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Semiconductor lasers have become ubiquitous in both scientific research and engineering applica-
tions, with significant strides in miniaturization since their initial demonstration in 1960. Notably, two
prominent advancements in this field are quantum dot (QD) lasers, which operate in the near-infrared
wavelength range, and interband cascade lasers (ICLs) designed for mid-infrared applications. In
the current landscape of optoelectronics, photonic integrated circuits (PICs) play a pivotal and far-
reaching role. They offer unparalleled scalability, reduced weight, cost-effectiveness, and energy effi-
ciency. They achieve this by facilitating the fabrication of complete optical systems through versatile
building blocks seamlessly integrated onto a single chip. In this context, direct epitaxial growth of III-V
materials on silicon presents a compelling approach for coherent laser source development. QD lasers,
with their ultimate three-dimensional carrier confinement, high thermal stability, and robust tolerance
for epitaxial defects, emerge as promising candidates for on-chip laser sources. Similarly, ICLs also
prove well-suited for integration into silicon, making them ideal for compact chemical sensing sys-
tems. Noise considerations are of paramount importance when assessing the quality and reliability of
this technology. Achieving the shot noise limit and the Schawlow-Townes linewidth has long been rec-
ognized as significant milestones. To address noise issues, a range of noise reduction techniques have
been explored, encompassing passive optical feedback within an external cavity and active electronic
feedback mechanisms to compensate for injection current fluctuations. However, while feedback sys-
tems can mitigate laser noise, they can also introduce more intricate nonlinear dynamics, giving rise
to phenomena like periodic oscillation, square-wave oscillation, and chaos. The first part of this thesis
involves an in-depth investigation into noise and dynamics in two distinct laser types. QD lasers are
found to exhibit a high degree of robustness when exposed to parasitic optical reflections but manifest
increased sensitivity to optoelectronic feedback. In contrast, ICLs display a spectrum of dynamic be-
haviours when subjected to optical feedback. Furthermore, recent advancements in low-noise pump-
ing circuits for semiconductor lasers have led to the generation of amplitude-squeezed light. This
represents a transition from classical noise to quantum noise, opening up new possibilities in the field
of laser technology and quantum optics. The second part of this thesis delves into the phenomenon of
amplitude squeezing in both QD lasers and ICLs. The findings indicate that both types of lasers can
show broadband squeezing bandwidth and a significant level of squeezing. All these outcomes in this
study contribute to a deeper comprehension of the characteristics of QD lasers and ICLs, laying the
groundwork for the development of high-performance classical and quantum emitters on PICs in the
future.
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Chapter 1

Introduction

1.1 60 Years of Lasers: Pump up the Light

In 2020, the laser, an acronym for "Light Amplification by Stimulated Emission of Radiation" cele-
brated its 60th anniversary. The concept of stimulated emission, which forms the basis of lasers, was
initially proposed by Albert Einstein in 1917 [Ein17]. Einstein’s theory laid the foundation for un-
derstanding how electromagnetic fields could be amplified through population inversion. Rudolf
Ladenburg’s work in 1928 [Lad28] provided indirect evidence of stimulated emission, although, at
the time, physicists referred to this effect as "negative absorption." In 1951, Charles H. Townes took
a significant conceptual leap by proposing that stimulated emission at microwave frequencies could
lead to oscillations within a resonant cavity, ultimately producing coherent output. Then, in 1954,
Charles H. Townes and his student James P. Gordon demonstrated the first microwave maser. They
achieved this by directing excited ammonia molecules into a resonant cavity where these molecules
oscillated at a frequency of 24 GHz [GZT54]. The quest to create a laser was underway. However,
two critical questions still remained without definitive answers: first, how to generate a population
inversion, and second, what to employ as the active medium for the laser. Then, on July 8, 1960, a
brief yet historic report titled "Light Amplification Claimed by Scientist" appeared in the lower-left
corner of the front page of the New York Times. This public announcement revealed that Theodore
H. Maiman had successfully demonstrated the first operational Ruby laser [Mai60]. Astonishingly,
despite the groundbreaking nature of this discovery, it was summarily rejected by Physical Review Let-
ters upon its initial submission. The Ruby laser left a profound impression on many laser researchers,
and while it stunned some, it also served as inspiration for exploring alternative approaches. On De-
cember 12, 1960, Donald Herriott, Ali Javan, and William Bennett achieved a milestone by creating
the first continuous-wave helium-neon gas laser [JBH61]. Meanwhile, Elias Snitzer was actively test-
ing prospects for laser action using glasses doped with rare earth elements. In 1961, he successfully
demonstrated the first neodymium-glass laser.

The concept of producing stimulated emission in semiconductors had been considered by John
von Neumann as early as 1953. However, his proposal remained unpublished until nearly three
decades after his death. Independent proposals for achieving population inversions in semiconduc-
tors were also put forth by Pierre Aigrain of the École Normale Supérieure in France and Nikolai Basov
of the Lebedev Physics Institute in Moscow in the late 1950s. Unfortunately, these early ideas did not
focus on junctions. It was only through studies of light emission at p-n junctions that the develop-
ment of the semiconductor diode laser gained momentum. The observation of light emission from
semiconductor junctions dates back to 1907 when Henry J. Round first observed this phenomenon.
However, it received little attention until the invention of the transistor, which sparked research on
III-V compounds. Rubin Braunstein made an observation of light emission from junctions in gallium
arsenide, indium phosphide, and indium antimonide in 1955. This discovery hinted at the potential
of III-V junctions as laser candidates. However, their observed emission efficiency was relatively low



2 Chapter 1. Introduction

at the time, and the full significance of direct bandgaps had not yet been fully understood. As a result,
progress in the development of semiconductor lasers initially proceeded at a gradual pace.

In the fall of 1962, Robert N. Hall [Hal+62] and other research groups reported the successful
development of p-n homojunction semiconductor lasers based on GaAs, as depicted in Fig. 1.1 (a).
Later, in 1963, Herbert Kroemer, along with Zhores Alferov and Rudolf Kazarinov (for details, refer
to The Nobel Prize in Physics 2000), came up with the idea of the p-i-n double heterostructure laser
diode. This innovative design involves sandwiching a thin slab of gain material between p- and n-
type cladding layers, characterized by a smaller refractive index but a higher conduction-valence band
gap, as illustrated in Fig. 1.1 (b). This arrangement forms a transverse potential well that localizes the
injected electrons, thus maximizing their interaction for recombination. Moreover, the large refractive
index discontinuity results in a highly focused and intense optical transverse energy profile. The ad-
vent of the bulk double heterostructure design, which harnessed both carrier and optical confinement
effects, rendered semiconductor lasers truly practical from that point onward.

Figure 1.1: Aspects of (a) p-n homojunction laser and (b) p-i-n double heterostructure laser. (Source:
In the textbook of III–V Compound Semiconductors and Devices, written by Keh Yung Cheng.)

1.1.1 The miniaturization of semiconductor lasers: from bulk to dot

The introduction of double heterostructure represented a game changer in the development of semi-
conductor lasers. In 1970, Leo Esaki and Ray Tsu initiated research on synthesized semiconductor
superlattices [ET70]. These superlattices are one-dimensional periodic structures composed of alter-
nating layers, whose thickness is smaller than the electron mean free path. This concept allowed for
the engineering of desirable electronic and optical properties using quantum confinement in narrow-
gap layers that could be only a few nanometers thick, comparable to the de Broglie wavelength. In
1974, Raymond Dingle, W. Weigmann, and Charles H. Henry conducted a pioneering discovery on
quantum wells (QW) [DWH74], which are two-dimensional thin-film planes (less than 500 Ångströms
in thickness) that effectively confine electron motion. The two-dimensional nature of QW gave rise to
new features that were not observed in bulk materials. such as optical absorption and gain spectra

https://www.nobelprize.org/prizes/physics/2000/summary/
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peculiar to the step-like density of states, leading to increased efficiency and reduced threshold cur-
rents. QW lasers have since become a standard in optical telecommunication and networks [Kis+17].
Going beyond QWs, the confinement of electron motion in an additional dimension has led to the
quantum wires or dashes [Pet+82]. In 1982, Yasuhiko Arakawa and Hiroyuki Sakaki [AS82] pro-
posed the concept of ultimate quantum confinement in all three dimensions, originally referring to
the nanostructures as "three-dimensional quantum wells" or "quantum boxes," rather than quantum
dots (QD) shown in Fig. 1.2. As the dimension of the material is reduced, the density of states for elec-
trons undergoes changes, resulting in a narrower optical transition spectrum. The atom-like density
of states enhances the efficiency of light-matter interactions. Despite the potential advantages of QD
lasers, their practical realization was seen as a challenging task until the Stranski–Krastanov growth
mode was used to make self-assembled dots by N. Kirstaedter in 1994 [Kir+94]. Currently, there are
two modern growth techniques widely used in the semiconductor industry: molecular beam epitaxy
(MBE) and metal-organic chemical vapour deposition (MOCVD) [BGL99; ANK19]. Additionally, the
Nobel Prize in Chemistry 2023 has been awarded to Moungi G. Bawendi, Louis E. Brus, and Alexei I.
Ekimov for their discovery and development of quantum dots (for details, refer to The Nobel Prize in
Chemistry 2023).

Figure 1.2: Evolution of the semiconductor nanostructures in active layer for lasers. In bulk semi-
conductors, electrons are free to move in all three dimensions. By confining electrons in QD with
quantized energy levels, all electrons are populated at the ground state regardless of the nature of the
fermion. (Source: In the article of T. Edvinsson. Royal Society Open Science (2018).)

1.1.2 Mid-infrared cascade lasers

Considerable attention from researchers has been dedicated to the development of reliable, compact,
high-power, and cost-effective light sources tailored for various applications within the infrared spec-
trum. These applications include free-space communications, medical diagnostics, infrared counter-
measures, atmospheric pollution monitoring, and infrared radar, among others. Among the promising
candidates for these applications, semiconductor lasers have risen to prominence due to their compact
size and affordability. Moreover, they offer a wide wavelength tuning range, narrow linewidth, and
high-speed response, making them exceptionally versatile. Conventional laser diodes operate through

https://www.nobelprize.org/prizes/chemistry/2023/press-release/
https://www.nobelprize.org/prizes/chemistry/2023/press-release/
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optical transitions between the conduction and valence bands of semiconductor materials. The lasing
frequency ν is determined by the energy gap Eg between these two bands. Nonetheless, the attain-
able wavelengths of these laser diodes are constrained to the near-infrared (NIR) range, below 2 µm,
due to the bandgap limitation inherent in III-V materials. To overcome this limitation and broaden
the lasing spectra, covering the short-wavelength infrared (SWIR, 1.4-3 µm), mid-wavelength infrared
(MWIR, 3-8 µm), and long-wavelength infrared (LWIR, 8-15 µm) ranges, two possible solutions have
been worked on.

The first attempt was the unipolar GaxIn1−xAs/AlxIn1−xAs quantum cascade lasers (QCL) that
are based on intersubband transitions (≈1 ps) within the conduction band of the III-V semiconductor
[Fai+94]. Therefore, the emission wavelength is no longer constrained by the material bandgap but
rather by the energy spacing between the subbands, which is altered through the quantum engineer-
ing of the multiple-quantum-well (QW) active region. A cascading effect has been incorporated into
this structure to improve efficiency, as depicted in Fig. 1.3 (a). Each electron traverses through mul-
tiple active regions via the intraband tunnelling effect in this process, leading to photon emission at
each step. However, the fast nonradiative relaxation between subbands via optical-phonon scattering
limits the device’s performance. Recently, the research team led by Frédéric Grillot successfully estab-
lished a long-range communication link employing a commercial 9-µm QCL, an external modulator
based on the Stark effect, and two types of detectors: an uncooled quantum cascade detector and a
nitrogen-cooled quantum well infrared photodetector. Initially, the maximum data rate of the link
was evaluated in a back-to-back configuration. Subsequently, a Herriott cell was introduced to extend
the optical path length to 31 meters. Leveraging pulse shaping, pre-processing, and post-processing
techniques, an impressive record-breaking data transfer rate of 30 Gbit s−1 was achieved for both
two-level (OOK) and four-level (PAM-4) modulation schemes [Did+22].

Figure 1.3: Comparision of band structure in (a) quantum cascade lasers, and (b) interband cascade
lasers.

To improve the performance of MWIR lasers, especially those using antimony (Sb), a second solu-
tion was proposed: bipolar InAs/InxGa1−xSb and InAs/InxAs1−xSb interband cascade lasers (ICLs),
as introduced by R. Q. Yang shortly after the invention of QCL [Yan95]. These ICLs combine a rel-
atively long upper-level lifetime of interband transitions (≈1 ns) with the voltage-efficient cascading
scheme originally introduced for QCL. The advantage of cascade injection and the ability to tailor
the emission wavelength is thus retained. In contrast to QCL, this design allows for both electrons
and holes to be present in each stage of the ICL’s active region [Vur+11], as depicted in Fig. 1.3 (b),
which minimizes voltage and current requirements by reducing Auger coefficients and suppressing
phonon scattering. As a result, ICLs exhibit high radiative efficiency and can achieve low threshold
currents. Due to these advantages, ICLs have gained increasing popularity for portable mid-infrared
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applications, including their utilization in the methane detector aboard the NASA Curiosity rover. In
a more recent development, Frédéric Grillot’s research group demonstrated a full interband cascade
system designed for high-speed data transmission at a wavelength of 4.18 µm. This proof-of-concept
experiment employed a multimode ICL and an interband cascade infrared photodetector based on a
type-II InAs/GaSb superlattice. The direct-modulated system’s bandwidth was evaluated to be ap-
proximately 1.5 GHz, enabling the achievement of data rates up to 12 Gbit/s using on–off keying and
14 Gbit/s with a 4-level pulse amplitude modulation scheme [Did+23].

1.1.3 Towards fully integrated photonics

Integrated photonics has had a profound and widespread impact on modern society’s technologies. It
offers remarkable advantages in terms of scalability, weight, cost-effectiveness, and power efficiency
by allowing the construction of complete optical systems on a chip [Tra+22; Xia+23]. These systems
incorporate lasers, semiconductor optical amplifiers, modulators, photodetectors, and various passive
elements, as illustrated in Fig. 1.4.

Figure 1.4: The trend to put everything on silicon. (Source: In the plenary talk of John E. Bowers,
CLEO 2020)

In the early stages of the photonics market, different material systems were used, including com-
pound semiconductors like indium phosphide (InP) and gallium arsenide (GaAs), elementary semi-
conductors such as silicon (Si) and germanium (Ge), silica and rare-earth-doped glasses like glass
fibre, and polymers. Each of these systems caters to specific applications or components. At that time,
photonic integration was largely dependent on native III–V material substrates, which marked the
first generation of commercially viable photonic technologies. However, the scalability of this tech-
nique was severely limited due to the diverse optical functionalities relying on a variety of materials,
making fabrication prohibitively expensive. The rapid expansion of the commercial electronics in-
dustry, driven by the increased functionality of smartphones, cloud services, and Internet-of-Things
devices, has ignited explosive growth in global Internet traffic over the past decades, according to re-
cent estimates from the International Telecommunication Union (ITU) [Tar+20]. The surge in demand
for increased transmission capacity has presented substantial challenges to signal transmission and
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processing systems, especially in very large-scale data centres, where high speed, large bandwidth,
low latency and minimal power consumption are critical considerations. Integrated photonics, un-
der these circumstances, has experienced enormous growth. Esteemed electronics companies such as
Intel, IBM, Hewlett Packard, STMicroelectronics, IMEC, and Nokia have collaborated with research
institutes worldwide, receiving support from government, industry, and academia to drive advance-
ments in Si photonics [Rah+19; ANK22; Lia+22; Zho+23c]. This collaborative effort has contributed
to the extensive adoption of Si photonics, mainly attributed to its high-volume manufacturing capa-
bilities [Sha+22]. Si-based photonic integrated circuits (PICs), which integrate both optically active
and passive components onto a single chip, provide remarkable component density along with ex-
ceptional energy efficiency. As a result, Si photonics is poised to catalyze innovation in the upcoming
generation of information and communication technology [Nis+17].

One of the distinctive advantages of Si-based PICs lies in their ability to harness mature comple-
mentary metal–oxide–semiconductor (CMOS) technology, thereby enabling cost-effective mass pro-
duction [Sto+18]. The utility of Si-based PICs transcends the world of Datacom and extends to a wide
array of applications, encompassing sensing technologies (such as automotive LiDAR, biosensors),
and future envisioned technologies (such as integrated quantum technologies, optical computing,
artificial intelligence, and neuromorphic photonics) [Zho+23b]. As per the illustration provided in
Fig. 1.5, this serves as a compelling exemplar of Si-based PICs.

Figure 1.5: Envisioned schematic of a fully integrated PIC fabricated on a single chip. Dashed box: Ac-
tive and passive functionalities supported on the platform, with characteristic performance. (Source:
In Ref. [Tra+22])

Considerable strides have been achieved over the past few decades in developing critical com-
ponents for Si-based PICs, including high-performance Si-based modulators, photodetectors, and
waveguides. Nonetheless, the creation of electrically pumped, efficient, and stable light sources on
Si substrates remains an ongoing challenge. An optimal on-chip Si light source must adhere to spe-
cific criteria tailored to its intended applications. Generally, the prerequisites for on-chip light sources
are as follows:

1. Electrically pumped, continuous-wave (CW) lasing: The light source should be capable of CW
lasing under electric excitation, ensuring compatibility with the operating temperature range of
modern Si electronic chips, typically spanning from -40 to 85 ◦C.
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2. Low Energy Consumption and High Output Power: The light source should operate with min-
imal energy consumption while providing a substantial high-output power, thereby offering a
low energy cost per gigabit.

3. Operation in Telecom and Datacom Wavelength Bands: The light source should function within
wavelength bands relevant to Telecom and Datacom applications, such as the O-band (∼1310
nm) and C-band (∼1550 nm), to seamlessly integrate with the existing fibre-optic network.

4. Direct Integration onto Si Platform: It should facilitate direct integration onto a Si platform
compatible with mature CMOS processing technology, thereby facilitating large-scale manufac-
turing processes.

Figure 1.6: Progress of Si-based photonic integration with different development stages since 1992.
(Source: In Ref. [Zho+23b])

Unfortunately, the realization of an efficient Si laser has long been regarded as the "Holy Grail".
This challenge arises from the intrinsic properties of the two commonly used materials (Si and Ge),
both of which are characterized as indirect bandgap materials [LB10], leading to inefficient light emis-
sion. Despite extensive efforts to achieve group-IV lasers using various methods such as Si Raman
lasers, band-engineered Ge lasers, and (Si) GeSn-based lasers, they have been plagued by high thresh-
old current and low internal quantum efficiency, rendering them impractical as on-chip light sources.
These limitations have, in turn, hindered them from meeting the requirements as mentioned earlier
[Li+22]. In stark contrast, the concept of integrating III-V materials onto Si substrates has emerged as
a promising and transformative solution. This integration profits vastly from the respective strengths
of III-V materials, characterized by their superior optical properties, and Si, known for its large wafer
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size, cost-effectiveness, and well-established CMOS foundry infrastructures. Furthermore, low propa-
gation loss has been another critical factor in propelling the evolution of integrated photonics. Silicon-
on-insulator (SOI) waveguides exhibit propagation losses that are approximately an order of mag-
nitude lower than their III-V counterparts. This property equips Si-based PICs with the capability
to accommodate a greater number of individual components and support more complex photonic
systems, while also boosting the performance of passive structures and coherent light sources in the
SWIR or even the MWIR or LWIR range [Tou+22]. These advantages open up a plethora of new ap-
plications such as data centres [Shi+22], neural networks [Sha+21c], frequency comb [CLB22], and
quantum information [Zha+19]. A concise history of Si-based photonic integration is encapsulated in
Fig. 1.6.

There are two feasible approaches for developing PICs on large-scale SOI wafers or Si substrates
[Zho+23b], including heterogeneously bonding III-V materials onto SOI/Si substrates [Xia+21], and
direct epitaxial growth of III-V layers onto SOI/Si substrates [LB18; Sha+22]. Presently, the com-
mercially successful integration of III-V lasers on SOI/Si substrates relies primarily on heterogeneous
integration, wherein III-V materials are initially grown on their native substrates and subsequently
bonded to pre-patterned SOI substrates. However, this technique presents potential issues such as
high cost, low yield, and limited scalability. In comparison to heterogeneous integration, the direct
epitaxial growth of III-V materials on SOI/Si substrates holds great promise with lower cost and in-
creased integration density. Nevertheless, this approach introduces a higher density of crystalline de-
fects, like threading dislocations (TDs), antiphase boundaries, and micro-cracks. These defects form
non-radiative recombination centres that substantially deteriorate the performance of laser devices.
It’s noteworthy, though, that this approach has demonstrated notable efficacy, particularly in the con-
text of QD lasers and ICLs, as will be further discussed.

1.1.4 Towards quantum photonics

Throughout the past century, it has become increasingly evident that, at its most fundamental level,
the natural world resists analogy with human experience. Quantum theory has consistently forecast
behaviours that defy explanation through any classical model, underscoring profound disparities be-
tween the operations of the quantum world and the expectations set by our daily lives. Meanwhile,
light has played a pivotal role in the history of physics. It has posed fundamental questions and,
in turn, furnished solutions to them. The inquiry into the fundamental nature of light is critical in
shaping the evolution of quantum theory. Many of the earliest experimental tests aimed at validat-
ing the most astonishing predictions of quantum mechanics were initially conducted using photons.
Furthermore, many modern technologies rely entirely upon the ability to manipulate and measure
electromagnetic radiation across a broad spectrum of wavelengths. Consequently, quantum optics
or quantum photonics stands as one of the most dynamic and vibrant fields of research at present
with extraordinary breakthroughs. It continually provides insight into the enigmatic behaviour of the
quantum world while offering practical applications across a diverse array of technologies [Bre+21].

Thanks to huge advancements in fabrication technologies, integrated photonics has evolved into
a vital element of numerous classical technologies, and there is growing evidence to suggest that
it will be equally important in the development of quantum photonic systems [Moo+22; Moo+20;
Wan+20]. In pursuit of the desired functionality and performance in optical quantum technologies,
it becomes imperative to have a deep understanding of semiconductor lasers. This is due to the fact
that semiconductor lasers are the preferred choice for their strong light-matter interaction. The main
arguments in favour of this perspective can be succinctly summarized, and they all implicate the
necessity of adopting a quantum approach in academic research related to semiconductor lasers.
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1. The miniaturization of semiconductor laser cavities has progressed from millimetre-sized res-
onators to nanocavities [Alb+22], which approaches and, in some cases, surpasses the diffrac-
tion limit of light in dielectrics. At such minuscule dimensions, the effects of cavity quantum-
electrodynamics become the predominant influence.

2. In the microscopic semiconductor laser cavity design, it’s possible to leverage quantum effects,
such as those seen in ultra-coherent Fano lasers [Yu+21; Zho+23a]. These lasers operate by using
the bound state in the continuum, generated through Fano interference, to effectively suppress
quantum fluctuations and enhance their coherence.

3. An alternative approach to achieving the quantum regime involves the use of a harmonic po-
tential cavity, which can produce a large quality (Q) factor, often combined with a passive nano-
resonator [Gom+20; Mal+21; Alk+23]. For instance, in the case of a silicon nitride (Si3N4) cavity
(Q > 2.5 ×108), an electrically pumped semiconductor laser was demonstrated, showing an
ultra-narrow linewidth of just 1.2 Hz [Jin+21].

Figure 1.7: Schematic of (a) a topology-optimized silicon dielectric bowtie cavity, (b) a hybrid
integrated narrow-linewidth laser based on the ultra-high-Q Si3N4 microresonator. (Source: In
Ref. [Alb+22; Jin+21])

1.2 Motivation of the dissertation

Noise issues usually have a bearing on the quality and reliability of communication applications.
Understanding noise, both from a fundamental physics perspective and in terms of practical design
considerations, has been of paramount importance since the early days of laser oscillators. Some fun-
damental phenomena, such as the shot noise limit and the Schawlow-Townes linewidth [ST58], have
been recognized as achievable boundaries in the evolution of semiconductor lasers. Typically, free-
running semiconductor lasers exhibit linewidths ranging from several kilohertz to megahertz, largely
due to spontaneous emission and phase-amplitude coupling [Hen82]. The wide cavity bandwidths,
reaching up to tens of gigahertz, are mainly determined by the dynamics of the gain medium and its
interaction with the optical field.

In recent decades, great advances in the comprehension of noise issues in photonics have pushed
the performance of semiconductor lasers beyond what was previously assumed to be basic limitations
for both intensity noise and linewidth. A number of techniques have been suggested to reduce noise,
including passive optical feedback in the external cavity and active electronic feedback to compensate
for injection current. Additionally, fresh insights into low-noise pumping circuits for semiconductor
lasers have led to the generation of amplitude-squeezed light, representing a transition from classi-
cal noise to quantum noise. However, while feedback systems can reduce laser noise, they can also
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trigger more complex nonlinear dynamics, such as periodic oscillation, square-wave oscillation, and
optical chaos. Given the ubiquity of semiconductor lasers in commercial settings, abundant promising
applications of low-noise or dynamic devices would be highly demanding in different domains.

For this reason, the contemplation of classical and quantum noise associated with the generation
and detection of light raises fundamental questions and urges for answers. To name a few, how to
measure the laser intensity noise, linewidth and linewidth enhancement factor? how to leverage the
nonlinear dynamics of semiconductor lasers? what causes quantum noise? How is quantum noise
related to the uncertainty principle? Are vacuum fluctuations important compared with quantum
noise? How does the transition to classical behaviour come about when the light fields are of quantum
origin? In this thesis, I am motivated to provide a clear and rigorous description of classical noise,
nonlinear dynamics and quantum noise, while clarifying my own understanding of this subject.

1.3 Organization of the dissertation

Based on the aforementioned motivations, this dissertation is organized as follows:
Chapter 2 serves as a reminder of the fundamentals of quantum dot (QD) lasers and interband

cascade lasers (ICLs). It delves into their electronic structure and elucidates carrier scattering pro-
cesses. Additionally, it introduces three distinct modelling approaches: semiclassical Langevin rate
equations, the stochastic Gillespie algorithm, and a fully quantum-mechanical description. These
modelling techniques are essential for comprehending the underlying physical phenomena in semi-
conductor lasers. Therefore, this chapter sets the stage for the subsequent experimental and theoretical
investigations within the thesis, providing essential background knowledge and modelling tools.

In Chapter 3, the theoretical investigation concentrates on key aspects of QD lasers and ICLs.
Firstly, the chapter explores relative intensity noise (RIN), frequency noise (FN), linewidth enhance-
ment factor (αH), and the correlation between RIN and FN for both QD lasers and ICLs. These investi-
gations are carried out through small-signal analysis, which accounts for contributions from both gain
theory and carrier dynamics. Therefore, three well-established rate equation models are developed,
namely for QD lasers, QD lasers on silicon, and ICLs, with a focus on studying their RIN and FN
noise characteristics. In the second part of this chapter, optical feedback and optoelectronic feedback
are considered using the Lang-Kobayashi method and the Ikeda-like method, which are solved using
a fourth-order Runge-Kutta algorithm. These techniques are employed to numerically demonstrate
several phenomena: optical feedback insensitivity in QD lasers on silicon, the generation of broad-
band chaos in ICLs, and the emergence of multiple dynamics induced by optoelectronic feedback in
QD lasers on silicon. This comprehensive exploration provides valuable insights into the behaviour
and characteristics of QD lasers and ICLs, both in terms of their noise properties and their responses
to different feedback mechanisms.

In Chapter 4, the focus is on exploring quantum fluctuations and amplitude squeezing in QD
lasers and ICLs. The chapter unfolds in several sections: The initial part of the chapter systematically
introduces fundamental concepts such as coherent states of light, squeezed states of light, methods for
measuring quantum states of light, quantum noise originating from electronics, and the generation of
quantum states of light. Following this introduction, the chapter dives into the specifics of amplitude
squeezing in semiconductor lasers, detailing the mechanisms that enable it and the constraints that
influence its performance. This section covers topics such as the suppressed-pump-noise mechanism,
the implementation of a noise equivalent circuit model for semiconductor lasers, and the constraints
associated with squeezing level and squeezing bandwidth. Subsequently, the chapter presents a the-
oretical investigation of amplitude squeezing in ICLs, utilizing two different models: a semiclassical
rate equation approach and a stochastic simulation. The results reveal that ICLs have the potential
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to achieve significant intensity noise squeezing over a broad bandwidth, extending into the gigahertz
range. This characteristic holds promise for the development of ultra-low noise laser sources in the
mid-infrared wavelength range. The final part of the chapter shifts its spotlight to the experimental
and theoretical investigation of amplitude squeezing in QD lasers. It discusses sub-shot-noise noise
spectra, sub-Poissonian photon distribution, and the second-order correlation function g(2)(0), all of
which provide support for these experimental findings. Moreover, these experimental data are further
validated through a comprehensive stochastic simulation.

Chapter 5 functions as the concluding chapter of the thesis, bringing closure to the research pre-
sented while pointing the way forward for future works within the field.
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Chapter 2

Semiconductor lasers: Fundamentals
and Theory

This chapter will provide an introduction to the fundamentals and theory of semiconductor lasers. To
this end, it is important to understand that a semiconductor laser is a non-equilibrium system that
undergoes a second-order phase transition at the oscillation threshold. It consists of many electrically-
or optically-pumped emitters, ranging from a few to over trillions (1012), which interact with different
optical modes within a cavity. Consequently, this presents a highly complex problem that necessitates
a diverse range of physical concepts, including semiconductor physics, quantum optics, nonlinear
dynamics, and others. In the following sections, I will briefly introduce the principles of quantum-
confined lasers, followed by an overview of different theoretical models that address specific aspects
of laser behaviour.

2.1 Fundamentals of Quantum-Confined Lasers

The objective of this section is to investigate diverse physical processes occurring within the quantum-
confined structures of semiconductor lasers and to elucidate their fundamental properties across elec-
tronic, optical, and optoelectronic domains. In its simplest form, a laser diode comprises a single
pn-junction within a cavity formed by two mirrors. The cleaved facets of the laser diode possess suf-
ficient reflectivity to enable lasing, owing to the refractive-index difference between semiconductor
materials and air. To trigger stimulated emission of light, population inversion of the gain medium is
required, often achieved through electrical or optical pumping. In a state of thermodynamic equilib-
rium, the electron distribution in the gain material would be characterized by a Fermi energy EF, with
the occupation probability described by a Fermi function:

ρ(E) = F(E, EF, T) ≡
[

1 + exp(
E− EF

kBT
)

]−1
(2.1)

with the energy of the electronic state E, the equilibrium temperature T, and Boltzmann’s constant kB.
In equilibrium conditions, realizing the population inversion, which entails a higher occupation of the
energetically higher conduction band than the valence band, is unattainable. To induce this inversion,
an external pump source is employed to drive the system away from equilibrium and into a non-
equilibrium state. This process involves injecting electrons into the conduction band and removing
them from the valence band. As a result, stimulated emission of photons can take place through the
recombination of a conduction-band electron with an available valence-band state, commonly referred
to as a "hole". In the following sections, I will introduce two typical types of quantum-confined lasers,
namely quantum dot lasers and interband cascade lasers.
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2.1.1 Quantum dot lasers

The quantum wells (QW) and quantum dots (QD) lasers have garnered consistent attention in the
scientific community due to their potential to enhance the performance of semiconductor lasers at the
fundamental physics level. Moving from QW to QD, there is a transition from a quasi-continuous
density of states reminiscent of a solid-state system to an atom-like structure characterized by discrete
states, as explained in Fig. 1.2. This shift principally alters the nature of carrier transport and has a
profound impact on the optical properties of the semiconductor material.

During the Stranski-Krastanov growth process of InAs QD on a GaAs substrate [Kir+94], several
key steps come about as shown in Fig. 2.1. Initially, a thin layer of InAs, referred to as the wetting layer,
forms on top of the substrate. The subsequent formation of pyramidal structures is a consequence
of the strain induced by the lattice constant mismatch between InAs and GaAs. These pyramidal
structures are then further grown over with InGaAs, which flattens the tops of the pyramids and
creates an InGaAs QW in which the InAs QD are embedded. This resulting structure is known as a
dot-in-a-well (DWELL) and is the primary focus of investigation [GSB95].

Figure 2.1: Sketch of the epitaxial Stranski-Krastanov growth process of a DWELL structure.

A schematic of a QD laser and its band structure is provided in Fig. 2.2 (a) and (b), respectively.
The band structure of QD devices is strongly influenced by the coupling of QD states to other states
[NGJ04; Gio06]. In general, the active region of QD lasers comprises a three-dimensional separate
confinement heterostructure (SCH states), a two-dimensional wetting layer serves as a charge-carrier
reservoir (RS states), and QD states that can be approximately displayed as a three-dimensional po-
tential well with discretized energy levels, including excited states (ES) and ground states (GS). In this
structure, carriers are typically treated as quasi-free particles within the quasi-continuum SCH and RS
charge-carrier reservoir. However, the RS states in the wetting layer, which incorporate the localized
QD states, lead to smaller energy separations within the QD states, causing them to overlap at higher
energies [Cor+05], as illustrated in Fig. 2.2 (b).

The presence of Coulomb interaction between electrons and holes in the semiconductor active re-
gion results in the formation of excitons, which are bound electron-hole pairs. The size of the exciton,
known as the Bohr radius, is determined by the separation between the electron and hole within the
exciton and mostly ranges from a few to several nanometers [Noz08]. The properties of the exciton,
which can be modified by the confinement structure, are central in determining the optical character-
istics of the system. The exciton approximation is habitually employed in the semi-classical modelling
of QD lasers, as discussed in Section. 3.2.1. This approximation simplifies the modelling process by
reducing the number of equations related to the carrier populations. Moreover, it provides an intuitive
understanding of the physical processes, allowing direct input from experimental data. However, it
should be noted that this approximation holds true as long as there are no significant deviations in the
electron and hole populations. In certain cases, more sophisticated approaches may be necessary to
accurately capture the system dynamics [CK05; LS09; CKS12].

In a QD laser, the pumping process creates a high-density carrier plasma in the delocalized states,
traversing through the 3D SCH before reaching the 2D RS. Because the carrier transport in the SCH
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Figure 2.2: (a) Schematic illustration of the QD laser. (b) The band structure of the QD laser. The
localized InAs QD states, namely a ground state (GS), and two degenerate excited states (ES1 and
ES2) lie within the bandgap of RS states inside the InGaAs QW (light blue). The whole structure is
embedded within the SCH states of the surrounding GaAs substrate (light grey).

is a fast process (1-5 ps) according to the time-resolved photoluminescence (TPRL) [ML99; SMZ05],
its impact on the overall carrier scattering process is minimal. When the carriers are captured by
the QD from RS, two kinds of relaxation processes can take place. In the first case, the carriers relax
through the higher energy levels of ES and eventually settle into the GS. At this stage, recombina-
tion between electrons and holes triggers the onset of lasing. In the second case, the carriers directly
move from the RS to the GS. This direct relaxation channel is typically observed in InP-based QD
lasers rather than GaAs-based ones. It speeds up the carrier dynamics and leads to a dual-state las-
ing operation, where emissions from both the GS and ES occur simultaneously [Ves+07]. Moreover,
the lateral coupling among QD and the assistance of defects are also alternative ways to increase car-
rier dynamics. The carrier dynamics thus depend on capture and relaxation processes [NGJ04]. At
high carrier densities in the RS reservoir, the Coulomb interaction (carrier–carrier Auger scattering)
will dominate the carrier capture into and out of the QD, whereas the interaction between carrier and
longitudinal-optical (LO) phonon offers an efficient scattering channel only at a low carrier densi-
ties. Hence, it can be inferred that LO phonon-assisted capture stands for a widely applicable capture
mechanism that relies on both carrier density and temperature, whereas the Auger process exhibits
temperature-independent behaviour while being dependent on carrier density. Upon analyzing the
photoluminescence rise time at room temperature, it is observed that the capture times exhibit a wide
range of variation, spanning from 1 to 100 ps [Ohn+96; Usk+98]. Specifically, for moderate RS carrier
density ranging from 1011 to 1012cm−2, the typical carrier scattering times are in the order of 1 to 10 ps
[SMZ05]. At the very beginning, the relaxation process within QD was believed to be relatively slow,
lasting a few nanoseconds due to the phonon bottleneck effect [BSW91]. However, experimental find-
ings have consistently demonstrated carrier relaxation times on the picosecond scale, suggesting the
involvement of multiple mechanisms such as carrier-carrier interactions, carrier-phonon interactions,
and direct relaxation from continuum states. Notably, the relaxation process within QD occurs at a
faster timescale compared to the carrier capture from the RS into the QD [NGJ04].

In the current market, mature commercialized GaAs-based QD laser (∼1.3µm) products are al-
ready available for telecommunication applications from various companies such as Innolume GmbH
in Germany, Quintessent in America, and QD Laser Inc in Japan. Unfortunately, applications of InP-
based QD lasers (∼1.5µm) remain limited due to the complex fabrication process, which is not highly
compatible with industrial standards.
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2.1.2 Quantum dot lasers on silicon

In the early 1960s, diode lasers made from Group III–V compound semiconductors were successfully
demonstrated, coinciding with the widespread popularity of Si-based transistor radios. Since then,
numerous scientists and engineers have dedicated their efforts to exploring the possibility of photonic
integrated circuits (PICs). The initial concept of PICs was introduced by Stewart Miller in 1969 [Mil69],
during a period when the integrated electronic industry was dawning. In the early stages of PIC devel-
opment, the designs were mainly centred around the use of complementary metal–oxide–semiconductor
(CMOS) wafers. However, to create a complete on-chip optical communication system, a more exten-
sive range of photonic building blocks was required. It was not until the early 1990s that most of
these essential optical components became available for integration [Kis+17]. The benefits of photonic
integration through silicon photonics can be observed in Fig. 2.3, which enables the miniaturization
of coherent transceivers over several product generations. By leveraging these techniques, each new
generation of transceivers was able to enhance capacity while simultaneously reducing power con-
sumption and physical size.

Figure 2.3: PICs have enabled coherent transceivers to become smaller over the last decade. (Source:
In the OFC 2019 Plenary talk from Benny P. Mikkelsen in Acacia.)

The fundamental hurdle to achieving lasing directly with silicon (Si) was identified early on. The
issue stemmed from the fact that optical transitions must conform to the principles of both energy and
momentum conservation, and this dual requirement was not simultaneously satisfied in Si, which
is characterized as an indirect bandgap material [LB10]. Despite its inherent limitations as a gain
medium, Si possesses several crucial properties that make it an excellent substrate for diode lasers.
Firstly, Si wafers are renowned for their exceptional purity, low defect density, and larger size, typ-
ically reaching 12 inches or 300 mm in diameter. In comparison, GaAs ≤ 6 inches, InP ≤ 4 inches.
Secondly, the state-of-the-art 45 nm and 32 nm Si-based CMOS technologies offer a "sweet spot" for
incorporating photonic capabilities and expanding integrated system applications beyond Moore’s
Law scaling [Sto+18]. This means that leveraging highly optimized CMOS processes and materials
allows for high-volume industrial manufacturing, low-cost production, excellent material compatibil-
ity (supporting integration of Ge, LiNbO3, Si3N4, SiC, etc.), and most importantly, high integration
densities. A recent development involving the three-dimensional integration of ultralow-loss pho-
tonic integrated circuits represents a significant milestone in the progression toward complex systems
and networks on Si [Xia+23]. Thirdly, the high-quality native oxide of Si, SiO2, serves as an effective



2.1. Fundamentals of Quantum-Confined Lasers 17

protective layer and an excellent optical waveguide cladding, because of its substantial refractive in-
dex difference from Si (δn ∼ 2.1). This factor contributes to the development of Si waveguides with
propagation losses typically one order of magnitude lower than those of compound semiconductor
waveguides. Additionally, Si boasts high thermal conductivity, a highly advantageous characteristic
for active device substrates. These unparalleled advantages offered by Si have prompted researchers
to shift their focus towards the integration of III-V semiconductors onto Si substrate platforms.

The main challenge in silicon photonics is the engineering of active building blocks such as laser
diodes and optical amplifiers. There are generally two main approaches to realize semiconductor
lasers integrated into Si, as depicted in Fig. 2.4. The first approach is heterogeneous integration. The
initial work was demonstrated in 2006, where a multi-quantum-well laser was packaged on silicon
via a wafer bonding technique [Fan+06]. Nevertheless, this approach often requires complicated and
precise alignment in the co-packaging process that can potentially compromise the scalability. More-
over, QW lasers do not exhibit an intrinsic threshold or thermal steadiness. Since the ultimate goal
of silicon photonics is to integrate PICs close to heat-radiating CMOS-based digital circuits, device
cooling can become exceedingly challenging. To this end, owing to the ultimate carrier localization,
QD laser displays more reliable characteristics and, thus can be considered a much better-suited candi-
date in contrast to their QW counterparts. Lately, a great achievement is to utilize QD lasers on silicon,
which provide significant opportunities for enhancing performance and reducing costs [Wan+21]. The
second approach is monolithic integration, which involves the direct epitaxial growth of QD lasers
on Si substrate [LB18; Wei+23]. Recent advancement has demonstrated the feasibility of electrically
pumped QD lasers on a 300 mm patterned (001) Si wafer [Sha+22], which unleashes more potential of
silicon photonics into industrial applications.

Figure 2.4: Top panel: Heterogeneous integration of QD devices. Bottom panel: Monolithic integra-
tion of QD devices. (Source: In Ref. [Che+16; Sha+21b])

However, the formation of inevitable crystalline defects occurs during the merging of III-V and Si
substrate via epitaxial growth, although QD lasers exhibit greater tolerance to threading dislocations
compared to QW structures [GCS96]. Threading dislocations, which nucleate as the III-V film relaxes
due to lattice mismatch, are considered the most detrimental to QD laser performance as they pene-
trate through all layers. These epitaxial defects lead to nonradiative recombination of carriers via the
Shockley-Read-Hall process, impeding efficient radiative recombination for light emission. Further
details of these investigations are presented in Section. 3.2.2. Considerable resources are dedicated
to improving epitaxial growth in this field, resulting in a consequent reduction of defects. This ad-
vancement has elevated the performance of QD devices to a level comparable to those on their native
substrates [Nor+18]. In conclusion, the eventual realization of large-scale, low-cost, and high-density
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monolithically integrated lasers and amplifiers on Si through direct epitaxial growth would pave the
way for the next generation of photonics integrated circuit platforms.

2.1.3 Interband cascade lasers

To enable continuous-wave (CW) operation of mid-infrared (MIR) semiconductor lasers well above
the threshold at room temperature, multiple quantum wells (QWs) are often required to provide suf-
ficient gain. The challenge lies in optimizing the connection between these QWs. Historically, electri-
cally pumped MIR lasers have adopted a conventional diode geometry with multiple QWs connected
in parallel. However, this approach has a drawback: if the electrons and holes starting at opposite
ends of the line of QWs fail to populate each well uniformly, the generated gain for a given injected
current density will degrade. Cascading offers an efficient and practical means. By arranging them
in series with the same current flowing through each stage, and by having each carrier traverse every
QW in turn, the interband cascade laser (ICL) [Yan95] can significantly reduce the threshold density. In
an ICL, as depicted in Fig. 1.3 (c), electrons and holes are generated internally at an interface between
the narrow-gap semiconductors InAs and Ga(In)Sb, and this interface exhibits energy alignment that
changes from semiconducting to semimetallic with an applied bias voltage V.

Fig. 2.5 (a) illustrates how this internal generation is facilitated by the alignment of the conduction
band minimum of InAs, which is located approximately 0.2 eV below the valence band maximum
of GaSb [Vur+11]. When an applied electric field induces a transition from a positive energy gap
caused by quantum confinement to a semimetallic alignment with a voltage-dependent band overlap
of approximately ESM(V) ≈ 100 meV as shown in Fig. 2.5 (b), both electron states in the InAs quantum
well and hole states in the GaSb quantum well can be populated in thermal quasi-equilibrium. As the
external electric field sweeps the generated carriers away from the junction, holes flow to the left
and electrons to the right. To maintain quasi-equilibrium, equal numbers of additional electrons and
holes must be continuously regenerated at the semimetallic interface (SMIF) to replenish the carriers
removed by the field.

Figure 2.5: The energy alignment of adjacent InAs and GaSb QWs in both (a) equilibrium and (b) un-
der bias. The solid blue and red lines correspond to the conduction and valence band edges, respec-
tively. In the absence of bias, quantum confinement leads to an energy gap (Eg) between the lowest
conduction and highest valence states, as represented by the blue and red dotted lines, respectively.
Under bias conditions, a semimetallic overlap (ESM) is induced, which generates equal densities of
electrons and holes that are depicted by the solid blue and open red circles, respectively. Furthermore,
the applied field drives both carrier types away from the interface, as indicated by the arrows. (Source:
In Ref. [Vur+11])



2.1. Fundamentals of Quantum-Confined Lasers 19

The active region of an ICL comprises multiple repeated stages, each of which consists of (1) the
"W"-shaped QWs, usually constructed by two InAS QWs sandwiching a layer of GaInSb; (2) a hole
injector, made by coupled GaSb/AlSb QWs; and (3) an electron injector, made by coupled InAs/AlSb
QWs. A band structure of an ICL is presented in Fig. 2.6. The semimetallic interface, depicted in
Fig. 2.5, separates the hole injector from the electron injector. The field-dependent band overlap be-
tween states in the hole injector and active hole QW, and those in the electron injector and active
electron QW in the next stage, determines the carrier densities throughout the active region. Assum-
ing a common quasi-Fermi level (black dashed line) on both sides of the semimetallic interface, due
to the rapid carrier transport times via direct, phonon-assisted, and other tunnelling mechanisms, the
quasi-Fermi level is discontinuous across the active region of each stage, owing to the much longer
carrier lifetime in the active QWs (∼1 ns). In the ideal ICL design, the applied bias must be sufficient
to achieve two objectives simultaneously: (1) produce enough optical gain to compensate for the pho-
ton loss in the cavity, and (2) generate a quasi-equilibrium carrier density consistent with the voltage
drop. The first condition depends only on the active QWs, while the second condition depends on
the design and doping of all electron and hole QWs on both sides of the semimetallic interface. For
instance, if the QWs in the electron injector are thicker than optimal, excess carriers will be generated,
leading to unnecessary free-carrier absorption [Mey+20]. Finally, the optical transitions of carriers
within the band structure create several photons, which will be discussed in Section. 3.2.3.

Figure 2.6: Band diagram for 1 1
2 stages of the ICL active region. The dashed lines indicate the position

of the quasi-Fermi levels in each stage. (Source: In Ref. [Vur+11])
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2.2 Theory of Quantum-Confined Lasers

In this section, I shall emphasize the theoretical treatment of the laser theory. In recent years, numerous
textbooks have been devoted to the physics of semiconductor lasers [Lou73; Hak85; Yam91; CCM12;
CKS12]. Basically, there are three defining ingredients of a semiconductor laser: a resonant optical
cavity, a gain medium, and a pumping mechanism. The gain medium is responsible for creating an
inverted electron distribution, deviating from thermal equilibrium. The operation of most semicon-
ductor lasers can be described in this manner: it begins with spontaneous emission into the lasing
mode, and this initial light is then amplified through stimulated emission within the gain medium.
This process generates light that matches the incoming light in terms of direction, wavelength, and
phase. Subsequently, this coherent beam of light bounces back and forth inside the optical resonator
until it reaches an equilibrium point, maintained by a balance between gain and loss. The minimum
amount of pump power required to initiate lasing action is referred to as the laser threshold. A laser
is essentially an open system that continuously exchanges energy with its surroundings. It emits pho-
tons through one of its mirrors, which has a certain degree of transmissivity. On the other hand, to
sustain the laser process, energy must be continually supplied. A variety of interesting processes are
going on inside the laser cavity that necessitate a detailed analysis.

In the 1970s, a valuable discovery was made from a profound physical perspective, suggesting
that the transition from light generated by thermal sources to laser light bears a striking resemblance
to phase transitions in thermodynamics [DS70; GH70]. The laser is, in fact, a trailblazer of "synergetics"
[Hak85], creating macroscopic order when driven far from thermal equilibrium. This laid the foun-
dation for deep-rooted analogies between quite different systems in physics, chemistry, biology, and
other fields. For instance, the connections between fluid dynamics and laser light led to the predic-
tion and experimental observation of chaotic laser light. These intriguing topics will be explored in
Section. 3.3. The macroscopic order, achieved through a second-order phase transition, is governed
by the interplay of two opposing forces: a stabilizing force within the system and a fluctuating force
from the external reservoir. In semiconductor lasers, the stabilizing force is provided by stimulated
emission, which maintains the laser’s amplitude around its steady-state value. Furthermore, relax-
ation oscillations between photons and carriers stabilize the laser’s phase by ensuring the emission of
photons with identical phases. However, both photons and inverted carriers continuously dissipate
into external reservoirs. Photon decay occurs due to output coupling loss and internal losses caused
by absorption, while inverted carriers decay due to spontaneous emission and other non-radiative re-
combinations. Consequently, these dissipation processes introduce fluctuating forces into the system,
including pump noise and vacuum field fluctuations. The quantum noise properties of semiconductor
lasers are closely connected to these aspects of laser theory and will be explored in Section. 4.1.

Comprehending the fundamental mechanisms governing optical transitions remains a challenge
as a consequence of the dual wave-particle nature of light. In many scenarios, light is effectively
treated as a classical wave, simplifying the description of phenomena like modes, diffraction, and
interference. However, classical wave theory falls short when explaining noise phenomena, such as
shot noise. In these cases, a quantum theoretical framework is often employed, describing these phe-
nomena through the concept of a photon gas. Additionally, the discrete nature of spectral lines can
be directly attributed to the principles of quantum theory. To tackle this challenge, several theoretical
frameworks have been developed, each with its strengths and limitations. In the following sections, I
shall introduce three theoretical descriptions of semiconductor lasers: Langevin rate equations, Gille-
spie stochastic algorithm, and fully quantum-mechanical treatments. The choice of method depends
on the interpretive and solvable difficulty posed by the specific phenomenon under investigation.
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2.2.1 Semiclassical description: Langevin rate equations

The rate equation model is the simplest way to describe a laser. It is based on ordinary differential
equations (ODEs) that track the temporal change of the number of particles, such as photons and
carriers, occupying individual cavity modes. Albert Einstein used these equations to analyze optical
transitions of carriers, as illustrated in Fig. 2.7, with phenomenological rate coefficients [Ein17]. In
doing so, he postulated the existence of stimulated emission, which, like absorption, is induced by a
photon. The typical rate equations for a QW laser with the carrier number N and the photon number
S are of the form:

dN
dt

= Gn − Rn

dS
dt

= Gs − As

(2.2)

where Gn and Rn stand for carrier generation rate and recombination rate, and Gs and As stand
for photon generation rate and annihilation rate, respectively. This approach is still relevant today
when examining global phenomena such as laser threshold, single mode or multimode laser action
[CCM12].

Figure 2.7: Illustration of the processes of absorption, spontaneous emission, and stimulated emission.

The QW laser reservoir model, as summarized in Fig. 2.8, is used to derive the rate equations and
helps ensure particle conservation in the system. Each arrow in the flowchart represents the rate at
which particles flow into or out of the system per unit of time. To understand the rate equations, it’s
essential to grasp the inputs and outputs of this flowchart. A current density I/q is driven into the
top contact, and a fraction η of it enters the carrier reservoir. In this context, the carrier density rate
equation is formulated in terms of the remaining current, J = η I/q. Electrons are lost from the active
region due to net stimulated emission, Rnet

stim(N, S), spontaneous emission, Rspon(N), and nonradiative
recombination, Rnr(N). The carrier density in the well, represented as a reservoir, is determined by
the competition among these rates. Therefore, the net rate of change of the area density of electrons in
the active region can be expressed as:

dN
dt

= J − Rspon(N)− Rnr(N)− Rnet
stim(N, S) (2.3)
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Figure 2.8: Schematic diagram of the coupled carrier and photon reservoirs in a QW laser. Carriers
are injected into the device from the contact through J and lost through nonradiative, spontaneous,
and net-stimulated recombination processes represented by blue lines. Photons, represented by red
lines, are gained by the fraction of spontaneous emission in the mode, βspRspon, and net stimulated
emission. They are lost through internal loss, αi, and through the end mirrors, αm, which represents
the laser light output of the device, denoted as L. The stimulated rate is influenced by gain G(N) and
the photon density, which is indicated by the dashed red line.

Photons can be lost due to internal scattering, which is represented by the internal mode loss
parameter αi, as well as through the end mirrors, which is represented by the mirror loss parameter
αm. The photon lifetime τp is an important property of the cavity:

1
τp

= vg(αi + αm) (2.4)

The loss mentioned earlier pertains to the loss that occurs in the absence of any amplification,
known as a "cold cavity" loss. However, when a laser operates above its threshold and amplifies
the light, the average lifetime of photons within the cavity is increased. This increase results from
the addition of photons through both stimulated emission and the fraction of spontaneous emission,
denoted as βsp, that enters the mode. The temporal evolution of the photon density S is:

dS
dt

= Rnet
stim(N, S) + βspRspon(N)− S

τp
(2.5)

For a monochromatic beam, the increase in photon density per unit length is G(N)S and G(N) =

a(N − N0) is the material gain with a the differential gain and N0 the transparency carrier density.
Therefore, the net stimulated emission rate per unit of time Rnet

stim(N, S) is:

Rnet
stim(N, S) = vgSG(N) =

S
τstim

p
(2.6)
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The quantity vgG(n) represents the average net stimulated rate per photon, with units of [s]−1.
This quantity is equivalent to 1/τstim

p , where τstim
p is the photon lifetime due to stimulated emission.

Similarly, the nonradiative recombination rate is typically expressed in terms of a nonradiative lifetime
τnr, such that Rnr(N) = N/τnr. And, the spontaneous recombination rate is given by Rspon(N) =

N/τspon, with a spontaneous recombination lifetime τspon. Eq. 2.6 highlights the interdependence
of photons and carriers, as the gain is dependent on the carrier density. However, it’s essential to
note that this treatment considers all laser emissions to be in a single mode. To fully understand the
laser emission spectrum, one must formulate multimode equations, which are coupled through the
homogeneous linewidth.

Figure 2.9: An example of the dynamic interplay between spontaneous and stimulated emission rates
with laser mode and light output variation, as a function of current density. The transparency current
density N0 is approximately 240 A/cm−2. (Source: On page 219 in Ref. [Blo15])

Fig. 2.9 illustrates the emission rates into the laser mode resulting from spontaneous emission
and net stimulated emission, and their sum produces the light output. At first, the net stimulated
rate Rnet

stim is negative, which indicates the absorption of photons when the population is not inverted.
The rate becomes positive once the transparency current density N0 of about 240 A cm−2 is exceeded.
The spontaneous emission rate increases with current as the carrier density builds up and finally pins
just above the threshold owing to the rapid increase in photon density, which causes a corresponding
increase in the stimulated rate. In a more comprehensive laser theory, noise must be considered. The
practical way of dealing with noise is to add random Langevin forces to a set of rate equations [CCM12].
The concept of Langevin forces or Langevin noise sources was originally inspired by the random mo-
tion of small macroscopic particles immersed in a liquid, known as Brownian motion, which clearly
illustrates the statistical fluctuations occurring in a system in thermal equilibrium [Lan08]. Brownian
motion is a prototype problem that provides insights into the mechanisms responsible for the exis-
tence of fluctuations and dissipation of energy, making it of great interest to investigate such fluctu-
ations that constitute a background of noise limiting the accuracy of detailed physical measurements
[Gar+85].



24 Chapter 2. Semiconductor lasers: Fundamentals and Theory

A Langevin noise source, F(t), is characterized by its rapidly fluctuating nature, which varies
irregularly over time. The exact functional dependence of F on t cannot be specified precisely. To
address this, the problem is often formulated in statistical terms. The one-time average, denoted as
⟨F(t)⟩, is defined as the statistical average over many similarly prepared systems at the same time.
However, in cases where the statistical processes involved are both stationary and ergodic, the same
result can be obtained by averaging a single system over extended time intervals. This is the assump-
tion made here. Therefore, whether ⟨⟩ is defined as a statistical average or a time average depends
on conceptual convenience. A time average is typically more convenient in the time domain, while
a statistical average is often more appropriate in the frequency domain. Therefore, ⟨F(t)⟩ does not
depend on t but vanishes over time:

⟨F(t)⟩ = 0 (2.7)

Mathematically, a key characteristic of such a process is referred to as "memoryless." This means
that the value of F(t) at time t is completely uncorrelated with any previous value F(t′), even as
|t − t′| → 0+: 〈

F(t)F(t′)
〉
= 0 (2.8)

Suppose that the characteristic time in which F(t) appreciably changes is the correlation time τc,
the average of the product of two Langevin noise sources, Fi(t) and Fj(t′), will become negligible for
|t − t′| > τc. This is because, beyond τc, the product is just as likely to be negative as positive. Hence,
the correlation function

〈
Fi(t)Fj(t′)

〉
is concentrated at t = t′ and falls off to zero as |t − t′| exceeds τc.

When τc is much shorter than all other relevant timescales, one has:

〈
Fi(t)Fj(t′)

〉
= 2Dijδ(t − t′) (2.9)

The diffusion coefficients Dij are quantities that represent the proportionality constants between
the magnitude of fluctuating forces [Lax60; CCM12]. These coefficients have units of (seconds) ×
(fluctuating variable units)2. There are two important types of strength to study: The autocorrelation
strength is defined by 2Dij when i = j, while the cross-correlation strength is determined by 2Dij when
i ̸= j. The cross-correlation strength is only non-zero if the fluctuations of one noise source are corre-
lated with the fluctuations of another noise source. The system is considered Markovian when Eq. 2.9
provides a good approximation. There are various methods to determine these diffusion coefficients.
One approach, common among engineers familiar with noise in microwave circuits, is to draw an
analogy between lasers and transmission lines with Nyquist noise sources, as described on page 77 of
Ref. [Yam91]. Another method, which I will introduce, involves adapting the diffusion coefficients by
examining the correlation function in the frequency domain [CCM12].

The Wiener-Khinchin theorem, which applies to all types of stationary processes, states that the
spectral density Sij(ω) and the correlation function

〈
Fi(t)Fj(t′)

〉
are related as a Fourier transform pair.

Therefore, assuming t′ = t − τ and considering Eq. 2.9 the spectral density Sij(ω) is:

Sij(ω) =
∫ 〈

Fi(t)Fj(t − τ)
〉

e−jωτdτ = 2Dij

∫
δ(τ)e−jωτdτ = 2Dij (2.10)

The Langevin noise spectral density is equal to the correlation strength and is independent of
frequency, making it a "white" noise source. The McCumber model [McC66] assumes that laser noise
arises from shot noise associated with the discrete random flow of particles into and out of the carrier
and photon reservoirs. Noise spectral density is constant and proportional to the average rate of
particle flow. With this in mind, consider a reservoir where particles flow into and out of it via a
variety of discrete random processes. In the Langevin formalism, each of these discrete processes
contributes shot noise to the overall noise in the reservoir. To determine the total Langevin noise
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spectral density or correlation strength ⟨FiFi⟩, one needs to sum over simply all rates of particle flow
into and out of reservoir i. To determine the cross-correlation strength

〈
FiFj

〉
between two reservoirs i

and j, one needs to sum only over particle flows that affect both reservoirs simultaneously. However,
in this case, when one reservoir gains a particle (Fi > 0), the other loses a particle (Fj < 0). Therefore,
the product

〈
FiFj

〉
is always negative, and the noise between the two reservoirs is said to be "negatively

correlated" [CCM12].
⟨FiFi⟩ = ∑ R+

i + ∑ R−
i〈

FiFj
〉
= −

[
∑ Rij + ∑ Rji

] (2.11)

The Langevin noise sources for the reservoirs, Fi and Fj, as well as the rates of particle flow into
(R+

i ), out of (R−
i ), and between the two reservoirs (Rij and Rji), are all expressed in units of numbers

per unit time. Note that for single-sided spectral densities, an additional factor of 2 would be required
on the right-hand side of these definitions.

2.2.2 Stochastic description: Gillespie algorithm

The Gillespie algorithms, also known as the stochastic simulation algorithm (SSA), were introduced
by American physicist Daniel Thomas Gillespie in 1977 [Gil77]. These algorithms were developed as
a numerical method to address the limitations of deterministic approaches when simulating chemical
kinetics. They are practical algorithms for simulating "coupled"1 stochastic processes exactly, meaning
they provide a precise simulation without approximation errors.

The Gillespie algorithms offer several advantages over ordinary differential equations (ODEs)
such as rate equations:

1. Accurate Representation of Small Populations: When dealing with systems with small popu-
lations, the ODEs description may not be accurate. ODEs assume real and continuous variables
over time, but if the variables are quantized and can only take integer values, Gillespie algo-
rithms can accurately simulate the discrete, quantized nature of these systems.

2. Simulation of Rare Events: Gillespie algorithms can efficiently simulate rare events with low
probabilities. In contrast, ODEs, being deterministic, may not accurately represent the occur-
rence of such rare events.

3. Accurate Description Near Critical Points: ODEs may not provide an accurate description
when a system is close to a critical point or a threshold. In these cases, the fluctuations of vari-
ables become significant compared to their mean values, even for large populations. Gillespie
algorithms can capture these fluctuations more accurately.

While Gillespie’s algorithm was initially developed for simulating chemical reactions, it relies on the
general principles of stochastic processes and is applicable in various fields, including biology, finance,
and epidemiology [Gil07].

The Gillespie algorithms have found applications in semiconductor lasers, particularly in the
study of "nanolasers" when the modal volume is reduced [RC94; ML18]. These lasers exhibit inter-
esting dynamical and statistical behaviours as the parameter βsp (representing the fraction of spon-
taneous emission coupled into the lasing mode) varies from 0 to 1. At the threshold (∼ β−1/2

sp ) and
saturation (∼ β−1

sp ) conditions, where the number of photons is low, fluctuations become increasingly
significant, rendering semiclassical descriptions questionable [RC94; RHL09]. The discreteness of pro-
cesses involving the exchange of photons and carriers in integer numbers becomes crucial [Leb+13;

1The word “coupled” means that an event that occurs somewhere in the system potentially influences the likelihood of
future events’ occurrences in different parts of the same system.
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MY20], making rate equations unsuitable for accurate predictions2. Recent developments, like the
Stochastic Simulator [PL15], use a first-principle approach to simulate the light-matter interaction and
provide efficient numerical simulations for traditional macroscopic lasers (with low βsp values) to
nanolasers (with high βsp values), as shown in Fig. 2.10. These algorithms are especially accurate
when dealing with low particle numbers but remain compatible with ODEs when dealing with large
populations.

Figure 2.10: The example of two methods in different types of semiconductor lasers. Left panel: Pho-
ton number ℘ vs. injection current i computed from the steady states of the rate equations. Right
panel: Average photon number ⟨S⟩ as a function of the pump P obtained from the stochastic simula-
tion. ⟨S⟩ is computed as the average of the temporal average photon number S̄ = 1

N ∑l=1
N Sl over ten

series of events. (Source: In Ref. [PL15])

Prior to diving into the nitty-gritty of the Gillespie algorithms, it is imperative to elucidate some
fundamental concepts.

• To use the Gillespie algorithms, one needs a predefined mathematical model that describes the
system being simulated. This model should include parameters and rules governing how the
system or its constituents change states over time.

• The Gillespie algorithms are designed for simulating stochastic processes. This means that each
time one runs the same model with the same initial conditions, the results can vary due to the
inherent randomness introduced by a random number generator (RNG). Usually, running a se-
ries of simulations is an effective approach to capturing the full range of possible outcomes and
understanding the system’s behaviour.

• The Gillespie algorithms simulate processes where changes in the system occur through discrete
events taking place in continuous time. While these events are discrete (countable) and can be
identified when they happen, they can occur at any point in time.

A recent review article [Gil07] outlines two different but equivalent approaches; the direct method
algorithm and the approximate explicit tau-leaping algorithm. The latter is a specific case of the former
and offers an approximation to reduce computational complexity. The details of these approaches will
be discussed as follows.

The direct method algorithm: The concept stems from two fundamental questions that require
answers: 1) how much time τ will elapse before the next event occurs? and 2) which event µ will occur at
that time?. These questions apply to various event types in semiconductor lasers, including stimulated
emission, absorption, spontaneous emission, internal loss, mirror loss, and pumping. Addressing

2In this case, the magnitude of the fluctuations is of the same order as the mean values and thus linearization is not an
adequate approximation. At the same time, the small-population statistics deviate significantly from the Gaussian statistics of
the Langevin forces.
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these questions is not an easy task due to the immediate impact of each event on the present photon
and/or carrier count, along with its influence on the probability of subsequent events. Therefore, in
accordance with Gillespie algorithms [Gil77], in order to simulate the time evolution, the formulation
of this method centres on the so-called "fundamental premise of stochastic chemical kinetics":

P(τ, µ|x, t) = aµ(x)exp

[
−τ

M

∑
µ

aµ(x)

]
(2.12)

where the aµ terms represent propensity functions or event rates for the µth event among the M differ-
ent event types, with their argument being the vector x, denoting the counts of photons or carriers.
The parameter τ signifies the time until the occurrence of the next event (sojourn time) while t is the
current time. This expression can be interpreted as "the probability, given x, that the next event in
the system will occur within the infinitesimal time interval [t + τ, t + τ + dτ], and will correspond to
the stoichiometry of the µth event." This formulation provides insight into the method by suggest-
ing that τ is an exponentially distributed random variable with a mean (and standard deviation) of
1/ ∑M

µ aµ(x), and µ is "a statistically independent integer random variable with point probabilities
aµ(x)/ ∑M

µ aµ(x)". In mathematical terms, this expression is also a joint probability density function
in the space of the continuous variable τ (0 ⩽ τ < ∞) and the discrete variable µ (µ = 1, 2, . . . , M).
Notice that the variables τ and µ are quantities whose values would give the answers to the two afore-
mentioned questions. Therefore, finding a legitime way for assigning numerical values to τ and µ in
Eq. 2.12 is simply to draw two pseudorandom numbers based on the Monte-Carlo simulation, r1 and
r2 from [0, 1], then compute [Gil77]

τ =
1

∑M
µ′=1 aµ′(x)

log(
1
r1
)

µ = the smallest integer satisfying
µ

∑
µ′=1

aµ′(x) > r2

M

∑
µ′=1

aµ′(x)
(2.13)

Utilizing this generating method for the sojourn time and the type of next event, the direct method
algorithm or the exact stochastic simulation algorithm is stated as

Algorithm 1: The direct method algorithm
1: Initialize: Set the initial number of photons and carriers x0 and set t = 0.
2: Calculate the propensity function or event rate, aµ, for each event.
3: Set a0 = ∑M

µ=1 aµ.
4: Generate two independent uniform (0,1) random numbers r1 and r2.
5: Set τ = 1

a0
ln 1

r1
, equivalent to drawing an exponential random variable with parameter a0.

6: Find µ ∈ [1, . . . , M] such that ∑
µ
µ′=1 aµ′ < r2a0 ≤ ∑

µ+1
µ′=1 aµ′ .

7: Set t = t + τ and update the number of photons and carriers according to event µ.
8: Return to step 2 or quit.

A significant characteristic of this method is its lack of numerical parameters, such as the fixed
time increment. Consequently, there is no requirement for supplementary convergence checks con-
cerning these parameters. In this context, this method stands out as an exact method for the stochastic
simulation of laser dynamics. There have been some advancements over the last years, as reported in
Ref. [Gil07]. While all these improvements are valuable, simulating each event one at a time, regard-
less of efficiency, may still be too slow for many real-world applications. As a result, researchers have
explored alternative strategies that trade-off some of the accuracies of the exact simulation for faster
simulation times. One such strategy is known as the tau-leaping algorithm.
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The approximate explicit tau-leaping algorithm: In pursuit of a faster algorithm, the fundamen-
tal questions posed at each iteration are altered to inquire, "How many events of type µ occurred
during the time increment τ?" for M different event types. Assuming that the system is in state x at
time t, a time increment τ > 0 that satisfies the leap condition can be defined as the period of time
[t, t + τ) during which no propensity function aµ(x) is expected to change hugely. Since aµ(x) remains
nearly constant, the fundamental premise in Eq. 2.12 implies that the number of µth event fires within
[t, t + τ) is a Poisson random variable Pµ

[
aµ(x)τ

]
with a mean of aµ(x)τ. Hence, if the leap condition

is satisfied, the system can be approximately leapt forward in time by τ [Gil01]:

x(t + τ) = x(t) +
M

∑
µ=1

Pµ

[
aµ(x)τ

]
vµ (2.14)

The system’s state-change vector is vµ ≡ (v1µ, v2µ, . . .), where viµ represents the change in the
number of photons and carriers caused by the µth event. When the system is in state x and the µth
event fires, the system instantaneously jumps to a new state x + vµ. The core tau-leaping formulation
is thus given in Eq. 2.14. While satisfying the leap condition is desirable, it can sometimes demand an
exceedingly small τ, resulting in only a minimal number of events being leapt over. In such cases, it
might be more efficient to bypass the tau-leaping algorithm and resort to the direct method algorithm
instead3. To this end, it is crucial to carefully choose the tau-leap step τ, ensuring it is sufficiently large
to achieve statistical convergence while preventing unrealistic population values:

aµ(x)τ ≫ 1 for all µ = 1, . . . , M (2.15)

The tau-leap step can be determined using an algorithm reliant on the event rates [CGP06; AMW20].
Nevertheless, in the context of the physical domain, a fixed time step is a necessity for the Fourier
transform, making the adaptive direct method algorithm less favourable. The explicit tau-leaping
algorithm can be presented as follows:

Algorithm 2: The tau-Leaping algorithm
1: Initialize: Set the initial number of photons and carriers x0 and set t = 0.
2: Choose a time increment, τ.
3: Calculate the propensity function, aµ, for each event.
4: while t < T do
5: Generate M independent Poisson random variables, ∆xµ ∼ P(aµτ), which is the number of

each event occurring during the time interval [t, t + τ).
6: Update the number of photons and carriers as x(t + ∆t) = x(t) + ∑M

µ=1 ∆xµ.
7: Calculate the new propensity functions, aµ(t + τ), using the updated photon and carrier

numbers.
8: Set t = t + τ.
9: end while

Next, by using the notation N(m, σ2) to represent a Gaussian random variable with mean m and
variance σ2, and considering the mathematical approximation that a Poisson random variable with
a large mean and variance can be approximated as a Gaussian random variable with the same mean

3For instance, if one selects a relatively small value for τ, such as 1/a0 as demonstrated in Algorithm. 1, the ensuing leap
would be approximately equivalent to the expected size of the next time increment in the direct method algorithm. However,
it’s very likely that only one of the generated Poisson variables would be 1, with all the others being 0. Opting for even smaller
values for τ would result in leaps where all the Poisson variables are expected to be 0, offering no discernible advantage.



2.2. Theory of Quantum-Confined Lasers 29

Figure 2.11: Schematic illustration of the two Gillespie algorithms.

and variance, one can further approximate equation (2.14) as follows:

x(t + τ) = x(t) +
M

∑
µ=1

N
[
aµ(x)τ, aµ(x)τ

]
vµ

= x(t) +
M

∑
µ=1

vµaµ(x)τ +
M

∑
µ=1

vµ

√
aµ(x)

√
τN(0, 1)

(2.16)

The final step in this derivation makes use of a property of the Gaussian random variable, which
states that N(m, σ2) = m + σN(0, 1). In the realm of continuous Markov processes, it has been estab-
lished that these equations can also be represented in the form of white noise:

dx(t)
dt

=
M

∑
µ=1

vµaµ(x) +
M

∑
µ=1

vµ

√
aµ(x)Γµ(t) (2.17)

Here, the Γµ(t) represents statistically independent Gaussian white-noise processes that fulfill the

condition
〈

Γµ(t)Γµ′(t′)
〉
= δµµ′δ(t − t′). In the thermodynamic limit4, the expression of (2.17), where

the right-hand side is the combination of a deterministic drift term and a stochastic diffusion term
proportional to Gaussian white noise, is commonly referred to as Langevin equations in Section. 2.2.1.

2.2.3 Fully quantum-mechanical description

Despite the successes of the semiclassical theory, there are compelling reasons to pursue a more re-
fined treatment. Firstly, the semiclassical theory implies that laser radiation in an ideal steady state
should be perfectly monochromatic. However, practical lasers are subject to various disturbances,
leading to a finite radiation bandwidth. This intrinsic linewidth includes the combined effects of ther-
mal noise, zero-point fluctuation fields, and spontaneous emission, making an accurate calculation a

4In a general sense, the thermodynamic limit refers to the scenario where the populations X and the volume of the system
V both tend to infinity while maintaining constant species concentrations X/V. In the context of semiconductor lasers, the
thermodynamic limit is specifically defined as the limit where β−1 → ∞ [RC94].
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challenging task in nonequilibrium statistical mechanics. Secondly, the semiclassical theory falls short
in explaining the spontaneous onset of oscillations, which necessitate an initial optical frequency field.
Understanding how oscillations can emerge from a state without any initial radiation is a topic of sig-
nificant interest, requiring the consideration of the Weisskopf-Wigner theory of spontaneous emission
[WW30]. Thirdly, a fully quantum-mechanical approach can give the statistical distribution of energy
stored in the laser cavity, referred to as "photon" statistics. This information is vital for a comprehen-
sive analysis of the statistical distribution of photoelectrons generated by a laser.

The quantum theory of lasers has been a subject of extensive research since its emergence in the
early 1960s, with contributions from prominent physicists. In the domain of semiconductor lasers,
progress in all semiconductor approaches heavily depends on advancements in atomic-molecular-
optics (AMO) treatments. The foundation of microscopic semiconductor laser theory can be traced
back to the semiclassical gas laser theory. In this context, velocity-resolved atom populations are
replaced by momentum-resolved carrier populations, and Maxwell-Boltzmann distributions are sup-
planted by Fermi-Dirac distributions. The active medium is treated with quantum-mechanical meth-
ods, while the radiation field can be described either semiclassically using Maxwell–Bloch equations
or quantum-mechanically through quantum optics. In this overview, I will present the key concepts
without delving into excessive technical details.

Figure 2.12: The effect of the electromagnetic field E(r, t) is to induce microscopic dipole moments
pi in the active medium according to the laws of quantum mechanics, Then the density matrix is
used to facilitate the statistical summations involved in obtaining a macroscopic polarization P(r, t) of
the medium from the individual dipole moment, which acts as a source for the electromagnetic field
E′(r, t) in accordance with Maxwell’s equations. The condition of self-consistency then requires that the
resulting field E′ should be equal to the inducing field E. (Source: In Page 96 of the Ref. [SSL77])

In the semi-classical approach, also known as Lamb laser theory [Lam64], the radiation field is
modelled using Maxwell’s equations, while the response of matter is described by the optical Bloch
equations. The fundamental wave equation governing the dynamics inside the laser cavity can be
expressed as:

−∇2E + µ0εbg
∂2E
∂t2 = −µ0

∂2P
∂t2 (2.18)

where µ0 is the magnetic permeability of the vacuum and εbg = n2
0ε0 is the background permittivity,

which includes the vacuum contribution ε0 and the background refractive index n0. The macroscopic
polarization quantity P can be ascertained by solving the equations of motion for the microscopic
dipole moments pi within the quantum gain medium, as illustrated in Fig. 2.12. These equations
should be derived from the Hamiltonian of the full system, which encompasses the contributions
arising from the electric-dipole interaction between the driving field and the gain medium composed
of homogeneously broadened two-level atoms. More comprehensive information on this topic can be
found in Ref. [Lou73; TLO94; VG97; CKS12; CJ13]. Last but not least, it is important to mention that the
frequency-pulling contribution in Lamb laser theory is the precursor to the carrier-induced refractive
index and linewidth enhancement factor (αH) observed in semiconductor lasers [Lax67; Hen82], as
discussed in Section. 3.1.3. Taking a different path with the optical Bloch equations, one assumes that
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the dephasing process occurs much more rapidly than changes in laser intensity and carrier transport
processes. This assumption gives rise to the rate equation approximation, as outlined in Section. 3.2.

Hermann Haken and his colleagues [Hak85] made great advancements by developing a theo-
retical description in the Heisenberg picture. In this picture, operators are treated as time-dependent
quantities, while wave functions remain time-independent. Within this framework, they devised tech-
niques to transform master equations into Langevin operator equations. Linearizing these equations
enabled the calculation of the internal noise spectral density, which, in turn, allowed the examina-
tion of laser light properties such as coherence and quantum fluctuations. This approach provides
a straightforward understanding and facilitates direct comparisons with experimental power spec-
tra through the Fourier transform. However, accurately obtaining photon-number statistics remains a
challenge in this approach. It’s worth noting that the early papers primarily focused on gas lasers with
closed cavities, limiting their applicability. Yoshihisa Yamamoto [YMN86] highlighted the importance
of considering the coupling of the laser cavity to external optical modes for a correct description of
shot noise in the intensity noise spectrum of lasers. Additionally, the introduction of input/output
boundary conditions [GC85] further enhanced the understanding of laser theory by enabling the cal-
culation of output noise spectra based on internal noise spectra. An example of this approach applied
to semiconductor lasers can be found in [YMN86]. As illustrated in Fig. 2.13, the laser system can be
described by employing three quantum Langevin equations. These equations are derived after the
adiabatic elimination of the dipole-moment operator, and they govern the dynamics of the inversion
operator N̂c(t) and the slowly varying internal optical field annihilation operator Â(t), alongside the
external field r̂(t).

d
dt

N̂c(t) = P − (1 − β)
N̂c(t)

τsp
− (Êcv − Êvc)n̂(t)−

〈
Êcv

〉
+ Γ̂p(t) + Γ̂sp(t) + Γ̂(t)

d
dt

Â(t) =
1
2

[
ω

Qi
+

ω

Qo
+ 2j(ω − ω0)−

ω

µ2 (χ̂i − jχ̂r)

]
Â(t) + Ĝ(t) + ĝ(t) +

√
ω

Qe
f̂e(t)

r̂ = − f̂e(t) +
Â(t)√
ω/Qe

(2.19)

For a detailed explanation of all the terms and their significance, please consult Ref. [YMN86]. Here,
to maintain simplicity, I refrain from providing an exhaustive description of each term. Lastly, it is
noteworthy that the quantum mechanical laser equations bear a striking resemblance to their semi-
classical counterparts in Section. 2.2.1. Despite the use of operators, their physical interpretation can
still be understood at a classical level.

Figure 2.13: The basic quantum Langevin model for the semiconductor lasers. (Source: In
Ref. [YMN86])
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Figure 2.14: The flow of the diagonal elements ρn,n to the neighboring ρn−1,n−1 and ρn+1,n+1. An
upward flow proportional to A(n + 1) represents stimulated and spontaneous emission of photons,
while two downward flows proportional to Bn2 and ω

Q n correspond to nonlinear atomic absorption
(gain saturation) and linear photon decay from the cavity, respectively. (Source: In Ref. [SSL77])

Another alternative approach utilizes the Fokker-Planck equation in the P representation (see
Appendix. C) or the density matrix in the Schrödinger picture [SL67; SSL77]. In this picture, the state
vectors or wave functions evolve in time, while the operators remain mostly constant with respect to
time. Therefore, the time evolution of the reduced density matrix ρ is traced. The statistics of photon
numbers are connected to the diagonal elements ρn,n, and their master equation in the photon number
representation is given by [SSL77]:

ρ̇n,n = − [A − B(n + 1)] (n + 1)ρn,n + (A − Bn)nρn−1,n−1 −
ω

Q
nρn,n +

ω

Q
(n + 1)ρn+1,n+1 (2.20)

The physical interpretation of (2.20) is succinctly depicted in Fig. 2.14. This approach offers com-
putational convenience for calculating photon statistics while capturing the time evolution with full
information but it is somehow difficult to determine power spectra. In the steady-state condition, the
net flow between adjacent diagonal elements ρn,n must be precisely zero to maintain time invariance.
This condition, known as detailed balance, is expressed as:

ω

Q
(n + 1)ρn+1,n+1 − [A − (n + 1)B] (n + 1)ρn,n = 0 (2.21)

By induction and also the conservation of probability (∑∞
n=0 ρn,n = 1), one can get

ρn,n = ρ0,0

n

∏
k=1

A − Bk
ω/Q

, with ρ0,0 = (1 +
∞

∑
n=0

n

∏
k=1

A − Bk
ω/Q

)−1 (2.22)

For operation below the laser threshold (⟨n⟩ = ∑ nρn = A
(ω/Q)

≪ 1), the fraction (A−Bk)
(ω/Q)

can be

approximated as A
ω/Q . Therefore, ρn,n exhibits an exponentially decreasing value:

ρn,n ≈ (
A

ω/Q
)nρ0,0 = ⟨n⟩n ρ0,0 =

1
1 + ⟨n⟩ (

⟨n⟩
1 + ⟨n⟩ )

n (2.23)

At the laser threshold (⟨n⟩ ∼ 1), the fraction (A−Bk)
ω/Q is less than unity for all k > 0. As a result, the

largest probability corresponds to ρ0,0 and the probabilities of photon number decrease monotonically
ρ0,0 = ( 1

2 )
n+1. In the case of very high excitation (⟨n⟩ ≫ 1), the average photon number ⟨n⟩ tends to

A2

B(ω/Q)
, and the photon numbers around ⟨n⟩ exceed A

B by the ratio A
ω/Q . As a consequence, the photon

statistics follow the Poissonian distribution and approach a coherent states, which will be discussed in
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Section. 4.1.

ρn,n ≈
ρ−1

0,0 ⟨n⟩
n

n!
=

e−⟨n⟩ ⟨n⟩n

n!
(2.24)

Finally, as the diagonal elements ρn,n of the density operator become nonzero, the off-diagonal
elements ρn,n+1 decay to zero. This decay signifies the simultaneous decay of the field, ultimately
leading to the generation of the laser linewidth. For a more comprehensive understanding, please
refer to Chapter 17 of Ref. [SSL77]. After that, Melvin Lax established that these two formulations
are equivalent when the photon number inside the cavity is sufficiently large [LL69]. Moreover, this
theory determines the photocount distributions of laser light from modes both below and above the
threshold, and theoretical results align excellently with experiments conducted on gas lasers [ABS66;
AMW20].

In conclusion, a bird’s eye view of modelling semiconductor lasers is provided in Fig. 2.15. In
the classical treatment of radiation, the optical Bloch equations are habitually used in conjunction
with Maxwell’s equations. The Lamb laser theory [Lam64] allows for the elimination of the active-
medium equations when perturbation theory is applicable. The rate equation approximation can be
employed when the polarization dynamics are eliminated [CCM12]. In the quantized treatment of
radiation, there are two categories of approaches. The first involves using a density matrix approach
[SSL77], while the second employs the Langevin operator approach [Hak85; YMN86]. More accurate
treatments, such as the quantum luminescence theory and the Lindblad approach, can be applied
subsequently [CJ13; Car+21].

Figure 2.15: The development of the semiclassical and quantum optical theories for semiconductors,
with red lines indicating the methodologies employed in this thesis. (Source: In Ref. [CJ13])

The active gain medium in semiconductor lasers comprises charge carriers that interact through
the Coulomb potential. When coupled with quantum statistics, this leads to many-body effects [NGJ04]
(left side of Fig. 2.15). In most modelling, the Hartree-Fock effects are addressed within the screened
Hartree-Fock approximation, and scattering effects are described using effective relaxation rates. How-
ever, when a more in-depth examination of the active material is needed, a rigorous treatment is
warranted. This improved treatment involves delaying the truncation of the expansion in Coulomb
correlations, extending it beyond the Hartree-Fock level when utilizing two different approaches. By
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using the second Born and Markov approximations to describe collisions, researchers have achieved
very good agreement with experimental gain spectra for bulk and QW systems [CKS12]. However,
for QD systems, a more complex approach involving quantum kinetic equations is required due to
their unique characteristics [Car+21].
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Chapter 3

Classical Noise and Feedback
Dynamics in Quantum-Confined
Lasers

This chapter focuses on exploring classical noise and feedback dynamics in quantum-confined lasers.
In semiconductor lasers, the presence of classical noise and fluctuations associated with the lasing pro-
cess can significantly affect both the intensity and phase of the optical field, leading to frequency and
intensity noises. Additionally, understanding the dynamic behaviour of laser diodes within optical or
optoelectronic feedback loops is of great importance.

The chapter begins by emphasizing the significance of low relative intensity noise (RIN) in opti-
cal communication systems. Furthermore, optical sources with low-frequency noise (FN) are highly
sought after for applications requiring narrow linewidth operation, and state-of-the-art results in this
regard will be exhibited. The subsequent investigation involves numerically analyzing the RIN and
FN characteristics of quantum dot (QD) lasers and interband cascade lasers (ICLs) using the Langevin
rate equation approach, which considers both spontaneous emission and carrier contributions. To
study the FN spectrum, the rate equation model incorporates the phase of the electric field. It is worth
noting that carrier fluctuations introduce additional phase fluctuations due to the coupling between
carrier density and refractive index, as described by the linewidth enhancement factor (αH-factor).

Time-delayed optical or optoelectronic feedback is a well-known mechanism capable of modify-
ing laser dynamics. Even feedback strengths below 1% can trigger complex nonlinear dynamics in cer-
tain laser systems, such as periodic or chaotic oscillations. Optoelectronic feedback, on the other hand,
is known to generate square-wave oscillations. While these complex dynamics are advantageous in
many applications, they can be detrimental to the operational stability in the context of photonic inte-
grated circuits (PICs) used in high-speed optical interconnects. Thus, at the end of this chapter, I also
delve into investigating the impact of time-delayed feedback on QD lasers and ICLs, aiming to gain
deeper insights into the nonlinear dynamics of semiconductor lasers.

3.1 Introduction to the classical noise

Classical noise exerts a significant influence on the performance and capabilities of photonics appli-
cations, presenting limitations and impacting various aspects. In coherent optical communications
and interference-based sensors, semiconductor laser frequency noise (FN) or phase noise stands out
as a primary source of noise [Hen82]. This noise originates from inherent phase fluctuations within
the laser itself, setting a fundamental sensitivity limit for these systems. Furthermore, the spectral
linewidth of semiconductor lasers surpasses the Schawlow-Townes limit due to amplitude-phase cou-
pling mediated by excited carriers. This coupling not only affects the linewidth but also determines the
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characteristics of direct frequency modulation in semiconductor lasers. In optical data transmission,
minimizing laser intensity noise is critical for effective analogue modulation [Pet91]. This necessity
ensures the faithful and high-quality transmission of signals, guaranteeing clear and accurate repre-
sentation upon reception. For high-speed long-distance digital transmission systems, maintaining low
bit-error rates is of utmost importance. Achieving stable single-mode operation, free from sporadic
mode jumps, is essential to reduce noise. This phenomenon, known as mode-partition noise, must be
mitigated to ensure reliable and error-free transmission.

Within the classical framework of the dual wave-particle nature, light is frequently understood as
an electromagnetic wave. The following wave equation serves as the mathematical description for a
single-mode electromagnetic field in an isotropic and insulating medium:

∇2E(r, t)− 1
(c/n)2

∂2

∂t2 E(r, t) = 0 (3.1)

with a solution for the electric field vector E(r, t), given the dimensionless complex amplitude α

E(r, t) = E0 cos (ωt − ϕ)u(r) = (X1 cos ωt + X2 sin ωt)u(r) =
1
2

[
αe−iωt + α∗eiωt

]
u(r) (3.2)

the variables X1 = E0 cos ϕ = 1
2 (α + α∗) and X2 = E0 sin ϕ = 1

2i (α − α∗) signify the in-phase and
quadrature components in Cartesian coordinates, respectively. The electric field amplitude E0 is re-
lated to the photon number S by E0 = ξ0

√
S, where ξ0 =

√
h̄ω
ε0V denotes the electric field generated

by a single photon within the volume V. The spatial mode function u(r) is determined by boundary
conditions and satisfies the normalization condition

∫
|u(r)|2 dr3 = V. When describing interference

or diffraction in classical wave scenarios, a commonly used tool is the phasor diagram, depicted in the
left side of Fig. 3.1, which represents the field at a specific point in space and time. In this diagram,
each wave corresponds to a specific vector originating from the origin and extending to the point (X1,
X2).

Figure 3.1: Fluctuations depicted in the phasor diagram illustrating the classical limit. The wave can
exhibit fluctuations in both its in-phase and quadrature components, which correspond to variations
in the temporal traces. (Source: On page 18 in Ref. [BR04])

The classical model has traditionally assumed that light is composed of a continuous succession
of electromagnetic waves. However, this idealization deviates from reality. Atoms that emit light
possess finite lifetimes, resulting in bursts of light emission. Given the brief nature of these lifetimes
compared to the detection interval, these light bursts often elude individual detection. Consequently,
what emerges is a well-defined average intensity that oscillates on time scales exceeding the detection
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interval. Similarly, most classical or thermal light sources consist of a large assembly of atoms, each
independently emitting light. Additionally, these atoms are subject to motion, engendering frequency
shifts, and they can interact through collisions, which disrupt the emission process and introduce
phase changes.

These phenomena give rise to two implications. Intensity Noise: Every light source inevitably
exhibits some degree of intensity noise. The intensity of light isn’t constant; it experiences fluctua-
tions over time. These fluctuations arise from variations in the number of emitting atoms, as well as
sudden phase shifts or discontinuities in the light emitted by individual atoms. Spectral Lineshape:
Real-world light sources exhibit a spectral line shape. In reality, the frequency of light doesn’t re-
main perfectly constant; instead, it undergoes rapid changes over time. To accurately depict any light
source, a spectral distribution encompassing an extended spectrum, rather than a single delta func-
tion, is indispensable.

The assessment of the statistical properties of light can be carried out in two alternative ways.
The first entails measuring the fluctuations directly, either in the configuration of temporal traces or
noise power spectra. The second method involves evaluating coherence or correlation functions. De-
spite requiring different equipment and methodologies, these two concepts are interconnected. In the
upcoming Chapter. 4, I shall delve into how these statistical properties can be practically modelled
and how they have been instrumental in distinguishing between the classical and quantum nature of
light. This chapter primarily focuses on the first method. Moreover, investigating spectral lineshape
and frequency noise is crucial as they play a significant role in various applications. In applications
such as spectroscopy, where high-resolution measurements are required, a well-defined spectral line-
shape is essential. In coherent optical communication, the spectral purity and stability of laser sources
are vital for maintaining the integrity of transmitted information. Frequency noise can lead to phase
fluctuations and signal degradation, affecting the system’s ability to accurately detect and decode
data.

3.1.1 Relative intensity noise

The relative intensity noise (RIN) has a key role in determining the signal-to-noise ratio (SNR) and the
bit error rate (BER) in signal transmission, respectively. Fig. 3.2 provides a visual representation of the
noisy intensity-modulated laser output signals in both analogue and digital applications. In analogue
applications, the noise is quantified through the SNR, which is defined as follows:

SNR =

〈
i2S
〉〈

i2N
〉 =

〈
(P1 sin ωt)2〉
⟨δP(t)2⟩ =

m2

2
P2

0
⟨δP(t)2⟩ (3.3)

where the intensity modulation index is given by m = P1/P0. In digital applications, a decision level
is set at the midpoint to distinguish between "0" and "1" signals. However, false recordings can occur
if the magnitude of the noisy term |δP(t)| exceeds half of the signal power P0/2. Assuming the noise
follows a Gaussian distribution around the mean power level, in order to achieve a BER lower than
10−9, the probability of encountering |δP(t)| > P0/2 needs to be less than 1 in 109, requiring [Yar91]

1
2

erfc
[

1
2
√

2
P0

⟨δP(t)⟩

]
< 10−9 ⇒

P2
0

⟨δP(t)2⟩ > (11.89)2 (3.4)

The RIN of a laser is commonly defined as the ratio of the power spectral density of the laser
intensity fluctuations to the square of the average laser output power [CCM12]:

RIN ≡
〈
δP(t)2〉

P2
0

(3.5)
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The RIN, often expressed in decibels (dB) as 10 log10(RIN), is represented in this manner because
using a logarithmic scale allows for a more convenient comparison and characterization of noise levels
over a wide range.

Figure 3.2: Noise in modulated laser signals for both analogue and digital applications. (Source: On
page 222 in Ref. [CCM12])

To characterize the output power fluctuations and thus determine the RIN, it is valuable to rep-
resent the RIN in the frequency domain. This can be achieved by employing the Fourier transform as
the initial step: 〈

δP(t)2
〉
=

1
2π

∫ +∞

−∞
SδP(ω) |F(ω)|2 dω

Here, SδP represents the spectral density of |δP(t)|, while F(ω) is the passband of the spectrum
analyzer’s filter. Assuming that the measurement filter is centred at ω0 and is narrowband compared
to variations in the spectral density, one can simplify the analysis with F(ω0) = 1,

〈
δP(t)2

〉
≈ SδP(ω0)

∫ +∞

−∞
|F(ω0)|2 d f = SδP(ω0)2̇∆ f (3.6)

This relation is graphically illustrated in Fig. 3.3 for an arbitrary noise spectrum. The effective
measurement bandwidth is 2∆ f since both positive and negative frequencies must be considered.
Alternatively, one could define the spectral density as "single-sided," existing only in the positive
frequency domain, as indicated by the dashed line in Fig. 3.3. In this case, the measurement bandwidth
would simply be ∆ f , and the factor of 2 would be lumped into the single-sided spectral density. The
choice of using a single-sided or double-sided spectral density is academic, as long as it is consistently
applied. Finally, one defines the RIN in the frequency domain as follows:

RIN
∆ f

=
2SδP(ω)

P2
0

(3.7)
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Figure 3.3: Measured noise using a narrowband filter. One can fold the spectrum in half, if desired,
and define a single-sided spectrum existing only in the positive frequency domain that is a factor of two
larger than the double-sided spectrum. (Source: On page 224 in Ref. [CCM12])

Note that this spectral density is double-sided (if it is single-sided, then the factor of 2 should
be removed in (3.7)). As the measurement bandwidth can vary across different applications, it is
customary to express the quantity on the left as RIN in dB/Hz or RIN per unit bandwidth. The full
RIN is then determined by integrating the RIN per unit bandwidth over the detection bandwidth
relevant to the practical system. When designing a communication system, the desired SNR or BER
sets an upper limit on the total RIN of the laser. If the RIN spectrum is flat, then the necessary RIN per
unit bandwidth of the laser can be determined from:

RIN(dB/Hz) = 10 log10(
RIN
∆ f

)

Hence, for instance, in a digital transmission link with a 2 Gbits/s (1 GHz) system bandwidth and a
required BER of less than 10−9 (i.e., RIN < 1/11.89 or -21.5 dB as indicated in (3.4)), the laser’s average
RIN (dB/Hz) must be lower than -21.5 dB - 90 = -111.5 dB/Hz. If the system bandwidth is increased,
the laser’s RIN per unit bandwidth must be reduced to maintain the same total RIN level.

In the realm of QD lasers, many advancements have been made in minimizing the RIN level.
Noteworthy experimental investigations on InAs/GaAs and InAs/InP QD devices have demonstrated
impressively low RIN levels, reaching as low as -160 dB/Hz [Cap+07; Lel+07]. Moreover, recent stud-
ies have revealed that QD lasers epitaxially grown on silicon, with or without p-doping, manifest RIN
levels spanning from -140 dB/Hz to -150 dB/Hz, as exemplified in Fig. 3.4 (b) and (c). Both the relax-
ation oscillation frequency (ROF) and damping factor are extracted from the curve-fitting of the RIN
spectrum through the expression [CCM12]:

RIN(ω) =
a + bω2

(ω2 − ω2
RO)

2 + γ2ω2
(3.8)

with ω the angular frequency, ωRO the angular ROF, γ the damping factor and a and b are used for
the curve fitting. For QD lasers, the damping factor γ has rapid growth with the squared ROF f 2

RO
according to the relationship γ = K f 2

RO + γ0. Here, the K-factor represents the slope, and the damping
factor offset γ0 is inversely related to the differential carrier lifetime τc, as demonstrated in Fig. 3.4 (e).
Additionally, the K-factor is commonly used to estimate the maximum 3-dB bandwidth, given by the
expression f3dB,max = 2

√
2π/K.
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Figure 3.4: Dynamic and RIN properties. (a) Experimental setup used for investigating the RIN of QD
lasers. RIN spectra up to 10 GHz for (b) undoped QD laser, (c) p-doped QD laser and (d) QW laser.
The observed high levels of low-frequency RIN can be attributed to the contributions from current
source noise, thermal noise, and mode partition. (e) Damping factor (γ) as a function of the squared
ROF ( f 2

RO). (f) Squared ROF ( f 2
RO) versus the output power (P). (Source: In Ref. [Gri+21])

Figure 3.5: The RIN of an ICL at 295 K for various bias currents. Dashed black lines correspond to the
fitting of the resonance associated with the relaxation oscillation. It leads to the determination of the
relaxation frequency around the GHz. (Source: In Ref. [Did+21])
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Building upon the same principle, a recent experimental investigation focused on the RIN of
an interband cascade laser (ICL) operating at 4.1 µm. The study revealed that the laser exhibited a
relaxation frequency in the GHz range at room temperature as shown in Fig. 3.5. In particular, at
low frequencies ranging from 10 MHz to 100 MHz, the RIN level was considerably high, measuring
around -95 dB/Hz, which can be attributed to various noise sources including technical, thermal,
and partition noises. However, the observed relaxation frequency was sufficiently high to realize
multi-Gbit/s data transmission and anticipate a remarkably broad dynamic bandwidth in free space
[Did+23], which will be elaborated upon in Section. 3.2.3.

3.1.2 Frequency noise

In addition to intensity noise, semiconductor lasers also have frequency noise, often referred to as
phase noise. This phenomenon can have a detrimental impact on the laser’s spectral purity, as the
output of a single-frequency laser is not perfectly monochromatic but rather exhibits fluctuations in
the optical phase. It is important to note that phase noise and frequency noise are sometimes used
interchangeably, which can lead to confusion. However, it should be clarified that phase noise and
frequency noise represent different representations of the same underlying noise process, and they are
mathematically related through a simple relationship, ω(t) = 2πν(t). The presence of phase noise can
cause the laser’s instantaneous frequency, ν(t), to deviate from its central frequency, ν0, resulting in
frequency fluctuations ∆ν(t) that can be considered as the temporal derivative of the oscillation phase,
ϕ(t):

∆ν(t) = ν(t)− ν0 =
1

2π

dϕ(t)
dt

(3.9)

Phase fluctuations in semiconductor lasers arise from two essential sources: (1) spontaneous emis-
sion and (2) carrier density fluctuations. Spontaneous emission, which occurs in all types of lasers,
arises from the random addition of photons emitted spontaneously to the coherent resonant cavity
mode. On the other hand, carrier density fluctuations primarily affect semiconductor lasers. These
fluctuations result from variations in the carrier density, leading to changes in the refractive index
[Hen82]. This phenomenon, known as frequency chirp, becomes particularly significant during direct
modulation operations. The spectral linewidth of the lasing mode serves as a well-known parameter
to gauge the level of frequency noise. While single-mode lasers, such as distributed feedback (DFB)
and distributed Bragg reflector (DBR) types, manage to reduce the spectral width of the laser output
to quasi-single mode, the linewidth remains finite due to phase noise. In practice, narrow linewidth
semiconductor lasers find indispensable applications in high-performance coherent communication
systems, optical atomic clocks, frequency synthesis, spectroscopy, and distributed sensing systems.
Besides, these lasers are expected to be single-frequency, energy-efficient, and amenable to monolithic
integration, too. In pursuit of these objectives, semiconductor DFB lasers with strained quantum well
(QW) layers have emerged as highly reliable single-wavelength sources. However, QW DFB lasers
fabricated using simple grating designs often exhibit spectral linewidths on the order of a few mega-
hertz. For a dense wavelength division multiplexing (DWDM) system with 96 channels and 50 GHz
channel spacing, a 38 nm wavelength tuning range is needed and the linewidth is in the order of 100
kHz [Yan+23]. Therefore, gaining a complete understanding of the inherent linewidth is needed.

The linewidth originating from spontaneous emission is referred to as the Schawlow-Townes
linewidth (∆ν)ST [ST58]. In this linewidth broadening process, the full-width half maximum (FWHM)
linewidth of the cold cavity is inversely proportional to the photon lifetime τp0 in the absence of stim-
ulated or spontaneous emission rate, i.e., ∆ν0 = 1/2πτp0. However, as the optical field propagates
through the gain medium, the effective photon lifetime τp is extended due to gain compensation for
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cavity losses, and it can be expressed as [CCM12]:

1
τp

=
1

τp0
− Γpvgg

where Γp is the optical confinement factor ,vg represents the group velocity in the gain medium, and
g corresponds to the material gain. Consequently, the photon density at steady-state Np is amplified
due to the prolonged photon lifetime τp:

Np =
Rsp

1/τp0 − Γpvgg
= τpRsp

with Rsp = vggnsp/V representing the spontaneous emission rate into one optical mode, nsp being
the population inversion factor, and V being the volume of active region. Therefore, the correlated
Schawlow-Townes linewidth (∆ν)ST is determined by the following relationship:

(∆ν)ST =
1

2πτp
=

Rsp

2πNp

Unfortunately, this intuitive derivation has its limitations. While the previous equation can describe
the linewidth below the threshold caused by the amplified spontaneous emission, it fails to capture the
behaviour above the threshold, where the intensity fluctuations are effectively suppressed, resulting
in a reduction of the linewidth by a factor of 2 [Lax67]:

(∆ν)ST =
Rsp

4πNp
(3.10)

To provide design guidelines for lasers with low frequency noise, an alternative definition of the
Schawlow-Townes linewidth, which takes into account the laser output power P0 = vgαmNphνV and
the gain steady condition g = α, is expressed as follows [Hen82]:

(∆ν)ST =
v2

gααmnsphν

4πP0
(3.11)

where α and αm are the total cavity losses1 and the mirror losses, respectively.
Fleming and Mooradian [FM81] conducted careful measurements of semiconductor laser linewidth,

revealing a Lorentzian lineshape and an inverse relationship between linewidth and output power,
which was consistent with theoretical predictions. Surprisingly, their results showed that the linewidth
was 50 times wider than what was expected based on the modified Schawlow-Townes formula in
(3.11). Charles H. Henry provided an explanation for this discrepancy [Hen82]. This explanation in-
volves two parts. First, there’s the instantaneous phase change caused by spontaneous emission. Sec-
ond, there’s a delayed phase change resulting from the instantaneous change in field intensity. When
the laser aims to restore its steady-state field intensity, it goes through relaxation oscillations. During
this period, there is a net gain change in the laser, and this phenomenon accounts for the 2-fold re-
duction in linewidth as predicted by the modified Schawlow-Townes formula in the above-threshold
regime. It’s important to note that the gain variation also induces changes in the refractive index, lead-
ing to additional phase fluctuations. To incorporate this effect, the modified Schawlow-Townes-Henry
formula for the optical linewidth (∆ν)OL needs to be corrected by a factor of (1 + α2

H) [Hen82]:

(∆ν)OL = (∆ν)ST(1 + α2
H) =

v2
gααmnsphν

4πP0
(1 + α2

H) (3.12)

1The total cavity losses α include the mirror losses αm and the internal loss αi .
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Figure 3.6: Frequency noise spectrum, illustrating contributions from both carrier and spontaneous
emission noise. The values of (∆ν)OL and (∆ν)ST can be found at the y-intercepts of this spectrum for
low frequencies and high frequencies, respectively. (Source: On page 236 in Ref. [CCM12])

with αH the linewidth enhancement factor. In conventional QW lasers, this factor falls within the
range of 4-7, causing huge linewidth increases. A similar correction was proposed by Melvin Lax
[Lax67] for gas or solid-state lasers, where the cavity resonance is tuned away from the centre of the
gain spectrum. The detuning in these systems is small, and experimental verification is limited. In
semiconductor lasers, however, the laser line is located in the low-energy tail of the optical absorption
edge, leading to substantial detuning and consequently larger values of αH . This parameter will be
further discussed in the Section. 3.1.3. Fig. 3.6 illustrates a frequency noise spectrum. In the low-
frequency range, the dominant contribution comes from carrier noise, which gradually diminishes as
the modulation frequency exceeds the relaxation resonance frequency. In the high-frequency range,
carrier noise becomes negligible, resulting in frequency noise being determined by the white noise
background originating from spontaneous emission noise. The FWHM linewidth of the laser can be
determined through the self-heterodyne method in the experimental setup. This involves introducing
a time delay in the optical field before correlating it with itself.

To achieve spectral linewidth in the kHz or even sub-Hz range, extensive efforts have been dedi-
cated to enhancing the quality factor (Q-factor) of the cavity, thereby increasing the number of photons
stored within it. In this regard, an alternative formulation of (3.12) formula is proposed, with the goal
of further refining the understanding of laser linewidth [THB19]:

(∆ν)OL = (∆ν)ST(1 + α2
H) =

πhν3nsp

P0QEQ
(1 + α2

H) (3.13)

with the total Q-factor Q = 2πντp = 2πν
vg(αi+αm)

, the external Q-factor QE = 2πν
vgαm

and the internal Q-

factor QI =
2πν
vgαi

. And these three quality factor are linked 1
Q = 1

QE
+ 1

QI
. By referring to (3.13), it be-

comes evident that the spectral linewidth can be reduced by increasing the Q-factor, achieved through
an elongation of the photon lifetime (τp) and a reduction in the losses (αi and αm). Recent advance-
ments in heterogeneous integration have explored the utilization of high-Q Si/Si3N4 microresonators
together with III-V lasers on silicon as a possible solution for this objective [THB19; Jin+21]. These
integrated systems bridge the gap between semiconductor lasers and coherent optical systems by
leveraging CMOS-foundry-fabricated microresonators with exceptional performance metrics, includ-
ing an impressive high Q factor exceeding 260 million, enabling the achievement of an exceptionally
low short-term linewidth of only 1.2 Hz, and a finesse over 42,000, as clearly depicted in Fig. 3.7.
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Figure 3.7: Hybrid-integrated narrow-linewidth laser based on ultra-high-Q Si3N4 microresonator.
(a) Schematic of the hybrid laser design and the setup used for linewidth testing.(b) Measurement of
single-sideband frequency noise for both the free-running and self-injection locked DFB laser. The
white-frequency-noise levels are 1 Hz2Hz−1, 0.8 Hz2Hz−1, and 0.5 Hz2Hz−1 for resonators with a free
spectral range (FSR) of 20 GHz, 10 GHz, and 5 GHz, respectively. (Source: in Ref. [Jin+21])

Figure 3.8: Left panel: Extracted QD laser linewidth shown in marks. The simulated values are shown
in solid lines: 20◦C (blue), 40◦C (purple), 60◦C (orange), and 80◦C (red). Right panel: Extracted ICL
linewidth is shown in marks. (Source: in Ref. [Sep+19; Bor+20])
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Additional advancements can be achieved by incorporating a gain medium composed of self-
assembled quantum dots (QDs), leading to great improvements in laser performance through en-
hanced carrier confinement and a modified density of states. This approach results in substantially
reduced values of the linewidth enhancement factor (αH) (approaching zero) and the population in-
version parameter (nsp) (approaching unity), thereby yielding superior laser characteristics. Very
recently, a milestone has been accomplished with an InAs/InP QD distributed feedback (DFB) laser,
which demonstrated a record intrinsic spectral linewidth as low as 30 kHz at 20◦C [Sep+19], as de-
picted on the left side of Fig. 3.8. Moreover, a record-narrow intrinsic linewidth of only 1.62 kHz is
attained, accompanied by a white noise level of just 515 Hz2/Hz−1 [Wan+23]. Similarly, in interband
cascade lasers (ICLs), the linewidth of a 4.6 µm DFB ICL can be reduced to approximately 10 kHz
by increasing the pump current [Bor+20], as shown on the right side of Fig. 3.8. Consequently, the
quantity nsp × (1 + α2

H) can be utilized as a figure of merit for narrow linewidth operation.

3.1.3 Linewidth enhancement factor (αH)

In semiconductor lasers, the coupling between the laser field and the gain medium is mediated by
the gain and the carrier-induced refractive index through the Kramers-Kronig relation or, equivalently,
by the complex optical susceptibility χ. The interaction between the carrier-induced variations of the
real and imaginary parts of the susceptibility χ is described by the linewidth enhancement factor (αH-
factor) [Hen82; OB87]. To investigate the αH-factor theoretically, it is essential to solve the quantum
mechanical equations of motion for the microscopic polarization of the gain medium, as discussed
in Section. 2.2.3. These equations include various contributions such as kinetic energies, many-body
Coulomb interactions, electric-dipole interaction between carriers and the laser field, carrier-phonon
interactions, and the effects of the injection current [CKS12; CJ13; Lin15]. The macroscopic polarization
P can be expressed as the sum of the microscopic polarizations pi:

P =
1
V ∑

i
µipi

with V the volume of the active region volume, µi the dipole matrix element for the i transitions.
Assuming the gain medium is isotropic, the complex optical susceptibility χ is connected with the
polarization via

P = ε0n2
0χE = ε0n2

0(ℜe [χ] + jℑm [χ])E

where ε0 is the vacuum permittivity and E the electric field amplitude. To facilitate the calculation
of the material gain g and the carrier-induced refractive index δn, a simplified scenario is adopted,
wherein a monochromatic plane wave propagating along the z-direction is considered. This choice
enables the illustration of the essential physics of the semiconductor gain medium with minimal alge-
braic complexity [CKS12]:

E(z, t) =
1
2

x̂E(z)ej(Kz−ωt−ϕ(z)) + c.c.

where x̂ is the unit vector in the x direction, E(z) and ϕ(z) are the real field amplitude and phase
shift that vary little in an optical wavelength, ω is the lasing angular frequency in radians/second and
exp(jKz) accounts for most of the spatial variation in the laser field with K = ωn0/c the wave number.
In the same spirit, the laser field induces a polarization in the medium

P(z, t) =
1
2

x̂P(z)ej(Kz−ωt−ϕ(z)) + c.c.
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where P(z) is a complex polarization amplitude that varies little in a wavelength. Then substituting
these two ansatzes into (2.18):

−d2E
dz2 − 2j(K − dϕ

dz
)

dE
dz

+

[
(K − dϕ

dz
)2 + j

d2ϕ

dz2 − (
n0ω

c
)2
]

E = µ0ω2P

This equation can be simplified considerably if one assumes that E and dϕ/dz vary little in a wave-
length, so that terms containing d2E/dz2, d2ϕ/dz2 and (dE/dz)× (dϕ/dz) may be neglected. This
slowly varying envelope approximation gives

−2jK
dE
dz

+ K2E − 2KE
dϕ

dz
− (

n0ω

c
)2E = µ0ω2P

Then, i.e.,
dE
dz

− jE
dϕ

dz
=

jµ0ω2

2K
P =

jω
2n0ε0c

P =
jK
2

χE

Equating the real and imaginary parts, the self-consistency condition mentioned in Section. 2.2.3 is

dE(z)
dz

= −K
2
ℑm[χ(z)]E(z) = − ω

2ε0n0c
ℑm[P(z)]

dϕ(z)
dz

= −K
2
ℜe[χ(z)] = − ω

2ε0n0cE(z)
ℜe[P(z)]

Therefore, the material gain g in intensity that satisfies dE/dz = 1/2gE with units of inverse
length, can be defined as

g = −Kℑm[χ(z)] = −ωn0

c
ℑm [χ] = − ω

ε0n0c
ℑm [P(z)]

To find the carrier-induced refractive index δn, note that the wavenumber of the laser field given
by

K − dϕ

dz
= (n0 + δn)K0

where K0 is the wavenumber in vacuum. Since K = n0K0 and dϕ/dz = −K0δn, hence

δn =
n0

2
ℜe [χ] =

1
2ε0n0E(z)

ℜe [P(z)]

Deriving from these two equations, the αH-factor that describes the coupling between the material
gain and the refractive index is expressed as follows[OB87]:

αH =
dℜe [χ(N)] /dN
dℑm [χ(N)] /dN

= −2
ω

c
dδn/dN
dg/dN

= −4π

λ

dδn/dN
dg/dN

(3.14)

with N the carrier density, λ the lasing wavelength, dδn/dN the differential refractive index, and
a = dg/dN the differential gain. The net modal gain in the laser system is defined as the modal gain
Γpg after subtracting the total loss α. The material gain g is obtained by assuming a linear dependence
on carrier density N that can be described as follows [CCM12]:

g = a(N − N0) (3.15)

where N0 is the carrier density at the transparency point where the gain completely compensates for
the absorption.

The αH-factor plays a crucial role in characterizing various dynamic properties of semiconductor
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lasers, including spectral linewidth, sensitivity to optical feedback, nonlinear dynamics under optical
injection, and four-wave mixing generation. Fig. 3.9 illustrates a comparison of material gain (g) and
refractive index (n) as a function of the lasing photon energy for both QD and QW lasers. In QW
lasers, the refractive index zero point is displaced from the gain peak, both at low and high carrier
densities, resulting in a nonzero αH-factor. Typically, QW lasers exhibit αH-factors ranging from 2
to 5 [CCM12]. Conversely, in QD lasers with symmetric gain behaviour, the differential refractive
index change is precisely zero at the lasing photon energy, regardless of the carrier density. Hence,
QD lasers with symmetric gain can achieve a zero αH-factor [Cho+20]. Nevertheless, achieving a
zero αH-factor has proven to be elusive in experimental observations, and the value of αH in QD
lasers can vary widely from nearly zero to more than 10. This unexpected behaviour is related to
several mechanisms, including significant inhomogeneous broadening, the presence of off-resonant
states (such as higher energy levels like ES), and the influence of free carrier plasma. To measure the
αH-factor, several techniques have been employed, which can be classified into three types [PG11].
The first type involves analyzing the optical spectrum, including the optical linewidth spectrum and
the spectrum of amplified spontaneous emission (ASE). The second type relies on high-frequency
modulation techniques, such as the FM/AM method and the fibre transfer function method. The
third type focuses on external optical control methods, such as optical injection, optical feedback, and
four-wave mixing techniques.

Figure 3.9: Schematic of material gain g and refractive index n profiles variation with the carrier
density changes for QD and QW. (Source: On page 592 In Ref. [Yar89])

3.1.4 Correlation between intensity noise and frequency noise

The frequency noise and intensity noise in semiconductor lasers are not solely connected to spon-
taneous emission noise events but also are influenced by the phase-amplitude coupling effect (αH-
factor), resulting in a strong correlation between them through carrier population dynamics within
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Figure 3.10: Schematic illustrating the intensity fluctuation and phase diffusion (∆ϕi) of the lasing field
with (a) direct action of the spontaneous emission events only; (b) Joint action of both spontaneous
emission events and phase-amplitude coupling. The angle θi is randomly determined. The amplitude
and phase of the lasing field are represented as

√
P̄ and ϕ, respectively. The associated phase changes

for each case are indicated in the diagram. (Source: In Ref. [Gri+21]).

the active region [Pet91]. Interestingly, this coupling is asymmetric, with amplitude fluctuations cou-
pling into phase fluctuations rather than vice versa. This one-way coupling leads to excess phase
fluctuations that amplify the fundamental linewidth, while the intensity noise remains unaffected
[NV91]. As illustrated in Fig. 3.10 (a), spontaneous emission introduces a fluctuating field to the com-
plex field of the laser mode, representing the addition of a single photon with a random phase θi.
Then, the lasing field experiences both amplitude fluctuations (cos θi) and phase fluctuations (sin θi),
acting as a "detuned oscillator". In Fig. 3.10 (b), an additional phase-amplitude coupling effect in-
fluences the phase fluctuations with a term of −αH cos θi and the total phase diffusion is given by
∆ϕi =

1√
P̄
(sin θi − αH cos θi). The amplitude fluctuations are usually attenuated due to the gain sat-

uration of the amplifying medium, while the phase fluctuations persist since the mechanism driving
laser oscillation does not impose a specific phase on the generated field. As a result, as successive
spontaneous emission events occur, the phase of the laser field undergoes a random walk [Hen82].

In this context, a partial "image" of the intensity noise lies in the frequency noise, which could be
recovered from the phase fluctuations and used to reduce the amplitude fluctuations far below their
intrinsic level [KB91; Vil08]. When the intensity noise is maximally reduced, the two types of fluctua-
tions become decorrelated [NV91]. In the literature, M. A. Newkirk and Kerry J. Vahala demonstrated
a substantial reduction of intensity noise (14.5 dB) in a DFB laser at low bias through amplitude-phase
decorrelation. The reduction ratio can potentially reach (1+α2

H) [NV92]. Two methods were presented
in their work. The first approach utilizes a frequency-dependent transmission passive element exter-
nal to the laser cavity, while the second approach employs a dispersive intracavity loss, sharing con-
ceptual similarities with the detuned loading [VY84]. Another proposed scheme by Philippe Grangier
involves the use of a Michelson interferometer to achieve phase-to-amplitude conversion [CPG98].
When the laser operates in a tuned condition, corresponding to αH=0, the contours of constant prob-
ability density appear as circles, as demonstrated in Fig. 3.11. However, in the detuned case, these
contours take the shape of ellipses that are tilted concerning the coordinate axes. In this situation,
the variance of the instantaneous frequency fluctuation is amplified by a factor of (1+α2

H), while the
variance of the amplitude fluctuation remains unchanged. This tilted ellipse represents the state of the
input field, where the degree of tilt, and corresponding thinness of the ellipse signify the correlation
between the fluctuations.

Furthermore, it has been established theoretically and experimentally that the correlation between
intensity noise, frequency noise, and junction voltage noise persists even in the quantum regime
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Figure 3.11: Contours of constant probability density for tuned (αH = 0) and detuned (αH ̸= 0)
operation. For the detuned case, the tilted ellipse of the input field is rotated by T(ω) (i.e., Michelson
interferometer) to decorrelate the variables and reduce the variance of ρ̂0(t) by 1/(1 + α2

H). (Source:
In Ref. [NV91])

[ZMG02]. The underlying principle is straightforward to comprehend. Fluctuations in the carrier
population are influenced by spontaneous emission, stimulated emission, and absorption processes.
When the carrier system is only coupled to a single lasing mode, and the output coupling rate signifi-
cantly exceeds the internal loss rate, a perfect and negative correlation emerges between the junction-
voltage fluctuation and the photon-number fluctuation in the output field. This negative correlation
arises because a decrease of 1 in the number of carriers corresponds to a simultaneous increase of 1
in the photon number of the output field. Additionally, carrier fluctuations are coupled to laser fre-
quency fluctuations through the gain-refractive-index coupling. A decrease in the number of carriers
leads to a decrease in the lasing frequency, which corresponds to a positive value of αH . Remarkably,
even when the intensity noise is reduced below the standard quantum limit, the correlation between
these noise sources remains important [KB91; RY91]. By employing either of these signals in feedback
or feedforward schemes, it becomes feasible to substantially reduce the intensity noise.

3.2 Theoretical investigation of the classical noise

To capture the classical noise characteristics of quantum-confined lasers, it is essential to incorporate
the fundamental and critical aspects of these devices. These characteristics can be described at a mi-
croscopic level, which often involves complex calculations but contributes to a deeper understanding
of the underlying physics. In contrast, for practical device engineering purposes, it is beneficial to em-
ploy simplified models that incorporate phenomenological concepts and empirical parameters. This
approach facilitates the analysis and optimization of device performance.

For instance, calculating carrier scattering rates rigorously is a complicated task, as it necessitates
a sophisticated many-body quantum theory that accounts for interband collision processes [CKS12;
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Lin15]. To address this, a semi-empirical model proposed [Ber+01; Wan+14] introduces a formula that
incorporates carrier-dependent capture and relaxation times, offering a practical and computationally
efficient approach for modelling these processes:

τi =
1

Ai + Ci N

In the provided expression, the index i represents the capture or relaxation process, Ai denotes the
phonon-assisted scattering rate, and Ci represents the coefficient that determines the Auger-assisted
scattering by carriers in the different energy levels. Although this formulation yields favourable agree-
ment with time-resolved photoluminescence (TRPL) experiments [Mis+08], it is worth noting that the
parameters Ai and Ci can exhibit significant variations among different temperatures and devices,
thereby limiting the generalizability of this expression [LS09]. Nevertheless, it is reasonable to make
the assumption that once the laser is pumped above the threshold, the carrier reservoirs contain a high
density of carriers that remain relatively constant with changes in the bias current. This justifies the
approximation of treating the carrier scattering time as a constant value in the rate equation model,
facilitating simplifications in the analysis.

3.2.1 Quantum dot lasers

The three-level rate equations model employed in this study is based on the electronic structure of
quantum dots (QDs) depicted in Fig. 3.12. This numerical model assumes that the active region com-
prises a single ensemble of QDs. As a result, the model does not consider the dispersion in dot size,
which is responsible for the inhomogeneous broadening of the gain profile. The QD density of states
consists of two energy levels: a two-fold degenerate ground state (GS) and a four-fold degenerate
excited state (ES).

Figure 3.12: Schematic representation of QD lasers electronic structure and carrier dynamics.

As discussed before in Section. 2.2.1, it is implicitly assumed that the QDs are always in a neu-
tral state, and the electrons and holes are treated as electron-hole (eh) pairs rather than separately
[LS09]. Therefore, the system exclusively consists of excitonic energy states. Initially, external injected
carriers directly fill the two-dimensional carrier reservoir (RS), neglecting the carrier dynamics in the
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three-dimensional separate confinement heterostructure (barrier) layers. Some of these carriers are
subsequently captured into the excited state (ES) within a capture time τRS

ES , while others undergo
spontaneous recombination with a spontaneous emission time τRS

spon. Once in the ES, carriers can re-
lax to the ground state (GS) within a relaxation time τES

GS or recombine spontaneously. On the other
hand, carriers can also thermally reemit from the ES back to the RS, governed by the Fermi distribu-
tion following the detailed balance principle, with an escape time τES

RS that characterizes quasi-thermal
equilibrium in the absence of external excitation [Gri+09]:

τES
RS = τRS

ES
σGS
σES

e(EES−EGS)/(kBT)

τGS
ES = τES

GS
σESNB

DRS
e(ERS−EES)/(kBT)

where σES=4, σGS=2 are the degeneracy of the considered confined states, DRS =
m∗

RS
πh̄2 kBT is the effec-

tive density of states in the RS, NB is the total QD density, ERS,ES,GS are the energy levels in different
states. Similar dynamic behaviour is observed for the carrier population in the GS with respect to
the ES. The model considers stimulated emission from the GS once the threshold is reached, while
stimulated emission from the ES is not taken into account. Following the sketch of Fig. 3.12, the four
coupled rate equations on carrier and photon densities are described:

dNRS
dt

=
η I
q

+
NES

τES
RS

− NRS

τRS
ES

(1 − ρES)−
NRS

τ
spon
RS

+ FRS (3.16)

dNES
dt

= (
NRS

τRS
ES

+
NGS

τGS
ES

)(1 − ρES)−
NES

τES
RS

− NES

τES
GS

(1 − ρGS)−
NES

τ
spon
ES

+ FES (3.17)

dNGS
dt

=
NES

τES
GS

(1 − ρGS)−
NGS

τGS
ES

(1 − ρES)− ΓpvggGSSGS −
NGS

τ
spon
GS

+ FGS (3.18)

dSGS
dt

= (ΓpvggGS −
1
τp

)SGS + βsp
NGS

τ
spon
GS

+ FS (3.19)

where I is the bias current, q is the elementary charge, Γp is the optical confinement factor, τp the pho-
ton lifetime, vg the group velocity, βsp the spontaneous emission factor, and NRS,ES,GS are the carrier
populations in the RS, ES, and GS, respectively, and ρGS,ES,RS are the carrier occupation probabilities
in the GS, ES, and RS, which are given by ρGS = NGS/2NB, ρES = NES/4NB, ρRS = NRS/DRS, respec-
tively. Only stimulated emission originating from the GS level is considered hence SGS accounts for
the photon number in the GS level.

The linewidth enhancement factor αH determines the fundamental characteristics of semiconduc-
tor lasers. Macroscopic derivations by Mariangela Gioannini employed the Kramers-Krönig relation-
ship to describe the index variation resulting from the carrier population in localized states of the
quantum dots [GSM06]. In 2012, Benjamin Lingnau provided microscopic insights into the behaviour
of QD lasers, highlighting the desynchronization between the real and imaginary parts of the optical
susceptibility. This desynchronization arises from the resonant state’s contribution to the gain change,
while the off-resonant states predominantly influence the refractive index [Lin+12]. As discussed in
Section. 3.1.3, the active medium polarisation drives the electric field E(t). In Ref. [Lin15], Lingnau
introduced the slowly varying inter-band microscopic polarization p(t), which is characterized by the
single decay time constant TD, representing the lifetime of the microscopic polarization. The expres-
sions for p(t) are given by:

∂

∂t
pX(t) = −j(ωX − ω0)pX(t)− j

µXE(t)
2h̄

(2ρX − 1)− 1
TD

pX(t)
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where ωX = EX/h̄ is the lasing frequency in different energy states X = GS, ES, RS, ω0 is the lasing
frequency in the cold cavity, µX are the corresponding dipole transition matrix elements. To sim-
plify the quantum-dot laser model further, it is possible to eliminate the dynamics of the microscopic
inter-band polarization. This is justified by the relatively fast dephasing time TD of the polarization,
typically on the order of approximately 100 fs at room temperature [Bor+02]. Considering that charge-
carrier scattering times are typically a few picoseconds and the photon lifetime is several picoseconds,
this assumption is often valid. Consequently, all other dynamic variables can be treated as slowly
varying, leading to a quasi-static relation for the microscopic polarization amplitudes: d

dt pX(t) = 0.
The adiabatically eliminated microscopic polarization under the quasi-static assumption is yielded:

pX(t) = −j
µXTD

2h̄
(2ρX − 1)

1 − j(ωX − ω0)TD

1 + (ωX − ω0)2T2
D

E(t)

Defining the macroscopic polarization amplitude of the active medium:

P(t) =
2NB
VB

∑
GS,ES

σGS,ESµ∗
GS,ES pX(t)

with NB the total QD number, VB the QD active region volume, and the factor of two accounts for spin
degeneracy of the charge carrier states. Additionally, the RS macroscopic polarization amplitude has
the same form, with the QW region volume VRS:

P(t) =
2DRS
VRS

µ∗
RS pRS(t)

Following the relation between the slowly varying electric field envelope E(t) and the macroscopic
polarization amplitude P(t) in Section. 3.1.3, on can get:

∂

∂t
E(t) =

jω0Γp

2ε0εbg
P(t) = G̃(ω0, t)E(t)

with εbg and ε0 are the background and vacuum permittivity, respectively. It is worth noting that this
analysis does not consider inhomogeneous broadening resulting from dot size fluctuations [Sug+00].
Therefore, the complex gain G̃(ω0, t) can be obtained as:

G̃(ω0, t) =
jω0Γp

2ε0εbg
∑

X=GS,ES,RS

PX(t)
E(t)

=
ω0Γp

ε0εbg

NB
VB

[σGS g̃GS(2ρGS − 1) + σES g̃ES(2ρES − 1)] +
ω0Γp

ε0εbg

DRS
VRS

g̃RS(2ρRS − 1)

where g̃X is the complex gain coefficient in X = GS, ES, RS,

g̃X =
|µX |2 TD

2h̄
1 − j(ωX − ω0)TD

1 + (ωX − ω0)2T2
D

This equation gives rise to a Lorentzian-shaped gain spectrum for each optical transition, charac-
terized by a full width at half maximum (FWHM) of 2h̄T−1

D . The imaginary part of the gain vanishes
directly at the transition frequency, but it becomes significant at h̄ω ± T−1

D and gradually decays at
higher detunings, as depicted in Fig. 3.13. Consequently, when the optical field frequency is signif-
icantly detuned from the reservoir transitions, the imaginary part of the gain coefficient dominates.
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Figure 3.13: Lorentzian gain profile of a single optical transition. The real part of the QD gain coeffi-
cient g̃ exhibits a Lorentzian-shaped profile centred around the frequency ω, while the imaginary part
reaches its maximum at |ω − ωX | = T−1

D and becomes negligible for resonant transitions (ω = ωX). It
is noteworthy that the decay of the imaginary part is slower compared to the real part as the optical
frequencies move further away from the transition frequency.

Therefore, by assuming that the ES and RS lasing frequency is detuned sufficiently far from the reser-
voir transitions, one can neglect the real part of the ES and RS reservoir gain coefficients:

ℜe{g̃ES,RS} ≈ 0

The resulting complex gain can then be written as

G̃(ω0, t) =
NB
VB

(2ρGS − 1)
2ω0Γp

ε0εbg
g̃GS +

NB
VB

(2ρES − 1)
4ω0Γp

ε0εbg
g̃ES +

DRS
VRS

(2ρRS − 1)
ω0Γp

ε0εbg
g̃RS

=
NB
VB

(2ρGS − 1)
2 |µGS|2 TDω0Γp

2h̄ε0εbg

1 − j(ωGS − ω0)TD

1 + (ωGS − ω0)2T2
D
+

NB
VB

(2ρES − 1)
4 |µES|2 TDω0Γp

2h̄ε0εbg

1 − j(ωES − ω0)TD

1 + (ωES − ω0)2T2
D
+

DRS
VRS

(2ρRS − 1)
|µRS|2 TDω0Γp

2h̄ε0εbg

1 − j(ωRS − ω0)TD

1 + (ωRS − ω0)2T2
D

The optical susceptibility χ(t) can be derived from the complex gain expression through the relation-
ship χ(t) = (2εbgG̃(ω0, t)/(jωΓp). The real part of the gain G̃(ω0, t) is related to the laser gain while
the imaginary part gives the instantaneous frequency shift of the electric field. The three terms on the
right hand give contributions of the GS, the ES and the RS, respectively. Introducing the differential
gain (aX):

aGS =
2 |µGS|2 TDωGS

2h̄vgε0εbg

aES =
4 |µES|2 TDωES

2h̄vgε0εbg

aRS =
|µRS|2 TDωRS

2h̄vgε0εbg
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Then the gRS,ES,GS are the material gain of each state expressed as [Wan+14]:

gGS =
aGS

1 + ξSGS

NB
VB

(2ρGS − 1)

gES = aES
NB
VB

(2ρES − 1)

gRS = aRS
DRS
VRS

(2ρRS − 1)

where ξ is the gain compression factor. Due to the rapid decrease of the real part of the complex gain
away from resonance, the field gain is primarily influenced by the resonant state. When considering
lasing emission in resonance with the GS transition, denoted by ω0 = ωGS, one obtains the following
expression:

ℜe{G̃(ω0)} ≈ ΓpvggGS

In contrast, the imaginary part of the complex gain exhibits a slow decay for off-resonant frequen-
cies (refer to Fig. 3.13). As a consequence, the off-resonant states can have a significant impact on the
refractive index change, despite their negligible contribution to the gain of the GS lasing. The carrier
populations in the off-resonant ES and RS induce frequency shifts in the laser field, given by:

∆ωES
N =

1
2

ΓpvggESαES
H

∆ωRS
N =

1
2

ΓpvggRSαRS
H

with αES,RS the coefficients linked to the ES and RS contributions to the αH-factor, respectively and
defined as:

αES,RS
H =

ωGS
ωES,RS

(ωES,RS − ωGS)TD

1 + (ωES,RS − ωGS)2T2
D

While operating the laser at the gain peak with a symmetric gain distribution, the resonant GS
does not contribute to the refractive index change. However, various factors, such as asymmetric QD
size dispersion, can introduce a finite linewidth enhancement factor αH in the resonant state, denoted
as αGS

H . The resulting frequency shift relative to the cold cavity can be expressed as:

∆ωGS
N =

1
2

ΓpvggGSαGS
H

Therefore, to extract the frequency noise (FN), the differential equation governing the phase dy-
namics of the electric field is also presented:

dϕ

dt
= ∆ωGS

N + ∆ωES
N + ∆ωRS

N =
1
2

Γpvg(gGSαGS
H + gESαES

H + gRSαRS
H ) + Fϕ (3.20)

The relative intensity noise (RIN) modelling incorporates the inclusion of Langevin noise sources,
which characterize both the carrier noises and spontaneous emission noises, as discussed in Sec-
tion. 2.2.1 and Section. 3.1.1. These noise sources denoted as FRS,ES,GS, FS, and Fϕ, introduce fluc-
tuations to the laser deviating it from its steady-state condition. Due to their white noise nature, the
expectation values of all Langevin noise terms are zero. Moreover, the correlation strength between
two Langevin noise sources is given by

〈
Fi(t)Fj(t′)

〉
= 2Dijδ(t − t′), where the indexes i and j cor-

respond to RS, ES, GS, S, and ϕ, and Dij represents the diffusion coefficient between the two noise
sources, which are delta-correlated. For additional details, please refer to Appendix. B.

The properties of the laser are investigated using the proposed method. Unless otherwise spec-
ified, all material and optical parameters used in the analysis are listed in Table. A.1. To validate the
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semi-analytical approach, the steady-state properties of the system are initially studied by numerically
solving the five rate equations (3.16)-(3.20). The results, shown in Fig. 3.14, demonstrate that both the
GS and ES carrier populations increase with the injected current. Furthermore, for an injected current
exceeding 9.7 mA (i.e., threshold current), the ES and GS populations become clamped, resulting in
the emergence of GS lasing emission while the RS carrier population continues to increase.

Figure 3.14: Photon density, carrier density and phase versus injected pump current.

Then, the simplified RIN expression is given as follows [Dua+18b]:

RIN =
|δSGS(ω)|2

S2
GS

=
1

S2
GS|∆|2

{
⟨FRSF∗

RS⟩ |MRS−S|2 + ⟨FESF∗
ES⟩ |MES−S|2 + ⟨FGSF∗

GS⟩ |MGS−S|2

+ ⟨FSF∗
S ⟩ |MS−S|2 +

〈
FϕF∗

ϕ

〉 ∣∣Mϕ−S
∣∣2 − 2 ⟨FRSF∗

ES⟩ ℜe
{

MRS−SM∗
ES−S

}
−2 ⟨FESF∗

GS⟩ ℜe
{

MES−SM∗
GS−S

}
− 2 ⟨FGSF∗

S ⟩ ℜe
{

MGS−SM∗
S−S

}}
(3.21)

The comprehensive derivation of (3.21) is available in the first Section of Appendix. B.

Figure 3.15: Calculated RIN at several injected currents from (3.21).



56 Chapter 3. Classical Noise and Feedback Dynamics in Quantum-Confined Lasers

Fig. 3.15 shows the calculated RIN of the QD laser for various bias currents. Below 1.0 GHz, the
RIN remains nearly constant, while at the resonance frequency of the QD laser, a prominent peak is
observed. Beyond the resonance frequency, the RIN gradually decreases at higher frequencies. With
increasing bias current, the RIN decreases across the entire spectral range due to a larger damping
factor, and the peak of the RIN shifts to higher frequencies while exhibiting a reduced peak amplitude.
Once again, the FN spectrum can be further simplified to:

FN = |δωS(ω)|2 =
ω2

|∆|2
{
⟨FRSF∗

RS⟩
∣∣MRS−ϕ

∣∣2 + ⟨FESF∗
ES⟩

∣∣MES−ϕ

∣∣2 + ⟨FGSF∗
GS⟩

∣∣MGS−ϕ

∣∣2
+ ⟨FSF∗

S ⟩
∣∣MS−ϕ

∣∣2 + 〈
FϕF∗

ϕ

〉 ∣∣Mϕ−ϕ

∣∣2 − 2 ⟨FRSF∗
ES⟩Re

{
MRS−ϕ M∗

ES−ϕ

}
−2 ⟨FESF∗

GS⟩Re
{

MES−ϕ M∗
GS−ϕ

}
− 2 ⟨FGSF∗

S ⟩Re
{

MGS−ϕ M∗
S−ϕ

}}
(3.22)

The comprehensive derivation of (3.22) is available in the first Section of Appendix. B.

Figure 3.16: Calculated FN at several injected currents from (3.22).

Fig. 3.16 illustrates the FN spectra of the QD laser at different pump currents. The FN exhibits
a prominent peak centred around the relaxation resonance frequency fR. As the pump current in-
creases, the peak amplitude decreases due to an increase in the damping factor. Beyond the resonance
peak, the FN gradually decreases to a constant level, which is solely determined by spontaneous emis-
sion. Therefore, the full width at half maximum (FWHM) of the Schawlow-Townes linewidth can be
expressed as (∆ν)ST = 2πFN| f≫ fR . On the other hand, the FN spectrum below the resonance fre-
quency is influenced not only by spontaneous emission but also by carrier fluctuations through the
phase-amplitude coupling effect. Thus, the total optical linewidth is given by (∆ν)OL = 2πFN| f≪ fR .
Moreover, the linewidth enhancement factor αH can be also calculated by the relationship in (3.13).
On the left side of Fig. 3.17, the linewidth enhancement factor αH exhibits a slight increase with higher
pump currents, mostly attributed to the contribution of the ES state rather than the RS state [Wan+16].
This is in agreement with the observation in Ref. [MHU06]. On the right side of Fig. 3.17, both the to-
tal optical linewidth (∆ν)OL (depicted as blue triangles) and the Schawlow-Townes linewidth (∆ν)ST
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(represented by green circles) are plotted as a function of the pump current. Consistent with expec-
tations, both linewidths demonstrate a decreasing trend as the pump current is increased due to the
enhanced output power. For instance, at a pump current of 40 mA, which is nearly four times the
threshold current (Ith), the optical linewidth measures 178 kHz. While this value is appropriate com-
pared to recent measurements on QD lasers [Gri+21], it can be further reduced by achieving higher
output power and implementing more refined design optimization techniques.

Figure 3.17: Extracted αH-factor and optical linewidth at several injected currents from (3.13) and
(3.22).

3.2.2 Quantum dot lasers on silicon

The monolithic integration of QD lasers on silicon [Sha+22] presents an optimal solution for reducing
fabrication complexity and cost, while simultaneously improving the integration density of silicon
PICs. However, challenges arise from the mismatch in lattice constants and thermal expansion coeffi-
cients, resulting in the formation of threading dislocations (TDs) that act as non-radiative recombina-
tion centres through the Shockley-Read-Hall (SRH) process and degrade laser performance as shown
in Fig. 3.18. For instance, when compared to silicon, GaAs and InP exhibit lattice mismatches of 4.1%
and 8.1%, respectively, along with thermal expansion coefficient mismatches of 120.4% and 76.9%,
respectively [LB10]. Hence, the growth of either compound on a silicon substrate leads to threading
or misfit dislocation densities of 108-1010cm−2. Despite recent advancements [Sha+21a; Sha+21b], the
achievable density of TDs still falls within the range of 105-106cm−2, which remains approximately
two orders of magnitude higher than that of native substrates [Che+16]. At such elevated densities,
quantum well (QW) lasers exhibit poor performance or may even fail to lase entirely. In contrast,
substituting quantum dot active regions in place of quantum wells can offer an additional means to
mitigate the detrimental impact of residual dislocations on laser performance [Gri+21]. The efficient
capture and three-dimensional confinement of injected carriers by individual quantum dots result
in reduced nonradiative recombination occurring at defects or dislocations [GCS96; Liu+15]. Conse-
quently, the influence of dislocations that may still exist in the active layer is greatly diluted by the total
number of independent dots, as they operate independently of each other, as illustrated in Fig. 3.19.
Apart from this feature, QD lasers on silicon share several similarities with ordinary QD laser diodes.

In order to address these limitations, the development of a suitable strategy is crucial, and mod-
elling serves as a valuable platform for achieving a comprehensive understanding of the device’s
operation. In this regard, I employ numerical analysis to investigate the properties of QD lasers on
silicon, using an enhanced rate-equation model that incorporates the nonradiative recombination in-
duced by the Shockley-Read-Hall (SRH) process. By integrating the SRH process into the model, a
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more comprehensive exploration of the device’s behaviour becomes possible, leading to the develop-
ment of effective solutions.

Figure 3.18: Epitaxial growth and structural characterization of QD lasers on Si substrate. (a) High-
angle annular dark field scanning transmission electron microscopy (TEM) image of the interface be-
tween the 6 nm AlAs nucleation layer and a silicon substrate. (b) Bright-field scanning TEM image
of dislocation filter layers. (c) Dislocation density measured at different positions indicated in (b).
(Source: In Ref. [Che+16])

Figure 3.19: Room-temperature photoluminescence comparison of single InAs quantum dot layer and
single quantum well grown on GaAs versus silicon substrates. (Source: In Ref. [Liu+15])

The proposed three-level rate equations model builds upon the native III-V QD lasers discussed
in the previous section, with the addition of τSRH representing the nonradiative recombination lifetime
attributed to defects. It is assumed that this nonradiative recombination lifetime remains the same for
all three carrier states, as depicted in Fig. 3.20. Then the coupled rate equations for the carrier numbers
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Figure 3.20: Left panel: Schematic of a QD laser on silicon, showing recombination scheme of injected
carriers in III-V epitaxial layers on top of a Si waveguide. Right panel: Schematic representation of the
electronic structure and carrier dynamics of QD lasers on silicon. (Source: In Ref. [LB10; ZG21])

(NRS, NES, NGS), the photon number (SGS), and the phase (ϕ) of the electric field are given by [ZG21]:

dNRS
dt

=
η I
q

+
NES

τES
RS

− NRS

τRS
ES

(1 − ρES)−
NRS

τ
spon
RS

− NRS
τSRH

+ FRS (3.23)

dNES
dt

= (
NRS

τRS
ES

+
NGS

τGS
ES

)(1 − ρES)−
NES

τES
RS

− NES

τES
GS

(1 − ρGS)−
NES

τ
spon
ES

− NES
τSRH

+ FES (3.24)

dNGS
dt

=
NES

τES
GS

(1 − ρGS)−
NGS

τGS
ES

(1 − ρES)− ΓpvggGSSGS −
NGS

τ
spon
GS

− NGS
τSRH

+ FGS (3.25)

dSGS
dt

= (ΓpvggGS −
1
τp

)SGS + βsp
NGS

τ
spon
GS

+ FS (3.26)

dϕ

dt
=

1
2

Γpvg(gGSαGS
H + gESαES

H + gRSαRS
H ) + Fϕ (3.27)

Using the same parameter definitions as in the previous section, unless explicitly mentioned, all ma-
terial and optical parameters employed in the analysis are provided in Table. A.2. It’s important to
highlight that, in reality, the SRH contribution predominantly affects the RS within the wetting layer,
with minimal impact on the ES or GS. However, in this study, we make the simplifying assumption of
an equal contribution across all three states. The relationship between the nonradiative recombination
lifetime and the defect density can be expressed as [Sal+20]:

1
τSRH

=
1

τ0
SRH

+
Dπ3κ

4
(3.28)

With τ0
SRH = 1877 ns representing the lifetime of dislocation-free GaAs-based QD lasers, D = 10 cm2s-1

denoting the average diffusion coefficient, and κ representing the TDs density value, the epitaxial
defect density in QD lasers on native substrates typically falls within the range of 103-104 cm-2 or even
lower. Consequently, the corresponding τSRH is on the order of 10 ns, which is significantly longer
than the spontaneous emission lifetime (approximately 1.0 ns). Therefore, for such QD lasers, the
inclusion of this additional nonradiative recombination term in our model can be safely disregarded
without sacrificing generality. However, a different scenario arises in Si-based QD lasers, where the
defect density ranges from 106-108 cm-2. In this case, the nonradiative carrier lifetime can be as short
as 0.1 ns, surpassing the spontaneous emission lifetime (0.5 ns), as illustrated in Fig. 3.21.

Through a small signal analysis, assuming a sinusoidal current modulation δI = Iejωt with mod-
ulation frequency ω, this change will induce the variations of carriers δNRS,ES,GS photon number δSGS,
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Figure 3.21: Calculated SRH recombination lifetime obtained with an approximation method in (3.28)
as a function of TD density. (Source: In Ref. [ZG21])

and phase δϕ. Therefore, one can linearize the rate equations (3.23)-(3.27), and yield:
γ11 + jω −γ12 0 0 0
−γ21 γ22 + jω −γ23 0 0

0 −γ32 γ33 + jω −γ34 0
0 0 −γ43 γ44 + jω 0

−γ51 −γ52 −γ53 −γ54 jω




δNRS

δNES

δNGS

δSGS

δϕ

 =
ηδI

q


1
0
0
0
0

 (3.29)

with
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γ34 = −ΓpvggGS + ΓpvgapSGS
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βsp

τ
spon
GS

γ44 =
1
τp

− ΓpvggGS + ΓpvgapSGS

γ51 = ΓpvgaRSαRS
H

γ52 =
1
4

ΓpvgaESαES
H

γ53 =
1
2

ΓpvgaαGS
H

γ54 = −1
2

ΓpvgapαGS
H

To ensure clarity, the subsequent calculations do not replicate earlier ones but incorporate τSRH into
the Langevin diffusion coefficients 2Dii, similar to the inclusion of γii. The simulations presented in
this section primarily investigate the impact of non-radiative recombination or defect density on the
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laser dynamics. A fixed emitted photon number of 2 × 105 is maintained throughout all the simula-
tions. As depicted in Fig. 3.22, it can be observed that the presence of fast nonradiative recombination
processes or high defect densities leads to an increase in the threshold current, consistent with exper-
imental observations. Furthermore, the carrier populations in the ES and RS also exhibit an increase.
Conversely, the carrier population in the GS remains unchanged due to the gain clamping effect.

Figure 3.22: Nonradiative recombination effects on the threshold current and the carrier numbers in
GS, ES, and RS at 2 × 105 photon number.

Fig. 3.23 (a) illustrates that a shorter nonradiative recombination lifetime results in an elevated
level of RIN at low frequencies. Specifically, the low-frequency RIN increases from -158 dB/Hz for
τSRH = 10 ns to -150 dB/Hz for τSRH = 0.1 ns. This increase in RIN can be attributed to the reduced
carrier lifetime caused by high-density defects. Additionally, Fig. 3.23 (b) also demonstrates that non-
radiative recombination has minimal impact on the Schawlow-Townes linewidth and the total spectral
linewidth of Qdot lasers. However, it significantly suppresses the FN resonance peak. For example,
the amplitude of the FN peak decreases from 39 kHz2/Hz at τSRH = 10 ns to 29 kHz2/Hz at τSRH =
0.1 ns.

Figure 3.23: Non-radiative recombination effects on the RIN spectrum and the FN spectrum.

As discussed in the previous section, the constant αH-factor of the QD laser on silicon can be
calculated from the FN spectrum by (3.13):

αFN
H =

√
(∆ν)OL
(∆ν)ST

− 1 (3.30)
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Several techniques have been proposed for measuring the αH-factor in recent decades. In this
study, I employ the widely recognized amplified spontaneous emission (ASE) method for below-
threshold analysis and the well-established "FM/AM" technique for above-threshold analysis [OB87].
For semiconductor lasers operating below the threshold, the ASE method relies on directly measuring
the optical spectra of ASE in the laser cavity. By incrementally adjusting the pump current (∆I), the
change in gain can be extracted by the ASE method and the corresponding wavelength variation can
be recorded using an optical spectrum analyzer. Subsequently, the below-threshold αASE

H -factor can
be derived using the following approach [ZG21]:

αASE
H (ω) =

2
Γpvg

[∆ωTotal
N (N)]

δgGS(N)
= αGS

H +
1
2

αES
H

aESδNES
aδNGS

+ 2αRS
H

aRSδNRS
aδNGS

(3.31)

It should be emphasized that only the carrier contribution (δN) is included in the above equation,
while the photon contribution (δS) and phase contribution δϕ are excluded. Actually, the ratios δNRS

δNGS

and δNES
δNGS

include implicitly the τSRH if using Cramer’s rule considering (3.29):

δNES
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The carrier density variations in the three states under small signal modulation are illustrated

in Fig. 3.24. For frequencies below 1 GHz, the carrier density variations in all states remain nearly
constant. Consequently, it is possible to normalize all these variations with respect to the value δNGS

at 0.01 GHz. The variations in the ES (δNES) and RS (δNRS) populations are approximately 5 dB larger
than that of the GS (δNGS) population. The limited variation in the GS carrier population can be
attributed to the gain clamping effect above the threshold. Resonances around 4 GHz are observed
in both δNGS and δNES. Beyond the resonance frequency, δNGS decays at a faster rate compared to
δNES and δNRS. These characteristics have a significant impact on the behaviour of the αASE

H -factor, as
described in (3.31).

The “FM/AM” technique relies on the direct current modulation of the laser, which generates
both the optical frequency (FM) and amplitude (AM) modulations [PG11]. With respect to the lin-
earized rate equations, the ratio of the FM-to-AM index is derived as

αFM/AM
H (ω) =

2β(ω)

m(ω)
= 2

δωS/ω

δSGS/SGS
= 2SGS

jδϕ

δSGS
(3.32)

where the relation δωS = jωδϕ is used in the above derivation. In this approach, the laser’s αFM/AM
H -

factor is usually extracted through the formula αFM/AM
H = min{2β(ω)/m(ω)}. Again, the ratio δϕ

δSGS
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Figure 3.24: Small-signal carrier density variations in the GS (green line), ES (blue line), and RS (red
line) versus modulation frequency (a) when τSRH=10ns and (b) when τSRH=0.1ns. The carrier variation
is normalized to the value δNGS of 0.01 GHz.

can be found if using Cramer’s rule

δϕ

δSGS
=
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Fig. 3.25 illustrates the comparison between αFM/AM

H (ω) and αASE
H (ω) as a function of the mod-

ulation frequency. At low modulation frequencies, a substantial disparity is evident between these
two parameters, signifying that a smaller τSRH leads to a lower FM-to-AM index ratio. As expected,
αFM/AM

H (ω) exhibits large values due to gain compression and the considerable carrier variations in
the ES and RS. Conversely, αASE

H (ω) remains constant. However, there are no notable differences
at high modulation frequencies. As the modulation frequency increases beyond several GHz, both
parameter values decrease and converge to a plateau, representing the conventional αH-factor. Re-
cent experiments have even demonstrated the measurement of an ultralow αFN

H factor below unity
[Dua+18a], revealing the immense potential for isolator-free silicon-based PICs.

Figure 3.25: Modulation-frequency dependence of the FM/AM method αFM/AM
H (ω) (blue line) and

of the ASE method αASE
H (ω) (red line) near the lasing threshold (a) when τSRH=10 ns and (b) when

τSRH=0.1 ns. The minimum level indicated by the black horizontal line gives the laser’s conventional
αH-factor.
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To ensure a fair and comprehensive comparison among all three αH-factor measurements, it is
essential to operate the QD lasers near the lasing threshold. For the subsequent simulation, the pho-
ton number is fixed at 3×103, which satisfies the condition (I ≈ Ith) for different values of τSRH . The
green circles in Fig. 3.26 clearly demonstrate that a reduction in the nonradiative recombination rate
has a great impact on the αFN

H -factor, which changes from 0.71 (for τSRH=10 ns) to 0.46 (for τSRH=0.05
ns). The red triangles and blue stars in Fig. 3.26 represent the ASE method and FM/AM method,
respectively. Interestingly, it is worth noting that the smaller values of τSRH result in larger values of
αASE

H = and αFM/AM
H , but their changing trends agree closely, as confirmed by experimental obser-

vations [Wan+14]. Furthermore, for larger values of τSRH , all three methods converge to an approxi-
mately same αH-factor of about 0.75.

Figure 3.26: Non-radiative recombination effects on the αH-factor near the threshold. The green open
circles are obtained by (3.30) (FN method), the red triangles are obtained by (3.31) (ASE method), and
the blue closed circles are obtained by (3.32) (FM/AM method).

As previously mentioned, direct current modulation of a QD laser leads to simultaneous modu-
lation of photon and carrier densities and the modulation of carrier density affects both the gain and
refractive index. Consequently, the optical cavity length is modulated by the current, resulting in the
resonant mode shifting in frequency. This frequency modulation, known as chirp, causes a broaden-
ing of the laser’s modulated spectrum, which poses challenges for optical fibre communications. The
chirping characteristic of semiconductor lasers can be quantified using the chirp-to-power ratio (CPR),
defined as follows:

CPR(ω) =
δωS(ω)

δSGS(ω)
(3.33)

Fig. 3.27 shows the CPR for various τSRH lifetime. The CPR remains constant for modulation
frequencies below 1 GHz but rises almost parabolically with the modulation frequency for higher
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modulation frequencies. It can be clearly shown that a lower τSRH lifetime effectively increases the
CPR of QD lasers from 0.165 GHz/mW (τSRH=10 ns) to 0.206 GHz/mW (τSRH=0.1 ns).

Figure 3.27: Non-radiative recombination effects on the CPR.

The modulation transfer function for the QD laser on silicon can be easily extracted by only tem-
porarily omitting the phase equation ϕ:

HQD(ω) =
R0

∆
=

R0

R0 + jωR1 − ω2R2 − jω3R3 + ω4 (3.34)

where ∆ is the determinant of the matrix of 4×4 without (3.27) and four parameters that characterize
HQD(ω) are given by:

R0 = ω2
Rω2

R0 − γ23γ44(γ11γ32 + γ12γ31)

R1 = ω2
RΓ0 + ω2

R0Γ − γ23γ32(γ11 + γ44)− γ12γ23γ31

R2 = ω2
R + Γ0Γ + ω2

R0 − γ23γ32

R3 = Γ0 + Γ

where the relaxation resonance frequency ωR and damping factor Γ are approximately defined as:

ω2
R = γ33γ44 − γ34γ43

Γ = γ33 + γ44

and with the same method, the two other parameters are:

ω2
R0 = γ11γ22 − γ12γ21

Γ0 = γ11 + γ22

By utilizing the already defined set of γ, the damping factor Γ can be rewritten as following:
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Figure 3.28: Left panel: Nonradiative recombination effects on the QD laser’s modulation dynamics.
The black dashed line signifies the position of 3-dB modulation response power. Right panel: Nonra-
diative recombination effects on the QD laser’s damping factor and 3-dB bandwidth.

The modulation dynamics of the QD laser HQD(ω) are depicted on the left of Fig. 3.28. It is
evident that the smaller nonradiative recombination rate leads to the suppression of the resonance
peak due to the shortened total carrier lifetime caused by nonradiative recombination. As a result,
as shown on the right of Fig. 3.28, the damping factor is enhanced, and the 3-dB bandwidth shrinks.
This finding aligns with a recent numerical study about the QD laser model in which the turn-on
delay dynamics were simulated by varying the timescale ratio between carrier and photon lifetimes
[Glo+12]. Based on this hypothesis, altering the SRH recombination time will inevitably modify the
aforementioned ratio, subsequently affecting the damping behaviour of the solitary laser. This, in
turn, may limit its practical suitability for direct modulation applications [Din+22].

3.2.3 Interband cascade lasers

Interband cascade lasers (ICLs) have emerged as highly efficient mid-infrared (MIR) laser sources
[Yan95], catering to the growing demand for gas sensing applications. These lasers prove particularly
valuable as they can target the fingerprint absorption lines of numerous molecules such as carbon
monoxide, carbon dioxide, and methane, which are prevalent in the MIR range. Furthermore, the
wavelength of 3–6 µm at the MWIR range coincides with the atmospheric transmission window, en-
abling the utilization of ICLs in free space optical (FSO) communication. Notably, ICLs employ a
carrier cascading configuration similar to quantum cascade lasers (QCLs), but their laser emission is
based on interband transitions rather than intersubband transitions. Several key improvements have
been made to enhance ICL performance. One of these improvements is the adoption of a W-shape
configuration in the active region, replacing the single type-II interface. This configuration involves
sandwiching a hole quantum well (QW) between two electron QWs. The W-shape active region sig-
nificantly increases the overlap of electron-hole wavefunctions, resulting in an improved optical gain.
Another crucial enhancement is the concept of carrier rebalancing, which involves increasing the n-
doping concentration in the electron injector to rebalance the electron and hole densities in the active
region [Vur+11]. This approach greatly reduces the threshold power density of ICLs.

In the rate equation modelling of ICLs, all the cascading stages in the ICL are assumed identical,
following the same assumption in the modelling of QCLs [RR02]. As shown in Fig. 3.29, each cascad-
ing stage in ICLs contains three parts: a hole injector, an electron injector, and a W-shape active region.
Under the external electric field, holes and electrons flow into the active region via the tunnelling
effect, where they recombine through spontaneous emission, Auger recombination, and stimulated
emission due to population inversion. Then, in order to replenish the carriers removed by the field,
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Figure 3.29: Schematic band structure of one stage in ICLs. (Source: In Ref. [DW20])

equal numbers of additional electrons and holes must be regenerated constantly and transported to
the next stage. Therefore, ICLs’ rate equations for carrier N and photon S can be written as [DW20;
ZG22a]:

dN
dt

= η
I
q
− ΓpvggS − N

τsp
− N

τaug
+ FN

dS
dt

= mΓpvggS − S
τp

+ mβ
N
τsp

+ FS

(3.36)

The pump current I, elementary charge q, current injection efficiency η, m number of cascading gain
stage, τp is the photon lifetime, vg the group velocity of light, and β is the spontaneous emission factor
are related by the equation. The optical confinement factor per gain stage, Γp, which accounts for the
decrease in value with increasing gain stage number and thickness of separate confinement layers,
is assumed to be a constant in this work. In ICLs, the Auger recombination lifetime τaug is shorter
than the spontaneous emission lifetime τsp and must be considered in the carrier dynamics. This is in
contrast to standard QW lasers, where the Auger process is much slower than spontaneous emission
and can be neglected in the rate equation [CCM12]. The Auger lifetime is inversely proportional to the
square of the carrier sheet density, given by τaug = 1/γ3(N/A)2, where γ3 is the 2-D Auger coefficient
and A is the area of the active region [LC02]. However, for the sake of simplicity in discussing ICL
dynamics, the Auger lifetime is treated as a constant value. This assumption is reasonable when the
laser operates above the threshold because the carrier population is nearly clamped [DW20]. The
material gain per stage is denoted by g = a0(N − N0)/A, with a0 being the differential gain and N0

being the transparent carrier number.
The properties of the laser are investigated using the proposed method. Unless otherwise speci-

fied, all material and optical parameters used in the analysis are listed in Table. A.3. Fig. 3.30 illustrates
the carrier behaviour in ICLs. It can be observed that the clamped carrier number for m = 10 is slightly
smaller compared to that for m = 5, while the photon number for the former is significantly higher.
The threshold current for m = 5 is measured at 19.7 mA and decreases to 17.5 mA for m = 10. Re-
markably, the threshold currents consistently decrease with an increasing stage number. The lower
threshold current limit is primarily determined by the transparent carrier number N0.
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Figure 3.30: Steady-state carrier number and photon number versus the pump current for m=5 (red)
and m=10 (blue).

In order to investigate both the relative intensity noise (RIN) and the frequency noise (FN) through
the Langevin approach, the phase dynamics of the electric field have to be taken into account:

dϕ

dt
=

αH
2
(mΓpvgg − 1

τp
) + Fϕ (3.37)

The diffusion coefficients among the carrier noise source FN , the photon noise source FS, and the
phase noise source Fϕ of ICLs are derived in the same manner as for QD lasers. For more detailed
information, please refer to Appendix. B. Therefore, the RIN expression is:

RIN =
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(3.38)

The comprehensive derivation of (3.38) is available in the second Section of Appendix. B. Fig. 3.31 illus-
trates the resonance frequency of the ICL, as recently reported in experiments [Did+21]. It highlights
that reducing the number of gain stages results in the suppression of RIN across the entire frequency
range. The low-frequency RIN exhibits a nonlinear decline from -161 dB/Hz for m=10 to -169 dB/Hz
for m=3. This behaviour can be attributed to the self-correlation of the photon noise source,

〈
FSF∗

S
〉
.

Since the photon noise sources in each cascading stage are uncorrelated, the total photon noise of the
ICL is the summation of all stages. Therefore, having more gain stages in an ICL results in a higher
RIN. In the same spirit, the FN of the ICLs can be expressed as follows:
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(3.39)

The comprehensive derivation of (3.39) is available in the second Section of Appendix. B.
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Figure 3.31: Calculated RIN at different stage number m from (3.38).

Figure 3.32: Calculated FN at different stage number m from (3.39).
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Fig. 3.32 demonstrates that increasing the number of cascading stages in the ICL only amplifies
the amplitude of the resonant peak in the FN spectrum, without affecting the linewidth. In the context
of free-space communications, direct modulation of ICLs presents an attractive scheme compared to
external modulation, as it eliminates the need for an additional optical modulator. Applying Cramer’s
rule without the phase equation (3.37), the modulation transfer function of the ICLs, which represents
the normalized IM response, can be expressed as follows:

H(ω) ≡ δS(ω)/δI
δS(0)/δI

=
ω2

R
ω2

R − ω2 + jωγ

with the resonance frequency ωR

ωR = γ12γ21 + γ11γ22 = G0 (N − N0) (mG0S + m
β

τsp
) + (G0S +

1
τsp

+
1

τaug
)

[
1
τp

− mG0 (N − N0)

]
and the damping factor γ

γ = γ11 + γ22 = G0S +
1

τsp
+

1
τaug

+
1
τp

− mG0 (N − N0)

Figure 3.33: IM response at various pump currents for m=5. The dashed black line indicates the 3-dB
bandwidth..

Fig. 3.33 illustrates the evident resonance observed in the normalized response of the ICL (m=5),
similar to that observed in QW lasers. However, QCLs, characterized by their ultrashort carrier life-
time, do not exhibit any resonance. The amplitude of the resonance peak decreases with higher pump
currents due to the increased damping factor. Moreover, ICLs demonstrate a comparable modulation
bandwidth to conventional laser diodes, as they share similar characteristics such as carrier lifetime
and differential gain. In a recent proof-of-concept experiment, interband cascade lasers were em-
ployed for energy-efficient mid-infrared free-space communication, as reported in [Did+23].
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3.3 Introduction to the time-delayed feedback on Semiconductor

Lasers

Semiconductor lasers subject to time-delayed feedback are of significant interest from a dynamical sys-
tem perspective [SS15]. In semiconductor lasers, polarization relaxation usually occurs much faster
than the relaxation of the optical field and carrier inversion. Therefore, laser dynamics can be de-
scribed as a driven damped nonlinear oscillator, leading to a spiralling flow towards a steady state,
referred to as relaxation oscillations. Various feedback configurations can be employed to overcome
damped relaxation oscillations and generate chaotic behaviour. The introduction of feedback into the
system leads to a delay, which in turn induces high dimensionality. This high dimensionality gives rise
to a diverse range of phenomena, including limit cycle, multistability, bursting, intermittency, irregu-
lar intensity dropouts (low-frequency fluctuations, LFFs), and fully developed chaos. A comprehen-
sive review summarizing the complex dynamics of delay-coupled lasers is available in Ref. [Sor+13].
These complex dynamics hold great promise for various applications, such as secure communication
[Uch12], LIDAR systems [LL04], parallel random number generation [Kim+21], speckle-free imaging
[Cao+19], and high-speed photonic reservoir computing [Lar+17; BVV19].

Semiconductor lasers possess a remarkable property that renders them highly sensitive to exter-
nal perturbations, particularly optical feedback. The physical processes involved in this sensitivity
can be depicted schematically as shown in Fig. 3.34. The active region of the laser exhibits phase-
amplitude coupling between the intracavity field and the returned light field, leading to fluctuations
in both amplitude (|∆E|) and phase (|∆ϕ|). Optical feedback is introduced into the laser cavity through
the output facet, causing a perturbation in the photon density. This perturbation induces fluctuations
in the carrier density, subsequently affecting the optical gain. The resulting intensity fluctuation is
modulated by the damping effect and is linked to the optical gain. Moreover, variations in the gain
impact the refractive index through the αH-factor, leading to wavelength shifts. Additionally, the
phase fluctuation caused by the returned field is also associated with wavelength fluctuations. The in-
terplay between the intensity and phase loops gives rise to highly complex dynamics in laser systems
subjected to optical feedback.

Figure 3.34: Physical processes involved in a semiconductor laser with external optical feedback.
(Source: In Ref. [Gri+20])

Furthermore, optoelectronic oscillators (OEOs) [Che+19] are autonomous, dissipative, and non-
linear systems that feature a closed feedback loop comprising two interconnected branches: an optical
branch and an electronic branch. Energy is cyclically exchanged between the optical and electronic
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domains within this loop. Notably, the overall round-trip time in the loop is significant in relation
to the other time constants within the system, as illustrated in Fig. 3.35. These oscillators have the
capability to simultaneously output signals in both the electrical range (approximately 0-100 GHz)
and the optical range (approximately 50-500 THz). Thus, from an applied perspective, semiconduc-
tor lasers functioning as optoelectronic oscillators hold great promise for generating diverse dynamic
behaviour.

Figure 3.35: Generic representation of an optoelectronic oscillator with time-delayed feedback. Energy
flows alternatively in the optical and electrical forms, and conversion between both paths is performed
by electrical-to-optical (E/O) and optical-to-electrical (O/E) converters. (Source: In Ref. [Che+19])

In this section, I shall introduce two distinct types of time-delayed feedback: external optical feed-
back using the Lang-Kobayashi (LK) model and optoelectronic feedback using the Ikeda-like model.

3.3.1 External optical feedback: Lang-Kobayashi model

The effects of external optical feedback (EOF) in semiconductor lasers have been a subject of study
since their early stages of development. In fact, it is practically impossible to completely avoid EOF
in experiments. Whenever an optical element, like a detector, a modulator or an optical lens, is posi-
tioned in front of a laser, it inevitably scatters a portion of the laser beam backwards. This retroreflected
light has the potential to re-enter the laser cavity, thereby interfering with the pre-existing optical field
inside, resulting in a perturbation of the laser output. In 1970, Broom et al. made the pioneering obser-
vation of intensity self-modulation at the relaxation oscillation frequency, which remained undamped
due to an external cavity created by a distant mirror. In 1977, Risch et al. reported the self-pulsation
of the light output of a continuous-wave driven semiconductor laser in an external cavity, exhibiting
resonance at the frequency of the external cavity or at a lower frequency within the range of 3-30 MHz.
These lower frequencies, falling below the intrinsic frequencies of both the laser and the cavity, were
termed low-frequency fluctuations (LFFs).

The complex nature of the feedback from an external mirror prompted the development of models
aiming to reproduce the static and dynamic properties of the system. In a landmark paper published
in the early 1980s, Lang and Kobayashi [LK80] provided a significant contribution by investigating
the effects of optical feedback on single-mode lasers. They described the temporal evolution of the
complex optical field and carriers, taking into account the influence of optical feedback through the
interference of the laser field with its own weak but coherent delayed field that had undergone a single
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propagation through the external cavity. The Lang-Kobayashi (LK) equations can be written as

dẼ(t)
dt

=
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with Ẽ(t) the slowly varying complex amplitude of the optical electric field, N(t) the carrier density,
τc the carrier lifetime, τp the photon lifetime, ω0 the angular optical frequency of the solitary laser,
GN the differential gain and αH the linewidth enhancement factor. The optical feedback is taken into
account via the feedback term, including κ as the feedback coefficient and τ as the delay time. The
delay time τ is proportional to the external cavity length L with τ = 2L/vg, where vg denotes the
group velocity. Moreover, the feedback coefficient is mathematically defined as κ = 2Cl
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indicates the feedback strength, and
Pf and Pout stand for the returned power and output power, respectively. The coupling coefficient Cl

from the facet to the external cavity for the FP structure is expressed as [SP88]
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where ∆(t) = ω0τ + ϕ(t) − ϕ(t − τ). This work laid the foundation for understanding the com-
plex dynamics resulting from optical feedback in semiconductor lasers. The three coupled equations
employed in this study reveal unstable oscillations and chaotic dynamics in their output powers, cor-
responding to the behaviour observed in three coupled equations of Lorenz systems. To accurately
calculate and simulate these dynamics, numerical simulations often utilize the fourth-order Runge-
Kutta algorithm, chosen for its superior performance in the calculations [Uch12].

At the steady-state, where all time derivatives are equal to zero ( d
dt = 0), the constant output

power results in E0(t) = E0(t − τ) = Es and N(t) = Ns. The steady-state phase ϕs can be expressed as
ϕs = (ωs − ω0)t, where ωs represents the frequency at the steady-state. Under these conditions, one
can derive the steady-state solutions as follows

E2
s =

η I/q − Ns/τc

GN(NS − N0)

∆n = NS − N0 = − 2κ

GN
cos (ωsτ)

∆ωs = ωs − ω0 = κ [αH cos (ωsτ) + sin (ωsτ)]

For a zero feedback coefficient (κ = 0), the above equations simplify to the solutions for the
solitary laser. The last frequency equation can be rewritten as

ω0τ = ωsτ + C sin [ωsτ + arctan (αH)] (3.40)

where the C parameter is defined by C = κτ
√

1 + α2
H . Using this definition, the solutions of laser os-

cillation modes in the presence of optical feedback can be graphically determined as the intersections
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of the curves y = ω0τ and y = ωsτ + C sin [ωsτ + arctan (αH)], as illustrated in Fig. 3.36. When C < 1
(indicating small optical feedback and a short external cavity), there exists only a single solution, and
the laser exhibits stable oscillation. However, if C > 1, multiple possible modes for laser oscillations
are generated, establishing a relationship between the internal laser modes and the excited external
modes through (3.40). As a result, the laser demonstrates unstable operation [MTM92].

Figure 3.36: Dependence of steady-state solutions for the phase on the parameter value C. Solid and
dashed lines correspond to C < 1 and C > 1, respectively. The black circle denotes only one solution
for C < 1 and the white circles represent multiple solutions for C > 1. (Source: In Ref. [Uch12])

When the C parameter significantly exceeds unity, a multitude of modes is excited in the laser
output, leading to a state of true instability. To represent the many oscillation modes effectively, re-
searchers often resort to a phase space plot of the oscillation frequency and the carrier density. Fig. 3.37
illustrates such a representation in the parameter space, specifically in the ∆ωs versus ∆n plane. This
relationship is calculated by eliminating the sine and cosine functions and is expressed as

(∆ωsτ − αHτ

2
GN∆n)2 + (

τ

2
GN∆n)2 = (κτ)2

In Fig. 3.37, the dashed sinusoidal curve represents the deviation from the steady state of the
oscillation angular frequency (∆ωs), while the other sinusoidal curve represents the deviation of the
carrier density (∆n). The crossing points of these two curves correspond to the possible oscillation
states and are situated on the ellipsoid (depicted as a thick solid curve in the figure). The solutions
found in the lower half of the ellipsoid correspond to stable oscillations (external modes) and are
associated with constructive interference between the light inside the laser cavity and the feedback
light. On the other hand, the solutions in the upper half indicate unstable oscillations (anti-modes) and
are related to destructive interference conditions. During stable laser oscillation, the laser operates at
one of the external modes, with the maximum gain mode being the most probable choice. However,
when the laser oscillation becomes unstable due to external feedback, it exhibits mode hopping among
the external modes and the anti-modes, leading to chaotic oscillations [Uch12].

Additionally, it is also crucial to distinguish between two main cases that significantly influence
the cavity length and, consequently, the feedback delays, giving rise to complex behaviour. These
cases are determined based on the ratio of the delay time τ and the relaxation oscillation period TRO,
leading to the classification of the long delay regime (τ ≫ TRO) and the short delay regime (τ ≪
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Figure 3.37: Carrier density change (∆n) plotted against frequency change (∆ωs) for the potential
steady states under external feedback. The intersections of the solid and dashed sinusoidal waves
indicate the precise locations of the modes, which are arranged on an ellipsoid. The solitary oscillation
mode is represented by a solid dot positioned at the centre (0, 0). (Source: In Ref. [Uch12])

TRO). In each regime, the resulting dynamics exhibit differences and hold practical relevance in real
applications [MTM92]. The long delay regime is usually pertinent to most standard free-space and
optical fibre-based configurations. In contrast, the short delay regime becomes particularly relevant
for integrated structures, although in some cases, the feedback loop can still be quite long.

For long delays and moderate feedback levels: a few hundred to thousands of intersection points
would exhibit when C ≫ 1 as shown in Fig. 3.36. In this regime, a chaotic oscillation known as low-
frequency fluctuations (LFFs) emerges due to intermittent chaos resulting from saddle-node instabil-
ity. A distinctive characteristic of LFFs is the sudden power dropout followed by a gradual power
recovery. These fluctuations occur irregularly in time, depending on the system parameters, and their
frequency typically ranges from MHz to a hundred MHz [Fis+96]. As the frequency of LFFs is sig-
nificantly lower than the ordinary chaotic fluctuations associated with relaxation oscillations, they are
aptly named LFFs. When observing the waveforms of LFFs using a fast digital oscilloscope, they
appear to be continuous signals. However, further investigation reveals that LFFs possess rapid time
structures within the waveform, consisting of a series of fast pulses on the order of picoseconds. These
ultrafast pulses are responsible for the complex and irregular behaviour observed in LFFs, contribut-
ing to their chaotic nature [Fis+96].

Fig. 3.38 illustrates the lower half of the distribution of modes in the phase space, similar to the
representation in Fig. 3.37. This configuration corresponds to a scenario characterized by a long ex-
ternal cavity length and a high level of external feedback. Consequently, the modes are densely dis-
tributed in the phase space2. At first, it is assumed that the laser initially oscillates around the maxi-
mum gain mode, and the state of laser oscillation fluctuates near this mode with a small amplitude.
However, in reality, the laser’s behaviour is not confined to a fixed and stable mode. Eventually, the

2For the case of short external cavity length with low external feedback, the mode distribution will be sparse.
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Figure 3.38: (a) External- and anti-modes in the phase space. (b) Corresponding LFFs waveform to
(a). (Source: In Ref. [Uch12])

state of the laser reaches a point very close to the corresponding anti-mode, and at this juncture, the
laser becomes trapped in the anti-mode. During this transition, the phase of the laser remains un-
changed, but the carrier density abruptly jumps to the value of the solitary oscillation mode. This
sudden jump in carrier density causes an increase in the phase, leading to a sudden power dropout
in the laser output. At this state, the laser’s output power becomes nearly equivalent to that of free-
running oscillation. This phenomenon corresponds to the sudden power dropout characteristic of
LFFs. After the power dropout, the laser becomes trapped by one of the external modes, which is
close to the solitary oscillation mode. The laser then proceeds to traverse around successive external
modes, eventually returning toward the maximum gain mode. This process represents the power
recovery phase of LFFs. The above process is subsequently repeated, and the occurrence of LFFs is
not periodic but rather irregular. This irregularity arises because the laser may become trapped in the
associated anti-mode, leading to a power dropout even before reaching the maximum gain mode.

For short delays and strong feedback levels: For a short external cavity (C < 1), the stability of a
semiconductor laser is significantly enhanced, as previously mentioned. In this regime, the laser tends
to oscillate in the LFFs regime rather than exhibiting irregular, fast chaotic oscillations. Additionally,
the laser becomes highly sensitive to the optical phase due to the strong coupling between the internal
and external cavities. Heil et al. conducted an experimental and theoretical investigation into the dy-
namics of a semiconductor laser with a short external cavity [Hei+01]. A distinctive characteristic of
the laser’s behaviour was the observation of a regular pulse package (RPP), resembling LFFs oscilla-
tion, with a frequency of several hundreds of MHz. Each pulse package comprised around 10 pulses,
and the period of each pulse corresponded to the length of the external cavity (∼10 MHz or less).

In Fig. 3.39 (a), the laser exhibits a RPP characterized by LFFs frequency of 390 MHz. Each pulse
package displays a high degree of regularity, consisting of a sequence of uniformly spaced light pulses
that occur at the round trip frequency. Additionally, the spectrum reveals a peak corresponding to the
external cavity of 4.5 GHz, which corresponds to a short external cavity length of 3.3 cm. The inset
depicts the direct waveform observed using a digital oscilloscope. In Fig. 3.39 (b), the LFFs frequency
is 1.195 GHz with an external cavity length of 1.1 cm, which is notably fast when compared to the case
of long external cavity feedback. In Fig. 3.39 (c), it presents the simulation results for RPP oscillations
based on the LK equations. In Fig. 3.39 (d), external modes are indicated by circles, while anti-modes
are marked by crosses. The temporal evolution follows a clockwise direction, and the numbers in the
figure provide a one-to-one correspondence of time series in Fig. 3.39 (c). The LFFs itinerary for one
cycle in the phase space is comparable to that of a long external cavity. One remarkable characteristic
of this trajectory is that it consistently visits the same external cavity modes, resulting in the laser
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Figure 3.39: (a) and (b) Experimentally observed RF spectra and time series for different configura-
tions. (c) Numerical calculation of RPP and (d) trajectory plotted in the phase space. (Source: In
Ref. [Hei+01])

exhibiting regular pulses. The phenomenon of RPP in QD lasers was initially theoretically predicted
in 2010 [OLS10], and its observation was subsequently reported in Ref. [Lin+18; Don+21a].

3.3.2 Optoelectronic feedback: Ikeda-like model

In addition to optical feedback, optoelectronic feedback schemes have gained intense interest in the
study of complex dynamics. These schemes take advantage of the direct modulation capability of
the pump current in semiconductor lasers with GHz bandwidths. In this context, the laser’s inten-
sity is detected either directly or at a specific point (e.g., after a Mach-Zehnder Modulator), and the
amplified electrical signal is subsequently fed back to the pump current of the semiconductor laser.
This configuration enables the design and exploration of various types of feedback nonlinearities. By
manipulating the electrical signal fed back into the pump current, one can achieve and investigate
different feedback effects. A comprehensive review of this topic can be found in [Che+19].

The inception of optoelectronic oscillators (OEOs) can be traced back to the late 1960s when the
early OEOs were designed to deliberately suppress oscillations. In the 1970s, researchers started incor-
porating lithium niobate (LiNbO3) crystals into Fabry-Perot (FP) resonators and LiNbO3 waveguide
modulators as the nonlinear part of the feedback loop. However, the main limitation was the require-
ment for relatively high voltages (around 50-100 V) to control the nonlinear transfer function. This
obstacle was overcome with the introduction of integrated LiNbO3 Mach-Zehnder interferometers,
which allowed for full controllability of nonlinearity using voltages of just a few volts. In recent times,
even systems with direct detection of the laser’s output and delayed electronic feedback to the pump
demonstrate a rich variety of complex dynamics. In the 2000s, J. M. Liu et al. observed deterministic
chaos with positive and negative feedback [TL01]. Currently, broadband OEOs are distinguished by
their electrical bandwidth, which spans at least an octave, often extending over more than a decade in
frequency. These systems exhibit a remarkable interplay of high gain, nonlinearity, broad bandwidth,
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and time delay, enabling the observation of a wide array of complex and high-dimensional dynam-
ical behaviour. Among them are phenomena like multistability, excitability, chaotic breathers, pulse
packages, chimaera states, and fully developed chaos [Kou+05; Che+19; Isl+21].

Figure 3.40: Time-domain block diagram for an Ikeda-like model. The variable x(t) circulates in the
clockwise direction and is subjected to the four main elements of the loop. (Source: In Ref. [Che+19])

In optical feedback applied to semiconductor lasers, phase sensitivity assumes a critical role in
laser dynamics [OLS10]. However, in optoelectronic feedback schemes, there is no need to account
for the phase effect. This is due to the phase information being effectively eliminated during the
feedback process through photodetection, which, in turn, reduces the complexity of modelling such
architectures. In a groundbreaking paper published in 1979, Ikeda [Ike79] put forth an equation (now
bearing his name) to elucidate the complex dynamics of a laser field confined in a four-mirror ring
optical cavity, wherein the laser light propagated freely, except for a small segment incorporating a
nonlinear element. This model stands as a milestone in optoelectronic oscillator research and can be
simplified with four indispensable elements [Che+19]: the linear gain β, the nonlinear function fNL,
the spectral linear filtering function H(iω), and the time delay T. The closure condition of the feedback
loop is

Ĥ {x(t)} = β fNL [x(t − T)] (3.41)

In this context, Ĥ {x(t)} represents a linear integrodifferential operator, which can alternatively be
seen as an input-output system following the relationship Ĥ {xout} = xin. According to its definition,
(3.41) is referred to as an Ikeda-like model. The interplay among the four elements of the OEO block
diagram will determine the complex dynamical behaviour, as depicted schematically in Fig. 3.40.

The two most popular implementations of Ikeda-like OEOs are depicted in Fig. 3.41. The first
method involves employing an integrated Mach-Zehnder modulator (MZM) as the nonlinear ele-
ment, as seen in Fig. 3.41 (a), where the variable x corresponds to the RF voltage Vr f at the input
of the modulator. The second approach entails using the laser itself for electrical-to-optical conver-
sion, achieved via its pump current electrode, as demonstrated in Fig. 3.41 (b). The prime distinction
between these OEOs arises from the utilization of different nonlinearity functions fNL. For instance,
the MZM employs a sinusoidal-like fNL [Kou+05]:

fNL = cos2 [x(t − T) + ϕ]
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Figure 3.41: Experimental setup for the most common implementations of Ikeda-like OEOs. (a) The
external Mach-Zehnder modulator (MZM) induces a sinusoidal nonlinearity function fNL in the feed-
back loop. (b) The semiconductor laser itself with optoelectronic feedback. (Source: In Ref. [Che+19])

In the case of semiconductor lasers, the nonlinearity functions fNL take the form of a piecewise func-
tion from the light-current (L-I) curve. Detailed explanations are in Section. 3.4.3.

3.4 Investigation of the time-delayed feedback on Quantum-Confined

Lasers

3.4.1 Optical feedback insensitivity in quantum dot lasers on silicon

The integration of optical functions on a microelectronic chip opens up a plethora of innovative pos-
sibilities and holds the potential to enhance the performance of photonic integrated circuits (PICs)
[Zho+23b]. In particular, silicon photonics stands out by profiting from the well-established complementary-
metal-oxide-semiconductor (CMOS) industry, enabling the development of low-cost, compact, and
high-density PICs [Sto+18]. However, it is important to be mindful that incorporating additional on-
chip components can introduce potential sources for reflections to any on-chip laser. These reflections
may arise from various sources, including coherent optical feedback caused by vertical grating cou-
plers and multiple passive and active interfaces/transitions between the III-V material and silicon. In
addition, incoherent feedback originating from amplified spontaneous emission (ASE) noises gener-
ated by active building blocks like semiconductor optical amplifiers (SOAs) or active waveguides can
also impact the laser’s behaviour. As a result, the laser’s stability could be compromised, leading to
the emergence of undesirable nonlinear dynamics, such as periodic or chaotic oscillations. Careful
consideration and design are necessary to mitigate these effects and ensure the reliable operation of
PICs in practical applications, particularly in optical fibre communication systems. Meeting industry
standards, IEEE 802.3ah specification suggests that the maximum allowable amount of relative inten-
sity noise for a 1 Gbps link is under -12 dB of reflection at -113 dB/Hz, and the reflection tolerance of
an optical interconnect should be higher than -26 dB [04].

One common approach to address this issue is to insert an optical isolator that serves to block the
feedback light from reaching the active region of the laser and prevents unwanted reflections. How-
ever, it is important to recognize that this solution may come at the cost of poorer performance and
higher expenses. For instance, integrated isolators are categorized into three groups: those relying
on nonlinear effects [Whi+23], those based on electro-optic effect [Yu+23], and those using magneto-
optic effects [Bi+11]. Nevertheless, to date, there has been no demonstration of an integrated isolator
that offers both strong isolation and negligible insertion loss. This highlights the importance of devel-
oping feedback-insensitive lasers. In this context, developing reflection-resistant optical transmitters
remains a major objective that has the potential to revolutionize the core technology of the physical
layer. In this section, I will introduce quantum dot (QD) lasers directly grown on silicon, which exhibit
remarkable insensitivity to optical feedback.
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Similar to (3.23)-(3.27) in Section. 3.2.2, the Lang-Kobayashi (LK) feedback terms are added in this
model [ZG21]. Langevin forces are omitted from this model as the intention is to differentiate between
laser noise and deterministic chaos.
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with τ being the external cavity photon round-trip time and kc is the optical feedback term written as
kc = 1−R√

R
fext, where R is the mirror reflectivity and fext is the feedback strength. The values of other

parameters can be found in Table. A.2. The phase difference ∆ is defined as ∆ = ψ0 + ϕ(t)− ϕ(t − τ)

according to the LK model, with ψ0 being the initial phase shift. To solve these equations numerically,
the fourth-order Runge-Kutta algorithm is employed, utilizing the initial values obtained from the
steady-state solution. Throughout the simulation process, special attention is given to using a time
step of 0.5 ps and a time span of 2 µs. For simplicity, the initial phase is set to zero, and the pump
current is maintained at 2×Ith.

In PICs, the short cavity regime is prevalent because of the presence of numerous integrated
optical components, resulting in reflection distances of only a few centimetres. In this scenario, the
relaxation frequency νRO is smaller than the external cavity frequency νext, leading to a substantial
reduction in the number of possible degrees of freedom. Fig. 3.42 illustrates the bifurcation diagrams,
time series, and phase portraits extracted from (3.42)-(3.46). An external cavity length of 4 cm is taken.
For each value of the feedback strength fext, a normalized output electrical intensity is plotted at local
maxima and minima in the time series. The impact of the SRH lifetime on the bifurcation diagram is
evident in Fig. 3.42, showing that a decrease in τSRH from (a) to (d) results in a less complex bifurca-
tion diagram. At τSRH = 0.1 ns, the periodic region nearly disappears, leaving stable operation. The
first Hopf bifurcation3 is closely tied to τSRH , as obvious from Fig. 3.42 (a)-(d), where decreasing τSRH

from 10 ns to 0.1 ns shifts the onset of the first Hopf bifurcation to larger values of fext, expanding
the stable operation area. This demonstrates that the SRH recombination influences the evolution of
reflection sensitivity, as lower τSRH increases the resistance against optical feedback. This is consistent
with epitaxial QD lasers on silicon, which show improved resistance to feedback compared to their
counterparts grown on native substrates [Dua+19]. For comparison, Fig. 3.42 (e1) displays the corre-
sponding bifurcation diagram of a quantum well (QW) laser. In this case, the major difference is the
αH-factor, which is about 2 near the threshold, and the SRH recombination lifetime is neglected. As a
result, the QW laser exhibits a typical bifurcation scenario with a cascade leading to chaotic operation
as fext increases [HG99].

In recent experiments, the epitaxial QD laser on silicon demonstrated excellent stability in the
short cavity regime, exhibiting possible periodic oscillations without chaotic operation [Don+21a],
which aligns with these simulation results. This inherent property can be attributed to the small αH-
factor, the large damping, and the absence of higher energy states involved in the lasing emission

3A Hopf bifurcation is a critical point in which, as a parameter changes, a system’s stability undergoes a switch, leading to
the emergence of a periodic solution.
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Figure 3.42: Numerically computed bifurcation diagram, time series and phase portrait in the column
(1), (2), (3) respectively for different values of τSRH in the short cavity regime (4 cm): τSRH = 10 ns and
fext = 0.232 (row a), τSRH = 5 ns and fext = 0.265 (row b), τSRH = 1 ns and fext = 0.275 (row c), τSRH =
0.1 ns and fext = 0.28 (row d) and the corresponding QW laser and fext = 0.14 (row e). The blue vertical
dashed lines in (1) mark the exact fext value taken in (2) and (3).



82 Chapter 3. Classical Noise and Feedback Dynamics in Quantum-Confined Lasers

Figure 3.43: RF spectra (left), time series (middle), and phase portraits (right) of the QD laser with
(feedback strength, external cavity length) = (a) (68.2%,4 cm), (b) (68.2%, 6.5 cm), (c) (68.2%, 15 cm),
(d) (33%, 15 cm), and (e) solitary, when it was biased to 160 mA. νext, frequency of the external cavity;
νsp, self-pulsation frequency (Source: In Ref. [Don+21a])
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Figure 3.44: Numerically computed bifurcation diagram, time series and phase portrait in the column
(1), (2), (3) respectively for different values of τSRH in the long cavity regime (30 cm): τSRH = 10 ns and
fext = 0.15 (row a), τSRH = 5 ns and fext = 0.20 (row b), τSRH = 1 ns and fext = 0.24 (row c), τSRH = 0.1 ns
and fext = 0.245 (row d) and the corresponding QW laser and fext = 0.037 (row e). Blue vertical dashed
lines in (1) mark the exact fext value taken in (2) and (3).
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process. Fig. 3.43 depicts the RF spectrum (left column), time series (middle column), and phase
portraits (right column) of the device operating at 160 mA (4.4×Ith) with different feedback strengths
and external cavity lengths. In Fig. 3.43 (a), the feedback strength is 68.2% (-1.66 dB), and the external
cavity length is 4 cm (3.75 GHz, corresponding ratio of νRO/νext = 0.5). The time series in Fig. 3.43
(a-ii) exhibits a series of regular pulses oscillating at νext, which are modulated by a slower envelope
with a repetition frequency νRPP of 55 MHz, clearly depicted in the inset of Fig. 3.43 (a-i). Moreover,
the inset of Fig. 3.43 (a) (a-ii) highlights the fast oscillations at νext within one envelope. Extending the
external cavity length to 6.5 cm (νRO/νext ≈ 0.9) while ensuring the same feedback strength of 68.2%,
the device enters into the period-one state in Fig. 3.43 (b). Further increasing the ratio of νRO/νext ≈ 2
by extending the Lext to 15 cm, the device enters the quasiperiodic state, as shown in Fig. 3.43 (c-i).
Both the νext and the self-pulsation frequency νsp shown in Fig. 3.43 (c-i) contribute to shaping the
waveform in this state. When the feedback strength is decreased to 33% (-4.8 dB) while keeping the
external cavity length fixed at 15 cm, the device becomes more stable and enters the quasi period-one
state, as shown in Fig. 3.43 (d). For reference, the spectra of the solitary state are shown in Fig. 3.43 (e).

In addition to analyzing the dynamics of epitaxial QD lasers on silicon in the short cavity regime,
one also investigates the long cavity regime, which is equally important as there may be situations
in PICs where the external cavity length is longer than expected. In this regime, the number of pos-
sible degrees of freedom drastically increases, leading to different dynamical behaviour compared to
the short cavity regime. Fig. 3.44 displays the bifurcation diagrams, time series, and phase portraits
for a fixed external cavity length of 30 cm and different values of the nonradiative recombination
lifetime τSRH . In the first column of Fig. 3.44 (a)-(c), the route to chaos in the bifurcation diagram
is observed, and chaotic bubbles disappear, which is also evident from the time series in the second
column. Additionally, the increase in τSRH has an impact on the first Hopf bifurcation point, slightly
shifting it to higher values of fext, consistent with the results obtained in the short cavity regime. It
is noteworthy that in Fig. 3.44 (d), only stable operation is observed at all times, which is in line with
recent experimental feedback results in epitaxial QD lasers where no chaotic operation was observed
[Dua+19]. Finally, when comparing the results to the dynamics of a QW laser with a larger αH-factor
and negligible SRH recombination, multiple chaotic bubbles occur as depicted in Fig. 3.44 (e), and
a period-doubling bifurcation cascade leads to the outbreak of chaos [HG99], highlighting the much
more complex dynamics in this case.

Concerning the experiments, Fig. 3.45 presents the spectral evolution of both QD and QW lasers
as the feedback strength increases at 3×Ith with a much longer external cavity length of 7 m [Dua+19].
The first row illustrates the mapping in the optical domain, while the second row shows the RF do-
main. In Fig. 3.45 (a), the QD laser on silicon demonstrates remarkable stability against optical feed-
back at all feedback strength levels. Only a slight red-shift of the modal wavelength is observed, and
the RF response in Fig. 3.45 (c) does not exhibit any signs of nonlinear oscillations. This implies that
the laser operates in a chaos-free state within the range of feedback levels considered in the experi-
ment, even at 6×Ith. On the other hand, the QW laser remains undisturbed until the feedback strength
reaches 0.3% (-25 dB), which corresponds to the critical level associated with the onset of the undamp-
ing of the relaxation oscillations. Beyond this level, the laser starts to experience the route to chaos
through coherence collapse [LVD85], with a significant broadening of the optical spectrum (Fig. 3.45
(b)) and intense chaotic oscillations in the frequency domain (Fig. 3.45 (d)).

In conclusion, the rate equation model for the QD lasers on silicon presented in Section. 3.2.2 has
been extended by incorporating the LK equations to account for delayed optical feedback. Through
simulations, QD lasers on silicon exhibit a reduction in the chaotic region and a shift in the first Hopf
bifurcation point to higher feedback values across different external cavity regimes. These simula-
tion results are consistent with experimental findings, showcasing the validity of the model. The
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insights gained from these simulations are crucial for designing feedback-resistant lasers for future
high-performance PICs without the need for optical isolators.

Figure 3.45: (a) Optical and (c) RF spectral mappings of the QD laser on silicon as a function of the
feedback strength at 3×Ith; (b) Optical and (d) RF spectral mappings of the QW laser as a function of
the feedback strength at 3×Ith. The vertical axis is on a logarithmic scale. (Source: In Ref. [Dua+19])

3.4.2 Broadband chaos generation in interband cascade lasers

Chaos is a widespread phenomenon observed in numerous nonlinear dynamical systems. It is char-
acterized by its unpredictable and random-looking behaviour, along with extreme sensitivity to ini-
tial conditions. In chaotic systems, even tiny differences in the starting conditions can lead to vastly
divergent outcomes over time, making long-term predictions challenging or even impossible. Semi-
conductor lasers have become popular testbeds for studying chaos [SS15], however, most reported
chaos in semiconductor lasers occurs in the near-infrared regime, specifically within the O-band and
C-band communication windows of optical fibres. On the other hand, mid-infrared chaos holds great
potential for applications in chaos-based free-space optical (FSO) communication [Spi+21b]. This is
due to the favourable high-transmission windows (3–5 and 8–12 µm) of the Earth’s atmosphere.

In the 1980s, mid-infrared chaos was demonstrated in gas lasers, such as CO2 lasers at 10.6 µm
and He-Xe lasers at 3.5 µm. However, at that time, the chaos bandwidth was limited to the MHz
range. Since the demonstration of chaos generation in quantum cascade lasers (QCLs), a wide va-
riety of mid-infrared nonlinear dynamics has been experimentally observed [Jum+16]. Despite the
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intersubband technology of QCLs, most of the observed nonlinear dynamics still also have a limited
bandwidth, resulting in a restricted transmission rate for chaos-based communications. Additionally,
QCLs mostly produce low-frequency fluctuations rather than chaos [Spi+21b]. In order to circumvent
this limitation, in this section, I shall discuss the exciting discovery of fully developed chaos generated
from mid-infrared interband cascade lasers (ICLs). The mid-infrared chaotic signal achieved exhibits
an impressive bandwidth that reaches the GHz range, showing a significant breakthrough in chaos
generation using ICLs.

Figure 3.46: Experimental setup for the chaos generation in an ICL subject to external optical feedback.
OSA (optical spectrum analyzer), ESA (electrical spectrum analyzer), BS (beam splitter). (Source: In
Ref. [Den+22])

Many methods have been demonstrated as effective means to generate nonlinear dynamics in
semiconductor lasers, such as electro-optical feedback, optical injection, and direct modulation [SS15].
Since experiments with mid-infrared semiconductor lasers have mostly concentrated on external op-
tical feedback [Jum+16], this configuration will be the focus of the following investigation. The multi-
mode ICL being studied comprises seven cascading gain stages, consisting of W-shaped InAs/GaInSb
type-II quantum wells. To induce chaos, the ICL is perturbed by external optical feedback. As de-
picted in Fig. 3.46, the optical feedback is achieved using a gold mirror, and the feedback strength
can be controlled by rotating the polarizer. The ICL exhibits a lasing threshold of Ith = 78 mA and
saturates at 140 mA. At a pump current of 85 mA, the laser emits multiple longitudinal modes around
3.4 µm. Fig. 3.47 (a) illustrates the evolution of the time traces as the feedback strength increases. The
ICL exhibits continuous-wave output for weak feedback levels, up to a feedback ratio of about -16 dB
(example of -21.3 dB). However, for feedback ratios ranging from -16 to -10 dB (example of -12.7 dB),
weak oscillations emerge in the time trace. This is because the optical feedback reduces the damping
of the relaxation oscillation (RO) of the ICL. When the feedback ratios are increased to -10 to -8.0 dB
(example of -9.4 dB), the ICL experiences destabilization and exhibits period-one (P1) oscillation char-
acterized by a single period in the time trace. The underlying mechanism for P1 oscillations stems
from the undamped RO through Hopf bifurcation due to the optical feedback. The frequency of the
P1 oscillation is found to agree with the frequency of the RO, further supporting this phenomenon.
When the feedback strength surpasses a critical level, indicating the onset of chaos, the ICL begins to
exhibit chaotic oscillations. The critical feedback level for the ICL is found to be approximately -8.0 dB,
which is higher than that of common quantum well lasers by more than 20 dB [Gri+03]. For feedback
ratios of -7.9, -6.4, and -4.2 dB, the ICL exhibits typical irregular pulse oscillations. The bifurcation
diagram in Fig. 3.47 (b) depicts the power extremes (both maxima and minima) extracted from the
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time series. It clearly illustrates that the Hopf bifurcation point occurs around -10 dB, representing the
P1 oscillations with a single maximum and a single minimum. Beyond the critical feedback level of
approximately -8.0 dB, the laser enters a chaotic state, producing multiple extremes.

Figure 3.47: Evolution of time traces towards chaos at 85 mA. (a) Time traces and (b) Bifurcation
diagram of the electrical power extremes. (Source: In Ref. [Den+22])

The ICL demonstrates the capability to produce chaos not only at near-threshold pump currents
but also at high ones. This contrasts with QCLs, where chaotic low-frequency fluctuations are mainly
observed at near-threshold currents [Spi+21b]. When the ICL is pumped at 105 mA, both the bifur-
cation diagram in Fig. 3.48 (a) and the RF spectra map in Fig. 3.48 (b) illustrate that the ICL does not
display any periodic oscillations. Instead, the ICL produces LFFs for feedback ratios ranging from
-14 to -8.0 dB (example of -11.9 dB) before transitioning to a regime of fully developed chaos. The
LFFs, as shown in Fig. 3.48 (c), are characterized by irregular power jump-ups with gradual power
increase and drastic power decrease. This behaviour stands in contrast to the typical LFFs observed
in common laser diodes [Fis+96], which are characterized by random power dropouts with sudden
power decreases and gradual power recovery. As the feedback level is further increased to the range
from -8.0 to -6.0 dB (example of -7.1 dB), both the LFFs and the chaos coexist in the time trace, and
the bandwidth of the power spectrum in Fig. 3.48 (d) continues to broaden. Eventually, the dynamics
evolve into fully developed chaos when the feedback level surpasses -6.0 dB. In general, this onset of
fully developed chaos occurs at a higher feedback level compared to the low pump current case.

The statistical characteristics of LFFs in semiconductor lasers are characterized by a probability
distribution of the time interval between power dropouts or jump-ups. This distribution has a zero
probability (dead zone) at short time intervals, followed by a rise to the maximum probability at a
certain interval, and then an exponential decay for longer intervals [SGG97]. In the case of the ICL
pumped at a high current of 105 mA, LFFs are observed for feedback ratios in the range of -14 dB to
-8.0 dB. As an example, Fig. 3.49 displays the statistical distribution of the LFFs at a feedback ratio of
-11.9 dB. In this case, the LFFs indeed exhibit a dead zone for short time intervals up to 40 ns. Then,
the probability climbs up to the peak value at a time interval of 120 ns. The distribution probability
has a long tail for large time intervals, and it declines with the typical exponential trend. The mean
time interval of the power dropout events is approximately 124 ns (dashed line), and it is found that
the mean time interval decreases with increasing feedback strength.

In a related experiment, another multimode ICL operating at 4.1 µm was used. Unlike previous
experiments, external optical feedback was not provided by a feedback mirror with a few tens of
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Figure 3.48: Chaos at a high pump current of 105 mA. (a) Bifurcation diagram and (b) RF spectra map
towards chaos. Examples of (c) time traces and (d) RF spectra for several feedback ratios. (Source: In
Ref. [Den+22])

Figure 3.49: Statistical distribution of the time interval between the power dropouts of the LFFs
at the feedback ratio of -11.9 dB. The dashed line indicates the average time interval. (Source: In
Ref. [Den+22])
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centimetres of the external cavity. Instead, in this case, the laser exhibited complex dynamics under
solitary operation. This was made possible by a combination of reflection close to the back facet and
the additional beating between numerous modes of the FP optical spectrum. Fig. 3.50 displays the
spectrograms, time traces, and RF spectra of the signal obtained at various temperatures while varying
the laser bias current from 75 mA (slightly above threshold) to 180 mA (2.5 times the threshold). At
15◦C, as shown in Fig. 3.50 (a), the ICL remains stable for low bias currents and starts to exhibit
destabilization above 110 mA. Then, up to the maximum bias current, the nonlinear dynamics produce
a broad spectrum that is limited by the bandwidth of the HgCdTe detector. The combination of the
broadest and flattest spectrum is found around 150 mA. However, for this temperature of operation,
it is challenging to clearly identify the RO frequency ( fR) that could correspond to the orange area
spanning around 0.5-0.6 GHz between 150-180 mA. At a higher temperature of 17.5◦C, as shown in
Fig. 3.50 (b), the overall behaviour remains similar. However, now the RO frequency can be clearly
observed from 140 mA onwards. This RO frequency ( fR) increases with the bias current, which is
consistent with the findings from another ICL optimized for high-frequency modulation [Did+21]. At
an even higher temperature of 20◦C, as shown in Fig. 3.50 (c), the RF spectrum is no longer broad but
mainly displays the evolution of the RO frequency ( fR) with temperature. Then, at around 150 mA,
a period-doubling phenomenon can be observed in the RF spectrum. This phenomenon exhibits four
main frequency components: one around 1

2 × fR, another around fR, one around 3
2 × fR, and finally

one around 2 × fR. Interestingly, there is a discontinuous pattern around fR and 2 × fR, which locally
broadens the frequency spectrum around these two values. At the highest temperature (22.5◦C) in
Fig. 3.50 (d), the main frequency component observed is fR, and once again, the complexity of the
signal is reduced as the temperature increases. Additionally, the frequency doubling effect between
1.6-1.8 GHz can be seen, but the signal is relatively weak due to the frequency cut-off of the detector
at higher frequencies.

The nonlinear dynamics observed in an ICL under weak external optical feedback can be ana-
lyzed using the Lang-Kobayashi model based on a rate equation approach [LK80]. This model is ex-
tensively utilized in numerical simulations to study various types of semiconductor lasers under feed-
back, including quantum dot lasers [ZG21] and quantum cascade lasers [Jum+16]. For ICLs [Han+21;
Den+22], the modified rate equations governing the carrier density (N), the photon density (S), and
the field phase (ϕ) are as follows:
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where the parameter definitions can be found in Section. 3.2.3, and their values are in Table. A.4. ∆(t)
is given by ∆(t) = Ψ0 + ϕ(t)− ϕ(t − τ) with Ψ0 as the initial phase shift. The optical feedback term
κ is defined as in the previous section. Simulations use an external cavity length of 4 cm to simulate
the short-cavity feedback regime. The feedback strength is set at a constant value of 0.3% to match
experimental observations. The initial phase shift Ψ0 is set to 1.21×π to maximize dynamic behaviour
during the simulations.

Fig. 3.51 illustrates the simulated spectral evolution of the ICL as the pump bias current gradually
increases. The simulation reveals a typical period-doubling route to chaos through Hopf bifurcations,
leading to strong line broadening at a high bias current. Near the threshold, at 75 mA, the signal
remains stable. As the bias current increases to around 1.5 ×Ith, two main frequency components
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Figure 3.50: Experimental characteristics of the optical chaos of ICL at different temperatures. The first
row is the spectrogram, the second one is the temporal time trace, and the third one is the RF spectra.
(a) 15◦C with a dashed white line highlighting the bias current of interest (150 mA), (b) 17.5◦C with a
dashed white line highlighting the bias current of interest (133 mA), (c) 20◦C with a dashed white line
highlighting the bias current of interest (148 mA), (d) 22.5◦C with a dashed white line highlighting the
bias current of interest (175 mA).
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emerge, corresponding to the RO frequency fR and its first harmonic at 2 × fR. Further increasing
the current to 2 ×Ith leads to more discrete frequency peaks, but chaos patterns are not observed yet.
However, when the bias current reaches the maximum experimental value of 2.5 ×Ith, a much more
complex RF spectrum emerges, featuring strong relaxation frequency broadening followed by a dense
area with remarkable nonlinear dynamics. The numerical simulations include a 0.8 GHz low-pass
filter to account for the limited bandwidth of the HgCdTe detector. Although experimentally, temper-
ature adjustments between 15◦C and 22.5◦C were required to observe different nonlinear phenomena,
the numerical simulations show these dynamics for a fixed temperature value.

Figure 3.51: Simulated spectrogram when varying the bias current in a range similar to the experimen-
tal scheme. The horizontal dashed line corresponds to the four bias current conditions in Fig. 3.52.

To provide detailed insights into the dynamics exhibited by the simulations, four specific pump
currents are indicated by white dashed lines in Fig. 3.51. Fig. 3.52 presents the corresponding results,
including time traces, RF spectra obtained through the Fourier transform, and phase portraits with
normalized carrier and photon numbers. In the left column of Fig. 3.52, the time traces illustrate the
ICL’s output behaviour as the bias current increases. At low bias currents, stable operation is observed,
while periodic oscillations are seen at intermediate bias currents, and at high bias currents, the output
shows an irregular signature indicative of chaos. The RF spectra in the centre column confirm the
presence of oscillations at the relaxation frequency and the period doubling. For instance, Fig. 3.52 (b)
exhibits a period-two time trace with four main frequency components in the RF spectrum located at
1
2 × fR, fR, 3

2 × fR, and 2 × fR, consistent with the experimental data in Fig. 3.50 (c). However, this
period-doubling behaviour may not be suitable for practical applications due to its low complexity. On
the other hand, at the maximum bias current (Fig. 3.52 (d)), chaos is observed in both the time trace and
the broad RF spectrum. The right column of Fig. 3.52 displays the associated phase portraits, revealing
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limit cycle solutions and chaotic attractors. Overall, these numerical results closely align with the
experimental observations, where relaxation oscillations and period doubling have been identified.
Moreover, the simulations demonstrate that chaos can be observed at high bias currents, which offer
the advantage of producing intense optical power and are compatible with potential applications.

Figure 3.52: Simulated characteristics of the dynamics for four bias currents compatible with the ex-
perimental scheme; (a) 110 mA, (b) 130 mA, (c) 165 mA, (d) 175 mA.

In conclusion, this section presented the findings of broad and flat chaos extending beyond 1
GHz in mid-infrared wavelength, achieved using an ICL. The numerical simulations, conducted with
the Lang-Kobayashi model in the short-cavity regime, confirmed that ICLs exhibit a period-doubling
route to chaos, and also demonstrated the presence of LFFs and deterministic chaos far from the bias
threshold. These discoveries pave the way for future room-temperature mid-infrared applications
leveraging high-speed ICLs. Notably, the use of ICLs in secured chaos transmission can be expected
to expand as demonstrated in a recent proof-of-concept experiment [Spi+21b]. However, this tech-
nique also necessitates the development of sensitive, fast detectors in the mid-infrared domain. In
particular, the next generation of detectors, based on frequency-conversion technology or unipolar



3.4. Investigation of the time-delayed feedback on Quantum-Confined Lasers 93

quantum optoelectronics, holds the potential to achieve bandwidths of dozens of GHz.

3.4.3 Optoelectronic feedback in quantum dot lasers on silicon

Silicon photonics is a rapidly evolving field that aims to merge photonics and electronics onto a silicon
platform. In parallel, optoelectronic oscillators (OEOs) represent nonlinear dynamical systems defined
by a feedback loop that connects an optical and an electrical branch. The appeal of these systems
lies in their inherent ability to bridge signals across optical and radio-frequency (RF) domains. This
fundamental characteristic has paved the path for applications in diverse areas, including microwave
generation, optical chaos cryptography, photonic neuromorphic computing, and sensing. Within this
array of applications, the concept of reservoir computing systems has garnered considerable attention
and relevance in the last decade. For example, the nonlinear dynamics inherent in semiconductor
lasers are harnessed to mimic the behaviour of nonlinear nodes within the reservoir layer [Lar+17] or
within the Ising machine [BVV19].

In certain studies, quantum well (QW) lasers have been employed to construct an AC-coupled
optoelectronic feedback (OEF) loop. However, this approach has only resulted in limited dynamics,
showing periodic resonances or chaotic states [TL01]. In order to broaden the spectrum of nonlinear
behaviour within the OEF loop, researchers have incorporated additional nonlinear elements. This
has been achieved by processing the light emitted from the QW laser through a modulator, such as
a phase modulator (PM) or a Mach-Zehnder Modulator (MZM). Through this configuration, a more
diverse array of dynamics is introduced, including the emergence of novel dynamical states known
as "breathers," characterized by a mixture of slow and fast behaviour [Kou+05]. Nonetheless, this
strategy presents a challenge to the feasibility of silicon-based integration, as a consequence of the
increased complexity associated with the integration of an electro-optical modulator. Given factors
such as cost-effectiveness, process simplicity, and the ability to maintain stability, there is an urgent
need to identify an OEF loop configuration that tactically minimizes the number of components while
preserving the underlying potential for integration. At this moment, QD lasers emerge as alluring con-
tenders for OEOs, particularly when compared to their QW counterparts. Despite the well-established
resilience of QD lasers against optical feedback, the utilization of an AC-coupled OEF loop with a QD
laser serves as a versatile approach to exploring the inherent nonlinearity of QD lasers. The approach
being suggested involves using the light-current (L-I) transfer function of the emitting laser, which
possesses an effective "elbow" piecewise linear nonlinearity [Che+20]. Correspondingly, at the receiv-
ing end of the optical fibre delay line, the photodiode can display an opposing nature of nonlinearity
because of saturation effects. As a result, the combined transfer function incorporates the nonlinear-
ities of both the laser and the photodiode. The primary goal of this section is to illustrate that this
composite system can be intentionally guided into a diverse range of dynamic behaviour inherent to
QD lasers.

Fig. 3.53 presents the time traces of the QD laser with increasing feedback strength. The QD laser
displays various waveforms, transitioning from (a) stable operation, (b) 2 ns quasi-square wave due to
the high cut-off frequency in the loop, (c) 250 ns square wave that precisely corresponds to the delay
time, and eventually to (d) a mixed state characterized by slow and fast oscillations. The slow period
of 20 µs corresponds to the wave packet shape, while the 250 ns fast period is associated with the
square wave dynamics within the wave packet, as highlighted in (e). To conduct a thorough analysis,
a comparative study was carried out with a 1310 nm QW FP laser. Employing an identical setup, the
QW laser failed to manifest the fast oscillations observed in the QD laser, even at the highest feedback
strength. By varying the OEF strength with electronic attenuators, distinct regimes were observed,
ranging from steady-state to sine wave and even quasi-triangular wave patterns, as illustrated in
Fig. 3.54 (a)-(b). To study the possibility of more complex dynamics emerging from the QW laser
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under high feedback strengths, an additional electronic amplifier (30 dB) was added to the loop. Due
to constraints in the availability of electronic attenuators with a broader range, the adjustments were
limited to a 10 dB attenuation following a total 60 dB RF signal amplification achieved through the
use of two electrical amplifiers. With this modified setup, the QW laser showed a mixed waveform of
slow and fast oscillations under high feedback strengths in (c)-(e). As the feedback strength increased,
the slow period underwent gradual changes, meanwhile, the fast period remained a square wave with
a consistent period. This observation aligned with the behaviour of the QD laser under high feedback
strength with one electronic amplifier.

Figure 3.53: Experimental time traces of the QD laser with OEF at different feedback strengths. Partial
zoom-in views of (d) are presented in (e).

The experimental setup can be modelled, as depicted in Fig. 3.55, using the Ikeda-like model
[Ike79; Che+20]. The characteristics of this OEF loop are governed by the combined bandpass filtering
effect, resulting from the aggregate bandwidths of the RF amplifier, the photodiode, the RF attenuator,
and the bias tee. By utilizing the different spectral separation between the low cutoff frequency, fL =
50 kHz, and the high cutoff frequency, fH = 0.5 GHz, it is feasible to model this bandpass filter as a
sequence of two first-order linear filters, comprising a high-pass filter and a low-pass filter. The loop
delay time is T = 250 ns. The relationship between the input voltage Vin(t) and the output voltage
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Figure 3.54: Experimental time traces of the QW laser with OEF at different feedback strengths. (c)-(e)
Time traces after the inclusion of another electrical amplifier (30dB).

Figure 3.55: Theoretical modelling of an OEF loop. A block diagram depicting the time domain rep-
resentation of the Ikeda-like OEF loop. The variable x(t) undergoes counterclockwise circulation and
interacts with the four key components within the loop.
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Vout(t) of a cascaded bandpass filter is given by the equation:

Ĥ(Vout(t)) ≡
[

1 +
fL
fH

]
Vout(t) +

1
2π fH

dVout(t)
dt

+ 2π fL

∫ t

t0

Vout(s)ds = Vin(t) (3.48)

The optical power P at the output of the optical fibre transforms into an electrical signal through
the photodiode, governed by a time-delayed relationship denoted as S × P(t − T). Here, S represents
the power-dependent responsivity of the photodiode. The photodiode’s output voltage corresponds
to the voltage Vin(t) applied at the input of the cascaded bandpass filter. Moreover, the connection
between VRF(t) and the output voltage can be expressed as VRF(t) = ηVout(t), where η serves as a
conversion factor including all linear gains and losses (both electrical and optical) within the feedback
loop. Consequently, it can be demonstrated that the RF voltage VRF(t) obeys the following integrodif-
ferential delay equation:[

1 +
fL
fH

]
VRF(t) +

1
2π fH

dVRF(t)
dt

+ 2π fL

∫ t

t0

VRF(s)ds = η fNL [VRF(t − T)] (3.49)

The nonlinearity transfer function of the feedback loop, fNL [VRF(t − T)] = S × P(t − T), is di-
rectly linked to the RF voltage. Considering fL ≪ fH , this function can be recast into a dimensionless
form as follows:

x(t) + τ
dx(t)

dt
+

1
θ

∫ t

t0

x(s)ds = η fNL[x(t − T))] (3.50)

Here, the system variable is defined as x(t) = VRF(t)/VREF, where VREF = 1 V serves as a convenient
reference voltage, ensuring that |x(t)| = |VRF|. The dimensionless feedback loop linear gain is η. Ad-
ditionally, several time parameters are introduced: τ = 1/(2π fH), and θ = 1/(2π fL), which correspond
to the high-pass and low-pass cutoff frequencies, respectively.

In many architectures of OEF systems, the conversion between electrical and optical signals of-
ten employs a phase or intensity modulator with a sinusoidal transfer function (MZM). However,
an alternative approach involves using the laser itself as an electrical-to-optical converter [Che+20].
Building upon this concept, a modelling strategy can be developed that capitalizes on the inherent
"elbow" nonlinearity present in the light-current transfer function inherent inside different types of
lasers. This nonlinearity stems from factors like the laser threshold, carrier leakage, gain compres-
sion effects, and photodiode saturation, contributing to a piecewise characteristic. To determine the
nonlinearity transfer functions of both QD and QW lasers, a setup is employed, consisting of distinct
laser diodes while maintaining the same photodiode in an open-loop configuration. In this setup, an
input voltage V is gradually applied to the laser diode, and as this voltage increases, both the applied
voltage and the resulting output voltage VPD at the photodiode are recorded. Given this context, the
piecewise transfer functions are formulated for the QD laser ( fQD) and the QW laser ( fQW) as follows:

fQD(x) =



0, x ≤ −0.14

1.05x + 0.147, −0.14 < x ≤ 0.47

1.45x − 0.041, 0.47 < x ≤ 1.15

1.624, 1.15 < x ≤ 1.5

−1.62x + 4.054, x > 1.5

(3.51)
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fQW(x) =



0, x ≤ −0.11

2.44x + 0.2684, −0.11 < x ≤ 1.31

−2.2x + 6.3468, 1.31 < x ≤ 1.61

2.80, x > 1.61

(3.52)

The coefficients of the piecewise transfer functions are computed by linear interpolation based
on the available experimental data points. It should be mentioned that the variable x should not be
confused with the input voltage (V) applied to the laser diode, as recorded in previous measurements.
Instead, x signifies the RF voltage VRF, derived from the difference between the input voltage (V) and
the polarization voltage (Vbias) of the laser when operating at twice the threshold current during OEF
operation. For the QD laser, the value of Vbias is 1.30 V, while for the QW laser, it is 1.19 V. Additionally,
the function f (x) corresponds to the detection voltage (VPD) of the photodiode. Once all the simulation
parameters are ready, (3.50) can be reformulated into an integrodifferential delay equation:

ẏ = x

τẋ = −x−1
θ

y + η fNL[xT ]

where y =
∫ t

t0
x(s)ds, xT ≡ x(t − T). fNL [xT ] is represented in detail by (3.51) and (3.52). The time

step is set to 10 ps.

Figure 3.56: Simulated bifurcation diagrams of (a) QD and (b) QW lasers.
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A comparison of dynamic behaviour between QD and QW lasers can be undertaken by changing
the linear gain (η), which simultaneously acts as the feedback strength. The bifurcation diagrams of
the QD and QW lasers are shown in Fig. 3.56 (a) and (b), respectively. The QD laser has a high cut-off
frequency of fH= 500 MHz and a low cut-off frequency of fL= 50 kHz. The bifurcation diagram of
the QD laser unveils three operational regions: a steady state, a period-one region, and a multi-period
region. Moreover, the QW laser has a high cut-off frequency of fH= 1 MHz and a low cut-off frequency
of fL= 10 kHz. The bifurcation diagram of the QW laser displays slow dynamic behaviour, yet it still
shows several operational regions.

Figure 3.57: Simulated time series of the QD lasers for a given feedback strength as indicated by the
red arrows in Fig. 3.56 (a).

The simulated time traces of QD lasers shown in Fig. 3.57 (a) and (b), corresponding to the red
vertical lines in Fig. 3.56 (a), replicate the 250 ns square waveform (feedback strength of η= 1) as
well as the mixed waveform observed in Fig. 3.53, respectively. Switching focus to the QW lasers
in Fig. 3.56 (b), it becomes evident that slow and fast oscillations emerge as the feedback strength
increases. Subsequently, Fig. 3.58 (a) and (b) illustrate time traces of QW lasers at feedback strengths
of η= 1 and η= 2.5, showing similar waveforms to the experimental data in Fig. 3.54.

To sum up, the findings presented in this section provide a compelling picture of the interplay be-
tween the nonlinearity transfer function of semiconductor lasers and the time delay within the frame-
work of AC-coupled optoelectronic feedback. These results give rise to a rich spectrum of complex
dynamical patterns. Especially, laser L-I characteristics play a pivotal role in shaping the nonlinear
dynamics within the entire OEF loop. In general, QD lasers present a more complex L-I curve char-
acterized by multiple segments and a higher susceptibility to saturation compared to QW lasers. This
can be attributed not only to their higher gain compression coefficient (∼10−16 cm3), about 10 times
that of QW lasers (∼10−17 cm3) [NGJ04; LS09], but also to the potential for excited states emission.
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Figure 3.58: Simulated time series of the QW lasers for a given feedback strength as indicated by the
red arrows in Fig. 3.56 (b).

Looking at the existing literature, however, it should be noted that there is just a few MHz high
cut-off frequency with QW lasers [Che+20]. In this study, when the QD laser was employed as the
optical source, the OEF loop displayed oscillations at a cut-off frequency of 500 MHz. This frequency
considerably exceeds what has been documented in previous research [Che+19]. In addition, the
absence of a modulation interface in the design of our QD laser could potentially constrain the upper
band of the high cut-off frequency. Therefore, the progression towards future silicon-based on-chip
OEF loops holds the promise of enabling the generation of nonlinear signals within the range of tens
of GHz, which will decrease the time delay in the OEF loop.

Conclusion

QD lasers have positioned themselves as a promising choice for massive optical communication within
data centres, capturing significant interest from major industry players. This is primarily due to the
various advantages exhibited by QD lasers, including low relative intensity noise (< 140 dB/Hz), nar-
row linewidth (< 30 kHz), and a near-zero αH-factor. Moreover, the QD active region demonstrates
a substantial tolerance to threading dislocations when incorporated into the silicon substrate. In ad-
dition to this, QD lasers exhibit a robust immunity against unwanted optical feedback, which can be
identified as an ideal feature for on-chip integration in silicon photonics. On the contrary, for those
seeking nonlinear dynamics in optical computing structures or Ising machines, QD lasers prove to be
eligible for generating complex waveforms when subject to the optoelectrical feedback loop.

In the case of mid-infrared ICLs, the results presented in this section indicate a likelihood of low
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relative intensity noise and narrow linewidth. Unlike QCLs, ICLs show a distinct relaxation oscilla-
tion, wide modulation bandwidth, and broadband chaos, owing to their class-B-like interband transi-
tion. These discoveries pave the way for secure and high-speed chaos transmission in free space.
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Chapter 4

Quantum Fluctuations and Amplitude
Squeezing in Quantum-Confined
Lasers

This chapter is devoted to the investigation of quantum fluctuations and amplitude squeezing in
quantum-confined lasers. In semiconductor lasers, the presence of quantum fluctuations has been
a longstanding concern. The presence of intrinsic constraints on electromagnetic field measurements
can be related to the principles of quantum mechanics. The emergence of quantum technologies has
rekindled interest in generating quantum states of light using semiconductor lasers. A significant
factor that distinguishes semiconductor lasers from other laser types is their pumping mechanism.
Specifically, semiconductor lasers are pumped by injection current delivered through an electrical cir-
cuit. Optical pumping, which relies on photon absorption, follows a Poisson point process and is
constrained by shot noise limit. However, electrical pumping doesn’t strictly conform to a Poisson
point process due to Coulomb interactions [Yam91]. Interestingly, in the case of semiconductor lasers,
the inherent noise stemming from pumping can be effectively decreased below the shot-noise limit.
This reduction in pump noise leads to the phenomenon of amplitude squeezing in the output of a
semiconductor laser.

The chapter commences by introducing the foundational notion of quantum fluctuations and
quantum states of light. The subsequent exploration delves into the theoretical analysis of the potential
generation of squeezed light in interband cascade lasers and quantum dot lasers. To validate the
theoretical framework, a well-established experiment is conducted, showcasing the manifestation of
broadband amplitude squeezing in quantum dot lasers.

4.1 Introduction to the quantum fluctuations

This century has witnessed a transformative change in the concept of light. This revolution traces its
origins back to the early days of the century, ignited by the groundbreaking work of Max Planck, and
subsequently advanced through the pioneering contributions of Albert Einstein, Arthur Compton,
Paul Dirac, Niels Bohr, and other luminaries. While classical optics has proven adept at explaining
numerous aspects of light, its coverage is not exhaustive. Many captivating effects arise from the
inherent quantum nature of light, forming the cornerstone of quantum optics. Indeed, the marvel of
quantum optics lies in the coexistence of seemingly contradictory perspectives: the localized, particle-
like emission and detection, alongside the delocalized, wave-like propagation, often referred to as
wave-particle duality.

Every optical field found in nature has certain fluctuations associated with it. Fluctuations as-
sume a distinctive and illuminating role in the context of particle-wave duality. It was in 1909 that
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Albert Einstein first recognized the disparity in electromagnetic fluctuations based on whether energy
is carried by waves or particles [Ein09]. Within the domain of classical waves, the amplitude of energy
fluctuations exhibits a linear relationship with the mean energy, while in the case of classical particles,
this amplitude scales proportionally to the square root of the mean energy. Given that a photon defies
categorization as either a classical wave or particle, it possesses both linear and square-root contri-
butions within its behaviour. Typically, at optical or higher frequencies, the dominant contribution is
the square root (particle) aspect, while at radio or lower frequencies, the linear (wave) aspect becomes
prominent. In his article, the energy fluctuation ε of blackbody radiation can be described within a fre-
quency range spanning from ν to ν + dν inside a volume V and for a spectral density ρ(n, T) (energy
per unit volume and unit frequency interval) [Dav96]:

〈
ε2(ν, T)

〉
=

(
hνρ +

c3

8πν2 ρ2
)

Vdν (4.1)

Einstein noted that this relationship, deduced from Planck’s law, stands in contradiction to the classical
wave theory of light. In fact, the classical theory, which results in the Rayleigh-Jeans law for spectral
density, would exclusively generate the second term on the right-hand side of (4.1), which can be
labelled as the "wave term". The first term, on the other hand, represents the characteristic of pointlike
quanta moving independently, each with energy hν. This term, often referred to as "shot noise", is
the sole contribution to the variance of a flux of independent particles with random arrival times (for
instance, raindrops falling on a roof: in this context, ε2 signifies the variance in the count of raindrops
hitting the roof during a fixed time interval). Therefore, (4.1) effectively displays both the particle and
wave aspects of radiation.

For a long period of time, only thermal sources were accessible, and Planck’s distribution held as
the foundational framework for statistically describing light. This paradigm underwent a transforma-
tion with the invention of the first laser in 1960 by Theodore Maiman [Mai60], which brought about a
second revolution in the concept of light. Lasers operate far from thermal equilibrium, resulting in the
emission of radiation characterized by a statistical distribution that deviates markedly from Planck’s
formula. Well above the threshold, the statistics of the emitted light approaches that of an ensemble
of independent particles "photon", so that only the shot-noise term is present in (4.1), corresponding
to a Poissonian distribution for the number of photons. The statistical difference between laser and
thermal light was experimentally demonstrated in 1965 [Are65].

The advent of the laser light source has motivated a series of subsequent theoretical efforts, with
the goal of constructing a general framework to describe diverse states of radiation. Traditionally,
optical coherence theory has centred on the statistical representation of fluctuations. The concept
of optical coherence has commonly been associated with interference, likely because interference is
the simplest phenomenon that reveals the correlation between light beams. Nevertheless, as modern
light detectors and ultra-fast electronic circuitry became available, investigations into various types of
correlations in optical fields gained traction. Hanbury Brown and Twiss [BT56] demonstrated that cor-
relations could extend to quantities reliant on field variables in a quadratic manner. This observation
prompted the study of higher-order correlation effects in optical fields. Around 1963, Roy Glauber and
E. C. George Sudarshan [Gla63c; Gla63a; Sud63] were instrumental in introducing phase-space distri-
butions. Their work established a formal correspondence between quantum-mechanical and classical
statistical descriptions of optical coherence functions, closely associated with the measurements made
using photoelectric detectors. This correspondence essentially asserts that "any statistical state of the
quantum mechanical system may be described by a classical probability distribution over a complex
plane, provided all field operators are written in the normal-ordered form". These developments em-
body the two fundamental pillars of quantum fluctuations: the intrinsic statistical nature of quantum
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mechanics and the statistical aspect arising from our ability to define each of the infinite degrees of
freedom within the light field. Thus, the very notion of "quantum fluctuations" implies a unification
between statistical principles and quantum mechanics.

4.1.1 Coherent state of light

A robust connection between classical variables and quantum operators is established through the
process of canonical quantization, initially pioneered by Paul Dirac. If a classical system is described
by canonically conjugate variables, the corresponding quantum mechanical description can be de-
rived by introducing operators and substituting classical Poisson brackets with commutation relation.
In this context, the classical depiction of light introduced in Section. 3.1 can be transformed into a
quantum mechanical representation. As per (3.2), the classical electric field of light E(t) is expressed
in terms of the electric field operator Ê(t) associated with an electromagnetic field mode with angular
frequency ω and at time t:

Ê(t) =
E0

2

[
α̂e−iωt + α̂†eiωt

]
(4.2)

where once more, E0 =
√

h̄ω
ε0V represents the one-photon field within volume V. α̂ and α̂† are the pho-

ton annihilation and creation operators, satisfying
[
α̂, α̂†] = 1. The coherent states |α⟩ correspond to

the quantized electromagnetic field states that closely resemble the behaviour of a classical harmonic
oscillator, and these states are eigenstates of the annihilation operator α̂ [Gla63a]:

α̂ |α⟩ = α |α⟩

The parameter α = |α| exp(iϕ) represents a complex number depicting the phasor diagram of the elec-
tromagnetic field. The electric field of (4.2) can be reexpressed with Euler’s formula (ejx = cos (x) +
j sin (x)):

Ê(t) = E0(X̂1 cos ωt + X̂2 sin ωt) (4.3)

where X̂1 = 1
2 (α̂ + α̂†) andX̂2 = 1

2i (α̂ − α̂†) represent the two quadrature operators, corresponding to
the real and imaginary parts of the complex amplitude α.

⟨α| X̂1 |α⟩ = ⟨α| 1
2
(α̂ + α̂†) |α⟩ = 1

2
(α + α∗) = ℜe(α)

⟨α| X̂2 |α⟩ = ⟨α| 1
2i
(α̂ − α̂†) |α⟩ = 1

2i
(α − α∗) = ℑm(α)

The commutation relation between these two quadrature operators can be thus calculated as:

[
X̂1, X̂2

]
=

1
4i

[
α̂ + α̂†, α̂ − α̂†

]
=

−1
4i

([
α̂†, α̂†

]
−

[
α̂†, α̂

]
+

[
α̂, α̂†

]
− [α̂, α̂]

)
=

i
2

The commutation relation between the two quadrature operators bears a strong resemblance to the
commutation relation of the position and momentum in classical mechanics. Therefore, it’s advan-
tageous to treat X̂1 and X̂2 as their counterparts in the “de facto standard” of quantum optics, char-
acterized by the Hamiltonian Ĥ = h̄ω(α̂α̂† + 1/2). Heisenberg’s uncertainty principle postulates
that the simultaneous measurement of two canonically conjugate variables (i.e., position and mo-
mentum), cannot be accomplished with unrestricted precision. According to the variances V(X̂1) =
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E
[
(X1 −

〈
X̂1

〉
)2] and V(X̂2) = E

[
(X2 −

〈
X̂2

〉
)2] [GK05; Fur15]:

V(X̂1) = ⟨α| X̂2
1 |α⟩ − ⟨α| X̂1 |α⟩2 = ℜe(α)2 +

1
4
−ℜe(α)2 =

1
4

V(X̂2) = ⟨α| X̂2
2 |α⟩ − ⟨α| X̂2 |α⟩2 = ℑm(α)2 +

1
4
−ℑm(α)2 =

1
4

Hence, the uncertainty product in the measurements of the two quadrature operators X̂1 and X̂2

follows the Schwartz inequality:

V(X̂1)V(X̂2) ≥
1
4

∣∣〈[X̂1, X̂2
]〉∣∣2 =

1
16

(4.4)

Defining the standard deviations ∆X1 =
√

V(X̂1) and ∆X2 =
√

V(X̂2), then (4.4) can be rewritten by

∆X1∆X2 ≥ 1
2

∣∣〈[X̂1, X̂2
]〉∣∣ = 1

4
(4.5)

Figure 4.1: A coherent state (a) in the phase diagram and (b) in the time evolution. The white dashed
line is the corresponding sine function without any fluctuations.

In a coherent state, the mean values correspond to those of the real and imaginary components of
the complex amplitude α. Furthermore, the standard deviations in (4.5) are the same regardless of the
complex amplitude, and both become equal to 1/2. Consequently, a coherent state in phase space is
described in Fig. 4.1 (a). A coherent state |α⟩ can be described by a superposition of the photon-number
(Fock) states |n⟩ (eigenstates of the photon number operator n̂ = α̂†α̂):

|α⟩ = e−|α|2/2
∞

∑
n=0

αn
√

n!
|n⟩

corresponding to a Poisson distribution of the photon number n:

p(n) = |⟨n|α⟩|2 = e−|α|2 |α|2n

n!
= e−⟨n⟩ ⟨n⟩n

n!
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with mean value and variance such that
〈
∆n2〉 = ⟨n⟩ = |α|2. Let’s think about the time evolution of a

coherent state with a Hamiltonian Ĥ = h̄ω(α̂α̂† + 1/2) and the following Schrödinger equation with
a time-invariant Hamiltonian with the initial state as |α⟩ and the final state as |α(t)⟩ [Fur15]:

|α(t)⟩ = e−j Ĥ
h̄ t |α⟩ = e−j ω

2 t
∣∣∣αe−jωt

〉
Since the phase factor for the overall state has no physical meaning, the initial coherent state with

a complex amplitude of α transforms into one with a complex amplitude of αe−jωt after time t. This
implies that a coherent state retains its coherence and only undergoes a change in phase. Therefore,
the time evolution of a coherent state can be represented as the time dependence of either the real
or imaginary part of the optical field, as illustrated in Fig. 4.1 (b), which is just a simple wave! In
summary, the coherent states exhibit properties similar to those of classical coherent light and repre-
sent the closest quantum mechanical approximation to it. Much like laser light can be approximated
as idealized classical coherent light under specific conditions, in situations demanding a quantum
description, laser light can often be effectively approximated using coherent states [Gla63a].

Figure 4.2: Uncertainty areas of the coherent state can span the entire parameter space like tiles.
(Source: On page 70 in Ref. [BR04])

As discussed in Section. 3.1, phasor diagram is widely used in quantum optics due to their utility
in representing any state of light. A phasor diagram plots X̂1 versus X̂2, offering a concise visualization
of quantum states in Fig. 4.2. In this representation, each coherent state |α⟩ corresponds to an area
centred around the point defined by the mean values for that particular state. The size of this area is
determined by the variances ∆X2

1 and ∆X2
2 , often depicted as a circle with a diameter equivalent to

the variance. The area of the circle conveys the extent of the uncertainty distribution. This qualitative
phasor diagram provides several key insights:

• The uncertainty area maintains symmetry. When measuring fluctuations in a coherent state, the
outcome remains consistent, regardless of the chosen projection angle.

• The uncertainty area’s size remains constant and is unaffected by the state’s intensity |α|2.

• Two states are distinguishable from each other only if their average positions in the X̂1, X̂2 plane
are spaced by more than ∆X.
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The last insight is so important that it provides a practical guideline for determining when two states
can be distinguished through measurement. The uncertainty area sets a minimum requirement for a
change in amplitude or phase that is needed before two states can be differentiated. While in classical
systems, such an uncertainty region might be attributed to noise arising from technical limitations, in
the quantum context, the uncertainty area arises from fundamental quantum principles rather than
technical imperfections. As a result, the uncertainty area embodies the influence of quantum fluc-
tuations on any form of light measurement, whether it pertains to amplitude, phase, or any other
property. Ultimately, experimental measurements cannot surpass the precision imposed by quantum
fluctuations. Another convenient approach to representing the state of the field is through quasiprob-
ability distributions. These distributions enable the expectation values of quantum operators to be
expressed as integrals of corresponding classical quantities, with the integration weighted by the dis-
tribution function associated with the state. Additional details can be found in Appendix. C.

4.1.2 Squeezed states of light

Apart from coherent states, there exist other types of light states as well. In certain applications,
such as communication [YS78] or precision measurements [Law+19], it’s often necessary to consider
only one of the quadratures of the field. This approach offers a way to work around the quantum
limitation presented by the Heisenberg uncertainty principle. By reducing the fluctuations in one of
the quadratures below that of a coherent state, it becomes possible to achieve enhanced precision in
that particular quadrature. However, this comes at the cost of increased noise in the other quadrature,
ensuring that the Heisenberg uncertainty principle is upheld and not violated. Such states are called
squeezed states of light [Yue76; Wal83]. Here is a brief overview of the mathematical characteristics of
different types of squeezed states.

A coherent state |α⟩ can be created by applying the displacement operator D(α) to the vacuum
state |0⟩ [Gla63a; GK05]:

|α⟩ = D(α) |0⟩

where

D(α) = e−
1
2 |α|

2
eαâ†

e−α∗ â

A general quadrature-squeezed state |α, ζ⟩ may be generated by first acting with the squeeze
operator S(ζ) on the vacuum state |0⟩ followed by the displacement operator D(α) [Wal83]:

|α, ζ⟩ = D(α)S(ζ) |0⟩

where the squeeze operator S(ζ)

S(ζ) = e(
1
2 ζ∗ â2− 1

2 ζ(â†)2), ζ = reiθ

The function of the squeeze operator can be broken down into a sequence of steps: first, rotating the
angle by θ/2 counterclockwise, then implementing the squeeze operation with the parameter r, and
eventually rotating back to the original configuration [Fur15]. By defining a rotation angle of θ/2,
satisfying ⟨Y1 + iY2⟩ = ⟨X1 + iX2⟩ e−iθ/2, as depicted in Fig. 4.3, the expectation values and variances
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for a general quadrature-squeezed state |α, ζ⟩ are provided by [GK05]:

∆Y1 =
1
4

e−2r, ∆Y2 =
1
4

e2r

⟨n̂⟩ = |α|2 + sinh2 r〈
n̂2

〉
= (|α|2 + sinh2 r)2 + 2 sinh2 r cosh2 r + |α cosh r − αeiθ sinh r|2

V(n̂) =
〈

n̂2
〉
− ⟨n̂⟩2 = |α|2

[
e−2r cos2 (ϕ − θ

2
) + e2r sin2 (ϕ − θ

2
)

]
+ 2 sinh2 r cosh2 r

Figure 4.3: The phase diagram of a general quadrature-squeezed state
∣∣α, reiθ〉 (r > 0) in the Cartesian

coordinate system.

For the vacuum squeezed state (α = 0), it consequently exhibits a super-Poissonian distribution:

V(n̂) = 2 sinh2 r cosh2 r ⩾ ⟨n̂⟩ = sinh2 r

For the quadrature-squeezed state with the coherent amplitude greatly exceeding the squeezing
(α ̸= 0 and |α|2 ≫ e2r) when the rotation angle θ = 2ϕ

V(n̂) = |α|2e−2r + 2 sinh2 r cosh2 r

It has a sub-Poissonian distribution. On the contrary, when the rotation angle θ = 2ϕ + π,

V(n̂) = |α|2e2r + 2 sinh2 r cosh2 r

It has a super-Poissonian distribution. More specific cases are obtained when the rotation angle θ

equals 0 or π in the Cartesian coordinate system, as depicted in Fig. 4.4. Squeezing is present in the
X̂1 quadrature when θ = 0, and squeezing is evident in the X̂2 quadrature when θ = π.

A quadrature-squeezed state is created through a phase-sensitive amplification process occurring
in many nonlinear optical interactions. Among the successful methods for producing such states, the
employment of a four-wave mixer and a degenerate parametric amplifier has emerged as the two
most effective methods [Slu+85; Wu+86]. This preference arises because, while a coherent state is gen-
erated via linear terms involving â and â† in the exponent, a squeezed state necessitates the inclusion
of quadratic terms. The prototype governing these interactions is characterized by the Hamiltonian
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[Wal83]:

H = h̄
[
χ(n)∗(ε)â2 + χ(n)(ε)(â†)2

]
where χ(n) is the nonlinear susceptibility of the optical medium and ε is the amplitude of the pump
field which has been treated classically.

χ(2)(ε) = εχ(2) (degenerate parametric amplifier)

χ(3)(ε) = ε2χ(3) (four wave mixing)

Figure 4.4: The phase diagram and the time evolution of specific quadrature-squeezed states, (a)-(b)
in the X̂1 quadrature, and (c)-(d) in the X̂2 quadrature. The white dashed line is the corresponding
sine function without any fluctuations.

A related yet not entirely equivalent class of quantum states is referred to as photon-number
squeezed states or amplitude-squeezed states with the number-phase minimum uncertainty condition
(
〈
∆n̂2〉 〈∆ϕ̂2〉 ≈ 1

4 ). The precise definition of these states necessitates the introduction of an operator
ϕ̂ corresponding to the phase of an electromagnetic field, which has been a longstanding challenge in
physics [CN68]. Squeezing in photon number more readily occurs when the photon number fluctua-
tions become smaller than those for a coherent state. These states are also classified as "nonclassical,"
akin to quadrature-squeezed states, but the error contour assumes a "crescent" shape in the polar
coordinate system, as shown in Fig. 4.5. Specifically, concerning the photon-number variance, the
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relationship is as follows [Dav96]:

V(n̂) =
〈

∆n̂2
〉
= ⟨n̂⟩+

〈
(â† â† ââ −

〈
â† â

〉2
)

〉
or, using the Glauber-Sudarshan P function (see Appendix. C)〈

∆n̂2
〉
= ⟨n̂⟩+

∫
d2αP(α, α∗)(|α|2 −

〈
|α|2

〉
)2

As previously discussed,
〈
∆n̂2〉 < ⟨n̂⟩ only if the probability distribution P(α, α∗) is not positive def-

inite. The integral associated with the amplitude-squeezed state takes on a negative value, thereby
indicating the quantum nature inherent to the state. An amplitude-squeezed state can be also gener-
ated by a third-order nonlinear medium [YIM86] or by semiconductor lasers [MYI87].

Figure 4.5: The phase diagram of a "crescent" amplitude-squeezed state in the polar coordinate system.

4.1.3 Measurement of quantum states of light

The straightforward method of detecting quantum fluctuations involves directly detecting the light
with a single photodetector and then analyzing the resulting photocurrent using an electronic spec-
trum analyzer or oscilloscope, as depicted in Fig. 4.6. Through direct detection, the acquired electrical
noise power should primarily arise from the quantum fluctuations of the light in an ideal scenario
with a perfect laser mode and detection system. Nevertheless, some technical challenges must be cir-
cumvented [BR04]. This measurement is not particularly sensitive to squeezing but is rather sensitive
to effects like sub- or super-Poisson statistics, which can also manifest in unsqueezed fields. Addition-
ally, direct detection cannot differentiate between the quadrature of the optical field.

Since the detection of squeezed states requires a phase-sensitive scheme that measures the vari-
ance of a field quadrature component, H. P. Yuan and J. H. Shapiro [YC83] proposed that homodyne
detection measures a single quadrature of the field, whereas heterodyne detection entails measuring
two quadratures of the field. Both of these schemes involve the interference of the light in a squeezed
state with a coherent field (often referred to as a local oscillator, LO), thereby adding a large coherent
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Figure 4.6: Schematic diagram of direct detection. (Source: On page 200 in Ref. [BR04])

component to it. The current discussion is focused exclusively on the approach of balanced homodyne
detection, which is outlined in Fig. 4.7.

Figure 4.7: Schematic diagram of balanced homodyne detection. (Source: On page 206 in Ref. [BR04])

In this method, the term "homodyne" indicates that both the unknown beam αin and the LO beam
αlo share the same frequency and originate from the same laser source. The process begins by divid-
ing the incoming light into two paths after the 90/10 beamsplitter M1. One of these paths contains
the unknown beam to be detected, while the other serves as the reference beam or LO beam, which
can provide a phase reference to distinguish between the quadratures. The phase shifter in the LO
path allows for adjustment of the phase difference ϕlo between αin and αlo. Subsequently, these two
paths are combined using an exact 50/50 beamsplitter M4, maintaining equal optical power. This bal-
anced configuration is crucial. The resulting beams are detected by identical photodetectors D1 and
D2. The photocurrents generated by these detectors can be either added or subtracted using a differ-
ential amplifier. Finally, an electronic spectrum analyzer is employed to create and record two noise
spectra: one for the sum of the photocurrents and another for their difference. This technique effec-
tively distinguishes between quantum noise and classical noise. Classical noise generates correlated
photocurrents, allowing them to be subtracted to eliminate each other. When added, the complete
noise power is restored. In contrast, for quantum noise, the photocurrents are uncorrelated, leading
to both the sum and difference channels adding in quadrature. Therefore, the subtracted spectrum
shows quantum noise only. A more formal derivation of these results is provided in Appendix. D. It’s
important to note that homodyne detection differs significantly from direct detection in two key as-
pects: (a) Intensity fluctuations in homodyne detection directly evaluate the fluctuations in a specific
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quadrature of the input field. (b) The signal and its variance in homodyne detection are influenced by
the phase angle of the LO, which is an external parameter.

Another essential detection scheme is a measurement of intensity correlation, known as the Hanbury-
Brown and Twiss experiment [BT56]. In this experiment, the incoming light is divided into two beams
using a 50%–50% beam splitter. These split beams are then captured by two (usually single-photon)
detectors, as depicted in Fig. 4.8 (a). The joint photon-counting rate at these two detectors is propor-
tional to the second-order coherence function g(2)(τ) [Gla63b]. The normalized second-order correla-
tion function for photons generated at times t = 0 and t = τ:

g(2)(τ) =
〈

â†(t)â†(t + τ)â(t + τ)â(t)
〉

⟨â†(t)â(t)⟩ ⟨â†(t + τ)â(t + τ)⟩
; g(2)(0) =

〈
(â†)2 â2〉
⟨â† â⟩2 =

⟨n̂(n̂ − 1)⟩
⟨n̂⟩2 (4.6)

Figure 4.8: (a) Schematic diagram of the Hanbury Brown–Twiss experiment for measuring the nor-
malized second-order coherence function g(2)(τ) with ∆t = t2 − t1 = τ. (b) Schematic of the g(2)(0)
function for the three possible light statistics. The value around zero delay carries crucial information.
(Source: in the thesis of Markus Kantner.)

The normalized second-order coherence function g(2)(τ) as represented by (4.6), provides insights
into the joint probability of detecting one photon followed by another within the time delay τ at a fixed
position. This metric helps determine whether photons within the beam tend to cluster together or
remain separate. When g(2)(τ) = 1, it means that the probability of joint detection is equivalent to
the probability of independent detection. This situation is expected to occur as τ → ∞ since the
"memory" of the first detected photon fades after a sufficiently long time. If g(2)(τ) < g(2)(0), it
suggests that the probability of detecting the second photon decreases with the time delay, indicating
a phenomenon known as "bunching" of photons. On the contrary, if g(2)(τ) > g(2)(0), it means that the
probability of detecting the second photon increases with the time delay, illustrating the phenomenon
of "antibunching" of photons.

Considering that the photodetection process involves only normal-ordered correlation functions,
the normalized second-order coherence function g(2)(0) can be derived from the Glauber-Sudarshan
P function [SZ99]:

g(2)(0) = 1 +

∫
P(α, α∗)

[
|α|2 −

〈
â† â

〉]2 d2α

⟨â† â⟩2 (4.7)

For classical states where the Glauber-Sudarshan P function is nonnegative (P(α, α∗) ≥ 0), thus
g(2)(0) ≥ 1. But for a nonclassical field state, it is possible to have g(2)(0) < 1. For example, the
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Glauber-Sudarshan P function P(α, α∗) of a single-mode thermal field is described by Bose-Einstein
statistics [SZ99]:

P(α, α∗)Thermal =
1

π ⟨n̂⟩ e−|α|2/⟨n̂⟩

Then

g(2)(0)Thermal =

∫
P(α, α∗)|α|4d2α

[
∫

P(α, α∗)|α|2d2α]
2 = 2

For the coherent state |β⟩ [SZ99]

P(α, α∗)Coherent = δ(2)(α − β)

Then

g(2)(0)Coherent = 1

The coherent state exhibits coherence in all orders of correlation functions (g(n)(0) = 1) so that photon
detection events are entirely uncorrelated. Hence, the detection of a photon at time τ = 0 does not
provide any information about the timing of subsequent photon detections. Additionally, for a single-
mode photon number state |n̂⟩ [SZ99],

g(2)(0)Fock = 1 − 1
n
< 1

All these three states are shown in Fig. 4.8 (b). The relation between antibunching and sub-Poissonian
statistics is a subtle one. In fact, by utilizing (4.7), one can establish the following connection between
g(2)(0) and the variance of photon numbers for a single-mode field:

g(2)(0) = 1 +

〈
∆n̂2〉− ⟨n̂⟩

⟨n̂⟩2 (4.8)

Therefore, in this case, sub-Poissonian statistics imply g(2)(0) < 1. On the other hand, one cannot
say in general that antibunching leads to sub-Poissonian statistics, since g(2)(τ) > g(2)(0) does not
necessarily require g(2)(0) < 1. Using (4.8), a more straightforward approach to gauge the photon
statistics of any state is by computing the Mandel Q-parameter [Man82]:

Q =

〈
∆n̂2〉− ⟨n̂⟩

⟨n̂⟩ = ⟨n̂⟩
[

g(2)(0)− 1
]

(4.9)

For a state with Q in the range of −1 ≤ Q < 0, the photon statistics are sub-Poissonian. Conversely, if
Q > 0, the statistics are super-Poissonian. Notably, a coherent state is characterized by Q = 0.

Additionally, there exists a technique known as quantum tomography or quantum state tomog-
raphy through the Wigner function, which involves the reconstruction of a quantum state through
measurements on a collection of identical quantum states. Further information can be found in the
pioneering article by Smithey et al. [Smi+93].

4.1.4 Quantum noise from electronics

In the realm of electronics, another facet of quantum noise has equally undergone development since
electrons share the particle-wave duality with photons. Exploring the quantum noise of electronics
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leads to a historical review. In 1918, Walter H. Schottky observed that even within ideal vacuum tubes,
where all extraneous noise sources were eliminated, two types of intrinsic noise persisted, which he
termed the Wärmeeffekt and the Schroteffekt [Joh28]. The former is known as Johnson-Nyquist noise
or "thermal noise" [Nyq28]. Thermal noise arises from the thermal agitation or Brownian motion of
electrons within an electrical conductor. As temperature increases, thermal agitation grows, causing
a corresponding increase in thermal noise power. Moreover, thermal noise power is independent of
applied voltage. The latter noise, often referred to as "shot noise," emerges due to the discrete nature
of electrical charges. Shot noise power is proportional to the average current, rather than the square
of the current as one would anticipate from Ohm’s law. This deviation occurs because, in the case of
vacuum tubes, electrons are emitted by the cathode independently and reach the anode at random
intervals, following a Poisson process. These intrinsic noises cannot be completely removed, even in
perfectly designed and operated semiconductor systems [Van55].

A conductor possessing finite resistance R and operating at temperature T serves as the simplest
system that demonstrates both types of intrinsic noise. Shifting the focus to thermal noise, Nyquist’s
analysis of thermal noise [Nyq28] followed shortly after Johnson’s initial findings [Joh28]. Nyquist’s
work revealed that the power spectral density of open-circuit voltage noise Sν(ω) remains unaffected
by the conductor’s material composition and the measurement frequency ω. Instead, it is only deter-
mined by the temperature and resistance:

Sν(ω) = 4kBTR (4.10)

where kB is the Boltzmann constant. Back in 1928, Nyquist [Nyq28] even considered the scenario at
high frequencies, where h̄ω ≫ kBT, since it was known that in the case of the black body radiation,
the effect of quantization was to yield the Planck spectrum, which is equivalent to

Sν(ω) =
4h̄ωR

eh̄ω/kBT − 1
(4.11)

This function remains flat when h̄ω ≪ kBT, but as h̄ω > kBT, it rapidly diminishes towards zero.
As a result, Nyquist concluded that the physically unrealistic phenomenon of a flat noise spectrum
(white noise) would be eliminated through the integration of quantum mechanics. A more rigorous
quantum treatment emerged in 1951, courtesy of Callen and Welton [CW51]. They provided a line
of reasoning that suggested the generalized Nyquist noise should have a fully quantum mechanical
expression when accounted for the zero-point fluctuation contribution to (4.11):

Sν(ω) = 2h̄ωR coth (
h̄ω

2kBT
) = 4R

[
1
2

h̄ω +
h̄ω

eh̄ω/kBT − 1

]
(4.12)

This result confirms Nyquist’s insight that the thermal spectrum would be cut off when h̄ω > kBT.
However, the entire spectrum doesn’t actually get cut off; rather, it exhibits a linear rise with increasing
ω. This behaviour arises from the first term in (4.12), which originates from the zero-point fluctuations
inherent in the microscopic structure of the resistive element, modelled by harmonic oscillators. Mean-
while, the second term in (4.12) corresponds to Planck’s blackbody radiation spectrum. As depicted
in Fig. 4.9, thermal noise (4kBTR) prevails as a dominant noise source at high temperatures and/or
low frequencies (kBT ≫ h̄ω), whereas shot noise (2h̄ωR) dominates at low temperatures and/or high
frequencies (kBT ≪ h̄ω).

The generalized Nyquist formula holds some noteworthy implications. Thermal noise is char-
acterized by actual fluctuation energy that can be directly measured. It serves as an intrinsic noise
source, inevitably present when a system operates at a finite temperature T. In contrast, shot noise is
a virtual fluctuation energy that cannot be measured directly. It manifests itself only indirectly in the
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Figure 4.9: The generalized open-circuit voltage noise spectrum including the zero-point fluctuation
according to the (4.12) [Yam12].

form of photon shot noise in a laser or mechanical (Casimir) force in metallic parallel plates [Yam91].
Another implication is that in certain low-frequency regions, the thermal noise effect can exhibit fewer
fluctuations than the shot noise effect [YMN86].

4.1.5 Generation of quantum states of light

Quantum states of light have a purpose that extends beyond being solely a mathematical foundation
for quantum optics. They can indeed be realized through practical experiments. The first experimen-
tal observation of squeezing, conducted by Slusher et al. [Slu+85], harnessed the four-wave mixing in
sodium vapour. The measured squeezing level was 0.3 dB below the shot noise limit. A nondegen-
erate four-wave-mixing experiment was performed by Shelby et al. [She+86] in a 114 m single-mode
silica fibre, cooled to 4.2 K. They observed a squeezing level of 0.6 dB below shot noise. A subse-
quent experiment by Wu et al. [Wu+86] used the parametric down-conversion in a magnesium-doped
lithium niobate crystal embedded in a standing-wave cavity. The squeezing level was about 3.5 dB
below the shot noise limit. Fig. 4.10 summarizes the fundamental principles of those nonlinear in-
teractions. In the context of parametric down-conversion, which relies on χ(2) nonlinear processes, a
single pump photon at frequency ωp is destroyed, resulting in the production of a photon pair. This
pair consists of a signal photon with frequency ωs and an idler photon with frequency ωi with the
relationship ωs + ωi = ωp. An analogous process in four-wave mixing operates through χ(3) non-
linear interactions. In this case, photon pairs emerge when two pump photons are simultaneously
annihilated, conserving energy and momentum. This is governed by the relationship ωs + ωi = 2ωp,
providing enhanced flexibility in adjusting the signal and idler photon energies.

Since the landmark experiments on squeezed light generation in the 1980s, various research
groups worldwide have pursued the goal of achieving stronger squeezing using diverse technologies
and a comprehensive review is available in Ref. [And+16]. For the past few decades, the workhorse for
generating squeezed light has been an optical parametric oscillator (OPO) cavity. This configuration
involves placing a χ(2) or χ(3) nonlinear crystal inside the cavity to enhance the nonlinear coupling,
as their intrinsic values are relatively small. A number of nonlinear materials have been applied, in-
cluding LiNbO3 (PPLN) [Kas+23], KTiOPO4 (PPKTP) [Vah+16], silicon [Saf+13], and Si3N4 [Zha+20b].
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Figure 4.10: Quantum states of light generation with nonlinear materials relies on χ(2) (parametric
down-conversion) or χ(3) (four-wave mixing) processes in which one or two pump photons (ωp) are
converted into correlated signal (ωs) and idler (ωi) photons, respectively. In both cases, the systems
are operated in the degenerate regime (ωs ≈ ωi).

Recent advancements as highlighted in Ref. [Moo+20] also have enabled the transition from traditional
benchtop instruments to a compact single-chip design, maintaining efficiency and preserving key per-
formance metrics. Overall, the domain of squeezing technology has witnessed ongoing advancements
driven by the incorporation of low-loss optical components, high-efficiency detectors, and low-noise
electronics [Tas+21].

The preceding discussion is concerned with quadrature-squeezed states and now transitions to
the topic of generating photon-number squeezed states or amplitude-squeezed states. An amplitude-
squeezed state shows reduced photon-number fluctuations (sub-Poisson statistics instead of Poisson
statistics) while phase fluctuations are enhanced, as illustrated in Fig. 4.5. In essence, the statistical
characteristics of a light beam are reflected in the stochastic process governing the arrival of photons
at a detector. Light with a regular photon arrival pattern displays lower photon-number fluctuations
than light with statistically independent photon arrivals. Consequently, the production of amplitude-
squeezed states involves inducing anticorrelations among closely spaced photon occurrences. This
concept can be visualized using the analogy of a sequence of photons being "shot" from a hypothetical
gun. Initially, these photons follow a Poisson distribution in terms of their numbers. However, by
selectively removing photons that appear within a certain specified time interval of each other, the se-
quence becomes more regular with sub-Poisson behaviour. To induce such anticorrelations, different
mechanisms can be employed as shown in Fig. 4.11. These include triggering photon emissions at reg-
ular time intervals (excitation control), incorporating constraints related to the emission’s reset time
(emission control), or using information about photon occurrence times to influence future emissions
or excitations (feedback control).

Several excitation control methods have used the inherent sub-Poisson nature of an electron cur-
rent. The genesis of amplitude-squeezed states found its roots in a Franck-Hertz-like experiment
[TS85]. In this context, Coulomb repulsion plays a crucial role in potentially constraining the electron
stream due to inelastic collisions. As a result, an element of regularization is introduced into the flow
of electrons, which then translates to regularization in the number of atoms they excite and, by ex-
tension, in the number of photons spontaneously emitted by these atoms. The outcome of such an
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Figure 4.11: Schematic diagram illustrating the generation of amplitude-squeezed light by (a) excita-
tion control, (b) emission control, (c) and (d) feedback control.

excitation control method is the emission of spontaneously fluorescing photons displaying amplitude
squeezing. However, it is essential to acknowledge that the sub-Poisson behaviour can be randomized
due to photon losses stemming from imperfect photon generation, collection, and detection. In cases
where these losses are substantial, random (Poisson distribution) photons could be regenerated. Ef-
fects such as attenuation, scattering, and the presence of background photons can significantly dimin-
ish the degree of amplitude squeezing, necessitating diligent efforts to mitigate these influences. To
overcome these challenges, several high-efficiency configurations have been developed. For instance,
current supplied from a DC source like a battery, inherently exhibits sub-Poisson characteristics owing
to the intrinsic Coulomb repulsion of electrons, with Johnson noise being the principal noise source.
In such cases, driving a light emitter operating through photon emission with sub-Poisson current is
sufficient. Thus, a simple light-emitting diode (LED) powered by a constant current source can emit
amplitude-squeezed light [TRS87]. This phenomenon has been demonstrated by Tapster et al. who
carried out an experiment similar to a solid-state version of the space-charge-limited Franck-Hertz ex-
periment. Similarly, a semiconductor injection laser driven by a constant current [MYI87], analogous
to a stimulated-emission version of the space-charge-limited Franck-Hertz experiment, also behaves
in this manner.

Emission control methods can also yield amplitude squeezing. For example, the introduction of
a "dead time" can prevent a second event from occurring within a fixed time interval after a previous
event. This constraint effectively prevents the events from being arbitrarily close to each other and
regularizes them. This technique has found particular application in resonance fluorescence emissions
[SM83]. In these experiments, isolated atoms subject to Poisson-like excitations are unable to emit
photons while they are undergoing re-excitation.

Controlling excitations or emissions by feedback offers an alternative approach. By monitoring
arriving photons without destroying them, their arrival times can be utilized to modify subsequent
excitations or emissions. This form of feedback control method becomes practicable when photons
are observed using quantum-nondemolition measurements, allowing for observations without in-
troducing perturbations. Yamamoto and his colleagues have proposed strategies for implementing
quantum-nondemolition measurements based on self-phase modulation in a Kerr medium [YIM86]. It
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is important to note that if conventional destructive photon detectors are used instead of the quantum-
nondemolition measurement of photon number, the extraction of amplitude-squeezed states from the
system is not feasible [MY86]. Furthermore, an additional avenue for achieving feedback control is to
use twin photon streams. In this scenario, one of the streams can be annihilated to generate a control
signal, while the twin stream persists unaffected. In conclusion, a compilation of early experiments in
which squeezed light was generated is presented in Table. 4.1.

Table 4.1: Early squeezed light experiments.

Year Effect Experiment Reference
1983 Amplitude-squeezed Single-atom resonance fluorescence [SM83]
1985 Amplitude-squeezed Space-charge-limited Franck-Hertz effect [TS85]
1985 Quadrature squeezing Nondegenerate four-wave mixing in Na atoms [Slu+85]
1986 Quadrature squeezing Nondegenerate four-wave mixing in optical fibre [She+86]
1986 Quadrature squeezing Parametric downconversion in MgO:LiNbO3 [Wu+86]
1986 Amplitude-squeezed Quantum nondemolition measurement [YIM86; MY86]
1987 Amplitude-squeezed Constant-current-driven LED [TRS87]
1987 Amplitude-squeezed Constant-current-driven semiconductor laser [MYI87]

4.2 Introduction to amplitude squeezing in semiconductor lasers

The study of quantum fluctuations properties in lasers gained significant attention shortly after their
invention in the early 1960s. The resulting consensus from these investigations was that, when a laser
is operated well above its threshold and only short time intervals (high frequencies) are taken into ac-
count, its output closely resembles the noise characteristics of a coherent state [Gla63a]. This implies
that, for sufficiently high Fourier frequencies, the spectral variance of photon number and phase fluc-
tuations will approach the Poissonian limit or standard quantum limit, also known as the shot noise
limit (SNL). However, at lower frequencies, the presence of excess intensity noise, encompassing both
intrinsic and technical factors, is anticipated. In most types of lasers pumped well above the thresh-
old, the quantum noise is often overwhelmed by extrinsic noises, making its measurement difficult in
practical experiments.

Semiconductor lasers stand out as an exceptional case, with their intensity noise converging to-
wards the SNL for all frequencies under optimal conditions. Their compact size and stable operation
make quantum noise more pronounced compared to other extrinsic noises, allowing it to remain ob-
servable across varying pump rates. In contrast, the laser’s phase is not constrained and undergoes
temporal drift, known as laser phase diffusion. As a consequence, the semiconductor laser is a unique
device that necessitates the application of quantum mechanics for a comprehensive understanding of
its performance. Therefore, it provides a practical experimental platform to test the principles of the
quantum theory of light. This conclusion was reached based on the consideration of three fundamen-
tal quantum noise sources [GS84]:

1 The quantum statistical nature of the fundamental interaction between light and atoms.

2 The stochastic nature of processes that lead to photon losses.

3 The statistical characteristics of the atomic excitation processes within the active medium.

Of particular relevance is the observation that the excitation process can be effectively approximated
by a Poissonian distribution for the number of atoms excited during a given time interval. This dis-
tribution assumption underlies much of the theoretical work on lasers, either implicitly or explicitly.
In the early 1980s, Golubev and Sokolov [GS84] made pioneering contributions to the study of lasers
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pumped in a regular manner (thus eliminating the third noise source), where equal numbers of atoms
are pumped within equal time intervals.

The experimental validation of the reduction in intensity fluctuations through the regularization
of a light source’s pumping was initially demonstrated by Teich and Saleh in their work [TS85]. They
observed the emission of sub-Poissonian light from a mercury-vapor lamp that was being pumped
by a space-charge-limited electron beam. This phenomenon was termed the "inverse" of Einstein’s
photoelectric effect, as the average photon flux exhibited proportionality to the average electron cur-
rent. Subsequent experiments by Tapster et al. in 1987 [TRS87] revealed sub-Poissonian light emission
from a light-emitting diode (LED) driven by a constant-current source. In a similar vein, S. Machida
et al. in 1987 [MYI87] demonstrated sub-Poissonian light emission from semiconductor lasers, includ-
ing both 852 nm GaAs and 1550 nm InGaAsP lasers. These results provided strong evidence for the
phenomenon of sub-Poissonian light emission due to the regularization of the pumping process. The
work of Machida and Yamamoto in 1988 and 1989 further expanded on these findings. In these ex-
periments, a reduction in noise from 9% to 19% was achieved over a frequency range spanning from
near DC to 1.1 GHz [MY88]. The primary limitation stemmed from the measurement system, at-
tributed to optical feedback and limited light-collection efficiency. These challenges were successfully
addressed by implementing a direct "face-to-face" coupling between the laser and the detector, both
situated within a cryostat at liquid-helium temperature. This innovation resulted in an impressive
85% reduction in noise [RMY91]. To attain sub-Poissonian behaviour from commercial semiconductor
lasers operating at room temperature, the suppression of spurious modes is essential to operate them
in a monomode regime [Mar+95]. This goal has been achieved through diverse methods such as in-
jection locking [Ino+93; WFS93], optical feedback from a grating [Fre+93b; KYS95; LX98; JCG99], or
active stabilization of the laser temperature [RS90]. The field has witnessed a wealth of experimental
studies, as summarized in Table. 4.2, particularly in the domain of semiconductor lasers.

Table 4.2: The well-known experimental observation of amplitude-squeezed states in semiconductor
lasers. RT means room temperature, TJS means "transverse junction stripe", and VCSEL means "
vertical-cavity surface-emitting laser". × means no extra technique.

Number Year Laser type Temperature +Technique Reference
1 1987 1560 nm DFB QW RT × [MYI87]
2 1988 810 nm single-mode TJS QW 77 K × [MY88]
3 1989 TJS QW 77 K × [MY89]
4 1990 780 nm TJS QW 4 K × [RS90]
5 1991 786 nm TJS QW 66 K × [RY91]
6 1993 788 nm TJS QW 77 K optical injection [Ino+93]
7 1993 810 nm QW 10 K × [Fre+93a]
8 1993 815 nm QW 10 K, 78K optical injection [WFS93]
9 1993 830-840 nm QW RT optical feedback [Fre+93b]

10 1995 852 nm QW RT optical feedback [KYS95]
11 1995 852 nm QW RT × [Mar+95]
12 1997 960 nm VCSEL RT × [Kil+97]
13 1998 852 nm QW 80 K optical feedback [LX98]
14 1999 1550 nm DFB QW RT optical feedback [JCG99]
15 2001 840 nm single-mode VCSEL RT × [KDE01]

4.2.1 Suppressed-pump-noise mechanism

The preparation of a sub-Poissonian light or amplitude-squeezed state is not an easy job. Nevertheless,
generating a sub-Poissonian electron beam or achieving an electron-number state becomes achievable
through mutual electron interactions within a space-charge-limited beam or a simple resistor. In fact, a
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noteworthy characteristic setting semiconductor lasers apart from other lasers is their pumping mech-
anism. Specifically, semiconductor lasers can be pumped by injection current through an electrical
circuit. The implementation of such an electron excitation scheme is very promising to significantly
reduce pump noise, along with the facile generation of amplitude-squeezed states in semiconductor
lasers.

The left panel of Fig. 4.12 illustrates the configuration for generating a sub-Poissonian electron
beam within a space-charge-limited vacuum tube. As the electron emission rate surpasses its average,
a rise in the count of space charges near the cathode ensues. This, in turn, induces a more negative
potential minimum (U2) between the cathode and anode due to the Coulomb repulsion among the
"crowded" space electrons. Consequently, an increased number of electrons experience reflection back
towards the cathode due to their insufficient initial velocity, v ⩽ (2q|U|/m)

1
2 [Yam12]. On the con-

trary, when the electron emission rate falls below its average, the potential minimum becomes less
negative (U1), resulting in fewer reflected electrons. This modulation of the potential minimum effec-
tively governs the flow of electrons traversing through this region and naturally establishes a feedback
stabilization mechanism. The electron arrival process at the anode exhibits a strong departure from
a Poissonian distribution, leading to the anode current fluctuation at a sub-shot-noise level. Utilizing
this principle, Teich and Saleh achieved the generation of sub-Poissonian light from a space-charge-
limited vacuum tube containing mercury atoms [TS85], despite the light not being a product of laser
emission but rather arising from weak spontaneous emission.

Figure 4.12: Left panel: Regulated electron emission process in a space-charge-limited vacuum tube
obtained by self-modulation of the potential field. Right panel: Semiconductor junction diode driven
by a high impedance current source which also shows the regulated electron emissions through junc-
tion voltage modulation. (Source: In Ref.[Yam12]).

Applying the same principle, the previous regularization concept can be extended to a laser oscil-
lator [YMN86]. The right panel of Fig. 4.12 shows an injection-current-pumped semiconductor laser,
wherein the carrier-injection process is controlled by a similar mechanism. The carrier injection rate,
namely, the diode junction current, is determined by the forward-biased voltage across a p-n junction.
This voltage opposes the inherent potential within a depletion layer, enabling the predominance of
the carrier-diffusion process over the reverse-oriented drift process. When the junction current sur-
passes its average level, the junction voltage diminishes due to the increased voltage across the series
resistance Rs. As a consequence, a greater number of minority carriers (in this context, electrons as
depicted in Fig. 4.12) return to the n-type bulk layer due to the dominating built-in field within the
depletion region. Oppositely, as the injection current decreases below its average value, the junction
voltage increases, facilitating the diffusion of more electrons into an active layer. This modulation of
the junction voltage, induced by the presence of the series resistance Rs, plays a role in regulating the
injection of electrons into the active layer. Hence, it becomes evident that the current noise produced
within the series resistance Rs is not dominated by shot noise (2qI) but instead, mostly constitutes
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thermal noise (4kBT/R) when h̄ω < kBT in (4.12), a factor unaffected by the current I due to such
a modulation effect. If the applied voltage V = IRs is larger than the equivalent thermal voltage
VT = 2kBT/e=42 mV at room temperature, as commonly encountered, the resulting current noise
becomes lower than the shot noise level.

4.2.2 A noise equivalent circuit of the semiconductor laser

Generally speaking, the origin of current noise in laser diodes can be ascribed to two fundamental
processes: thermal diffusion and recombination of minority carriers [Yam12]. Therefore, the relaxation
current is directed into the diode’s junction from the external circuit in response to these internal
events, aiming to restore the equilibrium distribution of minority carriers. The equivalent noise circuit
for laser diodes needs to incorporate this external circuit relaxation current in parallel with the diode’s
differential resistance (Rd). In fact, this noise-equivalent circuit method provides an ideal framework
for elucidating the regulation mechanisms, as previously discussed. As is well-known, a laser diode
can be simplified to a p-n junction structure. Consequently, a noise-equivalent circuit for this p-n
junction is illustrated in Fig. 4.13 [YM87; KY97]. vth is the thermal noise voltage associated with
Rs and vsn is the shot noise voltage associated with Rd. Alternatively, in their Norton equivalents,
isn = vsn/Rd is the shot noise current and ith = vth/Rs is the thermal noise current. The Kirchhoff
circuit equation for this noise-equivalent circuit is as follows:

d
dt

vjn = −
vjn

CRs
+ ith −

vjn

CRd
+ isn (4.13)

The first term on the right-hand side of equation (4.13) represents the relaxation rate of vjn, which is
associated with the relaxation current in the external circuit. The second term corresponds to Johnson-
Nyquist thermal noise resulting from Rs, with a spectral density denoted as Sith(ω) = 4kBT/Rs. The
third term on the right-hand side of equation (4.13) signifies the relaxation rate of vjn due to the mi-
nority carriers across the depletion layer or minority carriers’ recombination. Finally, the fourth term
relates to the shot noise current associated with Rd, with a spectral density denoted as Sisn(ω) = 2qI.

Figure 4.13: Noise-equivalent circuit of a p-n junction. The circuit shows the resistance Rs, diode
resistance Rd, total capacitance C = Cdep +Cdiff with Cdep the depletion layer capacitance and Cdiff the
diffusion capacitance, stored charge fluctuation q(t), junction voltage fluctuation vjn, recombination
current ijn, junction current in, and the noise generators vsn and vth.

There are two operational modes of p-n junction diodes, as illustrated in Fig. 4.14.

• Constant voltage operation (Rs ≪ Rd): Even though the junction voltage changes from the
steady state value due to the internal events, it is immediately relaxed by the external circuit
within the CRs time constant which is much smaller than the internal time constant CRd. As
a result, the junction voltage is almost constant and the whole system lacks a memory effect
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for events related to thermal diffusion and the recombination of minority carriers. Then, the
noise current associated with these occurrences exhibits full-shot noise behaviour, represented
as Si(ω) = 2qI.

• Constant current operation (Rs ≫ Rd): Every recombination of minority carriers triggers an ex-
ternal relaxation pulse. However, since the time constant for the external circuit CRs is much
larger than the internal time constant CRd, the junction voltage is now allowed to fluctuate
and the whole system can not be back to equilibrium distribution in time, which decreases
the chances of the next minority carriers’ recombination (photon emission). Also, the self-
modulation mechanism previously discussed works in this situation. As a result, it is antici-
pated that the junction current fluctuation will exhibit a sub-shot-noise nature. However, it’s
worth noting that the junction voltage fluctuation vjn is not suppressed by this process.

Figure 4.14: The (a) Constant voltage operation and (b) Constant current operation on a p-n junction
diode.

When a p-n junction diode is subjected to a strong forward bias, its differential resistance (Rd)
often becomes negligible when compared to the source resistance (Rs). This situation is particularly
evident in semiconductor light-emitting diodes and lasers [Yam91]. Within such devices, the noise
stemming from junction current is less than the standard full shot noise, and the emitted photon flux
exhibits a sub-shot noise characteristic.

Taking the Fourier transform of (4.13), one can obtain

(iωC +
1

Rs
+

1
Rd

)Vjn(ω) = Ith(ω) + Isn(ω) (4.14)

where Vjn(ω), Ith(ω) and Isn(ω) are now in their Fourier transforms. The spectral density of the

junction voltage fluctuations is obtained by calculating
〈

V∗
jn(ω)Vjn(ω)

〉
and is

SVjn =
2qIR2

d + 4kBTR2
d/Rs

(1 + Rd
Rs
)2 + (ωCRd)2

(4.15)
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The junction current fluctuations are obtained from Kirchhoff’s law

in = ith −
vjn

Rs

Fourier transforming the above equations and substituting for Vjn(ω), one gets

In(ω) = Ith(ω)−
Vjn(ω)

Rs
=

−Isn(ω) + Ith(ω)(iωCRs +
Rs
Rd
)

1 + Rs
Rd

+ iωCRs
(4.16)

The spectral density of the junction current fluctuations is expressed as

SIn(ω) = ⟨I∗n(ω)In(ω)⟩ =
2qI +

[
( Rs

Rd
)2 + (ωCRs)2

]
4kBT

Rs

(1 + Rs
Rd
)2 + (ωCRs)2

(4.17)

When discussing the noise spectral density, it typically refers to the spectral density of fluctuations in
the junction current. Let’s consider two operational modes:

• Constant voltage operation (Rs ≪ Rd): Under this condition, the noise spectral density is re-
duced to

SIn(ω) = ⟨I∗n(ω)In(ω)⟩ =
2qI + (ωCRs)2 4kBT

Rs

1 + (ωCRs)2

In the low-frequency limit (ωCRs ≪ 1), the complete shot noise is recovered as SIn(ω) = 2qI.
However, in the opposite limit (ωCRs ≫ 1), the thermal noise is recovered as SIn(ω) = 4kBT

Rs
.

This divergence is because, at high frequencies, the p-n junction is effectively short-circuited by
the junction capacitance C, making it impossible to extract the internal current noise In to the
external circuit.

• Constant current operation (Rs ≫ Rd): Assuming that 2qI = 2kBT
Rd

, in this scenario, the noise

spectral density always corresponds to the thermal noise limit, given by SIn(ω) = 4kBT
Rs

< 2qI.

4.2.3 Limitation of squeezing level

The squeezing level R, or the reduction in intensity noise, is solely determined by the laser’s internal
quantum efficiency ηin, which characterizes the conversion from injected electrons to emitted photons.

R = 1 − ηin

Achieving photon number squeezing of more than 10 dB is feasible, especially considering that an in-
ternal quantum efficiency exceeding 90% is readily attainable in modern semiconductor laser technol-
ogy. However, as mentioned in Section 4.1.5, it is crucial to acknowledge that sub-Poisson behaviour
can be disrupted by photon losses arising from different processes, such as imperfect photon genera-
tion, collection, and detection. When these losses are large, the Poisson distribution may be recovered.

For instance, in Ref. [MY88], the photocurrent noise spectral density versus external quantum ef-
ficiency η is shown in Fig. 4.15 and a small amount of optical loss quickly destroys the squeezing. The
ordinate is normalized relative to the corresponding shot-noise level. As several sources of optical loss
appear, the noise level gradually rises towards the shot-noise level. In the limit of infinite loss, ampli-
tude squeezing is entirely lost. With such substantial optical loss, the original quantum noise of the
laser is completely replaced by the vacuum field fluctuation, resulting in the emergence of shot noise.
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Figure 4.15: The squeezing level versus external quantum efficiency. (Source: On page 533 in
Ref. [Yam91])

This apparent increase in normalized photocurrent noise is another distinct signature of amplitude
squeezing. The external quantum efficiency, from the increment in laser injection current to the incre-
ment in photodetector current, is 22% in this experiment when the optical loss is eliminated [MY88].
The overall detection quantum efficiency of 55% is composed of several factors: a photodetector quan-
tum efficiency of 0.93, focusing-lens loss of 0.90, isolator insertion loss of 0.81, mirror reflection loss
of 0.95, cryostat window loss of 0.93, and laser collimating-lens loss of 0.93. After correcting for these
factors, the observed noise level indicates amplitude squeezing of -1.7 dB (33%) below the shot noise
limit at the output of the laser facet, as shown in Fig. 4.15. This represents the noise level that the laser
actually produced at the output mirror. The laser output coupling efficiency ηc is given by

ηc =
L−1 ln (R−1/2

1 )

αin + L−1 ln
[
(R1R2)−1/2

]
Here, L = 250 µm represents the cavity length, R1 = 0.32 and R2 = 0.6 are the power reflectivities
of the front and rear facets, respectively, and αin=22cm−1 is the internal absorption loss. If the laser
output-coupling efficiency due to nonideal rear facet power reflectivity ηm = 0.57 and that due to
internal loss ηα = 0.70 are also corrected, the observed noise level corresponds to amplitude squeezing
of -7 dB (80%) below the shot-noise limit. This represents the intrinsic noise level achievable if the
rear facet power reflectivity is increased to 100% and internal absorption loss is eliminated. This
optimistic projection could be fueled by the advancements in semiconductor laser cavity design and
the ongoing integration of the entire system onto a low-loss single chip [Tas+21]. The achievement of
85% (-8.3 dB) amplitude squeezing through the face-to-face positioning of the detector and the laser,
as demonstrated in previous research [RMY91], provides compelling evidence for the feasibility of
these improvements.

4.2.4 Limitation of squeezing bandwidth

Yamamoto et al. envisaged that a DFB semiconductor laser with a high internal quantum efficiency
η could manifest a broad squeezing frequency bandwidth, typically exceeding 100 GHz, ultimately
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determined by the semiconductor laser photon lifetime (τp ∼1 ps) [YMN86]. However, merely re-
lying on a constant-current source with reduced shot noise does not unambiguously dictate an anti-
correlation between successive injection events into the active layer. This is due to the fact that each
individual carrier injection constitutes a (Poisson) random point process, driven solely by the junc-
tion voltage and the temperature of the junction [IY+93]. It should be underlined that the injection
rate can be influenced by the Coulomb blockade effect, a term borrowed from mesoscopic junctions.
For instance, the injection of a carrier results in a reduction of the junction voltage by e/Cdep, where
Cdep represents the depletion layer capacitance. This voltage reduction accordingly leads to a de-
crease in the carrier injection rate, establishing a negative feedback mechanism that suppresses noise
in the carrier injection process. This mechanism has been successfully demonstrated in the context
of the single-photon turnstile device operating within the mesoscopic domain at low temperatures,
as described in [IY+94]. In this case, the effectiveness of the mechanism relies on the fact that when
a single electron crosses the junction, it prevents additional electrons from crossing if the electron
charging energy due to a single transit, e2/Cdep, is significantly greater than the thermal energy kBT.
But in the macroscopic high-temperature regime, the junction voltage after each injection drops by
e/Cdep, the depletion layer charging energy is much smaller than kBT and each microscopic event is
unregulated and thus completely random. However, in the macroscopic high-temperature regime,
where N = ( kBT

e )/( e
Cdep

) = kBTCdep/e2, the presence of this number of electrons leads to a significant
reduction in junction voltage, equivalent to the thermal voltage kBT/e. This reduction results in a
pronounced regulation of the carrier injection rate. In other words, it creates a enough high barrier
against further injection.

Considering that electrons are provided by the current source at a rate of I/e, the time required
for N electrons to be delivered is τte = kBTCdep/eI. This leads to anti-bunched electrons on a time
scale associated with τte. As the injection current is reduced, τte increases and may exceed the re-
combination lifetime, in which case there is negligible charge storage. Each injection event results in
instantaneous recombination, and the statistics of the pump determine the sub-shot nature of the pho-
ton flux. For measurement times shorter than τte, the negative feedback mechanism is disrupted, and
the sub-shot photon features can not be observed. Therefore, this collective behaviour of numerous
electrons introduces an additional limitation to the squeezing bandwidth [IY+93]. Combining the two
effects of τte and τp, the squeezing bandwidth B:

B =
1

2π(τte + τp)
=

1

2π(
kBTCdep

eI + τp)
(4.18)

The squeezing bandwidth is expected to be directly proportional to the current I, but inversely pro-
portional to the temperature T and the capacitance Cdep.

4.3 Amplitude squeezing in interband cascade lasers

In this section, I will theoretically investigate a novel category of optoelectronic devices operating
in the mid-infrared (MIR) spectrum, where photon-number fluctuations are suppressed below the
shot-noise limit. To achieve this, one should focus on interband cascade lasers (ICLs) that emit in a
broad wavelength range of 3-6 µm. These lasers typically consist of an active region composed of
multiple cascade stages with type-II quantum wells (QWs). ICLs leverage a combination of factors,
including a relatively long upper-level recombination lifetime and an efficient cascading mechanism,
to generate coherent light through interband transitions. As a result, their active medium differs from
that of quantum cascade lasers (QCLs), where photons are emitted from intersubband transitions.
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Additionally, ICLs are known for their significantly lower power consumption, often by one or two
orders of magnitude, compared to QCLs.

Early demonstrations of amplitude-squeezed light were realized by different types of semicon-
ductor lasers, as detailed in Table. 4.2. However, there have been no reports of such demonstrations
in the MIR wavelength range [Bor+20]. At the end of this section, ICLs will be theoretically proven as
suitable sources for generating amplitude-squeezed light. These findings hold promise for expediting
the development of novel quantum hardware in the MIR range, an area currently deficient in such
technology, yet ripe with prospects for valuable applications.

4.3.1 Semiclassical Langevin rate equation

The theoretical description of squeezing light in semiconductor lasers was initially proposed by Ya-
mamoto et al. in the case of Fabry-Perot semiconductor lasers, using a fully quantum-mechanical-
based model [YMN86], which was consistent with experimental results [MYI87]. Although quantum
fluctuations of optical fields can be rigorously expounded within the framework of quantum elec-
trodynamics (QED), the thorough quantum approach can become laborious and complex. As a re-
sult, several alternative semi-classical methods have been introduced to offer good descriptions of
squeezing phenomena while avoiding the computational complexities of rigorous QED calculations.
For instance, Marcenac and Caroll introduced a method based on the transmission line approach
[MC94], which incorporates vacuum fluctuations to describe the generation of amplitude-squeezing
light. Jacques Arnaud developed a classical corpuscular theory that doesn’t require the quantization
of the electromagnetic field, yet it coincides with the quantum counterparts [Arn95]. In this work, the
formalism is developed with certain assumptions [VG97]. It assumes that the main source of noise lies
in the particle-like nature of radiation and the random arrival times of photons, which do not interact
with each other. Shot noise, therefore, is considered an intrinsic property of radiation rather than a
property of the interaction between light and matter. Thus, mirror partition noise from the laser facet
is regarded as the source of shot noise, resulting from the particle-like behaviour of photons. It’s im-
portant to note that this model remains semi-classical because it treats photons as classical particles
without mutual interaction. Nevertheless, it provides a qualitative and straightforward description of
amplitude-squeezed light in semiconductor lasers.

This study is an extension of a rate equation approach recently developed [DW20], further inte-
grating Green’s function method to facilitate numerical investigations of squeezed light generation.
Notably, this work accounts for the negatively correlated partition noise coming from the laser’s out-
coupling process, known as the standard quantum limit or shot-noise limit (SNL). The result predicts
that ICLs are particularly well-suited for this purpose due to their high quantum efficiency, enabling
a substantial reduction in amplitude noise. The Green’s function method was originally introduced
by Charles H. Henry [Hen86], especially in the context of semiconductor lasers with complex cavities
[GTD04]. A comprehensive investigation of a semiconductor laser necessitates a three-dimensional
examination of the electromagnetic field and its propagation. However, in this particular study, sev-
eral assumptions are made. Firstly, it is assumed that the cavity medium is isotropic, allowing the
matrix propagation equation to be simplified to the Helmholtz scalar equation. Secondly, it is as-
sumed that within the laser, optical waves predominantly propagate along the longitudinal z-axis,
while the transverse and lateral axes are disregarded. Lastly, it is assumed that spontaneous emission
is delta-correlated both in space and time. The complex Fourier component Eω(z) is governed by the
one-dimensional scalar wave equation:

∇2
z Eω(z) + k2

0εEω(z) = Fω(z) (4.19)
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where ∇2
z = ∂2

∂z2 is the Laplacian operator for the longitudinal coordinate z, ω is the lasing angular
frequency, k0 = ω

c is the wavenumber, c is the velocity of light in vacuum, ε is the complex dielec-
tric constant, and Fω(z) is the Langevin noise term representing distributed spontaneous emission,
equation (4.19) can be solved using the Green’s function method [Hen86]:

(∇2
z + k2

0ε)Gω(z, z′) = δ(z − z′)

where δ(z − z′) is the Dirac delta function. Then the general solution is obtained through a spatial
integration of Green’s function weighted by the correspondent excitation source over the total cavity
length L:

Eω(z) =
∫
(L)

dz′Gω(z, z′)Fω(z′) (4.20)

The Green’s function Gω(z, z′) has been discussed at length [MF54] and its one-dimensional formula
is given by

Gω(z, z′) =
ZR(z)ZL(z′)Θ(z − z′) + ZR(z′)ZL(z)Θ(z′ − z)

W(ω, N)

In the provided equation, Θ(z) is the Heaviside step function. The terms ZL(z) and ZR(z) are
two independent solutions of the homogeneous wave equation (i.e., when Fω = 0). These solutions
satisfy the boundary conditions at the left laser facet and the right facet, respectively. W(ω, N) is the
explicitly z-independent Wronskian operator of these two solutions defined as [MF54]

W(ω, N) = ZL(z)
d
dz

ZR(z)− ZR(z)
d
dz

ZL(z)

Certainly, the laser’s longitudinal mode corresponds to a zero point of the Wronskian operator W(ω0, Nth) =

0. Both the lasing frequency ω0 and the carrier density Nth at the threshold are determined from this
relation. Given the assumption that the semiconductor laser operates exclusively in one longitudinal
mode with a field distribution denoted as ZL(z) = ZR(z) = Z0(z), (4.20) can be reformulated as:

Eω(z)
Z0(z)

=
1

W(ω, N)

∫
(L)

Z0(z′)Fω(z′)dz′ (4.21)

Since the Wronskian operator W depends on two independent variables, ω and N, its expansion
around the operating point can be expressed as:

W =
∂W
∂ω

∣∣∣∣
ω0,Nth

(ω − ω0) +
1
L

∫
(L)

∂W
∂N

∣∣∣∣
ω0,Nth

(N − Nth)dz (4.22)

Using (4.21)-(4.22) and the inverse Fourier transform, the rate equation for the electrical field β0(t) is

dβ0(t)
dt

= − j
L

∫
(L)

WN(N − Nth)dz × β0(t) + F(t)

where WN = ( ∂W
∂N )/( ∂W

∂ω ) and F(t) is the Langevin force associated with the complex amplitude in the
time domain. In addition, β0(t) signifies the slowly varying envelope of the electric field within the
laser cavity:

β0(t) =
1

2π

∫ +∞

−∞
βωejωtdω
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where βω = Eω(z)/Z0(z). The resolution yields two generalized differential equations for the photon
density S and the phase ϕ, which are defined through β0(t) =

√
S(t)ejϕ(t):

dS
dt

=
2
L

∫
(L)

ℑm(WN)(N − Nth)dz × S(t) + FS′(t)

dΦ
dt

= − 1
L

∫
(L)

ℜe(WN)(N − Nth)dz × S(t) + Fϕ′(t)

Here "ℜe" signifies the real part of the complex force, while "ℑm" represents the imaginary part. These
equations enable the analysis of both static and dynamic behaviours in various types of semiconduc-
tor lasers, including those constructed with complex structures like multisection devices [GTD04].
Furthermore, the Petermann excess noise K factor can be generally defined as:

K =
(
∫ L

0 |Z0(z)|2dz)2

|
∫ L

0 Z2
0(z)dz|2

(4.23)

From a broader perspective, the K-factor can be used to calculate the enhanced spontaneous emis-
sion rate in the lasing mode of semiconductor lasers [Pet91]. More importantly, as discussed later, it
also takes into account the spatial longitudinal inhomogeneities of the cavity, which can influence the
amplitude-squeezing performance. A Fabry-Perot ICL cavity design with facet power reflectivities
R1 (rear) and R2 (front) is going to be analyzed. The field intensity distribution is assumed nearly
uniform inside the cavity, and thus, the spatial hole-burning effects are neglected. Consequently, the
Wronskian operator is expressed as [TOP91]:

W(ω, N) = −2jkejkL[1 − r1r2e−2jkL]

Next, consider the partial derivative of the Wronskian [TOP91]:

WN =
1
2
(1 + jαH)G0

Here, G0 = Γpvga0/A, where a0 is the gain coefficient, A is the area of the active region, vg is the group
velocity, and Γp is the confinement factor. As a result, the comprehensive characterization of the ICL
structure is now entirely encapsulated by the Wronskian operator. In this case, the photon and phase
rate equations per gain stage can be transformed as:

dS
dt

= G0(N − Nth)S + FS′(t)

dϕ

dt
=

1
2

αHG0(N − Nth) + Fϕ′(t)

Taking into account the spontaneous emission and the relation between carrier number at trans-
parency N0 and carrier number at threshold Nth, the rate equations for the total photon number S and
phase ϕ of all gain stages are given by:

dS
dt

= mG0(N − N0)S − S
τp

+ mβsp
N
τsp

+ FS(t) (4.24)

dϕ

dt
=

1
2

αH [mG0(N − N0)−
1
τp

] + Fϕ(t) (4.25)

with m the number of cascading gain stage, τp the photon lifetime and βsp the spontaneous emission
factor. Moreover, it’s widely acknowledged that the dynamic evolution of the carrier density per gain
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stage is governed by the conventional relation [DW20]:

dN
dt

= η
I
q
− N

τe
− G0(N − N0)S (4.26)

where N(t), τe, η and I are the carrier number within the active region, the carrier lifetime, the injection
efficiency and the pump current, respectively. In the case of the ICL, the carrier lifetime τe is primarily
influenced by two key factors: Auger recombination τaug and spontaneous emission τsp. Thus,

1
τe

=
1

τaug
+

1
τsp

Given a Fabry-Perot structure, the Petermann excess noise K-factor is derived according to (4.23):

K =

[
(R1 + R2)(1 − R1R2)

2R1R2 ln (R1R2)

]2

(4.27)

It’s noteworthy that this formalism, which includes equations (4.24), (4.25), and (4.26), is consistent
with the recently developed rate equation approach [DW20], as well as the equations (3.36) and (3.37)
used in Section 3.2.3. Fig. 4.16 provides an overview of the reservoir model employed to character-
ize the noise performance. Carriers are injected into the laser structure at a rate of I/q, and only a
specific fraction (η I/q) of them actually reach the active region. Once within the carrier reservoir,
some carriers recombine non-radiatively (Auger recombination τaug), while others undergo sponta-
neous recombination (τsp). It’s noteworthy that a portion of photons βsp from spontaneous emission
contributes to the lasing mode. These photons, along with those generated from stimulated emission,
experience further amplification through the cascade stages m inherent in the ICL structure. The pho-
ton reservoir comprehensively describes this interplay between stimulated and spontaneous emission
processes. Subsequently, photons exiting the cavity after completing one round trip are controlled by
the photon lifetime τp, eventually resulting in stable output power. The multiple carrier reservoirs
given the existence of many cascaded stages in ICLs have not been taken into account by now and
will be studied in the future.

Figure 4.16: Reservoir model used in the rate equation analysis of the ICL.
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Therefore, due to the incorporation of Langevin noise forces but neglecting the phase equation
(4.25) in (3.37): [

γ11 + jω γ12

−γ21 γ22 + jω

] [
δN(ω)

δS(ω)

]
=

[
FN(ω)

FS(ω)

]
It becomes evident that the intra-cavity relative intensity noise (RINin) through the application of

Cramer’s rule:

RINin(ω) =
⟨δS(ω)δS(ω)∗⟩

S2 =
1

S2 |Ω|2
(α + βω2)

=
1

S2 |Ω|2
[
(γ2

11 + ω2) ⟨FSF∗
S ⟩+ 2γ11γ21 ⟨FSF∗

N⟩+ γ2
21 ⟨FN F∗

N⟩
]

(4.28)

where α = γ2
11
〈

FSF∗
S
〉
+ 2γ11γ21

〈
FSF∗

N
〉
+ γ2

21
〈

FN F∗
N
〉

and β = ⟨FSF∗
S ⟩. And ω2

R = γ12γ21 + γ11γ22 is
the relaxation resonance frequency and γ = γ11 +γ22 is the damping factor. Moreover, H(ω) = ω2

R/Ω
is the modulation transfer function and Ω = ω2

R − ω2 + jωγ is the determinant of the matrix. The
diffusion coefficients can be found in Appendix. B. Using the above theories, the RIN characteristics
of an ICL are studied. The material and optical parameters of the ICL used in the simulations are all
listed in Table. A.3. Fig. 4.17 highlights that incorporating more gain stages marginally enhances the
intra-cavity RIN due to the presence of uncorrelated photon noise sources in each stage. However,
this trend lacks sufficient evidence for the shot-noise limit scenario. Additionally, the influence of the
facet power reflectivity on the intra-cavity RIN is also investigated. In Fig. 4.18, the low-frequency
RIN decreases from -163 dB/Hz for front facet R2 = 0.7 to -168 dB/Hz for R2 = 0.1. This behaviour
can be understood by recognizing that facet power reflectivity directly affects the intra-cavity photon
lifetime.

Figure 4.17: Intra-cavity RIN spectra for different stage number m while the photon number is fixed
at 4.2×106.

When accounting for quantum features, it is essential to exercise caution owing to the inherent
quantization properties, such as the particle-like behaviour of photons. Here, it should be emphasized
that the photons emitted as output due to the out-coupling process differ from the intra-cavity photons
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Figure 4.18: Intra-cavity RIN spectra for the laser facet power reflectivity taking rear facet R1 = 1 and
front facet R2 from 0.1 to 0.7.

[YMN86]. This distinction comes from the fact that each individual photon must either be transmitted
through or reflected from the laser facet. While photons with a fixed average rate are reflected back
into the laser cavity, this random division results in partition noise with both transmitted and reflected
photons [CCM12]. Hence, it is feasible to employ the Langevin method to describe the consequences
of laser facet partition noise, treating output photons as another photon reservoir subject to its own
Langevin noise force. In Ref. [YMN86] and Ref. [VG97], these can be regarded as vacuum fluctuations,
which destructively interfere with photon fluctuations. By adapting (4.28), the fluctuations in output
power can be expressed in relation to the intra-cavity RIN:

δSout(ω) = λ × δS(ω) + Fout(t)

λ = η0hν/τp is the fundamental conversion factor between output photons and output optical power.
And η0 is the quantum efficiency and hν is the photon energy. Therefore,

δSout(ω) = λ2δS(ω) + 2ℜe {λ ⟨δSFout⟩}+ ⟨FoutFout⟩ (4.29)

The first term in this equation corresponds to what one would intuitively expect from the relation-
ship. However, the presence of partition noise at the mirror facet introduces two additional noise
contributions. Likewise, by applying Cramer’s rule, one can determine:

⟨δSFout⟩ =
1
Ω

[(γ11 + jω) ⟨FSF∗
out⟩+ γ21 ⟨FN F∗

out⟩] (4.30)

where

⟨FoutF∗
out⟩ = hνS0

⟨FSF∗
out⟩ = −S0
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with S0 = λS the output power of ICL. In addition, one has ⟨FN F∗
out⟩ = 0 because it is obvious

that there is no correlation between the carrier noise and the photon partition noise. When correctly
expanding (4.29) with the Langevin noise correlation strengths and the division of a non-zero complex
number, the output RIN takes on the following form:

RINout(ω) =
⟨δSout(ω)δSout(ω)∗⟩

S2
0

=
1
S2

0

[
λ2 ⟨δS(ω)δS(ω)∗⟩ − 2λS0

|Ω|2
(γ11ω2

R + γ22ω2) + hνS0

]

= RINin − 2

S |Ω|2
(γ11ω2

R + γ22ω2) +
hν

S0
=

1

S2 |Ω|2
(α′ + β′ω2) +

hν

S0
(4.31)

with α′ = α − 2γ11ω2
R and β′ = β − 2γ22 in (4.28).

Figure 4.19: Output RIN spectra for different pump currents while the stage number is fixed at m = 5.

By comparing RINin(ω) and RINout(ω), the presence of anti-correlation, marked by the negative
sign in the second term of (4.31), signifies that when a photon is coupled out, the number of intra-
cavity photons decreases, and the likelihood of other photons being coupled out also diminishes. This
phenomenon reveals the anti-bunching mechanism governing the behaviour of the output photons.
Additionally, it’s worth noting that a constant term emerges in the third term of (4.31). This extra term
ensures that the output RIN never falls below the minimum value of hν/S0 across all frequencies.
This quantum noise floor is usually referred to as the standard quantum limit or the shot-noise limit
(SNL). Fig. 4.19 depicts the characteristics of the output RIN for the investigated ICL. As evident,
excess noise prevails at low frequencies and experiences significant enhancement in the vicinity of the
relaxation resonance frequency, mirroring the behaviours observed in the intra-cavity RIN. However,
ICLs tend to exhibit a reduction in noise towards the SNL at high frequencies beyond the resonance
point. It’s clear that increasing the pump current results in a reduction in the output RIN across the
entire frequency spectrum, even reaching the SNL. Simulations presented in Fig. 4.20 demonstrate
that the number of cascading stages does not influence the SNL of ICLs.

The Petermann excess noise K-factor can be calculated through (4.27). Fig. 4.21 illustrates the
K-factor for asymmetrical Fabry-Perot ICLs, where one of the laser rear facets has an anti-reflective
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Figure 4.20: Output RIN spectra for different pump currents while the stage number is fixed at m = 5.

coating (R1=1) while the reflectivity of the front facet (R2) varies from 0.1 to 1. For high values of R2,
the K-factor can be approximated to unity, but it becomes pronounced for low values of R2. In a recent
study [Van+00], it was shown that a minor nonorthogonality of the laser cavity eigenmodes might
explain the bottleneck observed in squeezing, implying that intensity noise can hardly be reduced
below the SNL once the K-factor surpasses a critical value. This outcome underscores the importance
of ICL cavity design for creating ultra-low noise light sources.

Subsequently, I shall explore how a noise-suppressed pump affects the squeezing performance
of ICLs. In (4.31), the noise contribution of the current source should be evident in the α′ term. This
term can be minimized through the utilization of a "quiet" current source, as discussed in previous
work [YMN86]. Within (4.31), the term β′ω2|Ω|2 is responsible for the RIN peak at ωR, while hν/S0

shapes the RIN spectrum beyond the peak at high frequencies. Consequently, α′|Ω|2 is the dominant
factor affecting the low-frequency behaviour away from the RIN peak. Now, let’s focus on the low-
frequency regime (neglecting the term β′ω2|Ω|2 so that ⟨FSF∗

S ⟩ = 0) and assume that the laser output
is highly efficient (e.g., η0 = 1). In this case, for ω ≪ ωR, one can approximate (ω2

R −ω2)≈ω4
R without

introducing significant errors in the calculation. Additionally, one can combine the "a′" term with the
shot noise term "hν/S0". With these modifications, the expression for the output RIN simplifies from
(4.31) to:

RINout(ω) =
hν

S0

[
λ

hν

α′

S |Ω|2
+ 1

]
≈ hν

S0

[
2γ11γ21⟨FSF∗

N⟩+ γ2
21⟨FN F∗

N⟩ − 2γ11ω2
R

τpS(ω4
R + ω2γ2)

+ 1

]

=
hν

S0

[
(2γ11γ21⟨FSF∗

N⟩+ γ2
21⟨FN F∗

N⟩ − 2γ11ω2
R + τpSω4

R)/(τpSω4
R) + ω2τ2

out

1 + ω2τ2
out

]
(4.32)

with τout = γ/ω2
R. The impact of the injected current on the output RIN spectra can be diminished

by applying a current source with sub-shot noise characteristics. To accommodate such cases, one
can generalize the first term in the numerator of (4.32) as SI/qI, where SI represents the double-sided
spectral density of the injection current. Hence, for a perfectly noise-suppressed or "quiet" current
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Figure 4.21: The Petermann excess noise K factor varies as a function of the front facet power reflec-
tivity R2 while keeping the rear one R1 fixed at 1. The black dashed line represents the limit of the
K-factor value at 1 and serves as a visual guide to the eye in the plot.

source, KI → 0. In the case of a shot-noise-limited current source, KI = qI.

RINout(ω) =
hν

S0

KI/qI + ω2τ2
out

1 + ω2τ2
out

(4.33)

Fig. 4.22 illustrates the previously mentioned amplitude-squeezing effect. When using a shot-
noise-limited current source (e.g., KI/qI = 1), the output RIN remains constant at the SNL. However,
with a nearly noiseless pumping source (e.g., KI/qI = 0.2), the output RIN can be significantly re-
duced 7 dB below the SNL at the low frequencies f ≪ 1/(2πτout). Amplitude-squeezed states can
thus be qualitatively predicted, with the squeezing level that depends on the pump noise conditions.

As mentioned earlier, Yamamoto [YM87] demonstrated that the current noise in a semiconductor
laser is dominated by the thermal noise of the series resistor, resulting in a double-sided spectral
density of KI = 2kBT/Rs. To reduce the current noise below the SNL of qI, it is necessary for the
series resistance to satisfy the condition Rs ≫ 2kBT/qI. For instance, with a 1 mA drive current
at room temperature, this condition translates into Rs ≫ 50 Ω. Furthermore, for such lasers to be
successful, they must exhibit very high optical efficiency (η0 → 1) and minimal internal loss.

Regarding ICLs, the device’s performance can be compromised by nonradiative multi-carrier
Auger recombination, although it is suppressed compared to bulk materials, and internal losses caused
by free carrier absorption. Nevertheless, several studies on ICLs emitting in the λ = 3-4 µm spectral
range have reported internal efficiencies of approximately 80-90% [Mey+20]. Currently, it remains
unclear why the internal efficiency should noticeably deviate from 100%. This is particularly puzzling
because it is unlikely that carriers escape from the active quantum wells due to the large conduction
and valence band offsets, and direct injection into the electron injector is obstructed by a very thick
barrier. Furthermore, considering reasonable energy relaxation times, the impact of carrier heating,
which reduces internal efficiency by necessitating a higher carrier density and, consequently, higher
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Figure 4.22: Normalized output RIN varies as a function of pump current noise. Low-frequency noise
can be reduced below the SNL if the pump current source is “quiet”. The pump current is 4 × Ith.

current to maintain the same optical gain, should also be relatively minor. Recent studies demonstrate
that the causative underlying mechanism limiting efficiency is the resonant intersubband absorption
in the valence band [Knö+22]. Experimentally, a direct correlation between this resonant absorption
and the thickness of the Ga1−x InxSb hole-quantum well is confirmed. These findings could be re-
flected in the improvement of the laser’s characteristic temperature, threshold current density, slope
efficiency, and output power. Another aspect of research is dedicated to estimating internal losses by
analyzing the observed slope efficiencies when ICLs are operated in pulsed mode. The findings reveal
that the internal loss exhibits a minimum value around λ = 3.3-3.8 µm, reaching as low as 2.9 cm−1

[Mey+20]. It is suggested that the optimal stage number is 5-7 for emitting wavelengths in the range
of 3-4 µm, but for wavelengths exceeding 5 µm, it may be more preferable to employ at least 10 stages
[Mey+20].

4.3.2 Stochastic Gillespie algorithm

Laser rate equations represent a well-established phenomenological approach for modelling the dy-
namics of semiconductor lasers. These equations describe the evolution of both carrier density and
photon density within the active region, allowing for the determination of static and dynamic char-
acteristics, including properties related to relative intensity noise (RIN), spectral linewidth, and the
laser’s response to external optical feedback, among others [CCM12]. However, when dealing with
squeezed light, a vital issue emerges due to the inherent quantum granularity of photons and carriers.
The limitations of continuous rate equations in accurately modelling quantum light have been widely
acknowledged in the literature [Leb+13; PL15]. In the previous Section. 4.3.1, a semiclassical approach
based on Green’s function method was employed to conduct initial investigations into the squeezing
properties of ICLs. This approach is reminiscent of previous descriptions [YMN86; VG97] that focus
on assessing amplitude squeezing in terms of the RIN spectrum. This formalism assumes that the
fundamental source of shot noise is associated with the particle-like nature of radiation, treating it as
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classical particles without mutual interaction. To this end, intensity noise fluctuations are assimilated
to partition noise, which results from the coupling of the energy with the exterior of the cavity. While
this model offers the advantage of providing a straightforward means to describe amplitude-squeezed
states of light in semiconductor laser structures compared to more intricate quantum electrodynamics
(QED) approaches, it merely introduces an alternative Langevin noise term instead of fully accounting
for the granularity of photons and carriers. This limitation implies that it cannot provide insights into
photon statistics and intrinsic quantum fluctuations. To address these issues, we have expanded upon
a recent stochastic model [ML18; MY20] to investigate the generation of amplitude-squeezed light in
the mid-infrared range, particularly with regard to the band structure of ICLs. It’s important to note
the distinction between intracavity photons and external output photons, with a specific focus on the
laser outcoupling process and the sub-Poissonian pumping process, both of which are necessary for
the interpretation of sub-shot-noise-limited light emission.

Figure 4.23: Sketch of the m-cascaded ICL model.

In this part, a theoretical framework has been developed for the evaluation of squeezing perfor-
mance, without relying on mathematical assumptions often associated with the derivation of a differ-
ential description [CCM12]. Instead, the approach leverages the Gillespie stochastic simulation, based
on the Monte Carlo algorithm, to predict the statistical dynamics of lasers. This framework intuitively
highlights the discrete nature of photon and carrier interactions, as well as the inherent noise associ-
ated with many physical processes such as pumping, spontaneous emission, stimulated emission, and
photon transmission through the laser facet. This method closely adheres to the principles of the rate
equation description regarding the frequency spectrum. Nevertheless, it offers additional predictions
and insights into the regime of photon distribution and other statistical features that the conventional
method does not specify. As depicted in Fig. 4.23, when ICL is subjected to an external electric pump,
holes and electrons migrate into each cascading stage via the tunnelling effect, where they undergo
recombination through spontaneous emission, Auger recombination, and stimulated emission owing
to population inversion. To replenish the carriers removed by the field, an equal number of additional
electrons and holes must be continuously generated and transported to the next stage. The stochastic
equations for carrier N and photon S in ICLs can be expressed as follows:

Nt+1 = Nt + Rpump − Rst − Rsp − Raug

St+1 = St + mRst − Rp + mβspRsp
(4.34)

Here the random variables are defined as follows: Rpump represents the pump rate into the active
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region, Rst and Rsp denote the rates of laser stimulated emission and spontaneous emission, Raug

represents the non-radiative Auger recombination rate, and Rp = Rint + Rout accounts for the laser
photon decay rate, which is further broken down into Rint (the photon internal decay rate due to
internal losses) and Rout (the out-coupling rate through the laser facets). Additionally, m represents the
cascade stage number, and βsp stands for the spontaneous emission factor. The stochastic equations
(4.34) capture the operational characteristics of ICLs, as each term corresponds to a random event
occurring within the laser cavity, as summarized in Table. 4.3. All the values used in the simulations
are derived from the recently developed ICLs rate equations model and can be found in Table. A.3.
The term Γp is the optical confinement factor, vg is the group velocity, g is the optical gain with a0,
N0, and A is the differential gain, the carrier number at transparency and the area of the active region,
respectively, whereas τsp is the spontaneous emission lifetime, αin is the internal loss, τaug is the Auger
lifetime, η is the injection efficiency, I is the pump current, q is the elementary charge and αm is the
laser facet loss with L, R1, and R2 being the laser cavity length and rear or front facet power reflectivity.

Table 4.3: Average rates of stochastic events occurring in the ICLs stochastic equations [ZG22b].

Event type Symbols Average rate
Stimulated emission Rst ΓpvggS

Spontaneous emission Rsp N/τsp
Photon internal decay Rint vgαinS
Auger recombination Raug N/τaug

Pumping Rpump η I/q
Out-coupling process Rout vgαmS

This stochastic simulation method is designed to model photons and carriers as discrete particles
denoted as N and S, respectively. The numbers of these particles fluctuate due to different events,
including particle loss (such as Auger recombination or photon decay), particle exchange (emission or
out-coupling processes), and the addition of new particles (pumping). Unlike rate equation methods,
we establish specific rules that capture the physical interactions between photons and carriers. For
instance, when a pumping event occurs, we introduce a certain number of carriers N into the carrier
reservoir. During spontaneous or stimulated emission, carriers N are transferred to intra-cavity pho-
tons Sin. Subsequently, we anticipate the expected number of distinct events occurring at each discrete
time step in (4.34). For a sufficiently small time increment ∆t (e.g., typically 1 picosecond to ensure
convergence of noise features), the number of ongoing events can be approximated as a sequence of
random integers drawn from a Poisson distribution, with the Poisson parameter λ equal to the prod-
uct of the corresponding average rate calculated in Table. 4.3 and the time increment ∆t [ML18]. Our
model basically assumes that the occurrence of one event does not affect the probability of other events
[AMW20]. The general idea behind our approach involves characterizing photon distribution by in-
corporating out-coupling as an additional process alongside the injection of sub-Poissonian pumped
electrons. In traditional theory, only the internal field is considered the primary "system," while the
output field outside the laser cavity is treated as a "heat bath" [CCM12]. However, as we are inter-
ested in external photon statistics, we treat it as another "system" [YMN86]. As a consequence, we
divide photon decay into two events: out-coupling Rout related to laser facet losses αm and internal
decay Rin associated with all other cavity decay processes summarized as αin. Regarding the pumping
event description, it depends on how the laser is pumped. In the case of shot-noise-limited or normal
pumping, we use a classical current source with the rate of Rpump = Rpump,conv = η I/q, following
a Poisson distribution. In contrast, in the case of noise-suppressed or quiet pumping, the pumping
term Rpump = Rpump,quiet corresponds to the injection of pumped electrons at a constant rate, which is
naturally linked to sub-Poissonian electron statistics.
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It has been widely acknowledged that an ideal laser, when operating significantly above its
threshold, produces coherent states of light [Gla63a]. In these coherent states, field fluctuations have
equal amplitudes in two quadrature components, but minimize the product described by Heisenberg’s
uncertainty principle. This theory has found strong experimental support through the measurement
of Poissonian photon statistics and shot-noise-limited photocurrent fluctuations. Such measurements
are often conducted using an optical balanced homodyne detector [YC83]. Extensive studies have
uncovered that lasers operating far above the threshold do not always generate coherent states. In-
stead, a range of other quantum states becomes possible, including squeezed states of light [Yue76],
which manifest reduced fluctuations in one quadrature component of the coherent state but at the
cost of increased fluctuations in the other quadrature component. To investigate why ICLs natu-
rally produce coherent states instead of amplitude-squeezed states, our analysis begins by examining
the characteristics of intra-cavity photons in ICLs. It’s important to note that photon statistics are
typically described using the first two statistical moments, namely, the mean value ⟨S⟩ and the vari-
ance

〈
∆S2〉 =

〈
S2〉− ⟨S⟩2. Additionally, there’s the second-order photon correlation function g(2)(0),

which indicates the likelihood of two photons arriving simultaneously [Wal83]:

g(2)(0) =
⟨S(S − 1)⟩

⟨S⟩2 (4.35)

As aforementioned, for chaotic (LED) light, g(2)(0) = 2, and for coherent (laser) light, g(2)(0) = 1
because photon statistics follow a Poissonian distribution. Although the photon number in ICLs fluc-
tuates throughout the simulation, the mean value remains constant. For example, the intra-cavity
photon number Sin maintains a stable mean value. In Fig. 4.24 (a), we present the time traces of
the intra-cavity photon number Sin for three different pump rates within the vicinity of the thresh-
old region. It is quite apparent that fluctuations in intra-cavity photon numbers decrease as ICLs
transition from below the threshold to above the threshold. In Fig. 4.24 (b), we compare stochastic
simulations (black markers) with analytical results obtained from rate equations (solid red line) for
the mean internal photon number ⟨Sin⟩. This figure clearly demonstrates a good agreement between
the two approaches. There are abrupt jumps in the mean internal photon number ⟨Sin⟩ as a function of
pump rate. This phenomenon is frequently employed to identify micro- and meso-lasers with values
of 10−6 ≤ βsp ≤ 10−2 crossing the lasing threshold, and it is particularly noticeable at βsp = 10−4

for ICLs in this simulation. However, this feature becomes less pronounced in the case of nanolasers
with βsp ≈ 1 [Ulr+07; CR18]. As depicted in Fig. 4.24 (c), the photon correlation function g(2)(0) also
demonstrates agreement between the two different methods, with only a minor deviation observed
around the ICLs’ threshold. Additionally, there is a clear transition from chaotic behaviour or thermal
statistics (g(2)(0) = 2) below the threshold, through intermediate statistics (1 < g(2)(0) < 2) near
the threshold, to coherent behaviour with Poissonian statistics (g(2)(0) = 1) well above the threshold
[CR18]. To analyze the corresponding photon distribution, we select different pump rates near the
threshold and create histograms of the intra-cavity photon number Sin. In Fig. 4.24 (d), we observe a
Bose-Einstein or exponential distribution when ICLs operate below the lasing threshold. Conversely,
in Fig. 4.24 (f), at high pump rates, the photon distribution follows a Gaussian distribution that is
slightly broader than the Poissonian distribution with the same mean value. This deviation generally
aligns with earlier theoretical and experimental findings [Lie+01].

The frequency histograms depicted in Fig. 4.25 illustrate the distribution of the filtered output
photon numbers Sout, obtained with a pump current of 25 × Ith for both pump configurations. In
experiments, photon statistics are measured using photon counters, which, in the near-infrared range,
employ sensitive detector devices such as avalanche photodiodes with user-defined detection filters
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Figure 4.24: (a) Time series of intra-cavity photon number Sin for three different values of pump rate
near the threshold region, (b) Stochastic results (diamond markers) and analytical results from rate
equations (solid lines) for mean photon number ⟨Sin⟩ and also (c) Internal photon correlation g(2)(0).
Simulations for low pump rates are rejected because of statistical uncertainty. In (d) the intra-cavity
photons show an exponential distribution. In (e) photons exhibit an intermediate distribution near the
threshold. In (f) the dashed curve indicates a Poisson distribution with parameter given by the mean
photon number ⟨Sin⟩ and the green curve indicates Gaussian distribution with mean and variance
given by the mean photon number ⟨Sin⟩ and photon number variance

〈
∆S2
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〉
.

of specific durations. Here, we set Td = 100 ps to achieve a bit rate B of 10 Gb/s, in accordance with
the relation Td = 1/B [MY20]. Fig. 4.25 highlights the potential for non-classical photon statistics
in ICLs, where conventional rate equation methods may fall short [ZG22a]. In the case of normal
pumping, as shown in Fig. 4.25 (a), the output photon distribution is well-fitted by both the Gaussian
and Poissonian probability density functions with the same mean value. In contrast, for the quiet
pumping configuration, Fig. 4.25 (b) reveals sub-Poissonian characteristics, featuring a narrower full
width at half maximum (FWHM) compared to the Poissonian distribution. The maximum probability
density in the Gaussian distribution is nearly twice as large as in the Poissonian distribution. Lastly,
the slightly lower output photon number observed for normal pumping is attributed to the reduced
electron injection rate, which does not significantly impact the conclusions.

The instability in the power level of semiconductor lasers is quantified using relative intensity
noise (RIN) [CCM12] and RIN can be determined by analyzing the spectrum of the photo-detected
signal with the assistance of an electrical spectrum analyzer. However, to observe the phenomenon
of laser squeezing, it is imperative to employ a balanced detection scheme because it allows for the
cancellation of both excess noise and quantum noise associated with the local oscillator after the con-
version of the photoelectric signal [YC83].

In Fig. 4.26 (a) and (b), we present the external and internal RIN spectra for both normal and
quiet pumping conditions, obtained through Fourier transform analysis. The parameters in Table. A.3
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Figure 4.25: Output photon number Sout distribution in 100 ps time slot for ICLs (a) normal or shot-
noise-limited pumping and (b) quiet or noise-suppressed pumping. Red curves indicate Gaussian
fitting and blue curves are Poissonian fittings with the same mean value. The pump current is set as
25 × Ith.

Figure 4.26: Normal (a) and Quiet (b) pumping condition of ICLs for both internal (blue curves)
and external (red curves) RIN spectra through Fourier transform. The green and cyan dashed lines
describe the previous analytical rate equation description [ZG22a]. The insets are the detailed view of
those two figures within the low-frequency region The pump current is fixed at 2 × Ith. (c) External
RIN spectrum at 25 × Ith but with αin = 1 cm-1 as an ideal condition. It should be noted that the black
dashed line represents the shot noise level.
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are still considered and the pump current is set as 2 × Ith. Upon comparing these two RIN spectra, it
becomes evident that the RIN of the out-coupled photon remains nearly the same as the intra-cavity
RIN at low frequencies, well before the emergence of the relaxation oscillation peak, as recently ob-
served in a previous study [Did+21]. However, at higher frequencies, the external RIN approaches
the standard quantum limit. In contrast, the internal RIN continues to decrease thanks to a filtering
effect, which is defined as the response function in classical laser dynamics [CCM12]. Furthermore,
considering the inset of Fig. 4.26 (a) and (b), one can observe that the noiseless pumping condition is
expected to reduce the intensity noise by approximately 5 dB when compared to the case with noise
in the pump current source. This outcome implies the potential generation of amplitude-squeezed
states, but only when ICLs are pumped far from their threshold with a noise-free current source. Im-
portantly, stochastic simulations align perfectly with the previous analytical results in the frequency
spectra regime [ZG22a]. Fig. 4.26 (c) highlights the potential for sub-shot-noise-limited external RIN
with the suppressed-pump-noise configuration. As mentioned earlier, using a high pump current
(25 × Ith) without pump fluctuations is desirable for generating amplitude-squeezed states. This is
because ICLs’ differential resistance becomes much smaller under strong forward-bias conditions
[Lin+20], making the generation of amplitude-squeezed light more convenient. The external RIN
in this scenario shows a strong squeezing level of a couple of dB and a broad squeezing bandwidth
of nearly 10 GHz. It’s worth noting that ICLs should have low internal losses for optimal squeezing
performance. Recent n-type doping strategies can operate at ambient room temperature with internal
losses (αin) as low as 4 cm-1 [Mey+20], compared to the typical value of 12 cm-1 at the inception of ICL
design. In this figure, we assume that the internal loss αin approaches 1 cm-1 to maximize the squeez-
ing performance. Another noteworthy point is that the external RIN at the high pump rate exhibits
less frequency dependence compared to the situation with low pump rates. This feature aligns with
previous theoretical predictions [YMN86] and experimental observations [MY88].

The Q-parameter is a valuable tool used to characterize the photon statistical properties by quan-
tifying the divergence between coherent Poissonian states and other potential non-classical quantum
states [SM83]. It is particularly useful for characterizing amplitude-squeezed states, where negative
values of the Q-parameter indicate sub-Poissonian photon statistics. The Q-parameter is typically
defined in (4.9):

Q =

〈
∆S2〉− ⟨S⟩

⟨S⟩

Additionally, another frequently employed quantum factor, the Fano factor, can be theoretically de-
fined as the ratio between the variance and the mean of the output photons [GK05]. Experimentally, it
is determined as the ratio between the spectral noise power of the laser field and the shot-noise level
at the same direct current photocurrent of the detector. Consequently, when the Fano factor is smaller
than unity, it indicates that the laser field demonstrates amplitude-squeezed quantum properties.

F =

〈
∆S2〉
⟨S⟩ = 1 + Q

In macroscopic ICL systems with a large mean photon number, even a slight reduction of the external
g(2)(0) below unity can result in highly sub-Poissonian statistics. This effect is evident through the
expression derived from the second-order factorial moment:

g(2)(0) =
⟨S(S − 1)⟩

⟨S⟩2 = 1 +

〈
∆S2〉− ⟨S⟩

⟨S⟩2 = 1 +
Q
⟨S⟩

This effect has been reported in a recent article [Car+21], demonstrating that an increase in the mean



4.3. Amplitude squeezing in interband cascade lasers 141

photon number ⟨S⟩ can diminish the range and magnitude of anti-bunching (e.g., g(2)(0) < 1). Nev-
ertheless, it is still feasible to maintain a significant level of amplitude squeezing.

Figure 4.27: (a) External g(2)(0) and (b) The Q-parameter of the external output photons as a function
of internal loss coefficient αin. The measurement duration is still 100 ps and other simulation param-
eters remain unchanged as Fig. 4.26 (c). In (a), an extremely slight deviation is found. Hence, for the
sake of visibility, ticks of the longitudinal axis represent effectively this deviation from 1, for instance,
±5 × 10−10 indicates 1 ± 5 × 10−10 in this case. In (b), a value of -1 manifests the maximum squeezing
level. The black dashed line in both figures represents the shot noise level, the red (blue) dashed lines
are guides for the eye, and error bars are displayed as a result of stochastic uncertainty.

Fig. 4.27 illustrates the importance of internal loss (αin) in the amplitude squeezing performance.
Using two distinct quantum criteria, namely the external photon correlation g(2)(0) and the Q-parameter,
our simulations emphasize that the amplitude squeezing level is limited by the internal loss of the
semiconductor materials. This limitation can be explained by considering that the output emitted
photons face stiff competition from large internal loss, making the out-coupling process less likely.
Therefore, the sub-Poissonian performance of the laser is diluted. As shown in Fig. 4.27 (a) and (b),
ICLs display clear photon anti-bunching characteristics or amplitude-squeezed light when the inter-
nal loss is negligible (g(2)(0) < 1 and Q< 0). On the contrary, when the internal loss is large enough,
the squeezing properties can be significantly altered, with both g(2)(0) and the Q-parameter increas-
ing and even exceeding values of 0, respectively. This trend is likely to be reflected in the Fano factor
as well. Hence, minimizing internal loss as much as possible is the first goal in future ICL quantum
engineering designs.

The numerical results presented in this section provide compelling evidence that ICLs have the
potential to achieve substantial intensity noise squeezing across a bandwidth of several gigahertz.
These characteristics collectively establish a solid basis for realizing ultra-low noise laser sources at
mid-infrared wavelengths. Furthermore, this result also paves the way for the implementation of mid-
infrared continuous-variable quantum key distribution in free space, whose feasibility is further sup-
ported by the ongoing theoretical investigations [HWR22], as well as the availability of mid-infrared
homodyne detection techniques that utilize two commercial HgCdTe detectors, covering a spectral
range from 2.5 µm to 5.0 µm [Gab+21]. In previous studies, research has been carried out using QCLs
[Ael+08], where Alice transmits polarization-coded pseudo-single photons generated by a QCL at a
wavelength of 4.6 µm to Bob. Bob employs a nonlinear crystal and a silicon avalanche photodiode
for the detection process, which is achieved through frequency generation. Theoretical predictions,
built on the foundation of a proof-of-principle experiment, demonstrate that, under specific foggy
atmospheric conditions, the proposed system remains largely unaffected. In contrast, conventional
systems operating at standard near-infrared wavelengths would be rendered non-functional under
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such circumstances. A recent article also presented a comprehensive characterization of 3.8 µm ring-
ICLs operating at room temperature [Mar+23]. These lasers operate in close proximity to the standard
quantum limit.

4.4 Amplitude squeezing in quantum dot lasers

In this section, I will theoretically and experimentally investigate the amplitude squeezing in electri-
cally driven quantum dot (QD) lasers. Since the early 1980s, following the proposal of semiconductor
quantum dots and their utilization in lasers to enhance the performance of semiconductor laser diodes
[AS82], numerous research groups worldwide have made significant strides in both the development
of fabrication techniques for quantum nanostructures [Zho+23b] and the establishment of consistent
theoretical models to elucidate their underlying physical properties [CKS12; Wan+14]. A semicon-
ductor quantum dot typically comprises a small region of semiconductor material, approximately 10
nanometers in size, surrounded by another semiconductor with a larger bandgap. The surrounding
material acts as a confining potential barrier, allowing electrons in the conduction band and holes in
the valence band to be confined within the quantum dot [Gri+21]. This three-dimensional confinement
leads to the electrons and holes within the quantum dot exhibiting a density of states (DoS) similar to
a delta function [AS82]. When coupled with the fermionic nature of electrons, this density of states
enables the spectral isolation of individual optical transitions involving single electrons. Thanks to
their discrete energy levels, analogous to atomic energy levels, semiconductor quantum dots are often
referred to as "artificial atoms." The exact energy of the emitted photons depends on several factors,
including the bandgaps of the chosen material system, the size of the quantum dot, and induced strain
effects [AH20].

In recent years, there has been a sudden surge in research focused on QD nanostructures [Mic17].
Particular attention has been given to self-assembled QDs that are embedded into microcavities, which
enables the generation of single photons with a high degree of purity and indistinguishability [AH20].
As a result, these sources play a crucial role in quantum computing [Zho+21] as well as discrete vari-
ables (DV) quantum key distribution (QKD) [Vaj+22]. In sharp contrast to DV QKD, which relies on
single-photon sources and detectors, continuous variable (CV) QKD employs lasers and balanced de-
tection to continuously extract the light’s quadrature components. This approach offers the advantage
of using readily available equipment and seamless integration into existing optical telecommunica-
tions networks. Among the various CV QKD protocols, GG02 [GG02] is well-regarded for its security,
largely due to the no-cloning theorem associated with coherent states [Gla63a]. However, recent re-
search has delved into the use of squeezed states to enhance security and robustness even further
[Jac+18]. This new approach strives to eliminate information leakage to potential eavesdroppers in
a pure-loss channel and minimize it in a symmetric noisy channel. In this protocol, information is
encoded exclusively using Gaussian modulation of amplitude-squeezed states [Lau+18]. These states
display reduced fluctuations in photon number

〈
∆n̂2〉 < ⟨n̂⟩ compared to coherent states. However,

they are subject to enhanced phase fluctuations, a consequence of the minimum uncertainty principle.
As aforementioned, squeezed states of light have been frequently generated using χ(2) or χ(3)

nonlinear interactions through parametric down-conversion and four-wave mixing [Slu+85; Wu+86].
A variety of nonlinear materials have been employed for these processes, including LiNbO3 (PPLN)
[Kas+23], KTiOPO4 (PPKTP) [Vah+16], silicon [Saf+13], atomic vapour [McC+07], disk resonators
[Für+11], and Si3N4 [Zha+20b]. Recent advancements have also led to the development of more
compact single-chip designs, moving away from traditional benchtop instruments [Dut+15; Mon+19;
Moo+20; Yan+21; Neh+22]. In contrast to these approaches, Y. Yamamoto and colleagues [YMN86;
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MYI87] initially proposed an alternative method to directly produce amplitude-squeezed states us-
ing off-the-shelf semiconductor lasers with a "quiet" pump, i.e., a constant-current source. A notable
feature of semiconductor lasers is their ability to be pumped by injection current via an electrical cir-
cuit. Unlike optical pumping, electrical pumping is not inherently a Poisson point process due to the
Coulomb interaction [Yam91]. Additionally, the intensity noise of the laser output field, rather than
the internal field, may be reduced below the shot-noise limit at high pump currents. The shot noise
limit arises from two sources: pump fluctuations in the low-frequency region and reflected vacuum-
field fluctuations in the high-frequency region [YMN86]. This method could leverage the mature
fabrication processes in the semiconductor industry, significantly enhancing its feasibility. It relies on
the improved performance of recently developed semiconductor lasers, known for their compact size,
ultra-low intensity noise, and narrow frequency linewidth. Subsequent experiments involving differ-
ent types of laser diodes have generated significant interest in this field, such as commercial quantum
well (QW) lasers [WFS93; KYS95], vertical-cavity surface-emitting lasers [KDE01], and semiconductor
microcavity lasers [Cho+06]. However, the observed bandwidth in these experiments has remained
relatively limited until now. The widest bandwidth achieved was 1.1 GHz with a QW transverse
junction stripe laser operating at a cryogenic temperature of 77 K [MY88]. This limitation has imposed
strict constraints on practical room-temperature implementations and impeded the realization of high-
speed quantum communications. Although a previous study predicted the theoretical potential of
achieving this phenomenon in interband cascade lasers [ZG22b], no experimental demonstration of
producing broadband amplitude-squeezed states had been presented.

4.4.1 Experimental evidence

Fig. 4.28 provides an overview of the experimental setup, with individual components and details
presented separately.

Figure 4.28: Diagram of the key components of the apparatus used for generating amplitude-squeezed
states through QD lasers. Left panel: Comparison of noise characteristics between two different cur-
rent sources, namely Keithley 2400 (normal pump, red) and ILX Lightwave LDX-3620 (quiet pump,
green). Right panel: Experimental setup. The quiet pump injects electrons at a constant rate. ODL is
the optical delay line and ESA is the electrical spectrum analyzer.

To eliminate pump current fluctuations, a high-impedance configuration is supposed to be imple-
mented, ensuring uniform regulation of the pumping electrons [MYI87]. To precisely characterize the
current noise characteristics of both the quiet current source (ILX Lightwave LDX-3620) and the nor-
mal current source (Keithley 2400), one needs to conduct direct measurements, as depicted in Fig. 4.29.
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Figure 4.29: Scheme of the experimental setup for the characterization of the intensity noise of the
current noise.

In this setup, driven by these two current sources, the current noise can be evaluated by mea-
suring voltage fluctuations across a 10 Ω resistor, passing them through a 100 nF capacitor, and then
amplifying the signal using a low-noise amplifier with an input impedance of 50 Ω. Subsequently,
the amplified signal was analyzed using an electrical spectrum analyzer. Fig. 4.30 illustrates that the
current noise power generated by the quiet current sources is significantly lower, approximately 20 to
30 dB lower, compared to that produced by the normal current sources at 50 MHz. At 6 GHz, while
the difference is less pronounced, there is still a reduction of approximately 1 dB.

Figure 4.30: The current noise power of different pumps taken at (a) 50 MHz and (b) 6 GHz.

A distributed-feedback (DFB) single-mode QD laser emitting at a wavelength of 1.31 µm is used
in this study. The laser has a highly reflective (HR) coating (95%) on the rear facet and an antireflection
(AR) coating (3%) on the front facet. To maintain a constant operating temperature of 20 °C±0.005°C,
a thermoelectric temperature controller (ILX Lightwave LDT-5748) is used. The laser’s threshold cur-
rent Ith was measured to be approximately 9 mA. The optical losses degrade the regularity of the
photon flux and decrease the squeezing level [MY88]. We measure a detection efficiency of 55% and a
collection efficiency of 40% because of the losses during laser-fibre coupling. Consequently, the overall
efficiency is estimated at 22%. However, this does not affect the internal quantum efficiency, which
remains close to unity and pertains to the conversion from injected electrons to emitted photons. The
laser exhibits stable single-longitudinal-mode operation over a wide range of pump currents, with a
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side mode suppression ratio (SMSR) of more than 50 dB at high pump currents to avoid side-mode
competition interference [Mar+95].

Figure 4.31: The optical spectrum of a DFB QD laser at 40 mA and 20 °C.

The epitaxial structure of the QD lasers closely follows designs previously reported in the lit-
erature [Nis+13]. The laser device has a mesa width of 2 µm and a cavity length of 750 µm. The
active region of the device is formed by growing 8 layers of InAs QDs on a (100) GaAs substrate
using molecular beam epitaxy. The QD density is approximately 5.9×1010 cm-2 per layer, and each
dot layer is separated by a p-doped GaAs spacer, enhancing modal gain. The active region exhibits
an exceptionally narrow luminescence width at half maximum, indicating minimal inhomogeneous
broadening. This narrow luminescence width is because of the consistent size and shape distribution
of the QDs. The uniformity of the QDs offers several advantages for laser performance, including
enhanced thermal stability, reduced linewidth enhancement factor, increased insensitivity to back re-
flections, and the ability to achieve low-threshold, high-efficiency single-mode emission. As shown in
Fig. 4.31, the QD DFB laser exhibits a side-mode suppression ratio exceeding 50 dB at 40 mA.

Amplitude-squeezed states demonstrate sub-Poissonian photon statistics, photon antibunching,
and squeezing owing to the reduced uncertainty in photon number [KY86]. Therefore, we employ a
standard balanced homodyne detection for the squeezing measurement [YC83]. In this measurement
process, a DFB QD laser is coupled into a fibre holder and precisely driven by a low-noise current
source (ILX Lightwave LDX-3620). The current leaking around the gain medium, rather than flowing
into it, does not disrupt the regular flow of electrons from the pump current [RMY91]. The laser’s
differential resistance is approximately 20 Ω when the injection current is set at 40 mA. The inclusion
of a 30 dB optical isolator is crucial because even a small amount of back-reflected light can introduce
excessive intensity noise. After passing through the optical isolator, the output beam is split into two
separate paths using a 90/10 beamsplitter. One path is dedicated to detecting the squeezed signal,
while the other is used for the strong local oscillator (LO). The LO serves as a phase reference, and
by scanning the signal with an optical delay line, it effectively shifts the relative phase, enabling the
distinction between the field quadratures. These two paths are then recombined into a tunable beam-
splitter to ensure optical power balance and are detected by two identical photodiodes (Discovery
Semiconductors DSC-R405ER 20 GHz Linear Balanced Photoreceivers). Care is taken to avoid detec-
tor saturation at high optical power levels. The difference between the photocurrent fluctuations is
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amplified by a homemade low-noise electronic amplifier and subsequently analyzed using an elec-
trical spectrum analyzer (ESA) (Rohde & Schwarz, 43 GHz) to obtain the radio frequency (RF) noise
power spectrum. Balanced detection substantially suppresses excessive intensity noise compared to
single photodiode detection, with the common-mode rejection ratio (CMRR) consistently exceeding
30 dB across the entire frequency spectrum up to 18 GHz.

Accurate calibration of the shot noise level, often referred to as the standard quantum limit (SQL),
is of paramount importance in this experiment. The SQL serves as a normalization parameter cru-
cial for quantifying squeezing. Here, we deviate from the approach in Ref. [MY88], where SQL was
conducted using either a filtered incandescent lamp or a light-emitting diode operating at the same
wavelength. Instead, we maintain the original setup while replacing the low-noise current source with
the normal pump source (Keithley 2400) [MY20]. By keeping the LO branch intact and manipulating
the LO phase, we determine the SQL through this methodology. To enhance credibility, we intro-
duce another technique involving the calibration of the vacuum noise level. This is accomplished by
blocking the LO branch. In both measurements, the RF frequency spectra of the subtracted photocur-
rent remain consistent, regardless of alterations in the pump current. This coherence unequivocally
demonstrates the high correspondence between these two calibration methods, thereby providing an
authentic representation of the SQL.

Figure 4.32: (a) The measured RF spectra at 40 mA are represented by the green line (squeezing) and
black line (anti-squeezing). When the LO branch is blocked, the vacuum field entering the signal
port of the detector produces the vacuum noise level shown by the red dashed line, which remains
insensitive to changes in ϕLO. The spectrum analyzer was set to a resolution bandwidth (RBW) of 200
kHz and a video bandwidth (VBW) of 500 Hz. All traces have been corrected for thermal background
noise subtraction. (b) LO phase dependence of the quantum fluctuations in the amplitude-squeezed
state produced by a constant-current-driven QD laser at 8 GHz. With the LO branch present but the
LO phase varying, the calibrated SQL demonstrates great stability with a small deviation of ±0.08 dB.
The error bar for the green point was obtained by averaging the noise curve over a range of ±50 MHz
around 8 GHz.

Fig. 4.32 (a) presents the measured RF noise power spectral density for the QD laser biased at
40 mA, offering a comparison between amplitude squeezing (green curve) and anti-squeezing (black
curve) with the calibrated vacuum noise level (red dashed curve). The measured variance of pho-
tocurrent fluctuations is essentially a weighted combination of variances in the two field quadratures.
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By adjusting the relative phase difference between the signal and LO, achieved by scanning the opti-
cal delay time, the projection angle of the two quadrature components can be selectively determined.
Consequently, the squeezing spectrum is observed when the projection angle aligns with the maxi-
mum squeezing direction, while the minimum corresponds to anti-squeezing. As seen, the RF spec-
trum in the frequency range of 3 GHz to 12 GHz exhibits a significant reduction below the SQL. The
most substantial noise reduction occurs around 8 GHz, with a power reduction of 0.9±0.1 dB (6.7%)
below the SQL. It’s important to note that the measurement frequency range discussed here is signifi-
cantly higher than the cutoff frequency of Flicker (1/f) noise. Additionally, at such a high pump rate,
the relaxation oscillation resonance is effectively suppressed.

Figure 4.33: The original RF spectrum of electrical noise, shot noise level, anti-squeezing, and squeez-
ing light. The shot-noise clearance (SNC) of our homodyne detection is equal to 20 dB, which is the
difference between calibrated shot noise and electrical noise.

In Fig. 4.32 (b), photocurrent fluctuations obtained from the balanced homodyne receiver are
presented as a function of the LO phase, with a fixed frequency of 8 GHz. The measurements of am-
plitude squeezing and the calibrated SQL were conducted separately during the experiment, covering
16 different LO phase values within a 2π period. Nearly 2/3 of the LO phase region exhibited dis-
tinct degrees of squeezing, and the two traces in Fig. 4.32 (a) correspond to the cases where the LO
phase equals 0.4π (anti-squeezing) and 1.2π (squeezing). The reminiscence to quadrature squeezing
is attributed to our self-homodyne detection technique, wherein the amplitude squeezing axis can be
artificially rotated due to the LO phase shifter [ZMG02]. Due to technical issues in the experimental
setup, including constraints on mechanical movement, limited resolution, and sweep time within the
fibre optical delay line, continuous scanning of the 1308 nm local oscillator (LO) phase within a 2π

period (approximately 4.36×10−3 ps), as can be achieved with a piezo-steering mirror in free space,
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is not feasible. To overcome these challenges, we have employed an alternative approach. Instead
of continuous scanning, we systematically sample the LO phase at multiple discrete points, as illus-
trated in Fig. 4.32 (b). At each of these selected points, we conduct individual measurements of the
SQL and the squeezing spectrum using the electrical spectrum analyzer. This sampling method allows
us to mitigate the impact of mechanical vibrations and transient fluctuations that may occur during
changes in the delay line. To ensure the reliability and precision of our results, we calculate the aver-
age value of the recorded data based on five sweeps. The original RF spectrum of the shot noise level,
anti-squeezing, and squeezing are displayed in Fig. 4.33. Then, we redirect our attention to photon
statistics to provide further evidence of the amplitude squeezing.

The normalized second-order correlation function, denoted as g(2)(τ), is used to assess whether a
light source exhibits antibunching, bunching, or behaves as a coherent source. For the photon-number
squeezed state, if the normalized second-order correlation function at zero delay (g(2)(0)) is less than
1, it would provide additional confirmation of the squeezed state light source. Fig. 4.34 shows the
Hanbury Brown and Twiss (HBT) setup for measuring g(2)(0).

Figure 4.34: The HBT setup for g(2)(0) with QD laser under different current sources.

In this setup, the QD laser is driven by two different types of current sources. The laser light
then passes through two optical attenuators, with a maximum attenuation of 110 dB, to ensure that
the optical power entering the single-photon detectors remains within a safe range. Subsequently, an
exact 50/50 optical beamsplitter is used to equally divide the laser light into two paths, ensuring op-
tical power balance between the two single-photon avalanche detectors (SPAD, ID Quantique ID200).
The photocurrent signals generated by these detectors are then routed into a time-to-digital converter
(TDC, ID Quantique ID800) to determine the coherence between the signals. During the measurement
process, the coincidence time interval δ is set to be 50 ns, and the total testing time T is 2 seconds.
Over this duration, the count rates R1 and R2 for the two channels are continuously recorded. Fur-
thermore, the coincidence events n between the two channels are also collected. Using this dataset, the
normalized second-order correlation function g(2)(0) can be computed using the following equation
and analysis process [McK+03]:

g(2)(0) =
n

δTR1R2
(4.36)

4.4.2 Theoretical investigation

In the literature, many methods have been historically used to analyze quantum fluctuations and
quantum-statistical properties in semiconductor lasers. Here, I will briefly describe three of these
methods, along with a more recent approach:
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1 Langevin Forces in Rate Equations: This approach incorporates Langevin forces into semiclas-
sical rate equations, supplemented with vacuum fluctuation terms. It partially accounts for
quantum-mechanical corrections to the diffusion coefficients and provides a simple description
of shot noise [TLO94; VG97; ZG22a]. However, it can be considered a mean-field theory from
a statistical perspective. While it doesn’t explicitly treat fluctuations in a detailed manner, it is
designed to be consistent with the full quantum theory under specific conditions known as the
"thermodynamic limit" [RC94].

2 Quantum-Mechanical Langevin Operator Equation: This approach is based on the quantum-
mechanical Langevin operator equation or Fokker-Planck equations [YMN86]. It closely follows
the Heisenberg picture and provides power spectra through Fourier transformation. However,
it may have challenges in obtaining photon-number statistics.

3 Density Matrix Master Equation: This approach involves the density matrix master equation
[SL67; LL69], essentially resembles the Schrödinger picture. This approach enables the compre-
hensive gathering of information on quantum state statistics, but it does entail higher computa-
tional complexity when compared to other approaches.

4 Stochastic Simulation: More recently, an efficient stochastic simulation method has been intro-
duced, particularly for nanolasers and interband cascade lasers [MY20; ZG22b]. This approach
translates deterministic ordinary differential equations into a probabilistic framework, implicitly
capturing quantum fluctuations during the simulation. It faithfully represents the stochastic and
discrete nature of physical processes, offering a valuable tool for studying semiconductor lasers
realistically.

Each of these approaches has its advantages and limitations, making them suitable for different as-
pects of semiconductor laser analysis, depending on the level of detail and computational resources
available. Therefore, to facilitate a rigorous quantitative comparison between the experimental find-
ings and theoretical predictions, we have meticulously refined a standard multi-level model for QD
lasers [Sug+00; CK05; Wan+14]. This model encompasses three key energy states: a reservoir state
(RS), a four-fold degenerate excited state (ES) with σES=4, and a two-fold degenerate ground state
(GS) with σGS=2. In this model, the QDs are assumed to be consistently neutral, and the system is
composed of excitonic energy states, treating electrons and holes as electron-hole pairs. According
to the QD laser parameters, we do not consider dot size dispersion, which leads to the inhomoge-
neous broadening of the gain profile [CJ13]. To further simplify the QD laser model, the dynamics
of the microscopic interband polarization can be eliminated adiabatically. This elimination is justi-
fied because the polarization dephases relatively quickly within about 100 fs at room temperature.
Given that charge-carrier scattering times and the photon lifetime are typically a few picoseconds, this
de-coherence process allows one to disregard the extra quantum-mechanical correlations.

Fig. 4.35 offers a detailed depiction of the diverse processes occurring within the QD laser. Un-
der forward bias conditions, carriers injected from an external source directly populate the two-
dimensional RS (NRS). Some of these carriers are subsequently captured into the ES (NES) through
intraband carrier-carrier and carrier-phonon collisions within a characteristic capture time τRS

ES , while
others undergo spontaneous recombination with a characteristic spontaneous emission time τRS

spon.
Once inside the ES, carriers can relax to the GS (NGS) within a relaxation time τES

GS or recombine spon-
taneously. Furthermore, carriers can thermally reemit from the ES back to the RS and from the GS
back to the ES. These processes are governed by the Fermi distribution, adhering to the detailed bal-
ance principle, and occur in the absence of external excitation [Gri+09]. The relevant timescales for
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Figure 4.35: Schematic diagram of carrier transport process in a QD laser. See Table. A.5 for definitions
and values.

these processes τES
RS and τGS

ES , are expressed as follows:

τES
RS = τRS

ES
σGS
σES

e(EES−EGS)/(kBT)

τGS
ES = τES

GS
σESNB

DRS
e(ERS−EES)/(kBT)

Here, DRS =
m∗

RS
πh̄2 kBT represents the effective density of states in the RS, with m∗

RS denoting the ef-
fective mass of an electron in the RS. A fundamental aspect of a QD laser system pumped with a
noise-suppressed current source is its inherent capability to directly convert sub-Poissonian statis-
tics of electrons into nonclassical photon statistics. We employ a set of coupled stochastic differential
equations. These equations are adeptly tailored to the three-energy-level QD model [Wan+14]:

dNRS

dt
= Rpump + RES→RS − RRS→ES − RRS

decay

dNES

dt
= RRS→ES + RGS→ES − RES→RS − RES→GS − RES

decay

dNGS

dt
= RES→GS − RGS→ES − Rstim − RGS

decay

dSGS

dt
= Rstim − Rinternal − Rmirror + Rspon

(4.37)

where Ni (i = RS, ES, GS) represents the carrier density in the RS, ES, and GS, respectively. SGS denotes
the photon density in the GS, Ri

decay (i = RS, ES, GS) represents the spontaneous emission rate that
reduces the carrier density in each energy state. RES→RS and RRS→ES describe the carrier scattering
rates between RS and ES, while RES→GS and RGS→ES depict the carrier scattering rates between ES
and GS. Rstim accounts for the stimulated emission rate solely on GS, and Rspon represents the fraction
of the spontaneous emission coupled into the lasing mode. Furthermore, the sum of Rinternal and
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Rmirror comprises the photon decay rate, with Rmirror being the outcoupling rate via facet mirrors
into the output channel and Rinternal containing other internal photon losses. More detailed device
information can be found in Table. A.5 in Appendix. A.

Table 4.4: Synopsis of the underlying physical processes considered in the stochastic simulation. Each
event (column 3) is determined based on the Poissonian probability distribution (column 4), with the
first arguments P specified in column 5.

Process Physical event Symbol Expression P

Excitation Normal pumping Rpump P(Ppump∆t) η I/q
Quiet pumping Rpump Ppump∆t1 η I/q

Disexcitation
RS decay RRS

decay P(PRS
decay∆t) NRS/τ

spon
RS

ES decay RES
decay P(PES

decay∆t) NES/τ
spon
ES

GS decay RGS
decay P(PGS

decay∆t) NGS/τ
spon
GS

Relaxation

RS→ES RRS→ES P(PRS→ES∆t) NRS(1 − ρES)/τRS
ES

2

ES→RS RES→RS P(PES→RS∆t) NES/τES
RS

ES→GS RES→GS P(PES→GS∆t) NES(1 − ρGS)/τES
GS

3

GS→ES RGS→ES P(PGS→ES∆t) NGS(1 − ρES)/τGS
ES

Emission Spontaneous Rspon P(Pspon∆t) βspNGS/τ
spon
GS

Stimulated Rstim P(Pstim∆t) ΓpvggGSSGS
4

Photon Losses Internal loss Rinternal P(Pinternal∆t) vgαinSGS
Out-Coupling Mirror loss Rmirror P(Pmirror∆t) vgαmSGS

1 This term is a constant value instead of a random variable.
2 ρES = NES/4NB, the carrier occupation probabilities in the ES.
3 ρGS = NGS/2NB, the carrier occupation probabilities in the GS.
4 gGS = aGS

1+ξSGS

NB
VB

(2ρGS − 1), the GS material gain and vg = c
nr

, the group velocity.

The stochastic simulation emulates a series of physical events occurring randomly at discrete time
intervals, representing a sequence of potential occurrences [PL15]. To ensure an accurate representa-
tion of all processes, we select a time increment ∆t that is significantly smaller than the fastest timescale
involved, typically set to 0.1 ps in our specific case. At each time increment, the number of ongoing
events is anticipated through a series of non-negative integer random variables drawn from the Pois-
son distribution (P). The first arguments P of the Poisson distribution are directly proportional to the
corresponding terms in the previously described QD model, as demonstrated in Table. 4.4. Among
these rates, the term Rpump represents the pumping rate induced by the external pump current. The
precise definition of this term can vary depending on the method used for laser pumping. In conven-
tional pumping, a current source with classically Poisson-distributed shot noise is employed, resulting
in a variable rate. Conversely, in the case of quiet pumping, the pump is defined by a periodic injec-
tion of electrons at a constant rate, leading to a constant value. This results in sub-Poissonian electron
statistics. Additionally, the mirror loss is calculated using the formula αm = 1

2L ln
(

1
R1R2

)
, where the

facet power reflectivities are given as R1 = 0.03 (AR) and R2 = 0.95 (HR), resulting in a mirror loss
value of αm equal to 23.72 cm−1. However, it’s crucial to note that the internal loss αin is about 0.5
cm−1, a deliberate choice made to maximize the display of amplitude squeezing.

The stimulated RF spectrum is presented in Fig. 4.36 (a). In this approach, we independently
derive the SQL and amplitude squeezing for both normal pumping and quiet pumping conditions
by applying Fourier transforms to the time traces. While a large squeezing level can be theoreti-
cally expected at low frequencies, it is often overshadowed by technical noise in practical settings
[MY88]. Nevertheless, both in our experiments and simulations, we observe a discernible signature
of amplitude squeezing at relatively high frequencies. Furthermore, we computed the normalized
second-order correlation at zero delay g(2)(0), as illustrated in Fig. 4.36 (b), using the simulation data.
Following the relationship

〈
∆S2〉 =

[
g(2)(0)− 1

]
⟨S⟩2 + ⟨S⟩ [MY20], with S representing the external

photon number, we observe that stimulated g(2)(0) rapidly converges to approximately 1 shortly after
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Figure 4.36: (a) The stimulated RF spectra are shown in green, while the stimulated SQL is represented
in the red dashed line. (b) The stimulated normalized second-order correlation function at zero delay
g(2)(0) as a function of pump current. The green and grep areas show the standard deviation from the
average obtained from 100 simulation runs. Two experimental data points are also presented.

Figure 4.37: (a) Histogram calculated from the raw data acquired by the oscilloscope. Each time
trace is averaged over 5 frames and the sampling rate is 20 Gbps. (b) Histogram computed from the
simulation data, where each time trace has 2×106 data points, spanning a time period of 1 µs.
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surpassing the laser threshold Ith. However, under normal pump conditions, g(2)(0) slightly exceeds
1 at 4 × Ith, whereas with quiet pumping, g(2)(0) dips just below unity at 4 × Ith due to the relatively
high average photon number. Moreover, we conducted corresponding g(2)(0) measurements at 40
mA, and the experimental results are represented by two symbols within the same figure, corroborat-
ing our simulation findings. A recent theoretical study has affirmed that a single-mode Gaussian state
can exhibit a g(2)(0) value below zero [OCP18]. The spectral distribution of the field is observed to
be centred around 1308.5 nm in Fig. 4.31. Additionally, the contribution of thermal photons is found
to be negligible at room temperature, and hence we obtain a first signature of a displaced squeezed
state. This observation will be unambiguously verified through further investigations, involving the
full reconstruction of the Wigner function using quantum tomography [Smi+93; ZMG02].

Fig. 4.37 gives a comparison between measured and simulated photon statistics. The photon
number distributions are extracted from experimental data recorded by the oscilloscope and from
stochastic simulations. In both cases, the histogram for shot noise confirms a Poissonian distribu-
tion. However, under quiet pumping conditions, the distribution becomes narrower, displaying sub-
Poissonian characteristics that are supported by the measurement of g2(0) below 1.

4.4.3 Data correction

Amplitude-squeezed states that occur in practical experiments necessarily suffer from losses present in
sources, transmission channels and detectors. To calculate the overall efficiency, we conducted careful
measurements and estimations of diverse optical attenuation factors in our experimental setup, as
summarized in Table.4.5. Consequently, the estimated overall efficiency stands at 22%. Subsequently,
we conducted the following calculations, where a lossy optical element with a transmission coefficient
(T) is substituted by a beam splitter [Lvo15]. A vacuum state is assumed to be present at the second
input port of the beam splitter, as shown in Fig. 4.38. Hence, the interference between the variance
⟨∆X2

a⟩ of signal mode â and the variance ⟨∆X2
v⟩ of vacuum mode v̂ will yield the variance ⟨∆X2

out⟩ in
the beam splitter output:

⟨∆X2
out⟩ = T⟨∆X2

a⟩+ (1 − T)⟨∆X2
v⟩ = T⟨∆X2

a⟩+ (1 − T)/2 (4.38)

Figure 4.38: The beam splitter model of loss [Lvo15].
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Since ⟨∆X2
v⟩ = 1/2. Considering the total losses, T = 0.4 × 0.794 × 0.933 × 0.933 × 0.891 × 0.9 ×

0.99 = 0.219. With sdB
out=0.9 dB, we can calculate sout=10(s

dB
out/10)=1.23, which is equal to ⟨∆X2

out⟩/⟨∆X2
v⟩

=2⟨∆X2
out⟩. Solving for ⟨∆X2

out⟩, we find it to be 0.6150. Using Equ.4.38, we can determine ⟨∆X2
a⟩=1.0251.

Then sa = 2⟨∆X2
a⟩=2.0502, and converting this to sdB

a gives sdB
a = 10 × log10(sa)=3.12 dB.

Table 4.5: Measured and estimated optical attenuation factors.

Source of loss Efficiency (%) Reference
Fibre coupling 40.0% ∗1

Isolator 79.4% ∗
1st Beamsplitter 93.3% ∗
2nd Beamsplitter 93.3% ∗
Fibre+connector 89.1% ∗

Detector 90.0% †2

Electrical noise 99.0% ‡3

1 The asterisk (∗) notation denotes that the data originates from our experimental
measurements.

2 ηPD = SPD × h̄ω/e, with SPD=0.95 A/W being the typical photosensitivity of
our InGaAs photodiode at 1300 nm, h̄ being the reduced Planck constant, ω
being the laser angular frequency and e being the elementary charge.

3 ηelec = 1 − 1/SNC, with SNC= 20 dB being the shot-noise clearance of our
homodyne detector, which is the difference between calibrated shot noise and
electrical noise. It is shown that the effect of the electronic noise on the detector
performances is equivalent to that of optical losses [App+07].

We estimate, by tracking photon losses within our experimental setup, that utilizing direct light
collection, fused fibres, and pigtailing could bridge the gap between the observed squeezing level at
the spectrum analyzer and the corrected squeezing level at the laser output facet.

Conclusion

Why do QD lasers exhibit such a broad squeezing bandwidth? Examining the specific numerical
parameters detailed in Reference [RMY91], we find that the depletion layer capacitance of the QW
laser is approximately 280 pF. According to (4.18), the estimated squeezing bandwidth at 66 K is ap-
proximately 1 GHz. On the contrary, QD lasers typically exhibit significantly lower values of Cdep,
sometimes as low as 3.5 pF [Ino+18]. This discrepancy leads to a situation where τte ≪ τp, resulting in
a calculated squeezing bandwidth of several tens of gigahertz at room temperature, considering that
τp is on the order of a few picoseconds. This demonstration provides, for the first time, access to a
regime where the squeezing electrical bandwidth is dictated by the photon lifetime of the semicon-
ductor laser.

In summary, this work has achieved a great milestone by successfully generating broadband
amplitude-squeezed states at room temperature using constant-current-driven QD DFB lasers. We
observed a reduction of up to 0.9 dB (3.1 dB after the correction) in the RF spectrum through homo-
dyne detection across a wide frequency range from 3 GHz to 12 GHz when compared to the shot
noise level. Achieving higher squeezing levels, however, would necessitate significant engineering
advancements in laser cavity design [Ost+23], external stabilization techniques [WFS93; KYS95], and
the ambitious ongoing integration of the entire system onto a single chip, which, nonetheless, appears
realistic [Moo+20; Tas+21]. In our upcoming research, we plan to increase the squeezing level beyond
10 dB using quantum dot technology, focusing on related applications in quantum sensing. More-
over, in practical scenarios, 3-6 dB of squeezing has proven sufficient to outperform coherent states
in quantum communication [Jac+18]. This squeezing level is particularly effective in mitigating the
impact of channel noise, such as that induced by atmospheric turbulence in free-space transmission,
which could otherwise compromise the rate of secret key exchange [DUF20]. Our results carry direct
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implications for various quantum information applications, especially in the CV QKD over free-space
channels. Bright squeezed semiconductor lasers, as proposed in Ref.[HWR22], offer excellent light
sources in this context. We firmly believe that this technology represents a significant stride toward
the imminent on-chip implementation of CV QKD protocols.
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Chapter 5

Conclusion & Perspectives

The fields of semiconductor physics and quantum optics are undergoing a transition from laboratory
research to real-world applications. In order to facilitate the progress and development of innovative
quantum-confined devices like quantum dot (QD) lasers and interband cascade lasers (ICL), device
engineers will require simulation tools that combine classical device physics with the principles of
quantum mechanics. This thesis primarily focuses on the device modelling, proof-of-concept exper-
iments, and numerical simulation of electrically driven coherent and quantum light sources. As a
result, it encompasses a diverse range of topics, all interconnected with the overarching goal of me-
thodically advancing the state-of-the-art in this field. These topics include classical noise, nonlinear
dynamics, and the generation of squeezed light in QD lasers and ICLs. Above all, this thesis com-
mences with the fundamentals of quantum-confined lasers and provides an introduction to their elec-
tronic structure and carrier scattering processes. Subsequently, it presents three different modelling
approaches, namely, semiclassical Langevin rate equations, the stochastic Gillespie algorithm, and a
comprehensive quantum-mechanical description.

In the first part of the thesis, a theoretical investigation of various aspects of classical noise, in-
cluding the relative intensity noise (RIN), frequency noise (FN), spectral linewidth, and the linewidth
enhancement factor (αH) of quantum-confined lasers, has been undertaken. These theoretical simula-
tions rely on a semiclassical multi-level rate equation model that incorporates Langevin noise terms.
This is achieved through a meticulous small-signal analysis that takes into consideration contributions
from both gain theory and carrier effects. The calculations are carefully elaborated, enabling a precise
description of laser noise characteristics that align with corresponding experimental findings. In par-
ticular, to assess the influence of the silicon substrate on QD lasers, a non-radiative recombination
carrier lifetime τSRH via Shockley-Read-Hall recombination (SRH) is added to the original QD rate
equations. Accounting for epitaxial defects induced by threading dislocations, the analysis demon-
strates that the αH factor decreases as τSRH values decrease. In the context of modulation dynamics,
there is an observation of a narrower 3-dB bandwidth but a higher damping factor in QD laser sys-
tems with faster nonradiative recombination lifetimes. This change in the SRH recombination time
effectively alters the timescale ratio between carrier and photon lifetimes, affecting the damping of
the turn-on dynamics of the solitary laser. Subsequently, a comprehensive investigation of optical
feedback and optoelectronic feedback dynamics in QD lasers on silicon is conducted. Thanks to the
near-zero αH factor, QD lasers on silicon exhibit a high degree of tolerance to external optical feed-
back. Numerical simulations based on the Lang-Kobayashi method also indicate that as τSRH values
decrease, the chaotic region contracts and the first Hopf bifurcation point shifts to higher feedback
strength. This result offers valuable insights into the design of feedback-resistant lasers for future pho-
tonic integrated circuits, operating without the need for an optical isolator. On the contrary, in terms of
optoelectronic feedback, with increasing feedback strength, the QD laser undergoes several dynamical
regimes, including steady-state, square waves, and a mixed waveform characterized by fast and slow
oscillations. Unlike QW lasers, QD lasers exhibit greater sensitivity to optoelectronic feedback, which
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promotes dynamic generation. This phenomenon is substantiated through the integral-differential de-
lay model (Ikeda-like model). Finally, in the context of ICLs, the anticipation of broadband dynamics
and chaos generation is supported not only by numerical simulations but also by experimental evi-
dence. In these experiments, an unprecedented broad and flat chaos in ICLs is reported, extending
beyond 1 GHz at mid-infrared wavelength. The chaos in ICLs has the potential to be harnessed for
the development of secure free-space optical communication links and remote chaotic Lidar systems.

In the second part of the thesis, a theoretical examination of quantum fluctuations and amplitude
squeezing has been conducted. This section starts with a general introduction to numerous aspects,
including coherent states of light, squeezed states of light, methods for measuring quantum states of
light, quantum noise from electronics, and the generation of quantum light. Then, a detailed expla-
nation is provided regarding how a semiconductor laser, when subjected to a noise-suppressed cur-
rent pump, can generate sub-shot-noise light. The limitations that exist with respect to the achievable
squeezing level and bandwidth in this context have been also demonstrated. Afterwards, two different
methods, namely, semiclassical Langevin rate equations and Gillespie stochastic simulation, are em-
ployed to establish the eligibility of ICLs for generating amplitude-squeezed light in the mid-infrared
range. Both of these methods are in agreement and support this prediction through the analysis of
sub-Poissonian photon distribution, sub-shot-noise-limited RF spectrum, and a negative Mandel Q
parameter. The results reveal that ICLs possess the potential to achieve substantial amplitude squeez-
ing across a wide bandwidth, extending into the gigahertz range. Finally, both experimental and
theoretical investigations of amplitude squeezing are carried out in QD lasers. A major achievement
of this work is the successful generation of broadband amplitude-squeezed states using single-mode
QD lasers operated at room temperature. In homodyne detection, the RF spectrum shows a reduction
of up to 0.9 dB across a wide frequency range from 3 GHz to 12 GHz when compared to the shot
noise level. These experimental results are further validated through a stochastic simulation, specifi-
cally tailored to the three-energy-level QD model. All these outcomes hold direct relevance for many
quantum information applications, particularly in the domain of continuous-variable quantum key
distribution (CV QKD). Bright squeezed semiconductor lasers, as proposed in Ref. [HWR22], emerge
as ideal light sources for this purpose.
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The novel results presented in this thesis carry profound implications for the design of future
high-speed and non-classical quantum sources, regardless of whether they are built upon QD lasers
or mid-infrared ICLs.

Why laser squeezing is so interesting? Laser squeezing distinguishes itself significantly from
conventional squeezing methods. Take parametric amplification, for instance, where the reduction
in phase fluctuations is counterbalanced by an equal amplification of amplitude fluctuations, thus
preserving their inherent uncertainty relationship. In contrast, laser squeezing achieves a reduction
in amplitude fluctuations without a corresponding increase in phase fluctuations [Ost+23]. This dis-
tinct characteristic arises because the laser output exhibits excess phase fluctuations. In essence, laser
squeezing takes advantage of the fact that the laser output is not in a minimum uncertainty state to
suppress amplitude noise. Consequently, laser squeezing always manifests as amplitude squeezing.
An intriguing question would be the transformation of amplitude squeezing into phase squeezing
through the αH factor in laser and the determination of the fundamental limit for laser linewidth
[Bak+21]. Future phase noise measurements or the construction of Wigner functions can provide
valuable insights into validating this hypothesis [Smi+93].

Figure 5.1: A summary of the amplitude squeezing from semiconductor lasers. All the data points
come from Table. 4.2.

Why there is a need to enhance squeezing performance? Fig. 5.1 gives an overview of historical
experiments related to amplitude squeezing from semiconductor lasers. Within these experiments lies
a huge untapped potential, particularly in achieving higher squeezing levels and broader squeezing
bandwidths. In terms of practical requirements, it is generally acknowledged that achieving a more
important squeezing level holds immense significance for quantum sensors [Law+19] and gravita-
tional wave detection [Aas+13].
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• In sensing and metrology platforms using optical readout fields, the minimum resolvable signal
faces growing constraints imposed by the standard quantum limit. This limit is mainly deter-
mined by the sum of photon shot noise and backaction noise [Law+19]. The advancement of the
next generation of sensors, spanning applications from high-energy physics to biochemistry, and
the development of microscopy platforms capable of unveiling material properties previously
concealed by quantum noise, will hinge upon a synergistic approach that combines back-action
and shot noise reduction techniques.

• A global network of Earth-based gravitational wave observatories is presently dedicated to
the direct detection of this subtle radiation using precision laser interferometry [Aas+13]. The
quantum nature of light introduces photon shot noise, which sets a fundamental limit on the
attometre-level sensitivity required for the kilometre-scale Michelson interferometers. In this
context, the introduction of squeezed states has emerged as a method to enhance the perfor-
mance of one of the detectors within the Laser Interferometer Gravitational-Wave Observatory
(LIGO). Recent advancements have shown the generation of 15 dB squeezing light for this pur-
pose [Vah+16]. The incorporation of squeezed states has empowered this particular LIGO detec-
tor to achieve unparalleled broadband sensitivity and unprecedented precision to gravitational
waves.

Figure 5.2: A diagram of the CV QKD protocol. Alice and Bob establish quantum correlations through
the use of modulation (MOD) and local oscillator (LO) in homodyne/heterodyne detection (HD).
They employ these techniques to prepare and measure optical quantum states. Subsequently, after
completing the remaining steps of the protocol, which involve an authenticated channel, they obtain
correlated bitstreams, denoted as sA and sB respectively. For the application to guarantee composable
security, it is imperative that certain criteria related to the correctness, robustness, and secrecy of the
protocol are met. (Source: In Ref. [Jai+22]).

Simultaneously, the progress in photonics-based quantum technologies is poised to usher in a
transformative era in data processing and communication protocols, with the quantum emitter play-
ing a pivotal role in this landscape. A semiconductor laser with a broader squeezing bandwidth is
critically desirable for applications such as quantum cryptography [Pir+20], high-speed continuous-
variable quantum key distribution (CV QKD) [Jac+18; Zha+20a; Jai+22], and quantum computing
[McM+16; Arr+21; Zho+21].

• CV QKD has emerged as one of the foremost practical applications of quantum information
theory. It furnishes trusted parties with protocols that enable the provably secure distribution
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of secret cryptographic keys, as detailed in Fig. 5.2. In this protocol, quantum signals are typ-
ically encoded in light through Gaussian modulation of its electromagnetic fields. Detection
in CV QKD relies on homodyne receivers, which not only provide fast and efficient detection
capabilities but also seamlessly integrate with existing optical networks. While weak coherent
states are utilized in certain scenarios [GG02], the distinctive characteristics of squeezed states
make them a preferred choice, particularly when the objective is to enhance resistance to eaves-
dropping and ensure robust immunity to channel noise [Jac+18]. In real-world applications,
a squeezing level in the range of 3-6 dB has demonstrated its effectiveness in outperforming
coherent states [DUF20]. Such a squeezing level is especially valuable in mitigating channel
noise arising from atmospheric turbulence during free-space transmission. Without this miti-
gation, such noise could potentially undermine the secret key rate and compromise the overall
security of communication systems. Current squeezing technologies face limitations basically in
terms of their bandwidth and the necessity for low operating temperatures. These constraints
present huge challenges when aiming for practical implementations under room-temperature
conditions and impede the realization of high-speed quantum communications. The broadest
bandwidth achieved in all methods thus far has reached dozens of gigahertz, as highlighted in
[Ino+22]. The potential for significant improvement in this regard can be realized through an
amplitude-squeezed semiconductor laser.

Figure 5.3: Quantum algorithms implemented on a photonic chip. Ring resonators were employed
to generate quantum states of light. These states were launched into an optical network consisting
of optical waveguides and beam splitters. As the squeezed states encountered one another within
the beam splitters, they became mixed together, leading to a complete scrambling of all states as they
exited the network. Subsequently, highly sensitive detectors were used to count the number of pho-
tons within each scrambled state. The chip was employed to execute quantum algorithms, with the
input squeezed states representing input variables and the count of photons within each scrambled
state signifying the output resulting from the algorithm’s processing of those variables. The chip’s
functionality could be reconfigured to execute different algorithms by manipulating the beam split-
ters and employing phase shifters. This control over the chip’s behaviour could be accessed remotely
by a user through cloud-based means. (Source: In Ref. [Arr+21]).



162 Chapter 5. Conclusion & Perspectives

• Quantum computers promise to deliver extraordinary computational power and solve prob-
lems that are beyond the capabilities of conventional classical machines. The development of
a programmable and scalable photonic circuit has turned out to be a leader in the race toward
realizing practical quantum computing [Arr+21], as shown in Fig. 5.3. It has become evident
that a relatively simple optical circuit, relying exclusively on squeezed light, beam splitters, and
photon counters, can execute a sampling algorithm at a speed that surpasses the capabilities
of classical computers. Furthermore, this algorithm has revealed numerous practical applica-
tions. For instance, it proves valuable in simulating transitions between molecular states and
identifying matching configurations between two molecules, a process commonly referred to
as molecular docking [Ban+20]. Another intriguing application is the coherent Ising machine
[McM+16]. A coherent Ising machine constitutes a network of optical parametric oscillators
where the “strongest” collective mode of oscillation, occurring well above the threshold, corre-
sponds to an optimum solution of a given NP problem. However, as the pump rate or network
coupling rate is increased from below to above the threshold, the eigenvectors associated with
the smallest eigenvalues of the Ising coupling matrix appear near the threshold, hindering the
machine’s relaxation to true ground states. To overcome this challenge, the proposed approach
leverages the squeezed or anti-squeezed vacuum noise generated by optical parametric oscil-
lators operating below the threshold. This utilization of quantum noise correlation facilitates
coherent exploration across numerous local minima. Ultimately, this enables the machine to ac-
cess either true ground states or excited states whose eigenenergies are sufficiently close to those
of the ground states occurring above the threshold. The concept of an Ising machine can also
be extended to include semiconductor lasers subjected to optoelectronic feedback [BVV19], as
shown in Fig. 5.4. The performance of such systems can be improved by implementing ampli-
tude squeezing techniques in semiconductor lasers.

Figure 5.4: Experimental schematic of an optoeletronic-feedback-based Ising machine. PC, polar-
ization controller, ADC, analogue–digital converter, DAC, digital–analogue converter. (Source: In
Ref. [BVV19]
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How to improve the squeezing performance?

• Cryogenic temperature: As illustrated in Fig. 5.1, the blue data points correspond to previous
squeezing experiments conducted at extremely low temperatures, typically below 77 K. These
experiments tend to exhibit superior squeezing performance compared to the red data points,
which represent experiments conducted at room temperature. This observation provides a valu-
able insight. The underlying physics can be understood through the interplay of two crucial fac-
tors: the junction capacitance (Cdep) and the operating temperature (T). This transition from the
macroscopic to the mesoscopic regime hinges on the ratio r = e2/kBTCdep, which quantifies the
single electron charging energy relative to the characteristic energy associated with thermal fluc-
tuations [IY+93]. For an in-depth exploration of this concept, please refer to Section. 4.2.4. The
value of the ratio r significantly influences the extent of correlations among the injected electrons.
In the macroscopic regime and at high temperatures (r ≪ 1), individual photon emission events
have minimal impact on the expected injection time of the subsequent electron. However, when
a substantial number of emission events occur collectively, their combined effect maintains the
sub-Poissonian characteristics. Conversely, in the mesoscopic regime and at low temperatures
(r ≫ 1), each electron is acutely aware of the previous one, primarily due to the considerable
change in the junction voltage brought about by the photon emission event. This phenomenon
is known as the Coulomb blockade regime and can even lead to single-photon emission events
at the end [Kim+99]. Furthermore, cooling both the current source and the laser to cryogenic
temperatures can lead to a huge reduction in the thermal noise within the current source, as in-
dicated by the expression SIn(ω) = 4kBT/Rs in (4.11). In Ref. [MY88], employing this approach,
a constant-current-driven semiconductor laser generated a field with amplitude noise reduced
to levels below the standard quantum limit by -1.7 dB (32%) across a broad frequency range,
spanning from near direct current to 1.1 GHz.

• External feedback: Recently, researchers achieved amplitude squeezing by employing a combi-
nation of high impedance suppression of pump noise and line-narrowing techniques. Through
injection-locking, they attained a 3 dB squeezing level (corrected for detection efficiency, it was
4.3 dB) from AlGaAs diode lasers operating at 10 K [Fre+93b]. Currently, the state-of-the-art in-
tensity noise reduction of a collimated beam from a single-mode semiconductor laser at its front
facet is 2-3 dB below shot noise at room temperature and 5-9 dB at low temperatures. These
results are achieved through methods such as feedback from an external grating [KYS95] or in-
jection locking [Ino+93; Fre+93b]. Previous studies [Mar+95] have explored the impact of these
line-narrowing techniques on the intensity and phase noise of diode lasers. It’s well-understood
that these techniques help reduce the noisy longitudinal side modes, which, although small, con-
tribute enormously to noise. The key to noise reduction lies in achieving perfect anti-correlation
between the side modes and the main mode, similar to the antiphase dynamics observed in
classical fluctuations in multimode lasers. Imperfect noise anti-correlation was identified as
the source of excess noise in laser intensity. Furthermore, anti-correlation was also observed
between the main mode and a small mode with orthogonal polarization [Van+00]. Full noise
reduction was only achieved when the total intensity of both modes was detected [Bra+97].
Another way to generate amplitude squeezing is to use electro-optic feedback from one of the
balanced detectors [YIM86]. This approach can indeed produce an in-loop photocurrent with ex-
ceptionally low noise. However, it’s important to clarify that this phenomenon is not considered
evidence of "genuine" squeezing because squeezed light cannot be extracted from the feedback
loop using a linear beam splitter but can be extracted through a quantum non-demolition mea-
surement [Wis98]. Electro-optical feedback from the balanced homodyne photocurrent is often
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regarded as a more effective and viable solution [YNS85; WM93]. Another more recent method
involves the use of an electrically controllable beam splitter [Vas+22].

• Miniature: Integrated quantum photonics draws upon classical integrated photonic technolo-
gies and devices to address quantum applications [Moo+20; Moo+22; Bru+21; Pel+22; Luo+23].
Similar to classical photonics, achieving chip-scale integration is critical for advancing from lab-
oratory demonstrations to applications. In integrated quantum photonics, a prime objective is to
minimize internal loss while ensuring scalability, stability, and cost-effectiveness. The successful
demonstration of 85% (-8.3 dB) amplitude squeezing, achieved through the face-to-face posi-
tioning of the detector and the laser [RMY91], provides compelling evidence for the feasibility of
these advancements. In the near future, the realization of an entire quantum system on a single
chip is poised to become a reality.

What are the future applications? For over two decades, the go-to method for generating squeezed
states has relied on the interaction between lasers and nonlinear materials like χ(2) or χ(3). How-
ever, these approaches often necessitate the inclusion of an additional nonlinear material known as
a "squeezer". Additionally, they frequently face limitations in wavelength tunability due to phase-
matching constraints, making them less versatile. Maintaining a high level of photon conversion effi-
ciency can also pose problems within these setups. In a recent article [HWR22], researchers conducted
a comprehensive finite-size security analysis of a CV QKD protocol that used a bright amplitude-
squeezed semiconductor laser. This study showcased the potential by achieving zero information
leakage to potential eavesdroppers and effectively mitigating channel fluctuation noise [Jac+18]. These
findings represent a promising advancement in the field of quantum communication.

Figure 5.5: A schematic representation of communication scenarios between Alice and Bob in the
presence of an eavesdropper, Eve: (a) communication using laser-comm and (b) the QKD proto-
col using squeezed ICLs, which can completely eliminate information leakage to Eve. (Source: In
Ref. [HWR22]).
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To the best of our knowledge, there is currently no quantum hardware available in the mid-
infrared range. Squeezed ICLs have the potential to expedite the development of this innovative tech-
nology and, ultimately, enable its implementation in this wavelength range. For instance, in the laser-
based free-space secure communication systems, the atmospheric transmission spectrum features two
transparency windows: one between 3–5 µm and another between 8–14 µm. Mid-infrared optical
sources are ideal candidates for transmission applications, particularly in conditions like fog or driz-
zle, where they outperform near-infrared and visible-light sources significantly. Longer wavelengths
in the mid-infrared range offer advantages such as reduced molecular (Rayleigh) and particulate (Mie)
scattering, as well as decreased signal distortion caused by atmospheric conditions. Moreover, atmo-
spheric turbulence along the propagation path can severely degrade optical signals, leading to phe-
nomena like beam spreading, beam wandering, scintillation, and loss of spatial coherence. Numerical
studies involving simulated scintillation data and turbulence strength have consistently shown the su-
periority of mid-infrared wavelengths over near-infrared ones for free-space transmissions [Spi+21a].
From this perspective, there is a growing interest in the development of free-space data transfer, par-
ticularly using CV QKD protocols. This is because existing free-space communication systems are
typically unidirectional and susceptible to eavesdropping. Recent theoretical analyses have extended
CV QKD protocols, initially designed for fibre optic systems, to the context of free-space commu-
nications [Peu+14]. However, there are scenarios where dedicated fibre-optical infrastructure may
be unavailable, such as in the case of mobile stations, the need for rapid channel deployment, or
hostile environments. Additionally, long-distance intercontinental quantum communication via satel-
lites relies on free-space channels [Pir21b]. Atmospheric turbulence introduces random variations in
channel transmissivity over time, which can add extra noise to CV QKD systems, reducing the secret
key rate and potentially compromising communication security in the presence of strong turbulence
[Pir21a]. Given these challenges, the use of amplitude-squeezed states generated by mid-infrared ICLs
becomes even more favourable, as depicted in Fig. 5.5. Mid-infrared ICLs present a persuasive choice
for secure quantum communication under these demanding conditions, owing to their longer optical
wavelengths, higher optical power, enhanced squeezing levels, and broader squeezing bandwidths.
Specifically, they exhibit several times faster key rates, improved robustness, and tolerance to channel
losses of up to dozens of decibels. This makes them well-suited for downlink communication channels
from low-earth-orbit satellites in the future.

Figure 5.6: Scheme of the optical implementation of the CV QKD protocol based on an amplitude-
squeezed semiconductor laser.

The field of silicon-based photonics integrated circuits has witnessed numberless advancements,
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particularly in QKD technology. These advancements encompass the development of QKD trans-
mitter chips, QKD receiver chips, and quantum random number generator chips. Our work is di-
rected towards establishing a pathway for implementing the proposed protocol. The incorporation
of amplitude-squeezed QD lasers offers several noteworthy advantages. Firstly, our approach offers
a simplified setup, as illustrated in Fig. 5.6. Unlike conventional CV QKD protocols, where quan-
tum states of light require additional nonlinear "squeezer" components, the QD laser itself can gener-
ate these states. In conventional CV QKD, information is encoded in both the amplitude and phase
quadratures of light, and detection typically involves homodyne or heterodyne receivers, accompa-
nied by a separate Local Oscillator (LO). In contrast, our proposed CV QKD protocol, which relies
on intensity modulation of a squeezed QD laser, can be directly detected using a self-homodyne ap-
proach, thereby eliminating the need for a separate LO. Secondly, our approach offers compatibility
with current technology. QD lasers possess many advantages, such as high output power and a wide
range of wavelength tunability, which can leverage advancements in the well-established semicon-
ductor industry. Additionally, QD lasers predominantly operate within the near-infrared spectrum,
aligning with the peak quantum efficiency of InGaAs photodiodes. These photodiodes provide high
detection bandwidth (tens of gigahertz) and nearly 100% detection efficiency. All of these devices
seamlessly integrate with existing fibre-optical communication infrastructure, rendering them highly
practical for many applications. Thirdly, recent breakthroughs have led to the development of sta-
ble and cost-effective systems specifically designed for Gaussian-modulated coherent state CV QKD
protocols. These systems have achieved the integration of optical components onto a silicon chip,
although it should be noted that the laser source itself remains an external component [Zha+19]. Fur-
thermore, significant progress has been made in the integration of QD lasers on silicon substrates
[Sha+22]. Collectively, these advancements hold substantial promise for the ongoing endeavours to
miniaturize on-chip quantum communication systems. They represent a crucial step towards more
efficient and compact quantum technologies in the foreseeable future.
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5.1 Résume en Français

Les lasers à semiconducteurs sont devenus omniprésents aussi bien dans la recherche scientifique que
dans les applications en ingénierie, et leur miniaturisation a fait d’importants progrès depuis leur pre-
mière démonstration en 1960. Deux avancées majeures dans ce domaine incluent les lasers à boîtes
quantiques (QD), qui opèrent dans la plage de longueurs d’onde proche de l’infrarouge, et les lasers
à cascade interbande (ICL), conçus pour une utilisation dans le moyen infrarouge. Dans le paysage
actuel de l’optoélectronique, les circuits intégrés photoniques (CIP) jouent un rôle essentiel et étendu.
Ils offrent une évolutivité inégalée, un poids réduit, une rentabilité et une efficacité énergétique en
permettant la fabrication de systèmes optiques complets à l’aide de blocs de construction polyvalents
intégrés sur une seule puce. Dans ce contexte, la croissance épitaxiale directe de matériaux III-V sur du
silicium offre des perspectives prometteuses en tant qu’approche convaincante pour le développement
de sources laser cohérentes. Les lasers à boîtes quantiques, avec leur confinement ultime des porteurs
en trois dimensions, leur grande stabilité thermique et leur tolérance robuste aux défauts épitaxiaux,
sont des candidats prometteurs pour servir de sources laser sur puce. De plus, les ICL sont également
bien adaptés à l’intégration dans le silicium, ce qui en fait des candidats idéaux pour les systèmes
compacts de détection chimique. Les considérations liées au bruit sont en effet primordiales lorsqu’il
s’agit d’évaluer la qualité et la fiabilité des cette technologie. Atteindre la limite du bruit de grenaille
et la largeur de raie de Schawlow-Townes a longtemps été reconnu comme des étapes significatives.
Pour résoudre les problèmes de bruit, toute une gamme de techniques de réduction du bruit a été
explorée, allant de la rétroaction optique passive dans une cavité externe aux mécanismes actifs de
rétroaction électronique visant à compenser les fluctuations du courant d’injection. Cependant, bien
que les systèmes de rétroaction puissent atténuer le bruit du laser, ils peuvent également introduire
des dynamiques non linéaires plus complexes, donnant lieu à des phénomènes tels que l’oscillation
périodique, l’oscillation en créneaux et le chaos. La première partie de cette thèse porte sur une in-
vestigation approfondie du bruit et de la dynamique dans deux types de lasers distincts. On constate
que les lasers à boîtes quantiques présentent un degré élevé de robustesse lorsqu’ils sont exposés à des
réflexions optiques parasites, mais manifestent une sensibilité accrue à la rétroaction optoélectronique.
En revanche, les ICL affichent une gamme de comportements dynamiques lorsqu’ils sont soumis à une
rétroaction optique. De plus, les récents progrès dans les circuits de pompage à faible bruit pour les
lasers ont conduit à la génération de lumière comprimée en amplitude. Il s’agit d’une transition du
bruit classique au bruit quantique, ouvrant de nouvelles possibilités dans le domaine de la technolo-
gie laser et de l’optique quantique. La deuxième partie de cette thèse se penche sur le phénomène de
la compression en amplitude à la fois dans les lasers à boîtes quantiques et dans les ICL. Les résultats
indiquent que les deux types de lasers peuvent présenter une large bande passante de compression
et un niveau significatif de compression. Toutes ces conclusions dans cette étude contribuent à une
compréhension plus profonde des caractéristiques des lasers à boîtes quantiques et des ICL, jetant les
bases du développement de sources émettrices classiques et quantiques de haute performance sur des
CIP à l’avenir.

Le principal résultat de cette thèse est une exploration complète du bruit classique, de la dy-
namique non linéaire et de la génération de lumière comprimée dans les lasers à boîtes quantiques
(QD) et les lasers à cascade interbande (ICL). Cette thèse commence par plonger dans les fondements
des lasers à confinement quantique et offre une introduction à leur structure électronique et à leurs
processus de diffusion des porteurs. Ensuite, elle présente trois approches de modélisation différentes,
à savoir les équations de taux semi-classiques de Langevin, l’algorithme stochastique de Gillespie et
une description quantique-mécanique complète.

Dans la première partie de la thèse, une investigation théorique de divers paramètres, notam-
ment le bruit relatif d’intensité (RIN), le bruit de fréquence (FN), la largeur spectrale et le facteur
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d’amplification de la largeur de raie (αH) des lasers à confinement quantique, a été entreprise. Ces
simulations théoriques reposent sur un modèle semi-classique d’équations de taux à niveaux multi-
ples qui intègre des termes de bruit de Langevin. Cela est réalisé grâce à une analyse minutieuse en
petits signaux qui prend en compte les contributions à la fois de la théorie de gain et des effets des
porteurs. Les calculs sont soigneusement élaborés, permettant une description précise des caractéris-
tiques du bruit laser qui concordent avec les résultats expérimentaux correspondants. En particulier,
pour évaluer l’influence du substrat en silicium sur les lasers à boîtes quantiques, une durée de vie
des porteurs de recombinaison non radiative τSRH via la recombinaison de Shockley-Read-Hall (SRH)
est ajoutée aux équations de taux QD d’origine. En tenant compte des défauts épitaxiaux induits par
les dislocations de tramage, l’analyse montre que, par l’intermédiaire de l’analyse en petits signaux,
le facteur αH diminue à mesure que les valeurs de τSRH diminuent. Dans le contexte de la dynamique
de modulation, on observe une bande passante à -3 dB plus étroite mais un facteur d’amortissement
plus élevé dans les systèmes laser QD avec des durées de vie de recombinaison non radiatives plus
rapides. Ce changement dans le temps de recombinaison SRH modifie efficacement le rapport des
échelles de temps entre les durées de vie des porteurs et des photons, affectant l’amortissement de
la dynamique de mise en marche du laser solitaire. Ensuite, une enquête complète sur la rétroaction
optique et la dynamique de la rétroaction optoélectronique dans les lasers QD sur silicium est menée.
Grâce au facteur αH proche de zéro, les lasers QD sur silicium présentent une grande tolérance à la
rétroaction optique externe. Les simulations numériques basées sur la méthode de Lang-Kobayashi
indiquent également que lorsque les valeurs de τSRH diminuent, la région chaotique se contracte et
le premier point de bifurcation de Hopf se déplace vers des valeurs de rétroaction plus élevées. Ce
résultat offre des informations précieuses pour la conception de lasers résistants à la rétroaction pour
les futurs circuits intégrés photoniques, fonctionnant sans nécessiter d’isolateur optique. En revanche,
en termes de rétroaction optoélectronique, avec l’augmentation de la force de rétroaction, le laser QD
passe par plusieurs régimes dynamiques, notamment l’état stable, les oscillations en créneaux et une
forme d’onde mixte caractérisée par des oscillations rapides et lentes. Contrairement aux lasers à puits
quantiques (QW), les lasers QD sont plus sensibles à la rétroaction optoélectronique, ce qui favorise
la génération dynamique. Ce phénomène est corroboré par le modèle de retard intégral-différentiel
(modèle Ikeda). Enfin, dans le contexte des ICL, l’anticipation de dynamiques à large bande et de la
génération de chaos est soutenue non seulement par des simulations numériques, mais aussi par des
preuves expérimentales. Dans ces expériences, un chaos large et plat sans précédent est signalé dans
les ICL, s’étendant au-delà de 1 GHz dans la plage des moyennes infrarouges. Le chaos présenté par
les ICL à haute puissance a le potentiel d’être exploité pour le développement de liaisons de commu-
nication optique sans fil à longue portée sécurisées et de systèmes Lidar chaotiques à distance.

Dans la deuxième partie de la thèse, un examen théorique des fluctuations quantiques et de la
compression en amplitude a été mené. Cette section commence par une introduction générale à de
nombreux aspects, notamment les états cohérents de la lumière, les états comprimés de la lumière, les
méthodes de mesure des états quantiques de la lumière, le bruit quantique provenant de l’électronique
et la génération de lumière quantique. Ensuite, une explication détaillée est fournie sur la manière
dont un laser à semiconducteurs, lorsqu’il est soumis à une pompe de courant à bruit réduit, peut
générer de la lumière en dessous du bruit de grenaille. Les limitations en termes de niveau de com-
pression et de largeur de bande réalisables dans ce contexte ont également été démontrées. Ensuite,
deux méthodes distinctes, à savoir les équations de taux semi-classiques de Langevin et la simulation
stochastique de Gillespie, sont utilisées pour établir l’éligibilité des ICL à la génération de lumière en
amplitude comprimée dans la plage des moyennes infrarouges. Les deux méthodes sont en accord et
soutiennent cette prédiction par l’analyse de la distribution des photons sub-Poissonienne, du spectre
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RF limité en dessous du bruit de grenaille et d’un paramètre de Mandel Q négatif. Les résultats révè-
lent que les ICL ont le potentiel d’atteindre une compression substantielle du bruit d’intensité sur une
large bande passante, s’étendant jusqu’à la plage des gigahertz. Enfin, une enquête expérimentale et
théorique sur la compression en amplitude est faite dans les lasers QD. Une réalisation majeure de ce
travail est la génération réussie d’états de compression en amplitude à large bande à l’aide de lasers
QD DFB exploités à température ambiante. Dans la détection homodyne, le spectre RF montre une
réduction allant jusqu’à 0,9 dB sur une large plage de fréquences de 3 GHz à 12 GHz par rapport au
niveau de bruit de grenaille. Ces résultats expérimentaux sont également validés par une simulation
stochastique complète, spécifiquement adaptée au modèle à trois niveaux d’énergie QD. Tous ces ré-
sultats sont directement pertinents pour de nombreuses applications de l’information quantique, en
particulier dans le domaine de la distribution quantique de clés à variables continues (CV QKD). Les
lasers à semi-conducteurs brillants comprimés émergent comme des sources de lumière idéales à cette
fin.
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Appendix A

Simulation parameters

Table A.1: Material and optical parameters of the InAs/GaAs QD laser used in the simulation
[Don+21b]

Symbol Description Value
ERS RS energy level 1.25 eV

EES ES energy level 1.03 eV

EGS GS energy level 0.95 eV

T Temperature 295 K

τRS
ES RS to ES capture time 6.3 ps

τES
GS ES to GS relaxation time 2.9 ps

τ
spon
RS RS spontaneous emission lifetime 0.5 ns

τ
spon
ES ES spontaneous emission lifetime 0.5 ns

τ
spon
GS GS spontaneous emission lifetime 1.2 ns

L Cavity length 750 µm

W Cavity width 2 µm

hRS RS barrier layer thickness 40 nm

hQD QD layer thickness 2 nm

αi Internal loss 6 cm-2

R1, R2 Facet reflectivity 0.03 & 0.95

τp Photon lifetime 3.9 ps

η injection efficiency 0.21

TD Polarization dephasing time 0.1 ps

βsp Spontaneous emission factor 1×10-4

ξ Gain compression factor 2×10-16 cm3

Γp Optical confinement factor 0.06

aGS GS differential gain 5×10-15 cm2

aES ES differential gain 10×10-15 cm2

aRS RS differential gain 2.5×10-15 cm2

αGS
H GS contribution to αH-factor 0.5

ND QD density per layer 5.9×1010 cm-2

nQD The number of QD layer 8

NB Total QD number 7.08×106

DRS Total RS state number 3.62×106

VB The volume of QD region 2.4×10-11 cm3

VRS The volume of RS region 6×10-11 cm3
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Table A.2: Material and optical parameters of the InAs/InP QD laser on Silicon used in the simulation
[ZG21]

Symbol Description Value
ERS RS energy level 0.97 eV

EES ES energy level 0.87 eV

EGS GS energy level 0.82 eV

T Temperature 295 K

τRS
ES RS to ES capture time 6.3 ps

τES
GS ES to GS relaxation time 2.9 ps

τ
spon
RS RS spontaneous emission lifetime 0.5 ns

τ
spon
ES ES spontaneous emission lifetime 0.5 ns

τ
spon
GS GS spontaneous emission lifetime 1.2 ns

L Cavity length 500 µm

W Cavity width 4 µm

hRS RS barrier layer thickness 5 nm

hQD QD layer thickness 5 nm

αi Internal loss 6 cm-2

R1, R2 Facet reflectivity 0.32 & 0.32

τp Photon lifetime 4.1 ps

η injection efficiency 0.12

TD Polarization dephasing time 0.1 ps

τSRH Nonradiative recombination lifetime 0.1-10 ns (variable)

βsp Spontaneous emission factor 1×10-4

ξ Gain compression factor 2×10-16 cm3

Γp Optical confinement factor 0.06

aGS GS differential gain 5×10-15 cm2

aES ES differential gain 10×10-15 cm2

aRS RS differential gain 2.5×10-15 cm2

αGS
H GS contribution to αH-factor 0.5

ND QD density per layer 10×1010 cm-2

nQD The number of QD layer 5

NB Total QD number 1×107

DRS Total RS state number 4.8×106

VB The volume of QD region 5×10-11 cm3

VRS The volume of RS region 1×10-11 cm3

Table A.3: Material and optical parameters of the InAs/InxGa1−xSb ICL used in the simulation
[DW20; ZG22a]

Symbol Description Value
T Temperature 300 K

L Cavity length 2 mm

W Cavity width 4.4 µm

nbg Refractive index 3.58
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m stage number 5

αi Internal loss 6 cm-2

R1, R2 Facet reflectivity 0.32 & 0.32

τp Photon lifetime 10.5 ps

τaug Auger lifetime 1.08 ns

η injection efficiency 0.64

N0 Transparent carrier number 6.2×107

βsp Spontaneous emission factor 1×10-4

Γp Optical confinement factor 0.04

a0 Differential gain 2.8×10-10 cm2

αH Linewidth enhancement factor 2.2

Table A.4: Material and optical parameters of the InAs/InxGa1−xSb ICL used in the simulation
[Did+21]

Symbol Description Value
T Temperature 300 K

L Cavity length 3 mm

W Cavity width 10 µm

nbg Refractive index 3.5

m stage number 7

αi Internal loss 5 cm-2

R1, R2 Facet reflectivity 0.32 & 0.32

τp Photon lifetime 10.5 ps

τaug Auger lifetime 1.08 ns

τsp Spontaneous emission time 15 ns

η injection efficiency 0.64

N0 Transparent carrier number 6.2×107

η injection efficiency 0.64

βsp Spontaneous emission factor 1×10-4

Γp Optical confinement factor 0.15

a0 Differential gain 2.8×10-10 cm2

αH Linewidth enhancement factor 3

Table A.5: Material and optical parameters of the InAs/GaAs QD laser used in the simulation

Symbol Description Value Reference
ERS RS energy level 1.25 eV [Sug+00]

EES ES energy level 1.03 eV [Hua+18]

EGS GS energy level 0.95 eV [Hua+18]

T Temperature 293 K ∗1

1The asterisk (∗) notation denotes that the data originates from our experimental observations.
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nr Refractive index 3.5 [Nis+13]

L Cavity length 750 µm [Nis+13]

W Cavity width 2 µm [Nis+13]

nlayer QD layer number 8 [Nis+13]

hQD QD layer height 5 nm [Nis+13]

τRS
ES RS to ES capture time 6.3 ps [Wan+14]

τES
GS ES to GS relaxation time 2.9 ps [Wan+14]

τ
spon
RS RS spontaneous emission lifetime 0.5 ns [Gri+09]

τ
spon
ES ES spontaneous emission lifetime 0.5 ns [Gri+09]

τ
spon
GS GS spontaneous emission lifetime 1.2 ns [Gri+09]

τp Photon lifetime 4.9 ps †2

η injection efficiency 0.18 ∗
βsp Spontaneous emission factor 1×10-4 [Sug+00]

ξ Gain compression factor 2×10-16cm3 [Wan+14]

Γp Optical confinement factor 0.06 [Sug+00]

aGS GS differential gain 5×10-15cm2 [Wan+14]

NB Total QD number 7.08×106 [Nis+13]

VB Active region volume 6×10-11cm3 ‡3

2τp = ( c
nr
)
[
αin +

1
2L ln ( 1

R1 R2
)
]

with c being the velocity of light in vacuum.
3VB = L × W × hQD × nlayer
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Appendix B

Small-Signal Analysis of
Quantum-Confined Lasers

Quantum dot lasers

By following the approach developed in Ref. [McC66; AYS01; CCM12] and utilizing the steady-state
solutions from (3.16)-(3.20), the diffusion coefficients can be expressed as follows:

⟨FRSF∗
RS⟩ = 2DRSRS =

η I
q

+
NES

τES
RS

+
NRS

τRS
ES

(1 − ρES) +
NRS

τ
spon
RS

⟨FESF∗
ES⟩ = 2DESES = (

NRS

τRS
ES

+
NGS

τGS
ES

)(1 − ρES) +
NES

τES
RS

+
NES

τES
GS

(1 − ρGS) +
NES

τ
spon
ES

⟨FGSF∗
GS⟩ = 2DGSGS =

NES

τES
GS

(1 − ρGS) +
NGS

τGS
ES

(1 − ρES) + ΓpvggGSSGS +
NGS

τ
spon
GS

⟨FSF∗
S ⟩ = 2DSS = ΓpvggGSSGS +

SGS
τp

+ βsp
NGS

τ
spon
GS〈

FϕF∗
ϕ

〉
= 2Dϕϕ =

2DSS

4S2
GS

⟨FRSF∗
ES⟩ = 2DRSES = −

[
NRS

τRS
ES

(1 − ρES) +
NES

τES
RS

]

⟨FESF∗
GS⟩ = 2DESGS = −

[
NGS

τGS
ES

(1 − ρES) +
NES

τES
GS

(1 − ρGS)

]

⟨FGSF∗
S ⟩ = 2DGSS = −

[
βsp

NGS

τ
spon
GS

+ ΓpvggGSSGS

]
2DRSϕ = 2DESϕ = 2DGSϕ = 2DSϕ = 0

(B.1)

The QD laser noise features are investigated via a small-signal analysis or linearization with the
rate equations (3.16)-(3.20). Therefore, the corresponding matrix can be derived as

γ11 + jω −γ12 0 0 0
−γ21 γ22 + jω −γ23 0 0

0 −γ32 γ33 + jω −γ34 0
0 0 −γ43 γ44 + jω 0

−γ51 −γ52 −γ53 −γ54 jω




δNRS

δNES

δNGS

δSGS

δϕ

 =


FRS

FES

FGS

FS

Fϕ

 (B.2)
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with

γ11 =
1 − ρES

τRS
ES

+
1

τ
spon
RS

γ12 =
1

τES
RS

+
1

4NB

NRS

τRS
ES

γ21 =
1 − ρES

τRS
ES

γ22 =
1 − ρGS

τES
GS

+
1

τES
RS

+
1

τ
spon
ES

+
1

4NB
(

NRS

τRS
ES

+
NGS

τGS
ES

)

γ23 =
1 − ρES

τGS
ES

+
1

2NB

NES

τES
GS

γ32 =
1 − ρGS

τES
GS

+
1

4NB

NGS

τGS
ES

γ33 =
1 − ρES

τGS
ES

+
1

2NB

NES

τES
GS

+
1

τ
spon
GS

+ ΓpvgaSGS

γ34 = −ΓpvggGS + ΓpvgapSGS

γ43 = ΓpvgaSGS +
βsp

τ
spon
GS

γ44 =
1
τp

− ΓpvggGS + ΓpvgapSGS

γ51 = Γpvga′RSαRS
H

γ52 =
1
4

Γpvga′ESαES
H

γ53 =
1
2

ΓpvgaαGS
H

γ54 = −1
2

ΓpvgapαGS
H

where a and ap take into account the gain compression and also a′ES, a′RS at high photon numbers for
differential gain such as dgGS = adNGS − apdSGS, dgES = a′ESdNGS and dgRS = a′RSdNRS.

a =
∂gGS
∂NGS

=
aGS

1 + ξSGS

1
VB

ap = − ∂gGS
∂SGS

=
ξgGS

1 + ξSGS

a′ES =
aES
VB

a′RS =
aRS
VRS

The RIN of the QD laser emitting on the GS transition is then expressed as follows [Dua+18b]:

RIN(ω) =
|δSGS(ω)|2

S2
GS

(B.3)

with SGS being the average photon number and δSGS(ω) being the photon number variation in the
frequency domain. The determinant of the full matrix in (B.2) is

∆ = det


γ11 + jω −γ12 0 0 0
−γ21 γ22 + jω −γ23 0 0

0 −γ32 γ33 + jω −γ34 0
0 0 −γ43 γ44 + jω 0

−γ51 −γ52 −γ53 −γ54 jω


By applying Cramer’s rule and substituting the fourth column, which represents the effects of all five
equations on the photon number SGS, one obtain:

∆S = det


γ11 + jω −γ12 0 FRS 0
−γ21 γ22 + jω −γ23 FES 0

0 −γ32 γ33 + jω FGS 0
0 0 −γ43 FS 0

−γ51 −γ52 −γ53 Fϕ jω





Appendix B. Small-Signal Analysis of Quantum-Confined Lasers 177

To continue the analytical approach, the Laplace expansion1 is used, which translates ∆S to:

∆S = −FRS MRS−S + FES MES−S − FGS MGS−S + FS MS−S − Fϕ Mϕ−S

where the five minors M are defined as follows

MRS−ϕ = det


−γ21 γ22 + jω −γ23 0

0 −γ32 γ33 + jω 0
0 0 −γ43 0

−γ51 −γ52 −γ53 jω



MES−S = det


γ11 + jω −γ12 0 0

0 −γ32 γ33 + jω 0
0 0 −γ43 0

−γ51 −γ52 −γ53 jω



MGS−S = det


γ11 + jω −γ12 0 0
−γ21 γ22 + jω −γ23 0

0 0 −γ43 0
−γ51 −γ52 −γ53 jω



MS−S = det


γ11 + jω −γ12 0 0
−γ21 γ22 + jω −γ23 0

0 −γ32 γ33 + jω 0
−γ51 −γ52 −γ53 jω



Mϕ−S = det


γ11 + jω −γ12 0 0
−γ21 γ22 + jω −γ23 0

0 −γ32 γ33 + jω 0
0 0 −γ43 0


Let’s now apply the determinants and correlation strengths discussed above to the definition of

RIN in (B.3). The variation in laser photon number, denoted as δSGS, can be obtained as δSGS = ∆S/∆,
so that

RIN(ω) =
|δSGS(ω)|2

S2
GS

=
|∆S|2

S2
GS|∆|2

=
1

S2
GS|∆|2

∣∣−FRSMRS−S + FESMES−S − FGSMGS−S + FS MS−S − Fϕ Mϕ−S
∣∣2

=
1

S2
GS|∆|2

{
⟨FRSF∗

RS⟩ MRS−SM∗
RS−S − ⟨FRSF∗

ES⟩ MRS−SM∗
ES−S + ⟨FRSF∗

GS⟩ MRS−SM∗
GS−S − ⟨FRSF∗

S ⟩ MRS−SM∗
S−S

+
〈

FRSF∗
ϕ

〉
MRS−SM∗

ϕ−S + ⟨FESF∗
ES⟩ MES−SM∗

ES−S − ⟨FESF∗
RS⟩ MES−SM∗

RS−S − ⟨FESF∗
GS⟩ MES−SM∗

GS−S

+ ⟨FESF∗
S ⟩ MES−SM∗

S−S −
〈

FESF∗
ϕ

〉
MES−SM∗

ϕ−S + ⟨FGSF∗
GS⟩ MGS−SM∗

GS−S + ⟨FGSF∗
RS⟩ MGS−SM∗

RS−S

− ⟨FGSF∗
ES⟩ MGS−SM∗

ES−S − ⟨FGSF∗
S ⟩ MGS−SM∗

S−S +
〈

FGSF∗
ϕ

〉
MGS−SM∗

ϕ−S + ⟨FSF∗
S ⟩ MS−SM∗

S−S

− ⟨FSF∗
RS⟩ MS−SM∗

RS−S + ⟨FSF∗
ES⟩ MS−SM∗

ES−S − ⟨FSF∗
GS⟩ MS−SM∗

GS−S −
〈

FSF∗
ϕ

〉
MS−SM∗

ϕ−S

+
〈

FϕF∗
ϕ

〉
Mϕ−S M∗

ϕ−S +
〈

FϕF∗
RS
〉

Mϕ−S M∗
RS−S −

〈
FϕF∗

ES
〉

Mϕ−S M∗
ES−S

+
〈

FϕF∗
GS

〉
Mϕ−S M∗

GS−S −
〈

FϕF∗
S
〉

Mϕ−S M∗
S−S

}
1|A| = det(A) = ∑

j=1
n aij(−1)i+jdet(Aij)
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Due to the presence of zero correlation strengths, the expression for RIN simplifies significantly.

⟨FRSFGS⟩ = ⟨FRSFS⟩ =
〈

FRSFϕ

〉
= ⟨FESFS⟩ =

〈
FESFϕ

〉
=

〈
FGSFϕ

〉
= 0

Furthermore, a real part is introduced due to the property that the sum of an imaginary number
z and its complex conjugate z∗ is equal to a + jb + a − jb = 2a = 2ℜ{z + z∗}. This property applies to
the complex-conjugated minor determinants M∗, which can be expressed as follows:

⟨FRSF∗
ES⟩ MRS−SM∗

ES−S + ⟨FESF∗
RS⟩ MES−SM∗

RS−S = 2 ⟨FRSF∗
ES⟩ ℜ{MRS−SM∗

ES−S}

By applying the same principle as RIN and in (3.9), the frequency noise (FN) of the QD laser can
be expressed as follows:

FN(ω) = |δωS(ω)|2 (B.4)

The angular variation in laser frequency is given by δωS(ω) = jωδϕ = jω∆ϕ/∆, where ωS = 2π f
represents the optical frequency of interest measured in radians per second. To apply Cramer’s rule
once more, one can define ∆ϕ in a similar manner to ∆S, expressed as:

∆ϕ = det


γ11 + jω −γ12 0 0 FRS

−γ21 γ22 + jω −γ23 0 FES

0 −γ32 γ33 + jω −γ34 FGS

0 0 −γ43 γ44 + jω FS

−γ51 −γ52 −γ53 −γ54 Fϕ


Therefore again,

∆ϕ = FRS MRS−ϕ − FES MES−ϕ + FGS MGS−ϕ − FS MS−ϕ + Fϕ Mϕ−ϕ

where the five minors M are defined as follows

MRS−ϕ = det


−γ21 γ22 + jω −γ23 0

0 −γ32 γ33 + jω −γ34

0 0 −γ43 γ44 + jω
−γ51 −γ52 −γ53 −γ54



MES−ϕ = det


γ11 + jω −γ12 0 0

0 −γ32 γ33 + jω −γ34

0 0 −γ43 γ44 + jω
−γ51 −γ52 −γ53 −γ54



MGS−ϕ = det


γ11 + jω −γ12 0 0
−γ21 γ22 + jω −γ23 0

0 0 −γ43 γ44 + jω
−γ51 −γ52 −γ53 −γ54



MS−ϕ = det


γ11 + jω −γ12 0 0
−γ21 γ22 + jω −γ23 0

0 −γ32 γ33 + jω −γ34

−γ51 −γ52 −γ53 −γ54
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Mϕ−ϕ = det


γ11 + jω −γ12 0 0
−γ21 γ22 + jω −γ23 0

0 −γ32 γ33 + jω −γ34

0 0 −γ43 γ44 + jω


Then, the FN spectrum can be calculated as follows:

FN =
ω2

|∆|2
∣∣FRSMRS−ϕ − FESMES−ϕ + FGSMGS−ϕ − FS MS−ϕ + Fϕ Mϕ−ϕ

∣∣2
=

ω2

|∆|2
{
⟨FRSF∗

RS⟩ MRS−ϕ M∗
RS−ϕ − ⟨FRSF∗

ES⟩ MRS−ϕ M∗
ES−ϕ + ⟨FRSF∗

GS⟩ MRS−ϕ M∗
GS−ϕ − ⟨FRSF∗

S ⟩ MRS−ϕ M∗
S−ϕ

+
〈

FRSF∗
ϕ

〉
MRS−ϕ M∗

ϕ−ϕ + ⟨FESF∗
ES⟩ MES−ϕ M∗

ES−ϕ − ⟨FESF∗
RS⟩ MES−ϕ M∗

RS−ϕ − ⟨FESF∗
GS⟩ MES−ϕ M∗

GS−ϕ

+ ⟨FESF∗
S ⟩ MES−ϕ M∗

S−ϕ −
〈

FESF∗
ϕ

〉
MES−ϕ M∗

ϕ−ϕ + ⟨FGSF∗
GS⟩ MGS−ϕ M∗

GS−ϕ + ⟨FGSF∗
RS⟩ MGS−ϕ M∗

RS−ϕ

− ⟨FGSF∗
ES⟩ MGS−ϕ M∗

ES−ϕ − ⟨FGSF∗
S ⟩ MGS−ϕ M∗

S−ϕ +
〈

FGSF∗
ϕ

〉
MGS−ϕ M∗

ϕ−ϕ + ⟨FSF∗
S ⟩ MS−ϕ M∗

S−ϕ

− ⟨FSF∗
RS⟩ MS−ϕ M∗

RS−ϕ + ⟨FSF∗
ES⟩ MS−ϕ M∗

ES−ϕ − ⟨FSF∗
GS⟩ MS−ϕ M∗

GS−ϕ −
〈

FSF∗
ϕ

〉
MS−ϕ M∗

ϕ−ϕ

+
〈

FϕF∗
ϕ

〉
Mϕ−ϕ M∗

ϕ−ϕ +
〈

FϕF∗
RS
〉

Mϕ−ϕ M∗
RS−ϕ −

〈
FϕF∗

ES
〉

Mϕ−ϕ M∗
ES−ϕ

+
〈

FϕF∗
GS

〉
Mϕ−ϕ M∗

GS−ϕ −
〈

FϕF∗
S
〉

Mϕ−ϕ M∗
S−ϕ

}

Interband cascade lasers

The diffusion coefficients among the carrier noise source FN , the photon noise source FS, and the phase
noise source Fϕ of ICLs are derived as [AYS01; CCM12]:

⟨FN F∗
N⟩ = 2DNN = η

I
q
+ G0(N − N0)S +

N
τsp

+
N

τaug

⟨FSF∗
S ⟩ = 2DSS = mG0(N − N0)S +

S
τp

+ mβ
N
τsp〈

FϕF∗
ϕ

〉
= 2Dϕϕ =

2DSS
4S2

⟨FN F∗
S ⟩ = 2DNS = −(mβ

N
τsp

+ mG0(N − N0)S)〈
FN F∗

ϕ

〉
= 2DNϕ = 0〈

FSF∗
ϕ

〉
= 2DSϕ = 0

with G0 being G0 = Γpvga0/A. When considering small-signal modulation, the linearized rate equa-
tions with Langevin terms can be derived in the frequency domain as follows:γ11 + jω γ12 0

−γ21 γ22 + jω 0
−γ31 0 jω


δN(ω)

δS(ω)

δϕ(ω)

 =

FN(ω)

FS(ω)

Fϕ(ω)

 (B.5)

with
γ11 = G0S +

1
τsp

+
1

τaug
; γ12 = G0 (N − N0) ;

γ21 = mG0S + m
β

τsp
; γ22 =

1
τp

− mG0 (N − N0) ;

γ31 =
1
2

mαHG0;
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Following the same analysis in the previous section, the

RIN(ω) =
|δS(ω)|2

S2

By applying Cramer’s rule and substituting the second column, which represents the effects of all
three equations on the photon number S, one obtain

∆S = det

γ11 + jω FN 0
−γ21 FS 0
−γ31 Fϕ jω


To continue the analytical approach, the Laplace expansion is used, which translates ∆S to:

∆S = −FN MN−S + FS MS−S − Fϕ Mϕ−S

where the three minors M are defined as follows

MN−S = det

[
−γ21 0
−γ31 jω

]
; MS−S = det

[
γ11 + jω 0
−γ31 jω

]
; Mϕ−S = det

[
γ11 + jω 0
−γ21 0

]
= 0

Once again, following the same analysis in the previous section, the

FN(ω) = |δωS(ω)|2 = |jωδϕ|2 =

∣∣∣∣jω ∆ϕ

∆

∣∣∣∣2
where ∆ϕ is

∆ϕ = det

γ11 + jω γ12 FN

−γ21 γ22 + jω FS

−γ31 0 Fϕ


Therefore again,

∆ϕ = FN MN−ϕ − FS MS−ϕ + Fϕ Mϕ−ϕ

where the three minors M are defined as follows

MN−ϕ = det

[
−γ21 γ22 + jω
−γ31 0

]
; MS−ϕ = det

[
γ11 + jω γ12

−γ31 0

]
; Mϕ−ϕ = det

[
γ11 + jω γ12

−γ21 γ22 + jω

]
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Appendix C

Density operator and Phase-space
distribution in a (very small) nutshell

Density operator

Quantum-mechanical state vectors |ψ⟩ carry the maximum possible information about a system in
accordance with the principles of quantum mechanics. This information generally comprises quantum
numbers linked to a collection of commuting observables. Moreover, if |ψ1⟩ and |ψ2⟩ are two possible
quantum states, their coherent superposition also represents a valid quantum state:

|ψ⟩ = c1 |ψ1⟩+ c2 |ψ2⟩

if the coefficients c1 and c2 are known. In the scenario where the states |ψ1⟩ and |ψ2⟩ are orthogonal
(⟨ψ2|ψ1⟩ = 0), the condition |c1|2 + |c2|2 = 1 must hold. However, there are frequent cases, and in
fact, more often than not, where the state vector is not precisely determined. Such situations arise, for
example, when the system of interest interacts with another system, possibly a significantly large one
such as a reservoir, resulting in entanglement between the two systems. Quantum states described by
state vectors are referred to as pure states. On the other hand, states that cannot be fully characterized
by state vectors are classified as mixed states. Mixed states are represented by density operators ρ̂:

ρ̂ = ∑
i
|ψi⟩ pi ⟨ψi| = ∑

i
pi |ψi⟩ ⟨ψi| (C.1)

Here, the summation is performed across an ensemble, akin to the concept in statistical mechanics. In
this context, pi signifies the probability of the system occupying the ith state of the ensemble, denoted
by |ψi⟩, where the condition ⟨ψi|ψi⟩ = 1 holds. The probabilities satisfy the evident relationships:

0 ≤ pi ≤ 1, ∑
i

pi = 1, ∑
i

p2
i ≤ 1

For the specific case in which all pi except the jth one are equal to zero, i.e., pi = δij, one can derive:

ρ̂ =
∣∣ψj

〉 〈
ψj
∣∣

the density operator corresponding to the pure state
∣∣ψj

〉
is obtained. Notably, in this specific instance,

the density operator is essentially the projection operator onto the state
∣∣ψj

〉
. In the broader context

presented by (C.1), the density operator takes the form of a summation involving projection operators
across the ensemble, with each projection operator weighted by the respective probabilities associated
with each ensemble member.
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Now, let’s introduce a complete, orthonormal basis |φn⟩, (∑n |φn⟩ ⟨φn| = Î), which represents
eigenstates of a certain observable. Then for the ith member of the ensemble:

|ψi⟩ = ∑
n
|φn⟩ ⟨φn | ψi⟩ = ∑

n
c(i)n |φn⟩

where c(i)n = ⟨φn | ψi⟩. The matrix element of ρ̂ between the n and n′ eigenstates is

⟨φn|ρ̂|φn′⟩ = ∑
i
⟨φn | ψi⟩ pi ⟨ψi | φn′⟩ = ∑

i
pic

(i)
n c(i)

∗

n′

The quantities ⟨φn|ρ̂|φn′⟩ form the elements of the density matrix. Taking the trace of this matrix

Tr ρ̂ = ∑
n
⟨φn|ρ̂|φn⟩ = ∑

i
∑
n
⟨φn | ψi⟩ pi ⟨ψi | φn⟩

= ∑
i

∑
n

pi ⟨ψi | φn⟩ ⟨φn | ψi⟩ = ∑
i

pi = 1
(C.2)

Since the density operator ρ̂ is Hermitian (as indicated by its construction in (C.1)), the diagonal ele-
ments ⟨φn|ρ̂|φn⟩ must be real. Consequently, it follows from (C.2) that 0 ≤ ⟨φn|ρ̂|φn⟩ ≤ 1. For one of
the states of the ensemble |ψi⟩, by itself pure, the expectation value of some operator Ô is given by

〈
Ô
〉

i =
〈
ψi|Ô|ψi

〉
For the statistical mixture, the ensemble average is given by

〈
Ô
〉
= ∑

i
pi
〈
ψi|Ô|ψi

〉
which is the average of the quantum-mechanical expectation values weighted by the probabilities pi.
Formally, this can be expressed as

〈
Ô
〉
= Tr(ρ̂Ô) (C.3)

since

Tr(ρ̂Ô) = ∑
n

〈
φn|ρ̂Ô|φn

〉
= ∑

n
∑

i
pi ⟨φn | ψi⟩

〈
ψi|Ô|φn

〉
= ∑

i
∑
n

pi
〈
ψi|Ô|φn

〉
⟨φn | ψi⟩

= ∑
i

pi
〈
ψi|Ô|ψi

〉

Phase-space distribution

Since the density operator ρ̂ can be expanded in terms of the photon number states:

ρ̂ = ∑
n

∑
m
|n⟩ ⟨n| ρ̂ |m⟩ ⟨m| = ∑

n
∑
m

ρ̂nm |n⟩ ⟨m|

All the matrix elements ρmn = ⟨m|ρ̂|n⟩ are needed to fully determine the operator ρ̂. The diagonal
elements, pn = ρnn, correspond to the probabilities of observing n photons in the field. Likewise, the
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expansion can be made in terms of the coherent states as

ρ̂ =
∫ ∫ d2α

π

d2β

π
|α⟩ ⟨α| ρ̂ |β⟩ ⟨β| (C.4)

However, there exists an alternative method to express ρ̂ in terms of coherent states, resulting in
⟨α| ρ̂ |β⟩ = P(α, α∗)δ2(α − β), which is:

ρ̂ =
∫

P(α, α∗) |α⟩ ⟨α|d2α (C.5)

where P(α, α∗) is a weight function often referred to as the Glauber–Sudarshan P function. The expres-
sion on the right-hand side of (C.5) represents the "diagonal" representation of the density operator,
and the P function is analogous to the phase-space distributions encountered in statistical mechanics.
In this context, the real and imaginary components of α function are the variables of the phase space.
Notably, P(α, α∗) is constrained to be real due to the Hermitian nature of the operator ρ̂. Then,

Tr ρ̂ = Tr
∫

P(α, α∗)|α⟩⟨α|d2α

=
∫

∑
n

P(α, α∗)⟨n | α⟩⟨α | n⟩d2α

=
∫

P(α, α∗)∑
n
⟨α | n⟩⟨n | α⟩d2α

=
∫

P(α, α∗)⟨α | α⟩d2α =
∫

P(α, α∗)d2α = 1,

P(α, α∗) can also serve to calculate any normal-ordered operators in the quantum averages (with
annihilation operators to the right and creation operators to the left).〈

(â†)m ân
〉
= Tr

[
ρ̂(â†)m ân

]
=

∫
(α∗)mαnP(α, α∗)d2α

However, for certain quantum states of light, the properties of P(α, α∗) can deviate significantly
from those of a conventional probability distribution, where one would naturally anticipate P(α, α∗) ≥
0. There exist quantum states for which P(α, α∗) becomes negative or exhibits highly singular be-
haviour. In such instances, the corresponding quantum states are termed "nonclassical". This may be
seen by the following explicit calculation:

〈
∆X2

〉
=

1
4

〈
(â + â†)2 −

〈
â + â†

〉2
〉

(C.6)

=
1
4

[〈
â2 + (â†)2 + 2â† â + 1

〉
−

〈
â + â†

〉2
]

=
1
4

{
1 +

∫
d2αP(α, α∗)

[
(α + α∗)2 − ⟨α + α∗⟩2

]}
which shows that

〈
∆X2〉 < 1

4 only if P(α, α∗) is not positive definite. The constant term 1
4 appears on

the right-hand side of (C.6) coming from the commutator of â and â† during the process of normal-
ordering the original expression. It essentially represents a manifestation of the quantum character of
the light, often referred to as "shot noise."

When considering anti-normal ordering, the Husimi Q representation can be readily acquired:

〈
âm(â†)n

〉
=

1
π

∫
αm(α∗)n ⟨α| ρ̂ |α⟩d2α
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so that

Q(α) =
1
π
⟨α| ρ̂ |α⟩

It is clear that this representation is always positive since ρ̂ is a positive-definite operator. Also,
|Q(α)| ⩽ 1/π. For a coherent state |β⟩, one gets that Q(α) is a Gaussian in phase space:

Q(α) =
1
π

e−|α−β|2

It’s worth noting that, with regard to the Q representation, the equation is equivalent to (C.6) is:

〈
∆X2

〉
=

1
4

[〈
â2 + (â†)2 + 2ââ† − 1

〉
−

〈
â + â†

〉2
]

(C.7)

=
1
4

{
−1 +

∫
d2αQ(α)

[
(α + α∗)2 − ⟨α + α∗⟩2

]}
Employing symmetrical ordering of the operators gives rise to the Wigner representation denoted

as W(α) [Wig32]. This representation can be demonstrated to be always nonsingular, although it might
still exhibit negative values. It should be noted that the equation equivalent to (C.6) is now:

〈
∆X2

〉
=

1
4

[〈
â2 + (â†)2 + ââ† + â† â

〉
−

〈
â + â†

〉2
]

(C.8)

=
1
4

∫
d2αW(α)

[
(α + α∗)2 − ⟨α + α∗⟩2

]
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Appendix D

Balanced Homodyne Detection

Fig. D.1 illustrates the schematic of balanced homodyne detection. Mode "â" comprises the single field
that could potentially be squeezed, while mode "b̂" holds a strong coherent classical field, which can be
considered as a coherent state with amplitude β. The beam splitter is assumed to be of equal division
(50:50). According to the quantum theory of beamsplitter,

ĉ =
1√
2
(â + ib̂); d̂ =

1√
2
(b̂ + iâ) (D.1)

The detectors placed in the output beams measure the intensities Ic =
〈
ĉ† ĉ

〉
and Id =

〈
d̂†d̂

〉
, and

the difference in these intensities is

Ic − Id = ⟨n̂cd⟩ =
〈

ĉ† ĉ − d̂†d̂
〉
= i

〈
â† b̂ − âb̂†

〉
(D.2)

Assuming the mode b̂ to be in the coherent state
∣∣βe−iωt〉, with β = |β|e−iΨ, then:

⟨n̂cd⟩ = |β|
[

âeiωte−iθ + â†e−iωteiθ
]

(D.3)

Here, θ = Ψ + π/2. Assuming that the light in mode "â" is also at frequency ω (and, in practice, both
the "â" and "b̂" mode light fields originate from the same laser), one can assign â = â0e−iωt so that

⟨n̂cd⟩ = 2|β|
〈

X̂(θ)
〉

(D.4)

where

X̂(θ) =
1
2

[
â0e−iθ + â†

0eiθ
]

is the field quadrature operator at the angle θ. By varying θ, achievable by altering the phase Ψ of
the local oscillator (LO), one can effectively measure any desired quadrature of the signal field. In the
case of a strong LO (much larger than the input signal), the variance of the output photon number
difference operator ⟨n̂cd⟩ can be stated as:〈

∆n̂2
cd

〉
= 4|β|2

〈
∆X̂2(θ)

〉
(D.5)

The dominant term now is only due to the interference between the input signal noise and the LO
power and the LO noise is eliminated completely. Under the input squeezing condition

〈
∆X̂2(θ)

〉
<

1
4 , one ca deduce that

〈
∆n̂2

cd
〉
< |β|2. In practical experiments, the phase of the LO is adjusted to

yield the maximum possible quadrature squeezing. The shot-noise level is calibrated by blocking the
signal field, ensuring that only the LO field reaches the detector. The measurement outcomes are then
subjected to spectral analysis, allowing the determination of the amount of squeezing as a function of
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the frequency.

Figure D.1: Schematic of the balanced homodyne method for the detection squeezing. The field to be
detected enters along â while a strong coherent field is injected along b̂. The boxes in the lower left and
upper right represent photodetectors measuring the respective photocurrents. The box on the lower
right represents a correlation device that subtracts the photocurrents.

By incorporating additional beam splitters, it becomes possible to perform simultaneous balanced
homodyne measurements on both quadratures of the input signal. Such a configuration requires
a minimum of four beam splitters. However, it’s essential to acknowledge that this arrangement
is consistently influenced by vacuum fluctuations that enter through the unused ports. In practice,
balanced homodyne detection is the most commonly employed scheme for detecting squeezed states
of light.
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[Sto+18] V. Stojanović, R. J. Ram, M. Popović, S. Lin, S. Moazeni, M. Wade, C. Sun, L. Alloatti,
A. Atabaki, F. Pavanello, et al. “Monolithic silicon-photonic platforms in state-of-the-art
CMOS SOI processes”. In: Optics express 26.10 (2018), pp. 13106–13121.

[Sud63] E. Sudarshan. “Equivalence of semiclassical and quantum mechanical descriptions of
statistical light beams”. In: Physical Review Letters 10.7 (1963), p. 277.

[Sug+00] M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto. “Effect of homoge-
neous broadening of optical gain on lasing spectra in self-assembled In x Ga 1- x A s/G
a A s quantum dot lasers”. In: Physical Review B 61.11 (2000), p. 7595.

[SZ99] M. O. Scully and M. S. Zubairy. Quantum optics. 1999.

[Tar+20] F. Tariq, M. R. Khandaker, K.-K. Wong, M. A. Imran, M. Bennis, and M. Debbah. “A
speculative study on 6G”. In: IEEE Wireless Communications 27.4 (2020), pp. 118–125.

[Tas+21] J. F. Tasker, J. Frazer, G. Ferranti, E. J. Allen, L. F. Brunel, S. Tanzilli, V. D’Auria, and J. C.
Matthews. “Silicon photonics interfaced with integrated electronics for 9 GHz measure-
ment of squeezed light”. In: Nature Photonics 15.1 (2021), pp. 11–15.



202 Bibliography

[THB19] M. A. Tran, D. Huang, and J. E. Bowers. “Tutorial on narrow linewidth tunable semi-
conductor lasers using Si/III-V heterogeneous integration”. In: APL photonics 4.11 (2019),
p. 111101.

[TL01] S. Tang and J. Liu. “Chaotic pulsing and quasi-periodic route to chaos in a semiconductor
laser with delayed opto-electronic feedback”. In: IEEE Journal of Quantum Electronics 37.3
(2001), pp. 329–336.

[TLO94] B. Tromborg, H. E. Lassen, and H. Olesen. “Traveling wave analysis of semiconductor
lasers: modulation responses, mode stability and quantum mechanical treatment of noise
spectra”. In: IEEE Journal of Quantum Electronics 30.4 (1994), pp. 939–956.

[TOP91] B. Tromborg, H. Olesen, and X. Pan. “Theory of linewidth for multielectrode laser diodes
with spatially distributed noise sources”. In: IEEE Journal of Quantum Electronics 27.2
(1991), pp. 178–192.

[Tou+22] E. Tournié, L. Monge Bartolome, M. Rio Calvo, Z. Loghmari, D. A. Díaz-Thomas, R.
Teissier, A. N. Baranov, L. Cerutti, and J.-B. Rodriguez. “Mid-infrared III-V semiconduc-
tor lasers epitaxially grown on Si substrates”. In: Light: Science & Applications 11.1 (2022),
p. 165.

[Tra+22] M. A. Tran, C. Zhang, T. J. Morin, L. Chang, S. Barik, Z. Yuan, W. Lee, G. Kim, A. Malik,
Z. Zhang, et al. “Extending the spectrum of fully integrated photonics to submicrometre
wavelengths”. In: Nature 610.7930 (2022), pp. 54–60.

[TRS87] P. Tapster, J. Rarity, and J. Satchell. “Generation of sub-Poissonian light by high-efficiency
light-emitting diodes”. In: Europhysics Letters 4.3 (1987), p. 293.

[TS85] M. C. Teich and B. E. Saleh. “Observation of sub-Poisson Franck–Hertz light at 253.7 nm”.
In: JOSA B 2.2 (1985), pp. 275–282.

[Uch12] A. Uchida. Optical communication with chaotic lasers: applications of nonlinear dynamics and
synchronization. John Wiley & Sons, 2012.

[Ulr+07] S. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel,
F. Jahnke, and P. Michler. “Photon statistics of semiconductor microcavity lasers”. In:
Physical Review Letters 98.4 (2007), p. 043906.

[Usk+98] A. Uskov, J. McInerney, F. Adler, H. Schweizer, and M. Pilkuhn. “Auger carrier capture
kinetics in self-assembled quantum dot structures”. In: Applied Physics Letters 72.1 (1998),
pp. 58–60.

[Vah+16] H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel. “Detection of 15 dB squeezed
states of light and their application for the absolute calibration of photoelectric quantum
efficiency”. In: Physical Review Letters 117.11 (2016), p. 110801.

[Vaj+22] D. A. Vajner, L. Rickert, T. Gao, K. Kaymazlar, and T. Heindel. “Quantum communica-
tion using semiconductor quantum dots”. In: Advanced Quantum Technologies 5.7 (2022),
p. 2100116.

[Van+00] A. Van der Lee, N. Van Druten, M. Van Exter, J. Woerdman, J.-P. Poizat, and P. Grangier.
“Critical Petermann K factor for intensity noise squeezing”. In: Physical Review Letters
85.22 (2000), p. 4711.

[Van55] A. Van Der Ziel. “Theory of shot noise in junction diodes and junction transistors”. In:
Proceedings of the IRE 43.11 (1955), pp. 1639–1646.



Bibliography 203

[Vas+22] E. Vashukevich, V. Lebedev, I. Ilichev, P. Agruzov, A. Shamrai, V. Petrov, and T. Y. Gol-
ubeva. “Broadband Chip-Based Source of Quantum Noise with Electrically Controllable
Beam Splitter”. In: Physical Review Applied 17.6 (2022), p. 064039.

[Ves+07] K. Veselinov, F. Grillot, C. Cornet, J. Even, A. Bekiarski, M. Gioannini, and S. Loualiche.
“Analysis of the Double Laser Emission Occurring in 1.55-µm InAs-InP (113) B Quantum-
Dot Lasers”. In: IEEE Journal of Quantum Electronics 43.9 (2007), pp. 810–816.

[VG97] J.-L. Vey and P. Gallion. “Semiclassical model of semiconductor laser noise and amplitude
noise squeezing. I. Description and application to Fabry-Perot laser”. In: IEEE Journal of
Quantum Electronics 33.11 (1997), pp. 2097–2104.

[Vil08] A. S. Villar. “The conversion of phase to amplitude fluctuations of a light beam by an
optical cavity”. In: American Journal of Physics 76.10 (2008), pp. 922–929.

[Vur+11] I. Vurgaftman, W. Bewley, C. Canedy, C. Kim, M. Kim, C. Merritt, J. Abell, J. Lindle, and J.
Meyer. “Rebalancing of internally generated carriers for mid-infrared interband cascade
lasers with very low power consumption”. In: Nature communications 2.1 (2011), p. 585.

[VY84] K. Vahala and A. Yariv. “Detuned loading in coupled cavity semiconductor lasers—Effect
on quantum noise and dynamics”. In: Applied physics letters 45.5 (1984), pp. 501–503.

[Wal83] D. F. Walls. “Squeezed states of light”. In: Nature 306.5939 (1983), pp. 141–146.
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Résumé : Les lasers à semiconducteurs sont devenus om-
niprésents aussi bien dans la recherche scientifique que dans les appli-
cations en ingénierie, et leur miniaturisation a fait d’importants progrès
depuis leur première démonstration en 1960. Deux avancées majeures
dans ce domaine incluent les lasers à boı̂tes quantiques (QD), qui
opèrent dans la plage de longueurs d’onde proche de l’infrarouge, et
les lasers à cascade interbande (ICL), conçus pour une utilisation dans
le moyen infrarouge. Dans le paysage actuel de l’optoélectronique, les
circuits intégrés photoniques (CIP) jouent un rôle essentiel et étendu.
Ils offrent une évolutivité inégalée, un poids réduit, une rentabilité et
une efficacité énergétique en permettant la fabrication de systèmes op-
tiques complets à l’aide de blocs de construction polyvalents intégrés
sur une seule puce. Dans ce contexte, la croissance épitaxiale directe
de matériaux III-V sur du silicium offre des perspectives prometteuses
en tant qu’approche convaincante pour le développement de sources
laser cohérentes. Les lasers à boı̂tes quantiques, avec leur confine-
ment ultime des porteurs en trois dimensions, leur grande stabilité
thermique et leur tolérance robuste aux défauts épitaxiaux, sont des
candidats prometteurs pour servir de sources laser sur puce. De plus,
les ICL sont également bien adaptés à l’intégration dans le silicium,
ce qui en fait des candidats idéaux pour les systèmes compacts de
détection chimique. Les considérations liées au bruit sont en effet pri-
mordiales lorsqu’il s’agit d’évaluer la qualité et la fiabilité des cette tech-
nologie. Atteindre la limite du bruit de grenaille et la largeur de raie de
Schawlow-Townes a longtemps été reconnu comme des étapes signi-
ficatives. Pour résoudre les problèmes de bruit, toute une gamme de
techniques de réduction du bruit a été explorée, allant de la rétroaction

optique passive dans une cavité externe aux mécanismes actifs de
rétroaction électronique visant à compenser les fluctuations du courant
d’injection. Cependant, bien que les systèmes de rétroaction puissent
atténuer le bruit du laser, ils peuvent également introduire des dyna-
miques non linéaires plus complexes, donnant lieu à des phénomènes
tels que l’oscillation périodique, l’oscillation en créneaux et le chaos.
La première partie de cette thèse porte sur une investigation appro-
fondie du bruit et de la dynamique dans deux types de lasers distincts.
On constate que les lasers à boı̂tes quantiques présentent un degré
élevé de robustesse lorsqu’ils sont exposés à des réflexions optiques
parasites, mais manifestent une sensibilité accrue à la rétroaction
optoélectronique. En revanche, les ICL affichent une gamme de com-
portements dynamiques lorsqu’ils sont soumis à une rétroaction op-
tique. De plus, les récents progrès dans les circuits de pompage à
faible bruit pour les lasers ont conduit à la génération de lumière com-
primée en amplitude. Il s’agit d’une transition du bruit classique au
bruit quantique, ouvrant de nouvelles possibilités dans le domaine de
la technologie laser et de l’optique quantique. La deuxième partie de
cette thèse se penche sur le phénomène de la compression en ampli-
tude à la fois dans les lasers à boı̂tes quantiques et dans les ICL. Les
résultats indiquent que les deux types de lasers peuvent présenter une
large bande passante de compression et un niveau significatif de com-
pression. Toutes ces conclusions dans cette étude contribuent à une
compréhension plus profonde des caractéristiques des lasers à boı̂tes
quantiques et des ICL, jetant les bases du développement de sources
émettrices classiques et quantiques de haute performance sur des CIP
à l’avenir.

Title : Noise, Dynamics and Squeezed Light in Quantum Dot and Interband Cascade Lasers

Keywords : Quantum Dot Lasers, Interband Cascade Lasers, Noise, Nonlinear Dynamics, Squeezed light

Abstract : Semiconductor lasers have become ubiquitous in both
scientific research and engineering applications, and their miniaturi-
zation has made significant strides since their initial demonstration in
1960. Two prominent advancements in this domain include quantum
dot (QD) lasers, which operate in the near-infrared wavelength range,
and interband cascade lasers (ICLs), designed for mid-infrared opera-
tion. Two prominent advancements in this domain include quantum dot
(QD) lasers, which operate in the near-infrared wavelength range, and
interband cascade lasers (ICLs), designed for mid-infrared operation.
In the current landscape of optoelectronics, photonic integrated circuits
(PICs) play a pivotal and far-reaching role. They offer unmatched scala-
bility, reduced weight, cost-effectiveness, and energy efficiency by en-
abling the fabrication of complete optical systems using versatile buil-
ding blocks seamlessly integrated onto a single chip. In this context,
the direct epitaxial growth of III-V materials on silicon holds promise as
a compelling approach for the development of coherent laser sources.
QD lasers with their ultimate three-dimensional carrier confinement,
high thermal stability, and robust tolerance for epitaxial defects are pro-
mising candidates for serving as on-chip laser sources. Additionally,
ICLs are also well-suited for integration into silicon, making them ideal
for compact chemical sensing systems. Noise considerations are in-
deed paramount when it comes to assessing the quality and reliabi-
lity of technologies. Achieving the shot noise limit and the Schawlow-
Townes linewidth has long been recognized as significant milestones.

To tackle noise issues, a range of noise reduction techniques has been
explored, encompassing passive optical feedback within an external
cavity and active electronic feedback mechanisms to compensate for
injection current fluctuations. However, while feedback systems can mi-
tigate laser noise, they can also introduce more intricate nonlinear dy-
namics, giving rise to phenomena like periodic oscillation, square-wave
oscillation, and chaos. The first part of this thesis involves an in-depth
investigation into noise and dynamics in two distinct laser types. QD
lasers are found to exhibit a high degree of robustness when exposed
to parasitic optical reflections but manifest increased sensitivity to op-
toelectronic feedback. Conversely, ICLs display a spectrum of dynamic
behaviours when subjected to optical feedback. Furthermore, recent
advancements in low-noise pumping circuits for lasers have led to the
generation of amplitude-squeezed light. This represents a transition
from classical noise to quantum noise, opening up new possibilities
in the field of laser technology and quantum optics. The second part
of this thesis delves into the phenomenon of amplitude squeezing in
both QD lasers and ICLs. The findings indicate that both types of la-
sers can exhibit broadband squeezing bandwidth and a significant level
of squeezing. All these outcomes in this study contribute to a deeper
comprehension of the characteristics of QD lasers and ICLs, laying
the groundwork for the development of high-performance classical and
quantum emitters on PICs in the future.
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