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La mécano-transduction joue un rôle crucial dans la formation, le maintien et le 

remodelage du réseau vasculaire en fonction de l'évolution des besoins (Campinho et 

al., 2020). L'hémodynamique exerce deux types de forces : les contraintes de 

cisaillement et l'étirement qui sont principalement perçus par les cellules endothéliales 

(CE) et les cellules musculaires lisses vasculaires (VSMC) respectivement (Dessalles et 

al., 2021). Les CE et les VSMC perçoivent les changements de force hémodynamiques et 

s’adaptent pour maintenir le tonus vasculaire et promouvoir un remodelage vasculaire 

physiologique (Green et al., 2017). Malheureusement, les mécanismes qui favorisent 

cette adaptation peuvent également entraîner un remodelage pathologique lorsque 

l’altération des forces hémodynamiques devient chronique, comme dans des conditions 

d'hypertension (Baeyens et al., 2016; Carmeliet & Jain, 2000; Dajnowiec & Langille, 

2007). Les forces hémodynamiques physiologiques maintiennent les cellules vasculaires 

dans un état sain quiescent et anti-inflammatoire. Cependant, les altérations 

hémodynamiques soit générant des contraintes hypo-physiologiques soit supra-

physiologiques entraînent la prolifération des cellules vasculaires, un état pro-

inflammatoire et favorisent leur dédifférenciation et la perméabilité vasculaire. Il a été 

démontré qu'elles sont associées à des pathologies vasculaires telles que l'athérosclérose 

ou encore l’anévrismes de l’aorte ou intracranien (Bennett et al., 2016 ; Deng et al., 2015; 

Marziano et al., 2021 ; Petsophonsakul et al., 2019). 

 

Le cytosquelette cellulaire fournit un soutien structurel à la cellule et subit des 

modifications importantes en fonction du stimulus mécanique que la cellule perçoit. In-

vivo, les régions aortiques qui reçoivent un flux physiologique élevé présentent des CE 

alignées dans le sens du flux, en comparaison, les cellules qui reçoivent un flux 

perturbé/faible sont désorganisées, démontrant ainsi l'effet des contraintes de 

cisaillement sur la réponse morphologique des CE (Hikita et al., 2018). Les cellules 

vasculaires expriment un large éventail de molécules mécano-sensibles allant des 

récepteurs de surface cellulaire aux protéines du cytosquelette. Parmis eux le complexe 

formé par les protéines PECAM1, VEGFRs et VE-cadherine a été fortement décrit comme 

participant à la régulation de nombreuses fonction mécano-sensibles et permet 

notamment d’établir le seuil de sensibilité physiologique d’un territoire vasculaire 

donné (Tzima et al., 2005). L’activation de ces molécules mécano-sensibles entraîne la 
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régulation de l'activité des petites GTPases, des protéines clés impliquées dans le 

remodelage du cytosquelette. Parmi les protéines de la famille Rho-GTPase, RhoA, Rac1 

et Cdc42 ont été largement décrites pour leur rôle dans le remodelage du cytosquelette, 

permettant le maintien de la polarité cellulaire, la migration cellulaire et le control de 

la morphologie cellulaire (Etienne-Manneville & Hall, 2002). Par exemple, in-vitro, il a 

été démontré que les petites GTPases sont cruciales pour l'alignement des CE 

parallèlement à la direction du flux en condition physiologique (Tzima, 2006). Il est 

important de noter que l'altération de l'activité de ces petites GTPases a été associée à 

des maladies cardiovasculaires telles que l'hypertension (Lee et al., 2004). 

 

Comme d'autres GTPases, les Rho-GTPases passent de la forme inactive liée au GDP à 

la forme active liée au GTP. Cette transition entre la forme inactive et la forme active 

est médiée par des facteurs d'échange de guanine (GEF), tandis que les protéines 

d'activation des GTPases (GAP) permettent le retour à la forme inactive liée au GDP. 

Outre les GEF et les GAP, les inhibiteurs de dissociation de guanine (GDI) régulent 

également l'activité des petites Rho-GTPases en les séquestrant dans le cytosol, 

réduisant ainsi leur accessibilité aux GEF à la membrane. En plus de cette régulation, il 

a été démontré que les Rho-GTPases sont régulées aux niveaux épigénétique, post-

transcriptionnel et post-traductionnel (Chen et al., 2011; Hodge & Ridley, 2016; Liu et al., 

2012; Yoon et al., 2007). Ainsi, l’expression et l’activation spécifiques dans certains types 

cellulaires, a des temps précis lors de l’embryogenese et au court du developpment 

déterminent la formation adéquate des vaisseaux sanguins (Kather & Kroll, 2013), leur 

perméabilité (Stockton et al., 2007), la migration des cellules vasculaires (Garrett et al., 

2007), l'angiogenèse (Gambardella et al., 2010) et la transmigration des leucocytes (Van 

Rijssel et al., 2012). 

 

Il existe près de 83 GEFs et 67 GAPs pour 20 Rho-GTPases et seulement 17 GAPs et 20 

GEFs sont fortement exprimés dans l'endothélium (Van Buul et al., 2014 ; Vigil et al., 

2010). Au cours des deux dernières décennies, l'implication de GEF tels que Arhgef1 

(Guilluy et al., 2010), LARG (Wirth et al., 2008), ARHGEF11 (Zholdybayeva et al., 2018), 

ARHGEF12 (Zhang et al., 2015) et ARHGEF17 (Yang et al., 2018b) ont été décrites dans 

des maladies vasculaires pathologiques médiées par les contraintes de cisaillement, 
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telles que l'hypertension et l'anévrisme intracrânien. Bien que ces études soient peu 

nombreuses, elles laissent entrevoir l'association possible et l'implication de certains 

Rho-GEFs dans la pathogenèse des anévrismes intracrâniens. L'identification de ces 

GEFs nous aiderait donc à comprendre les mécanismes physiopathologiques de la 

formation des anévrismes intracrâniens. 

 

Afin d'identifier les GEF mécano-sensibles, une analyse de séquençage ARN (3'SRP) a 

été réalisée à partir CE humaines et de VSMC aortiques primaires de rat soumises 

respectivement à différentes contraintes de cisaillement (physiologiques 16 dynes/cm2 

et pathologiques 3,6 et 36 dynes/cm2) et différents degrés d’étirements cycliques 

(physiologiques 10%-1hz et pathologiques 20%-1hz). De plus, des artères provenant de 

rats spontanément hypertendus (SHR), de rats spontanément hypertendus sujets aux 

accidents vasculaires cérébrales (SHR-SP) et de rats wistar-kyoto (WKY, control normo-

tendu) ont également été utilisés. A partir séquençage ARN sur les VSMCs, les ECs et 

les artères, nous avons pu identifier et valider avec succès trois GEFs : ARHGEF18, 

ARHGEF40 et Net1 ; dont les expressions étaient modulées en fonction des forces 

mécaniques subies par les cellules in-vitro ou in-vivo. Parmi les trois GEFs, nous nous 

sommes concentrés sur ARHGEF18 pour étudier son rôle dans la physiologie des CEs. 

 

ARHGEF18, également connu sous le nom de p114-RhoGEF, est exprimé de manière 

ubiquitaire dans la plupart des types cellulaires et des tissus, avec une forte expression 

dans les reins et le pancréas, et une faible expression dans le cœur et le cerveau chez 

l'homme (Blomquist et al., 2000 ; Niu et al., 2003). Il a été démontré que ARHGEF18 

interagit spécifiquement avec RhoA et active à la fois RhoA et Rac1 mais pas Cdc42 

(Blomquist et al., 2000) (Herder et al., 2013 ; Niu et al., 2003). En tant que GEF spécifique 

de RhoA, il a été démontré qu’ARHGEF18 régule la phosphorylation de la MLC 

dépendante de RhoA-ROCK et la contractilité de l'actomyosine de manière spatio-

temporelle (Terry et al., 2011). Dans les cellules épithéliales, il a été montré 

qu’ARHGEF18 est localisée aux jonctions serrées et joue un rôle dans leur maturation 

mais pas dans l'initiation de leur formation (Terry et al., 2011). Toujours dans les cellules 

épithéliales, ARHGEF18 exerce ses effets en interagissant avec de multiples partenaires 

protéiques tels que la myosine-IIA, ROCKII, Cinguline (Terry et al., 2011), LKB1 (X. Xu 
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et al., 2013) et EPB41L5 (Schell et al., 2017). L'extinction d'ARHGEF18 entraîne une 

discontinuité de la jonction ZO1 et une augmentation de la perméabilité (Terry et al., 

2011) de la couche épithéliale ainsi qu'un réarrangement de la F-actine (Lu et al., 2017). 

L'extinction d'ARHGEF18 entraîne également une réduction de la migration des cellules 

épithéliales (Zaritsky et al., 2017). En plus de sa fonction dans l'activation de RhoA, le 

réarrangement du cytosquelette et la migration, il a été démontré que l'ARHGEF18 joue 

un rôle important dans la contraction des cellules épithéliales (Marivin et al., 2019) et le 

maintien de la polarité apico-basale en favorisant l'activation localisée de la 

signalisation RhoA-ROCK par interaction avec Patj et Ehm2 (Loie et al., 2015; Nakajima 

& Tanoue, 2011). 

 

Bien que la fonction d'ARHGEF18 soit bien caractérisée dans les cellules épithéliales, 

très peu de travaux ont abordé le rôle d'ARHGEF18 dans les CE. Dans les CE, il a été 

montré qu’ARHGEF18 est localisé au niveau des jonctions serrées et qu'il est nécessaire 

pour la tension et l'intégrité de la jonction dans les CE microvasculaires (Tornavaca et 

al., 2015). In-vivo, la délétion complète d'ARHGEF18 entraîne une létalité embryonnaire 

(Beal et al., 2021). Cette létalité survient à cause d’un défaut de formation du placenta. 

Dans ce modèle, une vascularisation réduite et une augmentation d’hémorragies et 

d’œdèmes a été observés, suggérant une formation défectueuse du réseau vasculaire et 

de sa perméabilité en plus du rôle placentale. 

 

D’un point de vue physiopathologique, ARHGEF18 a été identifiée comme surexprimée 

dans le cystadénocarcinome séreux ovarien, le carcinome épidermoïde et dans les 

cellules géantes tumorales polyploïdes induites par le chlorure de cobalt (F. Shi et al., 

2021 ; C. Song et al., 2013 ; Q. Zhao et al., 2021). En outre, des mutations d’Arhgef18 ont 

été retrouvées dans la dégénérescence rétinienne adulte et chez des patients souffrant 

de fente orofaciale (Arno et al., 2017 ; El-Sibai et al., 2021). 

 

Pour comprendre le rôle d'ARHGEF18 dans la réponse mécano-sensibles des CE, nous 

avons réalisé des expériences in vitro sur des CE sauvage, knockdown pour ARHGEF18 

ou surexprimant ARHGEF18 sauvage ou GEF inactif. Nous avons montré que 

l'expression et l'activité d'ARHGEF18 sont modulées par le niveau de contraintes de 
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cisaillement appliqué. Il est intéressant de noter que l'activité d'ARHGEF18 est maximale 

lorsque les CE sont exposées à des contraintes physiologiques, ce qui suggère un rôle 

bénéfique de ce RhoGEF sur la biologie des CE. Cette activité élevée est associée à une 

expression plus faible de la protéine que dans les CE exposées à des contraintes de 

cisaillement pathologiques, suggérant qu’un défaut l'activation d'ARHGEF18 par en 

conditions pathologiques conduit à sa surexpression. Dans les CE, nous avons 

également démontré la spécificité d’ARHGEF18 pour RhoA. En effet, ARHGEF18 est 

incapable de se lier à Rac1 dans les CE, et ce quelques soit le niveau des contraintes de 

cisaillement. L’extinction d’ARHGEF18 dans les CE conduit à une baisse de l’activité 

total de RhoA, évaluée par précipitation d’affinité. Sachant qu’ARHGEF18 n'est pas le 

seul RhoGEF capable d'activer RhoA dans les CE, l'observation d'une réduction de 

l'activité de RhoA dans le lysat cellulaire total aurai pu etre manqué. Cela suggère donc 

qu’ARHEGF18 a un rôle essentiel dans l'activation de RhoA induite par les contraintes 

de cisaillement dans les CE. Dans les cellules épithéliales, ARHGEF18 peut se localiser à 

la fois aux jonctions adhérentes et aux jonctions serrées, en y étant recruté par Ga12 ou 

JAM-A respectivement (Acharya et al., 2018 ; Haas et al., 2020). Le seul autre article 

étudiant ARHGEF18 dans les CE a montré, par immunofluorescence, qu’ARHGEF18 est 

recruté aux jonctions serrées des CE microvasculaires dermiques par ZO-1 et JACOP 

(Tornavaca et al., 2015). Aucune de ces études n'a montré une interaction directe entre 

ARHGEF18 et ces protéines jonctionnelles. Nous n'avons malheureusement pas été en 

mesure de localiser ARHGEF18 in vitro dans les CE en immunofluorescence pour 

confirmer cette observation dans le teritoire artérielle. Cependant nous avons pu mettre 

en évidence que dans la rétine de souris adulte, ARHGEF18 est exprimer principalement 

dans les artères et non dans les veines ou dans le réseau capillaire. Cette observation 

suggère que l’expression d’ARHGEF18 est dépendante soit de la spécification artérielle 

soit des contraintes de cisaillement, les artères étant exposées à des niveaux de 

contraintes de cisaillement plus élevé que les veines ou les capillaires.  De plus, nous 

avons réussi à co-précipiter ARHGEF18 avec ZO-1 et avec Claudine 5, montrant 

l'interaction directe d’ARHGEF18 avec deux protéines constituant les jonctions serrées 

dans les CE. De manière intéressante, dans les CE, ARHGEF18 n'interagit pas avec VE-

Cadhérine, ce qui suggère que ARHGEF18 n'a pas de rôle direct sur l’établissement et la 

fonction des jonctions adhérentes. La surexpression du mutant Y260A-ARHGEF18 
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montre une rétention de ZO-1 dans le cytoplasme dans les cellules mutantes, ce qui 

suggère qu’ARHGEF18 participerait à la localisation de ZO-1 aux jonctions serrées dans 

les CE exposées à des contraintes de cisaillement physiologiques. Dans les cellules 

épithéliales, ARHGEF18 participe à l'adhésion cellulaire et à la migration collective via 

le control de la tension cellule-cellule (Terry et al., 2011) et le control de la 

communication à longue distance (Zaritsky et al., 2017). Dans nos mains, la migration 

et l'adhésion étaient également affectées dans les CE déficientes en ARHGEF18, ce qui 

suggère que des mécanismes similaires pourraient être en jeu. Il reste à déterminer si 

cela passe par des effecteurs similaires à ceux identifiés dans les cellules épithéliales, à 

savoir Patj, LKB1 et Lulu2. 

 

Dans les CE, la tension cellule-cellule participe à la détection des contraintes de 

cisaillement permettant un comportement collectif des cellules. Nous avons pu 

démontrer que des CE déficientes en ARHGEF18 ne s’alignent plus dans le sens du flux 

en réponse à des contraintes de cisaillement physiologiques, réponse caractéristique de 

la santé endothéliale et du comportement collectif.  Ces CE présentaient également une 

diminution de la localisation jonctionnelle de protéines de jonction serrée, ZO-1 et 

Claudin5.  Nous avons pu également établir que ces CE déficientes en ARHGEF18 

présentaient une déstabilisation de l'actine corticale. Il s'agit de la première observation 

montrant qu'un RhoGEF spécifique de RhoA peut contrôler la réponse des CE aux 

contraintes de cisaillement. Il est intéressant de noter que la perte d’ARHGEF18 ne 

perturbe pas seulement la jonction serrée dans des conditions de contraintes de 

cisaillement physiologiques mais altère également la formation et l'organisation des 

points focaux d’adhésions, ce qui suggère une communication croisée entre la jonction 

serrée et l'adhésion focale. En condition statique, nous avions déjà observé que les CE 

déficientes en ARHGEF18 adhéraient moins vite que les CE control. De manière 

intéressante, en observant l’adhésion unicellulaire des CE déficientes en ARHGEF18 sur 

un motif en L, nous avons pu mettre en évidence qu’elle forme des points focaux moins 

long que les CE control. Dans les ECs microvasculaires dermiques, ARHGEF18 participe 

au maintien de la vinculine jonctionnelle (Tornavaca et al., 2015). Comme la vinculine a 

été montrée comme un élément clé pour équilibrer la tension entre les adhésions focales 

et les jonctions d'adhérence (Birukova et al., 2016), il serait intéressant d'évaluer si 
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ARHGEF18 peut participer à la localisation de la vinculine au niveau des adhésions 

focales ou des jonctions serrées et donc favoriser leur stabilité. Pour comprendre plus 

finement comment ARHGEF18 participe à la réponse des CE aux contraintes de 

cisaillement, nous avons évalué l’effet de la délétion d’ARHGEF18 sur plusieurs voies de 

signalisation. Parmi les différentes voies de signalisation testées, seule p38 MAPK 

semble participer à l'effet d'ARHGEF18 puisque le l’éteintes d’ARHGEF18 réduit de 

manière significative le niveau de phosphorylation de p38 MAPK. L'inhibition de 

l'activité de p38 MAPK conduit à une perte d’alignement et une délocalisation de ZO-1 

des jonctions similaires à ce qui est observé avec les CE déficientes en ARHGEF18. 

L'inhibition de p38 MAPK ne conduit cependant pas à la formation de gaps para-

cellulaire contrairement au CE déficientes en ARHGEF18 suggérant que la signalisation 

en aval d'ARHGEF18 ne dépend pas entièrement de p38 MAPK. Les protéines RhoGEF 

ne sont pas seulement porteuses d'une activité GEF, mais présentent généralement des 

rôles supplémentaires en fonction de leur structure. Par exemple, il a été démontré que 

Trio, dans les CE, contribue à la localisation de Rac1 dans la cellule mais pas son activité 

bien qu’elle ait un domaine GEF spécifique pour Rac1 (Kroon et al., 2017). Dans nos 

mains, l'activité d'échange de nucléotides d'ARHGEF18 contribue à la formation des 

jonctions serrées car ZO-1 se délocalise des jonctions dans les CE exprimant le mutant 

GEF-inactif Y260A-ARHGEF18. De même que pour l’inhibition de p38 MAPK, la 

mutation Y260A ne conduit pas à la formation de gaps para-cellulaires, suggérant une 

fois de plus un rôle supplémentaire d'ARHGEF18 indépendant de son activité d'échange 

de nucléotides. Il est intéressant de noter que l'analyse RNA-seq des CE déficientes en 

ARHGEF18 a montré des altérations dans l’expression de nombreux marqueurs de 

l’inflammation. Nous avons donc commencé à investiguer le rôle potentiel d’ARHGEF18 

dans la réponse anti-inflammatoire des CE soumises à des contraintes de cisaillement 

physiologique. Ainsi les CE déficientes pour ARHGEF18 présentent une diminution des 

niveaux de transcription de PTGS2 (codant pour la COX2, impliqué dans la synthèse des 

prostaglandines) en présence de TNFα sous contraintes de cisaillement physiologique 

en comparaison aux cellules contrôles.  

 

En résumé, Nous avons pu mettre en évidence qu’ARHGEF18 est un RhoGEF dont 

l’expression et l’activité est dépendante des niveaux de contraintes de cisaillement. 
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ARHGEF18 participe à l’activation de RhoA et de p38 sous contraintes de cisaillement 

physiologiques et régule l’orientation des CE dans le sens du flux ainsi que la formation 

des jonction serrées via le son interaction directe avec ZO-1 et Claudine5. ARHGEF18 

participe également à la formation des points focaux d’adhésion.  Nous avons également 

montré que l’activité d’échange de nucléotide est essentielle à la formation des jonctions 

serrées sous flux. 

Les travaux futurs viseront à mieux comprendre le rôle spécifique de ARHGEF18 dans la 

physiologie des cellules endothéliales et l'inflammation endothéliale in-vivo dans des 

conditions pathologiques. 
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1. Mechanosignaling in Vascular system 

1.1 History and importance of mechano-biology 

Mechanotransduction plays a crucial part in shaping our life, from the way we hear the 

sound to how our organs are structured (Ingber, 2006). Nearly a century ago, a biologist, 

D’Arcy Thompson in his book “Growth and Form” proposed the relation between 

physics and/or mathematical principles in shaping the intricate structures we observe 

in living organisms (Thompson, 1917). Although, early mechanotransduction mostly 

stood for a physics and mathematical branch, it gained interest at cellular level with the 

early work of Sheetz and Singer showing that the two layers of erythrocyte membranes 

are connected through tension and altering one has an effect on the other (Sheetz & 

Singer, 1974), and with electron microscopy studies of microfilaments exhibiting tension 

during migration (Kolega, 1986). Another pioneering work by Huxley described the 

changes in structural actin and myosin arrangement in striated muscle in response to 

mechanical to tension (A. F. Huxley & Niedergerke, 1954; H. E. Huxley & Hanson, 1954). 

Even through, this early work showed the interaction between the mechanical forces 

and cells at the structural level, new technologies were needed to specifically measure 

the mechanical forces at the protein level. The introduction of technologies such as the 

atomic force microscopy in 1985 (Binnig et al.,), traction force microscopy (Oliver et al., 

1995) and micropatterned substrates (Balaban et al., 2001; Tan et al., 2003) allowed to 

study the mechanical forces at focal adhesions at nanoscale as low as 10-18 N, as well as, 

identifying mechanosensitive proteins such as integrins in-vitro (N. Wang et al., 1993). 

Further advances in such technologies including tension-based FRET sensors improved 

the analysis of mechanical forces with spatio-temporal resolution (Y. Liu et al., 2013; 

Stabley et al., 2012).  

 

During the course of evolution, organisms developed mechanisms to sense mechanical 

cues from the environment through cell surface molecules-to-organelle proteins. Even 

primitive organisms such as bacteria, uses pili or flagellum to sense a mechanical 

stimulus (Persat, 2017), and in eukaryotes, mechanotransduction relays on 

communication between cell surface, cytoskeleton protein and nuclear envelop proteins 

(Janota et al., 2020; Uray & Uray, 2021). Although, mechanotransducers can exert various 
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functions from adherent and structural proteins to ion channels, crosstalk between 

these proteins is essential for proper mechanotransduction and cellular homeostasis. 

For example, it has been shown that mechanical stimulation of focal adhesion complex 

resulted in the activation of mechanosensitive ion channels (Hayakawa, Tatsumi, and 

Sokabe 2008). In another study, Wang et al demonstrated a direct interaction and 

activity modulation of mechanosensitive ion channel Piezo with mechanosensory 

cadherin-β-catenin adhesion complex (J. Wang et al., 2022). 

As the complexity increases with evolution, physical forces are integrated to properly 

establish highly ordered networks. One such network is the vascular network. During 

the animal development, blood vessels grow and form higher order networks to fulfill 

the energy need of the growing tissue/animal (Campinho et al., 2020). Although, 

mechanical forces are explicitly required for cellular function, initial stages of vascular 

network formation (vasculogenesis) mainly rely on the chemical signaling (e.g. 

Hedgehog, VEGF) (Swift & Weinstein, 2009). In the later stages (angiogenesis), blood 

flow is crucial for network development, maintenance and remodeling according to the 

changing needs (Campinho et al., 2020). 

 

1.2 Hemodynamics 

Hemodynamics deals with the mechanical properties related to blood flow. The 

synchronized heart contraction and relaxation cycles result in the flow of blood from 

arteries to capillaries and then to veins. As the heart pumps the blood out to the vascular 

system, it exerts three main physical forces on the on the vascular wall: shear stress, 

pressure and tensile strain (Dessalles et al., 2021) (Figure 1).  
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Figure 1: Schematic representation of blood flow mediated forces on vascular wall 

ECs with in the lumen experience blood flow derived shear stress and pressure whereas VSMCs experience 
mainly the tensile strain. Physiological and pathological (parentheses) values are provided by each force is 
represented.  (Adapted from Dessalles et al., 2021). 

Shear stress (SS) is defined as the tangential frictional force applied on the luminal 

surface of vascular wall as a result of blood velocity and viscosity. It is calculated from 

following the Hagen-Poiseuille equation (Camasão & Mantovani, 2021): 

                                                            t = 4qµ/pr3 

where, t = shear stress; q = flowrate; µ = visc0sity of the fluid; r = radius of the vessel. 

Pressure is defined as the force act on the vascular wall perpendicular to the direction 

of flow and is calculated using the following equation: 

                                                                p = q.r 

where, p = pressure, q = flow rate and r = radius of the vessel. 

 

Tensile strain/stretch can be described as the ratio of the change in deformation to its 

original value. Tensile strain can be calculated from following equation (Camasão & 

Mantovani, 2021): 

                                                            sc = Pri/t 
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where, sc = circumferential strain; P = Pressure applied by fluid; ri = inner radius of the 

vessel; t = wall thickness. 

The SS across the vascular tree varies depending on the type of the vessel (Figure 2). For 

example, SS in arteries ranges between 10 - 50 dynes/cm2, and 1 - 20 dynes/cm2 in veins 

(Papaioannou & Stefanadis, 2005). 

 

                            

Figure 2: Graphical representation of shear stress across vascular tree.  

Arterioles experience high shear stress values and Vena cava experience the lowest. Shear stress values 
measured by Lipowsky and his team in cat mesentery (Adapted from Papaioannou and Stefanadis 2005). 

 

 

1.3 Role of hemodynamics in vascular homeostasis 

The vascular system plays a crucial role in transporting essential nutrients and oxygen 

to all organs thereby supporting its function and viability (Carmeliet & Jain, 2000; 

Chilibeck et al., 1997). As the hemodynamic forces are not constant and vary across the 

vascular network, blood vessels are structurally adapted to cope up with these 

differences (Figure 3). For example, the largest blood vessel near the heart, the aorta, is 

thicker in size and contains more elastic tissue compared to capillaries, exposed to lesser 

hemodynamic forces (Humphrey & Schwartz, 2021; Tu & Chao, 2018). 
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Figure 3: Schematic representation of blood vessel composition at various levels of vascular network. 

Relative depiction of blood vessel diameter, thickness, and, quantity of elastic tissue, smooth muscle cells 
and fibrous tissue in different types of blood vessels (Adapted from Tu and Chao 2018). 

 

In addition to its structural differences, the vascular system has a remarkable ability to 

adapt to the changing needs, for example, temporal and temporary vascular tone 

changes as a result of altered cardiac output during exercise to benefit the physiological 

health (Green et al., 2017). Unfortunately, mechanisms that promote vascular 

adaptation under physiological conditions can also result into pathological remodeling 

in case of chronic alteration in the hemodynamic conditions such as hypertension 

(Dajnowiec & Langille, 2007). Also, pathological altered vascular remodeling has been 

observed to support the new functional demands of pathological conditions such as 

solid cancers (Carmeliet & Jain, 2000). Although, chemical cues plays a crucial role in 

the maintenance of vascular homeostasis, the importance of flow-related mechanical 

forces in vascular homeostasis has been strengthened by the association of altered 

hemodynamics with vascular disorders (Baeyens et al., 2016).   

Cells in the vascular wall, endothelial cells (ECs), vascular smooth muscle cells (VSMCs) 

and fibroblasts sense the alterations in hemodynamic forces and crosstalk between 

them helps regulating the vascular tone. ECs lining the vessel lumen and in direct 

contact with blood flow, experience SS due to the friction between the flowing blood 

and ECs (Davies, 1997; Stalcup et al., 1982). ECs also experience circumferential stretch 

due to the pulsatile nature of blood pressure (Lacolley, 2004). As embedded in the 

vascular extracellular matrix, VSMCs and fibroblasts primarily  experience shear stretch 
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(Haga et al., 2007; X. Li et al., 2022), but also experience SS due to interstitial flow (Z. D. 

Shi et al., 2009; S. Tada & Tarbell, 2002). 

 

1.4 Hemodynamics in vascular cell functions 

Hemodynamics play an important role in vascular cell function. Hemodynamic forces 

under the physiological range keeps vascular cells in a healthy quiescence and anti-

inflammatory state. However, alterations in the hemodynamics outside the 

physiological range results in vascular cell proliferation, pro-inflammatory and 

dedifferentiation state, and has been shown to associate with vascular pathologies such 

as atherosclerosis and aneurysms (Bennett et al., 2016; Deng et al., 2015; Marziano et al., 

2021; Petsophonsakul et al., 2019). So, it is of much imperative that hemodynamic forces 

regulate ECs and VSMCs phenotype. Such alterations in the vascular cell function could 

affect the neighbouring cells thereby promoting the development and progression of 

the vascular diseases. 

 

1.4.1. Effect of hemodynamics on ECs function 

In-vivo, ECs continuously experience shear stress which has profound effect on its 

function. Early work using BAECs showed that ECs proliferation is regulated by SS and 

low SS is pro-proliferative whereas physiological or high SS has anti-proliferative affects 

(Levesque et al., 1990). This is through SS activated p53-p21 signaling pathway, which 

resulted in the inactivation of retinoblastoma protein by hypo-phosphorylation thereby 

G0/G1 cell cycle arrest (Lin et al., 2000) (Figure 4a). Interestingly, pathological SS such 

as turbulent flow increased ECs DNA synthesis as analyzed by radioactive thymidine 

incorporation (P. F. Davies et al., 1986).  

Another important ECs function that is regulated by SS is vascular barrier function 

which is crucial to prevent leakage of flowing blood into the surrounding tissue. 

Alterations in vascular barrier occur under physiological conditions such as wound 

healing or in pathological conditions such as hemorrhages.  

Endothelial barrier function is regulated through cell-cell junction modification. This 

occurs through phosphorylation mediated endocytosis of VE-cadherin (VE-cad), an 

adherent junctional transmembrane protein (Figure 4b). VE-cad has been shown to be 
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phosphorylated at multiple tyrosine and serine residues that could mediate endothelial 

cell-cell junction and vascular permeability (Dejana et al., 2008). Interestingly, VE-cad 

mediated permeability is vessel dependent, as VE-cadTyr658/685 phosphorylation is 

present only in veins, but not in arteries in-vivo (Orsenigo et al., 2012). Bradykinin 

induced permeabilization requires VE-cadTyr658/685 phosphorylation, indicating an 

additional factor such as phosphorylation VE-cadSerr665 (Gavard & Gutkind, 2006) may 

be needed to induce permeability in this territory (Orsenigo et al., 2012). Endothelial 

barrier permeability is tightly regulated and during any injury, ECs promote immune 

cells extravasation to reach the injured area. Using knock-in mouse models, it has been 

shown that the phosphorylation of VE-cadTyr731 has an inhibitory affect and on-site 

leukocytes mediate the dephosphorylation thereby VE-cad internalization and 

permeability (Wessel et al., 2014). Another protein which is involved in vascular cell 

barrier function is vinculin, a cytoskeletal protein acts as a mechanosensory protein that 

senses the actin-based tensions. It has been shown that HUVECs treated with 

endothelial permeability and angiogenic factors such as VEGF, thrombin or TNFa 

resulted in actin-based remodeling of VE-cad adherens junctions and association of 

vinculin/F-actin at these junctions. Although, vinculin was shown not to be important 

for adherens junction formation, it plays important role in protecting from force 

dependent opening of adherens junctions through it interaction with VE-cad 

(Huveneers et al., 2012). This kind of vinculin-based protection of adherens junctions 

may play important role during immune cells extravasation under physiological context. 

Another junctional protein that is involved in the endothelial permeability is Claudin-

5. Claudin 5 expression has been shown to regulated by both tight junction protein JAM-

A (Kakogiannos et al., 2020) as well as adherens junction protein VE-cad (Taddei et al., 

2008). The junctional stabilization of VE-cad clustering resulted in claudin-5 

transcription through inhibition of  FoxO1 by PI3K-AKT signaling mediated 

phosphorylation (Taddei et al., 2008). Interestingly, Claudin-5 knockout mice develops 

normally and showed neither edema nor blood leakage. However, Claudin-5 knockout 

results in vascular leakage of smaller molecules (<800 Daltons) only (Nitta et al., 2003) 

and may explain the normal development of knockout mice.  

 



INTRODUCTION 

 20 

Hemodynamic forces affect vascular permeability. In this context, it has been showed 

using HUVECs and in-vitro experimental setup, SS modulates VE-cadTyr658/685 

phosphorylation and is flow magnitude dependent. Lower SS (3.5 dynes/cm2) increased 

VE-cad phosphorylation, which is reduced to basal level as the SS increases to 50 

dynes/cm2. Such phosphorylation is necessary but not enough for bradykinin induced 

permeability at least in the context of veins (Orsenigo et al., 2012). An interesting 

mechanism through which SS affect vascular permeability involves Notch signaling. In 

human dermal microvascular cells, it has been shown that SS activated Notch 

transmembrane domain forms a novel receptor complex VE-cad/LAR/Trio resulted in 

the activation of Rac1 and mediated junctional assembly and increased barrier function 

(Polacheck et al., 2017) (Figure 4c). In the pathological context, hypertension has been 

shown to downregulate Claudin5 expression and increased permeability in abdominal 

aortic coarctation induced arterial hypertension rat models (Mohammadi & Dehghani, 

2014). In addition, low expression of Claudin5 has been shown to associate with 

disturbed flow and atherosclerosis vulnerable regions (Peter F. Davies et al., 2013). 

 

In pathological context, mechanism that could compromise blood barrier is vascular 

cell death. Physiological SS supports ECs survival by inhibiting apoptosis through 

several mechanisms. Using HUVECs, it has been shown that SS inhibits TNFa mediated 

EC apoptosis through activation of PI3k-AKT pathway and subsequent phosphorylation 

of eNOS and inhibition of ICE-CPP32 (Dimmeler et al., 1997, 1998) (Figure 4d.ii). 

Another mechanism through which SS could potentially inhibit endothelial apoptosis 

is through inhibitor of apoptosis proteins (IAP-1&2). Research showed that, SS under 

the physiological range promotes IAP-1 &2 levels which resulted in the inhibition of 

caspase3 thereby apoptosis (X. Jin et al., 2002; Taba et al., 2003) (Figure 4d.iii).  

SS also influence the inflammatory state of ECS. Pathological SS promotes endothelial 

inflammation through PECAM-1 mediated NFκB activation, which was substantially 

reduced by the knockdown of PECAM-1 in HUVECs (Feaver et al., 2013) (Figure 4d.i). 

The role of SS in endothelial inflammation was supported by the transcriptome study 

of ECs subjected to atheroprotective pulsatile SS and atheroprone oscillatory SS, 

wherein oscillatory SS has been shown to induce inflammatory markers such as VCAM1, 

IL-8, E-selectin (Maurya et al., 2021). 
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As SS regulates multiple functions of ECs, endothelial dysfunctions have been observed 

in the regions in the vascular tree that experience abnormal flow patterns such as aortic 

bifurcations and aortic arch, and are the sites for initiation of vascular diseases such as 
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atherosclerosis and intracranial aneurysm (Baeriswyl et al., 2019; Gimbrone & García-

Cardeña, 2016). 

Figure 4: Effects of shear stress on ECs function 

Physiological and pathological SS regulates ECs proliferation through modulation of retinoblastoma protein (Rb) 
phosphorylation through p53-p21 signaling cascade (a). Physiological and pathological SS regulates VE-cadherin 
phosphorylation mediated internalization thereby permeability (b). Physiological shear stress promotes Notch 
dependent junctional stability through junctional recruitment of LAR and TRIO. TRIO mediates cytoskeletal 
rearrangement through localized Rac activation, which results in junctional stability (c). Pathological SS activates 
PECAM-1 mediated NFkB signaling thereby expression of pro-inflammatory gene ICAM1 and VCAM1 (d.i). 
Physiological shear stress inhibits ECs apoptosis through nitrosylation of Interleukin-1β-converting enzyme-like 
and cysteine protease protein-32 like family (ICE-CPP32) (d.ii) and through production of inhibitor of apoptosis 
proteins (IAP1&2) (d.iii). 
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1.4.2. Effect of hemodynamics on VSMCs function 

VSMCs reside in tunica media experience mainly cyclic stretch (CS) as a result of regular 

heart contractions. 

In both in-vivo and in-vitro conditions, it has been shown that CS modulates VSMC 

proliferation. Subjecting rabbit aortic VSMCs to pathologic CS or altering the CS 

through induction of hypertension via abdominal aorta coarctation resulted in 

increased VSMC proliferation (Birukov et al., 1995; Qi et al., 2016). This increase in 

proliferation could be due to IGF-1R-PI3K signaling pathway, which was sensitive to 

mechanical stimulus. Under physiological CS conditions, IGF-1R signaling pathway 

could inhibit p53 stability thereby VSMC proliferation (J. Cheng & Du, 2007; Xiong et 

al., 2007) (Figure 5a). Another interesting mechanism through which CS regulate VSMC 

proliferation is through nuclear mechano-transductory complex protein Lamin A/C, 

Emerin. Pathological CS decreases LaminA/C and Emerin expressing which resulted in 

the removal of repressor effect on promoters that drives the expression of genes (E2F1, 

E2F3, SP1, STAT1) responsible for proliferation thereby VSMC proliferation (Qi et al., 

2016) (Figure 5a).  

CS also affects VSMC apoptosis through multiple signaling pathways. It has been 

shown that pathological CS promotes clustering of TNF-α receptor-1 (TNFR-1) which 

results int eh activation of TRAF2-JNK and p38 signaling thereby VSMC apoptosis 

(Sotoudeh et al., 2002) (Figure 5b.i). In addition, CS mediated downregulation Notch 

signaling has been shown to promote VSMCs apoptosis in-vitro (Morrow et al., 2005) 

(Figure 5b.iii). Conversely, in-vitro application of pathological strain upregulates miR21 

(J. tao Song et al., 2012) and stretch induced chemokine (J. Zhao et al., 2017) mediated 

mechanisms to protect VSMCs from undergoing apoptosis (Figure 5b.ii). Such 

mechanisms may act as a protective shield in the presence of acute alterations in shear 

stretch, which could fail in chronic shear stretch altered conditions such as 

hypertension. 

Interestingly, CS also influence the inflammatory status of VSMCs. Work done by 

Demicheva et al showed that altering the stretch values either by ligation of ear artery 

in-vivo or subjecting mouse and human VSMCs to pathological CS resulted in increase 

in AP-1 dependent monocyte chemoattractant protein (MCP-1) expression, which 
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attracts circulating monocytes to the site of vascular remodeling (Demicheva et al., 

2008) (Figure 5c). At the site of vascular remodeling, macrophage secreted cytokines 

such as platelet-derived growth factor (PDGF) and IL-6 promotes VSMC phenotype 

switching from contractive to synthetic phenotype (Ashraf & Zen, 2021) (Figure 5c). 

Under the physiological conditions, acute alterations in CS promotes VSMC phenotype 

switching that promote healthy vascular remodeling. However, conditions such as 

hypertension that result in chronic alteration result in pathological VSMC phenotype 

switching that promotes vascular disease formation and progression. 
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Figure 5: Effect of cyclic stretch on VSMCs function 

Physiological and pathological CS modulates VSMC proliferation through IGF-1R mediated PI3k-p53 signaling 
pathway, as well as through regulation of LaminA/C and Emerin protein levels thereby controlling expression of 
proliferative genes at chromatin level (a). Pathological CS promotes VSMC apoptosis though TNFR-1 clustering 
mediated JNK/p38 signaling cascade (b.i) or through Notch3 downregulation, thereby promoting CBF-1/RBP-Jk 
mediated apoptosis (b.iii). Physiological CS inhibits VSMC apoptosis through upregulation of JNK signaling 
dependent anti-apoptotic cytokines CXCL1/CX3CL1 or by upregulation of miR21 that targets programmed cell death 
4 (PDCD4) protein (b.ii). Pathological CS promotes inflammation through AP-1 mediated production of monocyte 
chemoattractant protein-1 (MCP-1). MCP-1 recruited macrophage derived PDGF and IL-6 promotes VSMC 
phenotype switching (c). 
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1.5 Mechanotransducers in vascular system 

Vascular cells express a wide array of mechanosensitive molecules ranging from cell 

surface receptors to cytoskeletal proteins. Graphical representation of known 

mechanosensors are shown in the Figure 6. 
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Figure 6: Schematic representation of mechanosensors in vascular cells. 

Known mechanosensors from cell surface to extracellular matrix expressed in endothelial cells (A), and 
vascular smooth muscle cells (B) are represented. 

Adopted from Fels & Kusche-Vihrog, 2020 & Ye et al., 2014 
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     Glycocalyx is a negatively charged carbohydrate rich layer present on the luminal 

surface of the ECs consisting of glycoproteins and proteoglycans such as heparan, 

chondroitin sulfate and hyaluronic acid (Reitsma et al., 2007). The role of glycocalyx as 

a mechano-transducer came from initial studies wherein degrading the glycocalyx 

components by either heparinase or hyaluronidase, impaired SS mediated NO 

production (Florian et al., 2003; Mochizuki et al., 2003). The association of glycocalyx 

with SS sensing was further supported by the presence and altered glycocalyx thickness 

depending on the SS the ECs experienced in in-vivo and in-vitro conditions (Gouverneur 

et al., 2006; Van Den Berg et al., 2006). Interestingly, this effect of glycocalyx on NO 

production is mediated through activation of TRP channels and increasing the 

cytoplasmic calcium concentration by calcium ionophore (A23187) overcome the 

heparinase and hyaluronidase inhibition of NO synthesis (Dragovich et al., 2016). 

Decrease levels of glycocalyx has been associated with atheroprone regions in mouse 

internal carotid arteries compared to common carotid arteries (Van Den Berg et al., 

2006). In mice models of carotid injury, deletion of syndecan-1, a major component of 

glycocalyx, increased intimal thickening and VSMC activation (Fukai et al., 2009). 

 

     Primary nonmotile cilia mechanosensory organelle are present in most cell types 

(Nauli et al., 2013). Cilia are extended-out microtubular structures that are connected to 

cytoskeletal microtubules (Egorova et al., 2012). In ECs the primary evidence of cilia as 

a mechanosensory to flow came from the study by Carlo Iomini, wherein subjecting ECs 

to laminar SS resulted in cilia disassembly (Iomini et al., 2004). ECs defective in cilia 

through mutations in associated proteins polaris and polysystin-1 results in decreased 

intracellular calcium and NO signaling (Nauli et al., 2008). Genetic deletion of IFT88, 

an essential ciliary protein, resulted in regression of retinal vascular network (A. C. Vion 

et al., 2018). However, in contrast, Dinsmore and Reiter reported no vascular defects in 

IFT88 endothelial-specific knockout adult mice (Dinsmore & Reiter, 2016). This 

contradiction could be due to the role of cilia at different developmental stages of 

vascular network. This was supported by the role of the cilium in EC response to SS and 

developmental morphogenesis. Deletion of IFT88 reduced the sensitivity of ECs to 

BMP9 specifically under low SS, which is perceived by ECs in immature and developing 

blood vessels (A. C. Vion et al., 2018). Although, IFT88 deletion resulted in proper 
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vascular network development with no major complications, it altered the vascular 

susceptibility to vascular diseases such as atherosclerosis. Endothelial-specific knockout 

of IFT88 resulted in significant increase in atherosclerotic lesions in ApoE-/- mice 

models (Dinsmore & Reiter, 2016). 

 

     Caveolae are plasma membrane invaginations formed from glycosphingolipids and 

cholesterol. Caveolae is present in most cell types and are coated with three types of 

proteins Caveolins(Cav)-1,-2&-3 (Echarri & Del Pozo, 2015). Caveolae are enriched with 

tyrosine kinases, GTP-binding proteins and calcium, and acts as sites of signal 

compartmentalization and integration (Anderson, 1998). In addition to act as a 

subcellular compartment, previous studies have supported the role of caveolae as 

mechanotransducers and in mechanosignaling. When ECs (BAEC) were subjected to SS, 

the number of caveolae increased, as well as ERK and AKT phosphorylation (Boyd et al., 

2003; Rizzo et al., 2003). The role of caveolae as a mechanotransducer was further 

strengthened by the inhibition of Cav-1 using neutralizing antibody which blunt the SS-

mediated ERK phosphorylation (Park et al., 2000). Complete genetic deletion of Cav-1 

in-vivo resulted in impaired response of arteries to flow-mediated dilation, which was 

rescued by endothelial specific expression of Cav-1. In addition, the Cav-1-/- mice showed 

reduced flow-mediated eNOS activation which is demonstrated by reduced eNOS 

phosphorylation at position S1176 (J. Yu et al., 2006). In ECs, association of eNOS with 

caveolae has been shown to be important for flow-mediated eNOS activation (Rizzo et 

al., 1998). In VSMC, caveolae are shown to be involved in stretch induced Src, PI3K and 

Akt activation. Inhibiting Cav-1 using RNA interference or disrupting Caveolae using 

beta-cyclodextrin inhibits PI3K and AKT activation. Interestingly, CS increased the 

association of PI3K and Cav-1 complex with integrins (Sedding et al., 2005). In addition, 

Cav-1 could play a role in shear stretch mediated VSMCs proliferation, as Cav-1-/- mice 

showed increase VSMC proliferation upon carotid artery ligation compared to unligated 

artery (J. Yu et al., 2006). These studies show that caveolae acts as a mechanosensors by 

integrating mechanical cues in space and time.  

 

     Ion channels are involved in multiple functions ranging from osmoregulation to 

neuronal signaling. The mechano-sensitivity of  ion channels were first described in bull 
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frog auditory epithelial cells in 1979 (Corey & Hudspeth, 1979). In ECs, the first SS 

sensitive K+ channels were described in BAECs in 1988 (Olesen et al., 1988). In 

vasculature, Piezo1, a mechanically activated non-selective cation channels, is expressed 

in both ECs and VSMCs. Endothelial-specific deletion of piezo1 resulted in embryonic 

death due to defects in vascular remodeling. Knocking down of piezo1 in HUVECs 

resulted in defective EC alignment to SS (Ranade et al., 2014). Moreover, it has been 

shown that in ECs, SS activation of piezo1 resulted in the release of ATP which in turn 

result in the activation of Gq/11 coupled purinergic P2Y2 receptor leading to AKT and 

eNOS activation thereby flow mediated vasodilation (S. P. Wang et al., 2016). In addition 

to its role in SS-mediated vasodilation, role of peizo1 in endothelial inflammation has 

been reported. In HUVECs, knocking down of piezo1 resulted in reduced disturbed flow 

induced NFkB nuclear localization and endothelial inflammation. Moreover, 

endothelial-specific knockout of Piezo1 resulted in reduced atherosclerosis progression 

in Ldlr knockout mice model (Albarrán-Juárez et al., 2018). In VSMCs, Piezo1 plays a 

dispensable role in vascular tone regulation via increasing cytosolic calcium and 

transglutaminase activity (Retailleau et al., 2015). 

Other important ion channels involved in maintaining vascular physiology are transient 

receptor potential (TRPs) channels. Although many TRPs have been identified 

(TRPCs,TRPVs, TRPMs, TRPAs, TRPPs,) only few of them (TRPC1, 5, 6; TRPV1, 2, 4; 

TRPM3, 7; TRPA1; TRPP2) have shown to be mechanosensitive (Inoue et al., 2009). TRPs 

show their effect by modulating Ca+2 influx and Ca+2-calmodulin complex activation. In 

ECs, inhibition of TRPV4 using specific inhibitor ruthenium red, inhibited 

endothelium-derived hyperpolarizing factor (EDHF) mediated flow-induced 

vasodilation. Similar response was observed in-vivo, as knock out of TRPV4 abrogated 

EDHF mediated response to increased luminal flow in mice model (Loot et al., 2008). 

TRPP2 has been shown to localize cilium and acts as a mechanosensor. In ECs, 

knockdown of TRPP2 resulted in dampened flow induced NO production (Aboualaiwi 

et al., 2009). Interestingly, it has been shown that only heteromeric composition of the 

channels (TRPP2, TRPC1 and TRPV4) were able to mediate flow ionic currents (Du et 

al., 2014). In VSMCs, TRP channel mediated Ca+2 influx results in activation of myosin 

light chain kinase and smooth muscle cell contraction (Earley & Brayden, 2015). 
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     Integrins are heterodimeric transmembrane adhesion molecules composed of one 

α- and one β- subunits. In mammals, there are 19 α and 8 β subunits, in combination 

giving rise to 25 different receptors (Humphries, 2000). In the cytoplasmic side, integrin 

interacts with focal adhesion proteins thereby connecting the extracellular environment 

to cell through cytoskeletal components (Burridge, 2017; Schumacher et al., 2021).The 

role of integrins as mechanotransducers came from the early work by Ning Wang, where 

they showed that application of mechanical forces using anti-integrin β1 receptor 

antibody coated magnetic beads to capillary ECs resulted in cytoskeletal stiffening and 

increased focal adhesion formations, which was disrupted in the presence of RGD 

peptide (N. Wang et al., 1993). In addition, mechanical stimulation of NIH3T3 cells by 

stretching resulted in the conformational change of integrins αVβ3 from low to high 

affinity. This conformational change is mediated through PI3K activity as inhibition of 

PI3K activity using specific inhibitors LY-294002 reduced conformational activation 

(Katsumi et al., 2005; Tzima et al., 2005). Integrins also play a role in SS induced ECs 

cell alignment by regulating the activity of RhoA. In BAECs, SS activates RhoA and this 

activation was shown to be inhibited by pretreatment of fibronectin surface with anti-

fibronectin neutralizing antibody interferes fibronectin-integrin interactions (Tzima et 

al., 2001). In-vitro experiments using HAECs showed that atherogenic turbulent flow-

mediated integrin activation resulted in increased NFkB signaling and ICAM1 and 

VCAM1 expression. In addition, inhibition of αV-integrin activation using a peptide 

inhibitor reduced the atherosclerotic burden in ApoE-/- mice model (Jie Chen et al., 

2015). However, β1 integrin-mediated endothelial flow-sensing requires functional 

caveolae. As pretreatment of BAECs with filipin that binds to cholesterol and disrupts 

β1 caveolae structure, inhibited integrin mediated SS induced eNOS and AKT 

phosphorylation (B. Yang & Rizzo, 2013). Thus, cooperation between mechanosensors 

play an important role in efficient mechano-transduction process. Interestingly, 

integrins do also signals to the cell about the directionality of the force. Recent work by 

Ioannis Xanthis in HUVECs showed that β1 integrin is responsible for flow direction 

sensing of ECs and the resulting cytoskeletal rearrangement and transcription (Xanthis 

et al., 2019).  
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     GPCRs and G-proteins plays important role in vascular cell physiology. One of such 

GPCR is angiotensin-II type-1 receptor (AT1R).  The role of AT1R as a mechanosensor 

came from early studies using HEK293 overexpression and rat cardiomyocytes models. 

Subjecting either AT1R overexpressing HEK293 cells or primary rat cardiomyocytes to 

CS significantly increased ERK phosphorylation and is mediated through activation of 

Gαq/11, which was inhibited by candesartan, an angiotensin receptor blocker (Zou et al., 

2004). Similar observations were made in rat arterial smooth muscle cells, wherein 

subjecting arterial smooth muscle cells to 20% stretch resulted in increased ERK 

phosphorylation as well as myocardin, a smooth muscle specific transcription factor, 

which was inhibited by Losartan, an angiotensin receptor blocker (Chiu et al., 2013). 

Identified through RNAi screen in the breast cancer cell line MDA-MB-231, GPR68 was 

shown to be SS sensitive. In-vivo GPR68 is expressed in ECs of small diameter arteries 

and endothelial specific GPR68-/- mice exhibited defective flow-mediated dilation. It 

acts upstream of eNOS, however the exact mechanism is still not known (J. Xu et al., 

2018). G-proteins such as Gαq/11 have been shown to be mechanosensitive (Dela Paz et 

al., 2017). Gαq/11 acts as G-protein for multiple GPCRs such as bradykinin receptor B2 in 

BAECs (Chachisvilis et al., 2006) and sphingosine-1-phosphate receptor3 (S1P3) in 

HCAECs (Dela Paz et al., 2017). In ECs, the mechanosensory role of Gαq/11 was further 

supported by its association with PECAM1, one of the molecules of endothelial 

mechanosensory complex (Dela Paz et al., 2014; Otte et al., 2009; Yeh et al., 2008). 

 

     PECAM-1 is a transmembrane homophilic adhesion protein interacts with β- and γ- 

catenins and may interact with cytoskeleton (Ilan et al., 2000). PECAM-1 is expressed in 

mesodermal cells including ECs. Using BAECs, studies have shown that shear stress as 

well as osmotic shock induces PECAM-1 phosphorylation and subsequent ERK1/2 

activation (Harada et al., 1995; Osawa et al., 2002). Interestingly, tweezing PECAM-1 

using specific antibody coated magnetic beads resulted in PECAM-1 and ERK1/2 

phosphorylation (Osawa et al., 2002). Mounting experimental evidences show that 

PECAM-1 indeed acts as a mechanosensory in EC and is a crucial component of the 

endothelial mechanosensing complex VE-cad/PECAM1/VEGFRs (Shay-Salit et al., 2002; 

Tzima et al., 2005). 
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     Tyrosine kinase receptors are single transmembrane, multidomain proteins that 

undergoes autophosphorylation upon activation through ligand binding, which results 

in the concomitant activation of downstream signal transducers such as MAP kinases. 

The tyrosine kinase receptor to angiopoietin-1 and -2 (Ang-1 and Ang-2) Tie2 plays 

important role in cardiac development and angiogenesis during embryogenesis 

(Jeansson et al., 2011; Maisonpierre et al., 1997; Suri et al., 1996). In ECs, the 

mechanosensitive aspect of Tie2 was described using HUVECs. It has been shown that 

subjecting HUVECs to laminar SS resulted in ligand independent Tie2 phosphorylation 

which was directly proportional to the SS applied (Jong Lee & Young Koh, 2003). Other 

tyrosine kinase receptors that plays prominent role in vascular physiology is the VEGFR 

family (Simons et al., 2016). Using BAECs, Jin et al, showed ligand independent 

activation of VEGFR2. In their work, subjecting BAECs to SS resulted in VEGFR2 

phosphorylation as well as activation of downstream signaling components such as AKT 

and eNOS, which was inhibited by the VEGFR2 inhibitors (Z. G. Jin et al., 2003). 

Moreover, study reported the mechanosensitive role of VEGFR3 in regulating the fluid 

shear stress set point thereby vessel diameter (Baeyens et al., 2015). In addition to 

mechanosensory role, VEGFR3 as a mechanotransducer was studied in mouse embryo, 

wherein the level of VEGFR3 phosphorylation in lymphatic ECs correlates with 

interstitial fluid pressure. Although this phosphorylation of VEGFR3 is mediated 

through β1-integrin signaling, it is necessary for fluid pressure mediated lymphatic ECs 

proliferation (Planas-Paz et al., 2012).  

      

In ECs, mechanosensitive PECAM1 and VEGFRs form an endothelial 

mechanosensory complex along with endothelial specific cadherin, VE-cad, which 

was first described by Martin Schwartz and his group in 2005 (Tzima et al., 2005). 

Although members of other cadherin family are shown to be mechanosensitive (Bard et 

al., 2008; Ko et al., 2001), experiments to prove the mechanosensitive nature of VE-cad 

were unfruitful. Stimulation of VE-cad with magnetic beads coated with anti-VE-cad 

antibody failed to elicit PI3k activity in BAECs. Interestingly, stimulation of PECAM1 in 

the same way resulted in increased PI3K activity, which was reduced or blunted in ECs 

lacking VE-cad compared to wild type BAECs. Moreover, loss of either PECAM1 or VE-

cad resulted in failure of VEGFR2 phosphorylation and activation upon flow stimulation 
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in BAECs (Tzima et al., 2005). Despite the lack of mechanosensitivity nature, VE-Cad 

plays an irreplaceable role in endothelial mechanosensing and as an adapter protein in 

mechanosensory complex that helps in the association of PECAM1 and VEGFRs. 

Although, primarily it has been shown that the mechanosensory complex has VEGFR2 

as one of its components, later work by Coon et al showed that VEGFR3 could replace 

VEGFR2 in the complex. While VEGFR2 and VEGFR3 showed redundancy in-vitro 

settings, the physiological function of mechanosensitive VEGFR3 is interesting. The 

protein expression levels of VEGFR2 is the same in ECs of various blood vessels, whereas 

VEGFR3 expression varies and is dependent on the type of vessel, having high 

expression in lymphatic and low in arteries (Baeyens et al., 2015; Witmer et al., 2002). 

Mechanistically, VEGFR3 replacement of VEGFR2 in the complex determines the fluid 

SS set point, defined as “a theoretical model of regulation of a biological process in which 

a biological variable remains in a determined range of values despite the environmental 

changes that modify the initial value of the variable” (Roux et al., 2020). In case of ECs, 

set point refers to the wall SS. Overexpressing VEGFR3 in ECs of aorta in-vivo, which are 

exposed to high flow, resulted in lowering of the arterial SS set point thereby adaptation 

of ECs in order to reach the low optimal set point thus increasing lumen diameter 

(Baeyens et al., 2015).  

 

1.6 Mechanosignaling in vascular system 

Following the mechanical stimulation of the previously cited sensors, both cytoskeleton 

and biochemical signaling in vascular cells get activated. As ECs are in proximity to the 

blood stream, they are the first ones to respond to the altered hemodynamics.  

ECs respond to flow in a temporal fashion. Their early response includes activation of 

ion channels and GPCRs; followed by modulation of signaling pathways and cytoskeletal 

rearrangement, gene transcription and finally cellular changes such as cell alignment 

(Peter F. Davies et al., 1997) (Figure 7). Cells adopt a rapid response such as NO and 

prostaglandin secretion in case of short acute alterations in SS which regulate VSMCs 

contraction thereby vasodilation or vasoconstriction and stabilization of blood flow 

(Koller et al., 1994; Koller & Kaley, 1991). As the cytoskeleton gives structural support to 

the cell, it always exists in a “pre-tensed” state. Due to their “pre-tensed” nature, 
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alterations in cytoskeleton upon SS sensing can be seen within minutes despite the 

stabilization of cytoskeletal network and cell alignment relative to the mechanical force 

takes time (6 h to 72 h in ECs depending on the force applied) (Helmke et al., 2001; 

Osborn et al., 2006). In addition, the cytoskeletal proteins plays important role in the 

mechano-transduction process through converging the stimulus perceived from cell 

surface, cell junctions and focal adhesions, which results in the altered biochemical 

signaling, transcription and cellular phenotype (Peter F. Davies, 2009). 
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Figure 7: Kinetics of signaling events activated by shear stress in vascular cells.  

Picture represents the early, middle and late responses of vascular cell to shear stress ranging from ion channel activation to cytoskeletal rearrangement mediated cell 
alignment (Adapted from Davies. P.F et al 1997). 
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Mechanical stimulation of cell surface mechano-sensors such as integrins, GPCRs, ion-

channels, TRKs results in activation of multiple signaling cascades responsible for cell 

adjustment and survival. 

1.6.1. PI3K/AKT signaling 

PI3K/AKT signaling is one of the key signaling networks which are activated by 

hemodynamic forces (Figure 8). PI3Ks are membrane bound kinases, when activated 

they mediate the conversion of PIP2 to PIP3 which interacts and mediates AKT 

phosphorylation through PKD1 and downstream signaling events (Morello et al., 2009). 

Initial work in 1998, showed that HUVECs subjected to laminar SS showed an increase 

in AKT phosphorylation which was substantially inhibited using PI3K inhibitors such as 

wortmannin and LY294002 (Dimmeler et al., 1998). The activated AKT then 

phosphorylates eNOS at S1177 which resulted in its activity and NO production 

(Dimmeler et al., 1998, 1999). This PI3K-AKT activation could be through SS activated 

cell surface receptors such as VEGFR2 (Z. G. Jin et al., 2003) and PECAM1 (Osawa et al., 

2002), and activation of receptor bound Shc (K. Den Chen et al., 1999)or Src 

kinases(Tzima et al., 2005) (Okuda et al., 1999). Interestingly, it has been showed that 

SS-mediated AKT phosphorylation requires VE-cad as VE-cad null ECs fail to activate 

AKT under shear stress (Shay-Salit et al., 2002). Moreover, SS-induced AKT activation 

has been shown to play role in inflammation. Subjecting HUVECs to low shear stress 

resulted in PI3K independent activation of AKT and ICAM1 expression by promoting 

interferon regulatory factor 3 (IRF3) activation (L. Zhu et al., 2021). 

In VSMCs, activated PI3K phosphorylates L-type calcium channels resulted in influx of 

calcium thereby vasoconstriction (Morello et al., 2009). In 1998, Takashi Seki and 

collaborators showed that Ang-II stimulated Ca+2 currents in rat aortic smooth muscle 

cell line A7r5 which was significantly suppressed by lavendustin-A, a selective inhibitor 

of tyrosine protein kinase and Ly-294002, an inhibitor of PI3K, both of which are 

downstream intracellular effectors of AT1R (Seki et al., 1999). As AT1R have shown to be 

mechanosensitive, similar PI3K-mediated Ca+2 currents may be at play upon mechanical 

stimulus (Figure 9). On the other hand, PI3K-AKT signaling may promote VSMC 

proliferation through mTOR signaling as inhibiting AMPK through either RNAi or 
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specific inhibitor resulted in increased PDGF induced pulmonary arterial smooth 

muscle cell proliferation (Y. Song et al., 2016). Similar role of PI3K/AKT/mTOR signaling 

has been reported in stretch-induced bladder smooth muscle cell proliferation (Adam 

et al., 2003). 

 

Figure 8 Signaling mechanisms mediate by mechanical forces in ECs 

In ECs, Shear stress mediates activation of PI3K/AKT signaling through VEGFR2 and PECAM1 which in turn 
activates eNOS through phosphorylation at ser1177 position. PI3K/AKT signaling also activates interferon 
regulatory factor 3 which results in the increased transcription of inflammatory cell adhesion molecules 
such as ICAM1 (left). Shear stress also activates several surface reports including VEGFR2 which results in 
the activation of secondary messengers such as ERK, JNK an p38 which result in transcriptional activation 
(right).  

1.6.2. MAPK signaling  

MAPK signaling has been shown to be modulated by hemodynamic forces and been 

shown to activate MAPK signaling molecules such as MEKK-JNK and MEKK-ERK 

(Tseng et al., 1995) (Y. S. Li et al., 1996) (Figure 8). In HUVECs, SS induces ERK 

phosphorylation through c-SRC, PKC dependent pathways, as inhibiting either c-SRC 

by Herbimycin A or PKC by phorbol 12, 13 dibutyrate (PDBU) completely abrograted 

shear stress induced ERK phosphorylation (Takahashi & Berk, 1996). In addition t0 c-

SRC, SOS (Son of Sevenless)-dependent activation of p21ras has been described in the 

activation of MEKK-JNK and MEKK-ERK (Jalali et al., 1998; Y. S. Li et al., 1996). In 

addition to PI3K/AKT signaling, Shay-salit and collaborators showed that in BAECs, 

shear stress also induces p38 activation. Such activation requires VE-cad as VE-cad null 

ECs fail to induce shear stress mediated p38 phosphorylation (Shay-Salit et al., 2002). 

These signaling events mediate the transcription of shear stress induced gene such as 

MCP-1 and c-fos through activation of AP-1/TRE and SRC/ELK1 responsive elements 

respectively (K. Den Chen et al., 1999; Hsieh et al., 1993; Shyy et al., 1994)  
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In the context of VSMCs, application of CS to rat VSMCs shown to induce both ERK and 

JNK activation (Reusch et al., 1997). This induction could be mediated though 

mechanosensitive integrins, as applying CS through magnetic beads coated integrin 

antibody results in increased ERK activation (Goldschmidt et al., 2001). In human aortic 

VSMC, it has been shown that pathological CS resulted in increased in p38 

phosphorylation and ATF3 mediated inhibition of ACE2 transcription thereby 

regulating VSMC cell functions such as proliferation (X. Liu et al., 2021) (Figure 9). 

Although, CS activates much of the MAPK signaling molecules, the specific inhibition 

of p38 using the specific inhibitor SB203580 prevents CS mediated VSMC alignment (Q. 

Chen et al., 2003). 

 

Figure 9: Signaling mechanisms mediate by mechanical forces in VSMCs 

In VSMCs, mechanical activation of PDGFR and AT1R results in the activation of PI3K/AKT signaling which 
results in the regulation of proliferation. Activated PI3K also activates L-type Ca+2 channels thus 
modulating vasoconstriction. Mechanical activation of integrin signaling result in the activation of ERK, 
JNK and p38 thereby regulating cellular functions. 
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1.6.3. eNOS signaling between EC-VSMCs 

Blood flow-mediated SS promotes activation of mechanosensitive receptors on EC 

surface, which results in the production of prostaglandins and NO (Figure 7), which 

regulates smooth muscle cell contraction, there by vascular tone (Figure 11). In ECs, NO 

is produced by eNOS through the conversion of L-arginine to L-citrulline and have been 

shown to increase with both SS and CS (Awolesi et al., 1995; Ayajiki et al., 1996).  eNOS 

is constitutively expressed, its activity is regulated by intracellular calcium and Ca+2-

calmodulin interaction (Busse & Mülsch, 1990). However, early experiments in porcine 

aortic ECs and HUVECs showed that SS-mediated NO production is independent of 

calcium and is regulated through intracellular pH and tyrosine phosphorylation (Ayajiki 

et al., 1996). Tyrosine phosphorylation promotes eNOS interaction with Caveolin-1 

through the reductase domain which renders eNOS in inactive state (Fleming & Busse, 

1999; García-Cardeña et al., 1996; Ghosh et al., 1998) (Figure 10). In-situ flow 

experiments showed that SS increased the activity of caveolae-associated eNOS as well 

as promotes the dissociation of eNOS from caveolae and eNOS interaction with 

calmodulin (Rizzo et al., 1998). SS modulates activity of eNOS through promoting the 

interaction with HSP90 (García-Cardeña et al., 1998) as well as by phosphorylating 

eNOS at Ser1177 (Ser1179 in bovine) through PKA  and AKT dependent as well as c-Src 

dependent activation of MEK1/2 and ERK1/2 signaling mechanisms (Boo et al., 2002; 

Boo & Jo, 2003; Davis et al., 2001; Dimmeler et al., 1999) (Figure 8 & 10). Using BAECs, 

it’s been shown that SS upregulates eNOS transcription through nuclear transcription 

factor NFκB (Davis et al., 2004; Y. Zhao et al., 2015a).  
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Endothelial NO diffuses into surrounding matrix embedded SMCs. In SMCs, NO 

mediates vasodilation through the remodeling of acto-myosin complex (Figure 11). This 

is mediated through activation of soluble guanylyl cyclase activity followed by increase 

intracellular cGMP, which result in activation of cGMP-dependent protein kinase G and 

subsequent uptake of cytosolic calcium into sarcoplasmic reticulum. NO and PKG 

activated signaling pathways results in the decreased phosphorylation of MLC20, 

thereby, reducing actin/myosin interaction and contraction. (Arnold et al., 1977; 

Carvajal et al., 2000; Y. Zhao et al., 2015b) (Figure 11). 

Figure 10: Shear stress regulation of eNOS at Caveolae 

In Caveolae, eNOS binds to caveolin-1 through its reductase domain. Such interaction keeps eNOS in an 
in-active state. Upon shear stress stimulus, eNOS release from Caveolin-1 and gets activated through its 
interaction with Ca+2 calmodulin and AKT dependent phosphorylation at ser1177. The activated eNOS 
mediates the production of Nitrous Oxide. 
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Figure 11: eNOS-NO signaling between ECs & VSMCs 

In ECs, shear stress dependent and independent signaling mechanisms leads to eNOS activation either 
through interacting with Ca+2-calmodulin or through phosphorylation at Ser1177 and 635. Phosphorylation 
at Thr495 acts as inhibitory. The activated eNOS mediates the production of NO. Produced NO diffuse into 
nearby VSMCs and promotes vasodilation through the activation of soluble Guanylyl cyclase and cGMP 
dependent mechanisms. ( Adapted and modified from Y. Zhao et al., 2015a). 

 

 

Integrins could acts as a shear stress mechanosensors and could be responsible for shear 

stress mediated eNOS signaling, as blocking of integrin signaling by blocking antibody 

significantly inhibited the shear stress mediated vasodilation in porcine coronary 

arteries (Muller et al., 1997). Among the endothelium derived vasodilatory molecules, 

NO signaling plays significant role in flow mediated vasodilation. Under physiological 
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condition, NO is continuously produced in ECs through SS sensing mechanisms and is 

important to maintain basal vascular tone as well as modifying the vascular in response 

to acute alterations in SS (Stoner et al., 2012). 

 

1.6.4. Mechanotransduction in vascular homeostasis and diseases 

Mechanical stimulus plays a prominent role in vascular development and homeostasis, 

whereas, chronic alterations in mechanical stimulus from physiological range results in 

maladaptation of vascular cell signaling, ultimately leading to vascular pathologies.  

Flow-mediated mechanosignaling is important for arterio-venous specification of 

endothelial progenitor cells (EPCs), as subjecting EPCs to SS resulted in upregulation of 

arterial specific markers (ephrinB2, Notch1/3, Hey1/2 and ALK1), and downregulation of 

venous specific marker (ephrinB4, NRP2) in a SS and time-dependent manner (Obi et 

al., 2009). On the other hand, SS stimulates the expression KLF2, a key transcription 

factor involved in anti-inflammatory state of ECs (Dekker et al., 2002; SenBanerjee et 

al., 2004). This was further supported by the association of high and low expression of 

KLF2 in atheroprotective and proatherogenic regions respectively, described in human 

and murine carotid arteries (Dekker et al., 2005). 

ECs and VSMCs respond to mechanical stimulus by modulating their signaling 

mechanisms to maintain vascular network in physiological healthy condition. In 

contrast, unability to respond to aberrant hemodynamic forces or dysfunctionality of 

ECs and VSMCs could favor vascular diseases such as hypertension, atherosclerosis and 

aneurysms. 

 

In case of hypertension, eNOS-NO signaling plays crucial role, as it is one of the main 

endothelial factors which maintain vascular tone. The importance of eNOS signaling 

came from mice studies wherein genetic ablation of eNOS resulted in substantial 

increase in blood pressure and hypertension (Shesely et al., 1996). However, delivering 

eNOS through blood cell by transplanting bone marrow from wildtype mice was 

sufficient to rescue from hypertension (Wood et al., 2013).  As eNOS -NO signaling is 

important for vascular tone maintenance, defective signaling in both ECs and in VSMCs  

have been identified in vascular pathologies such as hypertension (Giaid & Saleh, 1995; 
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Schermuly et al., 2008; Y. Y. Zhao et al., 2009).  Importantly, hypertension mediated CS 

could switch VSMC phenotype from contractile to proliferative and secretory as shown 

using in-vitro and in-vivo studies (Qi et al., 2016; W. Bin Wang et al., 2019). Such 

dysfunctional signaling results in the progression of hypertension with increased 

arterial stiffness and hyperplasia. 

 

Atherosclerosis forms predominantly at the arch and branch sites where vascular cells 

experience disturbed flow and low SS (VanderLaan et al., 2004). It has been shown that 

disturbed flow causes EC dysfunction by increasing ECs proliferation (Chien, 2008; P. 

F. Davies et al., 1986), downregulation of vasoprotective eNOS and KLF2 expression as 

well as increased expression of inflammatory molecules (VCAM1 and ICAM1) and ROS 

generation (Nam et al., 2009). Disturbed flow and low SS could induce pro-

inflammatory state by promoting TNFa stimulated interaction of TRAF-2 with TNFR 

and downstream activation of p38 and JNK, thereby VCAM1 expression, which was 

shown to be inhibited by physiological SS (Nagel et al., 1999; Yamawaki et al., 2003). 

Interestingly, it has been shown that turbulent SS causes vessel dysfunction through 

downregulation of Smad6 and Smad7, which are shown to be negative regulators of the 

TGFb signaling (Toppert et al., 1997). This supports the importance of laminar SS in 

vascular physiology by regulating the TGFb signaling which is important for proper 

vessel formation as well as dysfunction (Goumans et al., 2009).  

 

Another vascular disease that is associated with altered hemodynamics is intracranial 

aneurysm, which is characterized by abnormal bulging and weakening of cerebral 

arteries in the Circle of Willis. Both high and low SS has been shown to associate with 

development and progression of aneurysm (Meng et al., 2014). Regions with high SS are 

the sites of aneurysm formation, whereas low SS has been associated with aneurysm 

rupture once the aneurysm is formed (Jou et al., 2008). Although the exact molecular 

mechanisms have not been yet identified, endothelial dysfunction has been reported at 

early stage of the disease. In experimentally induced cerebral aneurysm model, reduced 

eNOS at the site of aneurysm formation was reported (Aoki et al., 2011). Furthermore, 

dysfunctional ECs express PGE receptor subtype2 which promotes macrophage 

infiltration, subsequent NF-kB signaling and aneurysm formation (Aoki et al., 2017). In 
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addition to endothelial dysfunction, phenotype switching of VSMC from contractile to 

secretory has been observed in human tissue samples which would secrete 

proinflammatory cytokines and MMPs and contribute to aneurysm development (N. 

Nakajima et al., 2000). 

 

2. Small GTPases and Mechanotransduction 

2.1 Introduction about Rho-GTPases 

First identified in 1985 (Madaule & Axel, 1985), the small GTPase-Rho (Ras-homology) 

proteins form a subfamily within the superfamily of Ras-like proteins which also 

includes Ras, Rab, Arf and Ran families. The Rho-GTPase subfamily consists of 20 

proteins (Figure 12). The common characteristics are the presence of G domains, Rho 

insert region and C-terminal hypervariable region. G-domains are necessary for guanine 

nucleotide binding, Rho insert region is essential for guanine nucleotide exchange 

factor (GEF) binding, and the C-terminal hypervariable region is subjected to post-

translation modifications that regulate Rho-GTPase localization and activity (Freeman 

et al., 1996; Schaefer et al., 2014; Vega & Ridley, 2008). 

                               

Figure 12: Phylogenetic tree showing the mammalian Ras GTPases superfamily 

The 20 Rho GTPase family members are grouped into eight subfamilies (Adapted from Vega .F.M and Ridley 
.A.J 2008) 
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Like other monomeric GTPases, Rho-GTPases switch in between inactive GDP-bound 

form and active GTP-bound form. The transition between the inactive and active form 

is mediated by guanine nucleotide exchange factors (GEFs), while and GTPases 

activating proteins (GAPs) allow the return to the inactive GDP-bound form. In addition 

to GEFs and GAPs, guanine nucleotide dissociation inhibitors (GDIs) also regulate small 

Rho-GTPases activity by sequestering inactive GDP-bound Rho-GTPases within the 

cytosol, thereby preventing their accessibility to GEFs at the membrane. As an 

additional layer of regulation, post-translational modifications such as lipid 

modifications (for example: prenylation, palmitoylation), phosphorylation, 

sumoylation and ubiquitylation serves the Rho-GTPase activation in a spatiotemporal 

way (Hodge & Ridley, 2016). Moreover, Rho-GTPases are known to be regulated at 

epigenetic and post-transcriptional levels, via miRNAs (Ji Chen et al., 2011; M. Liu et al., 

2012; Yoon et al., 2007) (Figure 13).  
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Figure 13: Overview of Rho-GTPase regulatory mechanisms 

Rho-GTPase are regulated at multiple levels (1) post-transcriptional regulation through miRNA mediated 
RNA degradation; (2) subcellular localization through post-translational modifications such as 
palmitoylation, prenylation and NLS; (3) activity through covalent modifications; and (4) protein stability, 
(Adapted from Liu et al. 2012) 

 

2.2 Rho-GTPases in EC and VSMC biology 

Among Rho-GTPase family members, RhoA, Rac1 and Cdc42 are well characterized for 

their role in cell polarity maintenance, migration and morphology (Etienne-Manneville 

& Hall, 2002). Although, RhoA, Rac1 and Cdc42  all act on actin cytoskeleton, the 

outcome serves different purposes: RhoA induces actin-myosin filaments assembly 

(stress fibers), Rac1 induces actin-rich surface protrusions (lamellipodia), and Cdc42 

promotes filopodia, actin-rich finger-like membrane protrusions (Kozma et al., 1995; 

Ridley et al., 1992; Ridley & Hall, 1992). Each of these processes plays an important role 
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during cell migration, as Rac1-mediated lamellipodia promotes pulling force, RhoA-

mediated stress fibers promote traction force, and Cdc42-generated filopodia initiates 

the migration and its direction. However, co-ordination between these processes is 

essential for a proper cell migration (Raftopoulou & Hall, 2004). 

In addition, the pretensed cytoskeleton provides structural support and undergoes 

drastic structural changes relative to the mechanical stimulus. Cells such as ECs and 

VSMCs that experience mechanical stimulation to a larger extent rely on efficient Rho-

GTPases signaling for cytoskeleton integrity and arrangement in response to the 

perceived force. For example, it has been shown in-vitro that small-GTPases are crucial 

for EC alignment parallel to physiological laminar flow direction, the primary response 

of ECs to SS (Tzima, 2006). This process involves rearrangement of microfilaments and 

microtubules (Girard & Nerem, 1995; Levesque & Nerem, 1985; Malek & Izumo, 1996). 

In-vivo, aortic regions expose to high physiological flow showed well aligned ECs 

compared to cells exposed to disturbed/low SS, thus demonstrating the effect of SS on 

EC shape (Hikita et al., 2018)(Figure 14). 

 

Figure 14: Differential alignment of ECs in response to different flow magnitudes 

En face confocal microscopy of the aortic arch form the inner curvature showed the ECs to perceived flow. 
polarity marker Golph4 (red), VE-cad (white). (Adapted and modified from Hikita et al. 2018) 
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The response of Rho-GTPase to SS has been described as biphasic in in-vitro conditions 

(Wojciak-Stothard & Ridley, 2003) (Figure 15). 

Figure 15: Kinetics of small-GTPase activation upon shear stress stimulus in HUVECs 

Relative activity of RhoA, Rac1 and Cdc42 in HUVECs subjected to laminar shear stress (3 dyn/cm2.). Within 
5 min of shear stress stimulus, RhoA activity reaches to a peak maximum of approx.2.5 fold. Rac1 and Cdc42 
activity slowly increases and reaches a maximum peak at 15min when RhoA activity is at its low. By the time 
2hrs upon shear stress stimulation, a second wave of RhoA activity starts whereas Rac1 and Cdc42 is at tis 
minimum. (arbitrary values obtained from Wojciak-Stothard & Ridley, 2003). 

 

RhoA regulates multiple signaling pathways primarily through its kinase effector ROCK 

(Bishop & Hall, 2000; Kilian et al., 2021). Activated ROCK phosphorylates MLCP leads 

to its inactivation, thus resulted in enhanced MLC phosphorylation and this 

phosphorylation promotes actin-myosin interaction and subsequent contraction 

(Loirand et al., 2006). RhoA-ROCK signaling also activates LIMK1/2 which inactivates 

Cofilin through phosphorylation. This result in reduced actin depolymerization thereby 

promoting polymerization of G-actin into F-actin (Kauskot et al., 2016). Polymerization 

of G-actin into F-actin results in the release of G-actin bound MKL1 which localizes into 

nucleus and mediates serum response factor (SRF) target gene expression (Miralles et 

al., 2003; Vartiainen et al., 2007). 

In ECs, the early onset of RhoA activation in response to SS occurs at 5 min, followed by 

a reduction back to basal level within 15 min. Then the RhoA activity slowly increases 

again and reaches a maximum at 2 h. (Figure 15) During this biphasic response, ECs 

reduce stress fibers, retract and polarize along the direction of the flow. SS exposure for 

long time results in the establishment of stress fibers and cell alignment parallel to the 
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flow direction. Although ECs overexpressing constitutively active form of RhoA showed 

stress fiber formation, they failed to align to the flow direction (Wojciak-Stothard & 

Ridley, 2003). This indicates that timely on/off activation of RhoA is necessary for 

proper ECs response to flow and alignment. In addition, SS mediated RhoA-ROCK 

activation is important for EC planar polarity (Hikita et al., 2018). Pharmaceutical 

inhibition of ROCK showed disruption of spatial localization of PAR-3/aPKCl and 

aPKCl/ GSK3b complex, thereby impairing endothelial polarity.  In human saphenous 

endothelial cells and BAECs, inhibition of ROCK using hydroxy-fasudil, a ROCK 

inhibitor, resulted in increased AKT and eNOS phosphorylation and NO release. This 

effect was inhibited by PI3 kinase inhibitor, LY294002, indicating the regulation of 

PI3K/AKT/eNOS signaling by RhoA (Wolfrum et al., 2004). This could be through 

PTEN, which was shown to be activated by ROCK in neutrophils (Z. Li et al., 2005).  

In VSMCs, RhoA has been shown to mediate PDGF-bb-induced VSMCs proliferation 

through activation of ERK1/2 signaling (Kamiyama et al., 2003).  

 

In ECs, SS activates Rac1 in a spatio-temporal manner, and Rac1 activation occurs as 

early as 5min upon SS stimulus and reaches its maximum at 15min (Wojciak-Stothard 

and Ridley 2003) (Figure 15). Active Rac1 is localized at the rear end of the cell in respect 

to flow direction (Tzima et al. 2002). However, Rac1 activation requires newly formed 

SS-induced newly formed integrin-ECM interactions, as inhibiting them reduced Rac1 

activation. Interestingly, overexpression of either dominant negative or dominant active 

Rac1 do not promote SS induced ECs alignment. These studies showed that the localized 

activation, rather than overall Rac1 activity is important for SS-mediated cell alignment 

(Tzima et al. 2002).  

Though much of the Rac1 mediated signaling has been identified in non-vascular cells, 

similar conserved mechanisms might exist in ECs. Rac1 is involved in multiple signaling 

mechanisms. For example, in MEFs and HMECs, Rac1 contributes to GPCR-mediated 

PI3K-AKT signaling by promoting membrane localization of p110β, a PI3K isoform, 

where it potentiates AKT activation (Cizmecioglu et al., 2016). In addition to PI3K-AKT 

signaling, Rac1 has also been shown to activate p38 (S. Zhang et al., 1995), JNK (Dérijard 

et al., 1995; Han et al., 1996; Jiang et al., 1996) and ERK (Eblen et al., 2002) through PAK1-

mitogen activated protein kinase kinase (MKK) signaling pathway. Rac1 also regulates 
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NADPH redox pathway by directly interacting with and activating p67phox, a subunit 

of NADPH oxidase complex (Abo et al., 1992; Diekmann et al., 1994; Sulciner et al., 

1996). In addition to the RhoA-ROCK signaling, Rac1 was also shown to activate LIMK1/2 

through PAK1 thereby promoting F-actin polymerization (Kauskot et al., 2016; N. Yang 

et al., 1998).   

 

Cdc42 activity matches Rac1 activity with an increase within 5min of shear stress, and, 

reaches a maximum at 15min, and maintains at a low level at later time points (Figure 

15). Although, Cdc42 is known to regulate cell polarity, overexpression of dominant 

negative mutant does not affect SS- mediated ECs orientation. However, ECs expressing 

dominant negative Cdc42 showed reduced cell elongation to the SS (Wojciak-Stothard 

& Ridley, 2003). In BAECs, using dominant negative mutants of Cdc42, it had been 

shown that Cdc42 is essential for the positioning of microtubule organizing center upon 

SS stimulation (Tzima et al., 2003). Similar to Rac1, Cdc42 has also been shown to 

activate JNK and p38 kinases in overexpression cell culture systems (Coso et al., 1995; 

Minden et al., 1995). This was further supported by Cdc42 and RhoA involvement in SS-

mediated activation of JNK signaling pathway in BAECs (S. Li et al., 1999). Such 

activation of JNK signaling could be independent of PAK1 as observed in COS7 and HEK 

293T cells (Teramoto et al., 1996). 

 

Overall, this demonstrates the complex regulation of cell signaling by small GTPases. In 

the context of ECs and shear stress, orchestration between RhoA, Rac1 and Cdc42 

activity is essential for proper EC alignment and polarity.  

In addition to the above mentioned RhoGTPases, other GTPases from Rho sub family 

such as RhoG, RhoJ and RhoQ have been shown to be involved in vascular cell biology. 

Few such small-RhoGTPases are discussed below. 

In ECs, RhoG activity has been implicated in leukocyte transmigration. Binding of 

leukocyte to ICAM1 results in the activation of RhoG in ECs through interaction with 

RhoG specific SH3-containing GEF (SGEF or Arhgef26). Interestingly, cortactin, a 

cortical actin binding protein, has been shown to be required for this activation 

(Schnoor et al., 2011) and knocking down of either RhoG or SGEF significantly reduced 

trans-endothelial migration (Van Buul et al., 2007). In addition to its role in leukocyte 
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trans-endothelial migration, RhoG has been shown to be involved in VEGF-Trio 

mediated arterial remodeling in zebrafish model, through its involvement in 

endothelial size regulation via cytoskeletal remodeling. Although RhoG activation has 

not been studied, overexpression of an active form of RhoG increases endothelial cell 

size similar to trio overexpression (Van Buul et al., 2007). The increase in endothelial 

size was accompanied by increased focal adhesions. This may be due to upregulated 

Rac1 activity but not RhoG as another work in cancer cells showed increased focal 

adhesions upon RhoG knockdown (Zinn et al., 2019). Recently, RhoG has been shown 

to be involved in VEGF mediated VEGFR micropinocytosis and dependent angiogenic 

signaling. This RhoG activity is depend on its activator Arhgef26. Knocking down of 

either Arhgef26 or RhoG showed similar defects in-vitro angiogenic assay. Interestingly, 

Arhgef26-/- mice showed reduced atherosclerotic plaques compared to wild type mice 

in adeno-associated virus-induced murine atherosclerosis model (A. Vion, 2022; Q. M. 

Zhu et al., 2021). These results suggest a crucial role for RhoG in atherosclerotic plaque 

formation in-vivo. 

RhoJ, also known as TC10-like (TCL), belongs to the Cdc42 subfamily that shares 

similarity with RhoQ and Cdc42. Aspenstrom and collaborators showed that 

overexpressing constitutively active RhoJ mutant in Cos7 cells resulted in formation of 

lamellipodia, actin bundles and focal adhesions (Aspenström et al., 2004). In addition 

to its role in cytoskeletal organization, RhoJ has been shown to play an important role 

in endocytosis. RhoJ is expressed in most cell types and its expression is regulated by 

ERG (ETS-related gene) transcription factor which is abundant in ECs (Yuan et al., 2011). 

Knocking down of RhoJ using siRNA resulted in reduced ECs migration, proliferation 

and tube-formation. Using mice retinal angiogenesis model, it has been shown that 

RhoJ activation is involved in retinal angiogenesis. While VEGF promotes endothelial 

filopodia formation in sprouting vessels, Sema3E and its receptor PlexinD1 counteracts 

it by activating RhoJ thereby causing filopodia retraction in those sprouting vessels  

maintaining a balance and a patterning of the network (Fukushima et al., 2011). 

Additionally, in ECs, RhoJ regulates FMNL3(Formin Like 3) mediated EC lumen 

formation through polarized trafficking of podocalyxin (Richards et al., 2015). Another 

important function of RhoJ in angiogenesis came from recent work by Sundararaman et 

al, where they showed that RhoJ positive endocytic vesicles are enriched in a5b1 
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integrins (Sundararaman et al., 2020). Using in-vitro EC culture experiment, others 

showed that, knocking down of RhoJ results in increased extracellular fibronectin, a 

major ligand for a5b1 integrins (Astrof & Hynes, 2009). Overexpression of dominant 

active RhoJ led to an increased cycling of a5b1 endocytosis. Accordingly, In-vivo 

knockout of RhoJ was responsible for reduced retinal vascular out growth and increased 

fibronectin deposition (Astrof & Hynes, 2009). 

RhoQ, formerly called TC10, has been shown to be primarily expressed in heart and 

skeletal muscle as analyzed by northern blot analysis (Neudauer et al. 1998). RhoQ 

shares similarity with protein sequence with Cdc42 and has been shown to interact with 

known Cdc42 effectors such as WASP and PAK thus modulating cytoskeletal 

organization (Aspenström et al., 2004; Neudauer et al., 1998). Overexpression of 

dominant active RhoQ in NIH3T3 fibroblasts resulted in longer peripheral extensions, 

reduced stress fibers and loss of cortical actin compared to cells expressing dominant 

active Cdc42. However, it had no effect on membrane ruffle formation unlike Cdc42 

(Kanzaki et al., 2002; Neudauer et al., 1998). In ECs, RhoQ also shown to induces 

podosomes formation (Billottet et al., 2008). In-vivo, knocking out of RhoQ resulted in 

reduced retinal vascular network. Mechanistically, DLL4/Notch signaling induces 

RhoQ expression (Kofler et al., 2011) and RhoQ exerts its effect on DLL4/Notch signaling 

through mediating the nuclear localization of Notch Intracellular Domain (NICD), as 

knocking down of RhoQ resulted in reduced nuclear NICD and increased NICD in 

lysosomes for degradation (Bridges et al., 2020).  

 

2.3 Rho-GTPase signaling in pathophysiology 

RhoA signaling plays prominent role in vascular pathophysiology. Increased activation 

of RhoA has been observed in Ang-II treated VSMCs and aortas of hypertensive rat 

models such as spontaneously hypertensive stroke prone rats (SHR-SP) (Kataoka et al., 

2002; Seko et al., 2003). In addition, inhibition of RhoA/ROCK signaling by the Rho-

kinase inhibitor Y27632, repressed MCP-1 and TGFB1 expression as well as early 

inflammation, vascular remodeling and vascular lesions in L-NAME-induced 

hypertensive rat model (Kataoka et al., 2002). Similar role of RhoA has been described 

in SHR rats, wherein inhibition of Rho-kinase by fasudil prevented hypertension-
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mediated vascular remodeling (Mukai, 2002). In the pathogenesis of abdominal aortic 

aneurysm, it has been shown that inhibition of Rho-kinase with fasudil significantly 

reduced the thickening of aorta, formation and severity of Ang-II induced aneurysm 

formation in ApoE-/- mice. This is through inhibiting VSMCs apoptosis and ECM 

degradation through MMP secretion (Y. Wang et al., 2005). RhoA signaling has been 

shown to involve in ET-1 induced Cardiac hypertrophy. Koichiro et al, showed that 

inhibiting Rho/ROCK pathway using either specific inhibitor Y27632 or overexpression 

of dominant negative ROCK1 inhibited ET-1 induced hypertrophic genes such as atrial 

natriuretic peptide and brain natriuretic peptide in neonatal rat ventricular 

cardiomyocytes (Kuwahara et al., 1999). Later, it was shown that Rho/ROCK signaling 

activates ERK1/2 which directly or indirectly phosphorylates and activates the 

transcription factor GATA4 which mediates the transcription of hypertrophic genes 

(Yanazume et al., 2002).  

 

Shear stress and AT1R signaling induces ROS production which is important for vascular 

tone maintaining by activation p38-eNOS signaling pathway (Bretón-Romero et al., 

2012; Eguchi et al., 2018). This could be through by Rac1 which promotes NADPH 

complex formation by interacting with p67phox subunit thereby ROS production 

(Sumimoto, 2008). Under pathological conditions such as hypertension, Ang-II-AT1R 

signaling increases ROS production and vascular cell dysfunction (Eguchi et al., 2018). 

In-vivo, chronic infusion of Ang-II induced aneurysm formation in LDLR-/- mice, which 

was abrogated by endothelial specific knockout AT1R (Rateri et al., 2011). The role of 

Rac1 in aneurysm formation was described by Marinković and his group, wherein 

inhibition of Rac1 activity using specific inhibitor 6-Mercaptopurine resulted in reduced 

incidence of aneurysm formation as well as pro-inflammatory JNK signaling activation 

in ApoE-/- mice (Marinković et al., 2013). Moreover, in-vitro inhibition of Rac1 using 6-

Mercaptopurine inhibited TNFα induced JNK and NFkB mediated inflammatory gene 

expression in HUVECs (Marinković et al., 2014), indicating the role of Rac1 in JNK and 

NFkB signaling under different physiological context. During immune cell 

transmigration through ECs, attachment of immune cell triggers ICAM1 and VCAM1 

clustering which results in the formation of transmigratory cup, a cup like membrane 

protrusions at the interface of immune cell and ECs  (Barreiro et al., 2002). This 
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transmigratory cup formation requires GEF Trio mediated activation of Rac1, as 

inhibition of Trio using ITX3 or silencing of Rac1 resulting in similar and reduced 

membrane protrusion and neutrophil transmigration (Van Buul et al., 2007; van Rijssel 

et al., 2012). In ECs, Rac1 activity is necessary for shear stress induced NFkB mediated 

ICAM1 expression, as cells overexpressing dominant negative mutant of Rac1 fail to 

induce ICAM1 under shear stress (Tzima et al., 2002). Interestingly, shear stress induced 

ICAM1 is influenced by the extracellular matrix, as, it was shown that cells plated on 

fibronectin coating induced ICAM1 expression whereas collagen coating did not (Orr et 

al., 2005). In VSMCs, Rac1-PAK1 signaling has been shown to regulate in-vivo VSMC 

proliferation and migration in balloon injury mice model of neointima formation as 

overexpressing dominant negative PAK resulted in inhibition of neointima formation 

(D. Wang et al., 2009). 

 

Although there is no direct evidence for the role of Cdc42 in vascular pathologies has 

been reported yet, its association with vascular malformations came from in-vivo animal 

model studies and its important role in postnatal blood vessel development (Barry et 

al., 2015; Yoshida et al., 2021). Endothelial specific deletion of Cdc42 resulted in defective 

ECs migration and capillary-venous malformations (Laviña et al., 2018). Moreover, loss 

of Cdc42 leads to increase in MEKK3-MEK5-ERK5 signaling mediated-overexpression of 

KLF2/4 and cerebral cavernous malformations (Castro et al., 2019). 

 

2.4 GEFs in EC physiology 

There are nearly 83 GEFs and 67 GAPs for 20 Rho-GTPase and only 17 GAPs and 20 GEFs 

are shown to be highly expressed in endothelium (Table 1 & 2) (Van Buul et al., 2014; 

Vigil et al., 2010). 
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Table 1: List of GEFs highly expressed in endothelial cells 

Highest expressed GEFs transcripts in HUVECs were shown in the 3rd column relative to the average 
expression level in Roth-504 Affymetrix data sets (Adapted from Van Buul et al., 2014; Vigil et al., 2010) 
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Table 2: List of GAPs highly expressed in endothelial cells 

Highest expressed GAPs transcripts in HUVECs were shown in the 3rd column relative to the average 
expression level in Roth-504 Affymetrix data sets (Adapted from Van Buul et al., 2014; Vigil et al., 2010) 

 

 

These GEFs and GAPs have been shown to regulate Rho-GTPase-dependent processes 

such as permeability (Stockton et al., 2007), migration (Garrett et al., 2007), 

angiogenesis (Gambardella et al., 2010) and leukocyte transmigration (Van Rijssel et al., 

2012). Angiogenesis and maintenance of functional blood vessels is a complex process, 

and, timely dependent orchestrated activation of small-GTPases is crucial, in addition 

to the factors such as ligand-receptor signaling, and ion channel mediated Ca+2 signaling 

(Adams & Alitalo, 2007; Urade et al., 2022). GEFs, GAPs and GDIs regulate spatio-
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temporal activation of small-GTPases. Developmental timing and cell specific 

expression of such regulators determines proper blood vessel formation (Kather & Kroll, 

2013). One such GEF is FGD5, a cdc42 specific GEF whose expression is specific to 

vascular endothelial cells. In mice embryo, FGD5 expression is high during early 

embryonic stage and reduces at postnatal day 8. Knockdown of  FGD5 in HUVECs 

inhibited VEGF mediated EC migration and tube formation (Kurogane et al., 2012). In 

addition, adenoviral overexpression of FGD5 resulted in EC apoptosis through Hey1-p53 

signaling pathway in mice retina models (C. Cheng et al., 2012). 

Trio is a RhoGEF that gained attention these past few years in vascular biology. Trio is 

a RhoGEF with three enzymatic domains (two GEF domains and Ser/Thr kinase 

domain). The two GEF domains GEF1 and GEF2 interact with and activate the 

Rac1/RhoG and RhoA respectively. Overexpression of TrioGEF1 and GEF2 resulted in 

membrane ruffles, lamellipodia and actin stress fiber formation respectively (Bellanger 

et al., 1998). In ECs, during the process of leukocyte trans-endothelial migration, Trio is 

recruited to ICAM1 at the leukocyte docking site where it activates Rac1 and RhoG which 

are important for ICAM1 clustering and membrane protrusions respectively (Van Rijssel 

et al., 2012). Under SS conditions, Trio has been shown to play a role in EC alignment 

independently of its GEF activity (Kroon et al., 2017). Flow results in the localization of 

active Rac1 downstream to the flow direction. Knocking down of Trio does not affect 

the Rac1 activity but results in loss of Rac1 polarization and failure of ECs to align parallel 

to the flow. Further experiments using GEF domain mutants showed that Trio indeed 

acts as a scaffold protein in mediating Rac1 polarization (Kroon et al., 2017). The role of 

Trio in endothelial cell-cell junction formation and maintenance as well as in vascular 

permeability cannot be overlooked. In-vitro, during the formation of adherent 

junctions, Trio is recruited to VE-cadherin and promotes local Rac1 activity thereby 

contributing to adherent junction stability. Interestingly, knockdown of Trio resulted 

in failure of endothelial adherent junction to re-assemble in response to the thrombin 

treatment (Timmerman et al., 2015). Similar work by Mikelis et al, showed that the 

inflammatory molecule histamine resulted in the activation of RhoA via Ga11/q-Trio 

activation, which leads to endothelial barrier disruption (Mikelis et al., 2015). In 

addition to inflammation-induced permeability, Trio’s role in SS mediated barrier 

integrity has been explored. Work by Polacheck et al, They showed that SS-activated 
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Notch resulted in the formation of novel transmembrane complex consisting of Notch1, 

VE-cad, LAR and Trio; which activates junctional Rac1 thereby promoting barrier 

integrity (Polacheck et al., 2017). These studies suggest a crucial role of Trio in flow 

mediated EC orientation as well as in barrier restoration upon inflammatory stimulus 

under physiological conditions. 

 

While not being a RhoGEF, EPAC1 (Exchange protein activated by cAMP-1) is a guanine 

nucleotide exchange factor, shown to regulate multiple functions of shear stress 

mediated endothelial functions. In human arterial ECs, knocking down EPAC1 reduces 

shear stress induced Rap1 activation as well as shear stress induced genes such as KLF2, 

eNOS and thrombomodulin. In addition, using knockdown approaches, it was shown 

that EPAC1 mediates adherent junction stability through VE-cad/VEGFR2/PECAM1 

mechanosensory complex (Rampersad et al., 2016). In line with this observation, EPAC1 

knockout mice showed fragmented VE-cad junctions and increased permeability as 

analyzed by measuring trans-endothelial resistance. Knockout of EPAC1 reduced Rap1 

activity but no significant effect on RhoA and Rac1 activity was observed (García-Ponce 

et al., 2020). 

 

Unlike other GEFs, GEF-H1 has been shown to interact with microtubules. In bound 

state, GEF-H1 stays inactive and any mechanical alterations to microtubular network 

such as depolymerization results in the release of GEF-H1 and thus actives it (Birkenfeld 

et al., 2008). Birukova and collaborators showed that subjecting human pulmonary ECs 

to cyclic stretch resulted in the depolymerization of microtubular network and 

activation of RhoA and stretch induced cell permeability. The increased RhoA activity 

was due to free active GEF-H1, as knocking down of GEF-H1 diminished stretch induced 

RhoA signaling and permeability (Birukova et al., 2010). Similar work in the context of 

GEF-H1 and thrombin induced permeability supports the role of GEF-H1 in vascular 

permeability (Birukova et al., 2006). In addition to the role of GEF-H1 in mechanical and 

inflammation mediated vascular permeability, GEF-H1 has been shown to be involve in 

leukocyte trans-endothelial migration process as well. Knock-out of GEF-H1 resulted in 

reduced neutrophil infiltration to the inflamed site. Although GEF-H1 deletion did not 

affect neutrophil migration under static conditions, GEF-H1 null neutrophils showed 
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defective crawling under sheer stress (Fine et al., 2016). In addition, stimulation of ECs 

with the proinflammatory molecule LPS induces the expression of GEF-H1 as well as 

increase in the phosphorylation of p65 and p38. Knocking down of GEF-H1 or RhoA 

significantly reduces this p38 and p65 phosphorylation. Through RhoA mediated p38 

activation, GEF-H1 regulates NF-kB transactivation and secretion of inflammatory 

cytokines such as IL-8, IL-6 and TNFa (Guo, Tang, et al., 2012; Guo, Xing, et al., 2012). 

 

SmallGTPase activity has been shown to be altered in cardiovascular diseases such as 

hypertension. In hypertension, increased RhoA/ROCK signaling has been observed in 

VSMCs (Lee et al., 2004). Work by Guilluy et al, identified Arhgef1 (also known as p115 

or Lsc) as a intracellular mediator of vasoconstrictor action of Ang-II (Guilluy et al., 

2010). Treating rat vascular smooth cells with Ang-II resulted in activation of Arhgef1 

through phosphorylation at Tyr738 which was mediated by Jak2. This induction is 

unique as Ang-II failed to activate other well-known Rho-GEFs such as Arhgef11 and 

Arhgef12. In mice model, VSMC specific deletion of Arhgef1 resulted in inhibition of 

Ang-II mediated vascular contraction and resistance to Ang-II induced hypertension. 

Interestingly, Arhgef1-mediated vasoconstriction is specific for Ang-II as Arhgef1 null 

mice arteries have no observable difference in endothelin-1 and phenylephrine-induced 

vasoconstriction. Moreover, RhoA/Rho-kinase activation has been reported in human 

patients of hypertension and similar Ang-II mediated signaling mechanism may have 

been the underlying cause of such activation (Carbone et al., 2015). Although the above 

described activation of Arhgef1 is through the interaction of Ang-II with AT1R, the 

mechanosensitive nature of AT1R described by Zou et al could result in the activation 

of Arhgef1 thus suggesting a potential role of Arhgef1 in mechanotransduction during 

hypertension (Mederos Y Schnitzler et al., 2011; Zou et al., 2004). 

 

Another GEF that is mechanically activated and involved in hypertension is LARG (also 

known as Arhgef12). Using knockout mice models, it has been shown that LARG is 

involved in salt induced-hypertension but not in maintaining normal blood pressure. 

This LARG activity is downstream of G-protein G12-13, as smooth muscle specific 

knockdown of G12-13 gave similar phenotype as LARG knockout (Wirth et al., 2008). 

Integration of LARG in mechanotransduction signaling pathway came from the work in 
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fibroblasts, as mechanical stimulation of integrins using magnetic beads resulted in the 

activation and recruitment of LARG to focal adhesion complexes. This activation of 

LARG is mediated by non-receptor tyrosine protein kinase Fyn. The recruited LARG 

mediates the RhoA signaling thereby causing cellular stiffness (Guilluy, Swaminathan, 

et al., 2011). Interestingly, in ECs, application of mechanical forces to ICAM1 using 

magnetic beads resulted in its clustering, reproducing the natural effect of immune cell 

adhesion and prompted RhoA activation. This ICAM1 clustering was associated with 

LARG activation which activity was proportional to the mechanical strength applied to 

the ECs. Knocking down of LARG in ECs resulted in decreased leukocyte rolling and 

endothelial transmigration (Lessey-Morillon et al., 2014). 

 

Hypertension has been shown to associate with cerebral arterial and intracranial 

aneurysms in human patients  as well as its enlargement and rupture (Rooprai et al., 

2022; Spittell, 1983; Tada et al., 2014; Takagi & Umemoto, 2017; Taylor et al., 1995). This 

was further strengthened by the development and progression of aneurysms induced 

laboratory animal models (Gertz et al., 2013; Lysgaard Poulsen et al., 2016; Strange et al., 

2020). 

In the past decade, association of ARHGEF11 (Zholdybayeva et al., 2018), ARHGEF12 

(Zhang et al., 2015) and ARHGEF17 (Yang et al., 2018b) with intracranial aneurysm (IAs) 

has been described. In their paper, Zholdybayeva et al, identified single nucleotide 

polymorphism in the intronic sequence of ARHGEF11 genomic DNA from Kazakh 

population with IAs (Zholdybayeva et al., 2018). Another study using human IA rupture 

samples identified microRNAs that target ARHGEF12 (M. Zhang et al., 2015). Another 

recent study described the association of mutations in ARHGEF17 with intracranial 

aneurysm in Chinese patients  (Yang et al. 2018). In their study, they have identified at 

least 5 missense mutations in patients with IA that might affect the interaction of 

ARHGEF17 with its interacting partners. Inhibition of arhgef17 expression using 

morpholinos results in intracranial hemorrhage which was rescued by expression of 

human ARHGEF17 in zebrafish model. 

Although, these studies are handful, they impart the association and involvement of 

Rho-GEFs in IAs. Many GEFs may be involved in the pathogenesis of IAs and identifying 
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such GEFs would help us in understanding the pathophysiological mechanisms of IA 

formation. 

 

3. ARHGEF18 

ARHGEF18, also known as p114-RhoGEF, is a 114kDa Rho GEF, first cloned (clone ID: 

KIAA0521) by Ohara’s group as a part of ‘predicting and analysis of coding sequences of 

unidentified human genes’, and was then identified and characterized by Blomquist 

(Blomquist et al., 2000; Ishikawa et al., 1998).  ARHGEF18 is ubiquitously expressed in 

most cell types and tissues. With a high expression in kidney and pancreas, and a low 

expression in heart and brain in humans (Blomquist et al., 2000; Niu et al., 2003).  

 

3.1 Structure 

ARHGEF18 gene encodes for three different isoforms; isoform-1, -2 and -3 and a smaller 

ARHGEF18 transcript was detected in skeletal muscle (Blomquist et al., 2000). 

ARHGEF18 isoform-2, 1015 amino acids in length, is considered as the canonical form 

and is expressed in most cell types. Isoform-1 differs from isoform-2 by additional 158 

amino acids at the N-terminus. However, no special domains have been attributed to 

these additional amino acids. Isoform-3, also known as LOCGEF-X3 is shown to be 

expressed exclusively in eosinophils through a leukocyte-specific transcriptional 

initiation site, that results in 1361 amino acids ARHGEF18. ARHGEF18 isoform regulates 

the cell polarity in activated eosinophils and leukocytes (Turton et al., 2018). All three 

isoforms contain Dbl homology (DH) domain followed by a pleckstrin homology (PH) 

domain, which are characteristics of GEFs and differ in amino acid number at the N-

terminus (Figure 16). Of the three, the canonical isoform-2 is well characterized.  
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Figure 16: Structure of Arhgef18 isoforms 

Schematic representation of all three isoforms of Arhgef18 with known DH, PH and proline-rich domains. 
All three isoforms are identical except at the N-terminus. 

 

3.2 Interaction with small-GTPases: 

The amino acid sequence of ARHGEF18 shows similarities to GEFs specific for RhoA but 

not Rac and Cdc42. In-vitro radioactive GTP[S] labelling experiments using purified 

recombinant ARHGEF18 and small GTPases showed that ARHGEF18 activity is specific 

towards RhoA but not Rac1 or Cdc42 (Blomquist et al., 2000). In contrast, others showed 

that overexpression of ARHGEF18 increased both RhoA and Rac1 activity (Herder et al., 

2013; Niu et al., 2003). Although, no direct transfer of radioactive GTP to Rac1 was 

observed in Arhgef18 overexpression by Blomquist, increased activity in Rac1 observed 

by Niu could be due to the crosstalk between RhoA and Rac1 signaling networks. This 

activation was further supported by increased Rac1 mediated ROS production and 

increased membrane localization of p67phox, a NADPH oxidase subunit in Arhgef18 

overexpressing NIH3T3 cells (Niu et al., 2003). Direct interaction of ARHGEF18 with 

RhoA but not Rac1 was further supported by mass-spectrometry analysis (Paul et al., 

2017). Knocking down of ARHGEF18 in human corneal epithelial cells (HCEs) 

significantly reduced active RhoA, without affecting Rac1 and Cdc42 activity, and 

overexpression increases both active RhoA and phosphorylated MLC (Terry et al., 2011). 

At the junctions, ARHGEF18 regulates RhoA-ROCK activity and actomyosin 

contractility in a spatio-temporal manner, thereby, junctional stability. In support of 

this, ARHGEF18 has been shown to promote actomyosin-driven movement, which is 
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dependent on RhoA activity, and does not affect lamellipodia-driven migration, which 

depends on Rac activity (Terry et al., 2012).  

 

3.3 Role of Arhgef18 in epithelial cells 

Consistent with the role of active RhoA in stress fiber formation, overexpression of 

Arhgef18 in human bladder carcinoma J82 cells induced stress fiber formation 

(Blomquist et al., 2000), and this was further supported by the work where 

overexpression of DH/PH domain of Arhgef18 is sufficient to induce stress fiber 

formation, but not the Proline rich C-terminal domain (Niu et al., 2003). Overexpression 

of Arhgef18 mediates the SRF responsible SRE transcription which was inhibited by 

Clostridium botulinum C3 transferase, a specific ADP-ribosylates which inactivates Rho 

proteins but not Rac and Cdc42 (Blomquist et al., 2000). This action of Arhgef18 was 

shown to be mediated through G-protein Gbg subunit through several multiple 

interactions with multiple domains of Arhgef18 as analyzed in-vitro by overexpressing 

various domains of Arhgef18 (Niu et al., 2003). Another important protein that may 

regulate the Arhgef18 localization is Sept9b. Arhgef18 has been shown to interact with 

septin9b, a cytoskeletal component using yeast two hybrid system and overexpression 

of septin9b in cell culture system reduced both RhoA-activation as well as active RhoA 

mediated stress fiber formation (Mostowy & Cossart, 2012; Nagata & Inagaki, 2005). This 

could be one of the several mechanisms of spatio-temporal regulation of Arhgef18 

mediated RhoA activation. In podocytes, Arhgef18 interacts with EPB41L5 and regulates 

the actomyosin activation and focal adhesion maintenance which are required for 

podocyte physiological function (Schell et al., 2017) (Figure 17) and Knocking down of 

Arhgef18 leads to significant rearrangement of F-actin in podocytes (Lu et al., 2017). 

GPCR independent activation of Arhgef18 during neurulation in frog and zebrafish 

embryos has been reported. This is mediated by a cytoplasmic protein DAPLE which 

activates Gβγ subunit of G-proteins which in turn activates Arhgef18 and RhoA-ROCK 

signaling and apical cell constriction (Marivin et al., 2019).  

 

In the context of cell-cell junction, using epithelial cells (Caco-2 & HCE), ARHGEF18 

is shown to be localized at tight-junction but not adherent-junction, and is required for 
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junctional maturation but not for junction initiation and spreading (Terry et al., 2011). 

Knocking down of ARHGEF18 results in discontinuous junctional ZO1 and increased 

permeability. At tight junctions, ARHGEF18 forms a junctional complex with myosin-

IIA, ROCKII and Cingulin. Cingulin acts as an adaptor protein and regulates the 

localization of ARHGEF18 to matured junctions (Terry et al., 2011).  Another protein, 

LKB1, a ser/thr kinase, has been shown to interact with Arhgef18 and disruption of this 

interaction by overexpression of dominant negative mutants also resulted in punctation 

of junctional ZO1, indicating the importance of ARHGEF18 at tight junctional stability 

(X. Xu et al., 2013) (Figure 17). In a RNA interference screen to identify GEFs responsible 

for epithelial cell migration in scratch wound assay, Arhgef18 has been shown to be 

responsible for mediating the long distance signaling during collective cell migration 

(Zaritsky et al., 2017). During migration, Arhgef18 mediates double phosphorylation of 

MLC at the cell-cell junctions. Silencing of Arhgef18 results in reduced junctional double 

phosphorylated myosin but not at the leading edge (Terry et al., 2012). In epithelial cells, 

knocking down of Arhgef18 results in redistribution of myosin from junctions to stress 

fibers along with phosphorylated MLC, without apparent effect on total phospho-MLC 

and MLC phosphatase (Terry et al., 2011).  

In the context of apico-basal cell polarity and morphogenesis, RhoA activation plays 

important role in developmental signaling pathways such as Wnt-planar cell polarity 

pathway. In N1E-115 mouse neuroblastoma cells, Arhgef18 mediates Wnt-3a induced 

RhoA activation via interaction with both Dvl and Daam1 proteins, thus playing 

significant role in mammalian embryo development (Takuji Tsuji, 2010) (Figure 17). In 

3D culture systems, silencing of ARHGEF18 resulted in epithelial cysts with multiple 

lumen without affecting the polarity (Terry et al., 2011). This was further supported by 

Kim and collaborators, using the MDCK-HGF induced lumen formation model they 

demonstrated that knocking down of Arhgef18 results in multiple lumen formation and 

this effect was due to low RhoA and ROCK-I activity and reduced epithelial cell 

movement during lumen formation (Kim et al., 2015). On the other hand, in epithelial 

cells, Arhgef18 is recruited to the apical cell-cell boundary by an apical polarity regulator 
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Figure 17: Schematic representation of Arhgef18 signaling in epithelial cells 

In epithelial cells, Arhgef18 interacts with multiple partners and regulate RhoA-ROCK dependent 
cytoskeletal re-arrangement, migration, apico-basal polarity and transcription. 

 

 

Patj through interaction with PDZ binding domain, where it was activated by Lulu2 

which results in local activation of RhoA and circumferential actomyosin belt (H. 

Nakajima & Tanoue, 2011). Consistently with the role of Arhgef18 in apico-basal polarity 

maintenance in-vitro, knocking down of Arhgef18 results in the loss of apico-basal 

polarity in retinal and neuro epithelial cells in medaka fish and also increased 

proliferation of retinal progenitor cells (Herder et al., 2013). In HeLa cells, ARHGEF18 is 

important for Crumb homolog 3A (CRB3A) induced epithelial cell phenotype with well-

established circumferential actin cytoskeleton and is mediated though Ehm2-Arhgef18 

dependent RhoA-ROCK2 signaling (Loie et al., 2015). 

In epithelial cells, ARHGEF18 maintains tight junctional stability as well as apico-basal 

cell polarity through interacting with various partners and regulating cytoskeletal 

dynamics through localized activation of RhoA-ROCK signaling. 
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3.4 Role of Arhgef18 in endothelial cells 

Although, function of Arhgef18 is well characterized in epithelial cells, very little work 

has addressed the role of Arhgef18 in ECs. In ECs, Arhgef18 has been shown to localized 

at tight junctions and required for junctional tension and integrity in microvascular ECs 

(Tornavaca et al., 2015). In-vivo, complete deletion of Arhgef18 resulted in embryonic 

lethality (Beal et al., 2021). Despite the role of Arhgef18 in junctional integrity, 

endothelial specific Arhgef18 knockout mice develop normally undermining the 

importance of Arhgef18 in other cell types such as VSMCs. This is partially supported by 

the reduced vasculature, increased hemorrhage and oedema observed in Arhgef18-/- 

Arhgef18-/- embryos, which resembles the phenotypes of defective vascular network 

formation and compromised vascular permeability.  

In ECs, ARHGEF18 has been shown to localize to the tight junctions and involved in 

maintaining junctional tension. 

 

3.5 Arhgef18 as a part of mechanotransduction complex. 

The work that supports the role of ARHGEF18 in mechanotransduction came in 2015, 

using endothelial cells (HDMEC), Tornavaca showed that Arhgef18 is recruited to tight 

junctions by ZO-1 and JACOP (Figure 18 top). Silencing ARHGEF18 results in loss of 

junctional vinculin, thereby, compromised VE-cadherin mediated endothelial cell-cell 

tension (Tornavaca et al., 2015). In Caco-2 cells, ARHGEF18 is responsible for the 

tension-mediated activation of RhoA signaling at adheren junctions by recruitment 

through Ga12, which activates mDia and F-actin (Acharya et al., 2018). Similar function 

of ARHGEF18 in RhoA activation-mediated junctional tension at adheren junctions 

during cell migration was reported. Such localized RhoA activation is necessary for 

junctional stability through E-cadherin recruitment thereby protection against 

mechanical stress during migration (Gupta et al., 2021).  In epithelial (MDCK) cells, 

Haas et al identified the role of Arhgef18 in extracellular matrix stiffness mediated tight 

junctional remodeling (Figure 18 bottom). They showed that knocking down of Arhgef18 

resulted in disassembly of tight junctions on hard surfaces such as hydrogels with 

stiffness of 40kPa and glass coverslips but not on the hydrogels with low stiffness (1kpa). 
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This works through junctional localization of Arhgef18 and could be mediated through 

stiffness-activated integrin signaling. This junctional localization of Arhgef18 is 

regulated by JAM-A thereby formation of appropriate focal adhesions (Haas et al., 2020).  

These reports established ARHGEF18 as a part of mechanotransduction complex. The 

recruitment of ARHGEF18 to the tight and adheren cell-cell junction was regulated by 

interaction with multiple proteins, wherein it regulates localized RhoA activity thereby 

junctional tension and maintaining junctional stability.  
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Figure 18: Schematic representation of Arhgef18 in mechanotransduction pathway 

Top: Arhgef18 recruited to tight junction by ZO1 along with JACOP, where it interacts with vinculin and mediates 
VE-cad based actin based cytoskeletal tension. Knockdown of Arhgef18 resulted in reduced junctional localization 
of ZO1, JACOP and Vinculin, and, altered cytoskeletal tension. 

Bottom: Arhgef18 mediates stiffness induced cytoskeletal and focal adhesion remodeling which is finetuned by 
JAM-A which negatively regulates the recruitment of Arhgef18 to tight junction. Gα12 mediated signaling might 
induce Arhgef18 localization (Adapted and modified from Haas et a.l,2020 & Acharya et al., 2018). 

 



INTRODUCTION 

 

 70  

 

3.6 Role of ARHGEF18 in pathophysiology  

An insight of ARHGEF18 role in pathological conditions came from multiple studies that 

reported mutations and overexpression of ARHGEF18 in human diseases.  

Increased expression of ARHGEF18 was observed in Ovarian serous 

cystadenocarcinoma (OSCC), squamous-cell carcinoma (SCC) and  in Cobalt chloride 

induced polyploid tumor giant cells (F. Shi et al., 2021; C. Song et al., 2013; Q. Zhao et 

al., 2021). In SCC, increased expression of ARHGEF18 was found to be associated with 

lymph node metastasis, which supports its role in promoting myosin-dependent 

amoeboid-like locomotion which was mainly used by tumor cells (C. Song et al., 2013; 

Terry et al., 2012). 

 

Mutations in Arhgef18 has been found in adult-onset retinal degeneration and in 

orofacial cleft patients (Arno et al., 2017; El-Sibai et al., 2021). In adult-onset retinal 

degeneration, multiple mutations such as c.808A>G (p.Thr270Ala),  c.2738_2761del 

(p.Arg913_Glu920del) and other nonsense mutation were found. Of the mutations, 

p.Thr270Ala mutation showed a reduced GEF activity and p.Arg913_Glu920del has not 

shown any defect in GEF activity. Overexpression of p.Thr270Ala mutant showed 

altered cortical actomyosin cytoskeletal rearrangement. The effect of other mutations 

in ARHGEF18 function and it relevance in the pathogenesis of retinal degeneration is 

not known (Arno et al., 2017).  

In orofacial cleft patients, mutation in Arhgef18 coding sequence (G>A) has been 

identified in fibroblastic cells of orofacial cleft patients. These nucleotide transition 

results in change in amino acid p.Arg495Gln. This mutation falls in DH/PH domain of 

Arhgef18 and could result in reduced GEF activity. However, no functional studies has 

been done to characterize this mutation (El-Sibai et al., 2021). 

 

Association of single nucleotide polymorphism in the intron and 3’UTR of ARHGEF18 

has been demonstrated in Systemic Capillary Leak Syndrome and Chinese population 

with the risk of non-idiopathic pulmonary arterial hypertension respectively. However, 

how these SNP affects the Arhgef18 mRNA stability and/or translation has not been 
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reported (D. Li et al., 2018; Xie et al., 2013). Work by Frauenstein et al, found a dampened 

TLR2 mediated NFkB activation in human monocytes knockdown for Arhgef18 

indicating an important role of ARHGEF18 in NFkB mediated inflammatory process. 

(Frauenstein et al., 2021). 

These studies shed light on the importance of ARHGEF18 in human physiology and its 

alterations in pathological conditions. Moreover, ARHGEF18 could be key molecule 

underlying the pathogenesis of many inflammatory diseases. 
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     From the afore-discussed literature based on in-vitro studies and involvement of 

altered hemodynamics in human pathological conditions, it is evident that blood flow-

mediated mechanical forces are pivotal for vascular cell identity, vascular network 

formation and vascular homeostasis. Hemodynamic regulated cytoskeletal organization 

plays important role in vascular cell health as ECs which experience turbulent blood 

flow exhibit omnidirectional cytoskeletal network and are the one prone to exhibit a 

pro-inflammatory profile and are proatherogenic. 

 

     Small-GTPases such as RhoA, Rac1 and Cdc42 regulate the cytoskeletal dynamics and 

rearrangement in response to the external signal. GEFs mediates the rate limiting step 

in the regulation of small-GTPases activity and contributes to their precise activation in 

a spatio-temporal manner, and, thus evolved as master regulators. Identifying how 

hemodynamic forces modulate the expression and activity of these master regulators in 

vascular cells could help us to better understand vascular pathophysiology. 

 

Based on this, my PhD thesis is focused on two main objectives: 

1) Identify the mechanosensitive GEFs in ECs and VSMCs in-vitro. 

2) Functionally characterize the identified mechanosensitive GEFs in vascular cell 

physiology in-vitro and in-vivo. 
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1. Identification of mechanosensitive GEFs in ECs and VSMCs in-

vitro 
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In order to identify mechanosensitive GEFs, a 3’seq-RNA Profiling (3’SRP) analysis was 

performed using HUVECs and primary rat aortic VSMCs were subjected to shear stress 

and cyclic stretch respectively. In addition, different types of arteries from 

spontaneously hypertensive (SHR), spontaneously hypertensive stroke prone (SHR-SP) 

rats and wistar-kyoto (WKY) rats were also used. SHR and SHR-SP rats develops 

hypertension and SHR-SP present cerebral stroke without a well-defined genetic cause 

and external stimulus. WKY rats served as wild type normotensive control. As VSMCs 

contribute to higher percentage of total cell population in arteries, the arteries from 

SHR and SHR-SP rats served as an in-vivo source of VSMCs that experience pathological 

shear stretch. 

 

1.1 3’SRP analysis of VSMCs 

1.1.1. Materials and Methods 

 

VSMC isolation and culture: Primary rat VSMC were isolated from 4-week-old Wistar 

rats as follows. Rats were sacrificed according to the institutional animal handling 

ethics. Then the thoracic aorta was dissected out and endothelial cells were removed by 

gently scraping the aortic lumen with forceps. The remaining aortic tissue was then 

sliced into small pieces, and digested with collagenase type-11 (L5004176; Worthington) 

at a concentration of 1.5mg/ml for 2 h at 370C. After the digestion, collagenase was 

inactivated with serum, the tissue was spun down and plated in a 6 well plate in the 

presence of complete medium (DMEM+10%FCS+P/S). The VSMCs which migrated out 

from the tissue, were cultured in complete medium and were used for experiments in 

between passage 2 & 4. 

 

Application of cyclic stretch: For cyclic stretch experiments, rat aortic VSMCs were 

plated on fibronectin (1:400 dilution, FC010; Merck Millipore) coated silicone plates 

(MCFX-424; World Precision Instruments) at a density of 50,000 cells/cm2. Once 

reaching 100% confluency, cells were subjected to physiological stretch (10%, 1Hz) and 

pathological stretch (20%, 1Hz) conditions for 30 min and 24 h using mechanoculture 

FX (CellScale) stretching device. 
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Artery tissue samples:  12-month-old WKY, SHR, SHR-SP rats (Charles River) were 

sacrificed according to the institutional animal handling ethics. Cerebral and 

mesenteric arteries were isolated and used for RNA extraction and 3’SRP analysis 

 

RNA extraction: RNA from in-vitro samples (static and stretch applied VSMCs) were 

extracted using Nucleospin XS kit (Macherey-Nagel) according to the product manual. 

For the isolation of RNA from cerebral and mesenteric arteries, tissues were frozen in 

liquid nitrogen and crushed into powder using motar and pestle. The powdered tissue 

was then subjected to two stage purification. First, the RNA was separated from protein 

and DNA using TRIzol (Ref.15596018, Thermofischer). Then, the upper aqueous phase 

containing RNA which was obtained from trizol purification, was mixed with ethanol 

(1:3 ratio), added to the RNA purification columns from Nucleospin XS plus kit 

(Macherey-Nagel) and processed according to the product manual. The purity of the 

RNA was measured using nanodrop and samples with an absorbance of 1.8 (at 260/280) 

and above 2.0 (at 260/230) were used for 3’SRP analysis.  

3’SRP analysis was performed according to the 3′-Digital Gene Expression (3′-DGE) 

approach developed by the Broad institute (Charpentier et al., 2021). The libraries were 

prepared from 10 ng of total RNA in a volume of 4µl. The mRNA poly(A) tails were 

tagged with universal adapters, well-specific barcodes and unique molecular identifiers 

(UMIs) were used during template-switching reverse transcription. Barcoded cDNAs 

from multiple samples were then pooled, amplified and fragmented using a transposon-

fragmentation approach which enriches for 3'ends of cDNA : 200ng of full-length cDNAs 

were used as input to the Nextera™ DNA Flex Library Prep kit (ref #20018704, Illumina) 

and Nextera™ DNA CD Indexes (24 Indexes, 24 Samples) (ref #20018707, Illumina) 

according to the manufacturer's protocol (Nextera DNA Flex Library Document, ref 

#1000000025416 v04, Illumina). 

Size library was controlled on 2200 Tape Station Sytem (Agilent Technologies). A library 

of 350-800 bp length was run on a NovaSeq 6000 using NovaSeq 6000 SP Reagent Kit 

100 cycles (ref #20027464, Illumina) with 17*-8-105* cycles reads. 
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Bioinformatics protocol: Raw fastq pairs matched the following criteria: the 16 bases 

of the first read correspond to 6 bases for a designed sample-specific barcode and 10 

bases for a unique molecular identifier (UMI). The second read (104 bases) corresponds 

to the captured poly(A) RNAs sequence. 

Bioinformatics steps were performed using a snakemake pipeline 

(https://bio.tools/3SRP). Samples demultiplexing was performed with a python script. 

Raw paired-end fastq files were transformed into a single-end fastq file for each sample. 

Alignment on refseq reference transcriptome, available from the UCSC download site, 

was performed using bwa. Aligned reads were parsed and UMIs were counted for each 

gene in each sample to create an expression matrix containing the absolute abundance 

of mRNAs in all samples. Reads aligned on multiple genes or containing more than 3 

mismatches with the reference were discarded. The expression matrix was normalized 

and differentially expressed genes (DEG) were searched using the R package deseq2 

(Love et al., 2014). If DEG were found, functional annotation was performed using the 

R package ClusterProfiler (Wu et al., 2021; G. Yu et al., 2012). GO and KEGG enrichment 

analysis, as well as Gene Set Enrichment Analysis (GSEA), provided insights into solving 

biological hypothesis.  

 

cDNA synthesis and qRT-PCR analysis: For VSMC and rat arteries samples, cDNA 

was synthesized using M-MLV reverse transcriptase (28025013; Invitrogen), random 

primers (48190011; Invitrogen) and 500ng of RNA according to the manual. qRT-PCR 

was performed using SYBR green (Eurogentec) and gene specific primers (Table 3) on 

real time PCR machine (Applied biosystems) according to the standard protocol. 

 

Table 3: List of qRT-PCR primers used to validate 3’SRP genes in VSMCs 

Primer Name Sequence 

Net1-Fw 5’- TGGATGAGAAGCAGAAGGAC -3’ 

Net1-Rv 5’- TAAACCTGGTAGGAGTGGC -3’ 

Fn1-Fw 5’- CGAGGTGACAGAGACCACAA -3’ 

Fn1-Rv 5’- CTGGAGTCAAGCCAGACACA -3’ 

Col1A1-Fw 5’- TACAGCACGCTTGTGGATGG -3’ 
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Col1A1-Rv 5’- CAGATTGGGATGGAGGGAGTT -3’ 

IGF1-Fw 5’- CCTACAAAGTCAGCTCGTTC -3’ 

IGF1-Rv 5’- GTCTTGTTTCCTGCACTTCC -3’ 

GAPDH-Fw 5’-AACCCATCACCATCTTCCAG-3’ 

GAPDH-Rv 5’-CCAGTAGACTCCACGACATAC-3’ 

 

1.1.2. Results 

3’SRP analysis allowed the identification of several mechanosensitive GEFs in VSMCs 

in-vitro and in-vivo. In cerebral arteries, significant variation in the transcript levels of 3 

GEFs, 7 GAPs and 1 guanine nucleotide releasing factor were observed between WKY, 

SHR and SHR-SP samples (Figure 19). 

To validate the 3’SRP results by qRT-PCR, Net1 was chosen as its expression was 

increased in cerebral arteries of SHR and SHR-SP rats compared to WKY control rats. 

In addition, a similar expression pattern in mesenteric arteries was observed, as well as 

a high basal expression of Net1 in cerebral arteries was seen compared to mesenteric 

arteries (Figure 20). qRT-PCR analysis did not validate the increased transcription of 

Net1 in SHR and SHR-SP cerebral arteries compared to WKY controls, but confirmed 

the transcript fold difference between mesenteric and cerebral arteries (Figure 22a).  

 

In rat VSMCs that underwent physiological (10%; 1Hz) and pathological (20%; 1Hz) 

cyclic stretch, very few GEFs/GAPs were significantly altered between physiological and 

pathological stretch conditions. At the shorter time point (30min), Arhgef31 transcript 

was significantly downregulated and Arhgap10 was significantly upregulated in 

pathological cyclic stretch compared to physiological cyclic stretch conditions. 

However, no difference was observed between the two conditions at longer time point 

i.e., 24h (Figure 21). Also, Vav1 transcript level was increased upon 20% stretch at 24h 

compared to the 10% condition (Figure 21). 

Though, it was only a trend in the 3’SRP results, qRT-PCR validation of the primary rat 

aortic VSMCs samples showed a significant induction of Net1 transcript levels in 

pathological stretch (20%; 1HZ) condition compared physiological stretch (10%; 1Hz) 

(Figure 22b). In parallel to Net1, we did saw an increase in the expression of previously 
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known stretch regulated genes such as FN1, Col1A1 and IGF1 under pathological stretch 

(20%; 1HZ) condition compared physiological stretch (10%; 1Hz) (Figure 22b). 

Figure 19: 3’SRP analysis of RNA from WKY, SHR, SHR-SP rat cerebral arteries 

Volcano plot shows the altered GEFs and GAPs expression between WKY and SHR-SP cerebral arteries (a); qRT-PCR 
validation of GEFs/GAPs significantly altered in 3’SRP analysis between WKY, SHR, SHR-SP cerebral arteries (b). 
Statistical significance was calculated by One-way ANOVA followed by Tukey’s multiple comparison test. *p<0.03, 
**<0.002, ***p<0.0002  
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Figure 20: Comparative 3’SRP analysis of Net1 expression in mesenteric and cerebral arterial tissue 

Volcano plot shows the altered gene expression at transcript level between WKY and SHR-SP mesenteric arteries 
(a); bar diagram shows the number of Net1 transcript reads in mesenteric and cerebral arteries of WKY, SHR, 
SHR-SP rats (b). 
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Figure 21: 3’SRP analysis of rat aortic VSMCs subjected to various stretch conditions 

 Volcano plot shows the altered gene expression in VSMCs subjected to 10% and 20% cyclic stretch for 24hrs 
(a); bar diagram shows significantly altered GEFs/GAPs between 10% and 20% cyclic stretch applied for 
30min (top) and 24h (bottom) time point (b). One-way ANOVA followed by Tukey’s multiple comparison 
test. *p<0.03, **<0.002, ***p<0.0002 

. 
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Figure 22: qRT-PCR validation of Net1 gene expression 

Bar diagram represents the fold difference in Net1 transcript between mesenteric and cerebral arteries of 
WKY, SHR, SHR-SP rats (a) and Net1, Fn1, Col1A1, IGF1 in VSMCs subjected to physiological (10%; 1Hz), and 
pathological (20%; 1Hz) stretch conditions for 24 h (b). One-way ANOVA followed by Tukey’s multiple 
comparison test. *p<0.03, **<0.002, ***p<0.0002 
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1.2 3’SRP analysis of ECs 

1.2.1. Materials and Methods 

Detailed information on materials and methods which was used could be found in the 

following accompanied article. Briefly, HUVECs (p2-p4) were subjected to physiological 

[16 dynes/cm2 (HSS)] and pathological [3.6 dynes/cm2 (LSS) & 36 dynes/cm2 (HSS)] 

shear stress for 24 h. RNA was extracted and 3’SRP analysis was performed. Genes that 

showed significant changes in their transcript levels relative to the shear stress applied 

were then validated by qRT-PCR using gene specific primers (Table 4).  

 

Table 4: qRT-PCR primers used to validate 3’SRP results in ECs 

Gene name Taqman probes ID 

ARHGEF18 Hs00248726_m1 

ARHGEF40 Hs01554494_m1 

KLF2 Hs00360439_g1 

ARHGEF26 Hs00248943_m1 

ARHGEF37 Hs01049681_m1 

SOS2 Hs01127273_m1 

TRIO Hs01125865_m1 

GAPDH Hs04420697_g1 

UBC Hs00824723_m1 

HPRT Hs02800695_m1 

 

1.2.2. Results 

Our 3’SRP analysis revealed changes in gene expression in ECs upon SS application for 

24h. Statistical analysis had identified 6 GEFs and 4 GAPs whose expression was 

modulated relative to the SS applied (Figure 23). Of the identified GEFs and GAPs, 

ARHGEF18, ARHGEF40, ARHGEF26, ARHGEF37, SOS2 and TRIO were selected for 

further validation by qRT-PCR, as they play an important role in endothelial cell biology 

as well as cell-cell junction maintenance. In qRT-PCR analysis, only two GEFs, 

ARHGEF18 and ARHGEF40, presented the same expression pattern as observed in 3’SRP 

with statistical significance. ARHGEF18 transcript level was inversely proportional to the 
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SS applied and showed a high transcript under static conditions and was reduced as the 

SS value increased. Furthermore, opposite expression pattern was observed for 

ARHGEF40 with low expression under static condition and an increased expression 

relative to the SS (Figure 24).  

 

 

Figure 23: 3’SRP analysis of RNA from HUVECs subjected to physiological and pathological shear stress 

Volcano plot shows altered GEFs expression in HUVECs subjected to HSS relative to static conditions (a).  
Bar graph represents reads of statistically significant GEFs (top) and GAPs(bottom) from 3’SRP analysis 
between various shear stress conditions (b). Statistical significance was calculated by Two-way ANOVA 
followed by Tukey’s multiple comparison test. *p<0.03, **<0.002, ***p<0.0002 
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Figure 24: qRT-PCR validation of GEFs expression in HUVECs under various shear stress conditions 

Bar graph represents GEFs expression significantly altered and were successfully validated by qRT-PCR. 
KLF2 expression serves as a positive control for responsiveness of HUVECs to shear stress (a). Bar graph 
represents GEFs whose expression was not successfully validated by qRT-PCR (b). Statistical significance 
was calculated by One-way ANOVA. *p<0.03, **<0.002, ***p<0.0002  
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1.3 Take-home message from 3’SRP analysis 

From the 3’SRP analysis on VSMCs, ECs and arteries, we were able to successfully 

validate three GEFs whose expression was modulated related to the mechanical forces 

the cells experienced in-vitro or in-vivo. 

 

Net1 transcript level was increased in primary rat aortic VSMCs exposed to 20% cyclic 

stretch in-vitro. Net1, a RhoA specific GEF (Alberts & Treisman, 1998), was shown to be 

involved in developmental processes such as mesendoderm formation (Wei et al., 2017) 

as well as in tumor angiogenesis (Y. Zhang et al., 2017). However, previous work from 

our lab demonstrated that complete deletion Net1 in mice showed no defect in vascular 

development without any cardiovascular phenotype (unpublished data). 

ARHGEF18 transcript level was SS dependent and its mRNA level was inversely 

correlated with the magnitude of shear stress applied on ECs. ARHGEF18 is a RhoA 

specific GEF and well characterized for its role in epithelial cell cytoskeletal 

organization, migration and maintenance of apico-basal polarity. However, very little is 

known in the context of ECs and vascular physiology. 

ARHGEF40 expression was also modulated by SS in ECs and is directly proportional to 

SS magnitude. A quick pubmed search resulted in just 13 articles since the time of its 

discovery in 2005 (Tse et al., 2005), where it was described as a RhoA GEF and it role 

was described in mechano-transduction mediated cytoskeletal rearrangement 

(Fujiwara et al., 2016), epithelial cell tube morphology (Nishimura et al., 2018), along 

with a significant role in cancer cell proliferation and migration (Gu et al., 2022). 

 

Taken into consideration about the previously published work and availability of   

molecular tools to successfully study the role of GEF in-vitro and in-vivo, ARHGEF18 was 

chosen to study its role in the mechanosensitivity of ECs and angiogenesis. 
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2. Functional characterization of mechanosensitive ARHGEF18 

in shear stress mediated EC signaling 
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2.1 Role of ARHGEF18 in ECs physiology under longer shear stress 

conditions (24 h) 

To understand the role of ARHGEF18 in SS-induced ECs response, we performed in-

vitro experiments using ECs (HUVECs) under static and SS conditions. The results are 

described in the form of an article in the following pages onwards.  

 

In brief, we showed that SS affected the transcription level of AHRGEF18. To understand 

how SS modulates the activity and expression of ARHGEF18 in ECs, active GEF trapping 

experiments were performed using nucleotide free mutants of RhoAG17A and Rac1G15A. 

Under the SS conditions tested (static, 3.6 dynes/cm2, 16 dynes/cm2 and 36 dynes/cm2), 

ARHGEF18 interacted only with RhoA but not Rac1. In addition, we observed a decrease 

in ARHGEF18 activity under pathological SS conditions (3.6 dynes/cm2 and 36 

dynes/cm2) compared to physiological SS condition (16 dynes/cm2). Interestingly, 

knocking down of ARHGEF18 using RNAi resulted in a reduced RhoA and Rac1 activity. 

At cellular level, under static conditions, ARHGEF18 silenced ECs showed a reduction 

in cell adhesion, focal adhesion maturation, migration and an increased network 

forming capacity compared to control cells as assayed by in-vitro assays. However, 

silencing ARHGEF18 did not affect ECs permeability. Under physiological SS conditions, 

knocking down of ARHGEF18 resulted in an impaired ECs alignment parallel to the 

direction of flow and a reduction in focal adhesion points as well as localization of tight 

junction proteins ZO1 and CLDN5 at cell-cell junctions. Similar results were also 

obtained using GEF mutant (ARHGEF18Y260A) overexpressing cells. 

At molecular level, we observed that knocking down of ARHGEF18 resulted in 

inhibition of shear stress mediated p38 activation and this response was dependent on 

the GEF activity as cell overexpressing GEF mutant (ARHGEF18Y260A) also resulted in 

similar results. p38 specific inhibition exhibited similar defective ZO1 localization and 

cytoskeletal arrangement similar to ARHGEF18 knockdown cells.  

These results indicate that ARHGEF18 is mediating its effect through p38 signaling 

pathway and is GEF activity dependent. 
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2.2 Complementary results 

 

2.2.1. Effect of ARHGEF18 silencing on capillary formation and ECs 

permeability in static conditions 

2.2.1.1 Materials and Methods 

Network formation assay was performed on Matrigel (354230; Corning) in 96 well 

plate. HUVECs were plated on Matrigel at a density of 15000 cells per well in complete 

medium. The network formation was photographed at 20 min interval for 24 h using 

JuLi Stage microscope and was analyzed using Fiji macro (Angiogenesis analyzer). 

 

For permeability assay, HUVECs expressing shRNAs were plated onto 0.4mm trans-

well inserts (353095; Corning) coated with 0.2% gelatin (G1393; Sigma-Aldrich). Once 

the cells formed a confluent monolayer, fluorescent dextran dyes 3 kDa and 70 kDa 

(D3329, D1540 respectively; Thermofisher) were added to the top chamber at a 

concentration of 1mg/ml. Medium from lower chamber was collected at different time 

points. Fluorescence was measured using Varioskan LUX (Thermofisher; Excitation at 

595nm and emission at 615nm for 3kDA dextran; Excitation at 570nm and emission at 

590nm for 70kDa dextran). 

2.2.1.2 Results 

Matrigel assay showed that, compared to control ECs, ARHGEF18-deficient ECs formed 

a denser capillary network (Figure 25 a) with a decrease in mean mesh size (Figure 25 

b) and an increase in number of connections (Figure 25 c). This observation suggests 

that the number of loops formed was increased without significant increase in tube 

length.  

From dextran transwell permeability assay, we observed that ARHGEF18 silencing did 

not affect permeability as both smaller molecules (3kDa) and large (70kD) molecules 

dextran beads crossed the endothelial layer at the same speed in shNT, shA18.1 and 

shA18.4 expressing conditions (Figure 25 d). This suggests that the loss of ARHGEF18 

expression did not affect ECs permeability.  
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2.2.2. Effect of ARHGEF18 silencing on RhoA and Rac1 activity under 

physiological shear stress 

To determine if ARHGEF18 affects the activity of RhoA and Rac1, confluent monolayers 

of control and ARHGEF18-depleted ECs were subjected to physiological (16 dynes/cm2) 

SS condition for 24 h, then lysed to measure RhoA and Rac1 activity pulldown 

Figure 25: Effect of ARHGEF18 on HUVECs network forming capability and permeability 

Representative image of matrigel network formation of HUVECs expressing either non-target (shCTR) or 
ARHGEF18 specific shRNAs (shA18.1) at 1 h and 12 h post-seeding(a), Quantification of mean mesh size (b) and 
number of connections in HUVECs expressing non-targeted(shNT) or ARHGEF18-targeted shRNAs (sh18.1 and 
shA18.4) (c). Permeability of control (shNT) and ARHGEF18 shRNA (shA18.1, shA18.4) expressing HUVEC 
monolayers on transwell membrane under static conditions (d). Permeability was assessed by the 
measurement of fluorescence of FITC-conjugated 3 kDa – and 70 kDa-dextrans in the lower chamber at 
different time-points after its addition to the upper chamber at t0 min. Data are expressed as mean+/-SEM. 
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experiments using Rho-binding domain of rhotekin and PAK, respectively. were 

performed using GST-RBD and GST-PBD Sepharose beads. Western blot analysis 

showed a significant reduction in active RhoA and Rac1 in ARHGEF18-deficient ECs 

compared to controls (Figure 26). This suggest that ARHGEF18 modulate the activity of 

both RhoA and Rac1 in ECs under SS. 

 

Figure 26: Effect of ARHGEF18 knockdown on RhoA and Rac1 activity under physiological shear stress 
conditions 

Quantification and representative immunoblot of RhoA (a) Rac1 (b) and GAPDH in lysates of HUVECs 
expressing either non-targeting (shNT) or ARHGEF18 specific shRNAs (shA18.1, shA18.4) under 
physiological SS (16 dynes/cm2) for 24 h. Data were expressed as mean+/-SEM. 

 

2.2.3. Shear stress mediated ARHGEF18 activity at short time points  

As observed before, pathological SS decreases the activity of ARHGEF18 at 24 h. 

However, in-vitro, SS activates small-GTPases and downstream signaling networks as 

early as 5 min (Iring et al., 2019; Shay-Salit et al., 2002; Wojciak-Stothard & Ridley, 2003). 

To analyze how SS modulate the ARHGEF18 activity at shorter time points, active GEF 

pulldown experiments using GST-RhoAG17A were performed on HUVECs subjected to 

physiological (16 dynes/cm2) and pathological shear stress (3.6 dynes/cm2 and 36 

dynes/cm2) conditions for 0 min, 5 min, 30 min and 6 h. Although we were able to 

capture active ARHGEF18 at all time-points, we did not see any difference in the activity 

between physiological and pathological shear stress conditions (Figure 27). 
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2.2.4. Effect of ARHGEF18 silencing on shear stress activated signaling 

networks at short time points   

Although we did not observe any alterations in ARHGEF18 activity under SS conditions 

at short time points tested, ARHGEF18 was still active under such conditions and could 

mediate SS induced signaling mechanisms in ECs. To understand how ARHGEF18 

affects SS activated signaling network at early time points, control and ARHGEF18-

depleted ECs were subjected to physiological SS (36 dynes/cm2 for 0 min, 5 min, 30 min), 

then lysed and western blot analysis was performed to study the alterations in 

previously known SS-mediated signaling mechanisms such as AKT, ERK, SRC, and p38. 

Of the signaling mechanisms tested, ARHGEF18 silencing did not affect the activation 

Figure 27: ARHGEF18 activity under various shear stress conditions at short time-points  

Representative immunoblots of ARHGEF18, RhoA and GAPDH in GST-RhoAG17A pulldown fractions and total 
cell lysates of HUVECs subjected to static, physiological SS (PSS) and pathological SS (LSS, HSS) for 5 min, 30 
min and 6 h time points (top). Quantification of relative ARHGEF18 activity in HUVECs subjected LSS, PSS and 
HSS conditions for 5 min, 30 min and 6 h time points. Data were expressed as mean+/-SEM. 
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of any tested signaling molecules at early timepoints 0 min and 5 min (Figure 28). 

However, at 30 min, we observed a tendency of decrease in SS induced p38 and paxillin 

phosphorylation in ARHGEF18 knockdown ECs compared to control cells (Figure 28).  
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2.2.5. Role of ARHGEF18 in ECs inflammation 

Altered SS and inflammation has been known to associate with various vascular 

pathologies (Cecchi et al., 2011; Sullivan et al., 2000). In addition, p38 signaling has been 

shown to be involved in vascular inflammation (Elkhawad et al., 2012). As our data 

suggested that ARHGEF18 regulates SS mediated p38 activation, we went on to 

Figure 28: Effect of ARHGEF18 silencing on shear stress activation of ERK, SRC and VEGFR2 at short time points 

Representative immunoblots of ARHGEF18, phospho-p38, total-p38, phospho-paxillin, total-paxillin, phospho-ERK1/2, 
total-ERK1/2, phospho-VEGFR2, total-VEGFR2, phospho-SRC, total-SRC, phospho-AKT, total-AKT, phospho-eNOS and 
GAPDH in total cell lysates of HUVECs expressing either non-targeting (shNT) or ARHGEF18 specific shRNAs (shA18.1, 
shA18.4) under physiological SS (PSS) for 0 min 5 min and 30 min time points (left). Quantification of relative fold change 
of ARHGEF18, phospho-p38, phospho-paxillin, phospho-ERK1/2, phospho-VEGFR2, phospho-SRC, phospho-AKT and 
phospho-eNOS in expressing either non-targeting (shNT) or ARHGEF18 specific shRNAs (shA18.1, shA18.4) under 
physiological SS (PSS) for 0 min 5 min and 30 min time points (right). Data were expressed as mean+/-SEM. Statistical 
significance was calculated by 2way ANOVA followed by Tukey’s multiple comparison test. *p<0.03, **<0.002, 
***p<0.0002 
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investigate the role of ARHGEF18 in EC inflammation under SS. For this purpose, we 

chose TNFα as an inflammatory stimulus, which has been shown to play crucial role in 

vascular inflammation (Brånén et al., 2004) as well as its ability to modulate p38 

signaling (Mukaro et al., 2018). Confluent control and ARHGEF18-deficient ECs 

monolayers were subjected to physiological (16 dynes/cm2) SS condition in the absence 

and presence of TNFα at a concentration of 2ng/ml for 24hrs. Knocking down of 

ARHGEF18 did not have much effect on TNFα-induced expression of cell adhesion 

molecules such as ICAM1 and VCAM1 transcripts. Interestingly, knocking down of 

ARHGEF18 resulted in a significant reduction in TNFα induced PTGS2 (which encodes 

for COX2) transcript level (Figure 29 a). However, we failed to recapitulate the similar 

phenotype at the protein level (Figure 29 b). TNFα induced PTGS2 transcript level is 

dampened by loss of ARHGEF18, indicating a possible pathway wherein ARHGEF18 

acting downstream of TNFα in TNFα-PTGS2 signaling axis. To understand whether 

TNFα affects ARHGEF18 activity, active GEF pull down experiments were performed 

using nucleotide free mutant of RhoAG17A, on cell lysates obtained from ECs treated with 

TNFα under physiological shear stress for 10 min and 6 h. Although we did not see any 

change in the activity of ARHGEF18 in TNFα treated cell for 10min compared to control 

cells, at 6hr time point, we did observe a tendency of decrease in ARHGEF18 activity 

upon TNFα stimulation compared to control cells under physiological SS condition 

(Figure 30). These data suggest a role of ARHGEF18 in TNFα mediated PTGS2 

transcription. 
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Figure 29: Effect of ARHGEF18 silencing on TNFα induced inflammatory molecules expression under shear stress 

Quantification of relative fold change in ARHGEF18, ICAM1, VCAM1, PTGS2 transcripts in HUVECs expressing 
either   non-target (shNT) or ARHGEF18 specific shRNAs(sh18.1, sh18.4) subjected to physiological shear stress in 
the presence of TNFα (2ng/ml) for 24 h (a). Representative immunoblots and quantification of relative fold change 
in ARHGEF18, phospho-p38, COX2, ICAM1, VCAM1 from cell lysates of HUVECs expressing either non-target 
(shNT) or ARHGEF18 specific shRNAs (sh18.1, sh18.4) subjected to physiological shear stress in the presence of 
TNFα (2ng/ml) for 24 h (b). Quantification of relative fold change of ARHGEF18, phospho-p38, COX2, ICAM1, 
VCAM1blot. Data were expressed as mean+/-SEM. Statistical significance was calculated by 2way ANOVA 
followed by Tukey’s or Sidak’s multiple comparison test. *p<0.03, **<0.002, ***p<0.0002 
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Figure 30: Effect of TNFα on ARHGEF18 activity under shear stress 

Representative immunoblots of ARHGEF18 and GAPDH in GST-RhoAG17A pulldown fractions and total cell lysates 
of HUVECs subjected physiological SS (PSS) in the presence of TNFα (2ng/ml) for 10 min and 6 h time points 
(left). Quantification of relative ARHGEF18 activity in HUVECs subjected physiological SS (PSS) in the presence 
of TNFα (2ng/ml) for 10 min and 6 h time points. Data were expressed as mean+/-SEM. 
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     Small-GTPases are molecular switches that oscillates between active and inactive 

states which are tightly controlled by regulator molecules such as GEFs and GAPs. In 

various cell types, small-GTPases has been shown to regulate cytoskeletal organization 

and cellular functions such as migration, proliferation or permeability depending on 

external signals. In the vasculature, small-GTPases mediate ECs and VSMCs orientation, 

as well as contractile phenotype of VSMCs. In addition, they also regulate inflammatory 

and secretory phenotypes which are important for the physiological vascular response 

to the blood flow. Inability of vascular cells to respond to altered hemodynamics are one 

of the causative factors in many vascular diseases. In the same line, altered small-

GTPase activation underlying vascular pathologies has been reported (Flentje et al., 

2019), advocating for a mechanosensitivity for their regulator molecules. Using 3’SRP 

analysis screen, we have identified Arhgef18 in ECs which was important for RhoA and 

Rac1 activation, cell-cell junctional protein localization and SS mediated p38 signaling. 

 

Identification of mechanosensitive GEF – a 3’SRP analysis 

In 3’SRP analysis on in-vitro samples, only two GEFs (ARHGEF18 and ARHGEF40) in ECs 

and one GEF (Net-1) in VSMCs were significantly regulated at the mRNA level by the 

mechanical force applied. Having very few GEFs with an expression associated with 

mechanical forces level was surprising but we ensured that this was not due to the 

inability of the experimental procedure to induce the appropriate mechanical stimulus, 

as we saw a change in the previously described mechano-regulated genes such as KLF2 

in ECs, and, FN1, Col1A1 and IGF1 in VSMCs. As this analysis focused on RNA level, we 

cannot exclude that more GEF would have an expression at the protein level dependent 

on the mechanical forces applied. In fact, the transcription level of GEFs does not 

necessarily correlate with the protein level or the activity. Indeed, GEFs activity has been 

shown to be regulated through post-transcriptional modifications as well as through 

interacting protein partners (Fujishiro et al., 2008; Siesser et al., 2012).  To have a full 

picture on GEFs status with changes in mechanical forces, an additional screening 

through active GEFs capture followed by mass-spectrometry analysis would help in 

identifying additional GEFs whose expression would not be altered by mechanical forces 

but their activity would. Interestingly, while ARHGEF18 and ARHGEF40 are expressed 

in most cell types, however we were unable to detect any change in the transcript level 
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in VSMCs in-vitro and in arteries in-vivo, indicating that the mechanosensitive 

expression of the GEFs is specific to endothelial cells. As arteries are mostly comprised 

of SMC, we were comforted by the identification of Net-1 in-vivo as a GEF with a 

significant transcript upregulation in SHR and SHR-SP mice compared to WKY mice.  

 

Shear stress mediated expression and activity of ARHGEF18 

In HUVECs, qRT-PCR analysis of ARHGEF18 transcript confirmed the 3’SRP data and 

showed an inverse relationship to the SS applied. Interestingly, the activity of 

ARHGEF18 did not correlate with the RNA data and was decreased in both pathological 

SS conditions, low (3.6 dynes/cm2) and high (36 dynes/cm2), compared to physiological 

SS (16 dynes/cm2). This could be due to dysfunctional signaling in ECs under 

pathological SS, which might downregulate endothelial protective ARHGEF18 activity. 

Moreover, at protein level, ARHGEF18 was more expressed in HUVECs subjected to 

pathological (low and high) SS compared to physiological SS condition. This 

discrepancy between activity and protein level might result from a compensatory 

mechanism that increases ARHGEF18 protein in response to the loss of its GEF activity. 

As the protein level is also different from the RNA level, this could not just “simply” go 

through modulation of the transcription. Several hypothesis can be considered, among 

them an increase in ARHGEF18 translation through mRNA caping mechanisms 

(Simpson et al., 2020) or a stabilization of ARHGEF18 by small heat-shock proteins 

(Collier & Benesch, 2020). In ECs under static and SS conditions, we demonstrated that 

ARHEF18 interacts with only RhoA but not with Rac1. On the other hand, we have 

observed a reduced activity of both RhoA and Rac1 in ARHGEF18 knockdown ECs under 

physiological SS. This was surprising as our experiments showed ARHGEF18 interaction 

with only RhoA and work done by Terry showed no effect on Rac1 activity upon 

ARHGEF18 knockdown. This could be explained by the RhoA and Rac1 signaling cross 

talk (Guilluy, Garcia-Mata, et al., 2011). One such cross talk has been described in 3T3 

fibroblast cells, wherein RhoA effector mDia1 mediates Rac1 activation (Tsuji et al., 

2002). Similar crosstalk between RhoA and Rac1 might exist in ECs under physiological 

SS which would be mediated through yet unknown effector of RhoA. 
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ARHGEF18 in ECs behavior and cell-cell junction 

Arhgef18-deficient ECs form denser networks without a significant alteration in total 

tube length compared to control ECs in an in-vitro matrigel assay. As no effect of 

ARHGEF18 silencing has been observed in ECs proliferation, increased network 

formation could be due to loss of planar cell polarity, similar to loss of apico-basal 

polarity and increased lumen formation in epithelial cells (Kim et al., 2015; Terry et al., 

2011). Endothelial polarity, cytoskeletal organization and cell-cell communications are 

important for lumen formation (Lizama & Zovein, 2013), which is maintained by polarity 

proteins Par3&6, spatial activation of small-GTPases and cell junctions. In our 

experiments, decrease RhoA and Rac1 activity, altered cytoskeletal organization and 

defective cell junctions in ARHEF18 deficient ECs could affect the cells directionality, 

thereby resulting in multiple networks/lumen formation. 

In our in-vitro experiment, ARHGEF18 silencing did not affect ECs permeability. This 

was surprising as ARHGEF18 silencing resulted in decreased junctional ZO1 and CLDN5, 

key molecules shown to be involved in tight junction stability and in permeability (Terry 

et al., 2011). One reason for not seeing any effect of ARHGEF18 silencing on permeability 

could be due to cell type specificity as CLDN5 controls barriers of HDMECs, but not 

HUVECs (Kluger et al., 2013). Moreover, CLDN5 knockout mice have a selective 

permeability for molecules of a size below 800 Daltons (Nitta et al., 2003) which is way 

less than the lowest molecular weight beads (3kDa) used in our experiments. On the 

other hand, junctional protein localization experiments were performed under SS 

conditions whereas permeability experiments were performed under static conditions. 

We have no evidence yet that ZO-1 and CLDN5 localization is also impaired under static 

condition. Furthermore, physiological SS is known to strengthen the cell-cell junctions 

compared to static condition. One possibility could be that under static condition 

permeability is not under the control of ARHGEF18 but the SS induced strengthening 

of the junction would be therefore a role of ARHGEF18 on barrier maintenance would 

be visible only under physiological SS. In this regard, localized activity of AHRGEF18 at 

junctions under physiological SS condition thanks to its physical interaction with ZO-1 

and CLDN5 could play a role in the barrier maintenance.  
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ARHGEF18 in shear stress mediated signaling in ECs 

Shear Stress modulates a wide variety of signaling networks. Of the signaling networks 

we analyzed, ARHGEF18 knockdown cells showed a dampened SS-induced p38 

phosphorylation at 24 h timepoint. Eric et al (Gee et al., 2010), showed that inhibiting 

VEGFR2 impedes SS-mediated activation of p38 but not ERK1/2. On the other hand, 

Sumpio et al showed that knocking out PECAM1 did not alter SS-induced p38, AKT and 

ERK activation (Sumpio et al., 2005). Although, PECAM1 and VEGFR2 are a part of 

endothelial mechanosensory complex, it seems that SS-mediated p38 activation is 

mediated through VEGFR2 but not through PECAM1. Because both VEGFR2 and 

ARHGEF18 participate in p38 activity, one could hypothesize that ARHGEF18 could act 

downstream of VEGFR2. Future studies using combination of VEGFR2 inhibitors along 

with overexpression of GEF active ARHGEF18 mutants; and active GEF pulldown upon 

VEGF stimulation under SS would help to delineate if VEGFR2 could be the physical 

sensor upstream to ARHGEF18. Not to our surprise, SS-induced ARHGEF18 mediated 

p38 activation was dependent on GEF activity, as ECs overexpressing ARHGEF18Y260A 

resulted in reduced SS-induced p38 phosphorylation similar to shRNA expressing cells. 

p38 MAPK signaling is important for multiple ECs functions such as cell alignment 

(Azuma et al., 2001) and inflammation (Schieven, 2005). In data from our lab and others, 

pharmacological inhibition of p38 resulted in mis-alignment of ECs to flow direction. 

This phenotype was similar to the one observed with shRNA and GEF mutant 

overexpressing cells. Taken together, these data strongly act in favor of an effect of 

ARHGEF18 on flow-mediated cytoskeletal arrangement through p38 signaling. 

Experimental approaches using GEF active mutants of ARHGEF18 in combination with 

p38 inhibitors could give us a clearer picture of the exact contribution of p38 to 

ARHGEF18-mediated flow-induced cell alignment. In addition to regulating the flow 

mediated cytoskeletal arrangement, p38 signaling also acts as a pro-inflammatory 

mediator. Using inflammatory cytokine such as TNFα, we showed that ARHGEF18 

knockdown significantly downregulated the transcription of COX2 under physiological 

SS conditions while having no significant effect on ICAM1 or VCAM1 transcription level. 

This suggested the activation of a very specific pathway leading to only COX2 

expression, and not other pro-inflammatory molecules, by ARHGEF18 following TNFα 



DISCUSSION 

 134  

stimulation. However, did not see any difference in COX2 expression at the protein level 

following TNFα stimulation between control and ARHGEF18 knockdown HUVECs. This 

could be due to a technical issue as serum was present in the medium during the SS 

experiments, which could activate multiple signaling mechanisms that ultimately 

leading to COX2 expression aside to TNFα. Another possibility could be the robust 

stability of COX2 protein. As the half-life of COX2 protein is longer compared to mRNA, 

24h timepoint could be too short to see any such alterations in the COX2 protein in the 

absence of ARHGEF18. We also performed the experiments under physiological SS while 

in most of the vascular diseases, proinflammatory environment superimpose with 

altered hemodynamics. A second insult such as pathological SS might be therefore 

required to potentiate our observation. In this regard, low SS could be a right choice as 

it has been shown to induce COX2 expression in BAECs. 

 

     To conclude my research observations, we have identified ARHGEF18 in ECs as a 

mechanosensitive GEF whose expression is altered and activity is reduced under 

pathological shear stress conditions. ARHGEF18 activity is essential for ECs alignment 

to flow and may have a protective role in pathological shear stress induced EC 

inflammation.  

 

Despite all of the information gathered from our in-vitro cell experiments, it only gives 

us a presumption on ARHGEF18 function in-vivo. For instance, as our in-vitro data 

suggests the involvement of ARHGEF18 in flow induced cytoskeletal organization, non-

alignment of ECs in the region experiencing turbulent flow in-vivo may be due to 

minimal ARHGEF18 activity. Such minimal ARHGEF18 activity may not be sufficient to 

keep turbulent flow driven pathological signaling at check, and in long term this could 

result in dysfunctional endothelium and development of vascular diseases such as 

atherosclerosis. Although studying GEF activity in animal models is difficult, taking 

advantage of FRET based sensors previously used to study small GTPases activation 

(Wakayama et al., 2015; Yoo et al., 2010) could also be used to study the local activity of 

ARHGEF18 in an indirect way in an appropriate animal model such as the zebrafish. 

Recently, work done by Maria S. Balda’s group showed that endothelial specific deletion 

of ARHGEF18 using Tie2-Cre did not lead to embryonic death, which could infer an EC 
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dysfunction without drastic effect on the physiological function. This should be taken 

into account with caution, as deletion of ARHGEF18 at early stages of development 

could be compensated by other. More importantly, Maria S. Balda’s group did not make 

any informative study on the effect of endothelial specific knockout of ARHGEF18 in 

vascular network formation in-vivo as well as vascular function at adulthood.  

Taken all of this into consideration, in-vivo, the effect of lack of ARHGEF18 in ECs may 

be subtle under physiological conditions and could require long time such as ageing 

result into vascular dysfunction and diseases. Lack of ARHGEF18 might also appeared 

only in a challenged environment such as hypertension, high fat diet or exacerbated 

pathological SS conditions. So far, we were the only group studied the role of ARHGEF18 

under SS. We showed that ARHGEF18 activity was reduced under pathological shear 

stress conditions and therefore we hypothesize that ARHGEF18 might play an important 

role in vascular pathologies such as atherosclerosis and intracranial aneurysm wherein 

abnormal blood flow plays a crucial role.  

Considering the in-vitro data, we could hypothesize that compromised ARHGEF18 

activity at the sites of vasculature (aortic arch and vascular bifurcations) experiencing 

disturbed/altered SS could lead to localized vascular cell dysfunction, and maybe local 

increase in vascular permeability, and could result in vascular diseases in long term. 

Atherosclerosis and intracranial aneurysm animal models could be used to study 

ARHGEF18 activity in support of this hypothesis. Overexpression of ARHGEF18 in ECs 

resulted in mis-localization of ZO1 and CLDN5 into cytoplasm and we showed by co-

immunoprecipitation a physical interaction between ARHGEF18 and ZO1/CLDN5. This 

suggests that ARHGEF18 could act as a structural component of tight junction, 

independent of its GEF activity. Such GEF independent effect of ARHGEF18 on tight 

junction proteins could further compromise vascular barrier properties and could result 

in immune cell extravasation thereby promoting the progression of vascular diseases 

such as atherosclerosis. 

 

The remaining identified and uncharacterized GEFs such as NET1 and ARHGEF40 could 

also play important role in vascular cell physiology. Not chosen to be studied and little 

information available, ARHGEF40 expression pattern is interesting as its transcript 

levels represents exactly opposite to ARHGEF18 levels under shear stress conditions 
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tested. Like ARHGEEF18, ARHGEF40 has also been shown to be a RhoA specific GEF. It 

would be interesting to find out the effect of SS on ARHGEF40 and its involvement in 

SS mediated cytoskeletal organization and ECs physiology. 

Although unpublished data from our lab showed no vascular defects in NET1 null mice 

(systemic vasculature), presence of high transcript number in cerebral arteries 

compared to mesenteric arteries could suggest a specific role of this GEF in the brain 

vasculature which have not been investigated. This function may not play crucial role 

during normal development and homeostasis, but may have important role in altered 

shear stress mediated vascular pathologies that are specific for brain such as cerebral 

aneurysms. 

Understanding, how the expression and activity of GEFs in general or ARHGEF18 per se 

at the site of vascular lesions or malformations would help us to design therapeutic 

strategies to combat vascular diseases such as atherosclerosis and intracranial 

aneurysm. 
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Résumé :  Les forces hémodynamiques jouent un 
rôle important dans le développement et 
l'homéostasie du réseau vasculaire. Les cellules 
endothéliales (CE) et les cellules musculaires lisses 
(VSMC), composant la paroi vasculaire, répondent 
à ces forces en réorganisant leur cytosquelette. Une 
altération des forces hémodynamiques provoque 
une alteration de ce cytosquelette et conduit à la 
survenue de pathologies vasculaires tels que 
l'athérosclérose et les anévrismes. Les facteurs 
d'échange de nucléotides de guanine (GEFs) 
médient l'activation spatio-temporelle des petites 
GTPases (RhoA, Rac1, Cdc42), acteurs clés de la 
dynamique du cytosquelette. L'identification des 
GEFs mécano-sensibles pourrait donc fournir de 
nouvelles cibles thérapeutiques dans les 
pathologies vasculaires. Un séquençage ARN 
effectuée sur des CE et des VSMC soumises à 
différentes forces hémodynamiques a permis 
d’identifier ARHGEF18 et ARHGEF40 dans les CE 
ainsi que NET1 dans les 

VSMCs comme des GEFs mecano-sensibles 
potentiels. Dans les CE, les contraintes de 
cisaillement pathologiques (3,6 et 36 dynes/cm2) 
réduisent l'activité d'Arhgef18 en comparaison aux 
contraintes de cisaillement physiologiques (16 
dynes/cm2). De plus, Arhegf18 interagit 
uniquement avec RhoA mais l’extinction 
d'Arhgef18 réduit à la fois l'activité de RhoA et de 
Rac1. Les CEs déficientes en Arhgef18 ont une 
adhésion et une migration réduite en comparaison 
aux CEs contrôle. Sous contraintes de cisaillement 
physiologiques, l’extinction d’Arhgef18 altère 
l’alignement des CE dans le sens du flux et la 
localisation de ZO-1 et Claudin5 aux jonctions. 
Enfin, l’extinction d'Arhgef18 réduit de manière 
significative l'expression de COX2 médiée par 
TNFα. Ces résultats identifient Arhgef18 comme 
un GEF mécano-sensible qui joue un rôle 
important dans la physiologie des CEs et la 
prévention de l'inflammation et pourrait donc 
prévenir la survenue de pathologies vasculaires. 
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Abstract : Hemodynamic forces play an important 
role in the vascular network development and 
homeostasis. Altered hemodynamic forces have 
been shown to associate with vascular disorders 
such as atherosclerosis and aneurysms. 
Cytoskeletal rearrangement is the primary 
response of vascular cells such as endothelial cells 
(ECs) and smooth muscle cells (VSMCs) to  
hemodynamic forces and irregular cytoskeletal 
arrangements has been observed in areas prone 
to vascular disorders in vivo. Guanine nucleotide 
exchange factors (GEFs) mediate spatio-temporal 
activation of small-GTPases (RhoA, Rac1, Cdc42), 
which are key players of cytoskeletal dynamics. 
Identifying mechanosensitive GEFs may provide 
new potential therapeutic targets to treat vascular 
disorders. RNA sequencing performed on ECs and 
VSMCs subjected to various shear stress and 
cyclic stretch levels respectively,  

identified ARHGEF18, ARHGEF40 in ECs and 
NET1 in VSMCs as potential mechanosensitive 
GEFs. In ECs, pathological (3.6 & 36 dynes/cm2) 
shear stress reduced Arhgef18 activity compared 
to physiological (16 dynes/cm2) shear stress. In 
our hands, Arhgef18 interact with RhoA only but 
knocking down of Arhgef18 reduces both RhoA 
and Rac1 activity. Moreover, ECs silenced for 
Arhgef18 showed reduced adhesion and 
migration under static conditions. Under 
physiological shear stress conditions, loss of   
Arhgef18 altered cell alignment and junctional 
protein localization. Furthermore, knockdown of 
Arhgef18 significantly reduced TNFα mediated 
COX2 expression. These findings Identified 
Arhgef18 as a potential mechanosensitive GEF 
that plays important role in ECs physiology and 
inflammation thereby vascular diseases. 

 


