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Thèse de doctorat de l’Institut Polytechnique de Paris
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Alexis TANTET
Professeur assistant, École polytechnique (LMD) Co-encadrant de thèse
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Résumé en français

Le secteur résidentiel est important pour la transition énergétique visant à lutter contre
le réchauffement climatique. En raison de la variabilité géographique des facteurs socio-
économiques, la consommation d’électricité du secteur résidentiel (REC pour Residential
Electricity Consumption), très dépendante, doit être étudiée localement. La première partie de
cette étude vise à projeter les futures REC françaises, en considérant les scénarios de changement
climatique et de climatisation (AC) et en quantifiant leur variabilité spatiale. Pour ce faire, un
modèle linéaire de sensibilité à la température adapté aux données annuelles de consommation
d’électricité observées et à la température historique est appliqué à l’échelle intrarégionale.
Les futures REC sensibles à la température sont calculées en utilisant le modèle pour les
projections de température dans le cadre du changement climatique RCP8.5. Trois scénarios
de climatisation sont envisagés : (1) un scénario de taux de climatisation de 100% supposant
que toute région partiellement équipée de systèmes de climatisation aujourd’hui verra tous ses
ménages équipés de climatisation, mais que la sensibilité locale à la température ne progressera
plus ; (2) un scénario de diffusion progressive imitant le comportement « faire comme mon
voisin » ; (3) une combinaison des deux scénarios. L’augmentation des températures entraîne
une diminution globale des REC (-8 TWh d’ici 2040 et jusqu’à -20 TWh d’ici 2100) avec une
variabilité spatiale significative. L’évolution des REC est modulée par l’évolution des besoins
de refroidissement et le déploiement des systèmes de climatisation pour répondre à ces besoins.
Dans les deux premiers scénarios AC, la diminution des REC due au changement climatique
pourrait être compensée dans le sud de la France, qui afficherait alors une augmentation des
REC. Lorsque les deux scénarios CA sont combinés, une augmentation des REC pourrait être
observée dans l’ensemble du pays. Le scénario AC le plus extrême montre une augmentation
potentielle des REC due à l’utilisation de l’AC de 2% d’ici 2040 et de 32% d’ici 2100.

Nous voulons décarboniser le secteur résidentiel une fois que nous aurons finalisé la projection
de la consommation d’électricité résidentielle. Deux axes principaux sont étudiés : le premier vise
à étudier la performance des rénovations. Pour ce faire, un modèle linéaire modifié de sensibilité
à la température basé sur l’étude précédente est utilisé en incluant les variables des âges de
construction de sorte que la consommation sensible à la température par groupes de périodes
de construction est estimée pour chaque région administrative. Ces consommations sensibles à
la température estimées sur la base de la consommation réelle sont dominées par le chauffage et
peuvent être comparées à la consommation théorique de chauffage calculée par le calcul standard
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du certificat de performance énergétique (EPC). La comparaison fait apparaître une nette
différence ; cette différence entre la consommation réelle et la consommation conventionnelle
est également connue sous le nom d’écart de performance énergétique. La France a introduit
sa première réglementation en matière de performance thermique en 1974 (RT1974), dans le
but de réduire la consommation d’énergie de 25% par rapport aux logements anciens. Elle a
été suivie d’une nouvelle réglementation en 1982 (RT1982), visant à réduire la consommation
d’énergie de 20% par rapport à la RT1974. Puis est venue la RT2005, dont l’objectif était de
réduire la consommation d’énergie de 15% supplémentaires. Cependant, nos résultats montrent
que pour la plupart des régions administratives, la performance thermique n’est pas améliorée
par la mise en œuvre des réglementations thermiques RT1974 et RT2005 comme prévu. Le
gain attendu de la rénovation en utilisant le calcul conventionnel est d’environ 60%, si tous les
bâtiments doivent avoir la même performance thermique que les nouveaux bâtiments construits
après 2006. Mais avec nos résultats, plus de 30% des bâtiments consommeront plus qu’avant la
rénovation, ce qui sera problématique pour l’objectif net zéro.

Le deuxième axe consiste à décarboniser le secteur résidentiel en mettant en œuvre
l’autoconsommation par l’installation de panneaux photovoltaïques sur les toits. Nous nous
concentrons sur les bénéfices mutuels de la production d’énergie photovoltaïque entre la ville et
la campagne et entre le réseau et le consommateur pour la métropole du Grand Paris. Nous
explorons différentes échelles de périmètre d’autoconsommation contractuelle afin de maximiser
l’autoconsommation photovoltaïque et les taux d’autosuffisance. Pour pouvoir évaluer la per-
formance avec plus de précision, les profils de consommation d’électricité en temps réel et la
production d’énergie solaire sont importants. Nous utilisons une méthode de sensibilité à la
température basée sur des études antérieures pour estimer l’évolution horaire de la consom-
mation d’électricité par consommateur pour le secteur résidentiel et le secteur commercial.
Les principales conclusions soulignent que le partage de l’énergie entre les secteurs résidentiel
et commercial réduit considérablement les pertes excédentaires de l’énergie photovoltaïque et
améliore la stabilité du réseau, les avantages augmentant au fur et à mesure que le périmètre de
partage s’accroît. Après avoir combiné les secteurs résidentiel et commercial, l’amélioration de
la SSR et de la SCR due à la complémentarité des secteurs atteint 6,5%. Après avoir combiné
différents sous-domaines de la métropole (centre-ville et périphérie semi-urbaine), l’amélioration
de la SSR et de la SCR due à l’extension du périmètre de partage de l’énergie est de 10%.
En outre, l’amélioration du bilan énergétique est plus significative pour la périphérie. En
termes économiques, les installations photovoltaïques en toiture permettent des économies plus
importantes pour les habitants et les entreprises de la périphérie que pour ceux du centre de
Paris. L’extension du périmètre permet ensuite un bénéfice plus important pour les usagers
du centre de Paris. L’étude conclut que l’extension du périmètre de partage de l’énergie
dans les zones urbaines optimise l’utilisation de la production photovoltaïque et contribue à
des systèmes énergétiques urbains plus durables et plus résistants. Lorsque l’ensemble de la
métropole du Grand-Paris est considéré comme une communauté énergétique qui permet le
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partage, le bénéfice potentiel est le plus important avec 22,4% de la consommation couverte
par la production photovoltaïque en toiture.

Mots clés: Consommation d’énergie résidentielle ; Changement climatique ; Décarbonisa-
tion ; Rénovation des bâtiments ; PV en toiture
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1.1 Building energy consumption

The building sector, including residential, commercial, and public buildings, is one of the global
final energy consumers (Lu and Lai, 2019; Mastouri et al., 2020). It accounted for 34 % of total
global final energy consumption in 2019, highlighting its significant impact on energy demand
and carbon emissions (IEA, 2020). The residential sector is particularly important, accounting
for 20% of total energy consumption (International Energy Agency, 2023). Projections by
the International Energy Agency (IEA) suggest that the importance of buildings, particularly
residential buildings, in global energy consumption and CO2 emissions will continue to grow
(International Energy Agency, 2023). This continuing trend highlights the urgent need for
sustainable energy practices and efficiency improvements in the building sector to reduce
environmental impacts and support global energy sustainability goals.
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Figure 1.1 Largest end uses of energy by sector in selected IEA countries (Refers to 2019 data for
nineteen IEA countries for which data are available for most end uses: Australia, Austria, Canada,
Czech Republic, Finland, France, Germany, Hungary, Japan, Italy, Korea, Luxembourg, New Zealand,
Poland, Portugal, Spain, Switzerland, the United Kingdom and the United States; to 2018 data for
Canada and Italy). Source: IEA Energy Efficiency Indicators database, 2021 (IEA and Birol, 2021)
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1.1.1 Residential Energy Consumption

A closer look at residential energy consumption reveals the many factors that influence its
evolution (Frederiks et al., 2015; Mashhoodi and van Timmeren, 2018; Yan and Lifang, 2011;
Yun and Steemers, 2011). The interaction of socio-demographic, economic and psychological
factors is crucial in shaping residential energy consumption patterns. An important aspect of
residential energy consumption is its dependence on household income, the thermal quality of
the dwelling and the relative cost of energy in relation to the household’s purchasing power
(Branger et al., 2015; Frederiks et al., 2015; Giraudet et al., 2012). This relationship highlights
the multifaceted nature of energy consumption and the importance of considering affordability
alongside energy efficiency measures in the residential sector. Studies in many countries have
shown considerable variation in household energy use due to differences in income levels,
dwelling type, household composition and geographical location. In the UK, for example, the
relationship between household energy use and carbon emissions and socio-economic factors
such as income level, dwelling type, tenure, household composition and rural/urban location has
been well documented (Druckman and Jackson, 2008). This variability is also reflected in the
Netherlands, where dwelling characteristics have a strong influence on natural gas consumption,
while electricity consumption is closely related to household composition, income and structure
(Brounen et al., 2012).

The residential energy consumption, therefore, displays a very large spatial variability,
especially in urban areas, which are characterized by the heterogeneity of their demographic,
socio-economic, environmental, and cultural characteristics (Li and Kwan, 2018; Pickett et al.,
2017) underlying urban resource demands (Rosales Carreón and Worrell, 2018; Voskamp
et al., 2020). As our specific case study, France confirms the findings of other countries and
illustrates how geographical and economic differences can significantly impact residential energy
consumption patterns. This highlights the need for policies to be comprehensive and sensitive
to the uniqueness of different regions and communities (Lévy and Belaïd, 2018). This spatial
variation illustrates the complexity of addressing energy consumption through policy due to
the different needs and characteristics of the population. The significant influence of socio-
demographic and psychological factors on residential energy use requires a targeted approach
to policy development. Evidence suggests that effective energy efficiency policies must navigate
the complexity of these influences and consider the nuances between different geographical
contexts. These policies should not only aim to improve the thermal quality of dwellings and
make energy more affordable. Still, they should also consider different population groups’
unique socio-economic and cultural characteristics to ensure they are inclusive and effective.

1.1.2 The Case of France

From the consumption perspective, the French building sector (residential and service) con-
tributes significantly to energy consumption, accounting for about 44% of total final energy
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consumption. With a population of 65 million people residing within a metropolitan territory
spanning 333,691 km2, France’s energy mix and policies present a unique situation that is
shaped by a history of energy crises and a strong focus on nuclear energy (International Energy
Agency, 2021; Taylor et al., 1998). France’s ambitious nuclear energy program highlights the
complexity of the French energy landscape. France’s reliance on nuclear power has historically
set it apart from many other countries as a leader in low-carbon energy production. However,
the current increased focus on electrification and nuclear energy’s gradual reduction in its share
of the energy mix presents France with a complex challenge. The residential sector, which
accounts for over 30% of final energy consumption and 20% of CO2 emissions in France, is
emerging as a critical area of focus. Addressing this sector’s energy needs through renewable
energy sources and energy efficiency measures, such as deep energy retrofits or renovations,
is essential. These measures contribute to France’s environmental goals and demonstrate
the potential for sustainable energy practices within the existing infrastructural and societal
framework. Therefore, key strategies include improving building energy efficiency, promoting
thermal renovation, and encouraging the construction of high-performance buildings. These
initiatives aim to limit electricity consumption in the residential sector, representing a major
environmental challenge and a significant opportunity to mitigate global warming.

1.1.3 Climate change effect

In France, outdoor temperature increase could reach up to 3.8°C by 2100 with regards to
1900-1930 if no policy is in place to reduce greenhouse gas emissions (Ribes et al., 2022).
Pilli-Sihvola et al. (2010) have investigated the impact of climate change on building energy
demand for heating and cooling and the associated energy cost using climate simulations of
the 3𝑟𝑑 Coupled Model Intercomparison Project (CMIP3). More recently, Larsen et al. (2020)
find in downscaled CMIP5-climate simulations that when temperature evolution is considered
as the only factor of change, needs for cooling increase by 33% to 204% between 2050 and
2010 and needs for heating decrease by -31% to -6% while Damm et al. (2017) predict the
impact of a +2°C global temperature change on European electricity demand, with for France,
an estimated decrease in total electricity consumption between -10 TWh and -16 TWh. The
optimistic reduction in electricity projection is due to France’s current heating-dominated
state. All households in the country utilize specific heating systems such as gas, oil, wood, or
district heating, among which 37% employ electric heating. In contrast, the national adoption
of air-conditioning (AC) remains relatively low, standing at only approximately 22% when
considering all types and sizes of air conditioners, including mobile and heat pump units.

Rising temperatures and temperature extremes, in particular, imply increased use of
air conditioners, both in hot and humid emerging economies where incomes are rising and
in industrialized economies where consumer expectations in terms of thermal comfort are
constantly growing (Van Ruijven et al., 2019). Previous studies (Colelli et al., 2023; Randazzo
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et al., 2020; Van Ruijven et al., 2019) suggest that climatic conditions will encourage more
households to adopt AC systems, therefore affecting electricity expenditures. On a global scale,
the final energy consumption for AC in residential and commercial buildings has more than
tripled between 1990 and 2016. The share of cooling in Residential Electricity Consumption
(REC) increased from around 2.5% to 6% during the same period. The use of AC equipment
is expected to increase dramatically, becoming one of the main drivers of global electricity
demand (International Energy Agency, 2018).

In France, as heat waves are more and more frequent and long, many households and
businesses are equipped with AC for more comfort (Lemonsu et al., 2015). In 2020, for the first
time, the number of equipment sold exceeded 800,000 units, whereas it had stabilized at around
350,000 per year previously. In 2020, 25% of individuals are equipped compared to 14% in 2016,
with disparities linked to the type of dwelling (31% of owners of individual houses compared
to 20% of households living in collective housing), socio-professional category (37% of liberal
professions, executives and higher intellectual professions against only 19% of households whose
reference person is unemployed or inactive) and place of residence (e.g. 47% of inhabitants of
the South-East and Corsica against only 11% in Brittany) (ADEME, CODA STRATEGIES,
2021).

1.2 Buildings decarbonization

1.2.1 Net-Zero Objectives

Globally, the transition towards net-zero energy buildings and carbon neutrality is an envi-
ronmental imperative and a crucial pivot towards sustainable living. The quest for net-zero
energy buildings is central to global efforts to combat climate change, in line with the Paris
Agreement and the Kyoto Protocol. Transitioning to net-zero energy buildings is crucial for
meeting the targets for reduction of greenhouse gas (GHG) emissions and promises significant
energy efficiency enhancements.

The Energy Performance of Buildings Directive (EPBD) (Council of European Union, 2018)
requires EU Member States to ensure that all new buildings meet near-zero energy standards by
the end of 2020. In addition, starting at the end of 2018, all new public buildings must comply
with these near-zero energy guidelines. Near-zero-emission buildings (NZEB) are characterized
by very high energy efficiency and their minimum energy requirements should come mainly
from renewable sources. At the end of 2021, the European Commission proposed an amendment
to the Directive, marking a significant evolution from the existing NZEB standards to Zero
Emission Buildings (ZEB). The revision aligns energy efficiency standards for new buildings with
the broader goal of achieving climate neutrality and follows the principle of "energy efficiency
first." Under the proposed revisions, a zero-emission building (ZEB) is described as a building
with superior energy performance, whose minimum energy needs are met entirely by renewable
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energy sources and which does not require burning fossil fuels to produce carbon emissions.
The proposed ZEB guidelines will become effective in 2027 for buildings occupied or owned by
public authorities and in 2030 for all new buildings.

1.2.2 Energy Assessment Tools

Efforts to enhance the energy efficiency of buildings in Europe have been ongoing, employing a
range of legislative, regulatory, and financial mechanisms ((Zuhaib et al., 2022); (Economidou
et al., 2020)). Among these mechanisms, Energy Performance Certificates (EPCs) have emerged
as an essential tool in driving progress ((Khazal and Sønstebø, 2020)). Initially introduced
by the EPBD in 2002, EPCs were designed to enhance transparency regarding the energy
performance of individual buildings and facilitate the transition to low-carbon residential sectors.
The widespread adoption of EPC regimes by all European Union countries and the United
Kingdom by 2015 attests to their growing significance ((Semple and Jenkins, 2020)). Typically,
an EPC provides a rating, ranging from A (most efficient) to G (least efficient), that conveys
information on the energy and climate performance of a home or building. At the Member
State level, the EPC develops standards adapted to national regulations and financial incentives,
as in the cases in France, the United Kingdom, the Netherlands, and Italy. France and the UK
use the EPC to create a new minimum energy performance for housing by banning rentals of
the lowest-performance housing. At the same time, the Netherlands applies a similar standard
for office buildings. The Netherlands also offers companies a financial incentive of tax reduction
to improve their energy performance, while Italy provides tax reduction for individuals who
improve their EPC.

1.2.3 Photovoltaic (PV) in the residential sector

Another key initiative to reduce carbon emissions from residential energy consumption is to
increase the share of distributed PV (e.g., rooftop PV). NZEB can be realized by generating
electricity on-site so that the net energy purchased from the grid is no longer needed (Babu
and Vyjayanthi, 2017; Singh and Verma, 2014). National and local policies have introduced
subsidies, such as feed-in tariffs, to promote distributed PV, such as rooftop PV, and it is
believed that rooftop PV has a bright market. IEA projects that the number of households
relying on solar PV will grow from 25 million today to more than 100 million by 2030 in the
Net-Zero Emissions by 2050 Scenario (NZE Scenario). At least 190 GW will be installed from
2022 each year and this number will continue to rise due to increased competitiveness of PV
and the growing appetite for clean energy sources (IEA, 2022).
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Figure 1.2 Timeline of thermal regulations in France with their brief objectives and application scope.

1.2.4 The case of France

France is actively pursuing a transition to more sustainable energy sources, underlined by Law
for the ecological transition and green growth1. This law underlines France’s commitment to
reducing greenhouse gas emissions by 40% by 2030 and divided by four by 2050. It also sets
ambitious targets for reducing fossil fuel consumption by 30% by 2030 and halving final energy
consumption by 2050 compared to 2012. These efforts align with the Paris Agreement’s goal
of limiting the global temperature increase to below 2°C, with further efforts towards 1.5°C.
The legislation is part of a broader strategy embodied in the European Green Deal (European
Commission, 2021) to achieve sustainability and decarbonization across the continent. Before
the EPC was enforced in France, the French government had already formulated the calculation
standard for the thermal performance of new housings to limit fossil consumption. The first
thermal building code (RT) was implemented in 1974 to reduce energy consumption by 25%
compared with older housings. This was followed by a new regulation in 1982 (RT1982), aimed
at reducing energy consumption by 20% compared with RT1974. Then came RT2005, to reduce
energy consumption by a further 15%. One of France’s goals for achieving the Paris Agreement
is to retrofit 500,000 existing homes per year because of the building sector’s huge potential for
energy savings. The retrofitting process starts with creating an EPC for all buildings, again
emphasizing the importance of the EPC.

The French government has also set ambitious targets to increase the share of renewable
energy in the national energy mix, aiming to achieve a 40% share of renewable energy by 2030.
Rooftop photovoltaics (PV) could play an important role in achieving this goal. For example,
the French Electricity Transmission System Operator (known as RTE) has proposed several
future energy scenarios, of which Scenario M1 emphasizes distributed PV (i.e., rooftop PV)
and predicts that 35 GW of residential rooftop PV will be installed in France by 2050 (about
half of all individual houses) (RTE, 2021). According to International Energy Agency (2023),
solar power will dominate future electricity generation technologies. By 2050, solar power will

1https://www.legifrance.gouv.fr/loda/id/JORFTEXT000031044385

https://www.legifrance.gouv.fr/loda/id/JORFTEXT000031044385
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account for 30% of global electricity generation, among which distributed rooftop PV power
generation is strongly promoted by subsidies in many countries (Avril et al., 2012; Nousdilis
et al., 2018; The European Commission, 2016).

In 2017, France implemented a "self-consumption package" which included several mea-
sures to facilitate the deployment of small-scale renewable energy systems and promote
self-consumption. This package included changes to the legal framework to facilitate self-
consumption, financial incentives such as tax credits and low-interest loans, and regulatory
measures such as simplifying administrative procedures for small PV installations (France,
2017).

1.3 Challenges and Delays in Achieving Net-Zero Objectives

Achieving the ambitious goals set by international agreements such as the Kyoto Protocol and
the Paris Agreement, as well as national strategies such as France’s, has proven to be a complex
and challenging task. Despite the global commitment to decarbonization and the transition
to net-zero energy buildings, significant delays and obstacles have emerged (Brian and John,
2016). These challenges highlight the mismatch between established targets and the current
pace of progress in residential decarbonization (Rockström et al., 2017).

The complexity of accurately forecasting energy consumption in net-zero buildings is a
significant challenge (Becchio et al., 2016; Kneifel and Webb, 2016; Mukherjee, 2011). This
is due to the need for sophisticated technologies and control strategies and the influence of
occupant behavior (Becchio et al., 2016; Mukherjee, 2011). Kneifel and Webb (2016) highlights
the prominent issues due to capability limits in physical simulation models during net-zero
building design and that accurate energy consumption forecasts are critical to meeting net-zero
targets. The development of nearly-zero energy buildings and the transition towards post-carbon
cities further emphasize the need for accurate energy consumption forecasting (Becchio et al.,
2016).

The path toward building decarbonization also suffers from a lack of consensus on definitions
and strategies (Kibert and Fard, 2012; Moghaddasi et al., 2021). Moghaddasi et al. (2021)
highlights this issue, noting how disagreement on fundamental principles can block the adoption
of effective policies and delay progress toward net-zero goals. Efforts to address this issue also
include differentiating between different building strategies in policy development Kibert and
Fard (2012). In addition, the concept of net-positive energy buildings has been introduced,
which emphasizes a systems-based approach to maximizing energy performance Cole and
Fedoruk (2014). These discussions highlight the need for a more comprehensive and unified
approach to defining and realizing the decarbonization of buildings.
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1.3.1 Energy performance gap

Some of the barriers to the implementation of the net-zero goal have already been studied.
For example, even though the EPC has had great success, its correct representation of energy
consumption faces many doubts. Many studies have been conducted to measure the difference
between the actual energy consumption and the theoretical demand calculated by EPC (Calì
et al., 2016; Cayre et al., 2011; Cozza et al., 2020a; Majcen et al., 2013; Raynaud, 2014). Such
difference is known as the Energy Performance Gap (EPG), commonly defined as the deviation
from the theoretical consumption expressed as a percentage. While there are different methods
to analyze the EPG, the definition of the difference in consumption relative to the theoretical
consumption is widely accepted.

𝐸𝑃𝐺 [%] = Actual energy consumption − Theoritical energy consumption (EPC)
Theoritical energy consumption (EPC) (1.1)

(Cozza et al., 2020a) analyzed a subsample of 1172 buildings from the Swiss national database
and found that conventional energy consumption calculation overestimates actual consumption,
and the gap increases with the EPC label. Similar results are also found in the Netherlands
(Majcen et al., 2013) and in Germany (Calì et al., 2016).

The reason why EPG has been widely studied is to check whether potential energy savings
are achieved after renovation works. check if the potential energy savings have been reached.
Cayre et al. (2011) studied EPC for 923 French residential buildings and indicated that the
actual renovation savings are less than expected since EPC tends to overestimate the potential
energy gains by 40%. This is similar to the case of Swiss, where an overestimation of 37% of
the achievable savings is found due to calculations based on EPC. All these studies share the
same finding that conventional calculations of EPC strongly overestimate the potential energy
savings after retrofit due to the overestimate of space heating consumption, especially in older
housings (Cozza et al., 2020a).

Improving energy efficiency in the building sector requires accurate energy assessment tools,
which was the original goal of constructing EPCs. However, it is important to acknowledge
the limitations of traditional EPCs, as many studies have highlighted the energy performance
gap resulting from the disparity between calculated and actual energy consumption. This
calls for a shift towards considering actual consumption data rather than relying solely on
theoretical models. Additionally, individual preferences are significant factors influencing the
energy performance gap. While individual analysis is important, adopting a more efficient tool
to provide a comprehensive assessment across a large country is necessary. This is particularly
crucial in the context of political proposals for building energy retrofitting and energy planning.
Developing an actual consumption diagnostic tool with broad applicability is essential to address
these challenges.
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1.4 Study Objectives and thesis structure

In France, achieving significant reductions in GHG emissions by 2050 will require an integrated
strategy that includes technical, economic, and social dimensions. The French experience
underscores the importance of addressing these challenges through multifaceted policies that
can navigate the complexities of energy consumption, energy efficiency efforts, and the broader
socioeconomic context (Charlier and Risch, 2012; Mathy et al., 2015; Égert, 2011). The IEA’s
France 2021 Energy Policy Review also highlights the complexity of France’s energy transition.
The report highlights that France’s energy transition goals are still behind schedule despite
important reforms. For example, France has yet to meet its 2020 energy efficiency and renewable
energy targets. The 2030 emissions targets adopted in 2015 remain unchanged, and a second
increase in the carbon budget in 2020 reduces the effort required by 2023 (International Energy
Agency, 2021).

The obstacles facing France and the broader international community in achieving net-zero
goals underscore the need to reassess current strategies and adopt more effective, integrated
approaches. We have seen all the efforts in public policy and work on decarbonization. However,
with the constant delays and postponed targets, the situation leads to the main research
question of this thesis that interests us:

How would residential energy consumption evolve in the context of climate policies?

This question aims to bridge the gap between ambitious environmental goals and real progress,
focusing on the role of the residential sector in the broader context of climate change mitigation
efforts. The study is organized into several steps to answer the research question. First, the
future of French residential energy consumption (especially electricity consumption) is projected
in the context of climate change. We have to preciously estimate the future consumption in
order to prepare for the decarbonization under climate change.

• Chapter 2 presents the methodology used to project future French residential electric-
ity consumption, considering climate change and air-conditioning (AC) scenarios and
quantifying their spatial variability. For this purpose, a linear temperature sensitivity
model fitted by annual observed electricity consumption data and historical temperature
is applied at an intra-regional scale. Future temperature-sensitive residential electricity
consumption is then computed by using the model to temperature projections under the
climate change pathway with a high emission scenario.

We want to evaluate the decarbonization of the residential sector once we finalize the projection
for residential electricity consumption. Two principle axes are studied: the first aims to study
retrofitting performance.

• Chapter 3 builds on previous research and presents a modified linear temperature sensi-
tivity model that includes a building age variable for estimating temperature-sensitive
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consumption for different building age groups within each administrative area. These
temperature-sensitive consumption estimates based on actual consumption are mainly
heating-based and can be compared with theoretical heating consumption calculated from
standard Energy Performance Certificates (EPCs). Our models can also predict future
retrofit gains.

The second axis of residential decarbonization is the installation of photovoltaic panels on roofs
to increase the share of renewable energy. Sustainable urban development is a serious challenge
for climate action, and the increase in photovoltaic generation is expected to help meet this
challenge. However, due to the variable nature of PV generation, its integration increases the
complexity of grid management and requires careful consideration of the energy balance.

• Chapter 4 focuses on the integration of distributed rooftop PV in the greater Paris
metropolis to balance energy supply and demand, emphasizing technical aspects such as
self-consumption rate (SCR) and self-sufficiency rate (SSR). Using real-time electricity
consumption profiles and solar generation data, the study explores the complementarity
of participants of different sizes to maximize SSR and SCR. The study concludes that
scaling up energy sharing in urban areas can optimize the use of PV generation and
contribute to a more sustainable and resilient urban energy system.

At the end, Chapter 5 gives the summary of the main results obtained during the thesis
work and the perspectives for future works.





Chapter 2

Assessing residential electricity
consumption under climate-change
and air-conditioning scenarios

This chapter is a recent article I published in the journal Climate Services (Tao et al., 2024a).
The chapter consists mainly of this article, with some details added and reorganized in the
methods section for better understanding. The full text of the article can be found in
Appendix A.
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2.1 Introduction

As presented in the introduction, with the energy transition law for green growth 2015, France
is committed to reducing its greenhouse gas emissions by 40% by 2030 and divided by four by
2050. It also plans to reduce its consumption of fossil fuels by 30% by 2030 and to halve its
final energy consumption in 2050 compared to 2012. Hence, the residential sector could be a
significant opportunity and challenge for policies to combat global warming. Indeed, the law
text emphasizes improving building energy efficiency, thermal renovation, and constructing
buildings with high energy performance.

Limiting electricity consumption in the residential sector through actions aimed at improving
buildings’ energy performance is a major environmental challenge for communities. However,
residential electricity consumption (REC) highly depends on socio-economic factors. It, therefore,
displays a very large spatial variability.

Electricity demand also depends on the outdoor temperature. Demand for cooling rises
once the temperature exceeds a cooling setpoint, while electricity demand for heating grows
once the temperature drops below a heating setpoint (Auffhammer and Mansur, 2014; Damm
et al., 2017; Kozarcanin et al., 2019; Petrick et al., 2010; Wenz et al., 2017). As a result, a
theoretical U-shaped link exists between electricity demand and temperature. Choices made by
individuals to utilize heating and cooling systems to maintain a comfortable temperature in
their residences directly impact electricity demand (Emenekwe and Emodi, 2022; Emodi et al.,
2018). Substantiated correlations between consumption and climate and weather conditions
(Meng et al., 2020), demographic and economic factors (Bettignies et al., 2019) and urban
and architectural morphological characteristics (Chen et al., 2020b; You and Kim, 2018)
cause the large spatial variability in residential energy demand. Climate, socio-economic and
morphological characteristics have proven explanatory variables for energy demand and its
spatial pattern (Chen et al., 2020a; Kennedy et al., 2015; Wiedenhofer et al., 2013).

The link between temperature and electricity demand has been studied using various
models (e.g. Emodi et al., 2018; Narayan et al., 2007). One approach is to model this nonlinear
relationship by a smooth but nonlinear function of the temperature. For instance, Moral-Carcedo
and Vicéns-Otero (2005) and Damm et al. (2017) used a Logistic Smooth Transition (LSTR)
function to model the electricity demand response to temperature variations in European
countries. The advantage of such a model is that it adequately captures the rather smooth
response of electricity demand summed over a large domain to temperature variations. On the
other hand, it is less straightforward to interpret the physical meaning of the parameters of
such a model. Another approach is to model the electricity demand as a linear combination of
nonlinear functions of the temperature (making it a generalized linear model). For instance,
Sailor and Muñoz (1997) studied the monthly electricity and gas consumption for states in the
US using a linear model with degree-day (DD) inputs in addition to wind speed and relative
humidity.
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However, most previous studies of future consumption projection only focus on continental
and national scales while not considering the sub-national disparity of temperature changes and
non-climatic factors listed above. We aim to fill this gap by examining whether the national
results proposed by these earlier studies remain consistent at smaller scales, given that changes
in consumption and geographical variations in adaptation can lead to inequalities. We provide
valuable information on the local impacts of climate change and building cooling strategies on
residential energy demand, which can aid local climate and energy planning and decision-making.
Specifically, we focus on the sub-regional variability of changes in residential AC requirements
for cooling needs in the context of climate change. To this end, we use a modified temperature
sensitivity model to project future REC at a fine scale. The smallest geographic scale used in
this study is the so-called Ilots Regroupés pour l’Information Statistical (IRIS), here referred to
as cells, which divides the French territory into a collection of about 2000 inhabitants per cell.
These cells are defined by respecting geographic and demographic criteria and have recognizable
contours without ambiguity and stability over time. France has a total of 50,800 cells (IGN,
2009). In metropolitan France, these cells are distributed among 12 administrative regions
represented in Fig. 2.1. This model is designed to distinguish between different aspects of
electricity use using data from all residential buildings, irrespective of their heating or cooling
equipment. The projection of future residential electricity consumption is based on climate
change pathway RCP8.5, using downscaled CMIP5 climate simulations carried out as part of
EURO-CORDEX (Jacob et al., 2014) and MEC-CORDEX (Ruti et al., 2016), while considering
different scenarios of AC use for cooling - full generalization or saturation.

After the introduction in Section 2.1, the details of the model can be found in Section 2.2,
with information about the temperature and REC data that are applied to fit the model as
inputs for the case of France and the future temperature projection and AC use scenarios.
REC projection results and discussion are presented in Section 2.3, and the conclusion and
policy implications are given in Section 2.4. The global flow chart of the total work is shown in
Fig. 2.2.



16
Assessing residential electricity consumption under climate-change and air-conditioning

scenarios

Figure 2.1 Map of 12 administrative regions of metropolitan France, with thicker white lines representing
94 departments and thinner white lines representing more than 48000 IRIS cells. (Plate carrée projection,
same projection used in the presented study)
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2.2 Methodology and data

In this section, we explain how the REC is projected at the sub-communal scale by applying a
temperature sensitivity model trained on historical data to climate projections. We also present
the data for the application to France and define the scenarios used as projections of AC use
with widespread adoption or saturation cases.

2.2.1 Temperature sensitivity statistical model

The relationship between the surface air temperature and the energy consumption over a domain
is what we call the temperature sensitivity of the consumption. It has been modeled in various
ways as presented in the previous section. The advantages of the DD approach are that it is
simple to implement as a linear regression model with standard machine learning software and
that it is straightforward to interpret the coefficients of the models as temperature sensitivities.
For these reasons, we follow the DD approach in this study. The heating degree-days (HDD)
(resp. the cooling degree-days (CDD)) for a domain is a positive quantity computed from data
for the (weighted-) average temperature of the domain. It is given by the sum over a period of
the degrees below (resp. above) a certain setpoint temperature per timestep. Here, the timestep
𝑑 is a day and the period 𝑦 a year between 2011 and 2018 (included), while different domains,
or cells, 𝑖 are considered, each corresponding to a different IRIS. The HDD and CDD are thus
defined here as (Moral-Carcedo and Vicéns-Otero, 2005),

HDD𝑖 (𝑦) :=
𝑁𝑦∑︁
𝑑=1

max
(
0;𝑇𝐻

𝑖 − 𝑇𝑖 (𝑦, 𝑑)
)

CDD𝑖 (𝑦) :=
𝑁𝑦∑︁
𝑑=1

max
(
0;𝑇𝑖 (𝑦, 𝑑) − 𝑇𝐶

𝑖

)
,

(2.1)

where 𝑇𝑖 (𝑦, 𝑑) is the daily-mean surface air temperature for a day 𝑑 of year 𝑦 averaged over cell
𝑖, 𝑇𝐻

𝑖
and 𝑇𝐶

𝑖
with 𝑇𝐶

𝑖
≥ 𝑇𝐻

𝑖
are respectively the heating and cooling setpoints for cell 𝑖, and

𝑁𝑦 (365 or 366) is the number of days in year 𝑦. The heating and cooling setpoints 𝑇𝐻
𝑖

and 𝑇𝐶
𝑖

are parameters to be estimated.
The REC scales with the living area in each cell. To leave out this factor, we divide the REC

by the living area, giving the normalized annual REC 𝐸𝑖 (𝑦) for cell 𝑖 and year 𝑦 in kWh/m2.
For a given scenario (see Section 2.2.3), the general temperature sensitivity model is then
expressed as,

𝐸𝑖 (𝑦) = 𝛽H
𝑖 (𝑦) HDD𝑖 (𝑦) + 𝐵𝑖 𝑁𝑦 + 𝛽C

𝑖 (𝑦) CDD𝑖 (𝑦) + 𝜖𝑖 (𝑦)
= 𝛼H

𝑖 𝜂El
𝑖 (𝑦) HDD𝑖 (𝑦)

+ 𝐵𝑖 𝑁𝑦

+ 𝛼C
𝑖 𝜂AC

𝑖 (𝑦) CDD𝑖 (𝑦) + 𝜖𝑖 (𝑦).

(2.2)



2.2 Methodology and data 19

.

Table 2.1 Summary of variables and their physical meanings presented in Eq. (2.2).

Variable Meaning
𝐸𝑖 (𝑦) Annual REC normalized by surface for cell 𝑖 and year 𝑦 (kWh/m2)
𝐵𝑖 The basic daily REC for cell 𝑖 (kWh/m2)
𝑁𝑦 The number of days in a year 𝑦 (365 or 366)
𝛼H
𝑖

Heating temperature sensitivity for cell 𝑖 (kWh/(DD m2))
𝛼C
𝑖

Cooling temperature sensitivity for cell 𝑖 and year (kWh/(DD m2))
𝜂El
𝑖
(𝑦) Rate of electric heating for cell 𝑖 and year 𝑦 (%)

𝜂AC
𝑖

(𝑦) Rate of AC adoption for cell 𝑖 and year 𝑦 (%)

𝛽H
𝑖
(𝑦) Coefficient measuring the increase in yearly REC

per HDD and unit of area for cell 𝑖 and year 𝑦 (kWh/(DD m2))

𝛽C
𝑖
(𝑦) Coefficient measuring the increase in yearly REC

per CDD and unit of area for cell 𝑖 and year 𝑦 (kWh/(DD m2))

The first equation in (2.2) relates 𝐸𝑖 (𝑦) to a heating, a basic, and a cooling REC (from
left to right). The basic daily REC 𝐵𝑖 (kWh/m2) is part of the REC that does not depend
on temperature. It determines the REC fully when 𝑇𝐻

𝑖
≤ 𝑇𝑖 (𝑦, 𝑑) ≤ 𝑇𝐶

𝑖
. In this study, we

focus on the effect of climate change and the rate of air-conditioning (AC) adoption on the
REC. Factors affecting the basic REC are thus assumed to remain fixed so that 𝐵𝑖 does not
depend on time. The temperature-sensitive RECs for a given year are proportional to DD. The
coefficients of proportionality 𝛽H

𝑖
(𝑦) and 𝛽C

𝑖
(𝑦) (kWh/(DD m2)) measure the increase in yearly

REC per DD and unit of area in cell 𝑖. Each cell includes residential buildings with and without
electric appliances. Thus, other things remain the same, lowering the fraction 𝜂El

𝑖
of residential

buildings in cell 𝑖 with electric heating lowers 𝛽H
𝑖

. To estimate the temperature-sensitive
electric consumption restricted to residential buildings with electric heating, 𝛽H

𝑖
is developed

as the product of 𝜂El
𝑖

with the heating temperature sensitivity 𝛼H
𝑖

(kWh/(DD m2)) of cell 𝑖.
Factors affecting the heating temperature sensitivity (consumer behavior, thermal efficiency of
residential buildings, etc.) are also assumed to remain fixed so that 𝛼H

𝑖
is independent of time.

However, the rate of electric heating 𝜂El
𝑖

may vary in time. Yet, the data used in this study
only provides estimates of 𝜂El

𝑖
for the year 2018 (Section 2.2.2.1). We therefore assume that

this rate is fixed to that of 2018, 𝜂El
𝑖
(𝑦) = 𝜂El

𝑖
(2018) := 𝜂El

𝑖
, and so 𝛽H

𝑖
(𝑦) = 𝛽H

𝑖
(2018), for all

years and all cells. This implies that an Ordinary Least-Squares (OLS) regression with 𝛽H
𝑖

as coefficient and HDD𝑖 (𝑦) as input is equivalent to an OLS regression with 𝛼H
𝑖

as coefficient
and 𝜂El

𝑖
HDD𝑖 (𝑦) as input. Similarly, 𝛽C

𝑖
is developed as the product of the fraction 𝜂AC

𝑖
of

residential buildings in cell 𝑖 equipped with AC with the cooling temperature sensitivity 𝛼C
𝑖

(kWh/(DD m2)) of cell 𝑖. Note, however, that while all residential buildings include some form
of heating so that 𝜂El

𝑖
reflects the choice of heating system, all AC systems are electric, and

𝜂AC
𝑖

gives the adoption rate of AC equipment. Regarding 𝜂AC
𝑖

, as presented in the previous
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section, the AC adoption rate has increased during the past several years and hence depends
on the year during the training (Section 2.2.2.4). For future projection, both 𝛼C

𝑖
and 𝜂AC

𝑖

vary with the choice of AC use scenario, but they are assumed constant during a given period
(Section 2.2.3.2).

In summary, all the parameters with their physical meanings are given in Table 2.1. For all
pairs (𝑖, 𝑦) of cells 𝑖 and years 𝑦, the model inputs are

• 𝜂El
𝑖
(𝑦) HDD𝑖 (𝑦) and

• 𝜂AC
𝑖

(𝑦) CDD𝑖 (𝑦),

where HDD𝑖 (𝑦) and CDD𝑖 (𝑦) depend on the daily-mean temperatures 𝑇𝑖 (𝑦, 𝑑) for all days 𝑑 in
𝑦. The model coefficients are the temperature sensitivities 𝛼H

𝑖
and 𝛼C

𝑖
and the hyperparameters

are 𝑇𝐻
𝑖

and 𝑇𝐶
𝑖

. The total number of cells is assumed to remain fixed. In the following sections,
we present how this model is trained and applied to climate and AC projections to project the
REC.

2.2.2 Training the temperature sensitivity model for the French REC

To apply the temperature sensitivity model to the case of France at the finest spatial scales,
one needs (i) pairs of input and target historical data to train and validate the model and (ii)
input data from 21𝑠𝑡 century temperature projections on which to apply the trained model to
project the REC. We present the training and validation data set in this subsection while the
presentation of the 21𝑠𝑡 century temperature projections is left for Section 2.2.3.

We thus need data for the inputs of the model: the yearly DD, electric-heating rates, and
AC adoption rates. The former is computed from daily surface air temperatures and heating
and cooling setpoints. The target 𝐸𝑖 (𝑦) is computed from the cell’s REC and living surface.
Several of these variables used to compute both the inputs and the targets are taken from a
dataset provided by the French distribution system operator, Enedis. We first present this
dataset and then describe how it is crossed with additional data sources to produce the input
and the target training data. The longest training period that the following datasets permit
ranges from 2011 to 2018 (included), which is the training period we use.

2.2.2.1 Energy and building characteristics per cell

The Enedis dataset is accessed via their website (Enedis, 2020) and includes the following
variables that are relevant to this study:

• longitude and latitude coordinates of the cell centroids used to assign meteorological
stations to cells in Section 2.2.2.2;

• yearly REC data per cell from 2011 to 2018 (included) used as the target in Section 2.2.2.5;

• electric-heating rates 𝜂El
𝑖

for 2018;
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• fraction of cell buildings with surfaces in different intervals used to compute the target in
Section 2.2.2.5;

• Enedis estimates of 𝛽H using a linear model based on DD akin to the model (2.2) (see
below);

• yearly HDDs used in this Enedis model since 2018, but only at the department level, thus
not satisfying our needs;

• heating setpoints used to estimate the HDDs used here as described Section 2.2.2.3;

The Enedis estimates of 𝛽H rely on consumption data at higher temporal resolutions (semi-
annual, monthly, or daily) than the publicly available data. They thus can fit their temperature
sensitivity model at the highest temporal resolution and average over each cell the estimated
𝛽H for the different delivery points in the cell. However, the 𝛽H of a cell is provided only if the
estimate is considered sufficiently precise, i.e. if a minimum of 500 delivery points is available
in the cell. As a result, around 50 % of the cells are missing, whereas the model (2.2) can be
applied to the annual consumption data to provide estimates of the temperature sensitivities
for all cells in France.

2.2.2.2 Surface temperatures for training

To train the model (2.2), we use E-OBS version 20.0 (ECA&D, 2020) of the European Climate
Assessment & Data (Cornes et al., 2018; Klok and Klein Tank, 2009) (ECA&D for continental
gridded surface air temperature (Haylock et al., 2008). This gridded dataset is available at
daily timesteps and a spatial resolution of 0.1° over Europe and the Mediterranean and spans
from 1950 to the present. Among the available daily statistics, only the daily mean is retained
here. Data observations are aggregated from several weather stations and gridded using an
interpolation procedure combining spline interpolation and kriging. This dataset is a reference
dataset for regional climate studies (e.g. Haylock and Goodess, 2004; Raymond et al., 2016,
2018; Santos et al., 2007; Stefanon et al., 2012) and the evaluation of regional climate models
(e.g. Drobinski et al., 2018; Flaounas et al., 2013a; Frei et al., 2003; Kjellström et al., 2010;
Raymond et al., 2018; Räisänen et al., 2004; Stéfanon et al., 2014; Vaittinada Ayar et al., 2016).
E-OBS includes some errors and uncertainties (changes in station locations or can induce those
interpolation uncertainties, for example). Flaounas et al. (2013b) assessed the E-OBS gridded
dataset with temperatures displaying relatively small biases.

The temperature sensitivity model (2.2) requires temperatures for each cell to compute the
HDD and CDD, but the cells (i.e. the IRIS in the case of France) do not correspond to the
E-OBS grid points. We thus need to adjust E-OBS gridded temperatures to the cells over the
French domain. This is done here using a nearest-neighbor interpolation using the Euclidean
distance between temperature grid points and the cell centroids from Enedis (Section 2.2.2.1)
in a plate carrée projected coordinate system. In order to match the target REC data from
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Enedis (Section 2.2.2.1), only the E-OBS data is kept from 2011 to 2018 (included) is kept as
training input.

Table 2.2 Heating setpoints 𝑇𝐻
𝑟 for all regions of metropolitan France computed according to Sec-

tion 2.2.2.3.

Region name 𝑇𝐻
𝑟 [◦C]

Auvergne-Rhône-Alpes 16.0
Bourgogne-Franche-Comté 16.3

Brittany 14.8
Centre-Val-Loire 15.0

Grand-Est 16.6
Hauts-de-France 16.0

Ile-de-France 15.8
Normandie 15.0

Nouvelle-Aquiaine 15.3
Occitanie 16.4

Provance-Alpes-Côte d’Azur (PACA) 17.4
Pays-de-la-Loire 15.0

2.2.2.3 Heating and cooling setpoints estimates

A couple of temperature setpoints 𝑇𝐻
𝑖

and 𝑇𝐶
𝑖

are required for each cell 𝑖 in order to compute
the HDDs and the CDDs in the temperature sensitivity model (2.2). The estimation of the
temperature setpoints is based on those available in the Enedis dataset (Section 2.2.2.1) and
which Enedis uses to compute the HDDs in their own temperature sensitivity model. In our
case, the model is simplified by identifying 𝑇𝐻

𝑖
for each cell 𝑖 in the given administrative region

𝑟 of France with the average 𝑇𝐻
𝑟 of all the values of 𝑇𝐻 provided by Enedis for locations in 𝑟.

The heating setpoint is thus constant over each region, i.e. 𝑇𝐻
𝑖

= 𝑇𝐻
𝑟 for all cells 𝑖 in 𝑟, where 𝑟

runs over all the administrative regions of France. The resulting 𝑇𝐻
𝑟 estimates are shown in

Table 2.2.
On the other hand, no cooling setpoints are provided by Enedis. Instead, we fix 𝑇𝐶

𝑖
for all

the cells in France to the value of 21 ◦C used by EUROSTAT and International Energy Agency.
Another approach to choose 𝑇𝐻

𝑖
and 𝑇𝐶

𝑖
could be to assume that these temperature setpoints

are constant inside each region and to fit them as hyperparameters via a grid search. Doing so, it
is found that the prediction error estimated via cross-validation is only marginally improved and
that the main conclusions of this study remain unchanged. Considering the higher complexity
of this approach, the methodology presented in the previous paragraphs of this subsection is
preferred here.
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Table 2.3 AC adoption rates (%) for 2011 and 2018.

Region name 𝜂AC
2011 𝜂AC

2018

Auvergne-Rhône-Alpes 4.3 17.4
Bourgogne-Franche-Comté 3.4 13.9

Brittany 2.5 10.5
Centre-Val-Loire 4.0 16.5

Grand-Est 3.4 13.9
Hauts-de-France 2.5 10.5

Ile-de-France 4.5 18.3
Normandie 2.7 11.3

Nouvelle-Aquiaine 4.3 17.4
Occitanie 5.6 22.6

PACA 10.5 41.7
Pays-de-la-Loire 2.9 12.2

2.2.2.4 AC adoption rates for training

In addition to surface temperatures, the model (2.2) requires as input AC adoption rates 𝜂AC
𝑖

for
each cell in France. However, this information is not available at such a small geographical scale.
Based on the evolution of the national AC adoption rate (ADEME, CODA STRATEGIES,
2021) and the regional distribution data in 2019 (Daguenet et al., 2021), we estimated the
regional AC adoption rates at the regional level between 2011 and 2020 and assumed that all
cells inside one administration region share the same adoption rate, i.e. 𝜂AC

𝑖
(𝑦)=𝜂AC

𝑟 (𝑦). This
progression in AC adoption rate during the training period is assumed to be geometric. We
calculated the average ratio between different years, which indicates a growth of 20% between two
consecutive years. This AC adoption rate progression ratio is assumed constant during training,
i.e. 𝜂AC

𝑖
(𝑦+1)

𝜂AC
𝑖

(𝑦) =constant=120%. The population-weighted national average is then compared
to the reference used in ADEME, CODA STRATEGIES (2021). CODA STRATEGIES uses
data from UNICLIMA (the professional union bringing together manufacturers and marketers
of AC equipment in France) to estimate the national AC adoption rate from 2004 until 2020,
including all types of AC equipment (mobile, heat pump). The national AC rates estimated by
CODA STRATEGIES are published by ADEME (the French Agency for Ecological Transition)
and are consistent with INSEE (for 2017) and EDF (for 2016 and 2019) data. At a finer scale,
a study from Ecole des Ponts (Daguenet et al., 2021) calculated the regional AC adoption rate
for 2019 based on data from Likibu (a house rental search engine) for over 800 households. The
national population-weighted AC rate is found to be 22% for 2019, which is consistent with the
EDF study and CODA STRATEGIES dataset.

These studies show that the cooling equipment market increase is not constant and has
accelerated in recent years (ADEME, CODA STRATEGIES, 2021), resulting in a more geometric
overall progression of about 20% per year at the country scale. From these studies, we have
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regional rates for 2019 only and national rates from 2016 to 2020 from which regional rates from
2011 to 2018 are deduced assuming a spatially homogeneous progression rate. Once estimated,
the national rate "population-weighted national average" is deduced from the estimate of the
regional rate for the different years and compared to the reference from ADEME (EDF and
INSEE). This reconstruction is consistent for 2016–2020. The estimated rate for the years 2011
and 2018 are shown in Table 2.3 with in between a geometric evolution. Errors due to this
factor are not studied but should be kept in mind as a limit due to the accessibility of data.

2.2.2.5 Living area to standardize REC

The model (2.2) is trained using as targets the yearly REC data from the Enedis dataset
(Section 2.2.2.1). However, we are interested in the consumption per unit of area. Moreover, the
number of buildings per cell — also provided by Enedis — varies from year to year. Thus, we need
to normalize each cell’s REC by the corresponding total living surface. Unfortunately, Enedis
does not provide the total living surface but the fraction 𝜏𝑘

𝑖
of buildings in cell 𝑖 for which the

living surface belongs to an interval 𝐼𝑘 in {(0, 30), (30, 40), (40, 60), (60, 80), (80, 100), (100, +∞)}
(m2). Owing to the data constraints, we cannot get more specific information at the building
level and can only present the distribution of intervals at the IRIS level. Thus, for each interval,
we approximate the living surface of buildings with a surface in 𝐼𝑘 by the center 𝐶𝑘 (m2) of
the interval, except for the first and last intervals. Due to the legal limitations on small living
surfaces, we take the end value of 30 m2 for the first interval rather than the median value.
For the last interval, we take the finite end of the interval 100 m2, primarily because we lack
further information on the distribution within the interval and also to counterbalance any
potential overestimation for the first interval. It’s important to note that these assumptions
were made out of necessity due to the data limitations, and the accuracy of these estimates
could potentially be improved with data availability at the building level. Then, the average
living surface is estimated from the 𝜏𝑘

𝑖
provided by Enedis with the following formula:

𝑆𝑖 =
∑︁
𝑘

𝜏𝑘𝑖 𝐶𝑘 (m2). (2.3)

2.2.2.6 Trained temperature sensitivities

As an intermediate methodological result, the maps of the estimated 𝛼H and 𝛼C and corre-
sponding 𝛽H and 𝛽C for cells with statistically significant coefficients at the 5% significance level
(60% of all cells) are shown in the left and middle panels of Fig. 2.3. The OLS regression was
used with a constraint on coefficients to be positive. Regression methods with regularization
(Lasso and Ridge) were also tested, but this led to an increase in the test R2 score of less than
10%, so the OLS was preferred to limit the number of parameters of the model. All the test
scores are estimated using k-fold cross-validation with one fold per year of data (8 folds in
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total). The test R2 score averaged over all cells is about 0.68 with a 25% quartile of 0.56 and a
75% quartile of 0.79.

(a) (b) (c)

Figure 2.4 Temperature-sensitive REC per year averaged over departments estimated from (a) the Enedis
𝛽H estimates for 2018 (for 50% of the cells only, Section 2.2.2.1), (b) the model (2.2) applied to the E-OBS
temperatures for 2018 and (c) the model (2.2) applied to the CORDEX historical temperatures over the
1975–2005 period and averaged over the period and over the climate-model simulations (Section 2.2.3.1).

Figure 2.5 Total temperature-sensitive REC reference aggregated at the department level, estimated
with our model using the temperature of 1975–2005 from CORDEX simulations on all valid cells (60%
of the cells).

Fig. 2.4 shows the temperature-sensitive REC aggregating over the 12 administrative regions
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the values at the IRIS where such estimate by Enedis exists from Enedis processing (a), by
applying the model (2.2) to temperatures from E-OBS dataset (b) and historical CORDEX
simulations (c). Visually, the three show a very similar pattern. Fig. 2.4a and Fig. 2.4b
illustrate the quality of the model prediction and quantitatively a R2 score of 0.77 is found
between the common cells. Fig. 2.4c shows how historical climate simulations can satisfactorily
reproduce the temperature-sensitive REC for climate projection studies which rely on the
climate projections produced in a consistent way with the historical climate simulations.

However, in Section 2.3, the temperature-sensitive REC based on the CORDEX regional
climate simulations is estimated over a larger number of IRIS than those of the Enedis subset.
At the IRIS kept in the dataset, the estimates of 𝛼H and 𝛼C passed a significance test. The
reference REC for the period 1975–2005 used to calculate the change of temperature-sensitive
REC is shown in Fig. 2.5.

Figure 2.6 Comparison between linear regression methods of R2 score distribution for all valid IRIS.

During the present study, for each cell we have 8 years of annual REC as inputs to train
the model described in Eq. (2.2). The Leave-One-Out cross-validation method has been used
to fit the model and to validate the model’s performance. Each time we extract one year out as
test and train the model with the other 7 years’ data and get the prediction using the one test
data. And this procedure repeats 8 times. After that, the 8 predicted values with the test data
are compared to their initial values, which gives us a test R2 score. Such test is done for all the
cells and a significance test is also performed to get the valid cells. A comparison of different
linear regression models has been made with this test method and the distribution of related
test R2 scores are shown in Fig. 2.6.

2.2.3 Projection data and scenarios definitions

As mentioned in Section 2.2.1, the basic consumption, represented by 𝐵 in (2.2), is assumed to
be stationary all the time. As far as the heating REC is concerned, we assume that 𝛼H, 𝑇𝐻

and 𝜂El are also stationary so that only the HDDs change in response to temperature changes.
Regarding the cooling REC, we follow a similar approach as for the heating REC, but 𝜂AC and
𝛼C also change in some AC scenarios (𝑇𝐶 is always stationary). We thus need to associate
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Info box: Enedis temperature sensitivities.

Enedis provides annual electricity consumption data at different geographical scales such
as IRIS, Municipality, Department, and Region. Enedis also provides their estimated
electrical temperature sensitivity by sector of activity for these geographical scales. These
datasets can be downloaded free from their website in Excel format Enedis (2018). In
order to avoid bias linked to seasonal or weekly variations in consumption, Enedis uses
an estimation methodology called "Estimation of gradients by difference," which explains
a variation in consumption by a variation in temperature. Thus, Enedis estimates the
following linear relationship using the least-squares method (OLS):

ΔConsumption = 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 ∗ ΔHDD (2.4)

where the gradient is the estimated temperature sensitivity for each delivery point and
the calculation of the difference in consumption depends on the type of the statement
for the delivery point. Three different types of statements exist semi-annual, monthly,
and daily. For delivery points where the majority statement is not daily, the statement
is converted to average daily consumption by dividing the total number of days for the
specific period. The temperature sensitivity at the IRIS scale is simply the sum of all
the temperature sensitivity at delivery points of the IRIS. However, the data related to
the temperature sensitivity estimated by Enedis are only published for an IRIS when
the estimate is considered sufficiently precise. In order to guarantee precision, Enedis
sets a minimum number of delivery points per IRIS of 500. Hence, the temperature
sensitivity information is unavailable for all the IRIS by Enedis. Around two third of the
IRIS lack such information. During the comparison of the results of our model and the
temperature sensitivity parameters given by Enedis, all the IRIS with missing values will
be eliminated. However, while the projection of future electricity consumption, estimated
coefficients with our model for all the IRIS will be conserved once the training score is
positive. It is crucial to notice that the daily datasets that Enedis uses as input for their
temperature sensitivity model are not available for our study. In many countries, only
the annual energy consumption is captured, and the daily data are not accessible.
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each cell with a temperature projection for a given climate change pathway, as well as with
projections of 𝜂AC and of 𝛼C.

2.2.3.1 Temperature projection data under a climate change pathway

In this study, the most severe climate change pathway, the Representative Concentration
Pathways (RCP) 8.5, is selected. The corresponding bias-corrected daily-mean temperature
change is obtained from multiple regional climate models from the CORDEX program. In
this study, these projections are completed with the corresponding historical experiments that
serve as a reference to measure the effect of climate change. Due to modeling uncertainty, the
projected statistics of the atmosphere may vary significantly with the choice of Regional Climate
Model (RCM) and of driving Global Climate Model (GCM). Hence, multi-model ensembles are
commonly used in climate studies to provide a partial estimation of the modeling error. This is
why the five model combinations listed in Table 2.4 are used in this study. These simulations are
accessed via the Copernicus Climate Change Service database (https://climate.copernicus.eu/).

Table 2.4 Institute, GCM name and RCP name for the 5 climate change simulations used in this study.

No. Institute Driving GCM model RCM model

1 CNRM CERFACS-CM5 ARPEGE51
2 CNRM CERFACS-CM5 RCA4
3 IPSL CM5A-MR RCA4
4 IPSL CM5A-MR WRF331F
5 ICHEC EC-EARTH RACM022E

To associate a cell to a climate-model simulation, the same methodology as for the tem-
perature observations used for training is followed (Section 2.2.2.2). Three climate-simulation
periods of 30 years are considered, which are distinct from the training period defined in
Section 2.2.2: a historical period from 1975 to 2005 (excluded) — used as reference — and two
projection periods, one from 2025 to 2055 and one from 2070 to 2100. Results associated with
the latter are respectively referred to as CC2040 and CC2085 (based on the central year of the
period).

As intermediate methodological results, mean historical HDD and CDDs, as well as the
corresponding projected changes, are represented in Fig. 2.7. One can see that the temperature
increase projected over France leads to a general decrease in the HDDs (top panels) and to a
general increase in the CDDs. These changes are however not homogeneous since the decrease
in the HDDs is strongest in the southern and eastern parts of France, while the increase in the
CDDs is largest in the southern part of France.

https://climate.copernicus.eu/
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2.2.3.2 AC use scenarios

In the present framework, two factors are sensitive to the evolution of AC use during the 21st
century: the AC adoption rate 𝜂AC

𝑖
, and the switch of a cell from an 𝛼C

𝑖
of zero to a positive

𝛼C
𝑖

, for each cell 𝑖. While the former reflects the evolution of AC use within a cell, the latter
corresponds to a conversion of a cell from having no AC user at all to having some AC users.
Here, we do not attempt to make plausible projections of these factors based on current signals.
Instead, as summarized in Table 2.5 and explained below, two extreme cases are considered for
both factors and indifferently for the 2025–2055 and the 2070–2100 periods.

Table 2.5 Definition of the four AC scenarios in terms of AC adoption rate and 𝛼C spreading strategy.
XXXX is either 2040 or 2085, corresponding to the central year of the climate change projection window
considered.

Name Definition
𝜂AC Gradual Spreading of 𝛼C

CCXXXX-AC18-NOGS Same as in 2018 No
CCXXXX-AC18-GS Same as in 2018 Yes
CCXXXX-ACall-NOGS 100% No
CCXXXX-ACall-GS 100% Yes

Regarding 𝜂AC, the minimal scenario is that 𝜂AC remains fixed to its 2018 cell values
(Section 2.2.2.4), corresponding to a situation in which AC installation no longer progresses.
The maximal scenario is that 𝜂AC has reached 100% in every cell before the beginning of the
projection period and remains fixed over the period, corresponding to a situation in which all
households are equipped with AC (regardless of the technology).

Regarding 𝛼C, the minimal scenario is that cells with no cooling temperature sensitivity
remain so. The maximal scenario is that all cells become cooling-sensitive. In this case,
further assumptions are needed to determine 𝛼C for these cells that were not cooling-sensitive
historically. Here, we assume that 𝛼C for these cells is the result of interpolation from the
𝛼C values of the surrounding cells with a positive 𝛼C. A nearest-neighbor interpolation is
performed for a given number of neighbors and for the Euclidean distance in the plate carrée
projection.

With the historical REC data, around 60% of the cells are estimated with zero current
cooling temperature sensitivity (i.e. 𝛼C

𝑖
= 0). As described in Section 2.2.3.2, so-called

Gradual Spreading is our way of estimating future 𝛼C based on an interpolation assumption of
actual values, especially for cells without current 𝛼C. For cells with positive non-null cooling
temperature sensitivity, the future cooling temperature sensitivity is assumed to be consistent
with the current value (i.e. (𝛼C

𝑖
)𝐺𝑆 = 𝛼C

𝑖
> 0), while for other cells without current 𝛼C, a
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nearest-neighbor interpolation is performed with the following formula:

(𝛼C
𝑖 )𝐺𝑆 =

1
𝐽

𝐽−1∑︁
𝑗=0

𝛼C
𝑗 .

For a studied cell 𝑖, all the cells with current non-null sensitivity 𝛼C
𝑗
> 0 are ordered by the

Euclidean distance with the given cell in the plate carrée projection, and J is the number of
nearest cells taken into account for the calculation of the average.

This assumption has been tested with the group of cells where 𝛼C are estimated non-null
in the first place. During the test, 60% of these cells are selected randomly to become zero,
conforming to the actual situation, and are given an estimation with the Gradual Spreading
method. Then the estimated values with Gradual Spreading are compared with the model’s
initial estimation 𝛼C. This process repeats 30 times for each 𝐽, and the average test R2 score
as a function of the number of neighbors 𝐽 is given in Fig. 2.8. It can be seen clearly that there
exists a local similarity: the test R2 score is larger when 𝐽 ∈ [10, 60]. In our study, the optimal
value for 𝐽 is 25. Despite selecting the optimal number of cells per cluster based on evidence of
local similarity through a pre-test, the resulting prediction R2 score remains low (below 0.23).
This uncertainty in the future assumption of the coefficient 𝛼C remains a limitation of the
scenario study with the Gradual Spreading approach.

We refer to this scenario as the gradual spreading of 𝛼C, and the resulting 𝛼C estimates are
shown in Fig. 2.3c. The gradual spreading scenario mimics a "do like my neighbor" behavior.

2.2.4 Quantifying the uncertainty in the projected REC change

For a given cell 𝑖, a model 𝑚 (Table 2.4) and a scenario 𝑠 (Table 2.5), we define the absolute
change in REC, Δ𝐸

𝑚,𝑠

𝑖 , as the difference (Δ) at 𝑖 between the REC averaged (·) over the
CORDEX historical period and the REC averaged over one of the two CORDEX projection
periods, estimated with the model 𝑚 simulations for the scenario 𝑠. In addition, the relative
REC change is defined as the absolute REC change divided by the REC averaged over the
CORDEX historical period. Given the stationarity assumptions (Section 2.2.3), the absolute
REC change is given by

Δ𝐸
𝑚,𝑠

𝑖 = 𝛼H
𝑖 𝜂El

𝑖 Δ

[
HDD𝑚,𝑠

𝑖

]
+ Δ

[(
𝛼C
𝑖 𝜂AC

𝑖

)𝑠
CDD𝑚,𝑠

𝑖

]
.

(2.5)

In the AC18-NOGS scenario, 𝛼C and 𝜂AC are also stationary, so that

Δ𝐸
𝑚,𝑠

𝑖 = 𝛼H
𝑖 𝜂El

𝑖 Δ

[
HDD𝑚,𝑠

𝑖

]
+
(
𝛼C
𝑖 𝜂AC

𝑖

)AC18−NOGS
Δ

[
CDD𝑚,𝑠

𝑖

]
,

(2.6)

in this case.
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Info box: Nearest-neighbor interpolation.

For IRIS where the cooling temperature sensitivity is zero for now, the cooling degree-
days are minimal and the purchase of air-conditioners does not seem profitable for the
inhabitants. However, in the future, when the CDD becomes more important, and the
discomfort during the summer seems more evident, we assume that the consumers will
react to temperature changes similarly to those who live geographically close (under the
same temperature conditions as nowadays and under similar geographic characteristics).
Based on this hypothesis, the determination of the cooling temperature sensitivity in the
future 𝛼C

𝑓
is computed as follows.

Start
For a given IRIS 𝛼C

𝑖
> 0

𝛼C
𝑓
= 𝛼C

𝑖

Find the approximate
IRIS and consider
them as a group
(group of n IRIS)

Compute the
average 𝛼C

𝑖

of the n IRIS
in the group

𝛼C
𝑓
= 𝛼C

𝑖

yes

no

Figure 2.9 Flowchart for determination of cooling needs for each IRIS with our hypothesis, 𝛼C
𝑖

refers to the cooling temperature sensitivity estimated with observational consumption data and
𝛼C

𝑓
refers to the future temperature sensitivity.
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The corresponding multi-model average is

⟨Δ𝐸 𝑠

𝑖 ⟩ := 1
𝑀

𝑀−1∑︁
𝑚=0

Δ𝐸
𝑚,𝑠

𝑖 . (2.7)

An essential part of this study is quantifying the uncertainty of our estimates of temperature-
sensitive REC change ⟨Δ𝐸 𝑠

𝑖 ⟩. From (2.7), we can see that errors may come from

• the temperature sensitivity model design,

• the stationarity assumptions on the model coefficients and on electric appliances adoption
rate 𝜂El

𝑖
and 𝜂AC

𝑖
during scenarios studies,

• the regression of the coefficients from a particular training dataset,

• the historical estimates of 𝜂El
𝑖

and 𝜂AC
𝑖

,

• the climate models (Jacob et al., 2014; Ruti et al., 2016),

• the choice of climate change pathway and AC use scenario.

Here, only the worst-case climate change pathway is considered (i.e. RCP8.5, Section 2.2.3.1),
so that uncertainty in the climate-model pathway is not assessed. On the other hand, a partial
estimate of climate-model errors is provided in the results Section 2.3 from the variations of
the projected REC change with the choice of the climate model. To estimate the sensitivity
of temperature-sensitive REC change to AC adoption rate projections, extreme scenarios are
considered (Section 2.2.3), while measurements of the electric-heating rate are assumed to be
reliable and representative of other years than the year it is provided for. The assumption of
the stationary temperature sensitivity model coefficients restricts the scope of the results of this
study. It is not tested in-depth in this work, but a simple analysis is conducted in Section 2.3.2
and further discussed in terms of policy implications in Section 2.4. Finally, the errors from the
model design and the regression are estimated using cross-validation (Section 2.3.4).
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(a) HDD, historical mean.
(b) HDD, CC2040 mean dif-
ference.

(c) HDD, CC2085 mean differ-
ence.

(d) CDD, historical mean.
(e) CDD, CC2040 mean differ-
ence.

(f) CDD, CC2085 mean differ-
ence.

Figure 2.7 Mean over 1975–2005, mean change over 2025–2055 wrt. 1975–2005 (CC2040), and mean
change over 2070–2100 wrt. 1975–2005 (CC2085) for the HDDs (top) and CDDs (bottom) computed
according to Eq. (2.1). The temperature data for 1975–2005 is from the historical CORDEX simulations,
while that for 2025–2055 and 2070–2100 is from the RCP8.5 CORDEX simulations. The results are
spatially averaged over the departments and averaged over the climate-model simulations listed in
Table 2.4. Warm colors represent situations associated with warm temperatures (i.e. to a decrease in
heating REC and to an increase in cooling REC).
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Figure 2.8 Test R2 score between estimated 𝛼C
𝑖

with Gradual Spreading method and regression model
estimation as a function of the chosen number of neighbors 𝐽 taken into account for the calculation of
average (Gradual Spreading).
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2.3 Results and discussion

We now analyze the projected changes in the REC, first for the scenarios where the AC uses
remain fixed, then for scenarios with AC uses changes. The discussion of the uncertainty in the
results is left for the next Section 2.4, the main conclusions from these results being robust.

2.3.1 Projected REC change without change in AC use

The projections of temperature-sensitive REC changes for fixed AC use (AC18-NOGS) are
shown in Fig. 2.10a and Fig. 2.11a. In general, the REC decreases between 7% and 16% in
all departments for CC2040, down to 20% to 42% for CC2085. Aggregated at the country
scale, the REC decreases by about 8 TWh and 20 TWh, respectively. This is consistent with
the results of Damm et al. (2017); Spinoni et al. (2018), but significant variations are observed
between departments.

For this scenario and for a given cell, according to (2.6), the projected heating and cooling
REC changes are proportional to the HDD and CDD changes, respectively, represented in Fig. 2.7.
However, the coefficients of proportionality, 𝛼H

𝑖
𝜂El
𝑖

and (𝛼C
𝑖
𝜂AC
𝑖

)AC18−NOGS, represented in
Fig. 2.3, depend on the cell. From this can be deduced that the REC changes for this scenario
are dominated by the large decrease in the HDDs (Fig. 2.7b and Fig. 2.7c) modulated by
variations in 𝛽H with the cells (Fig. 2.3d). This effect can for instance be seen in the weaker
reduction of the REC in the North-East and the South-West of France.

In addition, the REC decrease is reduced in the south of France due to the significant increase
in the cooling REC with the increase in the CDDs (Fig. 2.7e and Fig. 2.7f) in conjunction
with the positive 𝛽C there (Fig. 2.3e). This is more obvious from the plots of the cooling REC
for the AC18-NOGS scenario in Fig. 2.13a and Fig. 2.14a. One can see that, according to
this scenario, the cooling REC increases everywhere, but this is particularly evident along the
Atlantic coast and South of 46°N latitude, between the Massif Central and the Alps, especially
for the CC2085 period. At these locations, HDDs indeed tend to increase significantly, but the
correlation is not perfect, since, for this scenario, the translation of this change in a cooling
REC change depends on AC being already in use there (Fig. 2.3e). A substantial increase in
the cooling REC is also observed in the Northwest part of France for CC2085 (Fig. 2.14b), even
though the increase in CDDs is relatively weak there (Fig. 2.7f). This is explained by the fact
that a significant number of cells there have a large 𝛽C (Fig. 2.3e).

The distribution of the temperature-sensitive REC change at the cell level is shown in
Fig. 2.12 in the form of box plots. The distribution for scenario CC2040 without AC use
changes (AC18-NOGS) is right-skewed, meaning the temperature-sensitive REC is expected to
decrease around 15% in most regions. In the longer term, the disparity between IRIS increases
with decreasing averaged temperature-sensitive REC. Indeed, some IRIS may display a positive
temperature-sensitive REC change (i.e. an increase in temperature-sensitive REC) over 3% of
the French territory in the near future and up to 7% by the end of the 21𝑠𝑡 century.
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2.3.2 Projected REC change with change in AC use

The projections of temperature-sensitive REC change with different AC scenarios are shown in
Fig. 2.10b-2.10d and Fig. 2.11b-2.11d. Contrary to the results including temperature change
only, some regions display an increase of temperature-sensitive REC whose pace and spatial
extent depend on the AC scenario.

Results also show that the different factors have diverse effects. In the case where the AC
rate is changed without spreading geographically, the temperature-sensitive REC is expected
to increase in the South-West of France and in the South along the Mediterranean Sea
(Fig. 2.10b and Fig. 2.11b). Indeed, in this region, 𝛼H is relatively low with respect to other
regions, and AC systems are already deployed so that 𝛼C is different from zero. But 𝛼C in these
regions has a relatively low value, so if the temperature change is only accounted for, increased
CDD makes the decline in temperature-sensitive REC less rapid. However, in the considered
scenario, the change in AC rate directly multiplies the current cooling demand by four to five
times. The electricity savings from heating in the South-West are thus expected to be fully offset
by cooling in the near future (Fig. 2.13b). In the far future, this trend should be exacerbated
in the South-West and in the South and spread significantly along the Atlantic coast and
South of 46𝑜N (Fig. 2.14b). As there is no spatial spreading of AC usage, the geographical
patterns of temperature-sensitive REC change are similar between Fig. 2.13a and Fig. 2.14a,
andFig. 2.13b and Fig. 2.14b.

With regards to the AC rate scenario, the gradual spreading of the present AC rate lowers
the change of REC for cooling needs, but REC for cooling needs becoming positive spreads
geographically (Fig. 2.10c and Fig. 2.11c). Gradual spreading does not change the values
instantly in regions where most IRIS cells are already given with non-null estimation for 𝛼C.
However, it helps to smooth the map of coefficients as shown in Fig. 2.3b and Fig. 2.3c. Based on
observational data, many cells in Ile-de-France, Auvergne-Rhône-Alpes, and along the Atlantic
coast have been given null estimates for 𝛼C. However, some nearby cells still received significant
values for 𝛼C with high regression scores. Assigned with proximity averages, these areas mixed
with sporadic large values are most affected.

Fig. 2.12 shows that a 100% AC rate in already equipped cells (ACall-NOGS) modifies
the shape of the distribution, with an increased number of cells with positive evolution. More
positive values correspond to the cells currently equipped with AC at which the AC rate is
increased from its current value to 100% and where the change of REC for cooling needs exceeds
that for heating needs. No change is expected for the cells currently without AC hence the
minimal, the first quartile even the median values remain the same as for AC18-NOGS. In the
gradual spreading scenario (AC18-GS), the shape of the distribution displays an even larger
positive skewness than in the 100% AC rate scenario. Less negative values correspond to the
larger number of cells equipped with AC and bring an increase to all cells.

In a scenario combining gradual spreading and 100% AC rate, almost half of the territory,
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except the North of France, sees the REC increasing in the near-term future, amounting to a
global change of +2%. At the end of the 21𝑠𝑡 century, this fraction of positive trend increases
up to 90%, leading to a global change of +32%.

The results of these scenarios motivate actions allowing at least to prevent AC from inducing
an increase in cooling REC. A simple approach, applicable to the whole country, consists at least
in the region of South of France with the greatest AC impact to modify in the future climate
scenarios only the cooling setpoint in such a way as to maintain the cooling REC unchanged
with respect to the present situation. Such an approach leads to the most constraining action
as it sets for the whole country the highest cooling setpoint, but it ensures at least unchanged
cooling REC in the South of France and in most regions of France a negative cooling REC
trend. The cooling setpoint preventing any cooling REC increase over the whole country varies
with the time horizon, which is about 23-24°C by 2040 and 26-27°C by 2085.

2.3.3 Spatial heterogeneity

The maps shown in Fig. 2.3 and Fig. 2.10 and Fig. 2.11 show an apparent geographical disparity
of temperature sensitivities and temperature-sensitive REC changes. To compare the intra-
department variability with the one of inter-department, each studied variable 𝑦𝑖 (sensitivity
coefficients 𝛼H

𝑖
, 𝛼C

𝑖
, DD evolution ⟨ΔHDD𝑠

𝑖 ⟩, ⟨ΔCDD𝑠

𝑖 ⟩ and the REC evolution ⟨Δ𝐸 𝑠

𝑖 ⟩) can be
decomposed as:

𝑦𝑖 = (𝑦𝑖 − ⟨𝑦𝑖⟩𝑑)
+ (⟨𝑦𝑖⟩𝑑 − ⟨𝑦𝑖⟩𝑟 )
+ (⟨𝑦𝑖⟩𝑟 − ⟨𝑦𝑖⟩𝑛)
+ ⟨𝑦𝑖⟩𝑛.

(2.8)

with ⟨𝑦𝑖⟩𝑑 the average value of cells inside a given department, ⟨𝑦𝑖⟩𝑟 the average value of cells
inside a given administrative region, and ⟨𝑦𝑖⟩𝑛 the average value of all cells in France. Hence
with the above equation, the variability of all cells can be decomposed into disparities at several
stages:

𝜎2(𝑦𝑖) = 𝜎2(𝑦𝑖 − ⟨𝑦𝑖⟩𝑑)
+ 𝜎2(⟨𝑦𝑖⟩𝑑 − ⟨𝑦𝑖⟩𝑟 )
+ 𝜎2(⟨𝑦𝑖⟩𝑟 − ⟨𝑦𝑖⟩𝑛).

(2.9)

where 𝜎2(𝑦𝑖−⟨𝑦𝑖⟩𝑑) represents the variability of cells inside the department while 𝜎2(⟨𝑦𝑖⟩𝑑−⟨𝑦𝑖⟩𝑟 )
represents the variability of departments inside a given administration region and 𝜎2(⟨𝑦𝑖⟩𝑟−⟨𝑦𝑖⟩𝑛)
the variability between different administrative regions. Table 2.6 shows the proportion of
variability at each geographical scale over the whole variability.



2.3 Results and discussion 39

Table 2.6 Decomposition of variability into different geographical scales for different studied variables in
terms of proportion (%).

Variable 𝑦𝑖
𝜎2 (𝑦𝑖−⟨𝑦𝑖 ⟩𝑑 )

𝜎2 (𝑦𝑖 )
𝜎2 (⟨𝑦𝑖 ⟩𝑑−⟨𝑦𝑖 ⟩𝑟 )

𝜎2 (𝑦𝑖 )
𝜎2 (⟨𝑦𝑖 ⟩𝑟−⟨𝑦𝑖 ⟩𝑛 )

𝜎2 (𝑦𝑖 )

𝛽H
𝑖

75% 13% 12%
𝛼C
𝑖

77% 4% 19%
⟨ΔHDD𝑖⟩

CC2040 24% 20% 56%
⟨ΔHDD𝑖⟩

CC2085 29% 23% 48%
⟨ΔCDD𝑖⟩

CC2040 13% 15% 72%
⟨ΔCDD𝑖⟩

CC2085 14% 13% 73%
⟨Δ𝐸 𝑖⟩

AC18−NOGS 82% 7% 11%

The regional variability is more important than the local difference for the DD changes.
However, the variability of temperature sensitivities between cells within the same department
dominates. At the same time, because of the large spatial variability of 𝛽H and 𝛼C within
the administrative regions, a larger disparity of temperature-sensitive REC changes is found
between cells than between administrative regions. For both temperature sensitivities, 𝛽H and
𝛼C and temperature-sensitive REC changes, it shows that the variability between the cells is
more significant than the difference between regions, which justifies our choice of study at a
small geographical scale.

2.3.4 REC change error estimates

In this study, public data are used to train the temperature sensitivity model with only eight
annual samples applied for the regression. Compared to models with a larger dataset, our
model can be easily influenced by outliers and may have coefficients over-fitted.

We did not choose regularized regression because the performance did not improve much,
but this method may be more attractive if a more extensive input is available. Nonetheless,
the possibility of applying the leave-one-out cross-validation over the training gives us eight
possible models and, thus, a range of eight different results of the temperature sensitivities with
uncertainty.

At the same time, CORDEX simulations from different models may produce different future
temperature projections. Combining the five different simulations and all possible estimated
coefficients with the leave-one-out cross-validation method, the global uncertainty of our results,
quantified by the Relative Standard Deviation (RSD), is shown in Fig. 2.15. The relative error
is large in the South-West, where 𝛼C > 0, due to the biased model regressions as the observed
temperatures do not largely and frequently exceed the 21𝑜C cooling setpoint.

The global uncertainty for all the scenarios is presented in Table 2.7. The standard deviation
is identified after aggregating REC at different levels. For the results to have the same order of
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magnitude and to be comparable, the REC change is normalized by the average number of
IRIS in the desired geographical scale. The method using a REC linear model together with
the CORDEX simulations derives robust estimates of future REC with an error of less than
18.4% without assumptions on AC uses. The uncertainty of scenario ACall-GS is the largest
among all other scenarios because the results may become less precise with all the assumptions
together. We can see clearly that with spatial aggregation, the error decreases because there
can be compensation between IRIS within the large scales, and the variation becomes smaller.
For the average values of all possible combinations, a t-test shows that the mean values of REC
change under all scenarios are significant.

The global error of future REC mainly comes from the multi-model ensemble spread of
the projected temperatures and the training bias and variance of the REC linear model. To
find the standard deviation due to different sources, we use the average values of the cross-
validated coefficients estimated by the model or the average of the five simulations of CORDEX,
respectively. The uncertainty due to the simulations of CORDEX and to the model regression
can be found in the following Table 2.8.

Table 2.7 Average values with uncertainty for all possible combinations, the uncertainty is converted to
the same magnitude by averaging over the number of cells. A t-test shows that mean values of REC
change under all scenarios are significant.

Time Scenario name Mean (GWh/cell) Std (GWh/cell)

Cell Department Country

2040

CC-AC18-NOGS -0.22 0.037 0.029 0.024
CC-AC18-GS -0.16 0.053 0.038 0.031
CC-ACall-NOGS -0.16 0.066 0.042 0.032
CC-ACall-GS 0.08 0.191 0.146 0.125

2085

CC-AC18-NOGS -0.53 0.085 0.057 0.047
CC-AC18-GS -0.28 0.185 0.150 0.136
CC-ACall-NOGS -0.26 0.236 0.159 0.138
CC-ACall-GS 1.26 1.019 0.867 0.790

With the previous tables, we can see clearly that the uncertainty due to the various
simulations of CORDEX leads to a more significant error than the one from the regression.
This 10% error due to the model is reassuring the basis of a temperature sensitivity model: the
temperature sensitivity is quasi-constant under a stable climate. Nevertheless, this error can
still be improved if more annual consumption data are available or daily consumption data can
be accessible.
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Table 2.8 Comparison of uncertainty due to model or CORDEX for scenario AC18-NOGS in the form of
standard deviation (GWh/cell).

Time Cell Commune Country

Model CORDEX Model CORDEX Model CORDEX

2040 0.020 0.034 0.012 0.029 0.010 0.022

2085 0.056 0.066 0.031 0.052 0.026 0.040
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(a) CC2040-AC18-NOGS. (b) CC2040-ACall-NOGS.

(c) CC2040-AC18-GS. (d) CC2040-ACall-GS.

Figure 2.10 Relative change (%) in REC wrt. to the historical period (1975–2005) for CC2040 and for
different AC scenarios: AC18-NOGS (a), ACall-NOGS (b), AC18-GS (c) and ACall-GS (d).
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(a) CC2085-AC18-NOGS. (b) CC2085-ACall-NOGS.

(c) CC2085-AC18-GS. (d) CC2085-ACall-GS.

Figure 2.11 Relative change (%) in REC wrt. to the historical period (1975–2005) for CC2085 and for
different AC scenarios: AC18-NOGS (a), ACall-NOGS (b), AC18-GS (c) and ACall-GS (d).



44
Assessing residential electricity consumption under climate-change and air-conditioning

scenarios

(a) CC2040.

(b) CC2085.

Figure 2.12 Boxplots over the cells of the relative change in temperature-sensitive REC corresponding to
Fig. 2.10 and Fig. 2.11. The whiskers here show the minimum on the left and the 99% quantile on the
right.
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(a) CC2040-AC18-NOGS. (b) CC2040-ACall-NOGS.

(c) CC2040-AC18-GS. (d) CC2040-ACall-GS.

Figure 2.13 Same as Fig. 2.10 but for the cooling REC.
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(a) CC2085-AC18-NOGS. (b) CC2085-ACall-NOGS.

(c) CC2085-AC18-GS. (d) CC2085-ACall-GS.

Figure 2.14 Same as Fig. 2.11 but for the cooling REC.
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(a) CC2040-AC18-NOGS.

(b) CC2085-AC18-NOGS.

Figure 2.15 The global uncertainty of estimation of evolution in temperature-sensitive REC by combining
all possible estimated coefficients with the leave-one-out cross-validation method and the 5 CORDEX
simulations, represented by the Relative Standard Deviation (RSD) for the CC2040-AC18-NOGS (left)
and the CC2085-AC18-NOGS (right) scenarios.
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2.4 Conclusions and policy implications

A number of key messages can be drawn from the results of this study. First, REC varies
significantly at very fine spatial scales, from the IRIS size (region of 2,000 inhabitants) to
the administrative departments (96 departments on the European continent and 5 overseas)
and regions (13 on the European continent and 5 overseas). Such variability had never been
quantified and mapped due to a lack of suited methodology and limited available data at the
finest scale (IRIS). Such variability which is the largest at the finest spatial scale calls for
solutions and policies steered to the local specificities.

With increasing temperatures due to climate change, the heating needs decrease especially
in the North-East which displays a continental climate with very hot summers and very cold
winters (Köppen, 1936) and thus a strong sensitivity to any heating need reduction. Conversely,
the South and Western regions along the Mediterranean Sea and the Atlantic Ocean, respectively,
display a smaller trend in heating needs as they display a Mediterranean climate (hot, dry
summers and cool, wet winters) and a maritime climate (cool summers and mild winters)
(Köppen, 1936), respectively with warmer winters with regards to the North-East of France. At
the end of the 21𝑠𝑡 century, in the worst-case climate scenario (RCP8.5), the spatial variability
of the trend decreases as many regions are expected to experience temperatures much more
rarely below their heating setpoint. There is a strong link between the heating needs and its
evolution with that of REC.

However, the evolution of REC is modulated by the evolution of cooling needs and the
deployment of AC systems to meet those needs. Our worst-case scenarios suppose either a
100% AC adoption rate in the IRIS already equipped at present, or a gradual spreading of AC
systems, which mimics a "do like my neighbor" behavior. We also consider a combination of
the two. In any scenario, the decrease in REC due to climate change could be totally offset in
the South of France, which would then display an increase in REC. When the 2 AC scenarios
are combined, an increase in REC could be seen over the whole country.

One key message deals with the overall uncertainty of our modeling setup. The uncertainty
of our REC trends, including climate change impact and AC system deployment, is dominated
by the spread between the climate simulations of our ensemble. The regression-based REC
model does not add up much to the overall uncertainty. Such a result was not straightforward
as the data available at the IRIS scale was at best limited in time, at worst available on an
annual basis only, and sparse in some regions. The level of overall uncertainty therefore allows
for drawing some recommendations in terms of practical applications and energy policies.

Takeaways for policy implications can be formulated from these results. In our scenario,
AC gradual spreading mimics a "do like my neighbor" behavior. Our results show that such
behavior has a major and detrimental impact on REC (more than 100% AC rate scenario).
Such results call for targeted and local information actions where the risk of spreading is high
(i.e. in areas where households are already equipped with AC systems) to limit the spreading or
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mitigate its effect with at least the most energy-efficient AC systems. A more straightforward
result is that the South of France is where the REC trend is expected to occur first with possible
impacts on the energy system. Therefore there is a need to target actions to prevent any
further deployment of AC systems. Especially, the climate of the South of France is expected
to become similar to the present climate of countries more to the South, such as Italy or
Morocco (Hallegatte et al., 2007). In Morocco, there is no visible impact on REC of AC use
(Bouramdane et al., 2021). In Italy, the signal on REC of the use of AC is very limited (Tantet
et al., 2019) but locally the evolution of cooling needs can have a significant impact on REC
(De Felice et al., 2013; Scapin et al., 2016). Therefore, analyzing the socio-economic drivers,
and the energy policies of these countries and drawing inspiration from them to deploy actions
adapted to the local specificities of some French regions should be considered. Our worst-case
results clearly show the detrimental impact of the increase in AC rate and spreading. Increasing
the cooling setpoint 𝑇𝐶 (e.g. recommended temperature of 26°C by the US Department of
Energy) or maintaining an optimal difference with outdoor air temperature to about 7-8°C to
maximize the energy efficiency of the AC equipment, could lower the cooling REC. Based on
our model, shifting the cooling setpoint from 21°C at present to 23-24°C by 2040 and 26-27°C
by 2085 would prevent any cooling REC increase in our worst-case scenarios. These values are
consistent with existing recommendations. Low-tech alternative solutions also exist which are
widely implemented in subtropical regions, and can be implemented in France to improve the
thermal comfort of buildings and reduce the use of AC equipment and their impact on the
environment, such as the reflective white coating on the buildings or roofs (Rawat and Singh,
2022; Viguié et al., 2020).

There are still several limits to this study. The temperature sensitivity results from a
regression between REC and temperature, and the model implicitly integrates "human behaviors"
related to other factors such as electricity costs and household revenue (Frederiks et al., 2015;
Gertler et al., 2016). However, at this stage, no approach to segment the consumption data
along multiple socio-economic dimensions (e.g. price, revenue) has been successful with the
available data (e.g. time sampling and spatial granularity too coarse and aggregated) which
would have been valuable to reduce global uncertainty. It could have been relevant to perform
a sensitivity analysis on the temperature sensitivity through 𝜂𝐸𝑙 to account for the further
electrification of heating (e.g. fuel oil or gas to heat pumps) or trough 𝛼C to account for
improved efficiency of AC systems. Regarding 𝛼C, regions of the North-West along the Atlantic
coast where the AC rate is on average 14% (versus 22% at the national level in 2019) can display
surprisingly large positive 𝛼C values. The causes should be further explored, whether due to
statistical processing or behavioral in origin (e.g. residents may be less adapted to extreme
heat events and more likely to install AC equipment for use during such extreme events (He
et al., 2022)). Finally, the study from Pagliarini et al. (2019) shows that in a warmer climate,
the electricity increases faster than linearly because of the efficiency drop of air-cooled chillers
at high temperatures. Such a phenomenon should also be considered in the future.





Chapter 3

Decarbonizing the residential sector
by retrofitting buildings

This chapter focuses on decarbonizing the residential sector with retrofitting. The temperature
sensitivity model from the previous chapter is modified by including more variables about the
building’s construction ages. The different coefficients obtained with the linear regression allow
us to estimate the heating consumption for each household with its given areas, construction
period, and location. All the results are compared to the theoretical values under estimations
from the standard energy performance certificate. Finally, with the model, we can project
future energy gains.
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3.1 Introduction

Many studies show that most European countries are heating-dominated, and a potential
decrease in energy consumption is expected with global warming (Damm et al., 2017; Larsen
et al., 2020). This is also the case for Franse, as shown in the previous chapter. However,
relying only on this potential decrease in residential energy consumption due to temperature
increases is insufficient to achieve the objectives. At the same time, as discussed in the previous
chapter and shown by other studies, an increase is expected due to air conditioning adoption to
climate change (De Cian and Sue Wing, 2016; Obringer et al., 2022). To offset at least the
projected increase in cooling needs, it is important to continue improving the energy efficiency
of the residential sector.

Improving energy efficiency in the building sector requires accurate energy assessment tools,
which was the original goal of constructing Energy Performance Certificates (EPC). However, it
is important to acknowledge the limitations of traditional EPCs, as described in the introduction
chapter. In this context, this study aims to evaluate future retrofits based on actual electricity
consumption, taking into account the behavior of actual users through the EPC-like indicators
obtained from actual consumption data using statistical modeling. This statistical modeling
allows for more precise quantification of the added value of energy efficiency retrofits across
the region. Our model aims to utilize extensive spatial coverage information and apply it to
all contained buildings, thus overcoming the limitations of traditional data collection methods.
This data-based analytical modeling can complement this research area as mentioned by Zou
et al. (2018) and Cozza et al. (2021). Given the decisive role of space heating in the thermal
performance of a house, this study only considered this part of the final energy consumption of
the house (excluding electricity consumption for other purposes). In the study of the EPG,
we similarly focus only on space heating as predicted by the EPC, which is consistent with
previous EPG studies. This work could provide valuable new insights for policymakers and local
authorities. The study is organized into five sections. Section 3.2 describes the methodology
used for the analysis and the data. Section 3.3 presents and discusses the modeling results and
the EPG results obtained based on our model; we also discuss the applications of the model for
the energy performance gap analysis and future retrofit projections. Finally, conclusions and
perspectives are drawn in Section 3.4.

3.2 Methodology and data

For our study objective, which is to project future retrofit gains, we have to study residential
actual consumption. The most convenient way is to study buildings’ real bills at the dwelling
level. However, obtaining French residential energy consumption data at the individual dwelling
level is challenging. France has strict data privacy and protection regulations, particularly
concerning personal information and energy consumption data. Therefore, access to detailed
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residential energy consumption data at the dwelling level is typically restricted. However,
some aggregated and anonymized energy consumption data are available for research purposes
through authorized channels. These datasets are often aggregated at a higher level to protect
individual privacy, such as by geographic regions or building types. This section describes how
household consumption is obtained using aggregated data. Once the actual consumption per
household is obtained, they can be used for further analysis of retrofit gains.

3.2.1 Modified temperature sensitivity model

Table 3.1 Summary of variables and their physical meanings presented in Eq. (3.1).

Variable Meaning
𝐸𝑖 (𝑦) Annual REC for cell 𝑖 and year 𝑦 (kWh)

NH𝑖 (𝑦) Number of households in cell 𝑖 and year 𝑦

𝑆𝑖 Average living surface for cell 𝑖
HDD𝑖 (𝑦) Annual heating degree days

𝑁𝑦 The number of days in a year 𝑦 (365 or 366)
𝐵𝑖 The basic daily REC for cell 𝑖 (kWh/m2)

𝜂El
𝑖
(𝑦) Rate of electric heating for cell 𝑖 and year 𝑦 (%)

𝛼H
𝑖

Heating temperature sensitivity for cell 𝑖 (kWh/(DD m2))
𝜏𝑖,𝑎 The percentage of buildings for period of construction 𝑎 in cell 𝑖

𝜂El
𝑖,𝑎

(𝑦) The rate of electric heating for a specific construction age 𝑎

𝛼H
𝑟 ,𝑎 Heating temperature sensitivities for period of construction 𝑎 of region 𝑟

When considering the main determinants of the thermal performance of buildings, the
construction period has been reported in previous studies (Carreras et al., 2015; Cozza et al.,
2020b). The construction period has long been a main characteristic defining the housing stock
(Cuchí Burgos and Sweatman, 2011; Torres-Rivas et al., 2022). Due to regulatory changes
and the evolution of construction technology, old buildings may have less or no insulation
than newer buildings (Torres-Rivas et al., 2022). This affects the thermal performance of the
building envelope, which is the key parameter that influences the energy demand of any building
(Carreras et al., 2015).

Since we want to link aggregated consumption data to building characteristics to determine
building energy consumption, this construction period variable is chosen because of its impact
on thermal performance. Thus, this study examines the impact of buildings’ construction age
on temperature-sensitive consumption. The temperature sensitivity for different construction
ages is determined with the following model by using statistical information at the IRIS level
that each IRIS is considered as a uniform cell. Identical to the previous chapter, the first step is
to normalize the Residential Electricity Consumption (REC) by the living areas in each cell to
remove its impact. We divide the annual REC 𝐸𝑖 (𝑦) for cell 𝑖 and year 𝑦 by the total living area
in the cell NH𝑖 (𝑦) 𝑆𝑖 with NH𝑖 (𝑦) the number of households signing contracts for electricity
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consumptions within the cell 𝑖 for the year 𝑦 and 𝑆𝑖 the average living surface per household,
giving the normalized annual REC 𝐸 ′

𝑖
(𝑦) in kWh/m2. In this study, several assumptions were

made:

• The temperature-sensitive part of the model is assumed to be only heating-related as
cooling accounts for less than 6% of the total REC.

• Final heating energy consumption does not depend on heating system type.

• The temperature sensitivity of each IRIS is the sum of the temperature sensitivities of all
buildings from different construction periods.

• For each region, buildings constructed during the same period have the same final energy
sensitivity to temperature 𝛼H

𝑟 ,𝑎, whatever their heating type.

With the above assumptions, the modified temperature sensitivity model can be expressed
as:

𝐸𝑖 (𝑦)
NH𝑖 (𝑦) 𝑆𝑖

= 𝐸 ′
𝑖 (𝑦) = HDD𝑖 (𝑦) 𝛽H

𝑖 (𝑦) + 𝑁𝑦 𝐵𝑖 + 𝜖𝑖 (𝑦)

= HDD𝑖 (𝑦) 𝜂El
𝑖 (𝑦) 𝛼H

𝑖 + 𝑁𝑦 𝐵𝑖 + 𝜖𝑖 (𝑦)
= HDD𝑖 (𝑦)

∑︁
𝑎

𝜏𝑖,𝑎 𝜂El
𝑖,𝑎 (𝑦) 𝛼H

𝑟 ,𝑎 + 𝑁𝑦 𝐵𝑖 + 𝜖𝑖 (𝑦).

(3.1)

All the variables presented in Eq. (3.1) and their physical meanings are given in Table 3.1.
The first equation in Eq. (3.1) links 𝐸 ′

𝑖
(𝑦) to a heating REC and a base REC, with all the

definitions similar as before. Each cell comprises buildings of different age distribution hence,
the total temperature sensitivity 𝛽H

𝑖
can be expressed with the sum of distributions of all

construction periods. At the same time, each group of residential buildings from the same
construction period comprises buildings with and without electric appliances. Consequently,
the production of the previous study 𝜂El

𝑖,𝑎
𝛼H
𝑖

can be expressed as the sum of distributions of
each construction period 𝜏𝑖,𝑎 𝜂El

𝑖,𝑎
𝛼H
𝑟 ,𝑎. This implies that a linear regression with 𝛽H

𝑖
HDD𝑖 (𝑦)

as input is equivalent to a regression with 𝛼H
𝑟 ,𝑎 as coefficient and HDD𝑖 (𝑦)

∑
𝑎 𝜏𝑖,𝑎 𝜂El

𝑖,𝑎
(𝑦) as

input.
Once the temperature sensitivity coefficient is determined, for any building with a given

location and a given period of construction, its heating consumption is computed with an
average HDD as:

𝐸𝐻
𝑖 = HDD𝑖 (𝑦) 𝛼H

𝑟 ,𝑎 (3.2)

3.2.2 Data for the French case

The Enedis consumption dataset is accessed via their website (Enedis, 2020) and includes the
following variables that are relevant to this study:
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• longitude and latitude coordinates of the cell centroids used to assign meteorological
stations to cells;

• yearly residential electricity consumption (REC) data per cell from 2011 to 2018 (included);

• electric-heating rates 𝜂El
𝑖

for 2018;

• fraction of cell buildings with surfaces in different intervals;

• heating setpoints used to estimate the HDDs.

When considering the impact of construction age, another dataset from the French gov-
ernment (Logements ordinaires) shows that the electric heating rate depends on when the
buildings were constructed. This is due to changes in heating system preferences resulting from
different thermal regulations implemented at different periods. Additionally, the distribution of
construction ages may differ across cells, directly influencing each cell’s temperature sensitivity.
As a result, the coefficient of proportionality 𝛽H

𝑖
(𝑦) (kWh/(DD m2)), which quantifies the yearly

REC increase per HDD and unit area in cell 𝑖, can be expressed as the population-weighted
average of electric heating temperature sensitivities of different construction ages 𝜂El

𝑖,𝑎
(𝑦) 𝛼H

𝑟 ,𝑎,
represented by the third equation in Eq. (3.1). This average considers the distribution of
construction ages 𝜏𝑖,𝑎 within cell 𝑖 for the year 2018, assuming that the distribution remains
unchanged. As the geographical variability of the distribution is considered explanatory, the
coefficients 𝛼H

𝑟 ,𝑎, which reflect the age-dependent temperature sensitivities, will have the same
values for all cells within the same administrative region 𝑟.

However, the dataset providing 𝜂El
𝑖,𝑎

(𝑦) does not fully represent the population presented in
Enedis, and the original dataset of Enedis provides only estimates of 𝜂El

𝑖
for 2018. If the electric

rate is only applied to common IRIS, the information on other IRIS will not be included, and
the estimated temperature sensitivities might be biased. First, the electric heating rate for
different ages must be estimated. A hypothesis is made to correspond data sets together that
the dependency of the electric rate over the construction period is constant for each region.
This dependency relates the total electric heating rate of each IRIS with the sub-rate of each
construction period by the term 𝜅𝑟 ,𝑎.

𝜂𝐸𝑙
𝑖 · 𝜅𝑟 ,𝑎 = 𝜂𝐸𝑙

𝑖,𝑎 (3.3)

With the above relationship and the input of the Logements Ordinaires, 𝜅𝑟 ,𝑎 is calibrated
considering only the common cells with linear regression and is then applied to all IRIS of the
Enedis dataset to get 𝜂𝐸𝑙

𝑖,𝑎
. The outputs of Eq. (3.3) are then used as the new input in Eq. (3.1).

On the other hand, the French Environment and Energy Management Agency (ADEME)
provides an EPC database collecting the EPCs resulting from the new EPC reform effective
July 1, 2021. This study considers only the EPC established using the 3CL calculation method.
The Energy Performance Certificate (EPC) measure in France, as introduced by Bakaloglou and
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Figure 3.1 Pearson correlation between construction period distribution and median income at the
IRIS level for all French metropolitan administrative regions. The table in the first row shows the
representative percentage of IRIS from the income dataset compared to the total number of Enedis.

Charlier (2021), is a standardized method implemented by the French government. It involves
an energy audit conducted by an approved auditor, which includes a visual inspection and
collection of technical data. Theoretical energy consumption is then assessed using engineering
models under the assumption of standardized behaviors. This measure considers five energy
uses: heating, hot water production, cooling, lighting consumption, and domestic appliances.
Various characteristics such as house construction data, window and wall insulation, heating
performance, and climate data are collected and combined to obtain an aggregated measure of
energy consumption. This method, known as the 3CL calculation, is the standard for EPC
measurement in France, with calculation details in the infobox (Bakaloglou and Charlier, 2021,
Section 3.1.1). These EPCs concern either an individual house, an apartment, or an entire
building. We are only interested in the theoretical estimation of the final energy needs of
heating. A filter is applied to preprocess the data to ensure all the housing samples from the
EPC reference have the non-zero heating consumption estimation using the 3CL method and
non-zero living surfaces. All the information about the data is given in Table 3.2.

The other dataset used was the median income at the IRIS level of the year 2017 ((INSEE,
2017)). Figure 3.1 shows the correlation between the proportion of all building periods in each
IRIS and the median income for each IRIS. Globally, for all regions, the income level negatively
correlates with the construction distribution of 1946 – 1970. For IRIS, the more buildings
constructed during this period, the lower the income of its inhabitants. A positive correlation
was found between 1991 and 2005 (except for the administrative region of Ile-de-France) and
before 1945 for most administrative regions. However, this dataset represents a lower proportion
of the total population, with the common IRIS percentage (in %) shown in the first row of
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Info box: French EPC (DPE) calculation.

EPC certification typically involves an energy audit performed by a certified inspector
who looks at the building and collects technical details, then calculates how much energy
the building is expected to use based on engineering formulas assuming common usage
patterns. This audit includes energy for hot water, heating, lighting, air ventilation, and
cooling.
Details such as building construction, window and wall insulation quality, heating
efficiency, and local weather are collected and used to determine total energy use. Each
home’s energy needs are calculated using the 3CL method, which predicts energy use for
heating, hot water, and cooling as C = Cch + Cecs + Ccool, where Cch is the predicted
energy demand for heating, Cecs is the predicted energy demand for hot water, and
Ccool is the predicted energy demand for cooling. The calculation for Cch depends on
the heating demand of the building (Bch) divided by the efficiency of the heating system
(Ich). Cch = Bch × Ich, where Bch takes into account the size of the building, heat loss
through walls and ventilation, typical local weather, and how the heating is managed.
Key factors in this calculation include using local historical weather data to determine
heating needs and setting the default heating temperature to 19 degrees Celsius. The
entire house is assumed to be heated throughout the heating season. Hot water needs
are also estimated based on the size of the home and its location.
Finally, this engineering modeling estimates the home’s primary and useable energy use,
expressed in kilowatt-hours per square meter.

Fig. 3.1. Although the model was constructed without first considering economic factors, this
effect is examined in the discussion section (see Section 3.3.4) due to the correlation between
building distribution and income.

3.2.3 Training the model for the French case

Ridge regression is a popular parameter estimation method used to address the collinearity
problem frequently arising in multiple linear regression (McDonald, 2009). In our study, the
inputs were constructed using Eq. (3.1). From the physical perspective, they are unrelated
between different building ages. However, from a mathematical perspective, collinearity can
not be perfectly avoided. Moreover, collinearity is a severe problem when a model is trained on
data from one region or time and predicted to another with a different or unknown structure
of collinearity, which is also our case (Dormann et al., 2012). To avoid the coefficients’
misestimation due to the collinearity problem, we have tested the Ridge linear regression on
our model (see Section 3.A for details of error analysis for the case of Bayesian Ridge). The
prediction score improvement using Ridge is less than 2% on average compared to the Ordinary
Least Squares (OLS) method, and the difference between coefficients is only around 0.9% —8%.
Since the difference is negligible, instead of making the model more complex with more variables
to estimate (i.e., the regularization coefficient to optimize), we choose to use the simple OLS
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Data source Spatial
and resolution

Time period
and resolution Content details Usage

E-OBS
Grid for each 0.1
degree of latitude

or longitude

From 1944
Daily

Daily temperature
HDD𝑖 (𝑡)

Input

Enedis IRIS 2011-2018
Annual

Electricity
consumption 𝐸𝑖 (𝑦)

Input

Enedis IRIS 2018
One single year

Housing ages
distributions 𝜏𝑖,𝑎

Electric heating rate
by IRIS 𝜂El

𝑖

Pre-processing
for input

Logements
Ordinaires

Housing
10.07 million
observations

2016
One single year

Type of heating
per dwelling 𝜂El

𝑖,𝑎

Pre-processing
for input

ADEME
Housing

1.46 million
observations

2020
One single year

EPC
energy consumption

EPC
reference

Table 3.2 Data information for training the modified temperature sensitivity model for the French case.

but carefully analyze the coefficient errors.

3.2.3.1 Coefficient error analysis

Cross-validation is probably the simplest and most widely used method for estimating prediction
error (Hastie et al., 2009). Since the inputs are constructed with two levels, year and IRIS, the
effect of sampling on both levels has to be studied. We have eight years (2011 to 2018 included)
of inputs, so we used Leave-one-out sampling for the input, which gives us eight groups of
training-test samples. For the IRIS sampling, the first reflection is to use the same sample size
as the one for the year effect (i.e. 1/8 of the population as the test sample). Then, the total
effect of both temporal and geographical samplings is considered together. At the same time,
we recall the mathematical explicit calculation (what we call the parametric solutions in the
study) of estimates of coefficients 𝑚 (𝛼H

𝑟 ,𝑎 in our case) as well as the estimates of error of the
coefficients Σ (or the estimates of the variances of the coefficients) under the OLS case:{

Σ = 𝜎̂2(X𝑇X)−1 with 𝜎̂2 = MSE 𝑁
𝑁−𝑃−1

𝑚 = (X𝑇X)−1(X𝑇 𝑦).
(3.4)

With cross-validation and parametric solutions, the uncertainty of coefficients estimation is
given for each administrative region as shown in Fig. 3.4. The interquartile of the parametric
solutions is determined assuming a normal distribution. In the study, each box in all the
presented boxplots displays the interquartile range, which is the range between the 25th and
75th percentiles, and the median is marked by a darker line in the box with the same color of
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Variable Definition Details Dimension
N The sample size - -
P The number of coefficients - -
𝑦 The dependent variable or the response output N x 1
X The independent or the explanatory variable input N x P
𝑚 The vector of regression coefficients - P x 1
MSE Mean Squared Error MSE = 1

𝑁

∑
𝑁 (𝑦𝑖 − 𝑦𝑖)2 Scalar

𝜎2
𝑡 Variance of the response variable 𝜎2

𝑡 = 1
𝑁

∑
𝑁 (𝑦𝑖 − 𝑦𝑖)2 Scalar

Z Principal components of the input X N x P
Σ Estimate of coefficients variance - P x 1
𝑐𝑘𝑡 Correlation between principal components and

response
- P x 1

𝜎2
𝑘

Variance of principal components - P x 1
𝜆𝑘 Eigenvalues of X𝑇X

𝑁
- Scalar

Λ Matrix of 𝜆𝑘 - P x 1
Table 3.3 Notations and definitions of variables used for the error analysis.

the box. Whiskers are extended 1.5 times the interquartile range from both sides, and outliers
are not shown. Here, to give an idea of how the distribution of the coefficients looks like, the
example of the administrative region of Ile-de-France is shown below in Fig. 3.2, while the
results are interpreted later in Section 3.3.

Figure 3.2 Distribution of estimated temperature sensitivities related to different construction periods
𝛼H
𝑎 of the region Ile-de-France using different test sampling scenarios.

We are interested in the coefficient errors and their explicit sources. Principal components
help us transform the problem into an orthogonal space, which simplifies the relationship
between the inputs and the response and helps us find an explicit equation for the error (Hastie
et al., 2009). We can transform the inputs X into an orthogonal matrix Z with U which is a P
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× P orthogonal matrice that allows the PCA transformation of X. We have thus the principal
components defined as:

Z := XU, (3.5)

all the principal components are orthogonal between them. Because of the orthogonality, the
coefficient of determination (𝑅2)𝑃𝐶𝐴 equals the sum of the square of the correlation coefficients
between the principal components and the response output 𝑐𝑘𝑡 , so that (𝑅2)𝑃𝐶𝐴

=
∑

𝑘 𝑐
2
𝑘𝑡

. With
these principal components, we have relations such as:

Σ = 𝜎̂2(𝑁UΛU𝑇 )−1, Z𝑇Z𝑇 = U𝑇X𝑇XU = Λ𝑁

with Λ the matrix of eigenvalues 𝜆 of covariance matrix X𝑇X
𝑁

and 𝑡𝑟{X𝑇X
𝑁

} = 𝑡𝑟{Λ} = ∑
𝑘 𝜆𝑘 . At

the same time, we can determine the estimates of coefficients in the PCA space with:

𝑚𝑃𝐶𝐴
𝑘 =

𝑐𝑘𝑡 𝜎𝑡

𝜎𝑘

(3.6)

with 𝑚𝑇𝑚 = 𝑚𝑃𝐶𝐴𝑇𝑚𝑃𝐶𝐴. The standard deviation of the principal components 𝜎𝑘 is the
squared root of the eigenvalues so that 𝜎2

𝑘
= 𝜆𝑘 . On the other hand, we have the definition of

coefficient of determination 𝑅2 as:

𝑅2 = 1 − 𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
= 1 − 𝑁 MSE

𝑁 𝜎2
𝑡

= 1 − 𝜎̂2

𝜎2
𝑡

𝑁 − 𝑃

𝑁
. (3.7)

Since we have 𝑡𝑟{Σ} = 𝑡𝑟{ 𝜎̂2

X𝑇X } = 𝑡𝑟{ 𝜎̂2

𝑁
𝑁

X𝑇X } = 𝜎̂2

𝑁

∑
𝑘

1
𝜆𝑘

, the relative error of the estimated
coefficients is therefore:

𝑡𝑟{Σ}
𝑚𝑇𝑚

=
1
𝑁

𝜎̂2

𝜎2
𝑡

∑
𝜆−1
𝑘∑ 𝑐2
𝑘𝑡

𝜆𝑘

=
1 − 𝑅2

𝑁 − 𝑃

∑
𝜆−1
𝑘∑ 𝑐2
𝑘𝑡

𝜆𝑘

.

(3.8)

3.2.3.2 Prediction error analysis

With the definitions from the parametric analysis in the previous section, we have the relative
errors of the output prediction as:

𝑡𝑟{XΣX𝑇 }
𝛽𝑇X𝑇X𝛽

=
𝜎̂2 𝑃

𝑁 𝜎2
𝑡

∑
𝑘 𝑐

2
𝑘𝑡

=
1 − 𝑅2

𝑁 − 𝑃

1
𝑅2

= ( 1
𝑅2 − 1) 𝑃

𝑁 − 𝑃

(3.9)
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since

𝑡𝑟{XΣX𝑇 } = 𝜎̂2 𝑡𝑟{X(X𝑇X)−1X𝑇 }
= 𝜎̂2 𝑡𝑟{I𝑝}
= 𝜎̂2 𝑃

(3.10)

and

MSE = 𝜎2
𝑡 − 𝑚𝑇X𝑇X𝑚

𝑁
. (3.11)

The total uncertainty mainly comes from the different assumptions made during the model
construction process. The first assumption is that electricity consumption is expressed linearly
in terms of temperature sensitivity, temperature, and electric heat rate at the IRIS level using
only annual aggregated data. We refer to the first source component of total uncertainty as the
"IRIS model" because the temperature sensitivity coefficients can be estimated at the IRIS level
using temporal temperature changes. The second assumption focuses on the effect of building
age on temperature sensitivity by decomposing the IRIS model into different building ages.
We refer to the uncertainty caused by this assumption as the "IRIS effect on age". Finally,
the third assumption is to consider the dependence of each IRIS’s total electric heating rate
on the electric heating rate for each construction period using the coefficient 𝜅𝑟 ,𝑎, which is
invariant for each region and construction period. Since this variable 𝜅𝑟 ,𝑎 is estimated first, the
uncertainty introduced by the calibration of the coefficient 𝜅𝑟 ,𝑎 is named "Kappa".

MSE Total

IRIS Model Group by ages
Estimation

of 𝜅𝑟 ,𝑎
Covariance

between
different

error sources

The MSE can be thus expressed as:

MSE Total = 1
𝑁

∑︁
𝑖

(𝑦𝑖 − 𝑦𝑖)2

=
1
𝑁

∑︁
𝑖

(𝑦𝑖 − 𝑦𝐼𝑅𝐼𝑆
𝑖 )2 + 1

𝑁

∑︁
𝑖

(𝑦𝐼𝑅𝐼𝑆
𝑖 − 𝑦

𝑎𝑔𝑒

𝑖
)2 + 1

𝑁

∑︁
𝑖

(𝑦𝑎𝑔𝑒
𝑖

− 𝑦
𝜅𝑎
𝑖
)2 + Covariance,

(3.12)
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Figure 3.3 Example of distribution matching to retrofit EPC class G to EPC class C. The orange is
the current distribution of heating consumption of households with category G, the blue is the current
distribution of category D, and the green is the distribution of the category G sample after the retrofit.

with

𝑦𝐼𝑅𝐼𝑆
𝑖 = HDD𝑖 𝜂

El
𝑖 𝛽H

𝑖

𝑦
𝑎𝑔𝑒

𝑖
= HDD𝑖

∑︁
𝑎

𝜏𝑎 𝜂El
𝑖,𝑎 𝛼H

𝑎

𝑦
𝜅𝑎
𝑖

= HDD𝑖

∑︁
𝑎

𝜏𝑎 𝜅𝑎 𝜂El
𝑖 𝛼H

𝑎 .

(3.13)

3.2.4 Future retrofitting projection

One of the purposes of this actual consumption modeling is to predict energy savings from
building retrofits. Currently, the most common method of predicting energy savings is using
Energy Performance Certificates (EPCs). However, misreporting of actual energy consumption
using EPCs can cause energy-saving deficit problems due to rebound and pre-bound effects.
Therefore, the advantages of modeling based on actual consumption data may help to address
the energy-saving deficit problem. We use the distribution matching method to project future
energy consumption and the energy savings after retrofit. The goal is to fit a given sample
distribution to the desired distribution. In our case, the desired distribution of the matching
destination is the current one of the chosen buildings with better performance, and the sample
before transformation is all the buildings that we choose to retrofit. Figure 3.3 shows the
example for a better understanding of the method. In the example, we show a retrofit projection
with distribution matching from EPC category G to EPC category D. So, both distributions
before and after retrofit have the same sample size, while the after retrofit follows the same
profile as the desired distribution. It preserves the size of the differences in the different parts of
the distribution, and these differences are the potential benefits of retrofitting. And the energy
gains due to the retrofitting can be estimated by the difference of the sample before/after the
retrofit. For the retrofitting scenarios, first, we use the EPC label to differentiate the pre-
and post-retrofit groups for the paired distribution quantification approach, assuming that
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buildings with worse energy labels will perform the same after retrofitting as buildings with
better-expected labels. Energy savings are projected under three scenarios. The first scenario
is to retrofit a building three levels up (i.e., from G to D); the second is to retrofit all buildings
currently worse than B to B; and the third is to retrofit all buildings currently worse than C
to C. Then, a scenario is considered that differentiates buildings according to their age: All
households living in buildings built before 2005 will have the same thermal performance and
consumption behavior as buildings built after 2005. This scenario is applied with EPC and
temperature-sensitive consumptions estimated with our model. Since the same scenario is
applied with different inputs, we can directly compare the retrofit gain of the EPC estimates
with our model.

3.3 Results and discussion

In this section, we conducted various analyses in the following order. First, we estimated
temperature sensitivities for different building age groups using the model presented in the
previous section. We also identified and analyzed sources of uncertainty. Next, we compared
these estimates of heating consumption based on current consumption with EPC data to analyze
EPG. Finally, based on our results, we projected the effect of retrofitting. We also analyzed
confusion caused by a socio-economic factor that has the most impact on energy consumption:
income.

3.3.1 Temperature sensitivities

As the first methodological result, the 25%-75% distribution of estimated temperature sensitiv-
ities for different periods of construction ages 𝛼H

𝑟 ,𝑎 of all the 12 metropolitan administrative
regions are shown in Fig. 3.4. The Ordinary Least-Squares (OLS) regression was used with
a constraint on coefficients to be positive due to their physical meanings. The coefficients’
uncertainty was evaluated by subsampling at the temporal and spatial levels as described in Sec-
tion 3.2. The combination effect of both temporal and spatial sampling was also tested. Firstly,
the coefficient estimates show robustness across different sampling scenarios. The magnitude of
the uncertainty comes mainly from the size of the sampling. For all the administrative regions,
the temporal samplings show larger uncertainty compared to the spatial sampling when both
samplings are the same size (the second and third boxplots). And the scenario combining both
samplings (the first boxplots) has the largest uncertainty compared to the former two. The last
boxplot using parametric explicit calculation Eq. (3.4) as described in Section 3.2.3.1 also proves
the robustness of the results. Secondly, the results show spatial variation. Not all regions have
the same pattern of coefficients across construction periods. For example, in the Île-de-France
administrative region, the final energy consumption of buildings constructed between 1946 and
1970 (i.e., after World War II and before the first thermal regulation) has a higher sensitivity to
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temperature. This means that heating consumption is higher for households living in buildings
constructed between 1946 and 1970. However, for other areas (except PACA), the temperature
sensitivity coefficients for this period are smaller than for adjacent periods. Otherwise, the
temperature sensitivity coefficients for the construction before 1945 always have larger values
(except for Ile-de-France and PACA). We were expecting a larger heating consumption for the
construction period of 1946 to 1970 while a smaller value for the one before 1945 as the result
of neighboring countries (Brito, 2016; Cozza et al., 2020b). However, in the study, the sampling
test shows the robustness of coefficient estimation. Thus, one explanation might come from the
renovation works that have not been considered during the coefficient calibrations. If we com-
pare only the median values, the improvements between 1991-2005 and 1971-1990 are consistent
for all administrative regions. All households living in buildings constructed between 1991 and
2005 consume less heating energy than in the previous period. Otherwise, the significance of the
difference is questionable for ARA, Grand-Est, and Pays de la Loire. The improvement seems
robust after the implementation of thermal regulation in 1988. However, the most surprising
result for more than half of the administrative regions (i.e. ARA, BFC, Bretagne, Centre-Val de
Loire, Hauts-de-France, Ile-de-France, Normandie, and Nouvelle-Aquitaine) is the importance
of the coefficient values for the latest period. Implementing RT2005 did not reduce heating
consumption as expected in these regions.

Once the temperature sensitivity coefficient is estimated for each family of dwellings, it
is used to calculate the consumption estimation at the buildings’ level and compare it to the
theoretical heating consumption with the datasets of ADEME. However, the dataset of ADEME
is not fully representative compared to Enedis and only represents less than 15% of the total
housings. A direct comparison between the model outputs and the ADEME’s EPC poses a
problem of inconsistent samples, which can introduce sampling bias in the energy performance
gap. Therefore, we apply the model coefficients to the ADEME building datasets to compare
the estimated thermosensitive consumption for these buildings. However, this raises the issue
of model uncertainties, as the model may not be as robust due to building sub-sampling (i.e.
larger coefficient uncertainties). IRIS sampling can be considered a similar approach to building
sampling, allowing for testing the model’s robustness in construction periods and electrification
rates without relying on other factors. The red boxplots shown in Fig. 3.2 represent the
distribution of the possible coefficients using 10% of the input as training sets due to the IRIS
sampling. These distributions are then used to compute the temperature-sensitive final energy
consumption for each building given with EPC estimation of heating needs using Eq. (3.2).
These estimations of final energy consumption using our model are then compared to the EPC
given by ADEME, which gives us the EPG. Another advantage of using IRIS sampling with the
size of the ADEME sample is that its uncertainty is larger than that of temporal sampling and
much larger than global error. Hence, normally, we have maximized the potential uncertainty
in our estimation of temperature-sensitive consumption.
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3.3.1.1 Regional coefficients uncertainty comparison

(a) Ratio in 𝑡𝑟 {Σ}
𝑚𝑇𝑚

(b) Ratio in 1 − 𝑅2 (c) Ratio in 1
𝑁−𝑃 (d) Ratio in

∑
𝜆−1
𝑘∑ 𝑐2
𝑘𝑡
𝜆𝑘

Figure 3.5 Comparison of the relative coefficients uncertainty with the explicit sources as described in
Eq. (3.8) between other administrative regions and Ile-de-France as ratios (Ile-de-France has the smallest
relative coefficients uncertainty and ifs used as the reference for the comparison).

The relative coefficient uncertainty for each administrative region is calculated with Eq. (3.8).
Ile-de-France has the lowest relative coefficient uncertainty and is the reference for comparing
regions. To understand the sources of regional difference in coefficient errors, Fig. 3.5 compares
the relative coefficient uncertainty with the explicit sources between other administrative regions
and Ile-de-France under the form of ratios. The main sources, as described in Eq. (3.8), are
the model training performance (1-R2), the sample size N, and the unknown effect of the
distributions of the eigenvalues and the correlations between the principal components and the
response variable. All the comparison inter-regions of the sources are presented in ratios as
shown in Fig. 3.5b, Fig. 3.5c, and Fig. 3.5d.

From the second sub-figure, we can see that Ile-de-France has the penultimate smallest R2

(only PACA has a larger 1-R2 compared to it), so its training performance is not as good as
others. However, the total relative error of all coefficients of Ile-de-France remains the smallest.
Hence, even though a better model training performance (i.e., large R2) is expected to have
a smaller relative error, the model training performance has the least impact on the relative
errors of the coefficients.

However, since the number of IRIS in Ile-de-France is the second largest (just after ARA),
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and especially since the region has a small value of
∑
𝜆−1
𝑘∑ 𝑐2
𝑘𝑡
𝜆𝑘

, the relative coefficient error for this

region becomes the smallest. On the other hand, the effects of the other two factors complement
each other, and the significance of the effects seems similar.

In summary, in our case study, the correlation between variable inputs and consumption
outputs (represented with

∑
𝜆−1
𝑘∑ 𝑐2
𝑘𝑡
𝜆𝑘

)and the total sample size (represented with the number of IRIS

N) have the greatest impact on the relative coefficient errors. It is desirable to have as many
samples as possible to train the model and to have as much correlation as possible between the
input variables and the consumption output.

3.3.1.2 Total prediction uncertainty sources analysis

The total prediction uncertainty mainly comes from the assumptions made during the model
construction process.

Figure 3.6 Stacked bar chart of uncertainty sources represented by Mean-Squared-Error (MSE) for all 12
administrative regions in France.

Figure 3.6 shows the quantification of the different sources of uncertainty due to the
assumptions made during model construction as presented in Section 3.2.3.2. We can see
that the first source due to the assumption of linearity between electricity consumption and
temperature at the IRIS level (IRIS model) dominates the others. However, this part of the
uncertainty was tested in the previous chapter, and the results proved robust. The other sources
have less influence on the total uncertainty, with the assumption that 𝜂El

𝑖,𝑎
= 𝜅𝑎 𝜂El

𝑖
introducing

less uncertainty than the model construction. The total uncertainty is even smaller than that
of the IRIS model because the sum of the two model modification assumptions is compensated
by the covariance between the errors, demonstrating the robustness of the assumptions. We
conclude that the estimates of temperature sensitivity coefficients for all administrative regions
are reliable and can be used to estimate heating consumption.
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3.3.2 Energy performance gap (EPG)

Once the temperature sensitivity coefficients are determined, they are applied to each building
using Eq. (3.2) to get the estimated actual heating consumption. Then, the energy performance
gap (EPG) can be evaluated based on Eq. (1.1).

Figure 3.7 shows the distribution of EPG for different building ages in France with ADEME’s
1.46 million housings as the sample. The median EPG for all buildings except those constructed
after 2006 is always negative. 56% of housings constructed before 1945, 83% of housings
constructed between 1946 and 1970, 57% of housings constructed between 1971 and 1990, and
69% of housings constructed between 1991 and 2005 consume less heating energy than expected
under standard calculation. For the construction period of 1946 and 1970, globally, more than
60% of households consume less than half of the theoretically predicted heating demand (i.e.
EPG less than -50%). This means that the theoretical heating demand is much higher for
buildings constructed during that period than the actual consumption. On the other hand,
the variation in EPG is the largest for the newest buildings, where thermal performance is
expected to improve. For the newest buildings constructed after 2006, only 6% of the EPCs
are worse than E, while more than 74% of the EPGs are positive. Unlike the older buildings,
these new buildings consume much more electricity than expected. (Cozza et al., 2020a) found
similar results in his study for Switzerland. The newer or better thermal performance buildings
(categories A or B) usually have positive EPG. In contrast, old or poor thermal performance
buildings (categories F or G) usually have negative EPG. A negative EPG means the actual
heating consumption is lower than the theoretical estimation under standard user behaviors.
Previous studies show that the more socially disadvantaged the resident, the more underheated
the home tends to be (Coyne and Denny, 2021; Sunikka-Blank and Galvin, 2012).

Figure 3.7 Energy Performance Gap (EPG) distribution, which compares the heating consumption
between 3CL calculation and model estimation based on actual consumption of France with 1.46 million
housing observations.

A large EPG is related to the user behavior side of the economic impact and the quality
of the EPC. The quality of the EPC is questionable because the manipulation can be easily
done to change the EPC category, for example, by modifying the living area using the 3CL
method. Studies observe in the ADEME EPC reference data an overrepresentation of primary
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energy consumption near the upper limits of the energy class, accompanied by a symmetrical
underrepresentation near the lower limits, which is the easiest error to detect due to manipulation
(Jeanne et al., 2024; Robin and Yassine, 2022). Although we considered the EPC from ADEME
a reliable reference in our study, the quality of the datasets remains a major source of uncertainty
that has not been documented.

Figure 3.8 shows the maps of negative EPG percentages for the 12 French administrative
regions for different groups of construction periods. We observe that, although there is a large
spatial variability, the construction period between 1946 and 1970 displays the most negative
EPG, while most of the newest buildings constructed after 2006 consume more heating energy
than they should. However, Ile-de-France and PACA are not in the same situation as other
regions. Their oldest buildings have a more negative EPG compared to the adjacent period.
At the same time, a boundary line that separates eastern France from western France for all
buildings constructed after 1946 seems to mean that fewer buildings in the eastern part of
France underheat their house as expected.

(a) Before 1945 (b) 1946 - 1970 (c) 1971 - 1990

(d) 1991 - 2005 (e) After 2006

Figure 3.8 Map of percentage of negative EPG for French 12 administrative regions for different groups
of construction periods (negative EPG indicates lower actual heating consumption compared to expected
heating consumption).
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3.3.3 Retrofitting projection

Figure 3.9 Comparison of the distribution of potential savings under four different scenarios using EPCs
and one scenario using the estimation of our model for the case of France.

Projections of potential heating energy savings under the different retrofit scenarios are shown
in Fig. 3.9. We recall that the first three scenarios (the first three box plots) use the EPC
label as a pre-and post-retrofit group differentiation for the paired distribution quantification
approach. We assume that buildings with poorer energy labels perform the same as buildings
with better-expected labels after their renovation. The last two box plots consider the same case
of retrofitting buildings based on building age: all households living in buildings built before
2005 have the same thermal performance and consumption behavior as buildings built after
2005 after their renovation. The first four box plots use EPC’s estimates of heating demand,
while the last box plot uses our model’s estimates. Since the last two box plots use the same
scenario but with different inputs, we can directly compare the retrofit gain of EPC estimates
to our model.

The results show that the potential energy savings estimated using the first three EPC
scenarios are positive in all cases. The difference only comes from the current buildings’ EPC
different distributions. If we compare the results between the scenarios just using EPC, the
last retrofitting scenario, considering all households living in retrofitted buildings built before
2005 have the same thermal performance and consumption behavior as buildings built after
2005, have a much lower expectation in energy gains and even gets 4% of negative values. This
is mainly due to the positive EPG for this construction period compared to others, as shown in
the previous section. However, in the case of estimation using our model based on actual energy
consumption, there is a 47% chance that the energy savings are lower than expected. Although
the uncertainty in the coefficients is large and the estimates may be biased, it still suggests a
shortfall in energy savings from energy efficiency retrofits. Such lower-than-expected energy
savings are more or less common across the country, as illustrated in Fig. 3.10. Retrofitting
projections also show spatial variability. Figure 3.10a shows a plot of the median expected
benefits of energy efficiency retrofits based on EPC estimates, Fig. 3.10a shows a plot of the
median expected benefits of energy efficiency retrofits based on our model estimates, and
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Fig. 3.10c shows the percentage likelihood that energy savings are lower than expected. We
can see that retrofitting is always profitable in areas such as Grand Est and PACA, however,
the benefits of retrofitting expected by our model suggest that areas such as ARA and BFC
need attention.

(a) (b) (c)

Figure 3.10 Map of 12 French administrative regions with (a) the median expected retrofit gains (in
kWh/m2) based on EPC estimates; (b) the median expected retrofit gains (in kWh/m2) based on our
model estimates, and (c) the percentage likelihood that energy savings are lower than expected.

It is important to understand that in the standard EPC calculations, the impact of human
behavior is limited by the standard; for example, heating time and temperature are uniform for
homes in the same location. Therefore, the difference in energy consumption only reflects the
thermal performance of the building. However, in our model, the actual electricity consumption
is used as the calculation source, and all factors that influence the actual electricity consumption
are included. Therefore, both physical (thermal) performance and human behavior impact
energy consumption. We also use the term "retrofit" rather than "renovation" because not
only does the thermal performance of a building change, but so does human behavior. In this
study, we could not model the distinction between socio-economic effects and the physical
characteristics of buildings. After retrofitting, consumer behavior changes, impacting energy
consumption that can offset energy efficiency improvements. This has been emphasized in many
studies of pre- or rebound effects (Calì et al., 2016; Cayre et al., 2011; Coyne and Denny, 2021;
Cozza et al., 2020b; Sunikka-Blank and Galvin, 2012; Wiedenhofer et al., 2013) and should
always be well considered in future energy savings projections.
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3.3.4 Impact of socio-economic factors

Figure 3.11 Distribution of estimated temperature sensitivities related to different construction periods
𝛼H
𝑎 of the region Auvergne-Rhône-Alpes using test sampling size as the income input, blue dots represent

estimated coefficients for the sample of income as input and orange dots represent the estimated
coefficients with input corrected.

Although socio-economic impacts are not identified in the model in Eq. (3.1), we investigate the
confounding of inputs by socio-economic factors (income) that impact heating consumptions,
hence on temperature sensitivities. Figure 3.11 shows, with the example of Auvergne-Rhône-
Alpes, the distribution of the temperature sensitivity coefficients with the same sample size
as the income dataset, along with coefficient estimates from a model that uses the exact IRIS
of the income dataset as the sample (the blue dots) and a model that corrects the electricity
consumption by income using Eq. (3.14) (the orange dots):

𝐸∗
𝑖 =

𝐸𝑖

𝑊𝑖

𝑊 (3.14)

with 𝐸∗ the corrected consumption, 𝑊 the socio-economic factor which is the median income
of the cell 𝑖 and 𝑊 the average median income of all cells in the same administrative region.
The distribution of coefficients compared to the results with income corrections for other
administrative regions are given in Appendix Section 3.B.

The results show that income impacts the estimation of temperature sensitivity coefficients
for all administrative regions. The differences appear to be larger in the with/without income
case for some construction periods, e.g., for Ile-de-France, the difference between the blue and
orange points (i.e., with/without income) is significant for the 1946-1970 construction period.
We also can see that with the corrected income, the buildings of this construction period tend
to be more sensitive to temperature for most administrative regions, which may be related to
the pre-bound effect (i.e., if people living in poorer buildings are poorer, they tend to consume
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less).
However, it is worth noting that the confounding factors are questioned because the sample

is not representative. For most cases, the sampling effect is larger than the correction by income.
Indeed, let us compare the coefficients of the income sample with the initial model that does not
consider income (i.e. the blue dots compared to the distributions), and we find that they are
systematically biased. In most administrative regions, the coefficient results obtained using the
income sample IRIS fall within the outliers of the distribution of coefficients obtained by IRIS
sampling (the blue points are not in the extreme range). Especially for the eldest construction
period (before 1945), the income sample estimates smaller temperature coefficients while for
the second period (1946 – 1970) the sample estimates a larger temperature coefficient. This
suggests that, except for Ile-de-France and PACA, which have the most representative income
dataset, the IRIS samples of the income dataset for most of the administrative regions are
overly specific.

3.4 Conclusion

This study assesses the potential future energy gains from retrofitting in France. EPC-like
indicators based on actual electricity consumption are statistically modeled using aggregated
data to achieve broad geographic coverage. We compare EPC-like indicators based on actual
electricity consumption with existing EPCs based on theoretical calculations to explore differ-
ences in energy performance (EPG) across household groups. We point out the problems that
may be encountered in future retrofits and the key areas that need attention.

A linear temperature sensitivity model based on the previous study was modified for the
study’s aims. The linear model uses IRIS-level aggregated actual consumption data and extends
the buildings’ physical characteristics (the age of the building) to estimate temperature-sensitive
consumption for each administrative area, grouped by the age of the building. These estimates
of temperature-sensitive consumption for each group of buildings based on actual consumption
are dominated by heating and are considered heating consumption, which can be compared
with theoretical heating consumption estimated through Energy Performance Certificate (EPC)
standard calculations. Subsequently, using the temperature sensitivities for each group of
buildings, we estimated the retrofit benefits and compared them to the EPC-based benefits.

First, our findings indicate that implementing the RT1974 and RT2005 thermal norms did
not improve energy consumption reduction rates as expected in most administrative areas. The
original goals of implementing these norms were to reduce energy consumption by 25% and 15%,
respectively, compared to previous buildings. Temperature sensitivity coefficients indicate that
the expected goals have not been achieved. We also examined model uncertainty in geographic
and temporal sampling to ensure that the results of energy performance differences and future
retrofit benefit projections are robust. A clear difference can be seen in the comparison, and
this difference between actual and conventional consumption is also referred to as the Energy
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Performance Gap (EPG). The EPG is positively larger for newer buildings than for older
buildings in all regions. This positive EPG suggests that the newest buildings are supposed to
have lower energy consumption, but the actual energy consumption is higher than expected.
This result is consistent with findings from other neighboring countries. However, the trend of
increasing energy performance differences with age is inconsistent, and the relationship between
ages varies across administrative regions. According to traditional calculations, if all buildings
had the same thermal performance as new buildings built after 2006, the expected gain from
retrofitting would be about 60%, i.e., a 60% reduction in heating consumption. If, as a rough
guide, heating accounts for 33% of the energy consumption of the whole house, then the total
energy consumption of the whole house would be reduced by 20%. However, according to our
calculations, 47% of the building will consume more energy than before the retrofitting, which
is problematic in terms of achieving the net-zero energy target. Our findings also suggest that
temperature sensitivity coefficients can be affected by socio-economic factors. Correlation tests
show that the age distribution of housing is related to revenue. Thus, rebound effects may
differ across building age groups.

This study aims to map the departure between actual and EPC-based conventional energy
consumption at the finest possible scale based on a temperature-sensitive consumption model.
These results allow us to assess the expected improvement of the energy performance gap
and project building retrofit. The expected savings from the model-based approach show an
apparent overestimation of the benefits expected from the EPC approach, consistent with results
published in neighboring countries. Indeed, it is important to accelerate the renovation work to
improve the physical and thermal characteristics and reduce the heating needs of all housing,
especially those low-income households living in buildings with poor thermal performance.
Consumers should also be more informed of the difference between energy bills that highly
depend on behaviors and energy performance labels.

However, sampling tests show that our model results are highly sensitive to IRIS samplings,
especially when the sampling sizes are small. Such a model could be improved if more quality
data on other explanatory factors, such as wages, were available. Other factors related to the
physical characteristics of buildings are also important and should be included in the model.
For example, differences between aggregated dwellings and individual buildings can lead to
differences in thermal performance due to interactions between dwellings. It is also important
to note that the study does not include data on current renovations in France. The effect of
renovation could help to explain the reason for the difference between different construction
periods. But it would not affect the estimation of the temperature sensitivity coefficients and
would not affect our further studies on EPG and future projections because the aggregated
actual electricity consumption data has already taken into account all the dwellings, regardless
of the building renovation state. On the other hand, to the best of our knowledge, publicly
available data do not allow for further improvements. This study, therefore, calls for an effort
to make more data publicly available.
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Appendix 3.A Bayesian Ridge analysis

Bayesian inference is another tool for analyzing coefficient errors due to model training sets.
This method offers the advantage of estimating uncertainty directly from the input data
without relying on regression techniques. Additionally, it provides insights into the sources
of uncertainty by modeling and quantifying the inherent uncertainty in the data and model
parameters. Another reason that we present Bayesian inference here is that it links to the
case using the Ridge method for linear regression. Even though OLS is more suitable for our
case, the Ridge regression is still more common and can be applied to other case studies. The
definitions of estimated coefficients 𝑚 as well as the estimates of coefficients error Σ under the
Bayesian inference are given as (Bishop, 2006):{

Σ = (𝛼I + 𝛽X𝑇X)−1

𝑚 = 𝛽ΣX𝑇 𝑦.
(3.15)

Here 𝛼 and 𝛽 are Bayesian Ridge hyperparameters used to regularize the model, and they
are not linked to our temperature sensitivity coefficients, although they use the same letters.
Following Bishop (2006) and maximizing the evidence function gives us the best values of 𝛼 as:

𝛼 =
𝛾

𝑚𝑇𝑚
with 𝛾 =

∑︁
𝑘

𝛽𝑁𝜆𝑘

𝛼 + 𝛽𝑁𝜆𝑘

, (3.16)

where {𝜆𝑘}1≤𝑘≤𝑃 are the eigenvalues of covariance matrix X𝑇X
𝑁

. Since we have 𝛾 =
∑

𝑘
𝛽𝑁𝜆𝑘

𝛼+𝛽𝑁𝜆𝑘
=

𝑃 − 𝛼
∑

𝑘
1

𝛼+𝛽𝑁𝜆𝑘
= 𝑃 − 𝛼 𝑡𝑟{Σ}, so that the total relative errors of coefficients is:

𝑡𝑟{Σ}
𝑚𝑇𝑚

=
𝑃

𝛾
− 1. (3.17)

To compare the total relative error of coefficients estimation between regions, we just need to
compare the value of 𝛾. However, 𝛾 is the solution of Eq. (3.16) for which we do not have an
explicit solution.

In the case of orthogonal inputs, the results could be equivalent to those of PCAs. However,
the regularization is on the principal components (PCs), each separately, not on the original
inputs, so there is no longer equivalent regularization between inputs and PCs. In this case, we
have for each PC:

𝛼𝑘 =
𝛾𝑘

𝑚2
𝑘

with 𝛾𝑘 =
𝛽𝑁𝜆𝑘

𝛼𝑘 + 𝛽𝑁𝜆𝑘

, (3.18)

and the error for each coefficient can be expressed as:

Σ𝑘𝑘 =
1

𝛼𝑘 + 𝛽𝑁𝜆𝑘

. (3.19)



78 Decarbonizing the residential sector by retrofitting buildings

So that

𝛾𝑘 = 1 − 𝛼𝑘 Σ𝑘𝑘 = 1 − 𝛾𝑘 Σ𝑘𝑘

𝑚2
𝑘

Σ𝑘𝑘

𝑚2
𝑘

=
1
𝛾𝑘

− 1.
(3.20)

From this relationship, we can see that 𝛾𝑘 determines the relative error of 𝑚𝑘. At the same
time, in the PCA space we have:

𝑚𝑘 =
𝑐𝑘𝑡 𝜎𝑡√

𝜆𝑘

, (3.21)

so that an explicit solution can be determined with

𝛾𝑘 =
𝛽𝑁𝜆𝑘

𝛼𝑘 + 𝛽𝑁𝜆𝑘

=
1

1 + 𝛾𝑘

𝛽𝑁𝜆𝑘𝑚
2
𝑘

=
1

1 + 𝛾𝑘

𝛽𝑁𝜆𝑘

𝑐2
𝑘𝑡

𝜎2
𝑡

𝜆𝑘

=
1

1 + 𝛾𝑘

𝛽𝜎2
𝑡 𝑁𝑐2

𝑘𝑡

(3.22)

so that
𝛾𝑘 = 1 − 1

𝛽𝜎2
𝑡 𝑁𝑐2

𝑘𝑡

. (3.23)

The above explicit equation is for the orthogonal inputs case. However, we are in the non-
orthogonal case. The anisotropy on the priors of the coefficients of the original inputs does not
help because the hyperparameter in the original space no longer equals the one in the PCA
space 𝛼𝑖 ≠ 𝛼𝑘. We consider that the 𝛼 is already fixed, and any other feedback on 𝛼 is not
considered. From the second equation in Eq. (3.22) we can see that the larger 𝜆𝑘 , the larger 𝛾𝑘

and so the larger 𝛾. Moreover, from the general case of the total relative error equation:

𝑡𝑟{Σ}
𝑚𝑇𝑚

=

∑
𝑘

1
𝛼+𝛽𝑁𝜆𝑘∑

𝑘 𝛾
2
𝑘
(𝑚𝑂𝐿𝑆,𝑃𝐶𝐴

𝑘
)2

with 𝑚
𝑂𝐿𝑆,𝑃𝐶𝐴

𝑘
=
𝑐𝑘𝑡 𝜎𝑡√

𝜆𝑘

, (3.24)

we can see that the numerator function is concave with positive values of 𝜆𝑘, so having a
low spread of {𝜆𝑘}1≤𝑘≤𝑃 is better. But at the same time, we can see that the effect of the
distribution of 𝑐2

𝑘𝑡
is not trivial since the spread of { 𝑐

2
𝑘𝑡
𝛾2
𝑘

𝜆𝑘
}1≤𝑘≤𝑃 around the mean decreases 𝛼

and so increases 𝛾. Overall, the effect of the distribution of 𝜆𝑘 and 𝑐2
𝑘𝑡

are opposite. Hence, to
conclude from the Bayesian analysis, if we want the total relative errors of coefficient estimation
to be small, we need the following:
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• The number of samples 𝑁 as large as possible;

• The overall model quality 𝛽 𝜎2
𝑡 as large as possible;

• Check the ensemble effect of both distributions of 𝜆𝑘 and 𝑐2
𝑘𝑡

.

We can see a similarity between the Bayesian and parametric frequentist analyses. This
coincidence under the uninformative prior case is also explained in Murphy (2013).

Appendix 3.B Impact of income results
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Chapter 4

Decarbonizing the residential sector
by implementing self-consumption
with rooftop photovoltaic (PV)

This chapter is the subject of an article under review submitted to the journal Sustainable
Cities and Society (Tao et al., 2024b). It focuses on decarbonizing the residential sector by
integrating distributed rooftop PV. Temperature sensitivity results from the previous chapters
allow for the downscaling of regional hourly electricity consumption at the IRIS level. The
hourly consumption profiles are obtained not only for the residential sector but also for the
commercial sector to investigate the energy supply-demand balance between sectors with
local PV productions. The case study is in the Grand Paris metropolis with a focus on the
complementarity of users with different perimeters or region areas, emphasizing technical
aspects such as self-consumption rate (SCR) and self-sufficiency rate (SSR).
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4.1 Introduction

Cities are geographic units that impact climate change and have a huge potential for climate
mitigation actions (Davi et al., 2022). Urban sustainability will be one of the main challenges
of this century (Cuesta-Fernández et al., 2023; Droege, 2018; Mi et al., 2019; Pincetl, 2017).
The ongoing urbanization process will generate resource availability and sustainability issues at
local and global levels, which must be addressed effectively. Led by several initiatives such as
the Covenant of Mayors or the Global Urban Platform C40, hundreds of cities worldwide have
committed to decarbonizing or becoming carbon neutral as soon as possible (Hoffmann, 2011;
van der Heijden, 2016). Given the spatial density of the population and energy consumption,
decarbonizing dense large cities is a key focus for achieving the EU’s net-zero carbon target
(Cramer et al., 2018; Cuesta-Fernández et al., 2023).

One of the largest cities in Europe, Paris and its suburbs (also known as the Grand Paris
metropolis) cover only 0.15% of France’s metropolitan territory, with an area of 814 square
kilometers, but are home to more than 7 million people, or 10% of the country’s population.
The region consumes 67% of its energy from fossil fuels, and only 10% of its energy supply is
produced locally (7.4% from renewable energy and energy recovery) (Philippe et al., 2022).
Responsible for 10% of the country’s greenhouse gas emissions, the Grand Paris metropolis
must address energy issues in the face of major constraints such as high population density,
energy dependency, and vulnerability to climate change.

The French government has set ambitious targets to increase the share of renewable energy
in the national energy mix, aiming to achieve a 40% share of renewable energy by 2030. Rooftop
photovoltaics (PV) could play an important role in achieving this goal. For example, the French
Electricity Transmission System Operator (known as RTE) has proposed several future energy
scenarios, of which Scenario M1 emphasizes distributed PV (i.e. rooftop PV) and predicts
that 35 GW of residential rooftop PV will be installed in France by 2050 (about half of all
individual houses) (RTE, 2021). According to International Energy Agency (2023), solar power
will dominate future electricity generation technologies. By 2050, solar power will account for
30% of global electricity generation, among which distributed rooftop PV power generation is
strongly promoted by subsidies in many countries (Avril et al., 2012; Nousdilis et al., 2018; The
European Commission, 2016).

The benefits of distributed PV generation are various. It helps diversify energy sources,
improves grid efficiency by reducing transmission losses (Begovic and Kim, 2011; Hoff and Shugar,
1995), and enables local consumption, reducing extraction from the grid (Amabile et al., 2021;
Nousdilis et al., 2018). In addition, distributed PV contributes to electrification goals (Torres-
Rivas et al., 2022). It promotes the environmental sustainability of urban areas, especially in the
context of the European requirement for near-zero energy buildings (European Parliament and
Council, 2021). This shift towards local consumption and decentralized generation, accelerated
by economic fusers such as lower electricity tariffs and reduced investment costs, heralds a
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change in energy production and consumption patterns. It is also important in helping citizens
regain control of their energy supply (Vernay et al., 2023).

In previous studies, the primary focus of energy researchers and urban planners has been to
quantify the maximum potential for urban PV power generation. For example, Torres-Rivas et al.
(2022) studies the region of Catalonia based on aggregated annual data and finds that rooftop
PV could meet between 8% and 30% of the region’s residential electricity consumption. Montero
et al. (2022) studies 14 public hospitals in southwestern Spain and finds that by dedicating
30-50% of the roof area to PV power generation, PV could meet 25-30% of consumption.
Yuan et al. (2016) states that PV can meet about 56% of total electricity consumption in the
commercial sector or 34% in the commercial and industrial sectors for Osaka city in Japan. A
growing number of studies on the potential of urban PV show the magnitude of the challenge
of maximizing PV self-generation within dense, compact urban boundaries (Cuesta-Fernández
et al., 2023; Natanian et al., 2019; Vulkan et al., 2018). However, as Cuesta-Fernández et al.
(2023) points out, studies quantifying the contribution of metropolitan areas to the PV potential
of cities are virtually non-existent, let alone quantifying the complementarity between compact,
dense cities and metropolitan areas.

The center of Paris and its suburbs have different characteristics, e.g., Figure 4.1a shows
the ratio of residential electricity consumption over both residential and commercial electricity
consumption, whereas Figure 4.1b shows the ratio of the useful roof area to the residential
area. The smaller roof surfaces with respect to inhabitable housing surfaces in the central area
indicate that the buildings there are taller and denser. In contrast, the peripheral area has a
higher ratio of residential electricity consumption.

Due to the variable nature of renewable energy sources (especially distributed PV), their
integration introduces complexity into grid management. A generation that does not match
demand will be injected into the grid, potentially leading to reverse power flows and voltage
fluctuations, destabilizing grid operations. These issues require careful energy balancing to
maintain grid reliability and quality. Indeed, the increasing amount of distributed rooftop
PV implies an increasingly complex energy balance. Severe imbalances imply (1) the need for
additional generation capacity in other interconnected areas in the face of growing electricity
consumption, (2) possible upward adjustments in the transmission capacity of distribution
and transmission networks if congestion issues occur, and (3) additional line losses. Moreover,
matching the electricity production of rooftop PV installations with the current consumption at
these scales (i.e., without considering electrification) depends not only on the installed capacity
of rooftop PV but also on the complementarity between different consumption scenarios,
especially between residents and professionals and between dense urban and suburban areas.
Meanwhile, the economic interests of consumers indirectly impact rooftop PV promotion and
affect the difficulty of implementing new energy policies on a large scale.

With Paris’s and its surroundings’ different characteristics, our main research question is to
what extent rooftop PV installations contribute to the balance/imbalance between electricity
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supply and demand at different scales in the Grand Paris metropolis. To this end, we study
the supply-demand balance from a scale of districts of about 2000 people to a metropolis
scale of about 12 billion people, using PV data and useful rooftop area data, and analyze
the electricity consumption of all residential and small commercial properties, with a focus
on the Grand Paris metropolis. The analysis also includes simplified economic fusers. To
measure the contribution of rooftop PV to the electricity balance, we use two metrics: the
self-consumption rate, defined as the share of consumption covered by PV relative to total
production, and the self-sufficiency rate, defined as the share of consumption covered by PV
relative to total consumption. From the grid perspective, increasing the self-consumption and
self-sufficiency rates can reduce grid instability. From the consumer’s point of view, expanding
the self-consumption and self-sufficiency rates can reduce energy costs and increase profits.
Therefore, in this study, we investigate the impact of infrastructure on the supply-demand
balance by examining these two rates. Unlike most previous studies, this study uses these two
indicators to assess the energy balance rather than the level of PV generation.

Real-time electricity consumption profiles and solar power generation are important for
accurately assessing the performance of self-consumption and self-sufficiency rates. However,
hourly data was only available at a regional level during our study. Therefore, we used a
temperature sensitivity model to estimate the hourly evolution of electricity consumption
per consumer for the residential and commercial sectors to downscale electricity consumption
geographically. The paper is organized into four sections. Section 4.2 describes the methodology
of energy balance evaluation, the consumption model, and the data used for the Grand Paris
metropolis case study. Section 4.3 presents and discusses the results. Finally, Section 4.4 draws
conclusions and the perspectives of future studies.

4.2 Methodology and materials

This section presents the indicators used to evaluate the energy balance with the integration of
distributed rooftop PV, as well as the simplified economic metrics used. It explains how the
residential and commercial sectors’ hourly electricity consumption per consumer is estimated
when only aggregated data are available to assess self-consumption and self-sufficiency rates.
We also present the data for the application to the Grand Paris metropolis. This study’s total
period of historical data is less than 30 years, so the results and conclusions drawn apply only
to the current climate.

4.2.1 Energy balance indicators

The degree of mismatch between PV generation and electricity consumption is measured using
the following two indicators. First, we define quantities 𝑃

C,x
𝑖

(𝑡) and 𝑃
PV,x
𝑖

(𝑡) respectively as
the electricity consumption power and the PV electricity generation power for the sector 𝑥
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(RES for residential or PRO for commercial or can be the sum) in the cell 𝑖 at time step 𝑡

with a time step of one hour generally. The 𝐸
C,x
𝑖

and 𝐸
PV,x
𝑖

are thus defined as the energy
transferred during the total time period 𝑇 with 𝐸

C,x
𝑖

=
∑𝑇

𝑡=0 𝑃
C,x
𝑖

(𝑡) and 𝐸
PV,x
𝑖

=
∑𝑇

𝑡=0 𝑃
PV,x
𝑖

(𝑡).
Then, the Self-Sufficiency Rate (SSR) that measures the share of consumption 𝐸

SC,x
𝑖

covered
by PV relative to total consumption 𝐸

C,x
𝑖

for the sector 𝑥 in the given cell 𝑖 is defined as:

SSR𝑥
𝑖 [%] =

𝐸
SC,x
𝑖

𝐸
C,x
𝑖

× 100%

=

∑𝑇
𝑡=0 min(𝑃C,x

𝑖
(𝑡), 𝑃PV,x

𝑖
(𝑡))∑𝑇

𝑡=0 𝑃
C,x
𝑖

(𝑡)
× 100%.

(4.1)

And the Self-Consumption Rate (SCR) that measures the share of consumption 𝐸
SC,x
𝑖

covered
by PV relative to total production 𝐸

PV,x
𝑖

for the sector 𝑥 in a given cell 𝑖 is defined as:

SCR𝑥
𝑖 [%] =

𝐸
SC,x
𝑖

𝐸
PV,x
𝑖

× 100%

=

∑𝑇
𝑡=0 min(𝑃C,x

𝑖
(𝑡), 𝑃PV,x

𝑖
(𝑡))∑𝑇

𝑡=0 𝑃
PV,x
𝑖

(𝑡)
× 100%.

(4.2)

The indicators per domain or subdomain that are larger than the cell when considering
energy exchange between the cells inside are defined in the same way, replacing the cell
consumption and production with the aggregated consumption and production of the domain
of the subdomain. Let A be the set of cells (i.e., A=P for all cells in the Paris center and A=S
for all cells in the Paris surroundings, and A=GP for Grand-Paris with GP=P∪S), and the
SSR and SCR are defined as:

[SSR]𝑥𝐴 [%] =
𝐸

SC,x
𝐴

𝐸
C,x
𝐴

× 100%

=

∑𝑇
𝑡=0 min(∑𝑖∈𝐴 𝑃

C,x
𝑖

(𝑡),∑𝑖∈𝐴 𝑃
PV,x
𝑖

(𝑡))∑𝑇
𝑡=0

∑
𝑖∈𝐴 𝑃

C,x
𝑖

(𝑡)
× 100%,

(4.3)

and

[SCR]𝑥𝐴 [%] =
𝐸

SC,x
𝐴

𝐸
PV,x
𝐴

× 100%

=

∑𝑇
𝑡=0 min(∑𝑖∈𝐴 𝑃

C,x
𝑖

(𝑡),∑𝑖∈𝐴 𝑃
PV,x
𝑖

(𝑡))∑𝑇
𝑡=0

∑
𝑖∈𝐴 𝑃

PV,x
𝑖

(𝑡)
× 100%.

(4.4)

Then, we define the average SSR and SCR at the IRIS level by:

⟨SSR⟩𝑥𝐴[%] =
∑

𝑖∈𝐴 𝐸
SC,x
𝑖∑

𝑖∈𝐴 𝐸
C,x
𝑖

=

∑
𝑖∈𝐴 SSR𝑖 𝐸

C,x
𝑖∑

𝑖∈𝐴 𝐸
C,x
𝑖

, (4.5)
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and

⟨SCR⟩𝑥𝐴[%] =
∑

𝑖∈𝐴 𝐸
SC,x
𝑖∑

𝑖∈𝐴 𝐸
PV,x
𝑖

=

∑
𝑖∈𝐴 SCR𝑖 𝐸

PV,x
𝑖∑

𝑖∈𝐴 𝐸
PV,x
𝑖

. (4.6)

A weighted average is needed to evaluate the average SSR and SCR performance without
considering the energy sharing between the cells. This is because the cells inside a domain or a
subdomain do not have the same PV generation or electricity consumption. With the above
definitions, for all the domains or subdomains, we have [SSR]𝑥

𝐴
≥ ⟨SSR⟩𝑥

𝐴
.

However, if C=A∪B where A and B are two disjoint sets of cells, it may be that [SSR]𝑥
𝐶
<

⟨SSR⟩𝑥
𝐴
. To reach an SSR of 100%, we need both for the total production to be larger or equal

to the total consumption and for the production to occur at the time to satisfy the consumption
at each time step. When the first condition is satisfied, the SSR can not be larger than 𝐸PV

𝐸C .

4.2.2 Economic evaluation

Although we prioritize the aspects of energy balance, the economic perspective is still very
important when studying the potential of distributed PV power generation, as it can affect
practical feasibility. We ignore the investment part in the study to simplify the problem. Since
the diffusion of rooftop PV is considered maximum (PV panels will be installed on all suitable
rooftops), the investment can be considered a constant that does not vary with the contracted
perimeter. Thus, the normalized cost per kilowatt purchased can be expressed as follows:

Price =
Cost
𝐸C =

𝐸C𝜋𝑎 − 𝐸SC𝜋𝑣
𝐸C = 𝜋𝑎 − SSR 𝜋𝑣 (4.7)

where 𝜋𝑎 is the initial purchase price for each kilowatt of electricity consumed and 𝜋𝑣 is the
FIT (feed-in tariff). With this definition, we have that:

Price𝐴 > Price𝐵 ≡ SSR𝐴 < SSR𝐵 (4.8)

4.2.3 Hourly electricity consumption model

In energy balance studies, the evolution of the electricity consumption of buildings over time
(especially hours, also known as building demand curves) is important because demand curves
have a strong impact on the grid (Linssen et al., 2017; Montero et al., 2022; Roberts et al.,
2019). One of our study’s objectives is to examine the complementary impacts of different
sectors and urban areas on the energy balance. Therefore, we must obtain hourly electricity
consumption profiles for both Residential (RES) and Small Businesses (PRO) sectors at smaller
geographic scales. As needed, we can aggregate these data to any larger area.

Figure 4.2a shows the daily consumption of households (RES), while Figure 4.2b shows the
daily consumption of all small businesses (PRO) in the region. We can see that both data have
similar seasonality due to temperature sensitivity. Indeed, the outdoor temperature affects
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(a)

(b)

Figure 4.2 Daily consumption evolution summed over the Grand Paris metropolis with 𝑃 ≤ 36 kVA during
the 2020/04/02–2022/01/01 period. The blue line (resp. the orange line) represents daily (resp. weekly)
running averages. (a) Residential electricity consumption (RES) and the blue dots represent daily
consumption on weekends and public holidays. (b) Small businesses’ electricity consumption (PRO) and
the blue dots represent daily consumption on Sundays and public holidays.
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electricity consumption, especially outside a certain comfort range. Total consumption can
generally be divided into different components: a regular part not influenced by temperature
plus a weather-sensitive part. Thus for each given area 𝑖, hourly consumption profile 𝐸

C,x
𝑖

(𝑑, ℎ)
can be split into a temperature-sensitive part 𝐸

th,x
𝑖

(𝑑, ℎ) and a base part 𝐸
b,x
𝑖

(𝑑, ℎ) as:

𝐸
C,x
𝑖

(𝑑, ℎ) = 𝐸
th,x
𝑖

(𝑑, ℎ) + 𝐸
b,x
𝑖

(𝑑, ℎ). (4.9)

The daily temperature-sensitive consumption 𝐸
th,x
𝑖

(𝑑) for each sector 𝑥 for each area 𝑖 can
be estimated using the degree-days (HDD𝑖 and CDD𝑖) and temperature sensitivity coefficients
𝛽H
𝑖

and 𝛽C
𝑖

for each sector following the previous chapters Tao et al. (2024a) :

𝐸
th,x
𝑖

(𝑑) = (HDD𝑖 (𝑑) 𝛽H
𝑖 + CDD𝑖 (𝑑) 𝛽C

𝑖 ) NC𝑖 . (4.10)

In addition, since temperature-sensitive electricity use is related to daily variations in
outdoor temperatures, the hourly variations in the electricity use curves are mainly due to basic,
non-temperature-dependent electricity use such as lighting and cooking. However, the number
of occupants per hour in residential buildings and small commercial businesses’ equipment and
lighting habits are difficult to control, and detailed and accurate data are difficult to obtain.
These variables may vary simultaneously between weekdays and holidays. Therefore, our
estimated hourly electricity consumption is the average electricity consumption per household
or per business and will vary on weekdays and holidays. With two main assumptions, we can
finally downscale the regional electricity consumption into sub-regional areas:

• The daily temperature-sensitive consumption 𝐸
th,x
𝑖

(𝑑) is assumed to be evenly distributed
during the 24 hours.

• The hourly consumption profile 𝐸b,x (𝑑, ℎ) is assumed to be the same for all households
or all business sites in the same region but has different profiles depending on the month
and type of day, as consumer habits may change.

So that Eq. (4.9) can be replaced by the following equation based on the assumptions:

𝐸
C,x
𝑖

(𝑑, ℎ) = 1
24 𝐸

th,x
𝑖

(𝑑) + NC𝑖 𝐸
b,x (𝑑, ℎ), (4.11)

where NC𝑖 is the number of households or commercial sites inside the area 𝑖, and NC is the
regional number of households or commercial sites with NC =

∑
𝑖∈𝐴 NC𝑖. The regional hourly

electricity consumption 𝐸C(𝑑, ℎ) is the sum of all sub-regional hourly consumptions 𝐸
C,x
𝑖

(𝑑, ℎ),
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hence at the regional level, we have:

𝐸C(𝑑, ℎ) =
∑︁
𝑖∈𝐴

𝐸
C,x
𝑖

(𝑑, ℎ)

=
1
24

∑︁
𝑖∈𝐴

𝐸
th,x
𝑖

(𝑑) +
∑︁
𝑖∈𝐴

NC𝑖 𝐸
b,x (𝑑, ℎ)

=
1
24

∑︁
𝑖∈𝐴

𝐸
th,x
𝑖

(𝑑) + NC 𝐸b,x (𝑑, ℎ).

(4.12)

We can finally determine the consumption profiles for each sector 𝐸b,x (𝑑, ℎ) using the inputs
NC, 𝐸C(𝑑, ℎ) and the previously determined temperature-sensitive consumptions 𝐸

th,x
𝑖

(𝑑).
After that, the hourly electricity consumption of each area 𝐸

C,x
𝑖

(𝑑, ℎ), whether residential or
commercial, is estimated using Equation (4.11). To include as much data as possible, hourly
consumption is estimated for the whole period when HDD and CDD are available, from 2011
to 2020. When examining the energy balance performance, all ten years of data are used for
the average to eliminate the multi-year effect.

4.2.4 Grand Paris metropolis case study data

4.2.4.1 Electricity consumption data

The study used data from Enedis, the French public company managing France’s electricity
distribution network. We analyzed data on all contracts for electricity consumption up to 36
kVA by households and small commercial users in the Grand Paris metropolis from April 2020
to December 2021. Two main datasets are available: the first provides electricity consumption
data recorded half-hourly, 24 hours a day, 365 days a year, at the administrative regional level
for several different groups of consumption profiles (Enedis, 2020); the other dataset provides
aggregated annual electricity consumption data for different sectors at the IRIS level from 2011
to 2018 (included). The IRIS is the basic (and smallest) administrative unit for which official
statistical data is published in France. It consists of a division of the territory into "districts"
with a population of about 2,000 inhabitants (IGN, 2009).

Although both sets of data (annual consumption and hourly profile consumption) come
from the same source, Enedis, the total number of sites for the Grand Paris metropolis region
is inconsistent. The first step is to convert the number of sites per IRIS corresponding to the
hourly consumption dataset using population weighting for the two sectors studied (residential
and commercial):

NC𝑖 = ( NCI𝑖 (𝑦)∑
𝑖∈𝐴 NCI𝑖 (𝑦)

) NC (4.13)

where NCI𝑖 (𝑦) is the annual dataset’s number of households or commercial users per IRIS.
After correction, the total consumption per sector is given as:
For the economic evaluation, the initial electricity price 𝜋𝑎 was considered to be the same
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Table 4.1 Annual electricity consumption and PV production (all in TWh) for the Grand Paris metropolis
and its two subdomains (center and surroundings) for different sectors.

Perimeter Residential (RES) Small Businesses (PRO) RES+PRO
𝐸C 𝐸PV 𝐸C 𝐸PV 𝐸C 𝐸PV

Paris center 5.0 0.7 2.1 0.1 7.1 0.8
Paris surroundings 7.9 2.9 2.2 0.3 10.1 3.2
Grand Paris 12.9 3.6 4.3 0.4 17.2 4.0

for both the residential and commercial sectors and was given as 20 euro cents per kilowatt,
while 𝜋𝑣 was also set the same for both sectors and was given as 13.39 euro cents per kilowatt
as the value of the year 2020. (Eurostat, 2023)

4.2.4.2 Photovoltaic data

The Atelier Parisien d’Urbanisme (APUR) makes available to the public a dataset containing
information on the solar potential (in KWh/m2/year) of each building in the Grand Paris
metropolis, indicating its average annual solar radiation, calculated by simulating the average
annual solar radiation and taking into account the shading effects of buildings (APUR, 2019).
APUR also provides a combination of the building layers corresponding to the footprint
with the assignment of typological and morphological information (APUR, 2020). This data
layer contains more than 1 million buildings in vector form. Information such as floor area,
construction period, and height are available. With this data, we no longer need hypothetical
PV simulation data for potential PV studies. In addition, since this paper focuses on maximizing
the available solar energy to investigate the impact of distributed PV integration on the energy
balance, we used all potential rooftop PV areas that meet certain criteria rather than optimizing
the size of the PV system. Indeed, the optimal PV sizing for rooftop PV may have been overly
optimistic and overestimated actual PV availability (Narjabadifam et al., 2022; Yeligeti et al.,
2023). Figure 4.1b shows the ratio between the favorable rooftop areas (i.e., areas where the
annual potential is ≥1000 kWh/m2) and the residential areas at the IRIS level.

On the other hand, PVGIS (2022) provides an estimate of the hourly PV production for a
given site with the chosen PV installation technology and PV panel size and orientation. Roof
areas were extracted from the APUR dataset and combined with PVGIS to obtain the PV
potential production for each IRIS. Several hypotheses were made when estimating the PV
potential at the IRIS level:

• Residential rooftop surface is considered “favorable” for PV installation if the radiation
potential is greater than 1000 kWh/m2 per year, and only this part of the rooftop surface
is taken into account.

• Radiation is the same inside a given IRIS (no difference between buildings inside an IRIS).



94
Decarbonizing the residential sector by implementing self-consumption with rooftop

photovoltaic (PV)

• The inclination and azimuth are set to be automatically optimal values provided by
PVGIS.

• The panel technology chosen for now is crystalline silicon.

However, we can not distinguish the rooftop of the RES sector from that of the PRO sector
with APUR data. To do so, we consider that the roof area is equally distributed according
to the number of users, which means that the PV generation should be proportional to the
number of users by sector. Therefore, for each IRIS we have:

𝐸
PV,PRO
𝑖

𝐸
PV,RES
𝑖

=
NCPRO

𝑖

NCRES
𝑖

(4.14)

4.2.4.3 Calibrated base demand profiles

Using the methodology described in Section 4.2.3, we have calculated the average residential
and commercial electricity consumption curves for the Grand Paris metropolis for holidays and
weekdays in different months. Using these demand curves, we can then estimate each cell’s
total electricity consumption with a known number of consumers per sector. Based on the total
electricity consumption curves, the mismatch between supply and demand can be analyzed
by comparing demand with PV generation. Figure 4.3a and Figure 4.3b show the average
daily electricity consumption pattern of the typical four seasons for residential consumers, and
Figure 4.3c and Figure 4.3d for the commercial sector. Profiles of 12 months are used for further
energy balance analysis but are not shown here. The seasonal features are typical enough to
represent the monthly differences. We also recall that these electricity consumption curves do
not include temperature-related electricity consumption.

During working days, the RES profiles show that the highest daily consumption is mostly
in the evening, around 19:00, except in summer. Meanwhile, local maximums also occur on
workdays before people leave home for work around 7:00 - 8:00 and at lunchtime around 12:00.
The difference between the evening peak and the midday peak is particularly large in winter
but not evident for other seasons. During weekends, opposite to working days, the highest RES
daily consumption is mostly at midday except in winter. Meanwhile, the local maximum in the
morning disappears since people no longer prepare to leave for work. No matter the season
or the type of day, the local minimum always arrives during nighttime when people sleep and
during the afternoon around 14:00 and 16:00 when people are at work. The differences between
seasons may be related to seasonal changes in people’s behavior. For example, in the summer,
many people go on longer vacations and engage in more outdoor activities, while in the winter,
they spend more time indoors.

For the PRO profiles, electricity consumption is generally higher on weekdays than on
holidays. During the weekdays, the local maximums of PRO consumption occur around 10:00 –
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11:00 and around 17:00 – 18:00. During the daytime on working days, the PRO consumption
remains at a relatively high level, and the period of large PRO consumption from 7:00 to 19:00
correlated to a large extent with the period of PV generation. On public holidays, however,
the PRO daily consumption curve remains relatively flat except for the small local maxima in
the morning and evening for the winter and autumn months. Our consumption profile results
align with other European studies regarding the average demand curve for households (Aberilla
et al., 2020; Mavroyeoryos et al., 2017; Møller Andersen et al., 2013). Therefore, we verify that
our model can reproduce the qualitative features we expect from the demand.

4.3 Results

4.3.1 Supply-demand balance analysis

Maps of self-consumption rate (SCR) and self-sufficiency rate (SSR) for residential sector RES
and commercial PRO alone, as well as the case with complementary sectors, are shown in
Figure 4.4. Without allowing any exchange between different sectors or IRIS, we have an
average SCR for all IRIS in Grand Paris of around 74.4% for RES alone and 96.4% for PRO.
For the SSR, the value is, on average, around 20.5% for RES alone and 9.9% for PRO. These
results are also shown in the third rows and first four columns of Table 4.2. Table 4.2 shows all
the average and aggregated SSR and SCR for the different perimeters. It is worth noting that
the SSR is higher in the peripheral areas of Paris than in the center of Paris, regardless of the
sector RES or PRO. It suggests that local PV production in the peripheral areas can offset a
greater proportion of consumption. This is possibly due to the lower density of buildings and
potentially greater PV installations in the peripheral areas compared to the dense city center.
This difference in building density can also be seen on the map in Figure 4.1b. The solarizable
rooftop relative to the inhabitable housing surface ratio is lower in cities with higher building
densities than in the suburbs, which correlates with the SSR maps. On the other hand, the
100% SCR in the Paris center indicates that all PV is used locally, but this is not the case for
the Paris surroundings. From Table 4.1, we can see that the total PV production is low for both
subdomains. However, due to the mismatch, some PV production in the Paris surroundings,
especially from the RES sector, becomes surplus, and the SCR is lower for these peripheral
areas of Paris surroundings. This PV surplus can be injected for the Paris center to improve
both performances for the peripheral by reducing loss and for the center to improve the share
of PV-covered consumption. The impact of perimeter extension is then studied by combining
different users from different IRIS or sectors or subdomains together since the perimeter of
users and areas involved may significantly impact the energy balance.

We first examine the case of energy sharing between distinct IRIS within a given subdomain.
The results are presented in the fourth and fifth rows of Table 4.2. Comparing these results
under this perimeter expansion to the IRIS-weighted average values presented in the first two
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rows (where each IRIS is a closed cell without energy exchange between IRIS), we observe that
all SCR and SSR values increase, regardless of the sector. This improvement is mathematically
proven and described in Section 4.2.1. For RES alone, both SSR and SCR improve by 0.8%
for the Paris center and by 13% for the Paris surroundings. For PRO alone, both SSR and
SCR improve by 5% for the Paris surroundings while remaining the same values for the Paris
center. When both sectors interact (i.e., the case of RES+PRO), the SCR and SSR demonstrate
improvements of 0.8% in the Paris center and 19% in the Paris surroundings, respectively,
in comparison to the weighted average of the subdomains. And in the case of the Grand
Paris region, which considers all IRIS within the sum of subdomains, both SCR and SSR
improve by 26% compared to the weighted average of all IRIS in Grand Paris. Thanks to the
complementarity between IRIS, extending the perimeter for both subdomains can improve both
SSR and SCR and allow for greater consumption coverage, with a subsequent reduction in
surplus energy injection into the grid. When viewed from an energy balance perspective, this
improvement is more pronounced in the Paris surroundings than in the Paris center, irrespective
of the sector in question.

We then examine the case of energy sharing between different sectors of RES and PRO,
considering IRIS extension simultaneously. The results are presented in the last four rows and
last three columns in Table 4.2 with the name of ‘RES+PRO’ and should be compared to
each individual sector. With regard to RES alone, the SCR remains 100% in the Paris center,
while it improves by 9% (from 77.8% to 85%) in the Paris surroundings. This improvement
is a consequence of the complementarity between the two sectors. With regard to PRO, the
improvement is more pronounced on the SSR side, with values of 85% (from 6% to 11.1%)
and 87.5% (from 14.4% to 27%) for the two subdomains of the Paris center and the Paris
surroundings, respectively. In the case of Grand Paris, the SCR improves by 8% compared to
RES (from 89.5% to 96.4%), while the SSR improves by 117% compared to PRO (from 10.3%
to 22.4%). However, the simultaneous improvement of the SSR and SCR is not observed. In
contrast to the improvements, the total SCR decreases compared to PRO alone, while the SSR
decreases compared to RES alone. Although the SSR and SCR losses for each sector appear
significant, it is necessary to analyze the global performance in order to ascertain whether
complementary effects improve the overall energy balance. In order to do this, the results must
be compared to the weighted average values of the sectors presented in the columns named
‘RES + PRO weighted-average’ calculated with Eq. (4.6) and Eq. (4.5). For the Paris center, it
can be demonstrated that all PV production will be consumed in place when both sectors are
consuming the energy, regardless of whether or not sharing the surplus between them. This
leads to the SSR’s maximal value of 11.1%, as described in Section 4.2.1. Nevertheless, the
improvement resulting from the energy sharing between sectors is significant for the Paris
surroundings. In this case, both SSR and SCR improve by 6% (25.4% to 27% and 80% to
85%, respectively). Similarly, in the case of Grand Paris, both SSR and SCR improve by 6.5%
(21% to 22.4% and 90.7% to 96.4%, respectively). Consequently, the enhancement in PV offset
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and the diminution in PV loss exemplify the advantages of complementarity between sectors
with respect to the PV energy balance. This improvement is once more evident in the Paris
surroundings.

Finally, we examine the case combining the two subdomains together. Comparing our
result of the Grand Paris for RES mixed with PRO to its two subdomains, an improvement
in SSR of 102% (11.1% to 22.4%) is found for the Paris center, and SCR improves by 13%
(85% to 96.4%) compared to Paris surroundings. However, similar to the results of the previous
analysis of impacts by sector, improvements in SSR and SCR are heterogeneous across the
two subdomains (e.g. SSR for Paris surroundings and SCR for Paris center are larger than
the Grand Paris aggregated value). Again, we need to analyze the global performance by
comparing the aggregated values to the weighted averages. The results prove that the loss of
energy balance performance in some cells due to the peripheral expansion of the users involved
is insignificant compared to the potential gains. Both SSR and SCR improve by 10% (20.4%
to 22.4% and 88% to 96.4%) thanks to the complementarity between the subdomains. Thus,
our result proves again the significant impact of peripheral expansion on improving energy
balance. The supply-demand energy balance is optimal when considering the entire Grand
Paris metropolis as a single renewable energy community that allows electricity sharing between
all inhabitants and the commercial inside.

Table 4.3 shows SCRs and SSRs with different energy balance perimeters for different
seasons. Seasonal variations in the energy balance are evident. France is a heating-dominated
country (Martinopoulos et al., 2018), and demand is more concentrated in the winter months
when solar radiation is lower and less PV power is generated. Consequently, less PV generation
is available in winter than in summer, and less consumption can be covered, resulting in a
lower SSR. On the other hand, the SCR describes the remaining PV electricity supply. This
ratio is more important in winter than in summer for the same reasons of seasonal variation
of electricity consumption and, therefore, puts more pressure on the grid in winter. Due to
the complementarity between the different sectors and the number of users, the perimeter
improvement also applies to all seasons, but with seasonal variations: for both SSR and SCR,
the progress is more significant in summer.

To conclude, our analysis from the pure energy balance perspective shows that a larger
perimeter is always better, thanks to the complementarity of more users. The improvement is
more significant for rural areas with higher PV production. However, the impact of perimeter
extension should also be examined economically.

4.3.2 Economic impacts

Figure 4.5 shows the map of simplified normalized costs calculated based on Equation (4.7).
The average savings per kilowatt are 6 cents for the Paris surroundings and 2 cents for the Paris
center compared to the initial electricity price of 20 cents in 2020 (Eurostat, 2023). From an



102
Decarbonizing the residential sector by implementing self-consumption with rooftop

photovoltaic (PV)

Figure 4.5 IRIS map of average electricity cost (Euro cents per kWh c€/kWh) at the IRIS level after
energy sharing between the residential and the commercial sectors with each IRIS as a microgrid.
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Figure 4.6 Distribution of IRIS normalized cost compared to the regional value of 15.4 c€/kWh with
energy sharing in the Grand Paris metropolis between all residential and commercial users (dashed red
line) and the initial electricity buying price of 20 c€/kWh (dashed black line).

economic point of view, it is clear that rooftop PV installation is more profitable for residents
and businesses in the surrounding areas. This difference between the two subdomains can be
explained with Eq. (4.8).

Figure 4.6 shows the distributions of normalized costs for all IRIS in the Paris center and
the Paris surroundings separately, as well as the value of the initial purchase price and the price
after regional energy sharing, which is considered as the optimal case from the energy balance
perspective. Regarding regional energy sharing, the average electricity cost is 0.154 euros per
kWh. Comparing the final price with the IRIS distributions, we can see that all the consumers
in the Paris center would benefit more thanks to the perimeter extension compared to the
initial case of only local consumption. In contrast, 57% of consumers in the peripheral areas
of Paris would benefit less compared to the case of microgrids at the IRIS level. However, as
mentioned in the previous section, the overall electricity surplus would be significantly reduced,
as would the potential cost of feeding the surplus into the grid. Power sharing between the
city and the periphery is a win-win project, both from the technical point of view of energy
balancing and from the point of view of consumers.

The overarching conclusion from these results is that increasing the perimeter of energy
sharing in urban environments improves the performance of SSR and SCR indicators. This
suggests the potential for regional energy strategies to optimize the use of PV production,
thereby contributing to more sustainable and resilient urban energy systems.

4.4 Conclusion

This paper explores the integration of distributed photovoltaic (PV) generation in the Grand
Paris metropolis, using the energy supply-demand balance with a focus on the self-consumption
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rate (SCR) and self-sufficiency rate (SSR). Our analysis reveals that the complementary nature
of different residential and commercial sectors enables a significant improvement in the total
offset energy and reduces the loss of PV surplus across all locations. This complementarity is
crucial in the Paris surroundings, markedly enhancing energy efficiency.

From the supply-demand perspective, lower building density and larger roof areas in the
Paris outskirts allow a higher SSR (27%). In contrast, central Paris, characterized by high
building density, predominates local PV consumption with minimal surplus, resulting in only
an 11% coverage of energy consumption and leaving a surplus due to imperfect simultaneity
between residential consumption and PV production. Introducing energy sharing between
different sectors and different subdomains can mitigate these losses and reduce grid pressure, a
benefit that amplifies with geographical expansion. While the perimeter extension is particularly
more beneficial for the Paris surroundings from the energy balance perspective, it is important
to notice that it is also more advantageous for the more urban area of the Paris center from a
simplified economic perspective, considering only electricity prices. Moreover, considering the
entire Grand Paris metropolis as a unified renewable energy community that permits electricity
sharing among all inhabitants and businesses emerges as the most optimal scenario. This
arrangement covers 22.4% of consumption with rooftop PV, achieving 96.4% of the potential in
perfect production-consumption simultaneity.

While this study provides valuable insights, it’s important to acknowledge that it simplifies
economic considerations. Future work should delve deeper into the economic impacts, par-
ticularly the investment and distribution costs that are crucial for large-scale PV integration.
Although the results show that a larger perimeter is always better, the effect on the grid within
the perimeter is unclear. The costs of improving the distribution and cable operation could
offset the potential benefits. On the other hand, as discussed in previous studies, the overall
profitability of energy communities is highly dependent on government policies. However, in
reality, this feed-in tariff could vary with the type of consumer and depends on the price, which
also depends on the contracted power. This emphasis on economic factors is essential for a
comprehensive understanding of the challenges and opportunities in this field.

Finally, the electricity consumption in the current study is based on historical data and
is assumed not to change. However, citizens’ adoption of distributed PV systems marks a
shift in how energy is produced and consumed. By producing electricity at the point of use,
individuals can reduce their dependence on the grid and have the opportunity to tailor energy
consumption and production to their interests and needs, potentially accelerating electrification
efforts. This decentralization of energy production increases the flexibility of the electricity
system, as consumers can adjust their energy use according to availability and potentially
participate in demand response programs. This evolution of consumption patterns should be
considered, especially in projections of future energy balances.
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5.1 Conclusion

5.1.1 Main results and messages

The decarbonization of buildings is an interdisciplinary study involving different aspects of
technology, economic impacts, and policy implications. My research aims to understand how
current conditions and climate change can contribute to the decarbonization of the residential
sector. Specifically, I focus on the existing residential stock and ways to reduce their energy
consumption in France. The French government has set ambitious decarbonization targets for
buildings: a 50% reduction in final energy consumption by 2050 and a 20% reduction by 2030,
based on 2012 levels. Our research initially aimed to assess the feasibility of these targets and
explore the factors that could help achieve them.

In this thesis, we first investigated the impact of climate change on residential electricity
consumption. For this purpose, a linear temperature sensitivity model fitted with annual
observed electricity consumption data and historical temperature was applied intra-regionally
to project future French Residential Electricity Consumption (REC). The model accounted for
climate change, increased air conditioning (AC) use, and spatial variability. We found that in
countries with moderate climates, such as France, increasing temperatures lead to an overall
decrease in REC. For the French case, the most carbon-intense scenario RCP8.5, might lead to
a decrease in REC of 8TWh by 2040 and to 20TWh by 2100, with significant spatial variability
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that had never been quantified and mapped before due to the lack of appropriate methodology
and limited available data at the finest scale. However, the results also showed that the potential
increase in AC use is not negligible, especially in the long term. AC promotion could increase
RECs by 2% by 2040 and as much as 32% by 2100.

Next, decarbonization was considered from two perspectives: energy efficiency improvements
through retrofitting and introducing renewable energy through rooftop photovoltaics (PV). For
the retrofitting analysis, the temperature sensitivity model was then modified to include building
age as a variable to assess the heating consumption of buildings by groups of building ages.
The model allowed us to estimate the heating consumption for each household with its given
area, construction period, and location, which can be compared with the theoretical heating
consumption estimated through Energy Performance Certificate (EPC) standard calculations.
The results showed that implementing the RT1974 and RT2005 thermal codes did not improve
the energy consumption reduction rates as expected in most administrative regions. According
to traditional calculations, if all retrofitted buildings had the same thermal performance as
new buildings built after 2006, the expected gain from renovation would be about 60%, i.e.
a 60% reduction in heating consumption. However, according to our projections, based on
current actual consumption, 47% of the buildings would consume more energy than before
the retrofit. The expected energy savings from the retrofit would be minimal, especially when
climate-related reductions in energy demand are considered.

Finally, an alternative way to decarbonize the residential sector by increasing renewable
energy sources was also studied by introducing rooftop photovoltaics (PV). We focused on the
Grand Paris metropolis as a case study because it must address energy issues facing major
constraints such as high population density, energy dependence, and vulnerability to climate
change. We also believed that the case of Grand Paris could be replicated by other major
cities worldwide to address urban sustainability issues. The previous results of the temperature
sensitivity model were used to downscale the regional hourly electricity consumption profiles
to IRIS levels. The hourly consumption of both the residential and commercial sectors was
then examined by comparing rooftop PV generation. The results showed that allowing energy
sharing between sectors significantly reduces excess PV losses and improves grid stability. In
the center of Paris, 11% of consumption could be offset by PV, while for the periphery, PV
could offset 27% of consumption. We have also shown that different levels of complementarity
affect the balance between energy supply and demand. Thanks to the energy exchange between
the center of Paris and the periphery, the energy balance would be more stable than for
each sub-region. In economic terms, rooftop PV installations would offer greater savings for
residents and businesses in the periphery than in central Paris. However, exchanges between
the sub-regions would benefit users in central Paris. The study concluded that extending the
energy exchange perimeter in urban areas would optimize PV production and contribute to
more sustainable and resilient urban energy systems.

However, despite technological advances and increasing awareness of reducing carbon
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emissions, the sector is far from reaching its set targets. Previous studies focusing on the impact
of policies are also pessimistic, with results showing that emissions reduction targets will not
be met and fuel poverty will only be partially alleviated Charlier et al. (2018); Giraudet et al.
(2021); Vivier and Giraudet (2024). The unpredictability of household energy consumption
patterns complicates efforts and makes it difficult to implement one-size-fits-all solutions.

The results of the thesis could provide insights into future policymaking. General takeaway
messages for policy implications are the following:

• Large spatial variability in current REC and its future trend shows that policymaking
should be steered to the local specificities (building-scale or community-scale).

• The potential REC rise due to AC usage could be canceled by increasing the cooling
setpoint to 26-27𝑜C.

• The potential retrofit gain based on EPCs is overoptimal. Whether to introduce more
accurate energy assessment tools or provide users with easier-to-understand information
needs to be considered. We also call for efforts to make more data publicly available.

• Expanding the perimeter of self-consumption should be considered to allow the exchange
between areas with different morphologies (residential and commercial areas or urban
and rural areas) to maximize self-consumption and reduce PV surplus.

5.1.2 Reflexion around limits of the thesis

Several limitations of the conclusions drawn from the thesis should be noted.
I have developed and worked with a top-down model to analyze downscaled characteristics

using aggregated statistics as input during the whole thesis. Even though the IRIS are relatively
small, they are still "big" since there are about 2000 inhabitants in each cell. However, such a
top-down model lacks more flexibility beyond current practice (Hourcade et al., 2006). Since
the model’s main features are calibrated from historical data, there is no guarantee that the
values of these parameters will remain valid. Some evolution in the calibrated elasticities has
been accounted for in the future projection process (e.g., the introduction of air conditioning in
Chapter 3). However, there are still some unaccounted effects that have not been addressed.
For example, the current study does not consider population and economic growth. However,
both growth rates influence energy consumption (Mazur, 1994; Sadorsky, 2014; York, 2007).
The growth in energy demand due to population and economic growth should be considered
when making more accurate quantitative forecasts, especially in the long term.

Other limitations also occur due to the simplification of the model by assumptions. The
model’s first main assumption is the simple linearity between electricity consumption and
Degree-Days (DD). Several previous studies (Pagliarini et al., 2019; Sailor and Muñoz, 1997)
prove the linearity, while others try to predict consumption using a more complex model
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(Beccali et al., 2008; Bessec and Fouquau, 2008; Eskeland and Mideksa, 2010; Moral-Carcedo
and Vicéns-Otero, 2005; Silva et al., 2020). However, no consensus exists on the best approach
to such a model. The model’s accuracy and complexity (e.g., regularization) highly depend
on the studied area’s data, and the model’s accuracy level depends on the study’s needs. For
example, my thesis studied the projection’s trend compared to the current consumption state.
Thus, comparing the model over two periods should partially compensate for the effect of the
model’s simplification. However, similar to the previous point about the growth rate, if the
study needs more proper quantitative future prediction results, the simple linearity of the model
should be dealt with carefully.

The next section will discuss other improvable limitations of the current study and future
work perspectives.

5.2 Perspectives

In the current work, some assumptions have been made to simplify the model due to a lack
of information or available data, such as the type of residence (e.g. collective or individual),
or due to the over-complexity of the factors included (e.g. economic factors). In the thesis,
consumption models are aggregated either at the IRIS level or collectively for a given age group
due to the aggregation of available variables. Some possible improvements to the consumption
model should be considered in future work. If conditions allow, more human factor variables can
be included in the model to make it more accurate. For example, Lévy and Belaïd (2018) studied
the French National Housing Survey and categorized the types of consumption patterns. Indeed,
studies also show a positive correlation between EPC labeling and house prices (Cespedes-Lopez
et al., 2019; Eichholtz et al., 2010, 2013; Fuerst et al., 2015; Wiley et al., 2008). Socio-economic
factors influence the behavior of users, and such differences should be used as inputs in our
model to explain the spatial variability of energy consumption. It is important to know the
different consumption patterns by user type, as they can be further applied to study flexibility
under the renewable energy scenario in the future. They are also useful for studying future
consumption, especially during heat waves.

From a PV perspective, the most important economic factor not considered is the economics,
which should include system costs. Due to a lack of information and time, system costs were not
considered in this study. (In fact, all economic perspectives such as investment and electricity
prices were not considered). All these factors affect the diffusion of PV projects and should be
fully considered. As the number of users participating in PV sharing increases, distribution
losses will increase, so the perimeter expansion is not infinite. At some point, the system cost
will be more important than the losses and will no longer be cost-effective.

On the other hand, by combining renovation projections and collective self-consumption
with PV generation, it is possible to analyze the global decarbonization of the residential sector.
This is the work of Torres-Rivas et al. (2022) and Canova et al. (2022), who used EPCs to
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predict future renovation gains and combined them with PV self-consumption to study overall
decarbonization potentials. The advantage of our work over these papers is that both future
electricity consumption and retrofit gains are based on actual electricity consumption, allowing
climate change impacts to be incorporated into decarbonization projections.

For this part, we should also consider the building stock part, where renovation statistics
should be considered and updated in the model. Although we have not taken into account
the renovations that have been carried out, almost 2.1 million renovations were carried out
in France in 2020 (ONRE). Even if most of them were so-called light renovations, only one
measure was carried out to improve the thermal performance of the building. The total number
is not negligible, and the real gain before and after the renovation could be studied directly if
energy bill data were available.

Let us suppose that the future works will be completed in several steps. In this case, they
should be carried out as follows:

• First, we need to identify the main socio-economic factors influencing residential energy
consumption.

• Then, different consumption patterns, whether spatially variable or socio-economically
related, should be studied for different groups of users.

• The evolution of patterns and future PV production under climate change should then be
investigated.

• The system costs at different scales should be evaluated, possibly providing an optimal
perimeter for self-consumption projects in urban and rural areas.
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a Laboratoire de Météorologie Dynamique – Institut Pierre-Simon Laplace, Ecole Polytechnique – Institut Polytechnique de Paris, Ecole Normale Supérieure – PSL 
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A B S T R A C T   

The residential sector is important for the energy transition to combat global warming. Due to the geographical 
variability of socio-economic factors, the highly dependent residential electricity consumption (REC) should be 
studied locally. This study aims to project future French REC considering climate change and air-conditioning 
(AC) scenarios and to quantify its spatial variability. For this purpose, a linear temperature sensitivity model 
fitted by annual observed electricity consumption data and historical temperature is applied at an intra-regional 
scale. Future temperature-sensitive REC is computed by applying the model to temperature projections under the 
climate change pathway RCP8.5. Three AC scenarios are considered: (1) A 100% AC rate scenario assuming that 
any region partially equipped with AC systems nowadays will have all its households equipped with AC, but local 
temperature sensitivity will no longer progress; (2) A gradual spreading scenario mimicking “do like my 
neighbor” behavior; (3) A combination of the two scenarios. Increasing temperatures lead to an overall REC 
decrease (− 8 TWh by 2040 and down to − 20 TWh by 2100) with significant spatial variability, which had never 
been quantified and mapped due to a lack of suited methodology and limited available data at the finest scale. 
The evolution of REC is modulated by the evolution of cooling needs and the deployment of AC systems to meet 
those needs. In the first 2 AC scenarios, the decrease of REC due to climate change could be totally offset in the 
South of France, which would then display an increase in REC. When the 2 AC scenarios are combined, an in
crease in REC could be seen over the whole country. The most extreme AC scenario shows a potential REC rise 
due to AC usage by 2% by 2040 and even 32% by 2100, which could be canceled by increasing the cooling 
setpoint up to 26–27 ◦C.   

Practical implications 

The residential sector is the leading electricity consumer in France, 
representing more than one-third of the final electricity uses. This sector 
has therefore to implement a pathway to reduce energy demand and 
greenhouse gas emissions. The relevance of related policies depends on 
the expected change in residential electricity consumption (REC) for 
various climate change scenarios and user behavior. REC change in 
climate change scenarios has already been studied at the country scale, 
but important physical (e.g. local weather conditions) and socio- 
economic (revenue, air-conditioning use, etc.) determinants of REC 
display a large spatial variability which implies REC should be studied 
locally. 

The REC model is computed using a linear temperature sensitivity 

model fitted by annual observed electricity consumption data and daily 
temperatures applied at the smallest French geographic census unit 
named Ilots Regroupés pour l’Information Statistical (IRIS), which di
vides the territory into meshes of about 2000 inhabitants per unit cell. 
Once the current electricity sensitivity is fitted for each IRIS, the REC 
change is computed by applying the model to temperature projections 
under climate change scenario RCP8.5 at intermediate (2025–2055) and 
far (2070–2100) time horizons based on 5 climate simulations per
formed in the frame of the international CORDEX program. In addition, 
two cooling scenarios based on the air-conditioning adoption rate and 
the cooling temperature sensitivity are also investigated. 

When only climate change is considered, REC is projected to 
decrease with decreasing heating needs in most IRIS cells. However, 
because of already deployed cooling equipment, REC is expected to 
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increase in 3–7% of the territory, totally offsetting the effect of reduced 
heating needs. A larger variability is found within administrative re
gions, including a few hundred to thousands of IRIS, than between 
administrative regions. Including AC scenarios offset in part the REC 
negative trend, with REC projected to increase in the South-East in the 
most conservative scenario to nearly the entire territory when large 
spreading and rate of AC use are assumed. Large AC use may lead to REC 
change ranging from 2% by 2040 to 32% by 2100, contributing to 
enhanced greenhouse gas emission and the urban heat island effect. 

Such results call for targeted and local information actions where the 
risk of spreading is high to limit the spreading and rate of use or mitigate 
their effect with more energy-efficient AC systems. As our projected 
future climate in Southern France is similar to the present climate of 
countries more to the South, which has not seen a large deployment of 
AC equipment, analyzing the socio-economic drivers, the energy policies 
of these countries and drawing inspiration from them to deploy locally 
adapted actions should be considered. Also, adapting the cooling set
point could help elaborate energy policies to lower the cooling 
temperature-sensitive REC. Based on our model, shifting the cooling 
setpoint from 21 ◦C at present to 23–24 ◦C by 2040 and 26–27 ◦C by 
2085 would prevent any cooling REC rise in our worst-case scenarios. 
These values are consistent with existing recommendations (e.g. US 
DoE). Finally, low-tech alternative solutions, such as cool white roof 
coating widely implemented in subtropical regions, can be implemented 
in France to improve the thermal comfort of buildings and reduce the 
use of AC equipment and their impact on the environment. 

1. Introduction 

France is committed, with the energy transition law for green growth 
of 2015, to reducing its greenhouse gas emissions by 40% by 2030 and 
divided by four by 2050. It also plans to reduce its consumption of fossil 
fuels by 30% by 2030 and to halve its final energy consumption in 2050 
compared to 2012 (regulations passed under the Law for the ecological 
transition and green growth1). This regulation contributes to the Paris 
climate agreement2 to keep temperature increases well below 2 ◦C and to 
pursue efforts for 1.5 ◦C. The French residential sector represents 20% of 
the CO2 emission of the country and 30% of the final energy uses. 
Hence, this sector could be a significant opportunity and challenge for 
policies to combat global warming. Indeed, the law text emphasizes 
improving building energy efficiency, thermal renovation of buildings, 
and constructing buildings with high energy performance. 

Limiting electricity consumption in the residential sector through 
actions aimed at improving the energy performance of buildings is 
therefore a major environmental challenge for communities. However, 
residential electricity consumption (REC) is highly dependent on 
household income, the thermal quality of occupied dwellings, and the 
cost of energy with regard to the purchasing power of the households 
(Giraudet et al., 2012; Branger et al., 2015; Frederiks et al., 2015) and 
therefore displays a very large spatial variability, especially in urban 
areas which are characterized by the heterogeneity of their de
mographic, socio-economic, environmental and cultural characteristics 
(Li and Kwan, 2018; Pickett et al., 2017) underlying urban resource 
demands (Rosales and Worrell, 2018; Voskamp et al., 2020). The case of 
France has been investigated specifically and supports studies conducted 
in other countries (Lévy and Belaïd, 2018). 

Electricity demand also depends on the outdoor temperature. De
mand for cooling rises once the temperature exceeds a cooling setpoint, 
while electricity demand for heating grows once the temperature drops 
below a heating setpoint (Petrick et al., 2010; Auffhammer and Mansur, 
2014; Damm et al., 2017; Wenz et al., 2017; Kozarcanin et al., 2019). As 
a result, a theoretical U-shaped link exists between electricity demand 

and temperature. Choices made by individuals to utilize heating and 
cooling systems to maintain a comfortable temperature in their resi
dences directly impact electricity demand (Emodi et al., 2018; Eme
nekwe and Emodi, 2022). Substantiated correlations between 
consumption and climate and weather conditions (Meng et al., 2020), 
demographic and economic factors (Bettignies et al., 2019) and urban 
and architectural morphological characteristics (Chen et al., 2020; You 
and Kim, 2018) cause the large spatial variability in residential energy 
demand. Climate, socio-economic and morphological characteristics 
have proven explanatory variables for energy demand and its spatial 
pattern (Chen et al., 2020; Kennedy et al., 2015; Wiedenhofer et al., 
2013). 

The link between temperature and electricity demand has been 
studied using various models [e.g. (Narayan et al., 2007; Emodi et al., 
2018)]. One approach is to model this nonlinear relationship by a 
smooth but nonlinear function of the temperature. For instance, Moral- 
Carcedo and Vicéns-Otero (2005) and Damm et al. (2017) used a Lo
gistic Smooth Transition (LSTR) function to model the electricity de
mand response to temperature variations in European countries. The 
advantage of such a model is that it adequately captures the rather 
smooth response of electricity demand summed over a large domain to 
temperature variations. On the other hand, it is less straightforward to 
interpret the physical meaning of the parameters of such a model. 
Another approach is to model the electricity demand as a linear com
bination of nonlinear functions of the temperature (making it a gener
alized linear model). For instance, Sailor and Muñoz (1997) studied the 
monthly electricity and gas consumption for states in the US using a 
linear model with degree-day (DD) inputs in addition to wind speed and 
relative humidity. 

In France, outdoor temperature increase could reach up to 3.8 ◦C by 
2100 with regards to 1900–1930 if no policy is in place to reduce 
greenhouse gas emissions (Ribes et al., 2022). Pilli-Sihvola et al. (2010) 
have investigated the impact of climate change using the DD approach 
on building energy demand for heating and cooling and the associated 
energy cost using climate simulations of the 3rd Coupled Model Inter
comparison Project (CMIP3). More recently, Larsen et al. (2020) find in 
downscaled CMIP5-climate simulations that when temperature evolu
tion is considered as the only factor of change, needs for cooling increase 
by 33% to 204% between 2050 and 2010 and needs for heating decrease 
by − 31% to − 6% while Damm et al. (2017) predict the impact of a +2 ◦C 
global temperature change on European electricity demand, with for 
France, an estimated decrease in total electricity consumption between 
-10TWh and -16TWh. The optimistic reduction in electricity projection 
is due to France’s current heating-dominated state. All households in the 
country utilize specific heating systems such as gas, oil, wood, or district 
heating, among which 37% employ electric heating. In contrast, the 
national adoption of air-conditioning (AC) remains relatively low, 
standing at only approximately 22% when considering all types and 
sizes of air conditioners, including mobile and heat pump units. 

Rising temperatures and temperature extremes, in particular, imply 
increased use of air conditioners, both in hot and humid emerging 
economies where incomes are rising and in industrialized economies 
where consumer expectations in terms of thermal comfort are constantly 
growing (van Ruijven et al., 2019). Previous studies (van Ruijven et al., 
2019; ?; ?) suggest that climatic conditions will encourage more 
households to adopt AC systems, therefore affecting electricity expen
ditures. On a global scale, the final energy consumption for AC in resi
dential and commercial buildings has more than tripled between 1990 
and 2016. The share of cooling in REC increased from around 2.5% to 
6% during the same period. The use of AC equipment is expected to 
increase dramatically, becoming one of the main drivers of global 
electricity demand (International Energy Agency, 2018). 

In France, as heat waves are more and more frequent and long, many 
households and businesses are equipped with AC for more comfort 
(Lemonsu et al., 2015). In 2020, for the first time, the number of 
equipment sold exceeded 800,000 units, whereas it had stabilized at 

1 https://www.legifrance.gouv.fr/loda/id/JORFTEXT000031044385  
2 https://unfccc.int/sites/default/files/english_paris_agreement.pdf 
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around 350,000 per year previously. In 2020, 25% of individuals are 
equipped compared to 14% in 2016, with disparities linked to the type 
of dwelling (31% of owners of individual houses compared to 20% of 
households living in collective housing), socio-professional category 
(37% of liberal professions, executives and higher intellectual pro
fessions against only 19% of households whose reference person is un
employed or inactive) and place of residence (e.g. 47% of inhabitants of 
the South-East and Corsica against only 11% in Brittany) (ADEME, 
CODA STRATEGIES, 2021). 

However, most previous studies of future consumption projection 
only focus on continental and national scales while not considering the 
sub-national disparity of temperature changes and non-climatic factors 
listed above. We aim to fill this gap by examining whether the national 
results proposed by these earlier studies remain consistent at smaller 
scales, given that changes in consumption and geographical variations 
in adaptation can lead to inequalities. We provide valuable information 
on the local impacts of climate change and building cooling strategies on 
residential energy demand, which can aid local climate and energy 
planning and decision-making. Specifically, we focus on the sub- 
regional variability of changes in residential AC requirements for cool
ing needs in the context of climate change. To this end, we use a 

modified temperature sensitivity model to project future REC at a fine 
scale. The smallest geographic scale used in this study is the so-called 
Ilots Regroupés pour l’Information Statistical (IRIS), here referred to 
as cells, which divides the French territory into a collection of about 
2000 inhabitants per cell. These cells are defined by respecting 
geographic and demographic criteria and have recognizable contours 
without ambiguity and stability over time. France has a total of 50,800 
cells (IGN, 2009). In metropolitan France, these cells are distributed 
among 12 administrative regions represented in Fig. 1. This model is 
designed to distinguish between different aspects of electricity use using 
data from all residential buildings, irrespective of their heating or 
cooling equipment. The projection of future residential electricity con
sumption is based on climate change pathway RCP8.5, using down
scaled CMIP5 climate simulations carried out as part of EURO-CORDEX 
(Jacob et al., 2014) and MEC-CORDEX (Ruti et al., 2016), while 
considering different scenarios of AC use for cooling - full generalization 
or saturation. 

After the introduction in Section 1, the details of the model can be 
found in Section 2, with information about the temperature and REC 
data that are applied to fit the model as inputs for the case of France and 
the future temperature projection and AC use scenarios. REC projection 
results and discussion are presented in Section 3, and the conclusion and 
policy implications are given in Section 4. The global flow chart of the 
total work is shown in Fig. 2. 

2. Methodology and data 

In this section, we explain how the REC is projected at the sub- 
communal scale by applying a temperature sensitivity model trained 
on historical data to climate projections. We also present the data for the 
application to France and define the scenarios used as projections of AC 
use with widespread adoption or saturation cases. 

2.1. Temperature sensitivity statistical model 

The relationship between the surface air temperature and the energy 
consumption over a domain is what we call the temperature sensitivity 
of the consumption. It has been modeled in various ways as presented in 
the previous section. The advantages of the DD approach are that it is 
simple to implement as a linear regression model with standard machine 
learning software and that it is straightforward to interpret the co
efficients of the models as temperature sensitivities. For these reasons, 
we follow the DD approach in this study. The heating degree-days (HDD) 
(resp. the cooling degree-days (CDD)) for a domain is a positive quantity 
computed from data for the (weighted-) average temperature of the 
domain. It is given by the sum over a period of the degrees below (resp. 
above) a certain setpoint temperature per timestep. Here, the timestep 
d is a day and the period y a year between 2011 and 2018 (included), 

Fig. 1. Map of 12 administrative regions of metropolitan France, with thicker 
white lines representing 94 departments and thinner white lines representing 
more than 48000 IRIS cells. (Plate carrée projection, same projection used in 
the presented study). 

Fig. 2. Flow chart of the present study.  
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while different domains, or cells, i are considered, each corresponding to 
a different IRIS. The HDD and CDD are thus defined here as (Moral- 
Carcedo and Vicéns-Otero, 2005), 

HDDi

(

y

)

:=
∑Ny

d=1
max

(
0; TH

i − Ti
(
y, d
))

CDDi

(

y

)

:=
∑Ny

d=1
max

(
0; Ti

(
y, d
)
− TC

i

)
,

(1)  

where Ti(y, d) is the daily-mean surface air temperature for a day d of 
year y averaged over cell i,TH

i and TC
i with TC

i ⩾TH
i are respectively the 

heating and cooling setpoints for cell i, and Ny (365 or 366) is the 
number of days in year y. The heating and cooling setpoints TH

i and TC
i 

are parameters to be estimated. 
The REC scales with the living area in each cell. To leave out this 

factor, we divide the REC by the living area, giving the normalized 
annual REC Ei(y) for cell i and year y in kWh/ m2. For a given scenario 
(see Section 2.3), the general temperature sensitivity model is then 
expressed as, 

Ei(y) = βH
i

(
y
)
HDDi

(
y
)
+ BiNy + βC

i

(
y
)
CDDi

(
y
)

= αH
i ηEl

i

(
y
)
HDDi

(
y
)
+ BiNy + αC

i ηAC
i

(
y
)
CDDi

(
y
)
.

(2)  

. 
The first equation in (2) relates Ei(y) to a heating, a basic, and a 

cooling REC (from left to right). The basic daily REC Bi (kWh/ m2) is part 
of the REC that does not depend on temperature. It determines the REC 
fully when TH

i ⩽Ti(y, d)⩽TC
i . In this study, we focus on the effect of 

climate change and the rate of air-conditioning (AC) adoption on the 
REC. Factors affecting the basic REC are thus assumed to remain fixed so 
that Bi does not depend on time. The temperature-sensitive RECs for a 
given year are proportional to DD. The coefficients of proportionality 
βH

i (y) and βC
i (y) (kWh/ (DD m2)) measure the increase in yearly REC per 

DD and unit of area in cell i. Each cell includes residential buildings with 
and without electric appliances. Thus, other things remain the same, 
lowering the fraction ηEl

i of residential buildings in cell i with electric 
heating lowers βH

i . To estimate the temperature-sensitive electric con
sumption restricted to residential buildings with electric heating, βH

i is 
developed as the product of ηEl

i with the heating temperature sensitivity 
αH

i (kWh/ (DD m2)) of cell i. Factors affecting the heating temperature 
sensitivity (consumer behavior, thermal efficiency of residential build
ings, etc.) are also assumed to remain fixed so that αH

i is independent of 
time. 

However, the rate of electric heating ηEl
i may vary in time. Yet, the 

data used in this study only provides estimates of ηEl
i for the year 2018 

(Section 2.2.1). We therefore assume that this rate is fixed to that of 
2018, ηEl

i (y) = ηEl
i (2018) := ηEl

i , and so βH
i (y) = βH

i (2018), for all years 
and all cells. This implies that an Ordinary Least-Squares (OLS) regres
sion with βH

i as coefficient and HDDi(y) as input is equivalent to an OLS 

regression with αH
i as coefficient and ηEl

i HDDi(y) as input. Similarly, βC
i is 

developed as the product of the fraction ηAC
i of residential buildings in 

cell i equipped with AC with the cooling temperature sensitivity αC
i 

(kWh/ (DD m2)) of cell i. Note, however, that while all residential 
buildings include some form of heating so that ηEl

i reflects the choice of 
heating system, all AC systems are electric, and ηAC

i gives the adoption 
rate of AC equipment. Regarding ηAC

i , as presented in the previous sec
tion, the AC adoption rate has increased during the past several years 
and hence depends on the year during the training (Section 2.2.4). For 
future projection, both αC

i and ηAC
i vary with the choice of AC use sce

nario, but they are assumed constant during a given period (Section 
2.3.2). 

In summary, all the parameters with their physical meanings are 
given in Table 1. For all pairs (i, y) of cells i and years y, the model inputs 
are.  

• ηEl
i (y)HDDi(y) and  

• ηAC
i (y)CDDi(y), 

where HDDi(y) and CDDi(y) depend on the daily-mean temperatures 
Ti(y, d) for all days d in y. The model coefficients are the temperature 
sensitivities αH

i and αC
i and the hyperparameters are TH

i and TC
i . The total 

number of cells is assumed to remain fixed. In the following sections, we 
present how this model is trained and applied to climate and AC pro
jections to project the REC. 

2.2. Training the temperature sensitivity model for the French REC 

To apply the temperature sensitivity model to the case of France at 
the finest spatial scales, one needs (i) pairs of input and target historical 
data to train and validate the model and (ii) input data from 21st century 
temperature projections on which to apply the trained model to project 
the REC. We present the training and validation data set in this sub
section while the presentation of the 21st century temperature pro
jections is left for Section 2.3. 

We thus need data for the inputs of the model: the yearly DD, 
electric-heating rates, and AC adoption rates. The former is computed 
from daily surface air temperatures and heating and cooling setpoints. 
The target Ei(y) is computed from the cell’s REC and living surface. 
Several of these variables used to compute both the inputs and the tar
gets are taken from a dataset provided by the French distribution system 
operator, Enedis. We first present this dataset and then describe how it is 
crossed with additional data sources to produce the input and the target 
training data. The longest training period that the following datasets 
permit ranges from 2011 to 2018 (included), which is the training 
period we use. 

2.2.1. Energy and building characteristics per cell 
The Enedis dataset is accessed via their website (Enedis, 2020) and 

includes the following variables that are relevant to this study:  

• longitude and latitude coordinates of the cell centroids used to assign 
meteorological stations to cells in Section 2.2.2;  

• yearly REC data per cell from 2011 to 2018 (included) used as the 
target in Section 2.2.5;  

• electric-heating rates ηEl
i for 2018;  

• fraction of cell buildings with surfaces in different intervals used to 
compute the target in Section 2.2.5;  

• Enedis estimates of βH using a linear model based on DD akin to the 
model (2) (see below);  

• yearly HDDs used in this Enedis model since 2018, but only at the 
department level, thus not satisfying our needs;  

• heating setpoints used to estimate the HDDs used here as described 
Section 2.2.3; 

Table 1 
Summary of variables and their physical meanings presented in Eq. 2.  

Variable Meaning 

Ei(y) Annual REC normalized by surface for cell i and year y (kWh/ m2) 
Bi The basic daily REC for cell i (kWh/ m2) 
Ny The number of days in a year y (365 or 366) 
αH

i Heating temperature sensitivity for cell i (kWh/ (DD m2)) 
αC

i Cooling temperature sensitivity for cell i and year (kWh/ (DD m2)) 
ηEl

i (y) Rate of electric heating for cell i and year y (%) 
ηAC

i (y) Rate of AC adoption for cell i and year y (%) 
βH

i (y) Coefficient measuring increase in yearly REC per HDD and unit of area 
for cell i and year y (kWh/ (DD m2)) 

βC
i (y) Coefficient measuring increase in yearly REC per CDD and unit of area 

for cell i and year y (kWh/ (DD m2))  
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The Enedis estimates of βH rely on consumption data at higher 
temporal resolutions (semi-annual, monthly, or daily) than the publicly 
available data. They thus can fit their temperature sensitivity model at 
the highest temporal resolution and average over each cell the estimated 
βH for the different delivery points in the cell. However, the βH of a cell is 
provided only if the estimate is considered sufficiently precise, i.e. if a 
minimum of 500 delivery points is available in the cell. As a result, 
around 50% of the cells are missing, whereas the model (2) can be 
applied to the annual consumption data to provide estimates of the 
temperature sensitivities for all cells in France. 

2.2.2. Surface temperatures for training 
To train the model (2), we use E-OBS version 20.0 (ECA&D, 2020) of 

the European Climate Assessment & Data (Klok and Klein Tank, 2009; 
Cornes et al., 2018) (ECA&D for continental gridded surface air tem
perature (Haylock et al., 2008). This gridded dataset is available at daily 
timesteps and a spatial resolution of 0.1 ◦ over Europe and the Medi
terranean and spans from 1950 to the present. Among the available daily 
statistics, only the daily mean is retained here. Data observations are 
aggregated from several weather stations and gridded using an inter
polation procedure combining spline interpolation and kriging. This 
dataset is a reference dataset for regional climate studies [e.g. (Haylock 
and Goodess, 2004; Santos et al., 2007; Stefanon et al., 2012; Raymond 
et al., 2016; Raymond et al., 2018)] and the evaluation of regional 
climate models [e.g. (Frei et al., 2003; Räisänen et al., 2004; Kjellström 
et al., 2010; Flaounas et al., 2013; Stéfanon et al., 2014; Ayar et al., 
2016; Drobinski et al., 2018; Raymond et al., 2018)]. E-OBS includes 
some errors and uncertainties (changes in station locations or can induce 
those interpolation uncertainties, for example). Flaounas et al. (2013) 
assessed the E-OBS gridded dataset with temperatures displaying rela
tively small biases. 

The temperature sensitivity model (2) requires temperatures for each 
cell to compute the HDD and CDD, but the cells (i.e. the IRIS in the case 
of France) do not correspond to the E-OBS grid points. We thus need to 

adjust E-OBS gridded temperatures to the cells over the French domain. 
This is done here using a nearest-neighbor interpolation using the 
Euclidean distance between temperature grid points and the cell cen
troids from Enedis (Section 2.2.1) in a plate carrée projected coordinate 
system. In order to match the target REC data from Enedis (Section 
2.2.1), only the E-OBS data is kept from 2011 to 2018 (included) is kept 
as training input. 

2.2.3. Heating and cooling setpoints estimates 
A couple of temperature setpoints TH

i and TC
i are required for each 

cell i in order to compute the HDDs and the CDDs in the temperature 
sensitivity model (2). The estimation of the temperature setpoints is 
based on those available in the Enedis dataset (Section 2.2.1) and which 
Enedis uses to compute the HDDs in their own temperature sensitivity 
model. In our case, the model is simplified by identifying TH

i for each cell 
i in the given administrative region r of France with the average TH

r of all 
the values of TH provided by Enedis for locations in r. The heating set
point is thus constant over each region, i.e. TH

i = TH
r for all cells i in r, 

where r runs over all the administrative regions of France. The resulting 
TH

r estimates are shown in Table 2. 
On the other hand, no cooling setpoints are provided by Enedis. 

Instead, we fix TC
i for all the cells in France to the value of 21 ◦C used by 

EUROSTAT (YYYY) and International Energy Agency (2020). 
Another approach to choose TH

i and TC
i could be to assume that these 

temperature setpoints are constant inside each region and to fit them as 
hyperparameters via a grid search. Doing so, it is found that the pre
diction error estimated via cross-validation is only marginally improved 
and that the main conclusions of this study remain unchanged (not 
shown here). Considering the higher complexity of this approach, the 
methodology presented in the previous paragraphs of this subsection is 
preferred here. 

2.2.4. AC adoption rates for training 
In addition to surface temperatures, the model (2) requires as input 

AC adoption rates ηAC
i for each cell in France. However, this information 

is not available at such a small geographical scale. Based on the evolu
tion of the national AC adoption rate (ADEME, CODA STRATEGIES, 
2021) and the regional distribution data in 2019 (Daguenet et al., 2021), 
we estimated the regional AC adoption rates at the regional level be
tween 2011 and 2020 and assumed that all cells inside one adminis
tration region share the same adoption rate, i.e. ηAC

i (y)=ηAC
r (y). This 

progression in AC adoption rate during the training period is assumed to 
be geometric. We calculated the average ratio between different years, 
which indicates a growth of 20% between two consecutive years. This 
AC adoption rate progression ratio is assumed constant during training, 

i.e. ηAC
i (y+1)
ηAC

i (y) =constant = 120%. The population-weighted national 

average is then compared to the reference used in ADEME, CODA 
STRATEGIES (2021) and is consistent for 2016–2020. The estimated 
rate for the years 2011 and 2018 are shown in Table 3 with in between a 
geometric evolution. More details about the initial data used for the 
estimation can be found in Section C. Errors due to this factor are not 
studied but should be kept in mind as a limit due to the accessibility of 
data. 

2.2.5. Living area to standardize REC 
The model (2) is trained using as targets the yearly REC data from the 

Enedis dataset (Section 2.2.1). See in Section A for the details of the REC 
dataset. However, we are interested in the consumption per unit of area. 
Moreover, the number of buildings per cell — also provided by Enedis — 
varies from one year to the next. We thus need to normalize the REC of 
each cell by the corresponding total living surface. Unfortunately, Ene
dis does not provide the total living surface but the fraction τk

i of 
buildings in cell i for which the living surface belongs to an interval Ik in 
{(0,30), (30,40), (40,60), (60,80), (80,100), (100,+∞)} (m2). Owing 

Table 2 
Heating setpoints TH

r for all regions of metropolitan France computed 
according to Section 2.2.3.  

Region name TH
r [◦C] 

Auvergne-Rhône-Alpes 16.0 
Bourgogne-Franche-Comté 16.3 

Brittany 14.8 
Centre-Val-Loire 15.0 

Grand-Est 16.6 
Hauts-de-France 16.0 

Ile-de-France 15.8 
Normandie 15.0 

Nouvelle-Aquiaine 15.3 
Occitanie 16.4 

Provance-Alpes-Côte d’Azur (PACA) 17.4 
Pays-de-la-Loire 15.0  

Table 3 
AC adoption rates (%) for 2011 and 2018.  

Region name ηAC
2011 ηAC

2018 

Auvergne-Rhône-Alpes 4.3 17.4 
Bourgogne-Franche-Comté 3.4 13.9 

Brittany 2.5 10.5 
Centre-Val-Loire 4.0 16.5 

Grand-Est 3.4 13.9 
Hauts-de-France 2.5 10.5 

Ile-de-France 4.5 18.3 
Normandie 2.7 11.3 

Nouvelle-Aquiaine 4.3 17.4 
Occitanie 5.6 22.6 

PACA 10.5 41.7 
Pays-de-la-Loire 2.9 12.2  
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to the data constraints, we cannot get more specific information at the 
building level and can only present the distribution of intervals at the 
IRIS level. Thus, for each interval, we approximate the living surface of 
buildings with a surface in Ik by the center Ck (m2) of the interval, except 
for the first and last intervals. We take the end value of 30 m2 for the first 
interval rather than the median value due to the legal limitations on 
small living surfaces. For the last interval, we take the finite end of the 
interval 100 m2, primarily because we lack further information on the 
distribution within the interval and also to counterbalance any potential 
overestimation for the first interval. It’s important to note that these 
assumptions were made out of necessity due to the data limitations, and 
the accuracy of these estimates could potentially be improved with data 
availability at the building level. Then, the average living surface is 
estimated from the τk

i provided by Enedis with the following formula: 

Si =
∑

k
τk

i Ck

(

m2

)

. (3)  

2.2.6. Trained temperature sensitivities 
As an intermediate methodological result, the maps of the estimated 

αH and αC and corresponding βH and βC for cells with statistically sig
nificant coefficients at the 5% significance level (60% of all cells) are 
shown in the left and middle panels of Fig. 3. The OLS regression was 
used with a constraint on coefficients to be positive. Regression methods 
with regularization (Lasso and Ridge) were also tested, but this led to an 
increase in the test R2 score of less than 10% (not shown here), so the 
OLS was preferred to limit the number of parameters of the model. All 
the test scores are estimated using k-fold cross-validation with one fold 

per year of data (8 folds in total). The test R2 score averaged over all cells 
is about 0.68 with a 25% quartile of 0.56 and a 75% quartile of 0.79. 
More details about the test R2 score are given in Section B as well as the 
validation of the model with comparison to Enedis datasets in Section A. 

2.3. Projection data and scenarios definitions 

As mentioned in Section 2.1, the basic consumption, represented by 
B in (2), is assumed to be stationary all the time. As far as the heating 
REC is concerned, we assume that αH,TH and ηEl are also stationary so 
that only the HDDs change in response to temperature changes. 
Regarding the cooling REC, we follow a similar approach as for the 
heating REC, but ηAC and αC also change in some AC scenarios (TC is 
always stationary). We thus need to associate each cell with a temper
ature projection for a given climate change pathway, as well as with 
projections of ηAC and of αC. 

2.3.1. Temperature projection data under a climate change pathway 
In this study, the most severe climate change pathway, the Repre

sentative Concentration Pathways (RCP) 8.5, is selected. The corre
sponding bias-corrected daily-mean temperature change is obtained 
from multiple regional climate models from the CORDEX program. In 
this study, these projections are completed with the corresponding his
torical experiments that serve as a reference to measure the effect of 
climate change. Due to modeling uncertainty, the projected statistics of 
the atmosphere may vary significantly with the choice of Regional 
Climate Model (RCM) and of driving Global Climate Model (GCM). 
Hence, multi-model ensembles are commonly used in climate studies to 

Fig. 3. Top: Estimates of αH (left) and αC (middle) obtained by training the model (2) on the observational data (Section 2.2). Projections of αC (right) by gradual 
spreading (Section 2.3.2). Bottom: Corresponding values of βH (left) and βC (middle), and projections of βC (right) for the AC2018 scenario (Section 2.3.2). 
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provide a partial estimation of the modeling error. This is why the five 
model combinations listed in Table 4 are used in this study. These 
simulations are accessed via the Copernicus Climate Change Service 
database ( https://climate.copernicus.eu/). 

To associate a cell to a climate-model simulation, the same meth
odology as for the temperature observations used for training is followed 
(Section 2.2.2). Three climate-simulation periods of 30 years are 
considered, which are distinct from the training period defined in Sec
tion 2.2: a historical period from 1975 to 2005 (excluded) — used as 
reference — and two projection periods, one from 2025 to 2055 and one 
from 2070 to 2100. Results associated with the latter are respectively 
referred to as CC2040 and CC2085 (based on the central year of the 
period). 

As intermediate methodological results, mean historical HDD and 
CDDs, as well as the corresponding projected changes, are represented in 
Fig. 4. One can see that the temperature increase projected over France 

leads to a general decrease in the HDDs (top panels) and to a general 
increase in the CDDs. These changes are however not homogeneous 
since the decrease in the HDDs is strongest in the southern and eastern 
parts of France, while the increase in the CDDs is largest in the southern 
part of France. 

2.3.2. AC use scenarios 
In the present framework, two factors are sensitive to the evolution 

of AC use during the 21st century: the AC adoption rate ηAC
i , and the 

switch of a cell from an αC
i of zero to a positive αC

i , for each cell i. While 
the former reflects the evolution of AC use within a cell, the latter cor
responds to a conversion of a cell from having no AC user at all to having 
some AC users. Here, we do not attempt to make plausible projections of 
these factors based on current signals. Instead, as summarized in Table 5 

Table 4 
Institute, GCM name and RCP name for the 5 climate change simulations used in 
this study.  

No. Institute Driving GCM model RCM model 

1 CNRM CERFACS-CM5 ARPEGE51 
2 CNRM CERFACS-CM5 RCA4 
3 IPSL CM5A-MR RCA4 
4 IPSL CM5A-MR WRF331F 
5 ICHEC EC-EARTH RACM022E  

Fig. 4. Mean over 1975–2005, mean change over 2025–2055 wrt. 1975–2005 (CC2040), and mean change over 2070–2100 wrt. 1975–2005 (CC2085) for the HDDs 
(top) and CDDs (bottom) computed according to Eq. 1. The temperature data for 1975–2005 is from the historical CORDEX simulations, while that for 2025–2055 
and 2070–2100 is from the RCP8.5 CORDEX simulations. The results are spatially averaged over the departments and averaged over the climate-model simulations 
listed in Table 4. Warm colors represent situations associated with warm temperatures (i.e. to a decrease in heating REC and to an increase in cooling REC). 

Table 5 
Definition of the four AC scenarios in terms of AC adoption rate and αC spreading 
strategy. XXXX is either 2040 or 2085, corresponding to the central year of the 
climate change projection window considered.  

Name Definition  
ηAC Gradual Spreading of αC 

CCXXXX-AC18-NOGS Same as in 2018 No 
CCXXXX-AC18-GS Same as in 2018 Yes 
CCXXXX-ACall-NOGS 100% No 
CCXXXX-ACall-GS 100% Yes  
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and explained below, two extreme cases are considered for both factors 
and indifferently for the 2025–2055 and the 2070–2100 periods. 

Regarding ηAC, the minimal scenario is that ηAC remains fixed to its 
2018 cell values (Section 2.2.4), corresponding to a situation in which 
AC installation no longer progresses. The maximal scenario is that ηAC 

has reached 100% in every cell before the beginning of the projection 
period and remains fixed over the period, corresponding to a situation in 
which all households are equipped with AC (regardless of the 
technology). 

Regarding αC, the minimal scenario is that cells with no cooling 
temperature sensitivity remain so. The maximal scenario is that all cells 
become cooling-sensitive. In this case, further assumptions are needed to 
determine αC for these cells that were not cooling-sensitive historically. 
Here, we assume that αC for these cells is the result of interpolation from 
the αC values of the surrounding cells with a positive αC. A nearest- 
neighbor interpolation is performed for a given number of neighbors 
and for the Euclidean distance in the plate carrée projection. The 
number of neighbors is optimized based on the methodology described 
in Section D, giving an optimal number of 25 cells. We refer to this 
scenario as the gradual spreading of αC and the resulting αC estimates 
are shown in Fig. 3c. The gradual spreading scenario mimics a ”do like 
my neighbor” behavior. 

2.4. Quantifying the uncertainty in the projected REC change 

For a given cell i, a model m (Table 4 and a scenario s (Table 5), we 
define the absolute change in REC, ΔEm,s

i , as the difference (Δ) at i be
tween the REC averaged (⋅) over the CORDEX historical period and the 
REC averaged over one of the two CORDEX projection periods, esti
mated with the model m simulations for the scenario s. In addition, the 
relative REC change is defined as the absolute REC change divided by 
the REC averaged over the CORDEX historical period. Given the sta
tionarity assumptions (Section 2.3), the absolute REC change is given by 

ΔEm,s
i = αH

i ηEl
i Δ[HDDm,s

i ] +Δ
[(

αC
i ηAC

i

)sCDDm,s
i

]
. (4) 

In the AC18-NOGS scenario, αC and ηAC are also stationary, so that 

ΔEm,s
i = αH

i ηEl
i Δ[HDDm,s

i ] +
(
αC

i ηAC
i

)AC18− NOGSΔ[CDDm,s
i ], (5)  

in this case. 
The corresponding multi-model average is 

〈

ΔEs
i

〉

:=
1
M

∑M− 1

m=0
ΔEm,s

i . (6) 

An essential part of this study is quantifying the uncertainty of our 
estimates of temperature-sensitive REC change 〈ΔEs

i 〉. From (6), we can 
see that errors may come from.  

• the temperature sensitivity model design,  
• the stationarity assumptions on the model coefficients and on electric 

appliances adoption rate ηEl
i and ηAC

i during scenarios studies,  
• the regression of the coefficients from a particular training dataset,  
• the historical estimates of ηEl

i and ηAC
i ,  

• the climate models (Jacob et al., 2014; Ruti et al., 2016),  
• the choice of climate change pathway and AC use scenario. 

Here, only the worst-case climate change pathway is considered (i.e. 
RCP8.5, Section 2.3.1), so that uncertainty in the climate-model 
pathway is not assessed. On the other hand, a partial estimate of 
climate-model errors is provided in the results Section 3 from the vari
ations of the projected REC change with the choice of the climate model. 
To estimate the sensitivity of temperature-sensitive REC change to AC 
adoption rate projections, extreme scenarios are considered (Section 
2.3), while measurements of the electric-heating rate are assumed to be 
reliable and representative of other years than the year it is provided for. 
The assumption of the stationary temperature sensitivity model co
efficients restricts the scope of the results of this study. It is not tested in- 
depth in this work, but a simple analysis is conducted in Section 3.2 and 
further discussed in terms of policy implications in Section 4. Finally, the 
errors from the model design and the regression are estimated using 
cross-validation (Section 3.4). 

Fig. 5. Relative change (%) in REC wrt. to the historical period (1975–2005) for CC2040 (top) and CC2085 (bottom) and for different AC scenarios: AC18-NOGS (left 
column), ACall-NOGS (second column), AC18-GS (third column) and ACall-GS (right column). 
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3. Results and discussion 

We now analyze the projected changes in the REC, first for the sce
narios where the AC uses remain fixed, then for scenarios with AC uses 
changes. The discussion of the uncertainty in the results is left for the 
next Section 4, the main conclusions from these results being robust. 

3.1. Projected REC change without change in AC use 

The projections of temperature-sensitive REC changes for fixed AC 
use (AC18-NOGS) are shown in Fig. 5a and Fig. 5e. In general, the REC 
decreases between 7% and 16% in all departments for CC2040, down to 
20% to 42% for CC2085. Aggregated at the country scale, the REC 

Fig. 7. Same as Fig. 5 but for th.e cooling REC.  

Fig. 6. Boxplots over the cells of the relative change in temperature-sensitive REC corresponding to Fig. 5. The whiskers here show the minimum on the left and the 
99% quantile on the right. 

Table 6 
Decomposition of variability into different geographical scales for different 
studied variables in terms of proportion (%).  

Variable yi σ2(yi − 〈yi〉d)

σ2(yi)

σ2(〈yi〉d − 〈yi〉r)

σ2(yi)

σ2(〈yi〉r − 〈yi〉n)

σ2(yi)

βH
i 75% 13% 12% 

αC
i 77% 4% 19% 

〈ΔHDDi〉
CC2040 24% 20% 56% 

〈ΔHDDi〉
CC2085 29% 23% 48% 

〈ΔCDDi〉
CC2040 13% 15% 72% 

〈ΔCDDi〉
CC2085 14% 13% 73% 

〈ΔEi〉
AC18− NOGS 82% 7% 11%  
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Fig. 8. The global uncertainty of estimation of evolution in temperature-sensitive REC by combining all possible estimated coefficients with the leave-one-out cross- 
validation method and the 5 CORDEX simulations, represented by the Relative Standard Deviation (RSD) for the CC2040-AC18-NOGS (left) and the CC2085-AC18- 
NOGS (right) scenarios. 

Table 7 
Average values with uncertainty for all possible combinations, the uncertainty is 
converted to the same magnitude by averaging over the number of cells. A t-test 
shows that mean values of REC change under all scenarios are significant.  

Time Scenario 
name 

Mean (GWh/ 
cell) 

Std (GWh/cell)    

Cell Department Country 

2040 CC-AC18- 
NOGS 

− 0.22 0.037 0.029 0.024 

CC-AC18-GS − 0.16 0.053 0.038 0.031 
CC-ACall- 
NOGS 

− 0.16 0.066 0.042 0.032 

CC-ACall-GS 0.08 0.191 0.146 0.125 
2085 CC-AC18- 

NOGS 
− 0.53 0.085 0.057 0.047 

CC-AC18-GS − 0.28 0.185 0.150 0.136 
CC-ACall- 
NOGS 

− 0.26 0.236 0.159 0.138 

CC-ACall-GS 1.26 1.019 0.867 0.790  

Table 8 
Comparison of uncertainty due to model or CORDEX for scenario AC18-NOGS in 
the form of standard deviation (GWh/cell).  

Time Cell Commune Country  

Model CORDEX Model CORDEX Model CORDEX 

2040 0.020 0.034 0.012 0.029 0.010 0.022 
2085 0.056 0.066 0.031 0.052 0.026 0.040  

Fig. 9. Temperature-sensitive REC per year averaged over departments estimated from (a) the Enedis βH estimates for 2018 (for 50% of the cells only, Section 2.2.1), 
(b the model (2) applied to the E-OBS temperatures for 2018 and (c) the model (2) applied to the CORDEX historical temperatures over the 1975–2005 period and 
averaged over the period and over the climate-model simulations (Section 2.3.1). 

Fig. 10. Total temperature-sensitive REC reference aggregated at the depart
ment level, estimated with our model using the temperature of 1975–2005 from 
CORDEX simulations on all valid cells (60% of the cells). 
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decreases by about 8TWh and 20TWh, respectively. This is consistent 
with the results of Damm et al. (2017); Spinoni et al., 2018, but signif
icant variations are observed between departments. 

For this scenario and for a given cell, according to (5), the projected 
heating and cooling REC changes are proportional to the HDD and CDD 
changes, respectively, represented in Fig. 4. However, the coefficients of 
proportionality, αH

i ηEl
i and (αC

i ηAC
i )

AC18− NOGS, represented in Fig. 3, 
depend on the cell. From this can be deduced that the REC changes for 
this scenario are dominated by the large decrease in the HDDs (Fig. 4b 
and Fig. 4c) modulated by variations in βH with the cells (Fig. 3d). This 
effect can for instance be seen in the weaker reduction of the REC in the 
North-East and the South-West of France. 

In addition, the REC decrease is reduced in the south of France due to 
the significant increase in the cooling REC with the increase in the CDDs 
(Fig. 4e and Fig. 4f) in conjunction with the positive βC there (Fig. 3e). 
This is more obvious from the plots of the cooling REC for the AC18- 
NOGS scenario in Fig. 7a and Fig. 7e. One can see that, according to 
this scenario, the cooling REC increases everywhere, but this is partic
ularly evident along the Atlantic coast and South of 46 ◦N latitude, be
tween the Massif Central and the Alps, especially for the CC2085 period. 
At these locations, HDDs indeed tend to increase significantly, but the 
correlation is not perfect, since, for this scenario, the translation of this 
change in a cooling REC change depends on AC being already in use 
there (Fig. 3e). A substantial increase in the cooling REC is also observed 
in the Northwest part of France for CC2085 (Fig. 7f), even though the 
increase in CDDs is relatively weak there (Fig. 4f). This is explained by 
the fact that a significant number of cells there have a large βC (Fig. 3e). 

The distribution of the temperature-sensitive REC change at the cell 
level is shown in Fig. 6 in the form of box plots. The distribution for 
scenario CC2040 without AC use changes (AC18-NOGS) is right-skewed, 
meaning the temperature-sensitive REC is expected to decrease around 
15% in most regions. In the longer term, the disparity between IRIS 
increases with decreasing averaged temperature-sensitive REC. Indeed, 

some IRIS may display a positive temperature-sensitive REC change (i.e. 
an increase in temperature-sensitive REC) over 3% of the French terri
tory in the near future and up to 7% by the end of the 21st century. 

3.2. Projected REC change with change in AC use 

The projections of temperature-sensitive REC change with different 
AC scenarios are shown in 5b-5d and 5f-5h. Contrary to the results 
including temperature change only, some regions display an increase of 
temperature-sensitive REC whose pace and spatial extent depend on the 
AC scenario. 

Results also show that the different factors have diverse effects. In 
the case where the AC rate is changed without spreading geographically, 
the temperature-sensitive REC is expected to increase in the South-West 
of France and in the South along the Mediterranean Sea (Fig. 5b and 
Fig. 5f). Indeed, in this region, αH is relatively low with respect to other 
regions, and AC systems are already deployed so that αC is different from 
zero. But αC in these regions has a relatively low value, so if the tem
perature change is only accounted for, increased CDD makes the decline 
in temperature-sensitive REC less rapid. However, in the considered 
scenario, the change in AC rate directly multiplies the current cooling 
demand by four to five times. The electricity savings from heating in the 
South-West are thus expected to be fully offset by cooling in the near 
future (Fig. 7b). In the far future, this trend should be exacerbated in the 
South-West and in the South and spread significantly along the Atlantic 
coast and South of 46 ◦N (Fig. 7f). As there is no spatial spreading of AC 
usage, the geographical patterns of temperature-sensitive REC change 
are similar between Fig. 7a and Fig. 7e, and Fig. 7b and Fig. 7f. 

With regards to the AC rate scenario, the gradual spreading of the 
present AC rate lowers the change of REC for cooling needs, but REC for 
cooling needs becoming positive spreads geographically (Fig. 5c and 
Fig. 5g). Gradual spreading does not change the values instantly in re
gions where most IRIS cells are already given with non-null estimation 
for αC. However, it helps to smooth the map of coefficients as shown in 
Fig. 3b and Fig. 3c. Based on observational data, many cells in Ile-de- 
France, Auvergne-Rhône-Alpes, and along the Atlantic coast have been 
given null estimates for αC. However, some nearby cells still received 
significant values for αC with high regression scores. Assigned with 
proximity averages, these areas mixed with sporadic large values are 
most affected. Fig. 6 shows that a 100% AC rate in already equipped cells 
(ACall-NOGS) modifies the shape of the distribution, with an increased 
number of cells with positive evolution. More positive values correspond 
to the cells currently equipped with AC at which the AC rate is increased 
from its current value to 100% and where the change of REC for cooling 
needs exceeds that for heating needs. No change is expected for the cells 
currently without AC hence the minimal, the first quartile even the 
median values remain the same as for AC18-NOGS. In the gradual 
spreading scenario (AC18-GS), the shape of the distribution displays an 
even larger positive skewness than in the 100% AC rate scenario. Less 
negative values correspond to the larger number of cells equipped with 
AC and bring an increase to all cells. 

In a scenario combining gradual spreading and 100% AC rate, almost 
half of the territory, except the North of France, sees the REC increasing 
in the near-term future, amounting to a global change of +2%. At the 
end of the 21st century, this fraction of positive trend increases up to 
90%, leading to a global change of +32%. 

The results of these scenarios motivate actions allowing at least to 
prevent AC from inducing an increase in cooling REC. A simple 
approach, applicable to the whole country, consists at least in the region 
of South of France with the greatest AC impact to modify in the future 
climate scenarios only the cooling setpoint in such a way as to maintain 
the cooling REC unchanged with respect to the present situation. Such 
an approach leads to the most constraining action as it sets for the whole 
country the highest cooling setpoint, but it ensures at least unchanged 
cooling REC in the South of France and in most regions of France a 

Fig. 11. Comparison between linear regression methods of R2 score distribu
tion for all valid IRIS. 

Fig. 12. Test R2 score between estimated αC
i with Gradual Spreading method 

and regression model estimation as a function of the chosen number of 
neighbors J taken into account for the calculation of average 
(Gradual Spreading). 
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negative cooling REC trend. The cooling setpoint preventing any cooling 
REC increase over the whole country varies with the time horizon, 
which is about 23–24 ◦C by 2040 and 26–27 ◦C by 2085. 

3.3. Spatial heterogeneity 

The maps shown in Fig. 3 and Fig. 5 show an apparent geographical 
disparity of temperature sensitivities and temperature-sensitive REC 
changes. To compare the intra-department variability with the one of 
inter-department, each studied variable yi (sensitivity coefficients αH

i ,αC
i , 

DD evolution 〈ΔHDDs
i 〉, 〈ΔCDDs

i 〉 and the REC evolution 〈ΔEs
i 〉) can be 

decomposed as: 

yi = (yi − 〈yi〉d)+ (〈yi〉d − 〈yi〉r)+ (〈yi〉r − 〈yi〉n)+ 〈yi〉n. (7)  

with 〈yi〉d the average value of cells inside a given department, 〈yi〉r the 
average value of cells inside a given administrative region, and 〈yi〉n the 
average value of all cells in France. Hence with the above equation, the 
variability of all cells can be decomposed into disparities at several 
stages: 

σ2( yi
)
= σ2( yi −

〈
yi〉d

)
+ σ2( 〈yi〉d −

〈
yi〉r

)
+ σ2( 〈yi〉r −

〈
yi〉n

)
. (8)  

where σ2(yi − 〈yi〉d) represents the variability of cells inside the depart
ment while σ2(〈yi〉d − 〈yi〉r) represents the variability of departments 
inside a given administration region and σ2(〈yi〉r − 〈yi〉n) the variability 
between different administrative regions. Table 6 shows the proportion 
of variability at each geographical scale over the whole variability. 

The regional variability is more important than the local difference 
for the DD changes. However, the variability of temperature sensitivities 
between cells within the same department dominates. At the same time, 
because of the large spatial variability of βH and αC within the admin
istrative regions, a larger disparity of temperature-sensitive REC 
changes is found between cells than between administrative regions. For 
both temperature sensitivities, βH and αC and temperature-sensitive REC 
changes, it shows that the variability between the cells is more signifi
cant than the difference between regions, which justifies our choice of 
study at a small geographical scale. 

3.4. REC change error estimates 

In this study, public data are used to train the temperature sensitivity 
model with only eight annual samples applied for the regression. 
Compared to models with a larger dataset, our model can be easily 
influenced by outliers and may have coefficients over-fitted. 

We did not choose regularized regression because the performance 
did not improve much, but this method may be more attractive if a more 
extensive input is available. Nonetheless, the possibility of applying the 
leave-one-out cross-validation over the training gives us eight possible 
models and, thus, a range of eight different results of the temperature 
sensitivities with uncertainty. 

At the same time, CORDEX simulations from different models may 
produce different future temperature projections. Combining the five 
different simulations and all possible estimated coefficients with the 
leave-one-out cross-validation method, the global uncertainty of our 
results, quantified by the Relative Standard Deviation (RSD), is shown in 
Fig. 8. The relative error is large in the South-West, where αC > 0, due to 
the biased model regressions as the observed temperatures do not 
largely and frequently exceed the 21 ◦C cooling setpoint. 

The global uncertainty for all the scenarios is presented in Table 7. 
The standard deviation is identified after aggregating REC at different 
levels. For the results to have the same order of magnitude and to be 
comparable, the REC change is normalized by the average number of 
IRIS in the desired geographical scale. The method using a REC linear 
model together with the CORDEX simulations derives robust estimates 
of future REC with an error of less than 18.4% without assumptions on 

AC uses. The uncertainty of scenario ACall-GS is the largest among all 
other scenarios because the results may become less precise with all the 
assumptions together. We can see clearly that with spatial aggregation, 
the error decreases because there can be compensation between IRIS 
within the large scales, and the variation becomes smaller. For the 
average values of all possible combinations, a t-test shows that the mean 
values of REC change under all scenarios are significant. 

The global error of future REC mainly comes from the multi-model 
ensemble spread of the projected temperatures and the training bias 
and variance of the REC linear model. To find the standard deviation due 
to different sources, we use the average values of the cross-validated 
coefficients estimated by the model or the average of the five simula
tions of CORDEX, respectively. The uncertainty due to the simulations of 
CORDEX and to the model regression can be found in the following 
Table 8. With the previous tables, we can see clearly that the uncertainty 
due to the various simulations of CORDEX leads to a more significant 
error than the one from the regression. This 10% error due to the model 
is reassuring the basis of a temperature sensitivity model: the tempera
ture sensitivity is quasi-constant under a stable climate. Nevertheless, 
this error can still be improved if more annual consumption data are 
available or daily consumption data can be accessible. 

4. Conclusions and policy implications 

A number of key messages can be drawn from the results of this 
study. First, REC varies significantly at very fine spatial scales, from the 
IRIS size (region of 2,000 inhabitants) to the administrative departments 
(96 departments on the European continent and 5 overseas) and regions 
(13 on the European continent and 5 overseas). Such variability had 
never been quantified and mapped due to a lack of suited methodology 
and limited available data at the finest scale (IRIS). Such variability 
which is the largest at the finest spatial scale calls for solutions and 
policies steered to the local specificities. 

With increasing temperatures due to climate change, the heating 
needs decrease especially in the North-East which displays a continental 
climate with very hot summers and very cold winters (Köppen, 1936) 
and thus a strong sensitivity to any heating need reduction. Conversely, 
the South and Western regions along the Mediterranean Sea and the 
Atlantic Ocean, respectively, display a smaller trend in heating needs as 
they display a Mediterranean climate (hot, dry summers and cool, wet 
winters) and a maritime climate (cool summers and mild winters) 
(Köppen, 1936), respectively with warmer winters with regards to the 
North-East of France. At the end of the 21st century, in the worst-case 
climate scenario (RCP8.5), the spatial variability of the trend de
creases as many regions are expected to experience temperatures much 
more rarely below their heating setpoint. There is a strong link between 
the heating needs and its evolution with that of REC. 

However, the evolution of REC is modulated by the evolution of 
cooling needs and the deployment of AC systems to meet those needs. 
Our worst-case scenarios suppose either a 100% AC adoption rate in the 
IRIS already equipped at present, or a gradual spreading of AC systems, 
which mimics a ”do like my neighbor” behavior. We also consider a 
combination of the two. In any scenario, the decrease in REC due to 
climate change could be totally offset in the South of France, which 
would then display an increase in REC. When the 2 AC scenarios are 
combined, an increase in REC could be seen over the whole country. 

One key message deals with the overall uncertainty of our modeling 
setup. The uncertainty of our REC trends, including climate change 
impact and AC system deployment, is dominated by the spread between 
the climate simulations of our ensemble. The regression-based REC 
model does not add up much to the overall uncertainty. Such a result 
was not straightforward as the data available at the IRIS scale was at best 
limited in time, at worst available on an annual basis only, and sparse in 
some regions. The level of overall uncertainty therefore allows for 
drawing some recommendations in terms of practical applications and 
energy policies. 
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Takeaways for policy implications can be formulated from these 
results. In our scenario, AC gradual spreading mimics a ”do like my 
neighbor” behavior. Our results show that such behavior has a major 
and detrimental impact on REC (more than 100% AC rate scenario). 
Such results call for targeted and local information actions where the 
risk of spreading is high (i.e. in areas where households are already 
equipped with AC systems) to limit the spreading or mitigate its effect 
with at least the most energy-efficient AC systems. A more straightfor
ward result is that the South of France is where the REC trend is expected 
to occur first with possible impacts on the energy system. Therefore 
there is a need to target actions to prevent any further deployment of AC 
systems. Especially, the climate of the South of France is expected to 
become similar to the present climate of countries more to the South, 
such as Italy or Morocco (Hallegatte et al., 2007). In Morocco, there is no 
visible impact on REC of AC use (Bouramdane et al., 2021). In Italy, the 
signal on REC of the use of AC is very limited (Tantet et al., 2019) but 
locally the evolution of cooling needs can have a significant impact on 
REC (De Felice et al., 2013; Scapin et al., 2016). Therefore, analyzing the 
socio-economic drivers, and the energy policies of these countries and 
drawing inspiration from them to deploy actions adapted to the local 
specificities of some French regions should be considered. Our worst- 
case results clearly show the detrimental impact of the increase in AC 
rate and spreading. Increasing the cooling setpoint TC (e.g. recom
mended temperature of 26 ◦C by the US Department of Energy) or 
maintaining an optimal difference with outdoor air temperature to 
about 7–8 ◦C to maximize the energy efficiency of the AC equipment, 
could lower the cooling REC. Based on our model, shifting the cooling 
setpoint from 21 ◦C at present to 23–24 ◦C by 2040 and 26–27 ◦C by 
2085 would prevent any cooling REC increase in our worst-case sce
narios. These values are consistent with existing recommendations. 
Low-tech alternative solutions also exist which are widely implemented 
in subtropical regions, and can be implemented in France to improve the 
thermal comfort of buildings and reduce the use of AC equipment and 
their impact on the environment, such as the reflective white coating on 
the buildings or roofs (Viguié et al., 2020; Rawat et al., 2022). 

There are still several limits to this study. The temperature sensitivity 
results from a regression between REC and temperature, and the model 
implicitly integrates ”human behaviors” related to other factors such as 
electricity costs and household revenue (Frederiks et al., 2015; Gertler 
et al., 1366). However, at this stage, no approach to segment the con
sumption data along multiple socio-economic dimensions (e.g. price, 
revenue) has been successful with the available data (e.g. time sampling 
and spatial granularity too coarse and aggregated) which would have 
been valuable to reduce global uncertainty. It could have been relevant 
to perform a sensitivity analysis on the temperature sensitivity through 
ηEl to account for the further electrification of heating (e.g. fuel oil or gas 
to heat pumps) or trough αC to account for improved efficiency of AC 
systems. Regarding αC, regions of the North-West along the Atlantic 

coast where the AC rate is on average 14% (versus 22% at the national 
level in 2019) can display surprisingly large positive αC values. The 
causes should be further explored, whether due to statistical processing 
or behavioral in origin (e.g. residents may be less adapted to extreme 
heat events and more likely to install AC equipment for use during such 
extreme events (He et al., 2022)). Finally, the study from Pagliarini et al. 
(2019) shows that in a warmer climate, the electricity increases faster 
than linearly because of the efficiency drop of air-cooled chillers at high 
temperatures. Such a phenomenon should also be considered in the 
future. 
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Appendix A. Reference REC and verification of climate data on REC 

Fig. 9 shows the temperature-sensitive REC aggregating over the 12 administrative regions the values at the IRIS where such estimate by Enedis 
exists from Enedis processing (a), by applying the model (2) to temperatures from E-OBS dataset (b) and historical CORDEX simulations (c). Visually, 
the three show a very similar pattern. Fig. 9a and Fig. 9b illustrate the quality of the model prediction and quantitatively a R2 score of 0.77 is found 
between the common cells. Fig. 9c shows how historical climate simulations can satisfactorily reproduce the temperature-sensitive REC for climate 
projection studies which rely on the climate projections produced in a consistent way with the historical climate simulations. However, in Section 3, 
the temperature-sensitive REC based on the CORDEX regional climate simulations is estimated over a larger number of IRIS than those of the Enedis 
subset. At the IRIS kept in the dataset, the estimates of αH and αC passed a significance test. The reference REC for the period 1975–2005 used to 
calculate the change of temperature-sensitive REC is shown in Fig. 10. 

Appendix B. Cross-validation method for trained temperature sensitivities 

During the present study, for each cell we have 8 years of annual REC as inputs to train the model described in Equation 2. The Leave-One-Out 
cross-validation method has been used to fit the model and to validate the model’s performance. Each time we extract one year out as test and 
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train the model with the other 7 years’ data and get the prediction using the one test data. And this procedure repeats 8 times. After that, the 8 
predicted values with the test data are compared to their initial values, which gives us a test R2 score. Such test is done for all the cells and a sig
nificance test is also performed to get the valid cells. A comparison of different linear regression models has been made with this test method and the 
distribution of related test R2 scores are shown in Fig. 11. 

Appendix C. AC adoption rate initial data 

CODA STRATEGIES uses data from UNICLIMA (the professional union bringing together manufacturers and marketers of AC equipment in France) 
to estimate the national AC adoption rate from 2004 until 2020, including all types of AC equipment (mobile, heat pump). The national AC rates 
estimated by CODA STRATEGIES are published by ADEME (the French Agency for Ecological Transition) and are consistent with INSEE (for 2017) and 
EDF (for 2016 and 2019) data (ADEME, CODA STRATEGIES, 2021). At a finer scale, a study from Ecole des Ponts (Daguenet et al., 2021) calculated the 
regional AC adoption rate for 2019 based on data from Likibu (a house rental search engine) for over 800 households. The national population- 
weighted AC rate is found to be 22% for 2019, which is consistent with the EDF study and CODA STRATEGIES dataset. 

These studies show that the cooling equipment market increase is not constant and has accelerated in recent years (ADEME, CODA STRATEGIES, 
2021), resulting in a more geometric overall progression of about 20% per year at the country scale. From these studies, we have regional rates for 
2019 only and national rates from 2016 to 2020 from which regional rates from 2011 to 2018 are deduced assuming a spatially homogeneous 
progression rate. Once estimated, the national rate ”population-weighted national average” is deduced from the estimate of the regional rate for the 
different years and compared to the reference from ADEME (EDF and INSEE). This reconstruction is consistent for 2016–2020. 

Appendix D. AC gradual spreading method and optimal number of neighbors 

With the historical REC data, around 60% of the cells are estimated with zero current cooling temperature sensitivity (i.e. αC
i = 0). As described in 

Section 2.3.2, so-called Gradual Spreading is our way of estimating future αC based on an interpolation assumption of actual values, especially for cells 
without current αC. For cells with positive non-null cooling temperature sensitivity, the future cooling temperature sensitivity is assumed to be 
consistent with the current value (i.e. (αC

i )
GS

= αC
i > 0), while for other cells without current αC, a nearest-neighbor interpolation is performed with 

the following formula: 

(
αC

i

)GS
=

1
J

∑J− 1

j=0
αC

j .

For a studied cell i, all the cells with current non-null sensitivity αC
j > 0 are ordered by the Euclidean distance with the given cell in the plate carrée 

projection, and J is the number of nearest cells taken into account for the calculation of the average. 
This assumption has been tested with the group of cells where αC are estimated non-null in the first place. During the test, 60% of these cells are 

selected randomly to become zero, conforming to the actual situation, and are given an estimation with the Gradual Spreading method. Then the 
estimated values with Gradual Spreading are compared with the model’s initial estimation αC. This process repeats 30 times for each J, and the 
average test R2 score as a function of the number of neighbors J is given in Fig. 12. It can be seen clearly that there exists a local similarity: the test R2 

score is larger when J ∈ [10,60]. In our study, the optimal value for J is 25. Despite selecting the optimal number of cells per cluster based on evidence 
of local similarity through a pre-test, the resulting prediction R2 score remains low (below 0.23). This uncertainty in the future assumption of the 
coefficient αC remains a limitation of the scenario study with the Gradual Spreading approach. 
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A B S T R A C T   

The residential sector is important for the energy transition to combat global warming. Due to the geographical 
variability of socio-economic factors, the highly dependent residential electricity consumption (REC) should be 
studied locally. This study aims to project future French REC considering climate change and air-conditioning 
(AC) scenarios and to quantify its spatial variability. For this purpose, a linear temperature sensitivity model 
fitted by annual observed electricity consumption data and historical temperature is applied at an intra-regional 
scale. Future temperature-sensitive REC is computed by applying the model to temperature projections under the 
climate change pathway RCP8.5. Three AC scenarios are considered: (1) A 100% AC rate scenario assuming that 
any region partially equipped with AC systems nowadays will have all its households equipped with AC, but local 
temperature sensitivity will no longer progress; (2) A gradual spreading scenario mimicking “do like my 
neighbor” behavior; (3) A combination of the two scenarios. Increasing temperatures lead to an overall REC 
decrease (− 8 TWh by 2040 and down to − 20 TWh by 2100) with significant spatial variability, which had never 
been quantified and mapped due to a lack of suited methodology and limited available data at the finest scale. 
The evolution of REC is modulated by the evolution of cooling needs and the deployment of AC systems to meet 
those needs. In the first 2 AC scenarios, the decrease of REC due to climate change could be totally offset in the 
South of France, which would then display an increase in REC. When the 2 AC scenarios are combined, an in
crease in REC could be seen over the whole country. The most extreme AC scenario shows a potential REC rise 
due to AC usage by 2% by 2040 and even 32% by 2100, which could be canceled by increasing the cooling 
setpoint up to 26–27 ◦C.   

Practical implications 

The residential sector is the leading electricity consumer in France, 
representing more than one-third of the final electricity uses. This sector 
has therefore to implement a pathway to reduce energy demand and 
greenhouse gas emissions. The relevance of related policies depends on 
the expected change in residential electricity consumption (REC) for 
various climate change scenarios and user behavior. REC change in 
climate change scenarios has already been studied at the country scale, 
but important physical (e.g. local weather conditions) and socio- 
economic (revenue, air-conditioning use, etc.) determinants of REC 
display a large spatial variability which implies REC should be studied 
locally. 

The REC model is computed using a linear temperature sensitivity 

model fitted by annual observed electricity consumption data and daily 
temperatures applied at the smallest French geographic census unit 
named Ilots Regroupés pour l’Information Statistical (IRIS), which di
vides the territory into meshes of about 2000 inhabitants per unit cell. 
Once the current electricity sensitivity is fitted for each IRIS, the REC 
change is computed by applying the model to temperature projections 
under climate change scenario RCP8.5 at intermediate (2025–2055) and 
far (2070–2100) time horizons based on 5 climate simulations per
formed in the frame of the international CORDEX program. In addition, 
two cooling scenarios based on the air-conditioning adoption rate and 
the cooling temperature sensitivity are also investigated. 

When only climate change is considered, REC is projected to 
decrease with decreasing heating needs in most IRIS cells. However, 
because of already deployed cooling equipment, REC is expected to 
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increase in 3–7% of the territory, totally offsetting the effect of reduced 
heating needs. A larger variability is found within administrative re
gions, including a few hundred to thousands of IRIS, than between 
administrative regions. Including AC scenarios offset in part the REC 
negative trend, with REC projected to increase in the South-East in the 
most conservative scenario to nearly the entire territory when large 
spreading and rate of AC use are assumed. Large AC use may lead to REC 
change ranging from 2% by 2040 to 32% by 2100, contributing to 
enhanced greenhouse gas emission and the urban heat island effect. 

Such results call for targeted and local information actions where the 
risk of spreading is high to limit the spreading and rate of use or mitigate 
their effect with more energy-efficient AC systems. As our projected 
future climate in Southern France is similar to the present climate of 
countries more to the South, which has not seen a large deployment of 
AC equipment, analyzing the socio-economic drivers, the energy policies 
of these countries and drawing inspiration from them to deploy locally 
adapted actions should be considered. Also, adapting the cooling set
point could help elaborate energy policies to lower the cooling 
temperature-sensitive REC. Based on our model, shifting the cooling 
setpoint from 21 ◦C at present to 23–24 ◦C by 2040 and 26–27 ◦C by 
2085 would prevent any cooling REC rise in our worst-case scenarios. 
These values are consistent with existing recommendations (e.g. US 
DoE). Finally, low-tech alternative solutions, such as cool white roof 
coating widely implemented in subtropical regions, can be implemented 
in France to improve the thermal comfort of buildings and reduce the 
use of AC equipment and their impact on the environment. 

1. Introduction 

France is committed, with the energy transition law for green growth 
of 2015, to reducing its greenhouse gas emissions by 40% by 2030 and 
divided by four by 2050. It also plans to reduce its consumption of fossil 
fuels by 30% by 2030 and to halve its final energy consumption in 2050 
compared to 2012 (regulations passed under the Law for the ecological 
transition and green growth1). This regulation contributes to the Paris 
climate agreement2 to keep temperature increases well below 2 ◦C and to 
pursue efforts for 1.5 ◦C. The French residential sector represents 20% of 
the CO2 emission of the country and 30% of the final energy uses. 
Hence, this sector could be a significant opportunity and challenge for 
policies to combat global warming. Indeed, the law text emphasizes 
improving building energy efficiency, thermal renovation of buildings, 
and constructing buildings with high energy performance. 

Limiting electricity consumption in the residential sector through 
actions aimed at improving the energy performance of buildings is 
therefore a major environmental challenge for communities. However, 
residential electricity consumption (REC) is highly dependent on 
household income, the thermal quality of occupied dwellings, and the 
cost of energy with regard to the purchasing power of the households 
(Giraudet et al., 2012; Branger et al., 2015; Frederiks et al., 2015) and 
therefore displays a very large spatial variability, especially in urban 
areas which are characterized by the heterogeneity of their de
mographic, socio-economic, environmental and cultural characteristics 
(Li and Kwan, 2018; Pickett et al., 2017) underlying urban resource 
demands (Rosales and Worrell, 2018; Voskamp et al., 2020). The case of 
France has been investigated specifically and supports studies conducted 
in other countries (Lévy and Belaïd, 2018). 

Electricity demand also depends on the outdoor temperature. De
mand for cooling rises once the temperature exceeds a cooling setpoint, 
while electricity demand for heating grows once the temperature drops 
below a heating setpoint (Petrick et al., 2010; Auffhammer and Mansur, 
2014; Damm et al., 2017; Wenz et al., 2017; Kozarcanin et al., 2019). As 
a result, a theoretical U-shaped link exists between electricity demand 

and temperature. Choices made by individuals to utilize heating and 
cooling systems to maintain a comfortable temperature in their resi
dences directly impact electricity demand (Emodi et al., 2018; Eme
nekwe and Emodi, 2022). Substantiated correlations between 
consumption and climate and weather conditions (Meng et al., 2020), 
demographic and economic factors (Bettignies et al., 2019) and urban 
and architectural morphological characteristics (Chen et al., 2020; You 
and Kim, 2018) cause the large spatial variability in residential energy 
demand. Climate, socio-economic and morphological characteristics 
have proven explanatory variables for energy demand and its spatial 
pattern (Chen et al., 2020; Kennedy et al., 2015; Wiedenhofer et al., 
2013). 

The link between temperature and electricity demand has been 
studied using various models [e.g. (Narayan et al., 2007; Emodi et al., 
2018)]. One approach is to model this nonlinear relationship by a 
smooth but nonlinear function of the temperature. For instance, Moral- 
Carcedo and Vicéns-Otero (2005) and Damm et al. (2017) used a Lo
gistic Smooth Transition (LSTR) function to model the electricity de
mand response to temperature variations in European countries. The 
advantage of such a model is that it adequately captures the rather 
smooth response of electricity demand summed over a large domain to 
temperature variations. On the other hand, it is less straightforward to 
interpret the physical meaning of the parameters of such a model. 
Another approach is to model the electricity demand as a linear com
bination of nonlinear functions of the temperature (making it a gener
alized linear model). For instance, Sailor and Muñoz (1997) studied the 
monthly electricity and gas consumption for states in the US using a 
linear model with degree-day (DD) inputs in addition to wind speed and 
relative humidity. 

In France, outdoor temperature increase could reach up to 3.8 ◦C by 
2100 with regards to 1900–1930 if no policy is in place to reduce 
greenhouse gas emissions (Ribes et al., 2022). Pilli-Sihvola et al. (2010) 
have investigated the impact of climate change using the DD approach 
on building energy demand for heating and cooling and the associated 
energy cost using climate simulations of the 3rd Coupled Model Inter
comparison Project (CMIP3). More recently, Larsen et al. (2020) find in 
downscaled CMIP5-climate simulations that when temperature evolu
tion is considered as the only factor of change, needs for cooling increase 
by 33% to 204% between 2050 and 2010 and needs for heating decrease 
by − 31% to − 6% while Damm et al. (2017) predict the impact of a +2 ◦C 
global temperature change on European electricity demand, with for 
France, an estimated decrease in total electricity consumption between 
-10TWh and -16TWh. The optimistic reduction in electricity projection 
is due to France’s current heating-dominated state. All households in the 
country utilize specific heating systems such as gas, oil, wood, or district 
heating, among which 37% employ electric heating. In contrast, the 
national adoption of air-conditioning (AC) remains relatively low, 
standing at only approximately 22% when considering all types and 
sizes of air conditioners, including mobile and heat pump units. 

Rising temperatures and temperature extremes, in particular, imply 
increased use of air conditioners, both in hot and humid emerging 
economies where incomes are rising and in industrialized economies 
where consumer expectations in terms of thermal comfort are constantly 
growing (van Ruijven et al., 2019). Previous studies (van Ruijven et al., 
2019; ?; ?) suggest that climatic conditions will encourage more 
households to adopt AC systems, therefore affecting electricity expen
ditures. On a global scale, the final energy consumption for AC in resi
dential and commercial buildings has more than tripled between 1990 
and 2016. The share of cooling in REC increased from around 2.5% to 
6% during the same period. The use of AC equipment is expected to 
increase dramatically, becoming one of the main drivers of global 
electricity demand (International Energy Agency, 2018). 

In France, as heat waves are more and more frequent and long, many 
households and businesses are equipped with AC for more comfort 
(Lemonsu et al., 2015). In 2020, for the first time, the number of 
equipment sold exceeded 800,000 units, whereas it had stabilized at 

1 https://www.legifrance.gouv.fr/loda/id/JORFTEXT000031044385  
2 https://unfccc.int/sites/default/files/english_paris_agreement.pdf 
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around 350,000 per year previously. In 2020, 25% of individuals are 
equipped compared to 14% in 2016, with disparities linked to the type 
of dwelling (31% of owners of individual houses compared to 20% of 
households living in collective housing), socio-professional category 
(37% of liberal professions, executives and higher intellectual pro
fessions against only 19% of households whose reference person is un
employed or inactive) and place of residence (e.g. 47% of inhabitants of 
the South-East and Corsica against only 11% in Brittany) (ADEME, 
CODA STRATEGIES, 2021). 

However, most previous studies of future consumption projection 
only focus on continental and national scales while not considering the 
sub-national disparity of temperature changes and non-climatic factors 
listed above. We aim to fill this gap by examining whether the national 
results proposed by these earlier studies remain consistent at smaller 
scales, given that changes in consumption and geographical variations 
in adaptation can lead to inequalities. We provide valuable information 
on the local impacts of climate change and building cooling strategies on 
residential energy demand, which can aid local climate and energy 
planning and decision-making. Specifically, we focus on the sub- 
regional variability of changes in residential AC requirements for cool
ing needs in the context of climate change. To this end, we use a 

modified temperature sensitivity model to project future REC at a fine 
scale. The smallest geographic scale used in this study is the so-called 
Ilots Regroupés pour l’Information Statistical (IRIS), here referred to 
as cells, which divides the French territory into a collection of about 
2000 inhabitants per cell. These cells are defined by respecting 
geographic and demographic criteria and have recognizable contours 
without ambiguity and stability over time. France has a total of 50,800 
cells (IGN, 2009). In metropolitan France, these cells are distributed 
among 12 administrative regions represented in Fig. 1. This model is 
designed to distinguish between different aspects of electricity use using 
data from all residential buildings, irrespective of their heating or 
cooling equipment. The projection of future residential electricity con
sumption is based on climate change pathway RCP8.5, using down
scaled CMIP5 climate simulations carried out as part of EURO-CORDEX 
(Jacob et al., 2014) and MEC-CORDEX (Ruti et al., 2016), while 
considering different scenarios of AC use for cooling - full generalization 
or saturation. 

After the introduction in Section 1, the details of the model can be 
found in Section 2, with information about the temperature and REC 
data that are applied to fit the model as inputs for the case of France and 
the future temperature projection and AC use scenarios. REC projection 
results and discussion are presented in Section 3, and the conclusion and 
policy implications are given in Section 4. The global flow chart of the 
total work is shown in Fig. 2. 

2. Methodology and data 

In this section, we explain how the REC is projected at the sub- 
communal scale by applying a temperature sensitivity model trained 
on historical data to climate projections. We also present the data for the 
application to France and define the scenarios used as projections of AC 
use with widespread adoption or saturation cases. 

2.1. Temperature sensitivity statistical model 

The relationship between the surface air temperature and the energy 
consumption over a domain is what we call the temperature sensitivity 
of the consumption. It has been modeled in various ways as presented in 
the previous section. The advantages of the DD approach are that it is 
simple to implement as a linear regression model with standard machine 
learning software and that it is straightforward to interpret the co
efficients of the models as temperature sensitivities. For these reasons, 
we follow the DD approach in this study. The heating degree-days (HDD) 
(resp. the cooling degree-days (CDD)) for a domain is a positive quantity 
computed from data for the (weighted-) average temperature of the 
domain. It is given by the sum over a period of the degrees below (resp. 
above) a certain setpoint temperature per timestep. Here, the timestep 
d is a day and the period y a year between 2011 and 2018 (included), 

Fig. 1. Map of 12 administrative regions of metropolitan France, with thicker 
white lines representing 94 departments and thinner white lines representing 
more than 48000 IRIS cells. (Plate carrée projection, same projection used in 
the presented study). 

Fig. 2. Flow chart of the present study.  
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while different domains, or cells, i are considered, each corresponding to 
a different IRIS. The HDD and CDD are thus defined here as (Moral- 
Carcedo and Vicéns-Otero, 2005), 

HDDi

(

y

)

:=
∑Ny

d=1
max

(
0; TH

i − Ti
(
y, d
))

CDDi

(

y

)

:=
∑Ny

d=1
max

(
0; Ti

(
y, d
)
− TC

i

)
,

(1)  

where Ti(y, d) is the daily-mean surface air temperature for a day d of 
year y averaged over cell i,TH

i and TC
i with TC

i ⩾TH
i are respectively the 

heating and cooling setpoints for cell i, and Ny (365 or 366) is the 
number of days in year y. The heating and cooling setpoints TH

i and TC
i 

are parameters to be estimated. 
The REC scales with the living area in each cell. To leave out this 

factor, we divide the REC by the living area, giving the normalized 
annual REC Ei(y) for cell i and year y in kWh/ m2. For a given scenario 
(see Section 2.3), the general temperature sensitivity model is then 
expressed as, 

Ei(y) = βH
i

(
y
)
HDDi

(
y
)
+ BiNy + βC

i

(
y
)
CDDi

(
y
)

= αH
i ηEl

i

(
y
)
HDDi

(
y
)
+ BiNy + αC

i ηAC
i

(
y
)
CDDi

(
y
)
.

(2)  

. 
The first equation in (2) relates Ei(y) to a heating, a basic, and a 

cooling REC (from left to right). The basic daily REC Bi (kWh/ m2) is part 
of the REC that does not depend on temperature. It determines the REC 
fully when TH

i ⩽Ti(y, d)⩽TC
i . In this study, we focus on the effect of 

climate change and the rate of air-conditioning (AC) adoption on the 
REC. Factors affecting the basic REC are thus assumed to remain fixed so 
that Bi does not depend on time. The temperature-sensitive RECs for a 
given year are proportional to DD. The coefficients of proportionality 
βH

i (y) and βC
i (y) (kWh/ (DD m2)) measure the increase in yearly REC per 

DD and unit of area in cell i. Each cell includes residential buildings with 
and without electric appliances. Thus, other things remain the same, 
lowering the fraction ηEl

i of residential buildings in cell i with electric 
heating lowers βH

i . To estimate the temperature-sensitive electric con
sumption restricted to residential buildings with electric heating, βH

i is 
developed as the product of ηEl

i with the heating temperature sensitivity 
αH

i (kWh/ (DD m2)) of cell i. Factors affecting the heating temperature 
sensitivity (consumer behavior, thermal efficiency of residential build
ings, etc.) are also assumed to remain fixed so that αH

i is independent of 
time. 

However, the rate of electric heating ηEl
i may vary in time. Yet, the 

data used in this study only provides estimates of ηEl
i for the year 2018 

(Section 2.2.1). We therefore assume that this rate is fixed to that of 
2018, ηEl

i (y) = ηEl
i (2018) := ηEl

i , and so βH
i (y) = βH

i (2018), for all years 
and all cells. This implies that an Ordinary Least-Squares (OLS) regres
sion with βH

i as coefficient and HDDi(y) as input is equivalent to an OLS 

regression with αH
i as coefficient and ηEl

i HDDi(y) as input. Similarly, βC
i is 

developed as the product of the fraction ηAC
i of residential buildings in 

cell i equipped with AC with the cooling temperature sensitivity αC
i 

(kWh/ (DD m2)) of cell i. Note, however, that while all residential 
buildings include some form of heating so that ηEl

i reflects the choice of 
heating system, all AC systems are electric, and ηAC

i gives the adoption 
rate of AC equipment. Regarding ηAC

i , as presented in the previous sec
tion, the AC adoption rate has increased during the past several years 
and hence depends on the year during the training (Section 2.2.4). For 
future projection, both αC

i and ηAC
i vary with the choice of AC use sce

nario, but they are assumed constant during a given period (Section 
2.3.2). 

In summary, all the parameters with their physical meanings are 
given in Table 1. For all pairs (i, y) of cells i and years y, the model inputs 
are.  

• ηEl
i (y)HDDi(y) and  

• ηAC
i (y)CDDi(y), 

where HDDi(y) and CDDi(y) depend on the daily-mean temperatures 
Ti(y, d) for all days d in y. The model coefficients are the temperature 
sensitivities αH

i and αC
i and the hyperparameters are TH

i and TC
i . The total 

number of cells is assumed to remain fixed. In the following sections, we 
present how this model is trained and applied to climate and AC pro
jections to project the REC. 

2.2. Training the temperature sensitivity model for the French REC 

To apply the temperature sensitivity model to the case of France at 
the finest spatial scales, one needs (i) pairs of input and target historical 
data to train and validate the model and (ii) input data from 21st century 
temperature projections on which to apply the trained model to project 
the REC. We present the training and validation data set in this sub
section while the presentation of the 21st century temperature pro
jections is left for Section 2.3. 

We thus need data for the inputs of the model: the yearly DD, 
electric-heating rates, and AC adoption rates. The former is computed 
from daily surface air temperatures and heating and cooling setpoints. 
The target Ei(y) is computed from the cell’s REC and living surface. 
Several of these variables used to compute both the inputs and the tar
gets are taken from a dataset provided by the French distribution system 
operator, Enedis. We first present this dataset and then describe how it is 
crossed with additional data sources to produce the input and the target 
training data. The longest training period that the following datasets 
permit ranges from 2011 to 2018 (included), which is the training 
period we use. 

2.2.1. Energy and building characteristics per cell 
The Enedis dataset is accessed via their website (Enedis, 2020) and 

includes the following variables that are relevant to this study:  

• longitude and latitude coordinates of the cell centroids used to assign 
meteorological stations to cells in Section 2.2.2;  

• yearly REC data per cell from 2011 to 2018 (included) used as the 
target in Section 2.2.5;  

• electric-heating rates ηEl
i for 2018;  

• fraction of cell buildings with surfaces in different intervals used to 
compute the target in Section 2.2.5;  

• Enedis estimates of βH using a linear model based on DD akin to the 
model (2) (see below);  

• yearly HDDs used in this Enedis model since 2018, but only at the 
department level, thus not satisfying our needs;  

• heating setpoints used to estimate the HDDs used here as described 
Section 2.2.3; 

Table 1 
Summary of variables and their physical meanings presented in Eq. 2.  

Variable Meaning 

Ei(y) Annual REC normalized by surface for cell i and year y (kWh/ m2) 
Bi The basic daily REC for cell i (kWh/ m2) 
Ny The number of days in a year y (365 or 366) 
αH

i Heating temperature sensitivity for cell i (kWh/ (DD m2)) 
αC

i Cooling temperature sensitivity for cell i and year (kWh/ (DD m2)) 
ηEl

i (y) Rate of electric heating for cell i and year y (%) 
ηAC

i (y) Rate of AC adoption for cell i and year y (%) 
βH

i (y) Coefficient measuring increase in yearly REC per HDD and unit of area 
for cell i and year y (kWh/ (DD m2)) 

βC
i (y) Coefficient measuring increase in yearly REC per CDD and unit of area 

for cell i and year y (kWh/ (DD m2))  
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The Enedis estimates of βH rely on consumption data at higher 
temporal resolutions (semi-annual, monthly, or daily) than the publicly 
available data. They thus can fit their temperature sensitivity model at 
the highest temporal resolution and average over each cell the estimated 
βH for the different delivery points in the cell. However, the βH of a cell is 
provided only if the estimate is considered sufficiently precise, i.e. if a 
minimum of 500 delivery points is available in the cell. As a result, 
around 50% of the cells are missing, whereas the model (2) can be 
applied to the annual consumption data to provide estimates of the 
temperature sensitivities for all cells in France. 

2.2.2. Surface temperatures for training 
To train the model (2), we use E-OBS version 20.0 (ECA&D, 2020) of 

the European Climate Assessment & Data (Klok and Klein Tank, 2009; 
Cornes et al., 2018) (ECA&D for continental gridded surface air tem
perature (Haylock et al., 2008). This gridded dataset is available at daily 
timesteps and a spatial resolution of 0.1 ◦ over Europe and the Medi
terranean and spans from 1950 to the present. Among the available daily 
statistics, only the daily mean is retained here. Data observations are 
aggregated from several weather stations and gridded using an inter
polation procedure combining spline interpolation and kriging. This 
dataset is a reference dataset for regional climate studies [e.g. (Haylock 
and Goodess, 2004; Santos et al., 2007; Stefanon et al., 2012; Raymond 
et al., 2016; Raymond et al., 2018)] and the evaluation of regional 
climate models [e.g. (Frei et al., 2003; Räisänen et al., 2004; Kjellström 
et al., 2010; Flaounas et al., 2013; Stéfanon et al., 2014; Ayar et al., 
2016; Drobinski et al., 2018; Raymond et al., 2018)]. E-OBS includes 
some errors and uncertainties (changes in station locations or can induce 
those interpolation uncertainties, for example). Flaounas et al. (2013) 
assessed the E-OBS gridded dataset with temperatures displaying rela
tively small biases. 

The temperature sensitivity model (2) requires temperatures for each 
cell to compute the HDD and CDD, but the cells (i.e. the IRIS in the case 
of France) do not correspond to the E-OBS grid points. We thus need to 

adjust E-OBS gridded temperatures to the cells over the French domain. 
This is done here using a nearest-neighbor interpolation using the 
Euclidean distance between temperature grid points and the cell cen
troids from Enedis (Section 2.2.1) in a plate carrée projected coordinate 
system. In order to match the target REC data from Enedis (Section 
2.2.1), only the E-OBS data is kept from 2011 to 2018 (included) is kept 
as training input. 

2.2.3. Heating and cooling setpoints estimates 
A couple of temperature setpoints TH

i and TC
i are required for each 

cell i in order to compute the HDDs and the CDDs in the temperature 
sensitivity model (2). The estimation of the temperature setpoints is 
based on those available in the Enedis dataset (Section 2.2.1) and which 
Enedis uses to compute the HDDs in their own temperature sensitivity 
model. In our case, the model is simplified by identifying TH

i for each cell 
i in the given administrative region r of France with the average TH

r of all 
the values of TH provided by Enedis for locations in r. The heating set
point is thus constant over each region, i.e. TH

i = TH
r for all cells i in r, 

where r runs over all the administrative regions of France. The resulting 
TH

r estimates are shown in Table 2. 
On the other hand, no cooling setpoints are provided by Enedis. 

Instead, we fix TC
i for all the cells in France to the value of 21 ◦C used by 

EUROSTAT (YYYY) and International Energy Agency (2020). 
Another approach to choose TH

i and TC
i could be to assume that these 

temperature setpoints are constant inside each region and to fit them as 
hyperparameters via a grid search. Doing so, it is found that the pre
diction error estimated via cross-validation is only marginally improved 
and that the main conclusions of this study remain unchanged (not 
shown here). Considering the higher complexity of this approach, the 
methodology presented in the previous paragraphs of this subsection is 
preferred here. 

2.2.4. AC adoption rates for training 
In addition to surface temperatures, the model (2) requires as input 

AC adoption rates ηAC
i for each cell in France. However, this information 

is not available at such a small geographical scale. Based on the evolu
tion of the national AC adoption rate (ADEME, CODA STRATEGIES, 
2021) and the regional distribution data in 2019 (Daguenet et al., 2021), 
we estimated the regional AC adoption rates at the regional level be
tween 2011 and 2020 and assumed that all cells inside one adminis
tration region share the same adoption rate, i.e. ηAC

i (y)=ηAC
r (y). This 

progression in AC adoption rate during the training period is assumed to 
be geometric. We calculated the average ratio between different years, 
which indicates a growth of 20% between two consecutive years. This 
AC adoption rate progression ratio is assumed constant during training, 

i.e. ηAC
i (y+1)
ηAC

i (y) =constant = 120%. The population-weighted national 

average is then compared to the reference used in ADEME, CODA 
STRATEGIES (2021) and is consistent for 2016–2020. The estimated 
rate for the years 2011 and 2018 are shown in Table 3 with in between a 
geometric evolution. More details about the initial data used for the 
estimation can be found in Section C. Errors due to this factor are not 
studied but should be kept in mind as a limit due to the accessibility of 
data. 

2.2.5. Living area to standardize REC 
The model (2) is trained using as targets the yearly REC data from the 

Enedis dataset (Section 2.2.1). See in Section A for the details of the REC 
dataset. However, we are interested in the consumption per unit of area. 
Moreover, the number of buildings per cell — also provided by Enedis — 
varies from one year to the next. We thus need to normalize the REC of 
each cell by the corresponding total living surface. Unfortunately, Ene
dis does not provide the total living surface but the fraction τk

i of 
buildings in cell i for which the living surface belongs to an interval Ik in 
{(0,30), (30,40), (40,60), (60,80), (80,100), (100,+∞)} (m2). Owing 

Table 2 
Heating setpoints TH

r for all regions of metropolitan France computed 
according to Section 2.2.3.  

Region name TH
r [◦C] 

Auvergne-Rhône-Alpes 16.0 
Bourgogne-Franche-Comté 16.3 

Brittany 14.8 
Centre-Val-Loire 15.0 

Grand-Est 16.6 
Hauts-de-France 16.0 

Ile-de-France 15.8 
Normandie 15.0 

Nouvelle-Aquiaine 15.3 
Occitanie 16.4 

Provance-Alpes-Côte d’Azur (PACA) 17.4 
Pays-de-la-Loire 15.0  

Table 3 
AC adoption rates (%) for 2011 and 2018.  

Region name ηAC
2011 ηAC

2018 

Auvergne-Rhône-Alpes 4.3 17.4 
Bourgogne-Franche-Comté 3.4 13.9 

Brittany 2.5 10.5 
Centre-Val-Loire 4.0 16.5 

Grand-Est 3.4 13.9 
Hauts-de-France 2.5 10.5 

Ile-de-France 4.5 18.3 
Normandie 2.7 11.3 

Nouvelle-Aquiaine 4.3 17.4 
Occitanie 5.6 22.6 

PACA 10.5 41.7 
Pays-de-la-Loire 2.9 12.2  
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to the data constraints, we cannot get more specific information at the 
building level and can only present the distribution of intervals at the 
IRIS level. Thus, for each interval, we approximate the living surface of 
buildings with a surface in Ik by the center Ck (m2) of the interval, except 
for the first and last intervals. We take the end value of 30 m2 for the first 
interval rather than the median value due to the legal limitations on 
small living surfaces. For the last interval, we take the finite end of the 
interval 100 m2, primarily because we lack further information on the 
distribution within the interval and also to counterbalance any potential 
overestimation for the first interval. It’s important to note that these 
assumptions were made out of necessity due to the data limitations, and 
the accuracy of these estimates could potentially be improved with data 
availability at the building level. Then, the average living surface is 
estimated from the τk

i provided by Enedis with the following formula: 

Si =
∑

k
τk

i Ck

(

m2

)

. (3)  

2.2.6. Trained temperature sensitivities 
As an intermediate methodological result, the maps of the estimated 

αH and αC and corresponding βH and βC for cells with statistically sig
nificant coefficients at the 5% significance level (60% of all cells) are 
shown in the left and middle panels of Fig. 3. The OLS regression was 
used with a constraint on coefficients to be positive. Regression methods 
with regularization (Lasso and Ridge) were also tested, but this led to an 
increase in the test R2 score of less than 10% (not shown here), so the 
OLS was preferred to limit the number of parameters of the model. All 
the test scores are estimated using k-fold cross-validation with one fold 

per year of data (8 folds in total). The test R2 score averaged over all cells 
is about 0.68 with a 25% quartile of 0.56 and a 75% quartile of 0.79. 
More details about the test R2 score are given in Section B as well as the 
validation of the model with comparison to Enedis datasets in Section A. 

2.3. Projection data and scenarios definitions 

As mentioned in Section 2.1, the basic consumption, represented by 
B in (2), is assumed to be stationary all the time. As far as the heating 
REC is concerned, we assume that αH,TH and ηEl are also stationary so 
that only the HDDs change in response to temperature changes. 
Regarding the cooling REC, we follow a similar approach as for the 
heating REC, but ηAC and αC also change in some AC scenarios (TC is 
always stationary). We thus need to associate each cell with a temper
ature projection for a given climate change pathway, as well as with 
projections of ηAC and of αC. 

2.3.1. Temperature projection data under a climate change pathway 
In this study, the most severe climate change pathway, the Repre

sentative Concentration Pathways (RCP) 8.5, is selected. The corre
sponding bias-corrected daily-mean temperature change is obtained 
from multiple regional climate models from the CORDEX program. In 
this study, these projections are completed with the corresponding his
torical experiments that serve as a reference to measure the effect of 
climate change. Due to modeling uncertainty, the projected statistics of 
the atmosphere may vary significantly with the choice of Regional 
Climate Model (RCM) and of driving Global Climate Model (GCM). 
Hence, multi-model ensembles are commonly used in climate studies to 

Fig. 3. Top: Estimates of αH (left) and αC (middle) obtained by training the model (2) on the observational data (Section 2.2). Projections of αC (right) by gradual 
spreading (Section 2.3.2). Bottom: Corresponding values of βH (left) and βC (middle), and projections of βC (right) for the AC2018 scenario (Section 2.3.2). 
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provide a partial estimation of the modeling error. This is why the five 
model combinations listed in Table 4 are used in this study. These 
simulations are accessed via the Copernicus Climate Change Service 
database ( https://climate.copernicus.eu/). 

To associate a cell to a climate-model simulation, the same meth
odology as for the temperature observations used for training is followed 
(Section 2.2.2). Three climate-simulation periods of 30 years are 
considered, which are distinct from the training period defined in Sec
tion 2.2: a historical period from 1975 to 2005 (excluded) — used as 
reference — and two projection periods, one from 2025 to 2055 and one 
from 2070 to 2100. Results associated with the latter are respectively 
referred to as CC2040 and CC2085 (based on the central year of the 
period). 

As intermediate methodological results, mean historical HDD and 
CDDs, as well as the corresponding projected changes, are represented in 
Fig. 4. One can see that the temperature increase projected over France 

leads to a general decrease in the HDDs (top panels) and to a general 
increase in the CDDs. These changes are however not homogeneous 
since the decrease in the HDDs is strongest in the southern and eastern 
parts of France, while the increase in the CDDs is largest in the southern 
part of France. 

2.3.2. AC use scenarios 
In the present framework, two factors are sensitive to the evolution 

of AC use during the 21st century: the AC adoption rate ηAC
i , and the 

switch of a cell from an αC
i of zero to a positive αC

i , for each cell i. While 
the former reflects the evolution of AC use within a cell, the latter cor
responds to a conversion of a cell from having no AC user at all to having 
some AC users. Here, we do not attempt to make plausible projections of 
these factors based on current signals. Instead, as summarized in Table 5 

Table 4 
Institute, GCM name and RCP name for the 5 climate change simulations used in 
this study.  

No. Institute Driving GCM model RCM model 

1 CNRM CERFACS-CM5 ARPEGE51 
2 CNRM CERFACS-CM5 RCA4 
3 IPSL CM5A-MR RCA4 
4 IPSL CM5A-MR WRF331F 
5 ICHEC EC-EARTH RACM022E  

Fig. 4. Mean over 1975–2005, mean change over 2025–2055 wrt. 1975–2005 (CC2040), and mean change over 2070–2100 wrt. 1975–2005 (CC2085) for the HDDs 
(top) and CDDs (bottom) computed according to Eq. 1. The temperature data for 1975–2005 is from the historical CORDEX simulations, while that for 2025–2055 
and 2070–2100 is from the RCP8.5 CORDEX simulations. The results are spatially averaged over the departments and averaged over the climate-model simulations 
listed in Table 4. Warm colors represent situations associated with warm temperatures (i.e. to a decrease in heating REC and to an increase in cooling REC). 

Table 5 
Definition of the four AC scenarios in terms of AC adoption rate and αC spreading 
strategy. XXXX is either 2040 or 2085, corresponding to the central year of the 
climate change projection window considered.  

Name Definition  
ηAC Gradual Spreading of αC 

CCXXXX-AC18-NOGS Same as in 2018 No 
CCXXXX-AC18-GS Same as in 2018 Yes 
CCXXXX-ACall-NOGS 100% No 
CCXXXX-ACall-GS 100% Yes  
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and explained below, two extreme cases are considered for both factors 
and indifferently for the 2025–2055 and the 2070–2100 periods. 

Regarding ηAC, the minimal scenario is that ηAC remains fixed to its 
2018 cell values (Section 2.2.4), corresponding to a situation in which 
AC installation no longer progresses. The maximal scenario is that ηAC 

has reached 100% in every cell before the beginning of the projection 
period and remains fixed over the period, corresponding to a situation in 
which all households are equipped with AC (regardless of the 
technology). 

Regarding αC, the minimal scenario is that cells with no cooling 
temperature sensitivity remain so. The maximal scenario is that all cells 
become cooling-sensitive. In this case, further assumptions are needed to 
determine αC for these cells that were not cooling-sensitive historically. 
Here, we assume that αC for these cells is the result of interpolation from 
the αC values of the surrounding cells with a positive αC. A nearest- 
neighbor interpolation is performed for a given number of neighbors 
and for the Euclidean distance in the plate carrée projection. The 
number of neighbors is optimized based on the methodology described 
in Section D, giving an optimal number of 25 cells. We refer to this 
scenario as the gradual spreading of αC and the resulting αC estimates 
are shown in Fig. 3c. The gradual spreading scenario mimics a ”do like 
my neighbor” behavior. 

2.4. Quantifying the uncertainty in the projected REC change 

For a given cell i, a model m (Table 4 and a scenario s (Table 5), we 
define the absolute change in REC, ΔEm,s

i , as the difference (Δ) at i be
tween the REC averaged (⋅) over the CORDEX historical period and the 
REC averaged over one of the two CORDEX projection periods, esti
mated with the model m simulations for the scenario s. In addition, the 
relative REC change is defined as the absolute REC change divided by 
the REC averaged over the CORDEX historical period. Given the sta
tionarity assumptions (Section 2.3), the absolute REC change is given by 

ΔEm,s
i = αH

i ηEl
i Δ[HDDm,s

i ] +Δ
[(

αC
i ηAC

i

)sCDDm,s
i

]
. (4) 

In the AC18-NOGS scenario, αC and ηAC are also stationary, so that 

ΔEm,s
i = αH

i ηEl
i Δ[HDDm,s

i ] +
(
αC

i ηAC
i

)AC18− NOGSΔ[CDDm,s
i ], (5)  

in this case. 
The corresponding multi-model average is 

〈

ΔEs
i

〉

:=
1
M

∑M− 1

m=0
ΔEm,s

i . (6) 

An essential part of this study is quantifying the uncertainty of our 
estimates of temperature-sensitive REC change 〈ΔEs

i 〉. From (6), we can 
see that errors may come from.  

• the temperature sensitivity model design,  
• the stationarity assumptions on the model coefficients and on electric 

appliances adoption rate ηEl
i and ηAC

i during scenarios studies,  
• the regression of the coefficients from a particular training dataset,  
• the historical estimates of ηEl

i and ηAC
i ,  

• the climate models (Jacob et al., 2014; Ruti et al., 2016),  
• the choice of climate change pathway and AC use scenario. 

Here, only the worst-case climate change pathway is considered (i.e. 
RCP8.5, Section 2.3.1), so that uncertainty in the climate-model 
pathway is not assessed. On the other hand, a partial estimate of 
climate-model errors is provided in the results Section 3 from the vari
ations of the projected REC change with the choice of the climate model. 
To estimate the sensitivity of temperature-sensitive REC change to AC 
adoption rate projections, extreme scenarios are considered (Section 
2.3), while measurements of the electric-heating rate are assumed to be 
reliable and representative of other years than the year it is provided for. 
The assumption of the stationary temperature sensitivity model co
efficients restricts the scope of the results of this study. It is not tested in- 
depth in this work, but a simple analysis is conducted in Section 3.2 and 
further discussed in terms of policy implications in Section 4. Finally, the 
errors from the model design and the regression are estimated using 
cross-validation (Section 3.4). 

Fig. 5. Relative change (%) in REC wrt. to the historical period (1975–2005) for CC2040 (top) and CC2085 (bottom) and for different AC scenarios: AC18-NOGS (left 
column), ACall-NOGS (second column), AC18-GS (third column) and ACall-GS (right column). 
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3. Results and discussion 

We now analyze the projected changes in the REC, first for the sce
narios where the AC uses remain fixed, then for scenarios with AC uses 
changes. The discussion of the uncertainty in the results is left for the 
next Section 4, the main conclusions from these results being robust. 

3.1. Projected REC change without change in AC use 

The projections of temperature-sensitive REC changes for fixed AC 
use (AC18-NOGS) are shown in Fig. 5a and Fig. 5e. In general, the REC 
decreases between 7% and 16% in all departments for CC2040, down to 
20% to 42% for CC2085. Aggregated at the country scale, the REC 

Fig. 7. Same as Fig. 5 but for th.e cooling REC.  

Fig. 6. Boxplots over the cells of the relative change in temperature-sensitive REC corresponding to Fig. 5. The whiskers here show the minimum on the left and the 
99% quantile on the right. 

Table 6 
Decomposition of variability into different geographical scales for different 
studied variables in terms of proportion (%).  

Variable yi σ2(yi − 〈yi〉d)

σ2(yi)

σ2(〈yi〉d − 〈yi〉r)

σ2(yi)

σ2(〈yi〉r − 〈yi〉n)

σ2(yi)

βH
i 75% 13% 12% 

αC
i 77% 4% 19% 

〈ΔHDDi〉
CC2040 24% 20% 56% 

〈ΔHDDi〉
CC2085 29% 23% 48% 

〈ΔCDDi〉
CC2040 13% 15% 72% 

〈ΔCDDi〉
CC2085 14% 13% 73% 

〈ΔEi〉
AC18− NOGS 82% 7% 11%  
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Fig. 8. The global uncertainty of estimation of evolution in temperature-sensitive REC by combining all possible estimated coefficients with the leave-one-out cross- 
validation method and the 5 CORDEX simulations, represented by the Relative Standard Deviation (RSD) for the CC2040-AC18-NOGS (left) and the CC2085-AC18- 
NOGS (right) scenarios. 

Table 7 
Average values with uncertainty for all possible combinations, the uncertainty is 
converted to the same magnitude by averaging over the number of cells. A t-test 
shows that mean values of REC change under all scenarios are significant.  

Time Scenario 
name 

Mean (GWh/ 
cell) 

Std (GWh/cell)    

Cell Department Country 

2040 CC-AC18- 
NOGS 

− 0.22 0.037 0.029 0.024 

CC-AC18-GS − 0.16 0.053 0.038 0.031 
CC-ACall- 
NOGS 

− 0.16 0.066 0.042 0.032 

CC-ACall-GS 0.08 0.191 0.146 0.125 
2085 CC-AC18- 

NOGS 
− 0.53 0.085 0.057 0.047 

CC-AC18-GS − 0.28 0.185 0.150 0.136 
CC-ACall- 
NOGS 

− 0.26 0.236 0.159 0.138 

CC-ACall-GS 1.26 1.019 0.867 0.790  

Table 8 
Comparison of uncertainty due to model or CORDEX for scenario AC18-NOGS in 
the form of standard deviation (GWh/cell).  

Time Cell Commune Country  

Model CORDEX Model CORDEX Model CORDEX 

2040 0.020 0.034 0.012 0.029 0.010 0.022 
2085 0.056 0.066 0.031 0.052 0.026 0.040  

Fig. 9. Temperature-sensitive REC per year averaged over departments estimated from (a) the Enedis βH estimates for 2018 (for 50% of the cells only, Section 2.2.1), 
(b the model (2) applied to the E-OBS temperatures for 2018 and (c) the model (2) applied to the CORDEX historical temperatures over the 1975–2005 period and 
averaged over the period and over the climate-model simulations (Section 2.3.1). 

Fig. 10. Total temperature-sensitive REC reference aggregated at the depart
ment level, estimated with our model using the temperature of 1975–2005 from 
CORDEX simulations on all valid cells (60% of the cells). 
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decreases by about 8TWh and 20TWh, respectively. This is consistent 
with the results of Damm et al. (2017); Spinoni et al., 2018, but signif
icant variations are observed between departments. 

For this scenario and for a given cell, according to (5), the projected 
heating and cooling REC changes are proportional to the HDD and CDD 
changes, respectively, represented in Fig. 4. However, the coefficients of 
proportionality, αH

i ηEl
i and (αC

i ηAC
i )

AC18− NOGS, represented in Fig. 3, 
depend on the cell. From this can be deduced that the REC changes for 
this scenario are dominated by the large decrease in the HDDs (Fig. 4b 
and Fig. 4c) modulated by variations in βH with the cells (Fig. 3d). This 
effect can for instance be seen in the weaker reduction of the REC in the 
North-East and the South-West of France. 

In addition, the REC decrease is reduced in the south of France due to 
the significant increase in the cooling REC with the increase in the CDDs 
(Fig. 4e and Fig. 4f) in conjunction with the positive βC there (Fig. 3e). 
This is more obvious from the plots of the cooling REC for the AC18- 
NOGS scenario in Fig. 7a and Fig. 7e. One can see that, according to 
this scenario, the cooling REC increases everywhere, but this is partic
ularly evident along the Atlantic coast and South of 46 ◦N latitude, be
tween the Massif Central and the Alps, especially for the CC2085 period. 
At these locations, HDDs indeed tend to increase significantly, but the 
correlation is not perfect, since, for this scenario, the translation of this 
change in a cooling REC change depends on AC being already in use 
there (Fig. 3e). A substantial increase in the cooling REC is also observed 
in the Northwest part of France for CC2085 (Fig. 7f), even though the 
increase in CDDs is relatively weak there (Fig. 4f). This is explained by 
the fact that a significant number of cells there have a large βC (Fig. 3e). 

The distribution of the temperature-sensitive REC change at the cell 
level is shown in Fig. 6 in the form of box plots. The distribution for 
scenario CC2040 without AC use changes (AC18-NOGS) is right-skewed, 
meaning the temperature-sensitive REC is expected to decrease around 
15% in most regions. In the longer term, the disparity between IRIS 
increases with decreasing averaged temperature-sensitive REC. Indeed, 

some IRIS may display a positive temperature-sensitive REC change (i.e. 
an increase in temperature-sensitive REC) over 3% of the French terri
tory in the near future and up to 7% by the end of the 21st century. 

3.2. Projected REC change with change in AC use 

The projections of temperature-sensitive REC change with different 
AC scenarios are shown in 5b-5d and 5f-5h. Contrary to the results 
including temperature change only, some regions display an increase of 
temperature-sensitive REC whose pace and spatial extent depend on the 
AC scenario. 

Results also show that the different factors have diverse effects. In 
the case where the AC rate is changed without spreading geographically, 
the temperature-sensitive REC is expected to increase in the South-West 
of France and in the South along the Mediterranean Sea (Fig. 5b and 
Fig. 5f). Indeed, in this region, αH is relatively low with respect to other 
regions, and AC systems are already deployed so that αC is different from 
zero. But αC in these regions has a relatively low value, so if the tem
perature change is only accounted for, increased CDD makes the decline 
in temperature-sensitive REC less rapid. However, in the considered 
scenario, the change in AC rate directly multiplies the current cooling 
demand by four to five times. The electricity savings from heating in the 
South-West are thus expected to be fully offset by cooling in the near 
future (Fig. 7b). In the far future, this trend should be exacerbated in the 
South-West and in the South and spread significantly along the Atlantic 
coast and South of 46 ◦N (Fig. 7f). As there is no spatial spreading of AC 
usage, the geographical patterns of temperature-sensitive REC change 
are similar between Fig. 7a and Fig. 7e, and Fig. 7b and Fig. 7f. 

With regards to the AC rate scenario, the gradual spreading of the 
present AC rate lowers the change of REC for cooling needs, but REC for 
cooling needs becoming positive spreads geographically (Fig. 5c and 
Fig. 5g). Gradual spreading does not change the values instantly in re
gions where most IRIS cells are already given with non-null estimation 
for αC. However, it helps to smooth the map of coefficients as shown in 
Fig. 3b and Fig. 3c. Based on observational data, many cells in Ile-de- 
France, Auvergne-Rhône-Alpes, and along the Atlantic coast have been 
given null estimates for αC. However, some nearby cells still received 
significant values for αC with high regression scores. Assigned with 
proximity averages, these areas mixed with sporadic large values are 
most affected. Fig. 6 shows that a 100% AC rate in already equipped cells 
(ACall-NOGS) modifies the shape of the distribution, with an increased 
number of cells with positive evolution. More positive values correspond 
to the cells currently equipped with AC at which the AC rate is increased 
from its current value to 100% and where the change of REC for cooling 
needs exceeds that for heating needs. No change is expected for the cells 
currently without AC hence the minimal, the first quartile even the 
median values remain the same as for AC18-NOGS. In the gradual 
spreading scenario (AC18-GS), the shape of the distribution displays an 
even larger positive skewness than in the 100% AC rate scenario. Less 
negative values correspond to the larger number of cells equipped with 
AC and bring an increase to all cells. 

In a scenario combining gradual spreading and 100% AC rate, almost 
half of the territory, except the North of France, sees the REC increasing 
in the near-term future, amounting to a global change of +2%. At the 
end of the 21st century, this fraction of positive trend increases up to 
90%, leading to a global change of +32%. 

The results of these scenarios motivate actions allowing at least to 
prevent AC from inducing an increase in cooling REC. A simple 
approach, applicable to the whole country, consists at least in the region 
of South of France with the greatest AC impact to modify in the future 
climate scenarios only the cooling setpoint in such a way as to maintain 
the cooling REC unchanged with respect to the present situation. Such 
an approach leads to the most constraining action as it sets for the whole 
country the highest cooling setpoint, but it ensures at least unchanged 
cooling REC in the South of France and in most regions of France a 

Fig. 11. Comparison between linear regression methods of R2 score distribu
tion for all valid IRIS. 

Fig. 12. Test R2 score between estimated αC
i with Gradual Spreading method 

and regression model estimation as a function of the chosen number of 
neighbors J taken into account for the calculation of average 
(Gradual Spreading). 
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negative cooling REC trend. The cooling setpoint preventing any cooling 
REC increase over the whole country varies with the time horizon, 
which is about 23–24 ◦C by 2040 and 26–27 ◦C by 2085. 

3.3. Spatial heterogeneity 

The maps shown in Fig. 3 and Fig. 5 show an apparent geographical 
disparity of temperature sensitivities and temperature-sensitive REC 
changes. To compare the intra-department variability with the one of 
inter-department, each studied variable yi (sensitivity coefficients αH

i ,αC
i , 

DD evolution 〈ΔHDDs
i 〉, 〈ΔCDDs

i 〉 and the REC evolution 〈ΔEs
i 〉) can be 

decomposed as: 

yi = (yi − 〈yi〉d)+ (〈yi〉d − 〈yi〉r)+ (〈yi〉r − 〈yi〉n)+ 〈yi〉n. (7)  

with 〈yi〉d the average value of cells inside a given department, 〈yi〉r the 
average value of cells inside a given administrative region, and 〈yi〉n the 
average value of all cells in France. Hence with the above equation, the 
variability of all cells can be decomposed into disparities at several 
stages: 

σ2( yi
)
= σ2( yi −

〈
yi〉d

)
+ σ2( 〈yi〉d −

〈
yi〉r

)
+ σ2( 〈yi〉r −

〈
yi〉n

)
. (8)  

where σ2(yi − 〈yi〉d) represents the variability of cells inside the depart
ment while σ2(〈yi〉d − 〈yi〉r) represents the variability of departments 
inside a given administration region and σ2(〈yi〉r − 〈yi〉n) the variability 
between different administrative regions. Table 6 shows the proportion 
of variability at each geographical scale over the whole variability. 

The regional variability is more important than the local difference 
for the DD changes. However, the variability of temperature sensitivities 
between cells within the same department dominates. At the same time, 
because of the large spatial variability of βH and αC within the admin
istrative regions, a larger disparity of temperature-sensitive REC 
changes is found between cells than between administrative regions. For 
both temperature sensitivities, βH and αC and temperature-sensitive REC 
changes, it shows that the variability between the cells is more signifi
cant than the difference between regions, which justifies our choice of 
study at a small geographical scale. 

3.4. REC change error estimates 

In this study, public data are used to train the temperature sensitivity 
model with only eight annual samples applied for the regression. 
Compared to models with a larger dataset, our model can be easily 
influenced by outliers and may have coefficients over-fitted. 

We did not choose regularized regression because the performance 
did not improve much, but this method may be more attractive if a more 
extensive input is available. Nonetheless, the possibility of applying the 
leave-one-out cross-validation over the training gives us eight possible 
models and, thus, a range of eight different results of the temperature 
sensitivities with uncertainty. 

At the same time, CORDEX simulations from different models may 
produce different future temperature projections. Combining the five 
different simulations and all possible estimated coefficients with the 
leave-one-out cross-validation method, the global uncertainty of our 
results, quantified by the Relative Standard Deviation (RSD), is shown in 
Fig. 8. The relative error is large in the South-West, where αC > 0, due to 
the biased model regressions as the observed temperatures do not 
largely and frequently exceed the 21 ◦C cooling setpoint. 

The global uncertainty for all the scenarios is presented in Table 7. 
The standard deviation is identified after aggregating REC at different 
levels. For the results to have the same order of magnitude and to be 
comparable, the REC change is normalized by the average number of 
IRIS in the desired geographical scale. The method using a REC linear 
model together with the CORDEX simulations derives robust estimates 
of future REC with an error of less than 18.4% without assumptions on 

AC uses. The uncertainty of scenario ACall-GS is the largest among all 
other scenarios because the results may become less precise with all the 
assumptions together. We can see clearly that with spatial aggregation, 
the error decreases because there can be compensation between IRIS 
within the large scales, and the variation becomes smaller. For the 
average values of all possible combinations, a t-test shows that the mean 
values of REC change under all scenarios are significant. 

The global error of future REC mainly comes from the multi-model 
ensemble spread of the projected temperatures and the training bias 
and variance of the REC linear model. To find the standard deviation due 
to different sources, we use the average values of the cross-validated 
coefficients estimated by the model or the average of the five simula
tions of CORDEX, respectively. The uncertainty due to the simulations of 
CORDEX and to the model regression can be found in the following 
Table 8. With the previous tables, we can see clearly that the uncertainty 
due to the various simulations of CORDEX leads to a more significant 
error than the one from the regression. This 10% error due to the model 
is reassuring the basis of a temperature sensitivity model: the tempera
ture sensitivity is quasi-constant under a stable climate. Nevertheless, 
this error can still be improved if more annual consumption data are 
available or daily consumption data can be accessible. 

4. Conclusions and policy implications 

A number of key messages can be drawn from the results of this 
study. First, REC varies significantly at very fine spatial scales, from the 
IRIS size (region of 2,000 inhabitants) to the administrative departments 
(96 departments on the European continent and 5 overseas) and regions 
(13 on the European continent and 5 overseas). Such variability had 
never been quantified and mapped due to a lack of suited methodology 
and limited available data at the finest scale (IRIS). Such variability 
which is the largest at the finest spatial scale calls for solutions and 
policies steered to the local specificities. 

With increasing temperatures due to climate change, the heating 
needs decrease especially in the North-East which displays a continental 
climate with very hot summers and very cold winters (Köppen, 1936) 
and thus a strong sensitivity to any heating need reduction. Conversely, 
the South and Western regions along the Mediterranean Sea and the 
Atlantic Ocean, respectively, display a smaller trend in heating needs as 
they display a Mediterranean climate (hot, dry summers and cool, wet 
winters) and a maritime climate (cool summers and mild winters) 
(Köppen, 1936), respectively with warmer winters with regards to the 
North-East of France. At the end of the 21st century, in the worst-case 
climate scenario (RCP8.5), the spatial variability of the trend de
creases as many regions are expected to experience temperatures much 
more rarely below their heating setpoint. There is a strong link between 
the heating needs and its evolution with that of REC. 

However, the evolution of REC is modulated by the evolution of 
cooling needs and the deployment of AC systems to meet those needs. 
Our worst-case scenarios suppose either a 100% AC adoption rate in the 
IRIS already equipped at present, or a gradual spreading of AC systems, 
which mimics a ”do like my neighbor” behavior. We also consider a 
combination of the two. In any scenario, the decrease in REC due to 
climate change could be totally offset in the South of France, which 
would then display an increase in REC. When the 2 AC scenarios are 
combined, an increase in REC could be seen over the whole country. 

One key message deals with the overall uncertainty of our modeling 
setup. The uncertainty of our REC trends, including climate change 
impact and AC system deployment, is dominated by the spread between 
the climate simulations of our ensemble. The regression-based REC 
model does not add up much to the overall uncertainty. Such a result 
was not straightforward as the data available at the IRIS scale was at best 
limited in time, at worst available on an annual basis only, and sparse in 
some regions. The level of overall uncertainty therefore allows for 
drawing some recommendations in terms of practical applications and 
energy policies. 
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Takeaways for policy implications can be formulated from these 
results. In our scenario, AC gradual spreading mimics a ”do like my 
neighbor” behavior. Our results show that such behavior has a major 
and detrimental impact on REC (more than 100% AC rate scenario). 
Such results call for targeted and local information actions where the 
risk of spreading is high (i.e. in areas where households are already 
equipped with AC systems) to limit the spreading or mitigate its effect 
with at least the most energy-efficient AC systems. A more straightfor
ward result is that the South of France is where the REC trend is expected 
to occur first with possible impacts on the energy system. Therefore 
there is a need to target actions to prevent any further deployment of AC 
systems. Especially, the climate of the South of France is expected to 
become similar to the present climate of countries more to the South, 
such as Italy or Morocco (Hallegatte et al., 2007). In Morocco, there is no 
visible impact on REC of AC use (Bouramdane et al., 2021). In Italy, the 
signal on REC of the use of AC is very limited (Tantet et al., 2019) but 
locally the evolution of cooling needs can have a significant impact on 
REC (De Felice et al., 2013; Scapin et al., 2016). Therefore, analyzing the 
socio-economic drivers, and the energy policies of these countries and 
drawing inspiration from them to deploy actions adapted to the local 
specificities of some French regions should be considered. Our worst- 
case results clearly show the detrimental impact of the increase in AC 
rate and spreading. Increasing the cooling setpoint TC (e.g. recom
mended temperature of 26 ◦C by the US Department of Energy) or 
maintaining an optimal difference with outdoor air temperature to 
about 7–8 ◦C to maximize the energy efficiency of the AC equipment, 
could lower the cooling REC. Based on our model, shifting the cooling 
setpoint from 21 ◦C at present to 23–24 ◦C by 2040 and 26–27 ◦C by 
2085 would prevent any cooling REC increase in our worst-case sce
narios. These values are consistent with existing recommendations. 
Low-tech alternative solutions also exist which are widely implemented 
in subtropical regions, and can be implemented in France to improve the 
thermal comfort of buildings and reduce the use of AC equipment and 
their impact on the environment, such as the reflective white coating on 
the buildings or roofs (Viguié et al., 2020; Rawat et al., 2022). 

There are still several limits to this study. The temperature sensitivity 
results from a regression between REC and temperature, and the model 
implicitly integrates ”human behaviors” related to other factors such as 
electricity costs and household revenue (Frederiks et al., 2015; Gertler 
et al., 1366). However, at this stage, no approach to segment the con
sumption data along multiple socio-economic dimensions (e.g. price, 
revenue) has been successful with the available data (e.g. time sampling 
and spatial granularity too coarse and aggregated) which would have 
been valuable to reduce global uncertainty. It could have been relevant 
to perform a sensitivity analysis on the temperature sensitivity through 
ηEl to account for the further electrification of heating (e.g. fuel oil or gas 
to heat pumps) or trough αC to account for improved efficiency of AC 
systems. Regarding αC, regions of the North-West along the Atlantic 

coast where the AC rate is on average 14% (versus 22% at the national 
level in 2019) can display surprisingly large positive αC values. The 
causes should be further explored, whether due to statistical processing 
or behavioral in origin (e.g. residents may be less adapted to extreme 
heat events and more likely to install AC equipment for use during such 
extreme events (He et al., 2022)). Finally, the study from Pagliarini et al. 
(2019) shows that in a warmer climate, the electricity increases faster 
than linearly because of the efficiency drop of air-cooled chillers at high 
temperatures. Such a phenomenon should also be considered in the 
future. 
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Appendix A. Reference REC and verification of climate data on REC 

Fig. 9 shows the temperature-sensitive REC aggregating over the 12 administrative regions the values at the IRIS where such estimate by Enedis 
exists from Enedis processing (a), by applying the model (2) to temperatures from E-OBS dataset (b) and historical CORDEX simulations (c). Visually, 
the three show a very similar pattern. Fig. 9a and Fig. 9b illustrate the quality of the model prediction and quantitatively a R2 score of 0.77 is found 
between the common cells. Fig. 9c shows how historical climate simulations can satisfactorily reproduce the temperature-sensitive REC for climate 
projection studies which rely on the climate projections produced in a consistent way with the historical climate simulations. However, in Section 3, 
the temperature-sensitive REC based on the CORDEX regional climate simulations is estimated over a larger number of IRIS than those of the Enedis 
subset. At the IRIS kept in the dataset, the estimates of αH and αC passed a significance test. The reference REC for the period 1975–2005 used to 
calculate the change of temperature-sensitive REC is shown in Fig. 10. 

Appendix B. Cross-validation method for trained temperature sensitivities 

During the present study, for each cell we have 8 years of annual REC as inputs to train the model described in Equation 2. The Leave-One-Out 
cross-validation method has been used to fit the model and to validate the model’s performance. Each time we extract one year out as test and 
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train the model with the other 7 years’ data and get the prediction using the one test data. And this procedure repeats 8 times. After that, the 8 
predicted values with the test data are compared to their initial values, which gives us a test R2 score. Such test is done for all the cells and a sig
nificance test is also performed to get the valid cells. A comparison of different linear regression models has been made with this test method and the 
distribution of related test R2 scores are shown in Fig. 11. 

Appendix C. AC adoption rate initial data 

CODA STRATEGIES uses data from UNICLIMA (the professional union bringing together manufacturers and marketers of AC equipment in France) 
to estimate the national AC adoption rate from 2004 until 2020, including all types of AC equipment (mobile, heat pump). The national AC rates 
estimated by CODA STRATEGIES are published by ADEME (the French Agency for Ecological Transition) and are consistent with INSEE (for 2017) and 
EDF (for 2016 and 2019) data (ADEME, CODA STRATEGIES, 2021). At a finer scale, a study from Ecole des Ponts (Daguenet et al., 2021) calculated the 
regional AC adoption rate for 2019 based on data from Likibu (a house rental search engine) for over 800 households. The national population- 
weighted AC rate is found to be 22% for 2019, which is consistent with the EDF study and CODA STRATEGIES dataset. 

These studies show that the cooling equipment market increase is not constant and has accelerated in recent years (ADEME, CODA STRATEGIES, 
2021), resulting in a more geometric overall progression of about 20% per year at the country scale. From these studies, we have regional rates for 
2019 only and national rates from 2016 to 2020 from which regional rates from 2011 to 2018 are deduced assuming a spatially homogeneous 
progression rate. Once estimated, the national rate ”population-weighted national average” is deduced from the estimate of the regional rate for the 
different years and compared to the reference from ADEME (EDF and INSEE). This reconstruction is consistent for 2016–2020. 

Appendix D. AC gradual spreading method and optimal number of neighbors 

With the historical REC data, around 60% of the cells are estimated with zero current cooling temperature sensitivity (i.e. αC
i = 0). As described in 

Section 2.3.2, so-called Gradual Spreading is our way of estimating future αC based on an interpolation assumption of actual values, especially for cells 
without current αC. For cells with positive non-null cooling temperature sensitivity, the future cooling temperature sensitivity is assumed to be 
consistent with the current value (i.e. (αC

i )
GS

= αC
i > 0), while for other cells without current αC, a nearest-neighbor interpolation is performed with 

the following formula: 

(
αC

i

)GS
=

1
J

∑J− 1

j=0
αC

j .

For a studied cell i, all the cells with current non-null sensitivity αC
j > 0 are ordered by the Euclidean distance with the given cell in the plate carrée 

projection, and J is the number of nearest cells taken into account for the calculation of the average. 
This assumption has been tested with the group of cells where αC are estimated non-null in the first place. During the test, 60% of these cells are 

selected randomly to become zero, conforming to the actual situation, and are given an estimation with the Gradual Spreading method. Then the 
estimated values with Gradual Spreading are compared with the model’s initial estimation αC. This process repeats 30 times for each J, and the 
average test R2 score as a function of the number of neighbors J is given in Fig. 12. It can be seen clearly that there exists a local similarity: the test R2 

score is larger when J ∈ [10,60]. In our study, the optimal value for J is 25. Despite selecting the optimal number of cells per cluster based on evidence 
of local similarity through a pre-test, the resulting prediction R2 score remains low (below 0.23). This uncertainty in the future assumption of the 
coefficient αC remains a limitation of the scenario study with the Gradual Spreading approach. 
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Quintana-Segui, P., Romera, R., Torma, C.Z., 2018. Scaling precipitation extremes 
with temperature in the Mediterranean: past climate assessment and projection in 
anthropogenic scenarios. Clim. Dyn. 51, 1237–1257. 

ECA&D, 2020. E-OBS data access. URL:https://knmi-ecad-assets-prd.s3.amazonaws. 
com/ensembles/data/Grid_0.1deg_reg_ensemble/tg_ens_mean_0.1deg_reg_v20.0e.nc. 
Last visited 2021-06-13. 

Emenekwe, C.C., Emodi, N.V., 2022. Temperature and Residential Electricity Demand for 
Heating and Cooling in G7 Economies: A Method of Moments Panel Quantile 
Regression Approach. Climate 10, 142. Number: 10 Publisher: Multidisciplinary 
Digital Publishing Institute.  

Emodi, N.V., Chaiechi, T., Alam Beg, A.R., 2018. The impact of climate change on 
electricity demand in Australia. Energy Environ. 29, 1263–1297. 

Enedis, 2020. Consommation et thermosensibilité électriques par secteur d’activité à la 
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Kröner, N., Kotlarski, S., Kriegsmann, A., Martin, E., van Meijgaard, E., Moseley, C., 
Pfeifer, S., Preuschmann, S., Radermacher, C., Radtke, K., Rechid, D., 
Rounsevell, M., Samuelsson, P., Somot, S., Soussana, J.F., Teichmann, C., 
Valentini, R., Vautard, R., Weber, B., Yiou, P., 2014. EURO-CORDEX: new high- 
resolution climate change projections for European impact research. Reg. Environ. 
Change 14, 563–578. 

Kennedy, C.A., Stewart, I., Facchini, A., Cersosimo, I., Mele, R., Chen, B., Uda, M., 
Kansal, A., Chiu, A., Kim, K.g., Dubeux, C., Rovere, E.L.L., Cunha, B., Pincetl, S., 
Keirstead, J., Barles, S., Pusaka, S., Gunawan, J., Adegbile, M., Nazariha, M., Hoque, 
S., Marcotullio, P.J., Otharán, F.G., Genena, T., Ibrahim, N., Farooqui, R., Cervantes, 
G., Sahin, A.D., 2015. Energy and material flows of megacities. Proceedings of the 
National Academy of Sciences 112, 5985. 

Kjellström, E., Boberg, F., Castro, M., Christensen, J., Nikulin, G., Sanchez, E., 2010. 
Daily and monthly temperature and precipitation statistics as performance indicators 
for regional climate models. Climate Res. 44, 135–150. 

Klok, E.J., Klein Tank, A.M.G., 2009. Updated and extended European dataset of daily 
climate observations. Int. J. Climatol. 29, 1182–1191. 
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Résumé : Le secteur résidentiel est important
pour la transition énergétique afin de lutter contre
le réchauffement climatique. Cette thèse vise à
étudier l’évolution de la consommation d’énergie
résidentielle dans le contexte des politiques clima-
tiques en France sous l’effet du changement clima-
tique. La première partie de l’étude projette la fu-
ture consommation d’électricité résidentielle française
(REC), en considérant des scénarios de changement
climatique et de climatisation (AC) et en quantifiant
leur variabilité spatiale. Un modèle linéaire de sen-
sibilité à la température adapté aux données an-
nuelles de consommation d’électricité observées et
aux températures historiques est appliqué à l’échelle
intrarégionale. Les REC futures sensibles à la
température sont calculées en utilisant le modèle pour
les projections de température dans le cadre du chan-
gement climatique RCP8.5. L’évolution des REC est
modulée par l’évolution des besoins de refroidisse-
ment et le déploiement de systèmes de climatisation
pour répondre à ces besoins. Après les projections
futures, la décarbonisation de l’énergie résidentielle
est étudiée selon deux axes principaux. Le premier
axe vise à étudier les performances des rénovations.

Pour ce faire, le modèle linéaire de sensibilité à la
température est modifié pour inclure les variables des
âges de construction, de sorte que la consommation
sensible à la température par groupes de périodes de
construction est estimée pour chaque région admi-
nistrative. Ces consommations thermosensibles es-
timées sur la base de la consommation réelle per-
mettent de projeter les économies d’énergie futures
grâce à la rénovation des bâtiments. Le deuxième
axe consiste à décarboniser le secteur résidentiel en
installant des panneaux photovoltaı̈ques (PV) sur les
toits. Cependant, en raison de la nature variable de
l’énergie photovoltaı̈que, son intégration ajoute de la
complexité à la gestion du réseau, nécessitant un
examen minutieux du bilan énergétique. L’impact de
l’intégration du photovoltaı̈que distribué sur les toits
de la métropole du Grand Paris sur l’équilibre entre
l’offre et la demande d’énergie est étudié à l’aide d’in-
dicateurs de taux d’autoconsommation (SCR) et de
taux d’autosuffisance (SSR). Les profils de consom-
mation d’électricité en temps réel et les données de
production d’énergie solaire sont utilisés pour explorer
différentes échelles de complémentarité des acteurs.
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Abstract : The residential sector is important for the
energy transition to combat global warming. This the-
sis aims to study the evolution of residential energy
consumption in the context of climate policies in
France under climate change. The first part of the
study projects future French residential electricity
consumption (REC), considering climate change and
air-conditioning (AC) scenarios and quantifying their
spatial variability. A linear temperature sensitivity mo-
del fitted by annual observed electricity consump-
tion data and historical temperature is applied intra-
regionally. Future temperature-sensitive REC is com-
puted using the model to temperature projections un-
der the climate change pathway RCP8.5. The evo-
lution of REC is modulated by the evolution of co-
oling needs and the deployment of AC systems to
meet those needs. After future projections, the de-
carbonization of residential energy is be studied via
two principal axes. The first aims to study retrofitting
performance. For this purpose, the linear temperature

sensitivity model is modified to include the variables
of the construction ages so that the temperature-
sensitive consumption by groups of construction per-
iods is estimated for each administrative region.
These temperature-sensitive consumptions estimated
based on actual consumption allow the projection of
future energy savings thanks to the building retrofit-
ting. The second axis is to decarbonize the residential
sector by installing photovoltaic (PV) panels on roof-
tops. However, due to the variable nature of PV, its
integration adds complexity to grid management, re-
quiring careful consideration of the energy balance.
The impact of integrating distributed rooftop PV in
the Grand Paris metropolis onto the balance between
energy supply and demand is studied with indicators
of self-consumption rate (SCR) and self-sufficiency
rate (SSR). Real-time electricity consumption profiles
and solar power generation data are used to explore
different scales of complementarity of actors.
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