For each collision found, verify that it is not a wrong quartet. To do so,
guess the 32-bit main diagonal of k0, and partially encrypt one round of
Pi, Pj , P̄i, P̄j . Then check whether states w0 of pairs (Pi,Pj) and (P̄i,P̄j) each
have a single active byte in the same position. This gives a 46-bit filter
(Biryukov wrongly claimed a 44-bit filter). If so, return the 32-bit diagonal
value of k0.

Complexity analysis Generate about 26 structures of 232 elements. In each
structure, there are approximately 263 quartets pPi, Pj , P̄i, P̄jq for 0 ď i ă j ď

232 ´ 1. Therefore, there is a total of 26`63 “ 269 quartets. The probability that a
quartet randomly possesses 2 inactive input diagonals, including the main diagonal,
is 2´128 ˆ3ˆ264 « 2´62.4. Therefore, there are approximately 269´62.4 “ 26.6 wrong
quartets, and 269pb “ 1.5 right quartets. Each wrong quartet has a probability
232´46 “ 2´14 of detecting a key candidate which gives the right patterns in w0.
Therefore, the probability of false positives is 26.6´14 “ 2´7.4. The number of right
quartets follows a Poisson distribution with parameter λ “ 1.5. The probability
that no right quartet is found is given by PrrPoissonp1.5q “ 0s « 0.22 Therefore,
with probability 0.78, we recover the first diagonal of k0 and can proceed to the
attack on another diagonal, using the knowledge on the first diagonal of k0 to
improve the complexity of subsequent attacks. The time complexity of step 5. is
negligible: instead of looping through 232 key candidates, we can loop through the
set of 210 possible differences for the pair pPi, Pjq in state y0, and determine the
210 keys by fetching values corresponding to non-zero entries in the DDT table of
the AES Sbox from the differences in input and ouptut of the Sbox layer from x0
to y0.

All in all, this attack requires 238 encryption queries and 238 adaptative
decryption queries. The time complexity is bounded by the data complexity:
239. The memory complexity is 232 to store each structure. This gives:

pD, T, Mq “ p239, 239, 232q.

In this variant, we require that P̄ ` P̄ 1 is active on the main diagonal to make
the key-recovery simpler; this was not assumed in Biryukov’s original attack. This
lowers the success probability from 1 ´ PrrPoissonp3q “ 0s « 0.95 to 0.78.

4.3.1.2 Extension to a 6-round key-recovery attack on AES
Biryukov proposes to guess a full 32-bit anti-diagonal of k6 in order to build data
corresponding to the 5-round attack. In this case, Biryukov only considers quartets
such that P ` P 1 and P̄ ` P̄ 1 have a common active diagonal, as considered in our
analysis. In short, the 6-round attack can be described by iterating the following:

96 Chapter 4. Boomerang Attacks on AES and AES-based Ciphers

1. Guess the first anti-diagonal of k6 (232 guesses).

2. For each guess, run the 5-round attack with 27 structures. Step. 2 of the
5-round attack is performed by partially decrypting Ci using the guessed key
material.

3. Stop when the first diagonal of k0 has been suggested twice for the same key
k6.

Biryukov increases the number of structures from 26 to 27, so that we expect on
average 3 good quartets (and therefore 3 correct suggestions for the first diagonal
of k0) for the right key guess of k6. On the other hand, we expect 27.6 wrong
quartets for each of the 232 key guesses of k6, each suggesting on average 2´14

wrong key candidate for the first diagonal of k0 (see the 5-round attack). In total,
there are 232`7.6´14 “ 225.5 wrong candidates 64 key bits (the main diagonal of
k0 and the first anti-diagonal of k6). Since 225.5 ăă 232, we do not expect a 64-bit
candidate to be wrongfuly suggested twice. We expect at least 2 good quartets
with probability PrrPoissonp3q ě 2s “ 0.8, which both point to the correct 64-bit
key value. The only 64-bit key candidate suggested at least twice is the correct
64-bit key material.

This attack requires 239 encryption queries and 271 decryption queries, and the
time complexity is bounded by the data complexity. The memory complexity is
233: 232 to store each structure and 232 to keep in memory the queried ciphertexts
between each guess of k6. This gives:

pD, T, Mq “ p271, 271, 233q.

4.3.2 The Yoyo Attack
The yoyo attack was introduced by Rønjom et al. [RBH17] at ASIACRYPT 2017.
This attack has direct application to AES, and leads to the fastest distinguishers
against 3-round, 4-round and 5-round AES. In 2017, the yoyo attack was also
the fastest key-recovery attack against 5-round AES, which was then improved by
the retracing boomerang framework [DKR+20]. The aim of this subsection is to
give an overview of the yoyo attack without diving into the heavy notation of the
original paper [RBH17].

4.3.2.1 Core idea
The yoyo analysis is straightforward on a permutation F on Fℓˆt

2 , which has the
following form:

F “ S ˝ A ˝ S,

where S is an S-box layer (an ℓ-bit S-box is applied in parallel to all words of
the state) and A any affine layer.

4.3. Boomerang Attacks on AES in the Literature 97

S A S

P “ P 1, P 1 “ P

P “ P , P 1 “ P 1

P ` P 1 ` P ` P 1 “ 0
P ‰ P 1, P ‰ P 1

P “ P 1, P “ P 1

Figure 4.5: Yoyo distinguisher on a S ˝ A ˝ S permutation.

Let us consider a difference ∆ active only on the first word (corresponding
to the input of the first S-box). Let C “ F pP q and C 1 “ F pP ` ∆q. Let ∇ be
the difference active only on the first word with ∇r0s “ Cr0s ` C 1r0s. The yoyo
distinguisher states that F ´1pC `∇q `F ´1pC 1 `∇q is active only on the first word
with probability 1. This can be extended to all non-trivial input/output activity
patterns. For instance, ∆ may be active on any non-trivial subset of words, and
∇ can be the difference of C and C 1 restricted to any non-trivial subset of words,
potentially different from the subset of ∆.

In short, we exchange certain words of C and C 1 and decrypt to get P̄ and
P̄ 1; the inactive words of P ` P 1 are also inactive words of P̄ ` P̄ 1. The yoyo
distinguisher is depicted in Figure 4.5.

Let us define C̄ “ C ` ∇ and C̄ 1 “ C 1 ` ∇. For each word of index i P J0, t ´ 1K,
the following holds:

tCris, C 1risu “ tC̄ris, C̄ 1risu.

Since S is applied independently on all words of the state, this implies that for
i P J0, t ´ 1K:

tS´1pCqris, S´1pC 1qrisu “ tS´1pC̄qris, S´1pC̄ 1qrisu.

This implies that:

S´1pCq ` S´1pC 1q ` S´1pC̄q ` S´1pC̄ 1q “ 0.

By applying the linear layer L´1 and remarking that L´1 ˝ S´1pCq “ SpP q, we
get:

SpP q ` SpP 1q ` SpP̄ q ` SpP̄ 1q “ 0.

Therefore, on words where P “ P 1, SpP q`SpP 1q is also inactive, so SpP̄ q`SpP̄ 1q

is inactive, and finally P “ P 1.
Alternatively, the yoyo attack on a S ˝ A ˝ S permutation can be interpreted

as a boomerang attack where E0 “ A ˝ S, E1 “ S and Em “ Id, with D0
in “ t∆u,

98 Chapter 4. Boomerang Attacks on AES and AES-based Ciphers

D0
out “ A ˆ D, D̄0

in “ D where D is the set of all differences on supp(∆), D1
in the

vector space of all differences on supp(∇), and D1
out “ t∇u. The parameters are

p⃗ “ ⃗p “ ⃗q “ r “ 1. The fact that r “ 1 comes from the fact that the two pairs
pC, C̄q and pC 1, C̄ 1q are not independent.

4.3.2.2 Direct application: a distinguisher on 4-round AES

4-round AES can be distinguished from a random permutation by fixing
S “ SubBytes ˝ AddRoundKey ˝ MixColumns ˝ SubBytes to a AES Super S-
box [DR06]. Recall that the super S-box representation of the AES was discussed
in Section 2.3.2.3. The Super S-box layer maps a column to a column (it
can also be seen as a map from diagonals to anti-diagonals but we prefer
to include the two ShiftRows operation inside the affine layer). In this case,
A “ ShiftRows ˝ AddRoundKey ˝ MixColumns ˝ ShiftRows.

The algorithm is the following:

1. Generate a random P , and ask for the encryption C “ EpP q and C 1 “

EpP ` ∆q with ∆ only active on the first diagonal. Let us denote C “

pCr0s, Cr1s, Cr2s, Cr3sq, where Cris is the i-th anti-diagonal of C, and let use
have a similar notation for C 1.

2. Define C̄ “ pC 1r0s, Cr1s, Cr2s, Cr3sq, C̄ 1 “ pCr0s, C 1r1s, C 1r2s, C 1r3sq, and ask
for the decryption of P̄ “ E´1pC̄q and P̄ 1 “ E´1pC̄ 1q.

3. If P̄ ` P̄ 1 is inactive on the three last diagonals, the encryption is 4-round
AES, else it is a random permutation.

This gives:

pD, T, Mq “ p4, 4, 2q.

4.3.2.3 Extension to a 5-round distnguishing attack on AES

The basic 4-round AES distinguisher can be extended to a 5-round AES distinguisher
by adding one round at the beginning, starting with plaintexts P, P 1 with P ` P 1

active on a single diagonal. With probability 2´13.4, the difference retracts to
only 2 active bytes after the first MixColumns operation. In this case, when the
yoyo returns, the state is active on only 2 anti-diagonals after the first MixColumns
operation. In particular, because of the MDS property of the AES MixColumns
matrix, it is impossible for the plaintext difference to be inactive on 2 bytes of the
same column. A naive 5-round yoyo distinguisher can be obtained by generating
a lot of plaintext pairs pP, P 1q with such differences, and counting the number of
returning yoyo pairs P̄ , P̄ 1 whose difference is inactive on at least 2 bytes the same
column. While this happens with probability 2´11.4 for a random permutation, it
happens with probability 2´11.4 ˆ p1 ´ 2´13.4q for 5-round AES. Following [MS02],
the two cases can be distinguished with roughly 2´11.4 ˆ 22ˆ´13.4 “ 2´38.2 samples.

4.3. Boomerang Attacks on AES in the Literature 99

[RBH17] describes a more advanced attack using sets of friend plaintext pairs,
which have the following property: if one of the pairs has a state difference retracting
to only 2 active anti-diagonals after one round, then all the friend plaintext pairs
also do. It is sufficient to generate 213.4 sets of friend plaintext pairs, and check in
each one whether no yoyo returns with 2 inactive bytes in the same column (which
should happen with probability 2´11.4 for a random permutation). This leads to a
distinguisher with complexity roughly 21`11.4`13.4 “ 225.8.

The complexity of the distinguisher becomes:

pD, T, Mq “ p225.8, 225.8, 4q.

More details can be found on the original yoyo paper [RBH17].

4.3.3 The Retracing Boomerang Attack
The retracing boomerang attack is a framework improving on the yoyo attack and
presented by Dunkelman et al. at EUROCRYPT 2020 [DKR+20]. To this day, the
framework results in the fastest key-recovery attack against 5-round AES, with or
without secret S-boxes, and produces interesting attacks on 6-round AES. Although
the retracing boomerang key-recovery attacks on 5-round AES are very interesting,
they involve advanced technique to lower the key-recovery complexity. In this
subsection, we will therefore only present the retracing boomerang distinguisher on
5-round AES (as defined by [GRR17]), and its extension to a key-recovery attack
on 6-round AES, presented in [DKR+19, Appendix C].

4.3.3.1 Core idea

The retracing boomerang makes use of correlated values in the ciphertext side such
that the independence assumption between equations of Equation 4.1 does not
hold. Instead, the two pairs pC, C̄q and pC 1, C̄ 1q simultaneously follow the lower
differential D1

out
⃗q

ÝÝÑ
E´1

1
D1

in with probability ⃗q. The events are therefore correlated
positively and this increases the boomerang probability to pb “ p⃗ ⃗p r ⃗q.

In the case of AES, interesting 2-round or 3-round differential trails are only
active on one anti-diagonal of the output. For AES, the main idea of the retracing
boomerang is to define ∇out active on a single anti-diagonal, such that the returning
pairs pC, C ` ∇outq and pC 1, C 1 ` ∇outq have the same pair of values on the active
anti-diagonal: i.e. either C “ C 1 or C “ C 1 ` ∇out on the active anti-diagonal.

In their framework, Dunkelman et al. propose two types of retracing
boomerangs, which we describe for AES:

• The mixing retracing boomerang: chose ∇out active on an anti-diagonal,
such that ∇out “ C ` C 1 on the active anti-diagonal. The mixing retracing
boomerang is very close to the yoyo attack. In that case, C “ C̄ 1 and C 1 “ C̄
on the anti-diagonal.

100 Chapter 4. Boomerang Attacks on AES and AES-based Ciphers

• The shifting retracing boomerang: only keep pairs pC, C 1q such that C “ C 1

on an anti-diagonal, and take any ∇out active only on the corresponding
anti-diagonal. In that case, C “ C 1 and C̄ “ C̄ 1 on the anti-diagonal.

4.3.3.2 Application: a distinguisher attack on 5-round AES.
The retracing boomerang allows to improve on Biryukov’s key-recovery boomerang
attack on 5-round AES [Bir04] presented in Section 4.3.1. We present a
distinguishing attack resulting from this improvement. In this attack, the authors
of [DKR+20] proposed to use both the mixing and shifting variants. However,
for subtles reasons, this characteristic is incompatible with the shifting variant
(see Section 4.5.3)1, and we consider the mixing variant instead. The 5-round
retracing boomerang is represented on Figure 4.6.

Compared to Biryukov’s attack, this attack carefully selects the difference
∇out active on the first anti-diagonal such that ∇out “ C 1 ` C on the first anti-
diagonal, and thus C “ C̄ 1 and C 1 “ C̄ on the first diagonal. This implies that
w2 ` w1

2 ` w̄2 ` w̄2
1 “ 0, and the same property holds for state z2. Thus, the

choice of difference ∇out increases the boomerang switch probability from r “ 2´32

to r “ 1, which results in a boomerang probability increase from pb “ 2´68.5 to
pb “ 2´36.5. Therefore, the attacker can use a larger set D̄0

in, and Dunkelman et al.
relax the constraint on z1 for the returning pair to 3 active bytes. After decryption,
P̄ ` P̄ 1 should be inactive on 1 diagonal (instead of 2 in Biryukov’s attack). This
further increases the boomerang probability from pb “ 2´36.5 to pb “ 2´28. The
corresponding parameters are:

p⃗ “ 2´22, ⃗p “ 2´6, r “ 1,

⃗q “ 1, pb “ p⃗ ⃗p r ⃗q “ 2´28.

The distinguisher consists in encrypting a structure of 215.5 plaintexts, yielding 230

pairs of ciphertexts pC, C 1q2. For each of the 230 pairs pC, C 1q, we check whether
E´1pC ` ∇outq ` E´1pC 1 ` ∇outq has an inactive diagonal, where ∇out is equal to
the first anti-diagonal of C ` C 1. On average, we expect 230 ˆ 4 ˆ 2´32 “ 1 wrong
boomerang quartets for a random permutation, and 230 ˆ 2´28 “ 4 for 5-round
AES. We distinguish AES when the number of quartets is 2 or more.

The time complexity is bounded by the 230 decryptions of pairs of ciphertexts,
and the memory is bounded by the storage of the 215.5 ciphertexts. This gives:

pD, T, Mq “ p231, 231, 215.5q.

1In short, the shifting variant characteristic would have white cells instead of green cells in
the forward characteristic of Figure 4.6, leading to an impossible transition from z2 to w2.

2Note that in the retracing boomerang attack from [DKR+19, Appendix C.2], the authors
fix a 32-bit difference δL and discard ciphertexts pC, C 1

q such that C ` C 1
‰ δL; we do not add

this condition in our analysis since it is not useful. It does not change the time complexity, since
the bottleneck comes from the decryptions, but our version decreases the memory complexity
compared to their attack.

4.3. Boomerang Attacks on AES in the Literature 101

P

AK0

x0
SB

SR

z0

4¨2´24

MC

byte ℓ active

w0

AK1

x1
SB

SR

z1
MC

w1

AK2

x2
SB

SR

z2
MC

w2

AK3

x3
SB

SR

z3
MC

w3

AK4

x4
SB

SR

z4

AK5

C

P ‰P 1
P “P 1

P ‰P 1, P 1“P̄ , P “P̄ 1

Forward characteristic pP, P 1q Backward characteristic pP̄ , P̄ 1q

Backward characteristic pP, P̄ q, pP 1, P̄ 1q

P

AK0

x0
SB

SR

z0
MC

diag. m active

w0

AK1

x1
SB

SR

z1

4¨2´8

MC

w1

AK2

x2
SB

SR

z2

r“1

MC

P̄ ‰P̄ 1
P̄ “P̄ 1

w2
MC

AK3

x3
SB

SR

z3
MC

w3

AK4

x4
SB

SR

z4

AK5

C

P ‰P̄ , P 1“P̄ , P “P̄ 1

P “P̄ , P 1“P̄ 1

Figure 4.6: Retracing boomerang on 5-round AES (distinguisher). Instead of the
standard boomerang representation, this characteristic depicts a full trail for the
forward pair pP, P 1q and a different trail for the upper part of the returning pair
pP̄ , P̄ 1q.

4.3.3.3 Application: key-recovery attack on 6-round AES

A direct extension of the distinguishing attack from 5-round AES is hard to perform,
since the 16 subkey bytes of the last round key are required to compute the anti-
diagonal “exchange” one round before the ciphertexts. Instead, Dunkelman et al.
use the shifting variant of the retracing boomerang. In the key-recovery scenario,
it is easier to filter boomerang quartets on the plaintext side; even if a returning
pair is fully active, it is possible to deduce key candidates that satisfy the correct
pattern after one round. Because of this, Dunkelman et al. chose to relax the
constraints on the upper pair differential trail: P ` P 1 can have 3 active bytes in
state w0 (instead of 1 for the distinguishing attack on 5-round AES), which increases
p⃗ from 2´24 to 2´6. With this relaxation, the shifting variant incompatibility of
Section 4.5.3 is not a problem.

102 Chapter 4. Boomerang Attacks on AES and AES-based Ciphers

Since our results of Section 4.5 are heavily inspired by this attack, we explain
this attack in details, using the characteristics from Figure 4.7. We describe the
algorithm in Algorithm 4.1.

P

AK0

x0
SB

SR

z0

4¨2´8

MC

byte ℓ inactive

w0

AK1

x1
SB

SR

z1
MC

w1

AK2

x2
SB

SR

z2

2´32

MC

w2

AK3

x3
SB

SR

z3
MC

w3

AK4

x4
SB

SR

z4
MC

w4

AK5

x5
SB

SR

z5

AK6

C

P ‰P 1
P “P 1

Forward characteristic pP, P 1q Backward characteristic pP̄ , P̄ 1q

Backward characteristic pP, P̄ q, pP 1, P̄ 1q

P

AK0

x0
SB

SR

z0
MC

diag. ℓ̃ inactive

w0

AK1

x1
SB

SR

z1
MC

w1

AK2

x2
SB

SR

z2

r“1

MC

P̄ ‰P̄ 1
P̄ “P̄ 1

w2
MC

AK3

x3
SB

SR

z3
MC

w3

AK4

x4
SB

SR

z4
MC

w4

AK5

x5
SB

SR

z5

AK6

C

P ‰P̄ ,P 1‰P̄ 1

P “P̄ , P 1“P̄ 1

Figure 4.7: Retracing boomerang on 6-round AES (key-recovery).

Characteristics analysis. Starting from a pair pP, P 1q with an active diagonal,
we consider that it is a right forward pair if it follows the forward characteristic
of Figure 4.7. We require that one byte is inactive at the end of the first round
(probability 2´6), and that the main diagonal is inactive at the end of the third
round (probability 2´32). Therefore a forward pair pP, P 1q is right with probability
p⃗ “ 2´38.

In the backwards direction, C̄ and C̄ 1 are obtained by shifting C and C 1 with
a difference in the main antidiagonal. We assume that the difference collapses to

4.3. Boomerang Attacks on AES in the Literature 103

only the first byte of the state after one round (state z4), and that the difference
is the same for the pairs pC, C̄q and pC 1, C̄ 1q. This happens with probability
2´2ˆ24´8 “ 2´56 with random ciphertexts, but the attacker will guess the value of
key bytes k6r0, 7, 10, 13s in order to directly construct values C̄ and C̄ 1 with this
property. Under the right guess of k6r0, 7, 10, 13s, this gives ⃗q “ 1.

Starting from z4, we have a shifting retracing boomerang: C and C 1 have the
same value on the main antidiagonal, and C̄ and C̄ 1 differ from C and C 1 by the
same difference in a single byte of the main antidiagonal. Thefore the active S-box
transition from z4 to x4 is the same for the pairs pC, C̄q and pC 1, C̄ 1q: x4 ` x1

4 and
x̄4 ` x̄1

4 are both inactive in the first column.
This implies that z3rjs “ z1

3rjs and z̄3rjs “ z̄1
3rjs for j “ 0, 1, 2, 3, and the

transitions from z3 to x3 are also the same for both returning pairs. In particular,
S´1pz3rjsq ` S´1pz̄3rjsq “ S´1pz1

3rjsq ` S´1pz̄1
3rjsq for j “ 0, 1, 2, 3. The difference

z3`z̄3 (resp. z1
3`z̄1

3) being active only in the first column, we obtain x3`x̄3 “ x1
3`x̄1

3
and z2 ` z̄2 “ z1

2 ` z̄1
2 with probability one. This shows that r “ 1 (under the right

guess of k6r0, 7, 10, 13s).
When considering the pair pC̄, C̄ 1q, we deduce that the difference in z2 is the

same as in the forward pair: z̄2 ` z̄1
2 “ z2 ` z1

2. In particular, one antidiagonal is
inactive in z2; this implies that one diagonal of w0 is inactive, with ⃗p “ 1.

To summarize: assuming that pP, P 1q is a right forward pair, and that C̄, C̄ 1

are constructed such that z4 ` z̄4 “ z1
4 ` z̄1

4 with this difference only active in byte
0, then with probability 1 a diagonal of w0 is inactive for the pair C̄, C̄ 1 (the same
diagonal that is inactive for pP, P 1q).

Seen as a simple boomerang characteristic, this would give a boomerang
probability of pb “ p⃗ ⃗p r ⃗q “ 2´38. However, some filtering is strongly needed; as is,
returning pairs can not be detected since all the input state is active. Instead, the
retracing boomerang attack uses multiple returning pairs which are all inactive
on a diagonal of w0 for a right forward pair and under the right key guess of
k6r0, 7, 10, 13s, and performs an efficient key-recovery on top of it.

Attack description. The attack proceeds as follows, with 8 fixed values
∇0, . . . ∇7 active only on byte 0:

1. Ask for the encryption of a structure of 220 plaintexts with different values
on the main diagonal.

2. For each candidate K for k6r0, 7, 10, 13s, partially decrypt the ciphertexts to
compute Y “ MC´1px5q, define new ciphertexts C̄i such that Ȳi “ Y ` ∇i

and query and store their corresponding plaintexts P̄i.

3. For each candidate K for k6r0, 7, 10, 13s, filter all pairs pP, P 1q such that
Y r0s “ Y 1r0s.
For each such pair, consider the 8 quartets pY, Y 1, Ȳi, Ȳ 1

i q with Ȳi “ Y ` ∇i

and Ȳ 1
i “ Y 1 ` ∇i, whose corresponding plaintexts P̄i, P̄ 1

i were queried during
step 2.

104 Chapter 4. Boomerang Attacks on AES and AES-based Ciphers

For each ℓ P t0, 1, 2, 3u, assume that the ℓ-th diagonal of w0 is inactive for
all quartets simultaneously and deduce the key k0. If a candidate k0 is
compatible with all quartets, return it as the correct key.

Algorithm 4.1: Retracing boomerang attack on 6-round AES.
Query the encryption of 220 plaintexts with different values on the main diagonal
for all k6r0, 7, 10, 13s do

for all ciphertext C do
Partially decrypt C to obtain Y r0, 1, 2, 3s

for 0 ď i ă 8 do
Define Ȳi “ Y ` ∇i, Ȳ 1

i “ Y 1 ` ∇i, compute corresponding C̄i, C̄ 1
i

Query P̄i “ E´1pC̄iq, P̄ 1
i “ E´1pC̄ 1

iq

for all pairs pC, C 1q with Y r0s “ Y 1r0s do
for 0 ď ℓ ă 4 do

Assume w0rℓs is inactive for all quartets pY, Y 1, Ȳi, Ȳ 1
i q

Deduce key candidates for k0

Complexity. With 220 plaintexts, the expected number of right forward pairs
is 220 ¨ 219 ¨ 2´38 “ 2. If there is a right forward pair pP, P 1q, then it satisfies
Y r0s “ Y 1r0s. At step 3, with the correct key guess, all the quartets pY, Y 1, Ȳi, Ȳ 1

i q

follow the boomerang, hence w0 has an inactive diagonal with probability 1.
Therefore the correct key candidate will be recovered and the attack succeeds with
high probability.

Reciprocally, a wrong guess of k0r0, 5, 10, 15s}k6r0, 7, 10, 13s and ℓ passes the
test with probability 2´8ˆ8; we expect on average 239´8`32`32`2´64 “ 233 false
positives. False positives are detected and discarded by recovering key candidates
for another diagonal of k0.

Step 3 iterates over 232 keys, 239 ¨ 2´8 “ 231 pairs for each key, and 4 values of
ℓ. The complexity to recover the key candidates is estimated as equivalent to 215

encryptions in [DKR+19]. Therefore the total time complexity is 232`31`2`15 “ 280.
The data complexity is 232 ¨ 220 ¨ 8 “ 255 at step 2, and the memory complexity

is 220 ¨ 8 to store the P̄i and P̄ 1
i (step 2), resulting in:

pD, T, Mq “ p255, 280, 223q.

We observe that the 255 decryption query actually correspond to only 220 ¨232 “

252 distinct ciphertexts. Therefore we can reduce the data complexity by storing
all the queries:

pD, T, Mq “ p252, 280, 252q.

4.3.4 Other Boomerang-like Attacks on AES
Other attacks on 6-round AES exist in the same spirit. We list them and give an
overview of their contribution in this subsection, but do not dive into the details.

4.4. Truncated Boomerang Attacks 105

The exchange attack. The exchange attack [BR19; Bar19] uses quartet
properties similar to that of the yoyo attack to yield efficient “key independent”
distinguishers on AES in the Chosen Plaintext and Adaptatively Chosen Ciphertext
models, with complexities of respectively p288, 288, 288q and p283, 283, 232q. The
ACC attack principle can be seen as a mixing retracing boomerang: a pair of
plaintexts pP, P 1q differing in the main diagonal is encrypted to pC, C 1q, then some
columns of C and C 1 are exchanged, and the resulting ciphertexts are decrypted.
Their corresponding plaintexts are more likely than random to be active in only
one diagonal.

The boomeyong attack. The boomeyong attack [RSP21] uses a 4-round yoyo
distinguisher and appends one round the plaintext and on the ciphertext sides. The
attack achieves a complexity of pD, T, Mq “ p280, 280, 228q. The attack is similar to
the ACC exchange attack, but is a key-recovery attack instead of a distinguishing
attack. The attack can also be seen as a mixing retracing boomerang: a pair
of plaintexts pP, P 1q differing in the main diagonal is encrypted to pC, C 1q, then
the last columns of C and C 1 are exchanged, and the resulting ciphertexts are
decrypted. If the returning pair has an inactive diagonal which is not the main
diagonal, the corresponding quartet is used for key-recovery.

A 7-round attack using related differences. In 2022, Bardeh and Rijmen
published an attack on 7-round AES based on related differences [BR22a]. Related
differences are differences on a quartet such that in each byte, only two values
are taken among the quartet. This implies that differentials between each pair of
the quartets are related and not independent, and this dependence is exploited to
increase the transition probabilities. Their attack may be interpreted as a rectangle
attack using similar techniques to the retracing boomerang attack to increase the
characteristic probability.

Existing boomerang-like attacks on 6-round AES were overviewed in this section.
In the two next sections, we present our contributions: truncated boomerang attacks,
and improved retracing boomerang attacks.

4.4 Truncated Boomerang Attacks
In this section, we present the framework of truncated boomerangs, which is a
joint work with Gaëtan Leurent, presented in EUROCRYPT 2023 [BL23b].

Instead of first building a boomerang distinguisher and then appending extra
key-recovery rounds, we consider the truncated boomerang attack as a whole,
including the key-recovery exploiting the first and last round transitions. The
framework integrates and improves on previous analyses, including structures of
plaintexts and ciphertexts, and truncated differentials. Some boomerang attacks
using truncated trails have been proposed on AES [Bir04] and Kiasu-BC [DL17],
but they do not exploit the full potential of truncated trails: in particular, they
only use structures on the plaintext side. The improvements of our framework

106 Chapter 4. Boomerang Attacks on AES and AES-based Ciphers

partly come from the systematic use of structures of ciphertexts. We also consider
boomerang trails with smaller probability than the random case, and mount attacks
by gathering enough samples to detect the bias.

In Section 4.4.1, we present the basic framework to mount distinguishing attacks,
while in Section 4.4.2, we present a more in depth analysis of key-recovery attacks.
In both sections, we give a concrete example of an application of the framework on
6-round AES, though these attacks are not optimized. In Section 4.4.3, we present
improved distinguishing, key-recovery and secret-Sbox recovery attacks on 5-round
and 6-round AES. The complexities are detailed and compared to previous works in
Section 4.1. We then present our new attack on 8-round Kiasu-BC in Section 4.4.4,
improving the state-of-the-art attack of [DL17], and we present the first marginal
distinguisher of TNT-AES in Section 4.4.5.

In Section 4.4.6, we build a MILP model implementing our framework, to find
good parameters for the full attack automatically. The model allows both fixed
differences and truncated differences, and takes into account the key-recovery step,
instead of just optimizing a boomerang distinguisher. Although the boomerang
trails on AES and Deoxys-BC are quite different, the underlying analysis is the
same. The code related to this work is available on github [BL23a].

In this section, the analysis slightly differs from our work in EUROCRYPT
2022 [BL23b]. In [BL23b], the analysis was performed in the case were the set of
input differences (between P and P 1) is the same as the set of accepted differences
for returning pairs (between P̄ and P̄ 1). Instead, we consider the case where these
sets of differences might be different. This allows to apply some of our attacks
more straightforwardly.

4.4.1 Truncated Boomerang Distinguisher
Let us split the cipher E “ E1˝E0 and consider the following truncated differentials:

D0
in

p⃗
ÝÑ
E0

D0
out, D0

out
⃗p

ÝÝÑ
E´1

0
D̄0

in, D1
out

⃗q
ÝÝÑ
E´1

1
D1

in.

We assume that D0
in is a vector subspace of t0, 1un and 0 R D1

out. The truncated
boomerang attack proceeds as follows:

1. Choose a random plaintext P0, and query the encryption oracle over the
structure P0 ` D0

in; for each i P D0
in, we define Pi “ P0 ` i and Ci “ EpPiq.

2. For each ciphertext Ci, query the decryption oracle over the set Ci ` D1
out:

for each j P D1
out, we define C̄i

j
“ Ci ` j and P̄i

j
“ E´1pC̄i

j
q.

3. Count the number of pairs pP̄i
j
, P̄i1

j1

q with P̄i
j

` P̄i1
j1

P D̄0
in (and i ‰ i1).

When D̄0
in is a vector space, this can be done efficiently by projecting the

plaintext values on the orthogonal complement of D̄0
in in t0, 1un, and looking

for collisions.

4. If needed, repeat steps 1 to 3 with different plaintext structures.

4.4. Truncated Boomerang Attacks 107

4.4.1.1 Analysis
We consider a potential quartet pP, P 1, P̄ , P̄ 1q corresponding to pC, C 1, C̄, C̄ 1q, with
P ` P 1 P D0

in and C ` C̄, C 1 ` C̄ 1 P D1
out. We have:

PrrE0pP q ` E0pP 1q P D0
outs “ p⃗,

PrrE´1
1 pCq ` E´1

1 pC̄q P D1
ins “ ⃗q,

PrrE´1
1 pC 1q ` E´1

1 pC̄ 1q P D1
ins “ ⃗q.

Following the sandwich attack analysis (with Em “ id), we define the connection
probability:

r “ Pr

»

—

–

E0pP̄ q ` E0pP̄ 1q P D0
out

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E0pP q ` E0pP 1q P D0
out

E´1
1 pCq ` E´1

1 pC̄q P D1
in

E´1
1 pC 1q ` E´1

1 pC̄ 1q P D1
in

fi

ffi

fl

.

If the four events hold, we have P̄ ` P̄ 1 P D̄0
in with an additional probability ⃗p.

This analysis of the truncated boomerang distinguisher is the same as proposed by
Wagner [Wag99], but our attack is more general with structures on both sides.

In general, we have E´1
1 pCq `E´1

1 pC̄q and E´1
1 pC 1q `E´1

1 pC̄ 1q in D1
in, therefore

we expect that they are equal with probability |D1
in|´1 (under independence

assumptions), and this implies E0pP̄ q`E0pP̄ 1q P D0
out; hence r ě |D1

in|´1. Moreover,
if D1

in and D0
out are vector subspaces, then Σ “ E0pP q `E0pP 1q `E0pP̄ q `E0pP̄ 1q P

D1
in; in particular, Σ P D0

out with probability |D0
out X D1

in|{|D1
in|; this implies

E0pP̄ q ` E0pP̄ 1q P D0
out hence r ě |D0

out X D1
in|{|D1

in|.
Assuming that all the events are independent, each quartet pPi, Pi1 , P̄i

j
, P̄ j1

i1 q,
defined by a pair pi, jq, pi1, j1q, follows the truncated boomerang trail with probability
pb, and randomly satisfies P̄ j

i ` P̄ j1

i1 P D̄0
in with probability p$:

pb “ p⃗ ¨ ⃗p ¨ ⃗q2 ¨ r, r ě |D1
in|´1,

p$ “ |D̄0
in|{2n.

We assume that the boomerang probability can be well approximated as pb `p$.
We distinguish the cipher E from a random permutation when the expected number
of remaining quartets (quartets with P̄i

j
` P̄i1

j1

P D̄0
in) is significantly higher for E

than for a random permutation. We define the signal-to-noise ratio:

σ “ pb{p$.

When σ ąą 1, we obtain a distinguisher using Q “ Opp´1
b q quartets. More

precisely, with Q “ µ ¨ p´1
b (µ a small constant) we expect µ remaining quartets

with the cipher E, versus µ ¨ σ´1 ăă 1 for a random permutation. Therefore, a good
approximation is that the number of detected quartets with the cipher E follows a
poisson distribution of parameter µ, while the number of detected quartets with
a random permutation is approximated to 0. A distinguisher that detects the
presence of at least one quartet has a success rate of PrpPoissonpµq ě 1q “ 1 ´ e´µ.

108 Chapter 4. Boomerang Attacks on AES and AES-based Ciphers

When σ is smaller, we need to collect a large number of quartets, and compare
the expected number of remaining quartets qE for E and q$ in the random case:

qE “ Q ˆ pp$ ` pbq “ Q ˆ p$p1 ` σq, q$ “ Q ˆ p$.

We detect the bias with Q “ Opp´1
$ σ´2q “ Opp´1

b σ´1q samples, following [MS02,
Theorem 2]. Using Q “ c ˆ p´1

b σ´1 with a small constant c and setting a threshold
at Q ˆ p$p1 ` σ{2q, the distinguisher has a success rate of Φp

?
c{2q, with Φ the

cumulative distribution function of the standard normal distribution.
If Q is smaller than the number of quartets in a full structure (|D0

in|2|D1
out|

2{2),
we use a partial structure with only

?
2Q elements. Otherwise, we need N “

2Q ˆ |D0
in|´2|D1

out|
´2 structures of S “ |D0

in||D1
out| elements. Finally, we obtain a

distinguisher with a constant probability of success with the following complexity
in number of quartets, time, data, and memory:

Q “ O
`

maxpp´1
b , σ´1 ¨ p´1

b q
˘

, (4.4)
T “ D “ maxp

a

2Q, 2Q ˆ |D0
in|´1|D1

out|
´1q, (4.5)

M “ minpD, |D0
in||D1

out|q. (4.6)

4.4.1.2 Application to 6-round AES

To explain the truncated boomerang distinguisher in practice, we give a truncated
boomerang trail on 6-round AES in Figure 4.8, using a simple 3-round truncated
trail on AES twice, as described in Figure 2.9 (page 32). D0

in, D̄0
in and D1

in are the
sets of states that have zeros on all diagonals except the main one. D0

out is the
set of differences MixColumnsp∆q, for all ∆ active only on the main anti-diagonal,
and D1

out is active on the main anti-diagonal (they differ because we omit the last
MixColumns operation). We have

|D0
in| “ |D̄0

in| “ |D0
out| “ 232, p⃗ “ 2´24, ⃗p “ 2´24,

|D1
in| “ |D1

out| “ 232, q⃗ “ 2´24, ⃗q “ 2´24.

Since D0
out X D1

in “ t0u, we have r “ |D1
in|´1, and the analysis above gives the

following parameters:

pb “ p⃗ ¨ ⃗p ¨ ⃗q2 ˆ |D1
in|´1 “ 2´128, σ “ 2´32,

p$ “ |D̄0
in|{2n “ 2´96, Q “ c ¨ 2160.

Using c “ 4 and the formulas of Equations (4.4), (4.5), and (4.6), we obtain a
distinguisher with complexity:

T “ D “ 299, M “ 264.

The distinguisher is detailed in Algorithm 4.2. It makes 267 encryption queries
and 299 decryption queries, for a total data complexity of D “ 267 ` 299 « 299. In

4.4. Truncated Boomerang Attacks 109

P

KS

k0
AK0

x0
SB

y0
SR

z0

2´24

MC

w0

KS

k1
AK1

x1
SB

y1
SR

z1

2´24

MC

w1

k2
AK2

x2
SB

y2
SR

z2
MC

w2

2´32

KS

k3
AK3

x3
SB

y3
SR

z3
MC

w3

KS

k4
AK4

x4
SB

y4
SR

z4
MC

2´2¨24

w4

KS

k5
AK5

x5
SB

y5
SR

z5

k6
AK6

C

Truncated bytes
Inactive bytes

Parameters for the
basic 6-round dist:

p⃗ “ 2´24 ⃗q “ 2´24

⃗p “ 2´24 r “ 2´32

pb “ 2´128 p$ “ 2´96

σ “ 2´32 c “ 4

|D0
in||D1

out| “ 264 D “ 299

T “ 299 M “ 264

Figure 4.8: A truncated boomerang trail on 6-round AES (non-optimized).

total, we have Q “ 235 ˆ 264 ˆ 264{2 “ 2162 quartets pPi, Pi1 , P̄i
j
, P̄i1

j1

q, so that the
expected number of remaining quartets is:

q$ “ Q ˆ 2´96 “ 266, qE “ Q ˆ p2´96 ` 2´128q “ 266 ` 234.

The distinguisher returns the correct answer with probability Φp
?

c{2q « 0.84.
This distinguisher is interesting because it is very generic: it does not require

knowledge of the S-box or the MDS matrix, and it can be considered as “key-
independent” in the sense of [GRR17]. The complexity is slightly higher than
previous distinguishers with similar properties. However, the simplicity of this
distinguisher makes it more likely to be applicable when 6-round AES is used as
a building block in a more complex structure, as shown in Section 4.4.5 against
TNT-AES.

4.4.2 Truncated Boomerang Key-recovery Attack
We now consider key-recovery attacks. As opposed to typical differential or linear
attacks, we do not add rounds on top of the distinguisher. Instead, we assume
that the truncated boomerang covers the full targeted cipher, and we design a
key-recovery attack with smaller complexity than the corresponding distinguisher.

110 Chapter 4. Boomerang Attacks on AES and AES-based Ciphers

Algorithm 4.2: Truncated boomerang distinguisher on 6-round AES
q Ð 0
for 0 ď s ă 235 do Ź 235 structures

P0 Ð $
for i P D0

in do Ź Iterate over the main diagonal
Ci Ð EpP0 ` iq
for j P D1

out do Ź Iterate over the main anti-diagonal
P̄i

j
Ð E´1pCi ` jq

Store P̄i
j in a hash table indexed by three diagonals

Count collisions in the hash table, and increment q

if q ą 266 ` 233 then
return AES

else
return $

When σ ě 1, the truncated boomerang distinguisher is easy to turn into a
key-recovery attack, but we cannot reduce the complexity. Indeed, the bottleneck
of the distinguisher is to have enough data so that a boomerang quartet exists.
When a quartet with P̄ ` P̄ 1 P D̄0

in is found, it has a high probability of following
the boomerang, and standard methods can be used to recover key candidates.
Therefore, we focus on the case σ ăă 1, where the distinguisher requires multiple
quartets following the boomerang.

Given a candidate quartet with P̄ ` P̄ 1 P D̄0
in, we can extract some key

information assuming that it follows the boomerang. If this is the case, we
have two pairs of known plaintexts pP, P 1q and pP̄ , P̄ 1q respectively following the
truncated differentials D0

in
p⃗

ÝÑ
E0

D0
out and D0

out
⃗p

ÝÝÑ
E´1

0
D̄0

in, and two pairs of known

ciphertexts pC, C̄q and pC 1, C̄ 1q following the truncated differential D1
out

⃗q
ÝÝÑ
E´1

1
D1

in.
Using standard techniques from differential cryptanalysis, we can usually extract
partial information about the first and last subkeys. We denote by κ the number of
key bits that can be extracted, and by ℓ the average number of κ-bit key candidates
suggested by a quartet. Note that the key information suggested by a quartet might
be incompatible between both pairs of plaintexts following the upper differentials
(or between both pairs of ciphertexts following the lower differential), in this case
the quartet is discarded.

We follow the standard approach to identify the most likely candidates for the
κ bits of key: we build a table of 2κ counters corresponding to key candidates, and
we increment the counter of each key suggested by each quartet. With enough
data, the right key is expected to be among the top 2κ´a counters (a denotes the
advantage of the attack).

4.4. Truncated Boomerang Attacks 111

4.4.2.1 Analysis

Following the previous analysis, we expect Qˆ pp$ `pbq quartets with P̄ ` P̄ 1 P D̄0
in:

Q ˆ pb quartets following the boomerang trail (right quartets), and Q ˆ p$ false
positives. For a right quartet, the correct key is among the deduced key candidates,
and for a wrong quartet, we expect that ℓ random key candidates are deduced.
Assuming that all the quartets behave independently, the wrong counters follow
the binomial distribution BpQ, pp$ ` pbq ˆ ℓ ˆ 2´κq and the right counter follows
the distribution BpQ, p$ ˆ ℓ ˆ 2´κ ` pbq. We denote the probabilities of suggesting
a wrong key and the right key as:

pw “ pp$ ` pbq ˆ ℓ ˆ 2´κ « p$ ˆ ℓ ˆ 2´κ,

p0 “ p$ ˆ ℓ ˆ 2´κ ` pb « pw ` pb.

We obtain a higher signal-to-noise ratio σ̃ than previously:
σ̃ “ pb{pw “ σ ˆ 2κ{ℓ.

When σ̃ ąą 1, only a handful of right quartets are necessary to have the right
key ranked first, so that Q “ Opp´1

b q.
When σ̃ ăă 1, the counters can be approximated by normal distributions, and

we use the work of Selçuk [Sel08, Theorem 3] to evaluate the number of samples
needed to have the right key among the top 2κ´a key candidates (depending on
the success rate). For a fixed value of a, we need Q proportional to p´1

b σ̃´1, and
the complexity increases linearly in a. Finally, the increased signal-to-noise ratio
σ̃ ąą σ reduces the data complexity to:

Q “ O
`

maxpp´1
b , σ̃´1 ˆ p´1

b q
˘

,

D “ maxp
a

2Q, 2Q ˆ |D0
in|´1|D1

out|
´1q.

The full attack is described in Algorithm 4.3. The time complexity is harder to
evaluate; it can be bounded with TE the cost of an oracle call (by convention,
TE “ 1), and TC the cost of deducing key candidates from a quartet:

T “ D ˆ TE ` Q ˆ p$ ˆ TC .

When TC ăă 2n ˆ|D0
in|´1|D̄0

in|´1|D1
out|

´1, we have Qˆp$ ˆTC ăă D and the second
term is negligible; the cost of the attack is thus dominated by the oracle queries.
Otherwise, it is often possible to reduce the second term with more advanced
filtering, but this requires a dedicated analysis for each attack.

After recovering 2κ´a candidates for the κ-bit partial key, the full key can be
recovered by exhaustive search of the remaining bits with complexity 2n´a, or by
launching a variant of the attack on a different set of key bits.

4.4.2.2 Success Probability

When σ̃ ăă 1, the average values of right and wrong counters are high enough to
approximate them with normal distributions. In that case, the success rate can be

112 Chapter 4. Boomerang Attacks on AES and AES-based Ciphers

Algorithm 4.3: Truncated boomerang key-recovery attack
Require: D0

in,D̄0
in, D1

out
K Ð InitKeyCounters()
for i Ð 1 to N do

P0 Ð Rand()
P Ð rP0 ` ∆in, for ∆in P D0

ins

C Ð rEpP q, for P P Ps Ź N ˆ |D0
in| encryptions

P̄ Ð rE´1pC ` ∆outq, for C P C, ∆out P D1
out] Ź N ˆ |D0

in||D1
out| decryptions

H Ð InitHashMap()
for P̄ P P̄ do

Insert the projection of P̄ on t0, 1un{D̄0
in in H Ź |D0

in||D1
out| in memory

if a collision occurs in H between P̄ and P̄ 1 then
Track back to the corresponding P and P 1

if P ‰ P 1 then Ź Npp$ ` pbq|D0
in|2|D1

out|
2{2 such quartets

for K in the ℓ key candidates induced by the quartet do
Increment the counter K in K

Recover the key material K of the maximal counter of K
Recover the rest of the key by performing the attack with a different D0

in,D̄0
in

evaluated using the formula given by [Sel08], under additional assumptions about
the independence of key counters, and order statistics:

PS “ Φ
ˆ?

µσ̃ ´ Φ´1p1 ´ 2´aq
?

σ̃ ` 1

˙

. (4.7)

with µ “ Q ˆ pb the expected number of right quartets.
When σ̃ is high, the binomial distributions of right and wrong counters have

average values of respectively Q ˆ pb « 1 and Q ˆ pw ăă 1. As discussed in [Sel08,
section 3.2.1], the normal approximation is inaccurate in this case; we obtain a
more accurate estimate of the success probability using a Poisson approximation.

4.4.2.3 Extracting Key Candidates
When the truncated differentials are described by truncated trails (with a set
of intermediate differences at each step), the parameters ℓ and κ can often be
deduced directly from the trail. For simplicity, as in the truncated boomerang
paper [BL23b], we consider the case where D̄0

in “ D0
in, i.e. the input and returning

differences are in the same set. We assume that E0 starts with the addition of a
subkey K0, followed by an S-box layer SB, and we denote the set of differences
after the S-box layer by D0

mid:

E0 “ Ẽ0 ˝ SB ˝ AKK0 , D0
in

p⃗0
ÝÑ
SB

D0
mid, D0

mid
p⃗1

ÝÑ
Ẽ0

D0
out.

We also assume that D0
in is a vector subspace aligned with the S-box layer (each

S-box is either inactive, or active with all possible differences). D0
mid is a subset of

4.4. Truncated Boomerang Attacks 113

D0
in; typically it is constructed so that some parts of the state have fixed differences

after the linear layer. For instance, in the boomerang trail on 6-round AES of
Figure 4.8, D0

mid corresponds to differences δ such that MixColumnspShiftRowspδqq

is active only on the first cell, with |D0
mid| “ 28 and p⃗0 “ 2´24. In general, we have:

p⃗0 “ |D0
mid|{|D0

in|, p⃗ “ p⃗0 ˆ p⃗1. (4.8)

We consider a pair pP, P 1q, and assume that it follows the truncated trail, i.e.
SBpP `K0q`SBpP 1 `K0q P D0

mid. This constrains the subkey K0|D0
in

corresponding
to the active S-boxes in SB. More precisely, given pP, P 1q, for each difference ∆mid
in D0

mid, we expect on average 0.5 unordered pairs of values tX, X 1u such that
X ` X 1 “ P ` P 1 and SBpXq ` SBpX 1q “ ∆mid (restricted to the active bytes
D0

mid). This pair can be recovered efficiently after pre-computing the DDT of
the S-box, and we deduce two possible keys X ` P and X ` P 1. Therefore, for
each pair pP, P 1q and difference ∆mid P D0

mid, we can deduce on average one key
candidate, which implies that given a pair pP, P 1q, we can deduce on average |D0

mid|

key candidates for K0|D0
in

. This gives the following parameters when extracting key
candidates from a pair pP, P 1q:

ℓ0 “ |D0
mid|, κ0 “ log2p|D0

in|q, T 0
C “ ℓ0 “ |D0

mid|.

Starting from a candidate quartet, we have two different pairs pP, P 1q and
pP̄ , P̄ 1q assumed to follow the upper differential D0

in
SB
ÝÑ
p⃗0

D0
mid. Therefore, we

expect only |D0
mid|2{|D0

in| key candidates compatible with both pairs. We apply
the same reasoning to the lower trail (using ciphertext pairs), and deduce the
parameters ℓ and κ for a quartet in the general case:

ℓ “ |D0
mid|2 ¨ |D1

mid|2 ¨ |D0
in|´1 ¨ |D1

out|
´1, κ “ log2p|D0

in| ¨ |D1
out|q.

Using the probability p⃗0 for the first round and ⃗q0 for the last round, we have:

ℓ ¨ 2´κ “ p⃗0
2 ¨ ⃗q0

2.

This strategy needs to be applied to each quartet with the correct returning
difference. If we start by the recovery K0|D0

in
(in the upper part), then for the lower

trail, we only have to process a fraction |D0
mid|2{|D0

in| of the candidate quartets
(with a key compatible with both pairs). In particular, when |D0

mid|2 ăă |D0
in|, the

time complexity is dominated by the first extraction step: TC “ |D0
mid|. We might

also want to start from the bottom side if the time complexity of extracting key
candidates in the bottom side (|D1

mid|) is less that the complexity of extraction in
the top side (|D0

mid|).
In some cases, better results are obtained with a dedicated analysis, e.g. using

more than one round of the trail. We provide such examples in our attacks against
Deoxys-BC of Section 4.4.7.

114 Chapter 4. Boomerang Attacks on AES and AES-based Ciphers

4.4.2.4 Application to 6-round AES
This attack can directly be applied to AES, using the same 3-round trails as in the
previous section (see Figure 4.8):

|D̄0
in| “ |D0

in| “ |D0
out| “ 232, |D0

mid| “ 28, p⃗ “ 2´24, ⃗p “ 2´24,

|D1
in| “ |D1

out| “ 232, |D1
mid| “ 28, ⃗q “ 2´24, r “ |D1

in|´1.

Using the parameters of the key extraction, our analysis results in

ℓ “ |D0
mid|2 ¨ |D1

mid|2 ¨ |D0
in|´1 ¨ |D1

out|
´1 “ 2´32, κ “ log2p|D0

in| ¨ |D1
out|q “ 64,

pb “ p⃗ ¨ ⃗p ¨ ⃗q2 ˆ r “ 2´128,

pw “ |D̄0
in| ˆ 2´n ˆ ℓ ˆ 2´κ “ 2´192, σ̃ “ 264.

Since σ̃ ąą 1, we only need a few right quartets; with µ “ 4 we obtain

Q “ µ ˆ p´1
b “ 2130, D “ 267.

Time complexity. With these parameters, the attack complexity is dominated
by the oracle queries. We use 8 structures of 264 elements; in each structure we
detect 264 ˆ 263 ˆ p$ “ 231 pairs with P̄ ` P̄ 1 P D̄0

in, resulting in 8 ˆ 231 “ 234

candidate quartets in total. Each quartet suggests on average 2´32 candidates
for 64 bits of key (for most of the quartets, there is no key compatible with both
sides of the quartet). Finally, we expect 22 suggestions of wrong keys (each key is
suggested 2´62 times on average), and µ “ 4 suggestions for the correct key. With
high probability, the key with the most suggestions is the correct one.

We implemented the attack on a reduced AES with 4-bit S-boxes, and it behaves
as expected [BL23a].

4.4.3 Optimized Boomerang Attacks on 6-round AES
As shown by Biryukov [Bir04] and described in Section 4.3.1, boomerang attacks
on AES can be optimized using multiple trails. We now present improved versions
of our attacks using this technique, including a 6-round key-recovery attack with
complexity 261. The improvement compared to the attack of Biryukov with
complexity 271 is due to the use of structures on the ciphertext side.

4.4.3.1 Optimized distinguisher
Instead of only considering the upper trail of Figure 4.8 with fixed positions for all
the active bytes, we consider a collection of four different trails for upper part:

!

, , ,
)

.

The collection can be considered as a truncated differential D0
in

p⃗
ÝÑ
E0

D0
out with:

p⃗ “ 2´22, |D0
in| “ 232, |D0

out| “ 234.

4.4. Truncated Boomerang Attacks 115

Similarly, we consider four trails for the lower part through E´1
1 :

!

, , ,
)

.

Again, this can be considered as a truncated differential D1
out

⃗q
ÝÝÑ
E´1

1
D1

in with:

⃗q “ 2´22, |D1
in| “ 234, |D1

out| “ 232.

The analysis of the previous sections can be applied as-is with these trails. We
obtain a better attack because we increase p⃗ and ⃗q by a factor 4, even though |D1

in|

increases by a factor 4; we obtain pb “ 2´124 instead of 2´128. The distinguisher is
exactly the same because D0

in, D̄0
in and D1

out are the same, but this improved analysis
shows that the complexity of the distinguisher can be reduced to T “ D “ 291

(with c “ 4, σ “ 2´28 and Q “ 2154).

Larger set D1
out. We further improve the distinguisher using a collection of 16

trails with the following input and output sets for the lower trail through E´1
1 :

!

, , ,
)

Ñ

!

, , ,
)

.

This collection can be considered as a truncated differential D1
out

⃗q
ÝÝÑ
E´1

1
D1

in with:

⃗q “ 2´22, |D1
in| “ 234, |D1

out| “ 234.

This does not affect the probability pb, but generates larger structures; the
complexity is reduced to T “ D “ 289 with Q “ 2154.

Different Set D̄0
in for Returning Pairs. Following the boomerang attack of

Biryukov [Bir04], we use a larger set of accepted returning differences D̄0
in in order

to increase the boomerang probability. We consider the same collection of 16 trails
as above, corresponding to a truncated differential D0

out
⃗p

ÝÝÑ
E´1

0
D̄0

in with:

⃗p “ 2´22, |D̄0
in| “ 234, |D0

out| “ 234.

This corresponds to keeping quartets with a single active diagonal in P̄ ` P̄ 1, but
not necessarily the main one. This gives the following parameters:

pb “ p⃗ ¨ ⃗p ¨ ⃗q2 ˆ |D1
in|´1 “ 2´122, σ “ 2´28,

p$ “ |D̄0
in|{2n “ 2´94, Q “ 2152.

Finally, we obtain a distinguisher with complexity T “ D “ 287 (with c “ 4).

116 Chapter 4. Boomerang Attacks on AES and AES-based Ciphers

4.4.3.2 Optimized key-recovery attack
Using multiple trails. For a key-recovery attack, we use the trails above, but
we keep the set D1

out active only in the first column. This gives:

p⃗ “ 2´22, |D0
in| “ 232, |D0

out| “ 234,

⃗p “ 2´22, |D̄0
in| “ 234,

⃗q “ 2´22, |D1
in| “ 234, |D1

out| “ 232.

When extracting the key, we recover some information on a diagonal of k0 from
pP, P 1q (but not pP̄ , P̄ 1q since it not necessarely active on the same diagonal as
pP, P 1q), and information about an anti-diagonal of k6 from pC, C̄q and pC 1, C̄ 1q:

ℓ0 “ 210, κ0 “ 32, ℓ1 “ 2´14, κ1 “ 32, ℓ “ 2´4, κ “ 64.

Therefore, we have the following parameters:

pb “ p⃗ ¨ ⃗p ¨ ⃗q2 ˆ |D1
in|´1 “ 2´122,

pw “ |D̄0
in| ˆ 2´n ˆ ℓ ˆ 2´κ “ 2´162, σ̃ “ 240.

Since σ̃ ąą 1, we only need a few right quartets; with µ “ 4 we obtain

Q “ µ ˆ p´1
b “ 2124, D “ 262.5.

Time complexity. The complexity is dominated by the oracle queries: for each
structure of 264 plaintexts/ciphertexts, we filter 264 ˆ 263 ˆ |D̄0

in| ˆ 2´n “ 233

candidate quartets, and the time to extract the key candidates is negligible.
After recovering a candidate for 64 bits of key (32 bits of k0 and 32 bits of k6),

we repeat the attack with D0
in in a different diagonal and use the partial knowledge

of k6 to increase the probability ⃗q (this has negligible complexity).

Using two active diagonals. In order to further reduce the complexity of
this attack, we use truncated boomerang characteristics with lower signal-to-noise
ratios, taking advantage of the additional filter provided by the key extraction.
Following [Bir04], we modify the truncated trail on the returning side pP̄ , P̄ 1q to
allow any combination of two active diagonals in input, leading to the following
parameters:

D̄0
in “

!

, , , , ,
)

,

p⃗ “ 2´22, |D0
in| “ 232, |D0

out| “ 234, |D0
mid| “ 210,

⃗p “ 6 ˆ 2´16 “ 2´13.4, |D̄0
in| “ 6 ˆ 264,

⃗q “ 2´22, |D1
in| “ 234, |D1

out| “ 232, |D1
mid| “ 210.

When extracting the key, we recover information about the main diagonal of
k0 from pP, P 1q, and information about the first anti-diagonal of k6 from pC, C̄q

4.4. Truncated Boomerang Attacks 117

and pC 1, C̄ 1q (note that pP̄ , P̄ 1q is not necessarily active in the main diagonal).
Moreover, the key suggested by pC, C̄q and pC 1, C̄ 1q must lead to the same active
byte in z4, so that:

ℓ0 “ 210, κ0 “ 32, ℓ1 “ 2´14, κ1 “ 32, ℓ “ 2´4, κ “ 64.

Using the previous analysis, we obtain:

pb “ p⃗ ¨ ⃗p ¨ ⃗q2 ˆ |D1
in|´1 “ 2´113.4,

pw “ |D̄0
in| ˆ 2´n ˆ ℓ ˆ 2´κ “ 2´129.4 σ̃ “ 216.

Since σ̃ ąą 1, a few right quartets are sufficient for the success of this attack; we use
µ “ 8, this corresponds to Q “ 2116.4 and we use a partial structure of D “ 258.7

elements.

Success probability. We assume that the attacker keeps key candidates with
counter values of at least 5. With σ̃ ąą 1, we approximate the wrong key counters
by Poisson distributions with λ “ Q ˆ pw “ 2´13, each of which equal 5 or more
with probability 1 ´ e´λp1 ` λ ` λ2{2 ` λ3{6 ` λ4{24q « 2´71.9; we do not expect
to keep any wrong keys. On the other hand, the counter for the right key follows
a Poisson distribution with λ “ µ “ 8. It reaches a value of 5 or more with
probability « 0.9.

Time complexity. After recovering a candidate for 64 bits of key (32 bits of k0
and 32 bits of k6), we repeat the attack with D0

in in a different diagonal and use
the partial knowledge of k6 to increase the probability ⃗q. This step has a negligible
complexity.

The time complexity is balanced between oracle queries and extracting key
candidates. Indeed, we filter 258.7 ˆ 257.7 ˆ |D̄0

in| ˆ 2´n “ 255 candidates with
P̄ ` P̄ 1 P D̄0

in using 6 hash tables indexed by each combination of two active
columns. The complexity TC to generate key candidates for a given quartet is
essentially 4 ˆ 210 accesses to a small table; we approximate it as TC « 25.4TE

(since one encryption has 6 ˆ 16 S-boxes). Finally, the time complexity is

T “ 258.7TE ` 255TC « 260.8TE .

4.4.3.3 Key-recovery with secret S-boxes
The techniques described in Section 4.4.3.2 assume that the S-box and MDS matrix
are known to the attacker in order to extract key information. However, it is also
possible to extract key information with an unknown S-box under some conditions.
Following [GRR16], we assume that all S-boxes in a column are identical, and that
the MDS matrix has two identical coefficients in each row.

As a concrete example, we consider the AES MixColumns matrix:

MC “

„

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

ȷ

.

118 Chapter 4. Boomerang Attacks on AES and AES-based Ciphers

We consider a pair pC, C̄q following the truncated trail of Figure 4.8. According to
the trail, the difference before the last round (w4) is in a set of 28 differences; in
particular, the difference in cell 1 is equal to the difference in cell 2:

w4 ` w̄4 P

"„

2δ 0 0 0
δ 0 0 0
δ 0 0 0
3δ 0 0 0

ȷ

: δ P t0, 1u8
*

“

"

MC ¨

„

δ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

ȷ

: δ P t0, 1u8
*

.

Moreover, we assume that the differences in cells 13 and 10 of the ciphertext are
equal (they are moved to cells 1 and 2 by ShiftRows):

C ` C̄ “

«

α 0 0 0
0 0 0 β
0 0 β 0
0 γ 0 0

.

ff

In this case, S-boxes 1 and 2 in the last round follow the same transition δ Ñ β.
With high probability, this implies that the unordered pairs of input/output are
equal; in particular tCr13s ` k6r13s, C̄r13s ` k6r13su “ tCr10s ` k6r10s, C̄r10s `

k6r10su. This suggests two key candidates:
k6r13s ` k6r10s P

␣

Cr13s ` Cr10s, Cr13s ` C̄r10s
(

.

In order to use this property in a truncated boomerang attack, we use the
multiple upper trails of Section 4.4.3.1, and a single lower trail with a restricted
D1

out of size 224 to ensure that C ` C̄ and C 1 ` C̄ 1 have the required properties for
all quartets considered:

D1
out “

"„

a 0 0 0
0 0 0 b
0 0 b 0
0 c 0 0

ȷ

: a, b, c P t0, 1u8
*

.

The corresponding parameters are:
p⃗ “ 2´22, |D0

in| “ 232, |D0
out| “ 234,

⃗p “ 2´22, |D̄0
in| “ 234,

⃗q “ 2´24, |D1
in| “ 232, |D1

out| “ 224.

For each quartet, the pair pC, C̄q suggests two values for k6r13s ` k6r10s, and C 1, C̄ 1

also suggests two values. Therefore a quartet suggests on average ℓ “ 2´6 values
for κ “ 8 bits of key. Using the truncated boomerang analysis, we obtain:

pb “ p⃗ ¨ ⃗p ¨ ⃗q2 ˆ |D1
in|´1 “ 2´124, σ̃ “ 2´16,

pw “ |D̄0
in| ˆ 2´n ˆ ℓ ¨ 2´κ “ 2´108, Q “ Op2140q.

To obtain a high probability of success we use Q “ 2145, i.e. D “ 290. Since
σ̃ ăă 1, the counter distribution of the right key can be approximated to the
normal distribution N p237 ` 221, 237q while wrong key counters distributions can
be approximated to N p237, 237q. We expect the correct key to be ranked first with
very high probability (PS ą 0.99 using the formula from [Sel08]).

The time complexity is dominated by the oracle queries: for each structure of
256 plaintexts/ciphertexts, we filter 256 ˆ 255 ˆ |D̄0

in| ˆ 2´n “ 217 candidate quartets
with P̄ ` P̄ 1 P D̄0

in, and the time to extract the key candidates is negligible. We
can repeat the attack to recover up to 16 key bytes in different positions, with a
complexity of D “ T “ 294 (but only 12 recovered bytes are linearly independent).

4.4. Truncated Boomerang Attacks 119

4.4.4 Application to 8-round Kiasu-BC
Kiasu-BC [JNP14a] is an instance of the TWEAKEY framework [JNP14b], reusing
the AES round function in a tweakable block cipher. Its specification is presented
in Section 2.3.4.3. The 6-round boomerang attack on the AES can be extended to
8-round Kiasu-BC by taking advantage of the tweak input to cancel state differences
in order to have one inactive round in the upper and lower trails. Indeed, the best
known attack on Kiasu-BC is an 8-round attack with complexity 2103 in data and
time [DL17] following this idea; the corresponding boomerang is represented in
Figure 4.9. Following our framework, we improve this attack with a better use of
structures.

4.4.4.1 Truncated boomerang
Since we use a tweak difference ∆tw, we slightly generalize our truncated differential
framework to allow a set of tweak differences D0

tw. We start from a 4-round
truncated trail pD0

in, D0
twq

p⃗
ÝÝÑ4R

Dout with probability 2´32, similar to the 3-round
trail of previous sections:

.

D0
tw is the set of differences active in the first cell of the tweak; following the

tweakey schedule of Kiasu-BC, this results in a tweakey difference in D0
tw at each

round. We use the same truncated trail (in reverse order) for the bottom and the
returning parts. We obtain an 8-round boomerang with two 4-round differentials:

p⃗ “ 2´32, ⃗p “ 2´32, |D̄0
in| “ |D0

in| “ 232, |D0
out| “ 232, |D0

tw| “ 28,

⃗q “ 2´32, |D1
in| “ 232, |D1

out| “ 232, |D1
tw| “ 28.

Following the analysis of Section 4.4.2.3, we deduce on average ℓ “ 2´32 candidates
of κ “ 64 key bits per quartet. Therefore, we obtain

pb “ p⃗ ¨ ⃗p ¨ ⃗q2 ˆ |D1
in|´1 “ 2´160,

pw “ |D0
in|{2n ˆ ℓ ˆ 2´κ “ 2´192, σ̃ “ 232.

Since σ̃ ąą 1, we only need a few right quartets. Taking µ “ 4, we obtain an attack
with Q “ 2162 quartets. We take advantage of the tweak to build larger structures
(iterating over the tweak and data inputs), of size |D0

in| ¨ |D0
tw| ¨ |D1

out| ¨ |D1
tw| “ 280.

Thus we only need 8 structures, with data complexity D “ 283. In each structure
of 280 elements, we expect 263 quartets with P̄ ` P̄ 1 P D̄0

in, therefore the time
complexity for the key-recovery is negligible, and T “ D “ 283. Note that unlike
in the attacks against AES, we can not use muliple differential trails for the upper
and lower parts, because the tweakey difference is in a predetermined position, and
therefore the byte position of the differences in w0, x2, w4, x6 is fixed.

Success Probability. There are 266 quartets with P̄ ` P̄ 1 P D̄0
in, suggesting on

average 2´32 key candidates each; hence a total of 234 candidates for 64 bits of key.

120 Chapter 4. Boomerang Attacks on AES and AES-based Ciphers

P

KS

tk0
AT K0

x0
SB

y0
SR

z0

2´24

MC

w0

KS

tk1
AT K1

2´8

x1
SB

y1
SR

z1
MC

w1

KS

tk2

2´8

AT K2

x2
SB

y2
SR

z2

2´24

MC

w2

tk3
AT K3

x3
SB

y3
SR

z3
MC

w3

2´32

KS

tk4
AT K4

x4
SB

y4
SR

z4
MC

w4

KS

tk5
AT K5

x5
SB

y5
SR

z5
MC

w5

KS

tk6

2´8¨2

AT K6

x6
SB

y6
SR

z6

2´24¨2

MC

w6

KS

tk7
AT K7

x7
SB

y7
SR

z7

tk8
AT K8

C

Truncated bytes
Inactive bytes

p⃗ “ 2´32 ⃗q “ 2´32

⃗p “ 2´32 r “ 2´32

pb “ 2´160 p$ “ 2´96

ℓ “ 2´32 κ “ 64

σ̃ “ 232 µ “ 4

S “ 280 D “ 283

T “ 283 M “ 280

Figure 4.9: Truncated boomerang trail on 8-round Kiasu-BC, along with the
key-recovery attack parameters. S is the structure size.

4.4. Truncated Boomerang Attacks 121

We keep key candidates whose counter reaches 2 or more. Modeling counters for
wrong keys with a Poisson distribution with λ “ 2´30, the probability for a specific
wrong key counter to be at least 2 is 1 ´ e´λp1 ` λq « 2´61; therefore we expect
to keep 8 wrong keys. On the other hand, the counter for the right key follows a
Poisson distribution with λ “ 4. It reaches a value of 2 or more with probability
« 0.9.

As in the AES attacks, we recover the full key by repeating the attack with D0
in

in a different diagonal. Taking advantage of the recovered values of the last round
key, this adds a negligible complexity.

4.4.5 Application to TNT-AES
TNT-AES is an AES-based tweakable block cipher published in EUROCRYPT 2020
by Bao et al. [BGG+20], described in Section 2.3.4.4. We recall that TNT-AES
uses three 128-bit keys K0, K1, K2, and a 128-bit tweak, and is composed of the
following operations:

ẼK0,K1,K2 : P, T ÞÑ C “ AES6
K2

´

T ` AES6
K1

`

T ` AES6
K0pP q

˘

¯

,

where AES6
K denotes 6 AES rounds under the key K.

We present a marginal distinguisher on TNT-AES, that is far from reaching
the complexity of the best known generic attack against TNT-AES, with 269

operations [JKN+24]. However, our attack has the advantage of distinguishing
between TNT-AES and TNT with a PRP.

4.4.5.1 Truncated boomerang
Our attack focuses on the middle cipher EK1 , between both tweak additions. In
order to skip the initial and final ciphers EK0 and EK2 , we introduce differences in
the tweak, instead of introducing them in the plaintext and ciphertext. We fix a
plaintext P , and consider four tweaks T, T 1, T̄ , T̄ 1 to create quartets as follows:

1. Query C “ ẼpP, T q and C 1 “ ẼpP, T 1q.

2. Query P̄ “ Ẽ´1pC, T̄ q and P̄ 1 “ Ẽ´1pC 1, T̄ 1q.

3. Detect when P̄ “ P̄ 1.

We denote the inputs and outputs of EK1 as X and Y , with Y “ EK1pXq:

X “ EK0pP q ` T, X 1 “ EK0pP q ` T 1, X̄ “ EK0pP̄ q ` T̄ , X̄ 1 “ EK0pP̄ 1q ` T̄ 1,

Y “ E´1
K2

pCq ` T, Y 1 “ E´1
K2

pC 1q ` T 1, Ȳ “ E´1
K2

pCq ` T̄ , Ȳ 1 “ E´1
K2

pC 1q ` T̄ 1.

When P̄ “ P̄ 1, we have a boomerang quartet for EK1 with differences

X ` X 1 “ T ` T 1 “ ∆in, X̄ ` X̄ 1 “ T̄ ` T̄ 1 “ ∆1
in,

Y ` Ȳ “ T ` T̄ “ ∇out, Y 1 ` Ȳ 1 “ T 1 ` T̄ 1 “ ∇1
out.

122 Chapter 4. Boomerang Attacks on AES and AES-based Ciphers

When using a truncated boomerang trail (with a fixed P and a set of tweaks),
there are two important limitations compared to the previous attacks:

• We only detect when the difference X̄ ` X̄ 1 matches exactly T̄ ` T̄ 1, instead of
detecting a set of differences D̄0

in. This is equivalent to saying that |D̄0
in| “ 1.

The boomerang trail probability decreases.

• We necessarily have ∆in `∆1
in “ ∇out `∇1

out. For the 6-round AES truncated
boomerang trail of Figure 4.8, this implies ∆in “ ∆1

in and ∇out “ ∇1
out.

Therefore, we cannot take advantage of structures on the ciphertext side.

Nonetheless, truncated boomerangs can be used with structures of tweaks on the
plaintext side, and the analysis of the middle rounds as truncated differentials
significantly reduces the complexity compared to the analysis of [BGG+20].

Our truncated boomerang attack against TNT-AES follows the characteristic
of Figure 4.10, detailed below.

Upper Differential. We use the same collection of 4 upper trails as in our
optimized attack on AES:

!

, , ,
)

.

Note that the only accepted difference for P̄ ` P̄ 1 is exactly ∆in, and no multi-trail
can be performed in the backward upper trail. This gives the following parameters:

p⃗ “ 2´22, |D0
in| “ 232, |D0

out| “ 234,

⃗p “ 2´56, |D̄0
in| “ 20.

Lower Differential. Since we cannot use structures on the ciphertext side, we use
a fixed value ∇out to maximize the probability of the trail. We consider ∇out active
only on the main anti-diagonal, and analyze the S-box layer of the last round. The
output difference of the S-box layer is equal to ShiftRows´1pMixColumns´1p∇outqq,
and we want the input difference to be of one of the following types:

»

—

—

–

2α 0 0 0
α 0 0 0
α 0 0 0
3α 0 0 0

fi

ffi

ffi

fl

,

»

—

—

–

α 0 0 0
α 0 0 0
3α 0 0 0
2α 0 0 0

fi

ffi

ffi

fl

,

»

—

—

–

α 0 0 0
3α 0 0 0
2α 0 0 0
α 0 0 0

fi

ffi

ffi

fl

,

»

—

—

–

3α 0 0 0
2α 0 0 0
α 0 0 0
α 0 0 0

fi

ffi

ffi

fl

.

We experimentally tested all possible differences on the main diagonal of ∇out,
and counted the number of pairs satisfying the transition. More precisely, we are
interested in the joint probability that two different pairs reach an input difference
of the same type, therefore we count the number of quartets of each type (using
the DDT of the S-box for each possible input and output difference).

We found that in the best case, there are 222.35 quartets that satisfy this
transition (with the same type for both pairs), compared to 218 quartets expected

4.4. Truncated Boomerang Attacks 123

X

AT

2´32

T

w´1

6R AES

P

KS

k0
AK0

x0

SB

y0

SR

z0

4¨2´24

MC

w0

KS

k1
AK1

x1

SB

y1

SR

z1

2´24

MC

w1

k2
AK2

x2

SB

y2

SR

z2

MC

w2

2´32

KS

k3
AK3

x3

SB

y3

SR

z3

MC

w3

KS

k4
AK4

x4

SB

y4

SR

z4

2´20.85¨2

MC

w4

KS

k5
AK5

x5

SB

y5

SR

z5

MC

w5

k6
AK6

Y

AT

T

x6

6R AES

C

Truncated bytes

Inactive bytes

p⃗ “ 2´22 ⃗q “ 2´20.85

⃗p “ 2´56 r “ 2´32

pb “ 2´151.4 p$ “ 2´128

ℓ “ 210 κ “ 32

σ̃ “ 2´1.4 c “ 64

S “ 232 D “ 2127.8

T “ 2127.8 M “ 233

Figure 4.10: Scheme of our boomerang attack on the full TNT-AES. Although this
only shows a unique boomerang trail which would imply pb “ 2´151.7, the attack
parameters are shown for pb “ 2´151.4, following a thorough multi-trail analysis.

124 Chapter 4. Boomerang Attacks on AES and AES-based Ciphers

on average (for each type of input difference, we expect on average one pair for
each of the 28 differences, therefore 28`8 quartets). There are 4 ˆ 255 choices
of ∇out reaching this maximum, and we found they they all have a special form:
ShiftRows´1pMixColumns´1p∇outqq is of one of the following types, with L the linear
transform inside the AES S-box:

»

—

—

–

Lpβ{2q 0 0 0
Lpβq 0 0 0
Lpβq 0 0 0

Lpβ{3q 0 0 0

fi

ffi

ffi

fl

,

»

—

—

–

Lpβq 0 0 0
Lpβq 0 0 0

Lpβ{3q 0 0 0
Lpβ{2q 0 0 0

fi

ffi

ffi

fl

,

»

—

—

–

Lpβq 0 0 0
Lpβ{3q 0 0 0
Lpβ{2q 0 0 0
Lpβq 0 0 0

fi

ffi

ffi

fl

,

»

—

—

–

Lpβ{3q 0 0 0
Lpβ{2q 0 0 0
Lpβq 0 0 0
Lpβq 0 0 0

fi

ffi

ffi

fl

.

This special form can be explained by the structure of the AES S-box; we recall
that the AES S-box is defined on F28 as:

Spxq “

"

Apx´1q if x ‰ 0,
Ap0q else.

In particular, Spxq “ Apx254q holds for all x P F28 . Let us define L the linear
part of A: Lpxq “ Apxq ´ Ap0q. We have the following property:

Property 4.1. For any α, β ‰ 0, DDTrα, Lpβqs “ DDTrαβ, Lp1qs.

Proof.

DDTrα, Lpβqs “
ˇ

ˇ

␣

x : L
`

pxq254˘ ` L
`

px ` αq254˘ “ Lpβq
(ˇ

ˇ

“
ˇ

ˇ

␣

x : pxq254 ` px ` αq254 “ β
(
ˇ

ˇ

“
ˇ

ˇ

␣

x : pβxq254 ` pβx ` αβq254 “ 1
(ˇ

ˇ

“
ˇ

ˇ

␣

x : pxq254 ` px ` αβq254 “ 1
(ˇ

ˇ

“
ˇ

ˇ

␣

x : L
`

pxq254˘ ` L
`

px ` αβq254˘ “ Lp1q
(ˇ

ˇ

“ DDTrαβ, Lp1qs.

Because of this property, S-box transitions of the form

p2α, α, α, 3αq Ñ pLpβ{2q, Lpβq, Lpβq, Lpβ{3qq

have a higher probability than expected because the transition probability of the
S-boxes are not independent: for a given α and β either all transitions are possible
simultaneously, or none of the transitions are possible.

For instance, with β “ 1, we obtain the following transitions through
MixColumns´1 ˝ SubBytes´1:

Pr rp14, 1f, 1f, 18q Ñ p˚, 0, 0, 0qs “ 2272{232 « 2´20.85,

Pr rp14, 1f, 1f, 18q Ñ p0, ˚, 0, 0qs “ 256{232,

Pr rp14, 1f, 1f, 18q Ñ p0, 0, ˚, 0qs “ 256{232,

Pr rp14, 1f, 1f, 18q Ñ p0, 0, 0, ˚qs “ 256{232.

4.4. Truncated Boomerang Attacks 125

Using the trail p14, 1f, 1f, 18q Ñ p˚, 0, 0, 0q, we obtain ⃗q “ 2´20.85. When
combining the four boomerang trails, the probability that two pairs follow the
same trail is increased from ⃗q2 “ 2´41.7 to:

`

2272{232˘2
` 3 ˆ

`

256{232˘2
« 222.35{264 “ 241.65.

Refinement of r and ⃗p. As such, our booomerang attack requires more than
2128 data to distinguish TNT-AES. We therefore need to perform a more detailled
analysis to save a fraction of bits in the complexity attack.

In the lower trail, our analysis assumes that if pC, C̄q and pC 1, C̄ 1q both follow
the trail, with the same pattern in z4, then the differences E´1

1 pCq ` E´1
1 pC̄q

and E´1
1 pC 1q ` E´1

1 pC̄ 1q are equal with probability |D1
in|´1 “ 2´32. Actually, the

differences are not uniformly distributed in D1
in, and this increases the probability

that the differences are equal.
Indeed, we can split this analysis into two disjoint cases: either the differences

in x4 are equal (x4 ` x̄4 “ x1
4 ` x̄1

4), or they are different. If they are equal, then
the difference in y3 is the same for both pairs; therefore there are only 127 possible
differences in each active byte of x3.

Pr
“

E´1
1 pCq ` E´1

1 pC̄q “ E´1
1 pC 1q ` E´1

1 pC̄ 1q
‰

“ ⃗q2 ˆ

ˆ

254
255 ˆ 2´32 `

1
255 ˆ 127´4

˙

« ⃗q2 ˆ 2´31.915.

This increases r from 2´32 to 2´31.915.
In the upper trail, there are similar effects. Our analysis assumes that the

pair pP̄ , P̄ 1q follows the truncated trail with probability ⃗p independently of the
pair pP, P 1q. However, both pairs have the same differences at the input and
output of the trail and the trail does not cover the sets D0

in and D0
out uniformly.

Let us consider a pair C̄, C̄ 1 with E´1
1 pC̄q ` E´1

1 pC̄ 1q “ E´1
1 pCq ` E´1

1 pC 1q. The
difference in y2 (after the S-boxes of the third round) are the same for both pairs;
the truncated trail allows a set 255 differences in x2 (before the S-boxes). In
general the probability of a transition through four active S-boxes is 2´32, but
we know that one of the 255 differences was followed by the pair P, P 1, therefore
all differences are compatible, and the probability increases to 127´4. Finally the
probability of having a difference in x2 compatible with the trail is higher than
2´24:

1 ˆ 127´4 ` 254 ˆ 2´32 « 2´23.92.

In the first round, we have the same analysis as in the lower trail, and the probability
to obtain the same difference as the pair P, P 1 is higher than 2´32:

254
255 ˆ 2´32 `

1
255 ˆ 127´4 « 2´31.915.

This increases ⃗p from 256 to 2´23.92 ¨ 2´31.915 « 255.84.

126 Chapter 4. Boomerang Attacks on AES and AES-based Ciphers

Finally, we obtain the following paramters:

p⃗ “ 2´22, |D0
in| “ 232, |D0

out| “ 234,

⃗p “ 2´55.84, |D̄0
in| “ 20,

r “ 2´31.915, ⃗q2 “ 2´41.65, |D1
out| “ 1.

4.4.5.2 Boomerang trail probability
We obtain:

pb “ p⃗ ¨ ⃗p ¨ ⃗q2 ˆ r “ 2´151.4, p$ “ |D̄0
in|{2n “ 2´128.

It is not possible to recover actual key material with this attack because X is
unkown. However, we can use EK0pP q ` K1 as an equivalent subkey if all queries
are made with the same P . Using the pair pX, X 1q we extract ℓ “ 210 candidates
for κ “ 32 key bits. Unfortunately, we cannot use the pairs pY, Ȳ q for filtering on
the ciphertext side since the unkown value Y is different in each quartet. Similarly,
the pair pX̄, X̄ 1q is unusable for key extraction. Therefore,

pb “ 2´151.4, pw “ p$ ˆ ℓ ˆ 2´κ “ 2´150, σ̃ “ 2´1.4.

With σ̃ ă 1, we need Q “ c ¨ σ̃´1 ¨ p´1
b with a small constant c; we take c “ 64,

Q “ 2158.8. We have plaintext structures of size 232, and reuse each queried
structure with different values of ∇out, so that the data complexity is dominated by
the number of decryptions, this corresponds to D “ Q ˆ 2´31 “ 2127.8 (2127.8{255
encryption queries and 2127.8 decryption queries).

4.4.5.3 Distinguisher
With 2127.8 queries we obtain a distinguisher between TNT-AES (using 6-round
AES as the building block) and a PRP (or TNT using a PRP). This obviously does
not threaten the security of TNT-AES, but we believe that it is an interesting use
case showing that a 6-round boomerang distinguisher can be extended to a larger
scheme, even if the attack is marginal.

After collecting the quartets, we expect that the counter corresponding to the
right key follows the distribution N p28.8 ` 27.4, 28.8q while counters for the wrong
keys follow the distribution N p28.8, 28.8q (the distance between the expected values
is 8 times the standard deviation).

We obtain a distinguisher by observing whether the maximum counter is higher
than a threshold t “ 28.8 ` 7 ˆ 24.4. The probability that all counters for wrong
keys are lower than t is Φp7q232

« 0.995, therefore the probability of false positive
is 0.005. The probability that the counter for the right key is higher than t is
Φp1q “ 0.84 so the probability of false negative is 0.16.

Finally, we can increase the success rate by running three attacks in parallel
using three input sets D0

in, D0
in

1, D0
in

2 on three different diagonals. Using super-
structures of 296 values, we run all three attacks with the same queries, and

4.4. Truncated Boomerang Attacks 127

generate counters for three sets of 232 equivalent keys. Using a threshold of
t “ 28.8 ` 7.1 ˆ 24.4, we keep the probability of false positive below 1%, while the
probability that at least one of the three counters corresponding to right keys is
higher than the threshold increases to 99%.

4.4.5.4 TNT with 5-round AES
If TNT is used with 5-round AES, we can build efficient boomerang attacks with a
probability-1 truncated differential in one part. We re-use the analysis performed
on TNT with 6-round AES to refine the different parameters of the attack.

Distinguisher. For a distinguisher, we split EK1 into a 2-round E0 and 3-round
E1. In E0, we use a 2-round truncated trail with forward probability 1:

.

We have the following parameters:

p⃗ “ 1, ⃗p “ 2´32, |D0
in| “ 232, |D̄0

in| “ 20, |D0
out| “ 232.

In the lower part E1, we use the same trail as in the 6-round attack, with a
fixed difference:

∇out “ MixColumns ˝ ShiftRows

¨

˚

˚

˝

»

—

—

–

Lpβ{2q 0 0 0
Lpβq 0 0 0
Lpβq 0 0 0

Lpβ{3q 0 0 0

fi

ffi

ffi

fl

˛

‹

‹

‚

.

This gives:

r “ 231.915, ⃗q2 “ 2´41.65, |D1
out| “ 20.

We obtain:

pb “ p⃗ ¨ ⃗p ¨ ⃗q2 ˆ r “ 2´105.6, p$ “ |D̄0
in|{2n “ 2´128, σ “ 222.4.

With σ ąą 1, we do not expect any false positive with P “ P
1, and we obtain a

simple distinguisher with Q “ µ ˆ p´1
b for a small µ. For instance, with Q “ 2107,

corresponding to D “ 276, we have a success rate of 0.93.

Key-recovery. For a key-recovery attack, we use the same ideas as in the 6-round
attack, in order to recover EK0pP q ` K1. This provides known plaintext/ciphertext
pairs for EK0 , and we use a low data complexity attack on 5-round AES to recover
the master key. However, we have to split EK1 into a 3-round E0 and 2-round E1
in order to extract information about EK0pP q ` K1.

We use the same collection of 4 upper trails as in the 6-round attack:
!

, , ,
)

.

128 Chapter 4. Boomerang Attacks on AES and AES-based Ciphers

We have the following parameters for the upper trail:

p⃗ “ 2´22, |D0
in| “ 232, |D0

out| “ 234,

⃗p “ 2´55.84, |D̄0
in| “ 20.

In the lower part, we use a 2-round truncated trail with backward probability
1, with a fixed (arbitrary) output difference:

.

We have the following parameters

r “ 2´32, ⃗q “ 1, |D1
out| “ 20.

Using a single active output byte ensures that we do not have quartets that follow
an alternative boomerang with a 2-round trail in the upper part with probability
1, and a 3-round trail in the lower part. We could increase the value of r with a
more detailled analysis comparable to that of the attack on TNT with 6-round
AES, but we chose not to do it to keep the analysis simple.

We obtain:

pb “ p⃗ ¨ ⃗p ¨ ⃗q2 ˆ r « 2´110, p$ “ |D̄0
in|{2n “ 2´128, σ “ 218.

As in the 6-round attack, we recover ℓ “ 210 candidates for the main diagonal
of EK0pP q ` K1 from each candidate quartet (κ “ 32 bits of information). If we
have at least two candidate quartets, the correct equivalent key is ranked first with
high probability. Therefore we use Q “ 2113, so that the probability to have at
least two candidate quartets is higher than 0.99. This corresponds to an attack
with D “ 282.

In order to recover the master key, we repeat the boomerang attack on the
four diagonals to recover the full value of EK0pP q ` K1. Therefore, we obtain a
known plaintext/ciphertext pair for EK0 , and we use a low data complexity attack
on 5-round AES. Using the attack from [Der13], we only need 8 chosen plaintexts
to attack 5-round AES with a complexity of 264. Therefore, the total attack has a
complexity of 8 ˆ 4 ˆ 282 “ 287.

4.4.6 Modeling the Framework using MILP
We now introduce a MILP model to search for truncated boomerang attacks
on AES-based ciphers, based on [CHP+17]. It uses our analysis of truncated
boomerangs to evaluate the data complexity of an attack, and minimizes it.

Mixed Integer Linear Programming (MILP) is a mathematical optimization tool
that minimizes a linear objective function of constrained variables. The variables
can be either integer or rational, and the constraints are given as linear inequalities.
In the last years, it has proven to be a useful tool to evaluate the security of
cryptographic primitives, due to the facility of encoding cryptographic properties

4.4. Truncated Boomerang Attacks 129

as MILP problems, and the availability of high performance solvers. For more
information on MILP modeling, refer to Section 2.4.

This method was applied to the search of boomerang distinguisher on
Deoxys [JNP+21] by Cid et al. [CHP+17]. Their MILP model encodes the activity
of each state byte with a binary variable that equals 1 if its corresponding byte is
active and 0 if not, and that is constrained depending on the activity pattern of
Deoxys operations. In order to build a boomerang trail, their model includes two
separate differential trails with two overlapping rounds in the middle (in order to
account for the ladder switch and the BCT analysis). The objective function to
minimize is the number of active S-boxes, i.e. the sum of all variables representing
the activity of S-box input (or output) bytes, which roughly corresponds to the
attack complexity.

After generating the optimal boomerang template, they instantiate active
bytes with concrete differences that maximize S-box transition probabilities. An
important contribution of their work is an analysis of the degrees of freedom of
the tweakey differences. Their MILP model counts the number of linear relations
between the tweakey differences and ensures that at least one degree of freedom
remains in the final trail, otherwise it is unlikely to find concrete differences for
the tweakey.

In 2019, Zhao et al. [ZDJ19; ZDJ+19] improved this MILP model by adding
two extra rounds at the end of the lower trail, containing truncated differences.

4.4.6.1 Our MILP model

Previous works [CHP+17; Sas18a; ZDJ+19] showed that the best attack is not
always obtained with the best distinguisher. Therefore we follow the same high-
level approach as in [QDW+21]: our main objective is to cover the full boomerang
attack with the MILP model. The code for the MILP model is available in [BL23a].

Our model is not symmetric when switching plaintext and ciphertext3, but for
simplicity we only describe the attack starting from the plaintext, though it works
similarly the other way around. Also, in order to have only two different trails, we
consider than D̄0

in “ D0
in and that the pairs follow the same upper differential trails

in the forward and backward directions.
The model of Cid et al. [CHP+17] considers only two types of internal differences:

either it is inactive with a zero difference, or it is active with a fixed non-zero
difference. In order to model truncated trails, we consider four types of differences
for all intermediate state variables (for the tweakey variables, we use only the first
two types for simplicity):

• inactive, with a zero difference, denoted as ;

• active with a fixed non-zero difference, denoted as ;

3The inverse AES round can be re-written with the same form as the encryption, but this
requires to use equivalent round keys, and interacts badly with the introduction of sparse differences
through the tweakey schedule.

130 Chapter 4. Boomerang Attacks on AES and AES-based Ciphers

• active with an unknown (truncated) difference, denoted as .

• active with an equal (but unknown) difference for both pairs, denoted as ˚ .

From these possible states, we can deduce the parameters of the attacks,
including the structure size, which allows us to ask the MILP solver to minimize
the formula for the data complexity of the attack given in Section 4.4.2.

Bytes with equal differences encode relations between the two different pairs
that follow the same trail, rather than properties of a trail by itself. This allows
the MILP model to capture trails like the 6-round AES boomerang of Figure 4.8
or the 8-round Kiasu boomerang of Figure 4.9; Figure 4.11 shows how they are
captured by this model. The model does not encode linear relations between active
bytes (e.g. the set of differences for w2 of Figure 4.8 is active on all bytes but has
size 232), but using this type of constraint is sufficient in many cases because it is
propagated through the linear layer. In terms of analysis, we treat them specially:
for the first pair they are considered as truncated bytes, but for the second pair
they are considered as fixed differences (fixed to the value given by the first pair).
Therefore, we explain the rest of the MILP model assuming that each trail has
been duplicated, and equal differences have been replaced.

4.4.6.2 Constraints

We have constraints for each operation:

SubBytes. With truncated differences, the variables before and after the S-box
layer do not necessarily have the same type. However, an S-box output is
active (truncated or not) if and only if the input is active.

ShiftRows. ShiftRows only moves the bytes, so we have trivial equalities between
the corresponding state variables.

MixColumns. The MixColumns operation operates on each column, multiplying it
with an MDS matrix. Because of the MDS property, each column is either
completely inactive, or has at least 5 active bytes (truncated or not) on input
and output. Moreover, we have the same property with truncated bytes:
either no byte is truncated, or at least 5 bytes are truncated.

For Deoxys-BC, we also reuse the constraints for the degrees of freedom given
in [CHP+17] to avoid over-defining the fixed differences (for these constraints,
the equal bytes are considered as truncated).

AddTweaKey. The AddTweaKey operation is just a XOR with the subkey. In our
model, the subkey is not truncated, so it is either inactive, or active with
a fixed difference. Therefore, the input state is truncated if and only if the
output state is truncated. Otherwise, we use the constraints of Cid et al. to
model XOR for the active bytes and the activity of the tweakey bytes.

4.4. Truncated Boomerang Attacks 131

Key Schedule. For Deoxys-BC, we follow the approach of [CHP+17] to model
the key schedule. The permutation h just moves the bytes, and the LFSR
construction ensures that each byte is either completely inactive, or inactive
in at most i ´ 1 rounds in the TKi model. For Kiasu-BC, the 64-bit tweak is
represented with 8 activity variables. For AES-128, the subkeys are inactive.

Additional Constraint. To avoid the trivial truncated trail with probability 1, we
constrain the trail to have at most 3 active truncated columns in a single
state, except for the first and last rounds.

4.4.6.3 Objective function

Using the results from the previous sections, we estimate the data complexity of
an attack as:

D “ maxp
a

2Q, 2Q ˆ |D0
in|´1 ˆ |D1

out|
´1q, with

Q « maxpp´1
b , σ̃´1 ˆ p´1

b q, σ̃ « pb{pp$ ˆ ℓ ˆ 2´κq,

pb “ p⃗ ¨ ⃗p ¨ ⃗q1 ¨ ⃗q2 ˆ r, p$ “ |D0
in|{2n.

Since all variables are represented logarithmically by the MILP model, these
formulas only involve additions and maximums, and are easily expressed with the
MILP variables:

• |D0
in| and |D1

out| are obtained by counting truncated input/output bytes.

• p⃗, ⃗p, ⃗q1 and ⃗q2 are computed from SubBytes and MixColumns transitions.
Due to the equal bytes, the probability of the lower trail is computed twice:

⃗q1 after replacing them with truncated bytes, and ⃗q2 after replacing them
with fixed bytes. Similarly p⃗ is computed after replacing them with truncated
bytes, and ⃗p after replacing them with fixed bytes (see Table 4.4);

• r is computed from the boomerang connection probability of each S-box, as
described in Table 4.4;

• ℓˆ2´κ is estimated as p⃗0
2 ¨ ⃗q0

2 following Section 4.4.2.3, where the probability
p⃗0 for the first round and ⃗q0 for the last round are evaluated from the trail.

Trail Probability. With truncated differences, both MixColumns and SubBytes
operations contribute to the probability of a trail. If at least one byte of a column is
truncated, the probability of a MixColumns transition is 2´8t where t is the number
of non truncated bytes (active or not) in the output of MixColumns.

The SubBytes probability is computed by multiplying the transition probability
of all the S-boxes, following the transition probabilities given in Table 4.4.

132 Chapter 4. Boomerang Attacks on AES and AES-based Ciphers

Table 4.4: Transition probability (DDT) and connection probability (BCT) for
the AES S-box. For the transition probability of equal differences, we distinguish
the first and the second pair. We omit the cases where the probability is 0.

Legend
δ “ 0
δ ‰ 0 fixed
unknown δ

˚ equal δ

Transition probability 1st pair 2nd pair

Prp Ñ q “ 1 Prp Ñ ˚ q
1
“ 1 Prp Ñ ˚ q

2
“ 2´7

Prp Ñ q “ 2´6 Prp Ñ ˚ q
1
“ 1 Prp Ñ ˚ q

2
“ 2´8

Prp Ñ q “ 1 Prp ˚ Ñ q
1
“ 2´8 Prp ˚ Ñ q

2
“ 2´7

Prp Ñ q “ 2´8 Prp ˚ Ñ q
1
“ 1 Prp ˚ Ñ q

2
“ 1

Prp Ñ q “ 1 Prp ˚ Ñ ˚ q
1
“ 1 Prp ˚ Ñ ˚ q

2
“ 2´7

Boomerang connection probability
Prp Ñ q “ 1 Prp Ñ q “ 1 Prp Ñ q “ 1 Prp ˚ Ñ q “ 1
Prp Ñ q “ 1 Prp Ñ q “ 2´6 Prp Ñ q “ 1 Prp ˚ Ñ q “ 2´8

Prp Ñ q “ 2´8 Prp Ñ q “ 2´8 Prp Ñ q “ 1 Prp ˚ Ñ q “ 2´8

Prp Ñ ˚ q “ 1 Prp Ñ ˚ q “ 2´8 Prp Ñ ˚ q “ 1 Prp ˚ Ñ ˚ q “ 2´8

Boomerang Connection Probability. In Section 4.4.1 and Section 4.4.2, we
evaluated the connection probability as r “ |D1

in|´1. This is sufficient for AES
boomerangs, but when targeting Deoxys, we obtain more accurate results using
the Boomerang Connectivity Table (BCT) [CHP+18], as detailed in Section 4.2.3.
Instead of splitting the cipher in two parts E “ E1 ˝ E0, we split it in three
parts E “ E1 ˝ Em ˝ E0 with Em an S-box layer. Given fixed differences on both
sides of Em, the probability that the boomerang connects is given by multiplying
the BCT probabilities of each S-box. Because the MILP does not handle fixed
difference instantiation, our MILP program uses the optimistic probabilities given
in Table 4.4.

This analysis can be improved using the ladder switch [BK09]. Instead of
splitting the cipher with Em a full S-box layer, we use the Super-Box representation
of the two middle rounds: from one S-box layer to the next, the AES round operates
as four independent parallel transformations. Each of those four transformations
can independently be considered as part of the upper or lower trail. We obtain
E0 and E1 with partial rounds in the middle, and Em corresponds to S-boxes of
different rounds. We model the ladder switch using a binary variable for each
Super-Box in the middle, encoding whether it is part of the upper trail or the lower
trail. Depending on these variables, the S-boxes and MDS matrices in the middle
are counted as part of E0, Em, or E1.

To instantiate boomerang trails generated by the MILP solver, we iterate over
all possible differences in the tweakey following the tweakey difference pattern given
by the MILP solver, determine the fixed differences in the trail, and finally compute
the exact trail probability with the tables DDT, BCT [CHP+18], UBCT, LBCT
and EBCT, introduced in [SQH19; WP19; DDV20], presented in Section 2.2.2
and in Section 4.2.3. We then select the tweakey difference with the highest trail

4.4. Truncated Boomerang Attacks 133

probability.

Limitations of the MILP model. Our model handles only fixed differences in
the tweakey. More importantly, although our model takes into account the ladder
switch to compute the boomerang connection probability, it does not accurately
compute the connection probability. Some boomerang trails given in a preprint
version of our paper [BL22] were even found incompatible by Yang et al. [YSS+22].
More generally, some boomerang trails returned by the MILP are not instantiable.
When that happens in practice, we modify the boomerang trail squeleton or we
generate a different trail using the MILP solver.

The reasons behind the incompatibilities found by Yang et al. are subtle, and
in order to ensure that the trails are not incompatible, we verified experimentally
the probability of the middle rounds [BL23a].

For each trail, we indicate the rounds that have been checked, with the
theoretical probability pth for the middle rounds, and the experimental value
observed pexp. In some attacks, the experimental probability slightly differs from
the theoretical one; we deduce an adjusted trail probability p̃b that is used to
calculate the complexity of the attack.

Resource Usage. For the search, we use Gurobi [Gur23] with 96 threads on a
machine with two AMD EPIC 7352 CPUs and 256 GB of RAM. The solving time
varies from a few minutes to several days, but the best trail is in general found
much faster than the optimality proof. Memory shortage (exceeding 256 GB) is an
issue for some of the largest models.

4.4.6.4 Results on AES-128 and Kiasu-BC
We use the MILP model to search for attacks on AES-128 and Kiasu-BC and
compare them with the results of the previous sections.

On AES-128, the model returns the trail of Figure 4.11, which corresponds to the
attack of Section 4.4.2.4 with a full equal state in w2. This confirms the optimality
of our truncated trail within our framework. However, the model does not handle
multiple trails, so that it cannot suggest the improved attack of Section 4.4.3.

On Kiasu-BC, the model cannot find the attack of Section 4.4.4, because it
does not handle truncated differences in the tweak. With fixed difference in the
tweak, the best trail found by the solver is unfortunately not instantiable, because
of incompatibilities in the middle rounds. The solver nevertheless ensures that
no attack with complexity less than 280 exist in that framework with fixed tweak
differences.

4.4.7 Application to Deoxys-BC
Deoxys-BC [JNP+21] is a tweakable block cipher following the TWEAKEY
framework [JNP14b] based the AES round function, on which the best known
attacks are based on boomerangs [CHP+17; Sas18a; ZDJ19; ZDJ+19]. Deoxys-BC

134 Chapter 4. Boomerang Attacks on AES and AES-based Ciphers

P

TKS

tk0
ATK0

x0

SB

y0

2−24
SR,MC

w0

TKS

tk1
ATK1

x1

SB

y1

2−24
SR,MC

w1

TKS

tk2
ATK2

x2

SB

y2

SR,MC∗∗∗∗
w2∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗

tk3
ATK3

x3

SB
∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗

y3

x2

SB

y2

SR,MC

w2

TKS

tk3
ATK3

x3

SB

y3

SR,MC

w3

TKS

tk4
ATK4

x4

SB

y4

2−24⋅2
SR,MC

w4

TKS

tk5
ATK5

x5

SB

y5

tk6
ATK6

C

Truncated bytes

Switched bytes

Truncated equal bytes∗

p⃗ = 2
−24 ⃗q = 2

−24
⃗p = 2

−24
r = 2

−32
pb = 2

−128
p$ = 2

−96
κ = 64 ` = 2

−32
σ̃ = 2

64
µ = 1

∣D0
in∣∣D1

out∣ = 2
64

D = 2
64

T = 2
64

M = 2
55

Figure 4.11: Truncated boomerang trail on 6-round AES, starting from the
plaintext side, returned by the MILP model with equal differences in the middle.

4.4. Truncated Boomerang Attacks 135

is described in Section 2.3.4.2. Due to the large choice of tweakey differences,
finding the best truncated boomerang trails manually is a tedious work. Instead,
we use our MILP model of Section 4.4.6.

In the single tweakey model, the analysis is exactly that of the AES, and the
best known boomerang attack is given in Section 4.4.3.

In the related tweakey model, the attacker can insert differences in some of the
tweakey words TKi. Depending on the tweak size and differences used, this can be
either a single-key attack with chosen tweaks, or a related-key attack. We denote
as RTKj a model with differences in j 128-bit states, corresponding to:

• RTK1 : single-key attacks on any variant with at least 128 bits of tweak.

• RTK2 : single-key attacks on Deoxys-BC-384 with 256 bits of tweak, or
related-key attacks on Deoxys-BC-256.

• RTK3 : related-key attacks on Deoxys-BC-384.

For 13-round Deoxys-BC in the RTK3 model, we selected a non-optimal trail
in terms of data complexity, which was better in time complexity. For 8-round
and 9-round Deoxys-BC in the RTK1 model and 10-round Deoxys-BC in the
RTK2 model, we modified the squeleton of the trail returned by the MILP because
the original one was not instantiable. During other difference instantiations, we
sometimes applied slight manual improvements. For instance, for minor gains, we
introduced state changing bytes: fixed on the forward trail but truncated on the
return trail.

4.4.7.1 Description of the attacks
In the related-tweakey model, the attacker queries two sets of |D0

in| plaintexts
(under tweaks T and T 1), and each ciphertext is shifted |D1

out| times with a new
tweak (T̄ and T̄ 1 respectively). In total a structure of size S “ |D0

in| ˆ |D1
out|

requires 2|D0
in| ` 2S « 2S queries (or 4S if |D1

out| “ 1) and generates S2 quartets.
Deoxys-BC is not perfectly symmetrical, and on some instances the best attack

captured by the MILP model starts from the ciphertext side. In this case, we keep
the same analysis by replacing respectively D0

in, D1
out, p⃗, ⃗p, ⃗q by D1

in, D0
out, ⃗q, q⃗, p⃗.

The values of ℓ and κ mentioned on the figures are the one used in our attacks,
corresponding either to a 1-round or to a 2-round key-recovery. Each attack recovers
a partial key, aiming for a success rate of 1/2, comparable to previous analysis;
we assume that the rest of the key can be recovered efficiently afterwards. When
σ̃ ąą 1, the number µ of right quartets required varies from 1 to 4. In particular,
if pb ąą ℓ ¨ p$, we expect no wrong quartet and µ “ 1 suffices, else several right
quartets are needed to get the correct key ranked first.

In this section, we describe the attacks found in various settings, summarized
in Table 4.3.

136 Chapter 4. Boomerang Attacks on AES and AES-based Ciphers

4.4.7.2 8-round Deoxys-BC in the RTK1 model (Figure 4.12)
Query 215 structures of 272 elements. On average, µ “ 215 ¨ 272 ¨ 272 ¨ p̃b “ 2 quartets
follow the trail and 215 ¨ 272 ¨ 272 ¨ p$ “ 279 random quartets are detected. For
each quartet, retrieve on average 2´16 values of tk8r4, 6s in a few table accesses.
279 ¨ 2´16 “ 263 quartets remain. For each remaining quartet, retrieve 2´24 values
of tk0r1, 6, 12s. For each of the 263 ˆ 2´24 “ 239 remaining quartets, deduce on
average 2´16 key candidate for tk8r0, 1, 2, 3s and tkeq

7 r1, 3s. For each of the 223

remaining quartets, increase the counter of the retrieved 88-bit key candidate. Only
the right counter is expected to be greater than 2. The complexity is dominated
by the encryption queries. This gives pD, T, Mq “ p288, 288, 273q.

4.4.7.3 9-round Deoxys-BC in the RTK1 model (Figure 4.13)
Query 26 full structures of 2128 plaintexts. Each structure is built with a different
tweak. If we are in the related key model rather than the related tweak model, we
ask for structures under different linked keys. On average, µ “ 26 ¨2128 ¨2128 ¨ p̃b “ 4
quartets follow the trail. For each element of the structure, deduce on average 1
candidate k for 38 bits of key on the ciphertext side: 1 candidate for tk9r0, 1, 2, 4s

and 1 representant of the 4 possible candidates for tk9r6s.
Guess 5 key bytes: tk0r0, 5, 10, 15s and tk1r1s, so that w0r0, 1, 2, 3s and y1r1s

can be evaluated from each plaintext. Set δ “ 0x3b000000}0x000000}0x000000}

0x80}0x80}0 and look for collisions between:

v “
`

P̄ r2, 7, 8, 13s } w0r0, 2, 3s } w̄0r0, 2, 3s } y1r1s } ȳ1r1s } k
˘

,

v1 “
`

P̄ 1r2, 7, 8, 13s } w1
0r0, 2, 3s } w̄1

0r0, 2, 3s } y1
1r1s } ȳ1

1r1s } k1
˘

` δ.

Since we match on 134 bits, we expect 26`128`128´134 “ 2128 remaining quartets
for each guess, or 2168 in total, with a complexity of 26`128`40 “ 2174.

Extract more key information from the remaining quartets. First, retrieve 2´16

candidates for tk0r3, 4, 9, 14s; this requires about 29 table accesses per quartet,
which is less than to 26 encryptions, and therefore does not dominate the time
complexity; 2152 quartet remain. Then retrieve 2´16 candidates for tk0r1, 6, 11, 12s,
and 2´16 candidates for tk1r6, 12s. 2120 candidate quartets remain. For each
remaining quartet, for all possible tk9r3s, deduce 2´6 representant of the 4 possible
tkeq

8 r1s and 2´7 representant for the 2 possible tkeq
8 r3s. This step allows to deduce

28´6´7 “ 2´5 21-bit key canditates. We end up with 2115 candidates for 179 bits
of key.

We model the counters for wrong keys as a Poisson distribution with λ “ 2´64;
they reach 4 or more with probability 2´260.6, therefore the right key is expected
to be ranked first. This gives pD, T, Mq “ p2135, 2174, 2129q.

4.4. Truncated Boomerang Attacks 137

P

3b

7b

TKS

tk0
ATK0

3b

7b

x0

2−24⋅2
SB

y0

SR,MC20
80

e0

w0
3b

7b

TKS

tk1
ATK1

3b

7b

x1

SB

y1

SR,MC

w1

TKS

tk2
ATK2

7b

3b

x2

SB
7b

3b
2−13

y2

SR,MC
42

3e

w2
f8
ba

3e

TKS

tk3
ATK3

7b

3b

x3

SB

2−13

7b

3b

f8
ba

3e

y3

SR,MCe5

53

∗
a6

d1

w3

34
8d
8d

a2
a2

f5

∗∗∗∗

tk4
ATK4

3b

7b

x4

34
8d
8d

a2
a2

f5

∗∗∗∗
SB

7b

y4

x2

SB

y2 ∗∗ ∗ ∗
∗ ∗∗ ∗

∗ ∗ ∗ ∗
d8

42
4d

3e

SR,MC

w2 ∗∗
53∗
∗ 7b
ba ∗∗ ∗

TKS

tk3
ATK3

c2

6a

x3

2−22
SB

∗∗
53∗
∗ 7b
ba ∗∗ ∗

y3

SR,MC∗∗ ∗ ∗
62 e5

a6 7b
4f

35

w3

∗13

9b
c2

6a

TKS

tk4
ATK4

c2

6a

x4

SB∗13

9b

2−14

y4

SR,MC54
4b

b7

w4
c2

6a

TKS

tk5
ATK5

c2

6a

x5

SB

y5

SR,MC

w5

TKS

tk6
ATK6c2

6a

x6

SB

2−16c2

6a

y6

2−16
SR,MC

w6

TKS

tk7
ATK7

c2

6a

x7

2−16
SB

c2

6a

y7

tk8
c2

6a
ATK8 6a

C

Truncated bytes

Active bytes01

Switched bytes

Truncated equal bytes∗

∆TK1=⎡⎢⎢⎢⎢⎣
00 00 00 00
00 00 00 3b
00 00 00 00
00 7b 00 00

⎤⎥⎥⎥⎥⎦ ∇TK1=⎡⎢⎢⎢⎢⎣
00 00 00 00
c2 00 00 00
00 00 00 00
00 00 6a 00

⎤⎥⎥⎥⎥⎦

⃗q = 2
−84

p⃗ = 2
−24

q⃗ = 1 r = 2
−26

pb = 2
−158

p$ = 2
−80

κ = 88 l = 2
−72

σ̃ = 2
82

µ = 2

∣D1
in∣∣D0

out∣ = 2
72

D = 2
88

T = 2
88

M = 2
73

Verification x5 → w1 → x5

(forcing y4 → x4)

pth = 2
−48

pexp ≈ 2
−47

Low precision: we keep p̃b = pb = 2
−158

Figure 4.12: Truncated boomerang attack on 8-round Deoxys-BC in the RTK1
model, starting from the ciphertext side. This attack succeeds with probability
1{2. Middle rounds are analyzed with UBCT, LBCT and EBCT (probabilities on
the trail).

138 Chapter 4. Boomerang Attacks on AES and AES-based Ciphers

P

3b

TKS

tk0
ATK0

7b

3b

x0

SB

y0

2−72
SR,MC

w0

3b

7b

TKS

tk1
ATK1

3b

7b

x1

2−24
SB

y1

SR,MC20
80

e0

w1
3b

7b

TKS

tk2
ATK2

3b

7b

x2

SB

y2

SR,MC

w2

TKS

tk3
ATK3

7b

3b

x3

SB
7b

3b
2−13

y3

SR,MC
42

3e

w3
f8
ba

3e

TKS

tk4
ATK4

7b

3b

x4

SB

2−27

7b

3b

f8
ba

3e

y4

SR,MCe5

53

∗
a6

d1

w4

34
8d
8d

a2
a2

f5

∗∗∗∗

tk5
ATK5

3b

7b

x5

34
8d
8d

a2
a2

f5

∗∗∗∗
SB

7b

y5

x3

SB

y3 ∗∗ ∗ ∗
∗ ∗∗ ∗

∗ ∗ ∗ ∗
d8

42
4d

3e

SR,MC

w3 ∗∗
53∗
∗ 7b
ba ∗∗ ∗

TKS

tk4
ATK4

c2

6a

x4

2−8
SB

∗∗
53∗
∗ 7b
ba ∗∗ ∗

y4

SR,MC∗∗ ∗ ∗
62 e5

a6 7b
4f

35

w4

∗13

9b
c2

6a

TKS

tk5
ATK5

c2

6a

x5

SB∗13

9b

2−14

y5

SR,MC54
4b

b7

w5
c2

6a

TKS

tk6
ATK6

c2

6a

x6

SB

y6

SR,MC

w6

TKS

tk7
ATK7c2

6a

x7

SB

2−13⋅2c2

6a

y7

SR,MC

46

8c

w7
c9
45
46

TKS

tk8
ATK8

c2

6a

x8

2−38⋅2
SB

c9
45
46c2

6a

y8

46

tk9
c2

6a
ATK9

46
6a

C

Truncated bytes

Active bytes01

Switched bytes

Truncated equal bytes∗

∆TK1=⎡⎢⎢⎢⎢⎣
7b 00 00 00
00 00 00 00
3b 00 00 00
00 00 00 00

⎤⎥⎥⎥⎥⎦ ∇TK1=⎡⎢⎢⎢⎢⎣
00 6a 00 00
00 00 00 00
00 c2 00 00
00 00 00 00

⎤⎥⎥⎥⎥⎦

p⃗ = 2
−136 ⃗q = 2

−51
⃗p = 1 r = 2

−22
pb = 2

−260
p$ = 2

−32
κ = 179 l = 2

−115
σ̃ = 2

66
µ = 4

∣D0
in∣∣D1

out∣ = 2
128

D = 2
134

T = 2
174

M = 2
128

Verification x6 → w2 → x6

(forcing y5 → x5)

pth = 2
−48

pexp ≈ 2
−47

Low precision: we keep p̃b = pb = 2
−260

Figure 4.13: Truncated boomerang attack on 9-round Deoxys-BC in the RTK1
model, starting from the plaintext side. This attack succeeds with probability 1{2.
Middle rounds are analyzed with UBCT, LBCT and EBCT (probabilities on the
trail).

4.4. Truncated Boomerang Attacks 139

4.4.7.4 8-round Deoxys-BC in the RTK2 model (Figure 4.14)
Query a partial structure of 225 ciphertexts. The only detected quartet is a right
quartet. Thus, pD, T, Mq “ p227, 227, 227q.

4.4.7.5 9-round Deoxys-BC in the RTK2 model (Figure 4.15)
Query a partial structure of 254.2 ciphertexts. On average, µ “ 254.2 ¨ 254.2 ¨ p̃b “ 1
quartets follow the trail and 254.2 ¨ 254.2 ¨ p$ “ 220.4 random quartets are detected.
For each quartet, retrieve 2´52 values of tk0r0, 5, 10, 15s and tk9r0, 1, 2, 3, 5s. This
step is of negligible complexity, and with high probability no wrong quartet remains.
Thus, pD, T, Mq “ p255.2, 255.2, 255.2q.

4.4.7.6 10-round Deoxys-BC in the RTK2 model (Figure 4.16)
Query one partial structure of 293.2 ciphertexts, so that on average, µ “ 293.2`93.2 ¨

p̃b “ 2 quartets follow the trail. For each element of the structure, deduce on
average 1 candidate for 30 bits of key on the plaintext side: 1 candidate for
tk0r4, 9, 14s and 1 representant of the 4 possible candidates each for tk0r3s4. In
total, there are on average 293.2`93.2´56´30 “ 2100.4 candidate quartets matching
on the ciphertext bytes with a known difference and on the key candidate.

For each quartet, retrieve 2´8 candidates for tk10r9s with 2 table accesses. This
costs 2101.4 table accesses, and since an encryption makes 10 ˆ 16 “ 27.3 S-box
calls, this step costs 294.1 equivalent encryptions. For each of the 2100.4´8 “ 292.4

remaining quartets, retrieve on average 2´32 candidates of tk10r0, 1, 2, 3, 4, 5, 6, 7s.
Finally, recover 2´16 candidates for tkeq

9 r1, 6s. There remains 292.4´32´16 “ 244.4

quartets with a 118-bit key candidate. The only candidate suggested twice is
expected to be the right candidate. The time complexity is 294.2 ` 294.1 « 295.2,
thus pD, T, Mq “ p294.2, 295.2, 294.2q.

4.4.7.7 11-round Deoxys-BC in the RTK2 model
The MILP solver did not return a pertinent trail for this key setting. Instead, we
use the 10-round trail and append a round at the beginning. First, query the full
encryption codebook with T̄ , T̄ 1 and store it. Then, guess the full tk0. Perform the
10-round attack, by using the same ciphertext structure for each guess of tk0 and
simulating encryption queries with fetches in the codebook. We chose µ “ 4 and
for each key guess, the 10-round attack with partial structures of 293.7 elements
gives 245.4 candidates for 118 bits, for a time complexity of 295.1. If we suppose
that a fetch to the codebook costs an encryption in time complexity, we end up
with T “ 2128p294.7 ` 295.1q “ 2223.9. The probability that one of the counters is at
least 4 is 2´295`116`128 “ 2´51, so on average, the correct key is ranked first. This
gives pD, T, Mq “ p2129, 2223.9, 2129q.

4S-box 3 on the plaintext side has two pairs px, x ` δq, px1, x1
` δq following the transition fixed

by the trail. Instead of listing four key candidates, we identify one of the 26 cosets of xδ, x ` x1
y.

140 Chapter 4. Boomerang Attacks on AES and AES-based Ciphers

P
37

d841
ef

37

TKS

tk0
ATK0

37
d841

ef
37

x0

SB

y0

SR,MC

w0

TKS

tk1
ATK1

81

x1

2−6·2

SB
81

y1

SR,MC6f

w1
de
6f
6f
b1

TKS

tk2
ATK2

de
6f
6f
b1

x2

SB

y2

SR,MC

w2

TKS

tk3
ATK3

b0
b0

d303
63

x3

SB
b0

b0
d303

63

y3

SR,MC

w3

tk4
ATK4

0f
1605

19
0f

x4

SB

y4

x3

SB

y3

SR,MC4f
e5

d7
fc

w3
81

TKS

tk4
ATK4

81

x4

SB

y4

SR,MC

w4

TKS

tk5
ATK5

x5

SB

y5

SR,MC

w5

TKS

tk6
ATK6

03

x6

2−8

SB

03

y6

2−24

SR,MC

w6

TKS

tk7
ATK7

05

x7

2−6

SB
05

y7

08

tk8
ATK8

09 09
08

C

Truncated bytes

Active bytes01

Switched bytes

01 State changing bytes

∆TK1=

[
da 00 00 00
00 00 90 01
4a 00 00 00
00 00 da 00

]

∆TK2=

[
ed 00 00 00
00 00 48 40
a5 00 00 00
00 00 ed 00

]

∇TK1=

[
01 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

]

∇TK2=

[
a8 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

]

~q = 2
−38

~p = 2
−6

~q = 1 r = 1

pb = 2
−50

p$ = 2
−88

σ = 2
38

µ = 1

|D1
in||D

0
out| = 2

32
D = 2

27

T = 2
27

M = 2
27

Verification x4 → w2 → x4

pth = 1 pexp = 1

p̃b = pb = 2
−50

Figure 4.14: Truncated boomerang attack on 8-round Deoxys-BC in the RTK2
model, starting from the ciphertext side. This attack succeeds with probability 1{2.
Middle rounds are analyzed with the ladder switch and single BCT (probability r).

4.4. Truncated Boomerang Attacks 141

P
c6

6e

41

TKS

tk0
ATK041

x0

2−28·2

SB
c6

6e

y0

SR,MCd7
fc

4f
e5

w0

81

TKS

tk1
ATK1

81

x1

SB

y1

SR,MC

w1

TKS

tk2
ATK2

x2

SB

y2

SR,MC

w2

TKS

tk3
ATK3

03

x3

SB
03

y3

SR,MC

w3

tk4
ATK405

x4

SB

05

y4

x3

SB

y3

SR,MC
15

07
09

w3
31
2a

TKS

tk4
ATK4

2a

x4

2−6

2−6

SB
31

y4

SR,MCa4
f6

eb
75

w4
cc

TKS

tk5
ATK5

cc

x5

SB

y5

SR,MC

w5

TKS

tk6
ATK6

x6

SB

y6

SR,MC

w6

TKS

tk7
ATK7

99

x7

2−8

SB

99

y7

2−24

SR,MC

w7

TKS

tk8
ATK8

aa

x8

2−8

SBaa

y8

tk9
ATK9

cd cd
C

Truncated bytes

Active bytes01

Switched bytes

∆TK1=

[
00 00 00 00
00 00 00 00
00 00 00 00
00 00 01 00

]

∆TK2=

[
00 00 00 00
00 00 00 00
00 00 00 00
00 00 40 00

]

∇TK1=

[
00 00 00 00
00 88 00 00
00 00 00 00
00 00 00 00

]

∇TK2=

[
00 00 00 00
00 0a 00 00
00 00 00 00
00 00 00 00

]

~q = 2
−46

~p = 2
−28

~q = 2
−6

r = 1

pb = 2
−108

p$ = 2
−88

κ = 72 ` = 2
−52

σ̃ = 2
104

µ = 1

|D1
in||D

0
out| = 2

56
D = 2

55

T = 2
55

M = 2
55

Verification x5 → w2 → x5

pth = 2
−12

pexp = 2
−12.4

p̃b = 2
−108.4

Figure 4.15: Truncated boomerang attack on 9-round Deoxys-BC in the RTK2
model, starting from the ciphertext side. This attack succeeds with probability 1{2.
Middle rounds are analyzed with the ladder switch and single BCT (probability r).

142 Chapter 4. Boomerang Attacks on AES and AES-based Ciphers

P

df

8c

TKS

tk0
ATK0

8c

x0

2−30⋅2
SB

df

y0

SR,MC0e
ff

fb
fd

w0

f7

TKS

tk1
ATK1f7

x1

SB

y1

SR,MC

w1

TKS

tk2
ATK2

x2

SB

y2

SR,MC

w2

TKS

tk3
ATK3

ee

x3

SB

2−7
ee

y3

SR,MC
c8

w3

8b
43

c8
c8

tk4
ATK4

TKS

32

x4

2−13
SB

8b
43

c8
c8

32

y4

SR,MC∗
16
8b
c9

40

w4
49
89

49

3a
2c
16
16

∗∗∗∗
8b
86
0d
8b

tk5
ATK58b

x5
49
89

49

3a
2c
16
16

∗∗∗∗
8b
86
0d

SB

y5

x3

SB

y3

SR,MC∗∗
∗
∗∗ ∗
∗∗

∗∗
∗ ∗d6

bd
0a

w3

∗∗
∗
∗∗ ∗
∗∗

a9
c8

0e

TKS

tk4
ATK4

5a
a9

x4

SB∗∗
∗
∗∗ ∗
∗∗

c8

0e

2−13

y4

SR,MC1d a9
c9

1d
201d

c8
44

8e
c9

w4
3a

cb
69

29
27

TKS

tk5
ATK5

29
27

x5

2−21
SB

3a

cb
69

y5

SR,MCb3

7a
3d

w5
3a

ce

TKS

tk6
ATK6

3a

ce

x6

SB

y6

SR,MC

w6

TKS

tk7
ATK7

x7

SB

y7

SR,MC

w7

TKS

tk8
ATK8

aa

56

x8

2−16
SBaa

56

y8

2−48
SR,MC

w8

TKS

tk9
ATK9

a6
9e

x9

2−8
SB

9e

y9

tk10
ATK10

48

d1

48

d1

C

Truncated bytes

Active bytes01

Switched bytes

Truncated equal bytes∗

∆TK1=⎡⎢⎢⎢⎢⎣
5a 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

⎤⎥⎥⎥⎥⎦

∆TK2=⎡⎢⎢⎢⎢⎣
d6 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

⎤⎥⎥⎥⎥⎦

∇TK1=⎡⎢⎢⎢⎢⎣
00 00 00 00
00 74 00 00
00 00 00 2c
00 00 00 00

⎤⎥⎥⎥⎥⎦

∇TK2=⎡⎢⎢⎢⎢⎣
00 00 00 00
00 62 00 00
00 00 00 b8
00 00 00 00

⎤⎥⎥⎥⎥⎦

⃗q = 2
−106

p⃗ = 2
−30

q⃗ = 1 r = 2
−20

pb = 2
−186

p$ = 2
−56

κ = 116 ` = 2
−84

σ̃ = 2
70

µ = 2

∣D1
in∣∣D0

out∣ = 2
96

D = 2
94.5

T = 2
95.6

M = 2
94.5

Verification x6 → w2 → x6

(forcing y5 → x5)

pth = 2
−33

pexp = 2
−32.4

p̃b = 2
−185.4

Figure 4.16: Truncated boomerang attack on 10-round Deoxys-BC in the RTK2
model, starting from the ciphertext side. This attack succeeds with probability
1{2. Middle rounds are analyzed with UBCT, LBCT and EBCT (probabilities on
the trail).

4.4. Truncated Boomerang Attacks 143

4.4.7.8 10-round Deoxys-BC in the RTK3 model (Figure 4.17)
Query 21.4 structures of 216 ciphertexts. The only detected quartet is a right
quartet. pD, T, Mq “ p219.4, 219.4, 218q. This attack is equivalent to the attack
given in [Sas18a], but the complexity was wrongly estimated as 222.

4.4.7.9 11-round Deoxys-BC in the RTK3 model (Figure 4.18)
Query a partial structure of 230.7 elements. The only detected quartet is a right
quartet. pD, T, Mq “ p232.7, 232.7, 232.7q.

4.4.7.10 12-round Deoxys-BC in the RTK3 model (Figure 4.19)
Query 22.4 structures of 264 ciphertexts. On average, µ “ 22.4 ¨ 264 ¨ 264 ¨ p̃b “ 2
quartets follow the trail and 22.4 ¨ 264 ¨ 264 ¨ p$ “ 258.4 random quartets are detected.
For each quartet, retrieve on average 2´32 key candidates for tk0r4s and tk12r0, 2, 3s

in a few table accesses. Then, for each of the 258.4 ¨ 2´32 “ 226.4 remaining quartets,
deduce on average 224 ¨ 224 ¨ 2´32 “ 216 candidates for tk12r12, 13, 14, 15s. For each
candidate, compute the values of x11r12, 13, 14, 15s and the differences in state
y10. From the transition x10 Ñ y10, retrieve 2´24 key candidates for tkeq

11r1, 11, 12s.
Thus, 226.4 ¨ 216 ¨ 2´24 “ 218.4 quartets remain with 1 average key candidate of 88
bits. For each remaining quartet, increase the counter of the corresponding key
candidate. Only the right counter is expected to be greater than 2. This gives
pD, T, Mq “ p267.4, 267.4, 265q.

144 Chapter 4. Boomerang Attacks on AES and AES-based Ciphers

P
28

85
85

adfe

TKS

tk0
ATK0

28
85

85
ad

x0

SB

2−6⋅2fe

y0

SR,MC

d8

w0
d8
d8
73
ab

TKS

tk1
ATK1

d8
d8
73
ab

x1

SB

y1

SR,MC

w1

TKS

tk2
ATK2

x2

SB

y2

SR,MC

w2

TKS

tk3
ATK3

x3

SB

y3

SR,MC

w3

TKS

tk4
ATK4

ab
d8

d8
73

x4

SB
ab

d8
d8

73

y4

SR,MC

w4

tk5
ATK5

85
85
ad
28

x5

SB
85
85
ad
28

y5

x4

SB

y4

SR,MC

w4

TKS

tk5
ATK5

31
c6

x5

SB

y5

SR,MC4a
25

fb

w5

16
82

TKS

tk6
ATK6

16
82

x6

SB

y6

SR,MC

w6

TKS

tk7
ATK7

x7

SB

y7

SR,MC

w7

TKS

tk8
ATK8

x8

SB

y8

SR,MC

w8

TKS

tk9
ATK9

16
82

x9

2−16
SB

16
82

y9

31
c6

tk10
ATK10

C

31
c6

Truncated bytes

Active bytes01

Switched bytes

∆TK1=⎡⎢⎢⎢⎢⎣
00 00 bb 00
00 00 00 8f
8f 00 00 00
00 34 00 00

⎤⎥⎥⎥⎥⎦

∆TK2=⎡⎢⎢⎢⎢⎣
00 00 25 00
00 00 00 de
de 00 00 00
00 fb 00 00

⎤⎥⎥⎥⎥⎦

∆TK3=⎡⎢⎢⎢⎢⎣
00 00 b6 00
00 00 00 d4
d4 00 00 00
00 62 00 00

⎤⎥⎥⎥⎥⎦

∇TK1=⎡⎢⎢⎢⎢⎣
01 00 00 00
00 00 00 00
00 00 00 00
00 00 5c 00

⎤⎥⎥⎥⎥⎦

∇TK2=⎡⎢⎢⎢⎢⎣
99 00 00 00
00 00 00 00
00 00 00 00
00 00 d1 00

⎤⎥⎥⎥⎥⎦

∇TK3=⎡⎢⎢⎢⎢⎣
03 00 00 00
00 00 00 00
00 00 00 00
00 00 e4 00

⎤⎥⎥⎥⎥⎦
⃗q = 2

−16
p⃗ = 2

−6
q⃗ = 1 r = 2

−5.4
pb = 2

−33.4
p$ = 2

−112
σ = 2

78.6
µ = 1

∣D1
in∣∣D0

out∣ = 2
16

D = 2
19.4

T = 2
19.4

M = 2
18

Verification x6 → w3 → x6

pth = 2
−5.4

pexp = 2
−5.4

p̃b = pb = 2
−33.4

Figure 4.17: Truncated boomerang attack on 10-round Deoxys-BC in the RTK3
model, starting from the ciphertext side. This attack succeeds with probability 1{2.
Middle rounds are analyzed with the ladder switch and single BCT (probability r).

4.4. Truncated Boomerang Attacks 145

P
c6

e3
e3

2594

TKS

tk0
ATK0

c6
e3

e3
25

x0

SB

2−6·294

y0

SR,MC

41

w0
41
41
c3
82

TKS

tk1
ATK1

41
41
c3
82

x1

SB

y1

SR,MC

w1

TKS

tk2
ATK2

x2

SB

y2

SR,MC

w2

TKS

tk3
ATK3

x3

SB

y3

SR,MC

w3

TKS

tk4
ATK4

82
41

41
c3

x4

SB
82

41
41

c3

y4

SR,MC

w4

tk5
ATK5

e3
e3
25
c6

x5

SB
e3
e3
25
c6

y5

x4

SB

y4

SR,MC

w4

TKS

tk5
ATK5

71
a2

x5

SB

y5

SR,MC23
e9

46

w5
20
ac

TKS

tk6
ATK6

20
ac

x6

SB

y6

SR,MC

w6

TKS

tk7
ATK7

x7

SB

y7

SR,MC

w7

TKS

tk8
ATK8

x8

SB

y8

SR,MC

w8

TKS

tk9
ATK9

20
ac

x9

2−16

SB
20

ac

y9

2−16

SR,MC

w9

TKS

tk10
ATK10

71
a2

x10

2−12

SB
71
a2

y10

c0
59

db

15

tk11
ATK11

C

c0
4c

db

Truncated bytes

Active bytes01

Switched bytes

01 State changing bytes

∆TK1=

[
01 00 00 00
00 80 00 00
00 00 80 00
00 00 00 81

]

∆TK2=

[
3f 00 00 00
00 9f 00 00
00 00 9f 00
00 00 00 a0

]

∆TK3=

[
f8 00 00 00
00 fc 00 00
00 00 fc 00
00 00 00 04

]

∇TK1=

[
00 00 00 00
00 00 00 00
00 00 00 40
00 ed 00 00

]

∇TK2=

[
00 00 00 00
00 00 00 00
00 00 00 e6
00 24 00 00

]

∇TK3=

[
00 00 00 00
00 00 00 00
00 00 00 c0
00 37 00 00

]

~q = 2
−44

~p = 2
−6

~q = 1 r = 2
−5.4

pb = 2
−61.4

p$ = 2
−80

σ = 2
18.6

µ = 1

|D1
in||D

0
out| = 2

32
D = 2

32.7

T = 2
32.7

M = 2
32.7

Verification x6 → w3 → x6

pth = 2
−5.4

pexp = 2
−5.4

p̃b = pb = 2
−61.4

Figure 4.18: Truncated boomerang attack on 11-round Deoxys-BC in the RTK3
model, starting from the ciphertext side. This attack succeeds with probability 1{2.
Middle rounds are analyzed with the ladder switch and single BCT (probability r).

146 Chapter 4. Boomerang Attacks on AES and AES-based Ciphers

P
50

e1
b1

b1

TKS

tk0
ATK0

50
e1

b1
b1

x0

SB

2−8·2

y0

SR,MC7b

w0
f6
7b
7b
8d

TKS

tk1
ATK1

f6
7b
7b
8d

x1

SB

y1

SR,MC

w1

TKS

tk2
ATK2

x2

SB

y2

SR,MC

w2

TKS

tk3
ATK3

x3

SB

y3

SR,MC

w3

TKS

tk4
ATK4

8d
f6

7b
7b

x4

SB
8d

f6
7b

7b

y4

SR,MC

w4

tk5
ATK5

e1
b1
b1
50

x5

SB
e1
b1
b1
50

y5

x4

SB

y4

SR,MC

w4

TKS

tk5
ATK5

4a
a2

71

x5

SB

y5

SR,MCbef0
d9 30

da 25
9f75 17

w5
41

60

2e

ff

5e
0b

TKS

tk6
ATK6

41
60

2e

x6

2−19

2−19

SB
ff

5e
0b

y6

SR,MC75

e2
48

w6
40

72
ed

TKS

tk7
ATK7

40

72
ed

x7

SB

y7

SR,MC

w7

TKS

tk8
ATK8

x8

SB

y8

SR,MC

w8

TKS

tk9
ATK9

x9

SB

y9

SR,MC

w9

TKS

tk10
ATK10

ed
40

72

x10

2−24

SB
ed

40

72

y10

2−8

SR,MC

w10

TKS

tk11
ATK11

60

2e
41

x11

SB

2−24

60

2e
41

y11

4a
a2

71

tk12
ATK12

C

a2
71

Truncated bytes

Active bytes01

Switched bytes

∆TK1=

[
07 00 00 00
00 63 00 00
00 00 64 00
00 00 00 64

]

∆TK2=

[
bf 00 00 00
00 77 00 00
00 00 c8 00
00 00 00 c8

]

∆TK3=

[
e8 00 00 00
00 f5 00 00
00 00 1d 00
00 00 00 1d

]

∇TK1=

[
00 00 00 00
00 9e 00 00
6d 00 00 00
00 00 00 2a

]

∇TK2=

[
00 00 00 00
00 e4 00 00
f4 00 00 00
00 00 00 61

]

∇TK3=

[
00 00 00 00
00 46 00 00
6c 00 00 00
00 00 00 ff

]

~q = 2
−75

~p = 2
−8

~q = 2
−19

r = 2
−19.4

pb = 2
−129.4

p$ = 2
−72

κ = 88 ` = 2
−40

σ̃ = 2
70.6

µ = 2

|D1
in||D

0
out| = 2

64
D = 2

67.4

T = 2
67.4

M = 2
65

Verification x7 → w3 → x7

(forcing y6 → x6)

pth = 2
−38.4

pexp = 2
−38.4

p̃b = pb = 2
−129.4

Figure 4.19: Truncated boomerang attack on 12-round Deoxys-BC in the RTK3
model, starting from the ciphertext side. This attack succeeds with probability 1{2.
Middle rounds are analyzed with the ladder switch and single BCT (probability r).

4.4. Truncated Boomerang Attacks 147

4.4.7.11 13-round Deoxys-BC in the RTK3 model (Figure 4.20)

Query a partial structure of 2125.65 plaintexts. On average, µ “ 2125.65¨2125.65¨p̃b “ 4
quartets follow the trail.

1. For each element of the structure, retrieve the representant k of the 26 possible
key values of tk13r13, 14, 15s that satisfy the transition y12 Ñ x12. k defines
18 key bits.

2. Guess the value of the tweakey material tk0r2, 7, 8, 13s. Set δ “ 0x7e42c465
and δin “ 0x00007a00, and look for collisions between:

v “ y0r2, 7, 8, 13s } ȳ0r2, 7, 8, 13s } P̄ r0, 5, 10, 15s } k

v1 “ y1
0r2, 7, 8, 13s ` δ } ȳ1

0r2, 7, 8, 13s ` δ } P̄ 1r0, 5, 10, 15s ` δin } k1.

This step costs 232 ¨ 2 ¨ 2125.65 “ 2158.65 in time complexity. On average,
2125.65 ¨ 2125.65 ¨ 2´114 “ 2137.3 quartets remain for each tk0r2, 7, 8, 13s (2169.3

in total).

3. For each quartet, retrieve 27`7´32 “ 2´18 values of tk0r3, 4, 9, 14s such that
the difference in w0r4s is compatible with the S-box transition in the next
round. In order to minimize the complexity, first deduce the 27`7´8 “ 26

pairs of column differences compatible with a key candidate for tk0r3s, by
only checking the first S-box. Then, deduce the 26´8 “ 2´2 pairs of columns
compatible with a key candidate for tk0r4s with the second S-box. Finally
deduce tk0r9, 14s.

This step requires 28 ` 27 “ 28.6 table accesses per quartet, therefore a total
of 28.6`169.3 “ 2177.9 accesses; and 232`137.3´18 “ 2151.3 quartets remain.

4. For each quartet, retrieve 27`7´32 “ 2´18 values of tk0r1, 6, 11, 12s and
224`24´32 “ 216 key candidates for tk13r8, 9, 10, 11s. Recover x12r8, 9, 10, 11s

and the difference in y11r2, 7, 8s. Retrieve 2´24 candidates for tkeq
12r2, 7, 8s.

2151.3´18`16´24 “ 2125.3 quartets remain.

5. For each quartet, recover the difference in x1r4, 14s and the value of w0r4, 14s

from the known key bytes of tk0. Retrieve 2 ¨ 2 ¨ 2´8 “ 2´6 values of tk1r4s

and 2´6 values for tk1r14s (2 candidates are deduced per pair because the
differences are already compatible). 2125.3 ¨ 2´12 “ 2113.3 quartets remain.

6. Eventually, each of the 2113.3 quartets determines on average 1 candidate of
18 ` 32 ` 32 ` 32 ` 32 ` 24 ` 16 “ 186 bits. We model a wrong counter
with a poisson distribution with λ “ 2´72.7. The probability that any wrong
counter is at least 3 is p1 ´ e´λp1 ` λ ` λ2{2qq ¨ 2184 « 2´34.7. The correct
counter follows the poisson distribution with λ “ 4 and it is at least 3 with
probability 0.76. Therefore, the success probability of this attack is 0.76.

148 Chapter 4. Boomerang Attacks on AES and AES-based Ciphers

Complexity analysis. The time complexity is dominated by the 2177.9 table
accesses of step 3. An encryption of 13-round Deoxys-BC has 16 ˆ 13 S-boxes,
so the time complexity is equivalent to 2177.9{208 “ 2170.2 encryptions. Thus
pD, T, Mq “ p2126.7, 2170.2, 2126.7q.

4.4.7.12 14-round Deoxys-BC in the RTK3 model (Figure 4.21)
We did not manage to find a 14-round trail with the MILP solver, but the 13-round
attack can be extended by adding a round at the end, and guessing most of the
last subkey.

We start by querying the decryption oracle over the full codebook with tweaks
T̄ and T̄ 1, and storing the results in memory. Then we guess 104 bits of the last
round key: k14r0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12s.

This allows us to essentially simulate the 13-round attack using queries from
the 14-round oracle. Since 13 bytes of k14 are known, we can partially decrypt the
corresponding S-boxes in the last round, and the MixColumns in the first three
columns (after replacing tk13 by an equivalent key).

We build the same type of structure as used in the 13-round attack. For each
plaintext Pi, we query Ci “ EpPi, T q and we partially decrypt the final round.
Then we generate the set of 240 values with the required difference in y12, and
partially encrypt them to obtain the corresponding ciphertexts C̄j

i . Finally, we use
the stored decryption values to obtain the corresponding P̄ j

i .
We start with a full structure of 2128 plaintexts, so that we expect µ “

2128`128 ¨ p̃b “ 22.7 good quartets. As in the 13-round attack (steps 1 and 2), we
match elements on 114 bits: we expect 2128`128´114 “ 2142 candidate quartets for
each guess of 104 ` 32 “ 136 bits of key, or 2278 quartets in total.

Following the 13-round attack (steps 3,4, and 6), we extract on average 2´48

candidates for 80 additional key bits . Finally, we use the constraints of the
MixColumns operation of round 11: there are only 216 possible differences in w11
from which we deduce 216`16´24 “ 28 candidates for tkeq

13r2, 5, 8s. We end up with
2238 suggestions for 258 bits of key.

We keep all key candidates suggested at least 6 times. Modeling the counters
for wrong keys as following a Poisson distribution with λ “ 2´20, we expect wrong
keys to be kept with probability 2´129.5. We expect 22.7 “ 6.5 good quartets, so the
right key candidate is at least 6 with probability more than 1{2. Finally we do an
exhaustive search over the 126 key bits remaining, for a cost of 2126`128.5 “ 2254.5.

The bottleneck of the attack is the extraction of key candidates for 2278 quartets.
Following the analysis of the 13-round attack, we estimate that it requires about
28.6 table accesses, equivalent to 20.8 encryption. The full attack has complexity
pD, T, Mq “ p2129, 2278.8, 2129q.

4.4. Truncated Boomerang Attacks 149

P

7a

TKS

tk0
ATK0

75

7a
fa

x0

2−32
SB

y0

2−48
SR,MCc4

65
7e

42

w0

ce

9b
c8

TKS

tk1
ATK1

ce

9b
c8

x1

2−16
SB

y1

SR,MC5f

e1

w1
5f
67
86

TKS

tk2
ATK2

5f
67
86

x2

SB

y2

SR,MC

w2

TKS

tk3
ATK3

x3

SB

y3

SR,MC

w3

TKS

tk4
ATK4

x4

SB

y4

SR,MC

w4

TKS

tk5
ATK5

5f
67

86

x5

SB
5f

67
86

y5

SR,MC

w5

tk6
ATK6

ce

9b
c8

x6

SB
ce

9b
c8

y6

x5

SB

y5

SR,MC

w5

TKS

tk6
ATK6

29
ac

85

x6

2−7⋅2
SB

29

y6

SR,MCfd 9e9f
9ff1 77
679f

d9 04

w6
ed

5725
e5 ba

TKS

tk7
ATK7

ed

57
ba

x7

2−14⋅2
SB

25
e5

y7

SR,MC

ca
ca

w7

8f
ca

45

TKS

tk8
ATK8

8f
ca

45

x8

SB

y8

SR,MC

w8

TKS

tk9
ATK9

x9

SB

y9

SR,MC

w9

TKS

tk10
ATK10

x10

SB

y10

SR,MC

w10

TKS

tk11
ATK11

45

8f
ca

x11

2−24⋅2
SB

45

8f
ca

y11

2−8⋅2
SR,MC

w11

TKS

tk12
ATK12

57
ba
ed

x12

2−18⋅2
SB

57
ba
ed

y12

38
97
36

85
29

actk13
ATK13

C

38
97
36

85

ac

Truncated bytes

Active bytes01

Switched bytes

∆TK1=⎡⎢⎢⎢⎢⎣
00 00 a9 00
00 00 00 00
00 00 8c 00
3c 00 00 00

⎤⎥⎥⎥⎥⎦

∆TK2=⎡⎢⎢⎢⎢⎣
00 00 53 00
00 00 00 00
00 00 4f 00
82 00 00 00

⎤⎥⎥⎥⎥⎦

∆TK3=⎡⎢⎢⎢⎢⎣
00 00 8f 00
00 00 00 00
00 00 b9 00
44 00 00 00

⎤⎥⎥⎥⎥⎦

∇TK1=⎡⎢⎢⎢⎢⎣
00 00 00 00
00 53 00 00
00 7b 00 00
00 28 00 00

⎤⎥⎥⎥⎥⎦

∇TK2=⎡⎢⎢⎢⎢⎣
00 00 00 00
00 34 00 00
00 c8 00 00
00 fc 00 00

⎤⎥⎥⎥⎥⎦

∇TK3=⎡⎢⎢⎢⎢⎣
00 00 00 00
00 d4 00 00
00 32 00 00
00 e6 00 00

⎤⎥⎥⎥⎥⎦
p⃗ = 2

−96 ⃗q = 2
−71

⃗p = 1 r = 2
−10.8

pb = 2
−248.8

p$ = 2
−32

κ = 186 ` = 2
−106

σ̃ = 2
75.2

µ = 4

∣D0
in∣∣D1

out∣ = 2
128

D = 2
126.4

T = 2
169.7

M = 2
126.4

Verification x8 → w4 → x8

(forcing y7 → x7)

pth = 2
−38.8

pexp = 2
−39.3

p̃b = 2
−249.3

Figure 4.20: Truncated boomerang attacks on 13-round Deoxys-BC in the RTK3
model, starting from the plaintext side. This attack succeeds with probability 0.76.
Middle rounds are analyzed with the ladder switch and single BCT (probability r).

150 Chapter 4. Boomerang Attacks on AES and AES-based Ciphers

P

7a

TKS

tk0
ATK0

75

7a
fa

x0

2−32
SB

y0

2−48
SR,MCc4

65
7e

42

w0

ce

9b
c8

TKS

tk1
ATK1

ce

9b
c8

x1

2−16
SB

y1

SR,MC5f

e1

w1
5f
67
86

TKS

tk2
ATK2

5f
67
86

x2

SB

y2

SR,MC

w2

TKS

tk3
ATK3

x3

SB

y3

SR,MC

w3

TKS

tk4
ATK4

x4

SB

y4

SR,MC

w4

TKS

tk5
ATK5

5f
67

86

x5

SB
5f

67
86

y5

SR,MC

w5

tk6
ATK6

ce

9b
c8

x6

SB
ce

9b
c8

y6

x5

SB

y5

SR,MC

w5

TKS

tk6
ATK6

29
ac

85

x6

2−7⋅2
SB

29

y6

SR,MCfd 9e9f
9ff1 77
679f

d9 04

w6
ed

5725
e5 ba

TKS

tk7
ATK7

ed

57
ba

x7

2−14⋅2
SB

25
e5

y7

SR,MC

ca
ca

w7

8f
ca

45

TKS

tk8
ATK8

8f
ca

45

x8

SB

y8

SR,MC

w8

TKS

tk9
ATK9

x9

SB

y9

SR,MC

w9

TKS

tk10
ATK10

x10

SB

y10

SR,MC

w10

TKS

tk11
ATK11

45

8f
ca

x11

2−24⋅2
SB

45

8f
ca

y11

2−8⋅2
SR,MC

w11

tk12
ATK12

57
ba
ed

x12

2−20⋅2
SB

57
ba
ed

y12

SR
38
97

z12

38
97

tkeq13
ATK

eq
13

77
c1
e3
d0

28
a5

de
7a

3d
f8
d2
bb

s13

MC
3d

9d
ed
bb

77
c1
e3
d0de

7a

85

x13

SB

y13

a6

11

b7

tk14
ATK14

C

Truncated bytes

Active bytes01

Switched bytes

Irrelevant bytes (key guessed)

∆TK1=⎡⎢⎢⎢⎢⎣
00 00 a9 00
00 00 00 00
00 00 8c 00
3c 00 00 00

⎤⎥⎥⎥⎥⎦

∆TK2=⎡⎢⎢⎢⎢⎣
00 00 53 00
00 00 00 00
00 00 4f 00
82 00 00 00

⎤⎥⎥⎥⎥⎦

∆TK3=⎡⎢⎢⎢⎢⎣
00 00 8f 00
00 00 00 00
00 00 b9 00
44 00 00 00

⎤⎥⎥⎥⎥⎦

∇TK1=⎡⎢⎢⎢⎢⎣
00 00 00 00
00 53 00 00
00 7b 00 00
00 28 00 00

⎤⎥⎥⎥⎥⎦

∇TK2=⎡⎢⎢⎢⎢⎣
00 00 00 00
00 34 00 00
00 c8 00 00
00 fc 00 00

⎤⎥⎥⎥⎥⎦

∇TK3=⎡⎢⎢⎢⎢⎣
00 00 00 00
00 d4 00 00
00 32 00 00
00 e6 00 00

⎤⎥⎥⎥⎥⎦
p⃗ = 2

−96 ⃗q = 2
−73

⃗p = 1 r = 2
−10.8

pb = 2
−252.8

p$ = 2
−32

κ = 154 ` = 2
−90

σ̃ = 2
23.2

µ = 2
3.2

∣D0
in∣∣D1

out∣ = 2
128

D = 2
129

T = 2
278.8

M = 2
129

Verification x8 → w4 → x8

(forcing y7 → x7)

pth = 2
−38.8

pexp = 2
−39.3

p̃b = 2
−253.3

Figure 4.21: Truncated boomerang attack on 14-round Deoxys-BC in the RTK3
model, starting from the plaintext side. Middle rounds are analyzed with the
ladder switch and single BCT (probability r).

4.5. Improved Boomerang Attacks on AES 151

4.5 Improved Boomerang Attacks on AES
In this section, we present two improved boomerang attacks on 6-round AES,
outperforming previous boomerang-based key-recovery attacks on 6-round AES.
This is a joint work with Orr Dunkelman, Nathan Keller, Gaëtan Leurent and
Victor Mollimard. The results are compared to the literature in Table 4.1 and
recalled in Table 4.5.

Rounds Type Data Time Mem Ref
6 Boomerang 250.9 267.7 232 Section 4.5.1
6 Boomerang 251 266.4 242 Section 4.5.1
6 Boomerang 257.1 260.9 233 Section 4.5.2

Table 4.5: Summary of our improved key-recovery attacks on 6-round AES.

This attack is based on an observation regarding the 6-round retracing
boomerang attack (presented in Section 4.3.3): the attack requires much more
decryptions (255) than encryptions (220). This implies that we may discard some
ciphertext pairs pC, C 1q at the cost of additional encryptions without increasing the
overall time or data complexity. With that idea in mind, we filter ciphertext pairs
and only consider pairs pC, C 1q which collide on two anti-diagonals of ciphertext,
rather than a single byte at the end of the fifth round. For each ciphertext
collision, we can then build a structure of 232 shifted ciphertexts C ` ∇i (∇i takes
all possible values in one of the inactive anti-diagonals), following the shifting
retracing boomerang framework. Note that unlike in the truncated boomerang
attack, we do not build a structure for each ciphertext, but only for ciphertexts
colliding on two inactive anti-diagonals. The plaintext structures and ciphertext
structures, each of size 232, are such that asking a collision on 64 bits of ciphertext
does not bring any significant complexity overhead. Indeed, with 232 plaintext
queries, we expect roughly 1 pair colliding on 64 bits, leading to 232 decryption
queries, and 232 potential quartets. On the other hand, given a collision on two
anti-diagonals of ciphertext, the pair pP, P 1q is more likely to be a right forward
pair.

Compared to the retracing boomerang attack, we additionally use truncated
trails in the backward trail of pC, C̄q and pC 1, C̄ 1q without fixing the value of ∇i,
which improves the probability of the boomerang characteristic.

In the following attacks, the time complexity bottleneck comes from the key-
recovery step. We therefore present slightly different boomerang characteristics
and key-recovery strategies, leading to different trade-offs between time, data and
memory complexities. Our results are summarized in Table 4.5.

Notation. Like in the retracing or truncated boomerang attacks, we use multiple
differential trails. However, parts of the returning trail are fixed by the forward trail.
To indicate byte (resp. column/diagonal/anti-diagonal) indexes in some states of
the trail, we use letters a P J0, 15K and ℓ, m P J0, 3K. Bytes are indexed with the

152 Chapter 4. Boomerang Attacks on AES and AES-based Ciphers

P

AK0

x0
SB

SR

z0

4¨2´8

MC

byte ℓ inactive

w0

AK1

x1
SB

SR

z1
MC

w1

AK2

x2
SB

SR

z2

4¨2´32

MC

diagonal m
inactive

w2

AK3

x3
SB

SR

z3
MC

6¨2´48

w3

AK4

x4
SB

SR

z4
MC

w4

AK5

x5
SB

SR

z5

AK6

C

P ‰P 1
P “P 1

Forward characteristic pP, P 1q Backward characteristic pP̄ , P̄ 1q

Backward characteristic pP, P̄ q, pP 1, P̄ 1q

P

AK0

x0
SB

SR

z0
MC

diag. ℓ̃ inactive

w0

AK1

x1
SB

SR

z1
MC

w1

AK2

x2
SB

SR

z2

r“1

MC

P̄ ‰P̄ 1
P̄ “P̄ 1

w2
MC

AK3

x3
SB

SR

z3
MC

w3

AK4

x4
SB

SR

z4
MC

2´24
byte m̃ active

w4

AK5

x5
SB

SR

z5

AK6

C

P ‰P̄ ,P 1‰P̄ 1

P “P̄ , P 1“P̄ 1

Figure 4.22: Boomerang characteristic on 6-round AES with low data complexity.

conventional order presented in Section 2.3.1. Diagonals and anti-diagonals are
indexed with the index of their active column in the first row. We denote ã “ ´a
mod 4, ℓ̃ “ ´ℓ mod 4, m̃ “ ´m mod 4.

4.5.1 A Key-Recovery Attack With Low Data Complexity
The first key-recovery attack that we propose is based on the boomerang depicted
in Figure 4.22, and described in Algorithm 4.4.

Boomerang analysis. Starting from a pair pP, P 1q with an active diagonal, we
consider that it is a right forward pair if one byte in position l P t0, 1, 2, 3u is
inactive at the end of the first round (probability 4 ¨ 2´8), one diagonal in position
m P t0, 1, 2, 3u is inactive at the end of the third round (probability 4 ¨ 2´32), and

4.5. Improved Boomerang Attacks on AES 153

two diagonals are inactive at the end of the fourth round (probability 6 ¨ 2´48).
Therefore a forward pair pP, P 1q is right with probability p⃗ “ 2´81.4. This implies
a collision in two anti-diagonal of the ciphertext. The probability that a random
ciphertext pair collides on two anti-diagonals is 6 ¨ 2´64 “ 2´61.4.

In the backward direction, C̄ and C̄ 1 are obtained by shifting C and C 1 with
a difference in one of the inactive anti-diagonals. This corresponds to a shifting
retracing boomerang with a single active Super-box. Therefore, the active S-box
transitions from z5 to x5 and from z4 to x4 are the same for the pairs pC, C̄q and
pC 1, C̄ 1q. We assume that the difference collapses to a single byte in position m̃ of
the state z4 (after one round), corresponding to the inactive diagonal m in w2 ` w1

2;
this happens with probability ⃗q “ 2´24. In practice, the attacker will guess the
value of key bytes k6r0, 7, 10, 13s in order to directly construct values C̄ and C̄ 1

with this property.
As in the retracing boomerang attack, we have pz3 ` z1

3qr0, 1, 2, 3s “ 0 and
pz̄3 ` z̄3

1qr0, 1, 2, 3s “ 0, which in turn implies px3 ` x1
3qr0, 5, 10, 15s “ 0 and

px̄3`x̄1
3qr0, 5, 10, 15s “ 0. Therefore, we obtain x3`x̄3 “ x1

3`x̄1
3 and z2`z̄2 “ z1

2`z̄1
2

with probability r “ 1. When considering the pair pC̄, C̄ 1q, we deduce that the
difference in z2 is the same as in the forward pair: z̄2 ` z̄1

2 “ z2 ` z1
2. In particular,

anti-diagonal ℓ̃ is inactive in z2; this implies that diagonal ℓ̃ of w0 is inactive with
probability ⃗p “ 1.

We then proceed as in the retracing boomerang attack. We obtain many
quartets following the characteristic simultaneously: assuming that pP, P 1q is a
right forward pair, and that the pairs pC̄, C̄ 1q are constructed such that z4 ` z̄4 is
active only in byte m̃, then with probability 1, diagonal ℓ̃ of w0 is inactive for each
pair pC̄, C̄ 1q.

Comparison with the retracing boomerang attack. The probability that a
pair pP, P 1q is a right pair, and that a shifted pair pC̄, C̄ 1q follows the returning trail
is pb “ p⃗ ¨ ⃗q ¨ ⃗p ¨ r “ 2´81.4´24 “ 2´105.4. This is much lower than the 6-round AES
retracing boomerang attack, that has a boomerang probability of 2´38ˆ2´24 “ 2´62

if we intepret the lower characteristic as a truncated trail instead of a key guess.
However, the probability for a wrong forward pair to have the right ciphertext
difference is pw “ 2´61.4 (compared to pw “ 2´8 for the retracing boomerang,
corresponding to the event z4r0s ` z̄4r0s “ 0). In order to collect a single right
quartet, there are 262´8 “ 254 wrong quartets in the retracing boomerang, but only
2105.4´61.4 “ 244 wrong quartets remain in our attack. This gain in signal-to-noise
ratio pb{pw allows to significantly reduce the time complexity of the key-recovery,
since the key-recovery procedure needs to be applied to fewer quartets.

Attack description. The attack consists of the following steps:

1. Ask for the encryption of structures of 232 plaintexts with different values on
the main diagonal.

154 Chapter 4. Boomerang Attacks on AES and AES-based Ciphers

2. Among each structure, look for pairs of ciphertexts pC, C 1q colliding on any
two anti-diagonals (for simplicity, we consider them as the first two). Let us
denote C̄i “ C`∇i and C̄ 1

i “ C 1`∇i for 1 ď i ď 232, where ∇i takes the value
i on the first anti-diagonal and the value 0 on other anti-diagonals. Ask for the
decryptions P̄i “ E´1pC̄iq and P̄ 1

i “ E´1pC̄ 1
iq for all 1 ď i ď 16 ˆ 224 “ 228.

3. For each candidate K for k6r0, 7, 10, 13s, and each m̃ P t0, 1, 2, 3u, fetch 8
pairs pP, P̄iq (already queried) such that under the key K, the first column
of z4 of pP, P̄iq is active only in position m̃, and consider the 8 corresponding
quartets pP, P 1, P̄i, P̄ 1

i q.

For each ℓ̃ P J0, 3K, assume that diagonal ℓ̃ of w0 is inactive for all quartets
simultaneously and deduce key k0. If a candidate k0 is compatible with all
quartets, return it as the correct key.

Algorithm 4.4: Low data complexity boomerang attack on 6-round AES.
loop Ź The expected number of iteration is 218.4

Query the encryption of a structure of 232 plaintexts
for all pairs pC, C 1q colliding on two anti-diagonals do

for 0 ď i ă 228 do
Define C̄i “ C ` ∇i, C̄ 1

i “ C 1 ` ∇i,
Query P̄i “ E´1pC̄iq, P̄ 1

i “ E´1pC̄ 1
iq

for all k6r0, 7, 10, 13s do
for 0 ď m ă 4 do

Gather 8 quartets pP, P 1, P̄i, P̄ 1
i q s.t. z4 ` z̄4 is active only on

position m̃
for 0 ď ℓ̃ ă 4 do

Assume diagonal ℓ̃ of w0 is inactive for pP, P 1q and all pP̄i, P̄ 1
i q

Deduce key candidates for k0

Complexity. The attack queries new structures of plaintexts until a structure
includes a right forward pair. Since the probability of the forward characteristic is
2´81.4, we expect 232`31´81.4 “ 2´18.4 right pairs per structure, and we expect to
iterate over 218.4 structures on average before finding a right pair. This corresponds
to 218.4`32`31´61.4 “ 220 candidates pC, C 1q at step 2. When a right pair is present,
it passes the filtering of step 2, and the attack succeeds for the correct guess of
k6r0, 7, 10, 13s, ℓ̃ and m̃.

We now give an analysis of Step 3. We first show that we can fetch the pairs
pP, P̄iq efficiently. Then, we explain in details the most technical part: the recovery
of k0 candidates from friend quartets, which we slightly improve compared to the
meet-in-the-middle technique from [DKR+20].

4.5. Improved Boomerang Attacks on AES 155

Fetching the quartets. In Step 3, given a candidate K for k6r0, 7, 10, 13s

and a position m̃ P J0, 3K, we need to fetch 8 pairs pP̄i, P̄ 1
i q (leading to 8 quartets

pP, P 1, P̄i, P̄ 1
i q) such that the state z4 of pair pP, P̄iq is active only in position m̃

of the active column under the key K. This can be done efficiently: start from
C “ EpP q, compute the first column of z4 from the anti-diagonal of C (ignoring
the key addition AK5), add the 256 possible byte values at position m̃ of the first
column of z4, and compute the corresponding values in the ciphertext side. This
gives 256 different values for the first anti-diagonal in the ciphertexts. On average,
this corresponds to 256 ˆ 228

232 “ 16 ciphertexts C̄i of which the decryption was
queried during Step 2. The probability that at least 8 such ciphertexts were queried
during Step 2 can be approximated by PrpPoissonp16q ě 8q ě 0.99. The ciphertext
C̄ 1

i is defined as C̄ 1
i “ C ` C 1 ` C̄i. With 256 ˆ 4 ˆ 2 “ 211 S-box calls, we fetch the

8 pairs; This is negligible compared to the complexity of getting the candidates for
k0r0, 5, 10, 15s as explained below.

Meet-In-The-Middle procedure to recover key candidates. We
start by examining two candidate quartets, and extracting on average 28

candidates k0r0, 5, 10, 15s for each ℓ̃. Indeed, given two quartets pP, P 1, P̄i, P̄ 1
i q

and pP, P 1, P̄j , P̄ 1
jq, we have three pairs to use for filtering key candidates: pP, P 1q,

pP̄i, P̄ 1
i q, pP̄j , P̄ 1

jq, and each pair provides an 8-bit filtering.
Following [DKR+20], we use a meet-in-the-middle procedure, considering

independently 216 values of k0r0, 5s and 216 values of k0r10, 15s.

1. Create 8 tables T0, T1, T2, T3, T 1
0, T 1

1, T 1
2, T 1

3.

2. For all 216 values of k0r0, 5s, compute state z0r0, 1s of P `P 1 (denoted ar0, 1s),
P̄i ` P̄ 1

i (denoted br0, 1s), and P̄j ` P̄ 1
j (denoted cr0, 1s). For each ℓ, store the

24-bit value

MCpar0s, ar1s, 0, 0qrℓs } MCpbr0s, br1s, 0, 0qrℓs } MCpcr0s, cr1s, 0, 0qrℓs

in table Tℓ.

3. For all 216 values of k0r10, 15s, compute state z0r2, 3s of P ` P 1 (denoted
ar2, 3s), P̄i ` P̄ 1

i (denoted br2, 3s), and P̄j ` P̄ 1
j (denoted cr2, 3s). For each ℓ,

store the 24-bit value

MCp0, 0, ar2s, ar3sqrℓs } MCp0, 0, br2s, br3sqrℓs } MCp0, 0, cr2s, cr3sqrℓs

in table T 1
ℓ.

4. Look for collisions between Tℓ and T 1
ℓ, for ℓ P t0, 1, 2, 3u (or equivalently for

ℓ̃ P t0, 1, 2, 3u).

Steps 2 and 3 each require roughly the computation of 3 ˆ 4 ˆ 216 AES S-boxes.
However, since the same pair pP, P 1q is used for multiple quartets (with different
key guesses for k6), we can precompute the values MCpar0s, ar1s, 0, 0q for all keys

156 Chapter 4. Boomerang Attacks on AES and AES-based Ciphers

k0r0, 5s, and MCp0, 0, ar2s, ar3sq for all keys k0r10, 15s, reducing the complexity to
2 ˆ 4 ˆ 216 “ 219 AES S-boxes. Step 4. requires 218 sequential lookups to match
the lists, equivalent to 218 AES S-boxes. In total we obtain a complexity equivalent
to 220 ` 218 “ 220.3 AES S-boxes, or equivalently 213.7 6-round AES encryptions, to
recover 210 candidates for k0r0, 5, 10, 15s and ℓ̃.

Then, we can further filter the candidates using the remaining quartets. Indeed,
each quartet provides an 8-bit filtering, and testing a key candidate requires only
the evaluation of 2 AES columns (this adds negligible terms to the complexity).
Given a wrong candidate pair pC, C 1q, the probability that there exists a choice of
m̃, ℓ̃, k6r0, 7, 10, 13s, k0r0, 5, 10, 15s compatible with 8 quartets is 22`2`32`32´9ˆ8 “

2´4. For the remaining candidates we apply the same procedure, to recover the
other diagonals of k0; this eliminates wrong candidates, and returns the full key k0
for the right forward pair.

Finally, we obtain an attack with time complexity equivalent to 220 ˆ 232 ˆ 4 ˆ

220.3 “ 274.3 AES S-boxes, or 267.7 6-round AES encryptions.
The attack requires on average 232`18.4 “ 250.4 encryptions and 2ˆ220`28 “ 249

decryptions, for a total of 250.9 queries.
The memory complexity is bounded by the storage of each structure, i.e. 232

128-bit states. Therefore we obtain:

pD, T, Mq “ p250.9, 267.7, 232q.

A time-memory trade-off. The time complexity of this attack can be slightly
decreased by remarking that in the attack, we apply the MiTM procedure multiple
times to each quartet pP, P 1, P̄i, P̄ 1

i q. Indeed, given a pair pP, P 1q with two colliding
anti-diagonals in output, we perform 4 ˆ 232 MiTM procedures on 228 existing
quartets (for each activity position m̃ in z4, and each candidate for k6r0, 7, 10, 13s).
Instead, it is possible to precompute 218 candidates for k0r0, 5, 10, 15s induced by
each quartet with one MiTM procedure (with a variant using a single quartet) for
each the 228 quartets.

Then Step 3 is performed by recovering the list of 218 candidates for
k0r0, 5, 10, 15s corresponding to two different quartets, and intersecting them.
Therefore the time complexity becomes 2 table lookups recovering 218 candidates
each, and a matching step. It is hard to compare the cost of memory accesses
to AES rounds, but since we make a large number of sequential accesses, we
approximate it as equivalent to an S-box computation, resulting in a complexity of
2 ˆ 220`2`32`18 S-box evaluations, or 266.4 AES evaluations.

The memory complexity is however increased. Naively, we store 228 sets of
218 candidates, but it is possible to instead store only the sets of candidates for
226 quartets: on average, 4 quartets among the 226 chosen quartets correspond
to each candidate k6r0, 7, 10, 13s and activity position m̃ in z4, and the MiTM
procedure only needs to be applied to 2 of them (the 6 other quartets are used
afterwards to filter the remaining candidates). Given k6r0, 7, 10, 13s and m̃, the
probability that at least 2 corresponding quartets are in the set of chosen quartets

4.5. Improved Boomerang Attacks on AES 157

can be approximated to PrpPoissonp4q ě 2q “ 0.91; if this is not the case, with
probability 0.09, we discard the candidate pk6r0, 7, 10, 13s, m̃q. This increases the
expected number of plaintext structures to consider by a factor 1{0.91, but does
not affect the time complexity because we do not process candidates with fewer
than 2 precomputed quartets. This gives a memory complexity of 226`18 “ 244

32-bit states, equivalent to 242 128-bit states. In total, this gives:

pD, T, Mq “ p251, 266.4, 242q.

4.5.2 A Key-Recovery Attack With Low Time Complexity
This attack reuses the boomerang of Section 4.5.1 with a slight change: the input
pair pP, P 1q and returning pair pP̄ , P̄ 1q are required to be inactive in a byte, in
position a P t0, 5, 10, 15u, i.e. in the main diagonal. This reduces the size of
plaintext structures compared to the previous attack, but makes the key-recovery
procedure more time-efficient. Indeed, for pairs following this characteristic, the
first-round transitions depend on three key bytes (e.g. k0r5, 10, 15s if a “ 0) rather
than four. The attack is depicted in Figure 4.23 and described in Algorithm 4.5.

Boomerang analysis. Similarly to the previous attack, the probability that a
pair is a right forward pair is p⃗ “ 2´81.4, while the random probability that two
ciphertexts collide in two anti-diagonals is 2´61.4.

In the backward direction, we assume that the difference collapses to a single
byte in anti-diagonal m̃ of state z4 (after one round); this happens with probability
q⃗ “ 2´24. This implies that diagonal ℓ̃ of w0 is inactive for the pair pC̄, C̄ 1q with
probability r “ 1, with the same analysis as in the previous attacks. Moreover, we
require P̄ ` P̄ 1 to be inactive in byte a; this happens with probability ⃗p “ 2´8.

As in the previous attacks, we consider multiple quartets, but the additional
quartets are not required to collide in byte a of P̄ ` P̄ 1. Therefore, we use the
same property as previously: assuming that pP, P 1q is a right forward pair, and
that pC̄, C̄ 1q are constructed such that z4 ` z̄4 is active only in anti-diagonal m,
then with probability 1, diagonal ℓ of w0 is inactive for the pair pC̄, C̄ 1q.

Comparison with the first attack. The boomerang probability is pb “ p⃗ ¨

⃗q ¨ ⃗p ¨ r “ 2´81.4´24´8 “ 2´113.4 compared to 2´105.4 in the first attack, and
the probability pw that a wrong quartet is considered decreases by a factor 28

(corresponding to the condition P̄ r0s “ P̄ 1r0s). Therefore, this increases the data
complexity but not the key-recovery time complexity, since the signal-to-noise
ratio pb{pw, corresponding to the number of quartets on which the key-recovery is
performed, is unchanged. Additionally, the structure size is reduced by the same
factor 28 ; more plaintext pairs are needed to find a right forward pair. This also
increases the data complexity, but not the key-recovery time complexity, since this
does not affect the signal-to-noise ratio.

158 Chapter 4. Boomerang Attacks on AES and AES-based Ciphers

Attack description.

1. Ask for the encryption of structures of 232 plaintexts with different values on
the main diagonal.

2. Among each structure, consider pairs pP, P 1q with an inactive byte in the
main diagonal of input; denote the inactive byte position as a. Look for
corresponding pairs of ciphertexts pC, C 1q colliding on two anti-diagonals (for
simplicity we consider them as the first two). Let us denote C̄i “ C ` ∇i

and C̄ 1
i “ C 1 ` ∇i for 1 ď i ď 232, where ∇i takes the value i on the first

anti-diagonal and the value 0 on other anti-diagonals. Query and store the
decryptions P̄i “ E´1pC̄iq and P̄ 1

i “ E´1pC̄ 1
iq for all 1 ď i ď 232.

For each ℓ P t0, 1, 2, 3u, assume that byte ℓ of w0 is inactive for the pair
pP, P 1q. Compute the set Sℓ of 216 candidates for k0r5, 10, 15s suggested by
pP, P 1q under this assumption.

3. Consider plaintext pairs pP̄i, P̄ 1
i q that collide on byte a (we consider a “ 0 in

the rest of our analysis).
For each ℓ P t0, 1, 2, 3u, consider the 216 candidates for k0r5, 10, 15s in Sℓ, and
verify whether byte ℓ of w0 is inactive for the pair pP̄i, P̄ 1

i q. On average, 28

candidates should remain for each ℓ.
Assume that state z4 of pP, P̄iq is active on byte m̃ P t0, 1, 2, 3u of the
first column and deduce 210 candidates for k6r0, 7, 10, 13s } m̃. In total, a
quartet suggests 210 candidates for k0r5, 10, 15s } ℓ and 210 candidates for
k6r0, 7, 10, 13s } m̃ (220 candidates in total).

4. For each quartet and each of its 210 candidates for k6r0, 7, 10, 13s }m̃, consider
7 other pairs pC̄j , C̄ 1

jq such that the first column of z4 of pC, C̄jq is active only
in position m̃; fetch their corresponding plaintexts pP̄j , P̄ 1

jq (stored during
Step 2.).
For each of the 210 candidates k0r5, 10, 15s } ℓ, there is on average a single
value for k0r0s that is compatible with the first pair pP̄j , P̄ 1

jq. Finally, verify
the 210 candidates k0r0, 5, 10, 15s } ℓ with the remaining pairs pP̄j , P̄ 1

jq. If a
candidate k0 is compatible with all the quartets, return it as the correct key.

Complexity. The attack queries new strucures of plaintexts until a structure
includes a right forward pair, and at least one quartet follows the backward
characteristic. Each forward pair defines 232 quartets, and the backward probability
is 2´32, therefore a right forward pair is detected with probability 1 ´ 1{e « 0.63.
When a right forward pair passes this condition, the attack succeeds for the correct
guess of ℓ and m̃.

A structure of 232 plaintexts contains 232`31´6 “ 257 pairs with one colliding
byte in the main diagonal of input. Therefore, we expect 257´81.4 “ 2´24.4 right
pairs per structure, and we expect to iterate over 224.4{0.63 « 225 structures on

4.5. Improved Boomerang Attacks on AES 159

Algorithm 4.5: Low time complexity boomerang attack on 6-round AES.
loop Ź The expected number of iteration is 225

Query the encryption of a strucuture of 232 plaintexts
for all pairs pP, P 1q colliding on one input byte, and two output anti-diagonals

do
Denote the inactive byte position of P ` P 1 as a
for 0 ď ℓ ă 4 do

Assume w0rℓs is inactive for pairs pP, P 1q

Deduce a set Sℓ of 216 candidates for k0r5, 10, 15s

for 0 ď i ă 232 do
Define C̄i “ C ` ∇i, C̄ 1

i “ C 1 ` ∇i,
Query P̄i “ E´1pC̄iq, P̄ 1

i “ E´1pC̄ 1
iq

for all pairs pP̄i, P̄ 1
i q colliding on input byte a do

for 0 ď ℓ ă 4 do
Assume w0rℓs is inactive for pairs pP, P 1q and pP̄i, P̄ 1

i q

Filter the set Sℓ to keep 28 candidates for k0r5, 10, 15s

for 0 ď m̃ ă 4 do
Assume z4 of pair pP, P̄iq is active only on position m̃
Deduce 28 key candidates for k6r0, 7, 10, 13s

for all candidates for m̃ } k6r0, 7, 10, 13s do
Gather 7 extra quartets s.t. z4 of pair pP, P̄iq is active only on

position m
for all candidates for ℓ } k0r5, 10, 15s do

Recover one candidate for k0r0s using one extra quartet
Use remaining quartets to verify k0r0, 5, 10, 15s

average before finding a right quartet. This corresponds to 225`57´61.4 “ 220.6

candidates pP, P 1q at Step 2. and 220.6`32´8 “ 244.6 candidates pP̄i, P̄ 1
i q at Step 3.

In Step 3, we consider on average 220.6 pairs pP, P 1q, and each of the 224 pairs
pP̄i, P̄ 1

i q colliding in input byte a. First, we iterate over 210 candidates k0r5, 10, 15s,
and verify that byte ℓ is inactive in w0 for pP̄i, P̄ 1

i q. This requires 6 S-box evaluations
for each candidate. Then, we consider 210 state differences in z4 of pP, P̄iq and
deduce 210 corresponding candidates for k6r0, 7, 10, 13s. This requires 4 table
lookups in the DDT for each candidate. In total, Step 3. requires on average
220.6`24 ˆ p6 ˆ 210 ` 4 ˆ 210q “ 257.9 lookups.

In Step 4, fetching another pair pP̄j , P̄ 1
jq compatible with the characteristic

requires 4 AES S-box calls and 1 lookup in the plaintext/ciphertext table of Step 2:
compute the first column in z4 of C from the first anti-diagonal of the ciphertext
C (only once, this cost is amortized), shift by any value on byte of position m̃, and
compute back the corresponding ciphertext C̄j . Since all 232 ciphertexts C̄i were
queried during the decryption phase, C̄j belongs to the table of queried ciphertexts.
In total, this costs 220.6`24 ˆ 4 ˆ 210 “ 256.6 calls and 220.6`24`10 “ 254.6 lookups

160 Chapter 4. Boomerang Attacks on AES and AES-based Ciphers

in the plaintext/ciphertext table, for each of the 8 additional ciphertexts, i.e. 259.6

S-box calls, and 220.6`24`10`3 “ 257.6 lookups in the plaintext/ciphertext table.
The most costly part of the attack is the recovery of 1 average value of k0r0s

from another pair pP̄j , P̄ 1
jq, given k0r5, 10, 15s } ℓ. To do so, we compute the

difference in y0r5, 10, 15s for the pair pP̄j , P̄ 1
jq with 6 S-box evaluations, recover

the only difference y0r0s yielding the correct difference pattern in w0, and fetch
the 1 average value k0r0s satisfying the transition P̄jr0s ` P̄ 1

jr0s Ñ y0r0s. In total,
this requires 7 lookups per pair. Then, given another pair pP̄j , P̄ 1

jq, we verify that
the difference in byte ℓ of w0 is inactive with 8 S-box lookups for each of the 210

candidates k0r0, 5, 10, 15s } ℓ. We expect on average 22 remaining candidates for
k0r0, 5, 10, 15s } ℓ, and the rest of the filtering is of negligible complexity. In total,
this requires p7 ` 8q ˆ 220.6`24`10`10 “ 268.5 lookups, which corresponds to 261.9

encryptions.

Further optimization. We observe that we process several pairs correspond-
ing to the same candidate pP, P 1q and the same guess of m̃ } k6r0, 7, 10, 13s. Indeed,
for each pP, P 1q, we consider 224 pairs pP̄i, P̄ 1

i q, and 210 values of m̃ } k6r0, 7, 10, 13s

for each. On average, there is one pair pP̄i, P̄ 1
i q for each guess of m̃ } k6r0, 7, 10, 13s,

but we expect only 0.63 ˆ 234 distinct values. Pairs corresponding to repeated
values of m̃ } k6r0, 7, 10, 13s are not necessary: assuming that pP, P 1q is a right
forward pair, we only need one pair pP̄i, P̄ 1

i q corresponding to the correct guess of
m̃ } k6r0, 7, 10, 13s for the attack to succeed. Therefore, we reduce the complexity
by creating a table of size 234 at the beginning of Step 3, and marking candidates
m̃ } k6r0, 7, 10, 13s at the beginning of Step 4 to avoid processing the same guess
twice. This reduces the complexity by a factor 0.63, leading to a total complexity
of 0.63 ˆ 261.9 “ 261.2. The storage of the table of 234 bits corresponds to 227

128-bit states; it is not the memory bottleneck.
The complexity can potentially be further reduced by requiring the first two

pairs pP̄j , P̄ 1
jq to be inactive on one byte of the main diagonal of P̄j ` P̄ 1

j . This
increases the cost of locating the pairs by a factor 26, resulting in 263.6 DDT lookups,
and 261.6 plaintext/ciphertext lookups in total to gather the first two pairs. If this
is a negligible in comparison with the rest of attack5, this reduces the number of
lookups required to test a key candidate from 7 ` 8 to 5 ` 6 because one S-box is
inactive. This reduces the total complexity to p5`6qˆ220.6`24`10`10 ˆ0.63 “ 267.5

lookups, which corresponds to 260.9 encryptions.

Total complexity. The data complexity corresponds to 257 encryptions and
2ˆ220.6`32 “ 253.6 decryptions, for a total of 257.1 queries. The memory complexity
is bounded by the storage of the 2 ˆ 232 plaintexts P̄i, P̄ 1

i , for 0 ď i ă 232 from a
forward pair pP, P 1q.

5This assumption actually depends on the architecture on which the attack is implemented: if
the time required for a lookup in a table of size 232 is large, this technique does not result in a
better attack.

4.5. Improved Boomerang Attacks on AES 161

P

AK0

x0
SB

SR

byte a inactive

z0

4¨2´8

MC

byte ℓ inactive

w0

AK1

x1
SB

SR

z1
MC

w1

AK2

x2
SB

SR

z2

4¨2´32

MC

diagonal m
inactive

w2

AK3

x3
SB

SR

z3
MC

6¨2´48

w3

AK4

x4
SB

SR

z4
MC

w4

AK5

x5
SB

SR

z5

AK6

C

P ‰P 1
P “P 1

Forward characteristic pP, P 1q Backward characteristic pP̄ , P̄ 1q

Backward characteristic pP, P̄ q, pP 1, P̄ 1q

P

AK0

x0
SB

SR

byte a inactive

z0

2´8

MC

diag. ℓ̃ inactive

w0

AK1

x1
SB

SR

z1
MC

w1

AK2

x2
SB

SR

z2

r“1

MC

P̄ ‰P̄ 1
P̄ “P̄ 1

w2
MC

AK3

x3
SB

SR

z3
MC

w3

AK4

x4
SB

SR

z4
MC

2´24
byte m̃ active

w4

AK5

x5
SB

SR

z5

AK6

C

P ‰P̄ ,P 1‰P̄ 1

P “P̄ , P 1“P̄ 1

Figure 4.23: Boomerang characteristic on 6-round AES with low time complexity.

This gives:
pD, T, Mq “ p257.1, 260.9, 233q.

4.5.3 Incompatibility in a 6-Round Distinguisher
At first glance, it seems that the boomerang characteristics presented in the previous
sections can easily be modified to obtain a distinguishing attack with a complexity
of about 276. ‘All one has to do’ is to modify the forward characteristic such that
after the first round the difference is active only in a single byte, in order to improve
the filtering in the backward direction. The resulting characteristic is presented in
Figure 4.24.

162 Chapter 4. Boomerang Attacks on AES and AES-based Ciphers

However, a closer inspection shows that this ‘distinguisher’ is in fact flawed.
The reason is that the characteristic is actually impossible due to an internal
inconsistency in the forward trail between z2 and w2, as is shown in the figure.

We note that the same flaw appears in the shifting retracing boomerang attack
on 5-round AES presented in [DKR+19, App. C3] and described in Section 4.3.3.
In that attack, one considers pairs of plaintexts for 5-round AES with non-zero
difference only in bytes t0, 5, 10, 15u and filters out all pairs except for those whose
output difference in bytes t0, 7, 10, 13u is equal to 0 or δL (for some fixed δL). Then,
the remaining pairs are further analyzed, and it is claimed that the proportion of
analyzed pairs is 2´31 of the number of initial pairs. However, in fact there is no
point in analyzing pairs with zero ciphertext difference in bytes t0, 7, 10, 13u since
such pairs cannot have non-zero difference in a single byte after the first round
(due to the same internal inconsistency as the one shown in Figure 4.24), and so
they cannot be part of right boomerang quartets. As a result, the number of right
quartets is reduced by a factor of 2, and to compensate for this, the data, time
and memory complexities of the attack should be increased by a factor of 20.5.

4.6 Conclusion
In this section, we described the boomerang attack, overviewed the existing
boomerang-like attacks on AES, and presented new boomerang attacks on AES and
some AES-based ciphers. Although the boomerang attack only reaches 6 rounds
of AES (the best 7-round attacks reach 7 AES rounds), and is not the best attack
against 6-round AES, it is still interesting to study the technique as it may leave
room for future improvements. In addition, it is the most efficient existing attack
against Deoxys-BC and Kiasu-BC, two AES-based ciphers.

We introduced two main types of boomerang attacks against 6-round AES:
the truncated boomerang attack and an improvement to the retracing boomerang
attack. The truncated boomerang attack is very generic, so that it can easily be
applicable to other AES-based ciphers, and reaches a relatively low data (259) and
time (261) complexity, but has an unpractical memory complexity (259). On the
other hand, the boomerang attack of Section 4.5.2 has similar data (257) and time
(261) complexity, but has a practical memory complexity (233). However, it can
hardly be applied to other AES-based ciphers.

4.6. Conclusion 163

P

AK0

x0
SB

SR

z0

4¨2´24

MC

w0

AK1

x1
SB

SR

z1
MC

w1

AK2

x2
SB

SR

z2

IMPOSSIBLE

MC

w2

AK3

x3
SB

SR

z3
MC

6¨2´48

w3

AK4

x4
SB

SR

z4
MC

w4

AK5

x5
SB

SR

z5

AK6

C

P ‰P 1
P “P 1

Forward characteristic pP, P 1q Backward characteristic pP̄ , P̄ 1q

Backward characteristic pP, P̄ q, pP 1, P̄ 1q

P

AK0

x0
SB

SR

z0
MC

w0

AK1

x1
SB

SR

z1

4¨2´24

MC

w1

AK2

x2
SB

SR

z2

r“1

MC

P̄ ‰P̄ 1
P̄ “P̄ 1

w2
MC

AK3

x3
SB

SR

z3
MC

w3

AK4

x4
SB

SR

z4
MC

2´24

w4

AK5

x5
SB

SR

z5

AK6

C

P ‰P̄ ,P 1‰P̄ 1

P “P̄ , P 1“P̄ 1

Figure 4.24: An impossible forward pattern for a distinguishing attack.

Chapter5Design of Fast AES-based UHFs
and MACs

In this chapter, we present a joint work with Jules Baudrin, Gaëtan Leurent, Clara
Pernot, Léo Perrin, and Thomas Peyrin, submitted to ToSC 2024. We design a
new framework for AES-based Universal Hash Functions, whose candidates reach
outstanding performance. We build two MACs based on this framework, LeMac and
PetitMac, the first of which is the fastest MAC in the literature, with a throughput
of 0.068 cycles per Byte on an Intel Ice Lake (Xeon Gold 5320).

Contents
5.1 Introduction . 166
5.2 Design Goals and First Observations 168

5.2.1 AES-based Round Functions 168
5.2.2 Instruction Scheduling 168
5.2.3 Security . 171
5.2.4 A Roadmap to Achieve these Goals 171

5.3 A Specific Family of Universal Hash Functions 172
5.3.1 Overall Structure . 172
5.3.2 Round Function and Message-schedule 174

5.4 A Searchable Space of UHFs 175
5.4.1 A Normal Form for Transition Matrices 175
5.4.2 Equivalent Injected-value Sequences 177
5.4.3 Constraints on the Linear Layer 180
5.4.4 The Actual Explored Space 180

5.5 Turning Collision Resistance into a MILP Problem 180
5.5.1 Prior Works . 180
5.5.2 Our Model . 181

5.6 Experimental Results of the Search for Good Candidates . . . 184
5.6.1 Search Strategy . 184
5.6.2 Results of the Search 186

5.7 Concrete MAC Instances . 188
5.7.1 Specifications . 188
5.7.2 Benchmarks . 193

5.8 Conclusion . 193

165

166 Chapter 5. Design of Fast AES-based UHFs and MACs

5.1 Introduction
The AES block cipher [Aes] has had a significant impact on the development
of symmetric-key primitives, for two main reasons. First, its inner structure
makes its differential and linear properties well-understood. Second, hardware
accelerated AES instructions (AES-NI) [Gue08] were introduced in modern CPUs,
thus significantly increasing the speed of AES encryptions and decryptions in
software. In particular, hardware acceleration of the AES round-function is today
widespread in most computing platforms, from high-end Intel/AMD CPUs to
microcontrollers for mobile devices, and AES-NI have become even more helpful
over the processors generations, with reduced latency and increased throughput.
Those reasons led many designers to reuse full AES [MV04; RBB03; KR21b], or
only the AES round-function [BBG+08; WP14; Nik14; JNP+21; SLN+21; NFI24],
as building blocks for cryptographic constructions.

These technological advances allowed many symmetric-key primitives to
eventually reach performances under 1 cycle per byte (c/B), but new use-cases arise.
In particular, sixth-generation mobile communication systems (6G) plan to deliver
transmissions with an impressive throughput between 100 Gbps and 1 Tbps. This
puts a lot of pressure on the encryption/authentication performances and AES-NI-
based solutions seem very natural. This is the direction taken by the Authenticated
Encryption with Additional Data (AEAD) algorithm Rocca [SLN+21; SLN+22]
and its updated version Rocca-S [NFI24], currently the fastest AEAD on AES-NI
platforms and under submission at IETF. However, it remains unknown if Rocca’s
construction is indeed close to the optimal throughput when leveraging AES-NI.

We remarked that despite the numerous AES-based constructions existing in the
literature, few AES-based MACs exist. The main example that we are aware of is
PC-MAC [MT06]1. Based on the analysis of the the Maximum Expected Differential
Probability (MEDP) of 4-round AES by Keliher and Sui [KS07], they consider
4-round AES as an ε-AXU family with ε « 1.18 ¨ 2´110 (under the hypothesis that
the round keys are independent). Using this as a building block, they construct a
MAC with 4 AES rounds per 128-bit block of plaintext, with provable security.

Moreover, the collision-resistant round functions of Jean & Nikolić [JN16]
and the Additional Data phase of Rocca [SLN+21] both achieve 128-bit collision
security with 2 AES rounds per 128-bit message; the drawback is that the security
is heuristic and not provable. Our goal is to design a new MAC construction with
an even better performance than those.

We want to point out that many popular MACs, such as poly1305 [Ber05] are
based on arithmetic operations, and are designed for modern processors enabling
fast arithmetic. Those processors often support AES-NI instructions as well; we
can therefore directly compare the software performance of AES-based MACs to
state-of-the-art arithmetic MACs.

1Some AEAD constructions with no encrypted data may also be used as MACs, but they are
not presented as MAC constructions.

5.1. Introduction 167

Contributions. In this chapter, we present a family of ε-AU UHFs faster than
state-of-the-art UHFs, by exploiting the extremely high throughput of AES-NI
instructions, with flexible parameters that can be adapted to future computing
platforms. Our construction uses a novel design strategy compared to previous
UHFs or collision resistant round functions, with a (potentially large) internal state
separated into two parts: one part updated with AES-round functions and 128-bit
XORs, and one part storing linear combinations of messages. Each round, new
message blocks are injected in the second part, and the second part is injected
in the first part. The general idea is that a difference in a single message block
influences many inner state AES rounds, and that the collision security remains
easily computable using MILP. This separation strategy draws inspiration from
recent (tweakable) block cipher designs, where the tweakey schedule is linear, or
the Panama [DC98] hash function.

Although this family is too big to be exhausted in practice, we propose a
process to iterate over candidates of the family and select some fast and secure ones.
We implemented a tool that, given any candidate of this family, automatically
computes the number of active S-boxes in the best differential trail, using MILP.
The MILP model exactly discards linear incompatibilities, improving on heuristic
approaches to avoid linear incompatibilities [CHP+17]. In addition, our tool
can compile on-the-fly candidates of the family and benchmark them, in order
to automatically measure their speed. To our knowledge, this is the first time
that on-the-fly benchmarking is performed to filter candidates in an AES-based
framework.

To showcase the relevance of our approach, we present an ε-AU UHF candidate
whose round function reaches a speed of 0.067 cycles per byte on Intel Tiger Lake
(i5-1135G7). In addition, we show the first candidate with less than 2 AES rounds
per 128-bit message block and 128-bit collision security, namely with 1.75 AES
rounds per 128-bit message block.

From this family of ε-AU UHFs, we present two new MAC constructions: LeMac
and PetitMac. The former is as of today the fastest MAC on modern desktop/server
processors, reaching of speed of 0.068 cycles per byte on Intel Ice Lake (Xeon
Gold 5320) for 256 kB messages vs. 0.113 cycles per byte for a MAC based on
the round function of [JN16], the fastest state-of-the-art MAC according to our
benchmarks. PetitMac is slower, but of a smaller size, thus more suitable for
lightweight applications.

Outline. We start with a detailed description of our design goals, and their
interactions with the state-of-the-art, in Section 5.2. In light of this discussion,
we decided to focus our efforts on a specific family of UHFs which we present
in Section 5.3. Since this family very large, we reduce the search space using
equivalence classes (see Section 5.4), and we automate the security analysis using
MILP-based methods described in Section 5.5. The results of our search are
presented in Section 5.6. Finally, we use these results to build concrete primitives
in Section 5.7, while Section 5.8 concludes the paper.

168 Chapter 5. Design of Fast AES-based UHFs and MACs

5.2 Design Goals and First Observations
While several AES-based constructions exist, we identified places where there
remains substantial room for improvement. Below, we describe the goals that
our family of UHFs are intended to fulfil; the family itself will be described in
Section 5.3.

5.2.1 AES-based Round Functions
As already mentioned in introduction, many designs rest upon the AES round
function and the 128-bit XOR to be both secure and efficient, thanks to the AES-NI
instructions set in modern processors. Among them, the CAESAR candidates
Tiaoxin [Nik14] and AEGIS [WP14] (the latter was selected in the final high-
performance portfolio) are competitive AEAD schemes. In terms of throughput,
they are outperformed by the building blocks designed by Jean & Nikolić [JN16]
and later Nikolić [Nik17]. Recently, the AEAD proposals Rocca [SLN+21; SLN+22]
and Rocca-S [NFI24] target 6G requirements in terms of speed and security. All
of those constructions aim at minimizing the so-called rate [JN16], that is, the
number of AES rounds per 128-bit message block. Rocca (during Additional Data
processing) and one of the schemes of Jean & Nikolić achieve a rate of 2 for 128-bit
security. We will adopt a similar strategy and minimize the rate of the round
function.

Goal 1. Our ε-AU families should use AES rounds as internal components for
high software performance, and preferably at the lowest rate.

5.2.2 Instruction Scheduling
Modern processors are superscalar processors with out-of-order execution. They
can execute several instructions simultaneously, and schedule instructions as soon
as the input operands are ready. Moreover the execution units are pipelined:
some instructions take several cycle to process, and the execution unit can start
processing a new instruction at every clock cycle, with the output being ready
some cycles later.

There are two main metrics to measure the performance of an instruction I:

Latency: the number of clock cycles between the beginning of I to the return of
its result. We denote LpIq the latency of I.

Throughput: the number of instructions that can be processed in a given amount
of time. We usually consider the reciprocal throughput, measured in cycles.
We denote T pIq the throughput of I.

Processors are composed of several execution units, accessed by ports denoted
P1 . . . Pk. Each port Pi accepts a certain set of instructions Si. At cycle t, each
execution unit Pi can process an instruction I P Si, and returns its result LpIq

5.2. Design Goals and First Observations 169

Architecture Instr Latency Throughput P0 P1 P2 P3 P4 P5 P6

Intel Haswell XOR 1 0.33 x x x
AESENC 7 1 x

Intel Skylake XOR 1 0.33 x x x
AESENC 4 1 x

Intel Ice Lake XOR 1 0.33 x x x
AESENC 3 0.5 x x

Intel Tiger Lake XOR 1 0.33 x x x
AESENC 3 0.5 x x

AMD Zen 1/2/3/4 XOR 1 0.25 x x x x
AESENC 4 0.5 x x

Table 5.1: Scheduling of AESENC and XOR instructions on modern processors.

cycles later. At cycle t ` 1, the execution unit Pi might process another instruction
I 1 P Si (with potentially I 1 “ I), even though the instruction I of cycle t has not
returned its result yet. The throughput of an instruction I usually corresponds to
the number of ports which can process I.

For the AES-based ciphers mentioned in Section 5.2.1, two types of instructions
are extensively used: AES rounds instructions (e.g. AESENC), and 128-bit XORs.
Each instruction has its own throughput and latency on modern processors, but we
cannot exploit the full throughput of both types of instructions at the same time,
because they share ports, as illustrated by Table 5.1. In particular, on modern Intel
processors (Ice Lake and higher) and AMD processors (Zen1 and higher), AES-NI
instructions operate on two ports P0 and P1, while the 128-bit XOR operates on
three or four: P0, P1, P5 (or P0, P1, P2, P3).

On the number of XOR instructions in AES-based constructions. In
the case of Intel Processors (Ice Lake and higher), the throughput of AESENC
encryption is 0.5, and the throughput of XOR is 0.33; AESENC uses ports 0 or
1, and XOR uses ports 0, 1, or 5. In order to fully exploit the throughput of the
AESENC instruction, we need to feed ports 0 and 1 only with AESENC instructions
at each clock cycle, thus they become unavailable for XOR instructions, and XOR
instructions can only be assigned to port 5. Consequently, if x AESENC instructions
are executed at full throughput, there can be at most x{2 XOR instructions at
the same time. Similar observations apply to recent processors, and unfortunately,
minimizing the number of XOR in AES-based constructions is not a systematic
approach2. For example, Jean & Nikolić [JN16] present rate-2 candidates with
6 AES per rounds and 9 128-bit XOR, and Rocca’s rate-2 round function uses
4 128-bit XOR and 4 AES rounds instructions. As a consequence, regardless of
implementation tricks, a full throughput on current modern Intel processors will
always remain out of reach for these algorithms.

2To the best of our knowledge, minimizing the number of XOR has only been considered in
the permutation design of Gueron and Mouha [GM16], which considers zero XOR instruction
outside the AESENC instruction.

170 Chapter 5. Design of Fast AES-based UHFs and MACs

Dependency chains. In addition to the throughput analysis, dependency chains
affect the performance of AES-based constructions. As an example, let us denote xi

the first state element of an AES-based construction at round i. If xi`1 depends on
xi, the latency to compute xi`1 from xi is the sum of the latency of each involved
instruction. Then, the latency of the round function is at least the latency of
computing xi`1 from xi. In the decryption mode of Rocca [SLN+21], we found
a cycle of dependency with 1 AESENC and 3 XOR instructions. Indeed, using
the notation of [SLN+21, Figure 1], we found the following dependency chain
composed of:

Snewr4s “ XORpXORpC1
i , AESENCpXORpSr0s, Sr4sq, Sr2sqq, Sr3sq. (5.1)

We notice that this dependency chain only appears in the decryption mode, since
the value X1 of [SLN+21, Figure 1] needs to be computed from Sr4s. On Ice Lake
and Tiger Lake architectures, this dependency chain first appears to have a latency
of 1 ˆ 3 ` 3 ˆ 1 “ 6 cycles, corresponding to 0.19 cycles per byte, but in practice we
measured a speed of around 0.34 cycles per byte, which we believe corresponds to a
latency of around 10 cycles. We try to explain this gap in the following paragraph.

Bypass delay. As far as we can tell, there is an additional delay (a bypass
delay) of two cycles when the output of an AES instruction is used as input of
a non-AES instruction. In particular, the latency of the dependency chain of
Equation 5.1 increases by 4 cycles (to a total of 10 cycles of latency): the two
XOR instructions on the left of Equation 5.1 each have one input (respectively Sr3s

and AESENCpXORpSr0s, Sr4sq, Sr2sq) that is the output of an AESENC instruction.
The latency can be reduced to 8 cycles with a fake XOR instruction added at the
beginning of the round : Sr3s Ð XORpSr3s, 0x00q, so that at the beginning of each
round, Sr3s is not the direct result of an AESENC encryption. This was tested
experimentally and increases the speed to around 0.25 cycles per byte on Tiger
Lake (i5-1135G7). It seems that these 8 cycles of latency can not be reduced, and
we therefore believe that Rocca in the decryption mode can not run faster than
8{p2 ˆ 16q “ 0.25 cycles per bytes on Tiger Lake processors.

In addition to the number of XOR instructions and the dependency chains,
there are a lot of processor subtleties, which are difficult to exhaustively consider.
As a general guideline, we aim at avoiding any pipelining issue and at being as
efficient as possible on modern processors.

Goal 2. The instruction scheduling in modern processors should be favorable.

Goal 2 is very reasonable, but is hard to guarantee with pen-and-paper analysis
because of the always-evolving, complex, and well-optimized scheduling of modern
processors. In fact, one way to directly evaluate the performance with state-of-
the-art instruction scheduling algorithms is to compile and benchmark candidates
on-the-fly. This strategy exploits advanced techniques from compilers (e.g. modern
gcc) or processors, and remains future-proof, since it can easily be adapted to
future processors.

5.2. Design Goals and First Observations 171

Goal 3. Our tool should automatize the benchmarking of candidates. The automatic
benchmarking should be adaptable to all processors.

5.2.3 Security
We first recall the security definitions of universal hash functions.

Definition 5.1 (ε-AU). A family of functions HK : A Ñ B for K P K is ε-almost-
universal if:

@m ‰ m1 P A, |tK P K : HKpmq “ HKpm1qu| ď ε|K|.

Definition 5.2 (ε-AXU). A family of functions HK : A Ñ Fb
2 for K P K is

ε-almost-XOR-universal if:

@m ‰ m1 P A, @d P Fb
2, |tK P K : HKpmq ‘ HKpm1q “ du| ď ε|K|.

Our strategy is to design a UHF family with the ε-AU security. Therefore, we
are only interested in collision resistance. In order to facilitate the security analysis
of our candidates, we consider that the output of one of our ε-AU UHFs is not of a
single word, but rather the entire state composed of multiple 128-bit words. In
addition, we consider that the initial state is the key, so that values of the inner
states cannot be exploited to build collisions. Thus, in order to ensure collision
resistance, it is sufficient to prevent the existence of high probability differentials
leading to collisions. We then rely on the following assumption to investigate these.

Assumption 1. The highest probability of a differential trail is a good indication
of the highest probability of a differential.

Thanks to Assumption 1, estimating the security level can be done by modeling
the differential propagation with a MILP model and this is now a widespread
practice [JN16; SLN+21].

Goal 4. A lower bound on the number of active Sboxes in the differential trails of
a candidate should be easily computed with computer-aided tools, such as MILP
solvers.

Section 5.5 will be fully dedicated to our MILP modeling and its optimizations.

5.2.4 A Roadmap to Achieve these Goals
All those guiding principles lead us toward the family of UHF that we describe in
the next section. Our goals are in line with previous works [JN16; SLN+21]: we
want a primitive that favors parallel AES calls to optimize scheduling. However,
properly taking this into account means carefully considering the number of 128-bit
XORs, and in fact minimizing it—the authors of Rocca already observed the
negative impact that AES and XOR used “in a cascade way” could have. As a
consequence, we limit ourselves to sparse linear layers.

172 Chapter 5. Design of Fast AES-based UHFs and MACs

To compensate the slower diffusion implied by the sparse linear layer, and to
broaden our search space, we consider more sophisticated injection techniques
inspired by the design of (tweak-)key schedules. This could increase the cost of each
round (in particular in terms of memory), but it indeed enables the safe use of very
simple round functions. This overall structure is similar to that of Panama [DC98],
a hash function attacked in [RVP+02]. It was based on a large “buffer” and a
smaller “inner state”, the former being linearly updated using message blocks,
and the latter being non-linearly updated using data extracted from the buffer.
The separation between buffer and inner state was quickly set aside as several
algorithms adopted a similar structure that nevertheless involved a datapath from
the inner state to the buffer, e.g. RadioGatùn [BDP+06] and Lux [NBK08].

Our whole construction is presented in the next section.

5.3 A Specific Family of Universal Hash Func-
tions

In light of the discussion presented in the previous section, we have settled on a
specific family of UHFs, that is both large enough to contain algorithms that are
both fast and secure, and that is small enough that we can practically explore
significant subsets of it.

The idea is to separate the (potentially large) state into two subparts with
different roles: an inner part updated with AES rounds and a linear layer, and an
outer part updated only with a linear layer and new message blocks. Each round,
words of the outer state are XORed to the inner state (but not the other way). The
aim is that each message block is XORed several times into the inner state, so that
short differential trails leading to collisions do not exist. This construction is similar
to many sponge-like constructions, but in our case the linear outer state allows to
save many AES round calls (while sponge-like designs will apply the same function
to the full state), and to be easily modelable in MILP. This also resembles a large
tweakable block cipher with a large tweak, and a linear tweakey schedule. We
chose this structure as it has the potential to offer both high throughput (thanks
to its reliance on the AES rounds, the expensive operations being restrained to one
subpart of the state, and the potentially low rate) and high security (thanks to the
sparsity of the round which makes it easier to use automated tools to check for
differential attacks).

5.3.1 Overall Structure
The UHF family we consider is described in Figure 5.1. Each wire on the figure
represents a 128-bit value. The inner state is on the left-hand side of Figure 5.1,
and the outer linear message-schedule with memory on the right. Overall, our
approach can be seen like a standard Substitution Permutation Network (SPN):
the inner state (alternatively denoted X, Y , Z) is iteratively updated through a

5.3. A Specific Family of Universal Hash Functions 173

s m r

X0
0 X0

1 X0
s´2 X0

s´1 M0
0 M0

m´1R
0
0 “ 0 R0

r´1 “ 0
¨ ¨ ¨

L

Aa0 Aa1 Aas´2 Aas´1¨ ¨ ¨

Y 0
0 Y 0

1 Y 0
s´2 Y 0

s´1

T

¨ ¨ ¨ ¨ ¨ ¨

¨ ¨ ¨V 0
0

...

V 0
s´1

Z0
0 Z0

1 Z0
s´2 Z0

s´1

¨ ¨ ¨
. . .

s r

X1
0 X1

1 X1
s´2 X1

s´1

L

Aa0 Aa1 Aas´2 Aas´1¨ ¨ ¨

Y 1
0 Y 1

1 Y 1
s´2 Y 1

s´1
¨ ¨ ¨ ¨ ¨ ¨

M1
0 M1

m´1 R1
0 R1

r´1

T

¨ ¨ ¨V 1
0

...

V 1
s´1

Z1
0 Z1

1 Z1
s´2 Z1

s´1

¨ ¨ ¨
. . .

Figure 5.1: Overview of our UHF family. A stands for a key-less AES round. Each
choice of the size parameters s, m, r, the Boolean values ai, and the linear matrices
L, T defines an instance of the framework.

round function built by composing a linear layer with a non-linear one. Between
each round, the linear message-schedule ingests several blocks of the input message,
and produces an injected value V which is added to Z to yield X. The memory
registers of the linear message-schedule, that we denote R, keep linear information
on previous input message blocks.

Parameters. From now on, by size, we always mean the number of 128-bit
blocks. Thus, each member of the family is parameterized by the sizes s, m, r of
the inner state X, Y , Z, of the input message M , and of the memory R, that can
be chosen freely. Note that s also corresponds to the size of the injected value V .
Once these sizes are fixed, we define a specific instance by choosing the vector a
and the matrices L, T .

The Boolean vector a :“ pa0, ¨ ¨ ¨ , as´1q, of size s, indicates whether a state
wire goes through an AES round or not. For any i such that ai “ 1, the i-th wire
of the state is called an AES wire.

The s ˆ s invertible sparse matrix L P MsˆspF2128q is used as linear layer. By
design, we restrict the coefficients of L to t0, 1u, so that L can be viewed as a

174 Chapter 5. Design of Fast AES-based UHFs and MACs

matrix of MsˆspF2q. In particular, the output of the linear layer is only composed
of copies and XORs of the 128-bit input words.

Finally, T is the ps ` rq ˆ pm ` rq message-schedule transition matrix. T
indicates how to compute the s-word injected-value V and how to update the
memory R (of size r). Both are linearly computed using the current memory R and
m fresh message words, M . Similarly to L, we restrict by design the coefficients of
T to t0, 1u: T P Mps`rqˆpm`rqpF2q.

Notation 1 (Time stamp, coordinates and sequences). As the values of the blocks
vary over time, we use superscript to indicate the clock (with t “ 0 as initial
clock) while subscripts are reserved for coordinates: for instance Rt

i stands for
the i-th coordinate of Rt, that is, R at time t. We keep plain characters for
generic purposes: e.g. the memory R, and use calligraphic letters to denote the
sequence throughout time: e.g. V :“ pV tqtPN. Finally, for any finite subsets I Ă N,
J Ă J0, s´1K and t P N, we denote sub-sequences and sub-vectors as: VI :“ pV tqtPI

and V t
J :“ pV t

jqjPJ .

5.3.2 Round Function and Message-schedule
Round function. It is applied on the inner state, and is composed of three
layers:

• a linear layer Y t :“ LpXtq.

• an AES-round layer where an AES round A (composed of SubBytes, ShiftRows
and MixColumns, but without AddKey) is applied in parallel to each AES
wire: Zt

i :“ AaipY t
iq; where A0 :“ Id and A1 :“ A.

• and an injected-value addition layer where the injected value V t of round t,
generated by the message-schedule, is added to the state: Xt`1 :“ Zt ` V t.

In the AES round layer, the AddKey step is omitted. Thus, the AESENC
instructions perform both the AES-round layer and the addition layer.

Message-Schedule. The linear message-schedule has a memory R of size r.
Each register contains a linear combination of previous message words. At round t,
m new message words are ingested, the s-long injected value V t is output and the
memory Rt is updated, in a single transition step:

@t ě 0,

ˆ

Rt`1

V t

˙

“ T

ˆ

Rt

M t

˙

. (5.2)

As highlighted by the previous equation, it is convenient to decompose T as a block
matrix.

5.4. A Searchable Space of UHFs 175

Notation 2 (T decomposition). In the following, given a transition matrix T , we
will intensively use the following decomposition and notation:

T :“
ˆ

T00 T01
T10 T11

˙

s

r

mr

(5.3)

Taking advantages of Equation 5.2 and Equation 5.3, we can easily express the
injected-values as (recursive) linear combinations of input messages blocks:

@t ě 0, Rt`1 “ T00Rt ` T01M t, V t “ T10Rt ` T11M t. (5.4)

Remark 5.1. Let I Ă N, u :“ maxpi|i P Iq. VI can therefore be viewed as a family
of |I|s linear combinations, or equivalently as a |I|sˆum matrix where each column
represents one of the um message blocks that can appear in the |I|s combinations.
We will often prefer the latter point of view.

A given injected-value sequence V can be obtained from infinitely many matrices
T . For instance, infinitely many unused memory registers could be added. It is
thus necessary to limit as much as possible this redundancy while exploring the
transition matrices T . In the next section, we start by finding a “normal form”
for the transition matrices we will study. We then limit our search by defining
an equivalence relation between injected-value sequences and finally present and
justify our search space.

5.4 A Searchable Space of UHFs
5.4.1 A Normal Form for Transition Matrices
The first notable point about transition matrices is that, at clock t, only the space
spanned by the memory registers (and not the register themselves) matters. Indeed,
the same information can be recovered from two different spanning families, only
in different representation systems. This is illustrated by the following proposition.

Proposition 5.1 (Change of basis for memory registers). Let T be a transition
matrix. Let P P GLrpF2q. Let us define T P P Mps`rqˆpm`rqpF2q such that:

T P “

ˆ

PT00P ´1 PT01
T10P ´1 T11

˙

. (5.5)

Then T P produces the same sequence V as the original matrix T .

Proof. Let us denote for any t ě 0, Rt
P , V t

P the respective memory registers and
round-message at clock t produced by T P . By adapting Equation 5.4 to T P , we
obtain:

@t ě 0, Rt`1
P “ PT00P ´1Rt

P ` PT01M t, V t
P “ T10P ´1Rt

P ` T11M t. (5.6)

176 Chapter 5. Design of Fast AES-based UHFs and MACs

By design, R0 “ 0 and R0
P “ 0 because the memory is initialized as such. In

particular R0
P “ PR0. Let t ě 0 and let suppose that Rt

P “ PRt. Then by
injecting Rt

P “ PRt into Equation 5.6 and simplifying we get,

Rt`1
P “ PT00P ´1Rt

P ` PT01M t

“ PT00P ´1PRt ` PT01M t

“ PT00Rt ` PT01M t

“ P pT00Rt ` T01M tq “ PRt`1.

This proves by induction that Rt
P “ PRt for any t ě 0.

Let t ě 0. According to Equation 5.6, V t
P “ T10P ´1Rt

P ` T11M t. Replacing
Rt

P by PRt, we obtain:

V t
P “ T10P ´1PRt ` T11M t “ T10Rt ` T11M t “ V t;

which proves the announced equality for any t ě 0.

For fixed sizes r, m, s, Proposition 5.1 in particular states that it is sufficient to
explore a single representative per similarity class for the top-left block T00. We
recall the following classical results about similarity that can be found for instance
in [DF04, Thm. 14, p. 476] or [Gan90, p. 192].

Definition 5.3 (Similarity). Let n P Nzt0u. Let F be a field. Let M, N P MnpFq.
M is similar to N if there exists a matrix P P GLnpFq such that M “ PNP ´1.

Proposition 5.2 (Normal Form for similarity). Let M P MnpFq. Let us denote
CQ the companion matrix associated to a polynomial Q P FrXs.

1. Similarity is an equivalence relation over MnpFq. We denote it „.

2. There exists a unique family (Q0, ¨ ¨ ¨ , Qℓ´1q of polynomials such that:

Qℓ´1| ¨ ¨ ¨ |Q1|Q0 and M „ DiagpCQ0 , ¨ ¨ ¨ , CQℓ´1q.

This representative is called Frobenius Normal Form or Rational Canonical
Form.

According to Proposition 5.2, it is thus sufficient to exhaust all possible
Frobenius Normal Forms rather than all r ˆ r matrices for the top left-hand
corner. This decreases the search space by a significant factor: for r “ 4, there are
216 matrices in GL4pF2q, but only 34 « 25 equivalence classes.

On top of that, Proposition 5.1 also allows to get rid of redundant memory
registers, as presented by the following corollary.

Corollary 5.1. Let T be a transition matrix. Let us denote d “ rankpT00|T01q.
Then, there exists an instance using d memory-registers which generates the same
sequence V.

5.4. A Searchable Space of UHFs 177

Proof. If d “ r then T generates V and has d memory-registers. Let us now suppose
that d ă r. In that case, we can find P P GLrpF2q such that the first r ´ d rows of
pPT00|PT01q “ P pT00|T01q are all-0. pPT00P ´1|PT01q naturally shares the same
property, and according to Proposition 5.1, T P produces the same round-message
sequence. But the r ´d first empty rows in T P indicates that the first r ´d memory
registers will be zero at any time t ě 0, and therefore will never impact the output
sequence. T P can thus be adapted by removing the r ´ d null rows in the upper
half, and removing the corresponding r ´ d columns in the left-hand half. The
obtained matrix T 1 generates the same sequence with d memory registers.

Corollary 5.1 states that after choosing a Frobenius Normal Form for T00, and
any value for T01, one can immediately look at the rank of the top half pT00|T01q.
If the top half has not full rank, the study of the matrix comes back to the study
of an instance with strictly less memory (a smaller r). If the search is done by
increasing values of r, one can restrict the search to a top half with a full rank.

5.4.2 Equivalent Injected-value Sequences
Even if we limit redundancies thanks to Proposition 5.1 and Corollary 5.1, for most
of values of r, m, s, the associated space of message-schedules remains too big. In
particular, it cannot be exhaustively searched, especially if a MILP problem needs
to be optimized for each instance.

To reduce further the explored space, we first restrict ourselves to matrices
T for which rankpT11q “ m. Indeed, if rankpT11q ă m, only a strict subspace of
the messages at round t impacts the injected values at this round. This does not
directly generate collisions, since the unused messages can be stored in memory and
used in later rounds. However, this requires extra registers whose only purpose is to
store the unused injected messages of previous rounds, increasing the memory size
r without increasing the security. Precisely, after a few rounds, such an instance
behaves as if exactly m message blocks impacted the injected values at each round;
the message blocks sequence being slightly slid. So from now on, we consider
rankpT11q “ m, and in particular, s ě m.

Secondly, we take into account our adversary in a scenario where it has a full
control over the input differences in message blocks (such as a chosen-plaintext
scenario). From this point-of-view, the implementation does not matter, only the
actual decompositions of all V t

i as linear combinations of M t1

j , i, j P J0, m´1K, t1 ď t
do. In particular, with n degrees of freedom, such an adversary can choose the
differences of n independent V t

i, rather than just the differences of n message blocks
M t

i. We thus study injected-value sequences up to linear change of variables of the
inputs.

Definition 5.4 (Linearly-equivalent injected-values sequences). Let V “ pV tqtPN
and W “ pW tqtPN be sequences of linear combinations such that, for any i, t, V t

i

depends only on M t1

j , where j P J0, m´1K, t1 ď t P N. Then, V is linearly-equivalent
to W if:

@ t P Nzt0u, D P t P GLtmpF2q, V J0,t´1K “ W J0,t´1KP t;

178 Chapter 5. Design of Fast AES-based UHFs and MACs

where P t is a lower triangular block matrix3 whose blocks are of size m ˆ m.

Remark 5.2. Let t P Nzt0u. The lower triangular form of P t implies that the
equivalence relation preserves the fact that only variables M t1

i , t1 ď t appear in
both V t and W t.

Proposition 5.3. Linear equivalence of injected-value sequences, as defined in
Definition 5.4, is an equivalence relation.

Proof. The invertible lower triangular matrices is a sub-group of GLtmpF2q. Let
t ą 0 and V J0,t´1K “ W J0,t´1KP t, W J0,t´1K “ XJ0,t´1KQt. Reflexivity is proved with
Id, symmetry using pP tq´1 and transitivity using P tQt.

Proposition 5.4. Let T be a transition matrix such that rankpT11q “ m. Then,
up to a wire permutation of the inner state, T produces a sequence V which is
linearly-equivalent to the sequence produced by rT , where:

rT “

¨

˚

˝

‹ ‹

0 Idm

‹ ‹

˛

‹

‚

s ´ m

m

r

mr

Proof. By hypothesis, rankpT11q “ m, so at each round, the information of the
m independent new message blocks is fully contained in m of the round-value
blocks. In other words, there exists m indices I “ ti0, ¨ ¨ ¨ , im´1u such that for any
t, V t

I “
`

F C
˘

ˆ MJ0,tK, where C P GLmpF2q (and F P Mmˆpt´1qmpF2q). Up to
a wire permutation of the inner state, let us assume that I “ J0, m ´ 1K. In that
case, pT10|T11q can be decomposed, such that C appears in it:

`

T10 T11
˘

“

ˆ

B C
D E

˙

s ´ m

m

mr

(5.7)

Now, let ℓ P Nzt0u and let us consider the following change of variables:

@t P J0, ℓ ´ 1K, ĂM
t :“ BRt ` CM t ðñ C´1pĂM

t
´ BRtq “ M t.

Because Rt is a linear combination of M t1

i where t1 ă t, this change of variables
corresponds to a lower triangular block matrix P t (whose diagonal is only made of
C blocks).

Decomposing V t as V t “ pV t
J0,m´1K | V t

Jm,s´1Kq, we can rewrite the linear
relations in Equation 5.4 using the decomposition of pT10|T11q given in Equation 5.7:

R0 “ 0, @t ě 0, Rt`1 “ T00Rt ` T01M t,

@t ě 0, V t
J0,m´1K “ BRt ` CM t, V t

Jm,s´1K “ DRt ` EM t.

3V J0,t´1K and W J0,t´1K are viewed as matrices of dimension ts ˆ tm, see Remark 5.1.

5.4. A Searchable Space of UHFs 179

By substituting M t in the previous equations we obtain:

R0 “ 0, @t ě 0, Rt`1 “ T00Rt ` T01C´1pĂM
t

´ BRtq,

V t
J0,m´1K “ BRt ` CC´1pĂM

t
´ BRtq, V t

Jm,s´1K “ DRt ` EC´1pĂM
t

´ BRtq;

which, once simplified and reorganized, become:

R0 “ 0, @t ě 0, Rt`1 “ pT00 ´ T01C´1BqRt ` T01C´1
ĂM

t
,

V t
J0,m´1K “ ĂM

t
, V t

Jm,s´1K “ pD ´ EC´1BqRt ` EC´1
ĂM

t
.

Thus, the sequence V, is linearly-equivalent to the sequence generated by the
transition matrix rT defined as:

rT :“

¨

˚

˝

T00 ´ T01C´1B T01C´1

0 Idm

D ´ EC´1B EC´1

˛

‹

‚

. (5.8)

rT has the announced form.

We can now present the chosen form for the explored transition matrices.

Theorem 5.1. Let T be a transition matrix such that rankpT11q “ m. Then,
up to a wire permutation of the inner state, T produces a sequence V which is
linearly-equivalent to the sequence produced by a matrix rT of the following form:

rT “

¨

˚

˝

F ‹

0 Idm

‹ ‹

˛

‹

‚

s ´ m

m

r

mr

(5.9)

where F is a Frobenius Normal Form matrix.

Proof. First using Proposition 5.4, we obtain, up to a wire permutation of the
inner state, a transition matrix rT which produces a linearly-equivalent sequence,
as in Equation 5.8. We can now use Proposition 5.1, in order to put the top
left-hand block in Frobenius Normal Form. The multiplication of the lower-left
part by P ´1 does not change the fact that the first row of this block are all-0. The
lower-right block is not modified, so Idm still appears on its first rows. T 1 has thus
the announced form.

The class of matrices presented in Theorem 5.1 is not only chosen to make the
search more efficient, but also for its sparsity to guarantee a small implementation
cost. Indeed, the Frobenius Normal Form constitutes a very sparse representative
of a similarity class: it is a sparse matrix (a diagonal block matrix) with sparse
non-empty blocks (companion blocks). The chosen form for the lower half is also
quite sparse with the 0 and Id blocks.

180 Chapter 5. Design of Fast AES-based UHFs and MACs

5.4.3 Constraints on the Linear Layer
Regarding the linear diffusion matrix L, it should be implementable with a low
number of XORs. However, we must ensure that each inner state block at round i
will eventually influence all of them. To this end, we use a simple heuristic.

Definition 5.5. Let L̂ be a matrix identical to a binary matrix L, except that its
coefficients are integers. The diffusion time of L is the smallest integer i such that
all coefficients in pL̂qi are non-zero. If no such integer exists, we set it to `8.

We consider integers rather than binary field elements so that additions do
not cancel out. Intuitively, this number tells how many rounds are needed to
ensure full diffusion in the inner part. In our search space, we generate matrices L
under weight constraints, often with a weight of s ` 1 or s ` 2 so that L can be
implemented with 1 or 2 XORs and ignore matrices with high diffusion time: we
mostly use a value of around 2 ˆ s, although we show a candidate with rate 1.75
and infinite diffusion time in Section 5.6.

5.4.4 The Actual Explored Space
The search method presented above is optimized but heuristic : we stress that
we do not assure the minimal sparsity of the studied transition matrices. Still,
the explored space contains promising candidates (see Section 5.6), that could be
further-optimized later on. Nevertheless, exhaustive search remains unreachable.
Equivalence relations on a and L could be used, but would (and in practice do)
interfere with the previous ones. Instead, we restrict the weight of a and L, as
described in Section 5.4.3 and further in Section 5.6.

5.5 Turning Collision Resistance into a MILP
Problem

The search space being established, we now focus on assessing the security of the
potential UHF candidates, by building an adapted MILP model and then solving
it thanks to an optimizer. An overview of MILP is performed in Section 2.4.

5.5.1 Prior Works
The use of MILP modeling for searching differential trails with the highest
probability was set to light by Mouha, Wang, Gu & Preneel in 2011 [MWG+11].
Several approaches exist depending on the needed level of precision and the available
computational power. In theory, by using one MILP variable for each bit of the
state at each round, all the non-linear differential transitions could be modeled
(at the cost of many constraints). This approach is in practice very costly. For
byte-aligned (resp. nibble-aligned) primitives, it is much faster and practical to
rather affect a MILP variable to each nibble (resp. byte) of the state. Yet less

5.5. Turning Collision Resistance into a MILP Problem 181

precise, such a model enables (if it can be efficiently solved) to determine the
minimum number of active Sboxes, from which an upper bound on the probability
of the best differential trail can easily be estimated. In the case of AES-based
ciphers, this method has become standard, as highlighted by Rocca [SLN+21] or
Deoxys-BC [JNP+21]. Following their lead, we consider the byte-wise approach.

To do so, we extend Notation 1 so that the byte position appears.

Notation 3. The second subscript indicates the byte position: Xi
j,ℓ is the ℓ-th byte

of Xi
j.

5.5.2 Our Model
From now on, a candidate has been chosen: s, m, r and a, T , L are now fixed. To
these constants, we add ρ, the number of rounds of the primitive to model.

Variables. Let i P J0, ρ ´ 1K be a round number, j P J0, B ´ 1K be a word number
(where the bound B P ts, m, ru depends on the register we look at) and ℓ P J0, 15K
be a byte position. We track the differential activeness of every byte throughout
the rounds by modeling each byte of the state as a binary variable, that is equal
to 0 if the byte is inactive and 1 if it is active. We use lowercase to denote the
binary variables. More precisely xi

j,ℓ, yi
j,ℓ, zi

j,ℓ, ri
j,ℓ, mi

j,ℓ, vi
j,ℓ respectively represents

the bytes Xi
j,ℓ, Y i

j,ℓ, Zi
j,ℓ, Rj,ℓ

i , M j,ℓ
i , V i

j,ℓ.

Objective. Our goal is to minimize the number of active Sboxes, represented by
the variables yi

j,l on AES wires (i.e. j P Supppaq):

Obj :“
ρ´1
ÿ

i“0

ÿ

jPSupppaq

15
ÿ

ℓ“0
yi

j,l.

Now, we present constraints that will appear in the definition of more advanced
ones.

Multiple-XOR. It models the relation
ÀN´1

i“0 Ui “ 0 where pUiqiPJ0,N´1K is a list
of N bytes represented by N binary variables puiqiPJ0,N´1K. To do so, we introduce
an auxiliary binary variable α, and two constraints:

αN ě

N´1
ÿ

i“0
ui and

N´1
ÿ

i“0
ui ě 2α.

In that way, depending on α P t0, 1u, either 0 or at least 2 bytes are active.

MDS constraint. It models the relation between an input column of bytes,
represented as the binary variables pyiqiPJ0,3K, and an output one, represented

182 Chapter 5. Design of Fast AES-based UHFs and MACs

as pziqiPJ0,3K P t0, 1u4, through the AES MDS matrix. With an auxiliary binary
variable α, and the two constraints:

10α ě

3
ÿ

i“0
yi ` zi and

3
ÿ

i“0
yi ` zi ě 5α;

either 0 or at least 5 bytes are active.

Remark 5.3. In the above constraints, Σ corresponds to an integer sum, not a
modulo-2 sum.

We can now create constraints for each layer of the round function. Let
i P J0, ρ ´ 1K.

Linear layer. The transition through L is naturally expressed by linear relations
between bytes. Denoting L “ pLj,kqj,kPJ0,¨¨¨ ,s´1K (where Lj,k P F2 for any j, k), it
holds that:

@i P J0, ρ ´ 1K, j P J0, s ´ 1K, ℓ P J0, 15K, Y i
j,ℓ “

s´1
ÿ

k“0
Lj,kXi

k,ℓ.

These constraints can therefore be modeled using a Multiple-XOR constraint.

AES-round layer. Let j P Supppaq so that an AES round is applied on the j-th
wire. The S-box layer does not change the activity pattern, but the linear layer
(ShiftRows and MixColumns) needs to be modeled. For any round i P J0, ρ ´ 1K,
and column index t P J0, 3K, the t-th diagonal of Y i

j is linked by a MDS relation
together with the t-th column Zi

j . Those relations require a MDS constraint.
When j R Supppaq, we simply add the constraints yi

j,ℓ “ zi
j,ℓ for all i, ℓ.

Message-schedule. The 128-bit linear relations between Ri, M i, Ri`1, V t given
by Equation 5.4 can be modeled with 16 Multiple-XOR constraints (one for each
byte).

Injected-value addition. For all i, j, ℓ, Xi`1
j,ℓ “ Zi

j,ℓ ` V i
j,ℓ is modeled as a

Multiple-XOR.
Finally, we add constraints on the inputs/outputs of the UHF, and constraints

to take advantage of the inherent symmetries of the AES round function.

Input constraints. At clock t “ 0, the state and memory are fully inactive.
Thus,

@ℓ P J0, 15K, j P J0, s ´ 1K, j1 P J0, r ´ 1K, x0
j,ℓ “ 0, r0

j1,ℓ “ 0.

5.5. Turning Collision Resistance into a MILP Problem 183

Message constraints. If a trail with an inactive first round exists, shifting it by
1 round makes it still a valid trail. Moreover, in the AES, any column (resp. row)
plays the same role, so any trail can be shifted so that the first difference appears
in the byte of index ℓ “ 0. By forcing at least one 0-index first-round-message
byte to be active, we facilitate the solving process, without leaving any trail aside.
Hence the symmetry constraint:

m´1
ÿ

j“0
m0

j,0 ě 1.

This model will be referred as our basic model. Additionally, we can add to
this model some output and/or linear incompatibilities constraints.

Output constraints. We can force the state to be fully inactive at the end:

@ℓ P J0, 15K, j P J0, s ´ 1K xρ
j,ℓ “ 0.

This constraint highly reduces the MILP solution space. However it is a too-strong
constraint when ρ is small: a differential trail over more rounds but with less active
S-boxes cannot be captured by the model. In practice, we iteratively increase ρ to
capture more and more trails, until a sufficient number of rounds is reached.

Removing linear incompatibilities. With the basic model, some obtained
activity patterns may not be instantiable into differential trails because of linear
incompatibilities, similar to the ones observed on AES [FJP13] or on Deoxys-
BC [CHP+17]. Unlike those ciphers, our message-schedule is acting on 128-bit
words which enables us to model the linear incompatibilities with exact constraints4.
In our case, for an AES wire of index j, we observe that MC˝SR˝SBpY i

jq‘V i
j “ Xi`1

j .
Introducing, the variables

pX
i

j :“ LIN´1pXi
jq, pV

i

j :“ LIN´1pV i
jq, xM

i

j “ LIN´1pM i
jq, pR

i

j “ LIN´1pRi
jq,

(5.10)

where LIN :“ MC ˝ SR, we can rewrite it as:

@j P Supppaq, i P J0, ρ ´ 1K, SBpY i
jq ‘ pV

i

j “ pX
t`1
j . (5.11)

Getting rid of linear incompatibilities in the model precisely means taking
Equation 5.11 into account. To do so, we introduce the binary MILP variables
x̂i

j,ℓ, v̂i
j,ℓ, m̂i

j,ℓ, r̂i
j,ℓ corresponding to the bytes of pX

i

j , xM
i

j , pR
i

j , pV
i

j . We then build
constraints corresponding to Equation 5.10 using MDS-constraints (SR only consists
in a renumbering). The bytes of pR

i

j , xM
i

j , pR
i`1
j and pV

i

j are linearly-dependent with
respect to Equation 5.4; this is encoded using multiple-XOR constraints. Finally,

4On the contrary, the tweakey-schedule of Deoxys-BC includes a byte permutation. This is
the reason why, Cid et al. used heuristic constraints based on degrees of freedom.

184 Chapter 5. Design of Fast AES-based UHFs and MACs

because SboxpY i
j,ℓq is active if and only if Y i

j,ℓ is, Equation 5.11 is encoded byte-wise
with 3-XORs between yi

j,ℓ (no hat), v̂i
j,ℓ, and x̂i

j,ℓ.
In practice the model solving is severely slowed by taking these extra constraints

into account. It however often increases the minimal number of active S-boxes.
Because of the pros and cons of each of these additional constraints, we parameterize
our model depending on them. In Section 5.6, we explain how we parameterized
the models to converge toward promising candidates.

Notation 4. Model(ρ, lin=True/False, output=True/False) is the model with ρ
rounds and with (no) output (resp. linear incompatibilities) constraints depending
on lin (resp. output).

A word on solutions. As already mentioned, a solution to these models consists
in an activity pattern, which, if it is instantiable, minimizes the number of active
S-boxes. There is however no a priori guarantee that it actually can be instantiated
as an actual differential trail. Nevertheless, if it is instantiable, and if all transitions
can occur with maximal probability, then the instantiated trail would have a
probability of pN , where N is the number of active S-boxes, and p “ δ2´k is the
probability associated to the differential uniformity δ of the k-bit S-box. Thanks
to Assumption 1, this upper bound on the probability of the best differential
trail enables to estimate the level of security of any candidate (once the solver
terminates). Section 5.6 presents our experimental results.

5.6 Experimental Results of the Search for Good
Candidates

5.6.1 Search Strategy
In order to find good candidates, we proceed as follows.

1. First, we fix some numerical values for s, m, r, and w :“ |Supppaq|, a
maximum number of XORs to implement L and T , and a diffusion time
threshold for L.

2. Then, we generate random candidates for a, L, and for T according to
Section 5.4.

3. For each generated candidate, we solve Model(ρ, lin=False, output=True)
using Gurobi [Gur23], with increasing ρ.

4. For each candidate with a sufficient number of active S-boxes (i.e. more than
24), we generate C code corresponding to the round function, compile it and
benchmark it on a recent CPU. If the software performance is high enough,
we keep the candidate.

5.6. Experimental Results of the Search for Good Candidates 185

5. Finally, we select one of the final candidates based on performance/security
trade-off, and solve Model(ρ, lin=True, output=False) with high ρ to guarantee
the security of the candidate.

In Step 2, in practice, a is generated randomly among vectors of s elements
with hamming weight m, L is generated from a random element of the symmetric
group SspF2q, of which k 0s replaced by 1s (the implementation of L thus requires
k XORs at most), and T is generated by looping over the set of possible Frobenius
Normal Forms, until the XOR-cost is less than j. The rest of the matrix T is
generated, line by line, by making sure that the XOR-cost constraint is satisfied.
In our search, k and j are empirically randomized.

In Step 3, by making ρ bigger, we go from very restrictive and quickly-solved
models to more complete but slower ones. Optionally, Step 4 can be executed before
increasing ρ, to discard non-performing candidates and avoid time-consuming MILP
solving.

Running the Search. In practice, we select ρ P t2, 3, 4, 12, 20u. At each point,
if the number of active S-boxes falls under a security threshold, the candidate is
discarded. The security threshold is fixed to 20 active S-boxes, but by using lin=True
in a later step, the minimal number of active S-boxes might increase. Between
the runs with ρ “ 12 and ρ “ 20, we automatically generate a C implementation,
compile it on-the-fly and benchmark it. If the speed (in cycles per byte) of the
candidate, falls under a speed threshold, the candidate is discarded. This threshold
depends on the parameters (chosen in Step 1) and of the processor used in the
benchmark.

Because our candidates rely on AES-NI instructions, they require at least u ˆ v
cycles per 128-bit, where u is the throughput of AESENC, and v the rate (see
Section 5.2.1). Thus, candidates with a speed close to this bound are considered
promising. In our case, we benchmark on an Intel 11th Gen Core i5-1135G7 (Tiger
Lake family), with a throughput u “ 0.5, and we mainly target round functions
with rate v “ 2. Those round functions cannot go faster than 1 cycle per 128-bit
state, i.e. 0.0625 cycles per byte. For rate-2 candidates, if w “ 8, we set the speed
threshold to 0.08 cycles per byte; if w ă 8, very few candidates are faster than 0.08
cycles per bytes, so the threshold is increased accordingly.

For each remaining candidate, we finally solve Model(20, lin=True, output=False)
in order to obtain a final bound on the number of active S-boxes.5 This heuristic
finds candidates with both good performance and security but may not be the
fastest approach. Still, it is much faster than simpler approaches such as solving the
slow-but-accurate Model(high ρ, lin=True, output=False) directly, or benchmarking
every candidate before running the fastest Model(low ρ, lin=False, output=True).

5When output=False, reducing ρ increases the solution space. Thus, a final solve with a smaller
ρ would also give a legitimate, but potentially loose lower bound, and may thus decrease the
solving time.

186 Chapter 5. Design of Fast AES-based UHFs and MACs

Table 5.2: Table of the retained candidates over different parameters sets. Speeds
were measured on a Intel 11th Gen Core i5-1135G7 (Tiger Lake) for different sizes
of message.

Speed (cy/B)

Rate w m s r XOR-cost Diffusion Security 16 kB 256 kB Descr.

2 8 4 9 4 4 15 26 0.074 0.067 Figure 5.3
1.75 7 4 10 5 5 8 23 0.079 0.068 Equation 5.12
2 6 3 7 4 4 11 25 0.086 0.080 Equation 5.13
2 4 2 6 4 3 9 24 0.104 0.099 Equation 5.14
2 2 1 4 3 4 5 23 0.180 0.175 Equation 5.15
2 1 0.51 1 5 3/12 - 26 0.374 0.371 Figure 5.4

1A message is added every other round.
2There is 1 inherent XOR in the transition matrix. Every other rounds, the message accounts

for 2 additional XORS.

Choosing the numerical parameters. We chose numerical parameters, based
on the following experimental observations. First, for a fixed rate, increasing
w (and therefore m) tends to improve the performance. Moreover, when other
parameters are fixed, increasing r or s tends to increase the security. Finally, we
limited the sizes of the state to r ` s ă 16.

We thus looked for candidates with a high w and multiple memory registers.
We also explored lighter candidates, and propose good candidates for smaller values
of w, typically w P t2, 4, 6u, which are not as fast but might be parallelizable in
some scenarios. Finally, for w “ 1, s “ 1, m “ 1, we looked at a rate-2 construction
that lies slightly outside the scope of our family by replacing any message block
M t

0 with odd t by 0.

5.6.2 Results of the Search

The results of our search are given in Table 5.3. For each set of numerical parameters,
we give the total number of candidates we considered (“Total”), the number among
them that satisfied the security threshold (“After Sec.”), and the number of among
those that also satisfied the speed threshold (“After Speed”). As we can see,
the vast majority of the candidates do not satisfy our demanding criteria, but a
broad-enough search allows us to find promising candidates. The case of w “ 1
is peculiar as such candidates are inherently slower (they are not parallelizable),
which is why the bottom right cell of the table is left empty. The properties of the
most promising candidates are given in Table 5.2. Interestingly, for a fixed rate, a
higher weight w usually means a higher speed.

5.6. Experimental Results of the Search for Good Candidates 187

L “

»

—

—

—

—

—

—

–

0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, T “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

A “ p1100111110q, r “ 5, s “ 10, m “ 4 .

(5.12)

L “

»

—

—

–

0 1 0 0 0 0 0
0 1 0 1 0 0 0
1 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 1 0 0 0 0

fi

ffi

ffi

fl

, T “

»

—

—

—

—

—

—

—

–

0 0 0 0 0 1 1
1 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 1
0 1 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, A “ p1011111q, r “ 4, s “ 7, m “ 3 .

(5.13)

L “

»

—

–

1 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

fi

ffi

fl

, T “

»

—

—

—

—

—

—

–

0 0 0 1 1 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 1 0
1 0 0 0 0 0
0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, A “ p011110q, r “ 4, s “ 6, m “ 2 . (5.14)

L “

«

0 0 1 0
1 0 0 0
0 0 1 1
0 1 0 0

ff

, T “

»

—

—

–

0 0 1 1
1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1

fi

ffi

ffi

fl

, A “ p1100q, r “ 3, s “ 4, m “ 1 . (5.15)

Figure 5.2: Specification of some UHF candidates.

188 Chapter 5. Design of Fast AES-based UHFs and MACs

Table 5.3: Number of tested and passed candidates for different settings.
Candidates were generated so that they satisfy the diffusion threshold. The
search time is given in core hours. The search was performed on Cascade Lake
Intel Xeon 5218.

Meta parameters Thresholds Candidates
Rate w m Diff. Time Security Speed Search time Total After Sec. After Speed

2 8 4 15-22 22-24 0.07 ą300k 8.0M 346 13
2 6 3 12-16 23 0.09 28k 1.2M 154 4
2 4 2 10-12 23 0.105 18k 2.2M 187 3
2 2 1 4-8 23 0.19 30k 1.2M 1,165 13
2 1 0.5 2 21/231 - 1,152 9082 9 -

1We first used lin=False with a security threshold of 21, then lin=True and a threshold of 23.
2We exhausted all candidates with r ď 5 up to tweakey sequence equivalence.

5.7 Concrete MAC Instances
Using the results of our search, we propose two new AES-based MACs: LeMac and
PetitMac. We first present the common framework we use to turn our UHF round
functions first into full-fledged UHFs, and second into MACs (Section 5.7.1). We
then provide more detailed benchmarks and compare them with the state-of-the-art
in Section 5.7.2.

5.7.1 Specifications
To turn our fast universal hash function into a MAC, we use the following strategy:

1. Using one of the round functions we obtained in our search, we get an ε-AU
family H taking an arbitrary message as input with a 128 ¨ s-bit output. The
family is indexed by the secret initial state, and we conjecture that it is a
2´128-AU family based on our MILP analysis.

2. We compose H with an ε-AXU family C taking a 128 ¨ s-bit input with a
128-bit output. We obtain an ε1-AXU family C ˝ H.

3. We use the EWCDM construction [CS16], with the ε1-AXU family C ˝ H,
and the AES block cipher.

We thus obtain a MAC whose security relies only on the PRP security of AES and
the ε-AU security of H, the former being a standard assumption, and the latter
being a consequence of our MILP-based analysis.

ε-AXU family C. We build the family C using the sum hashing construction
from [CW79, Proposition 4]. Given two ε-AXU family H1 : A1 Ñ B and H2 :
A2 Ñ B, this construction yields an ε-AXU family G : A1 ˆ A2 Ñ B defined as
G “ tm ÞÑ ph1pmq ` h2pmqq : h1 P H1, h2 P H2u. Concretely, we take the AES

5.7. Concrete MAC Instances 189

block cipher as an ε-AXU family (the ε-AXU security of AES is a consequence of
its the security as a PRP), and define the family C as:

C : x0, x1, . . . xs´1 ÞÑ

s´1
à

i“0
AESki

pxiq,

where each AES is keyed independently.
C is a 2´128-AXU family assuming that the AES is a secure PRP, and the

composition of the 2´128-AU family H and the 2´128-AXU family C yields a
2´127-AXU family C ˝ H using the composition result from [Sti92, Theorem 5.6].

EWCDM. The MAC itself follows the EWCDM construction by Cogliati and
Seurin [CS16]:

EWCDMrH, Esk1,k2,k3pM, Nq “ Ek3

`

Hk1pMq ` Ek2pNq ` N
˘

.

This construction uses a nonce to obtain high security, but it still provides security
up to 2n{2 queries if the nonces are repeated (or omitted).

When used with unique nonces, EWCDM was initially proved secure up
to 22n{3 queries, but a more recent result proved security up to essentially 2n

queries: assuming that the adversary makes less than 2n{67 queries, Mennink and
Neves [MN17] proved that:

AdvMAC
EWCDMrH,Es ď AdvPRP

F `
q

2n
`

q2ε

2n
` 2´n.

We use the EWCDM construction because it provides significantly higher
security than the more common Wegman-Carter-Shoup construction

WCSrH, Esk1,k2pM, Nq “ Hk1pMq ` Ek2pNq.

Indeed, Wegman-Carter-Shoup only provides 2n{2 security with unique nonces, and
fails completely when nonces are repeated.

Initialization. While the family is indexed by the secret initial state, we suggest
to derive it as follows: the branch with index i is initialized to EKinitpiq, where
Kinit is 128-bit secret key, and E is the AES-128 block cipher.

LeMac. It is our ultra-fast MAC algorithm. It takes as input a 128-bit nonce
and a 128-bit key, and returns 128-bit digest. It is based on the round function
summarized in Figure 5.3, which corresponds to the fastest promising candidate
we found for w “ 8.

The state is initialized as state above. During the UHF finalization, each branch
of the inner state goes through 10 independent AES rounds with subkeys that
were derived as encrypted counters. We derive only 18, and use those in a rolling
fashion in each different branch. The idea is to save space by not having to store
10 ˆ s “ 90 different 128-bit subkeys for this final step. Its specification is given in
Algorithm 5.1.

190 Chapter 5. Design of Fast AES-based UHFs and MACs

Algorithm 5.1: LeMac, with 128-bit master key K, 128-bit nonce N , and 128-bit
message blocks M0, ..., M4ℓ´1.

Ź Key derivation
Kinit Ð pAESKp0q, ...AESKp8qq

Kfinal Ð pAESKp9q, ...AESKp26qq

k2 Ð AESKp27q

k3 Ð AESKp28q

Ź UHF
X0 Ð Kinit Ź Start of initialization
R0 Ð p0, 0, 0q

Ź Padding
ℓ Ð rpbitlenpMq ` 1q{512s

M0, ..., M4ℓ´1 Ð M}10˚

M4ℓ, ..., M4ℓ`11 Ð 0
for all 0 ď i ă ℓ ` 3 do Ź Start of absorption (see Figure 5.3)

Xi`1
0 Ð Xi

0 ` Xi
8

for all 1 ď j ă 9 do
Xi`1

j Ð ApXi
j´1q

Xi`1
0 Ð Xi`1

0 ` M4i`2
Xi`1

1 Ð Xi`1
1 ` M4i`3

Xi`1
2 Ð Xi`1

2 ` M4i`3
Xi`1

3 Ð Xi`1
3 ` Ri

1 ` Ri
2

Xi`1
4 Ð Xi`1

4 ` M4i

Xi`1
5 Ð Xi`1

5 ` M4i

Xi`1
6 Ð Xi`1

6 ` M4i`1
Xi`1

7 Ð Xi`1
7 ` M4i`1

Xi`1
8 Ð Xi`1

8 ` M4i`3
Ri`1

0 Ð M4i`2
Ri`1

1 Ð Ri
0 ` M4i`1

Ri`1
2 Ð Ri

1

for all 0 ď j ă 9 do Ź Start of finalization
for all 0 ď i ă 10 do

Xℓ`3`i`1
j Ð A

´

Xℓ`3`i
j ` Kfinali`j

¯

h Ð
ř8

j“0 Xℓ`13
j

Ź EWCDM
return AESk3 ph ` AESk2pNq ` Nq

5.7. Concrete MAC Instances 191

AES AES AES AES AES AES AES AES

M2 M3 M3 M0 M0 M1 M1 M3 M2 M1

AES AES AES AES AES AES AES AES

M6 M7 M7 M4 M4 M5 M5 M7 M6 M5

AES AES AES AES AES AES AES AES

M10 M11 M11 M8 M8 M9 M9 M11 M10 M9

AES AES AES AES AES AES AES AES

M14 M15 M15 M12 M12 M13 M13 M15 M14 M13

AES AES AES AES AES AES AES AES

M18 M19 M19 M16 M16 M17 M17 M19 M18 M17

Figure 5.3: Five rounds of the UHF used in LeMac.

AES
‘

‘

AES

‘

M0 ‘ M0

Figure 5.4: Processing one message block in the UHF used in PetitMac.

PetitMac. For cases where the high parallel potential of LeMac might not be
an advantage (e.g. on smaller processors), we propose instead PetitMac, which is
based on the promising candidate we found for w “ 1 (see Table 5.2, and Figure 5.4
for its round function). It has a rate of 2, and ensures the activation of at least 26
S-boxes during absorption. Its specifications are given in Algorithm 5.2.

192 Chapter 5. Design of Fast AES-based UHFs and MACs

Algorithm 5.2: PetitMac, with 128-bit master key K, 128-bit nonce N , and 128-bit
message blocks M0, ..., Mℓ´1.

Ź Key derivation
Kinit Ð AESKp0q

Kfinal Ð pAESKp1q, ...AESKp15qq

k2 Ð AESKp16q

k3 Ð AESKp17q

Ź UHF
X0 Ð Kinit Ź Start of initialization
R0 Ð p0, 0, 0, 0, 0q

Ź Padding
ℓ Ð rpbitlenpMq ` 1q{128s

M0, ..., Mℓ´1 Ð M}10˚

for all 0 ď i ă ℓ do Ź Start of absorption (see Figure 5.4)
t Ð ApXiq ` Mi ` Ri

4
Ri`1

0 Ð Mi ` Ri
3

Ri`1
1 Ð Ri

4 ` Ri`1
0

Ri`1
2 Ð Ri

4 ` Ri
0

Ri`1
3 Ð Ri

1
Ri`1

4 Ð Ri
2

Xi`1 Ð Aptq ` Ri`1
0

Ź Finalization
for all 0 ď i ă 10 do Ź Start of finalization

Xℓ`i`1 Ð A
`

Xℓ`i ` Kfinali
˘

for all 0 ď j ă 5 do
for all 0 ď i ă 10 do

Rℓ`i`1
j Ð A

´

Rℓ`i
j ` Kfinali`j`1

¯

h Ð Xℓ`10 `
ř4

j“0 Rℓ`10
j

Ź EWCDM
return AESk3 ph ` AESk2pNq ` Nq

5.8. Conclusion 193

5.7.2 Benchmarks
In order to evaluate the performance of LeMac, we have performed comparative
benchmarks on several recent hardware architectures from Intel and AMD. We
compare LeMac with the following constructions: Rocca [SLN+21] and Rocca-
S [NFI24]; AEGIS128 [WP14] and AEGIS128L [WP13]; Tiaoxin-346 v2 [Nik14];
The rate-2 round function of Jean and Nikolić [JN16], with the same initialisation
and finalization as LeMac. Rocca, Rocca-S, AEGIS128, AEGIS128L and Tiaoxin-
346 are authenticated encryption algorithms, therefore they provide more features
than LeMac, but we believe they still provide a reasonable comparison point when
used in their associated data-processing mode.

The results are shown in Table 5.4. We observe that LeMac essentially reaches
the maximal possible performance for a rate-2 scheme on these CPU architectures:
the Haswell and Skylake architectures compute at most 1 AES round per cycle,
corresponding a limit of 0.125 cycle per byte, while the Tiger Lake and Zen 3
architectures compute at most 2 AES rounds per cycle, corresponding to a limit of
0.0625 cycle per byte. Tiaoxin, Rocca, and the Jean-Nikolić round function also
have rate 2, but they don’t allow enough parallelism to reach this bound.

We have also implemented and benchmarked PetitMac on a microcontroller
setting. More precisely, our benchmarks were run on the STM32F407VG
microcontroller, which is based on the ARM Cortex-M4 processor. For the AES
round implementation we used the T-table-based one written in ARMv7-M assembly
from [SS16] while we implemented the round function in C code. The code was
compiled using arm-none-eabi-gcc 10.3.1 with the -O3 optimization flag and the
processor was clocked at 24MHz to take advantage of zero wait-states. Processing
16384-byte messages required 299509 clock cycles (witout the initialization and
finalization), leading to 18.3 c/B. This performance places PetitMac as a very
competitive MAC on microcontrollers, even though it was not directly designed for
that platform (AES round is probably not the best starting point).

As expected, PetitMac is not competitive on high-end desktop, because we have
to perform two sequential AES rounds per input block, and the latency of the AES
instruction is the bottleneck.

5.8 Conclusion
In this chapter, we introduced a novel family of extremely fast UHFs, optimized for
servers/desktop computers with AES-NI. Our general construction is large enough
to offer high granularity to contain interesting security/performance tradeoffs, while
ensuring a manageable automated security analysis with MILP. Our strategy to
search for good candidates within this family is fully automated and adaptable to
the performance profiles of future processors. We showcased the validity of our
approach by proposing concrete UHFs and corresponding MACs, largely improving
over the state-of-the-art on recent processors. Notably, our proposal LeMac is
currently the fastest MAC on the high-profile use-case of AES-NI platforms.

194 Chapter 5. Design of Fast AES-based UHFs and MACs

Speed (c/B)

CPU Cipher 1kB 16kB 256kB

Intel Haswell (Xeon E5-2630 v3) GCM (AD only) 1.138 0.700 0.605
Rocca (AD only) 0.602 0.225 0.201
Rocca-S (AD only) 0.660 0.290 0.269
AEGIS128L (AD only) 0.542 0.299 0.285
Tiaoxin-346 v2 (AD only) 0.489 0.207 0.190
Jean-Nikolić 0.455 0.149 0.159
LeMac 0.498 0.148 0.131
PetitMac 1.116 0.890 0.876

Intel Skylake (Xeon Gold 6130) GCM (AD only) 0.817 0.396 0.370
Rocca (AD only) 0.573 0.190 0.167
Rocca-S (AD only) 0.568 0.213 0.192
AEGIS128L (AD only) 0.505 0.267 0.253
Tiaoxin-346 v2 (AD only) 0.473 0.206 0.189
Jean-Nikolić 0.389 0.142 0.130
LeMac 0.422 0.144 0.126
PetitMac 0.792 0.635 0.626

Intel Ice Lake (Xeon Gold 5320) GCM (AD only) 0.699 0.311 0.286
Rocca (AD only) 0.528 0.171 0.149
Rocca-S (AD only) 0.478 0.172 0.151
AEGIS128L (AD only) 0.416 0.208 0.195
Tiaoxin-346 v2 (AD only) 0.328 0.131 0.121
Jean-Nikolić 0.307 0.126 0.113
LeMac 0.289 0.082 0.068
PetitMac 0.521 0.384 0.376

AMD Zen1 (EPYC 7301) GCM (AD only) 0.932 0.567 0.538
Rocca (AD only) 0.431 0.147 0.127
Rocca-S (AD only) 0.438 0.159 0.142
AEGIS128L (AD only) 0.376 0.177 0.181
Tiaoxin-346 v2 (AD only) 0.358 0.142 0.129
Jean-Nikolić 0.338 0.125 0.112
LeMac 0.330 0.088 0.076
PetitMac 0.670 0.511 0.501

AMD Zen3 (EPYC 7513) GCM (AD only) 0.794 0.470 0.451
Rocca (AD only) 0.393 0.139 0.124
Rocca-S (AD only) 0.417 0.157 0.141
AEGIS128L (AD only) 0.358 0.183 0.173
Tiaoxin-346 v2 (AD only) 0.311 0.121 0.109
Jean-Nikolić 0.312 0.111 0.098
LeMac 0.309 0.085 0.072
PetitMac 0.655 0.510 0.501

Table 5.4: Benchmark results.

Chapter6Algebraic Cryptanalysis of
Arithmetization-Oriented

Primitives
This chapter presents some algebraic attacks on recent class of ciphers, named
arithmetization-oriented ciphers. We first give an introduction to algebraic attacks,
and then present some attacks on real-world ciphers, that were introduced in
a joint work with Clémence Bouvier, Gaëtan Leurent, Léo Perrin published at
ToSC 2022 [BBL+22], and in a preprint on my own [Bar24]. These attacks first
represent the target ciphers as a systems of polynomial equations, and then solve
the systems. In these attacks, we present some new modelings that reduce the
number of equations in the polynomial system of several ciphers, using algebraic
theory on Gröbner bases [Buc76]. In the next chapter, Chapter 7, we introduce a
new type of algebraic attack; so-called FreeLunch attacks.

Contents
6.1 Arithmetization-Oriented Ciphers 196

6.1.1 Context . 196
6.1.2 Security . 197

6.2 Algebraic Attacks . 198
6.2.1 Interpolation Attacks 200
6.2.2 Cube Attacks . 200
6.2.3 The GCD Attack . 201
6.2.4 Polynomial Solving Attacks 202

6.3 Background in Algebraic Geometry 203
6.4 Solving Polynomial Systems 207

6.4.1 Solving Univariate Systems 207
6.4.2 Solving Multivariate Systems 208

6.5 CICO Cryptanalysis of some AO Hash Functions 210
6.5.1 Attacks Against Round-Reduced Feistel–MiMC 210
6.5.2 Bypassing SPN Steps 212
6.5.3 Application to Round-Reduced Poseidon 214
6.5.4 Application to Round-Reduced Rescue–Prime 216
6.5.5 Experimental Results 220

6.6 Algebraic cryptanalysis of Ciminion 222
6.6.1 Specification and Security Analysis of Ciminion 224
6.6.2 Multivariate Algebraic Attack on Ciminion 227

195

196 Chapter 6. Algebraic Cryptanalysis of Arithmetization-Oriented Primitives

6.6.3 Experimental Results 230

6.6.4 Univariate Algebraic Attack on Ciminion 231

6.1 Arithmetization-Oriented Ciphers

6.1.1 Context
Some recent advanced protocols, such as Zero-Knowledge proofs (ZK), Multi-Party
Computation (MPC), or Fully-Homomorphic Encryption (FHE) have emerged as
a rising field in modern cryptography. Most ZK-proof systems, MPC and FHE
protocols operate on large finite fields Fq, q being a prime or a power of 2 typically
at least equal to 263 [BCC+12; DPS+12; DZ13; BBH+18].

The use of cryptographic permutations or symmetric key ciphers within ZK
and MPC protocols has various applications. Indeed, cryptographic permutations
are a solid building block for hash functions, which are extensively used in ZK
protocols. In MPC, the multi-party evaluation of symmetric key ciphers allows
to reduce the memory requirements when the protocol is paused: the shared data
is encrypted under a shared key, the ciphertext is then recovered and stored on a
public server, while each party keeps its share of the key until the protocol resumes.

Measuring the cost of an AES implementation in new MPC protocols has become
a standard for measuring the efficiency of a MPC protocol [PSS+09; DKL+12;
KSS13; DLT14]. However, in order to use a traditional cipher (such as the AES)
within some finite field based protocols, its implementation needs to be converted
into sequences of finite field operations. The performance of the cipher thus highly
depends on its resulting arithmetic circuit.

The term arithmetization-oriented (AO) describes primitives that are not
optimized for time and memory complexities on the usual platforms, but rater
to have an efficient representation as an arithmetic circuit, where the arithmetic
operations considered are the addition and the multiplication in a large finite
field Fq. Arithmetization-oriented ciphers (AOC) are commonly defined as ciphers
that operate directly in the native finite field Fq of a protocol, with large q. It is
important to note that AOC are only defined as families of ciphers, since there
exist as many variants of the cipher as the number of allowed field size q in the
target protocol.

In 2015, LowMC [ARS+15] was the first attempt to propose a design aiming
at minimizing the arithmetic circuit cost by minimizing the boolean multiplicative
complexity [BPP00] of the cipher. In 2016, Albrecht et al. designed the first AOC
family, MiMC [AGR+16], a family of cryptographic functions operating directly
on the native field Fq of the protocol. Multiple other AOC families were later
introduced, such as Jarvis [AD18], Vision, Rescue [AAB+20], Poseidon [GKR+21],
Ciminion [DGG+21b], Anemoi [BBC+23], Griffin [GHR+23], Hydra [GØS+23],
XHash8, XHash12 [AKM23] and Arion [RST23].

6.1. Arithmetization-Oriented Ciphers 197

MPC, FHE and ZK protocols all differ in substance, so the cost metric of a
design may only be considered relative to a specific protocol. In general, the cost of
a cipher depends mostly on the number of field multiplications, but the subtleties of
the arithmetization protocol considered impact the cost of each operation, and may
in fact enable the use of more sophisticated operations (for example, Reinforced
Concrete [GKL+22] uses the ability of Plonk [GWC19] to evaluate lookup tables).
As a first approximation, AOC should have low degree round functions. This was
the idea behind the designs Feistel–MiMC [AGR+16], Poseidon [GKR+21], and
Ciminion [DGG+21b]. Later, a more sophisticated approach was introduced by
the designers of Rescue [AAB+20; SAD20], who remarked that for some MPC and
ZK protocols, such a round function also had an efficient implementation if the
inverse of the round function had a low degree. The designers of Anemoi [BBC+23]
went further by showing that in some ZK protocols, the cost of the round function
in the protocol can be reduced to the cost of any CCZ-equivalent [CCZ98] of the
round function. Similar strategies were used in the design of Griffin [GHR+23],
XHash8, XHash12 [AKM23] and Arion [RST23].

6.1.2 Security
All AO primitives use field multiplications to provide non-linearity, and many
primitives use power-mapping S-boxes x Ñ xα, invertible when α ∤ q ´ 1. Both
the multiplication of two unkown elements and the power-mapping S-box have
strong differential and linear properties. For instance, the differential uniformity
of the power mapping x Ñ xα is α ´ 1. Indeed, the equation px ` δiq

α ´ xα “ δo

is of degree exactly α ´ 1 in x when δi, α ‰ 0, and therefore has at most α ´ 1
solutions for x, when δi and are fixed. This implies that the probability of an active
differential trail going through a component x Ñ xα is at maximum α´1

q , which is
very low for values of α and q used in practice (α ă 20 and q ą 263). This tends
to show that AOC are often strong against traditional attacks, but it should not
be generalized: Zhang et al. [ZLL+23], showed linear trails with correlation 1 exist
on Aiminion, a variant of Ciminion under weak round constants. Subspace-based
attacks against Poseidon [GKR+21] were also revealed in [BCD+20; KR21a].

Because of their rather simple algebraic representation, AOC are particularly
vulnerable to a class of attacks called algebraic attacks. These attacks exploit
low degree algebraic relations between the inputs, outputs and (if applicable) the
key. They can take different forms, and some well-known algebraic attacks are
applicable to non-AO ciphers. Among the most common algebraic attacks, we can
list cube attacks [DS08], interpolation attack [JK97], the division property [Tod15]
and Gröbner basis attacks [Buc76; SS21].

The AOC Jarvis [AD18] was found to be vulnerable to some algebraic
attacks [ACG+19]: it turns out that the system of equations used by the designers
to model its round function could be greatly simplified systematically. The initial
security margin of the AO block cipher MiMC [AGR+16] against higher-order
differentials was also re-assessed twice, first by Eichlseder et al. [EGL+20], then by

198 Chapter 6. Algebraic Cryptanalysis of Arithmetization-Oriented Primitives

Bouvier et al. [BCP23]. Beyne et al. [BCD+20] presented higher-order differentials
against the permutations GMiMC [AGP+19] and Poseidon [GKR+21].

A common method to analyse AO permutations is to consider the constrained-
input constrained-output (CICO) problem, presented in Problem 6.1. It was
initially proposed by the designers of Keccak [BDP+09] as a crucial problem for
estimating the security of permutations used in sponge constructions. A natural
instance in the context of algebraic cryptanalysis may be stated in the following
form.

Problem 6.1 (CICO problem for AO permutations). Let F : Ft
q ÞÑ Ft

q be a
permutation and 1 ď ℓ ă t an integer. The goal is to find x P t0uℓ ˆ Ft´ℓ

q such that
F pxq P t0uℓ ˆ Ft´ℓ

q .

In this thesis, we only focus on the case ℓ “ 1 for AO ciphers, and suppose
that q is large enough so that the generic method for finding a CICO problem is
unfeasible.

The pressing need for a better understanding of the security of AO hash
functions has pushed the Ethereum Foundation to put forward a bounty,
published on 01/11/2021 at https://www.zkhashbounties.info/, rewarding with
thousands of dollars the best practical attacks against round-reduced versions of
the permutations underlying several sponge-based AO hash functions, namely
Reinforced Concrete [GKL+22], Feistel–MiMC [AGR+16], Poseidon [GKR+21],
and Rescue–Prime [AAB+20]. The challenges set out by the Etheureum Foundation
are described in Table 6.1.

6.2 Algebraic Attacks
As their name suggests, algebraic attacks exploit the algebraic representation of
a cipher to recover sensitive information. They can apply to a wide range of
primitives, such as permutations, hash functions or encryption algorithms. The
attacks can be divided in several families of attack, though they might need a slight
adaptation depending on the application. In this section, we present the different
classes of algebraic attacks. Some of these attacks use advanced algorithms for
polynomial manipulation, which we desribe in a first place.

Advanced algorithms for univariate polynomial manipulation. Let
P, Q be two polynomials of degree d over a field F. Naïvely, the element-wise
multiplication P ˆ Q costs d2 multiplications over F. However, faster algorithms
exist for polynomial multiplication, using Discrete Fast Fourrier Transform
(DFT) [NN82].

Proposition 6.1 ([CK91]). Two polynomials of degree d over a field F can be
multiplied with Opd logpdqq multiplications and Opd logpdq logplogpdqqq additions in
F.

https://www.zkhashbounties.info/

6.2. Algebraic Attacks 199

Table 6.1: Sets of challenges proposed by the Ethereum Foundation.

Security Complexity of Solved
Cipher Parameters (log2)1 our attack (log2) in practice

Rescue–Prime
[AAB+20]

N “ 4, m “ 3 38 43 ✓
N “ 6, m “ 2 38 53
N “ 7, m “ 2 44 62
N “ 5, m “ 3 45 57
N “ 8, m “ 2 50 72

Feistel–MiMC
[AGR+16]

(old challenges)

r “ 6 18 19 ✓
r “ 10 30 26 ✓
r “ 14 44 33 ✓
r “ 18 56 40 ✓
r “ 22 68 47

Feistel–MiMC
[AGR+16]

(new challenges)2

r “ 22 36 47
r “ 25 40 52
r “ 30 48 60
r “ 35 56 69
r “ 40 64 77

Poseidon
[GKR+21]

RP “ 3 45 26 ✓
RP “ 8 53 35 ✓
RP “ 13 61 44 ✓
RP “ 19 69 54
RP “ 24 77 62

Reinforced Concrete
[GKL+22]

log2ppq « 48 48 -
log2ppq « 56 56 -
log2ppq « 64 64 -

1As expected by the Ethereum Foundation.
2On 23/11/2021, the Ethereum Fundation reevaluated the security of Feistel–MiMC and

proposed a new set of challenges for Feistel–MiMC to replace the old one, after we sent the
solutions to the first three old challenges.

The fast polynomial multiplications can even be speed up to Opd logpdqq

operations if a primitive root of unity is known in F, as discussed in [CK91].
Many other polynomial operations achieve quasi-linear complexities with the same
techniques. They are all based on fast polynomial multiplication, which is why a
factor logplogpdqq is added to the complexity, in the case where no primitive root
of unity is known in F.

Proposition 6.2 ([Str75]). The Euclidian division of two polynomials of degree d
over a field F can be performed in Opd logpdq logplogpdqqq operations.

Proposition 6.3 ([Moe73, Corollary 2]). The Greatest Common Divisor (GCD) of
two polynomials of degree d over a field F can be computed in Opd logpdq2 logplogpdqqq

operations.

Proposition 6.4 ([BM74]). The coefficients of a polynomial of degree d over a
field F can be interpolated with Opd logpdq2 logplogpdqqq operations.

200 Chapter 6. Algebraic Cryptanalysis of Arithmetization-Oriented Primitives

These results will be useful for complexity estimations in some algebraic attacks.
Let us present the main types of algebraic attacks.

6.2.1 Interpolation Attacks
The traditional interpolation attack [JK97] is an attack against block ciphers that
represents some public data (e.g. ciphertext. . .) as a polynomial QK , of degree d,
of public data (e.g plaintext. . .), where the coefficients of QK depend on a key K.
For instance, in the arithmetization-oriented world over a single element of Fq:

C “ QKpP q “

d
ÿ

i“0
QipKq ˆ P i.

Lagrange Interpolation. The Lagrange interpolation formula allows to recover
the polynomial Q when d ` 1 distinct values of inputs/outputs Pi, Ci (0 ď i ď d)
are known:

QKpP q “

i“d
ÿ

i“0

¨

˚

˚

˝

Ci

j“d
ź

j“0
j‰i

P ´ Pj

Pi ´ Pj

˛

‹

‹

‚

.

If the attacker choses well the plaintexts Pi, he can use the fast interpo-
lation algorithm of Proposition 6.4 to recover the data coefficients of QK in
Opd logpdq2 logplogpdqqq operations.

If d is low enough, the attacker collects d ` 1 data, performs the Lagrange
interpolation and recovers all coefficients QipKq. This allows the attacker to exactly
know the mapping QK : P Ñ C. In some cases, this also allows to recover the key.

Variants of the interpolation attack. The interpolation attack finds other
applications with nonce-based keystream-cipher. Let us take the example of an
arithmetization-oriented stream cipher on Fq and suppose that we can write a
keystream element S0 as a polynomial on the nonce N :

S0 “ QKpNq.

If the degree d of QK is low enough, the attacker can recover its coefficients
with d ` 1 data and a Lagrange interpolation.

In all cases, the interpolation requires a relatively high data complexity.

6.2.2 Cube Attacks
The cube attack is an attack that affects low-degree traditional keyed ciphers
operating on F2, presented by Dinur and Shamir at EUROCRYPT 2009 [DS09].
Since elements of in Fq with q “ 2n can be represented as n Boolean variables, the
cube attack is a threat against arithmetization-oriented ciphers, as highlighted by

6.2. Algebraic Attacks 201

the work of Eichlseder et al. [EGL+20]. The cube attack consists in an offline step,
followed by an online step. Let us denote public variables (IV bits, nonce bits,
plaintext bits. . .), as elements of F2, say x0 . . . xn´1, and private variables (key bits,
subkey bits) y0 . . . ym´1. Let us consider an output bit (ciphertext bit, keystream
bit. . .); it can be expressed as a function Q of the variables: Q “ Qpx, yq with
x “ px0 . . . xn´1q and y “ py0 . . . ym´1q.

Offline phase. Select a set I Ď t0 . . . n ´ 1u. Q can be uniquely decomposed as

Qpx, yq “ tIfIpx, yq ` rpx, yq,

where tI “ ΠiPIxi, and where for all monomials m in rpx, yq, tI ∤ m. In the offline
phase, the attacker computes formally fIpx, yq as a function of xi, i R I, and y. For
the cube attack to work, the set I should be chosen so that the polynomial fI is
sparse and easy to compute.

Online phase. Generate the data corresponding to a |I|-dimensional cube CI :
fix all variables xi for i R I, and loop through all 2|I| values of xi for i P I. Then,
sum all the output values of Q, and the following holds:

ÿ

xPCI

Qpx, yq “ fIpx, yq.

The attacker gains the knowledge of fIpx, yq, and may repeat the online phase
with other output bits or other cubes CI (by fixing xi, i R I to different values).
Each step gives information on the private variables y. The attacker then finalizes
by combining the pieces of information to recover y.

Similarly to interpolation attacks, the cube attack requires a large amount of
data.

6.2.3 The GCD Attack
The GCD attack is an attack using the low degree representation of a cipher
presented in the security analysis of MiMC [AGR+16], a cipher EK : Fq ÞÑ Fq

indexed on a key K P Fq. Let us suppose that the ciphertext C of the cipher can
be represented as a polynomial of the plaintext P and of the key K:

C “ QpP, Kq.

The attacker generates two plaintexts P0, P1 and asks for C0 “ QpP0, Kq and
C1 “ QpP1, Kq. We should note that the value K is a root of both polynomials
TipXq “ QpPi, Xq ´ Ci (i “ 0, 1). The GCD attack consists in computing the GCD
of T0pXq and T1pXq. This GCD is usually of very small degree and it is very cheap
to compute its roots. Using fast polynomial multiplication of Proposition 6.3, this
attack costs Opd log2pdq logplogpdqqq field operations, where d is the degree of Q in
K.

202 Chapter 6. Algebraic Cryptanalysis of Arithmetization-Oriented Primitives

Remark. In this case, the attacker can also use the univariate root finding
on the polynomial QpP0, Kq ´ C0, presented in Section 6.4.1, which costs
O
`

d logpdq
`

logpdq ` logpqq
˘

logplogpdqq
˘

. The GCD attack is cheaper than the
univariate root finding, but only by a logarithmic factor logpqq{ logpdq when q is
sufficiently larger than d.

6.2.4 Polynomial Solving Attacks
Polynomial solving attacks is a type of algebraic attack against ciphers which
are very efficient against arithmetization-oriented ciphers. The attack against an
arithmetization-oriented cipher on Fq consists in two steps:

• Modeling: the attacker represents the cipher as a system P of m polynomial
equations over the ring R “ Fqrx0, . . . , xn´1s:

P “

$

’

’

’

’

&

’

’

’

’

%

p0px0, . . . xn´1q “ 0
p1px0, . . . xn´1q “ 0

...
pm´1px0, . . . xn´1q “ 0.

P should have the following properties:

1. P has a finite number of solution in the algebraic closure of Fn
q .

2. P has a low number of solution in Fn
q .

3. There exists a solution of P which directly leads to a secret or unwanted
property of the cipher: e.g. the key, a subkey, a CICO solution, or a
preimage of a given hash.

• Polynomial solving: the attacker solves P to recover the solutions in the
base field Fq. In some cases, only one solution is required, such as a solution
to the CICO problem or a preimage. Several techniques exist to solve the
system. Depending on the chosen method, the complexity of this step might
vary drastically. A common way to solve the system is to use Gröbner basis
algorithms [Buc76]. This step is detailed in Section 6.4.

In this thesis, we mount multiple polynomial attacks against several AO ciphers.
We mainly consider the case where the polynomial system is well-defined, i.e. m “ n.
Note that the property 2. of the polynomial system is hard to verify beforehand,
but in practice the property has always been verified in concrete implementations.

Overall, the univariate solving tends to be much more efficient. However, it
cannot be applied to all algorithms as there are efficient methods to prevent its
applicability, as was done by the designers of Rescue–Prime.

Before diving into an in-depth analysis of the polynomial solving step, we need
to introduce a few notions in algebraic geometry.

6.3. Background in Algebraic Geometry 203

6.3 Background in Algebraic Geometry
In this section, we present relevant knowledge on algebraic geometry, required for
this chapter and for Chapter 7. This section may be hard to read on its own; its
purpose is principally to serve as reference to later results. However, the notions
presented are very common in algebraic geometry, and many introductions to the
subject exist in the literature. We refer readers interested in a further analysis of
these notions to [CLO97].

Throughout this chapter and Chapter 7, we denote the base field by Fq. We
also use the notions of polynomials and polynomial mappings interchangeably.
We study properties of the multivariate polynomial ring R “ Fqrx0, . . . , xn´1s, its
polynomial systems and ideals.

Let us denote P “ tp0px0, . . . xn´1q, . . . pn´1px0, . . . xn´1qu a set of polynomials
of R, of which we want to find the common zeros. We denote di the degree pi.

Definition 6.1. A set of polynomials

S “ tp0px0, . . . xn´1q, . . . pk´1px0, . . . xn´1qu

defines an ideal I “ xSy Ď R s.t. p P I if there exists pz0, . . . zk´1q P Rk s.t.

p “

k´1
ÿ

i“0
zipi.

In particular, we denote I “ xPy the ideal defined by our polynomial system P .
In order to study this ideal, we need the notion of monomial order, for which

we first define monomials.

Definition 6.2. A monomial is a polynomial of R of the form
śn´1

i“0 xαi
i for some

pα0 . . . αn´1q P Nn.

In particular, any polynomial of R can be expressed as a weighted sum of
monomials.

Definition 6.3. A monomial order ă is a total order on the set of monomials
of R such that iq for any monomial m P R we have 1 ă m; and iiq for any three
monomials m1, m2, t P R we have

m1 ă m2 ùñ t ¨ m1 ă t ¨ m2 .

We now define three very common monomial orders.

Definition 6.4. The lexicographical (lex) order with x0 ą x1 ¨ ¨ ¨ ą xn´1 is defined
by m0 “ xα0

0 . . . x
αn´1
n´1 ălex m1 “ xβ0

0 . . . x
βn´1
n´1 if the first non-zero element in

(β0 ´ α0, . . . , βn´1 ´ αn´1) is positive.

Definition 6.5. The graded lexicographical (deglex) order with x0 ą x1 ¨ ¨ ¨ ą xn´1
is defined by m0 “ xα0

0 . . . x
αn´1
n´1 ădeglex m1 “ xβ0

0 . . . x
βn´1
n´1 if

ř

αi ă
ř

βi, or if
ř

αi “
ř

βi and the first non-zero term in (β0 ´ α0, . . . , βn´1 ´ αn´1) is positive.

204 Chapter 6. Algebraic Cryptanalysis of Arithmetization-Oriented Primitives

Definition 6.6. The graded reverse lexicographical (grevlex) order with x0 ą

x1 ¨ ¨ ¨ ą xn´1 is defined by m0 “ xα0
0 . . . x

αn´1
n´1 ăgrevlex m1 “ xβ0

0 . . . x
βn´1
n´1 if

ř

αi ă
ř

βi, or if
ř

αi “
ř

βi and the last non-zero term in (β0 ´ α0, . . . , βn´1 ´ αn´1)
is negative.

We now define a weighted order which we use throughout Chapter 7.

Definition 6.7. Consider a weight vector w “ pw0, . . . , wn´1q P Rn, where w0 ‰ 0,
and x0 ă x1 ă . . . ă xn´1. We say that w is associated with the weighted
graded lexicographical (wdeglex) order ăw, defined by m0 “ xα0

0 . . . x
αn´1
n´1 ăw m1 “

xβ0
0 . . . x

βn´1
n´1 if

n´1
ÿ

i“0
wiαi ă

n´1
ÿ

i“0
wiβi,

or if
n´1
ÿ

i“0
wiαi “

n´1
ÿ

i“0
wiβi,

and the last non-zero term in (β0 ´ α0, . . . , βn´1 ´ αn´1) is positive.

Note that we chose the variable ordering x0 ă x1 ă . . . ă xn´1 for practical
reasons, as this can be directly applied in Chapter 7.

Definition 6.8. The leading monomial of a nonzero polynomial f P R, relative to
a monomial order ă, is the largest monomial contained in f according to ă. It is
denoted LMpfq. The leading coefficient of f , LCpfq, is the coefficient associated
with LMpfq. Finally, the leading term of f , LTpfq, is the product of its leading
monomial and coefficient.

If S “ tp0, p1, . . .u Ď R, then we can extend the above definitions to the set S,
e.g., LT pSq “ tLT pp0q, LT pp1q, . . .u. We may now define the notion of a Gröbner
basis of an ideal of R.

Definition 6.9 (Gröbner basis [Buc76]). Let I be an ideal of R. A finite set of
polynomials G Ă I is a Gröbner basis with respect to ă if the leading monomial of
every polynomial in I is a multiple of the leading monomial of some polynomial in
G. A Gröbner basis G is said to be reduced if for all g P G, no monomial in g is
divisible by an element of LTpGqztLTpgqu and LCpGq “ t1u.

An ideal I always contains a Gröbner basis. For a fixed ă there are usually
many Gröbner bases, but only one reduced Gröbner basis. We crucially rely on
the following results throughout Chapter 7.

Proposition 6.5 ([CLO97, Chapter 2, §9, Prop 4 and Thm 3]). Let G be a set
of polynomials of R, G “ tg1, ..., gmu. If the leading monomials of gi and gj are
relatively prime for all 1 ď i ‰ j ď m, then G is a Gröbner basis for xGy.

6.3. Background in Algebraic Geometry 205

Proposition 6.6 ([CLO97, Chapter 2 §6 Prop 1]). Let I be an ideal, ă a monomial
order, G a Gröbner basis of I w.r.t. ă, and f P R. There exists a unique r P R
such that:

• LTprq is not divisible by any element of LTpGq.

• g “ f ´ r P I.

The polynomial r is called the remainder or normal form of f w.r.t. I and ă.

In the following, the Gröbner basis of an ideal I refers to the unique reduced
Gröbner basis. The computation of the remainder r of f can be performed in a
finite number of steps from G, by iteratively eliminating its leading terms with
multiples of elements of G.

The Quotient Ring. We can define the quotient ring R{I, where each class has
a unique representative r such that LTprq is not divisible by any element of LTpIq.
This is known as Macaulay’s theorem [Eis13, Theorem 15.3]. The monomial order
ă does not affect the quotient ring R{I, but determines the representative of each
class. The quotient ring R{I forms a Fq-vector space

Definition 6.10. Let I be an ideal of R. We say that I is zero-dimensional if
dimFq pR{Iq is finite. In this case, its ideal degree DI is dimFq pR{Iq.

First, given a zero-dimensional ideal I, it is possible to bound its ideal degree
from the degrees of its generating polynomials.

Proposition 6.7. Let p0 . . . pn´1 be polynomials of R, of degree respectively
d0 . . . dn´1. Let I “ xp0 . . . pn´1y be the zero-dimensional ideal generated by the
polynomials pi. The Bezout bound states that

DI ď

n´1
ź

i“0
di.

The Bezout bound is very useful in cryptanalysis, as it allows to bound the
ideal degree of an ideal, and thus to bound the complexities of some Gröbner basis
algorithms.

The quotient ring R{I has a canonical basis with respect to ă denoted BăpR{Iq,
where the basis elements are given by all the monomials in R that are not in the
ideal xLMpGqy, for G a Gröbner basis for pI, ăq. If I is zero-dimensional, we have
|BăpR{Iq| “ DI . Each element r of R{I can then be written as a vector in the
basis BăpR{Iq, which we call NormalFormprq. This allows us to define the linear
matrix Tj : R{I Ñ R{I corresponding to the multiplication by xj .

Definition 6.11. The multiplication matrix Tj of xj relative to a zero-dimensional
ideal I, a monomial order ă, and the basis BăpR{Iq “ pϵ1, . . . , ϵDI

q is defined as
the square matrix which has each column defined as Ci “ NormalFormpϵi ˆ xjq

represented in the basis BăpR{Iq.

206 Chapter 6. Algebraic Cryptanalysis of Arithmetization-Oriented Primitives

The following result is well-known in the literature, but we have not been able
to find a reference that holds for finite fields (e.g., it is derived as Corollary 4.6 in
[CLO98] over C). For completeness, we provide a short proof that works over any
field.

Proposition 6.8. Let I be a zero-dimensional ideal of R, ă a monomial order,
and T0 the multiplication matrix of the variable x0 with respect to ă. We have
detpx0I ´ T0q P I, where I is the identity matrix.

Proof. Let CpXq “ detpXI ´ T0q “
řDI

i“0 ciX
i be the characteristic polynomial

of T0. By the Cayley-Hamilton theorem we have CpT0q “
řDI

i“0 ciT
i
0 “ 0, where

0 is the DI ˆ DI zero-matrix. Letting ϵ denote the column vector representing
the constant polynomial 1 in R{I, we then have CpT0qϵ “ 0. As T i

0ϵ is the
representation of NormalFormpxi

0q, this implies that NormalFormpCpx0qq “ 0,
hence Cpx0q P I.

We here present an interesting property of the multiplication matrix, due to
the algebraic structure of the ring R{I:

Definition 6.12 (Sparsity indicator of a matrix). The sparsity indicator t of a
square matrix M of dimensions d ˆ d in a field F is the average number of non-zero
values in each column. It is given with the following formula:

t “
1
d

ÿ

pi,jqPJ1,dK2

1Mri,js‰0.

Property 6.1 ([FM17, Corollary 6.10]). Let R “ Fqrx0 . . . xn´1s, I an ideal
generated from a random set of polynomials of degree d, and the ideal degree DI .
Let T0 be the multiplication matrix w.r.t. x0 and t its sparsity indicator. As d Ñ ∞,
if the Moreno-Socías conjecture [MS91] holds,

t „ DI ˆ

c

6
nπ

{d.

The next two definitions are a standard hypothesis for an ideal when
implementing Gröbner basis polynomial solving algorithms.

Definition 6.13 ([BND22], Definition 2.1). An ideal I of R satisfies the stability
property with respect to x0, a monomial order ă and its corresponding Gröbner
basis G if for all m P LMpGq such that x0|m, mxi

x0
P LMpGq for all i P t1, . . . , n´1u.

Definition 6.14 ([FM17], Definition 3.1). An ideal I of R is in shape position if
its reduced Gröbner basis in the lexicographical order has the following form:

G “ tf0px0q, x1 ´ f1px0q, . . . , xn´1 ´ fn´1px0qu.

6.4. Solving Polynomial Systems 207

If the ideal I is in shape position, it follows straightforwardly that DI “ degpf0q,
and the cost of finding common zeros for I, given its lexicographic Gröbner basis,
reduces to the problem of finding the roots of f0.

The following definition of regularity is an important hypothesis on in the
complexity estimations of many Gröbner basis algorithms.

Definition 6.15. Let P “ pp0 . . . pn´1q be a polynomial system over R “

Fqrx0, . . . , xn´1s. P is said to be regular if for all 0 ď i ď n ´ 1,

gpi P xp0, . . . , pi´1y ñ g P xp0, . . . , pi´1y.

The Fröberg conjecture states random polynomial systems [Frö85] are regular,
and polynomial systems in cryptography are often considered regular, partly
because the study of non-regular systems is difficult and very system-dependent.

Dubois et al. in [DG10, Section 2.2] give a definition of the degree of regularity
Dreg of I. The definition involves non trivial notions that are not necessary in this
thesis, so we simply refer to their definition. Indeed, we only use Dreg as a bound
for some Gröbner basis algorithm complexity estimations. The following result
holds:

Proposition 6.9 (Macaulay bound). The Macaulay bound gives an upper bound to
the degree of regularity of a polynomial system. The bound is reached in particular
if the system is regular1:

Dreg ď 1 `

n
ÿ

i“1
pdi ´ 1q.

6.4 Solving Polynomial Systems
The notions presented in Section 6.3 allow us to go over the state-of-the-art
algorithms of polynomial system solving. Two types of polynomial systems must
be treated separately: univariate and multivariate systems.

6.4.1 Solving Univariate Systems
In the univariate case, we have a system with a single equation and a single variable:

P pxq “ 0.

Solving the system is equivalent to finding the roots of the polynomial P P Fqrxs.
We denote dp“ DIq the degree of P .

Using the following method, finding the roots requires only

O
`

d logpdq
`

logpdq ` logpqq
˘

logplogpdqq
˘

field operations:
1Note that the upper bound does not require the system to be regular.

208 Chapter 6. Algebraic Cryptanalysis of Arithmetization-Oriented Primitives

1. Compute Q “ xq ´ x mod P .
The computation is performed with a double-and-add algortihm. We multiply
two polynomials of degree d with Opd logpdq logplogpdqqq field operations
(Proposition 6.1), and compute the remainder of a polynomial of degree
2d by a polynomial of degree d in Opd logpdq logplogpdqqq field operations
(Proposition 6.2). In total, this step costs Opd logpqq logpdq logplogpdqqq field
operations.

2. Compute R “ gcdpP, Qq.
R has the same roots as P in the field Fq since R “ gcdpP, xq ´ xq, but its
degree is much lower (it is exactly the number of roots in Fq).
This requires Opd log2pdq logplogpdqqq field operations (Proposition 6.3).

3. Factor R.
In general, R is of very low degree because P has few roots in the field, and
this step is of negligible complexity.

Note that finding the roots inside the field is significantly easier than factoring
the polynomial. In particular, one of the “six worlds of Gröbner basis cryptanalysis”
of Koschatko et al. [KLR24], i.e. the theoretical complexity of the univariate
solving, can be improved by considering the complexity computed in this section
rather than the complexity of polynomial factoring.

For practical instances, we use the NTL library [Sho], a C++ library for number
theory, and the computation is feasible for a degree up to roughly 232p« 320q in
a prime field Fp with p « 264. We present some benchmarks in Section 6.5.5 for
polynomials given by round-reduced versions of Feistel–MiMC, of Poseidon and for
random polynomials.

6.4.2 Solving Multivariate Systems
In the multivariate case, we only consider well-defined systems, i.e. systems with
as many variables as equations; the system to solve is composed of n polynomials
in Fqrx1, . . . , xns. The complexity of solving this type of system largely depends
on the underlying structure. In some cases, some variables xi can be substituted
in the system, and the solving can be reduced to the problem of solving a system
with fewer equations and fewer variables. A thorough analysis of specific non
regular systems is very complex for the designers, therefore a common practice is
to estimate the complexity of the Gröbner basis attack for an equivalent regular
system, and to add extra rounds to account for the non-regularity of the system.
The regularity of a system is an expected property of random systems, under the
Fröberg conjecture [Frö85], but it should be noted that many systems based on
cryptographic problems are not regular, as discussed below.

Let us denote P “ tp0 . . . pn´1u the multivariate system to solve, di the degree
of the polynomial pi, DI the degree of the ideal I “ xp1, . . . , pny, and Dreg its
degree of regularity.

6.4. Solving Polynomial Systems 209

The goal of the Gröbner basis attack is to recover the solutions of the sytem,
and this can be done by computing its lex Gröbner basis. If the ideal is zero-
dimensional, the first element of the lex Gröbner basis is univariate in the first
variable, and its roots can be recovered with univariate solving. In practice, directly
computing the Gröbner basis in lex order is prohibitively expensive. Instead, the
traditional Gröbner basis attack consists in the following three steps:

1. First compute the Gröbner basis in the grevlex order. The current fastest algo-
rithm for this step is F5 [Fau02], with a complexity of O

´

`

n`Dreg

Dreg

˘

¯ω
[BFS04],

where 2 ď ω ď 2.38 is the coefficient of fast linear algebra. This bound is
however not tight.

2. Apply a change of order algorithm to produce a lex Gröbner basis from
the grevlex Gröbner basis. Different algorithms exist, with different
complexity formulas. FGLM was first designed in 1993 [FGL+93], with
a complexity in OpnD3

I q under no assumption. It was then improved to
OpDω

I q [FGH+14a; NS20] and to OptD2
I q [FM17], where t is the sparsity

indicator of the multiplication matrix T1, under the shape and stability
assumptions. Variables can of course be reordered to select the sparsest matrix
Ti. Recently, Berthomieu et al. improved the change of order algorithm
using Hermite Normal Forms (HNF) [BND22], under the shape and stability
assumptions, lowering the complexity to Õptω´1DIq. A comparison of the
strengths and limits of these algorithms is given in Section 7.1.2. In this
section, most systems do not possess the stability property, therefore we only
use the complexity OpnD3

I q for our attacks, unlike what was performed in
our original paper [BBL+22].

3. The lex Gröbner basis is of the form:
␣

f0px0q, f1,0px0, x1q, . . . f1,k1px0, x1q, . . . fn´1,kn´1px0, . . . , xn´1q
(

.

Solutions for x0 can be found by applying an efficient univariate root finding
algorithm to the polynomial f0 (of degree at most DI), in ÕpDIq. Then, we
can efficiently recover the values of x1, . . . , xn by progressively substituting
the xi and solving univariate equations. The complexity of this step is
negligible compared to the first two.

Theoretical complexity. For random systems, the Macaulay and Bezout bounds
are reached, and the complexity bounds are tight. In this case, the complexity of
the first step (F5) dominates the complexity of the second step (Fast-FGLM or
HNF). For instance, when the polynomials have the same degrees di “ δ, we have
the following: DI “ δn, Dreg “ n ˆ δ ´ n ` 1. This implies

ˆ

n ` Dreg
Dreg

˙

“

ˆ

nδ ` 1
n

˙

“
nδ ` 1

n
¨

nδ

n ´ 1 ¨
nδ ´ 1
n ´ 2 ¨ ¨ ¨ ¨ ¨

nδ ´ n ` 2
1 ě δn .

210 Chapter 6. Algebraic Cryptanalysis of Arithmetization-Oriented Primitives

Which in turn implies:
ˆ

n ` Dreg
Dreg

˙ω

ě Dω
I ě tω´1DI .

Remarks. In practice however, the systems corresponding to symmetric ciphers
are often not regular. The non-regularity affects most strongly the degree of
regularity, but the ideal degree can also be smaller than expected, as demonstrated
by the implementation of Ciminion multivariate modeling of Section 6.6.3 and by
the modeling of Anemoi [BBC+23]. In the worst case scenario, Gröbner basis can
be directly computed from the modeling of the cipher. For instance, the Flurry
and Curry ciphers [BPW06b] were designed to possess such a property. This
property was also discovered on AES [BPW06a] and later on MiMC [ACG+19].
In Chapter 7, we show that a Gröbner basis under weighted monomial orders can
be freely expressed from the algebraic representations of several ciphers, such as
Anemoi [BBC+23], Arion [RST23], Griffin [GHR+23], and XHash8 [AKM23].

6.5 CICO Cryptanalysis of some AO Hash Func-
tions

In this section, we report our theoretical and experimental results in solving the
CICO problem for the challenges put forward by the Ethereum Foundation. This
section puts forward some of the results obtained in the work [BBL+22]. The
theoretical results against Feistel–MiMC are presented in Section 6.5.1. Section 6.5.2
presents a technique to bypass the first two rounds of SPN ciphers (or steps in the
sense of Rescue–Prime), while Section 6.5.3 and Section 6.5.4 apply this technique
on respectively Poseidon and Rescue–Prime. The corresponding experimental
results are detailed in Section 6.5.5.

These ciphers all operate on Fm
p with p prime and m ě 2. The complexities

of some of our attacks are in line with the designers’ claims, although there were
wrongful claims from the Ethereum Fondation. However, we have found that,
in practice, the exact claimed security level for a given number of rounds is not
always clear. Furthermore, breaking challenges in practice gives a more concrete
understanding of the security of reduced versions (we focus on upper bounds rather
than lower bounds). Besides, in the designer’s analysis some optimistic complexity
assumptions are made (eg. ignoring log factors, or taking a small omega) but in
this chapter we propose a more accurate analysis.

6.5.1 Attacks Against Round-Reduced Feistel–MiMC
Design description. Feistel–MiMC is a Feistel network, based on the simple
structure of MiMC, introduced by Albrecht et al. at Asiacrypt 2016 [AGR+16]. It
operates on F2

p (m “ 2) using a basic r-round Feistel structure with the i-th round

6.5. CICO Cryptanalysis of some AO Hash Functions 211

function being x ÞÑ px ` ciq
α (where in this chapter, we take α “ 3, as fixed by

the author of the Ethereum’s challenges).

xL xR
ci

‘ ‘xα

Figure 6.1: Round i of Feistel–MiMC.

Attack description. In order to build a polynomial system representing the
CICO problem, we consider an input state pp0, q0q “ px, 0q, with x the indeterminate
of a polynomial ring. Then we evaluate the round function iteratively, as
polynomials in Fprxs:

p0 “ x, q0 “ 0,

pi “ qi´1 ` ppi´1 ` ciq
3, qi “ pi´1 .

The CICO problem becomes qr “ 0: we just have to find the roots of qr “ pr´1.
In practice, we use SageMath to generate the polynomial, and we compute the

roots either directly from SageMath, or with an external program using NTL.

Complexity Analysis. Since the round function has degree 3, we obtain a
univariate polynomial pr´1 of degree d “ 3r´1 after r ´ 1 rounds. We can estimate
the complexity of finding the roots as:

d logpdq
`

logpdq ` logppq
˘

logplogpdqq « 3r´1 ˆ pr ´ 1q ˆ 1.58 ˆ 64 ˆ log2pr ´ 1q.

We give explicit values for the proposed challenges in Table 6.2. Parameters have
changed while we were working on it, so “old” (Table 6.2a) and “new parameters”
(Table 6.2b) are two sets of parameters proposed by the Ethereum Fondation, the
first ones being less secure than the latter ones.

We observe that the initial security claims from the Ethereum Foundation
are close to 32r. This likely corresponds to an estimation of the complexity of a
Gröbner base attack using r equations of degree 3 in r variables: the corresponding
complexity would be 3ωr ě 32r.

Besides, the original specification of Feistel–MiMC states that Lagrange
interpolation attacks are expected to have a complexity of r ¨ 32r´3, while GCDs
attacks are expected to have a complexity of r2 ¨ 3r{2´3. As the GCD attack
only applies for keyed variants of Feistel–MiMC, it does not apply in our context.
However, we have chosen to put both in Table 6.2 for a fairer comparison.

212 Chapter 6. Algebraic Cryptanalysis of Arithmetization-Oriented Primitives

r
Authors claims Ethereum claims d complexityLagrange GCD

6 216 25 218 35 219

10 230 29 230 39 226

14 243 213 244 313 233

18 256 217 256 317 240

22 269 221 268 321 247

(a) Old parameters.

r
Authors claims Ethereum claims d complexityLagrange GCD

22 269 221 236 321 247

25 279 224 240 324 252

30 295 228 248 329 260

35 2111 233 256 334 269

40 2127 237 264 339 277

(b) New parameters.

Table 6.2: Complexity of our attack against Feistel–MiMC, compared with the
security claims given by the authors and by the challenges. Complexity figures in
bold correspond to attacks that we have implemented in practice.

6.5.2 Bypassing SPN Steps
Let π “ π0 ˝ π1 be a permutation of Fm

p , and Z be the vector space Fm´1
p ˆ t0u.

Suppose that there exist two vectors V and G in Fm
p such that

π´1
0 pxV ` Gq P Z

for all x P Fp. In this case, we write all the intermediate variables of π1 as
polynomials in x, starting from the state xV ` G, and evaluating round operations
one by one as polynomials. Then we can find r such that π1prV ` Gq P Z by
finding a root r of the polynomial corresponding to the last coordinate of the
output. Finally, setting y “ π´1

0 prV ` Gq yields a solution to the CICO problem,
while the solver has to handle a polynomial based on π1 rather than the full π.
This approach is summarized in Figure 6.2, and we used it against both Poseidon
(see Section 6.5.3) and Rescue–Prime (see Section 6.5.4).

Let us describe this trick in more detail. First, for the sake of consistency, we
use steps when referring to the constant addition, the S-box, and the linear part.
Then one round of Poseidon consists of one step, and one round of Rescue–Prime
of two steps: one using S as S-box, the other using S´1.

We consider π0 to be two steps of an SPN construction without the final linear
layer: addition of rounds constants, S-box layer S1, linear layer consisting of a
multiplication by an MDS matrix, and S-box layer S2. We require the S-boxes to

6.5. CICO Cryptanalysis of some AO Hash Functions 213

y P Z

xV ` G

πpyq “ z P Z

π0

π1

Po
ly

no
m

ia
ls

ys
te

m
Pr

“
1

Figure 6.2: A 2-staged trick.

be monomial functions, so that SpAxq “ SpAqSpxq. The question of whether the
attack can be adapted to the case where the condition is not verified is an open
problem.

We use cr
i to denote the i-th round constant used in step r. We let the linear

layer M be such that:

M´1 “

»

—

—

—

–

α0,0 α1,0 . . . αm´1,0
α0,1 α1,1 . . . αm´1,1

...
...

α0,m´1 α1,m´1 . . . αm´1,m´1

fi

ffi

ffi

ffi

fl

.

Case m “ 3. We start with the special case m “ 3, and we denote the state after
π0 as px, y, zq, with three variables. As seen in Figure 6.3, we have π´1

0 px, y, zq P Z
if and only if

S1pc0
2q “ α0,2pS´1

2 pxq ´ c1
0q ` α1,2pS´1

2 pyq ´ c1
1q ` α2,2pS´1

2 pzq ´ c1
2q

“ α0,2S´1
2 pxq ` α1,2S´1

2 pyq ` α2,2S´1
2 pzq ´ pα0,2c1

0 ` α1,2c1
1 ` α2,2c1

2q.

In order to simplify the equation, we fix z to a constant value g with:
g “ S2pα´1

2,2pα0,2c1
0 ` α1,2c1

1 ` α2,2c1
2 ` S1pc0

2qqq. We obtain:

π´1
0 px, y, gq P Z ðñ α0,2pS´1

2 pxqq “ ´α1,2pS´1
2 pyqq

ðñ S2pα0,2qx “ S2p´α1,2qy.

Therefore, we obtain an affine space with π1pxV ` Gq P Z by choosing:

V “ p1, S2pα0,2q{S2p´α1,2q, 0q and G “ p0, 0, gq .

214 Chapter 6. Algebraic Cryptanalysis of Arithmetization-Oriented Primitives

?

c0
0‘

?

c0
1‘

0

c0
2‘

S1 S1 S1

? ? S1pc0
2q

M

S´1
2 pxq ´ c1

0 S´1
2 pyq ´ c1

1 S´1
2 pzq ´ c1

2

c1
0 c1

1 c1
2‘ ‘ ‘

S2 S2 S2

x y z

Figure 6.3: Bypassing Two SPN Steps (m “ 3).

General case (m ě 3). In general, we take V “ pS2pA0q, . . . , S2pAt´2q, 0q and
G “ p0, . . . , 0, gq, such that we can consider an input state after the S-box layer of
the second step of the form pS2pA0qx, . . . , S2pAt´2qx, gq, and study the first two
steps as shown in Figure 6.4.

Following Figure 6.4, the value S1pc0
m´1q must satisfy

S1pc0
m´1q “

m´2
ÿ

j“0
αj,2pAjS´1

2 pxq ´ c1
j q ` αm´1,2pS´1

2 pgq ´ c1
m´1q

“ S´1
2 pxq

˜

m´2
ÿ

j“0
αj,2Aj

¸

` αm´1,2S´1
2 pgq ´

m´1
ÿ

j“0
αj,2c1

j .

It is the case provided for instance that:
$

&

%

At´2 “ ´
řm´3

j“0
αj,2

αs´2,2
Aj

g “ S2

´

1
αm´1,2

řm´1
j“0 αj,2c1

j ` S1pc0
m´1q

¯

.
(6.1)

Thus, if we find a value x such that the image of pS2pA0qx, . . . , S2pAt´2qx, gq

through R ´ 2 steps of the primitive is equal to p˚, . . . , ˚, 0q, then we are always
able to deduce an input px0, x1, . . . , xm´2, 0q for R steps of the primitive that is
mapped to Z.

6.5.3 Application to Round-Reduced Poseidon
Design description. Poseidon [GKR+21] is a family of hash functions, based on
the HADES design strategy [GLR+20]. The internal permutation is composed of

6.5. CICO Cryptanalysis of some AO Hash Functions 215

?

c0
0‘

?

c0
t´2‘

0

c0
t´1‘

S1 . . . S1 S1

? ? S1pc0
t´1q

M

A0S´1
2 pxq ´ c1

0 At´2S´1
2 pxq ´ c1

t´2 S´1
2 pgq ´ c1

t´1

c1
0 c1

t´2 c1
t´1‘ ‘ ‘

S2 . . . S2 S2

S2pA0qx S2pAt´2qx g

Figure 6.4: Bypassing Two SPN Steps (general case).

r “ RF ` RP rounds of two different types: full rounds have m S-box functions, and
partial rounds have only 1 S-box and m´1 identity functions. Each round function
consists of adding the round constants2, applying partial or full S-box layers S,
and then multiplying the state by an MDS matrix (M). The permutation starts
with Rf “ RF{2 full rounds, followed by RP partial rounds, and finally Rf “ RF{2
full rounds.

The challenges from the Ethereum Foundation use m “ 3, the S-box is x ÞÑ x3

and RF “ 8 is fixed, while RP varies according to the security level required.

...
AddC

S

S

S

MDS . . .

Rf rounds

...
AddC

S

MDS . . .

RP rounds

...
AddC

S

S

S

MDS

Rf rounds

Figure 6.5: Overview of the construction of Poseidon.

2For the sake of consistency of the different hash functions presented in this chapter, we note
the addition of constants: “AddC”.

216 Chapter 6. Algebraic Cryptanalysis of Arithmetization-Oriented Primitives

Attack description. A basic encoding of Poseidon into equations can be solved
quickly for a small number of rounds. In fact, it was sufficient for us to be able
to claim the first bounty offered by the Ethereum Foundation for this algorithm.
However, we needed to use the technique described in Section 6.5.2 for subsequent
challenges. The idea is to decrease the degree and the complexity of the polynomial
system by more carefully choosing its variables.

Let m “ 3, and S1, S2 such that S1pxq “ S2pxq “ x3. Then, applying our trick
for SPN rounds, we consider an input state after the S-box layer of the second
round of the form pA0

3x, A1
3x, gq (i.e. we use V “ pA0

3, A1
3, 0q and G “ p0, 0, gq).

We obtain
$

&

%

A1 “ ´
α0,2
α1,2

A0

g “

´

1
α2,2

`

α0,2c1
0 ` α1,2c1

1
˘

` c1
2 ` pc0

2q3
¯3

.
(6.2)

Therefore, we evaluate the permutation as polynomials in Fprxs starting from
the state pA0

3x, A1
3x, gq with A0, A1, g satisfying Equation 6.2, and the CICO

problem is equivalent to finding the root of the polynomial corresponding to the
rightmost branch of the output.

In practice, we use SageMath to generate the polynomial, and we compute the
roots either directly from SageMath, or with an external program using NTL.

Complexity Analysis. Poseidon has r “ RF ` RP rounds in total, but we skip
the first two rounds using the trick. Therefore, we obtain a univariate polynomial
of degree d “ 3r´2, and we can estimate the complexity of finding the roots as:

d logpdq
`

logpdq ` logppq
˘

logplogpdqq
˘

« 3r´2 ˆ pr ´ 2q ˆ 1.58 ˆ 64 ˆ log2pr ´ 2q.

We give explicit values for the proposed challenges in Table 6.3, along with
the corresponding security claims. For the challenges issued by the Ethereum
foundation, the claim was that an attack would require at least 237`s steps, where
s is a “security” level specified in bits, and is equal to 8, 16, 34, 32 and 40 when RP
is equal to 3, 8, 13, 19 and 24 respectively.

The original specification of Poseidon states that interpolation attacks are
expected to have a complexity similar to the one of our attacks, namely about
αRP`RF [GKR+21, Equation (3)]. However, the challenges of the Ethereum
Foundation3 appear to claim a higher security level.

6.5.4 Application to Round-Reduced Rescue–Prime
Design description. Rescue is a family of AO hash functions, that was first
proposed as part of Marvellous designs [AAB+19]. Rescue has the particularity
of using both a low degree S-box and its inverse. Indeed, each round of Rescue,
consists of two steps: while the first one involves an S-box S, an MDS matrix M ,

3We observe that this claim is close to 33RF`RP, but it is unclear which attack it corresponds
to.

6.5. CICO Cryptanalysis of some AO Hash Functions 217

RP Authors claims Ethereum claims d Complexity
3 217 245 39 226

8 225 253 314 235

13 233 261 319 244

19 242 269 325 254

24 250 277 330 262

Table 6.3: Complexity of our attack against Poseidon, compared with the security
claims given by the authors and by the challenges, with RF “ 8. Complexity figures
in bold correspond to attacks that we have implemented in practice.

and the addition of the round constants, the second one is quite similar but replaces
S with its inverse S´1. The two steps of each round are described in Figure 6.6.

For our study, we use the specifications of Rescue–Prime [SAD20], which means
in particular that in each round, we first apply S and then S´1 (rather than the
contrary as described in the original paper [AAB+19]).

The challenges from the Ethereum Foundation use m “ 3 or m “ 2, and the
S-boxes are x ÞÑ x3 and its inverse x ÞÑ x1{3.

Xi

Yi

...

S

S

S

MDS
...

AddC
...

S´1

S´1

S´1

MDS
...

AddC

Xi`1

Yi`1

...

P i Qi

Figure 6.6: Round i of Rescue–Prime.

Attack description. Rescue–Prime cannot be efficiently written as a univariate
polynomial system, because it uses both the S-boxes x ÞÑ x3 and x ÞÑ x1{3. Each
S-box has a low univariate degree in one direction, but a high degree in the other
direction. Therefore, we add intermediate variables so that each S-box can be
described with a low-degree equation, and we build a multivariate system.

More precisely, let us consider Rescue–Prime with a t-element state (m “ 2 or
m “ 3) and N rounds. We use variables px0, y0, . . .q to represent the input and
pxi, yi, . . .q to represent the internal state after the i-th round (mpN ` 1q variables
in total). As shown in Figure 6.6, we can write m equations linking the m variables
at the input and output of round i, using only the direct S-box x ÞÑ x3. Therefore,
we have degree-3 equations:

@j P t1, . . . , mu, pi,jpxi, yi, . . .q ´ qi,jpxi`1, yi`1, . . .q “ 0 .

218 Chapter 6. Algebraic Cryptanalysis of Arithmetization-Oriented Primitives

If we add equations x0 “ 0 and xN “ 0, we obtain a system of polynomial
equations representing the CICO problem. We observe that the input variables can
be removed. Indeed, each Spx0q, Spy0q, . . . can be written as degree-3 polynomial of
x1, y1, Given that Spx0q “ 0, it follows that we can only keep the corresponding
polynomial equal to 0, and then remove the input variables. We can also remove
xN because it is fixed to zero, and we obtain a system of mpN ´ 1q ` 1 equations
and mN ´ 1 variables.

With m “ 2, we have the same number of equations and variables. However,
with m ě 3 we have more variables than equations, and we can use the trick of
Section 6.5.2 to obtain a smaller system corresponding to a subset of the solutions
with one solution on average.

Bypassing the First Round when m = 3. Let us repeat the idea described
in Section 6.5.3 and apply it to Rescue–Prime.

Let m “ 3, and S1, S2 such that S1pxq “ x3, and S2pxq “ S´1
1 pxq “ x1{3. We

consider an input state after the S-box layer of the second round of the form
pA0

1{3x, A1
1{3x, gq (i.e. we use V “ pA0

1{3, A1
1{3, 0q and G “ p0, 0, gq).

We first notice that we can switch the order of the multiplication by the MDS
matrix and the addition of the constants. Let

¨

˝

C0
0

C0
1

C0
2

˛

‚“ M´1

¨

˝

c0
0

c0
1

c0
2

˛

‚ .

In particular, we have:

C0
2 “ α0,2c0

0 ` α1,2c0
1 ` α2,2c0

2 .

As a consequence, using the same notation as above, the value C0
2 , in Figure 6.7,

must satisfy

C0
2 “ α0,2A0x3 ` α1,2A1x3 ` α2,2g3

“ x3 pα0,2A0 ` α1,2A1q ` α2,2g3 .

It is the case provided for instance when:
$

&

%

A1 “ ´
α0,2
α1,2

A0

g “

´

1
α2,2

`

α0,2c0
0 ` α1,2c0

1
˘

` c0
2

¯1{3
.

(6.3)

Recalling that one round corresponds to two steps, it follows that, if we find
a value x such that the image of pA0

1{3x, A1
1{3x, gq through R ´ 1 rounds of

Rescue–Prime (and a linear layer) is equal to p˚, ˚, 0q, then the corresponding input
through R-round Rescue–Prime is in Z.

Then, for the remaining R ´ 1 rounds, Figure 6.6 shows how we generate the
following polynomial equations to avoid the inverse S-box.

@j P t0, 1, 2u, pi,jpxi, yi, ziq ´ qi,jpxi`1, yi`1, zi`1q “ 0 .

6.5. CICO Cryptanalysis of some AO Hash Functions 219

? ? 0

S S S

C0
0‘ C0

1‘ C0
2‘

? ? C0
2

M

A0x3 A1x3 g3

S´1 S´1 S´1

A0
1{3x A1

1{3x g

Figure 6.7: How to bypass the first round of Rescue–Prime.

Finally, this results in the following system of polynomial equations:
#

@ 1 ď i ď N ´ 1, @ j P t0, 1, 2u,

pi,jpxi, yi, ziq ´ qi,jpxi`1, yi`1, zi`1q “ 0 ,
(6.4)

where zN “ 0 and
¨

˝

x1
y1
z1

˛

‚“ M

¨

˝

A0
1{3x

A1
1{3x
g

˛

‚`

¨

˝

c1
0

c1
1

c1
2

˛

‚ .

This system has mpN ´ 1q variables and mpN ´ 1q equations. As before, we
used SageMath to generate our system of equation. However, we used Magma to
find the solutions of the corresponding multivariate system.

Complexity Analysis. With m “ 3 branches and N rounds, we obtain a
system of 3pN ´ 1q degree-3 equations with the same number of variables. In our
experiments, the system has d “ 33pN´1q solutions in the algebraic closure of the
field, and the F 4 step is much faster than the FGLM step. Therefore, we estimate
the complexity of solving the system by the complexity of running FGLM, which
is approximately:

d3 “ 39pN´1q.

With m “ 2 branches and N rounds, we obtain a system of 2N ´ 1 degree-3
equations with the same number of variables. Therefore, d “ 32N´1 and the
complexity of solving the system is approximately:

d3 “ 36N´3.

220 Chapter 6. Algebraic Cryptanalysis of Arithmetization-Oriented Primitives

Besides, the original paper of Rescue–Prime [SAD20, Section 2.5] claims a lower
bound on the complexity of Gröbner basis attacks:

ˆ

p0.5pα ´ 1q ` 1qtpN ´ 1q ` 3
tpN ´ 1q ` 1

˙2
.

We give explicit values for the proposed challenges in Table 6.4.

N t Authors claims Ethereum claims d complexity
4 3 236 237.5 39 243

6 2 240 237.5 311 253

7 2 248 243.5 313 262

5 3 248 245 312 257

8 2 256 249.5 315 272

Table 6.4: Complexity of our attack against Rescue–Prime, compared with the
security claims given by the authors and by the challenges. Complexity figures in
bold correspond to attacks that we have implemented in practice.

6.5.5 Experimental Results
In order to better understand the behaviour of the root-finding tools we relied on in
our attacks, we performed additional benchmarks on top of our attacks against the
Ethereum challenges. We treat the cases of univariate and multivariate equations
separately.

6.5.5.1 Univariate solving

For root-finding of univariate polynomials, we investigated the FLINT [tea23],
version 2.8.3 and NTL 11.5.1 C libraries. Both support operations related to big
polynomials in finite fields, but NTL was considerably faster for different sizes of
toy polynomials, therefore we chose to benchmark only NTL. In order to work
with high degree polynomials with NTL, we need to apply a small patch to the
library source files to increase the value of NTL_FFTMaxRoot.

Table 6.5 presents our experimental results, with p “ 18446744073709551557 “

264 ´ 59. Given a degree d “ 3k, we generate the polynomial modeling the CICO
problem for Poseidon with pRP, RFq “ pk ´ 6, 8q and for Feistel–MiMC with k ` 1
rounds , and random polynomials (each of the d ` 1 coefficients is taken randomly
in Fp). For each instance and degree, we launched minp32, 218´kq jobs, with varying
random polynomials. For all instances, the standard deviation of the memory
consumption is negligible (on average 10´5 times the average value), and the
standard deviation of time stays under 3 percent of the average value.

The data is represented in Figure 6.8, and we performed a linear regression of
the time and memory usage of random polynomials root finding. We notice that

6.5. CICO Cryptanalysis of some AO Hash Functions 221

the structure of the polynomials of Feistel–MiMC and Poseidon does not offer a
significant speed up to the root finding compared to random polynomials.

Because the theoretical complexity is quasi-linear, the linear regression should
be treated cautiously. In addition, the benchmarks apply only on 1 core and do
not account for parallelization. We expect to speed up the univariate root finding
with NTL parallelization (which, officially, is supported), but some tests showed
that NTL CPU usage does not exceed 300%, even with more than 3 threads.

311 312 313 314 315 316 317 318

102

103

104

105

d

T
im

e
(s

)

Time
Feistel-MiMC xp mod P
Feistel-MiMC GCD
Poseidon xp mod P
Poseidon GCD
Random xp mod P
Random GCD
5.31 ¨ 10´5 ¨ d1.04

9.96 ¨ 10´6 ¨ d1.11

102

103

104

105

M
em

or
y

(M
B)

Memory
Feistel-MiMC
Poseidon
Random
7.06 ¨ 10´4 ¨ d0.98

Figure 6.8: Benchmarks of univariate root finding with NTL (using 1 core of an
Intel Xeon E7-4860).

6.5.5.2 Multivariate solving

For benchmarks of multivariate solving of the Rescue–Prime system, we chose to
use Magma [BCP97] 2.21. We compare the resources needed for the resolution of the
Rescue–Prime polynomial system to the resources needed for random equivalent
systems. It should be noted that Magma implements the F4 algorithm [FGH+14b]
to find the grevlex Gröbner basis, and the FGLM algorithm [FGL+93] in cubic
complexity for the change of ordering. Also, there seems to be a fixed memory
overhead of 32 MB when using Magma for Gröbner basis, therefore we did not take
into account low-memory points in the linear regressions.

Table 6.6 and Figure 6.9 present the results for the resolution of a k-round
Rescue–Prime instance, k “ 3, 4, with m “ 3 and p “ 18446744073709551557 “

264 ´57. These are compared to random equivalent systems of n equations of degree

222 Chapter 6. Algebraic Cryptanalysis of Arithmetization-Oriented Primitives

3 on n variables, generated randomly by affecting a random coefficient of Fp to each
possible monomial of degree ď 3. In order to give a better insight on the evolution
of the resources consumption, we chose to additionally benchmark random systems
with n “ 5, 7, 8, which do not correspond to any version of Rescue–Prime.

For systems of n equations, we launched minp22p9´nq, 64q jobs. The standard
deviation of time and memory consumption never exceeds 2% of the average value.
The program was cut after 7 days for random systems with n “ 9. The F4
step finished, but the FGLM step did not finish (after approximately 44 hours).
The linear regression of Rescue system FGLM time might be biased compared
to Random FGLM time, because only Rescue possesses a data point with n “ 9,
which demands heavy resources in memory, potentially causing some overhead.

The results highlight several properties:

• We observe that the theoretical maximal ideal degree is reached, for all
systems: 3n for n equations of degree 3.

• The F4 run time varies considerably between the Rescue–Prime system and a
random system. For 4-round Rescue–Prime (n “ 9), there is almost a factor
50 between the run time of F4 on the Rescue–Prime system and on a random
system.

• F4 slightly dominates in time for random system, but FGLM heavily
dominates for Rescue–Prime systems.

• The case with 6 equations is the only point of comparison between the
Rescue–Prime system and the random system, but on this data point, FGLM
is faster on Rescue–Prime than on a random system, despite having the same
ideal degree (729).

• The memory consumption seems to essentially follow the same linear
regression for both Rescue–Prime systems and Random systems.

6.6 Algebraic cryptanalysis of Ciminion
In this section, we present some attacks on the arithmetization-oriented stream
cipher Ciminion [DGG+21b], that we describe in Section 6.6.1. The attacks
described in this section come from two works [BBL+22; Bar24]. The first attack
is a multivariate attack that breaks Ciminion for very large security levels (s ą

776). Unlike the original paper [BBL+22], we perform a generic linear change of
coordinates to obtain the stability property, and bound the cost of the attack by
the F5 step. It is presented in Section 6.6.2. The second attack is a univariate
attack on an instance of Ciminion proposed by the designers and breaks the
security claims of the designers of Ciminion for security levels s ě 93, presented
in Section 6.6.4. Eventually, we present experimental results of the multivariate
attack in Section 6.6.3.

6.6. Algebraic cryptanalysis of Ciminion 223

Table 6.5: Benchmarks of univariate root finding with NTL (using 1 core of an
Intel Xeon E7-4860), for Poseidon, Feistel–MiMC and random polynomials of
several degrees, with p “ 18446744073709551557 « 264. Times are given in seconds
and memory usage in MegaBytes.

System

Feistel–MiMC

Poseidon

Random

Degree 311 312 313 314 315 316 317 318

xp mod P time 13 54 148 535 1,426 5,119 14,243 46,256
GCD time 7 23 78 261 889 2,970 9,687 36,451
Total time 20 77 226 796 2,315 8,089 23,930 82,707
Memory 104 293 822 2,431 6,967 20,696 59,227 2.07 ¨ 105

xp mod P time 13 54 148 534 1,454 5,083 14,241 47,963
GCD time 8 23 78 262 893 2,964 9,699 38,541
Total time 21 77 226 796 2,347 8,047 23,940 86,504
Memory 104 293 838 2,431 6,968 20,696 60,538 2.07 ¨ 105

xp mod P time 14 56 152 547 1,433 5,117 14,406 47,964
GCD time 7 23 80 269 903 2,976 9,790 38,693
Total time 21 79 232 816 2,336 8,093 24,196 86,657
Memory 102 293 822 2,431 6,935 20,696 60,538 2.07 ¨ 105

Table 6.6: Benchmarks of multivariate root finding with Magma using 1 CPU core
of an Intel Xeon Gold 5218, for Rescue and Rescue-like systems. Times are given
in seconds and memory usage in MegaBytes.

System
Rescue–Prime

Random

Number of equations 5 6 7 8 9
Rounds 3 4
F4 time 1.41 8,500
FGLM time 7.77 2.5 ¨ 105

Memory 112 58,675
Ideal degree 729 19,683
F4 time 0.25 8.23 299 11,120 4.46 ¨ 105

FGLM time 0.58 11.15 263 6,490
Memory 32 134 936 7,945
Ideal degree 243 729 2,187 6,561 19,683

224 Chapter 6. Algebraic Cryptanalysis of Arithmetization-Oriented Primitives

5 6 7 8 9
10´1

100

101

102

103

104

105

106

Number of equations n

T
im

e
(s

)

Time
Rescue F4 3.88 ¨ 10´8 ¨ 24.19n

Random F4 3.57 ¨ 10´9 ¨ 25.19n

Rescue FGLM 7.48 ¨ 10´9 ¨ 24.99n

Random FGLM 9.4 ¨ 10´8 ¨ 24.49n

10´1

100

101

102

103

104

105

106

M
em

or
y

(M
B)

Memory
Rescue 4.08 ¨ 10´4 ¨ 23.01n

Random 6.22 ¨ 10´4 ¨ 22.95n

Figure 6.9: Benchmarks of multivariate root finding with Magma using 1 CPU core
of an Intel Xeon Gold 5218, for Rescue–Prime and Rescue–Prime-like systems (n
equations of degree 3), with p “ 18446744073709551557 and m “ 3. 3-round and
4-round Rescue-prime respectively correspond to n “ 6 and n “ 9.

6.6.1 Specification and Security Analysis of Ciminion
Ciminion is an Arithmetization-Oriented stream cipher published at Eurocrypt
2021 [DGG+21b] operating on Fq with q ě 264. Ciminion takes as input a nonce
ℵ P Fq and a key K P Fq, and produces a sequence of key stream elements α1, α2, . . .
that are added to the plaintext blocks to yield ciphertext blocks. Unlike Feistel–
MiMC, Poseidon and Rescue–Prime, Ciminion does not use a power map S-box
(such as x Ñ x3) and the non-linear diffusion instead comes from the use of Toffoli
gates pa, b, cq ÞÑ pa, b, c ` abq. This implies that the forward and inverse round
function both are quadratic. In addition, Ciminion uses a light linear layer instead
of an MDS matrix. Ciminion’s encryption scheme is presented in Figure 6.10.
Two permutations using the same round function, presented in Figure 6.11(b),
are employed: pC and pE of respectively N and R rounds. The round function
for round i is denoted fi. It uses four round constants RCℓ, with ℓ “ i for pC ,
and ℓ “ i ` N ´ R for pE . RC4 is assumed to be different from 0 or 1. rol is a

6.6. Algebraic cryptanalysis of Ciminion 225

quadratic rolling function described in Figure 6.11(a). There is a key schedule that
generates keystream elements K1, K2 . . . from K, and we do not exploit it in our
attacks; we therefore consider that the round keys Ki are unrelated round keys,
and the objective of an attacker is to recover K1 and K2.

pC

K2

K1

ℵ

rol

‘
‘

K3
K4

‘
‘ K2ℓ´1

K2ℓ

rol

pE C2

C1‘

‘

P1

P2

pE

C3
C4

‘

‘

P3

P4

pE

C2ℓ´1
C2ℓ

‘

‘

P2ℓ´1

P2ℓ

Figure 6.10: The Ciminion encryption over Fp (replace ` by ‘ over F2n).

ta

tb

tc

wa

wb

wc

.

((a)) rolling function rol.

ai´1

bi´1

ci´1

ai

bi

ci

.

¨RC4ℓ

RC1ℓ

RC2ℓ

RC3ℓ

((b)) Ciminion round function.

Figure 6.11: Components of Ciminion.

The security of Ciminion comes from the truncation of one output element of
each permutation pE , to prevent the recovery of intermediate states. Indeed, the
knowledge of a truncated element would allow to recover the intermediate states by
simply inverting the corresponding pE , and to recover the round keys K1 and K2
by inverting pC . Therefore, a simple guess of a truncated element would recover

226 Chapter 6. Algebraic Cryptanalysis of Arithmetization-Oriented Primitives

the first round keys, so the security of Ciminion cannot exceed log2pqq by design.
There are three instances of Ciminion proposed by the designers, with different
number of rounds for pE and pC : the standard and conservative instances, with no
data restriction for the attacker, and the data limit instance, where the attacker
can only query up to 2s{2 data. The number of rounds in each instance is presented
in Table 6.7, for a security level s.

Instance N R

Standard s ` 6 r s`37
12 s

Data limit 2s{2 r
2ps`6q

3 s r s`37
12 s

Conservative s ` 6 r3
2 ¨ s`37

12 s

Table 6.7: Number of rounds N and R (of pC and pE respectively) in the instances
proposed by the designers of Ciminion, for a security level of 64 ď s ď q.

The designers of Ciminion performed a thorough security analysis of Ciminion,
exploring all cryptanalysis techniques, such as linear cryptanalysis, differential
cryptanalysis, higher-order differentials, interpolation and Gröbner basis attacks.
Zhang et al. later showed some trivial linear trails under weak round con-
stants [ZLL+23]. We first present the designers analysis on interpolation and
Gröbner basis attacks:

Security against Interpolation attacks. The interpolation attack is described
in Section 6.2.1. When applied to Ciminion, the attacker models an output
keystream α1 “ C1 ´ P1 as a polynomial Qpℵq of degree d in ℵ. Then, the attacker
collects d ` 1 keystream blocks α1 under different nonces, and interpolates Q to
recover its coefficients. This way, he gains the knowledge of the function mapping
ℵ to the first keystream block α1.

The number of rounds of pE and pC are chosen so that the degree of the
polynomial Q exceeds 2s. It can easily be seen that r rounds of the round function
has degree 2r´2 from any input to any output. For extra security, the designers
chose the number of rounds of pC to be larger than s: for the standard instance,
they chose N “ s ` 6, and R “ r s`37

12 s rounds for PE .
However, the interpolation attack requires a large amount of data. Because of

this very reason, the designers of Ciminion suggested a variant of Ciminion if the
attacker is limited to 2s{2 cipher calls: they decreased the number of rounds in
a manner that ensures that the degree of the polynomial still exceeds 2s{2. This
results a limited data variant of Ciminion shown in Table 6.7. As a security margin,
they chose respectively N “ r

2ps`6q

3 s and R “ r s`37
12 s as the number of rounds of

pC and pE . In this settings, the polynomial PKpℵq is of degree 2r
2ps`6q

3 s`r
s`37

12 s´1,
which is larger than 2s{2, but less than 2s for large security levels s.

Security against Gröbner basis attack. The designers of Ciminion were not
able to generate an algebraic representation of the cipher involving only pE that

6.6. Algebraic cryptanalysis of Ciminion 227

was not underdetermined [DGG+21a, Appendix B]. Therefore, they studied a
modified Ciminion, Aiminion, that they conjectured to be weaker than the real
Ciminion. In the modified Ciminion, they came up with a system of 6 equations of
degrees t2R´1, 2R, 2R, 2R`1, 2R`1, 2R`2u over 6 variables, where R is the number
of rounds of pE .

The value of R was chosen so that this attack has complexity at least 2s. More
precisely, the authors estimated the complexity of the F5 algorithm with parameters

n “ 6, Dreg “ 21 ¨ 2R´1 ´ 5 « 2R`3.4 .

Following [BFS04], they estimated the complexity as
ˆ

n ` Dreg
Dreg

˙ω

ď

ˆ

pDreg ` nqn

n!

˙ω

« 2p6R`10.9qω .

The designers took ω “ 2 as a lower bound, obtaining a minimum number of
rounds R ě r s´21.8

12 s, and added 5 rounds as a security margin.

6.6.2 Multivariate Algebraic Attack on Ciminion

ℵ
K1

K2

pC

qα1,α2
0 pxq

qα1,α2
1 pxq

qα1,α2
2 pxq

pE

α1

α2

x

P1 P2

‘

‘

C1

C2

‘

‘

K3

K4

‘ .

qα3,α4
0 pyq

qα3,α4
1 pyq

qα3,α4
2 pyq

pE

α3

α4

y

P3 P4

‘

‘

C3

C4

Figure 6.12: A new multivariate modelization of Ciminion.

Instead of looking at a system of equations resulting from a presumed weaker
scheme (Aiminion), we study the real scheme and propose a new way to set up a
system of equations.

For a given nonce ℵ, we consider the first two output blocks. We denote
αi “ Ci ´ Pi and α1

i “ C 1
i ´ P 1

i , for i “ 1 . . . 4, and introduce two variables x, y P Fq

228 Chapter 6. Algebraic Cryptanalysis of Arithmetization-Oriented Primitives

for the missing output words (not given as part of the ciphertext) after the first
and second permutations pE (see Figure 6.12). The output of the first permutation
pE is pα1, α2, xq, therefore, we can write the input as polynomials in x:

pqα1,α2
0 pxq, qα1,α2

1 pxq, qα1,α2
2 pxqq “ p´1

E pα1, α2, xq.

Similarly, the output of the second permutation pE is pα3, α4, yq, and we can write
the corresponding input as polynomials in y:

pqα3,α4
0 pyq, qα3,α4

1 pyq, qα3,α4
2 pyqq “ p´1

E pα3, α4, yq.

Then, we write equations linking the input of the first two pE through the rol
function:

qα1,α2
0 pxq “ qα3,α4

1 pyq ´ K4,

qα1,α2
1 pxq “ qα3,α4

2 pyq ´ K3,

qα1,α2
2 pxq “ qα3,α4

0 pyq ´ qα3,α4
1 pyq d qα3,α4

2 pyq.

Finally, taking two nonces ℵ, ℵ1, we eliminate the keys K3, K4 and obtain a system
of four equations in the four variables px, x1, y, y1q, using two blocks of ciphertexts
from each nonce:

$

’

’

’

’

&

’

’

’

’

%

qα1,α2
0 pxq ´ q

α1
1,α1

2
0 px1q “ qα3,α4

1 pyq ´ q
α1

3,α1
4

1 py1q

qα1,α2
1 pxq ´ q

α1
1,α1

2
1 px1q “ qα3,α4

2 pyq ´ q
α1

3,α1
4

2 py1q

qα1,α2
2 pxq “ qα3,α4

0 pyq ´ qα3,α4
1 pyqqα3,α4

2 pyq

q
α1

1,α1
2

2 px1q “ q
α1

3,α1
4

0 py1q ´ q
α1

3,α1
4

1 py1qq
α1

3,α1
4

2 py1q .

(6.5)

Solving this system allows to recover the full internal state, and to deduce the
keys K1, K2, K3, K4. In order to solve the system, we use the approach explained
in Section 6.4.2.

Solving complexity. Let us denote pi the polynomial corresponding to the
i-th row of the system, such that we have for all i “ 0 . . . 3, pipx, x1, y, y1q “ 0.
Given that degpq0q “ 2R´1, degpq1q “ 2R´1, and degpq2q “ 2R, the degree of the
pi polynomials in x, x1, y and y1 are:

x x1 y y1

p0 2R´1 2R´1 2R´1 2R´1

p1 2R´1 2R´1 2R 2R

p2 2R 0 3 ¨ 2R´1 0
p3 0 2R 0 3 ¨ 2R´1

6.6. Algebraic cryptanalysis of Ciminion 229

In particular, system (6.5) has 2 equations of degree 3 ¨ 2R´1, 1 of degree 2R, and 1
of degree 2R´1. Therefore, we have the following parameters:

n “ 4, Dreg ď 1 `

R
ÿ

i“1
pdi ´ 1q « 2R`2.2, DI ď Πn

i“1di « 24R`0.2 .

We can deduce upper bounds on the cost of the steps required to solve the system.
In order to use the bounds of change of order algorithms that require the stability
and the shape position assumptions, such as [BND22], we perform a generic linear
change of coordinates (the base field is large enough and the ideal is assumed to
be radical) [BND22].

Computing a Gröbner basis with respect to the grevlex order using Faugère’s
F5 algorithm has asymptotic complexity:

ˆ

n ` Dreg
Dreg

˙ω

“

ˆ

2R`2.2 ` 4
2R`2.2

˙ω

ď

ˆ

p2R`2.2 ` 3q4

4!

˙ω

« 2p4R`4.2qω .

On the other hand, performing the change of order with the variant fast-
FGLM [FGH+14a] has asymptotic complexity

Dω
I « 2p4R`0.2qω .

HNF [BND22] could also be used for the change of order, but this step is not
the bottleneck: the theroretical upper bound on the complexity of F 5 is higher that
the complexity of Fast-FGLM, and the practical experiments of Section 6.6.3 were
unfortunately performed without the linear change of coordinate. We therefore use
the bound on the complexity of F5 to estimate the cost of the attack.

From an attacker point of view, we assume that linear algebra is implemented
with Strassen’s algorithm, resulting in ω “ 2.807 (asymptotically, the best algorithm
known has ω ă 2.373, but only for implausibly large sizes). Taking the designer’s
recommended number of rounds R “ r s`37

12 s, this attack is slightly faster than 2s

for large values of s, with a time complexity of:

2p4R`4.2qω “ 2p4r
s`37

12 s`4.2qω « 2
4ω
12 s`46.5 « 20.94s`46.5 .

Theoretically, this breaks the security claims for s ě 776. For practical values
of s however, the attack is not faster than 2s, but this shows that the design has
much less security margin than anticipated by the designers. In particular, if we
take an optimistic value ω “ 2 as in the security analysis of the designers, we
obtain an attack with complexity roughly 2120.4 for the 128-bit security version
recommended by the designers with 14 rounds.

230 Chapter 6. Algebraic Cryptanalysis of Arithmetization-Oriented Primitives

6.6.3 Experimental Results
For the sake of simplicity, in our experiments, we keep the same prime number
p “ 18446744073709551557 “ 264 ´ 59 as in Section 6.5.5, although it is less than
264 (Ciminion normally requires a prime p ą 264).

For r rounds of Ciminion, we present in Section 6.6.2 a modelization of the
cryptosystem with 4 equations on 4 variables, of degrees respectively 2r´1, 2r, 3¨2r´1,
and 3 ¨ 2r´1. Unfortunately, these experiments do not perform the generic linear
change of coordinates to use the Fast FGLM algorithm. Anyway, the documentation
of Magma does not mention which algorithm is used for the change of order.

More data points. We chose to add the concept of half rounds to increase the
number of data points: r ` 0.5 rounds of Ciminion is Ciminion where the first
branch pE has undergone r ` 1 rounds while the second branch pE has only been
through r rounds. With the same technique, we can represent this r ` 0.5 instance
of Ciminion with a system of 4 equations on 4 variables, of degrees 2r, 2r`1, 2r`1,
and 3 ˆ 2r. We compare the Ciminion systems to random systems of 4 equations
on 4 variables with the same degrees, where a random coefficient of Fp is assigned
to every possible multivariate monomial of degree equal or less than the degree
of the corresponding equation. The 4-round Ciminion was cut off due to memory
insufficiency (ě 192 GB). Table 6.8 and Figure 6.13 present the results. We did not
take into account the memory points with r “ 2 in the linear regression, because it
seems to be a fixed overhead when solving Gröbner bases with Magma (regardless
of their sizes).

The results allow us to make the following observations.

• The Ciminion system of equation does not reach the maximal ideal degree.
We did not succeed to find a simple reduction of the system to explain this
fact. This is surprising and not accounted for in the security analysis of the
designers of Ciminion.

• The FGLM step heavily dominates the time complexity for Ciminion-like
systems.

• We observe a factor 20 between the time complexity of the F4 step of the
Ciminion system and random equivalent systems.

• We observe a factor at least 2.5 between the time complexity of the FGLM
step of the Ciminion system and random equivalent systems. This is partially
due to the lower ideal degree of the Ciminion system.

• After a generic linear change of coordinates, the system would be expected to
behave as a random system. This however increases the complexity of FLGM
in practice; this is however maybe due to the suboptimal implementation
of FGLM in Magma 2.21. It is probably possible to reduce the FGLM
complexity for random systems with a more performant change of order
algorithm [BND22].

6.6. Algebraic cryptanalysis of Ciminion 231

• Extrapolating the results to s “ 64 and r “ 9 (since q « 264 it does not
make sense to consider larger security levels), the expected time complexity
of the FGLM step is 9 ¨ 10´8 ¨ 210.52¨9 “ 260.8 seconds (and not operations),
which gives a comfortable security margin: our modelization does not break
Ciminion for this security level.

6.6.4 Univariate Algebraic Attack on Ciminion
The attack in this section targets the limited data variant, in which the attacker
can not query more than 2s{2 data. This attack is a known-plaintext attack using
two key stream blocks α1 and α2, as highlighted by Figure 6.14. The variable x
represents the third truncated output of the first final permutation layer pE .

Recovery of K1 and K2. We represent the nonce ℵ as a polynomial on x. The
nonce ℵ and x are separated by the following number of rounds:

r “ N ` R “ r
2ps ` 6q

3 s ` r
s ` 37

12 s ď
3s

4 ` 10.

As shown in previous papers [ZLL+23; BBL+22], the first input element of a
r-round Ciminion permutation as a function of the output elements is of degree
2r´1. This implies that:

degpqα1,α2pxqq “ 2r
2ps`6q

3 s`r
s`37

12 s´1 « 20.75s`6.1.

The truncated element x is a root of the polynomial qα1,α2pxq ´ ℵ, we can therefore
use a univariate root finding algorithm.

As shown in Section 6.4.1, the univariate root finding algorithm is quasi-linear
in the degree of the polynomial. It implies that for large security levels s, we
expect the root finding algorithm to run faster than 2s operations. Let us take
the case of s “ log2pqq “ 256. qα1,α2 is of degree 2174`25´1 “ 2198, and the
root finding algorithm is of complexity Opd logpdqplogpdq ` logpqqq logplogpdqqq «

c ˆ 2198 ˆ 198 ˆ p198 ` 256q ˆ 7.6 « c ˆ 2217.4 field operations, where c is the
constant behind the O.

In the case of s “ logpqq “ 128, qα1,α2 is of degree 290`14´1 “ 2103. The root
finding algorithm costs approximately Opd logpdqplogpdq ` logpqqq logplogpdqqq “

c ˆ 2103 ˆ 103 ˆ p103 ` 128q ˆ 6.7 « c ˆ 2120.3 field operations.
Assuming that a Ciminion encryption costs approximately c operations, this

attack breaks the security claims for s “ logpqq ě 93.
For now, this attack leads to the recovery of the subkeys K1 and K2. If we

want to recover subsquent subkeys, we can proceed as explained in the following
paragraph, using univariate solving of negligible complexity compared to this
attack.

232 Chapter 6. Algebraic Cryptanalysis of Arithmetization-Oriented Primitives

Table 6.8: Benchmarks of multivariate root finding with Magma 2.21 using 1 CPU
core of an Intel Xeon Gold 5218, for Ciminion and Ciminion-like systems. Times
are given in seconds and memory usage in MegaBytes.

System
Ciminion

Random

Expected Ideal degree 288 1024 4608 16384 73728
Rounds 2 2.5 3 3.5 4
F4 Time 2 ¨ 10´2 0.41 4.6 127 5,624
FGLM Time 0.23 6.7 209.1 13,848
Memory 32 125.66 1,279 19,040
Ideal degree 170 680 2,736 10,944 43,840
F4 time 0.1 2.36 92.9 3,030
FGLM time 0.74 18.96 1,011 32,069
Memory 32 226 3,480 47,444
Ideal degree 288 1,024 4,608 16,384

2 2.5 3 3.5 4
10´2

10´1

100

101

102

103

104

105

106

Number of rounds r

T
im

e
(s

)

Time
Ciminion F4 7.12 ¨ 10´8 ¨ 28.9r

Random F4 8.59 ¨ 10´8 ¨ 29.99r

Ciminion FGLM 9 ¨ 10´8 ¨ 210.52r

Random FGLM 3.66 ¨ 10´7 ¨ 210.39r

10´2

10´1

100

101

102

103

104

105

106

M
em

or
y

(M
B)

Memory
Ciminion 4.17 ¨ 10´4 ¨ 24.57r

Random Ciminion 3.61 ¨ 10´4 ¨ 24.87r

Figure 6.13: Benchmarks of multivariate root finding with Magma 2.21 using 1
CPU core of an Intel Xeon Gold 5218, for Ciminion and Ciminion-like systems (4
equations of high degree).

6.6. Algebraic cryptanalysis of Ciminion 233

ℵ “ qα1,α2pxq

K1

K2

pC pE

α1

α2

x

P1 P2

‘

‘

C1

C2

Figure 6.14: A new univariate modelization of Ciminion.

ℵ
K1

K2

pC pE

α1

α2

x

‘

‘

K3

K4
q̃α3,α4pyq

‘ .

pE

α3

α4

y

Figure 6.15: Recovery of keystream elements K3 and K4. The green wires denote
the known internal state elements from the recovery of K1 and K2.

Recovery of Ki for i ě 3. After the recovery of K1 and K2, we query further
keystream elements αi for i ě 3. Since ℵ, K1, K2 are known, the attacker knows
the value of three wires at the output of pC , as depicted in green in Figure 6.15.
We denote y the truncated output of the second permutation pE . We can compute
the polynomial q̃α3,α4pyq representing the first inner state element. This inner state
element is not dependent on K3 and K4 and its value is known to the attacker. We
denote it β. The truncated output of the second pE is a root of q̃α3,α4pyq´β, which
is a polynomial of degree 2R ` 2R´1 « 2R`0.6 where R “ r s`37

12 s is the number
of rounds of pE . The recovery of y is of negligible complexity compared to the
first step. This allows to recover the inner state before the second pE permutation
and therefore to recover K3 and K4. Ultimately, pK2i`1, K2i`2q for i ě 2 can be
recovered in a similar manner using a longer keystream.

Aiminion. Since Aiminion uses a key addition before the keystream, it is
impossible to express the nonce only from the keystreams α1, α2 and the truncated

234 Chapter 6. Algebraic Cryptanalysis of Arithmetization-Oriented Primitives

element x. Instead, the unkown subkeys K3 and K4 are involved in the formula.
We did not manage to overcome this difficulty to mount an attack.

Chapter7The Algebraic FreeLunch:
Efficient Gröbner Basis Attacks

Against Arithmetization-Oriented
Primitives

In this section, we introduce a new type of polynomial solving attack, which we
call the FreeLunch attack. The attack modelizes AO ciphers in such a way that
the polynomial system to solve is directly a Gröbner basis under a weighted order.
The attack is applicable on several AO ciphers published in top-tier cryptography
conference, such as Anemoi [BBC+23], Arion [RST23], Griffin [GHR+23], and
XHash8 [AKM23]. This is a joint work with Aurélien Boeuf, Axel Lemoine, Irati
Manterola Ayala, Morten Øygarden, Léo Perrin, and Håvard Raddum [BBL+24b].
This chapter requires the notions on algebraic theory presented in Section 6.3, and
reuses the notation defined in Chapter 6.

Contents
7.1 The Algebraic FreeLunch Attack 236

7.1.1 FreeLunch Systems . 236
7.1.2 Extracting a Univariate Equation from a FreeLunch

System . 237
7.1.3 Ordering a FreeLunch 240
7.1.4 FreeLunch Systems From Iterated Functions 241
7.1.5 Summary of the FreeLunch Attack 247

7.2 Using FreeLunch Systems Directly 248
7.2.1 A Detailed Example: Griffin 249
7.2.2 Applicability Beyond Griffin: ArionHash 254
7.2.3 Last Example: XHash8 257

7.3 Forcing the Presence of a FreeLunch for Anemoi 260
7.3.1 Description of Anemoi 260
7.3.2 Failure of the Direct FreeLunch Approach 261
7.3.3 Constructing FreeLunch Systems From Anemoi 262

7.4 Discussion on the FreeLunch Attack 266
7.4.1 Discussion on Experimental Results 266
7.4.2 Preventing the FreeLunch Attack 267
7.4.3 Open Problems for Future Work 268

235

236 Chapter 7. The FreeLunch Attack

7.1 The Algebraic FreeLunch Attack
In this section, we present the theory behind the FreeLunch attack. For this
attack to work, we first need to describe our problem using a system of polynomial
equations, as in classical polynomial solving attacks. We start with a description
of the general form of systems for which a Gröbner basis can be obtained for free
(see Section 7.1.1). Then, we show how to deduce a univariate polynomial from
this system in Section 7.1.2. Means to create these polynomial systems for various
primitives are discussed in Section 7.1.3 and Section 7.1.4, where we reuse and
generalize an encoding technique introduced by the authors of Griffin in a way
that can be applied to iterated functions. The entire solving strategy is summarized
in Section 7.1.5, and the FreeLunch attack is described in Algorithm 7.1.

Algorithm 7.1: Overview of the FreeLunch Attack.

1. sysGen: Generate a FreeLunch system (Section 7.1.4).

2. matGen: Compute the multiplication matrix T0 (Section 7.1.2).

3. polyDet: Compute fpx0q “ det
ˆ

xα0
0 IDH

`
α0´1
ř

i“0
xi

0Mi

˙

(Section 7.1.2).

4. uniSol: Solve fpx0q “ 0.

7.1.1 FreeLunch Systems
We saw in Proposition 6.5 that there is a class of polynomial systems that admits
a simple Gröbner basis. We recall this proposition here:

Proposition. Let G be a set of polynomials of R, G “ tg1, ..., gmu. If the leading
monomials of gi and gj are relatively prime for all 1 ď i ‰ j ď m, then G is a
Gröbner basis for xGy.

This is the motivation for the following definition.

Definition 7.1 (FreeLunch System). Let R be the ring Fqrx0, . . . , xn´1s and
P “ tp0, . . . , pn´1u be a sequence of polynomials of R. We say that P is a
FreeLunch system if there exists a monomial order ă and integers pα0, . . . , αn´1q

such that for all i P J0, n ´ 1K, LMăppiq “ xαi
i . Any monomial order ă that verifies

this property is said to be a FreeLunch order.

Note that this is not the first time Proposition 6.5 has been used in cryptography.
In [BPW06a], the authors describe a polynomial modeling for AES that can be
said to be a FreeLunch system in a graded lex order. However, the ensuing change
of order computation to a lex order is too costly to threaten the security of AES.
The following properties are now easy to verify, and were also used in [BPW06a].

7.1. The Algebraic FreeLunch Attack 237

Proposition 7.1. A FreeLunch system P is a Gröbner basis for the ideal I “ xP y

with respect to any of its FreeLunch orders. Moreover, I is zero-dimensional and
of ideal degree DI “

śn´1
i“0 αi.

Proof. The first statement follows directly from Proposition 6.5. For the latter
statement, note that the canonical basis of R{I (w.r.t. a FreeLunch order ă) is

BăpR{Iq “ txi0
0 ¨ ¨ ¨ x

in´1
n´1 | 0 ď ij ă αj , for 0 ď j ď n ´ 1u.

Counting all these basis elements yields DI .

We conceived a dedicated algorithm for the resolution of FreeLunch systems,
which has a competitive time complexity.

7.1.2 Extracting a Univariate Equation from a FreeLunch
System

In this section, we aim at proving the following theorem.

Theorem 7.1. Given a FreeLunch system P , a FreeLunch order ă, and the
associated multiplication matrix T0 of the variable x0, there exists an algorithm to
compute a solution for x0 with time complexity:

Õ

˜

α0

˜

n´1
ź

i“1
αi

¸ω¸

“ Õ
ˆ

Dω
I

αω´1
0

˙

.

While a FreeLunch system is already a Gröbner basis, it is typically only so
under specific monomial orders, as we will see in later sections. To easily retrieve
the solutions of a FreeLunch system, we look for a univariate polynomial belonging
to the ideal spawned by the system. To do so, a common approach is to compute
a Gröbner basis in the lex order. Given an initial Gröbner basis, computing a lex
Gröbner basis can be performed using a change of order algorithm.

Existing change of order algorithms. The FGLM algorithm [FGL+93]
provides an efficient method for changing the monomial orders of Gröbner bases
of zero-dimensional ideals, with a running time of OpnD3

I q operations and no
conditions on the Gröbner bases, on the monomial order or on the ideal. Note that
this cost includes computing the multiplication matrix T0.

Later algorithms [FM17; FGH+14a; NS20; BND22] significantly improve upon
this running time, but require various assumptions on the input basis and underlying
ideal. For instance, [FM17; FGH+14a; BND22] assume that the multiplication
matrix T0 is either given, or can be efficiently computed. Note that the latter is a
consequence of the stability property (see Definition 6.13), which is assumed in
some of these works. Unfortunately, FreeLunch systems do not generally satisfy
this property. In fact, the authors of [BND22] state that when the base field is
large enough and the ideal under consideration is radical, the stability property

238 Chapter 7. The FreeLunch Attack

can be ensured through a generic linear change of coordinates. The issue is that
doing so might transform the FreeLunch system into a different type of system
that is not a Gröbner basis.

We briefly recall the effectiveness of the change of order algorithms assuming
that: i) T0 is given; ii) I is in shape position. In this case, the algorithm of
[FGH+14a] runs in OpDω

I logpDIqq and supposes that the input order is grevlex
and the output order is lex. [NS20] runs in OpnDω

I logpDIqq with no additional
hypothesis, and in OpDω

I logpDIqq when the ideal is in shape position. In our case,
we are particularly interested in some algorithms that benefit from the sparsity of
T0, represented by its sparsity indicator t. The algorithm of [FM17, Theorem 3.2]
for example runs in OptD2

I q. The algorithm of [BND22] achieves an even better
time complexity, of Õptω´1DIq, if the input order is grevlex and the output order
is lex. However, it is not clear to us if the ideas as presented in [BND22] can be
directly generalized to our setting, i.e. with a weighted input monomial order,
even if T0 is given. Instead, we will develop a dedicated resolution algorithm from
a basis in a FreeLunch order when T0 is given, whose running time happens to
coincide with that of [BND22] (Õptω´1DIq).

A new approach. These reasons led us to design a new dedicated algorithm
for finding a univariate polynomial f0px0q belonging to the ideal, exploiting the
sparsity of the multiplication matrix T0.

Let P be a FreeLunch system, I be its zero-dimensional ideal of R “

Fqrx0, . . . , xn´1s, ă one of its FreeLunch orders, Bă “ pϵ1, . . . , ϵDI
q the canonical

basis of R{I, and T0 the multiplication matrix corresponding to the variable x0.
Let H be the subspace of R{I containing the classes h of R{I where the normal
form of h with respect to ă does not contain the variable x0. Let DH be the
dimension of H and BH

ă “ rϕ1, . . . , ϕDH
s be a canonical basis for the subspace H.

It is clear that BH
ă exactly consists of the monomials m of Bă such that x0 ∤ m.

Thus, it holds that DH “
śn´1

i“1 αi “ DI{α0. We order the basis Bă specifically as

rϕ1, . . . , ϕDH
, x0ϕ1, . . . , x0ϕDH

, x2
0ϕ1, . . . , x2

0ϕDH
, . . . , xα0´1

0 ϕ1, . . . , xα0´1
0 ϕDH

s ,

and identify any polynomial f P R{I with its coefficient vector vf of length DI .
The coefficient vector for the polynomial x0f P R{I can then be computed as a
matrix/vector multiplication T0vJ

f for a fixed matrix T0. The following lemma
gives the structure of T0.

Lemma 7.1. Under the basis Bă, the matrix T0 is of the following form, represented
as a block matrix with block sizes DH ˆ DH :

T0 “

¨

˚

˚

˝

0 0 . . . 0 ´M0
I 0 . . . 0 ´M1
...

.
...

...
0 . . . 0 I ´Mα0´1

˛

‹

‹

‚

.

The block matrices M0, . . . , Mα0´1 are a representation of the reduction of
xα0

0 BH
ă modulo I. The exact entries in the Mi matrices depend on the particular

7.1. The Algebraic FreeLunch Attack 239

polynomials making up the Gröbner basis for the FreeLunch system. We call
matGen the procedure which, given a basis Bă, returns T0.

Overview of matGen We note that FGLM [FGL+93] gives an algorithm with
complexity OpnD3

I q to compute the multiplication matrix. In practice, we instead
use a custom algorithm for the matGen step. matGen consists of the reductions of
xα0

0 ϕi for i P t1, . . . DHu by the FreeLunch system. The bound on the number of
steps in a reduction by a Gröbner basis in a weighted monomial order is however not
clear. In order to give an estimation of the complexity of this step, we implemented
matGen along with the FreeLunch attack in Section 7.2 and Section 7.3, and
benchmarked it. In our implementation, we proposed a variant to the naïve
approach: we remarked that the computation of NormalFormpxα0

0 ϕiq can be speed
up if ϕi is not a single variable xi. If ϕi “ aˆb (a and b being non-trivial monomials),
we compute NormalFormpxα0

0 aq, and then NormalFormpNormalFormpxα0
0 aqbq. The

intermediary normal form corresponds to another columns of T0 and can be
considered free if the columns of T0 are computed in the right order. In our
implementations, we chose b “ xi with αi as low as possible; this seemed to be the
fastest approach.

From Proposition 6.8 it follows that detpx0IDI
´ T0q is a univariate polynomial

belonging to the ideal I. Computing this determinant and using a root-finding
algorithm to solve detpx0IDI

´ T0q “ 0 will finally give us a value for x0 that solves
the CICO problem. The following lemma shows that computing this determinant
of this particularly structured matrix T0 can be done with much lower complexity
than for a generic matrix of dimension DI .

Lemma 7.2. Let M0, . . . , Mα0´1 be the matrices defined in Lemma 7.1. We have

detpx0IDI
´ T0q “ ˘ det

˜

xα0
0 IDH

`

α0´1
ÿ

i“0
xi

0Mi

¸

.

Proof.

detpx0IDI
´ T0q “ det

¨

˚

˚

˚

˝

x0I 0 . . . 0 M0
´I x0I . . . 0 M1
...

. 0
...

0 0 ´I x0I Mα0´2
0 0 0 ´I x0I ` Mα0´1

˛

‹

‹

‹

‚

.

The rows of this matrix can be split into a set of α0 blocks of DH rows each.
Denote these blocks as L0, . . . , Lα0´1 from top to bottom. We now do elementary
row operations block-wise, from bottom to the top, with Li “ Li ` x0Li`1, for
i “ α0 ´ 2, . . . , 0. This does not change the value of the determinant and after
these row operations the resulting determinant to compute is:

det

¨

˚

˚

˚

˝

0 0 . . . 0 xα0
0 I `

řα0´1
i“0 xi

0Mi

´I 0 . . . 0 xα0´1
0 I `

řα0´2
i“0 xi

0Mi`1
...

.
...

...
0 . . . ´I 0 x2

0I `
ř1

i“0 xi
0Mi`α0´2

0 . . . 0 ´I x0I ` Mα0´1

˛

‹

‹

‹

‚

.

240 Chapter 7. The FreeLunch Attack

In this block matrix representation, the determinant of the full matrix is the
determinant of the top right matrix, up to the sign p´1qα0`1.

Complexity Analysis. We call polyDet the procedure returning the polynomial
detpx0IDI

´ T0q using Lemma 7.2. The determinant of a polynomial matrix of
dimensions m ˆ m and degree d can be computed with Õpdmωq [GJV03, Theorem
4.4]. With our notation, this gives a complexity of ÕpDIDω´1

H q “ Õpα0Dω
Hq. Note

that this is the complexity that would be obtained with the algorithm of [BND22] if
the system satisfied the stability and shape position properties. In order to estimate
the logarithmic factors in the complexity formula, we bound the complexity with
the formula from [GJV03, Theorem 4.4]:

O

¨

˝

logpmq
ÿ

i“0

¨

˝

i logpdq
ÿ

j“0
2jMMp2´in, 2i´jdq

˛

‚

˛

‚ ,

where MMpm, dq is the complexity of a multiplying two mˆm polynomial matrices
of degree d. We use a polynomial matrix multiplication algorithm of complexity
Opmωd logpdq ` m2d logpdq logplogpdqqq « Opmωd logpdqq [CK91, Section 3] to
bound the complexity of the determinant computation by Opmωd logpdq2q when m
is large. This way, we bound the number of operations of polyDet with:

Opα0 logpα0q2Dω
Hq . (7.1)

The remaining task to show Theorem 7.1 is to recover the roots of a univariate
polynomial of degree DI , a step we refer to as uniSol. This costs ÕpDIq operations
and is thus negligible in comparison with the polyDet step.

We want to highlight that the complexity of the matGen step can only be
bounded by OpnD3

I q [FGL+93, Proposition 3.1] (recall that T0 is assumed known
in Theorem 7.1), and that matGen is in theory costlier than polyDet, as confirmed
with later experiments.

7.1.3 Ordering a FreeLunch
Having seen how to efficiently find solutions for FreeLunch systems, we will focus
in the next two subsections on the problem of actually finding them. Recall that
FreeLunch systems rely on the existence of specific monomial orders. How can
we figure out if such an order exists (and thus, if a system is a FreeLunch)? In
general, answering this question is not trivial. However, the systems we will be
concerned with in Section 7.2 and Section 7.3 naturally have a deeper structural
property that allows for a procedural approach to this problem.

Definition 7.2 (Quasi-triangular System). Let P “ pp1, . . . , pn´1, gq be a
polynomial system in Fqrx0, x1, . . . , xn´1s. We say that P is a quasi-triangular
system if there exists polynomials q0, q1, . . . , qn´1, integers α0, α1, . . . , αn´1, and

7.1. The Algebraic FreeLunch Attack 241

c0, . . . , cn´1 P Fqzt0u such that
#

pi “ cix
αi
i ` qipx0, . . . , xi´1q for 1 ď i ď n ´ 1 ,

g “ c0xα0
0 ` q0px0, . . . , xn´1q .

A quasi-triangular system P can be assigned the following monomial order that
is naturally motivated by the FreeLunch definition.

Construction 1. For a quasi-triangular system P , we define its quasi-triangular
order, ăT , as the monomial order from Definition 6.7 associated with the weight
vector defined recursively by:

#

wtpx0q “ 1 ,

wtpxiq “ wt pLMăT pqipx0, x1, . . . , xi´1qqq {αi for 1 ď i ď n ´ 1 .

The recursion is well-defined since the leading monomial of qi and its associated
weight are only dependent on the weights of xj for j ă i. The definition ensures
that LMăT ppiq “ xαi

i for 1 ď i ď n ´ 1. Hence, a quasi-triangular system P is a
FreeLunch system with respect to ăT if the leading monomial of g is univariate in
x0, which gives the following Proposition:

Proposition 7.2 (Ordering a FreeLunch). Let P be a quasi-triangular system,
and ăT be its quasi-triangular order. If α0 ą wtpLMăT pq0px0, . . . , xn´1qqq then P
is a FreeLunch system and ăT is one of its FreeLunch orders.

As we will see below, such systems naturally occur when investigating some
cryptographic permutations.

7.1.4 FreeLunch Systems From Iterated Functions
The permutations we target share the same structure: a composition of a number of
round functions. The input and output of every round is a state of t elements1 from
Fq and the round functions typically consist of a limited number of multiplications
and α-th roots in Fq. Writing them out directly as polynomial functions yields
polynomials of high degree, owing to the α-th root operations. A natural modeling
strategy introduces a new variable for each of them to keep the degree growth
manageable, as x “ yα is of much lower degree than y “ x1{α when α P t3, 5, ..., 257u

and |F| is large. In this section, we take inspiration from an encoding suggested by
the authors of Griffin [GHR+23] and show how to model this class of primitives
as polynomials that form a low degree FreeLunch system.

7.1.4.1 Toy example
Let us start with a toy SPN of two rounds, where the round function F is given
by F “ S ˝ A : F2

q Ñ F2
q , for an invertible affine layer A and a non-linear layer

1We say that the permutation has t branches, or as we like to think of them, brunches.

242 Chapter 7. The FreeLunch Attack

Figure 7.1: Quasi-triangular system for a simple SPN with two branches and two
rounds.

S. Moreover, we write S “ pS1, S2q where S1pyq “ yd, for a small integer d, and
S2pyq “ y1{α. This simple construction is shown in Figure 7.1, where we also label
the branches with variables and polynomials at different points. We consider a
CICO problem with input p0, x0q.

As we assume d ăă p, we note that the round function F can only achieve
a high degree as a polynomial function F2

q Ñ F2
q due to the map S2. Thus, we

introduce new variables x1 and x2 for the output of S2 in the first and second
rounds, respectively. The polynomials p1, p2 relate the symbolic input and output
of the two S2-functions, where q1 is an affine polynomial in x0 that is input to
S2 in the first round, and q2px0, x1q is the input to S2 in the second round and
has degree d in the x0-variable and degree 1 in the x1-variable. Finally, we let
gpx0, x1, x2q represent the first output of the construction that is required to be 0
by the CICO-problem. We can now write g as

gpx0, x1, x2q “ c0xd2
0 ` q0px0, x1, x2q,

for a suitable constant c0 P Fq, and where q0px0, x1, x2q has degree ă d2 in x0,
degree d in x1 and degree 1 in x2. If c0 ‰ 0 we observe that P “ tp1, p2, gu

forms a quasi-triangular system (Definition 7.2), whose solutions yield a solution
to the specified CICO-problem. The weight vector of ăT from Construction 1 is
p1, 1{α, d{αq, and it is straightforward to verify that P satisfies the condition of
Proposition 7.2. Hence, P is a FreeLunch system.

7.1.4.2 General case

The above example shows the core idea for how a FreeLunch system can be made
from a round function that relies on the functional inverse of low degree function to
achieve a high degree. Let us generalize this insight. Let Fi : Ft

q Ñ Ft
q, zi´1 ÞÑ zi,

denote the i-th round of a primitive, where zi´1 “ pzi´1,0, . . . , zi´1,t´1q is the state
after i ´ 1 rounds. Recall that Fi may itself have a high degree (in zi´1), but
suppose there exists a set of variables xi “ txi,0, . . . , xi,ℓi´1u satisfying

x
αi,j

i,j “ Li,jpzi´1q, for 0 ď j ă ℓi, (7.2)

7.1. The Algebraic FreeLunch Attack 243

where αi,j is an integer and Li,j an affine function. Moreover, suppose that there
exists a polynomial function Gi : Ft`ℓi

q Ñ Ft
q of low degree di, satisfying

Fipzi´1q “ tGipzi´1, xiq | xi satisfies (7.2)u. (7.3)

In other words, while Fi and Gi are different as polynomial functions, they yield
the same output when xi is restricted by (7.2). For instance, in the toy example
above, we used

G1pz0, x1q “

´

pA1pz0qq
d , x1

¯

, G2pz1, x2q “

´

pA1pz1qq
d , x2

¯

,

xα
1 “ A2pz0q, xα

2 “ A2pz1q,

where A1 (resp. A2) denotes the first (resp. second) output of A.

Polynomial Modeling.

We now have an iterated function of t branches where each round can be described
using the functions G “ tG1, . . . , Gru and satisfying (7.2) and (7.3), and where Gi

is of degree di. We introduce the shorthand dďi “ d1d2 ¨ ¨ ¨ di, and we require that
the exponents di are small enough to ensure that their composition will not exceed
the maximal degree determined by the finite field, i.e. dďr ă |Fq| ´ 1.

With this in place, we give the following blueprint for constructing a polynomial
system. Recall that we focus on the variant of the CICO-problem where a single
input in Fq is unknown, which we will symbolically denote by x0, and the output of
the first branch should be 0. The initial state is written as z0px0q, which consists of
t affine polynomials in x0. The following state is defined as z1px0, x1q “ G1pz0, x1q,
where we note that z1 is now t polynomials of at most degree d1 in the variables
x0, x1. Furthermore, we define functions p1 “ tp1,0, . . . , p1,ℓ1´1u to encode the
relations (7.2) that we encounter in this step. That is, for x1 “ tx1,0, . . . , x1,ℓ1´1u,
we construct the polynomials

p1,j “ x
α1,j

1,j ´ L1,jpz0q, for 0 ď j ă ℓ1 .

This process of updating the state zi and constructing polynomials2 pi is repeated
for all rounds up to r ´ 1. In the last round, we generate polynomials pr as before,
but instead of updating the state, we compute the final polynomial

gpx0, x1, . . . , xrq “ rGrpzr´1, xrqs1,

where r¨s1 means the first polynomial of Grpzr´1, xrq. This construction yields the
polynomial system PG “ tp1, . . . , pr, gu over the ring Fqrx0, x1, . . . , xrs.

2If a single variable is introduced in a round, we will ease the notation by writing xi “ xi,
pi “ pi and αi.

244 Chapter 7. The FreeLunch Attack

PG as a FreeLunch system.
It is easy to verify that PG is a quasi-triangular system if g contains a univariate
monomial in x0. In fact, this is a stronger case than the generic quasi-triangular
systems considered in Section 7.1.3, since we are also able to bound the degrees
of the polynomials in PG by round degrees d1, . . . , dr. This allows us to give an
analogous variant of Proposition 7.2 for PG . Instead of a condition on the entire
system that could be computationally expensive to verify, we reduce the assumption
to the condition of a single monomial in g.

Proposition 7.3. Let PG be a polynomial system as constructed above, where all
αi,j from (7.2) are at least 2, and the functions G “ tG1, . . . , Gru are of degrees
d1, . . . , dr ě 2. Then PG is a FreeLunch system if g contains the monomial xdďr

0 .

Before proving the proposition, we start by defining ăG , which is the monomial
order from Definition 6.7 whose weight vector is given by

#

wtpx0q “ 1 ,

wtpxi,jq “ dďi´1{αi,j for 1 ď i ď r and 1 ď j ď ℓi ,

where we define dď0 “ 1. Recall that zi denotes the i-th state represented by t
polynomials in x0, x1, . . . , xi. We will write wtpLMpziqq for the maximal weight
among the monomials of these t polynomials.

Lemma 7.3. Let zi be the i-th state associated with a system G that satisfies the
conditions of Proposition 7.3. Then the following inequality holds for ăG:

wt pLMpziqq ď dďi .

Proof. We proceed by induction. The base case of i “ 0 is immediate since z0
is affine in x0, and dď0 “ 1 by definition. For the induction step, we recall that
zi “ Gipzi´1, xiq, where Gi has degree di. Thus we have

wtpLMpziqq ď di ¨ maxtwtpLMpzi´1qq, wtpxi,1q, . . . , wtpxi,ℓi
qu .

Now we have wtpxi,jq ă dďi´1, and wtpLMpzi´1qq ď dďi´1 by the induction
hypothesis. Hence

wtpLMpziqq ď didďi´1 “ dďi .

The proof of this lemma also implies that ăG coincides with ăT from
Construction 1 if all functions Li,jpzi´1q achieve their maximal weight dďi´1.
We now have all we need to show Proposition 7.3.

Proof. (Proposition 7.3). From Lemma 7.3 we observe

wt
´

x
αi,j

i,j

¯

“ αi,jwt pxi,jq “ dďi´1

ě wtpLMpzi´1qq ě wtpLMpLi,j pzi´1qqq.

7.1. The Algebraic FreeLunch Attack 245

Hence LM pfi,jq “ x
αi,j

i,j . Moreover, Lemma 7.3 also guarantees that

wt pLMpgqq ď wtpLMpzrqq ď dďr.

Due to the fact that αi,j ě 2, the factor 1{αi,j that appears in the weight of all
variables xi, i ě 1, the above equality can only be achieved by the monomial
xdďr

0 . It then follows from the assumption that LMpgq “ xdďr
0 , which makes PG a

FreeLunch system.

7.1.4.3 Computing a reduced Gröbner basis for xPGy (sysGen)
We have just seen that computing a Gröbner basis for a given FreeLunch system
PG is – as the name suggests – free. There are, however, two practical concerns
worth addressing. Firstly, while PG is itself a Gröbner basis, it is generally not
the unique reduced Gröbner basis w.r.t. any of its FreeLunch orders. Secondly,
generating the polynomials in PG may itself be hard.

In practice we do not generate the polynomials in PG in the direct manner
outlined earlier. Rather, we construct a related polynomial system iteratively
while reducing as many monomials as possible along the way. More formally,
for a polynomial h and an ordered sequence of polynomials H, we let Redph, Hq

denote the operation of reducing h by H (according to a specified monomial order).
That is, Redph, Hq is the remainder after performing multivariate division of h by
H (see [CLO97, Ch. 2, §3]). Because H is not necessarily a Gröbner basis, the
remainder may change if the order of the functions in H changes. For a tuple of
polynomials h “ ph1, . . . , htq, we write Redph, Hq “ pRedph1, Hq, . . . , Redpht, Hqq.
Now fix a monomial order, and define z1

0 “ z0. We generate p1
i “ pp1

i,1, . . . , p1
i,ℓi

q

and the reduced states z1
i recursively as follows for 1 ď i ď r and 1 ď j ď ℓi.

p1
i,j P Red

´

x
αi,j

i,j ´ Li,jpz1
i´1q, tp1

1 . . . , p1
i´1u

¯

,

z1
i P Red

`

Gipz
1
i´1, xiq, tp1

1, . . . , p1
iu
˘

,

where Li,j is the polynomial from (7.2). Finally, we define

g1 P Red
`

rGrpz1
r´1, xrqs1, tp1, . . . , pru

˘

,

and write P 1
G “ tp1

1, . . . , p1
r, g1u. Since the construction of P 1

G only differs from that
of PG by reductions with generators in the ideal IG “ xPGy their ideals should,
intuitively speaking, be identical. This intuition is confirmed by the following
lemma.

Lemma 7.4. For any fixed monomial order we have

IG “ xPGy “ xP 1
Gy .

Proof. For any polynomial h and polynomial sequence H, we can write the reduction
operation as Redph, Hq “ h ` W , for some polynomial W P xHy. Since the Gi’s

246 Chapter 7. The FreeLunch Attack

used in the construction of p1
i and z1

i are polynomial functions, one can show by
induction that

p1
i,j “ pi,j ` xtp1 . . . , pi´1uy, z1

i,j “ zi,j ` xtp1, . . . , piuy (7.4)

holds for all 1 ď i ď r and 1 ď j ď ℓi. In particular, we have g1 “ g`xtp1, . . . , pruy.
Thus it is clear that PG and P 1

G generate the same polynomial ideal.

The following result relates P 1
G and PG when Proposition 7.3 holds. Recall that

we write dďi “ d1 ¨ ¨ ¨ di, where di “ degpGiq.

Proposition 7.4. Let PG satisfy the condition of Proposition 7.3. Then
constructing P 1

G w.r.t. ăG is also a FreeLunch system. Moreover, replacing g1 in
P 1

G with g1{LCpg1q yields the unique reduced Gröbner basis for IG w.r.t. ăG.

Proof. By definition of polynomial division, we have wt(LM(Redph, Hqqq ď

wt(LMphqq. Since LMppi,jq1 cannot be reduced by tp1
1 . . . , p1

i´1u under ăG , it
follows from (7.4) and the prior discussion that LMpp1

i,jq “ LMppi,jq. For the
similar statement on LMpg1q, we note that the condition LMpgq “ xdďr

0 can only
hold if for every i there exist a ji such that LMpzi,jiq “ x

dďi
0 . By construction of

ăG , this monomial will not be reduced by tp1
1 . . . , p1

i´1u. Again, it follows from
(7.4) that LMpz1

i,ji
q “ x

dďi
0 . In particular, LMpg1q “ LMpgq, hence P 1

G is also a
FreeLunch system.

For the last assertion, one observes from the way pi,j only depends on the
variables x0, x1, . . . , xi´1, xi,j that

Redpp1
i,j , P 1

Gztp1
i,juq “ Redpp1

i,j , tp1 . . . , pi´1uq ,

holds for ăG . Hence P 1
G is already fully reduced, and replacing g1 with g1{LCpg1q

makes all polynomials monic.

Remark 7.1. Recall from Proposition 6.6 that if H is a Gröbner basis for xHy,
then Redph, Hq does not depend on the order of the sequence H. It follows from
Proposition 7.4 that if PG satisfies the condition of Proposition 7.3, then the
reductions in the construction of p1

i,j , z1
i and g1 are independent of the order of the

sequence tp1, . . . piu, w.r.t. ăG .

Complexity of computing P 1
G. We are left with bounding the complexity of

computing P 1
G , which will yield our estimate for the sysGen step. In the setting we

will be interested in, this is expected to be dominated by the cost of applying the last
round function Gr to compute g1, and its reduction by tp1

1 . . . , p1
ru. Our insight is

that the reductions involved in the sysGen process are cheaper than the reductions
required in matGen, since the reductions are performed on a smaller Gröbner basis;
but we do not have a proof for such a statement. However, it is possible to bound
the cost of the multiplications performed on the state z1

r´1 when applying Gr. Let
m denote the number of these multiplication, where we recall that m is typically

7.1. The Algebraic FreeLunch Attack 247

small by design. We reduce by tp1
1 . . . , p1

ru after each multiplication, and will
assume that this reduction is negligible compared to the cost of the multiplications
themselves. Thus we have m multiplications of multivariate polynomials of maximal
degree dďr in x0

3 and αi,j ´ 1 in xi,j , for 1 ď i ď r, 1 ď j ď ℓi. We can then
use the Kronecker trick presented by Moenck [Moe76, Section 3.4] to perform
these multiplications in an efficient manner. In short, the Kronecker trick starts
by transforming the multivariate polynomials to univariate polynomials. This
allows us to perform the multiplication using an efficient univariate multiplication
algorithm, before converting the result back to a multivariate polynomial. Moenck
describes the algorithm and proves its correctness for any bound on the degree of
each variable in both polynomials in the input of multiplication, but only gives a
complexity estimate when all bounds are equal. It is, however, easy to verify that
the complexity formula for the multivariate multiplication algorithm in our setting
will be:

Õpdďr

ź

1ďiďr
1ďjďℓi

2αi,jq ,

when applying either the Fast Fourier Transform, or Schönhage & Strassen’s
algorithm to perform the univariate multiplication [GG13, Chapter 8]. Repeating
this m times yields our estimate for cost of multiplications in the sysGen step:

Õpmdďr

ź

1ďiďr
1ďjďℓi

2αi,jq .

In comparison, recall that the polyDet step of our analysis is expected by
Theorem 7.1 to require

Õpdďrp
ź

1ďiďr
1ďjďℓi

αi,jqωq

operations in F. Thus, when m remains small, we do not expect the multiplications
in sysGen to be the bottleneck of the overall attack.

Use in Experiments. We implemented the Kronecker trick for the experiments
we ran with the Flint library [tea23], using the NTL library [Sho] for the univariate
multiplication; the mapping between flint and NTL polynomial representations was
performed by hand. The multivariate multiplications performed for experiments
with Magma and SageMath used their own built-in functionalities.

7.1.5 Summary of the FreeLunch Attack
The strategy of the attack presented in this section is summarized in Algorithm 7.1.

The initial condition is that there exists a FreeLunch system associated with
the target primitives. Methods for constructing this FreeLunch system were
presented in Section 7.1.3 and Section 7.1.4, and the complexities for sysGen using

3This follows from Lemma 7.3 with i “ r, and LMpz1
rq ăG LMpzrq.

248 Chapter 7. The FreeLunch Attack

these methods were discussed in Section 7.1.4.3. A different way of generating a
FreeLunch system will also be shown in Section 7.3. We will estimate the complexity
of polyDet by Equation 7.1, but we do not have a clear estimate for matGen. The
final step uniSol recovers the roots of a univariate polynomial of degree DI . This
costs ÕpDIq operations and is thus negligible in comparison with the earlier steps.
We expect the complexity of the attack as a whole to be dominated by either
matGen or polyDet for the primitives we have investigated. This is in line with our
experiments (see Section 7.4.1), where matGen seems to be the dominating step for
larger instances.

The numbers for the complexity of the polyDet step in our attacks against
several AO permutations are shown are in Table 7.14. Details of how we obtained
them will be provided further in further sections.

Name α{e
Number of branches

2 3 4 5 6 8 ě 12

Griffin
3 H 120 (16) 112 (15) H H 76 (11) 64 (10)
5 H 141 (14) 110 (11) H H 81 (9) 74 (9)

Arion
3 H 128 (6) 134 (6) 114 (5) 119 (5) 98 (4) H

5 H 132 (6) 113 (5) 118 (5) 122 (5) 101 (4) H

α-Arion
3 H 104 (5) 84 (4) 88 (4) 92 (4) 98 (4) H

5 H 83 (4) 87 (4) 91 (4) 94 (4) 101 (4) H

Anemoi

3 118 (21) H - H - - -
5 156 (21) H - H - - -
7 174 (20) H - H - - -
11 198 (19) H - H - - -

Table 7.1: Theoretical time complexity (log2) of polyDet in FreeLunch-based
attacks against some full-round algorithms (aiming at 128-bit security). Number
of rounds in parentheses, H corresponds to undefined algorithms. The α{e column
reports α for Griffin and Anemoi; and e for the Arion variants.

7.2 Using FreeLunch Systems Directly
Experimental Verification. In this section and in Section 7.3, we support
theoretical attacks with practical experiments on reduced-round versions. All
experiments are performed on 1 core of AMD EPYC 7352 (2.3GHz) with 250 GB
of memory, and on Fp with p “ 0x64ec6dd0392073. The sysGen step is performed
with SageMath [Sag9522], Magma [BCP97] or the NTL [Sho] and Flint [tea23]
libraries, the matGen step is performed with Flint, and the polyDet step is perfomed
with the Polynomial Matrix Library [The23; HNS19].

4The complexities correspond to the number of basic Fq operations; writing them as number
of calls to the primitive would yield lower but hard to compute numbers.

7.2. Using FreeLunch Systems Directly 249

7.2.1 A Detailed Example: Griffin

7.2.1.1 Specification of Griffin

Griffin [GHR+23] is a family of sponge hash and compression functions proposed
by Grassi et al. at CRYPTO 2023 designed to be used in Zero-Knowledge
applications. As such, it makes use of the internal permutation Griffin-π, which
is defined over the finite field Fq.

Each round function of Griffin-π is composed of a non-linear layer, the
addition of a round constant, and a linear layer defined by multiplication by an
MDS matrix.The specific features of Griffin impose that the primitive is only
suitable for Ft

q where t “ 3 or t is a multiple of four.

Definition 7.3 (Non-linear layer of Griffin-π). Let α P t3, 5, 7, 11u be the
smallest integer such that gcdpα, p ´ 1q “ 1, p ą 263 and let t be the number of
branches. For 0 ď i ď t ´ 1, let pδi, µiq P F2

qztp0, 0qu be pairwise distinct such
that δ2

i ´ 4µi is a quadratic nonresidue modulo p. Then, the non-linear layer
of Griffin-π is Spx0, . . . , xt´1q “ py0, . . . , yt´1q, where each yi is defined by the
equations:

yi :“

$

’

’

’

’

&

’

’

’

’

%

x
1{α
0 if i “ 0,

xα
1 if i “ 1,

x2 ¨ pL2py0, y1, 0q2 ` δ2 ¨ L2py0, y1, 0q ` µ2q if i “ 2,

xi ¨ pLipy0, y1, xi´1q2 ` δi ¨ Lipy0, y1, xi´1q ` µiq otherwise,

for Lipz0, z1, z2q “ pi ´ 1q ¨ z0 ` z1 ` z2.

Definition 7.4 (Griffin-π). Let r be the number of rounds, and for 1 ď i ď r ´ 1
let cpiq P Ft

q be a constant vector (we assume cprq “ 0). Then Griffin-π Gπ : Ft
q Ñ

Ft
q is defined as

Gπp¨q :“ Fr ˝ ¨ ¨ ¨ ˝ F2 ˝ F1pM ˆ ¨q,

where for 1 ď i ď r, the i-th round function Fi is defined as

Fip¨q “ cpiq ` M ˆ Sp¨q,

for M P Ftˆt
q a matrix, and S the non-linear layer of Griffin-π.

The first round function of Griffin-π for t “ 4 is depicted in Figure 7.2 where,
to simplify the construction, we denote by Fi the last two equations of Definition 7.3.
The authors proposed various instances with a 128-bit security claim. The number
of branches varies from 3 to 24 (though not all values are possible), and the number
of rounds is computed for different degrees α based on the complexity of finding
a Gröbner basis using the basic encoding as it was the most efficient attack they
could find.

250 Chapter 7. The FreeLunch Attack

Figure 7.2: First round function of Griffin-π with t “ 4.

7.2.1.2 A FreeLunch system for Griffin

We observe that the round function of Griffin readily lends itself to a naïve
construction of the system PG , as described in Section 7.1.4. Indeed, for each round
i we can simply define zi “ Gipzi´1, xiq by zi “ cpiq ` M ˆ z1

i, where z1
i,0 “ xi and

z1
i,j given as yj , for 1 ď j ă t, in Definition 7.3 of the i-th round. Note that Gi will

be of degree at most di “ 2α ` 1. Under the assumption that the polynomial g in
PG satisfies the monomial property of Proposition 7.3, we get an associated ideal
degree of pα p2α ` 1qq

r.
Remark 7.2. Note that the naïve modeling PG given above for Griffin is not new;
in fact, it was proposed by the authors of this algorithm for their initial security
analysis [GHR+23, Section 6.2]. However, the authors did not attempt to compute
a Gröbner basis for xPGy in a FreeLunch order, but rather in the usual grevlex
order. They estimate that computing a Gröbner basis in this latter monomial order
well exceeds the security level for the suggested number of rounds.

7.2.1.3 Bypassing several rounds

A further improvement is constructing an affine input in x0 for the CICO problem
that is tailored to bypass the inversion operation for a few initial rounds. This
effectively means that fewer variables xi are necessary, which in turn has a significant
impact on the resulting ideal degree. The only difference is that we choose a different
sequence of polynomial functions G˚, where G˚

1 effectively spans several rounds but
only depends on z0, and does not necessitate the introduction of a new variable
x1. The ensuing functions G˚

i , i ě 2, can be constructed following the above
approach (though there will be fewer of them). The exact number of initial rounds
we can bypass will depend on t, where a larger t generally allows us to bypass
more rounds5. For t ě 12 branches, we can find an easily computable set of input

5A similar observation of bypassing rounds was already considered in [GHR+23, Section 6.2].
However, the authors only describe a method for bypassing a single round for t “ 3 and do not

7.2. Using FreeLunch Systems Directly 251

Figure 7.3: Evolution of chosen set of input states to Griffin with 12 branches.
Red values give conditions on the ai and bj such that the input of x1{α in the third
round becomes a known constant independent of x0.

states that allows to bypass the first three rounds of Griffin, so that the full
fourth round state can be expressed as low degree polynomials in x1. We explain
in detail how this can be done for t “ 12, and the result can trivially be extended
to t P t16, 20, 24u, and more subtly to t ă 12.

Denote the input state to Griffin as follows:

pa0x0 ` b0, a1x0 ` b1, a2x0 ` b2, . . . , a10x0 ` b10, 0q.

The ai and bi are constants in Fq that we now proceed to determine. We look for
values of ai and bi such that the input to the x1{α function in the three first rounds
does not depend on x0. Figure 7.3 illustrates the evolution of one of the chosen
input states up to the start of round 3.

The values of ai and bi can be determined as follows. After the initial linear
transformation before the first round, all branches can be expressed as lipaqx0`lipbq

for 0 ď i ď 11, where lip¨q is a known linear combination. To get 0 on the branches
indicated in Figure 7.3, the ai’s and bj ’s need to satisfy the following linear equations

consider the effect of having a larger t.

252 Chapter 7. The FreeLunch Attack

l0paq “ 0, l0pbq “ 0,
l1paq “ 0, l1pbq “ 0,
l3paq “ 0, l3pbq “ 0,
l5paq “ 0, l5pbq “ 0,
l7paq “ 0, l7pbq “ 0,
l9paq “ 0, l9pbq “ 0,

l10paq “ 0, l10pbq “ 0.
With 0 on any two adjacent branches, the input to F will either be all 0, with

F p0, 0, 0q being equal to a constant, or the output of F will be multiplied with 0,
making sure the value on the branch remains 0. This ensures that the algebraic
expressions on the branches stay linear in x0, a and b after the affine transformation
at the start of the second round. The need to have input 0 to x1{α and xα in the
second round gives four more linear constraints

l17paq “ 0, l17pbq “ 0,
l18paq “ 0, l18pbq “ 0,

where the γi are known constants.
Before the affine transformation in the second round, most branches will have

cubic polynomials in x0 as their values (the hipx0q in Figure 7.3). These are again
linearly mixed in the affine transformation at the end of round two, producing the
cubic polynomial

h9px0q “ c3pa, bqx3
0 ` c2pa, bqx2

0 ` c1pa, bqx0 ` c0pa, bq

on the first branch. We want to enforce that c3pa, bq “ c2pa, bq “ c1pa, bq “ 0
such that the input to the x1{α function in round three becomes a known constant
independent from x0. The expressions for the coefficients are cubic in the ai and
bj , but note that all the polynomials hipx0q for 0 ď i ď 8 are made as products of
linear factors as

plipaqx0 ` lipbqqpljpaqx0 ` ljpbqqplkpaqx0 ` lkpbqq,

and that h9px0q is a sum of these. By calculating the coefficients for the x3
0, x2

0, and
x0 terms, we see that c3pa, bq is cubic in a, but does not contain b at all. Similarly,
c2pa, bq is quadratic in a and linear in b and c1pa, bq is linear in a and quadratic
in b.

We can now use the 9 linear equations in a introduced above to eliminate
a2, . . . , a10 from c3paq. This leaves c3 as c3pa0, a1q, a cubic expression in a0 and
a1. Next we fix a1 to an arbitrary non-zero value (to avoid the trivial solution
a0 “ . . . “ a10 “ 0) and solve for c3pa0q “ 0 using a root-finding algorithm for
univariate polynomials. With a0 and a1 fixed, all the other ai gets fixed as well
from the linear constraints from rounds 1 and 2.

Once all ai have been found, c2pa, bq “ 0 just becomes a linear equation in
b. Using this linear equation together with the 9 from above, we can eliminate
b1, . . . , b10 from the last coefficient c1pa, bq. With all the ai fixed, c1 then just
becomes c1pb0q, a quadratic expression in b0 and we easily solve c1pb0q “ 0. This
determines all the values for the bi.

7.2. Using FreeLunch Systems Directly 253

With the ai and bj now fixed, we know that the input state from our chosen
set will generate polynomials in x0 of degree 6α ` 3 on the branches at the start of
round 4. We can then start the basic attack from there, adapting the weighted
order of the variables accordingly. When the number of xi-variables is reduced by 3
and with the degree of x0 bounded to 6α ` 3 until the fourth round, the dimension
of the Gröbner basis ideal becomes much smaller, which again reduces the overall
attack complexity significantly.

When there are more than 12 branches we can do the exact same trick as
explained above. The only difference is that there will be more values of ai and bj

that can be chosen arbitrarily when solving for c3pa, bq “ c2pa, bq “ c1pa, bq “ 0.
When there are less than 12 branches, there is not enough degrees of freedom to
make it through the third round. For t “ 8 we can bypass the two first rounds, so
x1 only needs to be introduced in round 3, and for t “ 3, 4 it is possible to bypass
the first round and introduce x1 in round 2.

Summary. For t “ 3, 4, we can bypass one round with linear functions in z0: we
get r ´1 equations with respective leading terms xα

1 , . . . xα
r´1 and one equation with

leading term x
p2α`1qr´1

0 . For t “ 8, we are able to bypass two rounds with cubic
functions in z0: we get r ´ 2 equations with respective leading terms xα

1 , . . . xα
r´2

and one equation with leading term x
3p2α`1qr´1

0 . For t ě 12, three rounds can be
bypassed with degpz0q “ 6α ` 3: we get r ´ 3 equations with respective leading
terms xα

1 , . . . xα
r´3 and one equation with leading term x

3p2α`1qr´2

0 . We therefore
get the following parameters:

DI,t “

$

’

&

’

%

pα p2α ` 1qq
r´1 , for t “ 3, 4,

3 pα p2α ` 1qq
r´2 , for t “ 8,

p6α ` 3q pα p2α ` 1qq
r´3 , for t ě 12 .

(7.5)

DH,t “

$

’

&

’

%

αr´1, for t “ 3, 4,

αr´2, for t “ 8,

αr´3, for t ě 12 .

(7.6)

7.2.1.4 Complexity analysis and experimental results
We can now use the machinery described in Section 7.1.2 to solve the above-
described FreeLunch system for Griffin. As noted in Section 7.1.2, it is hard
to theoretically estimate the complexity of matGen where one computes the
multiplication matrix T0. On the other hand, based on previous analysis, we
estimate the complexity of polyDetas ÕpDI,tD

ω´1
H,t q “ ÕpDI,tpDI,t{α0qω´1q. As a

consequence, the running time for polyDet becomes

ÕpDI,tD
ω´1
H,t q “

$

’

&

’

%

Õppαω p2α ` 1qq
r´1

q, for t “ 3, 4,

Õp3 pαω p2α ` 1qq
r´2

q, for t “ 8,

Õpp6α ` 3q pαω p2α ` 1qq
r´3

q, for t ě 12 .

(7.7)

254 Chapter 7. The FreeLunch Attack

Table 7.2: Expected time complexity of polyDet for the different full-round
instances of Griffin, where ω “ 2.81. Number of rounds in parentheses.

Branches Complexity (log2)
α “ 3 α “ 5

3 120 (16) 141 (14)
4 112 (15) 110 (11)
8 76 (11) 81 (9)

12,16,20,24 64 (10) 74 (9)

Table 7.3: Experimental results on Griffin with pt, αq “ p12, 3q. sysGen uses
Flint and NTL with the fast multivariate multiplication algorithm of Section 7.1.4.3.
The complexity of polyDet is estimated using the bounds of Theorem 7.1 with the
logarithmic factors.

Number of Complexity Time (s) Memory
rounds of polyDet sysGen matGen polyDet (MB)

5 26 0.17 0.02 0.53 14
6 34 4.0 6.67 50.78 471
7 41 2, 558 3, 361 5, 727 27, 600

The logarithmic factors can be included to give a complexity of approximately
DI,tpDI,t{α0qω´1 logpα0q2 in the general case. The resulting estimated time
complexities (including the logarithmic factors) of running polyDetfor the proposed
instances of Griffin are listed in Table 7.2. Experimental results are presented in
Table 7.3 and discussed in Section 7.4.1.

7.2.2 Applicability Beyond Griffin: ArionHash

7.2.2.1 Specification of ArionHash

ArionHash [RST23] is an arithmetization-oriented hash function proposed by Roy
et al. that, much like Griffin, uses a permutation as its core primitive. Called
Arion-π, this permutation utilizes in each round a polynomial of very high degree
in one branch and low degree polynomials in the remaining branches to significantly
decrease the number of necessary rounds to achieve the desired security.

Definition 7.5 (Non-linear layer of Arion-π). Let p ě 5 be a prime, t the number
of branches, e the smallest positive integer be such that gcdpe, p ´ 1q “ 1, and
121 ď α ď 257 an integer such that gcdpα, p ´ 1q “ 1.

For 0 ď i ď t ´ 2, let δi,1, δi,2, µi P Fq be such that gipxq “ x2 ` δi,1 ¨ x ` δi,2
is a quadratic function without zeroes in Fq and define hipxq “ x2 ` µi ¨ x. Then
the non-linear layer of Arion-π is S “ tf0, . . . , ft´1u, where each fi is defined

7.2. Using FreeLunch Systems Directly 255

“from-right-to-left” by the equations:

ft´1py0, . . . , yt´1q “ y
1{α
t´1,

fipy0, . . . , yt´1q “ ye
i ¨ gipσi,tq ` hipσi,tq, t ´ 2 ě i ě 0,

where σi,t represents the sum of all previously computed inputs and outputs

σi,t “

t´1
ÿ

j“i`1
yj ` fjpy0, . . . , yt´1q .

Definition 7.6 (Arion-π). Let r be the number of rounds, and for 1 ď i ď r let
ci P Ft

q be a constant vector. Then Arion-π is defined as the following composition
over Ft

q:

Arion-π : py0, . . . , yt´1q ÞÑ pLcr ˝ Srq ˝ ¨ ¨ ¨ ˝ pLc1 ˝ S1q ˝ L0py0, . . . , yt´1q,

where Lci is the affine map of [RST23, Definition 3] and Si is the non-linear layer
of Arion-π, for 1 ď i ď r.

We illustrate the construction of the first round of Arion-π in Figure 7.4 for
t “ 4 where, for the sake of clarity, we only represent the function fi of the
Generalized Triangular Dynamical System (GTDS) without the details of gi and
hi.

Figure 7.4: First round function of Arion-π with t “ 4.

We provide the parameters for Arion-π and ArionHash as well as for their
additionally proposed aggressive versions α-Arion and α-ArionHash with e “ 3, 5
and α “ 121 in Table 7.4 (number of rounds are in parenthesis). The authors claim
128-bit security for each parameter set.

7.2.2.2 FreeLunch system for ArionHash

Due to the similarities in construction between Arion-π and Griffin-π, it comes as
no surprise that the round function of Arion-π also fits the naïve construction of the

256 Chapter 7. The FreeLunch Attack

Figure 7.5: Evolution of chosen set of input states to Arion-π with 4 branches.
Red values give conditions on the ai and bj .

system PG described in Section 7.1.4. In this case, for each round i we define zi “

Gipzi´1, xiq by zi “ Lcipz
1
iq, where z1

i,t´1 “ xi and z1
i,j “ fjpzi´1,0, . . . , zi´1,t´2, xα

i q

for t ´ 2 ě j ě 0. Note that each component of z1
i (and thus of zi) will have

degree at most di “ p2t´1pe ` 1q ´ eqi in x0. Assuming that the polynomial g in
PG satisfies the monomial property of Proposition 7.3, we get an associated ideal
degree of

`

α
`

2t´1pe ` 1q ´ e
˘˘r.

In addition, one can further improve this technique by generating a set of input
states constructed so that the inversion operation for the first round is bypassed,
reducing the number of necessary variables and, consequently, the associated ideal
degree.

Denote the input state to Arion as follows:

pa0x0 ` b0, a1x0 ` b1, a2x0 ` b2, . . . , at´2x0 ` bt´2, 0q.

The ai and bi are constants in Fq that will be determined. We look for ai and bi

such that the input to the first x1{α does not depend on x0. Figure 7.5 illustrates
the evolution of one of the chosen input states up to the start of round 2.

The values of ai and bi can, in general, be determined as follows. After the
initial matrix multiplication, all branches can be expressed as lipaqx0 ` lipbq for
0 ď i ď t ´ 1, where lipaq and lipbq are known linear combinations. To get 0 on the
last t ´ 2 branches, the ai’s and bj ’s need to satisfy the following linear equations

l2paq “ 0, l2pbq “ 0,
...

...
lt´1paq “ 0, lt´1pbq “ 0.

With 2t ´ 4 equations on 2t ´ 2 variables, these constraints leave two degrees
of freedom for the variables in a and b. Naïvely, one could think of additionally

7.2. Using FreeLunch Systems Directly 257

imposing the constraints l1paq “ 0 and l1pbq “ 0 such that only the first branch is
nonzero and the degree on x0 is further reduced. However, the unique solution to
this system is the trivial solution pa, bq “ p0, 0q, which is not of interest. Thus, we
avoid this by instead imposing arbitrary conditions for two variables ak and bl (as
long as ak is set to be a non-zero value to avoid the trivial solution). With ak and
bl fixed, all the other variables get fixed, too, from the previous linear constraints.
For simplicity, one could fix the values a0 “ 1 and b0 “ 0, leading to an input state
of the form px0, a1x0, a2x0, . . . , at´2x0, 0q, where all ai’s are fixed.

With 0 on the last t ´ 2 input branches, the output of the non-linear layer of
Arion-π will be of the form pApx0q, Bpx0q, 0, . . . , 0q, where A and B are polynomials
in x0 of degree 3e and e, respectively. Thus, the input state from our chosen set
will generate polynomials in x0 of degree 3e on the branches after the affine
transformation in round 1. We can then start the basic attack from there, adapting
the weighted order of the variables accordingly. When the number of xi-variables
is reduced by 1 and with the degree of x0 bounded to 3e until the second round,
the dimension of the Gröbner basis ideal becomes smaller, which again reduces the
overall attack complexity.

Summary. For Arion we are only able to bypass a single round with degpz0q “ 3e,
independent of t. We get r ´ 1 equations with respective leading terms xα

1 , . . . xα
r´1,

and one equation of leading term x
3ep2t´1pe`1q´eqr´1

0 . This gives the following
parameters:

DI “ 3e
`

α
`

2t´1pe ` 1q ´ e
˘˘r´1

,

DH “ αr´1 .

7.2.2.3 Complexity analysis and experimental results

We can now apply the new methods introduced in Section 7.1.2 to solve the
FreeLunch system for ArionHash. Based on the general complexity analysis of
the attack, we list the estimated time complexities of polyDet for the different
proposed ArionHash parameters in Table 7.4. Note that here DH “ DI{α0 “ αr´1,
so that the running time for polyDet becomes

ÕpDIDω´1
H q “ Õ

´

3e
`

αω
`

2t´1pe ` 1q ´ e
˘˘r´1

¯

.

Experimental results are presented in Table 7.5 and discussed in Section 7.4.1.

7.2.3 Last Example: XHash8
XHash8 is a permutation proposed by Ashur, Kindi and Mahzoun in [AKM23].
Along with XHash12, it is a follow-up of Rescue-Prime Optimized (RPO) [AKM+22],
itself a follow-up of Rescue-Prime [AKM+22].

258 Chapter 7. The FreeLunch Attack

Arion-π & ArionHash α-Arion& α-ArionHash

Branches Complexity (log2) Complexity (log2)
e “ 3 e “ 5 e “ 3 e “ 5

3 128 (6) 132 (6) 104 (5) 83 (4)
4 134 (6) 113 (5) 84 (4) 87 (4)
5 114 (5) 118 (5) 88 (4) 91 (4)
6 119 (5) 122 (5) 92 (4) 94 (4)
8 98 (4) 101 (4) 98 (4) 101 (4)

Table 7.4: Expected time complexity (log2) of polyDet for the different full-round
instances of ArionHash, where α “ 121 and ω “ 2.81. Number of rounds in
parenthesis.

Number of Complexity Time (s) Memory
branches of polyDet sysGen matGen polyDet (MB)

3 32 1.31 ă 0.01 6.8 3, 387
4 33 1.46 0.07 18.7 7, 551
5 35 9.54 0.08 64.5 15, 903
6 36 247 0.31 215 32, 626
8 39 24, 872 4.86 2, 545 134, 165

Table 7.5: Experimental results on 2-round Arion, with pe, αq “ p3, 121q. sysGen
is performed using SageMath. polyDet uses an evaluation/interpolation algorithm
of pml [The23] since the algorithm of [LNZ17] implemented in pml does not work
for the non-generic polynomial matrix in input of polyDet.

7.2.3.1 Description of XHash8

XHash8 is an SPN with nonlinear S-boxes, multiplication by a fixed MDS matrix
M , and addition by round constants Ci. Its state contains t “ 12 elements in Fp

where p “ 264 ´ 232 ` 1. The rate is fixed to 8 and capacity 4. There are 3 rounds
in total, and each round consists of 3 steps, for a total of 9 steps (plus the initial
affine layer pIq). With the cipher state denoted as z “ pz0, . . . , z11q, one round
of XHash8 is constructed from the following functions (excluding pP3qpkq which is
specified below):

pIq : z ÞÑ M ˆ pC0 ` zq,

pF qpkq : z ÞÑ C3k ` M ˆ pz7
0 , . . . , z7

11q,

pB1qpkq : z ÞÑ C3k`1 ` pz
1
7
0 , z1, z

1
7
2 , z

1
7
3 , z4, z

1
7
5 , z

1
7
6 , z7, z

1
7
8 , z

1
7
9 , z10, z

1
7
11q.

The last step of a round, pP3qpkq, consists of naturally mapping z to a state of
four elements in a cubic expansion Fp3 , denoted pS0,1,2, S3,4,5, S6,7,8, S9,10,11q, and
then computing S7

i,i`1,i`2 and mapping the result back to Fp. After that, like with
pF qpkq, an MDS layer is applied, and the round constant C3k`2 is added. Effectively,

7.2. Using FreeLunch Systems Directly 259

pP 3qpkq is equivalent to mapping each z3q`r to a multivariate polynomial of degree
7 in z3q, z3q`1, z3q`2 (see also the detailed description in [AKM23, Appendix A]),
which is the way we modelize it.

The steps are applied in the following order, from left to right:

pIq pF qp1qpB1qp1qpP3qp1qpF qp2qpB1qp2qpP3qp2qpF qp3qpB1qp3qpP3qp3q.

One round preceded by pIq is shown in figure 7.6, taken from [AKM23].

Figure 7.6: Round i of XHash8 preceded by an pIq step: pIqpF qpiqpB1qpiqpP3qpiq.

7.2.3.2 A FreeLunch system for XHash8

Our resolution allows us to solve the CICO problem on one branch. However, since
the size of one branch is roughly 64 bits, this CICO problem could simply be solved
by making 264 queries to the permutation, for which our solving algorithm does
not give us an advantage. On top of that, the real capacity of XHash8 is c “ 4
for a security claim of 128 bits. Rather than claiming a full attack on XHash8, we
show a special case where a FreeLunch system can be easily extracted. However,
the later solving steps, in particular the polyDet step, will still have a very high
complexity.

Following the construction of FreeLunch systems from Section 7.1 we define
the initial state as z0 “ px0, 0, . . . , 0q and add a new variable xi,j for 0 ď i ď 2
and j P t0, 2, 3, 5, 6, 8, 9, 11u after every p¨q1{7. All other nonlinear operations can
be represented as polynomials of degree 7, fixing the weights of the introduced
variables to

wtpx0q “ 1, wtpxi,jq “ 72i ` 1 .

We end up with 25 polynomials in 25 variables; 24 of these polynomials have x7
i,j

as leading monomials and the last polynomial has x76
0 as a leading monomial. The

coefficient of the x76
0 -term in the last polynomial will be non-zero with a very high

probability, ensuring we get a FreeLunch system, with DH “ 724 and α0 “ 76.

260 Chapter 7. The FreeLunch Attack

7.2.3.3 Complexity and impact on security analysis

We can solve the system using the algorithm described in Section 7.1. The
complexity of matGen is hard to estimate precisely. The complexity of the polyDet
step is:

OpDω
Hα0 logpα0q2q « 2214

when ω “ 2.81. As this is significantly higher than brute force for the chosen p, we
conclude that XHash8 seems very secure against the FreeLunch attack.

That said, we note that the current security estimates for XHash8 are
(conservatively) extrapolated from scaled-down experiments with t “ 3 using
a single unknown input [AKM23, Appendix B]. While the FreeLunch framework
cannot currently be extrapolated in a similar manner for the full construction, we
still hope it could provide a basis for future insights into the security of XHash8. We
note that the related constructions XHash12, RPO and Rescue-Prime all contain a
layer of inversion operations in all branches, and hence we cannot directly obtain a
FreeLunch from them.

7.3 Forcing the Presence of a FreeLunch for
Anemoi

We have just seen three examples where the FreeLunch machinery of Section 7.1.4
could be readily applied. Anemoi is another class of permutations that rely on the
inverse of low degree monomials in a finite field to achieve a high degree and so it
would, a-priori, seem like another candidate where we can apply the FreeLunch
techniques. However, we will see that this is not as straightforward as it may
appear because a direct application of the technique creates a polynomial system
PG where g does not satisfy the assumption of Proposition 7.3. Instead, we will
show how to compute a modified polynomial system PG˚ that retains the valid
solution to the CICO problem, which will turn out to be a FreeLunch system. This
comes at the cost of a somewhat larger, yet still comparable, ideal degree than
what was given in Conjecture 2 of [BBC+23]. We start by describing Anemoi.

7.3.1 Description of Anemoi
The Anemoi permutations [BBC+23] operate on F2ℓ

q for ℓ ě 1, and either q “ 2n

with n odd, or q “ p for any prime p ě 3. There are differences between the
operations for the odd and even characteristic cases that will impact our later
modeling. Thus, we focus on the setting of ℓ “ 1 and p prime, leaving the even
case as future work. In odd characteristic, Anemoi takes a parameter α such
that x ÞÑ xα is a permutation of Fq, usually α “ 3, 5, 7 or 11. The original
paper gives two specific hash function instances based on Anemoi with ℓ “ 1:
AnemoiSponge-BN-254, with a 254-bit prime p, AnemoiSponge-BLS12-381, with
a 381-bit prime p. 127 bits of security are claimed for both of these.

7.3. Forcing the Presence of a FreeLunch for Anemoi 261

Definition 7.7 (Odd Anemoi with ℓ “ 1). For a given p, α and number of rounds
r, Anemoi is a permutation of F2

p defined as

Anemoip,α,rpx, yq “ M ˝ Rr ˝ ¨ ¨ ¨ ˝ R1px, yq.

For 1 ď i ď r, the i-th round function Ri is defined as

Ripx, yq “ H ˝ Mpx ` ci, y ` diq and Mpx, yq “ p2x ` y, x ` yq,

for constants ci, di P Fp. H is the nonlinear operation over F2
p that is described in

Figure 7.7(b) for a non-zero constant a P Fp.

zi´1,0 zi´1,1

‘ci

di ‘

M

H

Pi´1 Qi´1

zi,0 zi,1

((a)) Anemoi round function.

Pi´1 Qi´1

zi,0 “ ´2axiQi´1

`ax2
i ` Pi´1 ´ a´1

zi,1 “ Qi´1 ´ xi

ap¨q2 ` a´1a

p¨q1{α a

ap¨q2‘

Pi´1 ´ aQ2
i´1

´a´1

xi

((b)) H in odd characteristic.

Figure 7.7: Description of Anemoi over prime fields with ℓ “ 1.

7.3.2 Failure of the Direct FreeLunch Approach
As a starting point, we consider the following slight modification6 of the polynomial
system PG for Anemoi, for 1 ď i ď r.

pipx0, . . . , xiq “ xα
i ` aQi´1px0, . . . , xi´1q2 ´ Pi´1px0, . . . , xi´1q ` a´1, (7.8)

gpx0, . . . , xrq “ Prpx0, . . . , xrq . (7.9)

A first observation is that zi,0 has a larger leading term than zi,1 under any monomial
order. Since this leading term gets distributed to both branches under M (without
the possibility of cancelling the leading term), we have LMpQiq “ LMpPiq. Now
note from the output shown in Figure 7.7(b) that in the computation of zi,0, the
terms aQ2

i´1 and ´aQ2
i´1 both occur and cancel each other. Hence, the leading

monomial of g must be either xrLMpQr´1q or x2
r , so there is no possible choice of

monomial order where g will have a leading monomial in only x0.
6The only difference from the description in Section 7.1.4 is that we allow Li,j from (7.2) to

be quadratic, due to the term Q2
i´1.

262 Chapter 7. The FreeLunch Attack

In order to circumvent this issue, we will multiply g by suitable monomials in
x1, . . . , xr that leads to a reduction by the polynomials p1, . . . , pr. This process will
ultimately lead to a new polynomial g˚, whose leading monomial will be univariate
in x0. To briefly illustrate the idea, we consider the first step of this procedure.
Writing out g in terms of Pr´1, Qr´1 and xr, we have

gpPr´1, Qr´1, xrq “ p1 ´ 4axrqQr´1 ` p2axr ´ 1qxr ` 2pPr´1 ´ a´1q

“ p´4aQr´1 ` 2axr ´ 1qxr ` Qr´1 ` 2Pr´1 ´ 2a´1 ,

taking into account the final M-transformation. In order to cancel out the product
xrQr´1 using pr, we construct the following polynomial:

g1 “ xα´1
r g ` p4aQr´1 ´ 2axr ` 1qpr

“ xα
r p´4aQr´1 ` 2axr ´ 1q ` xα´1

r pQr´1 ` 2Pr´1 ´ 2a´1q

` p4aQr´1 ´ 2axr ` 1qpxα
r ` aQ2

r´1 ´ Pr´1 ` a´1q

“ xα´1
r pQr´1 ` 2Pr´1 ´ 2a´1q ` 4a2Q3

r´1 ` aQ2
r´1

` 4Qr´1p1 ´ aPr´1q ´ Pr´1 ` a´1 ´ 2xrpa2Q2
r´1 ´ aPr´1 ` 1q .

Hence, we have successfully eliminated xr from the leading monomial of g1 under
any monomial order that satisfies:

wt
`

LM
`

Q3
r´1

˘˘

ą wt
`

LM
`

xα´1
r Qr´1

˘˘

,

wt
`

LM
`

Q3
r´1

˘˘

ą wt
`

LM
`

xα´1
r Pr´1

˘˘

,

wt
`

LM
`

Q3
r´1

˘˘

ą wt
`

LM
`

xrQ2
r´1

˘˘

,

wt
`

LM
`

Q3
r´1

˘˘

ą wt pLM pxrPr´1qq ,

which, since α ě 3 and LMpPr´1q “ LMpQr´1q, can be simplified further to:

wt
`

LM
`

Q2
r´1

˘˘

ą wt
`

xα´1
r

˘

“ pα ´ 1qwtpxrq .

7.3.3 Constructing FreeLunch Systems From Anemoi
We now turn our attention to the general construction of g˚ that will allow us to
apply the FreeLunch machinery for solving the CICO problem for Anemoi. Here,
we will not only be interested in the leading monomials of the intermediate states
and pi, but also in the second and third monomials. To this end, we define ăA to
be the monomial order associated with the weight vector defined recursively by

#

wtpx0q “ 1,

wtpxiq “ 2
αwtpx0 ¨ ¨ ¨ xi´1q, for 1 ď i ď r .

Indeed, this choice of monomial order allows us to prove the following two lemmas.
For a polynomial h, we let Monjphq denote the j-th monomial of h according to

7.3. Forcing the Presence of a FreeLunch for Anemoi 263

ăA. As usual, we write LMphq “ Mon1phq. To avoid pathological cases, we always
consider an affine input in x0 for the CICO-problem such that x0 is not eliminated
after the initial linear operation M. Finally, remember that two monomials may
have equal weight, and only get sorted by their lexicographic order.

Lemma 7.5. Let Qipx0, . . . , xiq be as defined in Figure 7.7(a) and ordered according
to ăA. Then the following holds for α ě 3.

LMpQiq “ x0 ¨ ¨ ¨ xi, and wtpLMpQiqq ą wtpMon2pQiqq .

Proof. We proceed by induction. The statements are clearly true for i “ 0, as Q0
is an affine polynomial in x0 by our CICO setting. Now assume it holds for i ´ 1.
As mentioned above, leading terms cannot be canceled under M, and the leading
terms come from the first output of M. Thus, we can restrict ourselves to the two
largest monomials in the first output from M, that is 2axiQi´1 ` ax2

i ` Pi´1 ´ a´1.
From the induction hypothesis we have LMpxiQi´1q “ x0 ¨ ¨ ¨ xi, and it follows from
the definition of ăA that this has a strictly higher weight than x2

i when α ě 3.

Lemma 7.6. Let pipx0, . . . , xiq be as defined in (7.8) and ordered according to ăA,
and let α ě 3. Then for all 1 ď i ď r the following holds.

1. LMppiq “ xα
i .

2. Mon2ppiq “ px0 ¨ ¨ ¨ xi´1q2.

3. wtpLMppiqq “ wtpMon2ppiqq ą wtpMon3ppiqq .

Proof. We see from the definition of pi that LMppiq must be either xα
i or LMpQ2

i q.
From Lemma 7.5, we have wtpLMpQ2

i qq “ 2wtpx0 ¨ ¨ ¨ xi´1q, so these two monomials
have the same weight by definition of ăA. LMppiq “ xα

i then follows from
Definition 6.7. Finally, Mon3ppiq “ Mon2pQ2

i q and thus has a strictly smaller
weight than the initial two monomials (Lemma 7.5).

Before we can define g˚, we also need a way to predict the powers of xi we will
use in the multiplication of g prior to the reductions by p1, . . . , pr. This is handled
by the following integer sequences.

Definition 7.8. We define two integer sequences tuiu0ďiďr and tkju1ďjďr, where
ur “ 1, and the remaining sequences are recursively defined as follows:

• ki is the unique integer 0 ď ki ă α such that ki ” ´ui mod α;

• ui´1 “ ui ` 2pui ` kiq{α.

In the following, we will denote u “ u0.

Note that in the above definition, ui ` ki is always a multiple of α; hence ui´1
is indeed an integer.

For a polynomial h and sequence of polynomials H, we write Redph, Hq to
denote the reduction of h by H w.r.t. ăA.More specifically, Redph, Hq is the

264 Chapter 7. The FreeLunch Attack

remainder after performing multivariate division of h by H (see [CLO97, Ch. 2,
§3]). We are now in a position to define g˚. Let g1

r “ g, and recursively define

g1
i´1 “ Redpxki

i g1
i, tpi, pi`1, . . . , pruq, for i “ r, r ´ 1, . . . , 1 .

We set g˚ “ g1
0, and IA “ xPG˚y, where PG˚ “ tp1, . . . , pr, g˚u. It is clear from the

construction that IA is a subideal of xPGy. The following result guarantees that
PG˚ is a FreeLunch system generating this subideal.

Proposition 7.5. The polynomial system PG˚ is a FreeLunch system, where
LMăApg˚q “ xu

0 . Moreover, the variety of the associated ideal IA contains all valid
solutions of the underlying instance of Anemoi.

Proof. By Lemma 7.6 we have LMppiq “ xα
i , so we need only show that LMpg˚q is

a univariate monomial in x0 to guarantee that PG˚ is a FreeLunch system. To this
end, we will show by induction on descending i that LMpg1

iq “ px0 ¨ ¨ ¨ xiq
ui , and

wtpLMpg1
iqq ą LMpMon2pg1

iqq.
For i “ r, we have g1

r “ g “ Qr, and the statement holds by Lemma 7.5.
Suppose the hypothesis holds for a given i and consider i ´ 1. If we denote
si “ pui ` kiq{α, we have LMpxki

i g1
iq “ px0 ¨ ¨ ¨ xi´1quixαsi

i . We now reduce this
monomial by pi. Write c for the leading coefficient of xki

i g1
i. From Lemma 7.6,

we have that the first two monomials in pi have the same weight, while all other
monomials have smaller weights. Moreover, the induction hypothesis ensures that
Monjpxki

i g1
iq will a have smaller weight than LMpxki

i g1
iq for j ě 2. Hence,

LM
´

xki
i g1

i ´ cpx0 ¨ ¨ ¨ xi´1quix
αpsi´1
i qpi

¯

“ px0 ¨ ¨ ¨ xi´1qui`2x
αpsi´1q

i ,

following from the fact that wtppx0 ¨ ¨ ¨ xi´1qui`2x
αpsi´1q

i q “ wtpLMpxki
i g1

iqq “

wt pLM ppx0 ¨ ¨ ¨ xi´1quipiqq, and the weight of all other monomials are guaranteed
to be strictly smaller. Repeating this process si ´ 1 times, we get LMpg1

i´1q “

px0 ¨ ¨ ¨ xi´1qui`2si , which proves the induction statement. Since this implies that
LMpg˚q “ LMpg1

0q “ xu
0 , it also concludes the proof of the first part of the

proposition. The second part holds since IA is a subideal of xPGy, where the variety
of the latter ideal will contain all solutions of Anemoi.

7.3.3.1 A closer look at the ideal degree
Based on experiments, the authors of Anemoi conjectured a tight upper bound on
the ideal degree of one modeling of the CICO-problem to be pα ` 2qr [BBC+23,
Conjecture 2]. As IA is a FreeLunch system, we have DIA

“ αru, where we recall
that u is an integer depending on r and α. As IA is a subideal of xPGy, we generally
expect DIA

to be strictly larger than pα ` 2qr. The following result guarantees
that DI can at most differ by a factor close to α, which in practical instances will
be a small constant.

Proposition 7.6. Let u be as defined in Definition 7.8 for integers r, α ě 1. Then
ˆ

α ` 2
α

˙r

ď u ď pα ` 1q

ˆ

α ` 2
α

˙r

´ α .

7.3. Forcing the Presence of a FreeLunch for Anemoi 265

Proof. Recall from Definition 7.8 that u is defined as u “ u0 through the sequence
tuiu0ďiďr. To simplify the exposition, we will work with the sequence tviu0ďiďr

defined by v0 “ 1, and

vi`1 “ vi ` 2
Qvi

α

U

, for 0 ď i ă r.

Note that vi “ ur´i and, in particular, vr “ u. Define two more integer sequences
taiu0ďiďr and tbiu0ďiďr defined by a0 “ b0 “ 1 and for 0 ď i ă r

ai`1 “
α ` 2

α
ai, bi`1 “

α ` 2
α

bi ` 2.

As a first step, we will prove ai ď vi ď bi. This is clearly true for i “ 0. Supposing
it holds up to some i, then using the identity x ď rxs ă x ` 1, we have

α ` 2
α

vi ď vi ` 2
Qvi

α

U

ă
α ` 2

α
vi ` 2,

Thus, using the induction hypothesis and the definitions of taiu and tbiu,

ai`1 ď vi`1 ď bi`1.

Observe that ai “
`

α`2
α

˘i, which proves the left-hand side of the inequality in
the proposition. For the right-hand side we note that tbiu can be written as
bi “ pα ` 1q

`

α`2
α

˘i
´ α, when i ě 1. Indeed, this can be verified for i “ 1.

Supposing it holds up to some i, then

bi`1 “
α ` 2

α
bi ` 2

“ pα ` 1q

ˆ

α ` 2
α

˙i`1
´

αpα ` 2q

α
` 2

“ pα ` 1q

ˆ

α ` 2
α

˙i`1
´ α,

and the bounds on u stated in Proposition 7.6 follows.

From experiments for α “ 3 and large r, we find u « 2.1 p5{3q
r.

Summary. For Anemoi, we get a polynomial system with r equations of respective
leading terms xα

1 , . . . xα
r and one equation of leading term xu

0 . This gives the
following parameters:

DI “ αru,

DH “ αr.

266 Chapter 7. The FreeLunch Attack

Security claim α “ 3 α “ 5 α “ 7 α “ 11
128 118 (21) 156 (21) 174 (20) 198 (19)
256 203 (37) 270 (37) 307 (36) 358 (35)

Table 7.6: Expected time complexity of polyDet for the different full-round
instances of Anemoi over Fp and ℓ “ 1. Number of rounds in parentheses.

Number of Complexity Time (s) Memory
rounds of polyDet sysGen matGen polyDet (MB)

3 20 ă 0.01 ă 0.01 0.02 ă 400
4 26 ă 0.01 0.34 0.24 ă 400
5 32 0.07 23.3 7.6 ă 400
6 37 2.52 2, 127 292 2, 863
7 43 128 156, 348 10, 725 42, 337

Table 7.7: Experimental results on Anemoi with pℓ, αq “ p1, 3q. sysGen is
performed with Magma and refers to the generation of the polynomial system
PG˚ from scratch, including the computation of PG .

7.3.3.2 Complexity analysis and experimental results

The FreeLunch system PG˚ consists of r polynomials of degree α and one polynomial
of degree u. The algorithm of Section 7.1.2 has a complexity of Õpαrωuq. We
plugged in the numbers for odd Anemoi (ℓ “ 1), see Table 7.6. We also ran
experiments for Anemoi with pℓ, αq “ p1, 3q and different number of rounds to
verify the theory presented above. The results are presented in Table 7.7.

7.4 Discussion on the FreeLunch Attack
We have presented the FreeLunch approach, an algebraic attack particularly efficient
against arithmetization-oriented permutations. We conclude this chapter with
some comments regarding our experiments as well the consequences of our results,
in particular regarding the areas we believe worth investigating further.

7.4.1 Discussion on Experimental Results
Figure 7.8 depicts the runtimes of each step of our attack that we obtained
experimentally when targeting Griffin and Anemoi. A first observation is that
the running time of a full FreeLunch-based attack is hard to predict: there
are three steps (sysGen, matGen, and polyDet), and we experimentally found
situations where each of them was the slowest. The case of sysGen is a bit
peculiar: using SageMath, Magma or Flint/NTL yields very different results and a
deeper understanding seems out of our grasp. We nevertheless would argue (see
Section 7.1.4.3) that, should their implementations use similar tools, sysGen will
always be of lower complexity than that of the rest of the attack.

7.4. Discussion on the FreeLunch Attack 267

Assuming that the dominating step is either matGen or polyDet, it then seems
easy to extrapolate: as we can see in Figure 7.8, their logarithm increases linearly
with the number of rounds. Even better: for Griffin, Equation 7.7 predicts that
adding a round multiplies the complexity of polyDet by αωp2α ` 1q « 109.5, which
closely matches our observations as 5727{50.79 « 112.7. For matGen, we see that
adding a round multiplies the time complexity by about 500. Extrapolating from
this, an attack against full-round Griffin should take about 4.2 ¨ 1011s on a single
CPU (around 13, 000 years), or around 270 clock cycles at 2.3 GHz. Similarly, for
Anemoi with Fp and pl, αq “ p1, 3q, adding a round multiplies the time complexity
of matGen by about 75. Extrapolating gives respectively 2104 seconds (or 2135 clock
cycles) and 2204 seconds (2235 clock cycles) for full-round Anemoi with 128 and 256
bits of security.

((a)) Griffin complexity (from Ta-
ble 7.3).

((b)) Anemoi complexity (from Ta-
ble 7.7).

Figure 7.8: Experimental time complexity of our attacks on Griffin and Anemoi.

7.4.2 Preventing the FreeLunch Attack
Our attack breaks full-round instances of symmetric primitives built using state-of-
the-art security arguments, which consequently must be revisited: one must learn
how to prevent the relevant applicability of the FreeLunch approach.

At the Primitive Level. An obvious but perhaps costly countermeasure consists
of simply adding more rounds. This is particularly tempting as we are able to
tightly estimate the complexity of polyDet, a step which we have found to often
be the most expensive in practice. Choosing a number of rounds high enough to
prevent it would be a simple yet convincing argument. Primitive designers must
also be mindful of “classical” tricks, i.e., symmetric cryptanalysis techniques (a
priori) unrelated to root finding that can be used to enhance its efficiency. In the
case of 12-branch Griffin, the fact that we can bypass 3 out of 10 rounds using
some kind of subspace trail is a problem we deem worth studying.

At the Mode of Operation Level. The FreeLunch systems are multivariate,
but a single variable (x0) plays an inherently different role, meaning that they have

268 Chapter 7. The FreeLunch Attack

a univariate flair. This makes them particularly well suited to CICO instances
whereby a single output word has to be set to 0, but they will not work if more
zeroes are needed in the output. Thus, a simple countermeasure against the
FreeLunch approach (and univariate ones) consists of forcing the capacity of the
sponge to have at least two words set to 0, even if one word would a priori be
enough.

7.4.3 Open Problems for Future Work
Time Taken by Polynomial Reductions. A roadblock in our complexity
estimates is the number of operations needed to perform certain reductions of
a polynomial modulo an ideal. This is crucial for understanding the complexity
of the matGen step and, to a lesser degree, sysGen. A tighter estimate for these
computations would greatly benefit our analysis: we would be able to figure out
which step of our attack is the actual bottleneck without the need for experiments
or assumptions, and designers could then be able to use fewer rounds to achieve a
given security level against FreeLunch-based attacks. For instance, estimating the
complexity of a reduction by a FreeLunch quasi-triangular system (Definition 7.2)
would be a big step forward.

Other Custom Approaches. The FreeLunch approach is, to the best of our
knowledge, the first “custom” root finding method designed specifically for use in
symmetric cryptanalysis. There is, of course, no reason to believe that it is the
only one possible, and we consider it a direction worth pursuing. As a first step, a
multivariate variant of FreeLunch where several variables play the role of x0, and
where several words need to be set to 0, would be an interesting target.

Conclusion and Open Problems

This thesis shows a wide range of results in symmetric cryptography, in cryptanalysis
as well as design, on traditional and arithmetization-oriented primitives. It
therefore contributes to improve our understanding of multiple aspects of symmetric
cryptography. The main results and open problems of this thesis are listed below.

First, we improve upon some cryptanalysis techniques of traditional symmetric
primitives. Our cryptanalysis of forkciphers shows that their security can not
be directly derived from the security of the underlying primitives. In particular,
the designers of new forkciphers should carefully choose the number of rounds
to mitigate attacks using reconstruction queries. Also, our truncated boomerang
attack improves on the standard analysis of the boomerang attack and improves the
complexity of the boomerang attack against AES and its variants. Our simplified
analysis allows to easily apply and estimate the complexity of the truncated
boomerang attack on other designs. A possible follow-up of this work is to find
existing constructions other than AES variants where the truncated boomerang
attack performs better than the standard boomerang attack. Finally, we show that
the truncated boomerang can be combined with the retracing boomerang to yield
better key-recovery attacks on 6-round AES.

Second, our new framework of AES-based MACs revisits the design of previous
primitives such as Rocca or Tiaoxin. Our MAC candidates have better performance
than candidates of previous frameworks, because we allow for the parallelization
of AES-NI instructions while keeping a low rate. Notably, we present LeMac, a
128-bit-secure MAC which achieves the best performance among existing MACs
on recent processors. This work paves the way for future designs of ultra-fast
AES-based primitives. Possible continuations of this work are to improve the design
performance by reducing the rate below 2, or to use a similar framework to design
an AES-based MAC with 256-bit security.

Third, we present multiple applications of polynomial-solving attacks on
arithmetization-oriented primitives. Although polynomial-solving attacks are
known to cryptographers, the modeling step of the attack sometimes remains
optimistically analysed in new designs, and this can lead to better attacks than
anticipated, in the worst case breaking the primitives. In particular, we improve
the modeling of polynomial solving attacks on Poseidon and Rescue-Prime, and
show two full-round attacks on Ciminion. In addition, we present a new type of
algebraic attack based on polynomial solving: the FreeLunch attack. We present a
new dedicated solving algorithm with better complexity than generic tools in the

269

270 Chapter 7. The FreeLunch Attack

literature for solving polynomial systems, and improve the modeling of multiple
arithmetization-oriented primitives. This leads to powerful attacks, breaking some
instances of Arion and Griffin, and significantly reducing the security margin
of Anemoi. This attack is very novel and can certainly be improved upon; in
particular, it raised multiple open questions. Is it possible to precisely estimate the
complexity of the computation of the multiplication matrix? Can we improve the
computation of the multiplication matrix for some particular polynomial systems?
Can we automatically determine whether a polynomial system is a FreeLunch
system?

Bibliography

[AAB+19] Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson, Siemen Dhooghe,
and Alan Szepieniec. Design of Symmetric-Key Primitives for Ad-
vanced Cryptographic Protocols. Cryptology ePrint Archive, Report
2019/426. https://eprint.iacr.org/2019/426. 2019 (cit. on
pp. 216, 217).

[AAB+20] Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson, Siemen Dhooghe,
and Alan Szepieniec. “Design of Symmetric-Key Primitives for
Advanced Cryptographic Protocols”. In: IACR Transactions on
Symmetric Cryptology 2020.3 (2020), pp. 1–45. issn: 2519-173X.
doi: 10.13154/tosc.v2020.i3.1-45 (cit. on pp. xv, xvi, 196–199).

[ACG+19] Martin R. Albrecht, Carlos Cid, Lorenzo Grassi, Dmitry Khovra-
tovich, Reinhard Lüftenegger, Christian Rechberger, and Markus
Schofnegger. “Algebraic Cryptanalysis of STARK-Friendly Designs:
Application to MARVELlous and MiMC”. In: Advances in Cryptology
– ASIACRYPT 2019, Part III. Ed. by Steven D. Galbraith and Shiho
Moriai. Vol. 11923. Lecture Notes in Computer Science. Kobe, Japan:
Springer, Heidelberg, Germany, 2019, pp. 371–397. doi: 10.1007/
978-3-030-34618-8_13 (cit. on pp. 197, 210).

[AD18] Tomer Ashur and Siemen Dhooghe. MARVELlous: a STARK-
Friendly Family of Cryptographic Primitives. Cryptology ePrint
Archive, Report 2018/1098. https://eprint.iacr.org/2018/1098.
2018 (cit. on pp. xv, 196, 197).

[Ada97] Carlisle Adams. The CAST-128 Encryption Algorithm. RFC 2144.
May 1997. doi: 10.17487/RFC2144 (cit. on pp. 14, 82).

[Aes] Advanced Encryption Standard (AES). National Institute of Stan-
dards and Technology, NIST FIPS PUB 197, U.S. Department of
Commerce. Nov. 2001 (cit. on p. 166).

[AGP+19] Martin R. Albrecht, Lorenzo Grassi, Léo Perrin, Sebastian Ra-
macher, Christian Rechberger, Dragos Rotaru, Arnab Roy, and
Markus Schofnegger. “Feistel Structures for MPC, and More”. In:
ESORICS 2019: 24th European Symposium on Research in Computer
Security, Part II. Ed. by Kazue Sako, Steve Schneider, and Peter Y. A.
Ryan. Vol. 11736. Lecture Notes in Computer Science. Luxembourg:

271

https://eprint.iacr.org/2019/426
https://doi.org/10.13154/tosc.v2020.i3.1-45
https://doi.org/10.1007/978-3-030-34618-8_13
https://doi.org/10.1007/978-3-030-34618-8_13
https://eprint.iacr.org/2018/1098
https://doi.org/10.17487/RFC2144

272 Bibliography

Springer, Heidelberg, Germany, 2019, pp. 151–171. doi: 10.1007/
978-3-030-29962-0_8 (cit. on p. 198).

[AGR+16] Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab
Roy, and Tyge Tiessen. “MiMC: Efficient Encryption and Cryp-
tographic Hashing with Minimal Multiplicative Complexity”. In:
Advances in Cryptology – ASIACRYPT 2016, Part I. Ed. by Jung
Hee Cheon and Tsuyoshi Takagi. Vol. 10031. Lecture Notes in
Computer Science. Hanoi, Vietnam: Springer, Heidelberg, Germany,
2016, pp. 191–219. doi: 10.1007/978-3-662-53887-6_7 (cit. on
pp. xv, xvi, 196–199, 201, 210).

[AKM+22] Tomer Ashur, Al Kindi, Willi Meier, Alan Szepieniec, and Bobbin
Threadbare. Rescue-Prime Optimized. Cryptology ePrint Archive,
Report 2022/1577. https://eprint.iacr.org/2022/1577. 2022
(cit. on p. 257).

[AKM23] Tomer Ashur, Al Kindi, and Mohammad Mahzoun. XHash8 and
XHash12: Efficient STARK-friendly Hash Functions. Cryptology
ePrint Archive, Paper 2023/1045. https://eprint.iacr.org/
2023/1045. 2023 (cit. on pp. xv, 196, 197, 210, 235, 257, 259, 260).

[ALP+19a] Elena Andreeva, Virginie Lallemand, Antoon Purnal, Reza Reyhan-
itabar, Arnab Roy, and Damian Vizár. ForkAE v.1. Submission to
the NIST Lightweight Cryptography standardization process. 2019
(cit. on pp. 43, 76).

[ALP+19b] Elena Andreeva, Virginie Lallemand, Antoon Purnal, Reza Rey-
hanitabar, Arnab Roy, and Damian Vizár. “Forkcipher: A New
Primitive for Authenticated Encryption of Very Short Messages”.
In: Advances in Cryptology – ASIACRYPT 2019, Part II. Ed. by
Steven D. Galbraith and Shiho Moriai. Vol. 11922. Lecture Notes
in Computer Science. Kobe, Japan: Springer, Heidelberg, Germany,
2019, pp. 153–182. doi: 10.1007/978-3-030-34621-8_6 (cit. on
pp. xi, 43).

[AMP+14] Jean-Philippe Aumasson, Willi Meier, Raphael C.-W. Phan, and
Luca Henzen. The Hash Function BLAKE. Information Security and
Cryptography. Springer, Heidelberg, Germany, 2014. isbn: 978-3-
662-44757-4. doi: 10.1007/978-3-662-44757-4 (cit. on p. 14).

[ARS+15] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge
Tiessen, and Michael Zohner. “Ciphers for MPC and FHE”. In:
Advances in Cryptology – EUROCRYPT 2015, Part I. Ed. by
Elisabeth Oswald and Marc Fischlin. Vol. 9056. Lecture Notes in
Computer Science. Sofia, Bulgaria: Springer, Heidelberg, Germany,
2015, pp. 430–454. doi: 10.1007/978-3-662-46800-5_17 (cit. on
pp. xv, 196).

https://doi.org/10.1007/978-3-030-29962-0_8
https://doi.org/10.1007/978-3-030-29962-0_8
https://doi.org/10.1007/978-3-662-53887-6_7
https://eprint.iacr.org/2022/1577
https://eprint.iacr.org/2023/1045
https://eprint.iacr.org/2023/1045
https://doi.org/10.1007/978-3-030-34621-8_6
https://doi.org/10.1007/978-3-662-44757-4
https://doi.org/10.1007/978-3-662-46800-5_17

Bibliography 273

[ARV+18] Elena Andreeva, Reza Reyhanitabar, Kerem Varici, and Damian
Vizár. Forking a Blockcipher for Authenticated Encryption of Very
Short Messages. Cryptology ePrint Archive, Report 2018/916. https:
//eprint.iacr.org/2018/916. 2018 (cit. on pp. xi, 43–45).

[AST+17] Ahmed Abdelkhalek, Yu Sasaki, Yosuke Todo, Mohamed Tolba, and
Amr M. Youssef. “MILP Modeling for (Large) S-boxes to Optimize
Probability of Differential Characteristics”. In: IACR Transactions
on Symmetric Cryptology 2017.4 (2017), pp. 99–129. issn: 2519-173X.
doi: 10.13154/tosc.v2017.i4.99-129 (cit. on pp. 36, 37).

[BAK98] Eli Biham, Ross J. Anderson, and Lars R. Knudsen. “Serpent: A New
Block Cipher Proposal”. In: Fast Software Encryption – FSE’98. Ed.
by Serge Vaudenay. Vol. 1372. Lecture Notes in Computer Science.
Paris, France: Springer, Heidelberg, Germany, 1998, pp. 222–238.
doi: 10.1007/3-540-69710-1_15 (cit. on p. 14).

[Bar19] Navid Ghaedi Bardeh. A Key-Independent Distinguisher for 6-round
AES in an Adaptive Setting. Cryptology ePrint Archive, Report
2019/945. https://eprint.iacr.org/2019/945. 2019 (cit. on
pp. xiii, 80, 92, 105).

[Bar24] Augustin Bariant. A Univariate Attack against the Limited-Data
Instance of Ciminion. Cryptology ePrint Archive, Paper 2023/1283,
Accepted to Selected Areas in Cryptography 2024. https://eprint.
iacr.org/2023/1283. 2024 (cit. on pp. xv, 195, 222).

[BBC+23] Clémence Bouvier, Pierre Briaud, Pyrros Chaidos, Léo Perrin,
Robin Salen, Vesselin Velichkov, and Danny Willems. “New Design
Techniques for Efficient Arithmetization-Oriented Hash Functions:
ttAnemoi Permutations and ttJive Compression Mode”. In: Advances
in Cryptology – CRYPTO 2023, Part III. Ed. by Helena Handschuh
and Anna Lysyanskaya. Vol. 14083. Lecture Notes in Computer
Science. Santa Barbara, CA, USA: Springer, Heidelberg, Germany,
2023, pp. 507–539. doi: 10.1007/978-3-031-38548-3_17 (cit. on
pp. xv, xvii, 196, 197, 210, 235, 260, 264).

[BBG+08] Ryad Benadjila, Olivier Billet, Henri Gilbert, Gilles Macario-Rat,
Thomas Peyrin, Matt Robshaw, and Yannick Seurin. SHA-3 Proposal:
ECHO. Submission to NIST SHA-3 Cryptographic Hash Algorithm
Competition. Available at https : / / ehash . iaik . tugraz . at /
uploads/9/91/Echo.pdf. 2008 (cit. on pp. 33, 166).

[BBH+18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev.
Scalable, transparent, and post-quantum secure computational in-
tegrity. Cryptology ePrint Archive, Report 2018/046. https : / /
eprint.iacr.org/2018/046. 2018 (cit. on p. 196).

https://eprint.iacr.org/2018/916
https://eprint.iacr.org/2018/916
https://doi.org/10.13154/tosc.v2017.i4.99-129
https://doi.org/10.1007/3-540-69710-1_15
https://eprint.iacr.org/2019/945
https://eprint.iacr.org/2023/1283
https://eprint.iacr.org/2023/1283
https://doi.org/10.1007/978-3-031-38548-3_17
https://ehash.iaik.tugraz.at/uploads/9/91/Echo.pdf
https://ehash.iaik.tugraz.at/uploads/9/91/Echo.pdf
https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2018/046

274 Bibliography

[BBJ+19] Subhadeep Banik, Jannis Bossert, Amit Jana, Eik List, Stefan
Lucks, Willi Meier, Mostafizar Rahman, Dhiman Saha, and Yu
Sasaki. “Cryptanalysis of ForkAES”. In: ACNS 19: 17th International
Conference on Applied Cryptography and Network Security. Ed. by
Robert H. Deng, Valérie Gauthier-Umaña, Martín Ochoa, and Moti
Yung. Vol. 11464. Lecture Notes in Computer Science. Bogota,
Colombia: Springer, Heidelberg, Germany, 2019, pp. 43–63. doi:
10.1007/978-3-030-21568-2_3 (cit. on pp. xi, 47–49).

[BBL+22] Augustin Bariant, Clémence Bouvier, Gaëtan Leurent, and Léo
Perrin. “Algebraic Attacks against Some Arithmetization-Oriented
Primitives”. In: IACR Transactions on Symmetric Cryptology 2022.3
(2022), pp. 73–101. doi: 10.46586/tosc.v2022.i3.73-101 (cit. on
pp. xv, 195, 209, 210, 222, 231).

[BBL+24a] Augustin Bariant, Jules Baudrin, Gaëtan Leurent, Clara Pernot,
Léo Perrin, and Thomas Peyrin. “Fast AES-Based Universal Hash
Functions and MACs Featuring LeMac and PetitMac”. In: IACR
Trans. Symmetric Cryptol. 2024.2 (2024), pp. 35–67. doi: 10.46586/
TOSC.V2024.I2.35-67.

[BBL+24b] Augustin Bariant, Aurélien Boeuf, Axel Lemoine, Irati Manterola
Ayala, Morten Øygarden, Léo Perrin, and Håvard Raddum. “The
Algebraic FreeLunch: Efficient Gröbner Basis Attacks Against
Arithmetization-Oriented Primitives”. In: Advances in Cryptology –
CRYPTO 2024, Part IV. Lecture Notes in Computer Science. Santa
Barbara, CA, USA, Aug. 2024, pp. 139–173. doi: 10.1007/978-3-
031-68385-5_5 (cit. on pp. xvii, 235).

[BC18] Christina Boura and Anne Canteaut. “On the Boomerang Uniformity
of Cryptographic Sboxes”. In: IACR Transactions on Symmetric
Cryptology 2018.3 (2018), pp. 290–310. issn: 2519-173X. doi: 10.
13154/tosc.v2018.i3.290-310 (cit. on p. 58).

[BC20] Christina Boura and Daniel Coggia. “Efficient MILP Modelings for
Sboxes and Linear Layers of SPN ciphers”. In: IACR Transactions on
Symmetric Cryptology 2020.3 (2020), pp. 327–361. issn: 2519-173X.
doi: 10.13154/tosc.v2020.i3.327-361 (cit. on p. 37).

[BCC+12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer.
“From extractable collision resistance to succinct non-interactive
arguments of knowledge, and back again”. In: ITCS 2012: 3rd Inno-
vations in Theoretical Computer Science. Ed. by Shafi Goldwasser.
Cambridge, MA, USA: Association for Computing Machinery, 2012,
pp. 326–349. doi: 10.1145/2090236.2090263 (cit. on p. 196).

[BCD+20] Tim Beyne, Anne Canteaut, Itai Dinur, Maria Eichlseder, Gregor
Leander, Gaëtan Leurent, María Naya-Plasencia, Léo Perrin, Yu
Sasaki, Yosuke Todo, and Friedrich Wiemer. “Out of Oddity

https://doi.org/10.1007/978-3-030-21568-2_3
https://doi.org/10.46586/tosc.v2022.i3.73-101
https://doi.org/10.46586/TOSC.V2024.I2.35-67
https://doi.org/10.46586/TOSC.V2024.I2.35-67
https://doi.org/10.1007/978-3-031-68385-5_5
https://doi.org/10.1007/978-3-031-68385-5_5
https://doi.org/10.13154/tosc.v2018.i3.290-310
https://doi.org/10.13154/tosc.v2018.i3.290-310
https://doi.org/10.13154/tosc.v2020.i3.327-361
https://doi.org/10.1145/2090236.2090263

Bibliography 275

- New Cryptanalytic Techniques Against Symmetric Primitives
Optimized for Integrity Proof Systems”. In: Advances in Cryptology
– CRYPTO 2020, Part III. Ed. by Daniele Micciancio and Thomas
Ristenpart. Vol. 12172. Lecture Notes in Computer Science. Santa
Barbara, CA, USA: Springer, Heidelberg, Germany, 2020, pp. 299–
328. doi: 10.1007/978-3-030-56877-1_11 (cit. on pp. 197, 198).

[BCP23] Clémence Bouvier, Anne Canteaut, and Léo Perrin. “On the algebraic
degree of iterated power functions”. In: Des. Codes Cryptogr. 91.3
(2023), pp. 997–1033. doi: 10.1007/S10623-022-01136-X (cit. on
p. 198).

[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust. “The Magma
algebra system. I. The user language”. In: J. Symbolic Comput.
24.3-4 (1997). Computational algebra and number theory (London,
1993), pp. 235–265. issn: 0747-7171. doi: 10.1006/jsco.1996.0125
(cit. on pp. 221, 248).

[BD08] Eli Biham and Orr Dunkelman. The SHAvite-3 Hash Function.
Submission to NIST SHA-3 Cryptographic Hash Algorithm Com-
petition. Available at https://www.cs.rit.edu/~ark/20090927/
Round2Candidates/SHAvite-3.pdf. 2008 (cit. on p. 33).

[BDK01] Eli Biham, Orr Dunkelman, and Nathan Keller. “The Rectangle
Attack - Rectangling the Serpent”. In: Advances in Cryptology –
EUROCRYPT 2001. Ed. by Birgit Pfitzmann. Vol. 2045. Lecture
Notes in Computer Science. Innsbruck, Austria: Springer, Heidelberg,
Germany, 2001, pp. 340–357. doi: 10.1007/3-540-44987-6_21
(cit. on p. 87).

[BDK02] Eli Biham, Orr Dunkelman, and Nathan Keller. “New Results on
Boomerang and Rectangle Attacks”. In: Fast Software Encryption
– FSE 2002. Ed. by Joan Daemen and Vincent Rijmen. Vol. 2365.
Lecture Notes in Computer Science. Leuven, Belgium: Springer,
Heidelberg, Germany, 2002, pp. 1–16. doi: 10.1007/3-540-45661-
9_1 (cit. on p. 87).

[BDK+18] Achiya Bar-On, Orr Dunkelman, Nathan Keller, Eyal Ronen, and
Adi Shamir. “Improved Key Recovery Attacks on Reduced-Round
AES with Practical Data and Memory Complexities”. In: Advances
in Cryptology – CRYPTO 2018, Part II. Ed. by Hovav Shacham
and Alexandra Boldyreva. Vol. 10992. Lecture Notes in Computer
Science. Santa Barbara, CA, USA: Springer, Heidelberg, Germany,
2018, pp. 185–212. doi: 10.1007/978-3-319-96881-0_7 (cit. on
p. 80).

[BDK+24] Augustin Bariant, Orr Dunkelman, Nathan Keller, Gaëtan Leurent,
and Victor Mollimard. Improved Boomerang Attacks on 6-Round
AES. Cryptology ePrint Archive, Paper 2024/977. 2024.

https://doi.org/10.1007/978-3-030-56877-1_11
https://doi.org/10.1007/S10623-022-01136-X
https://doi.org/10.1006/jsco.1996.0125
https://www.cs.rit.edu/~ark/20090927/Round2Candidates/SHAvite-3.pdf
https://www.cs.rit.edu/~ark/20090927/Round2Candidates/SHAvite-3.pdf
https://doi.org/10.1007/3-540-44987-6_21
https://doi.org/10.1007/3-540-45661-9_1
https://doi.org/10.1007/3-540-45661-9_1
https://doi.org/10.1007/978-3-319-96881-0_7

276 Bibliography

[BDL20] Augustin Bariant, Nicolas David, and Gaëtan Leurent. “Cryptanaly-
sis of Forkciphers”. In: IACR Transactions on Symmetric Cryptology
2020.1 (2020), pp. 233–265. issn: 2519-173X. doi: 10.13154/tosc.
v2020.i1.233-265 (cit. on pp. xi, 43, 62).

[BDP+06] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van
Assche. RadioGatún, a belt-and-mill hash function. Cryptology ePrint
Archive, Report 2006/369. https://eprint.iacr.org/2006/369.
2006 (cit. on p. 172).

[BDP+07] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van
Assche. “Sponge functions”. In: ECRYPT hash workshop. Vol. 2007.
9. Citeseer. 2007 (cit. on pp. 12, 19).

[BDP+09] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
“Keccak sponge function family main document”. In: Submission to
NIST (Round 2) 3.30 (2009), pp. 320–337 (cit. on pp. 19, 198).

[BDP+12] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
“Duplexing the Sponge: Single-Pass Authenticated Encryption and
Other Applications”. In: SAC 2011: 18th Annual International
Workshop on Selected Areas in Cryptography. Ed. by Ali Miri and
Serge Vaudenay. Vol. 7118. Lecture Notes in Computer Science.
Toronto, Ontario, Canada: Springer, Heidelberg, Germany, 2012,
pp. 320–337. doi: 10.1007/978-3-642-28496-0_19 (cit. on p. 15).

[Ber05] Daniel J. Bernstein. “The Poly1305-AES Message-Authentication
Code”. In: Fast Software Encryption – FSE 2005. Ed. by Henri
Gilbert and Helena Handschuh. Vol. 3557. Lecture Notes in Computer
Science. Paris, France: Springer, Heidelberg, Germany, 2005, pp. 32–
49. doi: 10.1007/11502760_3 (cit. on pp. 16, 166).

[Ber08a] Daniel J Bernstein. “ChaCha, a variant of Salsa20”. In: Workshop
record of SASC. Vol. 8. 1. Citeseer. 2008, pp. 3–5 (cit. on pp. 14, 16).

[Ber08b] Daniel J. Bernstein. “The Salsa20 Family of Stream Ciphers”. In:
New Stream Cipher Designs - The eSTREAM Finalists. Ed. by
Matthew J. B. Robshaw and Olivier Billet. Vol. 4986. Lecture Notes
in Computer Science. Springer, 2008, pp. 84–97. doi: 10.1007/978-
3-540-68351-3_8 (cit. on pp. 14, 16).

[BFL11] Charles Bouillaguet, Pierre-Alain Fouque, and Gaëtan Leurent. “Se-
curity Analysis of SIMD”. In: SAC 2010: 17th Annual International
Workshop on Selected Areas in Cryptography. Ed. by Alex Biryukov,
Guang Gong, and Douglas R. Stinson. Vol. 6544. Lecture Notes in
Computer Science. Waterloo, Ontario, Canada: Springer, Heidelberg,
Germany, 2011, pp. 351–368. doi: 10.1007/978-3-642-19574-7_24
(cit. on pp. 36, 85).

https://doi.org/10.13154/tosc.v2020.i1.233-265
https://doi.org/10.13154/tosc.v2020.i1.233-265
https://eprint.iacr.org/2006/369
https://doi.org/10.1007/978-3-642-28496-0_19
https://doi.org/10.1007/11502760_3
https://doi.org/10.1007/978-3-540-68351-3_8
https://doi.org/10.1007/978-3-540-68351-3_8
https://doi.org/10.1007/978-3-642-19574-7_24

Bibliography 277

[BFS04] Magali Bardet, Jean-Charles Faugere, and Bruno Salvy. “On the
complexity of Gröbner basis computation of semi-regular overde-
termined algebraic equations”. In: Proceedings of the International
Conference on Polynomial System Solving. 2004, pp. 71–74 (cit. on
pp. 209, 227).

[BGG+20] Zhenzhen Bao, Chun Guo, Jian Guo, and Ling Song. “TNT:
How to Tweak a Block Cipher”. In: Advances in Cryptology –
EUROCRYPT 2020, Part II. Ed. by Anne Canteaut and Yuval
Ishai. Vol. 12106. Lecture Notes in Computer Science. Zagreb,
Croatia: Springer, Heidelberg, Germany, 2020, pp. 641–673. doi:
10.1007/978-3-030-45724-2_22 (cit. on pp. xii, 35, 79, 81, 82,
121, 122).

[BGG+23] Emanuele Bellini, David Gérault, Juan Grados, Rusydi H. Makarim,
and Thomas Peyrin. “Boosting Differential-Linear Cryptanalysis of
ChaCha7 with MILP”. In: IACR Trans. Symmetric Cryptol. 2023.2
(2023), pp. 189–223. doi: 10.46586/TOSC.V2023.I2.189-223 (cit.
on p. 36).

[BGL20] Zhenzhen Bao, Jian Guo, and Eik List. “Extended Truncated-
differential Distinguishers on Round-reduced AES”. In: IACR
Transactions on Symmetric Cryptology 2020.3 (2020), pp. 197–261.
issn: 2519-173X. doi: 10.13154/tosc.v2020.i3.197-261 (cit. on
p. 80).

[BHK+99] John Black, Shai Halevi, Hugo Krawczyk, Ted Krovetz, and Phillip
Rogaway. “UMAC: Fast and Secure Message Authentication”. In:
Advances in Cryptology – CRYPTO’99. Ed. by Michael J. Wiener.
Vol. 1666. Lecture Notes in Computer Science. Santa Barbara, CA,
USA: Springer, Heidelberg, Germany, 1999, pp. 216–233. doi: 10.
1007/3-540-48405-1_14 (cit. on p. 16).

[Bir04] Alex Biryukov. “The boomerang attack on 5 and 6-round reduced
AES”. In: International Conference on Advanced Encryption Stan-
dard. Springer. 2004, pp. 11–15 (cit. on pp. 80, 82, 85, 92, 94, 100,
105, 114–116).

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir
Moradi, Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng
Sim. “The SKINNY Family of Block Ciphers and Its Low-Latency
Variant MANTIS”. In: Advances in Cryptology – CRYPTO 2016,
Part II. Ed. by Matthew Robshaw and Jonathan Katz. Vol. 9815.
Lecture Notes in Computer Science. Santa Barbara, CA, USA:
Springer, Heidelberg, Germany, 2016, pp. 123–153. doi: 10.1007/
978-3-662-53008-5_5 (cit. on pp. xi, 14, 34, 43–45, 85).

https://doi.org/10.1007/978-3-030-45724-2_22
https://doi.org/10.46586/TOSC.V2023.I2.189-223
https://doi.org/10.13154/tosc.v2020.i3.197-261
https://doi.org/10.1007/3-540-48405-1_14
https://doi.org/10.1007/3-540-48405-1_14
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5

278 Bibliography

[BK09] Alex Biryukov and Dmitry Khovratovich. “Related-Key Cryptanaly-
sis of the Full AES-192 and AES-256”. In: Advances in Cryptology –
ASIACRYPT 2009. Ed. by Mitsuru Matsui. Vol. 5912. Lecture Notes
in Computer Science. Tokyo, Japan: Springer, Heidelberg, Germany,
2009, pp. 1–18. doi: 10.1007/978- 3- 642- 10366- 7_1 (cit. on
pp. 28, 132).

[BKL+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar,
Axel Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and
C. Vikkelsoe. “PRESENT: An Ultra-Lightweight Block Cipher”. In:
Cryptographic Hardware and Embedded Systems – CHES 2007. Ed. by
Pascal Paillier and Ingrid Verbauwhede. Vol. 4727. Lecture Notes in
Computer Science. Vienna, Austria: Springer, Heidelberg, Germany,
2007, pp. 450–466. doi: 10.1007/978-3-540-74735-2_31 (cit. on
p. 14).

[BKN09] Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolic. “Distin-
guisher and Related-Key Attack on the Full AES-256”. In: Advances
in Cryptology – CRYPTO 2009. Ed. by Shai Halevi. Vol. 5677.
Lecture Notes in Computer Science. Santa Barbara, CA, USA:
Springer, Heidelberg, Germany, 2009, pp. 231–249. doi: 10.1007/
978-3-642-03356-8_14 (cit. on p. 28).

[BL22] Augustin Bariant and Gaëtan Leurent. Truncated Boomerang Attacks
and Application to AES-based Ciphers. Cryptology ePrint Archive,
Report 2022/701. https://eprint.iacr.org/2022/701. 2022
(cit. on p. 133).

[BL23a] Augustin Bariant and Gaëtan Leurent. Truncated Boomerang Attacks
and Application to AES-based Ciphers — Additional data. https:
//github.com/AugustinBariant/Truncated_boomerangs. 2023
(cit. on pp. 106, 114, 129, 133).

[BL23b] Augustin Bariant and Gaëtan Leurent. “Truncated Boomerang
Attacks and Application to AES-Based Ciphers”. In: Advances in
Cryptology – EUROCRYPT 2023, Part IV. Ed. by Carmit Hazay
and Martijn Stam. Vol. 14007. Lecture Notes in Computer Science.
Lyon, France: Springer, Heidelberg, Germany, 2023, pp. 3–35. doi:
10.1007/978-3-031-30634-1_1 (cit. on pp. xi, xii, 45, 47, 79, 85,
105, 106, 112).

[BL24] Xavier Bonnetain and Virginie Lallemand. A Note on Related-
Tweakey Impossible Differential Attacks. Cryptology ePrint Archive,
Paper 2024/563. https://eprint.iacr.org/2024/563. 2024 (cit.
on pp. 63, 67, 68).

[BLL+22] Jannis Bossert, Eik List, Stefan Lucks, and Sebastian Schmitz.
“Pholkos - Efficient Large-State Tweakable Block Ciphers from the
AES Round Function”. In: Topics in Cryptology – CT-RSA 2022.

https://doi.org/10.1007/978-3-642-10366-7_1
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/978-3-642-03356-8_14
https://doi.org/10.1007/978-3-642-03356-8_14
https://eprint.iacr.org/2022/701
https://github.com/AugustinBariant/Truncated_boomerangs
https://github.com/AugustinBariant/Truncated_boomerangs
https://doi.org/10.1007/978-3-031-30634-1_1
https://eprint.iacr.org/2024/563

Bibliography 279

Ed. by Steven D. Galbraith. Vol. 13161. Lecture Notes in Com-
puter Science. Virtual Event: Springer, Heidelberg, Germany, 2022,
pp. 511–536. doi: 10.1007/978-3-030-95312-6_21 (cit. on p. 33).

[BLM+19] Christof Beierle, Gregor Leander, Amir Moradi, and Shahram
Rasoolzadeh. “CRAFT: Lightweight Tweakable Block Cipher with
Efficient Protection Against DFA Attacks”. In: IACR Transactions
on Symmetric Cryptology 2019.1 (2019), pp. 5–45. issn: 2519-173X.
doi: 10.13154/tosc.v2019.i1.5-45 (cit. on p. 85).

[BLN+18] Christina Boura, Virginie Lallemand, María Naya-Plasencia, and
Valentin Suder. “Making the Impossible Possible”. In: Journal of
Cryptology 31.1 (Jan. 2018), pp. 101–133. doi: 10.1007/s00145-
016-9251-7 (cit. on p. 33).

[BM74] Allan Borodin and R. Moenck. “Fast Modular Transforms”. In: J.
Comput. Syst. Sci. 8.3 (1974), pp. 366–386. doi: 10.1016/S0022-
0000(74)80029-2 (cit. on p. 199).

[BND22] Jérémy Berthomieu, Vincent Neiger, and Mohab Safey El Din.
“Faster Change of Order Algorithm for Gröbner Bases under Shape
and Stability Assumptions”. In: ISSAC ’22: International Symposium
on Symbolic and Algebraic Computation, Villeneuve-d’Ascq, France,
July 4 - 7, 2022. Ed. by Marc Moreno Maza and Lihong Zhi. ACM,
2022, pp. 409–418. doi: 10.1145/3476446.3535484 (cit. on pp. 206,
209, 229, 230, 237, 238, 240).

[BNS14] Christina Boura, María Naya-Plasencia, and Valentin Suder. “Scruti-
nizing and Improving Impossible Differential Attacks: Applications to
CLEFIA, Camellia, LBlock and Simon”. In: Advances in Cryptology
– ASIACRYPT 2014, Part I. Ed. by Palash Sarkar and Tetsu Iwata.
Vol. 8873. Lecture Notes in Computer Science. Kaoshiung, Taiwan,
R.O.C.: Springer, Heidelberg, Germany, 2014, pp. 179–199. doi:
10.1007/978-3-662-45611-8_10 (cit. on pp. 27, 76).

[BPF+23] Emanuele Bellini, Alessandro De Piccoli, Mattia Formenti, David
Gérault, Paul Huynh, Simone Pelizzola, Sergio Polese, and Andrea
Visconti. “Differential Cryptanalysis with SAT, SMT, MILP, and CP:
A Detailed Comparison for Bit-Oriented Primitives”. In: CANS 23:
22th International Conference on Cryptology and Network Security.
Ed. by Jing Deng, Vladimir Kolesnikov, and Alexander A. Schwarz-
mann. Vol. 14342. Lecture Notes in Computer Science. Augusta,
GA, USA: Springer, Heidelberg, Germany, 2023, pp. 268–292. doi:
10.1007/978-981-99-7563-1_13 (cit. on p. 36).

[BPP00] Joan Boyar, René Peralta, and Denis Pochuev. “On the multiplicative
complexity of Boolean functions over the basis (Λ,‘,1)”. In:
Theoretical Computer Science 235.1 (2000), pp. 43–57. issn: 0304-
3975. doi: 10.1016/S0304-3975(99)00182-6 (cit. on p. 196).

https://doi.org/10.1007/978-3-030-95312-6_21
https://doi.org/10.13154/tosc.v2019.i1.5-45
https://doi.org/10.1007/s00145-016-9251-7
https://doi.org/10.1007/s00145-016-9251-7
https://doi.org/10.1016/S0022-0000(74)80029-2
https://doi.org/10.1016/S0022-0000(74)80029-2
https://doi.org/10.1145/3476446.3535484
https://doi.org/10.1007/978-3-662-45611-8_10
https://doi.org/10.1007/978-981-99-7563-1_13
https://doi.org/10.1016/S0304-3975(99)00182-6

280 Bibliography

[BPP+17] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki,
Siang Meng Sim, and Yosuke Todo. “GIFT: A Small Present
- Towards Reaching the Limit of Lightweight Encryption”. In:
Cryptographic Hardware and Embedded Systems – CHES 2017. Ed.
by Wieland Fischer and Naofumi Homma. Vol. 10529. Lecture Notes
in Computer Science. Taipei, Taiwan: Springer, Heidelberg, Germany,
2017, pp. 321–345. doi: 10.1007/978-3-319-66787-4_16 (cit. on
p. 14).

[BPW06a] Johannes Buchmann, Andrei Pyshkin, and Ralf-Philipp Weinmann.
“A Zero-Dimensional Gröbner Basis for AES-128”. In: Fast Software
Encryption – FSE 2006. Ed. by Matthew J. B. Robshaw. Vol. 4047.
Lecture Notes in Computer Science. Graz, Austria: Springer,
Heidelberg, Germany, 2006, pp. 78–88. doi: 10.1007/11799313_6
(cit. on pp. 210, 236).

[BPW06b] Johannes Buchmann, Andrei Pyshkin, and Ralf-Philipp Weinmann.
“Block Ciphers Sensitive to Gröbner Basis Attacks”. In: Topics in
Cryptology – CT-RSA 2006. Ed. by David Pointcheval. Vol. 3860.
Lecture Notes in Computer Science. San Jose, CA, USA: Springer,
Heidelberg, Germany, 2006, pp. 313–331. doi: 10.1007/11605805_
20 (cit. on p. 210).

[BR19] Navid Ghaedi Bardeh and Sondre Rønjom. “The Exchange Attack:
How to Distinguish Six Rounds of AES with 288.2 Chosen Plaintexts”.
In: Advances in Cryptology – ASIACRYPT 2019, Part III. Ed. by
Steven D. Galbraith and Shiho Moriai. Vol. 11923. Lecture Notes
in Computer Science. Kobe, Japan: Springer, Heidelberg, Germany,
2019, pp. 347–370. doi: 10.1007/978-3-030-34618-8_12 (cit. on
pp. 80, 92, 105).

[BR22a] Navid Ghaedi Bardeh and Vincent Rijmen. “New Key-Recovery
Attack on Reduced-Round AES”. In: IACR Transactions on
Symmetric Cryptology 2022.2 (2022), pp. 43–62. doi: 10.46586/
tosc.v2022.i2.43-62 (cit. on pp. 33, 92, 105).

[BR22b] Tim Beyne and Vincent Rijmen. “Differential Cryptanalysis in the
Fixed-Key Model”. In: Advances in Cryptology – CRYPTO 2022,
Part III. Ed. by Yevgeniy Dodis and Thomas Shrimpton. Vol. 13509.
Lecture Notes in Computer Science. Santa Barbara, CA, USA:
Springer, Heidelberg, Germany, 2022, pp. 687–716. doi: 10.1007/
978-3-031-15982-4_23 (cit. on pp. 21, 88).

[BS92a] Eli Biham and Adi Shamir. “Differential Cryptanalysis of Snefru,
Khafre, REDOC-II, LOKI and Lucifer”. In: Advances in Cryptology
– CRYPTO’91. Ed. by Joan Feigenbaum. Vol. 576. Lecture Notes in
Computer Science. Santa Barbara, CA, USA: Springer, Heidelberg,
Germany, 1992, pp. 156–171. doi: 10.1007/3-540-46766-1_11
(cit. on p. 19).

https://doi.org/10.1007/978-3-319-66787-4_16
https://doi.org/10.1007/11799313_6
https://doi.org/10.1007/11605805_20
https://doi.org/10.1007/11605805_20
https://doi.org/10.1007/978-3-030-34618-8_12
https://doi.org/10.46586/tosc.v2022.i2.43-62
https://doi.org/10.46586/tosc.v2022.i2.43-62
https://doi.org/10.1007/978-3-031-15982-4_23
https://doi.org/10.1007/978-3-031-15982-4_23
https://doi.org/10.1007/3-540-46766-1_11

Bibliography 281

[BS92b] Eli Biham and Adi Shamir. “Differential Cryptanalysis of the
Full 16-Round DES”. In: Advances in Cryptology - CRYPTO ’92,
12th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 16-20, 1992, Proceedings. Ed. by Ernest F.
Brickell. Vol. 740. Lecture Notes in Computer Science. Springer,
1992, pp. 487–496. doi: 10.1007/3-540-48071-4_34 (cit. on p. 6).

[BSS+13] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark,
Bryan Weeks, and Louis Wingers. “National Security Agency 9800
Savage Road, Fort Meade, MD 20755, USA”. In: (2013) (cit. on
p. 14).

[Buc76] Bruno Buchberger. “A theoretical basis for the reduction of
polynomials to canonical forms”. In: SIGSAM Bull. 10.3 (1976),
pp. 19–29. doi: 10.1145/1088216.1088219 (cit. on pp. xvi, 195,
197, 202, 204).

[CCZ98] Claude Carlet, Pascale Charpin, and Victor A. Zinoviev. “Codes,
Bent Functions and Permutations Suitable For DES-like Cryptosys-
tems”. In: Des. Codes Cryptogr. 15.2 (1998), pp. 125–156. doi:
10.1023/A:1008344232130 (cit. on p. 197).

[CHP+17] Carlos Cid, Tao Huang, Thomas Peyrin, Yu Sasaki, and Ling Song.
“A Security Analysis of Deoxys and its Internal Tweakable Block
Ciphers”. In: IACR Transactions on Symmetric Cryptology 2017.3
(2017), pp. 73–107. issn: 2519-173X. doi: 10.13154/tosc.v2017.
i3.73-107 (cit. on pp. 85, 128–131, 133, 167, 183).

[CHP+18] Carlos Cid, Tao Huang, Thomas Peyrin, Yu Sasaki, and Ling Song.
“Boomerang Connectivity Table: A New Cryptanalysis Tool”. In:
Advances in Cryptology – EUROCRYPT 2018, Part II. Ed. by Jesper
Buus Nielsen and Vincent Rijmen. Vol. 10821. Lecture Notes in
Computer Science. Tel Aviv, Israel: Springer, Heidelberg, Germany,
2018, pp. 683–714. doi: 10.1007/978-3-319-78375-8_22 (cit. on
pp. 58, 90, 132).

[CK91] David G. Cantor and Erich L. Kaltofen. “On Fast Multiplication
of Polynomials over Arbitrary Algebras”. In: Acta Informatica 28.7
(1991), pp. 693–701. doi: 10.1007/BF01178683 (cit. on pp. 198, 199,
240).

[CLO97] David A. Cox, John Little, and Donal O’Shea. Ideals, varieties, and
algorithms - an introduction to computational algebraic geometry and
commutative algebra (2. ed.) Undergraduate texts in mathematics.
Springer, 1997. isbn: 978-0-387-94680-1 (cit. on pp. 203–205, 245,
264).

[CLO98] David A. Cox, John B. Little, and Donal O’Shea. Using Algebraic
Geometry. First. Vol. 185. Graduate Texts in Mathematics. Springer,
1998. doi: 10.1007/978-1-4757-6911-1 (cit. on p. 206).

https://doi.org/10.1007/3-540-48071-4_34
https://doi.org/10.1145/1088216.1088219
https://doi.org/10.1023/A:1008344232130
https://doi.org/10.13154/tosc.v2017.i3.73-107
https://doi.org/10.13154/tosc.v2017.i3.73-107
https://doi.org/10.1007/978-3-319-78375-8_22
https://doi.org/10.1007/BF01178683
https://doi.org/10.1007/978-1-4757-6911-1

282 Bibliography

[CS16] Benoît Cogliati and Yannick Seurin. “EWCDM: An Efficient, Beyond-
Birthday Secure, Nonce-Misuse Resistant MAC”. In: Advances in
Cryptology – CRYPTO 2016, Part I. Ed. by Matthew Robshaw
and Jonathan Katz. Vol. 9814. Lecture Notes in Computer Science.
Santa Barbara, CA, USA: Springer, Heidelberg, Germany, 2016,
pp. 121–149. doi: 10.1007/978-3-662-53018-4_5 (cit. on pp. xiv,
188, 189).

[CW79] Larry Carter and Mark N. Wegman. “Universal Classes of Hash
Functions”. In: J. Comput. Syst. Sci. 18.2 (1979), pp. 143–154. doi:
10.1016/0022-0000(79)90044-8 (cit. on pp. 16, 188).

[DC98] Joan Daemen and Craig S. K. Clapp. “Fast Hashing and Stream
Encryption with PANAMA”. In: Fast Software Encryption – FSE’98.
Ed. by Serge Vaudenay. Vol. 1372. Lecture Notes in Computer
Science. Paris, France: Springer, Heidelberg, Germany, 1998, pp. 60–
74. doi: 10.1007/3-540-69710-1_5 (cit. on pp. 167, 172).

[DDH+20] Stéphanie Delaune, Patrick Derbez, Paul Huynh, Marine Minier,
Victor Mollimard, and Charles Prud’homme. SKINNY with Scalpel -
Comparing Tools for Differential Analysis. Cryptology ePrint Archive,
Report 2020/1402. https://eprint.iacr.org/2020/1402. 2020
(cit. on p. 36).

[DDV20] Stéphanie Delaune, Patrick Derbez, and Mathieu Vavrille. “Catching
the Fastest Boomerangs Application to SKINNY”. In: IACR
Transactions on Symmetric Cryptology 2020.4 (2020), pp. 104–129.
issn: 2519-173X. doi: 10.46586/tosc.v2020.i4.104-129 (cit. on
pp. 36, 85, 91, 92, 132).

[De 06] Christophe De Cannière. “Trivium: A Stream Cipher Construction
Inspired by Block Cipher Design Principles”. In: ISC 2006: 9th
International Conference on Information Security. Ed. by Sokratis
K. Katsikas, Javier Lopez, Michael Backes, Stefanos Gritzalis, and
Bart Preneel. Vol. 4176. Lecture Notes in Computer Science. Samos
Island, Greece: Springer, Heidelberg, Germany, 2006, pp. 171–186
(cit. on p. 16).

[DEM16] Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. “Square
Attack on 7-Round Kiasu-BC”. In: ACNS 16: 14th International
Conference on Applied Cryptography and Network Security. Ed. by
Mark Manulis, Ahmad-Reza Sadeghi, and Steve Schneider. Vol. 9696.
Lecture Notes in Computer Science. Guildford, UK: Springer,
Heidelberg, Germany, 2016, pp. 500–517. doi: 10.1007/978- 3-
319-39555-5_27 (cit. on pp. 48, 81).

[DEM+21] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin
Schläffer. “Ascon v1.2: Lightweight Authenticated Encryption and
Hashing”. In: Journal of Cryptology 34.3 (July 2021), p. 33. doi:
10.1007/s00145-021-09398-9 (cit. on p. 7).

https://doi.org/10.1007/978-3-662-53018-4_5
https://doi.org/10.1016/0022-0000(79)90044-8
https://doi.org/10.1007/3-540-69710-1_5
https://eprint.iacr.org/2020/1402
https://doi.org/10.46586/tosc.v2020.i4.104-129
https://doi.org/10.1007/978-3-319-39555-5_27
https://doi.org/10.1007/978-3-319-39555-5_27
https://doi.org/10.1007/s00145-021-09398-9

Bibliography 283

[Der13] Patrick Derbez. “Meet-in-the-Middle Attacks on AES”. Theses. Ecole
Normale Supérieure de Paris - ENS Paris, Dec. 2013 (cit. on p. 128).

[Des] Data Encryption Standard (DES). Tech. rep. Federal Informa-
tion Processing Standards Publication 46-3. U.S. Department of
Commerce, National Institute of Standards and Technology, 1977,
reaffirmed 1988,1993,1999, withdrawn 2005 (cit. on pp. 5, 14).

[DF04] David Steven Dummit and Richard M. Foote. Abstract Algebra.
Third. Hoboken, NJ: John Wiley & sons, 2004. isbn: 0-471-43334-9
(cit. on p. 176).

[DFJ13] Patrick Derbez, Pierre-Alain Fouque, and Jérémy Jean. “Improved
Key Recovery Attacks on Reduced-Round AES in the Single-Key
Setting”. In: Advances in Cryptology – EUROCRYPT 2013. Ed. by
Thomas Johansson and Phong Q. Nguyen. Vol. 7881. Lecture Notes in
Computer Science. Athens, Greece: Springer, Heidelberg, Germany,
2013, pp. 371–387. doi: 10.1007/978-3-642-38348-9_23 (cit. on
pp. xi, 33, 48).

[DG10] Vivien Dubois and Nicolas Gama. “The Degree of Regularity of
HFE Systems”. In: Advances in Cryptology – ASIACRYPT 2010.
Ed. by Masayuki Abe. Vol. 6477. Lecture Notes in Computer Science.
Singapore: Springer, Heidelberg, Germany, 2010, pp. 557–576. doi:
10.1007/978-3-642-17373-8_32 (cit. on p. 207).

[DGG+21a] Christoph Dobraunig, Lorenzo Grassi, Anna Guinet, and Daniël
Kuijsters. Ciminion: Symmetric Encryption Based on Toffoli-
Gates over Large Finite Fields. Cryptology ePrint Archive, Report
2021/267. https://eprint.iacr.org/2021/267. 2021 (cit. on
p. 227).

[DGG+21b] Christoph Dobraunig, Lorenzo Grassi, Anna Guinet, and Daniël
Kuijsters. “Ciminion: Symmetric Encryption Based on Toffoli-
Gates over Large Finite Fields”. In: Advances in Cryptology –
EUROCRYPT 2021, Part II. Ed. by Anne Canteaut and François-
Xavier Standaert. Vol. 12697. Lecture Notes in Computer Science.
Zagreb, Croatia: Springer, Heidelberg, Germany, 2021, pp. 3–34. doi:
10.1007/978-3-030-77886-6_1 (cit. on pp. xv, 196, 197, 222,
224).

[DGK+24] Orr Dunkelman, Shibam Ghosh, Nathan Keller, Gaëtan Leurent,
Avichai Marmor, and Victor Mollimard. “Partial Sums Meet FFT:
Improved Attack on 6-Round AES”. In: EUROCRYPT 2024 (2024)
(cit. on pp. xiii, 33, 80, 82).

[DH76] Whitfield Diffie and Martin E. Hellman. “New directions in
cryptography”. In: IEEE Trans. Inf. Theory 22.6 (1976), pp. 644–654.
doi: 10.1109/TIT.1976.1055638 (cit. on pp. x, 6).

https://doi.org/10.1007/978-3-642-38348-9_23
https://doi.org/10.1007/978-3-642-17373-8_32
https://eprint.iacr.org/2021/267
https://doi.org/10.1007/978-3-030-77886-6_1
https://doi.org/10.1109/TIT.1976.1055638

284 Bibliography

[DH77] Whitfield Diffie and Martin E. Hellman. “Special Feature Exhaustive
Cryptanalysis of the NBS Data Encryption Standard”. In: Computer
10.6 (1977), pp. 74–84. doi: 10.1109/C-M.1977.217750 (cit. on
p. 27).

[DKL+12] Ivan Damgård, Marcel Keller, Enrique Larraia, Christian Miles, and
Nigel P. Smart. “Implementing AES via an Actively/Covertly Secure
Dishonest-Majority MPC Protocol”. In: SCN 12: 8th International
Conference on Security in Communication Networks. Ed. by Ivan
Visconti and Roberto De Prisco. Vol. 7485. Lecture Notes in
Computer Science. Amalfi, Italy: Springer, Heidelberg, Germany,
2012, pp. 241–263. doi: 10.1007/978-3-642-32928-9_14 (cit. on
p. 196).

[DKR+19] Orr Dunkelman, Nathan Keller, Eyal Ronen, and Adi Shamir. The
Retracing Boomerang Attack. Cryptology ePrint Archive, Report
2019/1154. https://eprint.iacr.org/2019/1154. 2019 (cit. on
pp. 99, 100, 104, 162).

[DKR+20] Orr Dunkelman, Nathan Keller, Eyal Ronen, and Adi Shamir.
“The Retracing Boomerang Attack”. In: Advances in Cryptology
– EUROCRYPT 2020, Part I. Ed. by Anne Canteaut and Yuval Ishai.
Vol. 12105. Lecture Notes in Computer Science. Zagreb, Croatia:
Springer, Heidelberg, Germany, 2020, pp. 280–309. doi: 10.1007/
978-3-030-45721-1_11 (cit. on pp. xiii, 33, 80, 82, 92, 96, 99, 100,
154, 155).

[DKR97] Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. “The Block
Cipher Square”. In: Fast Software Encryption – FSE’97. Ed. by Eli
Biham. Vol. 1267. Lecture Notes in Computer Science. Haifa, Israel:
Springer, Heidelberg, Germany, 1997, pp. 149–165. doi: 10.1007/
BFb0052343 (cit. on pp. xiii, 48, 80, 82).

[DKS10] Orr Dunkelman, Nathan Keller, and Adi Shamir. “A Practical-Time
Related-Key Attack on the KASUMI Cryptosystem Used in GSM
and 3G Telephony”. In: Advances in Cryptology – CRYPTO 2010.
Ed. by Tal Rabin. Vol. 6223. Lecture Notes in Computer Science.
Santa Barbara, CA, USA: Springer, Heidelberg, Germany, 2010,
pp. 393–410. doi: 10.1007/978-3-642-14623-7_21 (cit. on pp. 89,
90).

[DKS15] Orr Dunkelman, Nathan Keller, and Adi Shamir. “Improved Single-
Key Attacks on 8-Round AES-192 and AES-256”. In: Journal of
Cryptology 28.3 (July 2015), pp. 397–422. doi: 10.1007/s00145-
013-9159-4 (cit. on p. 28).

[DL17] Christoph Dobraunig and Eik List. “Impossible-Differential and
Boomerang Cryptanalysis of Round-Reduced Kiasu-BC”. In: Topics
in Cryptology – CT-RSA 2017. Ed. by Helena Handschuh. Vol. 10159.

https://doi.org/10.1109/C-M.1977.217750
https://doi.org/10.1007/978-3-642-32928-9_14
https://eprint.iacr.org/2019/1154
https://doi.org/10.1007/978-3-030-45721-1_11
https://doi.org/10.1007/978-3-030-45721-1_11
https://doi.org/10.1007/BFb0052343
https://doi.org/10.1007/BFb0052343
https://doi.org/10.1007/978-3-642-14623-7_21
https://doi.org/10.1007/s00145-013-9159-4
https://doi.org/10.1007/s00145-013-9159-4

Bibliography 285

Lecture Notes in Computer Science. San Francisco, CA, USA:
Springer, Heidelberg, Germany, 2017, pp. 207–222. doi: 10.1007/
978-3-319-52153-4_12 (cit. on pp. xi, xii, 48, 81, 82, 105, 106,
119).

[DLT14] Ivan Damgård, Rasmus Lauritsen, and Tomas Toft. “An Empirical
Study and Some Improvements of the MiniMac Protocol for Secure
Computation”. In: SCN 14: 9th International Conference on Security
in Communication Networks. Ed. by Michel Abdalla and Roberto De
Prisco. Vol. 8642. Lecture Notes in Computer Science. Amalfi, Italy:
Springer, Heidelberg, Germany, 2014, pp. 398–415. doi: 10.1007/
978-3-319-10879-7_23 (cit. on p. 196).

[DPS+12] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias.
“Multiparty Computation from Somewhat Homomorphic Encryp-
tion”. In: Advances in Cryptology – CRYPTO 2012. Ed. by Reihaneh
Safavi-Naini and Ran Canetti. Vol. 7417. Lecture Notes in Computer
Science. Santa Barbara, CA, USA: Springer, Heidelberg, Germany,
2012, pp. 643–662. doi: 10.1007/978-3-642-32009-5_38 (cit. on
p. 196).

[DQS+22] Xiaoyang Dong, Lingyue Qin, Siwei Sun, and Xiaoyun Wang. “Key
Guessing Strategies for Linear Key-Schedule Algorithms in Rectangle
Attacks”. In: Advances in Cryptology – EUROCRYPT 2022, Part III.
Ed. by Orr Dunkelman and Stefan Dziembowski. Vol. 13277.
Lecture Notes in Computer Science. Trondheim, Norway: Springer,
Heidelberg, Germany, 2022, pp. 3–33. doi: 10.1007/978-3-031-
07082-2_1 (cit. on pp. xii, 43, 63, 85).

[DR01] Joan Daemen and Vincent Rijmen. “The Wide Trail Design Strategy”.
In: Cryptography and Coding, 8th IMA International Conference,
Cirencester, UK, December 17-19, 2001, Proceedings. Ed. by Bahram
Honary. Vol. 2260. Lecture Notes in Computer Science. Springer,
2001, pp. 222–238. doi: 10.1007/3-540-45325-3_20 (cit. on p. 30).

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES
- The Advanced Encryption Standard. Information Security and
Cryptography. Springer, 2002. isbn: 3-540-42580-2. doi: 10.1007/
978-3-662-04722-4 (cit. on pp. x, 6, 14, 31, 79).

[DR06] Joan Daemen and Vincent Rijmen. “Understanding Two-Round
Differentials in AES”. In: SCN 06: 5th International Conference on
Security in Communication Networks. Ed. by Roberto De Prisco
and Moti Yung. Vol. 4116. Lecture Notes in Computer Science.
Maiori, Italy: Springer, Heidelberg, Germany, 2006, pp. 78–94. doi:
10.1007/11832072_6 (cit. on pp. 30, 98).

[DS08] Itai Dinur and Adi Shamir. Cube Attacks on Tweakable Black Box
Polynomials. Cryptology ePrint Archive, Report 2008/385. https:
//eprint.iacr.org/2008/385. 2008 (cit. on p. 197).

https://doi.org/10.1007/978-3-319-52153-4_12
https://doi.org/10.1007/978-3-319-52153-4_12
https://doi.org/10.1007/978-3-319-10879-7_23
https://doi.org/10.1007/978-3-319-10879-7_23
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-031-07082-2_1
https://doi.org/10.1007/978-3-031-07082-2_1
https://doi.org/10.1007/3-540-45325-3_20
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/11832072_6
https://eprint.iacr.org/2008/385
https://eprint.iacr.org/2008/385

286 Bibliography

[DS09] Itai Dinur and Adi Shamir. “Cube Attacks on Tweakable Black Box
Polynomials”. In: Advances in Cryptology – EUROCRYPT 2009.
Ed. by Antoine Joux. Vol. 5479. Lecture Notes in Computer Science.
Cologne, Germany: Springer, Heidelberg, Germany, 2009, pp. 278–
299. doi: 10.1007/978-3-642-01001-9_16 (cit. on pp. xvi, 27,
200).

[Dwo07a] Morris Dworkin. Recommendation for Block Cipher Modes of
Operation: Galois/Counter Mode (GCM) and GMAC. Tech. rep.
NIST Special Publication 800-38D. National Institute of Standards
and Technology, Nov. 2007 (cit. on p. 16).

[Dwo07b] Morris Dworkin. Recommendation for block cipher modes of opera-
tion: The CCM mode for authentication and confidentiality. Tech.
rep. National Institute of Standards and Technology, 2007 (cit. on
p. 15).

[DZ13] Ivan Damgård and Sarah Zakarias. “Constant-Overhead Secure Com-
putation of Boolean Circuits using Preprocessing”. In: TCC 2013:
10th Theory of Cryptography Conference. Ed. by Amit Sahai.
Vol. 7785. Lecture Notes in Computer Science. Tokyo, Japan:
Springer, Heidelberg, Germany, 2013, pp. 621–641. doi: 10.1007/
978-3-642-36594-2_35 (cit. on p. 196).

[EGL+20] Maria Eichlseder, Lorenzo Grassi, Reinhard Lüftenegger, Morten
Øygarden, Christian Rechberger, Markus Schofnegger, and Qingju
Wang. “An Algebraic Attack on Ciphers with Low-Degree Round
Functions: Application to Full MiMC”. In: Advances in Cryptology
– ASIACRYPT 2020, Part I. Ed. by Shiho Moriai and Huaxiong
Wang. Vol. 12491. Lecture Notes in Computer Science. Daejeon,
South Korea: Springer, Heidelberg, Germany, 2020, pp. 477–506.
doi: 10.1007/978-3-030-64837-4_16 (cit. on pp. 197, 201).

[Eis13] David Eisenbud. Commutative algebra: with a view toward algebraic
geometry. Vol. 150. Springer Science & Business Media, 2013 (cit. on
p. 205).

[EJ00] Patrik Ekdahl and Thomas Johansson. “SNOW-a new stream cipher”.
In: Proceedings of first open NESSIE workshop, KU-Leuven. 2000,
pp. 167–168 (cit. on p. 16).

[Fau02] Jean-Charles Faugère. “A new efficient algorithm for computing
Gröbner bases without reduction to zero (F5)”. In: Proceedings
of the 2002 international symposium on Symbolic and algebraic
computation. 2002, pp. 75–83 (cit. on p. 209).

[Fei73] Horst Feistel. “Cryptography and computer privacy”. In: Scientific
american 228.5 (1973), pp. 15–23 (cit. on p. 14).

https://doi.org/10.1007/978-3-642-01001-9_16
https://doi.org/10.1007/978-3-642-36594-2_35
https://doi.org/10.1007/978-3-642-36594-2_35
https://doi.org/10.1007/978-3-030-64837-4_16

Bibliography 287

[FGH+14a] Jean-Charles Faugère, Pierrick Gaudry, Louise Huot, and Guénaël
Renault. “Sub-cubic change of ordering for Gröbner basis: a
probabilistic approach”. In: International Symposium on Symbolic
and Algebraic Computation, ISSAC ’14, Kobe, Japan, July 23-
25, 2014. Ed. by Katsusuke Nabeshima, Kosaku Nagasaka, Franz
Winkler, and Ágnes Szántó. ACM, 2014, pp. 170–177. doi: 10.1145/
2608628.2608669 (cit. on pp. 209, 229, 237, 238).

[FGH+14b] Jean-Charles Faugère, Pierrick Gaudry, Louise Huot, and Guénaël
Renault. “Sub-cubic change of ordering for Gröbner basis: a
probabilistic approach”. In: International Symposium on Symbolic
and Algebraic Computation, ISSAC ’14, Kobe, Japan, July 23-
25, 2014. Ed. by Katsusuke Nabeshima, Kosaku Nagasaka, Franz
Winkler, and Ágnes Szántó. ACM, 2014, pp. 170–177. doi: 10.1145/
2608628.2608669 (cit. on p. 221).

[FGL+93] Jean-Charles Faugère, Patrizia M. Gianni, Daniel Lazard, and Teo
Mora. “Efficient Computation of Zero-Dimensional Gröbner Bases by
Change of Ordering”. In: J. Symb. Comput. 16.4 (1993), pp. 329–344.
doi: 10.1006/JSCO.1993.1051 (cit. on pp. xvii, 209, 221, 237, 239,
240).

[FJP13] Pierre-Alain Fouque, Jérémy Jean, and Thomas Peyrin. “Structural
Evaluation of AES and Chosen-Key Distinguisher of 9-Round AES-
128”. In: Advances in Cryptology – CRYPTO 2013, Part I. Ed.
by Ran Canetti and Juan A. Garay. Vol. 8042. Lecture Notes in
Computer Science. Santa Barbara, CA, USA: Springer, Heidelberg,
Germany, 2013, pp. 183–203. doi: 10.1007/978-3-642-40041-4_11
(cit. on p. 183).

[FKL+01] Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, Michael
Stay, David Wagner, and Doug Whiting. “Improved Cryptanalysis of
Rijndael”. In: Fast Software Encryption – FSE 2000. Ed. by Bruce
Schneier. Vol. 1978. Lecture Notes in Computer Science. New York,
NY, USA: Springer, Heidelberg, Germany, 2001, pp. 213–230. doi:
10.1007/3-540-44706-7_15 (cit. on pp. xiii, 33, 80, 82).

[FLS+10] Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting, Mihir
Bellare, Tadayoshi Kohno, Jon Callas, and Jesse Walker. “The Skein
hash function family”. In: Submission to NIST (round 3) 7.7.5 (2010),
p. 3 (cit. on p. 14).

[FM17] Jean-Charles Faugère and Chenqi Mou. “Sparse FGLM algorithms”.
In: J. Symb. Comput. 80 (2017), pp. 538–569. doi: 10.1016/J.JSC.
2016.07.025 (cit. on pp. 206, 209, 237, 238).

[Frö85] Ralf Fröberg. “An inequality for Hilbert series of graded algebras”. In:
Mathematica Scandinavica 56.2 (1985), pp. 117–144 (cit. on pp. 207,
208).

https://doi.org/10.1145/2608628.2608669
https://doi.org/10.1145/2608628.2608669
https://doi.org/10.1145/2608628.2608669
https://doi.org/10.1145/2608628.2608669
https://doi.org/10.1006/JSCO.1993.1051
https://doi.org/10.1007/978-3-642-40041-4_11
https://doi.org/10.1007/3-540-44706-7_15
https://doi.org/10.1016/J.JSC.2016.07.025
https://doi.org/10.1016/J.JSC.2016.07.025

288 Bibliography

[FWG+16] Kai Fu, Meiqin Wang, Yinghua Guo, Siwei Sun, and Lei Hu. “MILP-
Based Automatic Search Algorithms for Differential and Linear Trails
for Speck”. In: Fast Software Encryption – FSE 2016. Ed. by Thomas
Peyrin. Vol. 9783. Lecture Notes in Computer Science. Bochum,
Germany: Springer, Heidelberg, Germany, 2016, pp. 268–288. doi:
10.1007/978-3-662-52993-5_14 (cit. on p. 36).

[Gam84] Taher El Gamal. “A Public Key Cryptosystem and a Signature
Scheme Based on Discrete Logarithms”. In: Advances in Cryptology,
Proceedings of CRYPTO ’84, Santa Barbara, California, USA,
August 19-22, 1984, Proceedings. Ed. by G. R. Blakley and David
Chaum. Vol. 196. Lecture Notes in Computer Science. Springer, 1984,
pp. 10–18. doi: 10.1007/3-540-39568-7_2 (cit. on p. 6).

[Gan90] Felix Ruvimovich Gantmacher. The Theory of Matrices. Second.
Vol. 1. Chelsea Publishing Company, 1990 (cit. on p. 176).

[GG13] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer
Algebra (3. ed.) Cambridge University Press, 2013. isbn: 978-1-107-
03903-2 (cit. on p. 247).

[GGL+20] Chun Guo, Jian Guo, Eik List, and Ling Song. “Towards Closing
the Security Gap of Tweak-aNd-Tweak (TNT)”. In: Advances in
Cryptology – ASIACRYPT 2020, Part I. Ed. by Shiho Moriai and
Huaxiong Wang. Vol. 12491. Lecture Notes in Computer Science.
Daejeon, South Korea: Springer, Heidelberg, Germany, 2020, pp. 567–
597. doi: 10.1007/978-3-030-64837-4_19 (cit. on pp. xii, 35, 81).

[GHR+23] Lorenzo Grassi, Yonglin Hao, Christian Rechberger, Markus Schofneg-
ger, Roman Walch, and Qingju Wang. “Horst Meets Fluid-SPN:
Griffin for Zero-Knowledge Applications”. In: Advances in Cryptology
– CRYPTO 2023, Part III. Ed. by Helena Handschuh and Anna
Lysyanskaya. Vol. 14083. Lecture Notes in Computer Science.
Santa Barbara, CA, USA: Springer, Heidelberg, Germany, 2023,
pp. 573–606. doi: 10.1007/978-3-031-38548-3_19 (cit. on pp. xv,
xvii, 196, 197, 210, 235, 241, 249, 250).

[GJV03] Pascal Giorgi, Claude-Pierre Jeannerod, and Gilles Villard. “On
the complexity of polynomial matrix computations”. In: Symbolic
and Algebraic Computation, International Symposium ISSAC 2003,
Drexel University, Philadelphia, Pennsylvania, USA, August 3-6,
2003, Proceedings. Ed. by J. Rafael Sendra. ACM, 2003, pp. 135–142.
doi: 10.1145/860854.860889 (cit. on p. 240).

[GK08] Shay Gueron and Michael E. Kounavis. “Vortex: A New Family
of One-Way Hash Functions Based on AES Rounds and Carry-
Less Multiplication”. In: ISC 2008: 11th International Conference
on Information Security. Ed. by Tzong-Chen Wu, Chin-Laung Lei,
Vincent Rijmen, and Der-Tsai Lee. Vol. 5222. Lecture Notes in

https://doi.org/10.1007/978-3-662-52993-5_14
https://doi.org/10.1007/3-540-39568-7_2
https://doi.org/10.1007/978-3-030-64837-4_19
https://doi.org/10.1007/978-3-031-38548-3_19
https://doi.org/10.1145/860854.860889

Bibliography 289

Computer Science. Taipei, Taiwan: Springer, Heidelberg, Germany,
2008, pp. 331–340 (cit. on p. 33).

[GKL+22] Lorenzo Grassi, Dmitry Khovratovich, Reinhard Lüftenegger, Chris-
tian Rechberger, Markus Schofnegger, and Roman Walch. “Rein-
forced Concrete: A Fast Hash Function for Verifiable Computation”.
In: ACM CCS 2022: 29th Conference on Computer and Communica-
tions Security. Ed. by Heng Yin, Angelos Stavrou, Cas Cremers, and
Elaine Shi. Los Angeles, CA, USA: ACM Press, 2022, pp. 1323–1335.
doi: 10.1145/3548606.3560686 (cit. on pp. 197–199).

[GKR+21] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab
Roy, and Markus Schofnegger. “Poseidon: A New Hash Function for
Zero-Knowledge Proof Systems”. In: USENIX Security 2021: 30th
USENIX Security Symposium. Ed. by Michael Bailey and Rachel
Greenstadt. USENIX Association, 2021, pp. 519–535 (cit. on pp. xv,
xvi, 196–199, 214, 216).

[GLR+20] Lorenzo Grassi, Reinhard Lüftenegger, Christian Rechberger, Dra-
gos Rotaru, and Markus Schofnegger. “On a Generalization of
Substitution-Permutation Networks: The HADES Design Strategy”.
In: Advances in Cryptology – EUROCRYPT 2020, Part II. Ed.
by Anne Canteaut and Yuval Ishai. Vol. 12106. Lecture Notes in
Computer Science. Zagreb, Croatia: Springer, Heidelberg, Germany,
2020, pp. 674–704. doi: 10.1007/978-3-030-45724-2_23 (cit. on
p. 214).

[GM16] Shay Gueron and Nicky Mouha. “Simpira v2: A Family of Efficient
Permutations Using the AES Round Function”. In: Advances in
Cryptology – ASIACRYPT 2016, Part I. Ed. by Jung Hee Cheon and
Tsuyoshi Takagi. Vol. 10031. Lecture Notes in Computer Science.
Hanoi, Vietnam: Springer, Heidelberg, Germany, 2016, pp. 95–125.
doi: 10.1007/978-3-662-53887-6_4 (cit. on pp. 33, 169).

[Gos] GOST 28147-89. Tech. rep. Federal Information Processing Standard
- Cryptographic Algorithm, Russian National Bureau of Standards,
1989 (cit. on p. 14).

[GØS+23] Lorenzo Grassi, Morten Øygarden, Markus Schofnegger, and Roman
Walch. “From Farfalle to Megafono via Ciminion: The PRF Hydra
for MPC Applications”. In: Advances in Cryptology – EURO-
CRYPT 2023, Part IV. Ed. by Carmit Hazay and Martijn Stam.
Vol. 14007. Lecture Notes in Computer Science. Lyon, France:
Springer, Heidelberg, Germany, 2023, pp. 255–286. doi: 10.1007/
978-3-031-30634-1_9 (cit. on pp. xv, 196).

[GP10] Henri Gilbert and Thomas Peyrin. “Super-Sbox Cryptanalysis:
Improved Attacks for AES-Like Permutations”. In: Fast Software
Encryption – FSE 2010. Ed. by Seokhie Hong and Tetsu Iwata.

https://doi.org/10.1145/3548606.3560686
https://doi.org/10.1007/978-3-030-45724-2_23
https://doi.org/10.1007/978-3-662-53887-6_4
https://doi.org/10.1007/978-3-031-30634-1_9
https://doi.org/10.1007/978-3-031-30634-1_9

290 Bibliography

Vol. 6147. Lecture Notes in Computer Science. Seoul, Korea: Springer,
Heidelberg, Germany, 2010, pp. 365–383. doi: 10.1007/978-3-642-
13858-4_21 (cit. on p. 30).

[Gro96] Lov K. Grover. “A Fast Quantum Mechanical Algorithm for
Database Search”. In: Proceedings of the Twenty-Eighth Annual ACM
Symposium on the Theory of Computing, Philadelphia, Pennsylvania,
USA, May 22-24, 1996. Ed. by Gary L. Miller. ACM, 1996,
pp. 212–219. doi: 10.1145/237814.237866 (cit. on p. 6).

[GRR16] Lorenzo Grassi, Christian Rechberger, and Sondre Rønjom. “Sub-
space Trail Cryptanalysis and its Applications to AES”. In: IACR
Transactions on Symmetric Cryptology 2016.2 (2016). https://tosc.
iacr.org/index.php/ToSC/article/view/571, pp. 192–225. issn:
2519-173X. doi: 10 . 13154 / tosc . v2016 . i2 . 192 - 225 (cit. on
p. 117).

[GRR17] Lorenzo Grassi, Christian Rechberger, and Sondre Rønjom. “A New
Structural-Differential Property of 5-Round AES”. In: Advances in
Cryptology – EUROCRYPT 2017, Part II. Ed. by Jean-Sébastien
Coron and Jesper Buus Nielsen. Vol. 10211. Lecture Notes in
Computer Science. Paris, France: Springer, Heidelberg, Germany,
2017, pp. 289–317. doi: 10.1007/978-3-319-56614-6_10 (cit. on
pp. 32, 99, 109).

[Gue08] Shay Gueron. Intel Advanced Encryption Standard (AES) New
Instructions Set. White Paper Rev 3.01 (09/2012). Intel Corporation,
2008 (cit. on pp. xiv, 33, 166).

[Gur23] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual.
https://www.gurobi.com. 2023 (cit. on pp. 36, 37, 133, 184).

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK:
Permutations over Lagrange-bases for Oecumenical Noninterac-
tive arguments of Knowledge. Cryptology ePrint Archive, Report
2019/953. https://eprint.iacr.org/2019/953. 2019 (cit. on
p. 197).

[HBD+22] Andreas Hülsing, Daniel J. Bernstein, Christoph Dobraunig, Maria
Eichlseder, Scott Fluhrer, Stefan-Lukas Gazdag, Panos Kampanakis,
Stefan Kölbl, Tanja Lange, Martin M. Lauridsen, Florian Mendel,
Ruben Niederhagen, Christian Rechberger, Joost Rijneveld, Peter
Schwabe, Jean-Philippe Aumasson, Bas Westerbaan, and Ward
Beullens. SPHINCS+. Tech. rep. available at https : / / csrc .
nist.gov/Projects/post- quantum- cryptography/selected-
algorithms-2022. National Institute of Standards and Technology,
2022 (cit. on p. 7).

https://doi.org/10.1007/978-3-642-13858-4_21
https://doi.org/10.1007/978-3-642-13858-4_21
https://doi.org/10.1145/237814.237866
https://tosc.iacr.org/index.php/ToSC/article/view/571
https://tosc.iacr.org/index.php/ToSC/article/view/571
https://doi.org/10.13154/tosc.v2016.i2.192-225
https://doi.org/10.1007/978-3-319-56614-6_10
https://www.gurobi.com
https://eprint.iacr.org/2019/953
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

Bibliography 291

[HBS21] Hosein Hadipour, Nasour Bagheri, and Ling Song. “Improved
Rectangle Attacks on SKINNY and CRAFT”. In: IACR Transactions
on Symmetric Cryptology 2021.2 (2021), pp. 140–198. issn: 2519-
173X. doi: 10.46586/tosc.v2021.i2.140-198 (cit. on p. 85).

[HDE24] Hosein Hadipour, Patrick Derbez, and Maria Eichlseder. Revisiting
Differential-Linear Attacks via a Boomerang Perspective with Ap-
plication to AES, Ascon, CLEFIA, SKINNY, PRESENT, KNOT,
TWINE, WARP, LBlock, Simeck, and SERPENT. Cryptology ePrint
Archive, Paper 2024/255. https://eprint.iacr.org/2024/255.
2024 (cit. on p. 36).

[HGS+24] Hosein Hadipour, Simon Gerhalter, Sadegh Sadeghi, and Maria
Eichlseder. “Improved Search for Integral, Impossible Differential
and Zero-Correlation Attacks Application to Ascon, ForkSKINNY,
SKINNY, MANTIS, PRESENT and QARMAv2”. In: IACR Trans.
Symmetric Cryptol. 2024.1 (2024), pp. 234–325. doi: 10.46586/
TOSC.V2024.I1.234-325 (cit. on pp. 43, 63).

[HNE22] Hosein Hadipour, Marcel Nageler, and Maria Eichlseder. “Throwing
Boomerangs into Feistel Structures Application to CLEFIA, WARP,
LBlock, LBlock-s and TWINE”. In: IACR Transactions on Sym-
metric Cryptology 2022.3 (2022), pp. 271–302. doi: 10.46586/tosc.
v2022.i3.271-302 (cit. on p. 85).

[HNS19] S. G. Hyun, V. Neiger, and É. Schost. “Implementations of Efficient
Univariate Polynomial Matrix Algorithms and Application to
Bivariate Resultants”. In: Proceedings ISSAC 2019. https://github.
com/vneiger/pml. ACM, 2019, pp. 235–242. isbn: 9781450360845.
doi: 10.1145/3326229.3326272 (cit. on p. 248).

[IAC+08] Sebastiaan Indesteege, Elena Andreeva, Christophe De Cannière,
Orr Dunkelman, Emilia Käsper, Svetla Nikova, Bart Preneel, and
Elmar Tischhause. The Lane hash function. Submission to NIST
SHA-3 Cryptographic Hash Algorithm Competition. Available at
https://www.cosic.esat.kuleuven.be/lane/index.shtml. 2008
(cit. on p. 33).

[IIL+23] Takanori Isobe, Ryoma Ito, Fukang Liu, Kazuhiko Minematsu,
Motoki Nakahashi, Kosei Sakamoto, and Rentaro Shiba. “Areion:
Highly-Efficient Permutations and Its Applications to Hash Functions
for Short Input”. In: IACR Transactions on Cryptographic Hardware
and Embedded Systems 2023.2 (2023), pp. 115–154. doi: 10.46586/
tches.v2023.i2.115-154 (cit. on p. 33).

[JK97] Thomas Jakobsen and Lars R. Knudsen. “The Interpolation Attack
on Block Ciphers”. In: Fast Software Encryption – FSE’97. Ed. by
Eli Biham. Vol. 1267. Lecture Notes in Computer Science. Haifa,
Israel: Springer, Heidelberg, Germany, 1997, pp. 28–40. doi: 10.
1007/BFb0052332 (cit. on pp. xvi, 27, 197, 200).

https://doi.org/10.46586/tosc.v2021.i2.140-198
https://eprint.iacr.org/2024/255
https://doi.org/10.46586/TOSC.V2024.I1.234-325
https://doi.org/10.46586/TOSC.V2024.I1.234-325
https://doi.org/10.46586/tosc.v2022.i3.271-302
https://doi.org/10.46586/tosc.v2022.i3.271-302
https://github.com/vneiger/pml
https://github.com/vneiger/pml
https://doi.org/10.1145/3326229.3326272
https://www.cosic.esat.kuleuven.be/lane/index.shtml
https://doi.org/10.46586/tches.v2023.i2.115-154
https://doi.org/10.46586/tches.v2023.i2.115-154
https://doi.org/10.1007/BFb0052332
https://doi.org/10.1007/BFb0052332

292 Bibliography

[JKN+24] Ashwin Jha, Mustafa Khairallah, Mridul Nandi, and Abishanka Saha.
“Tight security of tnt and beyond: Attacks, proofs and possibilities
for the cascaded lrw paradigm”. In: EUROCRYPT 2024 (2024) (cit.
on pp. 35, 81, 82, 121).

[JN16] Jérémy Jean and Ivica Nikolic. “Efficient Design Strategies Based on
the AES Round Function”. In: Fast Software Encryption – FSE 2016.
Ed. by Thomas Peyrin. Vol. 9783. Lecture Notes in Computer Science.
Bochum, Germany: Springer, Heidelberg, Germany, 2016, pp. 334–
353. doi: 10.1007/978-3-662-52993-5_17 (cit. on pp. 33, 166–169,
171, 193).

[JNP14a] Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. “KIASU v1”. In:
Submitted to the CAESAR competition (2014) (cit. on pp. xi, xii, 35,
43–45, 79, 119).

[JNP14b] Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. “Tweaks and Keys
for Block Ciphers: The TWEAKEY Framework”. In: Advances in
Cryptology – ASIACRYPT 2014, Part II. Ed. by Palash Sarkar
and Tetsu Iwata. Vol. 8874. Lecture Notes in Computer Science.
Kaoshiung, Taiwan, R.O.C.: Springer, Heidelberg, Germany, 2014,
pp. 274–288. doi: 10.1007/978-3-662-45608-8_15 (cit. on pp. 33,
45, 46, 119, 133).

[JNP+21] Jérémy Jean, Ivica Nikolic, Thomas Peyrin, and Yannick Seurin.
“The Deoxys AEAD Family”. In: Journal of Cryptology 34.3 (July
2021), p. 31. doi: 10.1007/s00145-021-09397-w (cit. on pp. xii,
xiv, 33–35, 79, 85, 129, 133, 166, 181).

[Ker83] A. Kerckhoffs. “La cryptographie militaire”. In: Journal des Sciences
Militaires (1883), pp. 161–191 (cit. on pp. ix, 4).

[KKS01] John Kelsey, Tadayoshi Kohno, and Bruce Schneier. “Amplified
Boomerang Attacks Against Reduced-Round MARS and Serpent”.
In: Fast Software Encryption – FSE 2000. Ed. by Bruce Schneier.
Vol. 1978. Lecture Notes in Computer Science. New York, NY, USA:
Springer, Heidelberg, Germany, 2001, pp. 75–93. doi: 10.1007/3-
540-44706-7_6 (cit. on p. 87).

[KLM+16] Stefan Kölbl, Martin M. Lauridsen, Florian Mendel, and Christian
Rechberger. Haraka - Efficient Short-Input Hashing for Post-
Quantum Applications. Cryptology ePrint Archive, Report 2016/098.
https://eprint.iacr.org/2016/098. 2016 (cit. on p. 33).

[KLR24] Katharina Koschatko, Reinhard Lüftenegger, and Christian Rech-
berger. Exploring the Six Worlds of Gröbner Basis Cryptanalysis:
Application to Anemoi. Cryptology ePrint Archive, Paper 2024/250.
https://eprint.iacr.org/2024/250. 2024 (cit. on p. 208).

https://doi.org/10.1007/978-3-662-52993-5_17
https://doi.org/10.1007/978-3-662-45608-8_15
https://doi.org/10.1007/s00145-021-09397-w
https://doi.org/10.1007/3-540-44706-7_6
https://doi.org/10.1007/3-540-44706-7_6
https://eprint.iacr.org/2016/098
https://eprint.iacr.org/2024/250

Bibliography 293

[Knu95] Lars R. Knudsen. “Truncated and Higher Order Differentials”. In:
Fast Software Encryption – FSE’94. Ed. by Bart Preneel. Vol. 1008.
Lecture Notes in Computer Science. Leuven, Belgium: Springer,
Heidelberg, Germany, 1995, pp. 196–211. doi: 10.1007/3- 540-
60590-8_16 (cit. on p. 24).

[Kob87] Neal Koblitz. “Elliptic curve cryptosystems”. In: Mathematics of
computation 48.177 (1987), pp. 203–209 (cit. on p. 6).

[KR21a] Nathan Keller and Asaf Rosemarin. “Mind the Middle Layer: The
HADES Design Strategy Revisited”. In: Advances in Cryptology –
EUROCRYPT 2021, Part II. Ed. by Anne Canteaut and François-
Xavier Standaert. Vol. 12697. Lecture Notes in Computer Science.
Zagreb, Croatia: Springer, Heidelberg, Germany, 2021, pp. 35–63.
doi: 10.1007/978-3-030-77886-6_2 (cit. on p. 197).

[KR21b] Ted Krovetz and Phillip Rogaway. “The Design and Evolution of
OCB”. In: Journal of Cryptology 34.4 (Oct. 2021), p. 36. doi: 10.
1007/s00145-021-09399-8 (cit. on pp. 33, 166).

[KS07] Liam Keliher and Jiayuan Sui. “Exact maximum expected differential
and linear probability for two-round Advanced Encryption Standard”.
In: IET Inf. Secur. 1.2 (2007), pp. 53–57. doi: 10.1049/IET-IFS:
20060161 (cit. on p. 166).

[KSS13] Marcel Keller, Peter Scholl, and Nigel P. Smart. “An architecture
for practical actively secure MPC with dishonest majority”. In:
ACM CCS 2013: 20th Conference on Computer and Communications
Security. Ed. by Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti
Yung. Berlin, Germany: ACM Press, 2013, pp. 549–560. doi: 10.
1145/2508859.2516744 (cit. on p. 196).

[KT22] Andreas B. Kidmose and Tyge Tiessen. “A Formal Analysis of
Boomerang Probabilities”. In: IACR Transactions on Symmetric
Cryptology 2022.1 (2022), pp. 88–109. doi: 10.46586/tosc.v2022.
i1.88-109 (cit. on p. 92).

[KW02] Lars R. Knudsen and David Wagner. “Integral Cryptanalysis”. In:
Fast Software Encryption – FSE 2002. Ed. by Joan Daemen and
Vincent Rijmen. Vol. 2365. Lecture Notes in Computer Science.
Leuven, Belgium: Springer, Heidelberg, Germany, 2002, pp. 112–127.
doi: 10.1007/3-540-45661-9_9 (cit. on p. 27).

[LDK+22] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter
Schwabe, Gregor Seiler, Damien Stehlé, and Shi Bai. CRYSTALS-
DILITHIUM. Tech. rep. available at https://csrc.nist.gov/
Projects/post-quantum-cryptography/selected-algorithms-
2022. National Institute of Standards and Technology, 2022 (cit. on
p. 7).

https://doi.org/10.1007/3-540-60590-8_16
https://doi.org/10.1007/3-540-60590-8_16
https://doi.org/10.1007/978-3-030-77886-6_2
https://doi.org/10.1007/s00145-021-09399-8
https://doi.org/10.1007/s00145-021-09399-8
https://doi.org/10.1049/IET-IFS:20060161
https://doi.org/10.1049/IET-IFS:20060161
https://doi.org/10.1145/2508859.2516744
https://doi.org/10.1145/2508859.2516744
https://doi.org/10.46586/tosc.v2022.i1.88-109
https://doi.org/10.46586/tosc.v2022.i1.88-109
https://doi.org/10.1007/3-540-45661-9_9
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

294 Bibliography

[LGS17] Guozhen Liu, Mohona Ghosh, and Ling Song. “Security Analysis of
SKINNY under Related-Tweakey Settings (Long Paper)”. In: IACR
Transactions on Symmetric Cryptology 2017.3 (2017), pp. 37–72.
issn: 2519-173X. doi: 10.13154/tosc.v2017.i3.37-72 (cit. on
pp. 63, 68).

[LH94] Susan K. Langford and Martin E. Hellman. “Differential-Linear
Cryptanalysis”. In: Advances in Cryptology – CRYPTO’94. Ed. by
Yvo Desmedt. Vol. 839. Lecture Notes in Computer Science. Santa
Barbara, CA, USA: Springer, Heidelberg, Germany, 1994, pp. 17–25.
doi: 10.1007/3-540-48658-5_3 (cit. on p. 26).

[LKH+16] HoChang Lee, HyungChul Kang, Deukjo Hong, Jaechul Sung,
and Seokhie Hong. New Impossible Differential Characteristic
of SPECK64 using MILP. Cryptology ePrint Archive, Report
2016/1137. https : / / eprint . iacr . org / 2016 / 1137. 2016 (cit.
on p. 36).

[LKK+08] Jiqiang Lu, Jongsung Kim, Nathan Keller, and Orr Dunkelman.
“Improving the Efficiency of Impossible Differential Cryptanalysis of
Reduced Camellia and MISTY1”. In: Topics in Cryptology – CT-
RSA 2008. Ed. by Tal Malkin. Vol. 4964. Lecture Notes in Computer
Science. San Francisco, CA, USA: Springer, Heidelberg, Germany,
2008, pp. 370–386. doi: 10.1007/978-3-540-79263-5_24 (cit. on
p. 75).

[LMM91] Xuejia Lai, James L. Massey, and Sean Murphy. “Markov Ciphers
and Differential Cryptanalysis”. In: Advances in Cryptology –
EUROCRYPT’91. Ed. by Donald W. Davies. Vol. 547. Lecture
Notes in Computer Science. Brighton, UK: Springer, Heidelberg,
Germany, 1991, pp. 17–38. doi: 10.1007/3-540-46416-6_2 (cit. on
p. 21).

[LNZ17] George Labahn, Vincent Neiger, and Wei Zhou. “Fast, deterministic
computation of the Hermite normal form and determinant of a
polynomial matrix”. In: J. Complex. 42 (2017), pp. 44–71. doi:
10.1016/J.JCO.2017.03.003 (cit. on p. 258).

[LP21] Gaëtan Leurent and Clara Pernot. “New Representations of the AES
Key Schedule”. In: Advances in Cryptology – EUROCRYPT 2021,
Part I. Ed. by Anne Canteaut and François-Xavier Standaert.
Vol. 12696. Lecture Notes in Computer Science. Zagreb, Croatia:
Springer, Heidelberg, Germany, 2021, pp. 54–84. doi: 10.1007/978-
3-030-77870-5_3 (cit. on pp. 28, 33).

[LRW02] Moses Liskov, Ronald L. Rivest, and David Wagner. “Tweakable
Block Ciphers”. In: Advances in Cryptology – CRYPTO 2002. Ed. by
Moti Yung. Vol. 2442. Lecture Notes in Computer Science. Santa
Barbara, CA, USA: Springer, Heidelberg, Germany, 2002, pp. 31–46.
doi: 10.1007/3-540-45708-9_3 (cit. on p. 11).

https://doi.org/10.13154/tosc.v2017.i3.37-72
https://doi.org/10.1007/3-540-48658-5_3
https://eprint.iacr.org/2016/1137
https://doi.org/10.1007/978-3-540-79263-5_24
https://doi.org/10.1007/3-540-46416-6_2
https://doi.org/10.1016/J.JCO.2017.03.003
https://doi.org/10.1007/978-3-030-77870-5_3
https://doi.org/10.1007/978-3-030-77870-5_3
https://doi.org/10.1007/3-540-45708-9_3

Bibliography 295

[LTX23a] Jiamei Liu, Lin Tan, and Hong Xu. “Improved related-tweakey
rectangle attacks on round-reduced Deoxys-BC”. In: IET Inf. Secur.
17.3 (2023), pp. 407–422. doi: 10.1049/ISE2.12104 (cit. on p. 85).

[LTX23b] Jiamei Liu, Lin Tan, and Hong Xu. “New Related-Tweakey
Boomerang Attacks and Distinguishers on Deoxys-BC”. In: Chinese
Journal of Electronics 33 (2023), pp. 1–11 (cit. on p. 85).

[LWL22] Chenmeng Li, Baofeng Wu, and Dongdai Lin. “Generalized Boomerang
Connectivity Table and Improved Cryptanalysis of GIFT”. In:
Information Security and Cryptology - 18th International Conference,
Inscrypt 2022, Beijing, China, December 11-13, 2022, Revised
Selected Papers. Ed. by Yi Deng and Moti Yung. Vol. 13837. Lecture
Notes in Computer Science. Springer, 2022, pp. 213–233. doi: 10.
1007/978-3-031-26553-2_11 (cit. on p. 85).

[LXC+23] Yong Liu, Zejun Xiang, Siwei Chen, Shasha Zhang, and Xiangyong
Zeng. “A Novel Automatic Technique Based on MILP to Search for
Impossible Differentials”. In: ACNS 23: 21st International Conference
on Applied Cryptography and Network Security, Part I. Ed. by Mehdi
Tibouchi and Xiaofeng Wang. Vol. 13905. Lecture Notes in Computer
Science. Kyoto, Japan: Springer, Heidelberg, Germany, 2023, pp. 119–
148. doi: 10.1007/978-3-031-33488-7_5 (cit. on p. 36).

[Mat94] Mitsuru Matsui. “Linear Cryptanalysis Method for DES Cipher”. In:
Advances in Cryptology – EUROCRYPT’93. Ed. by Tor Helleseth.
Vol. 765. Lecture Notes in Computer Science. Lofthus, Norway:
Springer, Heidelberg, Germany, 1994, pp. 386–397. doi: 10.1007/3-
540-48285-7_33 (cit. on pp. 6, 26).

[McE78] Robert J McEliece. “A public-Key Cryptosystem Based on Algebraic
Coding Theory”. In: Coding Thv 4244 (1978), pp. 114–116 (cit. on
p. 6).

[MDR+10] Hamid Mala, Mohammad Dakhilalian, Vincent Rijmen, and Mah-
moud Modarres-Hashemi. “Improved Impossible Differential Crypt-
analysis of 7-Round AES-128”. In: Progress in Cryptology - IN-
DOCRYPT 2010: 11th International Conference in Cryptology in
India. Ed. by Guang Gong and Kishan Chand Gupta. Vol. 6498.
Lecture Notes in Computer Science. Hyderabad, India: Springer,
Heidelberg, Germany, 2010, pp. 282–291 (cit. on p. 48).

[Mer91] Ralph C. Merkle. “Fast Software Encryption Functions”. In: Advances
in Cryptology – CRYPTO’90. Ed. by Alfred J. Menezes and Scott
A. Vanstone. Vol. 537. Lecture Notes in Computer Science. Santa
Barbara, CA, USA: Springer, Heidelberg, Germany, 1991, pp. 476–
501. doi: 10.1007/3-540-38424-3_34 (cit. on p. 82).

https://doi.org/10.1049/ISE2.12104
https://doi.org/10.1007/978-3-031-26553-2_11
https://doi.org/10.1007/978-3-031-26553-2_11
https://doi.org/10.1007/978-3-031-33488-7_5
https://doi.org/10.1007/3-540-48285-7_33
https://doi.org/10.1007/3-540-48285-7_33
https://doi.org/10.1007/3-540-38424-3_34

296 Bibliography

[Mil85] Victor S. Miller. “Use of Elliptic Curves in Cryptography”. In:
Advances in Cryptology - CRYPTO ’85, Santa Barbara, California,
USA, August 18-22, 1985, Proceedings. Ed. by Hugh C. Williams.
Vol. 218. Lecture Notes in Computer Science. Springer, 1985,
pp. 417–426. doi: 10.1007/3-540-39799-X_31 (cit. on p. 6).

[Miy91] Shoji Miyaguchi. “The FEAL Cipher Family (Impromptu Talk)”. In:
Advances in Cryptology – CRYPTO’90. Ed. by Alfred J. Menezes
and Scott A. Vanstone. Vol. 537. Lecture Notes in Computer Science.
Santa Barbara, CA, USA: Springer, Heidelberg, Germany, 1991,
pp. 627–638. doi: 10.1007/3-540-38424-3_46 (cit. on p. 82).

[MN17] Bart Mennink and Samuel Neves. “Encrypted Davies-Meyer and Its
Dual: Towards Optimal Security Using Mirror Theory”. In: Advances
in Cryptology – CRYPTO 2017, Part III. Ed. by Jonathan Katz and
Hovav Shacham. Vol. 10403. Lecture Notes in Computer Science.
Santa Barbara, CA, USA: Springer, Heidelberg, Germany, 2017,
pp. 556–583. doi: 10 . 1007 / 978 - 3 - 319 - 63697 - 9 _ 19 (cit. on
p. 189).

[Moe73] Robert T. Moenck. “Fast Computation of GCDs”. In: Proceedings
of the 5th Annual ACM Symposium on Theory of Computing, April
30 - May 2, 1973, Austin, Texas, USA. Ed. by Alfred V. Aho,
Allan Borodin, Robert L. Constable, Robert W. Floyd, Michael A.
Harrison, Richard M. Karp, and H. Raymond Strong. ACM, 1973,
pp. 142–151. doi: 10.1145/800125.804045 (cit. on p. 199).

[Moe76] Robert T. Moenck. “Practical fast polynomial multiplication”. In:
Proceedings of the third ACM Symposium on Symbolic and Algebraic
Manipulation, SYMSAC 1976, Yorktown Heights, New York, USA,
August 10-12, 1976. Ed. by Richard D. Jenks. ACM, 1976, pp. 136–
148. doi: 10.1145/800205.806332 (cit. on p. 247).

[MP13] Nicky Mouha and Bart Preneel. Towards Finding Optimal Differ-
ential Characteristics for ARX: Application to Salsa20. Cryptology
ePrint Archive, Report 2013/328. https://eprint.iacr.org/
2013/328. 2013 (cit. on p. 36).

[MS02] Itsik Mantin and Adi Shamir. “A Practical Attack on Broadcast
RC4”. In: Fast Software Encryption – FSE 2001. Ed. by Mitsuru
Matsui. Vol. 2355. Lecture Notes in Computer Science. Yokohama,
Japan: Springer, Heidelberg, Germany, 2002, pp. 152–164. doi: 10.
1007/3-540-45473-X_13 (cit. on pp. 98, 108).

[MS91] Guillermo Moreno Socias. “Autour de la fonction de Hilbert-Samuel
(escaliers d’idéaux polynomiaux)”. PhD thesis. Palaiseau, Ecole
polytechnique, 1991 (cit. on p. 206).

https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/3-540-38424-3_46
https://doi.org/10.1007/978-3-319-63697-9_19
https://doi.org/10.1145/800125.804045
https://doi.org/10.1145/800205.806332
https://eprint.iacr.org/2013/328
https://eprint.iacr.org/2013/328
https://doi.org/10.1007/3-540-45473-X_13
https://doi.org/10.1007/3-540-45473-X_13

Bibliography 297

[MSR14] Marine Minier, Christine Solnon, and Julia Reboul. “Solving a
symmetric key cryptographic problem with constraint programming”.
In: ModRef 2014, Workshop of the CP 2014 Conference. 2014, p. 13
(cit. on p. 36).

[MT06] Kazuhiko Minematsu and Yukiyasu Tsunoo. “Provably Secure
MACs from Differentially-Uniform Permutations and AES-Based
Implementations”. In: Fast Software Encryption – FSE 2006.
Ed. by Matthew J. B. Robshaw. Vol. 4047. Lecture Notes in
Computer Science. Graz, Austria: Springer, Heidelberg, Germany,
2006, pp. 226–241. doi: 10.1007/11799313_15 (cit. on p. 166).

[Mur11] Sean Murphy. “The Return of the Cryptographic Boomerang”. In:
IEEE Trans. Inf. Theory 57.4 (2011), pp. 2517–2521. doi: 10.1109/
TIT.2011.2111091 (cit. on pp. 84, 88).

[MV04] David A. McGrew and John Viega. The Galois/Counter Mode of
Operation (GCM). Submission to NIST Modes of Operation Process.
Available at https://csrc.nist.rip/groups/ST/toolkit/BCM/
documents/proposedmodes/gcm/gcm-spec.pdf. Jan. 2004 (cit. on
pp. 16, 33, 166).

[MWG+11] Nicky Mouha, Qingju Wang, Dawu Gu, and Bart Preneel. “Dif-
ferential and Linear Cryptanalysis Using Mixed-Integer Linear
Programming”. In: Information Security and Cryptology - 7th
International Conference, Inscrypt 2011, Beijing, China, November
30 - December 3, 2011. Revised Selected Papers. Ed. by Chuankun
Wu, Moti Yung, and Dongdai Lin. Vol. 7537. Lecture Notes in
Computer Science. Springer, 2011, pp. 57–76. doi: 10.1007/978-3-
642-34704-7_5 (cit. on pp. 31, 36, 85, 180).

[NBK08] Ivica Nikolić, Alex Biryukov, and Dmitry Khovratovich. Hash family
LUX - Algorithm Specifications and Supporting Documentation. Sub-
mission to NIST SHA-3 Cryptographic Hash Algorithm Competition.
Available at https://ehash.iaik.tugraz.at/uploads/f/f3/LUX.
pdf. 2008 (cit. on p. 172).

[NFI24] Yuto Nakano, Kazuhide Fukushima, and Takanori Isobe. Encryption
algorithm Rocca-S. Internet-Draft draft-nakano-rocca-s-05. Work in
Progress. Internet Engineering Task Force, Jan. 2024. 25 pp. (cit. on
pp. 33, 166, 168, 193).

[Nik14] Ivica Nikolić. Tiaoxin–346. Submission to CAESAR Competition.
Available at https : / / competitions . cr . yp . to / round3 /
tiaoxinv21.pdf. 2014 (cit. on pp. 33, 166, 168, 193).

[Nik17] Ivica Nikolic. “How to Use Metaheuristics for Design of Symmetric-
Key Primitives”. In: Advances in Cryptology – ASIACRYPT 2017,
Part III. Ed. by Tsuyoshi Takagi and Thomas Peyrin. Vol. 10626.
Lecture Notes in Computer Science. Hong Kong, China: Springer,

https://doi.org/10.1007/11799313_15
https://doi.org/10.1109/TIT.2011.2111091
https://doi.org/10.1109/TIT.2011.2111091
https://csrc.nist.rip/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-spec.pdf
https://csrc.nist.rip/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-spec.pdf
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/978-3-642-34704-7_5
https://ehash.iaik.tugraz.at/uploads/f/f3/LUX.pdf
https://ehash.iaik.tugraz.at/uploads/f/f3/LUX.pdf
https://competitions.cr.yp.to/round3/tiaoxinv21.pdf
https://competitions.cr.yp.to/round3/tiaoxinv21.pdf

298 Bibliography

Heidelberg, Germany, 2017, pp. 369–391. doi: 10.1007/978-3-319-
70700-6_13 (cit. on pp. 33, 168).

[NN82] Henri J Nussbaumer and Henri J Nussbaumer. The fast Fourier
transform. Springer, 1982 (cit. on p. 198).

[NS20] Vincent Neiger and Éric Schost. “Computing syzygies in finite
dimension using fast linear algebra”. In: J. Complex. 60 (2020),
p. 101502. doi: 10.1016/J.JCO.2020.101502 (cit. on pp. 209, 237,
238).

[Nyb94] Kaisa Nyberg. “Differentially Uniform Mappings for Cryptography”.
In: Advances in Cryptology – EUROCRYPT’93. Ed. by Tor Helleseth.
Vol. 765. Lecture Notes in Computer Science. Lofthus, Norway:
Springer, Heidelberg, Germany, 1994, pp. 55–64. doi: 10.1007/3-
540-48285-7_6 (cit. on p. 23).

[Oki12] Eiji Oki. “GLPK (GNU Linear Programming Kit)”. In: 2012 (cit. on
p. 37).

[PFH+22] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner,
Vadim Lyubashevsky, Thomas Pornin, Thomas Ricosset, Gregor
Seiler, William Whyte, and Zhenfei Zhang. FALCON. Tech. rep.
available at https://csrc.nist.gov/Projects/post-quantum-
cryptography/selected-algorithms-2022. National Institute of
Standards and Technology, 2022 (cit. on p. 7).

[PSS+09] Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen
C. Williams. “Secure Two-Party Computation Is Practical”. In:
Advances in Cryptology – ASIACRYPT 2009. Ed. by Mitsuru
Matsui. Vol. 5912. Lecture Notes in Computer Science. Tokyo, Japan:
Springer, Heidelberg, Germany, 2009, pp. 250–267. doi: 10.1007/
978-3-642-10366-7_15 (cit. on p. 196).

[PT22] Thomas Peyrin and Quan Quan Tan. “Mind Your Path: On (Key)
Dependencies in Differential Characteristics”. In: IACR Transactions
on Symmetric Cryptology 2022.4 (2022), pp. 179–207. doi: 10.46586/
tosc.v2022.i4.179-207 (cit. on pp. 21, 88).

[QDW+21] Lingyue Qin, Xiaoyang Dong, Xiaoyun Wang, Keting Jia, and
Yunwen Liu. “Automated Search Oriented to Key Recovery on
Ciphers with Linear Key Schedule”. In: IACR Transactions on
Symmetric Cryptology 2021.2 (2021), pp. 249–291. issn: 2519-173X.
doi: 10.46586/tosc.v2021.i2.249-291 (cit. on pp. xii, 36, 43, 63,
85, 129).

[RBB03] Phillip Rogaway, Mihir Bellare, and John Black. “OCB: A block-
cipher mode of operation for efficient authenticated encryption”. In:
ACM Trans. Inf. Syst. Secur. 6.3 (2003), 365–403. issn: 1094-9224.
doi: 10.1145/937527.937529 (cit. on pp. 33, 166).

https://doi.org/10.1007/978-3-319-70700-6_13
https://doi.org/10.1007/978-3-319-70700-6_13
https://doi.org/10.1016/J.JCO.2020.101502
https://doi.org/10.1007/3-540-48285-7_6
https://doi.org/10.1007/3-540-48285-7_6
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://doi.org/10.1007/978-3-642-10366-7_15
https://doi.org/10.1007/978-3-642-10366-7_15
https://doi.org/10.46586/tosc.v2022.i4.179-207
https://doi.org/10.46586/tosc.v2022.i4.179-207
https://doi.org/10.46586/tosc.v2021.i2.249-291
https://doi.org/10.1145/937527.937529

Bibliography 299

[RBH17] Sondre Rønjom, Navid Ghaedi Bardeh, and Tor Helleseth. “Yoyo
Tricks with AES”. In: Advances in Cryptology – ASIACRYPT 2017,
Part I. Ed. by Tsuyoshi Takagi and Thomas Peyrin. Vol. 10624.
Lecture Notes in Computer Science. Hong Kong, China: Springer,
Heidelberg, Germany, 2017, pp. 217–243. doi: 10.1007/978-3-319-
70694-8_8 (cit. on pp. 31, 80, 92, 96, 99).

[RD01] Vincent Rijmen and Joan Daemen. “Advanced encryption standard”.
In: Proceedings of federal information processing standards publica-
tions, national institute of standards and technology 19 (2001), p. 22
(cit. on p. 28).

[Rog11] Phillip Rogaway. “Evaluation of some blockcipher modes of op-
eration”. In: Cryptography Research and Evaluation Committees
(CRYPTREC) for the Government of Japan 630 (2011) (cit. on
p. 11).

[RSA83] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. “A Method
for Obtaining Digital Signatures and Public-Key Cryptosystems
(Reprint)”. In: Commun. ACM 26.1 (1983), pp. 96–99. doi: 10.
1145/357980.358017 (cit. on pp. x, 6).

[RSP21] Mostafizar Rahman, Dhiman Saha, and Goutam Paul. “Boomeyong:
Embedding Yoyo within Boomerang and its Applications to Key
Recovery Attacks on AES and Pholkos”. In: IACR Transactions on
Symmetric Cryptology 2021.3 (2021), pp. 137–169. issn: 2519-173X.
doi: 10.46586/tosc.v2021.i3.137-169 (cit. on pp. 80, 85, 92,
105).

[RST23] Arnab Roy, Matthias Johann Steiner, and Stefano Trevisani. “Arion:
Arithmetization-Oriented Permutation and Hashing from Gener-
alized Triangular Dynamical Systems”. In: CoRR abs/2303.04639
(2023). doi: 10.48550/ARXIV.2303.04639. arXiv: 2303.04639
(cit. on pp. xv, xvii, 196, 197, 210, 235, 254, 255).

[RVP+02] Vincent Rijmen, Bart Van Rompay, Bart Preneel, and Joos
Vandewalle. “Producing Collisions for PANAMA”. In: Fast Software
Encryption – FSE 2001. Ed. by Mitsuru Matsui. Vol. 2355. Lecture
Notes in Computer Science. Yokohama, Japan: Springer, Heidelberg,
Germany, 2002, pp. 37–51. doi: 10.1007/3-540-45473-X_4 (cit. on
p. 172).

[SAB+22] Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz,
Tancrède Lepoint, Vadim Lyubashevsky, John M. Schanck, Gregor
Seiler, Damien Stehlé, and Jintai Ding. CRYSTALS-KYBER. Tech.
rep. available at https : / / csrc . nist . gov / Projects / post -
quantum- cryptography/selected- algorithms- 2022. National
Institute of Standards and Technology, 2022 (cit. on p. 7).

https://doi.org/10.1007/978-3-319-70694-8_8
https://doi.org/10.1007/978-3-319-70694-8_8
https://doi.org/10.1145/357980.358017
https://doi.org/10.1145/357980.358017
https://doi.org/10.46586/tosc.v2021.i3.137-169
https://doi.org/10.48550/ARXIV.2303.04639
https://arxiv.org/abs/2303.04639
https://doi.org/10.1007/3-540-45473-X_4
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

300 Bibliography

[SAD20] Alan Szepieniec, Tomer Ashur, and Siemen Dhooghe. Rescue-Prime:
a Standard Specification (SoK). Cryptology ePrint Archive, Report
2020/1143. https://eprint.iacr.org/2020/1143. 2020 (cit. on
pp. 197, 217, 220).

[Sag9522] The Sage Developers. SageMath, the Sage Mathematics Software
System. Version 9.5. 2022. doi: 10.5281/zenodo.6259615 (cit. on
p. 248).

[Sas18a] Yu Sasaki. “Improved Related-Tweakey Boomerang Attacks on
Deoxys-BC”. In: AFRICACRYPT 18: 10th International Conference
on Cryptology in Africa. Ed. by Antoine Joux, Abderrahmane Nitaj,
and Tajjeeddine Rachidi. Vol. 10831. Lecture Notes in Computer
Science. Marrakesh, Morocco: Springer, Heidelberg, Germany, 2018,
pp. 87–106. doi: 10.1007/978-3-319-89339-6_6 (cit. on pp. xiii,
81, 85, 129, 133, 143).

[Sas18b] Yu Sasaki. “Integer Linear Programming for Three-Subset Meet-
in-the-Middle Attacks: Application to GIFT”. In: IWSEC 18:
13th International Workshop on Security, Advances in Information
and Computer Security. Ed. by Atsuo Inomata and Kan Yasuda.
Vol. 11049. Lecture Notes in Computer Science. Sendai, Japan:
Springer, Heidelberg, Germany, 2018, pp. 227–243. doi: 10.1007/
978-3-319-97916-8_15 (cit. on p. 36).

[Sel08] Ali Aydin Selçuk. “On Probability of Success in Linear and
Differential Cryptanalysis”. In: Journal of Cryptology 21.1 (Jan.
2008), pp. 131–147. doi: 10.1007/s00145-007-9013-7 (cit. on
pp. 111, 112, 118).

[Sha45] Claude E Shannon. “A mathematical theory of cryptography”. In:
Mathematical Theory of Cryptography (1945) (cit. on p. 5).

[Sho] Victor Shoup. NTL: A library for doing number theory. https :
//libntl.org (cit. on pp. 208, 247, 248).

[Sho94] Peter W. Shor. “Algorithms for Quantum Computation: Discrete
Logarithms and Factoring”. In: 35th Annual Symposium on Foun-
dations of Computer Science, Santa Fe, New Mexico, USA, 20-22
November 1994. IEEE Computer Society, 1994, pp. 124–134. doi:
10.1109/SFCS.1994.365700 (cit. on p. 6).

[Sho96] Victor Shoup. “On Fast and Provably Secure Message Authenti-
cation Based on Universal Hashing”. In: Advances in Cryptology
– CRYPTO’96. Ed. by Neal Koblitz. Vol. 1109. Lecture Notes in
Computer Science. Santa Barbara, CA, USA: Springer, Heidelberg,
Germany, 1996, pp. 313–328. doi: 10.1007/3-540-68697-5_24
(cit. on p. 16).

https://eprint.iacr.org/2020/1143
https://doi.org/10.5281/zenodo.6259615
https://doi.org/10.1007/978-3-319-89339-6_6
https://doi.org/10.1007/978-3-319-97916-8_15
https://doi.org/10.1007/978-3-319-97916-8_15
https://doi.org/10.1007/s00145-007-9013-7
https://libntl.org
https://libntl.org
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1007/3-540-68697-5_24

Bibliography 301

[SLN+21] Kosei Sakamoto, Fukang Liu, Yuto Nakano, Shinsaku Kiyomoto, and
Takanori Isobe. “Rocca: An Efficient AES-based Encryption Scheme
for Beyond 5G”. In: IACR Transactions on Symmetric Cryptology
2021.2 (2021), pp. 1–30. issn: 2519-173X. doi: 10.46586/tosc.
v2021.i2.1-30 (cit. on pp. 33, 166, 168, 170, 171, 181, 193).

[SLN+22] Kosei Sakamoto, Fukang Liu, Yuto Nakano, Shinsaku Kiyomoto, and
Takanori Isobe. Rocca: An Efficient AES-based Encryption Scheme
for Beyond 5G (Full version). Cryptology ePrint Archive, Report
2022/116. https://eprint.iacr.org/2022/116. 2022 (cit. on
pp. 166, 168).

[SMB18] Sadegh Sadeghi, Tahereh Mohammadi, and Nasour Bagheri. “Crypt-
analysis of Reduced round SKINNY Block Cipher”. In: IACR
Transactions on Symmetric Cryptology 2018.3 (2018), pp. 124–162.
issn: 2519-173X. doi: 10.13154/tosc.v2018.i3.124-162 (cit. on
pp. xii, 63, 67, 68, 70, 72).

[SQH19] Ling Song, Xianrui Qin, and Lei Hu. “Boomerang Connectivity Table
Revisited”. In: IACR Transactions on Symmetric Cryptology 2019.1
(2019), pp. 118–141. issn: 2519-173X. doi: 10.13154/tosc.v2019.
i1.118-141 (cit. on pp. 91, 92, 132).

[SS16] Peter Schwabe and Ko Stoffelen. All the AES You Need on Cortex-
M3 and M4. Cryptology ePrint Archive, Report 2016/714. https:
//eprint.iacr.org/2016/714. 2016 (cit. on p. 193).

[SS21] Jan Ferdinand Sauer and Alan Szepieniec. SoK: Gröbner Basis
Algorithms for Arithmetization Oriented Ciphers. Cryptology ePrint
Archive, Report 2021/870. https://eprint.iacr.org/2021/870.
2021 (cit. on p. 197).

[SSD+18] Danping Shi, Siwei Sun, Patrick Derbez, Yosuke Todo, Bing
Sun, and Lei Hu. “Programming the Demirci-Selçuk Meet-in-the-
Middle Attack with Constraints”. In: Advances in Cryptology –
ASIACRYPT 2018, Part II. Ed. by Thomas Peyrin and Steven
Galbraith. Vol. 11273. Lecture Notes in Computer Science. Brisbane,
Queensland, Australia: Springer, Heidelberg, Germany, 2018, pp. 3–
34. doi: 10.1007/978-3-030-03329-3_1 (cit. on p. 36).

[Sti92] Douglas R. Stinson. “Universal Hashing and Authentication Codes”.
In: Advances in Cryptology – CRYPTO’91. Ed. by Joan Feigenbaum.
Vol. 576. Lecture Notes in Computer Science. Santa Barbara, CA,
USA: Springer, Heidelberg, Germany, 1992, pp. 74–85. doi: 10.
1007/3-540-46766-1_5 (cit. on p. 189).

[Str75] Volker Strassen. “Die Berechnungskomplexität der Symbolischen
Differentiation von Interpolationspolynomen”. In: Theor. Comput.
Sci. 1.1 (1975), pp. 21–25. doi: 10.1016/0304-3975(75)90010-9
(cit. on p. 199).

https://doi.org/10.46586/tosc.v2021.i2.1-30
https://doi.org/10.46586/tosc.v2021.i2.1-30
https://eprint.iacr.org/2022/116
https://doi.org/10.13154/tosc.v2018.i3.124-162
https://doi.org/10.13154/tosc.v2019.i1.118-141
https://doi.org/10.13154/tosc.v2019.i1.118-141
https://eprint.iacr.org/2016/714
https://eprint.iacr.org/2016/714
https://eprint.iacr.org/2021/870
https://doi.org/10.1007/978-3-030-03329-3_1
https://doi.org/10.1007/3-540-46766-1_5
https://doi.org/10.1007/3-540-46766-1_5
https://doi.org/10.1016/0304-3975(75)90010-9

302 Bibliography

[SYC+24] Ling Song, Qianqian Yang, Yincen Chen, Lei Hu, and Jian
Weng. Probabilistic Extensions: A One-Step Framework for Finding
Rectangle Attacks and Beyond. Cryptology ePrint Archive, Paper
2024/344. https://eprint.iacr.org/2024/344. 2024 (cit. on
pp. 63, 76, 85).

[SZY+22] Ling Song, Nana Zhang, Qianqian Yang, Danping Shi, Jiahao
Zhao, Lei Hu, and Jian Weng. “Optimizing Rectangle Attacks: A
Unified and Generic Framework for Key Recovery”. In: Advances
in Cryptology – ASIACRYPT 2022, Part I. Ed. by Shweta Agrawal
and Dongdai Lin. Vol. 13791. Lecture Notes in Computer Science.
Taipei, Taiwan: Springer, Heidelberg, Germany, 2022, pp. 410–440.
doi: 10.1007/978-3-031-22963-3_14 (cit. on pp. 85, 88).

[TA14] Yosuke Todo and Kazumaro Aoki. “FFT Key Recovery for Integral
Attack”. In: CANS 14: 13th International Conference on Cryptology
and Network Security. Ed. by Dimitris Gritzalis, Aggelos Kiayias,
and Ioannis G. Askoxylakis. Vol. 8813. Lecture Notes in Computer
Science. Heraklion, Crete, Greece: Springer, Heidelberg, Germany,
2014, pp. 64–81. doi: 10.1007/978-3-319-12280-9_5 (cit. on
p. xiii).

[TAY16] Mohamed Tolba, Ahmed Abdelkhalek, and Amr M. Youssef. “A
Meet in the Middle Attack on Reduced Round Kiasu-BC”. In: IEICE
Trans. Fundam. Electron. Commun. Comput. Sci. 99-A.10 (2016),
pp. 1888–1890. doi: 10.1587/TRANSFUN.E99.A.1888 (cit. on pp. 48,
81).

[tea23] The FLINT team. FLINT: Fast Library for Number Theory. Version
3.0.0. 2023. doi: 10.1109/TC.2017.2690633 (cit. on pp. 220, 247,
248).

[TG92] Anne Tardy-Corfdir and Henri Gilbert. “A Known Plaintext Attack
of FEAL-4 and FEAL-6”. In: Advances in Cryptology – CRYPTO’91.
Ed. by Joan Feigenbaum. Vol. 576. Lecture Notes in Computer
Science. Santa Barbara, CA, USA: Springer, Heidelberg, Germany,
1992, pp. 172–181. doi: 10.1007/3-540-46766-1_12 (cit. on p. 26).

[The23] The PML team. PML: Polynomial Matrix Library. Version 0.3,
https://github.com/vneiger/pml. 2023 (cit. on pp. 248, 258).

[TKK+15] Tyge Tiessen, Lars R. Knudsen, Stefan Kölbl, and Martin M.
Lauridsen. “Security of the AES with a Secret S-Box”. In: Fast
Software Encryption – FSE 2015. Ed. by Gregor Leander. Vol. 9054.
Lecture Notes in Computer Science. Istanbul, Turkey: Springer,
Heidelberg, Germany, 2015, pp. 175–189. doi: 10.1007/978-3-662-
48116-5_9 (cit. on pp. xiii, 32, 80).

https://eprint.iacr.org/2024/344
https://doi.org/10.1007/978-3-031-22963-3_14
https://doi.org/10.1007/978-3-319-12280-9_5
https://doi.org/10.1587/TRANSFUN.E99.A.1888
https://doi.org/10.1109/TC.2017.2690633
https://doi.org/10.1007/3-540-46766-1_12
https://github.com/vneiger/pml
https://doi.org/10.1007/978-3-662-48116-5_9
https://doi.org/10.1007/978-3-662-48116-5_9

Bibliography 303

[Tod15] Yosuke Todo. “Structural Evaluation by Generalized Integral
Property”. In: Advances in Cryptology – EUROCRYPT 2015, Part I.
Ed. by Elisabeth Oswald and Marc Fischlin. Vol. 9056. Lecture Notes
in Computer Science. Sofia, Bulgaria: Springer, Heidelberg, Germany,
2015, pp. 287–314. doi: 10.1007/978-3-662-46800-5_12 (cit. on
p. 197).

[Vau03] Serge Vaudenay. “Decorrelation: A Theory for Block Cipher Security”.
In: Journal of Cryptology 16.4 (Sept. 2003), pp. 249–286. doi: 10.
1007/s00145-003-0220-6 (cit. on p. 82).

[Wag99] David Wagner. “The Boomerang Attack”. In: Fast Software Encryp-
tion – FSE’99. Ed. by Lars R. Knudsen. Vol. 1636. Lecture Notes
in Computer Science. Rome, Italy: Springer, Heidelberg, Germany,
1999, pp. 156–170. doi: 10.1007/3-540-48519-8_12 (cit. on pp. xii,
27, 82, 83, 85, 107).

[WN95] David J. Wheeler and Roger M. Needham. “TEA, a Tiny Encryption
Algorithm”. In: Fast Software Encryption – FSE’94. Ed. by Bart
Preneel. Vol. 1008. Lecture Notes in Computer Science. Leuven,
Belgium: Springer, Heidelberg, Germany, 1995, pp. 363–366. doi:
10.1007/3-540-60590-8_29 (cit. on p. 14).

[WN98] David J Wheeler and Roger M Needham. “Correction to xtea”.
In: Unpublished manuscript, Computer Laboratory, Cambridge
University, England 1.2 (1998), p. 17 (cit. on p. 14).

[WP13] Hongjun Wu and Bart Preneel. AEGIS: A Fast Authenticated
Encryption Algorithm. Cryptology ePrint Archive, Report 2013/695.
https://eprint.iacr.org/2013/695. 2013 (cit. on p. 193).

[WP14] Hongjun Wu and Bart Preneel. “AEGIS: A Fast Authenticated
Encryption Algorithm”. In: SAC 2013: 20th Annual International
Workshop on Selected Areas in Cryptography. Ed. by Tanja Lange,
Kristin Lauter, and Petr Lisonek. Vol. 8282. Lecture Notes in
Computer Science. Burnaby, BC, Canada: Springer, Heidelberg,
Germany, 2014, pp. 185–201. doi: 10.1007/978-3-662-43414-
7_10 (cit. on pp. xiv, 33, 166, 168, 193).

[WP19] Haoyang Wang and Thomas Peyrin. “Boomerang Switch in Multiple
Rounds”. In: IACR Transactions on Symmetric Cryptology 2019.1
(2019), pp. 142–169. issn: 2519-173X. doi: 10.13154/tosc.v2019.
i1.142-169 (cit. on pp. 91, 92, 132).

[WSW+23] Libo Wang, Ling Song, Baofeng Wu, Mostafizar Rahman, and
Takanori Isobe. Revisiting the Boomerang Attack from a Perspective
of 3-differential. Cryptology ePrint Archive, Paper 2023/1689. https:
//eprint.iacr.org/2023/1689. 2023 (cit. on p. 92).

https://doi.org/10.1007/978-3-662-46800-5_12
https://doi.org/10.1007/s00145-003-0220-6
https://doi.org/10.1007/s00145-003-0220-6
https://doi.org/10.1007/3-540-48519-8_12
https://doi.org/10.1007/3-540-60590-8_29
https://eprint.iacr.org/2013/695
https://doi.org/10.1007/978-3-662-43414-7_10
https://doi.org/10.1007/978-3-662-43414-7_10
https://doi.org/10.13154/tosc.v2019.i1.142-169
https://doi.org/10.13154/tosc.v2019.i1.142-169
https://eprint.iacr.org/2023/1689
https://eprint.iacr.org/2023/1689

304 Bibliography

[XLJ+22] Zheng Xu, Yongqiang Li, Lin Jiao, Mingsheng Wang, and Willi
Meier. Do NOT Misuse the Markov Cipher Assumption - Automatic
Search for Differential and Impossible Differential Characteristics in
ARX Ciphers. Cryptology ePrint Archive, Report 2022/135. https:
//eprint.iacr.org/2022/135. 2022 (cit. on p. 21).

[YSS+22] Qianqian Yang, Ling Song, Siwei Sun, Danping Shi, and Lei Hu. “New
Properties of the Double Boomerang Connectivity Table”. In: IACR
Transactions on Symmetric Cryptology 2022.4 (2022), pp. 208–242.
doi: 10.46586/tosc.v2022.i4.208-242 (cit. on pp. 91, 133).

[YTX+24] Xueping Yan, Lin Tan, Hong Xu, and Wen-Feng Qi. “Improved
mixture differential attacks on 6-round AES-like ciphers towards
time and data complexities”. In: J. Inf. Secur. Appl. 80 (2024),
p. 103661. doi: 10.1016/J.JISA.2023.103661 (cit. on p. 80).

[YZS+15] Gangqiang Yang, Bo Zhu, Valentin Suder, Mark D. Aagaard, and
Guang Gong. “The Simeck Family of Lightweight Block Ciphers”.
In: Cryptographic Hardware and Embedded Systems – CHES 2015.
Ed. by Tim Güneysu and Helena Handschuh. Vol. 9293. Lecture
Notes in Computer Science. Saint-Malo, France: Springer, Heidelberg,
Germany, 2015, pp. 307–329. doi: 10.1007/978-3-662-48324-
4_16 (cit. on p. 14).

[ZBL+15] Wentao Zhang, Zhenzhen Bao, Dongdai Lin, Vincent Rijmen,
Bohan Yang, and Ingrid Verbauwhede. “RECTANGLE: a bit-slice
lightweight block cipher suitable for multiple platforms”. In: Sci.
China Inf. Sci. 58.12 (2015), pp. 1–15. doi: 10.1007/S11432-015-
5459-7 (cit. on p. 14).

[ZCJ21] Jiyan Zhang, Ting Cui, and Chenhui Jin. “New Rectangle Attack
Against SKINNY Block Cipher”. In: Wireless Algorithms, Systems,
and Applications - 16th International Conference, WASA 2021,
Nanjing, China, June 25-27, 2021, Proceedings, Part III. Ed. by
Zhe Liu, Fan Wu, and Sajal K. Das. Vol. 12939. Lecture Notes in
Computer Science. Springer, 2021, pp. 399–409. doi: 10.1007/978-
3-030-86137-7_43 (cit. on p. 85).

[ZD19] Rui Zong and Xiaoyang Dong. “MILP-Aided Related-Tweak/Key
Impossible Differential Attack and its Applications to QARMA,
Joltik-BC”. In: IEEE Access 7 (2019), pp. 153683–153693. doi:
10.1109/ACCESS.2019.2946638 (cit. on p. 36).

[ZDJ19] Boxin Zhao, Xiaoyang Dong, and Keting Jia. “New Related-Tweakey
Boomerang and Rectangle Attacks on Deoxys-BC Including BDT
Effect”. In: IACR Transactions on Symmetric Cryptology 2019.3
(2019), pp. 121–151. issn: 2519-173X. doi: 10.13154/tosc.v2019.
i3.121-151 (cit. on pp. xiii, 36, 81, 129, 133).

https://eprint.iacr.org/2022/135
https://eprint.iacr.org/2022/135
https://doi.org/10.46586/tosc.v2022.i4.208-242
https://doi.org/10.1016/J.JISA.2023.103661
https://doi.org/10.1007/978-3-662-48324-4_16
https://doi.org/10.1007/978-3-662-48324-4_16
https://doi.org/10.1007/S11432-015-5459-7
https://doi.org/10.1007/S11432-015-5459-7
https://doi.org/10.1007/978-3-030-86137-7_43
https://doi.org/10.1007/978-3-030-86137-7_43
https://doi.org/10.1109/ACCESS.2019.2946638
https://doi.org/10.13154/tosc.v2019.i3.121-151
https://doi.org/10.13154/tosc.v2019.i3.121-151

Bibliography 305

[ZDJ+19] Boxin Zhao, Xiaoyang Dong, Keting Jia, and Willi Meier. “Improved
Related-Tweakey Rectangle Attacks on Reduced-Round Deoxys-
BC-384 and Deoxys-I-256-128”. In: Progress in Cryptology - IN-
DOCRYPT 2019: 20th International Conference in Cryptology in
India. Ed. by Feng Hao, Sushmita Ruj, and Sourav Sen Gupta.
Vol. 11898. Lecture Notes in Computer Science. Hyderabad, India:
Springer, Heidelberg, Germany, 2019, pp. 139–159. doi: 10.1007/
978-3-030-35423-7_7 (cit. on pp. xiii, 81, 85, 129, 133).

[ZDM+20] Boxin Zhao, Xiaoyang Dong, Willi Meier, Keting Jia, and Gaoli Wang.
“Generalized related-key rectangle attacks on block ciphers with
linear key schedule: applications to SKINNY and GIFT”. In: Des.
Codes Cryptogr. 88.6 (2020), pp. 1103–1126. doi: 10.1007/S10623-
020-00730-1 (cit. on p. 85).

[ZDY19] Baoyu Zhu, Xiaoyang Dong, and Hongbo Yu. “MILP-Based Differ-
ential Attack on Round-Reduced GIFT”. In: Topics in Cryptology –
CT-RSA 2019. Ed. by Mitsuru Matsui. Vol. 11405. Lecture Notes in
Computer Science. San Francisco, CA, USA: Springer, Heidelberg,
Germany, 2019, pp. 372–390. doi: 10.1007/978-3-030-12612-4_19
(cit. on p. 36).

[ZLL+23] Lulu Zhang, Meicheng Liu, Shuaishuai Li, and Dongdai Lin.
“Cryptanalysis of Ciminion”. In: Information Security and Cryptology.
Ed. by Yi Deng and Moti Yung. Cham: Springer Nature Switzerland,
2023, pp. 234–251. doi: 10.1007/978-3-031-26553-2_12 (cit. on
pp. 197, 226, 231).

[ZZD+19] Chunning Zhou, Wentao Zhang, Tianyou Ding, and Zejun Xiang.
“Improving the MILP-based Security Evaluation Algorithm against
Differential/Linear Cryptanalysis Using A Divide-and-Conquer
Approach”. In: IACR Transactions on Symmetric Cryptology 2019.4
(2019), pp. 438–469. issn: 2519-173X. doi: 10.13154/tosc.v2019.
i4.438-469 (cit. on p. 36).

[ZZY+23] Jiahao Zhao, Nana Zhang, Qianqian Yang, Ling Song, and Lei Hu.
“Improved Boomerang Attacks on Deoxys-BC”. In: Advances in
Information and Computer Security - 18th International Workshop
on Security, IWSEC 2023, Yokohama, Japan, August 29-31, 2023,
Proceedings. Ed. by Junji Shikata and Hiroki Kuzuno. Vol. 14128.
Lecture Notes in Computer Science. Springer, 2023, pp. 59–76. doi:
10.1007/978-3-031-41326-1_4 (cit. on p. 85).

https://doi.org/10.1007/978-3-030-35423-7_7
https://doi.org/10.1007/978-3-030-35423-7_7
https://doi.org/10.1007/S10623-020-00730-1
https://doi.org/10.1007/S10623-020-00730-1
https://doi.org/10.1007/978-3-030-12612-4_19
https://doi.org/10.1007/978-3-031-26553-2_12
https://doi.org/10.13154/tosc.v2019.i4.438-469
https://doi.org/10.13154/tosc.v2019.i4.438-469
https://doi.org/10.1007/978-3-031-41326-1_4

	Contents
	List of Figures
	List of Tables
	Publications and Preprints
	Preliminaries
	Introduction to Cryptography
	A Short History
	Modern Cryptography
	Cryptography Nowadays

	Symmetric Cryptography
	Symmetric Primitives and Constructions
	(Tweakable) Block Ciphers
	Cryptographic Hash Functions and Sponges
	Constructions Based on Iterated Round Functions
	Round Function Constructions
	MACs and Related Constructions
	Stream Ciphers

	Cryptanalysis
	Attacker Models
	Differential Cryptanalysis
	Other Cryptanalysis Techniques

	The Block Cipher AES
	Description
	Properties of the Components
	Security
	AES-based Constructions

	MILP: an Automatic Tool for Cryptography
	Description of a MILP model
	Example on AES

	Contributions
	Improved Attacks against the Forkcipher Framework
	Description of Forkciphers
	The Forkcipher Framework
	ForkAES
	ForkSkinny

	Cryptanalysis of full ForkAES
	Results
	Previous Attack Against ForkAES-*-4-4
	Attack Against Full ForkAES for 296 Weak Keys
	Larger Classes of Weak Keys

	Cryptanalysis of ForkSkinny
	Related-tweakey Attacks on Skinny
	Related-tweakey Attacks on ForkSkinny
	A 24-round Attack on ForkSkinny-128-256 with 128-bit Key
	A 26-round Attack on ForkSkinny-128-256 with 256-bit Key

	Conclusion

	Boomerang Attacks on AES and AES-based Ciphers
	Summary
	The Boomerang Attack
	Description of the Boomerang Attack
	Analysis
	Improvements of the Boomerang Attack

	Boomerang Attacks on AES in the Literature
	Biryukov's Original Boomerang Attack
	The Yoyo Attack
	The Retracing Boomerang Attack
	Other Boomerang-like Attacks on AES

	Truncated Boomerang Attacks
	Truncated Boomerang Distinguisher
	Truncated Boomerang Key-recovery Attack
	Optimized Boomerang Attacks on 6-round AES
	Application to 8-round Kiasu-BC
	Application to TNT-AES
	Modeling the Framework using MILP
	Application to Deoxys-BC

	Improved Boomerang Attacks on AES
	A Key-Recovery Attack With Low Data Complexity
	A Key-Recovery Attack With Low Time Complexity
	Incompatibility in a 6-Round Distinguisher

	Conclusion

	Design of Fast AES-based UHFs and MACs
	Introduction
	Design Goals and First Observations
	AES-based Round Functions
	Instruction Scheduling
	Security
	A Roadmap to Achieve these Goals

	A Specific Family of Universal Hash Functions
	Overall Structure
	Round Function and Message-schedule

	A Searchable Space of UHFs
	A Normal Form for Transition Matrices
	Equivalent Injected-value Sequences
	Constraints on the Linear Layer
	The Actual Explored Space

	Turning Collision Resistance into a MILP Problem
	Prior Works
	Our Model

	Experimental Results of the Search for Good Candidates
	Search Strategy
	Results of the Search

	Concrete MAC Instances
	Specifications
	Benchmarks

	Conclusion

	Algebraic Cryptanalysis of Arithmetization-Oriented Primitives
	Arithmetization-Oriented Ciphers
	Context
	Security

	Algebraic Attacks
	Interpolation Attacks
	Cube Attacks
	The GCD Attack
	Polynomial Solving Attacks

	Background in Algebraic Geometry
	Solving Polynomial Systems
	Solving Univariate Systems
	Solving Multivariate Systems

	CICO Cryptanalysis of some AO Hash Functions
	Attacks Against Round-Reduced Feistel–MiMC
	Bypassing SPN Steps
	Application to Round-Reduced Poseidon
	Application to Round-Reduced Rescue–Prime
	Experimental Results

	Algebraic cryptanalysis of Ciminion
	Specification and Security Analysis of Ciminion
	Multivariate Algebraic Attack on Ciminion
	Experimental Results
	Univariate Algebraic Attack on Ciminion

	The FreeLunch Attack
	The Algebraic FreeLunch Attack
	FreeLunch Systems
	Extracting a Univariate Equation from a FreeLunch System
	Ordering a FreeLunch
	FreeLunch Systems From Iterated Functions
	Summary of the FreeLunch Attack

	Using FreeLunch Systems Directly
	A Detailed Example: Griffin
	Applicability Beyond Griffin: ArionHash
	Last Example: XHash8

	Forcing the Presence of a FreeLunch for Anemoi
	Description of Anemoi
	Failure of the Direct FreeLunch Approach
	Constructing FreeLunch Systems From Anemoi

	Discussion on the FreeLunch Attack
	Discussion on Experimental Results
	Preventing the FreeLunch Attack
	Open Problems for Future Work

	Bibliography

