
HAL Id: tel-04861137
https://theses.hal.science/tel-04861137v1

Submitted on 2 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Joint offloading-scheduling policies for future generation
wireless networks

Ibrahim Djemai

To cite this version:
Ibrahim Djemai. Joint offloading-scheduling policies for future generation wireless networks. Mobile
Computing. Institut Polytechnique de Paris, 2024. English. �NNT : 2024IPPAS007�. �tel-04861137�

https://theses.hal.science/tel-04861137v1
https://hal.archives-ouvertes.fr

626

N
N

T
:2

02
4I

P
PA

S
00

7

Joint Offloading-Scheduling Policies for
Future Generation Wireless Networks

Thèse de doctorat de l’Institut Polytechnique de Paris
préparée à Télécom SudParis

École doctorale n◦626 École doctorale de l’Institut Polytechnique de Paris (EDIPP)
Spécialité de doctorat : Réseaux, Information et Communications

Thèse présentée et soutenue à Palaiseau, le 18 Mars 2024, par

IBRAHIM DJEMAI

Composition du Jury :

Luc Vandendorpe
Professeur, UCLouvain (ICTEAM) Président

Loutfi Nuaymi
Professeur, IMT Atlantique (IRISA) Rapporteur

Philippe Mary
Professeur, INSA Rennes (IETR) Rapporteur

E. Veronica Belmega
Professeure, Université Gustave Eiffel (ESIEE Paris, LIGM) Examinatrice

Salah El Ayoubi
Professeur, CentraleSupélec (CNRS-L2S) Examinateur

Mireille Sarkiss
Maîtresse de conférences, Télécom SudParis (SAMOVAR) Co-Encadrante de thèse

Philippe Ciblat
Professeur, Télécom Paris (LTCI) Directeur de thèse

Frédéric Lehmann
Professeur, Télécom SudParis (SAMOVAR) Co-Directeur de thèse

To my beloved parents,

For your unwavering love, encouragement, and sacrifices that have shaped me into the
person I am today. You have been my source of inspiration to continue in this journey,
and your constant support and belief in my abilities have been my guiding light. I am
forever grateful for everything you have done for me.

To my dear brothers, Mohammed and Idriss, and my dear sister, Khadidja,

Thank you for being my pillars of strength, my confidants, and my closest allies. Your
presence in my life has brought me immense joy and inspiration. I am blessed to have you
by my side, cheering me on every step of the way.

And to Allah, for giving us the strength and guidance to push through the difficulties along
this academic pursuit.

With love and gratitude,
Ibrahim

Acknowledgements

I extend my heartfelt gratitude to Mrs Mireille Sarkiss, my co-supervisor, for her invaluable
guidance, support, and expertise throughout the course of my research. Her mentorship
has been instrumental in shaping the direction of this thesis and in nurturing my growth
as a researcher.

I am equally indebted to Mr Philippe Ciblat, my thesis director, whose insightful feed-
back, encouragement, and patience have been instrumental in refining this work. His
dedication to excellence, attention to details, and unwavering support have been a con-
stant source of inspiration.

Many thanks to Mr Frédéric Lehmann, my thesis co-director, whose invaluable assis-
tance with this research project and continuous support have significantly contributed to
its success

I would like to extend my appreciation to the esteemed members of the jury, notably
the referees, Mr Philippe Mary and Mr Loutfi Nuaymi, as well as the examiners, Mrs
Veronica Belmega, Mr Luc Vandendorpe, and Mr Salah El Ayoubi, for their time, exper-
tise, and valuable insights during the evaluation of this thesis. Their constructive feedback
and rigorous examination have greatly contributed to the enhancement of this research.

Lastly, I express my gratitude towards my friends and colleagues from the COMNUM
group, and from outside the school as well, and every individual who has played a part,
big or small, in the completion of this thesis.

vi

Contents

Acronyms xi

Introduction (English) 1

Introduction (Français) 8

I Preliminaries 17

1 Communication-Based Preliminaries 19
1.1 Edge Computing . 20
1.2 Energy Harvesting . 22

1.2.1 Energy Harvesting Sources and Modeling 23
1.3 Data Models . 25
1.4 Non-Orthogonal Multiple Access . 26

1.4.1 Uplink NOMA . 28
1.4.2 Downlink NOMA . 29
1.4.3 Clustering NOMA Users . 30

2 Learning-Based Preliminaries 33
2.1 Neural Networks . 35
2.2 Reinforcement Learning . 36

2.2.1 Markov Modeling . 36
2.2.2 MDP-related functions . 38
2.2.3 Model-based Methods . 41
2.2.4 Model-free Methods . 42

2.3 Federated Learning . 48

II Contributions 51

3 Optimal Scheduling-Offloading Policies 53
3.1 System Model . 56

3.1.1 Data Buffer Model . 56
3.1.2 Channel Model . 57
3.1.3 Scheduling Decisions . 58

Contents

3.1.4 Energy Consumed . 59
3.1.5 Time Constraints . 60

3.2 Problem Formulation and Resolution . 60
3.2.1 Problem Formulation . 60
3.2.2 Problem Resolution . 64

3.3 Simulation Results . 64
3.4 Extension to an EH-based System . 70

3.4.1 Energy & Battery Model . 71
3.4.2 Problem Formulation and Resolution 71
3.4.3 Simulation Results . 72

3.5 Conclusion . 76

4 Multi-Cluster System with Federated Reinforcement Learning 77
4.1 System Model . 81

4.1.1 Channel Model . 82
4.1.2 Transmission Model . 83
4.1.3 Data Buffer Model . 85
4.1.4 Energy and Battery Model . 86
4.1.5 Scheduling Decisions . 87
4.1.6 Consumed Energy . 87
4.1.7 Time Constraints . 88

4.2 Problem Formulation and Resolution . 89
4.2.1 Problem Formulation . 89
4.2.2 Proposed Resolution . 91

4.3 Simulation Results . 98
4.4 Conclusion . 102

Conclusions and perspectives 103

viii

List of Figures

1 Number of mobile subscriptions worldwide. 2
2 Number of connected IoT devices worldwide. 3
3 5G areas of focus. Source: [4]. 4
4 Nombre d’abonnements mobiles dans le monde. 10
5 Nombre d’appareils IoT connectés dans le monde. 11
6 Domaines d’intervention de la 5G. Source : [4]. 12

1.1 Basic mobile cloud computing MCC architecture. 21
1.2 Edge to cloud architecture layers. Source: [3]. 22
1.3 Solar energy conversion. 24
1.4 RF energy conversion. 25
1.5 NOMA multiplexing. 28
1.6 Uplink NOMA. 28
1.7 Downlink NOMA. 29
1.8 Downlink rate region for 2 UEs in NOMA and FDMA. Source: [49]. 30

2.1 Artificial intelligence AI branches. 34
2.2 Artificial neural network ANN example. 35
2.3 Markov chain example with 3 states. 37
2.4 Markov reward process example. 38
2.5 Markov decision process example. 38
2.6 RL agent interaction with the environment. 39
2.7 Relationship between the value function and the Q-function. 41
2.8 DQN agent exploring the environment. 44
2.9 Federated learning general structure. Source [69]. 49

3.1 System model. 57
3.2 Buffer model. 57
3.3 Total discounted cost (negative reward) averaged over 1000 episodes vs av-

erage packet arrival rate µd, with NOMA. 66
3.4 Total discounted cost (negative reward) averaged over 1000 episodes vs av-

erage packet arrival rate µd, with TDMA. 66
3.5 Total discounted cost comparison between NOMA and TDMA with µd = 0.5. 67
3.6 Total discounted cost comparison between NOMA and TDMA with µd = 1. 67
3.7 Total discounted cost comparison between NOMA and TDMA with µd = 1.5. 67

List of Figures

3.8 Pie chart of the percentage of actions taken during an episode with µd = 1.0

for VI (NW), PI (NE), DQN (SW), and QL (SE) algorithms. (1/red) =
NOMA, (2/gray) = Regular Offload, (3/orange) = Local, (4/green) = Idle. 68

3.9 Performance of reinforcement learning algorithms : 2QL and DQN with a
bigger state space configuration (Sd = 4, |X | = 4,∇ = 3). 69

3.10 System model with energy harvesting. 70
3.11 Percentage of dropped packets vs µd for NOMA. 74
3.12 Percentage of dropped packets vs µd for TDMA. 74
3.13 Number of consumed energy units per episode vs µd with NOMA. 75
3.14 Number of consumed energy units per episode vs µd with TDMA. 75

4.1 Multi-cluster system model with one cluster head CH for each cluster, which
has the decision-making model. 82

4.2 Channel modeling and quantization. 83
4.3 Federated reinforcement learning procedure. (A) : The local models trained

with clusters information, and transmitted to the central node (MEC Server).
(B) : The global model weights aggregated from the received local weights,
and broadcasted to the nodes (CHs). 92

4.4 Information sharing with the cluster head. 93
4.5 Displacement of UEs in the grid around the BS, with different channel sub-

intervals (levels) and angles. 94
4.6 Clustering the UEs following their polar coordinates. 95
4.7 Average percentage of dropped packets for each approach. 100
4.8 Average energy units consumed for each approach. 100
4.9 Average percentage of taken actions by each UE over all the clusters with

NUE = 2 UEs (idle actions represent 63.6%). 101
4.10 Average percentage of taken actions by each UE over all the clusters with

NUE = 3 UEs (idle actions represent 77.1%). 101
4.11 Average percentage of taken actions by each UE over all the clusters with

NUE = 4 UEs (idle actions represent 73.2%). 101

x

Acronyms

2QL Double Q-Learning 43, 44, 64, 65, 69

5G Fifth Generation 2, 4, 10, 12, 13, 26, 27, 54

AI Artificial Intelligence 2, 5, 7, 10, 15, 20, 34, 36, 80, 104

ANN Artificial Neural Network 24

AWGN Additive White Gaussian Noise 28, 57, 82

BS Base Station 3, 6, 11, 14, 20, 21, 23, 27–30, 49, 54–58, 79–85, 87, 91, 93, 94, 98,
104–106

CDF Cumulative Distribution Function 62

CDMA Code Division Multiple Access 27

CH Cluster Head 79, 81, 82, 87, 91

CNN Convolutional Neural Network 36

CSIT Channel State Information at the Transmitter 57, 82

DL Downlink 28–31, 54, 57–59, 64, 65, 79, 81–83, 85, 88, 93, 98, 105

DNN Deep Neural Network 5, 13

DPP Determinantal Point Process 25

DQN Deep Q-Network 44–46, 64, 65, 68, 69, 72, 73, 76, 78, 80, 104

DRL Deep Reinforcement Learning 5–7, 13–15, 54–56, 70, 72, 76, 78–80, 91, 97, 104, 105

EH Energy Harvesting 4, 5, 7, 12, 14, 15, 25, 54, 55, 70–72, 76, 81, 82, 98, 104, 105

EMBB Enhanced Mobile Broadband 3, 4, 11, 12, 27, 31

EN Evaluation Network 44, 45

ER Experience Replay 45, 46, 72, 73

Acronyms

FDMA Frequency Division Multiple Access 4, 12, 27, 30, 79, 82, 83, 85, 105

FedRL Federated Reinforcement Learning 6, 15, 78–80, 91, 106

FL Federated Learning 6, 15, 35, 48, 49, 78, 80, 90, 91, 102, 105

GoP Groups-of-Picture 26

ICT Information and Communication Technologies 2, 3, 10, 11, 22

IMM Immediate Scheduler 73, 99

IoT Internet of Things 2–4, 10–12, 20–22, 26, 31, 49, 54, 55, 80, 86

KL Kullback-Leibler 46, 47

LAN Local Area Network 20

LLM Large Language Model 34

M2M Machine-to-Machine 2, 3, 10, 11

MC Markov Chains 37

MCC Mobile Cloud Computing 3, 11, 20, 21

MDP Markov Decision Process 36–39, 41, 45, 54–56, 60, 62, 64, 71, 78, 81, 89, 91, 104

MEC Mobile Edge Computing 3, 5–7, 11, 14, 15, 21–23, 49, 54–56, 64, 65, 72, 76, 79–82,
87, 91, 92, 98, 102, 104–106

MIMO Multiple-Input Multiple-Output 4, 12, 55

ML Machine Learning 5, 13, 24, 25, 34–36, 48, 106

MMTC Massive Machine Type Communications 27, 31

MRP Markov Reward Process 37

NL Naive Local 65, 73, 99

NN Neural Network 5, 6, 13, 14, 35, 36, 44–46, 48, 54, 55, 64, 65, 69, 72, 76, 97, 98, 104

NO Naive Offload 65, 69, 73, 99

NOMA Non-Orthogonal Multiple Access 4–7, 13–15, 27–31, 54–56, 58–60, 65, 66, 68, 73,
76, 78–83, 93, 102, 104–106

NR Naive Random 65, 73

OFDMA Orthogonal-Frequency Division Multiple Access 4, 13, 27

xii

Acronyms

OMA Orthogonal Multiple Access 4, 13, 27, 31, 55, 79, 93

PI Policy Iteration 42, 64, 65, 68, 69, 104

PPO Proximal Policy Optimization 7, 15, 46, 47, 55, 70, 72, 73, 76, 79–81, 97–99, 102,
104, 105

QL Q-Learning 42–44, 64, 65, 68, 104

QoS Quality of Service 2, 21, 31

RAN Radio Access Network 3, 5, 11, 13, 20, 21

RF Radio Frequency 23–25, 70

RFID Radio Frequency IDentification 24

RL Reinforcement Learning 5–7, 13–15, 35, 36, 38, 39, 42, 46, 54–56, 64–66, 70, 76, 78–80,
89, 91, 104–106

RNN Recurrent Neural Network 36

SIC Successive Interference Cancellation 4–6, 13, 14, 27–31, 55, 59, 79, 81–84, 105

SNR Signal-to-Noise Ratio 82, 93, 94, 96

SVM Support Vector Machines 24

TD Temporal Difference 43, 46

TDMA Time Division Multiple Access 4, 12, 27, 65, 66, 73, 76

TN Target Network 45, 46

TRPO Trust Region Policy Optimization 46, 47

UE User Equipment 20, 21, 28–31, 54, 56–59, 61, 62, 65, 70–72, 76, 78, 79, 81–85, 87–99,
102, 104–106

UL Uplink 28, 29, 31, 54, 57–59, 64, 79, 81–85

URLLC Ultra-Reliable Low Latency Communications 3, 4, 11, 12, 27, 31

VI Value Iteration 41, 64, 65, 68, 69, 104

xiii

Introduction (English)

This thesis was carried out thanks to the funding "Bourse d’Excellence" from SAMOVAR
laboratory, Télécom SudParis, Institut Polytechnique de Paris. It has been con-

ducted from November 2020 to February 2024, and was jointly supervised by Dr. Mireille
SARKISS from Telecom SudParis, Pr. Philippe CIBLAT Telecom Paris, and Pr. Frédéric
LEHMANN from Telecom SudParis.

Context

The ever-evolving technologies that provide solutions and improvements to wireless net-
works and devices, from Artificial Intelligence (AI), Fifth Generation (5G), to Internet of
Things (IoT), are a testament to the progress, humanity in general and the industry in
particular, have made to make our lives more convenient and connected. Information and
Communication Technologies (ICT) such as smartphones, WiFi routers and laptops are
used worldwide, with an exponential increase in the number of connected devices to the
network.

Statistics show that the estimated number of smartphone mobile subscriptions in 2023
have reached 8.46 billion, and is expected to exceed 9.21 billion by the year 2029 [1]. For
IoT devices, the numbers grow even more, where 11.740 billion devices were connected in
2023 in the regions of Europe, North America and Greater China, and a projected 21.37
billion for the year 2030 [2]. These numbers show the huge scale of the current network
that we are all connected to. We show examples of the projected growth in the number
of mobile subscriptions, as well as the number of connected IoT devices, in Figure 1 and
Figure 2. To handle such a large number of devices, network infrastructures need to be

7.658 7.907 7.956 8.228 8.312 8.46 8.595 8.726 8.854 8.978 9.099 9.214

0

1

2

3

4

5

6

7

8

9

10

2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029

Number of Mobile Subscriptions

(In Billions)

Figure 1: Number of mobile subscriptions worldwide.

at the level of demand, and subsequently provide an adequate Quality of Service (QoS)
for each type of device. From streaming, transferring data, to performing calculation, the
applications that can be used are various and exploit different aspects of the systems.
5G delivers on the promises of more capable networks that can handle the different re-
quirements of current connected devices and beyond. The areas of focus of 5G include:

• Machine-to-Machine (M2M) communications, that can withstand huge amounts of
IoT devices simultaneously that communicate with each other.

2

0.00

5.00

10.00

15.00

20.00

25.00

2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

Number of Connected IoT Devices

(In Billions)

Greater China Europe North America

Figure 2: Number of connected IoT devices worldwide.

• Ultra-Reliable Low Latency Communications (URLLC), with faster delay times than
the previous Fourth Generation for delay-sensitive applications, e.g., autonomous and
smart vehicles.

• Enhanced Mobile Broadband (EMBB), which can offer higher data rates for appli-
cations that require a lot of data to be transmitted, e.g., high resolution streaming.

In massive M2M communications, IoT devices often require performing heavy com-
putations that can be very slow to run on the small and limited internal processors. In
addition to which, computations may endure high energy costs, depleting thus the bat-
tery rapidly. Mobile Cloud Computing (MCC) was used to overcome these computational
challenges by offloading the resource-hungry tasks to a remote server in the internet, carry
away the execution, and send back the result to the IoT devices once finished. However,
transmission, processing and reception times are delay concerns that are raised when of-
floading to a remote cloud server, especially for delay-sensitive tasks. Recently, Mobile
Edge Computing (MEC) appeared as a promising solution to make the cloud server closer
to the devices at the edge of the network (i.e., at the Base Station (BS) level in a Radio
Access Network (RAN)). In this way, the MEC server ensures that IoT devices can deliver
faster execution times than they can perform local processing, while enduring a smaller
delay penalty compared to MCC, hence it can achieve M2M on a large scale [3].

Furthermore, energy consumption is a very important aspect when considering IoT
devices in M2M communications. An IoT device can be located in difficult-to-attain loca-
tions for better sensing or communication, therefore changing its battery becomes a hassle,
especially if it utilizes its battery quite frequently, without being able to connect to the
electrical grid. In addition, global emissions of CO2 represent a major concern for the
environment and the temperature of the planet, and ICT is one of the contributing factors
to this issue. It is reported that network infrastructures and connected devices represent
4% of the global CO2 emissions [5], which makes working towards ’green’ communications
an essential objective.

Research on optimizing network resources has attracted much attention to minimize
the energy consumption and reduce carbon footprint. Sustainable and green energy sources

3

Figure 3: 5G areas of focus. Source: [4].

have been also the focus of research in many areas, including communications, to further
reduce carbon emissions and provide an alternative and a durable solution to energy con-
sumption issues. In particular, Energy Harvesting (EH) has emerged as the process of
collecting energy from external and ambient sources, e.g., from solar radiation using pho-
tovoltaic panels, wind energy using turbines, and Radio-Frequency ambient energy coming
from transmission signals. This type of energy can be captured using antennas and special-
ized sensors, and then stored in batteries. EH capabilities at IoT devices allow them to be
free from frequent human intervention, and from the need for fossil-fuel and nuclear-based
energy, while relying on sustainable energy resources.

In a different matter, achieving higher bit-rates during communications is a constant
area of researchers focus when developing technologies for every new generation of wireless
networks, and 5G constitutes the latest practical illustration of this goal. As an example,
this new generation of cellular networks requires the deployment of more antennas in the
system and thus increasing the diversity and the number of users that can access simulta-
neously, i.e., adopting Multiple-Input Multiple-Output (MIMO) technologies in a massive
way, i.e., Massive MIMO, in addition to the use of mmWave bandwidth to enhance the
communication speeds and use an unexploited range of frequencies that can accommodate
the growing needs, and therefore satisfy the URLLC and EMBB needs outlined for 5G.

Multiple access techniques are other prominent research topics that allow more users
to share network radio resources, without enduring much loss in terms of interference.
Traditional multiple access techniques like Time Division Multiple Access (TDMA) or Fre-
quency Division Multiple Access (FDMA) can accommodate as much as the time sampling
or the bandwidth spectrum can allow for in an orthogonal way (i.e., without interference
between signals). However, enabling non-orthogonality can theoretically break the ceiling
set by orthogonal methods. Indeed, Non-Orthogonal Multiple Access (NOMA) promises
to outperform the Orthogonal Multiple Access (OMA) methods by offering better spectral
efficiency, and thus higher data-rates. NOMA allows for the superposition of multiple users
in time and frequency. Then, using the Successive Interference Cancellation (SIC) scheme
for decoding, it deals with removing the interference between users. With 5G still using
Orthogonal-Frequency Division Multiple Access (OFDMA), NOMA arises as a strong mul-

4

tiple access technique for future use [6].
Nevertheless, NOMA SIC decoding can suffer from error propagation and a loss in perfor-
mance when increasing the number of users. In order to reduce inter-user interference, users
can be clustered appropriately in groups that perform NOMA in different sub-carriers.

On the other hand, AI is one of the most capable tools to make use of the huge amount
of data collected from the connected devices, whether it concerns images, texts, sounds, or
excel sheets. Recent breakthroughs in the field of AI have allowed for some applications
that were not thought possible, such as Image recognition, text-to-speech, recommenda-
tion systems, and chat bots, illustrated in the hugely popular ChatGPT. Machine Learning
(ML) is in the center of this advancement, for the way it is able to learn from data and rec-
ognize complex patterns that are otherwise extremely hard to conceive with hand-crafted
methods. ML can be classified into different categories that depend on the type of data and
task, namely Supervised Learning, Unsupervised Learning, and Reinforcement Learning
(RL).
RL deals with how best to navigate complex environments, by taking actions from obser-
vations about states and receiving feedback from the environment in the form of rewards.
These rewards inform the RL model about the effectiveness of its actions. The goal in this
type of learning is to devise policies that can behave optimally in any environment.

Moreover, Neural Network (NN)s have allowed for boosting the performance of ML
models by mimicking the behavior of neurons that fire responses upon receiving signals.
From that, graphs can be designed of multiple neurons connected in a layered-fashion to
each other. Signals are forwarded between these layers such that complex patterns can be
detected in input data, and appropriate outputs are produced (after training on a specific
dataset). Deep Neural Network (DNN)s takes this concept further by adding more layers
to the network, allowing it to capture even more high-level patterns, and approximating
even more complex functions.
More specifically, Deep Reinforcement Learning (DRL) has proven to be a very efficient
approach for decision making, by approximating complex and large environments using
DNNs, as it allowed for the creation of AlphaGo, the DRL model that beat the world
champion in the famous Chinese game ’Go’ [7], [8]. Numerous works are published that
illustrate the application of RL techniques in general, and DRL ones in particular, to the
communications field [9].

We mention some examples of the objectives of these works. Energy efficiency deals
with the optimization of the energy consumption of the network devices (end users or at
the RAN level), in specific scenarios [10]–[12]. The policy aim in this case is to maximize
the reward, which is higher if the energy consumed is less.
Resource Allocation is another example, where the users have to share resources (e.g.,
bandwidth, power, time) in a wireless communication setup in an efficient manner, given
the circumstances presented, and the use of DRL techniques in this problem has proven
to be successful [13]–[15]. More specifically, resource allocation problems related to MEC
offloading, EH capabilities, and NOMA-enabled communications have been explored in
some works in a separate or a joint manner [16]–[22]. The work in [23] presents other
examples of the use of DRL techniques in resource allocation problems.

5

Goal

In this thesis, we consider a multi-user network where the users are allowed to perform
NOMA transmission and have energy harvesting capabilities. They are connected to a BS
or an access point (cellular or IoT networks), which has more computational and energy
resources through a MEC server close to them. The goal of this thesis is to design efficient
policies for joint scheduling-offloading in such wireless networks. Data packets arrive at
the users’ buffers with strict delay constraints, i.e., packets have to be executed before a
maximum delay is reached, otherwise the packets are dropped. Therefore, the users have
to execute their packets either locally with limited computational powers, or remotely by
offloading them to the MEC server, and awaiting the results.

In this case, a policy is needed to determine the best action to take (local or offload
execution of packets), which depends on the channel conditions of users, their buffer states,
and their battery levels. To resolve the optimization problem, RL methods surface as the
relevant techniques to find policies that can choose the best actions in each circumstance.
We show that the use of optimal and trial and error-based RL methods, produces the
best performing methods when compared to other standard methods. Furthermore, when
scaling the system to a larger number of states, a curse of dimensionality arises, and using
the same RL used previously is no longer viable. Therefore, we shift to DRL methods due
to their generalization capabilities to unseen states using NNs, and thus a performance
advantage is maintained above the standard methods.

Moreover, increasing the number of users result in an exponentially larger environment,
rendering the task of learning the right policies by the DRL agent harder to achieve. Fur-
thermore, adding more users will cause a performance drop in NOMA, especially in the
downlink, where the users do not have the sufficient computational resources to handle the
sequential decoding in the limited time. Therefore, clustering the users into groups helps
maintain the performance offered by DRL methods, and distribute the task among mul-
tiple agents. Moreover, a NOMA-aware clustering will result in better downlink decoding
performance using SIC.
In this case, a NOMA clustering method is developed to account for the spatial location
of the users, as well as their channel conditions. Additionally, producing policies for each
cluster necessitates the use of a distributed learning technique, i.e., Federated Learning
(FL) [24]. FL is a learning technique that allows the splitting of learning across multi-
ple nodes that can train on local data without sharing it (thus achieving data privacy),
and utilize the collected local information in a central node to produce a global model
that is broadcasted back to the local nodes. In our context, FL is used to train an RL
agent for each cluster (Federated Reinforcement Learning (FedRL), or Multi-Agent RL),
with minimal information communicated between the clusters. Experimental results using
Federated DRL techniques have shown good performance compared to standard ones.

6

Outline

This thesis is composed of 4 chapters:

• The first chapter deals with communication based preliminaries, and introduce the
different aspects of our system model, i.e., Edge Computing, Energy Harvesting,
Data Modeling, and Non-Orthogonal Multiple Access.

• The second chapter presents some details about Artificial Intelligence in general, and
Reinforcement Learning in particular. The chapter details Markov processes that
constitute the building block of RL methods, as well as some well-known methods,
to be used in the subsequent chapters.

• The third chapter presents our first two contributions, where we develop policies
for jointly optimizing scheduling and offloading in a MEC-powered wireless network,
with NOMA capabilities, and Energy Harvesting devices. The policies used therein
are obtained using RL methods and compared against some other methods. The first
part deals with a system that does not incorporate EH at the user level, and thus
has lower complexity. DRL methods are used to assess the scalability performance.
The second part enables Energy Harvesting capabilities for the users, and proposes
to use another powerful DRL method, namely Proximal Policy Optimization (PPO).

• In the fourth chapter, more users are allowed in the network, and a NOMA clus-
tering method is developed to resolve the scalability issues. In this case, Federated
Reinforcement Learning policies are produced in a dynamic environment with multi
DRL agents. The results show that the use of PPO provides better performance than
using standard methods.

Publications

The presented work in this thesis was published in the following articles:

Journals

J1. I. Djemai, M. Sarkiss and P. Ciblat, "Federated Reinforcement Learning for Scheduling-
Offloading Policies in Multi-Cluster NOMA systems with Mobile Edge Computing
and Energy Harvesting", submitted in IEEE Transactions on Green Communications
and Networking, January 2024.

International Conferences

C2. I. Djemai, M. Sarkiss and P. Ciblat, "NOMA-based Scheduling and Offloading for
Energy Harvesting Devices using Reinforcement Learning", IEEE Asilomar Confer-
ence on Signals, Systems, and Computers, October 2023.

C1. I. Djemai, M. Sarkiss and P. Ciblat, "Joint Scheduling-Offloading policies in NOMA-
based Mobile Edge Computing Systems", IEEE Wireless Communications and Net-
working Conference (WCNC), March 2023.

7

8

Introduction (Français)

C ette thèse a été réalisée grâce au financement " Bourse d’Excellence " du laboratoire
SAMOVAR, Télécom SudParis, Institut Polytechnique de Paris. Elle s’est déroulée

de novembre 2020 à février 2024, et a été supervisée conjointement par le Dr. Mireille
SARKISS de Télécom SudParis, le Pr. Philippe CIBLAT de Telecom Paris, et Pr. Frédéric
LEHMANN de Telecom SudParis.

Contexte

Les technologies en constante évolution qui fournissent des solutions et des améliorations
aux réseaux et appareils sans fil, de AI, 5G, à IoT, témoignent des progrès, l’humanité en
général et l’industrie en particulier, ont fait pour rendre nos vies plus pratiques et connec-
tées. les Technologies d’Information et de Communications (ICT) tels que les smartphones,
les routeurs WiFi et les ordinateurs portables sont utilisés dans le monde entier, avec une
augmentation exponentielle du nombre d’appareils connectés au réseau.

Les statistiques montrent que le nombre estimé d’abonnements mobiles en 2023 a atteint
8,46 milliards, et devrait dépasser 9,21 milliards d’ici à 2029 [1]. Pour les appareils IoT, les
chiffres augmentent encore, avec 11,740 milliards d’appareils connectés en 2023 dans les
régions d’Europe, d’Amérique du Nord et de la Grande Chine, et une projection de 21,37
milliards pour l’année 2030 [2]. Ces chiffres montrent l’ampleur du réseau actuel auquel
nous sommes tous connectés. La Figure 4 et la Figure 5 illustrent la croissance prévue du
nombre d’abonnements mobiles et du nombre d’appareils connectés IoT. Pour gérer un

7.658 7.907 7.956 8.228 8.312 8.46 8.595 8.726 8.854 8.978 9.099 9.214

0

1

2

3

4

5

6

7

8

9

10

2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029

Number of Mobile Subscriptions

(In Billions)

Figure 4 : Nombre d’abonnements mobiles dans le monde.

nombre aussi important d’appareils, les infrastructures des réseaux doivent être à la hauteur
de la demande et fournir une qualité de service adéquate pour chaque type d’appareil. Qu’il
s’agisse de diffusion en continu, de transfert de données ou de calculs, les applications qui
peuvent être utilisées sont diverses et exploitent différents aspects des systèmes. 5G tient
les promesses de réseaux plus performants, capables de gérer les différentes exigences des
appareils connectés actuels et au-delà. Les domaines d’intérêt de 5G sont les suivants :

• M2M communications, qui peuvent supporter d’énormes quantités d’appareils IoT
simultanément qui communiquent les uns avec les autres.

10

0.00

5.00

10.00

15.00

20.00

25.00

2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

Number of Connected IoT Devices

(In Billions)

Greater China Europe North America

Figure 5 : Nombre d’appareils IoT connectés dans le monde.

• URLLC, avec des délais plus rapides que la génération précédente pour les applica-
tions sensibles aux délais, par exemple les véhicules autonomes et intelligents.

• EMBB, qui peut offrir des débits de données plus élevés pour les applications qui
nécessitent la transmission d’un grand nombre de données, par exemple la diffusion
en continu à haute résolution.

Dans les communications M2M massives, les appareils IoT nécessitent souvent d’effec-
tuer des calculs lourds qui peuvent être très lents à exécuter sur les processeurs internes
limités. En outre, les calculs peuvent entraîner des coûts énergétiques élevés, ce qui épuise
rapidement la batterie. MCC a été utilisé pour surmonter ces défis de calcul en déchar-
geant les tâches gourmandes en ressources vers un serveur distant sur Internet, en effectuant
l’exécution des tâches et en renvoyant les résultats aux appareils IoT une fois qu’ils sont
obtenus. Cependant, les délais de transmission, de traitement et de réception sont des pro-
blèmes de retard qui sont soulevés lors du déchargement vers un serveur cloud distant,
en particulier pour les tâches sensibles aux délais. Récemment, MEC est apparu comme
une solution prometteuse pour rapprocher le serveur cloud des appareils à la périphérie
du réseau (c’est-à-dire au niveau BS dans une RAN). De cette manière, le serveur MEC
garantit que les dispositifs IoT peuvent fournir des temps d’exécution plus rapides qu’ils
ne peuvent effectuer un traitement local, tout en supportant une pénalité de retard plus
faible par rapport à MCC, ce qui permet de réaliser M2M à grande échelle [3].

En outre, la consommation d’énergie est un aspect très important lorsque l’on considère
les dispositifs IoT dans les communications M2M. Un dispositif IoT peut être situé dans
des endroits difficiles à atteindre pour améliorer la détection ou la communication, de
sorte que le remplacement de sa batterie devient un problème, en particulier s’il utilise sa
batterie assez fréquemment, sans pouvoir se connecter au réseau électrique. En outre, les
émissions globales de CO2 représentent une préoccupation majeure pour l’environnement
et la température de la planète, et ICT est l’un des facteurs contribuant à ce problème.
Les infrastructures de réseau et les appareils connectés représenteraient 4% des émissions
mondiales de CO2, ce qui fait de la recherche tournant autour des communications "vertes"
un objectif essentiel.

11

Figure 6 : Domaines d’intervention de la 5G. Source : [4].

La recherche sur l’optimisation des ressources des réseaux a attiré beaucoup d’attention
afin de minimiser la consommation d’énergie et de réduire l’empreinte carbone. Les sources
d’énergie durables et vertes ont également fait l’objet de recherches dans de nombreux do-
maines, y compris les communications, afin de réduire davantage les émissions de carbone
et de fournir une solution alternative et durable aux problèmes de consommation d’énergie.
En particulier, la technologie EH est apparue comme le processus de collecte d’énergie à
partir de sources externes et ambiantes, par exemple le rayonnement solaire à l’aide de
panneaux photovoltaïques, l’énergie éolienne à l’aide de turbines ou l’énergie ambiante des
radiofréquences provenant des signaux de transmission. Ce type d’énergie peut être capté
à l’aide d’antennes et de capteurs spécialisés, puis stocké dans des batteries. Les capacités
d’EH des dispositifs IoT leur permettent de s’affranchir des interventions humaines fré-
quentes et du besoin d’énergie fossile et nucléaire, tout en s’appuyant sur des ressources
énergétiques durables.

Par ailleurs, l’obtention de débits binaires plus élevés pendant les communications est
un domaine sur lequel les chercheurs se concentrent constamment lorsqu’ils développent
des technologies pour chaque nouvelle génération de réseaux sans fil, et 5G constitue l’illus-
tration pratique la plus récente de cet objectif. Par exemple, cette nouvelle génération de
réseaux cellulaires nécessite le déploiement d’un plus grand nombre d’antennes dans le
système, augmentant ainsi la diversité et le nombre d’utilisateurs pouvant accéder simul-
tanément, c’est-à-dire l’adoption massive des technologies MIMO, MIMO massive, en plus
de l’utilisation de la largeur de bande mmWave pour améliorer les vitesses de communi-
cation et utiliser une gamme inexploitée de fréquences qui peuvent répondre aux besoins
croissants, et donc satisfaire les besoins URLLC et EMBB décrits pour 5G.

Les techniques d’accès multiple sont d’autres sujets de recherche importants qui per-
mettent à un plus grand nombre d’utilisateurs de partager les ressources radio du réseau,
sans subir de pertes importantes en termes d’interférences. Les techniques d’accès mul-
tiple traditionnelles telles que TDMA ou FDMA peuvent prendre en charge autant que
l’échantillonnage temporel ou le spectre de la largeur de bande le permet de manière or-
thogonale (c’est-à-dire sans interférence entre les signaux). Cependant, l’activation de la
non-orthogonalité peut théoriquement briser le plafond fixé par les méthodes orthogonales.

12

En effet, NOMA promet de surpasser les méthodes OMA en offrant une meilleure efficacité
spectrale, et donc des débits de données plus élevés. NOMA permet la superposition de
plusieurs utilisateurs dans le temps et la fréquence. Ensuite, en utilisant le schéma SIC
pour le décodage, il traite l’élimination des interférences entre les utilisateurs. 5G utilisant
toujours OFDMA, NOMA apparaît comme une technique d’accès multiple solide pour une
utilisation future [6].
Néanmoins, NOMA SIC peut souffrir de la propagation d’erreurs et d’une perte de per-
formance lorsque le nombre d’utilisateurs augmente. Afin de réduire les interférences entre
utilisateurs, ces derniers peuvent être regroupés de manière appropriée en groupes qui
effectuent le décodage NOMA dans différentes sous-porteuses.

D’autre part, l’IA est l’un des outils les plus capables d’exploiter l’énorme quantité de
données collectées par les appareils connectés, qu’il s’agisse d’images, de textes, de sons ou
de feuilles Excel. Les récentes percées dans le domaine de l’IA ont permis des applications
que l’on n’aurait jamais cru possibles, telles que la reconnaissance d’images, la synthèse
vocale, les systèmes de recommandation et les robots de conversation, illustrés par le très
populaire ChatGPT. ML est au centre de ces progrès, car il est capable d’apprendre à par-
tir des données et de reconnaître des modèles complexes qui sont autrement extrêmement
difficiles à concevoir avec des méthodes artisanales. ML peut être classé en différentes caté-
gories qui dépendent du type de données et de la tâche, à savoir l’apprentissage supervisé,
l’apprentissage non supervisé et RL.
RL traite de la meilleure façon de naviguer dans des environnements complexes, en prenant
des mesures à partir d’observations sur les états et en recevant un retour d’information de
l’environnement sous la forme de récompenses. Ces récompenses informent le modèle RL
de l’efficacité de ses actions. L’objectif de ce type d’apprentissage est de concevoir des poli-
tiques capables de se comporter de manière optimale dans n’importe quel environnement.

De plus, les NNs ont permis d’améliorer les performances des modèles ML en imitant le
comportement des neurones qui déclenchent des réponses lorsqu’ils reçoivent des signaux.
À partir de là, il est possible de concevoir des graphes composés de plusieurs neurones
connectés en couches les uns aux autres. Les signaux sont transmis entre ces couches de
manière que des modèles complexes puissent être détectés dans les données d’entrée et
que les sorties appropriées soient produites (après formation sur un ensemble de données
spécifique). DNNs pousse ce concept plus loin en ajoutant des couches supplémentaires au
réseau, ce qui lui permet de capturer encore plus de modèles de haut niveau et d’approximer
des fonctions encore plus complexes.
Plus précisément, DRL s’est avéré être une approche très efficace pour la prise de décision,
en approximant des environnements complexes et de grande taille à l’aide de DNNs, car il a
permis la création d’AlphaGo, le modèle DRL qui a battu le champion du monde du célèbre
jeu chinois ’Go’ [7], [8]. De nombreux travaux sont publiés qui illustrent l’application des
techniques RL en général, et DRL en particulier, au domaine des communications [9].

On cite quelques exemples des objectifs de ces travaux. L’efficacité énergétique concerne
l’optimisation de la consommation d’énergie des dispositifs du réseau (utilisateurs finaux ou
au niveau RAN), dans des scénarios spécifiques [10]-[12]. L’objectif de la politique dans ce
cas est de maximiser la récompense, qui est plus élevée si l’énergie consommée est moindre.

13

L’allocation des ressources est un autre exemple, où les utilisateurs doivent partager les
ressources (par exemple, la largeur de bande, la puissance, le temps) dans une configuration
de communication sans fil d’une manière efficace, compte tenu des circonstances présentées,
et l’utilisation des techniques DRL dans ce problème s’est avérée fructueuse [13]-[15]. Plus
précisément, les problèmes d’allocation des ressources liés au délestage MEC, aux capacités
EH et aux communications compatibles NOMA ont été étudiés dans certains travaux de
manière séparée ou conjointe [16]-[22]. Les travaux dans [23] présentent d’autres exemples
d’utilisation des techniques DRL dans les problèmes d’allocation de ressources.

Objectif de la thèse

Dans cette thèse, nous considérons un réseau multi-utilisateur où les utilisateurs sont auto-
risés à effectuer des transmissions NOMA et ont des capacités de récolte d’énergie. Ils sont
connectés à un BS ou à un point d’accès (réseaux cellulaires ou IoT), qui dispose de plus
de ressources de calcul et d’énergie grâce à un serveur MEC proche d’eux. L’objectif de
cette thèse est de concevoir des politiques efficaces pour l’ordonnancement et le délestage
conjoints dans de tels réseaux sans fil. Les paquets de données arrivent dans les tampons
des utilisateurs avec des contraintes de délai strictes, c’est-à-dire que les paquets doivent
être exécutés avant qu’un délai maximum ne soit atteint, sinon les paquets sont abandon-
nés. Par conséquent, les utilisateurs doivent exécuter leurs paquets soit localement avec
des capacités de calcul limitées, soit à distance en les transférant au serveur MEC et en
attendant les résultats.

Dans ce cas, une politique est nécessaire pour déterminer la meilleure action à entre-
prendre (exécution locale ou délocalisée des paquets), qui dépend de l’état des canaux des
utilisateurs, de l’état de leur mémoire tampon et du niveau de leur batterie. Pour résoudre
le problème d’optimisation, les méthodes RL apparaissent comme les techniques perti-
nentes pour trouver des politiques qui peuvent choisir les meilleures actions dans chaque
circonstance. Nous montrons que l’utilisation de méthodes RL optimales et fondées sur des
essais et des erreurs produit les méthodes les plus performantes par rapport à d’autres mé-
thodes standard. En outre, lorsque le système est étendu à un plus grand nombre d’états,
une malédiction de la dimensionnalité apparaît et l’utilisation des mêmes RL que précé-
demment n’est plus viable. Par conséquent, nous passons aux méthodes DRL en raison de
leurs capacités de généralisation à des états non vus à l’aide de NNs, ce qui permet de
conserver un avantage en termes de performances par rapport aux méthodes standard.

En outre, l’augmentation du nombre d’utilisateurs se traduit par un environnement ex-
ponentiellement plus grand, ce qui rend la tâche d’apprentissage des bonnes politiques par
l’agent DRL plus difficile à réaliser. En outre, l’ajout d’utilisateurs entraînera une baisse
des performances de NOMA, en particulier sur la liaison descendante, où les utilisateurs
ne disposent pas des ressources informatiques suffisantes pour gérer le décodage séquentiel
dans le temps imparti. Par conséquent, le regroupement des utilisateurs en groupes permet
de maintenir les performances offertes par les méthodes DRL et de répartir la tâche entre
plusieurs agents. En outre, un regroupement tenant compte de NOMA se traduira par de
meilleures performances de décodage en liaison descendante à l’aide de SIC.

14

Dans ce cas, une méthode de regroupement NOMA est mise au point pour tenir compte
de l’emplacement spatial des utilisateurs, ainsi que des conditions de leur canal. En outre,
l’élaboration de politiques pour chaque groupe nécessite l’utilisation d’une technique d’ap-
prentissage distribuée, c’est-à-dire FL [24]. FL est une technique d’apprentissage qui permet
de répartir l’apprentissage entre plusieurs nœuds qui peuvent s’entraîner sur des données
locales sans les partager (ce qui permet de préserver la confidentialité des données) et
d’utiliser les informations locales collectées dans un nœud central pour produire un modèle
global qui est retransmis aux nœuds locaux. Dans notre contexte, FL est utilisé pour former
un agent RL pour chaque cluster (FedRL, ou Multi-Agent RL), avec un minimum d’in-
formations communiquées entre les clusters. Les résultats expérimentaux obtenus avec les
techniques DRL fédérées ont montré de bonnes performances par rapport aux techniques
standard.

Descriptif de la thèse

Cette thèse se compose de 4 chapitres :

• Le premier chapitre traite des préliminaires liés à la communication et présente les
différents aspects de notre modèle de système, à savoir l’informatique en périphérie,
la récolte d’énergie, la modélisation des données et l’accès multiple non orthogonal.

• Le deuxième chapitre présente quelques détails sur Artificial Intelligence en général
et sur Reinforcement Learning en particulier. Il détaille les processus de Markov qui
constituent l’élément de base des méthodes RL, ainsi que certaines méthodes bien
connues, qui seront utilisées dans les chapitres suivants.

• Le troisième chapitre présente nos deux premières contributions, dans lesquelles nous
élaborons des politiques d’optimisation conjointe de l’ordonnancement et du déles-
tage dans un réseau sans fil alimenté par MEC, avec des capacités NOMA et des
dispositifs de récolte d’énergie. Les politiques utilisées sont obtenues à l’aide de mé-
thodes RL et comparées à d’autres méthodes. La première partie traite d’un système
qui n’intègre pas EH au niveau de l’utilisateur et qui est donc moins complexe. Les
méthodes DRL sont utilisées pour évaluer les performances en matière d’évolutivité.
La deuxième partie permet aux utilisateurs de récolter de l’énergie et propose d’uti-
liser une autre méthode DRL puissante, à savoir PPO.

• Dans le quatrième chapitre, un plus grand nombre d’utilisateurs est autorisé dans le
réseau et une méthode de regroupement NOMA est mise au point pour résoudre les
problèmes d’évolutivité. Dans ce cas, des politiques d’apprentissage par renforcement
fédéré sont produites dans un environnement dynamique avec plusieurs agents DRL.
Les résultats montrent que l’utilisation de PPO offre de meilleures performances que
les méthodes standard.

Publications

Les travaux présentés dans cette thèse ont été publiés dans les articles suivants :

15

Revues

J1. I. Djemai, M. Sarkiss and P. Ciblat, "Federated Reinforcement Learning for Scheduling-
Offloading Policies in Multi-Cluster NOMA systems with Mobile Edge Computing
and Energy Harvesting", submitted in IEEE Transactions on Green Communications
and Networking, January 2024.

Conférences Internationalles

C2. I. Djemai, M. Sarkiss and P. Ciblat, "NOMA-based Scheduling and Offloading for
Energy Harvesting Devices using Reinforcement Learning", IEEE Asilomar Confe-
rence on Signals, Systems, and Computers, October 2023.

C1. I. Djemai, M. Sarkiss and P. Ciblat, "Joint Scheduling-Offloading policies in NOMA-
based Mobile Edge Computing Systems", IEEE Wireless Communications and Net-
working Conference (WCNC), March 2023.

16

Part I

Preliminaries

CHAPTER 1

Communication-Based Preliminaries

Chapter 1. Communication-Based Preliminaries

This chapter introduces communication-related preliminaries, covering different aspects
of the system that will be used in chapters 3 and 4. In particular, we consider how

data are handled, both at the user and the server level, as well as the energy consumed to
process it, and the network access technique to transmit it.

The remainder of the chapter is as follows: Section 1.1 covers Edge Computing. Section
1.2 is dedicated to Energy Harvesting. Section 1.3 discusses Data Models. Lastly, section
1.4 focuses on Non-Orthogonal Multiple Access technique.

1.1 Edge Computing

Conventional wireless network design incorporates a Radio Access Network (RAN), that
encompasses the User Equipments (UEs) and the Base Station (BS), through which the
UEs connect wirelessly to reach the Core Network. This Core Network is responsible for
forwarding the signal transmitted by the UEs to its desired destination via wired connec-
tions.

The computational capabilities of the UEs are generally very limited, which pre-
vents them from performing compute-intensive tasks locally, such as Virtual-Reality high-
resolution streaming, AI image generation, and all what the newest applications on smart-
phones rely on. This is the case either due to energy concerns, since processing these
tasks consume a sizeable portion of the internal battery’s energy, or due to delay issues,
where the tasks have some delay constraints that require them to be executed in a limited
duration before becoming obsolete. Therefore, solutions are needed to execute these tasks
efficiently.

Equipping the UEs with more powerful processing units seems to be the obvious ap-
proach to handle higher computational loads, as well as large capacity batteries. However,
the downside in this case is the huge cost that comes with it, and the enormous effort needed
to update these devices every few years to keep up with the ever-increasing processing-
intensive tasks. Moreover, implementing this solution becomes even more problematic as
the number of connected devices in the network increases. Indeed, according to Statista
[25], the number of connected IoT devices in 2023 is estimated at 15.1 billion and it is
expected to reach 29.4 billion by the year 2030.

An alternative solution is to offload the tasks to an external server, powerful enough to
process them rapidly, without the dependence on limited-sized batteries. More precisely,
a cloud computing solution. Cloud computing refers to the existence of a set of servers
that can handle multiple tasks. Generally accessed through the internet (public cloud),
or within a company’s Local Area Network (LAN) (private cloud), devices can access the
functionalities of the cloud from anywhere by offloading their tasks and retrieving the
results. In the context of wireless networks, IoT devices as an example have very limited
processing units due to their small size. Thus, they need to offload heavy tasks necessitating
an access to a Mobile Cloud Computing (MCC), naturally through the RAN and the core
network. Figure 1.1 illustrates a basic example of such an architecture.

Nevertheless, some challenges are risen with the use of MCC technology. Delay concerns
are perhaps one of the biggest of issues and are attributed to the fact that MCC servers

20

1.1. Edge Computing

UE

UE

Base
Station

Cloud
ServerInternet

Figure 1.1: Basic mobile cloud computing MCC architecture.

are located far from the UEs. The packets that carry the tasks to be processed can go
through a series of networks before reaching the cloud. This shortcoming is brought to
light when using real-time applications, which imposes very strict delay constraints. In
addition, Quality-of-Service (QoS) is an important aspect to consider for the same type of
applications, which is poorly handled as well in an MCC scenario [26]. Other challenges
are also faced when using MCCs, such as security constraints, and lag-prone transmission
of the data.

Mobile Edge Computing (MEC) is an alternative to MCC, proposed in [27], that aims
to reduce the processing delay of offloaded tasks by UEs, by moving the cloud closer to
the edge of the network. MEC concept is inspired by cloudlets [28], which are a set of
cloud servers used in local Wi-Fi networks, near access points, to facilitate the access to
cloud services. They offer a significant delay reduction over public clouds. Similarly, MEC
servers are located near the BSs in the RAN, and offer fast and easy access to powerful
servers (although not as performing as MCC servers). This MEC technology adds more
flexibility, where the MEC servers can be tailored to the RAN’s requirements, and improve
the QoS of the UEs accessing their services, besides reducing the UE’s energy consumption.

Then, enabling each RAN with a MEC server installed near the BS will help tackle the
problem of MCC. This comes at the expense of additional hardware cost. A middle-ground
design that presents a compromise between cost, performance and latency, is Fog Comput-
ing [29]. It consists essentially in aggregating several RANs’ tasks into one server. Figure
1.2 showcases the different levels of computing described in this section. The performance
improves if the computing unit is located higher, but the latency increases as well.

Discussion

A variety of applications can utilize MEC servers’ capabilities to provide better services.
These can range from industrial manufacturing, healthcare to autonomous vehicles [3]. In
our use case, UEs that can be IoT devices, smartphones, smart vehicles or any mobile
users, can all take advantage of the MEC technology to execute their tasks as efficiently
as possible. This is illustrated in the contributions of chapter 3 and 4.

21

Chapter 1. Communication-Based Preliminaries

Figure 1.2: Edge to cloud architecture layers. Source: [3].

1.2 Energy Harvesting

With the ever-increasing number of connected devices in networks from IoT devices, smart-
phones, to connected vehicles, energy concerns are risen. It is estimated according to the
International Energy Agency, that the global data centers and transmission networks cur-
rently account for 1 to 1.5% of the energy consumption worldwide [30]. Similarly, the
CO2 emissions of these infrastructures, as well as the connected devices, constitute 4% of
the global emissions [5]. These numbers suggest that the use of network infrastructures
and devices, requires a significant energy deployment and a considerable damage on the
environment. Therefore, there is a growing need to handle the energy consumption issue.

Indeed, network vendors and Information and Communication Technologies (ICT) com-
panies are attempting to optimize their products to reduce consumption. Moreover, there
is a push for using alternative green energy sources to effectively reduce CO2 emissions.
The energy can be pulled from a variety of sources, including Solar, Wind, or Radio Fre-
quency, reducing thus the need for environmentally harmful fossil-fuel and nuclear-based
energy generation.

In addition to environmental impact, energy distribution is a major challenge from a
feasibility and cost perspective. Providing power to IoT devices scattered everywhere in
the environment is a difficult task to achieve with the exponential growth of the number
of devices. The use of limited-size Lithium-Ion batteries that can be recharged appears to
be the solution for the current time. It would also be a sustainable solution for the future,
especially for devices that emit sparse low power signals. However, many are the devices
that require recharging in a frequent manner and can be difficult to attain, and so are
the devices that consume huge quantities of power (e.g. smartphones, connected vehicles).
Hence, multiple types of devices would benefit from a technology that overcomes this issue.

As an example, sensor devices that capture data from purpose-built sensors (e.g. tem-
perature, movement) have limited-size batteries. Thus, they often rely on MEC servers to

22

1.2. Energy Harvesting

execute their data tasks, either because their local processors are not capable enough to
perform them under some delay constraints, or because they need recharging often. Man-
ufacturers of these types of devices optimize the local processing and sensing subsystems
through the use of lightweight Operating Systems (or the use of MEC servers) [31]. How-
ever, what consumes the most amount of energy is the wireless communication subsystem,
which rely on power control to ensure a reliable data transmission to the BS or access
point.

Energy Harvesting was presented as a promising alternative to recharging batteries
wirelessly and without intervention from the ambient environment (e.g. Solar) or from
external sources (e.g. mechanical vibration), using specialized sensors that capture the
energy and store it in batteries. This would allow for a green sustainable energy solution
with less reliance on the existing electrical grid, as well as a more infrastructure-wise flexible
design and deployment of devices.

1.2.1 Energy Harvesting Sources and Modeling

It exists different sources of energy harvesting that devices can utilize to recharge up their
energy storage. According to [31], the sources are divided into two categories. The first
category of sources comes from ambient environment, where the energy is collected free of
charge from the environment. Examples of these types of sources are solar, radio frequency
(RF), and wind. The second category comes from other external sources, that are deployed
specifically for harvesting energy. Mechanical based sources such as vibration and pressure
are examples of these external sources.

Each type of energy harvesting source behaves differently than the other in the environ-
ment. Therefore, adequate modeling of each source, mathematically or computationally,
is required to predict with accuracy future energy arrivals and build systems around it.
Energy harvesting models are classified in [32] into three categories:

1. Deterministic models: The transmitter knows the amounts and the instants of energy
arrival in advance. This modeling is useful in designing optimal energy strategies,
and thus providing benchmarks to other sub-optimal approaches.

2. Stochastic models: The energy arrival is modeled as a random process. They can be
time-uncorrelated models (e.g. Poisson process, uniform process) or time-correlated
models (e.g. Markov-chain based process, Poisson-counting and non-negative uniform
process).

3. Other models: They often model RF energy using different models and hybrid sys-
tems that utilize power supplies from the electrical grid, or RF energy harvesting to
power their devices.

In what follows, we describe two ambient energy sources, i.e., Solar-based and RF-based,
and some of their existing models in the literature that are associated with them.

23

Chapter 1. Communication-Based Preliminaries

Solar Sources

Solar energy, abundant in the environment, emerges as an affordable and eco-friendly
solution that can address the aforementioned energy challenges. The use of the photovoltaic
effect in the design of panels allows in the presence of sunlight, to transform the solar arrays
into DC power. Due to the absence of such source at night, the focus is on maximizing
the efficiency during the day to ensure power sustainability. This downside is what makes
solar energy harvesting in indoor environment challenging. Though collecting energy for
internal light sources is still possible but with lower efficiency. Diverse implementations
of solar energy harvesting sensors exist. They vary based on solar panel types, battery
specifications, and circuit complexities for recharging [31].

From natural or man-made
solar energy source

DC-DC Converter Battery Internet of Things

Figure 1.3: Solar energy conversion.

Modeling solar power produced some interesting works in the literature. For example,
in [33], Real-world data are exploited to derive a Gaussian mixture hidden Markov model
that quantifies the energy arrivals into different states. Measurements taken in 5-minute
intervals were used to collect the data in different conditions (sunny, cloudy, at night,
etc..). Then, they were utilized to build the hidden Markov chain, i.e., solar states that
correspond to different energy arrivals, and their empirical transition probabilities.

Kraemer et.al. showed in their paper [34] that it is possible to predict solar energy
variations with limited data thanks to Machine Learning (ML) techniques, such as Support
Vector Machines (SVM), and Artificial Neural Networks (ANNs). Real-world data was used
to assess the performance of ML prediction models.

Radio Frequency Sources

Radio Frequency-based energy harvesting converts ambient electromagnetic energy cap-
tured from radio waves into DC power, used either to recharge the device battery, or to
run direct power to the device. Multiple factors play a role in the amount of harvested
power, e.g. the distance between the source and the destination and transmission power.
Typically, an RF energy harvesting device, such as a sensor node, can either use a single
radio antenna for communicating and collecting energy, or use independent radio antennas
for each purpose, and that depends on the size of the device and the complexity of the
system. The conversion efficiency of RF to DC differs based on all these parameters [35].

RF energy can be utilized in a variety of applications, in both indoor and outdoor
environments. These applications range from agriculture, smart homes, Radio Frequency
IDentification (RFID), to monitoring. Indoor applications are especially beneficial com-
pared to solar power, as the latter suffers substantially in such an environment [31].

Many works have been published to model RF energy sources. The authors in [36]

24

1.3. Data Models

Antenna Matching Circuit
Rf Energy Harves�ng System

RF-DC Conversion DC Load CircuitEM Waves

Figure 1.4: RF energy conversion.

studied the performance of RF energy harvesting wireless sensors in cellular networks by
analyzing a point-to-point transmission between the sensors and a data sink. To geo-
metrically model the distribution of the ambient energy sources, they used the Ginibre
α-determinantal point process (DPP) [37] and derived the expected RF energy harvested
at each sensor using the Friis equation [38]. Furthermore, upper-bounds were derived for
both power outage probability and transmission outage probability.

The work in [39] utilized real-world measurements to model the RF energy harvested
using Machine Learning techniques, namely Linear Regression and Decision Trees. First,
harvested power was calculated from the collected measurements for each time slot (a
maximum of 100 times slots in 2 hours was used), and for different frequency bins (a
maximum of 192 bins are used per frequency band). Then, the computed powers were
used as labels to train the ML models. The results showed that Linear Regression performs
better than Decision Trees, by offering a more accurate prediction of RF energy.

In [40], a kernel density estimation technique was proposed to estimate the mobile ser-
vice channels power density and a moving average-based prediction method. Six different
frequency bands that correspond to different transmission standards were used to collect
real-world data, in outdoor and indoor scenarios, at a rate of one data point per second.
To model these data points, kernel density estimator was used, being considered as non-
parametric and central estimator, as for the moving-average predictor, current point in
time was computed by averaging n previous observations.

Discussion

The aforementioned models in both solar and RF energy harvesting, specifically the ones
that rely on real-world data, suffer from sparsity in the data points collected. The time
interval between the data points in the used databases varies from one second to minutes
or hours, which is not suitable to our use case. For RF energy harvesting, the frequency
ranges do not correspond to the ones used in our work. Therefore, we opted not to use
them and subsequently employ synthetic data that stem from stochastic processes, similar
to other works that investigated scheduling and allocation in wireless networks with EH
[15], [19], [41], [42]. More specifically, we use in chapters 3 and 4 Poisson Random Process
as our energy arrival model for its simplicity of use and its scalability.

1.3 Data Models

The growth in data transmitted, processed and stored across the internet as a whole is
unprecedented. This can be explained by the increase in smartphone usage, deployment of

25

Chapter 1. Communication-Based Preliminaries

IoT devices, including connected objects. In addition to that, modern applications provide
more advanced services, and thus consume more data. Data are collected from the users in
order to recommend better content, display targeted ads, analyse the behavior and enhance
the performance. Therefore, data has become the center of attention in today’s networks
and applications.

Studying and simulating systems that handle data in any way necessitates building a
model of how the data behaves in such a system. In some resource scheduling scenarios,
dedicated resources are assigned to users at certain times depending on the conditions of
the environment, to perform their data-related tasks. By modeling the behavior of the
data in this setup, the scheduling algorithm can predict the data quantity to handle in the
next steps.

Data models are thus based on real-world measurements of applications and systems.
Through the analysis of data traffic, a prediction of data behaviour is in the system can be
made using these models. Exploiting the structure that generates the data is important
to produce a better model. For instance, in [43] the authors utilized the video encoding
schemes, based on the concept of Groups-of-Picture (GoP), to encode video frames based
on the difference between them and an initial frame gathered in one GoP. This information
was further used to build a Markov model that can be exploited to generate subsequently
its own video traffic. The approach was proven to be encoder-independent, which makes
it more general compared to other works in the field.

The work in [44] utilized real-world data from smartphone applications collected in the
MIRAGE-2019 dataset [45] to build a hidden Markov model. The approach analyzed the
packets transmitted from these applications in terms of payload length, inter-arrival time
(considered as a hidden feature), and payload direction when building the model. The
model is then used to predict the traffic size and direction of each studied application.

A survey on 5G scenarios was given in [46], including traffic models for the different
standards adopted in 5G, mainly from ITU, 3GPP, IEEE and WiMAX. Traffic analysis and
modeling was listed for each 5G standard, depending on the type of application/service.
For example, FTP traffic in 3GPP was modeled as a truncated lognormal distribution for
the file size, and exponential distribution for the reading time.

Discussion

The modelings brought up in the mentioned examples are very important to our use case.
We can assume that the data arriving to the devices and requiring to be processed are
modeled in terms of arrival quantity following these formulations. Further details on the
used models are in chapter 3 and chapter 4.

1.4 Non-Orthogonal Multiple Access

Fifth Generation (5G) of wireless cellular network promised great improvements over its 4G
predecessor in terms of scalability of the number of users, connection speeds, and reliability.
To reach such expectations, new standards and techniques were studied, designed and
implemented for this generation and beyond. 5G support for massive IoT deployment,

26

1.4. Non-Orthogonal Multiple Access

delay sensitive applications, more bandwidth and connection speeds are enabled by Massive
Machine Type Communications (MMTC), Ultra-Reliable Low Latency Communications
(URLLC), and Enhanced Mobile BroadBand (EMBB) technologies, which are already
deployed in the current generation.

To achieve URLLC and EMBB requirements, multiple access is an important tech-
nique to focus on and improve. By controlling the utilization of the spectral resources, an
increase in data rates can be achieved. When using multiple access technique in wireless
networks, it allows for the sharing of resources in time and frequency by multiple users
when communicating with the BS.

Time division multiple access (TDMA), frequency division multiple access (FDMA),
and code division multiple access (CDMA) are some of the existing and well-established
techniques used in previous generations of cellular networks. TDMA and FDMA are classi-
fied as Orthogonal Multiple Access (OMA) techniques, which translates to the orthogonal
nature of accessing the communication channel and minimizing the interference between
the users. OMA techniques exploit network resources that are orthogonal, either in time
(TDMA), frequency (FDMA), or a combination of the two domains (Orthogonal Frequency
Division Multiple Access (OFDMA)), to allocate them for each user.

As an example, the bandwidth can be divided into several sub-carriers of equal size
(a portion of the spectrum), and each sub-carrier is allocated to a user to send its signals
through, via the communication channel. Multiple user signals are sent simultaneously in
time but using the different sub-carriers. The decoding of each signal is simply done by
considering each resource block on its own to decode an individual user’s signal.

Nevertheless, with the minimal inter-user interference constraints, OMA techniques
suffer from performance issues when the number of users that communicate increases.
More specifically, the orthogonality aspect imposes that the users do not share any resource
blocks (in time or frequency), and therefore the resources allocated for each user get smaller
with every newly added user. This issue makes the use of OMA techniques challenging to
satisfy 5G requirements in terms of rates and latency. Hence, Non-Orthogonal Multiple
Access (NOMA) emerged as a solution to overcome this issue. The concept of NOMA
in the context of 5G was initially introduced in [6], and its benefits were showcased in
subsequent works [47], [48].

Although not adopted in 5G standards (OFDMA was kept as the multiple access tech-
nique of choice), NOMA remains a powerful technique to be considered in future generation
wireless networks. More specifically, NOMA enables multiple users to share the same re-
source blocks, tolerating thus inter-user interference. To overcome the interference issue,
Successive Interference Cancellation (SIC) decoding scheme is implemented.

NOMA can be divided into two categories; Code-domain NOMA, which acts in a similar
way to classic CDMA, where each user is assigned a time-frequency block (a portion in
bandwidth and time). Code-domain NOMA may differ from CDMA in the use of sparse
spreading sequences, or non-orthogonal low cross-correlation sequences [49].

Power-domain NOMA is the second category, and the more interesting multiple access
technique for our work. This type of NOMA superposes multiple user signals in time and
frequency with power being the distinction at the receiver. The receiver then decodes the

27

Chapter 1. Communication-Based Preliminaries

signal using the SIC algorithm. We describe in what follows the Uplink (UL) and Downlink
(DL) cases of NOMA transmission. Figure 1.5 shows the way multiplexing of users is done.

User 1

User 4

User 3

User 2

Power \ Code Frequency

Time

Figure 1.5: NOMA multiplexing.

1.4.1 Uplink NOMA

We consider as an example that two UEs, UE(1) and UE(2) are connected to a BS, and
communicate with power-domain NOMA. The received signal y(bs) at the BS is expressed
as:

y(bs) =

√
p(1) · h(1) · s(1) +

√
p(2) · h(2) · s(2) + w(bs), (1.1)

where s(j) is the signal transmitted from each UE, p(j) is the corresponding transmission
power, and w(bs) is the Additive White Gaussian Noise (AWGN). In this configuration,
UE(1)’s signal will be the stronger one between the two. Figure 1.6 illustrates the SIC
decoding process at the BS level, where the BS will be decoding in a cascading fashion,
from the strongest signal to the weakest. In the example, the BS starts by decoding UE(1)’s
signal, i.e., s(1), while considering s(2) as interference. After that, the decoded signal ŝ(1)

is subtracted from the received signal y(bs), and then the decoding of s(2) is done without
any inter-user interference.

UE(2)

UE(1)

Base
Station

SIC

Decode

Subtract from

UE(1) Decoded Bitstream

UE(2) Decoded Bitstream

Decode

Figure 1.6: Uplink NOMA.

If the UEs channel gains are sufficiently distinct, they can utilize the full power to send
their signals. However, if the channel gains are too similar, power control can be performed
to boost the performance of the stronger UEs [50].

The rate expressions Rul,(i)
noma for each UE, following the SIC operation at the BS, are

28

1.4. Non-Orthogonal Multiple Access

formulated as follows:

Rul,(1)
noma =Wul · log2

(
1 +

p(1) · |h(1)|2

p(2) · |h(2)|2 +Wul · N0

)
, (1.2)

Rul,(2)
noma =Wul · log2

(
1 +

p(2) · |h(2)|2

Wul · N0

)
, (1.3)

where Wul is the UL bandwidth, and N0 is the noise spectral density.

1.4.2 Downlink NOMA

The DL case of NOMA follows a similar procedure to the one in the UL, with some
differences. First, we assume that UE(1) has a better channel gain1 than UE(2), |h(1)|2 ≥
|h(2)|2. The SIC decoding is done at the UE level, in our case, UE(1) with its stronger
channel gain. UE(1) proceeds into decoding using SIC, while UE(2) decodes its own signal
directly. In the general case, the SIC decoding is done at all the UEs except for the weakest
one, and the stronger the UE, the more signals from other UEs it has to decode. This is due
to the fact that the BS allocates more power to weaker UEs in order to achieve reasonable
rates. According to [50], the gain in performance when using NOMA is perceived if and
only if the BS power allocation is inversely proportional to the UEs’ channel gains.

The received signal at each UE in our example is expressed as:

y(1) = h(1) ·
√
p(bs) · s(bs) + w(1), (1.4)

y(2) = h(2) ·
√
p(bs) · s(bs) + w(2), (1.5)

where s(bs) is the signal broadcasted by the BS. Figure 1.7 illustrates the SIC decoding
process at the user level, where UE(1) has to decode UE(2)’s, subtract it from y(1), and then
decode its own signal. For UE(2), the decoding is done directly while considering inter-user
interference from UE(1), which is the case due to the weaker power allocated to the strong
UE.

UE(2)

UE(1)

Base
Station

SIC

UE(2) Decoded Bitstream

UE(1) Decoded Bitstream

Decode

Decode

UE(2) Decoded Bitstream Decode

Subtract from

Figure 1.7: Downlink NOMA.

1This assumption is essential to get the rate expressions in equations 1.6 and 1.7 [51].

29

Chapter 1. Communication-Based Preliminaries

The resulting rate expressions with Wdl as the DL bandwidth, and δ as the power
allocation coefficient, are:

Rdl,(1)
noma =Wdl · log2

(
1 +

δp(bs) · |h(1)|2

Wdl · N0

)
, (1.6)

Rdl,(2)
noma =Wdl · log2

(
1 +

(1− δ)p(bs) · |h(2)|2

δp(bs) · |h(2)|2 +Wdl · N0

)
. (1.7)

The power allocation coefficient controls the portion of power dedicated to each UE.
As explained previously, more power is usually allocated to weak UEs. In terms of achiev-
ability, Figure 1.8 showcases the region of rates for the two UEs, compared to the FDMA
technique.

Figure 1.8: Downlink rate region for 2 UEs in NOMA and FDMA. Source: [49].

1.4.3 Clustering NOMA Users

Multiple issues can be highlighted from the equations above that can harm the performance
advantage of NOMA. They are brought up to light when increasing the number UEs. One
issue is the growing interference at the weaker UEs when decoding, which can degrade the
performance badly. In addition to that, SIC can suffer from error propagation in practical
systems, which can worsen the performance even more when adding more UEs. Another
issue faced is the power allocation that may cause the transmission at low powers for weak
UEs. These limitations are shown to reduce the sum rate of NOMA when increasing the
number of UEs [52]. The solution can be to use multiple clusters with different bandwidths
(or sub-carriers) and to group UEs in these clusters that can boost the performance of
NOMA as a whole.

Formally, for n number of UEs connected to a BS, with |h(i)|2 ≥ |h(i+1)|2, i ∈

30

1.4. Non-Orthogonal Multiple Access

{1, 2, · · · , n}, the equations for UL and DL cases become as follow :

Rul,(i)
noma =Wul · log2

(
1 +

p(i) · |h(i)|2∑n
j=i+1 p

(j) · |h(j)|2 +Wul · N0

)
, (1.8)

Rdl,(i)
noma =Wdl · log2

(
1 +

δ(i)p(bs) · |h(i)|2∑i−1
j=1 δ

(j)p(bs) · |h(i)|2 +Wdl · N0

)
, (1.9)

where δ(i) is the allocation coefficients for each UE(i), with
∑n

i=1 δ
(i) = 1. From these

equations, the increasing inter-user interference is apparent for strong UEs in the UL case,
and weak ones in the DL case. In particular, the increasing interference terms are an issue
in the DL phase due to the limited computational capabilities of the UEs, especially in delay
sensitive tasks. This issue further motivates the clustering of UEs for better performance.

Perhaps the most adequate method to cluster NOMA users is based on their channel
gain, where depending on the number of users and allowed clusters, each cluster will contain
a strong user and a weak user channel gain-wise. This will allow for better performance
via power control [53].

Some works have been done on the clustering of NOMA users in the literature. For
example, the work in [53] considered optimal clusters as the result of a joint optimization
problem for global throughput maximization, and operation constraints for SIC decoding,
under power and rate constraints. The derived solution is compared with the aforemen-
tioned channel-gain method, and DL NOMA performance was assessed with regard to the
number of users per cluster. Jingjing et. al. [54] used K-means clustering method, to
cluster NOMA users in Millimeter-wave systems. The clustering was done based on the
spatial locations of the users, and could accommodate dynamic changes in the number
of the clustered users. The authors in [55] proposed a system setup with the distinction
between MMTC and URLLC devices. A NOMA clustering method was developed, where
MMTC and URLLC devices are clustered together to avoid grouping multiple MMTC
devices together. The clustering process also considered intra-cluster interference, trans-
mission power and QoS requirements. The work in [56] designed an adaptive strategy for
clustering EMBB and IoT users aiming to maximize the use of NOMA and optimize the
used power. In the proposed scenario, NOMA was employed selectively by comparing its
performance to OMA. The introduced clustering and power optimization algorithm proved
to be more efficient than non-adaptive multiple access techniques and other clustering so-
lutions.

Discussion

Analyzing the existing clustering methods, we can make the observation that combining
spatial and channel-gain based clustering methods can be a good unexplored solution. It
can maximize the performance of NOMA in the network, while preserving the proximity
of the users. Therefore, we propose a clustering method, explained in further details in
chapter 4.

31

Chapter 1. Communication-Based Preliminaries

32

CHAPTER 2

Learning-Based Preliminaries

Chapter 2. Learning-Based Preliminaries

Nowadays, AI has quickly become the center of attention due to its impressive abilities
to handle information and learn from collected data. Various applications ranging

from health to robotics and communications have demonstrated the great potential of us-
ing AI in designing systems. AI can provide accurate predictions, navigate cleverly around
complex environments, or answer questions in the most human possible way, following the
breakthrough of Large Language Models (LLMs) like ChatGPT. Yet at the core of AI re-
sides a multitude of statistical techniques that were used for a long time (e.g. regression).
Indeed, the interesting combinations and additions of some tools (e.g. convolutions, atten-
tion mechanisms) in the AI models is what makes the resulting algorithms as powerful as
they are now.

The main idea of AI is to produce models that learn from provided data in a certain
way suited for the desired task. These models can be used for inference, prediction, classi-
fication, decision-making, and many other potential applications and use cases. Naturally,
AI is divided into several branches that cover the different tasks mentioned. Figure 2.1
covers some of the branches.

AI

Natural Language Processing (NLP)

Chatbots

Classification

Content/Semantic recognition

Content generation

Expert Systems
Rule based Systems

Speech
Speech to text

Text to speech

Robotics

Machine Learning (ML)
Deep Learning

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Computer Vision
Machine Vision

Image/Video Recognition

Recommendation Engines

Figure 2.1: Artificial intelligence AI branches.

Machine Learning (ML) in particular has been one of AI’s main areas that made it
as successful as it is today. ML is concerned with building systems that improve the
performance on a given task given examples of how the data is structured, or what the
results should look like with certain inputs. It is subdivided into three types of learning,
namely supervised learning, unsupervised learning, and reinforcement learning.

Supervised learning uses labeled data to learn the model. The dataset has a set of
input x and corresponding output examples y. Given an input xt, the supervised learning
model Fw with parameters w outputs a prediction ŷt = Fw(xt), and a loss value L(yt, ŷt)
is computed using the original label. The model then updates its parameters in an iterative
way to reduce the loss value until reaching a convergence point where the difference between
the model output and the desired one is close [57]. Following the training process, a separate
test data is used to assess the performance of the produced model and whether or not it
can generalize to never seen before examples.

34

2.1. Neural Networks

Supervised Learning can also be divided into 2 subcategories:

• Regression, where the prediction function gives a numerical approximation of a cer-
tain task in a continuous space. For example, modeling a random distribution of
points with a polynomial function and predicting new points’ positions.

• Classification, which is concerned with predicting a specific class of the output in a
discrete space. For example, predicting the type of a captured traffic sign.

On the other hand, unsupervised learning models operate differently than supervised
ones. The main goal is to learn the internal representation of the input data to further
analyze and understand its structure. This approach helps uncover hidden correlations and
patterns in the provided data and serve as a prediction model to label any new data that
arrives. Clustering and dimensionality reduction are examples of such learning models.

As for Reinforcement Learning, section 2.2 details its structure and learning procedure,
as well as some algorithms in the literature. The rest of the chapter explores Neural
Networks in section 2.1, and an overview of Federated Learning is given in section 2.3.

2.1 Neural Networks

Perhaps one of the most used techniques of ML in its different categories are Artificial
Neural Networks, also referred to as just Neural Networks (NNs). This brain-inspired idea
relies on the weighted interconnection of different nodes together in the form of layers to
form a complex graph. The weights of the connections between each neuron is what is
learned during training the machine learning model, yielding to a model that can perform
the required task. The structure of NNs is organized in 3 parts, namely the input layer,
hidden layer(s) and an output layer, as shown in Figure 2.2.

Input Layer Hidden Layer 1 Hidden Layer 2 Output Layer

Figure 2.2: Artificial neural network ANN example.

Formally, we consider a NN with n layers, with each layer i containing di neurons. We
model the connections weights between layer i− 1 and layer i as a matrix wi ∈ Rdi×di−1 .
Given an input vector xi−1 ∈ Rdi−1 , produced from layer i − 1, we output the vector
xi ∈ Rdi as follows:

xi = σ (wi.xi−1 + bi) , (2.1)

where bi ∈ Rdi is the scalar bias vector for layer i, and σ is an activation function, used
to introduce non-linearity to the forward pass. The described equation is used to compute
the output of each layer, until reaching the final output layer.

35

Chapter 2. Learning-Based Preliminaries

Training an NN model is performed using the back-propagation technique. It takes
the loss computed between the produced output and the desired one, and propagates it
throughout the network’s weights. In fact, it computes small steps of corrections in the
opposite direction of the loss using gradient-descent optimization. This helps the model to
converge to a local minimum that can satisfy the accuracy and generalization requirements
(i.e., validation/testing accuracy with new data).

Given a loss L, the update formula for the weight of neuron j of ith layer wi,j is:

wi,j ← wi,j − α∇wi,j , (2.2)

with ∇wi,j = ∂L
∂wi,j

being the gradient of the loss with respect to the weight wi,j . Intu-
itively, the weights are updated in the opposite direction to their gradients. The update
is multiplied by a factor α called the learning rate, that limits its size and thus its impact
on the weights. This is done to avoid the issues of divergence or overshooting from the
local/global minimum. The update step is done repeatedly with different input examples,
until convergence.

Neural Networks construct the essential building block for Deep Learning since deep
neural networks are simply neural nets with two or more hidden layers. However, deep
learning encompasses more than this basic learning structure. Many architectures and
designs that have been proposed are optimized to specific tasks. For instance, Convolu-
tional Neural Networks (CNNs) [58] and Recurrent Neural Networks (RNNs) [59] were
built respectively for visual and textual/audio data. Lately, deep learning has been an
area of focus in Artificial Intelligence generally and Machine Learning specifically due to
its ability to extract automatically relevant features for the required tasks.

2.2 Reinforcement Learning

Reinforcement Learning (RL) can be considered as a semi-supervised technique of ML that
resolves sequential decision-making problems. In RL, an agent is trained in an environment
to learn its dynamics and to produce a model that takes decisions or actions based on
observations of that environment. What differs from supervised learning techniques is the
feedback from the system. Instead of having labels that tell the agent exactly what the
prediction should be, a reward/cost is given by the environment to estimate the quality of
the action taken, in the short term or the long term.

To better understand RL problems, we can formalize them into Markov Decision Pro-
cess (MDP) problems. We describe in the following the Markov modeling of the environ-
ment, then we present the Markov model-based and Markov model-free RL techniques.

2.2.1 Markov Modeling

The environment in an RL problem is a set of different representations of a system, namely
states S. These states provide a sufficient description of the system. To model the transi-
tion and interaction between such states, Markov modeling is a powerful tool.

36

2.2. Reinforcement Learning

2.2.1.1 Markov Process

Markov Process or Markov Chain (MC) is a stochastic model that describes the relation
between the different states of the environment. The main aspect is the Markov property,
dictating that the occurrence probability of a state St only depends on the previous state
St−1.

p(St = st|St−1 = st−1, St−2 = st−2, · · · , S1 = s1) = p(St = st|St−1 = st−1). (2.3)

Accordingly, a chain can be constructed to model the interactions between the states and
the corresponding probabilities of transition. Figure 2.3 illustrates a Markov Chain with
3 states S = {s1, s2, s3}.

𝑝(𝑠3|𝑠1)

𝑝(𝑠1|𝑠3) 𝑝(𝑠3|𝑠2)

𝑝(𝑠2|𝑠3)

𝑝(𝑠1|𝑠2)

𝑝(𝑠2|𝑠1)

𝑝(𝑠1|𝑠1) 𝑝(𝑠2|𝑠2)

𝑝(𝑠3|𝑠3)

𝑠3

𝑠1 𝑠2

Figure 2.3: Markov chain example with 3 states.

A matrix T can also be computed to store the transition probabilities between the
states. The sum of probabilities for each row of the matrix is

∑n
j=1 p(sj |si) = 1, i ∈ [1, n].

T =

p(s1|s1) p(s2|s1) · · · p(sn|s1)

p(s1|s2) p(s2|s2) · · · p(sn|s2)

· · ·

p(s1|sn) p(s2|sn−1) · · · p(sn|sn)

 . (2.4)

2.2.1.2 Markov Reward Process

Markov Reward Process (MRP) is a Markov Process that assigns a reward value for each
state in the environment. We describe the reward model by a vector R = [R1, R2, · · ·], a
function that outputs a reward for every state in the MRP. Figure 2.4 illustrates an MRP
with reward associated to each state R = [R1, R2, R3].

2.2.1.3 Markov Decision Process

Markov Decision Process (MDP) adds a set of actions A = [a1, a2, · · ·] to the MRP. The
agent can take these actions from given states and the environment transitions to new
states, with a given probability of transitioning. The transition matrix T becomes a 3D

37

Chapter 2. Learning-Based Preliminaries

𝑝(𝑠3|𝑠1)

𝑝(𝑠1|𝑠3) 𝑝(𝑠3|𝑠2)

𝑝(𝑠2|𝑠3)

𝑝(𝑠1|𝑠2)

𝑝(𝑠2|𝑠1)

𝑝(𝑠1|𝑠1) 𝑝(𝑠2|𝑠2)

𝑝(𝑠3|𝑠3)

𝑅3

𝑅2
𝑅1

𝑠3

𝑠1 𝑠2

Figure 2.4: Markov reward process example.

tensor for the probabilities for each state, next state and action p(s′|s, a). Figure 2.5
illustrates an example of an MDP, where for three states S = {s1, s2, s3}, two actions are
available A = {a0, a1}.

Take action
Successful action
Unsuccessful action

𝑝(𝑠1|𝑠1 , 𝑎0) 𝑝(𝑠2|𝑠1 , 𝑎0)

𝑝(𝑠2|𝑠2 , 𝑎0)𝑝(𝑠1|𝑠2 , 𝑎0)

𝑝(𝑠1|𝑠1 , 𝑎1)

𝑝(𝑠3|𝑠1 , 𝑎1) (|𝑝 𝑠3 𝑠2 , 𝑎1)

𝑝(𝑠2|𝑠2 , 𝑎1)

𝑝(𝑠2|𝑠 , 𝑎1)3𝑝(𝑠1|𝑠3 , 𝑎0)

𝑝(𝑠3|𝑠3 , 𝑎)

𝑅1 𝑅2

𝑅3

𝑠1 𝑠2

𝑠3

𝑎0 𝑎1

𝑎0

𝑎1

𝑎0

𝑎1

Figure 2.5: Markov decision process example.

With the modeling of an MDP (S,A,R,T), we have a complete description of the
environment. The RL agent tries to learn the environment dynamics and understand the
transition between the states by taking the appropriate actions, using the reward feedback
from the environment. Figure 2.6 illustrates the RL agent interaction with the environment.

2.2.2 MDP-related functions

In order to navigate the environment for a certain duration in the best possible way, the
agent’s goal is to take the actions that transition to the states with the highest reward.
Therefore, it needs to find the best policy π that dictates what action to take at each state
by maximizing the cumulative reward.

The policy π is a probability distribution of actions a ∈ A from a state s ∈ S. We

38

2.2. Reinforcement Learning

Agent
Environment

New State

Reward

Action

Figure 2.6: RL agent interaction with the environment.

assume that the reward for each state depends on the action taken, as well as the next state
Ra

ss′ , i.e., the reward value is received after transitioning to a new state s′, when starting
from state s and taking an action a. The policy π can be deterministic in the sense
that each state has a corresponding best action. To assess such policy, we can compute
the expected reward (return) Rπ following the policy π during k number of transitions
between states (or timesteps):

Rπ = Eπ

[
R0 + π(a|s) ·

k∑
t=1

Ra
ss′ · p(St = s′|St−1 = s,At−1 = a)

]
, (2.5)

where the expectation is computed over the policy distribution π, and R0 is the initial
reward when starting from state St=0. When the number of transitions k is finite, the
duration is called an episode, and the MDP is in the finite-horizon case. Whereas for the
MDP infinite-horizon case, the number of transitions tends to infinity k →∞. In the latter
case, we use a discount factor 0 < γ ≤ 1 that limits the expected reward to avoid having
a reward that diverges to infinity. The reward expression is then1:

Rπ = Eπ

[
R0 + π(a|s) ·

k→∞∑
t=1

(γ)tRa
ss′ · p(St = s′|St−1 = s,At−1 = a)

]
. (2.6)

Adjusting the value of the discount factor controls how much the future rewards, states
and action impact the expected reward. When γ = 1, all the future rewards are considered
equally, whereas for γ values close to 0, the expected return will be heavily biased towards
immediate rewards. Obviously, the aim is to maximize the reward over many episodes2.
We consider the optimal policy π⋆ is the one that achieves this:

π⋆ = argmax
π

Rπ. (2.7)

The optimal policy can be found using direct analytical expressions that produce an
exact solution to the problem. However, with a environment being more complex, opti-
mization techniques are needed to converge to the solution in an iterative way. This is
where training an RL agent becomes essential.

To describe if it is good or bad to be in the environment states, and obtain the optimal
policy, a set of functions are introduced. State value function (Value function for short),

1In what follows, only the infinite-horizon case is considered.
2Since the infinite horizon MDP does not have an episode end, we define it simply as a certain number

of transitions before resetting the initial state

39

Chapter 2. Learning-Based Preliminaries

State-Action Value function (Q-function) and Advantage function are examples that serve
this purpose.

Value function is simply the discounted sum of instantaneous rewards Rt following a
policy π, starting from a state St = s:

V π(St = s) = Eπ[Rt+1 + γRt+2 + γ2Rt+3 + · · · |St = s]. (2.8)

In other terms, the value function estimates the quality of being in a state s, while
following the policy π.
State-action value function, on the other hand, is the discounted sum of instantaneous
rewards Rt following a policy π, starting from a state St = s and taking an action At = a:

Qπ(St = s,At = a) = Eπ[Rt+1 + γRt+2 + γ2Rt+3 + · · · |St = s,At = a]. (2.9)

Similarly to the value function, Q-function evaluates the quality of being in a state
s and taking an action a. For a finite number of states and actions, we obtain a vector
representing the value function Vπ ∈ R|S|, and a matrix for the Q-function Qπ ∈ R|S|×|A|,
following the policy π, with |S| and |A| representing the state space and action space sizes,
respectively.
Accordingly, the optimal policy π⋆ is obtained by taking the sequences of actions that
maximize the value function for all states or the Q-function for all state-action pairs:

V ⋆(s) = max
π

V π(s) = V π⋆
(s), ∀s ∈ S, (2.10)

Q⋆(s, a) = max
π

Qπ(s, a) = Qπ⋆
(s, a), ∀s ∈ S, ∀a ∈ A. (2.11)

Bellman provided recursive forms to evaluate both functions V π(s) and Qπ(s, a) [60].
The Bellman expectation equations are expressed as:

V π(s) =
∑
a∈A

π(a|s)
∑
s′∈S

p(s′|s, a)
(
Ra

ss′ + γV π(s′)
)
, (2.12)

Qπ(s, a) =
∑
s′∈S

p(s′|s, a)
(
Ra

ss′ + γ
∑
a′∈A

π(a′|s′) ·Qπ(s′, a′)
)
. (2.13)

Notably, there is a dependence between the current value of a state s, and the value
of its successor state s′. Dynamic programming algorithms can benefit greatly from this
recursive form to derive an iterative solution that improves the equations constantly. In
addition, a relation can be derived between the value function and the Q-function, shown
in Equation (2.14) and Equation (2.15). Moreover, Figure 2.7 shows this relation where
the left structure represents the value function, which is a sum of different Q-functions for
each action taken from the policy π(a|s), while the Q-function on the right is a sum of
value functions after taking an action a and receiving a reward Ra

ss′ :

V π(s) =
∑
a∈A

π(a|s) ·Qπ(s, a), (2.14)

Qπ(s, a) =
∑
s′∈S

p(s′|s, a)
(
Ra

ss′ + γ · V π(s′)
)
. (2.15)

40

2.2. Reinforcement Learning

𝑉𝜋 𝑠 ⟻ 𝑠

𝑄𝜋 𝑠′, 𝑎′ ⟻ 𝑎′

𝑄𝜋 𝑠, 𝑎 ⟻ 𝑠, 𝑎

𝑉𝜋 𝑠′ ⟻ 𝑠’

𝑅𝑠𝑠′
𝑎𝜋 𝑎|𝑠

Figure 2.7: Relationship between the value function and the Q-function.

The advantage function can be defined as the difference between the Q-function and
the value function. Intuitively, it can indicate whether the taken action a outputs a reward
value better than the expected one following the policy π:

Aπ(s, a) = Qπ(s, a)− V π(s). (2.16)

It can be written as function of the value function and the reward obtained by taking
the action a in state s and transitioning to state s′, denoted as Ra

ss′ :

Aπ(s, a) = Ra
ss′ + γV π(s′)− V π(s). (2.17)

Optimal Value and Q-functions are defined by the Bellman optimality equations:

V ⋆(s) = max
a∈A

(∑
s′∈S

p(s′|s, a)
(
Ra

ss′ + γV ⋆(s′)
))

, (2.18)

Q⋆(s, a) =
∑
s′∈S

p(s′|s, a)
(
Ra

ss′ + γ ·max
a′∈A

Q⋆(s′, a′)

)
. (2.19)

They yield a deterministic policy expressed as:

π⋆(a|s) =

1 if a = argmax
a∈A

∑
s′∈S p(s

′|s, a)
(
Ra

ss′ + γV ⋆(s′)
)

0 otherwise
, (2.20)

π⋆(a|s) =

1 if a = argmax
a∈A

Q⋆(s, a)

0 otherwise
. (2.21)

2.2.3 Model-based Methods

In this section, we discuss model-based methods for finding the optimal policy to navigate
the environment with the highest reward. Model-based refers to the full knowledge of the
transition matrix T and the reward model R of the MDP representing the environment.
The convergence of these methods is guaranteed, making them optimal.

2.2.3.1 Value Iteration

The first optimal method is Value Iteration (VI). The principle of VI is to incrementally
improve a randomly initialized value function in the form of a vector V0(s). It applies

41

Chapter 2. Learning-Based Preliminaries

iteratively the Bellman optimality equation until converging to the optimal solution with
some stopping criteria. It is described by:

Vk(s) = max
a∈A

(∑
s∈S

p(s′|s, a)
(
Ra

ss′ + γVk−1(s
′)
))

, (2.22)

where Vk(s) takes the maximum value possible by an action a for state s at iteration k.
It depends on Vk−1(s

′), the optimal value of successor state s′ obtained at the previous
iteration k − 1.

2.2.3.2 Policy Iteration

The second optimal method is Policy Iteration (PI). This algorithm runs two phases it-
eratively until convergence: Policy Evaluation and Policy Improvement. The first phase
evaluates the value function at iteration k using the value function vector Vk−1(s) and the
policy πk−1(a|s) obtained in the previous iteration k − 1. It is described as:

Vk(s) =
∑
a∈A

πk−1(a|s)

(∑
s∈S

p(s′|s, a)
(
Ra

ss′ + γVk−1(s
′)
))

. (2.23)

The second phase improves the policy πk(a|s) by choosing the actions a that maximize
the value function at each state s according to:

πk(a|s) =

1 if a = argmax
a∈A

∑
s′∈S p(s

′|s, a)
(
Ra

ss′ + γVk(s
′)
)

0 otherwise
. (2.24)

The algorithm converges when the policy stops changing, i.e., π⋆ = πk = πk−1.

2.2.4 Model-free Methods

In contrast to model-based, model-free methods have no knowledge of the dynamics of
the environment, i.e., T and R, but only the state space S and the action space A.
This can happen in most RL problems where the environment is complex, or where it
is computationally hard to model the dynamics of their environments. In this case, the
agent attempts to learn the optimal policy by exploring the environment, i.e., by taking
different actions and getting feedback through rewards. This is denoted as a "trial-and-
error’ approach.

On one side, exploring the environment indefinitely does not necessarily yield to an
optimal policy. On the other side, only attempting to take the best action at each state
without exploring other actions and states in the environment is not a good approach
neither. Therefore, a balance between exploration and exploitation of the obtained infor-
mation is needed for the agent to optimize its actions and produce a good policy.

2.2.4.1 Q-Learning

Q-Learning (QL) [61] is a widely popular model-free algorithm that tries to understand
the environment by filling its Q-function in matrix form Q when navigating samples of

42

2.2. Reinforcement Learning

states s and taking actions a from those states of the environment. QL learns to assess
the quality of the action taken at each state to update the Q-matrix Q(s, a) in small steps
iteratively.

At any step, the action taken a at state s is decided by an ϵ-Greedy algorithm. It chooses
the best action that gives the highest reward with probability (1 − ϵ) (this corresponds
to exploitation), and chooses a random action with probability ϵ to explore the action
(exploration). Updating the matrix Q at any iteration is expressed as:

Qnew(s, a) = Qold(s, a) + α ·
(
Ra

ss′ + γ ·max
a′∈A

Qold(s
′, a′)−Qold(s, a)

)
︸ ︷︷ ︸

Temporal Difference

, (2.25)

where α is the learning rate, a scaling factor to limit the size of the update for the Q-matrix.
The Temporal Difference (TD) highlighted in the equation above is a measurement of the
difference (error) between the Q-matrix value Q(s, a) and its Bellman equation estimation
when sampling an action and a next state, as shown previously in equation 2.13. By
progressively exploring and exploiting the environment, the agent fills up the Q-matrix
and learns a policy. QL has a guarantee of convergence with enough iterations if the set
of state-action pairs are sufficiently visited.

2.2.4.2 Double Q-Learning

One of the issues of the Q-learning algorithm is the overestimation of its Q-matrix values,
otherwise known as the maximization bias. The problem happens when updating the
matrix with new values where the actions that yield good rewards, and thus a bigger TD,
explode the corresponding state-action values in the Q-matrix Qnew(s, a). This is due to
the use of the max operation on the estimates of the Q-function, rather than the exact
ones. The constant occurrence of such phenomenon slows down the convergence of the
algorithm, and does not produce good estimations of the Q-function [60].

To enhance the results of Q-Learning and speed up the convergence, the authors in [62]
propose Double Q-Learning (2QL). Instead of updating one Q-matrix estimation of the
true Q-function, 2QL algorithm trains with two matrices QA(s, a) and QB(s, a). When
updating the value of one Q-matrix, it uses its values for selecting the next best action,
and uses the second for estimating the state-action value for the selected next action. The
updating process is detailed in what follows, where N = {A,B} is the index of the Q-
matrix to be updated, and the one that selects the next best action, while N̄ is the index
of the Q-matrix that performs the estimation of the Q-value of said action:

QN
new(s, a) = QN

old(s, a) + α ·
(
Ra

ss′ + γ ·QN̄
old(s

′, argmax
a′∈A

QN (s′, a′))−QN
old(s, a)

)
, (2.26)

where the term argmax
a′∈A

QN (s′, a′) represents the action chosen from the matrix QN and

used for evaluating the state-action value of QN̄ . 2QL algorithm randomly chooses a Q-
matrix between the two to update at each timestep, and averages both matrices to obtain
a final one upon convergence.

43

Chapter 2. Learning-Based Preliminaries

2.2.4.3 Deep Q-Learning

When the state and actions spaces grow larger, modeling them using Q-matrices can be
memory consuming. In addition, the time required for exploring the state space sufficiently
to determine what action to take for each circumstance increases, and thus making it
harder for QL and 2QL to converge on a policy. Therefore, Deep Q-Learning [63] or Deep
Q-Network (DQN) was introduced to tackle the curse of dimensionality that traditional
algorithms face, by using NNs to model the environment rather than matrices. Thanks
to the generalization abilities of NNs, DQN is able to approximate the Q-matrix using a
function of parameters w, even without exploring the entirety of the state space S.

Specifically, a given state s is fed into the DQN’s Neural Network of parameters w.
The output is an estimation of the Q-values denoted as Qw(s, a), which indicates the
state-action values for the state s. An action a is chosen based on the obtained Q-values
(in training, the action is sampled following the ϵ-Greedy method, whereas during the test,
the action is the one that achieves the highest Q-value) and the environment transitions
to a new state s′, with a reward Ra

ss′ , as illustrated in Figure 2.8.

Agent
Environment

New State

Reward

Sample Action
 -Greedy

Q-Values

DQN

Figure 2.8: DQN agent exploring the environment.

To train the DQN agent, a loss function LwDQN is used to evaluate the quality of the
produced Q-values. More specifically, the estimate Qw(s, a) for a state s, is used to take an
action a, transition to a next state s′ and receive a reward Ra

ss′ . The result is then compared
with the Bellman equation of the Q-function using the DQN Q-values estimation of the
next state Qw(s′, a′), expressed in the following equation:

Q̂w(s, a) = Ra
ss′ + γ ·max

a′∈A
Qw(s′, a′). (2.27)

From that, the loss function computes the error between the two estimates Qw(s, a)

and Q̂w(s, a), and the DQN agent uses that to update its parameters w with Gradient
Descent, and improve its estimation quality.
However, using the parameters w, initially used to estimate Qw(s, a), to compute the
Q-values of the next state Qw(s′, a′) when evaluating the Bellman estimation Q̂w(s, a),
to later update the same parameters can cause the issue of a moving target, i.e., the
convergence point is constantly moving and reaching it becomes more difficult. To combat
this issue, a second NN can be used with different parameters w′. This network will be used
to compute the Bellman equation and offer more stability to the training of the parameters
w of the DQN agent. Notably, the first NN is named the Evaluation Network (EN), while

44

2.2. Reinforcement Learning

the second NN is named the Target Network (TN). To avoid training two separate NNs,
the TN parameters w′ will be a copy of the EN parameters w that do not get updated as
often. More specifically, for a certain number of episodes, the parameters w′ are fixed to
allow the parameters w to converge towards a fixed target. After that, an update on the
TN parameters is done to make them equal to the EN parameters w′ = w. This is done to
improve the Bellman estimation using an updated version of the Q-values Qw′

(s, a). The
process is repeated until convergence.

Moreover, the sequential nature of MDP problems creates a correlation in the observed
states used to train the DQN. If the system is unstable, the correlation aspect can yield to
high variance updates of the agent’s parameters, and therefore impact the performance and
convergence of the DQN [60]. From that, DQN uses Experience Replay (ER), a technique
implemented to train the agent more efficiently, and with more stability. ER consists of
collecting the transitions of the agent in the environment, and storing them in a memory
buffer. This memory buffer is then used to replay the transitions played in a randomized
way (to break the correlation), and compute the loss function. Following this method,
training the DQN agent becomes more stable against the variations in the transitions of
the environment.

In what follows, we detail the training procedure of the DQN:

1. Starting with an initial state St = s at timestep t, we compute the Q-values Qw(s, a)

using the EN, choose an action At = a following the ϵ-Greedy approach, transition
to a new state St+1 = s′ and receive a reward Ra

ss′ . The tuple
(
s,Qw(s, a), s′, Ra

ss′
)

is saved in the ER memory buffer, and the system transitions to a new timestep.
The next state s′ becomes the current state s and the process is repeated until the
end of the episode, where a new initial state is used to start a new episode.

2. Once the memory buffer is filled with a sufficient number of tuples to form a mini-
batch, the learning process starts, in which the sampled tuples are shuffled to break
the correlation between the transitions to form a mini-batch.

3. The obtained mini-batch, denoted as b and of size |b|, is then used to compute the
Bellman step using the TN for each tuple

(
si,Q

w
i (si, ai), s

′
i, R

a
ss′,i

)
of index i in the

mini-batch, following the equation:

Q̂w′
i (si, ai) = Ra

ss′,i + γ ·max
a′∈A

Qw′
i (s′i, a

′). (2.28)

4. The obtained Bellman estimations of the mini-batch b are then used to compute the
loss Lw,w′,b

DQN , which is the Mean Squared Error (MSE) between the Bellman estimates
and the Q-values outputs of the EN. The loss function is expressed as follows:

Lw,w′,b
DQN =

1

|b|

|b|∑
i=1

(
Q̂w′

i (si, ai)−Qw
i (si, ai)

)2
. (2.29)

5. The parameters w are then updated using the loss Lw,w′,b
DQN following the Gradient

Descent method with a learning rate α:

w← w − α∇wLw,w′,b
DQN . (2.30)

45

Chapter 2. Learning-Based Preliminaries

6. The parameters w′ of the TN are updated every few episodes, to be the same as w.
The process described in the outlined steps is repeated until convergence.

Other features were added to DQN in order to improve its performance and accelerate
its convergence. The work in [64] used prioritized ER to sample experiences that have high
expected learning progress from the memory buffer with higher probability compared to
experiences with lower expected learning progress. The estimation of the expected learning
progress was done using TD-error of the experiences. Moreover, the paper [65] introduced
a dual architecture to the DQN, where one network estimated the state value function
and a separate network estimated the advantage function. Both network outputs were
aggregated to produce the Q-values. The advantage of this approach was to make the
distinction between actions in states where immediate reward is preferred (i.e., maximize
the Advantage function), and actions where the long-term reward is better (i.e., maximize
the value function).

2.2.4.4 Proximal Policy Optimization

Proximal Policy Optimization (PPO) [66] is another NN-based method, which falls under
the family of Policy Gradient, Actor-Critic methods. Policy Gradient algorithms are a
family of RL methods that attempt to find the policy directly by iteratively optimizing an
objective [67]. In order to overcome the curse of dimensionality, this policy is a parame-
terized NN function with parameters w. Therefore, the output of this kind of approach is
a policy πw(a|s) (Actor part). Using an objective function Lw, the quality of the current
policy is measured, and the parameters w of the policy are updated with Gradient Ascent
in the direction of the gradient ∇wLw. In addition to the policy update stage, an analysis
of the value function can be done to provide more insights into finding a good policy (Critic
part).

The Proximal Policy Optimization (PPO) is related to an Actor-Critic scenario where
the actor part is the policy estimation with parameters w and the critic part is the value
function with other parameters w′.

More precisely, PPO uses a policy gradient method where Neural Networks approximate
the policy and the value function with weights w and w′, respectively. This algorithm was
built upon a previous work called Trust Region Policy Optimization (TRPO) [68] where the
goal was to limit the update step for the policy in order to improve the training stability.
It forced the Kullback-Leibler (KL) divergence between the old and the new policies to
be smaller than a predefined threshold, allowing thus small but monotonic updates of the
policy.

Formally, assuming that we are in state St = s at timestep t, and having taken an
action At = a, the system transitions to a next state St+1 = s′. The TRPO objective
function is defined as follows:

Lw,w′

TRPO = Ê

[
πw(a|s)
πwold(a|s)

Âw′
]
, (2.31)

with Ê being the expectation over batch of samples, and Âw′ being the truncated version
of the advantage function for state St derived from the value function calculating with

46

2.2. Reinforcement Learning

weights w′. This advantage function is defined as:

Âw′
(St = s) =

T−1∑
τ=t

(γλ)τ−t
(
RAτ

SτSτ+1
+ γVw′

(Sτ+1)−Vw′
(Sτ)

)
, (2.32)

where λ is the generalized advantage estimation factor. The last term in brackets is related
to Bellman equation where Sτ+1 = s′. Then the TRPO update works as follows:

maxw,w′ Lw,w′

TRPO

subject to Ê [KL (πwold(a|s), πw(a|s))] ≤ δ.
(2.33)

PPO simplifies this concept by replacing the constraint on KL divergence with a clip-
ping function, i.e., a function f(x) that puts a threshold on its input x in the following
way:

f(x) = clip(x, a, b) =⇒ (x, a, b) ∈ R3 : f(x) =

x if a < x < b,

a if a ≥ x,

b if b ≤ x.

(2.34)

with a and b being respectively the lower and the upper threshold. The PPO update works
as follows

max
w,w′

Lw,w′

PPO, (2.35)

with

Lw,w′

PPO = Ê
[
min

(
qwÂw′

, clip (qw, 1− ϵ, 1 + ϵ) Âw′
)]

,

qw =
πw(a|s)
πwold(a|s)

. (2.36)

In contrast to the TRPO algorithm, PPO integrates the constraint into the objective
function by clipping the ratio between both policies up to ϵ.

Based on the idea, the PPO agent training procedure is described as follows:

1. Fill up a memory buffer with data from the transitions of the agent when navigating
the environment for a certain number of timesteps. Starting with a state s, sample
an action a ∼ πwold using the actor network, obtain a next state s′ and a correspond-
ing reward Ra

ss′ . Calculate the value function vector Vw′
(s) as well, and store the

tuple
(
s, a, πwold ,Vw′

(s), s′, Ra
ss′

)
in the memory buffer. The new state s′ is now

considered the current state as of the next timestep.

2. Repeat the operations in the previous step until the determined number of timesteps
is reached, and the obtained sequence corresponds to an episode. Start with a new
randomly chosen initial state.

3. Once the memory buffer is completely filled with tuples, it plays the role of batch
for training the actor and the critic networks. Given this batch, non-overlapping
mini-batches of given sizes are considered by picking up tuples randomly.

47

Chapter 2. Learning-Based Preliminaries

4. Looping through all the mini-batches, the advantage functions Âw′
bi

for a certain
mini-batch bi are estimated, as well as the ratios between the old policy and the new
one qwbi .

5. Calculate the objective function Lw,w′,bi
PPO associated with the mini-batch bi. In fact,

this function is obtained as in (2.36) where the expectation has been replaced with
the expectation over the tuples in the considered mini-batch bi. It is used to update
the weights of both networks with gradient ascent:

w← w + α∇wLbiPPOa, (2.37)

w′ ← w′ + α∇w′LbiPPOa, (2.38)

where α is the learning rate and LPPOa is the augmented objective function defined
as:

LbiPPOa = Lw,w′,bi
PPO + β1Lw

′,bi
V F + β2Sw,bi , (2.39)

with Lw
′,bi

V F a squared error term for the value function, and Sw,bi the entropy loss
that encourages exploration. β1 and β2 are some hyperparameters to tune.

6. After visiting all the mini-batches bi, the previous steps in the training operation
are repeated on the same batch with newly shuffled mini-batches for I iterations.
Afterwards, the stored batch is wiped out and a new process is started once more,
filling up the memory buffer, and training the agent again (this corresponds to a new
epoch), with the obtained policy becoming the old one.

7. After a certain number of epochs, the algorithm converges to a policy πw(a|s) which
will be applied during the test phase.

2.3 Federated Learning

Federated Learning (FL) is a relatively new concept in ML introduced in [24]. The main
aim of FL is to distribute learning over multiple nodes while conserving data privacy, and
learn a joint model. To train FL models, a set of nodes that communicate with a central
node perform local updates and operations using locally produced data (without sharing it)
on the same NN structures. Following few iterations, the nodes send either their updated
weights, the batch loss, or the gradients of the weights to the central node, where a global
aggregation of the received information from participating node is done and a new global
model is produced. The global model is then broadcasted to the local nodes to continue
training and the process is repeated until global convergence. An illustrative example is
shown in Figure 2.9. Note that distributed training is different than FL in the sense that
there is not one model trained by multiple nodes in a distributed way using the same pool
of data, but rather multiple models trained separately, using local data, and averaged in
one central node.

The produced FL model has great generalization abilities across the heterogeneous
data that the nodes might have. Indeed, the global update procedure can differ from

48

2.3. Federated Learning

Figure 2.9: Federated learning general structure. Source [69].

one approach to another, involving weighted sums, batch loss, gradients or other useful
parameters, depending on the application and the local nodes computational capacities.

FL is categorized into three categories; Horiztonal FL (HFL), Vertical FL (VFL), and
Federated Transfer Learning (FTL) [70]:

• HFL : The datasets of the nodes in this case have a small overlap, while the data
features are mostly aligned.

• VFL : The nodes have different targets to achieve, thus less correlated data features
and models, but they serve a large portion of users towards a common goal.

• FTL: The nodes are not aligned in this particular scenario, and the aim is to transfer
the knowledge from one source domain with rich resources, to a less rich domain, by
exploiting the invariance between these domains.

A concrete example of FL modeling is in communication networks, where the BS (or
the MEC server next to it) can be considered as a central node, while the local nodes are
the devices connected to the BS (IoT devices for example). The devices train local models
without sharing the data generated or collected. This approach is particularly useful when
utilizing a Federated Learning Multi-Agent setup of Reinforcement Learning as introduced
in [71] and [72], and further investigated in [73]. The work in Chapter 4 implements this
concept.

49

Chapter 2. Learning-Based Preliminaries

50

Part II

Contributions

CHAPTER 3

Optimal Scheduling-Offloading Policies

Chapter 3. Optimal Scheduling-Offloading Policies

The generational leap in wireless communications standards from 4G to 5G brought
with it numerous advantages and improvements to the existing infrastructure and

applications. 5G offers a significant increase in data rates, response times, and system
capacity for handling multiple connected users. Many new applications and services are
enabled that were not possible to implement in previous generations, e.g. Massive IoT
and Autonomous Driving. This was achievable thanks to the addition of technologies like
Mobile-Edge Computing (MEC) and Energy Harvesting (EH).

However, with the exponential growth in the number of connected devices, optimizing
the existing resources will limit the costly infrastructure changes, in terms of the used
equipment and the energy consumed that need to be available in order to accommodate
the large numbers of users.
One of the ways to perform such optimization is to allocate the resources of the network
among the users in an efficient and fair way, while maintaining a level of performance
throughout the system. Resource Allocation can target different aspects of the network
resources, e.g. transmit power, bandwidth, energy consumption, computational offloading
or scheduling tasks.

Subsequently, multiple scenarios of resource allocation can arise that differ from each
other depending on the components of the system. As an example, in a scenario where a
Base Station (BS) serves multiple users with a limited budget power of Downlink trans-
mission, the goal is to distribute this power optimally to satisfy the different needs of the
users. By considering the Uplink communication, the objective may become related to
bandwidth allocation, user scheduling, or to a joint-setup of all the aforementioned goals.
Additionally, when the users / BS have energy constraints, the problem may consider the
energy efficiency of the communications between the system devices.

The resulting optimization problem can be of a non-convex nature, that requires ad-
vanced tools to solve analytically. However, when the system becomes too complex, Markov
Decision Processes MDPs can be used to model the system environment, to be further
solved with the deployment of Reinforcement Learning RL methods. RL produces the
policies that can dictate the optimal allocation of resources for each scenario that may
present itself. Moreover, for even larger and more complex MDP environments, Deep Re-
inforcement Learning DRL algorithms offer better performance through the use of NNs
and their ability to model complex functions.

From that, the resource allocation problem that we tackle in the two contributions
of this chapter and solve using RL techniques, is concerned with a system containing a
Base Station (BS) serving User Equipments (UEs). Each UE tries to execute the flow of
data packets that arrive at its buffer, which have strict delay constraints, i.e., the data
packets are dropped once reaching an age limit. In addition, a limited-size battery is fitted
to each UE that can harvest energy from ambient sources (e.g. Solar, RF). Moreover, a
Mobile Edge Computing (MEC) server is installed near the BS, to which the UEs can
offload their data packets to execute and send back the result (local execution is possible
as well with a lower computing capacity). In the case where multiple UEs offload their
data packets at the same time, Non-Orthogonal Multiple Access (NOMA) is enabled to
allow the sharing of channel resources. The resulting resource allocation problem is a joint

54

Scheduling-Offloading one, where the goal is to minimize the number of dropped packets.

In this first contribution, Energy Harvesting is not considered in the system, rendering
the users able to execute their data packets without energy concerns. The problem is
therefore less complex to model using an MDP, and the RL methods used to solve it
are optimal. Comparing the used methods (model-based and model-free) against some
standard ones shows their performance advantage in terms of the packet error-rate. When
the system grows larger in size, the curse of dimensionality makes using optimal methods
impractical, and thus only model-free methods (with DRL ones in particular) are viable.
The scaling of the system shows the benefits of using DRL-based techniques, due to their
impressive generalization capabilities to unseen scenarios using NNs.

In the second contribution, Energy Harvesting is added to the system, which results in
a more difficult system to solve. The subsequent problem formulation changes, and using
model-based methods becomes infeasible due to the exponential increase in the environment
size. Therefore, the MDP problem is solved using a state-of-the-art DRL algorithm named
Proximal Policy Optimization (PPO) [66]. Results show that PPO performs better than
the standard methods, while consuming less overall energy.

Some recent works were proposed in this scope, e.g. a heuristic algorithm was studied
in [74] to minimize the task average execution delay by optimizing NOMA’s Successive
Interference Cancellation (SIC) ordering and resource allocation in IoT networks. An
online packet offloading algorithm was also developed in [75] that maximized the long
term system throughput and minimizes the signaling overhead. A multi-base station and
multi-user framework was considered in [76] where a Multi-Agent Deep Reinforcement
Learning (DRL) was used to jointly optimize the packet offloading, sub-station and sub-
channel resource allocation, and minimize the energy consumption in the system. In [77],
joint optimization of offloading policy including a packet splitting for partial offloading
and channel resource allocation (NOMA/OMA sub-carrier allocation) using DRL was also
investigated. Moreover, a DRL-based online packet offloading in multi-carrier NOMA-
enabled MEC networks was developed in [78] to optimize sub-carrier allocation. The work
in [79] focused on an ultra-dense network with small BSs and clustering to jointly optimize
user clustering and resource and power allocation. Finally, the RL-based approach studied
in [80] was tailored for computation offloading and energy transmission in a MEC-EH based
system. They minimized the energy consumption and execution delay by decomposing the
problem into sub-problems to overcome the dimensionality curse.
Regarding the works that considered PPO in their works, an extension to MIMO-MEC
has been done in [81] by using Deep Q-Network [63] and PPO. In [82], the authors used
PPO in a multi-user environment with multiple MEC servers. An actor critic DRL model
was developed in [83] for a resource allocation problem in a multi-cell NOMA system.
The proposed model is a dynamic one that could switch between multiple NNs depending
on the network loads. multi-cell NOMA with Actor Critic DRL was shown to be more
performant compared to an OMA scheme.

The aforementioned works differ from ours where the delay is strictly imposed, which
adds a constraint on the MDP environment configuration and the resulting RL policies.
Additionally, a scenario adopting of MEC capabilities, EH-enabled devices and NOMA

55

Chapter 3. Optimal Scheduling-Offloading Policies

transmission is not used in any of these works. These contributions are an extension of the
one done in [42], with the addition of multiple UE, NOMA transmissions, and the use of
model-free methods including DRL ones.

The remainder of the chapter is organized as follows:

• Section 3.1 describes the system model and the subsequent data buffer and channel
models, as well as the scheduling decisions, energy equations for each decision, and
the time constraints.

• Section 3.2 presents the formulation of the optimization problem as an MDP and
solves it using various Reinforcement Learning algorithms.

• Section 3.3 presents and analyzes the numerical results.

• Section 3.4 explores the extension to an Energy Harvesting-based system at the UE
level, with an energy and battery model, problem formulation and resolution, as well
as simulation results.

• Section 3.5 gives some concluding remarks.

3.1 System Model

We consider 2 user equipments UEs served by a base station BS with a MEC server. The
UEs are equipped with buffers to store the application data that need to be processed
within a strict delay. The decision for offloading or processing locally is made at the BS
level at the beginning of each timestep of size T . The decision is then broadcasted to the
UEs for free.

Therefore, at each timestep, the UEs process either their data packets locally using their
processor, or remotely by offloading them to the BS, to be processed at the MEC before
receiving the results. When both UEs offload their packets to the MEC server, NOMA is
considered as the multiple access technique. In the sequel, we provide more details on the
buffer model and strict delay constraint, the channel model, and the scheduling decisions
with their corresponding time constraints.

Figure 3.1 showcases the adopted system model.

3.1.1 Data Buffer Model

The data buffer at each UE(1) and UE(2) is used to store the packets awaiting their ex-
ecution. It is modeled as a vector d of size Sd where each component dk, k ∈ [0,Sd),
represents a data packet by its age (−1 is for an empty buffer slot). The data packets are
ordered in a descending order with respect to (w.r.t.) their age (old packets shift to allow
for the arrival of new packets).

The number of packets in the buffer at a given timestep t is denoted by N d
t ≤ Sd.

The arrival of data packets is following an independent and identically distributed (i.i.d.)
random Poisson process with mean µd. The probability distribution is given by:

56

3.1. System Model

UE(1) UE(2)

Buffer

Base
Station

MEC
Server

Offloading

Data
Arrival

Offloading

Local
Processing

Result Result

Buffer

Local
Processing

Figure 3.1: System model.

p(qt = D) = e−µd · (µ
d)D

D!
, (3.1)

where qt is the number of arrived packets at timestep t. If qt exceeds the available Sd−N d
t

slots in the buffer, buffer overflow occurs and the excess will be dropped. If the packets
present in the buffer reach a maximum pre-fixed delay, ∇, due to strict delay constraint,
delay violation occurs and these packets will be dropped as well. The buffer model is
illustrated in Figure 3.2.

d1 d2 … d𝒩
𝑑 −1 −1…

𝒩𝑑 Packets in the buffer empty slots

Buffer vector 𝐝 of capacity 𝒮𝑑(ordered from oldest to newest)

Figure 3.2: Buffer model.

3.1.2 Channel Model

The channel between the UEs and the BS is modeled as a Rayleigh flat-fading channel,
with an additive white Gaussian noise AWGN of power spectral density N0. The band-
width is denoted Wdl for the Downlink (DL) and Wul for the Uplink (UL). We assume
full knowledge of the Channel State Information at the Transmitter (CSIT). The channel
response is constant during a timestep, with h(i) the complex amplitude of the channel for
UE(i), i ∈ {1, 2}, and x(i) = |h(i)|2 its gain. We assume no channel correlation across suc-
cessive timesteps. We model the variation of the channel gain by the continuous random

57

Chapter 3. Optimal Scheduling-Offloading Policies

variables following the exponential distribution with mean µc:

p(C) = 1

µc
e

−C
µc . (3.2)

We consider that the BS makes its decision based on a quantized version of the channel. In
practice, the BS broadcasts a training sequence, the UEs then estimate their channel and
send back a quantized version in order to limit the size of the overhead. The quantized
channel gain for UE(i) is defined as x(i) = Q(x(i)), where Q is the quantization function
and x(i) is the lower value of the interval in which h(i) belongs to. We denote x(i) as the
upper value of that interval which can be deduced from x(i). The finite set of the quantized
channel states is X . At each timestep t, the gain x(i) for UE(i) will be projected into the
discrete space and the obtained value x

(i)
t will be used further in the calculations.

Notably, the new NOMA equations for the UL and DL case, taking into account the
channel gain quantization, are as follows:

Rul,(1)
noma,t =Wul · log2

(
1 +

p
o,(1)
t · x(1)t

p
o,(2)
t · x(2)t +Wul · N0

)
, (3.3)

Rul,(2)
noma,t =Wul · log2

(
1 +

p
o,(2)
t · x(2)t

Wul · N0

)
, (3.4)

Rdl,(1)
noma,t =Wdl · log2

(
1 +

δp
b,(bs)
t · x(1)t

Wdl · N0

)
, (3.5)

Rdl,(2)
noma,t =Wdl · log2

(
1 +

(1− δ)p
b,(bs)
t · x(2)t

δp
b,(bs)
t · x(2)t +Wdl · N0

)
. (3.6)

For these equations, we consider a worst case scenario when formulating the interfer-
ence of the weaker UE, w.r.t. the channel gain, with x

(2)
t the upper-bound value of the

quantization in Equation (3.3).

3.1.3 Scheduling Decisions

Three different decisions can be made at the beginning of a timestep t of duration T : Idle,
Local Processing or Offloading for each UE(i), with i ∈ {1, 2}.

• Idle : UE(i) will not execute any packet, thus the number of packets executed is
m

(i)
t = 0.

• Local Processing : UE(i) has the computational capacity to execute locally m
(i)
t ≤Ml

packets,Ml being the maximum number of locally executed packets.

• Offloading : UE(i) offloads m
(i)
t packets to the BS, m(i)

t ≤Mo,Mo being the maxi-
mum number of offloaded packets. These packets should be processed and returned,
all within the timestep duration T . This step comprises 4 steps; transmission, wait-
ing, reception and decoding.

58

3.1. System Model

3.1.4 Energy Consumed

When processing packets, different amounts of energy are consumed for each scheduling
decision. These energy values are related to the time constraints, and they are derived as
the following:

• Idle i : UE(i) does not consume any energy:

E i,(i)t = 0. (3.7)

• Local Processing l : m(i)
t are processed locally for UE(i) with power P l per processed

packet. The corresponding energy is:

E l,(i)t = m
(i)
t · P l · T . (3.8)

• Offloading o: UE(i) offloads m
(i)
t packets with power p

o,(i)
t that cannot exceed the

maximum offloading power Po.

– If only one UE is offloading, the consumed energy at UE(i) is:

Eo,(i)t = m
(i)
t ·

(Lul · po,(i)t

Rul,(i)
su,t︸ ︷︷ ︸

Transmission

+ T w · pw︸ ︷︷ ︸
Waiting

+
Ldl · pr

Rdl,(i)
su,t︸ ︷︷ ︸

Reception

+ ρ · L
dl · pd

Rdl,(i)
su,t︸ ︷︷ ︸

Decoding

)
, (3.9)

where i ∈ {1, 2}, Lul and Ldl are the lengths in bits of the transmitted data
packets in UL and DL, respectively. T w is the waiting time at UEs for receiving
the results. pw, pr and pd are the consumed powers for waiting, reception and
decoding. ρ is a scaling factor for efficient decoding. The optimal rates for
single-user offloading in UL and DL are expressed as:

Rul,(i)
su,t =Wul · log2

(
1 +

p
o,(i)
t · x(i)t

Wul · N0

)
, (3.10)

Rdl,(i)
su,t =Wdl · log2

(
1 +

p
b,(bs)
t · x(i)t

Wdl · N0

)
. (3.11)

– On the other hand, when both UEs offload at the same timestep, NOMA is
used to allow simultaneous transmission. The expressions at both UEs of the
consumed energy are:

Eo,(1)t = m
(1)
t ·

(Lul · po,(1)t

Rul,(1)
noma,t

+ T w · pw +
Ldl · pr

min{Rdl,(1)
noma,t,R

dl,(2)
noma,t}

+

ρ ·
(Ldl · pd
Rdl,(1)

noma,t

+
Ldl · pd

Rdl,(2)
noma,t

))
, (3.12)

Eo,(2)t = m
(2)
t ·

(Lul · po,(2)t

Rul,(2)
noma,t

+ T w · pw +
Ldl · pr

Rdl,(2)
noma,t

+ ρ · L
dl · pd

Rdl,(2)
noma,t

)
. (3.13)

The reception time in equation 3.12 is tuned according to the slowest communi-
cation rate. In addition, the decoding time has two terms since SIC is applied.

59

Chapter 3. Optimal Scheduling-Offloading Policies

3.1.5 Time Constraints

The above energy equations imply that offloading decisions only occur when the transmis-
sion, waiting, reception and decoding are completed within the timestep duration T . For
the NOMA offloading case, we have the following equations (single user case is similar to
the one of UE(2) in Equation (3.15)):

m
(1)
t ·

(Lul

Rul,(1)
noma,t

+ T w +
Ldl · pr

min{Rdl,(1)
noma,t,R

dl,(2)
noma,t}

+ ρ ·
(Ldl

Rdl,(1)
noma,t

+
Ldl

Rdl,(2)
noma,t

))
≤ T , (3.14)

m
(2)
t ·

(Lul

Rul,(2)
noma,t

+ T w +
Ldl

Rdl,(2)
noma,t

+ ρ · Ldl

Rdl,(2)
noma,t

)
≤ T . (3.15)

From these equations, we can derive the corresponding offloading power, by forcing
equality and using the explicit forms of Rul,(1)

noma,t and Rul,(2)
noma,t:

p
o,(1)
t =

(
2ζ

(1) − 1
)
(p

o,(2)
t · x(2)t +Wul · N0)

x
(1)
t

, (3.16)

p
o,(2)
t =

(
2ζ

(2) − 1
)
Wul · N0

x
(2)
t

, (3.17)

with

ζ(1) =

 Lul

Wul

(
T

m
(1)
t

− T w − Ldl

min{Rdl,(1)
noma,t,R

dl,(2)
noma,t}

− ρ

(
Ldl

Rdl,(2)
noma,t

− Ldl

Rdl,(1)
noma,t

))
 , (3.18)

ζ(2) =

 Lul

Wul(T
m

(2)
t

− T w − Ldl

Rdl,(2)
noma,t

− ρ Ldl

Rdl,(2)
noma,t

)

 . (3.19)

The resulting offloading powers are limited by a maximal offloading power Pmax = Po

that can forbid the transmission when breached.

3.2 Problem Formulation and Resolution

3.2.1 Problem Formulation

In this section, we formulate our scheduling problem (how many packets to schedule for
computing and at which level: locally or remotely) as an MDP. The problem boils down to
exhibiting policies that minimize the overall data packet loss due to either buffer overflow
or delay violation. These policies output an action to be made at the beginning of each
timestep, given some information on the system (e.g. channel conditions, number of packets
in the buffer and their age, multiple access).

In our problem, the data buffer and channel dynamics satisfy the Markov property.
Therefore, we can formulate the problem as an MDP. The MDP environment can be
described with a state space S, an action space A, a reward model R and a transition
model T. In what follows, we define each component in our MDP problem.

60

3.2. Problem Formulation and Resolution

• The state space S contains the information on the buffer and channel status for both
users. It is defined as:

S = {d(1),d(2), x(1), x(2)}, (3.20)

where d(i) = [d1,(i), d2,(i), · · · , dSd,(i)] is the buffer state for UE(i) represented as a
vector with Sd being the buffer size, and x(i) is the corresponding quantized channel
gain for that UE, with i ∈ {1, 2}.

With a finite number of possible combinations, the size of the state space S can be
upper-bounded by the following expression:

|S| ≤
[
|X | · (∇+ 2)S

d
]2

, (3.21)

where |X | is the number of quantized channel states in the space X , and ∇ is the
maximum delay for the packets in the data buffer. This upper-bound can be further
reduced, by ordering the packets in the buffer from oldest to newest.

• The action space A contains the possible joint decisions at both UEs that the agent
can take at any given state. The actions are the following ones: offloading packets,
processing locally packets or staying idle, along with the number of packets m(i) to
be processed for each UE(i) within the limit defined for each type (Mo for offload
andMl for local).

We denote the size of the action space as |A| and we order the set of action indices
a as follows: a = 0 refers to the following action
{type 1 : ’idle’, type 2 : ’idle’, m(1) = 0, m(2) = 0}, and a = |A| − 1 is associated
with {type 1 : ’offload’, type 2 : ’offload’, m(1) =Mo, m(2) =Mo}. The resulting
action space size is:

|A| = (Ml +Mo + 1)2. (3.22)

To perform the mapping between the index a and the corresponding action couple, we
convert the basis of the index from the decimal base to a new base u =Ml+Mo+1

that corresponds to the number of possible actions per UE. We use each digit to
determine the action of each UE:

a10 = a1 a2
u = a1 · (u)0 + a2 · (u)1. (3.23)

The fact that we have ai ∈ {0, · · · , u − 1} for each i ∈ 1, 2 means that each ai can
represent all possible actions for a specific UE. The corresponding action for UE(i) is
then as follows:

– ai = 0: translates to the idle action, with m(i) = 0

– 0 < ai ≤Ml: Local action with m(i) = ai

– Ml < ai ≤Mo: Offloading action with m(i) = ai −Ml

The table 3.1 details the ranges of each joint action.

61

Chapter 3. Optimal Scheduling-Offloading Policies

Table 3.1: Action Space Ranges

a Action 1 Action 2

a = 0 idle idle

0 < a ≤Ml local idle

Ml < a ≤Ml +Mo offload idle

Ml +Mo < a ≤Ml +Mo +Ml · Mo offload local

Ml +Mo +Ml · Mo < a ≤Ml +Mo +Ml · Mo + (Ml)2 local local

Ml +Mo +Ml · Mo + (Ml)2 < a ≤ 2 · Ml +Mo +Ml · Mo + (Ml)2 idle local

2 · Ml +Mo +Ml · Mo + (Ml)2 < a ≤ 2 · Ml + 2 · Mo +Ml · Mo + (Ml)2 idle offload

2 · Ml + 2 · Mo +Ml · Mo + (Ml)2 < a ≤ 2 · Ml + 2 · Mo + 2 · Ml · Mo + (Ml)2 local offload

2 · Ml + 2 · Mo + 2 · Ml · Mo + (Ml)2 < a ≤ 2 · Ml + 2 · Mo + 2 · Ml · Mo + (Ml)2 + (Mo)2 offload offload

• The reward model R is defined as the negative cost in an infinite-horizon MDP
problem with γ being the discount factor. In fact, the cost represents the sum of the
number of dropped packets during a timestep for both UEs. It is expressed as:

Rπ = − lim
T→∞

Eπ

 T∑
t=0

∑
i∈{1,2}

(γ)t
(
c
(i)
1,t + c

(i)
2,t

) , (3.24)

where

– π is the policy for which the reward function is evaluated.

– c
(i)
1,t = w

(i)
t −m

(i)
t is the instantaneous cost at UE(i) due to delay violation, i.e.,

the number of packets that reach the maximum delay ∇ and are discarded. We
denote w

(i)
t = max(m

(i)
t , r

(i)
t) as the number of packets that leave the buffer of

UE(i) after taking an action at, where r
(i)
t is the number of packets that have

reached the maximum delay ∇ after incrementing the age of all packets by 1.

– c
(i)
2,t =

∑+∞
j=Sd−N d,(i)

t +w
(i)
t +1

(N d,(i)
t −w(i)

t +j−Sd)·e−µd · (µ
d)j

j! is the instantaneous
cost due to buffer overflow, which is the number of arrived packets following the
Poisson distribution that could not enter the buffer. It follows the Cumulative
Distribution Function (CDF) of the Poisson distribution at the point where the
arrival of packets causes a buffer overflow.

• The transition model T defines all the transition probabilities from a state St = st

to a state St+1 = st+1 depending only on the current state st and the current action
At = at. They are given by:

p(st+1|st, at) = p(d
(1)
t+1|d

(1)
t , at) · p(d(2)

t+1|d
(2)
t , at) · p(x(1)t+1) · p(x

(2)
t+1), (3.25)

where p(x
(i)
t+1) is the distribution of the channel gain x

(i)
t+1, and p(d

(i)
t+1|d

(i)
t , at) is the

probability transition between two data buffer states for UE(i).

62

3.2. Problem Formulation and Resolution

We hereafter define the range of possible actions and next state transitions, where
for a state st, each next state st+1 and action at have to satisfy the below-mentioned
conditions.

– The offloading powers corresponding to the chosen action at are less than or
equal to the maximum offloading power, po,(i)t ≤ Po.

– The number of processed packets is less than or equal to the size of the buffer,
m

(i)
t ≤ N

d,(i)
t .

– The age difference between the same buffer slot in the states s and st+1 is less
than or equal to 1,

d
j,(i)
t+1 ≤ d

j,(i)
t + 1, j = {0, · · · ,Sd}.

– The size of the next buffer state is greater than or equal to the difference between
the size of the current buffer and the number of packets leaving the buffer,
N d,(i)

t+1 ≥ N
d,(i)
t − w

(i)
t .

– The age of the next state packets is bigger than the same current packets ages
by 1,

if d
j+w

(i)
t ,(i)

t ̸= −1 then d
j,(i)
t+1 = d

j+w
(i)
t ,(i)

t + 1, j = {0, · · · ,Sd − w
(i)
t }.

– The age of the next state packets is less than or equal to 0 for empty slots in
the current buffer state,

if d
j+w

(i)
t ,(i)

t = −1 then d
j,(i)
t+1 ≤ 0, j = {0, · · · ,Sd − w

(i)
t }.

– The empty slots in the current buffer, when w
(i)
t ̸= 0 packets leave the buffer,

have an age of 0 or less in the next state,

if N d,(i)
t = Sd and w

(i)
t ̸= 0

then d
j,(i)
t+1 ≤ 0, j = {Sd − w

(i)
t , · · · ,Sd}.

If these conditions are satisfied, the probabilities of transition for the buffers are given
by:

if N d,(i)
t < Sd then:

p(d
(i)
t+1|d

(i)
t , at) = e−µd · (µd)N

d,(i)
t+1 −N d,(i)

t +w(i)

(N d,(i)
t+1 −N

d,(i)
t + w(i))!

, (3.26)

else:

p(d
(i)
t+1|d

(i)
t , at) = 1− e−µd

Sd−N d,(i)
t +w(i)−1∑
j=0

(µd)j

j!
. (3.27)

Our goal is to find the optimal policy π⋆ that maximizes the reward function defined
in Equation (3.24) as:

π⋆ = argmax
π

Rπ. (3.28)

63

Chapter 3. Optimal Scheduling-Offloading Policies

3.2.2 Problem Resolution

To solve the optimization problem in Equation 3.28, We use the MDP model-based and
model-free Reinforcement Learning algorithms described in chapter 2:

• Value Iteration (VI) : A model-based method with guaranteed convergence, as ex-
plained in section 2.2.3.1. It involves improving the value function vector V(s) in
small steps starting from a initial V0(s) and using the dynamic programming ap-
proach.

• Policy Iteration (PI) : Another model-based method detailed in section 2.2.3.2. PI
attempts to find directly the optimal policy (rather than the optimal value function as
in VI), by iterating between two steps: policy evaluation (using the current estimate
of the value function) and policy improvement (using the valuation to improve the
actions taken).

• Q-Learning (QL) : The most well-established model-free algorithm explained in sec-
tion 2.2.4.1. QL relies on trial and error to build a model of the environment without
having access to the transition model T or the reward model R. The State-Action
value matrix (Q-matrix) is used to record the experiences and learn from them. A
balance of exploration and exploitation is needed to achieve convergence.

• Double Q-Learning (2QL) : Double Q-Learning solves the issue of over-estimation
of Q-Learning as explained in section 2.2.4.2. 2QL promises faster convergence and
better estimates of the Q-matrix by using two Q-matrices during training, while
alternating in updating them.

• Deep Q-Network (DQN) : A Neural Network-based method that attempts to approx-
imate the output of Q-Learning as introduced in section 2.2.4.3. The NN is used as
an approximation to the Q-matrix by sampling states as input, and producing the
corresponding State-Action values. A memory buffer is used to store the experiences,
to be further used to train the NN (i.e., the Evaluation Network) with the help of a
second network (i.e., Target Network). Double DQN can also be used in the same
logic as 2QL.

3.3 Simulation Results

We consider a buffer of size Sd = 3, a maximum delay ∇ = 2 and a timestep duration
of T = 1 ms. The maximum number of packets that can be offloaded is Mo = 3, while
the maximum number of packets that can be executed locally is Ml = 1. The offloaded
packets are of size Lul = 1000 bits and are sent with an offload power not exceeding
Po = 2 mW, through a quantized Rayleigh-faded channel with |X | = 3 channel gain states
X = {−20,−1.487, 1.492} dB. Uplink UL and downlink DL bandwidths are set toWul = 1

MHz and Wdl = 5 MHz, respectively. The channel noise spectral density is N0 = −87
dBm / Hz. We consider T w = 0.1 ms when waiting for the results from the MEC server,
with power pw = 0.1 mW.

64

3.3. Simulation Results

The size of the packets in DL is Ldl = 100 bits and these packets are broadcasted back
to the UEs with a power pb = 50 W and a power allocation coefficient δ = 0.5 (in the
case of NOMA). The decoding efficiency ρ is set to 1. The power consumed at the receiver
device is pr = 3 mW, and the power for decoding is pd = 5 mW. Local processing, on the
other hand, is done using power P l = 150µW.

Concerning the algorithms, the stopping criterion for the iterations on the VI algorithm
is a gap on the value function update of ν = 10−7. In addition, QL and 2QL were trained
over E = 5 ·104 episodes of T = 5000 timesteps, and the learning rate α is decayed linearly
throughout the training, from α0 = 10−2 to αE = 10−3. DQN was trained over E = 103

episodes of T = 5000 timesteps, with a fixed learning rate α = 5 · 10−3, a buffer size
of 256 · 102 tuples, and a batch size of 256. Moreover, the used NN was a Multi-Layer
Perceptron with 3 hidden layers of 64 neurons. QL, 2QL and DQN use an exploration rate
ϵ that decreases along the training, from ϵ0 = 1 to ϵmin = 0.01. The function that governs
the evolution of epsilon is described as:

ϵk = max(ϵk−1 · ϵ
2/E
min , ϵmin). (3.29)

The aim is to decrease the exploration rate to its minimum when reaching 50% of the
training procedure (episode E/2), in order to achieve a better exploration of the environ-
ment. The discounted factor γ is set to 0.99.

In following figures, we consider the next algorithms: Value Iteration VI, Policy Iter-
ation PI, Q-Learning QL, Double Q-Learning 2QL and Deep Q-Network DQN, compared
to some naive methods. These naive methods are: naive local (NL), where the UEs are
only allowed to execute their packets locally, naive offload (NO), where the UEs can only
offload their packets to the MEC server, and naive random (NR), where the UEs choose
a random action at each timestep. The figures display the overall discounted cost Rπ

(negative reward) averaged over E = 103 episodes of T = 20000 timesteps, for different
average packet arrival rates µd at the data buffer.

In Figure 3.3, we consider the NOMA case, i.e., both UEs can offload at the same time.
We reiterate that VI and PI are optimal since they have access to the transition and cost
matrices, and thus have a guarantee of convergence. Indeed, VI and PI achieve the lowest
negative rewards, outperforming the model-free methods (QL, 2QL and DQN). We notice
that QL, 2QL and DQN offer remarkable performance while they are model-free, with QL
performing better than DQN (since the latter is an approximation of the former). 2QL
produces slightly better results compared to QL with the same number of training steps,
proving thus the faster convergence claims. All these RL algorithms outperform the naive
methods, proving the effectiveness of using a sequential decision-making or a reinforcement
learning approach.

In Figure 3.4, we consider only the TDMA case, where only one UE is allowed to offload
at a given time while the other one can still process its packets locally. We have similar
comments except that the QL, 2QL and DQN achieve the optimality since the space to
explore is strongly reduced without NOMA operations.

65

Chapter 3. Optimal Scheduling-Offloading Policies

0 0.5 1 1.5
0

20

40

60

80

100

120

µd: Average Packet Arrival Rate

T
ot

al
D

is
co

un
te

d
C

os
t

VI
PI

2QL
QL

DQN
NO
NL
NR

Figure 3.3: Total discounted cost (negative reward) averaged over 1000 episodes vs average packet
arrival rate µd, with NOMA.

0 0.5 1 1.5
0

20

40

60

80

100

120

µd: Average Packet Arrival Rate

T
ot

al
D

is
co

un
te

d
C

os
t

VI
PI

2QL
QL

DQN
NO
NL
NR

Figure 3.4: Total discounted cost (negative reward) averaged over 1000 episodes vs average packet
arrival rate µd, with TDMA.

However, there is a noticeable difference between the performance of the used RL
techniques in the NOMA setting and the TDMA setting. Indeed, Figure 3.5, Figure 3.6
and Figure 3.7 show that the introduction of NOMA in the system improves the overall
discounted cost, and gives a cost up to 1.8 times lower compared to TDMA. Therefore, we
illustrate that the use of NOMA is beneficial for our system even with a higher state space
configuration, hence a slower convergence time.

66

3.3. Simulation Results

VI PI 2QL QL DQN NO NL NR
0

2

4

6

8

10

0
.3
9

0.
3
9

0
.4 0.
4

0
.4
2

0.
5

1
.5
4

9.
65

0.
64

0
.6
4

0.
64

0
.6
4

0.
64 1
.2
3

1.
4
4

4
.7
9

T
ot

al
D

is
co

un
te

d
C

os
t

NOMA
TDMA

Figure 3.5: Total discounted cost comparison between NOMA and TDMA with µd = 0.5.

VI PI 2QL QL DQN NO NL NR
0

10

20

30

40

50

5
.8
1

5.
81

5
.9
8

6.
04 7
.1
5

9.
1

29
.4
6

46
.8
8

10
.6
3

10
.6
3

10
.6
3

10
.6
3

10
.6
3

24
.0
3 29
.7
3 38

.2
6

T
ot

al
D

is
co

un
te

d
C

os
t

NOMA
TDMA

Figure 3.6: Total discounted cost comparison between NOMA and TDMA with µd = 1.

VI PI 2QL QL DQN NO NL NR
0

50

100

2
6.
01

2
6.
01

2
7
.4
9

28
.1
2

28
.1
2 4
1.
58

10
4.
3
4

1
13

.4
9

43
.9
6

43
.9
6

43
.9
6

4
3.
96

4
3.
9
6

86
.4
5 10

4
.0
9

10
6
.3
8

T
ot

al
D

is
co

un
te

d
C

os
t

NOMA
TDMA

Figure 3.7: Total discounted cost comparison between NOMA and TDMA with µd = 1.5.

67

Chapter 3. Optimal Scheduling-Offloading Policies

In Figure 3.8, we plot a pie chart for the percentage of the different actions taken by
each algorithm. For instance, Value and Policy Iterations take opposite approaches, in the
sense that PI prefers local operations and offloading without NOMA, whereas VI has an
“offload while you can” method utilizing more NOMA. QL and DQN balance the processing
actions between local and offload. Therefore, NOMA is not used as often as in VI or rarely
as in PI.

1

37.10%

227.46%

3

1.25%
4

34.19%

4

34.25%

3
5.11%

2 23.54%

1

37.10%

VI

User1 User2

1

5.56%

2

34.02%

326.22%

4

34.19%

4

34.25%

3 36.75%

2

23.44%

1

5.56%

PI

User1 User2

1

13.02%

2

36.42%

3
16.34%

4

34.22%

4

33.42%

3 26.18%

2

27.38%1

13.02%

QL

User1 User2

1

17.57%

2

31.34%

3
18.85%

4

32.25%

4

32.64%

3
21.07%

2

28.72%
1

17.57%

DQN

User1 User2

Figure 3.8: Pie chart of the percentage of actions taken during an episode with µd = 1.0 for VI
(NW), PI (NE), DQN (SW), and QL (SE) algorithms. (1/red) = NOMA, (2/gray) = Regular
Offload, (3/orange) = Local, (4/green) = Idle.

68

3.3. Simulation Results

We increase the state space size by considering a buffer size Sd = 4, a number of
channel states |X | = 4, and a maximum packet delay ∇ = 3. The resulting state space is
of size |S| = 78400 possible states compared to |S| = 3600 in the previous setup. Figure
3.9 shows the scalability performance of 2QL and DQN. PI and VI are not included as they
take exponentially longer time to converge. We can see that DQN still performs better
than the naive methods, while 2QL falls behind the NO method. This result affirms that
the use of DQN and Neural Networks in general is essential when scaling the system setup.

0 0.5 1 1.5
0

20

40

60

80

100

µd: Average Packet Arrival Rate

T
ot

al
D

is
co

un
te

d
C

os
t

2QL
DQN
NO
NL
NR

Figure 3.9: Performance of reinforcement learning algorithms : 2QL and DQN with a bigger state
space configuration (Sd = 4, |X | = 4,∇ = 3).

69

Chapter 3. Optimal Scheduling-Offloading Policies

3.4 Extension to an EH-based System

UE(1) UE(2)

Buffer

BatteryBattery

Base
Station

MEC
Server

Offloading

Data
Arrival

Energy
Arrival

Offloading

Local
Processing

Result Result

Buffer

Local
Processing

Figure 3.10: System model with energy harvesting.

We have established in the previous simulations that the use of RL methods provides a
benefit over using naive methods. In addition, the scalability issue of the system may arise
for some algorithms when the state space gets larger, while DRL algorithms scale well.

Therefore, in this section we extend the previous work by adding energy harvesting (EH)
capabilities at the device level. More specifically, UEs will have a limited-size battery that
can be recharged using ambient sustainable energy (e.g. solar, RF, ...). The system state
space is further increased in size w.r.t. data buffer sizes and channel gain quantization
steps. To solve the new optimization problem, we use the policy gradient DRL, namely
proximal policy optimization PPO to design policies that minimize the packet loss. We
compare PPO to the previously studied methods. In the sequel, we describe the changes
made to the system model, in terms of energy harvesting EH, as well as the problem for-
mulation and resolution. Then, we showcase the simulation results.

The system model is shown in Figure 3.10 with the addition of batteries, as well as the
energy arrivals.

70

3.4. Extension to an EH-based System

3.4.1 Energy & Battery Model

We suppose that both EH-capable devices UE(1) and UE(2) are equipped with batteries
of finite capacity of N b energy units. Each energy unit corresponds to Se Joules. The
arrival of energy packets is modeled as an i.i.d. random Poisson process with mean µb. At
each timestep t, the captured energy, et, is stored in the battery while the excess energy
is discarded. The battery level is denoted by bet ∈ [0,N b). The probability distribution is
given by:

p(et = E) = e−µb · (µ
b)E

E !
. (3.30)

The energy equations computed in section 3.1.3 are used to find the number of energy
units consumed for each decided action.

3.4.2 Problem Formulation and Resolution

3.4.2.1 Problem Formulation

Similarly to the previous formulation, the system is modeled as an MDP. However, it now
also incorporates the battery levels of the UEs. The new state space S is then defined as:

S = {d(1),d(2), x(1), x(2), be,(1), be,(2)}, (3.31)

where be,(i) represents the battery level of energy for UE(i) with i ∈ {1, 2}. The size of the
state space becomes bounded by:

|S| ≤
[
|X | · (∇+ 2)S

d · (N b + 1)
]2

. (3.32)

In addition to the state space, the transition model T changes such that it includes
transition probabilities for the battery state as well. It is given by:

p(st+1|st, at) =
∏

i∈{1,2}

p(d
(i)
t+1|d

(1)
t , at) · p(x(i)t+1) · p(b

e,(i)
t+1 |b

e,(i)
t , at). (3.33)

The energy states of the battery have to satisfy also some conditions.

• Current battery state should be greater or equal to the consumed energy.

bet − et ≥ 0.

• Next battery state should at least be equal to the difference between the current
battery state and the consumed energy.

bet+1 ≥ bet − et.

The transition probabilities result in:
if b

e,(i)
t+1 < N b then:

p(b
e,(i)
t+1 |b

e,(i)
t , at) = e−µb · (µb)b

e,(i)
t+1 −b

e,(i)
t +N e,(i)

t+1

(b
e,(i)
t+1 − b

e,(i)
t +N e,(i)

t+1)!
(3.34)

71

Chapter 3. Optimal Scheduling-Offloading Policies

else:

p(b
e,(i)
t+1 |b

e,(i)
t , at) = 1− e−µb

N b−b
e,(i)
t +N e,(i)

t+1 −1∑
j=0

(µb)j

j!
, (3.35)

where N e,(i)
t+1 is the number of energy units collected at the next step, which is equal to the

integer result of the ratio e
(i)
t+1/Se.

3.4.2.2 Problem Resolution

For the problem resolution, we use the proximal policy optimization (PPO), a policy gradi-
ent, actor-critic method that uses Neural Networks to approximate a policy, as previously
explained in section 2.2.4.4. PPO offers great performance for large environments, which
motivates us to investigate it in this problem. Given an input state s, PPO uses two sepa-
rate NNs, one for generating a policy πw(.|s) (actor part) with weights w, and another for
generating the value function Vw′

(s) (critic part) with weights w′. The objective function
of PPO is described in Equations 2.36.

In our implementation of PPO, we use a shared layer architecture for both neural
networks of the actor and the critic. This means that the first set of layers are shared
between the actor and critic networks, while the other layers are independent for each
network. Compared to an architecture where all layers are independent for both networks,
the former approach led to better results in simulations.

The PPO method is compared with the DRL method (Double DQN) carried out in
the previous section results. In particular, we use an improve DQN method by considering
a dual architecture, as introduced in [65]. In this case, two networks are used to produce
approximations of the value function and the advantage function, and a pooling function
outputs the State-Action values from the previous outputs. This architecture allows to
take the actions that can privilege values in the short term, or the long-term depending on
the current state. Moreover, we implement prioritized Experience Replay (ER) [64] where
DQN samples experiences from the memory buffer with higher TD-error more often than
the ones with a lower TD-error. This approach helps accelerate the training by learning
from unseen experiences more frequently.

3.4.3 Simulation Results

The numerical values used in these simulations are similar to the previous work with some
differences, as mentioned what follows. The data buffer size is increased to Sd = 6. The
maximum delay is therefore ∇ = 3ms. The energy unit is Se = 250nJ, and the battery can
accumulate up to N b = 4 energy units. The energy unit arrival rate for an EH-capable
device is µe = 0.5. The channel from UEs to MEC server is quantized into 5 discrete states
X = [−20,−4.437,−1.487, 0.253, 1.492]dB. The maximum number of offloaded packets is
Mo = 4 and of local-processed packets isMl = 2. This setup leads to a number of states
|S| approximately equal to 27 million.

To train the PPO, we use two shared layers between the actor and critic networks, while
two other layers are each independent for each network. We use 128 nodes for each layer
in the network with ReLU activation function in the hidden layers. We train the agent for

72

3.4. Extension to an EH-based System

105 epochs. For each epoch, we have E = 128 episodes of T = 128 timesteps leading to
a batch of 16384 tuples. We set the mini-batch size to 128 and the number of iterations
per batch to I = 10. We use a fixed learning rate α = 5 × 10−5, a clip factor ϵ = 0.2, a
discount factor is γ = 0.99 and a generalized advantage estimation factor λ = 0.97.

Moreover, we train the Dual Double DQN (3DQN) with Prioritized ER using a similar
architecture to PPO, with two layers shared between the value function and the advantage
function estimators, and two layers used for each estimator afterwards. We use for the
DQN similar hyperparameters to the ones used for PPO including the number of nodes
per layer, number of episodes, timesteps and batch sizes. Moreover, the learning rate and
the discount factor remain the same.

In addition, we compare the PPO and DQN to the naive heuristics, namely the naive
offload (NO), naive local (NL), naive random (NR), and the Immediate scheduler (IMM)
that chooses the operation (local or offload) enabling the instantaneous maximum number
of processed packets.

In Figure 3.11 and Figure 3.12, we plot the average percentage of dropped packets
versus the packet arrival rate. The test has been done over E = 1000 episodes of T = 1000

timesteps. In the first figure, NOMA is considered, while on the second figure OMA/TDMA
is considered. In both cases, the PPO approach outperforms all the naive methods. DQN
and IMM approaches give similar performance for lower data arrival rates in both scenar-
ios, but DQN approach experiences more losses for higher data rates in the NOMA case.

Moreover, NO manages to perform better than the IMM approach, because IMM often
chooses local processing actions, yielding thus to poor performance. In fact, NL executes
more packets at the start, since it does not take into account the channel conditions.
However, it is limited when the battery gets depleted quickly. On the contrary, NO is
preserved from consuming more battery since the offloading operation depends on the
channel conditions. Figure 3.13 and Figure 3.14 validate these observations.

Furthermore, the comparison between NOMA and TDMA shows that NOMA is much
better in terms of packet loss, which means that the added complexity of using NOMA
compared to TDMA due to the state space size (and possible loss in performance due to
this complexity) is completely compensated for the better transmission speed with NOMA
due to simultaneous users scheduling.

In Figure 3.13, we plot the average energy consumption (through the number of con-
sumed energy units) per episode versus the packet arrival rates. The PPO approach is also
better than the naive methods. So the method consumes less energy and loses less packets.
DQN consumes slightly more energy than IMM, which could suggest that the DQN per-
forms more local operations. NL consumes more than NO while performing poorly, which
further highlights the previous comment.

For the TDMA case, the energy consumed is plotted in Figure 3.14 showing that using
TDMA yields to higher energy consumption compared to NOMA. Indeed, the UEs have to

73

Chapter 3. Optimal Scheduling-Offloading Policies

0 0.25 0.5 0.75
0

5

10

15

20

25

30

35

40

µd: Average Packet Arrival Rate

%
of

dr
op

pe
d

pa
ck

et
s

PPO
DQN
IMM
NO
NL
NR

Figure 3.11: Percentage of dropped packets vs µd for NOMA.

0 0.25 0.5 0.75
0

5

10

15

20

25

30

35

40

µd: Average Packet Arrival Rate

%
of

dr
op

pe
d

pa
ck

et
s

PPO
DQN
IMM
NO
NL
NR

Figure 3.12: Percentage of dropped packets vs µd for TDMA.

offload as much as possible whenever they have the allocated resources, and perform more
local processing when offloading is not allowed. This behavior makes NOMA more energy
efficient while reducing the packet loss.

74

3.4. Extension to an EH-based System

0.25 0.5 0.75
300

400

500

600

700

800

900

1,000

µd: average packet arrival rate

A
ve

ra
ge

N
um

be
r

of
E

ne
rg

y
U

ni
ts

co
ns

um
ed PPO

DQN
IMM
NO
NL
NR

Figure 3.13: Number of consumed energy units per episode vs µd with NOMA.

0.25 0.5 0.75
300

400

500

600

700

800

900

1,000

µd: average packet arrival rate

A
ve

ra
ge

N
um

be
r

of
E

ne
rg

y
U

ni
ts

co
ns

um
ed PPO

DQN
IMM
NO
NL
NR

Figure 3.14: Number of consumed energy units per episode vs µd with TDMA.

75

Chapter 3. Optimal Scheduling-Offloading Policies

3.5 Conclusion

This chapter has addressed the problem of jointly optimizing scheduling and offloading in a
NOMA environment with 2 UEs and a MEC server at the base station. It is solved by using
Reinforcement Learning techniques including optimal model-based value iteration/policy
iteration algorithms and other model-free algorithms. In that context, NOMA technique
has offered better performance than TDMA. Nevertheless, if the state space gets larger,
scaling issue arises with some of the used algorithms, which makes the use of Neural
Network-based RL methods even more important in larger systems.

Moreover, considering EH capabilities and finite size batteries at the devices further
renders the problem more complex, thus justifying the need for Deep Reinforcement Learn-
ing methods. PPO has been used in this setup to learn the policies that allow for a lower
packet loss compared to DQN and naive methods, while preserving more battery. The sim-
ulation results further reaffirm the previous claims about the use of NOMA when compared
to TDMA. This work was published in the contributions C1 and C2.

76

CHAPTER 4

Multi-Cluster System with Federated Reinforcement
Learning

Chapter 4. Multi-Cluster System with Federated Reinforcement Learning

Nowadays, it is well known that MDP modeling of the environment in RL problems,
especially how the state is represented, suffers from a curse of dimensionality issue.

This occurs when the number of states increases exponentially with every component
added to the model. Therefore, traditional RL model-based and model-free methods (e.g.
Q-Learning) can no longer be viable due to the necessity to store every state and action
values. In chapter 3, to overcome this issue, we have used DRL methods that rely on
neural networks and produce RL models to learn the environment and act accordingly to
the different scenarios that they might encounter. We have implemented variants of DRL
methods to allow efficient exploration of the environment. In particular, we have considered
DQN that approximates the Q-function and PPO actor-critic method that approximates
the value function and the policy. The latter method has shown good potential in handling
larger state spaces, achieving thus better performance.

However, even with the scalability advantage of DRL methods, the increase in the num-
ber of UEs in our setup causes the state space to be exponentially large. Training a DRL
agent on such a large space requires a thorough exploration, and thus a longer convergence
time. A solution to this issue is to separate the UEs into different clusters and to assign
a DRL agent for each cluster. This is referred to as Multi-Agent Reinforcement Learning
setup. While allowing for cooperation between the agents, this setup reduces the size of
the state space per cluster, which can yield to faster convergence times.

One type of cooperation is enabled by using federated learning principle FL [24]. FL
allows the distributed learning of multiple nodes with local weights and different datasets
to converge onto one. Specifically, each local node uploads periodically its weights to a
central node (a global one) where the weights are averaged and a new global model is
broadcasted back to the local nodes. This process is repeated until convergence.

When applying FL to DRL methods, otherwise known as Federated Reinforcement
Learning (FedRL), the global model produces a policy that takes into account the various
configurations of the nodes and output actions accordingly. The first FedRL works were
introduced in [71] and [72]. The latter is a DRL version of FedRL, in which two deep
Q-networks were used to exploit separate environments and a global model was learned by
using the output of each DQN.

By using FL in training DRL agents, a level of heterogeneity in the clusters can be
learned and the global model can remain invariant to the differences between clusters. For
instance, the clusters can have different numbers of UEs and each UE can have a dif-
ferent data arrival model representing an application’s behavior (e.g. video streaming or
web browsing). Such added functionalities in the system further contribute to making the
problem more complex, and necessitating the FedRL techniques to converge on a general
model, especially with the dynamic nature of the UEs.

On the other hand, allowing NOMA access between users when designing scheduling-
offloading policies provides a boost in performance in terms of effective transmission rate,
as we have observed in our previous contributions. However, we have considered in our
prior system model only two UEs. In that case, the interference was mitigated relatively

78

easily via SIC decoding. With the objective of generalizing the system model, adding more
UEs can hinder the performance of NOMA and its advantage over OMA methods. More
specifically, sharing the channel resources between more UEs causes a performance drop
in the achieved sum rates. This performance drop is due to the increasing interference in
the decoding phase [52]. Indeed, SIC fails in decoding signals in practical systems due to
the error propagation, which can be even more significant with more signals to decode.
Moreover, performing the SIC in a sequential way from the strongest signal to the weakest
at the UE level (Downlink) can consume considerable computational resources, resulting
hence in higher decoding time.

The workaround to these issues is the separation of the UEs into clusters. These clusters
utilize their own bandwidth in an FDMA setup. In this way, the amount of interference is
reduced per cluster and SIC’s decoding performance is improved. As aforementioned, the
SIC decoding in DL is limited by the computational resources at UEs level. However, it is
not the case for the Uplink case where the BS has the necessary computational power to
handle the decoding for all the UEs. Therefore, we consider FDMA only in the DL case.

To fully exploit the advantages of this clustering, the common method is to cluster
UEs with contrasting channel conditions together, meaning that a NOMA UE with good
channel is paired with a NOMA UE with a worse channel. This type of clustering allows for
power allocation in the DL to be efficient, and thus results in good spectral efficiency. In
addition, the ever-changing channel conditions of the UEs and the dynamics of the number
of active users require a dynamic clustering process. Some works [53]–[56] have been cited
in chapter 1.

In this chapter, we address a NOMA multi-cluster system incorporating various num-
bers of UEs connected to a BS with a nearby MEC server. DRL methods are ought to
adapt to this different system configuration. Thus, we consider a multi-agent DRL setup
where each cluster has its own agent and learns the environment contained within the
cluster. With the dynamic nature of the clusters, the agents learn a generic model that
can adapt to each configuration of the UEs.

More specifically, the goal of this chapter’s work is to devise policies capable of jointly
scheduling and offloading computations of the UEs by utilizing FedRL with PPO. The
buffer, channel and battery states of each UE are used as information to decide the actions
to take. Additionally, the UEs are defined by their location on the grid, in terms of angles
and distance from the BS 1, and NOMA clustering is performed based on this information.
Each cluster has a DRL agent stored in a Cluster Head (CH), which is a randomly selected
UE from the cluster, and the global model will be stored in the MEC server. The CH
produces a decision for all the UEs in the cluster (including itself), and the process is
continued until re-clustering whenever the location of the UEs change.

We briefly overview in what follows some works related to our work, that utilize the
multi-agent RL or the FedRL, where both methods differ in the way the agents cooperate.
While FedRL utilizes a global model that aggregates the local models, multi-agent RL
refers to a more general type of cooperation (or lack thereof).

1the distance is expressed in terms of the channel gain

79

Chapter 4. Multi-Cluster System with Federated Reinforcement Learning

With regards to FedRL technique, the work [84] presented a concurrent federated re-
inforcement learning scheme for resource allocation, where the main goal was to preserve
the privacy of the edge hosts and the server. The distributed agents decided in a concur-
rent way while sharing their outputs and rewards and not their models. The authors in
[85] proposed an intelligence ultra-dense edge computing framework for AI and Blockchain
applications. It jointly optimized resource allocation, application partitioning and server
caching. The edge user can offload its tasks either to an edge server, a mobile device in
proximity, or to a cloud server. To train the model, FL was used with DRL, where each
agent’s model, located at the edge device level is trained locally, and the weights are sent
into the macro base station where they are averaged and a new global model is broad-
casted, in a similar way to our scenario. The paper [86] tackled the problem of vehicular
communications. It investigated the reuse of cellular channels that were already allocated
to perform the communication, whilst not interrupting the existing cellular operations and
avoiding collisions with other vehicle-to-vehicle links. Federated multi-agent DRL was used
to get policies that determine the transmission powers and the cellular channels. The dou-
ble DQN with dual architecture was considered and the FL scheme consisted of sharing the
local weights with the central node followed by broadcasting the global averaged model.
The work in [87] addressed challenges in ensuring high-quality healthcare in the 6G era
through the integration of wearable medical devices into the Internet of medical things.
Leveraging wireless body area network and MEC technologies, the study focused on op-
timizing the quality of service with ultra-reliable data transfer, processing at low latency,
and energy usage. The proposed FedRL task offloading approach relied on the sharing of
local weights with the central node to perform the averaging operation.

As for Multi-agent RL methods, the authors in [88] explored a computation offloading
problem in IoT networks with edge computing for multiple "selfish" users. They addressed
challenges in resource allocation and competition for spectrum and radio access technolo-
gies resources. A multi-agent RL framework using Q-Learning was used to solve the prob-
lem with the RL agents located at the users without sharing information (non-cooperative).
The work in [89] investigated the use of Unmanned Aerial Vehicles (UAVs) as aerial BSs
for cost-effective and on-demand wireless communications. A dynamic resource allocation
scheme was formulated where the UAVs select the communicating users, power levels, and
sub-channels, without any information exchanged between them. Multi-agent RL with Q-
Learning was also used to find a solution. The authors in [90] designed an indoor wireless
communication architecture. The mobile users were served by access points using multiple
simultaneously transmitting and reflecting re-configurable intelligent surfaces with NOMA
capabilities. The problem of NOMA user pairing was solved by relying on the channel
correlation between the users and by using K-Means to perform the clustering. In addi-
tion, the beamforming problem was solved by a Multi-agent PPO method to optimize the
beamforming vector.

Notably, both categories of works perform a multi-agent RL setup. However, our
contribution differs from the rest in the dynamic aspect of the nodes. In our case, the

80

4.1. System Model

clusters could have varying numbers of UEs, and thus the local model has to accommodate
for that change by having a generic representation of the state.

The remainder of the chapter is organized as follows:

• Section 4.1 presents the system model and each UE structure, with the channel
model, transmission model, data buffer model, and battery and energy model. In
addition to that, the scheduling decisions, the corresponding consumed energy and
the time constraints are also highlighted.

• Section 4.2 details the problem formulation as an MDP and its resolution using
Federated PPO, with a detailed description of the clustering and learning processes.

• Section 4.3 describes the simulation parameters and the results obtained when run-
ning the Federated PPO compared with the standard methods.

• Section 4.4 concludes the chapter with some final remarks.

4.1 System Model

We consider a system model consisting of a BS, with a close MEC server, serving NUE

active UEs {UE1, · · · ,UEi, · · · ,UENUE} with EH capabilities, limited-size batteries and
data buffers. Due to the large number of UEs, we separate them into NC distinct clusters
{C1, · · · ,Ck, · · · ,CNC} to facilitate the communication and reduce the complexity in
decision-making. We set the maximum number of clusters to NC ≤ NC

max and the number
of UEs per cluster Ck to NUE

min ≤ NUE
k ≤ NUE

max. Before the start of each episode of
transmission e with T timesteps, a clustering process is done and the UEs are distributed
among the clusters based on their channel gains and their angles w.r.t. the BS. Figure 4.1
illustrates the system model.

We assume that each cluster Ck has a cluster head CH, randomly selected among the
UEs in the cluster. At the start of each timestep t of size T , the buffer, channel and battery
information of all the UEs in the cluster are shared with the CH. Such information enables
it to decide on the action to take by each UE. The decision is then broadcasted to these
UEs for free.

Furthermore, at the start of the episode, the average channel gain of all the UEik within
a cluster Ck is transmitted to the other clusters via the BS. After that, no information is
shared between the clusters for the remainder of the episode.

We consider NOMA operations in both the UL and the DL with some differences.
In the UL phase, we assume that all the UEs from all clusters can send simultaneously
their data packets to the BS using the whole available bandwidth, and the SIC operation
is performed globally on all UEs. Obviously, inter-cluster and intra-cluster interference
terms are present and have to be dealt with. The CH cannot compute the inter-cluster
interference precisely since it has information only on the average channel gain of the
channel states of other clusters’ UEs. Therefore, an estimation is done to account for this
interference, and underestimating it results in transmission errors (i.e., the transmission

81

Chapter 4. Multi-Cluster System with Federated Reinforcement Learning

Buffer

BatteryBattery

Base
Station

MEC
Server

Offloading

Data
Arrival

Energy
Arrival

Offloading

Local
Processing

Result Result

Buffer

Local
Processing

Cluster

Cluster Cluster
...

...

...

... ...

Figure 4.1: Multi-cluster system model with one cluster head CH for each cluster, which has the
decision-making model.

rate will be higher than the Shannon limit). On the counterpart, DL operations are done in
NOMA for each cluster separately. This means that FDMA is performed on a cluster-basis
to eliminate the inter-cluster interference and enhance the performance of SIC decoding.
The differences in UL and DL scenarios stem from the computational advantage of the BS
compared to the CH.

Similarly to our previous works, each UE can either process the data arrived at its
buffer locally, or remotely by offloading the packets to the MEC server, whilst accounting
for packets delays, channel gains, and battery levels. The EH and battery models are
carried over from the previous contributions. However, the channel, transmission and data
buffer models are different. Therefore, we detail them in the following subsections.

4.1.1 Channel Model

Following the previous system model in chapter 3, we model the channel between the
UEs and the BS as Rayleigh flat-fading channel with AWGN (N0 being the noise spectral
density). For a cluster Ck, each UEik with i ∈ {1, · · · ,NUE

k } has a channel complex
amplitude hik, and a gain xik = |hik|2. The CSIT is assumed at the CH level and the
channel response is constant for the duration T of a timestep t.

We further divide the channel gain range into multiple sub-intervals that refer to cat-
egorical channel gain conditions (e.g. bad SNR, mid SNR, good SNR). Each sub-interval
is bounded by a maximum and a minimum value, and each UE’s channel gain will vary
within this sub-interval for the duration of an episode before transitioning to a different
channel sub-interval.

Formally, we define X as the total range of channel gain values, which can take values
in R, and Xj ∈ [xjmin, x

j
max] is the jth sub-interval of channel gain, with xjmin and xjmax

82

4.1. System Model

xmin xmax… …

𝒳𝑗

xmin
j

xmax
j

…

𝒳

xt
j

𝑥t
j

Figure 4.2: Channel modeling and quantization.

being its lower and upper bounds, respectively. Channel gain variations in time within the
sub-interval are modeled as an i.i.d. random process following the exponential distribution
with mean µc

j :

p(C) = 1

µc
j

e
−C
µc
j . (4.1)

We quantize the values of the channel to make the space finite. For a specific UEik, a
quantization function Q is defined that projects the UE’s channel gain xjik into a discrete
space with finite values xjik = Q(xjik). The quantized channel gain xjik is the lower bound
in the interval where xjik is contained, i.e., xjik ≤ xjik < xjik with xjik the interval upper
bound. We use the lower bound value to allow the transmission in a worst case scenario
even when different value is used (contrary to the upper bound value).

The resulted global range of quantized channel gains is X and the quantized sub-interval
is denoted as X j , with |X j | indicating the number of discrete values in the sub-interval, and
|J | indicating the number of sub-intervals. We also bound the range X between two values
denoted as xmin and xmax. Furthermore, we model the transition from one sub-interval
to another as a correlated process to simulate a natural change of the channel (due to a
location change). Therefore, the probability of transitioning from quantized sub-interval
X j to X j′ when starting a new episode e+ 1 for UEik is defined as follows:

p(Xik,e+1 = X j′ |Xik,e = X j) =

(
1− ρX

)|j′−j|∑|J |
k=1 (1− ρX)|k−j| , (4.2)

where ρX is the channel range correlation factor. Figure 4.2 represents the described
channel.

4.1.2 Transmission Model

For NOMA transmission in the UL, we assume that all UEs can transmit at the same time
using the entire available bandwidth Wul. The BS can decode all signals using SIC since
it has full knowledge of channel conditions of all UEs. Therefore, intra-cluster as well as
inter-cluster interference terms are present in the rate equations in this case. However,
in the DL case, we use FDMA between clusters, where the bandwidth Wdl

k is allocated
for each cluster Ck. NOMA is then performed on a cluster level eliminating thus the
inter-cluster interference in the rate equations.

83

Chapter 4. Multi-Cluster System with Federated Reinforcement Learning

4.1.2.1 Uplink Transmission

We assume that UEik which belongs to cluster Ck with i ∈ {1, · · · ,NUE
k } and k ∈

{1, · · · ,NC} is transmitting to the BS, i.e., offloading packets, oik = 1. The action as-
sociated is aik > Ml (previously explained in subsection 3.2 as we will reintroduce the
notations in subsection 4.2). We further suppose, for simplicity of computations, that the
UEs in the cluster are ordered from best channel gain to worst , i.e., xik ≥ xjk if i < j.
The UL rate for UEik is then expressed as:

Rul
ik =Wul · log2

(
1 +

poik · xik
Iul,intraik + Ĩul,interik +Wul · N0

)
, (4.3)

with

Iul,intraik =

NUE
k∑

j=i+1

pojk · xjk · ojk, (4.4)

Ĩul,interik =

NC∑
k′=1
k′ ̸=k

NUE
k′∑

j=1

(Po · zk′ · 1 (xik > zk′))

 , (4.5)

being the intra-cluster interference and the inter-cluster interference estimation, respec-
tively. poik is the offloading power of UEik, which is limited to a maximum value Po. zk′

is the average channel gain for all the UEs in cluster Ck′ .
Intuitively, the intra-cluster interference term considers all the signals from the offload-

ing UEs with a lower channel gain than UEik. This term is accurately computed with the
assumption that the channel gains and decisions are known within the cluster Ck. The
inter-cluster interference, on the other hand, is an estimation based on the information
available at the cluster. It considers the maximum offloading power with the average chan-
nel gain zk′ of all clusters Ck′ with k′ ̸= k, if UEik channel gain is higher than zk′ . In fact,
we assume that the SIC decoding order in UL starts with the strongest signals and goes
to the lowest and that all UEs offload (ojk′ = 1 for k′ ∈ {1, · · · ,NC}, j ∈ {1, · · · ,NUE

k′ }).

The true capacity of the channel can be obtained only at the BS by estimating correctly
the inter-cluster interference knowing the offloading powers of each UE. It is computed as
follows:

Culik =Wul · log2

(
1 +

poik · xik
Iul,intraik + Iul,interik +Wul · N0

)
, (4.6)

with

Iul,interik =

NC∑
k′=1
k′ ̸=k

NUE
k′∑

j=1

(
pojk′ · xjk′ · ojk′ · 1

(
xik > xjk′

)) . (4.7)

Therefore, if the UL rate Rul
ik used by UEik to transmit its data is higher than the

channel capacity Culik , a transmission error would occur. More specifically, if the estimated
interference is less than the exact one, i.e., Ĩul,interik < Iul,interik , a rate mismatch happens.

84

4.1. System Model

4.1.2.2 Downlink Transmission

Similarly to the UL case, we assume the same ordering of the offloading UEs in cluster Ck

based on their channel gains. Therefore, the DL rate equation for UEik is as follows:

Rdl
ik =Wdl

k · log2

(
1 +

δik · pbbs · xik
Idl,intraik +Wdl

k · N0

)
, (4.8)

where δik is the power allocation coefficient and pbbs is the total broadcast power by the BS.
Thus, δikpbbs is the portion of the total power allocated to UEik. We compute the power
allocation coefficient based on the channel gain, where a smaller portion of the power is
allocated to UEs with stronger channel gains. It is expressed as:

δik =
oik

xik ·
∑NUE

k
j=1

ojk
xjk

. (4.9)

Idl,intraik is the DL intra-cluster interference coming from the other UEs that offload and
have stronger channel gains than UEik:

Idl,intraik =

i−1∑
j=1

δjk · pbbs · xik · ojk, (4.10)

and

Wdl
k =Wdl ·

NUE
k

NUE
, (4.11)

is the allocated bandwidth to the cluster Ck with FDMA. Obviously, more UEs in the
cluster translates to allocating more bandwidth to this cluster.

4.1.3 Data Buffer Model

Each UEik is equipped with a limited-size buffer storing the data that arrives and has to
be executed within a strict delay. We model the buffer structure in the same way as in the
previous chapter, with a vector dik of size Sd. An arrival of packets qik,t into the buffer
are set to an age of 0, whereas an empty slot is set to −1. The N d

ik,t packets in the buffer
keep aging with each timestep until reaching a maximum delay ∇, where they are dropped
due to delay violation (cdv). In case of insufficient number of empty slots in the buffer
when a new batch of data packets arrives, i.e., qik,t > Sd −N d

ik,t, the exceeding number of
packets is also dropped due to buffer overflow (cbo). Moreover, the packets lost due to the
transmission error (cte) are retained in the buffer for the next timestep to be reprocessed
2.

To introduce some heterogeneity in the UEs data, which reflects several realistic appli-
cations that the UEs could be running, we model different data arrivals for each UEik. In
particular, we use the data arrival models associated with video streaming, gaming, and
other applications, that are described using statistical formulations in [46]. We detail the
distributions of these data models in what follows.

2A similar structure to the Automatic Repeat Request (ARQ) method, with the packet counter being
the same as the maximum delay ∇

85

Chapter 4. Multi-Cluster System with Federated Reinforcement Learning

Poisson Distribution Suited for IoT applications, Poisson random distribution is also
used in our previous work. The arrival of packets with mean µd

po follows:

p(D) = e−µd
po ·

(µd
po)

D

D!
. (4.12)

Uniform Distribution According to the survey in [46], the uniform distribution models
the packet arrival for gaming applications, as adopted in 3GPP and IEEE traffic models.
The arrival of packets is modeled with equal probability for every value between Du,min

and Du,max:

p(D) = 1

Du,max −Du,min
. (4.13)

Lognormal Distribution Truncated Lognormal distribution is used for modeling FTP
traffic and web-browsing applications in 3GPP and IEEE traffic standards. The arrival of
packets is modeled with mean µd

l (and considering the variance σ2 = 1) as follows:

p(D) = 1√
2πD

· e
−(logD−µdl)

2 . (4.14)

The distribution is naturally suited for continuous values, which is not the case in our
system as we consider the arrival of discrete number of packets. Therefore, we round the
results produced by the distribution to the nearest discrete value.

Pareto Distribution For video streaming applications, the standards 3GPP and IEEE
model their traffic following the truncated Pareto distribution. The arrival of packets in
this case is modeled with a mean µd

pa, and distribution parameters b > 0 and c > 1, as
follows:

p(D) = b

1− (c)−b
· 1

(D)b+1
. (4.15)

The arrival of packets D is bounded between 1 and c. Similar to the Lognormal distri-
bution, Pareto distribution is for continuous values as well. Therefore a rounding operation
is necessary to ensure discrete values of packet arrivals.

In our system model, we assign randomly the distributions to each UEik at the start of
the transmission process, resulting in clusters with different data arrivals and thus different
requirements.

4.1.4 Energy and Battery Model

The energy and battery model remains unchanged from the previous chapter, where each
UEik has a battery with a capacity of N b energy units. The battery can be recharged
by harvesting energy from external ambient sources. Each energy unit corresponds to Se

Joules. We assume that for each timestep t, a eik,t amount of energy units arrive at UEik’s
battery, following the Poisson distribution with mean µb:

p(eik,t = E) = e−µb · (−µ
b)E

E !
. (4.16)

The battery level, i.e., number of energy units in it, at timestep t is denoted as beik,t ∈
[0,N b).

86

4.1. System Model

4.1.5 Scheduling Decisions

The cluster head CH is the decision center for its own cluster, and thus handles the schedul-
ing decisions for all the UE in this cluster independently from other clusters, then broad-
casts them to the cluster UEs for free. At the start of a timestep t, the CH CHk of cluster
Ck, upon receiving the necessary information from all UEik with i ∈ {1, · · · ,NUE

k }, pro-
duces the scheduling decisions (idle, local processing, or offloading) as well as the number
of packets mik for all these UEik as the following:

• Idle: UEik will not process any packet, thus mik,t = 0.

• Local Processing : UEik will process locally mik,t packets, which cannot exceed a
maximum number mik,t ≤Ml.

• Offloading : UEik will offload mik,t packets to be processed remotely at the MEC
server located near the BS. A limit ofMo is set on the number of offloaded packets
mik,t ≤Mo.

4.1.6 Consumed Energy

We compute the energy associated with each scheduling decision to determine the number
of energy units required to perform these decisions.

• Idle i : UEik does not consume any energy:

E iik,t = 0. (4.17)

• Local Processing l : UEik processes locally mik,t packets with power P l per processed
packet. The corresponding energy is thus:

E lik,t = mik,t · P l · T . (4.18)

• Offloading o: UEik offloads mik,t packets with power poik,t that cannot exceed the
maximum offloading power Po. We distinguish two cases:

– Offloading with no transmission errors (no rate mismatch):
UEik sends its packets, awaits their execution at the MEC server, receives
the broadcasted signal by the BS, and decodes the result. The corresponding
consumed energy, highlighting each step, is given by:

Eoik = mik

(
Lul · poik
Rul

ik︸ ︷︷ ︸
Transmission

+ T w · pw︸ ︷︷ ︸
Waiting

+ max
i′∈[1,NUE

k]

[
mi′k · oi′k
Rdl

i′k

]
· L

dl · pr

mik︸ ︷︷ ︸
Reception

+

ρ ·
(Ldl · pd
Rdl

ik

+

NUE
k∑

j=i+1

mjk

mik
· L

dl · pd

Rdl
jk

· ojk
)

︸ ︷︷ ︸
Decoding

)
. (4.19)

87

Chapter 4. Multi-Cluster System with Federated Reinforcement Learning

Note that the reception at UEik requires receiving all the offloading UEs’ sig-
nals. Thus, the reception accounts for the lowest DL rate and the highest

number of packets among UEs’ signals in the term maxi′∈[1,NUE
k]

[
mi′k·oi′k

Rdl
i′k

]
,

which indicates the reception of the signals with the slowest time. In addition,
decoding UEik’s signal requires decoding all the offloading UEs’ signals with
lower channel gains (due to the higher allocated power) in a sequential manner,
following SIC decoding.

– Offloading with transmission errors (rate mismatch):
We assume that UEik sends its packets but a timeout happens due to not
receiving the ARQ acknowledgement. This indicates that a rate mismatch has
occurred. The consumed energy is:

Eo,errorik = mik

(
Lul · poik
Rul

ik

+ T w · pw
)
. (4.20)

4.1.7 Time Constraints

Successful offloading operation occurs only when the offloading, waiting, receiving and
decoding processes are performed within the fixed timestep duration T . Following the
derivations in chapter 3 and using equation (4.19), we consider the times of the different
steps and formulate the inequality as:

mik

(
Lul

Rul
ik

+T w+ max
i′∈[1,NUE

k]

[
mi′k · oi′k
Rdl

i′k

]
· L

dl

mik
+ρ·

(Ldl
Rdl

ik

+

NUE
k∑

j=i+1

mjk

mik
· L

dl

Rdl
jk

·ojk
))
≤ T . (4.21)

We can obtain the optimal offloading power poik by forcing equality in the above ex-
pression and by using the explicit form of Rul

ik in equation (4.3). Thus, we obtain:

poik =
(
2ζik − 1

)
·
Iul,intraik + Ĩul,interik +Wul · N0

xik
, (4.22)

with

ζik =
Lul

Wul ·
(

T
mik
− T w −maxi′∈[1,NUE

k]

[
mi′k·oi′k

Rdl
i′k

]
· Ldl

mik
− ρ ·

(
Ldl

Rdl
ik

−
∑NUE

k
j=i+1

mjk

mik
· Ldl

Rdl
jk

· ojk
)) .

(4.23)

88

4.2. Problem Formulation and Resolution

4.2 Problem Formulation and Resolution

4.2.1 Problem Formulation

Our goal in this chapter is to find optimal scheduling-offloading policies that account for the
available information on the data buffers of the UEs, their battery states, as well as their
channel conditions, and decide on the actions, i.e., packets’ execution locally or remotely,
to minimize packet losses. Therefore, similarly to our previous works, we formulate the
problem as an MDP with: a state space S describing the environment information, an
action space A dictating the possible scheduling decisions to take from states, and a reward
function R giving feedback on the actions taken for each state 3. In the sequel, we define
each component of the MDP tailored to our system model.

4.2.1.1 MDP Structure

• State Space S : Each cluster Ck has a cluster head CHk, a randomly selected UE
in the cluster, that performs the decision-making for all the UEs. The available
information at CHk is then the buffer, battery, and channel gain states of the cluster
UEs, as well as the average channel gains of the other clusters. Therefore, the state
representation, denoted as Sk, is specific for each cluster and is defined as:

Sk = {dk,xk,bk, zk}, (4.24)

with dk, xk and bk being respectively the buffer vectors, quantized channel gains
and battery levels of the UEs in Ck. zk is the set of average channel gains for other
clusters Ck′ with k′ ∈ {1, · · · ,N C} and k′ ̸= k. We formulate each component with
the following equations:

dk = {d1k,d2k, · · · ,dNUE
k k}, (4.25)

xk = {x1k, x2k, · · · , xNUE
k k}, (4.26)

bk = {be1k, be2k, · · · , beNUE
k k
}, (4.27)

zk = {z1, · · · , zk−1, zk+1, · · · , zNC}. (4.28)

To compute the number of possibilities for the average cluster channel gains vector
zk, we need to take into account the total number of UEs in the clusters NUE that
can vary between NUE

min and NUE
max, the number of clusters Ck′ ̸= Ck, and the number

of channel sub-intervals |J |. Therefore, the maximum number of possible states
of zk, denoted as |Z| counts all the possible average cluster channel gains, and is
bounded by:

|Z| ≤

 NUE
max∑

i=NUE
min

(|J |)i
(NC

max−1)

. (4.29)

3A transition model is also a part of MDP modeling as we have seen previously, but we deem modeling
it not necessary with the use of model-free RL algorithms as we will see in problem resolution

89

Chapter 4. Multi-Cluster System with Federated Reinforcement Learning

Assuming that the channel sub-intervals have the same number of discrete channel
gain values, i.e., |X j | = |X j′ |, ∀{j, j′} ∈ {1, · · · , |J |}, we have |X | = |X j | · |J |. The
cluster state space size is thus bounded by:

|Sk| ≤
[
|X | · (∇+ 2)S

d · (N b + 1)
]NUE

max · |Z|. (4.30)

• Action Space A: Each cluster has a specific action space concerning only the UEs of
said cluster. It is denoted as Ak and it represents the type of processing (idle, local
or offload) as well as the number of packets m to execute. Therefore, we define ak

as the index that represents the set of actions for all UEs in cluster Ck. ak can take
values ranging from 0 to |Ak| − 1, where |Ak| is the action space size bounded by:

|Ak| ≤ (Ml +Mo + 1)N
UE
max , (4.31)

whereMl andMo are the maximum numbers of packets that can be executed locally
or remotely, respectively. Each UEik action index aik can be extracted using a base
changing from decimal to base u =Ml +Mo + 1. This is done in a similar way to
the former definition of action space in section 3.2:

ak
10 = a1k · · · aik · · · aNUE

k k
u. (4.32)

The specific actions can be then derived for each UEik as the following:

– aik = 0 corresponds to the idle action with mik = 0.

– 0 < aik ≤Ml corresponds to local action with mik = aik.

– Ml < aik ≤Mo corresponds to offloading action with mik = aik −Ml.

• Reward Function R: A reward is associated to each state and action taken from this
state in a given cluster, providing a feedback on the state-action pair. We define the
reward function Rk following a policy πk for a cluster Ck as the expected negative
sum of the packet losses. The losses are due to delay violation cdv and buffer overflow
cbon in addition to the transmission error cte for all UEs in the cluster. The reward
is expressed for an infinite horizon model with a discount factor γ as:

Rπ
k = − lim

T→∞
Eπ

 T∑
t=0

NUE
k∑
i=1

(γ)t
(
cdvik,t + cboik,t + cteik,t

) . (4.33)

We aim to find the optimal policy that achieves the maximum expected reward for
each cluster. It is obtained as:

π⋆
k = argmax

πk

Rπ
k . (4.34)

Notably, all the clusters’ policies converge to the same policy π⋆
k = π⋆

k′ , for (k, k′) ∈
{1, · · · ,NC} through the use of FL, as we shall explain in the next section.

90

4.2. Problem Formulation and Resolution

4.2.2 Proposed Resolution

Finding the optimal policy π⋆
k for each cluster is hard to achieve analytically, therefore we

revert to iterative methods that attempt to converge to the solution. In addition, as we
have a complex and large state in this problem, we need to consider model-free methods
that can learn the environment by trial and error. Using model-based methods in this
setup, where it requires full knowledge of the MDP structure (including the transition
function), is unfeasible in practical implementation as it can take exponentially long time
to reach the optimal policy.

Moreover, we have established in the previous chapters that DRL-based methods using
neural networks can be a powerful tool to get good policies that achieve low packet losses.
However, training the DRL agent on a large state space while considering all UEs at once
makes the problem very difficult. This has motivated us to introduce clustering of the UEs
to eventually simplify the problem for the DRL agent.

In our multi-cluster setup, we require thus a multi-agent RL model, where each agent
runs on a CH of a cluster. A cooperation process is enabled between clusters by using
Federated Learning FL, a learning framework for distributed models. Each model runs
locally at the CH level using heterogeneous data different from other models (providing
thus data privacy). A global model is then aggregated from all the local models at the
central node, which is the MEC server. The changes in the clustering of UEs necessitate
that the Federated Reinforcement Learning agents learn flexibility in the system.

In the sequel, we describe the multi-agent training procedure, the clustering model,
and the investigated DRL algorithm, namely the proximal policy optimization PPO.

4.2.2.1 Multi-Agent Training Procedure

Learning policies using multi-agent federated reinforcement learning FedRL follows several
steps, as illustrated in Figure 4.3. We assume that the information exchange happens in
a separate bandwidth from the transmission one, and that the time required to do this is
negligible. Each cluster Ck has a local FedRL agent with weights wk that produce a policy
πk, while the MEC server has the global model with weights wg and policy πg. At the end
of the training procedure, all the clusters have the same global model with weights w and
policy π. Details of each sequential step are listed below.

• First at the start of episode e, the UEs are grouped into NC
e distinct clusters, where

one cluster head CHk is selected at random to be the decision-making agent for all
UEs in Ck. The BS transmits to CHk the average of all the UEs’ channel gains in
other clusters, represented by the vector zk, and the new episode e starts.

• During the episode e, and at a timestep t, each UEik in cluster Ck with i ∈
{1, · · · ,NUE

C } shares with CHk its buffer vector dik,t, its quantized channel gain
xik,t, and its battery level beik,t.

• The CHk uses the information provided at each timestep to decide on the action to
take ak,t using the FedRL model, and broadcasts the individual action aik,t to each
UEik in the cluster. The obtained reward is also shared with the cluster head. This
information sharing process is highlighted in Figure 4.4.

91

Chapter 4. Multi-Cluster System with Federated Reinforcement Learning

MEC Server

Global DRL Model

Local DRL
Agent

Local DRL
Agent

Local DRL
Agent

... ...

(A)

(B)

Figure 4.3: Federated reinforcement learning procedure. (A) : The local models trained with
clusters information, and transmitted to the central node (MEC Server). (B) : The global model
weights aggregated from the received local weights, and broadcasted to the nodes (CHs).

• The information shared by the UEs in Ck to CHk is then used to train the local
agent with weights wk. After a certain number of steps (e.g. after a certain number
of timesteps or episodes), the local weights of each cluster head agent are sent to the
MEC server.

• After receiving the local weights from the CHs, the MEC server averages the weights
and obtains the weights of the global model as:

wg =
1

NC

NC∑
k=1

wk. (4.35)

• The MEC server broadcasts the global model weights to all CHs, and the process
repeats until the system converges to a global solution, i.e., ∀k, w = wk, π = πk,
invariant to different data models and numbers of UEs per cluster. In particular, the
re-clustering process takes place at each episode. The learning procedure is illustrated
in Figure 4.3.

92

4.2. Problem Formulation and Resolution

Base
Station

Cluster

...

Figure 4.4: Information sharing with the cluster head.

4.2.2.2 Clustering Model

Allowing multiple devices to share the network resources when transmitting signals simul-
taneously, in time and frequency, is what gives NOMA the advantage in terms of spectral
efficiency compared to traditional OMA methods. In addition, as demonstrated in our
previous works, the use of NOMA yields to fewer packet losses, and thus better system
design.

However, the performance advantage of NOMA decreases when the number of devices
simultaneously served by the BS increases. This is due to the SIC decoding especially
in the DL, which becomes more time and energy consuming with limited computational
power at the UEs compared to BS. Hence, creating multiple NOMA instances that occupy
different bandwidths and handling fewer numbers of devices is a good alternative to the
performance issues.

Therefore, a clustering process needs to be put in place to group together devices that
have desirable characteristics NOMA-wise. The general criterion for clustering NOMA
devices is based on channel conditions, where devices with higher SNR values and others
with weaker SNRs values are paired together. This is done to maximize the resulted DL

93

Chapter 4. Multi-Cluster System with Federated Reinforcement Learning

UE

UE

BS

UE

UE

UE

UE

Figure 4.5: Displacement of UEs in the grid around the BS, with different channel sub-intervals
(levels) and angles.

rates according to [53].
Some existing works on clustering are mentioned in section 1.4. The main concern with

these methods is that the location of the devices with respect to the BS is not considered.
This indicates that high SNR devices can be clustered with low SNR devices, even if they
are located in opposite directions at either side of the BS. This is an issue in practice
especially with the directional beams emitted by the BS’s antennas, which can favor one
device over the other.

The clustering solution proposed in our work deals with two conflicting issues jointly.
The first one is the clustered UEs’ channel conditions that have to be contrasting, while the
second issue is the need for a spatial proximity between UEs in order to cluster them. In
Figure 4.5, we show an example where the UEs can be located. They are defined in our case
by their angle w.r.t. the BS. Each circle with a shade of blue corresponds to a quantized
channel sub-interval X j (distance from the BS), and UEs can vary within the sub-interval
as explained in section 4.1.1. Moreover, two UEs can be in the same sub-interval with
different angles, which determines the position of the UEs w.r.t. the BS.

In other words, we use the polar coordinates (r, θ) to determine the position of UE in
the grid, where r refers to the channel sub-interval and θ to the angle. The polar coordi-
nates allow thus to cluster the UEs that have different r levels and the same (or adjacent)
angles θ. The resulting clusters are represented in Figure 4.6, where each cluster is high-
lighted by the green color.

94

4.2. Problem Formulation and Resolution

BS

UE

UE

UE

UE

UE

UE

Figure 4.6: Clustering the UEs following their polar coordinates.

Formally, given the set of all UEs in the grid {UE1, · · · ,UEi, · · · ,UENUE}, we quan-
tize the angles space Θ = [0, · · · , 360] deg into discrete values (Θ) to allow UEs to be in a
finite number of angles. Thus, before a re-clustering process at a new episode e+ 1, UEi

from the set of all UEs will be assigned a discrete channel sub-interval and a discrete angle
(Xi,e+1, θi,e+1). It transitions from the previous episodes’ parameters (Xi,e, θi,e) following
equation (4.2) for the channel sub-interval and the equation below for the angle transition,
which is similar to the channel one 4:

p(θi,e+1 = θℓ|θi,e = θℓ
′
) =

(
1− ρθ

)|ℓ′−ℓ|∑|Θ|
k=1 (1− ρθ)

|k−ℓ|
, (4.36)

with ρθ being the angle range correlation factor, meaning that the angle in episode e affects
the new angle in episode e + 1, simulating more accurately the changing in UE location.
Then, the clustering algorithm produces the set of clusters {C1, · · · ,Ck, · · · ,CNC}, with
each Ck having NUE

k UEs ranging between NUE
min and NUE

max. In what follows, we describe
the clustering process in details, where the steps are organized according to their priority.
A verification mechanism is implemented after each step to verify if the produced clusters
are valid, in the sense that the number of UEs per cluster is bounded by the minimum and
maximum values allowed, and the number of clusters is less than the allowed maximum
number NC

max. Once the verification is validated, the clustering process stops without
continuing through the rest of the steps.

4Since the angles define a circle, a rollover functionality is implemented to account for adjacent angles
that are in distant deg values

95

Chapter 4. Multi-Cluster System with Federated Reinforcement Learning

1. Create as many clusters as there are UEs to allow for the merging of clusters in the
following steps, and to make the verification step easier :

NC = NUE.

2. Combine cluster Ck with Ck′ together if the following conditions are met, with
{k, k′} ∈ {1, · · · ,NC}, {i, i′} ∈ {1, · · · ,NUE}:

• The UEs in both clusters are assigned to different channel sub-intervals:

Xi ̸= Xi′ if i ̸= i′.

• The UEs in both clusters have similar or adjacent angles:

|θi − θi′ | ≤ ϵθ, ∀ {i, i′},

with ϵθ being the angle quantization step.

In this step, the clustering is done by choosing one high SNR UE and testing it
against all other UEs, starting from low SNR UEs and going up in the SNR scale,
i.e., channel sub-interval, while ordering them according to their angle difference with
the selected UE.

3. For every UEi that was not clustered with other UEs in the previous two steps,
assign them to a cluster Ck if:

• The number of UEs in Ck is less than the maximum:

NUE
k < NUE

max.

• UEi’s angle is equal to or less than the angle quantization step compared to
every UEi′ in Ck:

|θi − θi′ | ≤ ϵθ, ∀ i′ ∈ {1, · · · ,NUE
k }.

4. If UEi is not assigned to another cluster in the previous step, cluster with it another
UEi′ that is already clustered in Ck, after satisfying the following conditions:

• The number of clusters after this step is less than the maximum number of
clusters allowed:

NC ≤ NC
max.

• The number of UEs in Ck is more than the minimum:

NUE
k > NUE

min .

• the angle difference between the two UEs is less than the angle quantization
step:

|θi − θi′ | ≤ ϵθ, ∀ i′ ∈ {1, · · · ,NUE
k }.

96

4.2. Problem Formulation and Resolution

If the resulting clusters are not valid after going through all the steps, the angle
and channel sub-interval reassignment step is redone to ensure coherent and valid
clusters.

In the example shown in Figure 4.6, the final clusters will be obtained after the second
step, since all the UEs that are clustered together have different channel gains, and have
equal or adjacent angles.

4.2.2.3 Proximal Policy Optimization

We choose the proximal policy optimization PPO as the DRL technique to train the multi-
agent system on a cluster basis. We have previously explained this technique in section
2.2.4.4 and used it in section 3.4. However, the difference here is that each CHk will house
a different local PPO model with weights wk and the federated learning FL is then used
to learn a global model with weights wg.

With the number of UEs changing after each re-clustering operation, the PPO model
needs to accommodate this dynamic aspect in the system. More specifically, the inputs
and outputs of the PPO’s Neural Networks (the actor and the critic networks share the
first few layers, therefore their input is the same) have to consider the maximum size of the
state representation and the maximum number of actions (in the actor’s output). Thus,
the PPO input state for Ck , denoted as the vector sPPO

k , is defined as:

sPPO
k =

{
d1k, · · · ,dNUE

k k, · · · ,dNUE
maxk

,

x1k, · · · , xNUE
k k, · · · , xNUE

maxk
,

be1k, · · · , beNUE
k k

, · · · , beNUE
maxk

,

z1, · · · , zNC , · · · , zNC
max

}
, (4.37)

where zero padding is performed on the elements from index NUE
k to index NUE

max if NUE
k <

NUE
max, and from index NC to index NCmax if NC < NCmax . Zero padding is performed in

the following way:

d(NUE
k +1)k = d(NUE

k +2)k = · · · = dNUE
maxk

= [−1, · · · ,−1]︸ ︷︷ ︸
Sd

, (4.38)

x(NUE
k +1)k = x(NUE

k +2)k = · · · = xNUE
maxk

= xmin, (4.39)

be
(NUE

k +1)k
= be

(NUE
k +2)k

= · · · = beNUE
maxk

= 0, (4.40)

zNC+1 = zNC+2 = · · · = zNC
max

= zmax. (4.41)

Basically, we zero pad the remaining spots in the state representation with UEs that
have no data in the buffer, the lowest channel gain, and an empty battery. For zk that
represent information on other clusters, we fill up the spots with the maximum average
channel gain (to avoid considering them in the interference estimation for Equation 4.5).

Moreover, we can set the actor’s output πw
k (.|sk) size as:

|πw
k (.|sk)| = (Ml +Mo + 1)N

UE
max , (4.42)

which is the same as the maximum action space size |Ak|.

97

Chapter 4. Multi-Cluster System with Federated Reinforcement Learning

4.3 Simulation Results

To assess the performance of the proposed model, we simulate a system withNUE = 6 UEs.
Each UEi has a buffer of size Sd = 4 with a maximum delay ∇ = 2 on the packets that ar-
rive, as well as EH capabilities with a battery of sizeN b = 3 energy units of Se = 1 µJoules.
In addition, we choose a random data model among the models described in section 4.1.3,
which are Poisson distribution with mean µd

po = 0.5, uniform distribution with Du,min = 0

and Du,max = Sd/2, Lognormal and Pareto distributions with µd
l = µd

pa = 0. We assume
that the channel gain range is divided into |J | = 3 sub-intervals with |X j | = 3 quantization
steps for each sub-interval X j , following bounds {(−5.23,−0.46); (0, 4.78); (4.91, 6.53)}dB.
Each sub-interval is further quantized into |X j | = 3 levels of channel gains, that are used
to compute the channel gain of each UE at a given timestep. The angles range is similarly
quantized into |Θ̄| = 4 discrete angles.

We cluster the UEs in at most NC ≤ NC
max = 3 clusters, with each cluster Ck having

2 = NUE
min ≤ NUE ≤ NUE

max = 4 number of UEs. The re-clustering is done before the start
of each episode.

The cluster Ck scheduling decisions are taken by the CHk at the start of a timestep. It
performs either local operations for UEik with a maximum ofMl = 1 packets, or offloading
packets to the MEC server with a maximum of Mo = 3 packets that can be offloaded at
once.

When processing locally, the power associated with the decision is P l = 180 µW,
whereas the maximum offloading power permitted is Po = 2 mW. In the offloading opera-
tion, UEik sends to the MEC server mik packets of size Lul = 500 bits, over a bandwidth
of Wul = 4 MHz, and a channel noise spectral density of N0 = −87 dBm Hz. It awaits
the execution for T w = 0.1 ms while consuming the power pw = 0.1 mW. For DL trans-
mission, the resulted packets have size Ldl = 50 bits and the BS uses a transmission power
of pbbs = 1 kW. The total DL bandwidth Wdl = 10 MHz is allocated partially to each
cluster depending on the number of UEs in it. At the UEs, the reception power is set
to pr = 3 mW and the decoding power to pd = 5 mWs. In fact, each UEik receives the
signals from all the other UEs in the same cluster and performs SIC decoding to decode its
signal after decoding the signal of other UEs with weaker channel (higher allocated power).
The whole offloading operation has to be done within the timestep size, which is T = 1 ms.

To train the Federated PPO multi-agent setup, each agent will have 2 NNs (actor and
critic networks) of 4 layers, the first 2 are shared between them. The number of neurons is
128 per layer with ReLU activation functions. The number of training epochs is the same
as the number of episodes E = 40 · 103 with each episode having T = 1024 timesteps, and
the memory buffer size is 1024 tuples. The batch size when sampling experiences from
the memory buffer is 64, the policy clip ϵ = 0.2, the generalized advantage estimation
factor λ = 0.97, the discount factor γ = 0.99, the learning rate α = 5 · 10−4, and the
number of iterations of batch sampling is I = 10. Once an episode terminates, the weights
are shared with the MEC server, and a re-clustering process is initiated for the next episode.

98

4.3. Simulation Results

We compare the Federated PPO method with the same naive methods used previously
and extended to a multi-agent setup, namely: the naive offload NO, naive local (NL), naive
random NR and the immediate scheduler IMM. We use the percentage of dropped packets
and the energy consumption as the performance metrics.

In Figure 4.7, we show the performance of the used methods in terms of the percentage
% of dropped packets per cluster, averaged throughout E = 1000 episodes of T = 1000

timesteps. We can see that the Federated PPO method outperforms the other naive meth-
ods by achieving less values of all the types of errors that induce packets losses, i.e., delay
violation and buffer overflow (transmission error does not cause a loss in packets, only
a failure to execute the packets, therefore it is not included). The results illustrate the
effectiveness of the adopted learning scheme that renders the federated PPO aware of
the inter-cluster interference, as well as the delay, battery and channel information of the
UEs in each cluster. Notably, the NO method performs poorly even compared to the NR
method. This is due to the high delay violation errors that occur from the lack of cluster
awareness, resulting thus in choosing actions that are not available. Meanwhile, the NL
method performs better than the NO method, which subsequently indicates that IMM
method selects local processing more often.

The energy consumption is evaluated in Figure 4.8, where the number of averaged
energy units consumed during an episode per cluster is shown. We can observe that Fed-
erated PPO achieves lower energy consumption compared to the naive methods and the
immediate scheduler. In addition, the NO achieves less than the other naive methods
simply because it stays idle too often. Therefore, the Federated PPO method offers good
performance while consuming less power than the other methods.

Investigating the clustering outcomes during the testing episodes reveals that a NC = 3

clusters configuration with NUE = 2 UEs each occurs for 65.5% of the episodes. The sec-
ond highest occurring configuration is the one with NC = 2 clusters of NUE = 3 UEs
with 28.9%. The two other possible configurations of NC = 2 clusters of NUE = {2, 4}
and NUE = {4, 2} UEs happen 3% and 2.6% of the testing episodes, respectively.

In addition, an action analysis is carried out it Figure 4.9, Figure 4.10 and Figure 4.11,
where each pie chart represents the percentage of actions taken during an episode (idle
actions are omitted) for a UE in a cluster withNUE = {2, 3, 4} number of UEs, respectively.
The figures show that the instances where intra-cluster NOMA is used increases with the
number of UEs in the cluster.

99

Chapter 4. Multi-Cluster System with Federated Reinforcement Learning

PPO IMM NO NL NR
0

20

40

60

27.63

36.57
40.53 39.38

33.09

%
of

dr
op

pe
d

pa
ck

et
s

Buffer Overflow
Delay Violation

Figure 4.7: Average percentage of dropped packets for each approach.

PPO IMM NO NL NR

400

600

800

1,000

689.21

860.72

705.43

870.63

795.08

N
um

be
r

of
E

ne
rg

y
U

ni
ts

C
on

su
m

ed

Figure 4.8: Average energy units consumed for each approach.

100

4.3. Simulation Results

6.71%

25.27%

4.42%

Local
1 UE Offload
2 UE NOMA

Figure 4.9: Average percentage of taken actions by each UE over all the clusters with NUE = 2

UEs (idle actions represent 63.6%).

3.47%

13.97%

3.65%

1.81%

Local
1 UE Offload
2 UE NOMA
3 UE NOMA

Figure 4.10: Average percentage of taken actions by each UE over all the clusters with NUE = 3

UEs (idle actions represent 77.1%).

6.82

10.73

6.35

2.58
0.32

Local
1 UE Offload
2 UE NOMA
3 UE NOMA
4 UE NOMA

0.32%

6.82%

10.73%

6.35%

2.58%

Figure 4.11: Average percentage of taken actions by each UE over all the clusters with NUE = 4

UEs (idle actions represent 73.2%).

101

Chapter 4. Multi-Cluster System with Federated Reinforcement Learning

4.4 Conclusion

The work in this chapter has tackled a multi-user problem extending the already studied
environment with multiple dynamic UEs due to their mobility. An adaptive NOMA clus-
tering algorithm is proposed that takes into account the channel conditions and the position
of the UEs on the grid. The resulted multi-cluster scheduling and computation offloading
problem is solved using Federated Learning learning, specifically a multi-agent Proximal
Policy Optimization method. Each cluster is trained locally using the heterogeneous UEs’
information, and a global model is averaged at the MEC server, and broadcasted to the
clusters. The simulation results validated the efficiency of the proposed PPO method when
compared to other methods, achieving thus lower packet error rates while consuming less
energy units. The presented work will be the subject of a journal submission J1 by the
defense time.

102

Conclusions and perspectives

This thesis addressed the problem of resource scheduling and computational offloading,
in a system with multiple user equipments UEs connected to a cellular base station

BS. The system had the characteristics listed below.

- Strict delay constraints on the data stored in the UEs.

- Offloading functionalities using mobile edge computing MEC technology.

- Battery recharging from ambient sources using energy harvesting EH capabilities at
UEs.

- Multiple access with NOMA-enabled communications.

Reinforcement Learning RL was used to devise optimal scheduling-offloading policies
at the UEs that are able to adapt to various situations encountered in the environment.
The developed methods were shown to perform better than the standard ones in terms of
packet error rate as well as energy consumption across multiple scenarios.

Chapter 1 laid the basics from communication perspective that were later adopted in
our works. Specifically, the chapter provided details for:

• How MEC technologies were presented as a solution to the computational capacities
of end devices while sacrificing minimal delay.

• EH capabilities that help prolonging the usability of battery-powered devices as well
as exploiting energy from sustainable sources.

• NOMA technique that enables simultaneous access of multiple users in time and
frequency, in addition to the scaling issues and the clustering that helps overcoming
these issues.

Chapter 2 focused on artificial intelligence AI technologies in general, and reinforcement
learning RL in particular. The chapter presented Markov modeling of environments and its
Markov decision processes MDPs models. Following that, suitable functions (e.g., Value
function and Q-function) were described, which can be used to derive expressions for
optimal policies. These policies dictate the best actions to take for each state in the
environment. Finally, the chapter introduced various algorithms that numerically attempt
to find the desired policies. In particular:

• Model-based methods with the guarantee of convergence, e.g., value iteration VI and
policy iteration PI.

• Model-free methods, with a trial-and-error based approach, e.g., Q-Learning QL.

• Model-free neural network-based methods, i.e., deep reinforcement Learning DRL
methods that approximate the environment using NNs, e.g., deep Q-networks DQN
and proximal policy optimization PPO.

104

Chapter 3 presented the first two contributions of this thesis. The first contribution
considered a system setup comprised of two UEs with data buffers storing delay-sensitive
tasks and connected to a BS with MEC capabilities. UEs could either execute their packets
locally or remotely by offloading them to the MEC server. NOMA communications were
enabled when both UEs offload at the same time. Different RL methods were developed
to solve the optimization problem and produce policies that output the type of execution
as well as the number of packets to execute, given channel and data buffer information of
the UEs. As a result, the investigated RL methods showed lower packet loss thus better
performance than other methods. When scaling the system to larger state space, it was
concluded that DRL techniques were more suited to produce good policies thanks to their
generalization capabilities to unseen states.

The second contribution dealt with the extension to an EH-based system, where the
UEs have batteries that can be recharged via external ambient and sustainable energy
sources. The resulted optimization problem is subsequently more complex and the state
space grows larger. Another DRL method, namely the proximal policy optimization PPO
was investigated to devise optimal policies. It proved to achieve lower packet error rates
compared to the standard methods while consuming less energy.

Chapter 4 extended the previous contributions of chapter 3 to a multi-user system by
adding more than 2 UEs in the system. The subsequent challenges arise from this change:

1. The previous DRL methods were no longer viable due to the exponentially large state
space, necessitating thus longer exploration times to learn the right policies for all
the UEs jointly.

2. NOMA performance especially in the downlink DL phase degraded due to the increas-
ing inter-user interference and loss in SIC decoding performance. The computational
capacities of the UEs do not allow for a decoding within the time constraints of the
system.

To overcome these challenges, UEs clustering method was proposed in this chapter. The
clustering process allows for the creation of smaller groups of UEs that can be handled by
one DRL agent. In addition to improving NOMA performance in DL, the clusters were
managed separately on an FDMA basis, eliminating thus the inter-cluster interference.
Further additions were also considered at the UEs. Namely, various data arrival models
were adopted by each UE to induce more heterogeneity in the system. Moreover, mobility
of the UEs was introduced to allow for location-based clustering constraints, on top of the
channel-based constraints.

Federated learning FL was utilized to aid the learning of a multi-agent setup where
each cluster had its own DRL agent at the cluster head. FL helped producing a global
model that accounts for all the different cluster configurations in this multi-cluster system.
The simulation results showed the advantage of Federated PPO method in finding optimal
scheduling-offloading policies compared to other standard methods, with regards to packet
loss and energy consumption performance metrics.

105

Perspectives

We present in the sequel some future perspectives to extend the work of this thesis.

Investigative Study of Data Arrival Models Data arrival models discussing how
data arrives at the buffer of UEs were described in section 1.3, and several ones were
already used in the work of chapter 4. However, they were not the objective of the outlined
work. In this study, we aim at experimenting with the different data arrival models in a
similar system as the one used in chapter 3. The goal is to analyze the effect of each data
arrival model on the produced RL policy, in terms of actions taken, and resulting packet
error rate and energy consumption. Machine Learning (ML) models can be adopted as
well to provide a more practical setup and learn the data distributions.

Comparative Study of NOMA clustering methods The NOMA clustering that
we developed in section 4.2.2.2 considered the channel conditions of the UEs as well as
their positions (in terms of angle) w.r.t. the BS. The purpose of this study is to compare
the proposed clustering method to other existing methods as cited in Subsection 1.4.3, by
analyzing the NOMA performance, the resulted sum-rates, and the interference levels.

Adaptive Clustering and Learning The proposed NOMA clustering method was per-
formed after each episode of transmission. We considered that the quantized channel sub-
interval Xi and the angle θ̄i at every UEi, i ∈ {1, · · · ,NUE} change following a correlated
process. Accounting for the mobility of UEs can be further enhanced by designing a more
adaptive clustering. The clustering method will have to be able to handle the changing
of the clusters at any moment for any UE. The channel and angle ranges will be subse-
quently used in their entirety with sub-intervals, and different transition models have to
be developed to allow the UE to move more freely.

On the other hand, the Federated RL FedRL procedure will become more frequent
with the changes in clusters. Therefore, it needs to perform the weights sharing operation
whenever possible, e.g., when the changes in the local models are big enough, rather than
every episode.

Offloading in a Cooperative Multi-Cell System The objective here is to generalize
the system by scaling the setup to multiple cells, with each cell containing UEs connected
to the BS with a dedicated MEC server for the cell. Each MEC server may have limited
computation resources, for instance, in terms of the number of tasks that can be handled.
From that, offloading to MEC servers from other cells becomes necessary under some
computation and delay constraints.

Therefore, cooperation between the MEC servers, thus muti-cells, is required to execute
the tasks offloaded by the UEs. Moreover, the load at the MEC servers could be used as
state information, thus considered in the optimization problem to decide to which server
to offload. Another option would be that the MEC servers could offload their tasks when
they are fully loaded to the core network, using a Fog Computing server.

106

Bibliography

[1] M. Report. “5g mobile subscriptions to exceed 5.3 billion in 2029”. Ericsson, Ed.
(2023), [Online]. Available: https://www.ericsson.com/en/reports-and-papers/
mobility-report/dataforecasts/mobile-subscriptions-outlook.

[2] F. Duarte. “Number of iot devices (2023)”. E. Topics, Ed. (2023), [Online]. Available:
https://explodingtopics.com/blog/number-of-iot-devices.

[3] S. J. Bigelow. “What is edge computing? everything you need to know”. (2021), [On-
line]. Available: https://www.techtarget.com/searchdatacenter/definition/
edge-computing.

[4] Qualcomm, Ed. “Everything you need to know about 5g.” (2023), [Online]. Available:
https://www.qualcomm.com/5g/what-is-5g.

[5] T. S. Project, Ed. “Environmental impacts of digital technology : 5-year trends and
5g governance”. (2023), [Online]. Available: https://theshiftproject.org/en/
article/environmental- impacts- of- digital- technology- 5- year- trends-
and-5g-governance/.

[6] Y. Saito, Y. Kishiyama, et al., “Non-orthogonal multiple access (noma) for cellu-
lar future radio access”, in 2013 IEEE 77th vehicular technology conference (VTC
Spring), IEEE, 2013, pp. 1–5.

[7] D. Silver, A. Huang, et al., “Mastering the game of go with deep neural networks
and tree search”, nature, vol. 529, no. 7587, pp. 484–489, 2016.

[8] D. Silver, J. Schrittwieser, et al., “Mastering the game of go without human knowl-
edge”, nature, vol. 550, no. 7676, pp. 354–359, 2017.

[9] C. Zhang, P. Patras, et al., “Deep learning in mobile and wireless networking: a
survey”, IEEE Communications surveys & tutorials, vol. 21, no. 3, pp. 2224–2287,
2019.

[10] H. Fan, L. Zhu, et al., “Deep reinforcement learning for energy efficiency optimization
in wireless networks”, in 2019 IEEE 4th International Conference on Cloud Comput-
ing and Big Data Analysis (ICCCBDA), IEEE, 2019, pp. 465–471.

[11] J. Ye and H. Gharavi, “Deep reinforcement learning-assisted energy harvesting wire-
less networks”, IEEE transactions on green communications and networking, vol. 5,
no. 2, pp. 990–1002, 2020.

https://www.ericsson.com/en/reports-and-papers/mobility-report/dataforecasts/mobile-subscriptions-outlook
https://www.ericsson.com/en/reports-and-papers/mobility-report/dataforecasts/mobile-subscriptions-outlook
https://explodingtopics.com/blog/number-of-iot-devices
https://www.techtarget.com/searchdatacenter/definition/edge-computing
https://www.techtarget.com/searchdatacenter/definition/edge-computing
https://www.qualcomm.com/5g/what-is-5g
https://theshiftproject.org/en/article/environmental-impacts-of-digital-technology-5-year-trends-and-5g-governance/
https://theshiftproject.org/en/article/environmental-impacts-of-digital-technology-5-year-trends-and-5g-governance/
https://theshiftproject.org/en/article/environmental-impacts-of-digital-technology-5-year-trends-and-5g-governance/

Bibliography

[12] D. Shi, F. Tian, et al., “Energy efficiency optimization in heterogeneous networks
based on deep reinforcement learning”, in 2020 IEEE International Conference on
Communications Workshops (ICC Workshops), IEEE, 2020, pp. 1–6.

[13] N. Zhao, Y.-C. Liang, et al., “Deep reinforcement learning for user association and re-
source allocation in heterogeneous cellular networks”, IEEE Transactions on Wireless
Communications, vol. 18, no. 11, pp. 5141–5152, 2019.

[14] Y. S. Nasir and D. Guo, “Multi-agent deep reinforcement learning for dynamic power
allocation in wireless networks”, IEEE Journal on Selected Areas in Communications,
vol. 37, no. 10, pp. 2239–2250, 2019.

[15] X. Chen, Y. Liu, et al., “Resource allocation for wireless cooperative iot network with
energy harvesting”, IEEE Transactions on Wireless Communications, vol. 19, no. 7,
pp. 4879–4893, 2020.

[16] T. Yang, Y. Hu, et al., “Deep reinforcement learning based resource allocation in low
latency edge computing networks”, in 2018 15th international symposium on wireless
communication systems (ISWCS), IEEE, 2018, pp. 1–5.

[17] J. Li, H. Gao, et al., “Deep reinforcement learning based computation offloading and
resource allocation for mec”, in 2018 IEEE wireless communications and networking
conference (WCNC), IEEE, 2018, pp. 1–6.

[18] F. Fang, Y. Xu, et al., “Optimal task assignment and power allocation for noma
mobile-edge computing networks”, arXiv preprint arXiv:1904.12389, 2019.

[19] M. K. Sharma, A. Zappone, et al., “Deep learning based online power control for large
energy harvesting networks”, in ICASSP 2019-2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2019, pp. 8429–8433.

[20] H. Zhou, K. Jiang, et al., “Deep reinforcement learning for energy-efficient computa-
tion offloading in mobile-edge computing”, IEEE Internet of Things Journal, vol. 9,
no. 2, pp. 1517–1530, 2021.

[21] L. Ale, N. Zhang, et al., “Delay-aware and energy-efficient computation offloading
in mobile-edge computing using deep reinforcement learning”, IEEE Transactions on
Cognitive Communications and Networking, vol. 7, no. 3, pp. 881–892, 2021.

[22] H. Li, F. Fang, et al., “Drl-assisted resource allocation for noma-mec offloading with
hybrid sic”, Entropy, vol. 23, no. 5, p. 613, 2021.

[23] A. Alwarafy, M. Abdallah, et al., “Deep reinforcement learning for radio resource
allocation and management in next generation heterogeneous wireless networks: a
survey”, arXiv preprint arXiv:2106.00574, 2021.

[24] J. Konečný, H. B. McMahan, et al., “Federated learning: strategies for improv-
ing communication efficiency”, in NIPS Workshop on Private Multi-Party Machine
Learning, 2016. [Online]. Available: https://arxiv.org/abs/1610.05492.

[25] L. S. Vailshery. “Iot connected devices worldwide 2019-2030”. T. I. E. Topics, Ed.
(2023), [Online]. Available: https://www.statista.com/statistics/1183457/
iot-connected-devices-worldwide/.

108

https://arxiv.org/abs/1610.05492
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/

Bibliography

[26] N. Abbas, Y. Zhang, et al., “Mobile edge computing: a survey”, IEEE Internet of
Things Journal, vol. 5, no. 1, pp. 450–465, 2017.

[27] S. F. T. S. M. Till, M. W. Beck, et al., “Mobile edge computing: a taxonomy”, in
Advances in Future Internet (AFIN 2014), The Sixth International Conference on,
2014.

[28] M. Satyanarayanan, P. Bahl, et al., “The case for vm-based cloudlets in mobile com-
puting”, IEEE pervasive Computing, vol. 8, no. 4, pp. 14–23, 2009.

[29] S. Yi, C. Li, et al., “A survey of fog computing: concepts, applications and issues”,
in Proceedings of the 2015 workshop on mobile big data, 2015, pp. 37–42.

[30] “Data centres and data transmission networks”. (2023), [Online]. Available: https://
www.iea.org/energy-system/buildings/data-centres-and-data-transmission-
networks.

[31] F. K. Shaikh and S. Zeadally, “Energy harvesting in wireless sensor networks: a
comprehensive review”, Renewable and Sustainable Energy Reviews, vol. 55, pp. 1041–
1054, 2016.

[32] M.-L. Ku, W. Li, et al., “Advances in energy harvesting communications: past,
present, and future challenges”, IEEE Communications Surveys & Tutorials, vol. 18,
no. 2, pp. 1384–1412, 2015.

[33] M.-L. Ku, Y. Chen, et al., “Data-driven stochastic models and policies for energy
harvesting sensor communications”, IEEE Journal on Selected Areas in Communica-
tions, vol. 33, no. 8, pp. 1505–1520, 2015.

[34] F. A. Kraemer, D. Ammar, et al., “Solar energy prediction for constrained iot nodes
based on public weather forecasts”, in Proceedings of the Seventh International Con-
ference on the Internet of Things, 2017, pp. 1–8.

[35] M. Basim, Q. ul Ain, et al., “A comprehensive review on high-efficiency rf-dc con-
verter for energy harvesting applications”, Journal of Semiconductor Technology and
Science, vol. 22, no. 5, pp. 304–325, 2022.

[36] I. Flint, X. Lu, et al., “Performance analysis of ambient rf energy harvesting: a
stochastic geometry approach”, in 2014 IEEE Global Communications Conference,
IEEE, 2014, pp. 1448–1453.

[37] L. Decreusefond, I. Flint, et al., “A note on the simulation of the ginibre point
process”, Journal of Applied Probability, vol. 52, no. 4, pp. 1003–1012, 2015.

[38] H. J. Visser and R. J. Vullers, “Rf energy harvesting and transport for wireless sensor
network applications: principles and requirements”, Proceedings of the IEEE, vol. 101,
no. 6, pp. 1410–1423, 2013.

[39] F. Azmat, Y. Chen, et al., “Predictive modelling of rf energy for wireless powered
communications”, IEEE Communications Letters, vol. 20, no. 1, pp. 173–176, 2015.

[40] Z. Liang and J. Yuan, “Modelling and prediction of mobile service channel power
density for rf energy harvesting”, IEEE Wireless Communications Letters, vol. 9,
no. 5, pp. 741–744, 2020.

109

https://www.iea.org/energy-system/buildings/data-centres-and-data-transmission-networks
https://www.iea.org/energy-system/buildings/data-centres-and-data-transmission-networks
https://www.iea.org/energy-system/buildings/data-centres-and-data-transmission-networks

Bibliography

[41] Y. Mao, J. Zhang, et al., “Dynamic computation offloading for mobile-edge comput-
ing with energy harvesting devices”, IEEE Journal on Selected Areas in Communi-
cations, vol. 34, no. 12, pp. 3590–3605, 2016.

[42] I. Fawaz, M. Sarkiss, et al., “Delay-optimal resource scheduling of energy harvesting-
based devices”, IEEE Transactions on Green Communications and Networking, vol. 3,
no. 4, pp. 1023–1034, 2019.

[43] W. Abbessi and H. Nabli, “General approach for video traffic: from modeling to
optimization”, Multimedia Systems, vol. 25, no. 3, pp. 177–193, 2019.

[44] G. Aceto, G. Bovenzi, et al., “Characterization and prediction of mobile-app traffic
using markov modeling”, IEEE Transactions on Network and Service Management,
vol. 18, no. 1, pp. 907–925, 2021.

[45] G. Aceto, D. Ciuonzo, et al., “Mirage: mobile-app traffic capture and ground-truth
creation”, in IEEE 4th International Conference on Computing, Communication and
Security (ICCCS 2019), 2019.

[46] J. Navarro-Ortiz, P. Romero-Diaz, et al., “A survey on 5g usage scenarios and traffic
models”, IEEE Communications Surveys & Tutorials, vol. 22, no. 2, pp. 905–929,
2020.

[47] A. Benjebbovu, A. Li, et al., “System-level performance of downlink noma for future
lte enhancements”, in 2013 IEEE globecom workshops (GC Wkshps), IEEE, 2013,
pp. 66–70.

[48] A. Benjebbour, K. Saito, et al., “Non-orthogonal multiple access (noma): concept,
performance evaluation and experimental trials”, in 2015 International conference on
wireless networks and mobile communications (WINCOM), IEEE, 2015, pp. 1–6.

[49] S. Islam, M. Zeng, et al., “Non-orthogonal multiple access (noma): how it meets 5g
and beyond”, arXiv preprint arXiv:1907.10001, 2019.

[50] H. Tabassum, M. S. Ali, et al., “Non-orthogonal multiple access (noma) in cellular up-
link and downlink: challenges and enabling techniques”, arXiv preprint arXiv:1608.05783,
2016.

[51] L. Salaün, “Resource allocation and optimization for the non-orthogonal multiple ac-
cess”, Theses, Institut Polytechnique de Paris, Mar. 2020. [Online]. Available: https:
//theses.hal.science/tel-02733385.

[52] “Single carrier noma (sc noma) - how many users can it support?” (2020), [Online].
Available: https://ecewireless.blogspot.com/2020/06/single-carrier-noma-
sc-noma-how-good-is_15.html.

[53] M. S. Ali, H. Tabassum, et al., “Dynamic user clustering and power allocation for
uplink and downlink non-orthogonal multiple access (noma) systems”, IEEE access,
vol. 4, pp. 6325–6343, 2016.

[54] J. Cui, Z. Ding, et al., “Unsupervised machine learning-based user clustering in
millimeter-wave-noma systems”, IEEE Transactions on Wireless Communications,
vol. 17, no. 11, pp. 7425–7440, 2018.

110

https://theses.hal.science/tel-02733385
https://theses.hal.science/tel-02733385
https://ecewireless.blogspot.com/2020/06/single-carrier-noma-sc-noma-how-good-is_15.html
https://ecewireless.blogspot.com/2020/06/single-carrier-noma-sc-noma-how-good-is_15.html

Bibliography

[55] A. Shahini and N. Ansari, “Noma aided narrowband iot for machine type communica-
tions with user clustering”, IEEE Internet of Things Journal, vol. 6, no. 4, pp. 7183–
7191, 2019.

[56] Z. Wang, M. Pischella, et al., “Clustering and power optimization for noma multi-
objective problems”, in 2020 IEEE 31st Annual International Symposium on Per-
sonal, Indoor and Mobile Radio Communications, IEEE, 2020, pp. 1–6.

[57] M. Z. Alom, T. M. Taha, et al., “The history began from alexnet: a comprehensive
survey on deep learning approaches”, arXiv preprint arXiv:1803.01164, 2018.

[58] K. O’Shea and R. Nash, “An introduction to convolutional neural networks”, arXiv
preprint arXiv:1511.08458, 2015.

[59] R. M. Schmidt, “Recurrent neural networks (rnns): a gentle introduction and overview”,
arXiv preprint arXiv:1912.05911, 2019.

[60] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press,
2018.

[61] C. J. Watkins and P. Dayan, “Q-learning”, Machine learning, vol. 8, pp. 279–292,
1992.

[62] H. Hasselt, “Double Q-learning”, Advances in Neural Information Processing Systems,
vol. 23, 2010.

[63] V. Mnih, K. Kavukcuoglu, et al., “Human-level control through deep reinforcement
learning”, nature, vol. 518, no. 7540, pp. 529–533, 2015.

[64] T. Schaul, J. Quan, et al., “Prioritized experience replay”, arXiv preprint arXiv:1511.05952,
2015.

[65] Z. Wang, T. Schaul, et al., “Dueling network architectures for deep reinforcement
learning”, in International conference on machine learning, PMLR, 2016, pp. 1995–
2003.

[66] J. Schulman, F. Wolski, et al., “Proximal policy optimization algorithms”, arXiv
preprint arXiv:1707.06347, 2017.

[67] L. Weng, “Policy gradient algorithms”, lilianweng.github.io, 2018. [Online]. Available:
https://lilianweng.github.io/posts/2018-04-08-policy-gradient/.

[68] J. Schulman, S. Levine, et al., “Trust region policy optimization”, in International
conference on machine learning, PMLR, 2015, pp. 1889–1897.

[69] Wikipedia contributors, Federated learning — Wikipedia, the free encyclopedia, [On-
line; accessed 24-November-2023], 2023. [Online]. Available: https://en.wikipedia.
org/w/index.php?title=Federated_learning&oldid=1184187973.

[70] C. Zhang, Y. Xie, et al., “A survey on federated learning”, Knowledge-Based Systems,
vol. 216, p. 106 775, 2021.

[71] C. Nadiger, A. Kumar, et al., “Federated reinforcement learning for fast personaliza-
tion”, in 2019 IEEE Second International Conference on Artificial Intelligence and
Knowledge Engineering (AIKE), IEEE, 2019, pp. 123–127.

111

https://lilianweng.github.io/posts/2018-04-08-policy-gradient/
https://en.wikipedia.org/w/index.php?title=Federated_learning&oldid=1184187973
https://en.wikipedia.org/w/index.php?title=Federated_learning&oldid=1184187973

Bibliography

[72] H. H. Zhuo, W. Feng, et al., “Federated deep reinforcement learning”, arXiv preprint
arXiv:1901.08277, 2019.

[73] J. Qi, Q. Zhou, et al., “Federated reinforcement learning: techniques, applications,
and open challenges”, arXiv preprint arXiv:2108.11887, 2021.

[74] L. P. Qian, A. Feng, et al., “Optimal SIC Ordering and Computation Resource Allo-
cation in MEC-aware NOMA NB-IoT Networks”, IEEE Internet of Things Journal,
vol. 6, no. 2, pp. 2806–2816, 2018.

[75] M. Hua, H. Tian, et al., “Online Offloading Scheduling for NOMA-aided MEC under
Partial Device Knowledge”, IEEE Internet of Things Journal, 2021.

[76] W. Liu, Y. He, et al., “Deep Reinforcement Learning-Based MEC Offloading and
Resource Allocation in Uplink NOMA Heterogeneous Network”, in 2021 Computing,
Communications and IoT Applications (ComComAp), IEEE, 2021, pp. 144–149.

[77] T. Truong, T. Nguyen, et al., “Partial Computation Offloading in NOMA-assisted
Mobile-Edge Computing Systems Using Deep Reinforcement Learning”, IEEE Inter-
net of Things Journal, vol. 8, no. 17, pp. 13 196–13 208, 2021.

[78] M. Nduwayezu, Q.-V. Pham, et al., “Online Computation Offloading in NOMA-
based Multi-access Edge Computing: A Deep Reinforcement Learning Approach”,
IEEE Access, vol. 8, pp. 99 098–99 109, 2020.

[79] L. Li, Q. Cheng, et al., “Resource allocation for NOMA-MEC Systems in Ultra-Dense
Networks: A Learning Aided Mean-Field Game Approach”, IEEE Transactions on
Wireless Communications, vol. 20, no. 3, pp. 1487–1500, 2020.

[80] Z. Hu, J. Niu, et al., “An efficient online computation offloading approach for large-
scale mobile edge computing via deep reinforcement learning”, IEEE Transactions
on Services Computing, vol. 15, no. 2, pp. 669–683, 2021.

[81] A. Sadiki, J. Bentahar, et al., “Deep reinforcement learning for the computation
offloading in mimo-based edge computing”, Ad Hoc Networks, p. 103 080, 2023.

[82] L. An, Z. Wang, et al., “Joint task offloading and resource allocation via proximal
policy optimization for mobile edge computing network”, in 2021 International Con-
ference on Networking and Network Applications (NaNA), 2021, pp. 466–471.

[83] A. Alajmi and W. Ahsan, “An efficient actor critic drl framework for resource alloca-
tion in multi-cell downlink noma”, in 2022 Joint European Conference on Networks
and Communications & 6G Summit (EuCNC/6G Summit), IEEE, 2022, pp. 77–82.

[84] Z. Tianqing, W. Zhou, et al., “Resource allocation in iot edge computing via con-
current federated reinforcement learning”, IEEE Internet of Things Journal, vol. 9,
no. 2, pp. 1414–1426, 2021.

[85] S. Yu, X. Chen, et al., “When deep reinforcement learning meets federated learning:
intelligent multitimescale resource management for multiaccess edge computing in 5g
ultradense network”, IEEE Internet of Things Journal, vol. 8, no. 4, pp. 2238–2251,
2020.

112

[86] X. Li, L. Lu, et al., “Federated multi-agent deep reinforcement learning for resource
allocation of vehicle-to-vehicle communications”, IEEE Transactions on Vehicular
Technology, vol. 71, no. 8, pp. 8810–8824, 2022.

[87] P. Consul, I. Budhiraja, et al., “Federated reinforcement learning based task offload-
ing approach for mec-assisted wban-enabled iomt”, Alexandria Engineering Journal,
vol. 86, pp. 56–66, 2024. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S111001682301027X.

[88] X. Liu, J. Yu, et al., “Multi-agent reinforcement learning for resource allocation in iot
networks with edge computing”, China Communications, vol. 17, no. 9, pp. 220–236,
2020.

[89] J. Cui, Y. Liu, et al., “Multi-agent reinforcement learning-based resource allocation
for uav networks”, IEEE Transactions on Wireless Communications, vol. 19, no. 2,
pp. 729–743, 2019.

[90] Y. M. Park, Y. K. Tun, et al., “Joint user pairing and beamforming design of multi-
star-riss-aided noma in the indoor environment via multi-agent reinforcement learn-
ing”, arXiv preprint arXiv:2311.08708, 2023.

113

https://www.sciencedirect.com/science/article/pii/S111001682301027X
https://www.sciencedirect.com/science/article/pii/S111001682301027X

Titre : Politiques Conjointes d’Ordonnancement et de Déchargement dans les Réseaux Sans Fil de Futur
Générations

Mots clés : Allocation de Resource, 5G, Apprentissage par Renforcement

Résumé : Les défis posés par le nombre croissant
d’appareils connectés, la forte consommation d’éner-
gie et l’impact environnemental dans les réseaux sans
fil d’aujourd’hui et de demain retiennent de plus en
plus l’attention. De nouvelles technologies telles que
le cloud mobile de périphérie (Mobile Edge Compu-
ting MEC) sont apparues pour rapprocher les services
en nuage des appareils et remédier à leurs limita-
tions en matière de calcul. Le fait de doter ces appa-
reils et les nœuds du réseau de capacités de récolte
d’énergie (Energy Harvesting EH) est également pro-
metteur pour permettre de consommer de l’énergie à
partir de sources durables et respectueuses de l’en-
vironnement. En outre, l’accès multiple non orthogo-
nal (Non-Orthogonal Multiple Access NOMA) est une
technique essentielle pour améliorer l’efficacité spec-

trale mobile. Avec l’aide des progrès de l’intelligence
artificielle, en particulier des modèles d’apprentissage
par renforcement (Reinforcement Learning RL), le tra-
vail de thèse porte sur la conception de politiques qui
optimisent conjointement l’ordonnancement et la dé-
charge de calcul pour les appareils dotés de capacités
EH, les communications compatibles avec le NOMA
et l’accès MEC. En outre, lorsque le nombre d’appa-
reils augmente et que la complexité du système s’ac-
croît, le regroupement NOMA est effectué et l’appren-
tissage fédéré (Federated Learning) est utilisé pour
produire des politiques RL de manière distribuée. Les
résultats de la thèse valident la performance des poli-
tiques RL proposées, ainsi que l’intérêt de l’utilisation
de la technique NOMA.

Title : Joint Offloading-Scheduling Policies for Future Generation Wireless Networks.

Keywords : Resource Allocation, 5G, Reinforcement Learning

Abstract : The challenges posed by the increasing
number of connected devices, high energy consump-
tion, and environmental impact in today’s and future
wireless networks are gaining more attention. New
technologies like Mobile Edge Computing (MEC) have
emerged to bring cloud services closer to the de-
vices and address their computation limitations. En-
abling these devices and the network nodes with
Energy Harvesting (EH) capabilities is also promising
to allow for consuming energy from sustainable and
environmentally friendly sources. In addition, Non-
Orthogonal Multiple Access (NOMA) is a pivotal tech-
nique to achieve enhanced mobile broadband. Aided

by the advancement of Artificial Intelligence, espe-
cially Reinforcement Learning (RL) models, the the-
sis work revolves around devising policies that jointly
optimize scheduling and computational offloading for
devices with EH capabilities, NOMA-enabled commu-
nications, and MEC access. Moreover, when the num-
ber of devices increases and so does the system com-
plexity, NOMA clustering is performed and Federated
Learning is used to produce RL policies in a distribu-
ted way. The thesis results validate the performance
of the proposed RL-based policies, as well as the in-
terest of using NOMA technique.

Institut Polytechnique de Paris
91120 Palaiseau, France

	Acronyms
	Introduction (English)
	Introduction (Français)
	I Preliminaries
	Communication-Based Preliminaries
	Edge Computing
	Energy Harvesting
	Energy Harvesting Sources and Modeling

	Data Models
	Non-Orthogonal Multiple Access
	Uplink NOMA
	Downlink NOMA
	Clustering NOMA Users

	Learning-Based Preliminaries
	Neural Networks
	Reinforcement Learning
	Markov Modeling
	MDP-related functions
	Model-based Methods
	Model-free Methods

	Federated Learning

	II Contributions
	Optimal Scheduling-Offloading Policies
	System Model
	Data Buffer Model
	Channel Model
	Scheduling Decisions
	Energy Consumed
	Time Constraints

	Problem Formulation and Resolution
	Problem Formulation
	Problem Resolution

	Simulation Results
	Extension to an EH-based System
	Energy & Battery Model
	Problem Formulation and Resolution
	Simulation Results

	Conclusion

	Multi-Cluster System with Federated Reinforcement Learning
	System Model
	Channel Model
	Transmission Model
	Data Buffer Model
	Energy and Battery Model
	Scheduling Decisions
	Consumed Energy
	Time Constraints

	Problem Formulation and Resolution
	Problem Formulation
	Proposed Resolution

	Simulation Results
	Conclusion

	Conclusions and perspectives

