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Abstract

Models of increasing complexity are being developed to improve the realism in
the representation of natural systems. However, as these complex models are
often perceived as highly uncertain, it becomes critical to characterize and quan-
tify their sources of uncertainty and explore the degree of confidence that can
be placed in their predictions. Techniques such as sensitivity analyses and uncer-
tainty analyses are frequently used for this purpose, both addressing uncertainty
in different ways but sharing the need to run large ensembles of model simu-
lations. This can be technically limiting when dealing with complex models due
to their intrinsic characteristics. In this context, this research work addresses two
main questions: the first focused on how to deal with uncertainty in complexmod-
els, and the second focused on the impact of uncertainty on the diverse outcomes
produced by these models. These questions will be explored from a theoretical
to a practical angle, by studying uncertainty in the OSMOSE marine ecosystem
model applied to the northern Humboldt current ecosystem (the NHCE OSMOSE
model).

First, this thesis presents a literature review dedicated to the search for meth-
ods and tools applied to the study of uncertainty with potential applications to
biodiversity models. In this context, these models are defined as any mathemati-
calmodel (with elements such as state variables, forcing, mathematical equations,
and parameters) that covers a broad spectrum of ecological organization levels
(from individuals to ecosystems).

We then implemented an uncertainty analysis on the NHCE OSMOSE model,
intending to quantify the effect of parameter uncertainty on a set of ecological
indicators derived from this model. For this, we worked with two uncertainty sce-
narios for themodel parameters that describe themodelled species, correspond-
ing to a 10% and 20% coefficient of variation around the reference values of the
parameters. This study revealed that the uncertainty in the parameters of a few
species has strong repercussions on the rest of the food web; this was the case
for euphausiids and Humboldt squid. In addition, this work allowed to identify a



set of ecological indicators that weremore robust to input parameter uncertainty,
such as the slope of the size spectrum, the marine trophic index and the trophic
level of fish communities.

The results of the uncertainty analysis opened up a set of questions that we
addressed by proposing a protocol dedicated to the realization of a sensitivity
analysis of a complex model. We show the drawbacks of using arbitrary variabil-
ity ranges to represent uncertainty in model inputs. This is a frequent problem
when working with models with a large number of parameters, for which there is
a lack of information to determine their uncertainty. To address this issue, we pro-
pose the "parameter reliability criterion". This criterion serves to classify model
parameters according to the source of information used to estimate their values
and assign an uncertainty level to model parameters. We illustrate the use of this
protocol by implementing a sensitivity analysis using the NHCE OSMOSE model.

Finally, we conclude that the inherent complexities of an ecosystem model
should not be used as an argument to avoid studying uncertainty appropriately.
Computational methods and tools are available in the literature. However, they
should be selected carefully considering the potential limitations that the use of a
model may generate. The uncertainty level of a complex model depends strongly
on the uncertainty inmodel inputs, its propagation in time, but also on the outputs
studied. In this research, we highlight the difficulties of studying uncertainty in a
complexmodel (including but not limited to ecosystemmodels) and propose pos-
sible solutions and guidelines for future studies addressing this research problem.
Our results are only a first step, starting with the study of parameter uncertainty,
but leaving as a perspective the study of other sources of uncertainty such as in
model forcing, initial conditions, and uncertainty due to model structure.

Keywords: complex models, uncertainty analysis, sensitivity analysis, ecosys-
tem modelling, OSMOSE, northern Humboldt current ecosystem.
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Résumé

Des modèles de plus en plus complexes sont développés dans le but d’améliorer
le réalisme de la représentation des systèmes naturels. Cependant, comme ces
modèles complexes sont souvent perçus comme très incertains, il est nécessaire
de caractériser et de quantifier leurs sources d’incertitude, ainsi que d’explorer
le degré de confiance que l’on peut accorder à leurs prédictions. À cette fin,
des techniques telles que l’analyse de sensibilité et l’analyse d’incertitude sont
fréquemment utilisées. Les deux techniques abordent l’incertitude de différentes
manières, mais elles ont en commun l’exécution demultiples simulations dumod-
èle, ce qui peut être techniquement limitant dans le cas de modèles complexes.
Dans ce contexte, ce travail de recherche aborde deux questions principales: dans
la première nous explorons quelles méthodes permettent de traiter au mieux
l’incertitude dans les modèles complexes, et la seconde question porte sur la
quantification de l’impact de l’incertitude sur les différents résultats produits par
ces modèles. Ces questions seront abordées d’une manière théorique et pra-
tique, en étudiant l’incertitude du modèle d’écosystème marin OSMOSE appliqué
à l’écosystème nord du courant de Humboldt (le modèle NHCE OSMOSE).

En premier lieu, cette thèse propose une revue de la littérature dédiée à la
recherche de méthodes et d’outils appliqués à l’étude de l’incertitude avec des
applications potentielles auxmodèles de biodiversité. Dans ce contexte, cesmod-
èles sont définis comme tout modèle mathématique (avec des éléments tels que
des variables d’état, des forçages du modèle, des équations mathématiques et
des paramètres) qui couvre un large spectre de niveaux d’organisation écologique
(allant des individus aux écosystèmes).

Ensuite, nous mettons en œuvre une analyse d’incertitude du modèle NHCE
OSMOSE, dans le but de quantifier l’effet de l’incertitude de ses paramètres sur un
ensemble d’indicateurs écologiques en sortie de cemodèle. Pour cela, nous avons
travaillé avec deux scénarios d’incertitude utilisant les paramètres du modèle et
correspondant à un coefficient de variation de 10% et 20% autour des valeurs de
référence des paramètres décrivant chaque espèce modélisée. Les résultats de



cette étude révèlent que l’incertitude des paramètres de certaines espèces a de
fortes répercussions sur le reste du réseau trophique; ce fut le cas des euphausi-
acées et du calmar géant. En outre, ce travail nous a permis d’identifier les indi-
cateurs écologiques les plus robustes à l’incertitude des paramètres d’entrée, tels
que la pente du spectre de taille, l’indice trophique marin et le niveau trophique
des communautés de poissons.

Les résultats de l’analyse d’incertitude ont ouvert un ensemble de questions
que nous proposons d’aborder à travers l’élaboration d’un protocole guidant la
réalisation d’une analyse de sensibilité d’un modèle complexe. De plus, nous
montrons les biais potentiels introduits par l’utilisation de gammes de variation
arbitraires pour représenter l’incertitude dans les paramètres du modèle. C’est
un problème fréquemment rencontré avec les modèles comportant un grand
nombre de paramètres, qui ne disposent pas toujours d’informations relatives
à leur incertitude. Pour y remédier, nous proposons le "critère de fiabilité des
paramètres". Ce critère sert à classer les paramètres du modèle en fonction de la
source d’information utilisée pour estimer leurs valeurs, et d’attribuer un niveau
d’incertitude aux paramètres d’un modèle. Nous illustrons l’utilisation de ce pro-
tocole en mettant en œuvre une analyse de sensibilité utilisant le modèle NHCE
OSMOSE.

Enfin, nous concluons que les complexités inhérentes auxmodèles complexes
ne doivent pas être utilisées comme une excuse pour éviter d’étudier leur incer-
titude de manière appropriée. Des méthodes et des outils informatiques sont
disponibles dans la littérature. Cependant, ils doivent être sélectionnés avec soin
en tenant compte des limitations potentielles que l’utilisation d’un modèle peut
générer. Le niveau d’incertitude d’un modèle complexe dépend fortement de
l’incertitude sur les entrées du modèle, de sa propagation dans le temps, mais
aussi des sorties étudiées. Dans cette recherche, nous mettons en évidence les
difficultés des analyses d’incertitudes pour les modèles complexes (incluant les
modèles écosystémique mais ne s’y limitant pas) et proposons des solutions pos-
sibles ainsi que des lignes directrices pour les études futures traitant de ce prob-
lème de recherche. Nos résultats ne constituent qu’une première étape, en com-
mençant par l’étude de l’incertitude des paramètres, mais en laissant comme
perspective l’étude d’autres sources d’incertitude telles que dans les forçages du
modèle, les conditions initiales, et la structure du modèle.
Mots-clés: modèles complexes, analyse d’incertitude, analyse de sensibilité,mod-
élisation des écosystèmes, OSMOSE, écosystème nord du courant de Humboldt.
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Resumen

Modelos cada vezmás complejos se desarrollan con el objetivo demejorar el real-
ismo en la representación de los sistemas naturales. Sin embargo, dado que estos
modelos complejos suelen percibirse comomuy inciertos, es necesario caracteri-
zar y cuantificar sus fuentes de incertidumbre y explorar el grado de confianza
que puede depositarse en sus predicciones. Para ello, se utilizan con frecuencia
técnicas como los análisis de sensibilidad y los análisis de incertidumbre. Ambas
técnicas abordan la incertidumbre de manera distinta, pero comparten la necesi-
dad de ejecutar múltiples simulaciones del modelo en uso, lo que puede resultar
técnicamente limitante cuando se utilizan modelos complejos debido a sus car-
acterísticas intrínsecas. En este contexto, este trabajo de investigación aborda
dos preguntas principales: la primera se centra en investigar cómo tratar la in-
certidumbre enmodelos complejos, y la segunda en cómo estudiar el impacto de
la incertidumbre en los diversos resultados producidos por estos modelos. Estas
preguntas serán exploradas desde un contexto teórico hasta uno práctico, estu-
diando la incertidumbre en el modelo ecosistémico marino OSMOSE aplicado al
ecosistema norte de la corriente de Humboldt (el modelo NHCE OSMOSE).

Primero, esta tesis se centra enuna revisiónde literatura dedicada a la búsqueda
de métodos y herramientas aplicadas al estudio de la incertidumbre con poten-
ciales aplicaciones a modelos de biodiversidad. En este contexto, estos modelos
son definidos como cualquiermodelomatemático (con elementos como variables
de estado, forzantes, ecuaciones matemáticas y parámetros) que cubre un am-
plio espectro de niveles de organización ecológica (desde individuos hasta ecosis-
temas). Luego, nosotros implementamos un análisis de incertidumbre en el mod-
elo NHCE OSMOSE, con el objetivo de cuantificar el efecto de la incertidumbre de
sus parámetros en un conjunto de indicadores ecológicos derivados de estemod-
elo. Para esto, nosotros trabajamos con dos escenarios de incertidumbre usando
los parámetros del modelo y correspondientes a un coeficiente de variación del
10% y 20% en torno a los valores de referencia de los parámetros que describen
cada especie modelada. Los resultados de este estudio revelaron que la incer-



tidumbre en los parámetros de algunas especies tienen fuertes repercusiones en
el resto de la red trófica; este fue el caso de los eufáusidos y la pota. Además,
este trabajo nos permitió identificar los indicadores ecológicos que fueron más
robustos a la incertidumbre de los parámetros de entrada; como por ejemplo, el
índice trófico marino y el nivel trófico de las comunidades de peces.

Los resultados del análisis de incertidumbre abrió un conjunto de preguntas
que abordamos en el capítulo tres. Aquí, nosotros proponemos un protocolo
dedicado a la realización de un análisis de sensibilidad de un modelo complejo.
Además, en este capítulomostramos los inconvenientes de utilizar rangos de vari-
abilidad arbitrarios para representar la incertidumbre en las entradas de unmod-
elo. Este es un problema frecuente en el uso de modelos que presentan gran
cantidad de parámetros, los cuales no siempre tendrán información relacionada
a su incertidumbre. Para hacer frente a esto, nosotros proponemos el “criterio
de fiabilidad de los parámetros”. Este criterio sirve para clasificar los parámetros
del modelo según la fuente de información utilizada para estimar sus valores, y
para asignar un nivel de incertidumbre a los parámetros de unmodelo. Nosotros
ilustramos el uso de este protocolo implementando un análisis de sensibilidad
usando el modelo NHCE OSMOSE.

Finalmente, nosotros concluimos que las complejidades inherentes a losmod-
elos complejos no deben utilizarse como excusa para evitar estudiar la incer-
tidumbre de forma apropiada. Existenmétodos y herramientas computacionales
en la literatura. Sin embargo, deben seleccionarse cuidadosamente teniendo en
cuenta las posibles limitaciones que puede generar el uso de un modelo. El nivel
de incertidumbre de un modelo complejo depende en gran medida de la incer-
tidumbre en las entradas del modelo, de su propagación en el tiempo, pero tam-
bién de las salidas estudiadas. En esta investigación, destacamos las dificultades
de estudiar la incertidumbre en modelos complejos (incluyendo, pero no limitán-
dose, a los modelos de ecosistemas) y proponemos posibles soluciones y directri-
ces para futuros estudios que aborden este problema de investigación. Nuestros
resultados son sólo un primer paso, empezando por el estudio de la incertidum-
bre en los parámetros, pero dejando comoperspectiva el estudio de otras fuentes
de incertidumbre como en los forzantes del modelo, las condiciones iniciales y la
estructura del modelo.

Palabras clave: modelos complejos, análisis de incertidumbre, análisis de
sensibilidad, modelización de ecosistemas, OSMOSE, ecosistema norte de la cor-
riente de Humboldt.
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Introduction

The world’s population lives today in the Decade of the Oceans, the period 2021-
2030 declared by the UN as the “Decade of Ocean Sciences for Sustainable De-
velopment” (Decade of the Oceans). This decade whose vision is to “develop sci-
entific knowledge, build infrastructure and foster relationships for a sustainable
and healthy ocean", aims to achieve societal outcomes, as for example: (1) a pre-
dictable ocean that enables society to understand current and future ocean con-
ditions; and (2) a transparent ocean, giving citizens equitable access to data, infor-
mation, and technologies. In parallel, the UN has also declared the same period
(2021-2030) as the “Decade for Ecosystem Restoration”. Thus, these two agree-
ments give the scientific community an unique opportunity and an imperative to
work towards a sustainable future for the ocean (Heymans et al., 2020). With the
need for quantitative approaches to better understand and predict ecosystem
structure and functioning under global change, the scientific community faces
great challenges where ecosystem models could play a significant role (Heymans
et al., 2020; Ryabinin et al., 2019).

Ecosystem models attempt to incorporate multiple ecosystem components
(e.g., species, populations, functional groups) and processes (e.g., predation-prey
interactions, causes of natural mortalities, species spatial distribution, growth, re-
production, metabolic responses to climate change etc) into a unique modelling
framework (Geary et al., 2020). These models can integrate various disciplines
(e.g., physical oceanography, biochemistry, biology, social and economic sciences)
and have been extensively used in themarine field (Steenbeek et al., 2021). There
is currently an extensive set ofmodel types formarine ecosystems, from the qual-
itative (and conceptual) ones to coupled and end-to-end models (Fulton 2010;
Tittensor et al., 2018). In general, all of the ecosystem models share common
objectives: to contribute to improving our understanding of natural phenomena,
but also of the impacts of human activities, or climate change on marine food
webs (Steenbeek et al., 2021; Heymans et al., 2020; Travers 2007). Nevertheless,



there aremany limitations that ecosystemmodels face, one of which is addressed
through this thesis, namely the impact of uncertainty in model predictions.

Models are built under uncertainties, due to e.g., their parameters, the equa-
tions describing the processes and assumptions, their initial conditions (Cariboni
et al., 2007). In the literature, several review works explain the diverse sources
of uncertainty in ecological models; for example, Regan et al. (2002) proposed a
classification of various sources of uncertainty accompanied by its most common
treatments in ecology and conservation biology. Also, Link et al. (2012) presented
the major sources of uncertainty encountered by ecosystem modellers and that
affect the entire process of ecosystem-based fisheries management: natural vari-
ability, observation error, inadequate communication, outcome uncertainty, un-
clear or nonspecific management objectives, and structural uncertainty. Besides,
more recent studies have focused on five main sources of uncertainty, which are
described as: the structural (model) uncertainty, the initialization, the internal
variability uncertainty, the parametric uncertainty, and the scenario uncertainty
(Payne et al., 2016; Cheung et al., 2016; Lehuta 2016; IPBES 2016). The impact
of these sources of uncertainty on ecosystem models’ predictions needs to be
more systematically studied, but also adequately communicated from modellers
to decision-makers, supporting decision-making based on model outcomes in a
more transparent and informative way (Rounsevell et al., 2021; Steenbeek et al.,
2021).

A variety of marine ecosystem models have been developed worldwide espe-
cially in the last two decades (Plaganyi et al., 2007; Tittensor et al. 2018). In the
northern Humboldt Current Ecosystem (NHCE), mainly two different ecosystem
models have been applied, i.e. Ecopath with Ecosim (EwE) (e.g., in Tam et al., 2008;
Taylor et al., 2008) and OSMOSE (e.g., in Marzloff et al., 2009; Oliveros-Ramos et
al., 2017). The Humboldt Current ecosystem is a case study of particular interest
as it is one of the largest and most productive marine ecosystems globally, ex-
tending along the west coast of Peru and Chile (Serra et al., 2012). In addition, it
is one of the four major Eastern boundary upwelling systems in the ocean (with
Canary, Benguela, and California), characterised by dominant equatorial coastal
wind stress, offshore Ekman transport, and the presence of coastal upwelling of
cold, nutrient-rich subsurface waters that fuel high levels of plankton and fish pro-
duction and the highest fishery production in the world (Thiel et al., 2007).
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In particular, the NHCE producesmore fish per unit area than any other region
in the world, accounting for up to 10% of the global fish catches, and has sup-
ported a fish production 20 times bigger than in Canary or Benguela (Chavez et al.,
2008; Bakun andBroad 2003). TheNHCE exhibits high climatic and oceanographic
variability at several scales (e.g., seasonal, interannual, and decadal) (Gutierrez et
al., 2016). This system does not only vary in terms of environmental conditions
but also in fishing activity, which depends on the abundance and accessibility of
the primary fishery resources. The NHCE hosts main fishery resources like, for
example, the Peruvian anchovy (Engraulis ringens), sardine (Sardinops sagax), jack
mackerel (Trachurus murphyi), pacific mackerel (Scomber japonicus) (Ñiquen and
Bouchon 2004, Oliveros et al., 2021). Given the intertwined dynamics of the envi-
ronment and marine life, the representation and improved understanding of the
behaviour of the NHCE, it is necessary to use holistic frameworks such as ecosys-
temmodels, in particular end-to-endmodels that allow to couple the dynamics of
the environment to that of the living components of the ecosystem.

In this thesis, we addressed the uncertainty related to the use of the NHCE
OSMOSE model (Oliveros-Ramos et al., 2017). This is a complex model resulting
from the coupling of three disciplinary models: ROMS (regional ocean physical
model), PISCES (biogeochemical model), and OSMOSE (fish community model).
The challenge of this thesis work was due to the combination of the strong tech-
nical issues related to the uncertainty quantification besides the use of a complex
ecosystem model. The NHCE OSMOSE model is characterized by a large number
of inputs (e.g., parameters, forcing, initial conditions) and outputs (multiple sim-
ulated variables) in addition to the high computational requirements (simulation
time, memory space required). This work contributes to developing methodolo-
gies to study uncertainty in complex models considering the limitations raised.
It addresses two main research questions: the first focused on understanding
how to deal with uncertainty in complex models, and the second on the impact
of uncertainty on the diverse output variables produced by a complex ecosystem
model. The main outcomes of this work are presented in three chapters, and
some general conclusions and perspectives are finally drawn to pave the way for
future work.

In chapter 1, we review methods dedicated to studying uncertainty with po-
tential applications to biodiversity models. In the context of this chapter, we de-
fine a biodiversity model as anymathematical model (with elements such as state
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variables, forcing, mathematical equations, and parameters) that covers a broad
spectrum of levels of ecological organization (from individuals to ecosystems).
Here we present a set of methods dedicated to applying uncertainty and sensitiv-
ity analyses and a list of selected computational tools developed in various pro-
gramming languages that allow the implementation of both types of analyses. In
addition, this chapter includes a review of the different sources of uncertainty in
scenarios and models of socio-ecological systems in support of decision-making.

In chapter 2, we implemented an uncertainty analysis with the main objective
of quantifying the effect of parameter uncertainty on a set of ecological indicators
derived from a complex model. We worked on the OSMOSE modelling platform
and its application to the northernHumboldt Current ecosystem (NHCEOSMOSE).
In this study, we worked with two uncertainty scenarios corresponding to ranges
of 10% and 20% variability around the reference values of the parameters de-
scribing each modelled species. Besides, we analyzed the responses of a set of
ecological indicators to different levels of uncertainty. In this work, we hypothe-
sized that: 1) the uncertainty coming from one species’ parameters could propa-
gate through the food web, 2) the response of ecological indicators to uncertainty
is not homogeneous, and that 3) depending on the indicators chosen among the
outputs of the model, these could amplify or dampen the level of uncertainty in
the model inputs.

In chapter 3, we propose a protocol dedicated to implementing a sensitivity
analysis of a complexmodel. This chapter shows the drawbacks of using arbitrary
variability ranges to represent the uncertainty of model inputs. We also propose
the “parameter reliability criterion". It serves to classify the model parameters ac-
cording to the source of information used to estimate their values, and to estimate
the ranges of variability for each parameter to be used in a sensitivity analysis.
As the main results of this chapter, we developed a protocol for implementing a
sensitivity analysis using complex models. By applying this protocol to the NHCE
OSMOSE model, we showed that the use of arbitrary ranges could lead to biased
sensitivity analyses.

In this thesis, we have faced many computational challenges. The develop-
ment of a tool that allows us to automatize the process of running large simulation
batches and analyzing the results obtained has been fundamental. As a comple-
mentary work to this thesis, we reviewed how R packages dedicated to computer
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simulations have been developed in CRAN (The Comprehensive R Archive Net-
work) and developed a series of guidelines on how these tools can be improved
to facilitate their adoption by future users. We also took the lessons learned in
this study to enhance the OSMOSE package (implemented in R), which is currently
used for simulation and analysis of the model outputs. As a result, an additional
product of this thesis was the creation of a package that allowed us to run uncer-
tainty and sensitivity analyses automatically, taking into account the peculiarities
of complex models. While the NHCE OSMOSE model illustrates the functionality
of this package, this tool has been built flexibly so it can be used with any model
and it is available on GitHub as an open-source code.

Finally, we conclude with some insights brought out by our work on how we
could deal with uncertainty using complex ecosystemmodels, with themany tech-
nical limitations associated to its study and quantification. However, these difficul-
ties should not be used as an excuse for not tackling uncertainty, and this thesis is
a small contribution to illustrate that rigorous analyses of the behaviour of mod-
els, even complex ones, can be undertaken.
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Chapter 1

Addressing uncertainty in
biodiversity models: from methods
to tools

Biodiversity models are key tools to explore the current and future impacts of
global change drivers on biodiversity. To be useful in decision and policy-making,
the uncertainty linked to models’ projections needs to be addressed and quanti-
fied. Here we review how uncertainty of these biodiversity impact models can be
handled according to three uncertainty types: parameter, initialization and inter-
nal variability uncertainty. We present a panel of methods for uncertainty analy-
sis and sensitivity analysis as well as online tools available in the literature. Most
methods presented here were found in the statistical andmathematical literature
with applications across different fields. Seeding new ideas and approaches from
various disciplines is a good step forward to advance uncertainty quantification
of biodiversity models and their predictions.

Keywords: biodiversity models, uncertainty analysis, sensitivity analysis, un-
certainty quantification.
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1. Introduction

Quantitative models have been important tools in studying biodiversity (Mouquet et al., 2015).

Models simplify complex ecological systems to help understand their functioning and predict

their behavior or responses underpinned by a set of explicit assumptions (Smith and Smith

2012). Quantitative biodiversity models consist of a set of elements, namely state variables,

external variables, mathematical equations and parameters (Jørgensen and Fath 2011). Most

existing quantitative biodiversity models are composed of three main components that should be

identified: the biophysical components or characteristics of an ecosystem represented by state

variables, the drivers impacting the state variables, and the ecological processes determining

changes in the biological components (Ferrier et al., 2016).
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Because of the direct relevance to managing the effects of human activities on natural systems,

modelling biodiversity responses to global changes is particularly common in supporting

conservation policies and decision making. Biodiversity dynamics are determined by both

external drivers, mostly human-induced, and internal biological processes acting within the

ecosystem (Lavergne et al., 2010; Leung et al., 2012). These drivers and processes have been

integrated into scenarios and models to elucidate the new challenges that biodiversity is exposed

to (Pereira et al., 2010). Diverse quantitative biodiversity modelling approaches have been

developed for terrestrial (Alkemade et al., 2009; Sala et al., 2000), marine (Tittensor et al., 2018),

and freshwater ecosystems (Holland, Darwall, and Smith 2012; Hammen and Settele 2011); and

also across the three realms, evaluating for example the impacts of climate change on the future

of global biodiversity (Bellard et al., 2012). However, the utility of these biodiversity models in

informing biodiversity status mostly depends on the predictability of these models which

depends on the capacity to quantify different sources of uncertainty.

Diverse typologies of uncertainty can be found in the scientific literature with different sources

and forms of treatment (Charles 1998; Regan, Colyvan, and Burgman 2002; Link et al., 2012;

Skinner et al., 2014). Despite this, uncertainty perse in biodiversity impact models has not been

examined and compared systematically (Ludwig, Mangel, and Haddad 2001). Partitioning

uncertainty into its sources is essential to understand the various contributions to uncertainty in

the use of models (Cheung et al., 2016). Without such a partitioning, it is hard to target efforts to

reduce this uncertainty or interpret the uncertainties of models’ outcomes.

The present work focuses on the methods aiming at addressing the challenges related to

uncertainty quantification with a three-tier approach guided by the following questions: i) how to

characterize uncertainty?, ii) how to quantify (or measure) uncertainty?, and finally iii) how to

reduce uncertainty? We first provide definitions of each uncertainty source. We then provide a

range of methods for quantifying uncertainty. We also pinpoint tools developed for dealing with

uncertainty that could be useful when using biodiversity models. We finally present gaps, future

directions and guidelines for a step improvement in uncertainty quantification of biodiversity

models and their predictions.
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2. Sources of uncertainty in biodiversity models

We identified three main sources of uncertainty in using biodiversity models: parameter, internal

variability and initialization uncertainty (see Table 1). Other sources of uncertainty, such as

scenario and decision uncertainty, have been reviewed recently (Rounsevell et al., 2021; Ferrier

et al., 2016) and will not be addressed here.

Table 1. Sources of uncertainty in biodiversity models. The description of the uncertainty and its
source are based on Payne et al., (2015) and Cheung et al., (2016).

Uncertainty type Description Source

Parameter

uncertainty

It is the uncertainty associated

with the parameter values used in

a model, and that influences its

behavior.

Many factors can give rise to parameter

uncertainty, including imperfect

measurements, inadequate coverage of the

range of natural variability, or natural

variability in biological parameters.

Initialization

uncertainty

It is the uncertainty associated

with the initial conditions of a

model, meaning the state of the

system from which the model then

integrates forward in time.

This uncertainty arises from the inability to

fully and accurately observe or

characterize the state of a complex system

at a given point in time.

Internal variability

uncertainty

It is the uncertainty associated

with the natural variability of the

modeled systems. It occurs in

systems that change in ways that

are difficult to predict.

This uncertainty arises in both temporal

and spatial dimensions and even in the

absence of any model forcing. This

uncertainty is due to stochasticity,

feedbacks, non-linearities, or periodicities.
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3. Quantifying the uncertainty

3.1 Uncertainty analysis and sensitivity analysis

Both uncertainty analysis (UA) and sensitivity analysis (SA) are widely used to quantify model

uncertainty across many fields (e.g. physics, environment, economics) (Saltelli, Chan, and Scott

1999). SA determines how the uncertainty in model outputs can be apportioned to different

sources of uncertainty in model inputs (Saltelli et al., 2019), in other words looking for how

model output responds to relative changes in the inputs. While UA characterizes the uncertainty

in model outputs, without necessarily identifying which assumptions, incomplete knowledge or

misspecification of the modeled system are primarily responsible for this uncertainty (Cariboni et

al., 2007). Although most modellers distinguish SA from UA, sometimes practitioners use both

terms interchangeably. Nevertheless, for the purposes of this review we remain with the

definitions provided above.

For example, when applied to biodiversity models (See Figure 1), the UA should aim to assess

the uncertainty propagation in the model outputs from the sources (e.g., model parameters, initial

values and the internal variability of the system). Different methods were proposed to estimate

this uncertainty with the aim to generate a distribution of possible model results (the gray area in

Figure 1). The characterization of such distribution, including summary statistics, is part of the

UA. On the other hand, the decomposition of the uncertainty among the uncertainty sources

(represented by the pie chart) is part of the SA.
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Figure 1. Schematic representation of the differences between UA and SA. Uncertainty coming
from different sources (parameter, structure, initialization and internal variability uncertainty)
propagates through the model, then the UA aims to quantify all these uncertainty sources (black
curve). The uncertainty in the model output captured e.g., by its variance (or other statistical
metrics), is then decomposed into the different sources thanks to a SA (Adapted from Saltelli et
al., 2019).

3.2 Methods for uncertainty analyses

Summarizing and displaying the uncertainty associated with model outputs address many

questions, such as: what are the mean and median of Y? what is the variance of Y? are there any

discontinuities associated with the distribution function of Y? (Iman and Helton 1988). Methods

to estimate the uncertainty in models under different assumptions and procedures were proposed

in the scientific literature. The following methods are based on statistical techniques which could

be applied directly to computer simulations and to biodiversity models. In Table 2 we summarize

the principal advantages and limits of each of these methods.

14



Table 2. Methods for UA. This table summarizes the main advantages and limits of common
methods used for UA.

Method Advantages Limits

Statistical inference: This approach is based on the use of data to deduce some properties of an
underlying probability distribution of model’s parameters. In the quantification of uncertainty two
inference paradigms are commonly used: bayesian and frequentist.

a. Bayesian methods Allows the integration of prior
information about the system
parameters

The use of prior information that is
not well estimated can lead to
subjectivity issues

b. Frequentist methods Do not require prior distribution
for all parameters in the model

Do not offer a structured framework
to incorporate prior information and
multiple model structures

Sampling-based approaches: These form a broad class of algorithms which involve the
generation and exploration of a probabilistic mapping from inputs to outputs. Here we only focus
on the Monte Carlo analysis and the latin hypercube sampling. They are indeed commonly used to
quantify random uncertainty simulated distribution for outputs as a function of input distribution.

c. Monte Carlo
analysis

Formal probabilistic approach
which does not require
intermediate surrogates or
intermediate models to obtain
uncertainty measures

Multiple model evaluations are
required producing computational
burden

d. Latin hypercube
sampling

Requires a reduced number of
model evaluations demanding less
computational time than Monte
Carlo analysis

Expensive optimization and problems
of dimensionality. Space filling
becomes difficult with large numbers
of model inputs

Modelling approach: Through this approach a model will be approximated by a new surrogate
one, and this will be used in the subsequent uncertainty studies. Here we focus on the response
surface and differential analysis approaches. The first approach uses classical experimental designs
to select points to be used in developing a response surface in replacement of a model. While
differential analysis involves approximating a model with Taylor series.

e. Response surface
method

Reduces the complexity of the
model under study replacing it by
surrogate models. UA becomes
inexpensive once the response
surface approximation is done

Requires the construction of
surrogate models restricting the
analysis to few input variables and
limited number of outputs where the
input-output relationships are simple
ones (e.g linear, quadratic)

f. Differential analysis Reduces the complexity of the
model under study replacing it by
surrogate models. UA becomes

Poor technique in the estimation of
distribution functions of model
outputs.
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inexpensive once the series are
implemented

UA based on statistical inference: Bayesian methods provide a formal framework for calculating

the probability of model parameter values given: i) data sets, ii) one or more structural models,

and iii) information about models or parameters from external sources which are specified as

prior distributions (Patterson et al., 2001). Under Bayesian methods observations are considered

as known quantities that might have been generated by a variety of processes, then distributions

are assigned to the parameters of these processes to enable inferences to be drawn about them

(Harwood and Stokes 2003). Bayesian methods conventionally involve reporting results in terms

of the expected value of a posterior distribution for each parameter. This estimated probability

distribution reflects the major uncertainties about the system under study. The advantages of

Bayesian methods is the integration of prior information which is the prior uncertainty based on

experiences in similar simulations (e.g. measurement of errors, distribution of measurements).

Although a strength of Bayesian methods, this also introduces complexity due to the requirement

of the prior distribution for all the model parameters. Specifying a prior distribution leads to

subjectivity issues. Not all the priors can lead to credible intervals, which results in a complex

problem even for simple models (Lele 2020). A more extended discussion about the benefits of

Bayesian methods to quantify uncertainty is presented by van Oijen (2017).

In Bayesian methods, parameters are considered to be random variables while in the frequentist

methods parameters are treated as unknowns that possess “true” values. By using frequentist

methods, data are used to estimate the values of model parameters (including errors of

measurements) based on assumptions about the statistical distributions from which the data were

drawn. These methods aim to calculate a probability model describing the sampling distribution

of estimators derived from the data, given particular values which are assumed to be true. Then

this model can be used to construct a confidence distribution for parameters, and a confidence

level is determined to describe the probability that a calculated confidence interval will
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encompass the true values of the parameters (Patterson et al., 2001). Assumptions related to

frequentist methods change the way the uncertainty is interpreted.

Frequentist methods provide a confidence interval that under repeated sampling of new data sets

under identical conditions, a correctly defined 95% confidence interval should contain the true

value in 95% of the cases. By contrast, Bayesian methods quantify uncertainty via a posterior

distribution which can be summarized by a Bayesian credible interval. A credible interval of, for

example 95 % would be interpreted as displaying a 95% certainty for the true value of the

parameter to be contained in the interval. Dormann et al., (2018) provide more illustrations about

the differences of both approaches (Bayesian and frequentist) during the estimation of

uncertainty.

UA based on sampling-based approach: The Monte Carlo analysis is a sampling-based approach

to quantify uncertainty. It is based on performing multiple model evaluations with

probabilistically selected model input. Using this approach, the inputs are randomly drawn from

probability distributions for each individual input and as a result probability distributions of the

outputs are produced (Katz 2002). Using Monte Carlo analysis the results of model evaluations

are used to determine both the uncertainty in model predictions and the input variables that give

rise to this uncertainty (Helton 1993). The advantage of this analysis is that the UA is obtained

directly from model predictions without the use of an intermediate surrogate model.

Sampling-based UA via Monte Carlo approaches plays a central role in the characterization and

quantification of uncertainty (Janssen 2013). However, the major drawback of Monte Carlo

procedures is the fact that multiple model evaluations are required. If the model under evaluation

is computationally expensive or if many model evaluations are required, then the cost of

implementing a Monte Carlo analysis may be very large (Helton 1993). To reduce the

computational cost inherent to Monte Carlo analyses, the minimisation of the number of

simulations by the use of sampling techniques is a good solution, for example the Latin

hypercube sampling has shown advanced sampling efficiency (McKay et al., 1979).

The Latin hypercube sampling (LHS) was created with the aim to improve the efficiency of

Monte Carlo analysis regarding the coverage of the input space (Iman 2014). By using the LHS,
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each probability distribution function of the k input parameters ( ) are stratified by𝑋
1
,  𝑋

2
,  ...,  𝑋

𝑘

dividing them into n non overlapping intervals of equal length, where n is the number of model

simulations to be run. One value from each interval is selected at random with respect to the

probability density in the interval. The n values thus obtained for are paired in a random𝑋
1

manner with the n values of . These n pairs are combined in a random manner with the n𝑋
2

values of to form n triplets, and so on, until a set of n k-tuples is formed. This set of k-tuples𝑋
3

is the Latin hypercube sample (Iman and Helton 1988). LHS is an efficient sampling design

because each value of each parameter is used only once in the analysis. The structure of LHS is

also helpful for simulations that are computationally expensive, as the method reduces the

number of model evaluations based on the input stratification. LHS designs have good

uniformity with respect to each input dimension individually. However, desirable properties such

as space filling, or column-wise orthogonality have a very expensive optimization. In addition,

this method also involves dimensionality issues. While the uniformity in each dimension is

preserved, the space filling properties become questionable. As the number of variables

increases, it becomes harder to fill the design space (Viana 2013).

UA based on a modelling approach: The response surface method is based on using an

experimental design to select a set of specific values and pairings of the input parameters that are

used to run a model. The resulting model outputs and inputs are then used to estimate the

parameters of a new estimated model (Helton 2005). This estimated model is a fitted response

surface that is used in place of the original model as a surrogate, and from which all the

inferences with respect to UA and SA are derived (Iman and Helton 1988). Principal

characteristics of the response surface method is that there is a complete control over the

structure of model input through the experimental design selected for use. In addition, the UA

and SA are inexpensive and straightforward once the necessary response surface approximation

has been constructed (Helton 1993). However the main drawbacks are that this method will work

when there are only few (typically less than 10) input parameters, a limited number of outputs,

and the relationship between the inputs and output variables are basically linear or quadratic or

involve few cross-products (Helton 1993).
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The differential analysis is based on using a Taylor series as a surrogate for the original model

for undertaking UA and SA. The dependent variable of interest is treated as a function f of the

independent variables. Then a first-order Taylor series is constructed for the function f using a

vector of base-case values (derivatives) for the independent variables (Iman and Helton 1988).

An important step is the generation of the partial derivatives required for the series. For the UA,

the Taylor series approximation can be used in conjunction with Monte Carlo simulations to

estimate the distribution functions of model outputs (Iman and Helton 1988). Under this

approach, the quality of the results will depend on how well this series approximates the original

model, and the UA will be straightforwardly implemented once the Taylor series is developed

(Helton 1993). Although differential analysis has been widely applied for simple models, this

approach is a poor technique in the estimation of distribution functions of model outputs. This

method also does not provide information on the possible existence of thresholds or

discontinuities in the relationships between input and output variables (Helton 1993).

3.3 Methods for sensitivity analyses (SA)

There are many techniques to perform a sensitivity analysis, the aim of which is to quantify the

relation between a model’s factors and its responses, considering both parameters and initial

values of state-variables as factors. Experimental design and screening methods are key elements

related to SA. Normally we apply them before performing a SA. In Box 1 we describe these

elements.

Box 1. What to do before a SA?

A. Experimental design: Working with a model of k factors, the ranges of possible factor values form a

k-dimensional factor space. The factor space is also known as the design space. The experimental

design is the description of how the design space has to be sampled (Pantus 2006). The objective is

to characterize the sensitivity of a model to the factors, where the design space can also include

combinations of factors called interactions. However, when these exercises are performed for

complex models, like ecosystem models, there are computational limitations due to the potentially

large number of factors and the multidimensional input spaces with the requirement of a huge
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number of evaluations to estimate the response’s sensitivity to the factors. To reduce the

dimensional problem screening methods have been proposed.

B. Screening methods: Screening methods allow for efficient estimation of effects using a minimal

number of simulation evaluations. These techniques are appropriate when there is little knowledge

on which factors have an influence on the model responses and there is a need to identify, among a

large number of potentially significant factors, those which are effectively influential within a fixed

experimental domain. The statistics literature contains different screening methods. The resolution

III and IV Hadamard developed by Plackett and Burman (Plackett and Burman 1946) is one of the

first screening methods that can be found in the literature. The supersaturated method was firstly

developed in the 1950’s by Satterthwaite (1959) as a random balance and then by Booth and Cox

(1962) as a systematic manner. Later the group screening was developed by G. Watson (1961) who

suggested the idea of grouping factors to reduce the number of parameters and considered each

group as a single factor, hence the name of the method. Multiple group screening proposed by

Morris (1987) where each factor is assigned to more than one group, a factor being potentially

influential if all groups containing this factor are active. Finally, the sequential bifurcation is a more

recent group-screening technique (Bettonvil and Kleijnen 1997) that includes sequences of steps in

the screening. Dupuy et al., (2014) presented an extended comparison of screening methods.

3.3.1. Brief overview of the SA methods

Important SA settings were presented in Cariboni et al., (2007). The first of them focused on the

aim of SA methods, which can be the identification of the most important factor(s) which, if

fixed to their values, would lead to the greatest reduction in the variance of the output. This

setting is known as the factors prioritization setting. Another important setting of SA methods is

the identification of those factors that can be fixed at any given value in their domains without

significantly reducing the output variance. But in some cases, the aim of SAs can be the

reduction of the output variance to a lower threshold (variance cutting setting) by simultaneously

fixing the smallest number of input factors.

The selection of the best SA method for a particular study can be guided by several criteria

according to Cariboni et al., (2007). The selected method should be sensitive to the range of

variation of each input factor and to the shape of its probability distribution. Then, the method
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should also operate simultaneously on all uncertainty inputs, so that interactions among factors

can be detected. Thus, an ideal method should allow to treat groups of factors as a single factor,

allowing for a synthesis of the results and an easier interpretation.

Methods of SA can be divided into qualitative and quantitative methods regarding the type of the

SA measure to be estimated. Qualitative methods provide sensitivity measures that, as its name

suggests, are qualitative, i.e. measures capable of ranking the input factors in order of importance

but not of quantifying how much a given factor is more important than others. For example,

these methods are able to detect influential factors within a system among many other

non-influential ones. While quantitative methods are designed to provide quantitative measures

like for example the exact percentage of the total output variance that each factor (or group of

factors) is accounting for (Cariboni et al., 2007; Campolongo, Tarantola, and Saltelli 1999).

SA methods can also be classified into local and global methods regarding the way the design

space is sampled. Local SA methods are based on computing the local response of the output(s)

obtained by varying input factors and holding the other factors fixed to a central (nominal) value

(Saltelli, Tarantola, and Chan 1999). They imply the assumption (rarely satisfied) that the

input-output relationship is linear and that the input parameters have a small interval of fractional

variation around a nominal value (Campolongo, Tarantola, and Saltelli 1999). Elementary OAT

method (one-factor-at-a-time) is considered as a local SA method that provides qualitative

sensitivity analysis measures (Campolongo, Tarantola, and Saltelli 1999). In this approach the

effect of the variation of a single factor is estimated keeping all the other factors fixed at their

nominal values; and the simplest and most intuitive way to obtain a local sensitivity index is to

compute derivatives, however this is alternatively done by normalizing the derivatives by

factors’ standard deviations (Cariboni et al., 2007). Providing qualitative sensitivity measures as

well, Morris OAT (Morris 1991) and Extended Morris (Campolongo and Braddock 1999) are

methods computationally more expensive than Elementary OAT but they can already be

considered global methods (Campolongo, Tarantola, and Saltelli 1999).

Global SA methods are generally used when the model is nonlinear and the input variables are

affected by uncertainties at different orders of magnitude (Campolongo, Tarantola, and Saltelli
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1999). They focus on the output uncertainty over the entire range of values of the input

parameters (Homma and Saltelli 1996). As part of global quantitative approaches, methods like

standardized regression coefficients (SRCs) can be viewed as an attempt to overcome the

limitations of local methods based on Monte Carlo simulations. They reflect the shape of the

probability distribution of each factor allowing the estimation of the model coefficient of

determination which represents the fraction of the output variance explained by the regression

model itself (Cariboni et al., 2007). The most used global methods to decompose the output

variance into the contributions imputable to each input factor are the FAST (Fourier Amplitude

Sensitivity Test) and Sobol’s methods. FAST (Cukier et al., 1973) uses spectral analysis for the

variance decomposition and Sobol’ method (Sobol 1990) uses Monte Carlo methods for the

variance decomposition. FAST and Sobol’s methods allow to estimate two measures which

summarize the model behavior: the main effect index (or first-order effect of factor) which is

estimated with respect to each factor individually, and the total effect index which is estimated

taking account of all the contributions to the output variation due to the factor (first-order effects

plus all its interactions). The above described SA methods can be summarized and compared in

terms of computational cost and the information required (Figure 2).

22



Figure 2. Sensitivity analysis methods. The selection of the suitable SA method depends on the
computational cost in terms of the number of model factors to evaluate (k) and of the CPU time
required to run the model (time). On the other hand, the simplest methods (like local SA:
Elementary OAT) require less amount of data than most complex methods (like global SA:
Morris OAT, Extended Morris OAT, Standardized regression coefficients (SRCs), FAST and
Sobol). (Adapted from Cariboni et al., 2007)

3.3.2. Application of SA to quantify uncertainty

SA in combination with other specific methods have been used to quantify different sources of

uncertainty.

SA for parameter uncertainty: sensitivity analyses are commonly applied to analyze parameter

uncertainty. For example, the Ecopath model software explicitly acknowledges the need for

sensitivity analyses through the inclusion of the ECORANGER module, which allows for the

consideration of different levels of uncertainty associated with the input parameters (Fulton

2001; Christensen, Walters and Pauly 2000). For handling parameter uncertainty when the
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models are characterized by a large number of parameters, approaches like functionality filters

(Pantus 2006) can be used to identify the most sensitive parameter subsets or system

components. Nonetheless, the combination of SA with UA is a good option to address the

uncertainty quantification in cases where models have a large number of parameters but when

other approaches are not allowed. In those cases SA allows identification of the parameters that

influence model output and UA allows the uncertainty quantification on the results conditional

on an assumed level of uncertainty on these parameters. Example of this approach is presented in

Lehuta et al., 2010. Models limited by observational data (this can be the case for both complex

integrated ecosystem models or simpler models focused on certain components of the system), it

is difficult to use data-demanding statistical methods like Bayesian approaches. In these cases,

the use of sensitivity analyses is to date the only option to explore the robustness of the model

outputs to uncertainties associated with specific input parameter values (Payne et al., 2015).

SA for initialization and internal variability uncertainty: Perturbation analysis through the use of

SA techniques can be applied to explore the initialization uncertainty. With this technique, the

components of the system are perturbed to explore the flow of consequences to all system

components (Fulton 2010). For example, Thompson et al., (2015) attempted to separate the

variability of a climate model outputs into that due to internal variability and that due to external

forcing. They estimated the uncertainty in future climate due to internal climate variability from

large ensembles of climate change simulations, each of which resulting from a small perturbation

in the initial atmospheric state. Since the same model and the same forcing data were used in all

ensemble simulations, the differences in the climate output variables could be attributed to the

internal variability uncertainty.

3.4 Software tools for uncertainty quantification

The collective scientific effort to achieve the quantification of uncertainty has generated the

creation of software tools (also called “libraries” or “packages”) to address sensitivity analyses

and uncertainty analyses. Here we present a set of libraries, which are most commonly used and

are representative of the different features existing in the landscape of tools for uncertainty

quantification (Table 3). These software programs provide open source code. They also adopt
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diverse design philosophies as they have been developed in different disciplines and are fit to

diverse purposes. The range of existing tools allows to address various model complexities,

demanding the application of specific methods and were developed using diverse programming

languages (including C, C++, Julia, Python, Matlab, R).

Table 3. Software tools for UA and SA. Overview of principal tools available in the literature to
perform UA and SA. They were developed across diverse programming languages (including C,
C++, Python, R, Julia, and Matlab) but also for diverse purposes and applications.

Software tools Language Principal characteristics

1. PSUADE: “Problem
solving environment for
Uncertainty analysis and
Design Exploration”
(Gan et al., 2014)
(Tong, 2015)

C++ - Open source software developed to perform uncertainty quantification for
large complex system models;
- It has been developed principally for performing uncertainty
quantification, UA, SA, and numerical optimization;
- This software comprises three major components: a suite of sampling
methods, a job execution environment, and a collection of analysis
(including numerical optimization) tools.

2. UQLab: “Uncertainty
Quantification in
Matlab”
(Marelli and Sudret,
2014)

Matlab - Open source code with the objective of creating a powerful, modular and
simple-to-extend software framework for uncertainty quantification (UQ) in
engineering applications;
- It is focused principally on uncertainty propagation through Monte Carlo
sampling, SA, and reliability analysis;
- It is designed to encourage both academic researchers and field engineers
to use and develop algorithms for uncertainty quantification.

3. OpenTURNS
(Baudin et al., 2017)

Python,
C++

- Open source initiative to treat uncertainties, risks and statistics;
- The main goal of this software is to provide all functionalities needed to
treat uncertainties studies with industrial applications;
- Targeted users are engineers who want to introduce a probabilistic
dimension in their deterministic studies.

4. SALib
(Herman and Usher
2017)

Python - Open source software for performing SA;
- Provides a decoupled workflow. It does not directly interface with
mathematical or computational model but it is responsible for generating
model inputs, using one of the proposed sample functions, and compute the
sensitivity indices from the model outputs;
- This software is useful in system modeling when looking for quantifying
the effects of model inputs or exogenous factors on outputs of interest.

5. sensitivity: “Global
Sensitivity Analysis of
Model Outputs”
(Iooss et al., 2020)

R - Open source software available in the Comprehensive R Archive Network
(CRAN) for performing global SA (GSA) of model outputs;
- This tool includes methods for SA but also for screening analysis;
- It works using the decoupled approach, designed to work with any model
written in R or in another language, including heavy computational codes.

6. VARS-Tool
(Razavi et al., 2019)

Matlab,
C++

- Open source for UA and SA . It was developed primarily round the
Variogram Analysis of Response Surfaces (VARS);
- It adopts a multi-method approach that enables generation of sensitivity
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indices, including those based on derivative, variance, and variogram
concepts from a simple sample;
- This software is applicable to the full range of computer simulation models
including Earth and Environmental System Models (EESMs), and includes a
set of mathematical test functions using a dynamical hydrologic model.

7. MADS
(Vesselinov et al., 2019)

Julia,
C, C++

- Open source high-performance computational framework for data and
model-based analysis;
- It is focused principally on SA, parameter estimation, uncertainty
quantification, surrogate modeling, machine learning and blind source
separation, and decision analysis;
- It can be internally or externally coupled with any existing model
simulator;
- This tool has been successfully applied to perform analyses related to
environmental management.

8. Dakota
(Adams et al., 2020)

C++ - Open source code which provides a framework for design optimization,
parameter estimation, uncertainty quantification and SA;
- This software is a flexible, extensible interface between simulation codes
and a variety of iterative analysis methods;
- It contains algorithms for optimization, uncertainty quantification,
deterministic / stochastic calibration, and parameter SA.

9. SAFE: “Sensitivity for
everybody”
(Pianosi et al., 2015;
Pianosi et al., 2020)

Matlab,
R,
Python

- Open source software developed for the application of GSA;
- It has been developed for non-specialist users, with only a basic knowledge
of GSA and Matlab;
- This software includes three principal objectives: the application of
multiple GSA, the analysis of the robustness of the SA indices, and also the
use of tools to visualize the results.

10. SobolGSA
(Kucherenko and
Zaccheus, 2020)

C++,
Matlab,
Python

- It is a general purpose GUI (graphical user interface) driven global SA and
metamodeling software;
- This software provides diverse metamodeling techniques: quasi random
sampling-high dimensional model representation (QRS-HDMR) method
(with regression and projection methods) and radial basis function method;
- This software can be applied to both static and time-dependent problems.

This set of libraries are diverse in terms of the methods included. SALib (Herman and Usher

2017) provides good user documentation with reproducible examples to implement SA, a feature

which is useful for users who are not too familiar with routines implemented in Python.

sensitivity (Iooss et al., 2020) is a collection of functions for factor screening, global sensitivity

analysis and robustness analysis. It is the only exclusive library implemented in R. SAFE

(Pianosi, Sarrazin, and Wagener 2015; Pianosi, Sarrazin, and Wagener 2020), originally

developed in Matlab, is now available in R and Python. This tool includes screening methods

and was developed for users with basic background in Global SA. PSUADE (Gan et al., 2014;
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Tong 2015) is a library that was developed to perform uncertainty quantification for large

complex system models in C++. This tool includes methods for UA, SA and numeric

optimization. UQLab (Marelli and Sudret, 2014), a library developed exclusively in Matlab,

focuses on uncertainty propagation through Monte Carlo sampling and reliability analysis.

OpenTURNS (Baudin et al., 2017), VARS-Tool (Razavi et al., 2019), MADS (Vesselinov et al.,

2019), Dakota (Adams et al., 2020), and SobolGSA (Kucherenko and Zaccheus, 2020) were all

developed in C++ but also extended to other programming languages. OpenTURNS (Baudin et

al., 2017) also available in Python treats uncertainties and performs risk analysis with industrial

applications. VARS-Tool (Razavi et al., 2019) available also in Matlab for UA and SA extends its

use to Earth and Environmental System Models (EESMs) including hydrological models. MADS

(Vesselinov et al., 2019) is the only tool available in Julia but its code is also extended to C and

C++. It includes methods for SA and uncertainty quantification, surrogate modeling, machine

learning with application to environmental management. Dakota (Adams et al., 2020), available

exclusively in C++ like PSUADE (Gan et al., 2014; Tong 2015), provides a framework for

parameter estimation in face of uncertainty. Finally SobolGSA (Kucherenko and Zaccheus,

2020), available in Matlab and Python, provides methods to perform global SA and implement

metamodelling analysis.

4. Challenges, gaps and perspectives

Achieving the quantification of uncertainty in models depends on both the characterization of the

sources of uncertainty and also the methods and tools used for the uncertainty quantification. The

perception of uncertainty in biodiversity models has clearly evolved since it now appears as a

requisite step when using models in projections and scenarios (Ferrier et al., 2016) but also as an

essential step for modelling and policy support across many fields including earth system

modelling, water quality modeling, hydrology, among others (Razavi et al., 2021).

With this review, we provided insights and examples describing the different sources of

uncertainty in the use of models. The methods and tools developed for sensitivity and uncertainty

analyses are however not always adapted to complex biodiversity models with a large number of

variables and parameters, often large errors and gaps in observations, and requiring high
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computational costs. The increasing number of collaborations between scientists from different

disciplines (modelers, programmers, statisticians with different areas of applications) is helping

to move forward, identify gaps, and adapt methods to complex models.

The difficulties of quantifying uncertainty in the use of biodiversity models is not only due to

model complexity. Methods and applications of uncertainty quantification are indeed presented

for a range of simple to complex models. The challenge of addressing uncertainty quantification

is also related to the shortage of software guidelines, best practice options and comprehensive

case studies that could be used as templates. For example, there are still relatively few examples

and methods dealing with the quantification of internal and initial conditions uncertainty.

Nonetheless, there is a growing literature in the field of hydrological, physical and climate

models where methods and tools could be beneficially transposed to biodiversity models and

eventually improved to adapt to the specificities of biodiversity models.

A diversity of programming languages has been used for the development of libraries dedicated

to run SA and UA. These are freely accessible tools and provide users with a range of options to

implement the analyses according to their programming skills. Further development of the tools,

the inclusion of more SA and UA methods and increase of the generality of the tools would

attract more users and motivate more implementations of uncertainty quantification in the use of

biodiversity models. Nevertheless, to be successfully and widely used, these tools must include

reproducible examples of varying levels of complexity, and provide detailed practical user

guidelines. This is a first key step towards the achievement of uncertainty quantification.
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Chapter 2

Key species and indicators revealed
by an uncertainty analysis of the
OSMOSE model

Systematic analyses that study the impact of uncertainty in model outputs are es-
sential for assessing the credibility of models, especially when they are used to
support decision-making. In this work, we implemented an uncertainty analysis
that quantifies the effect of parameter uncertainty on a set of ecological indica-
tors in outputs of the OSMOSE model applied to the northern Humboldt Current
ecosystem (NHCE OSMOSE). We worked under simple uncertainty assumptions
corresponding to ranges of 10% and 20% variability around the reference values
of the parameters describing the dynamics of the species modelled in NHCE OS-
MOSE. The results show that the uncertainty in the parameters of some species,
i.e. euphausiids and Humboldt squid, have substantial repercussions on the rest
of the food web. This work also allowed us to identify some ecological indicators
that can dampen the uncertainty in themodel’s inputs, such as themarine trophic
index, the trophic level of fish communities, and the slope of the size spectrum.
We also highlight the difficulties of studying the uncertainty in a complex model,
where the uncertainty could propagate differently over time and across different
output variables. We suggest that more guidelines and methods could be useful
to develop in the future for addressing the difficulties linked to working with com-
plex models and the limitations linked to data availability.

Keywords: uncertainty analysis, parameter uncertainty, ecosystemmodel, north-
ern Humboldt Current ecosystem, OSMOSE model.
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1. Introduction

Advances towards the sustainable development of fisheries worldwide have been made during

the past two decades (Garcia-Lorenzo et al., 2021; Farmery et al., 2019; Lynch et al., 2017),

particularly considering the role of marine biodiversity in providing multiple ecosystem services

(Barbier 2017; Shin et al., in press and the urgency of implementing the Ecosystem Approach to

Fisheries (EAF) (Jennings and Rice, 2011; Serpetti et al., 2017). Among these developments,

ecosystem modelling has emerged as an useful approach for the practical implementation of the

EAF (Plaganyi et al., 2007), while an increasing scientific community has been improving the

scope and the performance of ecosystem models worldwide (e.g., Steenbeck et al. 2021,

Heymans et al. 2020, Tittensor et al. 2018). However, one of the main criticisms of these models

is that their potentially large complexity can make ecosystem model predictions highly uncertain

(Fulton et al., 2003).

Uncertainty analysis (UA) characterizes the uncertainty in model predictions (Saltelli et al.,

2019) by quantifying the variability in model outputs (Cariboni et al., 2007). Implementing an

UA of ecosystem models is a complicated task due to their high computational requirements (in
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terms of simulation time and memory space) and the multiple model evaluations that a UA

requires (Fulton, 2010). For these reasons and despite the abundant literature explaining the

importance of dealing with uncertainty in the use of ecosystem models (Steenbeek et al., 2021;

Lehuta et al., 2016; Payne et al., 2016; Link et al., 2012), few practical applications have been

published using UA (e.g., McGregor et al., 2020). However, to increase the credibility of these

models, we urgently need to strengthen our capacity in achieving the quantification of the

uncertainty in model results.

In this context, this work aims to understand the impact of uncertainty in a complex ecosystem

model by using an UA. The main objective is to quantify the effect of parameter uncertainty on

the OSMOSE model applied to the northern Humboldt Current ecosystem (the NHCE OSMOSE

model, Oliveros-Ramos et al., 2017). The northern Humboldt Current ecosystem (NHCE), one of

the four eastern boundaries upwelling systems, provides the highest fish production in the world,

around 10% of global fish catches, and supports the fishery of the Peruvian anchovy (Chavez et

al., 2008; Bakun and Weeks, 2008), the most significant single-species fishery around the world

(Chavez et al., 2003). This ecosystem is also characterized by a high environmental variability at

diverse scales (i.e., at seasonal, interannual, and decadal scales, Gutierrez et al., 2016). For the

study of the NHCE and given its characteristics, it is necessary to use holistic frameworks that

integrate the effects of fisheries and climate, among which ecosystem end-to-end models are key

tools (Tittensor et al. 2018). Thus, several ecosystem models have already been developed for the

NHCE. Some examples of this are the Ecopath with Ecosim (EwE) platform (Christensen et al.,

2005; Walters et al., 1997), used in the works of Tam et al. (2008) and Taylor et al. (2008), and

the OSMOSE modelling platform (Shin and Cury, 2001; 2004) used in Marzloff et al. (2009) and

more recently in Oliveros-Ramos et al. (2017). However, none of these applications have studied

the impact of uncertainty in the models.

We chose the NHCE OSMOSE model for this study because of its ability to consider the

complexity and high stochasticity of the NHCE. Besides, this model provides a variety of

ecological indicators as model outputs, e.g., size-based, species-based, trophic-level based (Shin

et al., 2018; Fu et al., 2019), which allows us to analyze and compare the responses of a set of

ecological indicators to different levels of uncertainty. In this work, we hypothesized that: 1) the

uncertainty coming from one species’ parameters could propagate through the food web, 2) the
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response of ecological indicators to uncertainty is not homogeneous, and that 3) depending on

the indicators chosen in output of the model, these could amplify or dampen the level of

uncertainty in the model inputs.

2. Material and methods

To run the UA of the NHCE OSMOSE model, we first 1) selected the model input parameters to

be used in this study, 2) which values were sampled using a range of variability, to then 3) run

multiple model simulations using the sampled parameter values, and finally 4) characterize the

uncertainty in the model outputs.

2.1 The NHCE OSMOSE model

We performed an UA on the NHCE OSMOSE model (Oliveros-Ramos et al., 2017). OSMOSE

(Object-oriented Simulator of Marine ecOSystEms) is a size-based trophic model that represents

the life story and spatio-temporal dynamics of fish and macro-invertebrate species (Shin and

Cury, 2001; 2004). It is an individual-based model which assumes size-based opportunistic

predation based on the spatial co-occurrence of a predator and its prey. OSMOSE models the

major life cycle processes (i.e., growth, reproduction, predation, natural and starvation

mortalities) and fisheries impact. Also, it is forced by physical and biogeochemical models,

enabling to simulate the impacts of climate change and variability. OSMOSE applications

simulate the complexity and stochasticity of marine ecosystems, integrating physical,

biogeochemical, and biological processes. This model has been applied across diverse marine

ecosystems (e.g., Travers et al., 2009, 2014; Fu et al., 2013; Oliveros-Ramos, 2014; Halouani et

al., 2016; Moullec et al., 2019a). Complementary information about OSMOSE is on its official

website (see http://www.osmose-model.org).

The NHCE OSMOSE model covers an extension of the northern Humboldt Current and the

Peruvian Upwelling Ecosystem, between the ranges from 20°S to 6°N and 93°W to 70°W with

1/6° spatial resolution. Fitted to data time series from the years 1992 and 2008, the NHCE

OSMOSE model includes 13 species (see Table 1): nine are explicitly modelled in OSMOSE

(also called focal species) and four plankton groups (also called biotic resources) are represented

in the PISCES biogeochemical model coupled to the ROMS physical model (Aumont and Bopp,
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2006; Echevin et al., 2008). Additional information about the NHCE OSMOSE model can be

found in Oliveros-Ramos (2014) and Oliveros-Ramos et al. (2017).

Table 1. Species or functional groups included in the NHCE OSMOSE model.

Types of
model species

Species
abbreviation

Group Species or functional
group

Scientific name Model

Biotic resources 𝑝𝑔
1

Phytoplankton Nanophytoplankton - ROMS-PISCES

𝑝𝑔
2

Phytoplankton Diatoms - ROMS-PISCES

𝑝𝑔
3

Zooplankton Microzooplankton - ROMS-PISCES

𝑝𝑔
4

Zooplankton Mesozooplankton - ROMS-PISCES

Focal species 𝑠𝑝
1

Small pelagics Anchovy Engraulis ringens OSMOSE

𝑠𝑝
2

Demersal Peruvian hake Merluccius gayi peruanus OSMOSE

𝑠𝑝
3

Small pelagics Sardine Sardinops sagax OSMOSE

𝑠𝑝
4

Medium pelagics Jack mackerel Trachurus murphyi OSMOSE

𝑠𝑝
5

Medium pelagics Chub mackerel Scomber japonicus OSMOSE

𝑠𝑝
6

Other pelagics Mesopelagics Vinciguerria sp. OSMOSE

𝑠𝑝
7

Other pelagics Munida Pleuroncodes monodon OSMOSE

𝑠𝑝
8

Other pelagics Humboldt squid Dosidicus gigas OSMOSE

𝑠𝑝
9

Zooplankton Euphausiids Euphausia mucronata OSMOSE

2.1.1 Selection of model parameters

From the many possible NHCE OSMOSE model input parameters (related to the nine focal

species), we focused on predation, growth, reproduction parameters, and the starvation, natural,

fishing, and larval mortality rates. This encompassed 237 parameters used for the UA (and 18

parameter types, Table 2). See Appendix A and Table A.1 for the complete list of parameters

values used in the UA. Besides, to ensure the compliance of mathematical constraints of the
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parameters (e.g., parameters standardized between 0 and 1) we performed a re-parametrization of

the NHCE model before implementing the UA (see Appendix B).

Table 2. NHCE OSMOSE parameters used in the UA. The UA was implemented using baseline
values which are outcomes of model re-parametrization. The f function describes the model
re-parametrization. See Appendix A for additional information about baseline values of model
parameters and Appendix B for details about model re-parametrization.

N° Parameter type Species Reparameterization for the
UA

Parameter
scale

Number of
parameters

1 predation accessibility of prey to predators
A(predator, prey)

for the 9 focal
species

𝑥 =  𝑓(𝐴) =  𝐴
(identity)

logit 72

2 minimum predator-prey size ratio for each species
stage ( )θ

𝑠𝑡𝑎𝑔𝑒

for the 9 focal
species

𝑥 =  𝑓(θ
𝑠𝑡𝑎𝑔𝑒

) =
θ

𝑠𝑡𝑎𝑔𝑒

(π/2)
logit 17

3 maximum predator-prey size ratio for each species
stage ( )α

𝑠𝑡𝑎𝑔𝑒

for the 9 focal
species

𝑥 =  𝑓(α
𝑠𝑡𝑎𝑔𝑒

) =
α

𝑠𝑡𝑎𝑔𝑒

(π/2)
logit 17

4 predator-prey size threshold ( in )𝑠
𝑡ℎ𝑟

𝑐𝑚
for 7 focal

species
( , , ,𝑠𝑝

1
𝑠𝑝

2
𝑠𝑝

3
, , ,𝑠𝑝

4
𝑠𝑝

5
𝑠𝑝

8
)𝑠𝑝

9

𝑥 =  𝑓(𝑠
𝑡ℎ𝑟

) =  
𝑠

𝑡ℎ𝑟

𝐿
∞

logit 8

5 maximum starvation mortality rate
( in )𝑀

ε
𝑚𝑎𝑥

𝑦−1 for the 9 focal
species

𝑥 =  𝑓(𝐴) =  𝐴
(identity)

logarithmic 9

6 von Bertalanffy threshold ( in )𝑎
𝑡ℎ𝑟

𝑦
for the 9 focal

species 𝑥 =  𝑓(𝑎
𝑡ℎ𝑟

) =  
𝑎

𝑡ℎ𝑟

𝑎
𝑚𝑎𝑥

logit 9

7 egg size ( )𝑐𝑚
for the 9 focal

species
logarithmic 9

8 critical threshold of predation efficiency
( )ε

𝑐𝑟𝑖𝑡
for the 9 focal

species
logit 9

9 maximum rate of predation ingestion
( in )𝐼

𝑚𝑎𝑥
𝑔 𝑏𝑜𝑑𝑦 𝑔−1𝑦−1 for the 9 focal

species
logarithmic 9
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𝑥 =  𝑓(𝐴) =  𝐴

(identity)

10 natural mortality rate ( in )𝑀 𝑦−1

for the 9 focal
species

logarithmic 9

11 larval mortality rate ( in )𝑀
0

𝑚𝑜𝑛𝑡ℎ−1

for the 9 focal
species

logarithmic 9

12 fishing mortality multiplier ( )𝑓
𝑚

for 6 focal
species ( ,𝑠𝑝

2
, , ,𝑠𝑝

3
𝑠𝑝

4
𝑠𝑝

5
, )𝑠𝑝

8
𝑠𝑝

9

logarithmic
6

13 sex ratio ( )𝐹𝑟𝑎𝑐
𝑓𝑒𝑚

for the 9 focal
species

logit
9

14 (von Bertalanffy growth parameter in )𝐿
𝑡 = 0

𝑐𝑚 for the 9 focal
species

logarithmic
9

15 k (von Bertalanffy growth parameter in )𝑦−1 for the 9 focal
species

logarithmic
9

16 (von Bertalanffy growth parameter in )𝐿
∞

𝑐𝑚 for the 9 focal
species

logarithmic
9

17 size at maturity ( in )𝑠
𝑚𝑎𝑡

𝑐𝑚 for the 9 focal
species 𝑥 =  𝑓(𝑠

𝑚𝑎𝑡
) =  

𝑠
𝑚𝑎𝑡

𝐿
∞

logit
9

18 constant of proportionality of the allometric
length-weight relationship ( in )𝑐 𝑔 𝑐𝑚−3

for the 9 focal
species 𝑥 =  𝑓(𝐴) =  𝐴

(identity)

logarithmic
9

2.2 Simulation design

When information about the parameter distributions is available, it is used to specify the

probability density functions (e.g., in Brown et al., 2015; Engström et al., 2016). In the absence

of information, another alternative is to use ranges of variability, i.e. using a numeric value and

increase and decrease it on either side of the parameter reference value. This way, we create an

extensive range of parameter values where the sampling will occur. We worked with 10% and

20% ranges in this study, which are standard ranges found in uncertainty studies (e.g., Lehuta et

al., 2010; Ciric et al., 2012; Morris et al., 2014; Dantec-Nedelec et al., 2017).

We used the Monte Carlo method for the UA, undertaking multiple model simulations using

sampled parameter values. This method performs numerous model evaluations using random

samples. Then, the results of model evaluations are used to determine the uncertainty in model
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outputs. However, a drawback of this method is the high number of simulations required during

the sampling process. We combined the Morris method (Morris 1991) with the Monte Carlo

simulation approach to deal with this problem. Morris is a screening method composed of

several randomized one-factor-at-a-time (OAT) experiments. This method is recommended for

models with long-run times and is typically used to perform global SA (e.g., Bracis et al., 2020;

Specka et al., 2015). Nevertheless, in this work, we applied Morris only to sample the

parameters' values and produce the design of experiments to be used in the Monte Carlo

simulations.

Using the Morris method and considering a model with n parameters (where ),𝑥
𝑖

𝑖 =  1, 2,...,  𝑛

each will be scaled to take on values in the interval [0,1]. It creates a discrete parameter space𝑥
𝑖

( also called the n-dimensional unit hypercube) by dividing the parameter ranges into p discreteΩ

levels. Then, the model is evaluated for r replicates within the parameter space, each of them

building a trajectory inside . The starting point of a trajectory is selected randomly. Only aΩ

single parameter is changed for each trajectory, taking an element of the parameter space as a

new value. In each trajectory, each parameter ( ) is only modified once, so it results in n+1𝑥
𝑖

simulations. This procedure is repeated r times (r trajectories), resulting in a computation cost of

simulations. In this work, since each parameter was on a particular scale (see Table 2),𝑟 (𝑛 + 1) 

the sampling was done on the corresponding transformed scale.

2.3 UA experiments

Using the NHCE OSMOSE model, we executed 18 experiments for the UA (see Table 3). The

first nine correspond to the uncertainty scenario of 10% and the last nine to 20%. Inside each

uncertainty scenario, the experiments evaluated the effect of the uncertainty from each species

separately (called species uncertainty). For example, in experiment we addressed the𝑠𝑝
1,10%

uncertainty arising from the parameters related to the species using the scenario 10%;𝑠𝑝
1

experiment relates to parameters using scenario 20%; and so on. We only perturbed𝑠𝑝
1,20%

𝑠𝑝
1

the parameters' values related to the species under study in each experiment, leaving the rest of

the model configuration unchanged (i.e., their corresponding baseline values).
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Table 3. Eighteen experiments were run as part of the UA of the NHCE OSMOSE model.
Scenario uncertainty 10% corresponds to the experiments using a range of variability of 10% for
the parameters of the nine NHCE OSMOSE focal species, and scenario uncertainty 20% uses
20% of variability for the same species’ parameter set. The complete list of parameters’ values
related to each species is in Table A.1 (Appendix A). The number of parameters related to each
species is also indicated.

Scenario
uncertainty

Species uncertainty

10% anchovy
( )𝑠𝑝

1,10%

hake
( )𝑠𝑝

2,10%

sardine
( )𝑠𝑝

3,10%

jack mackerel
( )𝑠𝑝

4,10%

chub mackerel
( )𝑠𝑝

5,10%

mesopelagics
( )𝑠𝑝

6,10%

munida
( )𝑠𝑝

7,10%

humboldt squid
( )𝑠𝑝

8,10%

euphausiids
( )𝑠𝑝

9,10%

20%
anchovy
( )𝑠𝑝

1,20%

hake
( )𝑠𝑝

2,20%

sardine
( )𝑠𝑝

3,20%

jack mackerel
( )𝑠𝑝

4,20%

chub mackerel
( )𝑠𝑝

5,20%

mesopelagics
( )𝑠𝑝

6,20%

munida
( )𝑠𝑝

7,20%

humboldt squid
( )𝑠𝑝

8,20%

euphausiids
( )𝑠𝑝

9,20%

Number of
parameters

27 27 27 27 27 23 23 30 26

We arbitrarily selected the Morris parameters. In each experiment, we performed r=200

trajectories (i.e., Morris replicates) by dividing the corresponding parameter range into eight

levels (p = 8), including upper and lower bounds with values uniformly distributed between

them, and using the grid jump ( ) of 4/7 when p = 8 ( that is recommended∆ ∆ = 𝑝/[2(𝑝 − 1)]

in Morris (1991). However, given the stochasticity of the OSMOSE model, ten simulation

replicates were executed (i.e., OSMOSE replicates) per Morris run. We thus performed 984000

simulations for this work, considering the nine species and their parameters (Table 3), the two

uncertainty scenarios, the 200 Morris trajectories, and the 10 OSMOSE replicates. Finally, we

characterize the uncertainty in model outputs for a set of selected indicators.

2.4 Uncertainty characterization

We used ecological indicators as model outputs for uncertainty characterization (Table 4). Most

of them were chosen from the IndiSeas program (http://www.indiseas.org/). This program aimed

to analyze a set of ecological indicators to assess the ecosystem effects of fishing in the context

of environmental change and provide decision support for fisheries management. This set of
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indicators was tested against several performance criteria, namely sensitivity, specificity, and

responsiveness (Shin et al. 2018; Fu et al. 2019), and have been already applied in studies using

OSMOSE models (e.g., Halouani et al., 2019, Moullec 2019b).

Table 4. Ecological indicators used for the uncertainty characterisation using the NHCE
OSMOSE model.

Indicator Calculation Description Suggested references

Biomass (by species) B (tons) Biomass for each focal species. -

Mean length (ML) of fish
in the community 𝑀𝐿 = 𝑖

∑𝐿
𝑖
𝑁

𝑖

𝑖
∑𝑁

𝑖

Where is the average length and𝐿
𝑖

is the mean abundance of species𝑁
𝑖

.𝑖

Shin et al. (2005)

Mean trophic level (MTL)
in the community 𝑀𝑇𝐿 =  𝑖

∑ 𝑇𝐿
𝑖
𝐵

𝑖

𝑖
∑ 𝐵

𝑖

Where is the trophic level and𝑇𝐿
𝑖

𝐵
𝑖

the biomass (in tons) of species .𝑖

Reed et al. (2017);
Shin et al. (2018)

Mean lifespan (MLS) of
community

(years)𝑀𝐿𝑆 = 𝑖
∑(𝐴

𝑖
 𝐵

𝑖
)

𝑖
∑𝐵

𝑖

Where is the lifespan (in years)𝐴
𝑖

and the biomass (in tons) of𝐵
𝑖

species .𝑖
is defined for each species in the𝐴

𝑖
model input configuration.

Shin et al. (2018);
Fu et al. (2019)

Biomass over Yield 𝐵/ 𝑌 Where and are the total biomass𝐵 𝑌
and catch of all modelled species

Shin et al. (2010)

Marine trophic index
(MTI) 𝑀𝑇𝐼 =  𝑖(𝑇𝐿>3.25)

∑ 𝑇𝐿
𝑖
𝑌

𝑖

𝑖(𝑇𝐿>3.25)
∑  𝑌

𝑖

Where is the trophic level and𝑇𝐿
𝑖

𝑌
𝑖

the catch (in tons) for species with𝑖
TL > 3.25.

Pauly and Watson
(2005);

Shannon et al. (2014)

Slope of the size spectrum
(SSP) of community

𝐿𝑛 (𝑁
𝑘
) = β

0
+ β

1
𝐿𝑛(

𝐿
𝑘
+𝐿

𝑘−1

2 )

𝑆𝑆𝑃 =  β
1

Where is the total fish numbers in𝑁
𝑘

the length interval and[𝐿
𝑘−1

, 𝐿
𝑘
]

is the index of𝑘 ∈ [1,  ...,  𝑘
𝑚𝑎𝑥

]
length class.

Rice and Gislason,
(1996);

Shin and Cury (2004)
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Large fish index ( ):𝐿𝐹𝐼
𝑥

, , of𝐿𝐹𝐼
20

𝐿𝐹𝐼
30

𝐿𝐹𝐼
40

community

𝐿𝐹𝐼
𝑥
 =  𝑖

∑𝐵
𝑖(𝐿>𝑥)

𝑖
∑𝐵

𝑖

Where is the biomass of species𝐵
𝑖

𝑖
larger than cm ( ) and the𝑥 𝐿 > 𝑥 𝐵
total biomass of the community.
This indicator is calculated for

.𝑥 =  {20𝑐𝑚,  30𝑐𝑚,  40𝑐𝑚}

Greenstreet et al.
(2011)

For each level of uncertainty  (i.e., species (sp) and scenario (sc) uncertainty) we estimated the
relative change ( ) in the indicator ( ), which is calculated as:𝑅𝐶

𝐼𝑛𝑑
𝐼𝑛𝑑

(1)𝑅𝐶
𝑖𝑛𝑑

 = ( 
𝐼𝑛𝑑

𝑠𝑝,𝑠𝑐
 − 𝐼𝑛𝑑

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝐼𝑛𝑑
𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

）

The baseline represents the corresponding indicator estimated using the parameter reference

values of the NHCE OSMOSE model with ten OSMOSE replicates. Ten OSMOSE replicates

were also run for each . Additionally, we estimated the coefficient of variations (CV) of𝐼𝑛𝑑
𝑠𝑝,𝑠𝑐

the indicators, where the standard deviation and mean were calculated over each Monte Carlo

simulation by time step. All simulations and analyses were performed on a supercomputer

(Datarmor, hosted by IFREMER, https://wwz.ifremer.fr/pcdm/Equipement) using R 3.6.1 (R

Core Team 2019) and the runup R package. This package is an open-source tool dedicated to

implementing uncertainty and sensitivity analyses of complex models

(https://github.com/CriscelyLP/run_up).

3. Results

3.1. The effects of species uncertainty on the modelled ecosystem

Under the two uncertainty scenarios (i.e., ranges of 10% and 20%), species uncertainty

propagated through the modelled ecosystem (Fig. 1). For species like anchovy, munida, and

humboldt squid, apart from the greatest uncertainty that arose from their own biological

parameters, other focal species also caused uncertainty. For example, the uncertainty on anchovy

biomass arises from the uncertainty in its own parameters and those of euphausiids. While for

species like sardine, jack mackerel, chub mackerel, and mesopelagics, the main source of

uncertainty comes from other modeled focal species. Only in the case of euphausiids, the

uncertainty in its biomass comes directly from the uncertainty in its own parameters. Besides, in
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general, the uncertainty due to the parameters of humboldt squid and especially euphausiids

affected the whole set of focal species.

Figure 1. Relative change (%) in biomass under uncertainty scenarios of 10% (white boxplots)
and 20% (grey boxplots). Each panel shows the resulting uncertainty on the biomass of one focal
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species of the NHCE OSMOSE model (x-axis) due to the uncertainty in the nine species’
parameters (y-axis). Changes were compared to a baseline simulation (dashed red line).

3.2. Ecological indicators behaviour under uncertainty

Uncertainty in ecological indicators across scenarios (Fig. 2) showed that in general, for all

evaluated indicators, scenario 20% produced a higher level of uncertainty than scenario 10%.

Though only a limited range of uncertainty was explored, this suggests that the level of

uncertainty in the model outputs depends on the level of uncertainty in the inputs. However, the

level of uncertainty captured in model outputs was heterogeneous across all evaluated indicators.

In addition, the impact of the uncertainty of individual species biomass differed greatly

depending on the indicators considered, except for the mean length and the slope of the size

spectrum which showed similar responses to individual species uncertainties (Fig. 2). Of the nine

indicators, the mean trophic level and the marine trophic index had the lowest levels of

uncertainty (with CVs less than 3%), dampening the level of uncertainty in input parameters.

They are followed by the slope of the size spectrum (with CVs less than 4% in absolute value),

mean lifespan (with CVs less than 10%). Mean length uncertainty was very low (CV<1%) in

response to all species’ uncertainties, except in response to euphausiids’ uncertainty (but still

dampening the input uncertainty). Biomass over yield had a relatively high uncertainty (with a

CV up to 70% in response to 20% anchovy uncertainty). Finally, , , and were𝐿𝐹𝐼
20

𝐿𝐹𝐼
30

𝐿𝐹𝐼
40

the three indicators that displayed the highest levels of uncertainty, amplifying the uncertainty in

input parameters (with CVs up to 80%).

Since the model produces time-varying outputs, we analyzed the propagation of uncertainty

through time and explored whether looking at mean uncertainty only could mask some important

temporal features. For this, we focused on the indicator with the highest uncertainty, the ,𝐿𝐹𝐼
40

under the 20% scenario (Fig. 3). We find that the uncertainty in is reduced during the El𝐿𝐹𝐼
40

Niño event (the light grey area in Fig. 3, between the years 1997-1998), whereas it sharply

increases after the El Niño event. This pattern is particularly marked for simulations that

implement parameter uncertainty in low trophic levels species such as mesopelagics, anchovy,

euphausiids, but also other higher trophic level species such as humboldt squid. The case of
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munida is particular, because this species was observed in the NHCE after 1996 and was

introduced in the model application after the El Niño event.

Figure 2. Coefficient of variation of ecological indicators in output of NHCE OSMOSE (x-axis) under

uncertainty scenarios of 10% (white points) and 20% (grey points). Each panel shows the uncertainty

of an indicator due to the uncertainty in the 9 species' parameters (y-axis).
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Figure 3. Projected uncertainty in the LFI40 indicator under the scenario of 20% uncertainty in
species' parameters. The dark grey area represents the uncertainty between the lower quantile
(2.5%) and upper quantile (97.5%), and the median of the distribution is in black. The vertical
area (in light grey) represents the duration of the El Niño event in the northern Humboldt
Current ecosystem (Dewitte et al., 2012).

We also compared the relative change of species biomass under the 20% uncertainty scenario

before and after the El Niño event (Fig. 4). The results show that the uncertainty in species

biomass is larger after El Niño than before; this was observed for almost all species except for

euphausiids (and obviously munida which was included in the modelled system after El Niño).

We also analyzed the behaviour of some output ecological indicators before and after the El Niño

event (Fig. 5). The temporal changes of these indicators in response to species’ parameter

uncertainty are heterogeneous, but overall with more uncertainty after the El Niño event.
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Figure 4. Relative change in species biomass under the scenario of 20% uncertainty. Each panel
shows the uncertainty on the nine focal species’ biomass of the NHCE OSMOSE model due to
the uncertainty in the parameters of one species. The relative changes were compared to a
baseline simulation (dashed red line). In turquoise the uncertainty before the El Niño event (from
January 1992 up to December 1996) and in orange, the uncertainty during and after the El Niño
(from January 1997 until December 2008).
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Figure 5. Relative change in ecological indicators under the scenario of 20% uncertainty. Each
panel shows the uncertainty on one of the indicators due to the uncertainty in species'
parameters. The relative changes were compared to a baseline simulation (dashed red line). In
turquoise, the uncertainty before the El Niño event (from January 1992 up to December 1996)
and in orange, the uncertainty during and after the El Niño (from January 1997 until December
2008).
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4. Discussion

The simulation experiments allowed us to evaluate the uncertainty propagation from one species

to the modelled ecosystem. The results showed that as an outcome of the complex interactions in

the NHCE OSMOSE model, the uncertainty from one species could impact the rest of the food

web. In particular, the uncertainty in euphausiids’ and Humboldt squid’s parameters substantially

affected the entire food web, suggesting that both species have an essential role in the modelled

ecosystem. Thus, these two species need to be studied further to ensure a realistic representation

of their dynamics in the modelled system, and the information used to parameterize them must

rely on high data quality. However, poor data quality and the resulting poor representation in the

model could also explain the large contribution of some species to the uncertainty in the model

output. Although we lacked the evidence to fully understand the roles of euphausiids and

Humboldt squid in the NHCE, it should be noted that these two species lacked reliable time

series of abundance indices (Oliveros-Ramos et al., 2017).

The relatively low contribution of the uncertainty in anchovy’s input parameters to the other

species’ biomass was unexpected (Fig. 1) since the anchovy is considered a key species in the

NHCE (Chavez et al., 2008; Bertrand et al., 2008; Guttierrez et al., 2012). In addition, of the nine

species modelled, only two supplied uncertainty to anchovy (euphausiids and the anchovy itself).

A possible explanation is that in the NHCE OSMOSE model, anchovy predators have not been

represented explicitly (e.g., birds and other predators, Bertrand et al., 2012) but only as mortality

parameters. We thus highly recommend improving the representation of anchovy in the NHCE,

and one way to do so would be to represent the dynamics and the life cycle of their main

predators explicitly. Likewise, the dynamics of hake, a demersal species, could be improved in

the model by better representing the dynamics of their main prey euphausiids and munida

(Orrego and Mendo, 2012; Castillo, 2012). Munida was modelled through a biomass

immigration flux in the NHCE OSMOSE model, which probably simplifies too much the

complex life history dynamics of this species for which small individuals have a pelagic

behaviour and adults a demersal one (Guttierrez, 2002).

Unlike what was done in this study, it would have been preferable to use data to construct

probability distributions for each model input parameter and design the uncertainty analyses

based on these distributions (e.g., in Yegnan et al., 2002; Brown et al., 2015; Engström et al.,

50



2016). Unfortunately, given the high number of parameters that characterizes complex models of

natural systems, there is not often enough observations, experiments and available data to

construct probability distributions for each parameter. The use of fixed ranges of variability for

input parameters is an option that is used in such cases of relatively poor data situations.

However, a minimum level of information is needed to select appropriate parameter ranges and

avoid using arbitrary ones that could underestimate or overestimate the level of uncertainty in

model inputs (Saltelli et al., 2004; Lujan et al. 2022. arXiv.). Here, we used arbitrary ranges as a

first step in the UA of the NHCE OSMOSE model, with range values commonly adopted in

other UA of ecosystem models (Lehuta et al. (2010), Ciric et al. (2012), Dantec-Nedelec et al.

(2017), Zheng et al. (2012)). By using two different ranges of parameter variability (uncertainty

scenarios of 10% and 20%), we were able to confirm that larger levels of uncertainty in the

NHCE OSMOSE model inputs produced a larger level of uncertainty in the model outputs.

The use of ecological indicators allows monitoring the state of ecosystems under fisheries impact

and climate change, supporting decision making for an EAF (Fulton et al., 2005b). In this regard,

several studies using the OSMOSE modelling platform have conducted indicators analyses to

test their performance and usefulness (Halouani et al., 2019; Fu et al., 2019; Shin et al., 2018)

but never considered the effect of parametric uncertainty. We found that some indicators were

able to strongly mitigate the uncertainty associated with species’ parameters, with especially

three indicators emerging as having interesting properties: the slope of the size spectrum, the

marine trophic index and the mean trophic level. The |CV| of the slope of the size spectrum was

very homogeneous across all 10% and 20% uncertainty scenarios, and always less than 4%,

whatever the species considered in the uncertainty scenarios. The responses of the marine trophic

index and the mean trophic level were more heterogeneous, depending on which species’

uncertainty was considered, but their CVs were always very low, less than 2% and 2.5%,

respectively. However, further studies using more uncertainty scenarios are needed to explain

these results and test their robustness. On the other hand, the large fish indicators ( , ,𝐿𝐹𝐼
20

𝐿𝐹𝐼
30

) had relatively high levels of uncertainties in output of the NHCE OSMOSE model. This𝐿𝐹𝐼
40

result should be taken into account when using this indicator in the model projections, especially

as previous studies have shown that the LFI was performing well for detecting changes in

ecosystem structure (Halouani et al., 2019; Moullec, 2019b).
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An additional complexity for analyzing uncertainty in complex models is when these tools are

dynamic, potentially propagating uncertainty over time. This temporal dynamic of uncertainty

should be considered more often than is currently the case, when using models for both hindcast

and forecast simulations. In our uncertainty experiments, the level of uncertainty rose strongly

for most species after the El Niño (especially for anchovy, mesopelagics, and euphausiids). This

event had a massive impact on the NHCS, disrupting the ecosystem's structure (Chavez et al.,

2002; Ñiquen and Bouchon 2004; Gutierrez et al., 2011) and adding significant variability to the

system. This was also detected in our results, with significant changes in uncertainty in the

model’s output before and after El Niño. We thus emphasize that uncertainty studies using

time-averaged model outputs could mask important features for characterizing model

uncertainty.

This work involved some technical challenges that we report here. One major impediment was

the computational cost of running UA of complex models since these tools are characterized by

many inputs (e.g., parameters, initial and forcing conditions) and outputs (multiple simulated

variables). To deal with this, we decided to focus the UA on the parameters associated with focal

species, but even with this restriction, we were already using over 200 parameters. Furthermore,

we limited the study to the analysis of only ten ecological indicators among the long list of

model outputs. UA, especially of complex models, also have high computational requirements in

terms of simulation time and disk space. The results obtained for this work occupied a memory

space around 7 Tb, which was very limiting for working with a larger number of uncertainty

scenarios. Moreover, each species scenario required about 264 hours (11 days approximately),

thus the 18 UA experiments (10% and 20% uncertainty scenarios for each of the 9 species)

required a total of 198 days of simulation (about 6.6 months). To shorten the simulation time, we

could run the simulations in parallel on the DATARMOR supercomputer, a high-performance

computing system (HPC, with the possibility to use up to 56 cores depending on cluster

availability).

The use of Morris in combination with Monte Carlo reduced the computational cost of our

analyses. However, complementary studies related to Morris parameters (e.g., number of

trajectories and levels, see Bracis et al., (2020) and Morris et al., (2014)) are needed. On the

other hand, future studies could explore other alternative methods (Marino et al. (2008)). For
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example, we could use the quasi-random sequence method (Jansen, 1999; Sobol et al., 2007), a

Monte Carlo resampling procedure implemented in the R sensitivity package (Iooss et al., 2021)

and with a computational cost of N(k+2) simulations, where N is the sample size (i.e. the

parameter distribution is divided into N intervals that are sampled) and k is the number of

parameters included in the analysis. Another possible method is the Latin hypercube sampling

(Mckay et al., 1979), which is also considered low cost (computational cost of N(k+1)

simulations).

In this paper, we studied the effect of parameter uncertainty on the outputs of the NHCE

OSMOSE model. However, we highlight the importance of analyzing other sources of

uncertainty, such as those due to initial conditions and model forcing (Payne et al., 2015; Cheung

et al., 2016; Rounsevell et al., 2021). Finally, we call for an increase in interdisciplinary work,

which could synergize the efforts and experience from other scientific fields in the study of

uncertainty in complex models.
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Appendix A. Model input parameters for the UA

Table A.1 Reparametrization and baseline values of PCE OSMOSE model parameters used for the UA.

Parameters type
Anchovy

(sp1)
Peruvian hake

(sp2)
Sardine

(sp3)
Jack mackerel

(sp4)
Chub mackerel

(sp5)
Mesopelagics

(sp6)
Munida

(sp7)
Humboldt

squid
(sp8)

Euphausiids
(sp9)

predation accessibility of
prey to predator

Reparametrization:
𝑝

1,𝑠𝑝1
= 𝐴(𝑠𝑝

1
, 𝑠𝑝

2
)

𝑝
2,𝑠𝑝1

= 𝐴(𝑠𝑝
1
, 𝑠𝑝

3
)

𝑝
3,𝑠𝑝1

= 𝐴(𝑠𝑝
1
, 𝑠𝑝

4
)

𝑝
4,𝑠𝑝1

= 𝐴(𝑠𝑝
1
, 𝑠𝑝

5
)

𝑝
5,𝑠𝑝1

= 𝐴(𝑠𝑝
1
, 𝑠𝑝

6
)

𝑝
6,𝑠𝑝1

= 𝐴(𝑠𝑝
1
, 𝑠𝑝

7
)

𝑝
7,𝑠𝑝1

= 𝐴(𝑠𝑝
1
, 𝑠𝑝

8
)

𝑝
8,𝑠𝑝1

= 𝐴(𝑠𝑝
1
, 𝑠𝑝

9
)

Baseline value (x):
𝑝

1,𝑠𝑝1
= 0. 10

𝑝
2,𝑠𝑝1

= 0. 90
𝑝

3,𝑠𝑝1
= 0. 90

𝑝
4,𝑠𝑝1

= 0. 90
𝑝

5,𝑠𝑝1
= 0. 55

𝑝
6,𝑠𝑝1

= 0. 05
𝑝

7,𝑠𝑝1
= 0. 60

𝑝
8,𝑠𝑝1

= 0. 60

Reparametrization:
𝑝

1,𝑠𝑝2
= 𝐴(𝑠𝑝

2
, 𝑠𝑝

1
)

𝑝
2,𝑠𝑝2

= 𝐴(𝑠𝑝
2
, 𝑠𝑝

3
)

𝑝
3,𝑠𝑝2

= 𝐴(𝑠𝑝
2
, 𝑠𝑝

4
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5
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6
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7
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8
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= 0. 20
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2,𝑠𝑝2

= 0. 20
𝑝

3,𝑠𝑝2
= 0. 15

𝑝
4,𝑠𝑝2

= 0. 15
𝑝

5,𝑠𝑝2
= 0. 45

𝑝
6,𝑠𝑝2
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= 0. 65
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= 0. 50
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= 0. 15
𝑝

3,𝑠𝑝3
= 0. 90

𝑝
4,𝑠𝑝3

= 0. 90
𝑝

5,𝑠𝑝3
= 0. 60

𝑝
6,𝑠𝑝3

= 0. 05
𝑝

7,𝑠𝑝3
= 0. 60

𝑝
8,𝑠𝑝3

= 0. 60

Reparametrization:
𝑝

1,𝑠𝑝4
= 𝐴(𝑠𝑝

4
, 𝑠𝑝

1
)

𝑝
2,𝑠𝑝4

= 𝐴(𝑠𝑝
4
, 𝑠𝑝

2
)

𝑝
3,𝑠𝑝4

= 𝐴(𝑠𝑝
4
, 𝑠𝑝

3
)

𝑝
4,𝑠𝑝4

= 𝐴(𝑠𝑝
4
, 𝑠𝑝

5
)

𝑝
5,𝑠𝑝4

= 𝐴(𝑠𝑝
4
, 𝑠𝑝

6
)

𝑝
6,𝑠𝑝4

= 𝐴(𝑠𝑝
4
, 𝑠𝑝

7
)

𝑝
7,𝑠𝑝4

= 𝐴(𝑠𝑝
4
, 𝑠𝑝

8
)

𝑝
8,𝑠𝑝4

= 𝐴(𝑠𝑝
4
, 𝑠𝑝

9
)

Baseline value (x):
𝑝

1,𝑠𝑝4
= 0. 90

𝑝
2,𝑠𝑝4

= 0. 15
𝑝

3,𝑠𝑝4
= 0. 90

𝑝
4,𝑠𝑝4

= 0. 90
𝑝

5,𝑠𝑝4
= 0. 60

𝑝
6,𝑠𝑝4

= 0. 90
𝑝

7,𝑠𝑝4
= 0. 60

𝑝
8,𝑠𝑝4

= 0. 50

Reparametrization:
𝑝

1,𝑠𝑝5
= 𝐴(𝑠𝑝

5
, 𝑠𝑝

1
)

𝑝
2,𝑠𝑝5

= 𝐴(𝑠𝑝
5
, 𝑠𝑝

2
)

𝑝
3,𝑠𝑝5

= 𝐴(𝑠𝑝
5
, 𝑠𝑝

3
)

𝑝
4,𝑠𝑝5

= 𝐴(𝑠𝑝
5
, 𝑠𝑝

4
)

𝑝
5,𝑠𝑝5

= 𝐴(𝑠𝑝
5
, 𝑠𝑝

6
)

𝑝
6,𝑠𝑝5

= 𝐴(𝑠𝑝
5
, 𝑠𝑝

7
)

𝑝
7,𝑠𝑝5

= 𝐴(𝑠𝑝
5
, 𝑠𝑝

8
)

𝑝
8,𝑠𝑝5

= 𝐴(𝑠𝑝
5
, 𝑠𝑝

9
)

Baseline value (x):
𝑝

1,𝑠𝑝5
= 0. 90

𝑝
2,𝑠𝑝5

= 0. 15
𝑝

3,𝑠𝑝5
= 0. 90

𝑝
4,𝑠𝑝5

= 0. 90
𝑝

5,𝑠𝑝5
= 0. 90

𝑝
6,𝑠𝑝5

= 0. 90
𝑝

7,𝑠𝑝5
= 0. 60

𝑝
8,𝑠𝑝5

= 0. 60

Reparametrization:
𝑝

1,𝑠𝑝6
= 𝐴(𝑠𝑝

6
, 𝑠𝑝

1
)

𝑝
2,𝑠𝑝6

= 𝐴(𝑠𝑝
6
, 𝑠𝑝

2
)

𝑝
3,𝑠𝑝6

= 𝐴(𝑠𝑝
6
, 𝑠𝑝

3
)

𝑝
4,𝑠𝑝6

= 𝐴(𝑠𝑝
6
, 𝑠𝑝

4
)

𝑝
5,𝑠𝑝6

= 𝐴(𝑠𝑝
6
, 𝑠𝑝

5
)

𝑝
6,𝑠𝑝6

= 𝐴(𝑠𝑝
6
, 𝑠𝑝

7
)

𝑝
7,𝑠𝑝6

= 𝐴(𝑠𝑝
6
, 𝑠𝑝

8
)

𝑝
8,𝑠𝑝6

= 𝐴(𝑠𝑝
6
, 𝑠𝑝

9
)

Baseline value (x):
𝑝

1,𝑠𝑝6
= 0. 55

𝑝
2,𝑠𝑝6

= 0. 45
𝑝

3,𝑠𝑝6
= 0. 60

𝑝
4,𝑠𝑝6

= 0. 60
𝑝

5,𝑠𝑝6
= 0. 90

𝑝
6,𝑠𝑝6

= 0. 50
𝑝

7,𝑠𝑝6
= 0. 95

𝑝
8,𝑠𝑝6

= 0. 90

Reparametrization:
𝑝

1,𝑠𝑝7
= 𝐴(𝑠𝑝

7
, 𝑠𝑝

1
)

𝑝
2,𝑠𝑝7

= 𝐴(𝑠𝑝
7
, 𝑠𝑝

2
)

𝑝
3,𝑠𝑝7

= 𝐴(𝑠𝑝
7
, 𝑠𝑝

3
)

𝑝
4,𝑠𝑝7

= 𝐴(𝑠𝑝
7
, 𝑠𝑝

4
)

𝑝
5,𝑠𝑝7

= 𝐴(𝑠𝑝
7
, 𝑠𝑝

5
)

𝑝
6,𝑠𝑝7

= 𝐴(𝑠𝑝
7
, 𝑠𝑝

6
)

𝑝
7,𝑠𝑝7

= 𝐴(𝑠𝑝
7
, 𝑠𝑝

8
)

𝑝
8,𝑠𝑝7

= 𝐴(𝑠𝑝
7
, 𝑠𝑝

9
)

Baseline value (x):
𝑝

1,𝑠𝑝7
= 0. 90

𝑝
2,𝑠𝑝7

= 0. 025
𝑝

3,𝑠𝑝7
= 0. 90

𝑝
4,𝑠𝑝7

= 0. 90
𝑝

5,𝑠𝑝7
= 0. 90

𝑝
6,𝑠𝑝7

= 0. 50
𝑝

7,𝑠𝑝7
= 0. 50

𝑝
8,𝑠𝑝7

= 0. 55

Reparametrization:
𝑝

1,𝑠𝑝8
= 𝐴(𝑠𝑝

8
, 𝑠𝑝

1
)

𝑝
2,𝑠𝑝8

= 𝐴(𝑠𝑝
8
, 𝑠𝑝

2
)

𝑝
3,𝑠𝑝8

= 𝐴(𝑠𝑝
8
, 𝑠𝑝

3
)

𝑝
4,𝑠𝑝8

= 𝐴(𝑠𝑝
8
, 𝑠𝑝

4
)

𝑝
5,𝑠𝑝8

= 𝐴(𝑠𝑝
8
, 𝑠𝑝

5
)

𝑝
6,𝑠𝑝8

= 𝐴(𝑠𝑝
8
, 𝑠𝑝

6
)

𝑝
7,𝑠𝑝8

= 𝐴(𝑠𝑝
8
, 𝑠𝑝

7
)

𝑝
8,𝑠𝑝8

= 𝐴(𝑠𝑝
8
, 𝑠𝑝

9
)

Baseline value (x):
𝑝

1,𝑠𝑝8
= 0. 60

𝑝
2,𝑠𝑝8

= 0. 65
𝑝

3,𝑠𝑝8
= 0. 60

𝑝
4,𝑠𝑝8

= 0. 70
𝑝

5,𝑠𝑝8
= 0. 60

𝑝
6,𝑠𝑝8

= 0. 95
𝑝

7,𝑠𝑝8
= 0. 50

𝑝
8,𝑠𝑝8

= 0. 95

Reparametrization:
𝑝

1,𝑠𝑝9
= 𝐴(𝑠𝑝

9
, 𝑠𝑝

1
)

𝑝
2,𝑠𝑝9

= 𝐴(𝑠𝑝
9
, 𝑠𝑝

2
)

𝑝
3,𝑠𝑝9

= 𝐴(𝑠𝑝
9
, 𝑠𝑝

3
)

𝑝
4,𝑠𝑝9

= 𝐴(𝑠𝑝
9
, 𝑠𝑝

4
)

𝑝
5,𝑠𝑝9

= 𝐴(𝑠𝑝
9
, 𝑠𝑝

5
)

𝑝
6,𝑠𝑝9

= 𝐴(𝑠𝑝
9
, 𝑠𝑝

6
)

𝑝
7,𝑠𝑝9

= 𝐴(𝑠𝑝
9
, 𝑠𝑝

7
)

𝑝
8,𝑠𝑝9

= 𝐴(𝑠𝑝
9
, 𝑠𝑝

8
)

Baseline value (x):
𝑝

1,𝑠𝑝9
= 0. 60

𝑝
2,𝑠𝑝9

= 0. 50
𝑝

3,𝑠𝑝9
= 0. 60

𝑝
4,𝑠𝑝9

= 0. 60
𝑝

5,𝑠𝑝9
= 0. 60

𝑝
6,𝑠𝑝9

= 0. 90
𝑝

7,𝑠𝑝9
= 0. 55

𝑝
8,𝑠𝑝9

= 0. 95

minimum predation:prey size
ratio for each species stage
( )θ

𝑠𝑡𝑎𝑔𝑒

Reparametrization:
𝑝

9,𝑠𝑝1
 =  𝑓(θ

𝑠𝑡𝑎𝑔𝑒1
)

𝑝
10,𝑠𝑝1

 =  𝑓(θ
𝑠𝑡𝑎𝑔𝑒2

)

Baseline value (x):
𝑝

9,𝑠𝑝1
= 0. 0008

𝑝
10,𝑠𝑝1

= 0. 0032

Reparametrization:
𝑝

9,𝑠𝑝2
 =  𝑓(θ

𝑠𝑡𝑎𝑔𝑒1
)

𝑝
10,𝑠𝑝2

 =  𝑓(θ
𝑠𝑡𝑎𝑔𝑒2

)

Baseline value (x):
𝑝

9,𝑠𝑝2
= 0. 0127

𝑝
10,𝑠𝑝2

= 0. 0127

Reparametrization:
𝑝

9,𝑠𝑝3
 =  𝑓(θ

𝑠𝑡𝑎𝑔𝑒1
)

𝑝
10,𝑠𝑝3

 =  𝑓(θ
𝑠𝑡𝑎𝑔𝑒2

)

Baseline value (x):
𝑝

9,𝑠𝑝3
= 0. 0006

𝑝
10,𝑠𝑝3

= 0

Reparametrization:
𝑝

9,𝑠𝑝4
 =  𝑓(θ

𝑠𝑡𝑎𝑔𝑒1
)

𝑝
10,𝑠𝑝4

 =  𝑓(θ
𝑠𝑡𝑎𝑔𝑒2

)

Baseline value (x):
𝑝

9,𝑠𝑝4
= 0. 0021

𝑝
10,𝑠𝑝4

= 0. 0032

Reparametrization:
𝑝

9,𝑠𝑝5
 =  𝑓(θ

𝑠𝑡𝑎𝑔𝑒1
)

𝑝
10,𝑠𝑝5

 =  𝑓(θ
𝑠𝑡𝑎𝑔𝑒2

)

Baseline value (x):
𝑝

9,𝑠𝑝5
= 0. 0021

𝑝
10,𝑠𝑝5

= 0. 0032

Reparametrization:
𝑝

9,𝑠𝑝6
 =  𝑓(θ

𝑠𝑡𝑎𝑔𝑒1
)

Baseline value (x):
𝑝

9,𝑠𝑝6
= 0. 0064

Reparametrization:
𝑝

9,𝑠𝑝7
 =  𝑓(θ

𝑠𝑡𝑎𝑔𝑒1
)

Baseline value (x):
𝑝

9,𝑠𝑝7
= 0. 0042

Reparametrization:
𝑝

9,𝑠𝑝8
 =  𝑓(θ

𝑠𝑡𝑎𝑔𝑒1
)

𝑝
10,𝑠𝑝8

 =  𝑓(θ
𝑠𝑡𝑎𝑔𝑒2

)
𝑝

11,𝑠𝑝8
 =  𝑓(θ

𝑠𝑡𝑎𝑔𝑒2
)

Baseline value (x):
𝑝

9,𝑠𝑝8
= 0. 0182

𝑝
10,𝑠𝑝8

= 0. 0116
𝑝

11,𝑠𝑝8
= 0. 0091

Reparametrization:
𝑝

9,𝑠𝑝9
 =  𝑓(θ

𝑠𝑡𝑎𝑔𝑒1
)

𝑝
10,𝑠𝑝9

 =  𝑓(θ
𝑠𝑡𝑎𝑔𝑒2

)

Baseline value (x):
𝑝

9,𝑠𝑝9
= 0. 0002

𝑝
10,𝑠𝑝9

= 0. 0003
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maximum predation:prey
size ratio for each species
stage
( )α

𝑠𝑡𝑎𝑔𝑒

Reparametrization:
𝑝

11,𝑠𝑝1
 =  𝑓(α

𝑠𝑡𝑎𝑔𝑒1
)

𝑝
12,𝑠𝑝1

 =  𝑓(α
𝑠𝑡𝑎𝑔𝑒2

)

Baseline value (x):
𝑝

11,𝑠𝑝1
= 0. 0784

𝑝
12,𝑠𝑝1

= 0. 1020

Reparametrization:
𝑝

11,𝑠𝑝2
 =  𝑓(α

𝑠𝑡𝑎𝑔𝑒1
)

𝑝
12,𝑠𝑝2

 =  𝑓(α
𝑠𝑡𝑎𝑔𝑒2

)

Baseline value (x):
𝑝

11,𝑠𝑝2
= 0. 1921

𝑝
12,𝑠𝑝2

= 0. 2295

Reparametrization:
𝑝

11,𝑠𝑝3
 =  𝑓(α

𝑠𝑡𝑎𝑔𝑒1
)

𝑝
12,𝑠𝑝3

 =  𝑓(α
𝑠𝑡𝑎𝑔𝑒2

)

Baseline value (x):
𝑝

11,𝑠𝑝3
= 0. 0248

𝑝
12,𝑠𝑝3

= 0. 0041

Reparametrization:
𝑝

11,𝑠𝑝4
 =  𝑓(α

𝑠𝑡𝑎𝑔𝑒1
)

𝑝
12,𝑠𝑝4

 =  𝑓(α
𝑠𝑡𝑎𝑔𝑒2

)

Baseline value (x):
𝑝

11,𝑠𝑝4
= 0. 0297

𝑝
12,𝑠𝑝4

= 0. 0392

Reparametrization:
𝑝

11,𝑠𝑝5
 =  𝑓(α

𝑠𝑡𝑎𝑔𝑒1
)

𝑝
12,𝑠𝑝5

 =  𝑓(α
𝑠𝑡𝑎𝑔𝑒2

)

Baseline value (x):
𝑝

11,𝑠𝑝5
= 0. 0297

𝑝
12,𝑠𝑝5

= 0. 0392

Reparametrization:
𝑝

10,𝑠𝑝6
 =  𝑓(α

𝑠𝑡𝑎𝑔𝑒1
)

Baseline value (x):
𝑝

10,𝑠𝑝6
= 0. 1708

Reparametrization:
𝑝

10,𝑠𝑝7
 =  𝑓(α

𝑠𝑡𝑎𝑔𝑒1
)

Baseline value (x):
𝑝

10,𝑠𝑝7
= 0. 2909

Reparametrization:
𝑝

12,𝑠𝑝8
 =  𝑓(α

𝑠𝑡𝑎𝑔𝑒1
)

𝑝
13,𝑠𝑝8

 =  𝑓(α
𝑠𝑡𝑎𝑔𝑒2

)
𝑝

14,𝑠𝑝8
 =  𝑓(α

𝑠𝑡𝑎𝑔𝑒2
)

Baseline value (x):
𝑝

12,𝑠𝑝8
= 0. 2241

𝑝
13,𝑠𝑝8

= 0. 2836
𝑝

14,𝑠𝑝8
= 0. 4909

Reparametrization:
𝑝

11,𝑠𝑝9
 =  𝑓(α

𝑠𝑡𝑎𝑔𝑒1
)

𝑝
12,𝑠𝑝9

 =  𝑓(α
𝑠𝑡𝑎𝑔𝑒2

)

Baseline value (x):
𝑝

11,𝑠𝑝9
= 0. 0422

𝑝
12,𝑠𝑝9

= 0. 0631

predation:prey size threshold
( in )𝑠

𝑡ℎ𝑟
𝑐𝑚

Reparametrization:
𝑝

13,𝑠𝑝1
 =  𝑓(𝑠

𝑡ℎ𝑟
)

Baseline value (x):
𝑝

13,𝑠𝑝1
 = 0. 5128

Reparametrization:
𝑝

13,𝑠𝑝2
 =  𝑓(𝑠

𝑡ℎ𝑟
)

Baseline value (x):
𝑝

13,𝑠𝑝2
 = 0. 2647

Reparametrization:
𝑝

13,𝑠𝑝3
 =  𝑓(𝑠

𝑡ℎ𝑟
)

Baseline value (x):
𝑝

13,𝑠𝑝3
 = 0. 3358

Reparametrization:
𝑝

13,𝑠𝑝4
 =  𝑓(𝑠

𝑡ℎ𝑟
)

Baseline value (x):
𝑝

13,𝑠𝑝4
 = 0. 2451

Reparametrization:
𝑝

13,𝑠𝑝5
 =  𝑓(𝑠

𝑡ℎ𝑟
)

Baseline value (x):
𝑝

13,𝑠𝑝5
 = 0. 4926

- - Reparametrization:
𝑝

15,𝑠𝑝8
 =  𝑓(𝑠

𝑡ℎ𝑟
)

𝑝
16,𝑠𝑝8

 =  𝑓(𝑠
𝑡ℎ𝑟

)

Baseline value (x):
𝑝

15,𝑠𝑝8
 = 0. 6316

𝑝
16,𝑠𝑝8

 = 0. 5

Reparametrization:
𝑝

13,𝑠𝑝9
 =  𝑓(𝑠

𝑡ℎ𝑟
)

Baseline value (x):
𝑝

13,𝑠𝑝9
 = 0. 2308

maximum starvation
mortality rate ( in )𝑀

ε
𝑚𝑎𝑥

𝑦−1
Reparametrization:

𝑝
14,𝑠𝑝1

 =  𝑓(𝐴)

Baseline value (x):
𝑝

14,𝑠𝑝1
 = 0. 10

Reparametrization:
𝑝

14,𝑠𝑝2
 =  𝑓(𝐴)

Baseline value (x):
𝑝

14,𝑠𝑝2
 = 0. 05

Reparametrization:
𝑝

14,𝑠𝑝3
 =  𝑓(𝐴)

Baseline value (x):
𝑝

14,𝑠𝑝3
 = 0. 10

Reparametrization:
𝑝

14,𝑠𝑝4
 =  𝑓(𝐴)

Baseline value (x):
𝑝

14,𝑠𝑝4
 = 0. 15

Reparametrization:
𝑝

14,𝑠𝑝5
 =  𝑓(𝐴)

Baseline value (x):
𝑝

14,𝑠𝑝5
 = 0. 05

Reparametrization:
𝑝

11,𝑠𝑝6
 =  𝑓(𝐴)

Baseline value (x):
𝑝

11,𝑠𝑝6
 = 0. 5

Reparametrization:
𝑝

11,𝑠𝑝7
 =  𝑓(𝐴)

Baseline value (x):
𝑝

11,𝑠𝑝7
 = 0. 1

Reparametrization:
𝑝

17,𝑠𝑝8
 =  𝑓(𝐴)

Baseline value (x):
𝑝

17,𝑠𝑝8
 = 0. 1

Reparametrization:
𝑝

14,𝑠𝑝9
 =  𝑓(𝐴)

Baseline value (x):
𝑝

14,𝑠𝑝9
 = 0. 5

von Bertalanffy threshold
( in )𝑎

𝑡ℎ𝑟
𝑦

Reparametrization:
𝑝

15,𝑠𝑝1
 =  𝑓(𝑎

𝑡ℎ𝑟
)

Baseline value (x):
𝑝

15,𝑠𝑝1
 = 0. 0179

Reparametrization:
𝑝

15,𝑠𝑝2
 =  𝑓(𝑎

𝑡ℎ𝑟
)

Baseline value (x):
𝑝

15,𝑠𝑝2
 = 0. 0074

Reparametrization:
𝑝

15,𝑠𝑝3
 =  𝑓(𝑎

𝑡ℎ𝑟
)

Baseline value (x):
𝑝

15,𝑠𝑝3
 = 0. 0129

Reparametrization:
𝑝

15,𝑠𝑝4
 =  𝑓(𝑎

𝑡ℎ𝑟
)

Baseline value (x):
𝑝

15,𝑠𝑝4
 = 0. 0061

Reparametrization:
𝑝

15,𝑠𝑝5
 =  𝑓(𝑎

𝑡ℎ𝑟
)

Baseline value (x):
𝑝

15,𝑠𝑝5
 = 0. 0123

𝑝
12,𝑠𝑝6

 =  𝑓(𝑎
𝑡ℎ𝑟

)

Baseline value (x):
𝑝

12,𝑠𝑝6
 = 0. 0438

𝑝
12,𝑠𝑝7

 =  𝑓(𝑎
𝑡ℎ𝑟

)

Baseline value (x):
𝑝

12,𝑠𝑝7
 = 0. 1190

𝑝
18,𝑠𝑝8

 =  𝑓(𝑎
𝑡ℎ𝑟

)

Baseline value (x):
𝑝

18,𝑠𝑝8
 = 0. 0105

Reparametrization:
𝑝

15,𝑠𝑝9
 =  𝑓(𝑎

𝑡ℎ𝑟
)

Baseline value (x):
𝑝

15,𝑠𝑝9
 = 0. 0385

egg size ( )𝑐𝑚 Reparametrization:
𝑝

16,𝑠𝑝1
 =  𝑓(𝐴)

Baseline value (x):
𝑝

16,𝑠𝑝1
 = 0. 10

Reparametrization:
𝑝

16,𝑠𝑝2
 =  𝑓(𝐴)

Baseline value (x):
𝑝

16,𝑠𝑝2
 = 0. 10

Reparametrization:
𝑝

16,𝑠𝑝3
 =  𝑓(𝐴)

Baseline value (x):
𝑝

16,𝑠𝑝3
 = 0. 10

Reparametrization:
𝑝

16,𝑠𝑝4
 =  𝑓(𝐴)

Baseline value (x):
𝑝

16,𝑠𝑝4
 = 0. 10

Reparametrization:
𝑝

16,𝑠𝑝5
 =  𝑓(𝐴)

Baseline value (x):
𝑝

16,𝑠𝑝5
 = 0. 10

Reparametrization:
𝑝

13,𝑠𝑝6
 =  𝑓(𝐴)

Baseline value (x):
𝑝

13,𝑠𝑝6
 = 0. 10

Reparametrization:
𝑝

13,𝑠𝑝7
 =  𝑓(𝐴)

Baseline value (x):
𝑝

13,𝑠𝑝7
 = 0. 10

Reparametrization:
𝑝

19,𝑠𝑝8
 =  𝑓(𝐴)

Baseline value (x):
𝑝

19,𝑠𝑝8
 = 0. 10

Reparametrization:
𝑝

16,𝑠𝑝9
 =  𝑓(𝐴)

Baseline value (x):
𝑝

16,𝑠𝑝9
 = 0. 10

critical threshold of predation
efficiency ( )ε

𝑐𝑟𝑖𝑡

Reparametrization:
𝑝

17,𝑠𝑝1
 =  𝑓(𝐴)

Baseline value (x):
𝑝

17,𝑠𝑝1
 = 0. 57

Reparametrization:
𝑝

17,𝑠𝑝2
 =  𝑓(𝐴)

Baseline value (x):
𝑝

17,𝑠𝑝2
 = 0. 57

Reparametrization:
𝑝

17,𝑠𝑝3
 =  𝑓(𝐴)

Baseline value (x):
𝑝

17,𝑠𝑝3
 = 0. 57

Reparametrization:
𝑝

17,𝑠𝑝4
 =  𝑓(𝐴)

Baseline value (x):
𝑝

17,𝑠𝑝4
 = 0. 57

Reparametrization:
𝑝

17,𝑠𝑝5
 =  𝑓(𝐴)

Baseline value (x):
𝑝

17,𝑠𝑝5
 = 0. 57

Reparametrization:
𝑝

14,𝑠𝑝6
 =  𝑓(𝐴)

Baseline value (x):
𝑝

14,𝑠𝑝6
 = 0. 57

Reparametrization:
𝑝

14,𝑠𝑝7
 =  𝑓(𝐴)

Baseline value (x):
𝑝

14,𝑠𝑝7
 = 0. 57

Reparametrization:
𝑝

20,𝑠𝑝8
 =  𝑓(𝐴)

Baseline value (x):
𝑝

20,𝑠𝑝8
 = 0. 57

Reparametrization:
𝑝

17,𝑠𝑝9
 =  𝑓(𝐴)

Baseline value (x):
𝑝

17,𝑠𝑝9
 = 0. 57

maximum rate of predation
ingestion

Reparametrization:
𝑝

18,𝑠𝑝1
 =  𝑓(𝐴)

Baseline value (x):

Reparametrization:
𝑝

18,𝑠𝑝2
 =  𝑓(𝐴)

Baseline value (x):

Reparametrization:
𝑝

18,𝑠𝑝3
 =  𝑓(𝐴)

Baseline value (x):

Reparametrization:
𝑝

18,𝑠𝑝4
 =  𝑓(𝐴)

Baseline value (x):

Reparametrization:
𝑝

18,𝑠𝑝5
 =  𝑓(𝐴)

Baseline value (x):

Reparametrization:
𝑝

15,𝑠𝑝6
 =  𝑓(𝐴)

Baseline value (x):

Reparametrization:
𝑝

15,𝑠𝑝7
 =  𝑓(𝐴)

Baseline value (x):

Reparametrization:
𝑝

21,𝑠𝑝8
 =  𝑓(𝐴)

Baseline value (x):

Reparametrization:
𝑝

18,𝑠𝑝9
 =  𝑓(𝐴)

Baseline value (x):

59



( in )𝐼
𝑚𝑎𝑥

𝑔 𝑏𝑜𝑑𝑦𝑔−1𝑦−1 𝑝
18,𝑠𝑝1

 = 3. 5 𝑝
18,𝑠𝑝2

 = 3. 5 𝑝
18,𝑠𝑝3

 = 3. 5 𝑝
18,𝑠𝑝4

 = 3. 5 𝑝
18,𝑠𝑝5

 = 3. 5 𝑝
15,𝑠𝑝6

 = 3. 5 𝑝
15,𝑠𝑝7

 = 3. 5 𝑝
21,𝑠𝑝8

 = 3. 5 𝑝
18,𝑠𝑝9

 = 3. 5

natural mortality rate
( in )𝑀 𝑦−1

Reparametrization:
𝑝

19,𝑠𝑝1
 =  𝑓(𝐴)

Baseline value (x):
𝑝

19,𝑠𝑝1
 = 0. 9177

Reparametrization:
𝑝

19,𝑠𝑝2
 =  𝑓(𝐴)

Baseline value (x):
𝑝

19,𝑠𝑝2
 = 0. 2102

Reparametrization:
𝑝

19,𝑠𝑝3
 =  𝑓(𝐴)

Baseline value (x):
𝑝

19,𝑠𝑝3
 = 0. 1624

Reparametrization:
𝑝

19,𝑠𝑝4
 =  𝑓(𝐴)

Baseline value (x):
𝑝

19,𝑠𝑝4
 = 0. 1853

Reparametrization:
𝑝

19,𝑠𝑝5
 =  𝑓(𝐴)

Baseline value (x):
𝑝

19,𝑠𝑝5
 = 0. 2136

Reparametrization:
𝑝

16,𝑠𝑝6
 =  𝑓(𝐴)

Baseline value (x):
𝑝

16,𝑠𝑝6
 = 0. 7108

Reparametrization:
𝑝

16,𝑠𝑝7
 =  𝑓(𝐴)

Baseline value (x):
𝑝

16,𝑠𝑝7
 = 0. 2322

Reparametrization:
𝑝

22,𝑠𝑝8
 =  𝑓(𝐴)

Baseline value (x):
𝑝

22,𝑠𝑝8
 = 1. 8466

Reparametrization:
𝑝

19,𝑠𝑝9
 =  𝑓(𝐴)

Baseline value (x):
𝑝

19,𝑠𝑝9
 = 0. 2879

larval mortality rate
( in )𝑀

0
𝑚𝑜𝑛𝑡ℎ−1

Reparametrization:
𝑝

20,𝑠𝑝1
 =  𝑓(𝐴)

Baseline value (x):
𝑝

20,𝑠𝑝1
 = 9. 5821

Reparametrization:
𝑝

20,𝑠𝑝2
 =  𝑓(𝐴)

Baseline value (x):
𝑝

20,𝑠𝑝2
 = 9. 8035

Reparametrization:
𝑝

20,𝑠𝑝3
 =  𝑓(𝐴)

Baseline value (x):
𝑝

20,𝑠𝑝3
 = 13. 2393

Reparametrization:
𝑝

20,𝑠𝑝4
 =  𝑓(𝐴)

Baseline value (x):
𝑝

20,𝑠𝑝4
 = 12. 5983

Reparametrization:
𝑝

20,𝑠𝑝5
 =  𝑓(𝐴)

Baseline value (x):
𝑝

20,𝑠𝑝5
 = 13. 1210

Reparametrization:
𝑝

17,𝑠𝑝6
 =  𝑓(𝐴)

Baseline value (x):
𝑝

17,𝑠𝑝6
 = 2. 0804

Reparametrization:
𝑝

17,𝑠𝑝7
 =  𝑓(𝐴)

Baseline value (x):
𝑝

17,𝑠𝑝7
 = 6. 7572

Reparametrization:
𝑝

23,𝑠𝑝8
 =  𝑓(𝐴)

Baseline value (x):
𝑝

23,𝑠𝑝8
 = 8. 9452

Reparametrization:
𝑝

20,𝑠𝑝9
 =  𝑓(𝐴)

Baseline value (x):
𝑝

20,𝑠𝑝9
 = 1. 5779

fishing mortality multiplier
( )𝑓

𝑚

Reparametrization:
𝑝

21,𝑠𝑝1
 =  𝑓(𝐴)

Baseline value (x):
𝑝

21,𝑠𝑝1
 = 1

Reparametrization:
𝑝

21,𝑠𝑝2
 =  𝑓(𝐴)

Baseline value (x):
𝑝

21,𝑠𝑝2
 = 1

Reparametrization:
𝑝

21,𝑠𝑝3
 =  𝑓(𝐴)

Baseline value (x):
𝑝

21,𝑠𝑝3
 = 1

Reparametrization:
𝑝

21,𝑠𝑝4
 =  𝑓(𝐴)

Baseline value (x):
𝑝

21,𝑠𝑝4
 = 1

Reparametrization:
𝑝

21,𝑠𝑝5
 =  𝑓(𝐴)

Baseline value (x):
𝑝

21,𝑠𝑝5
 = 1

- - Reparametrization:
𝑝

24,𝑠𝑝8
 =  𝑓(𝐴)

Baseline value (x):
𝑝

24,𝑠𝑝8
 = 1

-

sex ratio ( )𝐹𝑟𝑎𝑐
𝑓𝑒𝑚

Reparametrization:
𝑝

22,𝑠𝑝1
 =  𝑓(𝐴)

Baseline value (x):
𝑝

22,𝑠𝑝1
 = 0. 5

Reparametrization:
𝑝

22,𝑠𝑝2
 =  𝑓(𝐴)

Baseline value (x):
𝑝

22,𝑠𝑝2
 = 0. 5

Reparametrization:
𝑝

22,𝑠𝑝3
 =  𝑓(𝐴)

Baseline value (x):
𝑝

22,𝑠𝑝3
 = 0. 5

Reparametrization:
𝑝

22,𝑠𝑝4
 =  𝑓(𝐴)

Baseline value (x):
𝑝

22,𝑠𝑝4
 = 0. 5

Reparametrization:
𝑝

22,𝑠𝑝5
 =  𝑓(𝐴)

Baseline value (x):
𝑝

22,𝑠𝑝5
 = 0. 5

Reparametrization:
𝑝

18,𝑠𝑝6
 =  𝑓(𝐴)

Baseline value (x):
𝑝

18,𝑠𝑝6
 = 0. 5

Reparametrization:
𝑝

18,𝑠𝑝7
 =  𝑓(𝐴)

Baseline value (x):
𝑝

18,𝑠𝑝7
 = 0. 5

Reparametrization:
𝑝

25,𝑠𝑝8
 =  𝑓(𝐴)

Baseline value (x):
𝑝

25,𝑠𝑝8
 = 0. 5

Reparametrization:
𝑝

21,𝑠𝑝9
 =  𝑓(𝐴)

Baseline value (x):
𝑝

21,𝑠𝑝9
 = 0. 5

𝐿
𝑡 = 0

(von Bertalanffy growth
parameter in )𝑐𝑚

Reparametrization:
𝑝

23,𝑠𝑝1
 =  𝑓(𝐴)

Baseline value (x):
𝑝

23,𝑠𝑝1
 = 1. 9682

Reparametrization:
𝑝

23,𝑠𝑝2
 =  𝑓(𝐴)

Baseline value (x):
𝑝

23,𝑠𝑝2
 = 3. 6483

Reparametrization:
𝑝

23,𝑠𝑝3
 =  𝑓(𝐴)

Baseline value (x):
𝑝

23,𝑠𝑝3
 = 9. 8834

Reparametrization:
𝑝

23,𝑠𝑝4
 =  𝑓(𝐴)

Baseline value (x):
𝑝

23,𝑠𝑝4
 = 3. 7278

Reparametrization:
𝑝

23,𝑠𝑝5
 =  𝑓(𝐴)

Baseline value (x):
𝑝

23,𝑠𝑝5
 = 0. 8238

Reparametrization:
𝑝

19,𝑠𝑝6
 =  𝑓(𝐴)

Baseline value (x):
𝑝

19,𝑠𝑝6
 = 0. 5333

Reparametrization:
𝑝

19,𝑠𝑝7
 =  𝑓(𝐴)

Baseline value (x):
𝑝

19,𝑠𝑝7
 = 0. 4861

Reparametrization:
𝑝

26,𝑠𝑝8
 =  𝑓(𝐴)

Baseline value (x):
𝑝

26,𝑠𝑝8
 = 8. 9544

Reparametrization:
𝑝

22,𝑠𝑝9
 =  𝑓(𝐴)

Baseline value (x):
𝑝

22,𝑠𝑝9
 = 0. 7795

k (von Bertalanffy growth
parameter in )𝑦−1

Reparametrization:
𝑝

24,𝑠𝑝1
 =  𝑓(𝐴)

Baseline value (x):
𝑝

24,𝑠𝑝1
 = 0. 76

Reparametrization:
𝑝

24,𝑠𝑝2
 =  𝑓(𝐴)

Baseline value (x):
𝑝

24,𝑠𝑝2
 = 0. 205

Reparametrization:
𝑝

24,𝑠𝑝3
 =  𝑓(𝐴)

Baseline value (x):
𝑝

24,𝑠𝑝3
 = 0. 22

Reparametrization:
𝑝

24,𝑠𝑝4
 =  𝑓(𝐴)

Baseline value (x):
𝑝

24,𝑠𝑝4
 = 0. 1670

Reparametrization:
𝑝

24,𝑠𝑝5
 =  𝑓(𝐴)

Baseline value (x):
𝑝

24,𝑠𝑝5
 = 0. 41

Reparametrization:
𝑝

20,𝑠𝑝6
 =  𝑓(𝐴)

Baseline value (x):
𝑝

20,𝑠𝑝6
 = 1. 15

Reparametrization:
𝑝

20,𝑠𝑝7
 =  𝑓(𝐴)

Baseline value (x):
𝑝

20,𝑠𝑝7
 = 0. 375

Reparametrization:
𝑝

27,𝑠𝑝8
 =  𝑓(𝐴)

Baseline value (x):
𝑝

27,𝑠𝑝8
 = 1. 1

Reparametrization:
𝑝

23,𝑠𝑝9
 =  𝑓(𝐴)

Baseline value (x):
𝑝

23,𝑠𝑝9
 = 1. 8

𝐿
∞

(von Bertalanffy growth
parameter in )𝑐𝑚

Reparametrization:
𝑝

25,𝑠𝑝1
 =  𝑓(𝐴)

Baseline value (x):
𝑝

25,𝑠𝑝1
 = 19. 50

Reparametrization:
𝑝

25,𝑠𝑝2
 =  𝑓(𝐴)

Baseline value (x):
𝑝

25,𝑠𝑝2
 = 68

Reparametrization:
𝑝

25,𝑠𝑝3
 =  𝑓(𝐴)

Baseline value (x):
𝑝

25,𝑠𝑝3
 = 38. 71

Reparametrization:
𝑝

25,𝑠𝑝4
 =  𝑓(𝐴)

Baseline value (x):
𝑝

25,𝑠𝑝4
 = 81. 6

Reparametrization:
𝑝

25,𝑠𝑝5
 =  𝑓(𝐴)

Baseline value (x):
𝑝

25,𝑠𝑝5
 = 40. 60

Reparametrization:
𝑝

21,𝑠𝑝6
 =  𝑓(𝐴)

Baseline value (x):
𝑝

21,𝑠𝑝6
 = 8

Reparametrization:
𝑝

21,𝑠𝑝7
 =  𝑓(𝐴)

Baseline value (x):
𝑝

21,𝑠𝑝7
 = 4. 2

Reparametrization:
𝑝

28,𝑠𝑝8
 =  𝑓(𝐴)

Baseline value (x):
𝑝

28,𝑠𝑝8
 = 95

Reparametrization:
𝑝

24,𝑠𝑝9
 =  𝑓(𝐴)

Baseline value (x):
𝑝

24,𝑠𝑝9
 = 2. 6

size at maturity ( in )𝑠
𝑚𝑎𝑡

𝑐𝑚 Reparametrization: Reparametrization: Reparametrization: Reparametrization: Reparametrization: Reparametrization: Reparametrization: Reparametrization: Reparametrization:
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𝑝
26,𝑠𝑝1

 =  𝑓(𝑠
𝑚𝑎𝑡

)

Baseline value (x):
𝑝

26,𝑠𝑝1
 = 0. 6154

𝑝
26,𝑠𝑝2

 =  𝑓(𝑠
𝑚𝑎𝑡

)

Baseline value (x):
𝑝

26,𝑠𝑝2
 = 0. 5147

𝑝
26,𝑠𝑝3

 =  𝑓(𝑠
𝑚𝑎𝑡

)

Baseline value (x):
𝑝

26,𝑠𝑝3
 = 0. 5425

𝑝
26,𝑠𝑝4

 =  𝑓(𝑠
𝑚𝑎𝑡

)

Baseline value (x):
𝑝

26,𝑠𝑝4
 = 0. 3554

𝑝
26,𝑠𝑝5

 =  𝑓(𝑠
𝑚𝑎𝑡

)

Baseline value (x):
𝑝

26,𝑠𝑝5
 = 0. 7143

𝑝
22,𝑠𝑝6

 =  𝑓(𝑠
𝑚𝑎𝑡

)

Baseline value (x):
𝑝

22,𝑠𝑝6
 = 0. 3125

𝑝
22,𝑠𝑝7

 =  𝑓(𝑠
𝑚𝑎𝑡

)

Baseline value (x):
𝑝

22,𝑠𝑝7
 = 0. 4524

𝑝
29,𝑠𝑝8

 =  𝑓(𝑠
𝑚𝑎𝑡

)

Baseline value (x):
𝑝

29,𝑠𝑝8
 = 0. 6947

𝑝
25,𝑠𝑝9

 =  𝑓(𝑠
𝑚𝑎𝑡

)

Baseline value (x):
𝑝

25,𝑠𝑝9
 = 0. 3077

constant of proportionality of
the allometric length-weight
relationship ( in )𝑐 𝑔 𝑐𝑚−3

Reparametrization:
𝑝

27,𝑠𝑝1
 =  𝑓(𝐴)

Baseline value (x):
𝑝

27,𝑠𝑝1
 = 0. 0065

Reparametrization:
𝑝

27,𝑠𝑝2
 =  𝑓(𝐴)

Baseline value (x):
𝑝

27,𝑠𝑝2
 = 0. 007

Reparametrization:
𝑝

27,𝑠𝑝3
 =  𝑓(𝐴)

Baseline value (x):
𝑝

27,𝑠𝑝3
 = 0. 0089

Reparametrization:
𝑝

27,𝑠𝑝4
 =  𝑓(𝐴)

Baseline value (x):
𝑝

27,𝑠𝑝4
 = 0. 0135

Reparametrization:
𝑝

27,𝑠𝑝5
 =  𝑓(𝐴)

Baseline value (x):
𝑝

27,𝑠𝑝5
 = 0. 0086

Reparametrization:
𝑝

23,𝑠𝑝6
 =  𝑓(𝐴)

Baseline value (x):
𝑝

23,𝑠𝑝6
 = 0. 0083

Reparametrization:
𝑝

23,𝑠𝑝7
 =  𝑓(𝐴)

Baseline value (x):
𝑝

23,𝑠𝑝7
 = 0. 174

Reparametrization:
𝑝

30,𝑠𝑝8
 =  𝑓(𝐴)

Baseline value (x):
𝑝

30,𝑠𝑝8
 = 0. 005

Reparametrization:
𝑝

26,𝑠𝑝9
 =  𝑓(𝐴)

Baseline value (x):
𝑝

26,𝑠𝑝9
 = 0. 0093
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Appendix B. NHCE OSMOSE model re-parametrization

Here, we briefly describe the NHCE OSMOSE parameters selected for the UA.

- Predation parameters: The predation accessibilities are used in the model to describe the
accessibility of prey to predators. These parameters reflect the vertical overlap of predators and
prey in the water column. Predation accessibilities take values between 0 and 1 and determine
the total accessible biomass ( ) for the predator school ( ):𝑃

𝑡𝑜𝑡
𝑠

𝑠

(b.1)𝑃
𝑡𝑜𝑡

𝑠

=
𝑝=1

𝑝=𝑁

∑ 𝐴(𝑝𝑟𝑒𝑑
𝑠
,  𝑝𝑟𝑒𝑦

𝑝
) 𝐵

𝑝𝑟𝑒𝑦
𝑝

where is the prey school (p from 1 to N) available for school , is the𝑝 𝑠 𝐴(𝑝𝑟𝑒𝑑
𝑠
,  𝑝𝑟𝑒𝑦

𝑝
)

accessibility of each prey p to the predator school and, the corresponding biomass of𝑠 𝐵
𝑝𝑟𝑒𝑦

𝑝

each prey p. In addition, the total biomass that a predator school can eat ( ) depends on𝑃
𝑒𝑎𝑡𝑎𝑏𝑙𝑒

𝑠

the biomass of the predator ( ) and the maximum rate of ingestion of the predator species (𝐵
𝑝𝑟𝑒𝑑

𝑠

):𝐼
𝑚𝑎𝑥

(b.2)𝑃
𝑒𝑎𝑡𝑎𝑏𝑙𝑒

𝑠

= 𝐵
𝑝𝑟𝑒𝑑

𝑠

𝐼
𝑚𝑎𝑥

 

We decided to run the UA on the parameters (predation accessibilities𝐴(𝑝𝑟𝑒𝑑
𝑠
,  𝑝𝑟𝑒𝑦

𝑝
)

parameters, in Table 2 the parameter type 1). These values are proportions , so we chose∈  [0, 1]
a logit scale for these parameters. We also run the UA on the (Table 2 the parameter type 9).𝐼

𝑚𝑎𝑥

Since the only constraint is to keep positive the parameter value, we used the logarithmic scale
for .𝐼

𝑚𝑎𝑥

- Feeding size ranges: In OSMOSE, the predation is controlled by the minimum ( ) and𝑅
𝑚𝑖𝑛

maximum ( ) size ratios (in Table 2, parameters type 2 and 3). Predator schools can only feed𝑅
𝑚𝑎𝑥

on prey schools whose lengths meet these thresholds:

(b.3)𝑅
𝑚𝑖𝑛

≤
𝐿

𝑝𝑟𝑒𝑑

𝐿
𝑝𝑟𝑒𝑦

≤ 𝑅
𝑚𝑎𝑥

where the ratios ( and ) are the threshold values for predator length ( ) over prey𝑅
𝑚𝑖𝑛

𝑅
𝑚𝑎𝑥

𝐿
𝑝𝑟𝑒𝑑

length ( ) ratio. When information is available, a split around the size threshold ( ) allows𝐿
𝑝𝑟𝑒𝑦

𝑠
𝑡ℎ𝑟

to specify different feeding size range between species stages (the parameter called predator-prey
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size threshold, type 4 in Table 2). Predator-prey size threshold ( ) is part of the UA. However,𝑠
𝑡ℎ𝑟

we re-parameterized it by / in logit scale (with values from 0 to 1). It ensures that will𝑠
𝑡ℎ𝑟

𝐿
∞

𝑠
𝑡ℎ𝑟

always be smaller or equal to .𝐿
∞

Likewise, should never be higher than . Manipulations of and separately for𝑅
𝑚𝑖𝑛

𝑅
𝑚𝑎𝑥

𝑅
𝑚𝑖𝑛

𝑅
𝑚𝑎𝑥

the UA are risky and should be avoided for model consistency. We thus decided to
re-parametrize the equation of this process and implement the UA using angles in polar
coordinates. Users should think carefully about the potential consequences of changing
parameter values that are interdependent in the model equations and re-parametrize them when
necessary. Using equation b.3 in cartesian coordinates (predator size in abscissa and prey size in
ordinate), we transformed it into polar coordinates calculating angles between the abscissa,
minimum and maximum prey length:

(b.4)𝑔(𝑚1, 𝑚2) =  𝑡𝑎𝑛−1 𝑚
2
−𝑚

1

1+𝑚
1
𝑚

2
( )

where is the angle (in degrees) between the slopes ( and ), being always𝑔(𝑚1, 𝑚2) 𝑚
1

𝑚
2

𝑚
2

greater than . Using equation b.4, we calculated two angles: i) the angle between the𝑚
1

horizontal axis and the minimum prey length (𝜃 = ), and the angle between the𝑔(0, 𝑚1)
minimum and maximum prey length (𝛼 = ). The parameters and were𝑔(𝑚1, 𝑚2) 𝑚

1
𝑚

2

re-parametrized as the angles 𝜃 and 𝛼 for each species (see Table A.1, e.g., and ,θ
𝑠𝑡𝑎𝑔𝑒 1

α
𝑠𝑡𝑎𝑔𝑒 1

and and for the first and second anchovy stages). The new parameterizationθ
𝑠𝑡𝑎𝑔𝑒 2

α
𝑠𝑡𝑎𝑔𝑒 2

physically restricts the parameter values to the first quadrant, representing all the possibilities for
the predation-prey size ratios ( /4 means predator and prey size can be equal while /2 meansπ π
there is no limit on the prey size for a predator). These values (as part of the re-parameterization)
are presented in Table A.1. For the UA, the angles 𝜃 and 𝛼 (as fractions of /2) use a logit scale.π

- Starvation mortality: When the predation efficiency ( ) is below the critical threshold ( ,ε
𝑖

ε
𝑐𝑟𝑖𝑡

parameter type 8 in Table 2), schools do not have enough food to fulfill their requirements
undergoing starvation mortality ( of school , see equation b.5). This process is controlled by𝑀

ε
𝑖

𝑖

the maximum starvation mortality rate ( ) of the species as follows:𝑀
ε

𝑚𝑎𝑥

(b.5)𝑀
ε

𝑖

=  −
𝑀

ε
𝑚𝑎𝑥

ε
𝑐𝑟𝑖𝑡

. ε
𝑖

+ 𝑀
ε

𝑚𝑎𝑥
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We implemented the UA using (parameter type 5 in Table 2) on a logarithmic scale since𝑀
ε

𝑚𝑎𝑥

its values are positive. is also part of the UA, but we use a logit scale because its valuesε
𝑐𝑟𝑖𝑡

accept only numbers between 0 and 1.

- Growth: Individuals of a given school are assumed to grow in size and weight (at time t) only
when the food ingested fulfills their maintenance requirements. A simple linear model is used
below the threshold age ( , parameter type 6 in Table 2). Above , the von Bertalanffy𝑎

𝑡ℎ𝑟
𝑎

𝑡ℎ𝑟

model is used to determine the average mean length increase, as follows:

(b.6)𝐿
𝑡

= 𝐿
∞

(1 −  𝑒𝑥𝑝(− 𝑘(𝑡 −  𝑡
0
))

where is the asymptotic size (parameter type 16 in Table 2), the growth coefficient𝐿
∞

𝑘

(parameter type 15 in Table 2), and the theoretical age when size is 0. The UA is implemented𝑡
0

using , , (the length at t = 0, parameter type 14 in Table 2). These parameters are𝐿
∞

𝑘 𝐿
𝑡 = 0

manipulated individually and on a logarithmic scale since the only constraint is to keep the
parameter value positive. is also part of the UA on a logit scale. However, we𝑎

𝑡ℎ𝑟

re-parameterized it by / on a logit scale (with values from 0 to 1), where is the𝑎
𝑡ℎ𝑟

𝑎
𝑚𝑎𝑥

𝑎
𝑚𝑎𝑥

longevity (in years). It ensures that will always be smaller or equal to , but never bigger𝑎
𝑡ℎ𝑟

𝑎
𝑚𝑎𝑥

than .𝑎
𝑚𝑎𝑥

The weight of a school is calculated using the allometric relationship:

(b.7)𝑊 =  𝑐𝐿𝑏

where b is the exponent and c the constant of proportionality of the allometric length-weight
relationship. We chose to constrain the UA to the constant of proportionality (c, in Table 2 the

) in logarithmic scale, leaving b fixed.𝑝
18

- Size and weight of eggs: The life cycle of each species is modelled starting with the egg stage.
Egg size is part of the UA (parameter type 7 in Table 2) and it co-varies with egg weight. For
each UA simulation, we calculated the corresponding egg weight as a function of egg size,
keeping the mean density constant as follows:

(b.8)𝑒𝑔𝑔
𝑤𝑒𝑖𝑔ℎ𝑡 

= 4
3 π(

𝑒𝑔𝑔
𝑠𝑖𝑧𝑒

2 )
3

𝑚𝑒𝑎𝑛
𝑑𝑒𝑛𝑠𝑖𝑡𝑦

The is calculated using the baseline egg size and weight values. Then each time that𝑚𝑒𝑎𝑛
𝑑𝑒𝑛𝑠𝑖𝑡𝑦 

the takes a new value due to the UA, the should be recalculated, meaning that𝑒𝑔𝑔
𝑠𝑖𝑧𝑒

𝑒𝑔𝑔
𝑤𝑒𝑖𝑔ℎ𝑡
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both parameters are changing together. The only mathematical constraint for these parameters is
to obtain a positive numerical value, so we used the logarithmic scale.

- Sources of mortality: The abundance of a school i at time , ( ), is modeled as a𝑡 + ∆𝑡 𝑁
𝑖,𝑡+∆𝑡

function of abundance at time t ( ) and the following sources of mortality:𝑁
𝑖,𝑡

(b.9)𝑁
𝑖,𝑡+∆𝑡

 =  𝑁
𝑖,𝑡

 𝑒
−∆𝑡(𝐹

𝑠
(𝑡) + 𝑀

𝑠
(𝑡) + 𝑀

ϵ
𝑖

(𝑡) + 𝑃
𝑖
(𝑡))

where is the fishing mortality rate and the natural mortality rate of species s. is the𝐹
𝑠

𝑀
𝑠

𝑀
ϵ

𝑖

starvation mortality rate and the predation mortality rate, both related to the fish school i.𝑃
𝑖

The natural mortality rate (parameter type 10 in Table 2) and starvation mortality (already
described in equation b.5) are part of the UA. The fishing mortality rate used in the NHCE
OSMOSE model varies with time (t) and species size. We decided to include the fishing
mortality in the UA by creating a fishing mortality multiplier (parameter type 12 in Table 2).𝑓

𝑚

It is a positive value with a baseline value equal to 1. The fishing multiplier is used in the UA by
multiplying the fishing mortality rate (matrix of fishing mortalities, time vs. species size).
Another source of mortality is the larval mortality rate ( ). This parameter controls the𝑀

0,𝑠

number of eggs and larvae for species s, at age 0 and at time , ( ), as follows:𝑡 + ∆𝑡 𝑁
𝑠,0,𝑡+∆𝑡

(b.10)𝑁
𝑠,0,𝑡+∆𝑡

 =  𝑁
𝑠,0,𝑡

 𝑒
−∆𝑡𝑀

0,𝑠

where represents the number of eggs and larvae in the system at time t, and is the𝑁
𝑠,0,𝑡

𝑀
0,𝑠

larval mortality rate by species (parameter type 11 in Table 2). This parameter is a vector (one
larval mortality rate by time step) in the NHCE OSMOSE model. The UA takes this parameter
using the mean of the vector (mean over time).
Baseline values of natural mortality rate, larval mortality, and fishing mortality were estimated
by a calibration process following a logarithmic scale. We chose the same scale to perform the
experiments as part of the UA.

- Reproduction: any school whose length is greater than the size at sexual maturity ( ,𝑠
𝑚𝑎𝑡

parameter type 17 in Table 2) enters the reproduction process at the end of the time step. This
allows the generation of a new school at the egg stage. For a given species:

(b.11)𝑁
𝑒𝑔𝑔𝑠

=  𝐹𝑟𝑎𝑐
𝑓𝑒𝑚

α 𝑠𝑒𝑎𝑠𝑜𝑛 𝐵
𝑚𝑎𝑡

where is the fraction of females (also called sex ratio, parameter type 13 in Table 2),𝐹𝑟𝑎𝑐
𝑓𝑒𝑚

α 

is the relative fecundity. This parameter indicates the number of eggs per gram of mature female.
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The is a file that provides the spawning distribution within a year, and is the sum of𝑠𝑒𝑎𝑠𝑜𝑛 𝐵
𝑚𝑎𝑡

the biomass of the schools that reached sexual maturity.
is part of the UA. We chose the logit scale because this parameter only takes values𝐹𝑟𝑎𝑐

𝑓𝑒𝑚

from 0 to 1. The size at sexual maturity ( ) is also part of the UA. However, we𝑠
𝑚𝑎𝑡

re-parameterized it by / in logit scale (with values from 0 to 1). It ensures that will𝑠
𝑚𝑎𝑡

𝐿
∞

𝑠
𝑚𝑎𝑡

always be smaller or equal to , but never bigger than .𝐿
∞

𝐿
∞

66



Chapter 3

A protocol for implementing
sensitivity analyses in complex
ecosystemmodels using parameter
reliability

Ecosystemmodel projections need to be explored in the face of uncertainty. Sen-
sitivity analysis is an essential step in understanding model uncertainty, but there
are many challenges when dealing with complex ecosystemmodels. One of them
is related to the uncertainty quantification in model input parameters, mainly
when limited data leads to arbitrary fixed ranges of variation to draw the uncer-
tainty around the parameter values. We show the drawbacks of this practice and
propose an alternative methodology based on the parameter reliability criterion.
This criterion serves to classify the model parameters according to the source of
information used to estimate their values and calculate the ranges of variability for
each parameter used in a sensitivity analysis. We illustrated our methodology by
implementing a sensitivity analysis on the marine ecosystem modelling platform
OSMOSE applied to the northern Humboldt current ecosystem. We compared
these results with those obtained from sensitivity analysis using fixed ranges of
variation. Ourmain result is that using arbitrary ranges of variation could produce
varying conclusions depending on the used ranges. Alternative approaches, such
as the one based on the reliability of the parameters, can be helpful in situations
where uncertainty quantification of model inputs is not available. However, we
recommend further developments of new approaches which facilitate the study
of uncertainty in complex models.

Keywords: parameter uncertainty, ecosystem models, OSMOSE model.
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1. Introduction

With growing knowledge and databases on ecosystem structure and functioning, there has been a

simultaneous investment in developing more integrative ecosystem models, progressively

representing additional components and ecological processes. This has resulted in more complex

models, often interdisciplinary, e.g., integrating the physical, chemical and biological components

of the ecosystem (Travers et al., 2007; Alkemade et al. 2009; Holland et al., 2012; Tittensor et al.,

2018). Meant to increase the realism of ecosystem representation, one of the main criticisms of

these models is that their complexity can render their predictions highly uncertain (Fulton, Smith,

and Johnson 2003). To increase the credibility and usefulness of ecosystem model projections, we

urgently need to find means to systematically address their uncertainty (Ferrier et al., 2016).

Among the different sources of uncertainty related to complex ecosystem models (Regan,

Colyvan, and Burgman 2002; Link et al. 2012), we focus here on parameter uncertainty. This

source of uncertainty relates to the specific parameter values used to run a model and influence its

behavior (Cheung et al., 2016). Many processes can give rise to parameter uncertainty, including

lack of data, imperfect measurements, inadequate coverage of the range of natural variability, or

68



the natural variability of biological parameters (Payne et al., 2015). In this context, sensitivity

analyses techniques are a good option to explore the robustness of ecosystem model outputs to

uncertainties (Payne et al., 2015).

Sensitivity analysis (SA) examines how the uncertainty in model outputs can be apportioned to

different sources of uncertainty in the model inputs (Saltelli et al., 2019). Performing a SA can be

helpful for a wide range of purposes (Pannel et al., 1997), for example: (i) to increase the

understanding of the relationships between model input and output; (ii) to test the robustness of

model outputs in the presence of uncertainty; (iii) to identify the model input parameters that have

critical or threshold values which influence optimal strategies based on model outputs; (iv) to

perform model simplification by fixing inputs that have low effect on the model outputs; (v) to

search errors in the model by finding unexpected relationships between model inputs and outputs,

and (vi) to make recommendations based on a more credible and robust model.

Far from being trivial, selecting a SA method depends on the problem addressed, the

characteristics of the model under study, and the computational cost afforded (Campolongo,

Tarantola, and Saltelli 1999). There are many methods to perform a SA (Saltelli et al. 2008;

Cariboni et al. 2007). But in general, most procedures follow four steps (Figure 1) which consist

in 1. quantifying the uncertainty in model inputs; 2. running the model several times following an

experimental design; 3. identifying the model outputs to be analyzed; 4. using the model outputs

to calculate sensitivity measures of interest.

69



Figure 1. Schematic representation of a SA implementation. We represent a model as a gray box
that uses a set of inputs ( , , … , ; n is the total number of model inputs). This model𝑥

1
𝑥

2
𝑥

𝑛

produces m model outputs ( , , , … , ). 1. The first step in the SA is the uncertainty𝑦
1

𝑦
2

𝑦
3

𝑦
𝑚

quantification in each model input, represented here as probability distributions (blue curves). 2.
The second step consists in running the model several times following a design of experiments
dictated by the SA method. 3. Based on the problem addressed, the third step is to identify one or
several model outputs to estimate SA measures (here . 4. Finally, sensitivity measures of𝑦

3
)

interest are estimated using the resulting model outputs.

As explained in Figure 1, SA methods will require information about the uncertainty in model

input parameters. This information can be provided in the form of probability distributions, or

variability ranges that observational or experimental data can support (e.g., in Tranter et al.,

2021). Nevertheless, when data is not available or insufficient, the perturbation of parameter

values uses a predefined range of variation to draw the uncertainty around each parameter

reference value (e.g., with values between 10% to 30% in Dantec-Nédélec et al., 2017; Specka et

al., 2015; Song et al., 2013). The combined use of both strategies (some parameter bounds based
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on data and others using predefined ranges) is also found in the literature (e.g., in Morris et al.,

2014; Bracis et al., 2020).

Complex ecosystem models typically require an extensive set of input parameters, the uncertainty

of which is often poorly determined due to a lack of information and data. Therefore SA of

ecosystem models commonly use arbitrary ranges of variation in model parameters, but this can

have considerable impacts on the SA results (Saltelli et al., 2000; Wallach et al., 2006). To

improve the assessment of the uncertainty related to input parameters, we propose an original

methodology based on the parameter reliability (PR) criterion and inspired by the “pedigree”

described by Funtowicz and Ravetz (1990). This pedigree system has been implemented in the

Ecopath and Ecosim model (Christensen et al., 2005), allowing the assignment of confidence

intervals to model inputs based on the description of their origin. These confidence intervals are

used in uncertainty studies as prior probability distributions for model inputs. Following the PR

criterion, instead of directly assigning confidence intervals, we first categorize the parameters of

the model; this will define the reliability level of the parameters, and based on a set of rules that

prioritize the use of available data, we will calculate the ranges of the variability of the

parameters. Here, we illustrate our proposed methodology with the marine ecosystem modelling

platform OSMOSE (Shin and Cury 2001; 2004) applied to the Northern Humboldt Current

Ecosystem (NHCE) (Oliveros et al., 2017) and compare the results of the SA with those obtained

using arbitrary predefined ranges of variation. This work is conceived to be generic enough to

help run SAs in other complex ecological models.

2. Material and methods

2.1 Addressing parameter uncertainty

2.1.1 Categorization of model parameters

We propose the parameter reliability (PR) criterion, which serves a triple purpose by i) describing

the parameter source (i.e., the information used to estimate a parameter value), ii) assigning to

each model parameter a qualitative value (named hierarchy), and iii) providing a criterion for

assigning uncertainty level to model parameters.
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The PR criterion relies on predefined categories of parameters that depend on the sources of

information used to determine parameter values (see Table 1). Those categories are hierarchized

to reflect the level of parameter reliability. Based on the PR criterion, we propose a set of rules for

categorizing model parameters. The first rule is that each model parameter should be classified in

only one category. However, it is not mandatory to use all categories to classify model

parameters. As a second rule, the hierarchy provided according to parameters’ sources should be

respected (Table 1). Parameter reliability takes values that range between 1 (high reliability) to 8

(low reliability). For example, the reliability of parameters derived from high-quality data is

scored as 1; it is scored as 2 when low-quality data are used and so on for all the categories

presented in Table 1. Once the model parameters are grouped by information sources and

classified using the PR criterion, they can be ranked and scored.

Two important precisions need to be taken into account when applying the PR criterion. The first

relates to the conceptualization of a model. It is associated with the entire set of assumptions in

the model building, including but not limited to the set of equations and algorithms (Jorgensen

and Endoricchio 2001). For example, working with a given model, if the same set of equations

and algorithms are used but applied to a different study area, or time period, or modelled species,

these changes provide a model that is considered different from the first one. The second remark

concerns the parameters sourced from "other models". We can classify a parameter of a model N

as provided by "other models", e.g. a model M, when its value is only directly or indirectly

estimated by the model M. On the contrary, for example, if an input parameter in M (which is

different from being estimated by M) falls in the "guesstimate" category, then if used in another

model (N), this parameter should be categorized in N as "guesstimate" too, and not as coming

from "other models".
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Table 1. Parameter reliability criterion. This criterion considers a set of information sources that
are used to estimate a parameter (parameter source) and proposes a hierarchy of these sources of
information. The parameter sources are classified into four principal categories: direct and
indirect estimates and quantitative and qualitative approximations. Each category contains
subcategories (eight in total across all categories) that explain the different ways in which
information is used to estimate a parameter. The hierarchy allows to score the parameters from 1
(high parameter reliability) to 8 (low parameter reliability).

Hierarchy Parameter source Description

Direct estimates: Data are collected, possibly after a dedicated experiment or survey, to estimate the parameter value.
There is a direct link between the parameter value and the data collected.

1 High-quality data Data is collected with the specific purpose of estimating the
parameters; sampling or measure errors are low.

2 Low-quality data Data is collected on an opportunistic basis, not specifically for the
parameter, but can be used to estimate it; sampling or measure errors
can be high.

Indirect estimates: Data is not collected with the purpose to estimate the parameter value however this is done
opportunistically. A model is used to create an indirect link between the parameter value and the data collected.

3 Model calibration Parameter estimation by minimizing an error function using the
model and available data.

Quantitative approximations: Data is not collected for direct or indirect parameter estimation, but there are
quantitative reasons to use a number as a value for the parameter.

4 Empirical relationships Parameter values using estimates from empirical relationships (for
different species and systems, meta-analysis).

5 Model tuning Parameter values using manual screening that improves model
outputs without a formal optimization. It should be using the same
model.

6 Proxies Proxy of the parameter calculated from data.

Qualitative approximations: Data is not collected for direct or indirect parameter estimation, but there are
qualitative reasons to use a number as a value for the parameter.

7 Other models Indirect or direct estimates are taken from other models.

8 Guesstimate Use of professional judgment from a relevant expert. This judgment
can be based on a literature review or expert knowledge.
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2.1.2 Range calculation using the PR criterion

The PR criterion enabled to classify parameters in order of reliability. This ranking is essential for

determining the range of variation of the parameters, when data are not always available to do so

directly, avoiding the use of predefined and arbitrary ranges. Here, we propose a two tiers

approach to determine the range of variations of all parameters involved in the SA, whether data

are available or not. The first step is to identify all the parameters for which data can be used to

estimate their range of variation. These data are diverse, coming from direct observations or

experiments, published in the scientific literature, or derived from expert judgment. The range

calculated from data should vary according to the unit and the scale (e.g., linear, logarithmic, and

logit) of the parameter. It should also contain the baseline parameter value used in the model, but

it is not mandatory to center the baseline value in the parameter range.

The second step uses the parameter reliability ranking to set up the range of variations of the

parameters for which no data were available to do so directly. For convenience, we express the

range of variation as a percentage, starting from 0%, with no upper limit fixed a priori. We

assume that the range of variation of the parameters is a monotonic increasing function of the

parameter reliability criterion (Figure 2). If any parameter that has a data-based range of variation

does not follow this monotonicity rule, its PR categorization and the range calculation must be

evaluated and performed again in an iterative way. Then the parameter ranges of variation that

could not be estimated due to lack of data are delimited by the other parameter ranges following

the PR ranking.

Using the PR criterion, we consider that the reliability classification is related to the parameter

uncertainty. For example, a parameter classified in a low hierarchy category (Table 1) is

considered to have a highly reliable estimate with a lower level of uncertainty than a parameter

classified in a higher hierarchy category. This relationship between reliability and uncertainty

explains why we expect smaller ranges of variation for high reliability parameters than for low

reliability ones.
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Figure 2. Schematic representation of the monotonicity rule between parameter reliability and its
range of variation. This scheme represents a model in which 15 parameters were classified (black
dots) using all the categories presented in Table 1 (HQD: high-quality data, LQD: low-quality
data, MC: model calibration, ER: empirical relationships, MT: model tuning, PX: proxies, OM:
other models, and GS: guesstimate). The parameter ranges (in %) that could be calculated using
data increase monotonically with the parameter hierarchy (reliability criterion).

2.1.3 Illustrative cases for range calculation

To determine the range of variation of model parameters, we follow a stepwise protocol (Figure 3)

which starts with classifying model parameters into the four PR categories (HQD: high-quality

data, LQD: low-quality data, MC: model calibration, and ER: empirical relationships). Then

several options are possible that are explained below by using six illustrative cases (Figure 4):

- An ideal case is when all the model parameter ranges can be directly calculated from

available data (panel A in Figure 4).

- When there is no data to calculate the range of a parameter, we delimit all its possible

values based on the monotonicity rule and on the PR category in which the parameter

stands. In Panel B (Figure 4), the possible ranges (white points in the MC category) are

within the gray area which is delimited by the maximum range of the LQD category and

the minimum range of the ER category.
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- Panel C (Figure 4) illustrates the case when there are no parameter ranges calculated from

data in the same PR category (MC). Within the area with all possible ranges (area of gray

color in Figure 4), alternative ranges could be used, for example, using the average range

of the gray area (white points number 1) or the maximum possible ranges in the area

(white points number 3). Using different range values within the same category is another

possible alternative (white points number 2).

- Panel D (Figure 4) illustrates the case when data is missing to calculate the range of

variation of all parameters classified in the first PR category (in Figure 4, the HQD

category). Note that if the HQD is effectively the first non-empty category of the listed

parameters, there is a low probability that data are missing to estimate the range of

variability of the HQD parameters. Due to the monotonicity rule, the possible ranges (gray

area) should be bounded by the first parameter range of the following category (LQD in

this case). We represent some possible alternatives, with minimum (white points 1 - range

of 0%), medium (white points 2), and maximum (white points 3) ranges.

- The opposite case, and a more probable one, is when data is missing to calculate the range

of variation of all parameters in the last PR category (ER category in Panel E, Figure 4).

Because no upper limit is fixed a priori for the range of variation, the only information that

could be used is the maximum range of variation of the parameters in the previous PR

category (last black dot in the MC category). Either this maximum percent variation could

be used by default for the unknown ranges in the last PR category, or alternatively, an

arbitrary percent of variation could be added to that maximum variation.

- Although we recommend calculating ranges using data and avoiding arbitrary use of

ranges as much as possible, there will be cases with unavailable data for most or all

parameter ranges (Panel F, Figure 4). In this case, users can only rely on the monotonicity

rule. One suggestion is to start with the low hierarchy parameters (HQD category). The

ranges set in this category will restrict the values of the parameter ranges in the following

category (a gray area number 2 in the LQD category). And so on, the ranges selected in

the MC category will restrict the set of possible parameter ranges as part of the ER

category.
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Figure 3. A stepwise approach for parameter categorization and range calculation using the
parameter reliability (PR) criterion. First, we suggest identifying the source of information used
for assigning a value to the parameter and, based on Table 1, classify the parameter in its
corresponding hierarchy (step 1). Parameters are grouped by source (step 2). Then the groups
must be ranked using their hierarchy (step 3). For the parameters for which data are available,
ranges of variation are calculated (step 4). Rank the parameters according to their ranges (step
5). Plot model parameters using their PR hierarchy (on the abscissa) and range of variation (on
the ordinate) (step 6). Check that the range is an increasing monotonic function of the PR
criterion (step 7). If this is not verified, parameter categorization or range estimation should be
repeated (back to step 1). Otherwise, the calculation of parameter ranges when data is missing
can be performed (step 8), following the recommendations in Figure 4.
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Figure 4. Determination of parameter range of variation using the parameter reliability (PR)
criterion. The panels show six illustrative cases with model parameters (dots) classified along a
hierarchy comprising four PR categories (HQD: high-quality data, LQD: low-quality data, MC:
model calibration, and ER: empirical relationships). Panel A shows an ideal case where ranges
for all parameters are directly calculated from data (black points). When data are missing to
determine the parameter ranges (white points in panels B to F), we first delimit the area with all
possible ranges (the gray areas in panel B to F), which is delimited by the maximum range of the
previous PR category and the minimum range of the following PR category. Then different
options could be adopted to determine the range of variations, for example in Panel D taking the
minimum (number 1), the median (number 2), or the maximum (number 3) range in the gray area.
See main text for further explanations.

2.2 Sensitivity analysis

2.2.1 SA method

We chose the Morris method (Morris, 1991) for the SA implementation in the NHCE OSMOSE

model. Morris method is recommended for models with long-run times, which is typically the
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case for many complex ecosystem models. Nevertheless, the use of other SA methods will not

change the purpose of this work, namely to illustrate the PR criterion and associated protocol.

Morris is a global screening method composed of several randomized one-factor-at-a-time (OAT)

experiments. Considering a model with n parameters , ( ), with each scaled to𝑥
𝑖

𝑖 =  1, 2,  ...  ,  𝑛 𝑥
𝑖

take values in the interval [0,1], the Morris method creates a discrete parameter space ( ) (theΩ

n-dimensional unit hypercube) by dividing the parameter ranges into p discrete levels. Then, the

model is evaluated for r replicates within the parameter space, each of them building a trajectory

inside . The starting point of a trajectory is selected randomly. Besides, only a single parameterΩ

is changed for each trajectory, taking as a new value an element of the parameter space.

Morris proposed a sensitivity measure called Elementary Effects (EE, see equation 1). This is a

simple and effective way of screening a few important parameters among the many that can be

contained in the model. The EE for the ith parameter calculates the ratio of the variation of the

model output at two different points of the parameter space to the variation of the parameter:

(1)𝐸𝐸
𝑖
 =  

𝑦(𝑥
1
, ..., 𝑥

𝑖−1
, 𝑥

𝑖
+∆, 𝑥

𝑖+1
, ..., 𝑥

𝑛
) − 𝑦(𝑥

1
, ..., 𝑥

𝑛
)

∆

where , are still in , and (called “grid jump”) is a multiple of . We𝑥 ∈ Ω 𝑥 + ∆ Ω ∆ 1/(𝑝 − 1)

followed Morris (1991), by using an even number for p and equal to . To ensure∆ 𝑝/[2(𝑝 − 1)]

that all the parameters ( ) are modified once, the Morris method requires the execution of n+1𝑥
𝑖

simulations. This procedure is repeated r times, one per trajectory (i.e., the r Morris replicates). It

provides r elementary effects for each parameter ( ), resulting in a computational cost of𝑥
𝑖

simulations to run.𝑟(𝑛 + 1)

The measures calculated using Morris are the mean (the average change in output across allµ
𝑖

changes in parameter i) and the standard deviation (the variance of the output in response toσ
𝑖

changes in parameter i) of the EE. assesses the overall importance of an input parameter i onµ
𝑖

model outputs, while reflects non-linear effects and interactions. Instead of using , we choseσ
𝑖

µ
𝑖

the alternative measure , which takes the absolute average change in output across all changesµ*
𝑖

in parameter i (i.e. the absolute value is first applied to the EE before the mean is calculated, |𝐸𝐸
𝑖
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|) (Campolongo et al., 2007). is useful to avoid the problem of opposite signs of cancelingµ*
𝑖

µ
𝑖

out.

Additionally, during the SA implementation, the scale in which a parameter is distributed is

relevant for the analysis and should be specified in the methodology (Saltelli et al., 2008). For

example, using the Morris (1991) method, if a parameter follows a uniform distribution, the levels

(p) are obtained by dividing the interval in which the parameter varies into equal parts. However,

parameter values are not sampled directly if the parameter follows another distribution. In this

case, the sampling will be carried out in the space of the quantiles of the n-dimensional unit

hypercube (e.g., each quantile varying in [0,1] using Morris (1991)). Then, the parameter values

will be derived from its known statistical distribution.

2.2.2 Case model: OSMOSE for the Northern Humboldt Current Ecosystem
OSMOSE (Object-oriented Simulator of Marine ecOSystEms) is a multispecies individual-based

modelling platform that simulates the entire life of species and their trophic interactions (Shin and

Cury 2001; 2004). The basic units of OSMOSE are individuals grouped into schools, which major

processes of their life cycles are modelled (growth, predation, mortality (natural, starvation, and

fishing mortality), reproduction, and migration). Supporting information about the OSMOSE

model can be found on its official website (http://www.osmose-model.org) and user guide

(https://documentation.osmose-model.org/).

In this work, we performed a SA on the OSMOSE model applied to the Northern Humboldt

Current Ecosystem (NHCE) (see Appendix A for the model description). This work aims to

illustrate the use of the PR criterion in addition to identifying some of the most sensitive

parameters in the NHCE OSMOSE model. However, we restricted the analysis using only the set

of parameters related to the Peruvian anchovy (Engraulis ringens) (Table 2), because this is one

of the most important species, ecologically and economically speaking, in the study area where

the NHCE OSMOSE model operates. For more information about the NHCE OSMOSE model

configuration, we direct the reader to Oliveros-Ramos et al., (2017) and Olivero-Ramos (2014).
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Table 2. NHCE OSMOSE parameters used for the SA. The SA was implemented using the
baseline values (x) of the 27 parameters related to the Peruvian anchovy (Engraulis ringens). The
baseline values are the outcomes of the reparametrization described by the f function. Appendix B
provides additional information about the reparametrization and parameter scales of the NHCE
OSMOSE model parameters.

Notation Parameter names Reparameterization Baseline value
(x)

Scale

𝑝
1

predation accessibility 𝐴(𝑎𝑛𝑐ℎ𝑜𝑣𝑦, ℎ𝑎𝑘𝑒)

𝑥 =  𝑓(𝐴) =  𝐴
(identity)

0.1

logit

𝑝
2

predation accessibility 𝐴(𝑎𝑛𝑐ℎ𝑜𝑣𝑦, 𝑠𝑎𝑟𝑑𝑖𝑛𝑒) 0.9

𝑝
3

predation accessibility 𝐴(𝑎𝑛𝑐ℎ𝑜𝑣𝑦, 𝑗𝑎𝑐𝑘 𝑚𝑎𝑐𝑘𝑒𝑟𝑒𝑙) 0.9

𝑝
4

predation accessibility 𝐴(𝑎𝑛𝑐ℎ𝑜𝑣𝑦, 𝑐ℎ𝑢𝑏 𝑚𝑎𝑐𝑘𝑒𝑟𝑒𝑙) 0.9

𝑝
5

predation accessibility 𝐴(𝑎𝑛𝑐ℎ𝑜𝑣𝑦, 𝑚𝑒𝑠𝑜𝑝𝑒𝑙𝑎𝑔𝑖𝑐𝑠) 0.55

𝑝
6

predation accessibility 𝐴(𝑎𝑛𝑐ℎ𝑜𝑣𝑦, 𝑚𝑢𝑛𝑖𝑑𝑎) 0.05

𝑝
7

predation accessibility 𝐴(𝑎𝑛𝑐ℎ𝑜𝑣𝑦, ℎ𝑢𝑚𝑏𝑜𝑙𝑑𝑡 𝑠𝑞𝑢𝑖𝑑) 0.6

𝑝
8

predation accessibility 𝐴(𝑎𝑛𝑐ℎ𝑜𝑣𝑦, 𝑒𝑢𝑝ℎ𝑎𝑢𝑠𝑖𝑖𝑑𝑠) 0.6

𝑝
9

minimum predator-prey size ratio for the first stage
of anchovy ( )θ

𝑠𝑡𝑎𝑔𝑒 1 𝑥 =  𝑓(θ
𝑠𝑡𝑎𝑔𝑒 1

) =
θ

𝑠𝑡𝑎𝑔𝑒 1

(π/2)

θ
𝑠𝑡𝑎𝑔𝑒 1

=  𝑔(0,  1/800)

θ
𝑠𝑡𝑎𝑔𝑒 1

(π/2) =  0. 0008

logit

𝑝
10

maximum predator-prey size ratio for the first stage
of anchovy ( )α

𝑠𝑡𝑎𝑔𝑒 1 𝑥 =  𝑓(α
𝑠𝑡𝑎𝑔𝑒 1

) =
α

𝑠𝑡𝑎𝑔𝑒 1

(π/2)

α
𝑠𝑡𝑎𝑔𝑒 1

=  𝑔(1/800,  1/8)

α
𝑠𝑡𝑎𝑔𝑒 1

(π/2) =  0. 0784

𝑝
11

minimum predator-prey size ratio for the second
stage of anchovy ( )θ

𝑠𝑡𝑎𝑔𝑒 2 𝑥 =  𝑓(θ
𝑠𝑡𝑎𝑔𝑒 2

) =
θ

𝑠𝑡𝑎𝑔𝑒 2

(π/2)

θ
𝑠𝑡𝑎𝑔𝑒 2

=  𝑔(0,  1/200)

θ
𝑠𝑡𝑎𝑔𝑒 2

(π/2) = 0. 0032

𝑝
12

maximum predator-prey size ratio for the second
stage of anchovy ( )α

𝑠𝑡𝑎𝑔𝑒 2 𝑥 =  𝑓(α
𝑠𝑡𝑎𝑔𝑒 2

) =
α

𝑠𝑡𝑎𝑔𝑒 2

(π/2)

α
𝑠𝑡𝑎𝑔𝑒 2

=  𝑔(1/200,  1/6)

α
𝑠𝑡𝑎𝑔𝑒 2

(π/2) =  0. 1020

𝑝
13

predator-prey size threshold ( in )𝑠
𝑡ℎ𝑟

𝑐𝑚 𝑥 =  𝑓(𝑠
𝑡ℎ𝑟

) =  
𝑠

𝑡ℎ𝑟

𝐿
∞

= =0.5128
𝑠

𝑡ℎ𝑟 

𝐿
∞

10
19.5

logit

𝑝
14 maximum starvation mortality rate ( in )𝑀

ε
𝑚𝑎𝑥

𝑦−1 0.10 logarithmic

𝑝
15

von Bertalanffy threshold ( in )𝑎
𝑡ℎ𝑟

𝑦 0.35 logit
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𝑥 =  𝑓(𝐴) =  𝐴

𝑝
16

egg size ( )𝑐𝑚 0.10 logarithmic

𝑝
17 critical threshold of predation efficiency ( )ε

𝑐𝑟𝑖𝑡
0.57 logit

𝑝
18

maximum rate of predation ingestion
( in )𝐼

𝑚𝑎𝑥
𝑔 𝑏𝑜𝑑𝑦 𝑔−1𝑦−1

3.50 logarithmic

𝑝
19 natural mortality rate ( in )𝑀 𝑦−1 0.9177 logarithmic

𝑝
20 larval mortality rate ( in )𝑀

0
𝑚𝑜𝑛𝑡ℎ−1 9.5821 logarithmic

𝑝
21

fishing mortality multiplier ( )𝑓
𝑚

1 logarithmic

𝑝
22

sex ratio ( )𝐹𝑟𝑎𝑐
𝑓𝑒𝑚

0.50 logit

𝑝
23

(von Bertalanffy growth parameter in )𝐿
𝑡 = 0

𝑐𝑚 1.9682 logarithmic

𝑝
24 k (von Bertalanffy growth parameter in )𝑦−1 0.76 logarithmic

𝑝
25

(von Bertalanffy growth parameter in )𝐿
∞

𝑐𝑚 19.50 logarithmic

𝑝
26

size at maturity ( in )𝑠
𝑚𝑎𝑡

𝑐𝑚 𝑥 =  𝑓(𝑠
𝑚𝑎𝑡

) =  
𝑠

𝑚𝑎𝑡

𝐿
∞

= =0.6154
𝑠

𝑚𝑎𝑡 

𝐿
∞

12
19.5

logit

𝑝
27

constant of proportionality of the allometric
length-weight relationship ( in )𝑐 𝑔 𝑐𝑚−3 𝑥 =  𝑓(𝐴) =  𝐴

0.0065 logarithmic

We also suggest reviewing other OSMOSE applications for complementary descriptions of model

equations (e.g., Travers-Trolet et al. (2014) and Halouani et al. (2016)). Besides, Appendix B

briefly describes the model equations and parameters’ scales used in this work. In this regard, by

using a linear scale for a parameter that follows a uniform distribution, the distribution bounds

can be calculated by linearly increasing or decreasing a percentage of variation to the baseline

value. Other examples include the use of logit and logarithmic scales, whose choice depends on

the mathematical constraints of model parameters and equations (Appendix B). Using a linear

scale does not ensure a positive numerical value when a parameter is varied around its baseline

value, whereas the use of logarithmic does, and the logit scale provides parameter values only

between 0 and 1. Another source of information for the scale selection is the equations used for

the calibration of the model. For example, in Oliveros-Ramos et al. (2017), the larval and fishing

mortalities of the NHCE OSMOSE model were calibrated in logarithmic scales. Therefore, a SA
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implementation involving the parameters estimated from this calibration should consider the same

scales. All of these scale considerations should be taken into account and reported in any SA

implementation, with careful verification of model equations, and potential reparameterization to

guarantee the compliance of mathematical constraints.

The use of the PR criterion with the NHCE OSMOSE model is presented in Figure 5, where we

first classified the model parameters (Table 2) using the PR categories. In this application, the

parameters ended up in four categories: high-quality data (HQD), model calibration (MC),

empirical relationships (ER), and guesstimate (GS). We calculated ranges for which data was

available by using equations c.1 and c.2 (in Appendix C). For the parameters without data for

estimating their range of variation, the ranges were calculated following the recommendations in

Figure 3.

In this model application (Figure 5), the parameter used the average of ranges inside the𝐿
𝑡=0

HQD category. The same strategy (i.e., the average of the range inside the category), was also

used for the critical predation efficiency. Because the parameters classified as MC had no data for

range calculation, we decided to calculate them by taking the average of all ranges found in the

HQD and ER categories. Finally, we arbitrarily set the ranges of the last category (GS) to 10%

more than the last parameter range found in the ER category (egg size).
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Figure 5. Range calculation for the NHCE OSMOSE model parameters using the PR criterion.
The parameters presented here are the same as in Table 2; however, we grouped some names. For
example, the predation accessibilities to predators (parameters to in Table 2) are𝑝

1
𝑝

8

represented here with a single dot, likewise for predation size ratios (parameters to in𝑝
9

𝑝
12

Table 2). Black points indicate the ranges calculated from data, and white points indicate the
ranges derived from the PR criterion and associated protocol (see main text). The parameter
ranges (in %) are specified on the right vertical axis.

2.2.3 SA experiments

We ran 22 experiments for the SA of the NHCE OSMOSE model (see Table 3):

- Experiment P followed the whole PR protocol, as described in sections 2.1 and 2.2.2.

- Experiments F.x (where x takes values from 10% to 85%) assume no information on the

prior distributions of any parameter (or a lack of data mining). Consequently, we used
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ranges of variation arbitrarily set at 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%,

and 85% on either side of the parameters’ baseline values.

- Experiments P and F.x used the parameter scales indicated in Table 2, while experiments

P.Linear and F.Linear.x used linear scales for all parameters.

Table 3. SA experiments. Twenty-two simulations were run as part of the SA experiments.
Experiments P and P.Linear used ranges following the PR protocol, while experiments F.x (from
F.10 to F.85) and F.Linear.x (from F.Linear.10 to F.Linear.85) used arbitrary and fixed ranges of
variation. For example, in experiment F.10 all ranges were calculated at 10% on either side of
parameters’ baseline values. Experiments P and F.x followed the parameter scales described in
Table 2, while experiments P.Linear and P.Linear.x used a linear scale for all model parameters.

Experiments Parameter range (in %) Parameter scale

P protocol scales from Table 2

F.x fixed to x %
x {10%, 15%, 20%, 30%, 40%, 50%,∈

60%,  70%, 80%, 85%}
scales from Table 2

P.Linear protocol linear scale for all
parameters

F.Linear.x fixed to x %,
x {10%, 15%, 20%, 30%, 40%, 50%,∈

60%,  70%, 80%, 85%}
linear scale for all

parameters

We used the Morris method for each experiment (Table 3) and the transformed scale (specified in

Table 2) for the sampling process. The experiments were performed using 20 trajectories (i.e.,

Morris replicates), dividing the corresponding parameter range into eight levels (p = 8) (including

upper and lower bounds with values uniformly distributed between them), and using the

recommended grid jump of 4/7 (where p = 8, and the grid jump ). Given the∆ = 𝑝/[2(𝑝 − 1)]

stochasticity of the NHCE OSMOSE model, ten model replicates were executed (i.e., OSMOSE

replicates). This generated 5600 simulations for each experiment and thus a total of 123200

simulations to run. These were executed using a supercomputer (Datarmor, hosted by IFREMER,

https://wwz.ifremer.fr/pcdm/Equipement).
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To assess the results of the SA, we selected the total biomass of the system (i.e., the sum of focal

species biomasses) among the outputs of the NHCE OSMOSE model, averaged over time and

OSMOSE replicates. In addition, the total biomass was standardized, using the baseline biomass

without SA perturbations.

The analysis was performed using R 3.6.1 (R Core Team 2019), and the runup R package for the

SA plan and calculations of EE based on the Morris method. This package is an open-source tool

available in a GitHub repository (https://github.com/CriscelyLP/run_up).

3. Results

3.1 SA in the NHCE OSMOSE model

The SA results in the NHCE OSMOSE model using the PR criterion and associated protocol

show that most model parameters had σ/μ* ratios greater than 1 (Figure 6). Following the

parameter classification by Sanchez et al. (2014), this means that parameters had strong

interactions and/or non-linearities. The parameter (maximum predator-prey size ratio for the𝑝
10

first stage of anchovy) had the strongest influence, followed by (maximum rate of predation𝑝
18

ingestion), (predator-prey size thresholds), and (critical threshold of predation efficiency).𝑝
13

𝑝
17

Parameters with moderate influence were (larval mortality rate), (minimum predator-prey𝑝
20

𝑝
9

size ratio for the first stage of anchovy), and (natural mortality rate). The parameters with𝑝
19

both high mean effects and high σ/μ* ratios were classified in the guesstimate ( , , and )𝑝
9

𝑝
10

𝑝
13

and empirical relationships ( and ) categories. Also, these parameters are related to the𝑝
17

𝑝
18

predation process, in particular involving the first stage of anchovy, which is one of the most

critical processes in the OSMOSE modelling platform.
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Figure 6. Results of Morris SA of the NHCE OSMOSE model, following the PR criterion and
associated protocol. Labels (inside colored dots) represent the number of the parameters (see Table
2). The point colors represent the parameter source using the PR criterion (green for high-quality
data (HQD), yellow for model calibration (MC), orange for empirical relationships (ER), and red
for guesstimate parameters (GS)). The gray dashed line represents σ/μ*=1. On the right, we classify
all the parameters according to the mean star values (μ*). We rank them from the parameter with the
strongest main effect ( , dark purple) to the weakest main effect ( , light yellow).𝑝𝑎𝑟

10
𝑝𝑎𝑟

2

3.2 SA: using predefined range of variations

We first compare the SA based on the PR protocol (experiment P) versus fixed parameter ranges

of variation (experiments F.x, x varying from 10% to 85%). By plotting the mean (of theµ*

absolute values, called mean star) and the standard deviation (sd) of the Morris elementaryσ

effects, we show that in general parameters with high effects on the model outputs (high ) alsoµ*

have strong interactions and/or nonlinear effects (high σ values) (Figure 7 and Figure D.1,

Appendix D for the complete set of results). Besides, the SA results indicate notable differences

between F.x experiments, with the most sensitive parameters (with the strong main effects)
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changing through experiments (Figure 7). Further, the effects of parameter variations increase at a

nonlinear rate, with being circumscribed to less than 0.1 for experiments F.10 to F.60 (Panel Aµ*

in Figure 7) and shifting to much higher values for experiments F.70 and F.80 (panel B and Figure

7).

Using the values from the Morris SA results, the parameters tested in P and F.x (x from 10% toµ*

85%) experiments were ranked (Figure 8) to identify the parameters with stronger effects, and

verify the variability of the effects across experiments. The parameter with the strongest main

effect in the PR protocol was (the maximum predator to prey size ratio for the first life stage𝑝
10

of anchovy). It was also found to have the strongest effect in the experiment F.50, and on average,

it was ranked among the first parameters across almost all experiments (except in F.85). The

parameters , , and were also influential consistently through all experiments, whereas𝑝
18

𝑝
19

𝑝
20

had a strong effect only in the protocol results. By contrast, the less sensitive parameter in the𝑝
13

protocol was , the same results were found in F.30. For F.10, F.15 and F.20 experiments,𝑝
2

parameters , and were the least sensitive parameters, respectively. On average, was𝑝
4

𝑝
14

𝑝
15

𝑝
6

one of the less sensitive parameter for the rest of the experiments.

The protocol results (Fig. 6 and Fig. 8), where the range estimation followed the PR criterion,

showed that even when parameters were classified as part of the guesstimate category (being

assigned a variation range of 85%, see Figure 5), they did not all have strong main effects. The

protocol results also identified parameters with strong effects (from to ) consistently with𝑝
17

𝑝
20

what was found in experiments with fixed ranges. The parameters classified as high-quality data

were assigned a very short range of variation (Table C.1) Despite this, some of them had a

relatively high effect on the protocol experiment. Among these HQD parameters, p24 to p26 (size

related parameters) had a strong effect in the F.x SA experiments as well.
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Figure 7. Results of Morris SA of the NHCE OSMOSE model. Panel A (on the left) shows results
of the experiments F.10, F.20, F.40, and F.60, while Panel B (on the right) shows results of F.70
and F.80. The point colors represent the parameter information source using the PR criterion
(green for high-quality data (HQD), yellow for model calibration (MC), orange for empirical
relationships (ER), and red for guesstimate parameters (GS)). Labels for the three most influential
parameters are shown (labels from Table 2). In Panel B, gray dashed lines represent the axes used
in panel A plots.
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Figure 8. Parameter rankings for P and F.x (x {10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%,

80%, 85%}) experiments. The ranking is performed using the mean star ( ) values from theµ*

Morris SA results. The y-axis on the left indicates the parameter reference names (used in Table
2). The vertical bar on the right y-axis indicates the parameter source using the PR criterion
(green for high-quality data (HQD), yellow for model calibration (MC), orange for empirical
relationships (ER), and red for guesstimate parameters (GS)). Rank 1 means that the parameter

has the strongest main effect (with the highest value) for the corresponding experiment. On theµ*

contrary, rank 27 means that the parameter has the weakest main effect (with the lowest value).µ*
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3.3 Effects of the scale

The SA results based on the use of linear scales for parameter sampling are presented in Figure 9

(the complete set of F.Linear.x experiments are in Figure D.2, Appendix D). These results show

that the effect of the scale is highly influential for the SA implementation. Changing the

parameter scale (Table 2) to a linear scale led to entirely different results for all the simulated

experiments. The change in parameter scales also affects the parameters with a strong main effect

(e.g., Panel A and B in Figure 9), and in general, it may incorrectly display the influence of

parameters on model’s outputs. For example, using the appropriate logit scale, the main effects of

are moderate to weak for all experiments (Fig. 8), whereas using linear scales produce strong𝑝
2

main effects (see experiments F.Linear.15, F.Linear.20, and F.Linear.40, in Figure D.2, Appendix

D).

Figure 9. Results of Morris SA evaluating the scale effect. Panel A (on the top) shows the results
for P and P.Linear experiments, while Panel B (on the bottom) for F.20 and F.Linear.20
experiments. The point colors represent the parameter source using the PR criterion (green for
high-quality data (HQD), yellow for model calibration (MC), orange for empirical relationships
(ER), and red for guesstimate parameters (GS)). Labels for the three most influential parameters
are shown.
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4. Discussion

4.1 The PR criterion contribution

The importance of SA for model evaluation is widely recognized (Saltelli et al., 2019, Razavi et

al., 2020). However, there are still many limitations for implementing SA with complex models.

In this work, we address the limitations related to the absence of data to determine the uncertainty

in model inputs. In this situation, a common practice is to use fixed and arbitrary ranges of

variation around the parameter reference values (e.g., in Brancis et al., 2020; Hansen et al., 2019;

Specka et al., 2015). However, our results showed that this practice is not neutral at all on the

outcome of the SA and could produce varying conclusions depending on the used ranges.

Therefore our work aims to alert modellers to the limitations and potential biases associated with

the adoption of arbitrary ranges of variation for input parameters. In addition, we provide an

alternative methodology based on the parameter reliability (PR) criterion and associated protocol.

Our proposed methodology introduces the basic assumption that parameters derived from data or

information with higher reliability have a smaller uncertainty than parameters derived from data

with lower reliability. From this, to draw the uncertainty around the model input parameters, the

PR criterion assigns smaller ranges of variation for the parameters with more reliability and wider

ranges for the parameters with less reliability. From a practical angle, the PR criterion classifies

the model parameters using eight predefined categories corresponding to the data and information

sources that were used to determine parameters’ values. The model parameters should be

classified into a single category with its corresponding hierarchy that will provide insight into the

reliability of the parameters. Although we strive to establish a comprehensive hierarchy of

parameter categories to make the protocol as generic as possible and open it to future application

in various models, new categories may be included or modified in future versions of the PR

criterion.

This paper emphasizes the use of data-driven ranges of variation for SA applications. However,

there are many model applications where data are missing, in which case we suggest exploring

the parameter reliability criterion instead of using fixed ranges of variation for model parameters.

The protocol that is described in this paper is meant to guide modellers in a stepwise manner to
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avoid making arbitrary choices in the SA implementation. Although the use of the PR criterion

helps the problem to a great extent, arbitrary decisions still have to be made when data is too

scarce (e.g., cases E and F in Fig. 4). As part of this work, we also explain the importance of

selecting parameter scales and we describe some necessary parameters’ transformations which are

both important steps for implementing a SA.

4.2 SA in the NHCE OSMOSE model

In this work, we used the NHCE OSMOSE model and a set of simulation experiments to illustrate

the protocol based on the PR criterion. The NHCE OSMOSE model simulates the dynamics and

interactions of multiple species by using a large set of input parameters, besides initial conditions

and model forcing. Since this model is stochastic, it requires the execution of multiple simulations

(i.e., model replicates), which increases the computational cost of its SA. Because of this, and the

multiple experiments simulated in this work, we decided to use a reduced list of parameters of the

NHCE OSMOSE model, by focusing on the key anchovy species, and a computationally

inexpensive SA method, the Morris method (Morris 1991). However, since we used a reduced set

of parameters of the NHCE OSMOSE model (27 out of hundreds), the results obtained in this

study cannot be generalized as a complete sensitivity analysis of the NHCE OSMOSE model, for

which the complete list of parameters should be included in the SA to identify the most influential

parameters.

The Morris method is widely used in models of similar complexity to the NHCE OSMOSE model

(e.g., Bracis et al., 2020). However, we also recommend that future works using Morris SA

include the analysis suggested by Campolongo et al. (2007). This analysis focuses on optimizing

the choice of Morris trajectories by maximizing their parsimony in the input domain. Likewise,

another approach we suggest is the combined use of the Morris method as a screening analysis to

identify a reduced set of the most impacting parameters, on which a numerically more expensive

method like the Sobol method could be applied (Sobol, 1993). Sobol is a global SA with a higher

computational cost than Morris, however this method could provide information about the amount

of variance explained by each model parameter, quantifying the relative effects of parameters on

model outputs and the interaction between model parameters. For example, this approach has

been used in the studies of Morris et al. (2014) and Dantec-Nédélec et al. (2017).
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4.3 Future directions

Discussions about the SA limitations for assessing complex ecosystem models frequently turn

around the computational cost to perform SA simulations due to e.g., large number of model input

parameters and the high computational requirements of the model. Although these computational

issues are critical, the methodological limitations described in this work are rarely discussed. We

provide some guidance to deal with data limitations to avoid the arbitrary use of parameter ranges

and instead critically evaluate parameters’ reliability. The set of rules proposed as part of the PR

criterion and protocol are, however, only a tiny step to advance sensitivity and uncertainty

analyses for complex ecosystem models.
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Appendix A: Description of NHCE-OSMOSE model

The NHCE OSMOSE (Oliveros-Ramos, 2014) results from the coupling of the OSMOSE model of fish

and macroinvertebrate dynamics to the ROMS-PISCES hydrodynamic and biogeochemical model

(Aumont et al. 2003, Echevin et al. 2012). The NHCE OSMOSE model covers the extension of the

Northern Humboldt Current Ecosystem (NHCE) and the Peruvian upwelling ecosystem, between the

ranges from 20°S to 6°N and 93°W to 70°W with 1/6° of spatial resolution. It is fitted to data time series

from 1992 to 2008.

Species (or groups) explicitly modeled in OSMOSE are called "focal species" (or focal groups).

Additionally, the OSMOSE model is forced by a second type of functional group (called "biotic resource"),

providing extra food resources to the model system. Biotic resources are data-driven or output from other

models. The NHCE OSMOSE model includes 13 species (or functional groups), of which 9 as focal

species, including 1 macrozooplankton, 1 crustacean, 1 cephalopod, and 6 fish species. The NHCE

OSMOSE model considered four plankton groups as biotic resources represented in the PISCES model

(Aumont and Bopp, 2006) coupled to the ROMS model in the NHCE (Echevin et al., 2008). The list of

these species or functional groups is presented in Table A.1.

Table A.1. Species modeled in the NHCE OSMOSE model.

Types of model
species

Group Species or
functional group

Scientific name Model

Biotic resources Phytoplankton Nanophytoplankton - ROMS-PISCES

Phytoplankton Diatoms - ROMS-PISCES

Zooplankton Microzooplankton - ROMS-PISCES

Zooplankton Mesozooplankton - ROMS-PISCES

Foc0al species Zooplankton Euphausiids Euphausia mucronata OSMOSE

Small pelagics Anchovy Engraulis ringens OSMOSE

Small pelagics Sardine Sardinops sagax OSMOSE

Medium pelagics Jack mackerel Trachurus murphyi OSMOSE

Medium pelagics Chub mackerel Scomber japonicus OSMOSE

Other pelagics Mesopelagics Vinciguerria sp. OSMOSE

Other pelagics Red lobster Pleuroncodes monodon OSMOSE
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Other pelagics Humboldt squid Dosidicus gigas OSMOSE

Demersal Peruvian hake Merluccius gayi
peruanus

OSMOSE

Appendix B: Parameterization of the NHCE-OSMOSE model

Here, we briefly describe the NHCE OSMOSE parameters selected for the SA.

- Predation parameters: The predation accessibilities are used in the model to describe the accessibility of

prey to predators. These parameters reflect the vertical overlap of predators and prey in the water column.

Predation accessibilities take values between 0 and 1, and determine the total accessible biomass ( ) for𝑃
𝑡𝑜𝑡

𝑠

the predator school (s):

(b.1)𝑃
𝑡𝑜𝑡

𝑠

=
𝑝=1

𝑝=𝑁

∑ 𝐴(𝑝𝑟𝑒𝑑
𝑠
,  𝑝𝑟𝑒𝑦

𝑝
) 𝐵

𝑝𝑟𝑒𝑦
𝑝

where is the preys school (p from 1 to N) available for the school (s), is the𝑝 𝐴(𝑝𝑟𝑒𝑑
𝑠
,  𝑝𝑟𝑒𝑦

𝑝
)

accessibility of each prey p to the predator school s, and the corresponding biomass of each prey p.𝐵
𝑝𝑟𝑒𝑦

𝑝

In addition, the total biomass that a predator school can eat ( ) depends on the biomass of the𝑃
𝑒𝑎𝑡𝑎𝑏𝑙𝑒

𝑠

predator ( ), and the maximum rate of ingestion of the predator species ( ):𝐵
𝑝𝑟𝑒𝑑

𝑠

𝐼
𝑚𝑎𝑥

(b.2)𝑃
𝑒𝑎𝑡𝑎𝑏𝑙𝑒

𝑠

=  𝐵
𝑝𝑟𝑒𝑑

𝑠

𝐼
𝑚𝑎𝑥

We decided to run the SA on the parameters (predation accessibilities parameters, in𝐴(𝑝𝑟𝑒𝑑
𝑠
,  𝑝𝑟𝑒𝑦

𝑝
)

Table 2 the parameters with references from to ). These values are proportions , so we chose𝑝
1

𝑝
8

∈  [0, 1]

a logit scale for these parameters. We also run the SA on the (Table 2 the reference parameter ).𝐼
𝑚𝑎𝑥

𝑝
18

Since the only constraint is to keep positive the parameter value, we used the logarithmic scale for .𝐼
𝑚𝑎𝑥

- Feeding size ranges: In OSMOSE, the predation is controlled by the minimum ( ) and maximum (𝑅
𝑚𝑖𝑛

) size ratios (in Table 2 parameters with the reference from to ). Predator schools can only feed𝑅
𝑚𝑎𝑥

𝑝
9

𝑝
12

on prey schools whose lengths meet these thresholds:
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(b.3)𝑅
𝑚𝑖𝑛

≤
𝐿

𝑝𝑟𝑒𝑑

𝐿
𝑝𝑟𝑒𝑦

≤ 𝑅
𝑚𝑎𝑥

where the ratios ( and ) are the threshold values for predator length ( ) over prey length (𝑅
𝑚𝑖𝑛

𝑅
𝑚𝑎𝑥

𝐿
𝑝𝑟𝑒𝑑

𝐿
𝑝𝑟𝑒𝑦

) ratio. When information is available, a split around the size threshold ( ) allows to specify different𝑠
𝑡ℎ𝑟

feeding size range between species stages (the parameter called predator-prey size threshold, e.g., the 𝑝
13

in Table 2). Predator-prey size threshold ( ) is part of the SA. However, we re-parameterized it by /𝑠
𝑡ℎ𝑟

𝑠
𝑡ℎ𝑟

in logit scale (with values from 0 to 1). It ensures that will always be smaller or equal to .𝐿
∞

𝑠
𝑡ℎ𝑟

𝐿
∞

Likewise, should never be higher than . Manipulations of and separately for the SA𝑅
𝑚𝑖𝑛

𝑅
𝑚𝑎𝑥

𝑅
𝑚𝑖𝑛

𝑅
𝑚𝑎𝑥

are risky and should be avoided for model consistency. We thus decided to re-parametrize the equation of

this process and implement the SA using angles in polar coordinates. Users should think carefully about

the potential consequences of changing parameter values that are interdependent in the model equations

and re-parametrize them when necessary. Using equation b.3 in cartesian coordinates (predator size in

abscissa and prey size in ordinate), we transformed it into polar coordinates calculating angles between the

abscissa, minimum and maximum prey length:

(b.4)𝑔(𝑚1, 𝑚2) =  𝑡𝑎𝑛−1 𝑚
2
−𝑚

1

1+𝑚
1
𝑚

2
( )

where is the angle (in degrees) between the slopes ( and ), being always greater than𝑔(𝑚1, 𝑚2) 𝑚
1

𝑚
2

𝑚
2

. Using equation b.4, we calculated two angles: i) the angle between the horizontal axis and the𝑚
1

minimum prey length (𝜃 = ), and the angle between the minimum and maximum prey length (𝛼 =𝑔(0, 𝑚1)

). The parameters and were re-parametrized as the angles 𝜃 and 𝛼 for the first (𝑔(𝑚1, 𝑚2) 𝑚
1

𝑚
2

θ
𝑠𝑡𝑎𝑔𝑒 1

and ) and second ( and ) stages of anchovy (Table 2). The new parameterizationα
𝑠𝑡𝑎𝑔𝑒 1

θ
𝑠𝑡𝑎𝑔𝑒 2

α
𝑠𝑡𝑎𝑔𝑒 2

physically restricts the parameter values to the first quadrant, representing all the possibilities for the

predation-prey size ratios (particularly, /4 means predator and prey size can be equal while /2 meansπ π

there is no limit on the prey size for a predator). These values (as part of the re-parameterization) are

presented in Table 2. For the SA, the angles 𝜃 and 𝛼 (as fractions of /2) use a logit scale.π

- Starvation mortality: When the predation efficiency ( ) is below the critical threshold ( , in Tableε
𝑖

ε
𝑐𝑟𝑖𝑡

𝑝
17

2), schools do not have enough food to fulfill their requirements undergoing starvation mortality ( of𝑀
ε

𝑖
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school , see equation b.5). This process is controlled by the maximum starvation mortality rate ( ) of𝑖 𝑀
ε

𝑚𝑎𝑥

the species as follows:

(b.5)𝑀
ε

𝑖

=  −
𝑀

ε
𝑚𝑎𝑥

ε
𝑐𝑟𝑖𝑡

. ε
𝑖

+ 𝑀
ε

𝑚𝑎𝑥

We implemented the SA using ( in Table 2) on a logarithmic scale since its values are positive.𝑀
ε

𝑚𝑎𝑥

𝑝
14

is also part of the SA, but we use a logit scale because its values accept only numbers between 0 andε
𝑐𝑟𝑖𝑡

1.

- Growth: Individuals of a given school are assumed to grow in size and weight (at time t) only when the

amount of food they ingested fulfills their maintenance requirements. A simple linear model is used below

the threshold age ( , in Table 2). Above , the von Bertalanffy model is used to determine the𝑎
𝑡ℎ𝑟

𝑝
15

𝑎
𝑡ℎ𝑟

average mean length increase, as follows:

(b.6)𝐿
𝑡

= 𝐿
∞

(1 −  𝑒𝑥𝑝(− 𝑘(𝑡 −  𝑡
0
))

where is the asymptotic size ( in Table 2), the growth coefficient ( in Table 2), and the𝐿
∞

𝑝
25

𝑘 𝑝
24

𝑡
0

theoretical age when size is 0. The SA is implemented using , , (the length at t = 0, in Table𝐿
∞

𝑘 𝐿
𝑡 = 0

𝑝
23

2). These parameters are manipulated individually and on a logarithmic scale since the only constraint is to

keep the parameter value positive. is also part of the SA on a logit scale, because this parameter𝑎
𝑡ℎ𝑟

accepts values only between 0 and 1.

The weight of a school is calculated using the allometric relationship:

(b.7)𝑊 =  𝑐𝐿𝑏

where b is the exponent and c the constant of proportionality of the allometric length-weight relationship.

We chose to constrain the SA to the constant of proportionality (c, in Table 2 the ) in logarithmic scale,𝑝
27

leaving b fixed.

- Size and weight of eggs: The life cycle of each species is modeled starting with the egg stage. Egg size is

part of the SA ( in Table 2) and it co-varies with egg weight. For each SA simulation, we calculated the𝑝
16

corresponding egg weight as a function of egg size, keeping the mean density constant as follows:
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(b.8)𝑒𝑔𝑔
𝑤𝑒𝑖𝑔ℎ𝑡 

= 4
3 π(

𝑒𝑔𝑔
𝑠𝑖𝑧𝑒

2 )
3

𝑚𝑒𝑎𝑛
𝑑𝑒𝑛𝑠𝑖𝑡𝑦

The is calculated using the baseline values for egg size and weight values. Then each time𝑚𝑒𝑎𝑛
𝑑𝑒𝑛𝑠𝑖𝑡𝑦 

that the takes a new value due to the SA, the should be recalculated, meaning that both𝑒𝑔𝑔
𝑠𝑖𝑧𝑒

𝑒𝑔𝑔
𝑤𝑒𝑖𝑔ℎ𝑡

parameters are changing together. The only mathematical constraint for these parameters is to obtain a

positive numerical value, so we used the logarithmic scale.

- Sources of mortality: The abundance of a school i at time , ( ), is modeled as a function of𝑡 + ∆𝑡 𝑁
𝑖,𝑡+∆𝑡

abundance at time t ( ) and the following sources of mortality:𝑁
𝑖,𝑡

(b.9)𝑁
𝑖,𝑡+∆𝑡

 =  𝑁
𝑖,𝑡

 𝑒
−∆𝑡(𝐹

𝑠
(𝑡) + 𝑀

𝑠
(𝑡) + 𝑀

ϵ
𝑖

(𝑡) + 𝑃
𝑖
(𝑡))

where is the fishing mortality rate and the natural mortality rate of species s. is the starvation𝐹
𝑠

𝑀
𝑠

𝑀
ϵ

𝑖

mortality rate and the predation mortality rate, both related to the fish school i.𝑃
𝑖

The natural mortality rate ( in Table 2) and starvation mortality (already described in equation b.5) are𝑝
19

part of the SA. The fishing mortality rate used in the NHCE OSMOSE model is provided by time (t) and

species size (in the case of anchovy). We decided to include the fishing mortality in the SA by creating a

fishing mortality multiplier ( in Table 2). It is a positive value with a baseline value equal to 1. This𝑓
𝑚

𝑝
21

fishing multiplier is used in the SA, by multiplying the fishing mortality rate (matrix of the fishing

mortalities, time vs. species size).

Another source of mortality is the larval mortality rate ( ). This parameter controls the number of eggs𝑀
0,𝑠

and larvae for species s, at age 0, and at time , ( ), as follows:𝑡 + ∆𝑡 𝑁
𝑠,0,𝑡+∆𝑡

(b.10)𝑁
𝑠,0,𝑡+∆𝑡

 =  𝑁
𝑠,0,𝑡

 𝑒
−∆𝑡𝑀

0,𝑠

where represents the number of eggs and larvae in the system at time t, and is the larval𝑁
𝑠,0,𝑡

𝑀
0,𝑠

mortality rate by species ( in Table 2). This parameter is a vector (one larval mortality rate by time step)𝑝
20

in the NHCE OSMOSE model. The SA takes this parameter using the mean of the vector (mean over

time).
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Baseline values of natural mortality rate, larval mortality, and fishing mortality were estimated by a

calibration process following a logarithmic scale. We chose the same scale to perform the experiments as

part of the SA.

- Reproduction: any school whose length is greater than the size at sexual maturity ( , in Table 2)𝑠
𝑚𝑎𝑡

𝑝
26

enters the reproduction process at the end of the time step. This allows the generation of a new school at

the egg stage. For a given species:

(b.11)𝑁
𝑒𝑔𝑔𝑠

=  𝐹𝑟𝑎𝑐
𝑓𝑒𝑚

α 𝑠𝑒𝑎𝑠𝑜𝑛 𝐵
𝑚𝑎𝑡

where is the fraction of females (also called sex ratio, in Table 2), is the relative fecundity.𝐹𝑟𝑎𝑐
𝑓𝑒𝑚

𝑝
22

α

This parameter indicates the number of eggs per gram of mature female. The is a file that provides𝑠𝑒𝑎𝑠𝑜𝑛

the spawning distribution within a year, and is the sum of the biomass of the schools that reached𝐵
𝑚𝑎𝑡

sexual maturity.

is part of the SA. We chose the logit scale because this parameter only takes values from 0 to 1.𝐹𝑟𝑎𝑐
𝑓𝑒𝑚

The size at sexual maturity ( ) is also part of the SA. However, we re-parameterized it by / in𝑠
𝑚𝑎𝑡

𝑠
𝑚𝑎𝑡

𝐿
∞

logit scale (with values from 0 to 1). It ensures that will always be smaller or equal to , but never𝑠
𝑚𝑎𝑡

𝐿
∞

bigger than .𝐿
∞
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Appendix C: Range information for the NHCE OSMOSE parameters

The calculation of parameter ranges based on data was performed as follows. For example, considering a

parameter such as the asymptotic length of a fish species (in cm and linear scale), if the range estimated

from the literature is between 10 cm (lower limit, ) and 60 cm (upper limit, ), with a baseline value of𝐿
𝑙

𝐿
𝑢

40 cm (the value used in the model), we can express that the parameter has a lower bound of -75% of the

baseline value and an upper bound of +50% of the baseline value. These bounds are to be provided for

each parameter included in the SA (e.g., see Table 1 in Tranter et al., 2021). Using the parameter bounds,

we can also express the parameter range as:

(c.1)𝑅
𝑙

=  
𝐿

𝑙

𝑚𝑒𝑎𝑛 (𝐿
𝑙
, 𝐿

𝑢
)  −  1⎡⎢⎣

⎤⎥⎦
 100

(c.2)𝑅
𝑢

=  
𝐿

𝑢

𝑚𝑒𝑎𝑛 (𝐿
𝑙
, 𝐿

𝑢
)  −  1⎡⎢⎣

⎤⎥⎦
 100

where and are the lower ( ) and upper ( ) ranges in percentage (%). These equations express the𝑅
𝑙

𝑅
𝑢

𝑙 𝑢

same parameters bounds found in the literature but representing the range around the mean of both limits (

and ). Using the numerical example above related to the asymptotic length, and equations c.1 and c.2,𝐿
𝑙

𝐿
𝑢

equals -71.43% and equals 71.43%. Applying the PR criterion, the range of variation ( ) is the𝑅
𝑙

𝑅
𝑢

𝑅

absolute value of or that we calculated for all the parameters for which data is available.𝑅
𝑙

𝑅
𝑢

Table C.1. Range values for the NHCE OSMOSE parameters. Using the same set of parameters
presented in Table 2, we provide additional information related to the use of the PR criterion and
range estimation. In this application, only four parameter sources were identified: HQD
(high-quality data), MC (model calibration), ER (empirical relationships), and GS
(guesstimated). When data were available, this information was used for range estimation (R in
%). When data were not available, we followed the steps presented in Figure 3 for range
estimation. This information was used to build Figure 5.

Reference Parameters used in
the SA

Parameter
source

Range information Baseline value
(x)

R
(%)

R source

𝑝
27 ( )𝑐 𝑔 𝑐𝑚−3 HQD [0.006, 0.007]

(Ochoa et al., 2020)
0.0065 7.69 data

𝑝
25

( )𝐿
∞

𝑐𝑚 HQD [19.16, 22.4]
(Goicochea, data)

19.50 7.80 data
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𝑝
23

( )𝐿
𝑡=0

𝑐𝑚 HQD - 1.9682 10.79 protocol

𝑝
26

𝑠
𝑚𝑎𝑡

𝐿
∞

HQD [10, 12.5]
(Fishbase)

0.6154 11.11 data

𝑝
22

𝐹𝑟𝑎𝑐
𝑓𝑒𝑚

HQD [0.498, 0.648]
(Castillo, 2012)

0.50 13.09 data

𝑝
24 k ( )𝑦−1 HQD [0.6, 0.8]

(Oliveros et al.,
2010)

0.76 14.30 data

𝑝
21

𝑓
𝑚

MC - 1 30.05 protocol

𝑝
20

𝑀
0

( )𝑚𝑜𝑛𝑡ℎ−1

MC - 9.5821 30.05 protocol

𝑝
19 ( )𝑀 𝑦−1 MC - 0.9177 30.05 protocol

𝑝
18

𝐼
𝑚𝑎𝑥

( )𝑔 𝑏𝑜𝑑𝑦 𝑔−1𝑦−1

ER [1.56, 6.68]
(Gislason and

Helgason 1985)

3.50 62.14 data

𝑝
17

ε
𝑐𝑟𝑖𝑡

ER - 0.57 68.57 protocol

𝑝
16

egg size ( )𝑐𝑚 ER [0.04, 0.28]
(Cury and Pauly,

2000)

0.10 75 data

𝑝
15

( )𝑎
𝑡ℎ𝑟

𝑦 GS - 0.35 85 protocol

𝑝
14 ( )𝑀

ε
𝑚𝑎𝑥

𝑦−1 GS - 0.10 85 protocol

𝑝
13

predator-prey size
threshold

( , cm)
𝑠

𝑡ℎ𝑟

𝐿
∞

GS - 0.5128 85 protocol

𝑝
9

− 𝑝
12

predator-prey size ratios
of anchovy

GS - θ
𝑠𝑡𝑎𝑔𝑒 1

(π/2)  =  0. 0008
α

𝑠𝑡𝑎𝑔𝑒 1

(π/2)  =  0. 0784
θ

𝑠𝑡𝑎𝑔𝑒 2

(π/2)  =  0. 0032
α

𝑠𝑡𝑎𝑔𝑒 2

(π/2)  =  0. 1020

85 protocol

𝑝
1

− 𝑝
8

predation accessibility
of prey to predator

GS - 𝐴(𝑎𝑛𝑐ℎ𝑜𝑣𝑦,  ℎ𝑎𝑘𝑒) = 0. 1
𝐴(𝑎𝑛𝑐ℎ𝑜𝑣𝑦,  𝑠𝑎𝑟𝑑𝑖𝑛𝑒) = 0. 9

𝐴(𝑎𝑛𝑐ℎ𝑜𝑣𝑦,  𝑗𝑎𝑐𝑘 𝑚𝑎𝑐𝑘𝑒𝑟𝑒𝑙) = 0. 9
𝐴(𝑎𝑛𝑐ℎ𝑜𝑣𝑦,  𝑐ℎ𝑢𝑏 𝑚𝑎𝑐𝑘𝑒𝑟𝑒𝑙) = 0. 9

85 protocol
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𝐴(𝑎𝑛𝑐ℎ𝑜𝑣𝑦,  𝑚𝑒𝑠𝑜𝑝𝑒𝑙𝑎𝑔𝑖𝑐𝑠)
 

= 0. 55
𝐴(𝑎𝑛𝑐ℎ𝑜𝑣𝑦,  𝑚𝑢𝑛𝑖𝑑𝑎) = 0. 05

𝐴(𝑎𝑛𝑐ℎ𝑜𝑣𝑦,  ℎ𝑢𝑚𝑏𝑜𝑙𝑑𝑡 𝑠𝑞𝑢𝑖𝑑) = 0. 6
𝐴(𝑎𝑛𝑐ℎ𝑜𝑣𝑦,  𝑒𝑢𝑝ℎ𝑎𝑢𝑠𝑖𝑖𝑑𝑠) = 0. 6

Appendix D: Additional results

Figure D.1. Results of Morris SA related to the P and F.x experiments (x {10%, 15%, 20%, 30%,
40%, 50%, 60%, 70%, 80%, 85%}). The point colors represent the parameter source using the PR
criterion (green for high-quality data (HQD), yellow for model calibration (MC), orange for
empirical relationships (ER), and red for guesstimate parameters (GS)); and despite the use of
fixed ranges (i.e., F experiments) we used the same colors for those experiments. Labels (inside
colored dots) represent the reference number of the parameter (see Table 2). The axes of the first
eight experiments are drawn as black dotted lines in the plots of the experiments F.70, F.80, and
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F.85.

Figure D.2. Results of Morris SA related to the P and F.Linear.x experiments (x {10%, 15%,
20%, 30%, 40%, 50%, 60%, 70%, 80%, 85%}). The point colors represent the parameter source
using the PR criterion (green for high-quality data (HQD), yellow for model calibration (MC),
orange for empirical relationships (ER), and red for guesstimate parameters (GS)); and despite
the use of fixed ranges (i.e., F experiments) we used the same colors for those experiments. Labels
(inside colored dots) represent the reference number of the parameters (see Table 2). The axes of
the first eight experiments are drawn as black dotted lines in the plots of the experiments F.70,
F.80, and F.85.
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SUMMARY

There are many sources of uncertainty in scenarios and models of socio-ecological systems, and under-
standing these uncertainties is critical in supporting informed decision-making about the management of
natural resources. Here, we review uncertainty across the steps needed to create socio-ecological scenarios,
from narrative storylines to the representation of human and biological processes in models and the estima-
tion of scenario and model parameters. We find that socio-ecological scenarios and models would benefit
from moving away from ‘‘stylized’’ approaches that do not consider a wide range of direct drivers and their
dependency on indirect drivers. Indeed, a greater focus on the social phenomena is fundamental in under-
standing the functioning of nature on a human-dominated planet. There is no panacea for dealing with uncer-
tainty, but several approaches to evaluating uncertainty are still not routinely applied in scenario modeling,
and this is becoming increasingly unacceptable. However, it is important to avoid uncertainties becoming
an excuse for inaction in decision-making when facing environmental challenges.

INTRODUCTION

‘‘The whole problem with the world is that fools and fanatics are

always so certain of themselves, but wiser people so full of

doubts.’’1 With this phrase, Bertrand Russell highlights the

imperative of embracing uncertainty rather than fooling our-

selves into thinking that it does not exist. This holds especially

true for how we understand the natural world, including the

increasingly important role of humans in socio-ecological sys-

tems. We know that socio-ecological systems are complex.

They are non-linear, bifurcate, and have feedbacks and tipping

points, all of which makes their future development inherently

uncertain and difficult to predict. Indeed, the future is a place

we can never know; we cannot observe it, and we cannot mea-

sure it. Yet, decision-makers are challenged with planning short-

to long-term strategies for preserving biodiversity and the contri-

butions of nature to people2 and, so, we need to anticipate what

the future may hold.

The scientific response to this challenge has been the devel-

opment of scenarios to explore the uncertainty space of plau-

sible, but unknown, futures.3 Scenarios are not predictions, but

are ‘‘a plausible and often simplified description of how the future

may develop based on a coherent and internally consistent set of

assumptions about key driving forces and relationships.’’4 Sce-

narios are commonly underpinned by qualitative descriptions

(narrative storylines) of the underlying direct and indirect drivers

of change, including policy options,3,5 which are often translated

into impacts on biodiversity, ecosystem services, and complex

socio-ecological systems using models in a storyline and simu-

lation approach.3 Hence, scenarios can be qualitative,

ll
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quantitative, or both. As such, scenarios and models are invalu-

able tools in guiding long-term, strategic policies that prompt

management actions and increase public awareness of the

future threats to nature.6

Due to the complexity of socio-ecological systems, but also to

advances in knowledge and observation capacity, models are

being developed with increasing complexity, involving many

processes and feedbacks, and integrating multiple components

of the ecosystem, from the physical environment to human soci-

eties. Examples include, land-use models,7 agent-based

models,8 marine ecosystem models,9,10 models of trophic

levels,11 dynamic vegetation models,12,13 state and transition

landscape models,14 and niche-based models of species

response to climate and land-use change.15 There has been a

strong focus on developing comprehensive modeling tools

from empirical evidence,16,17 but, until now, far less effort has

been dedicated to exploring the uncertainties within these

models, especially when used to quantify scenarios.

Identifying and quantifying future uncertainties may be key in

achieving buy-in from stakeholders, to prompt evidence-based

decision-making, and to shift mindsets on the perception of

the future threats to biodiversity, ecosystems, and ecosystem

services. To increase the influence of scenario and modeling an-

alyses on policy and to trigger appropriate management re-

sponses, the Intergovernmental Science-Policy Platform on

Biodiversity and Ecosystem Services (IPBES) has strongly

encouraged the use of scenarios and models, but warns that

these ‘‘should be applied with care, taking into account uncer-

tainties and unpredictability associated with model-based pro-

jections.’’3 A critical challenge for improving scenarios and

models of socio-ecological systems is to augment the scientific

capacity in quantifying the uncertainty within and among model

projections.18

Here, we review the current state of knowledge about the un-

certainties associated with scenarios and models of socio-

ecological systems within the context of decision-making, by

which we mean the policy decisions made within private or pub-

lic sector organizations. In doing so, we seek to address some of

the key challenges raised by Elsawah et al.19 that relate to uncer-

tainty, such as the role of stakeholder engagement in the co-

development of scenarios, linking scenarios across multiple

geographical, sectoral, and temporal scales, improving the links

between qualitative and quantitative scenarios, addressing sur-

prises, addressing scenario consistency, communicating sce-

narios, and linking scenarios to decision-making. We do not

aim to undertake an exhaustive evaluation of scenarios and

model types. Instead, we use examples from a very wide range

of scenarios and models to illustrate a comprehensive review

of sources of uncertainty. A comprehensive review of sources

of uncertainty in scenarios and models does not require a

comprehensive review of scenarios andmodels. A wider ranging

review can be found in the IPBES3 assessment of scenarios and

models.

We provide an overview of how uncertainty is treated within

socio-ecological systems analysis and how understanding these

uncertainties can enhance confidence in the creation of the next

generation of scenarios andmodels. This is novel in both tackling

a comprehensive review of sources of uncertainty in scenarios

and models, exploring the implications of these uncertainties

for decision-making and in setting out a number of potential so-

lutions and recommendations for how to deal with these uncer-

tainties.

TYPES OF UNCERTAINTIES

We focus on three categories of uncertainty: scenario uncer-

tainty, model uncertainty, and decision-making uncertainty

(see Table 1) across terrestrial and marine realms. We explore

the whole chain of steps needed to create socio-ecological sce-

narios and models that are useful for decision-makers, from

narrative storylines, the representation of human and biological

processes in models, the estimation of model parameters, and

model initialization and evaluation. Some of these sources of un-

certainty relate to differences in worldviews, some to the limits of

our current knowledge and others to our capacity to represent

processes within models, including the reliability of model input

data across spatial and temporal scales. Figure 1 shows the

types of uncertainty (from Table 1) in the steps from observa-

tional data, model development, the construction of qualitative

storylines and quantitative scenario projections that together

provide input to decision-making.

SCENARIO UNCERTAINTY

Linguistic uncertainty
Linguistic uncertainty has been classified into five distinct types:

vagueness, context dependence, ambiguity, indeterminacy of

theoretical terms, and under-specificity.20 Of these, ambiguity

and vagueness arguably occur most commonly, largely because

scenario terminology is often based on common language

words. Indeed, the word ‘‘scenario’’ itself derives from the lan-

guage of the theater. Yet, different communities can sometimes

attribute different meanings to the same ‘‘precise’’ word, i.e.,

their use is ambiguous. For example, the word ‘‘pathways’’ is

used as a synonym for ‘‘projections’’ or ‘‘trajectories’’ (as in the

shared socio-economic pathways),21 or alternatively it is used

to describe a set of time-dependent actions that are required

to achieve a future vision.2 Using the term in one sense can

lead to confusion if it is interpreted as being used in the other

sense. Vagueness relates to statements with insufficient preci-

sion. For example, ‘‘population growth will increase strongly

over the coming 50 years’’ tells us nothing about what a strong

population growth actually looks like. Is it a doubling of popula-

tion, or tripling, or something else? These different types of lin-

guistic uncertainty commonly occur in narrative storylines, and

they are especially important considerations when communi-

cating the outcomes of scenario processes to decision-makers.

Recent development of information technology provides a

means to minimize linguistic uncertainty by building ontologies,

i.e., an ensemble of formal definitions of concepts and their rela-

tionships within the domain of interest, and their synonyms or

equivalents in closely related domains. While domain-specific

ontologies exist in ecology that facilitate data mining and

sharing,22 to our knowledge, there is no widely accessible

controlled vocabulary or thesaurus standardizing the meaning

of the basic concepts used in scenarios of socio-ecological sys-

tems, as is the case with ontologies related to the Intergovern-

mental Panel on Climate Change (IPCC).23
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Narratives storyline uncertainty
The first step in the construction of scenarios is often the devel-

opment of qualitative, narrative storylines.5 These describe

alternative trajectories in the key drivers of change (and their in-

teractions) with a focus on socio-economic change. Socio-eco-

nomic trajectories can also be associated with changes in phys-

ical conditions, such as climate change, where a change in

climate is assumed to be internally consistent with drivers of,

for example, societal consumption patterns and industrializa-

tion.24 The uncertainties associated with the development of

narrative storylines arise from how to create this internal consis-

tency usingmental models,25 aswell as the difficulty of imagining

futures for which there are no historical analogs and representing

a sufficient range of possible futures.26,27 This affects the ‘‘plau-

sibility’’ of narrative storylines in terms of whether the assumed

causal relationships reflect real-world development, or the

worldviews of the storyline developer. A particular case of this

problem are ‘‘black swans,’’ which reflect shocks or surprises

to a system, i.e., events that are unexpected or assumed to

have a low probability of occurring, but which have a high

impact.28 Black swans by their very nature can be difficult to

anticipate or imagine, and are often unprecedented historically.

The most appropriate way of dealing with uncertainties in

storyline development is to clearly state and document the as-

sumptions that underpin a narrative, and to communicate these

assumptions when reporting a scenario study.29

Most narrative storylines focus on the supply side of natural

resource systems (e.g., crop production or fish harvesting),

and say little about the demand side (e.g., consumption patterns,

such as dietary preferences) or the economic and institutional

transformations that implicitly underlie the storylines. Although

many ‘‘stylized’’ scenarios exist for diets, e.g., what would be

the consequences for biodiversity of people becoming vege-

tarian or vegan,30,31 these do not account for the transitions

from where we are today to this assumed future situation.32

Hence, the uncertainties associated with these transitions are

not explicit.

Existing storylines of marine ecosystems largely focus on a

narrow set of direct drivers, such as fishing or climate change,33

or short-term policy interventions (such as protected areas or

Table 1. Sources of uncertainty and their description in scenarios and models of socio-ecological systems

Uncertainty sources Description Uncertainty types

Scenario uncertainty The qualitative description of alternative worldviews and

their development into the future and the quantification of

model input parameters that are conditional on these

descriptions.

Linguistic uncertainty. The use of similar terms to mean

different things in different research communities, e.g.,

pathways, ensembles, boundary conditions.

Narratives storyline uncertainty. The limits to imagining

unknown futures (e.g., unknown unknowns). This can

relate, for example, to alternative worldviews or the

uncertainties associated with participatory processes

arising from internal consistency and knowledge

limitations.

Scenario parameter uncertainty. The estimation of

quantitative parameters from narrative storylines that are

subsequently used in models. Scenario parameter

uncertainty follows from the interpretation of quantitative

values from qualitative narratives, e.g., the number of

people in a ‘‘high population growth’’ scenario.

Model uncertainty The representation of processes in models and how this

is done.

Structural (epistemic) uncertainty. The uncertainties

associated with the choice and the representation of

processes in models.

Input data uncertainties. The variability in baseline data

conditions that are used to initialize a model, including

thematic classification, i.e., how classes are defined in, for

example, land-use maps.

Error propagation uncertainty. The amplification (or

dampening) of the transmission of errors across multiple

coupled models. The role of meta-modeling and indirect

effects (such as cross-sectoral interactions).

Decision uncertainty Communicating and translating the results of scenario and

modeling studies into decision-making.

Data interpretation for decision-making. Selective use of

data or information from different sources and their

interpretation.

Analyzing at relevant spatiotemporal scales. The selection

of spatiotemporal scales at which simulated data are

analyzed, and the granularity of derived indicators (e.g.,

level of integration across biodiversity facets, merging

subsets of ecosystem services).

Decision-making tools. The variety of decision-supporting

methods, e.g., multi-criteria decision analysis.
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management of fishing effort). Moreover, the consideration of in-

direct drivers, such as seafood demand from changes in popu-

lation, consumption patterns or international trade, are not

explicit in most marine storylines. Recent studies increasingly

focus on expanding the scope of uncertainties by developing

storylines that consider multiple drivers and policy interventions,

in particular the interactions between climate change, fishing,

and management.34–36

Terrestrial studies have a longer tradition of evaluating multi-

ple, often cross-scale drivers in developing narrative story-

lines.37 However, uncertainties arise from an overreliance on

climate change as a driver, and not accounting for other drivers

that are critical for socio-ecological systems, such as invasive

alien species, trade in wild species, or air and water pollution.2

Furthermore, uncertainties also arise from failure to account for

indirect, cross-sectoral interactions.37

Participatory approaches, by which narrative storylines are

co-created with stakeholders, add richness and diversity to

storyline development, and strengthen the link between story-

lines and scenario quantification with models,38 but are highly

dependent on the selection of individual stakeholders and the

extent of their explicit and tacit knowledge. Stakeholder map-

ping exercises38 that seek to maximize stakeholder diversity

are one way of resolving this problem. Participatory approaches

are well developed in the marine realm, especially in fisheries

management and marine spatial planning.39,40

Scenario parameter uncertainty
Simulation models can quantify the outcomes of narrative story-

lines for specific indicators. This requires the translation of the

qualitative statements within a storyline into quantitative model

inputs, which in itself has potential to introduce additional uncer-

tainties.5 We draw a distinction here between ‘‘scenario param-

eter uncertainty’’ and ‘‘model parameter uncertainty.’’ Scenario

parameter uncertainty derives from the translation of qualitative

narratives into quantitative values, and so is dependent on the

scenario itself, i.e., the quantitative values vary across scenarios.

Figure 1. Sources of uncertainty in scenarios
and models of socio-ecological systems
within the context of decision-making
The circled sources of uncertainty are addressed in
the main text: purple refers to scenario uncertainty,
blue to model uncertainty, and orange to decision
uncertainty.

For example, a scenario parameter could

be the number of people in a high,medium,

or low population growth storyline. In gen-

eral, scenario parameters relate to the

socio-economic components of socio-

ecological systems and may themselves

be model inputs. Model parameter uncer-

tainty refers to the estimation of parame-

ters within the functions that represent

modeled processes, e.g., a rate constant

or capacity, and often, but not always,

relate to the biophysical components of

socio-ecological systems. Hence, model

parameter uncertainty depends on the system and the model

of that system, and is independent of a scenario. Scenario

parameter quantification often uses best-guess estimates that

sometimes draw on uncertain, historical analogs. However, the

majority of these studies do not account for the uncertainties

associated with the process of estimating scenario parameters

themselves. A few exceptions to this have defined ‘‘credible’’

parameter ranges,41 or have used conditional probabilistic fu-

tures methods.42

In the conditional probabilistic approach, probability distribution

functions (PDFs) are created for the scenario parameters that are

conditional on the assumptions within a scenario storyline, thus re-

flecting the uncertainty range in the estimation of a scenario param-

eter.42–44 When combined with Monte Carlo sampling across the

PDFs and multiple model simulations this approach is able to

explore the range of scenario outcomes that are contingent on

the uncertainties of scenario parameter inputs, although subjective

assumptions and choicesmade inMonteCarlo sampling can intro-

duce uncertainty in model outcomes.45 Conditional probabilistic

approaches have been used to explore whether scenario param-

eter uncertainty leads to divergent or (more commonly) convergent

outcomes across scenarios.43 Being computationally intensive,

this method is less tractable for models with long run times, which

constrains its application for many large-scale models. However,

run times are also affected by the temporal and spatial resolution

as well as the spatial extent of a model, and computational capac-

ity is becoming increasingly less important.

Apart from these examples of scenario parameter uncertainty

being quantified and communicated, there is little quantification

of the uncertainties arising from different management and pol-

icy actions to achieve stylized scenarios,2 e.g., assumptions of

vegetarianism,31 maximizing long-term fishing catches,46 and

the rate of change in fishing technologies that have been identi-

fied as key drivers of increasingly effective fishing effort that

impacts marine biodiversity.47 Management practices are espe-

cially important when representing adaptation processes within

models in which responses are consistent with time-varying,
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scenario-specific barriers and enablers, e.g., societal values and

governance.48 Overall, there are considerable gaps in current

knowledge about scenario parameter uncertainty.

Model uncertainty
Structural uncertainty

Models simplify the representation of the real world in different

ways and so produce different responses to the same scenario

assumptions. These responses depend on how amodel is struc-

tured and parameterized and on the timescale, all of which can

lead to structural model uncertainty. Hence, modeling is the art

of making choices in a given context, and structural uncertainties

reveal the variety of these choices.49,50 The more knowledge we

try to formalize within models through process-based under-

standing, the more uncertainty we may potentially cause or

reveal. One could argue that simple, parsimonious models are

better than complex models for robust forecasting,51,52 but there

is no universal evidence of a relationship between model

complexity and model robustness. Parsimonious models that

are based on observed trends may lead to low uncertainty within

the range of conditions for which they were calibrated, but can

lead to high uncertainty when applied over longer timescales

or in scenarios with large deviations from current trends.53,54

However, focusing on parsimony misses the point about why

we build models. We model to experiment with elements of the

natural world to explore, explain, and understand how they

work.51

Many models of climate, land use, and biodiversity are

increasing in complexity by the addition of components, pro-

cesses, and model coupling.55–57 More complex models may,

arguably, be better at representing system dynamics over longer

time scales or under changing conditions than simpler models.58

For example, oversimplifying biodiversity representation in

vegetation models has long been an impediment to detailed un-

derstanding and robust projections of ecosystem dynamics and

distribution.59,60 This has motivated a finer representation of

species or traits diversity,61–64 which allows better exploration

of the role of the interactions between diversity and ecosystem

functioning in shaping the future of natural systems.65,66 Howev-

er, this does not necessarily lead to less uncertainty, since the

representation of feedbacks and path dependency may lead to

dramatic changes in system behavior, potentially increasing

the range of possible responses and associated uncertainty.

Furthermore, increasing model complexity may also lead to

problems with the traceability of the origins of uncertainty and in-

consistencies between different model components.67 These

problems may be further compounded within models that

include stochastic process representations, leading to internal

variability and multiple model outcomes. However, stochastic

approaches based, for example, on Monte Carlo methods can

be useful in representing uncertainty in model structure.68

Models can support improved understanding of how resource

management can adapt to environmental change and thereby

inform decision-making and policy processes. However, a better

representation of adaptation processes is required in models in

general. For example, substantial differences have been found

between the extensive, available empirical knowledge about so-

cietal adaptation processes and their representation in models

of land and water sectors.69 Only a minority of models take ac-

count of the management choices that underpin adaptation

measures or the constraints (financial, institutional, social, etc.)

that may limit the uptake and effectiveness of adaptation;70 fac-

tors that are likely to be influenced (positively or negatively) by

the scenario setting. The pervasiveness of simplistic, over-opti-

mistic approaches to simulate the role of adaptation in reducing

impacts and vulnerabilities or in exploiting the benefits associ-

ated with climate and socio-economic changes means that

studies may produce findings that cannot meaningfully inform

decision-making about appropriate adaptation strategies.

Incremental model improvement aims to increase a model’s

ability to predict plausible responses to uncertain, environmental

change conditions. The drawback of incremental improvements

is that they can cause ‘‘lock-in’’ of an existing model structure or

ways of doing things.71 Moreover, even incremental changes in

model structure require substantial investment in time and effort.

The exploration of alternative structural specifications in models

is often done for local- to regional-scale studies.72–74 At the

global level, the investment required to build new models may

be substantially larger than maintaining existing models.

Global-scale models often need long-term institutional funding,

thus limiting the number of research groups that have the capac-

ity for such effort. Hence, the diversity of model structures and

modeling paradigms is low in global-scale modeling compared

with regional-scale models.75 For example, many global-scale

economic models still use optimization approaches based on

the assumptions of neoclassical economics that are known to

be limited.76

Better understanding of structural uncertainty is often

achieved by trying to learn from model inter-comparison exer-

cises7,77 (see Box 1) for the comparison of model results with

observed data.78,79 Model inter-comparisons and the closely

related ensemble modeling approach have proven highly bene-

ficial for improving the credibility of climate change projections,

such as through the Coupled Model Inter-comparison Project

(CMIP).80 Similar multi-model efforts, in which different models

that address a similar question are run using a standardized

simulation protocol and the same input data, are only starting

for impact models projecting future terrestrial2,75 and marine

biodiversity (Fish-MIP).33,81

The comparison of model outputs with observational data,106

or benchmarking, can provide pointers toward the conditions

under which a model performs better or worse, as well as

revealing the sources of uncertainty. Diverse sets of observa-

tions are needed to assess both the magnitude and seasonal

and interannual variability of modeled outputs.82 Specialized ex-

periments, such as free-air carbon enrichment studies, herbivore

exclosures, or remotely sensed trait information90–92 can also be

used to test the realism of specific simulated processes. Taken

together, these datasets can be used to test whether models

correctly capture existing relationships between variables (or

incorrectly assume existing relationships, which are not sup-

ported by observations). At least for vegetation models, studies

have begun to systematically explore the use of scoring of model

performance against a range of observations.82 Two further

common approaches to model improvement are: (1) the addition

or re-specification of certain model components and (2) the sim-

ple calibration of model parameters to increase the model fit to

data. Calibration may lead to either overfitting of the model or
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to issues relating to equifinality. In overfitting, a calibrated model

may represent a specific place and time very well, but it sacri-

fices generality when applied to other places and times. The

comparison between individual models and an ‘‘ensemble

mean’’ might unintentionally also lead to the model being ‘‘re-

tuned’’ to fit better to the average model response.

Equifinality occurs when different functional or process repre-

sentations in a model lead to the same outcome.107–109 This re-

duces the range of the modeled outputs, but at the same time

may conceal structural uncertainty, since it can be difficult to

track whichmechanisms within amodel lead to the equifinal out-

comes. The effect of equifinality can be evaluated by comparing

the overall model outcomes against independent datasets,58 but

also by comparing different process representations within the

model itself. This is important when assumptions are made, for

example, in how to model the management choices that under-

pin land-use change.110 While different approaches to repre-

senting management choices may, in the short term, lead to

similar land-use outcomes, they may wrongly represent longer-

term adaptation and behavior under resource constraints. In

this case, empirical data on management choices may be

more useful in validating the model process than validating the

short-term model outcomes.

In a review of land-use models, little over half were validated

independently, and many conflated calibration with valida-

tion.70,111 Although this can be explained to some extent by

the limited availability of consistent empirical datasets for

different time periods, it still increases the risk of overfitting in

many model applications. In other words, a model both trained

and validated on historical data may not accurately project the

full range of outcomes in a non-stationary future. However, cali-

bration to improvemodel fit can, in part, compensate for the sub-

jective decisions made by modelers concerning the selection of

observed input datasets (e.g., which meteorological, economic,

Box 1. Model benchmarking, inter-comparison projects, and ensembles

Benchmarking is the repeated confrontation of models with a range of observations to establish a track record of model develop-

ments. Observational datasets in themselves are uncertain,82,83 so benchmarking needs transparent information on which obser-

vations were used. Some global models already routinely undergo a systematic confrontation against data when new processes

are added (e.g., for the terrestrial carbon cycle).84–89 Recent approaches allow scoring of model performance against a wide range

of observations for global vegetation models.82 Observational data for benchmarking include multiple-site and remote-sensing

products of, e.g., fraction of absorbed photosynthetically active radiation, gross primary productivity, net primary productivity,

burnt area, river discharge, or atmospheric CO2 concentration. Specialized experiments or datasets, such as free-air carbon

enrichment studies, herbivore exclosures, or remotely sensed trait information90–92 can also be used to test the realism of specific

simulated processes. Diverse data are needed to assess both magnitude and seasonal and interannual variability of modeled pro-

cesses.82 These datasets can be used to test whether models correctly capture existing relationships between variables (or incor-

rectly assume existing relationships, which are not supported by observations). Physics, climate, and biogeochemistry observa-

tions are generally more numerous, systematically measured, and available on different spatiotemporal scales, whereas

biodiversity data are more disparate and contain many gaps (e.g., the GOOS marine initiative),93 so benchmarking is much

more challenging for biodiversity models.

In models of climate, oceans, and ecosystem dynamics, stochastic sensitivity analyses (sometimes called ‘‘perturbed physics ex-

periments’’) are applied (see also section parameter uncertainty) where model-internal parameter values are sampled across a

parameter-space to explicitly and transparently test parameter-value uncertainty.94 These analyses are computationally expen-

sive and, so, have not been sufficiently exploitedwith coupled and integratedmodels. But, a number of studies have demonstrated

their application both in offline models (e.g., related to vegetation or land-use change modeling) and in coupled models (e.g.,

related to carbon cycle-climate feedbacks).42,44,95–98 Results help to identify those parameters to which a model is most sensitive,

but can also inform sensitivity analysis of other models for those values. The outcomes aid the interpretation of, e.g., model en-

sembles as the magnitude of uncertainty seen in a single model’s output from stochastic parameter sensitivity analysis can be

compared with the spread in output within a model ensemble.

The currently most widely used approaches to quantify model uncertainty in climate change, land-use change, exploitation, and

ecosystem modeling are inter-comparisons and model ensembles.7,99–102 Ensemble modeling has proven highly beneficial for

improving the credibility of climate change projections with international model inter-comparison efforts such as the Coupled

Model Inter-comparison Project (CMIP).80 It is only starting for impact models projecting future terrestrial2,75 and marine biodiver-

sity (Fish-MIP).9,103 In model inter-comparisons, different models that address a similar question are run using a standardized

simulation protocol and the same input data. Output comparison helps to identify whether models agree or disagree in the simu-

lated time series or spatial patterns. In some cases, an ensemblemean is used based on the notion that the average across a range

of models would ‘‘average-out’’ some of the structural and parameter-related uncertainties and yield more robust results.15,94,104

However, the comparison between individual models and the ‘‘ensemble mean’’ might unintentionally also lead to themodel being

‘‘re-tuned’’ to fit better to the average model response. Furthermore, ‘‘families’’ of similar models (or with similar development her-

itage) tend to bias themean, as they are each given the sameweight as a genuinely different model. So far, most ensemble studies

do not identify and exclude (or give different weight to)models that fail to fulfill certain quality-assurance criteria (based on scores in

a benchmarking exercise). This has started, however, to be the case for the terrestrial models used in the annual global carbon

budget calculation.105 In view of the often still untested model structural and parameter uncertainties, deriving probabilistic esti-

mates of uncertainty from model ensembles must be viewed critically.94
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or demographic variables), alternative process algorithms (e.g.,

reference evapotranspiration), and initial conditions (e.g., land-

use classes and their distribution).112,113 Nevertheless, the con-

sequences of these choices may still be unclear when the model

is perturbed beyond the historical conditions represented in the

calibration data, leading to potentially large uncertainty in the

magnitude and direction of impacts.113

Input data uncertainty
It is difficult to decouple model structural uncertainty frommodel

input data uncertainty, since models with a different structure

commonly use different input data.7,104 Models of socio-ecolog-

ical systems are data demanding for parameterization, calibra-

tion, and initialization of simulations, including large demands

for baseline data. Uncertainties in the use of data can emerge

frommeasurement errors, data scarcity, or a mismatch between

the resolution and scope of the available data, and the needs of

the model. These uncertainties are amplified when models

include additional processes, represent processes at finer

spatial scales, or expand the spatial and temporal scope of sim-

ulations. For example, data availability has been assessed for

several mechanisms known to play a key role in mediating spe-

cies responses to climate change, such as physiological pro-

cesses, evolutionary potential, and species interactions.114

Even for the best-studied species, data were at best incomplete

if not entirely absent. In recent years, the scientific community

has gone to great lengths to increase access to biodiversity

data through the development of networks of high-quality moni-

toring systems (observation systems, instrumented sites, and

remote-sensing sensors),115–118 data repositories (e.g., GBIF.

org; obis.org), or citizen science programmes.119–121

For correlative species distribution models,122,123 the lack of

accuracy and comprehensiveness of the species data and of

the relevance and completeness of the predictors can critically

impact the relevance of the fitted niche models and hence of

the resulting outcomes.124,125 Data deficiencies and biases in

this specific approach include samples of species’ occurrences

that are too small or do not include absences, or have missing

covariates; the latter being known to introduce significant spatial

correlation in the errors of the analysis.126–129

Trait-based approaches have been developed to leverage

limited data and allowmodel prediction for a broad range of spe-

cies, including poorly studied ones. Traits are individual features

that inform individual performance.130 Both correlative and pro-

cess-based models have used trait parameters to simulate

higher-level processes. This includes population growth rate or

range shifts in plant,64,131–133 fish,134–136 or reptile and

amphibian communities.137 Trait data availability is increasing

rapidly (e.g., open digital repository;138,139 www.fishbase.org),

but it remains highly variable across taxonomic groups and

geographic areas. It is also strongly correlated with the ease in

measuring traits: so-called ‘‘soft’’ structural traits have been

more often measured than ‘‘hard’’ physiological traits, although

the latter often provide key information on species responses

to non-present analog conditions, such as tolerance to

drought or higher temperatures.140–142 In addition, functional

ecologists often report species mean trait values, resulting in a

lack of assessment of intraspecific trait variability142 despite

increasing evidence for its role in species adaptation and coex-

istence.143–146 These are both crucial in establishing biodiversity

projections.147

Uncertainties related to initial conditions are less well studied

in socio-ecological models,148 although they have been identi-

fied as important in some studies. For example, variability in

the data used to represent initial land-use conditions between

different models of land-use change contributed a substantial

part to the variation across future land-use projections7 with

distinct spatial differences in the level of uncertainty.104 Differ-

ences in initial data can arise from different definitions of the

same land cover type and different data acquisition ap-

proaches.7,104 Similarly, errors in the initialization of forest struc-

ture in large-scale simulations of vegetation models can result

from limited sampling and coarse resolution (for example, of

large-scale, remote-sensing products), and have been found to

propagate in subsequent model prediction uncertainty.73,149,150

Several methods are available to address input data uncer-

tainties. Hierarchical modeling techniques and other statistical

methods can address different sources of uncertainty explicitly

in modeling frameworks.146,151,152 Sensitivity and uncertainty

analyses43,153,154 can help identify and prioritize the need to

reduce parameter uncertainty given limited time and resources

and hence guide the empirical effort of data collection through

iterative cycles of data-model fusion.16,155,156 In stochastic

sensitivity analyses (sometimes called ‘‘perturbed physics ex-

periments’’; see Box 1) model-internal parameter values are

sampled across parameter-space to explicitly and transparently

test parameter-value uncertainty.94 These analyses are compu-

tationally expensive and, so, have not been sufficiently exploited

with coupled and integrated models. But, a number of studies

have demonstrated their application both in offline models

(e.g., related to vegetation or land-use change modeling) and

in coupled models (e.g., related to carbon cycle-climate feed-

backs).42,44,95–98 Results help to identify and rank those param-

eters to which a model output is most sensitive, but can also

inform sensitivity analysis of other models for those values. The

outcomes aid the interpretation of, e.g., model ensembles as

the magnitude of uncertainty seen in a single model’s output

from stochastic parameter sensitivity analysis can be compared

with the spread in output within a model ensemble.

Data assimilation techniques can bridge the gap between data

availability and model requirements. In particular, inverse

modeling, such as approximate Bayesian computation use a

wide range of data to refine values of input parameters.157–160

With these methods, parameter distributions provided by the

available data (prior parameter estimate) are iteratively adjusted

(posterior parameter estimate) by comparing simulation outputs

with observed data at different scales, e.g., element fluxes

derived from eddy-flux measurements,161 tree size distribution

derived from inventory data,162 or remote-sensing products.163

A promising avenue in terms of data assimilation is the spec-

trometry imagery of functional diversity,90,164 which, at least for

terrestrial ecosystems, can help to bridge the gap between

biodiversity data available from field surveys and the amount of

data required to better control for uncertainty in continental-

and global-scale models. This raises new technical challenges

in terms of data standardization (corrections and inter-calibra-

tion of remote-sensing images) and methods for data extrac-

tion.165 It also raises the issue that the input data themselves
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often derive from modeled products. For example, in modeling

the terrestrial C-cycle, the same level of uncertainty is possible

for several DGVMs forced by the same climate scenario (based

on a single emissions scenario and climatemodel), as for a single

DGVM forced by inputs from several climate scenarios (with

different emissions and climate models).166

Error propagation uncertainty
Uncertainties from error propagation arise in coupledmodel sys-

tems when the inputs to one model (e.g., a model of climate im-

pacts on ecosystems) derive from the outputs of another model

(e.g., a climate model). In some cases, several models are

coupled together leading to serious error propagation especially

at the end of the chain of coupled models.167,168 Error propaga-

tion becomes even more important when there are dynamic

feedbacks between models.

Coupled models are common in integrated assessment,

which seeks to explore the interactions between, as well as

within, different socio-ecological systems.56 Integrated assess-

ment models (IAMs) focus, for example, on the connections be-

tween the economy, the energy system, and land cover

change169 at global-scale levels. However, regional IAMs have

also demonstrated the importance of adopting a cross-sectoral

approach for impact assessments.37 Indeed, the impacts of

climate change as reported by the IPCC may be over- or under-

estimated because they fail to account for cross-sectoral inter-

actions.37 A source of uncertainty in coupled models is when

simplified, meta-models replace complex models to facilitate

data flows across systems.37,153 However, these uncertainties

may be acceptable since the indirect effects of one sector on

another sector are often more important than the changes within

a single sector itself.37 Similar issues arise for models that do not

consider cross-scale impacts, since one scale level is highly

dependent on the boundary conditions defined by a higher-scale

level.76

Different methods can evaluate the uncertainties arising from

error propagation, with qualitative methods being of particular

utility. Dunford et al.168 combined formal numerical approaches,

modeler interviews, and network analysis to provide a holistic

uncertainty assessment of a regional integrated assessment

model that considered both quantifiable and unquantifiable un-

certainty. Maps of modeler confidence (the counterpart of

uncertainty) were created from fuzzy-set methods and network

analysis to show that validation statistics are not the only factor

driving modeler confidence. Several other factors, such as the

quality and availability of validation data, themeta-modeling pro-

cess, trust between modelers, derivation methods, and prag-

matic factors, such as time, resources, skills, and experience

were also found to be important.168

For most simple models (e.g., linear Gaussian models), the

variance of the prediction associated with error propagation

can be computed analytically, paying attention to the depen-

dence between variables and the associated covariance.170 In

the majority of cases, modeling involves complex models that

are non-linear and non-Gaussian for which variance computa-

tion is analytically intractable. In such cases, error propagation

can be evaluated through simulation using, for example, Monte

Carlo methods.171 A Monte Carlo-based approach to evaluate

the propagation of uncertainties in a regional integrated assess-

ment model, showed that, rather than the uncertainties ‘‘explod-

ing’’ in importance, there was convergence across a range of

contrasting scenarios.43 This implies that if fully understood, un-

certainties arising from error propagation can be managed suc-

cessfully. However, the assessment of error propagation

through simulation is computationally demanding and, in gen-

eral, only applicable to models with rapid run times.

Model output-input chains and feedbacks can become com-

plex and lead to unacceptable levels of uncertainty for deci-

sion-making.168 Where possible, major sources of uncertainties

(data, model, parameters) should be identified a priori to allow

propagating errors with a minimum number of simulations.

Comprehensive sensitivity analysis is also useful in identifying

emergent uncertainties.153 Structured sensitivity analysis (also

referred to as scenario-neutral approaches and impact-

response surfaces) is valuable in evaluating whether the emer-

gent behavior in coupled models as a response to simple

perturbations is consistent with understanding or influenced by

error propagation, although sensitivity analysis as a method

has been criticized.172 Hierarchical Bayesianmodels can be use-

ful tools to incorporate and propagate errors from multiple sour-

ces (data, parameters, models), through the computation of the

predictive posterior distribution.173

UNCERTAINTIES IN DECISION-MAKING AND DECISION
METHODS

Intrinsic uncertainties in decision-making
Uncertainty pertaining to environmental processes and ecolog-

ical theory is interesting from an academic perspective, but it

becomes a practical issue when it impinges on the ability of man-

agers, planners, and policy makers to make relevant science-

based decisions to achieve societal objectives.

Despite multiple uncertainties, decisions are still made about

natural resource management. However, the decision-making

process is itself messy and difficult to predict, depending as it

does on the context, on the individuals involved (with their

conscious and unconscious biases), on the breadth of values

attributed to nature (including non-quantifiable ones), on the effi-

cient exchange of knowledge between science and policy, and

on time lags in policy implementation.174 Decision-making is

often disorganized and politicized, and has to deal with many

trade-offs, as well as co-benefits, making it difficult to generalize

about how uncertainty in scenarios andmodels affects decision-

making processes. There is a significant body of work in decision

theory and operations research on dealing with epistemic uncer-

tainty in decision-making. However, further understanding is still

needed on the relationship between science and the social and

political processes of decision-making, and this is an important

area of future research in environmental management.

What can be stated is that different degrees of uncertainties

and levels of controllability may be more effectively managed

by different strategies and approaches.3 Controllability here re-

fers to the degree of control that a decision-maker has over

the system being managed. Controllability tends to be higher

when decision horizons are shorter, when the decision-maker

has direct and sole jurisdiction over the places and/or resources

being managed, or when stakeholders do not vary widely in their

aspirations for the outcomes of management. Controllability
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covaries with uncertainties over temporal and spatial scales. It

tends to be higher at local and national scales relative to regional

and global scales.175When the system is highly controllable, and

uncertainties about the future are low, it may bemost effective to

implement optimal control tactics. Optimal control tactics gener-

ally involve ‘‘predict-then-act,’’ such as determining catch or

fishing quotas.176 In situations where controllability is low and

uncertainty is high, robustness analysis177 in support of scenario

planning178 may be favored.179

In this section, we further discuss how uncertainties in

scenarios and models can contribute to decision-making uncer-

tainty, as well as the tools that are available to address these un-

certainties and their limitations.

How uncertainties are communicated to decision-
makers
How uncertainties are accounted for in decision-making is

strongly dependent on how these uncertainties are communi-

cated to decision-makers. In international science-policy pro-

cesses, such as IPCC or IPBES, formalized uncertainty language

is used to communicate levels of confidence in the assessment

of scientific evidence,180 including results from scenarios and

models. This approach is generally qualitative, although at-

tempts have also been made to use quantitative probabilistic

statements. Whether this approach is effective in communi-

cating uncertainty to policy communities is debatable,181

although some benefit to decision-makers is likely since govern-

ment-approved assessment reports continue to use uncertainty

language.

How uncertainties are accounted for in decision-making is

also strongly dependent on how these uncertainties manifest

into the different indicators that are provided to decision-

makers, e.g., Living Planet Index,182 species richness,183 extinc-

tion risk,184 and monetary value of ecosystem services.185

Communicating alternative scenario outcomes thus requires

appropriate indicators that are understandable and meaningful

to decision-makers, and above all responsive to different drivers

in an expected way, i.e., with low uncertainty. Within the same

scenario or model, the way the output variables are transformed,

integrated, and combined into indicators does not result in the

same level of uncertainty,186 or in the same strength of the

signal-to-noise ratio.185 The granularity of an indicator can be

key (from population, to multispecies, to whole community level

for example), as well as the choice of the spatial and temporal

scales at which it is integrated. The portfolio statistical concept

developed in economics and used by analogy in ecology, ex-

plains why dynamics may be extremely volatile at small scales

(and high biodiversity granularity, e.g., population biomass),

but less variable at more aggregated scales (and low biodiversity

granularity, e.g., community biomass).187 International initia-

tives, such as the Group on Earth Observations Biodiversity

Observation Network (https://geobon.org), the Global Ocean

Observing System (www.goosocean.org), and the Biodiversity

Indicators Partnership (www.bipindicators.net), have proposed

a number of indicators and essential biodiversity variables to

characterize changes in biodiversity status under global change.

However, the selection of indicators has been donemostly under

the criteria of measurability and accessibility at the global

scale,116,118 but the performance of indicators in capturing

changes and associated uncertainty have rarely been tested in

a systematic way.188,189

It is not possible to say whether communicating to decision-

makers the uncertainties in scenarios and models of socio-

ecological systems actually changes decision-making in practice

or not. There is no objectivemeasure of the ‘‘success’’ of commu-

nicating uncertainties, nor is there a counterfactual to explain

whether alternative decisions would have been made in the

absence of knowledge about uncertainties.

How decision-making tools address uncertainties
A great number and variety of tools exist to support decision-

makers in dealing with various kinds of uncertainty when making

decisions.6 A key role of decision support tools is to provide a

framework that allows decision-makers and stakeholders to

separate deliberations about what represents a desired outcome

(competing objectives and preferences that arise from differing

values) fromdeliberations about the facts of thematter; the prob-

ability that a particular course of action will result in a particular

outcome. Therefore, it can be useful to think about different de-

cision support tools in terms of how they deal with competing

values and uncertainty (see Figure 2).

Decision support tools vary in terms of how they deal with

spatial scale and extent, cultural and administrative

complexity, multiple stakeholders, and competing values and

uncertainty.6 In Figure 2, we outline a small sample of the deci-

sion support approaches that deal with uncertainty to varying

degrees with the aim of highlighting the breadth of opportu-

nities for addressing competing values and models using exist-

ing decision support approaches, and these approaches are

summarized in Table S1.

Despite the widespread development of decision support

tools, the capacity of these tools to support objective deci-

sion-making may often be limited, especially where high levels

of complexity and uncertainty make interpretability difficult. For

example, when uncertain trade-offs between different

ecosystem services are at stake, tools designed to support de-

cisions are usually required to impose artificial boundaries or

quantifications, and to limit and render comparable the broad,

diverse range of services in question.190–193 This implicitly in-

volves the same value-based judgment under uncertainty that

a decision-maker would be faced with in the absence of such

a tool, but often obscures its subjective nature. More system-

atic biases also exist. Knowledge about socio-ecological sys-

tems is growing so rapidly and on so many fronts that it is

very difficult to capture accurately. Social science knowledge

in particular is consistently neglected, perhaps because most

tool developers are natural scientists.194,195 This also contrib-

utes to the neglect of cultural services, and their uncertainties,

in ecosystem services assessments.196 Even tools that

sacrifice coverage are likely to prove to be too complex and un-

certain to be used and understood by stakeholders as originally

intended.190

Decision support tools therefore run the risk of obscuring

uncertainty and subjectivity rather than helping to overcome

it. This can be revealed, and to some extent overcome, where

tools are used in participatory settings that allow for interroga-

tion of assumptions, representation, and outcomes by a range

of stakeholders.197 Comprehensive uncertainty evaluation can
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play an important role in this process,198 but is not itself suf-

ficient. Rather, improved and more comprehensive methods

of accounting for subjectivity and uncertainty within nominally

objective decision processes remain a priority.199

DISCUSSION: WAYS FORWARD

It is important to recognize the many sources of uncertainties that

exist in scenarios and models of socio-ecological systems. It is

also important to avoid these uncertainties becoming a disincen-

tive for action when facing environmental challenges, within either

the science or decision-making domains. Importantly, decision-

makers should not use uncertainty as an excuse for inaction.

There is no panacea for dealing with uncertainty, but a portfolio

of approaches may provide an opportunity to better understand

and cope with uncertainty. This portfolio might include a range

of methods fromModel Inter-comparison Projects (MIPs), valida-

tion against independent data, error propagation analysis, to

learning from uncertainty to guide model improvement. Table 2

provides a summary of the approaches to addressing uncertainty

that are discussed throughout this article. Figure 3 also provides a

visual representation of these approaches with referencing to Ta-

ble 2. Together, these provide a checklist of the types of actions

that can be implemented when dealing with uncertainties of sce-

narios and models of socio-ecological systems within the context

of supporting decision-making.

A number of ways of dealing with uncertainty are still not

routinely applied in scenario modeling and this is becoming

increasingly unacceptable. For instance, statistical parameter

uncertainty analysis may not be possible for all parameters for

all models, but it can be done at least for a subset of model pa-

rameters. Likewise, the confrontation of models with data is

inadequately done. In many cases, there may be insufficient

data to do this properly, but using this as an excuse to do nothing

at all is simply wrong. In situations where data are lacking, one

should start with qualitative "common sense" tests, such as by

Figure 2. A sample of decision tools to
support decision-making in the presence of
competing values and uncertainty
See Table S1 for tool summaries and key refer-
ences. Optimization approaches (orange) are a
broad family of approaches that utilize either simple
(cost benefit) or more sophisticated (info-gap)
mathematical formulations that maximize an
objective function. Multi-objective approaches
(green) focus more on characterizing the competing
values and preferences of decision stakeholders
through more deliberative, or sometimes hybrid
deliberative/quantitative processes. Integrated ap-
proaches (blue) tend to bring a suite of deliberative
and quantitative tools together into a framework
that seeks good decisions (e.g., Adaptive Man-
agement and Structured Decision-Making).

Turner et al.,200 who identified future pro-

jected rates of change in bioenergy

adoption to be three times faster than the

historical precedent for the most rapidly

changing land use.

Likewise, creating better scenarios of

uncertain futures would benefit from

consideration of a wider range of socio-economic and natural

system drivers going beyond a focus on climate change alone.2

This includes, for instance, drivers of biodiversity loss, such as

biomass extraction, invasive alien species, and pollution.2

Many scenarios are also weak at relating indirect drivers (i.e.,

the underlying socio-economic-political causes of change) to

direct drivers. We need to move beyond the representation of

stylized scenarios of, for example, consumption patterns, to sce-

narios and models that account for the role of human behavioral

processes in affecting ecological change. This includes better

representation of how policy and conservation initiatives affect

people with the knock-on effects this has for ecosystems.201

This is critical in better evaluating the considerable role of hu-

mans in causing ecological degradation, and in informing the

decision processes that can do something about it through

restoration and effective ecosystem management.202

Within this review, we have focused on models and scenarios

of socio-ecological systems. However, it is clear from the litera-

ture that there is a bias toward the ‘‘ecological’’ aspects rather

than the ‘‘social’’ aspects of such systems, such that many

modeling approaches do not adequately capture the full range

of interacting human and natural processes. We view this as a

major research gap in current modeling and scenario exercises,

and suggest that further development in this field would benefit

from a greater focus on the social phenomena that are critical

in understanding the functioning of nature on a human-domi-

nated planet.

Uncertainty is often seen as the problem, while instead it could

be interpreted as a ‘‘space’’ to manage socio-ecological sys-

tems in more desirable directions. Uncertainty also helps to

target future effort in model development and to identify areas

that lack understanding and, so, are priorities for future research.

However, structural uncertainty needs to go beyond the

improvement ofmodel components and details, by re-evaluating

the fundamental principles and assumptions of a model struc-

ture. Furthermore, part of the total uncertainty in the future of
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Table 2. Potential solutions and recommendations to address uncertainty in models and scenarios of socio-ecological systems for different sources of uncertainty

For these sources of uncertainty

Scenario uncertainty Model uncertainty Decision-making uncertainty

Potential solutions and recommendations Storyline Linguistic Parameter Structural Input Error propagation Tools Communication Interpretation

1. Stakeholder mapping exercises to

address uncertainty in participatory

processes

U

2. Explicitly state and document the

assumptions that underpin a scenario

narrative, and communicate these

assumptions when reporting a

scenario study

U U

3. Building ontologies U

4. Defining credible scenario parameter

ranges or using conditional probabilistic

methods

U

5. Considering a wider range of socio-

economic and natural system drivers that

go beyond a focus on single drivers alone,

e.g., climate change

U

6. Model inter-comparison exercises and

model ensembles

U U

7. Developing coupled socio-ecological

systems models that identify and represent

important feedbacks to support the

inclusion of feedbacks in scenarios

U U

8. Model benchmarking (see Box 1) U

9. Validation against independent data,

including the confrontation of models with

empirical data

U

10. Going beyond the improvement of

model components and details, by re-

evaluating the fundamental principles and

assumptions of a model structure

U

11. Developing scenarios and models that

better account for the role of human

behavioral processes in affecting ecological

change

U

12. Learning from uncertainty to guide

model improvement

U

13. Qualitative "common sense" tests,

where independent validation data are

lacking

U U

(Continued on next page)
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Table 2. Continued

For these sources of uncertainty

Scenario uncertainty Model uncertainty Decision-making uncertainty

Potential solutions and recommendations Storyline Linguistic Parameter Structural Input Error propagation Tools Communication Interpretation

14. Hierarchical statistical modeling

techniques and other methods, such as

sensitivity and uncertainty analyses

U U

15. Increasing data access, e.g.,

developing high-quality monitoring systems

(observations, instrumented sites, and

remote-sensing sensors), data repositories,

or citizen science

U

16. Data assimilation techniques, such as

inverse modeling, e.g., approximate

Bayesian computation

U

17. Error propagation analysis through, for

example, qualitative methods, formal

numerical approaches, modeler interviews,

and network analysis

U

18. Simulation using, for example, Monte

Carlo methods

U

19. Application of decision support tools to

policy questions

U U

20. International initiatives to standardize

indicators and make them available

U

21. Systematic testing of the performance

of indicators in capturing socio-ecological

changes and associated uncertainty

U

22. Defining appropriate indicators that are

clear, concise, and responsive to different

drivers

U

23. Improved and more comprehensive

methods of accounting for subjectivity and

uncertainty within nominally objective

decision processes

U

24. Co-creation and decision support in a

participatory setting that allows for

interrogation of assumptions,

representation, and outcomes by a range of

stakeholders

U U

See Table 1 and the visual presentation in Figure 3. This list does not preclude other relationships between solutions and uncertainty sources that may be feasible.
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socio-ecological systems actually derives from current and

future decisions and, thus, from a decision-maker or citizen point

of view, represents less of an ‘‘uncertainty’’ than our ‘‘societal

leeway’’ or choices. Disentangling and documenting the different

sources of uncertainties in socio-ecological systems is critical in

allowing the design and initiation of informed and efficient ac-

tions. Many things about the future will always be uncertain,

but we may wish to avoid the foolish and the fanatical by adopt-

ing the wisdom of doubt. Data and knowledge about socio-

ecological systems are increasing rapidly, and knowledge

improvement is often concomitant with awareness raising about

system complexity. This leads to the paradox that, as technical

knowledge increases, what we ignore is increasingly more

important than what we know.

Uncertainty in science should not imply uncertainty in making

decisions that respond to environmental problems.203 Ironically,

scientists see the quantification of uncertainty as underpinning

scientific rigor, whereas others see it as a sign of weakness in

the underlying science.204 Too often, such a fallacy has become

a flawed means of discouraging the endorsement of policies

against environmental problems, such as climate change or

biodiversity. Knowledge of uncertainty should inspire action

rather than indifference and guide decision-making, rather than

prevent it.203

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.
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R., Cheung, W.W.L., et al. (2010). Scenarios for global biodiversity in
the 21st century. Science 330, 1496–1501.

19. Elsawah, S., Hamilton, S.H., Jakeman, A.J., Rothman, D., Schweizer, V.,
Trutnevyte, E., Carlsen, H., Drakes, C., Frame, B., Fu, B., et al. (2020).
Scenario processes for socio-environmental systems analysis of futures:
a review of recent efforts and a salient research agenda for supporting
decision making. Sci. Total Environ. 729, 138393. https://doi.org/10.
1016/j.scitotenv.2020.138393.

20. Regan, H.M., Colyvan, M., and Burgman, M.A. (2002). A taxonomy and
treatment of uncertainty for ecology and conservation biology. Ecol.
Appl. 12, 618–628.

21. O’Neill, B.C., Kriegler, E., Riahi, K., Ebi, K.L., Hallegatte, S., Carter, T.R.,
Mathur, R., and van Vuuren, D.P. (2014). A new scenario framework for
climate change research: the concept of shared socioeconomic path-
ways. Climatic Change 122, 387–400.

22. Madin, J.S., Bowers, S., Schildhauer, M.P., and Jones, M.B. (2008).
Advancing ecological research with ontologies. Trends Ecol. Evol. 23,
159–168.

23. Sleeman, J., Finin, T., and Halem, M. (2018). Ontology-grounded topic
modeling for climate science research. arXiv, arXiv:1807.10965v2.

24. van Vuuren, D.P., Kriegler, E., O’Neill, B.C., Ebi, K.L., Riahi, K., Carter,
T.R., Edmonds, J., Hallegatte, S., Kram, T., Mathur, R., et al. (2014). A
new scenario framework for climate change research: scenario matrix ar-
chitecture. Climatic Change 122, 373–386.
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199. Estévez, R.A., and Gelcich, S. (2015). Participative multi-criteria decision
analysis in marine management and conservation: research progress

and the challenge of integrating value judgments and uncertainty. Mar.
Pol. 61, 1–7.

200. Turner, P.A., Field, C.B., Lobell, D.B., Sanchez, D.L., and Mach, K.J.
(2018). Unprecedented rates of land-use transformation in modelled
climate change mitigation pathways. Nat. Sustainability 1 (5). https://
doi.org/10.1038/s41893-018-0063-7.

201. Larrosa, C., Carrasco, L.R., and Milner-Gulland, E.J. (2016). Unintended
feedbacks: challenges and opportunities for improving conservation
effectiveness. Conservation Lett. 9, 316–326.

202. Arneth, A., Olsson, L., Annette, A., Erb, K.-H., Hurlbert, M., Kurz, W.A.,
Mirzabaev, A., and Rounsevell, M.D.A. (2021). Restoring degraded lands.
Annu. Rev. Environ. Resour. 46. https://doi.org/10.1146/annurev-envi-
ron-012320-054809.

203. Lewandowsky, S., Risbey, J.S., Smithson, M., Newell, B.R., and Hunter,
J. (2014). Scientific uncertainty and climate change: Part I. Uncertainty
and unabated emissions. Climatic Change 124, 21–37.

204. Howe, L.C., Macinnis, B., Krosnick, J.A., Markowitz, E.M., and Socolow,
R. (2019). Acknowledging uncertainty impacts public acceptance of
climate scientists’ predictions. Nat. Clim. Change 9, 863–867. 10.1038/
s41558-019-0587-5.

ll

One Earth 4, July 23, 2021 985

Review



Appendix B

127



  

1 Automatizing   the   analysis   of   computer   simulations   in   R:   some   limitations   

2 and   recommendations   

3 Criscely   Luján¹’²*,   Ricardo   Oliveros-Ramos³,   Wencheng   Lau-Medrano⁴,   Nicolas   Barrier⁵,     

4 Laure   Velez¹,   Philippe   Verley⁶,   Yunne-Jai   Shin¹   

5   

6 ¹    MARBEC,   IRD,   Univ.   Montpellier,   CNRS,   Ifremer,   Montpellier.   France   
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15 Abstract	 		

16 Computer  simulations  are  programs  that  numerically  solve  a  model  of  a  system  or  a  process.                 

17 Simulation  tools  with  diverse  levels  of  complexity  and  sophistication  have  been  widely  used               

18 and  developed  by  computational  biologists.  With  the  increasing  number  of  R  users,  there  are                

19 many  packages  already  implemented  to  analyze  computer  simulations  in  biology,  from  running              

20 the  model  to  the  analysis  of  model  outputs.  However,  the  way  these  tools  are  built  can                  

21 sometimes  limit  their  use.  Based  on  a  review  of  R  packages  found  in  CRAN  we  identify  four                   

22 main  limitations  in  packages  developed  for  the  analysis  of  computer  simulations:  i)  the               

23 inclusion  of  too  many  functions,  with  ii)  non-standard  R  naming  conventions,  resulting  in  iii)                

24 non-customizable  plots  of  simulation  outputs,  which  are  iv)  produced  as  side  effects  of  long                

1   



  

25 calculations.  The  aim  of  this  paper  is  to  propose  how  to  make  the  best  use  of  the  S3                    

26 object-oriented  approach  in  order  to  avoid  these  issues.  We  present  an  illustrative  example  by                

27 using  the  marine  ecosystem  model  OSMOSE  and  its  associated  R  package   osmose .  This               

28 analysis  provides  some  guidance  for  R  programmers,  software  developers  and  scientists  in              

29 general   aiming   to   improve   future   development   of   packages   in   computer   science.   

30 		

31 Author			summary:	 		

32 A  growing  number  of  computer  simulation  tools  are  being  developed  to  help  a  wide  user                 

33 community  to  solve,  run  and  analyse  models  in  different  scienti�ic  disciplines.  We  undertook  a                

34 review  of  such  tools  implemented  in  the  R  language  which  allows  to  show  their  main                 

35 limitations  from  a  user  perspective.  We  then  suggest  ways  to  improve  the  performance  of  these                 

36 simulation  tools  in  the  R  language.  We  speci�ically  illustrate  some  ready-to-use  solutions  based               

37 on  the  S3  Object-oriented  programming  system,  and  using  an  existing  R  package  of  a  marine                 

38 ecosystem  model  as  a  case  study.  Our  analysis  provides  some  guidance  for  R  programmers,                

39 software  developers  and  scientists  in  general  aiming  to  improve  future  development  of  R               

40 packages   in   computer   science.   

41   

42 1. Introduction	 		

43 Computer  simulations  are  de�ined  as  programs  that  contain  a  model  of  a  system  (natural  or                 

44 arti�icial)  or  a  system  process  ( De  Jong  and  Van  Joolingen,  1998 ).  The  development  of  computer                 

45 simulations  has  been  rising  for  the  last  �ifty  years  in  many  �ields  of  science  ( Winsberg,  2010 ).                  

46 Currently  their  applications  are  spread  in  a  wide  range  of  science  subjects  such  as  physics,                 

47 chemistry,   biology,   engineering,   computer   science,   among   others   ( Rutten   et   al.,   2012 ).   

48 R  ( Ihaka  and  Gentleman,  1996 )  is  a  free  software  and  open  source  project  that  runs  on  almost                   

49 any  standard  computing  platforms  and  operating  systems.  R  was  developed  with  the  aim  to                



  

50 perform  statistical  computing  and  one  of  its  key  advantages  over  many  other  softwares  is  its                 

51 sophisticated  graphics  capabilities  ( Peng,  2016 ).  Nowadays  R  shows  substantial  increases  in             

52 popularity  as  it  ranks  13th  in  the  TIOBE  index  ( https://www.tiobe.com/tiobe-index/ ,  updated             

53 at  May  2021),  a  measure  of  popularity  of  programming  languages.  The  increasing  demand  of                

54 computer  simulations  together  with  the  huge  number  of  R  users  within  the  scienti�ic               

55 community  has  pushed  the  development  of  R  packages  dedicated  to  the  use  of  models.  The                 

56 Comprehensive  R  Archive  Network  (CRAN:   https://cran.r-project.org/ )  is  the  of�icial  package            

57 repository  that  hosts  thousands  of  tools  including  those  which  are  dedicated  to  the  use  of                 

58 models.   This   repository   allows   access   to   the   code   and   documentation   of   packages.     

59 With  the  objective  to  make  a  state  of  the  art  of  the  tools  dedicated  to  computer  simulations,  we                    

60 performed  a  systematic  review  of  the  packages  hosted  in  the  CRAN  using  four  keywords                

61 ("modelling",  "modeling",  "computer",  and  "simul";  see   Appendix		A	 for  detailed  methodology).        	     

62 The  search  resulted  in  292  packages  related  to  computer  simulations  currently  available  in               

63 CRAN.  We  consider  this  is  a  lower  estimate  of  the  number  of  R  packages  as  some  packages                   

64 known  by  the  authors  were  not  included  in  this  search  due  to  the  mismatch  of  keywords  (e.g.                   

65 CHNOSZ  ( Dick,  2019 ),   photobiology  ( Aphalo,  2015 ),   phytools  ( Revell,  2012 ),   r4ss            

66 ( Taylor  et  al.,  2019 )  and   soilphysics  ( da  Silva  and  de  Lima,  2015 ))  or  because  they  are  not                   

67 available   in   CRAN   yet   and   are   hosted   on   other   platforms   (e.g.   GitHub,   GitLab).   

68 A  more  detailed  review  of  a  sample  of  73  packages  (see   Table		A.1	 in   Appendix		A	)  which  were             	   	    

69 published  between  2015  and  2020  showed  the  use  of  computer  simulation  packages  across  15                

70 science  �ields  including:  ecology,  geophysics,  seismology,  environmental  sciences,  social           

71 sciences,  hydrological  sciences,  biology,  among  others.  These  tools  are  not  only  diverse  in  terms                

72 of  thematics  of  application  but  also  in  terms  of  complexity  and  code  extension.  The  use  of  these                   

73 tools  allows  the  execution  of  models,  but  also  the  analysis  and  visualization  of  model  inputs                 

74 and   outputs.   



  

75 The  development  of  R  packages  as  interfaces  between  the  core  programs  of  a  model  and  the                  

76 handling  of  input/output  intends  to  ease  the  work  with  computer  simulations,  especially  for               

77 users  with  more  expertise  in  the  theoretical  aspects  behind  the  model  than  in  the  computing                 

78 and  programming  �ields.  However,  the  development  of  an  R  package  involves  a  set  of  unique                 

79 challenges,  and  as  a  lesson  from  the  packages’  review  we  found  that  standard  programming                

80 requirements   are   not   always   well   satis�ied.   

81 In  this  article  we  focus  on  four  issues  that  we  identi�ied  as  principal  limitations  in  the                  

82 development  and  use  of  packages  dedicated  to  computer  simulations,  providing  some             

83 recommendations   that   are   consistent   with   R   standards:   

84 - Too		many		functions	:  R  packages  that  are  developed  for  performing  simulation  analyses  	 	           

85 often  include  a  large  amount  of  functions.  Some  packages  that  are  part  of  our  review,                 

86 e.g.,   biomod2  ( Thuiller  et  al.,  2020 ),   BacArena  ( Bauer  et  al.,  2017 )  and   EpiModel               

87 ( Jenness  et  al.,  2018 ),  are  characterized  by  the  export  of  more  than  100  functions  in                 

88 total,  while   surveillance  ( Meyer  et  al.,  2017 )  has  more  than  400  functions.  Another               

89 package  that  was  not  part  of  our  search  in  CRAN  is   photobiology  ( Aphalo,  2015 )                

90 which  exports  more  than  900  functions.  The  inclusion  of  too  many  functions  in  the  use                 

91 of  a  package  is  a  limitation  for  the  users  who  are  bound  to  memorize  many  function                  

92 names,  in  addition  to  understanding  how  the  different  functions  work  and  are  linked,               

93 and  to  �inally  learn  how  to  interpret  the  function  outputs.  Therefore,  the  inclusion  of                

94 generic  functions  through  all  package  operations  can  be  useful.  Generic  functions  -  for               

95 example  a  function  called   summary  -  are  commonly  and  intuitively  interpreted  by  R               

96 users   as   a   function   providing   the   summary   of   a   speci�ic   R   object.   

97 - Non-standardized	 	names	:  The  selection  of  appropriate  names  (for  functions  and  	          

98 function  arguments)  is  fundamental  in  the  development  of  an  R  package.  Correctly              

99 naming  functions  helps  users  to  understand  how  a  package  works.  Moreover,  the  same               



  

100 arguments’  names  can  also  be  used  in  different  functions  within  the  package,  reducing               

101 the  number  of  names  to  be  learnt  by  the  users.  Potential  naming  problems  arise  when                 

102 packages  are  developed  without  following  any  type  of  naming  conventions  ( Bååth,             

103 2012 ),  or  in  other  cases  mixing  them.  And  even  when  a  package  follows  a  naming                 

104 convention,  sometimes  the  chosen  name  does  not  provide  any  information  about  the              

105 use  of  the  function  or  the  nature  of  the  argument.  Within  our  package  review  set,  only                  

106 39.7%  of  the  packages  present  standardized  function  names,  indicating  potential  issues             

107 in   the   way   the   code   is   developed   for   these   tools.   

108 - Non-customizable	 	plots	:  Packages  working  with  models’  inputs  and  outputs  usually  	          

109 include  visualization  and  plotting  functions.  However  the  importance  is  not  only  to              

110 provide  code  for  graphs,  but  also  to  provide  some  options  to  customize  graphs.  Only  this                 

111 way  a  user  can  quickly  analyze  and  understand  the  outcome  of  model  simulations,               

112 considering  that  the  needs  and  the  objectives  of  the  simulations  will  differ  from  one                

113 user  to  another.  Providing  basic  graphs  can  be  a  limitation  for  users  who  need  more                 

114 elaborate  graphs  but  do  not  have  enough  programming  skills  or  time  to  code  the  graphs                 

115 themselves.  Providing  non  customizable  graphs  is  a  limitation  for  users  in  general,  even               

116 for  those  having  high  experience  and  programming  skills,  since  the  plot  functions              

117 included  in  the  package  do  not  allow  changes  on  the  plots  appearance  to  get  more                 

118 sophisticated  and  customized  plots  (e.g.  changes  in  legends,  text  size,  colors).  In  our               

119 package  review,  72.6%  of  the  tools  provided  a  function  to  make  graphs,  but  only  18.9%                 

120 of  them  allowed  the  customization  of  graphs.  The  objective  of  a  package  should  be                

121 focused  in  providing  users  well-elaborated  graphs  that  are  as  �lexible  as  possible  to  offer                

122 users   a   large   range   of   options.   

123 - Plots	 	as	 	side	 	effects	 	of	 	complex	 	calculations	:  Computer  simulations  involve  many  	 	 	 	 	 	      

124 calculations  that  are  usually  included  in  the  packages  along  a  three  tiers  structure:  i)                



  

125 loading  of  the  input  data,  ii)  performing  calculations  and,  iii)  presenting  model  outputs               

126 (usually  by  means  of  graphs).  Sometimes  all  three  stages  are  performed  by  a  single                

127 function.  Nevertheless,  this  all-in-one  approach  can  limit  the  users  in  their             

128 understanding  of  the  steps  in-between  the  different  processes,  and  can  affect  time              

129 optimization  as  well.  It  is  therefore  highly  recommended  to  work  with  independent              

130 functions,  each  of  them  being  aligned  with  some  speci�ic  process  (reading  data,  running               

131 intermediate  analyses  and  displaying  results).  That  way  the  users  can  improve  their              

132 understanding  as  well  as  integrate  additional  levels  of  analyses,  such  as  merging  data,               

133 including   exploratory   analyses   in-between   and   also   customizing   plots.   

134 In  the  present  work  we  propose  ways  to  deal  with  the  four  limitations  described  above  when                  

135 developing  R  packages.  We  speci�ically  provide  some  guidance  on  how  to  make  the  best  use  of                  

136 the  S3  object-oriented  programming  (OOP)  system  to  analyze  computer  simulations.  We             

137 illustrate  our  purpose  using  the  marine  ecosystem  model  OSMOSE  ( Shin  and  Cury,  2004 )  and                

138 its  associated  R  package   osmose  ( Shin  et  al.,  2020 ).  Through  this  example,  we  aim  to  help  the                   

139 future  development  of  packages  and  tools  across  different  scienti�ic  �ields,  and  for  a  variety  of                 

140 programmers,  software  developers  and  scientists  developing  R  packages  to  perform  computer             

141 simulations.   

142   

143 2. The			S3			object-oriented			programming			system	 		

144 Object-oriented  programming  (OOP)  is  a  programming  paradigm.  In  an  OOP  system,             

145 programmers  de�ine  the  data  type  of  a  data  structure,  and  also  the  types  of  operations  that  can                   

146 be  applied  to  the  data  structure.  In  this  way,  the  data  structure  becomes  an   objec	t  ,  and  a  large                     

147 software  can  be  considered  as  a  society  of  objects  ( Kak,  2003 ).  Then,  all  objects  that  possess                  

148 the  same  attributes  and  exhibit  the  same  behavior  are  grouped  into  collections,  called   classes	               



  

149 ( Garrido,  2003 ).  The  operations  between  objects  are  determined  by  functions  known  as              

150 methods		  ( Craig,   2007 ).   

151   

152 2.1			OOP			systems			in			R	 		

153 R  has  four  OOP  implementations:  S3,  S4,  RC  (reference  classes)  and  R6.  The  "base  types"                 

154 system  is  not  object-oriented,  however  it  provides  the  building  blocks  for  the  OOP  systems  in  R                  

155 ( Wickham,  2014 ).  The  differences  between  these  OOP  systems  depend  on  how  classes  and               

156 methods  are  de�ined.  Most  OOP  programming  languages  (like  Java,  C++  and  C#)  implement  a                

157 style  of  OOP  called   message	 	passing	 	object-oriented	.  This  style  is  based  on  sending  messages      	 	         

158 between  objects,  and  based  on  these  messages  the  objects  determine  which  method  to  call.  S3                 

159 works  differently  and  implements  a  style  called   generic	 	function	 	object-oriented	.  Instead  of         	 	    

160 passing  messages,  it  uses  a  function  called  generic  function  that  decides  which  method  to  call                 

161 ( Wickham,  2014 ).  S3  is  the  simplest  OOP  system  in  R,  the  most  commonly  used  system  in  CRAN                   

162 packages   and   the   only   OOP   system   used   in   the   base   and   stats   packages   ( Wickham,   2014 ).   

163   

164 2.2			Visualization			and			analysis			using			S3			in			R	 		

165 Working  with  the  S3  system  in  R,  if  we  create  an  atomic  vector  using  the   sample  function,  this                    

166 object  will  be  of  the  class   integer .  And  then  if  we  encode  that  object  as  a  factor  using  the                     

167 as.factor    function,   this   object   will   be   of   the   class   called    factor :   

168   

169 #   Object   of   'integer'   class   

170 x0   =   sample(x   =   c(1:10),   size   =   20,   replace   =   TRUE)   

171 class(x0)   

172 #>   [1]   "integer"   

173 #   Object   of   'factor'   class   



  

174 x1   =   as.factor(x0)   

175 class(x1)   

176 #>   [1]   "factor"   

177   

178 After  the  creation  of  the  objects  x0  and  x1  we  can  use  generic  functions  that  already  exist  in  R,                     

179 and   produce   different   results   according   to   the   class   of   the   objects:   

180   

181 plot(x0)   

182 plot(x1)   

183   

184 Although  they  were  created  using  the  same  generic  function  ( plot ),  the  plots  produced  for  the                 

185 two  objects  are  different  ( Figure		1	).  The  plot  of  x0  shows  a  scatter  plot  while  the  plot  of  x1  a      	                

186 bar  plot.  This  is  due  to  the  use  of  the  S3  OOP  system.  Using  this  system,  the  generic  function                     

187 plot  is  calling  different  functions  (methods)  to  create  a  plot  depending  on  the  class  of  the                  

188 objects.  Then  for  the  object  of  integer  class  (x0)  the  method  used  is  the   plot.default .  While                  

189 for  the  object  of  factor  class  the  method  used  is  the   plot.factor .  However,  users  should                 

190 never  call  these  speci�ic  methods  directly,  but  instead  rely  on  the  generic  function  ( plot )  to                 

191 call   the   corresponding   methods.   



  

192

  

193 Figure		1	:  The  use  of   plot  generic  function  for  different  objects.  The  graph  A  (on  the  left)  is  a  	                   

194 scatter  plot  of  the  object  x0  ( plot(x0) )  of  the  class  integer.  The  graph  B  (on  the  right)  is  a  bar                      

195 plot  of  the  object  x1  ( plot(x1) )  of  the  class  factor  .  Differences  in  the  plots’  appearance  are                   

196 due  to  the  class  of  the  objects.  The  generic  function  plot  calls  the   plot.default  function                 

197 when  the  object  is  of  the  class  integer  and  the   plot.factor  function  when  the  object  is  of  the                    

198 class   factor.   

199   

200 The  principal  use  of  S3  OOP  in  R  is  for  the   print ,   summary ,  and   plot  methods  ( Wickham,                   

201 2019 ).  These  methods  allow  one  generic  function  to  display  the  objects  differently  depending               

202 on  their  class.  To  check  the  list  of  all  the  available  methods  for  a  S3  generic  function  use  the                     

203 methods    function   (for   example:    methods(plot) ).   

204   

205 3. Illustrating			the			S3			approach			using			the				osmose  		R			package	 		

206 3.1			The				osmose  		R			package	 		



  

207 osmose  is  the  R  package  created  for  the  OSMOSE  (Object-oriented  Simulator  of  Marine               

208 ecOSystEms)  model  ( Shin  and  Cury,  2001,  2004 ).  OSMOSE  is  a  spatial,  age  and  size-structured                

209 individual-based  model  (IBM)  of  the  dynamics  of  marine  �ish  and  macro-invertebrate             

210 communities.  OSMOSE  represents  the  major  processes  of  the  �ish  life  cycle  (growth,  predation,               

211 natural  and  starvation  mortalities,  reproduction  and  migration)  to  simulate  the  functioning  of              

212 marine   food   webs   under   climate   change   and   �isheries   pressure.   

213 The  programming  language  used  for  coding  the  core  processes  in  OSMOSE  is  Java  ( Gosling,                

214 2000 )  but  the  model  can  be  run  within  the  R  environment  with  the   osmose  R  package.  The                   

215 implementation  of  this  package  in  R  makes  the  use  of  the  model  easier  for  the  many  scientists                   

216 who   are   very   familiar   with   the   R   programming   language.  

217 Information  about  the  OSMOSE  model  can  be  found  in  its  of�icial  webpage              

218 ( http://www.osmose-model.org )  and  also  in  its  user  guide         

219 ( https://documentation.osmose-model.org/ ).  Some  OSMOSE  applications  can  be  found  in  the           

220 scienti�ic  literature,  e.g.,   Travers  et  al.  (2006) ;   Marzloff  et  al.  (2009) ;   Travers  et  al.  (2010) ;                 

221 Travers-Trolet  et  al.  (2014) ;   Grüss  et  al.  (2015) ;   Halouani  et  al.  (2016) ;   Oliveros-Ramos  et  al.                 

222 (2017) ;    Fu   et   al.   (2017) ;    Moullec   et   al.   (2019) .   

223 osmose  is  available  at  CRAN  ( https://cran.r-project.org/web/packages/osmose/index.html )        

224 and  provides  tools  to  build  and  run  simulations  using  the  OSMOSE  model.  It  also  allows  the                  

225 processing  of  model  con�iguration  and  outputs  producing  graphics  and  reports.  The  package              

226 code  and  its  new  implementations  can  also  be  found  in  its  GitHub  repository               

227 ( https://github.com/osmose-model/osmose ).   

228 As  part  of  the  OSMOSE  model  con�iguration,  a  large  amount  of  data  is  needed  to  run  the  model                    

229 but  also  to  analyze  the  model  outputs.  There  are  two  important  functions  in  the  package:                 

230 run_osmose  and   read_osmose .  The  �irst  function  is  focused  on  running  the  model,  and  the                



  

231 second  is  focused  on  reading  the  model  con�iguration  and  the  model  outputs.  A  schematic                

232 representation   of   these   functions   is   presented   in    Figure			2	.   

233   

234

  

235 Figure  2:  Diagram  representing  the  functioning  of  the   osmose  package.  To  use  this  package  we                 

236 need  the  input  information  that  constitutes  the  con�iguration  of  the  model  (parameterization,              

237 forcing  variables).  This  information  can  be  read  by  the  use  of  the   read_osmose  function.  This                 

238 function  can  also  be  called  to  read  all  the  outputs  after  running  the  model  by  the  use  of  the                     

239 run_osmose  function.  The  object  we  get  can  be  used  by  generic  functions  such  as   plot ,                 

240 summary    or    print .   

241   

242 3.2			Using			the				osmose  		R			package	 		



  

243 The  use  of  S3  OOP  in  this  package  allows  an  easy  manipulation  of  objects  by  using  classes,                   

244 methods  and  generic  functions.  A  summary  of  principal  classes  and  methods  in   osmose  is                

245 presented   in    Table			1	.   

246 Using   osmose  we  explain  how  we  dealt  with  the  four  limitations  previously  described.  The                

247 code  used  in  the  following  example  is  presented  in  the   Appendix	 	B	  section,  including  the            	     

248 creation  of  the  two  objects:   outputs  and   configuration .  Objects  of  the  classes   osmose               

249 and   osmose.config  respectively.  Using  these  two  objects  and  a  generic  function,  like plot ,               

250 we  can  produce  graphs  of  the  model  con�iguration  and  model  outputs.  See   Figure		3	,   Figure		4		            	  	 	

251 and   the   following   code   example:   

252   

253 #   Figure   3:   Plot   for   model   outputs   

254 plot(outputs,   what   =   "biomass")   

255   

256 #   Figure   4:   Plot   for   model   inputs   (model   configuration)   

257 plot(configuration,   what   =   "species")   



  

258

  

259 Figure	 	3	:  Plot  for  model  outputs.  Using  an  object  called   outputs  (created  in  the  section  	               

260 Appendix	 	B	)  and  the  generic  function   plo t  we  created  a  graph  for  the  simulated  biomass  of  	                

261 the  species  included  in  the  model.  We  need  to  specify  the  variable  that  is  plotted  by  the  use  of                    

262 the   argument    what .   

263   



  

264

  

265 Figure	 	4	:  Plot  for  model  inputs.  Using  an  object  called   configuration  (created  in  the  	              

266 section   Appendix	 	B	)  and  the  generic  function   plot  we  created  a  graph  of  the  growth   	              

267 parameters  of  the  �irst  species  included  in  the  model.  We  need  to  specify  the  variable  that  is                   

268 plotted   by   the   use   of   the   argument    what .   

269   

270 This  example  shows  that  with  the  use  of  a  reduced  number  of  functions  and  a  few  lines  of  code,                     

271 users  can  generate  graphs  in  an  easy  way.  Here  we  are  only  using  one  generic  function  ( plot )                   

272 and  based  on  the  class  of  the  objects  the  corresponding  method  is  called  without  user                 

273 intervention  (e.g.   plot.osmose ).  The  generic  function  only  needs  to  be  provided  with  an               

274 object  of  the   osmose ’s  classes  and  the  variable  name  to  be  plotted  by  the  use  of  the  argument                    



  

275 " what ".  This  argument  speci�ies  the  process  (as  part  of  the  model  con�iguration)  or  the               

276 variable   (as   part   of   the   model   output)   to   be   plotted.   

277 osmose  also  includes  plot  types  for  OSMOSE  R  objects.  The  selection  of  the  plot  types  is  done                   

278 through  the  use  of  the  argument  called  " type "  (as  in  the   plot  generic  function  of  the                  

279 graphics  R  package).  If  this  parameter  is  not  speci�ied  in  argument,  it  always  uses  the  default                  

280 value  ( type  =  1 ).  For  more  details  about  all  plot  types  in   osmose ,  see  its  internal  code  in                    

281 GitHub   ( https://github.com/osmose-model/osmose ).   

282 Graphical  differences  between  default  plots  and  customized  plots  are  presented  in  the  next               

283 example  of  code.  We  used  an  object  of  class   osmose  to  make  a  graph  using  the  variable  called                    

284 biomass  ( what  =  "biomass" )  and  the  plot  type  number  2  ( type  =  2 ).  The  default  plot                  

285 ( Figure	 	5-A	)  can  be  produced  based  on  three  arguments  ( x ,   what  and type ).  These  	              

286 arguments  can  be  used  through  all  plot  methods  in   osmose  allowing  the  standardization  in  the                 

287 arguments   names   of   functions.   

288 The  plot  can  be  customized  using  additional  arguments  such  as:   col ,   lty ,   lwd ,   cex ,                

289 cex.axis  and   ylim  ( Figure	 	5-B	).  These  arguments’  names  are  the  same  as  in  the   plot     	            

290 generic  function  in  R,  and  therefore  comply  with  standardization  requirements.  Moreover,  the              

291 customization  of  plots  is  not  only  about  the  arguments  that  change  the  plot  appearance,  but                 

292 also  about  the  arguments  that  change  the  information  presented  in  the  plot.  An  example  of  that                  

293 feature  is  in  the  use  of  the  arguments  called:   species ,   speciesNames ,  and   initialYear .               

294 The  �irst  argument  is  about  the  selection  of  components  to  plot  (indicating  which  species  will                 

295 appear  on  the  graph),  while  the  second  one  speci�ies  which  names  will  be  assigned  to  each                  

296 species  (e.g,  using  scienti�ic  names).  Since  this  is  a  graph  of  time  series,  this  plot  also  allows  us                    

297 to  manipulate  the  year  dimension  in  the  x-axis  by  using  the  argument  called   initialYear .                

298 These  examples  show  that  users  can  produce  well-elaborated  graphs  in  an  easy  and  intuitive                



  

299 way  but  the  code  of  the  package  is  also  �lexible  enough  to  allow  users  to  make  changes  in  the                     

300 appearance   and   content   of   the   graphs.   

301

  

302 Figure	 	5	:  Customization  of  plots.  Calling  the  same  object  of  class   osmose  two  plots  were  	               

303 created.  The  graph   A	 (on  the  left)  is  a  default  plot  of  the  variable  called  biomass  using  the  plot                     

304 type  number  2  ( type  =  2 ).  The  graph   B	 (on  the  right)  is  a  customized  plot  using  the  same                     

305 variable  and  plot  type  ( biomass  and   type  =  2 )  but  including  changes  about  the  appearance                 

306 of  the  plot  ( col ,   lty ,   lwd ,   cex ,   cex.axis ,  and   ylim )  as  well  as  the  content  of  the  plot:                    

307 selection  of  species  ( species  =  c(1,  2) ),  species  names  ( speciesNames  =             

308 c("Milicertus  sp.",  "Metapenaeus  monocero") ),  and  the  initial  year  in  the  x-axis             

309 ( initialYear   =   2002 ).   

310   

311 #   Default   plot   

312 plot(outputs,   what   =   "biomass",   type   =   2)   

313   

314 #   Customized   plot   



  

315 plot(outputs,  what  =  "biomass",  type  =  2,  col  =  c("red",  "blue"),  lty  =               

316 5,lwd  =  1.5,  cex  =  1.3,  cex.axis  =  1.5,  ylim  =  c(0,  320),  species  =  c(1,                  

317 2),  speciesNames  =  c("Milicertus  sp.",  "Metapenaeus  monocero"),        

318 initialYear   =   2002)   

319   

320 The  above  code  example  shows  that  subsequent  to  the  simulation  run,  the  creation  of  the                 

321 " outputs "  object  allows  re-use  of  the  same  object  to  create  different  plots  and  analyses,                

322 without  needing  to  read  and  run  the  model  again.  This  is  due  to  the  structure  of  this  package                    

323 which  works  in  three  tiers:  loading  the  inputs,  performing  calculations  and  plotting  the  results.                

324 Everything  needed  for  plotting  (in  this  example,  the  model  outputs)  are  assigned  to  an  object                 

325 (" outputs ")  that  is  used  to  display  the  results  and  possibly  run  statistical  analyses.  At  the                 

326 level  of  the  creation  of  plots,  graphical  changes  can  be  done  using  the  same  object.  In  case  users                    

327 require  very  speci�ic  analyses,  more  complex  analyses  or  plots  that  are  not  included  in  the                 

328 package  yet,  users  can  extract  the  variable  of  interest  by  using  the  supplied   get_var  function                 

329 to   then   make   additional   calculations   and   produce   graphs   outside   the   package.   

330   

331 Table			1	:   Examples   of    classes   and   methods   found   in    osmose   

Class   Method   Description   

osmose   print,   summary,   
plot,   report,   
get_var   

Main    osmose    class   produced   with   
read_osmose    function   when   
model   outputs   are   read   

osmose.config   plot,   get_var   Class   produced   with    read_osmose   
function   when   model   con�iguration   
are   read   

osmose.biomass   plot   Exclusive   class   of    osmose    outputs   
and   the   variable   biomass   

osmose.abundance  plot   Exclusive   class   of    osmose    outputs   
and   the   variable   abundance   



  

332   

333 3.3			Implementing			the				osmose  		R			package	 		

334 To  overcome  the  main  issues  encountered  when  developing  packages  for  computer  simulations              

335 (see   introduction),   we   adopted   a   range   of   decisions   for   the   implementation   of    osmose :   

336 Keeping		the		number		of	 	functions		as		low		as		possible	:  There  are  only  two  principal  functions  	 	 	 	 	 	 	 	        

337 to  start  using   osmose :   run_osmose  to  run  the  computer  simulation  and   read_osmose  to               

338 read  the  model  con�igurations  and  model  outputs.  As  mentioned  above,  the  use  of  generic                

339 functions  and  classes  and  the  creation  of  methods  (three  important  components  of  the  S3  OOP                 

340 system)  allowed  to  reduce  the  number  of  functions  used  in  the  package.  For  methods,   osmose                 

341 uses  the  same  generic  function  names  (for  example:   plot  and   get_var )  across  different               

342 classes  such  as   osmose  and   osmose.config .  This  way  the  users  only  need  to  recall  that                 

343 there  are  two  functions  (called   plot  and   get_var )  which  allow  them  to  make  graphs  and                 

344 obtain  variables,  respectively.  However,  in  terms  of  code  (internally  in  the  package),  each  class                

345 uses  different  methods  (functions)  which  results  will  depend  on  the  handled  object:  i)               

346 plot.osmose.config  and   get_var.osmose.config  for  objects  of  the  class          

347 osmose.config ,  and   plot.osmose  and   get_var.osmose  for  objects  of  the  class            

348 osmose .   

349 Five  methods  were  developed  for  the   osmose  class.  Three  of  them  use  common  generic                

350 functions  in  R:   print ,   summary ,  and   plot .  For  the  other  two  methods,  generic  functions               

351 were   created:    report    and    get_var .   These   methods   allow   to:   

352 - print.osmose :   print   information   about   the   outputs   of   an    osmose    object.   

353 - summary.osmose :   summarize   information   about   the   outputs   of   an    osmose    object.   

osmose.yield   plot   Exclusive   class   of    osmose    outputs   
and   the   variable   yield   



  

354 - plot.osmose :   produce   different   plots   from   the    osmose    object.   

355 - report.osmose :   export   a   report   of   an    osmose    object.   

356 - get_var.osmose :   extract   a   variable   that   is   part   of   the    osmose    outputs.   

357 In   the    osmose.config   class ,   two   methods   were   created:   

358 - plot.osmose.config :   produce   different   plots   for   an    osmose.config    object.   

359 - get_var.osmose.config :  extract  a  variable  that  is  part  of  the   osmose            

360 con�iguration.   

361 Standardizing		names	:  The  two  main   osmose ’s  functions,   run_osmose  and   read_osmose ,  	          

362 follow  the  underscore_separated  standard  naming  convention  ( Bååth  (2012) ).  Depending  on            

363 the  use  of   read_osmose  the  class  names  can  be:  i)   osmose  class  when  reading  the  model                  

364 outputs,  or  ii)   osmose.config  class  when  reading  the  model  con�iguration.  Both  types  of               

365 objects  are  related  to  the  OSMOSE  model,  therefore  we  kept  the  name  "osmose"  in  both  class                  

366 names.  However,  we  separate  the  second  class  name  by  using  "."  for  the  names  of  the  classes                   

367 (for  example:   osmose.config ).  This  avoids  confusion  with  the  functions  names  that  use  the               

368 underscore_separated   naming   convention.   

369 Concerning  generic  functions,  the  naming  was  carefully  done  along  the  standards  adopted  for               

370 the  names  of  common  generic  functions  in  R.  For  example,  the  function   plot  is  a  generic                  

371 function  commonly  used  for  plotting  R  objects.  We  chose  the  same  function  name  for  both                 

372 classes  of   osmose .  Other  generic  functions  developed  for   osmose  class  are  also  common               

373 generic  functions  in  R  (e.g.,   print  and   summary )  while  functions  such  as   get_var  and                

374 report  are  speci�ic  to   osmose  and  were  assigned  descriptive  names  that  are  the  same  in  both                  

375 classes  of   osmose .  Both   get_var  and   report  are  important  generic  functions  for   osmose               

376 users,  they  allow  to  extract  a  variable  to  perform  additional  analyses  and  to  generate  reports,                 

377 respectively.   



  

378 The  importance  of  standardizing  names  is  also  taken  into  account  in  the  naming  of  functions’                 

379 arguments.  For  example,  as  arguments  of  the  generic  function   plot  and  the  methods               

380 plot.osmose  and   plot.osmose.config ,  we  reuse  the  arguments’  names  of  the            

381 plot.default  function  in  R,  such  as:   lty ,   lwd ,   cex ,   cex.axis ,   col ,  among  others.  In  this                 

382 way,  users  who  are  already  familiarized  with  the  use  of  the   plot.default  function  in  R,  can                  

383 readily  use  the  same  arguments  in  the  plot  methods  of   osmose .  We  also  created  other                 

384 arguments  for  plot  methods  such  as   what ,   type ,   species  and   initialYear ,  which  are  all                

385 the   same   across   the   methods.   

386 Customizing		plots		on		demand:			Allowing  users  to  customize  plots  was  a  real  challenge  in  the  	 	 	 	            

387 development  of   osmose  due  to  the  high  number  of  variables  with  different  dimensions  in  the                 

388 model  con�iguration  and  model  outputs.  However  that  was  managed  by  developing  plot  types,               

389 maintaining  �lexibility  in  the  use  of  plot  arguments  as  much  as  possible.  For  example,  choosing                 

390 an   object   of   class    osmose    the   use   of   the   argument   type   looks   as   simple   as   the   following   code:   

391   

392 #   Using   the   'outputs'   object   created   in   the   section   Appendix   B   

393 #   Plot   of   biomass   

394 plot(outputs,   what   =   "biomass",   type   =   1)   

395   

396 What  is  internally  happening  in  the  package  is  that  due  to  the  class  of  the  object  ( osmose ),  the                    

397 generic  function  ( plot )  calls  the  method   plot.osmose .  Then  this  function  uses  the  generic               

398 function  ( get_var )  and  the  corresponding  method  ( get_var.osmose )  to  obtain  an  object             

399 of   the   class    osmose.biomass :   

400   

401 plot.osmose   =   function(x,   what   =   "biomass",   ...)   {   

402 x   =   get_var(x,   what   =   what,   ...)   #   using   here:   'get_var.osmose'   method   



  

403 #   now   the   class   of   'x'   is   osmose.biomass   

404 plot(x,   ...)   #   using   here:   'plot.osmose.biomass'   method   

405 return(invisible())   

406 }   

407   

408 Due  to  the  class  of  the  " x "  object  ( osmose.biomass ),  the  plot  method  called  is                

409 plot.osmose.biomass .   The   structure   of   this   method   is   the   following:   

410   

411 plot.osmose.biomass   =   function(x,   type   =   1,   ...)   {   

412 osmosePlots2D(x,   type   =   type,   ...)   

413 return(invisible())   

414 }   

415 osmosePlots2D  is  an  internal  function  in   osmose  that  was  created  for  variables  that  have  2                 

416 dimensions.  In  this  example,  the  variable  ( what  =  biomass )  has  information  by  species  and                

417 time.  Then  the  way  the  biomass  variable  is  plotted  is  precisely  determined  by  the  type                 

418 argument  passed  to  the  function   osmosePlots2D .  By  default  it  is  using  the  type  number  1                 

419 ( type   =   1 ).   

420 Internal  plot  functions  such  as   osmosePlots2D  process  information  according  to  the             

421 dimensions  of  the  variables  to  be  plotted,  regardless  of  the  content  of  the  information.  The                 

422 function   osmosePlots2D  can  thus  be  reused  for  other  variables  that  have  2  dimensions  like                

423 for  example  the  OSMOSE  variables  called  "abundance"  and  "yield".  Using  the  same  idea  we                

424 created  other  functions  called   osmosePlots3D  and   osmosePlots4D ,  for  other  variables            

425 that   are   in   three   or   four   dimensions,   respectively.   



  

426 One  important  argument  of  the  internal  plot  functions  is  the   type .  This  argument  determines                

427 how  the  variable  is  plotted.  Then,  many  types  of  plots  can  be  included  in  each  of  the  internal                    

428 plot   functions    osmosePlots2D ,    osmosePlots3D ,    osmosePlots4D    ( Figure			6	).   

429   

430

  

431 		

432 Figure	 	6	:  Schematic  representation  of  the  use  of  internal  functions  ( osmosePlots2D ,  	           

433 osmosePlots3D ,   osmosePlots4D )  for  information  processing.  In  this  example,  we  want  to             

434 plot  a  variable  of  an  OSMOSE  object  (con�iguration  or  outputs)  containing  information  in               

435 several  dimensions  that  need  to  be  processed  before  plotting.  The  internal  plot  functions              

436 process  the  information,  using  osmosePlots2D  for  variables  that  have  2  dimensions,             

437 osmosePlots3D  for  3  dimensions,  and   osmosePlots4D  for  4  dimensions.  The  different             

438 ways  to  plot  the  variables  are  included  in  these  internal  plot  functions  by  the  use  of  the                   

22   



  

439 argument  called  "type"  ( type  =  1 ).  In  this  representation  we  included  only  one  plot  type  for                  

440 each   internal   plot   function.   

441   

442 The  way  the  code  of  the  plot  types  is  structured  allows  to  create  as  many  plot  types  as  possible                     

443 for  each  internal  plot  function.  Therefore,  future  plot  types  that  can  be  created  for  OSMOSE                 

444 variables  (as  part  of  model  con�iguration  or  model  outputs)  will  not  disrupt  the  functions  that                 

445 were  already  developed  but  will  expand  the  code  of  the  package  by  creating  more  types.  On  the                   

446 other  hand,  the  code  can  be  extended  to  plot  other  OSMOSE  variables.  This  can  be  done                  

447 including  more  functions  with  the  same  structure  than   plot.osmose.biomass ,  for  example             

448 by   changing   the   variable   " biomass "   for   " mortality ".   

449 Dissociating	 	the	 	simulation	 	and	 	plots	 	sequences	:  The  way  we  developed   osmose ,  having  	 	 	 	 	        

450 functions  organized  in  three  steps,  avoided  the  creation  of  plots  as  side  effects  of  complex                 

451 calculations.  The  �irst  step  includes  functions  to  run  the  model  ( run_osmose ).  Then  after               

452 running  the  model,  if  nothing  is  changed  about  the  con�iguration,  we  do  not  need  to  go  through                   

453 this  step  again.  This  �irst  step  also  involves  reading  the  model  con�iguration  and  model  outputs                 

454 ( read_osmose ).  The  second  step  includes  functions  that  perform  intermediate  analyses,  such             

455 as  extracting  and  transforming  a  variable  that  is  part  of  the  outputs  (e.g.  biomass).  Finally,  the                  

456 third  step  consists  in  plotting  the  results  of  the  model  runs.  This  step  reuses  the  work  done                   

457 before   and   the   object   created   from   running   the   model.   

458   

459 4. Conclusions			and			perspectives	 		

460 There  are  many  R  packages  already  available  to  facilitate  the  use  of  computer  simulations.  The                

461 review  of  the  CRAN  packages  we  performed  showed  that  the  way  these  tools  are  implemented                 

462 can  sometimes  limit  their  use.  We  identi�ied  four  main  limitations:  i)  inclusion  of  too  many                 



  

463 functions,  with  ii)  non-standard  R  naming  conventions,  to  produce  iii)  non-customizable  plots,              

464 which  are  iv)  produced  as  side  effects  of  long  calculations.  Our  review  also  revealed  that  only                  

465 47.9%  of  the  analyzed  packages  dedicated  to  computer  simulations  used  the  OOP  system,  and                

466 among  them  82.9%  adopted  the  S3  OOP  and  34.3%  the  S4  OOP  (so  17.2%  using  a  mix  of  both                     

467 S3  and  S4  OOP).  This  is  consistent  with  the  literature  ( Wickham,  2014 )  which  reports  that  S3  is                   

468 one  of  the  most  common  OOP  systems  in  CRAN  packages.  However,  the  limitations  raised  in                 

469 this   study   are   regularly   encountered,   even   if   an   OOP   system   was   used,   whether   S3   or   S4   OOP.   

470 The  aim  of  this  study  was  to  explain  how  to  make  the  best  use  of  the  S3  OOP  system,  describing                      

471 the  bene�its  of  using  this  system  for  running  and  analyzing  computer  simulations.  We  selected                

472 this  particular  S3  system  due  to  its  popularity  in  R.  However  the  coding  decisions  adopted  for                  

473 osmose  and  that  we  explained  through  this  study  are  applicable  to  any  other  package  that  uses                  

474 any  other  OOP  system.  In  the  case  of  the   osmose  package,  S3  enables  users  to  handle  complex                   

475 OSMOSE  model  applications  in  an  intuitive  way  and  with  a  fast  learning  curve.  From  the                 

476 perspective  of  a  developer,  the  use  of  the  S3  OOP  system  allows  us  to  work  with  a  tool  that  can                      

477 evolve  easily.  The   osmose  code  can  be  used  to  create  new  structures  in  terms  of  analyses  (new                   

478 objects,  classes  and  methods).  Analyses  such  as  the  calibration,  the  validation  or  the  sensitivity                

479 analysis  of  the  OSMOSE  model  are  essential,  and  more  generally  for  any  type  of  applied  model.                  

480 These  analyses  can  be  easily  included  in  the  development  of   osmose  by  for  example  the                 

481 creation   of   new   classes   and   their   corresponding   generic   functions   and   methods.   

482 The  code  to  produce  graphics  is  an  important  component  in   osmose .  Even  though  many  plot                 

483 types  are  already  implemented  in  this  package,  the  core  of  the  OSMOSE  model  continues  to                 

484 evolve  which  requires  the  creation  of  new  graphics  and  new  types  of  analyses.  This  is  all                  

485 facilitated  by  an  appropriate  use  of  the  S3  approach.  It  also  allows  users  to  call  speci�ic                  



  

486 packages  to  customize  the  graphs  according  to  their  needs  and  preferences  (e.g.  by  using                

487 Tidyverse    or    lattice    packages).   

488 The  re�lection  of  this  work  goes  beyond  the   osmose  case  study,  opening  the  discussion  on  how                  

489 existing  techniques  (like  the  use  of  OOP)  can  provide  important  bene�its  in  the  development  of                 

490 tools  that  are  highly  used  in  science.  We  focused  on  S3  but  similar  solutions  can  also  be                   

491 implemented   by   using   other   OOP   systems   in   R   and   even   in   another   programming   language.   

492   
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547 17. S.  Meyer,  L.  Held,  and  M.  Höhle.  Spatio-temporal  analysis  of  epidemic  phenomena  using  the  r                 

548 package  surveillance.  Journal  of  Statistical  Software,  77(11),  2017.  URL           

549 https://doi.org/10.18637/jss.v077.i11.   

550 18. F.  Moullec,  L.  Velez,  P.  Verley,  N.  Barrier,  C.  Ulses,  P.  Carbonara,  A.  Esteban,  C.  Follesa,  M.  Gristina,                    

551 A.  Jadaud,  et  al.  Capturing  the  big  picture  of  mediterranean  marine  biodiversity  with  an  end-to-end                 

552 model  of  climate  and  �ishing  impacts.  Progress  in  Oceanography,  178:102179,  2019.  URL              

553 https://doi.org/10.1016/j.pocean.2019.102179.   

554 19. R.  Oliveros-Ramos,  P.  Verley,  V.  Echevin,  and  Y.-J.  Shin.  A  sequential  approach  to  calibrate                

555 ecosystem  models  with  multiple  time  series  data.  Progress  in  oceanography,  151:227–244,  2017.  URL               

556 https://doi.org/10.1016/j.pocean.2017.01.002.   

557 20. Peng,   R.   D.   (2016).   R   programming   for   data   science   (pp.   86-181).   Leanpub.   

558 21. L.  J.  Revell.  phytools:  an  r  package  for  phylogenetic  comparative  biology  (and  other  things).                

559 Methods  in  ecology  and  evolution,  3(2):217–223,  2012.  URL          

560 https://doi.org/10.1111/j.2041-210X.2011.00169.x.   

561 22. N.  Rutten,  W.  R.  Van  Joolingen,  and  J.  T.  Van  Der  Veen.  The  learning  effects  of  computer                   

562 simulations  in  science  education.  Computers  &  Education,  58(1):136–153,  2012.  URL            

563 https://doi.org/10.1016/j.compedu.2011.07.017.   



  

564 23. Y.-J.  Shin  and  P.  Cury.  Exploring  �ish  community  dynamics  through  size-dependent  trophic              

565 interactions   using   a   spatialized   individual-based   model.   Aquatic   Living   Resources,   14(2):65–80,   2001.     

566 24. Y.-J.  Shin  and  P.  Cury.  Using  an  individual-based  model  of  �ish  assemblages  to  study  the  response                  

567 of  size  spectra  to  changes  in  �ishing.  Canadian  Journal  of  Fisheries  and  Aquatic  Sciences,  61(3):414–431,                 

568 2004.   URL   https://doi.org/10.1139/f03-154   .   

569 25. Y.-J.  Shin,  T.  Morgane,  V.  Philippe,  R.  Oliveros-Ramos,  L.  Velez,  N.  Barrier,  C.  Lujan,  M.  Hurtado,                  

570 and  W.  Lau-Medrano.  osmose:  Object  Oriented  Simulator  of  Marine  Ecosystems,  2020.  URL              

571 https://CRAN.R-project.org/package=osmose   .   R   package   version   3.3.4.   

572 26. I.  G.  Taylor,  I.  J.  Stewart,  A.  C.  Hicks,  T.  M.  Garrison,  A.  E.  Punt,  J.  R.  Wallace,  C.  R.  Wetzel,  J.  T.                         

573 Thorson,  Y.  Takeuchi,  K.  Ono,  C.  C.  Monnahan,  C.  C.  Stawitz,  Z.  T.  A’mar,  A.  R.  Whitten,  K.  F.  Johnson,  R.  L.                        

574 Emmet,  S.  C.  Anderson,  G.  I.  Lambert,  M.  M.  Stachura,  A.  B.  Cooper,  A.  Stephens,  N.  L.  Klaer,  C.  R.                      

575 McGilliard,  I.  Mosqueira,  W.  M.  Iwasaki,  K.  Doering,  and  A.  M.  Havron.  r4ss:  R  Code  for  Stock  Synthesis,                    

576 2019.   URL   https://CRAN.R-project.org/package=r4ss   .   R   package   version   1.36.1.   

577 27. W.  Thuiller,  D.  Georges,  R.  Engler,  and  F.  Breiner.  biomod2:  Ensemble  Platform  for  Species                

578 Distribution  Modeling,  2020.  URL  https://CRAN.R-project.org/package=biomod2  .  R  package  version           

579 3.4.6.   

580 28. M.  Travers,  Y.-J.  Shin,  L.  Shannon,  and  P.  Cury.  Simulating  and  testing  the  sensitivity  of                 

581 ecosystem-based  indicators  to  �ishing  in  the  southern  benguela  ecosystem.  Canadian  Journal  of              

582 Fisheries   and   Aquatic   Sciences,   63(4):943–956,   2006.   URL   https://doi.org/10.1139/f06-003   .     

583 29. M.  Travers,  K.  Watermeyer,  L.  Shannon,  and  Y.-J.  Shin.  Changes  in  food  web  structure  under                 

584 scenarios  of  over�ishing  in  the  southern  benguela:  comparison  of  the  ecosim  and  osmose  modelling                

585 approaches.  Journal  of  Marine  Systems,  79(1-2):101–111,  2010.  URL          

586 https://doi.org/10.1016/j.jmarsys.2009.07.005   .     

587 30. M.  Travers-Trolet,  Y.  Shin,  and  J.  Field.  An  end-to-end  coupled  model  roms-n2p2z2d2-osmose  of               

588 the  southern  benguela  foodweb:  parameterisation,  calibration  and  pattern-oriented  validation.  African            

589 Journal   of   Marine   Science,   36(1):11–29,   2014.   URL   https://doi.org/10.2989/1814232X.2014.883326   .     



  

590 31. H.  Wickham.  Advanced  R.  Chapman  and  Hall/CRC,  �irst  edition  edition,  2014.  ISBN13:              

591 978-1466586963.     

592 32. H.  Wickham.  Advanced  R.  Chapman  and  Hall/CRC,  second  edition  edition,  2019.  ISBN13:              

593 978-0815384571.     

594 33. E.  Winsberg.  Science  in  the  age  of  computer  simulation.  University  of  Chicago  Press,  2010.                

595 ISBN10:   0226902048.     

596   

597 		

598 		

599 		

600 		

601 		

602 		

603 		

604 		

605 		

606 		

607 		

608 		

609 		

610 		

611 		

612 		



Appendix C

157



run_up: Running Uncertainty aNalysis UP complex
models
Automated uncertainty analysis for complex models in R. This package has been created
especially to assist in complex model work where the uncertainty estimation of model inputs is
required. It is a generic tool that can be used for any type of model. It provides tools for the
creation of ranges of variation and the estimation of sensitivity indices, initially using Morris
analysis and the calculation of elementary effects.

See < https://github.com/CriscelyLP/run_up > for more details.

Version: 0.1.0

Depends: R (≥ 2.15)

Created: 2020-10-05

Author: Criscely Luján [aut, cre],
Ricardo Oliveros-Ramos [ctb]

Maintainer: Criscely Luján < criscelylujan at gmail.com >

BugReports: https://github.com/CriscelyLP/run_up/issues

License: GPL-2

NeedsCompilation: no



Concluding remarks and
perspectives

The study of uncertainty in complex ecosystemmod-
els: what have we learned?

The importance of the study and quantification of uncertainty is highlighted in
many research works (IPBES 2016; Payne et al., 2016; Steenbeek et al., 2021) and
has been the focus of many dedicated scientific conferences (e.g., SAMO, the sci-
entific analysis of model outputs; Saltelli et al., 2021) and summer schools orga-
nized around the world. The study of uncertainty brings a mixture of theoretical
andpractical challenges, forwhich there is no predefined recipes of steps to follow
(Rounsevell et al., 2021). However, the presentation of a portfolio of approaches
with practical applications on various case studies brings the opportunity to illus-
trate how to deal with the uncertainty properly. In this research work, we focus on
two frequently used techniques to study uncertainty in models: sensitivity anal-
yses and uncertainty analyses. Both approaches bring two different views to the
study of uncertainty (Saltelli et al., 2019), for which, according to our literature
review, numerous methods and computational tools have been developed to fa-
cilitate their implementation.

A difficulty in studying uncertainty in models, especially models characterized
by a large number of parameters, is when the quantification of uncertainty in their
input parameters is lacking. In these cases, a recurrent practice is to use arbitrary
ranges of variation for the input parameters, but this can generate biased results.
In this thesis, we propose the parameter reliability criterion, which describes pa-
rameter uncertainty based on its reliability as a function of the source of informa-
tion used to estimate the parameter value of a model. The presentation of this
criterion is a practical way to address uncertainty of complex models, but techni-
cally this criterion has no limitation to be used in any other mathematical model.



There are some strong computational limitations for running uncertainty anal-
yses of complex ecosystemmodels that have a large number of input and output
parameters, and can be stochastic. UA of these models would typically require
the execution of numerous simulations, for which the use of very sophisticated
computing machines is required, and which can lead to the generation of large
volumes of model outputs. In this work that focused on the NHCE OSMOSE ma-
rine ecosystem model, we were faced with these technical complexities. To deal
with this, the use of a supercomputer was essential (i.e., the DATARMOR super
calculator, https://wwz.ifremer.fr/pcdm/Equipement), as well as the development
of computer programs to automatize the uncertainty simulations and the analy-
ses of its many outcomes. We thus co-developed an R package (the OSMOSE R
package, Shin et al., 2020) that facilitated the execution of the simulations imple-
mented for this thesis and helped a lot in processing the results. With this we
want to emphasize that with the use of complex models, it is also indispensable
to have tools (i.e., packages implemented in different programming languages),
whichmake use of rigorous standards in programming, with standardized names,
customizable graphics and most importantly, which provide independent func-
tions that allow working on specific tasks (e.g., reading data, executing intermedi-
ate analyses and calculating model results). Promoting the development of such
tools is a big step towards facilitating the work with complex models; besides this
will provide good conditions for running and analyzing a large number of simula-
tions for the study of model uncertainty.

The parameter reliability criterion: what is its contri-
bution ?

The reliability criterion presented in the thesis introduces the basic assumption
that parameters derived fromdata or informationwith higher reliability have lower
uncertainty than parameters derived from data with lower reliability. We use this
criterion to draw uncertainty around the input parameters of a model, where the
reliability criterion assigns smaller ranges of variation for parameters with higher
reliability and wider ranges for parameters with lower reliability. Above all, we
use the reliability criterion to deal with situations where there is an absence of
probability distributions for model parameters or ranges of variability that are
supported by observational or experimental data. This criterion is accompanied
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by a set of rules, and framed in a protocol to implement sensitivity analyses. How-
ever, this criterion can be technically used to implement uncertainty analyses as
well. Although they do not study uncertainty in the sameway, both types of analy-
ses require a quantification of the uncertainty in model parameters. The protocol
is flexible and generic enough to be adapted to variousmodels and improved. For
example, the creation of a new parameter ranking category would just require to
follow the same generic recommendations of the protocol such as the adoption
of a monotonic function between parameter reliability and uncertainty, and com-
mon rules for the calculation of parameter ranges.

As part of the protocol, we also open the discussion to other important tech-
nical elements in the study of uncertainty in complex models. We discuss the
importance of complying with the mathematical constraints of the parameters
included in the analysis and the importance of the re-parameterization that this
may require. Complex models can have parameters that do not only include a
single numerical value, but may also accept, e.g., vectors, time series, or matrices,
and that are distributed on different scales (e.g., linear, logarithmic, logit). All this
must be considered when describing the uncertainty around the model parame-
ters, and during the implementation of the selected method to study the uncer-
tainty in the model outputs. These considerations have been explained through-
out this thesis, and we have also implemented them in the freely available code
we developed to accompany the simulations run in this research (runup R pack-
age).

Uncertainty in the NHCE OSMOSE model: what did
this analysis reveal?

This thesis addresses the study of uncertainty in the OSMOSE model applied to
the northern Humboldt Current Ecosystem (NHCE). In this context, the study of
uncertainty in this model allowed us the exploration of the degree of confidence
that we can place in its predictions, but it has also been an opportunity to obtain
results that could guide future improvements of the NHCE OSMOSE model.

As part of the results obtained from the parametric uncertainty analysis, our
work revealed that, as a result of the complex interactions of the NHCE OSMOSE
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model, the uncertainty from one species’ parameters can impact the rest of the
foodweb. The parameters of two species in particular (i.e., euphausiids and Hum-
boldt squid) had the greatest impact on themodelled system. As these two species
are not the most well monitored species of all the species modelled, these results
highlight the need for more observations and knowledge about them. In general,
the quality of the data for all species needs to be improved, also taking into ac-
count the time scale since the behaviour of uncertainty also changes over time,
which needs further investigations. Moreover, the conducted uncertainty anal-
ysis calls for improving the representation of its components by evaluating the
assumptions in its structure. Using the NHCE OSMOSE model, the propagation
of species uncertainty affected very little the Peruvian anchoveta (Engraulis rin-
gens), a species considered key in the ecosystem. This is explained by the weak
predator-prey relationships between the anchoveta and the rest of the species in
the model, indicating an under-representation of the interactions of this species
in theNHCEOSMOSEmodel. For this, future versions of theNHCEOSMOSEmodel
should include the effect of some of itsmain predators explicitly (such as seabirds,
Bertrand et al., 2012) whereas they only appear as a mortality parameter in the
current configuration of the NHCE OSMOSE model.

The uncertainty of marine ecosystemmodels is most often analysed onmodel
output variables such as biomass and abundance ofmodelled species (e.g., Bracis,
et al., 2020; Hansen et al., 2019). However, thesemodels also provide several eco-
logical indicators in output (e.g., Halouani et al., 2019; Moullec, 2019), but little is
known about their behaviour under uncertainty. Our work revealed that the re-
sponse of indicators to uncertainty in the model inputs was not homogeneous;
some indicators dampened the level of uncertainty more (e.g., the slope of the
size spectrum, the marine trophic index, and the trophic level of fish commu-
nities), but others amplified it (e.g., large fish indicators, LFIs). Given that these
results were obtained using only two uncertainty scenarios, we strongly recom-
mend further analyses, including the NHCE OSMOSE model as the model under
study, but also through an ensemble of ecosystem models that allow for a more
rigorous assessment of the behaviour of indicators under uncertainty. Computa-
tional costs must always be considered in this type of models, as this was one of
the limitations we had to deal with.

Our uncertainty study included the execution of uncertainty analyses and sen-
sitivity analyses. For the sensitivity analyses which entailed a huge number of sim-

162



ulations to run, we selected only the parameters related to Peruvian anchovy to
illustrate the protocol’s application and the use of the parameter reliability crite-
rion. Because this was a restrictive analysis, the most sensitive parameters iden-
tified are not necessarily the most sensitive parameters of the NHCE OSMOSE
model. However, we showed that among the set of anchovy parameters and on
average for all experiments run (including the protocol), the four parameters with
the strongest main effects are the critical threshold of predation efficiency, the
maximum rate of ingestion, natural mortality rate, and larval mortality rate.

Perspectives of the research

Much remains to be done regarding the study of uncertainty in theNHCEOSMOSE
model. In this thesis, we have quantified the effect of parametric uncertainty (us-
ing the explicitlymodelled species parameters) on themodel outputs under study,
calling for improvements in the quality of the data and the representation of the
NHCE species. Furthermore, these data should be improved on both temporal
and spatial scales. The outputs of the model under study are also spatially dis-
tributed. The characterization of uncertainty in a spatial manner has not yet been
studied and needs to be addressed. On the other hand, the OSMOSE modelling
platform uses spatial distribution maps as forcing. These maps are built using
statistical models (e.g., generalised statistical models, generalised linear models,
etc.). The effect of the uncertainty of these forcing has not yet been quantified
in the OSMOSE NHCE model, nor in any other case study of the OSMOSE mod-
elling platform. Another very relevant source of uncertainty in the NHCE OSMOSE
model, and more generally important in complex ecosystem models, is the un-
certainty due to initial conditions.
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Résumé: L’augmentation de la complexité
des modèles permet d’obtenir une représenta-
tion plus réaliste des systèmes naturels. Cela
peut également conduire à la création d’outils
très complexes, dont il est nécessaire d’étudier
les sources d’incertitudes, ainsi que le degré de
confiance que nous pouvons accorder à leurs
prédictions. Cette thèse porte sur l’étude
de l’incertitude dans le modèle d’écosystème
marin OSMOSE appliqué à l’écosystème nord
du courant de Humboldt. Ce travail explore les
différentes méthodes et outils disponibles pour
les études d’incertitude. Nous avons mis en œu-
vre une analyse d’incertitude, dont les princi-

paux résultats ont montré que l’incertitude d’un
modèle complexe dépend de l’incertitude de
quelques paramètres d’entrée, qu’elle se propage
dans le temps et que, selon les sorties du mod-
èle sélectionnées, celles-ci peuvent atténuer ou
amplifier le niveau d’incertitude de ses résul-
tats. Nous présentons également un protocole
basé sur le critère de fiabilité des paramètres.
Cela nous permet de classer les paramètres du
modèle en fonction de la source d’information
utilisée pour estimer leurs valeurs et d’attribuer
un niveau d’incertitude aux paramètres du mod-
èle. Enfin, nous proposons une série de recom-
mandations pour les futures études d’incertitude
utilisant des modèles complexes.

Title: Dealing with uncertainty in complex models: an application to the OSMOSE
ecosystem model of the northern Humboldt current system

Keywords: complex models, uncertainty analysis, sensitivity analysis, ecosystem modelling,
OSMOSE, northern Humboldt current ecosystem.

Abstract: Models of increasing complexity
help achieve a more realistic representation of
natural systems. This can also lead to the cre-
ation of very complex tools, which sources of un-
certainty must be studied, as well as the degree
of confidence we can place in their predictions.
This thesis focuses on studying the uncertainty
of the OSMOSE marine ecosystem model ap-
plied to the northern Humboldt current ecosys-
tem. This work explores several methods and
tools available for uncertainty studies. We im-
plemented an uncertainty analysis, where our

main results show that the uncertainty in a com-
plex model depends on the uncertainty in a few
inputs, which propagates in time, and depend-
ing on the model outputs selected, these may
dampen or amplify the level of uncertainty in
model results. We also propose a protocol based
on the parameter reliability criterion. This al-
lows classifying model parameters according to
the source of information used to estimate their
values and assigning a level of uncertainty to
model parameters. Finally, we provide a series
of recommendations for future uncertainty stud-
ies using complex models.
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