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sional agenda, for supporting me as a person every day, and for all the profound discussions
that we can have.

i



ii



Contents

1 Introduction 1

1.1 A brief history of AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Representation learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Autonomous agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Summary of my research work . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6.1 PhD and post doc . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6.2 PhD supervisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Self-supervised visual representation learning 16

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Learning visual representations . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Preliminary works . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Equivariant representation learning . . . . . . . . . . . . . . . . . . . 21

2.3 Structure of learned representations . . . . . . . . . . . . . . . . . . . . . . 25

2.3.1 Context and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.2 Method and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Conclusion and perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Multimodal perception 30

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Decision making algorithms: from psychophysics to robotics . . . . . . . . . 32

3.2.1 Context and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.2 Comparative framework and results . . . . . . . . . . . . . . . . . . 32

3.3 Modeling of audio-visual perception in humans . . . . . . . . . . . . . . . . 35

3.3.1 Context and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.2 Model and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Multimodal perception with automatic weighting . . . . . . . . . . . . . . . 39

3.4.1 Context and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.2 Models and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

iii



Contents

3.5 Conclusion and perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Incremental and active learning 46

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Active learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.1 Biased datasets with spurious correlation . . . . . . . . . . . . . . . 47

4.2.2 Algorithmic learning with a multi-task approach . . . . . . . . . . . 49

4.3 Unsupervised class-incremental learning . . . . . . . . . . . . . . . . . . . . 51

4.3.1 Context and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.2 Model and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 Conclusion and perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Conclusion and perspectives 55

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1.2 Integrated view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2.1 Positionning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2.2 Research axes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3 Impacts of my research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6 Appendices 69

6.1 The Impact of Action in Visual Representation Learning . . . . . . . . . . . 70

6.2 EquiMod: An Equivariance Module to Improve Visual Instance Discrimi-

nation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.3 Which Structural Patterns Emerging from Instance Discrimination Benefit

Linear Evaluation? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.4 An interdisciplinary view on behavioral properties in decision-making algo-

rithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.5 A dynamic neural field model of multimodal merging: application to the

ventriloquist effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.6 Combining manifold learning and neural field dynamics for multimodal fusion193

6.7 Suréchantillonage Actif pour Modérer l’Apprentissage de Biais Visuels . . . 201

6.8 Algorithmic learning a next step for AI. An application to arithmetic op-

erations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

6.9 Novelty detection for unsupervised continual learning in image sequences . 221

6.10 Curriculum Vitae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
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1 Introduction

1.1 A brief history of AI

Artificial Intelligence (AI) is currently one of the most active areas in academic research and
in industry. This domain offers a multitude of facets as it encompasses engineering aspects
(to design relevant robotic parts or piece of software e.g .) but of course also scientific ones,
with a methodology that depends on the study objectives. It has always been at the
confluence of diverse research domains including computer science, mathematics, robotics,
cognitive science, neuroscience, psychology, philosophy, etc. This interdisciplinarity and
transdisciplinarity can also be found in my research works that are or have been related to
computational neuroscience, psychophysics, developmental robotics and machine learning
to name the more important ones. Throughout history, AI carried a lot of hope, fear and
disappointment, leading to the alternation of multiple winters and springs, until the new
spring boosted by deep learning in which we are today. But what are we really talking
about?

The term ’artificial intelligence’, first proposed at the Darmouth conference in 1956, is
at least ill-defined and can be somehow considered an oxymoron, given that the only intel-
ligent creatures known today are biological ones. If we consider each term separately, the
term ’artificial’ refers to something that has been created by humans (from Wiktionary).
However, we, as a species, have a significant impact on nature (including on other animal
and vegetal species through genetic selection e.g .), even at a geological scale as emphasised
by the term Anthropocene, which designates our current era1. Thus, precisely establishing
a clear boundary between the natural and the artificial is a challenging if not an impossible
task. On the other hand, despite significant progress in neuroscience, psychology and cog-
nitive science, among others, the fundamental essence of intelligence in biological systems
remains unknown regarding its nature, components or underlying processes. Moreover,
there have been two major trends in AI regarding this quest of intelligence by trying to
look for either human-like behaviours/principles or rational ones [181]. Without intending
to delve more deeply into these debates here, I will rely on a broad and computer science-
oriented definition of AI proposed by Minsky as “the construction of computer programs
that engage in tasks that are currently more satisfactorily performed by human beings
because they require high-level mental processes such as perceptual learning, memory or-
ganization and critical reasoning”2, where I am mostly interested in computer programs
with perceptual learning and memory organisation capabilities.

1Formally the era has not been yet validated, especially as there is an ongoing debate concerning the
precise starting date.

2It is noteworthy that this sentence can be interpreted as indicating that, once computer programs
are able to perform a task as well as or better than humans, they are no longer considered to be part of
artificial intelligence. In this sense, the definition of AI is always drifting on the frontier of our knowledge.
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Chapter 1. Introduction

Looking back at the history of AI, we can find multiple eras and schools of thought.
At the beginning, intelligence was considered to be more related to the ability to solve
high-level cognitive tasks, which at that time seemed to be most difficult or most valuable
ones as those mastered by humans but (may be) not by other animals. This resulted in sig-
nificant progresses in logics and rule-based systems in the 1960s, knowledge-based systems
in the 1970s, etc., with the emblematic example of Deep Blue beating Garry Karparov at
chess in 1997. In the 1980s, however, it quickly became apparent that these tasks were
in fact quite easy to solve formally3, at least in terms of defining a methodology for their
resolution, contrary to the ones that require sensorimotor skills to interact with the real
world. This is known as the Moravec paradox [158] which is related to the symbol ground-
ing problem, a fundamental limitation of cognitivism, as illustrated by the famous thinking
experiment of the Chinese room, which discussed the difference between the ability to ma-
nipulate symbols and the ability to understand them [188]. In response, much research at
the time demonstrated that simple forms of cognition could emerge without the need for
symbols, such as the Braitenberg’s vehicles [77] which exhibit avoidance behaviours based
on purely reactive systems, or the subsumption architecture, which combines various re-
active behaviours to generate more complex ones, as proposed by Brooks [79]. This has
been formalised in several theories, such as the one of enaction [202], which emphasises
the role of the body-environment interaction in shaping the cognition, or the concept of
embodiment, which comes from cognitive psychology, focusing more on the role of the
body in the process [166]. My research works are inspired by these theories and I will
detail in the conclusive chapter 5 how my future works can be grounded more in these
frameworks.

1.2 Neural networks

To also overcome some of the limitations of cognitivism, connectionism, a theory coming
from the fields of psychology and modelling, proposes that cognitive processes emerge from
the interaction of relatively simple connected units. One of the most well-known examples
is that of neural networks, a field that encompasses a huge variety of models, ranging from
spiking ones, e.g . with the Hodgkin-Huxley model [119], to rate-coding ones, with the
artificial neuron proposed by McCullochs and Pitts4 [154] (see figure 1.1). I employ here
the terminology coming from computational neuroscience, the field in which I did my PhD
(see section 1.6.1). Spiking neurons compute and exchange continuous values (membrane
potential or spike) at continuous time (in practice discretisation is often obtained with
event programming), which can be seen as analogous to the functioning of biological neu-
rons. On the contrary, rate-coding neurons compute and exchange continuous or discrete
values at discrete (synchronised) times. In order to interpret them through the spectrum
of biological neurons, we can consider that the exchanged values correspond to the number
of spikes during the given discrete time period, i.e. the spiking rate, hence their name.
This rate coding is one of the form of information encoding in the brain, although there are

3Although implementing them may lead to solutions that are intractable in a reasonable time frame,
which also contributes to the decline of this kind of approach.

4This is one of the earliest works in AI (retrospectively attributed to AI since the field did not yet
formally exist at the time) that attempted to establish a link between logic (interpreting the neuron’s binary
output as a proposition being either true or false) and simple brain physiology. Thus, interdisciplinarity,
brain inspiration and neural networks that drive my research today were already present at (before) the
beginning of AI.
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1.2. Neural networks
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Figure 1.1: Artificial neuron model. The neuron receives a vector x = {xi}i of input values
through a vector of weights w = {wi}i, computes a simple mathematical function (usually
aggregating the values through a weighted sum, that passes then through a non-linear
activation function ϕ) that gives the neuron’s output y = ϕ(w.x).

other forms of coding, such as temporal ones which can also be efficient [102]. Nowadays,
in artificial intelligence, which is based more on mathematics and computer science than on
neuroscience, the term ’artificial neural networks’ mainly (or even exclusively) designates
the use of the artificial neuron model of McCullochs and Pitts, and is sometimes even
restricted to deep learning architectures. In this manuscript I will use the term ’neural
network’ (NN) to refer to any artificial model composed of basic and similar interconnected
units that perform simple computations, and the term ’artificial neural network’ (ANN)
when the NN is composed of McCullochs and Pitts neurons.

The history of the field of NN is closely related to the question of learning (formally,
ANN is a subfield of machine learning). D. Hebb was the first to propose a rule for
(biological) neurons to update their weights, which consists of increasing (respectively
decreasing) the strength of the connection between neurons that are (respectively are not)
co-activated. This can be summarised as “cells that fire together wire together” [115].
Applied to the McCullochs and Pitts model5, it can be expressed as ∆w = ηxy where
∆w is the variation of the weights vector, x is the input vector (or pre-synaptic activity in
neuroscience), y is the output value (or post-synaptic activity) and η is the learning rate. A
more general version of Hebbian learning, corresponding to ∆w = ηf(x)g(y) where f and
g are any arbitrary function, encompasses almost all existing learning rules for ANN. Since
then, multiple learning rules have been proposed often mixing aspects of neuroscience and
machine learning. For instance, the Bienenstock Cooper and Munro rule [73], which I used
during my PhD (see section 1.6.1), comes from neuroscience and was proposed to model
the emergence of selectivity in the visual cortex. But it also corresponds to feature learning
associated with the third and fourth orders of the probability distribution of the data. The
self-organising map model proposed by Kohonen [133], which I used during my post doc
(see section 1.6.1), is at the frontier of neuroscience and machine learning, as it models
the self-organisation of sensory areas in the cortex, but is also an extension of the k-mean
algorithm6. Rosenblatt proposed the perceptron model [179] as a fundamental principle

5After D. Hebb formalised his learning principle, similar mechanisms were observed in biological neurons.
This is modelled by Spike Time Dependent Plasticity, in which the notion of co-activation is replaced by
the temporal order of spikes.

6More precisely, the ANN equivalent of online k-mean is the neural gas [152], whose one derivative, the
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Chapter 1. Introduction

of learning in the brain. However, consisting of a single layer of neurons, it is limited to
linear regression/classification, which was illustrated by the well-known example of the
XOR problem [156]7. The addition of more layers, a.k.a. multilayer perceptron, that have
some resemblance to the architecture of the cerebellum, opened the way to obtain universal
approximators. However, a learning mechanism is required to compute the gradient in all
layers and neurons with a reasonable degree of precision and which can be automated
to any number of layers and neurons, and to any differentiable neuron. This is the now
well-known backpropagation algorithm [180]. It allowed the proposal of convolutional
neural networks [143], whose convolutional neurons are inspired by the computational
and organisational principles observed in the neurons of the visual cortex. At that time,
however, these models were not particularly efficient compared to other approaches, and
it took approximately 25 years for deep learning, formally defined as models with at least
three layers (two hidden plus the output layers) and trained with backpropagation, to take
centre stage. This was initially due to the introduction of new training techniques [117] but
also to the availability of large datasets and computational resources. Although it has some
roots in neuroscience, deep learning is now predominantly studied from a mathematical
and computer science perspectives, especially as part of machine learning which I will
introduce in the next section 1.3.

Most of my research works, and all those that I will detail in this manuscript, are
based on artificial neural networks. During my PhD I used them because of their relative
proximity to brain processing and learning, but also for their dynamical, robustness and
emergent properties provided by decentralised computation. In chapter 3, I will present a
model, with dynamic and decentralised perception properties, that helps to build bridges
between neuroscience, psychophysics and AI considerations. In the chapters 2 and 4, I will
use various deep learning architectures and improve their ability to learn relevant features.
Thus I am interested in ANN due to their state-of-the-art learning performance, their
properties related to connectionism, and their relationship with neuroscience and cognitive
science, fields that I have used and will use as interdisciplinary sources of inspiration and
collaboration in my studies (see the perspectives section 5.2).

1.3 Machine learning

As defined by its name, the field of machine learning is interested in the question of how
to make systems that learn. Much of the progress of the last few decades has been due to
the definition of benchmarks, which were conceived as representative of some typologies
of problems, on which the various algorithms can compete. Modern machine learning can
thus theoretically be conceived as the science of benchmarks [113]. The drawback is that
the objectives and features learned are focused on the content of the datasets8, which
cannot be representative of all tasks9, under all conditions, especially if we expect some
degree of autonomy from the system. There are indeed works on few shot learning or
transfer learning for instance to study the generalisation properties, but this is still on

growing neural gas, will be used in section 3.4.
7This is one of the reasons for the AI winter that occurred in the 1970s, as much hope was based on

ANN at that time already.
8Although, some generalisation can be expected as recent research show that the ranking obtained on

one dataset, transfers to others, at least for visual classification [182].
9All tasks is not to be read in the mathematical sense, as the no free lunch theorem states it to be

impossible, but in the practical sense of all interesting tasks for the system that is currently proposed.
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1.3. Machine learning

datasets, thus following precise protocols. Consequently, the benchmarks have favoured a
scientific methodology in machine learning but at the cost of a slight drift from the original
goal of using learning to obtain human-like intelligence, as illustrated by Turing, one of
the pioneers of AI, who suggested in 1950 that “instead of trying to produce a program to
simulate the adult mind, why not rather try to produce one which simulates the child’s?
If this were then subjected to an appropriate course of education one would obtain the
adult brain.” While most of my research works are part of machine learning and thus rely
on benchmarks, I am also interested in giving systems more autonomy (see section 1.5),
and one way to do this may be to take some inspiration back from cognitive science, as I
will propose in the perspectives section 5.2.

I will hereafter introduce the main types of learning, that can be considered as dif-
ferent types of benchmarking protocols, in machine learning. Obviously, multiple types
of learning can be combined, for instance by using unsupervised learning as pre-training
before supervised fine tuning, which is classical in image classification, or reinforcement
learning smoothing as for example in ChatGPT.

Supervised learning In supervised learning each data in the dataset is labelled, meaning
that we have pairs (xi, yi)i with xi ∈ Rn an input vector (when having tabular data,
formally xi ∈ Nn) and yi the expected output10. Thus, the goal can be expressed as
learning the function f that relates the inputs to the outputs: yi = f(xi). If yi is discrete,
the problem is called classification, otherwise if yi is continuous, it is called regression. The
usual way to tackle this kind of problem is to define a loss function (which measures how far
the output of the model is from the target) that is optimised, usually in combination with
some regularisation techniques to avoid overfitting and favour the parsimony principle.
Supervised learning is the most intuitive and has been the most widely used in ANN
renewal. However, it is limited by the constraint of having to label each data individually,
which can contain errors and is very time consuming, but also impractical when trying to
have autonomous systems. Consequently, my works do not specifically focus on supervised
learning. Nevertheless, in the section 4.2 I will present contributions to active learning,
i.e. choosing the right labelled examples in the dataset, applied to a classification problem
with biased data, or to improve the multiplication learning with a multi-task approach.

Unsupervised learning Here, data are not labelled, and the dataset is reduced to (xi)i.
Since we cannot rely on an expected output, the objective is much harder to define and
several different kind of approaches have been proposed.
One way can be to group similar inputs into clusters to obtain a clustering. The objective
can then be for instance to maximise intra-cluster similarity while minimising inter-cluster
similarity, which can be formalised as a cost function to be optimised. Some methods, such
as the self-organising map [133] can also perform clustering without optimising an energy
function at the global level, relying instead on local optimisation of each neuron [94]. I
will present in section 4.3 a contribution to clustering, more precisely to class-incremental
learning, which means that each class is presented successively and can also reappear in
the inputs afterwards.
Another way is to try to define some kind of supervision signal from the data themselves,
to define a pretext task. For this reason these approaches are often called self-supervised

10When considering multi-label classification or multi-dimensional regression, the expected output is a
vector, but these cases are often split into several one-dimensional problems, while sharing features.
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Chapter 1. Introduction

learning. One approach is to learn the density function of the input distribution, which
can be formalised as a regression problem. Other approaches perturb the input and try
to reconstruct the original in some way, so they can be called generative methods. This
is the case for instance with denoising auto-encoders11 where the original input has to be
generated from a noisy version of it, or with diffusion models, where the input has to be
reconstructed from a very noisy version of it12. From modified inputs, some works also
derive a classification task, where the aim is to find a disturbed version of an input from
another noisy version of it, corresponding to visual discrimination tasks. Finally, when
relying on multimodal inputs (e.g . multispectral data, language translation, etc.), it is
easy to use one signal to supervise the others13. This is a very active field that proposes a
huge variety of approaches, as it allows the use of large unlabelled datasets, and in machine
learning size matters to achieve good performance [68]. Most of my research work concerns
unsupervised machine learning and I will present in chapter 2 our contributions to self-
supervised learning of visual inputs.

Reinforcement learning The framework of reinforcement learning is an agent interacting
with its environment. More precisely, the agent has a set of actions that it can perform.
This will induce a change in the state of the environment (via a transition function), which
in return will give some observation and a reward (most of the time not really informa-
tive, as most of the reward quantity is given only when the task is completed) to the
agent14. The goal of the agent is then to maximise its cumulative reward (with a discount
factor) over its policy, i.e. the choice of action it has made. The focus and challenge of
reinforcement learning is therefore this temporal decision making and the distribution of
the reward obtained over the individual actions constituting the sequence. There are two
main ways of approaching this problem.
In model-based approaches, the system tries to learn the transition model of the envi-
ronment, i.e. a world model. This is very challenging, especially if the environment is
complex or has a large dimension. The main advantage is that when this learning is done,
the agent can be very adaptive, as the policy can easily be adapted to a change in the
reward function, i.e. the task to be accomplished, for instance by using methods from
operations research.
In model-free approaches, the system learns directly what action to perform in each situ-
ation. This is a simpler problem, that is why most of the works that has been applied to
real-world problems has used this technique initially, but only to solve a specific task.
While my general research interest in autonomous agents (see section 1.5 for more details)
is close to the reinforcement learning framework, I have not used it in my research yet15

11Technically, with classical auto-encoders, the input is intact and the same as the output, but it is the
encoding process that is noisy in some way.

12Formally the aim is to learn the inverse process of the one which gradually transforms the input into
quite random noise by adding noise little by little.

13This type of work may also be qualified as supervised learning, depending on whether the modalities
are considered as inputs (for the global system) or outputs (for supervising another modality).

14This can be formalised within the framework of Markov Decision Process (when the “observation” is
directly the state of the environment) or of Partially Observable Markov Decision Process (when the state
is only partially observed). In this framework, the Markov hypothesis is made, meaning that everything
at time t is determined only by what happened at time t− 1. In practice this is usually not the case, but
people can either neglect the influence of time before t − 1, or include it in the state, meaning that time
t− 1 represents everything (relevant) that happened up to t− 1.

15Except for my master’s thesis on distributed solving of stochastic games, an extension of Markov
decision process to multi-agent systems [56] which I will not detail in this manuscript.
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as my primary interest is in unsupervised representation learning (see section 1.4) but I
will include it in my future works as a framework for studying action decisions to improve
learning and perception (see the perspectives section 5.2).

The trend since the renewal of deep learning, which represents now the overwhelming
part of machine learning, has been to go with less and less supervision. The first progress
were in supervised learning (e.g . for image recognition), then reinforcement learning (e.g .
for go playing) then unsupervised learning, especially self-supervised approaches (e.g . for
natural language processing). By unlocking the use of large datasets from the Internet, a
lot of research has focused on defining fundation models in several domains. These models
offer general representation that can serve as a basis for solving multiple tasks within a
domain. Some works also try to extend this generality across domains [177]. Since the
beginning of my research I have been interested in generic unsupervised learning, but rather
than focusing on large models, I am studying how to structure representations learning
(see section 1.4) to help their generalisation and use in the context of autonomous systems
(see section 1.5).

1.4 Representation learning

Representation learning is a subfield of machine learning that is interested in learning
low-dimensional embeddings of the inputs. While much past research has been dedicated
to the study of hand-crafted features with good properties, such as Scale-Invariant Fea-
ture Transform in computer vision for instance, to be used with relatively simple machine
learning techniques, since the renewal of deep learning the representations are automat-
ically extracted from a representative dataset of the problem. Thus, the whole field of
deep learning can be considered to be included in representation learning. But “[w]hat
is a good representation? Many answers are possible, and this remains a question to be
further explored in future research. [...] [I]n general, a good representation is one that
makes further learning tasks easy.” [71] Thus, this is a large domain with a non-exhaustive
list of objectives whose some cannot be clearly quantified. Let us analyse the learning of
representations along two axes: whether they are local or global, and whether they are
organised or not.

Local vs global Some representations are local, i.e. they are activated only for a small
(often contiguous) part of the input space. The extension to the whole space is then
obtained by accumulating of these local representations. Some models learn a set of
prototypes, each one corresponding to a vector in the input space, which are distributed
over the input space. These prototypes can be used for clustering, where each cluster is
the set of inputs closer to one prototype than the others, or for regression by considering
any function of the distance between the input and the prototype, as I studied during my
post doc [16]. Other models rely on multi-dimensional Gaussians16, which have a support
depending on their covariance matrices. They can then be combined, as in the Gaussian
Mixture Models (GMM), that we used in section 4.3, to form the basis of linear regression,
as in Radial Basis Function Networks, or to define the support of local linear models, as
in Locally Weighted Projection Regression. The main advantage of these local methods

16Any local function can be used, but because of its simplicity and good mathematical properties,
Gaussians are mainly used.
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is their robustness to errors in the data, including non-stationary setups, as an outlier
will only affect a limited part of the model and not the whole one. Combined with their
relative simplicity, which helps to deal with limited-size datasets, these approaches have
been and to some extent still are popular in robotics. The drawback is that they do not
scale well as the number of local models needed to split a space grows exponentially with
the dimension of that space.
On the other hand17, global methods rely on representations that extend over the whole
space, and are called features in this case. The most popular methods currently are deep
neural networks, which originally used sigmoid functions, now mainly Rectifier Linear
Units, as activation functions. The main advantage of these features is that they generalize
very well in high dimensional space.

Overall, most (regression) algorithms can be viewed as a combination of linear and
non-linear functions. Under this unified view proposed in [195], models differ in the choice
of the non-linear functions, which parameters are learned and with which learning method.
Thus, the local/global aspect of the representation is related to the choice of the non-linear
function which can have a finite or infinite support. It should be noted that the distinction
between local and global representations can sometimes be presented through the spectrum
of the activity distribution. Indeed, to identify a (local) region in the space, only one local
representation is needed, whereas multiple features are required. However, multiple local
representations can be used simultaneously, e.g . with the k-Nearest Neighbour (k-NN)
algorithm, and it is common to use a sparsity regularisation term when learning features
to limit the number of features to be used simultaneously, which makes this distinction on
the distribution fuzzy.

Organisation The learned representations, independently of being local or global, can
or cannot contain some kind of organisation, often reflecting some underlying structure
of the inputs. This is somehow related to manifold learning that hypothesises that the
set of data in the input space lies on a manifold [83]. Mathematically, a manifold is a
topological space (of some dimension n) that is locally Euclidean. In machine learning, it
is used in a looser sense, as the manifold dimension can vary locally (formally it is a set
of sub-manifolds) and data are not strictly on the manifold, but close to it.

At one end of the spectrum, are algorithms such as Principal Component Analysis,
where the learned representations are simple (linear), but the data distribution is pre-
served at best (in terms of the second order of the distribution). At the other end, there
is for example MultiLayer Perceptron (MLP), where the learned features are highly non-
linear and dedicated to the task but do not try to enforce any kind of structure within
the layers. There are a lot of models in between. Some are more dedicated to data visu-
alisation, trying to have some kind of global structure, such as the Self-Organising Maps
(SOM), which projects the input space onto a topologically organised predefined grid of
prototypes, or the t-distributed Stochastic Neighbour Embedding (t-SNE), which projects
the input space non-linearly onto a low-dimensional feature space, where the distance ma-
trix tries to match the one in the input space. Among the models mostly dedicated to
feature learning, some use a local structure such as Variational Auto-Encoders, which, by
considering each representation as a Gaussian distribution, favour inputs that share similar
features to be embedded closely, or search for a global structure, for instance Wasserstein

17There are also methods that are in between, such as decision trees, as the decision boundaries are not
local, but do not extend infinitely in all directions (except the first one).
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auto-encoders, where the distribution of the representation should follow an a priori dis-
tribution. Sometimes the structure can also emerge without being induced in any way,
as it was the case with word embedding where we can find some kind of linear semantic
algebra in the feature space [155].

Let us go back to the question of what makes a good representation. In supervised
learning, the representations are dedicated to solving a labelled task, so their quality
can be directly related to the performance, and the structure of the features is usually
not really a concern. In unsupervised learning, however, the evaluation criteria of the
representations must be determined. This is often related to a downstream task such
as generation, classification, few shot or transfer learning to name a few. Due to that
diversity, the expected properties that the representations should exhibit during their
unsupervised training is still an open question. The term representation learning is often
used to designate this more specific area of research, as the object of study is (the properties
of) the representation. It is this terminology that I will use in this manuscript. In this
case, obtaining some kind of structure in the representation may be a desirable property.
It may help to generalise better (e.g . with the analogy in word embedding), to have better
adaptability of the systems (especially if we want to combine different models together that
may have some requirements on the structure of the data), to have better explainability
(if the structure can be understood or used by a human), or to use less computational
resources (especially when considering embedded systems where the number and size of
the connection lines are a bottleneck18). In a more global view, these properties can
therefore improve the autonomy of systems (see next section 1.5).

Most of my works that I will present in this manuscript and my research project
(see section 5.2) are studying the impact of the structure of the representations on the
properties and performances of the system. This can be through a (complementary)
objective for unsupervised representation learning to improve performance (see chapter 3),
to achieve multisensory fusion and perception (see chapter 3) or to detect and recognise
classes in a stream (see chapter 4).

1.5 Autonomous agent

Most of my research work can be related to some extent to the global framework of an
agent interacting with its environment (see figure 1.2). It is usually used in robotics to
illustrate the three main components of a robot: sensors, a cognitive system and actuators.
However, my interests are not in physically building such agents, although I have regular
interactions with the robotics community and have participated in two projects on human-
robot interaction. Such a scheme is also often used in reinforcement learning to illustrate
the dynamics of interaction. However, I have not studied the sequential choice of actions,
except for a contribution during my post doc [17], yet I will use reinforcement learning
with internal reward in my future research (see the perspectives section 5.2). Therefore,
this framework needs to be considered in a broader sense, where the following elements
are important:

� The agent refers to any system that can be delimited in some way from its envi-
ronment. In terms of more theoretical considerations, we can define an agent as an

18This kind of constraint is a hypothesis to explain self-organisation in the brain, as the connections
pattern of neurons is driven by molecules that necessarily diffuse locally.
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audition (pitch, 
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...
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Figure 1.2: The general framework of my research work is an autonomous agent that
receives a flow of data through various modalities and interacts with its environment
(scheme taken from my PhD defence). I am particularly interested in the perceptual
process and how the agent can learn to make sense of its environment.

auto-poetic system that maintains its constitutive autonomy [202]. However, the
proper boundary of the agent may be smooth for example regarding the extension
of the peri-personal space when using tools [151] or considering phenomena as stig-
mergy. I will not go into these subjects in more detail as they are beyond the scope
of my current research. My focus is more on the autonomy of the agent. This is not
to be read in a philosophical sense, i.e. I am not referring to any form of agentivity,
subjectivity or proto-consciousness, but from a computer science perspective. This
is related to different keywords depending on the field of research, such as lifelong,
open-ended or developmental learning in robotics or unsupervised, continual, stream
and meta-learning in machine learning. Especially, I am interested in the ability of
the agent to make sense of the data coming from its sensors on its own through
unsupervised learning (see chapter 2)

� The environment is everything that is not the considered agent and that can evolve
according to its own rules or as a consequence of the agent’s actions. Thus, it can
also include other agents (artificial or human) when considering multi-agent systems,
which has been the case in some of my works e.g . [13].

� The agent gets observations from various modalities. They can come from internal
sensors (as for the proprioception) or external ones (such as vision or audition). I
rather prefer not to use the term ’sense’, unless there is no ambiguity, as it may
implicitly refer to the five senses in human beings19. I also distinguish sensation,
as the raw data arriving in the agent, from perception, as the result of the internal
processing of sensations, as defended in my PhD [55]. Thus, perception can be
related to the assimilation process in the constructivist approach [167]. Moreover,
various kinds of information can come from a single sensor, such as colour, speed
or shape from a camera. In my research, therefore, I use the term modality in a
broad sense that can refer to any consistent subset of a data flow coming from a
sensor20. It can also refer to information related to the action performed, as in my

19By the way, human beings have sensors for more than their five senses and what really defines a sense
in human subjectivity is not yet clearly identified. It may be related to the structure of the information
received and the way it changes when humans move [161].

20This is aligned e.g . with the Cambridge Dictionary’s definition of modality as “a particular way of
doing or experiencing something”.
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post doc [21]. I am particularly interested in the process of merging various kind of
sensations to obtain a unified multimodal perception (see chapter 3).

� The agent can act on the environment. Without an explicit task, this can be to get
more information from the environment to desambiguate the current perception (ac-
tive perception) or to explore it to improve its world model (active learning). These
active processes can also be closely intertwined with the learning of representation
(and thus the perceptual process) as we discussed in [30] within an information-
theoretic framework. Moreover, the action will influence the distribution of data
received by the agent raising questions such as incremental learning (see chapter 4).
I will further explore these links between action, learning and perception in rela-
tion to the sensorimotor theories in my future works described in the perspectives
section 5.2.

1.6 Summary of my research work

My research focuses mainly on how an autonomous system can make sense of the mul-
timodal data flow it receives, possibly by controlling it with actions, targeting at most
genericity and general principles. I am particularly interested in unsupervised represen-
tation learning, studying what information should be learned, how to organise them and
how to use them. In this section, I will first summarise the research work I did during my
PhD in the Cortex team at Loria and my post doc in the Flowers team at Ensta Paristech
(see section 1.6.1). Then, I will present the PhD thesis that I co-supervised as an associate
professor in the SyCoSMA21 team at LIRIS, starting with those that are at the edge of
my research interests (see section 1.6.2.1), then those that I have chosen to detail in this
manuscript (see section 1.6.2.2) to illustrate the three main facets of my research inter-
ests: self-supervised learning (chapter 2), multimodal perception (chapter 3), and active
and incremental learning (chapter 4).

1.6.1 PhD and post doc

PhD thesis The main focus of my PhD thesis was to take inspiration from the brain
processing and learning to propose a model of multimodal learning and perception. In
particular, I considered the cortex at a mesoscopic scale, i.e. at the level of neuronal
populations, to propose the Self-Organising Maps for Multimodal Association (SOMMA)
architecture [23] (see figure 1.3). The model is composed of generic maps, which are an
analogue of cortical areas, composed of layered units inspired by cortical columns observed
in the cortex. Each unit learns to discriminate a feature of its unimodal input flow via
its sensitive layer. This is achieved using BCM [73], a cortically inspired learning rule
that I have modified to be sensitive to some feedback signal [47] that can change over
time [25] with some guarantees on its dynamical properties. Each unit, via its cortical
layer, integrates information from other maps and thus modalities, whose information are
forced to be aligned [24, 45] by modulating the learning rule, a mechanism I proposed
for learning multimodal features. Each unit, via its perceptual layer, participates in a
decentralised competition, using Dynamic Neural Fields (a brain-inspired model that I
will detail in chapter 3), whose spatial consistency of activity is used as a feedback signal

21which stands for Cognitive Systems and Multi-Agent Systems, and was originally named SMA when I
was recruited even though the cognitive systems research axis already existed.
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Figure 1.3: In SOMMA, each modality is processed by a dedicated map, composed of
generic layered learning units. Overall the model learns multimodal features within self-
organisations aligned between modalities, which are the support of multimodal perception.

so that to obtain the self-organisation of the map, i.e. that nearby units will be selective
to close features [26, 46]. It also provides multimodal perception, by dynamically merging
relevant features based on their spatial localisation, whose qualitative properties are similar
to those of humans [55].

Post doc During my post doc, I studied a similar architecture as in my PhD, except
that the maps used the classical model of Kohonen self-organising maps [133] and that
the multimodal relation was obtained by learning to project from one map to another and
vice versa instead of imposing the alignment between the self-organisations (see figure 1.4).
My main focus of interest was in the predictability module, which measures the ability
of one representation (in this case a prototype) to predict those in the other modalities.
This quantity is used to drive the learning of representations by favouring those with high
predictability scores. This general principle can be used to improve the representation in
the case of supervised learning [20, 21], using the target as one of the modalities, and to
be more robust to noisy labels [18], e.g . when having only part of the dataset that can
be predicted or when having multiple camera inputs [22]. The discrete derivative of the
predictability measure can also serve as a drive for active learning [17], with a mechanism
similar to artificial curiosity to guide the system towards areas where there is high learning
progress, while learning to map the input space.

1.6.2 PhD supervisions

1.6.2.1 Those at the edge of my research project

Multi-agent systems for load shedding I co-supervised with Salima Hassas, professor in
the SyCoSMA team, the PhD of Victor Lequay between 2016 and 2019. This thesis was
done in collaboration with the company Ubiant, specialised in smart home systems, in
particular for electrical energy management. The subject was decentralised load shedding
(i.e. the ability of consumers to reduce their electricity consumption globally to meet a
certain load for a period of time defined in advance by the producers) within a smart grid
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Figure 1.4: The PROjection PREdiction architecture. Each modality is projected onto a
self-organising map, while projection modules learn the multimodal mapping. The pre-
dictability measure favours the learning of features that can predict the other modality.

(i.e. local electrical networks mixing producers and consumers). The proposed model is
based on a multi-agent system, using gossip methods that allow to obtain overall indicators
such as mean or max over the population in a decentralised way while preserving the data
privacy of each agent. We proposed that each agent engages a reduction of its consumption
depending on its maximum capacity, which can be known from Ubiant’s smart home
systems, and its reliability, which is computed taking into account some indicators such
as its ability to participate in previous events. Then, during the load shedding, each
agent detects, by accumulating evidence, the difference between the expected load and
the current one, and, if necessery, dynamically adjusts its consumption proportional to its
participation with respect to the global one [13, 37, 44].

Recommanders system for adaptive learning I co-supervised from 2020 to 2023, with
Nathalie Guin and Marie Lefevre of the LIRIS, the PhD of Anaëlle Badier, in collabora-
tion with Nomad Education, a company that proposes a mobile application for para-scholar
education. In this context, we proposed a recommander system of quizzes based on sev-
eral components [3]. First, the content is filtered based on the student’s level, which is
automatically evaluated by statistical methods based on their previous results to other
quizzes. We then choose to propose contents that correspond to predefined strategies than
can be of remediation, continuation or deepening relying on a tree that links the con-
tents through their prerequisite and expected notions. Secondly, the contents are ranked
according to different indicators: the pedagogical relevance based on the notions shared
with the current quiz, the history in order not to recommand a quizz too soon and the
novelty to stimulate the student’s learning. This system was tested in real conditions of
use with thousands of users and we show that it significantly improves the time passed on
the application and the number of quizz realised [4, 35, 39]. All this work was done using
an iterative framework to progressively adapt the system to test new hypotheses raised by
the continual analysis of the student’s behaviours logged within the application.

Human-robot interaction As they are both in the context of human-robot interaction, I
will regroup here the work done during two projects. First, the work done by Laurianne
Charrier during her master’s thesis and Alexandre Galdeano during his PhD thesis from
2017 to 2020, both of which I supervised with Amélie Cordier and Salima Hassas from the
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SyCoSMA team, within the Behaviors.ai ANR labcom project with Hoomano, a company
that developed software for social robots. Secondly, the work of Lucien Tisserand (post
doc) in the PepperMint labex project, in collaboration with Heike Baldauf-Quilliatre from
ICAR and Salima Hassas and Frédéric Armetta from the SyCoSMA team. The Behav-
iors.ai project proposed to use developmental learning to adapt the behaviour of social
robots to the user [33]. We mainly worked on how robot’s empathy can be perceived
by humans [32] and proposed an evaluation protocol to quantify this aspect [11]. In the
PepperMint project, which is still ongoing, we have focused more on the verbal interac-
tion between human and robot, in collaboration with conversation analysts to study more
specifically the emergence of the interaction sequence [1, 29].

Explainability with medical data Since 2022, I am co-supervising, with Michaël Sdika
and Nicolas Duchateau from the Creatis laboratory, in collaboration with Previa Medical,
a company proposing an IT solution for the prevention of life-threatening emergencies in
hospitals, the PhD thesis of Pierre-Elliott Thiboud. The aim is to propose a deep learning
solution for the detection of sepsis, from tabular data, that can provide some level of
explanation for the classification, which is a key issue in this field. We are currently
evaluating derivatives of state-of-the-art classification algorithms in order to extend them,
especially by imposing some constraints within the architecture and the loss function in
order to gain more insight and control over the features used for detection.

1.6.2.2 Those at the core of my research project

In the following of the manuscript, I will present several contributions to the three main
axes of my research work:

� Self-supervised visual representation learning (chapter 2). This work is part of the
Master’s theses of Nawel Medjkoune and Valentin Chaffraix, which I co-supervised
with Frédéric Armetta and Stefan Duffner from LIRIS, and of the Master thesis then
PhD thesis of Alexandre Devillers, which I supervised22 from 2021 to 2024. We were
interested in learning visual representation in an autonomous way, thus relying on
self-supervised methods. More specifically we studied whether low-level descriptors
are sufficient to automatically extract semantically related examples from videos to
learn interesting representations (section 2.2.1.1) and whether action can help to
learn and structure the representation from visual glimpses (section 2.2.1.2). Based
on these initial works, we focused on the properties related to the information that
the representations should contain in order to improve the performances of the state-
of-the-art models 2.2.2. Finally, the section 2.3 consists in a systematic study of the
structure of representations that are effectively learned by discriminative approaches.

� Multimodal perception (chapter 3). This axis is related to my AMPLIFIER regional
project, with Salima Hassas, Marie Avillac from the CRNL laboratory, Alan Chau-
vin, Nathalie Guyader and Jean-Charles Quinton from the Univ. Grenoble Alpes.
This was an interdisciplinary project, bringing together people from psychophysics,
statistics and computer science, on the question of how an agent (biological or ar-
tificial) can decide which piece of information, coming from various modalities, to
merge and how to weight them. The work I will detail was done by Simon Forest

22Administratively speaking it was a co-supervision with Salima Hassas, until her death in 2023.
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during his PhD, which I co-supervised with Salima Hassas and Jean-Charles Quin-
ton between 2018 and 2022. The problem of multimodal merging can be seen as a
decision problem between the different cues coming from the various modalities. In
section 3.2 I will present a framework for analysis the links between different models
of decision-making used in neuroscience, psychophysics and robotics. I will then
show in section 3.3 how one of these models, coming from neuroscience, can model
psychophysical data of humans performing a pointing task with audio-visual stimuli,
using underlying topologies for fusion. Finally, I will illustrate in section 3.4 how
this model can be coupled with manifold learning for an artificial agent to weight
modalities depending on the density of representations, in a way qualitatively similar
to humans.

� Incremental and active learning (chapter 4). Here I will explore some temporal
aspects of learning that an interacting agent would experiment, either by control-
ing the inputs via active learning mechanisms, or by dealing with non-stationary
datasets. In section 4.2.1 I will show how active learning can improve classification
performance, especially by selecting relevant examples in the context of a biased
dataset, a work done during Alexandre Devillers’ PhD, while in section 4.2.2 I will
illustrate how it can help learning arithmetic operations with a deep learning model,
a work done by Anthony Baccuet during his Master’s thesis supervised by Frédéric
Armetta. Finally, in section 4.3, I will present some work when the distribution of
the data stream is not stationary, especially in the context of unsupervised class-
incremental learning, where we have studied how to detect the arrival of new classes,
or previous ones, in order to progressively update and structure the representations.
This was the research question of Ruiqi Dai’s PhD thesis from 2018 to 2022, which
I co-supervised with Stefan Duffner, Frédéric Armetta, from the LIRIS laboratory,
and Mathieu Guillermin from the university of UCLy.
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2 Self-supervised visual representation
learning

2.1 Introduction

In this chapter, we are interested in unsupervised learning of representations from visual
inputs, for object classification, which can be a relevant capability for an autonomous
agent to perceive its environment. There are many other subfields in computer vision
such as object localisation, tracking, etc., with their own specificities and goals, but they
often require content recognition at some point. Historically, feature engineering was the
usual way to build image representations. Although they were quite generic with good
mathematical properties, they often lacked the ability to achieve very high classification
performance on challenging datasets or environments. Then, deep learning, by automat-
ing this representation learning process, provides a big leap in performance initially with
supervised approaches. The drawback was that the obtained features were more dedicated
to the dataset they were trained on, yet transfer learning or fine tuning can be applied.
Recent works have focused on Self-Supervised Learning (SSL), i.e. determining a super-
vising signal from data themselves thanks to the definition of a pretext task. It has the
advantage that the learned representations are less biased toward a specific goal and thus
tends to be more generic. Moreover, as it does not require human labelling, the models
can use plentiful of raw data, which is particularly useful for domains lacking annotations,
whiwh can increase the final performance. There are two main approaches in SSL using
deep learning applied to images [126].

� Generative approaches propose to reconstruct part or all of the input. For example,
it can consist in masking a part of the input and predicting it from the rest, or
in finding back the colouring of the image. When the input is also used as the
target, with the auto-encoder models, the function to be learned is the identity one
which is a somewhat ill-posed problem. To prevent this, multiple tricks have been
proposed, such as noising the input or the process in some way, or constraining the
computation of the model by introducing a bottleneck. One of the main difficulties of
these methods is the definition of a proper loss function that correctly quantifies the
quality of the reconstruction. The Generative Adversarial Network approach [108]
and its derivatives tackle this problem by delegating this evaluation to a network
that learns to discriminate between real and fake examples. Overall, these kind of
approaches are efficient for generating new content and are widely used in generative
AI.

� Discriminative approaches use a classification task as a pretext. This can be, for
instance, determining the relative positions of two patches from the same image,
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or ordering the patches in a jigsaw puzzle created from the image. For efficient
representation learning in image classification, the best methods today are instance
discrimination ones where each image in a batch is slightly modified twice (e.g . with
blurring, colour change, etc.) to create related pairs whose representations by the
network has to be similar. Current research questions mainly concern the creation
of the pairs, especially as it depends on the domain, and the kind of (in)sensitivity
of the representations to the image augmentations used to create the pairs.

In the absence of an explicit objective, the main challenges in self-supervised learning of
visual representation are then to determine the right type and definition of the pretext task
and the relevant inputs to the model, as this will induce the properties and structure of the
representations. Especially, we want them to be useful for the downstream tasks, usually
object classification, while not being too specific in order to preserve some genericity to
be easily transferable to the different tasks and datasets that may require different types
of features at multiple scales. In this chapter, I will summarise some of our contributions
to this line of research. First, we will discuss how an autonomous agent can select relevant
related examples for a visual stream (section 2.2.1.1). Then, in section 2.2.1.2, we will
study how the action can shape the learned representations in line with sensorimotor
theories [161]. Based on these results, we proposed a module, relying on an equivariant
structure, that can be added to the state-of-the-art visual discrimination instance models
to improve classification performance (section 2.2.2). Finally, section 2.3 is dedicated to
a study of the properties of the representations that emerge from instance discrimination
methods, especially focusing on the evolution of their structure along the path from the
pretext task to the downstream one.

2.2 Learning visual representations

2.2.1 Preliminary works

2.2.1.1 Object representation learning from video

Context While visual instance discrimination methods have been around for a long time
(see e.g . the siamese neural network [78]), they became an active area of research in 2020
with the paper by Chen and colleagues [86]. Our work, done in 2017, focused on how to
create pairs of related examples, at a time when this question was more open. This was
applied to the detection and recognition of objects in a video stream. While there exists
multiple models for this problem e.g . [76, 142] these methods are designed and pre-trained
for specific object categories in a dedicated environment and are not able to accommodate
new object categories during operation. Other approaches, e.g . [148], consist in contin-
uously updating the learned visual representations using recognised objects from videos.
However, their method incorporates a considerable amount of prior knowledge by using
a Convolutional Neural Network (CNN), pre-trained on a large labelled dataset. On the
contrary, we focused on the context of an autonomous agent, and thus we want to rely only
on purely unsupervised learning, without any supervised pre-training whatsoever. Thus,
we proposed an approach to unsupervised object learning in videos by enforcing a simi-
lar representation for objects that are considered related, using saliency-based detection
combined with spatio-temporal continuity.
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Chapter 2. Self-supervised visual representation learning

Model and results Our proposed approach is illustrated in the figure 2.1. From the video
stream, we detect areas of interest that differ from their surroundings in colour, inten-
sity, texture, orientation, depth, and other simple features using saliency-based detection
inspired by the human visual system [124] to define proto-objects. We then rely on the
spatio-temporal coherence principle, i.e. that detections that are close in space and time
are likely to correspond to the same object, in order to provide a weakly supervised signal.
We therefore create tubelets of patches, each representing one potential object. Based on
these tubelets, positive and negative pairs of patches are created by associating respec-
tively two patches of similar objects, i.e. within a tubelet, and two patches of dissimilar
objects, i.e. between different tubelets. Finally, we used a siamese neural network to learn
the representations. This model brings similar data points closer together and pulls apart
dissimilar data points in feature space by minimising a contrastive loss function with a
margin.

Figure 2.1: Overview of the proposed approach. The agent captures the visual field frame
by frame and processes it to discover proto-objects (arrow 1). Using spatio-temporal
coherence, pairs of similar and dissimilar objects are created and fed to the siamese network
(arrow 2) which learns an internal visual representation (arrow 3). This representation
may be used to guide object localisation in next steps (arrow 4) in a boostrap process.
Note that arrow 4 has never been properly studied and is an open perspective of this work.

We evaluate the proposed approach on the RGB-D Scenes Dataset Version 2 [140]. The
visualisation of the embeddings indicates that our model is able to cluster between the
different objects seen. This was to some extent confirmed by a comparison with a similar
CNN trained in a supervised way, where our model performed almost similarly with 2
objects, but performance dropped as the number of objects increased. This was a simple
preliminary network, nevertheless it confirmed the potential of instance discrimination
networks, which we will use in section 2.2.2 with state-of-the-art models. We also planned
to improve it by using a boostraping mechanism that would use the learned representation
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2.2. Learning visual representations

to improve the proto-object detection that feeds the network, thus improving its learning
and so on. Unfortunately this has not been tested yet, but a similar idea appears to be
efficient in a recent work with more state-of-the-art architectures [203].

This work was part of Nawel Medjkoune’s master’s thesis and led to a publication in
a workshop [49].

2.2.1.2 Impact of action in the representations

Context and objectives Sensorimotor theories are based on substantial evidence from
neuroscience, developmental psychology and cognitive science, among others. The main
claim is that actions, and more especially the sensory changes induced by motor actions,
play a key role in learning a predictive model of the world and in perceiving it [161] (I
will say more about this in the perspectives section 5.2). On the contrary, even if some
self-supervised approaches are action-related, the action itself is usually not used in the
model. To introduce action into image processing, we consider a sequence of glimpses that
provide only a sub-part of the image at a time. Such models that process only glimpses
of images were originally introduced for computational advantage, but they also open up
the possibility of making models that actively perceive the world by choosing where to
look. This idea of processing glimpses of an image has been applied to classification in two
ways: either by dedicating a neural network to each glimpse w.r.t. its temporal index [173],
or by letting a recurrent network learn to perform saccades in a reinforcement learning
environment [157]. In this work we have focused on studying the influence of action
consideration in the learning of visual representations in deep neural network models,
using a simple model to facilitate analysis. More specifically, we quantify two independent
factors: 1- whether or not the action is used during the learning of visual features, and 2-
whether or not the action is integrated into the representation of the current image.

Models and results We propose simple models based on three elements. First, a convo-
lutional Variational Auto-Encoder (VAE) [131] provides a representation of the current
glimpse. Second, a Long Short-Term Memory (LSTM) neural network [118] integrates the
representation of the current observation with past ones to construct a global represen-
tation of the observed image. Third, the recoder, a neural network that we introduced,
generates a latent embedding of the next glimpse with respect to the upcoming action and
the representation from the LSTM. This embedding is used to reconstruct the next visual
input as a predictive generative task. With these elements we proposed 4 versions of the
model that differ in two aspects.
To study the importance of using action within the representation, we compare two varia-
tions of the architecture: the PreLSTM one (see figure 2.2a), which integrates the actions
before the LSTM, thus forcing the representation to be a mixture of sensory and motor
information, and the PostLSTM one (see figure 2.2b), where the action is concatenated
after the LSTM, thus the representation is purely visual.
In order to study the importance of action while learning representation we compare two
variants of the training method: a classical end-to-end learning, where action can influence
the learning of representations, and a two-step learning procedure, where the VAE is first
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Chapter 2. Self-supervised visual representation learning

pretrained23 so that the action is not included in the glimpse representations, then the
LSTM (either with the PreLSTM or the PostLSTM version) is trained with the weights
of the VAE frozen.
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(a) PreLSTM architecture.
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(b) PostLSTM architecture.

Figure 2.2: The input xt passes through the encoder, transforming xt in its latent rep-
resentation zxt . Then zxt passes through the decoder, giving x̂t the reconstructed input
produced by the VAE. On the other branch, for the PreLSTM architecture, the action at
(the position of the next observed glimpse) is concatenated with zxt and is then fed to
the LSTM, which outputs lt the global representation of the image. For the PostLSTM
one, zxt is fed directly to the LSTM and the action at is concatenated with lt. From this
representation (either lt alone or concatenated with at) the recoder computes zxt+1 and
finally, by passing through the decoder, shared with the one of the VAE, the constructed
prediction x̂t+1 of the next glimpse xt+1.

Performance was evaluated on a classification task using the learned representation
(see figure 2.3). First, we observe that in all cases the models that do not use the action
during the learning of the VAE’s encoder (-Sep suffix) perform worse than their counterpart
that uses the action (no suffix). Secondly, we can see that all models that integrate the
action in the LSTM perform better than their counterpart that integrate the action after
the LSTM, except for the 28 × 28 MNIST dataset, which is the simplest. Overall, these
results confirm the importance of integrating the action in the representation structure
and learning. Based on these promising results, in the next section 2.2.2, we will integrate

23To have a fair comparison, the prediction task, that requires action, is replaced by a second recon-
struction of the current glimpse with an identity recoder.
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similar ideas into the instance discrimination architecture, instead of a generative one as
here.

Figure 2.3: Classification accuracy as a function of the number of glimpses received. The
MNIST digits dataset [144] consists of 28 × 28 pixel images containing centred white
handwritten digits on a black background. The 60× 60 MNIST are the same images but
rescaled to 60 × 60 pixels so that the patches are no longer digit fragments but strokes
and curves. The 60× 60 CT MNIST [157] are 60× 60 images with black background with
a 28× 28 MNIST digit randomly placed on them, and with four 8× 8 clutters (extracted
from other MNIST digits) randomly added to them, so that clutters and digit positions
are totally unpredictable if never seen.

This work started during Valentin Chaffraix’s master’s thesis and was finished during
Alexandre Devillers’ one. It led to a publication in ICDL [6], which can be found in
the appendix 6.1 .

2.2.2 Equivariant representation learning

2.2.2.1 Context and objectives

Our previous research work has shown that the siamese learning architecture can be a
good basis for learning visual representation (see section 2.2.1.1). In the meantime, SSL for
visual representation has made a lot of progress and the models are progressively closing the
gap with the supervised baseline [69, 86, 111, 213]. Although these SSL methods are diverse
(see [149] for a review), they are essentially siamese networks performing an instance
discrimination task. Their underlying mechanism is to maximise the similarity between
the embeddings of related synthetic inputs (a.k.a. views), created by data augmentations
(e.g . cropping, colour jitter, etc.), that share the same concepts, while using various tricks
to avoid a collapse to a constant solution [122, 125]. This induces the latent space to
learn an invariance to the transformations used. Thus, a lot of effort has been put into
experimentally searching for the right set of augmentations, focusing mainly on achieving
the highest object recognition performance on the ImageNet dataset.

However, for a given downstream task the representations benefit from invariance to
some augmentations while variance to others is preferable [89]. Indeed, there is a trade-off
in the choice of augmentations: they need to significantly modify the images to avoid
simple solution shortcut learning (e.g . relying only on colour histograms), while keeping
augmentation-related information in the representations to perform the downstream tasks
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(e.g . the need of colour for bird or flower classification). Consequently, recent works have
explored various ways of incorporating sensitivity to augmentations while maintaining an
invariance objective in parallel, e.g . by imposing a sensitivity to rotations that is not
used for invariance [89] or by learning multiple latent spaces, each one being invariant to
all but one transformation [209]. In line with our previous work showing that integrating
action into the representations with generative methods seems to improve performance (see
section 2.2.1.2), we proposed the same kind of idea but introducing augmentation with this
instance discrimination approach. Indeed, the augmentations applied to the image can, to
some extent, be considered as the result of applying an action to the environment [138].
More specifically, we proposed a module that learns another embedding space with an
equivariance to the augmentations, whose structure is automatically learned, in addition
to the classical invariance task.

2.2.2.2 Model and results

While the notion of augmentation insensitivity is related to invariance in the litterature,
sensitivity can be conceived in various ways. In this work we proposed to use the mathe-
matical concept of equivariance as a way to implement sensitivity and structure the latent
space (see figure 2.4). Formally, let T be the distribution of possible transformations ap-
plied to the image x to create the views, and f denotes a projection from the input space
to a latent space, usually a CNN plus an MLP for image representation learning. This
latent space is said to be invariant24 to T if ∀x, ∀t ∈ T , f(t(x)) = f(x). On the contrary,
the latent space is said to be equivariant25 if ∀x, ∀t ∈ T , ∃ut f(t(x)) = ut(f(x)) where
ut is a transformation in the latent space parameterised by the transformation t. In this
work, we aim at non-trivial equivariance (i.e. different from invariance), where ut actu-
ally produces a displacement in the latent space (i.e., that ut 6= Id) to somehow encode
information related to the augmentations in the representation.

Invariance Equivariance

Figure 2.4: Comparison between the properties of invariance and equivariance. With
invariance, a transformation of the input has no effect on its embedding, whereas with
equivariance it induces a transformation that depends on the transformation applied (and,
in our work, on the input).

24As we are interested in the properties of the representation space, some works (e.g . [69, 86, 111, 213])
prefer to rely on the following formula ∀x, ∀t ∈ T , ∀t′ ∈ T f(t(x)) = f(t′(x)). Note that if the identity
function is part of T , which is the case in recent approaches, then the two definitions are equivalent.

25Note that the order of the quantifiers in the formula is ∀x, ∃ut and not ∃ut, ∀x which would have
imposed more constraints on the latent space. This could be a very interesting property for generalisation,
but we had to relax some constraints in the network to achieve good performance. However, putting
more structure in the representation is definitely a future research axis to look for better robustness and
generalisation (see the perspectives section 5.2).
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Figure 2.5: The model learns similar embeddings for an augmented view (z′i) and the
prediction (ẑ′i) of the displacement in the embedding space caused by this augmentation,
i.e. a space where theprojected representations are equivariant, while there is classically
another space where the projected representations are invariant (red arrows).

Based on these definition,s we proposed EquiMod, which is an additional generic mod-
ule that learns a projection of the representation where the embeddings are equivariant
to the augmentations, to capture some augmentation-related information originally sup-
pressed by state-of-the-art methods that learn an invariance task (see figure 2.5). More
technically, let t and t′ denote two augmentations sampled from the augmentation distri-
bution T . For a given input image x, two views are defined as vi := t(x) and vj := t′(x).
We note fθ an encoder parameterised by θ which produces representations from images (in
practice a CNN) and gφ a projection head parameterised by φ (in practice an MLP) which
projects the representations into an embedding space. The representations are defined as
hi := fθ(vi) and as hj := fθ(vj), and the embeddings as zi := gφ(hi) and as zj := gφ(hj).
Then, state-of-the-art models learn to maximise the similarity between zi and zj , while
using diverse tricks to maintain a high entropy for the embeddings, thus avoiding col-
lapsing to constant representations for all inputs. To extend these previous works, we
introduce a second latent space to learn our equivariance task. Thus, we define a second
projection head g′φ′ parameterised by φ′ and we note z′i := g′φ′(hi) and z′j := g′φ′(hj), the
embeddings of the views vi and vj , respectively, in this latent space. Moreover, for the
given unaugmented image x we note its representation ho := fθ(x), which is used to create
the embedding z′o := g′φ′(ho). We define uψ a projection parameterised by the learnable
parameters ψ, which will be referred to later as the equivariance predictor (in practice an
MLP). The goal of this predictor is to produce ẑ′i from a given z′o and t (respectively ẑ′j for
z′o and t′). To satisfy to the equivariance equation, we should have ẑ′i = z′i (respectively
ẑ′j = z′j). In practice, this is approximated by considering (z′i, ẑ

′
i) as a positive pair (re-

spectively (z′j , ẑ
′
j)) and all others, except (z′i, z

′
j), as negative ones to learn a contrastive

loss, more precisely the Normalised Temperature-scaled cross entropy [86]. This equivari-
ance loss was weighted with some hyperparameters and added to the invariance loss of the
chosen baseline model.
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Method
ImageNet CIFAR10

Top-1 Top-5 Top-1 Top-5

SimCLR [86] 69.3 89.0 - -

Barlow Twins [213] 73.2 91.0 - -

VICReg [69] 73.2 91.1 - -

BYOL [111] 74.3 91.6 - -

SimCLR∗ 71.57 90.48 90.96 99.73

SimCLR∗ + EquiMod 72.30 90.84 92.79 99.78

BYOL∗ (100 epochs) 62.09 84.01 - -

BYOL∗ + EquiMod (100 epochs) 65.55 86.74 - -

BYOL∗ (300 epochs) 71.34 90.35 - -

BYOL∗ + EquiMod (300 epochs) 72.03 90.77 - -

BYOL∗ (1000 epochs) 74.03 91.51 90.44 99.62

BYOL∗ + EquiMod (1000 epochs) 73.22 91.26 91.57 99.71

Barlow Twins∗ - - 86.94 99.61

Barlow Twins∗ + EquiMod - - 88.87 99.71

Table 2.1: Linear Evaluation; top-1 and top-5 accuracies (in %) under linear evaluation on
ImageNet and CIFAR10 (symbols ∗ denotes our re-implementations, and ‡ denotes only
100 epochs training).

We tested our method on the ImageNet [91] and CIFAR10 [135] datasets. As our
model is an additional module, we used it as a complement to SimCLR, BYOL and
Barlow Twins, 3 state-of-the-art invariance methods with quite different ideas, in order to
test the genericity of our module. The results of the supervised linear evaluation of the
representation are presented in Table 2.1. In all but one baselines and datasets tested,
EquiMod improves the performance of the baselines used, which supports the efficiency and
the genericity of our approach. Moreover, we observed in practice that the model effectively
learns a non-trivial equivariant structure where the magnitude of the displacement in the
latent space depends on the type of augmentation (see figures 2.6a and 2.6b). All this
confirms our idea that adding information from the action in the representation, here
via an equivariance task to the applied augmentation, helps to extract more relevant
information and to improve performance.

This work was part of the PhD thesis of Alexandre Devillers. It led to a publica-
tion in ICLR [5], which can be found in the appendix 6.2 . As we had to reimplement
state-of-the-art SSL models, as the support of our architecture, we also submitted two
articles (consisting of the open source codes and a description of the reimplementa-
tions) to the journal ReScience, which is dedicated to scientific reproducibility.
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2.3 Structure of learned representations

2.3.1 Context and objectives

Despite the success of the instance discrimination methods, that we introduced and im-
proved in the previous section 2.2.2, the underlying mechanisms that enable these models
to produce representations that are highly effective for downstream classification tasks
remain poorly understood. The learning mechanism tends to favour similar (respectively
dissimilar) representations for all the variations of one instance (respectively for different
instances), which should discourage the model from learning shared embeddings across
instances belonging to the same class. This apparent contradiction has been explored in
some theoretical and practical approaches.

Theoretically, the projection head may benefit to the learning by allowing the repre-
sentations to retain more information related to the augmentations, rather than forcing
them to specialise solely on the invariance task [210]. More globally, [207] suggests that
aggressive data augmentations create similarity overlap between samples from different
instances. This helps the model to gradually cluster these intra-class samples together,
effectively climbing the ladder of chaos. However, it has been shown that this theory alone
may not fully explain the underlying mechanisms [184].

Beyond theoretical explanations, recent studies have empirically investigated some of
the structural properties of the latent spaces learned by SSL methods. For instance, [214]
observed that SSL representations tend to organise images such that nearest neighbours
in the latent space are often not of the same class, in contrast to supervised learning.
They also find that in SSL, similar representations are more closely related in pixel space.
Similarly, [110] find that while both SSL and supervised learning models improve in perfor-
mance as the layers deepen, the representations become increasingly dissimilar. Notably,
the similarity between self-supervised and supervised representations collapses after the
projection head in SSL models, highlighting the distinct nature of the features learned
through self-supervision.

In this work, we have taken an experimental approach to empirically analyse the struc-
tural components that emerge in the latent spaces of different instance discrimination-
based methods. Our objective is to identify both shared and distinct structural patterns
across various SSL approaches, and to determine which of these patterns contribute most
effectively to high classification accuracy in downstream tasks. Ultimately, our findings
could inform the design of new SSL methods that explicitly optimise the emergence of
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beneficial structural patterns, leading to more generalisable representations.

2.3.2 Method and results

We employed a diverse set of structural descriptors, that capture different facets of the
latent space organisation, to analyse and compare them at multiple scales, across Sim-
CLR [86] and BYOL [111] models, and at various network depths (the backbone represen-
tation h and the projection head output z). More precisely, we identified the structural
characteristics that consistently correlate with high classification accuracy on the Ima-
geNet validation dataset [91].

We found no structure (correlated with the accuracy) in the false negative and false
positive samples. This suggests that misclassified samples, as identified during the linear
evaluation step, may already be outliers in the learned representation space, thus ques-
tionning a possible limitation in the SSL methods or in the nature of these samples. There
is also no correlation with metrics such as PCA, mutual information, and activation dis-
tribution statistics. This could be explained if classes do not need the same number of
dimensions to be well represented while SSL methods have more than enough dimension-
ality in their latent spaces to allow some variation in the number of dimensions used.
More intriguingly, cluster-related metrics within each class are not correlated with perfor-
mance. These structures may be useful for more fine-grained labels than those used in
classification, which is an open perspective.

On the contrary, we observed that classes benefit from being orthogonal to each other,
as the closer the maximum and median similarity values between classes are to zero, the
better the classification performance (see figure 2.7). Notably, this relationship diminishes
when nearest neighbours are masked, suggesting that confusion may occur for classes that
are close in the latent space. Moreover, the more collapsed a class is, the higher the
accuracy tends to be (see figure 2.8). Taken together, these observations suggest that
the representations learned by instance discrimination favour high intra-class similarity
and high inter-class dissimilarity. These properties mirror those optimized by instance
discrimination, namely alignment and uniformity [206], but they manifest at the class
level rather than at the instance level, despite the absence of class information in this SSL
context, which is quite surprising. Remarkably, this structural pattern also emerges in the
output of the projection head, indicating that the projection head alone is not essential to
explain the emergence of this pattern.

Descriptors based on the correlation dimension, community detection and connected
components further confirm the previous results. The correlation dimension, which re-
flects the diversity and intrinsic dimensionality of the latent space, supports the idea that
denser, less hierarchical structures are more favourable for classification (see figure 2.9).
Interestingly, the representations produced by the backbone are richer and more complex
than those of the projection head, supporting the hypothesis that the projection head can
simplify the representation space for the invariance pretext task. Similarly, the modularity
score from community detection, which measures the degree to which the latent space can
be divided into distinct communities, is also consistent with these findings. Lower scores,
indicating less modular and more homogeneous latent spaces, are associated with higher
accuracy. This suggests that a more uniform latent space, where data points are less frag-
mented into distinct clusters, is advantageous for linear evaluation. The connected com-
ponent analysis further supports this, showing that lower thresholds are needed to achieve
a minimum of 50% connected components in higher performing classes. This implies that

26



2.3. Structure of learned representations

Figure 2.7: Left (respectively Centre / Right): The plot shows the relationship between the
highest similarity between interclass samples (respectively the median similarity between
interclass samples / the average similarity to the 50% most distant neighbours) and the
accuracy. The different colours represent the two models and two network depths tested.
Plain lines represent the best linear fits of the measures.

Figure 2.8: Left (respectively Centre / Right): The plot shows the relationship between
the highest similarity between neighbours within the same class (respectively the median
similarity within a class / the average similarity to the 50% most distant neighbours within
a class) and the accuracy.

a dense structure, where most data points remain connected even as the similarity thresh-
old changes, is beneficial for classification accuracy. Fewer, and therefore larger, isolated
islands that persist as the threshold moves indicate a more robust, interconnected latent
space that supports better classification results.

Finally, while structural differences between the methods are sometimes apparent at
the output layer of the projection head, understandably given their distinct learning ob-
jectives, the structures at the output of the backbone remain similar. Moreover, apart
from differences in Median Similarity and KNN Average Distance between classes (see
figure 2.7), likely due to SimCLR’s use of explicit negative pairs, the projection head
structures for both methods are still more similar to each other than to the backbone
representations. This suggests that even fundamentally different instance discrimination
methods, such as SimCLR and BYOL, tend to learn similar structure of representations
to some extent.

This work was done in the PhD thesis of Alexandre Devillers and can be found in its
current version in appendix 6.3 .
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Figure 2.9: Left (respectively Centre / Right): The plot shows the relationship between
the slope of the correlation dimension (on a logarithmic scale) (respectively the modularity
score from community detection / the threshold at which 50% of connected components
are formed in the latent space) and the accuracy.

2.4 Conclusion and perspectives

In this chapter, I presented contributions related to representation learning with self-
supervised methods. In section 2.2.1.1 I showed that simple salience methods can provide
relevant pairs of data for siamese methods to learn object representations from video. In
another aspect, we studied more specifically the importance of using action in the repre-
sentation and during learning with an input stream of visual glimpses from images (see
section 2.2.1.2). In this context, we observed that action can improve the learning and
structure of the representation. By combining these two ideas formalised in an equivari-
ance framework, we proposed in section 2.2.2 a module that can be added to any visual
instance discrimination model, the current state-of-the-art in SSL architectures. By forc-
ing the learning of representations that can be projected onto two distinct embeddings,
one classicaly invariant to augmentations, and another equivariant, with a function learned
by a dedicated network, this module improves the classification performances obtained.
Although we still have to evaluate its generalisation capabilities with transfer learning.
As illustrated in section 2.3, the structures learned by these methods are not yet well
understood. We have shown that, although the projection head plays a role, it does not
alone explain the properties that emerge from the representation. Moreover, we observed
that the representations of images from the same class tend to be very close, while being
orthogonal to those of the other classes, which is well suited for linear classification, but
may be limited for other tasks, especially those requiring finer details, which should be
further tested.

These works open many perspectives for a deeper understanding of the latent space
structure and its improvement, especially to obtain more robust, generic and transferable
representations. It could be interesting to formalise the required properties of the repre-
sentations to be transferable to various tasks, which may include multi-scale structures,
for instance to focus on shape or texture, and projections to different spaces, for instance
to be able to consider colour when needed (e.g . to recognise my white coffee cup in my
office) and discard when needed (e.g . to find any coffee cup during a conference break).
This may require attention mechanisms, which I will evoke in chapter 3, or some kind of
prompting or information retrieval that has been shown to be effective in large language
models. In the future, I will focus on the deeper study of the integration of action in
representation in line with sensorimotor theories [161], that will discussed in more details
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in the perspectives section 5.2.
More globally, when adopting an embodied vision of cognition, what makes a good

representation is not limited to classification performance. One of the goals is to help
the agent make sense of the surrounding environment, which I will consider from the
perspective of multimodal perception in the next chapter 3. Morevover, the agent must
be able to deal with a changing environment and to interact with it, which I will study
with active and incremental learning in chapter 4.

29



3 Multimodal perception

3.1 Introduction

In the previous chapter 2, I presented some of my works on learning visual representations,
where the interest was based on their ability to correctly classify objects from a given
dataset. For an autonomous agent, however, one of the aims of representations may be
to help make sense of the world through a perceptual process. This can be formulated
as a question of projection, from the external world, through a sensor, to structured
internal representations that are the support of the emergence of meaningful perceptions
for the agent, related to its (own) current objectives. This is not a one-way pipeline
as (inter)action can also play a major role in perception as suggested by sensorimotor
theories [161], and as representation learning and perception can be considered as two
dynamically intertwined processes, as emphasised by the constructivist approach [167].
Moreover, attentional processes play a fundamental role in filtering relevant information
for perception. This can be bottom-up attention (a mechanism we used in section 2.2.1.1
for extracting proto-objects from video), e.g . when our gaze is attracted by movement at
the periphery of our field of view, or top-down one, e.g . when we do not pay attention to
(an actor dressed as) a gorilla in the middle of the screen because we are carefully counting
basketball passes, a mechanism called attentional blindness [112]. Although I will not go
so far, in this chapter, I will present some work on the emergence of integrated perception
from spatially organised representations.

In biological agents, but also in robotics, perception is fundamentally multimodal, as
the world is observed through multiple sensors that provide various types of information
about the environment. This raises the question of the different frames of reference and
their alignment between modalities [168], which I considered to some extent in my PhD
and post doc (see section 1.6.1), but will not address here. The main focus will be on the
combination of information, as sensory cues can be redundant (e.g . the shape of my coffee
cup can be seen and touched), complementary (e.g . I can hear the sound of my coffee cup
when I put it on my desk and touch its shape at the same time) or even unrelated (e.g . the
sound I hear in my headphones should not be associated with my coffee cup I see in front
of me). Moreover, this can depend on the specific context, e.g . if I touch my spacebar it
may or may not start the music in my headphones, depending on the active window. All
this raises the question of which modality to merge. The other question is how to merge
them, especially which ones are the most relevant. There can be intrinsic preferences for
a type of sensor depending on the property to be measured, e.g . recognising the shape is
usually easier by looking than by touching. However, this relevance is context dependent
(e.g . I will mainly rely on touch to find my cup on my desk when it gets dark at night),
but also task dependent (e.g . if I am looking where my cat is sleeping I will look for its
shape and colour rather than its snoring, whereas if I am trying to find him/her as soon
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as possible I would rather call him/her and listen to any sound).

These questions have been studied extensively in humans with psychophysical experi-
ments26. Regarding the stimuli to merge, the spatial and temporal dimensions have mainly
been studied, especially in audio-visual tasks. The main findings of these studies are that
humans merge information based on there spatial and temporal congruencies [191], with
some margin, and that these congruencies are based on correlations that calibrate the
senses [171]. As for the fusion, experiments show that the integration is based on the
weighting of relevant stimuli according to their reliability [93]. Therefore these processes
can be seen through the spectrum of mixing cues in a statistically optimal way. Thus,
most of works, both in modeling but and in machine learning, are based on Bayesian
approaches.

Regarding multimodal learning, three main approaches are used in machine learn-
ing [63] (with some variations depending on the type of learning considered). In early
fusion, multimodal inputs are considered as usual inputs, and the model has to learn the
correlations that exist within modalities (the classical objective) but also between modal-
ities. This can be challenging as each modality can have its own feature structure which
can be hard to make compatible alltogether. On the contrary, late fusion proposes to pro-
cess each modality with a dedicated architecture and to mix them at the end, for example
with a voting system. In this way, the fusion takes place within a common semantic space,
but finer grain correlations may be lost. In between, intermediate fusion proposes to mix
information during the processing flow, trying to get the best of the two other alternatives.
In all cases, the models focus on learning the information shared by all modalities, possi-
bly conditioned by the task in supervised learning. Thus, they are more interested in the
question of what to merge rather than how to merge. Indeed, the weighting of modalities
can be seen as a side effect that helps to accomplish the task rather than the actual focus
of the study.

In this chapter, I will present the work done during my AMPLIFIER project, in col-
laboration with psychophysicists, statisticians and computer scientists. The main focus
was on the question of the weighting of audio-visual information in perception, and the
influence of active perception (via saccades) in this process.27. We have chosen to look
at this question from the point of view of a spatial decision process. This is consistent
with the kind of task that we have considered, which consists of localising a sound while
a visual stimulus is persented at a different location. But this may be generalisable if we
consider this in relation with a representation learning task whose aim would be to project
the external world onto a decision space28, where similar choices are closely projected. A
parallel can be drawn with brain structure, where features in sensory areas are spatially
self-organised, which may be an important feature of cognition [80]. More specifically, we
will rely on Dynamic Neural Fields (DNF), which I will describe in section 3.3, which is
a neural network model that provides a decentralised competition and fusion mechanism
relying on a topological substrate where information is spatially localised. It can also be

26There is also a lot of literature in neuroscience on multimodal integration at the neuronal level, mostly
on animals for ethical reasons. I will not go into details here, as I am more focused on the behavioural
aspect, yet with some relationship to the neuronal substrate. An interested reader can refer to [82] for
more details.

27In this project we proposed a new psychophysical protocol of the ventriloquist effect, especially includ-
ing the active perception part. While the participants data have been recorded, the analyses are not yet
complete, and the modelling has barely begun. Thus, this psychophysical part and the active perception
aspect cannot unfortunately be included in this manuscript.

28We can also imagine that this space may be multidimensional to represent multiple objectives.

31



Chapter 3. Multimodal perception

considered as a dynamical system that has been proposed as a theoretical model for the
dynamics of cognition [187]. In section 3.2 I will present how this model and its properties
can be located on a continuous panorama of decision-making algorithms in psychophysics
and robotics. In section 3.3, we propose a modelling of audio-visual fusion in humans using
DNF, which is more grounded in the neural substrate than classical Bayesian approaches.
Finally, in section 3.4 we investigate how this model can be extended to irregular topologies
for application with autonomous agents.

3.2 Decision making algorithms: from psychophysics to robotics

3.2.1 Context and objectives

In this work, we are interested in decision-making, a process that ranges all the way
from the smallest steps of perception, like picking a visual stimulus to gaze at, to more
complicated procedures, like solving a puzzle. It has been studied extensively in vari-
ous fields of the humanities, from psychophysics and neuroscience to social sciences and
economics, but also in engineering science, and robotics in particular. Out of these very
different fields of research, similar behaviours are studied, albeit using different setups
and different models. Psychology and neuroscience have put a lot of focus on how and
what decisions are made by studying perceptual experiments that can provide insights into
some of the inner mechanisms of decision-making. In robotics, on the contrary, decision-
making is most often viewed from the perspectives of computer vision (categorisation,
tracking, etc.), machine learning (classification, reinforcement learning, etc.) or swarm
intelligence. In these cases, the focus is more on what decisions are made rather than on
the how it is taken, yet the field of explainable AI is pushing in this direction. Nevertheless
many parallels can be drawn, either by design or not, between biologically-motivated and
engineering-driven models [165]. Thus, we proposed to compare a representative sample
of existing learning-free decision-making algorithms from different domains (notably neu-
roscience, psychophysics, and robotics) in a domain-agnostic perspective within a unified
framework29 that we proposed to build bridges between different classes of models. We
also set up simple but representative scenarios to illustrate and compare the qualitative
properties of each algorithm.

3.2.2 Comparative framework and results

Decision-making algorithms can be divided into three main families: dynamic accumula-
tors, probabilistic/Bayesian models and logic-based models.
Psychophysics and neuroscience have proposed many models of decision-making, most no-
tably using accumulators, where evidence is gradually accumulated over time until a given
threshold is reached. The most common of these is the drift-diffusion model (DDM),
in which two30 opposite thresholds are set [175], while the leaky competing accumulator
(LCA) also accounts for information decay over time [74]. Applications of accumulator
models are not exclusive to the humanities but have also been used for decision-making in

29Note that this framework was co-designed with an open source software.
30The DDM can be easily extended to more choices by using multiple units, each representing a possible

choice, that are put in competition until one prevails.
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3.2. Decision making algorithms: from psychophysics to robotics

robotics, most notably in the form of Dynamic Neural Fields (DNF)31, population-coded
accumulator models running on a topological map [187], which we will use for multimodal
merging in the contributions presented in the next sections 3.3 and 3.4.
Probabilistic models32 constitute another cross-disciplinary category. For instance, many
models based on maximum likelihood estimation (MLE), a simple Bayesian inference,
have been used for data fusion to reflect computations observed in psychophysics [93], and
Kalman filters (KF) [129] are widely used in robotics.
Engineering science has also its own methods, for instance Fuzzy Logic (FL), which de-
scribes operations made on fuzzy sets in which truth values are no longer binary but
instead compared to membership functions expressing possibility values, between 0 and
1 [212]. By fuzzifying sensory inputs and combining their membership functions, it is
possible to create fuzzy commands that can be exploited in computer vision, data fusion
or robotics.
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Figure 3.1: Depending on the level at which activities are considered in the perception-
decision process, they can be viewed in an organic system as: (a) sparse without an
underlying topology (i.e. a forced choice between the available options), (b) sparse in an
underlying topology (meaning there exists a distance metric that allows interpolations), or
(c) continuous (e.g . because of the spread of the signal in its environment, the blur added
by sensors with limited resolution, or the overlapping receptive fields of the units receiving
that activity). Artificial systems and computational models may require activities to be
discretised (i.e. sampled in signal processing sense of the term) from continuous stimuli
(d). The latter can also be obtained from (b) using a discrete kernel projection e.g ., a
Gaussian.

In our review, we considered decision-making models in a broad sense as filters of
noise and unwanted components that take activities as input and give one activity as
output that can be used by another system: motors, other decision modules, or the same

31We will test two different sets of parameters, refered to as DNF1 and DNF2 in the results, to illustrate
the various possible dynamics of this model.

32In this category we can also find active inference, a general framework for explaining decision making as
free energy minimisation, which has been used in either neuroscience or robotics [98] but was not included
in the comparison.
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model in cases of recursion. When the models do not compute a single output value, we
have provided one additional aggregator (a Winner Takes All (WTA) or a Weighted Sum
(WS)) outside the model to produce such a result. Regarding the inputs, we assume that a
minimum amount of projections has already been made, for instance by the sensors or pre-
processing. We thus categorised the kind of inputs that the model (biological or artificial)
can receive (see figure 3.1). Within these considerations33, we formalised a framework
using specific notations in order to emphasise the various shared characteristics of the
decision-making algorithms: topology-based interaction between processing units, output
aggregation, recursion, etc. (see figure 3.2). We described the chosen representative models
of learning-free decision-making algorithms within this framework and proposed simple
scenarios to illustrate their properties on the spatial aspect (the robustness to distractors,
the interpolation or selection between multiple options, or the preference for single strong
stimuli rather than weak but multiple close ones) and on the temporal aspect (the reaction
time, the robustness to temporal obstruction or the tracking speed) (see table 3.1).

Figure 3.2: Visual framework used to unify the models. Models with recurrent states are
shown unfolded, i.e. the process to go from time step t to time step t+ ∆t is visible. The
recurrence can be pictured by furling the pattern so that the grey areas touch each other.
The aggregator part is shown attached to the model when the latter produces a readable
direction directly, and detached if it has been added retrospectively. The arrow in the
aggregator indicates where the final decision is read.

First works on formalism date back to discussions with Jean-Charles Quinton dur-
ing my post doc. The work was (almost) finalised during the Jose Villamar’s master’s
thesis and Simon Forest‘’s PhD thesis, which we both supervised with Jean-Charles
Quinton. This work will soon be submitted to a journal and the current version can
be found in the appendix 6.4. Please note that the article is an unfinished version, al-
though close to a final one, so some minor content is missing and it may still contain
some errors and typos.

33In practice, we have made the assumption that there exists an underlying topology in which the input
can be placed, so we have not considered the case (a) on figure 3.1. This is not a risky assumption and
it allows to consider operations such as interpolations and barycenters, which are otherwise not properly
defined.
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3.3. Modeling of audio-visual perception in humans

Able to select one stimulus and ignore the rest
| Able to interpolate between stimuli
| | Able to priviledge a group of stimuli
| | | Robust to temporary obstruction
| | | | Controllable speed of switch between stimuli
| | | | | Able to track a target with little delay
| | | | | | Able to smooth trajectories
| | | | | | | Suitable for sparse stimuli

Model | | | | | | | | Number of parameters

WTA Y N N N N (NR) N Y 0
FL Y Y N N N (NR) N Y 1
WS N Y (D) N N (NR) N N 0
KF N Y (D) N (I) Y Y N 3
FFI Y N N Y N (NR) N Y 2
NLCA Y N N Y Y (NR) N Y 3
DNF1 Y N N Y Y N Y N 7
DNF2 Y Y Y N N Y Y N 7

Table 3.1: Summary of model properties. Y stands for Yes, N for No, (NR) for Not
Relevant, (D) for depends on weight, (I) for starts instantly but can be slowed down. Note
that a higher number of parameters provides more flexibility and more properties, but
may be limited theoretically (because of the parsimony criteria) or practically (because
each (hyper-)parameter has to be tuned and there is rarely a dedicated learning method).

3.3 Modeling of audio-visual perception in humans

3.3.1 Context and objectives

Dynamic Neural Fields (DNF) originated as a mathematical model of neural dynamics [61]
and has been used to model neural activity at a mesoscopic scale, i.e. population or neu-
rons [187]. Thus, it allows bridging the gap between the microscopic level of neural pro-
cesses, to better understand adaptive functions found in living systems, and behavioural
data, opening the way to building artificial systems able to reproduce them. As seen in the
previous section 3.2, DNFs are a versatile decision-making algorithm. Depending on their
parametrisation, they can achieve, for instance, selection or interpolation between multiple
conflicting signals [197], robust selective attention in presence of noise and distractors [96],
working or long-term memory of stimuli [183], and thus can be applied to visual atten-
tion [96] or (visuo)motor control [183]. However, the literature is scarcer when it comes
to using DNF for multimodal fusion especially for modelling psychophysical phenomena.

In this work, we propose to apply DNF to model the ventriloquist34 effect, in which
human participants exposed to spatially incongruent visual and auditory stimuli will per-
ceive the position of one stimulus shifted towards the other, depending on which modal-
ity has the highest relative precision. More specifically, we will draw on psychophysical
data reported in the seminal work of [58], whose experimental paradigm and protocol
can be easily replicated in silico. For each bimodal trial, participants were exposed to a

34The effect takes its name from ventriloquist shows, in which the audience has the illusion that a puppet
is speaking, while the sound is actually produced by the ventriloquist holding it.

35



Chapter 3. Multimodal perception

sequence of two presentations of audio-visual stimuli (conflicting and non-conflicting in
random order) and had to report which of them was perceived to be more leftward. In
the non-conflict presentation, auditory information (1.5 ms sound click) and visual infor-
mation (15 ms low-contrast Gaussian blob of controlled width, with standard deviation
σV ∈ {2◦, 16◦, 32◦}) were perfectly aligned with each other, but their eccentricity relative
to the centre of the participant’s field of view was manipulated from −20◦ to +20◦. In the
conflict presentation, the stimuli were still aligned on the azimuthal axis, but an horizontal
spatial discrepancy was introduced between the two, with the visual stimulus moving of
∆ ∈ {−5◦,−2.5◦, 0◦, 2.5◦, 5◦} (from left to right) and the auditory stimulus moving of −∆.
The experimental mean and variance over the population for each condition are reported
in figure 3.5. We compared the performance of our model with these empirical data and
with optimal Bayesian integration, the golden standard in multisensory integration [93].
Moreover, our model will be grounded in some considerations from neuroscience and would
allow for trial-by-trial modelling, whose individual fit to the data is left for future work.

3.3.2 Model and results

Our model (see figure 3.3 for an overview) is based on the deep Superior Colliculus35 (SC),
a subcortical structure that receives projections from different modalities onto a series of
multimodal neural maps and is well known for its multisensory integration [130]. The
neural activity within the SC is computed with a DNF that models its evolution over time
at each point of a topological space X36. The mean field potential U at position x ∈ X
and time t is described by the following stochastic integro-differential equation (in practice
the equation was simulated using an Euler scheme):

τ
∂U

∂t
(x, t) = −U(x, t) + I(x, t) +

∫

x′∈X
W
(
‖x− x′‖

)
f
(
U(x′, t)

)
dx′ + ε (3.1)

where τ is the time constant that determines the response timescale of the entire field, I is
the input stimulation over the field and f is a non-linear activation function, here a ReLU
function to approximate the mean firing rate of the neurons. The last term ε is sampled
from a normal distribution N (0, σN ) and represents noise that can be interpreted either on
a neurological level (a sum of numerous variations of activity induced by external neurons)
or on a psychophysical level (e.g . perceptual noise) [187]. Finally, the kernel approximating
lateral interactions within the continuous population of neurons is defined by:

W (∆x) = λ+ exp

(
−∆x 2

2σ 2
+

)
− λ− exp

(
−∆x 2

2σ 2
−

)

with λ+ > λ− and σ+ < σ−, resulting in local excitation and more diffuse inhibition.
Based on neurophysiological findings, we decomposed the input I defined at each point

of the DNF as the sum of a visual input IV and an auditory input IA (see figure 3.4 (a)
and (b)). More precisely, the visual stimuli (a Gaussian blob) are projected from the retina
onto our SC with a logpolar transformation [162] (as an ablation study, we also tested
without this specific projection, hence you will find DNF+log and DNF+id in the results

35Our architecture does not target to be an exact model of the multisensory pathways in the brain, which
are much more diverse and complex than what we have considered.

36In practice we used a 1-dimensional DNF because the inputs lie in a 1-dimensional axis and to make
simulation and interpretation easier than a 2-dimensional map, which would have been closer to neuronal
organisation.
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Figure 3.3: Our DNF model of audiovisual merging DNF. Each rectangle represents a map,
either in retinal space (shown with concentric circles) or SC (hourglass shape, obtained by
performing a log-polar transformation on the visual map). The blue (respectively green)
arrow and text refer to visual (respectively auditory) pre-processing. Steps and parameters
from the model, other than pre-processing, are shown in red.

figure 3.5). To our knowledge, there is no mathematical formulation of the projection
of auditory inputs onto the SC, so we simply aligned the audio stimuli (also a Gaussian
blob) with their spatially congruent visual counterparts to avoid introducing additional
model parameters. The output of the model is the barycentre of the field output f(U) (see
figure 3.4 (c)). However, given the noise and non-linearities of equation 3.1, we relied on the
Monte Carlo method to sample the localisation distribution under each condition through
repeated simulations and estimated an empirical Gaussian distribution (see figure 3.4 (d)).

In the end, our model has eight free (hyper)parameters (six from the DNF equation
and two for the inputs). For each parameter we extracted an interval in which suitable
behaviour was possible and simply relied on an iterative and partial grid search approach

37



Chapter 3. Multimodal perception

(a) (b)

(c) (d)

Figure 3.4: (a) Inputs ∆ = −5° and σV = 16°. (b) Inputs summed with noise on the neural
field (x) over time. (c) Field potential U during one single run. The white line shows the
evolution of the barycentre of the field output f(U). (d) Barycentres of the DNF output
for the 30 runs of the model. The black line shows the approximate Gaussian distribution
obtained with the mean and SD of the last 30 positions.

to fit, at best, the mean and standard deviation of the empirical data. The results in
figure 3.5 show that we are competitive compared to the Bayesian modelling using max-
imum a posteriori estimates of localisation distributions, which remains the dominant
paradigm for multisensory integration [93]. Moreover, unlike the Bayesian model, which
uses unimodal performance to predict bimodal behaviour and relies on the hypothesis that
the psychometric functions of visual and auditory stimuli are Gaussian cumulative distri-
bution functions, our model was fitted directly to the bimodal scenarios without prior
knowledge of the unimodal variances. We also verified that the DNF behaviour is robust
to hyper-parametrisation (not shown here) and found that some non-linear combinations
of hyper-parameters seem to give similar results. This opens the way to integrate comple-
mentary mechanisms into the architecture, such as saccades, to model active perception,
while having some parametrisation margin to fit the empirical data at best.
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Figure 3.5: Experimental results of the bimodal presentation (orange intervals for empirical
data) and corresponding model outputs (in blue). For each error bar, the centre dot
represents the mean localisation, and the half-amplitude is the standard deviation.

This work was part of Simon Forest’s PhD thesis and led to an article in the journal
Neural Computation [2], which can be found in the appendix 6.5 .

3.4 Multimodal perception with automatic weighting

3.4.1 Context and objectives

As we have shown in the previous section 3.3, humans are able to combine incongruent
stimuli in a statistically optimal way, without the need for any conditioning (i.e., learn-
ing37) phase. This is why Bayesian modelling achieves good performance, yet it does not
explain how this can be achieved in the brain38. Our hypothesis is that the density of
sensors, or more generally the density of the representations, may somehow encode the
relative weight of a modality in the fusion. This is what we expected to observe in the
previous section by comparing an identity topology with a log-polar one, which has a

37There is obviously the learning of relevant multisensory correlated features at some point, but there is
no explicit learning dedicated to this task.

38Nevertheless, there are articles in the literature defending the Bayesian brain hypothesis, i.e. that the
brain performs Bayesian computation. However, at a computational level this is often intractable, e.g .
with the active inference framework [98], and at a neural level it is often based on the hypothesis that the
neural code uses Poisson coding [90], which is still the subject of much debate.

39



Chapter 3. Multimodal perception

higher density in the centre rather than in the periphery (which in humans is related to
the density of cone cells, which is higher in the foveal region). Unfortunately, there was
no statistical difference between the two, but this may be due to the experimental setup,
where the visual stimuli are not very eccentric and thus in a range where the difference
between the two projections may be marginal39.

Nevertheless we wanted to test whether such a mechanism of coupling spatial compe-
tition (with DNF) on topologies with different densities can provide to an artificial sys-
tem with the ability to automatically weight the modalities in a consistent perception40.
Moreover, projecting the inputs onto low-dimensional topologies may help to overcome the
limitation of DNF to scale to high-dimensional space [27]. This raises the question of the
DNFs’ ability to adapt to irregular manifolds while maintaining its decentralized decision-
making properties. Indeed, DNFs are based on stochastic integro-differential equations,
which are dynamical systems that can be sensitive to changes in their structure. Espe-
cially, the properties emerge mainly from the interaction induced by the kernel, which is
symmetric for each unit and isotropic in the field when used on a regular lattice. There-
fore, the vast majority of works using DNFs assume that the dynamics take place on a
completely regular topology and no previous work, to our knowledge, has applied DNF to
significantly unregular topologies.

3.4.2 Models and results

In these works, we first learn independent manifolds of the sensory space in each modality.
For this purpose, we use the Growing Neural Gas model [99], which learns prototypes that
are connected based on their co-activation, providing in the end a topology with a graph-
like structure. We then created one multimodal graph containing all nodes and edges of
each modality by connecting neurons of the different modalities that are co-activated by
multimodal stimuli. This multimodal graph is then used as a support for the DNF to
produce multimodal perception. The DNF uses the classical equation 3.1 except that the
distance function between two units is changed to be the minimum distance in number of
edges between two nodes in the multimodal graph (instead of the Euclidean distance as
before). Note that this allows the computation to be completely modality-agnostic and to
mix neurons that do not share a common coordinate system.

In our model, each neuron is tied to a specific modality, so its external inputs will be
modality specific (although the rest of the DNF operations will not be). To ensure that the
total amount of external stimulation is independent of the local resolution of a modality,
we will rank all neurons of a modality by their Euclidean distance to the stimulus, and
stimulate them in descending order of rank to divide the amount of activation between
them. The output will be the barycentre of the activity f(U) of the field. As there is no
shared space where the positions of the GNG nodes can be averaged, we will rely on the
input data to interpolate a corresponding position in the input spaces for each neuron to
compute the results.

39This is why we tested more eccentric stimuli in our experimental setup. The modelling has not yet
been completed, so we cannot yet confirm or refute our hypothesis yet. However, preliminary results from
data analysis in the active condition, where the participants are allowed to make a saccade (so the visual
stimulus should be better perceived as then located in the foveal region), tend to indicate that the weight
of the visual stimulus is indeed higher in this case.

40Note that in this case it is the topology that will help the DNF to obtain new properties, whereas
during my PhD thesis (see section 1.6.1) it was the DNF that provided the topological structure to learn
the multimodal features.
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Logpolar 2D vision and regular 2D audio. Related to the previous modelling in sec-
tion 3.3, we tested a log-polar visual sensory system with an uniform audio one. More
precisely, we take the coordinates of a visual stimulus in a regular 2D visual hemifield, and
displace them following the log-polar transformation. The new 2D coordinates are used
as inputs to the visual GNG. The audio is simply modelled as an uniform 2D space with
the same range as vision. The learned bimodal graph is shown in figure 3.6. We are then
interested in what a DNF would select when confronted to conflicting bimodal stimulus.
We place two conflicting stimuli A and B at a common azimuth x, and elevations −5° and
5° respectively. Both stimuli can be seen and heard, but A (respectively B) is 20% more
auditory (respectively visually) salient than B (respectively A). The results (figure 3.7)
show two trends. First, we can see that B (visually stronger) is indeed selected more
often than A at lower azimuths. Then A is preferred for higher azimuths. This illustrates
that the DNF relies more on vision near the fovea, based on the relatively higher density
of the GNG in this region. Secondly, we can see that the probability of A and B being
merged increases with the azimuth, as the global density decreases, meaning that the two
stimuli may be perceived as too blurred to be distinguishable. This phenomenon can be
controlled by the size of the excitatory kernel which determines the number of neurons
that are considered to encode similar inputs.
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Figure 3.6: Sample representation of a bimodal graph with log-polar visio and uniform
audio. Edges are coloured according to the modalities of the neurons they connect. Visual-
visual: black. Auditory-auditory: cyan. Visual-auditory: red.

Regular 2D vision and HTRF 100D audio We will show that the qualitative properties
of our model remain unchanged even with more complex sensory spaces. The auditory
space is based on HRTF, a function that associates spectral features (caused by interfer-
ences on the signal by the head and pinnae) to source orientations that can be used in
robotics [62]. Based on the data provided by [59], we computed 100-dimensional HRTF
inputs corresponding to an external stimulus position in 2D. For vision, we used a uniform
2D space that had a smaller range than the auditory space. Like in the previous scenario,
we tested the DNF with two stimuli A and B (see results on figure 3.8). This time they
are separated both horizontally and vertically. Stimulus A has congruent auditory and
visual components, while B is not audible but visually more salient by 1%.

In the visual-only graph, B largely prevails as expected, as B is more visibly salient.
However, it is worth noting that the 1% difference between them matters even considering
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Figure 3.7: Statistical model of modality priority change (logistic regression in black) and
stimulus merging (coloured logistic regressions). One point represents the barycentre of
the output of one of the three differently parameterised DNFs (green: σ+ = 2.5, red:
σ+ = 3, blue: σ+ = 3.5), on one of the 50 randomised GNG, with two bimodal stimuli A
and B at azimuth x and elevations ±5°.

that the topology is not entirely regular. In the audio-only graph, A is trivially selected,
but we can see some loss of precision in elevation: the barycentre is found 7◦ higher than
the actual stimulus. This is very consistent with the GNG obtained (see figure 3.9), where
the horizontal density is higher than the vertical one. In the bimodal graph, as expected,
the audiovisual congruent stimulus A is selected over the visual-only stimulus B. But, the
precision is improved, as the barycentre is also closer to the actual stimulus position than
in the audio-only case, meaning that the better perception in the visual elevation had a
positive impact.

Logpolar 2D vision and 100D HRTF audio projected onto 2D In order to test the limits of
our model, we combined and extended the topology irregularities of the two previous cases.
The vision is a log-polar 2D space, as in the first case. The audio is still a 100D HRTF, but
instead of learning a GNG directly, we learned a Sliced Wasserstein Auto-Encoder [134]
(SWAE), a representation learning algorithm whose 2D latent space is organised indirectly
by minimising the Wasserstein distance41 between the distribution of the input represen-
tations and a normal one. To be compatible with our model, we then learn a GNG from
the learned representations. We can observe that despite the regularisation of the SWAE
the topology is much less organised than previously (see figure 3.10). The bimodal graph
is learned as before.

To evaluate the ability of our model to deal with such irregular topologies, we mea-
sured the difference in localisation between the perceived stimulus and the real one (see
figure 3.11). For this purpose, we presented a stimulus (purely visual or purely auditory
or bimodal) at various regularly spaced azimuths (from -75 to 75) and elevations (from -30
to 30). In terms of visual precision, it is higher in the central region, which is quite logical
as there are more units there. The opposite is true for audition. Although there is no
specific reason for this regarding the inputs, the central region is the one that the SWAE
struggled the most to represent (see figure 3.10), which ultimately affects performance.
Bimodal performance lies between auditory and visual ones. As the DNF merges the per-
ception of the two modalities, this is somewhat logical, even if we could have expected to

41More precisely, this is approximated by a sliced Wasserstein, hence the name of the model.
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3.4. Multimodal perception with automatic weighting

(a) (b)

(c) (d)

Figure 3.8: Shades of grey reflect the neuronal potential U at each node that is represented
by a Voronoi cell in (a), (b) and (c). Red crosses indicate the barycentre of output
activation f(U) in the reconstructed 2D projection. (a) Visual-only neural gas with two
stimuli located at A and B, where B is slightly more salient. (b) Auditory-only neural gas
with only one input at A. (c) Bimodal neural gas with input as the sum of those used for
(a) and (b). (d) Zoom on (c) around A, where all nodes and edges are shown.

Figure 3.9: Sample of the auditory graph obtained from HRTF data. Note that the x-axis
and y-axis have different scales.

be closer to the best performance (either the visual in the centre, or the auditory in the
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Chapter 3. Multimodal perception

Figure 3.10: Sample of the auditory graph obtained from HRTF data when the GNG is
trained from a SWAE with a 2D latent space. Note that the two axes have different scales.

extreme periphery). We probably face here the current limitations of our model with such
an irregular (auditory) topology.
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Figure 3.11: Euclidean distance (with a logarithmic scale) between the real and perceived
position of the simuli with visual (V), auditory (A) or bimodal (AV) topology. For each
azimuth the distance is averaged over the 13 regularly spaced elevations.

This work was part of Simon Forest’s PhD thesis and led to two publications, one in
IJCNN [7], which can be found in appendix 6.6, and one in CNAI [41].

3.5 Conclusion and perspectives

In this chapter, I have presented our work on the question of how to obtain relevant
mutimodal perception, especially regarding the automatic weighting of modalities, from
structured, potentially learned, representations. We have chosen to consider this as a de-
cision making process that has to be coupled with spatially organised options that can
have different densities and thus reliability. More precisely we rely on DNFs, which are a
neural network model providing distributed and dynamic fusion and competition proper-
ties. In section 3.2 we reviewed various decision-making algorithms, from psychophysics
to robotics, to position the DNF within this panorama and to illustrate its versatile prop-
erties. We then used the DNF to model data from a psychophysical task of audio-visual
merging in section 3.3. It allows to bridge the gap between some neuronal substrates
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and the behavioural property of optimal combination of stimuli observed in humans. It
thus provides an actual implementation of this mechanism whereas the classical Bayesian
model is limited to a description at the population level. Finally in section 3.4 we adapted
the DNF computation to irregular topologies. Thus, multimodal perception, tested on
simulated but somehow realistic inputs, automatically relies on the modality that has the
denser topology and consequently the higher precision.

Obviously there are multiple perspectives on these works.
Regarding the modelling part, the direct following is to test our model on the (spatial
and temporal) data that we obtained in the AMPLIFIER project in our psychophysical
experiment with more spatially distributed stimuli and with an active condition. This last
aspect will be particularly interesting to model as it will involve areas with multiple visual
densities (first the periphery then the centre after the saccade) with a dynamic setting of
temporal accumulation of cues that could fully exploit the dynamic properties of the DNF.
It would also be an opportunity to explore the combination of multisensory fusion with
action selection within an active perception framework, possibly combined with dedicated
multisensory attention mechanisms that are not yet fully understood in humans. Testing
other psychophysical setups (other senses or different tasks, such as categorisation instead
of localisation) and including other elements in the modelling to better match with the
current neuroscientific knowledge of neuronal pathways would also be interesting research
axes.
Much work remains to be done on combining learned topologies with DNF especially to
validate this mechanism with more realistic inputs and complex topologies. This should
require an adaptation of the representation learning and/or of the computation of the
DNF. This is part of my research project, which I will detail in the section 5.2.
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4 Incremental and active learning

4.1 Introduction

We have seen in the previous chapter 2 how to learn (visual) structured representations
and in chapter 3 how to obtain multimodal perception as a competitive mechanism relying
on spatially organised representations. If we step back to the context of autonomous agents
(figure 1.2 in the introductory chapter), the next aspect to consider in the sensorimotor
loop is the action to be taken. This is a less studied part of my research, yet I will develop
it in the perspectives section 5.2. We have already considered action to some extent in the
previous chapters. Indeed, we have shown that it can be useful to learn relevant represen-
tations, in relation with the sensorimotor theories, and that a decision-making algorithm
can be the support for multimodal merging, while active perception may play a role in
the process. This chapter will still focus on representation learning, but where action,
through data modification, is one of the central research questions. This modification can
be ambivalent, as by changing the distribution of the data the independent and identically
distributed hypothesis on which most machine learning methods rely is then invalid and
can thus provoke catastrophic forgetting [97], but at the same time the model can focus
on more relevant inputs via active learning mechanisms to improve its performance.

Active learning is a vast area of research that study what action strategy a system can
adopt to improve its absolute performance or reduce the time it takes to achieve it [178].
This can encompass, for instance, requesting of a label from an oracle for unlabelled data
or selecting the next data to process. These two questions can also be intertwined when
the system interacts with an environment, as the receipt of new data is often associated
with some kind of label (e.g . in robotics when learning to move an arm, the sampled data
is the motor action and the corresponding perceived position) or reward in reinforcement
learning. Depending on the domain, the implementations and objectives of the active
strategy may differ. For example, in supervised learning a classical goal is to reduce the
uncertainty about the error made [178], while in reinforcement learning it is widely used
as a pretext task to favour exploration or skill discovery [64], which is also the case in
robotics where intrinsic motivation guides the robot towards learnable areas [163]. While
part of my post doctoral work focused on coupling the intrinsic motivation mechanism with
representation learning to improve performance and exploration time (see section 1.6.1),
the works I will present here in section 4.2 use off-the-shelf active learning mechanisms
to avoid learning spurious correlations, which can significantly affect classification per-
formance (section 4.2.1) or to improve algorithmic learning, which is a hard problem for
current deep learning architectures (section 4.2.2).

When considering autonomous agents, we want them to exhibit lifelong learning [146],
i.e. the ability to adapt to unknown contexts, environments, tasks, etc., without requiring
much human feedback or substantially forgetting previous knowledge. While desirable, this
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4.2. Active learning

is a rather broad, ambitious and somewhat fuzzy goal. We will focus here on continual
learning, which still encompasses a wide variety of objectives, depending on what aspects
of the dataset change and what information is provided during training and testing [204].
In increasing order of difficulty, the content of the batch can change (instance-incremental),
which can also be called online learning. The domain of the input can also change over time
(domain-incremental), which is somehow a problem of domain adaptation during training.
Then the task (defining the labels) can also evolve. The identity of the task can be given
during training and testing (task-incremental), only during training (class-incremental),
or never given (task-free continual). Finally, data can arrive in a stream (online continual)
and tasks may overlap (blurred boundary continual). Moreover, continual pre-training
learning focuses more on transfer to downstream tasks. Overall, one of the main underlying
research question is the stability-plasticity dilemma, as the model is expected to retain
some performance on previous tasks/data while being able to adapt to changes. This can
also be seen as a problem of generalisation across data, domains and tasks.

Within this panorama, we proposed a contribution to task-incremental learning42 with
some aspects of online continual learning, which is one of the most difficult contexts.
Moreover, as we were interested in what an autonomous agent may experience while
evolving in unknown environments, this was done in an unsupervised setting, which is
rarely studied in the literature. More specifically, examples from each class are presented in
a sequential order and can then reappear. For this reason, we call this unsupervised class-
incremental learning43 problem. More precisely, the main research question we studied was
how to structure the representation space to support the detection of new or reappearing
classes (section 4.3).

4.2 Active learning

4.2.1 Biased datasets with spurious correlation

Context and objectives In supervised learning (which also includes SSL approaches with
discriminative objectives that I presented in chapter 2), machine learning methods, and
especially deep learning, tend to converge towards simple correlations between input and
output. When these are not expected44 (e.g . the model will rely on the blue background
to recognise a bird) they are considered as spurious correlations and the models use them
as shortcut learning [103]. In this work, we are interested in supervised learning in the
context of biaised image datasets, which is to be understood in the sense of (artificially)
included spurious correlations within the dataset, and not in terms of any gender or skin
colour bias, which are serious societal issues, that are addressed with more formal (in a

42In our unsupervised context, the distinction between task-incremental, class-incremental and task-free
continual somehow fades away.

43This does not perfectly match the nomenclature of [204], that I reported here, where class-incremental
would consider that labels are provided during training. However, these definitions were proposed after
our work, and this name is aligned with the terminology used in [201], where they defined various kinds of
tasks, with class-incremental as the one where the task is not given and has to be retrieved from the data,
which is our use case.

44From the perspective of an autonomous agent, any correlation that can perform the task can be
considered a good and beneficial solution. The disappointment from the designer’s point of view may come
either because the representations are not aligned with his/her (projected) ones, or because they are not
relevant to solve other tasks that may not have been adequately incorporated in the data and/or the loss
function.
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mathematical and/or moral sense) approaches that define what a fair decision would be.
In this case, the performance of classical deep learning methods may experience a huge
drop [145] so that dedicated approaches have to be proposed.

As for continual learning (see section 4.3), models use three levers (data, regular-
isation/optimisation of the loss function, architecture), yet often mixed, to tackle this
problem. Some models try to correct the data to at best remove the bias, which has to
be characterised beforehand, directly at the pixel level [205] or using the image represen-
tation [145]. When knowing the kind of bias present in the data, multiple models add
to their architecture a naive model that learns this bias. It can then be used to modify
the distribution of the data to favour those that maximise the uncertainty in this naive
classifier [147], or to act as a repeller regularisation term during the training of the real
model [66, 88]. In the latter case, the naive classifier can be replaced by a dedicated loss
that learns the bias [215]. If each image is labelled as biased or not, the loss can also be
modified so that images with similar biases can be forced to be represented differently [198].
Finally, if nothing is known about the bias, a way is to rely on an indirect cue, such as the
degree of confidence of the classification. For instance, RUBi [81] uses this indicator to
retro-propagate a low gradient for examples with a high degree of confidence, which may
correspond to the biased ones, as they are easier to classify. This last case is the one we
were interested in, as it provides less information to the system, and we proposed a similar
approach, but using an active learning mechanism to update the data distribution rather
than changing the learning process.

Model and results Our Image Representation Avoiding Naive (ImRAN) learning proto-
col is rather simple (see algorithm 1). After each epoch, we evaluate the error of each
example averaged over its augmented versions (line 5), to determine, proportionnally to a
predetermined maximum value and with a sliding average mechanism, the number of oc-
curences it will be present in the dataset for the next epochs (line 6). To avoid overfitting,
the data are augmented with some Gaussian noise to add some variation (line 7). The
underlying idea is that, when the model learns the bias, unbiased data will have a high
error rate, so that increasing their number of occurences will penalise the model more, and
thus forcing it to learn the non-spurious correlations.

Algorithm 1 Pseudo code of ImRAN learning

Di : training dataset (tuples (input, label)) at epoch i, with D0 the initial one
n ∈ N : number of training epochs
K ∈ N: maximum number of duplications
C ∈ (0; 1]: exponential average hyperparameter
σ ∈ (0; +∞): the standard deviation of the Gaussian noise

1: for i = 0, i < n, i+ + do
2: learn(Di)
3: Di+1 ← ∅
4: for all d ∈ D0 do
5: A← AllAugmentedExamples(d,Di)
6: nbCopies← d(AvgErrorRate(A)× (K − 1) + 1)× C + |A| × (1− C)e
7: Di+1 ← Di+1 ∪ {d+N (0, σ)}j∈[1,nbCopies]

8: end for
9: end for
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We tested a classical CNN trained with or without ImRAN and compared it to state-
of-the-art models on the Biased MNIST dataset [66]. The dataset is similar to MNIST
except that the background is coloured with each of the 10 colours associated with a digit
with some ρ probability (see figure 4.1). The results (see table 4.1) show that our method
improves the vanilla CNN in all cases and is better than the other methods when the
dataset is highly biased. We initially wondered whether the active learning mechanism
may also increase the proportion of hard to impossible to learn examples, a phenomenon I
observed during my post doc on another use case, which would have hindered performance.
This do not appear to be the case, at least on this dataset, and we have to validate this
result on harder ones.

Figure 4.1: Examples from the Biased MNIST dataset. Each digit is associated with a
unique background colour with probability ρ and a random colour from other digits with
probability 1 − ρ, creating a spurious correlation (the colour) to predict the digit. When
ρ = 0.1 the dataset is unbiased as the background colour is no longer correlated with the
content.

ρ Vanilla LearnedMixin [88] RUBi [81] ReBias [66] ImRAN

0.999 10.4 12.1 13.7 22.7 44.2 ± 2.8
0.997 33.4 50.2 43.0 64.2 74.8 ± 2.2
0.995 72.1 78.2 90.4 76.0 82.7 ± 1.3
0.990 89.1 88.3 93.6 88.1 90.5 ± 0.5
0.100 99.2 54.6 99.3 99.3 99.0 ± 0.1

Table 4.1: Accuracy of various methods on the Biased MNIST dataset as a function of
the fraction of spurious correlation.

This work was part of Alexandre Devillers’ PhD thesis and led to a publication at the
CAp national conference [40], which can be found in the appendix 6.7 (in French) .

4.2.2 Algorithmic learning with a multi-task approach

Context and objectives Algorithmic learning may be a way to provide more adaptability
in solving any task that can be expressed as a Turing machine. In theory, recurrent
neural networks are already Turing complete [189], but they struggle with trainability
problem, i.e. the ability to learn complex problems effectively and efficiently end-to-end.
Dedicated architectures such as the Neural Turing Machine (NTM) [109], which adds
specific mechanisms such as a memory and differentiable ways to read and write it, have
been proposed, but also appear to be difficult to train in practice.

In this work, we have chosen to focus on arithmetic operations, and more specifically,
the multi-digit multiplication of two decimal numbers as an illustrative problem. Yet
being simpler than learning any algorithmic task, it also exhibits the problem of inferring
long-term dependencies due to carry propagation, which affects the performance of deep
learning models [185]. Multi-purpose large language models are able to handle some
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mathematical operations, but this is only one of the evaluation tasks and the performance
is highly correlated with the frequency of the terms in the pre-training corpus [176]. In
the literature, some works have proposed dedicated architectures for arithmetic operations,
such as the neural GPU [128], which shares similar ideas with NTM. Sometimes dedicated
modules were considered such as in [85] that learns the hierarchical combination of single-
digit pre-trained tasks using reinforcement learning, or in [200] that proposed Neural
Arithmetic Logic Units that use specific activation functions such as log, exp, etc. to more
easily extrapolate learning to large domains. Other works also considered representing the
problem in an efficient way, for instance using a prefix notation [141].

These approaches often fail with multi-digit decimal multiplication (or do not explicitly
target and evaluate it). Moreover, we were more interested in studying the training proce-
dure itself. In a previous article [10] we proposed to decompose the arithmetic processing
flow into successive 1-digit operations, so that the model computes and learns iteratively
by feeding back its previous output, which can be considered as a kind of teacher forcing
with external recurrence (since the network was not an RNN but an MLP). Here we pro-
posed to learn the task end-to-end by combining a kind of multi-task learning (without
an additional layer dedicated to each task) with an active learning strategy between these
tasks.

Model and results In this work we considered the decimal multi-digit multiplication of
two operands with at most n digits. It is composed of n + 1 sub-tasks: n single-digit
multiplications and 1 final addition of the partial multiplications (see figure 4.2). We used
a Seq2Seq model [196] (see figure 4.3), which is learned classifically with teacher forcing
from the inputs/output pairs of the current task (see figure 4.2b) choosen with an active
learning mechanism similar to the one in section 4.2.1 to favour the learning of harder
sub-tasks. More precisely, the probability of choosing a sub-task (among the set of all
tasks) is a moving average, with a uniform probability between the sub-tasks by default,
updated with the relative proportion of errors of each task.

0023 (1)
× 0048 (2)

0012 (3)
0184 (4)
0010 (5)

+ 0920 (6)
0110 (7)
1104 (8)

(a) Lines (1) and (2) are the two operands. Lines
(3) and (4) (respectively (5) and (6)) represent the
carries and the result of the 1-digit multiplication
of 8 (respectively 4) by 23. Lines (7) and (8) are
the carries and the result of the addition of lines (4)
and (6), i.e. the result of the global multiplication.

Task Inputs Output

st1 (1//2) (3//4)
st2 (1//2) (3//4) (5//6)
st3 (1//2) (3//4) (5//6) (7//8)
e2e (1//2) (4 empty lines) (7//8)

(b) Sub-tasks and end-to-end task associ-
ated with the multiplication of two 2-digit
operands. Lines are read and written two at a
time (”//”). For the end-to-end task, we added
empty lines to make it distinguishable from
sub-task 1 and to add some computational
power to the network, via the recurrence.

Figure 4.2: Example of a multiplication of two 2-digit operands and its associated tasks.

We can see from the results (table 4.2) that our training procedure improves the per-
formance of the network, especially for the 4-digit operands setting, where the carry prop-
agation is the longer. Moreover, we can even increase the performance by fine-tuning the
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Encoder

LSTM LSTM LSTM LSTM LSTM
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0
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LSTM

<eol>

0
0

Decoder

Hidden
state

0023
0048

0023
0048

0023
0048

0023
0048

Figure 4.3: Seq2Seq architecture. The encoder receives successively from right to left the
two digits (here boxed) of two lines (here the operands 23 and 48). From the encoder
embedding, the decoder recurrently produces the digits, from right to left, of the next two
lines (here the carry and the result of the first intermediate multiplication 8 × 23). In
practice, each digit is encoded as a one-hot vector.

model on the end-to-end task only. Interestingly, this fine-tuning only works when the
end-to-end task was also included in the set of tasks learned during pre-training. So, this
seems to indicate that our multi-task active learning somehow favours the transfer from
the sub-tasks to the end-to-end task. We also validated the robustness of these results to
the number of empty lines given as complementary inputs for the end-to-end task (not
shown here).

3-digit operands 4-digit operands

trained on end-to-end only (Vanilla) 4.05% ± 1.72% 92.42% ± 3.64%
trained on sub-tasks & end-to-end 3.33% ± 1.32% 23.34% ± 14.69%

fine tuned + pre-trained on sub-tasks & end-to-end – 6.68% ± 4.31%
fine tuned + pre-trained on sub-tasks – 73.31% ± 11.10%

Table 4.2: Error rate on the end-to-end multiplication task over 10000 operations.

This work was part of Anthony Baccuet’s master thesis and led to a publication in
the AIC workshop [28], which can be found in the appendix 6.8 .

4.3 Unsupervised class-incremental learning

4.3.1 Context and objectives

In this work, we were interested in continual learning, a domain where several approaches
have been proposed, whch can be grouped into different categories that are not mutually
exclusive and can be combined [204]. First, some are based on mitigating the problem
of data distribution changes. This can be obtained with replay-based mechanisms that
complement the content of the batch with examples of previous tasks, either recorded or
generated [174]. These approaches may be difficult to scale to large numbers of tasks as the
amount of data to be recorded or generated increases, that is why some models propose to
impose a fixed memory usage [60]. Representation-based approaches use SSL as a pretext
or pre-training task, which indirectly mitigates the problems of distribution changes as
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the SSL loss does not depend on the task [121]. Second, other models try to limit the
catastrophic forgetting that results from classical learning methods. This can be achieved
by some regularisation, typically limiting the changes in the weights [132], especially those
that were most involved in the previous tasks. Optimisation-based approaches propose to
modify the learning rule to include some (mathematical) constraints, for instance orthog-
onality [84] over the gradient landscape. Finally, some approaches consider changing the
architecture, either by distributing the available ressources among the different tasks [150]
or by adding some free parameters [211] each time a new task arrives, which may also face
some computational limitations when the number of tasks is high.

Most of works have been on supervised learning, where the main research question is
how to learn relevant features that can evolve over time whitout forgetting previous ones.
When considering an unsupervised setting, as we did, the other questions that arise are
the ability to detect novelty, which often rely on the output scores of the classifier [105],
but also to identify previously seen categories, which is somehow a (internal) classification
problem. In the unsupervised continual learning literature we were particularly interested
in the Continual Unsupervised Representation Learning (CURL) architecture [174], which
is based on a Variational Auto-Encoder (VAE) architecture (as we used in section 2.2.1.2),
except that the latent space is an incremental Gaussian Mixture Model (GMM) and some
generative replay is used to mitigate forgetting. Our work studied how to couple the struc-
tured representation learned by this latter architecture with statistical methods applied
to its latent space to detect new categories and recognise previous ones in order to better
construct the GMM.

4.3.2 Model and results

The CURL architecture [174] uses an unsupervised ELBO loss for training, while the ad-
dition of new components is triggered when the log-likelihood of the input estimated with
the loss is below a certain threshold. We proposed to replace this mechanism with some
statistical tests. More precisely, we used a Hotelling t2 test [120] to compare the empirical
(assumed Gaussian) distribution of the representations of the inputs (computed on the
batch) with that of each of the existing components (with stored mean and covariance).
Based on the results of these tests, we either affect the batch to the best-matching compo-
nent (and update its mean and covariance with a moving average) or create a component
one if all tests are below some threshold45 (with mean and covariance initialised with those
of the batch) and train the model with a supervised ELBO loss46. Thus, we tried to ob-
tain one component per class, for an automatic discovery of the number of classes, whereas
CURL’s initial aim was more to have the best modelling of the distribution in the latent
space, thus allowing more components in the GMM. Moreover, we studied a preliminary
version based on a Page-Hinckley test, which accumulates evidence of drift in the ELBO
loss to detect the presence of new components, but without determining whether it is a
category seen in the past or not. We proposed another alternative version of our model
that combined the Page-Hinckley test to detect a new class, and used the Hotelling test
to determine the correct component when necessary.

45In practice, as in CURL, we used a buffering mechanism to store a certain number of batches to have
enough representativeness before creating the component.

46In their article, the authors of CURL have already proposed a supervised version of their model, for
comparison purpose. This is the one we are based on, but with a label that is self-supervised by our
statistical tests.
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model AMI ARI homogeneity components accuracy accuracy
(batch) (instance)

CURL [174] 0.6± 0.06 0.42± 0.09 0.66± 0.05 20.0± 2.2 0.92± 0.02 0.72± 0.04
SOINN47 [100] 0.54± 0.02 0.16± 0.01 0.82± 0.04 126.7± 9.4 1.0± 0.0 0.86± 0.04
STAM48 [192] 0.81± 0.01 0.73± 0.01 0.81± 0.01 11 0.89± 0.0 0.84± 0.01

Our HT 0.78± 0.01 0.77± 0.02 0.78± 0.01 11.0± 1.4 1.0± 0.0 0.89± 0.01
Our PH+HT 0.77± 0.01 0.75± 0.02 0.77± 0.01 10.0 1.0 0.88± 0.01

Table 4.3: Results on the MNIST dataset (averaged over 3 runs). We used metrics related
to clustering (as our training is unsupervised) and accuracy by labelling our components
afterwards with a majority vote in each component. Accuracy by batch is either a voting
mechanism or the result of our statistical test for our models.

model AMI ARI homogeneity components accuracy accuracy
(batch) (instance)

CURL [174] 0.47± 0.01 0.19± 0.02 0.62± 0.00 55± 5.0 0.9± 0.00 0.63± 0.01
SOINN [100] 0.45± 0.00 0.15± 0.01 0.63± 0.02 74.0± 8.5 0.9± 0.02 0.67± 0.01
STAM [192] 0.66± 0.01 0.48± 0.02 0.62± 0.01 9 0.74± 0.04 0.66± 0.02

Our HT 0.56± 0.01 0.39± 0.01 0.53± 0.00 21.3± 1.3 0.73± 0.05 0.61± 0.01
Our PH+HT 0.55± 0.02 0.39± 0.01 0.53± 0.02 11.7± 1.9 0.79± 0.09 0.62± 0.02

Table 4.4: Results on the Fashion-MNIST dataset (averaged over 3 runs).

We tested our model on the MNIST [144] and Fashion-MNIST [208] datasets. For both,
during learning, we first presented batches of each of the 10 classes in random order (to
test the ability to detect new classes), then presented the same 10 classes again in the same
order (to test the ability to recognise previous classes). The results are shown in tables 4.3
and 4.4. On MNIST, both our models achieved competitive performances against the other
models, especially when considering the automatic discovery of the number of classes.
On Fashion-MNIST, the best accuracies were obtained by models that had too many
components with respect to the actual number of classes. Our model, which combines the
two tests, detected a number of classes close to the real one, while being competitive with
STAM on the accuracy metrics. A direct perspective would be to extend the evaluation
to other more challenging datasets, while mixing new and previously seen classes during
learning.

This work was part of Ruiqi Dai’s PhD thesis and led to two publications, one in IC-
TAI [8] and one in ICONIP [9], which can be found in the appendix 6.9 .

4.4 Conclusion and perspectives

In this chapter I presented some of my works on the temporal dimension of learning, which
is essential when considering an agent interacting with its environment. More precisely
I focused on the temporal evolution of the dataset, which is either controlled by active
learning or has to be managed when facing incremental learning.
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I showed that the use of active learning, by focusing on the examples that are not well
mastered, can improve performance when facing a biased dataset to mitigate the learn-
ing of spurious correlations (section 4.2.1). The model is currently quite simple and can
therefore be greatly improved, either in the way it detects interesting examples (e.g . based
on the representations), or in the way it generates new examples (e.g . using generative
techniques or augmentations). However, we did not really push in these directions, as
some of these ideas were explored in [57], which was published shortly after ours.
Active learning can also help the transfer from sub-tasks to the end-to-end task of multi-
digit multiplication (section 4.2.2). Future works will focus on understanding more pre-
cisely this dynamic of transfer between tasks during training, as the combination of tasks
is a key element for algorithmic learning. Another perspective is to apply such a learning
mechanism to other algorithmic procedures to study if it is applicable and generalisable
to different operations, possibly with transformer architectures. Moreover, another in-
teresting research question would be to automatically decompose the task into relevant
sub-tasks, through trial and error and via learning by demonstration.

In section 4.3 we proposed the combination of simple statistical tests with a repre-
sentation learning algorithm to detect new or reappearing categories in the context of
unsupervised class-incremental learning, which is barely studied in the literature. Much
work needs to be done to improve the overall performance, especially to deal more accu-
rately with components drift, to be able to disentangle close classes, and to try to obtain
these properties with a fixed computational footprint. In relation to my other research in-
terests, the use of instance discrimination SSL methods to better structure the latent space
(see chapter 2) or to use active learning strategies may also be interesting perspectives.

More globally, I would also like to study the coupling of (inter)action with representa-
tion to improve and structure learning, but also perception. This will partly be explored
within the framework of sensorimotor theories (see the perspectives section 5.2 for more
details).
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5.1 Conclusion

5.1.1 Summary

In this manuscript I presented my main contributions of the last 10 years as an associate
professor in the SyCoSMA team. My research axes are in between cognitive science/neuro-
science and artificial intelligence, with a clear focus on the latter. While my initial research
work during my PhD was in computational neuroscience, bringing a computer scientist’s
view to some computational and learning mechanisms of cortical structures, I then grad-
ually drifted towards machine learning, also related to computer vision. I still keep some
links with neuroscience and cognitive science, and a stronger one with psychophysics, but
I use them mainly as a source of inspiration to gather more evidence on brain processing
to transfer them to artificial systems. My research topics are thus interdisciplinary, which
is facilitated and supported by my (re)current collaborations with colleagues from other
fields.

In chapter 2 I presented some works on representation learning of images using self-
supervised learning (SSL) methods. First, I showed preliminary works on an approach to
automatically construct semantically related pairs of proto-objects from a simple saliency-
based mechanism for learning visual representations, and on a study dedicated to the
role of action in the structure and learning of relevant representations when receiving
visual glimpses from an image. Second, based on these ideas, we proposed a new module
relying on equivariance, i.e. a transformation of the embedding that can be predicted
from the augmentation applied to the image, that can be plugged into any state-of-the-art
SSL architecture. By increasing the amount of information from the input that has to
be preserved in the representations, as they have to be projected onto two spaces, one
invariant and the other equivariant to the augmentation, it improves the classification
performances and opens the way to more general and transferable features. Finally, we
have systematically studied the structures of representation that emerge from instance
discrimination methods. We empirically observed that they are organised in a way that
favours discrimination between classes, with high intra-class similarities and low inter-class
ones, while trained on a loss of instance discrimination. While this mechanism is not fully
understood, these observations may help to improve SSL methods and open some research
questions on the transferability of this structure to various downstream tasks.

In chapter 3, I presented a model for multisensory fusion with a decentralised com-
petition/fusion mechanism based on dynamic neural fields (DNF), which relies on topo-
logically organised representations of the sensory spaces. We first proposed an integrated
framework to highlight the similarities of DNF with other decision-making algorithms
from psychophysics to robotics, and illustrated its versatile spatio-temporal properties on
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a benchmark of various scenarios. We then used it to model the audio-visual fusion of
human participants in a psychophysical experiment of auditory localisation. They achieve
similar results to classical state-of-the-art modelling based on Bayesian inference, while
being more grounded in neuronal substrate. It also opens the way to modelling behaviour
at the level of the participant rather than the one of the population, and could be made
compatible with active perception mechanisms. Moreover, coupled with topology learn-
ing of the sensory space, we validated that the properties of the model are qualitatively
preserved until the topology becomes too distorted. More interestingly, we showed that
the importance of a signal within the fusion can rely on the relative density of the learned
topology, which can be related to the density of the sensors. This mechanism has yet
to be validated on our empirical psychophysical data. Nevertheless, it could be used to
autonomously and online evaluate of the relevance of a sensor for multimodal perception
in artificial agents.

Chapter 4 was dedicated to the temporal component of learning. In the first contri-
butions, we proposed an active learning mechanism that increases the frequency of poorly
classified examples/tasks in the training dataset for the next epochs. Although this mech-
anism is quite simple, it improves the classification performance when the dataset is highly
biased by helping the model to avoid learning of spurious correlations. A similar mech-
anism, coupled with some kind of multi-task learning, improves the performance of the
end-to-end learning of multiplication. Interestingly, it somehow induces a transfer from
the learning of sub-operations to that of global multiplication. The second contribution
is in the context of unsupervised class-incremental learning. We proposed to augment a
variational auto-encoder architecture, which uses a mixture of Gaussians to model each
component of the distribution, with statistical tests to detect new or recognise previously
encountered components within the input stream. This allows to automatically discover
the right number of presented categories while maintaining reasonable classification per-
formance.

5.1.2 Integrated view

All these works can be regarded as various contributions to the improvement of machine
learning methods, mainly related to unsupervised learning of structured representations.
However, here I want to replace all these pieces of work alltogether as a coherent puzzle
within the broader framework of an autonomous agent interacting with an environment
(presented in the introductory section 1.5), which is really driving my current and future
researchs.

At a more applied level, to build such an agent, if we rely on the robotics community,
we need sensors, actuators, and a cognitive system (to process signals, to take decision,
to reason)49. As a computer scientist, I will focus on this last part, leaving aside the
hardware (which drives many other research questions in automatic control, mecatronics,
robotics design, etc.), which includes (but is not limited to) the following elements and
their associated research questions:

� a perceptual system. Chapter 2 targets to learn better visual representations that
could be used to improve scene understanding. Moreover, chapter 3 focuses on

49This is a slightly different way of grouping the various skills than the one proposed by Minsky in his
definition of AI (reported in the introductory chapter 1) “perceptual learning, memory organization and
critical reasoning”.
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improving multisensory perception by considering the relevance of each signal within
the fusion. Finally, chapter 4 considers incremental learning, which is the kind of
issue that appears when considering a continuous interaction with an environment.

� a decision-making system. Multisensory perception, presented in chapter 3, is consid-
ered as a dynamic decision process between multiple incongruent choices. Chapter 4
also considers decision making with the aim of selecting the examples that would
improve the learning of the representation, or when to create a new category.

� a cognitive/reasoning system. Although not directly addressed in my work yet,
chapter 2 proposes to learn richer and more general representations, which can be a
good building block for making sense of the surrounding environment. Moreover, by
integrating augmentation into the representation, this can be made compatible with
the learning of a world model, allowing predictive and anticipatory behaviours.

On a more fundamental level, actions play a crucial role in cognitive processes, as
stated for example in the enactivist position mentioned in the introductory chapter 1 or
in the sensorimotor contingencies theory [161]. Although this aspect is not (yet) deeply
integrated into my research work, my contributions can also be analysed through this
prism.
In chapter 2, we studied the question of integrating action into the representation with a
simple architecture and use case that gave results in favour of this integration. Moreover,
the augmentations used to construct pairs of related inputs in visual discrimination SSL
methods can be, to some extent, conceived as the result of an agent’s action on the envi-
ronment [138]. We have thus also shown that using the action in the representation, via
the equivariance module, helps to achieve better performance.
In the AMPLIFIER project, whose current results are presented in chapter 3, we aim
to study how active perception influences multisensory fusion, which is an ongoing work.
Considering the psychophysical experiment, we build a new protocol for the ventriloquist
effect that has two conditions. The first is passive, where the participant has a fixed gaze,
and the second is active, where he/she is allowed to make a visual saccade. The research
hypothesis we want to test, in line with the work presented here, is that after the saccade
the sensory precision of the visual input will improve (as the stimulus will be located closer
to the fovea, where the density of sensors is higher) and thus its weight in the fusion will
also increase. Preliminary statistical analyses of the data seem to confirm this hypothesis.
On the modelling side, we want to incorporate a new part that will decide where and when
to saccade, for the model to fit the empiral data on fusion localisation but also on saccadic
position and timing. This module will directly use dynamic neural field activity, as it has
already been shown in the literature that such a system can model the various dynamics
of saccadic movements [170], although not in a multisensory context.
In chapter 4, I presented an active learning mechanism that can be interpreted as choosing
an action (picking the right sample from the dataset) to improve the learning of repre-
sentations. This kind of mechanism can also be applied when there is an environment to
explore, as it was the case during my post doc [17]. In this case, the better action may not
be to pick examples with a high prediction error, but rather those with a high decrease
in prediction error. Indeed as some part of the environment can be unpredictable, a high
error can reflect either that the model has not yet learn properly or that there is nothing
to learn here. Such a mechanism is often called intrinsic motivation, a concept related to
developmental psychology [164].
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To summarise, on an applied level, all the works presented could be coupled as pieces
required for an autonomous agent, yet a lot is missing, opening new research questions
beyond the practical integration of these various models. On a theoretical level, my re-
search is aligned with sensorimotor theories of cognition, which raises the question of the
potential benefits of more deeply integrating their principles into models of multisensory
learning and perception of the environment. All of this is developed in more detail in the
perspectives section 5.2.

5.2 Future works

5.2.1 Positionning

Recent advances in AI have been made possible thanks to the increase in the size of datasets
(either with larger labelled datasets, or with architectures and training techniques that can
exploit the vast amount of unlabelled data available on the Internet) and the increase in
computing power, which, combined with dedicated deep learning development frameworks,
allows large models to be run in a reasonable amount of time. While AI models achieve
superhuman performance in many well-defined domains (Go, Atari games, traffic sign
recognition, text translation, etc.), they are clearly very far away from human or most
animal abilities in terms of adaptability, robustness, common sense, theory of mind, etc.,
not to mention fine motor control skills.

Some researchers are deeply convinced that we have to continue to push in this direction
towards larger datasets and larger models to unlock (some of) these missing properties.
This has been the case to some extent in natural language processing, where the large
language models (LLMs) achieve high levels of reasoning and understanding.50 However,
although the larger models are still about 3 orders of magnitude smaller than the human
brain, they are larger than the brains of many animals and have access to an amount
of data (on the specific task it was trained on) that is certainly much larger than what
humans have access to.51 Moreover, relying on datasets or artificial environments (with
the reality gap problem well known in robotics) calls into question the theoretical possi-
bility of obtaining representative data for any task in any context, especially if we want
our model to have some degree of autonomy in defining its own goals, or to be able to
access some intrinsic properties of objects, such as weight or softness, that require manip-
ulation [160]. Thus, I argue that there is (at least) one key element missing to really push
forward the performance of artificial intelligence, at least if we target to obtain it with
computational and data ressources on the same scale as those used by animal and humans.
As stated in [114], there is “a fundamental misalignment between human and typical AI
representations: while the former are grounded in rich sensorimotor experience, the latter
are typically passive and limited to a few modalities such as vision and text”.

Based on my research interests and academic career, I propose to try to overcome this
limitation by studying how we can draw inspiration from the literature on how humans
and animals make sense of the world. When studying how human babies learn, we can
observe that they explore their environment through actions that shape the multimodal
experience of their embodied cognition [193]. More generally, actions have a fundamental

50I confess that I would not have bet on such success “only” by pushing statistical learning on textual
datasets, and that it would have required another ingredient in the way language processing is conceived.

51This was the same for Do as AlphaGo zero was trained on 4.9 million games [190], which should have
taken more than 500 years for a human playing 13 hours a day with a game duration of 30 minutes.
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place in the learning of representation. One of the most well known illustrations of this key
role is the kitten carousel [116]. In this experiment, two kittens experience the same visual
stream by being attached to either side of a carousel in a simple environment composed of
alternating vertical white and black lines. However, one kitten controls the displacement
of the carousel axis by walking, while the other goes passively with the flow. The kittens
were placed in this environment for 3 hours a day for 8 weeks. At the end, the passive
kittens failed simple visual tests, while the active ones passed them as normal.

In psychology, the fundamental intertwining of action and perception dates back to
William James’ ideomotor theory (where actions are represented by their perceptible ef-
fects), Piaget’s theory of sensorimotor development [167] (where skills are progressively
constructed through interacting with the environment), as well as Gibson’s theory of af-
fordance [106]. In the latter, an object is defined not by a set of perceptual properties (as
green leafs and a brown trunk for a tree e.g .), but by the potential ways of interacting
with it that are elicited in the agent (sitting down to read and have a shadow for a human,
resting or getting food for a bird, hidding for a cat, etc.). These ideas have been extended
in both the interactivist [72] and active inference [98] frameworks. In my research project,
I am more interested into the SensoriMotor Contingencies Theory (SMCT) [161], which
combines coherent pieces of evidence from neuroscience and psychology into a unified
framework with some implementable statements. The key claims are about:

� regularities, with Sensory Motor Contingencies (SMCs) defined as “the structure of
the rules governing the sensory changes produced by various motor actions” [161]

� active perception as the “organism’s exploration of the environment that is mediated
by knowledge of SMCs” [159].

This may sound very close to classical concepts of pattern/feature learning, active
learning/perception and the reinforcement learning framework. However, a radical con-
ception of SMCT is a paradigm shift, as instead of looking for the right representation to
act, we have to look for the right action to perceive within a dynamic interaction with
the environment. To try to make the difference clear, let me rephrase an example given
by K. O’Regan, who proposed SMCT. In traditional AI, the concept of a straight line is
learned as the co-activation of the visual sensors aligned with this line, whereas in SMCT
it is defined as the invariance of the change in all visual sensors due to a movement in a
direction following this line. Some of these concepts have already been successfully applied
to some extent in the field of machine learning. For example, learning sensorimotor corre-
lations improves object recognition and manipulation in robotics [75]. Moreover, models
more strongly inspired by SMCT can learn complex concepts such as containment [114]
or space [139].

5.2.2 Research axes

Although my future research may not strictly adhere to the SMCT paradigm, I really
want to study how considering action as a core element can influence the way to learn
and improve multimodal representation learning and perception. I will thereafter outline
the research questions that I would like to study over the next five years. They are
structured around the three axes that I have presented through this manuscript, but they
are obviously interconnected and each axis will feed and be fed by the results of the others.
I am very fortunate that almost all of them are already funded, thanks to the support
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of university of Lyon 1 (with the acceptance of a SENS project, a local call to support
the emergence of new research talents during the first 10 years of their career, for a PhD
student), of École Centrale Lyon and the InfoMaths doctoral school of the university of
Lyon (for a doctoral contract), of the Auvergne-Rhône-Alpes region (with the acceptance
of a R&D booster project, which supports collaborative projects between companies and
universities to develop new services with a high TRL, for 2×12 months of post doc) and of
the ANR (with the acceptance of a PRC project52, that I am leading, with partners from
the university of Lyon 1, Clermont-Ferrand and Grenoble, see figure 5.1 for an overview).
I would like here to thank them all for their confidence in my research projects, and all
my (future) collaborators for bringing their expertise in their respective research fields to
these projects.

5.2.2.1 Representation learning

In line with the research trend to add some kind of sensitivity to augmentation within vi-
sual instance discrimination SSL methods, I presented in chapter 2 our own equivariance
module to improve classification performance, which will be the basis for these perspec-
tives.

How to obtain more adaptive representations. In the R&D booster project, we will
study how equivariant self-supervised learning can help to learn more general representa-
tions in the context of industrial data. These datasets have the particularity of containing
classes that are quite different from those in classical machine learning, focusing on very
specific and application-dependent content. This will require to validate and improve the
transfer learning capabilities of the SSL models. Moreover, the number of labelled data is
small, so it will also be necessary to achieve good performances with few shot learning. In
additionn, more structured representation learning also opens the way to obtain relevant
data visualisation to support assisted labelling for massive data, a tool already proposed
by the industrial partner of this project. Thus, we will study how equivariant methods
can contribute to the structure of the visualisation to improve this annotation process.

The following research questions are more related to the question of how to consider
and integrate the action more deeply in the representation learning process.

How to learn from a stream of inputs. Instead of having static inputs that can be modified
by any augmentation, as in our previous work, we will consider an agent interacting with
a simulated environment containing various objects. Thus, the model will receive a stream
of inputs from which we will have to decide how to make the pairs. This could be seen
as a challenge, but in practice many articles in the literature show that we can rely on
temporal proximity as a guide, possibly combined with saliency-based mechanisms as we
did in section 2.2.1.1. Indeed, it is an efficient way to define a pretext task for learning
representations of objects being manipulated [65] or for reinforcement learning [104]. Thus,
a simulated environment provide an opportunity to study richer sources of modification
of the input, such as access to the multiple views of an object, which is not really possible
from a single image. Much work remains to be done to determine the right environment,
set of actions and models to learn more generic and robust representations. This will be

52projet.liris.cnrs.fr/mesmrise/index.html
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Figure 5.1: Overall structure of my ANR PRC project MeSMRise (Multimodal deep Sen-
soriMotor Representation learning). We want to study whether using action as a unifying
key point in learning will guide towards more generic self-supervised architectures and
representations. Moreover, having more human-like perceptual and learning mechanisms
should help to generalise better and be more robust to various environments. By inter-
acting with the environment to have access to all its dynamics and properties, we target
to make the agent more adaptive by finding the relevant information at the right time.
WP1 (one PhD student) considers learning unimodal and multimodal representation and
perception based on architectures that integrate action as the core of their representation,
in line with SMCT.
WP2 (one PhD student) focuses on learning higher level representations based on the
dynamics of interaction with the environment. Moreover, these representations will also
support learning in WP1.
From multi-level and multimodal representations, WP3 (24 months post doctoral posi-
tion) will define a hierarchical policy for exploring the environment to improve learning
and perception in WP1&2 .
WP4 (12 months engineer) defines the shared evaluation environment, consisting of a
simulated world filled with objects that the agent can manipulate.
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explored in work package (WP) 1 of my ANR project. It will also allow to interactively
test some hypotheses for improving representation or perception, as described later in the
section 5.2.2.3 of the perspectives.

How to encode action in the representations. Action can be introduced into the repre-
sentations in various ways, e.g . by structuring a visual servoing space with metric learn-
ing [95]. So far, we have done this with an indirect drive as an additional loss function. I
would like to study how to favor more strictly this prediction objective and whether it can
help to learn better features. Our preliminary results using only the equivariance loss with
EquiMod (see section 2.2.2) seem to indicate that it will not improve the classification per-
formance. However, we can hope that it will help to generalise better and to tend towards
a world model. There are also theoretical insights suggesting that learning the prediction
within the latent space can give better properties, especially regarding the complexity
and dimensionality of the problem, as defended by Y. LeCun with his Joint-Embedding
Predictive Architecture [101]. We will also study how to encode this prediction. While
not exhaustive, this could be achieved classically as the embedding of the predicted next
input, as the combination of basis functions as a form of efficient coding that is observed
in the brain [70], or as the difference to apply to the current input, which is related to
the predictive coding also observed in the brain [123]. The latter would be more in line
with the first principle of SMCT. The difference between these coding schemes will be
investigated in the SENS project.

How to learn more abstract representations. The stream of inputs should provide suc-
cessive pieces of information about the same object present in the environment. It would
then be relevant to be able to combine these various views into a high-level representation.
From a fundamental point of view, we can rely on the definition of an object as a stable
network of predictive sensorimotor interactions rather than a set of perceptual proper-
ties [194]. In this framework, a cup will not be represented as a cylinder with a handle,
but as a structure encoding that the agent will see a cylinder and when rotating it, it will
then see a cylinder with a handle, and vice versa. This is consistent with the principles
of SMCT, where it is the ability to perform actions and to predict (the structure of) their
consequences on the inputs that defines the perceptual concepts. From a practical point of
view, this combination of learning spatial features with their temporal evolution induced
by the action may help to cluster the inputs to better detect new or reappearing objects,
for the emergence of more relevant concepts in an unsupervised way.
This clustering can also help to create pairs of relevant inputs at lower levels to support
the learning of spatial representations. This will form a loop: the spatial representations
will support the spatio-temporal ones, which in return will help to define better spatial
representations. Fundamentally, this will raise the research question of detecting mean-
ingful boundaries in sensorimotor flow, which is related to the bootstrap problem [137].
All this will be studied in WP2 of my ANR project.

5.2.2.2 Multimodal learning and perception

I want to study how to structure a multimodal space in order to obtain general and
robust representations that allow the automatic weighting of each modality signal in the
perception of an autonomous agent. Especially I want to study the following research
questions, which will be explored in WP1 of my ANR project.
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How to make the multimodal space and the decision-making process of fusion compatible.
In chapter 3 I presented how to adapt dynamical neural fields (DNF), a decentralised and
cortico-inspired decision-making model, to multisensory perception with irregular topolo-
gies. However, this was still a simple topology learning method with prototypes, and I want
to explore whether this kind of model can be coupled with deep representation learning ap-
proaches. Theoretically, DNF is an integro-differential equation which is a complex math-
ematical object, whose formal solutions are undetermined in a space with more than one
dimension. More technically, DNF have been studied mainly with low-dimensional topolo-
gies, yet there exist some optimisation technics for regular high-dimensional spaces [169].
Moreover, it defines a dynamical system that requires a fine shaping of its phase diagram
in order to obtain and guarantee, to some extent, interesting properties. More precisely,
the behaviour of the DNF is tightly related to the interaction between the lateral kernel
and the input topology. We can then try to adapt the shape of the kernel, but this is a
difficult task as stated in the literature [27]. For these reasons, the main focus will be on
trying to obtain structured representation spaces, or learned low-dimensional projections
of them, possibly at multiple levels, that can fit with the DNF. We could also propose al-
ternative fusion mechanisms, as DNF is part of a large family of decision-making processes,
as non-exhaustively presented in section 3.2, that would conduct to less rich dynamics but
could ensure the expected properties in a more reliable and flexible way.

How the action can structure multimodal learning. An agent interacting with an envi-
ronment may not always receive relevant information from all modalities. Therefore, I
want to study model architectures that have representations at the level of each modal-
ity simultaneously with the multimodal one. To this end, I have already proposed some
architectural principles during my PhD with the alignment of unimodal spaces [23], or
during my post doc [22] with the learning of unimodal spaces predictable by the others.
Moreover, these unimodal and multimodal representations may be more generic as [92]
recently shows that by projecting each unimodal space in a global workspace that allows
to predict back the unimodal embedding, the learned representations transfer better than
the features learned by CLIP [172], a classical contrastive architecture that is limited to
the information shared by text and image modalities. In this context, I want to study how
action can be integrated into such an architecture. Action can have different effects on
various modalities. For example, when considering an object seen via 2D images and 3D
point clouds (which is the use case for my ANR project), a rotation will affect both inputs,
while a change in illumination will only affect the 2D image. This has to be taken into
account in the way the learned multimodal representations are structured to allow these
one-to-many projections. Moreover, relying on SMCT, learning the relationship between
the changes induced by the action in the inputs of the various modalities would lead to a
different structure than the usual statistical linking of the co-occurrences in the modalities,
which could exhibit better properties. This perspective will be closely related to the one
on the integration of action in representation presented in section 5.2.2.1.

5.2.2.3 Active learning and perception

The choice to perform a specific action can be aimed at obtaining more information from
the environment to improve perceptual performance (active perception), or at orienting
the agent towards some objective, such as learning a better model (active learning), a
spectrum that is integrated in the active inference framework [98]. Whithout trying to fit
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formally into this framework, this can be a support for the balance between active learning
and active perception, the two axes that will be studied in WP3 of my ANR project, within
a reinforcement learning framework.

Active perception. It allows dimensionality reduction (by processing only relevant infor-
mation at the sensorimotor level) and alleviates framing problems (e.g . by fixating on an
object of interest) [67]. This mechanism can be used to obtain more information from
the environment to help desambiguate between different concepts. For example, relying
on the high-level representation of objects presented in section 5.2.2.1, we can choose to
rotate the perceived previously unseen cylinder to test whether a handle will then be seen
to distinguish between a glass and a cup. This will also raise the question of keeping this
accumulation of evidences in the agent’s perception over time. We also want to study how
active perception can be combined with multimodal inputs. One objective would be to
determine which modality is the more relevant for desambiguating a perception (which
can in return change the weights in the multimodal fusion) or to fulfill a specific task, and
then choose the action that will get the most new information from that modality.

Active learning. In the absence of an explicit external task, intrinsic motivation can pro-
vide a drive towards regions of interest, e.g . those that lead to learning progress [164]. In
particular, we want to explore the dynamics between this kind of exploration incentive and
representation learning. Here again, we will face a bootstrap problem, as the representa-
tion will help determine what action to perform next, which in return will provide new
examples to learn relevant features from. This biases the received inputs by disturbing the
probability distribution of the examples, which can lead to catastrophic forgetting [97]53.
While we will not explicitly consider this question in the ANR project, relying on classical
techniques such as replay buffers, I also would like to explore this question of incremental
learning as well. More specifically the combination of self-supervised learning and incre-
mental learning has not been studied extensively [153], but the genericity of SSL may help
to learn more robust representations. Moreover, I want to study whether the structure of
the representation can help to detect outliers, which may be the cue for the arrival of a
new class.

5.2.2.4 Datasets and models

Since recent advances in machine learning are partly due to the increase in the number
of architectural parameters and the size of datasets (the use of self-supervised learning is
especially related to the use of large unlabelled datasets), these two aspects may have an
impact on, or at least define a framework for, the perspectives outlined above. Here are
some considerations on these aspects.

Datasets If interacting with an environment is indeed a key to more generic, adaptive
and robust representations, a lot of effort from the research community will have to be
dedicated to creating rich and optimised interacting environments to allow a large number
of interactions in a reasonable amount of time. In the longer term, the community may also
face the reality gap well known to roboticists, which will raise a lot of research questions
to try to tighten it. In the meantime, in WP4 of my ANR project, we will rely on and

53Note that we can also use active learning to debiase the inputs, as we proposed in chapter 4
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adapt existing platforms dedicated to reinforcement learning environments (which face
similar questions to ours) and datasets of objects. Another option will be to perform
pre-training with datasets containing action, before fine-tuning and adapting the model
in the interaction environment. Such datasets can be recorded offline in the simulator,
raising the question of which action policy to use. But we may also rely on videos. It has
been recently shown that learning from 1 hour of video can be quite as efficient as learning
from the 1 million images in ImageNet [203]. While this requires automatic detection of
the objects in the image (as an image in video is much less structured than one from
ImageNet), it was obtained with the model itself while learning. Although this model
does not tak action into account, another recent work [186] learned a world model by
inferring an embedding of the displacement from the successive images and then linking
this embedding to a real action from demonstrations. However, this method seems to
suffer from the problem of discriminating between self-induced and external movements
(which were not so much present in their videos), which is a fundamental problem that can
be more easily addressed by actually interacting with an environment and testing actions
under different conditions.
Related to learning representations from videos, I will also co-supervise a PhD student
on learning representations of skeleton animations to be able to generate new ones while
applying some style to them. In this field, the datasets are quite qmall, because the
recording of motion capture data is expensive or is done by private companies in the video
game or in the animation film industries. To try to overcome this issue, we will rely on
methods based on machine learning that can extract the skeleton from videos of moving
people to obtain large datasets and apply self-supervised learning methods to them.

Models So far in my research, I have favoured the use of models that are as simple as
possible. This can be illustrated by the choice of GNG, a simple topology learning method,
to study the ability of a DNF to adapt to unregular topologies (see section 3.4). It helps to
better understand and identify the properties of the whole model. Moreover, the default
use of a large model as a transformer may raise some epistemological considerations. In-
deed, the choice of the model should come after the formalisation of the scientific question,
otherwise the model becomes (part of) the empirical object of study [199]. Nevertheless,
identifying the properties of such large models is also an interesting field, and I want to
explore it as well, e.g . how transformer can learn representation from videos, as presented
above.
Using simpler models will also help to limit the computational resources required, which
has an environmental footprint. In this respect, in the R&D booster project, we will
study how reducing the size of the model, e.g . through quantization techniques or by
pruning some connections or layers, affects the quality of the learned representations. As
the main focus will be on the genericity of the representations and their ability to transfer
to various industrial datasets, we can hope that even if the accuracy sometimes drops,
the overall performance over all measures and datasets will not be seriously affected while
drastically limiting the number of parameters to be learned.

5.3 Impacts of my research

As the univeristy of Lyon 1 requires 2 pages of this manuscript to be in French, this last
section will thus be in French. Here is a brief introductory summary and disclaimer for non-
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French speaking readers. The research process is about applying scientific methodology
to raise questions and research hypotheses, and to evaluate them correctly. But it is
not isolated from the rest of the world, as it can have an impact on academic people
(students, colleagues, scientific community, etc.), but also on society (especially as AI is
currently being deployed massively) and its underlying structuring, which is related to a
technocentric ideology, and more globally on the environment, as IT technologies have a
significant impact on the overall carbon footprint of humanity, with AI taking an increasing
share, even if a precise attribution remains difficult [127]. I do not claim to propose any
new or scientifically relevant ideas or research questions in these areas, as I in no way
pretend to be a sociologist or philosopher (though I hope to have more opportunities to
work with colleagues from these disciplines in the future). But since I will (hopefully)
soon be allowed to conduct my own research, and am already co-supervising PhD/master
students and leading research projects, I consider that I need to attest my ability to master
and transmit the scientific method and content of my discipline (and I hope that what you
have read so far of my manuscript has convinced you of this) but also to apply a critical
thinking (and ethical considerations) about my research works. This section will then be
a sort of impact and benefits section, as it is now classically required when responding
to a project proposal, extended to my whole research and also including some personal
thoughts and wonders as a computer scientist associate professor in AI about his work
within his discipline and research domain.

En épistémologie, la définition d’une science peut s’appuyer sur le principe de réfutabil-
ité [107]. Une théorie doit ainsi définir des prédictions qui peuvent alors être vérifiées et
éventuellement invalidées, ce qui la rend fausse le cas échéant. Une théorie est donc vraie
dans le sens où elle est la plus crédible jusqu’à preuve du contraire ou potentiellement à dé-
faut d’autres théories alternatives lorsque certains indices semblent indiquer une faillibilité
de la théorie courante comme par exemple avec les orbites de Mercure pour la théorie de la
gravitation de Newton. Les principes de reproductibilité et de répétabilité sont ainsi essen-
tiels au processus d’évaluation des théories. L’application de cette méthodologie, pouvant
être réalisée par n’importe qui et sur n’importe quel aspect réfutable, peut alors se con-
cevoir comme porteuse d’une certaine forme d’objectivité. Ainsi mes travaux n’auraient
pas d’impact en soi, ce serait leur application éventuelle qui en aurait. Cependant, mon
application même de la méthodologie scientifique pour la construction de connaissance,
n’est pas un processus complètement désintéressé sur de nombreux aspects.

Tout d’abord, j’ai eu un certain nombre d’étudiants et de projets en collaboration
avec des entreprises. Bien que cela présente un intérêt scientifique en permettant de
confronter les modèles à des cas d’usage métier et à des applicatifs parfois plus réalistes
et complexes, je ne peux négliger le fait qu’ils ont une visée applicative directe, qui est
au cœur même du sujet de recherche. Ensuite, même dans le cadre de recherches plus
théoriques ou fondamentales, cadre dans lequel s’inscrivent plutôt mes travaux, le fait de
conceptualiser et de rendre disponible une connaissance ne peut être entièrement détaché
de son utilisation puisque c’est le premier point qui permet et autorise le second. Ce genre
de débat a émaillé l’histoire des sciences, que ce soit pour la bombe atomique ou pour le
génie génétique par exemple. De plus, comme énoncé dans le chapitre 1 d’introduction,
l’intelligence artificielle, mais aussi l’informatique en tant que science au sens large, possède
une certaine dualité pratique/théorique dans le sens où l’objet d’étude est un artefact et
que sa création porte donc une certaine forme d’intentionalité. Ce dernier point peut
toutefois être atténué dans le cas de l’utilisation de l’informatique comme un outil de
modélisation pour l’étude d’un phénomène naturel, comme par exemple la modélisation
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de comportements humains comme illustré dans le chapitre 3. Cependant, dans tous les
cas, les idées de recherche ne peuvent se concevoir qu’en relation avec les connaissances et
les courants de pensée actuels et antérieurs, au sein de paradigmes scientifiques [136]. Mes
recherches, en particulier mes perspectives, s’inscrivent d’ailleurs clairement dans celui des
théories sensori-motrices. Enfin, d’un point de vue pratique, les thématiques de recherche
sont en partie pilotées avec une volonté politique à travers les agences de financement, ce
qui favorise et oriente l’étude de certains sujets. La recherche, a minima telle qu’elle est
pratiquée, ne peut donc être neutre et ses acteur.rice.s sont donc légitimes, même si pas
forcément les mieux formé.e.s, pour se poser la question de l’impact de leur recherche.

L’intelligence artificielle est une discipline particulièrement porteuse d’enjeux, comme
en témoignent les financements publics mais aussi privés accordés à ce domaine. Il y
a bien sûr des questionnements existentialistes, parfois reliés à la notion de singularité,
qui peuvent se retrouver au sein de la communauté de l’intelligence artificielle générale.
C’est ce genre de sujet dont s’est emparé Y. Bengio depuis quelques années, et bien que
tou.te.s les chercheur.euse.s ne partagent pas forcément son opinion, cela a au moins le
mérite d’alimenter le débat et de le faire entrer dans un cadre scientifique. Sans forcément
être aussi prospectif, l’IA permet l’automatisation du traitement de l’information pour la
résolution de tâches et de problèmes de plus en plus complexes, ce qui a déjà un certain
nombre de répercussions dans la société. Cette automatisation a entre autres pour but de
remplacer l’humain dans certaines tâches, ce qui peut viser par exemple à l’amélioration
de la sécurité ou du confort, ou à la réduction du coût économique. Cela touche de
manière globale à notre rapport au travail, mais également au rôle que l’emploi joue dans
la conception et la structuration, entre autre économique, de notre société. Ce traitement
automatique de l’information questionne également l’accès aux données (avec le concept de
données ouvertes ou l’introduction du RGPD en Europe pour le respect de la vie privée),
mais aussi notre accès et notre utilisation de l’information en tant qu’êtres humains. Il y
a par exemple les mécanismes de désinformation de plus en plus poussés, qui peuvent être
utilisés comme moyen de pression jusqu’à un niveau géopolitique. Mais les algorithmes
d’apprentissage automatique sont également sujets aux biais de genre, de couleur de peau,
etc. et l’utilisation de ces méthodes risque de les accentuer ou du moins de les faire
perdurer. Cela a en revanche le mérite de mettre en lumière ces discriminations à l’œuvre
dans nos sociétés, puisque les apprentissages sont en grande partie le reflet des corrélations
qui se trouvent dans les bases de données, possiblement d’autant plus exacerbées par le
fait que les états, structures et personnes qui développent et promeuvent l’IA ne sont
pas représentatives de la diversité de l’humanité et du monde. Enfin, l’apprentissage des
modèles de réseaux de neurones profonds est particulièrement gourmand en puissance
de calcul, ce qui amène à un impact environnemental croissant. Dans le cas d’outils
largement déployés comme ChatGPT par exemple, c’est cependant la phase d’inférence,
à cause du nombre de requêtes, qui a l’impact le plus important (estimé à 25 fois celui
de l’entrâınement par an) et qui dépend fortement du mix énergétique du pays où les
requêtes sont traitées [87]. L’IA soulève ainsi de nombreux questionnements économiques,
sociologiques, éthiques, anthropologiques, environnementaux, etc.

En pratique, l’impact de mes recherches reste, pour le moment, limité, que ce soit de
par mes thématiques de recherche ou par le nombre restreint de personnes concernées.
Cependant, en tant que membre d’une communauté de recherche, je participe à l’activité
et à la visibilité de l’IA en tant que discipline, ce qui m’incite, voire m’oblige, à porter
un regard critique sur mes activités. Je cherche donc à essayer de mettre en place un
certain nombre d’éléments dans ma pratique quotidienne de la recherche pour essayer de
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restreindre leurs potentielles conséquences négatives. Tout d’abord, j’essaie d’aborder, de
sensibiliser et de débattre de ces questionnements avec les étudiant.e.s que j’encadre dans
le cadre de leur formation par et pour la recherche. Plus largement, je participe très
régulièrement à des événements de médiation scientifique pour expliquer mes recherches,
mais plus largement pour informer le public 54 sur les principes de fonctionnement de
l’apprentissage machine ainsi que les questionnements que cela soulève. Plus largement,
j’essaie de cadrer mes recherches, que ce soit par le choix des thématiques, de mes collab-
orations, ou encore du type de financement recherché. Cela est grandement facilité par
ma position priviligiée de (enseignant) chercheur en IA, qui dispose donc d’un large panel
d’offres disponibles vu les crédits de recherche actuellement alloués à cette thématique. En
ce sens, j’ai participé à un projet de recherche en apprentissage de comportements éthiques
grâce auquel j’ai co-écrit un papier avec un collègue philosophe sur les questionnements
éthiques de l’IA [36] et avec lequel, entre autres, un article est en préparation sur un cadre
d’analyse et de discussion des injections éthiques dans les systèmes socio-techniques. De
plus, dans le cadre du projet R&D booster dont je parlais dans les perspectives (voir
section 5.2), nous allons étudier comment réduire la taille des modèles d’apprentissage
sans trop affecter la performance générale des modèles, ce qui pourrait être un premier
pas pour moi dans l’IA frugale. À plus long terme, j’envisage donc d’essayer d’intégrer
plus régulièrement les enjeux sociétaux au sein de mes recherches, par exemple dans le
cadre des sciences de l’environnement.

54Cela fait d’ailleurs parti des obligations statutaires des enseignants chercheurs. “Ils contribuent au
dialogue entre sciences et sociétés, notamment par la diffusion de la culture et de l’information scientifique
et technique” (Article 3 du décret n°84-431 du 6 juin 1984 fixant les dispositions statutaires communes
applicables aux enseignants-chercheurs et portant statut particulier du corps des professeurs des universités
et du corps des mâıtres de conférences.)
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Abstract—Sensori-motor theories, inspired by work in neu-
roscience, psychology and cognitive science, claim that actions,
through learning and mastering of a predictive model, are a key el-
ement in the perception of the environment. On the computational
side, in the domains of representation learning and reinforcement
learning, models are increasingly using self-supervised pretext
tasks, such as predictive or contrastive ones, in order to increase
the performance on their main task. These pretext tasks are action-
related even if the action itself is usually not used in the model. In
this paper, we propose to study the influence of considering action
in the learning of visual representations in deep neural network
models, an aspect which is often underestimated w.r.t. sensori-
motor theories. More precisely, we quantify two independent
factors: 1- whether or not to use the action during the learning
of visual characteristics, and 2- whether or not to integrate the
action in the representations of the current images. Other aspects
will be kept as simple and comparable as possible, that is why we
will not consider any specific action policies and combine simple
architectures (VAE and LSTM), while using datasets derived from
MNIST. In this context, our results show that explicitly including
action in the learning process and in the representations improves
the performance of the model, which opens interesting perspectives
to improve state-of-the-art models of representation learning.

Index Terms—Sensori-motor theory, Representation learning,
Predictive learning, Deep learning

I. INTRODUCTION

Sensori-motor theories are based on substantial evidence in
neuroscience, developmental psychology and cognitive science.
The main claim is that actions, and more especially the sensory
changes induced by motor actions, play a key role in learning
a predictive model of the world and in perceiving it [23]. For
example, a kitten that cannot walk, i.e. it only passively receives
a visual flow, will learn defective visual representations [14].
The role of action is also emphasised in the notion of affordance
in psychology [9], where an object is not defined by a set

This work was performed using HPC resources from GENCI–IDRIS and a
GPU donated by the NVIDIA Corporation. We gratefully acknowledge this
support. This work was financed by the Auvergne Rhônes-Alpes (AURA)
region, within the Ethics.AI project (Pack Ambition Recherche). The authors
would like to thank the AURA region and their partners in this project.

of properties but by its elicited interactions for the agent.
According to the sensori-motor contingencies theory, acting
may even play a role in some form of consciousness [25].
These concepts are also related to the theories of enactivism
and embodiment that states that the body, as the structure to
interact with the world, is required for an intelligent behavior to
arise [8]. While contributing to the learning of representations,
the actions could also be aimed at perceiving relevant regions
of the environment, which would make perception an active
process. This way the actions would be required to accumulate
evidence of the current state of the world as unified in the
free energy principle e.g. [7]. With regard to vision, this is for
example the role of saccades which allow to get successive
glimpses over a visual scene [6].

Since some years, deep learning achieves state-of-the-art
performance in multiple domains such as visual recognition,
natural language processing, game playing etc. [20]. Initially,
these data-driven approaches were mainly supervised, e.g. by
using a Convolutional Neural Network (CNN) to classify ob-
jects in images [13]. Contrary to human beings that perform
saccades to perceive a scene, most CNN models have a trans-
lation invariance property that allows them to process the whole
image at once. Then, deep architectures have been adapted to
the reinforcement learning framework [27]. Here, actions are
considered through sequential decision making, but are not ex-
plicitly included neither in the perception nor in the building of
representations. More recently, self-supervised approaches have
emerged. They propose to use a pretext task during learning,
usually making close the representations of inputs considered
similar, to improve performance of a predefined task or in the
context of unsupervised learning. In computer vision, some of
the similar inputs generation processes can be interpreted as
the resulting from movements [18]. In reinforcement learning,
temporal prediction of consequences of action is often used as
a pretext task.

Thus, sensori-motor theories and the recent and promising



trend of including action-related pretext tasks in deep learning
seem to point towards a benefit of action in representation
learning and perception, at different degrees. Yet the precise
quantification of the impact of action in representation learning
is still barely known. In this article, we propose to open
this research question by studying two independent factors: 1-
whether or not to use action in the learning of visual features
and 2- whether or not to use action in the computation of the
current image representation. To keep the study tractable, we
restrain ourselves to simple deep architectures as illustrative
examples. Moreover, to put apart the question of the action
decision process, which would introduce a retro-action loop
during learning, the model will perform random actions.

Section II introduces existing works related to representation
learning considering actions. In section III, we derive from our
research objectives the different neural network architectures
and loss functions used in our study. The protocol and hyper-
parameters used and the obtained results are presented in
section IV. Finally, we draw our conclusions and expose various
perspectives for future works (section V).

II. RELATED WORK

Multiple works in robotics considered action while learning
predictive models of the environment for achieving a variety
of tasks such as object manipulation, recognition or grasping.
The benefits of such interactive perception are mainly to get
access to some objects characteristics requiring manipulation as
weights for example and to enrich and structure the regularities
in the inputs (see [5] for an in-depth survey). Considering
explicitly sensori-motor contingencies can even push these
properties a step further. Arranging sensori-motor schemes
hierarchically leads to the learning of the complex concept
of container, that could be reused across environments [12].
Sensory representation learning can be shaped by action,
through the notion of compensating movements, i.e. that some
displacements in the sensory inputs can be reversed via motor
actions. A deep architecture, designed with this principle, is
able to learn the underlying spatial structure of the input [19].

In computer vision, recent visual representation learning
methods rely on either contrastive or predictive pretext tasks. In
contrastive ones, models usually learn to embed multiple views
of an image into similar representations [4]. The generation
process used to obtain these views can be related to some form
of action [18], such as cropping which can be linked to head
movement and eye saccades. However, these methods include
the actions neither to build nor to learn the representations.
Such tasks can also rely on predicting the motion that led
from the actual view to the future one [2], in this case the
action can be seen as a supervision signal, however it is
not directly integrated in the representations. For predictive
tasks, they generally aim at predicting future inputs based
on historical ones, as in [24] where a contrastive predictive
task has been successfully applied to vision, audio, natural
language processing, and reinforcement learning. Such tasks
are well suited for environments with a temporal aspect, as in

the context of reinforcement learning where the prediction of
future observations from historical observations and actions has
shown to learn good representations [11].

While most computer vision models have been focused
on treating full images at once, only few works consider
processing sub-parts of images. Such models that only process
glimpses of images were initially introduced for computational
advantage, but also open the possibility of making models
actively perceiving the world by choosing where to look. This
idea of processing glimpses of an image has been applied to
classification two ways: either by dedicating a neural network
to each glimpse w.r.t. its temporal index [26], or by letting a
recurrent network learn to perform saccades in a reinforcement
learning environment [22]. Later, these models have been
enhanced to perform multiple object recognition, as in [3]
where the model learns to classify objects from left to right
by moving a virtual glimpse sensor over the image, or in [1]
where the model classifies objects sequentially while determin-
ing an affine transformation to produce the next glimpse to
locate the next object. Moreover, [10] also used glimpses for
image generation both to ”read” and ”write” images, iteratively
generating the result with small patches while showing strong
representational and generational capacities.

III. STUDIED MODELS

A. Overview

1) Problem statement: In this article we consider a system
that receives visual saccades to perceive its environment. At
each step, the system only takes as input a sub-part of the image
and the action to come. The action defines the 2D position of
the center of the next visual input. In order to decorrelate the
action policy from the learned representations, it is the same for
all models and consists in a random sampling from an uniform
distribution. We note xt the observed glimpse (i.e. image sub-
part) at time t, at the next action performed, i.e. the position
of the next observed glimpse xt+1.

2) General overview of the model: The task the model has
to perform mixes the prediction of the future visual input for a
given action and the reconstruction of the current visual input.
We note x̂t (resp. x̂t+1) the reconstruction by the model of
the glimpse xt (resp. xt+1). All the model variations that we
study are relying on the same modules, each one addressing a
specific point of the combined task:

• The first is a convolutional Variational Auto-Encoder
(VAE) [17], which reduces the dimensionality of the
current glimpse by projecting it in a latent space and then
reconstructing it.

• The second is a Long Short-Term Memory (LSTM) neural
network [16]. As the system only gets partial glimpses of
the environment, it needs to integrate the current observa-
tion with past ones to construct a global representation of
the observed image. Its output is what we consider as the
representation of the current image.

• The third, which we call the recoder, is a neural network
we introduce, to generate a latent embedding of the next
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Fig. 1. PreLSTM — The input xt passes through the encoder, transforming xt
in its latent representation zxt . Then zxt passes through the decoder, giving
x̂t the reconstructed input produced by the VAE. On the other side, the action
at is concatenated with zxt and is then fed to the LSTM, which outputs lt
the global representation of the image. From this representation the recoder
computes zxt+1 and finally, by passing through the decoder, the constructed
prediction x̂t+1 of the next glimpse xt+1.

glimpse w.r.t. the action to come and the representation
from the LSTM. This embedding is used to reconstruct
the next visual input. From a technical perspective, the
functioning of the recoder is similar to a VAE’s encoder
by generating a distribution from which the recoded latent
embedding is sampled. As it is the case for the VAE, this
distribution is regularized.

In the next two sections, we will describe the 4 models
compared in this article, that vary over two axes:

1) whether or not to use the action in the LSTM repre-
sentations, i.e. to make the representations sensori-motor
(Sec. III-B),

2) whether or not to use the action during the learning of the
visual characteristics by the VAE’s encoder, i.e. making
the learning of the visual characteristics partly sensori-
motor (Sec. III-C).

B. Influence of action in the representations

1) With action: The PreLSTM architecture, illustrated in
Fig. 1, integrates the actions before the LSTM. While com-
bining observed glimpses, by providing the action the LSTM
will construct sensori-motor representations. Indeed, the content
of the action is forced to pass through the LSTM in order
to get used by the recoder, forcing the representation to be
a mix of sensory and motor information. Note that to ensure
that the dimensions of the VAE’s latent space and the LSTM’s
output are constant across all model variations architectures, in
addition to keep similar computational capacity between both
architectures, one Fully-Connected (FC) layer is placed before
and after the LSTM.

2) Without action: The PostLSTM architecture, see Fig. 2,
is similar to the PreLSTM one except that it concatenates the
action after the LSTM. This makes the latent representation lt
purely visual, as the action is no more directly used to construct
the representation. Note that the recoder still has access to the
information of the performed action and the representation as
in PreLSTM.
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Fig. 2. PostLSTM — The whole network works the same way as in PreLSTM
except that zxt is directly fed to the LSTM, and that the action at is
concatenated with lt before passing through the recoder.

C. Influence of action in the learning

1) With action: The first method jointly optimizes the pa-
rameters of the whole neural network during training end-to-
end. The overall loss of the model Ltot (Eq. 3) is composed of
the loss of the VAE Lvae (Eq. 1), consisting in the reconstruc-
tion of the current glimpse, and the loss of the recoder Lrec
(Eq. 2) which represents the prediction of the future glimpse.
While minimizing this loss, information from the action is
backpropagated through the whole architecture including the
visual features learned by the VAE.

Lvae = ||xt − x̂t||2 + βvaeDKL[N (µxt
, σxt

)||N (0, 1)] (1)

Lrec = ||xt+1− x̂t+1||2 +βrecDKL[N (µxt+1 , σxt+1)||N (0, 1)]
(2)

Ltot = Lvae + Lrec (3)

Lvae is the loss of a Beta-VAE [15]. The first term is the
Mean Squared Error (MSE) between the input glimpse xt
and its reconstruction x̂t. The second term, used as a regu-
larization weighted by βvae, is the KL-Divergence between the
distribution created by the VAE, N (µxt , σxt) and the standard
normal distribution, N (0, 1). Lrec is derived from Lvae, where
the MSE is between the next glimpse xt+1 and its recoded
reconstruction x̂t+1, while the regularized distribution is the
one created by the recoder N (µxt+1

, σxt+1
) and is weighted

by βrec.
2) Without action: In order to analyze if the action has an

impact on the extracted visual features, we propose a separated
two-step learning procedure.

In the first step, the VAE is trained without actions so that the
learned features are purely visual. To have a fair comparison,
the prediction task, that requires actions, is replaced by a second
reconstruction of the current glimpse. For this purpose, we
use a temporary architecture which instead of having a classic
recoder, has an identity recoder (see Fig. 3), that recodes the
current perceived glimpse from the LSTM. The loss Lpretrain
(Eq. 5), used for this first step, is composed of Lvae (Eq. 1)
the loss of the Beta-VAE, but also of LrecId (Eq. 4) the loss
of the identity recoder.
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LrecId = ||xt − x̂′t||2 + βrecDKL[N (µ′
xt
, σ′
xt

)||N (0, 1)] (4)

Lpretrain = Lvae + LrecId (5)

In LrecId, the MSE is between the input glimpse xt and its
recoded reconstruction x̂′t, and the distribution of the identity
recoder N (µx′

t
, σx′

t
) is regularized.

In the second step, we replace the LSTM/identity recoder
by a normal predictive one (i.e. either the PreLSTM or the
PostLSTM architecture) while freezing the VAE’s weights to
train only the LSTM/recoder using the loss Lrec (Eq. 2).

IV. EXPERIMENTS

A. Datasets

1) 28 × 28 MNIST: The MNIST digits dataset [21] is
composed of 28×28 pixels images that contain centered white
hand-written digits on a black background. We used a number
of 15 glimpses per image for this dataset.

2) 60×60 MNIST: To make the digits unrecognizable at the
first glimpse, we use images of MNIST resized to 60×60 pixels.
This way, patches are no more digit fragments, but strokes and
curves. For this dataset, we used a number of 30 glimpses per
image as images are bigger.

3) 60×60 Cluttered Translated MNIST: In this dataset [22]
(named 60 × 60 CT MNIST hereafter), images are 60 × 60
black background with a 28 × 28 MNIST digit randomly
placed on them, and where four 8× 8 clutters (extracted from
other MNIST digits) are also randomly added on them. This
dataset is the hardest since clutters and digit positions are
totally unpredictable if never seen. This stochasticity makes the
predictive task way harder. We used a number of 50 glimpses
per image as the task is harder.

Note that for every dataset we split the train set in 5-
folds, leading to 48k (resp. 12k) images for the training (resp.
validation) and we used the test set with 10k samples.

B. Evaluation

To evaluate and compare the representations learned by the
different models, we trained a classifier taking the LSTM output
as input and measured the respective classification accuracy

of the digits, averaged over 10 executions. We used a MLP
composed of two hidden layers of 32 neurons each (one with
Dropout p = 0.5), and the ReLU activation function. The
training was done a posteriori, thus the weights of the rest
of the model were frozen. This classifier was trained on all
representations produced by the LSTM from the successive
glimpses. Thus, we can study how the performance evolves
when new glimpses are integrated in the model.

We also tracked the loss of the different models on the
predictive and reconstruction tasks, and complete our quanti-
tative evaluation with a more qualitative one based on t-SNE
projections of the LSTM representations after the last glimpse.

C. Implementation details

1) Glimpses and actions: Glimpses are patches of the
observed image extracted using a cropping window with a
fixed size of 14 × 14 pixels. The position of this window is
determined by the performed actions, and cannot be out of the
image. Actions are 2D vectors encoding the continuous absolute
position of the center of this cropping window, and they are
uniformly sampled from the action space.

2) Models hyperparameters: The CNN used for the encoder
(see section III) is composed of three 2D convolution layers
and a FC layer, with ReLU as activation function. Convolution
layers have respectively 8, 16, and 32 output channels, and
kernels of size 3, 3, and 5. The output of the last convolution
is flattened, and passed through the FC whose output dimension
is 128. The dimension of the latent space z is 16, therefore the
output size of FC generating µ and σ is also 16 for both the
encoder and the recoder. The decoder is composed of a 16 to
128 FC followed by a mirror version of the encoder’s CNN
where input and output sizes are swapped, order is reversed
and convolution layers are transposed ones. The LSTM has
an input and hidden size of 128. Therefore, in the PreLSTM
the FC before the LSTM has an input size of 18 (16+2) and an
output size of 128, while the input size is 16 in PostLSTM (see
section III-B1). Finally, the FC after the LSTM in PreLSTM
has an input size of 128 and output size of 128, while the input
size is 130 (128+2) in PostLSTM.

We used the Adam optimizer with a learning rate of 0.001 for
both the self-supervised and the classification tasks, and have
chosen βvae = βrec = 0.5 as it showed better performances.
Models are trained for 200 epochs (200 epochs for the VAE
then again 200 epochs for the LSTM/recoder, in the case of a
separated training), while the a posteriori classification task is
trained with 75 epochs for all models. We used a batch size of
128 in all configurations.

D. Results

The classification performance on the 3 datasets for the
various models with increasing number of perceived glimpses
is presented in Fig. 4. This metric allows us to compare the
representations learned by the different models on the presence
of semantic information through the ease of separation.

Firstly, we observe that the models not using the action
during the learning of the VAE’s encoder (-Sep suffix) perform



Fig. 4. Classification accuracy versus number of received glimpses, for the
various models on the 3 datasets.

worse than their counterpart using the action (no suffix). The
presence of this trend for both architectures and for all datasets
shows that considering the action in the learning of visual
characteristics seems to be beneficial for the extraction of
meaningful features.

Secondly, we can see that all models integrating the action in
the LSTM (PreLSTM architectures) perform better than their
equivalent ones integrating the action after the LSTM (PostL-
STM architectures), except for the 28× 28 MNIST dataset. In
this last case, they are similar when both performing an end-
to-end training (no suffix), which may be due to the simplicity
of the dataset. This difference of performance between Pre and
Post architectures tends to show that considering the action
in the representations, i.e. in the LSTM, helps to build better
representations of the environment. Moreover, as this trend
accentuates as the dataset becomes harder, the presence of the
action in the representations seems to be more important for
complex tasks. However, this difference of performance may
also be explained by the fact that in the PreLSTM architectures
the LSTM can use the action as an additional information to
integrate the glimpses using their position in a global internal
picture. Yet this may not be enough to explain all the differences
as we observe the strongest difference on the 60 × 60 CT
MNIST dataset where the position is less important as digits
are small enough to get mostly captured by one glimpse.
Note that all the observed trends are clearer after a certain
amount of glimpses. This can be explained by the fact that the
models need to temporally integrate the glimpses in order to
build the representations. As all models start with an empty
representation their few first representations may have similar
results, but the more and the better they integrate the glimpses
the better the representations would be.

The evolution during the training of the reconstruction error
for the predictive task on the validation set is shown in Fig. 5.
The results show the same trends as the ones on the accuracy,
confirming the findings about the importance of including the
action both in the learning of visual features and in the repre-
sentations. However, we note that having better reconstruction
loss does not necessarily imply better learned representations.
For instance, the PostLSTM model on the 28 × 28 MNIST
dataset has a higher error compared to the PreLSTM, while
both have similar results on the classification task.

Finally, Fig. 6 shows the t-SNE projection of the represen-

Fig. 5. Evolution of the reconstruction error for the predictive task in validation.

tations for all models and for all datasets. We consider that
the representations are better if the clusters are separable, i.e.
with few outliers and with some space between them, and if
they are expressive, i.e. clusters are spread and detailed. For
each architecture, clusters of the end-to-end trained model (no
suffix) are clearer and have less outliers than the ones trained
in two steps (-Sep suffix). This shows that visual features
learned with the action led to easier separable representations.
We also observe that the models using the action to build the
representations (PreLSTM and PreLSTM-Sep) are always able
to cluster the representations with a varying quality depending
on the dataset, where PostLSTM and PostLSTM-Sep models
produce mixed representations for the hardest datasets. These
results are in line with those found previously.

V. CONCLUSION AND PERSPECTIVES

In this article, we studied the impact of action in visual
representation learning in deep networks. Our questioning is
raised by recent deep learning methods, which are increasingly
using pretext tasks based on transformations that are action-
related. Yet, these methods are not considering these actions to
build their representations while sensori-motor theories, based
on substantial evidence in many fields, claim that action is
essential to perception. For this purpose, we studied and crossed
two independent factors: 1- whether or not to use the action
during the learning of visual features, and 2- whether or not
to integrate the action in the building of image representations.
By comparing these four configurations, we show that models
including action during the learning of visual characteristics
always perform better than their counterpart. We also observe
that variations integrating the action directly in the representa-
tions tends to perform better, a trend that is more prominent
for harder datasets.

These results are in line with sensori-motor theories and open
perspectives to improve state-of-the-art representation learning
methods by integrating the action both in the representations
and during the learning. An other interesting perspective could
be to study the influence of the action policy, in active learning
and active perception contexts, on the learned representations.
In the future, we want to extend the test-bed we elaborated
for the study and make use of these first promising results to
explore if it transfer to state-of-the-art representation learning
methods and for more general problems studied by community
(robotic, open world environments, etc.).
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ABSTRACT

Recent self-supervised visual representation methods are closing the gap with su-
pervised learning performance. Most of these successful methods rely on max-
imizing the similarity between embeddings of related synthetic inputs created
through data augmentations. This can be seen as a task that encourages embed-
dings to leave out factors modified by these augmentations, i.e. to be invariant
to them. However, this only considers one side of the trade-off in the choice of
the augmentations: they need to strongly modify the images to avoid simple so-
lution shortcut learning (e.g. using only color histograms), but on the other hand,
augmentations-related information may be lacking in the representations for some
downstream tasks (e.g. literature shows that color is important for bird and flower
classification). Few recent works proposed to mitigate this problem of using only
an invariance task by exploring some form of equivariance to augmentations. This
has been performed by learning additional embeddings space(s), where some aug-
mentation(s) cause embeddings to differ, yet in a non-controlled way. In this work,
we introduce EquiMod a generic equivariance module that structures the learned
latent space, in the sense that our module learns to predict the displacement in the
embedding space caused by the augmentations. We show that applying that mod-
ule to state-of-the-art invariance models, such as BYOL and SimCLR, increases
the performances on the usual CIFAR10 and ImageNet datasets. Moreover, while
our model could collapse to a trivial equivariance, i.e. invariance, we observe that
it instead automatically learns to keep some augmentations-related information
beneficial to the representations.
Source code is available at https://github.com/ADevillers/
EquiMod

1 INTRODUCTION

Using relevant and general representation is central for achieving good performances on downstream
tasks, for instance when learning object recognition from high-dimensional data like images. His-
torically, feature engineering was the usual way of building representations, but we can currently
rely on deep learning solutions to automate and improve this process of representation learning.
Still, it is challenging as it requires learning a structured latent space while controlling the precise
amount of features to put in representations: too little information will lead to not interesting rep-
resentations, yet too many non-pertinent features will make it harder for the model to generalize.
Recent works have focused on Self-Supervised Learning (SSL), i.e. determining a supervisory sig-
nal from the data with a pretext task. It has the advantages of not biasing the learned representation
toward a downstream goal, as well as not requiring human labeling, allowing the use of plentiful
raw data, especially for domains lacking annotations. In addition, deep representation learning en-
courages network reuse via transfer learning, allowing for better data efficiency and lowering the
computational cost of training for downstream tasks compared to the usual end-to-end fashion.

The performances of recent instance discrimination approaches in SSL of visual representation are
progressively closing the gap with the supervised baseline (Caron et al., 2020; Chen et al., 2020a;b;
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Chen & He, 2021; Bardes et al., 2021; Grill et al., 2020; He et al., 2020; Misra & Maaten, 2020;
Zbontar et al., 2021). They are mainly siamese networks performing an instance discrimination task.
Still, they have various distinctions that make them different from each other (see Liu (2021) for a
review and Szegedy et al. (2013) for a unification of existing works). Their underlying mechanism
is to maximize the similarity between the embedding of related synthetic inputs, a.k.a. views, cre-
ated through data augmentations that share the same concepts while using various tricks to avoid
a collapse towards a constant solution (Jing et al., 2021; Hua et al., 2021). This induces that the
latent space learns an invariance to the transformations used, which causes representations to lack
augmentations-related information.

Even if these models are self-supervised, they rely on human expert knowledge to find these relevant
invariances. For instance, as most downstream tasks in computer vision require object recognition,
existing augmentations do not degrade the categories of objects in images. More precisely, the
choice of the transformations was driven by some form of supervision, as it was done by experi-
mentally searching for the set of augmentations giving the highest object recognition performance
on the ImageNet dataset (Chen et al., 2020a). For instance, it has been found that color jitter is the
most efficient augmentation on ImageNet. One possible explanation is that color histograms are an
easy-to-learn shortcut solution (Geirhos et al., 2020), which is not removed by cropping augmen-
tations (Chen et al., 2020a). Indeed, as there are many objects in the categories of ImageNet, and
as an object category does not change when its color does, the loss of color information is worth
removing the shortcut. Still, it has been shown that color is an essential feature for some downstream
tasks (Xiao et al., 2020).

Thus, for a given downstream task, we can separate augmentations into two groups: the ones for
which the representations benefit from insensitivity (or invariance) and the ones for which sen-
sitivity (or variance) is beneficial (Dangovski et al., 2021). Indeed, there is a trade-off in the
choice of the augmentations: they require to modify significantly the images to avoid simple so-
lution shortcut learning (e.g. relying just on color histograms), yet some downstream tasks may
need augmentations-related information in the representations. Theoretically, this trade-off limits
the generalization of such representation learning methods relying on invariance. Recently, some
works have explored different ways of including sensitivity to augmentations and successfully im-
proved augmentations-invariant SSL methods on object classification by using tasks forcing sensi-
tivity while keeping an invariance objective in parallel. Dangovski et al. (2021) impose a sensitivity
to rotations, an augmentation that is not beneficial for the invariance task, while we focus in this
paper on sensitivity to transformations used for invariance. Xiao et al. (2020) proposes to learn as
many tasks as there are augmentations by learning multiple latent spaces, each one being invariant to
all but one transformation, however, it does not control the way augmentations-related information
is conserved. One can see this as an implicit way of learning variance to each possible augmentation.
Contrary to these works that do not control the way augmentations-related information is conserved,
here we propose to explore sensitivity by introducing an equivariance module that structures its la-
tent space by learning to predict the displacement in the embedding space caused by augmentations
in the pixel space.

The contributions of this article are the following:

• We introduce a generic equivariance module EquiMod to mitigate the invariance to aug-
mentations in recent methods of visual instance discrimination;

• We show that using EquiMod with state-of-the-art invariance models, such as BYOL and
SimCLR, boosts the classification performances on CIFAR10 and ImageNet datasets;

• We study the robustness of EquiMod to architectural variations of its sub-components;

• We observe that our model automatically learns a specific level of equivariance for each
augmentation.

Sec. 2 will present our EquiMod module as well as the implementation details while in Sec. 3 we
will describe the experimental setup used to study our model and present the results obtained. The
Sec. 4 will position our work w.r.t. related work. Finally, in Sec. 5 we will discuss our current results
and possible future works.
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2 EQUIMOD

2.1 NOTIONS OF INVARIANCE AND EQUIVARIANCE

As in Dangovski et al. (2021), we relate the notions of augmentations sensitivity and insensitivity
to the mathematical concepts of invariance and equivariance. Let T be a distribution of possible
transformations, and f denotes a projection from the input space to a latent space. That latent space
is said to be invariant to T if for any given input x the Eq. 1 is respected.

∀t ∈ T f(t(x)) = f(x) (1)

Misra & Maaten (2020) used this definition of invariance to design a pretext task for representation
learning. This formulation reflects that the embedding of a non-augmented input sample x will
not change if the input is transformed by any of the transformations in T . However, more recent
works (Bardes et al., 2021; Chen et al., 2020a; Chen & He, 2021; Grill et al., 2020; Zbontar et al.,
2021) focused on another formulation of invariance defined by the following Eq. 2.

∀t ∈ T , ∀t′ ∈ T f(t(x)) = f(t′(x)) (2)

With this definition, the embedding produced by an augmented sample x is independent of the
transformation used. Still, note that Eq. 1 implies Eq. 2, and that if the identity function is part of
T , which is the case with recent approaches, then both definitions are indeed equivalent.

While insensitivity to augmentation is reflected by invariance, sensitivity can be obtained by achiev-
ing variance, i.e. replacing the equality by inequality in Eq. 1 or Eq. 2. Yet, this is not an interesting
property, as any injective function will satisfy this constraint. In this paper, we propose to use equiv-
ariance as a way to achieve variance to augmentations for structuring our latent space. Eq. 3 gives
the definition of equivariance used in the following work.

∀t ∈ T , ∃ut f(t(x)) = ut(f(x)) (3)

With ut being a transformation in the latent space parameterized by the transformation t, it can be
seen as the counterpart of the transformation t but in the embedding space. With this definition, the
embeddings from different augmentations will be different and thus encode somehow information
related to the augmentations. Yet, if ut is always the identity then this definition of equivariance
becomes the same as invariance Eq.1. Indeed, one can see invariance as a trivial specific case of
equivariance. In the following, we only target non-trivial equivariance where ut produces some
displacement in the latent space. See Fig. 1 for a visual comparison of invariance and equivariance.

2.2 METHOD

EquiMod is a generic equivariance module that acts as a complement to existing visual instance
discrimination methods performing invariance (Bardes et al., 2021; Chen et al., 2020a; Chen & He,
2021; Grill et al., 2020; Zbontar et al., 2021). The objective of this module is to capture some
augmentations-related information originally suppressed by the learned invariance to improve the
learned representation. The main idea relies on equivariance, in the sense that our module learns
to predict the displacement in the embedding space caused by the augmentations. This way, by
having non-null displacement, we ensure embeddings contain augmentations-related information.
We first introduce a formalization for these existing methods (see Bardes et al. (2021) for an in-
depth explanation of this unification), before introducing how our approach adds on top.

Let t and t′ denote two augmentations sampled from the augmentations distribution T . For the given
input image x, two views are defined as vi := t(x) and vj := t′(x). Thus, for N original images,
this results in a batch of 2N views, where the first N elements correspond to a first view (vi) for
each of the images, and the lastN elements correspond to a second view (vj) for each of the images.
Following previous works, we note fθ an encoder parameterized by θ producing representations
from images, and gϕ a projection head parameterized by ϕ, which projects representations in an
embedding space. This way, the representations are defined as hi := fθ(vi) as well as hj := fθ(vj),
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Invariance Equivariance

Figure 1: On the left, invariance described by
Eq. 1, on the right, equivariance considered
in this paper and described by Eq. 3.

Maximize
similarity

Invariance

Task


Figure 2: The model learns similar embed-
dings for an augmented view (z′

i) and the
prediction of the displacement in the embed-
ding space caused by that augmentation (ẑ′

i),
t is a learned representation of the parameters
of the transformation, see Sec. 2 for notation
details.

and the embeddings as zi := gϕ(hi) as well as zj := gϕ(hj). Then, the model learns to maximize
the similarity between zi and zj , while using diverse tricks to maintain a high entropy for the
embeddings, preventing collapse to constant representations.

To extend those preceding works, we introduce a second latent space to learn our equivariance
task. For this purpose, we first define a second projection head g′ϕ′ parameterized by ϕ′ whose
objective is to project representations in our latent space. Using this projection head we note z′

i :=
g′ϕ′(hi) and z′

j := g′ϕ′(hj), the embeddings of the views vi and vj in this latent space we introduce.
Moreover, the way we define equivariance in Eq 3 requires us to produce the embedding of the
non-augmented image x, thus we note the representation ho := fθ(x), which is used to create
the embedding z′

o := g′ϕ′(ho) for the given image x. Next, as mentioned in Sec.2.1, to learn an
equivariant latent space one needs to determine a transformation ut for any given t, this can be
done either by fixing it or by learning it. In this work, we learn the transformation ut. To this
end, we define uψ a projection parameterized by the learnable parameters ψ, referenced later as the
equivariance predictor (implementation details about how t is encoded and influences uψ are given
below in Sec. 2.3). The goal of this predictor is to produce ẑ′

i from a given z′
o and t (resp. ẑ′

j for z′
o

and t′). One can see ẑ′
i as an alternative way to obtain z′

i using the equivariance property defined by
Eq. 3. Instead of computing the embedding of the augmented view vi := t(x), we apply t via uψ
on the embedding z′

o of the original image x.

Therefore, to match this equivariance principle, we need to train g′ϕ′ and uψ so that applying the
transformation via a predictor in the latent space (ẑ′

i) is similar to applying the transformation in the
input space and then computing the embedding (z′

i). For this purpose, we denote (z′
i, ẑ

′
i) as positive

pair (resp. (z′
j , ẑ

′
j)), and design our equivariance task so that our model learns to maximize the

similarity between the positive pairs. Yet, one issue with this formulation is that it allows collapsed
solutions, e.g. every z′ being a constant. To avoid such simple solutions, we consider negative pairs
(as in Chen et al. (2020a); He et al. (2020)) to repulse embedding from other embedding coming
from views of different images. We use the Normalized Temperature-scaled cross entropy (NT-
Xent) loss to learn from these positive and negative pairs, thus defining our equivariance loss for the
positive pair of the invariance loss (i, j) as Eq. 4:

ℓEquiMod
i,j = − log

exp(sim(z′
i, ẑ

′
i)/τ

′)
∑2N
k=1 1[k ̸=i∧k ̸=j] exp(sim(z′

i, z
′
k)/τ ′)

(4)

where τ ′ is a temperature parameter, sim(a, b) is the cosine similarity defined as a⊤b/(∥a∥∥b∥),
and 1[k ̸=i∧k ̸=j] is the indicator function evaluated to 1 (0 otherwise) when k ̸= i and k ̸= j.

This way, we exclude from negative pairs the views of the same image, related to index i and j, that
are considered as positive pairs in the invariance methods. While we could consider these pairs as
negative and still be following 3, we found that not using them as negative nor as positive leads to
slightly better results. One hypothesis is that repulsing views that can be very close in the pixel
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space (e.g. if the sampled augmentations modify weakly the original image) could induce training
instability. One can notice that g′ϕ′ and uψ are learned simultaneously, thus they can influence each
other during the training phase. We finally define the total loss of the model as:

L = LInvariance + λLEquiMod

with LEquiMod being the loss Eq. 4 applied to all pairs, both (i, j) and (j, i), of a batch and
LInvariance being the loss of the invariance baseline. λ is a hyperparameter that ponders the equiv-
ariant term of the loss.

2.3 IMPLEMENTATION DETAILS

We tested our module as a complement of 3 different baselines. The first one is SimCLR (Chen
et al., 2020a) as it represents a contrastive approach to instance discrimination and performs well
on CIFAR. The second one is BYOL (Grill et al., 2020), which offers a different kind of architec-
ture (as it is a bootstrapping approach rather than a contrastive one) while having the highest top-1
accuracy with linear evaluation on ImageNet using a ResNet50 backbone in a self-supervised fash-
ion. We also tested Barlow Twins (Zbontar et al., 2021) as it is not exactly a contrastive approach
nor a bootstrapping one to illustrate the generality of our approach, yet limited to CIFAR10 due to
computational limitation. Here are the details of each part of the architecture, including the baseline
ones and our equivariance module:

• Encoder: we follow existing works and use a convolutional neural network for the encoder
fθ, more specifically deep residual architectures from He et al. (2016).

• Invariance projection head: for the projection head gϕ (and potential predictor as in
BYOL Grill et al. (2020)), we used the same experimental setups as the original papers,
except for SimCLR where we used a 3 layers projection head as in Chen & He (2021).

• Equivariance projection head: the setup of our projection head g′ϕ′ is a 3 layers Multi-
Layer Perceptron (MLP), where each Fully-Connected (FC) layer is followed by a Batch
Normalization (BN) and a ReLU activation, except the last layer which is only followed by
a BN and no ReLU. Hidden layers have 2048 neurons each.

• Equivariant predictor: the predictor uψ is a FC followed by a BN. Its input is the concate-
nation of a representation of t and the input embedding z′

o. More precisely t is encoded by
a numerical learned representation of the parameters that fully define it. More precisely, we
reduce the augmentation to a vector composed of binary values related to the use of trans-
formations (for transformations applied with a certain probability) and numerical values
corresponding to some parameters (of the parameterized transformations). This vector is
projected in a 128d latent space with a perceptron learned jointly with the rest of the model,
see Sec.A.1 for details and examples of this encoding. This way, the input dimension of
the predictor is the dimension of the latent space plus the dimension of the encoding of
augmentations, while the output dimension is the same as the latent space.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETTINGS

In our experimentations, we tested our method on ImageNet (IN) (Deng et al., 2009) and CI-
FAR10 (Krizhevsky et al., 2009). As mentioned before, we have used our module as a complement
to SimCLR, BYOL, and Barlow Twins, 3 state-of-the-art invariance methods with quite different
ideas, to test the genericity of our module. For these methods, we used the same experimental setup
as the original papers. As in previous works, while training on ImageNet we used a ResNet50 with-
out the last FC, but while training on CIFAR10 we used the CIFAR variant of ResNet18 (He et al.,
2016). For all our experimentations we used the LARS You et al. (2017) optimizer, yet, biases
and BN parameters were excluded from both weight decay and LARS adaptation as in Grill et al.
(2020)). Finally, we have fixed λ to 1 as it led to the best and more stable results.
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3.1.1 SIMCLR

The model is trained for 800 epochs with 10 warm-up epochs and a cosine decay learning rate
schedule. We have used a batch size of 4096 for ImageNet and 512 for CIFAR10, while using an
initial learning rate of 2.4 for ImageNet (where we use 4.8 for SimCLR without EquiMod, as in
the original paper) and 4.0 for CIFAR10. For the optimizer, we fix the momentum to 0.9 and the
weight decay to 1e−6. Both the invariant and equivariant latent space dimensions have been set to
128. Finally, we use τ ′ = 0.2 for our loss, but τ = 0.2 on ImageNet τ = 0.5 with CIFAR10 for
the loss of SimCLR (we refer the reader to the original paper for more information about the loss of
SimCLR (Chen et al., 2020a)).

3.1.2 BYOL

The model learned for 1000 epochs1 (800 on CIFAR10) with 10 warm-up epochs and a cosine
decay learning rate schedule. The batch size used is 4096 for ImageNet and 512 for CIFAR10. We
have been using an initial learning rate of 4.8 for ImageNet (where we use 3.2 for BYOL without
EquiMod, as in the original paper) while using 2.0 for CIFAR10. Momentum of the optimizer is set
to 0.9 and weight decay to 1.5e−6 on ImageNet, but 1e−6 on CIFAR10. The invariant space has 256
dimensions while we keep our equivariant latent space to 128. Last, we use τ ′ = 0.2 for our loss,
and τbase = 0.996 for the momentum encoder of BYOL with a cosine schedule as in the original
paper (once again, we refer the reader to the paper for more details (Grill et al., 2020)).

3.1.3 BARLOW TWINS

We tested our method with Barlow Twins only on CIFAR10 with the following setup: 800 epochs
with 10 warm-up epochs and a cosine decay learning rate schedule, a batch size of 512, an initial
learning rate of 1.2, a momentum of 0.9 and weight decay of 1.5e−6. Both the invariant and equiv-
ariant latent space has 128 dimensions, while we use τ ′ = 0.2 for our loss and λBarlow Twins = 0.005
for the loss of Barlow Twins (as in the original paper (Grill et al., 2020)).

3.2 RESULTS

3.2.1 LINEAR EVALUATION

After training on either ImageNet or CIFAR10, we evaluate the quality of the learned representation
with the linear evaluation which is usual in the literature. To this end, we train a linear classifier on
top of the frozen representation, using the Stochastic Gradient Descent (SGD) for 90 epochs, which
is sufficient for convergence, with a batch size of 256, a Nesterov momentum of 0.9, no weight
decay, an initial learning rate of 0.2 and a cosine decay learning rate schedule.

Results of this linear evaluation are presented in Table 1, while some additional results are present
in supplementary material Sec. A.3. Across all baselines and datasets tested, EquiMod increases the
performances of all the baselines used, except BYOL while trained on 1000 epochs. Still, it is worth
noting that under 100 and 300 epochs training (Sec. A.3), EquiMod improves the performances of
BYOL. Overall, this supports the genericity of our approach, and moreover, confirms our idea that
adding an equivariance task helps to extract more pertinent information than just an invariance task
and improves representations. On CIFAR10, we achieve the second-best performance after E-SSL,
yet, contrary to us, they tested their model on an improved hyperparameter setting of SimCLR.

3.2.2 EQUIVARIANCE MEASUREMENT

The way our model is formulated could lead to the learning of invariance rather than equivariance.
Indeed, learning an invariant latent space as well as the function identity for uψ is an admissible
solution. Therefore, to verify that our model is really learning equivariance, we define two metrics
of equivariance Eq.5 and Eq.6. The first one evaluates the absolute displacement toward z′

i caused
by the predictor uψ . One can see this as how much applying the augmentation t to z′

o in the latent
space via uψ makes the resulting embedding ẑ′

i more similar to z′
i. This way, if our model is learning

invariance, we should observe an absolute displacement of 0, as uψ would be the identity. On the

1We also performed 100 and 300 epochs training, see Sec. A.3.
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Method
ImageNet CIFAR10

Top-1 Top-5 Top-1 Top-5
PIRL (Misra & Maaten, 2020) 63.6 - - -
E-SimCLR (Dangovski et al., 2021) 68.3‡ - 94.1 -
E-SimSiam (Dangovski et al., 2021) 68.6‡ - 94.2 -
SimCLR (Chen et al., 2020a) 69.3 89.0 - -
SimSiam (Chen & He, 2021) 71.3 - - -
SwAV (w/o multi-crop) (Caron et al., 2020) 71.8 - - -
Barlow Twins (Zbontar et al., 2021) 73.2 91.0 - -
VICReg (Bardes et al., 2021) 73.2 91.1 - -
BYOL (Grill et al., 2020) 74.3 91.6 - -
SimCLR∗ 71.57 90.48 90.96 99.73

SimCLR∗ + EquiMod 72.30 90.84 92.79 99.78

BYOL∗ 74.03 91.51 90.44 99.62

BYOL∗ + EquiMod 73.22 91.26 91.57 99.71

Barlow Twins∗ - - 86.94 99.61

Barlow Twins∗ + EquiMod - - 88.87 99.71

Table 1: Linear Evaluation; top-1 and top-5 accuracies (in %) under linear evaluation on ImageNet
and CIFAR10 (symbols ∗ denote our re-implementations, and ‡ denote only 100 epochs training).

contrary, if it is learning equivariance, we should observe a positive value, meaning that the uψ
plays its role in predicting the displacement in the embedding space caused by the augmentations.
A negative displacement means a displacement in the opposite direction, in other words, it means
that the predictor performs worse than the identity function. Furthermore, a small displacement does
not mean poor equivariance, for instance, if z′

o is very similar to z′
i, the room for displacement is

already very small. This is why we also introduce the second metric, which evaluates the relative
displacement toward z′

i caused by uψ . It reflects by which factor applying the augmentation t to z′
o

in the latent space via uψ makes the resulting embedding ẑ′
i less dissimilar to z′

i. Thus, if the model
is learning invariance, we should see no reduction nor augmentation of the dissimilarity, thus the
factor should remain at 1 while a model achieving equivariance would exhibit a positive factor.

sim(z′
i, ẑ

′
i)− sim(z′

i, z
′
o) (5)

1− sim(z′
i, z

′
o)

1− sim(z′
i, ẑ

′
i)

(6)

Fig. 3 shows the absolute equivariance measured for each augmentation. Note that this is performed
on a model already trained with the usual augmentation policy containing all the augmentations. If
an augmentation induces a large displacement, it means the embedding is highly sensitive to the
given augmentation. What we can see from Fig. 4, is that regardless of the dataset used, the model
achieves poor sensitivity to horizontal flip and grayscale. However, on ImageNet, we observe a
high sensitivity to color jitter as well as medium sensitivity to crop and gaussian blur. On CIFAR10
we observe a strong sensitivity to crop and a medium sensitivity to color jitter. Therefore, we can
conclude that our model truly learns an equivariance structure, and that the learned equivariance is
more sensitive to some augmentation such as crop or color jitter.

3.2.3 INFLUENCE OF THE ARCHITECTURES

We study how architectural variations can influence our model. More precisely, we explore the
impact of the architecture of the g′ϕ′ , uψ as well as the learned projection of tmentioned in Sec. A.1.
To this end, we train models for each architectural variation on CIFAR10, and report the top-1
accuracies under linear evaluation, the results are reported in Table 2. What we observe in Table 2a,
is that the projection head of the equivariant latent space benefits from having more layers, yet
this effect seems to plateau at some point. These results are in line with existing works (Chen et al.,
2020a). While testing various architectures for the equivariant predictor Table 2b, we note only small
performance variations, indicating that uψ is robust to architectural changes. Finally, looking at
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Figure 3: Absolute equivariance measure for
each augmentation (the dashed line represents
invariance).
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Figure 4: Relative equivariance measure for
each augmentation (the dashed line represents
invariance).

Table 2c, we observe that removing the projection of t only leads to a small drop in performance. On
the contrary, complex architectures (two last lines) lead to a bigger drop in accuracy. Furthermore,
while testing different output dimensions (lines 2 to 4), we note that using the same dimension for
the output and for the equivariant latent space led to the highest results. Some more analysis on
hyperparameter variations of our model, such as λ, batch size, or τ ′ can be found in Sec. A.2.

Layers in g′ϕ′ Top-1
None 88.46

1 91.58

2 92.58

3 † 92.79

(a) Equivariance projec-
tion head

Layers in uψ Top-1
1 † 92.79

2 (H: 16-d) 92.67

2 (H: 128-d) 92.59

2 (H: 2048-d) 92.70

(b) Equivariant predictor

Layers in the projection of t Top-1
None 92.50

1 (O: 16-d) 92.57

1 (O: 128-d) † 92.79

1 (O: 2048-d) 92.50

2 (H: 16-d; O: 128-d) 92.47

2 (H: 128-d; O: 128-d) 92.13

2 (H: 2048-d; O: 128-d) 92.05

(c) Augmentation projector

Table 2: Top-1 accuracies (in %) under linear evaluation on CIFAR10 for some architectural varia-
tions of our module. H stands for hidden layer, O for output layer, † denotes default setup.

4 RELATED WORK

Most of the recent successful methods of SSL of visual representation learn a latent space where
embeddings of augmentations from the same image are learned to be similar. Yet, such instance
discrimination tasks admit simple constant solutions. To avoid such collapse, recent methods im-
plement diverse tricks to maintain a high entropy for the embeddings. Grill et al. (2020) rely on
a momentum encoder as well as an architectural asymmetry, Chen & He (2021) depend on a stop
gradient operation, Zbontar et al. (2021) rely on a redundancy reduction loss term, Bardes et al.
(2021) rely on a variance term as well as a covariance term in the loss, Chen et al. (2020a) use
negative pairs repulsing sample in a batch. In this work, our task also admits collapse solutions, thus
we make use of the same negative pairs as in Chen et al. (2020a) to avoid such collapse. The most
recent methods are creating pairs of augmentations to maximize the similarity between those pairs.
However, our addition does not rely on pairs of augmentations, and only needs a source image and
an augmentation. This is similar to Misra & Maaten (2020) which requires to have a source image
and an augmentation, however, they use these pairs to learn an invariance task while we use them to
learn an equivariance task.

Our approach is part of a line of recent works, which try to perform additional tasks of sensitivity to
augmentation while learning an invariance task. This is the case of E-SSL (Dangovski et al., 2021),
which simultaneously learns to predict rotations applied to the input image while learning an invari-
ance pretext task. This way, their model learns to be sensitive to the rotation transformation, usually
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not used for invariance. Where this can be considered as a form of equivariance (a rotation in input
space produces a predictable displacement in the prediction space) this is far from the equivariance
we explore in this paper. Indeed, E-SSL sensitivity task can be seen as learning an instance-invariant
pretext task, where for any given input, the output represents only the augmentation (rotation) used.
Here, we explore equivariance sensitivity both to images and to augmentations. Moreover, we only
consider sensitivity to the augmentations used for invariance. In LooC (Xiao et al., 2020), authors
propose to use as many different projection heads as there are augmentations and learn each of these
projection heads to be invariant to all but one augmentation. This way the projection heads can
implicitly learn to be sensitive to an augmentation. Still, they do not control how this sensitivity
occurs, where we explicitly define an equivariance structure for the augmentations-related informa-
tion. Note that a work has tried to tackle the trade-off from the other side, by trying to reduce the
shortcut learning occurring, instead of adding sensitivity to augmentations. Robinson et al. (2021)
shows that shortcut learning occurring in invariant SSL is partly due to the formulation of the loss
function and proposes a method to reduce shortcut learning in contrastive learning.

Some other works have also successfully used equivariance with representation learning. For in-
stance, Jayaraman & Grauman (2015) uses the same definition of equivariance as us and success-
fully learns an equivariant latent space tied to ego-motion. Still, their objective is to learn embodied
representations as well as using the learned equivariant space, in comparison we only use equiv-
ariance as a pretext task to learn representations. Moreover, we do not learn equivariance on the
representations, but rather on a non-linear projection of the representations. Lenc & Vedaldi (2015)
learns an equivariant predictor on top of representations to measure their equivariance, however, to
learn that equivariance, they require the use of strong regularizations.

5 CONCLUSION AND PERSPECTIVES

Recent successful methods for self-supervised visual representation rely on learning a pretext task of
invariance to augmentations. This encourages the learned embeddings to discard information related
to transformations. However, this does not fully consider the underlying dilemma that occurs in the
choice of the augmentations: strong modifications of images are required to remove some possible
shortcut solutions, while information manipulated by the augmentation could be useful to some
downstream tasks. In this paper, we have introduced EquiMod, a generic equivariance module that
can complement existing invariance approaches. The goal of our module is to let the network learn
an appropriate form of sensitivity to augmentations. It is done through equivariance via a module
that predicts the displacement in the embedding space caused by the augmentations. Our method is
part of a research trend that performs sensitivity to augmentations. Nonetheless, compared to other
existing works, we perform sensitivity to augmentations also used for invariance, therefore reducing
the trade-off, while defining a structure in our latent space via equivariance.

Testing EquiMod across multiple invariance baseline models and datasets almost always showed
improvement under linear evaluation. It indicates that our model can capture more pertinent infor-
mation than with just an invariance task. In addition, we observed a strong robustness of our model
under architectural variations, which is a non-negligible advantage as training such methods is com-
putationally expensive, and so does the hyperparameters exploration. When exploring the sensitivity
to the various augmentations, we noticed that the latent space effectively learns to be equivariant to
almost all augmentations, showing that it captures most of the augmentations-related information.

For future work, we plan on testing our module on more baseline models or even as a standalone. As
EquiMod almost always improved the results in our tests, it suggests that EquiMod could improve
performances on many more baselines and datasets. Then, since E-SSL adds sensitivity to rotation,
yet still does not consider sensitivity to augmentations used for invariance, it would be interesting
to study if combining EquiMod and E-SSL can improve even further the performances. Another
research axis is to perform an in-depth study of the generalization and robustness capacity of our
model. To this end, we want to explore its capacity for transferability (fine-tuning) and few-shot
learning, both on usual object recognition datasets, but also on more challenging datasets containing
flowers and birds as in Xiao et al. (2020). Since the trade-off theoretically limits the generalization
on the learned representation, and since we reduce the effect of the trade-off, we hope that EquiMod
may show advanced generalization and robustness properties. On a distant horizon, the equivariant
structure learned by our latent space may open some interesting perspectives related to world model.
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A APPENDIX

A.1 ENCODING OF THE AUGMENTATIONS

We use the classical augmentations of the literature, which depend on the dataset and model used,
applied in the given order:

• Resized Crop: crop a subregion of the image;
• Horizontal flip: flip the image with a given probability;
• Color jitter: jitter the image on different aspects with a random order (brightness, satura-

tion, contrast, and hue) and with a given probability;
• Gray-scale: gray-scale the image with a given probability;
• Gaussian blur (not used with CIFAR10 except in BYOL): blur the image using a sampled
σ and with a given probability;

• Solarize (applied only with BYOL): solarize the image with a given probability.

We refer the reader to the original papers (Chen et al., 2020a; Grill et al., 2020; Zbontar et al., 2021)
to know how the different methods parameterize these augmentations (e.g. values of the probability,
or intervals of values sampled, as factors in color jitter).

To encode these augmentations, we represent them by a numerical vector where some of the compo-
nents are binary values related to the use of augmentations (for those applied with some probability)
and some others are numerical values corresponding to some parameters (of the parameterized trans-
formations). We only consider the corresponding augmentations w.r.t. the tested dataset and model.
For each of these considered augmentations except crop, we define an element valued at 1 when
the augmentation is performed and valued at 0 otherwise (since each augmentation, but the crop,
is applied with a given probability it may be applied or not). Then, some augmentations require
additional elements. To this end, we define elements to represent these parameters using the follow-
ing direct ways (note that when a parametrized augmentation is not applied due to its probability of
application, its numerical components are set to some predefined default values):

• Resized Crop (4 elements): x and y coordinates of the top-left pixel of the crop as well as
width and height of the crop.
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• Color Jitter (8 elements): the jitter factors for brightness, saturation, contrast, and hue
(1, 1, 1, 0 is the default encoding if color jitter is not applied), as well as their order of
application. More precisely, to encode the order of modification, we use the following
mapping {0 : brightness, 1 : contrast, 2 : saturation, 3 : hue}. For instance an encoding
with ”1, 3, 2, 0” would mean that contrast jitter is first applied, then hue, contrast, and
finally brightness (0, 1, 2, 3 is the default encoding if color jitter is not applied).

• Gaussian Blur (1 element): the value of sigma used (0 if blur is not applied).

At this point, we have a numerical vector that represents which augmentations are applied or not
and what are their parameters if any, see the following Sec. A.1.1 and Sec. A.1.2 for some examples.
We then normalize this vector component-wise using experimental mean and standard deviation
computed over many examples, and we use a perceptron to project the constructed vector into a
128d latent space. This perceptron is learned jointly with the rest of the model.

A.1.1 EXAMPLE 1

Here is an example of one transformation applied during the learning of BYOL on ImageNet.

Let’s consider the randomly generated transformation composed of the following augmentations:

• Crop at coordinates x, y=(12, 9) with width, height of (120, 96);
• Probabilistic horizontal flip not triggered;
• Probabilistic color jitter triggered with factors and order of: hue -0.09, contrast 1, saturation

0.84, brightness 1.13;
• Probabilistic gray-scale triggered;
• Probabilistic blur not triggered;
• Probabilistic solarize not triggered;

According to A.1, for the binary part representing the performed augmentations we have [0, 1, 1, 0,
0] for [No H-Flip, Yes Color jitter, Yes Gray-scale, No Blur, No Solarize] (one per augmentation,
except crop which is always performed), and for the parameterized transformations : [12, 9, 120, 96,
1.13, 1, 0.84, -0.09, 3, 1, 2, 0, 0] for [Crop X, Crop Y, Crop Width, Crop Height, Brightness Factor,
Contrast Factor, Saturation Factor, Hue Factor, Index of the First Color Modification Applied, Index
of the Second Color Modification Applied, Index of the Third Color Modification Applied, Index of
the Fourth Color Modification Applied, Default value for sigma (as blur is not triggered)]

Finally, this gives us the 18d vector [0, 1, 1, 0, 0, 12, 9, 120, 96, 1.13, 1, 0.84, -0.09, 3, 1, 2, 0, 0],
which is then normalized and given to a perceptron to project it to a 128d vector.

A.1.2 EXAMPLE 2

And here is another example this time with SimCLR on CIFAR10 (which uses a different augmen-
tation policy, thus solarization and blur are not considered).

Let’s consider the randomly generated transformation composed of the following augmentations:

• Crop at coordinates x,y=(1, 2) with width,height of (24, 27);
• Probabilistic horizontal flip triggered;
• Probabilistic color jitter not triggered;
• Probabilistic gray-scale not triggered;

For the binary part representing the performed augmentations, we have [1, 0, 0] for [Yes H-Flip, No
Color jitter, No Gray-scale]. And for the parametrized transformations : [1, 2, 24, 27, 1, 1, 1, 0, 0,
1, 2, 3] for [Crop X, Crop Y, Crop Width, Crop Height, Brightness Factor (Default), Contrast Factor
(Default), Saturation Factor (Default), Hue Factor (Default), Index of the First Color Modification
(Default), Index of the Second Color Modification (Default), Index of the Third Color Modification
(Default), Index of the Fourth Color Modification (Default)]. Note the default values for all the
parameters of the color jitter which is not triggered.
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This gives us the 15d vector [1, 0, 0, 1, 2, 24, 27, 1, 1, 1, 0, 0, 1, 2, 3], which is then normalized and
given to a perceptron to project it to a 128d vector.

A.2 INFLUENCE OF HYPERPARAMETERS (λ, τ ′ AND BATCHSIZE)

In this section, similarly to Sec.3.2.3, we study how variations of minor hyperparameters can influ-
ence our model. To that purpose, we train models on CIFAR10 for each hyperparameter modification
and present the top-1 accuracy under linear evaluation.

We first inspect the influence of the λ, the weighting factor between our equivariance loss and
the invariance baseline loss. One can see Table 3a that when λ is small (< 1) there is a drop
in performance. As λ can be seen as weighting the importance between the equivariance and the
invariance terms of the loss, this confirms that our model learns better features when our equivariance
addition is considered with at least the same importance as the invariance task. On the opposite,
interestingly, where λ is set to high values such as 5 or 10, we do not observe a clear modification of
the performance. This tends to indicate that there is no degradation of the representation when the
equivariance is prioritized.

Then we study the temperature hyperparameter of the NT-Xent loss that we use to learn equivariance.
Similarly to what is reported in Chen et al. (2020a), we find Table 3b that the optimal values to be
around 0.2 and 0.5.

Finally, we explore the impact of the batch size on the learned representations. This hyperparameter
directly determines the number of negative pairs, therefore it highly influences the learning dynamic.
We observe Table 3c a decrease in performance where the batch size is too small (≤ 256) or too big
(≥ 1024). Once again, these findings are in line with the literature (Chen et al., 2020a).

λ Factor Top-1
0 90.96

0.1 92.07

0.2 92.31

0.5 92.37

1 † 92.79

2 92.33

5 92.81

10 92.66

(a) Weighting factor between
equivariance and invariance
losses

Temperature τ ′ Top-1
0.05 92.13

0.1 92.13

0.2 † 92.79

0.5 92.31

1 92.14

(b) Temperature of the NT-
Xent used in our equivariance
loss

Batch size Top-1
64 92.23

128 92.24

256 92.38

512 † 92.79

1024 92.23

(c) Batch size

Table 3: Top-1 accuracies (in %) under linear evaluation on CIFAR10 for some hyperparameter
variations of our module. † denotes default setup.

A.3 ADDITIONAL RESULTS

The Table 4 shows the impact of the number of training epochs on the results of the linear evaluation
of BYOL with and without EquiMod.
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Method
ImageNet CIFAR10

Top-1 Top-5 Top-1 Top-5
BYOL∗ (100 epochs) 62.09 84.01 - -
BYOL∗ + EquiMod (100 epochs) 65.55 86.74 - -
BYOL∗ (300 epochs) 71.34 90.35 - -
BYOL∗ + EquiMod (300 epochs) 72.03 90.77 - -
BYOL∗ (1000 epochs) 74.03 91.51 90.44 99.62

BYOL∗ + EquiMod (1000 epochs) 73.22 91.26 91.57 99.71

Table 4: Linear Evaluation; top-1 and top-5 accuracies (in %) under linear evaluation on ImageNet
and CIFAR10 (symbols ∗ denote our re-implementations).
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Which Structural Patterns Emerging from
Instance Discrimination Benefit Linear Evaluation?

Anonymous submission

Abstract

Instance discrimination tasks have propelled self-supervised
learning of representations to approach the performance of
supervised baselines. These methods typically involve align-
ing augmentations of the same instance while ensuring,
through various techniques, that the overall distribution of
representations does not collapse. Despite some hypothe-
ses suggesting why optimization for instance discrimination
yields linearly separable representations that facilitate clas-
sification, the precise underlying mechanisms remain elu-
sive. In this work, we shift focus from formally explain-
ing the emergence of linear structures to empirically study-
ing the shared structural components across different self-
supervised learning methods and identifying which elements
contribute to high classification accuracy under linear evalua-
tion. We employ a comprehensive set of structural descriptors
to quantitatively describe the learned representations, analyz-
ing these descriptors at various local and global scales, differ-
ent models, and depths. We hope that this work will pave the
way for designing methods that explicitly optimize for the
emergence of beneficial structural patterns in learned repre-
sentations.

Introduction
In recent years, Self-Supervised Learning (SSL) has
emerged as a powerful approach for learning visual repre-
sentations without the need for labeled data (Caron et al.
2020; Chen et al. 2020a,b; Chen and He 2021; Bardes,
Ponce, and LeCun 2021; Grill et al. 2020; He et al. 2020;
Misra and Maaten 2020; Zbontar et al. 2021). A key advan-
tage of SSL is its ability to learn directly from raw data, mak-
ing it highly versatile and applicable across a wide range of
tasks and domains. It is also data and compute efficient due
to its strong transferability (Zhao et al. 2021). Unlike super-
vised learning, which requires extensive labeled datasets and
may bias the representation toward specific tasks (Geirhos
et al. 2020), SSL aims at leveraging the inherent structure
in the data, enabling the model to learn more generalizable
features.

Self-supervised methods, particularly those based on
instance discrimination (Caron et al. 2020; Chen et al.
2020a,b; Chen and He 2021; Bardes, Ponce, and LeCun
2021; Grill et al. 2020; He et al. 2020; Misra and Maaten
2020; Zbontar et al. 2021), have achieved remarkable suc-
cess, reaching performance levels comparable to supervised

learning on downstream tasks such as image classification
and object detection. These methods typically involve cre-
ating multiple augmented views of the same data instance
and encouraging the model to learn similar representations
for these views while maintaining diversity across different
instances.

Despite the success of instance discrimination methods,
the underlying mechanisms that enable these models to pro-
duce representations highly effective for downstream tasks
remain poorly understood. Theoretically, such pretext tasks
are expected to learn a structure that is not necessarily con-
ducive to tasks like classification. Invariance in instance dis-
crimination methods is learned at the instance level rather
than the class level, as class labels are unknown in an SSL
context. This means that each instance is treated as its own
category. To avoid collapse, the model is often regularized
to make representations of different instances as distinct,
or even orthogonal, as possible. This approach theoretically
hinders generalization, as it discourages the model from
learning shared embeddings across instances that belong to
the same class.

However, in practice, the representations learned through
instance discrimination often generalize well to downstream
tasks, particularly in classification, where such structure
should theoretically be a disadvantage. Moreover, when
the loss is applied through a projection head (a non-linear
transformation of the representation), making the represen-
tations less explicitly structured by the loss, performance
tends to improve. Note that these properties are consistently
observed across different instance discrimination methods.
This apparent contradiction has led to a deeper exploration
of these phenomena, prompting several theoretical works
that propose hypotheses, including the role of the projec-
tion head in shaping the learned representations (Chen et al.
2020a; Xue et al. 2024) and the concept of the chaos lad-
der to explain how classification could emerge from instance
discrimination (Wang et al. 2022).

In this work, we take an experimental approach to em-
pirically analyze the structural components that emerge in
the latent spaces of different instance discrimination-based
methods. Our objective is to identify both shared and distinct
structural patterns across various SSL approaches and deter-
mine which of these patterns most effectively contribute to
high classification accuracy in downstream tasks. To achieve



this, we employ a diverse set of structural descriptors that
capture different facets of the latent space’s organization. By
systematically analyzing and comparing these descriptors at
multiple scales, across different models, and at varying net-
work depths, we aim to provide a practical understanding of
what emerging structures contribute to the success of SSL.
Ultimately, our findings could inform the design of new SSL
methods that explicitly optimize for the emergence of bene-
ficial structural patterns, leading to even more powerful and
generalizable representations.

Related Work
Instance discrimination has become an important part of
self-supervised learning (SSL) due to its effectiveness in
learning robust visual representations without labeled data.
Key methods in this area (Caron et al. 2020; Chen et al.
2020a,b; Chen and He 2021; Bardes, Ponce, and LeCun
2021; Grill et al. 2020; He et al. 2020; Misra and Maaten
2020; Zbontar et al. 2021) share the common goal of align-
ing augmented views of the same instance while maintaining
a diverse and high-entropy representation space to prevent
collapse.

SimCLR (Chen et al. 2020a) employs a contrastive learn-
ing framework, utilizing negative pairs within a batch
to push apart embeddings from different instances while
pulling together embeddings of augmented views of the
same instance. SimSiam (Chen and He 2021) builds on this
by removing the need for negative pairs altogether, relying
on a stop-gradient operation and a simple siamese network
architecture to prevent collapse and maintain meaningful
representations. BYOL (Grill et al. 2020), similarly to Sim-
Siam, eliminates the need for negative pairs by introducing
a momentum encoder, which, along with an asymmetric ar-
chitecture, helps maintain the diversity of representations.
PIRL (Misra and Maaten 2020) introduces a pretext task
that learns invariant representations by contrasting original
images with augmented ones, ensuring that the model cap-
tures both high-level semantics and low-level details. Bar-
low Twins (Zbontar et al. 2021) focuses on redundancy re-
duction across embeddings by minimizing the redundancy
in the output features, while VICReg (Bardes, Ponce, and
LeCun 2021) adds constraints on variance and covariance
to ensure the learned representations do not collapse and re-
main useful for downstream tasks. Despite the differences
in their approaches, all these methods achieve competitive
performance on downstream tasks, such as classification,
suggesting that they effectively capture essential features of
the data. However, the precise mechanisms by which these
instance-level discriminations lead to representations that
generalize well to class-level tasks remain an open question.

The apparent paradox of how instance discrimination
leads to strong classification performance has been the focus
of several theoretical investigations. One hypothesis empha-
sizes the role of the projection head (Chen et al. 2020a; Xue
et al. 2024), which is applied to the representations before
the loss is computed. The projection head’s benefit may lie
in its ability to allow the representations to retain more in-
formation related to the augmentations, rather than forcing
them to specialize solely toward the invariance task.

Another theoretical approach involves the concept of the
”ladder of chaos” (Wang et al. 2022), which provides a novel
explanation for how contrastive learning transitions from
instance-level discrimination to effective class-level gener-
alization. This theory suggests that aggressive data augmen-
tations in contrastive learning create ”augmentation over-
lap”, where intra-class samples become more similar due to
the augmentations. This overlap introduces ”chaos” among
intra-class samples. The contrastive loss, which aligns aug-
mented views of the same instance, helps the model grad-
ually cluster these intra-class samples together, effectively
”climbing the ladder of chaos”. However, it has been shown
that this theory alone may not fully explain the underlying
mechanisms (Saunshi et al. 2022).

Beyond theoretical explanations, recent studies have em-
pirically investigated some of the structural properties of the
latent spaces learned by SSL methods, shedding light on
how these properties impact downstream performance. For
instance, Purushwalkam and Gupta (2020) demonstrate that
SSL methods often unexpectedly learn invariances that are
heavily influenced by dataset biases, such as those present
in ImageNet, and primarily focus on certain invariances like
occlusion when transferred to different domains.

In another study, Zhang, Lu, and Xuan (2024) observed
that SSL representations tend to organize images such that
nearest neighbors in the latent space are often not of the
same class, unlike in supervised learning. They also find that
in SSL, similar representations are more closely related in
pixel space. Similarly, Grigg et al. (2021) explored how rep-
resentations learned by SSL and supervised learning (SL)
diverge across network layers. Their findings suggest that
while both SSL and SL models improve in performance as
layers deepen, the representations become increasingly dis-
similar. Notably, the similarity between SSL and SL repre-
sentations collapses after the projection head in SSL mod-
els, highlighting the distinct nature of the features learned
through self-supervision.

Finally, Cole et al. (2022) examined key factors that influ-
ence the effectiveness of contrastive learning, such as the
quantity and quality of data, the pretraining domain, and
the granularity of tasks. Their study reveals that SSL meth-
ods are sensitive to the domain of the pretraining data and
the resolution of images, and they struggle with fine-grained
tasks compared to supervised baselines.

While these studies offer important insights into the struc-
tural properties and generalization capabilities of SSL meth-
ods, they often focus on individual approaches or specific as-
pects of the latent space, sometimes tailoring their findings
to particular model designs (Zhang, Lu, and Xuan 2024).
This focus leaves gaps in our understanding of the broader
structural patterns that emerge across different SSL tech-
niques. Addressing this gap, our work takes a more holistic
approach, systematically analyzing a wide array of structural
descriptors across multiple SSL models and network layers.
By identifying the structural characteristics that consistently
correlate with high classification accuracy, our study pro-
vides a unified approach to better understand the structural
factors that contribute to the success of instance discrimina-
tion methods.



Method
In this work, we study the impact of latent space structure
on downstream task performance and identify the specific
structural patterns that contribute to this performance. Ex-
tracting and defining structural patterns from a latent space
remains an open challenge. For this work, we have started
by defining the properties of the latent space that could be
of interest based on the literature, followed by determining
appropriate descriptors that can verify and quantify the pres-
ence of these properties. These descriptors serve as tools to
analyze the structure of the latent space within the selected
subsets of data points. To keep the study comprehensible
and facilitate the interpretation of the resulting structural
patterns, we focus on usual and widely used structural de-
scriptors, each of which can be summarized by a few scalar
values with easily understandable meanings.

We then compute these descriptors for subsets of data
points to correlate them with the performance metrics of
the corresponding subset of samples. We naturally define
these subsets as the various classes within the dataset, as
this provides a clear basis for comparison. However, it is
important to note that the methods are learned in a self-
supervised manner, meaning that the structural patterns
emerging within these subsets arise without any explicit
class labels or supervision. This approach is driven by the
hypothesis that local structural variations may exist and
could be linked to the model’s performance on data points
within these local areas. For example, samples from a par-
ticular class might exhibit a structure that differs from other
classes, leading to varying accuracy levels. Such structural
variations are plausible given the instance discrimination ob-
jective, which has no inherent reason to produce a homoge-
neous space.

Structure Descriptors
We refer to “structural descriptors” as metrics that quantify
specific characteristics of the latent space, providing insight
into the underlying structure learned by the model. These
descriptors are chosen based on their demonstrated ability
in the literature to capture meaningful aspects of the data’s
distribution, organization, and relationships.

Since the structures within the latent space are not ex-
plicitly optimized during training, they emerge naturally and
unpredictably. This unpredictability necessitates exploring a
wide variety of descriptors to capture different facets of the
latent space’s organization. By analyzing the following di-
verse set of descriptors, we aim to uncover the most com-
prehensive patterns that may correlate with and contribute
to the model’s success in downstream tasks.

Principal Component Analysis We apply Principal Com-
ponent Analysis (PCA) to the latent space to quantify its
structure. Key metrics include the number of dimensions re-
quired to capture 10%, 50%, 90%, 95%, and 99% of the
variance, providing insight into the compactness of the la-
tent space. We also compute the effective dimensionality,
which reflects the overall spread of variance, and the ratio
of variance captured by the first to the last principal com-
ponent, highlighting the dominance of leading components.

Additionally, the Gini coefficient is calculated to assess the
inequality in variance distribution across components. These
metrics collectively characterize the dimensionality within
the latent space.

Statistics on the Activation Distribution We compute
various statistics on the activation distributions within the
latent space to gain insights into the utilization and spread
of neuron activations. Specifically, we calculate the aver-
age, maximum, minimum, and median values for the mean,
standard deviation, variance, skewness, and kurtosis of the
activations. These metrics help us understand the distribu-
tion of activations across neurons, revealing how balanced or
skewed the activations are, and how much the model relies
on specific neurons or dimensions within the latent space.

Covariance We assess the covariance matrix to under-
stand the linear relationships between neurons within the
latent space. Specifically, we examine the trace (total vari-
ance), determinant (overall spread), and the average off-
diagonal values, which indicate the average linear correla-
tion between different dimensions. These metrics help deter-
mine how effectively the latent space utilizes its dimensions
and whether there are redundancies.

Mutual Information We calculate mutual information
between neuron pairs to measure the dependence between
different dimensions of the latent space. This includes com-
puting the redundancy index, which summarizes the overall
degree of information overlap across the dimensions. Ad-
ditionally, we analyze the average, maximum, and variance
of mutual information values, along with their skewness and
kurtosis, to understand the distribution of dependency across
neuron pairs. These metrics provide insights into how much
information is shared between neurons and whether certain
dimensions carry redundant information.

Similarity Metrics We assess the relationships between
data points within the latent space by computing various co-
sine similarity metrics, including the average, median, high-
est, and lowest similarities among data points, as well as the
similarity of points to the average representation. These met-
rics help evaluate the compactness, cohesion, and distinc-
tiveness of the representations, indicating how effectively
similar data points are grouped and how distinct different
representations are from one another.

Nearest Neighbors We assess the local density and prox-
imity of data points within the latent space by analyzing
their nearest neighbors. This involves calculating the av-
erage cosine distance to the k-nearest neighbors and eval-
uating metrics such as median distance, variance, and the
slope of the distance distribution in both logarithmic and
non-logarithmic scales. Additionally, we track the number
of neighbors within specific distance thresholds and com-
pute average distances for particular percentiles of neigh-
bors, offering a detailed view of the separation and cohesion
within the latent space.

Fractal and Correlation Dimension We assess the com-
plexity and dimensionality of the latent space using corre-
lation and fractal dimensions (Grassberger and Procaccia



1983a,b). The correlation dimension estimates the intrin-
sic dimensionality by examining how the number of point
pairs within a given cosine distance scales as the distance in-
creases, providing insight into whether data points are uni-
formly distributed or reside on a lower-dimensional mani-
fold. The fractal dimension evaluates how the latent space
fills as we zoom in at different scales by comparing the la-
tent space to a set of uniform points on a hypersphere. Both
metrics are summarized using the slope of the log-log plot
and the average proximity of points, offering a detailed view
of the latent space’s self-similarity and scaling properties.

Clustering Analysis We analyze the latent space structure
by grouping data points into distinct clusters using spherical
k-means clustering, focusing on the first 50 principal com-
ponents. The optimal number of clusters is determined via
the elbow method. Key metrics include the optimal number
of clusters, median cluster size, variance in cluster sizes, and
average cosine similarity to cluster centroids. These metrics
provide insight into the compactness, separation, and overall
organization of the latent space, helping to identify how well
the representations form distinct groups.

Connected Components We analyze the connected com-
ponents within the latent space by evaluating the subgraphs
formed in a binarized similarity matrix (Tarjan 1972). By
varying the similarity threshold, we identify distinct con-
nected regions and examine metrics such as the threshold
required to reach specific percentages of connected compo-
nents (e.g., 10%, 50%, 90%, 95%, 99%), as well as the num-
ber, median size, standard deviation, and variance of these
components. This analysis reveals the level of fragmentation
or connectedness within the latent space, providing insight
into how data points cluster and whether the space contains
isolated or densely connected regions.

Community Detection We perform community detection
within the latent space by treating the similarity matrix
as a weighted graph, where edges represent the strength
of connections between data points. Using the Louvain
method (Blondel et al. 2008), we identify clusters, or com-
munities, and analyze key metrics including the number of
communities, median community size, standard deviation,
variance of community sizes, and the modularity score. This
analysis uncovers the hierarchical and modular structure of
the latent space, providing insights into how data points form
complex, interrelated groups.

Instance Discrimination Baselines
We selected SimCLR (Chen et al. 2020a) and BYOL (Grill
et al. 2020) as the baseline models for our analysis, as
they represent two distinct approaches to self-supervised
learning, both centered on instance discrimination. SimCLR
is foundational in contrastive learning, focusing on distin-
guishing between positive and negative pairs to generate
meaningful representations. BYOL, in contrast, eliminates
the need for negative samples by using a momentum en-
coder in one of the siamese branches, solely aligning aug-
mented views to learn representations, and has demonstrated
high accuracy in downstream tasks. Thanks to their differing

mechanisms, the shared structural patterns of these models
may reveal shared and distinct trends inherent to instance
discrimination, allowing us to identify the core structures
consistently leveraged across varied SSL paradigms.

In our experiments, we utilize a ResNet-50 backbone
combined with a two-layer projection head, following the
original implementations of each method. The models are
trained on the ImageNet dataset. To gain insights into the
evolution of the latent space structure, we analyze the
learned representations at multiple stages of the network.
Specifically, we examine the outputs from both the backbone
and the projection head. This multi-layer analysis provides a
comprehensive view of how the structure of the latent space
develops as the data flows through different layers of the
model. The representations are then evaluated through linear
classification on frozen features extracted from these layers,
following the standard procedures outlined in the original
implementations. Note that, unlike the original approaches,
we also compute the accuracy of the projection head out-
put to examine how its structure relates to its classification
ability.

Dataset and Subsets Selection
ImageNet Validation Set For studying the representa-
tions, we utilize the ImageNet validation set for several rea-
sons. Firstly, using the validation set ensures that the repre-
sentations are not learned by heart, which can be a risk with
the training set, especially in self-supervised learning where
overfitting can obscure the true performance of the learned
representations. Secondly, the validation set provides a more
realistic evaluation of how well the learned representations
generalize to unseen data, which is crucial for assessing the
true utility of the latent structures. Additionally, the valida-
tion set is significantly smaller than the training set, making
it more manageable for computationally expensive structural
descriptors. This smaller size allows for thorough and effi-
cient analysis across multiple layers and descriptors without
compromising the breadth of the study. By using the vali-
dation set, we can focus our resources on extracting mean-
ingful insights while still covering a wide range of structural
properties within the latent space.

Sample Subsets Explored To gain deeper insights into
the latent space, we analyze specific subsets of data points
derived from the classes within the dataset. These subsets
include all samples belonging to a class (intra-class), those
predicted as belonging to that class, as well as true positives,
false positives, and false negatives. Additionally, we explore
the interaction between different subsets, i.e. the relation-
ship between samples from a class and samples that do not
belong to that class (inter-class). This approach enables us
to examine how the structural properties of these subparts of
the latent space correlate with model performance.

To account for potential biases in descriptors due to vary-
ing set sizes (such as true positives, false positives, false
negatives, etc.), we applied a threshold-based approach. For
each threshold value, we only considered classes where the
set size met or exceeded the threshold. In cases where the
set size exceeded the threshold, we randomly subsampled



Figure 1: Legends with h refer to measurements done on the output of the backbone, while z refers to the output of the
projection head; the best-fit line corresponds to a linear regression of the points. Left: The plot shows the relationship between
the highest similarity among inter-class samples and classification accuracy. Higher accuracy is generally associated with lower
maximum similarity, suggesting that classes that are more distinct from each other in the latent space tend to perform better in
classification tasks. Center: This subplot illustrates the correlation between median similarity among inter-class samples and
accuracy. Lower median similarity indicates better class separability, which in turn enhances classification performance. Right:
The plot depicts how the average similarity to the 50% farthest neighbors affects accuracy. Close-to-zero similarity indicate
better separation between classes, leading to improved classification outcomes.

to standardize the number of samples across classes. This
was crucial, for instance, in preventing biases where a larger
number of true positive samples, which typically correlate
with higher accuracy, could artificially inflate metrics like
cluster size. By standardizing set sizes, we aimed to ensure
that the structural patterns observed were not merely arti-
facts of differing sample quantities.

Results
In this section, we present the findings from our extensive
analysis of the latent space structures across multiple lay-
ers (i.e., backbone and projection head outputs), as well
as two different self-supervised learning methods, SimCLR
and BYOL. Given the large number of structural descrip-
tors and layers studied, our amount of quantitative values is
vast. Therefore, we focus on highlighting the most signifi-
cant, relevant, and surprising patterns that emerge from the
data.

The first surprising result is the total lack of a relationship
between structure and performance within the sets corre-
sponding to false negative and false positive samples. Across
all the descriptors tested, these sets consistently showed non-
significant correlations with their class’s accuracy, unlike
true positives. This suggests that misclassified samples, as
identified during the linear evaluation step, may already be
outliers in the learned representation space. However, these
outliers do not appear to belong to any specific outlier struc-
ture that could be regularized or identified. Instead, they
seem to exist without fitting into any recognizable pattern.

The implications of this observation are twofold. First, it
challenges the assumption that false negatives and false pos-
itives can be addressed simply by refining decision bound-
aries or applying more sophisticated regularization tech-
niques. Since these samples lack any inherent structure
that correlates with accuracy, traditional methods relying on

identifying and correcting specific patterns may prove inef-
fective. Second, this raises a critical question about the na-
ture of the representations themselves: if the learned rep-
resentations are unable to capture the subtleties that distin-
guish these outliers, it might indicate a fundamental limita-
tion in the self-supervised learning methods or in the nature
of these samples. This suggests that the models might pri-
marily focus on optimizing for the majority of the data while
neglecting edge cases that do not conform to the dominant
structures.

Subsequently, the differences between sets comprising
positive samples, predicted positives, and true positives are
negligible (with true positives being very slightly cleaner vi-
sually in terms of correlation). This is likely due to the fact
that these sets differ only in the inclusion or exclusion of
false negatives and false positives, which do not significantly
impact the structural characteristics of the other samples. As
a result, the following analysis will focus on sets composed
of samples from the same class, as this ensures consistency
in sample size and facilitates a more straightforward com-
parison.

Continuing to prune results that do not correlate to lin-
ear evaluation performance, we find that metrics like PCA,
Mutual Information, and Statistics on the Activation Distri-
bution also show no correlation. This might be because these
SSL methods offer more than enough dimensionality in their
latent spaces to learn comprehensive representations, allow-
ing for a significant margin of error in the number of dimen-
sions. This could also be explained if classes do not need the
same number of dimensions, and that this is not related to
the performance. Although previous works have studied to-
tal and dimensional collapse as potential issues, at the levels
observed in the SSL methods we analyzed, these collapses
do not appear to significantly affect performance.

Continuing in the same vein, cluster-related metrics also



Figure 2: Legends with h indicate measurements on the backbone output, while z indicates the projection head output; the
best-fit line represents a linear regression of the plotted data points. Left: The plot shows the relationship between the highest
similarity among neighbors within the same class and classification accuracy. Higher accuracy is generally associated with
higher similarity, indicating tighter class clusters. Center: This subplot illustrates the correlation between median similarity
within a class and accuracy. Higher median similarity enhances classification performance. Right: The plot depicts how the
average similarity to the 50% farthest neighbors within a class affects accuracy. High similarity suggest that the class samples
are more tightly packed, which leads to better classification outcomes.

do not exhibit a relationship with linear evaluation perfor-
mance. Given that these metrics, when applied to sets of
representations belonging to the same class, may reflect the
variety and expressivity within the class, it is understandable
that they do not influence linear evaluation results. However,
we suspect that they may have an impact on tasks requiring
more fine-grained labels than those used in classification. As
this falls outside the scope of the current study, we leave this
exploration for future work.

Focusing on the descriptors that exhibit correlations with
classification performance, we first observe that, for sets in-
volving inter-class relationships, the descriptors suggest that
classes benefit from being orthogonal to one another. This
is illustrated in Figure 1, where the closer the highest and
median similarity values are to zero, the better the classi-
fication performance. Notably, this relationship diminishes
when nearest neighbors are masked, as shown in Figure 1,
where only the 50% farthest points are considered, indicat-
ing that confusions may occur for classes close in the latent
space.

While this result may seem expected, given the accuracy,
since classes that are more independent from each other
should be easier to separate with a linear classifier, it may
not be not necessarily a desirable property for expressive
representations. One might expect that classes within the
same meta-class, such as dog breeds, would exhibit some
degree of similarity to reflect their belonging to the same
broader category. Moreover, following the same reasoning,
when examining how samples from within the same class
relate to each other, as shown in Figure 2. The more col-
lapsed a class is, the higher the accuracy tends to be. Once
again, this might initially seem expected, however, this re-
duction in the space occupied by a class could hinder its
ability to encode diverse properties, which could be an area
for future study. Together, these observations suggest that
the representations learned through instance discrimination

favor high intra-class similarity and high inter-class dissim-
ilarity, a structure well-suited for linear classification, the
typical evaluation metric. Nevertheless, this might raise con-
cerns for tasks like transfer learning, where more flexible
and adaptive representations are needed. Further studies are
required to explore the right balance between linear separa-
bility and the expressiveness of representations, a question
not fully addressed in this work.

These two properties, though expected given the final per-
formance of these approaches, are quite surprising consider-
ing that the loss function is solely performing an instance
discrimination task. This structure is sub-optimal for what
one would expect in an ideal instance discrimination latent
space. Remarkably, this structural pattern also emerges in
the output of the projection head, indicating that the projec-
tion head alone is not essential in explaining the emergence
of this pattern. Furthermore, these properties mirror those
optimized by instance discrimination, namely alignment and
uniformity (Wang and Isola 2020), but they manifest at the
class level rather than the instance level, despite the absence
of class information in this SSL context.

These findings also highlight a key observation, which, to
the best of our knowledge, has never been reported before:
the correlation between accuracy and structure is measured
at the class level. This means that our results do not simply
suggest that clustering data points is beneficial, but rather
that the more effectively a class can exhibit these proper-
ties, the better the classification performance. This holds true
across different layers and models, as tested with both Sim-
CLR and BYOL. This raises an important perspective: why
does the model succeed in learning those for certain classes
more effectively than others, despite using the same archi-
tecture and loss function? One possible explanation is that
some classes may be inherently more challenging, either be-
cause they are less distinct from other classes or because
they have intrinsic characteristics that make them harder to



Figure 3: Legends with h denote measurements from the backbone output, while z denotes the projection head output; the
best-fit line is derived from a linear regression of the points shown. Left: This plot demonstrates the relationship between the
slope of the correlation dimension (on a logarithmic scale) and classification accuracy. Low values indicate denser and more
compact representations, which correlate with higher accuracy. Center: Here, the modularity score from community detection
is plotted against accuracy. Lower modularity scores, which reflect a more homogenous latent space with less fragmentation, are
associated with better classification performance. Right: The plot shows the threshold at which 50% of connected components
are formed in the latent space. Lower thresholds indicate that fewer, larger clusters exist, and this compactness correlates with
higher classification accuracy.

represent effectively in the latent space with the chosen aug-
mentations and loss function.

Descriptors relying on correlation dimension, community
detection, and connected components further confirm the
preceding results. The correlation dimension, which reflects
the diversity and intrinsic dimensionality of the latent space,
supports the idea that denser, less hierarchical structures are
more favorable for classification (Figure 3). Interestingly,
the representations produced by the backbone are richer
and more complex than those of the projection head, which
aligns with existing work and the hypothesis that the projec-
tion head ultimately simplifies the representation space for
the invariance pretext task. Similarly, the modularity score
from community detection, which measures the degree to
which the latent space can be divided into distinct communi-
ties, also aligns with these findings. Lower scores, indicating
less modular and more homogeneous latent spaces, are as-
sociated with higher accuracy. This suggests that for linear
evaluation, a more uniform latent space, where data points
are less fragmented into distinct clusters, is advantageous.
The connected components analysis further supports this,
showing that lower thresholds are needed to achieve a min-
imum of 50% connected components in higher-performing
classes. This implies that a dense structure, where most data
points remain connected even as the similarity threshold
changes, is beneficial for classification accuracy. Fewer, thus
bigger, isolated islands that persist as the threshold moves
indicate a more robust, interconnected latent space that sup-
ports better classification outcomes.

Finally, while structural differences between the methods
can sometime be apparent at the projection head’s output
layer, understandably so, given their distinct learning objec-
tives, the structures at the output of the backbone remain
similar. Moreover, aside from differences in Median Simi-
larity and KNN Average Distance in inter-class (Figure 1),

likely due to SimCLR’s use of explicit negative pairs, the
projection head structures for both methods are still more
similar to each other than to the backbone representations.
This suggests that even fundamentally different instance dis-
crimination methods, such as SimCLR and BYOL, tend to
learn similar structure of representations to some extent.

Conclusion

In this study, we investigated the structural patterns emerg-
ing from instance discrimination-based self-supervised
learning methods and their correlation with classification
performance. Our findings reveal that despite the different
objectives of methods like SimCLR and BYOL, the latent
space structures they produce share significant similarities,
particularly at the backbone level. These structures, char-
acterized by high intra-class similarity and inter-class dis-
similarity, are well-suited for linear evaluation but may pose
challenges for tasks requiring more flexible representations.

Interestingly, our results suggest that the effectiveness of
a class’s representation in a model is linked to its ability to
exhibit these structural properties, prompting further explo-
ration into why some classes achieve better representation
than others under the same architecture and loss function.
This could be due to intrinsic class characteristics or their
relationship with other classes.

Ultimately, to apply these insights in designing new SSL
methods, one might consider strategies like pseudo-labeling
or defining subsets of data based on unsupervised groups
to encourage the emergence of beneficial structural patterns.
Such approaches could optimize the balance between linear
separability and representational flexibility, potentially en-
hancing the performance of self-supervised models across a
wider range of tasks.
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1 Introduction

Decision-making, the art of taking in information and drawing from it an action to

undertake, encompasses many aspects of human behaviors. It ranges all the way from

the smallest steps of perception, like picking a visual stimulus to gaze at, to more

complicated procedures, like solving a puzzle. As such, it has been studied extensively

in various fields of humanities, from psychophysics and neuroscience, to social science

and economics. Meanwhile, decision-making has found additional interest in engineer-

ing science, and robotics in particular. All manners of complex objectives are given

to robots, including solving a puzzle as well. This kind of tasks may include finding

out where the correct piece is, how to reach, grasp, and manipulate it, and how to

navigate in the room. And, for each of these steps, information is taken in from not

only the agent and the object it interacts with, but also its environment, other robots

(multi-agent systems), humans present in the scene, and more. So, decision-making

in artificial systems ranges from a perceptual level too. Eventually, it can be argued

that out of very different research fields, similar behaviors are being studied, albeit

using different setups and different models. And it actually turns out that a lot of

parallels can be drawn, either by design or not, between biologically-motivated and

engineering-driven models (Pezzulo et al, 2014; Escobar et al, 2022).

First, psychology and neuroscience have put a lot of focus on how and what deci-

sions are made (Gold and Shadlen, 2001, 2007; Lepora and Gurney, 2012). Perceptual

experiments can offer insights into some inner mechanisms of decision-making. Take

the Stroop effect for example, which designates the cognitive interference that takes

place when incongruent information is presented (Stroop, 1935; Scarpina and Tagini,

2017), for instance the ink color of a printed word (e.g., yellow ink) which may differ

from the meaning of the word itself (e.g., the word “blue”). One possible way of test-

ing this effect (figure 1) is to present to human subjects, on a computer screen, color

names printed using different font colors, and ask them to indicate the color of the
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stimulus by clicking a button (Incera et al, 2013). This test can be seen as a purely bi-

nary decision-making task, where the choice between two options is imposed. But the

process can also be studied as continuous, relying on the mouse-tracking technique to

collect human behavioral data. In this experiment, the cursor can be seen to be tem-

porarily attracted to the wrong answer (in our figure, the word content “blue”). This

puts the task, unchanged, in a new empirical paradigm, where the study relies on

the measurable action to reflect on the continuous internal process. As there are dif-

ferent ways of studying the problem in space and time, decision-making models may

need to adapt to these changes. With more or less fidelity to the neural mechanisms

of the human brain, psychophysical models can focus on explaining either the statis-

tical outcomes of the decision (e.g., economy models on prospect theory, Kahneman

and Tversky, 2013, or multinomial models, Conrey et al, 2005), the delay between the

stimulus presentation and the choice (Ratcliff and McKoon, 2008), or even the entire

mouse trajectory (Falandays et al, 2021).

Figure 1 Schematic depiction of a setup used to demonstrate a type of color–semantics Stroop
effect (Incera et al, 2013). A colored word appears in the center of the screen when a human subject
clicks “start”, after which they are asked to click on the button indicating the stimulus color. Cursor
trajectory is shown in dashes.

The same variety can be found in behavioral models embedded in artificial systems

(e.g., for action selection or control). In figure 2, a robot is tasked with navigating

towards a target in a cluttered environment. Here, the decision is about which direction

to follow in a continuous 2D space. One can also restrict the decision space to 1D
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by taking mainly the heading direction into account (Bicho and Schöner, 1997), and

assuming, e.g., that the robot moves forward at a constant speed. In any case, the

robot trajectory can be seen similarily to the mouse trajectory in the previous example,

swapping the “yellow” button for another attractor and the “blue” distractor for an

obstacle repellor. The robot decision can also be made binary if one allows only two

actions: “turn left” and “turn right”.

Figure 2 Depiction of a robot required to reach a target and avoid an obstacle (inspired by Bicho
et al, 2000). The orientation command can be specified as either continuous (a given heading direction
in degrees) or binary (“turn left” or “turn right”).

Obviously, the sensors and actuators involved in the decisions and actions are very

different between a robot and a human body, but we believe that the decision by

itself could be put in a frame of reference common to both biological and artificial

systems. There is however one big difference in how decision-making is approached
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across the research communities. In robotics for instance, decision-making is most

often seen through the perspectives of artificial intelligence: computer vision (catego-

rization, tracking), machine learning (classification, behavior prediction, reinforcement

learning), or swarm intelligence. In these cases, the focus can be put solely on which

decisions are made, the “how” can be cast aside, and learning is often used to circum-

vent the need for an explainable process in the construction of a decision. Today, tasks

like our robot example find a mainline solution in deep reinforcement learning (Mnih

et al, 2015; Arulkumaran et al, 2017). In short, a model is trained by running sim-

ulations and setting rewards depending on the outcome, and behaviors are obtained

by tuning a neural network made of thousands of neurons so that the reward expec-

tations are maximized. For this robot, this would mean learning whether to turn left

or right, and when to move forward, for any set of inputs received by the sensors, as

long as the generalization of the neural network allows it. More and more systemati-

cally, learning is being put forward as the go-to bridge from a problem to its solution,

but little to no importance is given to the capabilities of the system itself, i.e., that

the design of the action model by itself allows to produce the adequate response, and

that relevant constraints have been integrated in the system (Brooks, 1991). On the

contrary, devices such as Braitenberg vehicles (Braitenberg, 1986), where actuators

are directly activated by sensors for their simplest versions, show that even the sim-

plest systems can exhibit many interesting properties, as long as we focus on how the

system works.

The properties in question take many shapes, and, of course, do not always gather

the same interest from one field to another. Research in artificial intelligence and

robotics has stirred up many challenges. Data integration may include interpolating

knowledge from incomplete or ambiguous inputs, generalizing from random samples,

and merging from different sources signals that are not always congruent. Knowledge
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and decisions may have to be processed in a dynamic setting, thus adding a require-

ment of stability: the ability to focus on targets while able to react to sudden and

important stimuli, and showing robustness to noise and to unwanted distractors. Deci-

sions may then take the form of a sequence of events, as hypothesized by reinforcement

learning for instance (Kaelbling et al, 1996). From this point, some new dynamic and

spatiotemporal properties can be expected, as systems that are meant to interact with

their environment may generate sensorimotor behaviors in which decisions influence

actions and reciprocically (Lepora and Pezzulo, 2015).

The common point in these properties is that they are all at least partially found in

human behaviors. We are looking at somewhat cognitive properties. Thus, an increas-

ing share of researchers in engineering science have turned their attention to biological

inspirations, as showcased by the emergence of so-called cognitive architectures, that

are frequently laid as an inevitable groundwork to artificial general intelligence (Go-

ertzel, 2014). However, these advanced architectures most often rely on learning as

a support of cognition, disregarding some instantly-available properties of decision

models that have been developed in either human or engineering science. And yet, ev-

ery field of research has its own ways of modeling task resolutions in a naive context,

using only the stimuli and/or the system reactions as input. Sometimes, these sim-

plest components are taken for granted or not questioned. But these different models,

stemming from different practices from different disciplines, may actually fit together

in a common symbolization.

1.1 Main paradigms

This section is not meant to deliver an exhaustive review of all decision-making archi-

tectures, but rather to present a quick overview and representative sample of classical

approaches used in different disciplines, pointing either to field-specific review articles,

or to typical examples of applications.
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Regarding cognition, psychophysics and neuroscience have proposed many models

of decision-making, most notably using accumulators (Gold and Shadlen, 2007). In

these models, which were originally designed for two-alternative force-choice tasks, ev-

idence is gradually accumulated over time until a given threshold is reached (Vickers,

1970). The most common of these is the drift-diffusion model (DDM), in which two

opposite thresholds are set, representing two possible decisions (Ratcliff and McKoon,

2008). The DDM can be linked to many alternative models in which two (or more)

units, each representing a possible choice, are put in competition until one prevails

(Bogacz et al, 2006). The most notable of these would be the leaky competing ac-

cumulator (LCA), which also accounts for information decay over time (Usher and

McClelland, 2001; Bogacz et al, 2007).

Applications of accumulator models are not exclusive to humanities. They have

been used for decision-making in robotics, most notably in the form of dynamic neural

fields (DNF), population-coded accumulator models running on a topological map

(Schöner et al, 2015). The decision is then read from a weighted sum or argmax of

the model output. Originally meant to simulate the interaction of cortical columns

in neural maps (Amari, 1977), DNF have found applications as much in neuroscience

(Wijeakumar et al, 2017; Buss and Spencer, 2018) as in robotics (Sandamirskaya,

2014; Tekülve et al, 2019; Grieben et al, 2020).

Probabilistic models constitute another category that crosses disciplines. For in-

stance, many models based on maximum-likelihood estimation (MLE) and Bayesian

inference have been used for data fusion (Castanedo, 2013). MLE in particular re-

flects computations observed in psychophysics (Ernst and Banks, 2002). Among other

implementations, one has to cite active inference, that has been used in either neu-

roscience (Friston et al, 2013) or robotics (Pio-Lopez et al, 2016); and Kalman filters

(KF) (Kalman, 1960), which are widely used in robotics (Chen, 2011). Behind this
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paradigm, one also finds learning algorithms like variational autoencoders (Kingma

and Welling, 2019) using Kullback–Leibler divergence minimization (Doki et al, 2015).

Algorithms containing a training phase are not in the focus of this review, but

as far as decision-making paradigms go, one can hardly miss out on classification

and regression algorithms. Decision trees, support vector machines (Somvanshi et al,

2016), deep neural networks (LeCun et al, 2015) and clustering algorithms such as

self-organizing maps (Kohonen, 2012) can be used to learn relationships between data

and a potential decision (often made legible under the form of a “best-matching unit”).

For regression, we can cite uses of Gaussian processes (Rasmussen, 2004), Gaussian

mixture models (Plataniotis and Hatzinakos, 2000) and locally-weighted projection

regression (Vijayakumar and Schaal, 2000) in robotics (Khansari-Zadeh and Billard,

2011) for example. See Sigaud et al (2011) for a survey and unifying framework on

these methods.

All models mentioned so far claim some amount of biological inspiration or plau-

sibility. But engineering science also has some fully self-made methods, for instance

fuzzy logic (FL). It describes operations made on fuzzy sets, where truth values are no

longer binary but instead compared to membership functions expressing possibility

values, between 0 and 1 (Zadeh, 1965; Bellman and Zadeh, 1970; Dubois et al, 2004;

Dubois and Perny, 2016). By fuzzifying sensory inputs and combining their member-

ship functions, one can create fuzzy commands, that can be exploited in computer

vision (Krishnapuram and Keller, 1992; Sobrevilla and Montseny, 2003), data fusion

(Russo and Ramponi, 1994), or robotics (Wakileh and Gill, 1988; Bajrami et al, 2015;

Qureshi et al, 2018).

While these various models were designed with different approaches and objec-

tives in mind, either to explain observed behaviors, or to achieve a given task, they

are by no means incompatible with one another. In fact, it can be argued that some
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different algorithms may model the same behavior, but at a different level of abstrac-

tion. To give an example, Bitzer et al (2014) and Gepperth and Lefort (2016) argue

that DDM and DNF respectively provide a plausible implementation of Bayesian in-

ference. Alternatively, some of the basic models we have cited may be combined in

order to achieve more complex behaviors. There have been many instances of hybrid

architectures in artificial intelligence (Sun et al, 1999), mimicking different parts of a

brain working together to produce new, smoother, and richer behaviors. Goertzel et al

(2011) call this a cognitive synergy. Their reasoning is that combining model parts al-

lows to overcome their individual limitations and exploit fully the capabilities of each,

with different stages of learning, states of memory, and steps of decision-making. Go-

ertzel (2014) cites hybrid models as a thorough, yet “inelegant” way towards modeling

human-like intelligence.

1.2 Positioning

There have been little attempts at unifying these decision-making algorithms in a

field-agnostic formal setting. Our argument is that decision-making can be described

with generic terms and criteria, no matter what field of research it is studied in. To

start with a broader view, let us decompose our definition of decision-making, which

is described in two parts: take in information, and pick out an action.

Information taken in

One expects an unambiguous response to a set of stimuli that can be diverse, con-

flicting, and sometimes extremely dense. In the robotic navigation example, image

processing may acquire a mountain of evidence: position and nature of objects, their

relative proximity, and perhaps all sorts of visual indications such as warning signs or

movement detection. All of this has to be integrated into a single decision, namely,

what direction the robot should follow.
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A first challenge is in the merging of modalities. A robot may need to combine the

sight and sound of an object to better locate it. In the Stroop test, an observer receives

both semantic and visual information about two colors. Multimodal merging depends

on the task in progress (e.g., to select the font color and ignore the text content),

but also on stimulus saliency and reliability. On the psychophysics side, the effect of

reliability on merging has been studied extensively (Ernst and Banks, 2002; Alais and

Burr, 2004; Calvert et al, 2004). This is not an effect we delve into in this review,

but the question of adapting psychophysical models of fusion into artificial systems

has been raised elsewhere (Forest et al, 2022b). Another issue is that the different

modalities may be experienced in different spaces, e.g., a robot with a camera and two

microphones will have a good visual resolution anywhere in line of sight, and a poor

auditory resolution outside its azimutal axis, so, before any decision can be made,

either some signals have to be projected into the sensory space of another, or they all

have to be projected into a common space (Forest et al, 2022a). We do not include

this step in our methodology. Instead, we treat decision-making at a level in which a

minimal amount of projections has already been made, so that potential multimodal

stimuli can be put in a common ground.

Indeed, regardless of the system under study, available information never consists

in raw stimuli. At the very least, sensors transform the signals. In vision, cameras are

limited by their resolution and encode visual stimuli over a few channels (e.g., colors),

possibly with some compression underway; human eyes are limited by the sensor

distribution on the retina, and turn stimuli into electric discharges sent to the brain.

Then the information is processed through different operations (e.g., convolutional

neural networks for computer vision, or neural pathways in the human brain) until

it becomes actionable. For this reason, we consider stimuli as sets of input activities.

In this review, activity is the generic term we use for the material manipulated by

a processing unit during a decision-making process. We regroup under this term the
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values given by output neurons in an artificial neural network, the membrane potential

of neurons in a cortical map, and the evidence accumulated in diffusion decision

models. All models have some activity going in (the output of the preprocessing

system, if any, or the stimuli themselves) and some activity going out (some form of

decision).

This activity can take many forms. In the Stroop test example, the decision space

appears to be categorical. There are two choices, “blue” and “yellow”. Sometimes,

activities may be sparse (figure 3a), meaning any and all decisions must be made

to one of the stimuli, and no compromise can be made. This makes sense in some

situations, for instance, in the implementation of the Stroop test of figure 1, clicking

in-between the two buttons, or answering a color other than blue or yellow would

not be acceptable. Having a sparse decision space does not exclude the possibility

that some part of the decision process involves an underlying continuous topological

space, as illustrated by the mouse trajectory in figure 1. On the contrary, this is quite

beneficial for an all-inclusive implementation, since operations such as interpolations

and barycenters would not be viable in a sparse setting. For this review, we make

the assumption that there exists an underlying topology (in our example, either the

cursor position, or the color spectrum) in which the sensations of the stimuli could be

placed (figure 3b). While not systematically necessary, this is not a risky assumption.

In human brains, most low level stimuli can be encoded into peaks of membrane

potential on cortical maps. At least in this topology, some interpolation is possible.

In artificial systems, the encoding is more or less free. Then, once the topology is

present, we can reconsider the sparsity of the stimuli. Between the spread of the signal

in its environment, the blur added by sensors with limited resolution, and the possibly

overlapping receptive fields of the units that receive this activity, the sensations can be

viewed as continuous blobs (figure 3c). While this is realist in the eye of a perceptory

system, this is hardly processable in a computational model. Yet some models do
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require working on spatially-spread activities. In that case, one can add some spatial

discretization as a step of input preprocessing (figure 3d). This kind of algorithmic

input can also be artificially projected from the sparse topology-grounded stimuli

using some kind of kernel function, e.g., a Gaussian.

Sensor receptionTopology placement

SamplingProjection

(a)

(b)

(d)

POSSIBLE ALGORITHMIC INPUTS

P
O
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G
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N
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(c)

without underlying topology

with underlying topology

Figure 3 Possible ways of integrating stimuli. Depending on the level at which activities are viewed
in the perception–decision process, in an organic system, they can be seen as: (a) sparse without an
underlying topology (no distance measure available), (b) sparse in an underlying topology (mean-
ing there exists a distance metric enabling interpolations), or (c) continuous. Artificial systems and
computational models may require activities to be discretized (or “sampled”, in the signal-processing
meaning of the term) from continuous stimuli (d). The last setup can also be simulated from (b)
using a kernel projection akin to receptive fields.

Action picked out

The output of a decision-making model is meant to be used by another system: ei-

ther motors or other decision modules. It will sometimes be of use to the same model

in cases of recursion. Indeed, some stimuli can be time-dependent, and some algo-

rithms make use of previous internal states to generate the next output (Kalman,

1960; Amari, 1977). Internal states can take multiple forms, from priors to membrane

potentials, and are not always easy to interpretate, the most obvious example being

the activation in hidden layers of recurrent neural networks (Ming et al, 2017).
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In the end, models act as filters, as they take activities as input and give activities

as output, filtering out noise and unwanted components. The type and dimensionality

of output activities may be the same as input, or not. In-between, the way these values

are processed is specific to each algorithm. We define a unit as the basic element

that will either process one activity value, or aggregate multiple activities into one.

For example, a model working on two sparse stimuli will be made of two units that

receive two input activity values. Sometimes, each unit processes its own activity

independently from the others. Sometimes, some interaction occurs between units.

In any case, at some point, it is necessary to compute a single output value,

representing an intelligible answer, e.g., a motor command. Not all models include

systematic solutions to aggregate unit outputs into a single value. In that case, we

provide additional computation steps outside the model to create such a result, i.e.,

aggregators.

1.3 Objectives

Our goal is to bring together some elementary solutions from different domains (most

notably, neuroscience, psychophysics, and robotics) in order to compare them in a

field-agnostic point of view. This also means that we do not claim to regroup all vari-

ants and composites of models used in any given field. We make the choice to highlight

the readily-available properties of a representative sample of existing models, and we

propose a framework that allows to unify them. As we mentioned earlier in this in-

troduction, we restrict ourselves to models with intrinsic behavioral properties, not

learned properties. We also refrain from presenting all derivatives of popular archi-

tectures in this framework, and mostly stick to the most essential implementations.

Note that this framework has been co-designed with a software architecture which is

openly accessible and easily allows the addition of more extended models.
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In this article, we want to pick a representative sample of existing learning-free

decision-making algorithms. We find that they are mostly divided in three families:

logic-based models, probabilistic/Bayesian models, and dynamic accumulators. Our

selection is made of both simple and advanced models from each category, going from

bare aggregators such as winner-takes-all (WTA) and weighted sum (WS), to more

complex methods such as FL, DNF and KF. We formalize them using common nota-

tions in order to emphasize their different characteristics: topology-based interaction

between processing units, output aggregation, recursion

We set up toy examples to display the qualitative properties of each algorithm.

Our focus is mostly on the decision, although we can also measure numerical values

of model activity, a quantification of model internal state. Our purpose here is not to

tune or train models to fit complex behaviors, we stick to the emergent properties of

standard and isolated models.

In the next section, we describe the models selected for the formal unification and

comparison, as well as the scenarios they are tested on and the way their outputs

are read. Section 3 gives the results and comparisons of all the models on all the

scenarios. We conclude and add perspectives in section 4.

2 Methods

In this section, we start by describing the experimental setup in subsection 2.1. Then

we explain how models are evaluated in subsection 2.2. Finally, we present the core of

all models in subsection 2.3. In the end, each simulation is made of a combination of

up to three parts: scenario generation, model processing, and aggregation (sometimes

included in the model). See figure 4 for a visual representation of this formalization

process.
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2.1 Scenarios

Time scale

Our simulations take place in discrete time. Scenarios are defined over a finite series

of timesteps, the step ∆t being constant throughout the simulations. While the value

of ∆t can have visible effects on the behaviors of models with temporal integration,

we use a sufficiently low step timestep in order not to hinder the performance of

any model. This choice is consistent with real-life applications of decision-making

algorithm, with the perception of artificial agents being limited to a certain amount

of frames per second, as well as psychological modeling, with neurons having a finite

fire rate.

Working space

We make the hypothesis that all scenarios can be expressed in a topological space X

. For computational purposes, we assume that X can be discretized into a regular set

{x1, x2, . . . , xn}. A scenario is composed of one or more stimuli, the sensation of which

can be decomposed into a set of input activities. An input activity k is characterized

by an amplitude ak and position xik .

As illustrated in figure 3, computational models may differ in the way they take

these inputs. Some are composed of sparse units operating for each existing activity

: {xi1 , xi2 , . . .}. They will take input type (b). While it is always present in this

particular implementation, the underlying topology X might not be relevant to some

models. In that case, input type (b) can be seen as a placeholder for input type

(a). The difference will be shown in the model formalisation, but neither in the

implementation nor the graphical results. Some other models are made of n units filling

the decision space: {x1, x2, . . . , xn}. (This is compatible with the previous notation,

with i1 = 1, i2 = 2, . . . , in = n. ) They can take either input type (b) or (d), altough

the latter is more appropriate for some models expecting a continuum in the activity.
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Noise treatment

The following models have very different relations to noise. Perception and control

result of multiple, interwoven processes, and models integrate this bundle of mech-

anisms, and the inevitable stochasticity that it comes with, with different levels of

abstraction (see recap in table 2). Some will consider that noise is part of the decision

process, and treat it like a supplementary parameter. Some assert that noise is statis-

tically estimable from the inputs, and that estimation is part of the results. Some do

not process noise unless it is added manually to the inputs. To put all models on an

equal measure, the scenarios we use are all deterministic. The different approaches

to integrating noise have been discussed elsewhere, and especially in (Forest et al,

2022b), where it plays a crucial role.

Simulation plan

We set up eight non-stochastic scenarios that determine the inputs to give to all

models . They are presented in table 1. Each stimulus plotted is shown as a thick bar.

For non-spatialized models, only the amplitude of the bar is taken into account. For

some other models, the bar will be replaced by a Gaussian.

The scenarios were picked to show the various spatiotemporal properties of the

models, so they include cases where, depending on tasks, interpolation between signals

is likely, and cases where it is not, as well as dynamic settings to evaluate attentional

properties and reactivity.

2.2 Aggregators

Depending on the model, two kinds of outputs can be read, sometimes both:

1. A positional decision x̄, possibly accompanied by an activation value ȳ. ȳ can

sometime be related to an estimation of the certainty of the decision.
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2. A set of activity values yk for all stimulated xik . The ik designate the indices of

all units in the model.

In order to make a decision, we want to extract a singular value x̄ ∈ X after the

model processing, in all cases. If some interpolation is made, x̄ can fall outside the set

{x1, . . . , xn}. When a model does not include a way of reading the decision directly,

we need to add an aggregator to compute the decision localization from the model

activity. It takes the following form:

x̄(t) =
∑

k

wk(t)xik (1)

This is a weighted sum of all evaluated positions. The weights wk depend on the

activities yk, and can be configured in mainly two ways:

• Plain barycenter:

wk(t) =
yk(t)∑

j

yj(t)
(2)

i.e., all units contribute proportionally to their activity.

• Mean of maxima (or argmax): Let S(t) = argmaxk(yk).

wk(t) =





1/|S(t)| if k ∈ S(t)

0 if not
(3)

where |S(t)| denotes the size of set S(t). In short, this is a barycenter of all units of

maximum activity. Very often, there is a unique maximally-activated unit, in which

case this aggregator is essentially an argmax.
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2.3 Models

2.3.1 Representation convention

As one of the objectives is to propose a unified frame of analysis of the models,

they will be depicted using a common formalism, captioned in figure 4. The entire

evaluation process is split into two or three parts, the model being separated from the

scenario generation, and its aggregator if one is necessary. Some varying properties of

the models can be seen in the following depictions:

• The topology on which the decision takes place is shown as a black line (e.g.,

figure 6). For models that do not require knowledge of the topology, the line is

dotted (e.g., figure 5).

• Some models are iterative. We show the intermediate steps from a state at time t

to a state at time t+∆t, but the time loop is not explicitely represented (the state

at t+∆t replaces the one at t, then links to the one at t+2∆t, etc.). Instead, when

a previous state is used recursively, it is highlighted in gray in our representation.

• Some models contain some amount of interaction (i.e. the potential at position xi

depends on the potential at position xj ̸=i). In our depiction, this always results in

a vertical step (models with two rows , e.g. figures 6, 10 and following).

• TODO: add ȳ

+ make one item per property from table 2 (cf. comm. JC)

2.3.2 Logic-based models

Noise integration. Models in this family take any information as a truth value. Noise

in inputs would be taken as is and not filtered in any way. Most notably, these models

would be rendered totally useless in noisy competition tasks: for example, add a bit

of white noise to a scenario made of two very similar stimuli (scenarios A and B in
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Figure 4 Legend for the schematics of the models. Models with recurrent states are shown unfolded,
i.e. the process to go from time step t to time step t+∆t is visible. The recurrence can be pictured by
furling the pattern so that the gray areas touch each other. The aggregator part is shown attached to
the model when the latter produces a readable direction directly, and detached if it has been added
retrospectively. The arrow in the aggregator indicates where the final decision x̄ is read.

table 1), and the output will start switching back-and-forth randomly between the

two stimuli.

Winner-takes-all (WTA)

This is the simplest model of all. The decision x̄(t) is made at the position of the

stimulus of highest intensity. It amounts to applying the mean of maxima aggregator

directly on the input (figure 5). See equation (3).

Figure 5 Main steps of a WTA model. Explanations in text and figure 4.
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For WTA to fit in model formalization, we arbitrarily define its activity ȳ(t) at

position x̄(t) as:

ȳ(t) = max
k

(ak(t)) (4)

Fuzzy logic (FL)

As shown in figure 6, this model functions in two steps. First (top middle square), the

inputs are fuzzified using a truncated triangular distribution (Dubois et al, 2004), so

that they can express a possibility value between 0 and 1, everywhere in the topological

space. Second (bottom middle square), they are accumulated using a minimum:





yk(t) = min
j

(
max

(
1− aj(t), P

(
xik , xij (t)

)))

P (x, x′) = 1− α|x− x′|
(5)

where α specifies the slope around the stimuli. α determines how likely stimuli are to

interact. With a high α, they are unlikely to mix and the model acts closer to a WTA.

With a low α, a midpoint is easily reached and the model acts closer to a WS.

Figure 6 Main steps of a FL model

The decision x̄ is then found by using a mean of maxima.
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2.3.3 Distribution-based models

This class of models operates on interpolations of inputs. Consequently, it is necessary

for the inputs to be placed in a topology, as there is no telling that a barycenter of

categories x̄i makes sense.

Noise integration. Noise is one side of the estimation. It is not that each presenta-

tion contains a certain amount of noise, but instead that each presentation and/or

sensation is assumed to vary following a probability distribution that is asserted by

the model. In our implementation, inputs are assumed to aggregate into a Gaussian.

Weighted Sum (WS)

This model consists of a plain barycenter of the inputs (figure 7). See equation (2).

Figure 7 Main steps of a WS model

For WS to fit in model formalization, we arbitrarily define its output activity ȳ(t)

at position x̄(t) as:

ȳ(t) =
∑

k

ak(t) (6)

Maximum-likelihood estimation (MLE)

This is the main paradigm used in multisensory integration (Ernst and Banks, 2002;

Rohde et al, 2016). Given stimuli drawn in Gaussian distributions of estimated po-

sition xik and variance σ2
k, MLE models the decision as a Gaussian distribution of
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mean m and variance s2 given by:





m =
∑

k

1/σ2
k∑

j 1/σ
2
j

xik

s2 =
1∑

j 1/σ
2
j

(7)

Our implementation is not directly compatible with this paradigm. Our models

are meant to receive individual trials, while MLE operates on a distribution of trials.

In particular, we do not have statistical variances σi in the sensations. Oppositely,

MLE does not take into account stimulus intensities represented by ai. So, for read-

ers interested in what MLE would give in our scenario, we can simulate it using a

variable transform ak = 1/σ2
k, making the amplitude a measure of stimulus reliability.

Equation (7) then becomes: 



m =

∑
k akxik∑
k ak

1/s2 =
∑

k

ak
(8)

which is exactly the same as our implementation of WS, with x̄(t) = m and ȳ(t) =

1/s2 (figure 8).

Figure 8 Main steps of a MLE model
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Kalman filter (KF)

This model acts as a time-related MLE: instead of interpolating between two inputs

at the same time (using their respective variance to determine their weight), it inter-

polates between a new aggregated input at time t+∆t and its older interpolation at

time t (figure 9). This time, we use the spatial variance, estimated from the entire

input array at each time step. Consequently, an unambiguous presentation has less

variance (so more weight) than a presentation with two or more stimuli. Also, it is

necessary here to assume continuous sensations, as a sparse input made of a single

Dirac would have zero variance, rendering the model quickly irrelevant.

Figure 9 Main steps of a KF

The activity takes the form of a Gaussian of mean m and variance s2. We compute

the mean µ and variance σ2 of the input in order to update the activity:





m(t+∆t) = K(t+∆t)µ(t+∆t) +
(
1−K(t+∆t)

)
m(t)

s2(t+∆t) =
(
1−K(t+∆t)

)
p(t)

(9)

with K the Kalman gain, defined as:

K(t+∆t) =
p(t)

p(t) + σ2(t+∆t)
(10)
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and p the extrapolated estimate uncertainty:

p(t) = s2(t) + q (11)

where q is a parameter representing the process noise. A high q means that internal

variance remains high and the model always gives a strong weight to new inputs. A

very low q implies that new inputs are ignored.

Initial values m0 = m(t = 0) and s20 = s2(t = 0) may have an influence on the

behavior of this model. In particular, a low s20 will give a strong influence of the prior

position m0 over the incoming inputs. To make this prior knowledge negligible, we set

a high initial variance s20 = 1 (and m0 = 0 to stay as neutral as possible).

In any case, the model output activity can be represented as a Gaussian of mean

m(t) and standard deviation s(t):

yk(t) = exp

(
− (xik(t)−m(t))2

2s2(t)

)
(12)

However, the KF does not need an aggregator, as its decision can directly be read as

the predicted mean:

x̄(t) = m(t) (13)

2.3.4 Accumulators based on sparse inputs

Inspired from neuroscience, accumulators are a whole family of models consisting of

units that accumulate evidence over time (Bogacz et al, 2006; Roxin, 2019). This

section describes the main accumulator models that can be used for two (or more)

alternative choice tasks, which do not necessarily take place within a given topology.

Each processing unit represents a possible decision, its potential (internal activity)
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starts at zero and increases gradually as evidence in favor of the decision is brought.

The relations between the different models is synthesized in figure 15.

Noise integration. These models see noise as a part of the decision process. Ei-

ther added to the sensory inputs as an outcome of background stimulations and

sensor imperfections, or embedded as an inevitable side-effect of microscopic neural

mechanisms, noise favors bifurcation when a dynamic system is stuck in an unstable

equilibrium. For instance, given two distant competitors of similar intensity, a small

amount of noise is sufficient to ensure that one is selected over the other. Temporal

integration is complementary to the stochasticity, as it permits keeping a random de-

cision stable, contrarily to WTA and FL. For this reason, it is very common to add a

supplementary parameter to the implementation of accumulators, which determines

the amount of (often white) noise added to all units. This is very different to models

such as KF, for which adding white noise to the inputs would cause very little change

to the results. Noise integration is at the heart of (Forest et al, 2022b), in which this

distinction is discussed further.

Topology. As depicted in figure 15, DNF is a special kind of accumulator model

that relies on and exploits a topology, making it comparable to a spatially-continuous

diffusion model (Ratcliff, 2018). This makes a big enough difference that it has a

separate subsection. On the contrary, models presented in this subsection are meant

to process sparse inputs, that may lie in a topology (e.g., left/right) or not (e.g.,

blue/red). Consequently, the argmax aggregator is the only one that is always suitable

for these models. Given the system dynamics, there should be no ambiguity anyway.

Drift-diffusion model (DDM) and race model (RM)
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The DDM is the seminal accumulator model, and a baseline on which other models

are based (Bogacz et al, 2006). Given a stimulus of intensity ak, the model accu-

mulates an activity yk (“evidence” in the DDM literature) over time (Ratcliff and

McKoon, 2008):

τ
∆yk
∆t

= ak (14)

This is equivalent to:

yk(t+∆t) = yk(t) +
∆t

τ
ak(t+∆t) (15)

although we will keep the first, lighter writing style for all the following models, as it

is easier to read.

Our implementation is actually made of several DDM units in parallel. So when

multiple (traditionally two) stimuli are put in competition, one way to make a decision

is to run one DDM per stimulus and pick the first to have its activity reach a given

threshold. This algorithm is called a “Race model” (RM) (Bogacz et al, 2006). In our

case, for comparison purposes, we will instead add the argmax aggregator at all times

(figure 11).

Feed-forward inhibition (FFI)

This model (figure 10) is designed to put several stimuli in competition. Each accu-

mulator unit is positively stimulated by one input activity and inhibited by all others:

τ
∆yk
∆t

= ak − w−
∑

j ̸=k

aj (16)

The actual implemented equation is found from (16) the same way equation (14)

is found from (15).
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Figure 10 Main steps of a FFI

Ohrstein-Uhlenbeck model (OUM)

This (figure 11) is an upgrade of the DDM with the addition of a leakage term λ > 0:

τ
∆yk
∆t

= ak − λyk (17)

It allows the accumulator activity to converge when the stimulus amplitude stag-

nates, contrarily to the previous two models, in which activity may diverge to infinity.

All the models that follow include this stabilization term.

Figure 11 Main steps of a RM or OUM. The difference between the two is that given constant
inputs ak, RM activity will increase indefinitely, whereas OUM activity should converge to ak/λ due
to the leakage term.
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Leaky competing accumulator (LCA)

The novelty of this model (figure 12) is that the activities are put in competition and

inhibit each other (Usher and McClelland, 2001). Also, a term of self-excitation is

added:

τ
∆yk
∆t

= ak − λyk + w+yk − w−
∑

j ̸=k

yj (18)

Figure 12 Main steps of a LCA

Nonlinear LCA (NLCA)

Now (figure 13), we differentiate the model activity from its output. The output is

obtained by putting the potential through an activation function (Bogacz et al, 2007):





τ
∆uk

∆t
= ak − λuk + w+uk − w−

∑

j ̸=k

yj

yk = f(uk)

(19)
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Figure 13 Main steps of a NLCA

Pooled inhibition model (PIM)

Contrarily, to LCA, in the PIM (figure 14), inhibition is shared (Wang, 2002). A new

accumulator is added that gets stimulated by the others and inhibits them all:





τ
∆yk
∆t

= ak − λyk + w+yk − w−yI

τ
∆yI
∆t

= −λIyI + wI

∑

j

yj
(20)

Figure 14 Main steps of a PIM

29



RM

OUM FFI

PIM LCA

NLCA

DNF

+
dis

tan
t inh

ibit
ion

+
stabilization term

+
local excitation

+
distant inhibition

+
loc

al
exc

ita
tio

n

+
dis

tan
t inh

ibit
ion

̸= inhibition
+ nonlinear

acti
vati

on

+ topology

+ top
olo

gy

+ non
line

ar act
iva

tion

+
local excitation

+
stabilization term

Inhibition:

none

from opposing inputs

from competitors

from shared pool

Figure 15 Relations between accumulator models. Adapted from (Bogacz et al, 2006) with added
DNF.

2.3.5 Dynamic neural fields (DNF)

DNF describe the evolution of mean field potential over a continuous domain such as

the average membrane potential of neurons on a mesoscopic scale (Trappenberg et al,
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2001; Wilimzig et al, 2006). They can be used to bridge the gap between microscopic-

scale neural processes and macroscopic behavioral data (Fix et al, 2011; Taouali et al,

2015).

DNF originated as a mathematical model of neural dynamics (Wilson and Cowan,

1973; Amari, 1977). While the first descriptions of membrane potential in neural maps

date back to the 1950s, (Wilson and Cowan, 1973) were among the first to propose an

algorithmic implementation of it. (Amari, 1977) expanded their work by describing in

details the behaviors that could emerge from this model of neural dynamics. There are

three main categories of behaviors: a monostable field where all excitation eventually

dies out; a monostable field where activity increases indefinitely; a bistable field where

two different states can be reached depending on the successive presentations received

as inputs. To summarize, in a bistable field, once a stimulus is selected, switching

focus becomes much harder. This property has made DNF a popular computational

model in the study of attention mechanisms (Rougier and Vitay, 2006; Babaie-Janvier

and Robinson, 2019). Extensive analytical studies on the emerging properties of DNF

have been made by Gregor Schöner, John Spencer and their teams, and are now

condensed in a book (Schöner et al, 2015).

From a computational aspect, DNF (figure 16) can be seen as an extension of

NLCA to a regularly discretized continuous domain, where each unit acts as an

accumulator:





τ
∆uk

∆t
= ak − λuk + w+

∑

j

exp
−
∥xik − xij∥2

σ2
+ yj − w−

∑

j

exp
−
∥xik − xij∥2

σ2
− yj + h

yk = f(uk)

(21)

The amount of interaction in the model is determined by parameters w+, w−,

σ+ and σ−. DNF are updated by convoluting their output with a kernel made of

a difference of Gaussians, shaped like a mexican hat: strong close-range excitation
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Figure 16 Main steps of a DNF

and moderate long-range inhibition (w+ > w− > 0, σ+ < σ−) (Amari, 1977). As a

result, close-by units enhance each other while distant ones go in competition, until

a stereotypical peak of activity (sometimes called a bubble) emerges.

The resting level h ≤ 0 is a parameter that does not appear in all accumulator

models. It serves to create an initial resting state with negative potential, so that

activity is only produced once strong enough stimuli are received. That parameter

can be adjusted easily to filter out low noise or weak stimuli, but it is not always

necessary. We maintain it to 0 in this implementation.

In parallel, one common variant of DNF is to integrate all output activity into

a global inhibition term (as if σ− → +∞). This ensures that competition between

stimuli encompasses the entire field (instead of a more or less wide neighbourhood).

In that case, DNF can also be seen as a generalization of PIM (see recap figure 15).

As the DNF activity converges into (usually one) bubble, a decision can be inter-

preted from either a WS or WTA of the outputs yk. The only situation where these

aggregators can yield different results is in cases where more than one bubble reach a

stable state, and that can be easily prevented with a high enough σ−.
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2.3.6 Comparison

A comparison of the main design properties of the models is given in table 2. We can

already see that depending on the task (stimuli topologically correlated, sparsity of

inputs, time relation), some models are more suitable than others. But these models

can also be classified according to the level of abstraction at which they compute

activity. Figure 17 shows how some of these models fit on Marr’s hierarchy (Marr,

1982). For example, models based on Bayesian theory are at the level of computational

theory, making assumptions on the distribution of inputs and outputs, and explaining

the processing with a theoretical paradigm, with little focus on how the computation is

made . Models such as FL, DNF, FFI and NLCA are on the representation–algorithm

level, where the operations are explained but the outcome is measured after the fact,

and not theorized beforehand. Zooming in on the latter three models, we can look

at the units that constitute them and that can be likened to sets of DDM or OUM.

These can be placed at the hardware level, as they simulate the physical operations

that implement decision-making, mimicking actual neurons or cortical columns.

To discern even more the most complex models (FL, KF and DNF), we can dif-

ferentiate them by the kernel with which inputs are confronted: triangular for FL,

Gaussian for KF, a difference of Gaussians for DNF. This competition also does not

occur at the same time for all models. For both FL and DNF, inputs are divided,

matched to the kernel then put in competition with each other. But for KF, inputs

are matched to a Gaussian, all together, then aggregated. For both KF and DNF, the

state of the model is gradually updated over time. But for FL, the state is reset at

each time step, i.e. there is no memory trace.

2.3.7 Implementation

The properties given in last section have repercussions on the way models integrate

inputs in space and over time. In order to make a broad overview of the achievable
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Figure 17 Positioning of models in Marr’s hierarchy. FFI, LCA, NLCA and PI can be put in the
place of DNF, and DDM of OUM, following the relationships described in figure 15 . Models in the
first column operate independently of time: at each time step, an output is given as if time was frozen
and inner operations had fully converged. Models in the second column are iterative and may behave
differently depending on simulation time step.

properties, we select a varied sample of all models presented. We pick two model in-

stances from each subsection: WTA and FL, WS and KF, FFI (the simplest model with

interaction) and NLCA (the most complete accumulator model outside DNF), and

DNF. Since DNF can produce very different behaviors depending on its parametriza-

tion, we use two very different set of parameters to give a glimpse of the range of

properties available. Initialization is made to zero potential, also setting h = 0 . We

take ReLU as the activation function, and WS as the aggregator. The parameters used

for all models are listed in table 3. Parameter values were selected through expert

knowledge and preliminary tests.

Here is a quick breakdown of the way parameter values are picked. For FL, we

take a α value in-between WTA-like behavior (too low) and WS-like behavior (too

high). For KF, q has to be low enough for internal states to matter, but not too low,
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otherwise new inputs are eventually ignored. For DNF (and FFI/NLCA likewise),

previous research on parameter effects has been presented in (Forest et al, 2022b).

3 Results

The evolution over time of activities and decisions of the 8 models in the 8 scenarios

(from figure 1) is given in figure 18. To describe a result, we use the acronym of

the model followed by the scenario letter in superscript, e.g., WTAE designates the

output of WTA in scenario E. Before we detail the main takeaways, here are some

explanations to help understand the figure:

• WTA returns a single position with an activity equal to the maximum intensity. The

activity is plotted with a thick line for visualization. When the input is completely

empty (beginning of WTAE), the center of the field is returned by default. Same

goes for WSE, FFIE and NLCAE. When no decision is rendered by a model, the

default answer is plotted in blue.

• As a reminder, FL returns the intersection (minimum) of truncated triangles. In

FLA, the triangles overlap slightly in the middle of the field. In FLB, they do not

overlap, all that remain are the truncatures: either 1 − 1 = 0 (fuzzification of the

left stimulus) or 1 − 0.99 = 0.01 (right stimulus). This results in a 0.01 plateau

centered on the left stimulus (the only place where it is not truncated to 0). This

is why a decision can be made even if no activity is visible.

• KF activity is a Gaussian, where the variance is updated depending on the variance

of all inputs projected in a base of Gaussians. The less variance in the input, the

thinner the output.

• In NLCAA/B and DNFA/B , we can distinguish two phases. First, peaks appear

at the position of each stimulus, of apparent equal activity. After a certain delay,

the slight superiority of one stimulus (or group of stimuli) allows one peak to grow

stronger, self-excitate more than it is inhibited by the others, and inhibit the others
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Figure 18 Evolution over time (y-axis, starting at bottom) of activities {yi} or ȳ (grayscale surfaces)
and decisions (red lines) of 8 models (rows 2–9) in 8 scenarios (row 1). Blue segments indicate a
default decision (in the middle of the field) when models have an empty or invalid output.

more than they self-excitate. The shift is not visible for NLCA decision (red line)

because it is discrete, but since DNF use a barycenter for aggregation, we can

see clearly the potential shift from undecided competition to selection (DNF1
A,

DNF2
B, DNF1

C, DNF2
C).

Selection and interpolation

As we can see in scenarios A and B, some models are specialized in selecting only the

strongest stimulus (WTA, FFI, NLCA) and some at making an interpolation (WS,
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KF). Two can implement both behaviors. FL will either select (FLB) or interpolate

(FLA) depending on the proximity between the stimuli. The gap at which it switches

behaviors can be controlled through its slope parameter α. This distinction can also be

made with DNF, except it is controlled mostly by the width of lateral excitation σ+,

which determines how close stimuli must be to be able to fit inside a single bubble of

activity. But the width of lateral inhibition σ− is not neglictible. DNF1
B shows a case

where neither selection nor interpolation occurs: the interaction kernel is too thin for

the stimulated region to affect each other, so the two stimuli are selected separately.

If this particular behavior is unwanted, it is common to use a global inhibition term

(i.e. an infinite σ−).

Greediness

Scenario C opposes one strong stimulus to a concentrated group of smaller stimuli

of higher total intensity. Most models will take the greedy approach and pick the

strongest stimulus, as selecting the group requires taking their proximity into account.

WS and KF do it to a certain degree, as the bigger weight of the group attracts the

barycenter towards it. Regarding DNF, the outcome will again depend on the width

of the interaction kernel. DNF favor stimuli that match its kernel. With a thin kernel,

the lone stimulus will be picked more easily than the group , in which every component

goes in competition with one another. With a large kernel, the group can be merged

into a single, big bubble, that prevails over more isolated stimuli .

Robustness to temporary obstruction

In scenario D, two targets are present. The question is whether the model will immedi-

ately start changing target when the one it initially focused temporarily disappears, or

keep the focus for a certain time. Here, there is a clear difference between accumulator-

based models and the others. The time constant will ensure that the disappearance

of the target will not be integrated instantly. Parameter τ can be tuned to control the
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update speed: the second instance of DNF, because it has a lower value of τ than the

others, starts switching attention before the first target reappears.

Reaction time

Scenarios E and F are useful to compare the time dynamics of either KF and all

accumulator models. For KF, when a new stimulus appears, the activity will start

shifting instantly. For discrete accumulators, the change is taken into account, but

there is a delay before the maximum activity changes side. DNF is a mix of both:

like KF, the spatial continuity allows for a gradual shift towards the newer stimulus,

except a time lag is induced by the temporal dynamics of the differential equation,

similarly to FFI and NLCA.

The convergence time of KF can be tuned to a small degree via its parameter q,

but it does not give as much leeway as some accumulators and their time constant

τ . However, FFI, NLCA and DNF behave differently when a switch occurs between

two stimuli. FFI will lower its activity at the first unit and increase its activity at

the other, symetrically to what it did before the switch. So the moment the model

will actually change targets will depend only on the inputs (here, the delay between

input switch and output switch is exactly the same as the duration for which the first

stimulus was presented). For NLCA, it will depend mostly on its leakage term λ. For

DNF, one has to also consider the strength of lateral interactions.

Tracking speed

This one is only relevant for topology-based models with a time dependency, i.e. KFG,

DNF1
G and DNF2

G. The others will obviously track instantly a single moving target.

Both KF and DNF can track the target with a minor delay. But DNF, depending on

its parameters, might fail to track the target smoothly . With a high integration time

τ and a small kernel, the simulus might shake off the current active bubble, so a new

bubble ends up appearing at the new stimulus position from time to time.
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Trajectory smoothing

Again, only KF and DNF can smooth a trajectory that changes frequently. Three

behaviors can be obtained depending on parameters q and τ respectively: follow the

target faithfully, including in sharp turns (high q, low τ ); round the turns (low q,

medium τ ); or converge to a seemingly average position (q = 0, very high τ).

A summary of these observations is given in table 4. DNF are by far the most

versatile, which is consistent with their higher number of parameters. The downside

is that fitting them to achieve a specific task can prove to be difficult (Quinton, 2010;

Forest et al, 2022b). An approximate computation time with a regular CPU for

each model (not counting input processing or output aggregation) is also given in the

table. Unsurprinsingly, models with the least amount of steps, WS and WTA, are the

fastest. However, this might be quite dependent to the (Python) implementation . For

example, FFI is computed by multiplying the vector of inputs by a matrix containing 1

in its diagonal and −w− elsewhere. Matrix multiplication in numpy, Python’s standard

mathematical library, is slower than other operations, including 1D convolution, which

is why FFI seems slower than NLCA or DNF despite its simpler design. .

4 Discussion

Decision-making tasks can not all be achieved by a one-size-fits-all model. DNF appear

to be the most versatile, failing only with sparse signals in a continuous domain,

because it does not suffice to generate a peak of activity, and no interaction occurs.

This is not a very realistic use case, and it can be avoided by “Gaussianizing” the

stimuli. On the other hand, their theoretical and computational complexity may not

be warranted in every scenario. In competition tasks where topology is not relevant,

accumulator models such as NLCA show similar properties to DNF for a lower cost.

Finding a trade-off between conflicting stimuli can be done by either KF or FL, the
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latter being also able to switch between selecting the best (WTA) and interpolating

between them (akin to WS) depending on their proximity.

Models tested here are quite bare, and there is always room for refining and ex-

tending them. Parameters can be tuned to change behavior. We show two different

examples of it with DNF, but another one would be memory: increasing w+ sufficiently

leads to self-sufficient peaks to be formed, that stay in place even after the stimulus has

disappeared. Furthermore, numerous extensions are available in the literature. WTA

can be combined with a kernel to include neighbors in the aggregation. It can also be

enhanced with iterative elements (winner takes most). FL has seen various imple-

mentations, most notably fuzzy inference systems by (Mamdani and Assilian, 1975)

and (Sugeno and Yasukawa, 1993). WS can be expanded with kernel methods such

as SVM. KF has numerous extensions, most notably the extended Kalman filter, one

of the most used estimation algorithms for nonlinear systems (Julier and Uhlmann,

2004) . DNF can be adapted to sparse inputs with a variation called sparse neural field

(Quinton and Girau, 2010), though it is less robust. It can also be altered to incor-

porate predictive and active aspects (Quinton and Girau, 2011; Quinton and Goffart,

2018), which reinforce tracking abilities and robustness to distractor and occlusions.

One particular aspect of decision-making that is often overlooked is its relation

to perception and cognition. More often than not, decision is more than a posthoc

filtering of the model output: the data is already filtered inside the model through

thresholding, attentional processes And like decision drives action, action also impacts

decision, through predictive aspects for example. The decision-making algorithm must

be put in context of the cognitive system it belongs to. The choice between one strong

stimulus and a big group of weaker stimulus, between attending the expected position

of a stimulus and exploring unexpected ones, etc., depends on both the task and the

system cognition. For instance, ignoring a distractor may be more important when

the system is moving or acting towards a previously-selected target, than when it
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is still figuring out what to do. A decision-making system is often made of several

components in perpetual interaction (e.g. extended KF and FL (Das et al, 2017)),

and this is how more complex, interesting and robust behaviors may emerge.

Meanwhile, decision-making models have to face a variety of constraints. The first

is an issue of scalability. Inputs may bear a high dimensionality, which are increasingly

harder to process for models of high complexity. At the same time, algorithms may be

faced with computational constraints: limited processing power, memory, time Part

of this can be mitigated with some optimizations: some algorithms may be required

to perform numerical approximations (e.g., replacing convolutions by products in the

frequency domain after a Fourier transform), data reduction (e.g., through PCA/SVD

and projecting the data or kernels on a subspace to reduce algorithmic complexity),

and changes in structure and coding of data. Another constraint is the possibility (or

not) to parallelize computations for speed. Sometimes, it might even be a requirement

to make an algorithm distributed (as in multi-agent systems), or centralized instead.
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Abstract

Multimodal merging encompasses the ability to localize stimuli based on imprecise

information sampled through individual senses such as sight and hearing. Merging de-

cisions are standardly described using Bayesian models that fit behaviors over many

trials, encapsulated in a probability distribution. We introduce a novel computational



model based on Dynamic Neural Fields able to simulate decision dynamics and gen-

erate localization decisions, trial by trial, adapting to varying degrees of discrepancy

between audio and visual stimulations. Neural fields are commonly used to model

neural processes at a mesoscopic scale, for instance neurophysiological activity in the

superior colliculus. Our model is fit to human psychophysical data of the ventrilo-

quist effect, additionally testing the influence of retinotopic projection onto the superior

colliculus, and also providing a quantitative performance comparison to the Bayesian

reference model. While models performs equally on average, a qualitative analysis of

free parameters in our model allows insights into the dynamics of the decision and the

individual variations in perception caused by noise. We finally show that the increase

in the number of free parameters does not result in overfitting, and that the parameter

space may either be reduced to fit specific criteria or exploited to perform well on more

demanding tasks in the future. Indeed, beyond decision or localization tasks, our model

opens the door to the simulation of behavioral dynamics as well as saccade generation

driven by multimodal stimulation.

1 Introduction

Humans have versatile and diverse ways of perceiving the world around them. Senses

provide a dense and continuous flow of data, yet our ability to process information is

limited, so we need to select a subset of all available data in order to engage in adequate

interactions with the environment. Performing relevant selection involves processes

pertaining to (selective) attention.
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Focusing on visual attention, human vision is constrained by the heterogeneous

disposition of sensors on the retina, with a denser distribution near the center of the

visual field (called fovea). As a consequence, humans will tend to gaze at objects of

interest, in order to see them better. One outcome of this kind of overt attention is that it

may trigger visual saccades towards objects located in the periphery of the retinotopic

space. Because of its weaker resolution, saccades are less precise and more likely to be

disturbed by artifacts.

That issue can be circumvented with the use of additional information from other

modalities (Calvert et al., 2004). For example, a sound congruent to a visual stimu-

lus may guide saccades to this particular target (Frens et al., 1995; Kapoula and Pain,

2020). Generally speaking, it is common to merge sensory data coming from multiple

modalities. They might enhance each other (Meredith and Stein, 1986), complement

one another (Newell et al., 2001), or even compete together to form an interpolation of

different sensory inputs (McGurk and MacDonald, 1976; Alais and Burr, 2004). These

mechanisms depend on the relative reliability of the modalities, with factors includ-

ing stimulus noisiness (Ernst and Banks, 2002), sensor precision (Witten and Knud-

sen, 2005), and possible top-down interference (such as selective attention; Driver and

Spence, 2004). Studies on this topic vary from macroscopic (at a behavioral level) to

microscopic (neurological) scale, but it is common for such insights to be shared across

these two domains (Calvert et al., 2004; Alais et al., 2010).

Our aim is to build a computational model of multisensory integration that can be

embedded in attention processes. We will focus on audiovisual merging especially.
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1.1 Biological inspiration

One source of inspiration for our computational model is the superior colliculus (SC). It

has been reported to integrate cues from multiple modalities, including visual, auditory

and somatosensory (Wallace and Stein, 1996; Calvert et al., 2004), which makes it a

relevant neural structure to be used as a reference for our model. It is also involved

in the generation of motor commands such as saccades (Gandhi and Katnani, 2011).

However, please note that our purpose is not to build a biologically-accurate simulation

of the SC, but rather get inspiration from the brain workflow, for which mesoscopic

scale models of multisensory integration are available. Such scale should allow us to

remain neurally plausible, as we later turn our attention to macroscopic observations

and directly model behavioral data.

In previous works, the SC has already been used as a target of computational models

of visual (Taouali et al., 2015) and multimodal (Casey et al., 2012; Bauer et al., 2015)

perception. A common representation of a visual map in the SC is given by Ottes et al.

(1986), where the retinotopic space is mapped to the collicular space using a logpolar

transformation. That transformation has been suggested to lie at the core of complex

mechanisms of visual attention (Taouali et al., 2015), including saccades (Manfredi

et al., 2009).

1.2 Computational model

Computational neural models of the SC exist in various forms, both for multisensory

integration (Bauer, 2015, chapter 3) and for saccade generation (Girard and Berthoz,

2005). One frequently used theoretical paradigm that encompasses both aspects, and
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that has been predominant when it comes to visual processing in the SC, is that of dy-

namic neural fields (DNF) (Marino et al., 2012; Taouali et al., 2015; Quinton and Gof-

fart, 2018). It originated as a mathematical model of neural dynamics (Amari, 1977),

and has been used to model neural activity in sensorimotor maps at a mesoscopic scale

(Schöner et al., 2015). DNF describe the evolution of mean field potential over a contin-

uous domain (usually simply called a map), for instance the average membrane poten-

tial of neurons in the intermediate layers of the SC (Trappenberg et al., 2001; Wilimzig

et al., 2006). While interactions at the microscopic scale may be of interest for many

neural processes, focusing on neural fields at a mesoscopic scale helps to bridge the

gap with behavioral data. This is not only useful to better understand adaptive func-

tions found in living systems (Schöner et al., 2015), but also makes it possible to build

artificial systems able to reproduce them (including decision-making and attentional ca-

pabilities based on noisy sensor data) and to implement them on robots (with topologies

of sensors that differ from humans). Depending on their parametrization, DNF may for

instance achieve selection or interpolation between several conflicting signals (Taouali

et al., 2015), robust selective attention in presence of noise and distractors (Fix et al.,

2011), working or long term memory of stimuli (Sandamirskaya, 2014).

DNF have long been used as models of visual attention (Fix et al., 2011) and (vi-

suo)motor control (Wilimzig et al., 2006; Sandamirskaya, 2014; Quinton and Goffart,

2018). However, the literature is scarcer when it comes to using DNF for multimodal

fusion (Schauer and Gross, 2004; Ménard and Frezza-Buet, 2005; Lefort et al., 2013).

Schauer and Gross (2004) have shown promising results with a bio-inspired DNF-based

model of audiovisual integration. With very little preprocessing, they achieved a sig-
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nificant response enhancement when exposed to congruent visual and auditory signals,

although they did not draw connections to known psychophysical phenomena.

1.3 Psychophysical reference

In this paper, we will show that applications of DNF go as far as to account for well

known psychophysical effects of multisensory integration. As an illustration of such

possibilities, we will use the ventriloquist effect (Alais and Burr, 2004), which is an

example of audiovisual merging. From a human participant viewpoint exposed to spa-

tially incongruent visual and audio stimuli, the position of a stimulus is shifted towards

the other, depending on which modality has the highest relative precision. The effect

takes its name from ventriloquist shows, where spectators have the illusion that a puppet

is speaking, while the sound is actually produced by the ventriloquist holding it.

We will draw on psychophysical data reported in Alais and Burr (2004), because

their experimental paradigm and protocol can easily be replicated in silico, they pro-

vide extensive results in all conditions, and their paper is a seminal contribution to the

field, with results that have not yet been challenged. One might notice that in their

experiment, only the visual precision varied. However, by manipulating the relative

precision between the two modalities, they showed the multiple sides of the ventrilo-

quist effect (either vision capturing audition, the reverse, or an interpolation between

both). We want our computational model to exhibit the diversity of behaviors linked to

multimodal fusion, so this experiment constitutes an interesting showcase.

In addition to empirical data, we will also compare the performance of our model to

optimal Bayesian integration, usually considered as the golden standard among formal
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and computational models of multisensory integration (Ernst and Bulthoff, 2004; Rohde

et al., 2016). However, note that we do not strive for a perfect quantitative fit of our

model to the data. Indeed, even though optimization and sensitivity analysis will be

combined to assess the ability of our model to robustly converge with behavioral data,

our model enables a broad set of perspectives by building on past DNF models, of which

the ventriloquist effect is only one illustration.

The remainder of this article is structured as follows. In section 2, we describe our

computational model and its evaluation criteria in the context of the ventriloquist effect.

We present the results in section 3, and discuss further on the capabilities of our model

in section 4.

2 Method

2.1 General model

From a neurophysiological standpoint, the (deep) SC has been reported to receive pro-

jections from different modalities on a series of multimodal neural maps (King, 2004).

In this section, we first described how these maps are modeled, before turning to the

projections they receive. An overview of our general model is given in figure 1.

2.1.1 Dynamic neural fields

Our model of a SC map activity is based on dynamic field theory (Schöner et al., 2015).

DNF model the evolution of the neural activity over time on each point of a topological

space X that maps a portion of the brain. The mean field potential U at position x ∈ X
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Figure 1: Visual representation of the audiovisual merging DNF model. Each rect-

angle represents a map, either in retinal space (shown with concentric circles) or SC

(hourglass shape, obtained by performing a logpolar transformation on the visual map).

The blue arrow and text relate to visual preprocessing, green to auditory. Steps and

parameters from the model, other than preprocessing, are shown in red.
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and time t is described by the following stochastic integro-differential equation:

τ
∂U

∂t
(x, t) = −U(x, t) + I(x, t) +

∫

x′∈X
W (‖x− x′‖) f(U(x′, t)) dx′ + ε (1)

where τ is the time constant which determines the response timescale of the entire

field, I is the input stimulation over the field and f is a non-linear activation function;

as often chosen to simplify numerical simulations, we will use a ReLU function to

approximate the mean firing rate of neurons (Quinton and Goffart, 2018). The last

term ε represents noise which, like the entire dynamic neural fields, can be interpreted

at either a neurological (a sum of numerous variations of activity induced by external

neurons) or psychophysical level (e.g. perceptual noise) (Schöner et al., 2015, box 1.4,

p. 36). Due to the variations being summed over a large population of neurons, white

noise is often used, and ε is therefore sampled from a normal distribution N (0, σN).

Finally, the kernel approximating lateral interactions within the continuous popula-

tion of neurons is defined by:

W (∆x) = λ+ exp

(
−∆x 2

2σ 2
+

)
− λ− exp

(
−∆x 2

2σ 2
−

)
(2)

with λ+ > λ− and σ+ < σ−, thus giving rise to local excitation and more diffuse

inhibition. In the case of visual attention models, with such constraints on parame-

ters, and spatially coherent input stimulation reflecting the presence of localized objects

within the visual field, the numerical simulation of the DNF equation will converge to

a stereotypical peak of activity, filtering out noise (Fix et al., 2011; Quinton, 2010). In

the case of overt attention, it is then possible to directly project the DNF activity to

control eye movements (Quinton and Goffart, 2018), in agreement with visual fixations

being correlated with a balance of activity in the SC (Gandhi and Katnani, 2011). In our
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numerical simulations, we will simply estimate the stimulus position within the field as

the barycenter of the field output f(U) (Rougier, 2006).

The time course of field activity before convergence will not be the focus of this ar-

ticle, since we are mostly interested in the location of peaks after stabilization. Readers

interested in activity evolution over time will find extensive insights in Schöner et al.

(2015) and an illustration of SC dynamics simulation in (Taouali et al., 2015, figure 5).

2.1.2 Projections to the neural field

Empirical evidence supports that signals emanating from a common location in the en-

vironment, even through different modalities, will project to nearby locations in the SC

(Wallace and Stein, 1996). At the same time, the structure of the SC can be linked back

to retinotopic space (Ottes et al., 1986). Given these neurophysiological findings, we

decompose the input I defined at each point of the DNF as the sum of a visual input

IV and an auditory input IA. Although summing projections from different modalities

introduces a strong assumption into the model, it is frequent in the literature (San-

damirskaya, 2014; Schöner et al., 2015).

The projection of visual stimuli from the retina to the SC has been modeled math-

ematically in the form of a logpolar transformation (Ottes et al., 1986). Formally, a

visual signal at a position (u, v) in the retinotopic space will be mapped to the SC at a

position x = (x, y) given by:




x = Bx log

(√
(u+ A)2 + v2

A

)

y = By arctan

(
v

u+ A

) (3)

A, Bx and By are constant parameters that originate from the literature (Ottes et al.,
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1986). Their values are given in table 1.

As for the auditory inputs and to our knowledge, there is no mathematical formula-

tion of their projection onto the SC. To avoid introducing additional model parameters

or uninformed constraints, we thus simply aligned the audio stimuli to their spatially

congruent visual counterparts, since we do not aim at modeling the learning of sensory

maps in the current research work. As projections to the SC through complex neural

pathways are usually quite distant from raw sensory stimulation, we generate population

coded auditory inputs as gaussian blobs of amplitude λA and width (standard deviation)

σA. While the gaussian blob associated to the auditory stimulation is directly projected

without distortion to the SC neural map, a similar gaussian blob is generated for the

visual stimulation yet transformed through equation (3) during its projection on the SC.

Amplitude and width of the audio stimuli are added to the list of free parameters of the

model, while visual amplitude is fixed (since redundant with λA) and visual width is

driven by the experimental setup.

2.2 Application to the ventriloquist effect

Even with constraints imposed on projections to the DNF, the model of the SC presented

in the previous section and recapped in figure 1 is designed to accomplish a variety of

tasks related to audio-visual perception, attention or memory, building upon existing

works on neural fields (Schauer and Gross, 2004; Sandamirskaya, 2014; Taouali et al.,

2015). In order to validate its capabilities for multimodal fusion, we here apply and test

this generic model using an experimental paradigm associated with the ventriloquist

effect, this effect being largely documented, and human data available. We use the
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seminal work by Alais and Burr (2004), using human performance as ground truth for

the evaluation of audio-visual fusion in our model. In their article, they reported detailed

psychophysical results aggregated over hundreds of trials per condition and participant,

with psychometric functions estimated in both unimodal and bimodal blocks of trials.

For the latter, they relied on a fully crossed experimental design, manipulating various

fusion-relevant parameters of the stimuli. Among other things, this makes their study

particularly fit to replication using their data as a ground truth for computer simulations.

2.2.1 Experimental data

For each bimodal trial, participants were exposed to a sequence of two presentations

of audio-visual stimuli (conflicting and non-conflicting, in random order), and had to

report which of them was perceived more leftward. In the non-conflict presentation,

auditory information (1.5 ms sound click with position determined by the interaural

time difference) and visual information (15 ms low-contrast Gaussian blob of controlled

width, with standard deviation σV ∈ {2◦, 16◦, 32◦}) were perfectly aligned with each

other, but their eccentricity relative to the center of the participant’s field of view was

manipulated (from−20° to +20°, as depicted on the horizontal axis of figure 1 of Alais

and Burr, 2004). In the conflict presentation, stimuli were still aligned on the azimuthal

axis, but an horizontal spatial discrepancy was introduced between the two, with the

visual stimulus moving of ∆ ∈ {−5◦,−2.5◦, 0◦, 2.5◦, 5◦} (from left to right) and the

auditory stimulus moving of −∆ (horizontal positions in figure 2).

As a consequence, we aim at replicating the psychometric curves (proportion of

conflict stimuli perceived rightward as a function of eccentricity of the non-conflict
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Figure 2: List of scenarios and experimental measures from Alais and Burr (2004).

In each line: The green speaker symbol gives the position of the auditory stimulus in

the conflicting presentation. The blue circle of growing size gives the position of the

visual stimulus, of width σV = 2°, 16° or 32° (not to scale). The measures of bimodal

localization are represented by an orange error bar (mean ± SD).

13



stimuli) obtained in the 15 scenarios of the original study (3 visual precisions × 5 spa-

tial distances). These psychometric curves were approximated by cumulative Gaussian

functions (sigmoids with near-logistic shape; Bowling et al., 2009), thus reducing them

to two parameters: median (also named point of subjective equality, equal to the mean

for a Gaussian distribution) and standard deviation (accuracy). The Gaussian distribu-

tions associated to the unimodal and bimodal psychometric functions from Alais and

Burr (2004) are reproduced on figure 2.

As a synthesis of their results, a thin visual stimulis (σV = 2°) captures the location

of the merged signal given its high accuracy. When it is very wide (32°), the auditory

stimulus does. In-between (16°), the merging is located between both. In addition,

the higher the precision of the inputs (e.g. 2° visual stimulus), the lower the standard

deviation of the human localization distribution after fusion, reflecting that auditory

and visual information were taken into account in a statistically optimal manner (Rohde

et al., 2016).

2.2.2 Model constraints and simulation

For this specific operationalization of the ventriloquist effect, all presentations happen

on a single azimuthal axis: y = 0. While the version of our DNF model presented

in section 2.1.1 could be used as a suitable model of two-dimensional maps in the

SC, it introduces parameters that are not directly supported by empirical data from the

selected study, and would simply make optimization and interpretation more complex.

Committing to the principle of parcimony, we have therefore chosen to restrict our

model to a unidimensional projection of the SC, reducing the computational cost of the
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simulations.

Whereas asking which stimuli were perceived as more leftward made sense exper-

imentally to reduce task difficulty and prevent biases in responses, numerical simula-

tions allow to directly estimate localization probability density functions. Yet given

the noise and non-linearities from equation (1), we rely on the Monte Carlo method to

sample the localization distribution under each condition through repeated simulation,

and estimate summary statistics (mean and standard deviation of the empirical Gaussian

distribution) for the conflict presentation alone. This means that the (static) inputs used

in our model always consist of a bimodal signal, having a median location set at the

fovea, and made of two unimodal components located opposite from each other. The

non-conflict presentation is no longer necessary in this numerical setting. Since there is

no generic analytical solution to this class of stochastic integro-differential equations,

we rely on numerical resolution, which makes simulations computationally intensive

and parameter estimation complex.

To correctly model the spatial distribution of stimuli used in the ventriloquist experi-

ment, the simulated neural field covers angles from−20° to 20° in retinal space (which,

after the transformation of equation (3), corresponds to ±2.85 mm in SC) with a spatial

resolution of 100 points (∆x = 0.057 mm). Similarly, to ensure a correct approxima-

tion of the temporal dynamics of the multimodal fusion and guarantee convergence to

a stable localization, we solve equation (1) using the Euler scheme with a temporal

resolution of 100 iterations per second (∆t = 0.01 s). All simulation constants are re-

capitulated in table 1. Algorithmically, the mean field potential (vector U ) is initialized
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to zero and updated by applying the following equation:

∀k ∈ K,U(k∆x, t+ ∆t) = U(k∆x, t)

+
∆t

τ

(
− U(k∆x, t)

+ I(k∆x, t)

+
∑

k′∈K
W
(
|k∆x− k′∆x|

)
f
(
U(k′∆x, t)

)

+ ε
)

(4)

where K = {−50,−49, . . . , 50} = {−2.85
∆x

, −2.85+∆x
∆x

, . . . , +2.85
∆x
} and I can be decom-

posed according to section 2.1.2:

I(k∆x, t) = IV (k∆x, t) + IA(k∆x, t) (5)

Table 1: Constant settings for all simulations. The values and descriptions of A, Bx

and By are taken from Ottes et al. (1986). High spatial and temporal resolutions were

chosen to prevent any qualitative impact on the results.

Constant Value Unit Description

Bx 1.4 mm x-axis scaling for the SC map

By 1.8 mm/° y-axis scaling for the SC map

A 3 ° Shape of the mapping, relatively to Bx

By

∆t 0.01 s Simulation time step

X [-2.85, 2.85] mm Spatial domain in SC

∆x 0.057 mm Spatial discretization step

Given that we model a forced decision task (i.e. where human participants were

asked to always answer even if they needed to guess), adequate parameters should al-

ways lead to the (quick) emergence of a stable activity pattern in presence of stimuli,
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usually under the form of a stereotyped peak of activity on the neural field. An example

of this output is given in figure 3, using artificial inputs and zero noise for the demon-

stration. We can see that, given two similar but conflicting stimuli, the DNF will in

any case generate a prototypical peak of activity (an attractor in the dynamical system

modelled by the set of differential equations), from which the barycenter can be used as

the bimodal stimulus localization estimate, as developed at the end of section 2.1.1. The

ensuing decision will either correspond to an interpolation between unimodal signals,

or to the selection of the strongest one (barring random fluctuations not shown here).

The choice between these two behaviors will depend on both the distance between the

stimuli (as in this figure) and their relative precision (illustrated in the result section,

with much lower stimuli precision).
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Figure 3: Evolution of DNF potential U on neural field (x) over time (top), using two

different custom-made static inputs I (bottom). Parameters are taken from the “Se-

lected” column of DNF+id in table 2, except noise is reduced to zero for explanatory

purpose (on this figure only). To break the symmetry, in both subfigures, the right stim-

ulus is 1% stronger than the left. Left and right subfigures differ by the distance between

the stimuli.
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2.3 Evaluation

While our task is not limited to a quantitative fit to empirical data, we will use the

differences between model outputs and psychophysical results as a performance metric,

which allows an indirect comparison of numerical models using human behavior as

ground truth. As all (human and simulated) localization distributions roughly follow a

Gaussian profile, performance will be computed based on estimated means and standard

deviations on all scenarios from figure 2.

2.3.1 Compared models

The seminal experimental results on which we rely were already accompanied by a

mathematical model (Alais and Burr, 2004). It is based on Bayesian modeling using

maximum a posteriori estimates on localization distributions, which remains the domi-

nant paradigm for multisensory integration (Rohde et al., 2016) to which we will com-

pare. It explicitely relies on the hypothesis that the psychometric functions of visual and

auditory stimuli are Gaussian cumulative distribution functions. The mean estimate and

derived variance for their Bayes optimal combination are given by:

ŜAV =
1/σ2

V

1/σ2
V + 1/σ2

A

ŜV +
1/σ2

A

1/σ2
V + 1/σ2

A

ŜA (6)

σ2
AV =

σ2
V σ

2
A

σ2
V + σ2

A

(7)

where ŜV and ŜA are the mean estimates of the visual and auditory signals positions

respectively (assumed to coincide with the actual position of the sources), and σ2
V and

σ2
A their variances (derived from the unimodal psychometric functions, as described in

Rohde et al., 2016). The Bayesian model differs by design from ours, insofar that it uses
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the unimodal performance to predict the bimodal behavior, whereas we fit our model

directly on the bimodal scenarios, without prior knowledge of the unimodal variances.

In the case of our DNF model, for a given set of parameters allowing convergence

to a stable localization decision through numerical resolution, each simulation should

generate a single scalar output (between−20° and 20° after projecting back to the visual

space). By replicating such simulations, the Monte Carlo method therefore produces an

approximate localization distribution in each condition. As the 15 generated distribu-

tions (one per condition) are expected to be roughly Gaussian and were tested against

extreme observations (to prevent biaises in mean and standard deviation estimates due

to statistical outliers), 50 simulations per condition were assessed as sufficient to extract

accurate distribution parameters, and used as indices of model performance.

To test the usefulness of the logpolar transformation to correctly explain the exper-

imental results for different eccentricities (confounded with varying degrees of audio-

visual discrepencies), as well as to test the robustness of the DNF model to distortions

in inputs projections, we will use two versions of our model: one where visual inputs

go through a logpolar transformation following equation (3) (referenced as DNF+log in

tables and figures); another where the transformation is replaced by an identity function

(DNF+id), meaning x = u and y = v. In the latter case, the DNF will operate directly

on a visual map, i.e. X = [−20◦, 20◦], ∆x = 0.2°, and the auditory inputs need no

realignment.

19



2.3.2 Model parametrization

Following previous definitions and constraints, our model has eight free parameters (see

table 2): six from the DNF equation, and two from our modeling of auditory inputs in

the SC as a Gaussian blob. This is true for both versions (DNF+log and DNF+id), since

the logpolar transformation parameters are constant and derived from the literature. The

behavior of a DNF depends mostly on the shape of its interaction kernel W . Therefore,

fusion performance can mainly be correlated to the four parameters λ+, λ−, σ+ and

σ−. The dynamic and nonlinear nature of the DNF equation can make the dependencies

very hard to comprehend, with strong interactions between parameters, especially when

related to the kernel. Since we will also measure the variance of the model localization

output, σN , which controls the amount of noise in the equation, will also play an im-

portant role; as well as τ , which controls the integration rate, and thus the weight of

the noise compared to stimuli. Finally, while λA and σA do not intervene in the inner

dynamics of the DNF, they can also be tweaked as part of the audio preprocessing of

the model. They do have some interaction with the other parameters, as the shape of

the interaction kernel determines which shape of input signals will be favored.

To ensure a fair comparison of models, free parameters had to be adjusted to the

multimodal merging task. Within the high-dimensional parameter space, meta-heuristics

that were already applied to the optimization of DNF parameters (such as Quinton,

2010) did not prove to be robust enough in the case of our multimodal fusion sce-

narios and evaluation procedure. Indeed, we could not easily combine into a single

optimization criteria our two metrics: mean multimodal localization and localization

variance. Trying to tackle this multicriteria optimization problem on stochastic integro-
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differential equations also did not lead to acceptable Pareto-optimal sets of solutions.

Therefore, after a review of articles in the DNF literature, and extended preliminary

simulations, we extracted for each parameter an interval in which suitable behavior was

possible, and simply relied on an iterative and partial grid-search approach. Similarly

to Jenkins et al. (2021), we started by picking some expertise-driven parameter values,

then analyzed model performance as a function of one or two parameters at a time.

Keeping the best values found, we iterated over sets of parameters until convergence.

In a way similar to a simplex algorithm, we obtained the parameter values in column

“Selected” of table 2. We have found that a change in σA was sufficient at first sight

to compensate most of the distortion of visual inputs by the logpolar transformation.

Consequently, it is possible to switch between DNF+log and DNF+id and obtain results

of the same order of magnitude, by tweaking σA and leaving other parameters intact.

3 Results

Relying on the (locally) optimal parameters from table 2, this section first shows qual-

itative and illustrative behaviors of the DNF, before comparing performance between

the different models described in section 2.3.1 (Bayesian, DNF+id, DNF+log), and

then turning to a sensitivity analysis of the DNF model performance, studying the im-

pact of pairs of parameters when keeping the others fixed. The objectives are to show

that good performance from either DNF model versions cannot be attributed to over-

parametrization (and thus overfit to the experimental data), and to study the effect of

parameters on the DNF behavior.
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Table 2: Model parameters. When one is fixed, its value is given in the “Selected”

column. When one varies, either for exploration or visualization, it takes its values in

the specified interval, discretized uniformly into 20 values. For DNF+log, values in

italics have to be rescaled by a factor 2.85
20

to accommodate for the change in field size

from [−20, 20] degrees to [−2.85, 2.85] millimeters: while the transformation in the

model is not linear, we use this field-wide rescaling to express all width and SD values

in the same unit, opting for degrees. After the input is transformed, the DNF always

operates on a regular space. σA has two different values for DNF+id and DNF+log

respectively.

Parameter Min. Max. Selected Description

τ 0.05 0.5 0.15 Time constant

λ+ 0.1 1 0.425 Amplitude of lateral excitation

λ− 0.05 0.2 0.15 Amplitude of lateral inhibition

σ+ 0.2 2 0.85 Width of lateral excitation

σ− 2 100 40 Width of lateral inhibition

σN 0.5 5 2.8 Standard deviation of noise distribution

λA 0.1 2 1.1 Amplitude of auditory input

σA 2 64 20 | 26 Standard deviation of auditory input

3.1 Evolution of field potential

As a way to showcase the behaviors of our models, we start by observing their dynam-

ics in realistic experimental conditions, complementing the illustration of qualitative

differences in DNF outputs based on stimuli distance in section 2.2.2. For this subsec-
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tion, we will make tests using the DNF+id model, as its output can be directly read and

easily interpreted in the topological space of the source stimuli. We use the parameters

from the “Selected” column of table 2. The inputs in the second experimental scenario

(∆ = −5°, σV = 16°) and related model activity are given in figure 4.
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Figure 4: Evolution of DNF+id activity having ∆ = −5° and σV = 16°. (a) Inputs

summed with noise on neural field (x) over time. (b) Theoretical distribution of inputs

in absence of noise. (c) Field potential U during one single run. The white line shows

the evolution of the barycenter of field output f(U). (d) Barycenters of DNF output for

30 other runs of the model. The black line shows the approximate Gaussian distribution

obtained with the mean and SD of the final 30 positions.

23



As can be seen in subfigure (a), the amount of noise in the simulated data makes

it almost impossible to distinguish the raw stimuli (b) with the naked eye. The evolu-

tion of DNF potential U is shown for one run of the model in subfigure (c). A peak

forms at a seemingly random position, which is actually biased by the position of the

stimuli. The underlying distribution of selected multimodal locations becomes apparent

when the model is run multiple times (d). Some decisions do happen quite far from the

source, which is consistent with stereotypical psychophysical studies, in which partic-

ipants sometimes realize extreme guesses. But the distribution of selected multimodal

locations shows that on average, decisions are made in between the two stimuli. The

mean and variance of this DNF output distribution are the summary statistics used for

model evaluation.

3.2 Model evaluation

Given the aforementioned models, we simulated the experimental scenarios to compare

with the psychophysical data. The results are summarized on figure 5. As a reminder,

we observe two metrics: the mean localization of a bimodal presentation (center of

the intervals on figure 5) and its standard deviation (half-amplitude of the intervals). To

mitigate the influence of extreme observations due to the stochasticity of the model, and

thus provide accurate estimates, results presented in this section have been aggregated

over 2500 runs instead of 50.

The quality of fit varies between scenarios. For example, DNF-based models achieve

better fits in scenarios 6, 14 and 15, while the Bayesian model fares better in scenarios

3, 11 and 13. The distances between model and experimental outputs are summarized
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Figure 5: Experimental results of bimodal presentation (orange intervals, same as fig-

ure 2) and corresponding model outputs (in blue). For each error bar, the center dot

represents the average localization, and the half-amplitude is the standard deviation.
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in table 3. This shows a slight superiority of DNF+log over DNF+id, and a slight ad-

vantage of the Bayesian model when it comes to representing the localization variance

only.

Table 3: Comparison between our model with logpolar transformation (DNF+log),

without logpolar transformation (DNF+id), and the reference Bayesian model, using

root mean square error between simulated and experimental data over the 15 scenarios.

Error between means Error between SD

DNF+log 0.626 1.33

DNF+id 0.638 1.38

Bayesian 0.677 1.28

Meanwhile, DNF come with the ability to model complex dynamical behaviors and

are closer to known neurobiological mechanisms. So it is worth noting that our model

enables a versatile point of view of multisensory integration, for a quantitative fit sim-

ilar to the classical model. In particular, our model can simulate observations on a

smaller scale (one run is one human decision) than Bayesian models (mostly focusing

on the global distribution of the results). Our model can simulate all random variations

between observations, while staying faithful to important mechanisms of multisensory

integration.

3.3 Parameter exploration

Our model already shows quantitative results comparable to the most standard modeling

paradigm, but there are other useful properties that can be displayed. In this section,
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we will verify that performance is indeed consequent to our design choices, and not of

overfitting. We will also show that there is still room for finetuning if one were to target

some more specific criteria (such as a maximal fit of localization variance).

In order to emphasize parameter interactions in the most readable way, we have

chosen to display the effects of two parameters at a time. In figures 6 to 8, six parameters

keep the selected values mentioned in section 2.3.2, and two vary on a regular grid

within the bounds given by table 2. We will only consider the DNF+log model from

now on, our original and most complete version (even though similar analyses could be

obtained with DNF+id).

We have found that depending on parameters, model behavior could fall into one of

the following four categories. Only the first one is relevant to our simulation, the others

will be masked in following figures.

1. For all scenarios, one single peak of activity emerges and stabilizes (often called

a “bubble” in DNF literature). The rest of the field is inhibited thanks to lateral

inhibition.

2. One bubble emerges but does not stabilize. The maximum potential increases

indefinitely because of self-excitation. This is clearly implausible on a neural

level.

3. No bubble emerges by lack of interaction, i.e. the term factored by W in equa-

tion (4) is negligible compared to the others. So the potential U will converge

to an approximation of I . Two peaks will be observable when the stimuli are

spatially discrepant, but they do not correspond to a bubble enhanced by self-
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excitation. The outcome is that the decision-making role of DNF goes missing,

which falls far away from our objectives.

4. In scenarios where stimuli are far apart, two distinct bubbles emerge. This hap-

pens when there is not enough long-range inhibition for one bubble to take over

the other. Psychophysically, that would account for an observer explicitely notic-

ing that there are two distinct stimuli. Alais and Burr (2004) do not report this

happening in their experiments.

3.3.1 Pairwise variations

Our first step is to make all 8 parameters of our model vary by pairs. The results are

compiled in two triangular matrices (one for each error measure) in figure 6 (means

bottom left, SD top right), of which each element contains a 2D regular grid. The

bounds of each parameter are listed in table 2.

First, we can see that τ and σN have a strong effect on the localization standard

deviation, and a slight effect on the mean localization. In general, increasing σN or

decreasing τ would give moderately less reliable localization means, but more plau-

sible standard deviations. This is coherent with our simulation paradigm: increasing

σN means adding more noise, and decreasing τ means a quicker integration of new in-

formation through time, both increasing the weight of the noise relatively to the stable

audio and visual stimuli. We can also see that the mean localization is not completely

smooth, and even less so for higher σN or lower τ . As a reminder, our results are by

default aggregated over 50 runs for each parameter combination, for the purposes of

smoothing the graphics. Fluctuations caused by extreme values are still expected, so it
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Figure 6: RMSE obtained by the DNF+log model depending on pairs of parameters.

The bottom left triangular matrix is based on errors in mean localization of bimodal

presentations, the top right one on their standard deviations. For each entry, the param-

eter labeled in row increases from bottom to top, and the parameter labeled in column

increases from left to right. The blank areas filled with geometrical shapes designate

parameter sets that fall out of scope of our simulation plan (cf. section 3.3). Dotted: no

convergence, or overflowing activity (case 2). Hatched: more than one peak (cases 3

and 4). Crossed: no interaction (case 3).
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is consistent that they become more apparent when the amount of noise in the system is

increased.

There is some predictible interaction between λA and σA. The graphs outline a

parabola-shaped ridge, along which these parameters can evolve with little impact on

the results. It is worth noting that an increase of σA can be compensated by an increase

of λA. That is a characteristic of the DNF. The model is designed to select in priority

stimuli whose profile match the positive part of the interaction kernel, which is very

thin in the case of the selected parameters (σ+ = 0.85°, or 0.12 mm after rescaling).

When σA augments, the auditory stimulus strays further away from the thin template,

and loses weight in the DNF integration. This loss of importance can be artificially

compensated by an increase of λA.

Interaction kernel parameters λ+, λ−, σ+ and σ− have clear bounds. In a DNF,

when a peak forms due to self-excitation, a minimum amount of inhibition is necessary

for the system to stabilize. Too much excitation or too little inhibition will cause the

peak to increase in amplitude indefinitely, which does not fit plausibly to any neural

mechanism. On the contrary, too little excitation and no peak will form, no interaction

will happen and the model will simply replicate its inputs as outputs. This is out-of-

scope because it is impossible to generate a saccade or focus for fine-grained processing

two stimuli that lie in different locations of the visual field. It is worth noting that λ+ has

an impact on the thresholds for λ− and σ+, and vice versa. That means that any of these

parameters can be tweaked largely, as long as some ratios of excitation or inhibition

are maintained. Interestingly enough, σ− is less affected by the other three. The main

use of this parameter is to ensure the presence of long-range inhibition, so it primarily
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Figure 7: RMSE obtained by the DNF+log model depending on λ+ and σ+ (expanded

from figure 6). The left graph is based on mean localization of bimodal presentations,

the right graph on their standard deviations. The white cross indicates the default values

used in the previous section. The white line shows the parametric curve that will be

used for parameter reduction. The blank areas filled with geometrical shapes designate

parameter sets that fall out of scope of our simulation plan. Dotted: no convergence, or

overflowing activity. Crossed: no interaction (U replicates I).

needs to be sufficiently high. That is consistent with alternative implementations of

DNF in the literature, where local inhibition in W is replaced by a constant global

inhibition parameter, in situations where only one stimulus should be selected in the

entire field (Schöner et al., 2015; Taouali et al., 2015). This can be seen as a reduction

of equation (2) with σ− tending to infinity. Our model does not make this restriction:

while a multi-selection is irrelevant in our application to the ventriloquist effect, we did

not make the assumption of a unique selection in the entire SC.
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3.3.2 Reducing the dimensionality of the parameter space

Some regular grids present ridges along which the two parameters vary while the model

error stays approximately constant. This is particularly clear for the pair (λ+, σ+),

allowing us to define a parametric curve on the optimal performance ridge which covers

the whole range of parameter values. This curve is defined as a function of an abstract

parameter p+, with the grids and curves for the localization mean and standard deviation

reproduced on figure 7. The use of p+ allows us to check for interaction with other

parameters, with one less dimension, and to cancel the effect of the local excitation

parameters on the model error. The new grids made with p+ are given in figure 8.

We can see that there are no interaction effects left, including between p+ and λ−.

This confirms that the model behavior remains approximately invariant to its excitation

parameters as long as as certain ratio is kept. Consequently, the number of parameters

in our model could be decreased: for each value of σ+ within a certain range, there is a

value of λ+ that achieves a similar fit.

The representation of figure 8 also makes clear the tolerable range of certain param-

eters, and the latitude in their tuning. Inhibition parameters have to exceed a certain

threshold (λ− > 0.11, σ− > 5°), otherwise the self-excitation of the DNF will not be

compensated, and the membrane potential U will increase endlessly. In addition, σ−

must be high enough (above approximately 30°) to ensure that only one peak is se-

lected. We can see that a better fit in localization standard deviation can be attained by

either decreasing τ or increasing σN , but at the detriment of the fit in mean localization.

Similarly, λA and σA show vertical strips where the fit is maximal, but these strips do

not coincide between both error measures. Given our goal of reproducing in general
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Figure 8: RMSE obtained by the DNF+log model depending on p+ (from the parametric

curve of figure 7) and other parameters. The bottom row is based on mean localization

of bimodal presentations, the top row on their standard deviations. In each entry, the

parameter labeled on the top increases from left to right. The bottom of a square cor-

responds to a low λ+ and high σ+, the top corresponds to a high λ+ and low σ+. See

figure 6 for the rest of the legend.

aspects a psychophysical experiment, we have had to settle for a good quantitative fit in

both criteria. But as we can see, if our objective was to fit either the mean localization

or its standard deviation, performance could be increased substantially. There are no

sharp ridges or spikes, and the local optima (see darkened areas on figure 8) are quite

wide, so the parameter fitting would be relatively smooth, and the results we obtained

in table 3 do not rely exclusively on finetuned values of many parameters.

In summary, there are several ways the number of parameters can be decreased.

We have seen earlier that changes in λA and σA can compensate each other, so λA
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could be fixed arbitrarily, and some finetuning would be feasible with σA alone. σA

determines, together with the kernel parameters, the relative weight each stimulus will

have in the DNF. For an estimation of the mean localization of the bimodal signal, if

we assume that λ− and σ− always remain above a necessary threshold, and that λ+ and

σ+ are restricted to the parametric curve in figure 7, then we are left with only two free

parameters: p+ and σA. Remaining parameters intervene in the dynamic capabilities of

our model (e.g. to predict response times) and its ability to explain some of the inter-

observational variations.

4 Conclusion

Models of multimodal merging in psychophysics come predominantly from the Bayesian

paradigm. We have shown, using the ventriloquist effect as an illustrative example, that

it is possible to model such a task using a neurally-inspired, population-based dynamical

system. The model we created conciliates known characteristics of the superior collicu-

lus and the paradigm of dynamic field theory, reaching a quantitative fit comparable to

the classical paradigm. The difference between the two models has to be examined at

a more theoretical level, given that they operate at different levels of abstraction. DNF

are meant to model neural dynamics (Amari, 1977). While they do not constitute an

exact simulation of neurons at a microscopic level, the behaviors that emerge from the

dynamic system echo physically observable neural patterns at a larger scale, aggregat-

ing over thousands ot neurons. Bayesian models of multimodal fusion, on the contrary,

were not derived to accurately relate to biological mechanisms (although fine-grained
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Bayesian models may be perfectly fit to model such mechanisms), but rather to estimate

subjects’ decision distributions at coarser spatiotemporal scales. Using the terminology

from Marr (1982), the Bayesian model operates at the level of the computational the-

ory, in that it describes the logic by which information coming from different sensory

modalities will be integrated, without delving into the ways the inputs are represented

or the algorithm is implemented. DNF models could be placed in the other two levels:

either representation-algorithm, when the way inputs are transformed into a decision

is described through mathematical equations; or hardware implementation, when we

consider the discretized field where each neuron acts as a processing unit. Note that

these levels are not mutually exclusive, and previous works have hinted at perspectives

to analyze either Bayesian modeling (Ma et al., 2006) or DNF (Gepperth and Lefort,

2016) at the level of the other. In any case, this different positioning does not preclude

the ability of any of these paradigms to generalize to a wide range of tasks and mech-

anisms. Both make sense at their own level, although it can be argued that Bayesian

modeling might be too broad to capture some of the most subtle behaviors that may

emerge from neural interaction (Jenkins et al., 2021). That additional precision of DNF

comes at the cost of an extended parameter space.

It is worth noting that our choice of parameters is not detrimentally constraining.

There is some latitude in the parameter tuning, thus our modeling hypotheses do not

particularly weaken the value of our results. In particular, there is flexibility in the shape

of auditory inputs (the model does not rely on one specific pair of values (λA, σA)), and

quantitative fit did not discriminate against the use of the logpolar transformation.

The relative freedom in model optimization opens up new simulation perspectives.
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First, there is room for additional parameters and tuning, not included in our current

simulations as a first parsimonious approximation. For instance, in our model, as in

many previous DNF models (Wilimzig et al., 2006; Fix et al., 2011), white noise is

used while not spatially correlated. One could expect that spatially correlated noise

(as used in Taouali et al., 2015; Jenkins et al., 2021) would help fit the variance better,

especially in scenarios involving a very thin visual stimulus. Then, we have seen that

the parameter dimensionality could be reduced (for example by removing σ− and using

global inhibition), and that some pairs of parameters could compensate one another in

an optimization task (most notably, λ+ and σ+, τ and σN , λA and σA). Consequently,

we have reason to believe that our model can be used to fit more demanding tasks. A

hypothetical situation would be to simulate a bimodal perception task and fit both the

signal localization and an observer’s response time. One could then consider locking

pairs of parameters on parametric curves (as we did with λ+ and σ+) for localization

fitting, and use the newly freed dimensions (such as p+) to fit for the additional con-

straints.

Indeed, our model has room for the integration of additional functionalities, and the

first novelty brought by DNF stands in its dynamic properties. DNF are fully capa-

ble of integrating any kind of time-dependant signals (so long as they can be projected

onto a topological map). Moreover, their inner dynamics may account for behavioral

responses of a human during the perception process. For instance, the peaks of activity

in the DNF can generate population-coded motor commands for visual saccades (Wil-

imzig et al., 2006; Quinton and Goffart, 2018). While the experimental data we have

used did not highlight any particular time-related merging effect, our model incorpo-
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rates by design the groundwork for the modeling of new dynamic properties.

Additionally, we have seen that DNF are suitable when perceptive fields are not

homogeneous across the map, as was showcased by the logpolar transformation. In

that particular case, the expectation is that a visual stimulus that appears further away

from the fovea will have an increased precedence in the audiovisual fusion. Indeed, in

the periphery of the retina, the logpolar transformation will activate a smaller region

of the multisensory map, and in our case the DNF matches thinner signals better. This

situation is out of scope in the classical ventriloquist experiment, which centers on the

fovea, with little eccentricity. This limitation in the experimental data may explain the

lack of difference we found between DNF+id and DNF+log. But our simulation would

still provide an interesting baseline for the modeling of eccentric audiovisual merging,

especially with regards to saccade generation. A visual signal in the border of the field

of view will be a likely target for a saccade, although (or, according to many models of

saccade generation, because) it is seen less precisely. At the psychophysical level, how

much this interferes with the general paradigm of multisensory integration (for which a

less precise visual stimulus would actually be captured more easily by other modalities)

is still an open question. However, on a computational level, our model reunites some

of the keys to a common ground between multimodal fusion and active perception.
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Abstract—For interactivity and cost-efficiency purposes, both
biological and artificial agents (e.g., robots) usually rely on sets of
complementary sensors. Each sensor samples information from
only a subset of the environment, with both the subset and
the precision of signals varying through time depending on the
agent-environment configuration. Agents must therefore perform
multimodal fusion to select and filter relevant information by
contrasting the shortcomings and redundancies of different
modalities. For that purpose, we propose to combine a classical
off-the-shelf manifold learning algorithm with dynamic neural
fields (DNF), a training-free bio-inspired model of competition
amid topologically-encoded information. Through the adaptation
of DNF to irregular multimodal topologies, this coupling exhibits
interesting properties, promising reliable localizations enhanced
by the selection and attentional capabilities of DNF. In particular,
the application of our method to audiovisual datasets (with
direct ties to either psychophysics or robotics) shows merged
perceptions relying on the spatially-dependent precision of each
modality, and robustness to irrelevant features.

Index Terms—multimodal fusion, growing neural gas, manifold
learning, dynamic neural field, selective attention

I. INTRODUCTION

When it comes to information processing and behavioral
decision-making, the way we merge data coming from inputs
of mixed nature is becoming increasingly important. Let us
start with a toy example. A robot is given a task, for example:
“touch the alarm clock when it goes off”. At first, the robot
might be facing several objects resembling an alarm clock,
which it should have no difficulty distinguishing. When a
sound goes off, the robot should be able to locate its origin,
but it is usually achieved with a low precision. Before taking
an action, the robot has to select an object. Here, it should
be the one clock-looking object that coincides most with the
sound source localization. But how the modalities should be
weighted depends not only on the task (a clock visible on the
front has lower priority than sound coming from the side), but
also on the reliability of the sensors (room reverbation can
make sound orientation irrelevant).

The task in this example faces multiple challenges, start-
ing with two: the fusion of sensory modalities of different
availability and reliability, and the selection of (and attention
towards) a target. To tackle these problems, most of model
nowadays are based on deep learning. In this article, we
propose another approach based on dynamic neural fields

This work was funded by French region Auvergne-Rhône-Alpes as part of
the project AMPLIFIER.

(DNF), a bio-inspired model of neural activity [1]. It is
a topologically-grounded continuous-time recurrent network,
where weights are known and depend on the distance between
neurons. With a mixture of short-range excitation and long-
range inhibition, input stimuli are put in competition until
a bubble of activity emerges, which can be interpreted as
a decision of target selection and/or action. Additionally,
temporal dynamics allows the bubble to remain stable despite
input fluctuations and robust to potential distractors. DNF have
seen various applications, including in robotics. In particular,
the interaction properties of DNF make them very suitable for
multimodal fusion [2], [3].

One limit that previous DNF implementations have faced
lies in the nature of the manifold they evolve on. Most
applications in the literature assume the existence of an
underlying regular topology, most often 1D or 2D. But it is
hardly representative of the disparities in the sensory space,
disparities which become crucial when performing multimodal
fusion. Indeed, let us take a look at the shape of stimuli
perceived from the environment. The quantity of information
available is huge, and the data an agent receives from its
sensors is only a projection of it in a few given dimensions.
Equipped with a standard camera, a robot will receive a 2D
projection of the part of the environment it is facing. With one
microphone, it can detect sounds from anywhere around it, but
it can hardly locate them. Two microphones may enable some
1D sound localization along the axis on which they are aligned,
usually azimuthal (with interaural time/level difference), and
even a bit of 2D or 3D by exploiting the shape of pinnae
with a head-related transfer function (HRTF) [4]. We must first
account for the specificities of each sensory modality before
we create behaviors that exploit it at best. Additionally, we
must find a way to match complementary information from
different modalities, which usually boils down to projecting
stimuli onto a common manifold.

So, our first step will consist in learning unimodal mani-
folds. For this purpose, we will use growing neural gas (GNG)
[5], a standard manifold learning algorithm which is quite
parcimonious in light of the possible complexity of the sensory
space. Then, we will suggest an easy-to-implement solution
to create a multimodal manifold suitable for fusion. The main
novelty of our work is that we will run DNF directly on this
new topology, even though it lacks the regularity and low
dimensionality of classical implementations. We will show that



properties of DNF in selection and attention are compatible
with such fabricated manifolds, and that this coupling allows
new possibilities for multimodal fusion taking into account the
relative resolution of the modalities.

Our article is structured as follows. In section II, we will
review the existing literature on manifold learning and DNF,
and in particular their applications to multimodal fusion. Then
we will describe our model in section III, and demonstrate its
capabilities through three applications in section IV. We will
conclude and discuss additional perspectives in section V.

II. PREVIOUS WORK

A. Manifold Learning

Sensors provide high-dimensional samples of the environ-
ment, but sensory spaces can often be projected onto manifolds
of lower dimension. Deep learning methods are particularly
suited for learning such manifold (see [6] for a review).
For example, the last layers of a deep neural network have
been shown to contain an intrinsic dimensionality that is
smaller than the number of features in the data [7]. Dedicated
methods such as variational autoencoders [8] learn structured
embedding in an unsupervised manner. As our focus in this
article is the study of coupling between DNF and irregular
multimodal manifold, we will use simpler methods (i.e. self-
organizing neural networks) that will provide more control and
insight for the study.

In self-organizing maps (SOM), e.g. the Kohonen model
[9], each neuron represents a prototypical input in the high-
dimensional sensory space, so that the input space is projected
onto a neural lattice of fixed shape and size. In neural gas (NG)
[10], neurons are not arranged on a lattice, but are connected
following a Hebbian rule, thus neurons with close prototypes
are linked together. Eventually, the gas fills the input space in
a way that matches the stimulus distribution. Growing neural
gas (GNG) [5] is a derivative of NG, in which neurons are
added (or deleted) over time until a chosen condition is met,
thus adapting to the unknown input space spread.

Manifolds in multimodal fusion: Numerous articles have
shown promising results in multimodal fusion using deep
learning. Deep unsupervised learning can be used to project
multimodal data on a low-dimensional manifold for use in
robotics [11]. Inputs can be mixed during neural network
training to exploit the correlations between modalities [12].
Reference [13] proposes a new type of deep neural network
receiving multimodal inputs allocated through an attention
module. Unfortunately, most of these works make the as-
sumption that all multimodal data are related. Also, deep
architecture are dedicated to one specific task and no generic
architecture emerges [14].

We aim to create a new multimodal topology over
which new dynamic properties could be applied, and self-
organization offers solutions for a much lower cost [15]–[23].
SOM and their derivatives have long been used as models
of multimodal fusion, but the ways modalities are combined
can be very diverse. Map architectures can be divided in
two categories. In the first, one SOM is trained for each

modality, then all unimodal maps are connected depending
on a special learning rule [15]–[17]. In the second, unimodal
maps link to a new multimodal SOM [18], [19] or NG [20] that
combines all information. Additional layers of SOM can also
be considered to create a hierarchical flow of information [21]–
[23]. Additionally, models can be made more adaptive to time-
dependant tasks with the help of “growing when required”
maps [22], [23], an alternative to GNG designed for dynamic
input distributions [24]. Some of these models have already
been proof-tested for visual, auditory and/or proprioceptive
modalities on hardware setups [21], [23] and robots [17], [19].

After multimodal maps and/or interconnected unimodal
maps have been learned, we need a paradigm to dictate the
way perception will occur. Multimodal perception can be seen
as a form of decision pondering sensory inputs of different
reliability and relevance. We follow the architectural choice
made in [18] and [15], where dynamic neural fields (DNF)
are used as the paradigm that governs fusion or segregation of
stimuli in the multimodal topological space. DNF come with
many useful properties for multimodal perception.

B. Dynamic Neural Fields

Originally stemming from neuroscience, DNF have various
applications in robotics [25]. For example, visual attention
may be cumulated with motor control to make a robot au-
tonomously gaze at objects in its environment and learn a sen-
sorimotor map [26]. DNF rely on a population of topologically
connected units at a mesoscopic scale, where the apparent
activity (or average membrane potential over assemblies of
neurons) can be read to infer decisions at a behavioral level.
The activity evolves through time depending on a sum of
external stimulations and lateral interaction between neurons.
Stimulated neurons will send strong excitation to their nearest
neighbors, and moderate inhibition to neighbors located further
apart, leading to the emergence of a stable bubble of activity.
Depending on the parametrization, this can lead to several
types of behavior [25]. With strong local excitation, the bubble
can be self-sustaining, acting as long-term memory [26]. Long-
range inhibition will create a competition between conflicting
stimuli, until either one dominates the others, or they are
merged in a single bubble at an interpolated position [3],
[27]. Then, the self-maintaining bubble can be used for robust
selective attention, able to ignore noise and minor distractors
[28]. Ultimately, the output of DNF can be directly exploited
to generate motor command [26], [29].

The properties of DNF can benefit greatly to multimodal
fusion. It provides the tools not only to enhance robust
decisions when modalities are congruent [2], but also to solve
conflicts between modalities [3]. This is where the choice of
the underlying manifold can be very important.

The vast majority of works using DNF assume the dynamics
take place on a completely regular topology, e.g. a 2D lattice in
the case of vision. However, there is no clear way of projecting
two or more modalities onto the same lattice. In [2] and [3],
strong assumptions are made on the shape of stimuli in a
modality so that they fit in the topology of the other. To



tackle this issue, [15] proposes using separate manifolds for
each modality, each learned by SOM, and apply DNF on each
of them. Communication between modalities is ensured by a
specific set of topographic connections.

The latter reference is actually one of the first to suggest
using a learned manifold as the theater of neural dynamics.
Otherwise, some attempts to alter the projection of inputs
into the manifold have lead to satisfying results: [27] and [3]
successfully reproduce biological behaviors after applying a
logpolar transformation to visual stimuli, which models the
discrepancies in the resolution of the human retina [30]. In
[15], the projections received by neurons are altered, although
they are still organized in a rectangular lattice. Since DNF
are strongly dependant to the topography, and rely on a
symmetrical interaction kernel1, one may fear that breaking
the regularity of the underlying topology may make DNF
completely unpredictable.

An ensuing question would be how far from regular and/or
rectangular can the underlying topology be for DNF to remain
viable. If DNF could be made to operate on manifolds of
unconstrained shape or dimension (easily accessible through
GNG), then this would open the door to adding the properties
of DNF to a new range of applications, starting with new
capabilities in multimodal fusion like the ability to take into
account the different resolution and reliability of all modalities.
To our knowledge, this has not been tested. At best, sug-
gestions have been made to approximate DNF activity using
gaussian mixtures, sparsifying the space on which they operate
to make them applicable in more complex topologies [33]. Yet,
this latter approach still relies on a continuous regular space
on which the lateral connectivity kernel function and Gaussian
mixtures can be defined, which remains a strong limitation
when processing high dimensional inputs.

III. MODEL

In this article, we use GNG to learn manifolds of the
sensory space in each modality. We then assemble them
into one multimodal graph, on which we use a DNF to
produce behaviors that have, to our knowledge, never been
implemented on this kind of manifold. These three steps are
summarized in figure 1 and explained below.

A. Unimodal Topology Learning

In this part, we process modalities separately. As our focus
in this article is not on tuning the unimodal topology learning
on a specific task, we use the standard GNG algorithm with its
original parameter values, as described in [5]. To summarize,
GNG are trained by receiving a succession of randomly se-
lected stimuli. Every time, the two neurons whose prototypical
input match the stimulus best get a fresh connection. Then the
best-matching unit (BMU) and its direct topological neighbors
have their prototype moved towards the stimulus. Connections
that have not been updated in a long time are removed, and

1There have been suggestions to break the symmetry from the DNF side,
either through asymmetrical kernels [31] or through distortions of the topology
by predictive reinforcements [32], but both require an additional learning step.
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Fig. 1. Recap of the steps taken in this article. 1. Learn a growing neural
gas in each modality. 2. Assemble them into one single graph by creating
multimodal connections. 3. Present stimuli and compute multimodal activity.

isolated neurons as well. Then at fixed intervals, a new neuron
is inserted. Its prototypical input is placed at the middle of the
most activated connection.

B. Multimodal Topology Learning

For a first milestone, we will focus on bimodal architectures
in the rest of this article. As a reminder, bimodal architectures
in self-organization literature often merge data in one of two
ways: a multimodal map is created that receives information
from the unimodal ones, or new connections are added be-
tween the unimodal maps, each having its own processing
unit. We propose an intermediate solution that is the most
economical of all: we create a new bimodal graph that contains
all nodes and edges from one modality, and all nodes and
edges from the other. To create the crossmodal edges, we
connect neurons of the two modalities that fire together,
which is similar to an Hebbian learning. More precisely, the
algorithm is: We draw a random multimodal input. If it lies in
the sensory range of both modalities, we find the BMU in each
GNG and connect them (if they are not already connected).
We repeat until a certain proportion of nodes have at least one
crossmodal edge.

C. Selection of Activity

Once the bimodal graph is created, its associated neurons
can be stimulated by sensory inputs (through their respective
modality), and we can use DNF to select and attend to a
stimulus. DNF are usually expressed as an integro-differential
equation in a continuous field of neurons, that is later dis-
cretized and computed using the Euler method. The integration
of DNF is comparable to the simulation of continuous-time
recurrent neural networks. In DNF, the distance between
neurons plays an important role, as it determines whether they
will excite or inhibit one another. Our model differs from
others in the literature in that all neurons do not share a



common coordinate system. So, we need to adapt the DNF
equation, so that the distances are defined on the graph, and
only that. We rely on the standard distance from graph theory,
i.e. the number of edges on the shortest path between any two
vertices.

In our model, each neuron is tied to a specific modality.
So, the external input received individually will be modality-
specific (although the rest of DNF operations will not be).
To ensure that the total amount of external stimulation is
independant from the local resolution of a modality, we will
order all neurons of a modality by their proximity to the
stimulus (using the euclidian distance in the coordinate system
of that modality), and stimulate them descendingly according
to their rank. For each neuron indexed k, given a stimulus
indexed i, we note rk,i the rank of proximity between the
prototypical input of k and the coordinates of i. The external
stimulation Ik received by k is given by:

Ik = λm,i e

−r2k,i
2σ2
I (1)

where λm,i is the intensity of stimulus i with regards to k’s
modality m. A neuron can only receive external inputs from
its own modality.

Next, we compute the evolution of activity in the graph
over time. The following is completely modality-agnostic.
The potential Uk of neuron k is initialized as 0 and updated
incrementally by2:

∆Uk =
∆t

τ

(
−Uk + Ik +

∑

k′

W (<k, k′>) f(Uk′) + h

)
(2)

where ∆t is the simulated time between steps, τ a time
constant that determines the speed of DNF updates, f an
activation function (ReLU), and h a negative resting level.
< ·, · > designates the minimal distance in number of edges
between two nodes in the bimodal neural gas, and W is a
weight function expressed as:

W (δ) = λ+ e
−δ2
2σ2

+ − λ− e
−δ2
2σ2− (3)

with amplitudes λ+ > λ− > 0 and widths σ+ < σ−. W can
be seen as a kernel shaped like a mexican hat [1].

One possible way to interpret the outcome is to read the
output f(U). It is common to take a barycenter of the output
as an estimator of the position targeted by the model. While
we are not supposed to know an euclidian topology in which
the positions of GNG nodes can be averaged, we can still
use the input data to interpolate a corresponding location in a
2D euclidian space for each neuron. We will do that for our
experimentations, but please note that this interpolation will
not always be possible. Similarly, for the GNG, we will plot
them by putting all nodes to their asserted location, only for
visualization purposes.

2In this equation, only Uk is incremented over time, and the inputs Ik are
static. However, none of our hypotheses prevent the inputs from being updated
over time. We make this choice because dynamic inputs are not necessary for
the results presented in this paper. Otherwise, equation (2) could be written
by expressing Uk(t) as a function of U∗(t−∆t) and Ik(t).

TABLE I
RANGES OF INPUTS IN THE EXTERNAL ENVIRONMENT

Section Modality X-range Y -range Z-range

IV-A vis. [0, 90] [−45, 45] –
aud. [0, 90] [−45, 45] –

IV-B vis. [−45, 45] [−45, 45] –
aud. [−90, 90] [−45, 85] –

IV-C vis. [−45, 45] [−45, 45] [0, 45]
aud. [−90, 90] [−45, 85] –

IV. RESULTS

Our results will be divided in three parts, with a common
protocol for all. For this article, we will consider two modali-
ties, vision and audition. That can correspond for example to a
robot asked to locate a visual and/or audible stimulus. We test
three setups that take into account challenges that might hap-
pen in the robot perception: differences of resolution within the
same sensory space (section IV-A), high-dimensional feature
space (IV-B), and non-relevant features (IV-C).

So, the main difference between the setups will be in the first
step of our model, the generation of the unimodal manifolds
(described in section III-A). For the GNG training, a stimulus
location will be drawn within the subspace of the environment
that is accessible to the appropriate sensors. For example, a
robot’s visual perception might be restricted to the space in
front of them, while their auditory range might be all around
them. Input ranges are listed in table I. Then, we simulate
the information that would be received from the sensors if a
real stimulus was sent from this position. The way they are
preprocessed will be defined in each subsection.

We have set an upper limit to the number of neurons in
the GNG. Otherwise, the resolution could become excessively
high, increasing the computational cost for no valid reason.
Once the limit is reached, the GNG is trained like a regular
NG, except that nodes that have become irrelevant can still be
removed and replaced. This is still more efficient than starting
with all neurons and training a NG from the beginning.

The creation of a bimodal manifold is roughly the same in
all setups. For the DNF, input stimuli will be specified in each
scenario, depending on the properties to showcase. For the
same reasons, parameters might need to be adjusted slightly
from one setup to the next. All values are given in table II.

A. Bio-inspired Model of Audiovisual Processing

Our first experimentation is inspired from observations in
neurophysiology. Human visual perception is affected by the
heterogeneous distribution of sensors in the retina, giving a
higher resolution in the center of the field of view (the fovea)
than in its periphery. This disparity can be observed in brain
regions processing visual information, such as the superior
colliculus [30]. A mathematical model of the disparity between
fovea and periphery, using a logpolar transformation, has been
suggested by [30], and previous works have coupled it with
DNF for visual [27] and audiovisual processing [3].



TABLE II
PARAMETERS USED IN OUR DNF IMPLEMENTATION. SPREAD

PARAMETERS ARE EXPRESSED IN ARBITRARY UNIT THAT DENOTES THE
MINIMAL NUMBER OF EDGES THAT SEPARATE TWO NEURONS.

Parameter Value Meaning

IV-A IV-B & IV-C

Simulation settings

∆t 0.01 0.01 Time step
σI 2.5 2.5 Spread of stimulus
λvis, A 2 2 Strength of visual bottom stimulus
λvis, B 2.4 2.02 Strength of visual top stimulus
λaud, A 2.4 1.5 Strength of audio bottom stimulus
λaud, B 2 0 Strength of audio top stimulus

DNF parameters

τ 0.1 0.1 Time constant
λ+ 0.4 0.55 Amplitude of lateral excitation
σ+ 2.5/3/3.5 1.5 Spread of lateral excitation
λ− 0.3 0.3 Amplitude of lateral inhibition
σ− +∞ 10 Spread of lateral inhibition
h −1 −1 Resting level
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Fig. 2. Sample representation of a bimodal graph. Edges are colored
depending on the modalities of the neurones they connect. Visual-visual:
black. Auditory-auditory: cyan. Visual-auditory: red.

Models of the superior colliculus are not only useful for
computational neuroscience. While cameras used by robots
are supposed to have a homogeneous resolution, they might
happen to have blurry spots because of dirt or wear. Other
modalities may also have a high variance in resolution. The
logpolar transformation is a straightforward way of testing
these variations in a controlled setting. Additionally, even
when the camera sensory space is perfectly regular, it has been
suggested that adding a logpolar transformation on top of it
could improve gaze control in robots [34].

1) Sensory space: In light of the aforementioned hypoth-
esis, we take coordinates of a visual stimulus in a regular
2D visual hemifield, and displace them following the logpolar
transformation in [30]. The new 2D coordinates are used
as inputs for the visual GNG. Since we study the effect of
variable resolutions in one modality, the other modality, audio,
will be modeled as a regular 2D space as in [3], with the same
range as vision (table I), so that it does not interfere with the
analysis. Both GNG are given 1000 nodes maximum.

2) Produced manifolds: A sample of the bimodal graph is
shown in figure 2. For visualization, visual nodes are placed
according to a reverse logpolar transformation of their features,

and auditory nodes according to their raw coordinates. The
unimodal GNG are superposed with different colors.

As expected, the visual GNG has a much higher resolution
around the fovea (0°), as can be presumed by the high density
of nodes. It gradually decreases as the azimuth augments. On
the contrary, the auditory GNG has roughly the same reso-
lution everywhere. Connections between neurons of different
modalities are shown in red3. For azimuths between 0° and
approximately 30°, vision has a better resolution than audition:
most nodes from the audio GNG are connected to multiple
visual nodes. The trend is reversed for higher azimuths.

3) Resulting properties: After the bimodal manifold is
created, we are interested in seeing what a DNF would select
when confronted to conflicting bimodal stimulus. It is expected
that near the fovea, vision is more reliable, so it should have a
bigger weight in the fusion than audition. To test this, we put
two conflicting stimuli A and B at a common azimuth x, and
elevations −5° and 5° respectively. Both stimuli can be both
seen and heard, but A is 20% more auditively salient than B,
and B is 20% more visually salient than A.

When tested on a unimodal manifold, the DNF has no
trouble selecting either A or B. Every time, the most salient
stimulus in its respective modality has a higher chance of being
selected. Occasionally, the DNF forms a bubble in-between the
stimuli. This is mostly visible for higher azimuths in the visual
GNG. The reason is that the resolution is so low that A and
B are separated by only a few edges. The DNF does not have
access to the corresponding inputs of its neurons viewed from
the exterior. Thus, when viewed from inside the model, they
are topologically very close to each other. So, the DNF treats
the stimuli as if they were right next to each other, and merges
them into a bubble of activity located at their center of mass.

In the bimodal manifold, the stochasticity in the creation
of the GNG starts having an impact, as it may seemingly
give a locally higher resolution to a modality when it is not
expected. A might be selected instead of B, when B is more
salient, just because B stimulates a region with fewer neurons
or connections than average. To separate the random effect
caused by the creation of the GNG, we create 50 bimodal
manifolds, and test a run of DNF on 90 different azimuths for
each of them. The results are aggregated in figure 3. As we
suspect that the distance at which stimuli are merged depends
on the width of the DNF kernel, we couple in our analysis
the effect of resolution with the value of σ+. We test three
different values of σ+, represented by three different colors:
green, red, blue from thinnest to widest.

The curves represent the outcome of two mixed logistic
regressions. The fit of the black curve is obtained after

3For this model, we initially observed that a lot of visual neurons close to
the fovea were never connected to auditory ones. Because there are so many
of them in a very close space, a huge number of random draws is required
before they are all visited. To ensure that the merging task would not be
hindered by a lack of connectivity, we biased the draw of external stimuli so
that the prototypical input of every neuron was drafted. We found that this
manual bias has no effect on the graph connectivity outside the fovea. This
draw method is not applicable to most scenarios, since we are not supposed
to know the actual coordinates of the neurons in the external environment.
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Fig. 3. Statistical model of the modality priority change (in black) and the
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blue: σ+ = 3.5), on one of the 50 randomized GNG, with two bimodal
stimuli A and B at azimuth x and elevations ±5°. The black curve shows
a logistic regression of the switch between preferred stimuli. Colored curve
show logisitic regressions of the stimulus merging effect depending on values
of σ+.

cancelling the merging effect, and shows a clear switch of
preference from B to A centered on 32°. B is more likely to be
selected than A when the visual modality is the most reliable,
and vice versa. Logically, this effect is independant of σ+
variations. This amounts to the DNF automatically selecting a
stimulus according to the most reliable sensor.

The fit of the colored curves are obtained by canceling
the switch effect. We can see a convergence from ±5° to 0°
elevations, although for lower values of σ+, the limit at 0° is
not reached before the end of the field of view. Only the lower
curves are displayed but the effect is symmetrical.

The results show two trends. First, from the higher con-
centration of points at the 5° elevation in the leftmost part of
the figure, we can see that B (visually stronger) is more often
selected in lower azimuths than A. Then A is preferred for
higher azimuths. Second, we see that the probability of A and
B being merged (manifesting as an increasing concentration of
points around 0°) increases with the azimuths. As we expected,
the distance at which they are merged depends a lot on the
value of σ+. The larger the interaction kernel, the sooner the
merging seems to happen.

B. Real-world Robotic Sensory Data

In the previous section, we used manufactured data to
showcase DNF selection properties in manifolds of variable
resolution, favoring the most reliable modality. In this section,
we will partly use real experimental data and show that these
properties are still available in more complex sensory spaces.
Our main change will be on auditory preprocessing. One
way of performing sound source localization for robots is to
compute a HRTF, a function that associates spectral features
(caused by interferences on the signal by the head and pinnae)
to source orientations [4]. Meanwhile, vision is less of a
challenge nowadays, as extracting the position of an object
from an image is easily achievable, and one can reasonably
expect to have a homogeneous resolution in most cases.

1) Sensory space: Data provided by [35] includes head-
related impulse responses of a robot equipped with artifi-
cial pinnae, to a sound located at different angles. Given
an external stimulus position in 2D, we can interpolate the
responses received by the two robotic ears within a specific
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Fig. 4. Sample of the auditory graph obtained from HRTF data. The 2D
location of neurons is not known by the GNG, it has been interpolated from
their prototypical input in HRTF space, for visualization purposes only. Note
that the x-axis and y-axis have different scales.

range (table I). We then compute their Fourier transform and
make the difference between the ears to obtain a HRTF. In the
end, each audio input is 100-dimensional.

For vision, we will consider a robot with an intact camera
and assume it can roughly estimate the 2D coordinates of
an object in front of it. We do not need visual and auditory
perception to have the same range. Realistically, stimuli can be
heard from more orientations than they can be seen. To keep
resolutions approximately balanced, we will use respectively
maximum 500 and 200 nodes for auditory and visual GNG.

2) Produced manifolds: The visual GNG is very similar to
the auditory GNG in the previous section, which also directly
received stimuli drawn from a regular 2D space. The new
auditory one, however, has a distinct shape. Figure 4 shows
what the GNG looks like after placing each node at the source
location that would match its audio (100D) coordinates best.
The graph appears to be stretched vertically.

3) Resulting properties: Like in the previous scenario, we
test the DNF with two stimuli A and B. This time, they
are separated both horizontally and vertically. Stimulus A has
congruent audio and visual components, while B is not audible
but visually more salient by 1%. It is expected that A should
be selected over B, as A is consistent over modalities. Results
are synthesized in figure 5.

In the visual-only manifold, B largely takes precedence.
A is mostly inhibited, with some (negative) residual activity
left. This is expected, as B is more visibly salient, but it is
worth noting that the 1% difference between λvis, A and λvis, B
matters. While not shown here, we have tested swapping the
intensity values, and A does take precedence in that inverted
case. We are in a situation where both stimuli are considered
equally by the DNF, and a very small difference in intensity is
enough to bias the competition towards one or the other. This
is a very standard observation in DNF literature, but it is still
worth noting considering the topology is not entirely regular.

In the audio-only manifold, A is trivially selected, but we
can see some loss of precision in elevation: the barycenter
is found 7° higher than the actual stimulus. This is very
consistent with the general lack of elevation-wise precision
in auditory perception.

The precision is improved in the bimodal manifold. As
would be expected, audiovisual congruent stimulus A is se-
lected over visual-only B. But the barycenter is also closer
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Fig. 5. Results of stimulus selection by DNF unimodal and bimodal GNG.
These 2D depictions use neuron positions interpolated from the source data
(for visualization). Shades of gray reflect neuron potential U . Red crosses
indicate the barycenter of output activation f(U) in the reconstructed 2D
projection. (a) Visual-only neural gas with two stimuli located at A and B,
with B slightly more salient. Nodes are represented by Voronoi cells, edges
connecting nodes are not shown. (b) Auditory-only neural gas, with only one
input at A. (c) Bimodal neural gas. Its input is the sum of the ones used for
(a) and (b). (d) Zoom on (c) around A, where all nodes and edges are shown.

to the actual stimulus position than in the audio-only case,
meaning the visual elevation-wide better precision had a
positive impact. Again, the enhanced multimodal precision
is a classical observation in either neuroscience or machine
learning, but it is worth noting that it persists when working
with a complex underlying topology.

When we look more closely at the nodes around A, we can
see than despite there being a lot of edges in all directions, a
few neurons form a discernable bubble. It is interesting that
these neurons come indiscriminately from both modalities.
One could have feared an outcome where only visual neurons
interact with each other, and auditory neurons, less regularly
distributed, only serve to transmit a little bit of auditory
stimulation. On the contrary, the crossmodal connections play
an important part, so that the DNF does not leave out one
modality for the other. When both are useful, both are used.

C. Dealing with a Superfluous Dimension

1) Sensory space: This setup is similar to the previous
one, except the visual sensory space is now 3D. We add a
dimension that is not relevant to the task, e.g. color when a
robot is asked to select an object designated by shape only.
Since the visual space expands, and GNG are not advanced
enough to reduce the dimensionality when the amount of
possible inputs increases brutally, we also increase the number
of neurons in the visual GNG to 3000. The rest of the setup
remains the same.

2) Resulting properties: We did the same experiments as in
section IV-B. Stimuli A and B are given the same color, so that
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Fig. 6. Same as figure 5 with a supplementary dimension in the visual
modality. The third dimension is orthogonal to the plane used in this
representation.

their distance in the external environment remains the same
as before. According to our preliminary tests, the conclusion
would be the same with stimuli of different colors. Results
are displayed in figure 6. Only the visual-only and audiovisual
conditions are shown, since the auditory-only condition is the
same as before, and the zoom-in picture with edges is hardly
readable. As a reminder, the visualizations are still made using
x- and y-axes, meaning the new color axis is completely
flattened. These presentations are akin to looking at a cube
from a side, hence the dense Voronoi tessellation and the
scattered activity.

We find that the outputs are strikingly similar, i.e. a pref-
erence for multimodal consistent inputs and improving audio
precision, despite a big increase in the number of neurons and
edges, many of which are irrelevant to the task. This shows
robustness of the model to distracting dimensions.

V. CONCLUSION AND PERSPECTIVES

Our model consists in two unimodal GNG, trained using
the standard algorithm by [5], then connected to form one
new multimodal manifold with a simple Hebbian rule. This
manifold is used as a support for neural dynamics that are
implemented by adapting the DNF paradigm [1]. Our model
was tested on multiple setups, including real data. The main
novelties of our work are twofold. First is the use of neural
dynamics in a multimodal manifold of unspecified dimen-
sionality or regularity, a capability of DNF that has not been
showcased before. The field applies on a learned manifold that
is faithful to each unimodal sensory space, and is not hindered
by irrelevant dimensions. Second is the combination of the
multimodal topology with DNF to obtain interesting properties
such as the contribution of different modalities that depends on
their respective learned resolution, the selection of the most
relevant multimodal stimulus by using the best information
each modality had to offer, and the filtering of irrelevant
informations. These results are scalable to applications with
more than two modalities.

As we have seen when adding a dimension, the number of
neurons in the GNG necessary to keep the same resolution,
and consequently the computational cost of the model, may
increase drastically when the sensory space is broadened. This
would not be an issue with deep neural networks, that are very



effective at finding intrinsic dimensions in data [7]. It would be
interesting to see whether manifolds created by deep learning
are also suitable vectors of neural dynamics. This would be
complementary to existing approaches to encode topological
maps with neural networks [36], [37].

In our model, learning of the multimodal topologies and
their use for multimodal fusion are decoupled. An interesting
perspective would be to perform them simultaneously, which
raises some challenges like making the model robust to the
temporal dynamics and to the detection of relevant features
for learning and fusion. Another perspective is to study multi-
modal active perception, where the internal perception will be
related to motor actions to explore the environment. DNF are
well suited to model saccades [29]. This raises open questions
related to multimodal attention and active perception.
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Résumé
Les techniques de reconnaissance d’image sont devenues
particulièrement performantes lors de cette dernière décen-
nie. Cependant l’apprentissage sur des données biaisées,
par exemple, la présence régulière d’un fond bleu derrière
un poisson, réduit drastiquement les performances des ap-
proches actuelles qui ont tendance à apprendre ces biais.
Dans ce papier, nous proposons ImRAN, une méthode d’ap-
prentissage actif qui consiste à surreprésenter les données
mal classifiées, et qui améliore l’état de l’art sur le jeu de
données Biased MNIST lorsqu’il est très biaisé.

Mots-clés
Apprentissage profond non-biaisé, apprentissage de rac-
courcis, apprentissage actif, classification d’image.

Abstract
Image recognition techniques have become particularly po-
werful in the last decade. However, learning on biased data,
for example, the regular presence of a blue background be-
hind a fish, drastically reduces the performances of current
approaches that tend to learn these biases. In this paper,
we propose ImRAN, an active learning method that consists
in over-representing misclassified data, which improves the
state of the art on the Biased MNIST dataset when it is
highly biased.

Keywords
De-biased deep learning, shortcut learning, active lear-
ning, image classification.

1 Introduction
Les techniques de reconnaissance d’image sont devenues
particulièrement performantes lors de cette dernière décen-
nie [15], en particulier grâce à l’utilisation de réseaux de
neurones convolutifs [10]. Ces approches statistiques dé-
pendent principalement de la qualité des données d’appren-
tissage. Cependant, en pratique certains jeux de données
peuvent présenter un ou plusieurs biais, c’est-à-dire une
corrélation plus ou moins forte entre un élément récurrent
des images et leurs classes, sans pour autant que cet élé-
ment soit prédictif. Or, l’apprentissage d’un modèle se ba-
sant sur ces caractéristiques se traduirait par une faible ca-

pacité de généralisation hors du domaine d’entraînement.
Les réseaux de neurones, ayant tendance à converger vers
ces solutions lorsqu’elles sont simples et à exploiter ces rac-
courcis d’apprentissage [8], sont possiblement inopérants
sur certains de ces jeux de données. Par exemple, dans une
tâche de classification d’animaux, les photos de poissons
ont régulièrement un fond bleu. Un modèle d’apprentissage
profond risque ainsi de converger vers un modèle de déci-
sion classifiant toute image avec un fond bleu comme étant
un poisson. Cela limite la reconnaissance de poissons dans
d’autres décors, et crée des erreurs de classification pour
d’autres images avec un fond bleu n’étant pas des poissons.
Avoir un algorithme performant malgré la présence de
biais est une propriété souhaitable, car il n’est pas tou-
jours possible de connaître leur présence à l’avance dans
le jeu de données. Une mauvaise gestion de ces derniers
peut donc entraîner une perte importante de performances
lors d’une utilisation applicative de ces algorithmes. Cela
peut dans certains cas, comme les voitures autonomes, cau-
ser des dommages matériels ou physiques. Dans un autre
contexte applicatif, une approche résiliente aux biais per-
mettrait de limiter les biais sociétaux des bases de don-
nées, comme l’influence du genre, de la couleur de peau, ou
autres facteurs pouvant dépendre des échantillons récoltés
pour l’apprentissage [23]. Cependant, puisque la présence
ou la nature des biais n’est pas toujours connue à l’avance,
il est souhaitable qu’une méthode limitant l’apprentissage
de biais ne dégrade pas les performances de base lorsqu’il
n’y en a pas.
Dans ce papier, nous proposons la méthode Image Repre-
sentation Avoiding Naive learning (ImRAN) qui modifie
l’apprentissage d’une architecture de réseaux de neurones
convolutionnels. Cette méthode consiste en un changement
automatique et en ligne de la distribution du jeu de don-
nées d’apprentissage, ainsi qu’au bruitage des images afin
de rajouter un peu de variabilité. Un élément sera d’autant
plus vu que sa classification aux époques précédentes a été
faible. En effet, si le modèle tend à apprendre le biais, les
données mal classifiées seront principalement celles non-
biaisées, et multiplier leurs occurrences dans le jeu d’ap-
prentissage aura donc tendance à le débiaiser.
Le papier est divisé comme suit. Tout d’abord, la Sec-
tion 2 recontextualise notre article dans l’état de l’art. En-



suite, nous introduisons notre méthode ImRAN dans la Sec-
tion 3. Dans la Section 4, nous présentons le protocole et
analysons les résultats obtenus. Enfin, nous discutons de
notre approche et des travaux futurs dans la Section 5, puis
concluons dans la Section 6.

2 Travaux antérieurs
La nature des réseaux de neurones à exploiter des raccour-
cis d’apprentissage, tel que les biais, réduit la confiance
qui leur est accordée et peut limiter leur application pra-
tique [8]. La forte présence de biais dans un jeu de données
peut réduire à un niveau proche de l’aléatoire les perfor-
mances des réseaux de neurones dans une tâche de classifi-
cation binaire [16]. Un autre exemple où l’apprentissage de
biais affecte les performances est dans les approches de Vi-
sual Question Answering (VQA), où les modèles ignorent
la modalité visuelle pour reposer principalement sur des
biais statistiques présents dans le langage [2]. Par exemple,
une question comme "Quelle est la couleur de la banane
présente à l’image?" aura comme réponse "Jaune" indé-
pendamment de la couleur de la banane dans l’image. Dans
cet article, nous nous concentrons sur de la classification
d’images, bien que notre méthode puisse éventuellement
être adaptée à d’autres tâches ou modalités.
Parmi les approches existantes visant à réduire l’apprentis-
sage de biais visuels, certaines demandent d’avoir un cer-
tain nombre de connaissances expertes vis-à-vis des biais
présents. Une partie des méthodes repose sur le fait de
connaître au préalable, pour chaque image du jeu d’entraî-
nement, la présence ou non d’un biais [17, 21, 23]. Bien que
ces méthodes puissent présenter des performances impor-
tantes, elles sont difficilement applicables en pratique. En
effet, un jeu de données n’est pas toujours connu à l’avance
comme comportant des biais. De plus, dans l’éventualité où
l’information serait disponible, l’accès à une annotation des
biais reste peu fréquent. D’autres méthodes demandent uni-
quement à connaître le type de biais, ou bien exigent qu’il
soit de bas niveau sémantique [3, 6, 19, 22]. Cependant, le
spectre d’application de ces méthodes reste limité.
Certaines approches de la littérature, qu’elles utilisent ou
non des informations sur le biais, sont basées sur la mo-
dification de la fonction de coût qu’optimise le modèle,
et plus particulièrement sur l’ajout d’un terme de régula-
risation dont l’objectif est d’empêcher la convergence vers
les raccourcis d’apprentissage exploitant les biais présents
dans les données d’apprentissage. C’est par exemple le cas
de EnD [21] qui force les représentations des données par-
tageant un même biais à être différentes (ce qui demande
de connaître le biais), tout en rapprochant entre elles les
représentations des données d’une même classe. Des tra-
vaux se sont concentrés sur l’utilisation de réseaux de neu-
rones naïfs, peu profonds et avec un champ perceptif ré-
duit, afin de converger vers l’apprentissage des biais pré-
sents dans les jeux de données [3, 6, 19, 22], pour ensuite
pénaliser l’apprentissage d’un autre modèle, plus complexe,
afin qu’il évite les biais appris par les modèles naïfs. Ces
approches font généralement l’hypothèse forte, appuyée

par des connaissances expertes, que les biais sont souvent
des caractéristiques de bas niveau tandis que les carac-
téristiques prédictives des classes sont hautement séman-
tiques. C’est notamment le cas lorsque le biais relève de
la présence d’une couleur ou d’une texture. Récemment, la
fonction de coût Generalized Cross Entropy (GCE) [24],
connue comme facilitant l’apprentissage des biais, a été uti-
lisée pour remplacer les architectures naïves et accentuer
l’apprentissage des biais du premier modèle [16, 19]. En-
fin, l’approche RUBi [5] propose une fonction de coût qui
force une rétro-propagation d’un gradient faible pour les
exemples où le modèle a déjà un haut niveau de confiance
dans la bonne réponse après softmax, et à l’inverse, rétro-
propage un gradient fort si le modèle avait un taux de
confiance faible. L’idée sous-jacente est d’attribuer une
plus grande importance aux exemples non-biaisés qu’aux
exemples biaisés, en faisant l’hypothèse qu’un exemple
biaisé donnera un haut taux de confiance pour la bonne
réponse. La méthode que nous présentons dans cet article
se rapproche de RUBi dans l’idée de pondérer plus forte-
ment les exemples non-biaisés pendant l’apprentissage, ce-
pendant, là où RUBi applique cette pondération au niveau
de la rétro-propagation, ImRAN joue sur la distribution du
jeu de données.
Une autre catégorie d’approches a cherché à modifier direc-
tement les images des jeux de données en entrée afin d’en
retirer les biais à l’échelle des pixels [1, 7, 9, 18, 20, 23].
Toutefois, cela présente une limitation majeure due au fait
que retirer certains biais peut être complexe, voire impos-
sible, par exemple lorsque le biais relève de la texture [9]
ou bien du genre des personnes [12]. Pour contourner cette
limitation, [16] propose de manipuler les biais à l’échelle
des représentations et de croiser les biais des exemples
entre eux afin qu’ils ne soient plus prédictifs des différentes
classes.
Pour finir, un autre type d’approches vise à changer direc-
tement la distribution des données afin d’augmenter la pro-
portion de données non-biaisées comparativement aux don-
nées biaisées. Cela a pour effet de réduire la prédictivité des
biais vis-à-vis des classes, supprimant ainsi les biais dans
la nouvelle distribution obtenue. C’est ce que propose la
méthode REPAIR [17], qui attribue à chaque exemple du
jeu de données un poids. Ce poids est ensuite appris via
rétro-propagation dans l’objectif de réduire la probabilité
de tirage des exemples avec des biais. Cependant, REPAIR
demande d’avoir des informations expertes sur les biais.
Dans cet article, nous proposons une méthode qui change
activement la distribution des données d’apprentissage pour
tendre à augmenter la proportion d’exemples non-biaisés.
De plus, notre méthode ne demande pas de connaissance
experte sur les biais présents.

3 Méthode proposée
Nous nous plaçons dans le cadre d’un jeu de données biaisé,
c’est-à-dire qu’il y est plus facile de reconnaître les classes
dans le jeu d’apprentissage via la détection d’un élément
(appelé biais) qui est non pertinent pour la classification sur



FIGURE 1 – Exemples d’images du jeu de données Biased
MNIST dans lequel la couleur de fond est corrélée avec la
classe.

le jeu de test. Le jeu d’apprentissage n’est ainsi pas repré-
sentatif de celui du jeu de test. Pour pallier ce problème,
nous proposons la méthode Image Representation Avoiding
Naive learning (ImRAN) qui cherche à modifier l’échan-
tillonnage des données dans le jeu d’entraînement pour es-
sayer de la rendre plus similaire à celui du jeu de test, sans
pour autant modifier l’algorithme d’apprentissage.
Le principe consiste à surreprésenter les exemples mal clas-
sifiés par le modèle dans le jeu d’apprentissage. En effet,
dans le cas d’un jeu d’apprentissage biaisé, le modèle tend
à apprendre le biais, ce qui implique que les données non-
biaisées finissent généralement mal classifiée. La propor-
tion de ces exemples est alors augmentée dans le jeu de
données, permettant de réduire le biais dans le jeu d’ap-
prentissage et donc le risque pour le modèle de l’apprendre.
L’avantage de cette méthode par rapport à l’existant est
double. Premièrement, nous n’avons pas besoin d’informa-
tion ou d’annotation du biais, la détection se faisant uni-
quement sur la performance de classification de chaque
exemple. Deuxièmement, si le jeu de données n’est pas
biaisé, la remise des exemples mal classifiés ne devrait pas
introduire de biais et donc affecter de façon de manière si-
gnificative les performances issues de l’apprentissage.

Algorithm 1 Boucle principale d’apprentissage.D : jeu de données initial.D′i : jeu de données augmenté au pas de temps i.
n ∈N : nombre d’époques pour l’apprentissage.

1: i← 0
2: D′i ← D
3: while i < n do
4: learn(D′i)
5: D′i ← duplique(D,D′i)
6: i← i + 1
7: end while

La boucle d’apprentissage est décrite dans l’Algorithme 1.
À chaque itération, la fonction duplique(D,D′i−1) gé-
nère un nouveau jeu de données D′i à partir de la base
de données originale D, du nombre d’erreurs pour chaque
duplication, et du nombre total de duplications pour
chaque élément, du jeu de données D′i issu de la fonc-
tion duplique au pas de temps précédent. Plus précisé-
ment, la fonction duplique(D,D′i−1), décrite dans l’Al-
gorithme 2, fonctionne comme suit. Pour chaque entrée d
du jeu de données originel D, on retrouve l’ensemble des
augmentations de d, c’est-à-dire des copies bruitées ou non,
dans le jeu de données D′i−1 généré au pas de temps pré-
cédent i − 1 par duplique. On calcule ensuite le ratio

FIGURE 2 – À gauche une image de Biased MNIST sans
bruit, à droite, avec application d’un bruit gaussien de
moyenne 0 et de déviation standard 1.

d’erreurs de prédiction du réseau sur ces données, arrondi
à l’entier supérieur. Enfin, on génère un nombre d’augmen-
tations entre 1 et K, proportionnel au taux d’erreur de pré-
diction. La fonction augmente prend en paramètre un élé-
ment d, un nombre de copies à générer, et une déviation
standard pour le bruit, et retourne un ensemble de copies,
bruitées par un bruit gaussien de moyenne nulle et de dé-
viation standard σ.

Algorithm 2 Fonction duplique : génère un dataset aug-
menté D′i comportant 1 à K copies de chaque entrée du
dataset originel D au pas de temps i.D : dataset initial.D′i−1 : dataset augmenté au pas de temps i − 1.
K ∈N : nombre maximum de duplications.
C ∈]0; 1] : paramètre de la moyenne glissante exponen-
tielle. (Pas de lissage pour une valeur de 1)

1: function DUPLIQUE(D,D′i−1) :
2: D′i ← ∅
3: for all d ∈ D do
4: A← getAugmentations(d,D′i−1)
5: tauxErreur ← getTauxErreur(A)
6: nbCopies← tauxErreur × (K − 1) + 1
7: nbCopies← ⌈nbCopies ×C + ∣A∣ × (1 −C)⌉
8: D′i ← D′i ∪ augmente(d,nbCopies, σ)
9: end for

10: return D′i
11: end function

Une inertie est appliquée à la variation du nombre de co-
pies entre chaque itération. Ce lissage permet de limiter
les changements trop brusques entre les jeux de données
d’époques consécutives. Le nombre d’occurrence d’une en-
trée est calculé comme la moyenne glissante entre son an-
cienne valeur et la nouvelle, pondéré par C.

4 Expérimentations
4.1 Protocole expérimental
4.1.1 Biased MNIST
Le jeu de données Biased MNIST [4] est composé de 60000
images de taille 28 × 28 biaisées synthétiquement. Les
images sont des chiffres écrits à la main en blanc sur fond
noir issues du jeu de données MNIST [14] ; chaque chiffre
représentant une classe. Pour y ajouter synthétiquement un
biais, chaque classe se voit attribuer une couleur unique,
et le fond noir présent sur les images est remplacé par la
couleur correspondant au label associé à l’image (voire Fi-
gure 1). Les images non-biaisées ont quant à elles un fond



ρ Vanilla LearnedMixin RUBi ReBias ImRAN (avec bruit) ImRAN (sans bruit)
.999 10.4 12.1 13.7 22.7 44.2 ± 2.8 33.5 ± 4.1
.997 33.4 50.2 43.0 64.2 74.8 ± 2.2 69.4 ± 2.3
.995 72.1 78.2 90.4 76.0 82.7 ± 1.3 79.7 ± 1.0
.990 89.1 88.3 93.6 88.1 90.5 ± 0.5 90.5 ± 0.5
.100 99.2 54.6 99.3 99.3 99.0 ± 0.1 99.2 ± 0.1

TABLE 1 – Résultats pour Biased MNIST. Accuracy des différentes méthodes sur le jeu de données Biased MNIST, suivant
le taux d’images biaisées ρ. Chaque valeur est la moyenne de 10 exécutions pour ImRAN et 3 exécutions pour les autres
méthodes. La dernière colonne compare les performances entre ImRAN avec et sans bruit appliqué aux données dupliquées.

d’une couleur aléatoire parmi celle des autres classes. La
proportion des images biaisées peut ainsi être contrôlée
pour créer des variantes du jeu de données. Le fait que le
biais ne modifie que la couleur du fond garantit que les ca-
ractéristiques prédictives des classes (i.e. les chiffres) soient
identiques quel que soit la proportion choisie. De cette fa-
çon, la difficulté de la tâche de classification à partir des
caractéristiques pertinentes reste la même. C’est l’identifi-
cation et l’extraction de ces caractéristiques prédictives qui
devient plus difficile quand la présence de biais augmente.
Par ailleurs, le fait que le biais soit toujours localement au
même endroit sur une large surface (i.e., le fond), et qu’il
soit composé d’une caractéristique de bas niveau (i.e., la
couleur), le rend simple à apprendre et donc dur à éviter.
La proportion des images ayant la couleur de leur fond as-
sociée à leur classe est contrôlée par le paramètre ρ. De
cette façon, pour ρ = 1, toutes les images sont biaisées,
alors qu’avec ρ = 0.1, les images ne sont pas du tout biai-
sées par la couleur, étant donné qu’il y a 10 classes. Pour
nos expérimentations, nous avons utilisé les valeurs 0.999,
0.997, 0.995, 0.990, et 0.1 pour ρ sur le jeu d’entraînement,
valeurs classiquement utilisées dans la littérature [3], à l’ex-
ception de 0.1 qui est utilisé ici pour comparer les méthodes
sur un jeu de données non-biaisé. Par la suite, les modèles
sont évalués sur un jeu de test non-biaisé, mais cependant
modifié synthétiquement avec ρ = 0.1 pour avoir une cou-
leur de fond autre que du noir.
Enfin, la séparation entre images biaisées et non-biaisées
est faite avant de procéder à l’entraînement, et la propor-
tion reste la même au sein de chaque classe, les exemples
non-biaisés restant donc bien les mêmes à travers tout l’en-
traînement.

4.1.2 Hyperparamètres
Afin d’être comparable avec la littérature, dans nos expéri-
mentations, nous avons utilisé la même architecture et les
mêmes hyperparamètres que dans ReBias [3]. Cette mé-
thode de l’état de l’art n’utilise pas directement l’informa-
tion en lien avec les biais présents, ce qui est aussi le cas
pour notre méthode, et a historiquement les meilleures per-
formances sur Biased MNIST avec ρ = 0.999, qui repré-
sente la variante la plus difficile testée dans nos expérimen-
tations.
L’architecture que nous avons utilisée dans nos expérimen-
tations est composée d’un réseau de neurones convolutif
avec 4 couches de convolutions, avec un noyau de taille 7, et
respectivement 16, 32, 64, et 128 canaux. Chacune de ces

couches de convolution est suivie d’une couche de batch
normalization [11], ainsi que d’une fonction d’activation
ReLU. La sortie de la dernière couche de convolution passe
ensuite dans une couche d’average pooling pour produire
un vecteur de dimension 128, avant de finir par une couche
linéaire complètement connectée avec une taille de sortie
à 10. Le classifieur est entraîné pendant 80 époques avec
l’optimiseur Adam [13] et un taux d’apprentissage com-
mençant à 0.001 qui est par la suite divisé par 10 toutes les
20 époques. Les images sont normalisées sur les 3 canaux
avec 0.5 comme moyenne et 0.5 comme déviation standard.
Pour ce qui est des hyperparamètres propres à notre
méthode, nous les avons optimisé indépendamment afin
d’avoir une bonne performance en un temps raisonnable sur
ρ = 0.999. Ainsi, on fixe C le coefficient de la moyenne ex-
ponentiel mouvante à 0.001. Pour le nombre maximum de
duplications K, nous avons choisis d’utiliser une valeur de
1000. Enfin, on fixe σ la déviation standard du bruit ajouté
sur les images à 1 par défaut (e.g., Figure 2).

4.2 Résultats
Les résultats visibles dans la Table 4.1 montrent les per-
formances de ImRAN, ainsi que les résultats de quatre
autres méthodes dont l’approche standard (Vanilla) qui
utilise la même architecture de réseau de neurones mais
n’utilise aucun procédé particulier pour limiter l’effet des
biais. Les méthodes utilisées pour la comparaison sont
LearnedMixin [6], RUBi [5] et ReBias [3].
La première ligne contient les résultats des différentes mé-
thodes pour ρ = 0.999, là où le biais est le plus fortement
présent. Dans ce contexte, l’approche Vanilla n’obtient
que 10.4% d’accuracy ce qui est comparable à un choix
aléatoire parmi les 10 classes possibles. Cependant, on re-
marque que ImRAN performe mieux que n’importe quelle
autre méthode que ce soit avec ou sans bruit, avec res-
pectivement 44.2% et 33.5% d’accuracy. ImRAN double
quasiment les performances de ReBias qui est la deuxième
meilleure méthode pour cette valeur de ρ. Pour ρ = 0.997,
on remarque que ImRAN est toujours la meilleure méthode
avec une marge significative. Cela confirme l’efficacité de
notre méthode dans un contexte où le jeu de données est
fortement biaisé.
On observe que pour toutes les variantes biaisées du jeu de
données (ρ ≠ 0.100) ImRAN performe toujours mieux que
Vanilla, LearnedMixin, et ReBias. De plus, en la
présence de biais, ImRAN, ainsi que RUBi, sont les seules
méthodes à toujours avoir une accuracy supérieure à l’ap-



FIGURE 3 – Évolution de l’accuracy d’un apprentissage
représentatif d’ImRANen fonction du nombre d’exemples
parcourus. La barre à 4 800 000 exemples représente 80
époques pour un jeu de données sans remise.

proche Vanilla. La méthode que nous proposons semble
donc être un mécanisme efficace pour réduire l’apprentis-
sage de biais lorsqu’il y en a. Néanmoins, sur des valeurs
de ρ comme 0.995 et 0.990, qui sont des valeurs relative-
ment faibles, l’approche RUBi obtient les meilleurs résul-
tats, alors que ImRAN se place deuxième. Toutefois, RUBi
a de mauvaises performances sur les valeurs élevées de ρ, or
la proportion de biais représenté par ρ n’étant généralement
pas connu, ImRAN semble être un choix plus versatile.
En parallèle de ces expérimentations, les méthodes ont
été testées sur une version non-biaisée (i.e., ρ = 0.1) de
MNIST, pour cela nous avons utilisé le code source of-
ficiel de ReBias qui propose aussi une implémentation
de RUBi et LearnedMixin. Le but est de s’assurer que
les méthodes ne dégradent pas ou peu les performances de
Vanilla lorsque le jeu de données n’a pas de biais. Les
résultats, à la dernière ligne de la Table 4.1, montrent une
accuracy très proche entre les différentes méthodes, à l’ex-
ception de LearnedMixin qui performe faiblement. Cela
montre que ImRAN ne dégrade quasiment pas les perfor-
mances lorsque appliquée à un jeu de données sans biais.
Nous avons également testé notre modèle sans utilisation
du bruitage des données (i.e., σ = 0), afin de quantifier
l’influence de ce mécanisme dans les résultats. Ces der-
niers sont reportés à droite de la Table 4.1. On constate une
augmentation significative des performances sur les valeurs
élevées de ρ lorsque du bruit est ajouté aux augmentations.
Pour les valeurs plus modérées de ρ, les résultats avec et
sans bruit sont équivalents, voire légèrement meilleurs pour
ρ = 0.1, ne dégradant ainsi pas du tout les performances
comparées à Vanilla. Le bruit peut donc s’avérer légère-
ment pénalisant pour des données non-biaisées, là où il est
fortement utile pour des données très biaisées.
Enfin, le fait d’augmenter la taille du jeu de données
dans ImRAN, fait qu’à nombre d’époque égal, notre mé-
thode apprend sur légèrement plus de données. La Fi-
gure 3 montre l’évolution de l’accuracy en fonction du
nombre d’exemples cumulés pour un apprentissage de
ImRAN avec pour ρ = 0.999. On peut voir que pour un

nombre d’exemples parcouru équivalent à 80 époques pour
les autres approches, ImRAN a déjà convergé vers sa valeur
finale. L’augmentation du nombre d’exemples vus n’a donc
pas d’influence dans la hausse des performances obtenues
par ImRAN.

5 Discussion et travaux futur
Le principal avantage de notre méthode, ImRAN, est qu’elle
ne requiert ni de savoir si un biais est présent ou non, ni
de disposer d’informations sur ce dernier comme son type
(e.g., texture, couleur, forme) pour bien performer comme
montré dans la Section 4.2. Comparée aux autres algo-
rithmes de la littérature, notre méthode se montre très per-
formante, allant jusqu’à presque doubler les performances
de l’état de l’art dans les cas les plus extrêmes, et égaler
les autres approches pour des valeurs de ρ plus faibles, à
l’exception de RUBi. De surcroît, elle semble rester rela-
tivement efficace aussi bien dans ces cas extrêmes que sur
des jeux de données à la proportion de biais plus modérée.
Comme nous l’avons vu mentionné dans l’introduction, sa-
tisfaire ces deux cas est important puisque dans la plupart
des jeux de données réels, il n’est pas possible de connaître
à l’avance la présence de biais, ni dans quelles proportions.
Cependant, ImRAN possède un léger défaut, le temps d’ap-
prentissage est légèrement augmenté (entre 2% à 8% pour
les variantes biaisées du jeu de données). Cela est dû à la du-
plication des éléments, et donc l’augmentation de la taille
du jeu de données.
Ainsi, nos travaux futurs se focaliseront sur plusieurs
points. Tout d’abord, l’expérimentation de notre approche
sur plus de jeux de données afin de valider que la mé-
thode est également efficace dans d’autres cas. En particu-
lier avec des données plus réalistes et des biais plus com-
plexes, comme par exemple avec le jeu de données bFFHQ
qui contient des visages de personnes appartenant aux caté-
gories jeune et âgée sachant que le genre de ces personnes
est fortement corrélé avec leur tranche d’âge. Ensuite, la
mise en place d’un mécanisme estimant la valeur de ρ pour
ajuster la sélection des hyperparamètres, et notamment vis-
à-vis du bruit. Enfin, nous souhaitons explorer des alterna-
tives au bruit gaussien dans l’objectif de trouver une mé-
thode générant une meilleure variance, et particulièrement
au sein des exemples dupliqués.

6 Conclusion
Dans ce papier, nous avons présenté une version prélimi-
naire de la méthode ImRAN, qui modifie activement la dis-
tribution de ses données d’apprentissage pour limiter l’ap-
prentissage de représentations biaisées aussi bien sur des
jeux de données peu ou grandement biaisés. Nous avons
ensuite comparé ses résultats aux approches actuelles, puis
discuté des résultats obtenus, ainsi que des potentielles
pistes d’amélioration.
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Abstract
Deep learning achieved state of the art performances in multiple domains (image recognition, natural
language processing, etc.) One of the next steps is to be able to learn algorithms, as a way to provide
some new forms of generalization for AI systems. This is currently a hard and challenging problem as
it involves algorithmic recurrence, memory management and combination of subtasks, which leads to
trainability problems. We show that even a simple algorithm of multiplication manifests trainability
problems for neural networks. In this article, we present an original training method applied to multi-digit
multiplication learning, called Unrolling Algorithmic Training (UAT). To learn the global algorithm, we
use additional supporting tasks consisting in the successive subtasks composing the global algorithm
(in our case the 1-digit multiplications and the final addition). The global end-to-end and the subtasks
learning are then balanced with an active learning mechanism. This multi-task learning allows to
overcome the problem of trainability encountered when learning directly the global algorithmic task.
Our interpretation is that the network is able to somehow combine the subtasks in order to learn the
global task. Moreover, we show that the global algorithm can be bootstrapped, fine-tuned and is even
resilient without retraining it from scratch when we vary the size of recurrence provided to the network.

Keywords
Algorithmic Machine Learning, Deep Learning, Active learning

1. Introduction

Since the first success of convolutional neural networks on image classification [1], deep learning
methods have pushed forward the state of the art in multiple domains [2]. This flows in tasks
of increasing complexity such as language translation [3] or game playing [4]. One of the next
steps is algorithmic learning, including mathematical expression calculation, as it will open
the way to learn any task that can be expressed in a Turing machine and so to provide greater
autonomy to AI systems.

Algorithmic resolution through neural networks is still an emerging area of research. It is
a challenging problem as it requires to memorize values for a long period of time, to learn
inferences, to combine procedures, to extrapolate to unknown domains, etc. More fundamentally
this needs to fill the gap between symbolic understanding and statistical learning. Neural Turing
Machine [5] was proposed to learn end-to-end algorithmic procedures, such as list sorting. It
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aims to reduce the trainability problem faced by RNN, which are Turing complete [6], by adding
specific mechanisms such as a memory and differentiable ways to access it. However, it also
suffers from the trainability problem itself, i.e. the learning procedure is very sensitive to the
hyperparameters and/or to the initial values and may lack generality, so that the performances
are hard to reproduce and inconstant [7]. These problems are due to the depth of the proposed
architecture [8] but also to the intrinsic complexity of the operations to learn, especially the
long-term dependencies between data or variables to manipulate.

To overcome this trainability problem for an algorithm learning, an alternative way is rather
to decompose this algorithm into its successive steps so that the neural network will compute
and learn iteratively by feeding back its previous output thanks to a handmade recurrence
external to the model. This procedure was applied to a transformer-inspired architecture for
learning some algorithmic procedures [9] and to a MLP for arithmetic operations [10, 9]. In this
paper, we aim to address the trainability problem end-to-end.

We choose to focus and illustrate our proposal on arithmetic operations, especially the multi-
digit multiplication algorithm, which requires multiple one-digit multiplications to add properly
in order to get the final result. This computation involves many operations and variables in the
calculation stream. The complexity for such an operation is also related to the propagation of the
carry e.g. [11]. Thus, learning directly the end-to-end multiplication leads to poor performances
[12]. To tackle this trainability problem, we propose to mix during learning both intermediate
sub-tasks and the global end-to-end multiplication, weighted by an active learning strategy.
This is somehow similar to a multi-task learning, using intermediate computation as relevant
complementary tasks to help the network to learn the global multiplication. However, with
our approach, the network will perform all these tasks without any layer dedicated to each
one. Thus, the network will have to accommodate intermediate operations in order to learn the
global multiplication. Another difference is that this accommodation has to follow the course of
the algorithm, by sequentially connecting tasks and propagating intermediate values through
recurrences. We will show that this training procedure can also be used for pre-training the
network, as a kind of bootstrap, for an efficient fine-tuning relying on the algorithmic target
only (the multiplication).

We present the related work in section 2. We show in this section that language models
such as chatGPT are also highly concerned by algorithmic learning, and suffer from trainability
problems in the same way. This can be observed when the query involves lengthy algorithmic
reasoning, as for arithmetic operations. We detail the use case of multi-digit multiplications in
section 3. The chosen task is the decimal multi-digit multiplication, that is one of the hardest of
the four arithmetic operations as it implies a lot of steps. Then, the model on which our learning
procedure is applied is detailed in section 4 and next the protocol and results are presented in
section 5. We conclude and discuss the perspectives of our work in section 6.

2. State of the art

Over the years, multiple deep learning models have been proposed to solve different kinds of
problems [2]. Convolutional neural networks [1] are able to classify images with performances
sometimes overcoming the ones of humans in specific scenarios. Recurrent neural networks



with dedicated cells such as Long Short Term Memory (LSTM) [13] or Gated Recurrent Units
(GRUs) [14] can deal with temporal data.

Deep learning models are universal function approximators [15] but they are often hard to
train. For instance, in theory even a shallow architecture is sufficient, but in practice, the ability
of deep networks to learn relevant representations from data is much better [16]. Moreover,
RNNs are Turing complete [6], but also face a trainability problem [5]. This limitation tends to
be more pronounced for complex tasks, especially when long-term inferences are needed. As
an example, the error rate of an arithmetic operation is related to the number of carries for a
MLP [11].

Some global strategies were proposed to make network training easier and more effective.
Among them we can mention active learning strategies that consist in finding the right next
example to improve the training progress [17, 18]. A common way to do it is curriculum
learning where tasks are ordered by increasing complexity [19]. Another strategy is multi-task
learning that consists in combining different tasks with similar objectives so that the network
can better generalize and learn the underlying structure of data [20]. Even if our proposal
appears similar to multi-task learning, in our model the tasks are taken on the same network
and are of algorithmic nature.

Neural Turing Machine (NTM) [5] was specifically designed to learn algorithmic tasks. To
limit the problem of long time dependency encountered by LSTM, it mimics some of the
principles of a Turing Machine by introducing a memory and reading/writing mechanisms.
Differentiable Neural Computer [21] improves these accesses to learn more complex tasks as
some NLP problems of inference and reasoning. However, these models are difficult to train as
they seem to be very sensitive to initial weights [7, 22]. The neural GPU architecture [8] shares
similar ideas with NTM but uses convolutional GRU in order to obtain parallel computing. It
is able to learn some algorithmic tasks such as binary addition and multiplication, sequence
reversing, etc. Its main achievement is its ability to generalize the learning to inputs with longer
size in testing, e.g. from 20-digit binary multiplication in learning up to 2000-digit ones in testing,
without any error. However, this model completely fails to learn decimal multiplications [23].
This limitation may be related to carry propagation that is hard to train and appears more
frequently with decimal coding of numbers and can be partially overcome by using curriculum
learning (from binary to quaternary then to decimal) [24].

In [22], multiple algorithms (LSTM with or without attention, transformers) were tested
on various mathematical inference tasks. The main objective was to propose a dataset and to
compare the models, especially on the attentional aspect, so once again detailed performances
are missing. One of the conclusions is that long-term dependencies are the harder to learn which
can be compromising for the addition of multiple operands in specific cases. A transformer
with operands given as variables in the text, achieves good performance except for subtraction
and multiplication [25]. [26] solves mathematical equations, including differential ones, with
Seq2Seq models. The originality lies in the equation being written as the prefix notation of its
tree representation. Another approach proposes to solve arithmetic expressions by composing
single-digit sub-tasks. This hierarchical combination is learned by reinforcement learning with
curriculum [27]. The system manages to generalize to some extent to longer sequences, but the
performance sometimes drops, especially for multiplication. Neural Arithmetic Logic Units [28]
are cells that are able to perform arithmetic operations by introducing specific computation



modules such as log, exp, etc. The aim here is not to learn arithmetic per se but to provide
dedicated cells able to extrapolate learning with computations that extends to unknown domains.
A direct extension dealing also with negative inputs was proposed in [29]. Other derived models
can compute arithmetic operations on real numbers [30]. As we saw, there is a huge variety of
tasks that was explored in the literature, so that comparing different approaches is difficult.

Algorithmic reasoning is also part of the required material for Natural Language Processing.
Thus, large Language Models which have been extensively developed in recent years, need to
learn reasoning to answer appropriately. They can for instance learn to perform numerical
reasoning when learning few examples in a few-shot setting (using a query such as "Q: What is
24 times 18?", taking GPT-J-6B as a base). It was shown that the performance is highly correlated
with the frequency of the terms in the pretraining corpus [31]. When co-occurrence of terms is
low, accuracy is also low. These observations underline the trainability problem and lack of
generalisation to algorithms learning. As a consequence, performance decreases as the size
of operands increases [32]. Moreover, while addition seems to be less impacted by the size
of operands, performance collapses for the multiplication which requires more reasoning or
algorithmic processing. GPT-3 is among the most popular and large language model, using
about 500 billion tokens for learning [33]. ChatGPT which is fine-tuned from GPT-3 also suffers
from the limitations of GPT-based models. These observations suggest that model reasoning
skills for such models are still limited. They highly rely on the size of the corpus available
and statistics. The corpus will never contain all the combinations of terms or parameters of
algorithms we have to learn. A better approach is then to enhance the ability to learn algorithms,
which would allow to make better predictions for unknown configurations.

In this article, we choose to focus on the multi-digit multiplication of two decimal numbers.
This is a simple enough task to not mix different problems but in the meantime it is challenging as
multiple models are unable to learn it properly. This difficulty arises from long-term dependency
due to the carry propagation, but also and more generally from the inherent complexity of
algorithms which involves many operations and variables in the calculation flow.

Moreover, some articles precisely measured performance on this task. [12] proposes a MLP
to learn addition and multiplication either from visual inputs or numerical encoding. In both
cases, the accuracy achieved for multiplication is poor (see section 5).

3. Problem statement

In this article we will consider the decimal multi-digit multiplication. Formally, let 𝑛 be the
(maximum) number of digits of any of the two operands. The multiplication of these two
operands leads to 𝑛 + 1 sub-tasks: 𝑛 single-digit multiplications and 1 final addition of the
partial multiplications (see figure 1 for an example). In our data representation, each operation
will correspond to two lines of computation: one for the carries and one for the result. The
maximum size of any intermediate operation is 𝑁 = 2𝑛 (this maximal length will be obtained
for the final addition with a carry generated at the most significant digit position). All the
operands will be padded with zero digits to match a 𝑁 size, yet there will be exactly 𝑛 + 1
intermediate operations even if the first operand has less than 𝑛 digits.



0023 (1)

×0048 (2)

0012 (3)

0184 (4)

0010 (5)

+0920 (6)

0110 (7)

1104 (8)

Figure 1: Example of the representation of a multiplication of two 2-digit operands. Note that the signs
(+ and ×) and lines are only shown for clarity. Lines (1) and (2) are the two operands. Lines (3) and (4)
(respectively (5) and (6)) represent the carries and result of the 1-digit multiplication of 8 (respectively 4)
by 23. Lines (7) and (8) correspond to the carries and result of the addition of lines (4) and (6), which is
also the final result of the global multiplication of 48 by 23, i.e. 1104.

4. Model

Our model is very similar to networks used for natural language processing. We choose a
recurrent network in order to provide a potential for algorithm unrolling. We use an agnostic
encoding for digits (no binary encoding) in order to prevent any facilities associated with the
selected problem and focus on the algorithmic concerns.

4.1. Data representation

Each digit 𝑑 is represented by a 10-dimension vector with a one-hot encoding, i.e. (𝛿𝑑𝑖)𝑖∈{0,...,9}.
This vector can also have two other values. First, a null vector represents an empty value in the
input to form empty lines (see table 1). Note that it will also be used as the starting character
for the decoder presented below. Second, a one vector corresponds to the end of the line either
when reading or writing the data.

4.2. Model architecture

We use a Seq2Seq model as proposed in [34] (see figure 2). It is composed of an encoder that
will sequentially read the data and recurrently embed it in some hidden states. From it, a
decoder will iteratively produce a sequence from previously outputted characters, beginning
with some predetermined code, until an ending character is written. Both encoder and decoder
are implemented with an LSTM neural network model. During training, we used teacher forcing,
i.e. the next character is not produced from the previous output but from the ground truth. The
current output is then compared to the expected one and the error is backpropagated through
the decoder and the encoder.



A headband allows to read and write successive lines two at a time, digit by digit. The digits,
encoded in one-hot vectors, are then read from right to left, with the <eol> vector at the end
of each line. Similarly, encoded one-hot vectors are written at the outputs. Both the inputs
of the encoder and output of the decoder are 2 × 10 in size. Each task can then be encoded
individually in order to infer the ground truth value (see below).

Encoder

LSTM LSTM LSTM LSTM LSTM

<eol>

LSTM

<begin>

2
4

LSTM

1
8

2
4

LSTM

0
1

1
8

LSTM

0
0

0
1

LSTM

<eol>

0
0

Decoder

Hidden
state

0023
0048

0023
0048

0023
0048

0023
0048

Figure 2: Seq2Seq architecture. The encoder receives successively the two digits (here boxed) of two
lines (here the operands 23 and 48) from right to left. From the encoder embedding, the decoder
recurrently produces the digits, from right to left, of the two next lines (here the carry and result of
the first intermediate multiplication 8× 23). In practice each digit is encoded as a one-hot vector (see
section 4.1).

4.3. Tasks definition

The multiplication algorithm involves sub-tasks that can be submitted to the model (see table
1). The encoder records the formulated task, the decoder outputs the target value. The multipli-
cation algorithm can also be inferred end-to-end in the same way. As formalized in section 3,
the multiplication operation of two n-digit numbers can be decomposed into n single-digit mul-
tiplications and 1 final addition. These n+1 operations and the global end-to-end multiplication
(ie computing the final result and carries from the two operands) compose the n+2 tasks that
the network has to learn. For each task, the encoder reads the corresponding inputs and the
decoder outputs the target value of the corresponding operation as illustrated in table 1. So that
the network can differentiate the task of the first single digit multiplication and the end-to-end
multiplication, which both require only the two operands, in the latter case we add 2n empty
lines (corresponding to unfilled intermediate results lines ).

Task Encoder inputs Decoder output

st1 (1//2) (3//4)
st2 (1//2) (3//4) (5//6)
st3 (1//2) (3//4) (5//6) (7//8)
end-to-end (1//2) (empty line * 4) (7//8)

Table 1
Sub-tasks and end-to-end inferences associated with a 4-digit multiplication (see numbered lines in
figure 1, lines are read and written two at a time ("//"))



4.4. Active learning mechanism

We have so far described several tasks. One can choose to select a bundle of tasks to train
concurrently on the model. In this article, different settings are compared (sub-tasks only, all
the tasks, end-to-end only) for training.

In order to balance the learning effort between the chosen bundle tasks, in all cases we
use the same active learning mechanism as proposed in [10]. It consists in measuring the
error rate, denoted errtask, of each involved task in the training dataset at the end of each
training epoch. For the next epoch, the training dataset is constructed by randomly picking
up examples from a global fixed set of examples so that each task is present with a fraction

𝐹task = 𝜆
errt∑︀

ta∈taskList errta
+ (1− 𝜆)

1

𝑐𝑎𝑟𝑑(taskList)
where 𝜆 is an hyperparameter and taskList

is the list of all tasks involved. The general idea is that the more difficult is a task to learn (first
term), the more it is present in the next epoch with a lower bound depending on the 𝜆 value.

5. Experiments

5.1. Protocol

For training, 100000 unique couples of operands are generated. At each epoch, in order to update
the dataset, we generate and attribute an operation to each of the couple so that the global
distribution between operations matches the one decided by the active learning mechanism
presented in section 4.4.

For the validation and test datasets, we use respectively 1000 and 10000 additional unique
couples of operands. The size of the latent space of the encoder is set to 500 and the active
learning parameter 𝜆 to 0.5. The model is trained using the ADAM optimizer with a learning
rate of 10−4 and a batch size of 10. All the results presented in the next sections are averaged
over 4 runs that learned during 500 epochs.

5.2. Results

test = end-to-end

3× 3
(6 output digits)

restricted 4× 4
(7 output digits)

4× 4
(8 output digits)

Hoshen et al.[12] n.c 37.6 % n.c.
UAT (train = end-to-end only) 4.05% (± 1.72%) 35.87% (± 28.10%) 92.42% (± 3.64%)
UAT (train = sub-tasks and end-to-end) 3.33% (± 1.32%) 4.51% (± 1.21%) 23.34% (± 14.69%)

Table 2
Error rate on the end-to-end multiplication task

In this section, we want to quantify the effect of our proposition to mix the learning of
the sub-tasks with the global end-to-end multiplication. For the purpose of comparison, we



reproduce 4× 4 multiplications, as presented in [12] and [10], with 4-digit inputs chosen so
that the final outputs are restricted to 7-digit numbers.

5.2.1. Sub-tasks and end-to-end

The main purpose of this paper is to tackle the trainability problem encountered for the end-to-
end multiplication task we choose as a first step towards general algorithmic learning. For the so
considered bundle of tasks, sub-tasks and the end-to-end task are trained simultaneously on the
same network following the active learning mechanism. We report in table 2 the performances
for the end-to-end task, and compare with [12] which uses an MLP while we use a Seq2Seq.
We also vary the scale and complexity of problems in order to show the improvements of our
proposal.

Results clearly demonstrate the contribution of sub-tasks for the end-to-end task, lowering
the error rate (from 35.87% to 4.51 % for the 4× 4 restricted multiplications). This suggests that
the model is able to self-organize and take advantage of sub-tasks, which facilitate the training,
validating that our proposed training procedure is the key element of our model. While results
are similar without the support of sub-tasks, i.e. both architectures face trainability problems,
our training approach clearly outperforms [12]. The standard deviation reduction shows that
stability of learning is also improved (with the exception of UAT end-to-end only 8 output digits
that can be excluded from the comparison because of homogeneous but poor efficiency).

We report below other significant improvements for the most difficult problem presented
(the 4× 4 (8 output digits) problem) thanks to fine tuning and additional recurrences.

4x4 (8 output digits) error rates

initial UAT train = sub-tasks + end-to-end 23.34% (± 14.69%)
UAT fine tuning (pre-training = sub-tasks + end-to-end) 6.68% (± 4.31%)
UAT fine tuning (pre-training = sub-tasks) 73.31% (± 11.10%)

Table 3
Influence of fine tuning

free double lines error rates

0 88.67% (± 5.03%)
1 50.19% (± 18.16%)
2 14.39% (± 2.65%)
3 4.44% (± 1.65%)
4 6.68% (± 4.31%)
5 5.53% (± 2.86%)
6 3.84% (± 1.61%)
7 3.83% (± 1.29%)

Table 4
Influence of the recurrence provided to the model when fine tuning (pre-training = sub-tasks + end-to-
end, 4 free double lines)



5.2.2. End-to-end only (fine tuning)

To improve further the performance of our model, we propose to fine tune the end-to-end task
only, during 500 additional epochs, for the hardest 4×4 problem. As we can see on table 3, when
keeping the same recurrence to the network, the fine tuning leads to a significant improvement
of the performance as the error drops from 23.34% to 6.68% for the 8 output digits problem.
This result also shows that once the end-to-end task is bootstrapped (by simultaneous learning
with subroutines), its performance can be further improved. On the contrary, table 3 shows
that not including the end-to-end task in the pre-training bundle leads to trainability problems.
This confirms that the model has to learn simultaneously the intermediate operations and the
end-to-end one to overcome the trainability problem.

5.2.3. Adaptability

In our model, the input of the end-to-end multiplication is composed by some empty lines
to match with the input size of the final addition subroutine (see table 1). These empty lines
provide recurrence steps for the network (encoder). To test the influence of this factor, we ran
multiple fine tuning of our model, setting each with a different number of empty lines (initial
training done with 4 double lines).

We can observe on table 4 that the error rates tend to decrease monotonically with the
number of free recurrences. This may sound logical as increasing the number of recurrences
also increases the computational power of the model.

5.2.4. Active learning dynamic

In section 4.4, we introduced the active learning mechanism that we used to balance the learning
effort between the different type of operations involved. In figure 3 is represented the evolution
of their distribution in the training dataset. We can observe that it is relatively constant after
some time and that the hardest task is the end-to-end one. However, one can notice that the
second hardest task is the addition procedure and not any of the intermediate multiplication,
whose mean error rate is even close to 0. This is surprising as in the literature the addition
appears to be a simpler task to learn. This may be due to the fact that in this case the addition
involves many operands.

5.2.5. Sub-tasks only

We will train the network only on the sub-tasks (ie excluding the end-to-end operation). To
obtain the global result, we will provide the network with the successive intermediate tasks in
the right order (with intermediate lines filled iteratively with previous outputs of the network)
and consider only the output of the final addition as the global result. This method was also
used in [9]. This task is easier to process (as the global operation is decomposed in its successive
steps for its execution). Especially, we aim to estimate the effect of the recurrence available in
our network knowing that [10] uses a network without recurrence.

Table 5 shows that our model reduces the error rate, in this context of execution. This
shows that the recurrent model and data representation we use succeeds in capturing all the



Figure 3: (Top) Evolution of the error rate for each kind of operation (estimated from the training
dataset) used by the active learning. (Bottom) Resulting evolution of the distribution of the various
tasks in the training dataset due to active learning

subroutines.



test = handmade recurrence

restricted 4× 4
(7 output digits)

[10] 2 %
UAT 0.31% (± 0.11%)

Table 5
Error rate comparison between [Nollet et al., 2020] and UAT, when combining sub-tasks only thanks to
an handmade recurrence

6. Conclusion and perspectives

Despite its multiple successes, deep learning architectures still struggle to learn algorithms,
such as arithmetic operations. Algorithmic learning is highly expected as it would allow new
classes of problems to be addressed, such as algorithmic generalisation. This is nevertheless a
hard task, due to the complexity of the learning, especially the long-term dependencies, but
also a trainability problem faced by multiple models. This limitation can as well be observed for
language models whose performances come from the corpus available, and do not apply well to
algorithmic inferences when variability in parameter values is large and usual generalisation do
not apply as observed for arithmetic calculations, which underlines the need for new inference
mechanisms.

In this article, we propose an original way to learn the end-to-end multi-digit multiplication of
two (decimal) operands by guiding the model via the introduction of sub-tasks (or subroutines)
concurrently with the targeted end-to-end task while applying an active learning strategy.
While in the literature the addition appears to be a simple task to learn, multiplication is
especially challenging. We show through analysis of our experiments that the multiplication
can nevertheless be learned end-to-end, we measure improvements directly caused by UAT,
the learning procedure we introduce. Learning the target end-to-end task after the sub-tasks
can improve the results but the best way, by a large margin, is to mix all the tasks together
during training in order to bootstrap the target end-to-end training task. Once bootstrapped,
the targeted task can efficiently be fine-tuned alone. This process can be described as a new
algorithmic transfer, i.e. the tasks complement and support each other to achieve the overall
arithmetic task.

By fine tuning the model on the final end-to-end task we show an interesting additional
property of our learning method. Once the end-to-end multiplication learned, the network can
adapt to a number of recurrence different from the one it was first been trained for. This seems
to indicate that the model is able not only to combine the sub-tasks to resolve the global end-
to-end task but also to autonomously extract and to adapt some kind of high level algorithmic
knowledge from it. Restricting the provided recurrences for the computing and maintaining
accuracy looks like a constrained parallelization of the algorithmic task.

The main motivation for this work is not only the learning of the multiplication, but to provide
a new method for alleviating the hard trainability problem that is observed for algorithms.
This work raises multiple research questions. We want to investigate more precisely how the
transfer from intermediate steps to the global task is achieved by the network. To overcome



the trainability problem encountered by the classical training procedure, we provide all the
intermediate steps to the network during learning. A specific case that we want to study is to
provide only some of the supporting tasks and see if the network can complement the unknown
tasks by itself. For that we will investigate how the transfer from intermediate steps to the
global task is achieved in the network. This understanding may give us a way to control the flow
of interaction between supporting steps and the general dynamic of the algorithmic transfer,
and thus get a more detailed understanding of how an AI could exploit and adapt its algorithmic
knowledge in order to expand its capabilities.

Acknowledgment

This work was performed using HPC resources from GENCI–IDRIS and a GPU donated by
@NVIDIA Corporation. We gratefully acknowledge this support.

References

[1] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with deep convolutional
neural networks, in: Advances in neural information processing systems, 2012, pp. 1097–
1105.

[2] I. Goodfellow, Y. Bengio, A. Courville, Y. Bengio, Deep learning, volume 1, MIT press
Cambridge, 2016.

[3] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser,
I. Polosukhin, Attention is all you need, in: Advances in Neural Information Processing
Systems 30, Curran Associates, Inc., 2017, pp. 5998–6008. URL: http://papers.nips.cc/paper/
7181-attention-is-all-you-need.pdf.

[4] Y. Tian, J. Ma, Q. Gong, S. Sengupta, Z. Chen, J. Pinkerton, L. Zitnick, Elf opengo: An
analysis and open reimplementation of alphazero, in: International conference on machine
learning, PMLR, 2019, pp. 6244–6253.

[5] A. Graves, G. Wayne, I. Danihelka, Neural turing machines, CoRR abs/1410.5401 (2014).
URL: http://arxiv.org/abs/1410.5401. arXiv:1410.5401.

[6] H. Siegelmann, E. Sontag, On the computational power of neural nets, Journal of Computer
and System Sciences 50 (1995) 132 – 150. URL: http://www.sciencedirect.com/science/
article/pii/S0022000085710136. doi:https://doi.org/10.1006/jcss.1995.1013.

[7] M. Collier, J. Beel, Implementing neural turing machines, in: Artificial Neural Networks
and Machine Learning – ICANN 2018, Springer International Publishing, Cham, 2018, pp.
94–104.

[8] Ł. Kaiser, I. Sutskever, Neural gpus learn algorithms, arXiv preprint arXiv:1511.08228
(2015).

[9] Y. Yan, K. Swersky, D. Koutra, P. Ranganathan, M. Hashemi, Neural execution engines:
Learning to execute subroutines, CoRR abs/2006.08084 (2020). URL: https://arxiv.org/abs/
2006.08084. arXiv:2006.08084.

[10] B. Nollet, M. Lefort, F. Armetta, Learning Arithmetic Operations With A Multistep Deep



Learning, in: The International Joint Conference on Neural Networks (IJCNN), Glasgow,
United Kingdom, 2020. URL: https://hal.archives-ouvertes.fr/hal-02929738.

[11] S. Cho, J. Lim, C. Hickey, B.-T. Zhang, Problem difficulty in arithmetic cognition: Humans
and connectionist models (2019).

[12] Y. Hoshen, S. Peleg, Visual learning of arithmetic operations, in: Proceedings of the
Thirtieth AAAI Conference on Artificial Intelligence, AAAI’16, AAAI Press, 2016, pp.
3733–3739. URL: http://dl.acm.org/citation.cfm?id=3016387.3016429.

[13] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural computation 9 (1997)
1735–1780.

[14] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, Y. Ben-
gio, Learning phrase representations using rnn encoder-decoder for statistical machine
translation, 2014. arXiv:1406.1078.

[15] G. Cybenko, Approximation by superpositions of a sigmoidal function, Mathematics of
control, signals and systems 2 (1989) 303–314.

[16] J. Ba, R. Caruana, Do deep nets really need to be deep?, in: Advances in neural information
processing systems, 2014, pp. 2654–2662.

[17] B. Settles, Active Learning Literature Survey, Computer Sciences Technical Report 1648,
University of Wisconsin–Madison, 2009. URL: http://axon.cs.byu.edu/~martinez/classes/
778/Papers/settles.activelearning.pdf.

[18] Y. Burda, H. Edwards, D. Pathak, A. Storkey, T. Darrell, A. A. Efros, Large-scale study of
curiosity-driven learning, arXiv preprint arXiv:1808.04355 (2018).

[19] Y. Bengio, J. Louradour, R. Collobert, J. Weston, Curriculum learning, in: Proceedings of
the 26th annual international conference on machine learning, ACM, 2009, pp. 41–48.

[20] Y. Zhang, Q. Yang, A survey on multi-task learning, arXiv preprint arXiv:1707.08114
(2017).

[21] A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka, A. Grabska-Barwińska, S. G.
Colmenarejo, E. Grefenstette, T. Ramalho, J. Agapiou, et al., Hybrid computing using a
neural network with dynamic external memory, Nature 538 (2016) 471–476.

[22] D. Saxton, E. Grefenstette, F. Hill, P. Kohli, Analysing mathematical reasoning abilities of
neural models, arXiv preprint arXiv:1904.01557 (2019).

[23] K. Freivalds, R. Liepins, Improving the neural gpu architecture for algorithm learning,
arXiv preprint arXiv:1702.08727 (2017).

[24] E. Price, W. Zaremba, I. Sutskever, Extensions and limitations of the neural gpu, arXiv
preprint arXiv:1611.00736 (2016).

[25] A. Wangperawong, Attending to mathematical language with transformers, arXiv preprint
arXiv:1812.02825 (2018).

[26] G. Lample, F. Charton, Deep learning for symbolic mathematics, arXiv preprint
arXiv:1912.01412 (2019).

[27] K. Chen, Y. Dong, X. Qiu, Z. Chen, Neural arithmetic expression calculator, CoRR
abs/1809.08590 (2018). URL: http://arxiv.org/abs/1809.08590. arXiv:1809.08590.

[28] A. Trask, F. Hill, S. E. Reed, J. Rae, C. Dyer, P. Blunsom, Neural arithmetic logic units, in:
Advances in Neural Information Processing Systems 31, Curran Associates, Inc., 2018, pp.
8035–8044. URL: http://papers.nips.cc/paper/8027-neural-arithmetic-logic-units.pdf.

[29] D. Schlör, M. Ring, A. Hotho, inalu: Improved neural arithmetic logic unit, arXiv preprint



arXiv:2003.07629 (2020).
[30] A. Madsen, A. R. Johansen, Neural arithmetic units, in: International Conference on

Learning Representations, 2020. URL: https://openreview.net/forum?id=H1gNOeHKPS.
[31] Y. Razeghi, R. L. Logan IV, M. Gardner, S. Singh, Impact of pretraining term frequencies

on few-shot numerical reasoning, in: Findings of the Association for Computational
Linguistics: EMNLP 2022, Association for Computational Linguistics, Abu Dhabi, United
Arab Emirates, 2022, pp. 840–854. URL: https://aclanthology.org/2022.findings-emnlp.59.

[32] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, et al., Language models are few-shot learners, Advances in
neural information processing systems 33 (2020) 1877–1901.

[33] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang, S. Agarwal,
K. Slama, A. Ray, et al., Training language models to follow instructions with human
feedback, arXiv preprint arXiv:2203.02155 (2022).

[34] I. Sutskever, O. Vinyals, Q. V. Le, Sequence to sequence learning with neu-
ral networks, in: Advances in Neural Information Processing Systems 27,
Curran Associates, Inc., 2014, pp. 3104–3112. URL: http://papers.nips.cc/paper/
5346-sequence-to-sequence-learning-with-neural-networks.pdf.



Novelty detection for unsupervised continual
learning in image sequences

Ruiqi Dai∗§, Mathieu Lefort†§, Frédéric Armetta†§, Mathieu Guillermin‡ and Stefan Duffner∗§
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Abstract—Recent works in the domain of deep learning for
object recognition on common image classification benchmarks
often address the representation learning problem under the
assumption of i.i.d. input data. Although achieving satisfying
results, this assumption seems not realistic when agents have to
learn autonomously. An autonomous agent receives a continual
visual flow of objects which is far from an i.i.d. distribution of
objects. Moreover, agents have to construct their representations
of the world and adapt to unknown environments, without relying
on external sources of information such as labels that would be
provided post-classification and are unavoidable when an over-
segmentation is done. Then, in order to exploit the learned
representation effectively for object recognition, a clear and
meaningful relationship w.r.t. real object categories is required,
which has been largely neglected in existing unsupervised algo-
rithms.

In this paper, we propose a novelty detection method for
continual and unsupervised object recognition, as an extension
for the recent CURL model, which allows to moderate over-
segmentation while preserving accuracy, in order to meet the
requirements for autonomy. We experimentally validated our
approach on two standard image classification benchmarks,
MNIST and Fashion-MNIST, in this unsupervised and continual
learning setting and improve the state of the art in terms of
cluster purity, which is crucial for subsequent object recognition,
since it facilitates clustering when information on ground truth
labels is not available for free.

Index Terms—Continual learning, class-incremental learning,
novelty Detection, object recognition, unsupervised learning.

I. INTRODUCTION

Let’s consider an agent interacting with objects in an
unknown environment, continuously perceiving the objects
through sensors. Being able to adapt to changes in the environ-
ment as well as continuously building a (visual) representation
of objects of new classes while exploiting acquired knowledge
is a crucial property for such a dynamic machine learning
system. Classical deep learning models have shown excellent
performance on image classification in an “off-line” setting,
making the learning scenario comparatively simple in terms of
representation learning since an iterative stochastic optimiza-
tion of the loss function on i.i.d. data can be applied efficiently.
However, when training data is not available all at once but
sequentially, these models face some severe limitations. The
literature on continual learning with neural networks [23],
[24] partially responds to this issue, yet many of them are
supervised (i. e. supervised learning) and in order to effectively

classify new observations of learned objects, extensive class
labels are needed either at training time or after training to
correctly attribute the numerous learned clusters to meaningful
object categories. Even when addressed specifically, the lack
of control over the way objects are introduced to the system
lead to catastrophic forgetting phenomena for objects not seen
for a long time, which is still a limitation to be overcome
and considerably decreases the clustering performance. In fact,
being able to learn new knowledge is an advantage coming
from the plasticity of the network, but at the same time, the
network should be stable enough to maintain the acquired
knowledge, according to the stability-plasticity dilemma. A
further limitation that we could identify, in the case of online
and unsupervised learning, is the tendency to oversegment
categories into many additional clusters [4], which makes the
grouping of clusters inefficient during evaluation. Indeed, even
if the clustering is done following an unsupervised approach,
its evaluation is generally done thanks to ground truth labels
assigned to the generated cluster, but hardly available online,
which makes the methods ineffective when seeking autonomy.
Moreover, we underline that over-segmentation facilitates the
achievement of good accuracy while paradoxically reducing
the autonomy of the system.

In this paper, we address the problem of unsupervised class-
incremental representation learning for object recognition, in
which objects are observed one after the other for a single
period of time without storing any images in the long term.
We will name it as class-incremental learning in the following
sections. We propose a deep neural network model perform-
ing unsupervised class-incremental learning for visual object
recognition, which is an extension of CURL [23], an approach
dedicated to continual learning. Our main contribution lies in
the integration of a new-class estimator based on statistics of
the dynamics of the input sequence leveraging the temporal
continuity of objects introduced and allowing to improve the
detection of new objects. Furthermore, this guides the training
with self-supervision by optimizing an adapted loss function.

The re-identification of learned objects that re-appear at
different times during training could be addressed by using a
classifier for category prediction which may require dedicated
mechanisms. We choose to set aside this problem that can
be addressed on its own as a second step. In this paper, we
focus on the problem of performing an accurate automatic and



unsupervised novelty detection, in order to maintain clustering
as close as possible to the original class labels provided by the
dataset while keeping high accuracy.

II. RELATED WORK

A. Novelty Detection

In the literature, there are two types of tasks considering
novelty detection: one-class classification approaches [19] that
consider novelty detection as a binary classification problem
of known/unknown, which are limited in scalability when
there are numerous categories in the dataset; or multi-class
approaches, also called open-set classification in the litera-
ture [1], [6]. For multi-class novelty detection, the estimation
of the probability for unknown objects is a major challenge
because existing classification approaches are usually based on
a closed-world assumption [1], which estimates the probability
distribution only over known categories, thus does not provide
an appropriate estimation of the uncertainty when it comes
to an unknown object. As a result, the model may wrongly
“activate” an existing category with high confidence [16], this
creates calibration problems in commonly used classification
approaches using the softmax function. Some proposed ap-
proaches re-calibrate softmax, for example, ODIN [15] or G-
OpenMax [5], [6]. Others use ensembles of deep learning
models to predict uncertainty [12]; or treat this issue with a
probabilistic approach based on the likelihood ratio between
the inlier distribution and background knowledge [25], [28].
However, in continual learning, it is much more challenging
to have a precise estimate on the background statistics for this
sort of calibration.

B. Unsupervised object recognition

Different approaches for unsupervised image classification
have been proposed in the literature, contrary to continual
learning, common “off-line” approaches assume that training
data are i.i.d [8], [30]. It is usually necessary to present the
entire dataset several times in random order during training
to ensure convergence and optimal performance. Recent ad-
vances in this domain make use of deep neural networks,
in particular generative models [2], [7], [10] like Variational
Auto-Encoders (VAE) [10], [31] and Generative Adversarial
Networks (GAN) [2], [7]. These models learn to generate
new data with the same statistics as a training set. Another
family of unsupervised object recognition concerns cluster-
ing approaches like k-means [27] or DBSCAN [33]. These
approaches work on the raw data without learning high-
level features as deep neural networks, so applying them to
images requires to use “hand-crafted” local feature extractor.
Others include incremental clustering, for example SOINN [4]
that learns the topology of dataset distribution, which will
be introduced more in detail in section II-C. Common un-
supervised object recognition algorithms have difficulties in
determining the number of categories, as a result, they tend
to mix similar categories, or reversely divide a category into
several subcategories, requiring an extra effort of regrouping
clusters during evaluation.

C. Continual learning

The literature in continual learning concerns two different
scenarios: either solving a sequence of tasks/learning different
datasets in the multi-task scenario, or learning new classes [18]
incrementally in the single-task scenario. The state-of-the-art
methods for continual learning with neural networks [14], [22]
mainly focused on 3 categories of approaches:

• Structural approaches propose approaches that is net-
work structure-related, for example, [26] proposes to
dynamically add new nodes during training that modify
the network structure with respect to the arrival of new
tasks. Other algorithms [17] selectively activate parts of
the network.

• Regularization approaches add a task-related regular-
ization term to the cost function [34] to moderate
changes in neurons involved in previous tasks while still
allowing the network to learns new tasks. For example,
in [11] the effect of catastrophic forgetting is contained
by constraining the update of weights via a regularization
term based on the Fisher information matrix extracted
from previous tasks.

• Experience replay approaches try to alleviate catastrophic
forgetting by regularly “replaying” past training exam-
ples [24], i. e. to train with both images from the current
task/class and stored or generated samples [23]. The
strategy of replay or the choice of examples to be stored
is crucial to the model in terms of memory efficiency.

Most of these approaches are designed for supervised con-
tinual learning, showing strong dependence on accurate task
identification and instance ground truth labels. Concerning
unsupervised continual learning, the Self-Taught Associative
Memory (STAM) [29] is an approach based on hierarchies
of clustered image features that are continually learned by
selecting centroids based on distance metrics. However, as
opposed to neural network-based models, it is not clear to
what extent the learned representation (i. e. hierarchical sets
of image patches) can generalise to unseen object appearances
and can be “re-used” for new object categories. Continual
Unsupervised Representation Learning (CURL) [23] proposed
a model based on VAE learning a Gaussian Mixture for
different categories and alleviates catastrophic forgetting with
generative replay, but it fails to automatically detect the
number of clusters, thus requires to group clusters during
evaluation. Therefore, unsupervised continual learning remains
a challenging open research problem.

Common incremental clustering methods [3], [9] (such
as BIRCH [35], incremental k-means [3]) are potential ap-
proaches to address incremental learning. Other approaches
make use of topology learning [4]. Furao et al. [4], for
example, proposed a model called SOINN, for unsupervised
and online topology learning for non-stationary data, with less
memory consumption and allows for learning without knowing
a priori the number of classes and the distribution of data.
Yet in the domain of image sequences, to work effectively
with more complex visual data streams, these approaches often



require either hand-crafted features or a pre-trained feature
extraction model. Comparatively, approaches based on deep
learning are more suitable due to the powerful representation
capacity for visual data and images. Another limitation of
these approaches is that they tend to create a large number
of clusters and thus “over-segmenting” the original object
classes [4]. This is also the case for some of the unsu-
pervised continual learning approaches mentioned previously,
cf. CURL [23]. This makes subsequent classification more
complex as supervision is required afterwards to assign each
cluster to the corresponding object class.

We propose a model that improves the clustering effective-
ness by exploiting the constraints of the addressed scenario
where objects are presented one after the other in the data
stream. Our model is based on a previously proposed genera-
tive deep neural network [23] that we extended by modifying
and improving the loss function and the new object class
detection process.

III. PROPOSED APPROACH

Regarding the context and the class-incremental setting (cf.
section I) of unsupervised and continual learning of object
representation, we propose a generative neural network model
extending CURL [23] that has been originally designed for the
single-task sequential learning. We will first briefly outline this
base model in section III-A, and then present our contributions
(sections III-B and III-C).

A. Model and learning algorithm

CURL is a model that learns robust representations for
different classes in a continuous manner based on a derivative
of Variational Auto-Encoder (VAE), as shown in Fig. 1.
Concretely, the core of the model is a Variational Auto-
Encoder (VAE) which allows to approximate the distribution
of the latent variable with a Gaussian or component. CURL
extends the VAE by dynamically introducing a new dedicated
component, for each new outlier image. It alleviates the effect
of catastrophic forgetting by continuously generating synthetic
training examples of previously learnt classes.

The model optimizes a modified ELBO (Evidence Lower
Bound) objective (maximizing the likelihood of the data),
with input images x, categorical variable y (the index of the
Gaussian component), latent variable z corresponding to the
internal representation (formed by the GMM):

E(x) =

K∑

n=1

q(y = k|x)
[

log p(x|z̃(k))

−KL((q(z|x, y = k)||p(z|y = k))
]
−KL(q(y|x)||p(y)) ,

(1)

where q(y = k|x) represents the component posterior, com-
puted by a dense layer with softmax, marked as yellow
nodes in Fig. 1, z̃(k) ∼ q(z|x, y = k) is the latent code
sampled from the kth Gaussian component each modelled by a
dense layer of latent encoder head, log p(x|z̃(k)) corresponds
to the component-wise reconstruction loss of input images,
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Fig. 1. The neural architecture of CURL: a Variational Auto-Encoder, X
representing the input images, y the category variable. The encoder maps
the input images to a shared representation for all the categories. Its output
is used as the input of a fully-connected (fc, in yellow) softmax layer to
estimate the object category q(y|x); and updates the parameters µk, σk of the
corresponding component(s) k. Posterior latent variable distribution q(z|x, y)
is approximated with component-specific latent encoders (a GMM). Also, the
prior p(z|y) of latent variable z follows a Gaussian distribution. Then, the
image X̂ is reconstructed from the resampled Ẑ using the decoder. For more
détails, refer to section III.

with reconstructed image X̂ at the output, KL((q(z|x, y =
k)||p(z|y = k)) is a Kullback-Leibler divergence acting as the
component-wise regularizer and enforcing a (Gaussian) em-
bedding and KL(q(y|x)||p(y)) is the categorical regularizer
that ensures that classes are well balanced, approaching the
assumed uniform prior distribution p(z|y) of each category. By
maximizing Eq. 1, the model learns to reconstruct the input
images and at the same time, due to the two regularization
terms, to cluster objects into different classes in the latent
space z by dynamically assigning them to different compo-
nents. Poorly modelled instances whose ELBO is inferior to a
threshold are considered as possible new category candidates
and are thus stored in a temporary buffer which, once filled,
is used to create and initialize a new component in the model.
For more details, refer to [23].

This base model gives promising clustering performance.
However, a major limitation is that the number of clusters
resulting from the model does not allow to stay close to the
original number of classes. In fact, it tends to create excessive
clusters that therefore do not reflect the actual distribution
of object categories. The number of introduced clusters is
expected to stay close to the ground truth distribution, to
facilitate eventually the categorization during evaluation.

Due to the fact that objects are presented sequentially for
a certain amount of time, we consider that continuity is
present in the perception of an autonomous agent evolving in
a continual environment. Thus, the purpose of this study relies
on measuring the additional value allowed by considering such
a hypothesis on the accuracy of the system, training time
and the need to keep under control the number of introduced
components.

We propose two modifications of the original CURL model:
a new category detection process (section III-B) that guides
the learning with self-supervision optimizing a modified loss
function (section III-C).



B. Detection of new classes

We hereby consider the case where the agent perceives
objects class by class in the environment, not in a completely
random way but in a class incremental way as it is mentioned
in section I. In this paper, we choose to focus on novelty
detection and improvements that can be achieved through
the use of the continuity of perceived objects hypothesis,
illustrated by the continuity in classes presented to the system.
This shows the potential for such an approach, which is
generally not exploited in machine learning, to study later the
resilience of the process in a more noisy environment.

In this context, our contribution consists in the automatic
detection of new classes by integrating an adaptive change
detection algorithm, the Page-Hinckley test [21] applied to
ELBO likelihood, a common approach applied in the domain
of concept drift detection to detect abrupt changes in sequential
input data. Formally, let xt ∈ X = {x0, . . . , xT } be the
examples presented in sequence of input training examples.
In accordance with CURL, in our model, poorly modelled
examples, are considered as new category candidates, i. e.
for which the unsupervised ELBO objective E(x) (Eq. 1) is
below a threshold θ, since the unsupervised ELBO objective
E(x) marginalizes over all the existing categories which might
reduce false-positive new category detection that corresponds
to a category learned in the past instead of a new one. In
our model, we apply the Page-Hinckley test that computes
the decision function g(t) for each new arriving example. We
compare ELBO objective E(x) with a threshold θ, noted by
H the Heaviside step function that will equal to 1 if E(x) is
smaller than a threshold θ (implying an outlier). It is smoothed
by a running average noted by pn(t), counting the average
times that the outliers occur. We adopted a variant of the Page-
Hinckley test as defined in [20], with N being the number of
samples the agent has seen since the previous category change,
and υ being the tolerated change for each step:

g(t) = max(0, g(t− 1) + pn(t)− µpn(t)− υ) (2)

µpn(t) =
(N − 1)

N
µpn(t− 1) +

1

N
pn(t) (3)

pn(t) = α ∗ pn(t− 1) + (1− α) ∗H(θ − E(xt)) . (4)

If g(t) is greater than a threshold θn, then a new category is
detected, i. e. a Gaussian is added to the GMM in the VAE
and we reinitialize g(t) to 0. Contrary to CURL that might be
affected by noise in the ELBO loss, under the hypothesis of
temporal continuity, our proposal of detecting new categories
by Eq. 2-Eq. 4. helps to smooth these fluctuations and to obtain
a cleaner supervision signal in the presence of outliers and
alleviate category ”over-segmentation”.

Another modification of CURL in our model is that we
propose for the original CURL model concerns the usage
of the buffer storing recent examples in the incoming data
stream. In our model since the proposed Page-Hinckley test
detects abrupt changes, once a category change is captured, the
buffer is filled with all the following instances in the sequence
until reaching its maximum size n. However, the examples in

the (unfilled) buffer are not used for training immediately to
prevent over-fitting resulting from too few training instances
and to ensure having enough observations for each object
class. Once the buffer is full, the training of the new class
is initiated and the buffer is released.

C. Loss function
We use self-supervision deduced from our new-category

detection algorithm to adapt the loss function that is used
for training the model. We propose to optimize a super-
vised version of the ELBO objective function Esup(x) that
CURL [23] originally used for a supervised baseline compar-
ison of their algorithm. However, we integrate it differently
in our approach. That is, we create an internal supervision
signal ym ∈ N based on the detection of new classes for
training. ym ∈ N that corresponds to the class of the instance
determined by our model. Note that our proposed approach is
still completely unsupervised as no ground truth labels are
used. More specifically, ym is incremented if the presence
of the new, unseen object class is detected and maintained
constant otherwise.

ym =

{
ym + 1, if gt ≥ θn
ym, otherwise.

The objective is defined as:

Esup(x) = log q(y = ym|x) + log p(x|z̃ym , y = ym)

−KL(q(z|x, y = ym)||p(z|y = ym)) , (5)

and we continue to use the same variable definition as in
Eq. 1. where the first term trains a fully connected layer
with softmax to predict the label, the second term minimises
the auto-encoded reconstruction error and the last term again
represents the Kullback-Leibler divergence between the vari-
ational posterior of z and its corresponding Gaussian prior
distribution.

IV. EXPERIMENTS

A. Dataset
To compare our approach to the state of the art, we evaluated

our model on two standard datasets: MNIST (images of
handwritten digits from 0 to 9) [13] and Fashion-MNIST [32]
(Zalando’s images with the classes {T-shirt, trouser, pullover,
dress, coat, sandal, shirt, sneaker, bag, ankle boot}). Both
datasets contain objects from 10 classes, with 60000 images
for training and 10000 images for testing. The size of images
in both datasets is 28 × 28. For each class, there are around
6000 images for training and around 1000 for the test set.
During training we present images in a class by class order,
from 0 to 9. It can be noticed that compared to the MNIST
dataset, the Fashion-MNIST dataset is more complex. In the
Fashion-MNIST dataset, images of different classes can be
more similar (than in MNIST), for example, dresses resemble
coats. The MNIST dataset, however, is a comparatively simple
task for the reason of the well-alignment of digits in each
category. And comparatively, objects in the Fashion-MNIST
dataset are more diverse and more complex.



B. Experimental protocol

Our model is trained in a continuous way, as stated in sec-
tion I, i. e. the data are presented to the model sequentially and
class-by-class. Thus, each class is seen only once, but during
training, each image of the current class can be presented sev-
eral times until a new class is detected. For a fair comparison
with CURL, as detailed in section IV-C, we preserved the
model architecture and setting for generative replay from [23],
meanwhile tuning the other parameters (the threshold for
outliers) with respect to clustering performances, and most
importantly, with regard to the optimum number of categories
detected that approaches the true distribution of categories
and results in the best clustering score of AMI/ARI while
preserving the same performance (i. e. accuracy) in clustering.
We also compared the clustering performance of our proposal
with two incremental clustering algorithms, BIRCH [35] and
incremental k-means [27]. The two mentioned incremental
algorithms do not provide explicit feature extracting methods,
to avoid retraining a neural network, we take the flattened
image as input without extracting features. In addition, we
compare our model with SOINN [4], which was originally
designed for offline clustering, that we adapted in an online
setting that presents objects class by class. As an ablation
study, we have also tested two variants of our model: Ours
w/o P-H test, where we perform a simple running average pn
while comparing ELBO objective with a threshold; Ours w/o
pn, where we apply the Page-Hinckley test directly on ELBO
objective without running average pn smoothing.

C. Hyperparameters

For both datasets, we fixed the neural network architecture
and the learning rate to 10−3 while using the Adam optimizer.
To compare our model with CURL, we use the same neural
network structure as in [23]: a 4-layer MLP as encoder {1200,
600, 300, 150}, and a linear layer with 64 dimensions to
compute the mean and variance for the 32-dimensional latent
variable z. For the decoder a two-layer MLP {500, 500} was
used. The total number of iterations is 100000 counting all the
categories, for each category 10000 iterations, where at each
iteration, the size of batch is 100. We applied the mechanism
of generative replay in the same way as CURL, i. e. images of
previous classes are generated at fixed intervals (every 10000
steps) and stored into a buffer. For the mixture generative
strategy, we continue to use the one of CURL, that is to
create a mixture between real images of the current category
and generated images of other learned components. To this
end, every two steps, a batch of generated images is mixed
with the batch of real images for training. We suppose that
images of a class are visible for at least 100 steps in both
experiments and we use a buffer of size 100 that stores outlier
candidates. For the value of θ, the threshold on the ELBO
loss, we have chosen θ = −150 for all the experiments on
MNIST, resulting in the best accuracy. For Fashion-MNIST,
we set θ = −300 for CURL and our model without Page-
Hinckley test, and θ = −190 for our model. Concerning the
Page-Hinckley test, we set α = 0.85 for both datasets, and

υ = 0.3 and θn = 1.5 for parameters in the experiments with
Page-Hinckley test applied on running average pn; υ = 55.0
and θn = 1500.0 for parameters in the experiments with Page-
Hinckley test applied on negative unsupervised ELBO loss
without pn smoothing.

D. Evaluation measures

To evaluate the quality of the learned clustering, we used
three standard metrics: the clustering accuracy assigning to
each component its most represented class, for labelisation of
each component on the test set in correspondence to classes
and measuring the proportion of correctly classified instances,
the Adjusted Mutual Information (AMI) and the Adjusted
Random Index (ARI) computed between learned clustering
prediction and that of the ground truth. AMI measures the
mutual information between two assignments of partitions.
ARI measures the similarity between two partitions by count-
ing the difference of assignment of pairs of samples between
two partitions. Both metrics are adjusted w. r. t. the chance to
remove the bias induced by the inequality in the number of
clusters in both partitions. All measures are in [0, 1], where
higher values are better.

The clustering accuracy gives a general idea about the
classification performance if labels were available. However,
it does not completely reflect the quality of the clustering.
For example, let’s consider the case where the algorithm
creates a partition that correctly separates different classes, but
creates many excessive clusters from the same class (over-
segmentation). We need at least one ground-truth label per
cluster to regroup them into correct classes, i. e. requiring
supplementary effort on data annotation, which considerably
decreases the level of autonomy of the algorithm in an
unsupervised continual learning setting.

E. Results

The results on MNIST and Fashion-MNIST are shown in
Table I and in Table II respectively. Note that one needs to
choose the trade-off between optimizing the number of clus-
ters, reaching better AMI/ARI scores, while detecting all the
changes which allows high clustering accuracy. For MNIST,
our model achieves a very good trade-off and creates fewer
additional components, i. e. the closest to the real number of
classes (10), and scores the highest in terms of AMI and ARI
compared to CURL and SOINN. For Fashion-MNIST, our
model outperforms CURL on the AMI and ARI measures,
with a slightly inferior accuracy. But as shown in Table II,
CURL creates 120 components exceeding by far the number
of real categories in the dataset. This indicates that the clusters
created by our model follow the true distribution of different
categories and avoid over-segmentation.

In Fig. 2 and Fig. 3, we further show the confusion matrix
between ground truth classes and clusters. We can observe
that in our model, samples of the same class are represented
principally by one cluster. On the contrary, the confusion ma-
trix of CURL shows that CURL tends to separate samples of
the same class into different clusters. We equally illustrate the



Model accuracy AMI ARI nb components

CURL [23] 0.822± 0.0102 0.557± 0.006 0.28± 0.025 93.85± 1.884
CURL supervised [23] 0.855± 0.006 0.749± 0.006 0.6997± 0.012 10± 0
SOINN [4] 0.925± 0.0011 0.39± 0.002 0.018± 0.0008 1204± 39.6
BIRCH [35] 0.3026± 0.002 0.184± 0.014 0.10± 0.0113 10± 0
Increm. k-means [27] 0.338± 0.017 0.2545± 0.013 0.124± 0.013 10± 0

Ours w/o P-H test 0.849± 0.008 0.735± 0.0102 0.685± 0.015 22± 1.07
Ours w/o pn 0.854± 0.005 0.748± 0.00424 0.6996± 0.0085 10.67± 0.47
Ours 0.8537± 0.006 0.746± 0.0096 0.70± 0.013 10± 0

TABLE I
COMPARISON OF OUR METHOD WITH THE STATE OF THE ART ON THE MNIST (AVERAGE OVER 3 RUNS) FOR EACH METRIC MEAN±SD.

Model accuracy AMI ARI nb components

CURL [23] 0.686± 0.013 0.445± 0.004 0.137± 0.002 120± 0.0
CURL supervised [23] 0.654± 0.007 0.57± 0.006 0.4336± 0.006 10± 0
SOINN [4] 0.796± 0.003 0.365± 0.001 0.022± 0.008 755± 16.54
BIRCH [35] 0.328± 0.023 0.286± 0.019 0.124± 0.0139 10± 0
Increm. k-means [27] 0.404± 0.004 0.38± 0.0105 0.237± 0.013 10± 0

Ours w/o P-H test 0.644± 0.009 0.537± 0.015 0.415± 0.022 64.6± 9.5
Ours w/o pn 0.65± 0.0098 0.547± 0.007 0.42± 0.007 25.67± 9.534
Ours 0.6526± 0.0056 0.558± 0.00856 0.442± 0.0117 13.0± 2.19

TABLE II
COMPARISON OF OUR METHOD WITH THE STATE OF THE ART ON FASHION-MNIST (AVERAGE OVER 3 RUNS) FOR EACH METRIC MEAN±SD.
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Fig. 2. Confusion matrices between ground truth and predicted cluster components for CURL on the MNIST test set (above) and the Fashion-MNIST test
set (below) (the darker a cell the more instances it represents).

2D t-SNE projection of the learned embedding vector of our
model and CURL on the MNIST test set in Fig. 4. Different
colors represent different categories according to the ground
truth label. This not only shows that our approach reduces
the phenomenon of over-segmentation in the clustering but
also that the different clusters are more consistent with the
real object classes. In addition, the clusters are overall more
compact and better separated.

Finally, we explicitly studied the relationship between clus-
tering accuracy and the amount of available annotated training
data during evaluation, as shown in Fig. 5. We illustrated the
variation of clustering accuracy, while using a limited number
of examples on the test set to attribute the majority class to
each component. Examples used for labeling were chosen at

random and with a permutation at each evaluation. Compared
to CURL, our model can achieve its maximum accuracy with
a very small amount of labelled examples during evalua-
tion, while CURL requires much more examples. The over-
segmentation clearly increases the requirement of annotated
data during evaluation and may thus limit the classification
performance in practical applications.

To validate the individual contributions of our method, we
compared it to a variant of CURL using our loss (Eq. 5)
supervised by the ground truth and with buffer, called ”CURL
supervised” in Tables I and II. These two experiments
demonstrate the effectiveness of our new-category detection
algorithm, since our model with Page-Hinckley test applied
on pn is capable of reaching a comparable performance in
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Fig. 4. 2D t-SNE projection of one run of CURL (left) and our model (right) on the MNIST test set: different colors represent different ground truth labels.
There are about 93 clusters in CURL representing 10 categories, thus several ”sub-clusters” for each category

terms of new category detection on MNIST with respect to
supervision using the ground truth.

But both our model and CURL are outperformed by SOINN
in terms of clustering accuracy. Only in terms of accuracy,
SOINN performs better, which is not surprising given the
excessive number of components (about 1200 on MNIST
and about 755 nodes on Fashion-MNIST) reducing thus the
probability of impure ground-truth clusters but at the same
time needing much more additional supervision to label these
clusters, as demonstrated in Fig. 5, one could observe that if
we only use part of the test set to label components by their
majority class, a drop in the clustering performance could
be remarked from Fig. 5. The SOINN model converges the
slowest compared to CURL and our model.

The results of BIRCH and incremental k-means are much
below the performance of the other methods on both datasets
showing a clear limitation of such classical incremental clus-
tering algorithms in this context.

V. CONCLUSION AND DISCUSSION

Recent works have focused on creating an efficient neural
network model for continual learning, as it is the case for
CURL which is unsupervised and provides a generative replay
mechanism while making use of a rich multivariate Gaussian
Mixture Model. In this paper, we improved the new category
detection process by moderating the number of components
created for class categorization in order to stay close to the

real distribution. We consider that, for an autonomous agent,
some continuity is present and images of its environment are
not perceived in a totally random order. Thus, we proposed
a completely unsupervised approach based on an extension
of CURL, a VAE-based model [23], that takes advantage
of continuity in the introduced object class and applying a
supervised ELBO loss with self-supervision. To this end, we
proposed to use the statistical Page-Hinckley test to improve
the performance of new-class detection, and pn a running
average for each instance, to smooth fluctuations in the ELBO
loss, leading to a robust class change detector. When compared
to the baseline, our proposal allows to considerably reduce
the introduction of additional clusters while keeping accu-
racy, which improves autonomy. Indeed, over-segmentation of
clusters leads to further supervision for classification which
is not always available online, or can only be done in a
restrained way. This work appears as a first step and shows
how unsupervised learning can take advantage of temporal
continuity of objects perceived to better categorize objects
online. Further work will study how this proposal behaves
under increasing noise in the input sequences.
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Supervision: Bernard Girau, Yann Boniface

2007-2010 Doctorant (bourse ministérielle + ACE) LORIA - Université Nancy 2
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2015-2016 150h eqTD Lyon 1 (Polytech+dép. info) - décharge 42h nouvel arrivant
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Partenaires : LIRIS (SyCoSMA + Imagine)
Description : étude de l’apprentissage auto-supervisé de représentations
avec des aspects variationnels

2017 - 2022 Active Multisensory Perception and LearnIng For InteractivE Robots
(AMPLIFIER)
Financement : région AuRA Pack Ambition Recherche
Montant : 205k=C
Partenaires : LIRIS, CRNL (Lyon), LJK (Grenoble), LPNC (Grenoble),
Gipsa- lab (Grenoble), Hoomano (entreprise)
Description : projet interdisciplinaire (informatique, mathématiques ap-
pliquées, psychophysique) sur l’analyse et la modélisation d’un effet psy-
chophysique et l’apprentissage de modèles neuro-inspirés de fusion de don-
nées

2017 Active Perception For Autonomous Predictive Fusion (APF2)
Financement : PEPS Mission pour l’interdisciplinarité
Montant : 25k=C
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Description : projet interdisciplinaire (informatique, mathématiques ap-
pliquées, psychophysique) pour la mise en place d’un protocole de psy-
chophysique sur la fusion active de données chez l’humain

2016 Étude de la montée en abstraction dans l’apprentissage constructiviste à
base de système multi-agents
Financement : BQR accueil
Montant : 6.7k=C
Description : étude de méthodes multi-agents constructivistes

2015 Rewarded Multimodal Online Deep Learning
Financement : DIGITEO
Montant : allocation post-doctorale 12 mois
Description : fusion prédictible de données multimodales et apprentissage
actif

2015 Séjour de deux semaines de Jean-Charles Quinton à l’ENSTA ParisTech
Financement : LIDEX iCode
Montant : 4k=C

2015 Représentations multimodales distribuées: intérêts fonctionnels et pas-
sage à l’échelle
Financement : LIDEX iCode
Montant : 2.7k=C
Description : étude de la fusion prédictible de données multimodales

Je suis également collaborateur dans les projets suivants:

2023 - en cours Adaptive Co-Construction of Ethics for LifElong tRrustworthy AI
(ACCELER-AI)
Financement : ANR PRC
Montant : 430k=C

Partenaires : LIRIS, LIMOS (Mines Saint-Étienne), CSHRC (UCLy)
Description : projet interdisciplinaire (informatique, philosophie) sur
l’apprentissage de comportements éthiques pour l’IA co-construit avec
l’humain

2021 - en cours Interacting with Pepper : mutual learning of turn-taking practices in
HRI (PepperMint)
Financement : Labex ASLAN
Montant : 230k=C
Partenaires : LIRIS, ICAR (Lyon), GenZ (Université d’Oulu, Fin-
lande)
Description : projet interdisciplinaire (informatique, linguistique) sur
la détection et l’apprentissage d’indices multimodaux pour la prise de
parole lors d’une interaction humain-robot

J’ai également était collaborateur dans les projets suivants:

2018 - 2023 ARTIFIcial ConstructIvist Agents that Learn EThics in Human-Involved
Co-Construction (Ethics.ai)
Financement : région AuRA Pack Ambition Recherche
Montant : 200k=C
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Partenaires : LIRIS, LHC (Saint-Étienne), UCLy, Ubiant (entreprise)
Description : projet interdisciplinaire (informatique, philosophie) sur
l’étude de modèles d’IA éthique (proposition d’un cadre de réflexion et de
modèles d’apprentissage de comportements)

2017 - 2020 BEHAVIORS.AI is an Engine enHancing verbAl and non-Verbal Interac-
tiOns of RobotS based on Artificial Intelligence (Behaviors.ai)
Financement : projet ANR labcom
Montant : 300k=C
Partenaires : LIRIS, Hoomano (entreprise)
Description : étude de la perception empathique d’un comportement dans
le cadre de robots sociaux

2017 - 2019 Reconnaissance et suivi d’objets dans une séquence vidéo par des
paradigmes d’apprentissage constructiviste
Financement : projet transverse LIRIS
Montant : 5k=C
Description : apprentissage auto-supervisé de représentations à partir de
vidéos

2017 - 2019 AnimIA
Financement : projet transverse LIRIS
Montant : 5k=C
Description : apprentissage de représentations pour l’animation de
squelettes

6.10.3.2 Encadrement

J’encadre 2 doctorants:

2022 - en cours Pierre-Elliott Thiboud (Co-encadrement 33% - Michaël Sdika 33% -
Nicolas Duchateau 33%)
Financement : Bourse CIFRE
Titre : Structure et explicabilité des réseaux de neurones pour la
prévention du sepsis

2021 - en cours Alexandre Devillers (Co-encadrement 65% (100% depuis 03/2023) -
Salima Hassas 35%)
Financement : Bourse MESRI
Titre : Structuration des représentations visuelles pour l’amélioration
de la généralisation, en particulier pour l’apprentissage auto-supervisé

J’ai encadré 5 doctorant.e.s:

2020 - 2023 Anaëlle Badier (Co-encadrement 25% - Nathalie Guin 50% - Marie Lefevre
25%)
Financement : Bourse CIFRE
Soutenue le 08/12/2023
Titre : Adaptation continue du processus d’Adaptive Learning, via une
découverte automatique de connaissances et en interaction avec les acteurs
du processus d’apprentissage

2018 - 2022 Simon Forest (Co-encadrement 45% - Salima Hassas 10% - Jean- Charles
Quinton 45%)
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Financement : projet AuRA AMPLIFIER
Soutenue le 16/09/2022
Titre : Fusion multimodale : de la psychophysique à la robotique sociale

2018 - 2022 Ruiqi Dai (Co-encadrement - Stefan Duffner 25% - Frédéric Armetta 50%
- Mathieu Guillermin 25%)
Financement : Bourse MESRI
Soutenue le 14/09/2022
Titre : Apprentissage continu non supervisé pour la reconnaissance
d’objets

2017 - 2019 Alexandre Galdeano (Co-encadrement 33% - Salima Hassas 33% - Amélie
Cordier 33%)
Financement : Bourse CIFRE
Titre : Apprentissage développemental de comportements suggérant
l’empathie pour des robots d’interactions hétérogènes

2016 - 2019 Victor Lequay (Co-encadrement 50% - Salima Hassas 50%)
Financement : Bourse CIFRE
Soutenue le 11/12/2019
Titre : Gestion décentralisée et collaborative à base de multi-agents de
l’énergie dans un microgrid par apprentissage et partage multi-critère de
ressources

J’ai également encadré 23 stages de niveau M2, 6 stages de niveau L2 à M1, 2 post
doctorants (pour une durée cumulée d’environ 6 mois) et 3 ingénieurs. De plus, 3
nouveaux doctorants vont ou devraient commencer prochainement:

07/10/2024 Nadir Bendoukha (Co-encadrement - Stefan Duffner - Jochen Triesch)
Financement : Projet ANR MeSMRise
Titre : Apprentissage profond sensori-moteur multimodal

01/10/2024 Nathan Salazar (Co-encadrement - Emmanuel Dellandrea - Alexandre
Meyer)
Financement : Bourse MESRI
Titre : Vers la construction d’un modèle de fondation des mouvements
humains pour l’analyse et la synthèse des actions et expressions corporelles

2024 Axel Bessy (Co-encadrement - Alexandre Meyer - Hamid Ladjal)
Financement : Bourse CIFRE (dossier déposé)
Titre : Fusion multimodale d’imagerie médicale thoracique pour l’aide au
diagnostic : vers un modèle général

6.10.3.3 Responsabilités

2023 - en cours Responsable du WP2 Arqus living lab (thème IA) de l’alliance eu-
ropéenne Arqus

2023 - en cours Co-responsable de l’équipe SyCoSMA
2023 - en cours Membre du conseil de la FIL
2022 - en cours Co-responsable du thème 3IA de la FIL
2022 - en cours Membre de la commission impact environnementaux du LIRIS
2022 - 2023 Responsable de l’équipe SyCoSMA (durant l’arrêt maladie de Salima

Hassas)
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2020 - en cours Membre de la commission égalité femme-homme du LIRIS

J’ai également été reviewer pour un certain nombre de conférences (ECML-PKDD,
AAAI, ALIFE, etc.), journaux (Transactions on Cognitive and Developmental Systems,
Neural Processing Letters) et agences de financement (ANR, Initiative d’excellence Paris
Seine). J’ai aussi été examinateur pour les thèses de Subhy Albakour (soutenue en 2023
à l’Institut Polytechnique) et de Duc-Canh Nguyen (soutenue en 2018 à l’Université
Grenoble Alpes), et membre d’un comité de sélection de recrutement MCF à l’IUT
Lyon 1 en 2023.

6.10.4 Médiation

2023 Rencontre discussion lycéens/chercheurs dans le cadre de
l’association DÉCLICS

2021-en cours Participation à des week-end de création d’activités de médiation
2019-2021 Membre du CS pour la création de l’exposition « Entrez dans le

monde de la l’IA » de la MMI / IHP (Institut Henri Poincaré) /
Fermat science

2020, 2022, 2024 Présentation vulgarisée sur l’apprentissage profond à l’université ou-
verte, au meet up Data Science et à la bibliothèque Part Dieu

2018 Participation au comité scientifique du forum Pop’ Sciences de
l’Université de Lyon sur l’Intelligence Artificielle

2017 Mentor des savanturiers du numérique – encadrement d’un projet
d’une classe de CM1

2016-en cours Diverses activités (ateliers informatique débranchée, scientific dat-
ing, ciné débat, etc.) dans différents événements/festivals grand
public et scolaire de vulgarisation scientifique (fête de la science,
Mix Teen, Pint of Science, coupe du monde de robotique, ...)

2016 Participation à la formation des enseignants du secondaire à
l’enseignement de l’informatique en lien avec la réforme du brevet

2015-en cours Membre du groupe de travail médiation au LIRIS
2015 Participation à la rédaction d’un article de Planète Robots
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[1] Lucien Tisserand, Brooke Stephenson, Heike Baldauf-Quilliatre, Mathieu Lefort,
and Frédéric Armetta. Unraveling the thread: Understanding and addressing
sequential failures in human-robot interaction anonymous. Frontiers in Robotics
and AI, 11:1359782.

[2] Simon Forest, Jean-Charles Quinton, and Mathieu Lefort. A dynamic neural field
model of multimodal merging: application to the ventriloquist effect. Neural
Computation, 34(8):1701–1726, 2022.

Conferences

[3] Anaëlle Badier, Mathieu Lefort, and Marie Lefevre. Recommendation model for an
after-school e-learning mobile application. In International Conference on
Computer Supported Education (CSEDU), pages 80–87, 2023.

[4] Anaëlle Badier, Mathieu Lefort, and Marie Lefevre. Understanding the usages and
effects of a recommendation system in a non-formal learning context. In
International Conference on Intelligent Tutoring Systems (ITS), pages 54–65.
Springer, 2023.
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improve visual instance discrimination. In International Conference on Learning
Representations (ICLR), 2023.
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learning and neural field dynamics for multimodal fusion. In International Joint
Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2022.
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In International Conference on Tools with Artificial Intelligence (ICTAI), pages
493–500. IEEE, 2021.
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[21] Mathieu Lefort and Alexander Gepperth. Propre: Projection and prediction for
multimodal correlations learning. an application to pedestrians visual data
discrimination. In International Joint Conference on Neural Networks (IJCNN),
pages 2718–2725. IEEE, 2014.

[22] Mathieu Lefort, Thomas Kopinski, and Alexander Gepperth. Multimodal space
representation driven by self-evaluation of predictability. In International
Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob),
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[23] Mathieu Lefort, Yann Boniface, and Bernard Girau. Somma: Cortically inspired
paradigms for multimodal processing. In International Joint Conference on Neural
Networks (IJCNN), pages 1–8. IEEE, 2013.

[24] Mathieu Lefort, Yann Boniface, and Bernard Girau. Coupling bcm and neural
fields for the emergence of self-organization consensus. In From Brains to Systems:
Brain-Inspired Cognitive Systems, pages 41–56. Springer, 2011.

[25] Mathieu Lefort, Yann Boniface, and Bernard Girau. Unlearning in the bcm
learning rule for plastic self-organization in a multi-modal architecture. In
International Conference on Artificial Neural Networks (ICANN), pages 93–100.
Springer, 2011.

[26] Mathieu Lefort, Yann Boniface, and Bernard Girau. Self-organization of neural
maps using a modulated bcm rule within a multimodal architecture. In From
Brains to Systems: Brain-Inspired Cognitive Systems, page 26, 2010.
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dimensional spaces using a sparse approximation of neural fields. In From Brains
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Workshops

[28] Frédéric Armetta, Anthony Baccuet, and Mathieu Lefort. Algorithmic learning, a
next step for ai. An application to arithmetic operations. In International
Workshop on Artificial Intelligence and Cognition (AIC), 2023.
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Salima Hassas, and Mathieu Lefort. Sequential annotations for naturally-occurring
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motivations and representation learning. In NeurIPS 2022 Workshop on
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Automatique (CAp), 2023.

239



Publications

[41] Simon Forest, Jean-Charles Quinton, and Mathieu Lefort. Champ neuronal et
apprentissage profond de topologies pour la fusion multimodale. In Conférence
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Learning. arXiv preprint arXiv:2111.00899, 2021.

[90] Sophie Deneve, Peter E Latham, and Alexandre Pouget. Efficient computation and
cue integration with noisy population codes. Nature neuroscience, 4(8):826–831,
2001.

[91] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition, pages 248–255. Ieee, 2009.
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bibliothèque scientifique payot, 1973. Raison présente, 32(1):121–124, 1974.

[108] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial
networks. Communications of the ACM, 63(11):139–144, 2020.

[109] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. CoRR,
abs/1410.5401, 2014.

[110] Tom George Grigg, Dan Busbridge, Jason Ramapuram, and Russ Webb. Do
Self-Supervised and Supervised Methods Learn Similar Visual Representations?,
December 2021. arXiv:2110.00528 [cs, stat].

245



Bibliography

[111] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H.
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