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Title : Dark Energy Tomography with the Euclid survey
Keywords : Dark energy, Weak lensing, Beyond-ΛCDM
Abstract :

The currentΛCDM concordancemodel has been
widely successful in describing our Universe.
However, crucial questions remain unanswered
and are becoming increasingly critical with the
continuous release of high-precision cosmologi-
cal data. This has led to the exploration of modi-
fied ΛCDM models, one of them being the Cou-
pled Dark Energy (CDE) model, whereby dark
matter particles feel a force stronger than gra-
vity, due to the fifth force mediated by a scalar
field which plays the role of dark energy.
In my thesis, I introduce a new parametrisation
of the CDE model where the coupling strength
between the dark matter particles and the sca-
lar field is allowed to evolve with redshift. To
probe such a tomographic CDE model, I employ
high redshift Cosmic Microwave Background
(CMB) data from Planck, ACT and SPT, and a
range of low redshift probes including, for the
first time, Large Scale Structure (LSS) data from
weak lensing, galaxy clustering, and their cross-
correlation galaxy-galaxy lensing. I find that LSS
data allows us to recover tight constraints on
coupling at low redshifts, comparable to that ob-
tained with highly precise CMB data, making it a
promising probe to test CDE models at low red-
shifts.

I go on to develop other applications of the to-
mographic CDEmodel, such as investigations on
an early coupled quintessence model whereby
coupling is only activated during the radiation-
dominated era, and constrain such a pheno-
menological model with observational data for
the first time. I also explore whether deep lear-
ning techniques such as neural networks can dif-
ferentiate between LSS data generated from a
ΛCDM model and a tomographic CDE model.
Finally, I turn my attention to current stage IV
galaxy surveys such as Euclid, which will map
the LSS of the Universe and provide weak len-
sing and galaxy clustering data of unpreceden-
ted accuracy and precision. Within the consor-
tium, I contribute to developing the official Eu-
clid likelihood code, with the ultimate aim of
obtaining constraints on extended ΛCDM mo-
dels with Euclid data. I have also worked on
developing the cosmic shear inference pipeline
for UNIONS, a ground-based photometric galaxy
survey in the northern hemisphere that will also
complement Euclid observations. These LSS sur-
veys thus usher in an exciting era of precision
cosmology, allowing us to increase our unders-
tanding of the Universe and potentially uncover
hints of new physics.
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Résumé :

Le modèle de concordance actuel, ΛCDM, a lar-
gement réussi à décrire notre Univers. Cepen-
dant, des questions cruciales restent sans ré-
ponse et deviennent de plus en plus critiques
avec la publication continue de données cosmo-
logiques de haute précision. Cela a conduit à l’ex-
ploration demodèlesΛCDMmodifiés, parmi les-
quels figure lemodèle de l’énergie noire couplée,
dans lequel les particules de matière noire sont
sujettes à une force plus importante que la force
gravitationnelle, en raisond’une cinquième force
générée par un champ scalaire qui joue le rôle de
l’énergie noire.
Dans ma thèse, j’introduis une nouvelle para-
métrisation du modèle de l’énergie noire cou-
plée où la force de couplage entre les particules
de matière noire et le champ scalaire est auto-
risée à évoluer avec le décalage vers le rouge.
Pour sonder un tel modèle de l’énergie noire
couplée tomographique, j’utilise des données du
fond diffus cosmologique à haut décalage vers
le rouge provenant de Planck, ACT et SPT, ainsi
qu’une gamme de sondes à bas décalage vers le
rouge incluant, pour la première fois, des don-
nées de la structure à grande échelle issues de
la lentille gravitationnelle faible, de l’agglomé-
ration des galaxies, et de leur corrélation croi-
sée. Je constate que les données de la struc-
ture à grande échelle nous permettent d’obte-
nir des contraintes importantes sur le couplage
à bas décalages vers le rouge, comparables à
celles obtenues avec des données très précises
du fonds diffus cosmologique, ce qui en fait une
sonde prometteuse pour tester les modèles de
l’énergie noire couplée à bas décalages vers le

rouge.
Je développe ensuite d’autres applications du
modèle de l’énergie noire couplée tomogra-
phique, commeunmodèle de quintessence cou-
plée précoce où le couplage n’est activé que
pendant l’ère dominée par le rayonnement, et
je contrains un tel modèle phénoménologique
avec des données observationnelles pour la pre-
mière fois. J’explore également des techniques
d’apprentissage profond telles que les réseaux
neuronaux, pour tester si elles peuvent différen-
cier les données de la structure à grande échelle
générées à partir d’unmodèleΛCDMet d’unmo-
dèle de l’énergie noire couplée tomographique.
Enfin, nous tournons notre attention vers les re-
levés actuels de galaxies de stage IV, tels que
Euclid, qui realiseront une cartographie de la
structure à grande échelle de l’Univers et four-
niront des données de lentille gravitationnelle
faible et d’agglomération des galaxies d’une pré-
cision sans précédent. Au sein du consortium,
je contribue au développement du code de vrai-
semblance officiel Euclid, avec pour objectif fi-
nal d’obtenir des contraintes sur les modèles
ΛCDM étendus avec les données Euclid. J’ai éga-
lement travaillé sur le développement de la
chaîne de traitement pour l’inférence à partir de
cisaillement cosmique pour UNIONS, un relevé
photométrique de galaxies au sol dans l’hémi-
sphère nord qui complétera également les ob-
servations Euclid. Ces relevés des structures à
grande échelle inaugurent ainsi une ère passion-
nante de cosmologie de précision, nous permet-
tant d’accroître notre compréhension de l’Uni-
vers et de potentiellement découvrir des indices
de nouvelles physiques.
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1. Extended Abstract

TheΛCDMmodel postulates that theUniverse is primarily comprised of a cosmological constant
Λ, responsible for the late-time accelerated expansion of the Universe ; dark matter, a slow-
movingmatter component which only interacts gravitationally, and ordinary matter. Themodel
accounts for almost the entirety of the growth history of the Universe from the time of the Big
Bang, and has been able to elucidate numerous observational phenomena such as the exis-
tence and structure of the Cosmic Microwave Background (CMB) and the Large Scale Structure
(LSS), the observed late-time accelerated expansion of the Universe, and various other astro-
physical processes. Hence it is still hailed as the concordance model within the cosmological
community.
However, with the continuous release of high-precision data, tensions between datasets have
arisen that could suggest possible insufficiencies of this model. For example, the most well-
known and pressing tension currently being faced within the community is the H0 tension :
the significant difference between the present-day value of the expansion of the Universe, the
Hubble constantH0, measured by early-time probes such as the CMB, as opposed to using late-
time probes such as Type 1a supernovae.
An attempt to reconcile these tensions has led to the exploration of modified ΛCDM models.
Specifically, one such model is known as the Coupled Dark Energy (CDE) model. It proposes the
existence of a scalar field in place of a cosmological constant, which is coupled to the dark mat-
ter particles, causing them to experience a fifth force apart from gravity. Such a model alters
the growth history and structure formation of the Universe, and has been shown to be able to
relieve theH0 tension while still being compatible with current datasets.
In my thesis, I introduce a new parametrisation of the CDE model where the coupling strength
between the dark matter particles and the scalar field is allowed to evolve with redshift. To
probe such a tomographic CDE model, I employ various datasets across a range of redshifts,
including for the first time, LSS data combining weak lensing, galaxy clustering, and their cross-
correlation, galaxy-galaxy lensing, known as a ‘3x2pt’ probe. I find that LSS data allows us to
recover tight constraints on coupling even at low redshifts, comparable to that obtained with
CMB data, making it a promising probe to constrain CDE models at low redshifts.
With this first proof of concept, I subsequently applied this tomographic CDE model to other
avenues of investigation. Firstly, I studied a form of early coupled quintessence (ECQ) models,
whereby coupling is only activated during primordial times, specifically during the radiation-
dominated era. The dynamics of such a coupling can lead to interesting physical consequences,
particularly the formation of primordial black holes, which could be a candidate for dark mat-
ter. I constrained this ECQ model with observational data for the first time. Secondly, I explore
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whether deep learning techniques like neural networks can differentiate between LSS data ge-
nerated from a ΛCDM model and a tomographic CDE model. I find promising results showing
that neural networks can discern the effects of early-time, late-time or zero coupling on growth
data created by adopting Stage-IV-like survey specifications, demonstrating the exciting poten-
tial of employing machine learning techniques in upcoming weak lensing analyses.
Lastly, I highlightmy contributions to the various galaxy survey collaborations which I have been
a part of during my PhD : namely the Euclid mission and UNIONS survey. The Euclid mission is
an ambitious space-based galaxy survey commissioned by the ESA that will image more than a
billion galaxies, ultimately aiming to shed light on the enigmatic dark sector of the Universe. I
play an active role within the Euclid consortium by contributing to the development of the offi-
cial Euclid likelihood code, Cosmology Likelihood for Observables in Euclid (CLOE). CLOE is a key
piece of code which will be needed at the end of the data processing pipeline, as it will deliver
cosmological constraints with Euclid data, with a functionality that will enable inference with
extended ΛCDM models as well.
Furthermore, I have worked on developing the cosmic shear inference pipeline for the UNIONS
collaboration, which brings together 3 ground-based photometric telescopes in Hawaii that,
when completed, will provide the largest galaxy map in the northern hemisphere to date. I
underline the various tests that I have carried out to obtain cosmological constraints from pro-
cessed galaxy catalogues, which will form a fitting complement to those already available with
current Stage III surveys such as theDark Energy Survey (DES) and the Kilo-Degree Survey (KiDS).
This thesis is thus an amalgamation of the work that I have carried out in the 3 years of my PhD
journey, spanning a considerable breadth of topics from both a theoretical and observational
point of view. Therefore it is my hope that within the grand scheme of cosmological research,
my efforts have, be it in some minuscule way, contributed to our attempts to understand this
Universe which we call home.
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2. Résumé étendu en français

Le modèle ΛCDM postule que l’Univers est principalement composé d’une constante cosmolo-
gique Λ, responsable de l’expansion accélérée de l’Univers à des époques tardives ; de matière
noire, une composante de matière se déplaçant lentement et n’interagissant que gravitation-
nellement, et de matière ordinaire. Le modèle rend compte presque entièrement de l’histoire
de la croissance de l’Univers depuis le Big Bang, et a permis d’élucider divers phénomènes ob-
servationnels, tels que l’existence et la structure du fond diffus cosmologique et la structure
à grande échelle, l’expansion accélérée tardive de l’Univers observée, ainsi que divers autres
processus astrophysiques. C’est pourquoi il est encore considéré comme le modèle de concor-
dance au sein de la communauté cosmologique.
Cependant, avec la publication continue de données de haute précision, des tensions entre
les ensembles de données ont émergé, suggérant des insuffisances possibles de ce modèle.
Par exemple, la tension la plus connue et la plus pressante actuellement rencontrée au sein
de la communauté est la tension sur H0 : la différence significative entre la valeur actuelle de
l’expansion de l’Univers, la constante de Hubble H0, mesurée par des sondes de l’univers pri-
mordial telles que le fond diffus cosmologique, par opposition à des sondes de l’univers tardif
telles que les supernovae de Type 1a.
Une tentative de concilier ces tensions a conduit à l’exploration de modèles ΛCDM modifiés.
Plus précisément, l’un de cesmodèles est connu sous le nom demodèle de couplage de l’énergie
noire . Ce modèle propose l’existence d’un champ scalaire à la place d’une constante cosmolo-
gique, couplé aux particules dematière noire, leur faisant ressentir une cinquième force en plus
de la gravité. Un tel modèle modifie l’histoire de la croissance et la formation des structures de
l’Univers, et s’est avéré capable de réduire la tension surH0 tout en restant compatible avec les
ensembles de données actuels.
Dans ma thèse, je présente une nouvelle paramétrisation du modèle de couplage de l’énergie
noire où la force de couplage entre les particules dematière noire et le champ scalaire est auto-
risée à évoluer avec le décalage vers le rouge. Pour explorer un tel modèle couplage de l’énergie
noire tomographique, j’utilise divers ensembles de données sur une gamme de décalages vers
le rouge, incluant pour la première fois des données de la structure à grande échelle en combi-
nant lentille faible, regroupement de galaxies et leur corrélation croisée, lentille galaxie-galaxie
pour former une sonde ‘3x2pt’. Je constate que les données de la structure à grande échelle
nous permettent de récupérer des contraintes strictes sur le couplage même à faible décalage
vers le rouge, comparables à celles obtenues avec les données du fond diffus cosmologique, ce
qui en fait une sonde prometteuse pour contraindre les modèles couplage de l’énergie noire à
faible décalage vers le rouge.
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Avec cette première preuve de concept, j’ai ensuite appliqué ce modèle couplage de l’éner-
gie noire tomographique à d’autres axes de recherche. Tout d’abord, j’ai étudié une forme de
modèles de quintessence couplée précoce, où le couplage n’est activé qu’à des époques pri-
mordiales, notamment pendant l’ère dominée par le rayonnement. Les dynamiques d’un tel
couplage peuvent entraîner des conséquences intéressantes, notamment la formation de trous
noirs primordiaux, qui pourraient être un candidat pour la matière noire. J’ai contraint ce mo-
dèle de quintessence couplée précoce avec des données observationnelles pour la première
fois. Ensuite, j’explore si des techniques d’apprentissage profond comme les réseaux de neu-
rones peuvent différencier les données structure à grande échelle générées par un modèle
ΛCDM et un modèle couplage de l’énergie noire tomographique. Je trouve des résultats pro-
metteurs montrant que les réseaux de neurones peuvent discerner les effets de couplage pri-
mordial, tardif ou nul sur les données de croissance créées en adoptant des spécifications de
sondage de type Stage-IV, démontrant le potentiel excitant de l’utilisation des techniques de
machine learning dans les analyses futures de lentilles faibles.
Enfin, je soulignemes contributions aux différentes collaborations de sondages de galaxies aux-
quelles j’ai participé pendant mon doctorat ; à savoir la mission Euclid et le sondage UNIONS. La
mission Euclid est un ambitieux sondage de galaxies basé dans l’espace, commandépar l’Agence
Spatiale Européenne, qui imagera plus d’un milliard de galaxies, visant en fin de compte à éclai-
rer le secteur obscur et énigmatique de l’Univers. Je joue un rôle actif au sein du consortium
Euclid en contribuant au développement du code officiel de vraisemblance Euclid, Cosmology
Likelihood for Observables in Euclid (CLOE). CLOE est une pièce maîtresse de code qui sera
nécessaire à la fin de la chaîne de traitement des données : il fournira des contraintes cosmo-
logiques avec les données Euclid, avec une fonctionnalité permettant une inférence avec des
modèles ΛCDM étendus également.
De plus, j’ai travaillé au développement de la chaîne d’inférence de cisaillement cosmique pour
la collaboration UNIONS, qui réunit 3 télescopes photométriques terrestres à Hawaii qui, une
fois achevés, fourniront la plus grande carte des galaxies de l’hémisphère nord à ce jour. Je sou-
ligne les divers tests que nous avons effectués pour obtenir des contraintes cosmologiques à
partir des catalogues de galaxies traités, qui compléteront adéquatement ceux déjà disponibles
avec les sondages actuels de la Stage III comme le Dark Energy Survey (DES) et le Kilo-Degree
Survey (KiDS).
Cette thèse est donc une amalgamation des travaux que j’ai menés au cours des 3 années
de mon doctorat, couvrant une large gamme de sujets à la fois d’un point de vue théorique
et observationnel. Par conséquent, j’espère que dans le cadre de la recherche cosmologique,
mes efforts ont, ne serait-ce que d’une manière minuscule, contribué à nos tentatives de com-
prendre cet Univers que nous appelons chez nous.
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3. The Cosmological Principle
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3.1 Introduction

In this first Chapter, we shall derive the relevant equations governing the evolution
and perturbation history of the Universe. Then we move on to introduce several
cosmological quantities that will be useful in the coming Chapters. Finally, we turn
to the state-of-the-art in the current cosmological community, and delve into some
issues it is presently facing. This shall set us up with the relevant background know-
ledge and mathematical know-how to proceed with the rest of this thesis, and will
hopefully prove adequate in equipping us on this journey of discovering our Uni-
verse.

3.2 Einstein’s Field Equations
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In 1916, Einstein published his seminal theory on General Relativity in a series of
papers [1], reinterpreting our understanding of the nature of spacetime and conse-
quently, our Universe. He proposed a direct relationship between the curvature of
spacetime and its energy-matter constituents, which is elegantly captured within
the Einstein Field Equations :

Rµν −
1

2
Rgµν = 8πGTµν − Λgµν (3.1)

Here Rµν is the Ricci tensor, R the Ricci scalar, gµν the metric of the space-
time, Λ the cosmological constant,G the gravitational constant and Tµν the energy-
momentum tensor [2]. Note that we have taken the speed of light c = 1, which will
also be the case for the rest of this thesis.

The left-hand side of Eq. (3.1) describes the geometry of spacetime through the
Ricci tensor and the metric, while the right-hand side describes its matter-energy
components, encapsulated in Tµν with the inclusion of a cosmological constant Λ.
The indices of µ and ν run across the 4 dimensions of space and time, condensing
Eq. (3.1) into a set of 10 equations (since these tensors are symmetric). Solving the
Field Equations then requires working out expressions for the metric gµν , which
then gives a complete description of the nature of the spacetime under study.

3.3 The Cosmological Model

Solutions to all 10 of Einstein’s Field Equations constitute a metric that describes a
characteristic spacetime and its matter-energy components. The solution most wi-
dely employed in cosmology is the Friedmann-Lemaître-Robertson-Walker (FLRW)
metric. It describes a homogeneous and isotropic Universe, in accordance with the
Cosmological Principle, where the line element is given by

ds2 = −dt2 + a2(t)
[
dx2 + dy2 + dz2

]
, (3.2)

with a(t) being the scale factor, quantifying the rate of expansion of the Universe
as a function of time. We can also re-express the spatial components x, y and z in
polar coordinates χ, θ and ϕ, such that Eq. (3.2) becomes

ds2 = −dt2 + a2(t)
[
dχ2 + f2

K(χ)dΩ2
] (3.3)
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where χ is the radial comoving coordinate and dΩ2 = dθ2 + sin2(θ) dϕ2. Here, K is
known as the curvature constant and fK(χ) is dependent on the value it takes :

fK(χ) =


K−1/2 sin

(
K1/2χ

)
, forK > 0 (open Universe),

χ, forK = 0 (flat Universe),
(−K)−1/2 sinh

(
(−K)1/2χ

)
, forK < 0 (closed Universe).

(3.4)

We have thus established a form for the metric, g = [−1, a2(t), a2(t), a2(t)] that
describes the geometry of our Universe, completing the left-hand side of Eq. (3.1).
We can now turn to study its energy-matter content by specifying a form for Tµν ,
i.e. the right-hand side of Eq. (3.1). To do this, it is typical to assume a cosmological
model for the Universe : in this thesis, we shall focus on the concordance model,
known as Λ Cold Dark Matter (ΛCDM).

ΛCDM postulates the existence of 4 main components of the Universe : a cos-
mological constant term Λ, responsible for the late-time acceleration of the Uni-
verse ; secondly, non-relativistic dark matter (DM) that only interacts through gra-
vity ; thirdly, baryonic matter, and lastly, radiation. This model has been widely suc-
cessful in explaining observational phenomena such as the late-time accelerating
expansion of the Universe [3, 4], the larger-than-expected value of galaxy rotation
curves [5], and the detection of remnant radiation from primordial times [6]. Assu-
ming a flat Universe (i.e. K = 0), this model specifies almost every aspect of the
Universe’s evolutionary history with just six parameters, making it the most fitting
theory of our Universe to date.

We assume each component of the Universe as a perfect homogeneous fluid,
with its energy-momentum tensor given by Tµν taking on the form Tµ

ν = diag(−ρ(t),

p(t), p(t), p(t)), where ρ denotes the energy density of the particular fluid and p, its
pressure. By convention, Tµν also obeys the conservation equation ; i.e.∇µTµν = 0

for each fluid component.
Now we can explicitly solve Eq. (3.1), for both the temporal (00) and spatial (ii)

components. This leads us to two equations respectively, known as Friedmann’s
Equations, describing the rate of expansion of the Universe as a function of the
energy density of its constituents :(

ȧ

a

)2

+
K

a2
− Λ

3
=

8πG

3
ρ (3.5)
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(
ä

a

)
− Λ

3
= −4πG

3
(ρ+ 3p) (3.6)

where the dot denotes a derivative with respect to time t. It is convenient to de-
fine the Hubble parameter H(t) = ȧ

a , which by its definition quantifies the rate of
expansion of the Universe.

Differentiating Eq. (3.5) with respect to time, we get
8πG

3
ρ̇ = 2

ȧ

a

(
ä

a
−
(
ȧ

a

)2

− K

a2

)
(3.7)

or more concisely,
ρ̇i + 3H(ρi + pi) = 0 (3.8)

which is known as the continuity equation, describing the evolution of each com-
ponent i of the Universe as a function of the scale factor. We can hence obtain a
general solution to Eq. (3.8) :

ρi ∝ a−3(1+w) (3.9)
where i =DM, radiation, baryons orΛ, andw is the Equation of State (EoS) parameter
given by

w ≡ p/ρ , (3.10)
whose value depends on the nature of the fluid under study. Since non-relativistic
fluids are pressureless, we have w = 0 for DM and baryons, while w = 1

3 for radia-
tion. In the case of Λ, since it is responsible for the accelerating expansion of the
Universe, this imposes a condition w < −1

3 from Eq. (3.6). In a ΛCDM model with a
cosmological constant, w = −1. In extended models however, a different or even
non-constant value forwΛ is explored [7-10], in what is often termed dynamical dark
energy models.

Thus for the specific expression for the evolution of a particular fluid, one just
has to substitute the appropriate value forw. From Eq. (3.9), we can appreciate how
each component evolves differently with time, and identify the different cosmolo-
gical epochs based on the dominant element.

It is also useful to re-express Eq. (3.5) as the Hubble function, where we define
the evolution of the Hubble parameter H in terms of the present-day value of the
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energy densities :
H(a) = H0

√
ΩDM,0a

−3 +Ω
b,0

a−3 +ΩR,0a
−4 +ΩK,0a

−2 +ΩΛ (3.11)
HereΩi,0 represents the dimensionless density parameter of each component (DM,
baryons, radiation, curvature and Λ respectively), with the 0 subscript denoting the
present time. H0 is then the present value of the Hubble parameter, oftentimes
expressed as 100h km s−1Mpc−1 as well. The various density parameters are thus
defined as :

Ωi =
8πGρi
3H2

(3.12)
ΩΛ =

Λ

3H2
(3.13)

ΩK =
K

aH2
(3.14)

where i here applies for DM, radiation and baryons. These quantities can also be
expressed as a function of redshift ; i.e.Ωi(z) =

8πGρi(z)
3H(z)2

. The reduced energy density
parameterωi = Ωih

2 is also sometimes used as an alternative parameter to express
the energy densities. In a flat Universe, we can define a critical density of matter
ρcrit =

3H2
0

8πG , and thus Ωi ≡ ρ
ρcrit

. Since Ω defines the fraction of each component
present within the Universe, they must sum to unity. Thus the energy densities of
only 4 components need to be measured in order to deduce the value of the last
one.

3.4 Cosmological Quantities

After establishing our cosmological model, we can now introduce various other
quantities widely used in cosmology.
3.4.1 Conformal Time

Due to the expansion of the Universe, time as measured by observers at dif-
ferent points in spacetime is different. To take this effect into account, we define a
new quantity for time, known as conformal time τ . It is defined as

τ =

∫
dt

a
(3.15)
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where t is then the proper time, the time measured by an observer at rest with res-
pect to the expanding Universe. The point where τ = 0 occurs at the Big Bang. As
we shall see in the next section, it is convenient to express the metric in terms of
conformal time instead of proper time, especially when considering perturbations.
3.4.2 Cosmological Distances

An analogous approach can be taken to express cosmological distances in va-
rious manners. They can be thought of as proxies for distance measurements since
we are unable to directly measure the distance to a particular object in the sky.

Redshift.Due to the expansion of theUniverse, thewavelength of a photon gets
’stretched out’, or Doppler-shifted, as it travels towards the observer. We term this
effect redshift, which can be quantified as a measurable parameter z, and is related
to the scale factor by

z =
1

a
− 1. (3.16)

A redshift of z = 0 thus indicates present time, or present location. The larger the
redshift of an object, the further away from the observer it is. The redshift of an ob-
ject can be directly measured through spectroscopy, hence is an extremely useful
measure of cosmological distance.

Comoving Distance. Just like how we have defined conformal time, we can si-
milarly define a distance measure ignoring the effect of the expanding Universe.
This quantity is known as the comoving distance χ, where it is the integration of the
path given by the metric in Eq. (3.3) :

χ =

∫ source

obs
ds. (3.17)

However this quantity cannot be measured directly, hence it is deduced from an-
gular distances, calculated from the size of objects that we observe through our
telescopes.

Angular Diameter Distance. The angular diameter distanceDA is the ratio bet-
ween the physical size of the object s to the angle that it subtends, θ. It can also be
expressed in terms of redshift and curvature, where
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DA =
s

θ
=

SK(χ)

1 + z
,

SK(χ) =


K−1/2 sin

(
K1/2χ

)
, forK > 0 (open Universe),

χ, forK = 0 (flat Universe),
(−K)−1/2 sinh

(
(−K)1/2χ

)
, forK < 0 (closed Universe).

(3.18)

Comoving Angular Diameter Distance. The comoving angular diameter dis-
tanceDM is given by the comoving radial size of the object r to the angle it subtends
θ. It is thus related toDA by

DM = (1 + z)DA. (3.19)

3.5 Linear Perturbation Theory

Up till now, we have only considered the evolution of the mean energy densities
of the various components of the Universe. However, that is only half of the pic-
ture. The theory of inflation postulates that the current observable structures of the
Universe were seeded by quantum fluctuations during the inflationary era. Thesemi-
nute instabilities growwith the Hubble expansion as inhomogeneous perturbations
against a homogeneous background, evolving into complex networks of galaxy clus-
ters and dark matter halos, or what we term the Large Scale Structure (LSS) of the
Universe. In this section, we shall thus concern ourselves with the evolution of these
density perturbations.

3.5.1 The Perturbed Metric

It is simplest to assume a flat FLRW Universe at the background level, consisting
of fluids with constant entropy. Perturbations in the metric are often expressed in
gauges, with the twomost commonly employed being the Newtonian gauge and the
synchronous gauge. For completeness, we quote both here.

In the Newtonian gauge, the perturbed metric can be understood as a conse-
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quence of the presence of gravitational potentials Φ and Ψ :
ds2 = −(1 + 2Φ)dt2 + a(t)2(1− 2Ψ)δKij dx

i dxj (3.20)
where δKij is the Kronecker delta.

In the synchronous gauge, we express the perturbations to the metric as a ten-
sor h :

ds2 = −dt2 + a(t)2[(1 + hii/3)δ
K
ij + hij ]dx

i dxj (3.21)
where hii is its trace and hij its traceless part, denoting perturbations to the spatial
components of the metric.
3.5.2 Perturbation Quantities

We can subsequently move on to specify several perturbed quantities of inter-
est.

Density Perturbation. The energy density perturbations can be expressed as
overdensities on top of the mean background density :

δi(χ, τ) =
ρi(χ, τ)− ρ̄i(τ)

ρ̄i(τ)
(3.22)

where ρi is a function of comoving distance χ and conformal time τ , ρ̄i is the mean
density, and i here can refer to baryons, DM, radiation or Λ. By definition, δΛ = 0.

Particularly for the case of DM overdensities, we can define a σ8 parameter as
the amplitude of DM density fluctuations within a sphere of characteristic radius 8
Mpc/h :

σ2
8(z) =

〈∣∣δ
DM,8Mpc/h

∣∣2〉 , (3.23)
as well as the S8 parameter, where S8 = σ8

√
Ωm/0.3 (taking note that Ωm =

ΩDM +Ωb ).

Pressure Perturbation.We can similarly define a perturbation to the pressure
δpi(χ, τ), and the quantity c2s,i = δpi/δρi known as the sound speed, analogous to
the EoS parameter w at the background level.

Velocity Perturbation. Gravitational instabilities induce, on top of perturba-
tions to the energy densities, perturbations to the fluid velocities as well. Thus, we
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can express a fluid’s total velocity as the sumof its velocity due toHubble expansion,
vH , and its velocity perturbation, vP :

v⃗T (χ, τ) = v⃗H(χ, τ) + v⃗P (χ, τ). (3.24)
The perturbed velocity v⃗P = χ̇ −Hχ is also referred to as the peculiar velocity. He-
reafter, we drop the P subscript for clarity of notation.

3.5.3 Perturbation Growth

To understand the formation of the LSS, we track its main driver, the evolution
of dark matter overdensities δDM . Within the Newtonian regime where we assume
|δ| ≪ 1, the evolution of δDM(χ, τ) can be derived by solving the linearised continuity
and Euler equations, assuming a gravitational potential ϕ(χ, τ) evolving as Poisson’s
equation. We quote here the three equations respectively [11] :

∂δDM(χ, τ)

∂τ
+ θDM(χ, τ) = 0 (3.25)

∂v⃗DM

∂τ
+H(τ)v⃗DM(χ, τ) = −∇ϕ(χ, τ) (3.26)

∇2ϕ(χ, τ) = 4πGa2ρ̄DMδDM (3.27)
where we have defined the divergence of the velocity perturbation θ = ∇ · v⃗ and
H = a′/a. This yields a second-order differential equation for δDM :

δ
′′

DM
+Hδ

′

DM
= 4πGρDMδDM (3.28)

where we use a prime superscript to denote a derivative with respect to τ . Eq. (3.28)
has two solutions : one mode that decreases with time and another that increases.
Since the decreasing function merely decays, it is of no interest, hence we consider
only the increasing mode, writing δDM(χ, τ) in the form

δDM(χ, τ) = D+(τ)δDM(χ, 0) (3.29)
whereD+(τ) is known as the growth factor and δDM(χ, 0) is δDM at present time.

We can also define a growth rate parameter f ≡ d lnD+

d ln a which has been shown
to be approximately f(z) ≈ Ωm(z)

0.545 [12] in the regime of General Relativity.
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3.5.4 The Matter Power Spectrum

It is easier to consider these density perturbations as waves in Fourier space,
and as a function of redshift. Hence we can express a particular wave mode of δDM

as :
δDM(k⃗, z) =

1

2π2

∫
d3χ e−ik⃗·χ⃗ δ(χ, z). (3.30)

From here, we can define thematter power spectrum Pδδ(k, z) as the variance of the
overdensities : 〈

δDM(k⃗, z)δDM(k⃗
′, z)

〉
= (2π)3Pδδ(k, z) δD(|⃗k − k⃗′|) (3.31)

where the δD symbol on the right-hand side of the equation denotes the Dirac delta
function. Hereafter, we shall denote the absolute magnitude of the wavevector k⃗ as
k, and drop the directional dependence due to isotropy.

In the early Universe, theories of inflation [13, 14] assume a dimensionless pri-
mordial power spectrum Pζ(k) given by

Pζ(k) = As

(
k

kp

)ns−1 (3.32)
where As is the amplitude of the primordial power spectrum and kp is known as the
pivot scale. The variation of Pζ(k) with respect to scale is quantified by the spec-
tral index ns. The matter power spectrum is related to its primordial counterpart
through the transfer function Tm(k, z), which describes the evolution of the pertur-
bations throughout the various epochs [15] :

Pδδ(k, z) = 2π2k T 2
m(k, z)Pζ(k) (3.33)

3.6 Cosmological Tensions

As we have shown, the ΛCDMmodel, specified by the parameters {ΩDM ,Ωb, ns, As,

τreio, H0} where τreio is the optical depth of reionisation, gives a complete picture of
the expansion history of the Universe. It has been remarkably successful in explai-
ning observations such as the formation of the LSS (see Sect. 4.3), the anisotropies
of the Cosmic Microwave Background (CMB, see Sect. 4.4), and the observed acce-
lerated expansion of the Universe.

Yet with the release of more observational data, which continues to become
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increasingly precise, tensions have emerged that cannot seem to be reconciled wi-
thin the framework of ΛCDM. We briefly explore the two most pressing tensions
currently faced by the cosmological community.
3.6.1 H0 Tension

Perhaps the most well-known tension is the H0 tension [16] : the discrepancy
between the value ofH0 measured indirectly by early time probes such as the CMB
[17-19] (while assuming a ΛCDM model), and late time probes such as Type 1a Su-
pernovae and strong lensing time-delays [20-22] (measured through a direct model-
independent approach). This difference is almost ∼ 5σ in magnitude, hence it can-
not solely be due to statistical variance. In Fig. 3.1, we plot the values ofH0 reported
by various experiments using different probes. Unless this inconsistency is due to
systematic errors in the measurement, this could hint at the necessity of new phy-
sics beyond ΛCDM.
3.6.2 S8 Tension

Another tension that has recently come under scrutiny is the S8 tension : the
discrepancy between the value of S8, i.e. the degree of ’clumpiness’ of our Universe,
as measured by the CMB and late-time LSS probes. For comparison,

S8 =



0.829± 0.012, Planck + Lensing [17],
0.759+0.024

−0.021, KiDS-1000 Cosmic Shear [24],
0.772+0.018

−0.017, DES Y3 Cosmic Shear [25, 26],
0.769+0.031

−0.034, HSC Y3 Cosmic Shear [27]
(3.34)

which equates to an average discrepancy of∼ 2.5σ between CMB and Cosmic Shear
probes. Explanations have been proposed to explain this tensionwhile still adhering
to the ΛCDM framework : attributing it to inadequate modelling of cosmic shear ca-
libration [28-30] or inaccuratemodelling of thematter power spectrum at nonlinear
scales [31, 32].

The emergence of these two tensions has in part led to explorations of alterna-
tiveΛCDMmodels, albeit to varying degrees of success (for a comprehensive review,
see for example [33]). In the following Chapters of this thesis, we shall focus on one
particular class of modified ΛCDM models, with the ultimate aim of confronting it
with state-of-the-art data from upcoming LSS galaxy surveys.
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Fig. 3.1.Whisker plot of the mean and 1σ values of H0 as measured by a select number ofexperiments. We make a distinction between direct and indirect measurements. The pinkvertical band follows the constraints from Planck 2018 results [17] while the blue verticalband follows the latest SH0ES prior [21]. This figure was produced using code accompanying[23].
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IN BRIEF
In this Chapter, I have introduced the Cosmological Principle of the Universe
and its concordance ΛCDM model, deriving the relevant equations dictating
the evolution of the background and perturbation energy densities. I have
also introduced various cosmological quantities often measured in obser-
vations, and lastly presented the two most critical tensions faced by the
cosmological community today.
After introducing the theory, we can turn towards what current data can of-
fer. In the next Chapter, we shall delve into the various state-of-the-art cos-
mological data probes and discuss their potential strength in constraining the
various cosmological parameters.
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4. Cosmological Probes
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4.1 Introduction

After introducing the theoretical model of our Universe, it is now useful to discuss
the observational data we currently have at our disposal to probe our hypotheses.
In this Chapter, we shall mainly concern ourselves with the probes of the LSS and
the CMB : explaining their physical features and focusing on how we can extract
useful information from them to constrain the various cosmological parameters of
our model. Finally, we will touch on important statistical concepts such as Bayesian
Inference, which we employ to carry out our cosmological analyses.

4.2 The Cosmological Random Field

Cosmological fields are important concepts in cosmology as they give a largely fit-
ting picture of various physical quantities in the Universe. At first order, most cos-
mological fields can be approximated as Gaussian random fields, which associate a
random variable, sampled from a Gaussian distribution, to each point in real space
r⃗.

To study the properties of such a field, we calculate the 2-point correlation func-
tion (2PCF) ξ(r⃗), which gives the correlates the value of a field at 2 points in space by
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calculating its expectation squared[34] :
ξ(r⃗) = ⟨δ(x⃗)δ(x⃗+ r⃗)⟩ (4.1)

Comparing it to Eq. (3.31), is simply the real space analogue of the power spectrum
in Fourier space.

4.3 Large Scale Structure

The LSS of the Universe consists of a complex web of galaxy clusters, superclusters,
filaments and voids, residing within dark matter halos. It originated from minute
density fluctuations during primordial times, imprinted during the period of cosmic
inflation and amplified by gravitational instability as the Universe expanded. Hence
the LSS can shed light on the expansion and perturbation history of the Universe,
especially by allowing us to probe the small-scale perturbations at low redshifts.

In this section, we explain 3 different techniques for studying the LSS : weak len-
sing, photometric galaxy clustering, and their cross-correlation known as ’3x2pt’. All
these methods, to a first-order approximation, rely on calculating the 2 point auto-
or cross-correlation function of one or two fields, whose nature we shall discuss in
the next subsections.
4.3.1 Weak Lensing

Thepresence of a foregroundmatter distribution (referred to as the ‘lens’) causes
light rays travelling from background galaxies (referred to as ‘sources’) to be deflec-
ted due to their gravitational field. This results in the measured shape of the galaxy
being distorted, a phenomenon known as gravitational weak lensing, as demonstra-
ted in Fig. 4.1. By tracing these light rays back to the galaxy source, the distribution
of the foreground dark matter can thus be deduced, allowing gravitational lensing
analysis techniques to emerge as powerful tools to probe the dark matter distribu-
tion.

Following the notation of Fig. 4.1, we can define the separation between two
unperturbed light rays as their transverse comoving separation x⃗(χ) [36],

x⃗(χ) = fK(χ)θ⃗ − 2

c2

∫ χ

0
dχ′fK(χ− χ′)∆

[
∇⊥Φ(x⃗, χ

′)
] (4.2)

while the actual comoving separation that we measure is instead dx⃗+ x⃗ = fK(χ)θ⃗,
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Fig. 4.1. A matter distribution on the lens plane at a distance χ′ deflects light rays withtransverse separation x⃗(χ), at comoving distance χ. The solid red lines show the direction
they are perceived to have originated from, subtended by an angle θ⃗. Without the lensing
mass, the light rays would have subtended an angle β⃗, as drawn out by the dotted line. Thedeflection angle is then α⃗, and the shift in separation is dx⃗. Figure adapted from [35, 36].

due to a distortion caused by the presence of a mass distribution on the lens plane
at comoving distance χ′. It induces a difference in the perpendicular gravitational
potential of the two light rays, expressed as∆ [∇⊥Φ(x⃗, χ

′)].
Assuming dx⃗ ≪ x⃗, we can use the Born approximation to replace x⃗ by fK(χ)θ⃗

within the perpendicular gravitational potential∇⊥Φ(x⃗, χ
′) of Eq. (4.2). We can also

express the deflection angle α⃗ as an integral of the gravitational potential along the
line-of-sight :

α⃗(θ⃗) =
2

c2

∫ χ

0
dχ′ fK(χ− χ′)

fK(χ)
∇⊥Φ

(
fK(χ′)θ⃗, χ′

)
. (4.3)

Then, from the lens equation
β⃗ = θ⃗ − α⃗(θ⃗) , (4.4)

we can linearise it and invoke Eq. (4.3) to define a distortion matrix A = ∂β/∂θ that
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maps the lensed image to its original unlensed image coordinates :
Aij =

∂βi
∂θj

= δDij −
∂αi

∂θj
(4.5)

=

(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
(4.6)

where κ is a scalar quantity known as the convergence, while γ1 and γ2 are the two
components of the spin-2 quantity shear, where γ = γ1 + iγ2. Intuitively, conver-
gence quantifies the magnification of the galaxy image, while shear quantifies its
distortions along the major and minor axes.

In real surveys, the observable that is measured is the galaxy’s ellipticity ϵ. It is
expressed as a sum of various contributing factors [37] :

ϵ = γ + γI + ϵint (4.7)
where γ is its shear from Eq. (4.5), γI is the intrinsic shear, quantifying its alignment
due to the surrounding gravitational field, and ϵint is the galaxy’s intrinsic ellipticity.
For perfectly circular galaxies, ϵint = 0. It is not possible to measure the intrinsic
ellipticities of each individual galaxy ; however, given the statistical nature of weak
lensing, we can assume that the galaxies are randomly aligned such that on average
⟨ϵint⟩ = 0 for an ensemble of galaxies. Its varianceσ2(ϵint) is then knownas the shape
noise. The γI contribution comes from intrinsic alignment (IA) [38, 39]. This effect
arises when the tidal forces of the lensing matter cause the nearby galaxy sources
to be aligned with each other, or with the underlying gravitational potential.

In the regime of weak lensing, the magnitude of the distortion of individual ga-
laxy images is too small to be detected. Hence a large ensemble of galaxies must be
analysed by calculating the correlation of their alignments and measured shapes,
in order to deduce the dark matter distribution present among them and hence
derive constraints on the cosmological parameters.

For a pair of lens and source galaxies, we can further decompose the shear si-
gnal into its tangential and cross components respectively :

γt = −Re(γe−2iϕ) (4.8)
γ× = −Im(γe−2iϕ) (4.9)
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where ϕ is the angle between the horizontal axis of the source galaxy and the lens
galaxy.

The shear 2PCF in real space can then be expressed as the expectation value of
the tangential and cross components of the shear squared[40] :

ξ±(θ) = ⟨γtγt⟩ (θ)± ⟨γ×γ×⟩ (θ) , (4.10)
which is a function of the 2D angle of separation in the sky θ.

On the other hand, it is more straightforward to arrive at the theoretical pres-
cription of the shear correlation function in Fourier space, i.e. with the shear an-
gular power spectrum. For any two observable fields A and B measured in redshift
bins i and j respectively, it is given by an integration of their 3D power spectrum
PAB(k, z(χ)) along the line of sight :

CAB
ij (ℓ) =

∫ ∞

0
dχ

WA
i (χ)WB

j (χ)

f2
K(χ)

PAB(k, z(χ)), (4.11)

whereWA,B
i,j is the weight function of each field. In most cosmic shear analyses, it is

common to bin the observed galaxies in redshift bins and cross-correlate the shear
signals between two bins.

The total angular power spectrum measured from the data is that of the ellipti-
city field, which is then a sum of the underlying shear field and the IA contributions
(ignoring noise contributions) :

Cϵϵ
ij (ℓ) = Cγγ

ij (ℓ) + CγI
ij (ℓ) + CII

ij (ℓ) (4.12)
where in the last two terms, the γI and II superscripts denote the contributions
due to the shear-IA and IA-IA power spectra respectively. Models exist which give
an approximate theoretical prescription for them, with one of the most widely em-
ployed models being the nonlinear alignment model (NLA ;[41, 42]). Here, the 3D
power spectrum P γI(k, z) and P II(k, z) are expressed as a rescaling of the nonli-
near matter power spectrum P nl

δδ (k, z) :
P γI(k, z) = −AIAC1ρcrit

Ωm

D(z)
P nl
δδ (k, z) (4.13)

P II(k, z) =

(
AIAC1ρcrit

Ωm

D(z)

)2

P nl
δδ (k, z) (4.14)
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where AIA is a dimensionless IA amplitude parameter, D(z) is the growth factor
and C1 = 5 · 10−14h−2M−1

⊙ Mpc3.
Assuming a flat Universe such that fK(χ) = χ, we focus on the cosmic shear

angular power spectrum, which is given by :
Cγγ
ij (ℓ) =

∫ χH

0
dχ

qγi (χ)q
γ
j (χ)

χ2
Pδδ(k, z(χ)), (4.15)

where χH is the comoving distance to the horizon, and in this case, the weight func-
tion is given by qγ(χ), the cosmology-dependent lensing efficiency :

qγi (χ) =
3

2
Ωm

H0

c2

∫ χH

χ
dχ′ni(χ

′)
χ− χ′

χ′ (4.16)
with ni(χ

′) the redshift distribution of the source galaxies in bin i. It is typically the
case to assume the Limber approximation at small enough scales (i.e. not too large
values of ℓ) such that we can easily express the k scales in the 3D matter power
spectrum in terms of the 2D ℓ scales [43, 44] :

k =
ℓ+ 1/2

χ
(4.17)

The real space 2PFCs are then related to their Fourier space power spectrum
counterparts via the Hankel transformation

ξ±,ij(θ) =
1

2π

∫ ∞

0
dℓ ℓ J0,4(ℓθ)[C

E
ij (ℓ)± CB

ij (ℓ)] (4.18)
where J0,4(ℓθ) are the Bessel functions of the first kind at zeroth and fourth order,
andC

E/B
ij (ℓ) are the angular power spectra of the E and Bmodes respectively. Here

θ is then the 2D angular separation between two points in real space. Since the
shear field is a spin-2 field, it can be decomposed into a curl-free and divergence-
free component, respectively known as E and B modes in Fourier space. At first
order, and if systematic effects are ignored, the shear field should not produce a B
mode signal, therefore CB

ij (ℓ) = 0 and Cγγ
ij = CE

ij .
Here we have briefly presented the 2 most commonly used summary statis-

tics, the 2PCF and angular power spectrum, to probe the correlations of the shear
field and derive cosmological constraints. They are highly complementary probes
that each have their advantages and disadvantages. Additionally, it should be no-
ted that they cannot capture the non-Gaussian information embedded within the
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shear field, since they only calculate second-order moments of the field.
4.3.2 Galaxy Clustering

Galaxies form in regions of matter overdensities due to gravitational collapse.
Hence we can express the galaxy overdensity field δg(k, χ) as a function of the un-
derlying matter overdensity field [45] :

δg(k, χ) = f(δDM(k, χ)) (4.19)
The spatial distribution of galaxies does not necessarily trace the underlying dark
matter overdensities precisely [46], necessitating a bias factor to relate these two
fields. On large enough scales, we can sufficiently assume that the relation between
the two fields is linear, such that δg = bgδDM , where bg is known as the linear galaxy
bias factor.

However when transitioning to the nonlinear regime, this approximation no lon-
ger holds, thus we have to introduce a new correlation coefficient function r(k, χ)

that encapsulates the stochastic biasing between the two fields [47, 48] :
r(k, χ) =

Pgδ(k, χ)√
Pgg(k, χ)× Pδδ(k, χ)

(4.20)
where Pgδ is the cross power spectrum between the galaxy andmatter overdensity,
Pδδ is the matter power spectrum and Pg is the galaxy power spectrum, given by
Pgg = b2gPδδ.

Galaxy clustering (or more specifically photometric galaxy clustering) is thus the
study of the correlation between galaxy positions on a 2D plane. The observable
in this case is the real space galaxy clustering correlation function often denoted
asw(θ), where one commonly used estimator is the Landy-Slazay estimator [49] :

w(θ) =
DD(θ)− 2DR(θ) +RR(θ)

RR(θ)
(4.21)

where given the data catalogue and a random catalogue, DD is the number of ga-
laxy pairs,DR is the number of galaxy-randompairs andRR the number of random
pairs with angular separation between θ and θ + δθ.

Ignoring higher-order effects such as magnification and redshift space distor-
tions (RSD), we can obtain the theoretical expression for the galaxy clustering an-
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gular power spectrum :
Cgg
ij (ℓ) =

∫ χH

0
dχ

qgi (χ)q
g
j (χ)

χ2
Pδδ

(
ℓ+ 1/2

χ
, z(χ)

)
(4.22)

where we have once again assumed the flat-sky and Limber approximations. The
clustering weight function in redshift bin i, qgi (χ) is the product of the lens galaxy
redshift distribution and the galaxy bias :

qgi (χ) = bg

(
ℓ+ 1/2

χ
, χ

)
ni(χ). (4.23)

Once again the galaxy clustering power spectrum is then related to its real space
counterpart by :

Cgg
ij (ℓ) = 2π

∫ ∞

0
dθ θ w(θ)J0(ℓθ). (4.24)

4.3.3 Galaxy -Galaxy Lensing

Finally, we can cross-correlate the shear signal of the source galaxies at higher
redshifts with the positions of the lens galaxies at lower redshifts, to obtain a probe
known as galaxy-galaxy lensing.

Themain observable is the tangential shear γt(θ). Analogous to the cosmic shear
and galaxy clustering correlation functions, it can be expressed in terms of the
galaxy-galaxy lensing cross-correlation function through a Hankel transform :

γij,t(θ) =
1

2π

∫ χH

0
dℓ ℓ J2(ℓθ)C

gγ
ij (ℓ) (4.25)

where J2(ℓθ) is the Bessel function of the first kind at second order, and the theo-
retical expression for Cgγ

ij is given by

Cgγ
ij (ℓ) =

∫ χH

0
dχ

qgi (χ)q
γ
j (χ)

χ2
r

(
ℓ+ 1/2

χ
, χ

)
Pδδ

(
ℓ+ 1/2

χ
, z(χ)

)
. (4.26)

The three probes of cosmic shear, galaxy clustering, and galaxy-galaxy cluste-
ring thus form a highly complementary set of observables, known as ‘3x2pt‘, with
which to study the LSS and especially probe the expansion history of the Universe
at small scales. In the past two decades, a wealth of data has been built up from nu-
merous past and ongoing ground-based and space-based galaxy surveys. The Ba-
ryonic Observation Spectroscopic Survey (BOSS ;[50]), the Dark Energy Survey (DES ;
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[51]) and the Dark Energy Spectroscopic Instrument (DESI, [52]) have been collec-
ting both photometric and spectroscopic data on galaxy clustering. Weak lensing
surveys include the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS ;
[53]), the Kilo-Degree Survey (KiDS ; [54]), and ongoing surveys such as the Hyper-
Suprime Cam (HSC; [55]), the Dark Energy Survey (DES ; [56]), Euclid [57] and the
forthcoming Legacy Survey of Space and Time (LSST ;[58]) will continue to push the
boundaries of weak lensing and galaxy clustering measurement techniques, with
improved systematics and larger datasets that will refine measurement accuracy
and precision.

4.4 Cosmic Microwave Background

The CMB is an important probe that contains a wealth of information about the
Universe at early times. At redshift z ∼ 1100, the Universe had expanded and co-
oled sufficiently such that electrons and baryons recombined, causing photons to
decouple from this opaque plasma and stream freely towards us. The original point
fromwhich these photons came can be thought of as a spherical surface also known
as the surface of last scattering. These photons carry information about the tempe-
rature and velocity of the primordial plasma, informing us about the history and
composition of the early Universe as far back as we can ever go.

TheCMB is a blackbody spectrumat 2.75K. TheseCMBphotons propagate through
a perturbed Universe towards us, hence we can theoretically derive an expression
for their temperature anisotropies as a function of direction n⃗, with 4 main contri-
butions [59] :

∆T

T0
=

δr(τ∗)

4
+ Ψ(τ∗)−Ψ0 + n⃗ · (v⃗0 − v⃗) +

∫ τ0

τ∗

dτ(Ψ′ − Φ′) (4.27)

The first term δr(τ∗)
4 is the contribution due to the radiation perturbation δr to the

temperature anisotropies at recombination time τ∗ ; the (Ψ(τ∗)−Ψ0) term accounts
for the difference in the gravitational potential at the surface of last scatteringΨ(τ∗)

and at present (denoted by a 0 subscript), which is dependent on the direction the
photon is propagating from. This is known as the Sachs-Wolfe effect. The third term
n⃗ ·(v⃗0−v) is the Doppler shift due to the photons having different peculiar velocities
v⃗ depending on their direction of propagation. Lastly, the integration term arises
from the integrated Sachs-Wolfe effect, which takes into account the change in the
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gravitational potential as the photons are travelling in and out of a gravitational well.
Hence we see how the temperature anisotropies are sensitive to many different
aspects of the expansion history : the primordial density and velocity perturbations,
the evolution of gravitational potentials, which in turn are dictated by the matter
content of the Universe, as well as the curvature of the Universe, which will impact
the path of the photons.

Since we are mapping these temperature anisotropies on a spherical sky, it is
more convenient to express∆T in spherical harmonics :

Θ(n⃗) =
∆T

T0
(n⃗) =

∑
ℓm

TℓmYℓm(n⃗) (4.28)

where the CMB temperature angular power spectrum is then defined as
CTT
ℓ =

〈
|Tℓm|2

〉
, (4.29)

which is the primary observable when measuring the CMB. Here, the TT super-
script indicates that it is the auto-correlation of the temperature-temperature fields.
Since we expect perturbations to be Gaussian distributed and very small during the
Radiation-Dominated Era (RDE), it is hence reasonable to assume that the CMB tem-
perature anisotropy field can be fully specified by its variance, i.e. by its Cℓ’s.

The space-based Planck experiment [60] mapped themost precise values of the
CMB power spectrum to date. In Fig. 4.2 we show the latest results from the Planck
2018 Data Release 4 (DR4) [61]. We see that the data points in red are in excellent
agreement with a ΛCDM model (best fit in blue). From the shape and amplitude of
the CMB power spectrum, we are able to very tightly constrain various cosmological
parameters, such as As, ns, τreio and Ωb, evident also from Eq. (4.27).

Additionally, these CMB photons get polarised as they propagate through the
Universe, due to Thomson scattering off of free electrons at the surface of last
scattering as well as during the epoch of reionisation (6 ≲ z ≲ 10) when the first
galaxies formed, creating regions of ionised hydrogen and electrons. We can de-
compose the spin-2 polarisation field into a ‘gradient‘ and ‘curl’ mode (i.e. the E and
B modes), measure their amplitudes, and express them as polarisation auto- and
cross-correlation power spectra :

CEE
ℓ = ⟨E∗

ℓmEℓm⟩ (4.30)
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CBB
ℓ = ⟨B∗

ℓmBℓm⟩ (4.31)
CTE
ℓ = ⟨E∗

ℓmTℓm⟩ (4.32)
From theory, Thomson scattering due to density perturbations produces only E-
mode polarisation, thus the presence of B-modes could only be due to systematics
or indicate the presence of tensor perturbations such as gravitational waves and
gravitational lensing.

The CMB photons are also subject to gravitational lensing due to the Large Scale
Structure at low redshifts. For example, this will shift both the temperature and
polarisation anisotropies by [62] (here we only quote the temperature anisotropies
for simplicity) :

Θ̃(n⃗) = Θ(n⃗+∇ϕ(n⃗)) (4.33)
where ϕ(n⃗) is the lensing potential (as seen in Sect. 4.3.1), the line-of-sight projection
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of the gravitational potential :
ϕ(n⃗) = −2

∫
dτ

χ(τ − τ∗)

χ(τ∗)χ(τ)
Φ(χn⃗, τ) (4.34)

As such we can define a quadratic CMB lensing power spectrum [63]
Cϕϕ
ℓ = ⟨ϕℓmϕ∗

ℓm⟩ , (4.35)
thus allowing us to constrain the dynamics of late-time physics with the CMB aswell.

Other recent ground-based CMB experiments, such as the Atacama Cosmo-
logy Telescope (ACT ; [64]) and the South Pole Telescope Third Generation (SPT-3G;
[65]), have also measured the CMB temperature power spectrum up to higher ℓ
multipoles than Planck. Fig. 4.3 shows the 2D marginalised posterior distributions
of the cosmological parameters {H0,Ωbh

2,ΩDMh
2, As, τreio, ns, 100θMC} as obtained

by the three different experiments, where θMC is the ratio rs/DM and rs is the dis-
tance travelled by sounds waves up until recombination, or the sound horizon at
recombination. Interestingly, we see a slight tension between ACT and Planck/SPT
at ∼ 2σ level, assuming a ΛCDM model.

We thus seehow theCMBhasproven to be an extremely useful probe in constrai-
ning the various parameters of our cosmological model, insofar as being one of the
most precise probes to date. It is also the highest redshift dataset we have obser-
ved to date, giving us an insight into the physics of the early time Universe. Hence
it would be of interest to exploit the power of the CMB in constraining extended
ΛCDM models, as we shall discuss in the next Chapter.

4.5 Bayesian Inference

In the past two decades, Bayesian statistics have been increasingly adopted as the
standardmethodof cosmological inference, whereby the parameters of interest are
assumed to be random variables following probability distributions [67, 68]. Baye-
sian statistical analyses rely on Bayes’ Theorem, which gives the probability distribu-
tion of the parameters θ given a modelM and the observed data d. This probability
distribution P (θ|d,M), called the posterior distribution, is defined as

P (θ|d,M) =
L(d|θ,M)Π(θ|M)

Z(d|M)
, (4.36)
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Fig. 4.3.Marginalised 2D posterior constraints on the various cosmological parameters, de-rived from SPT-3G (blue), Planck (black solid line) and ACT (grey). Plot taken from [66].

whereΠ(θ|M) is the prior distribution, quantifying our initial knowledge of the distri-
bution of θ ;Z(d|M) is the evidence, which gives the probability of observing the data
givenM ; L(d|θ,M) is known as the likelihood function : the probability of observing
the data d given the modelM with parameter values θ.

The likelihood L, which incorporates the underlying assumptions of the model
M , serves as a probability distribution assessing the goodness-of-fit between that
model, characterised by a specific set of parameter values θ, and the observed ex-
perimental data d. A primary focus in cosmology is determining the compatibility of
cosmological models, such as the concordance model or its variants, with the avai-
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lable data. Hence, it is imperative to establish a link between the observed data d

and its theoretical predictions derived from the model.
In most cases, it is sufficient to express the likelihood L as a multivariate Gaus-

sian distribution function :
−2 logL ∝ [d− T (θ)]T C−1[d− T (θ)], (4.37)

where d is the data vector, T (θ) is the theory vector derived from the model, C is
the covariance matrix of the data d which captures the correlations between the
parameters, and i is the number of variables of the dataset d.
4.5.1 Sampling the Posterior Distribution

The primary objective of contemporary cosmological analyses involves deriving
the posterior distribution P (θ|d,M) to find the best-fit set of parameters given the
data. This entails exploring the parameter space and assessing the model-data fit
across a broad range of values within the prior. However, having to evaluate the
posterior distributions P (θ|d,M) in a large dimensional parameter space that is so-
metimes highly correlated poses considerable challenges. Hence, numerical tech-
niques are indispensable for sampling the posterior distribution computationally.

Markov Chain Monte Carlo Methods

One of the most common methods to numerically derive the posterior distri-
bution is by exploring the parameter space iteratively, and drawing independent
random samples from it to build up the desired distribution : this process is also
known as the Monte Carlo method. The resultant ensemble of points makes up
what is known as a Markov chain, which then, when converged, matches the target
posterior distribution. The most common algorithm for Markov Chain Monte Carlo
(MCMC) techniques is the Metropolis-Hastings random walk [69-71]. This algorithm
involves first drawing samples from the prior distribution and at each iteration, de-
termining whether to "jump" to a new set of parameters xi+1 or stay at the current
step xi, with a probability

A(xx+i|xi) = min
(
1,

P (xi+1)q(x|xi+1)

P (xi)q(xi+1|xi)

)
(4.38)
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where q(xi+1|xi) is some specified proposal distribution, usually considered Gaus-
sian.

To test for convergence (i.e. if the points drawn adequately mimic the true pos-
terior distribution), one can calculate the Gelman-RubinR statistic [72, 73], which is
the ratio of the variation between chains to the variation within a chain. Specifically,
for J number of chains withL number of samples x(j)1 , x

(j)
2 , ..., x

(j)
L (after burn-in has

been discarded),

x̄j =
1

L

L∑
t=1

x
(j)
t (4.39)

x̄ =
1

J

J∑
j=1

x̄j (4.40)

B =
L

J − 1

J∑
j=1

(x̄j − x̄)2 (4.41)

s2j =
1

L− 1

L∑
t=1

(x
(j)
t − x̄j)

2 (4.42)

W =
1

J

J∑
j=1

s2j (4.43)

R =
L−1
L W + 1

LB

W
. (4.44)

Typically, a chain with R− 1 value of R− 1 < 0.02 is considered to be converged.
Several implementations of the Metropolis-Hastings MCMC algorithm exist that

are widely used in cosmology, such as within the MontePython [74], CosmoMC [75], its
updated Python version Cobaya [76] and CosmoSIS [77] libraries.

Nested Sampling

In a high dimensional space, simultaneously drawing samples from the pos-
terior distributions of multiple parameters can be a slow and computationally in-
tensive task, especially in light of Stage IV survey analysis requirements. Hence al-
ternatives in place of conventional MCMC methods have been proposed, notably
the technique of nested sampling [78]. In nested sampling algorithms, the evidence
Z(d|M) is the main quantity of interest. It is given by the integral
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Z =

∫
L(θ)Π(θ) dθ . (4.45)

Calculating the evidence has the added advantage of allowing one to conduct
model comparison– determining which of two competing models the observed data
is a better fit to. Model comparison requires calculating Bayes factor B, the ratio of
the evidence of the two models in question :

B ≡ Z(d|M1)

Z(d|M2)
, (4.46)

hence necessitating the value of Z .
There are currently several state-of-the-art implementations of nested sampling

for Bayesian inference, notably PolyChord [79, 80]. This algorithm implements a
slice samplingmethod [81] to efficiently sample fromwithin the iso-likelihood contour.
First, the multidimensional sample space is affine transformed (or "whitened") such
that it is of size ∼ O(1) in every direction. Then a new sample is drawn from within
this sampling space by "slicing" it in one dimension, and drawing the new sample
within the slice. This allows sampling in a high dimensional space while taking into
account degeneracies between correlated parameters. PolyChord has been used in
the latest Stage III LSS survey analyses [82, 83] and has proven to give robust and
accurate posteriors [84].
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IN BRIEF
In this Chapter, I introduced the main probes of 3x2pt and the CMB, which I
will be using to constrain a new cosmological model in the following Chapter.
I explained how the LSS and the CMB are sensitive to the physics of the late
time and early time Universe respectively, and discussed how we can obtain
constraints from them. Moreover, it is worth noting that the LSS and CMB,
since they probe distinctly different epochs in cosmic evolution, can form
highly complementary datasets that have the potential to break degene-
racies between the cosmological parameters, while possessing completely
independent systematics.
Finally, I touched on Bayesian statistical theory, an important concept when
conducting cosmological parameter inference. With these two Chapters, the
stage is set to introduce the main thrust of this thesis : using a range of da-
tasets including LSS and CMB to derive constraints for a new cosmological
model.
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5. Tomographic Coupled Dark Energy
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5.1 Introduction

In this Chapter, we shall introduce a cosmological model alternative to ΛCDM : the
coupled dark energy (CDE) model, which was first proposed almost three decades
ago [85, 86]. The CDE model postulates the existence of a quintessence, or scalar
field ϕ, as a candidate for dark energy, responsible for the late time accelerating
expansion of the Universe. The concept of scalar fields is prevalent in many aspects
of fundamental physics, and the case of a cosmological quintessence field has been
shown to provide an elegant solution to the ’coincidence problem’ [87], the question
of why the current energy densities of dark energy and dark matter should be of
equal magnitude, and the ’cosmological constant problem’, why the measured value
of the vacuum energy density ρΛ should differ from theoretical derivations based
on quantum field theory by up to 120 orders of magnitude [88].
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All these reasons make coupled quintessence models a noteworthy alternative
to ΛCDM, which also explains why it is still an active field of study today [89-120].
Thus in this Chapter, I shall investigate the CDE model in more detail and highlight
its differences fromΛCDM. I will also introduce a novel parameterisation that I have
developed [121], which I term the tomographic CDE model, and describe how I have
obtained constraints on it by employing a range of observational datasets.

5.2 Theoretical Framework

CDE cosmologies suppose that a non-minimal coupling exists between the canoni-
cal scalar field ϕ and the matter components of the Universe, which we take to be
fermionic DM particles.

We begin with the Einstein-Hilbert action of a scalar field :
S =

∫
d4 x

√−g

[
− 1

2κ2
R+ Ldark

]
(5.1)

where κ =
√
8πG, g is the determinant of the metric tensor gµν , and Ldark is the

Lagrangian for the dark sector, expressed as
Ldark = −∂µϕ∂

µϕ− V (ϕ)−mDM(ϕ)ϕ̄ϕ+ Lkin[ϕ] , (5.2)
with ϕ the wavevector of the DM particle, Lkin[ϕ] the DM kinetic term and V (ϕ) the
potential of the field. Hence ϕ mediates an interaction between the DM particles,
causing them to experience a fifth force in addition to the standard gravitational
attraction. We also note that the baryonic sector is not coupled to ϕ, so the model
automatically fulfils the very stringent local constraints on the weak equivalence
principle and screened fifth forces [122-125].

We can define the following two covariant conservation equations of the energy-
momentum tensor Tµν , concerning the scalar field and DM components respecti-
vely :

∇µT ϕ
µν = κβTDM∇νϕ ; ∇µTDM

µν = −κβTDM∇νϕ , (5.3)
with TDM = gµνTDM

µν . The total energy-momentum tensor of the dark sector is thus
conserved ; i.e.∇µ(T ϕ

µν + TDM
µν ) = 0.

As we can see on the right-hand side of Eq. (5.3), we have introduced a new
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dimensionless coupling parameter β, defined as
β ≡ −1

κ

∂ lnm(ϕ)

∂ϕ
. (5.4)

This coupling parameter quantifies the strength of coupling between ϕ and the DM
particles.

The DM particles thus interact with the field through their field-dependentmass
term,mDM = mDM(ϕ). In this model, we assume a dilaton-like interactionmDM(ϕ) =

m0 exp (−βκϕ) [126-129], with β(ϕ) = β m0 exp (−βκϕ)/mDM(ϕ), allowing for a tran-
sition from β(ϕ) ∼ β to β(ϕ) ∼ 0.
5.2.1 Background Modifications

Here, we highlight the modifications to the cosmological background equations
due to the presence of such a coupling between DM and ϕ. Once again assuming
a flat FLRW metric where DM and the scalar field behave as perfect fluids, we can
solve the Einstein Field equations with a modified TDM;ϕ

µν , arriving at the relevant
conservation equations for DM and ϕ respectively :

ρ′
DM

+ 3HρDM = −κβρDMϕ
′ , (5.5)

ρ′ϕ + 3H(ρϕ + pϕ) = κβρDMϕ
′ , (5.6)

where the prime denotes a derivative with respect to conformal time τ , and κ =
√
8πG is the reduced Planck mass. The right-hand side of Eqs. (5.5) and (5.6) tell us

that a non-zero coupling has a considerable impact on the background dynamics
only when the DM fraction is non-negligible, i.e. from the matter-dominated era
(MDE) onwards.

From Eq. (5.3) we can also derive the energy density and pressure terms of the
scalar field, ρϕ and pϕ :

ρϕ =
(ϕ′)2

2a2
+ V (ϕ) ; pϕ =

(ϕ′)2

2a2
− V (ϕ) , (5.7)

Substituting Eq. (5.6) into Eq. (5.7), we obtain the modified Klein-Gordon equa-
tion governing the evolution of the scalar field :

ϕ′′ + 2Hϕ′ + a2
∂V

∂ϕ
= κβa2ρDM , (5.8)
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The scalar field potential V (ϕ) can also accelerate ϕ at different epochs of the
cosmic expansion, depending on its form. For simplicity, however, wewill only consi-
der a constant potential, i.e.

V (ϕ) = V0, (5.9)
which is responsible for the late-time acceleration of theUniverse andhas no impact
on the scalar field dynamics at high redshifts. Thus CDE models can be considered
as a class of ‘thawing’ dark energy models, whereby the field is initially frozen due
to the dominance of the Hubble damping term, only recently starting to roll down
to the potential minima [130].
5.2.2 Perturbation Modifications

Wenowhighlight the relevant perturbation equations in CDE cosmologies. Here,
we express the overdensities of DM and ϕ as δρDM ≡ δDM and δϕ.

We work in the synchronous gauge. Consider the modified perturbations of DM
and ϕ by solving

δ(∇µT ϕ
µν) = δ(κβTDM∇νϕ). (5.10)

This leads to a second-order ODE for the evolution of the perturbed scalar field δϕ :

δϕ′′ + 2Hδϕ′ +

(
k2 + a2

∂2V

∂ϕ2

)
δϕ +

h′

2
ϕ′ = κρDMa

2

(
βδDM +

∂β

∂ϕ
δϕ

)
, (5.11)

whereas the evolution of the DM density contrast δDM and velocity divergence θDM

take the following form, respectively :
δ′
DM

= −θDM − h′

2
− κβδϕ′ − κ

∂β

∂ϕ
ϕ′δϕ (5.12)

θ′
DM

= (−H+ κβϕ′)θDM − k2κβδϕ. (5.13)
The perturbed density and pressure terms of the scalar field are then

δϕ =
ϕ′δϕ′

a2
+

∂V

∂ϕ
δϕ ; δpϕ =

ϕ′δϕ′

a2
− ∂V

∂ϕ
δϕ (5.14)

and its velocity divergence is given by

θϕ = k2δϕ/ϕ′ . (5.15)
62



At subhorizon scales, i.e. for k ≫ H, under a reasonably slow evolution of β satis-
fying ∂β/∂(κϕ) ≤ O(1), we can approximate the following equation for the evolu-
tion of δDM :

δ′′
DM

+
[
H− βκϕ′] δ′

DM
− κ2a2

2

[
ρbδb + ρDMδDM(1 + 2β2)

]
= 0 . (5.16)

Regardless of the sign of β, the last term of Eq. (5.16) is enhanced by the pre-
sence of a non-minimal coupling. On the other hand, the friction term (the factor
in front of δ′

DM
) decreases if the sign of β does not change throughout cosmic his-

tory. These two effects lead to a change in the clustering of matter in the Universe
as compared to ΛCDM, for fixed initial conditions. For a constant β the DM density
contrast evolves as δDM ∼ a1+2β2 during the MDE.

Another point worth noting is the possibility of the sign of β changing in time,
since, from a phenomenological point of view, it is not impossible to consider a
negative coupling. This could lead to periods of cosmic history with a larger friction
term, which would slow down the evolution of δDM . However, we restrict ourselves
to β ≥ 0 in this study for simplicity.
5.2.3 Tomographic Coupling

As we have demonstrated, studies of CDE cosmologies have evolved into a ma-
ture and robust field of research. Yet in almost every case, the coupling parameter β
has only been considered as a non-varying parameter. However, varying couplings
have already been considered in other paradigms, such as in the case of a vacuum
dark energy interaction with dark matter particles [131, 132], between dark matter
particles themselves (see eg. [133-136]) and analogously, between neutrino particles
[137, 138]. So, why not in CDE cosmologies too?

Hence, we set out to investigate the following questions : what is the impact of a
varying coupling on the main cosmological observables? Up to what extent can we
constrain this evolution with current data? Is the coupling strength similarly boun-
ded in all the stages of cosmic expansion? Would we be able to achieve a similar,
or even better, degree of alleviation of theH0 tension with a varying coupling?

To this end, I propose a new phenomenological ‘tomographic coupling’ parame-
terisation, in which we allow for different amplitudes of coupling at different epochs
of cosmic evolution. Instead of exploring specific functional forms of β = β(ϕ), we
opt to make use of a more general expression for the coupling, written directly in
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terms of the redshift, i.e. β = β(z), which is easy to interpret and visualise.
We bin the coupling strength parameter in different redshifts and constrain the

amplitude of coupling within each redshift bin independently. To do this, we consi-
der a smooth function built from hyperbolic tangents,

β(z) =
β1 + βn

2
+

1

2

n−1∑
i=1

(βi+1 − βi) tanh[si(z − zi)] , (5.17)

where n is the number of redshift bins and zi is the redshift upper limit of the ith

bin. We can easily express the derivatives of β appearing in Eqs. (5.11) and (5.12) as
follows,

∂β

∂ϕ
= −∂β

∂z

H
aϕ′ , (5.18)

with
∂β

∂z
=

1

2

n−1∑
i=1

si(βi+1 − βi)

cosh2[si(z − zi)]
. (5.19)

The constants si are smoothing factors that control the steepness of β(z) when
transitioning between tomographic bins. They have to be chosen such that they
allow to reach the values of βi in the ith bin ∀i ∈ [1, n]. In Fig. 5.1 we plot an example
form that β(z) could take, assuming a 3-binmodel with bin edges z = {0, 100, 1000}.

Fig. 5.1. Example of β(z) with three bins, using si = 0.03 for i = 1, 2 and arbitrarily chosenvalues of β1 = 0.05 (z ≲ 102), β2 = 0.15 (102 ≲ z ≲ 103), β3 = 0.10 (z ≳ 103).

In Fig. 5.2 we plot the linear matter power spectrum and the CMB temperature
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power spectrum obtained when we switch on the coupling in only one bin of the 3

bins to understand the effects that an early-, mid- and late-time coupling can have
on these cosmological observables. To ensure a fair comparison between the re-
sulting curves, we fix in all the cases studied in this figure the same values of the
standard cosmological parameters ns, As, τreio, ωb, the cosmological constant V0,
and the initial value of the DM energy density (at zini = 1014) following Planck ΛCDM
best-fit cosmology. Thus, the differences between these curves are only due to the
activation of the different coupling windows and the value they take on.

Fig. 5.2 shows that the matter power spectrum is most sensitive to the coupling
in the first two tomographic bins and, more conspicuously, in the first one, i.e., at
z < O(102). This is because this is the period of the cosmic expansion at which the
scaling solution is typically reached by the scalar field (cf. the lower left plot of Fig.
5.3) and, hence, when the fifth force leaves a larger imprint on the structure forma-
tion processes. In all cases, we see that a non-null coupling generates an increase
in the amplitude of matter fluctuations regardless of the activation bin, as already
discussed in Sect. 5.2.2. Regarding the CMB TT power spectra, we observe that the
peaks are enhanced andmove to largermultipoles for larger values of the coupling.
The enhancement is bigger when the coupling is activated in the pre-recombination
epoch, since it decreases the ratio ρDM/ρb, whereas the shift to larger multipoles is
more important when the coupling is switched on at z < 1000, in the first two bins.
This is because, for fixed initial conditions, we have a lower amount of darkmatter at
the decoupling time and very small redshifts. The lowering ofH(z) leads to a larger
sound horizon at the baryon-drag epoch rs and a larger angular diameter distance
to the last scattering surface, but the late-time effect is more important and this is
why the angle subtended in the sky by rs decreases. When the coupling is only ac-
tivated in the third bin, i.e. at z ≳ 1000, the shifts induced in the power spectra are
in general much smaller than those found when the coupling is switched on after
decoupling, as the DM fraction in the pre-recombination epoch is smaller and so
are the source terms in the background conservation equations for DE and DM, i.e.
the right-hand side of Eqs. (5.5) and (5.8).

Subsequently, in Fig. 5.3, we show the evolution of several background quanti-
ties obtained again with the 3-bin tomographic model, fixing the initial conditions in
all cases as in Fig. 5.2. In particular, we highlight the effect that initialising the cou-
pling β at different redshifts has on the late-time evolution of H(z) and the ϕ and
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Fig. 5.2.Matter power spectra P (k) (left column) and CMB temperature spectraDTT
ℓ (rightcolumn) obtained with different values of β1 (top row), β2 (middle row) and β3 (bottom row),while setting the other βi ’s to zero. This is to show the impact of a non-null coupling at eachbin. We use in all cases the same primordial power spectrum, τreio, ωb, V0 and the initialvalue of DM energy density as in the Planck TT+TE+EE ΛCDM best-fit cosmology.
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Fig. 5.3. We plot (clockwise from top left) the evolution of H(z) and the values of Ωb(z) +
ΩDM(z) and Ωϕ(z) when we subsequently switch on the coupling strength at increasingredshifts by activating the corresponding coefficient of β from 0 to 0.1. The green dottedline with β = 0 represents the ΛCDM model. The plot of Ωϕ(z) at the bottom right is azoom-in of the bottom left plot, in the window 0.1 ≤ z ≤ 0.8, which allows us to grasp thedifferences between the various curves.

DM energy fractions Ωi(z). Since ρDM decreases with increasing β, as seen from Eq.
(5.5), the activation of the coupling leads to lower values ofH0.

To better understand the dynamics of the scalar field, we also plot its evolution,
the evolution of its derivative and the resultant equation of state parameter w in
Fig. 5.4. We see that ϕ and ϕ′ become non-zero at the redshift when coupling is
activated, following Eq. (5.8). During the period of non-zero coupling, the field typi-
cally behaves like those in ‘freezing’ dynamical dark energy models (as introduced
in [130]), whereby it rolls to a minimum and slows down during the onset of accele-
rated expansion during late times (as seen from the decrease of ϕ′). We see this in
the evolution of w as well : it is initially positive, slowly decreasing and asymptoting
to a value of w = −1 to mimic the behaviour of a cosmological constant at present
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Fig. 5.4. Plot of (clockwise from top left) : the evolution of the scalar field and its derivative,and the EoS w, with the same coupling activation setup as in Fig. 5.3. ϕ and ϕ′ are given inunits of the reduced Planck mass.

5.3 Methodology

5.3.1 Modifying CLASS

We subsequently develop amodified version of the code, the Cosmic Linear Ani-
sotropy Solving System (CLASS ; [139]), to accommodate a redshift-dependent cou-
pling β(z). 1 Our code allows us to solve the Einstein-Boltzmann system of cosmo-

1. Our modified version of CLASS is publicly available at the following link : https://
github.com/LisaGoh/CDE.
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logical equations, to obtain the theoretical quantities of interest at the background
and linear perturbation levels, which is crucial to confront the model with observa-
tions and subsequently constrain model parameters. The code has been validated
against the one used in [140-143], for constant coupling (and previously with amodi-
fied version of CMBfast used in [144]). The present version allows us to reach exactly
ΛCDM in the limit of constant potential and zero coupling.

We employ MontePython to explore the parameter space of our CDEmodels. We
use the regular Metropolis-Hastings sampling algorithm and stop the Monte Carlo
when the Gelman-Rubin convergence statistic R−1 < 0.02. On top of the βi’s, we
vary the reduced baryon density, ωb, the reionization depth τreio, the potential of the
scalar field V0, ωDM,ini the reduced initial DM density at redshift zini = 1014, As and
the spectral tilt ns. In this study, we are interested in setting the initial conditions
in the past, evolving quantities under the effect of the varying coupling, in order
to see the effect on present quantities. We keep the Hubble parameter, H0, the
present day reduced DM energy density ωDM,0, σ8, and S8 as derived parameters.
We consider two massless neutrinos and one massive neutrino of 0.06 eV.

For the initial conditions of the scalar field, we are allowed to set ϕini = 0 and
ϕ′
ini = 0, since the scalar field has no dynamics during the radiation-dominated

epoch due to the null impact of the potential in that era, and the equations do not
depend on ϕ, but only on its time derivatives.

We choose uninformative flat priors for all the parameters, wide enough to not
influence the posterior distribution. In particular, we vary the couplings in the range
βi = (0, βmax), where the value of βmax is chosen depending on the particular data-
set. It has to be sufficiently large to not cut the tail of the posterior artificially. The
MCMC chains are then analysed using the GetDist [145] Python package.
5.3.2 Data

Here we detail the different datasets we employ, ranging from high-redshift to
low-redshift data, to constrain our model under investigation.

Cosmic Microwave Background We test our tomographic CDE model on Planck
2018 low-ℓ and high-ℓ TT, TE and EE CMB spectra [61], covering the multipole range
ℓ = (2, 2508) for the TT, and ℓ = (2, 1996) for the TE and EE power spectra. We
call this dataset Planck, in short. For completeness, in one of our datasets, we also
include the CMB lensing power spectrum in the multipole range ℓ = (8, 400) and
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combine it with the Planck TT,TE,EE data. We denote it as Planck+PlanckLens.
We also study four additional combinations of CMB data, by including the infor-

mation from ACT and SPT-3G surveys, which cover a multipole range larger than
Planck :

1. ACT Data Release 4 [18] :
We use CMB temperature anisotropy and polarisation (TT, EE and TE) power
spectra from the latest ACT DR4, measured with the ACTPol receiver. We use
the full ℓ-range of 600 ≤ ℓ ≤ 4125 for the TT power spectra and 350 ≤ ℓ ≤
4125 for the TE/EE power spectra. Data from ACT complements the Planck
dataset in the high ℓ range. Following the recommendation of [18], we use a
Gaussian prior on the optical depth of reionisation, τreio = 0.065±0.015, which
is only relevant when ACT is employed without including the low multipoles
from Planck since in this case τreio is basically unconstrained by the likelihood.
All the results reported in this paper, though, are obtained by combining the
ACT data with the low-multipole information from Planck, so the impact of this
prior is in practice negligible.

2. Planck + ACT (TT cut at ℓmin = 1800) :
We combine ACT and Planck data. After a Fisher matrix analysis carried out
by [18], the authors found it necessary to truncate the ACT TT power spec-
trum at multipoles ℓ < 1800 to avoid double counting issues caused by the
overlap of the multipole ranges covered by the two experiments. The addi-
tion of the Planck information has the potential to greatly tighten cosmological
constraints with respect to the case in which only ACT data is considered (see
e.g. Figs. 12 and 17 in [18]). We denote this truncated ACT dataset as ACT1800,
and its combination with the full Planck temperature and polarisation likeli-
hoods as Planck+ACT1800.

3. Planck + ACT1800 + SPT-3G :
As a next step, we include TE and EE power spectra from the SPT-3G [19], co-
vering a multipole range of 300 ≤ ℓ ≤ 3000. Constraints from SPT-3G CMB
data have shown to be in good agreement with Planck, hence providing fur-
ther independent validation of Planck results. In addition, SPT data has much
better constraining power at high ℓ’s compared to Planck and also covers a
separate area of the sky than ACT, so is highly complementary to the former
two datasets [146]. Since the overlap between SPT-3G and Planck is small and
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there is no overlap of the SPT survey area with ACT, there is no need to trun-
cate their power spectra when used in combination. We denote this dataset
as Planck+ACT1800+SPT.

4. Planck (TT cut at ℓmax = 650) + ACT +SPT-3G :
Following [147], we also consider an alternative way to combine Planck and
ACT : we combine again the ACT, Planck and SPT-3G data, but this time limi-
ting the Planck TT power spectrum to ℓmax = 650. The exclusion of higher
multipoles of the Planck TT spectrum has shown to give rise to a preference
for early dark energy models and a higher value ofH0, see [147-149]. Hence, it
will be interesting to look into whether this dataset suggests a stronger pre-
ference for CDE as well. We denote this dataset as Planck650+ACT+SPT. With
respect to the previous choice 3, this combination includes a larger part of
ACT data.

Baryonic Acoustic Oscillations (BAO)We use the following BAO data points :
• DV /rs(z = 0.122) [150] from the 6dF Galaxy Survey (6dFGS) and Sloan Digital
Sky Survey (SDSS) Main Galaxy Sample

• DM/rs(z = 0.32) and rsH(z = 0.32) [151] from the BOSS DR12 LOWZ samples
• DM/rs(z = 0.57) and rsH(z = 0.57) [151] from the BOSS DR12 CMASS samples
• DV /rs(z = 0.44, 0.60, 0.73) [152] from the WiggleZ Dark Energy Survey
• DM/rs(z = 0.835) [153] from the DES Year3 Data Release
• DM/rs(z = 1.19, 1.50, 1.83) and rsH(z = 1.19, 1.50, 1.83) [154] from the ex-
tended BOSS (eBOSS) DR14 quasar sample (DR14Q)

• DM/rs(z = 2.34) [155] obtained by the correlations between Ly-α absorption
and eBOSS quasar spectra

where DM (z) is the comoving angular diameter distance, rs the sound horizon at
the baryon-drag epoch, and

DV (z) =

[
D2

M (z)
cz

H(z)

]1/3 (5.20)
the dilation scale. The covariance matrices of the BOSS DR12 LOWZ and CMASS
samples and eBOSS DR14Q have been taken into account.

Type Ia supernovae (SNe1a)We employ the following SNe1a data :
• 6 effective points on the Hubble rate, i.e. E(z) = H(z)/H0, and their associa-
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ted covariance. They compress the data from the 1048 SNe1a of the Pantheon
compilation [156] and the 15 SNe1a at z > 1 from the Hubble Space Teles-
cope Multi-Cycle Treasury programs [157]. The compression effectiveness of
the information contained in such SNe1a samples is excellent, see Ref. [157]

• Combination of the lightcurve data from 251 spectroscopically confirmedSNe1a
in the redshift range of 0.02 < z < 0.85, measured by the Dark Energy Survey
Supernova Programme (DES-SN) [158]

Cosmic Chronometers (CCH) We use the 31 data points of the Hubble function
H(z) in a redshift range of 0.07 ≤ z ≤ 1.905, obtained by making use of passively-
evolving galaxies : i.e. galaxies with old stellar populations and low star formation
rates, whose evolution can be modelled considerably accurately. By employing the
differential age technique [159], where we observe the evolutionary state of each
pair of such galaxies at different redshifts, the value of dz/dt and thus H(z) can
be inferred. These probes are known as cosmic chronometers (CCH). These values
were calculated without assuming any fiducial cosmology. We take reference from
[160] for the CCH data points, and present them in Table 5.1.

Redshift Space Distortions (RSD) We use the following data from redshift space
distortions (RSD), expressed in terms of the product of the growth rate f(z) and
σ8. We note that in the case of a CDE model, the modified evolution of the density
contrast δDM adds a contribution to f , such that the effective growth rate becomes
feff = f − κϕ′β/H [131]. However, we have explicitly checked that this correction is
very small : using a test value of β = 0.04, the ratio |feff−f |/f ∼ 10−3 in the redshift
range of the RSD data points, while the uncertainties of the data are on the order
σfσ8/fσ8 ∼ 0.1− 0.2.

We use the following data points :
• fσ8(z = 0.03) [161] derived by combining results from the 2MASS Tully-Fisher
(2MTF) and 6dFGS surveys

• fσ8(z = 0.1) [162] from the SDSS DR7
• fσ8(z = 0.18, 0.38) [163] [164] from the Galaxy and Mass Assembly survey
(GAMA)

• fσ8(z = 0.22, 0.41, 0.60, 0.78) [152] from WiggleZ
• fσ8(z = 0.32) [151] from BOSS DR12 LOWZ
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z H(z) [km s−1Mpc−1]
0.07 69.0± 19.7

0.09 69.0± 12.1

0.12 68.6± 26.3

0.17 83.0± 8.3

0.1791 77.8± 8.1

0.1993 77.7± 8.7

0.2 72.9± 29.7

0.27 77.0± 14.1

0.28 88.8± 36.7

0.3519 85.2± 16.9

0.3802 86.0± 15.6

0.4 95.0± 17.2

0.4004 79.8± 12.3

0.4247 90.3± 13.6

0.4497 96.1± 15.3

0.47 89.0± 49.6... ...

z H(z) [km s−1Mpc−1]
... ...

0.4783 83.8± 10.8

0.48 97.0± 62.0

0.5929 106.7± 16.4

0.6797 94.6± 11.9

0.7812 96.3± 21.0

0.8754 124.5± 17.3

0.88 90.0± 40.1

0.9 117.0± 23.2

1.037 132.5± 45.8

1.3 168.0± 17.5

1.36 160.0± 33.8

1.43 177.0± 18.5

1.53 140.0± 14.4

1.75 202.0± 40.3

1.965 186.5± 50.6

Table 5.1. Table of collatedH(z) values and their 1σ uncertainties at 31 different redshifts,referenced from [160].

• fσ8(z = 0.57) [151] from BOSS DR12 CMASS
• fσ8(z = 0.60, 0.86) [165] from the Visible Multi-Object Spectrograph (VIMOS)
Public Extragalactic Redshift Survey

• fσ8(z = 0.77) [166] from the VIMOS Very Large Telescope (VLT) Deep Survey
• fσ8(z = 1.19, 1.50, 1.83) [154] from eBOSS DR14Q
• fσ8(z = 1.36) [167] from Subaru FMOS galaxy redshift survey (FastSound)
We correct for theAlcock-Paczynski effect bymultiplying fσ8 by the ratio [H(z)DA(z)]/

[Hfid(z)Dfid
A (z)], as in [168], where fiddenotes the fiducial cosmology used in the par-

ticular survey. In the CMASS, LOWZ and eBOSS DR14Q samples we take into account
the correlations between the BAO and RSD data through the corresponding cova-
riance matrices.

Supernova H0 for the Equation of State (SH0ES) We include the most updated
prior on the Hubble constant obtained by the SH0ES team using the cosmic dis-
tance laddermethod,H0 = (73.04±1.04) km s−1Mpc−1 [21], which is in∼5σ tension
with the value obtained by the Planck collaboration under the assumption of the flat
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ΛCDM model.

Weak LensingWe employ cosmic shear data from the latest data release of KiDS-
1000 [169], covering an effective area of 777deg2 with photometric galaxies span-
ning the redshift range 0.1 < z ≤ 1.2. We have validated our pipeline by conducting
runs with the ΛCDM model, making use of our modified version of CLASS (while
setting β(z) = 0) and verifying that we are able to reproduce the results reported
in [170]. In this study, we follow the fiducial analysis settings keeping an ℓ range
of ℓ = (100, 1500) in the calculation of the cosmic shear angular power spectrum
Cℓ
ϵϵ. Here, we acknowledge that although fitting functions exist to model the nonli-

near matter power spectrum Pnl(k) for a constant coupled dark energymodel [171],
an accurate recipe for the tomographic coupling case has yet to be developed and
would need Nbody simulations for varying coupling which are not publicly available
at present ; we leave this task for future work. For this reason, we conservatively use
only scales up to ℓ < 1500 ; while this already cuts a large part of nonlinear scales
that may be interesting to include in future studies, we also use HMCode [172] to
approximate Pnl(k) within this range ; this approximation is good enough for our
purposes, under the assumption that in this regime and for the values of β consi-
dered in this paper, the difference between the nonlinear spectra obtained with
HMCode corrections, and the spectra in a CDE model, is small. We leave a more re-
fined analysis at nonlinear scales, including smaller scales than the ones included
here, for future studies.

Spectroscopic Galaxy ClusteringWe consider spectroscopic galaxy clustering data
from the SDSS-III BOSS DR12 [173], following the methodology of [174], where they
calculate the anisotropic redshift space correlation function ξgg(s, µ, z) in 3 three-
dimensional ‘wedges’ (transverse, intermediate and parallel to the line of sight), split
into 2 tomographic bins of 0.2 < z ≤ 0.5 and 0.5 < z ≤ 0.75.

3x2 pt We also include, for the first time, the cross-correlations of the aforemen-
tioned KiDS-1000 ‘source’ galaxies, split into 5 tomographic bins, with ‘lens’ galaxies
obtained by combining both BOSSDR12 and 2DFLenS [175] data to obtain the galaxy-
galaxy lensing angular power spectra Cℓ

nϵ to constrain our model. The combination
of cosmic shear, galaxy clustering and galaxy-galaxy lensing will then make up our
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3x2pt probe. Since the overlap between the KiDS and BOSS surveys only accounts
for 4%of the BOSS footprint, the galaxy clustering covariancematrix has been assu-
med to be independent of the covariance matrix of cosmic shear and galaxy-galaxy
lensing, which was derived analytically in [176]. In the case of galaxy-galaxy lensing,
we follow [170] to limit the contribution of nonlinear scaleswith k ≳ 0.3 hMpc−1. The
authors argue that beyond these scales, their theoretical model of the galaxy-galaxy
lensing power spectrumbecomes significantly inaccurate due to nonlinearities. This
cut in scale corresponds, based on calculations of the data and the real space cor-
relations functions ξ±(s, µ), to an ℓ range of ℓ = (100, 300). We will thus also use this
ℓ range in our 3x2pt analysis.

5.3.3 Binning Parametrisations

When binning the coupling, we need to make a choice on the bins to be consi-
dered. We start from the consideration that, depending on the datasets we include
in the analysis, different choices may be more or less adequate. For example, if we
are interested in including CMB data, it is interesting to consider bins which diffe-
rentiate between late and early times. If instead we only include late-time probes,
wemay rather be interested in increasing the number of binswithin a redshift range
which overlaps with where the data are available. While there is no unique choice,
we specify here different typical choices, depending on the datasets.

Herewedescribe the different binningmodelswe test, and the datasetswe have
chosen to constrain each of them.

3-bin Tomographic β
We first consider CMB data alone, to evaluate the impact of different choices which
can bemade when using Planck alone, or in combination with ACT and SPT. For this
purpose, we test a binning with 3 tomographic bins, using bin edges {0, 100, 1000}.
This choice roughly identifies the structure formation, post-recombination and pre-
recombination eras. We fix s1 = s2 = 0.03 to allow for a smooth, gradual transition
between amplitudes in the various bins. Here we study if the data prefer a different
value of the coupling in the pre- and post-recombination epochs, allowing also for
a change in β at z < 100.

We test this model with CMB data alone, namely : Planck, Planck+PlanckLens,
Planck650+ACT+SPT, Planck+ACT1800 andPlanck+ACT1800+SPT, sincewewould like
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to test the constraining power of these alternative CMB datasets as compared to a
purely Planck dataset.

7-bin Tomographic β
Next, we aim to combine CMB data with background datasets from BAO, superno-
vae and cosmic chronometers, with or without RSD. We then test a binning with
7 tomographic bins, using bin edges {0, 1, 2, 5, 100, 500, 1000}. In this case we use
si = 10 for i = (1, 3), and si = 0.03 for i = (4, 6). This finer binning will let us study
to what extent the constraints on the coupling are sensitive to the large variety of
data at low redshifts and to the physical processes around the decoupling time of
the CMB photons. Our definition of the tomographic bin edges is largely motivated
by the redshift ranges that are being covered by the datasets we employ.

We begin with a baseline CMB dataset, to which we include other probes to see
how constraints might be affected, namely : BAO+SNe1a+CCH datasets (denoted as
‘BSC’), RSD data, and finally a SH0ES prior to see if its inclusion could potentially
increase the coupling strength at various epochs.

Our two baseline datasets are Planck+ACT1800+SPT and Planck650+ACT+SPT. It
is interesting to run our analyses on both combinations of CMB data cuts (cut on
ACT versus cut on Planck) to study how these different cuts impact the constraints
on our model.

In conclusion, we list the datasets here that we will employ in the following sec-
tions :

1. Planck+ACT1800+SPT+BSC
2. Planck+ACT1800+SPT+BSC+RSD
3. Planck+ACT1800+SPT+BSC+SH0ES
4. Planck+ACT1800+SPT+BSC+RSD+SH0ES
5. Planck650+ACT+SPT+BSC
6. Planck650+ACT+SPT+BSC+RSD
7. Planck650+ACT+SPT+BSC+SH0ES

4-bin Tomographic β
Lastly, we concentrate on late-time probes only ; for this purpose, we test a bin-
ning with 4 tomographic bins, using bin edges z = {0, 0.5, 1, 2} and s = 10 in the
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case of weak lensing (KiDS-1000 cosmic shear), BOSS spectroscopic galaxy cluste-
ring and the 3x2pt datasets. Since the redshift ranges of KiDS-1000 source galaxies
are between 0.1 ≤ z ≤ 1.2 and the BOSS and 2DFLenS lens galaxies are between
0.2 < z < 0.75, we alter our tomographic binning model to only vary β(z) at this
range, ensuring that the data can be fully exploited to constrain our model. Moreo-
ver, since the first three tomographic bins are very narrow in this binningmodel and
only vary at low redshifts, the impact of larger βi’s on the matter power spectrum is
less significant.

We use the cosmic shear, spectroscopic galaxy clustering, and 3x2pt datasets to
test both a constant and tomographic coupling model, and subsequently combine
cosmic shear with the Planck+ACT1800+SPT+BSC dataset in a tomographic frame-
work, to see if β(z) can become more constrained at higher redshifts. We only do
this for cosmic shear and not galaxy clustering and 3x2pt, to avoid double counting
when combining galaxy clustering with BAO and RSD. Additionally, when using only
cosmic shear, we follow [170] by imposing a flat prior on H0 encompassing ±5σ of
distance ladder constraints [20], given by 64 < H0 < 82 km s−1 Mpc−1.

Weak lensing has been used to constrain a constant CDE model in previous lite-
rature [177], however it is the first time we cross-correlate it with full-shape galaxy
clustering to probe coupled dark energy models, hence it is interesting to assess
their combined constraining power.

5.4 Observational Constraints on Tomographic CDE

5.4.1 Constraints with High-Redshift Data

We show in Fig. 5.5 the posterior distribution of the standard cosmological para-
meters θ = {ωb, ωDM , ln 10

10As, ns, τreio, H0, σ8}, as well as the constraints on β1−3,
for a 3-bin tomographicmodel. In thismodel, we only consider CMBdatasets andwe
fit ourmodelwith Planck, Planck+ACT1800, Planck+ACT1800+SPT andPlanck650+ACT+SPT.
For a detailed list of the best-fit, mean and 68% confidence level (C.L.) uncertainties
for each parameter, we refer the reader to Table A.1 in Appendix A.

We see that the differences between the contour plots obtained from the ana-
lyses with Planck alone and Planck+ACT1800 when the scale cut includes more of
Planck and less of ACT data are not substantial, and also do not differ considera-
bly from the one derived with a constant coupling model. This is expected since,
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Fig. 5.5. Triangular plot of 68% and 95% C.L. posterior distributions obtained with theCMB datasets Planck650+ACT+SPT (green), Planck (blue), Planck+ACT1800 (yellow) andPlanck+ACT1800+SPT (red) for the 3-bin tomographic model. The binning is defined by theedges z = {0, 100, 1000}. We include the contours derived for a constant β model, usingPlanck data, in black. In this case, the contours for β1−3 correspond to the same constant
β.

as mentioned, Planck data carries the bulk of the statistical power. When instead
high multipoles of the Planck spectrum are excluded, i.e. when we consider the
Planck650+ACT+SPT dataset, the constraints loosen considerably for every coupling
coefficient β1−3. In all cases, we find that the interaction strength is compatible with
0 (i.e. with ΛCDM) at 68% C.L.

There is a positive correlation betweenH0, σ8 and the coupling coefficients β1−3,
especially in the case Planck+ACT1800. The correlation is stronger for β1, i.e. in the
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redshift range 0 < z < 100. This behaviour ties in with the results presented in Fig.
5.2 : an increase in β1 leads to an increase of thematter power spectrum and hence,
to σ8, and requires larger values of H0 to respect the position of the first acoustic
peak of the CMB temperature spectrum.
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Fig. 5.6. 95% C.L. on β(z) for the 3-bin tomographic model. The binning is defined by edges
z = {0, 100, 1000}. For reference, we also include the constraint for the case of a constantcoupling β, obtained with Planck data, in black.

In Fig. 5.6 we plot the 95% C.L. constraints on the evolution of the coupling
strength β(z), reconstructed from β1−3 via Eq. (5.17) : constraints are derived for the
various CMB datasets, and compared to the case of a constant coupling, as studied
in [142, 143]. We see that in all cases, CMB constraints on β(z) are weaker than for
a constant coupling, going from β3 < 0.045 at 95% C.L. to a maximum of β3 < 0.14

at 95% C.L. for the case of Planck650+ACT+SPT. Interestingly, adding ACT and SPT
data to Planck loosens constraints at all epochs, and for all scale cuts, with respect
to Planck alone. Constraints in β3 bin, around recombination mainly come from
Planck data. This is due to the fact that Planck data tightly constrain the amplitude
of the first acoustic peak, to which, as we have seen in Fig. 5.2, a change in β3 is most
sensitive. The inclusion of SPT further loosens constraints around recombination.

Fig. 5.7 summarises our results for the 3-bin scenario : we show the mean and
68% C.L. of the cosmological parameters of our 3-bin model, as constrained by dif-
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ferent choices of CMB datasets, and compare them with those obtained for ΛCDM
and for a constant coupling (β1 = β2 = β3 = β) model. The pink band represents
the mean and 1σ uncertainty on ΛCDM cosmological parameters as obtained from
Planck. We note that ACT and SPT are in better agreement with Planck data within a
CDE cosmology (red and orange vs blue lines) than in ΛCDM (grey and cyan vs pink
band) ; however this may also be due to the fact that the analysis was run with a dif-
ferent prior on τ as compared to that in [18]. As shown before, when the coupling
is allowed to vary in redshift, as in a tomographic model, it is less constrained than
when it is forced to be constant at all redshift bins, and in particular near recombi-
nation. The inclusion of ACT and SPT further loosens the constraints.

Interestingly, we see that a tomographic CDE model shifts H0 towards slightly
higher mean values for all datasets, when compared to ΛCDM. Using the Planck
dataset as a basis for comparison, we find that a tomographic model gives very si-
milar results compared to the constant coupling case, with H0 = (68.15+1.21

−1.43) km
s−1 Mpc−1 for the constant coupling model and H0 = (68.51+1.42

−1.17) km s−1 Mpc−1

for the tomographic case. Including ACT, as in Planck+ACT1800, increases this va-
lue to H0 = (69.17+1.75

−1.65) km s−1 Mpc−1. If we take the results obtained only with
Planck and compare them to the SH0ES value, the Hubble tension decreases from
∼4.8σ (assuming ΛCDM) to ∼2.9σ (assuming CDE with β = const.). In the case of
the tomographic model, the H0 tension decreases even more, to ∼2.7σ. However
we note that the uncertainties inH0 are increased by a factor of 2 going fromΛCDM
to a CDE model, which is the main cause of this reduction of the tension.

Finally, we also note that the tension between the value of ns measured with
Planck and Planck650+ACT+SPT when assuming ΛCDM disappears in the context
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of a tomographic CDEmodel ; the error bars overlap (dark blue and green) and thus
the corresponding values of ns are compatible. Similarly, the mild tension between
the value of As found with Planck and Planck+ACT1800 in the ΛCDM is also washed
out in the tomographic model (cf. the dark blue and yellow bars).

Finally, we present results derived from additionally employing the Planck len-
sing likelihood in Fig. 5.8. We see that the inclusion of the lensing likelihood leads
to tighter constraints, especially for the coupling at the lowest redshift bin, β1. This
is to be expected, since the CMB lensing potential power spectrum Cϕϕ

ℓ probes the
large scale structure at redshifts in that range, and has also been shown to lend a
preference towards ΛCDM [178].
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Fig. 5.8. Comparison between the results obtained for the 3-bin tomographic model usingPlanck with (purple) and without (blue) the Planck CMB lensing likelihood. We recall that allspectra (in both cases) are always lensed, even when the Planck lensing (4-point) likelihoodis not included.

In summary, the results obtained with the 3-bin tomographic model when using
only CMB data allow for larger couplings at all epochs ; none of the current datasets
detects a non-zero coupling in any bin, and data are consistent with ΛCDM pre-
dictions ; the CDE model though, allows for slightly larger values of σ8 and H0 with
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respect to ΛCDM. On the other hand, a non-zero coupling works to decrease ωDM ,
which compensates the increase in σ8 to give a value of S8 similar to the one we
would have for Planck ΛCDM. We will see in the next section whether this is still
compatible with other background datasets.
5.4.2 Constraints with Low-Redshift Data

It is natural to wonder whether shifts observed in σ8 andH0 and the correspon-
ding slight decrease in ωDM for a CDE model, are still compatible with background
data, such as BAO and low redshift data from RSD. We present results for the 7 dif-
ferent datasets as listed in Sect. 5.3.3, adapting the binning to a 7-bin model, which
is finer at low redshifts. We then add to the Planck+ACT1800+SPT baseline lower
redshift data, namely BAO, SNe1a, cosmic chronometers, RSD and a SH0ES prior,
and check their impact on the coupling strength.

In Fig. 5.9weuse Planck+ACT1800+SPT+BSCas abaseline andplot the constraints
on H0, σ8 and the 7 coupling coefficients obtained for datasets 1-4, namely combi-
ning Planck+ACT1800+SPTwithBSC, BSC+RSD, BSC+SH0ES andBSC+RSD+SH0ES.
We recall that BSC refers to the combination BAO+SNe1a+CCH. A list of the best-fit,
mean and 68% C.L. uncertainties for each parameter is given in Table A.2 of Appen-
dix A.

We see that whenwe combine our baseline CMB dataset with BSC data, the cou-
pling strengths at low redshifts (z < 5) are not well constrained (green contours for
β1, β2 and β3). The addition of either RSD or SH0ES leads to tighter constraints : β1 <
0.017 for Planck+ACT1800+SPT+BSC+RSD+SH0ES with respect to β1 = 0.146+0.075

−0.081

for Planck+ACT1800+SPT+BSC at 68% C.L. Couplings at larger redshifts are instead
mainly unaffected with respect to Planck+ACT1800+SPT+BSC. We also see a consi-
derable loosening of constraints for all parameters in general in the tomographic
coupling case as compared to a constant coupling (in black), and a shift towards
larger values ofH0 and σ8.

In Fig. 5.10 we plot the 95% C.L. on β(z) as derived from the seven βi descri-
bed above, for the baseline Planck+ACT1800+SPT with different background data,
as compared to the constant coupling case with a Planck+ACT1800+SPT+BSC data-
set. We see once again that the constraints on the coupling strength are weaker in
the tomographic scenario, especially in high redshift bins, reaching β7 = 0.063+0.023

−0.054

at 68% C.L. around recombination for Planck+ACT1800+SPT+BSC, with respect to
β7 = 0.015+0.005

−0.014 for the same dataset, when a constant coupling is assumed (i.e.
82



0.8 0.9
8

0.1
0.27

0.1
0.26

0.1
0.25

0.1
0.24

0.1
0.23

0.1
0.22

0.1
0.21

68

70

H
0

68 70
H0

0.1 0.2
1

0.1 0.2
2

0.1 0.2
3

0.1 0.2
4

0.1 0.2
5

0.1 0.2
6

0.1 0.2
7

Planck+ACT1800+SPT+BSC
Planck+ACT1800+SPT+BSC+RSD
Planck+ACT1800+SPT+BSC+SH0ES
Planck+ACT1800+SPT+BSC+RSD+SH0ES
Planck+ACT1800+SPT+BSC (constant )

Fig. 5.9. Triangular plot of 68% and 95% C.L. posterior distributions of σ8, H0, and the 7tomographic coupling coefficients β1−7 derived from datasets Planck+ACT1800+SPT+BSC(green), Planck+ACT1800+SPT+BSC+RSD (blue), Planck+ACT1800+SPT+BSC+SH0ES (yellow)and Planck+ACT1800+SPT+BSC+RSD+SH0ES (red). For reference, the binning is defined byedges z = {0, 1, 2, 5, 100, 500, 1000}. We include, in black lines, the contours obtained for aconstant β case with Planck+ACT1800+SPT+BSC data. In this case, the contours for all β1−7are the same.

nearly 5 times greater). Interestingly, when either RSD or SH0ES data are conside-
red on top of Planck+ACT1800+SPT (blue and yellow curves in Fig. 5.10, respectively),
a non-null-coupling seems to be preferred in some redshift bins : in particular, the
inclusion of a SH0ES prior appears to favour a non-zero coupling at more than 95%
C.L. for 5 < z < 500 (right panel, zoom in z). This is consistent with the results found
in [142], who find a > 2σ-level preference for a non-zero coupling coefficient when
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Fig. 5.10. 95% C.L. on β(z) for a 7-bin coupling model constrained with different data-sets that incorporate the baseline combination Planck+ACT1800+SPT. The right plot is alow-redshift zoom of the plot on the left. For reference, we include the constraints fora constant β with Planck+ACT1800+SPT+BSC, in black. The binning is defined by edges
z = {0, 1, 2, 5, 100, 500, 1000}.

including a SH0ES prior and data from strong-lensing time delays from H0LICOW.
However, whenwe use the combination RSD+SH0ES (in red) this evidence for a non-
null coupling disappears.

In Fig. 5.11, we also present the results obtained with the baseline CMB dataset
of Planck650+ACT+SPT, which corresponds, as explained above, to a larger cut of
Planck data. We report the best-fit, mean and 68% C.L. uncertainties for each para-
meter in Table A.3 of Appendix A. We see that when we add BSC we are unable to
constrain the coupling strength at redshifts z < 5 (i.e. coupling parameters β1, β2
and β3), similar to the case with Planck+ACT1800+SPT CMB dataset ; but when RSD
data is included, constraints become tighter in all tomographic bins, and a lower
value of σ8 is favoured. Also, comparing with the contours obtained for a constant
coupling case, and for the same dataset Planck650+ACT+SPT+BSC, in the 7-bin to-
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mographic model, we no longer see any correlation between σ8 and the coupling
coefficient.

We also see that contours derived with the Planck650+ACT+SPT+SH0ES data-
set aremuch less constrained than that of the Planck+ACT1800+SPT+SH0ES dataset,
with an interesting point that in the case of the former dataset, there is no signifi-
cant evidence for a non-null coupling in any redshift bin. A cut on large Planck TT
multipoles has shown to lend a preference for a higher value of H0 already in the
context of the ΛCDM [61], thus making the Planck650+SH0ES combination less in
tension with SH0ES. This could explain why a nonzero coupling becomes less ne-
cessary. Furthermore, comparing between datasets, we see that a change between
the Planck650+ACT+SPT and Planck+ACT1800+SPT dataset mainly affects coupling
constraints at high redshifts, with the Planck650 cut allowing for larger values of
β7. This is analogous to the 3-bin model, where β3, the amplitude of the bin at the
highest redshift z > 1000, is the least constrained when the Planck650+ACT+SPT
dataset is used.

In Fig. 5.12weplotβ(z) as a function of redshift, where similar to Fig. 5.10, constraints
for every tomographic coupling bin are considerably loosened compared to a constant
coupling model, especially at high redshifts. However, in all 3 datasets, results for β
are still compatiblewith 0 at all redshifts, unlikewith theCMBbaseline Planck+ACT1800+SPT
dataset.

In Fig. 5.13 we present a comparison of the mean and 68% C.L. of the various
parameters derived for all the different datasets used to probe our 7-bin tomogra-
phic couplingmodel, comparing it to Planck fiducial cosmology, aΛCDMmodel with
the same datasets, and a constant coupling model. Comparing across models, we
see that a tomographic coupling generally gives lower values of ωDM , and higher
values of σ8 andH0 than the constant coupling case by allowing for a stronger cou-
pling at low and high redshifts. We see this reflected in our results for the case of
σ8 : when we compare the same dataset analysed with a ΛCDM model and a CDE
model, we see that with CDE, σ8 (and thus S8) increases, even if ωDM decreases. For
example, with a Planck+ACT1800+SPT+BSC dataset, S8 = 0.812+0.011

−0.010 inΛCDM, while
S8 = 0.834+0.015

−0.017 in a tomographic CDE case.
For almost every dataset, themost tightly constrained bins are β4 and β5, where

5 < z < 100. This can be explained by the fact that this redshift bin encompasses
the era of structure formation, to which a DE-DM coupling would be most sensitive,
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since as seen from Eqs. (5.5) and (5.16), coupling significantly affects the amount of
dark matter and the amplitude of clustering. We further illustrate this in Fig. 5.14,
wherewe plot the resultantP (k) aswe activate the coupling at each subsequent bin
from 1 to 7. We see that increasing β4 and β5 from 0 to 0.1 gives the largest increase
in P (k). On the other hand, at lower redshifts (within tomographic bins β1, β2 and
β3), the impact of coupling on the matter power spectrum is much less significant,
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Fig. 5.12. 95% C.L. on β(z) for a 7-bin coupling model, with base CMB datasetPlanck650+ACT+SPT. The right plot is a low-redshift zoom of the plot on the left. Forreference, we include the constraints for β in the case of a constant coupling derivedfrom a dataset Planck650+ACT+SPT+BSC in black. The binning is defined by edges z =
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as seen from the inset of the same figure, which shows how activating β1, β2 and
β3 leads to only a slight increase in P (k). Hence this could be why β1−3 can take on
larger values and are thus much less constrained.

The 7-bin model allows us to better understand how the coupling affects the
universe dynamics at different redshifts. A larger coupling is allowed at low redshifts
(z < 5) and high redshifts (z > 1000), outside of the period of LSS formation in the
MDE.
5.4.3 Constraints with Large Scale Structure Data

Finally, we consider constraints from galaxy surveys, using cosmic shear, galaxy
clustering and 3x2pt : we use these datasets here for the first time in the context of
CDE cosmologies, both for a constant coupling and for a tomographic coupling. The
case of a constant coupling is shown in Fig. 5.15 : β is mainly constrained by galaxy
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clustering and 3x2pt probes, rather than by cosmic shear from KiDS alone (at least
for the conservative cut we use at nonlinear scales, cf. Sect. 5.3.2).

Next, we present results using the same probes, but for a 4-bin tomographic
coupling, in Fig. 5.16. We see that once again, similar to the constant coupling case,
coupling strength is relatively unconstrained when using Cosmic Shear (CS) from
KiDS alone (with a conservative cut), even more so than in the constant coupling
case. Also, coupling at the highest redshift bin, β4, is more constrained than the
lower redshift bins. The lack of constraining power at z < 2 could be due to the
fact that, as shown in Fig. 5.14, the increase of P (k) caused by the coupling at such
low redshifts is too small for CS to be sensitive towards. Moreover, cosmic shear is
able to constrain S8 but exhibits a strong degeneracy in the σ8 − Ωm plane, which
works in the same direction as β : larger values of β increase σ8 while decreasing
Ωm. This also explains why larger values of the coupling are allowed by this dataset.
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On the other hand, galaxy clustering and subsequently 3x2pt are able to give tight
constraints on the coupling at all redshifts, as they are able to break this degeneracy.

In Fig. 5.17 we plot the reconstruction of β(z) at 95%C.L. for the various datasets
we have employed.We see that when considering only the weak lensing probe, β(z)
is once again less constrained at low redshifts. However, whenPlanck+ACT1800+SPT+BSC
data is included, constraints are tightened significantly (going fromCS to the Planck+
ACT1800+SPT+BSC+CS dataset). Moreover, comparing CDE models, we see that al-
though constraints become much weaker going from a constant to a tomographic
coupling model in the case of cosmic shear, constraints on β remain very similar for
galaxy clustering (GC) and 3x2pt. Remarkably, GC and 3x2pt exhibit comparable, or
even stronger, constraining power compared to CMB probes. Hence weak lensing
and galaxy clustering are powerful tools to constrain coupled dark energy models,
as they are sensitive to large-scale structure formation during late times and give
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considerable constraints on coupling at higher redshifts.
In Fig. 5.18 we plot the mean and 68% C.L. of the full set of cosmological para-

meters for each dataset, comparing them to the results obtained assuming ΛCDM.
We see that in the case of a combined CMB and cosmic shear dataset, the bulk
of the statistical power comes from Planck data : the mean value of each para-
meter is now more in agreement with Planck fiducial cosmology. Moreover, with a
CDE model, the tension between the measurement of the S8 parameter from CMB
and weak lensing is eased : for ΛCDM, S8 = 0.764+0.017

−0.014 with the 3x2pt probe, and
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S8 = 0.834 ± 0.016 with the Planck dataset, which is a ∼3.1σ tension. In a constant
coupling model, S8 = 0.775 ± 0.018 using 3x2pt and S8 = 0.829+0.023

−0.026 with Planck,
thus reducing this tension to ∼1.8σ. The decrease of the tension is due to the in-
crease of S8 obtained from the 3x2pt dataset and also to the increase of the un-
certainties. Both effects are induced by the coupling. On the other hand, the values
for the other parameters remain within 1σ agreement : for example, in a constant
coupling case, ωDM = 0.119 ± 0.002 and σ8 = 0.822+0.013

−0.015 for the Planck dataset,
while ωDM = 0.120+0.007

−0.006 and σ8 = 0.795+0.020
−0.015 for the 3x2pt dataset. However, we
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note that these calculations are only estimates as they assume Gaussian posterior
distributions for the cosmological parameters.

These calculations have beenmadebasedon the values quoted in Tables A.1 and
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A.4 of Appendix A. We also include the best-fit, mean and 68% C.L. uncertainties for
each parameter in these tables.
5.4.4 Bayesian Model Comparison

We conduct a rough model comparison by calculating the ∆χ2
min = χ2

cde,min −
χ2
ΛCDM,min of each of the datasets used in each model with respect to ΛCDM, and

report their values in Table 5.2. We see that across all models and datasets, the CDE
model (be it constant or tomographic) is able to reduce the χ2

min value with respect
to ΛCDM. This difference is generally not large enough to signify a statistically signi-
ficant preference for CDE over ΛCDM; moreover, the large number of parameters
varied especially in the tomographic CDE scenario will penalise the model.

Thus we also calculate the Bayes factor, a more robust method of quantifying
the goodness of fit of the data to the model as it takes into account the number of
parameters varied in the model. Its logarithm is given by

lnB = lnZ(CDE|D)− lnZ(ΛCDM|D), (5.21)
where Z(Mi|D) is the Bayesian evidence of the modelMi under the datasetD. We
use the code MCEvidence [179] to numerically calculate the evidence estimated using
the kth Nearest Neighbour method, for one chosen dataset in each CDE model (3-
bin, 7-bin, 4-bin and constant coupling when using cosmic shear). We report their
values in Table 5.2.We see that lnB < −3 for allmodelswhich, based on the Jeffreys’
scale, shows substantial evidence forΛCDMover CDEmodels [180]. Thus evenwhen
constant or tomographic CDE models give a smaller χ2

min, the data does not show a
preference towards CDE.
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Dataset + Model χ2 lnB

Constant β

Planck −2.59 −
Planck+ACT1800+SPT+BSC −0.80 −
Planck650+ACT+SPT+BSC −7.98 −

Cosmic Shear −2.48 −11.35

Galaxy Clustering −3.64 −
3x2pt −3.56 −

3-bin β

Planck −1.99 −3.73

Planck+PlanckLens −1.72 −
Planck+ACT1800 −1.12 −

Planck+ACT1800+SPT −5.96 −
Planck650+ACT+SPT −6.11 −

7-bin β

Planck+ACT1800+SPT+BSC −2.66 −10.61

Planck+ACT1800+SPT+BSC+RSD −2.56 −
Planck+ACT1800+SPT+BSC+SH0ES −9.88 −

Planck+ACT1800+SPT+BSC+RSD+SH0ES −1.92 −
Planck650+ACT+SPT+BSC −14.06 −10.56

Planck650+ACT+SPT+BSC+RSD −17.84 −
Planck650+ACT+SPT+BSC+SH0ES −13.74 −

4-bin β

Cosmic Shear −2.81 −6.73

Galaxy Clustering −2.57 −
3x2pt −3.54 −

Table 5.2. Table of χ2 values and lnB values for selected models and datasets.
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IN BRIEF
In this Chapter, I introduced a coupled dark energy (CDE)model, an alternative
to the concordance ΛCDM model. I then proposed a new parameterisation
for the CDE model, where I allowed the coupling parameter to vary with cos-
mic evolution. To do this, I binned the coupling in redshift z, and investigated
three binning parameterisations, to see how well different datasets, varying
from early to late times, can constrain coupling strength at various cosmo-
logical epochs. In order to calculate the cosmological observables, I also
modified an existing Einstein-Boltzmann code, CLASS, according tomymodel.
In the case of a 3-bin model probed only with high-redshift CMB data,
constraints on β are looser in a tomographic model compared to in a
constant β model. With the inclusion of low-redshift data probes and a
finer 7-bin parametrisation, the tightest constraints on coupling occur at
redshifts corresponding to the era of LSS formation, while constraints on
late-time coupling enlarge by almost one order of magnitude. However,
when employing LSS probes, I was able to recover tight constraints on β

at z < 2, demonstrating for the first time the promising potential of these
datasets in constraining coupled dark energy models.
I have thus laid the framework for a tomographic CDE model in this
Chapter, and established constraints on this model based on current obser-
vational data. In the subsequent Chapters, I move on to discuss how I have
applied this model in various other studies.
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6. Early Coupled Quintessence
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6.1 Introduction

In this Chapter, I introduce a subclass of the CDE model, which I term an Early Cou-
pled Quintessence (ECQ) model [181]. As its name suggests, the coupling between the
scalar field and the DM particles, which I have introduced in the previous Chapter,
only occurs at early times, i.e. during the RDE. This class of coupled quintessence
models are of particular interest as [182] showed that if the strength of this coupling
is large enough, the systemapproaches an attractor solution in the RDE, whereby the
scalar and DM energy densities evolve as the radiation one, such that ΩR, ΩDM , and
Ωϕ remain constant over the epochwhere coupling is activated. This induces a rapid
growth of DM overdensities. Subsequently, this can lead to the formation of com-
pact primordial structures, such as primordial black holes [129, 182] or primordial
dark matter halos [183], which can be enticing candidates for dark matter.

6.2 Theoretical Framework

The mechanics of coupling in the ECQ model are the same as that of CDE models,
hence we shall delve straight into the discussion of its specific features at the back-
ground and perturbation levels.
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6.2.1 Background Modifications

Once again considering a flat FLRW Universe, we evoke the modified conserva-
tion equations for the DM and scalar field respectively :

ρ̇DM + 3HρDM = −κβρDM ϕ̇, (6.1)
ρ̇ϕ + 3H(ρϕ + pϕ) = κβρDM ϕ̇, (6.2)

with the Friedmann equation being
H2 =

κ2

3

(
ρDM,0

a
e−βϕ +

ρR,0

a2
+

1

2
ϕ̇+ V (ϕ)a2

)
(6.3)

where the dot denotes a derivative with respect to cosmic time t, and we have assu-
med a flat potential of the form V (ϕ) = V0, as was the case in the previous Chapter.

The coupling is effectively active whenever the fermions are non-relativistic (i.e.
when ρDM ̸= 3pDM ). In the limit when β > 1/

√
2, the system presents an attractor

solution in which the DM and ϕ energy densities follow the evolution of radiation,
i.e. ρDM ∼ ρϕ ∼ ρR ∝ a−4.

We can find this scaling solution to Eqs. (6.1)and (6.2) following themethodology
of [184]. From Eq. (6.3), we define the variables

x =
κ

H

ϕ̇√
6
, y =

κa

H

√
V0

3
z =

κa

H

√
ρR
3
, (6.4)

where Ωϕ = x2 + y2, Ωr = z2 and ΩDM = 1− x2 − y2 − z2. Differentiating the set of
equations in (6.4) with respect to ln a,

x′ = x

(
z′

z
− 1

)
−
√

3

2
β(1− x2 − y2 − z2) (6.5)

y′ = y

(
2 +

z′

z

)
(6.6)

z′ = −z

2
(1− 3x2 + 3y2 − z2) (6.7)

The scaling solutions exist when x′ = y′ = z′ = 0. In the case where all 3 compo-
nents of the scalar field, dark matter and radiation are non-negligible, we arrive at
a critical point that is a solution to the system of equations (6.5) − (6.7). We then
arrive at the expressions for the density parameters of the scalar field ϕ, DM and
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radiation components, which depend purely on the strength of coupling β :
Ωϕ =

1

6β2
, ΩDM =

1

3β2
, ΩR = 1− 1

2β2
. (6.8)

In this regime, the scalar field energy is dominantly kinetic. Taking the general
form of the solution for Eq. (6.1) and assuming it scales as a−4 [85, 185-187],

ρDM,0a
−4 = ρDM,0a

−3e−κβϕ, (6.9)
we have

ϕ′ =
1

κβ
, (6.10)

where the dot signifies a derivative with respect to the number of e-folds dN ≡
d ln a, and ϕ′ = ϕ̇H .

Additionally, we note that Big Bang Nucleosynthesis (BBN) constraints require
that the coupling must satisfy β2 ≫ 1 to have ΩR ≫ ΩDM ,Ωϕ in the RDE, if scaling
starts before BBN (z ∼ 109).

6.2.2 Perturbation Modifications

The evolution of thematter density contrast δDM can be derived from theNavier-
Stokes equations [93]. If there are no shear or rotational components in the initial
velocity field, during RDE, these equations condense into a single differential equa-
tion governing the nonlinear growth at subhorizon scales [183],

δ′′
DM

+

(
1 +

H′

H − κβϕ′
)
δ′
DM

− 4

3

(
δ′2
DM

1 + δDM

)
− 3

2
(Y ΩDMδDM +ΩRδR) (1 + δDM) = 0,

(6.11)
where Y ≡ 1+ 2β2 is the effective coupling strength resulting from gravity plus the
fifth force. Hence, for |β| ≈ 1, the fifth force is of gravitational order.

In the scaling regime during RDE, H′ ≈ −H. Since ΩRδR is small, if β2 ≫ 1, Eq.
(6.11) reduces to

δ′′
DM

− δ′
DM

− δDM (1 + δDM)−
4

3

(
δ′2
DM

1 + δDM

)
= 0, (6.12)

where we have also used Eq. (6.8). The DM overdensities are small at early times,
99



so Eq. (6.12) can be linearised and analytically solved, leading to
δDM = δ

DM,in
(

a

ain
)p

, with p =
1 +

√
5

2
≡ φ ≈ 1.618, (6.13)

where the growth rate coincides with the golden ratio φ and ain is the scale factor
at the beginning of the scaling regime, when δDM(ain) = δDM,in. The scaling solution
in Eq. (6.8) remains valid till the coupling is effectively switched off. Afterwards, the
model behaves as ΛCDM.

6.3 Methodology

To reach the scaling solution, the energy of the scalar fieldmust be kinetically domi-
nated, which is achievable via a field-dependent potential with a cross-over phase
or a sufficiently small constant potential. Here we mainly consider a constant po-
tential V = V0 ∼ O(M2

PH
2
0 ) to produce acceleration at late times. Since this value is

much lower than the critical energy density during the RDE, ϕ is naturally kinetically
dominated and the system approaches the scaling solution if β > 1/

√
2.

We set the initial conditions (denoted by the subscript ‘ini’) for ϕ̇ and the DM
density to the scaling solution values (recall Eqs. (6.8) and (6.10))

ϕ̇ini =
1

κβ
, and ρDM,ini =

ρR,ini

3
(
β2 − 1

2

) , (6.14)

at zini = 1014, i.e. we assume that the system starts in the scaling regime at zini.
Moreover, we set ϕini = 0 since, given the considered flat potential, the dynamics
of the scalar field do not depend on its initial value.

To mimic a transition from β(ϕ) ∼ β to β(ϕ) ∼ 0, we employ a similar parame-
trisation introduced in the previous Chapter (Eq. (5.17)), but for only 2 bins :

β(z) =
β tanh [sz(z − zOFF)] + β

2
, (6.15)

with sz a crossover rapidity that we set to a fiducial value sz = 0.3, ensuring a
smooth and rapid enough transition as compared to H−1(zOFF) in cosmic time,
and zOFF the redshift when coupling is deactivated and the fifth force becomes ne-
gligible.

From the scaling solution Eq. (6.8), we expect an important degeneracy between
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β and zOFF. By matching the expressions of the DM and radiation energy densities
before and after the transition at zOFF and considering (for now) massless neutri-
nos, we obtain

zOFF = −1 + 3
ΩDM,0

ΩR,0

(
β2 − 1

2

)
. (6.16)

A larger value for the coupling necessitates a larger redshift at which it is deacti-
vated. This is consistent with the fact that a larger β implies a stronger fifth force
driving an intensified structure growth. Assuming Planck best-fit values for ΩDM,0

and ΩR,0 [61], we expect zOFF ∼ 104β2, regardless of the redshift at which the sca-
ling begins.

As we did in the previous Chapter for a tomographic CDE model, we modify the
Einstein-Boltzmann code CLASS by implementing the background and linear per-
turbation equations described in the previous 2 subsections, considering Eq. (6.15),
with the initial conditions discussed above.

We plot the ΛCDM and ECQ density parameters Ωi in Fig. 6.1. For ECQ, we set
the current energy fractions close to the Planck fiducial ΛCDM values (ns = 0.9649,
ln (1010As) = 3.044, ωb,0 = 0.02237, V0 = 2.64 · 10−47 GeV4) and fix β = 13 and
zOFF = 1.69× 106, making the model lie almost exactly along the degeneracy curve
given in Eq. (6.16).We observe the presence of the scaling solution during the RDE (at
z > zOFF) in the ECQ model. To better understand the individual impact of and the
relationship between β and zOFF, we plot the evolution of the density parameters
and the Hubble function for a fixed zOFF and different β values, corresponding to
ECQ models out of the degeneracy curve of Eq. (6.16), in Appendix B.

In Fig. 6.2, we present the growth of DM overdensities at scale k = 45hMpc−1 as
a function of the scale factor a, for both an ECQmodel andΛCDM.Wenotice that, for
superhorizon modes in ECQ, the DM density contrast follows the ΛCDM prediction
δDM ∼ a2. After mode re-entry, it follows the predicted golden ratio growth (6.13)
until the coupling is turned off.

We subsequently plot thematter andCMB temperature spectra forβ = [11, 12, 13, 15]

and fixed zOFF = 1.69×106 in Fig. 6.3.We include again theΛCDMcurves for compa-
rison. At zOFF we expect that only wave modes with k ≳ 5hMpc−1 have reentered
the horizon, and hence be directly affected by the fifth force. Indeed, during scaling,
we can derive the relation between the mode k and its re-entry redshift z :

k ≈
√

ΩR,0

ΩR

z

3000
hMpc−1. (6.17)
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Fig. 6.1. Background evolution of the density fractionsΩi ’s of baryons (blue), DM (green), DE(red), and radiation (purple) for ECQ (solid lines) and ΛCDM (dotted lines). We fix the valuesof ωb,0, V0, and H0 to the Planck 2018 TTTEEE+lowE+lensing ΛCDM best-fit cosmology [61],and set β = 13 and zOFF = 104β2 = 1.69 × 106 to obtain the ΛCDM background evolutionat z < zOFF in the ECQ model. The grey dashed vertical line indicates zOFF.

However, smaller wave modes are also sensitive to the coupling through the
changes induced at the background level. In Fig. 6.3, we still observe an increase of
P (k) at k ≳ O(0.1)hMpc−1 and a shift of its peak. This is because ΩDM increases
andmatter-radiation equality happens at larger redshifts for decreasing values of β
and a fixed zOFF. However, when β becomes sufficiently large, ΩDM decreases such
that P (k) becomes smaller than in ΛCDM at small scales and larger at large scales
(we show this for β = 15).

Concerning the CMB TT spectrum, we see that the amplitude of the peaks de-
creases and they shift to lower multipoles for lower values of β, considering again
a fixed zOFF. The decrease in amplitude can be explained by the increase in ΩDM at
pre-recombination times. Furthermore, this also alters the baryon fraction ρb/ρDM ,
thereby changing the ratio between the amplitudes of the odd and even peaks.
Finally, the observed shifts of the peaks to lower multipoles are again due to the
increase of the DM energy density, which changes the sound horizon at the baryon-
drag epoch, rs(zd), and the angular diameter distance to the last scattering surface.
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Fig. 6.2. Evolution of DMdensity contrast δDM in ECQ (blue) andΛCDM (orange) as a functionof scale factor a, for the scale k = 45hMpc−1, for the cosmological parameter values as inFig. 6.1. We include the theoretical δDM ∼ a2 growth at superhorizon scales during the RDEin black dashed lines and the one during the ECQ scaling regime δDM ∼ aφ at subhorizonscales (Eq. (6.13)) in black dotted lines. Vertical lines denote the time of mode re-entry andwhen the coupling is turned off. Notice that after turning the coupling off the universe isstill strongly dominated by radiation. This is why δDM ∼ ln(a) even at a > 10−3, deep insidethe MDE of the ΛCDM. This is because this model lies far from the degeneracy curve (6.16),such that zOFF is too low for the ECQ model to be realistic. Thus, the recombination timewould significantly change with respect to ΛCDM. This figure illustrates the fulfilment oftheoretical growth and the potential to enhance the power of matter fluctuations in ECQduring the RDE at sufficiently small scales.

The latter has a more significant relative effect, moving the peaks to the left.
6.3.1 Inference and Data

We conduct an MCMC analysis to constrain the parameter space of the model :
sampling across the suite of parameters {ns, ln (10

10As), τ, ωb, V0, β
2, zOFF} and ob-

tainingH0, ΩDM,0, σ8 and S8 as derived parameters. We assume a flat universe with
two massless neutrinos and a massive one with mν = 0.06 eV. We sample β2 ins-
tead of β to expedite convergence, taking advantage of the linear relationship (6.16)
between zOFF and β2. Additionally, we highlight that since we want the system to
begin in the scaling regime, we impose the initial conditions as described in the pre-
vious section (specifically Eq. (6.14)) ; hence we do not directly sample ωDM , instead
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Fig. 6.3. Matter (top) and CMB (bottom) temperature power spectra for both ΛCDM(black dashed) and ECQ (coloured solid). Here, we fix zOFF = 1.69 × 106 and vary β =
{11, 12, 13, 15}.

deriving its value based on β.
The relative abundance of light elements just after BBN places tight constraints

on the expansion rate value [188] and consequently, on the density parametersΩDM ,
Ωϕ and ΩR during the scaling regime [189]. This translates to a rough lower bound
of β ≳ 3 in ECQ [183]. This restriction indicates that one cannot recover ΛCDM from
ECQ by setting β = 0 : the two models are not nested. We also employ the prior
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upper bound β < 30 since we have verified that this value is well above the range
of β to which the data is sensitive.

We also impose a flat prior on zOFF with a range 105 < zOFF < 107, where the
lower bound is close to that of matter-radiation equality, and the upper bound is
obtained from Eq. (6.16) using the prior upper bound on β. Moreover, based on BBN
constraints, we consider a Gaussian prior for the baryon density, ωb,0 = 0.023 ±
0.002, following [190]. However, its impact on our results is minimal, as the width
of its uncertainty exceeds that of the one derived from CMB data by an order of
magnitude [61].

We constrain our model with the following CMB and background datasets, co-
vering a range from low to high redshifts :

• We use CMB TT, TE and EE power spectra data from the Planck 2018 data re-
lease [61, 191], ranging frommultipoles 0 ≤ ℓ ≤ 2508 (for TT), and 0 ≤ ℓ ≤ 1996

(for TE and EE) : more specifically, the simall lowl EE and commander lowl

TT likelihoods for 0 < ℓ < 29, and the fast Plik_lite likelihood for larger
multipoles, which already includes marginalization over foregrounds and re-
sidual systematics. The differences between the contours obtained with the
full likelihood are marginal.

• We include data on the product H(z)rs(zd) and the ratio involving the como-
ving angular diameter distance DM (z)/rs(zd) at the three effective redshifts
z = [0.38, 0.51, 0.61], obtained through the reconstructedmeasurement of the
BAO peak from the BOSS DR12 data [173].

• We employ the Pantheon+ dataset [192], consisting of 1550 distinct SNe1a ran-
ging in redshift z = (0.001, 2.26). We allow the absolute magnitude of the
SNe1a to vary freely as a nuisance parameter in the Monte Carlo analyses.
This dataset gives us constraints on the current DE and DM energy fractions,
which subsequently fixes the degeneracy curve in the β2−zOFF plane through
Eq. (6.16).

We run our version of CLASS to obtain the various background and perturbation
quantities in the ECQ framework. Since accurate models for the nonlinear power
spectrum in an ECQ framework are yet to be developed, we present results for both
a linear and a nonlinear case : for the former, we opt to impose a cut in the CMB
spectra at ℓmax = 1400 to avoid biases in the computation of the CMB lensing effects
at small scales. We also set a conservative scale cut at kmax = 0.1hMpc−1 to avoid
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biasing the power spectrum. For the latter, we consider the entire range of Planck
multipoles, using Halofit [193] tomodel the nonlinear power spectrumwithout the
scale cut at kmax = 0.1hMpc−1.

We sample the posterior distributions using CosmoSIS, employing a standard
Metropolis-Hastings sampling algorithmand stopping the samplingwhen theGelman-
Rubin convergence statistic R fulfils R − 1 < 0.02. We analyse our chains using
GetDist.

6.4 Observational constraints on ECQ

We present our main results for the ΛCDM and ECQmodels in Fig. 6.4, showing the
1D and 2D marginalised posterior distributions of the most relevant parameters.
We report their mean and 1σ uncertainties in Table 6.1.

We regain the expected strong degeneracy in the β2 − zOFF plane of the ECQ
model, determined by Eq. (6.16) and the constraint on ΩDM,0 imposed by the data.
The 1D posteriors for β2 and zOFF are largely prior dominated. Our datasets cannot
discriminate among points (zOFF, β

2) on the degeneracy line. There is a peak in the
posterior distribution of β2, but we believe that this is due to volume effects. This
is clear from Fig. 6.5, which shows that the minimum value of χ2 remains constant
within the range of β2 covered by the MCMC.

Comparing the linear and nonlinear cases (blue vs yellow and red vs green),
we see that all the contours are consistent within 2σ, with the largest discrepancy
being between the posteriors for ns. We argue that this is within expectation, as
small multipoles favour larger values of ns and H0, and smaller values of σ8 (see
Fig. 22 in [61]). We recover this behaviour for both ΛCDM and our ECQ model.

The CMB temperature andpolarisation data are onlymildly sensitive to values of
β > 3 even if we include the entire range of Planckmultipoles, since in this case, the
fifth force affects scales that fall out of the range probed by Planck [17]. The prior
(BBN) bound of β > 3, together with Eq. (6.16), lead to the lower bound zOFF ≳

8 × 104, which means that even in the extreme case of β = 3 only wave modes
k ≳ 0.25hMpc−1 are directly affected by the fifth force. This is also reflected in
the fact that all the best-fit values of the parameters present in both models are
compatible within 1σ and that the value of χ2

min in ECQ is only slightly smaller than
in ΛCDM. The value of H0 does not deviate considerably from the ΛCDM one, as
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Fig. 6.4. Comparison of the 2D contours and 1D marginalised posteriors of the main cos-mological parameters obtained for the ΛCDM and ECQ models in the following two se-tups : (i) considering the linear scales, with ℓ < 1400, and using Halofit with the cut at
kmax = 0.1h/Mpc−1. Here we plot them in red (red dashed line in 1D) and blue (blue solidline in 1D) for theΛCDM and ECQ, respectively ; (ii) considering nonlinear scales (i.e. withoutthe cuts in k and ℓ), in green (green solid line in 1D) for ΛCDM and yellow (yellow dashed-dotted line in 1D) for ECQ.

the allowed values of zOFF are too large to introduce significant departures from
the typical ΛCDM shape ofH(z) at z < 105 and therefore cannot induce important
changes in the value of rs(zd). This consequently makesH0 take on theΛCDM value
to keep the location of the CMB peaks stable and respect the good description of
the BAO data. The model has no bearing on the cosmological tensions.
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Fig. 6.5. Minimum values of χ2 as a function of β2, for a linear (left, blue) and nonlinear(right, yellow) ECQ run. We have obtained them directly from our Markov chains, applyingthemethod of [194]. We see that the value of χ2
min remains roughly constant, even for thosevalues of β2 for which we find the peak in the 1D posterior, see Fig. 6.4. That peak is due tovolume effects.

If we turn on the coupling at zBBN < z < 1014 with β and zOFF on the degeneracy
line, the effects on the matter power spectrum can be softened since we decrease
the interval when the fifth force is active, yet these changes affect scales that have
no impact on the observables employed in this paper. Hence once again, we can
only constrain the slope of the degeneracy line in this case.
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Fig. 6.6.Matter (left) and CMB temperature (right) power spectra obtained using the sameparameter values as in previous figures, i.e. using again values of β and zOFF lying on thedegeneracy line. We include the ΛCDM case in black dashed-dotted lines for reference. Inthe left plot, we show a larger range of k’s than in Fig. 6.3 to appreciate the impact of thelarge values of β ≳ O(10) on P (k).
Wecan see this better illustrated in Fig. 6.6 : thematter power spectrumdiverges

at higher k’s for increasing values of β. However, the datasets employed in this work,
including the CMB spectra, are not sensitive to these small-scale effects. We could
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Parameter ΛCDM ECQ
Ωb,0 0.0489± 0.0005 0.0488± 0.0005

ΩDM,0 0.261± 0.006 0.257+0.005
−0.006

ln(1010As) 3.030± 0.016 3.040+0.014
−0.015

ns 0.975± 0.004 0.970± 0.004

τreio 0.050± 0.008 0.054± 0.007

β2 − Unconstrained
zOFF − Unconstrained

β2/zOFF − (11.41+0.11
−0.13)×10−5

H0 [km s−1Mpc−1] 67.60± 0.46 67.96± 0.45

σ8 0.803± 0.008 0.804± 0.007

χ2
min 2000.59 1998.14

lnB − −2.29

Table 6.1. Mean and 1σ uncertainties of ΛCDM and ECQ parameters, as well as the mini-mum χ2 and lnB values. Since β2 and zOFF are individually unconstrained, we present thevalue of their ratio instead, which determines the slope of their degeneracy line.

improve the lower bounds on β by using newer CMB data from SPT-3G [19] or ACT
[18], which involve larger multipoles than Planck, or data from the Lyα-forest (see
e.g. Fig. 19 of [17]). Nevertheless, these datasets require highly accurate modelling
of the nonlinear matter power spectrum, which shall be left as future work.
6.4.1 Bayesian Model Comparison

Lastly, we perform a model comparison by calculating the Bayes factor of both
models. As was described in the previous Chapter, we use MCEvidence to com-
pute the evidence Z(Mi|D) numerically, following Eq. (5.21). We report the χ2 and
lnB values in Table 6.1. Despite the fact that χ2

min,ECQ ≲ χ2
min,ΛCDM, we find that

lnB = −2.29, which shows that ECQ is not preferred over the ΛCDM, according
to Jeffreys’ scale. We have also explicitly verified that similar results hold for non-
constant polynomial potentials of the form V (ϕ) = V0ϕ

−α leading to a fast-rolling
field ϕ.
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IN BRIEF
In this Chapter, I investigated an early coupled quintessence (ECQ) model,
a subset of the tomographic CDE model where coupling is only activated
during the radiation-dominated era. Suchmodels have been of interest from
a theoretical standpoint, as past literature has shown that a presence of
coupling between the scalar field and DM particles during the RDE can lead
to an attractor solution in the background equations, and significantly larger
growth of DM overdensities, forming primordial compact objects that could
be candidates for dark matter.
I implemented our ECQ model with CLASS, and for the first time employed
observational data such as CMB, BAO and SNe1a to obtain constraints on
such a model. While current data is incapable of setting individual significant
constraints on the model parameters, i.e. the coupling strength β and the
redshift at which it is deactivated, zOFF, I was able to recover the distinct
degeneracy in the β2 − zOFF plane, that has been, up to now, only derived
from first principles.
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7.1 Introduction

In the previous 2 Chapters, we have introduced the tomographic CDE model and
studied a subclass ECQ model, where we have performed Bayesian inference to
constrain these models, especially using data from Stage III LSS surveys like KiDS
andBOSS.With the current Stage IV surveys such as Euclid, DESI and LSST, it is expec-
ted that measurements with sub-percent level uncertainties can be achieved. Thus
the upcoming decade will witness an exponential increase in the quantity, variety,
and quality of observations of the LSS, requiring more sophisticated computational
resources. There is hence a need to improve analysis methods alongside the data
quality and quantity. In this aspect,machine learning (ML) techniques have emerged
as a valuable tool capable of addressing some of the computational limitations of
conventional statistical methods [195, 196]. In this Chapter, I shall investigate if we
can apply such deep learning techniques to a tomographic CDE framework.

To this end, we employ Neural Networks (NN) to perform model classification,
where we assess their accuracy in differentiating between datasets generated from
two different cosmological models [197, 198]. Investigations of a similar nature have
been carried out in past literature [199-201], hence it would be of interest to build
upon these efforts of investigating how accurately deep learning methods can de-
tect hints of beyond ΛCDM physics, especially in this era of precision cosmology.
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Fig. 7.1. Plot of the growth rate fσ8 against redshift z for the 16 redshift bins, for boththe ΛCDM model (black solid line) and the CDE model (coloured lines). We keep the samecosmological parameters, but in the CDE case, set the coupling at the 3 different redshiftbins z = {0, 100, 1000} to a value of βi = 0.05.

7.2 Data Generation

Weemploy the LSS observable fσ8(z), the product of the growth rate f(z) andσ8(z),
as our input dataset to the NN. Stage IV spectroscopic galaxy surveys such as DESI
and Euclid will be able to obtain values of fσ8(z) through measurements of RSD,
with forecasts of σ(fσ8)/fσ8 at less than 5% [202]. It could hence be an effective
probe in testing for deviations from the concordance model, by tracing the growth
history of the Universe.

For a ΛCDM model, we use CLASS to generate 8000 training and 750 testing da-
tasets of the product fσ8(z), varying Ωm,0 between the range Ωm,0 = (0.01, 0.7)

and fixing the rest of the parameters to a fiducial cosmology of Ωb,0 = 0.02225,
ln 1010As = 3.044, ns = 0.966, τreio = 0.0522, V0 = 2.64 · 10−47GeV4 where in ΛCDM,
V0 = ρΛ. To be conservative, we set a kmax = 0.1hMpc−1 to exclude highly non-
linear scales, and only consider the linear matter power spectrum. For the tomo-
graphic CDE model, we employ a modified version of CLASS (which was used in the
previous 2 Chapters) to generate the same number of training and testing datasets
with the same cosmological parameters, additionally varying the strength of cou-
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pling within each redshift bin βi = (0.001, 0.5). In this study, we have chosen to
adopt a 3-bin parameterization, with bin edges z = {0, 100, 1000}.

We plot the function of fσ8(z) in Fig. 7.1, where we separately activate coupling
within the 3 tomographic bins, and compare it with the case of ΛCDM. We see that
for each CDE case, non-zero coupling increases DM clustering, which is also evident
from the perturbation equations of Sect. 5.2.2. Late-time coupling (i.e. β1 = 0.05) has
the largest impact on this increase, followed by β2 and β3. Hence we would expect
that models with late-time coupling would be the most easily distinguished from
ΛCDM.

We simulate a DESI-like setup of 16 redshift bins with mean redshifts equally
spaced between z = (0.05, 1.65), and employ values of the galaxy bias b(z) and
galaxy number densities dn

dz as specified in [202].
We also include, in our training and testing data, uncertainties in the fσ8(z)mea-

surement at each redshift. To do this, we build a covariance matrix by first calcula-
ting the Fisher matrix for the observed galaxy power spectrum in each redshift bin
zi [203, 204], given by
Fαβ(zi) =

1

8π2

∫ 1

−1
dµ

∫ kmax

kmin

k2 dk

[
∂Pδδ(k, µ; zi)

∂α

∂Pδδ(k, µ; zi)

∂β

]
×Veff(zi; k, µ) (7.1)

where α and β are the parameters of concern, Pδδ is the linear matter power
spectrum and Veff is the effective volume of the survey. We calculated the power
spectrum using our Boltzmann solver, then evaluated its derivatives via a two-point
central difference formula with respect to the cosmological parameters, θcosmo ={
Ωb,0,Ωm,0, h, ns, ln

(
1010As

)}, and thenuisance parameters, θnuis = {σP, Ps}, where
σP parametrises the nonlinear contribution to the matter power spectrum due to
galaxy velocity dispersion [205],

σ2
P =

1

6π2

∫
dk Pδδ(k, z) , (7.2)

and Ps is the shot noise term dictated by survey specifications.
Subsequently, we obtain the total Fisher matrix summing over all the redshift

bins as :
Fαβ =

Nbins∑
i=1

F bin
αβ (zi) (7.3)

Finally, the Fisher matrix is projected from the θcosmo and θnuis parameters to
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fσ8(zi) in the redshift bins and then inverted to obtain the covariancematrixCfσ8fσ8 ,
which is used to generate an additional Gaussian sampled noise component added
to the values of fσ8(z) output by the Boltzmann code. This method was compared
with other approaches [203, 206], finding excellent agreement and providing confi-
dence in its robustness.

7.3 Neural Network Architecture

NNs are a popular machine learning technique which simulates the learning me-
chanism of biological systems, by extracting information from relationships and
patterns from data [207]. Every neuron (unit) has a weighted connection with each
other. Its architecture can vary depending on the problem at hand ; generally, it in-
volves having an input and output layer, with an arbitrary number of hidden layers
between. Various packages have been developed to optimise, test and choose the
most appropriate architecture ; for the present study, we employ Optuna 1 [208] to
optimise the number of hidden layers and the hyperparameters of the NN, which
we will explain below. This agnostic framework works by training several times the
same dataset with different architectures and extracts the one that has the highest
accuracy and lowest loss.

In Fig. 7.2 we plot a diagram of the general setup of the NN : We first implemen-
ted feature normalisation (of the 16 fσ8 datapointswith its associated uncertainties)
with a batch size of 32 [209], using it as our input layer. It then passes through the
first hidden dense layer with n number of nodes, where n is a hyperparameter that
we vary with Optuna. Subsequently, it goes through an activation layer (for which
we have chosen a Rectified Linear Unit, or ReLU, function [210]) and a regularisa-
tion dropout layer commonly used in the literature as a regularisation technique
[211] to avoid overfitting. Here, the dropout rate, the probability of a node being
‘deactivated’ going to the subsequent layer, is another hyperparameter that will be
optimised. The number of hidden layers can be defined arbitrarily and is something
that we vary as a hyperparameter as well. Having more layers allows the network
to better capture the intricacies of the relationship between the features of the mo-
del, hence it is highly dependent on the nature of the problem. Finally, in the output
layer, we implement a sigmoid activation function to enable the classification task :

1. https://github.com/optuna/optuna
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the NNwill associate a class ‘0’ forΛCDM and class ‘1’ for CDE. We use an nadam [212]
optimiser for our NN. Lastly, we implement early stopping regularisation, a practice
whereby the training of the NN stops once the accuracy does not increase by a gi-
ven amount after a certain number of epochs. This step also prevents overfitting of
the network, by ensuring it is not overtrained. We also train the network by batch
sizes of 32, i.e. splitting our training dataset into sets of 32 in order to consume less
memory during the training.

We have used the TensorFlow Keras library [213] to build, train and test our net-
work. Since the goal is to probe for deviations fromΛCDM using the NN, we worked
with 3 different network architectures, designed to discriminate growth rate fσ8

data coming from the two models being considered at hand : {ΛCDM, CDE(β1)},
{ΛCDM, CDE(β2)} and {ΛCDM, CDE(β3)}, bearing in mind that we varied the cou-
pling within each tomographic bin independently. We present in Table 7.1 a list of
the NN hyperparameters, their prior ranges and best-fit values as found by Optuna.

Fig. 7.2. Graphic of the general structure of the NN architecture implemented. The norma-lisation of features and their concatenation as an input array was performed within thearchitecture. Here 32×32 as denoted beside the topmost arrow, represents the 32 features(16 datapoints of fσ8(z)with its standard deviation), with a batch size of 32. Graphic produ-ced by Netron 2.
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We perform several robustness tests on our network. Firstly, we verified the
impact of randomness during the training procedure : we trained and tested the
network with the same architecture and dataset multiple times, and determined
the error of the performance. We find a standard deviation of ±0.002 on the classi-
fication accuracy in the case of varying β1. Secondly, after the data generation step,
we divided the training and test set randomly, and found a standard deviation of
the percentage of accurately classified datasets with similar magnitude. These tests
prove that our NN architecture is robust to randomness.

Finally, we test the effect of increasing the number of training datasets, for five
different values [4050, 5000, 6400, 8200, 9800], where half of the dataset are samples
fromΛCDM, and the other half is generated from a CDEmodel. From Fig. 7.3 we see
that the NN can accurately distinguish almost all of the ΛCDM cases regardless of
the number of training datasets. In the CDE case, results improve with an increasing
number of datasets up to an optimumvalue of about 8000, after which performance
plateaus, indicating that the network does not learn anymore new information with
the increase in the number of datasets.
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Fig. 7.3. Plot of percent accuracy of the NN against the number of training datasets used.The circular points mark the average values out of 50 runs, with the error bars denoting 1σstandard deviation.

7.4 Neural Network Performance

2. https://github.com/lutzroeder/netron
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7.4.1 Binary Model Classification

Here we present the results for the case where we switch on coupling in only
one of the 3 tomographic bins β1, β2 or β3. Since it is a case of classification between
two models, we use a binary cross-entropy loss function as provided within Keras.
Hereafter, for brevity, we shall refer to the model where the coupling is activated
within the ith tomographic bin as the βi model.

In Table 7.1, we present the best-fit hyperparameters obtained with Optuna and
the number of training epochs when early stopping is invoked. We see that in all
cases, having one hidden layer is sufficient, although the number of nodes within
the layer varies widely between models. Interestingly, the best-fit dropout fraction
is relatively low : at around 20% for all cases.

Hyperparameter
Hidden Nodes Dropout Training
layers rate epochs

Prior (1, 4) (1, 128) (0.0, 0.5) < 2000

β1 best-fit 1 38 0.224 660

β2 best-fit 1 116 0.218 683

β3 best-fit 1 82 0.215 673

Table 7.1. Table of prior ranges and best-fit hyperparameters as obtained by Optuna foreach model : number of hidden layers, number of nodes in the hidden layer, dropout frac-tion, as well as the number of training epochs when utilising early stopping.

We present the learning curves for each model in Fig. 7.4, where we have addi-
tionally split our training dataset into a training and validation set. In the case where
only late-time coupling is activated (i.e. β1 is non-zero), our NN performs well, rea-
ching a high accuracy of over 90% and losses of < 20%, while being sufficiently
trained after just 660 epochs. From the loss curve, we also see that the training and
validation losses stabilise and reach roughly equality, implying that the model has
been able to learn all the features from the training dataset and can generalise to
unseen datasets. The same behaviour is exhibited for the cases of β2 and β3.

We present the classification results of our NN in the form of confusionmatrices
in Fig. 7.5, for each model β1,2,3. We see that the NN can accurately classify 100% of
the ΛCDM cases, and also has a high accuracy of 86.4% in capturing CDE cases. We
see similar performance in the cases of β2 and β3, where the coupling is activated
between redshifts of 100 < z < 1000 and z > 1000 respectively. For theβ2model, we
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Fig. 7.4. Left column : Accuracy curve for both the training (blue) and validation (orange) da-tasets, where each row corresponds to themodel investigated (top : β1, middle :β2, bottom :
β3). Right column : Its corresponding loss curve.

once again achieve 100% accuracy in identifying fσ8 datasets coming from a ΛCDM
model, and 86.1% accuracy for CDE. In the case of β3, we see that the accuracy of
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the NN is 99.6%. This might be because activating coupling at early times (z > 1000)
has the least impact on the increase in fσ8, as illustrated in Fig. 7.1. Hence, since the
discrepancy between a ΛCDM dataset and a CDE dataset is marginal, the NNmight
not have been able to differentiate between the two as accurately as in the cases of
β1 and β2.
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Fig. 7.5.NN classification results in the form of confusionmatrices, for the case of switchingon coupling at (left) β1, (middle) β2 and (right) β3. As a reminder, the tomographic bins foreach coupling parameter are z (β1) < 100, 100 < z (β2) < 1000 and z (β3) > 1000.

7.4.2 Multiclass Classification

Here we also explore the implementation of an NN architecture capable of per-
formingmulti-class classification. For this, we created a dataset from the aforemen-
tioned cases of each tomographic bin, with the classes defined as follows : ‘0’ for
ΛCDM, ‘1’ for β1 and ‘2’ for β2 + β3, where for the last case we activated these two
couplings independently, and combined the generated datasets into one class (i.e.
coupling at high redshift z > 100). The motivation comes from the fact that we are
simulating DESI-like data, where the redshift bins in which this survey operates are
between z = (0.05, 1.65). Hence we do not expect the NN to be able to differen-
tiate between low-redshift data generated with a coupling at 100 < z < 1000 and
z > 1000.

We similarly implemented feature normalisation with a batch size of 32 (see a
summary of the architecture in Fig. 7.6), while highlighting that we added one more
hidden layer with a ReLU activation function and 16 neurons as we found that this
improved the multi-class accuracy, as can be seen in Fig. 7.8. The optimal dropout
rate found by Optuna was 0.1 and the number of training epochs obtained by the
early stopping callback was 1021. Another difference with respect to the previous
architectures was that the output layer contained 3 units for each category and a
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Fig. 7.6. NN architecture implemented for the multiclassification task. The normalisation offeatures and their concatenation as an input array was performed within the architecturebefore training. Graphic produced with Netron.

softmax activation function. We compiled this model using an nadam optimiser and
a sparse categorical cross-entropy loss function.

The learning curves for this multi-class task are illustrated in Fig. 7.7, where we
can see that the accuracy reached by our model is approximately 68% and the loss
65%. The results of this multi-class classification task are shown in Fig. 7.8. We also
computed the errors of the predictions performed by the NN, since the impact of
randomness in the training was found to be slightly more significant than the pre-
vious cases. We can see that the prediction of ΛCDM data achieves very high accu-
racy compared to the CDE models. 99% of the ΛCDM data samples were correctly
classified. The growth data coming from the β1 and β2 + β3 activation models are
respectively 79% and 84% correctly classified, which is slightly lower than in the bi-
nary classification scenario.

120



We separately performed the test to evaluate whether our architecture could
be able to discriminate between 4 classes, i.e. separating the class ‘2‘ (combination
of β2 and β3 data) into ‘2’ (β2 data only) and ‘3’ (β3 data only), however, the NN per-
forms poorly. This is to be expected since we do not anticipate being able to probe
dynamics at high redshifts with DESI-like data, which falls within a redshift range
z = (0.05, 1.65). We argue that our architecture being able to differentiate fσ8 data
coming from the activation of low and high redshift tomographic couplings is a sub-
stantial result in itself.
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IN BRIEF
In this Chapter, I expanded upon the applications of a tomographic CDE
model, this time leveraging the power of machine learning. We developed a
Neural Network (NN) to perform model classification, where we generated
mock fσ8(z) datasets with Stage IV survey specifications, assuming a ΛCDM
and a tomographic CDE model. We then trained and tested our NN, and
found that it was able to classify the data according to the model to a high
level of accuracy, regardless of which epoch coupling is activated. We then
tested it for multiclass classification, by combining all the datasets with
coupling activated at different tomographic bins. We find that models with
late-time coupling are more accurately distinguished compared to models
with early-time coupling.
Current Stage IV surveys like DESI and Euclid will provide us with spectrosco-
pic galaxy clustering data of unprecedented precision. Hence through this
analysis, I have highlighted the power of machine learning techniques such
as NNs as a robust cross-check of conventional Bayesian methods in detec-
ting hints of beyond-ΛCDM physics.
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8. Cosmology with Euclid
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8.1 The Euclid survey

The Euclid space satellite is a Medium class mission commissioned by the European
Space Agency (ESA) as part of its Cosmic Vision 2015-2025 programme. ESA Euclid is
an ambitious project that will measure the shapes of 1.5 billion galaxies over 14, 000
deg2 of the sky, up to a redshift of z ∼ 2 [214]. It is equipped with the Visible Instru-
ment (VIS), whichwill provide photometry in the optical range, and theNear-Infrared
Photometer and Spectrometer (NISP) instrument, which will provide photometry in
the near-infrared, as well as spectroscopy.

Being a mission aiming to investigate the dark sector of the Universe, the pri-
mary probes of Euclid are weak lensing, galaxy clustering (photometric and spectro-
scopic) and 3x2pt (the combination of weak lensing, photometric galaxy clustering
and their cross-correlation galaxy-galaxy lensing). With Euclid, it is expected that
the dark energy EoS parameters w0 and wa will be constrained with a precision of
approximately 1% with 3x2pt alone [214]. Hence it is imperative that a robust analy-
sis pipeline is established, which will allow us to maximally exploit the high-quality
data Euclid that will provide, to obtain the most precise and accurate cosmological
constraints to date.
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8.2 CLOE : Cosmology Likelihood for Observables in Euclid

The official likelihood code of Euclid, Cosmology Likelihood for Observables in Eu-
clid (CLOE), is thus an integral part of the mission’s data analysis pipeline : it will
generate theoretical forecasts for Euclid’s primary probes, compute the likelihood
and establish fiducial constraints on the probability distributions of cosmological
parameters. The Inter-Science Taskforce : Likelihood (IST :L) team within the Euclid
consortium has been responsible for developing CLOE, by synergising between the
scientific needs of the various Science Working Groups (SWGs) and communicating
the required data products that will be produced by the Euclid Science Ground Seg-
ment (SGS) OU-LE3.

CLOE will calculate the theoretical predictions of the main Euclid probes based
on the recipes provided by the SWGs, also incorporating the nonlinear prescription
from IST :Nonlinear. IST :NL handles the analytical calculations of the covariancema-
trices for each probe. CLOE will then ingest the data vectors and data covariances,
and conduct the likelihood calculation.

CLOE is currently integratedwith Cobaya as the fiducial sampling platform,where
all the specifications of the desired Bayesian inference pipeline to run are fully spe-
cified in a single yaml configuration file : the probe selection, data file paths, scale
cuts, covariance matrices, parameters to sample over (both cosmological and nui-
sance), as well as a sampler to use (eg. Metropolis-Hastings or PolyChord). Using
Cobaya also gives the advantage that it is easily interfaced with Getdist to enable
straightforward post-processing of chains.

I have been actively involved in the development of CLOE, first as a code de-
veloper in IST :L, then as a co-lead of one of the IST :L Key Project papers on fore-
casts with CLOE. In the following subsections, I highlight my specific contributions
towards these endeavours.

It should also be stated that the material in the following subsections is based
on unpublished results, and has not yet been approved by the Euclid Consortium;
hence should be regarded as preliminary.

8.3 Cosmological Forecasts with CLOE

In this section, I present forecasts on the cosmological parameter constraints that
CLOE will be able to provide with the main Euclid probes. This exercise also serves
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as a validation of CLOE’s readiness in processing data and deriving constraints for
Data Release 1 of Euclid, the first of its kind for Stage IV surveys.
8.3.1 Photometric Probes

To simulate Euclid observations, we generate synthetic data in the form of har-
monic space angular power spectra for the photometric probes, and Legendremul-
tipole power spectra for the spectroscopic probe.

We generate synthetic angular power spectra of the weak lensing (Cϵϵ
ij (ℓ)), pho-

tometric galaxy clustering (Cgg
ij (ℓ)) and galaxy-galaxy lensing (Cgϵ

ij (ℓ)) probes using
CLOE itself, referencing the values of the fiducial cosmology as given in the third co-
lumn of Table 8.1. We model IA following a redshift-dependent nonlinear alignment
model, and the nonlinearmatter power spectrumusing theHMCode emulator [215],
which models the impact of baryonic feedback on the power spectrum as a change
in its amplitude at small scales through the parameter log10(TAGN/K). We plot the
weak lensing, galaxy clustering, and the galaxy-galaxy lensing data vectors in Figs.
8.1, 8.2 and 8.3 respectively.

To simulate Euclid DR3 survey specifications, we assume 13 equipopulated red-
shift bins ranging between z = (0.2, 2.5), with the redshift distributions measured
from the Euclid Flagship 2 simulation [216]. Details of the mean redshift of each bin,
z̄i, the survey area, shape noise σϵ and limiting galaxy magnitude can be found in
Table 8.2. The calculated power spectra are then binned in 32 logarithmically spaced
multipole bins ranging between ℓ = (10, 3000).

We also derive analytically the data covariancematrix for the photometric probes.
In harmonic space, the total covariancematrix can bewritten as a sumof all 3 contri-
butions : a Gaussian term, a connected non-Gaussian term and a Super Sample
Covariance (SSC) term. Therefore the total covariance matrix between two power
spectra at ℓ bins ℓ1 and ℓ2 is given by :

Cov [Cij(ℓ1), Ckl(ℓ2)] = CovG [Cij(ℓ1), Ckl(ℓ2)] + CovnG [Cij(ℓ1), Ckl(ℓ2)]

+ CovSSC [Cij(ℓ1), Ckl(ℓ2)] . (8.1)
We shall only consider the Gaussian and SSC terms since the connected non-

Gaussian term has been shown to be subdominant [217].
The first Gaussian term is given by [218] :
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for some fraction of the sky fsky, the noise contributions NAB
ij (ℓ) for the different

probe combinations are

NAB
ij (ℓ) =



(σ2
ϵ /2n̄

L
i ) δ

D
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i ) δ

K
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(8.3)

where n̄i is the mean number density of source (G) or lens (L) galaxies and σϵ the
shape noise.

The SSC term, which essentially captures the uncertainty in the angular power
spectrum due to a change in the background density at a mode larger than the
survey area, is given by the modelling in [219] :

CovSSC
[
CAB
ij (ℓ1), C

CD
kl (ℓ2)

]
≃ 1

fsky

∫
dχ

qAi (χ)q
B
j (χ)q

C
k (χ)q

D
l (χ)

χ4
×

∂PAB(kℓ1 , z)

∂δb

∂PCD(kℓ2 , z)

∂δb
σ2
b(z) (8.4)

where δb is the background density, qA,B,C,D
i (χ) is the cosmic shear lensing effi-

ciency or the clustering weight function given by Eqs. (4.16) and (4.23) respectively
depending on the field, and σb is the covariance of the background density given by
[220]

σ2
b(z) =

1

2π2

∫
dk k2 Pδδ (k, z) [j0(kr)]

2 , (8.5)
where j0 is the spherical Bessel function of the zeroth order. Here, only the linear
matter power spectrum is considered when writing Pδδ(k, z).

8.3.2 Spectroscopic Probes

Adopting the same fiducial cosmology as was used for the photometric probes,
we generate the spectroscopic power spectrum in terms of Legendre multipoles
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Fig. 8.1. Synthetic weak lensing angular power spectra, for the auto and cross-correlationsbetween the 13 photometric redshift bins. The light blue error bars correspond to the un-certainty given by the analytical covariance matrix.

Pℓ (k, z), given by
Pℓ(k, z) =

2ℓ+ 1

2

∫ −1

−1
dµk Lℓ(µk)

[
bspg (z) + f(z)µ2

k

]2
Pδδ(k, z) (8.6)

where µk is the cosine of the angle between k⃗ and the line-of-sight direction, bspg (z)

is the redshift-dependent linear bias parameter for the spectroscopic sample and
Lℓ(µk) is the Legendre polynomial of order ℓ, for ℓ = [0, 2, 4] in four spectrosco-
pic bins covering a redshift range z = (0.9, 1.8). The theory model is generated at
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Fig. 8.2. Synthetic galaxy clustering angular power spectra, for the auto- and cross-correlations between the 13 photometric redshift bins. The light blue error bars correspondto the uncertainty given by the analytical covariance matrix.

the mean redshift of each bin, corresponding to the values z̄ = [1.0, 1.2, 1.4, 1.65].
The multipoles are then calculated over 100 linearly-spaced k bins between k =

(0.004, 0.3)hMpc−1. We assumeaGaussian prescription for the data covariancema-
trix. The resultant spectroscopic galaxy clustering (GCsp) data vectors are shown in
Fig. 8.4.

8.3.3 Models
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Fig. 8.3. Similar to Figs. 8.1 and 8.2, but showing the cross-correlation between WL and pho-tometric GC (i.e. galaxy-galaxy lensing) for the auto- and cross-correlations between the 13photometric redshift bins for both gE (upper triangle) and Eg (lower triangle).

We perform Bayesian inference with the mock data against 6 different models.
On top of the concordance ΛCDM model, we consider minimal extensions by al-
lowing variations in (1) curvature, (2) the dark energy EoS with parameters w0 and
wa, and (3) General Relativity. In the first case, we relax the assumption of Ωk,0 = 0

and sample the curvature energy density Ωk,0 as an additional cosmological para-
meter. In the second case, we vary the EoS w(z) of dark energy, which we refer to
asw0waCDMmodels. Themost commonly used andwell-tested Chevallier-Polarski-
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Fig. 8.4. Legendre multipoles Pℓ(k) for the GCsp probe as a function of scale k for the 3multipoles ℓ = 0 (dark red), ℓ = 2 (pink), and ℓ = 4 (orange), corresponding to the 4 spectro-scopic redshift bins. The error bars correspond to the data uncertainties given the analyticalcovariance matrix.

Linder (CPL) [7, 8] parameterisation of w(z) gives
w(z) = w0 + wa

(
z

1 + z

)
, (8.7)

where w0 is the present-day value of the EoS and wa quantifies its redshift depen-
dence as a function of the scale factor a.

Finally, we consider modifications to General Relativity by simplistically allowing
variations in the structure growth through the index γg, which governs the scaling
relation between the growth rate f(z) and the matter energy density Ωm(z) :

f(z) = Ωm(z)
γg . (8.8)

A value inconsistent with the fiducial of γg ≈ 0.545 in ΛCDM would point to a devia-
tion in growth history, hence implying a gravitational theory different from that of
General Relativity [12, 221].

In conclusion, we explicitly list the models we will be constraining with each
probe (WL, 3x2pt and GCsp) :

1. ΛCDM
2. ΛCDM + Ωk

3. ΛCDM + γ

4. w0waCDM
5. w0waCDM + Ωk

6. w0waCDM + γ
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8.3.4 Forecast Results with CLOE

We use the nested sampler PolyChord to conduct our cosmological inference.
We present in Figs. 8.5, 8.6 and 8.7, preliminary results for selected model+probe
combinations, where we plot the 2D marginalised contours for the sampled and
derived cosmological parameters. Since we find that constraints on ωb were prior-
dominated for all the cases, we report instead constraints on the combined present-
day value of thematter density parameter,Ωm,0. For a table of best-fit and 1σ values
as well as additional constraints on the nuisance parameters, we refer the reader
to Appendix C.

Our results prove that we are able to recover the fiducial cosmology to a high
degree of fidelity for all the model+probe combinations, hence validating our likeli-
hood pipeline.

For the case of the WL probe, we find that we are not able to constrain parame-
ters such as H0 and ns. However, we gain considerable constraining power going
from the WL to the 3x2 probe. This demonstrates the strength of combining these
two highly complementary probes to break parameter degeneracies, such as in the
Ωm − σ8 plane. However, it should be noted that the setup we have adopted is a
rather optimistic one (eg. going up to very small scales of ℓ = 3000).

8.4 CLOE with CosmoSIS

I additionally implemented a pipeline to run CLOE with CosmoSIS as an alternative
to the existing fiducial implementation with Cobaya. This gives the user flexibility
to choose an alternative sampler while still relying on CLOE to produce the theo-
retical predictions and return the value of the log-likelihood. Using CosmoSIS fur-
thermore allows the user to employ samplers that are not currently implemented
within Cobaya, such as emcee [222], Multinest [223-225], Nautilus [226], Zeus [227],
and Pocomc [228], on top of PolyChord and other regular Metropolis-Hastings sam-
plers.

There are currently two approaches to interface CLOEwith CosmoSIS, depending
on user preference. In the first approach, the theory and likelihood calculations are
decoupled, whereby at each point of the sampling step, an external Boltzmann code
is called to calculate the theoretical matter power spectrum and growth functions,
which are then input into CLOE to derive the Cℓ’s and the log-likelihood value. The
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Fig. 8.5. 2D marginalised contours of the cosmological parameters, as well as derived pa-rameters Ωm, σ8 and S8, for the model+probe combinations of w0waCDM (WL) (purple),
w0waCDM (3x2pt) (green),ΛCDM (GCsp) (yellow),ΛCDM (WL) (blue) andΛCDM (3x2pt) (pink).We show a zoom-in of the Ωm − σ8 plane in the inset figure. The fiducial values have beenmarked out with grey lines. Please note that these results are preliminary and subject tochange.

external Boltzmann code and CLOE are thus invoked by CosmoSIS as separate mo-
dules. This entails writing scripts that will interface CosmoSIS with CAMB and CLOE,
which I have written in camb_interface.py and cloe_interface.py respectively.

I detail here the flow of the pipeline. The top-level default parameter file is gi-
ven by run_cosmosis.ini. It requires two modules : the Boltzmann module, such
as [camb] or [class], and the [euclid] module that prompts CLOE to calculate
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Fig. 8.6. 2Dmarginalised contours of the cosmological parameters, as well as derived para-meters σ8 and S8, for the model+probe combinations of ΛCDM +γ (WL) (pink) and ΛCDM
+γ (3x2pt) (purple). We show a zoom-in of theΩm−σ8 plane in the inset figure. The fiducialvalues have beenmarked out with grey lines. Please note that these results are preliminaryand subject to change.

the log-likelihood. The [camb]module is run first, which will call a Boltzmann solver
(CAMB in this case) to calculate the matter power spectrum and background quan-
tities, such as the angular diameter distance, DA(z), linear growth rate, f(z), and
σ8(z), according to the user specifications in cobaya_config_for_cosmosis.yaml.
This yaml file has been written in the same format as the regular config.yaml file
for ease of understanding. These quantities are then stored in the CosmoSIS Da-
taBlock. In the [euclid] module, where the script cloe_interface.py will be run,
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Fig. 8.7. 2D marginalised contours of the sampled cosmological parameters, as well as de-rived parameters σ8 and S8, for the model+probe combinations of w0waCDM +Ωk (3x2pt)(teal), ΛCDM +Ωk (WL) (orange) and ΛCDM +Ωk (3x2pt) (pink). We show a zoom-in of the
Ωm − σ8 plane in the inset figure. The fiducial values have been marked out with grey lines.Please note that these results are preliminary and subject to change.

CLOE retrieves these quantities from the DataBlock, along with further user speci-
fications for CLOE in cobaya_config_for_cosmosis.yaml (such as data file paths,
scale cuts, and covariance matrices). It then calculates and returns the value of the
log-likelihood, which is again stored in the CosmoSISDataBlock. This process repeats
for each step of the parameter sampling.

In the second approach, the CLOE × Cobaya pipeline performs every aspect of
both the theory and likelihood calculations. As a result, the CosmoSIS parameter ini
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Fig. 8.8. Illustration of the structure of the interface between CLOE and CosmoSIS, for bothpipelines (left : theory and likelihood split, right : theory and likelihood calculations combi-ned). The diagram shows the process of one single step taken by the sampler, starting fromthe vector of currently sampled parameters θ and arriving at one value of the log-likelihood.

file only requires one module, [cloe], as an input. The file specified within this mo-
dule, cosmosis_interface.py, establishes the interface with CosmoSIS by first rea-
ding the cobaya_config_for_cosmosis.yaml config file in the formof a Cobaya info
dictionary. It retrieves the parameters currently being sampled from the CosmoSIS

DataBlock and updates the info dictionary with their values. With this, CLOE then
calculates the matter power spectrum and relevant growth functions mentioned
above using the Boltzmann solver within CLOE, after which it calculates the obser-
vable power spectra. Cobaya is invoked with the evaluate sampler to output the
log-likelihood value, which is subsequently stored in the CosmoSIS DataBlock. Here,
there is no explicit call to the Boltzmann code, as the calculations of the cosmolo-
gical quantities are performed under the hood when the model instance is created.
This approach effectively overlays a CosmoSIS wrapper over the CLOE × Cobaya pi-
peline. Fr clarity, I illustrate the flow of both pipelines in Fig. 8.8.
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8.5 Theory Science Working Group synergies with CLOE

I am also part of Work Package (WP) 17 of the Theory ScienceWorking Group (TWG),
which is responsible for integrating the needs of the various TWGWPs into the CLOE
analysis pipeline. Specifically, this involvesmodifying and validating CLOE according
to the different extendedΛCDMmodels proposed by eachWP, supporting the func-
tionalities of modified Boltzmann solvers and deriving forecasts for these extended
models.

One such project was to include, within the CLOE theoretical recipe, the effect
of lensing magnification on the spectroscopic lens sample, which is currently being
investigated in WP9.

Gravitational lensing affects the number density of galaxies that Euclid mea-
sures, by magnifying or de-magnifying the fluxes of observed galaxies. Therefore,
since galaxy surveys can only detect sources above a certain magnitude threshold,
galaxies that are intrinsically too faint to be observed might be included within the
catalogue due to this effect. Moreover, magnification can increase the size of a ga-
laxy, thus decreasing the number density of the overall sample. The total lensing
effect on the observed galaxy counts is then known as lensing magnification, and
the amplitude of the lensing contribution depends on the slope of the luminosity
function of the galaxy population, known as themagnification bias.

There exists extensive literature showing thatmagnification has a significant im-
pact on the analysis of current and future photometric galaxy surveys such as DES
[229], LSST [230] and Euclid [231]. It was shown that for future galaxy redshift surveys,
where the redshift range of the galaxies will extend up to z ∼ 2.5, neglecting mag-
nification can cause non-negligible bias in the estimate of cosmological parameters
and the growth factor [232, 233]. Hence it is important to investigate its impact on
Euclid data with CLOE and quantify the biases that might arise from such an effect.

Here, we describe the proposed recipe following [233] which I have implemen-
ted within CLOE, as well as the tests I have carried out to validate this implementa-
tion.

The contribution of lensing magnification to spectroscopic galaxy clustering can
be expressed in real space, in terms of themultipole 2PCFs. It is split into two contri-
butions : the cross-correlation of magnification and density, and the magnification-
magnification auto-correlation. Therefore,we can include this effect by adding these
two contributions to themultipoles of the correlation function already implemented
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in CLOE, that is
ξobs,ℓ(s, z) = ξggobs,ℓ(s, z) + 2ξgµℓ (s, z) + ξµµℓ (s, z). (8.9)

where ξggobs,ℓ(s, z) refers to the pure galaxy-galaxy correlation term as a function of
the real space separation between 2 galaxies s and redshift z.

The second term in the above equation is the contribution due to the cross-
correlation of galaxy density and magnification, which can be written as follows :

ξgµℓ (s, z) = −Cgµ(ℓ)
3Ωm,0H

2
0

4π
b2mag(z)(1 + z)s2×

ℓ/2∑
n=0

(−1)n

2n

(
ℓ

n

)(
2ℓ− 2n

ℓ

)[
ℓ

2
− n

]
! I

ℓ/2−n+3/2
ℓ/2−n+1/2 (s, z), (8.10)

where bmag(z) is the amplitude of the spectroscopic magnification bias at redshift
z,

Cgµ(ℓ) =
2ℓ+ 1

2
π3/2 2

3/2

2ℓ/2
(8.11)

and
Inℓ (s, z) =

1

2π2

∫ ∞

0
dk k2 Pδδ (k, z)

jℓ(ks)

(ks)n
, (8.12)

where jℓ is the spherical Bessel function of order ℓ. Since the integrals in Eq. (8.12)
involve integrals of the spherical Bessel function of half-integer orders, it is conve-
nient to write them in terms of the Bessel function of the first kind, Jℓ :

jℓ(x) =

√
π

2x
Jℓ+1/2(x). (8.13)

Therefore, the 3 types of integrals that are relevant for the computation of Eq. (8.10)
can be written as

I
3/2
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1

2π2

√
π

2

∫ ∞

0
dk k2 Pδδ (k, z)

J1(ks)

(ks)2
(8.14)
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I
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1

2π2

√
π

2

∫ ∞

0
dk k2 Pδδ (k, z)

J3(ks)

(ks)4
(8.16)

The last term in Eq. (8.9) is the magnification-magnification contribution, which can
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be expressed as
ξµµℓ (s, z) = Cµµ(ℓ)

9Ω2
m,0H

4
0

8π
b2mag(z)χ

3(z)

∫ 1

0
fℓ(x, s, z)dx, (8.17)

where the the coefficient Cµµ(ℓ) is defined as
Cµµ(ℓ) = (2ℓ+ 1)

ℓ!

2ℓ [(ℓ/2)!]2
, (8.18)

with ! being the factorial operator, and the integrand in Eq. (8.17) is given by
fℓ(x, s) = x2(1− x)2 [1 + z(χ)]2Kℓ (xs) , (8.19)

where
Kℓ (xs) = (xs)

∫ ∞

0
dk k2 Pδδ(k, z(χ))

jℓ(x ks)

x ks
, (8.20)

and z(χ) is the redshift corresponding to the radial comoving distance χ.
I thus implemented, within CLOE, the option to account for spectroscopic mag-

nification when the cosmological parameter inference is carried out using the spec-
troscopicmultipole correlation functions, specifically for themonopole, quadrupole
and hexadecapole. Calculating the magnification bias contribution terms ξgµℓ and
ξµµℓ would thus require the additional input nuisance parameters bmag(z̄i), the am-
plitude of magnification bias at the mean redshift of each bin. This parameter can
either be fixed or sampled over.

I validated my implementation against the external code coffe (COrrelation
Function Full-sky Estimator ; [234]), which calculates the 3D galaxy-galaxy 2PCF and
its multipoles with linear perturbation theory. For a fiducial cosmology of Ωb,0 =

0.049, ΩDM,0 = 0.27, H0 = 67.0, ns = 0.96, σ8 = 0.83, linear galaxy bias values
of bspg = [1.441, 1.643, 1.862, 2.078] and lensing magnification bias values of bmag =

[0.79, 0.87, 0.96, 0.98] estimated from the Euclid Flagship 2 simulations, I calculated
the density and magnification auto- and cross-correlation functions, ξµµℓ (s, z) and
ξgµℓ (s, z), and compared the results between CLOE and coffe by plotting their re-
lative differences in Fig. 8.9. I followed the fiducial Euclid setup of 4 spectroscopic
redshift binswithmean redshifts z̄ = [1.0, 1.2, 1.4, 1.65], plotting themonopole, qua-
drupole and hexadecapole for a separation range of s = (40, 385)Mpc. We see that
in the case of ξgµℓ (s, z), the relative difference is well within 0.5% in all cases. For
ξµµℓ (s, z), it is less than 2%. Hence we consider our implementation validated.
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Fig. 8.9. Left column : Relative percentage difference between the density-magnificationcontribution ξgµℓ (s, z) as calculated by CLOE and coffe, for each of the multipole values
ℓ = [0, 2, 4] and mean redshift bin values z̄i. Right : The same, for the magnification-magnification contribution ξµµℓ (s, z).

I subsequently ran CLOE to forecast the effect of lensing magnification contri-
butions on the cosmological parameter posteriors. I produced mock spectroscopic
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galaxy clustering multipole correlation functions ξℓ(s, z) using CLOE, and their cor-
responding covariance matrices using coffe, assuming the same fiducial cosmo-
logy as above. In this case, I included the lensing magnification effect when creating
the data. I then used these data vectors to run the Bayesian inference analysis with
CLOE. For simplicity, I only sampled the cosmological parameters {H0, As,Ωm}while
keeping all nuisance parameters fixed. Fig. 8.10 presents themarginalised posterior
distributions for both cases when the magnification bias flag is activated or not in
CLOE.
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Fig. 8.10. 2D marginalised contours of the sampled cosmological parameters {H0, As, ns}and derived parameter σ8 obtained by CLOE, for a spectroscopic galaxy clustering datasetproduced with magnification bias included. The horizontal and vertical lines mark the fidu-cial values. Blue : results for when the magnification bias flag is not activated in CLOE whenconducting the inference. Red : when magnification bias is activated. We see a distinct shiftaway from the fiducial when magnification bias is not taken into account. Please note thatthese results are preliminary and subject to change.

As expected, we recover the fiducial parameter values when the magnification
bias is properly considered within CLOE (i.e. when the analysis settings match those
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when producing the data vectors). However, when lensing magnification bias is not
taken into account, this causes a shift in the contours, most noticeably for Ωm, As

and σ8, albeit still within the 1σ range. Hence this exercise serves as a useful inves-
tigation to quantify the impact of lensing magnification on cosmological parameter
estimation. With incoming data that will only improve in quality and quantity he-
reafter, correctly accounting for systematic effects becomes increasingly important
to ensure the robustness of our results.
IN BRIEF
In this Chapter, I have introduced the ESA Euclid space mission, specifically
focusing on my contributions within the Euclid Consortium’s Inter-Science
Taskforce :Likelihood and Theory Science Working Groups, where I have
played an active role in developing the likelihood analysis pipeline, CLOE.
Firstly, I discussed how we can obtain likelihood forecasts with CLOE,
by first generating mock data and testing sampling strategies to obtain
forecast contours, which will allow us to predict the constraining power of
Euclid’s primary probes. Secondly, I described the CLOE×CosmoSIS interface
which I have implemented within CLOE, which will allow the user to run
CLOE with an alternative sampling platform. Finally, within the TWG WP 17, I
have worked with other WPs to modify CLOE to take into account the effects
of lensing magnification when calculating the theoretical prescription of the
spectroscopic galaxy clustering probe.
With Euclid, we expect to acquire large amounts of data of unprece-
dented precision, allowing us to illuminate the elusive dark sector of the
Universe. I have hence demonstrated that my work within the IST :L and
TWG constitutes a considerable effort towards this endeavour, especially
with regard to the development of important infrastructural coding aspects
of the mission.
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Parameter Fiducial Prior

Cosmology
H0 67.37 U(55.0, 91.0)
ωb 0.0227 N (0.0227, 0.00038)

ω
DM

0.1219 U(0.01, 0.37)
ns 0.966 U(0.87, 1.07)
ln 1010As 3.04 U(1.6, 3.9)
w0 −1 U(−3.0,−0.5),

wa 0 U(−3.0,−0.5),

γg 0.545 U(0.01, 1.1)
log10(TAGN/K) Baryonic feedback efficiency factorof the HMCode emulator 7.75 N (7.75, 0.17825)

Photometric sample nuisance parameters
AIA Amplitude of intrinsic alignments 0.16 U(−2, 2)

ηIA Power-law slope of intrinsic align-ment redshift evolution 1.66 U(0.0, 3.0)

bgal,i=0...3 Coefficients of cubic polynomial forclustering bias [1.33291, −0.72414,
1.01830, −0.14913]

U(−3, 3)

bmag,i=0...3 Coefficients of cubic polynomial formagnification bias [−1.50685, 1.35034,
0.08321, 0.04279]

U(−3, 3)

mi=1...13 Per-bin shear multiplicative bias 0.0 N (0.0, 0.0005)

∆zi=1...13 Per-bin mean redshift shift [−0.025749, 0.022716,
−0.026032, 0.012594,
0.019285, 0.008326,
0.038207, 0.002732,
0.034066, 0.049479,
0.066490, 0.000815,
0.049070]

N
[
zfidi , 0.002 (1 + zfidi )

]

Spectroscopic sample nuisance parameters
b1,i=1...4 Per-bin linear bias [1.412, 1.769, 2.039,

2.496]
U(1.0, 3.0)

b2,i=1...4 Per-bin second-order bias [0.695, 0.870, 1.162,
2.010]

U(−5.0, 5.0)

αP,i=1...4 Poissonian shot noise for extra-stochastic parameters [0.056, 0.152, 0.144,
0.309]

U(−1.0, 2.0)

c0,i=1...4 Per-bin counter term for Legendremonopole [11.603, 14.475, 15.667,
26.413]

Fixed
c2,i=1...4 Per-bin counter term for Legendrequadrupole [35.986, 44.914, 43.819,

62.353]
Fixed

c4,i=1...4 Per-bin counter term for Legendrehexadecapole [56.943, 55.443, 44.214,
42.89]

Fixed
fi=1...4 Per-bin purity factor (assumingPoisson distributed interlopers) [0.195, 0.204, 0.306,

0.121]
N
(
ffid
i , 0.01

)

Table 8.1. Reference values and prior probability distributions for the cosmological and nui-sance parameters. These fiducial values are used to compute the self-generated syntheticdata. If the parameter is sampled, the corresponding prior probability distributions are ei-ther uniform U or Gaussian N . Note that since we do not expect LSS probes to be able togive good constraints on the baryon energy density ωb, we additionally imposed a BBN priorto speed up convergence. 144



Survey Specification Fiducial Value
Survey Area 13245 deg2
σϵ 0.368

Magnitude 24.5

z̄i [0.27575, 0.37635, 0.44634, 0.54284,
0.62145, 0.70957, 0.79860, 0.86687,
0.97753, 1.09136, 1.24264, 1.47918,
1.89264]

ℓ [10.00, 12.02, 14.45, 17.37, 20.88,
25.09, 30.16, 36.25, 43.58, 52.38, 62.96,
75.68, 90.97, 109.3, 131.4, 158.0, 189.9,
228.2, 274.4, 329.8, 396.4, 476.5, 572.7,
688.4,827.5, 994.7, 1195.5, 1437.1,
1727.4, 2076.4, 2495.8, 3000.0]

Table 8.2. Assumed survey specifications (survey area, shape noise, limiting magnitude,mean redshift of each redshift bin and ℓ bin ranges) to generate the synthetic photometricdata.
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9. Cosmology with UNIONS
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9.1 The Ultraviolet Near-Infrared Optical Northern Survey

The ground-based Ultraviolet Near-Infrared Optical Northern Survey (UNIONS) is a col-
laboration between the Canada-France Imaging Survey (CFIS), the Panoramic Sur-
vey Telescope and Rapid Response System (Pan-STARRS ; [235]) survey and theWide
Imaging with Subaru Hyper Suprime-Cam of the Euclid Sky (WISHES) survey. It will
combine photometry fromfive optical bands : the u and r band data fromCFIS using
the Canada France Hawaii Telescope (CFHT), i band data from the Pan-STARRS1 and
Pan-STARRS2 telescopes, z band imaging fromWISHES and g band imaging from the
Waterloo Hawaii IfA G-band Survey (WHIGS) with the Subaru Hyper Suprime Cam
(HSC). Together, they will deliver the deepest dataset of galaxy photometry covering
4800deg2 of the northern sky, providing ground-based optical data to complement
Euclid observations in the northern hemisphere.

The high-quality imaging achieved by UNIONS telescopes will enable competi-
tive weak lensing science. Hence considerable efforts have been made within the
collaboration to process the galaxy images, measure their shapes, and create an ac-
curate catalogue to ultimately obtain cosmological constraints from the data. I am
part of this UNIONS collaboration, where I have been involved in developing the
Bayesian inference pipeline to obtain cosmological constraints with UNIONS cos-
mic shear data. In the following sections, I detail the work that I have carried out in
this respect.
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9.2 Inference Pipeline Development

Here I present the tests I have conducted on the latest version of the UNIONS galaxy
catalogue v1.3, containing approximately 84 million galaxies covering a 3200deg2
footprint, which, after masking, has an effective area of 2138deg2. It was processed
using the ShapePipe software [236, 237], a fully modular end-to-end weak-lensing
analysis pipeline which, fromwide-field galaxy images, identifies galaxies, estimates
the galaxy point spread functions (PSF) and conducts shape measurement, using
software such as MCCD [238] and ngmix [239], ultimately delivering a galaxy cata-
logue robust enough for weak lensing science.
9.2.1 Cosmic Shear 2-Point Correlation Function

The main observable we will be using is the 2PCF in real space ξ±(θ), as defi-
ned in Eq. (4.18). We use the TreeCorr software [240] to calculate ξ±(θ), where we
have binned the separation angle θ in 20 bins over a range θ = (1, 200) arcmin. For
the current v1.3 catalogue we only consider 1 tomographic bin. In Fig. 9.1 below we
plot the resultant ξ±(θ). We also include the uncertainties of the measurement as
calculated by TreeCorr, which were estimated using a jackknife approach, given by

Covij =
N

N − 1

N∑
k

(ξki − ξ̄i)
T (ξkj − ξ̄j), (9.1)

where N is the number of patches the sky has been divided into, and ξki is the cor-
relation function in the i-th θ bin of one k-th patch of the sky.
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Fig. 9.1. Plot of real space 2PCF (left, blue : ξ+, right, red : ξ−) as a function of angular sepa-ration θ for one tomographic bin, calculated using TreeCorr. We also include the jackknifeerror bars on the measurement.
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9.2.2 Photometric Redshift Distribution

Another key ingredient in weak lensing analyses is the photometric redshift dis-
tribution of the source galaxies, n(z), which directly impacts the modelling of the
weak lensing angular power spectrum, as seen from Eq. (4.15). The redshift distri-
bution of the v1.3 catalogue was created based on a machine learning approach,
specifically using Self-Organising Maps (SOMs) [241]. This involves estimating the red-
shift distribution of an ensemble of galaxies, instead of individually assigning an es-
timated photometric redshift (photo-z) to each of them. This is done by comparing
the photometric sample to a given spectroscopic dataset with known spectro-z’s.
In order to most accurately estimate the n(z) based on the spectro-z’s, the spec-
troscopic sample is reweighted to closely match the photometric sample, typically
based on galaxy colour. From there, it is then assumed that the redshift distribution
of the photometric sample matches that of the spectroscopic one since there exists
a strong correlation between a galaxy’s magnitude in different optical bands, and
its redshift.

This reweighting is carried out using SOMs [242], an unsupervised learning NN
algorithm that maps a high-dimensional space into a lower-dimensional one, which
in this case involves mapping the complex relations in the colour-redshift mani-
fold. The SOM was trained on a spectroscopic dataset containing samples from the
DEEP2 Redshift Survey [243], the VIMOS VLT Deep Survey [244] and the VIMOS Pu-
blic Extragalactic Survey (VIPERS ; [245]), since they overlap the UNIONS footprint
and probe a similar colour-magnitude range as our photometric catalogue. We vali-
date the SOM against the MICE2 mock catalogue [246] with appropriate magnitude
cuts, and find a high level of fidelity.

In Fig. 9.2 I plot the resultant photometricn(z). Sincewehave decided to conduct
the blinding of the cosmological analysis on the level of the n(z), I plot all 3 blinds
of the redshift distribution.

9.2.3 Covariance Matrix

To derive the data covariance matrix, we use the CosmoCov software [247, 248],
which calculates the covariancematrix of the 2PCFs in real space, taking into account
the Gaussian and SSC contributions. We follow the methodology outlined in Sect.
8.3.1 to obtainCov(C(ℓ1), C(ℓ2)) for the cosmic shear observable (γγ), transforming
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Fig. 9.2. Plot of the weighted redshift distributions of the galaxy samples in the v1.3 cata-logue for all 3 blinds (A : blue, B : orange, C : green), calibrated using SOMs. We have createdthe histogram with 100 bins. Please note that these results are preliminary and subject tochange.

them from harmonic space to real space by
Cov (ξij(θ1), ξkl(θ2)) =

1

4π2

∫
dℓ1
ℓ1

∫
dℓ2
ℓ2

ℓ21 ℓ
2
2 Jn(ℓ1θ1) Jn(ℓ2θ2)×

[CovG(Cij(ℓ1), Ckl(ℓ2)) + CovSSC(Cij(ℓ1), Ckl(ℓ2))] , (9.2)
where in Jn, n = 0 for ξ+(θ) and n = 4 for ξ−(θ).

In Fig. 9.3weplot the cosmic shear covariancematrix as obtained from CosmoCov,
given the shape noise and galaxy density calculated by ShapePipe for one of then(z)
blinds (blind A).

9.3 Cosmological Constraints with UNIONS Cosmic Shear

With the data vectors, redshift distributions and covariancematrix, we subsequently
developed a cosmological inference pipeline based on CosmoSIS, which will allow us
to obtain constraints on the cosmological parameters from UNIONS data. We per-
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Fig. 9.3. Plot of the correlation matrices of ξ±(θ) calculated by CosmoCov for the 20 θ se-paration bins, where Corrij = Covij/
√
Covii × Covjj . Here we have assumed a fiducialcosmology of Ωm,0 = 0.25, Ωb,0 = 0.044, σ8 = 0.80, ns = 0.95 and h = 0.70. Please note thatthese results are preliminary and subject to change.

formed a scale cut and considered only the scales θ = (10, 100) arcmin. We used
CAMB as the fiducial Boltzmann solver, and sampled over the cosmological parame-
ters {ΩDM,0,Ωb,0, h, ns, As}. We adopted prior ranges similar to those of [82] and
employed the PolyChord nested sampler. On top of one run where only the cosmo-
logical parameters are sampled (and assuming a Halofit model for the nonlinear
power spectrum), we also investigated the impact of systematic effects such as IA,
baryonic feedback, as well as uncertainties in the redshift distribution estimation. I
detail in Table 9.1 the priors for all the cosmological and nuisance parameters sam-
pled, for each of the different test cases we have considered.

I present the preliminary results in Fig. 9.4, where I plot the 2D marginalised
constraints for all parameters sampled, for all the test cases. I also report theirmean
and 1σ values in Table 9.2.

We see that our results are largely similar between the various test cases, with
the most distinct difference coming from the effect of sampling ∆z (Test Case C),

151



Parameter Prior

Cosmology

Ωb,0 U(0.03, 0.07)
Ωm,0 U(0.1, 0.9)
h U(0.55, 0.91)
ns U(0.87, 1.07)
As U(0.5× 10−9, 5× 10−9)

Test Case A

log10(TAGN/K) Baryonic feedback efficiency factor ofthe HMCode emulator U(6.5, 8.5)

Test Case B

log10(TAGN/K) Baryonic feedback efficiency factor ofthe HMCode emulator U(6.5, 8.5)

AIA Amplitude of intrinsic alignment (NLAModel) U(−6.0, 6.0)

Test Case C

log10(TAGN/K) Baryonic feedback efficiency factor ofthe HMCode emulator U(6.5, 8.5)

AIA Amplitude of intrinsic alignment (NLAModel) U(−6.0, 6.0)

∆z Per-bin mean redshift shift N [0.0, 0.5]

Table 9.1. Table of sampled parameters and their respective priors for the cosmologicaland nuisance parameters. We also investigated several test cases (A, B, C), in which we ad-ditionally sampled the listed nuisance parameters.
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Parameter Fiducial Test Case A Test Case B Test Case C
Ωm,0 0.252+0.043

−0.062 0.245+0.040
−0.052 0.249+0.046

−0.059 0.285+0.072
−0.099

Ωb,0 0.049+0.012
−0.013 0.0484± 0.013 0.0477+0.011

−0.013 0.0491+0.012
−0.013

h 0.72± 0.11 0.73+0.11
−0.10 0.74± 0.12 0.72± 0.12

ns 0.988+0.054
−0.051 0.986+0.066

−0.057 0.99+0.062
−0.050 0.973+0.064

−0.065

109As 3.03+1.4
−1.2 2.92+1.1

−1.2 3.02± 1.3 3.02+1.3
−1.2

σ8 0.838+0.1
−0.085 0.859+0.096

−0.088 0.857+0.11
−0.097 0.912± 0.11

S8 0.755+0.020
−0.018 0.767+0.019

−0.020 0.768+0.021
−0.020 0.874+0.120

−0.150

log10 TAGN − 7.13+0.40
−0.49 7.16+0.42

−0.52 7.32+0.51
−0.60

AIA − − −0.07+3.7
−3.9 −0.4+3.7

−4.1

∆z − − − −0.13+0.21
−0.16

Table 9.2. Table of mean and 1σ values of the sampled cosmological and nuisance parame-ters for each of the cases, for a redshift distribution blind A.

which works to widen the width of the contour in the σ8 − Ωm plane, consequently
enlarging theS8 posterior.We can also see this reflected in the strong degeneracy of
the∆z−S8 plane. Hence this demonstrates the importance of accurately estimating
the galaxy redshift distribution, as it substantially impacts the theoretical modelling
of theweak lensing kernel and can induce a bias in our results. However, since these
results are still blinded, we will not comment on their accuracy.

We also see that the amplitude of the IA contribution, AIA, is not well constrai-
ned with only 1 tomographic bin. We expect to be able to achieve tighter constraints
with a tomographic analysis.

A possible cross-check to validate our results would be to conduct the analysis
using the angular power spectra C(ℓ) in harmonic space, which although contains
the same information of the shear field, is sensitive to different scales and systema-
tic effects, hence yielding complementary information to its real space counterpart.
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IN BRIEF
In this Chapter, I have introduced UNIONS, a survey bringing together
data from 3 different telescopes in Hawaii, which will deliver ground-based
photometric data in the optical ugriz bands in the northern hemisphere.
It is one of the last Stage III surveys which, when completed, will provide
a galaxy catalogue covering the largest area in the northern hemisphere
to date. I especially highlight the work that I have been carrying out as a
member of this collaboration, in terms of the development of the likelihood
inference pipeline that will be used to derive cosmological constraints with
UNIONS weak lensing data. This entails deriving the cosmic shear 2PCFs, the
covariance matrices and the redshift distributions, and finally running the in-
ference step using CosmoSIS to obtain preliminary cosmological constraints.
This is the first time cosmological weak lensing analysis is being conducted
on data from UNIONS, and my contributions have been integral in this re-
gard. With the launch of Stage IV surveys such as Euclid and LSST, cosmology
with UNIONS could thus prove to be a fitting bridge to usher in a new era of
weak lensing science.
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10. Conclusions

The topic of my PhD involves exploring a novel parametrisation for a class of modi-
fied ΛCDM models, the tomographic CDE model, and probing it with LSS data from
the Euclid satellite. This thesis has thus striven to achieve such a goal. To begin, I
laid out the groundwork in Chapter 3 by expounding the relevant theoretical back-
ground of cosmology, such as the FLRW metric and the Friedmann Equations go-
verning the evolution of the background matter-energy densities. After which, in
Chapter 4, I discussed various cosmological probes, specifically that of weak lensing,
galaxy clustering, 3x2pt and the Cosmic Microwave Background, as well as common
statistical techniques employed in cosmological analyses.

With the stage now set, I moved on to introduce a novel parametrisation of the
CDE model in Chapter 5, which I term a tomographic CDE model, and assessed its
potential constraints from datasets encompassing a range of redshifts, particularly
focusing on that which could be obtainedwith LSS probes. I found promising results
whereby LSS data could deliver tight constraints on the strength of the scalar field-
dark matter coupling parameter at low redshifts, comparable to that of the CMB at
early times.

Hence I further expanded our investigations by exploring various applications
of a tomographic CDE model : in Chapter 6, I introduced a subclass known as an
ECQmodel, where we restricted the coupling to only be activated during primordial
times, which has interesting physical implications such as the formation of objects
that could be potential candidates of dark matter. I found that for the first time,
we were able to use observational data to verify an important relationship between
the allowed strength of early time coupling and the redshift at which it is deacti-
vated, which up till now has only been derived from first principles. In Chapter 7, I
subsequently turned to machine learning techniques, by assessing its capabilities
in differentiating between LSS data generated from a ΛCDMmodel as opposed to a
tomographic CDEmodel. This exercise proved notable in demonstrating the validity
of employing machine learning techniques in upcoming Stage IV survey analyses.

Having established this new tomographic CDE model, I shifted my sights to the
data : specifically, data from upcoming surveys and the potential it has in constrai-
ning beyond-ΛCDM physics. With this in mind, I delved into the realm of observa-
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tional cosmology in Chapters 8 and 9, where I detailed my contributions to the cur-
rent galaxy collaboration Euclid and UNIONS respectively. Within the Euclid Consor-
tium, I helped develop the official likelihood code CLOE, implementing features
such as a CosmoSIS wrapper and spectroscopic magnification bias effects. I also
worked on obtaining forecasts with Euclid data using CLOE, where we found that
next-stage LSS data could deliver unprecedented precision in our analysis of cos-
mological constraints. Within the UNIONS collaboration, I am leading the efforts in
developing a likelihood analysis pipeline for UNIONS cosmic shear data, where I
have worked to obtain preliminary cosmological results with UNIONS cosmic shear
data. These findings complement those of current Stage III surveys and pave the
way for the exciting results that we can expect with current and upcoming Stage IV
surveys.

10.1 Future Outlook

Looking ahead, the future holds much promise, and I foresee various potential ex-
tensions of my work.
10.1.1 Modelling the Nonlinear Power Spectrum in Tomographic CDEModels

Firstly, a natural stepwould be to develop anonlinear prescription for thematter
power spectrum in a tomographic CDE model. At small scales, astrophysical effects
become dominant : active galactic nuclei eject baryons outside the dark matter ha-
loes, leading to a suppression of thematter power spectrum [249]. Current LSS data,
especially cosmic shear, contain valuable information onmatter overdensities at the
small scales [250], thus an accurate recipe is needed in order to ensure such effects
are adequately accounted for [251]. Currently, emulators and fitting functions have
been developed to model the nonlinear power spectrum in a constant CDE frame-
work [252]. However, this is not the case for a tomographic CDE model. Therefore a
possible avenue of extension would be to further develop thesemethods to include
a tomographic CDE models as well.
10.1.2 Cosmology with 3x2pt UNIONS Data

With the full 4800deg2 dataset of UNIONS estimated to be complete within the
next two years, it will be the largest photometric survey in the northern hemisphere
in five optical bands to date. Thus the next step would be to conduct cosmological
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parameter inference with UNIONS tomographic cosmic shear data, and not just for
one redshift bin. This would allow us to obtain improved constraints by breaking
parameter degeneracies [253, 254]. It would also be of interest to cross-correlate
UNIONS data with that of surveys like DESI or Euclid to carry out a 3x2pt analysis.
10.1.3 Extended ΛCDMModels with Euclid DR1

Forecasts have shown that Euclid will be able to put constraints on cosmological
parameters like the dark energy EoSw(z) at 0.1%, and the growth index γg at 0.08%
uncertainty [255], thus ushering a new era of precision cosmology. With the first
data release of Euclid slated for 2025, I hope to be able to continue developing CLOE
in preparation for DR1, possibly even deriving constraints on extended ΛCDM mo-
dels. In light of recent interesting results from another Stage IV survey DESI [256],
it would be exciting to see if Euclid will reaffirm these findings, potentially unveiling
new knowledge about our Universe.

In this PhD, I have just begun embarking on the humbling journey of exploring our
Universe, and I believe that I still have much to learn and explore. I hope that this
thesis has fairly demonstrated my efforts in this regard, paving the way for more
exciting science to come.
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A. Tomographic CDE Best Fit Cosmological Para-
meters

Here we present the tables with the best-fit, mean and 68% C.L. values for the
various models we have tested.
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3-bin Tomographic β
Planck Planck Planck(constant β) +PlanckLensParameter Best-Fit Mean±σ Best-Fit Mean±σ Best-Fit Mean±σ

100 ωb 2.248 2.241+0.018
−0.019 2.235 2.252+0.020

−0.020 2.256 2.244+0.022
−0.023

ωDM 0.118 0.119± 0.002 0.121 0.120+0.003
−0.004 0.119 0.120+0.003

−0.004

ln 1010As 3.042 3.048+0.014
−0.015 3.046 3.049+0.018

−0.021 3.051 3.051+0.026
−0.026

ns 0.970 0.967± 0.005 0.966 0.971± 0.007 0.972 0.971+0.005
−0.004

τ reio 0.052 0.056+0.008
−0.009 0.053 0.057+0.009

−0.012 0.054 0.057+0.012
−0.013

σ8 0.829 0.822+0.013
−0.015 0.820 0.825+0.014

−0.017 0.813 0.817+0.013
−0.015

S8 0.819 0.829+0.023
−0.026 0.839 0.831+0.033

−0.043 0.821 0.828+0.018
−0.026

H0 69.17 68.15+1.21
−1.43 67.62 68.51+1.42

−1.17 68.02 67.93+0.97
−0.77

β1 0.03 < 0.023 0.018 < 0.031 0.0 < 0.014
β2 − − 0.014 < 0.029 0.004 < 0.027
β3 − − 0.02 < 0.026 0.024 < 0.024

Planck Planck Planck650
+ACT1800 +ACT1800+SPT +ACT+SPTParameter Best-Fit Mean±σ Best-Fit Mean±σ Best-Fit Mean±σ

100 ωb 2.247 2.246+0.020
−0.022 2.258 2.245+0.012

−0.014 2.229 2.250± 0.014
ω

DM
0.119 0.119+0.003

−0.004 0.116 0.119+0.002
−0.001 0.120 0.118+0.002

−0.002

ln 1010As 3.069 3.057+0.021
−0.022 3.052 3.056+0.012

−0.014 3.043 3.047+0.012
−0.014

ns 0.974 0.971± 0.005 0.973 0.973± 0.004 0.976 0.977± 0.005
τ reio 0.058 0.057+0.008

−0.009 0.053 0.056+0.007
−0.008 0.051 0.055± 0.006

σ8 0.86 0.837+0.023
−0.028 0.841 0.832+0.011

−0.014 0.819 0.814+0.008
−0.009

S8 0.843 0.832+0.022
−0.033 0.811 0.828+0.014

−0.016 0.842 0.8193± 0.018
H0 69.89 69.17+1.75

−1.65 70.48 68.98+0.79
−1.03 66.99 68.07+0.63

−0.71

β1 0.027 < 0.042 0.057 < 0.033 0.031 < 0.059
β2 0.03 < 0.037 0.036 < 0.029 0.042 < 0.042
β3 0.112 < 0.036 0.066 < 0.066 0.071 < 0.068

Table A.1. Table of best-fit, mean and 68% C.L. values of the various cosmological para-meters of the 3-bin tomographic model, for the CMB datasets Planck, Planck+ACT1800,Planck+ACT1800+SPT and Planck650+ACT+SPT. We also include the case of a constantcoupling model using Planck data. For reference, the binning is defined by edges z =
{0, 100, 1000}. In the last two rows, we include the ∆χ2 = χ2

min,cde − χ2
min,ΛCDM differencefor each model (constant and tomographic CDE) and dataset, compared with ΛCDM usingthe same dataset, as well as the logarithm of the Bayes factor lnB = lnECDE − lnEΛCDMfor one chosen dataset.
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Cosmic Shear Galaxy Clusterings 3x2pt
(ΛCDM) (ΛCDM) (ΛCDM)Parameter Best-Fit Mean±σ Best-Fit Mean±σ Best-Fit Mean±σ

100 ωb 2.052 2.257+0.216
−0.220 2.249 2.233+0.226

−0.224 2.433 2.241+0.249
−0.225

ω
DM

0.139 0.152+0.043
−0.055 0.129 0.124+0.001

−0.010 0.136 0.123± 0.013
ns 0.991 0.974+0.075

−0.076 0.863 0.896+0.026
−0.049 0.864 0.912+0.049

−0.060

H0 67.37 72.94+5.60
−5.50 70.21 69.48± 2.20 71.63 69.30+2.70

−2.60

σ8 0.709 0.737+0.107
−0.141 0.724 0.734+0.037

−0.042 0.755 0.759+0.023
−0.025

S8 0.770 0.750+0.032
−0.022 0.734 0.739+0.038

−0.041 0.772 0.764+0.017
−0.014

Cosmic Shear Galaxy Clusterings 3x2pt
(constant β) (constant β) (constant β)

100 ωb 2.350 2.436+0.151
−0.111 2.516 2.448± 0.049 2.521 2.478+0.047

−0.033

ωDM 0.1314 0.1385+0.0275
−0.0389 0.1242 0.1207+0.0050

−0.0054 0.1205 0.1196+0.0065
−0.0055

ns 0.968 0.953+0.057
−0.06 0.997 0.970+0.017

−0.021 0.965 0.975+0.011
−0.008

H0 73.47 73.06± 5.7 71.02 70.44+1.1
−1.2 71.75 71.15+1.4

−1.3

σ8 0.752 0.753+0.091
−0.092 0.802 0.763+0.037

−0.042 0.810 0.795+0.020
−0.021

S8 0.735 0.748+0.026
−0.023 0.797 0.753+0.034

−0.038 0.787 0.775± 0.018
β 0.02 < 0.064 0.002 < 0.019 0.004 0.015+0.007

−0.011

Cosmic Shear Galaxy Clusterings 3x2pt
(4-bin β) (4-bin β) (4-bin β)

100 ωb 2.413 2.440+0.104
−0.070 2.495 2.459±0.030 2.294 2.249+0.023

−0.024

ω
DM

0.1231 0.1319+0.0358
−0.0445 0.1349 0.1310+0.0080

−0.0084 0.1239 0.1261+0.0049
−0.0047

ns 0.949 0.981+0.029
−0.036 0.884 0.902+0.025

−0.059 0.909 0.899± 0.008
H0 71.88 72.08+5.0

−5.6 71.96 71.18± 1.5 70.56 70.03± 1.1
σ8 0.794 0.753+0.111

−0.122 0.765 0.772+0.048
−0.050 0.799 0.772+0.020

−0.022

S8 0.774 0.737+0.036
−0.032 0.776 0.781+0.049

−0.051 0.792 0.775+0.016
−0.019

β1 0.059 < 0.151 0.016 < 0.018 0.003 0.014+0.007
−0.010

β2 0.22 < 0.166 0.01 < 0.021 0.008 0.018+0.007
−0.011

β3 0.09 < 0.154 0.014 < 0.023 0.013 0.016+0.007
−0.010

β4 0.029 < 0.107 0.013 0.016+0.007
−0.011 0.021 0.015+0.006

−0.011

Table A.4. Table of best-fit, mean and 68% C.L. values of the various cosmological parame-ters, for weak lensing, spectroscopic galaxy clustering and 3x2pt datasets. We report theresults obtained with the ΛCDM, the β =const. CDE model and the 4-bin tomographic mo-del. For reference, the binning is defined by edges z = {0, 0.5, 1, 2}. In the last two rowsof each model, we include the ∆χ2 = χ2
min,CDE − χ2

min,ΛCDM difference for each model(constant and tomographic CDE) and dataset, compared with ΛCDM using the same data-set, as well as the logarithm of the Bayes factor lnB = lnECDE − lnEΛCDM for one chosendataset.
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Planck+ACT1800 Planck+ACT1800
+SPT+BSC+CS +SPT+BSC+CS

(ΛCDM) (4-bin β)Parameter Best-Fit Mean±σ Best-Fit Mean±σ

100 ωb 2.433 2.276+0.244
−0.224 2.288 2.326+0.224

−0.179

ωDM 0.1492 0.1617+0.0562
−0.057 0.1194 0.1194± 0.0008

ns 0.925 0.971+0.084
−0.081 0.974 0.978± 0.003

H0 71.37 73.3+5.8
−6.0 69.55 69.66+0.34

−0.36

σ8 0.727 0.72+0.130
−0.145 0.831 0.831± 0.007

S8 0.774 0.744+0.034
−0.030 0.823 0.822+0.010

−0.009

β1 − − 0.057 0.056+0.022
−0.052

β2 − − 0.154 < 0.092
β3 − − 0.033 0.037+0.017

−0.024

β4 − − 0.027 < 0.032

Table A.5. Table of best-fit, mean and 68% C.L. values of the various cosmological parame-ters, obtained with the dataset Planck+ACT1800+SPT+BSC+CS, for both a ΛCDM and tomo-graphic CDE model. For reference, the binning is defined by edges z = {0, 0.5, 1, 2}. In thelast two rows, we show the value of∆χ2 = χ2
min,CDE − χ2

min,ΛCDM, as well as the logarithmof the Bayes factor lnB = lnECDE − lnEΛCDM.
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B. Background Evolution of ECQ model

To better understand the individual effect of the coupling strength β, we present
in Fig. B.1 additional plots of the energy fractions of the various species and the
Hubble function for different values of β and fixed zOFF.
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Fig. B.1. Evolution of the various density parameters Ωi of (clockwise, from top left) : ba-ryons, DM, radiation and the scalar field ϕ, for β = {3, 10, 30}. We fix Ωb,0 = 0.02237,
V0 = 2.64 · 10−47 GeV4 and zOFF = 105. We include the ΛCDM case in black dashed-dottedlines for reference. In the last row we plot the Hubble function H(z) in the redshift range
0 ≤ z ≤ 2.

In Figs. B.2 we plot the background evolution of theΩi’s for values of β and zOFF
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along the degeneracy line, Eq. (6.16). We see how if we restrict values of β and zOFF

along this line, the values ofΩi,0’s are the same. Hencewithout data that can directly
probe the evolution history at such high redshifts, these sets of β and zOFF values
are virtually indistinguishable.
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Fig. B.2. Evolution of the various density parameters Ωi of (clockwise, from top left) : ba-ryons, DM, radiation and the scalar field ϕ, for values of β = {3, 10, 20, 30} and zOFF on thecorresponding degeneracy line, Eq. (6.16).
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C. Additional Parameter Constraints on Euclid data
with CLOE

We report in Table C.1 the mean and 1σ constraints on all the sampled cosmo-
logical parameters for the models and probes presented in Sec. 8.3.4.

In Figs. C.1−C.4, we present additional constraints in the formof 2Dmarginalised
posteriors on the various nuisance parameters for the weak lensing (WL) and 3x2pt
probes, for both ΛCDM and w0waCDM models. We see that we are able to recover
the fiducial values for all cases.
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