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Table 1: Mathematical Notation and Operators

Operator Definition
ȷ

√
−1

(·)∗ Complex conjugate
(·)T Transpose
|x| The absolute value of the scalar x
∥x∥ The Euclidean norm of the vector/matrix x
∥x∥2F The Frobenius norm of the vector/matrix x
var{x} The variance value of the random variable x
CN (0, σ2) Complex normal distribution with zero mean and variance σ2[
N
]

A set including {1, 2, . . . , N}
mod (a, b) The modulus function
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1.1 Motivation

The rise of high-speed transportation systems, autonomous vehicles, and vehicle-to-

vehicle communication presents new challenges, including ensuring reliable communi-

cations, robust data transmission, and seamless connectivity in high-mobility wireless

channels [1]–[3]. Alongside these advancements, advancements in high-speed trans-

portation technology are revolutionizing the way we travel, driven by the increasing

demand for faster and more efficient systems.

Ultra-high-speed transportation systems, such as tube-based vacuum transportation,

promise to achieve speeds up to 1200 km/h, significantly reduce travel times and

improve connectivity between regions [4]. These innovative systems address several

issues associated with traditional transportation, including pollution, traffic congestion,

accidents, and high carbon emissions. Looking forward, the implementation of ultra-high-

speed transportation systems will require advanced communication networks that meet

high standards for quality, capacity, and reliability. These transportation systems require

advanced communication architectures to support both operational control services

and passenger services. Simultaneously, wireless communication systems have also

experienced extraordinary growth over recent years. For example, cellular networks

have evolved from First Generation Mobile Radio (1G) to Sixth Generation Mobile Radio

(6G), moving from basic mobile voice features in 1G to integrating satellite networks in

6G, driven by user demand for higher data rates and better connectivity [5].

In this work, we will study about the wireless communication system design for ultra-

high-speed scenarios in doubly selective channels. The application of this thesis is

for the ®TransPod company has been developing a new type of tube-transportation

system, in which a vehicle known as the FluxJet is capable of achieving speeds of up to

1000 km/h inside a cylindrical metal tube under low-pressure conditions [4], [6], [7]. The

FluxJet resembles an aircraft without wings but operates like a train. It is magnetically

levitated and runs through the tube using electrically driven linear induction motors.
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Pod-transportation requires a robust and reliable network architecture to facilitate data

transfer between the pod, infrastructure, control system, and the station. Communication

systems for pod-transportation are categorized into two separate networks: one for

critical communication used for operational control services of the pod and a second

network for passenger services. The first network requires low data rates but high

reliability, while the second network demands high data rates and can tolerate lower

reliability.

Our aim in this thesis is to design a high data rate pod-to-tube wireless communication

system specifically for passenger services. To properly design such a system and

predict its performance, the following steps are essential:

• Transmission Channel Characteristics: The basis phase requires the knowl-

edge of the characteristics of the transmission channel, based on the evaluation

of its impulse response.

• Physical Layer Design: The second phase focuses on designing the physical

layer, particularly the modulation and waveform design. Waveform design refers to

the strategies for packing information symbols within a given bandwidth and time

resource, forming the basic building block of communication systems. Waveform

design should satisfy a comprehensive set of metrics that can include orthogo-

nality of the basis functions in a multipath channel, ease of channel estimation

with low pilot overhead, the complexity of equalization, low PAPR, robustness to

synchronization errors.

1.2 Challenges

The unique and specific configuration of the TransPod system presents significant chal-

lenges for reliable communication. These specific conditions affect the communication

system design and introduce constraints which may restrict the design flexibility. The

challenges can be summarized into the following categories:
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1.2.1 Tube Structure

The specific propagation environment of the TransPod system causes several challenges.

The guideway is constructed from highly reflective metal, leading to numerous reflections

from the walls. This results in significant multipath propagation effects, causing a time-

dispersive or frequency-selective channel.

1.2.2 Ultra High Speed

The ultra high speed of the pod results in severe Doppler effects, which is particularly

problematic for Orthogonal Frequency Division Multiplexing (OFDM) systems. These

effects disrupt the orthogonality of the subcarriers, leading to Inter Carrier Interference

(ICI) [8]. Multipath components experience different Doppler shifts due to varying angles

of arrival and relative velocities. These Doppler shifts contribute to Doppler spread,

causing the transmitted signal to spread in the frequency domain. Consequently, the

channel becomes frequency-dispersive or time-selective. Additionally, in a fast time-

varying channel, the channel coherence time is reduced. This leads to channel distortion

within a single symbol time, making channel estimation more challenging as it must be

performed within this short coherence time.

1.2.3 Special Noise due to the Plasma

The vehicle in the guideway is powered using a patented plasma-based high-speed

power transmission system. Plasma is used to carry electric current to the vehicle

without contact. Since the power transmission system and communication system

will exist in the same environment inside a steel guideway, a signal at the receiver of

the communication system can be contaminated by a kind of impulsive noise. In the

presence of such noise, the information packages at the receiver might be completely

lost.

1.2.4 Handover

The vehicle inside the tube is traveling at very high speeds, pass through multiple

communication zones in a very short period, thus the handovers must be performed in
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a very short time to avoid additional delays. This rapid movement requires frequent and

very fast handovers. Additionally, high speeds cause the channel conditions to change

rapidly, making it challenging to maintain a stable communication link long enough to

perform a handover without interruption.

1.3 Related Works

Wireless communication design for pod-to-ground communication in tube-transportation

systems remains largely unexplored in current literature. As it is similar to the tunnel

scenario in the High Speed Railway (HSR), we review the wireless communication

technologies that have been studied or applied in HSR including Global System for

Mobile communications-Railways (GSM-R), Long Term Evolution-Railways (LTE-R),

Wireless Fidelity (WIFI), 38 GHz Millimeter-Wave (mmWave) technology [9].

GSM-R is the established standard for railway communication, primarily supporting train

control systems. It offers a maximum data rate of less than 200 kbps, insufficient for

high data rate communication inside the trains [10]. LTE-R is envisioned to replace

GSM-R and being a Fourth Generation Mobile Radio (4G) protocol, is suitable for HSR

systems that require low latency and high data rates. It supports communications for

vehicles traveling at maximum speed of 500 km/h [11].

Wireless Local Area Network (WLAN) including WiFi, based on IEEE 802.11 standards,

is typically adopted in low-speed indoor scenarios with short coverage, and is not

designed for high-mobility applications [12].

In terms of the cellular networks, 4G LTE supports wireless access at mobile speeds

up to 350 km/h. Meanwhile, fifth generation new radio (5G-NR) introduces scalable

subcarrier spacing to provide suitable numerology sets for high speed transportation.

However, the standardized manuscript from 3rd Generation Partnership Project (3GPP)

indicates that 5G-NR supports a maximum speed of 500 km/h [13].

mmWave Fifth Generation Mobile Radio (5G) was suggested to provide high data rates

for the passengers in HSR services [14]. In the [15], the performance of the mmWave

system at high mobility of up to 500 km/h is evaluated. The 38 GHz mmWave wireless
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communication technology is applied in Shanghai maglev system, providing a capacity

reach up to 100 Mbps but at the speed of lower than 500 km/h [16], [17]. Massive MIMO

in OFDM system proposed to compensate Doppler effects in [18].

Some studies propose an antenna-based solution by installing the leaky-waveguide

antennas for 5G communication along the top of vacuum tubes. This method aims

to eliminate Doppler frequency shift, thereby maintaining wireless signal coverage for

passengers inside the pod [19]–[21].

Despite all the advancements mentioned above, the current railway communication

systems cannot support the requirements of the pod-to-ground communication for ultra

high speed systems.

1.4 Contributions

The main contributions of this PhD thesis work can be summarized as follows:

• Modeling of noise in the plasma-based contactless power transmission

system for TransPod [22]:

We analyzed the high-voltage signals associated with the plasma arc discharge in

the TransPod contactless power transmission system. Using a two-state Markov-

Gaussian model, we modeled the impulsive noise contaminating the received

signal at the receiver. This model minimizes the differences between observed

measurement values and predicted values. Detailed results of this analysis are

provided in chapter 3.

• Sequence-pilot-based channel estimation method in Orthogonal Time Fre-

quency Space (OTFS) systems: [23]

Ultra-high-speed scenarios and doubly selective channels present significant chal-

lenges in wireless communication systems. OTFS systems are suited to address

these conditions due to their robustness in such environments. Despite this robust-

ness, accurately estimating the channel in OTFS systems is essential for optimal

performance. To address this, we conducted an investigation of sequence-based

channel estimation using CAZAC sequence pilot. Our findings demonstrate that
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utilizing CAZAC sequence pilot improve estimation accuracy compared to tradi-

tional impulse-based methods, while also reducing PAPR, making it suitable for

real-time implementation in OTFS systems. Detailed discussion is provided in

chapter 4.

• DNN-based channel estimation method in OTFS systems utilizing CAZAC

sequence pilot: [24]

Building upon the advancements in sequence-based channel estimation, we

have applied a Deep Neural Network (DNN)-based channel estimation method

using CAZAC sequences for OTFS systems. This method takes advantage of

the properties of CAZAC sequences to improve the performance of the DNN

model. Combining CAZAC sequences with the DNN-based estimator significantly

improved channel estimation accuracy compared to traditional methods, under

varying pilot power ratios. By optimizing the DNN architecture with two layers and

a 20 number of neurons, we achieved a balance between estimation accuracy and

computational efficiency. This approach achieves the same estimation accuracy

with less pilot power, thereby reducing PAPR. Detailed findings are presented in

chapter 5.

1.5 Thesis Outline

In this thesis, we focus on channel modeling and physical layer design to improve

the performance of high data rate communication systems in high mobility wireless

channels, particularly the TransPod system. The thesis is structured as follows:

Chapter 2 introduces a review of wireless channels particularly the doubly-selective

channels along with the different representations. We review the signal distortions due

to the channel impairments. We discuss the fundamentals of OFDM systems in brief

along with some disadvantages associated with them in ultra high mobility scenarios.

Then we study the basic fundamentals of OTFS modulation system, and introducing

different OTFS variants as well as comparing in terms of spectral efficiency and transmit

power.
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Chapter 3 characterizes the transmission channel in the TransPod guidway, utilizing

a 2D ray-tracing model to achieve the channel impulse response along with large-

scale and small-scale characteristics such as delay profile, Doppler profile and path

loss evaluation. We also introduce the plasma-based power transmission system of

TransPod. The effect of impulsive noise from the plasma power transmission is analyzed

and modeled. To mitigate the corrupted transmission due to the noise, the appropriate

channel coding techniques are briefly studied. A dual-link communication solution is

proposed to overcome the frequent disconnectivity due to the fast handovers.

Chapter 4 proposes a correlation-based channel estimation method for OTFS sys-

tems by inserting a CAZAC sequence pilot into the zero bins of the ZP-OTFS system.

We begin by reviewing the conventional channel estimation technique that uses a sin-

gle impulse pilot, highlighting its limitations, particularly under conditions of low pilot

power. Conventional methods struggle with estimation accuracy when pilot power is

low, often requiring an increase in pilot power to achieve satisfactory performance. This

increase in pilot power, however, leads to a higher PAPR of the transmitted signal. Our

correlation-based method makes benefit of correlation properties of CAZAC sequence,

achieves high estimation accuracy while maintaining low pilot power, resulting in efficient

power usage and lower PAPR in the time domain signal.

Chapter 5 explores the application of DNN for channel estimation in OTFS systems,

beginning with an exploration of the motivation behind using neural network techniques

to improve estimation accuracy particularly in the scenarios with fractional Doppler effect.

It reviews related works, including background on neural networks and the management

of datasets for training, validation, and testing. The chapter details the proposed

DNN architecture, including its design and implementation specifics. Additionally, it

presents an analysis of simulation results, examining factors such as pilot power, DNN

architecture, transmitter-receiver distances, and the impact of Signal-to-Noise Power

Ratio (SNR) on model performance.

Chapter 6 summarizes the entire thesis and also suggests potential methodologies

and approaches for future advancements.
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THIS chapter begins by introducing the physical phenomena associated with Linear

Time Varying (LTV) channels [25]. Next, we provide background information on different

representations of LTV channels. An overview of OFDM communication systems is

provided, pointing out some drawbacks in high mobility scenarios. Finally, we introduce

the basic concepts of OTFS modulation, with more detailed discussions in subsequent

chapters.

2.1 Introduction

In wireless communication, data transmission involves emitting a modulated electro-

magnetic wave at a specific carrier frequency through a transmitter antenna. The

corresponding receiver antenna captures the wave’s energy. These processes are

influenced by radio wave propagation, which is affected by the propagation environ-

ment. Given the unpredictability of the propagation environment in wireless systems,

a thorough understanding of the wireless channel is essential for designing effective

communication systems. As the transmitted radio wave travels, it encounters multiple

paths due to scattering objects in the environment. Furthermore, movement of the

transmitter, receiver, and these scatterers induces the Doppler effect, characteristic of a

LTV channel. The LTV channel causes the transmitted wave to experience significant

fluctuations in received power at the receiver. These variations in the received signal

amplitude over time and frequency are commonly referred to as fading. The received

power of the transmitted wave can be modeled by considering a combination of physical
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phenomena, including path loss, large-scale fading, and small-scale fading [25]–[27].

2.2 Large-Scale Fading

Large-scale fading includes variations in the average received signal strength due to

signal transmission over long distances and the impact of complete or partial Line-of-

Sight (LOS) path loss caused by obstacles in the signal path. The free space model is

one way to estimate the average signal strength for long distances between transmitter

and receiver.

Free Space Model: The free space propagation model can be used where there is a

direct LOS and no obstacle between the transmitter and the receiver, such as satellite

communication systems [27], [28]. This model is used for predicting the received

signal strength in the LOS environment and provide a way to estimate the path loss

as a function of the distance. The received power at distance d, is expressed by the

well-known Friis equation [29]:

Pr(d) =
PtGtGrλ

2

(4π)2d2
, (2.1)

where Pt represents the transmit power, Gt the transmitter antenna gain, Gr the receiver

antenna gain, and λ is the wavelength. When we talk about the antenna gain, we refer to

the fact that the directivity leads to the power being concentrated in particular directions

[30].

2.3 Small-Scale Fading

Small-scale fading involves rapid variations in both amplitude and phase of a radio signal,

occurring over a short period of time (on the order of seconds) or a short distance (a few

wavelengths). Instantaneous received signal power can fluctuate significantly with even

minor movements of the receiver over a fraction of a wavelength. These fluctuations

result from constructive and destructive superposition of transmitted signal echoes via

different propagation paths, known as multipath propagation. The small-scale fading
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experienced by the signal through a wireless channel, depends on the signal parameters,

such as bandwidth, symbol period, and the channel parameters like multipath delay

spread and Doppler spread. These parameters introduce time and frequency dispersion,

leading to either frequency-selective fading, time-selective fading, or both [28], [31].

2.3.1 Multipath (Time Dispersion / Frequency-Selective)

A channel becomes time dispersive when the transmitted signal encounters various

paths from different scatters. This results in delayed and attenuated replicas of the origi-

nal signal, causing the signal to spread out in time domain after traversing the channel.

Such channels exhibit frequency selectivity, where different frequency components of

the signal experience different channel gain. Coherence bandwidth Bc, as an important

parameter for frequency-selective channels, is defined as the range of frequencies over

which the channel is approximately constant, and is proportional to the inverse of the

delay spread of the channel τmax, that is Bc ∝ 1/τmax. Normally, in a high rate wireless

transmission, the channel impulse response presents a delay spread larger than the

symbol period of the transmitted signal Ts, and the signal bandwidth Bs exceeds the

channel coherence bandwidth, (τmax > Ts and Bs > Bc). The short symbol duration,

compare to the multipath delay spread, leads to significant overlap of multiple delayed

copies with subsequent symbols, causing Inter Symbol Interference (ISI) [28], [31], [32].

2.3.2 Time-Variance (Frequency Dispersion / Time-Selective)

A channel becomes frequency dispersive due to the movement of the transmitter,

receiver, or scatterers, causing the Doppler effect. In these scenarios, the emitted wave

undergoes the Doppler effect, leading to frequency shifts. The Doppler shift, denoted by

the ν, is proportional to the relative velocity between receiver and transmitter v and the

carrier frequency fc:

ν =
vfc
c

cosα, (2.2)

where c represents the speed of light, and α is the angle between the direction of

the received signal and the direction of the motion. In environments with multipath
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propagation and moving elements, received echoes exhibit different Doppler shifts due

to varying angles and velocities. This leads to the spreading of the transmitted signal in

the frequency domain, known as frequency dispersion. Depending on the extent of the

Doppler spread, the received signal may undergo fast or slow fading.

It should be noted that, with νmax being the maximum Doppler shift, the Doppler spectrum

bandwidth Bd is given as Bd = 2νmax. Coherence time Tc is a parameter for the time-

variant channels which is the time duration over which the channel impulse response

can be considered as constant, Tc ∝ 1/Bd. In fast fading channels, the coherence time

is shorter than the symbol period, leading to rapid variations in the channel impulse

response within a single symbol period. In these scenarios, the Doppler spread is

greater than the bandwidth of the transmitted signal (Tc < Ts and Bs < Bd). Conversely,

in slow fading scenarios where the Doppler spread is much smaller than the bandwidth

of the baseband transmit signal, the channel impulse response varies slowly compared

to the duration of the baseband transmit signal [28], [31].

2.3.3 Doubly Selective Channels

Wireless channels that are affected by both time and frequency selectivity are known as

doubly selective. These channels, also referred to as doubly dispersive or LTV channels.

In such channels, the received signal is a superposition of several time delayed and

frequency shifted replicas of the transmitted signal. This results in a fast time-varying

channel condition. In doubly dispersive channels, the delay spread is typically large,

and both the transmitter and receiver often exhibit relatively high-speed movement.

As a result, channel estimation and equalization in doubly selective channels present

significant challenges from a communication perspective [25], [33].

2.4 Representations of Wireless Channels

We introduced the doubly selective channels, where both time and frequency variations

affect signal transmission and lead to performance degradation. A doubly selective or

time-variant multipath channel can be represented in different domains, including time-

delay, time-frequency, and delay-Doppler, each provides some insights about channel
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behavior [25], [34], [35]. Understanding each representation and the corresponding

parameters is necessary for modeling the impulse response of the channel.

hTD(t, τ)

hDD(ν, τ) HTF(t, f)

F F

SFFT

ISFFT

time-delay

channel response

delay-Doppler

channel response
time-frequency

channel response

Figure 2.1: Different domain representations of LTV channel

Consider a time-varying multipath channel operating at carrier frequency fc. The signal

s(t) is transmitted through the channel and y(t) is the received signal. Additionally,

we assume the LTV channel has P discrete propagation paths, with hp, τp, and νp

representing the complex fading coefficient, time delay, and Doppler frequency for the

p-th path (1 ≤ p ≤ P), respectively. Our objective is to develop the mathematical

representation of wireless channel in every domain.

2.4.1 Time-Delay Representation of LTV Channels

An LTV channel can be modeled as a linear filter with a time varying impulse response

hTD(t, τ), which acts on s(t) and yielding r(t). The time-varying impulse response of the

channel can be represented as:

hTD(t, τ) =
P∑
i=1

hie
2ȷπνi(t−τ)δ(τ − τi). (2.3)
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The input-output relationship between s(t) and r(t) with the noiseless assumption is

given by

r(t) =

∫
hTD(t, τ)s(t− τ)dτ

=
P∑
i=1

his(t− τi)e
2ȷπνi(t−τi).

(2.4)

Figure 2.2: Time-delay representation of a doubly selective channel.

According to (2.4), the time-delay domain channel has P separable responses at the

given delays for all the time domain components. It can be seen in the Figure 2.2 that

the time-delay representation of the channel is sparse in the delay domain, but dense

in the time domain. However, the effect of Doppler shift is not evident in time-delay

channel representation.

2.4.2 Time-Frequency Representation of LTV Channels

The joint time-frequency selectivity of an LTV channel is characterized by the time-

frequency (or time-varying) transfer function. The time-frequency domain can be ob-

tained by performing the Fourier transform along the delay domain to the time-delay
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channel response hTD(t, τ) in (2.3):

HTF(t, f) =

∫ ∞

−∞
hTD(t, τ)e

−j2πfτdτ

=
P∑
i=1

hie
2ȷπ(νit−τif),

(2.5)

It should be noted that, the term e−2ȷπ(νiτi) in the above equation representing a constant

phase shift and can be absorbed into the channel coefficient hi. The function HTF(t, f)

represents the channel complex attenuation factor at a specific time t and frequency

f . The LTV channel can be assumed stable within the coherence time and coherence

frequency. Therefore, this representation is characterized by the maximum delay

spread and Doppler spread and the channel coefficients vary significantly in the high

mobility scenarios. Figure 2.3a shows a frequency selective channel in time-frequency

domain which is time-invariant. Whereas Figure 2.3b illustrates the time-frequency

representation of a channel that is selective in both time and frequency, displaying a

dense distribution across the entire time-frequency plane. In doubly selective cases,

the channel response varies with each time and frequency samples and accurately

reconstructing the Channel State Information (CSI) requires estimating a large number

of parameters due to significant variations in both dimensions.
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(a) H(t, f), time-invariant multipath channel

(b) H(t, f), time-variant multipath channel

Figure 2.3: Time-frequency channel representation of a doubly selective channel vs. a frequency
selective channel (time-invariant)

OFDM, which operates in the time-frequency domain, is particularly effective in static

or low-mobility settings where channel conditions show minimal variation over time

[32]. In these settings, OFDM utilizes a structured approach with orthogonal sub-

carriers to manage multipath propagation. In these conditions, it is sufficient to estimate

the channel at the beginning of each OFDM symbol and assume it remains constant
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throughout the symbol duration. in high-mobility scenarios, as shown in Figure 2.3b, the

channel characteristics vary rapidly over time and frequency, leading to an increased

number of unknown parameters, which complicates the estimation of the channel in

real time. This involves advanced channel estimation and equalization techniques to

effectively handle the rapid variations in order to maintain reliable communication.

2.4.3 Delay-Doppler Representation of LTV Channels

The wireless channel is not an arbitrary collection of complex numbers, and it is governed

by simple physics, composed of a collection of reflectors, some of which are static and

some of which are moving. The transmitted waveform propagates through the medium.

The signal that arrives at the receiver is a superposition of the direct signal and the

reflected echoes. Each of the reflected echoes at the receiver introduce a small

distortion, which is a combination of time delay relates to the range of the reflector and

Doppler shift relates to the velocity between the reflector and the transmitter/receiver.

Therefore, we can parameterize each reflector as a pair of delay and Doppler and a

certain complex number which represent the complex gain of the reflector. As a result,

the geometry of reflectors can be mapped into a two-dimensional input response on

the delay-Doppler grid. The LTV channel can be intuitively characterized using time

delays and Doppler frequency shifts, and can be mathematically modeled through the

delay-Doppler impulse response. The delay-Doppler (DD) domain can be obtained by

performing the Fourier transform along the time of the time-delay channel response

hTD(t, τ) in (2.3):

hDD(τ, ν) =

∫ ∞

−∞
hTD(t, τ)e

−ȷ2πtνdt. (2.6)

Here, hDD(τ, ν) describes how delayed and Doppler-shifted version of the transmitted

signal s(t− τ)eȷ2πνt, contributes to the receive signal r(t):

r(t) =

∫ ∞

−∞

∫ ∞

−∞
hDD(τ, ν)e

j2πνts(t− τ)dτdν (2.7)

As discussed previously, three channel representations are interchangeable by means of

canonical transforms, as shown in Figure 2.1. The transformation between the time and

frequency representations is carried by the Fourier transform. The transition between

the delay-Doppler and the time-frequency representations is achieved through a pair
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of two-dimensional transforms, Symplectic Fast Fourier transform (SFFT) and Inverse

Symplectic Fast Fourier transform (ISFFT) as:

hDD(τ, ν) =

∫ ∞

−∞

∫ ∞

−∞
H(t, f)e−j2πtνej2πfτdt df =

P∑
i=1

hiδ (τ − τi) δ (ν − νi) , (2.8)

H(t, f) =

∫ ∞

−∞

∫ ∞

−∞
hDD(τ, ν)e

j2πtνe−j2πfτdτ dν =
P∑
i=1

hie
2ȷπ(νit−τif), (2.9)

where (2.8) and (2.9) define the operations for SFFT and ISFFT operations, respectively.

The SFFT involves a pair of Fourier transforms; converting time to delay through the

Fast Fourier Transform (FFT), and frequency to Doppler through the Inverse Fast Fourier

Transform (IFFT). Delay-Doppler channel response in (2.8) illustrates that channel

responses are sparse in delay-Doppler domain, unlike the dense time-frequency domain.

Furthermore, the peaks corresponding to different paths are separable.

These properties are illustrated in Figure 2.4 displaying the delay-Doppler representa-

tions for both doubly selective and time-invariant channels. The nonzero coefficients in

the delay-Doppler channel representation at each location (τ, ν) represents the mag-

nitude of the complex gain for a path with the specified delay τ and Doppler shift ν.

Figure 2.4 is the equivalent representation of Figure 2.3 with the P = 4 number of paths.

Figure 2.4a shows delay-Doppler representation of a time-invariant channel, where each

path characterized by a delay time τi and a Doppler shift νi = 0, 0 ≤ i ≤ 3. However, in

a doubly selective channel, as shown in Figure 2.4b, the responses from different paths

are separated in both delay and Doppler directions.
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(a) hDD(τ, ν), frequency selective channel

(b) hDD(τ, ν), double selective channel

Figure 2.4: Time-frequency channel representation of a Doubly selective channel vs. a static
multipath channel (linear time-invariant)

2.4.4 Virtual relation between time-frequency and delay-Doppler
representations

We consider the transmitted signal s(t) spans a single frame on a time-frequency grid.

The entire duration Ts is NT seconds, divided into N time slots, each lasting T seconds.

Additionally, there are M subcarriers spaced ∆f apart, resulting in a total bandwidth of
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M∆f . By applying (2.9) and (2.8), we use the ISFFT to map the signal from the time-

frequency grid to the delay-Doppler grid. The resulting delay-Doppler grid maintains the

same number of points but on different scales.

To achieve a virtual channel representation in the delay-Doppler grid, the delay axis is

sampled with a resolution of ∆τ =
1

M∆f
seconds, capturing the smallest difference

in delay representable by the delay-Doppler grid. Simultaneously, the Doppler axis is

sampled with a distance of ∆ν =
1

NT
, representing the smallest variation in speed

or Doppler shift than can be captured by the delay-Doppler grid. Consequently, the

delay-Doppler grid is divided into multiple boxes of area ∆τ ×∆ν. Figure 2.5 illustrates

the discrete time-frequency grid and delay-Doppler grid.

T

∆f

Time

Frequency

NT

M∆f

0
1

NT

1

M∆f

Doppler

Delay

1

T

1

∆f

0

2D SFFT

2D ISFFT

Figure 2.5: Discrete time-frequency grid and delay-Doppler grid.

For the ith path, i = 1, ..., P , the corresponding delay τi and Doppler shift νi are given

by:

τi =
li

M∆f
, νi =

ki
NT

, (2.10)
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where, li and ki represent the normalized delay and normalized Doppler shift, respec-

tively. τi ≤ τmax , where τmax is the channel delay spread, and lmax corresponds to the

associated normalized delay. Similarly, we have νi ≤ νmax, where νmax signifies the

channel maximum Doppler shift. Figure 2.6 shows a LTV channel with delay spread

τmax and Doppler spread 2νmax. Each box, containing some points, corresponds to

an existing path of the channel with the associated delay and Doppler values. Some

boxes may contain multiple points, each contributing to a single, resolvable delay and

Doppler values. The area of the points denotes the amplitude of the complex gain of

each propagation path.

∆τ

∆
ν

τ

ν

τmax

νmax

−νmax
0

Figure 2.6: Channel representation in delay-Doppler domain with existing paths.

Physical Layer Modulation Techniques

The objective of the physical layer design is to develop a waveform that can mitigate the

effects of fading and signal variations caused by the channel, thus meeting the needs

Bentolhoda KAZEMZADEH OSGOEI| Thèse de doctorat | Université de Limoges

Licence CC BY-NC-ND 3.0

41



Chapitre 2 – CHAPTER 2. WIRELESS CHANNEL BACKGROUND

of modern applications. The traditional OFDM waveform has been the standard in 4G

LTE due to its high performance in mitigating multipath effects and its low complexity

of equalization [27], [36]. However, it does not perform well with fast time variations in

high mobility environments. To overcome these limitations, a new modulation technique

called OTFS has been proposed [37], showing performance improvements over classical

OFDM in dynamic environments [38]. This thesis will explore the design of waveform

that perform well in LTV wireless channels. In the subsequent section, We will review

the classical OFDM-based system, which operates in the time-frequency domain, and

the OTFS-based system which modulates information in the delay-Doppler domain.

2.5 OFDM Review

OFDM is a modulation technique that divides a high-rate data stream into several lower-

rate streams. OFDM has been widely deployed in the 4G [36], [39] and the 5G cellular

systems [40] as well as in WiFi networks [41] and DVB family [42], [43]. This technology

is particularly effective for systems experiencing frequency-selective fading, where the

channel remains constant within one OFDM symbol period. The fundamental concept

of OFDM involves dividing the frequency-selective channel into smaller sub-channels.

Each sub-channel occupies only a fraction of the overall bandwidth, enabling them to

experience a flat-fading channel. These subcarriers maintain orthogonality, ensuring

no Inter-Carrier Interference (ICI), facilitating the simultaneous transmission of multiple

data streams. Orthogonality is achieved by spacing the sub-carriers in frequency so that

they are integer multiples of
1

T
, where T is the duration of an OFDM symbol. Subcarrier

spacing depends on factors such as channel frequency selectivity, rate of channel

variations, phase noise, and the Doppler effect.

Consider an OFDM symbol with bandwidth B = M∆f and duration T , where M is

the number of subcarriers, and ∆f = 1/T is the subcarrier spacing. QAM information

symbols are organized in the time-frequency plane, forming an information symbol

matrix X ∈ CM×N containing N OFDM symbols. For simplicity, we focus on a single

OFDM symbol (N = 1). Let x ∈ CM×1 be the column vector of X containing the M

information symbols. Applying an M-point Inverse FFT denoted by FH
M on x produces
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time-domain samples s:

s = FH
Mx. (2.11)

To prevent ISI, a Cyclic Prefix (CP) of length lmax is appended to s, resulting in s′.

These time-domain samples are then transmitted into the channel. Passing the OFDM

signal through a multipath channel causes the samples to spread in time. A multipath

time-invariant channel with P propagation paths can be expressed as:

h(τ) =
P∑
i=1

hiδ(τ − τi), (2.12)

where hi represents the complex channel coefficient of the ith path. The time-domain

received signal r′ after passing through the channel is obtained as:

r′[q] =
P∑
i=1

his
′ [q − li] , q = 0, . . . ,M + lmax − 1 (2.13)

By defining ′h = [h0, · · · , hmax]
T as the discrete time channel vector, the time domain

input-output relation is expressed as:

r′ = h′ ∗ s′, (2.14)

where r′ and s′ have length M + lmax due to CP.

After removing the CP and the first lmax samples of the received signal r′, we obtain the

time-domain received signal r. Note that the linear convolution of vectors h and s of

length M is converted to circular convolution due to the CP:

r = h⊛ s, (2.15)

where ⊛ denotes the circular convolution, and h = [h[0], · · · ,h[M−1]] = [h0, · · · , hlmax , 0, · · · , 0].
r and s are of length M without CP.

After applying an M-point FFT on r, the received frequency-domain samples y are

obtained:

y = FMr = H ◦ x, (2.16)

where ◦ denotes element-wise multiplication, and H = [H1, . . . , HM ] = FFT ([h1, . . . , hlmax , 0, · · · , 0])
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is the frequency-domain channel response. As a result, the m-th, m = 0, . . . ,M − 1,

received subcarrier can be obtained by element-wise multiplication of the channel

frequency response and the transmitted symbols at the m-th subcarrier as:

y[m] = H[m]x[m]. (2.17)

When the frequency-selective channel does not change during an OFDM symbol,

the frequency channel matrix H is diagonal, which causes to low complexity one tap

equalizer [44]. By transmitting pilot symbols, the channel frequency response can be

estimated for every OFDM symbol, then one tap equalization is applied to estimate the

transmitted symbols x̂:

x̂[m] =
y

Ĥ[m]
, (2.18)

where Ĥ[m] are the estimated samples of the channel frequency response.

2.5.1 OFDM disadvantages

We have observed that OFDM has a simple transceiver architecture employing FFT

and a simple one tap equalization. Despite its simplicity, OFDM is resilient to multipath

effects, when the coefficients remain constant over time. However, OFDM struggles

in time-varying channels, showing poor performance in high mobility scenarios due to

Doppler spread. In the following, we highlite some major problems:

• ICI: In doubly selective channel, where Doppler shifts are also associated with

each multipath component, channel coefficients change within an OFDM symbol

duration. This time variation and Doppler shift destroy the orthogonality among

subcarriers leading to ICI. We consider a doubly selective channel with P propa-

gation paths where each is characterized by the gain hi, delay time τi and Doppler

shift νi. The equation (2.13) can be modified to include the Doppler effect, applying

normalized delay li and normalized Doppler shifts ki, as:

r[q] =
P∑
i=1

hie
j 2π
NM

ki(q−li)s [q − li] , q = 0, . . . ,M − 1. (2.19)

Due to the time-varying phase shift ej
2π
NM

ki(q−li), the convolution in (2.15) is not
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circular. In this case, the frequency domain channel matrix H is a banded matrix,

which means that the off-diagonal elements are not zero due to the energy leakage

on adjacent subcarriers caused by the Doppler shift, resulting in ICI. The received

signal on the m-th subcarrier include a second term represents ICI [45]:

y[m] = H[m]x[m] + ICI, (2.20)

If one-tap equalization in (2.17) is used, the system performance will be degraded.

To mitigate ICI effect due to Doppler spread, increasing the subcarrier spacing in

OFDM is a solution. However, increasing subcarrier spacing reduces the OFDM

symbol time. If the length of CP is fixed, the ability of the system to handle

ISI diminishes since the symbol time may become short compare to the delay

spread of the channel. On the other hand, increasing CP length introduces

higher overhead, as more time is spent transmitting redundant information rather

than useful data. In 4G, LTE supports carrier bandwidths up to 20 MHz with a

fixed CP duration and a fixed subcarrier spacing. However, in 5G, the modified

version of OFDM has been used, named 5G New Radio (NR), introducing scalable

numerology OFDM with the flexible sub-carrier spacing and CP length [46], [47].

• Channel Estimation Error and High Pilot Overhead: In frequency selective

channels, the channel remains constant over OFDM symbols, allowing the esti-

mated channel for one symbol to be used for other symbols. However, in doubly

selective channels, the coherence time of the channel shrinks, causing the channel

to change even within one OFDM symbol. Frequent pilot symbols insertion along

time slots is required to capture rapid time variation of the channel, leading to

increasing the system overhead. To keep the relative overhead fixed, the pilot

density in frequency domain can be decreased that may not be sufficient to capture

the frequency variations of the channel.

As a result, utilizing OFDM technique in doubly selective channels are often a trade off

between pilot overhead, spectral efficiency and computational complexity. In the follow-

ing, we will introduce the OTFS modulation system, which outperforms the conventional

OFDM modulation for high-mobility double selective channels.
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2.6 OTFS Modulation

In the preceding section, we discussed how OFDM has been widely used in 4G LTE due

to its simple equalization process and its ability to mitigate the ISI by introducing a CP.

However, in high-mobility environments with wide Doppler spreads, resulting in large

frequency dispersion, conventional OFDM systems may struggle to maintain efficient

and reliable communication. 5G NR employs a multi-numerology OFDM system to

address various 5G requirements, including support for high-speed scenarios. Although

increasing sub-carrier bandwidth in 5G NR can mitigate Doppler spread, the decrement

of CP length can introduce ISI when delay spread is also significant. To tackle these

challenges, a new modulation scheme called OTFS has been proposed in [48], showing

significant performance improvements over OFDM. We observed that the delay-Doppler

channel model accurately represents the wireless channel geometry compared to other

models. OTFS operates based on this model, offering a solution to the limitations of

multicarrier techniques over double dispersive channels by transforming the multipath

channel into a sparser, slowly time-varying channel. Unlike OFDM, which modulates

data in the time-frequency domain, OTFS modulates data in the delay-Doppler domain,

to take the advantage of the channel model in this domain.

2.6.1 System Model

We consider an OTFS frame with M number of sub-carriers, each has ∆f bandwidth,

and N number of symbols each has T duration. OTFS system has a total bandwidth

of B = M∆f and total duration of Ts = NT . OTFS frame contains NM information

symbols taken from a modulation alphabet (e.g., QAM), which are placed in the delay-

Doppler domain matrix XDD[m,n].

There are two ways to implement OTFS modulation. One way is to implement OTFS

directly in delay-Doppler domain via Zak Transform (ZT)/Inverse Zak Transform (IDZT),

as seen in Figure 2.7 [49]–[51]. IDZT is the composition of ISFFT and IFFT. In this

approach the information symbols XDD[m,n] are transformed directly to the time domain

to get continuous signal x(t) using the IDZT. The signal is transmitted into the double

selective channel to get y(t) signal at the receiver. Then we get YDD[m,n] in the

delay-Doppler domain.
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Inverse ZAK
Transform

C
hannel

ZAK
Transform

XDD(m,n) x(t)

y(t)

YDD(m,n)

Figure 2.7: OTFS modulation implementation, direct approach

The second way is two-step approach via the time-frequency domain, as illustrated

in Figure 2.8 [37], [48]. The idea is to map the information symbols XDD[m,n] in the

delay–Doppler domain to symbols XTF[k, l] in the time–frequency domain using the

ISFFT. Then, the Heisenberg transform is applied to XTF[k, l] to create the time domain

signal x(t). After passing through the channel, at the receiver, the time-domain signal

y(t) is mapped to the time–frequency domain through the Wigner transform, and then

to the delay–Doppler domain using SFFT for symbol demodulation.
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ISFFT
and Windowing

Heisenberg
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XDD(m,n) XTF(k, l) x(t)
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YTF(k, l)YDD(m,n)

Figure 2.8: OTFS modulation implementation, two-step approach

The second approach has been widely considered in the literature, because it operates

like pre-processing and post-processing in existing OFDM systems. More in details,

the Heisenberg transform can be implemented by applying the conventional OFDM

modulator which is IFFT module. And the Wigner transform can be implemented using

the conventional OFDM demodulator through the FFT module [52], [53].

2.6.2 OTFS Transmitter

At the transmitter, the MN data symbols from a conventional modulation alphabet, like

Quadrature amplitude modulation (QAM), are placed in the delay-Doppler domain matrix

XDD ∈ CM×N with entries XDD[m,n], for m = 0, · · · ,M − 1, n = 0, · · · , N − 1. They

are transmitted in a packet with duration of NT in a bandwidth of M∆f . The delay-

Doppler samples XDD[m,n] are mapped to time-frequency domain samples XTF[k, l],

for k = 0, · · · ,M − 1, l = 0, · · · , N − 1 by using ISFFT as:

XTF[k, l] =
1√
NM

N−1∑
n=0

M−1∑
m=0

XDD[m,n]ej2π(
nl
N
−mk

M ). (2.21)

As discussed in 2.4.4, ISFFT in (2.21) can be implemented using M -point Discrete

Fourier Transform (DFT) on the columns of XDD and N -point Inverse Discrete Fourier
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Transform (IDFT) on the rows of XDD. The equivalent matrix representation of (2.21)

can be written as:

XTF = FMXDDF
H
N. (2.22)

Next, the Heisenberg transform is applied to XTF[k, l] to create the time domain OTFS

signal x(t) transmitted over the wireless channel.

x(t) =
M−1∑
k=0

N−1∑
l=0

XTF[l, k]gtx(t− lT )ej2πk∆f(t−lT ), (2.23)

where gtx(t) is the pulse shaping waveform of duration T at the transmitter. In the matrix

form we have:

XTD = GtxF
H
MXTF (2.24)

where XTD ∈ CM×N is the matrix containing the delay-time samples, and Gtx is the

matrix containing samples of gtx(t) as its elements:

Gtx = diag [gtx(0), gtx(T/M), . . . , gtx((M − 1)T/M)] ∈ CM×M .

The Heisenberg transform in (2.23) works similarly to the OFDM transformation, which

is equivalent to M -point IFFT of the columns of XTF. The steps in (2.21) and (2.23)

together constitute the OFDM-based OTFS modulation system, as seen in Figure 2.8.

Remark that in this work, we assume a rectangular pulse i.e:

gtx(t) =

{
1 if 0 ≤ t ≤ T

0 otherwise,
(2.25)

therefore, Gtx becomes an M ×M identity matrix, i.e. Gtx = IM .

By considering the rectangular pulse shape at the transmitter, (2.22) and (2.24), the

time-domain transmit sample matrix can be obtained by:

XTD = IMFH
MFMXDDF

H
N = XDDF

H
N (2.26)

The (2.26) is equivalent to an IDZT. As illustrated in Figure 2.7, in the direct approach of

OTFS, the blocks ISFFT and Heisenberg transform together represent the Zak-transform,

which converts the two-dimensional information symbols to time-domain transmit signal.
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Then, the time-domain vector s ∈ CMN×1 is obtained by vectorization of X:

s = vec(XTD) (2.27)

2.6.3 Wireless Channel

The signal x(t) is transmitted over a doubly selective channel. Ignoring the noise

component, the received signal y(t) in time domain is given by (recall from (2.7)):

y(t) =

∫∫
hDD(τ, ν)e

j2πν(t−τi)x(t− τ)dτdν

=

∫
hTD(t, τ)x(t− τ)dτ.

(2.28)

Considering a limited number of reflectors within the channel, characterized by P paths,

each associated with delays τi, Doppler shifts νi, and gains hi, delay-Doppler channel

response hDD(τ, ν) is represented as:

hDD(τ, ν) =
P∑
i=1

hiδ (τ − τi) δ (ν − νi) , (2.29)

while the delay-time channel response, obtained as the Fourier transform of hDD(τ, ν)

with respect to ν, is given by:

hTD(t, τ) =
P∑
i=1

hie
ȷ2πνi(t−τi)δ(τ − τi). (2.30)

By sampling y(t) at t =
qT

M
with q = 0, . . . , NM − 1, and τ =

l

M∆f
, the signal y(t) is

transformed into:

y[q] =
P∑
i=1

hi e
j2π

ki
NT (

qT
M

− liT

M )︸ ︷︷ ︸
Doppler

x [q − li]︸ ︷︷ ︸
Delay

. (2.31)

It is worth noting that the term e
−ȷ2πkili

NM in the above equation, representing a constant

phase shift, can be absorbed into the channel coefficient hi. This equation can be

reformulated in vector form as:

y = Hx+w, (2.32)
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where H is the MN ×MN matrix:

H =
P∑
i=1

hiΠ
li∆ki , (2.33)

with Π the permutation matrix (forward cyclic shift),

Π =


0 · · · 0 1

1
. . . 0 0

... . . . . . . ...
0 · · · 1 0


MN×MN

, (2.34)

and ∆ is the MN ×MN diagonal matrix:

∆(ki) =


e

j2πki(0)

MN 0 · · · 0

0 e
j2πki(1)

MN · · · 0
... . . . · · · ...

0 0 · · · e
j2πki(MN−1)

MN


MN×MN

, (2.35)

both Π and ∆(ki) are explained in details in [54].

Furthermore, it is advantageous to represent hTD(t, τ) in (2.30) in discrete form here,

as it will be utilized in subsequent chapters. According to the above sampling process,

the discrete delay-time channel response can be derived as:

hTD[q, l] =
P∑
i=1

hie
2ȷπ
MN

ki(q−li)δ [l − li] . (2.36)

2.6.4 OTFS Receiver

Let y(t) be the time domain received signal at the receiver. First, the Wigner transform

is used at the receiver side to transform the time domain received signal y(t) to time-

frequency domain signal YTF[l, k], by matching it with the receiver pulse shaping

waveform gyx(t), i.e:

Y (t, f) =

∫
r(t′)g∗yx(t

′ − t)e−ȷ2πf(t′−t)dt′

Ytf [l, k] = Y (t, f)|t=lT,f=k∆f .

(2.37)
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The Wigner transform works similarly to the OFDM demodulation, so the (2.37) can be

considered as FFT operation. The (2.37) can be written as matrix form:

YTF = FMGyxYTD, (2.38)

where Gyx is the receiver pulse shaping matrix, YTD is the matrix containing MN

delay-time received samples.

Next step is to apply SFFT on the time-frequency signal YTF[l, k] to obtain the delay-

Doppler signal YDD[m,n] as:

YDD[m,n] =
1√
NM

M−1∑
k=0

N−1∑
l=0

YTF[k, l]e
−ȷ2π(nl

N
−mk

M ). (2.39)

In the matrix form, the (2.39) can be written as:

YDD = FH
MYTFFN . (2.40)

Similar to transmitter side, for rectangular pulse shaping waveform Gyx = IM , substituting

(2.38) in (2.40) gives:

YDD = YTDFN . (2.41)

The (2.41) is equivalent to ZT as shown in Figure 2.7. In direct approach of OTFS, the

blocks Wigner transform and SFFT together constitutes the IDZT, which converts the

received time domain signal to two-dimensional received symbols in the delay–Doppler

domain.

2.6.5 OTFS input-output relation

In the case of having ideal pulses gtx and grx as defined in (2.25), input-output relation-

ship in the time-frequency domain is: [35], [48]

YTF[k, l] = HTF[k, l]XTF[k, l]. (2.42)

Bentolhoda KAZEMZADEH OSGOEI| Thèse de doctorat | Université de Limoges

Licence CC BY-NC-ND 3.0

52



Chapitre 2 – CHAPTER 2. WIRELESS CHANNEL BACKGROUND

The element-wise product in (2.42) is transformed to the circular convolution of the

channel and transmitted symbols in the delay-Doppler domain through SFFT:

YDD[m,n] = HDD[m,n]⊛XDD[m,n]

=
P∑
i=1

hiXDD [[m− li]M , [n− ki]N ] .
(2.43)

It is worth mentioning that the (2.43) is valid only for the ideal pulse waveform. In the

practical cases and non-ideal pulses, the 2D circular convolution is twisted due to the

phase rotations exp
(

ȷ2πki(m−li)
MN

)
as:

YDD[m,n] =
P∑
i=1

e
ȷ2πki(m−li)

MN hiXDD [[m− li]M , [n− ki]N ] . (2.44)

For the non-ideal pulses which does not hold bi-orthogonality, there is energy leakage

outside the time-frequency resources which can lead to the fractional Doppler case.

However, this effect can be reduced by choosing the narrow pulses at the cost of

decreasing the time-frequency resource efficiency [55].

2.6.6 OTFS Variants

The OTFS frame comprises MN samples, which are divided into N time slots or blocks,

each containing M samples. To mitigate interference between the frames, a guard

interval equal to or greater than the maximum channel delay spread lmax should be

included in the form of either CP or Zero Padding (ZP). Various OTFS frame structures

exist with regard to the insertion of CP or ZP, as well as adding the guard to the frame

or block of OTFS.

• Reduced ZP-OTFS or RZP-OTFS : In this structure, a single ZP of length LZP ≥
lmax appends to the OTFS frame, seen in Figure 2.9.
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delay

XTD

time0 N − 1

0

M − 1

parallel/serial

block #0

M

block #1

M

block # N-1

M LZP

s = vec(XTD)

time

Figure 2.9: RZP-OTFS structure of OTFS time domain signal; , : data and : LZP

• Reduced CP-OTFS or RCP-OTFS : In this structure, a single CP of length

LCP ≥ lmax prepends to the OTFS frame, seen in Figure 2.10.

delay

XTD

time0 N − 1

0

M − 1

parallel/serial

block #0

M

block #1

M

block #N-1

MLCP

s = vec(XTD)

time

Figure 2.10: RCP-OTFS structure of OTFS time domain signal; , : data and : LCP
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• ZP-OTFS : In this structure, a ZP of length LZP ≥ lmax appends to each block of

an OTFS frame, seen in Figure 2.11.

delay

XTD

time0 N − 1

0

M − 1

parallel/serial

LZP

M M M

LZP LZP LZPs = vec(XTD)

time

Figure 2.11: ZP-OTFS structure of OTFS time domain signal; , : data and : LZP

• CP-OTFS : In this structure, a CP of length LCP ≥ lmax appends to each block of

an OTFS frame, seen in Figure 2.12.
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delay

XTD

time0 N − 1
0

M − 1

parallel/serial

M

LCP

M M

LCP LCP LCPs = vec(XTD)

time

Figure 2.12: CP-OTFS structure of OTFS time domain signal; , : data and : LCP

In Table 2.1, we compare the different variants of OTFS, in terms of Normalized Spectral

Efficiency (NSE) and the transmit power, Ptr Noted that, Es is defined as an average

symbol energy of the modulation alphabets utilized in an OTFS frame. From the

Table 2.1 we conclude that, RZP/RCP-OTFS has higher NSE compared to the ZP/CP-

OTFS variants due to the insertion of ZP/CP per frame. In terms of transmit power, it

is obvious that ZP/RZP-OTFS has minimum required power compared to others, and

CP-OTFS requires more power due to the LCP additional guard samples are transmitted

per block.
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Table 2.1: Comparison of OTFS variants in terms of spectral efficiency and transmit power.

Normalized spectral efficiency (NSE) transmit power (Ptr)

CP
M

M + LCP

N(M + LCP )Es

ZP
MN

MN + LZP

NMEs

RCP
MN

MN + LCP

(NM + LCP )Es

RZP
MN

MN + LZP

NMEs

2.7 Summary

In this chapter, we provided a comprehensive background on LTV channels. We ex-

amined the signal distortions at the receiver caused by channel impairments such as

large-scale fading, multipath effects, and the Doppler effect. Additionally, we introduced

various representation domains of LTV channel, including time-delay, time-frequency,

and delay-Doppler domains, and discussed the relationships between them. We re-

viewed the OFDM modulation technique operating in the time-frequency grid and high-

lighted some of the challenges of using OFDM in high-mobility LTV channels. Following

this, we introduced OTFS, a newly proposed modulation technique that operates in the

delay-Doppler domain and shows promise for high-mobility scenarios. Furthermore, we

explored different variants of the OTFS system and compared them in terms of spectral

efficiency and transmit power.
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THE main aim of this chapter is to thoroughly explore the characteristics of the

transmission channel in ultra-high-speed, tube-transportation systems such as TransPod

[4], [6], [7]. We specifically examine both large-scale and small-scale characteristics.

Additionally, we analyze how noise from the plasma power transmission system affects

the communication system inside the guideway [56]. We also briefly discuss about the

coding techniques to mitigate the impulsive noise effects.

3.1 Introduction

In the world of next-generation wireless systems, one of the key objectives is to support

high-mobility scenarios, especially with the rapid evolution of transportation technolo-

gies. The tube-transportation system is a standout example, representing a significant

advancement in ultra-high-speed rail technology. Unlike traditional high-speed trains

with wheels, this system operates in a fundamentally different way [57]. The system

offers significantly higher speeds while also posing unique challenges for wireless

communication that require careful consideration. The special features, such as ultra-

high-speed and a metal tube, highlight the need for reliable wireless communication

in this environment [58]. To design wireless communication systems, it’s crucial to

understand the characteristics of the channel inside the tube and how signals behave

when moving through it [59].

Channel models can be categorized primarily into empirical and theoretical models [60].
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An empirical model relies on real-world data and observations instead of theoretical

assumptions, developed through measurements and experiments. The accuracy of

empirical models depends on how closely the estimated model parameters match the

application environment [61]–[63]. The current theoretical approaches can be classi-

fied as the stochastic [64] and deterministic channel models [65], [66]. Deterministic

models, on the other hand, use mathematical equations and parameters to describe the

channel without considering uncertainties, offering a more predictable representation.

In deterministic models, propagation mechanisms like reflection, absorption, diffraction,

and refraction are applied to determine received signal strength. Deterministic channel

models are further subdivided into numerical methods for solving Maxwell’s equations,

waveguide-based models [67], [68], the graph-based models [69], and ray tracing chan-

nel models [70]. Maxwell’s equations mathematically describe electromagnetic field

interactions, requiring detailed knowledge of physical object properties. Graph models

can achieve a high modeling accuracy at a low computational cost, considering the

infinite reverberation effect of electromagnetic waves [71], [72]. Ray tracing is commonly

used in wireless communications, capturing crucial parameters such as Delay spread,

Coherence bandwidth, Coherence time, and Doppler spread, along with obtaining the

channel transfer function. This model is performed by tracing the path of the waves emit-

ted from the transmitter and reach at the receiver. The waves include direct, reflected or

scattered rays. The goal is to compute the number of valid rays at the receiver and to

calculate the strengths of the waves to find out the path loss, total received power and

channel transfer function [73]–[75].

In our study, the tube functions as a deterministic propagation environment with fixed

dimensions. To advance towards our ultimate goal of employing the delay-Doppler

representation of the channel in OTFS modulation, which closely corresponds to the

physical geometric parameters of the environment, we utilize the ray tracing method.

This enables us to establish a deterministic model of the wireless channel within the

tube. This chapter outlines the construction of a 2D ray-tracing channel model, which

incorporates both LOS and reflected paths, i.e. Non-Line-of-Sight (NLOS). Various

properties such as reflection coefficients and incident phase which are influenced by the

material dielectric constant in the environment, are also considered. With this model, we

derive the channel impulse response and proceed to analyze both large-scale fading,
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such as path loss, and small-scale fading characteristics, like delay spread and Doppler

spread.

3.2 Ray Tracing in a Tube Transportation System

In our study, we utilize a model based on 2D ray-tracing technique to analyze and predict

the propagation of communication signals within a tube-like environment. The tube is

made of metal. This model, visually represented in Figure 3.1, provides a framework for

analyzing signal transmission in a tube characterized by its length D and radius r1. In

the system, transmitters are placed along the inner wall of the tube, while a receiver is

positioned on top or at the front of a train moving through the tube at a velocity v with

radius r2. Our approach evaluates all potential signal paths from the transmitters to the

receiver, including both LOS and NLOS paths, where the signals bounce off the walls of

the tube before reaching the receiver.

Tx

Rxr1

r2

D

ϕi
ith

NLOS path

LOS path

y

z

x

Figure 3.1

However, we only consider indirect paths whose signal strength doesn’t drop below a

certain level after bouncing around. The time-frequency channel impulse response is
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described by the following equation [25], [26]:

H(t, f) = h0e
2ȷπν0te−2ȷπτ0f +

P∑
i=1

hie
2ȷπνite−2ȷπτif , (3.1)

in this equation, h0 signifies the gain for the direct path, τ0 =
D0

c
denotes the propagation

delay from the transmitter to the receiver with the direct path distance D0, and ν0

represents the Doppler shift of the LOS path. The equation also includes hi, representing

the gain of each NLOS path, τi and νi, denoting their delay and Doppler shift, respectively.

The delay for each NLOS path is computed relative to the LOS path delay, using the LOS

path as a reference. Specifically, for a path with length Di, the delay is τi =
Di −D0

c
,

and the Doppler shift is νi =
vϕi

λ
=

fcvϕi

c
, where c, v, λ, ϕi, and fc are the speed of light,

relative speed of transmitter and receiver, wavelength, arrival angle, and the carrier

frequency, respectively. The gain of LOS path, P0 is calculated using the Friis formula:

P0 = Gt0Gr0

(
λ

4πD0

)2

, (3.2)

where Gt0 is the transmitter antenna gain corresponding to the LOS path, and Gr0 is the

receiver antenna gain associated with the LOS. Each NLOS path comprises reflections

ranging from one to R. The power gain of these paths is determined as [29]:

Pi = GtiGri

(
λ
∏R

r=1 Γ(θr)

4πDi

)2

, (3.3)

where Gti and Gri represent the transmitter and receiver antenna gain associated with

ith path, respectively. Γ represents the reflection coefficient of the surface, and θr

signifies the incident angle of the rth reflection component of ith NLOS path [29], [76],

[77].

Once the power gain for each path is computed, the channel coefficients are generated.

These coefficients are modeled as complex Gaussian random variables with a variance

equal to the power gain of each path.

The reflection coefficient is defined as the ratio of the amplitude of the reflected wave

(Ar) to the amplitude of the incident wave (Ai), Γ =
Ar

Ai

[78]–[80]. In our study, the tube
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is made of carbon steel. Metals are characterized by their high electrical conductivity,

which significantly impacts how electromagnetic waves interact with them [81], [82].

When an electromagnetic wave encounters a metal surface, a significant portion of the

wave is reflected and very little of the wave penetrates the metal. The absorbed part

quickly attenuates due to the metal’s high conductivity, which leads to the energy of the

wave being absorbed and converted into heat. The reflection coefficient can range in

magnitude from 0 to 1. For metals, the reflection coefficient is typically close to 1 due

to the high reflection. From the S-parameters point of view, the reflection coefficient

is directly related to S11, which quantifies what portion of an incoming electromagnetic

wave is reflected by the surface it encounters [83]. In the following, we will first examine

the TransPod system as one of the tube-transportation systems and then evaluate our

2D ray-tracing channel model, particularly based on the TransPod system.

3.3 TransPod System

FluxJet, seen in Figure 3.2, a fully electric vehicle which is capable of speeds over 1000

km/h, has been unveiled by TransPod [6], [7].

Figure 3.2: FluxJet vehicle inside a tube in TransPod line.

The infrastructure is a tube or guideway that allows multiple FluxJet vehicles to travel,

Bentolhoda KAZEMZADEH OSGOEI| Thèse de doctorat | Université de Limoges

Licence CC BY-NC-ND 3.0

64



Chapitre 3 – CHAPTER 3. CHANNEL CHARACTERISTICS OF TUBE
TRANSPORTATION ULTRA HIGH SPEED SYSTEMS

using electrically-powered propulsion. FluxJet is somewhat like an aircraft without

wings [6]. The technology includes plasma-based power transmission [56], magnetic

propulsion [84], [85], and veillance flux [86]–[88], as illustrated in Figure 3.3. The FluxJet

operates on a patented plasma-based high-speed power transmission system [7], [56].

Levitation

Propulsion
Contactless power transmission

Figure 3.3: FluxJet main technologies

In more detail, the FluxJet is a contactless EMV (Electric, Magnetic, Veillance) vehicle

that uses electric flux, magnetic flux, and veillance flux for power, propulsion, and control,

without any contact between the vehicle and the guideway [7]. Plasma carries electric

current to the vehicle without contact. The plasma is generated and controlled by power

pickup systems on the vehicle, ensuring current flows across a contactless gap to deliver

power from the grid to the vehicle [56]. The vehicle is then levitated and propelled using

magnetic fields. Linear motors and power inverters on the vehicle create magnetic fields

that move in a wave-like pattern, generating propulsive force through electromagnetic

induction [7], [84], [85]. Finally, the vehicle’s flight control system stabilizes motion in six

axes by adjusting the magnetic fields [84].

3.4 System Model

In this section, we evaluate the simulation outcomes for the ray-tracing propagation

channel model for the TransPod tube, as illustrated in Figure 3.4. The TransPod
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infrastructure consists of a cylindrical carbon steel tube with a diameter of 4 meters,

equipped with transmitters spaced every 700 meters along its length. Additionally, there

is a receiver positioned at the front of the FluxJet. The FluxJet, constructed of concrete,

has a diameter of 3.75 meters and can travel at speeds of up to 1000 km/h within the

tube. The system operates at a carrier frequency of fc with a bandwidth of 20 MHz. In

the subsequent analysis, we examine simulation results of the channel time-varying

impulse response, investigate path loss to understand the channel large-scale fading

characteristics, and explore small-scale fading, including delay and Doppler profile.

Rx Tx

Figure 3.4: Simplified model of the multipath channel inside the tube.

3.4.1 Path Loss

According to the discussions in section 3.2, we compute the power delay profile for each

path based on the path loss as: [77]

PL = −10 log10

(
Pr

Pt

)
= −10 log10


(

λ

4π

)2

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
Gt0Gr0

D0

+
P∑
i=1

GtiGriΓi exp

(
j2πfc(Di −D0)

c

)
Di

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2
.

(3.4)

Here, PL denotes the path loss in dB, Pt represents the transmitted power, Pr stands

for the received power at the receiver antenna. Γi denotes the total wall reflection

attenuation, which varies based on the number of reflections from the wall corresponding

to the ith path.

Given these configurations, detailed and complex computations are necessary due to

the high number of reflections inside the tube. Another group in TransPod was expected

to provide the precise channel model inclusive of all details; however, their input has

not materialized. Consequently, we are constrained to utilize a simplified model. This

simplified model considers a scenario where the transmitter Tx and receiver Rx are

spaced Ds meters apart along a line in the middle of the tube, aligned with the direction
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of movement, as illustrated in Figure 3.5. This simplified approach provides us with a

general understanding of the channel characteristics within the tube, facilitating further

exploration in wireless communication design.

Rx Tx

Figure 3.5: Simplified model of the multipath channel inside the tube.

According to (3.4), radio wave propagation and path loss depend on the signal fre-

quency, electromagnetic properties of walls, and the radiation patterns of the transmitter

and receiver antennas. In the following subsections, we explore the impact of these

parameters. Initially, we present the theoretical Free-Space Path Loss (FSPL) model

and compare it with the ray-tracing model of the tube. The calculation of FSPL, denoted

as PLFree, originates from the Friis transmission formula [29] and is computed as follows:

PLFree = −10 log10GtGr

(
λ

4πD0

)2

. (3.5)

For this discussion, we assume that both the transmitter and receiver use isotropic

antennas with gains Gt = Gr = 1, operating at a carrier frequency of 2.45 GHz, with a

reflection coefficient Γ = 0.9987. Figure 3.6 illustrates the path loss experienced as the

FluxJet traverses the tube from 0 to 1400 m, with the transmitter positioned at 700 m. In

the figure, the red curve represents the theoretical FSPL.
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Figure 3.6: Path loss in the TransPod tube.

Observations indicate that the path loss within the tube is lower compared to free space.

This difference is due to the reflections from the tube’s metal surface, which conserve

more energy during transmission than what is observed in free space. In free space,

the absence of NLOS paths results in path loss increasing directly with distance at a

fixed frequency. The blue curve, illustrating the path loss within the metal tube, shows

significant reflected components as the receiver approaches the transmitter. These

reflections due to the metal surface, help to minimize energy loss. However, as the

distance between the transmitter and receiver increases, the LOS path becomes the

dominant factor, leading to an increase in path loss proportional to the distance. An

additional observation is the effect of fluctuations in the path loss curve within the metal

tube which are attributed to multiple reflections from the metal walls.

In the following subsections, we analyze the effects of each parameter on path loss.
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• Carrier frequency: Figure 3.7 illustrates the path loss at different carrier frequen-

cies, as well as the FSPL models for those carrier frequencies. At each position,

the path loss is increasing with the frequency, and the path loss of simulation

results from the ray-tracing model, are lower than the result of FSPL.
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Figure 3.7: Path loss in the TransPod tube at the carrier frequencies 870 MHz MHz, 2.45 GHz,
and 4 GHz.

• Reflection coefficient: To examine the sensitivity of the model to variations in

the reflectivity of the surfaces, it is important to evaluate the reflection coefficients

for the different construction materials of the tube walls. Reflection coefficient can
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be calculated by Fresnel reflection equations [79], [80]:

Γ(θ) =
1

2


∣∣∣∣∣∣∣∣
n1 cos θ − n2

√
1−

(
n1

n2
sin θ

)2
n1 cos θ + n2

√
1−

(
n1

n2
sin θ

)2
∣∣∣∣∣∣∣∣
2

+

∣∣∣∣∣∣∣∣
n1

√
1−

(
n1

n2
sin θ

)2
− n2 cos θ

n1

√
1−

(
n1

n2
sin θ

)2
+ n2 cos θ

∣∣∣∣∣∣∣∣
2


(3.6)

where θ is the incoming angle relative to the surface normal, and n1 and n2 are the

indices of refraction of air/vacuum and material, respectively. For normal incidence

(θ = 0), the reflection coefficient Γ is simplified to:

Γ =

∣∣∣∣1− n

1 + n

∣∣∣∣2 , (3.7)

where n1 = 1 (the refractive index of the air/vacuum) and n2 = n (the refractive

index of the material).

In metals, the refractive index is a complex function of the frequency of the wave.

The complex refractive index n for an electromagnetic wave of angular frequency

ω in a metal is

n = n

√
1 + i

σ

εω
(3.8)

where ε is the permittivity (dielectric constant) and σ is the conductivity of the

material. The real part of the refractive index n is given by [89]:

n =
√
εrµr, (3.9)

where εr is the relative permittivity and µr is the relative permeability [90].

For good conductors like metals, the complex refractive index has a very large

imaginary part related to the conductivity and a comparatively insignificant real

part. Then, we can approximate the complex refractive index in (3.8) as:

n ≈ n

√
i
σ

εω
(3.10)

The reflection coefficient of metal for normal incidence can then be written as:

Γ =

∣∣∣∣1− n

1 + n

∣∣∣∣2 . (3.11)
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Substituting n in Γ gives:

Γ = 1− 2
1

n

√
2εω

σ
= 1− 2

√
2εε0ω

σεµr

= 1− 2

√
2ε0ω

σµr

(3.12)

which is the Hagen–Rubens relationship. This equation relates the reflection

coefficient to the conductivity of the metal and the frequency f [91]–[93]:

Γmetal = 1− 2

√
2ϵ02πf

σµr

, (3.13)

where ϵ0 = 8.85e−12 F/m denotes the vacuum electric permittivity, and µr is the

relative permeability. To evaluate the path loss with respect to the reflection

coefficient of the walls, we considered two different materials: carbon steel and

concrete. We calculate the reflection coefficient for each material. For carbon

steel walls, with σ = 6.99 × 106 and Relative Permeability µr = 5.9 × 106, the

reflection coefficient using (3.13) is obtained as Γcarbon steel = 0.9987. For concrete,

with ϵr = 5.31 and µr = 1, using (3.7), the reflection coefficient is computed as

Γconcrete = 0.155.

The simulations are conducted at a carrier frequency of 4 GHz. Figure 3.8

illustrates the path loss for each material. The results show that concrete walls

result in higher path loss compared to metal walls, likely due to concrete having

a higher attenuation factor, which absorbs more signal energy as it propagates

through the environment. In other words, the path loss for metal walls is lower

than that for concrete, due to metal’s highly reflective property, which reflects more

signal energy rather than absorbing it, thus maintaining a stronger signal strength

over distance. Another aspect of the simulations is that the path loss curve for

metal walls exhibits significant fluctuations compared to the concrete one, due to

the multiple reflections caused by the high reflectivity of metal.
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Figure 3.8: Path loss for different construction materials at 2.45 GHz.

• Antenna gain: Signal attenuation can be significantly influenced by the radiation

pattern of both the transmitting and receiving antennas. In the previous sections,

we considered isotropic antennas, which radiate uniformly in all directions. An

isotropic antenna is a theoretical reference antenna with a gain of 1 (or 0 dB).

However, real antennas are directional, meaning that they radiate more power

in certain directions than others. This directional behavior is quantified by the

antenna gain, which describes how much power is radiated in a particular direction

compared to an isotropic antenna [30], [94].
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Figure 3.9: Half-wave dipole antenna and 3D pattern
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Figure 3.10: Half-wave dipole antenna patterns

A commonly used type of antenna is the dipole antenna. There are several

types of dipole antennas such as horizontal dipole, half-wave dipole, and small

dipole. In this discussion, we focus on the half-wave dipole, which has a length

equal to half the wavelength of the frequency at which it operates. This dipole is
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placed vertically, as shown in Figure 3.9a. The antenna patterns are illustrated in

Figure 3.10. In Figure 3.10a, we can observe the elevation plane pattern, which

is the pattern seen in the yz plane or E-plane pattern and the electric field exists,

showing the field strength as a function of θ, measured in yz-plane, between the

z-axis and the radiation direction. In the azimuth plane or H-plane pattern, the

magnetic field exists, and showing the field strength as a function of ϕ, measured

in xy-plane from the x-axis, seen in Figure 3.10b.

From the azimuth pattern, we find that the antenna works equally well in a full

360 degrees around the antenna. This indicates that the azimuth plane pattern is

non-directional, meaning the antenna radiates its energy equally in all directions.

So the azimuth plane pattern is a circle, passing through the peak gain at all

angles. However, the radiation is directional in the E-plane, and this behavior can

be described mathematically [30], [95].

The gain of an antenna in a specific direction is defined as the ratio of the intensity

in that direction to the radiation intensity that would be obtained if the power

accepted by the antenna were radiated isotropically. Mathematically, the gain G(θ)

is given by [30], [95], [96]:

G(θ) =
4πr2U

Prad

(3.14)

where U s the radiation intensity, which can be obtained by multiplying the radiation

power density W by the square of the distance r:

U = r2W, (3.15)

and Prad is the total radiated power.

To calculate the power density, we need the electric and magnetic field values.

The power density is given by the Poynting vector, which is the cross product of

the electric field E and the magnetic field H:

W =
1

2
(E ×H∗) (3.16)

For a half-wavelength dipole, the electric and magnetic field components are given
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by:

Eθ ≃ jη
I0e

−jkr

2πr

[
cos
(
π
2
cos θ

)
sin θ

]

Hϕ ≃ j
I0e

−jkr

2πr

[
cos
(
π
2
cos θ

)
sin θ

]
.

(3.17)

where:

– η is the intrinsic impedance of the medium,

– I0 is the current at the feed point,

– k is the wave number,

– r is the distance from the antenna.

The power density is then:

W = η
|I0|2

8π2r2

[
cos
(
π
2
cos θ

)
sin θ

]2
≃ η

|I0|2

8π2r2
sin3 θ (3.18)

The total power radiated prad can be obtained by integrating the radiation intensity

over a sphere of radius r:

Prad =

∫ 2π

0

∫ π

0

U sin θdθdϕ. (3.19)

substituting (3.18) and (3.19) into the gain formula in (3.14), we get:

G(θ) = 1.64

[
cos
(
π
2
cos θ

)
sin θ

]2
≃ 1.64 sin3 θ. (3.20)

The equation shows how the radiation pattern of the half-wavelength dipole is

shaped based on the angle θ. Figure 3.11 presents simulation results comparing

the performance of an isotropic antenna with unity gain Gt = Gr = 1 against that

of a half-wave dipole antenna at both the transmitter and receiver, each with a

maximum gain of 1.64. The carrier frequency utilized is 4 GHz, with a reflection

coefficient of 0.998, corresponding to the material properties of the carbon steel

tube. The findings indicate a reduction in path loss when employing the half-wave
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dipole antenna compared to the isotropic antenna. The higher gain of the half-

wave dipole means more energy is directed in a specific direction. This does

not change the physical path loss but improves the effective received power by

focusing the energy, thereby reducing the effective path loss.

0   200 400 600 800 1000 1200 1400

FluxJet position (m)

50

60

70

80

90

100

P
at

h
 l

o
ss

 (
d

B
)

Isotropic antenna

Dipole antenna

Figure 3.11: Path loss for isotropic and directive antenna.

In more details, at long distances between the transmitter and receiver within the

tube, the angle of arrival of many reflected paths at the receiver tends to be very

close, causing these paths to effectively contribute to a single resolvable path.

When using a high-gain antenna, the focused energy is directed along the main

lobe of the antenna radiation pattern, which aligns with the direct path in the tube,

increasing the power density along the LOS path. This concentration of power

results in a stronger signal, even if the number of multipath reflections remains

similar.
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At shorter distances, some reflected paths might fall outside the antenna effective

range due to the steep angles of arrival, but the direct path remains highly efficient

due to the increased gain. Therefore, the high-gain antenna performs better than

an isotropic antenna, as it directs more power towards the receiver, results in

higher signal strength and lower path loss.

3.4.2 Delay spread

The channel inside the tube presents dispersion in time due to the multipath effect. In

this section, we analyze the delay spread characteristics of the channel. Figure 3.12

shows the delay spread vs the transmitter-receiver distance. Initially, in very closed

areas, LOS propagation is dominant. As the distance increases, the number of multipath

changes frequently, leading to an increase in delay spread. When the number of paths

remains constant, there is a decreasing trend in delay spread, until the addition of

further multipath component. This pattern persists until approximately 100 meters.

However, beyond this point, for longer distances, there are no new paths added, and

there is a decreasing trend in the curve. This is because many of the reflected paths

arrive from directions that are close to each other, making the differences in their arrival

times smaller. Consequently, the delay spread decreases. The addition of new paths

does not significantly augment the delay spread, resulting in a continued decrease in

the curve. Most signals experience very close delay times, and increasing the number

of paths has minimal impact since they mostly fall within one resolvable path. This

phenomenon can be explained due to the confined diameter of the tube and the minimal

gap between the vehicle and the tube. In the Figure 3.12, the points with the same color

represent the paths within one resolvable path.
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Figure 3.12: Delay spread for different Tx-Rx distances.

3.4.3 Doppler spread

In this section, we analyze the Doppler effect caused by the movement of the FluxJet

inside the tube. The Doppler effect is characterized by the Doppler spread, which

measures the dispersion of the channel in frequency. The instantaneous Doppler shift ν

depends on the wavelength λ, the relative speed v of the FluxJet with respect to the

tube, and the angle of arrival θ. It is expressed as:

ν =
vϕ

λ
. (3.21)

Figure 3.13 demonstrates the Doppler shift characteristics for both LOS and NLOS

components as the distance between the transmitter and receiver increases. As shown

in Figure 3.13, the movement of the FluxJet causes the receiver to move away from the

transmitter. At shorter distances, the angle of arrival of multipath reflections results in

varying Doppler shifts for different paths. This is indicated by the different colors on the

curve, representing different Doppler shift values or intensities. Conversely, at longer

distances, despite the presence of more multipath components, the tube’s geometry
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causes reflected waves to reach the receiver at nearly identical angles. This results in

minimal variation in Doppler shift values, represented on the curve as a homogeneous

area with uniform intensity and color.

Figure 3.14 illustrates the Doppler characteristics observed at various positions of the

FluxJet as it quickly approaches the transmitter and passes by it. The Doppler spectrum

exhibits a centrally symmetric shape, with the point of symmetry located at the midpoint.

The primary variation in the spectrum resembles a Z shape, featuring a turning angle

close to 90◦. Additionally, the Doppler spectrum exhibits a sharp transition from its

maximum to minimum value as the train passes the transmitter. This phenomenon is

due to the short distance between the FluxJet and the tube.

Figure 3.13: Doppler spectrum for different Tx-Rx distances.
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Figure 3.14: Doppler spectrum for different Tx-Rx distances.

3.4.4 Power-delay-Doppler profile

According to the previous position-based results, the propagation characteristics of

the TransPod channel vary depending on the distance between the transmitter and

the receiver, Ds. When the distance is large, the dominant propagation resolvable

component is the LOS path, and the number of resolvable paths is minimal. Due to

the small diameter of the tube compared to the distance, the multipath components

experience similar Doppler shifts, as they reach the receiver at approximately the same

angle. On the contrary, as the distance decreases, the propagation characteristics

change. In addition to the LOS path, multiple reflections and multipath components

become more significant. Each reflection introduces a unique angle of arrival at the

receiver, leading to different Doppler shifts for each multipath component. To qualitatively

visualize the channel at each transmitter-receiver distance, we create scatter plots,

where the color intensity at each point represents the power of the path received at the

receiver. These scatter plots effectively illustrate the distribution of delay and Doppler

as the vehicle moves inside the tube, with varying transmitter-receiver distances. The

scatter plots in Figure 3.15 shows the power-delay-Doppler profiles for three distances
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between the transmitter and receiver 10m, 80m, and 700m, respectively. For shorter

distances, as depicted in Figure 3.15a, the diversity in angles of arrival results in a

broader dispersion of Doppler and delay effects. This diversity introduces more complex

channel conditions, where the power of the received signals is spread across multiple

paths. Each of these paths is characterized by different delays and Doppler shifts,

alongside varying time and frequency properties. Conversely, at longer distances, such

as in the scenario depicted in Figure 3.15c, the plot demonstrates a channel with a

short delay spread, where paths exhibit nearly identical Doppler shifts. This is due to the

geometry and reflective characteristics of the tube, which result in a relatively constant

angle of arrival for NLOS paths, thus minimizing the variability in Doppler shifts. At a

moderate distance of 80 meters, as illustrated in Figure 3.15b, the LOS component

continues to be a major factor, but the effects of multipath reflections are becoming

more evident.
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Figure 3.15: Power-Delay-Doppler profiles for different transmitter-receiver distances: (a) 10m,
(b) 80m, (c) 700m

3.4.5 Time-Frequency Transfer Function

We rewrite the time-varying transfer function in (3.1) as:

H(t, f) =
P∑
i=0

hie
2ȷπfcvϕi

c
te

−2ȷπDi
c

f . (3.22)

This expression represents the channel’s complex attenuation factors hi at time t and

frequency f . Figure 3.16 illustrates the time-frequency transfer function of the system
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as the FluxJet moves towards the transmitter at a constant speed of 1000 km/h. The

function shows fluctuations in both time and frequency, reflecting the time dispersion

that corresponds to frequency selectivity and the frequency dispersion that corresponds

to time selectivity.

Figure 3.16: Time-frequency transfer function H(t, f)

3.5 Plasma-based Power Transmission System

In section 3.3, we introduced the FluxJet main technologies including levitation, propul-

sion, and plasma-based power transmission system. The power transmission system

consists of two track electrodes, mounted to the inner surface of the low-pressure tube,

and two vehicle electrodes attached to the vehicle structure through actuators. Actuators

are designed to maintain the relative position between tube electrodes and the vehicle

electrodes as the vehicle moves through the tube. To electrically connect the vehicle and
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Figure 3.17: FluxJet power transmission schematic.

the infrastructure, a plasma state of matter is initiated and maintained between vehicle

and tube electrodes [7]. The system could function in AC or DC modes. Regardless

of the mode in question, a free-burning plasma arc is formed between electrodes and

powering all the internal systems. The FluxJet power transmission schematic is illus-

trated in Figure 3.17. We set up some experiments to verify the high-speed operation of

a plasma-based power transmission. These measurements replicated the conditions of

(a) high altitude, low-pressure environment, (b) high-velocity motion, and (c) high electric

field. The experiments were performed using a vacuum chamber and pressure control

system, along with a custom-built high-voltage power system which was designed

with a multiplexer circuit to control and maintain plasma. The high-voltage power and

monitoring signals were delivered into the vacuum environment using an epoxy-sealed

penetration [7]. A robotic arm was installed to remotely manipulate an electrode, which

carried plasma through to a motorized rotating disc, controlled by a 3-phase inverter

and electronic speed controller [7]. High-voltage signals were measured and recorded

and we use a sample of these measured signals.

3.6 Impulsive Noise

The plasma arc discharge from the power transmission system of TransPod, could

become a source of electromagnetic noise. By analyzing the measured data, we

observe that the instantaneous noise variance is correlated with the current, which

is drawn in the plasma arc discharge. It means that a signal at the receiver can be

contaminated by a kind of impulsive noise. Impulsive noise is characterized by the

probabilities of short duration and high amplitude pulses that is much greater than usual
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peaks of data. Since the power transmission system and communication system will

exist in the same environment inside a metal guideway isolated from the outside world,

it is important to make the communication system resilient to this interference, seen in

Figure 3.18. Impulsive noise has a significant impact in many communication settings,

as recent literature points out: power-line communications [97], digital subscriber loop

[98], wireless networks and OFDM [99], wireless sensor networks [100], acoustic

communication [101], and different vehicular communications scenarios [102].

Plasma tail

Rx
Tx

Figure 3.18: Schematic of the TransPod system with the plasma-based power transmission
system and transmitter/receiver inside the steel tube.

Impulsive noise lowers the quality of received signals across a broad frequency range

during short periods. This type of noise appears as a sequence of pulses, each

occurring at random intervals and lasting for random duration. These noisy bursts can

seriously corrupt the received signal. In this work, we aim to develop a mathematical

model for this impulsive noise originating from plasma sources. Commonly used models

for impulsive noise without memory include the Middleton Class A [103] and Bernoulli

Gaussian [104]. Models that incorporate memory, such as the Markov Middleton [105]

and Markov-Gaussian [106], are also considered. Since we’re focusing on plasma as

the primary source of impulsive noise, we employ a two-state Markov-Gaussian model in

our analysis [107]. A detailed description of this model is presented in the next section.

3.6.1 Two-state Markov-Gaussian Model

The two-state Markov-Gaussian model was introduced by Fertonani [106]. In this model,

we define a set of real-valued noise samples {Xk, k = 1, 2, 3, .., K} [108], [109]. The

statistical properties of the noise samples are completely described by states sk ∈ G,B.

In state G, there’s no impulsive noise, and the transmitted signal is only affected by
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background Gaussian noise. State B indicates impulsive noise presence, additionally

affecting the transmitted signal. Given sk, the Probability Density Function (PDF) of Xk

are Gaussian distributions [110]:

p (Xk | sk = G) =
1√
2πσ2

G

exp

(
− X2

k

2σ2
G

)
p (Xk | sk = B) =

1√
2πσ2

B

exp

(
− X2

k

2σ2
B

)
,

(3.23)

where σ2
G represents the average noise power of the "good channel", and σ2

B represents

the average noise power of the "bad channel". The noise is characterized by the state

process sK = {s0, s1, . . . , sK−1} , a stationary first-order Markov process:

p
(
sK+1

)
= p (s0)

K∏
k=0

p (sk+1 | sk) . (3.24)

The state process is described by state transition probabilities psksk+1
= p (sk+1 | sk).

Stationary probabilities of being in states G and B, i.e., pG and pB, are respectively

obtained as [110]:
pG = p (sk = G) =

pBG

pGB + pBG

pB = p (sk = B) =
pGB

pGB + pBG

,
(3.25)

where pBG denotes the transition probability from state B to state G, and pGB is the

transition probability from G to B. Hence, we can fully describe the noise using transition

probabilities pGB and pBG. A two-state Markov process can be illustrated by a Markov

chain with two states, as shown in Figure 3.19 [111], [112].

G B

PGB

PBG

PGG PBB

Figure 3.19: Markov chain representation with two states G and B and transition probabilities.
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3.6.2 Noise Measurements

The electrical current recorded from the plasma arc discharge are categorized according

to the spacing between the vehicle electrodes and tube electrodes, as illustrated in

Figure 3.20. Our objective is to first analyze this recorded data and secondly develop

a model for the impulsive noise. Statistical parameters such as mean and variance

metrics are employed for this purpose, as they effectively characterize the noisy the

noise statistics [22].
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Figure 3.20: Plasma arc current during a system transient at various electrode separations.

3.6.3 Data Analysis

To evaluate the measured data, we model the impulsive noise as a series of pulses,

where the intervals between successive pulses and the duration of each pulse are
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treated as stochastic variables. We introduce two key variables, termed as Pulse Distance,

PD, which measures the gap between consecutive pulses, and Pulse Width, PW , which

measures the length of each pulse.

The initial step in interpreting the noisy signal involves the detection of impulsive events

and determining their time boundaries within the signal. This is done by comparing a

moving average of the signal amplitude with a predefined threshold [109]. A pulse is

identified when the amplitude of the moving average surpasses this threshold, and it

concludes when the amplitude drops back below it. After constructing the sequence

of pulses from the recorded signal, we calculate the statistical measures µPD
and

σ2
PD

for the intervals between pulses, and µPW
and σ2

PW
for the duration of the pulses,

representing their mean and variance respectively. The recorded data are presented in

this section. The y coordinate of the plots are normalized between 0 and 1. For three

different distances of 1mm, 3mm, and 6mm between the electrodes, the measured

current signals corresponding to the plasma arc discharge are plotted in Figure 3.21,

Figure 3.22, and Figure 3.23, respectively. The blue line in the figures represents the

measured arc current during a system transient, and the red line shows the state of the

detected impulsive.
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Figure 3.21: Plasma arc current during a system transient, at an electrode separation of 1mm,
overlaid with the model’s generated square wave pulses.

Figure 3.22 and Figure 3.23 illustrate the same results for the electrodes distance equal

to 3 mm and 6 mm, respectively. Once the statistical analysis of the pulse width and

pulse distance is completed, the next step involves fitting these characteristics into a

Markov chain model.
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Figure 3.22: Plasma arc current during a system transient, at an electrode separation of 3mm,
overlaid with the model’s generated square wave pulses.
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Figure 3.23: Plasma arc current during a system transient, at an electrode separation of 6mm,
overlaid with the model’s generated square wave pulses.
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3.6.4 Markov Chain Model

As discussed in subsection 3.6.1, the noise can be fully understood using the Markov

model, once we acquire the transition probabilities pGB and pBG. To achieve this, we

must determine both the initial probabilities of the states and the conditional transition

probabilities, which are outlined in matrix P , as described in [113]:

P =

[
pGG pGB

pBG pBB

]
. (3.26)

The pulse distance (PD) and pulse width (PW ) generated by the model are denoted as

(P̃D) and (P̃W ) respectively. Using the provided probabilities, we generate a sequence

of N noise samples. Subsequently, we calculate the statistical mean µ̃PD
and variance

σ̃2
PD

(as well as µ̃PW
and σ̃2

PW
) of the random variables P̃D (and P̃W ) of the noise series

generated by the Markov chain model.

To adjust the created model with the measurements, we compare the mean and variance

of the pulse distance and pulse width obtained from the measured data with those from

the generated Markov model. We establish a suitable metric to align our model with the

measured data, aiming to minimize four cost functions outlined in (3.27)-(3.30), where

the difference between the measured mean values and those generated by the model

is minimized. Additionally, we aim to minimize the variance error between the measured

and modeled data.

J1PD
= min ∥µ̃PD

− µPD
∥2, (3.27)

J2PD
= min ∥σ̃2

PD
− σ2

PD
∥2, (3.28)

J1PW
= min ∥µ̃PW

− µPW
∥2, (3.29)

J2PW
= min ∥σ̃2

PW
− σ2

PW
∥2. (3.30)
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This process is known as multi-objective minimization. To address this problem, we can

minimize a single cost function, which is the sum of four metrics (3.27)-(3.30). The cost

function is defined as follows:

J = J1PD
+ J1PW

+ J2PD
+ J2PW

. (3.31)

We apply a coarse-to-fine search method to minimize the cost function. Initially, we

create a grid with coordinate axes pGB and pBG, each ranging from 0 to 1 with a step

size of 0.1. We begin with a coarse grid resolution and iterate over all pairs of (pGB, pBG)

on this grid, computing the cost function (3.31). We then identify the pair (pGB, pBG) that

minimizes the cost function. Subsequently, we refine the search by adjusting the range

of the axes around this obtained pair, transitioning to a finer grid resolution. This process

continues until the accuracy of the grid points on the axes reaches within 0.0001. The

iterative minimization process is summarized in Algorithm 1.

Algorithm 1 Minimizing Algorithm
Input: µPD

, σ2
PD

, µPW
, σ2

PW
.

Output: pGB, pBG.

1: We initialize the pGB and pBG in the range [0, 1].
2: Compute step size ∆pGB

= pGB [end]−pGB [start]
10

and ∆pBG
= pBG[end]−pBG[start]

10
.

3: Create a grid with coordinate axes pGB and pBG with computed step size.
4: Compute the cost function (3.31) for each grid point.
5: Find the value p̂GB, p̂BG which minimizes the cost function in (3.31).
6: Set the coordinates in the new ranges
pGB = p̂GB −∆pGB

, . . . , p̂GB +∆pGB
and

pBG = p̂BG −∆pBG
, . . . , p̂BG +∆pBG

.
7: Stop if (p̂GB and p̂BG) have the accuracy within 0.0001 or go to step 2 to refine grid
over p̂GB and p̂BG.

3.6.5 Numerical Results

To create a comprehensive noise model that generalizes across different electrode

spacing, the mean values of the pulse width and pulse distance are averaged across the

three datasets (1mm, 3mm, and 6mm). Similarly, the variances of these two variables
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are also averaged.

Table 3.1 represents the mean and variance values of PD and PW for three different

electrode distances. It also includes the mean and variance values extracted from the

Markov model of the noise. These values correspond to the minimum values of the cost

function given in Equation 3.31. The table includes generalized averaged values as well

as the statistical parameters derived from the Markov model.

Table 3.1: Comparison between the statistical parameters from the measured data and the
model (E.D stands for the distance between electrodes).

Parameters µ(PD) σ2(PD) µ(PW ) σ2(PW )

Measured 0.0036 1.5717e-5 5.1538e-4 6.9266e-7

Model 0.0036 2.2108e-5 4.1632e-4 5.9847e-7

(E.D = 1mm)

Measured 0.0056 2.0066e-5 6.409e-4 2.2591e-7

Model 0.0056 3.1069e-05 6.3089e-4 3.1102e-7

(E.D = 3mm)

Measured 0.007 4.3069e-5 4.1875e-4 2.8067e-7

Model 0.007 5.0821e-5 3.9102e-4 2.9932e-7

(E.D = 6mm)

Generalized data 0.0054 2.6284e-5 5.2501e-4 4.6641e-7

Model 0.0054 2.015e-5 5.2016e-4 2.2530e-7

Using the generalized Markov chain model, noise samples can be generated based

on averaged means and variances. By generating these noise samples, we gain

general insights into the nature of the impulsive noise affecting the system, including its

frequency and duration. This simulation is crucial for the next step of the work, which

involves designing coding techniques to mitigate the effects of this noise. Figure 3.24

illustrates the noise samples produced by the generalized model.

Bentolhoda KAZEMZADEH OSGOEI| Thèse de doctorat | Université de Limoges

Licence CC BY-NC-ND 3.0

92



Chapitre 3 – CHAPTER 3. CHANNEL CHARACTERISTICS OF TUBE
TRANSPORTATION ULTRA HIGH SPEED SYSTEMS

0 0.01 0.02 0.03 0.04 0.05 0.06

0

0.2

0.4

0.6

0.8

1

Figure 3.24: Noise samples modeled by Two-state Markov model.

3.7 Coding Techniques to Mitigate the Impulsive Noise

The findings in the previous section show that plasma-based power transmission system

of TransPod constitute the noisy transmission medium with impulsive noise, which can

seriously degrades the transmission performance. Given the nature of impulsive noise,

the following coding approaches can be considered:

1. Erasure Code: Impulsive noise can cause parts of the transmitted signal to be

corrupted so badly as to be considered erased. When a receiver encounters an

impulsive noise, the signal during the noise period can be so degraded that the

information is irretrievable. In such cases, the communication system can treat

these corrupted portions as erasures. The erasures can be clustered together

which refers to the burst erasure error. The erasure codes can then be used to

recover the missing data. In some cases, the system uses detection mechanisms

to identify the corrupted portions and marked them as erased, then uses erasure

codes to recover the lost information.
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Fountain codes are a class of erasure codes and an efficient way to protect

data against erasures. The idea behind is that to transmit a fixed set of source

packets over an erasure channel, the source packets are encoded by combining

packet data into a possibly infinite sequence of encoded packets, and the receiver

decodes the encoded packets again into source packets. Luby Transform (LT)

codes [114] are a practical example of digital fountain codes. An extension

of LT codes, Raptor codes were introduced in [115]. In Raptor codes, each

encoded packet is a linear combination (XOR) of the transmitted packets. In [116],

the utilization of concatenated LT and Low Density Parity Check (LDPC) codes

has been proposed. LDPC codes were employed as the inner code to identify

which packets are marked as erased, while LT codes were used as the outer

code for correcting errors. [117], proposed a joint erasure marking and Viterbi

algorithm within the same decoding block to decode the convolutionally coded

data transmitted over an unknown impulsive noise channel.

2. Error Correction Code (ECC): The transmitted data may be corrupted due to the

impulsive noise, but not completely erased. These errors can occur in a contiguous

sequence of symbols, refer to the burst error. In such case, interleaving can be

applied to rearrange the data bits or symbols in a way that disperses the burst

errors over different blocks or frames. The data spreads across multiple blocks

and converting the consecutive errors into some scattered errors. Interleavers

can be bit interleavers [118], [119] or symbol interleavers [120]–[122]. Interleaving

is usually utilized in combination with ECC designed to correct random errors

like Reed–Solomon (RS) codes [123], Polar codes, LDPC codes. Therefore,

the detected random errors can be corrected by applying ECCs. In [124], a

combination of interleaving and RS coding was proposed to shield systems from

noise bursts. The authors in [125] investigate the performance of polar codes

over impulsive noise in Programmable Logic Controller (PLC) in OFDM systems

and demonstrate that Polar codes outperformed LDPC codes in the presence of

Middleton’s Class A noise.

According to the noise samples created from the Markov model and the statistical

parameters, we can evaluate the frequency and duration of impulsive noise occurrences.
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This evaluation helps in determining the appropriate coding techniques to apply. For

example, with a radio frame size of 10 ms in LTE and according to the noise samples

from the model shown in Figure 3.24, it appears that a significant portion of the packet

can be corrupted. In such cases, applying erasure coding techniques is practical. If

the whole or a large portion of a data packet is corrupted, applying erasure coding

techniques is practical. For scenarios where data corruption is less severe and errors

are spread across symbols, interleaving combined with ECC would be more effective.

3.8 Proposed Architecture for Handover

One of the significant challenges in the TransPod system is the frequent handover of

communication between transmitters as the vehicle moves through different commu-

nication zones at high speeds. To address this issue, we propose a dual-frequency

approach, utilizing two parallel channels operating at different frequencies, F1 and F2. In

this approach, the transmitters alternate their operating frequencies, such that adjacent

transmitters work on different frequencies. For instance, Tx1 operates at F1, the next

transmitter Tx2 at F2, the following one at F1 again, and so on.

This dual-frequency system not only smooths the handover process but also provides

diversity to mitigate the effects of impulsive noise at the receiver. The system can

implement advanced error recovery techniques such as fountain coding, by maintain-

ing redundancy with two active frequencies. Instead of transmitting the entire set of

source packets through one link, the transmitted packets can be linearly combined and

transmitted through the dual-link system.

Rx1

Rx2

Tx1 Tx2 Tx3

F1 F2 F1

Figure 3.25: Dual-frequency system architecture.
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3.9 Summary

In this chapter, we analyzed the path loss channel model based on ray-tracing within the

vacuum tube of the tube-transportation system, such as TransPod. Both the LOS and

NLOS components were considered, and the time-varying transfer function was derived.

We examined large-scale and small-scale fading channel characteristics, including path

loss, delay spread, and Doppler spread. Additionally, we investigated the measured

noise in the context of the contactless power transmission system employed in the

FluxJet vehicle, designed to operate on the fully-electric TransPod line. Our analysis

included a detailed examination of recorded current samples associated with plasma

arc discharges. We found that the noise measurements correlate closely with the

instantaneous noise variance at the receiver of the communication system. A two-

state Markov-Gaussian model was used to represent the measured noise. The results

demonstrate that this model accurately fits the measurements, with minimal differences

between the observed values and those predicted by the model. We suggest the use of

erasure codes, such as fountain codes, and ECC codes combined with interleaving, to

enhance data recovery and reliability in the presence of impulsive noise. Additionally,

the dual-frequency approach, which alternates operating frequencies among adjacent

transmitters, was presented to facilitate seamless handover and improve communication

robustness. Design and simulation of these methods will be considered in future work.
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THE objective of this chapter is to propose a correlation-based channel estimation

method by inserting a sequence pilot in the OTFS grid. We begin by reviewing the

conventional channel estimation technique using a single impulse pilot. Then, we

discuss the proposed method and demonstrate how it reduces the PAPR of the signal

in the time domain while decreasing channel estimation error.

4.1 Introduction

We have seen that OFDM was introduced to deal with the time-dispersive nature of the

wireless channels [126], [127]. In OFDM, the channel frequency response is estimated

for every OFDM symbol and used to equalize the channel [128], [129]. However, OFDM

fails in performance in high mobility scenarios due to the wide Doppler spread [130],

[131]. Furthermore, the channel frequency response changes very rapidly and the

coherence time of the channel is short. In this scenario, in OFDM system, there is not

sufficient time to estimate the channel. Channel estimation in the OFDM-based systems

require multiple pilots interleaved along the time slots and sub-carriers to capture the

time-frequency channel variations [132], [133]. In chapter 2, we explored various channel

representations. From the Figure 3.12, we can see that in time-frequency representation,

time-varying channel impulse response HTF (t, f) is varying rapidly in time and frequency,

makes the channel estimation difficult. An equivalent representation was introduced

in the delay-Doppler domain with impulse response HDD(τ, ν). In this model, the

coefficients of the channel, or channel taps, correspond to reflectors with specific delay
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and Doppler values [35]. The delay component is influenced by the distance traveled by

the wave after being reflected, while the Doppler component depends on the relative

velocity of the reflector. These velocities and distances tend to remain roughly constant

over a long period, leading to the delay-Doppler channel representation appearing

time-invariant over long duration compared to the time-frequency representation. The

delay-Doppler channel representation captures the geometric characteristics of the

channel. In many practical scenarios, the number of reflectors is low, leading to a

sparse appearance of the channel in the delay-Doppler domain, with fewer peaks on the

grid [134]. This sparsity reduces the number of parameters that need to be estimated.

Furthermore, since the delay-Doppler coefficients remain constant for symbols over a

long period, there is a decrease in both the pilot overhead ratio and the complexity of

estimation.

After receiving the delay-Doppler symbols at the receiver, the initial step involves

estimating the channel in order to mitigate its effects using equalizers. In time-frequency

domain techniques like OFDM, pilots are transmitted through the channel, and the

channel response over these pilot symbols is estimated. Then, the channel for all

data symbols is extracted using interpolation [129]. For OTFS channel estimation,

there are several approaches available. One of the approaches involves pilot-based

channel estimation techniques that have been extensively studied in recent years

[135]–[138]. The main concept is to place a single pilot symbol within the data frame,

ensuring adequate guard space surrounds it in the delay-Doppler grid, and transmitting

it alongside the data symbols. These guard symbols prevent interference between

the data symbols and the pilot symbols after passing through the doubly dispersive

channel. At the receiver, the pilot experiences delay and Doppler offsets, resulting in

the multiple copies with varying power in the receiver delay-Doppler grid. The pilot

symbol undergoes similar Doppler and delay shifts as the data symbols. Therefore,

by observing the spread output in the estimation grid (pilot and guard symbols at the

receiver), we can obtain the delay and Doppler indices corresponding to the relative

distance and velocity of the reflectors, as well as the magnitude of gain provided by

these reflectors. In this section, we review some of the existing works. The proposed

method in [135] stands out as one of the most notable works. In this method, estimation

is carried out by employing an optimal threshold that operates on the replicas of the
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received pilot within the estimation grid. By examining the symbols within this grid,

the positions of delay and Doppler indices can be identified. In the absence of noise,

the channel coefficients can be determined by identifying the peaks in the grid, while

considering the transmitted pilot power. However, in high noise conditions, extracting

channel information becomes challenging due to the potential for detecting false peaks

or missing some peaks in the grid. By adjusting the threshold, the probabilities of false or

missed detection can be reduced. Consequently, the threshold significantly influences

the performance of data detection at the receiver. Accurately identifying the correct

peaks corresponding to the existing paths of the channel, requires higher pilot power. In

[139], another estimation scheme is proposed, which is based on employing multiple

pilot symbols to improve the performance of the threshold based method in the high

noisy condition. However, this scheme makes use of prior information of the channel

such as maximum delay, which may not be available. Several studies have focused on

exploiting the sparsity of the channel by employing a compressive sensing approach for

channel estimation, as indicated in [140]. These compressive sensing algorithms are

complex and require more pilot data, resulting in high pilot overhead. Another category

of channel estimation approaches is the use of superimposed pilots over the entire

data symbols in the delay-Doppler grid [137], [138]. They claim that the guard space

around the pilot symbol degrades the spectral efficiency especially for the small frame

sizes. However, it also introduces additional complexity in the receiver design such

as interference elimination process between the pilot and data symbols that requires

complex signal processing techniques at the receiver. In this study, we focus on the

first category where the pilot symbols are inserted with the data and guards symbols

simultaneously.

4.2 Motivation

Considering the poor performance of the traditional threshold-based method using only

one impulse pilot in high noise conditions, we suggest to use an approach utilizing

multiple impulses. This aims to exploit diversity gain to improve the accuracy of channel

estimation. In the next section, we begin by examining the conventional threshold-based

channel estimation method employing a single impulse pilot [135], [136].
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4.3 Threshold-based Channel Estimation Algorithm

In the classical channel estimation scheme, a single impulse pilot xp with power

Ppilot = |xp|2 is positioned at coordinates (mp, np) within the delay-Doppler grid. It

is accompanied by Ng guard symbols set to zero and MN − Ng − 1 data symbols

xd[m,n]. It is assumed that the maximum delay τmax and maximum Doppler shift νmax

among all channel paths are known. The number of guard symbols are chosen to

accommodate the maximum delay and Doppler spreads of the channel. The guard inter-

vals are added on both sides of the pilot to prevent interference between pilot and data

symbols at the receiver. Consequently, the guard symbols are arranged such that they

remain zero within the range mp− lmax ≤ m ≤ mp+ lmax and np−2kmax ≤ n ≤ np+2kmax.

The difference in arrangement along the delay and Doppler axes arises from the fact

that delay taps can not be negative, but Doppler taps can be either negative or positive.

In chapter 2, (2.10) defines the delay shifts τi as li
M∆f

. Typically, the delay resolution
1

M∆f
is sufficient to approximate the delay shifts as integer multiples of the sampling

period 1
M∆f

. Consequently, the delay indices li can be considered as integer values,

denoted by li ∈ Z [141], [35]. Similarly, the Doppler shifts νi are defined as ki
NT

. When

N is large, the Doppler resolution 1
NT

increases, enabling the Doppler indices ki to be

treated as integers as well, i.e., ki ∈ Z. However, for large N , the OTFS frame becomes

longer, and the channel may change within the duration of one frame. Therefore,

in practice, N is often chosen to be smaller than M to improve channel estimation

performance. Consequently, with small values of N , the Doppler resolution decreases,

and the Doppler indices become fractional, leading to ki ∈ R. In the following, we review

transmitter and receiver delay-Doppler grid for both the integer and fractional Doppler

indices.

• Integer Doppler indices: The arrangement of symbols in the delay-Doppler grid

for integer Doppler indices is detailed in the following, as depicted in Figure 4.1a:

XDD[m,n] =


xp m = mp, n = np

0

{
mp − lmax ≤ m ≤ mp + lmax

np − 2kmax ≤ n ≤ np + 2kmax

xd[m,n] otherwise

(4.1)
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Figure 4.1b represents the schematic representation of the received signal in

the delay-Doppler domain. The green region within Figure 4.1b illustrates the

estimation grid defined by mp ≤ m ≤ mp + lmax and np − kmax ≤ n ≤ np + kmax.

Within this grid, a single impulse pilot is distributed among guard symbols due

to the delay and Doppler characteristics of the channel. We utilize the received

symbols within this green region specially for channel estimation purpose. Symbols

outside this green region, highlighted in yellow, can be utilized for data detection

alongside other symbols within the delay-Doppler grid denoted in blue.

mp

0

M − 1

mp − lmax

mp + lmax

0 N − 1np − 2kmax np + 2kmaxnp

(a) Delay-Doppler grid structure at the transmitter;
: data, : guard, and : pilot

mp

0

M − 1

mp − lmax

mp + lmax

0 N − 1np − 2kmax np + 2kmaxnp

(b) Delay-Doppler grid structure at the receiver;
, : detection grid, and : estimation grid

Figure 4.1: Symbols pattern at the transmitter and receiver for the classical impulse pilot scheme
in [135].

To illustrate clearly, we consider an example with a delay-Doppler grid of size

16× 16. A single impulse pilot xp with the power of Ppilot = |xp|2, is positioned at

[8, 8], surrounded by a guard band of size 7× 9. We assume the maximum delay

index lmax = 3 and the maximum Doppler index kmax = 4. Figure 4.2 demonstrates

the organization of data within the delay-Doppler domain at the transmitter. In this

scenario, the channel exhibits delay indices li = {0, 1, 2, 3} and Doppler indices

ki = {0, 1, 2, 3} without the presence of noise. The received signal in the delay-

Doppler domain is represented in Figure 4.3a. To provide a closer examination

in the absence of noise, Figure 4.3b provides a zoomed-in view of the estimation

grid area. This zoomed-in view clearly shows that the received delay and Doppler

indices of the spread pilot symbol can be accurately extracted in the absence of

noise.
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Figure 4.2: Transmitted symbols in delay-Doppler domain.

(a) M ×N symbols
(b) (lmax + 1)(2kmax) symbols in estimation grid

Figure 4.3: Received symbols in delay-Doppler domain.
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We recall the input-output relation in the delay-Doppler given in (2.44):

YDD[m,n] =
P∑
i=1

zki(m−li)hiXDD [[m− li]M , [n− ki]N ] , (4.2)

where z = e
ȷ2π
MN . Each symbol in the estimation grid represents an existing channel

path. Along the delay axis, the transmitted pilot symbol has been spread to

be located at the position m + li, and along the Doppler axis at n + ki, due to

the channel characteristics. The relationship between the pilot symbol and its

corresponding symbols in the received estimation region can be established as:

YDD[mp + li, np + ki] = zkimphi XDD[mp, np] = zkimphi xp. (4.3)

From the above equation, the delay taps li, Doppler taps ki, and channel coef-

ficients hi can be estimated knowing the pilot symbol xp and received symbols

YDD[mp + l, np + k] in 0 ≤ l ≤ lmax and −kmax ≤ k ≤ kmax. Moreover, it’s impor-

tant to mention that h[l, k], the discrete delay-Doppler channel, represents the

corresponding channel coefficient hi:

h[l, k] =

hi, if l = li and k = ki

0, otherwise.
(4.4)

The estimated channel coefficients are denoted by ĥ[l, k], calculated as:

ĥ[l, k] =
YDD[mp + l, np + k]

zkmpxp

. (4.5)
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Figure 4.4: Pilot output grid in the presence of noise.

When noise is present, the pilot symbols at the receiver are contaminated, resulting

in false detection. Multiple noisy peaks may be mistaken for the correct channel

path, as depicted in Figure 4.4. The input-output relationship of the pilot symbol is

given by:

YDD[m,n] =
P∑
i=1

zki(m−li)hi XDD [[m− li]M , [n− ki]N ] + n[m,n], (4.6)

where n[m,n] indicates Additive white Gaussian noise (AWGN) with zero mean

and variance σ2. In [135], [136], a threshold-based method is used to remove false

peaks in the estimation grid. According to this algorithm, if the magnitude of the

received symbols in the estimation grid exceeds the noise-dependent threshold,

the peak indicates the existence of a channel path, implying that the symbol is the

weighted pilot symbol with noise; otherwise, it is considered only noise and is set to

zero. The performance of this method is highly influenced by the chosen threshold;

if it exceeds a certain value, false detection occurs, and for small values, it is more

likely to detecting non-existent paths. Furthermore, following the recommendation
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in [35], [135], the threshold is set to be 3σ to balance between false detection and

miss detection probabilities.

• Fractional Doppler indices: In this scenario, when the diffusion of fractional

Doppler shift, ν, is not an integer multiple of the Doppler resolution
1

NT
, the

resulting normalized Doppler shift k becomes fractional, leading to energy leakage

on both sides of the resolvable Doppler shift [136], [142]. Fractional Doppler

introduces a challenge to the sparsity of the channel in the delay-Doppler domain

due to the energy leakage into all symbols along the Doppler axis. Essentially,

for each delay tap, the pilot symbol spreads across all Doppler shift indices,

k = 0, ..., N − 1. For that reason, the whole area on the Doppler axis on both

sides of the pilot should be considered as the guard internal. The arrangement of

symbols in the delay-Doppler domain for the fractional Doppler case is illustrated

below and shown in Figure 4.5a:

XDD[m,n] =


xp m = mp, n = np

0

{
mp − lmax ≤ m ≤ mp + lmax

0 ≤ n ≤ N − 1

xd[m,n] otherwise

(4.7)

mp

0

M − 1

mp − lmax

mp + lmax

0 N − 1np

(a) Delay-Doppler grid structure at the
transmitter; : data, : guard, and :
pilot

mp

0

M − 1

mp − lmax

mp + lmax

0 N − 1np

(b) Delay-Doppler grid structure at the re-
ceiver; : data, : detection grid, and :
estimation grid

Figure 4.5: Symbols pattern at the transmitter and receiver for the classical impulse pilot scheme
for fractional Doppler indices in [136].
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The received signal in the delay-Doppler domain is shown in Figure 4.5b, where

the symbols within the green area correspond to pilot symbols utilized for channel

estimation. The input-output relationship for the fractional Doppler indices is

described in [35] as follows:

YDD[m,n] =
P∑
i=1

zκimphi

(
N−1∑
k=0

ζN (κi − k)XDD [[m− li]M , [n− k]N ]

)
, (4.8)

where

ζN(x) =
1

N

N−1∑
k=0

e
j2πxk

N =
1

N

sin(πx)

sin(πx/N)
e

jπx(N−1)
N . (4.9)

The received signal in (4.9) can be expressed in terms of the pilot symbol xp by

setting m = mp + li and n = np + k for 0 ≤ l ≤ lmax, 0 ≤ k ≤ N − 1:

YDD [mp + li, np + k] = hiz
κimpζN (κi − k)XDD [mp, np]

= hiζN (κi − k)xp

(4.10)

The delay-Doppler grid comprised of M ×N points, is subdivided with a resolution

of
1

M∆f
in the delay axis and

1

NT
in the Doppler axis. Consequently, the channel

only detects integer multiples of the Doppler resolution, i.e, ki ∈ Z. Therefore,

in the presence of a channel path with a fractional Doppler shift, it appears as

multiple paths at integer Doppler shifts close to the fractional value. It is important

to note that, in the case of fractional Doppler indices, the channel coefficients for

every delay index li, are computed as follows:

hi =
N−1∑
k=0

h[li, k] (4.11)

To identify channel paths within the estimation area 0 ≤ l ≤ lmax and 0 ≤ k ≤
N − 1, a threshold is set for the magnitude of the received symbols to identify

those exceeding it. The peaks detected with delay index li within the interval

mp ≤ li ≤ lmax indicate the presence of at least one existing channel path. The

discrete delay-Doppler channel is estimated based on the detected symbols as

follows:

ĥ[li, k] =
YDD[mp + l, np + k]

zkmpxp

. (4.12)
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4.4 Problem Formulation

In the previous section, we explored the embedded pilot channel estimation method,

which employs a single pilot symbol. This method takes advantage of the properties

of the pilot symbol, which spread along both the delay and Doppler axes within the

received OTFS frame for channel estimation. It offers a low-complexity estimation

algorithm. However, its accuracy relies on ensuring that all pilot symbols, corresponding

to the transmitted pilot symbol, exhibit greater strength than the noise. To accurately

determine the output symbols at the receiver, which define the delay and Doppler taps

of the channel, it is essential to use a pilot symbol with sufficiently high power, potentially

much higher than that of the data symbols. Additionally, increasing the pilot power

reduces the difference between the actual channel coefficients and their estimated

values. Visual representations of the estimation grids for Ppilot = 5 and Ppilot = 25 can

be seen in Figure 4.6a and Figure 4.6b respectively. The data SNR in this example is

set to 10dB. In Figure 4.7, the channel coefficients and their corresponding estimated

values are depicted for pilot SNR of 5dB and 15dB. Increasing pilot power helps to

decrease the channel estimation error.

(a) Ppilot = 5 (b) Ppilot = 25

Figure 4.6: Estimation grid for Ppilot = 5 and Ppilot = 25.
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(a) Ppilot = 5 (b) Ppilot = 25

Figure 4.7: Amplitude of estimated channel coefficients for Ppilot = 5 and Ppilot = 25.

Moreover, when dealing with fractional normalized Doppler indices ki, instead of integer

ones, for each delay bin li, full Doppler bins in the Doppler axis are utilized to estimate

channel coefficients. Given these considerations, the conventional channel estimation

scheme faces several challenges:

1. The time-domain signal should be amplified prior to transmission through the

wireless channel, making PAPR a critical metric for power amplifier efficiency

evaluation [143]. The distribution of pilot and data symbols significantly influences

the characteristics of the signal. Placing a high power single pilot in the delay-

Doppler domain generates multiple spikes in the time domain with power levels

exceeding that of other time domain samples, resulting in a high PAPR. Figure 4.8

illustrates the delay-Doppler domain signal with a high power impulse pilot located

at position [mp, np] of the grid. After performing N -point IDFT to each row of the

matrix XDD, the time-delay matrix is obtained as:

Xtd[m, l] =
1√
N

N−1∑
n=0

XDD(m,n)e
ȷ2πln
N . (4.13)

The single pilot is distributed along the time axis at row mp. According to (4.13), the

pilot symbols in the time-delay domain maintain a constant amplitude of
√

Ppilot

N

and linear phases
2πnpl

N
, where 0 ≤ l ≤ N − 1. Consequently, the average
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power of the samples in Xtd at the delay index mp exceeds that of other delay

indices. Subsequently, the delay-time signal converts into a time domain vector

s = vec(Xtd) for transmission. As illustrated in Figure 4.8, periodic peaks with high

power are evident in the time domain signal.

Doppler

D
el

ay

XDD

Time
D

el
ay

N point IDFT

N point IDFT

Xtd

P
ar

al
le

l/S
er

ia
l

mp

Ppilot

N
Ppilot

N
Ppilot

N

s = vec(Xtd)

Figure 4.8: High-power impulse pilot causing elevated PAPR in the time-domain signal.

In the following, we derive an analytical PAPR expression for the OTFS transmitted

signal. According to (2.26), the time domain samples of the OTFS transmitted

signal are obtained through the IDZT which transforms XDD from the delay-Doppler

domain to Xtd in the delay-time domain.

XDD [n,m] =


x0[0] · · · x0[N − 1]

... . . . ...
xM−1[0] · · · xM−1[N − 1]

 =


x0

...
xm−1

 , (4.14)

where xm ∈ CN×1 represents the vectors containing the delay-Doppler symbols

in the m-th row of XDD. After performing N-point IDFT of xm for each row of the
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matrix XDD, delay-time domain matrix Xtd is given as:

Xtd = XDDF
H
N =


x̃0

...
x̃m−1

 , (4.15)

where x̃m ∈ CN×1 represents the colomn vectors containing the delay-time symbols

in the mth row of Xtd. The time domain samples vector s ∈ CMN×1 is obtained by

vectorization of Xtd:

s[m+ nM ] = vec(Xtd) =
1√
N

N−1∑
n′=0

XDD(m,n′)e
ȷ2πnn′

N . (4.16)

The PAPR of an OTFS transmitted signal s is defined as:

PAPR =
maxm,n {|s[m+ nM ]|2}

Pavg

, (4.17)

where

Pavg =
1

MN

M−1∑
m=0

N−1∑
n=0

E
{
|s[m+ nM ]|2

}
. (4.18)

Substituting Equation (4.16) and (4.18) into Equation (4.17), we obtain:

PAPR =

maxm,n

{∣∣∣ 1√
N

∑N−1
n′=0XDD[m,n′]e

ȷ2πnn′
N

∣∣∣2}
1

MN

∑M−1
m=0

∑N−1
n=0 E

{∣∣∣ 1√
N

∑N−1
n′=0 XDD[m,n′]e

ȷ2πnn′
N

∣∣∣2} . (4.19)

Utilizing the Cauchy-Schwarz inequality [144], we derive:

∣∣∣∣∣
N−1∑
n′=0

XDD[m,n′]e
ȷ2πnn′

N

∣∣∣∣∣
2

≤
N−1∑
n′=0

|XDD[m,n′]|2 . (4.20)

The PAPR is computed for two scenarios: when the delay-Doppler grid is filled with

data symbols, and when an impulse pilot along with guard symbols are inserted in
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the grid:

• Full data: Data symbols XDD[m,n′] are considered as independent and

identically distributed (i.i.d.) random variables with zero mean and variance

σ2 = E
{
|XDD[m,n′]|2

}
. α = maxm,n

{
|XDD[m,n′]|2

}
represents the maximum

power of the modulated symbols XDD. The upper bound for PAPR in (4.17)

is given by:

PAPRFull data ≤
maxm,n

{∑N−1
n′=0 |XDD[m,n′]|2

}
E
{
|XDD[m,n′]|2

} =
Nα

σ2
. (4.21)

It’s worth noting that the upper bound is achieved when data symbols in the

grid have zero phases.

• Impulse pilot with guard symbols: Let us consider the insertion of an im-

pulse pilot with power Ppilot into the grid along with guard symbols. Assuming

the energy of the pilot symbol is spread along the delay axis at Doppler bin

mp, with surrounding zero guard symbols, the Pavg in (4.17) is expressed as:

Pavg =
1

MN
[(M − (2lmax − 1))Nσ2 + PImp]. (4.22)

Maximum power of the row in Xtd containing pilot symbols is
Ppilot

N
. Finally,

the PAPR is computed as:

PAPRImpulse ≤
max

{
Nα,

Ppilot

N

}
1

MN
[(M − (2lmax − 1))Nσ2 + Ppilot]

. (4.23)

To analyze the statistical distribution of PAPR within the system, we generate a plot

of the CCDF vs PAPR. This graphical representation aids in understanding how

frequently the power of the signal exceeds a given threshold, which is linked to

the PAPR of the signal. It provides insights into the probability distribution of peak

power levels relative to the average power of the signal, allowing us to observe the
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probability of encountering specific PAPR values within the signal. In Figure 4.9,

we illustrate the CCDF of PAPR for the transmitted OTFS signal s, for the scenario

where the grid contains only data symbols, and also where an impulse pilot of

different powers is emplyed. In Figure 4.9, parameters M = 128, N = 32, and

4-QAM modulation are employed.

P
pilot

 =2

P
pilot

 =14

P
pilot

 =23

P
pilot

 =26

P
pilot

 =29

P
pilot

 =32

Data only

Figure 4.9: Comparison of CCDF of the PAPR for full data transmission, and impulse pilot with
low and high pilot power Ppilot.

To improve the accuracy of channel estimation within the conventional threshold-

based method [135], using an impulse pilot with higher power becomes necessary.

As indicated by (4.23) and evidenced in Figure 4.9, increasing the power of the

pilot leads to a significant increase in the ratio
Ppilot

N
compared to the data symbols.

When the pilot power is large, the pilot’s contribution to the signal power becomes

dominant. Consequently, the maximum value in the time domain signal and the

PAPR of the signal is heavily influenced by the pilot symbol. This is where we

can see the vertical lines in the Figure 4.9. For the small pilot powers, the data

symbols contribution to the signal power becomes significant. In each iteration, the

maximum power of the signal can vary due to different data symbol configurations,
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leading to fluctuations in the peak power value for different iterations. In the

transition region, around Ppilot = 23, the PAPR values can be influenced by the

pilot or the data symbols, leading to a mix of fixed and variable PAPR values.

2. The conventional embedded channel estimation methods fail to estimate fractional

Doppler indices κi ∈ R, making it impossible to estimate the fractional Doppler

shifts νi =
κi

NT
. As discussed in section 4.3 of the current chapter, instead of

estimating individual Doppler indices, the discrete delay-Doppler response h[li, k]

is estimated, representing the full normalized Doppler shifts for each path with

normalized delay li. In [35], this discrete delay-Doppler response is referred

to as the channel Doppler response. Figure 4.10 illustrates an example of the

estimation grid in the delay-Doppler domain for a channel with delay indices

li = [0, 1, 2, 3] and Doppler indices κi = [0, 1.2, 2.5, 3.7], with P = 4 existing paths,

in the absence of noise. It is observed that at each delay bin within the interval

0 ≤ l ≤ 3, the discretization of Doppler indices leads to leakage into all Doppler

bins. Consequently, it appears that there are more channel paths than the actual

number P . In this case, instead of fractional Doppler shift κi, the nearest integer

ki is estimated. To estimate the channel coefficients in (4.12), zκi(m−li) is applied

as the phase rotation, resulting in the error z(κi−ki)(m−li), which degrades the

estimation performance. One of the possible solutions to maintain the sparsity

of the delay-Doppler channel and decrease the leakage effect, can be changing

pulse shaping waveform at the transmitter or receiver which has been studied in

[145]. Another potential solution is utilizing Deep Learning (DL) methods which

will be studied in more details in chapter 5.
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Figure 4.10: Pilot output grid with fractional Doppler indices κi = [0, 1.2, 2.5, 3.7] and delay
indices li = [0, 1, 2, 3] in the absence of noise.

4.5 Sequence-based Pilot Channel Estimation

In this chapter, our mainly focus is on addressing the first aspect of the problem

formulation. We have observed that achieving accurate channel estimation within the

classical estimation scheme requires the transmission of an impulse pilot with high

power. However, this leads to a high PAPR in the time domain signal. One potential

solution to mitigate the PAPR effect is to distribute the pilot power across multiple pilot

symbols within the delay-Doppler grid to achieve a more balanced power distribution.

Figure 4.11 visually represents the pilot structure on the delay-Doppler grid, where a

sequence of length LP is inserted along the delay axis. The pilot power Ppilot is evenly

distributed across the LP delay bins, with each symbol carrying the same power of
Ppilot

LP

.

After performing an N-point IDFT, the pilot sequence extends across the time axis, with

each element having equal power of
Ppilot

NLP

.

To avoid the interference at the receiver, it is important to consider guard space in both

the delay and Doppler axes. However, allocating guard space at the top and bottom
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of the sequence can lead to a decrease in spectral efficiency. In the study by [146], a

pilot structure is proposed to distribute the impulse pilot power Ppilot over the 2L − 1

delay bins. They utilize a pilot sequence at the Doppler index np and delay indices

mp, · · ·mp + L− 1. They append the last L− 1 symbols of the sequence to be inserted

at delay indices mp − L, · · ·mp − 1 to absorb the interference from data symbols. They

estimate the channel in the delay-Doppler domain based on the Least Squares (LS)

and Minimum Mean Square Error (MMSE) criterion. Given the interference from pilot

symbols into data symbols due to the multipath effect of the channel, they subtract

the pilot from the received signal using the estimated channel matrix. In [147], the

authors propose placing the pilot symbols throughout the entire zero-padded area in the

ZP-OTFS system. They employ a joint channel estimation and data detection method,

iteratively managing interference between the pilot and data symbols.
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Figure 4.11: Sequence pilot balancing power distribution in the time domain signal.

In our proposed method [23], we employ a sequence pilot on delay bin mp that occupies

all Doppler bins, differing from previous works where the sequence is spread across

the delay axis, as seen in Figure 4.12. Referring back to (2.33) in chapter 2, the
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delay-Doppler channel matrix was formulated as:

HDD =
P∑
i=1

hiΠ
li∆ki . (4.24)

Taking inspiration from this equation, we consider that the data experiences offsets

along the delay axis and cyclic shifts in the Doppler dimension after coupling with the

channel, with corresponding delay taps li and Doppler taps ki. The pilot sequence at

each delay index li appears to undergo cyclic shifts due to the corresponding Doppler

index ki.

Figure 4.12: Pilot sequence, guard, and data symbol placements in the Delay-Doppler domain
at the transmitter, with N = 12, M = 16, mp = 14, and ℓmax = 2,

data, pilot, and guard.
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Figure 4.13: Channel effect on sequence pilot in delay-Doppler domain with l = {0, 1, 2} and
k = {3, 2, 1}. data, pilot at l0, pilot at l1, pilot at l2, and channel effect of the data
symbols spread on the guard area above the pilot.

When the signal passes through the channel, multiplying the channel matrix by the pilot

sequence indicates that the lith path introduces a li-step cyclic shift of the sequence,

denoted by Πli and modulates it with a carrier at frequency ki, represented by ∆ki.

Figure 4.13 provides an example of how the pilot sequence experiences offsets on the

delay axis with li = {0, 1, 2}, and cyclic shifts in the Doppler dimension with ki = {3, 2, 1}
after coupling with the channel. To have a clear representation in this example, we

utilized PN sequence with combination of 1’s and 0’s. To estimate the delay and Doppler

taps of the channel, we propose a correlation-based estimation method. This method

involves searching for the spread pilot sequence on the rows of the estimation grid

in the delay-Doppler domain. This is accomplished through a correlation operation

performed between the transmitted pilot sequence and the received signal. The peak of

the resulting 2D correlation surface indicates the delay and Doppler shifts caused by

the channel. The height of the peak reflects the degree of similarity, while the location

of the peak indicates the amount of shift.
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In the following section, we will discuss how to select an appropriate sequence that can

effectively adapt to the correlation-based method, with desirable low PAPR properties.

4.5.1 An Optimum Sequence

To utilize the correlation-based method for estimating channel parameters, it is crucial to

choose a sequence with high auto-correlation and low cross-correlation characteristics.

In communication systems, training sequences, such as PN sequences and CAZAC

sequences, are crucial for synchronization due to their sharp correlation peaks and

minimal side lobes [148]–[150]. PN sequence, is a deterministic binary sequence that

appears random but is generated by a deterministic algorithm. The most common type of

PN sequence is the M -sequence, known as maximum-length sequence. M-sequences

are the sequences of maximum possible period of N = 2m − 1 where m ∈ N . They are

generated using a primitive polynomial over a finite field [151], [152]. In [153], the PN

sequence pilot was used for the channel parameters estimation. CAZAC sequences

are significant in communication systems due to their constant amplitude and zero

auto-correlation for any nonzero circular shifts, making them suitable for synchronization,

channel estimation, and reducing PAPR [154]. Moreover, after reviewing relevant

literature, it becomes apparent that CAZAC sequences exhibit superior correlation

properties compared to PN sequences [155], [156].

For an N -length CAZAC sequence represented by c(n) where M is relatively prime to

N , nth symbol c(n) is given by:

c(n) = exp(
ȷπnM(n+mod(N, 2))

N
). (4.25)

The auto-correlation function of the CAZAC sequence c(n) is defined as follows:

R(δ) =
N∑

n=1

c(n)c∗(n+ δ) =

N, δ = 0

0, δ ̸= 0
. (4.26)

The normalized auto-correlation of both the CAZAC and PN sequences is given in

Figure 4.14. It is important to observe that the CAZAC sequence demonstrates reduced

side lobes in its auto-correlation compared to the PN sequence. Furthermore, a

notable characteristic of the CAZAC sequence is its resilience to change under DFT
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Figure 4.14: Auto-correlation function of the CAZAC and PN sequences

or IDFT, maintaining its properties. Thus, the resulting sequence after DFT/IDFT

operations remains a CAZAC sequence, ensuring constant amplitude across both time

and frequency domains. This property is particularly advantageous in our study as

it helps to limit the PAPR of the time domain signal, contributing to improved system

performance.

4.5.2 Pilot Sequence Placement

In chapter 2, we discussed about the different OTFS variants. Since we loose the

spectral efficiency due to the pilot sequence and guard symbol, in this section we

analyze the effect of channel estimation and pilot location on the spectral efficiency

of the OTFS variants [35], [157]. Let us consider LZP = LCP = L. The Figure 4.15

illustrates the structure of delay-Doppler grid with pilot sequence and guard symbols

for CP-OTFS and ZP-OTFS. The variants RCP-OTFS/RZP-OTFS are shown in the

Figure 4.16. We calculate the spectral efficiency of the OTFS schemes in the Table 4.1.
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Figure 4.15: delay-Doppler grid structure with pilot sequence for CP-OTFS and ZP-OTFS; :
data, : guard, and : pilot sequence.

0

M − 1

RCP-OTFS/RZP-OTFS

0 N − 1

2L
+
1

+ L

Figure 4.16: delay-Doppler grid structure with pilot sequence for RCP/RZP-OTFS; : data, :
guard, and : pilot sequence.
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Table 4.1: Spectral efficiencies of OTFS variants with/without sequence pilot insertion for
channel estimation.

Spectral efficiency without pilot/guard Spectral efficiency with pilot/guard

CP
M − L

M

M − (3L+ 1)

MN

ZP
M − L

M

M − (2L+ 1)

MN

RZP/RCP
MN

MN + L

M − (2L+ 1)

MN + L

From the Table 4.1 it is evident that ZP-OTFS offers the highest spectral efficiency

among the other variants. This high performance is due to the utilization of zero-padding

samples in ZP-OTFS, not only to prevent the interference among OTFS frames in the

time domain but also serve as guard space between data and pilot samples. Therefore,

in our study, we choose the ZP variant of OTFS. We position the pilot sequence within

the zero-padded region, enabling the pilot to spread into the zero-padding samples due

to the delay and Doppler spread of the channel.

4.5.3 Channel Parameters Estimation

Let us denote the pilot sequence Xp = [xp0 , xp1 , ..., xpN−1
] as a CAZAC sequence with N

samples, located at delay bin mp and occupying all Doppler bins. Together with the data

symbols xd[m,n], they form the transmission frame of ZP-OTFS:

XDD[m,n] =


xp[n] m = mp, 0 ≤ n ≤ N − 1

0

{
mp − lmax ≤ m ≤ mp + lmax

0 ≤ n ≤ N − 1

xd[m,n] otherwise

(4.27)

Figure 4.17 illustrates the original CAZAC sequence located at delay bin mp.
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Figure 4.17: CAZAC sequence in the Delay-Doppler domain at the transmitter located at delay
bin mp = 14, and ℓmax = 2, data, pilot, and guard.

To estimate three quantities of interest, delay taps li, Doppler taps ki, and coefficients hi

for the ith path, where i = 1, . . . , P , the following procedure needs to be implemented.

To estimate the delay and Doppler taps, we search across the delay dimension of the

received signal Y within the estimation region to identify the highest similarity with

the transmitted pilot sequence. For each row m on the estimation grid {mp : M, :}, a

sliding window of length N is employed. This process can be implemented by forming

the cross-correlation function between the known pilot sequence Xp and each row of

received signal Y, resulting in a matrix R[m,n] where mp ≤ m ≤ M , 0 ≤ n ≤ N :

R[m,n] =
N−2∑
u=0

Y∗[m,n+ u]Xp[u+ n+ 1]. (4.28)

For each row m on the delay axis, the values are summed across the Doppler axis to

obtain:

C[m] =
N−1∑
n=0

R[m,n], (4.29)
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The peaks of C[m] function indicate potential delay and Doppler shifts introduced by the

channel, where the height of each peak reflects the degree of similarity. To filter out the

false paths caused by the AWGN noise, a threshold ζ is applied to the elements of C[m].

The estimated number of paths P̂ correspond to the count of elements exceeding ζ.

These indices determine the rows in Y where the pilot sequence Xp is located, thereby

indicating the presence of a path. Given the use of a CAZAC sequence, a prominent

peak in the correlation function is expected. Let L =
{
l̂i

}
for 0 ≤ i ≤ P̂ represent the

set of estimated delays, obtained as follows:

L =
{
l̂i | C[m] > ζ for some m

}
. (4.30)

For each detected delay, the Doppler shift is determined by identifying the circular shift

of the sequence at each matched row m using the index of the maximum value of C[m]:

k̂i = argmaxl̂i∈L

(
∥C[l̂i]∥

)
. (4.31)

The discrete delay-Doppler channel ĥ[l̂, k̂] can then be estimated by element-by-element

division and averaging of the received pilot symbols at the corresponding delay tap l̂i

and Doppler tap k̂i by the pilot sequence Xp:

ĥ[l̂, k̂] =
1

N

N−1∑
k=0

Y[mp + l̂, k + k̂ mod N ]

zk̂mpXp[k]
, for 0 < l̂ < l̂i, −k̂i < k̂ < k̂i. (4.32)

The estimated channel coefficients ĥi can be obtained from ĥ[l̂, k̂] as the following

ĥi =

ĥ[l̂, k̂], if l̂ = l̂i and k̂ = k̂i

0, otherwise.
(4.33)

The steps of the processing are summarized in Algorithm 1. Finally, we compute the

estimated discrete delay-time channel response ĥs
td[l, q] for q = 0, . . . , NM −1 and l ∈ L,

as previously formulated in (2.36):

ĥs
td[l, q] =

P̂∑
i=1

ĥiz
k̂i(q−l)δ(l − l̂i). (4.34)
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Algorithm 1: Estimation of Delay Taps, Doppler Taps, and Coefficients
Input: Received signal Y[mp : M, :], transmitted pilot sequence Xp, threshold ζ

Output: Estimated delay taps l̂i, Doppler taps k̂i, and coefficients ĥi

Estimation of Delay and Doppler Taps:

1. Compute cross-correlation function R[m,n] using (4.28)
2. Sum across Doppler axis: C[m] =

∑N−1
n=0 R[m,n]

3. Identify peaks in C[m] exceeding threshold ζ to obtain set L
4. k̂i = argmaxli∈L(∥C[li]∥)

Estimation of Channel Coefficients:

5. Circularly shift Y[mp + l̂i, :] by −k̂i positions to align with the pilot sequence:
Y[mp + l̂i, k + k̂i mod N ]

6. Perform element-by-element division of the circularly shifted
Y[mp + l̂i, k + k̂i mod N ] with zk̂impXp[k]

7. Average the results over N elements to obtain the discrete
delay-Doppler channel ĥ[l̂, k̂] in (4.32)

8. Extract the estimated channel coefficient ĥi from ĥ[l̂, k̂] using (4.33)

Output: l̂i, k̂i, and ĥi

4.5.4 PAPR of the Sequence Pilot

To ensure a fair comparison with the conventional method utilizing a single impulse pilot,

we adjust the power of the sequence pilot to match that of the conventional method.

Consequently, we distribute the pilot power Ppilot along the sequence to have equally

powered elements of
Ppilot

N
. When the ISFFT operation is applied, the power of the

pilot symbols is spread along the time axis. Additionally, the power of the CAZAC

sequence symbols remains constant even after the ISFFT operation. As a result, the

power distribution of the symbols along the time axis stays consistent with what would

be observed if one impulse pilot were placed in the delay-Doppler domain. Hence, the

PAPR remains unchanged as illustrated in Figure 4.18. Figure 4.19 visually illustrates

how the power of the CAZAC sequence along the Doppler axis is distributed in time

domain. It can be observed that the power distribution is the same as the impulse pilot

illustrated in Figure 4.8.
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Figure 4.18: PAPR vs PDR for impulse pilot and sequence pilot.

However, as we will observe in the subsequent section detailing the results analysis, the

proposed channel estimator outperforms the conventional method in mitigating channel

estimation errors. This implies that the proposed method achieves the same level of

channel estimation accuracy while using less pilot power resource, which in turn results

in a lower PAPR of the corresponding time domain signal. Therefore, even though

distributing the pilot symbols along the Doppler axis does not directly alter the PAPR, we

can achieve an indirect reduction in PAPR when the channel estimation error decreases

with the proposed method.
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Figure 4.19: High-power impulse pilot causing elevated PAPR in the time-domain signal.

4.6 Detection

Let us recall the discrete received signal y[q], as previously given in (2.31) for q =

0, . . . , NM − 1:

y[q] =
P∑
i=1

hiz
ki(q−li)x [q − li] . (4.35)

The above equation can be expressed in terms of the discrete delay-time channel

response hs
td[l, q] given in (2.36):

y[q] =
∑
l∈L

hs
td[l, q]x [q − l] , (4.36)

where L is the set of estimated delays. In (4.14), we observed that the discrete

transmitted time-domain signal, denoted by s, is a vector representation of the matrix

Xtd containing delay-time domain samples. Specifically, it includes delay-time vectors

x̃m ∈ CN×1. This can be expressed as:

s(m+ nM) = x̃m(n). (4.37)
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Similarly, the discrete received time-domain signal y can also be expressed using the

delay-time vectors ỹm ∈ CN×1 as:

y(m+ nM) = ỹm(n). (4.38)

Subsequently, (4.36) can be reformulated in terms of the delay-time vectors x̃m and ỹm

can be expressed as:

ỹm(n) =
∑
l∈L

ĥs
td[l,m+ nM ] x̃m−l(n) =

∑
l∈L

ĥiz
k̂i(m−l) e

2ȷπk̂in

N x̃m−l(n). (4.39)

To transition to the delay-Doppler domain, we apply an N-point FFT to (4.39), resulting

in:

ym = FN · ỹm =
P̂∑
i=1

ĥiz
k̂i(m−l̂i) ⊛ xm−l̂i

, (4.40)

where xm and ym ∈ CN×1 represent the vectors containing the delay-Doppler symbols

in the mth row of XDD and YDD, respectively. (4.40) illustrates how the transmitted

symbols vector at delay index m − l̂i is influenced by the channel at the delay tap of

l̂i. Since the channel applies varying effects on different delay paths of the transmitted

signal in the delay-Doppler grid, the SNR of the received signal components of the

transmitted symbol vectors xm at each delay tap 0 < m < M − 1 differs. This forms the

fundamental concept utilized in [158], [159] for detecting the transmitted symbols xm

at the receiver. They do this by combining the received multipath components of the

transmitted symbols using the Maximum-Ratio Combining (MRC) method.

4.7 Simulation Results

In this section, we present simulation results for the proposed correlation-based channel

estimation method utilizing the CAZAC sequence. The channel model utilized is the

TransPod high-Doppler channel, capable of reaching speeds up to 1000 km h−1, as

detailed in chapter 3. We assess the performance of our method in terms of channel

estimation Normalized Mean Squared Error (NMSE) and Bit Error Rate (BER), and

compare it with conventional estimation method employing a single impulse pilot [135],

[136]. All relevant system parameters for simulation are outlined in Table 4.2.
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For the conventional channel estimation method, we transmit an impulse pilot with a

power level of Ppilot = |xp|2. The SNR of the pilot, denoted as SNRpilot, is computed as

the ratio of the squared magnitude of the pilot to the variance of the AWGN, SNRpilot =
Ppilot

σ2
w

. The SNR of the data is defined as SNRd =
Pdata

σ2
w

=
E{|xd|2}

σ2
w

. Notably, the zero

guard samples surrounding the pilot are influenced by noise due to the SNRd associated

with data transmission. We introduce the Power Difference Ratio (PDR), defined by the

equation:

PDR = 10 log10

(
Ppilot

Pdata

)
= 10 log10

(
|xp|2

E{|xd|2}

)
. (4.41)

For the proposed sequence-based channel estimation method, we employ the CAZAC

sequence Xp with the same power level as one impulse pilot. To be fair, the power of

one impulse pilot is distributed evenly across the CAZAC pilot sequence symbols such

that E{||Xp||2} = |xp|2 = Ppilot.

Table 4.2: System Parameters for Simulation

simulation parameters Value

Carrier Frequency 4 GHz
Modulation scheme 4-QAM
Size of an OTFS frame (N,M) (32,128)
Subcarrier spacing 30 kHz
Speed 1000 km h−1

Transmitter-Receiver distance 30 m

4.7.1 NMSE

We analyze the NMSE of the discrete delay-time channel response in (4.34). NMSE is

an indicator for reflecting the channel estimation accuracy and is defined as:

NMSE =

∥∥∥hs
td − ĥs

td

∥∥∥2
F

∥hs
td∥

2
F

, (4.42)

where ∥ · ∥F represents the Frobenius norm [160]. Here, hs
td and ĥs

td are the vectors of

the discrete delay-time channel and its estimate, respectively.

We evaluate the performance of the proposed correlation-based channel estimator in
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comparison with the conventional method [35], [135] at PDR = 5dB and 15 dB. We also

compare the performance of the proposed channel estimation algorithm with the classic

Linear Minimum Mean Square Error (LMMSE) channel estimation method for OTFS

modulation, which minimizes the mean square error between the estimation region

of the received signal in the delay-Doppler domain, and the the known impulse pilot.

Mathematically, the LMMSE estimate of ĤLMMSE is derived as:

ĤLMMSE =
y ∗ x∗

p

|xp|2 + σ2
w

. (4.43)

Then, from the estimated channel response ĤLMMSE, the channel parameters can be

estimated [161].

Figure 4.20 illustrates the comparison of NMSE performance between different methods.

We observe that the proposed method shows more resistance to the noise due to

exploiting the whole zero padded space instead of just using one bin to place the pilot.

The obtained "diversity gain" helps to reduce the false path detection probability and

also to increase the probability of path detection.

SNR
d
 (dB)

N
M

S
E

LMMSE, impulse pilot, PDR=5 dB [161]

Impulse pilot, PDR=5 dB [135]

Proposed sequence pilot, PDR=5 dB

LMMSE, impulse pilot, PDR=15 dB [161]

Impulse pilot, PDR=15 dB [135]

Proposed sequence pilot, PDR=15 dB

Figure 4.20: NMSE performance between proposed sequence pilot structure and conventional
method with impulse pilot for different PDRs.
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The NMSE vs PDR performances of the proposed algorithm and the conventional

method in [135], for three different data SNR (5, 10, and 15 dB) is shown in Figure 4.21.

Comparing the curves shows that, with a fixed power budget for the pilot, the proposed

method achieves NMSE reduction. The Figure 4.22, depicts the same curves, with

horizontal markers, that gives the reduction that we obtain in pilot power, for the same

NMSE performance. Hence, apart from power saving, and as a good consequence,

the PAPR of the time domain signal utilizing the proposed pilot sequence is reduced

compared to the conventional pilot scheme.

(a) SNRd = 5dB (b) SNRd = 10dB

PDR (dB)

N
M

S
E

 (
d
B

) 3.69 dB

4.04 dB

3.70 dB

SNR
d
 = 15 dB

(c) SNRd = 15dB

Figure 4.21: NMSE performance comparison of proposed sequence pilot structure and conven-
tional impulse pilot as a function of pilot power, for different SNRd.
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(a) SNRd = 5dB (b) SNRd = 10dB
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5.2dB

4.95dB

4.7dB
4.4dB

4.3dB
4.3dB

4.45dB

4.55dB

SNR
d
 = 15 dB

(c) SNRd = 15dB

Figure 4.22: NMSE performance comparison of proposed sequence pilot structure and conven-
tional impulse pilot as a function of pilot power, for different SNRd.

4.7.2 BER

Figure 4.23 illustrates the BER comparison of the channel estimation methods with

impulse pilot for PDR = 5dB, 15 dB, and sequence pilot, where the case of known

channel is also presented for reference. The results reflect the difference in channel

estimation performance between the traditional and proposed method. In low pilot power,

the traditional method exhibits the worst BER due to its inferior channel estimation
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performance. The proposed method gives better BER performance because of its

"diversity gain".

SNR
d
 (dB)

LMMSE, impulse pilot, PDR=5 dB [161]

Impulse pilot, PDR=5 dB [135]

Proposed sequence pilot, PDR=5 dB

LMMSE, impulse pilot, PDR=15 dB [161]

Impulse pilot, PDR=15 dB [135]

Proposed sequence pilot, PDR=15 dB

Ideal

Figure 4.23: BER performance of the proposed sequence pilot and conventional impulse pilot
channel estimation under different PDR.

4.8 Summary

This chapter introduces a novel pilot-based channel estimation technique for OTFS

modulation systems. It involves inserting a pilot sequence into the zero bins of the ZP-

OTFS system to improve the estimation accuracy, particularly in high noise scenarios.

Multiple pilot symbols are utilized to provide redundancy, facilitating noise mitigation

through averaging. Our proposed correlation-based estimation algorithm utilizes CAZAC

sequence for robust parameter estimation. Additionally, the proposed method achieves

the same level of channel estimation accuracy while using less pilot power resource,

leading to a lower PAPR of the corresponding time domain signal. Therefore, although

distributing the pilot symbols along the Doppler axis does not directly alter the PAPR,

we can achieve an indirect reduction in PAPR thanks to pilot power reduction.
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THE main objective of this chapter is to propose a DNN-based channel estimation

method for OTFS systems. Traditional estimation methods often struggle with fractional

normalized Doppler indices, leading to inaccuracies due to the pilot symbol leakage

effect. By applying the DNN approach, we aim to overcome this challenge and increase

the accuracy of the channel estimation. We will evaluate this method through detailed

simulations.

5.1 Related works

In recent years, DL, a subset of machine learning, has gained considerable attraction

and demonstrated its efficacy across various domains, including the design of wireless

communication systems [162], [163]. Within this context, DNNs offer promising solutions

for various tasks such as channel estimation [164], [165], modulation recognition [166],

and detection [167]. Given the advantages offered by OTFS, DL techniques have been

employed in addressing various challenges within OTFS systems, including detection

and channel estimation. In the investigation conducted by [168], pilot symbols were

interleaved with data symbols, leading to interference between them at the receiver.

To address this issue, the authors utilized Recurrent Neural Network (RNN) with Long

Short-Term Memory (LSTM) layers. This choice was motivated by the feedback loop

established in the system, after mitigating the interference effects from the data, the

output of the OTFS detector is fed back to the input of the network. This feedback loop

creates a dependency between the current input and previous inputs of the network,
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making RNN the appropriate choice for the task. In [169], the authors propose to use

2D-ConvLSTM to predict future channel coefficients directly from the previous OTFS

frames on a vehicle trajectory. In [170], a DNN-based architecture utilizing one impulse

pilot is proposed to carry out fractional Doppler channel estimation in OTFS systems.

In this chapter, we begin by our motivation focusing on the fractional Doppler shifts, then

we provide background information on deep learning. We then detail the architecture of

the DNN used in this study and describe the input data structure of the DNN estimator,

along with the generation of datasets required for training and testing phases. Finally, we

conclude by identifying the optimal architecture for our specific case study, comparing

simulation results with those obtained from conventional methods.

5.2 Motivation

Traditional channel estimation techniques, while effective in some scenarios, face

significant challenges, including sensitivity to noise and the need for high pilot power.

Moreover, these methods often struggle with fractional normalized Doppler indices,

leading to inaccuracy due to the pilot symbol leakage effect (see Figure 4.10). This is

where Deep Learning (DL) methods can play an efficient role. DL algorithms, with their

ability to learn complex patterns and generalize from large datasets, can offer robustness

against noise and fractional Doppler shifts in the channel, potentially improving channel

estimation accuracy in OTFS system.

As previously discussed, the actual Doppler shift values ν can be computed as ν =
κ

NT
,

where κ is the Doppler index and NT is the OTFS frame size. For small OTFS frame

duration and small N , κ becomes fractional and can not be accurately estimated at the

receiver. Instead, multiple paths with integer Doppler indices k adjacent to the fractional

value κ are estimated with an error of ke, such that κ = k + ke. This results in a phase

rotation of zke(m−l) in the delay-Doppler received signal.

Revisiting Equation 4.39 from chapter 4 with fractional Doppler indices κi, the delay-time

domain signal in vectorized form is expressed as:
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ỹm(n) =
P̂∑
i=1

ĥiz
(k̂i−kei )(m−l̂i) e

2ȷπ(k̂i−kei )n

N x̃m−l̂i
(n). (5.1)

Similar to Equation 4.40, the above equation can be converted to delay-Doppler domain

as:

ym = FN · ỹm =
1

N

N−1∑
n=0

P̂∑
i=1

ĥiz
(k̂i−kei )(m−l̂i) e

2ȷπ(k̂i−kei )n

N e
−j2πkn

N x̃m−l̂i
(n)

=
1

N

P̂∑
i=1

ĥiz
(k̂i−kei )(m−l̂i)

ej2π((k̂i−kei )−k) − 1

e
j2π((k̂i−ke

i
)−k)

N − 1

 x̃m−l̂i
(n)

=
1

N

P̂∑
i=1

ĥiz
(k̂i−kei )(m−l̂i)Ψ x̃m−l̂i

(n),

(5.2)

here, the term Ψ represents the effect of fractional Doppler on the received signal.

5.2.1 Background on neural network

An Artificial Neural Network (ANN) or DL, a widely used machine learning algorithm,

is structured similarly to the human neural system. The network learns to perform

classification or regression tasks directly from input data such as images, text, or sound.

It comprises basic computational units known as neurons, which are organized into

layers within the network. Typically, an ANN consists of three primary layers: the input

layer, the output layer, and at least one hidden layer in between. Each neuron receives

inputs, denoted as x = [x1, x2, · · · , xn], either from the input layer or from neurons in

other hidden layers [171]–[174]. These inputs are modified by corresponding weights,

w = [w1, w2, · · · , wn]. The neuron calculates the weighted sum of these inputs and adds

a bias b to obtain the output z. Then a nonlinear function f , known as an activation

function, is applied to z to determine the output of the neuron n:

n = f (z) = f

(
N∑
j=1

xjwj + b

)
(5.3)

This process is depicted in Figure 5.1, which illustrates the structure of a neuron in the

neural network [175].
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Figure 5.1: Neuron architecture with n input values.

An activation function is a mathematical operation that transforms the input of a neuron

into an output to be passed to the next layers. They introduce non-linearity into the

output of the neuron, allowing the network to learn more complex relationships between

the inputs and outputs. There are various types of activation functions, each with its

unique characteristics and applications. The activation function Rectified Linear Unit

(ReLU) is the most popular due to its ability to avoid the vanishing gradient problem,

and defined as:

f(x) = max(0, x) (5.4)

In the output layer, a different activation function might be used depending on whether

the problem at hand is a regression or classification. For classification, the sigmoid

activation function is generally considered:

f(x) =
1

1 + e−x
, (5.5)

and for regression problem, the linear activation function or identity function is used

directly in the output layer:

f(x) = x. (5.6)

As input data progresses through the network, each neuron computes its output, which

is then passed on to the next layer. This process continues iteratively until reaching the

output layer. Once the network produces its predicted output ŷ, it is compared against

the expected output y, often referred to as the ground truth or target obtained from
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training data, to compute the error. The deviation between expected and predicted

outputs is quantified through a cost function, with Mean Squared Error (MSE) being one

of the most commonly used loss functions:

L =
1

N

N∑
i=1

(yi − ŷi)
2. (5.7)

During the training stage, the network is trained to adjust its internal parameters, such as

weights and biases, via the back-propagation method. This process involves calculating

the gradient of the error with respect to each weight,
∂L

∂w
and bias,

∂L

∂b
. The gradient

tells us the direction in which the weights and biases need to be adjusted to minimize

the MSE. These modifications are made iteratively over numerous epochs, or complete

passes through the training dataset. By updating the weights and biases, the network

improves its ability to accurately map the input data to the correct outputs, thereby

reducing the loss over time [176].

Neural networks can be broadly classified into two main categories: feed-forward and

feedback (or recurrent) networks. Within these categories, there are several types of

networks with different architectures tailored to specific applications.

1. Feed-forward neural network (FNN) : They are characterized by data moving

one way from the input nodes, through any hidden layers, to the output nodes

without any cycle or loop. This category includes both DNN and Convolutional

Neural Network (CNN):

• DNN : These networks consist of an input layer, two or more hidden layers

(hence "deep"), and an output layer. The layers are typically fully connected,

meaning that every neuron in the layer is connected to all neurons in the pre-

vious layer. DNNs are used for tasks like object detection, facial recognition,

and image classification [177], [178].

• CNN These are designed for processing two-dimensional grid data, such as

images and videos. CNNs use convolutional layers, pooling layers, and fully

connected layers [179], [180].

2. Feedback neural network They differ from feed-forward networks in that they
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allow data to flow in loops. This means they can maintain state or memory over

time that captures information about past inputs, making them suitable for tasks

involving sequential data like time series prediction, natural language processing,

and speech recognition [181], [182]. This category also includes gated recurrent

units (GRUs) and long short-term memory (LSTM) approaches. LSTM network

has the ability to predict the future data based on the previous observations [183].

In this work, we utilized DNN based channel estimation method.

5.2.2 Dataset Management: Train, Validation, and Test Sets

In neural networks, datasets are typically divided into three subsets: training, testing, and

validation. The training set is used to train the model, allowing it to learn and adapt its

weights based on the provided inputs and expected outputs. Commonly, around 70% to

80% of the data is allocated for training. The validation set, which often comprises about

10% to 20% of the train data, is used to validate the model performance during training.

The model is trained on the training set, and, simultaneously, the model evaluation is

performed on the validation set after every epoch to tune the model parameters. For

example, in the classification tasks, the training data set is used to train the different

candidate classifiers, the validation data set is used to compare the different candidate

classifiers in terms of their performances and decide which one to take. Lastly, the test

set is is independent of the training data set and used to evaluate the performance of

the model after training has concluded [184]–[187].

5.2.3 System Model and Data arrangement

As discussed previously, in this study, we utilize the ZP-OTFS structure, where the final

LZP rows of the delay-Doppler grid are set to zeros, while the remaining M − LZP rows

contain the information symbols. The length of zero padding, LZP , is determined as

(2lmax + 1), where lmax represents the length of the channel impulse response. Within

this zero-padded region, the pilot sequence is positioned at the delay index mp across

all Doppler bins. The insertion of zero padding helps mitigate inter-block interference

in the time domain as well as interference between data and pilot symbols. Together

with the data symbols xd[m,n], these elements constitute the transmission frame of
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ZP-OTFS, depicted in Figure 5.2:

XDD[m,n] =


xp[n] m = mp, n ∈ [0, N − 1]

0

{
m ∈ [mp − lmax,mp) ∪ (mp,M − 1]

n ∈ [0, N − 1]

xd[m,n] otherwise.

(5.8)

2l
m
a
x
+
1
=

13

M = 128

D
el

ay

N = 32Doppler

mp = 121

Figure 5.2: delay-Doppler grid structure with pilot sequence for CP-OTFS and ZP-OTFS; :
data, : guard, and : pilot sequence.

To estimate the channel, we analyze symbols of the received signal in the delay-Doppler

domain corresponding to both pilot symbols and zero guard bins. Circular shifted

versions of the pilot sequence are copied at the delay taps of the channel, with each

version multiplied by the complex-valued channel coefficient of the respective path.

These symbols are structured into a complex-valued matrix denoted as E ∈ CN×(lmax+1),

spanning from mp to mp + lmax in the delay axis and from 0 to N − 1 in the Doppler axis:

E = Y[mp : M − 1, :], (5.9)

where Y is the received signal in the delay-Doppler domain. This matrix serves as the

input data for the deep neural network tasked with learning the channel characteristics.

The goal is to reconstruct the channel parameters (hi, li, ki) for each detected path,

which will serve as the expected output at the final layer of the network.
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5.2.4 Proposed DNN structure

The DNN architecture includes three primary components: an input layer, D hidden

layers, and an output layer, as illustrated in Figure 5.3. We extract 2N(lmax + 1) symbols

from the matrix E from (5.9), corresponding to the transmitted pilot sequence, from

the received OTFS frame. Then it transforms into vector e ∈ R2N(lmax+1)×1. Since the

DNN processes only real values, this vector e is divided into its real and imaginary

parts, resulting in an input layer with 2N(lmax + 1) neurons. The expected data for

training the network is obtained by generating a 3lmax length vector of true channel

parameters u = (hi, li, ki), where i corresponds to each identified channel path. Since

the channel coefficients are complex, their real and imaginary parts are processed

separately, resulting in the output vector u ∈ R4lmax×1. At the core of the DNN are

its hidden layers, each composed of J neurons. These neurons perform nonlinear

function on the inputs they receive, which are the weighted sums from the previous

layer’s outputs. The activation function f1 used for hidden layers is the ReLU function,

while a linear activation function f2 is used for the output layer. The output of the

network during the forward propagation process, denoted as û, results from multiple

sequential nonlinear transformations. In this context, the output of each hidden layer

nd ∈ RJ×1 serves as the input to the next layer, with nd being the output from layer d,

and û ∈ R4ℓmax×1 representing the final predicted output. The weights of each layer are

stored in matrix Wd ∈ RJ×J for d = 2, · · · , D, W1 ∈ R2N(lmax+1)×J , and WD+1 ∈ RJ×4lmax .

Furthermore, each layer also has a bias vector bd ∈ RJ×1. The transformations from the

input to the first hidden layer and from the last hidden layer to the output are formulated

as follows:

n1 = f1
(
W1e+ b1

)
, (5.10)

û = f2
(
WD+1nD + bD+1

)
. (5.11)
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Figure 5.3: A fully connected neural network (FNN); : Inputs, : Neurons, and : Outputs

The network is trained offline using training data generated from a large number of

delay-Doppler domain OTFS frames using various pilot schemes. The objective is to

design an appropriate DNN architecture that can learn the relationship between the

target data u and the input E as a function F : E → u, to predict the output vector as

a regression problem. During the training phase, the weights and biases are adjusted

through the back-propagation by Adam optimizer, to minimize the error between the

actual output U and the predicted output û. The Mean Square Error (MSE) is employed

as the loss function to quantitatively measure the difference between the predicted and

actual channel parameters:

L(u, û) = ∥u− û∥2

The training process, involving both forward and backward propagation, is repeated until

the network reaches a satisfactory level of accuracy.
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To improve the accuracy of the network, the training set is generated under a variety of

channel conditions, including different channel gains and SNRs.

5.3 Discussions and Simulation analysis

Our simulations apply the TransPod channel model introduced in chapter 2. To generate

the dataset, we evaluate D distinct distances between the transmitter and receiver in

the TransPod context. At each distance, we generate a dataset across a range of SNRs

from 0 dB to 30 dB. For each distance and SNR for speed v of the FluxJet vehicle,

we generate Lr realizations of the communication channel. These realizations have

the same values of delay τi and Doppler νi, but differ in their channel coefficients hi.

To diversify our dataset, we further generate Ls sequences for each Lr realization by

introducing random noise n at a constant SNR to the actual signal, in (4.6).

Table 5.1: Parameters of DNN architecture.

Parameter Value

Input layer neurons 2N(lmax + 1)

Hidden layer numbers 2
Output layer neurons 4lmax

Hidden layers neurons 20
Size of the training set 28000

Size of the validation set 7000
Size of the testing set 15000

Hidden layers activation ReLU
Output layer activation Linear

Optimizer Adam
Epochs 100

Batch size 128
Learning rate 0.001

We present a comprehensive analysis of our simulations using distinct subsections. In

each subsection, we explore a specific performance aspect of our proposed DNN-based

channel estimator. Our goal is to enhance training efficiency while avoiding excessive
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resource consumption and the necessity for an individual network for each pair of SNR

and distance. Thus, we adapt our dataset to train the network in alignment with the

specifications outlined in the subsequent subsections. In one subset of experiments,

we maintain a fixed distance between the transmitter and the receiver while training

the DNN network across a range of SNRd from 0 dB to 30 dB. Another subset of

experiments involves keeping the SNRd fixed, set at 15 dB and 30 dB, and vary the

distances during training. We utilize a delay-Doppler grid with M = 128 delay bins

and N = 32 Doppler bins, employing a subcarrier spacing of ∆f = 1000 kHz. For the

pilot sequence, we employ a CAZAC sequence of length N defined in (4.25). The

sequence is designed to have the same total power as the impulse pilot, ensuring a fair

comparison. The maximum delay index is set to lmax = 6. In each scenario, we populate

the corresponding values of delay, Doppler and channel coefficients, while setting all

others to zero. Consequently, the input layer of the DNN consists of 2N(lmax + 1) = 448

neurons, and the output layer consists of 4lmax = 24 neurons. We generate a dataset

consisting of Lr = 50 channel realizations for each distance, and each realization is

generated Ls = 1000 times. To validate the effectiveness of our DNN, we split our

dataset into 70% and 30% for training and testing, respectively. Within the training

dataset, we further divide 80% for actual training and 20% for validation. We evaluate

the prediction accuracy of our DNN by measuring the NMSE. As a result, we generate

50000 training samples and we set 28000 as the offline training dataset, 7000 as

validation dataset, and 15000 for the test dataset. The DNN training and testing are

conducted using the PyTorch framework. The robustness of the proposed DNN-based

channel estimator is tested using PDR=5 dB and PDR=15 dB, reflecting both low

and high pilot power compared to the data. Moreover, we investigate the impact of

different DNN architectures to determine the optimum number of layers for improved

channel estimation performance. Therefore, identifying the best DNN architecture that

achieves good performance-complexity trade-off for the TransPod system. All the basic

parameters of the architecture of the DNN is summarized in Table 5.1.

5.3.1 Impact of pilot power

In this analysis, we fix the distance between transmitter and receiver to 30 m, and

evaluate the performance of the proposed channel estimator with PDR=5 dB and
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PDR=15 dB.

Figure 5.4 illustrates a comparison of NMSE performance between the conventional

channel estimation method in [135] and the DNN-based method when utilizing one im-

pulse pilot [170]. In Figure 5.5, we demonstrate NMSE comparison between correlation-

based method as seen in chapter 4 [23], and the DNN-based method, while utilizing a

CAZAC sequence pilot. The results demonstrate that, when the pilot power is not signif-

icantly higher than the data power, there is a risk of false detection of delay and Doppler

taps, resulting in a significant error in channel estimation. Results further show that,

the proposed DNN-based channel estimator outperforms its conventional counterparts.

The DNN-based method, employing sequence pilot symbols, demonstrates superior

performance compared to other curves. In fact, the diversity provided by multiple pilots

improves the robustness, making the system more resilient to noise and interference.

To achieve the same estimation performance, our architecture requires less pilot power,

which results in a lower PAPR. Figure 5.6 and Figure 5.7 illustrate a comparison of the

BER performance using the MRC detector. We observe that the conventional method

employing a single impulse pilot or a sequence pilot, exhibits improved performance as

the pilot power increases. These results also highlight the superior performance of the

DNN approach compared to traditional approaches.
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Conventional, impulse pilot, PDR = 5 dB [135]

DNN, impulse pilot, PDR = 5 dB

Conventional, impulse pilot, PDR = 15 dB [135]

DNN, impulse pilot, PDR = 15 dB

Figure 5.4: NMSE performance comparison between the proposed DNN approach and conven-
tional scheme with an impulse pilot.
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Conventional, sequence pilot, PDR = 5 dB [23]

DNN, sequence pilot, PDR = 5 dB

Conventional, sequence pilot, PDR = 15 dB [23]

DNN, sequence pilot, PDR = 15 dB

Figure 5.5: NMSE performance comparison between the proposed DNN approach and conven-
tional scheme with a sequence pilot.
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Conventional, impulse pilot, PDR = 5 dB [135]

DNN, impulse pilot, PDR = 5 dB

Conventional, impulse pilot, PDR = 15 dB [135]

DNN, impulse pilot, PDR = 15 dB

Perfect CSI

Figure 5.6: BER performance comparison between the proposed DNN approach and conven-
tional scheme with an impulse pilot.
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Conventional, sequence pilot, PDR = 5 dB [23]

DNN, sequence pilot, PDR = 5 dB

Conventional, sequence pilot, PDR = 15 dB [23]

DNN, sequence pilot, PDR = 15 dB

Perfect CSI

Figure 5.7: BER performance comparison between the proposed DNN approach and conven-
tional scheme with a sequence pilot.
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5.3.2 DNN Architecture

In this section, our primary aim is to assess the performance of the implemented DNN

architecture and to explore the impact of varying the number of layers and neurons

within the network. Figure 5.8 presents the results of our NMSE evaluation for estimator

utilizing CAZAC sequence. It was found that a two-layer network exhibited the most

promising overall performance. Interestingly, our observations suggest that increasing

the depth of the network does not necessarily lead to enhanced performance. This

phenomenon can be explained by the fact that deeper networks demand more extensive

datasets and computational resources for effective training. When the dataset is limited

in size or lacks sufficient information to justify deeper representations, the addition of

more layers may even result in performance degradation.

Subsequently, focusing on a two-layer architecture, we investigated the influence of

varying the number of neurons, ranging from 5 to 40 neurons per layer, as illustrated

in Figure 5.9. The analysis indicates that increasing the number of neurons improves

NMSE performance. However, finding the right balance is a key. If the model gets too

complex, it needs more computing power. But if it is too simple, it might not give an

accurate channel estimation. Through our analysis, we determined that employing 20

neurons per layer achieved a favorable balance between performance and computational

complexity.
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Figure 5.8: NMSE performance of the trained DNN model using different architectures.
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Figure 5.9: BER performance comparison between the different DNN architectures.
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5.3.3 Imapct of Tx-Rx distnaces

In this section, our objective is to analyze the impact of the distance between transmitter

and receiver. In order to do so, we maintain SNRd of 15 dB and 30 dB while training

the network. We generate data from 10 different distances: [10, 40, 70, 100, 200,

300, 400, 500, 600, 700] meters. The results show that the minimal error is observed

when the network is both trained and tested at the same distance. As a consequence,

the DNN parameters should be adapted with the distance. Actually, in the TransPod

transportation system, the location of the FluxJet is known, so in practice, we can modify

the DNN parameters in real time.

Figure 5.10 and Figure 5.11 show the NMSE performance during testing across these

defined distances. The outcomes show that the minimal error is observed when the

network is both trained and tested at the same distance. However, better NMSE perfor-

mance is recorded when the training is performed using SNR of 30 dB in Figure 5.11.

Actually, when higher SNR is employed in the training phase, the DNN is able to perform

better since the impact of the AWGN noise is low. We note that the distinctive behavior

observed in the curves corresponding to distances of 400m, 500m, and 600m can be

attributed to shared characteristics in the delay and Doppler taps. Furthermore, we

conclude that the DNN parameters should be adapted with the distance. Actually, in the

TransPod transportation system, the location of the FluxJet is known, so in practice, we

can modify the DNN parameters in real time.

Bentolhoda KAZEMZADEH OSGOEI| Thèse de doctorat | Université de Limoges

Licence CC BY-NC-ND 3.0

152



Chapitre 5 – CHAPTER 5. DEEP LEARNING BASED CHANNEL ESTIMATION IN
ZP-OTFS MODULATION SYSTEMS

Distance (m)

N
M

S
E

DNN (D = 10m) DNN (D = 40m) DNN (D = 70m) DNN (D = 100m) DNN (D = 200m)

DNN (D = 300m) DNN (D = 400m) DNN (D = 500m) DNN (D = 600m) DNN (D = 700m)

Figure 5.10: NMSE performance of the trained DNN model using several distances in data SNR
= 15dB.
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Figure 5.11: NMSE performance of the trained DNN model using several distances in data SNR
= 30dB.
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5.3.4 Impact of SNR on the trained DNN model

In the conducted study, we explored the NMSE and BER performance of a network

trained specifically for a fixed SNR value within a defined range of 0 dB to 30 dB.

This trained DNN for the given SNR is then tested for all the SNR levels. The results,

displayed in Figure 5.12, illustrate that the network exhibits its most accurate and

minimized error when tested at the specific SNR value it was originally trained on.

However, training several DNN for different SNR values requires the SNR estimation at

the receiver as well as increased memory storage.

As it can be seen from Figure 5.12, the DNN can be trained for the highest value of

SNR, but used for all the SNR values. The degradation in the estimation error will not

be too much. Furthermore, if we compare the BER curves of Figure 5.13, the impact on

the performance is quite negligible if we use a high SNR trained DNN. This result can

significantly reduce the system complexity because only one DNN is used for all the

SNR values.
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d
 (dB)
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M

S
E

Training SNR = 0 dB

Training SNR = 5 dB

Training SNR = 10 dB

Training SNR = 15 dB

Training SNR = 20 dB

Training SNR = 25 dB

Training SNR = 30 dB

Figure 5.12: NMSE performance of the trained DNN model using different architectures.
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Training SNR = 30 dB

Figure 5.13: BER performance comparison between the different DNN architecture.

5.3.5 Computational Complexity

The required number of multiplication/division operations is a metric to evaluate the

computational complexity. The threshold-based channel estimation methods with an

impulse pilot [135] estimates the channel parameters from the E ∈ CN×(Lmax+1)) matrix at

the receiver, so the operation numbers is N(lmax+1). For the channel estimation method

with a sequence pilot proposed in the chapter 4, the complexity is N2(lmax+1)+PN +P .

For the proposed DNN-based estimator, the complexity comes from the DNN processing

in (5.11), is about 2N(lmax+1)J +J2+(4lmax)J . Here, J denotes the number of neurons

in the the hidden layers. The DNN approach introduces increased computational

complexity compared to conventional methods; however, it offers improved accuracy in

channel estimation.

5.4 Summary

In this chapter, we introduced an innovative channel estimation method for OTFS sys-

tems utilizing machine learning, particularly the DNN approach. Our method addresses
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the challenges posed by fractional normalized Doppler indices, where conventional

techniques struggle with the pilot symbol leakage effect. Through simulations, we

demonstrated the superior performance of our DNN-based channel estimation utilizing

CAZAC sequence, even under conditions of low pilot power. Additionally, this not only

ensures robust estimation but also achieves power efficiency during transmission.
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6.1 Conclusion

This thesis explores channel modeling and physical layer design to enhance high data

rate communications in high mobility wireless channels, with a specific focus on the

TransPod system. The work begins with a comprehensive review of wireless channels,

focusing on doubly selective channels, their impairments, and modulation techniques

such as OFDM and OTFS. We then characterize the TransPod guideway transmission

channel, examining both large-scale and small-scale characteristics, and addressing

noise from the plasma-based power transmission system. A dual-link communication

system is proposed to mitigate frequent disconnectivity or handover. We propose a novel

sequence pilot based channel estimation technique for OTFS systems in delay-Doppler

domain, and introduce a machine learning-based method for fractional Doppler channel

estimation using DNN.

6.2 Future Works

The future work can be considered in several directions. The research presented in

chapter 3 of this thesis has highlighted the challenges of impulsive noise and frequent

handovers in the TransPod system. To further enhance the performance of the system,

we propose two key areas for future work: designing appropriate coding techniques to

mitigate impulsive noise and implementing a dual-link system.
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One potential direction is the development of advanced coding techniques, specifically

robust erasure codes optimized for the constraints of TransPod tube, to mitigate the

impact of impulsive noise. Given that impulsive noise can corrupt transmitted signals

to the point of packet erasure, the work could involve investigating and implementing

advanced fountain codes like LT codes and Raptor codes for efficient data recovery,

as well as exploring novel error correction codes, to provide efficient protection against

packet erasures.

Additionally, future work could involve the implementation and testing of a dual-link com-

munication system to create a seamless handover. This approach would be evaluated

in various real-world scenarios, including different vehicle speeds and environmental

conditions, with the aim of optimizing the system for smooth transitions between links

and minimizing latency and packet loss during handovers.

Real-world validation is another important area for future research. The entire system

could be tested using Universal Software Radio Peripheral (USRP) modules, focusing

on real-world implementation and validation. This would include testing the system

in metal tube structures at realistic speeds to gather performance data and validate

simulation results, as well as characterizing the communication channel under various

conditions to refine the system’s models and improve its robustness.

Following this, the OTFS modulation technique could be further explored. Future work

could evaluate the OTFS system’s performance under real-world conditions, assessing

its reliability and ability to handle high-mobility scenarios.

Another significant direction could be the exploration of multi-antenna systems, utilizing

Multiple-Input and Multiple-Output (MIMO) technology. Following this, the integrating

OTFS with MIMO technology could be considered as an area for further investigation.

Testing various MIMO configurations would help determine the optimal setup for in-

tube transmission for TransPod-like communication systems. Advanced beam-forming

techniques could also be explored to direct signals more precisely, reducing interference

and improving communication quality.

Future research could also investigate the integration of OTFS with other emerging

technologies such as 5G and beyond, as well as its application in Internet of Things
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(IoT) networks.

Machine learning and artificial intelligence can play a crucial role in future work. De-

veloping adaptive algorithms that can optimize system performance in real-time and

using AI techniques for predictive maintenance could improve the overall reliability of

the communication system in such environments.

Finally, hardware optimization could become a crucial area of focus. This effort might

involve creating custom hardware components designed to meet the specific needs

of the TransPod system, including specialized RF components, antennas, and pro-

cessing units. Additionally, exploring ways to reduce the energy consumption of the

communication system could make it more sustainable and cost-effective.
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Conception d’un système de transmission haut débit dans un canal doublement
sélectif: système de TransPod

Résumé : Cette thèse explore la modélisation des canaux et la conception de la couche
physique pour améliorer les communications à haut débit dans les canaux sans fil à haute
mobilité, en se concentrant spécifiquement sur le système TransPod. Le travail commence
par une revue complète des canaux sans fil, en se focalisant sur les canaux doublement
sélectifs, leurs dégradations, et les techniques de modulation telles que OFDM et OTFS.
Nous caractérisons ensuite le canal de transmission du guide TransPod, en examinant à la
fois les caractéristiques à grande échelle et à petite échelle, et en traitant le bruit provenant du
système de transmission de puissance basé sur le plasma. Un système de communication à
double liaison est proposé pour atténuer les déconnexions fréquents. Nous proposons une
nouvelle technique d’estimation de canal basée sur des pilotes pour les systèmes OTFS
dans le domaine retard-Doppler, et introduisons une méthode d’estimation du canal Doppler
fractionnaire basée sur l’apprentissage automatique utilisant les deep neural network.

Mots clés : Transport de tubes à ultra-haute vitesse, TransPod, bruit impulsif dû au plasma,
modulation OTFS

Designing a high data rate wireless communication system in a doubly selective
channel: TransPod system

Abstract: This thesis explores channel modeling and physical layer design to enhance
high data rate communications in high mobility wireless channels, with a specific focus on
the TransPod system. The work begins with a comprehensive review of wireless channels,
focusing on doubly selective channels, their impairments, and modulation techniques such
as OFDM and OTFS. We then characterize the TransPod guideway transmission channel,
examining both large-scale and small-scale characteristics, and addressing noise from the
plasma-based power transmission system. A dual-link communication system is proposed
to mitigate frequent disconnectivity. We propose a novel sequence-pilot-based channel
estimation technique for OTFS systems in delay-Doppler domain and introduce a machine
learning-based method for fractional Doppler channel estimation using deep neural network.

Keywords: Ultra-high-speed tube-transportation, TransPod, impulsive noise due to plasma,
OTFS modulation
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