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Make yourself ignorant, be submissive, and then 

You will obtain release from your ignorance. 
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SYNTHESIS (FRENCH) / SYNTHESE EN FRANCAIS 

Introduction 

Les Tumeurs Desmoplastiques à Petites Cellules Rondes (DSRCTs) sont un sous-type rare de 

sarcome de mauvais pronostic, avec une incidence d'environ 0,5 cas par million d’habitants, 

affectant principalement les jeunes hommes avec un âge médian de 27 ans et un sexe-ratio de 

trois hommes pour une femme. Les DSRCTs se présentent généralement sous la forme d’une 

volumineuse tumeur abdominale péritonéale, souvent multinodulaire, et dont les sites 

métastatiques les plus fréquents sont le foie, les poumons, et les ganglions. 

D'un point de vue moléculaire, les DSRCTs sont caractérisés par une faible charge 

mutationnelle (<1 mutation par Mb). Ils font partie de la famille des sarcomes d'Ewing, dont le 

pilote oncogénique est un facteur de transcription aberrant résultant d'une translocation 

impliquant le gène EWSR1 et un partenaire situé en 3' conservant sa capacité de liaison à 

l'ADN. Le pilote oncogénique pathognomonique des DSRCTs est la protéine chimérique 

EWSR1-WT1, issue de la fusion entre le gène EWSR1 et le gène WT1 secondairement à la 

translocation t(11;22) (p13;q12), que l'on retrouve dans 95 % des cas. 

Le ciblage pharmacologique de tels facteurs de transcription oncogéniques reste actuellement 

un défi puisqu’ils ne peuvent être ciblés par les thérapies conventionnelles. Ainsi, peu de 

progrès thérapeutiques ont été réalisés cette dernière décennie, et le traitement actuel des 

DSRCTs repose généralement sur une approche multimodale combinant la chirurgie, la 

chimiothérapie et la radiothérapie, associée à des réponses tumorales insatisfaisantes, à une 

chimiorésistance secondaire fréquente, et un taux élevé de toxicité. 

Malgré la présence d’un pilote oncogénique unique, les DSRCTs sont caractérisées par une 

différenciation polyphénotypique avec une co-expression de marqueurs myogéniques, 

épithéliaux, et neuroendocrines, suggérant un certain degré d’hétérogénéité cellulaire ou 

moléculaire, ou encore une possible pluripotence de la cellule d’origine, qui reste encore 

indéterminée à ce jour. 

L'hétérogénéité et la plasticité tumorale constituent un domaine d'intérêt croissant, comme 

l'illustre l'ajout récent de la plasticité phénotypique en tant que nouvelle dimension des 

«Hallmarks of Cancer». En effet, la compréhension des mécanismes médiant la plasticité 

cellulaire tumorale pourrait faire émerger de nouvelles thérapeutiques prometteuses, en ciblant 

spécifiquement les sous-populations cellulaires les plus agressives, ou encore en ciblant une 

interaction essentielle entre deux populations cellulaires tumorales interdépendantes. 
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Dans ce cadre, l’avènement de technologies multiomiques sur cellule unique offre la possibilité 

sans précédent de capturer et de caractériser l'hétérogénéité des sous-populations de cellules 

tumorales et de leur microenvironnement. 

 

Objectif principal 

L’objectif principal de ce travail est la caractérisation exhaustive de l'hétérogénéité cellulaire et 

moléculaire des DSRCTs et l’exploration des mécanismes biologiques la sous-tendant, en 

s’appuyant principalement sur des techniques de séquençage transcriptomique et d’évaluation 

de l’accessibilité chromatinienne sur cellule unique. 

Pour atteindre cet objectif, nous avons formulé les hypothèses suivantes, qui ont dicté les 

méthodes choisies et décrites dans ce manuscrit : 

1. Hypothèse 1 : Les cellules de DSRCT présentent une hétérogénéité phénotypique et des 

« états cellulaires » plastiques, malgré la présence du seule pilote oncogénique EWSR1-WT1 ; 

2. Hypothèse 2 : l’hétérogénéité des cellules DSRCT peut être caractérisée grâce à des 

méthodes de séquençage sur cellule unique; 

3. Hypothèse 3 : l'hétérogénéité des cellules DSRCT est en partie due à des mécanismes 

intrinsèques, qui peuvent découler de la variabilité du niveau d'expression de EWSR1-WT1, de 

l'activité transcriptionnelle fluctuante de EWSR1-WT1, de la variabilité des voies de 

signalisation activées en aval, ou de la variabilité de la reprogrammation épigénétique induite 

par EWSR1-WT1 ; 

4. Hypothèse 4 : la plasticité des cellules de DSRCT est médiée par des facteurs 

extrinsèques tels que leur microenvironnement, incluant les interactions entre les cellules 

tumorales et les cellules stromales ou immunitaires. 

 

Méthodes 

Dans le but d’explorer l'hétérogénéité intra- et inter-tumorale des DSRCTs, nous avons ainsi 

caractérisé une série d'échantillons tumoraux issus de patients à l'aide (i) de techniques multi-

omiques sur cellule unique incluant le séquençage du transcriptome sur cellule unique (single-

cell RNA-sequencing ou scRNA-seq) et l’analyse de l’accessibilité chromatinienne sur cellule 

unique (single-cell Assay for Transposase-Accessible Chromatin with sequencing ou ATAC-

seq), (ii) de transcriptomique spatiale, et (iii) d’analyse transcriptomique en « bulk » (RNA-

sequencing ou RNA-seq). Nous avons ensuite intégré ces données issues d’échantillons 

tumoraux de patients à des données de séquençage de lignée cellulaire de DSRCT après 

immunoprécipitation chromatinienne (Chromatin ImmunoPrecipitation-sequencing ou ChIP-
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seq) ciblant EWSR1-WT1, et d’ATAC-seq et RNA-seq après modulation de l’expression de 

EWSR1-WT1 par siRNA (small interfering RNA). 

 

Résultats 

Le séquençage de l'ARN sur cellule unique (scRNA-seq) de 11 échantillons de patients suivis 

pour une DSRCT a permis d'identifier des sous-populations récurrentes de cellules tumorales, 

comprenant des groupes reliés à des lignées développementales distinctes (e.g., épithélial, 

neural, neuronal, mésenchymateux) et au métabolisme cellulaire (e.g., phosphorylation 

oxydative, glycolyse anaérobie). En outre, d’autres sous-populations de cellules tumorales ont 

été identifiées et associées à ce que nous avons appelé des « pseudo-états » cellulaires, reliés au 

cycle cellulaire, ou caractérisés par une surexpression de gènes codant pour des protéines 

ribosomales, ou de longs ARNs non codants (long non-coding RNAs ou lncRNAs). 

De façon intéressante, ces sous-populations tumorales étaient caractérisées par des modules de 

gènes se chevauchant partiellement, en faveur d’un certain degré de plasticité transcriptionnelle. 

Par ailleurs, nous avons observé peu de diversité entre les différentes sous-populations 

tumorales en termes de variations du nombre de copies, suggérant que l’hétérogénéité 

transcriptionnelle observée n’est pas reliée à une évolution clonale ou sous-clonale.  

Dans le but d’étudier les mécanismes sous-tendant cette hétérogénéité intra-tumorale, nous 

avons ensuite cherché à savoir si des mécanismes intrinsèques aux cellules tumorales pouvaient 

être à l'origine de cette plasticité. Nous avons développé une stratégie exploitant les cDNAs 

barcodés issus de la technique 10X Genomics, et visant à évaluer spécifiquement le niveau 

d’expression des transcrits EWSR1-WT1 sur cellule unique. Cette méthode n’a pas permis 

d’identifier de variation significative de l'expression du transcrit EWSR1-WT1 entre les 

différentes sous-populations cellulaires tumorales. En s’intéressant ensuite au niveau d’activité 

d’EWSR1-WT1 plutôt qu’à son taux d’expression, nous nous sommes appuyés sur des données 

de ChIP-seq ciblant EWSR1-WT1 et de RNA-seq sur une lignée cellulaire de DSRCT (JN-

DSRCT-1) au sein de laquelle l’expression de EWSR1-WT1 a été inhibée par siRNA. Cette 

modélisation a permis de définir un régulon spécifique de EWSR1-WT1, utilisé comme 

substitut de son activité transcriptionnelle. L'évaluation de l’activité du régulon EWSR1-WT1 

au sein de nos données de scRNA-seq a mis en évidence qu'une forte activité de EWSR1-WT1 

était associée à des états cellulaires reliés au lignage développemental, tandis que les états 

cellulaires reliées au métabolisme glycolytique et profibrotiques étaient corrélés à une plus 

faible activité de EWSR1-WT1. La technique d’ATAC-seq associé au scRNA-seq (aussi appelée 

« single-cell Multiome ») effectuée sur un échantillon tumoral a identifié que les motifs les plus 
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différentiellement enrichis entre les sous-populations tumorales étaient essentiellement associés 

à des facteurs de transcription impliqués dans des processus développementaux comme les 

familles SOX, FOX et GATA. Par ailleurs, l'activité du régulon EGR1 était inversement corrélé 

à l'activité du régulon EWSR1-WT1, suggérant un potentiel antagonisme compétitif entre ces 

facteurs de transcription, dont les séquences consensus sont très proches. Cette observation était 

par ailleurs concordante avec les données d’ATAC-seq sur lignée cellulaire, qui retrouvaient 

une augmentation de l'accessibilité d'EGR1 lors de l'extinction d'EWSR1-WT1 par siRNA. 

Nous avons ensuite étudié les facteurs extrinsèques à la cellule tumorale qui pourraient être 

susceptibles d’influencer l’hétérogénéité intra-tumorale, en s’appuyant sur une technique de 

transcriptomique spatiale effectuée sur six échantillons de DSRCT issus de patients. Les sous-

populations tumorales glycolytiques et profibrotiques étaient spécifiquement localisées au sein 

de niches hypoxiques à la périphérie de la tumeur, à proximité directe des fibroblastes associés 

au cancer (Cancer-Associated Fibroblasts, CAFs). Le rôle protumoral de ces CAFs a été 

confirmé in vitro par le biais de co-cultures de cellules tumorales de DSRCT et de CAFs. 

Enfin, la dernière partie de ce travail a visé à évaluer l'hétérogénéité inter-tumorale des 

DSRCTs, en réalisant un regroupement ou clustering hiérarchique d’une cohorte de 29 

échantillons de DSRCT profilés par RNA-seq. De façon notable, le groupe de patients 

présentant le meilleur pronostic était caractérisé par l’expression de gènes reliés à la 

différenciation épithéliale, l’adhésion cellulaire et la matrice extracellulaire. Nous avons ensuite 

exploité les signatures de gènes issues des gènes les plus différentiellement exprimés au sein 

des sous-populations tumorales identifiées en scRNA-seq, puis comparer la survie des patients 

présentant un score élevé ou bas de ces signatures en « bulk » RNA-seq. Par ce biais, nous avons 

notamment mis en évidence que les patients caractérisés par une faible expression de la 

signature spécifique de la sous-population « épithéliale » de DSRCT étaient associés à un 

pronostic grevé en termes de survie globale, confirmant nos précédentes observations. 

 

Conclusion 

Au total, ce travail a permis d’identifier des mécanismes sous-tendant l'hétérogénéité intra- et 

inter-tumorale des DSRCTs. En particulier, nous avons mis en évidence que la plasticité des 

cellules de DSRCT résulte de la combinaison de mécanismes cellulaires intrinsèques et 

extrinsèques, notamment reliés au niveau d'activité transcriptionelle de EWSR1-WT1 et aux 

interactions avec le microenvironnement dont les CAFs. De plus, l’identification de signatures 

de gènes associés au pronostic au sein d’une cohorte de 29 patients souligne la pertinence 

clinique de nos résultats. L’identification de sous-populations cellulaires associées au pronostic 
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pourraient par exemple justifier le développement de stratégies thérapeutiques visant à 

contraindre cette plasticité vers un phénotype cellulaire donné et ainsi ouvrir de nouvelles 

perspectives thérapeutiques pour ces patients. 
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ABSTRACT 

Desmoplastic Small Round Cell Tumors (DSRCTs) are a rare small round cell sarcoma subtype 

of poor prognosis driven by the aberrant chimeric transcription EWSR1-WT1. Despite this 

unique oncogenic driver and the lack of recurrent secondary mutations, DSRCTs harbor a 

characteristic polyphenotypic differentiation, suggesting the presence of tumor heterogeneity. 

Using single-cell multiomics, we found that DSRCT tumor cells were characterized by 

recurrent overlapping phenotypical states, which harbored distinct transcriptional programs, 

notably related to mesenchymal, neural, and epithelial cell fates, and metabolic switch. Our data 

further suggest the role of EWSR1-WT1 DNA-binding versatility in DSRCT cells’ chromatin 

plasticity and highlight additional in vivo extrinsic signals from microenvironment components 

like extracellular matrix and cancer-associated fibroblasts which may influence DSRCT cells 

states and tumor growth. We further explored the clinical applicability of our findings and 

identified single-cell RNA-sequencing-derived transcriptional signatures that may serve for 

prognostic risk stratification. 
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MATQ-seq Multiple Annealing and dC-Tailing-based Quantitative single-cell RNA-sequencing 

MDA Multiple Displacement Amplification 

MEF Mouse embryonic Fibroblast 

MES-like Mesenchymal-like 

MET Mesenchymal to Epithelial Transition 

MHC-I Class I Major Histocompatibility Complex 

MLPA Multiplex Ligation-dependent Probe Amplification 

MMLV Moloney Murine Leukemia Virus 

MPNST Malignant Peripheral Nerve Sheath Tumors 

MRI Magnetic Resonance Imaging 

NGS Next Generation Sequencing 

NHEJ Non-Homologous End Joining 

NPC-like Neural Progenitor-like 

NSE Neural Specific Enolase 

NSG NOD/SCID/Gamma 

OPC-like Oligodendrocyte progenitor-like 

OS Overall Survival 

PacBio Pacific Bioscience 

PCA Principal Component Analysis 

PCI Peritoneal Cancer Index 

PCR Polymerase Chain Reaction 

PDAC Pancreatic Ductal Adenocarcinoma 

PDX Patient Derived Xenograft 

PEA/STA Proximity Extension Assays/Specific (RNA) Target Amplification 

PET-CT scan Positron Emission Tomography- Computed Tomography scan 
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PLAYR Proximity Ligation Assay for RNA 

Pol II RNA Polymerase II 

RBP RNA Binding Protein 

RIME Rapid Immunoprecipitation Mass spectrometry of Endogenous proteins 

RNA-seq RNA-sequencing 

ROI Region Of Interest 

RRM RNA Recognition Motif 

RT  Reverse Transcription  

RT-PCR Reverse Transcription Polymerase Chain Reaction 

scDNA-seq Single-cell DNA sequencing 

sciCAR Single-cell Chromatin Accessibility and RNA seq 

scRNA-seq Single-cell RNA sequencing 

shRNA Short Hairpin RNA 

SIDR Simultaneous Isolation and parallel sequencing of genomic DNA and total RNA from single 

cells 

siRNA Small Interfering RNA 

SMART-seq Switch Mechanism at the 5' End of RNA Templates-sequencing 

SMOOTH-seq single-molecule real-time sequencing of long fragments amplified through transposon insertion 

SNARE-seq single-nucleus chromatin accessibility and mRNA expression sequencing 

SNP Single Nucleotide Polymorphism 

SRCS Small Round Cell Sarcoma 

SS Synovial Sarcoma 

STS Soft Tissue Sarcoma 

SWI/SNF SWItch/Sucrose Non-Fermentable 

t-SNE t-distributed stochastic neighbor embedding 

TAD Topologically Associating Domain 

TCR T cell Receptor 

TET Ten Eleven Translocation 

TGS Third Generation Sequencing 

TIVA-seq Transcriptome In Vivo Analysis-sequencing 

UMAP Uniform Manifold Approximation and Projection 

UMI Unique Molecular Identifier 

UPS Undifferentiated Pleomorphic Sarcoma 

WES Whole Exome Sequencing 

WGS Whole Genome Sequencing 

WHO World Health Organization 

WT1 Wilms’ Tumor protein 1 

ZNF Zinc Finger domain 
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MANUSCRIPT PRESENTATION 

This thesis is divided into three main parts. The first part introduces the background of DSRCT 

disease and biology, discusses the role of cellular plasticity in oncology and specifically in 

sarcoma, and presents the main scientific advances achieved in the understanding of tumor 

heterogeneity allowed by the massive development of scRNA-seq technology (Chapter I. 

General introduction). 

The second part is the main article that emanated from the research work I carried out during 

my PhD, which is being submitted for peer-review publication (Chapter II. Article). 

Lastly, the third part provides an overview of the perspectives opened by this research, striving 

to (1) debate around critical challenges emerging from our results and (2) introduce ongoing 

and developing work on DSRCT molecular deciphering that we aim to pursue shortly, focusing 

on (i) the set-up of a drug screening aiming at identifying pharmaceutical compounds amenable 

to target/destabilize EWSR1-WT1 fusion protein, (ii) the study of the epigenetic and chromatin 

remodeling role of EWSR1-WT1, and (iii) the generation of novel in vitro models that would 

better reproduce DSRCT tumor cells heterogeneity (Chapter III. Discussion and 

perspectives). 
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CHAPTER I. GENERAL INTRODUCTION 

Desmoplastic small round cell tumors (DSRCTs) are a rare subtype of small round cell tumors 

of poor prognosis, with an incidence around 0.5/millions 1, primarily affecting young people 

with a median age of 27 years old, with a male predominance (male to female ratio 3:1). DSRCT 

initial presentation generally consists in an abdominal bulky tumor which may disseminate in 

the peritoneum in the form of multiple nodules. Molecularly, DSRCTs are part of the Ewing 

Sarcoma Family (ESF) of tumors, driven by a translocation involving the EWSR1 gene and a 

3’ partner retaining DNA binding capacity, resulting in a chimeric protein that acts as an 

aberrant transcription factor. DSRCTs display one unique driver, the chimeric protein EWSR1-

WT1 arising from the fusion between EWSR1 and WT1 gene t(11;22) (p13;q12), found in 95% 

of cases. Although appearing genetically simple, the pharmacological targeting of such an 

aberrant transcription factor remains challenging, and few therapeutic advances have been made 

to reverse the poor prognosis of DSRCTs in this last decade compared to other malignancies. 

Current treatment relies on aggressive approaches combining surgery, chemotherapy, and 

radiotherapy 2, resulting in unsatisfying tumor responses, limited prognostic improvement, and 

high rate toxicity. 

Despite this unique oncogenic driver, published data show DSRCT is a polyphenotypic tumor, 

suggesting cellular/molecular heterogeneity and DSRCT cell pluripotency. 

This work will comprehensively address the exploration of DSRCT cellular and molecular 

heterogeneity to describe the biological mechanisms underlying DSRCT cell oncogenicity. 

 

1 DESMOPLASTIC SMALL ROUND CELL TUMORS (DSRCT) 

1.1 DESMOPLASTIC SMALL ROUND CELL TUMORS (DSRCT): CLINICAL 

PRESENTATION 

1.1.1 Age and sex ratio 

Desmoplastic small round cell tumor (DSRCT) was first described in 1991 by William L 

Gerald and Juan Rosai, who posited its clear distinction from other small round cell tumors on 

clinical presentation and histopathological features criteria 3. DSRCTs were characterized as a 

rare subtype of mesenchymal tumors mainly affecting young males with a sex ratio of male to 

female of 3-5 to 1 and a median age at diagnosis of 22-27 years old 4. 
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1.1.2 Incidence 

The incidence of DSRCT is estimated at around 0.2 to 0.5 cases per million 5,6. According to 

Waqar et al. 7, DSRCT incidence has risen within the last two decades. Moreover, males seem 

to have a higher age-adjusted incidence rate (0.22 vs. 0.05, p<0.05). 

There is no known genetic risk factor for developing DSRCT. However, several studies 

described an increased risk among African descendants compared to the Caucasian population 

7,8.  

1.1.3 Clinical presentation and staging 

Patients generally present with an abdominal mass, pain, weight loss, or symptoms secondary 

to adjacent organ compression, such as obstructive renal failure or bowel obstruction. 

The vast majority (80-90%) of DSRCT tumor primary sites are localized within the peritoneum 

9 (Fig. 1). Diagnosis is often late and made at abdominal sarcomatosis or metastatic stages in 

50% of cases 5,10–12, the preferential metastatic sites including the liver, the lungs, and 

mesenteric, retroperitoneal, or mediastinal lymph nodes 1,10,13. 

 

 

Fig. 1. DSRCT clinical presentation. 

CT (a.), MRI (b.), and 18F-FDG-PET/CT (c.) DSRCT classical abdominopelvic presentation. 

 

Nonetheless, several cases report extra abdominal localization, raising the primary cell of origin 

question. Alternative localizations include head and neck (orbital, submental), pleura 14, and 

mediastinal, central nervous system 15, or para testicular 16 primary sites (Fig. 2). 
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Fig. 2. DSRCT primary tumor sites and distant metastases. 

Most DSRCTs arise in the abdominal cavity, although rare primary sites comprising the head, neck, and 

central nervous system have been described. The most frequent DSRCT secondary sites are liver, lung, and 

lymph nodes. 

 

Initial clinical examination should involve a physical examination, including inspection and 

tumor palpation when feasible. Additional complementary exams should assess cardiac, kidney, 

and liver function, search for complications, and verify systemic treatment and surgery 

eligibility. The clinical and radiological staging should be performed carefully, as the extent of 

the disease at diagnosis remains one of the most decisive prognostic factors 17. 

Imaging-based DSRCT staging should include thoraco-abdominal-pelvic-CT, abdominal and 

pelvic MRI, and 18-fluorodeoxyglucose-PET-CT. Several staging classifications have been 

developed. The expert consensus AJCC classification (8th edition) 18, set for STS in general, 

has been validated in DSRCT 19. It relies on the size of the primary tumor, its depth (superficial 

or deep), lymph node involvement, and distant metastases. In the latter study, on multivariable 

analysis, stage IV disease (according to AJCC version ≤ 7 for STS) was associated with poorer 

overall survival (HR=2.12, 95% CI: 1.41-3.18), whereas surgery (HR = 0.68, 95% CI: 0.50-

0.91), chemotherapy (HR = 0.52, 95% CI: 0.35-0.78), or radiation therapy (HR = 0.55, 95% 

CI: 0.33-0.92) were independently associated with improved OS. 

Two additional classifications have been designed explicitly for DSRCT disease staging: the 

first considers liver involvement and ascites, and the second 20,21 is based on the Peritoneal 

Cancer Index (PCI) and the presence of liver or extra abdominal metastases. 
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1.2 DSRCT HISTOLOGICAL DIAGNOSIS AND CELLULAR COMPOSITION 

1.2.1 DSRCT histological pattern and differential diagnosis 

Histological diagnosis should be made on a sample obtained using a co-axial core needle biopsy 

using a 12–16-gauge needle targeting the most solid portion of a mass, as recommended by  

the European Society of Medical Oncology (ESMO)–EURACAN–GENTURIS guidelines 22,23. 

Histologically, DSRCT presents with particular features. These tumors are defined by small 

round blue cells organized in islets and surrounded by a prominent dense desmoplastic stroma 

composed of reactive fibroblasts, inflammatory myeloid cells, and blood vessels (Fig. 3). 

Several routine IHC stainings are required to orientate a diagnosis towards DSRCT in front of 

a small round blue cells tumor. These markers include CD45, Cytokeratins (CK, AE1/AE3), 

Epithelial Membrane Antigen (EMA), PS100, desmin and Ki67. DSCRT is characterized by 

the coexpression of epithelial (Cytokeratin, EMA), mesenchymal (Desmin, Vimentin), and 

neural markers such as Neural Specific Enolase (NSE) which are often expressed altogether. 

DSRCT often displays a weak CD99 staining, which allows its distinction from Ewing sarcoma 

and is positive for WT1 C-terminal antibody staining due to EWSR1-WT1 fusion protein 

expression. 

 

 

Fig. 3. DSRCT histopathological aspect. 
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H&E staining showing nests of small round blue cells embedded within an abundant desmoplastic 

stroma (A). Analysis of the tumor by immunohistochemistry (20x) shows diffuse positivity for VEGFR2 (B) 

and coexpression of (epithelial) EMA (C) and (mesenchymal) desmin (D) markers. From Mora et al. 24 
 

 

1.2.2 DSRCT differential diagnoses 

Although DSRCT histological presentation is often suggestive, several differential diagnoses 

should be suspected in front of small round cell tumors, especially when the clinical 

presentation is not typical. These differential diagnoses include tumors of non-mesenchymal 

origin such as lymphoma, neuroblastoma, carcinoma (e.g., small-cell lung carcinoma, Merkel 

cell carcinoma), and mesothelioma. Mesenchymal tumors characterized by small round tumor 

cells may be grouped into the novel growing entity of Small Round Cell Sarcomas (SRCSs) or 

SRCSs mimicries 25. Strictly speaking, DSRCT is not categorized within the SRCS group in 

the 2020 WHO classification. SRCSs gather an expanding group of sarcoma, recently added to 

the 2020 WHO classification of soft tissue and bone tumors 26–28. They represent a large and 

heterogeneous entity comprising distinct molecular subtypes now increasingly characterized on 

a molecular level 29. SRCSs are generally defined by the presence of a chromosomal 

translocation generating chimeric proteins, most of which act as aberrant transcription factors, 

such as (1) FET family protein-ETS family protein defining EFTs (e.g., EWSR1-FLI1, 

EWSR1-ERG, EWSR1-PEA3, FUS-ETV4), (2) EWSR1-non-ETS rearranged sarcoma (e.g., 

EWSR1-NFATC2), (3) CIC-fused (e.g., CIC-DUX4), or (4) BCOR-fused (e.g., BCOR-

CCNB3) sarcoma. Moreover, additional adult sarcoma may also mimic genuine SRCSs, 

including the different subtypes of rhabdomyosarcoma, extraskeletal myxoid chondrosarcoma, 

myxoid or round cell liposarcoma, and mesenchymal chondrosarcoma. 

 

1.2.3 DSRCT molecular diagnosis 

DSRCTs are characterized by the pathognomonic fusion gene EWSR1-WT1 arising from the 

balanced translocation t(11;22) (p13;q12) 30, considered the sole oncogenic driver in this 

disease. This genetic abnormality is found in approximately 95% of DSRCT cases. Exceptional 

cases describe the finding of EWSR1–WT1 in other tumor types whose histological aspect was 

incompatible with the diagnosis of DSRCT 31. 

Several EWSR1-WT1 variant transcripts have been described so far 32, the most common 

isoform arising from a fusion breakpoint between EWSR1 exon 7 and WT1 exon 8. 

Fluorescence In Situ Hybridization (FISH) is routinely used as a molecular assay to diagnose 

DSRCT 33, the most common assay depending on an EWSR1 break-apart probe. In the case of 
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a translocation involving EWSR1, the two fluorophores positioned in the N-terminal and C-

terminal part of the EWSR1 protein will be spatially separated and distinguishable as two 

differently colored dots. 

As an alternative to FISH, multiplex Next Generation Sequencing (NGS)-based RT-PCR is 

frequently used to identify both partners of a fusion transcript among a list of relevant targets. 

A classic example of such an assay is the ArcherDX FusionPlex® Sarcoma v2 panel, which 

covers critical fusions in 63 genes often rearranged in sarcoma. Alternatively, NGS-based 

ligation-dependent multiplex probe amplification (MLPA) 34 requires to know a priori the 

identity of both fusion partners. In addition, DNA-based hybrid capture may still be used, but 

is less accurate and cost-effective. 

Altogether, DSRCT diagnosis often relies on a set of arguments encompassing typical clinical 

presentation, coupled with the archetypal morphological aspect and immunohistological 

staining, finally confirmed molecularly with FISH or RNA-seq identifying the pathognomonic 

fusion gene or transcript. 

 

1.3 DSRCT CURRENT THERAPEUTIC MANAGEMENT 

DSRCT general therapeutic approach consists of a multimodal strategy 35 combining induction 

chemotherapy, debulking surgery, followed by maintenance treatment or pan abdominal 

radiation, the latter being in practice usually reserved for children. 

There is no standard regimen, but the association of doxorubicin and high-dose ifosfamide is 

widely used. Trabectedin 36–39 and pazopanib 40,41, the only tyrosine kinase inhibitor approved 

in the management of advanced STS 42, have also proved their efficacy in advanced DSRCT. 

No specific targeted therapy towards DSRCT has entered clinical practice to date. Preclinically 

evaluated compounds and potent future therapeutics are discussed in Section 1.6. 
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1.4 DSRCT ONCOGENIC DRIVER 

1.4.1 EWSR1-WT1: a unique oncogenic driver in DSRCT 

 

Fig. 4. EWSR1-WT1 fusion transcript, isoforms, and protein domains. 

Upper panel: The t(11;22)(p13;q12) translocation, full-length EWSR1, and WT1 genes, and the most 

frequent breakpoints generating EWSR1-WT1 fusion gene in DSRCT. Middle panel: Variability of EWSR1-

WT1 fusion transcripts according to gene breakpoints, alternative exonic splicing, and the 

presence/absence of the KTS domain between the 3rd and the 4th zinc fingers from the WT1 C-terminal 

part. Lower panel: Full-length EWSR1 and WT1 protein domains and EWSR1-WT1 chimeric protein. 

 

1.4.1.1 EWSR1-WT1 chimeric gene and t(11.22) translocation 

Multiple lines of evidence advocate for the role of EWSR1-WT1 as the unique DSRCT 

oncogenic driver: (i) EWSR1-WT1 detection in more than 95% of DSRCT cases, (ii) the lack 
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of recurrent secondary mutations identified in both primary and metastatic sites, (iii) EWSR1-

WT1-driven oncogenesis if associated to TP53 deficiency in human embryonic fibroblast 43, 

(iv) DSRCT cells dependency on EWSR1-WT1 to grow and survive in vitro44. 

The initial event leading to EWSR1-WT1 fusion gene is the balanced chromosomal 

translocation t(11;22) (p13;q12). EWSR1-WT1 chimeric protein contains the N-terminal part 

of EWSR1, which comprises its transcriptional activation domain, whereas the WT1 C-terminal 

part involves the three last DNA-binding zinc finger domains. 

In vivo chromosomal translocation are complex events with poorly understood underlying 

mechanisms. At least two critical steps are required to give rise to a translocation. First, a 

double-strand break (DSB) should co-occur on both partner genes specific loci. Second, a 

spatial proximity (even transient) between both DSBs should allow their joining through Non-

Homologous End Joining (NHEJ) DNA repair mechanism 45. The origin of such DSBs can be 

variable and may be favored by endogenous mechanisms such as a high transcription or 

replication rate leading to genotoxic stress promoting such DNA cleavage. Thus, one may 

suspect that DSRCT cell of origin, which is currently not yet identified, may bear a strong 

EWSR1 and WT1 pathways activation. Interestingly, WT1 is involved in the Epithelial-to-

Mesenchymal Transition (EMT) process during development, including EMT occurring in the 

coelomic epithelium in embryogenesis 46. Notably, while there is growing evidence that specific 

germline mutations on protein-coding sequences may participate in Ewing sarcoma 

tumorigenesis and increase its incidence risk 47–51, no genetic predisposition factor for 

developing DSRCT has been established. 

The t(11;22) (p13;q12) translocation EWSR1-WT1 chimeric protein hence contains the N-

terminal part of EWSR1, which encloses the transcriptional activation domain, whereas WT1 

C-terminal part involves the three last DNA-binding zinc finger domains. 

1.4.1.2 The 3’ fusion partner: EWSR1 

EWSR1 belongs to the multifunctional TET/FET proteins family, together with FUS and 

TAF15. These proteins are DNA/RNA-binding Proteins (RBP) through an RNA Recognition 

domain (RRM domain), Arginine Glycine Repeats (RRG domains), and a C-terminal zinc 

finger domain 52. This RNA-binding capacity confers to EWSR1 an essential function in RNA 

metabolism and RNA splicing. The N-terminal end of EWSR1 harbors a repeated motif of the 

Ser-Tyr-Gly-Gln-Gln-Ser hexapeptide 53. This domain resembles the C-terminal domain (CTD) 

of the largest subunits of RNA polymerase II (Pol II). It is similar to the activating domain of 

some transcription factors, conferring EWSR1 a potent transcriptional activation capacity. 

Significantly, EWSR1 is expressed in most cells and tissues and is mainly located in the 
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nucleus, where it acts as a transcriptional coregulator through its interactions with several 

transcription factors, such as Pol II and TFIID 52. 

1.4.1.3 The 5’ fusion partner: WT1 

WT1 was initially identified in 1990 as a predisposition gene to Wilms’ Tumors 54, a pediatric 

kidney cancer. Since then, WT1 has been confirmed to be mutated in about 15% of Wilms’ 

tumors cases 55 (loss-of-function mutation) and to behave as a tumor suppressor. In the 

meantime, several molecular functions of WT1 have been uncovered. Notably, WT1 protein 

has been shown to be involved in embryonic development and tissue homeostasis, cellular 

switching processes such as EMT or Mesenchymal-to-Epithelial Transition (MET), as well as 

transcription and epigenetic regulation 56. WT1 is admitted to be part of the transcription factors 

family and binds to DNA throughout its four Zinc Fingers (ZNFs). Initial in vitro studies 

revealed that WT1 can bind the consensus site 5′-GCGGGGGCG-3′, which is identical to the 

EGR1 binding motif 57. Moreover, Chromatin Immunoprecipitation (ChIP) experiments 

unraveled WT1 potential regulated targets, most of which are involved in kidney development 

56. 

Importantly, the WT1 gene codes to a transcript containing 10 exons, potentially generating 36 

distinct isoforms. In any of the isoforms found in mammals, four C2 H2 Krüppel-like ZNFs are 

located on the C-terminus part of the protein (Fig. 4). One particular key feature within these 

domains, is the presence of a three amino acid domain (Lysine, Threonine, and Serine; KTS) 

located within the 9th intron. This KTS motif can be inserted between the third and fourth ZNF 

through alternative splicing. Contrary to other exonic splicing isoforms of WT1, whose 

differential functions remain unclear, +KTS and -KTS isoforms have documented distinct 

activities 58,59. In summary, -KTS isoform seems primarily involved in transcriptional 

regulation as a transcription factor, whereas +KTS isoform mainly participates in post-

transcriptional regulation 58,59. 

1.4.1.4 EWSR1-WT1 isoforms 

Several studies aimed at characterizing the various EWSR1-WT1 isoforms 30,60,61. An original 

work analyzed the EWSR1-WT1 breakpoint sequence in six DSRCT patients. In this study, 

EWSR1-WT1 breakpoint locus PCR and DNA sequencing revealed a fusion between EWSR1 

intron 7 and WT1 intron 7. The related fusion transcript linking EWSR1 exon 7 with WT1 exon 

8 was detected in four of the six patients. This breakpoint bridging EWSR1 and WT1 leads to 

an in-frame fusion of the N-terminal end of EWSR1 and the three last zinc finger domains of 

WT1. Therefore, the resulting chimeric protein conjugates the potent transcriptional activation 
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domain of EWSR1 with the three last zinc-finger domains of the WT1 DNA-binding domain. 

Since its first description in 1992 62, several EWSR1-WT1 variant transcripts have been 

reported, arising from various DNA breakpoints or alternative transcript splicing. Although 

most EWSR1-WT1 transcripts arise from the fusion between EWSR1 exon 7 and WT1 exon 8, 

different EWSR1-WT1 breakpoints have been described 32, while the biological or clinical 

consequences of such variants on DSRCT disease course remain unknown (Fig. 4). 

Like for wild-type WT1 gene, one particularly documented isoform type concerns the + or -

KTS domain. While only the -KTS isoform (and not +KTS) showed transforming potential in 

NIH3T3 cells in vitro 63, Bandopadhayay et al. highlighted in a subsequent study that both 

EWSR1-WT1 -KTS and EWSR1-WT1 +KTS expression co-operates with loss or inactivation 

of p53 to transform MEFs 43. 

 

1.4.2 EWSR1-WT1 target genes and DNA-binding sequence 

Recent works emphasized the dependency of DSRCT cells on EWSR1-WT1 fusion transcript 

44 and described that the loss of EWSR1-WT1 activity leads to DSRCT cells' morphologic 

changes and growth arrest. EWSR1-WT1 has been shown to drive DSRCT oncogenicity 

through the transcriptional activation of target genes involved in proliferation, cell survival, and 

invasion, such as IL-2/15R 64, BAIAP3 65, IGF-2 43,66, PDGFA 43, EGFR 43, LRRC15 67, FGFR4 

66, ROCK1 66, PEX5 66, CTCFL 66, TSPAN7 66, and TALLA1 68 contributing to sarcomagenesis 

and tumor progression. 

The first studies exploring EWSR1-WT1 targets and binding sites relied on either 

electrophoretic mobility shift assays (EMSA), promoter-reporter assays, or original ChIP 

experiments. These uncovered EWSR1-WT1 target genes and identified distinct binding sites 

between EWSR1-WT1 isoforms (Table 1), though the EWSR1-WT1 preferred DNA-binding 

motif has not been established yet. For instance, the two EWSR1-WT1 isoforms +KTS or -KTS 

have specific DNA recognition sequences, EWSR1-WT1 -KTS, showing specific binding to 

either GC-rich regions 32,69–71 or TCCn repeats 37. In contrast, EWSR1-WT1 +KTS was shown 

to target GA-rich regions containing 5′-GGAGG(A/G)-3′ motif 67. Interestingly, according to 

Liu et al. 32, most EWSR1-WT1 protein isoforms retain the ability to bind EGR1 GC and TC 

elements and WT1 consensus sequences, but the activation of EGR1 promoter activity is 

specific to EWSR1-WT1 -KTS. 

Subsequent studies took advantage of Chromatin immunoprecipitation (ChIP) followed by 

sequencing (ChIP-seq), bringing a wider overview of EWSR1-WT1 targets and downstream-
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regulated pathways. Hingorani et al. 66 proposed to study the correlation between DSRCT 

transcriptome and EWSR1-WT1 binding profile using ChIP-seq in a JN-DSRCT-1 cell line 72. 

A total of 2,036 peaks were significantly enriched within EWSR1-WT1-binding regions, 

including 1,284 peaks associated with a protein-coding gene. Novel EWSR1-WT1 targets were 

thus identified such as ROCK1, PEX5, CTCFL, FGFR4, IGF2 and TSPAN7. However, this 

study did not identify de novo EWSR1-WT1 binding motifs, although EWSR1-WT1 targeted 

sequences were close to WT1, EGR1, and EGR2 binding motifs and colocalized with RNA Pol 

II occupancy. Notably, EWSR1-WT1-specific peaks were mostly enriched within intergenic 

and intronic regions, suggesting EWSR1-WT1 binding to enhancers rather than promoters. This 

binding profile is consistent with the one found in other fusion-driven sarcomas, such as Ewing 

sarcoma 73 and its characteristic EWSR1-FLI1 fusion. A comprehensive description of 

EWSR1-WT1 downstream activated pathways relying on ChIP and other functional genomics 

approaches is further detailed in Section 1.5.3. 
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Table 1. EWSR1-WT1 targets and binding sites. 

 

Target ASCL1 ENT4 LRRC15 BAIAP3 IL-2/15Rβ EGR1 IGF-1 SIK1 EGFR IGF2 PDGFA IGF-1R 

Reference 69 70
 

67 65 64 32
 

71
 

74 37 37
 

37,75
, 

76 

EWSR1-

WT1 isoform 
KTS- KTS +/- KTS + KTS- KTS- KTS- KTS+/- NA NA NA KTS- NA 

Model 

Exogenous 

EWSR1-WT1 
expression in 

MEFs and 

U20S cell 
lines, JN-

DSRCT-1 cell 

line, and  
FFPE DSRCT 

tumor sample 

Exogenous 

EWSR1-WT1 

expression in 
U2OS-derived 

cell lines 

(UV9, UF5, 
UED5), JN-

DSRCT-1 cell 

line, and 
FFPE DSRCT 

DSRCT 

tumor sample 

Exogenous 

EWSR1-WT1 

expression in 
U20S, FFPE 

DSRCT 

tumor sample 

Exogenous 

EWSR1-WT1 
expression in 

U20S 

Exogenous 

EWSR1-WT1 

expression in 
U2OS and 

FFPE DSRCT 

tumor sample 

Exogenous 

EWSR1-WT1 
expression in 

Saos-2, FFPE 

DSRCT 
tumor 

samples 

Exogenous 

EWSR1-WT1 

expression in 
Saos-2 and 

G401 cell 

lines 

JN-DSRCT-1 
cell line 

JN-DSRCT-1 
cell line 

JN-DSRCT-1 
cell line 

JN-DSRCT-1 

cell line, 

exogenous 
EWSR1-WT1 

expression in 

U2OS 

Exogenous 

EWSR1-WT1 
expression in 

CHO cell line 

Method 

Microarray, 

RT-PCR, 

promoter-
reporter assay, 

cell 

proliferation 
assay, IHC 

and ChIP 

RT-PCR, 

promoter-

reporter assay, 
IHC, and 

ChIP 

RT-PCR, 

promoter-

reporter assay, 
IHC, EMSA 

and ChIP 

RT-PCR, 

promoter-
reporter assay, 

RNA-in situ 

hybridization, 
EMSA and 

ChIP, cell 

proliferation 
assay 

Promoter-

reporter assay, 
EMSA, IHC 

RT-PCR, 
promoter-

reporter assay, 

EMSA 

Promoter-

reporter assay, 
EMSA 

ChIP 

ChIP, tested 
upon 

trabectedin 

treatment 

ChIP, tested 
upon 

trabectedin 

treatment 

ChIP tested 

upon 
trabectedin 

treatment, 

promoter-
reporter assay, 

RNA-in situ 

hybridization, 
and IHC 

Promoter-

reporter assay 

Target 

sequence 

10 GC-rich 

response 

elements 

within 
ASCL1 

promoter 

GC-rich: (i) 

5'-

GAGGGGGT

C-3', (ii) 5'- 

GCGGGGGG
G-3', (iii) 5'- 

CTGGGGGC

G-3' 

GA-rich: 5'-
GGAG 

G(A/G)-3' 

E-WRE: 5′-
GXG(T/G)G

GGXG-3′ 

GC-rich: 5'-

(G/C)(C/G)(G

/C)TGGGGG-
3' 

GC-rich: 5′-
GCGGGGGC

G-3 

GC-rich: 5'-
GCGGGGGC

G-3' 

NA (2kb 

proximal 
promoter 

region of 

SIK1) 

NA NA TCCn repeats NA 

ChIP: Chromatin ImmunoPrecipitation, EMSA: electrophoretic mobility shift assay, E-WRE: EWSR1-WT1 (KTS-) response element, FFPE: Formalin-fixed, paraffin-

embedded, IHC: ImmunoHistoChemistry, RT-PCR: Reverse Transcription-Polymerase Chain Reaction  
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1.5 DSRCT  MOLECULAR LANDSCAPE 

The previous part presented DSRCT pathognomonic t(11;22) (p13; q12) translocation leading 

to EWSR1-WT1 fusion and its biological consequences as a unique oncogenic driver, 

generating a wide transcriptional rewiring. 

Historically, sarcomas have been classified into two categories. The first category comprised 

sarcomas with near-diploid karyotypes and simple genetic alterations (e.g., translocations), 

while the second encompassed subtypes with complex karyotypes 77. DSRCTs are classified 

into the first category and thus considered simple genomics tumors, harboring few additional 

mutations and few copy number alterations. In this group are included other fusion sarcomas 

such as synovial sarcoma (SSX-SS18 translocation), Ewing sarcoma (EWSR1-FLI1 

translocation), and other STS driven by one main genomic alteration such as rhabdoid tumors 

(SMARCA4 or SMARCB1 deficiency) (Fig. 5). 

 

 

Fig. 5. Sarcoma histotypes phylogenetic tree (n=60). 

This classification is based on relationships among lineage, driver genetic alteration, prognostic,  and other 

parameters. Fusion sarcomas cluster altogether. From Taylor et al., 2011 77. 

 

Since its first description in 1991, the characterization of DSRCT molecular landscape has 

gained increasing interest throughout the last few years. In addition to the depiction of the 
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various EWSR1-WT1 isoforms, studies have sought to explore both EWSR1-WT1-induced 

dysregulated pathways and potentially biologically relevant secondary mutations. 

1.5.1 DSRCT relative chromosomal stability 

Although DSRCTs are characterized by a stable chromosomal landscape, several copy number 

alterations have been described. 

Based on targeted Next Generation Sequencing (NGS) using MSK-IMPACT® panels (n=341, 

410, and 468 genes for MSK-IMPACT® versions 1, 2, and 3, respectively), Nacev et al. 78 

highlighted several significantly recurrent copy number variations (CNVs) including gains of 

1q, 5p, 5q, and 16q within a cohort of 48 DSRCTs. Within the same cohort, recurrent loss of 

heterozygosity (LOH) 79 was identified in chromosome arms 11p, 11q, and 16q in 18%, 22%, 

and 34% of 50 patients, respectively, suggesting their potential biological relevance in tumor 

progression. 

Using single nucleotide polymorphism arrays, Sydow et al. 80 further studied 25 samples from 

19 DSRCT patients and found CNVs in all samples, the most common of which being gains of 

1/1q and 5/5p and loss of 6/6q and 16/16q. 

To date, the biological role of such alterations remains largely unknown. Of note, chromosome 

6 is enriched in genes associated with nucleosome formation, notably in genes that are members 

of the histone H1 (HIST1 H) family, some of which are the targets of missense mutations in 

DSRCT 78, as well as in HLA class I genes, which may explain decreased HLA expression in 

DSRCT. 

1.5.2 DSRCT genomic stability 

Despite clear evidence of EWSR1-WT1 oncogenic capabilities, attempts have been made to 

identify potentially recurrent secondary mutations on DSRCT tumors (Table 2, Fig. 6), which 

may provide hints on EWSR1-WT1 essential partners and uncover antitumoral treatment 

mechanisms of resistance. Additionally, this could deepen the knowledge of the biological 

pathways involved downstream EWSR1-WT1 activity and thus help to define novel 

pharmacological targets. 

Seminal work on both Ewing sarcoma and DSRCT molecular characterization relying on 

targeted exome sequencing highlighted a very low amount of secondary mutations 81. A first 

study focusing on pediatric malignancies using NGS revealed gene amplification of AURKB 

and MCL1 without putative pathogenic significance and on a restricted number of tested genes 

82. Among the 10 DSRCT patients evaluated in the latter study, only two exhibited secondary 

mutations on GRB10, PTPRD, KRAS, MET, and PIK3CA. This observation was confirmed later 
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in a multiplatform profiling study (DNA sequencing and protein biomarkers analysis), in which 

a limited number of mutations were found for DSRCT samples 83. However, these studies were 

based on the analysis of a small panel of genes, which narrows their interpretability. More 

comprehensive panels have subsequently been used to characterize DSRCT secondary 

mutations, including FoundationOne Heme and MSK-IMPACT® NGS panels, each involving 

more than 400 genes (Table 2). In the first study, describing 83 DSRCT cases but without 

matched normal tissue, authors underlined DSRCT low mutational burden in 96% of patients 

and identified alterations in FGFR4, ARID1A, TP53, MSH3, and MLL3 84. In the second study, 

evaluating 68 DSRCT cases with matched germline tissue, recurrent mutations were rare but 

were identified in TERT (3%), ARID1A (6%), HRAS (5%), and TP53 (3%), along with low 

mutational rate with a median of 0.80 mutations/Mb 79. 

Access to Whole Exome Sequencing technologies (WES) enabled to investigate more 

exhaustively the mutational landscape of DSRCT. Devecchi et al. 85 analyzed the copy number 

alterations and somatic mutations of six pretreated DSRCT patients' archival tissues using 

WES. In total, 137 somatic mutations were detected, but were mostly case-specific. Only two 

mutations were found recurrent (MUC19 and GUSBP1) but at different gene positions. This 

work revealed that among the identified mutations, 27% could be classified into two main 

categories: DNA damage response (DDR), Epithelial-Mesenchymal transition (EMT), and 

Mesenchymal-Epithelial Transition (MET). Concerning DDR, a significant part of the mutated 

genes concerned RNA-binding protein. The most recent study exploiting DSRCT WES data 

reached a similar conclusion, describing DSRCT low mutation rate (around 0.72 mutations per 

Mega bases) and identifying mutations on previously described genes such as ARID1A. 

Interestingly, the authors also analyzed the phylogenetic evolution of mutations and CNVs upon 

multiple tumor sites within patients, and found limited and late evolution between distinct tumor 

sites 86.  

In total, the generation of a comprehensive landscape of DSRCT secondary mutations is 

hampered by the variability of the sequencing gene panels used in such studies and the 

inconsistent use of matched normal tissue, which may overestimate somatic mutation rates. 

Nonetheless, in line with the molecular characterization of most fusion-driven sarcoma 78,87 

(e.g., Ewing sarcoma 88,89, synovial sarcoma 78, rhabdomyosarcoma 90), DSRCT exhibits a 

markedly stable genomic landscape with generally <1 mutation /Mb 79,85,86 and few secondary 

mutations, which are rarely recurrent across patients (Fig. 6). However, the few recurrent 

mutations identified in DSRCT most often occur in genes involved in DNA damage response, 
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Epithelial-Mesenchymal Transition/ Mesenchymal-Epithelial Transition, and immune response 

85 suggesting a biological relevance of these pathways in DSRCT tumor progression. 

 

Table 2. DSRCT Targeted Next Generation Sequencing and Whole Exome Sequencing 

studies. 

Author Chow et al. Slotkin et al. Devecchi et al. Wu et al. 

Year 2020 2021 2018 2022 

Reference 84 79 85 86 

Number of analyzed samples 83 68 6 22 

Panel FoundationOne Heme assay MSK-IMPACT® WES WES 

Normal matched tissue No Yes Yes Yes 

Number of analyzed genes 406 468 exome exome 

Number of identified mutations 137 68 137 460 

AQP7    15% 

ARID1A 11% 6%  15% 

C14orf23    15% 

C22orf42    15% 

DKZFp434P0216    15% 

FADS6    15% 

FGFR4 8% 7%   

GUSBP1   33%  

HRAS  4%   

KRTAP9-1    15% 

LNP1    15% 

LOC283685    15% 

MAN2C1    15% 

MAST3    15% 

MLL3 16%    

MSH3 14%    

MUC16    23% 

MUC19   33%  

MUC4    15% 

MUC6    15% 

OR4C45    15% 

ROBO2    15% 

TERT  3%   

TMEM128    15% 

TNN    15% 

TP53 10% 3%   

ZNF773    15% 
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Fig. 6. DSRCT recurrent mutations according to the Whole Exome Sequencing (WES) 

GENIE DSRCT cohort. 

The top 20 recurrent mutations are displayed. 

 

1.5.3 DSRCT altered transcriptomics pathways 

Since EWSR1-WT1 behaves as a transcriptional activator, identifying downstream genes and 

pathways specific to DSRCT could open therapeutic opportunities. 

The first evidence showing that EWSR1-WT1 fusion protein was leading to gene expression 

dysregulation was provided by a study using a mouse conditional knock-in model for EWSR1-

WT1 expression 69. The authors constructed two models containing or not the KTS motif. When 

using Mouse Embryonic Fibroblasts (MEFs) from these mice strains, significant expression 

changes were detected for thousands of genes upon the induction of either of the two distinct 

isoforms. Notably, very few overlapping genes were found regulated by both the -KTS and 

+KTS isoforms, suggesting that both isoforms are likely to be recruited at distinct genomic 

regions and to regulate specific downstream genes, in line with previous in vitro and in vivo 

observations (please refer to Section 1.4.2 for additional information on EWSR1-WT1 binding 

sequence). One particularly interesting point in this study was that upon EWSR1-WT1 -KTS 

induction, Gene Ontology (GO) analysis revealed a strong enrichment in neural-related genes. 
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To confirm this observation, the authors relied on a previously published work 91, in which the 

transcriptome of 28 DSRCT tumors was analyzed by microarrays and compared to other 

tumors, including alternate fusion-driven sarcomas. When doing such a comparison, authors 

observed that neural pathway genes were significantly enriched in the DSRCT samples. 

Notably, a subset of upregulated genes upon EWSR1-WT1 -KTS induction in the MEFs was 

also detected as upregulated in DSCRT tumors compared to other sarcomas. These genes 

included ASCL1, PLXNB1 and NTRK3. 

Interestingly, similar observations have been established in Ewing sarcoma, in which EWSR1-

FLI1 up-regulates critical genes involved in neural crest development 92. Later on, several 

groups performed transcriptome analysis of DSRCT using RNA-seq 93–95. When compared to 

some other pediatric tumors, including central nervous system tumors (CNS), glioblastoma, 

glioma, and other sarcoma, DSRCT transcriptome clusterized within a subcluster of rare 

sarcomas, suggesting a common behavior with alternate fusion-driven sarcomas, possibly due 

to the proximity of the cell of origin. 

Smith et al. notably reported a signature based on Gene Set Variability Analysis (GSVA) and 

highlighted that DSRCT top oncogenic signature genes included MEK, EGFR, ERB2, and RAF 

94 (Fig. 7). Interestingly, the EGFR pathway had also been previously shown to be enriched in 

DSRCT compared to other sarcomas 93. Another pathway that has gained interest as it was 

found to be upregulated in several independent DSRCT transcriptomic studies is the gene 

coding for the Androgen Receptor (AR). A recent study confirmed this observation using 

genomics, proteomics, and functional genomics approaches, and showed that AR targeting in 

patient-derived xenograft models (PDXs) could represent a valuable therapeutic approach 96. 
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Fig. 7. Heatmap representing mRNA-based oncogenic signatures scores in five selected 

sarcoma histotypes. 

DSRCT: Desmoplastic Small Round Cell Tumor, ES: Ewing Sarcoma, SS: Synovial Sarcoma, ARMS: Alveolar 

Rhabdomyosarcoma, ASPS: Alveolar Soft Part Sarcoma. From Smith et al. 94 

 

As stated above, Hingorani et al. 97 combined EWSR1-WT1 ChIP-seq and RNA-seq 

experiments in JN-DSRCT-1 cell line with microarray transcriptome data from publicly 

available datasets of fusion-driven sarcomas (rhabdomyosarcoma, alveolar soft part sarcoma, 

DSRCT, and Ewing sarcoma). Gene set enrichment analysis on DSRCT specifically 

upregulated genes highlighted an activation of DNA damage response, muscle development, 

and chromatin remodeling pathways (Table 3). 
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Table 3. Differentially enriched gene sets in DSRCT compared to other sarcoma subtypes. 

From Hingorani et al.66. 

 

Interestingly, EWSR1-WT1 ChIP-seq enriched peaks were found on known EWSR1-WT1 

targets such as TSPAN but also on new putative genes (e.g., IGF2, FGFR4, CTCFL, PEX5 and 

ROCK1). Of particular interest, EWSR1-WT1 associated peaks corresponding genes were 

enriched for specific pathways, such as Wnt, Notch, and components of the extracellular matrix, 

that may constitute targetable vulnerability pathways in DSRCT. 

Other recent studies using in vitro models isolated from DSRCT patients aimed at describing 

EWSR1-WT1 target genes by using functional genomics approaches 44,98. The use of a short 

hairpin RNA (shRNA) or small interfering RNA (siRNA) to silence EWSR1-WT1 followed by 

RNA-seq was used in both studies to explore the effect of EWSR1-WT1 silencing on gene 

regulation (Fig. 8). Both studies found some overlapping genes likely to be modulated (directly 

or indirectly) by EWSR1-WT1 and highlighted a strong dependency on ERG expression, a FLI1 

family member. Interestingly, both studies highlighted some similarities between DSRCT and 

Ewing Sarcoma, including the role of EWSR1-WT1 in DNA repair, transcription, TGF , and 

IGF pathways 44. In addition, similarly to EWSR1-FLI1 silencing in Ewing Sarcoma, EWSR1-

WT1 knock-down affected tumor cell shape and proliferation, likely by affecting some genes 

involved in cell adhesion and cell migration. 
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Fig. 8. EWSR1-WT1 upregulated and downregulated genes. 

From Bleijs et al. 98. 

 

More importantly, it has been recently shown that diverse cancers characterized by chimeric 

TFs, including Ewing sarcoma and DSRCT, induce the expression of highly specific and novel 

spliced transcripts, some of which are efficiently translated 99. While the function of these 

neoproteins remains unknown, this observation provides new opportunities to identify DSRCT-

specific neoantigens that could be used as therapeutic targets. 

 

1.5.4 DSRCT-specific methylation profile 

In line with gene expression-based studies, DNA methylation analysis of several small round 

cell tumors revealed an evident heterogeneity between evaluated sarcoma subtypes 100. When 

specifically focusing on fusion sarcoma, DSRCT exhibited a specific signature when compared 

to Epithelioid Sarcoma (ES), Synovial Sarcoma (SS), Alveolar Rhabdomyosarcoma (ARMS), 

and Alveolar soft part sarcoma (ASPS).  

 

1.5.5 DSRCT microenvironment 

Concerning DSRCT microenvironment, the latter is constituted by a typical dense desmoplastic 

stroma, which is usually poorly infiltrated by T cells 101. Interestingly, when comparing DSRCT 

primary and recurrent tumors, authors observed that the CTL (cytotoxic T-lymphocytes) score, 

which combines HLA A/B/C and β2-microglobulin IHC expression, was even lower at relapse 

compared to primary tumor 101, suggesting the role of immune escape in tumor recurrence and 

therapeutic resistance. Transcriptomics studies also provided clues on DSRCT immune 

landscape. The analysis of neoantigens and Major Histocompatibility Complex class I (MHC 

I) expression from RNA-seq datasets revealed that DSRCT is characterized by a low MHC I 
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and neoantigens expression 95. This observation is consistent with the low mutational burden 

observed in DSCRT since neoantigens expression often correlates with mutational burden. The 

RNA-seq-derived inference of immune infiltrate showed that DSRCT, like a large part of 

sarcoma subtypes, exhibits a low immune infiltrate and is characterized as “cold” tumors 95. 

 

1.6 DSRCT: MOLECULAR VULNERABILITIES AND PROMISING THERAPEUTICS 

As previously mentioned, no targeted therapy is currently approved for DSRCT apart from 

pazopanib. However, recent preclinical studies and clinical trials have shown promising 

efficacy in DSRCT targeting.  Several reviews recently summarized DSRCT potential 

therapeutic opportunities and current clinical trials 102,103. The distinct current and future 

therapeutic strategies to target DSRCT cells are outlined in Fig. 9. Briefly, initial strategies 

focused on the targeting of EWSR1-WT1 downstream pathways such as PI3K/AKT/mTOR, 

VEGF/PDGF, EGF, IGF, or AR pathway. The recent identification of NTRK3 activation also 

paved the way for novel NTRK inhibition strategies (Table 4). One of the most promising 

preclinical studies notably involves DNA repair targeting, relying on DSRCT cell inherent 

replicative stress, as exemplified by the evaluation of SIK1/CHK1 double inhibition. 

Notably, with the advent of anti-tumor immune therapy, the place of immune checkpoint 

inhibitors such as PD-1/PD-L1 inhibitors in the management of sarcoma has been recently 

questioned. In the AcSé Pembrolizumab phase II study, six patients with advanced DSRCT 

were treated with pembrolizumab, an anti-PD-1 monoclonal antibody, resulting in one partial 

response (17%) and a median progression-free survival of 5 months 104. 

Overall, the therapeutic strategies developed to date to target DSRCT resulted in disappointing 

clinical improvements, which may result from the variety of activated oncogenic pathways 

downstream EWSR1-WT1 and the scarcity of clearly identified vulnerabilities. Importantly, it 

is likely that DSRCT cell heterogeneity also plays a crucial role in tumor progression and 

therapeutic resistance. Indeed, despite a unique oncogenic driver and potentially rare secondary 

mutations, DSRCT cancer cells may move dynamically across a continuum of cell states that 

allow them to adapt to microenvironment changes, therapeutic pressure, or tumor site 

relocation. The comprehensive characterization of DSRCT cell heterogeneity may enable the 

detection of the most tumorigenic or prometastatic subpopulations that should be specifically 

targeted. 
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Fig. 9. DSRCT vulnerability pathways and therapeutic opportunities. 
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Table 4. Targeted therapies evaluated in DSRCT preclinical studies. 

 

Drug class Compound In vitro experiments In vivo experiments Biological mechanism Reference 

TRAIL 

agonist 
ONC201 

IC50: Treatment with increasing concentrations (0-

20μM) of ONC201 for 72 h decreases cell proliferation in 

JN-DSRCT-1 cells with a maximum inhibition achieved 

at 10μM (IC50=1.66μM) 

JN-DSRCT-1 orthotopic xenograft 

model: the response rate in the low-

dose group was 35% with a rebound 

effect after treatment withdrawal, 

compared to 60% in the high-dose 

group 

Caspase activation and apoptosis 

induction 
105 

CFA: Treatment of cells with 0.5-1 mM ONC201 for two 

weeks induced a dose-dependent decrease in the number 

of DSRCT clones compared with untreated cells 

Chk1 inhibitor Prexasertib None in DSRCT 

PDX models: complete tumor 

regression was observed in two 

DSRCT PDXs 

DSRCT replication stress and 

DNA damage vulnerability, Chk1 

induction of DNA damage 

response 

106 

KDM1/LSD1 

inhibitor 

ORY-1001, 

GSK2879552, SP2509 

2D growth assays: JN-DSRCT-1 cells display no 

sensitivity to treatment with the irreversible inhibitors of 

KDM1A demethylase function ORY-1001 and 

GSK2879552 but showed sensitivity to the reversible 

KDM1A inhibitor SP2509 

Not explored Not explored 107 

PARP 

inhibitor 

Olaparib+temozolomide 

 

2D growth and migration assays: olaparib and 

temozolomide monotherapy showed dose-response 

growth inhibition of JN-DSRCT-1 cells. Combination 

therapy exhibited a synergistic effect 

JN-DSRCT-1 cell subcutaneous 

xenograft models: combination 

therapy showed increased tumor 

response compared to monotherapies 

on Days 7, 14, and 21, but PDX 

reached a similar tumor volume as 

olaparib monotherapy on Day 28 

 

Olaparib treatment reduced cell 

viability and migration dose-

dependently through caspase 

activation. 

Combination treatment led to a 

cell-cycle arrest and induction of 

DNA damage and apoptosis, even 

when combined at low dosages 

 

108 

EGFR 

inhibitor 
Afatinib, Cetuximab 

2D growth assays: Both monotherapies inhibit cell 

growth of the three DSRCT cell lines (BER-DSRCT, SK-

DSRCT-1, SK-DSRCT-2) dose-dependently with an 

IC50 around 0.3-0.6M. Combination therapy does not 

improve the cytotoxic effect 

BER-DSRCT, SK-DSRCT2 cell 

subcutaneous xenografts, and one 

PDX: No effect was observed on cell 

line xenografts treated with afatinib 

monotherapy. Tumor growth was 

Caspase activation and induction 

of apoptosis 
94 
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impaired with cetuximab 

monotherapy and 

afatinib+cetuximab. 

Similar results were obtained for 

PDX. 

NTRK3 

inhibitor 

Entrectinib and 

repotrectinib 

 

2D growth assays: Two DSRCT cell lines were tested 

(JN-DSRCT-1 and SK-DSRCT2). Entrectinib and 

repotrectinib inhibit cell growth in both cell lines with an 

IC50 between 0.42 and 0.95M for entrectinib and 

1,64M for repotrectinib 

PDX models: Entrectinib led to 

tumor growth inhibition with near 

total regression of one of the three 

tumors and a tumor growth reduction 

of 50 and 75%, respectively, when 

compared to vehicle-treated mice 

Loss of ERK signalization upon 

treatment suggesting a mitogenic 

signaling dependency breakage in 

treated DSRCT cells. 

109 

SIK1+CHK1 

inhibitor 

YKL-05-099 and 

prexasertib 

 

2D growth assays: Two DSRCT cell lines were tested 

(JN-DSRCT-1 and BER). YKL-05-099 inhibited BER 

growth dose-dependently with an IC50 of 3.5M. JN-

DSRCT-1 was less sensitive to YKL-05-099. The same 

observation was done for prexasertib (IC50 for BER 

1.3M and 14M for JN-DSRCT-1). Combination 

therapy with both YKL-05-099 and prexasertib increases 

the sensitivity of JN-DSRCT-1 cells with an IC50 of 

1.9M for prexasertib when treated with a fixed dose of 

YKL-05-099.  

PDX models: The pharmacological 

compounds were not tested in mice in 

this study, but SIK1 knock-down 

with inducible shRNA is shown to 

induce tumor growth inhibition. 

Cell cycle regulation, cell cycle 

arrest. 
110 

AR inhibitors Enzalutamide, AR-ASO 

2D growth assay: Enzalutamide and AR-Antisense 

oligonucleotide inhibit JN-DSRCT-1 growth dose-

dependently. Enzalutamide IC50 was 0,046M and AR-

ASO IC50 was 0.012M. 

JN-DSRCT-1 cell subcutaneous 

xenografts or PDX: Enzalutamide 

inhibited tumor growth significantly 

during the first two months, but 

tumor growth accelerated after this 

timepoint. AR-ASO-treated mice 

exhibited tumor growth inhibition 

with a long-lasting response after two 

months.  

Not explored 96 
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2 TUMOR HETEROGENEITY AND CANCER CELL PLASTICITY 

2.1 TUMOR HETEROGENEITY AND CANCER CELL PLASTICITY: GENERAL PRINCIPLES 

2.1.1 Definitions 

The term ‘tumor heterogeneity’ was historically used to characterize cancer cell genetic 

diversity and has long been limited to the spectrum of clonal diversity 111. The role of genetic 

diversity as a critical player in intratumoral heterogeneity has been primarily established long 

ago 112. Indeed, genetic mechanisms have been shown to contribute to cancer cells’ adaptation 

to the microenvironment, and the latter reversely also participates in genome destabilization 113. 

Tumor genetic heterogeneity can arise from genetic or chromosomal instability, from single-

nucleotide substitutions to chromosomal rearrangements and whole genome amplification. 

Importantly, mounting evidence shows that non-genetic mechanisms also play a central role in 

tumor cells’ heterogeneity and adaptability. We will refer to cancer cell plasticity to designate 

these non-genetic events driving tumor cells’ spatial and temporal adaptability, whether these 

mechanisms rely on epigenetic, transcriptional, or translational processes. However, the term 

‘cancer cell plasticity’ does not have any consensual definition, and it is generally used to 

characterize the cells’ dynamical adaptation to change their phenotype without genetic 

mutations in response to environmental cues or genetic events. These changes can be reversible 

or not, continuous or working in a switch on/switch off manner 114. 

It is now widely accepted that tumor heterogeneity results from both stochastic genetic events 

and cancer cell plasticity, giving rise to cell state variations in relationships with 

microenvironmental signals. 

 

2.1.2 Tumor cells heterogeneity: evolution models 

Tumor clonal dynamics have first been widely studied from sequential and primary/metastasis 

next-generation sequencing of tumor genomes. Initially, two main tumor heterogeneity models 

had been described: the clonal evolution theory and the cancer stem cell theory (CSC) (Fig. 

10). 

The cancer stem cell model relies on the hypothesis that tumors are hierarchically organized 

into subpopulations of tumorigenic cancer stem cells arising from a founder cell, constituting 

an autorenewing niche differentiating into distinct subclones with limited tumorigenic potential 

115. In this model, cancer stem cells are thought to drive tumor initiation, tumor growth, 
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metastatic progression, and therapy resistance, and can partially recapitulate the heterogeneity 

of the tumor. The pivotal work that primarily established this CSC theory showed that putative 

breast cancer stem cells were identified as CD44+/CD24- cells and could, when injected into 

immunodeficient mice in a low number, initiate tumor formation in ~90% of cases 116. 

The clonal evolution theory, first introduced by Peter Nowell in a landmark publication almost 

four decades ago 117, posits that tumors arise from a single cell of origin, which will derive into 

distinct subclones along the course of tumor progression, resulting from the stochastic 

acquisition of mutations within the initiating clone, and allowing the selection of the most 

aggressive or adaptive to change subclones. Several distinct models have further been 

described, such as the Darwinian clonal evolution, the parallel evolution, and gradualism or 

macroevolution 112. 

Several observations highlight that tumor heterogeneity is a highly complex phenomenon, 

suggesting that the two previously presented models might not be mutually exclusive. Actually, 

the concept of cancer cell plasticity may help to unify these models. Indeed, with the improved 

understanding of cancer cell plasticity, a third model has emerged, where cancer stem-like cells 

endure a differentiation/dedifferentiation process and thus have the ability to move between 

stem and differentiated states in response to intrinsic or extrinsic factors 118,119. 

 

Fig. 10. Tumor heterogeneity models: the clonal evolution, the classical cancer stem cell 

(CSC), and the plastic CSC theories. 

From Marjanovic ND et al., 2013 120. 
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2.1.3 Cancer cell plasticity types 

Cancer plasticity has recently been added to Hanahan’s hallmarks of cancer 121. Cell plasticity 

can be defined by continuous transitions among a continuum of phenotypical states. 

Importantly, this ability is a signature property of stem cells and progenitors during embryonic 

differentiation. Nonetheless, cell plasticity is not restricted to embryonic cells, and it has been 

described as an adaptative feature under physiological conditions or pathologic stress in various 

differentiated adult cells, as well as in cancer cells, whose evolution extensively correlates with 

developmental paradigms. Hence, cancer cell plasticity is a central mechanism of all stages of 

tumor development, during premalignant tumorigenesis, tumor initiation, progression, and 

metastasizing, and under therapeutic pressure. 

Several types of cancer cell plasticity have been described, mainly in carcinoma models, among 

which the best-described example to date relies on the process of Epithelial-to-Mesenchymal 

Transition 122. Other examples of cancer cell plasticity have been thoroughly described in 

exhaustive reviews 122–124, comprising tumor cells’ transdifferentiation (i.e., neuroendocrine 

differentiation lineage plasticity) or evolutions towards slow-cycling stem cell-like phenotypes 

119,122 as a response to escape from therapeutic pressure. Additional types of cancer cell 

plasticity, outside of developmental or lineage differentiation, may also play a central role in 

tumor progression and therapeutic resistance. For example, the switch between various 

metabolic programs may occur in response to proliferative cell states, site-specific changes in 

nutrient availability, or drug exposure. For example, dynamics between oxidative 

phosphorylation, anaerobic glycolysis, and fatty acid oxidation constitute hybrid states 

associated with therapy resistance and metastatic progression 125. 

Interestingly, in line with the recent hypothesis that clonal subpopulations are not necessarily 

in competition but act in cooperation, cancer cell plasticity potentially reflects tight 

interdependencies between distinct cell states essential to tumor progression 111. 

 

2.1.4 Cancer cell plasticity sources 

Cancer cell plasticity sources can be broadly divided into two origins. First, cell-extrinsic 

factors involve the microenvironment, including cell-to-cell interactions with immune and 

stromal cells, tissue composition and architecture, and drug exposure. For example, hypoxia 

has been described as a source of plasticity by inducing a HIF-1-dependent migration transition 

from collective-to-amoeboid type in epithelial cancer cells 126. In addition, several cell-intrinsic 

factors arise from the acquisition of genetic stochastic mutations or variations in transcriptional 
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pathways or epigenetic states 118. Strikingly, additional physical factors may also induce cellular 

plasticity. For example, integrating a computational disordered chromatin-packing 

macromolecular crowding (CPMC) model with scRNA-seq, chromatin electron microscopy 

tomography (ChromEM), and live-cell partial wave spectroscopic (PWS) microscopy, Virk et 

al. 127 recently showed that disordered chromatin packing itself was amenable to drive and 

regulate cells’ phenotypic plasticity. Notably, the scaling of chromatin packing was able to 

increase the transcriptional malleability in response to stress, such as antitumor agents 127. In 

this study, authors also showed that the extent of tumor cell plasticity was inversely correlated 

to patients’ survival in a subset of solid tumors. 

 

2.2 RECENT ADVANCES IN THE UNDERSTANDING OF CANCER CELL HETEROGENEITY 

With the blossom of technologies aiming at characterizing cancer cells at single-cell 

resolution, the knowledge of cells’ states and phenotypic plasticity has recently gained 

unprecedented resolution. 

2.2.1 Technical approaches to interrogate tumor cell heterogeneity 

As seen previously, tumor heterogeneity is a complex process but a key feature in cancer 

biology. Initial experiments investigating tumor heterogeneity first relied on histological 

analysis to interrogate cells’ morphological heterogeneity. Other histological methods such as 

IHC, immunofluorescence (IF), or In Situ Hybridization (FISH) enabled to analyze the 

heterogeneity of both tumor cells and non-malignant microenvironmental cells (e.g., immune 

cells or stromal cells). These approaches are instrumental since they preserve spatial tumor 

organization. However, the latter are low throughput since only a few markers or genes can be 

interrogated at a time 128. 

Together with the development of NGS technologies, experiments focusing on tumor 

characterization gained in resolution with the use of Whole Genome Sequencing or RNA-seq, 

interrogating SNPs, copy number variations, or gene expression in a high throughput fashion. 

However, using NGS approaches on bulk tumors only authorizes access to mutations or gene 

expression of a whole population, giving a “mean” overview of heterogeneous cells' exome or 

transcriptome. On the other hand, such approaches prevent the detection of rare subpopulations 

or subclones. Accessing the single-cell genome or transcriptome would then allow to 

characterize intratumor heterogeneity and uncover the biological mechanisms driving such 

diversity. Former techniques combined technologies such as laser microdissection and 

previously mentioned NGS techniques to provide a near single-cell resolution. 
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In the last decade, technological achievements in sequencing, molecular biology, and 

instrumentations such as microfluidics enabled the development of “true” single-cell methods. 

Currently, virtually all types of “omics” experiments have been developed to interrogate the 

transcriptome (single-cell RNA-sequencing), genome (single-cell DNA sequencing), 

epigenome (single-cell ATAC-sequencing, single-cell ChIP-sequencing), and proteome of 

single cells 129. All these methods first rely on the obtention of a suspension of individual cells. 

Single-cell suspensions are obtained from a tumor biopsy or a surgical specimen after tissue 

dissociation, usually performed using enzymes such as collagenases, dispase, or hyaluronidase, 

which digest the extracellular matrix and junction proteins. Acquiring viable cells is critical for 

the results' quality and interpretation. Thus, protocol optimizations (including the duration and 

the temperature of tissue dissociation) to avoid cell death during dissociation is critical 130, as 

apoptotic or stress-induced signals may significantly affect the cell transcriptome. Single nuclei 

may also be used in place of single cells 131 and can be advantageous to facilitate the use of 

frozen samples or tissues that remain hard to dissociate. 

 

2.2.1.1 Non-spatially resolved techniques 

2.2.1.1.1 Single-cell RNA-sequencing 

2.2.1.1.1.1 scRNA-seq techniques 

Among the different single-cell-based methods, single-cell RNA-sequencing has been the most 

widely used and developed. The first study reporting the analysis of a single cell’s transcriptome 

was published in 2009 132. Since then, several methods have been developed to increase the 

throughput from a few cells to hundreds of thousands of cells. All of these methods rely on a 

4-step protocol comprising (i) the isolation or capture of single cells after dissociation, (ii) a 

reverse transcription to obtain cDNAs, (iii) cDNAs amplification, and (iv) the construction of 

the sequencing library.  

Single-cell isolation aims at parallelly individualizing numerous RNA-seq experiments. 

Initially, cells were isolated in microwell plates using micropipettes, dramatically decreasing 

the throughput 132. Other methods rely on Fluorescence-Activated Cell Sorting (FACS) to 

isolate single cells into microwell plates (96 or 384-wells). FACS approaches encompass 

several methods, such as SMART-seq, MATQ-seq, MARS-seq, and CEL-seq 133–138. FACS-

based strategies also enable selecting specific or rare cell subpopulations by using a specific 

marker before sorting (e.g., viability markers, cell surface phenotypic marker) but require the 

manutention of numerous microwell plates to reach a significant number of cells. Another 

classical method to isolate single cells is the use of microfluidic devices (Fig. 11). This 
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technology relies on the use of equipment built with microchannels carved into a polymer 

matrix, which allows the manipulation of fluids of microliter quantities and enables the 

orientation of single cells into microwells (e.g., Fluidigm technology, Seq-Well protocol 

139,140). Microfluidics devices can also be combined with oils to generate emulsion droplets that 

capture single cells. These droplets are formed in an aqueous phase, generally containing beads 

carrying DNA probes used in later steps and RT reagents incorporated with cells. The Drop-

seq, 10X Genomics, and inDrop-seq protocols rely on such droplet-based single-cell isolation 

141–143 and allow the isolation of thousands of cells into individual droplets and are, to date, the 

most advanced method in terms of cell throughput. 

 

Fig. 11. Principle of microdroplet generation using oil and microfluidics device. 

From Macosko et al., 2015 141. 

 

Once the cells are isolated, the next step is a reverse transcription reaction to convert RNA 

molecules into cDNA strands. Most of the previously described methods use oligodT primers, 

hence preventing the conversion of non-polyA transcripts into cDNA (e.g., most long non-

coding RNA (lncRNA)). This cDNA synthesis step also serves to append a cell-specific 

molecular barcode on each transcript to identify the cell of origin in the final analysis. These 

molecular barcodes are unique sequences of n nucleotides included within the oligodT primer. 

For droplet-based methods, the single bead incorporated in each droplet together with the cell 

is covered with this oligodT-cell barcode as exemplified for the 10X Genomics approach in 

Fig. 12. 
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Fig. 12. Principle of in-droplet cDNA synthesis and barcode incorporation during the 

reverse transcription step of the 10X Genomics protocol. 

 

Because the first strand cDNA contained in a single cell is in too low amount to construct an 

RNA-seq library, the latter must be amplified. To this aim, two options exist in the 

abovementioned protocols: an in vitro transcription to linearly amplify the pooled cDNA 

molecules (e.g., MARS-seq, CEL-seq) or a template switching. The template switching relies 

on the use of the Moloney Mouse Leukemia Virus (MMLV) reverse transcriptase, whose 

terminal transferase activity adds a few non-template C nucleotides at the 5’ end of the cDNA 

molecules. These non-templated nucleotides serve as an anchor for an oligonucleotide 

hybridization that is essential for subsequent PCR amplification. Template switching, which 

enables full-length recovery of the cDNA, is the most widely used strategy in scRNA-seq 

protocols (e.g., SMART-seq, Drop-seq, Seq-well, and 10X Genomics). 

Finally, the last step consists in generating the sequencing libraries from previously amplified 

cDNAs. Currently, almost every scRNA-seq method uses the Illumina sequencing technology. 

This technology is based on short-read sequencing, requiring a mean fragment size of around 

500 bp. As cDNA molecules usually display considerable size diversity and are mostly above 

this 500 bp limit, the library construction requires prior cDNA molecules enzymatic 

fragmentation. In most techniques, the molecular barcode used to identify the cell of origin is 
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added either at the 3’ or the 5’ end of the fragmented cDNA molecules. Consequently, only the 

3’ or the 5’-end of the transcript will be covered, preventing subsequent analyses such as 

splicing variant studies. To date, SMART-seq, Fluidigm and MATQ-seq are the only methods 

enabling full-length transcript analysis on single-cell experiments. Importantly, to prevent 

potential PCR amplification biases, cDNA molecules are generally identified with a unique 

random sequence called UMI (Unique Molecular Identifier). Hence, within downstream 

analyses, amplified cDNA molecules will in fine be quantified using UMI counts instead of 

transcript counts, avoiding biases stemming from any potential artifactual overamplification. 

Each scRNA-seq technology contains its own advantages and drawbacks, and the choice of one 

technique over another should be based on the nature of the tissue of origin (blood/solid tumor, 

fresh/frozen tissue), the targeted number of cells (hundreds/thousands), the targeted cell types 

(frequent/rare), the underlying scientific question (e.g., requiring full-length transcripts or 

admitting 3’/5’-end transcripts), and the cost (Table 5). Several studies focused on the 

comparison of quality control metrics. For instance, Ziegenhain et al.144 compared six scRNA-

seq methods (i.e., CEL-seq2, Drop-seq, MARS-seq, SCRB-seq, Smart-seq, and Smart-seq2) 

and found out that Drop-seq was more cost-effective for transcriptome quantification of larger 

number of cells, while Smart-seq2 has the highest sensitivity. In another study, several droplet-

based ultra-high throughput single-cell RNA-seq systems have been compared, including 10X 

Genomics Chromium 145, which achieved the highest sensitivity compared to alternate methods 

(e.g., in-Drop, Drop-seq). 
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Table 5. Specificities of the most used scRNA-seq methods. 

Adapted from Jovic et al., 2021 146. 

 

 

 

2.2.1.1.1.2 scRNA-seq-derived bioinformatics tools 

Along with the development of new wet lab technologies enabling to capture single cells’ gene 

expression, the number of bioinformatics tools available for downstream scRNA-seq data 

analysis flourished as well.  

Briefly, scRNA-seq data analysis requires a prior pre-processing step, consisting in performing 

several quality controls and filtering. After assessing reads quality and duplicates, low-quality 

cells are filtered, mainly based on the median number of detected genes per cell and the ratio 

of mitochondrial genes. 

Because scRNA-seq data represents a very high dimensional dataset, dimensionality reduction 

is required and generally first relies on a principal component analysis (PCA) followed either 

by a t-distributed stochastic neighbor embedding (t-SNE) or a Uniform Manifold 

Approximation and Projection (UMAP) algorithm. 

Downstream analyses are generally grouped into cell-based and gene-based analyses 147,148 

(Fig. 13). The most basic scRNA-seq pipelines typically focus on cell-clustering, which groups 

together cells with similar transcriptome, followed by cell type identification according to a 

differential gene expression analysis performed across previously identified clusters. Further 
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characterization of cluster-specific transcriptional states usually relies on gene set enrichment 

analyses based on the top overexpressed genes per each cluster. 

More advanced tools can focus on the detection of co-expressed genes (i.e., gene modules) or 

co-regulatory networks (also known as regulons) based on transcription factors' networks. 

Other tools seek to reconstruct cell hierarchy using trajectory inference methods, the most 

known of which relies on the concept of "pseudotime", which measures cells' pseudotemporal 

biological progression. Currently, a myriad of scRNA-seq-based bioinformatics tools have been 

developed and are continually evolving, and their potential is almost unlimited. 

 

Fig. 13. ScRNA-seq downstream analyses overview. 

From Luecken et al., 2019 147. 

 

2.2.1.1.2 Genome and epigenome-focusing single-cell methods 
Several technologies focusing on genome and epigenome characterization at the single-cell 

level have also emerged. Nonetheless, single-cell whole genome sequencing has to face some 

technical hurdles. First, the amount of DNA contained within a single cell is way too low to 

construct a sequencing library and thus requires amplifying the whole genome without 

introducing biases. To date, available methods for single-cell genome amplification are DOP-

PCR (Degenerated Oligonucleotides Primers-PCR) 149, Multiple Displacement Amplification 

(MDA) 150, multiple annealing and looping-based amplification cycles (MALBAC) 151 and 
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Linear Amplification via Transposon Insertion (LIANTI) 152. These four methods are all based 

on short-read sequencing, enabling the detection of SNPs, copy number variation, and small 

indels, but are not efficient in detecting structural variations such as deletions, insertions, and 

translocations. An additional method called SMOOTH-seq (single-molecule real-time 

sequencing of long fragments amplified through transposon insertion) has been recently 

developed and overcomes this limitation. This method takes advantage of a long-read 

sequencing technology commercialized by Pacific Bioscience (PacBio) to detect SNV 153. 

Despite their high accuracy, these single-cell genome sequencing methods have a substantial 

limitation: the number of cells that can be analyzed. The sequencing depth required to cover 

the whole genome of a single cell with optimal accuracy is high and thus limits the number of 

cells that can be analyzed. So far, the experiments relying on these methods usually examine 

only hundreds of cells, contrary to scRNA-seq, which can investigate several thousands of cells 

per experiment. Some studies used single-cell Whole Exome Sequencing (WES), which 

decreases the coverage needed by focusing only on coding regions of the genome but still 

suffers from a low cell throughput 154,155. 

The epigenome, including chromatin accessibility, modifications (histone marks or DNA 

methylation), or topology, can also be interrogated by single-cell techniques. All these single-

cell methods are adaptations of already well-established bulk methods, such as single-cell 

ChIPseq 156,157, single-cell CUT&Tag 158, single-cell HiC 159, or single-cell DNA methylation 

160. Similarly to genome/exome-focused single-cell assays, these methods are also limited in 

the cell throughput. The most advanced single-cell epigenomic targeting method to date is 

single-cell ATAC-seq (Assay for Transposase Accessible Chromatin combined with 

sequencing) 161,162. Despite being so far limited by some technical issues, all these epigenomics 

single-cell approaches will eventually become powerful tools to characterize cancer cell 

heterogeneity, since a dramatic part of cells’ phenotype is thought to be driven by non-coding 

regions of the genome. One can speculate that within the upcoming years, efforts will be made 

to improve these methods, which, together with their integration with transcriptome or genome 

single-cell data, will allow to achieve a comprehensive understanding of cancer cells’ 

heterogeneity. 

2.2.1.1.3 Single-cell proteomics 
Despite revolutionizing molecular cell biology, scRNA-seq still provides surrogate data of 

actual protein expression. Proteins being the effectors of cell biology, having access to the 

single-cell proteome is also crucial to fully understand cancer cell biology and thus tumor 

heterogeneity.  
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One efficient method to characterize protein expression on single cells is mass cytometry. This 

technology couples flow cytometry with mass spectrometry. Using non-radioactive isotopes to 

label antibodies makes it possible to use an increasing number of antibodies simultaneously 

within the same experiment, since there are no longer conflicts due to the fluorescence 

spectrum. Thus, it becomes possible to analyze up to 40 proteins at a time for a single cell. Like 

other methods mentioned above for genome and epigenome profiling, some studies proposed 

exploiting proteomic approaches already used for bulk analysis to increase cell throughput. 

These methods rely on proteome analysis from single cells (isolated by FACS or other 

previously explained methods) using liquid chromatography coupled with mass spectrometry 

(LC-MS). One method called SCoPE-M and its successor SCoPE2 has succeeded in using an 

isobaric labeling strategy to analyze approximately one thousand proteins per cell in one 

thousand cells 163,164. However, detected peptides corresponded to the most abundant proteins, 

preventing the detection of lowly expressed proteins. Others also used isobaric labeling but 

with another cell preparation approach called nanoPOTS to successfully characterize single-

cell proteome 165–167. Single-cell proteome analysis remains in its infancy and is still limited by 

its throughput, sensitivity, and cost. It will undoubtedly be improved in the upcoming years 

with accompanying technological advances. 

2.2.1.1.4 Multiomics approaches 
All previously cited single-cell technologies represent a significant step forward in molecular 

cell and cancer biology by improving the knowledge on specific cell subpopulations, cell 

evolution, and cell-to-cell communications. However, the analysis and integration of 

multiomics data stemming from different assays is a major source of bias. Recently, 

technologies aiming at coupling several parallel analyses on a single cell have emerged. These 

methods are referred to as single-cell multiomics technologies. To date, several strategies 

aiming to simultaneously investigate genome and transcriptome, transcriptome and epigenome, 

and transcriptome and proteome have been published. 

Concerning genome and transcriptome simultaneous analysis, several protocols have been 

established, such as scTrio-seq, genome and transcriptome sequencing (G&T-seq), 

simultaneous isolation of genomic and total RNA (SIDR), and TARGETseq 168–172. These 

methods differ in how DNA and RNA are selectively recovered and barcoded from single cells. 

Nevertheless, they are limited in throughput with the same constraints as mono-omic scDNA-

seq assays. 

Technologies dealing with simultaneous transcriptome and epigenome analysis have also been 

described. The first multiomic method linking transcriptome and epigenome focused on 
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transcriptome and methylome co-analysis using scM&Tseq 173. The epigenome 

characterization throughout chromatin accessibility analysis coupled with scRNA-seq has also 

been developed. These approaches gather the combinatorial indexing of single-cell chromatin 

accessibility and mRNA (sci-CAR), single-nucleus chromatin accessibility and mRNA 

expression sequencing (SNARE-seq), methylation and transcription sequencing (scNMT-seq), 

and some commercially available methods (10X Genomics single cell multiome) 174–176. These 

technologies enable analyzing thousands of cells at a time and simultaneously collecting gene 

expression and chromatin accessibility on a single cell.  

Lastly, technologies that parallelly investigate single cells’ transcriptome and proteome are also 

under development. Published methods include proximity extension assay/specific RNA target 

amplification (PEA/STA), proximity ligation assay for RNA (PLAYR), or cellular indexing of 

transcriptomes and epitopes (CITE-seq) 177–179. These techniques all use antibodies to target 

and barcode proteins besides mRNA barcoding. The use of antibodies prevents a whole 

proteome characterization. Thus, these methods can only analyze targeted proteins’ expression 

besides gene expression, up to 40 proteins for PLAYR. 

All these emerging methods bring new opportunities to explore cellular heterogeneity by 

providing multiple layers of mechanistic dissection underlying single cells’ biology. 

Nevertheless, except for single-cell chromatin accessibility coupled with transcriptome, these 

technologies remain limited in cell throughput. 

 

2.2.1.2 Spatially resolved technologies 

All previously presented single-cell methods are performed from a single-cell suspension, thus 

without preserving information on cells’ localization and surroundings within the tissue of 

origin. The topology of tissues remains essential to understand tumors’ biology. Thanks to 

technical progress achieved within the last few years, methods to investigate transcriptome and 

proteome in a spatially resolved way emerged. These methods' main challenge is enabling the 

indexing or barcoding of transcripts in situ. After sequencing with high throughput methods, 

the transcriptome can be assigned to its original location in the tissue. To date, two different 

approaches to spatially index RNA molecules have been developed 180. The first one is the 

Solid-phase transcriptome capture method. It relies on the use of arrayed barcoded oligo-dT 

primers that are immobilized on a glass surface. The tissue section is then applied onto the glass 

surface to perform RNA barcoding by RT. Technologies using this method include 10X 

Genomics commercial protocol called Visium. The slide used in the Visium assay comprises 

5,000 spots of 55m diameter, conferring a resolution which is not reaching single cells. A 
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protocol called Slide-seq and its later improvement, Slide-seq V2, uses smaller beads with a 

diameter of 10m to achieve a near single cell resolution 181,182. However, the captured areas 

still include multiple or at least a few cells, preventing a direct detection of distinct cell types. 

Noteworthy, several bioinformatic tools have been designed to deconvolute and infer cell types 

within these areas 183,184. Other groups developed a method to reach subcellular resolution. For 

example, by using a high amount of individually barcoded beads and a patterned slide with an 

increased number of hexagonal arrays, Vickovic et al. could even decipher the subcellular 

compartmentalization of gene expression 185. Another approach named Stereo-seq, performing 

in situ RNA capture on DNA nanoballs into patterned flow cells, allowed to reach a resolution 

lower than a micrometer and to profile whole embryos, small organisms, or several small 

samples at the same time 186. Another method based on the same principle, Seq-Scope, recently 

reached subcellular resolution 187. 

All the previously mentioned technologies are based on Solid-phase transcriptome capture 

approaches. The other family of spatial transcriptomics methodologies relies on deterministic 

spatial barcoding methods. The latter techniques are based on the selection of regions of interest 

(ROI) to be barcoded. Initially, laser microdissection followed by cell capture was used to 

single cell transcriptome 188. More sophisticated protocols such as TIVA-seq, NICHE-seq, ZIP-

seq, or the commercially available GeoMX from Nanostring are now available 189–191. Despite 

using different chemical approaches, all these methods use a reversible marker to define an ROI 

in situ and barcode RNA molecules within this ROI before releasing those barcoded RNA 

molecules for further sequencing. 

Finally, within the last years, a growing number of methodologies based on imaging have been 

developed to detect several mRNA molecules within tissues at the subcellular resolution. These 

methods are of particular interest when the aim is to detect shallow levels of RNA. Several 

protocols have been published, including FISH-derived high-resolution methods, as reviewed 

in Moffitt et al. 180.  

 

2.2.2 Single-cell omics in cancer research 

The aforementioned single-cell technologies have been used in several fields of biology, 

dramatically increased the knowledge about cell-type heterogeneity within organs, and enabled 

the discovery of new or rare cell types. In the oncology research field, the number of 

publications exploiting single-cell methods is growing exponentially. These are precious 

techniques to deepen the understanding of cancer cell heterogeneity and plasticity, but also the 
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characterization of tumor microenvironment. The potential applications of single-cell 

technologies are numerous 192 and include the dissection of the molecular mechanisms driving 

cancer progression or treatment resistance (Fig. 14). Single-cell technologies may also serve to 

discover new vulnerability pathways and druggable targets. 

Single-cell technologies are also powerful tools in clinical cancer research, for instance, for the 

non-invasive early detection of circulating tumor cells (CTCs) and to refine clinical diagnoses 

or ameliorate risk stratifications by characterizing interpatient heterogeneity 193. These methods 

are also increasingly integrated into clinical trials. Indeed, single-cell technologies may better 

help stratify patients according to single-cell biomarkers, monitor treatment response, or 

improve the understanding of the biological mechanisms underlying the antitumor effect of 

investigational compounds 194. 

 

 

Fig. 14. Clinical applications of single-cell genomics in cancer research. 

From Lim et al., 2020 193. 

 

2.3 SARCOMA CELLS' HETEROGENEITY AND PLASTICITY 

2.3.1 Sarcoma cells’ clonal heterogeneity 

While cancer cells’ genetic evolution has been widely studied in alternate cancer types like 

carcinomas, the characterization of sarcoma cells’ heterogeneity remains fragmentary. Notably, 
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the description of sarcoma cells clonal dynamics along the course of tumor progression has 

been reported in undifferentiated pleomorphic sarcoma (UPS) 195. In this study, authors relied 

on a UPS mouse model, multicolor reporters, and CRISPR-Cas9 barcoding to show that distinct 

clonal evolutions drive different stages of tumor progression. Indeed, primary tumor growth 

was associated with reduced clonal heterogeneity, whereas increasing tumor clonality 

conducted local recurrence. Interestingly, metastasizing was driven by a clonal selection of 

subpopulations in which some essential genes were downregulated, such as Rasd1, Reck, and 

Aldh1a2. 

2.3.2 Sarcoma heterogeneity: advances from scRNA-seq approaches 

Cell plasticity is particularly interesting for sarcoma, considering their usually low mutation 

burden and, thus, supposed low genetic heterogeneity. Moreover, the sarcoma 

microenvironment is a growing subject of interest, whose immunosuppressive features may 

cause the general limitation of immunotherapy efficacy in sarcoma. 

To date, scRNA-seq has been exploited in sarcoma to tackle three main topics: (i) the 

characterization of sarcoma cells’ heterogeneity and protumorigenic states, (ii) the exploration 

of sarcoma immune and stroma microenvironment, (iii) the unraveling of sarcoma cellular 

origin. The major published works addressing sarcomas’ biology based on scRNA-seq 

experiments are summarized in Table 6. 

2.3.2.1 Ewing sarcoma 

Ewing sarcoma served as a prototype to characterize cancer cell plasticity in genomically 

simple fusion-driven sarcoma subtypes. Ewing sarcomas are malignant bone and soft-tissue 

tumors mainly occurring in young male adults 196. Like DSRCT, they are characterized by the 

co-expression of mesenchymal and neuronal features, raising the question of their cell of origin. 

Ewing sarcoma is also driven by a chimeric aberrant transcription factor, arising from a 

chromosomal translocation between a FET family member and an ETS family transcription 

factor, EWSR1-FLI1 fusion accounting for more than 90% of cases. EWSR1-FLI1 both triggers 

an aberrant opening/activation of heterochromatin regions by the creation of de novo enhancers 

at GGAA microsatellites 197 by interacting with chromatin remodeling complexes such as BAF 

198 and represses several gene regions through incompletely understood mechanisms 199. 

Interestingly, EWSR1-FLI1 activity level has been shown to play a central role in Ewing 

sarcoma cells’ heterogeneity. A lower EWSR1-FLI1 activity has been associated with an 

increase in Ewing cells’ mesenchymal features 200, bestowing enhanced invasive and 
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metastasizing properties 201,200. On the contrary, EWSR1-FLI1 high Ewing cells were 

associated with marked proliferative ability.  

The advent of single-cell technology subsequently shed light on the mechanisms underlying 

Ewing sarcoma cell plasticity. The first study that exploited scRNA-seq to explore Ewing cells’ 

heterogeneity was published in 2020 by Aynaud et al. 202 and focused on exploring EWSR1-

FLI1 expression level variability within Ewing cell lines using a time-resolved mapping of 

EWSR1-FLI1 binding sites after EWSR1-FLI1 shRNA-mediated silencing followed by 

progressive reexpression. By performing an independent component analysis (ICA) to 

deconvolute the heterogeneity of Ewing sarcoma cells transcriptional programs, authors 

characterized several signatures, including cell-cycle related and EWSR1-FLI1 specific 

signature, which was highly enriched in EWSR1-FLI1 direct targets. Further, using PDX 

models to integrate previously identified independent components, they identified a coupling 

between oxidative phosphorylation, proliferation, mRNA splicing, and EWSR1-FLI1 activity, 

whereas hypoxia and glycolysis appeared as relatively independent mechanisms according to 

Spearman correlations. Altogether, these data helped to illuminate several mechanisms 

underlying Ewing cells’ heterogeneity, where EWSR1-FLI1 activity appears to play a central 

role. Additional works - which did not necessarily rely on scRNA-seq experiments – 

highlighted additional mechanisms underlying Ewing cell plasticity. For instance, focusing on 

Ewing sarcoma cell plasticity, Keskin et al. sought to identify Ewing sarcoma protumorigenic 

subpopulations within cells from 3D cell culture 205. The authors relied on tumor- or PDX-

derived primary 3D cell culture in vitro models to better mimic in vivo tumor conformation and 

retain tumor cell heterogeneity and plasticity. In these experiments, authors designed a 

functional microRNA-based live-cell reporter assay from 3D-grown Ewing tumor cells. Based 

on the previously described inverse relationship between miR-145 expression and Ewing cells 

pluripotency 206, they showed that low miR-145 Ewing cells expressed higher levels of SOX2 

and did display higher tumorigenicity features. Transcriptome comparison between low versus 

high miR-145 Ewing cells revealed a gene expression signature of tumor cell aggressiveness, 

among which EPHB2, a transmembrane tyrosine kinase receptor, whose expression within a 

cohort a 129 patients-derived microarray samples was inversely correlated to patients survival. 

Additional studies that took advantage of the scRNA-seq technology focused on interrogating 

the heterogeneity and developmental origin of Ewing sarcoma cells 203, and another study aimed 

to identify the diverse cellular responses to EWSR1-FLI1 downregulation in Ewing sarcoma 

cells 204. 
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2.3.2.2 Synovial sarcoma 

Jerby Arnon et al. recently took advantage of 10X scRNA-seq, integrated with GeoMX spatial 

profiling and multiplex IHC to interrogate the interplay between synovial sarcoma (SS) cells 

and their microenvironment 207. Starting from the observation that SS is characterized by an 

exceptionally low T cell infiltration, authors hypothesized that specific SS tumor cell states may 

prompt immune-evasion mechanisms, despite the known expression of various cancer-testis 

antigens (e.g., NY-ESO-1, PRAME, MAGEA4, and MAGEA1) 208. Analyzing 12 SS tumors with 

a total of 16872 cells, authors identified three coregulated gene modules that were consistent 

across multiple tumors. These three gene modules corresponded to mesenchymal and epithelial 

cell states and a novel malignant cell state driven by a core oncogenic program controlled by 

SS18-SSX expression. The latter program, primarily expressed in cycling cells, included the 

activation of genes from respiratory carbon metabolism and the repression of genes involved in 

TNF signaling, apoptosis, p53 signaling, and hypoxia. Noteworthy, the expression of this 

program was associated with the onset of local or distant recurrences. Focusing on the analysis 

of SS infiltrating immune cells, authors showed that SS CD8+ T cells overexpressed effector 

and cytotoxic programs, while macrophages expressed high levels of TNF compared to 

melanoma CD8+ T cells. Further exploring the interactions between SS malignant cells and 

immune evasion, authors showed an inverse spatial correlation between the expression of the 

core oncogenic program and CD45+ immune cells infiltration, supporting that this malignant 

cell state may promotes cell exclusion. Strikingly, this core oncogenic program was repressed 

by microenvironment signaling emanating from surrounding macrophages and T cells 

including TNF and IFN-gamma, and could be targeted by the combination of HDAC and 

CDK4/6 inhibitors, hence increasing SS cells immunogenicity  and T-cell mediated killing. 

 

2.3.2.3 MPNST 

Malignant peripheral nerve sheath tumors (MPNSTs) represent an aggressive subtype of STS 

that may develop from benign neurofibromas (NFs) and whose incidence is particularly high in 

patients with type 1 neurofibromatosis (NF1). MPNST and NF cell of origin remains uncertain 

and is thought to derive from Schwann cells (SCs) or neural-crest-derived pluripotent cells. 

However, the mechanisms underlying the dynamic evolution of MPNST-initiating cell states 

during nerve sheath tumorigenesis remain insufficiently explored. 
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In a recently published article, Wu et al. relied on single-cell multiomics to interrogate the 

putative MPNST cell of origin and identify the regulators of MPNST oncogenesis by analyzing 

both the malignant and non-malignant subpopulations present in NF and MPNST samples 209. 

Authors performed scRNA-seq profiling of human MPNST, NF, and matching animal models. 

Using an MPNST mouse model induced by YAP/TAZ signaling activation and Lats1/2 

deficiency, several NF and MPNST subpopulations were characterized. The latter included SC-

derived cells, cycling cells, stromal cells (i.e., fibroblasts, endothelial cells, vascular smooth 

muscle cells), and immune cells (i.e., macrophages, T cells). Notably, the phenotypic 

heterogeneity of SC-derived cells, fibroblasts, and macrophages significantly increased in 

malignant tumors compared to benign lesions. For instance, malignant tumors were enriched in 

activated fibroblasts and protumorigenic anti-inflammatory macrophages. Focusing on SC-

derived cells, malignant tumors displayed two specific SC-derived populations: a nestin+ 

mesenchymal SC precursor-like population (MES-like cells) and a previously undescribed 

nestin-mesenchymal neural-crest-like population (MES-NC-like cells). 

Contrary to previous reports, authors showed that nestin was expressed in various SC-related 

subpopulations, suggesting that SC lineage cells undergo reprogramming into different tumor 

cell states and acquire a novel MES-NC-like phenotype during cell transformation. SC 

phenotypic plasticity was further characterized in murine MPNST models, where 18 metagene 

activity programs were identified using nonnegative matrix factorization (NMF), which 

correlated to identified subpopulations. Surprisingly, using a trajectory inference tool, authors 

showed a reversal of the SC development trajectory, where the nestin- MES-NC-like population 

was identified as the initiating cell state. Importantly, these findings were further corroborated 

by the scRNA-seq analysis of human NF1-mutated plexiform NFs and NF1-associated 

MPNSTs where MES-NC-like and MES-like cells were uniquely found in MPNSTs, and SC 

lineage–derived cell populations were characterized by a continuum of cell states along the NF-

to-MPNST trajectory. Significantly, interrogating the prognostic value of previously defined 

tumor cell states, the MES-NC-like signature was associated with disease severity and MPNST 

clinical grades. In addition to scRNA-seq profiling, scATAC-seq was performed on human NF 

and MPNST tissues and robustly identified three distinct SC-derived epigenomic states 

comprising non-myelinating SCs and neoplastic SCs in NF, and malignant MES-NC–like cells 

in MPNST. Finally, interrogating potentially targetable pathways, authors used a Drug Gene 

Interaction Database and uncovered vulnerabilities associated with the MES-NC-like 

phenotype, including tyrosine kinase receptors (e.g., IGF1R, EPHA3), NRG1, transcriptional 

regulators (e.g., ZEB1, MEIS2, TEAD1), and protein phosphatases (e.g., EYA2 and PTPRG). 
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Overall, this exhaustive study on NF to MPNST malignant transformation unraveled the 

mechanisms underlying NF to MPNST tumorigenesis and unveiled a malignant-specific 

aggressive cell state that could be pharmacologically targeted. 

 

2.3.2.4 Osteosarcoma 

Sc-RNA-seq profiling also helped to describe osteosarcoma (OS) heterogeneity. A study 

exploiting scRNA-seq characterized 11 osteosarcoma samples from primary and metastatic 

sites, providing clues on OS malignant and non-malignant subpopulations 210. Notably, cells’ 

clustering enabled the identification of 11 cell clusters, including several malignant cell 

subpopulations (e.g., osteoblastic OS cells, proliferating osteoblastic OS cells, chondroblastic 

OS cells) and microenvironment cells (e.g., osteoclastic cells (OCs), Tumor Infiltrating 

Lymphocytes (TILs), Tumor-Associated Macrophages (TAMs), fibroblasts, Mesenchymal 

Stem Cells (MSCs), endothelial cells). Notably, the subclustering of malignant OS cells 

highlighted that osteoblastic OS cells from primary tumor sites were distinct from those found 

in metastases, overexpressing S100A11, S100A10, PRDX2, and PSMD4. Interestingly, 

malignant OS chondroblastic cells subclustering highlighted a subpopulation of trans-

differentiating cells, with high RUNX2, SPP1, and COL1A1 levels and relatively low levels of 

COL2A1 and SOX9, suggesting a continuum between chondroblastic cells and osteoblastic 

cells. This observation was further corroborated by trajectory inference, which showed a 

bifurcation trajectory driven by genes related to osteoblastic features as well as genes related to 

epigenetic modifications such as histone methylation and acetylation, suggesting that 

epigenetic changes may contribute to this transdifferentiation. 

This study also shed light on the OS microenvironment. Of note, the subclustering of OCs 

allowed to identify three distinct clusters (i.e., progenitors, mature OCs, and immature OCs) 

and showed that the proportion of mature OCs was lower in the chondroblastic, lung metastatic, 

and recurrent lesions compared to primary OS lesions, indicating that the OC status may depend 

on extrinsic tumor site-dependent signals. The study of OS immune cells revealed an 

immunosuppressive microenvironment. Myeloid cells comprised 70-80% of 

monocytes/macrophages, among which TAMs were divided into three subclusters, dominated 

by M2 macrophages. Concerning TILs, eight TIL subclusters were identified, including CD4-

CD8-, CD8+, and CD4+ T cells, T regs, proliferating T cells, Natural Killer (NK) T cells, and 

B cells. Notably, CD8+ T cells were characterized by the expression of T cell exhaustion 

inhibitory receptors, while T regs had high TIGIT expression levels. 
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Importantly, the immunosuppressive microenvironment of OS was confirmed in another study 

relying on OS samples from chemotherapy-naïve patients 211. The latter highlighted OS poor T 

cell infiltration and identified C3_TXNIP+ and C5_IFIT1+ macrophages that may participate 

in CD8+ T cell exhaustion. This work also showed the association between C1_osteoblastic OS 

cells - enriched in osteolysis and angiogenesis pathways - and overall survival in a cohort of 85 

OS patients. 

 

2.3.2.5 Other 

Additional scRNA-seq studies focused on mouse sarcoma models 212,213 to describe the sarcoma 

microenvironment landscape. For instance, Tessaro et al. sought to characterize the interplay 

between sarcoma cells and macrophages through the expression of tumor-expressed 

macrophage-migration inhibitory factor (MIF), which interacts with the surrounding 

macrophages through the MIF-CD74 axis, hence promoting sarcoma growth 212. Specifically, 

the authors identified distinct myeloid cell clusters, representing mouse undifferentiated 

sarcoma's main infiltrating immune component. Inhibiting MIF in the tumor cells enabled the 

reshaping of the myeloid microenvironment by promoting anti-tumorigenic inflammatory 

factors’ expression. 

In addition, Caldwell et al. recently performed single-nucleus RNA-seq, T cell receptor 

(snRNA/TCR)-seq, and pool-matched whole-genome sequencing (WGS) in six frozen 

undifferentiated pleomorphic sarcomas (UPSs) and intimal sarcomas, including samples 

collected before and after immune checkpoint inhibitors therapy 214. Notably, the authors 

highlighted the resurgence of rare cancer cell subclones at immunotherapy resistance in a 

patient treated for intimal sarcoma. Moreover, the identification of an appropriate T cell clonal 

expansion in a UPS patient showing primary immunotherapy resistance raised the question of 

the role of additional immunosuppression mechanisms. 
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Table 6. Studies exploiting scRNA-seq technology to explore sarcoma biology. 

First author Year Sarcoma subtype Tissue type 
scRNA-seq 
method Main results 

Functional validation 
Reference 

Aynaud et 

al. 2020 Ewing 

Cell line 

model, 

engineered 

A673/TR/shEF 

model and 

PDX 

Fluidigm C1 

Single cell auto 

prep System 

Definition of an exclusive and specific enhancer-

driven EWSR1-FL1 program. 

Cell proliferation and oxidative phosphorylation 

metabolism are strongly associated with EWSR1-

FLI1 activity. 

EWSR1-FLI1 intermediate and low activity is 

associated with hypoxia. 

None 

202 

Hong et al. 2022 Ewing Tumors (n=4) 

10X Genomics 

Chromium 

Ewing sarcoma arises from neural crest cell lineage. 

Variable timing of oncogenic conversion leads to 

distinct differentiation trajectories. 

Interferon-signaling pathway plays a role in 

tumorigenesis and tumor progression. 

None 

203 

Khoogar et 

al. 2022 Ewing 

Cell lines, 

functional 

genetics 

(siRNA) and 

PDXs 

10X Genomics 

Chromium 

Three distinct transcriptional states were found when 

comparing proliferating cells to siRNA EWSR1-

FLI1 silenced cells, which contributed to ES 

heterogeneity. 

In PDXs, around 1% of cells were in a dormant-like 

state, and 2-4% were in a stem-like and neural stem-

like in the proliferating cells. 

Primary and secondary spheroids 

formation, assessed for 

invasion/motility and autophagy 

(expression profiling cell sorting and 

IHC) 

204 

Wu et al. 2022 MPNST/NF 

Tumor (n=4 

MPNSTs, 

n=10 NFs) 

Mouse models Drop-seq 

Broad range of Nestin-positive Schwann cell 

subpopulations linked to sarcomagenesis dynamics.  

Detection of a Nestin-negative mesenchymal neural 

crest-like population, which correlates with clinical 

severity and is characterized by a unique regulatory 

network. 

Genetic perturbation with shRNA 

against ZEB1 and ALDHA1 

identified as central in the regulatory 

network 

209 

Liu et al. 2021 Osteosarcoma Tumor (N=6) 

10X Genomics 

Chromium 

Nine major cell types were identified. 

Osteoblastic cells were subdivided into five 

subpopulations, with key transcriptional programs 

associated with prognosis. 

One of the osteoblast populations was shown to 

promote osteolysis and angiogenesis. 

Osteosarcoma are T cell depleted. 

Multiplex IF; 

Macrophages culture with medium 

+/- conditioned by OS cells; 

ELISA detection of RANKL and 

VEGFA on medium +/-conditioned 

by OS cells. 
211 

Zhou et al. 2020 Osteosarcoma Tumor (N=11) 

10X Genomics 

Chromium 

The authors identified six osteoblastic malignant cell 

subpopulations. 

Cytotoxic activity of peripheral 

blood-derived CD3+ T cells on 210 
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Two were proliferative, four were involved in 

angiogenesis. 

Lower osteoclast infiltration was observed in the 

chondroblastic subtype, as well as in OS lung 

metastases. 

Pro-inflammatory macrophages (FABP4+) were 

specifically found in OS lung metastases. 

U2OS/143B cells after TIGIT 

blockade 

Tessaro et 

al. 2022 Mouse sarcoma CDXs 

10X Genomics 

Chromium 

multiplexed 

with Hashtag 

Analysis of the immune tumor microenvironment. 

Macrophages exhibit different activation states 

within tumors. 

Sarcoma cells use macrophage inhibitory factor 

(MIF) to interact with CD74 macrophages. 

As a result, macrophages favor the protumorigenic 

potential of sarcoma cells. 

MIF silencing 

212 

Caldwell et 

al. 2022 

Intimal sarcoma, 

UPS 

Frozen and 

FFPE tumor 

tissue 

snRNA/TCR-

seq 

In a patient with complete response to immune 

checkpoint inhibitor but a later recurrence, rare 

populations of cells from a clone with copy number 

alterations emerged during resistance. 

Pre-existing populations of resistant clones with 

copy number alteration may drive ICI resistance. 

None 

214 
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3 RATIONALE AND AIMS OF THE PRESENTED WORK 

As previously developed, tumor heterogeneity and plasticity are a growing area of interest, as 

illustrated by the recent addition of phenotypic plasticity as a new dimension of hallmarks of 

cancer 121. Cellular plasticity in cancer is a significant challenge and can be considered an 

Achilles heel to target. Thus, it is essential to understand the mechanisms underlying this 

heterogeneity and its role in tumor progression. For instance, targeting the most aggressive 

tumor cell subpopulations may represent a promising opportunity to increase the effectiveness 

of anti-tumor treatments. Moreover, strategies aiming at confining tumor cells within a specific 

phenotypic state may hinder the essential interdependency between tumor cell states that 

promote self-renewing, proliferation, migration, and therapeutic resistance. 

 

Catching the wave of scRNA-seq technology advent, which provides the unprecedented ability 

to capture and characterize cells’ heterogeneity and phenotypical states, and inspired by 

published works focusing on the prototypical Ewing sarcoma biology, we focused on the 

exploration of DSRCT heterogeneity at the cell and molecular level and dissected the molecular 

mechanisms underlying such diversity. 

 

To achieve this goal, we formulated the following hypotheses concerning DSRCT cell biology 

and heterogeneity, which dictated the elected methods further described within this manuscript 

to test these hypotheses. 

1. Hypothesis 1. DSRCT cells display phenotypical heterogeneity and cell state plasticity 

despite the presence of the sole oncogenic driver EWSR1-WT1; 

2. Hypothesis 2. DSRCT cell diversity may be uncovered by scRNA-seq experiments; 

3. Hypothesis 3. DSRCT cell heterogeneity is partly driven by intrinsic mechanisms that 

may arise from EWSR1-WT1 expression level variability, EWSR1-WT1 fluctuant 

transcription factor activity, the versatility of downstream activated transcriptional 

pathways, and stochastic epigenetic reprogramming; 

4. Hypothesis 4. DSRCT cell plasticity may be induced by extrinsic factors such as tumor 

site-specific ecosystem and microenvironment cells’ signaling. 
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Summary 

144/150 words 

Desmoplastic Small Round Cell Tumors (DSRCTs) are a rare small round cell sarcoma 

subtype of poor prognosis driven by the aberrant chimeric transcription factor EWSR1-

WT1. Despite this unique oncogenic driver and the paucity of recurrent secondary 

mutations, DSRCTs harbor a characteristic polyphenotypic differentiation, suggesting 

the presence of tumor heterogeneity. Using single-cell multiomics, we found that 

DSRCT tumor cells were characterized by recurrent overlapping phenotypical states, 

which harbored distinct transcriptional programs, notably related to mesenchymal, 

neural, and epithelial cell fates, and metabolic switch. Our data further suggest the role 

of EWSR1-WT1 DNA-binding versatility in DSRCT cells’ chromatin plasticity and 

highlight additional in vivo extrinsic signals from microenvironment components like 

extracellular matrix and cancer-associated fibroblasts which may influence DSRCT 

cells states and tumor growth. We further explored the clinical applicability of our 

findings and identified single-cell RNA-sequencing-derived transcriptional signatures 

that may serve for prognostic risk stratification. 
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Introduction 

Desmoplastic Small Round Cell Tumor (DSRCT) is a rare Soft Tissue Sarcoma (STS) 

subtype that is related to the recently described small round cell sarcomas (SRCSs) 

entity 1. DSRCT most often primarily arises in the abdominal or pelvic cavity (70-90%), 

where it rapidly spreads in the form of multiple nodules and preferentially metastasizes 

in the liver (35-50%), lung, bones, lymph nodes, or testis. DSRCT preferentially affects 

young male adults, with a 5:1 sex ratio and a median age of around 27 years old 2. 

Despite aggressive multimodal therapeutic approaches involving extensive resection 

surgery, polychemotherapy, and abdominal radiation, DSRCT is a devastating 

malignancy whose prognosis remains very dismal, with a median overall survival of 

approximately two years, strengthening the urgent need for developing patient-

customized targeted approaches 2–4. 

At the molecular level, DSRCTs are characterized by the pathognomonic translocation 

t(11;22) (p13;q12), which fuses the EWSR1 N-terminal part to the WT1 C-terminal 

domain. The resulting chimeric protein EWSR1-WT1 acts as an aberrant transcription 

factor (TF), activating various oncogenic pathways, such as cell proliferation, survival, 

and migration 5–7. EWSR1-WT1 represents the primary and unique driver of this 

disease, which presents a low mutational burden 8–13 with few recurrent secondary 

alterations (e.g., AR, FGFR4, ARID1A or TP53 9–11,13) but several recurrent copy 

number variations 12. 

Histologically, DSRCT presents as nests of small round blue tumor cells surrounded 

by a dense and abundant immune-cold desmoplastic stroma. Interestingly, despite a 

very homogeneous histological aspect of tumor cells, the latter exhibits a 

polyphenotypic differentiation, with positive immunohistochemical staining for 

epithelial, neural, and mesenchymal markers. This observation suggests that DSRCT, 

whose cell of origin remains unknown to date, may originate from a pluripotent 

precursor with multilineage potential or that EWSR1-WT1 may drive various 

multilineage transcriptional programs that would be activated stochastically or in 

response to external stimuli from the microenvironment. Recent findings in Ewing 

sarcoma, the prototypic fusion-driven SRCS characterized by EWSR1-FLI1 fusion in 

85% of cases, revealed that variations in EWSR1-FLI1 activity influenced metabolic, 

proliferative and migratory states of Ewing tumor cells 14,15. Such heterogeneity has 
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not yet been explored in DSRCT, and its understanding may allow to customize 

patients’ treatment and thereby ultimately improve their outcomes. 

To gain insight into tumor cells and microenvironment heterogeneity in DSRCT, we 

took advantage of multiple patient samples' single-cell multiomic, digital spatial, and 

bulk molecular profiling, combined with preclinical modeling of EWSR1-WT1 activity. 

We focused on the understanding of (i) tumor cell plasticity, (ii) EWSR1-WT1-induced 

transcriptome rewiring, and (iii) the interplay between DSRCT tumor cells and tumor 

microenvironment. We found that DSRCT tumor cells are characterized by recurrent 

overlapping phenotypical states, which harbor distinct transcriptional programs, 

notably related to developmental cell fate and metabolic switch. Our data further 

suggest the role of EWSR1-WT1 DNA-binding domains versatility in DSRCT cells’ 

chromatin plasticity and highlight additional in vivo extrinsic signals and cell-to-cell 

interactions, likely to influence DSRCT cell state transitions and tumor growth. We 

further explored the clinical applicability of our findings and identified single-cell RNA-

sequencing (scRNA-seq) derived transcriptional signatures that may serve for 

prognostic risk stratification. 

 

 



 73 

Material and Methods 

Human subjects and Ethical Considerations 

This study was performed per the European General Data Protection Regulation 

(GPDR) following Regulation (EU) 2016/679 of the European Parliament and the 

Council of April 27, 2016. 

Patients with DSRCT treated at Gustave Roussy and Curie Institute alive at the time 

of analysis gave their preoperative informed consent to allow tumor residuals usage 

for scientific purposes. Clinical characteristics of patients involved in this study are 

summarized in Supplemental information - Table S1. 

 

Cell line models 

JN-DSRCT-1 cell line 16 is a kind gift from Professor Janet Shipley (Institute of Cancer 

Research, London). 

R is a primary cell line derived from a DSRCT PDX purchased from Champions 

Oncology Inc. 

JN-DSRCT-1 and R cell lines were maintained in 2D adherent culture within DMEM-

F12 (Gibco) supplemented with 10% FBS, 1% Penicillin-Streptomycin (Gibco), 1% 

Sodium Pyruvate (Gibco), 1% Sodium Bicarbonate (Gibco), 1% Non-Essential Amino 

Acids (Gibco) and 1% HEPES (Gibco). Cell passage was performed at 1/10 twice a 

week. Used cells were controlled for mycoplasma-free status. 

 

Spheroid formation 

JN-DSRCT-1 cells were grown as spheroids in 96w ultra-low attachment cell culture 

plates in supplemented DMEM/F-12 medium. DSRCT cells were first seeded at 1,000 

cells per well before 15 min 500 g centrifugation. The formation of the spheroid was 

assessed at H24 after cells’ seeding. 

 

siRNA Knock-Down (KD) 

JN-DSRCT-1 cell line was transfected with a custom siRNA targeting EWSR1-WT1 (3’ 

GAT CTT GAT CTA GGT GAG A 5’), CCND1 (Horizon Discovery ON-TARGETplus 

Human CCND1 siRNA-smart pool, reference L-003210–00-0005) or non-targeting 

siRNA (Horizon Discovery ON-TARGETplus Non-targeting siRNA #1, reference D-

001810-01-05), according to manufacturer’s instructions. After cells’ seeding and 

obtention of 50% confluency, transfection was performed using LipofectamineTM 
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RNAimax (InvitrogenTM reference 13778150), and the medium was replaced the day 

after. A 48-hour silencing timepoint was used for each described experiment. 

 

DSRCT patients’ derived tumors 3’ single-cell RNA sequencing (3’scRNA-seq) 

Tumor dissociation and scRNA-seq with 10X Genomics Chromium assay 

Fresh tumor material from patients treated for DSRCT was profiled using the 3’-end 

counting 10X Genomics Chromium assay. 

Briefly, fresh DSRCT tumor and juxta-tumor material was collected into RPMI 1640 

medium with GlutaMAXTM Supplement (GibcoTM, reference 61870010) or MACS 

Tissue Storage Solution (Miltenyi Biotec, reference 130-100-008) with a delay <30 min 

after surgery. Tissue samples were further cut into small chunks and incubated at 37°C 

in RPMI medium containing DNAse I (Sigma, reference DN25-100MG) at 2.2 µg/mL 

(final concentration) and LiberaseTM Thermolysin Low (TL) (Roche, reference 

5401020001 at 4.5 µg/mL (final concentration) during 20 to 30 min. After tissue 

dissociation, the mixture was washed in 1x PBS + 0.04% BSA before centrifugation. 

Resuspended cells in 1x PBS + 0.04% BSA were filtered twice with a 70 m and 30 

m cell strainer to obtain a single cell suspension. After another centrifugation, cells 

were resuspended in 1x PBS + 0.04% BSA. When necessary, a red blood cell lysis 

was performed with a 2- to 3-min incubation in 1X Red Blood Cell Lysis buffer 

(Biolegend, reference 420301) protected from light before washing in 10 mL PBS and 

performing a last centrifugation. 

Cell concentration and cell viability were controlled on an automated cell counter with 

trypan blue and were loaded into the 10X Genomics cassette for a targeted cell 

recovery of 5,000 cells per sample following the recommendations from the protocol. 

Cell encapsulation, reverse transcription, and library generation were performed using 

10X Genomics standard protocols 17. 

Paired-end sequencing was performed on an Illumina NovaSeq sequencer for a 

targeted depth of 400 million reads per sample. 

Data analysis 

After quality control, we performed read mapping and expression quantification 

followed by regularized negative binomial regression-based normalization using 

sctransform 18. ScRNA-seq data were analyzed using the Seurat R package (R v3.5.1). 

The clustering of cell subpopulations was done using a k-nearest neighbors (k-NN) 

graph method based on the Euclidean distance on PCA, followed by Louvain algorithm 
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optimization. Visualization and exploration of the data were performed with the Uniform 

Manifold Approximation and Projection (UMAP) non-linear dimensional reduction 

technique (Seurat).  

Samples from synchronous distinct localizations were combined by merging the raw 

count matrices of individual Seurat objects. The integration of samples stemming from 

different patients or timepoints was performed using Harmony 19 algorithm 

(https://github.com/immunogenomics/harmony). Of note, an additional 3’scRNA-seq 

assay was performed secondarily on a matched sample (“PZB” sample) exploited for 

concomitant single-nucleus gene expression and ATAC-seq assay using 10X 

Genomics Chromium Single Cell Multiome ATAC + Gene Expression technology 

(snMultiome) and was not included in the Harmony-integrated “Int_sc” dataset. 

Differential gene expression analysis was performed using Mann-Whitney Wilcoxon 

test. We identified the most differentially expressed genes based on p-value and 

log2FC and applied Gene Ontology (GO) terms to characterize each subpopulation. 

We performed gene set enrichment analysis of gene ontology (GseGO) on the most 

differentially expressed genes (p-value <5%) using R package gprofiler2. 

DSRCT neotranscripts expression 

To quantify single-cell expression of DSRCT-specific neotranscripts, we ran 

CellRanger “count” using a custom index built by appending sequences of the 

neotranscripts to the reference transcriptome. Counts for neotranscripts were log-

normalized, and the average log-normalized expression level was plotted with 

FeaturePlot. 

Hotspot 

The Hotspot tool 20 (http://www.github.com/yoseflab/Hotspot) was used to identify 

informative gene modules across clusters from the “Int_sc” dataset. 

Hotspot is an algorithm that computes gene modules in three steps: finding informative 

genes with high local autocorrelation, evaluating the pairwise correlation between 

these genes, and clustering the results in a gene-gene affinity matrix. The Hotspot 

depth-adjusted negative binomial model was run using the count matrix and the 50 first 

principal components. A k-NN graph was then calculated using 30 neighbors, and the 

500 genes with the highest significant autocorrelation (false discovery rate < 0.05) were 

selected. Pairwise local correlation between these genes was computed, and gene 

modules were created by agglomerative clustering with a minimum number of genes 

per module set to 15 and a false discovery rate threshold of 0.05. Hotspot module 

https://github.com/immunogenomics/harmony
http://www.github.com/yoseflab/hotspot
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scores for each cell were calculated by first centering the UMIs using the depth-

adjusted negative binomial model. The centered values were then smoothed using the 

weighted average of their 30 nearest neighbors. These smoothed values were then 

modeled with PCA using the first principal component, and the cell loadings were 

reported as the module scores. 

CellPhoneDB 

To infer cell-cell communications between identified tumor and microenvironment cells’ 

clusters, we took advantage of CellPhoneDB 21 tool 

(https://github.com/Teichlab/cellphonedb), developed to investigate cells’ crosstalks 

from a repository of interacting ligands and receptors. 

NicheNet 

We applied NicheNet 22 computational method (https://github.com/saeyslab/nichenetr) 

to DSRCT tumor cells, immune cells, and cancer-associated fibroblasts to further 

interrogate cell-to-cell interactions. NicheNet presents the advantage of computing the 

activity of ligands-reception interactions by inferring their gene regulatory network at 

the single-cell level. 

InferCNV 

An inference of single cells’ copy number variations was performed using InferCNV 

tool (https://github.com/broadinstitute/infercnv). Raw gene expression data were first 

extracted from each patient-integrated Seurat object. For each sample, non-malignant 

reference cells were selected based on the expression of immune cells’ and cancer-

associated fibroblasts’ markers (Supplemental information - Table S3), and tumor 

cells were grouped according to annotated Louvain clusters as defined above. The 

cutoff for the minimum average read count per gene was set to 0.1, as recommended 

for 10x data. The ‘cluster_by_groups’ setting was used to perform separate clustering 

for each cluster as defined in the cell annotations file. All other options were set to their 

default values. Each CNV was annotated as a gain or a loss to a p- or q-arm using 

GRCh38 reference genome. 

CytoTRACE 

We used CytoTRACE algorithm 23 to infer the degree of differentiation of DSRCT tumor 

cells using CytoTRACE R package version 0.1.0. CytoTRACE (Cellular (Cyto) 

Trajectory Reconstruction Analysis using gene Counts and Expression) aims at 

predicting the differentiation state of cells from scRNA-seq data by leveraging the 

number of detectably expressed genes per cell. Subsampling of 1,000 cells was used 

https://github.com/Teichlab/cellphonedb
https://github.com/saeyslab/nichenetr
https://github.com/broadinstitute/infercnv
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to run CytoTRACE function as described in https://cytotrace.stanford.edu/. 

CytoTRACE results were then visualized on UMAPs colored according to the inferred 

degree of differentiation. 

StemID 

The cells’ degree of differentiation was predicted using StemID 24, which measures 

intracellular entropy based on cells’ median transcriptome entropy. StemID tool was 

used as described in 

https://github.com/dgrun/StemID/blob/master/Reference_manual_RaceID2_StemID.p

df. Briefly, StemID relies on the concept that the multiplicity of states coexisting within 

a single cell is reflected by the uniformity of the transcriptome, captured by Shannon’s 

entropy. StemID computes a StemID score, which illustrates the level of cell 

multipotency. 

CellRank 

Spliced and unspliced read counts were generated using velocyto (v0.17.16) “run10x” 

function 25. Spliced and unspliced reads were then filtered and normalized using scVelo 

(v0.2.3)26 “filter_and_normalize” function [min_shared_counts=20, 

n_top_genes=2,000]. A k-NN graph was built using the 30 nearest neighbors on the 

30 first principal components. RNA velocity scores were calculated using the scVelo 

“dynamical” model of transcriptional dynamics. Single-cell velocities were then 

projected onto UMAP embeddings. Cell-to-cell transition probabilities were calculated 

using the CellRank velocity kernel 27. Using scVelo dedicated functions, we could 

compute predicted initial and terminal states, latent time, lineage probabilities, driver 

genes, and a directed PAGA (partition-based graph abstraction) model. 

SCENIC+ 

SCENIC+ is a recent development of the SCENIC tool that takes advantage of 

multiomic data 28. It predicts genomic enhancers along with candidate upstream 

transcription factors (TF) and links these enhancers to candidate target genes. Specific 

TFs for each cell type or cell state are thus predicted based on the concordance of TF 

binding site accessibility, TF expression, and target gene expression as contained in 

multiomic data (scRNA-seq and scATAC-seq). We used SCENIC+ 

(v0.1.dev447+gd4fd733) for implementation. 

 

EWSR1-WT1 or full length-WT1 targeted scRNA-seq 

https://cytotrace.stanford.edu/
https://github.com/dgrun/StemID/blob/master/Reference_manual_RaceID2_StemID.pdf
https://github.com/dgrun/StemID/blob/master/Reference_manual_RaceID2_StemID.pdf
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An in-house designed assay was developed to evaluate the expression level of 

EWSR1-WT1 transcripts at the single-cell level. 

The leftover barcoded cDNA library generated from 10X Genomics protocol was used 

for selective enrichment in cDNA originating from EWSR1-WT1 transcript. To this aim, 

a PCR#1 was done using either (i) an EWSR1-WT1 breakpoint-specific biotinylated 

primer or (ii) a full-length WT1-specific biotinylated primer, and a universal Read1 

specific primer – a sequence added on the transcript during the reverse transcription 

of the 10X Genomics protocol. The resulting PCR was purified using Streptavidin 

beads. Then, a PCR#2 was performed using PCR#1 product as a matrix, using a 

primer specific to WT1 C-terminal end, located at about 450 bp from the transcript end. 

The second primer was the same as in PCR#1. The PCR#2 product was purified and 

used as a matrix for PCR#3 to add the P5 and P7 adapters to construct an Illumina-

compatible library. 

The downstream bioinformatics analyses of EWSR1-WT1 targeted scRNA-seq relied 

on a negative selection method to consider the potential unspecific amplification of full-

length WT1 with the EWSR1-WT1 targeted scRNA-seq assay. 

 

DSRCT patients’ derived tumors single-nucleus 3’ RNA and ATAC sequencing 

(snMultiome) 

Tumor dissociation, nuclei isolation, and permeabilization 

Fresh tumor material from one patient treated for DSRCT was profiled using the single-

cell Multiome ATAC + Gene Expression 10X Genomics, Inc Chromium assay. 

The fresh DSRCT tumor specimens were collected into MACS Tissue Storage Solution 

kept at 4°C, with a delay of less than 30 min after surgery. The tissue samples were 

then cut into small chunks before proceeding to nuclei isolation and nuclei 

permeabilization according to 10X Genomics Demonstrated protocol for Nuclei 

Isolation from Complex Tissues for Single Cell Multiome ATAC + GEX Sequencing 

(CG000375 Rev B). Briefly, the tumor's small chunks were incubated on ice into NP40 

lysis buffer (Tris-HCl (pH 7.4) 10 mM, NaCl 10 mM, MgCl2 3 mM, Nonidet P40 0.1%, 

DTT 1 mM, RNase inhibitor 1 U/µl, in Nuclease-free Water) during 5 min. The 

suspension was then passed through a 70 m strainer into a 2 mL Eppendorf tube 

before 500 g centrifugation for 5 min at 4°C. The supernatant was removed, and the 

nuclei pellet was washed in 1 mL of PBS supplemented with 1% BSA with 1 U/L 

RNAse inhibitor on ice for 5 min. After an additional 500 g centrifugation at 4°C for 5 
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min, nuclei were resuspended in 1 mL PBS + 1% BSA + 1 U/mL RNAse inhibitor and 

counted using a Malassez counting chamber on Invitrogen™ EVOS XL imaging 

system after DAPI staining to confirm complete nuclei isolation from total cells and 

assess nuclei concentration. We further achieved nuclei permeabilization by 

performing an additional 5 min 500 g centrifugation at 4°C and incubating the nuclei 

pellet in 0.1X Lysis Buffer (1X Lysis Buffer: Tris-HCl (pH 7.4) 10 mM, NaCl 10 mM, 

MgCl2 3 mM, Tween-20 0.1%, Nonidet P40 0.1%,, Digitonin 0.01%, BSA 1%, DTT 1 

mM, RNase inhibitor 1 U/µl in Nuclease-free Water, diluted into Lysis Dilution Buffer: 

Tris-HCl (pH 7.4) 10 mM, NaCl 10 mM, MgCl2 3 mM, BSA 1%, DTT 1 mM, RNase 

inhibitor 1 U/µL in Nuclease-free Water) on ice during 2 min. After washing the pellet 

in wash buffer (Tris-HCl (pH 7.4) 10 mM, NaCl 10 mM, MgCl2 3 mL, BSA 1%, Tween-

20 0.1%, DTT 1 mM, RNase inhibitor 1 U/L, in Nuclease-free Water), the nuclei were 

resuspended in the appropriate volume of chilled Diluted Nuclei buffer (Nuclei Buffer 

(20X), DTT 1 mM, RNase inhibitor 1 U/mL in Nuclease-free Water) and counted using 

both a Malassez counting chamber and Bio-Rad automated cell counter.  

Chromatin transposition, ATAC, and RNA libraries’ construction 

Next, the appropriate volume of cell nuclei suspension was extracted to target the 

effective encapsulation of 5,000 nuclei. The further steps were performed following 

10X Genomics Chromium Next GEM Single Cell Multiome ATAC + Gene Expression 

User Guide (CG000338). 

Briefly, the transposition of the native chromatin is performed using 10X Genomics 

Chromium ATAC Enzyme B, which contains the transposase. Adapter sequences are 

simultaneously added to the ends of the DNA fragments. Gel Beads-in-emulsion 

(GEMs) generation, and ATAC and Gene Expression libraries construction have been 

further performed according to 10X standard protocol. 

Sequencing 

The sequencing of the obtained ATAC and RNA libraries was performed on NovaSeq 

150 bp with paired-end flow cell for a targeted depth of 400 million reads for the gene 

expression library and 500 million reads for the ATAC library. 

Data analysis 

Demultiplexing, reads alignment, filtering, ATAC peak calling, and generation of 

feature-barcode matrices were done using Cell Ranger ARC. 

We relied on Seurat v4.0.4 and Signac v1.5.0 packages for further downstream 

analyses. First, genome annotation was performed using hg38 EnsDb.Hsapiens.v86 
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reference genome. Low-quality nuclei were filtered out before peak calling on either 

the pseudo-bulk data or separately on each further defined cell cluster using MACS2. 

The number of counts per peak, features, and UMIs were then calculated before a 

normalization using the sctransform method, which allows normalization and variance 

stabilization of molecular count data from sc and snRNA/ATAC-seq experiments. 

Nuclei clustering was then performed either based on RNA features, ATAC peaks 

features, or both using the weighted-nearest neighbors (WNN) method 29. Single-

nuclei data and RNA/ATAC/WNN-derived clusters were visualized on Uniform 

Manifold Approximation and Projection (UMAP). Further downstream analyses 

comprised differential gene expression, differential chromatin accessibility, and motif 

enrichment analyses. 

Motif enrichment analyses relied either on the JASPAR 2020 human transcription 

factors motifs database or EWSR1-WT1 ChIP-defined de novo motifs. Two different 

strategies were used: the first consisted of calculating a motif activity Z-score per cell 

using the ChromVAR pipeline, followed by identifying the top averaged Z-scores per 

cluster. The second strategy focused on the top marker peaks inferred from differential 

accessibility analysis and searched for motifs over-representation within this set of 

peaks by computing the number of peaks containing the given motifs within each cell 

cluster and comparing it to the total number of peaks containing the motifs within the 

pseudo-bulk data using a hypergeometric test. 

 

DSRCT patients’ derived tumors bulk RNA-sequencing 

Samples collection and RNA-sequencing 

DSRCT frozen specimens collected and archived at Gustave Roussy Biological 

Resource Center from December 1991 to April 2021 were exploited to constitute the 

DSRCT test cohort analyzed in this study. 

According to applicable law, when alive, patients whose samples were to be used had 

to provide a non-opposition form to allow the use of their archived biological samples. 

RNA extraction was performed on tumor samples according to Qiagen AllPrep 

DNA/RNA kit standard protocol. After RNA Integrity Number (RIN) quality control, RNA 

samples were used to construct total RNA sequencing libraries. Libraries were 

sequenced on a NovaSeq sequencer with paired-end 150 bp reads with a targeted 

depth of 30 million reads per sample. 
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We also took advantage of an external cohort comprising DSRCT and additional 

selected soft tissue sarcoma RNA-seq data stemming from Curie UGS. 

Data analysis 

The RNA-sequencing data were analyzed using a custom bioinformatics pipeline. 

Alignment was performed with the STAR suite on hg19 (GENCODE version 19). RNA 

counts were quantified using the GeneCounts tool after adaptor trimming with Atropos. 

After filtering out tumor samples outliers and low tumor cellularity samples (<5%) 

according to the corresponding H&E staining, a hierarchical clustering was performed 

among GR DSRCT samples (test set) using Pearson's correlation coefficient with Ward 

D2 linkage algorithm on the total sequenced genes. 

Deconvolution of stromal and immune microenvironment as performed using 

CIBERSORTx 30 (https://cibersortx.stanford.edu/) and immune xCell 31 tools. 

Differential Gene Expression (DGE) analysis was performed using DESeq2 to 

compare transcriptome profiles from DSRCT samples to those of a cohort of various 

STS subtypes (Supplemental Information – Table S27). 

To deconvolve cluster-specific cell subsets from DSRCT tumors bulk RNA-seq data, 

CIBERSORTx 30 was used to derive a signature matrix from scRNA-seq data. Using 

the Seurat subset function, five hundred or 1,000 cells were extracted from each 

cluster in the Harmony-integrated 3’ scRNA-seq dataset. Cluster-labeled cells were 

used to obtain a single-cell reference matrix (scREF-matrix) that was employed as an 

input on the CIBERSORTx online server using the “Custom” option. We set Default 

values for replicates (n=5), sampling (0.5), and Min. Expression (0.0). Additional 

options for kappa (999), q-value (0.01), and number of barcode genes (300–500) were 

kept at default values. The imputation of cell subtype fractions defined on the scREF-

matrix was performed on TPM values from DSRCT tumors bulk RNA-seq data using 

the “Impute Cell Fractions” function with the “Custom” option and ran in absolute mode. 

A total number of 500 permutations was performed to test for statistical significance. 

Prognostic signatures generation and signatures’ score calculation 

The top 100 upregulated genes within each Harmony integrated samples’ clusters 

(“Int_sc” clusters) defined by Seurat graph-based clustering using the k-NN method 

were selected to define clusters’ specific signatures. A score for each cluster-specific 

signature was then calculated using the arithmetic mean of Z-scores of each gene 

expression expressed in variance stabilizing transformed (VST) raw counts from bulk 

RNA-seq data of the test cohort (n=29). Secondly, using the optimal cutpoint method, 

https://cibersortx.stanford.edu/
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the DSRCT samples bulk RNA-seq dataset was segregated into High and Low 

signature scores. We then performed a survival analysis of the patients from whom the 

tumor samples were collected to compare High versus Low signature scores using the 

Kaplan-Meier model and tested for significance by log-rank test. 

Subsequently, we validated our findings on an external validation cohort comprised of 

21 RNA-seq samples from frozen DSRCT tumors (Supplemental Information – 

Table S28). 

 

Spatial transcriptomics with 10x Visium 

Sample and library preparation 

The assessment of RNA quality was primarily performed on selected DSRCT FFPE 

samples. Ten 10 μm-sections of FFPE tissue were used for RNA isolation using the 

RNeasy FFPE kit (Qiagen), according to manufacturer instructions. The samples with 

DV200 >30% were selected and used for further Visium spatial gene expression 

sequencing. 

The spatial transcriptomic analysis was performed using 10X Genomics Visium 

technology, according to the Visium Spatial Gene expression for FFPE samples 

protocol with the human whole transcriptome probe set. 

A representative tissue area of 6.5x6.5 mm was previously selected on H&E slides. 

The latter slide contains four capture areas, each composed of a ~5,000 circular spots-

array containing printed DNA oligos for mRNA capture, constituted by a PCR handle, 

a unique spatial barcode, a unique molecular identified (UMI), and a poly-dT-VN tail. 

The resolution of 10x Visium spatial transcriptomics enables to capture the mRNA from 

10 to 20 cells in each single 55 m circular spot.  

Five-m sections of 3’scRNA-seq matched DSRCT tumors FFPE samples were cut 

after dehydration and placed on 10x Genomics Visium Gene Expression slides as 

recommended. Visium slides were incubated in a section dryer oven and kept in a 

desiccator at RT overnight. Deparaffinization was performed within the next day 

according to 10X Visium general protocol by placing slides in a section dryer oven at 

60ºC for 2 H, followed by successive baths in xylene and ethanol gradient 

concentrations. Next, H&E staining and coverslipping were performed, and Visium 

slides were further imaged at 10x magnification using Olympus VS120. Images were 

processed using FiJi ImageJ software.  
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After coverslip removal, slides were placed into the Visium cassette. Decrosslinking 

was achieved by incubating Visium slides with TE buffer (Ready-to-use, Genemed, 

Gentaur) in a thermocycler at 70°C for 60 min. A pre-hybridization step with a 15-min 

incubation within perm Enzyme B (10X Genomics, PN-3000602/ 3000553) and Tween-

20 at RT was followed by the hybridization of the human whole transcriptome probes 

panel on complementary target RNA transcripts on tissue sections. This panel consists 

of a pair of specific probes for each targeted gene containing Read2S and polyA 

sequences. After overnight incubation, several washes with FFPE post-Hyb wash 

buffer 10X Genomics, PN-2000424) were done, followed by the addition of a ligation 

enzyme (10X Genomics, PN-2000426/ 2000425) and incubation in a thermocycler at 

37°C for 60 min to seal the junction of probes-RNA transcripts pairs. Probes’ ligation 

was followed by several washes with post-ligation wash buffer (10X Genomics, PN-

2000420/ 2000419). Finally, RNA digestion was performed to allow the probes’ 

release. The latter step included samples’ incubation with RNase enzyme (10X 

Genomics, PN-3000605/ 3000593) at 37°C for 30 min and permeabilization with Perm 

Enzyme B for 40 min at 37°C to release the probes, which were then captured on 

Visium slides surface. Probes’ extension was performed by incubating samples for 15 

min at 45ºC with the Extension enzyme (10X Genomics, PN-2000427) before elution 

using KOH 0.08M and 1M Tris-HCL to stabilize the reaction. Libraries were right after 

generated by adding to each sample 50 μl of Amp Mix (10X Genomics, PN-2000047) 

and 5 μl of dual index Kit/plate Ts Set A well ID (10X Genomics, PN-3000511) and 

further amplified using the number of cycles determined by qPCR before libraries 

construction. Finally, samples were cleaned up using SPRIselect reagent (Beckman 

Coulter) and stored in EB buffer at -20ºC until sequencing. Quality assessment and 

quantification of cDNA libraries were done using BioAnalyzer before sequencing. 

Generated Visium libraries were pooled and loaded in a single SP Illumina flow cell. 

Sequencing was performed on NovaSeq PE 50 at a sequencing depth of 50k read 

pairs per spot covered with tissue using 10X Genomics recommended run parameters. 

Data analysis 

The Space Ranger pipelines were used for demultiplexing Visium-prepared raw base 

call files generated by Illumina sequencers into FASTQ files using spaceranger 

mkfastq. Next, spaceranger count was used to perform tissue and fiducial alignment 

from the microscope slide image and barcode/UMI counting to generate feature-

barcode matrices for downstream analyses. The number of spots covered with tissue 
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was calculated using Loupe Browser. Overall, tissue sections from DSRCT samples 

encompassed a total of 4,236, 3,452, 3,583, 3,214, 3,537, and 3,686 spots containing 

included barcodes on the capture area for GR2, GR4, GR4_PC, BOM, GR7, and PZB 

samples respectively. 

Downstream analyses relied on the Seurat package (v4.1). They included spot 

clustering based on a k-NN graph method with Louvain algorithm optimization, 

differential gene expression analysis, and exploration of spatially variable features. We 

further used an anchor-based label transfer workflow 32 using 3’scRNA-seq matching 

samples identified clusters as a reference. To account for spatially resolved pathway 

activations, we calculated the average expression levels of selected HALLMARK gene 

signatures substracted by the aggregated expression of control gene sets using 

Seurat's “AddModuleScore” function. 

 

WES 

Samples’ preparation 

DSRCT tumor frozen samples corresponding to those used for 3’scRNA-seq, along 

with matching germline tissue from either peripheral blood mononuclear cells (PBMCs) 

or non-tumoral tissue, were collected. DNA extraction was performed using Qiagen 

DNeasy Blood and Tissue Kit or QiAmp DNA FFPE Tissue Kit for non-tumoral FFPE 

samples when patients’ derived PBMCs could not be obtained. 

Sequencing 

After BioAnalyzer quality control, genomic DNA was sheared, and exons were 

captured by Agilent Sure Select Human All Exon V6 kit. Sequencing libraries were 

prepared and sequenced with Paired-end sequencing (150bp) on an Illumina Novaseq 

6000 sequencer with 40 million reads per sample.  

Data processing 

WES data were processed using the nf-core/sarek pipeline (https://github.com/nf-

core/sarek). Following alignment to hg38 with BWA allowing up to 4% of mismatches, 

bam files were cleaned using Genome Analysis Toolkit (GATK) with duplicate marking 

and base quality score recalibration. 

Downstream analyses 

Copy number variation between normal and matched tumor tissue was computed 

using CNVkit 33 tool (https://github.com/etal/cnvkit). 

 

https://github.com/nf-core/sarek
https://github.com/nf-core/sarek
https://github.com/etal/cnvkit
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JN-DSRCT-1 cell line Assay for Transposase-Accessible Chromatin using 

sequencing (ATAC-seq) 

Assay for Transposase-Accessible Chromatin  

JN-DSRCT-1 cells were grown to target ~80% confluence in 6-well plates after a 48 H 

EWSR1-WT1 or CCND1 siRNA mediated knock-down or Dharmacon non-targeting 

siRNA (Dharmacon ON-TARGET plus non-targeting siRNA#1) transfection. 

Independent biological duplicates were performed for this experiment. 

Although working on cell lines, ATAC was performed according to Corces et al. 34 

OMNI ATAC protocol optimized from standard Buenrostro et al. protocol 35. Briefly, 

cells were harvested to target 100,000 cells per sample. Nuclei extraction was done 

by cell lysis by incubating cells for 3 min on ice in cold lysis buffer (Resuspension buffer 

(10 mM Tris-HCl, pH 7.5; 10 mM NaCl; 3 mM MgCl2); 0.1% NP-40; 0.1% Tween-20; 

1% Digitonin). The suspension was then washed in Wash buffer (resuspension buffer 

with 10% Tween-20) before centrifugation at 500 g for 10 min at 4°C to isolate pellets. 

The DNA transposition was performed by incubating nuclei during 45 min at 37°C in a 

thermomixer at 1,000 rpm in a transposition reaction mix containing 2X TD buffer, 1X 

PBS, with 0.1% Tween-20, 0.01% Digitonin, 10% Tn5 Transposase (Tagment DNA 

Enzyme 1). DNA purification was then performed using Qiagen MinElute Reaction 

Cleanup kit. Library amplification was performed using NEBNextUltraII library (New 

England Biolabs) while determining the necessary total number of PCR cycles by 

qPCR. Next, libraries were purified with KAPA pure beads (Roche) before assessing 

the library quality on Agilent BioAnalyzer with High sensitivity DNA kit. Libraries were 

finally sequenced at 200M depth per sample on NovaSeq with Paired-end 150 bp 

reads. 

Data analysis 

ATAC-seq data were analyzed according to the nf-core/atacseq pipeline 36. Raw reads 

QC was performed using FastQC, followed by adapter trimming with Trim Galore!. 

After reads’ mapping to a reference genome (hg38) using BWA, duplicate reads were 

discarded using picard. BigWig files were generated using BEDtools for IGV 

visualization. Genome-wide immunoprecipitation enrichment relative to input was 

performed using deepTools. Broad and narrow peaks were called using MACS2 and 

annotated relative to gene features using HOMER. Finally, differential binding analysis 

was performed using DESeq2. Motif analyses were subsequently performed on 

significantly enriched peaks using the MEME suite. Enrichment in known transcription 
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factors was evaluated among the JASPAR2020 database using the “ame” tool. 

EWSR1-WT1 de novo motifs were explored using the “dreme” tool. 

 

JN-DSRCT-1 cell line WT1 C-terminal Chromatin Immunoprecipitation with 

sequencing (ChIP-seq) 

Chromatin Immunoprecipitation, library generation, and sequencing 

JN-DSRCT-1 cells were grown to ~80% confluence in a 15 cm dish. The chromatin 

was crosslinked for 15 min at room temperature (RT) using methanol-free 

formaldehyde (1% final). The formaldehyde was quenched by adding Glycine solution 

at a final concentration of 125 mM for 5 min at room temperature (RT). After two 

washes with ice-cold PBS supplemented with cOmplete Protease Inhibitor Cocktail, 

EDTA-free (Roche), cells were scraped and centrifuged for 5 min at 300 g before 

freezing at 80°C for subsequent use. After thawing on ice, cells were resuspended in 

Farnham lab (FL) buffer (5 mM PIPES pH 8; 85 mM KCl; 0.5% Igepal CA-630) 

supplemented with cOmplete Protease Inhibitor Cocktail, EDTA-free (Roche) at a final 

concentration of 1M cells/mL. Furthermore, nuclei extraction was performed according 

to NEXSON (Nuclei Extraction by SONication) protocol 37. Cell suspensions were 

sonicated in 12x12 mm/1 mL militubes with AFA fiber using Covaris S220 focused-

ultra sonicator at 75W peak power, 2% duty factor, and 200 cycles/burst at 4°C for 2 

min. Isolated nuclei were resuspended in 1 mL of shearing buffer (10 mM Tris-HCl pH 

8; 0.1% SDS; 1 mM EDTA) supplemented with Complete Protease Inhibitor Cocktail 

EDTA-free (Roche). Then, the chromatin was sheared using Covaris S220 focused-

ultra sonicator at 140W peak power, 5% duty factor, 200 cycles/burst during 20 min at 

4°C. When needed, sheared chromatin was kept at -80°C for subsequent use the day 

after. To control the quality of the chromatin shearing, an aliquot of sheared chromatin 

was incubated overnight with proteinase K at 65°C to reverse the crosslink. DNA was 

then purified using Qiagen PCR purification kit and analyzed on a Bioanalyzer (DNA 

High Sensitivity kit) to check for size distribution.  

Immunoprecipitation was performed on sheared chromatin diluted with 10X dilution 

buffer (0.01% SDS, 1.1% Triton X100, 1.2 mM EDTA, 16.7 mM Tris pH8, 167 mM 

NaCl) by incubating WT1 C-terminal (Genetex GTX12549) targeting antibody at 0.5 

mg/mL final concentration or rabbit isotype at 1 mg/mL final concentration overnight at 

4°C. The next day, Dynabeads protein G beads (ThermoFischer Scientific) were 

blocked with PBS-BSA 0.5% at RT for 30 min. Antibody-incubated chromatin was 
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added upon blocked Dynabeads to capture immune complexes. Immunoprecipitates 

were then washed twice using successively low saft buffer (0.1% SDS, 1% Triton X 

100, 2 mM EDTA, 20 mM Tris pH8, 150 mM NaCl), high salt buffer (0.1% SDS, 1% 

Triton X 100, 2 mM EDTA, 20 mM Tris pH8, 500 mM NaCl), LiCl wash buffer (250 mM 

LiCl, 1% NP-40, 1% Na-Deoxycholate, 10 mM Tris pH8, 1 mM EDTA) and TE 1X 

buffer. The precipitated chromatin was eluted from beads by heating at 65°C in Elution 

buffer (25 mM Tris pH 7.5, 5 mM EDTA, 0.5% SDS). The crosslink was reverted from 

eluted samples by overnight incubation at 65°C with Proteinase K. Next, DNA was 

purified on Qiagen PCR purification columns. Library generation was finally performed 

according to NEBNext UltraII DNA kit for Illumina general protocol. Quality control of 

amplified libraries profiles was performed on Agilent Bioanalyzer before sequencing 

samples at 200M reads depth on NovaSeq with Paired-end 150pb. 

Independent biological duplicates were performed for this experiment. 

ChIP data analyses 

Peak calling, gene annotation, and differential binding analysis 

ChIP data analyses were performed according to nf-core/chipseq pipeline 36. Briefly, a 

raw read QC (FastQC) was performed before adapter trimming with Trim Galore!. 

Reads were further mapped to a reference genome (hg38) using BWA, and duplicate 

reads were discarded using picard. BigWig files were generated using BEDtools to 

allow IGV fragments visualization. The distribution of peaks was annotated using 

HOMER. Gene-wide immunoprecipitation enrichment relative to input was performed 

using deepTools. Broad and narrow peaks were called using MACS2 and were 

annotated relative to gene features using HOMER. Finally, differential binding analysis 

was performed using DESeq2. 

ChIP gene set enrichment analysis 

Gene set enrichment (GSE) was performed on WT1 ChIP-seq data using two methods. 

First, peak-associated genes with a peak fold enrichment >2 were selected to generate 

a gene list, which was further used as an input for ToppFUN analysis (ToppGene Suite) 

focusing on Gene Ontology gene sets. Secondly, we performed GSE evaluation on a 

list of ChIP-seq-derived genomic regions, defined as the differentially enriched broad 

peaks’ genomics ranges deriving from DESeq2 analysis on WT1 C-ter ChIP compared 

to isotype. For the latter analysis, we used ChIP-Enrich package38, which accounts for 

biases induced by the properties of ChIP-seq data, including increasing Type I error 

secondary to multiple testing (various numbers of peaks for a single gene) and the 
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gene-length bias. Briefly, the ChIP-Enrich pipeline is divided into four steps. First, loci 

of interest are defined as the regions spanning the midpoints between the TSSs of 

adjacent genes so that each peak genomic range is assigned to the gene with the 

nearest TSS. Secondly, the proportion of each gene locus covered by ChIP-seq peaks 

is calculated. Thirdly, a logistic regression is performed for each GO gene set, including 

a correction for locus length. Finally, for each GO gene set, p-values for enrichment or 

depletion are adjusted for multiple testing. 

EWSR1-WT1 ChIP-seq signature 

An EWSR1-WT1 ChIP-seq signature (n=176 genes) reflecting EWSR1-WT1 

transcriptional activity was inferred by selecting peaks’ corresponding genes displaying 

a fold enrichment >5 compared to control isotype ChIP (DESeq2). The calculation of a 

ChIP-seq signature score at the single-cell level on the 3’scRNA-seq Harmony 

integrated data (“Int_sc”) was performed using the AddModuleScore function (Seurat), 

which computes the average expression levels of a program of interest, subtracted by 

the aggregated expression of randomly selected control features. 

k-mers overrepresentation analysis 

We searched for k-mers enrichment within the 100 bp-wide sequences around 

EWSR1-WT1-specific ChIP-seq peaks’ summits. EWSR1-WT1-specific ChIP-seq 

peaks were inferred from significantly (p<0.05) enriched peaks in EWSR1-WT1 ChIP 

compared to control isotype ChIP using DESeq2. We compared the frequency of all 

6-mers oligonucleotides (n=6^6) found within EWSR1-WT1 ChIP-seq peaks’ summits 

to their frequency within the whole genome. 

Motif enrichment analysis 

Motif enrichment analyses were subsequently performed on significantly enriched 

peaks using the MEME suite. Enrichment in known transcription factors was evaluated 

among JASPAR2020 39 database using the “ame” function. EWSR1-WT1 de novo 

motifs were characterized using “the streme” function and were matched to known TF 

motifs using Tomtom motif comparison tool. 

ATAC-seq and ChIP-seq integration 

We analyzed overlapping peaks between EWSR1-WT1-specific binding sites inferred 

from isotype versus EWSR1-WT1 differential binding analysis (“EWSR1-WT1 ChIP 

module”) and EWSR1-WT1-induced differentially accessible peaks generated from 

EWSR1-WT1-silenced versus non-silenced JN-DSRCT-1 ATAC-seq data (“EWSR1-

WT1 ATAC module”). 
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Immunohistochemistry 

DSRCT cases, including those corresponding to the samples processed for scRNA-

seq, were selected by an expert sarcoma pathologist. Serial sections of FFPE tissue 

were cut into 3 m-thick sections. 

Fluorescent stainings 

Fluorescent multiplex stainings were performed on Bond-RX automated stainer (Leica 

Biosystems). Then, dewaxing was performed with BOND Dewax Solution. Next, 

antigen retrieval was performed using BOND Epitope Retrieval Solution 2 (pH=9) for 

20 min at 100°C. Protein blocking was performed with PKI blocking (Akoya) for 5 min. 

Antigen detection was performed using the OpalTM system (Akoya) with Opal anti-

mouse and anti-rabbit HRP polymer. 

Between each sequence, antigen stripping was performed using BOND Epitope 

Retrieval Solution 1 (pH=6) for 20 min at 100°C. 

A counter-staining was done with DAPI (Akoya). After staining, tissue sections were 

submitted to serial gradients of xylene and mounted manually with a coverslip using 

Prolong Diamond. 

The following antibodies and respective conditions were used for 

THY1/CHI3L1/Desmin triplex: anti-THY1/CD90 (1:1,000, rabbit IgG D3V81 clone, Cell 

Signaling #13801), detected with OPAL480 fluorophore at 1:75; anti-CHI3L1 (1:1600, 

polyclonal rabbit, Abcam ab77528), detected with OPAL570 fluorophore at 1:100; anti-

Desmin (1:200, monoclonal mouse D33 clone, DAKO M0760), detected with OPAL690 

at 1:150. 

The conditions for FAP/MCAM/ACTA2/ triplex assay were as following: anti-FAP 

(1:200, polyclonal sheep, R&S AF3715), detected by rabbit anti-sheep (P0163, DAKO) 

and OPAL520 fluorophore at 1:50; anti-MCAM (1:600, mouse OTI5C4 clone, Origene 

TA803548), detected with OPAL570 1:600; anti-ACTA2 (1:1,000, mouse 1A4 clone, 

DAKO M0851), detected with OPAL690 at 1:150. 

Mono DAB stainings 

Mono DAB stainings were performed using the automated Benchmark Ultra stainer. 

Dilution and antibodies for mono DAB IHC stainings were as follows: anti-c-Myc (fixed 

concentration pre-filled syringe, monoclonal anti-rabbit, Y69 clone, Roche 790-4628), 

anti-WT1 (1:100, polyclonal rabbit, Zytomed AB_2864626), anti-Desmin (1:40, 

monoclonal mouse D33 clone, DAKO M0760), anti-AE1/AE3 (1:75, monoclonal 
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mouse, Diagnostic BioSystem Clinisciences Mob190-05), anti-CD3 (1:100, polyclonal 

rabbit, DAKO A0452), anti-THY1 (alias CD90, 1:750, rabbit IgG D3V81 clone, Cell 

Signaling #13801), and CD56 (alias NCAM, fixed concentration pre-filled syringe, 

monoclonal rabbit, MRQ-42 clone, Roche 760-4596). 

Revelations were performed using UV DAB kit, and counter-stainings were done with 

hematoxylin and bluing reagent. 

Dual chromogenic stainings 

Dual chromogenic CD68/CD163 staining was performed on automated Discovery Ultra 

stainer using the following antibodies references and dilutions: anti-CD163 (1:100, 

Diagnostic BioSystem Clinisciences Mob460-05) followed by anti-mouse HRP and 

DAB incubation, and anti-CD68 (1:200, PG-MI clone, DAKO M0876), followed by anti-

mouse HRP and DS Discovery purple incubation. 

Counter-stainings were performed with hematoxylin and bluing reagent. 

Image analysis 

Slides were scanned on Olympus VS120 automated slide scanner followed by 

visualization with OlyVIA v2.9. Images were analyzed using QuPath 3.0.0 and 

ImageJ v1.53. 

 

CAFs Coculture 

Colony formation assay 

JN-DSRCT-1 cells were cocultured with mouse Cancer-Associated Fibroblasts (CAFs) 

isolated from a patient-derived xenograft (PDX). Briefly, the PDX was collected from a 

Nod Scid Gamma (NSG, Charles River) mouse and dissociated with Tumor 

Dissociation kit (Miltenyi Biotech). CAFs were isolated with Tumor-Associated 

Fibroblast mouse kit (Miltenyi Biotech). Isolated cells were seeded on 6-well plates into 

DMEM-F12 complemented medium, supplemented with 1X Insulin-Tranferrin-

Selenium (ITS). The day after, a 0.4 m Transwell device was inserted into each well, 

and JN-DSRCT-1 cells were seeded (500 cells per well) for colony-forming assay. 

Mock wells without CAFs were used as a control to compare JN-DSRCT1 cell growth 

in the presence or absence of CAFs. 

Both 6-well plates seeded with JN-DSRCT1 cells and Transwell  inserts seeded with 

CAFs were washed with PBS and stained with 0.5% crystal violet dilute in methanol. 
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Plates and Transwell  inserts were scanned, and the total colony area was evaluated 

using ImageJ. The staining was then solubilized in 100% Methanol for 20 min, and 

triplicate aliquots were collected to measure absorbance at 570 nm. 

3D spheroids coculture growth test 

GFP clone #5 JN-DSRCT-1 cells were plated on ultra-low adherence (ULA) 96-well 

plates at a concentration of 1,000 cells per well in DMEM F12 before 15 min 

centrifugation at 500 g. Plates were incubated at 37°C in 5% CO2, and the formation 

of the spheroid was assessed 72 H after seeding. PDX-derived CAFs were primarily 

isolated as previously described using Tumor-Associated Fibroblast mouse kit 

(Miltenyi Biotech) and stained using Cell Proliferation Staining Reagent (Abcam, Deep 

Red Fluorescence), according to the manufacturer protocol. Stained CAFs (n=500) 

were then added to wells containing JN-DSRCT-1 spheroids. Pictures were acquired 

every two days to assess the spheroid growth on the EVOS™ XL Core Imaging System 

and were measured according to the product of their two largest diameters. On Day 

15, living spheroids were pictured on a spinning-disk microscope (Nikon Eclipse Ti2 

equipped with Leica/Gataca CSU-W1 confocal scanner unit, Live-SR module, and 

incubation chamber) using a 20X oil objective. Spheroids were then measured using 

ImageJ software v1.53, and tumor cells were distinguished from CAFs based on their 

fluorescence. 

 

2D Immunofluorescence 

JN-DSRCT-1 cells were seeded and grown on a glass coverslip inserted into wells 

from a 6-well plate and transfected by a siRNA targeting EWSR1-WT1 or a non-

targeting siControl (Dharmacon) or mock-transfected. After 48 H, cells were fixed with 

4% formaldehyde in PBS for 20 min at RT. After fixation, cells were washed twice with 

PBS and permeabilized with 0.2% Triton X-100 in PBS for 10 min. After three 

successive washes in PBS, cells were blocked for 1 H into IFF buffer (2% BSA, 2% 

FBS in PBS) at RT. Primary antibodies (anti-WT1 C-terminal, 1/500, rabbit polyclonal, 

GeneTex GTX15249 and anti-Desmin, 1/100, mouse monoclonal D33 clone, Dako 

M0760) were diluted in IFF buffer and added on the cell layer for overnight incubation 

at 4°C. This incubation was followed by three washes in PBS. Secondary antibodies 

(Goat anti-rabbit AlexaFluor 555, 1/5,000, and Goat anti-mouse AlexaFluor 488, 

1/5,000) were diluted in IFF buffer, and cells were incubated 1 H at RT for secondary 

antibody binding. Next, cells were washed twice, once with 1 g/mL DAPI in PBS and 
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secondly in PBS. Glass coverslips were mounted on microscope slides on mounting 

medium (Sigma) and sealed with nail polish. Slides were imaged with epi-fluorescence 

microscope Eclipse Ti with a 100x magnification (Nikon Instrument Europe B.V., 

Surrey, England). 

 

3D Immunofluorescence 

JN-DSRCT-1 cells were seeded and grown in 3D as previously described. The 

immunofluorescence assay was performed to evaluate the staining pattern of elected 

markers within the spheroids. After 15 days of growth in ULA plates, spheroids were 

fixed for 30 min in PBS-PFA 4%, permeabilized with Triton X-100 0.2% for 10 min, and 

blocked with PBS-BSA 3%, Triton X-100 0.2% and Tween 20 0.5%. Spheroids were 

then incubated within 1/100 diluted primary antibodies (anti-WT1 C-terminal (rabbit 

polyclonal Genetex GTX12549), or anti-Desmin (mouse monoclonal D33 clone, Dako 

M0760)) overnight at RT. After three PBS washes, spheroids were incubated overnight 

within secondary antibody solutions (Goat anti-rabbit AlexaFluor 555, 1/5,000 and 

Goat anti-mouse AlexaFluor 488, 1/5,000). The day after, a DAPI staining was finally 

performed by incubating spheroids in a 100 g/mL DAPI solution. Before image 

acquisition, spheroids were submerged within a sucrose and urea solution to allow 

tissue clearing with minimal tissue shrinkage. Spheroids were then pictured on a 

spinning-disk confocal microscope (Nikon Eclipse Ti2 equipped with Leica/Gataca 

CSU-W1 confocal scanner unit, Live-SR module, and incubation chamber) using a 20X 

oil objective and appropriate wavelength. 

 

 

Results 

scRNA-seq deciphers DSRCT cell-type composition 

To comprehensively characterize DSRCT intratumor heterogeneity, we performed 3’ 

scRNA-seq using the droplet-based 40 10X Genomics Chromium 3’scRNA-seq assay 

on 11 fresh human DSRCT samples and one juxta-tumor peritoneal sample (Fig. 1A, 

B; Supplemental Information – Table S1), as well as simultaneous single-nucleus 

RNA-seq (snRNA-seq) and single-nucleus ATAC-seq (snATAC-seq) (single-nucleus 

Multiome) (snMultiome) on one DSRCT sample. To further assess intertumor 

heterogeneity, this was complemented by bulk whole exome sequencing (WES) on 
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nine single-cell assays matched samples and bulk RNA-sequencing of 29 archived 

frozen DSRCT patient samples. 

As expected, merging the first 11 individual 3’scRNA-seq datasets showed that most 

tumor cells were grouped by patient identity, while non-malignant cells were gathered 

by cell type (Supplemental Information – Fig. S1A, B). To allow the efficient 

integration of these individual 3’scRNA-seq datasets 41–46, we used Harmony 19 

algorithm and generated a unique embedded 3’scRNA-seq dataset (“Int_sc” dataset) 

(Fig. 1C). 

After quality control and filtering, we could identify 51,671 high-quality cells within the 

“Int_sc” dataset, including 3,063 cells arising from the juxta-tumor peritoneal sample. 

On average, we could detect 1,908 genes per cell (Supplemental Information – 

Table S3). 

Malignant cells were predominantly identified (n=44,781) (Fig. 1D, Supplemental 

Information – Table S2) and confidently labeled using two complementary DSRCT 

characteristic genetic features that have been previously described: (1) the top 10 

DSRCT marker genes inferred from differential gene expression (DGE) analysis 

between DSRCT and a subset of alternative sarcomas 47 (Supplemental Information 

– Fig. S1C); (2) the median expression of DSRCT-specific neotranscripts, as 

described by Vibert et al. 48 (Supplemental Information – Fig. S1D). 

The assignment of non-tumor cell types composing the integrated “Int_sc” dataset was 

performed according to the assessment of known microenvironment cells’ canonical 

markers (Supplemental Information – Table S2). Non-tumor cell types included, by 

decreasing order of abundance, cancer-associated fibroblasts (CAFs) (n=2,360), 

myeloid cells (n=1,966), endothelial cells (n=1,244), T cells (=1,126) and mesothelial 

cells (n=784) (Fig. 1D, Supplemental Information – Table S2). The relative 

composition of microenvironment cells was consistent across DSRCT tumor samples. 

However, several samples showed increased CAFs (GR2 site#2, GR2 site#3) or T cell 

infiltration (GR4_PC) (Fig. 1D). These proportions were in line with the known 

histological and immunohistochemical profile of DSRCT, which typically harbors a 

paucicellular desmoplastic stroma mainly composed of CD68/CD163-expressing 

macrophages, CD90 (THY1)-positive CAFs, and extremely rare lymphocytes (Fig. 

1E). 

CIBERSORTx deconvolution on a bulk RNA-seq cohort of 29 frozen DSRCT samples 

showed variable proportions of tumor cells, CAFs, and myeloid cells. In contrast, T 
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cells, endothelial cells, and mesothelial cells were almost not detectable (Fig. 1F, 

Supplemental Information - Table S27). 

Differential gene expression (DGE) analysis performed between the identified cell 

populations highlighted DSRCT malignant cells and non-malignant subpopulations de 

novo signatures (Supplemental Information – Table S2). Importantly, while DSRCT 

tumor cells' top marker genes were concordant with previously described DSRCT-

specific genes 47 (e.g., APOA1, CCL25, GJB2, GAL), no ubiquitous marker could be 

universally found in all DSRCT tumor cells (Fig. 1G), suggesting some level of tumor 

cells’ heterogeneity. 

 
DSRCT tumor cell heterogeneity features suggest both lineage and metabolic 

plasticity 

To further explore DSRCT cell heterogeneity, we performed a gene expression-based 

k-nearest neighbors clustering on the embedded “Int_sc” dataset (Supplemental 

Information – Fig. S1E, F), as well as on single or merged datasets from synchronous 

distinct tumor sites’ samples when available (for GR2, GR7, and BOM datasets) 

(Supplemental Information – Fig. S2A, B). We manually annotated malignant and 

non-malignant cells’ clusters across the “Int_sc” dataset (Supplemental Information 

– Table S3) and individual and merged datasets according to DGE analysis marker 

genes (Supplemental Information – Table S4). 

The clustering of the “Int_sc” dataset’s tumor cells identified 13 tumor cell clusters (Fig. 

2A) comprising six lineage-related clusters: (1) a poorly differentiated cluster 

(Multidiff_ASCL1 - 0), characterized by multilineage genes expression and ASCL1 

marker gene, (2) two mesenchymal clusters (Mesenchymal_fibrosis - 8 and 

Mesenchymal_secretion - 11) respectively defined by ACTA2/CHI3L1/KRT17 and 

CCK/TNNT3/PTGDS overexpression, (3) one epithelial cluster 

(Epithelial_mesenchymal - 4), defined by the concomitant expression of epithelial 

(CLDN3, CDH3, MUC16) and mesenchymal markers (MB, ACTA2), (4) one 

neuronal/neuronal cluster (Neural_neuronal - 1) overexpressing NTRK3, TUBA1A and 

GAL, and (5) one neural stem cluster (Neural_stem - 19), expressing NES and 

ELAVL2/4. These multidirectional differentiation states related to distinct 

developmental cell fates were further corroborated by single-cell label transfer using 

Azimuth 29 with a fetal development gene expression atlas 49 on the “Int_sc” dataset 
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(Supplemental Information – Fig. S1G). Overall, lineage-related clusters support the 

characterization of DSRCT as a polyphenotypic differentiated tumor 50 (Fig. 2B). 

In addition to lineage-oriented DSRCT tumor cell subpopulations, we identified 

additional clusters associated with specific metabolic pathways. Metabolism-related 

clusters encompassed two functional DSRCT tumor cells’ states: a subpopulation 

showing activation in genes involved in anaerobic glycolysis metabolism (Metabolic 

glycolysis - 5, overexpressing ENO1, LDHA, NDUFA4L2), and a cluster characterized 

by serine metabolism-related genes (e.g., PSAT1, ASNS, PHGDG), and tRNA 

synthetase-related genes (e.g., YARS, CARS, GARS) (Metabolic_serine - 15) (Fig. 

2A, C, Supplemental Information – Table S3A, B). 

We further defined additional cell states that we named “pseudostates,” either related 

to the cell cycle or pathways of uncertain biological relevance. Pseudostates-related 

clusters comprised (1) a cycling cells’ cluster (Cycling cells - 3), expressing TYMS, 

MKI67, and TOP2A, as well as additional tumor cells’ subgroups characterized by the 

overexpression of (2) ribosomal protein genes (Ribosomal_catabolic – 2 and 

Ribosomal_IFN response – 6), or (3) long non-coding RNAs (lncRNAs) such as 

MALAT1, MEG3, GRID2 and NEAT1 (Lnc_1 – 7, Lnc_2 – 17) (Fig. 2A, C 

Supplemental Information – Table S3A, B). Considering the significantly lower 

number of features found in ribosomal protein genes-enriched and lncRNAs-enriched 

clusters (Supplemental Information – Fig. S1F), their biological relevance remains 

elusive. The ribosomal protein genes-enriched cluster may correlate to cells showing 

hyperactivation of ribosomal biogenesis and thus reflect DSRCT tumor cell growth. 

Concerning the lncRNAs-enriched cluster, considering the frequent identification of 

such lncRNAs in other single-cell datasets 51,52, we hypothesized that these clusters 

encompassed cells that had undergone nuclear membrane damage, thereby leading 

to an overrepresentation of unspliced transcripts and lncRNAs 53,54. Although we 

cannot exclude that these clusters might have some biological relevance in the context 

of EWSR1-WT1 TF activity, we did not focus on them in subsequent analyses. 

Importantly, even if the lineage-related clusters’ canonical markers were initially 

defined based on the most differentially expressed genes, we observed a high degree 

of overlap in expression across clusters, with very few genes being strictly specific to 

one cluster (Fig. 2C, Supplemental Information – Table S3A, B). This suggested 

some degree of plasticity within DSRCT tumor cells, allowing them to dynamically 

transition between a continuum of differentiation or functional states. 
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The separated analysis of individual or merged single-cell datasets concorded with 

these findings. Notably, when analyzing merged datasets combining synchronous 

tumor samples from distinct tumor sites within the same patient, tumor cells grouped 

by cell states rather than by tumor site, suggesting intrapatient intertumor homogeneity 

(Supplemental Information – Fig. S2A, B). However, this observation should be 

interpreted cautiously as all analyzed tumor samples arose from peritoneal sites, and 

no distant metastasis sampling was performed. Twelve DSRCT tumor cells’ 

phenotypes were consistently found across multiple tumor samples, comprising five 

differentiation or lineage-related states, two metabolic-related states, and five 

pseudostates. The recurrent differentiation states-related clusters were in line with 

findings from the embedded “Int_sc” dataset, displaying either neural (ASCL1, 

TUBA1A, GAL, GJB2), mesenchymal (DES, TNNT3, CHI3L1, ACTA2, MSL1), 

epithelial (EPCAM, CDH1, MUC1, KRT), neuronal (ELAVL2, ELAVL4, FOXA2), or 

stem cells (NES) marker genes (Supplemental Information –Fig. S2C, Table S4). Of 

note, in addition to the three previously described pseudostates (i.e., related to cycling 

cells, ribosomal protein genes, and lncRNAs), two additional pseudostates-related 

recurrent clusters were identified across individual or merged samples. The latter 

showed either overexpression of immediate early genes (e.g., FOS, JUN, NR4A1, 

DUSP1, EGR1/2/3/4) or of mitochondrial genes but were not found within the “Int_sc” 

dataset. While the mitochondrial genes-enriched cluster is likely related to apoptotic 

cells, the biological interpretation underlying the FOS/JUN-enriched clusters should be 

considered. Indeed, other authors described that such clusters may result from the 

activation of immediate early response genes secondary to damaging tumor 

dissociation settings on DSRCT and other sarcoma samples 55. However, one should 

also envisage that such a response may also be triggered in vivo by external stressful 

stimuli or within already stress-vulnerable cells. In addition, some DSRCT tumor cell 

subpopulations were exclusively found in specific samples. For example, the BOM 

dataset displayed the highest level of intratumor heterogeneity and comprised a unique 

interferon (IFN) response-enriched cluster (BOM cluster 8) (Supplemental 

Information – Table S4). 

Functional enrichment analysis of Gene Ontology (GO) pathways (i.e., GO Biological 

Process (GOBM), GO Cellular Component (GOCC), and GO Molecular Function 

(GOMF)) based on the top 100 differentially expressed genes from each predefined 

“Int_sc” cluster further confirmed a characteristic enrichment in lineage-related 
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pathways such as GOBP_Neuroepithelial cell differentiation (adjusted p-value=3.84E-

02), GOBP_Cell-cell junction organization (adjusted p-value=1.03E-07), 

GOBP_Osteoblast differentiation (adjusted p-value= 2.35E-03), or GOBP_Regulation 

of trans-synaptic signaling (adjusted p-value= 1.32E-04) respectively for 

Neural_neuronal - 1, Epithelial_Mesenchymal - 2, Mesenchymal_fibrosis – 8, and 

Neural_stem – 19 cluster (Fig. 2D, Supplemental Information – Table S5). 

Metabolism-related pathways were significantly enriched in the Metabolic_glycolysis – 

5 cluster (e.g., GOBP_ADP metabolic process, GOBP_Nucleoside diphosphate 

phosphorylation). Notably, the Metabolic_serine – 15 cluster displayed GOBP_Intrinsic 

apoptotic signaling pathway enrichment in response to hypoxia (Fig. 2D, 

Supplemental Information – Table S5). LncRNAs-enriched clusters were 

characterized by enrichment in chromatin remodeling-related pathways, such as 

GOCC_Nuclear speck (adjusted p-value=4.39E-04 and adjusted p-value=2.13E-02 for 

lncRNA – 7 and lncRNA – 17, respectively), as well as GOCC_nBAF complex 

(adjusted p-value= 1.11E-02) and GOCC_SWI/SNF superfamily-type complex 

(adjusted p-value=1.52E-02) for lncRNA – 7 cluster, or RNA helicase activity for 

lncRNA – 17 cluster (adjusted p-value= 2.13E-02) (Fig. 2D, Supplemental 

Information – Table S5). 

 

Co-regulated genes are widely overlapping across DSRCT tumor cell clusters 

Since DSRCTs are solely driven by an aberrant transcription factor, which could itself 

interact with various partners and coregulators, we investigated modules of co-

expressed genes in the integrated dataset (Hotspot algorithm 20, see Methods section) 

(Fig. 2E, Supplemental Information - Table S6, S7, Fig S3A). Notably, the latter 

analysis showed both cell clusters’ specific modules, such as the Cycling module 

(module #3), whose expression was exclusively increased in the Cycling cells - 3 

cluster, or module #13, significantly activated in the Metabolic_glycolysis – 5 cluster. 

On the contrary, most other modules displayed homogeneous scores across clusters. 

In particular, Cycling cells - 3 cluster cells were characterized by an enrichment of both 

gene modules #1, #2, #10, and #11. In contrast, Hotspot modules #1 and #2 were 

mainly composed of ribosomal protein genes suggesting pathways involved in active 

translation and ribosome biogenesis. Module #11 displayed an overrepresentation of 

mitochondrial encoded genes (e.g., MT-CO3, MT-CO1, MT-ATP6) relative to NADH 

dehydrogenase (ubiquinone) activity and oxidative phosphorylation pathway. Module 
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#10 was composed of 25 genes, including ASCL1 56, which is known to be a direct 

target of EWSR1-WT1 and acts as a neuronal reprogramming factor. Of note, module 

#7 was overexpressed but not restricted to the Epithelial_Mesenchymal – 4 cluster and 

was notably enriched in GOBP_Epithelium development (adjusted p-value=1.07E-02) 

and GOBP_Cell-cell junction organization (adjusted p-value=1.79E-2). Additional 

modules included modules #4, #5, #6, #9, and #14, respectively enriched in cell 

migration-related pathways, immune response pathways, TF DNA binding gene sets, 

lncRNAs, and immediate early genes. 

Overall, coregulated gene modules inference suggests the existence of DSRCT cells' 

“hybrid” transcriptional states, characterized by highly overlapping transcriptional 

programs. 

 

DSRCT tumor cell clusters do not follow consistent trajectories 

To determine whether DSRCT tumor cell clusters could result from distinct sequential 

time-related evolutionary steps, we further sought to infer cells’ trajectories from gene 

expression across the “Int_sc” dataset. Importantly, directed single-cell fate mapping 

combining trajectory and RNA velocity inference did not show consistent trajectories 

across individual or merged datasets clusters, suggesting the existence of more or less 

reversible dynamic states between which DSRCT cells may oscillate, rather than 

genuine evolutionary trajectories (data not shown). Moreover, the inference of cell-

based entropy 24 on the “Int_sc” dataset suggested homogeneous stemness states 

across clusters (Supplemental Information – Fig. S3B). The inference of single cells’ 

degree of differentiation 23 aligned with the latter observation, highlighting poorly 

differentiated tumor cells compared to non-malignant cells, with a relatively 

homogeneous differentiation score except for pseudostates-related clusters 

(Ribosomal_catabolic – 2, Ribosomal_IFN response – 6, lnc_1 – 7, and lnc_1 – 17) 

which were predicted to have a higher degree of differentiation (Supplemental 

Information – Fig. S3C). 

Overall, our findings highlight that DSRCT cells are characterized by heterogeneous 

lineage commitment processes and metabolism-related states with highly overlapping 

coregulated gene modules. These data suggest the existence of hybrid unstable 

phenotypical states between which DSRCT tumor cells may fluctuate. 
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Copy number variation (CNV) is homogeneous across DSRCT tumor cell 

clusters 

To identify the potential role of genetic clonal or subclonal evolution in DSRCT tumor 

cell heterogeneity, we performed Copy Number Variation (CNV) inference 57 and 

confirmed these results on matched WES data (Supplemental Information – Fig. 

S4).  

Overall, CNV inference and WES-identified copy number alterations were highly 

concordant (Fig. 2F, G). Importantly, the GR4 sample, which originates from the sole 

non-pretreated patient, displayed almost no CNV across DSRCT tumor cell clusters, 

the 6p deletion being attributed to a bias since immune cells have been used as a 

reference cluster and may overexpress MHC genes. The comparison of CNV analysis 

from samples collected before (GR4) and after chemotherapy treatment plus first 

relapse (GR4_PC) in the same patient did show any increase in CNV complexity. Of 

note, few recurrent CNVs were observed across samples. A gain of 5p and 5q was 

identified in three patients (GR2, GR4_PC, and GR7), while no gain of 1q was 

detected, although previously described as a recurrent CNV in DSRCT 12. The CNV 

inference from synchronous distinct tumor site samples within the same patient 

showed concordant CNVs across tumor sites (Supplemental Information – Fig. S4). 

Finally, CNVs appeared to be highly homogenous across DSRCT cell clusters in most 

samples. This observation further supports the hypothesis that DSRCT cell 

heterogeneity may derive from plastic and dynamic transcriptional programs rather 

than clonal or somatic evolution. 

 

DSRCT tumor cell heterogeneity is not driven by EWSR1-WT1 transcript 

expression level variation 

Previous studies on Ewing sarcoma, another small round blue cell tumor driven by the 

EWSR1-FLI1 chimeric transcription factor, have reported that variable EWSR1-FLI1 

activity 14-15 is a significant source of intratumor heterogeneity. We therefore 

hypothesized that similar mechanisms might also operate in DSRCT. We first 

speculated that EWSR1-WT1 transcript expression level variations could drive distinct 

transcriptional pathways and thus influence DSRCT tumor cells’ commitment toward 

specific archetypal phenotypes. We relied on the hypothesis that genuine 10X 

Genomics 3’scRNA-seq derived data may not allow uncovering EWSR1-WT1 

expression level differences across cells due to (i) the potential confounding of wild-
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type WT1 and EWSR1-WT1 transcripts expression (Supplemental Information – Fig. 

S5A), and (ii) an insufficient sequencing depth on lowly expressed transcripts. To 

answer this question, we took advantage of an in-house developed assay aiming at 

specifically amplifying EWSR1-WT1 transcripts from 10X derived barcoded cDNAs 

(Supplemental Information – Fig. S5B). Importantly, we did not detect substantial 

EWSR1-WT1 expression variation across DSRCT tumor cell clusters (Supplemental 

Information – Fig. S5C). Because our above results did not support high variability in 

EWSR1-WT1 level of expression, we hypothesized that intratumor heterogeneity may 

be due to alternative molecular mechanisms driving EWSR1-WT1 activity or to tumor 

cell-extrinsic signals. 

 

EWSR1-WT1 transcriptional activity is linked to modifications in DSRCT cells’ 

chromatin landscape 

To investigate whether variations in EWSR1-WT1 transcriptional activity or EWSR1-

WT1 DNA binding sites may drive DSRCT heterogeneity, we first sought to study 

EWSR1-WT1 target regions and EWSR1-WT1 role in chromatin accessibility using 

ChIP-seq and ATAC-seq in the JN-DSRCT-1 cell line in which we conditionally 

modulated EWSR1-WT1 expression by siRNA. Notably, the JN-DSRCT-1 cell line was 

characterized by the coexpression of markers from various 3’scRNA-seq predefined 

clusters both at the transcriptional level (Supplemental Information – Table S8) and 

protein level, as assessed by immunofluorescence assays (e.g., DES, BAI1/ADGRB1, 

EGR1, TUBA1A, TNNT, Supplemental Information – Fig. S6), supporting that JN-

DSRCT-1 is representative of DSRCT tumors and that it might retain pluripotency 

features. Moreover, when characterized by RNA-seq, the JN-DSRCT-1 cell line 

clustered within the DSRCT tumor samples among a series of 512 sarcomas, thereby 

reinforcing its relevance to be used as a preclinical DSRCT model (data not shown). 

To first identify the pathways regulated by EWSR1-WT1, we performed EWSR1-WT1 

ChIP-sequencing (ChIP-seq) using a WT1-Cter antibody in the JN-DSRCT-1 cell line. 

To ensure that wild-type WT1 was not expressed in this cell line and that all identified 

reads would specifically result from EWSR1-WT1 transcriptional activity, we verified 

that WT1 5’-end reads were not detected (data not shown). In line with previous reports 

58, the majority of EWSR1-WT1 target sequences were located within intergenic 

regions, followed by introns (Supplemental Information – Fig. S7A). ChIP-seq 

analysis evidenced some previously described EWSR1-WT1 target genes, such as 
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CCND1 or FGFR4, and revealed novel EWSR1-WT1 targets, such as EGR1, 

extracellular matrix-related genes (e.g., COL23A1, CHI3L1), and neural or 

neuroendocrine-related genes (e.g., GAL, ADGRB1) (Fig. 3A, Supplemental 

Information – Table S9, S10). Moreover, additional targets were identified and found 

to be related to DNA damage response (e.g., UBE2V2 59), chromatin remodeling (e.g., 

DPF1/2/3 which encode for components of BAF and PBAF chromatin remodelers 60, 

CTCFL which is involved in cancer cells’ invasive phenotype 61 and androgen-

response 62 on other cancer models), and fatty acids metabolic processes (e.g., 

ACADVL, ECI2). 

 

Gene set enrichment analysis was further performed on EWSR1-WT1-specific peaks 

(ChIP-Enrich tool 38, see Methods section) to recapitulate the functions of EWSR1-

WT1 target genes. Peaks-based GO enrichment analysis revealed an enrichment in 

critical developmental processes including multilineage tissue development (e.g., 

GOBP_embryonic heart tube development (adjusted p-value=5.59E-04, 

OR=1.59E+03), GOBP_lymphangiogenesis (adjusted p-value=9.62E-04, OR= 

1.12E+04), GOBP_skin epidermis development (adjusted p-value= 1.94E-03, 

OR=9.20E+02), GOBP_spinal cord motor neuron differentiation (adjusted p-

value=3.01E-02, OR=1.78E+03), stem cell differentiation and proliferation 

(GOBP_stem cell differentiation (adjusted p-value=1.94E-03, OR=9.84E+02), 

GOBP_stem cell proliferation (adjusted p-value=5.59E-03, OR= 8.54E+02)) and 

regulation of fatty acids metabolic processes (GOBP_fatty acyl-CoA metabolic process 

(adjusted p-value= 6.62E-03, OR= 9.44E+02), GOBP_sphingolipid biosynthetic 

process (adjusted p-value= 2.86E-02, OR= 3.31E+02) (Fig. 3B, Supplemental 

Information – Table S11). 

Altogether, EWSR1-WT1 ChIP-seq analysis confirmed a role for EWSR1-WT1 in 

activating lineage-related transcriptional programs and identified novel targets related 

to chromatin remodeling, extracellular matrix formation, and fatty acids metabolic 

processes. 

 

The binding activity of TFs may vary according to the recruitment of variable 

coregulators and their cognate DNA sequence. EWSR1-WT1 binding motif is still not 

fully characterized and varies according to the presence of the KTS aminoacids at the 

breakpoint site. Indeed, previous studies (using ChIP, promotor-reporter assays, or 
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electrophoretic-shift motility assays) have reported that EWSR1-WT1 (-KTS) 

recognizes a GC-rich sequence 56,63–66. By contrast, the EWSR1-WT1 (+KTS) isoform 

optimal binding site was identified as 5'-GGAGG(A/G)-3' 67. Motif enrichment analysis 

within peaks that are significantly enriched in EWSR1-WT1 ChIP showed an 

overrepresentation of TFs from EGR, ZNF, KLF, FOX, E2F, ETS, and HOX families 

(Supplemental Information – Fig. S7B, Table S12). Notably, the most enriched motif 

corresponded to EGR1 DNA-binding sequence (Fig. 3C). 

De novo motifs discovery, further compared with known TF motifs, highlighted eight 

significantly enriched de novo motifs within EWSR1-WT1-specifically targeted regions 

(Supplemental Information – Fig. S7C, Table S13). The 5’-GCGKGGGAGGVRGV-

3’, 5’-CCACGCA-3’, and 5’-GGAGGAGRAGGAGGAA-3’ motifs ranked as the top 3 

most enriched de novo motifs, respectively best matching with EGR1, EGR2, and 

ZNF263 TF motifs.  Interestingly, WT1 is part of the EGR TF family, and previous 

publications showed that WT1 binding sites are closely related to EGR1 consensus 

binding sites 68, although the sequence of highest affinity binding sites for both proteins 

was distinct 69–72. Notably, 6-mers overrepresentation analysis among EWSR1-WT1 

ChIP significantly enriched peaks further confirmed that EWSR1-WT1 targeted 

sequences were enriched in GGA/CCT repeats (Supplemental Information – Fig. 

S7D), in line with EWSR1-WT1 (+KTS) isoform optimal DNA-binding sequence 73. 

Overall, EWSR1-WT1 appears to target several variable DNA sequences, including 

EGR-targeted sequences and GGA/CCT microsatellites, as exemplified in FGFR4 

targeted sequence (Supplemental Information – Fig. S7E). 

 

To gain functional insight into the effect of EWSR1-WT1 expression on chromatin 

accessibility, we systematically characterized open chromatin regions using ATAC-seq 

(Assay for Transposase-Accessible Chromatin with high-throughput sequencing) in 

JN-DSRCT-1 cell line in which we modulated EWSR1-WT1 expression by small 

interfering RNA (siRNA). We identified 164,043 transposase-accessible DNA elements 

significantly modulated by EWSR1-WT1 expression level, including 83,524 and 80,519 

sites showing decreased (EWSR1-WT1 ON ATAC peaks) and increased (EWSR1-

WT1 OFF ATAC peaks) accessibility upon EWSR1-WT1 silencing, respectively (Fig. 

3D, Supplemental Information – Table S14). Our experiment was validated by 

visualizing some genomic regions showing increased accessibility in the presence of 

EWSR1-WT1 and encoding known EWSR1-WT1 target genes, such as CCND1, 
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FGFR4, and ASCL1. Other genomic regions whose accessibility was increased when 

EWSR1-WT1 is expressed encoded transcripts that were identified as top marker 

genes of predefined scRNA-seq clusters (e.g., GAL, CCL25, BAI1) or involved in the 

shaping of tumor microenvironment (e.g., CCL25, KRT23 or ANGPT1). We also 

identified several chromatin remodelers or epigenetic modifying enzymes (e.g., TET2, 

SMARCA2, FOXA1, KLF4, and KLF6), potentially suggesting a cooperating role of 

EWSR1-WT1 in driving DSRCT epigenome reprogramming. Interestingly, AR was one 

of the top genes showing increased accessibility when EWSR1-WT1 is expressed, 

suggesting a positive feedback loop between EWSR1-WT1 and AR signaling. 

Interestingly, FOXA1/2/3 TFs, whose target sequences are putative binding sites for 

EWSR1-WT1 (Fig. 3C, Supplemental Information – Table S12), are known to 

activate the transcription of AR target genes 74,75, potentially bridging the gap between 

EWSR1-WT1 activity and AR pathway upregulation. We also identified several 

genomic regions that became increasingly accessible upon EWSR1-WT1 silencing, 

including some genes involved in mesenchymal stromal cells’ phenotype (e.g., FBN1, 

ALCAM, and PDPN). No modification in wild-type WT1 accessibility was noted, 

suggesting that the putative dominant-negative effect of EWSR1-WT1 on wild-type 

WT1 did not occur at the chromatin level. 

 

To investigate whether the effects of EWSR1-WT1 in rewiring transcriptional programs 

were primarily direct or indirect, we sought to explore which genomic regions showing 

differential accessibility upon EWSR1-WT1 silencing were also direct targets of 

EWSR1-WT1 by ChIP-seq. Amongst the 1,318 EWSR1-WT1 ChIP enriched peaks, 

we identified 944 overlapping genomic regions with EWSR1-WT1 ON ATAC peaks 

(Fig. 3E), showing an association between EWSR1-WT1 binding sites and their 

chromatin accessibility. Those 944 overlapping peaks mapped to 857 unique genes, 

of which 262 were significantly downregulated upon EWSR1-WT1 silencing 

(Supplemental Information – Table S15, S16), related to (1) GOBP_Tissue 

morphogenesis (adjusted p-value=1.01E-02), (2) multilineage cells development (e.g., 

GOBP_Epithelium development (adjusted p-value= 2.61E-03), GOBP_Neuron 

development (adjusted p-value=3.61E-03), GOBP_Embryonic heart tube development 

(adjusted p-value= 5.66E-03), GOBP_Endothelium development (adjusted p-value= 

4.71E-02)), (3) Wnt signaling (GOBP_Wnt signaling pathway (adjusted p-value= 

1.61E-02), GOBP_Canonical Wnt signaling pathway (adjusted p-value= 4.91E-02)) 
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and (4) GOBP_Cell-matrix adhesion (adjusted p-value= 4.83E-02) according to 

ToppFUN enrichment analysis (Supplemental Information – Table S16). Moreover, 

motifs enrichment exploration within EWSR1-WT1 ON ATAC peaks showed a partial 

correlation with enriched motifs from EWSR1-WT1 targeted regions from ChIP-seq 

analysis, including FOX and EGR TFs motifs, further reinforcing the chromatin opening 

role of EWSR1-WT1 at these sites (Supplemental Information – Table S17). 

 

Finally, to evaluate the level of activation of EWSR1-WT1 target genes, we performed 

ChIP-seq studies for the acetylation of H3K27 (H3K27ac) and H3K9 (H3K9ac) - 

histone marks primarily associated with active enhancers and promoters, respectively. 

Most EWSR1-WT1 binding sites were associated with H3K27ac and H3K9ac binding, 

as well as increased accessible chromatin regions, suggesting that EWSR1-WT1 

occupancy is mainly associated with active transcriptional states at enhancers and 

promoters (Fig. 3F). 

 

Bulk and single-cell level multiomics integration reveals some EWSR1-WT1-

dependent cell-intrinsic plasticity 

To explore whether a potential EWSR1-WT1 binding versatility or chromatin 

accessibility variations may contribute to DSRCT cells’ observed heterogeneity, we 

further integrated ChIP-seq and ATAC-seq results on JN-DSRCT-1 cell line, together 

with the previously described 3’scRNA-seq dataset, and a parallel single nucleus RNA-

seq and ATAC-seq profiling on one DSRCT patient tumor (snMultiome). 

To assess whether differential EWSR1-WT1 binding activity correlated with cellular 

states’ heterogeneity in DSRCT, we further defined an EWSR1-WT1 ChIP-seq 

signature, constituted of 176 genes specifically directly targeted by EWSR1-WT1 (see 

Methods section; Fig. 3G, Supplemental Information – Table S18). Among these, 

103 corresponded to features detected in the “Int_sc” dataset. As a confirmation of this 

signature’s specificity, its score was higher in tumor cells and almost undetectable in 

tumor microenvironment (TME) cells. We further found that EWSR1-WT1 ChIP-seq 

signature score was heterogeneous across DSRCT tumor cells - the highest scores 

being observed in Neural/neuronal -1 and Mesenchymal_secretion - 11 clusters, 

altogether suggesting that variable EWSR1-WT1 TF activity may participate to DSRCT 

tumor cell heterogeneity. Notably, the lowest score among DSRCT tumor cells was 
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observed for the Metabolic_glycolysis – 5 cluster, suggesting that this cluster might be 

driven by EWSR1-WT1 activity-independent mechanisms (Fig. 3G). 

 

Since ChIP-seq and ATAC-seq data generated from the JN-DSRCT-1 cell line 

suggested some EWSR1-WT1-dependent modifications of the chromatin landscape, 

we sought to explore the heterogeneity of chromatin accessibility on DSRCT tumors 

at the single-cell level and link it to transcriptional programs. To do so, we profiled one 

fresh DSRCT tumor sample using the snMultiome assay (10X Genomics), which 

allows the integration of the 3’ gene expression and chromatin accessibility profile 

within the same single nucleus. Weighted-nearest neighbors (WNN) clustering on 

ATAC and gene expression features allowed us to identify 13 clusters (Fig. 3 H, 

Supplemental Information – Fig. S8A, B). When taken separately, ATAC features-

based clustering on the one hand, and gene expression-based clustering on the other 

hand, imperfectly recapitulated DSRCT tumor cell heterogeneity landscape drawn with 

bimodal WNN clustering (Supplemental Information – Fig. S8A, C), demonstrating 

that the separate characterizations of DSRCT cells transcriptome and chromatin 

accessibility are not sufficient themselves to recapitulate DSRCT cell heterogeneity. 

Differential gene expression and differential peak enrichment analyses did not allow to 

confidently identify the previously described cell subpopulations or DSRCT cell states, 

except for WNN_cluster 9, WNN_cluster 4, and WNN_cluster 3/11/12, for which top 

marker genes/peaks were representative of non-malignant cells, mitochondrial genes 

enriched cluster, and cycling cells, respectively (Supplemental Information – Table 

S19, S20, S21). We further sought to perform a correlation between snMultiome WNN 

clustering and previously identified “Int_sc” dataset clusters. Because our previous 

single-cell profiles had been generated based on whole cell-derived transcripts rather 

than nuclear transcripts only, we speculated that the exclusive analysis of 3’scRNA-

seq intronic reads, which supposedly derive from unprocessed nuclear transcripts, 

would better correlate with single nuclei gene expression from the snMultiome assay. 

A label transfer of the snMultiome dataset on the Harmony integrated 3’scRNA-seq 

dataset reference exclusively incorporating intronic reads (“Int_sc_intron” dataset) 

allowed uncovering correlations between cells’ chromatin accessibility states and 

previously defined “Int_sc” clusters. While several WNN clusters were tightly correlated 

to a single “Int_sc” cluster (e.g., WNN_cluster 3/11/12 and Cycling cells – 3, 

WNN_cluster 5 and Metabolic_glycolysis – 5, WNN_cluster 10 and 
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Mesenchymal_fibrosis – 8), other pairwise correspondences were less straightforward. 

For example, cells composing WNN_cluster 0 were mainly assigned to 

Multidiff_ASCL1 – 0, Ribosomal_catabolic – 2, and Epithelial_mesenchymal – 4 

clusters, while WNN_cluster 1 and 2 were both preponderantly allocated to the 

Epithelial_Mesenchymal – 4 cluster (Fig. 3I). Notably, the non-malignant nature of 

WNN_cluster 9 was further confirmed, as WNN_cluster 9 cells were assigned to 

Myeloid cells – 9, CAFs_C1 – 10, T cells - 12, Mesothelial cells – 14, and Vascular 

endothelial cells – 15 clusters. Interestingly, a small subset of cells from tumor cell 

WNN clusters, except WNN_cluster 10, 11, and 12, were assigned to the lnc_2 – 17 

cluster, again questioning its relevance as a biological entity. Compelling concordant 

findings were observed using the matched PZB 3’scRNA-seq sample (Supplemental 

Information – Fig. S8D, E) as a reference for label transfer (Supplemental 

Information – Fig. S8F). 

 

Interrogating the level of chromatin accessibility across clusters, we found out that the 

number of detected peaks per cell was highly variable across clusters (Supplemental 

Information – Fig. S9A, left panel), the highest number of peaks being called in 

WNN_cluster 12, and the lowest in WNN_cluster 0. This observation suggests that 

global chromatin accessibility is variable among DSRCT cell clusters, some of which, 

like WNN_cluster 0, might be marked by a predominant closed chromatin state. 

We analyzed overlapping peaks between EWSR1-WT1 ON ATAC peaks or EWSR1-

WT1 ChIP enriched peaks and snMultiome peaks called by cluster. Strikingly, 

WNN_cluster 9, which encompasses several non-malignant microenvironment cells, 

showed the lowest ratio of overlapping peaks with both assays, reinforcing that DSRCT 

cells are characterized by a unique epigenetic landscape driven by EWSR1-WT1 

chimeric protein (Supplemental Information – Fig. S9A, middle and right panel). 

 

Interestingly, the analysis of EWSR1-WT1 ON and EWSR1-WT1 OFF ATAC modules 

in the snMultiome dataset showed heterogeneity of modules’ scores among cells. As 

an internal control, the non-malignant cells displayed the lowest and the highest scores 

for EWSR1-WT1 ON and EWSR1-WT1 OFF ATAC modules, respectively. In addition, 

WNN_cluster 5, which was labeled as the anaerobic glycolysis pathway-enriched 

cluster, did display the lowest score of EWSR1-WT1 ON ATAC module 

(Supplemental Information – Fig. S9B and S9C). Parallelly, the analysis of EWSR1-
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WT1 ChIP score within the “Int_sc” 3’scRNA-seq dataset also showed a lower score 

for this cluster. Altogether, these data suggest that the EWSR1-WT1-associated 

chromatin landscape is heterogeneous among DSRCT cells and that the induction of 

a metabolic switch towards anaerobic glycolysis may associated with decreased 

EWSR1-WT1 activity. 

 

Since we hypothesized that chromatin plasticity may participate in DSRCT cell states’ 

heterogeneity, we further explored whether the top differentially accessible peaks from 

each snMultiome WNN cluster were enriched in specific motifs. 

First, while comparing snMultiome malignant versus non-malignant cells, malignant 

cells’ marker peaks displayed a highly significant enrichment in EWSR1-WT1 binding 

motifs such as EGR1, EGR3, SP2, ZNF263, further confirming that EWSR1-WT1 

binding is associated to increased accessibility at these sites (Fig. 3J, Supplemental 

Information – Fig. S9A, middle and right panel). Interestingly, RNA-seq data from 

+/- EWSR1-WT1-silenced JN-DSRCT-1 cells showed that EGR1, and at a lesser 

extent, EGR2 and EGR3 were downregulated by EWSR1-WT1 (Supplemental 

Information – Table S15). At the same time, EGR1 promoter is directly targeted by 

the fusion transcript (Fig. 3A). These data suggest that EWSR1-WT1 and EGR1 may 

have competitive transcriptional activity through their binding to common DNA 

sequences and that EWSR1-WT1 may dominate this competition by inducing EGR1 

downregulation. 

Secondly, using ChromVAR 76 motif activity inference tool, we highlighted per-cell motif 

activities across the 10 most enriched motifs within predefined WNN clusters’ 

differentially accessible peaks (Fig. 3K, Supplemental Information – Table S23). For 

example, WNN_cluster 5, assigned to Metabolic_glycolysis – 5, was mainly 

characterized by enrichment in FOS/JUN-related motifs, whereas WNN_cluster 6 

displayed a clear enrichment in GATA-related motifs. Significantly, three main groups 

of developmental TF families-related motifs were differentially enriched in distinct WNN 

clusters. SOX (e.g., SOX8, SOX13, SOX9, SOX2, SOX4), FOX (e.g., FOXA1, FOXD2, 

FOXB1, FOXE1, FOXC1, FOXA3) and GATA (e.g., GATA6, GATA5, GATA2, GATA3) 

TFs motifs activities were significantly elevated in WNN_cluster 2, WNN_cluster 5, and 

WNN_cluster 6, respectively, suggesting that accessibility at SOX, FOX, and GATA 

binding sites shapes DSRCT cell states. Interestingly, WNN_cluster 10, which was 

previously related to mesenchymal profibrotic tumor cells (Mesenchymal_fibrosis – 8 
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cluster), displayed increased accessibility in IRF (Interferon Response Factor) TFs 

motifs, supporting that extrinsic microenvironmental chemokine signaling may drive 

the latter phenotype. Finally, the Androgen Receptor (AR) motif ranked within the top 

10 enriched motifs in WNN_cluster 1. 

The inference of enhancer-driven gene regulatory networks from the snMultiome 

dataset using SCENIC+ partially correlated with the above-described original motifs 

activity inference. We identified 337 active TFs, among which 253 were activating TFs 

(i.e., associated with increased chromatin accessibility) targeting 21,695 regions 

corresponding to 17,229 genes, and 84 were repressors (i.e., associated with 

decreased chromatin accessibility) targeting 2,722 regions mapping to 2,395 genes. 

Among activating TFs-driven regulatory networks were notably identified AR, 

confirming its role in DSRCT oncogenicity 77. Notably, the FOX family TFs regulatory 

network activation was shared among most DSRCT tumor cell clusters, in line with 

EWSR1-WT1 binding on FOX TFs targeting sequences. Moreover, the activity of 

several regulatory networks was specifically increased in individual WNN clusters. For 

example, in line with previously described motif activity inference, SOX2 regulon was 

primarily activated in WNN_cluster 2, supporting the presence of pluripotency and 

neural features 78, although this cluster had been associated with 

Epithilial_mesenchymal -4 cluster using the label transfer method. In addition, 

glycolysis-activated tumor cells (WNN_cluster 5) displayed upregulated activity of 

stress-related regulatory network including FOS and ATF1-7, as well as regulons 

involved in epithelial-to-mesenchymal (EMT) transition and metastasis (e.g., BACH1 

79), which is also known for its ability to restrict dependency on oxidative 

phosphorylation and promote aerobic glycolysis 80,81. In addition, ETS family-related 

(e.g., ETS1, ETV5, FLI1) and ERG/GATA4 regulons were preferentially enriched in 

mesenchymal profibrotic WNN_cluster 10 and WNN_cluster 6, respectively. Most 

significantly, we observed a decoupling between gene activation and chromatin 

accessibility for both WT1 and EGR1 regulatory networks, confirming that EWSR1-

WT1 may exert a dominant negative effect through a competitive antagonism at WT1 

and EGR1 targeted loci (Fig. 3L). 

 

Next, hypothesizing that EWSR1-WT1 DNA binding variability may participate in 

DSRCT tumor cell heterogeneity, we studied the activity of EWSR1-WT1 de novo 

ChIP-inferred motifs within the snMultiome dataset. Interestingly, the latter showed a 
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patent differential enrichment in EWSR1-WT1 de novo motifs across clusters 

(Supplemental Information – Fig. S9D). Most de novo EWSR1-WT1 targeted motifs 

were mainly enriched in cycling cell clusters. On the other hand, de novo motif 

m3_AARTAAAYA, which was related to FOXC2 TF, was mainly enriched in 

WNN_cluster 5, which correlated to Metabolic_glycolysis - 5 cluster. Strikingly, 

FOXC2, previously known as Mesenchyme Forkhead 1 (MFH-1), is known to be a key 

player of mesenchymal cell fate during embryogenesis 82 and is notably involved in 

epithelial-mesenchymal transitions (EMTs) in breast cancer 83, further reinforcing the 

hypothesis that cells activating anaerobic glycolysis pathway would also enter a 

mesenchymal differentiation trajectory. 

 

Altogether, we identify that DSRCT cell states are characterized by distinct chromatin 

accessibility landscapes, partly driven by EWSR1-WT1 variable DNA targeting and 

remodeling. We highlight complementary mechanisms through which EWSR1-WT1 

induces a profound transcriptomic and epigenomic rewiring, comprising (i) a potential 

EWSR1-WT1 and EGR1 competitive antagonism where EWSR1-WT1 binds on GC-

rich DNA sequences and EGR1 binding motifs while inducing EGR1 transcriptional 

downregulation, and (ii) the binding on GGA microsatellites where it acts as a potent 

transcriptional activator. 

 

While our data primarily support that the various DSRCT cell states may result from 

intrinsic mechanisms notably driven by EWSR1-WT1 versatile binding sites, we further 

aimed at elucidating the potential interplay between DSRCT cells and their 

microenvironment. Relying on the hypothesis that DSRCT cell heterogeneity could 

also be triggered by in vivo extrinsic stimuli, we further dissected DSRCT 

microenvironment cell subpopulations and characterized the consequences of such 

interactions on DSRCT cell states and in vitro proliferation capacity. 

 

DSRCT microenvironment displays immune-tolerant features 

While focusing on immune cells, we found out that myeloid cells were the major 

immune subpopulation composing DSRCT tumors’ microenvironment, according to 

both “Int_sc” dataset clustering and DSRCT bulk RNA-seq cell type deconvolution 

(Fig. 1D, F). To better characterize the functions of these DSRCT myeloid cells, we 

performed a deconvolution of this myeloid population using the recently described 
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MoMac-VERSE atlas 84, which unifies dendritic cells, monocytes and macrophage 

subpopulations across human tissues. DSRCT infiltrating myeloid cells were mainly 

composed of macrophages and a minority of monocytes and dendritic cells (DCs) (Fig. 

4A, Supplemental Information – Table S24). The main macrophage subtypes were 

TREM2, FTL, HES1, and RGS1/DLA-DRB1/HL1-DPB1-positive macrophages. 

Interestingly, TREM2 macrophages have been shown to accumulate in human tumors, 

display protumorigenic properties, and correlate with exhausted CD8+ tumor-

infiltrating lymphocytes 85–87. In addition, HES1 and FTL overexpression mainly 

induces anti-inflammatory pathways and directs macrophages towards an M2 

phenotype 88–90. As for monocytes, the latter were mainly represented by IL1B 

monocytes. 

We further aimed at profiling DSRCT T cell subpopulations by exploring their canonical 

markers 91 and performing differential gene expression analysis after Seurat 

subclustering (Fig. 4B, Supplemental Information – Table S24). A total of 7 clusters 

was defined, represented by a majority of CD4+ memory T cells, overexpressing CD4, 

CD40LG, CD44, and IL7R (CD4+ memory T cells – 0 cluster). The second main T cells 

subtype was CD8+ cytotoxic effector T cells (CD8A+, GZMB+, GZMK+, GZMA+, 

GZMH+, CD8+ effector T cells – 1 cluster). Additional clusters of interest comprised a 

Natural Killer (NK) cells population overexpressing NKG7, GNLY, KLRD1, GZMB and 

GZMH (Activated NK cells – 3 cluster), a mast cells cluster overexpressing TPSAB1, 

TPSB2, and CPA3 (Mast cells – 4 cluster), MKI67+ proliferating T cells (Proliferating 

CD8+ T cells – 6 cluster), and a cluster of T cells overexpressing translational 

machinery involved transcripts such as ribosomal proteins genes, and TXNIP 

(Translation high T cells – 2 cluster) (Fig. 4B, Supplemental Information – Table 

S24). T cells’ expression profile showed an absence or low expression of immune 

checkpoints such as PDCD1 (PD-1), HAVCR2 (TIM-3), and LAG3, suggesting that no 

exhausted T cells could be identified in DSRCT samples. Similarly, markers of naïve 

like CD8+ T cells (TCF7, CCR7, SELL, LEF1) and regulatory T cells (Tregs) markers 

(FOXP3) were not found in our dataset. 

Surprisingly, the inference of immune scores using xCell31 on our cohort of bulk RNA-

seq DSRCT samples (Supplemental Information – Fig. S10A) showed some 

discrepancies with 3’scRNA-seq-derived results, showing higher scores for activated 

myeloid dendritic cells than for M2 macrophages. In addition, while no T helper cell 

markers were detected (e.g., IL5, IL13, MAD2L1, BAG2) in our 3’scRNA-seq dataset, 
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xCell deconvolution highlighted higher scores for T cells CD4+ Th1, T cells CD4+ Th2, 

and NK cells signatures than for CD8+ subpopulations (Supplemental Information – 

Fig. S10B). 

Overall, DSRCT immune cells’ characterization suggests a predominant infiltration of 

immunotolerant protumorigenic macrophages, with low infiltration of proficient effector 

cytotoxic CD8+ T cells. 

 

DSRCT Cancer-associated Fibroblasts (CAFs) are composed of distinct 

subclusters 

The initial Seurat clustering performed on all cells distinguished two CAF clusters 

(CAFs_c1 – 10 and CAFs_c2 – 13 clusters, Supplemental Information – Fig. S1E, 

Table S3). The CAFs_c1 – 10 cluster mainly stemmed from tumor samples, while 

CAFs_c1 – 13 was preponderantly found in the juxta-tumor peritoneal sample BOM 

site#1 (Fig. 1C, Fig. 4C, left panel). Gene Ontology enrichment analysis highlighted 

that CAFs from CAFs_c1 – 10 cluster were mainly involved in extracellular matrix 

formation (GOBP_Collagen fibril organization, adjusted p-value=0.0019; 

GOBP_Connective tissue development, adjusted p-value=0.0047) and angiogenesis 

(GOBP_Vasculature development, adjusted p-value=0.0089), while CAFs from 

CAFs_c2 – 13 displayed significant enrichment for pathways involved in cell migration 

and adhesion (GOBP_Cell migration, adjusted p-value=0.008; GOBP_Biological 

adhesion, adjusted p-value=0.038) and complement activation (GOBP_Complement 

activation, adjusted p-value=0.0031) (Supplemental Information – Fig. S11A). To 

refine the distinct CAF subpopulations composing DSRCT tumor microenvironment, 

we performed CAF subclustering from merged CAFs_c1 – 10 and CAFs_c2 – 13 

clusters and defined eight distinct CAF subtypes (Fig. 4C, right panel) that were 

manually annotated based on the top marker genes from differential gene expression 

analysis: CD34/MYC fibroblasts – 0, Desmoplastic CAFs – 1, Undetermined CAFs – 

2, Lipofibroblasts – 3, Myofibroblastic CAFs – 4, Pericytes-like CAFs – 5, Inflammatory 

CAFs – 6, Adventitial fibroblasts – 7 (Fig. 4C, E, H, Supplemental Information – 

Table S25). 

CIBERSORTx deconvolution on DSRCT tumors bulk RNA-seq data confirmed the 

predominance of Desmoplastic CAFs – 1 and Myofibroblastic CAFs – 4 while the 

proportion of juxta-tumor CAFs cells from CD34/MYC fibroblasts – 0 remained low 

(Fig. 4D, Supplemental Information - Table S27). 
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We next defined CAFs’ canonical markers based on previously described CAF 

markers from other tumor types 92–95 (Fig. 4 H, Supplemental Information – Fig. 

S11B). While ACTA2 expression was shared by most CAF subclusters, its expression 

was minor within Adventitial fibroblasts – 7, and absent in CD34/MYC fibroblasts – 0 

and Undetermined CAFs – 2. Of note, the latter cluster could not be annotated 

confidently, and expressed markers such as LTBP4, replication-involved genes 

(EIF4A1, EIF5), and mitochondrial genes (ATP5ME, ATP5MD, MT-ND1, MT-ATP6, 

MT-CO3, MT-CO2). FAP expression was the highest in Desmoplastic CAFs – 1, and 

MCAM was specific to Pericytes-like CAFs – 5. The Inflammatory CAFs – 6 cluster 

was characterized by the expression of different chemokines such as LIF, CXCL2, 

CXCL8, and BDKRB1, which is known to accumulate under inflammation and hypoxia 

in other tumor types 96 (Fig. 4E, H, Supplemental Information – Table S25). 

Interestingly, CAF subclusters that were mostly found within the juxta-tumor sample 

(i.e., CD34/MYC fibroblasts – 0, Lipofibroblasts – 3, Inflammatory CAFs – 6, Adventitial 

fibroblasts – 7) all showed complement pathways’ gene activation (i.e., C3, C7, C1R), 

and expressed the constitutive lipid droplet protein PLIN2. Of note, CD34/MYC 

fibroblasts – 0 also showed positivity for APOD, CXCL14, PPARG, and MGP, 

considered pre-adipocytes or adipocyte stem cell markers 97. Intriguingly, the 

evaluation of MYC protein expression by immunohistochemistry on DSRCT FFPE 

samples juxta-tumor areas showed a clear expression pattern in nuclei of adipocyte-

like cells localized at the edge of the tumor (Supplemental Information – Fig. S11C). 

In addition, Adventitial fibroblasts – 7 showed overexpression of SCARA5, CD55, 

SLPI, PI16, DPP4, and CD34 (Fig. 4E, F, Supplemental Information – Table S25), 

which is similar to adventitial stromal cells’ expression profile 98, known to be found in 

vascular niches and able to produce extracellular matrix 99. Interestingly, SCARA5 is 

known to play an essential role in the commitment of mesenchymal stem cells to 

adipogenesis 100, and subcutaneous DPP4+ mesenchymal cells have been shown to 

constitute progenitor cells that can differentiate into adipocytes 99. In line with these 

observations, we may speculate that Adventitial fibroblasts – 7 cells may be precursors 

to adipocyte-like CD34/MYC fibroblasts – 0 cells. 

Next, focusing on the profibrotic and immunoregulatory properties of CAFs 101, we 

further found that the expression of desmoplasia-related genes (e.g., MMP2, COL1A1, 

LOX, LOXL1, VEGFB) was shared by all CAF subclusters, markedly by Desmoplastic 

CAFs – 1 (Fig. 4G). Moreover, significant immunosuppressive response-related genes 
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were overexpressed by CAF subsets. While most CAF subclusters, excepted 

Undetermined CAFs - 2 and Pericytes-like CAFs – 5, expressed T cells’ exclusion 

features like MRC2 102 and M2 macrophages polarization signaling (e.g., CSF1 103,104, 

CXCL12 105, IL6 106), Inflammatory CAFs – 6 also displayed strong activation of genes 

involved in Myeloid-Derived Suppressor Cells (MDSCs) recruitment 107 including 

CCL2, CXCL2, and CXCL8 (Fig. 4G). 

The application of breast cancer CAFs’ signatures 92,93 showed that most CAF 

subclusters were enriched in the CAF-S1 signature, while only Pericytes-like CAFs – 

5 were enriched in the CAF-S4 signature (Supplemental Information – Fig. S11D), 

herein stressing out the overall immunosuppressive feature of DSRCT 

microenvironment 92,93,108. Of note, the CAF-S3 signature was mainly expressed by 

CD34/MYC fibroblasts – 0, consistent with their preponderance in juxta-tumor tissue. 

 

In order to validate our findings at the protein level and assess whether these distinct 

CAF subpopulations were specifically found in particular DSRCT tumor areas, we 

developed a fluorescent triplex IHC staining to characterize MCAM, FAP, and ACTA2 

(alias SMA) protein expression on eight DSRCT samples. We analyzed the 

fluorescence intensities across three distinct stromal areas: Stromal area n°1 relating 

to large trabeculae of desmoplastic stroma, Stromal area n°2 characterizing stroma 

located at the near periphery of tumor nests, and Stromal area n°3 located at the tumor 

edge within the pseudocapsule (Fig. 4 H). While MCAM+ CAFs were located near 

vessels supporting pericyte-like features, there was a correlation between FAP/ACTA2 

fluorescence intensity and CAFs localization within the tumor (one-way ANOVA 

p=0.0092) (Fig. 4 H, I). FAP+ CAFs were preferentially located within the 

pseudocapsule (paired t-test p=0.0093 and p=0.0148). Although non-significant 

(p=0.6177), we observed a tendency of FAP+ CAFs accumulation within the large 

trabeculae of desmoplastic stroma, compared to AML+/FAP-/MCAM- CAFs, which 

tended to be mostly found at the proximity of tumor cells’ bundles (Fig. 4 H, I). 

 

DSRCT microenvironment cell proximity is associated with specific tumor cell 

phenotypical and metabolic states, suggesting extrinsic plasticity 

While our previous findings support that DSRCT tumor cells may intrinsically retain 

pluripotency features and linage plasticity potential, we further interrogated whether 
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microenvironment signals may trigger tumor cells to proceed along specific cell states' 

trajectories. 

Focusing on DSRCT tumor cells with mesenchymal features characterized by the 

expression of DES, CHI3L1, or TNNT3, we performed a triplex immunofluorescent 

staining on 3’scRNA-seq matched FFPE samples to identify any spatial restriction 

towards THY1+ CAFs proximity (Fig. 5A). While some DSRCT samples displayed a 

homogeneous DES staining by virtually all tumor cells, several DSRCT samples (e.g., 

GR2) were characterized by a DES/CHI3L1 expression restricted to either the 

periphery of tumor cells’ islets at the direct proximity of CAFs (Fig. 5A, bottom left 

panel), or at the invasive tumor front within desmoplastic stroma area (Fig. 5A, bottom 

right panel). This DES+/CHI3L1+ mesenchymal profibrotic DSRCT tumor cell 

subpopulation likely corresponds to GR2 Mesenchymal_TNNT3 – 5, 

Mesenchymal_DES – 9, Neuronal_mesenchymal – 13, and Mesenchymal_stem – 14 

clusters (Supplemental Information - Table S4) in which CHI3L1 or DES were 

significantly overexpressed (Fig. 5B). 

Interestingly, while JN-DSRCT-1 cells grown in 2D showed lineage-related markers 

homogeneous stainings (Supplemental Information – Fig. S6), JN-DSRCT-1 cells 

grown in clones or spheroids showed a sharply increased DES signal intensity at the 

periphery compared to core tumor cells on IF assays (Supplemental Information – 

Fig. S12). This functional experiment suggests that interactions between DSRCT 

tumor cells and non-cellular components of the microenvironment, such as the 

extracellular matrix, may be sufficient to control some DSRCT cell state trajectories. 

To better characterize the potential cell-to-cell interactions between DSRCT tumor 

cells and their microenvironment, we took advantage of CellPhone DB tool 21, which 

infers cell-cell communication from the combined expression of multi-subunit ligand-

receptor complexes. We analyzed DSRCT tumor cell clusters versus CAF interactions 

in the three DSRCT samples that contained the most significant number of CAFs (Fig. 

5C, Supplemental Information – Fig. S13). CellPhone DB analyses revealed that 

CAFs interacted the most with CHI3L1/TNNT3/DES overexpressing tumor cells. While 

most of the interactions between CAFs and mesenchymal tumor cells were 

represented by adhesion ligand-receptor couples (e.g., COL20A1-a1b1/a11b1, FN-

a5b1/aVb1/a11b1/aVb5), proangiogenic (e.g., FLT1-VEGFA/B), protumorigenic (e.g., 

EGFR-MIF/GRN/COPA/AREG), and immunoregulatory (e.g., TGFB1/TRFBR1/2) 

interactions were also identified (Supplemental Information – Fig. S13). 
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To clarify the relationship between tumor cells’ phenotype and DSRCT tumors’ spatial 

morphology, we performed spatial transcriptomics on 3’scRNA-seq matching samples 

(Fig. 5D, E, F, G, Supplemental Information Fig. S14). The Visium spatial 

transcriptomics technique allows the study of the spatial whole transcriptome at ~50 

m resolution. After spot clustering, we performed a differential gene expression 

analysis across identified spot clusters (Fig. 5E, Supplemental Information - Table 

S26). Focusing on the previously described GR2 sample, we identified specific 

expression patterns for both tumor and stromal components’ related clusters. Notably, 

GR2 Spatial clusters 4 and 5 colocalized at the edge of tumor cells’ islets. They 

respectively expressed myofibroblastic CAF-related markers (e.g., SPARC, ACTA2, 

COL1A1) and tumor cell mesenchymal/anaerobic glycolysis-related markers (e.g., 

ENO1, CHI3L1, VEGFA) (Fig. 5D, F). Strikingly, this pattern was consistent across 

most analyzed Visium DSRCT samples (Supplemental Information - Fig. S14, Table 

S26). A label transfer performed on matched Visium spatial transcriptomics assays 

and 3’scRNA-seq datasets used as a reference further confirmed that these spots 

located at the edge of tumor cells’ islets and in direct contact with the stroma 

corresponded to 3’scRNA-seq clusters showing either mesenchymal, anaerobic 

glycolysis or ribosomal genes enrichment, respectively labeled as GR2 

Mesenchymal_TNNT3 – 5, GR2 Metabo_glycolysis – 7, and GR2 Ribosomal – 2 

clusters (Supplemental Information – Table S4, Fig. S14).  

Moreover, the application of Hypoxia, Glycolysis, and Oxidative Phosphorylation 

HALLMARK signatures, along with the previously described EWSR1-WT1 ChIP-seq 

signature on the GR2 Visium sample, unveiled an anticorrelation between hypoxia and 

anaerobic glycolysis on the one hand, and EWSR1-WT1 TF activity and oxidative 

phosphorylation on the other hand. These findings strongly suggest that DSCRT tumor 

cells located at the center of the islets display the highest EWSR1-WT1 activity and 

proliferative capacity while mainly relying on oxidative phosphorylation. On the 

contrary, the upregulation of anaerobic glycolysis, identified in tumor cells located at 

the edge of tumor cells’ islets, may constitute a metabolic switch mechanism exploited 

by both DSRCT mesenchymal tumor cells and CAFs in reaction to hypoxia-induced 

HIF-1 pathway upregulation. 

Overall, these results provide clues about the mechanisms underlying previously 

undescribed DSRCT tumor cell metabolic state changes. Because several upregulated 
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genes in DSRCT mesenchymal tumor cells are also EWSR1-WT1 targets (e.g., DES, 

CHI3L1, ACTA2, Supplemental Information – Table S9, S10), we may posit that an 

epigenetic reprogramming, driven by EWSR1-WT1 lower TF activity, might be 

triggered by microenvironmental hypoxic stimuli, hence leading to the activation of a 

neural-mesenchymal transition program. 

 

Intertumor heterogeneity and prognostic significance of DSRCT plasticity 

While the temporal dynamics governing DSRCT cell state shifts have not been 

explored per se, the study of the heterogeneity of both GR4 and GR4_PC samples 

provides information about potential tumor cell evolution under antitumor therapeutic 

pressure. Indeed, two sequential samples were collected from patient GR4, the first 

obtained in a chemotherapy naïve situation (GR4) and the second after adjuvant 

chemotherapy, first relapse, and first metastatic treatment line (GR4_PC). Importantly, 

the complexity of DSRCT tumor cell heterogeneity regarding identified clusters was 

comparable between both samples (Supplemental Information - Fig. S2). On the 

contrary, the CNV inference study did display an increase in copy number alterations, 

characterized by the acquirement of a gain of 5p/5q, 7p/7q, 10p/10q, 20p/20q, 

21p/21q, and 22p/22q, which were corroborated by the CNV analysis from bulk 

matched frozen tumor/normal samples. Notably, a chr 13p/13q loss was inferred from 

scRNA-seq data for the GR4_PC sample but was not validated on WES. Conversely, 

additional gains on chr 1, 15, and 18 were detected on WES analysis but not identified 

using inferCNV. 

 

“Int_sc” clusters’ deconvolution on our cohort of DSRCT bulk RNA-seq samples 

highlighted that Epithelial Mesenchymal – 4 and Cycling cells – 3 were the most 

variably represented. Also, the Neural stem – 19 cluster was undetectable in some 

samples, while it could reach 10% of the total subpopulations in others (Fig. 6A). 

To further explore intertumor heterogeneity, we performed a hierarchical clustering 

using a distance based on Pearson's correlation coefficient with the Ward D2 linkage 

algorithm, exploiting the totality of sequenced genes on the cohort of 29 frozen DSRCT 

samples (Fig. 6B, Supplemental Information - Fig. S10A, Table S27). We did not 

identify apparent clustering according to the main recorded clinical data, including sex 

or tumor primary site. Based on this clustering, we identified three DSRCT patients’ 



 117 

clusters. Of note, the totality of chemotherapy-naïve patients was grouped together 

within Cluster #3, although this subgroup also included some pre-treated patients. 

DGE analysis between Cluster #3 and Cluster #1 or #2 notably showed an 

upregulation of genes involved in nucleosome assembly, chromatin remodeling, and 

cell cycle positive regulation (Supplemental Information - Table S28, S29). On the 

contrary, genes significantly enriched in Cluster #2 showed enrichment in (i) genes 

involved in epithelial cell differentiation, cell adhesion, extracellular matrix components, 

and response to hormone compared to Cluster #3 and (ii) genes involved in 

lymphocyte activation and antigen binding compared to Cluster #1 (Fig. 6B, 

Supplemental Information – Table S28, S29). Importantly, identified clusters 

exhibited a significant prognostic value on overall survival (Fig. 6C), with median 

overall survival of 24 months (95% CI: 16-NA), 27 months (95% CI: 16-NA), and 15 

months 95% CI (12-NA) for Cluster #1, Cluster #2, and Cluster #3 respectively. 

Altogether, these findings support that both the activation of a lymphocyte 

immunostimulatory response through antigen binding and an epithelial-like phenotype 

are associated with improved DSRCT prognosis. Interestingly, the 

immunosuppressive features of the worst prognostic group (Cluster #3) were 

confirmed using immune xCell deconvolution, highlighting a higher CD4+ Th2 score 

(Supplemental Information - Fig. S15). 

 

We next derived a gene signature characterizing each “Int-sc” cell cluster, defined by 

their top 100 marker genes (n=20). To first assess the specificity of the herein defined 

signatures, for each “Int_sc” cluster, we generated a signature score by computing the 

arithmetic mean of the bulk RNA-seq-derived Variance Stabilizing Transformation 

(VST)-normalized raw counts expression from an external cohort of DSRCT and 

various sarcoma subtypes (Fig. 6D, Supplemental Information - Fig. S16, Table 

S30). Several DSRCT tumor cell cluster signatures (e.g., “Int_sc” Cycling cells - 3, 

“Int_sc” Ribosomal_catabolic - 2) did not show any specificity to the DSRCT 

transcriptome. Notably, no microenvironment cell populations’ signature score was 

significantly increased in the DSRCT cohort compared to other sarcoma subtypes. 

Importantly, the signature scores for Multidiff_ASCL1 - 0, Neural_neuronal - 1, 

Epithelial_Mesenchymal - 4, lnc_1 - 7, Mesenchymal_fibrosis - 8, and 

Mesenchymal_secretion - 11 clusters were significantly higher within the DSRCT 

cohort. 
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We further evaluated the prognostic value of the above-described “Int_sc” clusters’ 

signature scores to assess whether specific clusters could drive higher DSRCT tumor 

aggressivity, thus deteriorating patients’ overall survival. 

To this end, bulk RNA-seq samples were stratified into two groups according to the 

signature optimal score cutpoint, thus splitting the cohort into two groups defining a 

“High” or “Low” signature score. A Kaplan Meier overall survival analysis was 

performed for each signature to evaluate each group's survival probability 

(Supplemental Information - Fig. S17). Notably, a higher score of several 3’ scRNA-

seq-derived signatures was significantly associated with worse prognosis (e.g., 

Ribosomal_catabolic – 2 (p=0.036), Cycling cells – 3 (p=0.0058), Metabolic_glycolysis 

– 5 (p=0.03), Ribosomal_IFN response – 6 (p<0.0001), T cells – 12 (p=0.021), and 

“Metabolic_serine – 15 (p=0.0045)), while higher scores of Epithelial_mesenchymal - 

4 (p=0.038) and Vascular endothelial cells - 16 (p=0.042) signatures were associated 

with improved prognosis (Fig. 6E). The prognostic significance of these signatures was 

further tested on an external validation cohort of 21 frozen DSRCT bulk RNA-seq 

samples. The prognostic value was validated for the Epithelial_mesenchymal – 4 

signature (p=0.00064), and we observed a signal without reaching statistical 

significance for Cycling cells – 3 (p=0.1) and Ribosomal_IFN response – 6 (p=0.17) 

signatures. Together with previous findings from bulk RNA-seq samples hierarchical 

clustering, these data support that the acquisition of an epithelial phenotype is related 

to improved prognosis in DSRCT. 

 

Discussion 

This study shows that DSRCT displays some degree of intrinsic heterogeneity partly 

driven by EWSR1-WT1 activity and extrinsic heterogeneity influenced by interactions 

with the tumor microenvironment. We could identify three main components of this 

heterogeneity: (i) lineage plasticity, characterized by highly overlapping differentiation-

related phenotypes; (ii) metabolic switches between oxidative phosphorylation, 

anaerobic glycolysis, and serine metabolism activation; and (iii) pseudostates. Our 

data support that DSRCT cancer cells permeate through a continuous spectrum of 

transcriptional states/pseudostates linked by dynamic and reversible transitions rather 

than follow unidirectional trajectories or clonal/subclonal evolution. We also show that 
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EWSR1-WT1 transcriptional activity level or binding sites’ flexibility may participate in 

DSRCT cell plasticity by remodeling chromatin accessibility. 

 

Still, several questions need to be addressed. First, it is currently unknown if the neural-

to-mesenchymal state of DSRCT cells is revocable or non-reversible. Secondly, 

DSRCT cell plasticity potency may be both a consequence of their presumed 

pluripotent cell of origin allowing various differentiation pathways and enabled by 

EWSR1-WT1 activity. Interestingly, recent data focusing on Clear Cell Sarcoma 

(CCS), an alternate fusion-driven sarcoma characterized by the EWSR1-ATF1 

chimeric TF, suggested that CCS precursor cells retain a degree of plasticity enabling 

them to differentiate along the melanocytic lineage and that the fusion protein may 

induce a transcriptional reprogramming toward a more undifferentiated state 109. Other 

genomically simple sarcomas, such as synovial sarcoma characterized by SS18-SSX 

fusion protein, have been shown to undergo a pluripotent differentiation, with the 

coexpression of both a core oncogenic program driven by SS18-SSX and inducing a 

differentiation blockade, mesenchymal and epithelial programs 41. Similarly, in Ewing 

sarcoma models, EWSR1-FLI1 activity levels direct the neural-to-mesenchymal 

differentiation 14,15. Authors also showed that EWSR1-FLI1 induces cell plasticity by 

deregulating microRNA (miRNA) maturation 110 and decreasing miR-145 expression, 

which plays a central role in restricting cancer stem cells pluripotency features 111,112. 

Noteworthy, our work did not identify evident EWSR1-WT1 transcript expression 

variability across DSRCT tumor cell clusters. Whether this observation is due to the 

potential limitations of our in-house developed EWSR1-WT1 single-cell expression 

assay or reflects genuine DSRCT biology remains to be confirmed. Bleijs et al. 7 

performed SORT-seq, a plate-based 3’scRNA-seq technology 113, on the 2D and 3D-

grown DSRCT cell line OV-054. Since OV-054 does not express wild-type WT1, the 

single-cell level expression of EWSR1-WT1 was inferred by the measure of WT1-

mapping reads. The authors did not highlight any EWSR1-WT1 expression level 

heterogeneity in these experiments. Whether this observation applies to in vivo 

DSRCT cells growing within an evolving microenvironment and submitted to various 

extrinsic signaling and therapeutic pressure remains questionable. 

 

Beyond the lineage- and metabolism-related components underlying DSRCT cell 

heterogeneity, we could identify “pseudostates” characterized by enrichment in 
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lncRNAs, ribosomal protein-coding transcripts, or cell cycle-related genes. The 

biological reality of the first two transcriptional programs is still unknown. Regarding 

lncRNAs-enriched clusters, the latter have been described in alternate tumor types and 

may not be specific to DSRCT. Whether these clusters arise from technical biases, 

such as the encapsulation of nuclei or membrane-altered cells with cytoplastic RNAs 

leakage, or whether a subgroup of DSRCT cells (among other tumor types) may set 

off a program preferentially activating the transcription of a subset of lncRNAs is still 

uncertain. Two arguments should be raised against the latter hypothesis. First, no 

lncRNAs-enriched cluster was identified in the single-nucleus Gene Expression and 

ATAC-seq experiment or in the Visium spatial transcriptomics assays. Secondly, the 

label transfer performed on the PZB sample using the 3’ scRNA-seq intronic reads 

dataset as a reference and the snMultiome gene expression dataset as a query 

assigned almost all snMultiome clusters to the 3’scRNA-seq lncRNAs-enriched cluster. 

 

In addition to cell-intrinsic plasticity, DSRCT tumor cell heterogeneity appears also to 

be triggered by microenvironmental signals such as hypoxia and interactions with 

CAFs and extracellular matrix components, which are associated with the acquisition 

of mesenchymal features and the activation of anaerobic glycolysis. This observation 

supports the need for further investigation of the role of the tumor microenvironment in 

DSRCT pathogenesis. To our knowledge, this is the first study to characterize DSRCT 

CAF subpopulations comprehensively. Remarkably, herein defined DSRCT CAF 

subclusters highly correlate with the recently published pan-cancer single-cell CAFs 

atlas portrayed by Luo et al.114, which identified three predominant CAF components 

(i.e., CAFmyo (cancer-associated myofibroblasts), CAFsinfla (inflammatory CAFs), and 

CAFadi (adipogenic CAFs)). Specifically, in pancreatic ductal adenocarcinoma, which 

is typically characterized by tumor-associated desmoplasia, four CAF subtypes have 

been described, including myCAFs, iCAFs, antigen-presenting CAFs, and meCAFs 

harboring a highly activated metabolic state 115–121. Our results, showing overlapping 

markers across DSRCT CAF subsets and suggesting a continuum of CAF phenotypes, 

align with findings from alternate tumor types. Davidson et al. 122 described the 

evolution of CAF phenotypes from murine melanoma and draining lymph nodes and 

highlighted the sequential development of “immune”, “desmoplastic”, and “contractile” 

CAFs along tumor progression. The transition of adipose-derived stromal cells into 

extra-cellular matrix-producing CAFs has also been described 123, supporting that an 
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adipose tissue microenvironment may constitute a favorable niche for cancer 

development and progression. 

 

Finally, although patients with DSRCT harbor the unique and pathognomonic EWSR1-

WT1 fusion, treatment response and survival outcomes may be variable. The 

underlying biological mechanisms underlying this prognostic heterogeneity remain 

largely unknown. To date, specific recurrent secondary mutations have not been linked 

to patient prognosis, and larger series will be required to address this important 

question, which will also bring insight into the disease’s biology. Our work identified 

critical transcriptional programs linked to patient prognosis. For instance, some 

DSRCT cell state gene signatures may be surrogates for tumor cell proliferation and 

cell growth (e.g., Cycling cells – 3, Ribosomal_IFN response – 6 signatures) and were 

linked to adverse prognosis. On the other hand, the Epithelial_Mesenchymal – 4 

signature was associated with increased overall survival. 

In conclusion, our study sheds light on DSRCT heterogeneity underlying mechanisms, 

which may have prognostic implications for patients and direct novel therapeutic 

aiming at corralling cells within specific cell states associated with improved prognosis. 

Relying on the hypothesis that DSRCT tumor cell subpopulations maintain mutualistic 

interactions, where each cell subpopulation may benefit from the phenotypical state of 

each other, we may also expect that the specific targeting of a given crucial 

subpopulation may destabilize the whole tumor ecosystem. As tumor heterogeneity is 

one of the major hurdles in cancer treatment, we hope our approach will apply to 

various alternate tumor subtypes. We envision that such studies will further help to 

improve the understanding of the epigenetic and transcriptional processes underlying 

sarcoma biology and pave the way to novel therapeutic opportunities in this deadly 

disease. 
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Fig. 1 | scRNA-seq recapitulates DSRCT cellular composition. A, Experimental 

design of bulk and single-cell multiomic profiling performed on patient-derived fresh 

and frozen DSRCT samples. B, DSRCT patient clinical characteristics and matching 

analyzed samples. C, Uniform Manifold Approximation and Projection (UMAP) 

highlighting per patient cells’ origin on Harmony integrated 3’scRNA-seq dataset 

(“Int_sc”). D, UMAP highlighting identified DSRCT cell types in the “Int_sc” dataset (left 

panel). Barplot showing the proportions of identified DSRCT cell types across 

3’scRNA-seq samples, including a majority of tumor cells, followed by CAFs and 

myeloid cells, with a minority of T cells, endothelial cells, and mesothelial cells (right 

panel). E, Hematoxylin and Eosin (H&E), and monoplex immunohistochemistry (IHC) 

stainings (DAB) on Formalin-Fixed Paraffin-embedded (FFPE) DSRCT samples, 

displaying DSRCT tumor cells surrounded by a desmoplastic stroma characterized by 

THY1+ Cancers Associated Fibroblasts (CAFs), CD68+/CD163+ macrophages, and 

low T cell infiltration (CD3+). F, CIBERSORTx deconvolution of the main DSRCT 

subpopulations on a cohort of 29 bulk RNA-seq DSRCT samples. G, Heatmap showing 

the expression Z-score of the top 10 differentially expressed genes of each DSRCT 

cell population. High gene expression is shown in yellow, whereas low gene 

expression is shown in purple. While marker genes were identified for non-tumor cell 

clusters, no gene was found to be ubiquitously overexpressed across all tumor cell 

clusters. 
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Fig. 2 | DSRCT malignant cell subpopulations’ profiles suggest cell plasticity. A, 

Uniform Manifold Approximation and Projection (UMAP) representation of manually 

annotated DSRCT malignant cells’ clusters from Harmony integrated 3’scRNA-seq 

dataset (“Int_sc”) after clustering using a graph-based K-nearest neighbors’ algorithm 

(left panel) where clusters’ annotation was performed based on the top differentially 

expressed genes and corresponding gene set enrichment analysis. Barplot showing 

the proportions of DSRCT malignant cell subpopulations across individual samples 

(right panel). B, Monoplex immunohistochemistry (IHC) stainings (DAB) on Formalin-

Fixed Paraffin-embedded (FFPE) DSRCT samples highlighting WT1-positive DSRCT 

malignant cells expressing epithelial (AE1/AE3), mesenchymal (DES) and neural 

(CD56) markers. C, Heatmap highlighting the expression Z-score of top marker genes 

for each DSRCT malignant cell cluster. High gene expression is shown in yellow, 

whereas low gene expression is shown in purple. Newly identified canonical markers 

for each DSRCT malignant cell cluster are shown on the right. D, Gene Ontology (GO) 

pathway enrichment analysis based on differentially expressed genes from identified 

DSRCT malignant cells’ clusters. The top 3 GO pathways are displayed for each 

cluster on the y-axis. The gene ratio is shown on the x-axis. Significant adjusted p-

values are colored in pink (higher adjusted p-value) to red (lower adjusted p-value). E, 

Heatmap representation of Hotspot co-expressed gene modules identified in the 

“Int_sc” dataset (left panel). Gene modules are specified on the left y-axis. The color 

highlights the local correlation values between genes from red (high local correlation) 

to blue (low local correlation). UMAP representation of the “Int_sc” dataset showing 

Hotspot modules’ scores (right panel). Several modules displayed relatively 

homogeneous scores across clusters (e.g., Hotspot module #10). In contrast, other 

modules were explicitly enriched in particular clusters (e.g., Hotspot module #3 and 

“Int_sc” Cycling cells – 3 cluster, Hotspot module #13 and “Int_sc” Metabolic_glycolysis 

– 5 cluster, Hotspot module #5 and “Int_sc” Mesenchymal_fibrosis – 8 cluster). F, 

Single-cell level copy number variations (CNV) inference using the InferCNV tool 

(upper panel) and bulk whole exome sequencing (WES)-derived CNV analysis on 

matching sample (lower panel). Results for GR7 site#2 display (i) a gain of 5p/5q and 

a loss of 6p, confirmed by WES, and (ii) a flat profile across clusters suggesting few/no 

clonal heterogeneity. 
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Fig. 3 | DSRCT heterogeneity is partially driven by variable EWSR1-WT1 activity 

and epigenetic reprogramming. A, EWSR1-WT1 chromatin immunoprecipitation 

with sequencing (ChIP-seq) coverage profiles and peaks for known and newly 

described target genes. B, Gene Ontology (GO) enrichment analysis of significantly 

enriched peaks in EWSR1-WT1 ChIP-seq using ChIPEnrich tool on biological process 

(GOBP), cellular component (CC), and molecular function (MF) categories. All 

pathways with significant enrichment (adjusted p-value <0.05) are displayed on the y-

axis from lower (top) to higher adjusted p-value (bottom). The gene ratio is shown on 

the x-axis. C, Top 10 enriched motifs from JASPAR 2020 transcription factors (TFs) 

database in significantly enriched peaks from EWSR1-WT1 ChIP-seq. D, Volcano plot 

showing Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) 

differentially accessible peaks-corresponding genes in EWSR1-WT1-silenced versus 

non-silenced JN-DSRCT-1 cells. Peaks that have higher accessibility upon EWSR1-

WT1 silencing are shown on the left (EWSR1-WT1 OFF), whereas those that have 

increased accessibility in non-silenced cells are shown on the right (EWSR1-WT1 ON). 

Colored dots correspond to the most differentially accessible peaks (-Log10 (adjusted 

p-value) >100, Log2 fold change (Log2FC) < -1.5 in blue, Log2FC > 1.5 in pink). E, 

Venn Diagram showing overlapping peaks between EWSR1-WT1 ChIP-seq-enriched 

peaks and peaks with significantly increased accessibility in non-silenced JN-DSRCT-

1 cells compared to EWSR1-WT1 silenced cells. F, ChIP-seq read coverage heatmaps 

centered around EWSR1-WT1 ChIP-specific peaks (+/- 5 kb) and ordered by genomic 

regions for EWSR1-WT1 (first panel), H3K9ac (second panel), and H3K27ac (third 

panel) ChIP-seq experiments. The fourth panel shows coverage for peaks with 

increased accessibility in non-silenced JN-DSRCT-1 cells compared to EWSR1-WT1-

silenced cells. EWSR1-WT1 targeted regions are characterized by active enhancers 

(H3K27ac/H3K9ac) and bivalent promoters (H3K9ac) histone marks, and opened 

chromatin regions. G, UMAP plot of “Int_sc” showing EWSR1-WT1 transcriptional 

activity signature score. The latter signature was derived from the list of EWSR1-WT1 

ChIP-seq differentially enriched peak-assigned genes. This signature contains a total 

of 176 genes, among which 103 genes are expressed in the “Int_sc” dataset. A control 

signature using a random set of 103 genes is presented in Supplemental Information 

– Fig. S7. H, UMAP representation of graph-based K-nearest neighbors’ clustering on 

single-nucleus Multiome (snMultiome) sample combining single-nucleus ATAC-seq 

and RNA-seq features using the weighted nearest neighbors (WNN) method. Clusters 
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that could be identified according to differentially expressed genes are annotated. I, 

Label transfer of WNN clusters from the snMultiome assay with 3’scRNA-seq “Int_sc” 

clusters as reference using snMultiome intronic reads. J, UMAP representation of the 

snMultiome assay highlighting malignant and non-malignant cells (left panel) and the 

top 10 significantly enriched motifs identified from corresponding differentially 

accessible peaks. K, Heatmap showing the ChromVAR-inferred motif activity for the 

top enriched motifs identified from differentially accessible peaks for each snMultiome 

WNN cluster. L, Bubble plot displaying the area under curve (AUC) of SCENIC+-

inferred regulatory networks based on (i) regulons’ accessibility (AUC_region) 

represented by the size of the dot, and on (ii) regulons’ gene expression level 

(AUC_gene), represented by the color scale. A selection of regulons is represented 

based on putative important transcription factors. Noteworthy, we observe a 

decoupling between WT1 and EGR regulons accessibility and expression, supporting 

a competitive antagonism with EWSR1-WT1. 
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Fig. 4 | DSRCT microenvironment displays immunosuppressive features and 

shapes DSRCT cell states. A, DSRCT infiltrating myeloid subpopulations from 

integrated 3’scRNA-seq dataset (Int_sc), represented by Uniform Manifold 

Approximation and Projection (UMAP) and pie plot showing the proportion of each 

immune subpopulation. Myeloid cells were annotated according to the MoMac-VERSE 

atlas, showing a majority of HES1+, RSG1/HLA-DP+, TREM2+, and FTL+ 

macrophages. B, UMAP representation of DSRCT infiltrating lymphoid cells from the 

“Int_sc” dataset and pie plot showing the proportion of each subpopulation. Lymphoid 

cells were manually annotated after graph-based k-nearest neighbors’ clustering, 

according to the expression of known canonical markers and are composed of CD4+ 

memory T cells, CD8+ effector T cells, translation-related genes-enriched T cells, and 

activated NK cells. C, UMAP plots displaying the fibroblast population according to the 

tissue of origin (tumoral or juxta-tumoral) (left panel), and fibroblasts sub-clustering 

with graph-based K-nearest neighbors’ algorithm, highlighting eight subpopulations 

(right panel). D, CIBERSORTx deconvolution of the identified fibroblast subpopulations 

on a cohort of 29 bulk RNA-seq DSRCT samples. E, Heatmap highlighting the single-

cell expression Z-score of differentially expressed genes for each defined fibroblast 

subcluster. High gene expression is shown in yellow, whereas low gene expression is 

shown in purple. Key marker genes for each fibroblast cluster are shown on the right. 

F, Violin plot showing the expression level profile of cells from each fibroblast 

subpopulation of selected newly defined canonical markers. G, Violin plots displaying 

the expression level profile of cells from each fibroblast subcluster of profibrotic and 

immunosuppressive genes. H, Immunofluorescence triplex showing ACTA2, MCAM, 

FAP, and DAPI staining on a DSRCT FFPE sample. The CAFs located within the 

peritumor pseudocapsule are positive for ACTA2 and FAP, as do the CAFs located 

within large trabeculae of desmoplastic stroma. On the contrary, ACTA2+/FAP-

/MCAM- CAFs surround DSRCT tumor islets, and MCAM+ CAFs encircle intratumor 

vessels. *: p-value<0.05 **: p-value<0.01, t-test. I, The semi-automated analysis of 

fluorescence intensity in the distinct stromal areas showed a significant increase 

FAP/ACTA2 fluorescence ratio in CAFs located in the pseudo-capsule. 
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Fig. 5 | DSRCT heterogeneity is linked to tumor spatial organization. 

A, Immunofluorescent staining characterizing DSRCT tumor cells displaying a 

mesenchymal phenotype on GR2 sample, characterized by immunohistochemistry 

(IHC) staining positivity for DES or CHI3L1, and located either at the periphery of 

organized DSRCT tumor cells islets or at the invasive tumor front, in direct proximity 

to cancer-associated fibroblasts (CAFs). B, Uniform Manifold Approximation and 

Projection (UMAP) showing GR2 3’scRNA-seq sample clustering (upper left panel), 

DES (upper right panel), CHI3L1 (bottom left panel), and THY1 (bottom right panel) 

expression levels. DSRCT tumor cells displaying a mesenchymal phenotype are 

grouped into GR2 clusters 5, 9, 13, and 14 and are characterized by DES or CHI3L1 

overexpression, whereas CAFs grouped into GR2 cluster 8 show a distinctive THY1 

expression. C, CellPhoneDB heatmap representing the numbers of ligand-receptor 

interactions between identified cell clusters in the GR2 3’scRNA-seq sample. DSRCT 

tumor cell clusters display the highest number of interactions with CAFs (GR2 cluster 

8) and are characterized by mesenchymal features (e.g., GR2 clusters 5, 9, 13, and 

14). D, GR2 sample Visium spatial transcriptomics assay showing spot clusters 

defined after graph-based k-nearest neighbors’ clustering, overlayed on H&E-stained 

slide. Tumor areas correspond to Tum_APOA1_ITIH2_HIST – 0, Tum_NA – 2, 

Tum_HIST_CCK_necrosis – 3, Tum_mesenchymal_glycolysis – 5, and 

Tum_TAF11L2 - 8 clusters. While Tum_APOA1_ITIH2_HIST – 0, and Tum_NA – 2, 

are mainly localized within large DSRCT tumor cells’ bundles, 

Tum_mesenchymal_glycolysis – 5 is mainly localized at the periphery of DSRCT tumor 

cells’ islets, in contact with stromal areas. Tum_HIST_CCK_necrosis – 3 is located 

within necrotic tumor areas. E, Heatmap showing single spots’ expression of the top 

differentially expressed genes across identified spot clusters in GR2 sample Visium 

spatial transcriptomics assay. High gene expression is shown in yellow, whereas low 

gene expression is shown in purple. F, H&E stained GR2 slide (upper left panel), 

associated with the overlayed expression level of DSRCT tumor cell mesenchymal 

markers (DES (bottom left panel), CHI3L1 (bottom right panel), and Cancer-associated 

Fibroblasts (CAFs) marker THY1 (upper right panel). DES and CHI3L1 are mainly 

expressed in spots corresponding to DSRCT tumor cells invading stromal areas or at 

the periphery of tumor cells’ islets. G, Gene signatures scores plotted on Visium spatial 

transcriptomics GR2 sample assay for HALLMARK_HYPOXIA (upper left panel), 

HALLMARK_GLYCOLYSIS (bottom left panel), HALLMARK_OXPHOS (bottom right 



 140 

panel) and EWSR1-WT1 chromatin immunoprecipitation with sequencing (ChIP-seq) 

derived signature (upper right panel). H, Colony formation assay (CFA) of JN-DSRCT-

1 cell line cocultured with (w/) or without (w/o) CAFs obtained from DSRCT patients-

derived xenografts (PDXs). The colonies stained with crystal violet after two weeks of 

coculture are shown on the left panel. The percentage of well area covered by colonies 

assessed by ImageJ is displayed on the right panel. The coculture of JN-DSRCT-1 

cells with PDX-derived CAFs significantly increases JN-DSRCT-1 colony formation.*: 

p-value <0.05, t-test. I, JN-DSRCT-1 spheroids growth culture in the presence (w/) or 

absence (w/o) of DSRCT PDXs-derived CAFs. The median volume of the spheroids 

(triplicate assay) assessed on Day 0, Day 2, and Day 8 is shown on the y-axis. A.U: 

Arbitrary Unit. 
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Fig. 6 | ScRNA-seq-derived gene signatures characterize interpatient 

heterogeneity and define prognostic groups. A, CIBERSORTx deconvolution of the 

Harmony-integrated 3’scRNA-seq dataset (“Int_sc”)-derived clusters on a cohort of 29 

bulk RNA-seq DSRCT samples. B, Bulk RNA-seq hierarchical clustering of the DSRCT 

bulk RNA-seq cohort. Hierarchical clustering of samples was performed using a 

distance based on Pearson's correlation coefficient using Ward D2 linkage algorithm. 

DSRCT tumors cluster into three groups. Of note, all non-pretreated patients are 

grouped within Cluster #3. C, Kaplan Meier overall survival plot according to bulk RNA-

seq hierarchical clustering-inferred groups. The x-axis shows time in months. “p” 

relates to the p-value according to a log-rank test. D, Selected 3’scRNA-seq-derived 

signatures on a subset of various sarcoma histological subtypes bulk RNA-seq data. 

These signatures are defined by the top 100 marker genes from each “Int_sc”-derived 

cluster. While some signatures seem highly specific to DSRCT (e.g., 

Epithelial_mesenchymal – 4), others delineate cancer cell common features (e.g., 

Cycling cells – 3, Ribosomal_IFN response - 6). Additional signatures are shown in 

Supplemental Information – Fig. S16. E, Kaplan Meier overall survival plot according 

to previously defined signature scores in the bulk RNA-seq DSRCT cohort. Cycling 

cells – 3 and Ribosomal_IFN response – 6 signatures, which are hallmarks of cell 

growth and proliferation, are associated with poorer prognosis. 

Epithelial_mesenchymal – 4 signature represents a lineage-related state associated 

with improved prognosis. The x-axis shows time in months. “p” relates to the p-value 

according to a log-rank test. 
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Supplemental Information – Supplementary figures and 

legends 
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A, Uniform Manifold Approximation and Projection (UMAP) highlighting malignant and 

non-malignant cells on the merged individual 3’scRNA-seq datasets (n=11). B, UMAP 

showing the patient of origin from each individual dataset. C, UMAP highlighting the 

relative expression on the Harmony-integrated dataset (“Int_sc” dataset) of canonical 

markers for each specified cell population; from top to bottom, left to right: T cells, 

myeloid cells, cancer-associated fibroblasts, endothelial cells, mesothelial cells, and 

DSRCT malignant cells. D, UMAP highlighting DSRCT-specific neotranscripts average 

expression on the “Int_sc” dataset. E, UMAP recapitulating “Int_sc” cell clusters based 

on a gene expression-based k-nearest neighbors clustering. F, Violin plots 

representing the distribution of the number of detected genes (nFeature_RNA), the 

number of RNA molecules (nCount_RNA), and the percent of mitochondrial gene 

counted (percent.mt) per cell in each cell cluster identified on the “Int_sc” dataset. G, 

UMAP showing the “Int_sc” clusters’ annotation after label transfer using a fetal 

development atlas from Cao et al. 
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Supplementary Fig. S2 | scRNA-seq recapitulates DSRCT heterogeneity at the 

interpatient and intrapatient levels. A, UMAP outlining DSRCT cell clusters based 

on a gene expression-based k-nearest neighbors clustering for the different individual 

patient datasets (or merged datasets for patients with synchronous tumor sites). B, 

UMAP representing the site of origin for patients with synchronous tumor site samples 

(left to right GR2, GR7, and BOM datasets). C, Heatmaps representing the top 10 

marker genes for all graph-based defined clusters for each individual or site-merged 

dataset. 
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Supplementary Fig. S3 | DSRCT malignant cells subpopulation profiles suggest 

cell plasticity. A, UMAP highlighting HotSpot co-expressed module scores on the 

Harmony integrated dataset (“Int_sc” dataset). B, UMAP showing inferred cell-based 

transcriptome entropy computed using StemID tool on the “Int_sc” dataset, after 

removal of bias-prone clusters (i.e., lncRNA-enriched, ribosomal protein-coding genes-

enriched, cell-cycle-related clusters). C, UMAP highlighting the differentiation degree 

prediction on the “Int_sc” dataset using the CytoTRACE tool. 
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Supplementary Fig. S4 | Copy number variation (CNV) inference on individual or 

site-merged 3’scRNA-seq datasets. Heatmaps representing copy number variation 

inference from 3’ scRNA-seq data on patient samples with InferCNV package. For 

each patient sample and different tumor sites, when relevant, the heatmap represents 

the CNV estimation for each genomic position and each cell amongst the dataset. Cells 

are ordered by cluster. CNV is homogeneous across DSRCT tumor cell clusters and 

intrapatient tumor sites. On the right panels is plotted the log2(copy ratio) for each 

chromosome location according to Whole Exome Sequencing (WES) on 

corresponding tumor samples controlled on matched germline samples. 
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Supplementary Fig. S5 | EWSR1-WT1 fusion transcript mRNA is not significantly 

differentially expressed among cell clusters. A, UMAP showing “WT1” expression 

within Harmony integrated dataset (“Int_sc” dataset). “WT1” corresponds to both 

EWSR1-WT1 and full-length WT1 transcripts. B, Schematic representation of the in-

house developed method aiming at interrogating EWSR1-WT1 fusion transcript 

expression level at the single-cell resolution. The method relies on a sequential PCRs-

protocol to enrich the library for EWSR1-WT1-specific barcoded cDNAs from 10X 

Genomics 3’ scRNA-seq. C, UMAP highlighting EWSR1-WT1-specific expression 

level on single cells from BOM site#2 and GR7 site#2. 
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Supplementary Fig. S6 | JN-DSRCT-1 cells express canonical markers from 

various 3’scRNA-seq-inferred clusters. Representative immunofluorescence 

images for WT1 (C-terminal), ASCL1, TNNT, and EGR1 staining in JN-DSRCT-1 cells 

non-transfected (NT), mock-transfected (V), non-targeting siCTRL-transfected and 

siEWSR1-WT1 transfected (siFusion). DAPI staining is used as a nuclear counter-

staining.  
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Supplementary Fig. S7 | EWSR1-WT1 activity is linked to DSRCT cell chromatin 

landscape modifications. A, Pie chart representing EWSR1-WT1 ChIP-seq peaks’ 

frequency within the genome regions (Exons, Introns, Intergenic, Promoter-TSS 

(Promoter-Transcription Start Site), TTS (Transcription Termination Site) and 

unassigned). B, Heatmap showing enriched motifs within EWSR1-WT1 ChIP-seq 

peaks’ regions. Motifs were extracted from the JASPAR2020 database. Motifs are 

ranked from left to right according to -log10(adjusted p-value). C, Chart recapitulating 

significantly enriched de novo EWSR1-WT1 binding motifs and their best match with 

known transcription factor binding sites. Consensus motifs are depicted with the 

adjusted p-values for the best match comparison. D, Scatter plot representing the 

different possible 6-mers frequencies within the EWSR1-WT1 ChIP-seq peaks’ regions 

(y-axis) according to their frequency in the whole genome (x-axis). Specific enrichment 

for GGA/CCT repeats is highlighted on the plot. E, Integrated Genome Viewer (IGV) 

track screenshot of EWSR1-WT1 ChIP-seq peaks-read coverage centered on FGFR4 

genomic region. Tracks for Input, two EWSR1-WT1 ChIP replicates, and one isotype 

ChIP are depicted. EWSR1-WT1 binding site maps to GGA/CCT microsatellites. F, 

UMAP highlighting a random genes-based signature on harmony integrated 3’scRNA-

seq (“Int_sc”). This signature is used as a negative control for the EWSR1-WT1 ChIP 

signature. 
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Supplementary Fig. S8 | Single nucleus Multiome (snMultiome) analysis. A, 

UMAP representing the Weighted-nearest neighbors (WNN) clustering based on 

ATAC and gene expression features on the single nucleus Multiome (snMultiome) 

dataset from PZB patient. B, Violin plots representing the distribution of the number of 

genes (nFeature_RNA), the number of detected RNA molecules (nCount_RNA), the 

number of ATAC-seq reads (nFeature_ATAC), the number of ATAC-seq peaks 

(nCount_ATAC) and the percent of mitochondrial genes counted (percent.mt) per cell 

in each defined WNN cluster on the PZB dataset. C, UMAP representing clusters 

defined by ATAC features (left) or Gene Expression (RNA) features (right) only. D, 

UMAP recapitulating DSRCT cell clusters based on a gene expression-based k-

nearest neighbors clustering on the PZB 3’ scRNA-seq dataset. E, Violin plots 

representing the distribution of the number of genes (nFeature_RNA), the number of 

detected RNA molecules (nCount_RNA), and the percent of mitochondrial genes 

counted (percent.mt) per cell in each cell cluster identified on the PZB 3’ scRNA-seq 

dataset. F, Label prediction after label transfer of PZB snMultiome WNN clusters on 

PZB 3’ scRNA-seq clusters’ reference. The PZB 3’scRNA-seq dataset included only 

intronic reads to increase nuclei-to-cells comparability. 
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Supplementary Fig. S9 | Single-nucleus Multiome (snMultiome) reveals distinct 

chromatin accessibility across clusters. A, Bar plot representing the number of 

ATAC peaks called per cell (left), the proportion of total ATAC peaks called per cell 

overlapping with EWSR1-WT1 ON ATAC-enriched peaks (middle), and the proportion 

of total ATAC peaks called per cell overlapping with EWSR1-WT1 ChIP-enriched 

peaks within the identified clusters from the snMultiome dataset. B, EWSR1-WT1 ON 

(left panel) and OFF (right panel) ATAC modules signature plotted on the snMultiome 

UMAP. WNN_cluster 5 (hypoxia-related tumor cells) and WNN_cluster 8 (non-

malignant cells) display the lowest EWSR1-WT1 ON module score and the highest 

EWSR1-WT1 OFF module score. C, UMAP representing the activity of EWSR1-WT1 

ChIP-inferred de novo motifs within the snMultiome dataset. The motif activity was 

computed using ChromVAR tool. Most de novo motifs have higher activity in cycling 

cells and WNN_cluster 6, except for the m3_AARTAAAYA motif, which has higher 

activity in WNN_cluster 5. The latter motif displays significant similarity with FOXC2 

binding motif (Supplementary Fig. S7C). 
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Supplementary Fig. S10 | Bulk RNA-seq DSRCT cohort and immune landscape 

deconvolution. A, Principal component analysis (PCA) of the DSRCT bulk RNA-seq 

dataset from 29 frozen DSRCT samples. The sample cellularity is represented for each 

sample on the blue color scale. B, Immune cell subpopulation deconvolution (Immune 

xCell ) on the DSRCT bulk RNA-seq cohort. 
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Supplementary Fig. S11 | DSRCT Cancer-Associated Fibroblasts (CAFs) divide 

into distinct subclusters. A, Gene Ontology enrichment analysis on both CAF 

clusters (CAFs_c1 – 10 and CAFs_c2 – 13 clusters) identified in the Harmony-

integrated 3’scRNA-seq (“Int_sc”) dataset. Graphs represent the number of genes 

enriched in each GO term for both CAF clusters. The top 20 GO pathways are 

highlighted for each cluster. B, UMAP specifically representing CAFs identified from 

the “Int_sc” dataset and highlighting DSRCT CAF-specific markers (MCAM, ACTA2, 

CD34, FAP, PLN2, SCARA5, CXCL12, and MYC). C, Representative image of the 

juxta-tumor area from a DSRCT FFPE sample. HES staining (upper panel) was used 

to define regions of interest (juxta-tumor peritoneum, pseudocapsule, desmoplastic 

stroma, and tumor islets). MYC immunohistochemistry (IHC) staining is visualized on 

the lower panel and with a higher magnification on the right panel. MYC-positive cells 

correspond to adipocytic-like cells and may correlate with the CAFs_c2 – 13 cluster 

showing lipofibroblast features. D, UMAP specifically representing CAFs identified 

from the “Int_sc” dataset and highlighting three different CAF signatures: CAF-S1 (top 

100, upper panel), CAF-S4 (middle panel), and CAF-S3 (lower panel) from Mechta-

Grigoriou et al. breast cancer CAFs signatures. 
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Supplementary Fig. S12 | Lineage-specific markers’ expression in JN-DSRCT-1 

cells grown in 2D colonies or 3D culture. Representative images of Desmin (DES) 

and WT1 C-terminal (EWSR1-WT1) immunofluorescence stainings on JN-DSRCT-1 

cells grown in 2D monolayer and spheroids. A, JN-DSRCT-1 grown in colonies and 

stained for DES and WT at 20X magnification (left panel) and 60X magnification (right 

panel). DAPI is used as a nuclear counter-staining. DES fluorescence intensity is 

significantly higher in cells located at the periphery. B, Images of a unique stack of a 

JN-DSRCT-1 spheroid stained for DES and WT1. Cells located at the periphery of the 

spheroid display significantly increased DES fluorescence intensity. 
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Supplementary Fig. S13 | DSRCT cells with mesenchymal phenotype interact 

preferentially with CAFs. A, Heatmaps representing the number of interactions 

inferred from CellPhoneDB algorithm between each cluster defined in GR2, GR7, and 

BOM 3’scRNA-seq datasets. B, Bubble plot exhibiting the mean value for selected 

ligands-receptors and its associated p-value for each DSRCT malignant cell cluster-

CAF cluster interaction in the GR2 dataset. The mean value refers to the total mean of 

the individual partner average expression values for each interacting cluster pair. 
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Supplementary Fig. S14 | Spatial transcriptomics recapitulate DSRCT 

heterogeneity. For each patient sample processed with Visium spatial transcriptomics 

assay (GR2 site#4, GR4, GR4_PC, BOM site#2, GR7 site#2, and PZB), the upper right 

panel represents the HES staining of the analyzed sample. The upper central panel 

depicts the spatial distribution of the defined cluster overlayed on the HES slide beside 

the UMAP representing these clusters (upper right panel). The middle panel highlights 

each spatial cluster separately on the slide. The lower panel exhibits per-spot label 

transfer prediction scores for each previously defined 3’scRNA-seq cluster 

(Supplementary Fig. S2). 
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Supplementary Fig. S15 | Immune xCell scores for each bulk RNA-seq subgroup. 

Clusters #1, #2, and #3 have been defined according to a hierarchical clustering 

performed on a cohort of 29 DSRCT bulk RNA-seq samples. The boxplots show the 

deconvoluted immune scores for each subgroup. 
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Supplementary Fig S16 | Single-cell RNA-seq inferred signatures’ scores across 

various soft tissue sarcoma subtypes. Each signature was derived from the top 100 

marker genes of the Harmony-integrated 3’scRNA-seq (“Int_sc”) dataset. The 

computation of a score for each signature among different subtypes of soft tissue 

sarcoma highlights their specificity (or non-specificity) to DSRCT. 
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Supplementary Fig. S17 | DSRCT subpopulations’ signatures correlate with 

patient outcomes. Each signature was derived from the top 100 marker genes of the 

Harmony integrated 3’scRNA-seq (“Int_sc”) dataset. After the computation of a score 

for each DSRCT subpopulation signature on each sample from the DSRCT bulk RNA-

seq cohort, the cohort of patients was split in two according to a “High” or “Low” 

signature score. The Kaplan-Mayer curves represent patient overall survival according 

to the “High” or “Low” subgroup for each signature. 
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Supplemental Information – Supplementary Tables and 

legends 

 

For confidentiality reasons, Supplementary Tables are not included in the 

online version of this manuscript. Still, the tables’ legends are detailed 

below for better understanding. 

 

Supplementary Table S1 | Main clinical characteristics of DSRCT patients and 

samples included in the single-cell experiments cohort. AI: Adriamycin-Ifosfamide; 

IE: Ifosfamide-Etoposide; VAC: Vincristine-Actinomycin D-Cyclophosphamide, WES: 

Whole Exome Sequencing. 

 

Supplementary Table S2 | DSRCT main cell types' identification according to 

canonical markers and differential gene expression analysis. A, Main DSRCT cell 

populations canonical markers. B, Top 50 differentially expressed genes across 

DSRCT main cell populations. 

 

Supplementary Table S3 | Characterization of cell clusters from the Harmony-

integrated 3’single-cell RNA-sequencing dataset (“Int_sc”). Clusters were defined 

using the graph-based k-nearest neighbors algorithm. A, “Int_sc” cell clusters’ top 50 

differentially expressed genes. B, “Int_sc” clusters quality control metrics. 

 

Supplementary Table S4 | Top 50 differentially expressed genes of identified 

clusters for individual or merged 3’single-cell RNA-sequencing datasets. Merged 

datasets contain the union of assays performed parallelly on distinct tumor sites from 

the same patient. 

 

Supplementary Table S5 | Gene Ontology (GO) terms enrichment analysis for 

differentially expressed genes of each Harmony-integrated 3’single-cell RNA-

sequencing dataset (“Int_sc”) cluster. Analyzed GO terms comprise GO:MF (Gene 

Ontology: Molecular Function), GO:CC (Gene Ontology: Cellular Component), and 
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GO:BP (Gene Ontology: Biological Process). The top 10 GO terms ranked on adjusted 

p-value for each “Int_sc” cluster are displayed. GO terms enrichment analysis was 

performed using the G:profiler tool. 

 

Supplementary Table S6 | Hotspot-inferred co-expressed gene modules from the 

Harmony integrated 3’single-cell RNA-sequencing dataset (“Int_sc”). 

 

Supplementary Table S7 | Gene Ontology (GO) terms enrichment analysis on 

Hotspot-inferred co-expressed gene modules from Harmony integrated 3’single-

cell RNA-sequencing dataset (Int_sc). GO terms enrichment analysis was 

performed using ToppFUN portal. 

 

Supplementary Table S8 | Transcripts per million (tpm) table of JN-DSRCT-1 cell 

line RNA-sequencing. 

 

Supplementary Table S9 | Differential binding analysis between EWSR1-WT1 

Chromatin Immunoprecipitation with sequencing (ChIP-seq) versus isotype 

ChIP-seq on JN-DSRCT-1 cell line. The differential binding analysis was performed 

using DESeq2 tool. The experiment was performed in duplicates. 

 

Supplementary Table S10 | List of significantly enriched peaks in EWSR1-WT1 

Chromatin Immunoprecipitation with sequencing (ChIP-seq) on JN-DSRCT-1 cell 

line. This list contains all peaks with significant enrichment (adjusted p-value <0.05) in 

EWSR1-WT1 ChIP-seq compared to isotype ChIP-seq on the JN-DSRCT-1 cell line. 

The “Gene.Name” column corresponds to peak annotation according to the nearest 

Transcription Start Site (TSS) using HOMER tool. 

 

Supplementary Table S11 | Gene Ontology (GO) terms enrichment analysis on 

significantly enriched peaks in EWSR1-WT1 Chromatin Immunoprecipitation 

with sequencing (ChIP-seq) on JN-DSRCT-1 cell line. GO terms enrichment 

analysis was performed based on the list of EWSR1-WT1 ChIP-seq-significantly 

enriched peaks detailed in Supplementary Table S10, using ChIPEnrich tool. Only 

GO terms from the Biological Process (GOBP) category are displayed. 
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Supplementary Table S12 | Motifs enrichment analysis from significantly 

enriched peaks in EWSR1-WT1 Chromatin Immunoprecipitation with 

sequencing (ChIP-seq) on JN-DSRCT-1 cell line. Motif enrichment analysis was 

performed using the MEME suite and JASPAR2020 transcription factors (TFs) 

database on the list of significantly enriched peaks in EWSR1-WT1 ChIP-seq 

(Supplementary Table S11). 

 

Supplementary Table S13 | De novo motifs enrichment discovery from 

significantly enriched peaks in EWSR1-WT1 Chromatin Immunoprecipitation 

with sequencing (ChIP-seq) on JN-DSRCT-1 cell line. A, Identified de novo motifs 

within EWSR1-WT1 ChIP-seq-inferred binding sequences. The identification of de 

novo motifs was performed using the “streme” function from the MEME suite on the list 

of significantly enriched peaks in EWSR1-WT1 ChIP-seq (Supplementary Table 

S11). B, Comparison of de novo motifs sequences with known transcription factors’ 

motifs. This motif-based sequence analysis was performed using the JASPAR 2020 

database as a reference with the Tomtom motif comparison tool. 

 

Supplementary Table S14 | Differential peak accessibility analysis from Assay 

for Transposase-Accessible Chromatin using sequencing (ATAC-seq) 

experiment on JN-DSRCT-1 cell line with or without EWSR1-WT1 silencing. The 

differential peak accessibility analysis was performed using DESeq2 tool. The 

experiment was performed in duplicates. 

 

Supplementary Table S15 | Differential gene expression analysis between 

EWSR1-WT1-silenced or non-silenced JN-DSRCT-1 cell line. The experiment was 

performed in duplicates. 

 

Supplementary Table S16 | Overlap between peaks with increased accessibility 

in non-silenced versus EWSR1-WT1-silenced JN-DSRCT-1 cells and EWSR1-

WT1 binding sites. Peaks with increased accessibility in non-silenced versus 

EWSR1-WT1-silenced JN-DSRCT-1 cells (EWSR1-WT1 ON module) are inferred 

from differential peak accessibility analysis from Assay for Transposase-Accessible 

Chromatin using sequencing (ATAC-seq) experiment (Supplementary Table S14). 

EWSR1-WT1 binding sites are defined by significantly enriched peaks in EWSR1-WT1 
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Chromatin Immunoprecipitation with sequencing (ChIP-seq) versus control isotype 

ChIP-seq on JN-DSRCT-1 cell line. Overlapping peaks were identified using the 

“findOverlapsOfPeaks” function from the ChIPpeakAnno package using a maximum 

authorized gap of 5 kb and are displayed in Fig. 3E. A, Overlapping peaks’ annotated 

genes between EWSR1-WT ON enriched ATAC peaks and EWSR1-WT1 ChIP-seq 

enriched peaks. Genes were annotated to identified overlapping peaks based on the 

nearest Transcription Start Site (TSS) using HOMER tool. In pink are highlighted the 

genes which are in common between the following lists: (i) genes corresponding to 

significantly more accessible peaks in non-silenced versus EWSR1-WT1-silenced JN-

DSRCT-1 cells in ATAC-seq experiment (adjusted p-value < 1.10E-100 and log2FC 

>1.5), (ii) annotated genes from EWSR1-WT1 ChIP-seq-inferred significantly enriched 

peaks, and (iii) significantly overexpressed genes in non-silenced versus EWSR1-

WT1-silenced JN-DSRCT-1 cells based on bulk RNA-sequencing experiment. B. Gene 

Ontology (GO) terms enrichment analysis on genes corresponding to overlapping 

peaks between EWSR1-WT1 ON enriched ATAC peaks and EWSR1-WT1 ChIP-seq 

enriched peaks. GO terms enrichment analysis was performed using ToppFUN portal. 

 

Supplementary Table S17 | Motifs enrichment analysis from significantly more 

accessible peaks in non-silenced (EWSR1-WT1 ON) versus EWSR1-WT1-

silenced (EWSR1-WT1 OFF) JN-DSRCT-1 cell in Assay for Transposase-

Accessible Chromatin using sequencing (ATAC-seq) experiment. Motif 

enrichment analysis was performed using the MEME suite and JASPAR2020 

transcription factors (TFs) database. 

 

Supplementary Table S18 | EWSR1-WT1 transcriptional activity signature 

inferred from EWSR1-WT1 Chromatin Immunoprecipitation with sequencing 

(ChIP-seq) experiment. EWSR1-WT1 ChIP signature was defined using the top 

differentially enriched peaks (log2FC<-5) compared to isotype ChIP. 

 

Supplementary Table S19 | Differentially expressed genes for each cluster of the 

Single-nucleus Assay for Transposase-Accessible Chromatin using sequencing 

(ATAC-seq) and RNA-seq (snMultiome) assay. Clusters were defined using the 

weighted nearest neighbors’ (WNN) method, which integrates gene expression and 

chromatin accessibility modalities. 
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Supplementary Table S20 | Differentially accessible peaks for each cluster of the 

Single-nucleus Assay for Transposase-Accessible Chromatin using sequencing 

(ATAC-seq) and RNA-seq (snMultiome) assay using pseudo-bulk peak calling. 

Clusters were defined using the weighted nearest neighbors’ method, which integrates 

gene expression and chromatin accessibility modalities. Pseudo-bulk peak calling 

refers to macs2 peak calling on the pool of single cells. 

 

Supplementary Table S21 | Differentially accessible peaks for each cluster of the 

Single-nucleus Assay for Transposase-Accessible Chromatin using sequencing 

(ATAC-seq) and RNA-seq (snMultiome) assay using per-cluster peak calling. 

Clusters were defined using the weighted nearest neighbors’ method, which integrates 

gene expression and chromatin accessibility modalities. Per-cluster peak calling refers 

to a separated macs2 peak calling on each cell cluster. 

 

Supplementary Table S22 | Assay for Transposase-Accessible Chromatin using 

sequencing (ATAC-seq)-inferred EWSR1-WT1 ON and EWSR1-WT1 OFF 

modules. Genome regions for both EWSR1-WT1 ON and EWSR1-WT1 OFF ATAC 

modules are listed. These modules were defined according to differentially accessible 

peaks between EWSR1-WT1-silenced versus non-silenced JN-DSRCT-1 cells. A per-

cell score for both modules was then calculated on the single-nucleus Multiome assay 

(Supplemental Information – Fig. S9B). 

 

Supplementary Table S23 | Motif enrichment analysis from differentially 

accessible peaks between weighted-nearest neighbors’ defined clusters within 

the single-nucleus Multiome assay. Motif enrichment analysis was performed using 

the “FindMarkers” function from Seurat package and the JASPAR2020 database as a 

reference. The top 10 enriched motifs for each cluster are displayed. 

 

Supplementary Table S24 | Top 50 differentially expressed genes for DSRCT 

immune cell subclusters from the Harmony integrated 3’single-cell RNA-

sequencing dataset (“Int_sc”). A. Top 50 differentially expressed genes between 

myeloid cell clusters inferred from MoMac-VERSE atlas label transfer. B. Top 50 
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differentially expressed genes between lymphoid cell clusters defined by graph-based 

k-nearest neighbors algorithm. 

 

Supplementary Table S25 | Top 50 differentially expressed genes for DSRCT 

fibroblast subclusters from the Harmony integrated 3’single-cell RNA-

sequencing dataset (“Int_sc”). 

 

Supplementary Table S26 | Top 50 differentially expressed genes between 

clusters from each Visium spatial transcriptomics assay. Differentially expressed 

genes between clusters are displayed for Visium GR2 site#4, BOM site#2, GR4, 

GR4_PC, GR7 site#2, and PZB datasets. 

 

Supplementary Table S27 | Main clinical characteristics of the DSRCT bulk RNA-

seq test cohort. 

 

Supplementary Table S28 | Differential gene expression (DGE) analysis between 

DSRCT bulk RNA-seq subgroups. Subgroups are defined according to hierarchical 

clustering as defined by Fig. 6B. Listed genes are differentially enriched for each 

specified subgroup comparison (absolute log2FC>2, adjusted p-value <0.05). 

 

Supplementary Table S29 | Gene Ontology (GO) terms enrichment analysis on 

differentially enriched genes in bulk RNA-seq subgroups. GO terms enrichment 

analysis was performed using the ToppFUN tool on differentially enriched genes 

between subgroups (absolute log2FC>2, adjusted p-value <0.05). Only the top 10 GO 

terms for Biological Process (GOBP), Molecular Function (GOMF), and Cellular 

Component (GOCC) are shown. 

 

Supplementary Table S30 | Independent bulk RNA-sequencing cohort 

comprising various sarcoma subtypes. The number of samples per sarcoma 

histological subtype is shown. The cohort of DSRCTs was used as an external 

validation cohort to evaluate the applicability of generated prognostic signatures (Fig. 

6F). AI: Doxorubicin-Ifosfamide; API: Doxorubicin-CDDP-Ifosfamide; HIPEC: 

Hyperthermic Intra Peritoneal Chemotherapy; IVA: Ifosfamide-Vincristine-Doxorubicin; 

IVADo: Ifosfamide-Vincristine-Actinomycin-Doxorubicin; L1:  First line; L2: Second 
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line; TEMIRI: Temozolomide-Irinotecan; VAC: Vincristine-Doxorubicin-

Cyclophosphamide; VIDE: Vincristine-Ifosfamide-Doxorubicin-Etoposide; VIP: 

Vincristine-Ifosfamide-CDDP. 

 



 194 

CHAPTER III. DISCUSSION AND PERSPECTIVES 

1  RESULTS DISCUSSION AND OPEN QUESTIONS 

1.1 DYNAMIC CELLULAR TRANSITION STATES VERSUS CLONAL HETEROGENEITY 

The herein presented data question the mechanisms underlying DSRCT tumor cell 

heterogeneity. 

The term “plasticity” has been used throughout this manuscript, supported by (i) the paucity of 

CNV variability across tumor cell clusters - suggesting no or few genetic clonal evolution - and 

(ii) the association between microenvironment signals (e.g., CAFs proximity, hypoxic areas) 

and DSRCT tumor cell states. However, this terminology may be questionable, as no 

consensual definition of “plasticity” is universally accepted. 

First, the hypothesis that DSRCT cells do not follow clonal or subclonal evolution due to the 

acquisition of selectively advantageous secondary mutations is worth confirming by additional 

methods. In this sense, single-cell DNA sequencing would represent a method of choice to 

validate this hypothesis orthogonally. Nonetheless, available single-cell whole genome or 

exome assays rely on in-house implementable methods (e.g., SMOOTH-seq 153, DOP-PCR 149, 

multiple displacement amplification (MDA) 150, multiple annealing and looping-based 

amplification cycles (MALBAC) 151, Linear Amplification via Transposon Insertion (LIANTI) 

152) or commercially available library amplification kits 215. These methods are currently limited 

in throughput since they depend on manual or FACS single-cell isolation. Hence, the number 

of analyzed cells is generally low and limited to several hundred. Single-cell sorting is then 

followed by NGS or third-generation sequencing (TGS) using sequencing technologies such as 

PacBio or Oxford Nanopore technology to enable structural variations detection 153, often 

associated with consequent sequencing costs. On the other hand, targeted single-cell DNA 

sequencing (e.g., MissionBio Tapestry Platform) generally implements a microfluidic system 

enabling the analysis of thousands of cells but is limited to the study of a restricted panel of 

candidate genes, which may be cumbersome in the case of DSRCT study, given the lack of 

highly recurrent secondary mutations. 

Interestingly, recently described methods of Genotyping of Transcriptomes 216 (GoT) may 

represent an advantageous approach to parallelly study gene expression and exonic mutations 

by integrating targeted genotyping with high-throughput droplet-based single-cell RNA 

sequencing. Nonetheless, such methods also rely on amplifying specific loci of interest. 
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Notably, we are currently evaluating the feasibility of a similar approach, taking advantage of 

3’scRNA-seq 10X Genomics Chromium derived barcoded cDNA, followed by adapters 

ligation and library preparation, and long-read sequencing on Oxford Nanopore sequencer, 

skipping the step of prior targeted loci amplification. If successful, such an approach may 

provide further insights into CNV heterogeneity among DSRCT cells’ subpopulations. 

Secondly, the term plasticity implies the notion of dynamic cell phenotypic states. Although 

conventional single-cell analysis methods only yield static phenotypic readouts, increasing 

tools 217 are focusing on trajectory inference, aiming at allocating cells to lineages and ordering 

them based on “pseudotimes” (i.e., the distance between a given cell and the origin of a specific 

lineage in the reduced dimensional space) to unravel dynamic processes and cells’ transition 

states, along more or less complex trajectories. Recently implemented methods also aim at 

identifying genes associated with lineage differentiation 218. While pseudotime is usually 

considered a surrogate for actual chronological time, both may not be linearly correlated. In the 

presented manuscript, we used a directed single-cell fate mapping tool (CellRank 219), which 

combines trajectory inference with directional information from RNA velocity (i.e., 

spliced/unspliced transcripts ratio). Notably, when applied to individual or merged scRNA-seq 

datasets, no consistent trajectories, initial, or terminal states could be identified across samples. 

This observation suggests DSRCT cells may follow multiple variable state transitions rather 

than linear developmental or hierarchical processes. The nature of the signals triggering such 

processes is still uncertain and may combine stochasticity and microenvironment cues. 

Third, the reversible potential of such adaptive plasticity remains to be assessed. Although EMT 

is generally considered a reversible process 220, the reversibility of the previously described 

DSRCT tumor cell states remains unknown. While only functional in vitro validation would 

enable us to answer this question, one should remember that primary cells grown in culture – 

and, to a more considerable extent, cell lines - may display distinct plasticity landscape 

topologies compared to in vivo cells. A credible approach would be to first concentrate on the 

neural-mesenchymal trajectory axis and perform a longitudinal evaluation of 

neural/mesenchymal markers across cells grown in 2D and 3D conditions, more or less upon 

state-specific induction using appropriate growth factors (i.e., CAFs conditioned medium). 

 

 

1.2 ROLE OF EWSR1-WT1 EXPRESSION LEVEL ON DSRCT CELL HETEROGENEITY 

Part of this study explored whether EWSR1-WT1 transcript expression level would play a 

significant role in DSRCT cell heterogeneity. 
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This hypothesis partly relies on analogical reasoning based on Ewing sarcoma biology, in which 

lower levels of EWSR1-FLI1 were associated with a mesenchymal phenotype with increased 

invasive properties 200. 

To meet this objective, we took advantage of an in-house developed experiment to amplify 

EWSR1-WT1 cDNA originating from the barcoded cDNA library of a 10X Genomics 

3’scRNA-seq experiment. Indeed, when focusing on WT1 expression at single cell level on the 

3’scRNA-seq Harmony integrated data, no apparent WT1 transcript expression heterogeneity 

could be identified across clusters. Notably, in an original 3’scRNA-seq technology pipeline, 

wild-type WT1 transcripts cannot be distinguished from EWSR1-WT1 transcripts because only 

the 3’ part of transcripts is kept after the enzymatic fragmentation. Thus, two significant hurdles 

inherent to 3’scRNA-seq technology may hinder our ability to detect EWSR1-WT1 expression 

variability. First, although it is widely accepted that wild-type WT1 is repressed in DSRCT 

tumor cells 66,221, possibly due to EWSR1-WT1 dominant negative effect, several cases report 

the persistence of wild-type WT1 expression in DSRCT cells 44, and it is currently unknown 

whether wild-type WT1 may still be expressed at low levels. Secondly, although EWSR1-WT1 

is the unique oncogenic driver in DSRCT tumors, EWSR1-WT1 overall expression remains 

low compared to other highly expressed genes, such as MALAT1, CCL25, or GJB2. Thus, one 

may presume that insufficient sequencing depth on low-abundant transcripts may hamper 

uncovering such transcripts’ expression level variability across cells. 

Importantly, the pipeline of our in-house 10X Genomics derivation method relies on the 

assumption that the primary PCR is highly specific to the EWSR1-WT1 transcript. The design 

of the forward oligonucleotide used for PCR#1 was generated to ensure such specificity. 

However, because this primer is aligned on the EWSR1-WT1 breakpoint, one cannot warrant 

that cDNAs containing matching sequences of both EWSR1 and WT1 partners would not be 

unspecifically amplified. Notably, the observation that more than 90% of sequenced transcripts 

aligned to WT1 gene when using EWSR1-WT1 targeting PCR#1 primer confirms that steps of 

biotin-streptavidin purification - enabled by the biotinylation of PCR#1 and #2 forward primers 

- efficiently discarded highly abundant transcripts present in the initial barcoded cDNAs pool. 

To facilitate results’ interpretation in view of the risk of full-length WT1 non-specific 

amplification, we parallelly performed a control assay aiming at specifically amplifying full-

length WT1 by using a primer specifically matching a region upstream EWSR1-WT1 

breakpoint, which is not retained in EWSR1-WT1 transcript. The downstream analysis of the 

herein presented experiment attempted to consider this risk of full-length WT1 non-specific 

amplification by performing a positive selection of sequenced transcripts. Indeed, only UMIs 
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associated with a number of reads higher in the EWSR1-WT1 amplification assay than in the 

full-length WT1 amplification assay have been retained in the final analysis. One should note 

that any overamplification biases that may have been introduced over the three consecutive 

PCRs performed to generate the final library are overcome since the final transcript abundance 

is based on UMI counts - instead of transcript counts- and since UMIs are added during the first 

step of 10X Genomics Chromium protocol. Surprisingly, while performing this positive 

selection, EWSR1-WT1 expression could still be identified at low levels in some non-tumor 

cells (e.g., CAFs, immune cells, endothelial cells). This observation may also result from 

technical issues such as unspecific amplification (e.g., amplification of wild-type WT1 or any 

other Zinc finger-containing protein transcript showing partial homology with WT1), cell 

doublets encapsulation, or elusive biological mechanisms. Despite these technical difficulties 

and interpretational uncertainties, the main conclusion drawn from this experiment is that no 

substantial EWSR1-WT1 transcriptional expression level variability could be identified across 

DSRCT tumor cell clusters. Importantly, since the initial development of this technique, other 

authors described similar approaches based on the targeted amplification of 10X-derived 

3’scRNA-seq experiments, with the aim of either measuring the transcription level of fusion 

transcripts 164 or performing single-cell level genotyping of transcriptomics, thereby 

underlining the relevance of our strategy. Overall, three main hypotheses might be drawn from 

our results. First, the prespecified limitations of our in-house single-cell EWSR1-WT1 gene 

expression targeted experiment may have hindered EWSR1-WT1 variable expression level 

detection across DSRCT cell clusters. Secondly, DSRCT cell heterogeneity may be driven by 

flexible EWSR1-WT1 activity secondary to variations in the fusion protein level or stability 

rather than transcript level modulations. Third, DSRCT cell plasticity may be instead directed 

by chromatin plasticity as a consequence of EWSR1-WT1 moldable DNA-binding sites, or 

triggered by microenvironment signals. 

While a part of our study focused on exploring the latter hypothesis, several approaches may 

be envisioned to support these hypotheses. Adopting a similar strategy based on 10X-derived 

barcoded cDNA, followed by the generation of a library compatible with long-read sequencing 

(e.g., on Nanopore Promethion sequencing system), would enable to rule out the risk of 

misassignments of full-length WT1 transcripts to EWSR1-WT1, as the whole EWSR1-WT1 

breakpoint region would be sequenced. Moreover, experiments such as inCITE-seq223 have 

recently been developed to measure intranuclear protein levels and the nuclei’s transcriptome 

simultaneously in a high-throughput and scalable fashion, hence enabling the joint analysis of 

transcription factors levels such as EWSR1-WT1 and gene expression in vivo. Also, 
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considering potential EWSR1-WT1 variable binding sites, experiments such as single-cell 

ChIP 224,225 have emerged and would be of great added value to explore this thesis. 

 

2 PERSPECTIVES AND ONGOING WORK 

For confidentiality reasons, the online version of this manuscript does not 

include this section. 
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Titre : Exploration de l’hétérogénéité cellulaire et moléculaire des Tumeurs Desmoplastiques à Petites Cellules Rondes. 

Mots clés : Tumeur desmoplastique à petites cellules rondes, hétérogénéité tumorale, plasticité tumorale, séquençage sur 

cellule unique 

Résumé : Les tumeurs desmoplastiques à petites cellules 

rondes (DSRCTs) sont un sous-type rare de sarcome de 

mauvais pronostic, dirigé par le facteur de transcription 

aberrant EWSR1-WT1. Malgré cet oncogène unique et la 

rareté des mutations secondaires récurrentes, les DSRCTs 

présentent une différenciation polyphénotypique 

caractéristique, suggérant la présence d'une hétérogénéité 

ou plasticité tumorale. En utilisant des techniques 

multiomiques sur cellule unique, nous avons mis en 

évidence que les cellules tumorales de DSRCT étaient 

caractérisées par un spectre continu de phénotypes 

cellulaires, caractérisés par des programmes 

transcriptionnels distincts. Les sous-populations de 

cellules tumorales identifiées étaient notamment liées à 

des voies de différenciation mésenchymateuse, neurale et 

épithéliale, ainsi qu'à des modifications des voies de 

contrôle métabolique.  

Nos données suggèrent en outre le rôle de la variabilité 

des domaines de liaison à l'ADN de EWSR1-WT1 dans 

la plasticité chromatinienne des cellules de DSRCT. Par 

ailleurs, nos résultats mettent en évidence le rôle de 

signaux in vivo extrinsèques provenant d’interactions 

des cellules tumorales avec le microenvironnement, 

telles qu’avec la matrice extracellulaire et les 

fibroblastes associés au cancer, influençant ainsi 

l’expression de ces programmes transcriptionnels et la 

croissance tumorale. Nous avons également exploré 

l'applicabilité clinique de nos résultats et identifié des 

signatures transcriptionnelles dérivées du séquençage 

ARN sur cellule unique et ayant une valeur pronostique 

au sein de cohortes de patients atteints de DSRCT. 
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Abstract :  
Desmoplastic Small Round Cell Tumors (DSRCTs) are a 

rare sarcoma subtype of poor prognosis driven by the 

aberrant chimeric transcription EWSR1-WT1. Despite 

this unique oncogenic driver and the paucity of recurrent 

secondary mutations, DSRCTs harbor a characteristic 

polyphenotypic differentiation, suggesting the presence of 

tumor heterogeneity. Using single-cell multiomics, we 

found that DSRCT tumor cells were characterized by 

recurrent overlapping phenotypical states, which harbored 

distinct transcriptional programs, notably related to 

mesenchymal, neural, and epithelial cell fates and 

metabolic switch programs. Our data further suggest the 

role of EWSR1-WT1 DNA-binding versatility in DSRCT 

cells’ chromatin plasticity and highlight additional in vivo 

extrinsic signals from microenvironment components like 

extracellular matrix and cancer-associated fibroblasts, 

which may influence DSRCT cell states and 

 tumor growth. We further explored the clinical 

applicability of our findings and identified single-cell 

RNA-sequencing-derived transcriptional signatures that 

may serve for patients’ prognostic risk stratification. 
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