
HAL Id: tel-04860592
https://theses.hal.science/tel-04860592v1

Submitted on 1 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Privagic : confidential computing made practical with
secure typing

Subashiny Tanigassalame

To cite this version:
Subashiny Tanigassalame. Privagic : confidential computing made practical with secure typing. Com-
puter Science [cs]. Institut Polytechnique de Paris, 2024. English. �NNT : 2024IPPAS004�. �tel-
04860592�

https://theses.hal.science/tel-04860592v1
https://hal.archives-ouvertes.fr

626

N
N

T
:2

02
4I

P
PA

S
00

4

Privagic: confidential computing made
practical with secure typing

Thèse de doctorat de l’Institut Polytechnique de Paris
préparée à Télécom SudParis

École doctorale n◦626 École doctorale de l’Institut Polytechnique de Paris (EDIPP)
Spécialité de doctorat : Informatique

Thèse présentée et soutenue à Palaiseau, le 5 Avril 2024, par

SUBASHINY TANIGASSALAME

Composition du Jury :

Marc Shapiro
Directeur de recherche (émérite), Sorbonne Université, LIP6, Inria Rapporteur

Laurent Réveillère
Professeur, Université de Bordeaux Rapporteur

Sonia Ben Mokhtar
Directrice de Recherche, LIRIS CNRS Examinatrice

Stéphane Ducasse
Directeur de recherche, Inria Président du Jury

Gaël Thomas
Directeur de recherche, Inria Directeur de thèse

Nicolas Anciaux
Directeur de recherche, Inria Invité

Privagic: confidential computing made

practical with secure typing

Subashiny Tanigassalame

July 18, 2024

À Amma, Daddy et Kirthi

i

Remerciements / Acknowledgements / நன்றியுைர
Je souhaite exprimer ma sincère reconnaissance envers toutes les personnes
qui ont contribué de manière significative à la réalisation de ce manuscrit de
thèse. Leur soutien inestimable, leurs conseils éclairés et leur encouragement
constant ont été des éléments essentiels pour mener à bien ma thèse.

Tout d’abord, je tiens à remercier mon directeur de thèse, Gaël Thomas,
pour avoir proposé ce sujet de recherche et pour son mentorat depuis mon
école d’ingénieur jusqu’à aujourd’hui. Son expertise, ses conseils, sa disponi-
bilité et surtout sa confiance en mes capacités m’ont permis de surmonter
tous les défis rencontrés pendant ma thèse. Je remercie chaleureusement
Gaël pour son soutien continu dans la rédaction de ce manuscrit.

Je voudrais ensuite exprimer ma gratitude envers les deux rapporteurs,
Marc Shapiro et Laurent Réveillère, pour leurs lectures attentives de ce
manuscrit ainsi que pour leurs retours précieux. Je suis sincèrement re-
connaissante pour le temps et l’attention qu’ils ont consacrés à examiner et
évaluer mon travail avec tant de rigueur. Ensuite, je souhaiterais remercier
Sonia Ben Mokhtar, Stéphane Ducasse et Nicolas Anciaux, pour avoir ac-
cepté de participer à mon jury. Je suis très honorée de compter ces cinq
experts parmi les lecteurs de ce manuscrit.

Je tiens à remercier Amel Bouzeghoub pour son soutien inestimable tout
au long de cette période. Ses attentions régulières et ses mots réconfortants
ont été une source de réconfort et de motivation pour moi. Je souhaite égale-
ment exprimer ma reconnaissance envers Denis Conan pour tous ses précieux
conseils qu’il m’a apportés durant ma thèse.

Par la suite, j’aimerais remercier toutes l’équipe PDS et le département
INF pour leur soutien, pour les nombreuses discussions enrichissantes, et
pour tous les beaux souvenirs construits durant mes années de thèse. La
liste des personnes, à qui je suis vraiment reconnaissante, est très longue,
je voudrais néanmoins exprimer ma gratitude particulière envers François
Trahay, Elisabeth Brunet, Amina Guermouche, Chantal Taconnet, Sophie
Chabridon, Pierre Sutra, Mathieu Bacou, Michel Simatic, Pascal Hennequin,
Olivier Berger et Valentin Honoré

Je voudrais aussi dire un grand merci à Brigitte Houassine et Marie Degli-
Esposti, pour m’avoir apporté toutes les aides administratives nécessaires.

ii

Je tiens à exprimer ma profonde gratitude à tous les doctorants pour
leur soutien scientifique et moral. Leur présence a été précieuse dans les mo-
ments les plus hauts comme les plus bas de ma thèse. Plus particulièrement,
je voudrais remercier Nabila Belhaj pour m’avoir guidé au début de mon doc-
torat et pour avoir partagé ses expériences avec moi. Un grand merci à Alexis
Lescouet d’avoir généreusement fourni toutes ses astuces pour l’inscription à
l’école doctoral et le kit de début de thèse. Je tiens également à remercier
Alexis Colin pour les expertises C++ qu’il m’a apportées et pour toutes les
sessions de debugging autour d’un cappuccino.

Je ne saurais assez remercier Yohan Pipereau. En plus de la grande con-
tribution qu’il a apportée dans l’évaluation de Privagic, il a toujours été un
support moral incroyable. Je lui suis grandement reconnaissante pour l’aide
qu’il a apportée afin de bien terminer ma thèse.

Je voudrais ensuite remercier Adam Chader pour ses collaborations dans
le projet et pour les moments de joie. J’aimerais remercier Mickaël Boichot
pour sa bienveillance et pour avoir su me faire sourire dans toutes les cir-
constances. Un grand merci à Marie Reinbigler pour sa gentillesse et pour
m’avoir introduit aux sujets du domaine biologique.

Je tiens également à exprimer ma reconnaissance envers Damien Thenot,
Boubacar Kane, Remi Dulong, Anton Daumen, Pedro Borges, Jean-François
Dumollard, Catherine Guelque et Nicolas Derumigny pour toutes les discus-
sions enrichissantes, les fou-rires et les émotions partagées ensemble.

Furthermore, I would like to express my gratitude to my PhD sister, Jana
Toljaga. First I am thankful for her contribution to the project. Then, during
the final year of my thesis, she provided immense moral support, particularly
during the writing of my manuscript. And finally, a special thanks to her for
introducing me to the world of traveling.

Je souhaiterai remercier mes amis proches Mustapha Younsi, Ghita Jiar
et Gayathri Nadessane-Gomathi, qui m’ont soutenue tout au long de cette
aventure académique. Leur foi absolue en mes capacités et leur soutien con-
stant ont été une source d’encouragement et de joie pendant les moments de
stress. Je suis reconnaissante de les avoir dans ma vie.

Par ailleurs, je tiens à exprimer ma profonde gratitude envers ma famille
pour leur soutien indéfectible, leur amour et leur compréhension tout au long
de ce parcours. Leur soutien moral et leur encouragement ont été des élé-

iii

ments essentiels dans les moments de doute et de difficulté. Un grand merci
à ma famille pour m’avoir toujours enseigné l’importance de l’éducation.

என்ெபற்ேறார்கள்இருவருக்கும்என்இதயம்கனிந்தமுதற்கண்நன்றிகள்.
நான்எடுத்தஅைனத்துமுடிவுகளிலும்எனக்குஉறுதுைணயாகஇருந்தீர்கள்.
நீங்கள்இருவரும்எனக்குபின்துைணநிற்கும்நம்பிக்ைகயில்தான், என்னால்
முன்ேனாக்கி ஓட இயன்றது.
நான் என் கல்விைய சிறப்பாக படித்து முடித்து விட்ேடன். இதற்க்கு

ேமல் நான் படிக்க ேவண்டும் என்று ேகாரி உங்கைள ெதால்ைல ெசய்ய
மாட்ேடன். தங்கள்இருவரின்ைதரியத்தில்தான், என்னால் PhDையதிறம்பட
நிைறவு ெசய்ய முடிந்தது. என் அம்மா Valarmathi Tanigassalame க்கும்,
என் அப்பா Mounissamy Tanigassalame க்கும், என் மனமார்ந்த நன்றிகள்.

(Mes sincères remerciements à mes deux parents. Vous m’avez soutenu
dans toutes mes décisions. Ce n’est qu’avec l’espoir que vous êtes tous les
deux derrière moi que je pourrai avancer.

J’ai bien terminé mes études. Je ne vous dérangerai pas en exigeant de
continuer plus que cela. C’est grâce au courage de vous deux que j’ai pu
mener à bien mon doctorat. Ma profonde gratitude à ma mère Valarmathi
Tanigassalame et mon père Mounissamy Tanigassalame.)

Je ne saurais terminer ce remerciement sans remercier ma petite sœur,
Kiruthika Tanigassalame, qui a été, qui est, et qui restera toujours mon
pilier. Merci pour ta joie de vivre et surtout pour la dose de folie que tu as
apportée tout au long de la durée de ma thèse. Ta présence a été une source
inestimable de soutien et de réconfort pour moi.

Enfin, je souhaite exprimer ma gratitude envers toutes les personnes qui,
de près ou de loin, ont contribué au bon déroulement de ma thèse, même si
je ne peux pas toutes les nommer individuellement.

Ensemble, vous avez tous joué un rôle crucial dans la réalisation de ce
manuscrit de thèse, et je vous en suis infiniment reconnaissante.

iv

Abstract

For more than twenty years, several tools have been proposed to auto-

matically partition an application between a secure memory zone and a non-

secure memory zone. These tools analyze the data flow of the application

in order to identify the memory locations that may contain sensitive values.

Most of these tools behave incorrectly in the presence of pointers. When

they are correct, they are unable to handle threads because of the difficulty

to track pointers in a multi-threaded application. The current tools are also

unable to split an application in more than two partitions. This is caused by

over-approximation, which leads to memory locations falsely shared between

the two partitions.

In this thesis, instead of starting from data flow analysis, we propose to

start from a more accurate technique: language typing. We introduce secure

typing, which consists in embedding a partition identifier in the type sys-

tem of a language. Based on secure typing, we designed a language-agnostic

compiler based on LLVM. The compiler takes a legacy application enriched

with secure types as input, and generates multiple partitions for Intel SGX.

Our evaluation with micro- and macro-applications show that (i) secure typ-

ing can handle pointers, multiple threads and more than two partitions, (ii)

adding secure types in a legacy application is easy, (iii) secure typing re-

duces the trusted computing base, and is more efficient than embedding a

full application inside an enclave.

Privagic : Informatique confidentielle rendue pratique grâce au

typage sécurisé

Résumé en français

L’informatique confidentielle consiste à protéger les données des utilisa-

teurs lorsqu’elles sont traitées dans un système non fiable tel qu’une infras-

tructure cloud. Au niveau matériel, l’informatique confidentielle repose sur

un environnement d’exécution fiable (TEE) (SGX d’Intel, SEV d’AMD ou

TrustZone d’ARM). Un TEE est un environnement matériel qui isole une

zone de mémoire, appelée enclave, d’un système d’exploitation ou d’un hy-

perviseur potentiellement compromis. Étant donné qu’il est difficile de par-

titionner manuellement une application entre une enclave et la mémoire non

sécurisée, de nombreux outils de partitionnement automatique ont été pro-

posés. Avec ces outils, le développeur annote certaines valeurs sensibles et

l’outil analyse ensuite le code pour trouver les emplacements de mémoire dans

lesquels les valeurs sensibles propagent. La plupart de ces outils se compor-

tent incorrectement en présence de pointeurs. Lorsqu’ils sont corrects, ils ne

parviennent pas à gérer les threads en raison de la difficulté à suivre les poin-

teurs dans une application multi-thread. Les outils actuels sont également

incapables de diviser une application en plus de deux partitions. Cela est

causé par une surapproximation, qui conduit à des emplacements mémoire

faussement partagés entre les deux partitions. Sur la base de cette analyse,

les outils répartissent ensuite les données et le code de l’application entre

les parties sécurisées et non sécurisées. Pour un effort d’ingénierie modeste,

ces outils limitent la surface d’attaque des codes placés à l’intérieur d’une

enclave.

Le principal problème est que l’analyse du flux de données analyse une

application de manière séquentielle. Par conséquent, il ne voit pas les modifi-

cations de pointeurs exécutées en parallèle par les autres threads. L’outil peut

conclure à tort qu’un pointeur pointe vers une enclave, car cette observation

est correcte si le code s’exécute de manière séquentielle, mais pas s’il s’exécute

en parallèle. En présence de plusieurs threads, l’analyse du flux de données

peut donc laisser s’échapper un élément sensible dans une mémoire non

sécurisée par l’intermédiaire d’un pointeur identifié à tort comme pointant

vers une enclave.

11

Étant donné que l’analyse du flux de données ne permet pas de gérer une

application C multithreadée Nous proposons de partir d’un autre point de

l’espace de conception, en laissant le développeur annoter explicitement tous

les emplacements de mémoire qui contiennent des valeurs sensibles. Puisque

le développeur annote explicitement tous les emplacements de mémoire sen-

sibles, il n’est pas nécessaire d’analyser le code. Nous évitons ainsi par con-

struction tout risque d’erreur d’analyse dans une application multithread.

Cependant, en échangeant l’analyse automatique contre une annotation manuelle,

nous échangeons également la facilité d’utilisation de l’analyse du flux de

données contre un surcrôıt de travail pour le développeur. L’évaluation

présentée dans cette thèse vise à vérifier que la charge imposée au développeur

se traduit par un effort d’ingénierie raisonnable. Afin de permettre au développeur

d’indiquer les emplacements de mémoire qui contiennent des valeurs sensi-

bles, nous introduisons une nouvelle construction du langage appelée � type

sécurisé �. Un type sécurisé est un type enrichi d’un identifiant d’enclave,

que nous appelons une couleur. En ajoutant explicitement un type sécurisé

à chaque emplacement sensible de la mémoire, le partitionnement du code

devient simple.

Le typage sécurisé indique comment partitionner le code. En lui-même,

le typage sécurisé ne fournit aucune garantie de sécurité. Pour renforcer la

sécurité, nous proposons donc de compléter le typage sécurisé par des règles

de typage. Le typage explicite de chaque emplacement de mémoire suscep-

tible de contenir une valeur sensible rend possible le partitionnement d’une

application multithread. L’ajout d’un type sécurisé à chaque emplacement

mémoire sensible peut prendre beaucoup de temps au développeur. Pour

cette raison, nous proposons de faciliter l’utilisation du typage sécurisé avec

une forme simple d’inférence de type. En détail, nous proposons de déduire le

type d’une variable locale non colorée, mais seulement si le code ne crée pas

de pointeur sur la variable. Dans ce cas, la variable ne s’échappe pas de la

portée d’une seule fonction, ce qui évite l’analyse inter procédurale. De plus,

comme la variable ne s’échappe pas de la portée de sa fonction, elle ne peut

pas être accédée par un autre thread. Avec cette restriction, la déduction

d’un type sécurisé nécessite une simple analyse de la châıne use-def, et le

type déduit est correct même dans les applications multithread. Nous avons

mis en œuvre notre principe de typage sécurisé dans le cadre Privagic pour

22

Intel SGX et le langage C.

Le compilateur Privagic s’appuie sur le compilateur LLVM, ce qui signifie

qu’il ne s’appuie pas sur la sémantique C : il considère une représentation

intermédiaire de bas niveau du code avec des types sécurisés ajoutés aux

variables, aux arguments et aux champs des structures de données. Notre

évaluation avec des micro- et macro-applications montre que (i) le typage

sécurisé peut gérer les pointeurs, le multi-threads et plus de deux partitions,

(ii) l’ajout de types sécurisés dans une application existante est facile, (iii) le

typage sécurisé réduit la base de confiance et est plus efficace que l’intégration

complète d’une application dans une enclave.

33

Contents

1 Introduction 7

2 Background 15

2.1 Developing with the Intel SDK 15

2.1.1 Ecall & Ocall . 16

2.1.2 Sgx Switchless . 21

2.2 LLVM . 21

2.2.1 LLVM IR . 22

2.2.2 LLVMPass . 26

2.2.3 Annotation . 27

3 Motivation and related work 30

3.1 Threat model . 32

3.2 Related work . 32

3.2.1 Using Intel SDK . 32

3.2.2 Frameworks that simplify the use of Intel SGX 33

3.2.3 Using typing to enforce isolation 34

3.3 Focus on glamdring . 34

4 FastSGX: a message-passing based runtime for SGX 37

4.1 Related work . 39

4.2 Design of FastSGX . 40

4.2.1 Interface . 41

4.2.2 Hazard pointers . 42

4.3 Evaluation . 43

4.3.1 Micro-benchmarks . 44

4.3.2 Ping-pong . 47

4

Contents Contents

4.4 Conclusion . 47

5 Colors and color management in Privagic 49

5.1 Overview . 51

5.2 Color detection . 52

5.2.1 Structure Fields . 52

5.3 Type inference . 53

5.4 Initial colors . 54

5.5 Color compatibility . 55

5.6 Overview of the analysis . 55

5.7 Typing rules . 56

5.7.1 Confidentiality . 57

5.7.2 Integrity . 58

5.7.3 Iago attacks . 58

5.8 Function calls . 59

5.8.1 Direct call to an external function 59

5.8.2 Communication with the outside 59

5.8.3 Indirect call . 60

5.9 Error messages . 60

6 Application partitioning 63

6.1 Overview . 64

6.2 Adaptation of FastSGX . 64

6.2.1 Chunks and function spawn 64

6.2.2 Synchronization between the chunks 65

6.3 Global variables . 65

6.3.1 Example . 66

6.4 Multi-color structures . 67

6.4.1 Allocation . 68

6.4.2 malloc in . 68

6.4.3 Access . 68

6.5 Code rewriting . 69

6.5.1 Color set and chunks 69

6.5.2 Simple cases . 69

6.5.3 Loads and stores . 70

6.5.4 Function call . 72

55

Contents Contents

6.5.5 Synchronization barriers 73

6.5.6 Entry points and indirect calls 73

7 Evaluation 74

7.1 Hardware and software setting 75

7.2 Memcached . 75

7.2.1 Engineering effort . 76

7.2.2 TCB size . 76

7.2.3 Performance . 77

7.2.4 Takeaway . 79

7.3 Data structures . 79

7.3.1 Engineering effort . 80

7.3.2 Performance analysis 80

7.3.3 Takeaway . 84

8 Limitations and perspectives 85

8.1 Message passing . 85

8.2 Number of threads . 86

8.3 Multi-color structure . 86

8.4 Multi-language . 86

9 Conclusion 88

66

Chapter 1

Introduction

Billions of people use online applications on a daily basis. The key success

of these applications is that they provide personalized services to their users:

they return results related to users’ interests. These preferences are calcu-

lated based on user profiles, retrieved from consumers’ past queries or from

their other online activities. A user profile contains user identity and data

about the user, which is essential and specific to each application to provide

the service. However, depending on the chosen application, these data may

contain sensitive information about the consumer.

Today, protecting user profiles is difficult because they are deployed in

cloud infrastructures. In detail, the majority of online services depend on

a third party cloud server for storage and computational purposes. Data

from those servers can be leaked by hackers or even by malicious system

administrators. A leakage in user profiles may jeopardize user privacy. For

instance, a user profile of a personalized geolocated application carries the

user’s mobility data. Numerous sensitive information including the user’s

home, workplace, religious or political preferences, can be derived from mo-

bility data. Therefore a data breach menaces user’s privacy.

Confidential computing consists of protecting user data when it is pro-

cessed in an untrusted system such as a cloud infrastructure [4,18,19,40]. At

a low level, confidential computing relies on a trusted execution environment

(TEE). A TEE is a hardware environment that isolates a memory zone, called

an enclave, from a potentially compromised operating system or hypervisor.

For that, a TEE relies on remote attestation for authentication, and on hard-

ware cryptography to enforce the integrity and the confidentiality of both the

7

Chapter 1. Introduction

code and data contained in an enclave.

TEEs have been commercially available for more than eight years in the

CPUs of the main manufacturers. For Intel, it is SGX (Software Guard

Extensions) [22], for AMD, it is SME (Secure Encrypted Virtualization) [32],

and for ARM, it is TrustZone [3,42]. Because manually writing an application

that uses a TEE, with the software development kits provided by the CPU

manufacturers, remains difficult and error-prone, several tools were recently

proposed to ease the use of a TEE. At one extreme, some tools propose

to fully embed an application with its dependencies inside an enclave (e.g.,

Scone [6] or Graphene-SGX [53]). These tools ease the use of a TEE, but

they lead to a large trusted computing base (TCB), which can easily reach

tens of MiB (see §7.2.2). Such a large TCB leads to a large attack surface

and a poor safety.

Other tools automatically partition an application between a trusted

part, which runs inside an enclave, and an untrusted part, which runs out-

side [13,28,31,34–37,45,54,58,60,61]. These tools minimize the TCB, but, as

we show in §3, they remain impractical in the general case. At a high level,

these tools statically analyze sequentially the data flow in order to identify

the memory locations that may contain sensitive values. In the presence of

pointers, most of these tools misbehave. When they do not misbehave, they

are unable to handle threads because of the difficulty to track pointers in a

multi-threaded application with sequential data flow analysis. These tools

also significantly over-approximate the number of memory locations that may

contain a sensitive value. They can thus not be used to partition an applica-

tion into multiple enclaves, since some memory locations are falsely identified

as containing values from two different enclaves. As a result, it is today im-

possible to automatically partition an application in multiple enclaves, e.g.,

in order to manage data from entities that do not trust each other, or in

order to increase the difficulty for an attacker to steal useful data.

Additionally to the above mentioned limitations, our analysis also shows

that, in addition to their impracticability in the general case, most of the

existing tools are highly language-dependent. They depend on the semantics

of the language such as the use of goroutines in Go or of classes in Java. The

techniques proposed by most of the existing tools can thus not be reused

for different languages, which leaves the problem of designing a practical

88

Chapter 1. Introduction

1. struct account {

2. char color(blue) name[256];

3. double color(red) balance;

4. };

5. struct account* create(char* name) {

6. struct account* res = malloc(sizeof(*res));

7. strncpy(res->name, name, 256);

8. res->balance = 0.0;

9. return res;

10. }

Figure 1.1: A simple example of the Privagic language in C.

partitioning tool for many languages.

Since data flow analysis remains fragile in the general case, we propose to

start from another well-known language construct: explicit language typing.

With explicit Language typing, a compiler is able to accurately give the na-

ture of each memory location in a program, e.g., integer, float, pointer, etc.

Explicit language typing is thus a perfect candidate to associate a security

property to each memory location. Starting from this idea, we propose secure

typing. We define a secure type as a classical type enriched with an enclave

identifier, which we name a color Figure 1.1 illustrates the principle with the

C language. Starting from a legacy application, the developer adds colors to

the types of the fields name (line 2) and balance (line 3). These annotations

mean that the name field lives in a blue enclave and that the balance field

lives in a red enclave. With these secure types, analyzing the code in Fig-

ure 1.1 becomes obvious. At line 7, the expression uses a blue value and it

has thus to be executed in the blue enclave. At line 8, the expression uses a

red value and it has to be executed in the red enclave.

Thanks to explicit secure typing, a compiler can identify the enclave of

any variable, of any field of any data structure, and of any instruction, even

if an application is multi-threaded or manipulates pointers. Secure typing

makes also possible the use of multiple colors because the compiler does not

over-approximate the number of sensitive memory locations anymore. By

allowing the use of multiple colors, secure typing helps to improve security.

For example, in Figure 1.1, by using two colors, if an attacker compromises

only a single enclave, the attacker can only steal relatively useless data: only

99

Chapter 1. Introduction

the customer names or only the account balances.

With secure typing, the compiler can also easily help the developer to

enforce security by defining typing rules. To enforce confidentiality, for ex-

ample, the compiler detects type errors such as storing a colored value in an

uncolored memory location. For integrity, the compiler detects type errors

such as storing an uncolored value in a colored memory location. With se-

cure typing, the compiler can also detect other kinds of attacks such as Iago

attacks [15], which consist in sending a poisoned value to an enclave. For

that, the compiler simply has to detect other type errors such as using an

uncolored value as input in an instruction that outputs a colored value.

Additionally to improving ease-of-use and enforcing security, secure typ-

ing also opens a new performance optimization opportunity. With secure

typing, we observe that if two instructions access values with different colors,

by construction, they do not have data dependencies. We can thus execute

them in parallel. For example, in Figure 1.1, we can execute lines 7 and 8

in parallel, which increases performance as compared to a sequential execu-

tion. Running the code in parallel additionally avoids the prohibitive cost

of entering and leaving an enclave [6, 47, 52, 56, 63]. Instead, the application

can use communication in shared memory to transfer the control between

the thread executed outside the enclaves and the thread executed inside.

We implemented our principle of secure typing in the Privagic framework.

The framework contains a compiler and a parallel runtime. The compiler

enforces security by enforcing typing rules and then partitions the applica-

tion. The parallel runtime executes the code that accesses different colors

in parallel. By default, the compiler runs in hardened mode. It enforces

confidentiality and integrity, and prevents Iago attacks by totally isolating

each enclave from the rest of the application. Since strong isolation can lead

to a large trusted computing base and poor performance, the Privagic com-

piler also proposes a relaxed mode. This mode targets expert developers. It

enforces confidentiality and integrity, but relaxes the color constraints that

prevent Iago attacks. Relaxing these constraints forces the developer to care-

fully insert integrity checks when an instruction uses an uncolored value to

compute a colored value, but allows the developer to still reduce the attack

surface and optimize performance by executing code in an enclave only when

absolutely necessary.

1010

Chapter 1. Introduction

We implemented the Privagic framework for Intel SGX and the C lan-

guage. Although we only added color annotations for the C language, the

Privagic compiler itself is language agnostic. It relies on the LLVM compiler

and can handle any language, provided that a front-end for this language

exists for LLVM (e.g., Rust, Go, Haskell, Fortran, etc.).

We evaluate Privagic with a legacy application (memcached) and several

data structures. Overall, our evaluation of Privagic shows that:

• Privagic can scale to a production-ready application such as mem-

cached. Protecting memcached with Privagic requires the modification

of 9 lines of code.

• Privagic divides the TCB by more than 200 as compared to fully em-

bedding memcached in an enclave with Scone [6].

• The code generated with Privagic is up to 10 times more efficient than

embedding the whole application in an enclave with Scone.

• The code generated with Privagic is sometimes more efficient than the

unprotected code because of parallelism.

To summarize, this thesis makes thus the following contribu-

tions:

• It introduces explicit secure typing, which makes the use of multiple

colors, multiple threads and pointers possible;

• It proposes the Privagic compiler, which relies on secure typing to au-

tomatically partition an application for Intel SGX, based on manually

added colors;

• It proposes the FastSGX runtime, which executes in parallel an appli-

cation generated by the Privagic compiler;

• It evaluates Privagic and shows that secure typing (i) offers a strong

foundation to enforce confidentiality and integrity, (ii) eases the use of

trusted execution environment in legacy applications, (iii) reduces the

TCB as compared to fully embedding an application in an enclave, and

(iv) improves performance by allowing the Privagic runtime to execute

the generated code in parallel.

1111

Chapter 1. Introduction

Organization of the thesis:

The rest of the thesis is organized as follows.

Background

Chapter 2 provides technical background about two major components of the

thesis: Intel SGX-SDK and LLVM. The TEE on Intel processors is called

SGX (Software Guard Extensions). The primary approach to using Intel

SGX relies on a SDK (Software Developement Kit) provided by Intel. The

Intel SDK manipulates enclaves, a protected memory zone. The first section

of the chapter presents this toolkit. It describes the creation of enclaves and

communication between them, and then presents SGX switchless call, which

is a specific technique to enhance performance. The second section presents

the LLVM compilers by introducing and providing an overview of LLVM IR,

LLVM Pass, and annotations. Techniques and notions that are showcased in

this chapter will be used in further chapters.

Related works and motivation

In chapter 3, our technique of secure typing is assessed with various existing

methods, including those utilizing SGX and those dedicated to data parti-

tioning. In this chapter, at first, we discuss briefly the threat model, where

an attacker fully controls a machine including the operating system and hy-

pervisor. Various applications rely on Intel SDK to use SGX. Some of them

use switchless calls to reduce high communication call costs. However, these

cases notoriously add a burden to the developer. Many frameworks propose

to simplify the use of Intel SGX based on two techniques: (i) providing a

new language abstraction, and (ii) automatic partitioning of the application.

Nevertheless, these frameworks have a set of limitations. The second section

of this chapter discusses the related works, different techniques used to sim-

ply the use of Intel SGX, their limitations, and finally compare them with

our technique of explicit secure typing. The final section focuses on the data

flow analysis technique, one of the major techniques used for the automatic

partitioning of the application.

1212

Chapter 1. Introduction

FastSGX: a message-passing based runtime for SGX

Chapter 4 depicts our first contribution, which is named FastSGX. FastSGX

is a message-passing based runtime for SGX independent from Privagic. The

FastSGX runtime is inspired from the switchless call of SGX-SDK. Switch-

less reduces communication call costs between the outside world and the

enclaves by relying on communication channel located in shared memory.

As switchless calls, FastSGX allows inter-enclave in shared-memory commu-

nication too. However, compared to switchless calls, FastSGX makes the

threads and messages apparent to the developer, which allows the developer

to significantly optimize the application, i.e., by avoiding wasting CPU cy-

cles with idling threads, by allowing two enclaves to communicate directly,

and by allowing the code located outside the enclave to run in parallel with

the code located inside. At low-level, FastSGX implements the communica-

tion channels with lock-free data structures. It also implements a lock-free

memory manager for the messages. We evaluate FastSGX using two clas-

sical data structures: a hashmap and a treemap. The evaluation compares

the performance of the data structure (with one and two enclaves) executed

using SGX-SDK, SGX-SDK with switchless calls and FastSGX. The main

takeaways of this chapter are: (i) FastSGX has a simple usable interface

with only four main functions, (ii) FastSGX can be used to design efficient

multi-enclave applications, where existing switchless calls prove to be partic-

ularly inefficient. (iii) FastSGX systematically has better performance than

SGX-SDK and SGX-SDK with switchless calls because of increased paral-

lelism and of the use of lock-free data structures. This chapter discusses in

detail FastSGX. First, it presents the related works, followed by the design

of FastSGX, and finally presents the evaluation.

Colors and color management in Privagic

Moving forward, in the pivotal chapter 5, we unveil the intricacies of how

Privagic analyses the application. Privagic operates on LLVM bitcode files,

representing the entire LLVM Intermediate Representation (IR) of the ap-

plication, generated conventionally by tools like clang for C language. The

primary objective of Privagic is to analyze LLVM IR, focusing on the iden-

tification of confidentiality, integrity, and Iago attack vulnerabilities. The

1313

Chapter 1. Introduction

analysis is facilitated by a pass derived from ModulePass. This chapter un-

folds the intricacies of Privagic’s analysis of LLVM IR, starting from the

source code. The narrative progresses from the detection of an element’s

color, to type inference, color initialization, color compatibility, an overview

of the analysis, explanations of typing rules, treatment of function calls, and

concludes with potential error messages raised by Privagic.

Application partitioning

Chapter 6 describes the subsequent step, the partitioning of LLVM IR into

distinct bitcode files, utilized for the generation of a partitioned executable

through conventional compilation tools. FastSGX is adapted with a different

set of functions to create Privagic runtime. This chapter first provides an

overview of application partitioning, followed by a description of the various

stages of the rewriting process.

Evaluation

Chapter 7 highlights the evaluation of Privagic. The evaluation aims to

answer the questions related to the engineering effort while using Privagic, to

the trusted computed base generated by Privagic, and to the performance of

the application deployed using Privagic. We showcase the evaluation results

of Memcached and of data structures.

Limitations and perspectives

In chapter 8, we explore the limitations of Privagic. Concurrently, we ex-

amine potential axes for the development of future works. The discussion

encompasses various features, including the message-passing technique of

our runtime, the number of threads used during execution, multi-colored

structure, and multi-language aspects of Privagic.

Conclusion

Chapter 9 serves as the concluding chapter, summarizing our thesis work.

1414

Chapter 2

Background

Contents

2.1 Developing with the Intel SDK 15

2.1.1 Ecall & Ocall . 16

2.1.2 Sgx Switchless . 21

2.2 LLVM . 21

2.2.1 LLVM IR . 22

2.2.2 LLVMPass . 26

2.2.3 Annotation . 27

2.1 Developing with the Intel SDK

The most basic approach to using a TEE on Intel processors relies on a SDK

(Software Developpement Kit) provided by Intel. The Intel SDK manages

enclaves. As shown in Figure 2.1, an enclave is a protected contiguous mem-

ory zone located inside the virtual address space of a process. The trusted

part of the application — both code and data — is placed inside the enclave.

The untrusted part of the application stays in the memory region outside the

enclave.

An Intel processor protects the memory of the enclaves by defining two

processor modes: an enclave mode and a normal mode. In normal mode,

the processor prevents any access to the memory of the enclaves. Preventing

15

Chapter 2. Background 2.1. Developing with the Intel SDK

App
Code

App
Data Memory

Trusted Part Untrusted Part

App
Code

App
Data

Enclave
(Encrypted memory zone)

Figure 2.1: SGX enclave in memory

read access enforces confidentiality while preventing write access enforces

integrity. When the processor enters the enclave mode, it gains access to a

single enclave, which we call the active enclave. In this case, the processor

can access untrusted memory, the memory of the active enclave, but not the

memory of the other enclaves.

Preventing read and write access at the processor level is not enough to

protect the enclaves. In detail, an attacker may gain full control of another

hardware component, such as a PCIe device. The attacker can use this

device to bypass the protection of the processor, i.e., to directly access the

memory of an enclave in DMA. For this reason, when the processor operates

in enclave mode, it enforces confidentiality by encrypting/decrypting the

cache lines that belong to the active enclave when they cross the boundary

of the CPU package. The processor also enforces integrity by maintaining a

tree of cryptographic hashes [51], which is used to detect unintended writes.

2.1.1 Ecall & Ocall

A developer uses ecalls (enclave calls) and ocalls (outside calls) to switch

the processor between the normal and the enclave mode. The untrusted part

of an application makes an ecall to execute a function inside the enclave.

Figure 2.2 illustrates the principle: an ecall is a call made from the untrusted

part of the application toward the enclave (from the left side to the right side).

At a low level, an ecall behaves as a kind of system call. In detail, an

enclave maintains an ecall table, which contains pointers to the functions

1616

Chapter 2. Background 2.1. Developing with the Intel SDK

SGX Application

Untrusted Trusted (Enclave)

Ecall

Ocall

Context switch to normal

Context switch to enclave

Figure 2.2: SGX Ecall and Ocall

1. enclave {

2. trusted {

3. public void ecall_inside([in] int *arg1, [user_check] int *arg2);

4. };

5. untrusted {

6. void ocall_outside([in, out] int *arg3);

7. };

8. }

Figure 2.3: A simple example of the SGX EDL.

located in the enclave and exposed to the untrusted part of the application.

An ecall takes as argument an index idx in this ecall table, and the ecall

transfers the control to the function at index idx after having switched the

processor mode. As a result, the untrusted part of the application doesn’t

have any direct access to the function’s code: it can only interact with an

enclave through the ecall table.

An ocall is a call from within the enclave towards the outside part of

the application (from the right side to the left side in Figure 2.2). Ocalls

are mostly used because the operating system is unsafe and thus located in

untrusted memory. When an enclave has to execute a system call, e.g., to

access a file or to take a lock, it has thus to switch back the processor to

normal mode. For that, it uses an ocall. The ocall switches from enclave

mode to normal mode, and, similarly to an ecall, takes as argument an index

in an ocall table, which gives the called function. The untrusted part of the

1717

Chapter 2. Background 2.1. Developing with the Intel SDK

application executes those system calls and returns the results to the enclave

for further execution of enclave code.

In order to generate the ecalls and ocalls, the developer uses a language

named EDL (enclave description language). With EDL, a developer designs

an application as a distributed system with two independent components: the

unsafe and the enclave part of the application. The components communicate

through an interface written in EDL. The interface describes the functions

that the other components can call.

Figure 2.3 presents a simple example of an EDL file. The functions

which will be placed inside the enclave are defined as trusted (for exam-

ple ecall inside). If the ocall function’s or ecall function’s arguments are

pointer type, the user needs to specify at least one attribute from the follow-

ing to define the nature of the pointer.

ECALL:

• [in]: In line 3, a buffer with the same size of arg1 (size of int) will be

allocated inside the enclave. The data from the pointer arg1 is copied

towards the allocated buffer. The modification will be done to the

newly allocated buffer. The data pointed by arg1 remains unchanged.

• [out]: In the case of [out] attribute, a buffer with the same size of the

pointer will be allocated inside the enclave. The data from the pointer

will not be copied, instead, the newly allocated buffer will be initialized

to zero. After the end of the trusted function’s execution, the data of

the newly allocated buffer will be copied towards the argument pointer.

• [in, out]: In the case of [in, out] attribute, a buffer with the same size

of the pointer will be allocated inside the enclave. The data from the

pointer will be copied towards the buffer. After the end of the trusted

function’s execution, the data of the buffer will be copied towards the

argument pointer.

• [user check]: In line 3, the pointer arg2 will not be verified, the user

needs to make sure of the safety of the data passed through this pointer.

The buffer of the pointer arg2 is not copied to the enclave.

OCALL:

1818

Chapter 2. Background 2.1. Developing with the Intel SDK

• [in]: A buffer with the same size of the pointer will be allocated in

the outside memory (untrusted). The data from the pointer is copied

towards the allocated buffer. The modification will be done to the

newly allocated buffer. The data inside the enclave remains unaffected.

• [out]: In the case of [out] attribute, a buffer with the same size of the

pointer will be allocated in the outside memory. The data from the

pointer will not be copied, instead, the newly allocated buffer will be

initialized to zero. After the end of the untrusted function’s execu-

tion, the data of the newly allocated buffer will be copied towards the

argument pointer inside the enclave.

• [in, out]: In line 6, a buffer with the same size of the pointer arg3 will

be allocated outside. The data from the pointer will be copied towards

the buffer. After the end of the untrusted function’s execution, the

data of the buffer will be copied towards the argument pointer arg4

inside the enclave.

• [user check]: The pointer will not be verified, and the data pointed by

the pointer will not be copied to outside. If the pointer points towards

enclave memory, the outside function cannot use it to access the enclave

memory.

At line 3 of Figure 2.3, the argument arg1 of an ecall function ecall inside

has an attribute in. A single argument can have multiple attributes as in

line 6, where arg3 has in and out as its attributes.

The developer compiles an EDL interface with a compiler provided by

Intel SDK. This compiler generates a stub to call the functions provided

by the other components, and a skeleton in charge of receiving the call and

dispatching it to the actual implementation provided by the developer. The

stubs in the untrusted part are generated in Enclave u.h and Enclave u.c

(Represented as Proxy Untrusted in Figure 2.4). The stubs in the trusted

part are generated in Enclave t.h and Enclave t.c (Represented as Proxy

trusted).

Figure 2.4 shows the way an ecall is executed. ecall inside from Fig-

ure 2.3 is taken as an example. The Outside function from the left side

1919

Chapter 2. Background 2.1. Developing with the Intel SDK

SGX Application

Trusted (Enclave)

ecall_insideProxy
Untrusted

Proxy
Trusted

Untrusted

1 2 3

45
6

Developer's code
placed in untrusted

Generated code
placed in untrusted Developer's code

placed in Enclave
Generated code
placed in Enclave

87
Outside
function

1. ecall inside(enclave id, arg1, arg2)

2. sgx ecall(enclave id, ecall number, &ocall table Enclave, &ms)

3. ecall inside(arg1, arg2)

4, 5, 6. Propagates back the return value
7. Enclave u.h, Enclave u.c

8. Enclave t.h, Enclave t.c

Figure 2.4: An example of ecall execution in SGX

makes an ecall(1). The Outside function is written by the developer. It calls

the ecall ecall inside with enclave id as the first argument, followed by

its actual arguments. enclave id represents a unique identification number

associated with an enclave (as SGX can manipulate multiple enclaves simul-

taneously). A proxy generated by the compiler in the untrusted part (7)

receives the ecall ecall inside. The untrusted proxy function will call the

function inside the enclave through the trusted proxy generated inside the

enclave (2). The context will be switched from normal to the enclave. The

trusted proxy function (8) will call the actual trusted function ecall inside

written by the developer (3). The return value will also be passed through

the proxies (4, 5, 6). The Proxies manage the encryption/decryption of ar-

guments and return values according to provided attributes. The context

will again be switched from enclave to normal. The Outside function will

2020

Chapter 2. Background 2.2. LLVM

continue its execution from the point where ecall was made.

Ocall follows the same pattern, where a trusted function initiates the call

from inside the enclave.

2.1.2 Sgx Switchless

The cost of entering or leaving an enclave makes designing an efficient appli-

cation for Intel SGX is difficult. This cost is prohibitive: while a standard

call costs only a few cycles, entering or leaving an enclave costs 7000 cy-

cles [41, 55,56].

In order to reduce the cost to enter or leave an enclave, a developer can use

a technique named switchless call [6,52,56,62,63]. A switchless call consists

of leveraging worker threads in order to avoid switching the processor from

the normal mode to the enclave mode. In detail, each worker thread runs in

a security domain: either the non-secure domain or in an enclave. In order

to perform a call from one domain to another, a worker thread of one domain

sends a message to a worker thread in the other. To send this message, the

worker thread simply writes a value in a shared memory zone named an

activation zone.

Transferring the control between one domain and another costs a single

cache miss: the cache miss that loads the activation zone from the core of

the sender thread into the core of the receiver thread. Since transferring a

cache line costs a few hundred cycles instead of several thousand, a switchless

call significantly improves performance compared to switching the processor

mode.

2.2 LLVM

LLVM(Low Level Virtual Machine) is an open-source compiler infrastruc-

ture. Figure 2.5 gives an overview of the global LLVM infrastructure. It can

be divided into two major components: frontend and backend. LLVM plays a

role as a backend of the compiler. As shown in Figure 2.5 the compiler takes

source code from different languages like C and C++ and provides executa-

bles for different instruction set architectures (ISA) of processors like x86,

and ARM. The frontend of the compiler, clang, clang++ converts the source

2121

Chapter 2. Background 2.2. LLVM

C++

C LLVM IRClang

Clang++ LLVM Pass

OPTIMIZED
LLVM IR

Arm

x86

...

Compiler
Frontend

... ...

Colors

Colors

Colors Colors

Source Code Executables

Figure 2.5: Overview of LLVM Compiler

code into LLVM IR (intermediate Representation). The backend takes LLVM

IR as an input and applies multiple optimization passes called LLVMPass in

order to generate an optimized LLVM IR. Finally, the compiler generates a

binary specific to the given architecture. Considering n number of languages

and m number of architectures, instead of requiring n*m different compilers,

only n frontends and m backends are needed.

To implement secure typing we work on LLVM, the backend of the com-

piler, precisely we work with LLVMPass. We first discuss LLVM IR in §2.2.1,

then LLVM Pass in §2.2.2 and conclude with annotations in §2.2.3

2.2.1 LLVM IR

LLVM considers a machine with a memory and an infinite number of

typed registers. An LLVM instruction takes registers as input and outputs

a new register. A register is assigned once, which means that an instruction

and its output register are equivalent. Figure 2.6 presents an example of

LLVM code. LLVM IR has multiple granularity to represent the code. Few

among them are the following:

• Module: represents the entire compiled code unit. It serves as the

highest-level container for all other objects in the LLVM IR.

• Function: represents a function or method in the source code. In-

2222

Chapter 2. Background 2.2. LLVM

1. @y = global i32 0 ; int y = 0;

2. define i32 @test(i32 %0) { ; int test(int a) {

3. %2 = alloca i32 ; int x;

4. %3 = add i32 %0, 42 ;

5. store i32 %3, i32* %2 ; x = a + 42;

6. store i32 %3, i32* @y ; y = a + 42;

7. %4 = call i32 @f(i32* %2) ;

8. ret i32 %4 ; return f(&x);

9. } ; }

10. declare i32 @f(i32*) #1 ; extern int f(int*);

Figure 2.6: Registers and memory in LLVM.

ternally, LLVM represents a function by a control flow graph of basic

blocks [1, 2]. The control flow graph of a function consists of the ori-

ented graph of the basic blocks of the function connected by the jumps

and conditional jumps. A function starts its execution in a special basic

block named the entry point of the function. It also holds information

about its type and return type. Lines 2 to 9 of Figure 2.6 show an

example of a function. There are different kinds of functions in LLVM

IR, some of the majorly used kinds are:

– Internal Function: the function code is defined in the module.

– External Function: the function code is defined outside the

module (eg. line 10 of Figure 2.6)

– Intrinsic Function: the function code is replaced, in place, by

a machine-specific sequence of instructions when LLVM emits the

native code. LLVM uses the intrinsic functions when it can replace

a function call by a machine-specific optimized code. This is, for

example, the case of a call to the function memcpy, which can be

replaced inline by an optimized sequence of rep/movsd on an In-

tel processor. An intrinsic function always starts with a ’llvm.’

prefix and is always defined externally. The body of an intrin-

sic function is, by construction, empty. A few samples of LLVM

intrinsic functions are llvm.va start (initializes arguments list),

llvm.prefetch (insert prefetch instruction) and llvm.sin.f32

2323

Chapter 2. Background 2.2. LLVM

(return sin of a float value) etc.

• BasicBlock: is a sequence of instructions without a jump and that do

not contain instructions that are the target of a jump, except for the

first and the last instruction. Therefore it has a single entry point and

exit point (terminator). Terminator instructions are either BranchInst

or ReturnInst (e.g., line 8 of Figure 2.6). If a function has multiple

basic blocks, each entry point is associated with a label, which is used

by instructions or by other basic blocks to refer to it. Basic block also

holds information about its predecessor basic blocks if they exist.

• Instruction: represents a single operation in the program. A typical

instruction is the add instruction at line 4, which adds 42 to the register

%0 (the parameter of the function). This instruction outputs its result

in the register %3. In addition to the registers, a instruction can access

memory. It can create new memory locations by calling a malloc

function. Following are some of the major instruction types:

– AllocaInst: The code can also create a local variable with the

AllocaInst (line 3 in Figure 2.6). It allocates memory in the

stack.

– LoadInst: In order to access memory, a function uses the load

instruction: r = load(p) loads the value pointed by the register

p in the register r

%1 = load i32 , i32* @global

– StoreInst: In order to write in the memory, a function uses the

store instruction: store(v, p) stores the value of the register

v in the value pointed by the register p (e.g. lines 5 or 6 in Fig-

ure 2.6).

– GetElementPtrInst: is used to retrieve the address of a subele-

ment of an aggregate data structure such as arrays, structs, and

vectors. The following example shows that: the type of register %1

is struct.A*; getelementptr instruction get the second element

(i32 1) of the struct.A*; and returns the register %2 that points

to the element.

2424

Chapter 2. Background 2.2. LLVM

%struct.A = type { i32 , i64 }

%2 = getelementptr %struct.A, %struct.A* %1, i32 0, i32 1

; struct_a ->second

– CallInst: represents a function call. It encapsulates information

like called function, arguments, and any associated attributes.

declare i32 @f(i32*) #0 ; extern int f(int *);

%4 = call i32 @f(i32* %3) ; int result = f(&a);

– ReturnInst: returns a value (possibly void) at the end of function

execution. A function can carry multiple ReturnInst. It is a

terminator instruction, hence it is always placed at the end of a

basic block.

– BranchInst: transfers the control flow from the current basic

block to another basic block inside the same function. It is also

terminator instruction. br instructions are either conditional or

simple jump. In the following example, if the result carried by the

register %1 is true, execution jumps to the basic block labeled as

true label otherwise to the basic block labeled as false label

br i1 %1, label %true_label , label %false_label

– PHINode: is used in the case of SSA (Single Static Assignment)

graph representation of LLVM IR. When a basic block has multi-

ple predecessors, phi instruction selects a value based on the con-

trol flow graph. It selects the result based on the branch taken.

All the phi instructions will be placed at the top of the basic

block, no non-phi instruction is allowed between the first and the

last phi instructions of a given basic block. In the given example

phi instruction returns a val if the taken branch is a label, and

returns b val if the taken branch is b label. The result of phi

instruction is placed in register %10

%10 = phi i32 [%a_val , %a_label], [%b_val , %b_label]

2525

Chapter 2. Background 2.2. LLVM

• GlobalVariable: is created by the keyword global (line 1 in Fig-

ure 2.6). global returns a register that points to the variable.

2.2.2 LLVMPass

An LLVMPass is a unit of compilation applied to an LLVM IR. LLVM passes

are a major component of the backend of the compiler. A pass takes a

LLVM IR as an input and outputs another IR. As shown in Figure 2.5,

multiple LLVM passes can operate during the compilation process before the

final output. A LLVMPass can perform various tasks. LLVM passes can be

applied for the transformation, analysis, or optimization of the LLVM IR.

• Analysis: An analysis pass does not alter the LLVM IR but gathers in-

formation. This information may be used by later passes. Some exam-

ples are Basic CallGraph Construction (basiccg), Dependance Analysis

(da) and Dominator Tree Construction (domtree).

• Transform: This kind of pass transforms the IR often in order to

improve performance. LLVM provides some predefined transforma-

tion passes focused on code optimization. Some common optimization

passes are Dead Code Elimination (dce), Dead Store Elimination (dse)

and Global Variable Optimizer (globalopt)

• Utility: A utility pass performs various additional tasks without im-

pacting Analysis or Transform passes. This kind of pass is often used by

developers for understanding and debugging LLVM IR. Some instances

include View CFG of function (view-cfg), Module Verifier (verify) and

Assign names to anonymous instructions (instnamer)

LLVM provides an interface to write customized LLVM passes. These

passes could be inherited from different classes depending on the needed

granularity. Within the scope of this thesis, we concentrate on ModulePass.

ModulePass is a type of pass that is applied to the whole module. It uses

the entire module i.e. the entire program as a single unit, in order to analyze

or transform the LLVM IR. It can access global objects such as Global Vari-

able or Functions without any particular order. Therefore this pass allows to

add or remove entities at the global level. ModulePass can access and apply

function level passes (e.g. dominators to retrieve the dominator tree of the

2626

Chapter 2. Background 2.2. LLVM

Annotated Value's Pointer Annotation Name File Name Line Number

Number of annotated global variables : 1
Metadata Structure

1. @global = dso_local global i32 5, align 4

2. @.str = private unnamed_addr constant [6 x i8] c"green\00", section
 "llvm.metadata"

3. @.str.1 = private unnamed_addr constant [10 x i8] c"App/app.c\00",
 section "llvm.metadata"

4. @llvm.global.annotations = appending global [1 x { i8*, i8*, i8*, i32 }]
 [{ i8*, i8*, i8*, i32 } { i8* bitcast (i32* @global to i8*), i8*
 getelementptr inbounds ([5 x i8], [5 x i8]* @.str, i32 0, i32 0), i8*
 getelementptr inbounds ([10 x i8], [10 x i8]* @.str.1, i32 0, i32 0),
 i32 1}], section "llvm.metadata"

Figure 2.7: Example of Global Variable Annotation

given function as an analysis result). Modifications performed in the LLVM

IR should be carefully handled. Even a small mistake will result in a bro-

ken LLVM IR. Nevertheless, ModulePass offers great liberty to developers to

rewrite the code. Every element of LLVM IR can be added or removed, in-

cluding metadata information. Modification is prohibited for some elements

such as structure type. Once initialized a structure type cannot be modified.

2.2.3 Annotation

The compiler Clang LLVM permits to add annotation to some of the LLVM

IR elements. In the thesis, we intensively use annotation to add colors to the

variables, e.g., to indicate to which enclave belongs a variable.

An example to add an annotation to a variable in C language is the

following:

1. int __attribute__ ((annotate (" green "))) global = 5;

The frontend of the compiler, clang, translates annotations in the LLVM IR.

Clang doesn’t intercept these annotations, it is forwarded towards the back-

end of the compiler, LLVM. LLVM uses annotation for special purposes, for

example, code optimization. These annotations are ignored by the compiler

unless any LLVM passes explicitly use them. Therefore, annotation does not

disturb the compilation chain and does not alter the generated executable.

2727

Chapter 2. Background 2.2. LLVM

1. %15 = bitcast i32* %14 to i8*

2. %16 = call i8* @llvm.ptr.annotation.p0i8(i8* %15, i8* getelementptr

inbounds ([6 x i8], [6 x i8]* @.str, i32 0, i32 0), i8*

getelementptr inbounds ([10 x i8], [10 x i8]* @.str.1, i32 0, i32

0), i32 15)

↪→

↪→

↪→

3. %17 = bitcast i8* %16 to i32*

Figure 2.8: Example of Pointer Annotation

In LLVM IR annotations are primarily represented in three ways: Global

annotation, Pointer annotation, and Variable annotation.

Global Annotation

Figure 2.7 shows an example of global variable annotation. Here the Global

Variable named global is annotated with the annotation ’green’ (see the

annotation example above). At line number 1 the global variable global

is declared and initialized as 5. At line number 2, @.str is a global string

that is declared and initialized as ’green’. This is the annotation string. At

line number 3, @.str.1 is a global string that is declared and initialized as

’App/app.c’. This is the file name of the code. llvm.global.annotation

at line 4 is a Global Variable which englobes annotation details of all Global

Variables. As shown in the figure it is an array of Metadata Structure spe-

cific to annotation. In this example, only one global variable is annotated ([1

x i8*, i8*, i8*, i32]). In the case of n annotated Global Variables,

the first part will be [n x i8*, i8*, i8*, i32]. The first element of the

metadata structure contains a pointer to the annotated value (line 1), the sec-

ond contains the pointer to the annotation string (line 2), the third contains

the pointer to the file name (line 3), and finally, the fourth contains the line

number of C code where the variable is declared (line number where global

is declared in C file is 1). The Global Variable llvm.global.annotation

will be processed by LLVM Pass to associate Global Variables with their

annotation. The annotation string ’green’ can be retrieved from the global

string @.str, by getting its initialization value.

Pointer Annotation

2828

Chapter 2. Background 2.2. LLVM

1. %6 = alloca i32, align 4

2. %10 = bitcast i32* %6 to i8*

3. call void @llvm.var.annotation(i8* %10, i8* getelementptr inbounds ([6

x i8], [6 x i8]* @.str, i32 0, i32 0), i8* getelementptr inbounds

([10 x i8], [10 x i8]* @.str.1, i32 0, i32 0), i32 21)

↪→

↪→

Figure 2.9: Example of Variable Annotation

Figure 2.8 illustrates an example of Pointer annotation. This annota-

tion is used to convey annotation in specific cases like annotating an ele-

ment of the structure. llvm.ptr.annotation is an intrinsic function that

takes four arguments and returns a pointer type texttti8* (line 2). The

function arguments represent the same data as the metadata structure from

llvm.global.annotation except for the first argument. In this case, the first ar-

gument is i8* %15. The register %15 is a BitcastInst which casts the register

%14 from i32* to i8* (line 1). The annotated value is actually the register

%14. As the first argument should be i8*, it passes by a BitCastInst. Then

again the return value of llvm.ptr.annotation which is stored in register

%16 passes through another BitCastInst (line 3), to cast back to the anno-

tated values type. For further execution, the register from %17 (line 3) will

be used instead of the actual register %14

Variable Annotation

Figure 2.9 shows an example of Variable annotation. It is used to annotate

local variables which are defined using AllocaInst (line 1). llvm.var.annotation

is also an intrinsic function that takes four arguments similar to llvm.ptr.annotation,

whereas the return type is void (line 3). Resembling to Pointer Annotation,

the annotated value, register %6 is passed by a BitCastInst (line 2), before

used as the first argument. Whereas there is no return value for the function

call. For further execution, the register %6 will be used completely indepen-

dently to llvm.var.annotation

2929

Chapter 3

Motivation and related work

Contents

3.1 Threat model . 32

3.2 Related work . 32

3.2.1 Using Intel SDK 32

3.2.2 Frameworks that simplify the use of Intel SGX . . 33

3.2.3 Using typing to enforce isolation 34

3.3 Focus on glamdring 34

In the remainder of the manuscript, we concentrate on the TEE, Intel

SGX. Different techniques are proposed to use SGX. These techniques have

their own set of advantages and drawbacks. As presented in the introduc-

tion §1, we propose Privagic, which leverages secure typing to automatically

partition an application.

Privagic ensures application security by enforcing typing rules and by

automatically partitioning the application according to data access. As the

data type is enriched with an enclave identifier in the form of a color, both

colored data and the code accessing those data are placed inside the enclave

of the corresponding color.

In this chapter, we compare our technique with some of the existing

techniques, both for using SGX and for data partitioning. This chapter

gives a brief presentation of the threat model, discusses these previous works

related to Privagic, and finishes by focusing data flow analysis technique.

30

Chapter 3. Motivation and related work

T
o
o
l

T
e
ch

n
iq

u
e

L
a
n
g
u
a
g
e

S
ta

rt
in

g
p

o
in

t
P

a
rt

it
io

n
in

g
g
ra

n
u
la

ri
ty

M
u
lt

ip
le

M
u
lt

ip
le

L
a
n
g
u
a
g
e

C
o
d
e

D
a
ta

p
a
rt

it
io

n
s

th
re

a
d
s

co
v
e
ra

g
e

G
la

m
d

ri
n

g
[3

4]
A

b
st

ra
ct

in
te

rp
re

ta
ti

on
[2

3]
C

F
u

n
c.

ar
gs

.
F

u
n

ct
io

n
G

lo
b

al
va

ri
ab

le
N

o
N

o
C

om
p

le
te

P
ri

vt
ra

n
s

[1
3]

U
se

-d
ef

ch
ai

n
s

[1
]

C
F

u
n

ct
io

n
F

u
n

ct
io

n
In

co
rr

ec
t1

N
o

N
o

In
co

m
p

le
te

1,
4

T
re

ill
is

[3
7]

C
al

l
gr

ap
h

[1
]

C
F

u
n

c.
/g

lo
b

.
va

r.
F

u
n

ct
io

n
In

co
rr

ec
t1

N
o

N
o

In
co

m
p

le
te

1

P
ro

gr
am

C
u

tt
er

[5
8]

In
-v

it
ro

ex
ec

u
ti

on
C

N
on

e
F

u
n

ct
io

n
In

co
rr

ec
t1

N
o

N
o

In
co

m
p

le
te

1,
4

S
eC

ag
e

[3
6]

T
ai

nt
an

al
ys

is
C

L
oc

al
va

ri
ab

le
F

u
n

ct
io

n
In

co
rr

ec
t1

N
o

Y
es

In
co

m
p

le
te

1

M
on

ts
al

va
t

[6
1]

P
oi

nt
s-

to
an

al
ys

is
[5

]
Ja

va
F

u
n

ct
io

n
Ja

va
cl

as
s

Ja
va

cl
as

s
N

o
N

o
C

om
p

le
te

C
iv

et
[5

4]
P

oi
nt

s-
to

an
al

ys
is

[5
]

Ja
va

Ja
va

cl
as

s
Ja

va
cl

as
s

Ja
va

cl
as

s
N

o
N

o
C

om
p

le
te

U
ra

nu
s

[3
1]

S
ym

b
ol

ta
b

le
Ja

va
F

u
n

ct
io

n
Ja

va
cl

as
s

Ja
va

cl
as

s
N

o
Y

es
2

C
om

p
le

te

R
u

b
in

ov
at

al
.

[4
5]

T
ai

nt
an

al
ys

is
[7

]
Ja

va
V

ar
ia

b
le

Ja
va

cl
as

s
Ja

va
cl

as
s

N
o

N
o

In
co

m
p

le
te

3

G
oT

E
E

[2
8]

P
ro

g.
d

ep
en

d
en

ce
gr

ap
h

[2
6]

G
o

go
ro

u
ti

n
e

go
ro

u
ti

n
e

G
lo

b
al

va
ri

ab
le

N
o

Y
es

C
om

p
le

te

P
tr

S
p

lit
[3

5]
P

ro
g.

d
ep

en
d

en
ce

gr
ap

h
[2

6]
A

gn
os

ti
c

G
lo

b
al

va
ri

ab
le

F
u

n
ct

io
n

G
lo

b
al

va
ri

ab
le

N
o

N
o

C
om

p
le

te

S
ec

V
[6

0]
In

-v
it

ro
ex

ec
u

ti
on

A
gn

os
ti

c
F

u
n

ct
io

n
F

u
n

ct
io

n
O

b
je

ct
N

o
N

o
In

co
m

p
le

te
4

O
u

r
co

nt
ri

b
u

ti
on

L
an

gu
ag

e
ty

p
in

g
A

gn
os

ti
c

T
yp

e
In

st
ru

ct
io

n
F

ie
ld

Y
es

Y
es

C
om

p
le

te

1
:

d
oe

s
n

ot
su

p
p

or
t

p
oi

nt
er

s
2
:

d
oe

s
n

ot
su

p
p

or
t

th
re

ad
lo

ca
l

st
or

ag
e

3
:

th
e

p
ap

er
st

at
es

th
at

th
e

te
ch

n
iq

u
e

ca
n

on
ly

h
an

d
le

86
%

of
th

e
ap

p
lic

at
io

n
s

4
:

d
oe

s
n

ot
in

sp
ec

t
al

l
th

e
co

d
e

T
ab

le
3.

1:
A

u
to

m
at

ic
p
ar

ti
ti

on
in

g
to

ol
s.

N
o

p
re

v
io

u
s

to
ol

h
an

d
le

s
b

ot
h

m
u
lt

i-
th

re
ad

ed
ap

p
li
ca

ti
on

s
an

d
ex

p
li
ci

t
p

oi
n
te

rs
.

T
h
ey

al
so

d
o

n
ot

su
p
p

or
t

m
u
lt

ip
le

en
cl

av
es

b
ec

au
se

th
ey

ov
er

-a
p
p
ro

x
im

at
e

th
e

va
ri

ab
le

lo
ca

ti
on

s
th

at
m

ay
co

n
ta

in
se

cu
re

va
lu

es
.

3131

Chapter 3. Motivation and related work 3.1. Threat model

3.1 Threat model

We consider an attacker that fully controls a machine (operating system and

hypervisor included). We assume however that the attacker cannot read or

write the memory of an enclave protected by Intel SGX. Therefore, we trust

that the processor, the Privagic runtime, and the software development kit

provided by Intel to use SGX are correct and do not contain bugs.

Privagic can run in two modes: relaxed and hardened mode. In relaxed

mode, Privagic ensures the confidentiality and integrity of the sensitive values

of an application. In hardened mode, Privagic additionally prevents Iago

attacks [15] against the enclaves.

The application is not trusted and may contain bugs. Privagic has the

goal of minimizing the TCB in order to reduce the probability of bugs inside

the enclave.

Privagic does not address the problem of side-channel attacks, since Intel

SGX does not address this attack vector.

3.2 Related work

Various works propose to simplify the use of Intel SGX. Some application

relies only on the Intel SDX to use SGX. Many frameworks are also proposed

to make SGX more user-friendly. Some frameworks use different techniques

to partition applications for security purposes. Hereafter, we first discuss

applications only depending on Intel SDK, then we present some frameworks

for using Intel SGX and different partitioning techniques. We discuss the

limitations of these techniques. Finally discuss the use of type information.

3.2.1 Using Intel SDK

As shown in Table 3.1, many applications rely only on the Intel SDK (§2.1)

to use SGX. [12,16,25,33,48,59,66]. These applications offer a high-level of

safety because they have a small TCB and because the developers of these

projects manually ensured their security. However, manually ensuring that

sensitive data never escapes from an enclave is difficult. Designing an appli-

cation as a distributed system with components that communicate through

an interface also adds a burden on the developer. These applications are as

3232

Chapter 3. Motivation and related work 3.2. Related work

efficient as they can be. However, they often heavily depend on ecalls/ocalls,

which are notoriously costly (see our evaluation in §4.3.2). Optimizing the

communication between an enclave and the unsafe part of an application is

possible by using switchless calls [6,41,47,52,56,62,63], but adds even more

burden on the developer.

3.2.2 Frameworks that simplify the use of Intel SGX

In order to ease the use of SGX, several frameworks propose to run a com-

plete application with its dependencies in an enclave [6, 10, 38, 43, 53]. This

approach leads to a large unsafe TCB that can reach tens of megabytes (see

§7.2.2).

In order to avoid a large TCB, two techniques are proposed. The first

technique consists of defining new language abstractions or new programming

models [47, 49]. This approach may ensure a high level of safety, but they

require a complete rewriting of the application, this makes them inadequate

for legacy applications with a large code base.

In a different context, language abstractions were proposed to ensure

the confidentiality of sensitive values in a distributed system. Some tools

automatically partition applications written in the Jif language [17, 64, 65].

Jif is a language based on Java, in which the developer explicitly indicates

how data flows between partitions that do not trust each other. This also

requires a complete rewrite of the application.

The second technique automatically partitions an application. Privagic

belongs to this category. Table 3.1 gives an overview of the automatic par-

titioning techniques used in previous works. These works target Intel SGX,

AMD’s SME, ARM Trustzone, but also privilege separation [46], i.e. iso-

lating dangerous functions in another process. All these works are based

on data flow analysis techniques. The developer annotates sensitive vari-

ables or functions, a tool analyzes how the data flows in the application:

by using various techniques that we do not detail here, such as, use-def

chains [1], abstract interpretation [23], in-vitro execution [58, 60], points-to

analysis [5, 9, 24, 44, 50, 57], program dependence graphs [26] or taint analy-

sis [7, 36].

A first limitation of the above framework is that data flow analysis ana-

lyzes an application sequentially, inspecting instructions one after the other.

3333

Chapter 3. Motivation and related work 3.3. Focus on glamdring

Because of the difficulty to track pointers in the presence of threads most

of the tools do not handle multi-threaded applications (see, e.g., [14] for the

abstract interpretation engine used in Glamdring [34], [36] or [7] for taint

analysis, or [57] for points-to analysis). The only exceptions are GoTEE [28]

for the Go language and Uranus [31] for the Java language. These tools

rely heavily on specific language constructs: goroutine for GoTEE and Java

classes for Uranus. They do not address languages with explicit pointers. In

summary, no technique is currently available to handle multiple threads in

the presence of explicit pointers.

A second limitation is that, data flow analysis has difficulty with pointers

or aliasing [5,14,34,35]. Several works simply behave incorrectly in the pres-

ence of pointers or references. Those that do correctly handle pointers and

references, over-approximate the memory locations that may contain sensi-

tive values. As a result, these techniques are not able to split an application

into more than two partitions, since the same memory location maybe falsely

marked as belonging to two partitions.

3.2.3 Using typing to enforce isolation

With secure typing, we avoid the limitations of data flow analysis techniques.

The secure type of a value directly indicates in which enclave the value

lives, which avoids any over-approximation, and allows Privagic to know

the enclave of any memory location, regardless of the presence of pointers or

threads.

Using language typing to enforce memory isolation has already been ex-

plored in several works [8,11,27,30] These systems enforce isolation by using

typing: they ensure that a process cannot forge a pointer to an unauthorized

memory. Previous works rely on classical typing to prevent unauthorized

memory access. In contrast we propose to embed security information di-

rectly in the type system.

3.3 Focus on glamdring

Several frameworks rest upon data flow analysis to partition the appli-

cation. Data flow analysis identifies where the application stores sensitive

3434

Chapter 3. Motivation and related work 3.3. Focus on glamdring

1. struct shared {

2. int other;

3. int secret;

4. }* shared;

5. # pragma glamdring sensitive-source(secret)

6. void inside(int secret) {

7. shared = malloc(sizeof(*shared));

8. shared->secret = secret;

9. }

10. void outside() {

11. // *shared allocated in enclave => SIGSEGV

12. shared->other = 42;

13. }

Figure 3.1: Limitation of data flow analysis.

data. However, tools that rely on data flow analysis become fragile when

they partition the application.

In this section, we discuss the limitations of data flow analysis through

the example of Glamdring framework [34]. Figure 3.1 presents a code for

which Glamdring misbehaves. At line 5, the developer tags secret as a sen-

sitive source. Glamdring relies on the eva/impact plugins of frama-c [21] to

compute the locations in the source code that are impacted by the value of

secret. By using abstract interpretation [23], the plugin adequately identi-

fies that lines 3 and 8 are impacted. Glamdring then partitions the code by

relying on the slicing plugin of frama-c. This plugin identifies the statements

required to correctly execute the code identified by the impact plugin. It

identifies that the declaration of the shared variable at line 4 and that lines

7 are required to execute line 8. Since Glamdring partitions the application

at the function granularity, it puts thus the shared variable and the code of

inside in the enclave.

At this step, Glamdring misbehaves because the outside function is exe-

cuted outside the enclave. This function accesses the shared variable, which

is allocated inside the enclave at line 7, and thus is not accessible by outside

since outside is executed in normal mode.

The issue comes from the shared data structure. This structure contains

both sensitive and non-sensitive values, which are not handled by a data

3535

Chapter 3. Motivation and related work 3.3. Focus on glamdring

flow analysis tool. In order to solve the issue, a transformation tool should

associate additional information to tag secret as sensitive and other as non-

sensitive. Adding this information is the very goal of secure typing. Secure

typing consists of tagging a type with a color, which indicates whether a

value is sensitive or not. With secure typing, a compiler can adequately

partition the application presented in Figure 3.1: by re-organizing the shared

data structure as we do with Privagic (see §6.4), or by promoting other as

sensitive and putting all the code that accesses other in an enclave.

3636

Chapter 4

FastSGX: a message-passing

based runtime for SGX

Contents

4.1 Related work . 39

4.2 Design of FastSGX 40

4.2.1 Interface . 41

4.2.2 Hazard pointers . 42

4.3 Evaluation . 43

4.3.1 Micro-benchmarks 44

4.3.2 Ping-pong . 47

4.4 Conclusion . 47

Our first contribution is FastSGX a message-passing based runtime for

SGX. FastSGX is used to implement the Privagic runtime, but is independent

to Privagic.

As discussed in the §3 entering and leaving an enclave consumes a huge

number of CPU cycles. The cost is prohibitive: while a standard function call

costs only a few cycles, entering or leaving an enclave costs approximately

7000 cycles [41,55,56]. Because of this cost, designing an efficient application

for Intel SGX is difficult.

Several research works show that we can avoid this cost by using switchless

calls [6, 52, 56, 62, 63]. A switchless call leverages worker threads in order to

37

Chapter 4. FastSGX: a message-passing based runtime for SGX

avoid switching the processor from the non-secure mode to the secure mode.

In detail, each worker thread runs in a single security domain: either the non-

secure domain or in an enclave. In order to perform a call from one domain to

another, a worker thread of one domain sends a message to a worker thread

in the other. To send this message, the worker thread simply writes a value in

a shared memory zone named an activation zone. Transferring control from

one domain to another costs a single cache miss: the cache miss that loads the

activation zone from the core of the sender thread in the core of the receiver

thread. Since transferring a cache line costs a few hundred cycles instead of

several thousand, a switchless call significantly improves performance.

Although the switchless call is well known, using this technique efficiently

remains challenging for three reasons.

The first is that the worker threads are hidden to the developer and con-

figured statically. In detail, the SGX runtime uses worker threads internally

to optimize the time to transfer the control from/to an enclave. A worker

thread consumes CPU resources even when idle because it actively spins on

the activation zone. Unfortunately, the developer can configure the number

of worker threads only statically. This is inadequate if the workload evolves

over time. In such a case, either the developer over-provisions the number

of worker threads, which wastes CPU resources when the workload is low, or

under-provisions the number of worker threads, which leads to inefficiencies

when the workload increases [62].

The second issue comes from the function semantic exposed by the SGX

runtime provided by Intel. With a call semantic, the caller is suspended

during a call. The caller uselessly wastes a CPU while actively waiting for

the termination of the call. The developer can thus not use the wasted CPU

resource to execute useful code in parallel.

The third issue comes from the design of the current SGX runtimes, which

prevent a direct call from one enclave to another. Instead, a worker thread

has to first indirectly transfer control to a non-secure worker.

In FastSGX, we use the switchless call technique more efficiently with a

new programming model. In detail, we propose to explicitly design an SGX

application as a distributed system with worker threads that communicate by

exchanging messages. Each worker thread runs in a single security domain.

However, the developer can create and destroy worker threads on the fly to

3838

Chapter 4. FastSGX: a message-passing based runtime for SGX 4.1.
Related work

adapt the number of worker threads to the workload. Moreover, instead of a

function-call abstraction, we expose a message-passing abstraction. Thanks

to this, a worker thread can send a message and continue to execute while

another worker thread processes the message. This avoids wasting the CPU

of the sender during a call. Finally, by exposing to the developer an interface

to send and receive messages, a developer can send a message from any worker

thread to any other worker thread. This avoids indirects an inter-enclave call

through the non-secure domain.

Our message-passing runtime FastSGX implements communication chan-

nels with lock-free data structures, and also implements a lock-free memory

manager to allocate and free messages.

We evaluate FastSGX with two classical data structures: a hashmap and

a treemap. We evaluated versions of these data structures with one and two

enclaves. Our evaluation with different access patterns shows that:

• The interface of FastSGX, with its four main functions, is simple enough

to be usable in practice,

• FastSGX supports multi-enclave applications, in contrast to current

switchless call runtimes, which are especially inefficient in this case.

• The data structures implemented with FastSGX consistently outper-

form the equivalent data structures implemented with the Intel SDK.

The remainder of the chapter is organized as follows: §4.1 discusses re-

lated work, §4.2 presents the design of FastSGX, §4.3 details our evaluation,

and §4.4 concludes.

4.1 Related work

Many applications rely directly on the Intel SDK to use SGX [12, 16, 25, 33,

48,59,66]. Since using the Intel SDK can be complex for legacy applications,

several frameworks support running the complete application, with all its

dependencies, inside an enclave [6, 10, 38, 43, 53]. This approach leads to an

overly large trusted computing base. Other tools propose to automatically

partition an application by starting from variables or functions annotated as

sensitive [13,28,31,34–37,45,54,58,60,61]. These tools ease the development

3939

Chapter 4. FastSGX: a message-passing based runtime for SGX 4.2.
Design of FastSGX

while minimizing the trusted computing base. These tools are complemen-

tary to FastSGX: they could rely on FastSGX to optimize the time to transfer

the control from/to an enclave.

As presented in the introduction, several runtimes rely on switchless calls

to avoid the cost of switching the processor from/to secure mode [6, 52, 56,

62, 63]. These runtimes hide the worker threads to the developer, which

makes the dynamic optimization of the number of worker threads difficult,

prevents the execution of code in parallel in the worker threads, and is sub-

optimal for a multi-enclave application. FastSGX exposes the worker threads

and a message-passing interface to the developer, thus avoiding these three

limitations.

EActors [47] designs a SGX application as a set of actors. EActors runs

worker threads in the enclaves, which executes eactors, and communicate

by messages. Using EActors requires a whole redesign of an application in

order to implement the application with actors. Using FastSGX is more

straightforward since only adding calls to send and receive messages is re-

quired. Moreover, with FastSGX, the developer explicitly creates on the

fly the worker threads, which allows the developer to dynamically adjust the

number of worker threads to the workload. This is not the case with EActors.

With EActors, the number of worker threads is configured statically, which

is inadequate for an application with a dynamic workload because worker

threads may become useless in case of a low workload, or saturated in case

of a high workload.

4.2 Design of FastSGX

FastSGX is a message-oriented runtime for Intel SGX. It manages a set of

enclaves. FastSGX associates an enclave with a communication channel, im-

plemented as a lock-free FIFO queue stored in unsafe memory [29]. FastSGX

also implements a lock-free memory allocator in order to allocate and free

the messages. For that, FastSGX uses a simple lock free stack [29].

FastSGX also manages a set of worker threads. A worker thread exe-

cutes within a single enclave. It receives messages through the communica-

tion channel. If several worker threads are associated to the same enclave,

they share the communication channel. Each message is received by a single

4040

Chapter 4. FastSGX: a message-passing based runtime for SGX 4.2.
Design of FastSGX

1. // initialize the runtime with nenclaves enclaves

2. int initialize(size_t nenclaves, ...);

3. // create a worker thread in the enclave eid

4. int new_worker(pthread_t* tid, size_t eid);

5. // send the value to the enclave eid with the message id mid

6. void send(size_t eid, size_t mid, union value value);

7. // receive a message with the message id mid from eid

8. void recv(size_t eid, size_t mid, union value* value);

Figure 4.1: Main functions of the FastSGX interface.

worker thread.

4.2.1 Interface

Figure 4.1 presents the main functions provided by FastSGX. To initialize

the runtime, a developer calls the initialize function. Its arguments are num-

ber of enclaves to be created and, for each enclave, a path to the binary to

be loaded in it (eid). The initialize function returns an enclave identifier for

each enclave, by starting at eid 1. FastSGX considers that the pseudo-enclave

with the eid 0 represents the code and data located in unsafe memory. It

also considers that the main thread of a process, i.e., the thread that called

initialize, is a worker thread associated to enclave 0.

To start executing code in the enclaves, the developer calls the new worker

function. This creates a new worker thread, in the enclave given as an argu-

ment, by executing the function named start routine, located in the binary

loaded at initialization.

A worker thread in an enclave can send and receive by exchanging mes-

sages, with the send and recv functions. The arguments of send are the des-

tination enclave (eid), a message identifier (mid), and a content (value). The

message identifier is used to address a message to a specific recv function,

which is useful to avoid confusing two messages with two different meanings

received in parallel. The value is a union that has the size of a machine word

(64 bits on Intel).

The recv function has the same three parametern types. If eid is equal to

4141

Chapter 4. FastSGX: a message-passing based runtime for SGX 4.2.
Design of FastSGX

1. struct message* dequeue(struct mbox* mbox) {

2. struct message* res;

3. struct message* expected;

4. do {

5. res = mbox->head;

6. expected = res;

7. } while(res == NULL

8. !atomic_compare_exchange_strong(&mbox->head,

9. &expected,

10. res->next));

11. return res;

12. }

Figure 4.2: Basic incomplete lock free dequeue function.

-1, the function receives messages from any enclave, otherwise, it only receives

messages from eid. If mid is equal to -1, the function receives messages

with any mid, otherwise, it only receives messages with the mid given as a

parameter. The recv function blocks until a matching message is received.

The recv function removes the message from the channel, fills the value with

the content of the message, and returns.

4.2.2 Hazard pointers

The ABA problem [39] appears with lock-free data structures implemented

with compare and swaps, such as FastSGX’s lock-free queues.

To illustrate ABA problem, we first present a naive algorithm used to

implement a lock-free queue in Figure 4.2. Suppose the queue contains two

messages A and X. To dequeue A, a receiver thread t1 loads a pointer to A

from the head of the queue (line 5). It then loads a pointer to X from the

next field of A, and replaces the head by the pointer to X (line 8). In case

another receiver thread would also dequeue A after t1 the reads head on line

5 but before the update at line 8, t1 updates the head from A to X only if

the head is still equal to A. For that, t1 uses an atomic compare-and-swap

instruction, which atomically checks that head is A (expected at line 9), and

replaces head by X (res->next at line 10). This simple algorithm is correct

only if a message is never freed. In FastSGX, a receiver frees a message after

4242

Chapter 4. FastSGX: a message-passing based runtime for SGX 4.3.
Evaluation

it is consumed, in order to avoid a memory leak. This leads to the ABA

problem described next.

Suppose again that the queue contains two messages A and X. The re-

ceiver thread t1 loads A and X, and then, another receiver thread t2 is sched-

uled. t2 dequeues A and X, and frees the messages. Then, a sender thread t3
inserts a new message B. At this step, the queue contains a single message:

B. When t1 is re-scheduled, the compare-and-swap is supposed to fail because

B is not A. However, this is not necessarily the case: since A is free when t3
allocates a message, B may be allocated at the same location as A. In such

a case, the compare and swap of t1 succeeds. Now t1 incorrectly thinks that

A is still the head of the list. t1 thus installs a pointer to X as the head of

the queue, which is incorrect because X was freed by t2.

FastSGX avoids the ABA problem by using hazard pointers [39]. When

a receiver loads the head pointer, it signals to the other threads that freeing

the pointed message is unsafe. For this, the receiver thread records the head

pointer in an array named the hazard pointer array. Then, to free a message,

FastSGX uses two lists: a purgatory list and a free list. When the application

frees a message, FastSGX adds the message in the purgatory list. When an

application allocates a message, FastSGX uses the free list. If the free list

is empty, FastSGX tries to move a batch of N messages from the purgatory

list to the free list. It inspects eash message in the purgatory list, and, if the

message is still referenced by the hazard array, FastSGX ignores the message

since a receiver may still use the message. Otherwise, FastSGX moves the

message to the free list.

4.3 Evaluation

We evaluate the performance of FastSGX on an Intel i5-9500 CPU 3 GHz

with 16 GiB memory. This 6-core CPU ships SGX version 1 with a maximal

memory size usable by the enclaves of 93 MiB. The machine runs Linux 5.15.0,

glibc 2.31, clang 10.0.0, and Intel SGX SDK 2.19.100.

4343

Chapter 4. FastSGX: a message-passing based runtime for SGX 4.3.
Evaluation

IntelSDK-1 IntelSDK-s-1 FastSGX-1

100/0 90/10 75/25 50/50 25/75 10/90 0/1000
2
4
6
8

Av
g

La
t.

(
s)

(a) Hashmap with 1 enclave (zipfian access pattern)

100/0 90/10 75/25 50/50 25/75 10/90 0/1000
2
4
6
8

Av
g

La
t.

(
s)

(b) Treemap with 1 enclave (zipfian access pattern)

IntelSDK-2 IntelSDK-s-2 FastSGX-2

100/0 90/10 75/25 50/50 25/75 10/90 0/1000
50

100
150
200

Av
g

La
t.

(
s)

(c) Hashmap with 2 enclaves (uniform access pattern)

Figure 4.3: Latency of the data structures. X/Y: get/put ratio.

4.3.1 Micro-benchmarks

We first evaluate two maps that associate keys to values: a hashmap and a

treemap. The hashmap uses a separate chaining algorithm: it is designed

as an array of linked-lists, in which each linked-list contains the keys that

collide. The treemap is implemented as a red-black tree, which ensures that

the tree remains balanced.

We evaluate three versions with a single enclave: IntelSDK-1, IntelSDK-

s-1 and FastSGX-1. These versions store the whole map in a single en-

clave. The two IntelSDK versions expose the put/get functions to the non-

secure domain. IntelSDK-1 switches the processor mode during a call, while

IntelSDK-s-1 uses switchless calls. FastSGX-1 is implemented with FastSGX.

For a get, the worker thread in the non-secure domain sends a message to

execute the get in the enclave, and waits for the result. For a put, since the

result of a put is not used, the worker thread in the non-secure domain sends

a message to execute put, but continues its execution in parallel.

4444

Chapter 4. FastSGX: a message-passing based runtime for SGX 4.3.
Evaluation

IntelSDK-1 IntelSDK-s-1 FastSGX-1

100/0 90/10 75/25 50/50 25/75 10/90 0/1000.00
0.25
0.50
0.75
1.00

Th
ro

ug
hp

ut
(1

e6
 o

p/
s)

(a) Hashmap with 1 enclave (zipfian access pattern)

100/0 90/10 75/25 50/50 25/75 10/90 0/1000.0
0.2
0.4
0.6

Th
ro

ug
hp

ut
(1

e6
 o

p/
s)

(b) Treemap with 1 enclave (zipfian access pattern)

IntelSDK-2 IntelSDK-s-2 FastSGX-2

100/0 90/10 75/25 50/50 25/75 10/90 0/1000.00
0.01
0.02
0.03

Th
ro

ug
hp

ut
(1

e6
 o

p/
s)

(c) Hashmap with 2 enclaves (uniform access pattern)

Figure 4.4: Throughput of the data structures. X/Y: get/put ratio.

We also evaluate the same three versions with two enclaves. These ver-

sions store the keys in one enclave and the values in another, which makes the

communication pattern between the enclaves more complex. As with a single

enclave, we evaluate (i) IntelSDK-2, which switches the processor mode, (ii)

IntelSDK-s-2, which uses switchless calls, and (iii) FastSGX-2, which uses

message passing.

Figure 4.3 reports the latency and Figure 4.4 the throughput with dif-

ferent put/get ratios. With one enclave, we execute 100 000 operations in a

map with 100 000 keys, and with two enclaves, 20 000 operations in a map

with 20 000 keys. A key is 8-bytes long and a value 1024-byte long.

With one enclave, we observe that, as expected, IntelSDK-s-1 consis-

tently performs better than IntelSDK-1. We also observe that FastSGX-1

is consistently better than IntelSDK-1 and IntelSDK-s-1. The better perfor-

mance of FastSGX-1 comes from two complementary phenomenons.

First, with a high number of puts, a put is executed in parallel with

4545

Chapter 4. FastSGX: a message-passing based runtime for SGX 4.3.
Evaluation

0 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

Argument size (B)

0

20

40

60

Ti
m

e
(µ

s)

Intel SDK
FastSGX-copy
FastSGX-nocopy

Figure 4.5: Ping-pong time with Intel SDK and with FastSGX.

the load injector in FastSGX-1. This is not the case with IntelSDK-s-1,

which suspends the caller during a call. The higher parallelism of FastSGX-

1 explains why FastSGX-1 performs better than IntelSDK-s-1 with a high

number of puts (right of the curves).

Second, FastSGX is designed with lock-free data structures whereas Intel

SDK uses a blocking scheme. In detail, with IntelSDK-s-1, a thread takes a

spin-lock when it accesses an activation zone. FastSGX-1 does not take a lock

since it uses lock-free data structures. Thanks to the use of lock-free data

structures, FastSGX-1 is also better than IntelSDK-s-1 with a high number

of get operations (left of the curve).

With two enclaves, we observe similar results. With two enclaves, the

relative difference between FastSGX and the Intel SDK versions is even higher

because FastSGX allows the two enclaves to communicate directly. This is

not the case with the Intel SDK versions, which pay an additional transfer

of control to the non-secure domain for each operation. This result confirms

that using an explicit message-passing scheme is important to optimize a

multi-enclave application.

4646

Chapter 4. FastSGX: a message-passing based runtime for SGX 4.4.
Conclusion

4.3.2 Ping-pong

In this experiment, we compare the cost of switching the processor with the

cost of exchanging messages. For that, we evaluate a ping pong application

in three configurations: FastSGX/copy, FastSGX/reference and Intel SDK.

With FastSGX/copy and FastSGX/reference, we run two worker threads:

one worker thread in the non-secure domain and one worker thread in an

enclave. The non-secure worker thread sends a ping to the enclave worker

thread, which answers with a pong message. The ping message contains a

pointer to an array of bytes. In FastSGX/copy, the application copies the

pointed array in a buffer before replying with a pong. In FastSGX/reference,

the application ignores the argument.

With Intel SDK, the non-secure thread of the application calls a ping

function provided by the enclave. The non-secure thread of the application

is blocked during the execution of the ping function, which is equivalent to

waiting for a pong. With Intel SDK, the buffer is copied from the non-secure

domain into the enclave.

Figure 4.5 reports the results of the experiment. We first observe that,

when the size of the argument is equal to 0, using message passing instead

of mode switching divides the function execution time by 12 (11.2 µs for

Intel SDK versus 0.9 µs for FastSGX/copy or FastSGX/nocopy). This result

highlights the benefit of using messages instead of switching the processor

mode.

We also observe that, when the argument size increases, the cost of copy-

ing the buffer becomes larger than the cost of transferring the control. With

a buffer of 32 KiB, we observe, however, that using message passing still

saves 28% of the time (76.1 µs for Intel SDK versus 54.6 µs for FastSGX/-

copy). This result shows that, even for an application that protects large

user data sets by copying them in an enclave, using message passing remains

interesting.

4.4 Conclusion

Our first contribution is FastSGX, a message-based runtime for SGX. FastSGX

relies on the switchless call principle, but avoids the limitations of the current

implementations. In detail, FastSGX (i) allows the developer to adjust the

4747

Chapter 4. FastSGX: a message-passing based runtime for SGX 4.4.
Conclusion

number of worker threads to the actual workload on the fly, (ii) allows the

developer to execute code in parallel in the sender while a receiver proceeds a

message, and (iii) allows the developer to directly transfer the control from an

enclave to another. Thanks to these properties, our evaluation with different

data structures and workloads shows that FastSGX consistently outperforms

the SGX development kit of Intel, and with one or two enclaves. Our eval-

uation also shows that FastSGX, with its 4 main functions, is simple and

usable in practice.

4848

Chapter 5

Colors and color management

in Privagic

Contents

5.1 Overview . 51

5.2 Color detection . 52

5.2.1 Structure Fields 52

5.3 Type inference . 53

5.4 Initial colors . 54

5.5 Color compatibility 55

5.6 Overview of the analysis 55

5.7 Typing rules . 56

5.7.1 Confidentiality . 57

5.7.2 Integrity . 58

5.7.3 Iago attacks . 58

5.8 Function calls . 59

5.8.1 Direct call to an external function 59

5.8.2 Communication with the outside 59

5.8.3 Indirect call . 60

5.9 Error messages . 60

49

Chapter 5. Colors and color management in Privagic

Link with the runtime
Compile

with llvmc
Compile and link

with clang -emit-lvvm

f1.bcf1.c

f2.bcf2.c all.bc

f3.bcf3.c

Privagic

Compiler

untr.bc

red.bc

blue.bc

untr.o

red.o

blue.o

./untrusted

libred.so

libblue.so

runtime_t.a

runtime_u.a

runtime_t.a

Figure 5.1: Overview of Privagic

Privagic relies on explicit secure typing to partition an application. Secure

typing consists on a type enriched with a domain identifier named a color.

Since secure typing is explicit, Privagic does not have to analyze the applica-

tion to find the locations that may contain sensitive values. Thanks to that,

secure typing avoids the limitations of the current analysis tools, which are

unable to analyze a multi-threaded application because they cannot explore

all the possible thread inter-leavings.

Since explicitly modifying the type of each variable and each function

argument of a legacy application is painful, Privagic also implements a sim-

plified form a type inference. In detail, Privagic is able to deduce by inference

the colors of the local variables and of the arguments of the functions, but

only if the code does not create a pointer to these memory locations. Thanks

to this limitation, the variable or argument is only used by a single thread,

and only within a single function. Using type inference in this case is straight-

forward: a simple data flow analysis performed at the scale of the function

is enough to identify the color of a variable or argument. Note that, in the

general case, type inference is a specific instance of the more general taint

analysis problem. Even if theoretically, the two problems are equivalent,

pragmatically, by restricting type analysis to local variables and arguments,

we make the technique usable in practice since Privagic does not have to ex-

plore the different thread inter-leavings. This is not the case of the previous

taint analysis tools (e.g., Glamdring [34]), which try to solve the problem of

taint analysis in the general case, and can thus not handle multi-threaded

applications since they cannot explore all the possible thread inter-leavings.

5050

Chapter 5. Colors and color management in Privagic 5.1. Overview

In the remainder of the chapter, we first present an overview of Privagic,

and we then delve into various aspects of our system’s analysis process. Sec-

tion §5.2 introduces how our system detects an element’s color. Following

this, §5.3 illustrates the type inference, while §5.4 details the color initializa-

tion process. In §5.5 we discuss the color compatibility and §5.6 provides an

overview of the analysis. The chapter further explores typing rules in §5.7,

elucidates the treatment of function calls in §5.8, and finally §5.9 concludes

with possible error messages raised by Privagic.

5.1 Overview

Privagic is designed as a part of the backend of the LLVM compiler. As

shown in Figure 5.1, Privagic takes a LLVM bitcode file as input. This

LLVM bitcode file contains the whole LLVM Intermediate Representation

(IR) of the application. It is generated by a classical tool chain, e.g., clang

for the C language. Privagic first analyzes the LLVM IR in order to detect

confidentiality, integrity, or Iago attack issues. Privagic then partitions the

LLVM IR into several bitcode files, which are used to generate an executable

with a classical compilation tool chain.

Privagic can run in two modes. In hardened mode, Privagic enforces con-

fidentiality and integrity, and additionally prevents Iago attacks: an enclave

never uses an unsafe value computed outside an enclave. In this mode, Pri-

vagic totally isolates an enclave from the rest of the application. The rest of

the application cannot access the enclave, and the enclave cannot access the

memory of the rest of the application, neither in read nor in write.

The hardened mode is sometimes too restrictive. The developer may

for example want to store profiling data in unsafe memory directly from

an enclave in order to avoid crossing the enclave boundary to update them.

The developer may also want to access global data structures located outside

the enclave after having checked their integrity instead of storing the data

structures inside the enclave in order to minimize the enclave size. For this

reason, Privagic also proposes the relaxed mode. In this mode, Privagic

ensures confidentiality and integrity, but it does not prevent against Iago

attacks. In other words, the rest of the application cannot access an enclave

(confidentiality and integrity), but an enclave can access unsafe memory,

5151

Chapter 5. Colors and color management in Privagic 5.2. Color detection

either in read or in write.

5.2 Color detection

As presented in section §2.2.1, LLVM considers a machine with a memory

and an infinite number of typed registers. A LLVM instruction takes registers

as input and outputs a new register.

Privagic allows the developer to enrich a type with a color. Figure 1.1

(see §1) illustrates an example of adding colors to a type. The color keyword

is a macro. It transforms the color declaration into a generic C annotation.1

The clang frontend does not handle by itself the annotation: it simply emits

the annotation in the LLVM IR. Privagic uses these annotations to identify

the colors associated with the types.

Colors can be added to:

• Global Variables

• Local Variables

• Structure Fields

As described in section §2.2.3, according to annotated types, clang trans-

lates the annotations in three different forms in LLVM IR: Global annota-

tion, pointer annotation, and variable annotation. Colors are associated with

global variables using global annotation and local variables using variable an-

notation.

5.2.1 Structure Fields

Detecting the color that is added to the structure field is not as straight-

forward as detecting the colors of global or local variables. Figure 5.2 shows

a simple example of colored structure in C. Figure 5.3 is the LLVM IR rep-

resentation of the code for line number 5 of Figure 5.2. In Figure 5.3, line 1

loads the global variable sa of type struct A. Then line 2 gets the first field

of the structure struct A. The type of register in line 2 is i32*. In order to

add pointer annotation to the register, line 3 casts the register from i32* to

1E.g., attribute ((annotate ("blue"))).

5252

Chapter 5. Colors and color management in Privagic 5.3. Type inference

1. struct A {

2. int color(green) a;

3. };

4. struct A* sa;

5. sa->a = 5;

Figure 5.2: A simple C example of colored struct

1. %13 = load %struct.A*, %struct.A** @sa, align 8

2. %14 = getelementptr inbounds %struct.A, %struct.A* %13, i32 0, i32 0

3. %15 = bitcast i32* %14 to i8*

4. %16 = call i8* @llvm.ptr.annotation.p0i8(i8* %15, i8* getelementptr

inbounds ([6 x i8], [6 x i8]* @.str, i32 0, i32 0), i8*

getelementptr inbounds ([10 x i8], [10 x i8]* @.str.1, i32 0, i32

0), i32 15)

↪→

↪→

↪→

5. %17 = bitcast i8* %16 to i32*

6. store i32 5, i32* %17

Figure 5.3: Example of structure field’s color

i8*. Line 4 calls llvm.ptr.annotation function and adds the color to the

register %15 (line 3). The section §2.2.3 explains in detail the specifications

of pointer annotation. Then at line 5, the colored register is cast from i8*

to its previous type i32*. For further use, the register %17 (from line 5) is

taken. Therefore the register %17 is used by the StoreInst in line 6. In order

to associate the color to the field, Privagic has thus tracked backward from

the pointer annotation at line 4 up to the first field of the structure struct

A.

5.3 Type inference

In order to ease the use of Privagic in a legacy application, Privagic can infer

the color of the local variables and registers. Privagic only infers the color

of a local variable if the code does not create a pointer to the local variable.

Moreover, Privagic does not try to infer the color of global variables or fields

of the data structures. Thanks to these restrictions, Privagic only has to

infer the type of a variable locally accessed by a single function and a single

thread. These restrictions allow thus Privagic to scale to multi-threaded

5353

Chapter 5. Colors and color management in Privagic 5.4. Initial colors

Color Given to Compatible with
F (Free) Registers and instructions Any other color
U (Unsafe) Memory locations No color

S (Shared) Memory locations
No color
(but becomes F when loaded)

Table 5.1: Initial colors given to the uncolored elements.

applications.

Privagic implements this design by first unifying the registers and the

local variables, and only if the code does not create a pointer to the local

variable. For that, Privagic starts by promoting the local variables (i.e., the

alloca) into registers by using the mem2reg pass of LLVM [1]. This pass

exactly implements our need: it promotes a local variable only if the code

does not create a pointer to the local variable. After this transformation

pass, Privagic thus only has to infer the colors of the registers in order to

infer the colors of both the registers and local variables (without pointers to

the local variable).

5.4 Initial colors

Initially, Privagic gives a color to each register, instruction, and memory

location. When a register or a memory location has an explicit color in the

code, Privagic uses it. When the color is not explicit, Privagic uses the three

special colors presented in Table 5.1.

The F color is the initial color of the instructions and of the registers

without explicit color. The F color is the only color compatible with any

other color. The F color indicates that a register or an instruction is not

bound to an enclave, i.e., that it can safely be computed and used in any

enclave. The F color is also used for type inference: Privagic can change the

color of a F element when it visits an instruction.

The U and S colors are used for the memory locations without explicit

color. U and S indicate that the memory location is located in unsafe memory.

Both colors are incompatible with any other color. However, the S color has a

special property: it becomes F when it is loaded from memory into a register.

In hardened mode, Privagic colors an uncolored memory location in U,

5454

Chapter 5. Colors and color management in Privagic 5.5. Color
compatibility

which protects against Iago attacks since the U color is incompatible with the

colors of the enclaves. In relaxed mode, Privagic colors the memory location

in S, which allows an enclave to use a value loaded from a S memory location

since the value becomes F when it is loaded.

Note that a developer can use the S color explicitly for some variable

in hardened mode to relax the Iago constraints, or the U color explicitly in

relaxed mode to add Iago constraints.

5.5 Color compatibility

While Privagic analyzes the code, it enforces typing rules. For that, Privagic

verifies the compatibility between colors. Two colors x and y are compatible,

which we note x ∼ y, if they are equal or if one of them is F. When Pri-

vagic detects that two colors are incompatible while they should be, Privagic

reports an error to the developer.

5.6 Overview of the analysis

Privagic analyzes the code by inspecting the LLVM instructions one after the

other.

When Privagic inspects a direct call to a local function, i.e., a function

for which the IR is available in the analyzed file, Privagic specializes the

called function with the colors of the arguments. For example, in line 7 in

Figure 2.6, since %2 is F, Privagic generates a specialized version of f for

a F argument. Thanks to the specialized versions, Privagic considers that

the colors of the arguments of a function are always known when it visits

a function. While Privagic visits a specialized function, it verifies that the

returned values are all compatible.

Privagic starts the analysis of an input file from entry points. An entry

point is a function that may be called from another codebase. In order to

handle the case where Privagic generates a library, Privagic considers by

default that any function with the extern attribute is an entry point. The

developer can also explicitly give the entry points by using annotations (e.g.,

only the main function). For each entry point, Privagic considers that it is

5555

Chapter 5. Colors and color management in Privagic 5.7. Typing rules

Mode Instruction
Color propagation

#
Registers Instruction

both

r = load(p) ∗p 6= S⇒ r ← ∗p ins← r 1

r = op(x0, ...) ∀i, r ← xi ins← r 2

store(p, v) v ∼ ∗p ins← ∗p 3

xn = ins(x0, ...) ins ∈ B ⇒ xn ← B ins← B 4

hardened
r = load(p)

p ∼ ∗p No effect 5
store(v, p)

x ∼ y ⇔ ((x 6= y) ∧ (x 6= F) ∧ (y 6= F)⇒ error)

x← y ⇔ (x ∼ y) ∧ (x = F⇒ x takes the color y)

ins: any instruction op: ins that is not a store, a load or a call

Table 5.2: Secure type system (x is the color of x).

called from U and that its arguments are U in hardened mode, and F in

relaxed mode.

When Privagic analyzes an instruction, it propagates the colors. This

propagation can change the input colors of instructions that are already

visited. That may happen in the case of a recursive call or of a backward

jump. For that reason, Privagic uses a fixpoint algorithm. In detail, Privagic

runs one or several full analysis passes on the whole IR of the application.

Each pass propagates the colors by starting from the entry points. At the

end of a pass, if Privagic inferred new colors during the pass, it restarts a

new analysis pass. Otherwise, the fixpoint algorithm stops.

5.7 Typing rules

The code analysis has three different goals. First, the analysis has the goal of

inferring the colors of the F registers. Then, the analysis has the goal of en-

forcing the correctness of the code by enforcing confidentiality and integrity

in relaxed mode, and by additionally preventing Iago attacks in hardened

mode. Finally, the analysis has the goal of associating a color to each in-

struction. Privagic uses this color in the partitioning phase to know in which

enclave it has to emit an instruction.

5656

Chapter 5. Colors and color management in Privagic 5.7. Typing rules

1. int x = 0, y = 0;

2. int color(blue) b;

3. void f() {

4. if(b == 42) // basic block A
5. x = 1; // basic block B (indirect leak)

6. y = 2; // basic block C (non sensitive)

7. }

Figure 5.4: Indirect color propagation.

In order to achieve these goals, Privagic enforces the rules presented in

Table 5.2, which are discussed in the remainder of the chapter.

5.7.1 Confidentiality

Privagic prevents a direct leak with rules 1 to 3. These rules first enforce

confidentiality by ensuring that if an instruction accesses a value colored in C,

then the instruction is executed in the enclave C (fourth column of Table 5.2).

Additionally, these rules enforce confidentiality by propagating, instruction

after instruction, the colors from the loads to the stores. In detail, for a load,

Rule 1 ensures that the output takes the color of the loaded memory location.

This rule has a special case when the memory location is S. In that case,

the output register remains F, which makes the register compatible with any

other color. Rule 2 propagates the colors from the right to the left for an

operation that is not a load, a store or a call. Rule 2 also prevents the use of

two inputs with incompatible colors. Without this constraint, executing the

instruction without leaking a colored value would be impossible since one of

the enclaves would have had access to a value with another color. Rule 3

prevents a direct leak through a store by reporting an error when a value is

stored in a memory location with an incompatible color.

Rule 4 handles indirect leaks. An indirect leak happens when a condi-

tional jump is controlled by a colored value. Figure 5.4 illustrates the issue.

In this code, if an attacker observes that x is equal to 1, the attacker can

deduce that b is equal to 42.

Without giving the implementation details, rule 4 prevents indirect leak

by assigning a color to each basic block.2 When Privagic visits a conditional

2A basic block is a sequence of instructions without jump and that do not contain

5757

Chapter 5. Colors and color management in Privagic 5.7. Typing rules

jump controlled by a colored value, it assigns the color of the value to the

basic blocks of the “if” and “then” branches (basic bloc B in Figure 5.4). It

does not propagate the color to the join point of the “if” (e.g., C in Figure 5.4)

since this basic block does not carry sensitive information anymore. Rule 4

ensures that if a basic block B has the color C, then the output register of any

instruction that belongs to B has a color compatible with C. For example,

in Figure 5.4 in relaxed mode, Privagic reports an error: x cannot take the

blue color of B at line 5 since x is S (line 1). Rule 4 also ensures that the

instructions that belong to a basic block with the color C are executed in

enclave C.

5.7.2 Integrity

Privagic enforces integrity by ensuring that only a code executed in enclave C

can modify a value with the color C. For that, first, if an instruction outputs

a C value, Privagic generates the instruction in the C enclave (rules 1 and

2). Then, Privagic generates a store to a C memory location in the enclave

C (rule 3).

5.7.3 Iago attacks

In order to prevent Iago attacks, Privagic ensures that an instruction gener-

ated in some enclave C uses only values located or computed in the enclave

C. For that, Privagic first ensures that using a F register in an enclave is

safe by replicating the computation of the F registers in each enclave. Then,

Rule 1 ensures that a value loaded from unsafe memory takes the color U

in hardened mode, which ensures that the unsafe value cannot be used to

compute a C register thanks to rule 2. Rule 5 complements the other rules

by preventing the use of cross-enclave pointers. In detail, this rule ensures

that if the value pointed by p has the color ∗p, then p is compatible with ∗p.

instructions that are the target of a jump, except for the first and the last instruction [1].

5858

Chapter 5. Colors and color management in Privagic 5.8. Function calls

5.8 Function calls

As already stated, Privagic handles a direct call to a local function by gen-

erating a specialized version of the function. This section discusses the other

forms of calls.

5.8.1 Direct call to an external function

A function is external if Privagic cannot analyze its code, i.e., if its IR is

not contained in the analyzed IR file. Privagic considers by default that an

external function belongs to the untrusted part of the application. When

Privagic visits an external call, it ensures that the arguments are compatible

with U (U or F). If one of the arguments is a pointer, Privagic also ensures

that the pointed memory location is U.

If a function is available from within the enclave, the developer can use

the within annotation. This is the case of the functions of the mini-libc

provided by Intel SGX SDK. This mini-libc library is included in the Privagic

runtime, which is embedded in each enclave. It contains basic functions such

as malloc or memcpy. For a within function, Privagic ensures that a call

executed in the enclave C only receives C and F arguments. Privagic also

verifies that if an argument is a pointer, then the pointed memory location

is C. This ensures that the code cannot inadvertently let a sensitive value

escape, e.g., by calling memcpy with a U pointer while the memcpy is executed

in C.

5.8.2 Communication with the outside

In hardened mode, an enclave is totally isolated from the rest of the world.

In order to allow the enclave to communicate with the outside, Privagic

provides a special annotation of the form within r a*. This annotation can

only be used for an external function available from within the enclave. The

annotation gives color constraints: r gives a constraint on the result of a call,

and a* on the arguments. A constraint is equal to c (color) or f (free or void

for the returned value). Privagic handles such an annotation by ignoring the

f arguments when it checks the compatibility of the colors. An f argument

can thus have any color and can point to any location.

5959

Chapter 5. Colors and color management in Privagic 5.9. Error messages

For example, a developer can annotate the encrypt(plain, len, key,

iv, cypher) function of the libssl library with within f ccccf. Thanks

to this annotation, cypher can point to a U or S location, even if plain is

C, which allows the function to write the encrypted result in unsafe memory.

Privagic also provides by default a within c cffc function classify(char*

safe, char* unsafe, int len, int max) to copy an unsafe buffer in a

safe buffer located in the enclave, and a within c fcc function declassify(

char* unsafe, char* safe, int len) to copy a safe buffer in unsafe mem-

ory.

5.8.3 Indirect call

Handling an indirect call is more complex because Privagic cannot always

identify the called function during compilation. Because of that, Privagic

uses a conservative approach. Privagic considers an indirect call as a direct

call to an external function located in the untrusted part of the application.

As for any external call, Privagic verifies that the arguments of an indirect

call have the F or the U color. If an argument is a pointer, Privagic also

verifies that the pointer points to a U or S location. Accordingly, when an

instruction loads a function pointer, Privagic loads a pointer to a version of

the function specialized for U arguments.

5.9 Error messages

Privagic raises errors to the developer when it cannot partition the code, i.e.,

when it detects a color incompatibility. In order to help the developer solve a

color incompatibility, Privagic carefully reports why colors are incompatible.

In detail, whatever the error, Privagic first reports the line number and the

name of the file where the error occurs to the standard error:

Errors occurred on line number 42 of file test.c:

Additionally, Privagic indicates the call chain that leads to an error and

why the error occurs:

• The line has at least two incompatible colors: blue, green ...

6060

Chapter 5. Colors and color management in Privagic 5.9. Error messages

This error message indicates that one of the instructions generated

by the corresponding line of code has two different colors. This error

occurs regardless of the function’s argument color.

• The argument number 1 of function func should be compatible

with blue whereas it is green

The analysis of the function func identifies that argument number 1

should be compatible with blue. This error is raised at the callsite of

the function func where the function is called with the green argument

number 1.

• The Colors of arguments number 1 and 3 of the function func

should be compatible, whereas they are blue and green re-

spectively

The analysis of the function func identifies that a dependency between

argument number 1 and argument number 3 is not satisfied (e.g., be-

cause the code computes a value by using these arguments, see Rule 2).

This error is raised at the callsite of function func where the function

is called with the blue argument number 1 and the green argument

number 3.

• The return values of the function func have at least two in-

compatible colors

When a function has two or more ReturnInst, all the ReturnInst

should have compatible colors.

• The given argument number 1 of the function func contains

error

This error is raised when an incompatibility is detected while treating

the CallInst: the color of the argument 1 is not compatible with the

color that the parameter should have.

• The current BasicBlock should be blue, whereas the called

function func manipulates green

This error is raised at the callsite of the function func because the

called function returns a green value, while the basic block is colored

in blue (indirect leak).

6161

Chapter 5. Colors and color management in Privagic 5.9. Error messages

• A trusted data of color blue cannot be stored in an untrusted

variable

This error is specific to StoreInst. It happens because of a direct leak.

• By calling the function func with argument number 1 uncol-

ored and argument number 2 colored, a trusted data of color

blue is stored in an untrusted variable

Error comes from line number 123 of file test.c (callsite)

This error is raised at the callsite of function func, while line number

42 belongs to function func. This error indicates that, because of the

colors of the arguments, the function will let a blue value escape in

untrusted memory. By indicating both the incriminated line in func

and the callsite, the developer can easily understand the call chain and

modify either func or the call site.

6262

Chapter 6

Application partitioning

Contents

6.1 Overview . 64

6.2 Adaptation of FastSGX 64

6.2.1 Chunks and function spawn 64

6.2.2 Synchronization between the chunks 65

6.3 Global variables 65

6.3.1 Example . 66

6.4 Multi-color structures 67

6.4.1 Allocation . 68

6.4.2 malloc in . 68

6.4.3 Access . 68

6.5 Code rewriting . 69

6.5.1 Color set and chunks 69

6.5.2 Simple cases . 69

6.5.3 Loads and stores 70

6.5.4 Function call . 72

6.5.5 Synchronization barriers 73

6.5.6 Entry points and indirect calls 73

63

Chapter 6. Application partitioning 6.1. Overview

After having computed the colors, the Privagic compiler partitions the

application by rewriting it. It rewrites the application in three steps: it

rewrites the global variables, the multi-color structures, and finally the func-

tions. Once the application is rewritten Privagic relies on our FastSGX run-

time to execute the partitions in SGX. In the rest of this chapter, we begin

by having an overview (§6.1), then we discuss adapting FastSGX for use in

Privagic (§6.2), and we describe the different steps of rewriting.

6.1 Overview

LLVM program consists of modules. The module is the top level structure

that encapsulates all the other elements of the LLVM IR (see §2.2.1). The

module contains a list of global variables, a list of functions, a list of structure

types etc. The single LLVM IR file that Privagic gets as an input consists of

one unique Module. This module represents the entire code of the application

that has to be processed. As shown in Figure 5.1 Privagic generates one

LLVM IR file for each color based on the cloned module. For this reason,

during the rewriting phase Privagic makes several clones of the input module,

one per color. The cloned module contains only the elements that are to be

placed inside the corresponding enclave.

6.2 Adaptation of FastSGX

Privagic relies on FastSGX to deploy the partitioned application on Intel

SGX. We added to FastSGX the spawn and cont functions, derived from

send (described in §4.2.1). Spawn sends a message to start a function and

cont sends a message to continue the execution of the function. We also add

a wait function, derived from recv (described in §4.2.1), which unblocks a

thread blocked in wait.

6.2.1 Chunks and function spawn

Since a function can access multiple colors, the FastSGX may have to ex-

ecute a function across different enclaves. For example, in Figure 1.1 (see

6464

Chapter 6. Application partitioning 6.3. Global variables

Introduction), create executes in both the blue and red domain since line

7 accesses a blue field and line 8 a red field. Therefore, FastSGX compiler

splits such a function into sub-functions, which we call chunks. A chunk with

color C only contains instructions with the color C or F. It can run in a single

enclave of color C.

In order to start a chunk from another enclave, Privagic uses the spawn

message. This message takes as an argument a function number. When the

worker thread of an enclave with the color C receives a spawn message for a

function g, it starts the execution of the chunk C of g.

6.2.2 Synchronization between the chunks

Chunks may have to synchronize and exchange messages. This first hap-

pens in relaxed mode to send or receive function arguments (see §6.5 below).

Privagic may also have to synchronize the chunks when a function executes

an instruction that has an effect, e.g., a write in S in relaxed mode or the

execution of an external function.

In order to synchronize enclaves or exchange messages, Privagic uses the

newly derived functions cont and wait. The cont function takes a 64-bit

value as an argument and sends it in a cont message to an enclave through

its FIFO queue. The wait function waits for a cont message and returns the

64-bit value contained in the message.

6.3 Global variables

As a first step, Privagic rewrites the global variables. For the variables that

are not S, Privagic places them in their enclaves. During the rewriting phase,

Privagic clones the C variables in their enclaves and the instructions using

those variables remain unchanged and placed inside C enclaves. The variables

that are placed inside the enclave cannot be modified from outside or from

another enclave. The S variables, which only exist in relaxed mode, should

be accessed and modified by all enclaves. Therefore Privagic moves them in

a single shared data structure stored in unsafe memory. Each enclave has a

pointer to this global data structure, which allows any enclave to access the

shared variables. While initializing the enclaves the pointer is also initialized

6565

Chapter 6. Application partitioning 6.3. Global variables

1. // From:

2. %1 = load i32, i32* @a, align 4, !dbg !25

3. // To:

4. %2 = load %globals_type*, %globals_type** @globals

5. %3 = getelementptr inbounds %globals_type, %globals_type* %2, i32 0, i32 4

6. %4 = load i32, i32* %3, align 4, !dbg !25

Figure 6.1: Example of global variable load rewriting.

inside the enclave. The pointer that is placed inside the enclave remains

unchanged, hence all the enclaves can access and modify the S variables.

In order to create the shared data structure, a new structure type is

defined in LLVM and placed inside the cloned modules. The element types

of this new structure type are the types of each S global variable. A global

variable of this new data structure is created in unsafe memory and is placed

only in Untrusted. Each element of the data structure is initialized with the

initializer of the S global variables. A pointer to this global data structure is

created as another global variable and is placed in all enclaves. Accordingly,

Privagic rewrites the LLVM IR in order to replace the accesses to the S global

variables with accesses to this shared global data structure.

6.3.1 Example

Figure 6.1 illustrates an example of how those accesses are rewritten in the

case of instruction. A global variable is accessed by a function through a

load instruction. Line 2 of Figure 6.1 shows an example of a load instruction

in LLVM IR. This instruction loads the global variable a in register %1.

Considering the global variable a to be S, the load instruction should be

rewritten. At first, the pointer of the global data structure should be loaded

in register %2 (line 4). Then, the element corresponding to the global variable

a should be retrieved from the global data structure in register %3 (line 5).

Finally, the global variable is loaded in register %4 as the exact type of global

variable a (line 6). The register %4 is used throughout the function instead

of the register %1. The register %1 is removed from the function in order to

avoid disturbance during the execution.

6666

Chapter 6. Application partitioning 6.4. Multi-color structures

1. struct account {

2. char color(blue)* name[256];

3. double color(red)* balance;

4. };

5. struct account* create(char* name) {

6. struct account* res =

7. malloc_in(U, sizeof(*res));

8. res->name =

9. malloc_in(blue, sizeof(*res->name));

10. res->balance =

11. malloc_in(red, sizeof(*res->balance));

12. strncpy((*res)->name, name, 256);

13. (*res)->balance = 0.0;

14. }

Figure 6.2: Data structure rewriting.

6.4 Multi-color structures

As a second step, Privagic rewrites the structures with multiple colors.

These structures can only exist in relaxed mode because using a multi-color

structure requires the use of cross-enclave pointers.

For a multi-color structure, since an enclave is contiguous in the virtual

address space, Privagic cannot keep the fields packed in memory. For that

reason, Privagic introduces an indirection level. Instead of storing directly the

colored values in the structure, Privagic stores pointers to the colored values.

Therefore for each structure containing a colored value, a new structure type

is created. The element types of the new structure type are:

• If the element is F, the element type is the same as the old structure’s

element type.

• If the element is colored, the element type will be the pointer of the

old structure’s element type.

Lines 1-4 of Figure 6.2 illustrate in C how Privagic rewrites the account

structure presented in Figure 1.1. As both elements of the old structure are

colored differently, both elements of the new structure are pointers toward

the old elements.

6767

Chapter 6. Application partitioning 6.4. Multi-color structures

6.4.1 Allocation

When Privagic rewrites a data structure, Privagic first analyzes the code

in order to associate each allocation site (e.g., a call to malloc) to a data

structure. Then, for the multi-color data structures, Privagic rewrites the

allocation site in order to allocate the data structure in unsafe memory, and

the colored fields in their enclave (lines 6-11). For that, Privagic generates

calls to the malloc in function, which allocates memory from the enclave

given as a first argument.

Privagic allows the data structure to be stored in an enclave, different from

its elements’ colors. As FastSGX provides inter-enclave communication, it is

feasible. In the case where the data structure is of color C, its F elements

take C color. Therefore, F elements of the data structure are also allocated

in C enclave.

6.4.2 malloc in

The malloc in function spawns a local function malloc out inside the ad-

equate enclave. It then sends the memory size that needs to be allocated

to the malloc out function, through a continue message. malloc out then

executes the actual malloc function inside the enclave, and sends back the

allocated pointer to the malloc in function. Then malloc in function fi-

nally returns the allocated pointer to the caller function. Note that even if

the pointer leaks outside the enclave, the caller cannot access the pointed

value since SGX prevents memory access to an enclave.

6.4.3 Access

Privagic also rewrites all the accesses to the multi-colored data structure in

order to handle the indirection (lines 12-13). In the case where the structure

is stored in an enclave different from its element, the pointer of the element

will be sent to the adequate enclave to proceed with the computation. In

line 6 *res is allocated in U and the element balance of the structure *res

is allocated in the enclave red. Line 13 manipulates a variable of color red,

hence it will be executed in enclave red. To execute this line, U will send the

pointer balance (which is saved in U) to the enclave red. Enclave red will

execute the line 13 and update the balance.

6868

Chapter 6. Application partitioning 6.5. Code rewriting

6.5 Code rewriting

Finally, Privagic partitions the code itself. While it partitions the code, Pri-

vagic leverages the fact that two instructions with different colors do not have

data dependencies in order to generate a parallel code. For that, Privagic

supposes that the Privagic runtime runs a worker thread in each enclave for

each thread of the application. The remainder of the section explains how

Privagic partitions the code step by step.

6.5.1 Color set and chunks

In order to generate a parallel code, Privagic first computes the color set

of each function. The color set of a function is the set of colors used by a

function, F excluded. Figure 6.3 shows an example. In this example, the

color set of main (line 4 in Figure 6.3) is equal to {blue,U} because main

uses the U color at line 5, and the blue color at line 6. For the specialized

version of f that receives a blue parameter (line 9), its color set is {blue}
because f receives a blue argument, calls a function without using color, and

returns the F value 42. For g, its color set is {red, blue,U} because it uses

the red and blue colors at lines 14 and 15, and then executes a call to an

external function, which is colored in U during the type analysis phase.

For each color of a color set, Privagic generates a colored version of the

function, which we call a chunk. For example, as shown in Figure 6.4, Privagic

generates three chunks for the function g, one per color of the color set.

6.5.2 Simple cases

We first consider an IR without loads, stores, or direct calls to local functions.

With this IR, each instruction is mono-colored. Privagic partitions the code

by generating the C instructions of a function in its C chunks. Privagic

replicates the F instructions in each chunk, which ensures that using a F

value in a chunk is safe (see §5.7.3). If a F instruction is uselessly replicated,

a dead-code-elimination pass [1] eliminates it afterward.

6969

Chapter 6. Application partitioning 6.5. Code rewriting

Global variables

1. int color(U) unsafe = 0;

2. int color(blue) blue = 10;

3. int color(red) red = 0;

Function main

colorset = {blue,U}

4. int main() {

5. unsafe = 1;

6. int x = f(blue);

7. return x;

8. }

Function f

colorset = {blue}

9. int f(int y) {

10. g(21);

11. return 42;

12. }

Function g

colorset = {red, blue,U}

13. void g(int n) {

14. blue = n;

15. red = n;

16. printf("Hello\n");

17. }

Figure 6.3: A complete example

6.5.3 Loads and stores

We now consider the loads and stores. If ∗p = C with C 6= S, Privagic

generates the load or the store in C. For example, as shown in Figure 6.4,

Privagic generates unsafe = 1 (line 5 in Figure 6.3) in U, blue = n (line

14) in blue, and red = n (line 15) in red. In relaxed mode, when p and ∗p
do not belong to the same enclave, Privagic additionally uses wait/cont in

order to send the value p from its enclave to C. C will proceed with the

computation of ∗p
If ∗p = S, Privagic can generate the load or the store in any enclave.

7070

Chapter 6. Application partitioning 6.5. Code rewriting

red blue U
main

(interf.)
main()wait()wait()

main.blue() main.U()

unsafe = 1

f.blue(10)

x = wait()

main

g.red(21) g.blue(21) g.U(21)

red = 21 blue = 21

y = wait() y = wait()

return return return

g

f
(tramp)

return 42 return 42

return 42

main

main
(interf.)

s2

s1

s3

c2(21) c1(21)

c3()

c4()

c5(42)

g
(tramp.)

wait() wait() printf(...)

return 42

f

freturn 42

Figure 6.4: Execution of the example given in Figure 6.3

7171

Chapter 6. Application partitioning 6.5. Code rewriting

For a load, Privagic replicates the load in each chunk because loading a

value from an enclave is more efficient than receiving it from another enclave

with a wait/cont. For a store in S, Privagic has to synchronize the chunks

because a store in S has a visible effect (see §6.5.5 below). Replicating the

instruction in each chunk is thus inefficient since this would lead to many

synchronizations and is prone to error if multiple enclaves try to store the

same value. Privagic thus selects one of the chunks of the function as a

master chunk and generates the stores to S in this chunk. A color is selected

as the master chunk if it has the maximum number of instructions. In order

to synchronize, the master chunk sends a cont message to all the colors in

the color set except itself. On the other hand, the chunks of those colors call

wait to wait for the cont message from the master chunk.

6.5.4 Function call

For each call site, Privagic compares the color set of the caller with the color

set of the callee. If a color C is common between the two color sets, Privagic

generates a call to the chunk C of the callee directly in the chunk C of the

caller. In that case, the chunk of the caller calls the chunk of the callee with

the C and F arguments, but not with the others arguments. For example, in

Figure 6.4, main.blue directly calls f.blue with the blue argument (10).

In order to handle the case where one of the colors of the callee is not in the

color set of the caller, the Privagic runtime manages communication channels

between the enclaves. In order to start a missing chunk, the Privagic runtime

generates a spawn message, which takes as an argument, the identifier of the

missing chunk. The missing chunk may need F arguments, which are only

computed in the caller. When this is the case, Privagic reports an error in

hardened mode since using a value computed by another enclave is unsafe. In

relaxed mode, using an unsafe value is authorized, and the Privagic runtime

generates thus the cont message to send a F argument, and the wait function

to wait for a message.

Since a chunk receives its F arguments as a parameter, the caller cannot

directly spawn the execution of a missing chunk if the missing chunk has F

parameters. Instead, Privagic generates trampolines in charge of receiving

the F arguments and calling the chunk. Figure 6.4 illustrates how Privagic

leverages trampolines to start g from f. In this example, f.blue sends the

7272

Chapter 6. Application partitioning 6.5. Code rewriting

spawn messages s2 and s3 in order to start trampolines for the chunks g.red

and g.U. Then, f.blue sends the F argument 21 with the cont messages c1
and c2. Finally, the trampolines receive the argument 21 and call the chunks.

6.5.5 Synchronization barriers

Some instructions have a visible effect. This is the case for a store to S or

for a call to an external function located in U. Misordering the execution

of such instructions would lead to incorrect behaviors: a read to S while the

corresponding write in sequential is not yet executed, or the inversion of two

printf. For this reason, when an instruction has a visible effect, Privagic

generates a synchronization barrier by using wait/cont. The cont messages

are sent by the chunk that executed the instruction with a visible effect. In

other chunks, the instruction is replaced by a wait.

Figure 6.4 illustrates how Privagic generates a synchronization barrier for

the printf of g at line 16 in Figure 6.3. In the red and blue chunks of g,

Privagic replaces the call to printf by a call to wait, which suspends the

execution of the red and blue enclaves. Accordingly, in U, Privagic generates

calls to cont after the call printf. These calls emit the c3 and c4 messages

to the red and blue enclaves, which unblock the enclaves.

6.5.6 Entry points and indirect calls

For each entry point and each function indirectly called, Privagic considers

that it executes only in U, and that it receives U arguments in hardened

mode, and F arguments in relaxed mode. For that reason, Privagic generates

an interface version of these functions. An interface version keeps the original

name of the function. It is in charge of starting the missing chunks. For

example, in Figure 6.4, the interface function of main starts the execution

of main.blue by sending a spawn message, s1, to enclave blue, and then

directly calls main.U.

7373

Chapter 7

Evaluation

Contents

7.1 Hardware and software setting 75

7.2 Memcached . 75

7.2.1 Engineering effort 76

7.2.2 TCB size . 76

7.2.3 Performance . 77

7.2.4 Takeaway . 79

7.3 Data structures . 79

7.3.1 Engineering effort 80

7.3.2 Performance analysis 80

7.3.3 Takeaway . 84

In this chapter, we focus on evaluating Privagic. The evaluation has the

goal of answering the following questions:

• Engineering effort – what is the difficulty of using Privagic,

• Trusted computed base – what is the size of the TCB with Privagic,

• Performance – what is the performance of an application generated

with Privagic.

We describe the hardware and software setting in §7.1, the evaluation results

of Memcached in §7.2, and finally the evaluation results of data structures in

§7.3.

74

Chapter 7. Evaluation 7.1. Hardware and software setting

Workload Pattern read update scan insert rmw‡

A zipfian 50% 50% 0% 0% 0%
B zipfian 95% 5% 0% 0% 0%
C zipfian 100% 0% 0% 0% 0%
D latest 95% 0% 0% 5% 0%
E† uniform 0% 0% 95% 5% 0%
F zipfian 50% 0% 0% 0% 50%

†: not evaluated because our applications do not implement scan
‡: read-modify-write

Table 7.1: YCSB workloads

7.1 Hardware and software setting

We evaluate Privagic on two machines. Machine A is an Intel i5-9500 CPU

3 GHz with 16 GiB memory. This 6-core CPU ships SGX version 1 with a

maximal EPC size usable by the enclaves of 93 MiB. Machine B is an Intel

Xeon Gold 5415+ with 16 CPUs, 120 GiB of memory and 22.5 MiB of last

level cache. This processor supports SGX version 2 with a maximum EPC

size of 8131 MiB.

Machines A and B runs Linux 5.15.0, glibc 2.31, clang 10.0.0 and Intel

SGX SDK 2.19.100.

7.2 Memcached

We first evaluate a complete legacy application: memcached 1.6.12 (24841

lines of C code). Memcached is an in-memory cache widely used in produc-

tion. It is designed as an event-based system with multiple threads to handle

the requests.

In order to inject the load, we use the standard Java version of the YCSB

benchmark [20]. Figure 7.1 presents the workloads. YCSB and memcached

communicate through the loopback network on the same machine in order to

minimize the network overheads. YCSB and memcached are carefully bound

to different physical cores. YCSB is configured to use 6 worker threads, which

simulate 6 clients concurrently accessing the cache. YCSB uses a record size

of 1024 B and runs 8, 000, 000 operations.

We configure memcached with 7 threads: a worker thread, a network

listener thread and some miscellaneous background threads, e.g., in charge

7575

Chapter 7. Evaluation 7.2. Memcached

Modified TCB Unsafe code
(C locs) (KiB) (LLVM locs)

Scone 0 51271 78106 + libraries
Privagic 9 268 1 238

Table 7.2: Memcached metrics (locs: lines of code)

of maintaining the least recently used key/value pairs in memory.1

We evaluate YCSB with data sets ranging from 1 MiB to 32 GiB by chang-

ing the number of records. We evaluate three configurations of memcached on

machine B. Unprotected consists in running memcached in a docker container

without SGX. Scone consists in using Scone [6] v5.7.0 to run memcached in

a container fully embedded in an SGX enclave. Scone calls the operating

system by using switchless calls [6]. Privagic is our generated version of

memcached. It protects the central data structure of memcached (a map)

with a single color.

7.2.1 Engineering effort

Column “Modified” of Table 7.2 reports the number of modified lines of code.

Scone does not require any modification since memcached is fully embedded

in an enclave. For Privagic, we modified 9 lines of code: 2 to add the colors

to the central map, and 7 to declassify the values. This result shows that

using Privagic in a legacy application requires a modest engineering effort.

7.2.2 TCB size

As shown in the “TCB” column of Table 7.2, the binary code loaded in

the enclave with Privagic is roughly 200 times smaller than the binary code

loaded with Scone. With Scone, this code includes memcached (349 KiB), the

musl C library (14.7 MiB) and the OS library shipped with Scone (36.2 MiB).

Any bug from any of these components may lead to a threat inside the

enclave.

The 268 KiB of Privagic includes the Intel SDK runtime and the Privagic

runtime, which are not supposed to contain bugs. If we exclude this trusted

code, the unsafe code, which consists in the code generated by Privagic and

1https://github.com/memcached/memcached/blob/master/doc/threads.txt

7676

Chapter 7. Evaluation 7.2. Memcached

embedded in the enclave, contains 1238 lines of LLVM code (column “Unsafe

code”). We cannot report the exact unsafe code with Scone because Scone

does not disclose its source code. However, even if we ignore the musl C

library and the library OS of Scone, the code of memcached embedded in an

enclave is already 63 times larger (78106 lines of LLVM code).

Overall, these results show that, Privagic significantly reduces the TCB

as compared to fully embedding the application in the enclave, and for a

modest engineering effort.

7.2.3 Performance

Figure 7.1 reports the throughput of memcached on machine B (see §7.1).

Small data set. For a small dataset (less than 200 MiB), the throughput

of Privagic is between 8.5 to 10.0 better than the throughput of Scone.

With Scone, the overhead is larger than with Privagic for two reasons.

First, the time to enter and leave the enclave to execute a request is larger

with Scone than with Privagic. Then, since Scone fully executes in an en-

clave, Scone has to perform many system calls from the enclave: for the

network operations and for the synchronizations (e.g., to acquire or release

locks). Even if Scone optimizes the system calls with switchless calls, the

large number of ocalls in Scone significantly slows down the execution of a

request. This is not the case with Privagic because Privagic minimizes the

code in the enclave. With Privagic, the code in the enclave accesses the data

structure and only calls the operating system twice: one time to acquire a

lock, and one time to release it.

As a result of the lower number of ocalls and of the faster transfer of

control in Privagic, the throughput of Privagic is only 5 % to 20 % lower

than the throughput of Unprotected for a small dataset. The throughput of

Scone is between 6 to 10 times slower than Unprotected.

Large data set. We also observe that the latency and the throughput of

Privagic degrades when the dataset size increases. In the worst case (dataset

of 32 GiB), the throughput of Privagic remains, however, at least 2.3 times

higher than the throughput of Scone.

The throughput of Privagic decreases with a large dataset because of

cache effects. In detail, the central hashmap of memcached becomes larger

with a larger dataset. Retrieving a key thus leads to more memory accesses,

7777

Chapter 7. Evaluation 7.2. Memcached

Unprotected Privagic Scone

20 24 28 212 216

(I.a) YCSB A - dataset (MiB)
0

40

80

Th
ro

ug
hp

ut
(k

op
s/

s)

20 24 28 212 216

(II.a) YCSB A - dataset (MiB)
0.0

0.4

0.8

Av
g

La
t.

(m
s)

20 24 28 212 216

(I.b) YCSB B - dataset (MiB)
0

40

80

Th
ro

ug
hp

ut
(k

op
s/

s)

20 24 28 212 216

(II.b) YCSB B - dataset (MiB)
0.0

0.5

1.0
Av

g
La

t.
(m

s)

20 24 28 212 216

(I.c) YCSB C - dataset (MiB)
0

40

80

Th
ro

ug
hp

ut
(k

op
s/

s)

20 24 28 212 216

(II.c) YCSB C - dataset (MiB)
0.0

0.3

0.6

Av
g

La
t.

(m
s)

20 24 28 212 216

(I.d) YCSB D - dataset (MiB)
0

40

80

Th
ro

ug
hp

ut
(k

op
s/

s)

20 24 28 212 216

(II.d) YCSB D - dataset (MiB)
0.0

0.3

0.6

Av
g

La
t.

(m
s)

20 24 28 212 216

(I.f) YCSB F - dataset (MiB)
0

25

50

Th
ro

ug
hp

ut
(k

op
s/

s)

20 24 28 212 216

(II.a) YCSB F - dataset (MiB)
0.0

0.4

0.8

Av
g

La
t.

(m
s)

(I) Throughput (II) Latency

Figure 7.1: Memcached with YCSB.

7878

Chapter 7. Evaluation 7.3. Data structures

which translates into more last level cache (LLC) misses. This is the case for

Unprotected, Privagic and Scone. For example, in Unprotected, we measured

that increasing the dataset from 236 MiB to 32 GiB multiplies the ratio of

LLC misses roughly by 3 (from 6.5% to 17.6% LLC misses).

For Privagic and Scone, the higher number of cache misses has an impor-

tant effect because they happen while the processor is in enclave mode. As

reported in [41], a LLC miss in enclave mode takes between 5.6 to 9.5 more

time than in normal mode. As a result, while the higher number of LLC

has a marginal effect for Unprotected, this is not the case for Privagic and

Scone. For Privagic, the higher number of LLC misses translates into a worse

latency, which itself translates into a degraded throughput. The throughput

degradation with Scone also exists but is less visible because the latency of

Scone is already high with a small dataset.

7.2.4 Takeaway

The experiment with memcached shows that (i) Privagic can scale to a large

legacy application used in production, (ii) adapting a legacy application to

use Privagic requires a modest engineering effort, (iii) the TCB of memcached

with Privagic is much lower than the TCB of memcached with Scone, and

(iv) Privagic is consistently more efficient than Scone.

7.3 Data structures

We now evaluate data structures in order to finely analyze the code generated

by Privagic. We evaluate two data structures: a linked-list and a hashmap.

We use the data structures as maps, i.e., they associate keys to values. We

inject the load with our re-implementation in C of the YCSB benchmark [20]

(see Figure 7.1). The benchmark directly accesses the map in the same thread

without involving the network in order to emphasize the cost of using SGX.

We evaluate five configurations. Unprotected does not use SGX. Privagic-

1 consists in coloring the whole hashmap. Privagic-2 consists in coloring the

keys and the values with two different colors. Intel-sdk-1 exposes the interface

of the maps in EDL (i.e., put, get). Intel-sdk-2 uses two enclaves in EDL: one

for the keys and the other for the values. We tried to implement intel-sdk-2

7979

Chapter 7. Evaluation 7.3. Data structures

as efficiently as we can by minimizing the number of ecalls.

In each configuration, we use keys of 8 bytes and values of 1024 bytes. We

use machine A for this evaluation. For the experiments with a single color,

we pre-initialize the map with 100 000 keys and then run the experiment. For

the experiments with two colors, we pre-initialize the map with only 20 000

keys because the runs are much longer.

7.3.1 Engineering effort

For the engineering effort, we focus on the hashmap, which is representative of

other data structures. For one color, using Privagic requires the modification

of 5 lines of code: 1 line to color the hashmap, 2 lines to color two local

variables, and 2 lines to declassify the result of a get. For two colors, we

modified 6 lines in total: 2 lines to add the colors to the fields, 1 line to

color a local variable, 2 lines to declassify the result of a get, and 1 line to

declassify the result of a call to a hash function.

Manually porting the unprotected code to use one color with Intel SDK

is relatively straightforward, but leads to 206 modified lines of code. Manu-

ally porting the unprotected code to use two colors with Intel SDK is more

challenging and requires 6 ecalls. We have to handle the allocations of the

keys and values in the different enclaves, and to expose several functions in

order to exchange data between the enclaves.

Overall, we observe that using Privagic to protect a data structure re-

quires a modest engineering effort. Manually using Intel SDK requires more

work, and especially if the application uses multiple colors.

7.3.2 Performance analysis

Figure 7.2 and Figure 7.3 report the performance with one color, then Fig-

ure 7.4 with two colors.

Privagic versus Intel SDK with one color In Figure 7.2 and Figure 7.3,

when we compare intel-sdk1 with privagic-1, we observe that Privagic divides

the latency and multiplies the throughput by 2.4 to 6.1 for the hashmap, and

by 1.1 to 1.2 for the linked-list. These results show that, by executing the code

in parallel instead of using ecalls/ocalls, the code generated by Privagic is

8080

Chapter 7. Evaluation 7.3. Data structures

unprotected intel-sdk-1 privagic-1

A B C D F0.0
0.1
0.2
0.3

Th
ro

ug
hp

ut
(1

e6
 o

p/
s)

(a) Hashmap throughput (uniform)

A B C D F0.0
0.5
1.0
1.5
2.0

Th
ro

ug
hp

ut
(1

e6
 o

p/
s)

(b) Hashmap throughput (zipfian)

A B C D F0.000

0.005

0.010

Th
ro

ug
hp

ut
(1

e6
 o

p/
s)

(c) Linked-list throughput (uniform)

Figure 7.2: Throughput of data structures with the YCSB benchmarks (1
color).

more efficient than a naive implementation with Intel SDK. The performance

improvement brought by Privagic is more interesting with the hashmap than

with the linked list because retrieving a key in a linked-list requires visiting

sequentially many (key, value) couples (50 000 in average), which amortizes

the cost of crossing an enclave boundary.

Privagic versus unprotected with one color We first analyze the per-

formance while ignoring workload D, which we discuss separately at the end

of the section because the results are more unexpected.

In Figure 7.2 and Figure 7.3, we observe that Privagic optimizes the

8181

Chapter 7. Evaluation 7.3. Data structures

unprotected intel-sdk-1 privagic-1

A B C D F0

5

10

Av
g

La
t.

(
s)

(d) Hashmap latency (uniform)

A B C D F0

5

10

Av
g

La
t.

(
s)

(e) Hashmap latency (zipfian)

A B C D F0
100
200
300

Av
g

La
t.

(
s)

(f) Linked-list latency (uniform)

Figure 7.3: Latency of data structures with the YCSB benchmarks (1 color).

performance of the hashmap as compared to unprotected for a uniform dis-

tribution. In detail, if we ignore the workload D, Privagic decreases latency

and increases throughput from 4% to 21%. The better performance of Pri-

vagic as compared to unprotected comes from a better parallelism. Privagic

generates a parallel code by leveraging the fact that we can execute in par-

allel the U and the colored instructions, which allows Privagic to improve

performance while also enforcing security.

For the hashmap, with a zipfian access pattern, privagic-1 is, however, less

efficient than unprotected. If we ignore workload D, privagic-1 multiplies the

latency and divides the throughput by 2.9 to 3.2 times. With a zipfian access

pattern, we measured that the number of L1 cache misses drops from 30% to

8282

Chapter 7. Evaluation 7.3. Data structures

20%. This better L1 locality explains why the zipfian access pattern signifi-

cantly improves the performance of unprotected as compared to the uniform

access pattern. The performance improvement brought by the better local-

ity is less important for Privagic, because the time spent in communication

between the enclave and the untrusted part of the application dominates. As

a result, despite better parallelism, Privagic is less efficient than unprotected

with a zipfian access pattern.

For the linked list, privagic-1 is also less efficient than unprotected (degra-

dation of 13% to 28% when we ignore workload D). In this experiment, each

request leads to many accesses to the linked list, and thus many L3 cache

misses. These L3 cache misses are more costly with Privagic because of the

cost of checking the tree of hashes when a cache line is loaded from memory.

The results with workload D are unexpected. Even intel-sdk-1 have often

better performance than unprotected with this workload. After investigation,

we found that this result is not significant. In detail, workload D allocates

many objects in the enclave with privagic-1 and intel-sdk-1. Since workload

D never frees an object in an enclave, allocation in the enclave is especially

fast, since it only consists in bumping a bump pointer. In unprotected, the

allocations to add the elements to the map interleave with the allocation-

s/frees of the load injector. The memory allocator has thus to traverse a

linked list of free chunks, which slows down execution.

Two colors In Figure 7.4, we observe that privagic-2 is significantly faster

than intel-sdk-2. Privagic-2 divides the latency and multiplies the through-

put from 6.4 to 9.2 times as compared to intel-sdk-2. Despite our optimiza-

tions in intel-sdk-2, the ecalls and ocalls of intel-sdk-2 significantly degrade

performance.

We also observe that privagic-2 also significantly degrades performance

as compared to unprotected. With two colors, for each request, the enclaves

intensively communicate, which annihilates the benefit of executing the code

in parallel. This result shows that using two colors has a nonnegligible cost,

even with a compiler that optimizes the generated code.

8383

Chapter 7. Evaluation 7.3. Data structures

unprotected intel-sdk-2 privagic-2

A B C D F0

200

400

Av
g

La
t.

(
s)

(a) Hashmap latency (uniform)

A B C D F0

200

400

600

Av
g

La
t.

(
s)

(b) Hashmap latency (zipfian)

Figure 7.4: Hashmap with the YCSB benchmarks (2 colors).

7.3.3 Takeaway

This set of experiments with data structures shows that (i) adding colors to

classic data structures is easy, (ii) Privagic is consistently more efficient than

a code manually ported to SGX with Intel SDK, (iii) for some workloads,

Privagic is more efficient than unprotected with one color, (iv) with two

colors, the code generated by Privagic remains significantly less efficient than

an unprotected code.

8484

Chapter 8

Limitations and perspectives

Contents

8.1 Message passing 85

8.2 Number of threads 86

8.3 Multi-color structure 86

8.4 Multi-language . 86

Privagic has its own set of limitations that open doors to new perspectives.

In this chapter, we first discuss the limitations and prospects linked with

message-passing technique of our runtime FastSGX in §8.1, furthermore we

reflect on ways to solve CPU consumption problem due to extra threads in

§8.2, following that we address the limitation in using mutli-color structure

in §8.3, and finally, we conclude by reflecting on the future perspective to

adapt Privagic for multiple languages in §8.4.

8.1 Message passing

Privagic’s runtime FastSGX relies on a message-passing mechanism. With

Privagic, an attacker may try to attack an enclave by generating cont and

spawn messages. Because a cont message simply unblocks an enclave without

changing its execution flow, an attacker cannot temper the execution flow of

an enclave with cont messages. In hardened mode, a cont message cannot

carry a F value. This ensures that the enclave executes exactly the code that

85

Chapter 8. Limitations and perspectives 8.2. Number of threads

it is supposed to execute, even if an attacker sends unexpected cont messages.

In relaxed mode, when a cont message carries a F value, as for any value

that comes from the untrusted part of the application, the developer may

have to check its integrity.

An attacker can temper the execution flow of the application by send-

ing unexpected spawn messages. Privagic does not implement a protection

against this attack vector, but techniques that rely on message authentica-

tion, as proposed in Glamdring [34] or Scone [6], should solve the issue.

8.2 Number of threads

Another limitation of our prototype comes from the number of worker threads.

Currently, for each thread of the application, Privagic runs one worker thread

per enclave, which multiplies the number of threads by the number of colors

plus one. We did not optimize this part of the prototype, but techniques such

as configless switchless calls [62] should allow Privagic to adapt the number

of worker threads to the actual workload.

8.3 Multi-color structure

The last limitation of our prototype comes from the impossibility of us-

ing multi-color structures in hardened mode. Because of the indirection

introduced between the structure located in unsafe memory and the colored

fields (see §6.4), using a multi-color structure requires the use of cross-enclave

pointers, which is unsafe and thus prohibited in hardened mode. Currently,

in hardened mode, a developer can thus only use multiple colors if they do

not belong to the same data structure. Using multi-color structures in hard-

ened mode requires the use of authenticated pointers, which we let as future

work.

8.4 Multi-language

As described in Figure 5.1, Privagic is a part of LLVM (the backend of

the compiler). Privagic now works for applications written in C language.

8686

Chapter 8. Limitations and perspectives 8.4. Multi-language

Frontends exist for multiple languages like C++, rust, GO, that provide

LLVM Intermediate Representation (LLVM IR) for the backend to work

with. In order to adapt Privagic for those languages, some language-specific

modifications should be added to Privagic. A major part of the Privagic

code could be kept intact to integrate other languages’ characteristics. As

the runtime FastSGX is completely independent of Privagic, only the Privagic

part should be modified for applications written in other languages, with a

frontend for LLVM. We save this as a future project.

8787

Chapter 9

Conclusion

To summarize, this thesis challenges the conventional approach to partition-

ing application code between secure and non-secure memory zones. While

existing methods grapple with pointers, multi-threading complexities, and a

two-partition limitation, our novel approach introduces secure typing as a

more accurate technique. In detail, the thesis proposes two contributions.

FastSGX. Deploying legacy applications on Trusted Execution Environ-

ments (TEEs) for confidential computing appears to burden developers. An-

other drawback of using the Intel SGX TEE is the high cost associated with

entering or leaving an enclave. Despite the effectiveness of switchless calls in

addressing this issue, efficiently utilizing this technique remains challenging,

mainly due to three issues: static worker thread configuration in the Intel

SGX runtime leading to inefficient CPU resource usage, the call semantic

causing unnecessary CPU wastage, and the current SGX runtime design hin-

dering direct enclave-to-enclave calls, introducing additional control transfer

overhead.

Our first contribution is FastSGX, a message-based runtime for SGX

that overcomes the previously listed limitations. FastSGX not only provides

dynamic adjustment of worker threads based on workload but also enables

parallel code execution in the sender while a receiver processes a message.

Furthermore, it allows control transfer from one enclave to another. Our

evaluation shows that FastSGX consistently outperforms the Intel SGX-SDK.

Privagic. We propose in this thesis to ease the use of TEEs in legacy

applications by using explicit secure typing. A secure type is a type enriched

with a color, indicating in which enclave a value resides. We implemented

88

Chapter 9. Conclusion

a compiler named Privagic, which takes as input an application with secure

types and automatically partitions it for Intel SGX. Privagic generates par-

allel code by leveraging the fact that two instructions accessing two different

colors do not have data dependency. We adapted FastSGX to build the Pri-

vagic runtime, facilitating the deployment of partitioned code on Intel SGX.

We evaluate Privagic with both micro- and macro-benchmarks. Overall,

our evaluation shows that (i) using Privagic in legacy application requires

a modest engineering effort, (ii) Privagic minimizes the TCB as compared

to solutions that embed a complete application such as Scone, (iii) the code

generated by Privagic is more efficient than a manually written code that

relies on Intel SGX, and than an application fully embedded in an enclave

with Scone.

8989

Bibliography

[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman.

Compilers: Principles, Techniques, and Tools (2nd Edition). Addison-

Wesley Longman Publishing Co., Inc., USA, 2006.

[2] Frances E. Allen. Control flow analysis. SIGPLAN Not., 5(7):1–19, jul

1970.

[3] Julien Amacher and Valerio Schiavoni. On the Performance of ARM

TrustZone. In José Pereira and Laura Ricci, editors, 19th IFIP Interna-

tional Conference on Distributed Applications and Interoperable Systems

(DAIS), volume LNCS-11534 of Distributed Applications and Interoper-

able Systems, pages 133–151, Kongens Lyngby, Denmark, June 2019.

Springer International Publishing.

[4] Amazon. Aws nitro system, 2022.

[5] Lars Ole Andersen. Program Analysis and Specialization for the C Pro-

gramming Language. PhD thesis, Johns Hopkins University, 1994.

[6] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, An-

dre Martin, Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan

O’Keeffe, Mark L. Stillwell, David Goltzsche, Dave Eyers, Rüdiger

Kapitza, Peter Pietzuch, and Christof Fetzer. SCONE: Secure linux

containers with intel SGX. In 12th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 16), pages 689–703, Savan-

nah, GA, November 2016. USENIX Association.

[7] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexan-

dre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick

90

Bibliography Bibliography

McDaniel. Flowdroid: Precise context, flow, field, object-sensitive and

lifecycle-aware taint analysis for android apps. In Proceedings of the

35th ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI ’14, page 259–269, New York, NY, USA, 2014.

Association for Computing Machinery.

[8] Godmar Back and Wilson Hsieh. The kaffeos java runtime system. ACM

Trans. Program. Lang. Syst., 27:583–630, 07 2005.

[9] Mike Barnett, Manuel Fahndrich, Francesco Logozzo, and Diego Gar-

bervetsky. Annotations for (more) Precise Points-to Analysis. In Inter-

national Workshop on Aliasing, Confinement and Ownership in object-

oriented programming (IWACO 2007), Berlin, Germany, 2007.

[10] Andrew Baumann, Marcus Peinado, and Galen Hunt. Shielding applica-

tions from an untrusted cloud with haven. In 11th USENIX Symposium

on Operating Systems Design and Implementation (OSDI 14), pages

267–283, Broomfield, CO, October 2014. USENIX Association.

[11] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczynski,

D. Becker, C. Chambers, and S. Eggers. Extensibility safety and per-

formance in the SPIN operating system. In Proceedings of the Fifteenth

ACM Symposium on Operating Systems Principles, page 267–283. As-

sociation for Computing Machinery, 1995.

[12] Stefan Brenner, Colin Wulf, David Goltzsche, Nico Weichbrodt,

Matthias Lorenz, Christof Fetzer, Peter Pietzuch, and Rüdiger Kapitza.

Securekeeper: Confidential zookeeper using intel sgx. In Proceedings

of the 17th International Middleware Conference, Middleware ’16, New

York, NY, USA, 2016. Association for Computing Machinery.

[13] David Brumley and Dawn Song. Privtrans: Automatically partitioning

programs for privilege separation. In Proceedings of the 13th Conference

on USENIX Security Symposium - Volume 13, SSYM’04, page 5, USA,

2004. USENIX Association.

[14] David Bühler, Pascal Cuoq, Boris Yakobowski, Matthieu Lemerre,

André Maroneze, Valentin Perelle, and Virgile Prevosto. Eva - the

evolved value analysis plug-in.

9191

Bibliography Bibliography

[15] Stephen Checkoway and Hovav Shacham. Iago attacks: Why the system

call api is a bad untrusted rpc interface. In Proceedings of the Eigh-

teenth International Conference on Architectural Support for Program-

ming Languages and Operating Systems, ASPLOS ’13, page 253–264,

New York, NY, USA, 2013. Association for Computing Machinery.

[16] Lixia Chen, Jian Li, Ruhui Ma, Haibing Guan, and Hans-Arno Jacobsen.

EnclaveCache: A Secure and Scalable Key-Value Cache in Multi-Tenant

Clouds Using Intel SGX. In Proceedings of the 20th International Mid-

dleware Conference, Middleware ’19, page 14–27, New York, NY, USA,

2019. Association for Computing Machinery.

[17] Stephen Chong, Jed Liu, Andrew C. Myers, Xin Qi, K. Vikram, Lan-

tian Zheng, and Xin Zheng. Secure web applications via automatic

partitioning. In Proceedings of Twenty-First ACM SIGOPS Symposium

on Operating Systems Principles, SOSP ’07, page 31–44, New York, NY,

USA, 2007. Association for Computing Machinery.

[18] Google Cloud. Confidential computing, 2022.

[19] Confidential Computing Consortium. Confidential computing - open

source community, 2022.

[20] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,

and Russell Sears. Benchmarking cloud serving systems with ycsb. In

Proceedings of the 1st ACM Symposium on Cloud Computing, SoCC ’10,

page 143–154, New York, NY, USA, 2010. Association for Computing

Machinery.

[21] Löıc Correnson, Pascal Cuoq, Florent Kirchner, André Maroneze, Vir-

gile Prevosto, Armand Puccetti, Julien Signoles, and Boris Yakobowski.

Frama-c user manual.

[22] Victor Costan and Srinivas Devadas. Intel SGX explained. IACR Cryp-

tol. ePrint Arch., 2016:86, 2016.

[23] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified

lattice model for static analysis of programs by construction or approxi-

mation of fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN

9292

Bibliography Bibliography

Symposium on Principles of Programming Languages, POPL ’77, page

238–252, New York, NY, USA, 1977. Association for Computing Ma-

chinery.

[24] Manuvir Das. Unification-based pointer analysis with directional assign-

ments. In Proceedings of the ACM SIGPLAN 2000 Conference on Pro-

gramming Language Design and Implementation, PLDI ’00, page 35–46,

New York, NY, USA, 2000. Association for Computing Machinery.

[25] Jérémie Decouchant, David Kozhaya, Vincent Rahli, and Jiangshan Yu.

Damysus: Streamlined bft consensus leveraging trusted components. In

Proceedings of the Seventeenth European Conference on Computer Sys-

tems, EuroSys ’22, page 1–16, New York, NY, USA, 2022. Association

for Computing Machinery.

[26] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program

dependence graph and its use in optimization. ACM Trans. Program.

Lang. Syst., 9(3):319–349, jul 1987.

[27] Nicolas Geoffray, Gaël Thomas, Gilles Muller, Pierre Parrend, Stéphane

Frénot, and Bertil Folliot. I-jvm: a java virtual machine for compo-

nent isolation in osgi. In Proceedings of the international conference

on Dependable Systems and Networks, DSN’09, pages 544–553. IEEE

Computer Society, 2009.

[28] Adrien Ghosn, James R. Larus, and Edouard Bugnion. Secured routines:

Language-based construction of trusted execution environments. In 2019

USENIX Annual Technical Conference (USENIX ATC 19), pages 571–

586, Renton, WA, July 2019. USENIX Association.

[29] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Program-

ming, Revised Reprint. Morgan Kaufmann Publishers Inc., San Fran-

cisco, CA, USA, 1st edition, 2012.

[30] Galen Hunt and Jim Larus. Singularity: Rethinking the software stack.

ACM SIGOPS Operating Systems Review, 41(2):37–49, April 2007.

[31] Jianyu Jiang, Xusheng Chen, TszOn Li, Cheng Wang, Tianxiang Shen,

Shixiong Zhao, Heming Cui, Cho-Li Wang, and Fengwei Zhang. Uranus:

9393

Bibliography Bibliography

Simple, efficient SGX programming and its applications. In Proceedings

of the 15th ACM Asia Conference on Computer and Communications

Security (ASIACCS 2020), pages 826–840, Taipei, Taiwan, 2020.

[32] David Kaplan, Jeremy Powell, and Tom Woller. Amd memory encryp-

tion - whitepaper v9. Technical report, AMD, 10 2021.

[33] Taehoon Kim, Joongun Park, Jaewook Woo, Seungheun Jeon, and Jae-

hyuk Huh. Shieldstore: Shielded in-memory key-value storage with sgx.

In Proceedings of the Fourteenth EuroSys Conference 2019, EuroSys ’19,

New York, NY, USA, 2019. Association for Computing Machinery.

[34] Joshua Lind, Christian Priebe, Divya Muthukumaran, Dan O’Keeffe,

Pierre-Louis Aublin, Florian Kelbert, Tobias Reiher, David Goltzsche,

David Eyers, Rüdiger Kapitza, Christof Fetzer, and Peter Pietzuch.

Glamdring: Automatic application partitioning for intel SGX. In 2017

USENIX Annual Technical Conference (USENIX ATC 17), pages 285–

298, Santa Clara, CA, July 2017. USENIX Association.

[35] Shen Liu, Gang Tan, and Trent Jaeger. Ptrsplit: Supporting general

pointers in automatic program partitioning. In Proceedings of the 2017

ACM SIGSAC Conference on Computer and Communications Security,

CCS ’17, page 2359–2371, New York, NY, USA, 2017. Association for

Computing Machinery.

[36] Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and Yubin Xia.

Thwarting memory disclosure with efficient hypervisor-enforced intra-

domain isolation. In Proceedings of the 22nd ACM SIGSAC Conference

on Computer and Communications Security, CCS ’15, page 1607–1619,

New York, NY, USA, 2015. Association for Computing Machinery.

[37] Andrea Mambretti, Kaan Onarlioglu, Collin Mulliner, William Robert-

son, Engin Kirda, Federico Maggi, and Stefano Zanero. Trellis: Privilege

separation for multi-user applications made easy. In International Sym-

posium on Research in Attacks, Intrusions and Defenses (RAID), pages

437–456.

[38] Jämes Ménétrey, Marcelo Pasin, Pascal Felber, and Valerio Schiavoni.

Twine: An embedded trusted runtime for webassembly. In 37th IEEE

9494

Bibliography Bibliography

International Conference on Data Engineering, ICDE 2021, Chania,

Greece, April 19-22, 2021, pages 205–216. IEEE, 2021.

[39] Maged M. Michael. Hazard pointers: Safe memory reclamation for lock-

free objects. IEEE Trans. Parallel Distrib. Syst., 15(6):491–504, jun

2004.

[40] Microsoft. Microsoft azure confidential computing, 2022.

[41] Meni Orenbach, Pavel Lifshits, Marina Minkin, and Mark Silberstein.

Eleos: Exitless os services for sgx enclaves. In Proceedings of the Twelfth

European Conference on Computer Systems, EuroSys ’17, page 238–253,

2017.

[42] Sandro Pinto and Nuno Santos. Demystifying arm trustzone: A com-

prehensive survey. ACM Computing Surveys, 51:1–36, 01 2019.

[43] Christian Priebe, Divya Muthukumaran, Joshua Lind, Huanzhou Zhu,

Shujie Cui, Vasily A Sartakov, and Peter Pietzuch. SGX-LKL: Se-

curing the host OS interface for trusted execution. arXiv preprint

arXiv:1908.11143, 2019.

[44] Atanas Rountev, Ana Milanova, and Barbara G. Ryder. Points-to analy-

sis for java using annotated constraints. In Proceedings of the 16th ACM

SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications, OOPSLA ’01, page 43–55, New York, NY,

USA, 2001. Association for Computing Machinery.

[45] Konstantin Rubinov, Lucia Rosculete, Tulika Mitra, and Abhik Roy-

choudhury. Automated partitioning of android applications for trusted

execution environments. In Proceedings of the 38th International Con-

ference on Software Engineering, ICSE ’16, page 923–934, New York,

NY, USA, 2016. Association for Computing Machinery.

[46] J.H. Saltzer and M.D. Schroeder. The protection of information in com-

puter systems. Proceedings of the IEEE, 63(9):1278–1308, 1975.

[47] Vasily A. Sartakov, Stefan Brenner, Sonia Ben Mokhtar, Sara

Bouchenak, Gaël Thomas, and Rüdiger Kapitza. Eactors: Fast and

9595

Bibliography Bibliography

flexible trusted computing using sgx. In Proceedings of the 19th Inter-

national Middleware Conference, Middleware ’18, page 187–200, New

York, NY, USA, 2018. Association for Computing Machinery.

[48] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Mar-

cus Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. VC3: Trust-

worthy data analytics in the cloud using SGX. In 2015 IEEE Sympo-

sium on Security and Privacy (SSP 15), pages 38–54, San Jose, CA,

USA, 2015. IEEE.

[49] Shweta Shinde, Dat Le Tien, Shruti Tople, and Prateek Saxena.

Panoply: Low-TCB linux applications with SGX enclaves. In 24th An-

nual Network and Distributed System Security Symposium (NDSS 17),

San Diego, CA, USA, 2017. The Internet Society.

[50] Bjarne Steensgaard. Points-to analysis in almost linear time. In Proceed-

ings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL ’96, page 32–41, New York, NY, USA,

1996. Association for Computing Machinery.

[51] Meysam Taassori, Ali Shafiee, and Rajeev Balasubramonian. Vault:

Reducing paging overheads in sgx with efficient integrity verification

structures. In Proceedings of the Twenty-Third International Confer-

ence on Architectural Support for Programming Languages and Operat-

ing Systems, ASPLOS ’18, page 665–678, New York, NY, USA, 2018.

Association for Computing Machinery.

[52] Hongliang Tian, Qiong Zhang, Shoumeng Yan, Alex Rudnitsky, Liron

Shacham, Ron Yariv, and Noam Milshten. Switchless calls made practi-

cal in intel sgx. In Proceedings of the 3rd Workshop on System Software

for Trusted Execution, SysTEX ’18, page 22–27, New York, NY, USA,

2018. Association for Computing Machinery.

[53] Chia-Che Tsai, Donald E Porter, and Mona Vij. Graphene-SGX: A prac-

tical library OS for unmodified applications on SGX. In 2017 USENIX

Annual Technical Conference (USENIX ATC 17), pages 645–658, 2017.

[54] Chia-Che Tsai, Jeongseok Son, Bhushan Jain, John McAvey,

Raluca Ada Popa, and Donald E. Porter. Civet: An efficient Java

9696

Bibliography Bibliography

partitioning framework for hardware enclaves. In 29th USENIX Secu-

rity Symposium (USENIX Security 20), pages 505–522, Online, August

2020. USENIX Association.

[55] Nico Weichbrodt, Pierre-Louis Aublin, and Rüdiger Kapitza. Sgx-perf:

A performance analysis tool for intel sgx enclaves. In Proceedings of

the 19th International Middleware Conference, Middleware ’18, page

201–213, New York, NY, USA, 2018. Association for Computing Ma-

chinery.

[56] Ofir Weisse, Valeria Bertacco, and Todd Austin. Regaining lost cycles

with hotcalls: A fast interface for sgx secure enclaves. In Proceedings

of the 44th Annual International Symposium on Computer Architecture,

ISCA ’17, page 81–93, New York, NY, USA, 2017. Association for Com-

puting Machinery.

[57] Christian Wimmer, Codrut Stancu, Peter Hofer, Vojin Jovanovic, Paul

Wögerer, Peter B. Kessler, Oleg Pliss, and Thomas Würthinger. Initial-

ize once, start fast: Application initialization at build time. Proc. ACM

Program. Lang., 3(OOPSLA), oct 2019.

[58] Yongzheng Wu, Jun Sun, Yang Liu, and Jin Song Dong. Automatically

partition software into least privilege components using dynamic data

dependency analysis. In Proceedings of the 28th IEEE/ACM Interna-

tional Conference on Automated Software Engineering, ASE ’13, page

323–333. IEEE Press, 2013.

[59] P. Yuhala, P. Felber, V. Schiavoni, and A. Tchana. Plinius: Secure

and persistent machine learning model training. In 2021 51st Annual

IEEE/IFIP International Conference on Dependable Systems and Net-

works (DSN), pages 52–62, Los Alamitos, CA, USA, jun 2021. IEEE

Computer Society.

[60] Peterson Yuhala, Hugo Guiroux, Jean-Pierre Lozi, Pascal Felber, Valerio

Schiavoni, Alain Tchana, and Gaël Thomas. Secv: Secure code parti-

tioning via multi-language secure values. In Proceedings of the 24nd

International Middleware Conference, Middleware ’23. Association for

Computing Machinery, 2023.

9797

Bibliography Bibliography

[61] Peterson Yuhala, Jämes Ménétrey, Pascal Felber, Valerio Schiavoni,

Alain Tchana, Gaël Thomas, Hugo Guiroux, and Jean-Pierre Lozi.

Montsalvat: Intel sgx shielding for graalvm native images. In Proceed-

ings of the 22nd International Middleware Conference, Middleware ’21,

page 352–364, New York, NY, USA, 2021. Association for Computing

Machinery.

[62] Peterson Yuhala, Michael Paper, Timothée Zerbib, Pascal Felber, Va-

lerio Schiavoni, and Alain Tchana. SGX switchless calls made config-

less. In 53rd Annual IEEE/IFIP International Conference on Depend-

able Systems and Network, DSN 2023, Porto, Portugal, June 27-30,

2023, pages 229–238. IEEE, 2023.

[63] Peterson Yuhala, Michael Paper, Timothée Zerbib, Pascal Felber, Vale-

rio Schiavoni, and Alain Tchana. SGX Switchless Calls Made Configless

(PER). In Proceedings of the international conference on Dependable

Systems and Networks, DSN’23. IEEE Computer Society, 2023.

[64] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C.

Myers. Secure program partitioning. ACM Trans. Comput. Syst.,

20(3):283–328, aug 2002.

[65] Lantian Zheng, Stephen Chong, Andrew C. Myers, and Steve Zdancewic.

Using replication and partitioning to build secure distributed systems.

In Proceedings of the 2003 IEEE Symposium on Security and Privacy,

SP ’03, page 236, USA, 2003. IEEE Computer Society.

[66] Wenting Zheng, Ankur Dave, Jethro G Beekman, Raluca Ada Popa,

Joseph E Gonzalez, and Ion Stoica. Opaque: An oblivious and en-

crypted distributed analytics platform. In 14th USENIX Symposium

on Networked Systems Design and Implementation (NSDI 17), pages

283–298, Boston, MA, USA, 2017.

9898

Titre : Privagic : informatique confidentielle rendue pratique grâce au typage sécurisé

Mots clés : SGX, LLVM, sécurité et partitionnement de code

Résumé : L’informatique confidentielle consiste à
protéger les données des utilisateurs lorsqu’elles
sont traitées dans un système non fiable tel qu’une
infrastructure cloud. Au niveau matériel, l’informa-
tique confidentielle repose sur un environnement
d’exécution fiable (TEE) (SGX d’Intel, SEV d’AMD
ou TrustZone d’ARM). Un TEE est un environnement
matériel qui isole une zone de mémoire, appelée en-
clave, d’un système d’exploitation ou d’un hypervi-
seur potentiellement compromis. Étant donné qu’il est
difficile de partitionner manuellement une application
entre une enclave et la mémoire non sécurisée, de
nombreux outils de partitionnement automatique ont
été proposés. Avec ces outils, le développeur annote
certaines valeurs sensibles et l’outil analyse ensuite
le code pour trouver les emplacements de mémoire
dans lesquels les valeurs sensibles propagent. La plu-
part de ces outils se comportent incorrectement en
présence de pointeurs. Lorsqu’ils sont corrects, ils ne
parviennent pas à gérer les threads en raison de la
difficulté à suivre les pointeurs dans une application
multi-thread. Les outils actuels sont également inca-
pables de diviser une application en plus de deux
partitions. Cela est causé par une surapproximation,
qui conduit à des emplacements mémoire faussement
partagés entre les deux partitions.
Nous proposons de partir d’un autre point de l’es-
pace de conception, en laissant le développeur
annoter explicitement tous les emplacements de
mémoire qui contiennent des valeurs sensibles.
Puisque le développeur annote explicitement tous
les emplacements de mémoire sensibles, il n’est
pas nécessaire d’analyser le code. Nous évitons
ainsi par construction tout risque d’erreur d’ana-
lyse dans une application multithread. Afin de per-
mettre au développeur d’indiquer les emplacements
de mémoire qui contiennent des valeurs sensibles,
nous introduisons une nouvelle construction du lan-
gage appelée � type sécurisé �. Un type sécurisé est
un type enrichi d’un identifiant d’enclave, que nous ap-

pelons une couleur.
Le typage sécurisé indique comment partitionner
le code. En lui-même, le typage sécurisé ne four-
nit aucune garantie de sécurité. Pour renforcer la
sécurité, nous proposons donc de compléter le ty-
page sécurisé par des règles de typage. Le typage
explicite de chaque emplacement de mémoire sus-
ceptible de contenir une valeur sensible rend pos-
sible le partitionnement d’une application multithread.
L’ajout d’un type sécurisé à chaque emplacement
mémoire sensible peut prendre beaucoup de temps
au développeur. Pour cette raison, nous proposons
de faciliter l’utilisation du typage sécurisé avec une
forme simple d’inférence de type. Nous déduissons
le type d’une variable locale non colorée, mais seule-
ment si le code ne crée pas de pointeur sur la va-
riable. Dans ce cas, la variable ne s’échappe pas
de la portée d’une seule fonction, ce qui évite l’ana-
lyse inter procédurale. De plus, comme la variable ne
s’échappe pas de la portée de sa fonction, elle ne
peut pas être accédée par un autre thread. Avec cette
restriction, la déduction d’un type sécurisé nécessite
une simple analyse de la chaı̂ne use-def, et le type
déduit est correct même dans les applications mul-
tithread. Nous avons mis en œuvre notre principe de
typage sécurisé dans le cadre Privagic pour Intel SGX
et le langage C.
Le compilateur Privagic s’appuie sur le compila-
teur LLVM, ce qui signifie qu’il ne s’appuie pas sur
la sémantique C : il considère une représentation
intermédiaire de bas niveau du code avec des
types sécurisés ajoutés aux variables, aux arguments
et aux champs des structures de données. Notre
évaluation avec des micro- et macro-applications
montre que (i) le typage sécurisé peut gérer les poin-
teurs, le multi-threads et plus de deux partitions, (ii)
l’ajout de types sécurisés dans une application exis-
tante est facile, (iii) le typage sécurisé réduit la base
de confiance et est plus efficace que l’intégration
complète d’une application dans une enclave.

Title : Privagic: confidential computing made practical with secure typing

Keywords : SGX, LLVM, security and code partitioning

Abstract : For more than twenty years, several tools
have been proposed to automatically partition an ap-
plication between a secure memory zone and a non-
secure memory zone. These tools analyze the data
flow of the application in order to identify the memory
locations that may contain sensitive values. Most of
these tools behave incorrectly in the presence of poin-
ters. When they are correct, they are unable to handle
threads because of the difficulty to track pointers in a
multi-threaded application. The current tools are also
unable to split an application in more than two par-
titions. This is caused by over-approximation, which
leads to memory locations falsely shared between the
two partitions.
In this thesis, instead of starting from data flow ana-

lysis, we propose to start from a more accurate tech-
nique: language typing. We introduce secure typing,
which consists in embedding a partition identifier in
the type system of a language. Based on secure ty-
ping, we designed a language-agnostic compiler ba-
sed on LLVM. The compiler takes a legacy applica-
tion enriched with secure types as input, and gene-
rates multiple partitions for Intel SGX. Our evaluation
with micro- and macro-applications show that (i) se-
cure typing can handle pointers, multiple threads and
more than two partitions, (ii) adding secure types in a
legacy application is easy, (iii) secure typing reduces
the trusted computing base, and is more efficient than
embedding a full application inside an enclave.

Institut Polytechnique de Paris
91120 Palaiseau, France

	Introduction
	Background
	Developing with the Intel SDK
	Ecall & Ocall
	Sgx Switchless

	LLVM
	LLVM IR
	LLVMPass
	Annotation

	Motivation and related work
	Threat model
	Related work
	Using Intel SDK
	Frameworks that simplify the use of Intel SGX
	Using typing to enforce isolation

	Focus on glamdring

	FastSGX: a message-passing based runtime for SGX
	Related work
	Design of FastSGX
	Interface
	Hazard pointers

	Evaluation
	Micro-benchmarks
	Ping-pong

	Conclusion

	Colors and color management in Privagic
	Overview
	Color detection
	Structure Fields

	Type inference
	Initial colors
	Color compatibility
	Overview of the analysis
	Typing rules
	Confidentiality
	Integrity
	Iago attacks

	Function calls
	Direct call to an external function
	Communication with the outside
	Indirect call

	Error messages

	Application partitioning
	Overview
	Adaptation of FastSGX
	Chunks and function spawn
	Synchronization between the chunks

	Global variables
	Example

	Multi-color structures
	Allocation
	malloc_in
	Access

	Code rewriting
	Color set and chunks
	Simple cases
	Loads and stores
	Function call
	Synchronization barriers
	Entry points and indirect calls

	Evaluation
	Hardware and software setting
	Memcached
	Engineering effort
	TCB size
	Performance
	Takeaway

	Data structures
	Engineering effort
	Performance analysis
	Takeaway

	Limitations and perspectives
	Message passing
	Number of threads
	Multi-color structure
	Multi-language

	Conclusion

