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Titre : Réseau régulateur de la bordure neurale et de la crête neurale, du tissu aux cellules uniques 
Mots clés : crête neurale, scRNA-seq, réseau de régulation génique, évolution de l'état cellulaire 
Résumé: La crête neurale est un groupe de cellules qui apparaît au cours du développement embryonnaire des vertébrés 
et donne naissance à un large éventail de types cellulaires, tels que les neurones, le osteoblastes craniofaciaux et les 
mélanocytes. La crête neurale se forme à partir d'un domaine ectodermique qui forme également les progéniteurs des 
organes sensoriels céphaliques, les placodes. Dans cette thèse de doctorat, nous utilisons une combinaison de techniques, 
dont le séquençage d'ARN sur cellule unique, pour étudier les réseaux de régulation génique contrôlant la formation de 
la crête neurale. En analysant les profils transcriptionnels de cellules individuelles, nous avons pu identifier des sous-
populations distinctes de cellules au sein des progéniteurs de la crête neurale. Nous avons également identifié des gènes 
spécifiquement exprimés ou enrichis dans chaque sous-population et utilisé le séquençage après immuniprécipitation de 
la chromatine pour étudier les sites de liaison de quelques facteurs de transcription-clés qui régulent ce réseau et en 
définir les gènes-cibles. De plus, nous avons étudié le rôle de deux micro-ARN dans la régulation de ce réseau. Nos 
résultats mettent en évidence la nature complexe et dynamique des réseaux de régulation des gènes contrôlant le 
développement et la fonction de la crête neurale. De plus, nous avons étudié la relation entre la crête neurale et les 
placodes. Nous avons également développé un outil informatique capable de prédire l'évolution des types de cellules et 
l'avons appliqué sur la crête neurale pour étudier son histoire évolutive. Dans l'ensemble, nos découvertes fournissent de 
nouvelles informations sur les mécanismes contrôlant le développement et la fonction de la crête neurale et ont des 
implications potentielles pour la compréhension et le traitement des neurocristopathies, défauts congénitaux ou tumeurs 
liés à la crête neurale. 

 

Title: From tissue to single cell: the neural border and neural crest gene regulatory network 
Keywords: neural crest, scRNA-seq, gene regulatory network, cell state evolution 
Abstract: The neural crest is a group of cells that arises during embryonic development in vertebrates and gives rise to a 
diverse array of cell types, such as neurons, craniofacial osteoblasts and melanocytes. Neural crest cells emerge from an 
ectoderm territory, the neural border, which also forms progenitors of the head sensory organs, the cranial placodes. In 
this doctoral thesis, we use a combination of techniques, including single-cell RNA-sequencing, to study the gene 
regulatory networks driving neural crest formation (NC-GRN). By analyzing the transcriptional profiles of individual 
cells, we were able to identify distinct subpopulations of cells among early neural crest progenitors. We also identified 
genes that are specifically expressed or enriched in each subpopulation and used ChIP-sequencing for a few key 
transcription factors, in order to define their binding sites and target genes, within the NC-GRN. In addition, we 
investigated the role of micro-RNAs in regulating this network. Our findings highlight the complex and dynamic nature 
of the gene regulatory networks controlling the development of the neural crest. Furthermore, we studied the relationship 
between the neural crest and placodes. We also developed a computational tool that can predict the evolution of cell 
types and applied it on the neural crest to study its evolutionary history. Overall, our findings provide new insights into 
the mechanisms controlling the development of the neural crest and its related cell types. Our studies have potential 
implications for the understanding and treatment of neural crest-related disorders. 
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ABBREVIATIONS 
 
ATAC-Seq Assay for Transposase-Accessible Chromatin using sequencing 

AP Anetrior-Posterior 

AUC Area under curve 

BMP Bone morphogenetic protein 

ChIP-Seq chromatin immunoprecipitation sequencing 

DNA Deoxyribonucleic acid  

DV Dorso-Ventral 

FGF: Fibroblast Growth Factor 

EMT Epithelial-mesenchymal transition 

ENSp: Enteric Nervous System progenitors 

GO Gene Ontology 

GOF Gain of Function 

GRN Gene regulatory network 

ISH In Situ Hybridization 

MMPs Matrix metalloproteinases 

MO Morpholino oligonucleotides 

NB Neural border 

NC Neural crest 

NP Neural plate 

PAX Paired box  

PC Placodes 

RA: Retinoic Acid 

RNA-Seq ribonucleic acid sequencing 

ROC Receiver operating characteristic 

ScRNA-seq single-cell ribonucleic acid sequencing 

TGF-B transforming growth factor beta 

TFs Transcription Factors 

WNT Wingless and Int-1 

X. laevis Xenopus Laevis 

X. tropicalis Xenopus tropicalis 
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ABSTRACT 
 

The neural crest is a group of cells that arises during embryonic development in vertebrates 

and gives rise to a diverse array of cell types, e.g., neurons, glia of the peripheral nervous 

system, melanocytes, and skeletal and connective tissues in the head. It originates from the 

neural border, a domain of the ectoderm positioned between the neural plate and the non-neural 

ectoderm. However, the gene regulatory networks underlying the development and function of 

these cells are not fully understood and there are still many unsolved problems in the field. 

 

In this doctoral thesis, we use a combination of cutting-edge techniques, including single-cell 

RNA-sequencing, ChIP-sequencing, and knock-down experiments, to study the gene 

regulatory networks of the neural crest and the neural border (NC-GRN, NB-GRN). By 

analyzing the transcriptional profiles of single cells, we were able to identify distinct 

subpopulations of cells within poorly studied pre-migratory neural crest cells. We also were 

able to define scRNA-seq signature of the neural border and identify genes that are specifically 

expressed or enriched in each subpopulation in ectoderm and pre-migratory neural crest. We 

then used ChIP-seq for a few chosen transcription factors, to define their binding sites and their 

target genes within the NB/NC-GRN. To further identify how these transcription factors 

regulate their targets, we used knock-down experiments followed by RNA sequencing and 

constructed a transcription factor-centered GRN driving neural crest development. 

 

In addition to studying the transcriptional networks of the neural crest and neural border, we 

also investigated the role of two microRNAs (miRNAs) in regulating these networks. Our 

findings highlight the complex and dynamic nature of the gene regulatory networks controlling 

the development and function of the neural crest.  

 

Furthermore, we studied the relationship between the neural crest and placodes, a group of cells 

that also originates from the neural border and gives rise to sensory organs. Our findings 

suggest that instead of contrasting “neural border” and “non-neural vs neural" hypotheses, 

which are the current and competing models proposed until now, we find that these routes are 

not exclusive and find trajectories supporting the emergence of neural crest from either the 

neural border or the nascent neural ectoderm on one hand, as well as two trajectories leading 

to placodes from either the neural border or the non-neural ectoderm.  
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Last, we developed a computational tool that can predict the evolution of cell types and applied 

it on the neural crest. Using this tool, it is possible to study the evolutionary history of the 

neural crest and gain new insights into the mechanisms underlying its development and 

diversification. 

 

Overall, our findings provide new insights into the mechanisms controlling the development 

and function of the neural crest and neural border, and have potential implications for the 

understanding and treatment of neural crest-related disorders. 

  



 

 6 

RÉSUMÉ ÉTENDU EN FRANÇAIS 
 

Les cellules de la crête neurale forment une population de progéniteurs multipotents et 

migrateurs présents dans les embryons de vertébrés, essentiels pour le système nerveux 

périphérique et entérique, les structures craniofaciales, les cellules endocrines et pigmentaires, 

entre autres. Peu après la gastrulation, dans la partie la plus antérieure de l'embryon, les cellules 

NC sont induites à partir de la bordure neurale (BN) dorso-latérale, un domaine de l'ectoderme 

situé entre l'ectoderme non neural et l'ectoderme de la plaque neurale (Alkobtawi et Monsoro-

Burq, 2020 ; Plouhinec et al., 2017). Au cours du processus de neurulation, la spécification et 

l'induction des cellules de la crête neurale progressent en vague de la zone antérieure à la zone 

postérieure de la plaque neurale. Ce processus s'accompagne de l'activation de divers 

programmes génétiques qui définissent les stades précoces et immatures des CN. En plus du 

programme général des CN, plusieurs modules moléculaires régionaux sont également activés 

le long de l'axe antéro-postérieur du corps, ce qui permet de définir des sous-populations de 

CN au potentiel spécifique (Ling et Sauka-Spengler, 2019 ; Tang et al., 2021). La façon dont 

ces programmes liés aux sous-populations sont interconnectés avec le module pan-CN, et 

comment et quand ils sont activés dans les cellules CN pré-migratoires sont peu décrits. A la 

fin de la neurulation, les cellules de la crête neurale quittent l'ectoderme dorsal par une 

transition épithélium / mésenchyme (EMT), suivie d'une migration extensive vers une variété 

de tissus cibles, où les cellules de la crête neurale se différencient en plus de trente types 

cellulaires différents, y compris les neurones et les cellules gliales périphériques et entériques, 

les os craniofaciaux, les chondrocytes, les adipocytes et le mésenchyme, les cellules sécrétrices 

de chromaffine et les cellules pigmentaires. La biologie de la crête neurale a été analysée au 

cours du développement et de l'évolution, ce qui a permis d'élucider des réseaux élaborés de 

régulation génique au cours de la dernière décennie (Monsoro-Burq et al., 2005 ; Simoes-Costa 

et Bronner, 2016). Ces réseaux restent toutefois incomplets et n'expliquent pas la plupart des 

défauts observés dans les neurocristopathies humaines (Medina-Cuadra et Monsoro-Burq, 

2021). 

 

Ce problème est sur le point d'être résolu grâce à la transcriptomique sur cellule unique, qui 

permet une description complète du développement de la NC, au cours des differentes étapes 

du développement, ainsi qu'une comparaison avec les tissus adjacents (par exemple, au niveau 

de la frontière neuronale). Cela permettrait de définir les trajectoires génétiques du 
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développement de l'arbre complet de la lignée CN. De récentes études scRNAseq sur la CN 

ont principalement exploré les CN après migration, en utilisant des embryons de poulets, de 

poissons et de souris (Artinger et Monsoro-Burq, 2021). En revanche, les cellules individuelles 

de la CN avant la migration ont fait l'objet d'une exploration limitée, principalement autour du 

stade de l'EMT et sur de petits nombres de cellules à un niveau spécifique de l'axe du corps 

(Tang et al., 2021 ; Zalc et al., 2021). 

Outre la crête neurale, la BN donne également naissance aux placodes postérieures, à 

l'ectoderme non neural et à la partie dorsale du tube neural (Steventon et Mayor, 2012 ; Streit 

et Stern, 1999). La question est de savoir si ces quatre types de cellules proviennent d'un 

progéniteur précoce commun multipotent et comment les décisions relatives à leur destin sont 

orchestrées au niveau de la BN pendant la gastrulation reste mal comprise. Bien que la 

formation du territoire de la BN ait été définie par l'expression de quelques gènes pendant la 

gastrulation (p. ex. pax3 et pax7) (Basch et al., 2006 ; Monsoro-Burq et al., 2005 ; Plouhinec 

et al, 2017), le moment de la spécification de la NB à partir du reste de l'ectoderme dorsal et 

les circuits conduisant les décisions de destin entre les quatre destins cellulaires dérivés de la 

BN (NC, placodes, ectoderme non neural et tube neural dorsal) restent à établir (Groves et 

LaBonne, 2014 ; Maharana et Schlosser, 2018 ; Steventon et Mayor, 2012). En outre, le 

calendrier des décisions de lignage dans la CN prémigratoire le long de l'axe antéro-postérieur, 

le maintien d'une sous-population de CN multipotente et les mécanismes moléculaires pilotant 

chaque état de l'arbre de lignage de la CN prémigratoire restent inexplorés. 

En outre, les mécanismes complexes entre les voies de signalisation et les marqueurs des 

frontières neurales ne sont pas encore clairement compris (Garnett et al., 2012). Les marqueurs 

de la BN pax3/msx1/zic1/tfap2a/hes4 se contrôlent mutuellement dans une boucle de 

rétroaction et ont besoin d'une signalisation WNT supplémentaire (de Crozé et al., 2011 ; 

Simoes-Costa et Bronner, 2016). Les marqueurs des progéniteurs de placodes de xenope 

eya1/six1 influencent les marqueurs de la BN et de la CN pax3 et foxd3 ainsi que les inducteurs 

de la BN tfap2a, msx1, dlx3, gata2, foxi1 (Maharana et Schlosser, 2018). Ensemble, ces 

régulations croisées élaborées stabilisent les choix de destin dans la bordure neurale, la crête 

neurale et les placodes. Toutes ces études ouvrent une discussion sur deux modèles différents 

proposés pour le développement de la bordure neurale : 

1.Le modèle de "compétence binaire" proposé par Schlosser dans lequel la CN et les 

placodes sont produites individuellement : la CN du côté de la frontière neurale et les placodes 

du côté de l'ectoderme non neural (Pieper et al., 2012 ; Schlosser, 2008). 
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2.Le modèle "BN" propose que la bordure neurale bi-potente produise à la fois des 

progéniteurs de la CN et des placodes, dont les positions comparatives sont définies à des stades 

ultérieurs par des marqueurs spéciaux. 

 

Outre ces questions qui restent sans réponse concernant la régulation des cellules de la crête 

neurale et de la bordure neurale, il est également nécessaire d'examiner d'autres mécanismes 

de régulation des gènes, tels que la régulation effectuée par les ARN non codants. Le rôle des 

miARN au cours du développement a été signalé pour la première fois en 2003, lorsque 

Bernstein a supprimé Dicer (qui coupe l'ARN double brin et les molécules de pré-miARN pour 

créer de courts fragments d'ARN double brin, y compris les miARN) chez la souris, détectant 

une létalité embryonnaire précoce (Bernstein et al., 2003). D'autres études ont également 

montré que les miARN jouent un rôle important dans de nombreux processus de 

développement (Antonaci et Wheeler, 2022 ; Mok et al., 2017). Les microARN sont essentiels 

au développement normal des animaux et sont impliqués dans différents processus biologiques. 

L'expression aberrante des miARN est liée à diverses maladies humaines (Hanna et al., 2019). 

De plus, les miARN sont sécrétés dans les fluides extracellulaires. Ces miARN ont été 

largement signalés comme des biomarqueurs possibles pour certaines maladies et ils agissent 

également comme des molécules de signalisation pour modérer les contacts entre cellules 

(Bhaskaran et Mohan, 2014). 

Ainsi, pour répondre aux questions concernant l'hétérogénéité des décisions relatives au destin 

cellulaire avant et après l'induction de la CN, nous avons utilisé des transcriptomes sur cellules 

uniques provenant de huit stades de développement consécutifs de Xenopus tropicalis, 

comprenant 6135 cellules CN, afin de fournir un profilage développemental complet de la CN 

pré-migratoire. Nous avons découvert plusieurs nouvelles sous-populations de cellules CN et 

mis en évidence leurs trajectoires précises, résultant en huit sous-populations CN émigrant des 

niveaux antérieurs aux niveaux vagaux de l'axe du corps. Il est intéressant de noter que certains 

destins émergent beaucoup plus tôt que prévu, que la diversité des CN est maintenue lors de 

l'EMT et qu'une diversification supplémentaire se produit au début de la migration. Nous 

proposons une séquence temporelle d'événements moléculaires qui sous-tendent les états 

transcriptomiques successifs et les décisions relatives au destin qui soutiennent l'émergence 

des cellules CN de la bordure neurale pendant la gastrulation jusqu'aux premiers états 

migratoires au début de l'organogenèse. En outre, nous identifions des facteurs de transcription 

clés impliqués dans la ramification de la lignée principale et validons plusieurs prédictions de 
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régulation in vivo. Nous fournissons donc un vaste réseau de régulation génique décrivant 

l'émergence de la lignée de la crête neurale dans l'ectoderme des embryons de vertébrés. 

 

En outre, pour étudier la décision relative à la date cellulaire dans la BN et les relations entre 

les principaux acteurs de la régulation, nous avons (1) utilisé des transcriptomes sur cellules 

uniques provenant de trois stades de développement de Xenopus tropicalis, comprenant 17138 

cellules de l'ectoderme précoce pour fournir un profilage développemental complet de la BN, 

ainsi que (2) la combinaison de constructions de gènes inductibles et de cycloheximide (un 

médicament qui bloque la traduction des protéines) pour Pax3, Zic1, et Dlx3. Les analyses du 

connectome des facteurs de transcription et de la bifurcation ont démontré l'émergence précoce 

des destins de la crête neurale au stade de la plaque neurale, parallèlement à un lignage 

multipotent non biaisé persistant jusqu'après la transition épithéliale-mésenchymateuse. Des 

expériences de perturbation ont révélé des cibles uniques et partagées parmi les acteurs les plus 

importants de la crête neurale (étude en cours). 

Ensuite, afin d'étendre nos connaissances sur la régulation de la CN par le réseau de régulation 

génique (RRG), nous avons sélectionné deux miARN, dont l'importance pour la crête neurale 

avant la migration a été démontrée précédemment. Les principaux objectifs étaient de 

confirmer que miR-196a et miR-219 sont effectivement nécessaires au développement de la 

CN en utilisant le knockdown par morpholino des microARN miR-196a et miR-219 et de 

commencer à déchiffrer à quel niveau les miARN sont impliqués dans le développement de la 

CN de Xenopus (étude en cours). 

Enfin, pour en savoir plus sur l'évolution de la CN et d'autres types de cellules, nous avons 

développé l'outil informatique basé sur le ML scEvoNet (single-cell Evolutionary networks).  

 

Au cours des 150 dernières années, les types cellulaires ont été étudiés en termes de 

développement et de morphologie, alors qu'avec l'avènement de la transcriptomique sur 

cellules uniques, de nombreux types cellulaires distincts et cachés ont été identifiés. Avec 

l'utilisation de scRNA-seq, une ère complètement nouvelle s'ouvre pour comprendre l'évolution 

des types cellulaires. Apparemment, les types ancestraux de cellules animales étaient 

polyfonctionnels (la cellule éponge possède à la fois des propriétés neurales et immunitaires), 

mais au cours de l'évolution, les fonctions ont été réparties entre différentes cellules (Arendt, 

2008). Cette "division du travail" est l'une des clés de l'évolution des types cellulaires. Pourtant, 

il y a un manque d'outils computationnels scRNA-seq pour étudier l'évolution des états 

cellulaires. Nous présentons donc ici scEvoNet, le logiciel mis en œuvre pour étudier cette 
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conception à partir de données scRNA-seq. L'utilisation de cet outil pour étudier le continuum 

des états du transcriptome entre les stades de développement ou les espèces permettra 

d'expliquer la dynamique complexe des états cellulaires. 

 

Un "modèle de double convergence" réconciliateur décrit les trajectoires convergentes 

initiant les états de crête neurale et de placode. 

Pour révéler les mécanismes moléculaires qui distinguent l'induction de la crête neurale et des 

placodes dans la zone frontalière entre l'ectoderme neural et l'ectoderme non neural pendant la 

gastrulation et vérifier les deux modèles ("Compétence binaire" et "BN"), nous avons généré 

un ensemble de données pour toutes les cellules de l'ectoderme des stades 11 à 13 (en utilisant 

l'ensemble de données scRNA-seq de l'embryon entier). Un changement de destin via une 

séparation binaire (bifurcation) est généralement observé lorsqu'une population apparemment 

homogène de précurseurs se divise en deux types de cellules présentant des profils d'expression 

génique distincts. La BN elle-même est interprétée comme une zone de compétence générale 

pour le tube neural, l'ectoderme non neural, la CN et les placodes. Et bien qu'elle présente une 

certaine association préférentielle de destins cellulaires, qui rappelle le modèle de compétence 

binaire proposé par Schlosser (Pieper et al., 2012 ; Schlosser, 2008) où la CN et les placodes 

sont induits séparément, nous avons observé que la zone BN contribue aux CN et aux PC 

parallèlement aux contributions convergentes des progéniteurs de la plaque neurale et de 

l'ectoderme non neural. 

Il est intéressant de noter que des gènes distincts sont activés pour obtenir le même état et que 

certains gènes sont activés avec des dynamiques d'expression différentes selon les bifurcations. 

Par exemple, pendant la transition BN vers CN, sox9 et c3 étaient activés avant la bifurcation, 

ce qui indique que ces gènes pouvaient déclencher le passage des cellules des progéniteurs BN 

vers un destin CN. En revanche, au cours de la transition entre l'ectoderme neural et la CN, 

sox9 et c3 étaient des gènes tardifs (activés après la bifurcation), tandis que foxd3 et zic1 étaient 

exprimés précocement. Cette observation suggère un nouveau modèle de décisions relatives au 

destin dans l'ectoderme en développement, où des programmes génétiques parallèles et 

distincts activés dans des progéniteurs distincts de l'ectoderme peuvent conduire à un état 

similaire, soutenant un "modèle de convergence double" pour la crête neurale et l'émergence 

des placodes à partir de l'ectoderme dorsal, fusionnant ainsi les modèles actuellement 

concurrents de "l'origine de la bordure neurale" opposée à "l'origine de l'ectoderme neural/non 

neural". 
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En outre, le gène pax3, spécifique de la zone BN, a été exprimé avant la bifurcation dans le 

programme génétique BN vers CN et a activé l'expression des marqueurs de la branche CN 

tardive sox9, sox8, zic1, pcdh8 et c3. En outre, le connectome de l'ectoderme décrit des gènes 

CN connectés au reste du réseau par l'intermédiaire de Pax3 et de Sox9, ce qui suggère que 

Sox9 pourrait jouer une fonction non encore décrite en aval de Pax3 dans l'induction de la CN 

et en amont des autres marqueurs de la branche tardive de la CN. Ceci est en accord avec le 

fait que sox9 est un gène précoce dans la branche BN➝CN. La validation expérimentale a 

montré que la co-activation de Sox9 augmentait fortement l'expression de snail2 dans l'iCN, 

tandis que la déplétion de Sox9 réduisait l'activation de snail2, indiquant que Sox9 est 

nécessaire en aval de Pax3 pour une induction efficace de la CN par Pax3 et Zic1. Alors que 

Sox9 a été décrit comme essentiel pour l'induction des CN, le mécanisme d'épistasie entre les 

spécificateurs de BN, Sox9 et Snail2 est resté inconnu jusqu'à cette expérience. 

 

Une combinaison de stratégies omiques et in vivo valide de vastes ensembles de 

régulations génétiques conduisant à la dynamique de la diversification de la crête neurale. 

L'énigme de savoir si les groupes de la CN utilisent des biais différentiels pour naviguer dans 

un paysage de destin unique, ou s'ils sont confrontés à des décisions fondamentalement uniques 

dans des paysages distincts, peut être abordée en identifiant des bifurcations "muettes" où 

l'amorçage multi-lignes se produit mais où un destin n'est jamais exprimé. La transcriptomique 

sur cellules uniques capture des différences suffisantes entre les états transcriptionnels, ce qui 

peut signifier des processus de prise de décision. Bien que l'on suppose généralement que les 

changements transcriptionnels importants sont liés à des événements de choix du destin, ils 

pourraient plutôt signifier une différenciation après l'engagement, tandis que de petits 

changements n'affectant que quelques gènes puissent être responsables de la rupture de 

l'homogénéité. De nouvelles approches permettant de suivre ces événements à travers les stades 

de développement sont capables de définir de légers changements dans les modèles 

d'expression génique. 

 

Hétérogénéité dans la CN pré-migratoire 

L'ensemble des données ScRNA-seq de l'embryon entier avec une extraction précise des 

cellules de la CN nous a permis de définir la dynamique temporelle des trajectoires qui 

aboutissent aux 8 états de la crête neurale présents au début de la migration le long des positions 

axiales crânienne et vagale. Notre analyse temporelle met en évidence trois points importants 
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qui nous permettent d'approfondir notre compréhension de la biologie de la crête neurale. Tout 

d'abord, il y a des débats de longue date sur le moment des décisions relatives au destin de la 

CN, avant ou après l'EMT du tube neural, dans une variété de modèles animaux (Kalcheim et 

Kumar, 2017). Il est important de noter que nous n'avons pas détecté d'expression distinctive 

de marqueurs prédictifs du destin avant l'EMT (par exemple, pour les destins neuronaux, 

gliaux, squelettiques ou mélanocytaires). Cela suggère que, si certains progéniteurs CN étaient 

orientés vers un destin donné avant l'EMT, ils ne présentaient pas de signature détectable dans 

notre ensemble de données. Cependant, nos observations sont en accord avec plusieurs études 

de traçage des lignées montrant la multipotence élevée de la plupart des cellules CN lorsqu'elles 

sont marquées avant l'EMT (Baggiolini et al., 2015). Les premiers marqueurs de différenciation 

sont trouvés après l'émigration, puisque nous avons détecté une expression de type myosine 

dans un petit sous-ensemble de cellules suggérant l'émergence de myofibroblastes dérivés de 

la CN, précédemment peu décrits, peu après l'EMT. Deuxièmement, nos données confirment 

la diversification précoce en plusieurs états cellulaires distincts avant, pendant et après l'EMT, 

ce qui contraste avec la suggestion récente selon laquelle, lors de l'EMT, les progéniteurs de la 

CN se regrouperaient en un seul état multipotent commun (Zalc et al., 2021). Le contenu 

cellulaire élevé de notre ensemble de données prouve le contraire, suggérant que cette 

observation précédente faite sur un sous-ensemble plus petit de NC crâniennes n'a pas 

entièrement capturé la diversité des états pré-migratoires des CN. Une autre observation clé est 

la présence d'une population principale de CN non biaisée vers un état particulier, exprimant 

les marqueurs des cellules immatures de la crête neurale, à partir desquelles toutes les autres 

trajectoires émergent. Cette trajectoire cellulaire non biaisée est maintenue pendant et après 

l'EMT, ce qui suggère qu'une population de cellules de la crête neurale très plastique, semblable 

à une tige, émigre et est soumise aux signaux du microenvironnement avant de choisir son 

destin. 

 

Le connectome CN et les bifurcations multiples décrivent la logique moléculaire des 

décisions relatives au destin cellulaire dans le CN vagal et crânien. 

Nous élargissons le réseau de gènes impliqués dans le NC-RRG en prédisant des corrélations 

de gènes à partir de l'ensemble des données de la CN pour relier les facteurs de transcription à 

leurs cibles potentielles dans le transcriptome de la CN. Le réseau résultant de >16.000 

connexions TF-cibles potentielles a été partiellement validé par la combinaison des expériences 

knock-down et ChIP-seq pour certains des nœuds les plus liés du réseau. En particulier, nous 

nous sommes concentrés sur le rôle de Pax3 et TFAP2e en milieu de neurulation, qui étaient 
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auparavant connus pour leurs fonctions antérieures dans l'induction de la NC. Dans les cas de 

Pax3 et de Tfap2e, nous constatons que les trois approches aboutissent à des listes de gènes 

cibles qui se chevauchent partiellement en raison de l'utilisation de paramètres différents (par 

stade, par expression, etc.). Ensemble, ces données fournissent un génome élargi et validé 

spécifique à la CN pour deux spécificateurs BN/CN clés, révélant une représentation statique 

du RRG dans la CN. 

Pour accéder à la dynamique temporelle de la régulation de la CN, nous avons examiné 

l'analyse des trajectoires temporelles afin de démêler la dynamique de l'expression génique 

spécifique à la branche qui sous-tend les bifurcations et la diversification de l'état. Pour chaque 

bifurcation, nous fournissons une liste de gènes clés susceptibles de contrôler les choix de 

ramification. Nous avons également utilisé la modulation expérimentale de la fonction de 

facteurs de transcription pivots dans la crête neurale pré-migratoire (Pax3, TFAP2e) pour 

valider ces prédictions de bifurcation. Cela donne une vue d'ensemble de la hiérarchie des 

décisions moléculaires qui régissent le réseau de régulation des gènes de la crête neurale 

crânienne et vagale, depuis l'induction à la frontière neurale jusqu'à la migration précoce, avec 

une validation expérimentale. 

 

Rôle des miARN dans le développement de la CN 

On sait qu'un grand nombre de gènes sont impliqués dans le développement de la CN, mais 

tous n'ont pas été déterminés. Récemment, la science est passée de l'étude des gènes codant 

pour les protéines à celle des gènes non codants, par exemple les miARN. Ces ARN non 

codants jouent un rôle important au cours du développement de l'embryon en régulant 

l'expression des gènes codant pour les protéines, principalement en se liant au 3'-UTR de l'ARN 

messager et en supprimant la production de protéines en raison de la déstabilisation de l'ARN 

messager. De nombreuses analyses ont montré que la régulation des gènes par les miARN est 

importante pendant le développement de l'embryon (Bushati et Cohen, 2007 ; Stefani et Slack, 

2008). Les embryons de poisson zèbre mutants Dicer présentent des défauts de gastrulation et 

de somitogenèse (Giraldez et al., 2005) et meurent (Wienholds et al., 2003). Dans la rétine, la 

perte de Dicer entraîne une régression rétinienne à des stades plus avancés (Decembrini et al., 

2008). De multiples analyses ont montré l'implication des miARNs au cours du développement 

neuronal (Papagiannakopoulos et Kosik, 2009 ; Walker et Harland, 2009). Nous avons donc 

décidé de développer cette direction et d'élargir notre compréhension du RRG-CN en étudiant 

les miARN dont l'expression a déjà été démontrée dans la CN et le tissu neural chez l'embryon 

de Xenopus (Godden et al., 2021 ; Ward et al., 2018). 
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Nous avons sélectionné les miR-219 et miR-196a pour déterminer leur fonction dans le 

développement de la CN, nous avons conçu des MO qui ont été conçus pour éliminer le miRNA 

mature et être complémentaires (Flynt et al., 2017). Grâce au séquençage de l'ARN sur des 

tissus de CN disséqués qui avaient été traités avec des MOs pour miR-196a et miR-219, il a été 

révélé que les miARN peuvent avoir un rôle dans le développement des CN et des tissus 

environnants. Une forte réduction de l'expression des marqueurs de la CN : foxd3, twist1, sox8, 

sox9, sox10, et snail2 peut être observée, après miRNA-KD, plus significativement avec miR-

196a KD. Les marqueurs neuraux sox2 et sox3 sont significativement enrichis. Les marqueurs 

de la bordure des plaques neurales sont également enrichis (gmnn, hes3, pax3, et de façon non 

significative zic1), ainsi que le marqueur de pluripotence pou5f3. La caractérisation 

fonctionnelle de Sox10, Snail2 et Pax3 ainsi que les résultats de l'ARN-seq suggèrent que les 

miR-196a et miR-219 KD, qui réduisent l'expression de sox10 et snail2, empêchent le maintien 

des cellules de la CN. L'étude souligne l'importance de comprendre les différents rôles de miR-

196a et miR-219 dans le développement des cellules de la CN dans les embryons de Xenopus. 

Plus important encore, les données présentées dans l'étude suggèrent que ces deux miARN ont 

des effets distincts sur le développement des cellules de la CN, le miR-196a ayant un effet plus 

important sur la réduction de l'expression des marqueurs de la CN et le passage du destin 

cellulaire à un état multipotent de type BN, et le miR-219 contribuant à une augmentation de 

la multipotence sans activer le programme BNB. Cela suggère que les miR-196a et miR-219 

jouent des rôles différents au cours du développement des cellules de la CN. 

 

Relations entre Pax3, Dlx3 et Zic1 dans la bordure neurale 

Afin d'examiner avec précision les cibles précoces immédiates des facteurs de transcription les 

plus importants dans la bordure neurale (Pax3, Zic1 et Dlx3), nous avons lancé un nouveau 

projet par micro-dissection d'explants de la bordure neurale, ce qui nous permet d'obtenir une 

grande spécificité spatiale. Pour la première étape du projet (voir la section Résultats 2.4.1), 

nous avons recherché des cibles précoces immédiates spécifiques de ces facteurs de 

transcription dans le NB à plusieurs stades. 

Jusqu'à présent, nous avons identifié un ensemble de gènes régulés par trois facteurs de 

transcription. Nos résultats confirment les rôles précédemment connus de ces facteurs de 

transcription dans la régulation des gènes impliqués dans la formation de la crête neurale, tels 

que les marqueurs des cellules de la crête neurale comme snai2, twist1, et sox9, ainsi que foxd3, 

et tfap2b. Il est également remarquable que la majorité des gènes identifiés comme cibles de 

Pax3 soient régulés à la baisse en l'absence de Pax3, ce qui confirme l'idée que Pax3 joue un 
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rôle dans l'activation des spécificateurs de la crête neurale. Cependant, un petit nombre de 

gènes se sont également révélés régulés à la hausse. En outre, nous avons constaté que Pax3 et 

Dlx3 ont des cibles régulatrices communes, qui jouent un rôle dans la formation de la crête 

neurale, comme alx1 et hnf1b. Nos données suggèrent que le rôle de Pax3 dans la formation 

de la crête neurale est plus important aux stades précoces, car nous avons observé moins de 

cibles pour Pax3 aux stades ultérieurs. De plus, en utilisant une analyse précédente de 

l'ectoderme par scRNA-seq, nous avons trouvé que Pax3-GOF activait à la fois les programmes 

NENP et NE/NBNC, tandis que Dlx3-GOF activait le programme NNENNE2 mais désactivait 

les programmes NCNP. Dans l'ensemble, notre analyse a montré des schémas d'activation 

distincts pour Pax3 et Dlx3. Cette étude apporte un nouvel éclairage sur les réseaux de 

régulation transcriptionnelle qui contrôlent la formation de la crête neurale. En identifiant les 

gènes et les voies spécifiques qui sont ciblés par ces facteurs de transcription, nous pouvons 

acquérir une meilleure compréhension des processus moléculaires complexes impliqués dans 

le développement de la BN, CN, PC et d'autres tissus ectodermiques. 

Les prochains objectifs du projet sont [1] l'examen de la coopération entre les spécificateurs de 

la BN pendant l'induction du destin CN/PC en défiant les cibles précoces immédiates des gènes 

en l'absence d'un autre, par exemple, les cibles de Zic1 en l'absence de Pax3/Dlx3. Et [2] en 

recherchant des exigences spécifiques au stade des spécificateurs de la BN en analysant le 

transcriptome de la BN en l'absence de l'un des gènes à l'aide de morpholinos. 

 

Évolution des types cellulaires avec scEvoNet 

Au cours des 150 dernières années, les types cellulaires ont été étudiés en termes de 

développement, de morphologie et de caractéristiques moléculaires, alors qu'avec l'avènement 

de la transcriptomique sur cellules uniques, de nombreux types cellulaires distincts et cachés 

ont été identifiés. Avec l'utilisation de scRNA-seq, une ère complètement nouvelle s'ouvre pour 

comprendre l'évolution des types cellulaires. Apparemment, les types ancestraux de cellules 

animales étaient polyfonctionnels (certaines cellules d'éponge ont à la fois des propriétés 

neurales et immunitaires), mais au cours de l'évolution, les fonctions ont été réparties entre 

différentes cellules (Arendt, 2008). Cette "division du travail" est l'une des clés de l'évolution 

des types de cellules. Pourtant, il existe un manque d'outils computationnels scRNA-seq pour 

étudier l'évolution des états cellulaires. Nous avons donc développé un outil informatique, 

scEvoNet, qui permet d'étudier ce concept à partir de données scRNA-seq. Tout d'abord, notre 

outil crée la matrice des similitudes entre les types de cellules de deux ensembles de données 

fournis par les utilisateurs. Deuxièmement, il construit le réseau bipartite reliant les gènes et 



 

 16 

les différents états cellulaires, qui peut être utilisé comme source de sélection des gènes 

potentiellement cooptés (partagés entre les types de cellules), ainsi que des gènes qui sont 

importants pour le type de cellule particulier dans la comparaison inter-espèces, et des gènes 

qui ne sont significatifs que pour une seule espèce. En outre, il peut être utilisé pour étudier la 

progression et l'évolution des tumeurs en explorant les gènes et les programmes de gènes qui 

sont partagés entre divers types de cellules dans le microenvironnement tumoral. L'utilisation 

de cet outil pour étudier le continuum des états du transcriptome entre les stades de 

développement ou les espèces, ou entre les états normaux et pathologiques, permettra 

d'expliquer la dynamique complexe des états cellulaires. Les événements d'abandon, lorsqu'un 

gène n'est pas détecté alors qu'il est présent, et les effets de lot peuvent limiter la précision des 

prédictions faites à partir des données scRNA-seq. La génération d'ensembles de données 

provenant de plusieurs espèces ou l'utilisation de techniques de capture scRNA-seq améliorera 

les résultats d'outils tels que scEvoNet. 

 

Conclusions 

Mon travail vise à améliorer de manière significative la compréhension des mécanismes 

moléculaires impliqués dans la formation de la crête neurale. Bien que de nombreuses questions 

aient trouvé une réponse, il reste encore des domaines à explorer, comme la transition des 

cellules de la CN de type PN vers les cellules ENSp. En outre, l'application de scEvoNet aux 

données de diverses espèces, y compris les céphalochordés, les tuniciers et les vertébrés, 

permettrait d'obtenir des informations précieuses. 
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1. General introduction 

1.1 Neural crest gene regulatory network 

The neural crest is a group of multipotent stem cells found in vertebrates that gives rise 

to a wide variety of cell types, including Schwann cells, melanocytes, and craniofacial bones. 

Defects in neural crest development can cause multiple birth defects and syndromes. The neural 

crest was first identified by His in 1868 in a developing chick embryo. It is located on the 

“crest” of the neural tube and has been studied using fate mapping and quail-chick 

heterospecific grafts to understand its role in development along the anterior-posterior body 

axis (Le Douarin and Kalcheim, 1999). The anteriormost population is the cranial neural crest, 

emerging from the dorsal neural tube between the posterior part of the forebrain to the posterior 

hindbrain levels. The cranial neural crest gives rise to craniofacial cartilage, bone, connective 

tissue, smooth muscle, neurons of the trigeminal ganglion as well as head peripheral neurons 

and glia, and melanocytes. The more posterior population is the vagal neural crest, which arises 

adjoining the 1-7 somites. The vagal neural crest is crucial for the formation of the enteric 

nervous system (Le Douarin and Teillet, 1973). From 1 to 3 somites there is the cardiac neural 

crest plays an essential role in ventricular septum formation and aorticopulmonary septation. 

Beyond somite 7 is the trunk neural crest, which contributes to the formation of melanocytes, 

dorsal root, and sympathetic ganglia. Lastly, at the caudal level to somite 28 in chick embryos 

(and caudal to somite 24 in embryonic mice and humans), there is a sacral neural crest giving 

rise to the enteric nervous system as well (Figure 1).  
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Figure 1. Different neural crest cell populations (depending on the position along AP axis) 
and fates. A scheme of a chick embryo after two days of incubation is shown. The NC is 
divided into four regions: the cranial, which includes the cardiac NC (from the posterior 
diencephalon to somite 4); the vagal NC (somites 1 to 7); the trunk NC (somites 7 to 28); and 
the sacral NC, which is located posterior to somite 28 (Alkobtawi and Monsoro-Burq, 2020) 
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Neural crest has been the focus of intense research for 150 years and currently gathers 

one of the most advanced gene networks in vertebrate development. Neural crest cells are 

induced in the ectodermal germ layer during gastrulation. They are located in the zone 

bordering the neural plate, in the edge between the neural plate and the nonneural ectoderm 

(Figure 2). Subpopulations of cells with neural crest origin can be distinctly traced throughout 

stages of embryonic development using experimental cell labelling or combinations of specific 

marker genes when they can be defined. During gastrula stage, pax3, and pax7 genes label the 

lateral and posterior neural border, while zic1 labels specifically the anterior NB (Seal and 

Monsoro-Burq, 2020). The formation and specification of the neural border into neural crest is 

regulated by the cooperative activity of several signaling pathways, such as WNT and BMP, 

as well as by TFs such as Tfap2 family, Pax3 and Pax7, Zic1, and Hes4; and this trend is 

consistent among vertebrate species (de Crozé et al., 2011; Hong and Saint-Jeannet, 2005; 

Milet et al., 2013; Monsoro-Burq et al., 2005; Plouhinec et al., 2017; Sato et al., 2005; Seal and 

Monsoro-Burq, 2020). WNT/BMP signals arise from lateral and posterior parts of the body 

axis, and while WNT/BMP inhibitors are expressed in medial areas such as the neural plate 

midline and the notochord (for BMP antagonists) or anterior body axis levels (for WNT 

antagonists). The resulting equilibrium between triggering and inhibiting signals develops a 

gradient of BMP and WNT activity, and the neural plate border cells arise within a location 

exposed to medium levels of BMP/WNT activity (Groves and LaBonne, 2014). Delicate 

modulations of the cell response to these external signals further refine the dynamics of these 

gradients (Alkobtawi et al., 2021). The Notch pathway might participate in the patterning of 

the neural plate border as well (Endo et al., 2002; Monsoro-Burq et al., 2005). The specific 

sources of all these triggers and inhibitors vary across species, but generally, the combined 

effort of these signals generates the neural plate border zone and activate neural plate border 

markers including Msx1, Tfap2a, Gbx2, Zic1, Pax3, Dlx3/5, Gata2/3, Foxi (Khudyakov and 

Bronner-Fraser, 2009; Meulemans and Bronner-Fraser, 2004; Monsoro-Burq et al., 2005; 

Nichane et al., 2008). Tfap2a appears to be a critical activator of neural plate border markers, 

and also necessary for the expression of Foxi genes and Gata genes (Bhat et al., 2013). The 

role of Tfap2a during the induction of neuroblasts and neural crest cells has been mainly studied 

in frog embryos. There, Tfap2a is expressed in the non-neural ectoderm at the beginning of 

gastrulation and is upregulated in the neuroblast region during mid-gastrulation as a result of 

WNT signaling.  
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Figure 2. Scheme of ectoderm positioning. The patterning of the ectoderm is followed by 

interactions that define the neural crest (Pegoraro and Monsoro-Burq, 2013) 
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The function of Tfap2a is crucial at all stages of neuroblast/neural crest development, from 

neuroblast specification to later stages of neural crest cell development. This has been 

demonstrated in several studies using frog embryos (de Crozé et al., 2011; T. Luo et al., 2003). 

Lateral neural border genes Dlx5/6, Gata2/3 and Foxi1/3 regulate each other in numerous 

regulatory loops (de Crozé et al., 2011; Grocott et al., 2012; Kwon et al., 2010; Matsuo-

Takasaki et al., 2005; McLarren et al., 2003). These relations “lock down” the regulation state 

and allow the stabilization/maintenance of expression of neural plate border markers, which 

are often retained in the developing progenitors through later stages of development.  

The process of inducing the neural crest from the neural border zone is characterized 

by the activation of a group of genes known as “neural crest specifiers” (see below) by the 

activity of NB specifiers (see above) and signaling molecules found in the medial neural border 

region. These neural crest specifiers trigger a process called epithelial-to-mesenchymal 

transition (EMT), which allows the neural crest cells to lose their epithelial character, to move 

away from the ectoderm and to acquire the ability to migrate. The neural crest specifiers also 

cross-regulate each other, helping to maintain this unique state (Sauka-Spengler and Bronner-

Fraser, 2008). The earliest NC markers which are expressed in the developing NC in the chick: 

FoxD3, Ets1 and Snai1/2 (Khudyakov and Bronner-Fraser, 2009). In frog embryos, Sox8 and 

Sox9 are among the earliest genes expressed in the neuroblast region that specify neural crest 

cells, preceding the expression of Snai2 and Foxd3. In contrast, Sox10 is expressed later in the 

pre-migratory neural crest cells (Alkobtawi et al., 2018; Hong and Saint-Jeannet, 2005; 

Spokony et al., 2002). Both Sox9 and Sox10 are activated by the canonical WNT pathway, and 

the expression of Sox10 is controlled by Sox9 and Snail2 (Hong and Saint-Jeannet, 2005; 

Spokony et al., 2002). FoxD3 is controlled by the neural border zone specifiers Pax3/7 and 

Msx1 (Monsoro-Burq et al., 2005; Simões-Costa et al., 2012). Pax3 is cooperating with Zic1 

driving NC specification in frog (Bae et al., 2014; Monsoro-Burq et al., 2005; Plouhinec et al., 

2014; Sato et al., 2005). For instance, in Xenopus laevis, Zic1 and Pax3 bind to the promoter 

of Snai1/2 and activate them as immediate-early targets (Plouhinec et al., 2014). Pax3 also 

directly regulates FoxD3 expression in the chick (Simões-Costa et al., 2012). Generally, it 

suggests that Pax3, Msx1, together with Zic1 are essential for the accession of NC identity, and 

activation of multiple NC markers (Milet et al., 2013; Monsoro-Burq et al., 2005). The 

importance of Msx1, Pax3 and Zic1 in neural crest program initiation is clear, but other genes 

in the neural border, such as Myb, Myc, and Prdm1a (Bellmeyer et al., 2003; Betancur et al., 

2010; Powell et al., 2013), are also essential for the NC specification. Moreover, additional 
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signal input appears to be necessary for the expression of NC genes: suppressing the WNT 

signal effects downstream of NB induction results in the loss of NC markers Snai2 and FoxD3 

(García-Castro et al., 2002; Monsoro-Burq et al., 2005; Simões-Costa and Bronner, 2015), and 

WNT has been demonstrated working together with Zic1/Pax3 to drive NC specification (de 

Crozé et al., 2011; Sato et al., 2005).  

The process of neural crest specification culminates in a distinct cell state that, in cranial 

region, emerges located between the neural plate and the posterior placodal region. This pre-

migratory NC expresses the full complement of marker genes, including FoxD3, Snai2, and 

Sox9, as well as some neural border genes such as Tfap2a and Zic1. After specification, NC 

cells undergo delamination and begin to migrate. The process of epithelial-to-mesenchymal 

transition (EMT), which is required for NC migration, is complex and involves the regulation 

of many genes. The WNT signaling pathway is thought to play a role in the regulation of EMT, 

specifically through the control of Snai1 or Snai2 (Yook et al., 2006). One of the main drivers 

of EMT in NC is the modulation by NC specifiers of the structural genes maintaining of the 

epithelial tissue morphology: Ecad (cadherin type 1, associated with high adhesiveness)/Ncad 

(cadherin type 2, associated with low adhesiveness; Figure 3). Further activation of the type 2 

cadherins changes cell-cell adhesion and initiates EMT, involving cell surface modifications 

that lead to the revocation of adherens junctions. Transcriptional control of cadherins is the 

central to this process. Several neural crest specifier genes participate in cadherins regulation 

during EMT, with subtle species-specific variations. For example, Sox10 represses Ncad in 

migratory cells in chick, leading to lower levels in the neural crest than in the neural tube 

(Cheung et al., 2005). Similarly, overexpression of FoxD3 in chick NC leads to decreasing of 

expression of Ncad and increased expression of Cad7 (Cheung et al., 2005; Dottori et al., 2001). 

In frog embryos, the expression of cadherin1 decreases at the beginning of NC EMT, while the 

expression of cadherin2 is increased (Theveneau et al., 2010). In all species studied so far, 

Snai1 and 2 TFs function as repressors that downregulate type 1 cadherins upstream of EMT. 

Notably, Snai genes also represses type 2 cadherin Cad6b (Taneyhill, 2008), that should be 

downregulated for the NC delamination (Coles et al., 2007). Sox9 is an important gene that is 

associated with Snai1 in EMT and plays a role in driving EMT processes together with Snai1. 

(Cheung and Briscoe, 2003; Liu et al., 2013). EMT also includes the activation of the TF Twist1 

mediating together with Snai genes changes in cell-cell interaction that allow for delamination 

and dispersion of neural crest cells (Lander et al., 2013). All this led to the loss of the polarized 

epithelium phenotype and the acquisition of cell motility (Bahm et al., 2017; Morrison et al., 
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2017). In addition to modulating adhesion, other structural changes are required to allow the 

detachment and dispersion of emigrating cells. These include the degradation of the basement 

membrane by metalloproteases promoting cell invasion (Simões-Costa and Bronner, 2015). 
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Figure 3. The main factors that contribute to neural crest epithelial-mesenchymal 

transition. TFs are summarized in a network that covers the transcriptional activity of NC 

specifiers and their partners on cadherins and β integrin during NC EMT. It also includes the 

posttranslational activity of metalloproteinases on cadherins. Direct regulation is represented 

by a solid line, while indirect regulation is represented by a dotted line (Alkobtawi and 

Monsoro-Burq, 2020). 
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1. 2 Neural crest multipotency 

Numerous studies conducted over the last decades confirm the hypothesis that the 

neural crest is a multipotent cell population with the capacity to give rise to multiple potential 

derivatives. The unicellular injection of fluorescent dextran molecules into the trunk and cranial 

neural crest cells before their delamination first confirmed the neural crest multipotency 

(Bronner-Fraser and Fraser, 1988). They showed that the injected cells descendants were able 

to differentiate into multiple cell types such as Schwann cells, and melanocytes, hence meaning 

that some cells of the trunk neural crest were multipotent (Figure 4). In series of other studies, 

researchers cultured clones of cranial neural crest cells obtained from a single quail neural crest 

cell and showed that the cells displayed a broad developmental potential, confirming the results 

obtained by Bronner-Fraser for the whole complement of NC derivatives (Baroffio and Blot, 

1992; Dupin et al., 2018). Recently, in precise vivo labeling with the Confetti system proved 

that individual neural crest precursors are capable of generating multiple cell types (Baggiolini 

et al., 2015).  

Multipotency refers to the ability of stem cells to differentiate into various specific cell 

types. This process involves receiving and responding to certain signaling cues in order to 

maintain a state of "intermediate" flexibility, allowing the stem cells to differentiate into 

different cell types. Multipotency is broader in early development and progressively restricted. 

For example, frog blastula cells of the blastocoele roof are pluripotent as they can colonize the 

tree germ layers experimentally and provide various derivatives in those three domains 

(Buitrago-Delgado et al., 2015). The mechanism allowing neural crest multipotency has been 

matter of debate, as it defies the usual understanding of progressive restriction in potential 

during development: NC has a much broader potential than its progenitor tissue the ectoderm 

(Artinger and Monsoro-Burq, 2021). Mechanisms shared between blastula cells and NC cells 

have been explored. In neural crest as well as in blastula cells genes snai2 and sox5 seem 

responsible for maintaining a multipotency state (Buitrago-Delgado et al., 2015). In this article, 

the authors considered NC as a part of the ectoderm which kept some of the characteristics of 

the early blastula during gastrulation. This contrasts with the concept that the neural crest is a 

cell population that becomes multipotent through the instructive WNT, FGF, and BMP signals.  

To reconstruct the principles governing NC multipotency, VENTX2/NANOG gene 

family, as well as OCT4 orthologs Pou5f3 genes were determined as a vertebrate-specific 

invention, operating downstream of NB specification, necessary for the expression of 
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multipotency markers in the early NC, such as Oct25/Oct4 and tert, and required for the 

formation of the ectomesenchyme lineage but not for the sensory neuronal lineage (Scerbo and 

Monsoro-Burq, 2020), suggesting that during specification, NC progenitors actively gain the 

ability to differentiate into multiple cell types, rather than retaining multipotency from the 

blastula stage. The presence of blastula-stage pluripotency genes may inhibit the formation of 

the neural crest. 

In another work, Zalc et al. proposed that cranial NC cells extend their developmental 

possibility through temporary reacquisition of the pluripotency signature, specifically by Oct4 

reactivation which is needed for the following formation of ectomesenchyme (Zalc et al., 

2021).  

Hovland et al. found that the OCT4-SOX2 dimer is necessary to establish an 

epigenomic signature specific to the neural crest, which is lost as the cells commit to their fate. 

The targets of the OCT4-SOX2 dimer in the neural crest are distinct from those of embryonic 

stem cells, suggesting that the dimer has context-specific functions. The binding of OCT4-

SOX2 to neural crest enhancers requires the presence of the TFAP2A, which interacts with the 

dimer. Thus, Yamanaka factors are being adapted for use in multipotent cells to control 

chromatin organization and determine their potential for development (Hovland et al., 2022). 

WNT is a central modulator of neural crest uniqueness, working reiteratively during the 

formation and differentiation of the NC (Raible and Ragland, 2005). NC cells are supposed to 

lose multipotency after their delamination from the neural tube and become cell type-restricted 

relying on the path of their migration. Ventrally migrating NC cells are limited to neural and 

glial cell fates, and dorsolaterally migrating NC cells are limited to a melanocyte fate (Le 

Douarin and Kalcheim, 1999). Numeral studies have tried to define when and where NC cells 

lose their multipotency and become restricted in their fate. Clonal analysis of NC cells showed 

half of the initial NC cells exist as a cell type-restricted cells, yielding clones of just one cell 

type (Henion and Weston, 1997), while the other half includes bipotent precursors (Lahav et 

al., 1998). A population of early NC cells which express the receptor tyrosine kinase Kit only 

express melanocyte cell type markers in rodents. Moreover, avian Kit+ NC cells always gave 

rise to clones comprising only melanocytes (Henion and Weston, 1997; R. Luo et al., 2003; 

Wilson et al., 2004). This indicates that the expression of Kit is an early determinant of cell 

type fate in dorsolaterally migrating NC cells. Consistent with this idea, none of the ventrally 

migrating NC cells were found to express Kit (Wilson et al., 2004) or differentiate into 
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melanocytes even under conditions that preferred the development of melanocytes (Reedy et 

al., 1998). These studies suggested that migratory NC cells might comprise a population of 

fate-restricted precursors that give rise to single or dual cell types. Bhattacharya et al. proposed 

the mechanism through which Wnt, pluripotency factor Lin28a and let-7 miRNAs control the 

deployment and the following silencing of the multipotency program in a position-dependent 

manner. The increased levels of the Lin28a inhibit let-7, protecting the NC GRN from 

repression by let-7. As NC cells migrate out from the Wnt source, Lin28a levels are decreased, 

resulting in an expression growth of let-7 and succeeding repression of multipotency factors 

(Bhattacharya et al., 2018) 

The molecular principles underlying NC multipotency stay incompletely understood. 

NC express multiple markers of multipotency: c-Myc, Sox2, Oct4, and Snai1, Sox5, which are 

also involved in multipotency in blastula cells (Buitrago-Delgado et al., 2015). Based on these 

shared gene sets, it was proposed that the NC cells keep a multipotent condition comparable to 

blastula multipotent cells, instead of re-acquiring another multipotency program after 

neurulation. Nevertheless, this gene set is not only discovered in multipotent cells and therefore 

cannot be assumed as a “multipotency signature” accounting for the unique ability of NC to 

form multiple derivatives (Briggs et al., 2018).  

In chick embryos, earlier in development at the open neural plate stage, a small fraction 

of cells found at the neural/nonneural border co-express markers of neural plate, NC, and 

placode progenitors, in variable proportion (Roellig et al., 2017). In terms of differentiation, 

the functional meaning of such gene co-expression is yet to be defined. Models of "multilineage 

priming" or "oscillatory gene expressions" are being discussed. In the "multilineage priming" 

model, a stem cell is able to differentiate into multiple cell types through a process called 

"priming," which involves the activation of certain genes and the suppression of others. This 

process allows a stem cell to become primed for differentiation into a particular cell type, but 

it does not necessarily mean that the cell will differentiate into that cell type. In the "oscillatory 

gene expression" model, stem cells regulate their pluripotency and self-renewal through the 

cyclical activation and suppression of certain genes. This process is regulated by a number of 

factors, including the presence of signaling molecules and the activity of transcription factors 

(Hu et al., 1997; Imayoshi et al., 2013).  Robert Kelsh et al. proposed a model in which adult 

pigment stem cells undergo a "progressive fate restriction" process, in which they progressively 

lose the ability to differentiate into certain cell types as they differentiate into others. This 

process is thought to be regulated by a combination of intrinsic and extrinsic factors, including 
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the activation of certain genes and the presence of signaling molecules (Kelsh et al., 2017). 

Also, Sox10 appears as a key element in the NC multipotency GRN, as it is essential for the 

progenitor induction in multiple NC lineages and because its prolonged-expression limits the 

commitment of several lineages while maintaining immature progenitors (Kim et al., 2003). 
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Figure 4. Cell types derived from neural crest cells in adults. Neural crest cells migrate out 

of the developing neural tube and differentiate into multiple cell types, including peripheral 

neurons, adipocytes, smooth muscle cells, and Schwann cells (“Neural Crest-Derived Stem 

Cells - Bielefeld University,” n.d.)
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Thus, the current data suggests that NC cells exhibit a certain degree of heterogeneity 

in their ability to differentiate before and during migration from the neural folds. While some 

NC cells may lose their early multipotency, multipotent cells can still be found in subsets of 

NC cells during migration in both avian and mammalian species. Additionally, NC-derived 

cells isolated at post-migratory stages still contain oligopotent progenitors, such as those that 

give rise to Schwann cells and pigment cells (reviewed by Dupin and Coelho-Aguiar, 2013; 

Dupin and Sommer, 2012). 
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1.3 NC origin and evolution 

The origin of vertebrates about 500 million years ago was a milestone in animal 

evolution, which has since led to the diversification of millions of species. One of the most 

important embryological features common to all vertebrates is the neural crest and the cranial 

placodes. Early chordates probably did not have a "bona fide" neural crest cell population 

delaminating from the central nervous system but maybe a few neural crest-like cells (Jeffery, 

2007). Most likely, the first chordates presumably inherited the neural plate border involved in 

the formation of the medial-lateral pattern of the embryonic neuroectoderm and the production 

of PNS neurons, as well as the ability to generate sensory neurons from the ventral epidermis 

(Zhao et al., 2019). 

With the lineage evolution leading to the tunicates (protochordates) and vertebrates, we 

see the earliest evidence of the neural crest (Figure 5). While protochordate neural tube 

structures are relatively simple, they contain the basic structure (differentiating into four 

regions: the fore-midbrain, midbrain–hindbrain boundary, hindbrain, and spinal cord; 

dorsoventral patterning, but some signaling systems may be lost) and many of the genetic 

mechanisms that are also found in vertebrates. These elements have been preserved throughout 

the lineage leading to these organisms (Holland and Chen, 2001). A considerable number of 

genes are expressed in similar patterns in the neural crest of vertebrates and the dorsal midline 

epidermis of protochordates, suggesting a connection between these two structures in the 

evolutionary history of these organisms: Pax3/7, Bmp family, and Dlx genes (Franz, 1993; 

Holland et al., 1996; Liem et al., 1995; Panopoulou et al., 1998; Robinson and Mahon, 1994; 

Wada et al., 1996). These patterns are most noticeable in the dorsal epidermis of ascidians, 

which give rise to epidermal and sensory neuronal cells. This suggests that the evolutionary 

origins of the neural crest may lie in the dorsal midline epidermis, possibly including the dorsal 

neural tube. If the hypothesis of the origin of the neural crest from the protochordate dorsal 

mid-epidermis is accurate, then still pronounced differences remain between the neural crest 

of vertebrates and its “signs” in protochordates; for example, such key characteristics of the 

neural crest as the ability to migrate and pluripotency. Therefore, there is an assumption that 

the evolution of the neural crest of vertebrates does not consist in the origin of a new cell type, 

but in the acquisition of new cellular properties (Wada, 2001). In addition to the previously 

mentioned migration and pluripotency, the neural crest has acquired another important new 

characteristic: the transfer of anteroposterior positional information (Trainor and Krumlauf, 



 

 34 

2000). Because the NC contributes to skeletal tissues or cranial ganglia that exhibit a distinct 

pattern of innervation consistent with their rhombomeric origin, the anteroposterior 

information of the neural crest is significant for the development of craniofacial structure in 

vertebrates facilitating predatory lifestyle by generation of novel vertebrate head structures 

(Engleka and Epstein, 2016; Muñoz and Trainor, 2015). Regarding the appearance of the 

migration property, the epidermal cells of the dorsal midline of Amphioxus show migration 

(Holland et al., 1996), but these cells do not stratify, and the migration occurs as a “sheet” of 

cells. Therefore, delamination before migration is unique to the vertebrate neural crest. For this 

process, the switching of cell adhesion molecules is essential: cdh2 and cdh6 are expressed in 

pre-migrating neural crest cells, and these cell adhesion molecules must be downregulated for 

neural crest cells to delaminate (Taneyhill, 2008). 

Using knowledge of NC GRN, several attempts were made to determine the 

evolutionary rudiments of NC among invertebrate chordates, the tunicates, and, the 

cephalochordates which were assumed as the closest living invertebrate relatives of the 

vertebrates until recently. The main approach was to analyze the expression of neural crest 

markers during stages of neurulation when neural crest cell delamination occurs in vertebrates 

(Pasini et al., 2006; Stone and Hall, 2004). Nevertheless, Bronner-Fraser and colleagues rather 

than trying to describe NC by one or more putatively definitive genes, they attempted to find 

the whole GRN underpinning NC induction, differentiation and migration (Sauka-Spengler et 

al., 2007). Using this definition, they have aimed to compare theoretical GRNs between 

vertebrates and invertebrate chordates, attempting to find evidence of the evolutionary 

emergence of neural crest and the assembly of its gene regulatory network (Meulemans and 

Bronner-Fraser, 2004; Sauka-Spengler et al., 2007). Both gene-based and gene-network-based 

approaches for NC among invertebrate chordates have shown that Bmp2/4 is expressed in the 

non-neural ectoderm and that Pax3/7, msx1/2, Zic, and snail are expressed at the neural plate 

border. Yet, expressions of Id, Ets, Twist, SoxE, and FoxD, were not seen at this position. 

Clearly, the majority of genes involved in NC GRN are expressed in mesodermal, rather than 

neural plate derivatives. These outcomes indicate that, although parts of the genetic program 

that controls NC in development were present in invertebrate chordates, it was not until the 

emergence of NC at the establishment of the vertebrate lineage that the GRN was ultimately 

established (Simões-Costa and Bronner, 2015). Therefore, an evolutionary rudiment of NC/NB 

cells exists in invertebrate chordates, though it was just after the evolution of the vertebrates 

that the other essential genes required for NC production were recruited into this program 
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(Martinez-Morales et al., 2007). Therefore, it was defined that NC cells are an exclusively 

vertebrate characteristic. 

Overall, the evolution of NC cells is a complex and multifaceted process that is still not 

fully understood. Further research is needed to better understand the mechanisms underlying 

the evolution of NC cells and their role in the development of vertebrates. It is necessary to 

reassess this process as a series of acquisitions of novel and unique cell properties, such as 

pluripotency and migration. By doing so, we can better understand the complex history of the 

neural crest and its development in different organisms. These new cellular properties are 

essential to the evolution of the finely patterned craniofacial structures that are a defining 

feature of vertebrates. One limitation is that there are relatively few NC-specific gene 

expression datasets available, which limits our ability to study the evolution of NC cells and 

the mechanisms that underlie their development. Thus, to better understand the gene expression 

patterns of NC cells and how they have evolved, it would be helpful to generate new scRNA-

seq datasets from a variety of species (from cephalochordates to tunicates and vertebrates). 

These datasets could be used to identify NC-specific gene expression patterns and to compare 

NC gene expression across different species. 
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Figure 5: A model proposing the evolution of neural crest cells through successive stages, 

traced back to their ancestral progenitors within the chordate phylogeny. The patterning 

of the neuroectoderm into a peripheral nervous system (PNS) and the generation of cells that 

can migrate throughout the embryo predate the emergence of chordates and vertebrates, and 

are therefore is not unique to neural crest, suggesting that early chordates likely inherited these 

capabilities from earlier bilaterian ancestors. It is these capabilities (a neural border with 

migratory cells) that may provide a developmental foundation for the evolution of neural crest-

like cells in the ancestors of tunicates and vertebrates, following their separation from the 

cephalochordate lineage approximately 600 million years ago (York and McCauley, 2020)
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1.4 Gene regulatory networks discovery 

Gene regulatory networks (GRNs) play a crucial role in development by controlling the 

activity of genes.  

GRNs are hierarchical: Davidson has proposed that GRNs are hierarchical in nature, with 

certain genes acting as "master regulators" that control the expression of other genes. These 

master regulators are thought to act at the top of the hierarchy and to play a key role in 

orchestrating the expression of downstream genes. 

GRNs are modular: Davidson has also suggested that GRNs are modular, with different 

modules of genes acting as functional units that are responsible for specific developmental 

processes. These modules are thought to be relatively autonomous, with each module acting 

independently to control the expression of a specific set of genes. 

GRNs are dynamic: GRNs are dynamic and responsive to changes in their environment, 

including both extrinsic factors such as signaling molecules and intrinsic factors such as the 

activity of other genes. Davidson has proposed that this dynamic nature of GRNs allows them 

to respond to changes in their environment and to adjust gene expression in response to these 

changes (Davidson, 2010, 2009; Erwin and Davidson, 2009).  

These networks are made up of transcription factors (TFs) that bind to specific DNA 

sequences in target genes and regulate their activity. The binding of these transcription factors 

can be influenced by a number of factors, such as the presence of coactivator or corepressor 

proteins, the overall structure of the DNA, and chemical modifications to the DNA (Blitz et al., 

2017).  

The construction of such networks requires the identification of the involved regulatory 

genes and the characterization of their temporal and spatial patterns of expression. Different 

types of interaction (activation/repression) between TFs or signals can be investigated using 

perturbation analysis, in which the function of each gene is specifically blocked. The resulting 

expression changes are then integrated to reveal direct and non-direct relationships and uncover 

the structure of the GRN and epistatic relationships. Modulating the expression of regulatory 

genes can have various effects on an organism, depending on the importance of the network 

linkage that is disrupted. If the function of a key node is affected, it can potentially disrupt 

critical processes in embryo development and cause significant changes to the phenotype. 
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However, in some cases, the changes to the phenotype may be minimal if the affected gene has 

a less significant role in the network (Li and Davidson, 2009). To establish a GRN by 

interpreting perturbation data it is essential to follow certain logic rules (Li and Davidson, 

2009): 

● Temporal restriction: (1) direct transcriptional activation requires simultaneous 

expression of TF, and the target gene or TF should be expressed before the target gene;  

● Spatial restriction: (1) TF and target gene should be expressed in the same domain; (2) 

direct transcriptional repression requires that the repressor and its targets do not overlap 

in the same region; 

● Parsimonious topology: (1) the direct target of the transcription factor is influenced 

more strongly than the indirect; (2) the interaction is considered indirect if the identified 

direct links are enough to explain the data; 

● Special linkages: double negative control logic is needed when tampering with a 

canonical repressor causes a decrease in target gene expression. 

The same rules are used when building a regulatory gene network based on other types of data.  

One of the most accurate and by far the one of the most common types of disturbance 

used in the construction of GRN was the introduction of morpholine-substituted antisense 

oligonucleotides (MASO). Although in certain circumstances the gene expression is also 

controlled in other ways. Morpholine oligonucleotides block the access of other molecules to 

small (about twenty-five nucleotides long) specific sequences due to complementary pairing 

with the corresponding RNA. Morpholine oligonucleotides serve as research tools in reverse 

genetics for gene knockdown. From the very beginning of the development of the GRN, the 

MASO blockade of gene expression has been the main tool (Levine and Davidson, 2005; 

Monsoro-Burq et al., 2005; Sinner et al., 2006). MASO embryonic toxicity is low, and it can 

be inserted by microinjection. However, morpholinos may have unintended effects on the 

expression of other genes, and that this can cause "artifacts" or misleading results in research 

studies (Gerety and Wilkinson, 2011). To minimize possible artifacts, it is important to use 

multiple experimental approaches and consider multiple lines of evidence. This can help to 

validate the results of morpholino studies and increase confidence in the conclusions that are 

drawn (Eisen and Smith, 2008). 
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One example is the work of Schlosser & Maharana where was used microinjections of 

mRNAs and Morpholino antisense oligonucleotides (Mos) into embryos of Xenopus laevis to 

study how early ectodermal TFs FoxI1a, Ventx2, Msx1, TFAP2, and Zic1, Pax3 and Hes4 

affect the establishing of pre-placodal ectoderm, neural crest, and neural plate regions during 

gastrulation (Maharana and Schlosser, 2018). Starting with MO-mediated knockdown of early 

ectoderm TFs they investigated that expression of Six1 and Eya1 in pre-placodal ectoderm was 

suppressed in a high proportion of embryos after knockdown of both dorsally limited TF Zic1, 

Pax3, and Hairy2b, and ventrally limited TF AP2, Vent2, and FoxI1a. This indicated that all 

TFs are required to establish the expression of Six1 and Eya1 in the pre-placodal area. After 

exploring all significant early ectodermal TFs, together with the results of some previous 

studies, they have generated a GRN regarding the formation of pre-placodal area and NC 

territories in neural borders and have proposed a new model for neural border development. 

Overall, the paper provides new insights into the genetic and regulatory mechanisms that 

underlie the formation of pre-placodal ectoderm in Xenopus and may help to inform future 

research on this topic. Another limitation of the MO is that there is no information about direct 

or indirect TF-target relationships.  

The direct and indirect TF-target interaction might be available using publicly available 

databases e.g., RcisTarget (Aibar et al., 2017). RcisTarget determines TF binding motifs that 

are over-represented in a certain gene list. It picks DNA motifs that are greatly over-represented 

in the region of the transcription start site of genes in the gene set. This is achieved using a 

database that contains genome-wide rankings of species for each motive. Motives that are then 

annotated for TF and those that have a high enrichment index are kept. Finally, for each motif 

and set of genes, it predicts candidate genes and consequently defines direct links TF-target. 

The limitation of the approach is that current TF motifs databases are available only for human, 

mice, and drosophila and it heavily relies on particular cellular context. Therefore, in order to 

do this analysis for other model organisms, the scientist will most likely need to update the 

current evolutionarily closest database with data obtained from e.g., the species-specific 

Chromatin Immunoprecipitation (ChIP-seq) analysis. Such experimental methods together 

with sequencing can determine direct targets of transcriptional regulators. Yet, ChIP-seq 

requires optimization for each individual TF and the use of antibodies that can identify the 

native protein or a labeled version of it. This can be a technical challenge, particularly for TFs 

where the label or tag interferes with function, for species that are not easily transformable, or 

for tissues that are limited in availability (Park, 2009). Since the global transcript levels are 
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comparatively easy to measure in most species and tissues, several approaches have been 

created to identify relationships between regulators and their targets by examining the changes 

in transcription levels across many samples (e.g., Bonneau et al., 2006; Margolin et al., 2006). 

These approaches provide a first approximation of regulatory interactions that are used to direct 

further experimental validation. The hypothesis of these approaches is that the regulatory 

association between a TF and targets can be determined from a similarity between the RNA 

levels of the regulator TF and targets. With the adequate variation in expression, the targets of 

a given TF can be predicted based on correlated changes in expression. Initial strategies 

developed to do this focused on the correlation between TF and targets, considering that 

activators are positively associated and repressors are negatively associated with their targets’ 

expression levels (except that one TF can be activator or repressor according to different cell 

contexts).  

Additions to this simple idea have contained pre-clustering of the data, modifying 

regression analysis, including training classifier models, and integrating prior biological 

knowledge or extra experimental data. Each of them has enhanced the capacity to determine 

relationships between TF and targets, even in sparse/noisy data (Huynh-Thu et al., 2010; 

Marbach et al., 2012; Margolin et al., 2006). In 2010, the DREAM5 challenge assessed the 

capacity of different methods to identify GRNs from gene expression data (Marbach et al., 

2012). One of the top-performing strategies was GENIE3 (Huynh-Thu et al., 2010). This 

approach uses the machine-learning abilities of random forest to specify targets for specified 

TFs (Breiman, 2001). Other successfully implemented methods include Inferelator, ARACNE, 

CSI, and SVM (Bonneau et al., 2006; Margolin et al., 2006; Penfold et al., 2012; Qian et al., 

2003). Typical to these methods is the use of transcript levels to assess the association between 

a TF and its targets. Experiments conducted in time series can produce more kinetic knowledge 

useful for associating TFs and potential targets. Many methods were developed that take benefit 

from the more information obtainable from time series data as reviewed in Bar-Joseph et al., 

2012 (Bar-Joseph et al., 2012). Yet, the steady-state transcript level as estimated by most high-

throughput transcriptional assays such as RNA-Seq is a measure of both: transcriptional 

activity and mRNA stability. Thus, the association between expression levels alone may not 

provide a direct estimation of transcriptional regulation as it can be confounded by the RNA 

stability of the target. Additionally confusing the identification of TF relationships is the fact 

that one gene can be controlled by different TFs in response to different triggers. Also, the 
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epigenetic regulations that have delayed action (poised enhancers) are ignored in this approach 

e.g. JmjD2a (Strobl-Mazzulla et al., 2010).  

Single-cell expression data is particularly advantageous for computing GRN since, 

unlike bulk RNA data, it does not confuse bio-signals by averaging all cells in one sample. 

However, this data presents several challenges, including significant cellular heterogeneity, 

low density, differences in sequencing depth among cells, and the influence of the cell cycle. 

These characteristics make it difficult to accurately analyze and interpret the data. Nevertheless, 

the development of GRNs inference methods has prompted the development of comprehensive 

comparative frameworks. Several unsupervised/self-supervised approaches have been 

suggested to predict single-cell GRN. SCODE (Matsumoto et al., 2017) uses standard 

differential equations to rebuild GRN. This approach utilizes linear depends on a specific 

relational expression which can be evaluated using linear regression. GENIE3 (Huynh-Thu et 

al., 2010) or GRNBoost2 (Moerman et al., 2019) which is the first step of SCENIC (Aibar et 

al., 2017; Van de Sande et al., 2020), use tree-based regressions. This method involves fitting 

a tree-shaped model to the data, with the regulators from the provided list serving as the 

branches. The significance of each gene in the model is used to determine the weight of its 

interactions with the target gene's pattern. By combining the weighted relations for all of the 

genes, they are able to construct regulatory networks (Figure 6). PIDC utilizes ideas from 

information theory: for every pair of genes, given a third gene, the method splits the pairwise 

mutual information between the first and second genes into a duplicative and distinctive 

component. It calculates the proportion between the distinctive component and the mutual 

information. The aggregate of this proportion over all genes is the unique contribution between 

two genes. This approach then operates per-gene thresholds to determine the most significant 

relations for each gene. Another algorithm, DeepSEM (Shu et al., 2021) presents a structural 

equation model with a β-VAE framework to predict the regulatory connections between genes 

in a GRN. A recent test of twelve GRN methods demonstrated that the algorithms struggled to 

predict real GRNs and suggested that poor performance was due to insufficient resolution in 

the scRNA-seq data (Pratapa et al., 2020).  
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Figure 6. GENIE3/GRNboost2 algorithm. A model is created for each gene by using 

expression levels of all other genes as input values and expression levels of that specific gene 

(G) as the output values. From these models, a function is learned and a ranking is calculated 

for all genes, with the exception of gene K. The gene rankings are then combined to determine 

the overall ranking of all regulatory links (Moerman et al., 2019). 
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The process of generating gene regulatory networks typically involves three main steps. 

First, the raw data is preprocessed in order to make it more amenable to analysis. This can 

include techniques like variational autoencoders, which convert the data into a more 

manageable form. Next, relevant features are extracted from the preprocessed data in order to 

identify patterns and trends. Finally, these patterns are used to build a generalized model of 

gene regulation, which can be used to make predictions or gain further insight into the 

underlying biological processes (Eraslan et al., 2019). Computing the underlying pattern of 

gene regulation is basically searching for the right GRN among all possible GRNs that best fit 

the real data (e.g., using random forest). Although substantial advancement has been made, 

deriving a network of regulatory interactions between genes still stays a challenge. For scRNA-

seq data, GRN reconstruction approaches on bulk RNA data are not directly applicable. As the 

biological value of the sample changes from the average of several cells in the bulk data to the 

value of one cell, the shape of the gene expression data also changes. For now, since the 

approaches developed for single-cell transcriptomics usually demand a large number of time 

points for GRN generation, it is usually appropriate for a small number of genes. Adding 

numerous genes to a network generation may demand the development of algorithm 

considering many additional regulatory relations between added genes: as the number of genes 

extends, the number of edges and the need for input data can increase dramatically. 

Another approach which can be applied for GRN generation, scFates, is a 

computational tool that is developed to predict cell fate in single-cell RNA-sequencing 

(scRNA-seq) data. It is based on the idea that the genes that are expressed in a cell at a given 

time can provide clues about the cell's developmental potential and its potential to differentiate 

into different cell types. scFates uses machine learning algorithms to analyze scRNA-seq data 

and predict the cell fate of individual cells based on their gene expression patterns. It can be 

used to study the developmental potential of cells in different tissues and at different stages of 

development, and to identify the genes and pathways that are involved in the regulation of cell 

fate (Faure et al., 2023). 

The development of transcriptome analysis has facilitated genome-wide studies of 

transcription patterns in early embryos. Several recent studies have presented transcriptomes 

either using whole embryos or with more defined spatial regions by combining embryo sections 

and spatial reconstruction (Blitz et al., 2017; Plouhinec et al., 2017). However, given the 

heterogeneous nature of tissues, the bulk tissue networks mostly describe the average activity 

of all cell populations, in which the most common cell types dominate. Therefore, scRNA-seq 
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is a more convenient source for obtaining cell type-specific GRNs. Recently, a large number 

of works have been published in the field of predicting GRN during the development of an 

embryo (Briggs et al., 2018; Kotov et al., 2022; Soldatov et al., 2019; Wagner et al., 2018; 

Williams et al., 2019). In one of them Briggs et al. profiled 137000 single-cell transcriptomes 

of Xenopus tropicalis in ten time points from stage 8 to stage 22 (from transcription start to 

early organogenesis). The main objective of the work was to identify new cell types at different 

stages of development of the frog embryo, as well as visualize and explain the transitions 

between one cell type to another. To do this, the researchers invited a large number of 

specialists in the field of developmental frog biology to annotate all the cell types. As a result, 

over 10 time points, each cell was connected to a similar cell from a different time point, 

thereby obtaining developmental transitions. In Xenopus, it was also observed that about 50% 

of transcription factors were reused, indicating a degree of conservatism in their usage. This 

work is interesting due to the high number of cells in the dataset, which can be used as 

additional data in predicting gene regulatory networks since the average depth and the number 

of genes and transcripts per cell in the data are relatively insufficient.  

Another article by Soldatov et al. (Soldatov et al., 2019) focused on the later stages of 

mouse embryonic development (E8.5-E10.5 stages) and extracted Wnt1 and Sox10 positive 

neural crest cells. Using the SmartSeq2 protocol they managed to get a deep coverage (7000+ 

genes per cell) but only a few cells (around 200). They used the PAGODA method (Fan et al., 

2016) to cluster cells. RNA velocity was applied to get the transcriptional dynamics of cells 

(La Manno et al., 2018). Two distinct subpopulations in pre-migratory neural crest cells were 

identified. The earliest population before EMT included cells that have not yet begun to 

delaminate from the neural tube. It is marked by the peak expression of neural plate border 

specifiers previously associated with NC, such as Zic1, Msx1. The second subpopulation is 

marked by activation of the key EMT gene Snai1 and the absence of Atoh1 and is accompanied 

by sequential temporary activation of a set of genes, including Dlx5, Pak3, Pdgfra, and Hapln. 

The fate determination of neural crest cells involved a series of sequential binary decisions 

involving the coactivation and gradual commitment to specific programs, and is achieved 

through the synchronization of relevant programs and repression of competing ones. 

Another work is the profiling of transcriptional and chromatin dynamics of specifically 

extracted neural crest cells. Encouraged by the lack of unbiased representation of vertebrate 

neural crest GRN, Williams et al. developed an integrative approach that allows a depiction 

and interrogation of NC GRN. First, they did transcriptional profiling in NC cells. The main 
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difference from previous work is a more precise selection of NC (Citrine-positive) but only 

300 cells for 5-6ss (somite-stage or HH9) and 600 cells for 8-10ss (HH10) for bulk RNA-seq 

and around 3000 cells for scRNA-seq. Transcriptional profiling included a comprehensive 

combination of SmartSeq2, 10X (only for 6-7ss), and bulk RNA sequencing. For bulk RNA-

seq, they applied a widely used WGCNA (Langfelder and Horvath, 2008). This method allows 

to construction the gene networks and detect gene modules or hubs based on hierarchical 

clustering in a matrix of co-expressed genes. Using this method, they detected previously 

known clusters with some divergence. To further improve the analysis, Williams et al. used 

ATAC-seq and Capture-C (Davies et al., 2016) to identify the NC-specific topologically 

associating domain and five enhancers within this domain. Comparing this NC-specific and 

non-NC epigenetic information revealed chromatin accessibility changes in different cell types 

reflect such changes in tissue-specific enhancer activity. Additionally, they performed ChIP-

seq in neural crest cells for one of the super-enhancers (SE) H3K27Ac, a cluster of elements 

within a topologically associating domain. Using the rank ordering they got a sorted list of 

super-enhancers (SEs). Focused on the Sox10 SE locus (one of the top in the list of SEs and an 

important gene in NC development) researchers identified a cluster of elements near the Sox10 

domain. All of the detected enhancers of the Sox10 SE acted in conjunction and were critical 

for Sox10 expression during NC EMT. Together with results of functional contribution of 

enhancers using CRISPR-mediated knockout, ChIP-seq results helped to understand that some 

of the enhancers (enh-99) might be essential for initiation, but not for maintenance of neural 

crest program. Furthermore, some stem cell regulatory elements (enh-89) can be reused in 

neural crest cells, and some (enh-84, enh-85, enh-87) are essential for NC robustness. The early 

epigenomic heterogeneity was also observed on a transcriptional level which is confirmed by 

SmartSeq2 and 10X Chromium scRNA profiles (137 and 3091 cells). Finally, to generate NC 

GRN, Williams et al. integrated scRNA co-expression data and direct TF inputs (obtained 

through enhancers motifs search). After integration, they focused only on k-CI3 and k-CI1-

related GRNs. As a result, they revealed that k-CI3 enhancers manage the early establishment 

of the neural progenitor state between NC and non-NC cells. 

Therefore, in order to gain a more comprehensive understanding of gene regulatory 

networks, it is necessary to use a variety of analytical techniques and data sources (e.g., bulk 

RNA-seq, scRNA-seq, ChiP-seq, Capture-C, ATAC-seq, scATAC-seq, and Perturbation-seq). 

Moreover, the results can be improved using the same data, for example, by examining 

enhancers for other genes (in the article Sox10 SE is only explored). Selecting the most accurate 
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algorithms for predicting relationships between genes is also crucial, as demonstrated by recent 

benchmarking studies (Holland et al., 2020; Pratapa et al., 2020), where Pratapa et al. compared 

methods on the three different types of networks: synthetic, literature-curated Boolean models 

and transcriptional regulatory networks, and Holland et al. applied bulk-based methods to 

scRNA-seq datasets (Figure 7).  
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Figure 7: GRN predictors benchmarking. This summary table compares the properties and 

performance of various GRN inference algorithms. The table includes information about the 

methodology and input requirements of each algorithm, whether the method requires time-

ordered cells, and whether the inferred edges are directed and signed (indication 

activating/inhibiting role). The table also provides summary results for the performance of each 

algorithm on various measures of stability, as well as the running time and memory usage of 

each method. The results in the "Pseudotime" column are only relevant for the seven methods 

that require this input (Pratapa et al., 2020). 
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1.5 Research question and PhD project 

Understanding the fundamental biology of the neural crest is important because 

dysregulation of the gene regulatory networks that control neural crest development can lead 

to various disorders and diseases, including craniofacial abnormalities and neurocristopathies. 

Our enhanced knowledge of the NC gene regulatory network (NC GRN) can be used to 

improve the understanding of human diseases. These regulatory networks are biological 

computational modules that carry out decision-making processes on a molecular level.  

There is still much that is not known about how the fate of NC cells is initiated during the 

patterning of the dorsal ectoderm. This includes how NC acquire their regional diversification 

during the early pre-migratory stages. Also, it is unknown how the NC is heterogeneous at 

early pre-migratory stages, and what are the key genes that trigger the heterogeneity. So further 

research is needed to identify and characterize these key genes and their roles in NC 

heterogeneity and cell fate decisions. Additionally, the origins and evolution of the neural crest 

from an NC-like state are not well understood. 

Thus, my PhD project primary concern is the focusing on the understanding of the gene 

regulatory networks that control the development of particular subpopulations of neural crest 

cells. Our focus is on the gastrula pre-migratory stages of the NC, during which we have studied 

NC fate in comparison to placodal, neural plate, and non-neural ectoderm fates, as well as 

different NC fates including various vagal and cranial subpopulations. Our goal is to 

understand how NC cells differentiate into these different fates and how this process, known 

as branching, is regulated at the molecular level. Specifically, we are interested in identifying 

and characterizing the key genes that are involved in this process and determining how they 

contribute to the development of different NC subpopulations and fates. In addition to our main 

focus, we are also interested in expanding upon the current knowledge about known key 

regulators such as Pax3 and Tfap2e and specific miRNAs, which have been shown to be 

important for the NC. 

To do this, I have used a variety of available approaches, including computational 

predictions and results from experimental approaches generated in the team.  Therefore, we 

attempted to achieve the following goals: 

- Develop a comprehensive strategy for predicting and validating gene regulatory 

networks 
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- Implement this approach on the neural crest at early and poorly studied pre-migratory 

stages and provide the tree of the pre-migratory NC cells 

- Develop an approach to study the cell type molecular profile transition. Main ambition 

would be providing the tool that will predict the cell type evolution. 
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2. Results 

2.1 From neural border to migratory stage: A comprehensive single-
cell roadmap of the timing and regulatory logic driving cranial and 
vagal neural crest emergence 
Aleksandr Kotov, Mansour Alkobtawi, Subham Seal, Vincent Kappès, Sofia Medina Ruiz, Hugo Arbès, Richard 

Harland, Leonid Peshkin, Anne H. Monsoro-Burq 

doi: https://doi.org/10.1101/2022.03.23.485460 

2.1.1 Overview of key findings 

Despite decades of study using various cellular and molecular approaches at the tissue 

level or on small groups of cells, the induction of neural crest cell fate during dorsal ectoderm 

patterning with respect to adjacent cell types (placodes, nonneural ectoderm, and neural plate) 

remains unclear. Furthermore, the mechanisms underlying the regional diversification of neural 

crest cells during the early pre-migratory stage are not well understood. Previous analyses of 

single-cell transcriptomes have largely focused on subsets of neural crest cells after their 

emigration from the neural tube (Soldatov et al., 2019; Williams et al., 2019) or pre-migratory 

NC but on limited anterior-posterior domain or limited developmental period (Lukoseviciute 

et al., 2018; Zalc et al., 2021). The crucial steps of pre-migratory neural crest diversification 

(along the whole cranial and vagal areas) have not been addressed with those approaches yet. 

In this work, we have used a combination of scRNA-seq predictions and experimental 

validation with the aim to greatly expanded our knowledge of the early stages of neural crest 

development. So, the main questions were: 

What are the key regulatory genes that control the development and differentiation of neural 

crest cells?  

How do the gene regulatory networks control neural crest development change as the cells 

progress through different stages of development from induction to migration?  

What is the relationship between the neural crest cells and the other cell types that arise from 

the neural border zone (e.g., placodes, non-neural ectoderm, and neural tube)? 
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2.1.2 Temporal characterization of pan-NC signature 

In the first part of our study, we used libraries from a previous screen, re-sequenced in 

order to improve quality of the data (genes/counts per cell). Then, from the whole embryo 

dataset, we generated a single-cell transcriptomic analysis of 6135 neural crest (NC) cells for 

early gastrulation to early migration stages (Figure 1A of the paper 1). First, we sought to 

identify pan-NC markers based on their NC-specific expression and low variation across the 

NC population. We identified tfap2b, c9, c3, and sox8 as highly expressed throughout NC 

during neurulation, closely followed by snai2 and sox10, with specific pan-NC expression 

(Figures 1B-C of the paper 1). Stage-specific expression variations suggested that snai2 is the 

best marker for labeling early NC cells at stages 13-16, followed by tfap2b from stage 14 to 

20, and c3, c9, and sox8 between stages 14 to 18. These findings provide sc-transcriptomics 

insights into the timing of Xenopus NC specification and regionalization during embryonic 

development, confirming known NC markers e.g., tfap2b/sox9 and describing poorly described 

previously e.g., c9/c3.  

2.1.3 In silico validation of NC cells selection 

We sought to confirm the accuracy of the dataset of neural crest cells by creating a 

classifier that could accurately identify these cells using their gene expression signature. Thus, 

we validated the NC selection method by designing a LightGBM (Ke et al., 2017) NC classifier 

and testing it on another vertebrate organism, 14 hpf zebrafish (Wagner et al., 2018), to evaluate 

its accuracy for NC annotation. The result of 0.95 for the AUC score and 0.66 for F1 score was 

remarkable since it was robust despite significant species-specific variations in the expression 

of classical NC gene markers between frog and fish, and despite a strong batch effect between 

the datasets (595 genes from the list of the most important genes for NC classification were 

missing from the zebrafish dataset; Figure 1 figure supplement 1 of the paper). This result 

confirmed the accuracy and robustness of our NC cells selection criteria. This part of work was 

also used as basis for a development of the computational tool scEvoNet (Kotov et al., 2022; 

see the last chapter of the Results section) 

2.1.4 High heterogeneity in NC cells during NC induction 

To identify subclusters within the neural crest cells, we determined the optimal number 

of clusters by incrementally increasing their number and evaluating the presence of biologically 

meaningful gene expression patterns. We uncovered the highly diverse transcriptomes 
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underlying pre-migratory NC cell biology along a cranial to vagal segment of the body axis. 

We defined 16 clearly distinct states with specific gene signatures, compared to 8 states 

previously described in (Briggs et al., 2018; Figure 2A of the paper 1). Ten of these clusters 

displayed an explicit mesenchymal NC signature expressing various levels of itga4/integrin-

a4, vim/vimentin, and fn1/fibronectin (Figure 2 figure supplement 1 of the paper 1).  

Additionally, we uncovered two previously undescribed clusters: a muscle-like NC 

subpopulation, expressing actin and myosin-like genes (actnc1+, myl1+ cells), and a cluster of 

migrating NC cells expressing the canonical early neural crest signature (tfap2b, c9) without 

additional specific gene expression, suggesting that these cells continue to remain unbiased and 

are potentially multipotent (Figure 2 figure supplement 2 of the paper 1). Unexpectedly, as 

early as at gastrula stages 12-13 we also detected three NC cell states clearly distinct from the 

main early NC state: one vagal hnf1b+ cluster, two cranial cyp26c1+, and rpe65+ clusters. 

Thus, the study identified 16 distinct states of neural crest cells with specific gene signatures, 

including two previously undescribed clusters, and found that some neural crest populations at 

gastrula stages 12-13 are distinct from the main early neural crest state. 

2.1.5 Connectome analysis 

Exploring the GRN in neural crest development can provide insight into how these 

networks control the formation and function of neural crest cells, which are important for the 

development of various tissues and organs in the body. Thus, by applying the GRNBoost2 on 

selected NC cells we retrieved a network of over 16 thousand potential TF-targets connections 

with a median of 22 connections per TF (Table 1 in the paper 1). Among the most connected 

genes for each stage, we retrieved the previously known neural border specifiers pax3 and zic1 

at NC induction stages, consistent with their demonstrated role at the heart of the NC-GRN 

(Plouhinec et al., 2014), as well as other known important for NC development genes zic3, 

olig4, sox9, and the anterior NC marker dmbx1 (Hernandez-Lagunas et al., 2011; Nakata et al., 

1997; Simoes-Costa and Bronner, 2016; Spokony et al., 2002). At pre-migratory stages, the 

prominent nodes included the NC specifiers tfap2b, sox10 and snai2, the anterior NC markers 

rpe65 and alx1, and the hindbrain hox gene hoxb3. At migration stages, tfap2e, mycn, dlx2 and 

egr2 (krox20) displayed both high expression and many connections. Thus, by analyzing the 

largest available dataset on neural crest development, we have constructed a comprehensive 

gene regulatory network that reveals previously unidentified mechanisms of regulation in 

neural crest development. 
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In order to directly validate this network experimentally, we used ChIP-seq and 

Morpholino knock-down experimental validation (Figure 4 in the paper 1). For knockdown 

experiments, previously validated antisense morpholino oligonucleotides were used to deplete 

Pax3, or TFAP2e transcripts (Hong et al., 2014; Monsoro-Burq et al., 2005). Each explant was 

sequenced individually (RNA-seq). This revealed that expression of 1333 transcripts were 

decreased in Pax3 morphant NB, confirming that Pax3 is essential to activate a large NB/NC 

gene set. We verified direct Pax3-binding targets in vivo using ChIP-seq on mid-neurula stage 

embryos and identified 657 potential targets in the whole embryo, of which 475 were expressed 

in the SC NC dataset. Moreover, 80 of the ChIP-seq-validated targets were predicted by GRN-

Boost2 modeling including psmd4, psen2, sp7, notch1, and hnf1b. Using a similar approach, 

we confirmed TFAP2e as an important regulator at early EMT stages. Among 848 targets of 

TFAP2e predicted from scRNA-seq, 99 showed changed expression after TFAP2e knockdown 

in NC in vivo (e.g., tfap2b, sox10, sncaip). Moreover, using ChIP-seq for TFAP2e, we 

identified 642 targets expressed in the NC dataset, among 805 targets for the whole embryo, 

including top-scored rmb20, pim1, arl5b and tfap2a. In both Pax3 and TFAP2e cases, we find 

that the three approaches result in partially overlapping gene target lists due to their use of 

different parameters (stage-wise, expression-wise, etc.). The validation results using ChIP-seq 

and Morpholino knockdown experiments confirm the importance of Pax3 and TFAP2e in 

regulating gene expression during neural crest development, and expand our knowledge about 

the actual target genes of these transcription factors. The use of multiple approaches also 

reveals overlapping target genes, highlighting the utility of this approach. 

2.1.6 NC branching analysis 

Next, we applied branching analysis. Branching analysis of scRNA-seq data involves 

identifying patterns of gene expression in individual cells that correspond to specific route, and 

is an important tool for understanding the underlying regulatory mechanisms of cellular 

differentiation and development. This approach is different from traditional correlation 

expression analysis, which examines the relationship between gene expression levels across a 

population of cells, because it allows for a more detailed and nuanced understanding of gene 

expression patterns within individual cells in the context of time. Through branching analysis, 

we uncovered gene programs governing the bifurcation, consisting of ‘early’ genes activated 

before bifurcation and ‘late’ genes with continued expression in each branch (late): nrp2, alk, 

rnd1, adam19 (early) and shisa3, frdm6 (late) for the cranial branch, and mafb, klb, mdk (early) 
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and prdm1, cf1, hoxd3 (late) for the vagal branch. For the cardiac NC cluster, early-enriched 

transcripts were mafb, mycn, prdm1, nolc1 and eef1d, late ones were egr2, hoxd3, epha4 and 

abtb2. For the ENSp cluster, early markers were olig4 and fbn2. In order to test experimentally 

if ‘early’ factors affected the expression of ‘late’ genes, we examined which late ENSp genes 

may be targets of the early TF Pax3, through ChIP-seq and depletion analyses. Some genes 

were bound by Pax3 (cfb, bmp5), while others showed increased (krt8) or decreased (cldn1, 

hoxb6, hoxa7) expression without evidence for Pax3 binding. Similar analysis on cranial NC 

clusters showed that branch 10-specific genes were rpe65, dmbx1, rgr, lmx1a, and zfhx4, while 

late gene programs included alx1 and bmper. Interestingly, pax3 was expressed early in the 

cranial bifurcation from 7 towards 10 and 11; expressed in cluster 7 cells, pax3 was specifically 

enriched in rpe65+ cluster 10. The Pax3 ChIP-seq and MO datasets revealed that rpe65+ 

branch-specific transcripts comt, slc23a2 and rpe65 were decreased after pax3 depletion while 

others, bmper, f10, sema3a, dmbx1, slc16a12 and kif26a, were bound by Pax3 in vivo. TFAP2e 

depletion and ChIP-seq validated that TFAP2e depletion reduced the expression of nine hox-

dlx2+branch-specific genes (e.g., early gene mef2c, and late genes dlx2, mmp14, vim), and that 

TFAP2e bound four other genes in cluster 11 signature (c9, vim, mmp14 and mycn). Here, we 

identified specific genes and transcription factors that play a role in the bifurcation process 

during vagal and cranial NC development, and found that certain "early" transcription factors 

can affect the expression of "late" genes in the process. This contributes to a deeper 

understanding of the genetic mechanisms underlying bifurcations during NC development. 

2.1.7 The NB zone signature 

The NB zone is a region of cells in the developing neural tube that is characterized by 

the expression of certain transcripts, including Pax3. However, the NB zone does not have a 

single cell RNA signature. Here we identified a detailed signature for the tfap2a+zic1+cells (NB 

zone). Several transcripts were enriched from stage 11: tfap2c, pax3, sox9, hes1, gmnn and 

myc. We examined whether Pax3, previously shown to appear as early as stage 10.5 in vivo 

(de Crozé et al., 2011), triggers the expression of NB zone signature genes in vivo; in Pax3 

morphant NB transcriptome, we found decreased expression of the other NB genes sox9, axin2, 

zic3 and zic1, while early NE and NNE marker lhx5.l was increased, confirming its key role as 

an activator in early NB. Thus, the role of Pax3 in the NB zone is to activate the expression of 

genes that are important for the development of the NB zone. 
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2.1.8 Ectoderm branching analysis 

The development of neural crest and placode cells is a complex process that is not fully 

understood. Two models have been proposed to explain this process: the "binary competence" 

model, in which NC and PC cells are formed independently on opposite sides of the neural 

border, and the "neural border" (NB) model, which proposes that both NC and PC progenitors 

are generated from a bi-potent neural border, and the final fates of these cells are determined 

by specific markers at later stages of development. Here, we explored three different 

developmental routes that can lead to the formation of NC and PC cells, and examined the 

genes that are involved in these processes. Three developmental routes were considered: a) NE 

→ NC; b) NB zone → PC and NC; c) NNE → PC; these possibilities are consistent with current 

models of NC and PC formation, the “neural border zone model” (route b) and the “neural vs 

non-neural” model (routes a & c). We found that distinct genes were activated to obtain the 

same state and some genes were activated with different expression dynamics relative to 

different bifurcations. For example, during the NB→NC transition, sox9 and c3 were activated 

before bifurcation suggesting that they could play a part in the fate decision network from NB 

progenitors. In contrast, during the NE→NC gene program, sox9 and c3 were late genes while 

foxd3 and zic1 were expressed early. Last, NB zone-specific gene pax3 was expressed prior to 

bifurcation in the NB→NC gene program and activated expression of late NC branch markers 

sox9, sox8, zic1, pcdh8, and c3. Moreover, the Ectoderm connectome described NC genes 

connected to the rest of the network through Pax3 and Sox9, suggesting that Sox9 might play 

a yet undescribed function downstream of Pax3 in NC induction and upstream of the other late 

NC-branch markers. We confirmed that Sox9 enhances NC induction downstream of Pax3 and 

Zic1 by combining Sox9 depletion or gain-of-function in the induced-neural crest assay (iNC 

is Pax3/Zic1-based NC induction from pluripotent ectoderm cells). 

2.1.9 Conclusions 

In this work, we exploit the resolution of high-density single-cell transcriptomes 

collected from 8 frog developmental stages to unravel the emergence of the neural crest lineage 

from the ectoderm during gastrulation, followed by diversification of neural crest progenitors 

during neurulation and upon EMT. Modeling gene transcription dynamics around each cell 

state allows the inference of the underlying molecular networks. We selected several important 

nodes for large-scale and in vivo experimental validation. This study highlights the previously 

unknown temporal sequence of states in pre-migratory neural crest development. Firstly, we 
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characterize neural crest activation either from a transient neural border state, or from a neural 

plate state during mid-gastrulation, and suggest a model that reconciles current debates upon 

multiple possible routes leading from immature ectoderm to neural crest and placodes. 

Secondly, we delineate the early and later neural crest transcriptome trajectories during 

neurulation and define key regulators of branching, leading to eight transitional states and eight 

early migration states.  

Further research could be conducted to validate the findings of this study through large-

scale and in vivo experiments, using the identified key regulatory nodes as a starting point. 

This could help to confirm the importance of these nodes in the development of the neural crest 

lineage and provide additional insights into the underlying molecular mechanisms. It would be 

interesting to extend this research to other organisms, such as mice or humans, to determine 

whether the developmental pathways and regulatory mechanisms identified in this study are 

conserved across species.  
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Abstract 24 

Neural crest cells exemplify cellular diversification from a multipotent progenitor 25 

population. However, the full sequence of molecular choices orchestrating the emergence of 26 

neural crest heterogeneity from the embryonic ectoderm remains elusive. Gene-regulatory-27 

networks (GRN) govern early development and cell specification towards definitive neural 28 

crest. Here, we combine ultra-dense single cell transcriptomes with machine-learning and large-29 

scale experimental validation to provide a comprehensive GRN underlying neural crest fate 30 

diversification from induction to early migration stages in the frog Xenopus tropicalis. During 31 

gastrulation, a transient neural border zone state precedes the choice between neural crest and 32 

placodes which includes multiple and converging gene programs. Transcription factor 33 

connectome and bifurcation analyses demonstrate the early emergence of neural crest fates at 34 

the neural plate stage, alongside an unbiased multipotent lineage persisting until after epithelial-35 

mesenchymal transition. We decipher the circuits driving cranial and vagal neural crest 36 

formation and provide a broadly applicable strategy for investigating SC transcriptomes in 37 

vertebrate GRNs in development, evolution, and disease.  38 
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Introduction 39 

Neural crest cells form a population of multipotent and migratory progenitors found in 40 

vertebrate embryos, essential for the peripheral and enteric nervous system, craniofacial 41 

structures, endocrine and pigment cells among others. Together with ectodermal placodes, 42 

neural crest (NC) cells are evolutionary inventions that support many cell and tissue innovations 43 

promoting the vertebrate predatory lifestyle. Shortly after gastrulation, NC cells are induced 44 

from the dorsal-lateral "neural border zone" (NB), an ectoderm domain located between the 45 

non-neural ectoderm and the neural plate ectoderm (Eames et al., 2020; Plouhinec et al., 2017). 46 

In addition to the NC, the NB territory also gives rise to posterior placodes, non-neural ectoderm 47 

and the dorsal part of the neural tube (Steventon and Mayor, 2012; Streit and Stern, 1999). 48 

Whether these four cell types arise from a common and multipotent early progenitor state, and 49 

how fate decisions are orchestrated at the NB during gastrulation remain poorly understood. 50 

During neurulation, NC specification and induction progresses as an anterior-to-posterior wave 51 

along the edges of the neural plate, with gene programs that define early and immature neural 52 

crest cells (e.g. expression of snail2, foxd3 and sox8 genes) followed by later pre-migratory 53 

programs presaging emigration of NC cells from the NB epithelium as the neural folds elevate 54 

and close (e.g. expression of sox10, twist1 and cdh2 (N-cadherin) genes) (Bhattacharya et al., 55 

2020; Figueiredo et al., 2017). In addition to this pan-NC program, several regional molecular 56 

modules are activated along the anterior-posterior body axis and define subpopulations with 57 

specific potential (Ling and Sauka-Spengler, 2019; Tang et al., 2021). How these programs are 58 

interconnected with the pan-NC module, and how and when they are activated in pre-migratory 59 

NC cells is poorly described. Later, at the end of neurulation, NC cells leave the dorsal ectoderm 60 

by a stereotypical epithelium-to-mesenchymal transition (EMT) followed by extensive 61 

migration towards a variety of target tissues.  62 

NC biology has been scrutinized during development and evolution, leading to the 63 

elucidation of elaborate gene regulatory networks (GRNs) during the last decade (Monsoro-64 

Burq et al., 2005; Simoes-Costa and Bronner, 2016). These networks, however, remain 65 

incomplete and do not account for most of the defects observed in human neurocristopathies 66 

(Medina-Cuadra and Monsoro-Burq, 2021). This problem is ripe for single cell (SC) 67 

transcriptomics, which would enable a full description of NC development over sequential 68 

developmental stages, and in comparison to adjacent tissues (e.g. at the neural border) would 69 

define the developmental genetic trajectories of the complete NC lineage tree. Most of the recent 70 

SC studies on NC cells have mainly explored NC after emigration (Artinger and Monsoro-Burq, 71 

2021; Supplementary File 1 - Table S1). In contrast, pre-migratory NC single cells have 72 

received limited exploration, mostly around the EMT stage and on small cell numbers at a 73 

specific level of the body axis (Ling and Sauka-Spengler, 2019; Zalc et al., 2021). Earlier on, 74 
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formation of the NB territory has been defined by expression of a few genes during gastrulation 75 

(e.g. pax3 and pax7) (Basch et al., 2006; Monsoro-Burq et al., 2005; Plouhinec et al., 2017), 76 

however the timing of NB specification from the rest of the dorsal ectoderm and the circuits 77 

driving fate decisions between the four NB-derived cell fates (NC, placodes, non-neural 78 

ectoderm and dorsal neural tube) remain to be established (Groves and LaBonne, 2014; 79 

Maharana and Schlosser, 2018; Steventon and Mayor, 2012). Furthermore, the timing of lineage 80 

decisions in the pre-migratory NC along the anterior-posterior axis, the maintenance of a 81 

multipotent NC subpopulation, and the molecular mechanisms driving each state of the pre-82 

migratory NC lineage tree remain unexplored. Here, we used single cell transcriptomes from 83 

eight consecutive developmental stages of Xenopus tropicalis, featuring 6135 NC cells and 84 

17138 early ectoderm cells, to provide a comprehensive developmental profiling of the NB and 85 

the pre-migratory NC. During neurulation, we define several new premigratory NC 86 

subpopulations and highlight the transcriptomic trajectories between these early states and eight 87 

NC subpopulations emigrating from anterior to vagal levels of the body axis. Interestingly, we 88 

find that distinct signatures for prospective NC fates emerge much earlier than previously 89 

anticipated, that NC state diversity is maintained upon EMT and that further diversification 90 

occurs at the onset of migration. During gastrulation, we explore neural border development 91 

and its specification into the NC and placodes. At each stage, we propose a temporal sequence 92 

of molecular events underlying these successive transcriptomic states and identify key candidate 93 

transcription factors involved in the branching between states. Importantly, we validate several 94 

regulatory predictions using transcriptomes and in vivo approaches. Last, we propose a model 95 

of “dual convergence” for parallel transcriptomic routes driving neural border specification. We 96 

therefore provide an extensive gene regulatory network describing the emergence of the neural 97 

crest from the ectoderm of vertebrate embryos. 98 

Results  99 

Defining the diversity of premigratory neural crest states. 100 

Using deeper re-sequencing of single cell (SC) series from whole X. tropicalis embryos 101 

(Briggs et al., 2018), taken at 8 consecutive developmental stages, followed by updated genome 102 

annotation and alignment, we have scrutinized 6135 neural crest (NC) cells from early 103 

gastrulation to early migration stages. The larger cell number of our new dataset allowed greater 104 

assessment of the cellular diversity in the NC population during early induction (at late 105 

gastrulation stages 12-13 and neural plate stages 13-14), during neural fold elevation (stages 16-106 

18), during EMT (neural tube stages 18-20) and at the earliest stages of NC cells emigration 107 

(tailbud stage 22).  108 
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Kotov et al., Figure 1 

A

B CEctoderm 
markers

Neural crest 
markers

Figure 1. Cell selection for neural crest, ectoderm and neural border. (A) Ectoderm (EC, stages 11-13, green) and NC cells (stages 12-22, 
brown) were selected from a whole embryo SC transcriptome dataset of 177250 cells. (B) Dotplots for well-referenced gene expressions 
used to identify EC and NC at each stage. Dot size represents the number of cells expressing the gene, color represents the average 
expression level. Neural border was defined as stage 11-13 tfap2a+, zic1+ cells. (C) 3D scatter-plot of NC score specificity (z-scores), mean 
gene expression levels (counts) and coefficient of variation (CV) in NC cells, defining a few highly expressed pan-NC genes during 
neurulation. Additional validation of NC cell selection was done using a binary classifier depicted in Figure 1 - figure supplement 1.

EC

NC
Other cells

Other cells
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Kotov et al., Figure 1 - figure supplement 1

A

B C

Cluster names Cells predicted to be NCD

Figure 1 - figure supplement 1. A NC classifier based on Xenopus NC selection retrieves NC cells in other whole embryo datasets.
A binary classifier was trained on the frog NC/non-NC cells (see methods). Using the whole embryo data matrix of gene expression, we
selected the top 10% important features for NC detection. In order to validate it in a whole embryo SC Zebrafish dataset (Wagner et al., 
2018), we removed genes present in frog data that were absent in the Zebrafish dataset: Using the subselected top genes, we re-built the 
model using frog data and obtained the following results: 0.99 accuracy and 0.90 f1 score on a test dataset. When applied to Zebrafish
dataset, we obtained also very high scores: the accuracy 0.95 and f1 score 0.66 for 14 stage cells, indicating good initial NC cell selection. 
(A) Top features (gene) for NC classification using LightGBM model. X axis value is the relative importance of the certain gene for the NC 
classifier (B) Confusion matrix indicates the true/false positive and the true/false negative scores for the results obtained on the Zebrafish
dataset for stage 14. (C) ROC curve for the binary NC classifier indicates high AUC score of 0.95, meaning high recovery of true positives 
by the model. (D) UMAP for Zebrafish stage 14 hpf cells (left) with model-predicted NC cells. The model accurately identifies the cluster of 
interest (NC-khaki) despite the technical and biological batch effects between Xenopus and Zebrafish datasets.
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Through unsupervised Leiden clustering of the whole embryo dataset at each stage (a 109 

total of 177250 cells) (Traag et al., 2019), we identified NC clusters by expression of well-110 

established NC genes from induction to migration (gene-supervised approach, Figure 1A-B; 111 

Supplementary File 1 - Table S2). From the annotated frog dataset, signatures of NC/non-NC 112 

cells were then used to train a classifier which faithfully detected NC cells when applied to a 113 

zebrafish whole embryo dataset. This test indicated that the initial gene-supervised analysis had 114 

retrieved bona fide NC cells (details in Supplementary Materials; Figure 1 – figure supplement 115 

1). Based on their NC-specific expression and low variation across the NC populations, we 116 

found that tfap2b, c9, c3 and sox8 are highly expressed throughout NC during neurulation, 117 

closely followed by snai2 and sox10 (Figure 1C). Stage-specific expression variations suggested 118 

that the early NC is best labeled by snai2 at stages 13-16, followed by tfap2b from stage 14 to 119 

20, and c3, c9, sox8 between stages 14 to 18. Collectively, these genes thus define a canonical 120 

"pan-NC" signature. 121 

 From late gastrulation to emigration stages, reclustering defined sixteen different NC 122 

states, compared to 8 described previously (Briggs et al., 2018) (Figure 2A, B). Partition-based 123 

graph abstraction analysis (PAGA) (Wolf et al., 2018) showed that most NC clusters are highly 124 

interconnected with stronger connectivity between early (1-4), vagal (8, 9, 12 and 13), and 125 

cranial (10, 7 and 11) clusters (Figure 2C). Each cluster's characteristics are described in detail 126 

in supplementary text, only new general features are described here (Supplementary file 1, Table 127 

S3). First, we identified 10 clusters expressing various levels of itga4/integrin-a4, vim/vimentin 128 

or fn1/fibronectin, an explicit mesenchymal NC signature (Figure 2 – figure supplement 1A). 129 

These clusters mainly included stage 18 to 22 cells (Figure 2 – figure supplement 1B), stages 130 

when the cranialmost NC undergoes EMT and early migration. Using hox gene expression, we 131 

positioned each cluster along the body axis (cranialmost clusters were hox-negative while vagal 132 

clusters expressed a range of anterior-to-posterior hox genes; Figure 2D). Next, we queried 133 

whether all NC cells adopted a similar “stem-like” state upon EMT as proposed recently (Zalc 134 

et al., 2021). Instead, we observed high diversity across the mesenchymal clusters: for example, 135 

clusters 10, 13, and 15 all undergo a transition to a mesenchymal vim+ state but 10 and 15 136 

expressed the ectomesodermal marker twi1, while 13 instead highly expressed tnc (Figure 2B, 137 

E). Clearly, in the large dataset considered, the diversity of states was maintained as cells 138 

transitioned from pre-EMT stages to EMT and early migration. Among the mesenchymal 139 

clusters, cluster 16 was the only one enriched simultaneously for late pan-NC markers (tfap2b, 140 

sox10, c9) and differentiation markers, muscle genes actc1 and myl; (Figure 2E, Figure 2 – 141 

figure supplement 2). This NC dataset does reveal other cranial or vagal cluster expressing 142 

determination or differentiation markers. This observation matches recent lineage tracing in 143 
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Kotov et al., Figure 2 

NC clusters StagesA

C D

E

High

Low

High

Low

Figure 2. Premigratory neural crest transcriptome heterogeneity. (A) Leiden clustering revealed 16 distinct states (clusters) before and during EMT 
(developmental stages 12-22). 1- Early unbiased / tfap2c+; 2- Early unbiased / gjb1+; 3- Premigratory sacral / hnf1b+; 4- Premigratory early R4 /cyp26c1+; 5-
Premigratory unbiased ; 6- Premigratory late R4 / cyp26c1+; 7- Migratory bipotent cranial / nrp2+; 8- Migratory rhombencephalic / hoxb2+; 9- Migratory 
bipotent vagal / hoxd3+; 10- Premigratory early cranial / alx1+; 11- Migratory cranial / itga4+; 12- EMT Cardiac / egr2+; 13- Migratory ENSp / tnc+; 14- EMT 
unbiased; 15- Migratory late R4 / efnb2+; 16- Migratory muscle-like /myl1+ (B) Top-3 enriched genes for each cluster (top and bottom lines), with their 
expression in the other clusters and hierarchical clustering between cluster. (C) PAGA estimates cluster connectivity where line thickness increases with 
stronger connections. (D) Hox gene signature of each cluster used to approximate their position along the antero-posterior body axis. (E) Expression of key 
cluster-specific genes, including rpe65, dmbx1, alx1 (cluster 10), cyp26c1, epha2, efnb2 (clusters 4/6/15), fli1, itga4, dlx2 (cluster 11), egr2, epha4, mafb
(cluster 12), tnc, wnt11, ltbp1 (cluster 13), early olig4, hnf1b (cluster 3) and muscle-like NC specific myl1 (cluster 16). Genes expressed broadly in NC cells 
define a "canonical NC" signature: early pax3, tfap2b, sox9, snai2, and c9. Multipotency-related genes are present mostly until mid-neurula stage (pou5f1). 
Alk, nrp2, rnd1 and nrp1, klb, mdk are early specifiers of cranial and vagal NC respectively. Detailed cluster characteristics can be found in Supplementary 
File Table S3 and Text, and in Figure 2 - figure supplements 1-5.
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A

B

Kotov et al., Figure 2 - figure supplement 1

Figure 2 - figure supplement 1. Developmental stages and expression of EMT/migration markers per cluster.
(A) Each cluster presents various levels of expression of EMT and migration regulators. Bar plots with mean normalized expression for 
each cluster for vim, twist1, mmp14 and fn1. (B) Pieplots represent the proportion of cells at each stage in each cluster. Some clusters 
include cells of 6 successive stages, e.g. cluster 10.
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Kotov et al., Figure 2 - figure supplement 2
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Figure 2 – figure supplement 2. Identification of a muscle-like cluster. (A) At early migration stage (20-22), cluster 16 is strongly enriched
for myosin-like genes as well as bona fide NC markers, such as sox10. (B, C) Direct NC induction in ectoderm explants grown in vitro (iNC
assay) followed by RTqPCR from induction to emigration stages, also identifies the late activation of myoD and myl1 expression at stage 
20. This validates the appearence of this muscle-like NC subpopulation among other NC derivatives. 
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D

Figure 2 - figure supplement 3. Early stage biased NC clusters. (A) From the end of gastrulation, three previously undescribed early
trends emerge. Clustering of stage 13 cells only, followed by PAGA analysis identified their similarities with the stage 20-22 clusters: an 
olig4-enriched subpopulation linked to ENSp cluster 13; a zfhx4-enriched cluster related to rpe65+ cluster 10 and a third stage 13 
subpopulation expressing cyp26c1 linked to the cranial NC branch (clusters 4, 6, 15). (B) UMAP plots for the early-biased NC 
subpopulation expressing hnf1b, cdx4, nradd and posterior hox genes. In addition to cluster-specific hnf1b and olig4, dhrs3 is co-
expressed with zic5 which specifically stays active during the whole “sacral” trajectory from stage 12 to late ENSp. (C) UMAP plots of 
genes specific for cranial rpe65+hox- NC subpopulation specific genes (D) UMAP plots of genes specific for rhombomere 4, cranial NC 
subpopulations. 
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Figure 2 - figure supplement 4. Early posterior enteric cluster 4 and related late clusters 6, 15. (A) Line Plot for expression dynamics for 
cluster 4, 6, 15, representing the relationships between rarg and cyp26c1. Cells within clusters are sorted according to pseudotime. (B) 
PAGA plots with rarg and cyp26c1 mean expression. 
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Figure 2 - figure supplement 5. Early stage, bipotent NC clusters – cranial vs vagal lineages.
UMAP plots for vagal (clusters 9, 12 and 13) and cranial (clusters 7, 10 and 11) specifiers.
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cranial NC and supports that most NC cell fates are determined post-EMT (Baggiolini et al., 144 

2015; Morrison et al., 2021). 145 

Next, we were able to define multiple progenitor states linked to the later clusters defined 146 

above, and consequently delineate transcriptional dynamics of cranial, vagal and enteric nervous 147 

system progenitors between late gastrulation and EMT. Late cranial clusters 10 148 

(nrp2+rpe65+hox-) and 11 (nrp2+dlx2+hox-) were related to cluster 7 (nrp2+ hox-) while late vagal 149 

clusters 12 (mafb+epha4+) and 13 (tnc+wnt11+ltbp1+) were linked to cluster 9 (nrp1+). Cluster 150 

13 was also linked to the early cluster 3 (hnf1b+). In turn, clusters 7 and 9 were related to the 151 

unbiased cluster 5 (tfap2c+sox9+). The nrp1+ late cranial cluster 15 was linked to clusters 6 and 152 

4, all of which specifically expressed cyp26c1, epha2 and efnb2. Cluster 16 (myl1+, Figure 2 - 153 

figure supplement 2) was related to unbiased cluster 14, which was in turn linked to unbiased 154 

clusters 5, 1 (c9+sox9+) and 2 (gjb1+) (Figure 2 – figure supplements 3-5; Figure 3). 155 

Interestingly, most clusters gathered cells from multiple stages, indicating that a given 156 

transcriptome state can be reached by different cells over long developmental periods (Figure 2 157 

– figure supplement 1B). For example, cranialmost cells of cluster 10 are generated over the 158 

entire duration of neurulation from neural plate stage 13 to migration stage 22. This reflects how 159 

NC cells of a similar state can be continuously generated over the course of development at a 160 

given portion of the neuraxis. In contrast, cranial clusters 11 and 15, two migratory clusters 161 

highly expressing vimentin (vim+), are suddenly generated at post-EMT stage 22. This could 162 

reflect an abrupt step of mesenchymalisation in the epithelial-to-mesenchymal transition 163 

process of cranial NC, reflected in their transcriptomes. 164 

Moreover, we detected cells with an immature pan-NC signature throughout neurulation 165 

and EMT, representing a long-lasting potentially “multipotent” and "stem-like" population (1, 166 

5, 14; Figure 3). These unbiaised progenitors formed 72% of all NC cells during induction 167 

(gastrula and neural plate stages 12-14), 15% at pre-migratory and EMT stages 16-18, and 9% 168 

among tailbud stage 22 NC cells (Figure 3C). This dataset thus identifies the stem-like and 169 

partially biased premigratory NC populations; details the temporal dynamics of multipotency 170 

genes and the sequential appearence of regional modules; and characterizes the progressive 171 

activation of mesenchymal markers across a diversity of cell states. In sum, we uncover the 172 

highly diverse transcriptomes underlying premigratory NC cell biology along a large, cranial to 173 

vagal segment of the body axis. 174 

 175 
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Figure 3. Characteristics of the unbiased NC clusters.
(A) Expression of pluripotency and "stem" neural crest genes (each bar is a group of 20 cells) in unbiased clusters 1, 5, 14. Pseudotime 

represents how far the cell has advanced along a given transcriptional path. (B) UMAP plots depicting expression of pluripotency-
related markers. (C) Proportions of the unbiased cells at each developmental stage of the NC dataset. 
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 Connectome analysis by intersecting sc-transcriptomics, morpholino RNA-seq 176 

and ChIP-seq. 177 

To expand the network of genes involved in the NC-GRN, we used an input list of 1417 178 

transcription factors (TFs) (Blitz et al., 2017) and applied GRNboost2 on the NC dataset to link 179 

transcription factors to their potential targets in the NC transcriptome. We retrieved a network 180 

of 16978 potential TF-targets with a median of 22 connections per TF. Among the most 181 

connected genes for each stage (Table 1), we retrieved the previously known neural border 182 

specifiers pax3 and zic1 at NC induction stages, as well as zic3, olig4, sox9, and the anterior NC 183 

marker dmbx1. At pre-migratory stages, the prominent nodes included the NC specifiers tfap2b, 184 

sox10 and snai2, the anterior NC markers rpe65 and alx1, and the hindbrain hox gene hoxb3. 185 

At migration stages, tfap2e, mycn, dlx2 and egr2 (krox20) displayed both high expression and 186 

many connections. 187 

Table 1. Highly connected genes in the neural crest network predicted by GRNboost2. 188 

 189 

Gene 
Degree 

centrality 
Betweeness 
centrality 

Max. expression 
stage 

NC 
specificity 

TFAP2C 28.028933 21.510673 12 6.59 

ZIC3 16.455696 7.885226 12 3.73 

ZIC1 8.137432 2.351524 12 9.34 

ZIC2 7.233273 2.026896 12 3.62 

DMBX1 3.616637 11.876445 12 1.57 

PAX3 3.435805 2.211830 12 5.93 

SOX9 11.573237 8.575830 13 14.07 

OLIG4 4.882459 2.642370 13 4.54 

MAFB 7.956600 4.174946 14 09.08 

SNAI2 5.244123 0.927599 14 20.03 

SOX8 4.520796 2.071516 14 20.60 

RPE65 1.446655 0.534404 14 6.49 

TFAP2B 8.499096 4.135991 16 25.47 

HOXB3 3.978300 0.959282 16 2.35 

SOX10 3.797468 0.705758 16 15.40 

NR6A1 3.797468 0.706433 16 9.18 

ZFHX4 2.169982 0.791908 16 4.83 

ALX1 2.169982 1.627017 16 3.69 
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EPHA2 1.989150 1.403078 18 3.77 

E2F3 1.446655 2.256467 18 0.68 

TFAP2E 5.786618 1.850976 20 15.21 

EGR2 5.424955 2.505897 20 5.96 

MYCN 17.359855 12.737248 22 8.81 

DLX2 12.839060 8.413243 22 6.88 

HOXD3 8.137432 3.417475 22 4.96 

EEF1D 4.701627 0.795235 22 9.55 

ZBTB16 3.074141 1.013930 22 2.80 

TFEC 2.169982 0.562422 22 0.10 

VIM 2.169982 0.879581 22 2.43 

  190 

In order to experimentally test the predicted network, we sequenced NB/NC 191 

microdissected ectoderm after in vivo knockdown of selected nodes pax3 and tfap2e, using 192 

previously validated antisense morpholino oligonucleotides (MO) (Figure 4A, Hong et al., 193 

2014; Monsoro-Burq et al., 2005). Expression of 1333 transcripts were decreased in Pax3 194 

morphant NB, confirming that Pax3 is essential to activate a large NB/NC gene set ( Figure 4A, 195 

Supplementary file 1 – Table S4). We verified direct Pax3-binding targets in vivo using ChIP-196 

seq on mid-neurula stage embryos (Figure 4B) and identified 657 potential targets in the whole 197 

embryo, of which 475 were expressed in the SC NC dataset (Supplementary file 1 – Table S6), 198 

including known direct targets, e.g. cxcr4 and prtg (Plouhinec et al., 2014; Xu et al., 2018). 199 

Moreover, 80 of the ChIPseq-validated targets were predicted by GRN-Boost2 modelling 200 

including psmd4, psen2, sp7, notch1, hnf1b. In sum, we provide here a genome-wide Pax3 NC-201 

GRN with three complementary approaches: co-expression predictions, Pax3 depletion and 202 

Pax3 chromatin-binding (Figure 4C). Using a similar approach, we confirmed TFAP2e as an 203 

important regulator at early EMT stages. Among 848 targets of TFAP2e predicted from scRNA-204 

seq, 99 showed changed expression after TFAP2e knockdown in NC in vivo (e.g., tfap2b, sox10, 205 

sncaip; Figure 4 – figure supplements 1-2; Supplementary file 1 – Table S5). Moreover, using 206 

ChIP-seq for TFAP2e, we identified 642 targets expressed in the NC dataset, among 805 targets 207 

for the whole embryo, including top-scored rmb20, pim1, arl5b and tfap2a (Supplementary file 208 

1 – Table S7). In both Pax3 and Tfap2e cases, we find that the three approaches result in partially 209 

overlapping gene target lists due to their use of different parameters (stage-wise, expression-210 

wise, etc; Figure 4C, see Materials and Methods). Together, these data provide an enlarged and 211 

validated NC-specific genome-wide connectome for two key NB/NC specifiers.  212 
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Figure 4. Pax3 and TFAP2e connectome generation and validation. (A) RNA-sequencing was done on microdissected NB ectoderm (stage 
14), either wild-type (wt) or following Pax3 depletion in vivo (Pax3 MO). Using standard differential analysis, 1333 genes were found 
downregulated after Pax3 depletion, including sox9, olig4, hnf1b, msx1 (Table S4). (B) Tracing amounts of Pax3-FLAG expression were 
used to pull-down Pax3-bound chromatin in vivo without phenotypic modification, followed by standard ChIP-seq analysis pipeline,
identifying 657 direct target genes among which 475 were expressed in the NC dataset. (C) Venn diagram  compares Pax3 target genes 
validated by ChIP-seq, MO-RNA-seq and GRN-boost2 modeling. The 17 genes linked to Pax3 by all three methods are listed here (full lists 
in Supplementary file 1 – Tables S4 and S6). (D) Random sampling (bootstrap) was used to test the average number of genes present in 
the intersection by the three methods if random chance was applied to these datasets. At random, an average of 3 genes would be found 
in the intersection compared to 17 found here (C). Similar approach was applied to TFAP2e in Figure 4 - figure supplement 1, 2 and Table 
S5.
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Figure 4 - figure supplement 1. TFAP2e connectome generation and validation
(A) Design of RNA-seq on microdissected NC explants after depletion of TFAP2e. (B) General statistics for differential analysis
after RNA-seq of NC depleted for TFAP2e. (C) Design of ChIP-seq experiments for TFAP2e. (D) Venn diagram of target genes
validated by ChIP-seq and transcriptome of TFAP2e-depleted NC, compared to predictions using GRNBoost2. The 20 genes
linked to TFAP2e by all three methods are listed, which represents a significant increased compared to a "at random" situation.
Among themwe find genes important for NC EMT and migrationmmp14, mmp28, itga5 and vim.
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B

A

Figure 4 - figure supplement 2. Validation of Pax3 and TFAP2e connectomes. (A) The expression levels of the genes top-scored with GRNboost2 
for Pax3 or TFAP2e were tested after Pax3 or TFAP2e depletion in NB/NC in vivo. Several of them were strongly decreased after Pax3 or TFAP2e 
depletion (e.g. bms1 or sox10 respectively). Others were unchanged meaning that, despite similar transcriptome dynamics at the single cell level 
(evaluated by GRNBoost2), there was no major functional regulation by either Pax3 or TFAP2e in vivo at the considered stage (unless unknown 
compensatory mechanisms were to apply). (B) Conversely, we identified some targets of TFAP2e, confirmed with ChIP-seq and MO, which were 
not predicted by GRNboost2 (e.g. hnf1b and notch1). This may result from functional regulations creating different expression patterns or different 
temporal dynamics, or else expression in adjacent cells (non cell-autonomous regulations), which are all parameters for which GRNBoost2 would 
not identify linkage. For example, neither hnf1b nor notch1 were predicted as TFAP2e targets: hnf1b displays a very different expression pattern 
than TFAP2e, in the NC dataset, while notch1, despite a closely-related expression pattern at the cluster level, may in fact display distinct cell-to-
cell expression at the single cell level.
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 213 

Branching towards biased premigratory neural crest subpopulations is controlled 214 

by key transcription factors. 215 

To explore the temporal dynamics of TF expression that may specify decision points in 216 

the development of pre-migratory NC, we used tree inference (ElPiGraph) and advanced 217 

pseudotime downstream analysis focused on fate biasing using scFates (Albergante et al., 2020). 218 

We thus explored potential branch-specific transcriptional regulation from the calculated 219 

pseudotime, in order to determine not only the gene-to-gene dependency but also the temporal 220 

order in which their functions may be accomplished. ElPiGraph approximates datasets with 221 

complex topologies to build the graph structure, with the limitation that it cannot be applied to 222 

large datasets with many potential branches. Thus, using the principal graph constructed with 223 

PAGA (Figure 2B), we sub-selected cells around three main bifurcation points in the NC lineage 224 

tree and then applied scFates branching analysis (Figure 5A-F). 225 

Cranial versus vagal bifurcation at the end of neural plate stage. 226 

Cranial NC cells emerge from the neural tube anterior to the otic vesicle while vagal NC 227 

cells form from the hindbrain region adjacent to somites 1–7 (Le Douarin and Kalcheim, 1999). 228 

Our data indicated that the first cells biased towards vagal or cranial populations arose from the 229 

unbiased cluster 5 around early neural fold stage 14. Although we did not see a separation of 230 

cluster 5 into two populations at the chosen level of clustering, we still observe an early internal 231 

predisposition marked by the expression of early cranial (nrp2) and vagal (mafb) markers in 232 

sub-regions of cluster 5: cluster 5 cells that highly express nrp2 were 7 times closer to the cranial 233 

state, while cells that highly express mafb were 1.5 times closer to the vagal state (Figure 5 – 234 

figure supplement 1A and B). Through branching analysis, we uncovered gene programs 235 

governing the bifurcation, consisting of ‘early’ genes activated before bifurcation and ‘late’ 236 

genes with continued expression in each branch (late): nrp2, alk, rnd1, adam19 (early) and 237 

shisa3, frdm6 (late) for the cranial branch, and mafb, klb, mdk (early) and prdm1, cf1, hoxd3 238 

(late) for the vagal branch (Figure 5A-B). By high specificity and early expression, nrp2 and 239 

mafb were the best early predictors of branching between the cranial and vagal populations 240 

(Figure 2E). These results match in vivo analyses on expression of key NC regulators, such as 241 

Mafb during cardiac NC specification or Alk in cranial NC migration (Gonzalez Malagon and 242 

Liu, 2018; Tani-Matsuhana and Inoue, 2021). 243 

 244 
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Figure 2.7 tfap2e is required for delamination and migration of neural crest cells 

A.  Anterior views of X. tropicalis embryos probed against sox10.  Embryos on the right were 
injected unilaterally (red arrowhead) with tfap2e MO1 or MO2 and β-Galactosidase lineage 
tracer.  The sox10-positive neural crest cells do not migrate towards the dorsal midline in the 
morphant side.  B.  A closer view of the vagal neural crest region of normal and tfap2e morphant 
embryos.  C.  An equal proportion of sox10-cells are normally observed between the left and 
right sides.  The sides injected with tfap2e MO1 or tfap2e MO2 (15 ng) showed a reduction of 
75% on the total number of  sox10-cells.  D.  Diagram of X. laevis neural crest transplantation 
experiment shown in (E).  Briefly, the neural crest of an injected embryo (St. 17) was 
transplanted into an uninjected host (St. 15).  Half of the embryos were induced with DEX at 
stage 18.  The transplants were visualized at stage 25.  E.  Migrating cranial neural crest 
transplant from controls (i), morphants (ii), and rescued embryos (iii).  Loss of tfap2e resulted in 
halted cranial neural crest cells in the dorsal neural tube.  The lack of migration observed in the 
morphant was rescued by induction of GR-tfap2e after stage 17 (right panel). 
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stage 18.  The transplants were visualized at stage 25.  E.  Migrating cranial neural crest 
transplant from controls (i), morphants (ii), and rescued embryos (iii).  Loss of tfap2e resulted in 
halted cranial neural crest cells in the dorsal neural tube.  The lack of migration observed in the 
morphant was rescued by induction of GR-tfap2e after stage 17 (right panel). 
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Figure 2.7 tfap2e is required for delamination and migration of neural crest cells 

A.  Anterior views of X. tropicalis embryos probed against sox10.  Embryos on the right were 
injected unilaterally (red arrowhead) with tfap2e MO1 or MO2 and β-Galactosidase lineage 
tracer.  The sox10-positive neural crest cells do not migrate towards the dorsal midline in the 
morphant side.  B.  A closer view of the vagal neural crest region of normal and tfap2e morphant 
embryos.  C.  An equal proportion of sox10-cells are normally observed between the left and 
right sides.  The sides injected with tfap2e MO1 or tfap2e MO2 (15 ng) showed a reduction of 
75% on the total number of  sox10-cells.  D.  Diagram of X. laevis neural crest transplantation 
experiment shown in (E).  Briefly, the neural crest of an injected embryo (St. 17) was 
transplanted into an uninjected host (St. 15).  Half of the embryos were induced with DEX at 
stage 18.  The transplants were visualized at stage 25.  E.  Migrating cranial neural crest 
transplant from controls (i), morphants (ii), and rescued embryos (iii).  Loss of tfap2e resulted in 
halted cranial neural crest cells in the dorsal neural tube.  The lack of migration observed in the 
morphant was rescued by induction of GR-tfap2e after stage 17 (right panel). 
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Figure 2.7 tfap2e is required for delamination and migration of neural crest cells 

A.  Anterior views of X. tropicalis embryos probed against sox10.  Embryos on the right were 
injected unilaterally (red arrowhead) with tfap2e MO1 or MO2 and β-Galactosidase lineage 
tracer.  The sox10-positive neural crest cells do not migrate towards the dorsal midline in the 
morphant side.  B.  A closer view of the vagal neural crest region of normal and tfap2e morphant 
embryos.  C.  An equal proportion of sox10-cells are normally observed between the left and 
right sides.  The sides injected with tfap2e MO1 or tfap2e MO2 (15 ng) showed a reduction of 
75% on the total number of  sox10-cells.  D.  Diagram of X. laevis neural crest transplantation 
experiment shown in (E).  Briefly, the neural crest of an injected embryo (St. 17) was 
transplanted into an uninjected host (St. 15).  Half of the embryos were induced with DEX at 
stage 18.  The transplants were visualized at stage 25.  E.  Migrating cranial neural crest 
transplant from controls (i), morphants (ii), and rescued embryos (iii).  Loss of tfap2e resulted in 
halted cranial neural crest cells in the dorsal neural tube.  The lack of migration observed in the 
morphant was rescued by induction of GR-tfap2e after stage 17 (right panel). 
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Figure 5. NC branching analysis. Transcriptomes of cells subselected around a chosen bifurcation point were analyzed using tree

inference and pseudotime downstream analysis, yielding gene programs accompanying each trajectory. Gene programs for bifurcation of  

(A-B) premigratory unbiased cluster 5 into cluster 9 (A)   and cluster 7 (B);  (C-D) of migratory bipotent vagal cluster 9 into clusters 12 (C) 

and 13 (D); (E-F) of migratory bipotent cranial cluster 7 into clusters 10 (E) and 11 (F). (G) MO-mediated depletion and ChIP-seq was used

to test Pax3 function in either vagal branching (cluster 12 vs 13) or cranial branching (cluster 11 vs 10) in vivo. Branch-specific genes with

modified expression after Pax3 depletion (standard letters) or bound by Pax3 (in bold letters) are indicated. Using a similar approach, 

TFAP2e function in cranial branching (cluster 10 vs 11) was validated in vivo. (H) To test TFAP2e function in cranial NC migration, 

premigratory NC (traced in pink) was grafted into wild-type host embryos. In comparison to control (wt) NC active migration (h, yellow

arows), TFAP2e morphant NC cells do not emigrate towards craniofacial areas and remain at the graft site (h', red arrow). In contrast, 

reactivation of TFAP2e-GR in morphant cells upon EMT stage restores NC cell migration (h", yellow arrows).
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A

B

C

Figure 5 - figure supplement 1. Branching analysis for NC dataset.
(A) In order to identify potential early bias in the globally homogeneous cluster 5, cells located around the bifurcation between
clusters 1 (dark blue), 5 (purple), 7 (pink), and 9 (cyan) were sub-selected. Cells expressing nrp2 or mafb above 80 percentile 
were highlighted. This revealed that cluster 5 presented a minor predisposition for either mafb or nrp2 expression. (B) Tables 
depicting cluster-cluster similarities calculated with PAGA. PAGA revealed that nrp2+ cells of cluster 5 were 7 times more similar 
to the cranial state (cluster 7) than to the vagal state (cluster 9). Conversely mafb+ cells of unbiased cluster 5 were 1.5 times 
closer to the vagal state than to the cranial. (C) To test branching analysis predictions, we used in vivo depletion of either Pax3 
or TFAP2e, and tested the changes in expression of the late genes in Pax3- or TFAP2e-related branch. 
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Vagal to enteric split and cranial subdivisions at neural fold stages. 245 

From the apparently homogeneous clusters 7 and 9, branching analysis predicted 246 

candidates regulating subsequent bifurcation. For the cardiac NC cluster 12, early-enriched 247 

transcripts were mafb, mycn, prdm1, nolc1 and eef1d, late ones being egr2, hoxd3, epha4 and 248 

abtb2. For the ENSp cluster 13, early markers were olig4 and fbn2. Due to its significantly 249 

increased expression in later ENSp cells, pax3 was identified as a late actor, but the expression-250 

pseudotime heatmap showed that pax3 was already expressed prior to branching in ENSp 251 

progenitors and increased afterward (Figures 2D and 5D). Therefore, we also assigned pax3 to 252 

the early ENSp branch. Later ENSp gene program consists of tnc, ltbp1, wnt11, and hoxb6. In 253 

order to test experimentally if ‘early’ factors affected expression of ‘late’ genes, we examined 254 

which late ENSp genes may be targets of the early TF Pax3, through ChIP-seq and depletion 255 

analyses. Some genes were bound by Pax3 (cfb, bmp5), while others showed increased (krt8) 256 

or decreased (cldn1, hoxb6, hoxa7) expression without evidence for Pax3 binding (Figure 5G, 257 

Figure 5 – figure supplement 1C). 258 

Similar analysis on cranial NC clusters 7-10-11 showed that branch 10-specific genes 259 

were rpe65, dmbx1, rgr, lmx1a, and zfhx4, while late gene programs included alx1 and bmper 260 

(Figure 5E-F). Interestingly, pax3 was expressed early in the cranial bifurcation from 7 towards 261 

10 and 11; expressed in cluster 7 cells, pax3 was specifically enriched in rpe65+ cluster 10. The 262 

Pax3 ChIP-seq and MO datasets revealed that rpe65+ branch-specific transcripts comt, slc23a2 263 

and rpe65 were decreased after pax3 depletion while others, bmper, f10, sema3a, dmbx1, 264 

slc16a12 and kif26a, were bound by Pax3 in vivo (Figure 5G). On the other hand, tfap2e 265 

expression initiated before bifurcation and was enriched in cluster 11 relative to cluster 10. 266 

Using TFAP2e depletion and ChIP-seq, we also validated that TFAP2e depletion reduced the 267 

expression of nine hox-dlx2+ branch-specific genes (e.g. early gene mef2c, and late genes dlx2, 268 

mmp14, vim), and that TFAP2e bound four other genes in cluster 11 signature (c9, vim, mmp14 269 

and mycn, Figure 5G, Figure 5 – figure supplement 1C). While TFAP2e is essential for NC 270 

induction (Hong et al., 2014), direct regulation of vim and mmp14 suggested that TFAP2e may 271 

also control cranial NC EMT and migration. We tested this later role in vivo using low-level 272 

depletion of TFAP2e which still allowed initial NC induction. Specifically, a pre-EMT NC 273 

explant co-injected with low-levels of TFAP2e MO, mRNA encoding a dexamethasone-274 

inducible TFAP2e and a lineage tracer, was grafted into a wild-type control embryo prior to 275 

EMT (stage 17, Figure 5H). Morphant NC remained at the grafted site while wild-type cells 276 

efficiently populated the craniofacial areas (Figures 5Hh, h'). Importantly, when TFAP2e was 277 

re-activated in morphant NC at EMT stage, cell migration was restored and lineage-traced cells 278 

were found along NC cranial migration routes (Figure 5Hh"). Together, these results validate 279 
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branching analysis predictions and demonstrated that TFAP2e regulates expression of EMT 280 

effectors and cranial NC migration in vivo.  281 

In conclusion, using computational approaches we have defined and analyzed three main 282 

bifurcation points in the premigratory NC dataset: from unbiased to vagal and cranial NC, from 283 

vagal NC to cardiac and ENSp fates, and from early cranial to either rpe65+ or dlx2+ cranial 284 

NC. For each branch, we defined specific gene programs, including early actors predicted to 285 

trigger specific states. Lastly, we validated the link between numerous branch-specific genes 286 

and two of the early regulators, Pax3 and TFAP2e. 287 

Coexisting neural border, ventral and dorsal ectoderm gene programs specify 288 

neural crest and placodes. 289 

Neural border cell signature displays enriched ventral and dorsal gene expressions 290 

which are regulated by Pax3 291 

To unveil the molecular mechanisms that distinguish NC and placode induction at the 292 

neural-nonneural ectoderm border zone during gastrulation, we collected data for all ectoderm 293 

cells from stages 11-13 and identified 10 cell clusters (Figures 1A and 6A). The NB zone is an 294 

ectodermal area located in-between sox2+ neuroepithelium (NE) and epidermal keratin+ 295 

nonneural ectoderm (NNE), co-expresses tfap2a, zic1 and pax3 and gives rise to both NC and 296 

placodes (Figure 6A, B and Figure 6 - figure supplement 1B) (Seal and Monsoro-Burq, 2020). 297 

The early developmental dynamics of this ectodermal area has not yet been described at the 298 

single-cell level, and it remains unknown if NB cells resemble adjacent progenitors or if they 299 

exhibit a specific gene signature. On the force-directed graph plot, tfap2a+zic1+ cells (zone 3) 300 

did not appear as an individual cluster, rather as cells spread out amongst clusters 1, 2, 5 and 6 301 

(Figure 6A, Figure 6 – figure supplement 1A). While we observed low cell density specifically 302 

for the NB zone between stages 11 and 12, we excluded a stage-related sampling issue since 303 

NE/NNE areas presented normal density. Rather this could relate to a faster transcriptional 304 

transition of NB cells compared to NNE cells: if early ectoderm cells transit through the NB 305 

state quickly before switching towards NC or placode states, fewer cells would be captured. 306 

Alternatively, such a plot could be obtained if the NB zone was highly heterogeneous and 307 

contained a mosaic of states (NB, NNE or NE). 308 

 309 
 310 
 311 
 312 
 313 
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Table 2. Highly connected genes in the ectoderm network predicted by GRNboost2. 314 
 315 

Gene 
Degree 

centrality 
Betweeness 
centrality 

Mean 
nc/pc/nb 

specificity 
NC 

specificity PC specificity 
NB 

specificity 

TFAP2C 70.319635 6.203872 8.778883 17.587187 3.636364 5.113099 

TFAP2A 67.123288 5.770185 11.238043 4.836522 -0.884711 29.762320 

ZIC1 47.488584 1.674848 15.645578 18.120411 -8.226690 37.043015 

HES1 30.136986 0.815641 13.273738 27.994427 11.076355 0.750431 

SOX9 24.657534 0.463349 11.848502 38.367329 -4.275626 1.453803 

MYC 17.808219 0.340629 9.269785 22.733620 4.699314 0.376421 

SNAI2 17.579909 0.192783 7.027262 27.004408 -3.017278 -2.905344 

PITX1 16.438356 0.115279 5.463268 -3.656815 21.928877 -1.882259 

PAX3 14.611872 0.172905 5.509155 15.614752 -3.379381 4.292094 

SOX8 12.100457 0.094409 5.176289 19.021635 -2.535636 -0.957131 

C3 9.817352 0.019518 12.694010 36.559040 6.013386 -4.490397 

 316 

 317 

We then identified a detailed signature for the tfap2a+zic1+ cells (zone 3). Several 318 

transcripts were enriched from stage 11: tfap2c, pax3, sox9, hes1, gmnn and myc (Figure 6 – 319 

figure supplement 1D). Most of these transcripts also formed main nodes in the whole Ectoderm 320 

connectome (10085 gene connections, Table 2). We examined whether Pax3, previously shown 321 

to appear as early as stage 10.5 in vivo (de Crozé et al., 2011), triggers expression of NB zone 322 

signature genes in vivo; in Pax3 morphant NB transcriptome, we found decreased expression of 323 

the other NB genes sox9, axin2, zic3 and zic1, while early NE and NNE marker lhx5.l was 324 

increased (Figure 6 – figure supplement 1E). These results verify and consolidate Pax3 as a 325 

major activator for the early NB signature.  326 

The NB zone contributes to NC and PC in parallel to convergent contributions from 327 

neural plate and non-neural ectoderm progenitors. 328 

Based on the force-directed graph, we hypothesized three possible developmental routes 329 

leading to NC and placodes from stage 11 ectoderm cells: a) NE → NC; b) NB zone → PC and 330 
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Figure 6. Ectoderm branching and validation of Sox9 early role in NC induction. (A) Forced-directed graphs for the Ectoderm dataset, 
with cluster numbers and gastrula stages indicated. (B) UMAP plots for genes marking the 3 major ectoderm areas: sox2 is enriched in the 
nascent neural ectoderm while krt12 (epidermal keratin 12) is highest in the non-neural ectoderm. Unlike the other areas, the NB zone 
does not display a specific gene signature and is usually depicted by pax3 expression or the overlapping expressions of ventral (tfap2a) 
and dorsal (zic1) genes (red cells in A, located across dorsal and ventral clusters). (C) Based on the forced-directed graph we hypothesized
several paths for NC and PC development at stages 11-13, considering two possible origins for both populations (NP and NB for NC, and 
NNE and NB for PC). (D) Early NNE (NNE1)->NP gene program, (E) NE->NC gene program, (F) NB->NC gene program, (G) NB->PC gene
program, (H) NNE1->PC gene program, (I) NNE1->later NNE (NNE2) gene program (J) Connectome and scFates branching analysis revealed
that Pax3 was an important node in the predicted GRN and an early gene for branch NB->NC. In vivo, Pax3 depletion impacted expression 
of several NB->NC branch-specific genes, including sox9, c3 and foxd3. (K) Analysis of the Ectoderm connectome suggested a novel
epistasis relationship between pax3, sox9 and other downstream NC specifiers. (L) In iNC assay, Sox9 acted downstream of Pax3 and was
essential for activating the downstream NC program. Additionally, at gastrula stages, a time point at which pax3/zic1 activation does not 
yet induce snail2 expression in iNC, activating Sox9 was sufficient to obtain high levels of snail2 precociously. RT-qPCR analysis showing
relative snail2 expression fold change in iNC at late gastrula and early neurula stages. WE - whole embryo; Uninj - uninjected animal caps; 
P/Z - pax3-GR + zic1-GR iNC; S9 LOF - sox9 loss-of-function (LOF) or gain-of-function (GOF).
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Figure 6 - figure supplement 1. Markers for NB zone and early NC.
(A) Ectoderm UMAP plots for stages 11, 12 and 13 representing gene expression of the main markers for ventral, dorsal and neural border, across the gastrula 
stage ectoderm. (B) In situ hybridization patterns for genes marking the 3 major ectoderm areas at stages 12.5 (late gastrula) and 14 (neurula). On dorsal and 
lateral views, sox2 marks the neural (dorsal) ectoderm while krt12 (epidermal keratin 12) marks the non-neural (ventral) ectoderm. Unlike the other 
derivatives, the NB zone does not yet have a large and specific gene marker list and is usually depicted by pax3 expression or the overlapping expressions of 
dorsal and ventral genes like zic1 and tfap2a respectively (dorsal views and transverse histological sections after whole mount in situ hybridization).
Importantly, the neural border area (red dotted line) can also be defined as a zone devoid of both sox2 and keratin expression as early as stage 12.5. (C)
Ectoderm UMAP and corresponding ISH images depict the earliest stages of detection of 3 well-known early NC markers. Sox9 is initiated at the prospective 
NC zone at stage 12. Sox8 and snail2 are detected at the early NC at stage 13. Yellow arrows point to the NC region. Scale bar, 500 !m. (D) Heatmap identify 
new genes enriched in the neural border defining an enlarged gene signature. (C) Neural border genes expression affected after Pax3 depletion in vivo.



 

NC; c) NNE → PC (Figure 6C); these possibilities are consistent with current models of NC 331 

and PC formation, the "neural border zone model" (route b) and the "neural vs non-neural" 332 

model (routes a & c) (Figure 6C) (Maharana and Schlosser, 2018; Roellig et al., 2017; Seal and 333 

Monsoro-Burq, 2020). Interestingly using branching analysis, no direct route was found 334 

between early NNE (nne1) and NC, or between NE and PC, confirming biological features, 335 

such as the partial neuralization needed for NC induction or the close relationship between 336 

placodes and NNE (Alkobtawi et al., 2021; Briggs et al., 2018). Since ElPiGraph cannot be 337 

applied on the whole dataset, we applied branching analysis to each potential route and 338 

compared the resulting gene programs underlying NC vs PC fate decisions. For route (a), 339 

branching towards NP from the NE state involved early genes elav3 and sall2 and late genes 340 

nkx6 and tubb2b, consistent with current knowledge on neural plate induction (sall2, nkx6) and 341 

primary neurogenesis (elav3, tubb2b) (Figure 6D, Exner et al., 2017). Route (a) branching 342 

towards NC involved early genes zic1 and foxd3 and late genes c3, myc, sox8, sox9, pcdh8 and 343 

snai2 (Figure 6E). In comparison, NC cells emerging from the NB zone by route (b) expressed 344 

c3 and sox9 before bifurcation, while NC markers foxd3, sox8, pcdh8, snail2 were enriched after 345 

splitting (Figure 6F). Similarly, we explored both proposed routes of placodal development: 346 

route (b) from NB zone showed early enrichment of tcf7l1, hesx1 and late for stmn1, pax6, 347 

pitx1/2 (Figure 6G) while route (c) from NNE exhibited early enrichment of placode specifiers 348 

six1, otx2, and late expression of placode markers egflam, pax6, pitx1/2, Figure 6H). Last, the 349 

route (c) branching for NNE formation confirmed known developmental dynamics with early 350 

enrichment for gata2 and late for ectoderm stem cell marker tp63 and epithelial cells cldn1 351 

(Figure 6I) (Haas et al., 2019).  This hierarchy of gene expression, some likely to respond to 352 

external signals as well, along the different branches thus opens avenues to further elaborate 353 

each of the NC- and PC-GRNs.  354 

Different gene programs can lead distinct progenitors towards a similar state. 355 

Interestingly, according to the route studied, we found that (i) distinct genes were 356 

activated to obtain the same state, and that (ii) some genes were activated with different 357 

expression dynamics relative to different bifurcations. For example, during the NB→NC 358 

transition (route b, Figure 6F), sox9 and c3 were activated early (before bifurcation) suggesting 359 

that they could play a part in the fate decision network from NB progenitors. In contrast, during 360 

the NE→NC gene program (Figure 6E) sox9 and c3 were late genes while foxd3 and zic1 were 361 

expressed early. This observation suggested a new model of fate decisions in the developing 362 

ectoderm, where parallel and distinct genetic programs activated in distinct ectoderm 363 

progenitors may lead to a similar state. 364 
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Last, NB zone-specific gene pax3 was expressed prior to bifurcation in the route (b), 365 

NB→NC gene program, and activated expression of late NC branch markers sox9, sox8, zic1, 366 

pcdh8 and c3 (Figure 6J). Moreover, the Ectoderm connectome described NC genes connected 367 

to the rest of the network through Pax3 and Sox9 (Figure 6K), suggesting that Sox9 might play 368 

a yet undescribed function downstream of Pax3 in NC induction and upstream of the other late 369 

NC-branch markers. This agreed with sox9 being an early gene in the NB->NC branch. We 370 

tested the epistasis relationships between Pax3 and Sox9 in NC induction by combining Sox9 371 

depletion or gain-of-function in the induced-neural crest assay (iNC is Pax3/Zic1-based NC 372 

induction from pluripotent ectoderm cells, Figure 6L). Early NC marker Snail2 expression starts 373 

from gastrula stage 12.5 both in vivo and in iNC, and increases at neurula stage 14 (Figure 6 – 374 

figure supplement 1C). At both stages, co-activation of Sox9 strongly increased snail2 375 

expression in iNC, while Sox9 depletion reduced snail2 activation (Figure 6L), indicating that 376 

Sox9 is required for efficient NC induction by Pax3 and Zic1. Interestingly, when iNC explants 377 

were analyzed prior to the normal onset of snail2 expression, at mid-gastrula stage 11/11.5, 378 

Sox9 activation highly increased snail2 expression, suggesting that Sox9 synergizes with Pax3 379 

and Zic1 at the onset of NC induction. 380 

In conclusion, we have defined a new transcriptional signature for the incompletely 381 

described Neural Border zone, established a global Ectoderm connectome and validated 382 

experimentally NC-related nodes, in particular highlighting how Sox9 enhances NC induction 383 

downstream of Pax3 and Zic1. We characterized three different transcriptional programs 384 

branching from neural, neural border and non-neural ectoderm progenitors towards NC and PC, 385 

and propose a model in which multiple co-existing paths lead to the early NC or placode states 386 

in gastrula-stage ectoderm.  387 

Discussion 388 

In this work, we exploit the resolution of high-density single cell transcriptomes 389 

collected from 8 frog developmental stages to unravel the emergence of the neural crest lineage 390 

from the ectoderm during gastrulation, followed by diversification of neural crest progenitors 391 

during neurulation and upon EMT. Modeling gene transcription dynamics around each cell state 392 

allows the inference of the underlying molecular networks. We selected several important nodes 393 

for large-scale and in vivo experimental validation (Figure 7A, B). This study highlights the 394 

previously unknown temporal sequence of states in premigratory neural crest development. 395 

Firstly, we characterize neural crest activation either from a transient neural border state, or 396 

from a neural plate state during mid-gastrulation, and suggest a model that reconciles current 397 

debates upon multiple possible routes leading from immature ectoderm to neural crest and 398 
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placodes (Figure 7C). Secondly, we delineate the early and later neural crest transcriptome 399 

trajectories during neurulation and define key regulators of branching, leading to eight 400 

transitional states and eight early migration states (Figure 7D).   401 

A reconciliatory "Model of Dual Convergence" describes the converging trajectories 402 

initiating neural crest and placode states.  403 

The molecular signature of the neural border ectoderm has been overtly simple, with 404 

only Pax3 (in frog and fish) or Pax7 (in chick) as relatively specific markers for this domain 405 

during gastrulation and early neurulation stages (Basch et al., 2006; Monsoro-Burq et al., 2005). 406 

Here, we have characterized the neural border ectoderm state by two features: the lower level 407 

of expression of genes expressed by adjacent neural (dorsal) and non-neural (ventral) cells 408 

(sox2, lhx2, sall2, gata2, ker19) and the increased expression of a large gene list including zic1, 409 

tfap2a/c, pax3, sox9, hes1, cmyc. We find that this state seems more transient than other 410 

ectoderm states, suggesting that these fate decisions occur quickly. In frog embryos, the end of 411 

gastrulation is clearly defined by blastopore closure, and this allows more precise exploration 412 

of timing compared to organisms with simultaneous gastrulation and neurulation such as chick 413 

embryos. In frog, fate choices in the dorsal ectoderm happen during the second half of 414 

gastrulation (between stage 11 and 12.5). As the neural plate forms and the blastopore closes 415 

(stage 13), fate decisions are clearly established between neural, non-neural, placode and neural 416 

crest with robust molecular signatures (Figure 6C). Modeling neural crest emergence from the 417 

neural border cell state confirmed the central role for Pax3 and suggested novel epistatic 418 

relationships between Pax3 and Sox9 upstream of the definitive neural crest state, defined by 419 

snail2 expression. Importantly, we propose a novel model for the transcriptional pattern of 420 

decisions between the four main ectoderm fates, neural, non-neural, placodal, neural crest. 421 

Instead of contrasting “neural border” and “non-neural vs neural" hypotheses, we find that these 422 

routes are not exclusive and find trajectories supporting the emergence of neural crest from 423 

either the neural border or the nascent neural ectoderm on one hand, as well as two trajectories 424 

leading to placodes from either the neural border or the non-neural ectoderm. In each case, the 425 

gene programs underlying those alternative trajectories involve a subset of common genes and 426 

a few specific factors (Figure 6). For example, specific expression of tcf7l1 and stmn1 is found 427 

in placodes arising from NB zone, compared to the NNE route (Figure 6G, H). For neural crest, 428 

early sox9 expression in the NB route contrasts with post-bifurcation expression in the NP route 429 

(Figure 6E, F). Thus, our SC transcriptome modeling reconciles and combines previously 430 

alternatives in a "Dual convergence Model" of neural crest and placode patterning, together with 431 

specific gene signatures ripe for future functional exploration (Figure 7C). 432 
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A combination of Omics and in vivo strategies validates large sets of gene regulations 433 

driving the dynamics of neural crest diversification. 434 

The second outcome of our study is to define the temporal dynamics of trajectories that 435 

result into eight neural crest states present upon early migration stage along the cranial and vagal 436 

axial positions. The first key observation is the presence of a main population of NC unbiased 437 

towards any particular state, expressing markers of the immature neural crest cells, from which 438 

all the other trajectories emerge. This unbiased cell trajectory is maintained during and after 439 

EMT suggesting that a very plastic, stem-like NC cell population emigrates and is subjected to 440 

the signals from the microenvironment prior to fate choices. The second critical observation is 441 

that, for the anterior part of the body axis considered here, trajectories do not emerge in a 442 

spatially linear sequence from anterior to posterior as previously anticipated in a model where 443 

NC would follow an anterior-posterior wave of maturation. Two early trajectories arise from 444 

both the anterior (progenitors of posterior cranial NC - cluster 15) and the posterior-most 445 

positions (minor vagal trajectory progenitors, cluster 3) at neural plate stage (stages 13-14) prior 446 

to neural fold elevation. This is followed at mid-neurula stage (stage 15-16) by the emergence 447 

of the three other main cranial and vagal trajectories leading to cranial clusters 10 and 11, and 448 

to vagal NC clusters 12 and 13. Together with the maintenance of an immature stem-like cell 449 

population from induction to emigration, this sequence of trajectory determination suggests that 450 

the main cue controlling the temporal dynamics of states hierarchy in the cranial and vagal NC-451 

GRN is not a function of the time elapsed since NC cell induction, or correlated to Hox gene 452 

positional information, but rather may involve response to external signals.             453 

Our temporal analysis highlights three important points deepening our understanding of 454 

NC biology. Firstly, there have been long standing debates about the timing of NC fate 455 

decisions, prior or after EMT from the neural tube, in a variety of animal models (Kalcheim and 456 

Kumar, 2017). Importantly, we did not detect distinctive expression of predictive fate markers 457 

before EMT (e.g. for neuronal, glial skeletogenic or melanocyte fates). This suggested that, if 458 

some NC progenitors were biased towards a given fate prior to EMT, they did not exhibit a 459 

detectable signature in our dataset. However, our observations are in agreement with several 460 

lineage tracing studies showing the high multipotency of most NC cells when marked prior to 461 

EMT (Baggiolini et al., 2015). The first differentiation markers are found after emigration, as 462 

we detected myosin-like expression in a small subset of cells suggesting the emergence of 463 

previously poorly described NC-derived myofibroblasts shortly after EMT (Figure 2 – figure 464 

supplement 2). It also supports that our dataset is sensitive enough to detect other fate-specific 465 

markers if they were expressed at the end of neurulation. Secondly, our data support the early 466 

diversification into several distinct cell states prior, during and after EMT, contrasting with the 467 
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recent suggestion that upon EMT the NC progenitors would regroup into a single common 468 

multipotent state (Zalc et al., 2021). The high cell content of our dataset proves otherwise, 469 

suggesting that this previous observation made on a smaller subset of cranial NC did not fully 470 

capture the diversity of pre-migratory NC states. Lastly, temporal trajectory analysis unravels 471 

the branch-specific dynamics of gene expression underlying bifurcations and state 472 

diversification. For each bifurcation, we provide a list of key genes likely to control branching 473 

choices (Figures 5 and 6). We further validate these predictions in several instances, by 474 

experimental modulation of pivotal transcription factors function in the premigratory neural 475 

crest (Pax3, TFAP2e), followed by in vivo or deep sequencing analysis. In sum, our study 476 

provides a comprehensive view of the hierarchy of molecular decisions driving the cranial and 477 

vagal neural crest gene regulatory network from induction at the neural border to early 478 

migration, with unprecedented resolution and deep learning-aided experimental validation. We 479 

propose a new "Dual Convergence Model" for neural crest and placode lineage emergence, and 480 

provide a detailed roadmap of the main molecular events in the premigratory and early migrating 481 

NC-GRN. Using a dedicated interactive network visualization interface, any gene of interest 482 

can be queried. Moreover, the detailed sequence of cell states provided here will prove an 483 

essential reference for monitoring induction of neural crest derivatives, for example from 484 

patient-derived induced pluripotent stem cells, when reliable specification protocols preferably 485 

recapitulate the steps of embryonic development. 486 

Materials ad Methods 487 

 Experimental Design. 488 

Single cell transcriptomes from developing X. tropicalis embryos were scrutinized for 489 

NC development using machine-learning tools to infer the gene regulatory network (GRN) and 490 

the gene programs underlying branching of fates. These predictions were largely validated in 491 

vivo using micro-manipulations in X. laevis embryos followed by RNA-seq or ChIPseq. 492 

Detailed material and methods are given in Supplementary File 1. 493 

Single cell sequencing and processing. 494 

No new materials were collected for this study. Instead, we re-sequenced the SC RNA 495 

libraries for developmental stages NF11 to NF22 (Faber and Nieuwkoop, 2020) used in (Briggs 496 

et al., 2018) using NovaSeq S2. All datasets are deposited under NCBI Gene Expression 497 

Omnibus number GSE198494. For SC analysis, we used the X.tropicalis  v.10 genome 498 

assembly, gene models v. 10.7, together with STAR aligner and the DropEst pipeline. After 499 

filtration by counts and genes numbers (>200 genes; >300 counts), we gathered a dataset of 500 

177250 cells. In the cells of interest (Ectoderm and NC cells), mean counts number was 1778, 501 

and mean gene number was 1035. scRNA-seq postprocessing was done using Scanpy, a 502 
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comprehensive scRNA pipeline that is functionally similar to Seurat (Stuart et al., 2019, see 503 

references and details in Supplementary File 1).  504 

Clustering and NC cells selection 505 

For each stage, we obtained independent standard dimensionality reduction with PCA, 506 

computing a neighborhood graph and UMAP (Jacomy et al., 2014) followed by clustering, 507 

(Leiden algorithm, Traag et al., 2019). For each cluster, we defined cluster-specific genes with 508 

differential expression analysis (scanpy t-test_overestim_var) and selected only clusters which 509 

were the most similar to NC cells using NC signatures from (Briggs et al., 2018). For NC 510 

subclustering, we defined the optimal number of clusters by manually increasing their number 511 

and checking for biological meaning, as revealed by specific gene expression, for example of 512 

hox genes, such as hoxd3 for cardiac NC (cluster #12), or hoxb6 for Enteric Nervous System 513 

progenitors (ENSp, cluster #13). 514 

GRN generation  515 

Using the temporal dynamics of gene expression, we used GRNBoost2 to infer genetic 516 

co-regulation, starting from a list of TFs (Blitz et al., 2017). GRNBoost2 retrieves the gene 517 

regulatory network (GRN) from the expression data-matrix (Moerman et al., 2019). In the 518 

resulting network of TFs and their targets we identified the most important nodes by calculating 519 

betweenness and degree centralities.  520 

Principal graph generation and branching analysis. 521 

The tree analysis was carried out using the scFates package (Albergante et al., 2020). 522 

However, this approach is too sensitive to build the principal graph for the whole NC dataset. 523 

Therefore, to generate the main tree, we used the PAGA algorithm (Wolf et al., 2018). This 524 

revealed cluster-cluster relationships including the early stages where the strongest connectivity 525 

was observed. Further we used ElPiGraph to study specific branches and bifurcation points. 526 

Using ScFates we defined features significantly changing along the tree, and then using 527 

pseudotime values and differential expression analysis, determined early and late branch-528 

specific features. For each bifurcation point of interest, we selected a set of cells related to the 529 

clusters involved in the bifurcation. The selection of parameters for building the principal tree 530 

for each point of the bifurcation was carried out using brute force approach. 531 

Chromatin immunoprecipitation sequencing (ChIPseq) 532 

Chromatin immunoprecipitation was performed according to (Wills et al., 2014) after 533 

injection of tracing amounts (75 pg) of mRNA encoding either Pax3-FLAG-HA or TFAP2e-534 

FLAG). After sequencing, 100 bp single-end reads were aligned to X. laevis genome version 535 

9.2 (Pax3) or X. tropicalis v10.0 (TFAP2e) using Bowtie2. Peaks were called using MACS2. 536 
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For Pax3 we selected peaks common in three replicates, for TFAP2e we used stricter MACS2 537 

score cutoff=500. Target genes were searched with bedtools (window size = 10kb).  538 

In vivo experiments: Xenopus laevis injections, microdissections, grafting and RNA-539 

seq 540 

In vivo injections, NB/NC dissections and grafting were done as previously (Milet and 541 

Monsoro-Burq, 2014; Plouhinec et al., 2017) using X. laevis embryos. For knockdown 542 

experiments, previously validated antisense morpholino oligonucleotides (MO) were used to 543 

deplete pax3, or TFAP2e transcripts (Monsoro-Burq et al., 2005; Hong et al., 2014). One Pax3 544 

morphant anterior NB explant (stage 14) or one TFAP2e-morphant NC explant (stage 17) were 545 

dissected from the injected side, in triplicate. Each explant was sequenced individually (RNA-546 

seq). The resulting 100 bp paired-end sequencing reads were aligned to the X. laevis genome 547 

version 9.2 using STAR and the count reads were analyzed using String Tie. Differentially 548 

expressed genes were selected considering log2FC and expression difference in absolute values 549 

(abs. diff. >=100 and <=500: log2FC>1.5 or log2FC<-1.5; abs. diff >=500 and <=1000: 550 

log2FC>1 or log2FC<-1; abs. diff >=1000 and <=3000: log2FC>0.5 or log2FC<-0.5; 551 

abs.diff.>3000: log2FC>0.33 or log2FC<-0.33)  552 

iNC assay. 553 

The induced neural crest assay (iNC) used co-activation of dexamethasone-inducible 554 

Pax3-GR and Zic1-GR at gastrula initiation stage 10.5, in pluripotent blastula ectoderm (animal 555 

caps dissected at blastula stage 9) (Hong and Saint-Jeannet, 2007; Milet et al., 2013). This was 556 

combined with Sox9 depletion (40 ng of sox9 MO) (Spokony et al., 2002), or gain-of-function 557 

(300 pg sox9 mRNA). At the desired stage, explants were harvested and processed for RTqPCR 558 

as in (Alkobtawi et al., 2021). Primers are listed in Table S8. 559 

Whole-mount in situ hybridization (ISH) 560 

Whole-mount in situ hybridization followed a protocol optimized for NC (Monsoro-561 

Burq, 2007). Embryos were imaged using a Lumar V12 Binocular microscope equipped with 562 

bright field and color cameras (Zeiss).  563 

 564 

References 565 

Albergante L, Mirkes E, Bac J, Chen H, Martin A, Faure L, Barillot E, Pinello L, Gorban A, 566 

Zinovyev A. 2020. Robust and Scalable Learning of Complex Intrinsic Dataset 567 

Geometry via ElPiGraph. Entropy 22:296. doi:10.3390/e22030296 568 

Alkobtawi M, Pla P, Monsoro-Burq AH. 2021. BMP signaling is enhanced intracellularly by 569 

FHL3 controlling WNT-dependent spatiotemporal emergence of the neural crest. Cell 570 

Reports 35:109289. doi:10.1016/j.celrep.2021.109289 571 

Aleksandr Kotov



 

Artinger KB, Monsoro-Burq AH. 2021. Neural crest multipotency and specification: power 572 

and limits of single cell transcriptomic approaches. Fac Rev 10:38. doi:10.12703/r/10-573 

38 574 

Baggiolini A, Varum S, Mateos JM, Bettosini D, John N, Bonalli M, Ziegler U, Dimou L, 575 

Clevers H, Furrer R, Sommer L. 2015. Premigratory and migratory neural crest cells 576 

are multipotent in vivo. Cell Stem Cell 16:314–322. doi:10.1016/j.stem.2015.02.017 577 

Basch ML, Bronner-Fraser M, García-Castro MI. 2006. Specification of the neural crest 578 

occurs during gastrulation and requires Pax7. Nature 441:218–222. 579 

doi:10.1038/nature04684 580 

Bhattacharya D, Azambuja AP, Simoes-Costa M. 2020. Metabolic Reprogramming Promotes 581 

Neural Crest Migration via Yap/Tead Signaling. Dev Cell 53:199-211.e6. 582 

doi:10.1016/j.devcel.2020.03.005 583 

Blitz IL, Paraiso KD, Patrushev I, Chiu WTY, Cho KWY, Gilchrist MJ. 2017. A catalog of 584 

Xenopus tropicalis transcription factors and their regional expression in the early 585 

gastrula stage embryo. Dev Biol 426:409–417. doi:10.1016/j.ydbio.2016.07.002 586 

Briggs JA, Weinreb C, Wagner DE, Megason S, Peshkin L, Kirschner MW, Klein AM. 2018. 587 

The dynamics of gene expression in vertebrate embryogenesis at single-cell resolution. 588 

Science 360:eaar5780. doi:10.1126/science.aar5780 589 

de Crozé N, Maczkowiak F, Monsoro-Burq AH. 2011. Reiterative AP2a activity controls 590 

sequential steps in the neural crest gene regulatory network. Proc Natl Acad Sci U S A 591 

108:155–160. doi:10.1073/pnas.1010740107 592 

Eames BF, Medeiros DM, Adameyko I. 2020. Evolving Neural Crest Cells. CRC Press. 593 

Exner CRT, Kim AY, Mardjuki SM, Harland RM. 2017. sall1 and sall4 repress pou5f3 family 594 

expression to allow neural patterning, differentiation, and morphogenesis in Xenopus 595 

laevis. Developmental Biology 425:33–43. doi:10.1016/j.ydbio.2017.03.015 596 

Faber J, Nieuwkoop PD. 2020. Normal Table of Xenopus Laevis (Daudin): A Systematical & 597 

Chronological Survey of the Development from the Fertilized Egg till the End of 598 

Metamorphosis. Garland Science. 599 

Figueiredo AL, Maczkowiak F, Borday C, Pla P, Sittewelle M, Pegoraro C, Monsoro-Burq 600 

AH. 2017. PFKFB4 control of Akt signaling is essential for premigratory and 601 

migratory neural crest formation. Development dev.157644. doi:10.1242/dev.157644 602 

Gonzalez Malagon SG, Liu KJ. 2018. ALK and GSK3: Shared Features of Neuroblastoma and 603 

Neural Crest Cells. J Exp Neurosci 12:1179069518792499. 604 

doi:10.1177/1179069518792499 605 

Aleksandr Kotov



 

Groves AK, LaBonne C. 2014. Setting appropriate boundaries: Fate, patterning and 606 

competence at the neural plate border. Dev Biol 389:2–12. 607 

doi:10.1016/j.ydbio.2013.11.027 608 

Haas M, Gómez Vázquez JL, Sun DI, Tran HT, Brislinger M, Tasca A, Shomroni O, 609 

Vleminckx K, Walentek P. 2019. ΔN-Tp63 Mediates Wnt/β-Catenin-Induced 610 

Inhibition of Differentiation in Basal Stem Cells of Mucociliary Epithelia. Cell Rep 611 

28:3338-3352.e6. doi:10.1016/j.celrep.2019.08.063 612 

Hong C-S, Devotta A, Lee Y-H, Park B-Y, Saint-Jeannet J-P. 2014. Transcription factor AP2 613 

epsilon (Tfap2e) regulates neural crest specification in Xenopus. Dev Neurobiol 614 

74:894–906. doi:10.1002/dneu.22173 615 

Hong C-S, Saint-Jeannet J-P. 2007. The Activity of Pax3 and Zic1 Regulates Three Distinct 616 

Cell Fates at the Neural Plate Border. MBoC 18:2192–2202. doi:10.1091/mbc.e06-11-617 

1047 618 

Jacomy M, Venturini T, Heymann S, Bastian M. 2014. ForceAtlas2, a Continuous Graph 619 

Layout Algorithm for Handy Network Visualization Designed for the Gephi Software. 620 

PLOS ONE 9:e98679. doi:10.1371/journal.pone.0098679 621 

Kalcheim C, Kumar D. 2017. Cell fate decisions during neural crest ontogeny. Int J Dev Biol 622 

61:195–203. doi:10.1387/ijdb.160196ck 623 

Le Douarin N, Kalcheim C. 1999. The Neural Crest, 2nd ed, Developmental and Cell Biology 624 

Series. Cambridge: Cambridge University Press. doi:10.1017/CBO9780511897948 625 

Ling ITC, Sauka-Spengler T. 2019. Early chromatin shaping predetermines multipotent vagal 626 

neural crest into neural, neuronal and mesenchymal lineages. Nat Cell Biol 21:1504–627 

1517. doi:10.1038/s41556-019-0428-9 628 

Maharana SK, Schlosser G. 2018. A gene regulatory network underlying the formation of pre-629 

placodal ectoderm in Xenopus laevis. BMC Biol 16:79. doi:10.1186/s12915-018-0540-630 

5 631 

Medina-Cuadra L, Monsoro-Burq AH. 2021. Xenopus, an emerging model for studying 632 

pathologies of the neural crest. Curr Top Dev Biol 145:313–348. 633 

doi:10.1016/bs.ctdb.2021.03.002 634 

Milet C, Maczkowiak F, Roche DD, Monsoro-Burq AH. 2013. Pax3 and Zic1 drive induction 635 

and differentiation of multipotent, migratory, and functional neural crest in Xenopus 636 

embryos. Proc Natl Acad Sci U S A 110:5528–5533. doi:10.1073/pnas.1219124110 637 

Milet C, Monsoro-Burq AH. 2014. Dissection of Xenopus laevis neural crest for in vitro 638 

explant culture or in vivo transplantation. J Vis Exp. doi:10.3791/51118 639 

Aleksandr Kotov



 

Moerman T, Aibar Santos S, Bravo González-Blas C, Simm J, Moreau Y, Aerts J, Aerts S. 640 

2019. GRNBoost2 and Arboreto: efficient and scalable inference of gene regulatory 641 

networks. Bioinformatics 35:2159–2161. doi:10.1093/bioinformatics/bty916 642 

Monsoro-Burq AH. 2007. A Rapid Protocol for Whole-Mount In Situ Hybridization on 643 

Xenopus Embryos. Cold Spring Harb Protoc 2007:pdb.prot4809. 644 

doi:10.1101/pdb.prot4809 645 

Monsoro-Burq A-H, Wang E, Harland R. 2005. Msx1 and Pax3 cooperate to mediate FGF8 646 

and WNT signals during Xenopus neural crest induction. Dev Cell 8:167–178. 647 

doi:10.1016/j.devcel.2004.12.017 648 

Morrison JA, McLennan R, Teddy JM, Scott AR, Kasemeier-Kulesa JC, Gogol MM, Kulesa 649 

PM. 2021. Single-cell reconstruction with spatial context of migrating neural crest 650 

cells and their microenvironments during vertebrate head and neck formation. 651 

Development 148:dev199468. doi:10.1242/dev.199468 652 

Plouhinec J-L, Medina-Ruiz S, Borday C, Bernard E, Vert J-P, Eisen MB, Harland RM, 653 

Monsoro-Burq AH. 2017. A molecular atlas of the developing ectoderm defines 654 

neural, neural crest, placode, and nonneural progenitor identity in vertebrates. PLOS 655 

Biology 15:e2004045. doi:10.1371/journal.pbio.2004045 656 

Plouhinec J-L, Roche DD, Pegoraro C, Figueiredo A-L, Maczkowiak F, Brunet LJ, Milet C, 657 

Vert J-P, Pollet N, Harland RM, Monsoro-Burq AH. 2014. Pax3 and Zic1 trigger the 658 

early neural crest gene regulatory network by the direct activation of multiple key 659 

neural crest specifiers. Dev Biol 386:461–472. doi:10.1016/j.ydbio.2013.12.010 660 

Roellig D, Tan-Cabugao J, Esaian S, Bronner ME. 2017. Dynamic transcriptional signature 661 

and cell fate analysis reveals plasticity of individual neural plate border cells. Elife 662 

6:e21620. doi:10.7554/eLife.21620 663 

Sato T, Sasai N, Sasai Y. 2005. Neural crest determination by co-activation of Pax3 and Zic1 664 

genes in Xenopus ectoderm. Development 132:2355–2363. doi:10.1242/dev.01823 665 

Seal S, Monsoro-Burq AH. 2020. Insights Into the Early Gene Regulatory Network 666 

Controlling Neural Crest and Placode Fate Choices at the Neural Border. Front 667 

Physiol 11:608812. doi:10.3389/fphys.2020.608812 668 

Simoes-Costa M, Bronner ME. 2016. Reprogramming of avian neural crest axial identity and 669 

cell fate. Science 352:1570–1573. doi:10.1126/science.aaf2729 670 

Spokony RF, Aoki Y, Saint-Germain N, Magner-Fink E, Saint-Jeannet J-P. 2002. The 671 

transcription factor Sox9 is required for cranial neural crest development in Xenopus. 672 

Development 129:421–432. 673 

Steventon B, Mayor R. 2012. Early neural crest induction requires an initial inhibition of Wnt 674 

signals. Dev Biol 365:196–207. doi:10.1016/j.ydbio.2012.02.029 675 

Aleksandr Kotov



 

Streit A, Stern CD. 1999. Establishment and maintenance of the border of the neural plate in 676 

the chick: involvement of FGF and BMP activity. Mechanisms of Development 82:51–677 

66. doi:10.1016/S0925-4773(99)00013-1 678 

Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, Hao Y, Stoeckius M, 679 

Smibert P, Satija R. 2019. Comprehensive Integration of Single-Cell Data. Cell 680 

177:1888-1902.e21. doi:10.1016/j.cell.2019.05.031 681 

Tang W, Li Y, Li A, Bronner ME. 2021. Clonal analysis and dynamic imaging identify 682 

multipotency of individual Gallus gallus caudal hindbrain neural crest cells toward 683 

cardiac and enteric fates. Nat Commun 12:1894. doi:10.1038/s41467-021-22146-8 684 

Tani-Matsuhana S, Inoue K. 2021. Identification of regulatory elements for MafB expression 685 

in the cardiac neural crest. Cells Dev 167:203725. doi:10.1016/j.cdev.2021.203725 686 

Traag VA, Waltman L, van Eck NJ. 2019. From Louvain to Leiden: guaranteeing well-687 

connected communities. Sci Rep 9:5233. doi:10.1038/s41598-019-41695-z 688 

Uehara M, Yashiro K, Mamiya S, Nishino J, Chambon P, Dolle P, Sakai Y. 2007. CYP26A1 689 

and CYP26C1 cooperatively regulate anterior-posterior patterning of the developing 690 

brain and the production of migratory cranial neural crest cells in the mouse. Dev Biol 691 

302:399–411. doi:10.1016/j.ydbio.2006.09.045 692 

Wills AE, Gupta R, Chuong E, Baker JC. 2014. Chromatin immunoprecipitation and deep 693 

sequencing in Xenopus tropicalis and Xenopus laevis. Methods 66:410–421. 694 

doi:10.1016/j.ymeth.2013.09.010 695 

Wolf FA, Angerer P, Theis FJ. 2018. SCANPY: large-scale single-cell gene expression data 696 

analysis. Genome Biology 19:15. doi:10.1186/s13059-017-1382-0 697 

Xu M, Li Y, Du J, Lin H, Cao S, Mao Z, Wu R, Liu M, Liu Y, Yin Q. 2018. PAX3 Promotes 698 

Cell Migration and CXCR4 Gene Expression in Neural Crest Cells. J Mol Neurosci 699 

64:1–8. doi:10.1007/s12031-017-0995-9 700 

Zalc A, Sinha R, Gulati GS, Wesche DJ, Daszczuk P, Swigut T, Weissman IL, Wysocka J. 701 

2021. Reactivation of the pluripotency program precedes formation of the cranial 702 

neural crest. Science 371:eabb4776. doi:10.1126/science.abb4776 703 

 704 

Author contributions:  705 

Conceptualization: AK, SS, LP, AHMB 706 
Methodology: AK, MA, SS, VK, SMR, HA, LP, AHMB 707 
Investigation: AK, MA, SS, VK, SMR, HA, LP, AHMB 708 
Visualization: AK, MA, SS, VK, AHMB 709 
Supervision: LP, RMH, AHMB 710 
Writing—original draft: AK, SS, AHMB 711 
Writing—review & editing: AK, SS, RMH, AHMB 712 

Competing interests: Authors declare that they have no competing interests. 713 
 714 

Aleksandr Kotov



 

 715 
Funding:  716 

This project received funding from  717 
European Union’s Horizon 2020 research and innovation programme under Marie 718 
Skłodowska-Curie grant agreement No 860635, NEUcrest ITN (AHMB) 719 
Agence Nationale pour la Recherche (ANR-15-CE13-0012-01; AHMB) 720 
Agence Nationale pour la Recherche ANR-21-CE13-0028; AHMB) 721 
Institut Universitaire de France (AHMB) 722 
National Institutes of Health NICHD award R01HD073104 (LP) 723 
National Institutes of Health NIH R01 GM42341 (RMH) 724 
National Institutes of Health NIH R35GM127069 (RMH) 725 

 726 
Acknowledgements 727 

The authors are grateful to Drs. A. Zinoviev, G. Schlosser, I. Adameyko and T. Walter 728 
for insightful scientific discussions and comments on the manuscript. We thank C. 729 
Lantoine for animal husbandry, Q. Thuillier for technical assistance, and present and 730 
past members of the Monsoro-Burq lab for their support. We thank J. Briggs for help in 731 
single cell sequencing. We thank J.L. Plouhinec for preliminary RNAseq analysis. High-732 
throughput sequencing, except for single cell sequencing, used the ICGex NGS platform 733 
of the Institut Curie supported by the grants ANR-10-EQPX-03 (Equipex) and ANR-10-734 
INBS-09-08 (France Génomique Consortium) from the Agence Nationale de la 735 
Recherche ("Investissements d’Avenir" program), by the Canceropole Ile-de-France and 736 
by the SiRIC-Curie program -SiRIC Grant « INCa-DGOS-4654 ».  737 

 738 
Data and materials availability: All data are available in the main text or the supplementary 739 

materials. Biological reagents are available upon request to the corresponding author. 740 
Accession numbers to the datasets, together with their description are under NCBI 741 
Gene Expression Omnibus # GSE198494. 742 

 743 
List of Supplementary Materials 744 

 745 

x Figure 1 – figure supplement 1 746 

x Figure 2 – figure supplements 1, 2, 3, 4 and 5 747 

x Figure 4 – figure supplements 1 and 2 748 

x Figure 5 – figure supplement 1 749 

x Figure 6 – figure supplement 1 750 

x Supplementary File 1 751 
a. Tables S1, S2 and S3 752 
b. Detailed description of NC clusters 753 
c. Tables S4, S5, S6, S7 and S8 754 
d. Supplementary Matdrials and Methods 755 

Aleksandr Kotov



 

 99 

2.2. Neural border and neural crest gene regulatory network: 
unpublished data 

In this chapter, we present our unpublished results related to the paper above. First, we 

will describe the improved bioinformatics pipeline used for reads alignment and further 

analysis in our study. This approach differs from the one previously described in the Briggs et 

al. paper. Next, we will present the results of our TFAP2a ChIP-seq experiments and discuss 

the identified targets and their potential functional implications. We will also report on the 

results of our analysis of gene expression changes following Zic1 MO-depletion and RNA-seq.  
 

2.2.1 A new pipeline description and dataset benchmarking 

In order to process new scRNA-seq data and reprocess previously published data (Briggs 

et al, 2018) we decided to select a different aligner and scRNA pipeline due to several factors. 

The first one is that Bowtie (Langmead et al., 2009) which is used in the InDrops pipeline 

(Klein et al., 2015) was not designed to align transcripts to the genome, and therefore it is not 

splice-aware. An RNA-seq read aligner that takes splicing into account should prioritize 

aligning reads to exons rather than introns, and should attempt to identify and align to 

downstream exons if possible. Using Bowtie to align reads to a transcriptome raises concerns 

about selecting the appropriate transcript. Therefore, STAR has been chosen, because it is one 

of the most effective RNA-seq aligners and has a higher accuracy for both correct and incorrect 

alignments compared to other aligners (Baruzzo et al., 2017). Secondly, STAR is fast and 

automatically handles preprocessing tasks such as removing low-quality bases and adapters 

(Dobin et al., 2013). However, due to bugs in the pipeline (which has not been updated in the 

past 4 years) and the difficulty of integrating another aligner into the pipeline, we have chosen 

to replace InDrops with the more recent DropEst pipeline (Petukhov et al., 2018). Recent 

benchmarking showed that DropEst exceeds other options in terms of sensitivity and efficiency 

(running time and memory use) (Gao et al., 2021). As a result, we got two different versions 

of the pipeline which use dropEst and STAR for versions v2 and v3 of Indrops platform. For 

v2 Indrops we run dropTag which generates tagged fastq files for alignment, then we run STAR 

alignment and dropEst, which estimates counts matrix. For v3 Indrops we firstly use Indrops 

for demultiplexing and very soft filtering, then we generate tagged files with our script (similar 

to dropTag without considering reads base quality for barcodes) and then alignment and 

quantification as in the v2 version (Figure 8A).  
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Figure 8.  ScRNAseq data preprocessing and comparison to published data. A. New 

pipeline schema (for Indrops v3 data); B. Cell to cell comparison of total counts and genes 

number for Indrops and our pipeline; C. Total counts KDE in two datasets; D. Expression 

change for some selected genes which are in common for 964 cells. Blue is for 0 UMIs (no 

change), green is for 1 UMI.
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2.2.2 Published data recalculation 

To benchmark our pipeline which better suits the RNA-seq data, we took published 

count matrices from GSE113074 (which are counted using inDrops) and compared it with the 

same data but processed with our pipeline. We evaluate it in terms of the number of cells, genes 

per cell, and total counts per cell. After filtration with min_counts=650, min_genes=300 and 

min_cells=3 we got a total of 1069 and 1160 cells respectively for our pipeline and Indrops for 

stage NF-8 v2 Indrops data from GEO. From Figure 8B we can see that the results obtained 

with the new pipeline are quite similar to the published matrices, which meets our criteria in 

terms of sensitivity. From Figure 8C we see that the probability of a certain total count in two 

datasets is very similar. Thus, we see that our new pipeline is only slightly inferior to the 

Indrops pipeline in terms of the number of cells, genes and UMIs. We also checked dynamics 

in expression change for certain genes. We observed that 90-95% of cells did not change the 

expression of four genes. A similar situation is observed with the data from stage 12, but with 

some fragmentation. After the same filtration, we get 7916 cells for our pipeline and 7959 for 

published Indrops data. 

2.2.3 Additional experimental validation 

From the analysis of the whole Ectoderm connectome (10085 gene connections) and 

found TFAP2a among the most significant ones. Tfap2a plays a role in neural crest induction 

by participating in the balance of Bmp and Wnt signaling in the neural plate border and is 

necessary and sufficient for this process to proceed (Wang et al., 2011). Thus, we aimed to 

expand our understanding of the role of Tfap2a in neural crest induction and identify the direct 

targets of this important transcription factor. Using ChIP-seq we retrieved 682 direct targets of 

TFAP2a expressed in the NC dataset, among the 1393 targets bound by TFAP2a in the whole 

embryo, including NB signature genes pax3, sox9, myc and tfap2a itself suggesting the key 

role in the ectodermal cell types development during gastrulation (Figure 9; Table 2). Also, we 

depleted selected gene products in vivo using previously validated antisense morpholino 

oligonucleotides (MO) designed against Zic1 (Figure 10). The differential analysis found 

decreased expression of 1103 genes in Zic1 morphant NB (Figure 9). This confirmed that this 

NB specifier is essential to activate a large NB/NC gene signature, and provided the most 

complete list to date of Zic1 indirect targets in the pre-migratory neural crest (Table 1). We 

found that GRNBoost2 predicted 1136 genes linked to Zic1, of which 188 were significantly 

changed in Zic1 MO cells.  
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Tables 1 and 2.  Table 1. Top decreased genes in Zic-MO samples with the absolute expression 
change > 1000 (on the left); Table 2. Top MACS2 scored direct targets of Tfap2a.  
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Interestingly, cyp26a1 was connected to zic1 in the predicted network and was significantly 

decreased in Zic1 MO. This supports the previous characterization of cyp26c1 as an immediate-

early target of Pax3 and Zic1 (Plouhinec et al., 2014), and may relate to potential roles of Zic1 

and Pax3 in anteroposterior patterning through regulation of retinoid signaling (Uehara et al., 

2007). Overall, the experimental validation has not only validated the accuracy of the 

bioinformatic predictions, but has also significantly expanded our understanding of the roles 

of TFAP2a and Zic1 during neural crest induction and development. The experimental results 

have identified 105 direct targets of TFAP2a and 188 indirect targets of Zic1 (some of which 

are known), providing new insights into the mechanisms underlying neural crest induction and 

development. 
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Figure 9. Direct gene regulation by Tfap2a, Zic1, and Pax3 during the NC induction. In 

order to reveal direct targets and validate scRNA-seq prediction, we performed ChIP-seq for 
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Tfap2a (one of the main actors in the Ectoderm network), Pax3 and Tfap2e (main actors in the 

NC network). ChIP-seq was performed in whole embryos (WE) then genes which are expressed 

in the NC cells were selected. (A) General overview of the most changed genes in both Pax3 

and Zic1 MO samples (abs_diff>300), most of them decreased. (B) Genes from the NB zone 

signature with the lower expression level threshold. It shows that both Zic1 and Pax3 are 

needed for activation of ngfr, wnt8a, sox8 and nudt22 expression. (C) ChIP-seq analysis 

pipeline. (D, E) Comparison between GRNBoost2-based predictions and experimental 

validation for Tfap2a (ChIP-seq) and Zic1 (MO knockdown). Around 12% of genes predicted 

to be linked to Tfap2a are found as direct targets; while about 20% of predicted Zic1-linked 

genes are affected by Zic1 depletion in vivo.
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Figure 10. MO experiments overview. We performed MO knockdown experiments for the 

main genes from the predicted networks for the NC dataset. The figure depicts general statistics 

for changed and unchanged genes after Tfap2e, and Zic1 depletion compared to controls
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2.3 Investigating the role of miRNAs miR-196a and miR-219 in the 
development of neural crest in Xenopus 
 

Alice M. Godden, Marco Antonaci, Nicole Ward, Méghane Sittewelle, Aleksandr Kotov, Anne-Hélène 

Monsoro-Burq, Grant N. Wheeler 

In progress. 

2.3.1 Introduction  

MicroRNAs (miRNAs) are short, single-stranded, non-coding RNAs, approximately 

22 nucleotides long (Alberti and Cochella, 2017; Lee et al., 1993). miRNAs can be found in 

intronic regions of the genome, and as such are processed from the introns. They can also be 

found as independent genes while a number of miRNAs can be transcribed in one transcript 

and then processed individually. MicroRNAs are highly conserved and are abundant between 

species with many orthologues (Bartel, 2004).  

MiRNAs have been found to have roles in the development of invertebrates like the 

worm and fruit fly (Chandra et al., 2017) and vertebrate tissues, including chick, mouse, frog 

and fish (Ahmed et al., 2015; Mok et al., 2017; Ward et al., 2018). MiRNAs have been shown 

to be involved in the regulation of the NC specification, migration (Figure 11) (Weiner, 2018). 

Dysregulation of miRNA expression has been linked to various neurocristopathies, suggesting 

that miRNAs may be potential therapeutic targets for these disorders (Bachetti et al., 2021; Du 

et al., 2020; Evsen et al., 2020; Schoen et al., 2017). Neurocristopathies are developmental 

congenital disorders where there is aberrant NC migration, specification, or differentiation 

(Gouignard et al., 2016; Ward et al., 2018). Neurocristopathies include DiGeorge syndrome, 

Waardenburg syndrome, cranio-fronto-nasal dysplasia (cleft palate), and some cancers such as 

neuroblastoma and melanoma (Gouignard et al., 2016; Ward et al., 2018). Therefore, studying 

the role of miRNAs in NC development may provide new insights into the regulatory 

mechanisms underlying NC biology and may identify potential targets for the treatment of 

neurocristopathies. In addition, understanding the role of miRNAs in NC development may 

also reveal new pathways that could be targeted to promote NC-based regenerative therapies. 

Overall, the study of miRNAs in NC development has the potential to improve our 

understanding of the complex regulatory networks controlling NC biology and may lead to the 

development of new therapeutic strategies for NC-related disorders.  
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Gessert et al. found that several miRNAs, including miR-130a, miR-219, miR-23b, 

miR200b, miR-96, and miR-196a, play a role in NC and eye development in Xenopus laevis 

(Gessert et al., 2010). Using a morpholino approach, they demonstrated that miR-130a, miR-

219, and miR-23b are necessary for normal eye development, while the knockdown of miR-

200b, miR-96, and miR-196a leads to craniofacial defects and other NC-associated phenotypes. 

Ward et al. studied miRNAs using Xenopus laevis embryonic organoids (also known as 

"animal caps") induced to become NC or neural tissue. Small-RNA sequencing and differential 

analysis were performed to identify miRNAs specifically expressed in NC-induced animal 

caps. The most abundant miRNAs detected were miR-219, miR-196a, miR-218-2, miR-10b, 

miR-204a, miR-130b/c, miR-23, and miR-24, with miR-219 being the most enriched miRNA 

in NC-induced animal caps, followed by miR-196a (Ward et al., 2018). The purpose of this 

research was to confirm if miR-196a and miR-219 play a necessary role in the development of 

Xenopus NC, using MO-mediated KD to knock down these microRNAs. Additionally, this 

study aimed to investigate the level at which miR-196a and miR-219 influence NC 

development. 
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Figure 11. MiRNAs during NC development (Antonaci and Wheeler, 2022). The roles of 

different microRNAs in the development of NC, from induction to differentiation. 
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2.3.2 Results 

Previously our colleagues have shown miR-219 and miR-196a to be expressed in NC 

and neural tissue in the Xenopus embryos (Godden et al., 2021; Ward et al., 2018). To 

determine their function in NC development we designed MO that was designed to knock down 

the mature miRNA (and be complementary to it) (Flynt et al., 2017). To profile and investigate 

the role of miRNAs in the development of Xenopus NC and NPB, whole-mount in situ 

hybridization experiments were carried out on miRNA KD embryos (Figure 12). Loss of miR-

219 led to the strong loss of NC expression of Snail2 and Sox10, an expansion of NPB marker 

Pax3 in the superficial ectoderm, and a loss of Xhe2, an HG marker (develops from ectoderm) 

(Figure 12). Loss of miR-196a led to similar phenotypes, with loss of NC with stronger loss of 

Sox10 compared to miR-219 KD, and a subtle reduction in Pax3 expression.
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Figure 12. Whole-mount in situ hybridization for miRNA MO samples (196a and 219). The 

effects of the miRNAs-219/196a on Snai2, Sox10, Pax3 and Xhe2.
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Figure 13. MiRNA 196 top DE genes and selected NC-related genes.  A. Volcano plots for 

miRNA_196a-MO for stage 14 and stage 17; B.  Matrix of distances between different samples.
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Figure 14. Characterization of Sox10, Snail2, and Pax3. The effect of 

Pax3MO+miRNA-219MO. 
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Through RNA-sequencing on dissected NC tissue that had been treated with MOs for 

miR-196a and miR-219, it was revealed that miRNAs may have a role in the development of NC 

and surrounding tissues. A strong reduction in expression of NC markers: foxd3, twist1, sox8, 

sox9, sox10, and snail2 can be seen, following miRNA-KD, more significantly with miR-196a 

KD. Other genes that were knocked down were pax8 genes and itln1 and others (see Figures 13, 

15). Genes that are enriched are more likely to be direct miRNA targets as miRNAs function to 

bind to complementary 3’ untranslated regions and post-transcriptionally repress gene 

expression (Rooda et al., 2020). Neural markers sox2, and sox3 were significantly enriched. 

Neural plate border markers were also enriched (gmnn, hes3, pax3, and not significantly zic1) 

and also pluripotency marker pou5f3 was enriched. MiRNA expression in Xenopus has been 

characterized previously (Ahmed et al., 2015). Specifically, miR-219 and miR-196a have been 

shown in the lab to be expressed in developing Xenopus NC (Ward et al., 2018). Using an 

enrichment map we observed a cluster of Nc-related GO terms (Figure 17).  

Functional characterization of Sox10, Snail2, and Pax3 were chosen following MO-

mediated miRNA KD, and rescue for miR-196a and miR-219. Xenopus laevis embryos were 

injected at the 4-cell stage of development into one dorsal blastomere with 300 pg lacZ plus MO, 

miRNA mimic, or combination. For all markers, no phenotype was seen following injection of 

embryos with control miRNA mimic (cel-miR-39-3p), miR-196a mimic, miR-219 mimic, and 

mismatch (MM) MO. Here we report the first-time synthetic miRNA mimics have been used to 

rescue phenotypes seen by the whole mount in situ hybridization. Sox10 depletion is known to 

lead to a rise in NC cell apoptosis and a reduction in cell proliferation (Honoré et al., 2003). 

Snail2 is required for the induction of NC; and is anti-apoptotic (Klymkowsky et al., 2010). This 

suggests that miR-196a and miR-219 KD, which reduce the expression of Sox10 and Snail2, 

prevent the proliferation and maintenance of a pool of NC cells. 
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Figure 15. Result for DE analysis for 219 miRNA MO. A. Heatmap for the most DE genes; 

B. Volcano plot for miRNA 219 MO sample; C. NC markers expression change.
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MiR-196a KD led to a strong expansion of Pax3 expression (Figure 13). Misexpression of Pax3 

can also lead to a reduction in Snail2 expression (Hong and Saint-Jeannet, 2007). The expanded 

phenotype could be indicative of miR-196a targeting something upstream of NC and neural 

plate development, potentially placodal. Potentially, upstream Wnt, FGF of BMP signalling 

could be affected leading to the expansion of Pax3 (Pla and Monsoro-Burq, 2018).  

To further assess the impact of miR-219 MO KD on Pax3 expression a Pax3 MO was 

used to rescue the expanded Pax3 phenotype generated following miR-219 MO KD. Pax3 MO 

dose-response impact on Pax3 and Snail2 expression data can be seen in Figure 16. Pax3 MO 

used in this project is as described in (Monsoro-Burq et al., 2005). Pax3 MO reduces the 

amount of Pax3 expressed, and miR-219 MO increases Pax3 expression, as indicated by black 

arrows. When used together the expanded Pax3 phenotype is rescued. To test for rescue 

specificity Pax3 MO and miR-219 MO were trialed to assess the impact on Sox10 and Snail2. 

All these markers show reduced expression upon miR-219 MO KD, however, when used in 

conjunction with Pax3 MO this only led to a stronger reduction in gene expression (Figure 14). 

This suggests that the Pax3 MO rescue effect on expanded Pax3 phenotype is specific. 

Furthermore, it suggests that miR-219 is potentially acting upstream of the neural plate border 

in the development of Xenopus NC. 
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Figure 16. MO dose-response impact on Pax3 and Snail2 expression data.
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Figure 17. MiRNA 219 MO PCA and Enrichment map. A. PCA for 219 MO sample, for 

the postprocessing we removed one outlier; B. Enrichment map organizes enriched GO terms 

into a network with edges connecting overlapping gene sets. In this way, we obtained a cluster 

of NC-related terms: NC formation, commitment, EMT, and tissue development.
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Sox2 increase in miR-196a KD (Figure 13) could contribute towards the reduction in 

NC marker expression seen in Figure 12; previous work in avian models suggests Sox2 

misexpression can inhibit NC formation (Wakamatsu et al., 2004). Other work implies murine 

Sox2 is implicated in the regulation of EMT; significant as this is imperative for the 

development of cranial features (Mandalos et al., 2014). NC cells are essential in the 

development of the eye and the lens (Grocott et al., 2020). Previous work in the lab has shown 

small eye phenotypes in miRNA knockout embryos (Godden et al., 2021); this supports the 

disruption to Pax6 phenotype observed in miR-219 KD where the top arrow is pointing to the 

lens field that appears to be reduced in expression (Figure 18).  

2.3.3 Discussion 

We have presented novel work into developing miRNA rescue experiments and 

functional characterization of miR-196a and miR-219 in Xenopus NC development. The loss 

of miR-219 and miR-196a in Xenopus embryos resulted in a reduction of NC expression for 

Snail2 and Sox10, as well as an expansion of the NB marker Pax3 in the ectoderm and a loss 

of Xhe2. RNA-sequencing experiments on NC tissue treated with MOs for miR-219 and miR-

196a revealed a decrease in NC marker expression, with a stronger effect seen with miR-196a 

KD. Rescue experiments using synthetic miRNA mimics showed that miR-196a and miR-219 

are required for the proliferation and maintenance of NC cells 

The expanded pax3/zic1/gmnn/hes/sox2/3 expression at stage 17 together with 

increased expression of multipotency markers pou5f3 and ventx2 following miR-196a KD may 

suggest that miR-196a targets the NC development and may switch cell fate into more 

multipotent NB-like state (Figure 19). The KD of miRNA-219 led also to increasing of 

multipotency factors pou5f3, but without impact on the NB markers, suggesting that it this 

contributes to an increase in multipotency without turning on the NB program. From the data 

presented it is hypothesized that the miRNAs miR-196a and miR-219 are having differing roles 

in the development of NC, affecting different induction and specification events. It is possible 

that the miRNAs may be targeting or directly or indirectly Wnt signaling and other events at 

the development of the neural plate border. Finally, we showed both miR-219 and miR-196a 

are required for maintenance of NC cells in Xenopus embryos.  
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Figure 18. In situ images for 196a MO. The effects of miRNA-196aMO on Sox2, Pax6 and 

Zic1. 
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Figure 19. Gene expression for up-regulated genes in MiRNA-196a KD in the Ectoderm 

dataset, scRNA-seq data from (Kotov et al., 2022).   Ec – ectoderm, eye – eye primordium, 

nb – neural border, nc – neural crest, ne – neural ectoderm, nne – non-neural ectoderm, np – 

neural plate, pc – placodes.
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2.3.4 Materials and methods  
 

Xenopus husbandry 

All experiments were carried out in accordance with relevant laws and institutional 

guidelines at the University of East Anglia, with full ethical review and approval, compliant to 

UK Home Office regulations. To obtain Xenopus laevis embryos, females were primed with 

100 units of PMSG and induced with 500 units of human chorionic gonadotrophin. Eggs were 

collected manually and fertilized in vitro. Embryos were de-jellied in 2% L-cysteine, incubated 

at 18°C and microinjected in 3% Ficoll into 1 cell at the 2-cell stage in the animal pole with 5 

nL of enhancer reporter plasmid at 400 ng/μL or GFP capped RNA as control. Embryos were 

left to develop at 23°C. Embryo staging is according to Nieuwkoop and Faber normal table of 

Xenopus development. GFP/LacZ capped RNA for injections was prepared using the SP6 kit, 

50 pg was injected per embryo.  

Embryo injection 

Embryos were injected using a 10 nL calibrated needle. MO dose was optimized to 60 

ng for miRNAs; MO and lacZ were injected at 4 cell stage of embryo development into the 

right dorsal blastomere. miR-219 mimic was used from (Qiagen, 339173 YM0047076-ADA, 

MIMAT0000276); I-miR-219a-5p miRCURY LNA miRNA Mimic, compatible with xtr-miR-

219 sequence: 5’UGAUUGUCCAAACGCAAUUCU. For miR-196a: (Qiagen, 339173 

YM00470616-ADA, MIMAT0000226); I-miR-196a-5p compatible with xtr-miR-196a 

sequence: 5’ UAGGUAGUUUCAUGUUGUUGGG. A negative control miRNA mimic 

recommended by Qiagen was used (Qiagen, 331973 YM00479902-ADA); Negative control 

(cel-miR-39-3p), sequence 5’UCACCGGGUGUAAAUCAGCUUG. To rescue expanded 

Pax3 phenotypes Pax3 MO (Table 1) was optimized at 40 ng to provide a reduction in Pax3 

expression. This was co-injected with miR-219 MO 60 ng. As this isn’t possible in one 

injection Mos were made up so Pax3 MO final concentration was 20 ng and miR-219 MO was 

30 ng, two injections into the embryo at 4 cell stage into 2 blastomeres then gave a 

concentration of Pax3 MO 40 ng and miR-219 MO 60 ng. For miR-219 MO MM two injections 

of 50 ng gave a final dose of 100 ng MO.  
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RNA sequencing 

For RNA-sequencing embryos were injected into one blastomere at 4 cell stage with 

one of four MO’s (miR-219, miR-219MM, miR-196a or miR-196aMM) into one dorsal 

blastomere to target neural and NC tissue in one side of the embryo only. Embryos were left to 

develop until stage 14. One group underwent WISH to check NC genes were knocked down 

(data not shown) and the other group underwent NC dissections and RNA was extracted. Three 

replicates were collected for each condition (MO, MM, and non-injected control). RNA 

samples underwent quality control using a Bioanalyzer and q-RT-PCR was used to further 

validate the KD of NC-specific genes in MO-injected samples. Samples were then processed 

to Illumina sequencing. RNA sequencing was carried out on miR-196a and miR-219 control, 

MM MO and MO-treated samples all of which contained three replicates each (except miR-

219 MO which contained four). All samples were tested prior to sequences using PCR (data 

not shown) to detect expected gene expression. RNA samples were processed for library 

preparation and 50bp paired-end sequencing on the HiSeq High Output run mode PE100 for 

sequencing.  

Data analysis 

Reads were mapped to the X. laevis v10.1 genome assembly using STAR (v.2.7.3a) 

(Dobin et al., 2013). Differential expression analysis was carried out using DESeq2 (v.1.32.0) 

(Love et al., 2014) in R (v.4.1.1). Genes with an adjusted p-value below 0.05-0.15 were 

considered significant and were reported by the workflow. The gene model used in the DE 

bioinformatic analysis was X. laevis (NCBI v10.1). For GO enrichment analysis of a DE genes 

we used ClusterProfiler (v.4.0.5). 
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2.4 Relationships of Pax3, Dlx3 and Zic1 during gastrulation in the 
ectoderm  
Subham Seal, Haris Bin Fida, Aleksandr Kotov, Gerhard Schlosser, Anne-Helene Monsoro-Burq 

In progress. 

2.4.1 Introduction 

The neural border (NB), being situated in the plane of the ectoderm, sandwiched 

between the neural (NE) and the non-neural (NNE) ectoderm, does not have defined boundaries 

at early stages. It is defined as the intersection of multiple genes expression patterns, such as 

Pax3, Zic1, Dlx3, Msx1, Tfap2a, and others – critical TFs for the establishment of the NC/PC 

formation which are called NB specifiers because they play a vital role in the initial formation 

of the neural border zone (de Crozé et al., 2011; Luo et al., 2001; Mizuseki et al., 1998; 

Monsoro-Burq et al., 2005; Sato et al., 2005). Although their individual functions are rather 

well-studied, very few studies have explored the positive or negative cooperation between the 

different genes that define NE, NB, and NNE (Seal and Monsoro-Burq, 2020). We thus have 

planned to study the targets of important NB genes Pax3, Zic1, and Dlx3, and the cooperation 

between them during NB fate specification.  

Our main aims are to look at the transcriptional targets of each of these NB specifiers 

and whether there is any dependency between the activity of these genes when they are co-

expressed in vivo. For this purpose, we combined two different paradigms: gain-of-

function/knockdown of the selected genes and global translation inhibition. The gain-of-

function experiments involve increasing the amount of expressed gene or protein while 

knockdown entails a decrease in their amounts. Generally, in our Xenopus system, we use 

mRNA for gain-of-function and morpholino for knockdown. To add a temporal control for the 

gain-of-function, we used mRNAs containing GR (glucocorticoid receptor) constructs. These 

mRNAs produce fusion proteins that remain in the cytosol but are nuclearly imported upon 

addition of dexamethasone, a steroid hormone analog (Kolm and Sive, 1995). We used a 

moderate gain-of-function to limit the drastic consequences of gene overexpression and off-

target effects. Alternatively, morpholino-mediated depletion involves the use of small, stable 

oligomers called morpholinos to specifically target and inhibit the expression of a particular 

gene. The antisense morpholinos bind to single-stranded mRNA and prevent their translation. 

Our motivation for the second paradigm, inhibition of global protein translation using 
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cycloheximide, was to avoid serial transcriptional events, due for example to the secondary 

activity of a transcription factor itself a target of one of our factors of interest (i.e. avoiding 

indirect target). Under this condition, our transcription factors of interest can only interact with 

the cofactors already present and control transcription of targets in a stage-specific manner: 

this allows us to precisely look at the immediate-early targets of these transcription factors. 

Finally, we selected three stages of interest: stage 11 for NB induction, stage 12.5 for 

NC/placode induction, and stage 14 for fully specified NB. 

We injected 10 nl of the corresponding mix into both cells of 2-celled embryos with 

either mRNA-GR or MO at the following concentrations: 

-      Pax3-GR – 30 pg/10 nl 

-      Zic1-GR – 70 pg/10 nl 

-      Dlx3-GR – 150 pg/10 nl 

-      each MO – 20 ng/10 nl 

At our stage of interest, we micro-dissected the neural border ectoderm (for high spatial 

specificity) and subjected it to one of the following treatments (Figure 20): 

-    U – (for mRNA-GR injections) DMSO for 2h30 

-    C – (for mRNA-GR injections) Cycloheximide for 30m, followed by Cycloheximide 

+ EtOH for 2h; 

-  D – (for mRNA-GR injections) Cycloheximide for 30m, then Cycloheximide + 

Dexamethasone for 2h 

-   M – (for MO injections) Immediately lysed 

-   N – (for MO injections) ¾ NAM for 2h30. 

To decrease the effects of embryo-to-embryo developmental variability, we dissected 

the NB from left and right sides of the same embryo and subjected them to paired conditions 

(for example, C and D or M and N). After the treatment step, the dissected tissue was collected 

individually and lysed in Trizol. We collected 6 sets of samples for each condition and after 

conducting quality checks (Bioanalyzer and RT-qPCR), the samples were sent for sequencing. 
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This set of experiments fulfill the following aims:  

-      A. To identify the temporal repertoire of immediate-early targets of Pax3, Zic1, 

and Dlx3 in the NB ectoderm at key stages of its development (stages 11, 12.5, and 14): inspect 

for stage-specific targets by differential analysis. 

-      B. The NB transcriptome in absence of one of the genes (using morpholinos), at 

stage 12.5: scan for stage-specific requirements of NB specifiers. 

Further, to test the cooperation between the NB genes, we injected the embryos with a 

combination of mRNA-GR of one gene and MO targeting another: for example, a combination 

of Pax3-GR mRNA and Zic1 MO. From these embryos, the micro-dissected neural border 

ectoderm was subjected to paradigms U, C or D. This fulfills our final aim C. 

-      C. To identify dependency between NB specifiers by finding the immediate-early 

targets of each gene in the absence of another one during initial specification (for example, 

Pax3 targets after depletion of Zic1 or Dlx3 compared to the target list defined in A and B), at 

stage 12.5, then define the cooperation between NB specifiers during NC/PC fate induction. 

The sequencing was performed through Nova-seq Illumina sequencing. The sequencing 

results will be combined with the previous datasets (Briggs et al., 2018; Kotov et al., 2022) to 

achieve greater statistical significance. Currently, we are analyzing the data for the second and 

third aims. While aim C expand the results from aim A and B, it will also help us to study how 

the different NB transcription factors cooperate. Based on the analyses, we will validate a few 

of the novel genes identified as important during NB development. Reads were mapped to the 

X. laevis v10.1 genome assembly using STAR (v.2.7.3a) (Dobin et al., 2013). Differential 

expression analysis was carried out using DESeq2 (v.1.32.0) (Love et al., 2014) in R (v.4.1.1). 

Genes with an adjusted p-value below 0.05 were considered significant and were reported by 

the workflow. The gene model used in the DE bioinformatic analysis was X. laevis (NCBI 

v10.1). For GO enrichment analysis of a DE genes we used ClusterProfiler (v.4.0.5). 
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Figure 20. Design of the experiment. 
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2.4.2 First results: immediate-early targets of NB genes for stage 11 

Using differential expression analysis, we found that the largest number of target genes 

was observed in Pax3 (293), then Dlx3 (77), and Zic1 (12) (Figures 21, 23), supporting data 

from (ratio of targets by quantity) (Plouhinec et al., 2014).  Expectedly, among Pax3 targets, 

were found NC markers snai2, twist1, sox9, foxd3, tfap2b which validates our experimental 

paradigm. NC formation and EMT GO terms were also linked to the DE list of genes. Most of 

the genes were upregulated which confirms major activating role of Pax3. Only a few genes 

were downregulated, among them ionocyte marker foxi1 which labels immature non-neural 

ectoderm (Mir et al., 2007). Later on, it is maintained in differentiated cells of the epidermis. 

Ionocyte is important for the regulation of electrolyte balance in various tissues and they are 

found in various tissues, including the skin, gills, and gut (Jänicke et al., 2007). The 

upregulation of foxi1 may therefore be associated with a fate shift into more non-neural 

ectoderm fates.  

 Next, we compared first results of Pax3-GOF and Dlx3-GOF with results of branching 

analysis in ectoderm dataset in our recent work (Kotov et al., 2022). First, we observed that 

Pax3-GOF leads to activation of both programs: NEàNP (e.g., nkx6-2, sox2) and NE/NBàNC 

(e.g., foxd3 and snai2) (Figure 22). Furthermore, we observed that Dlx3-GOF activates 

NNEàNNE2 program, but drastically (all genes are decreased) deactivates NC/NP programs: 

e.g., c9, cfb for NC program, and sall2, maneal, zeb2 (Figure 24). For PC program, we noted 

“mixed” regulation: c9 (which is both in NC and PC programs) was deactivated, while egflam 

was upregulated. 

For Dlx3 GO term analysis revealed that Wnt signaling and head development terms 

are related to the DE list of genes, confirming the work of Sumiyama et al (Sumiyama et al., 

2002). Pax3 and Dlx3 both affect 24 genes in common: for example, cranial NC marker alx1 

(downregulated) and marker for early enteric nervous system progenitors and vagal NC hnf1b 

(Kotov et al., 2022) (Figure 25). At stages 12 and 14, for Pax3 we defined fewer targets 43 and 

27 respectively. We defined foxa1, prdm13, tbx18, prdm8 and gsx1 are targets across all 3 

stages for Pax3. Collectively those first results support that our experimental paradigm is 

correct and identifies the respective actions of key transcription factors in the fate choices at 

the neural border. Because we just received the last series of sequencing results, we will soon 

be able to explore the entire dataset, in the hope to provide a large landscape of how the neural 

border derivatives are defined during embryogenesis. 
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Figure 21. Pax3 top DE targets and related GO terms.  
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Figure 22. Branches-related genes that are DE in Pax3-GOF, scRNA-seq data from 

(Kotov et al., 2022).  A. NEàNP branch genes; B. NEàNC branch genes; C. NBàNC branch 

genes; D. Annotation for dataset: clusters and stages; E. Expression levels for branches-related 

genes in Pax3-GOF sample
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Figure 23. Dlx3 top DE targets and related GO terms. 
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Figure 24.  Branches-related genes that are DE in Dlx3-GOF, scRNA-seq data from 

(Kotov et al., 2022).  A. NEàNP branch genes; B. NEàNC branch genes; C. NNEàPC 

branch genes; D. NNEàNNE2(late) branch genes; E. Annotation for dataset: clusters and 

stages; F. Expression levels for branches-related genes in Dlx3-GOF sample
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Figure 25. Expression levels for targets both Dlx3 and Pax3. Y-axis is in expression units
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2.5 Computational tool for the prediction of the cell type evolution 
Aleksandr Kotov, Andrei Zinovyev, Anne-Helene Monsoro-Burq 

doi: https://doi.org/10.1101/2022.12.07.519467 

2.5.1 Overview of key findings 

Numerous computational methods now exist for analyzing single-cell data and 

identifying cell states. These methods mostly rely on the expression of genes considered as 

markers for a given cell state. Yet, there is a lack of scRNA-seq computational tools to study 

cell states’ evolution, particularly how they change their molecular profiles. Here we present 

scEvoNet, a Python tool for predicting cell type evolution in cross-species or disease-related 

(e.g., cancer) scRNA-seq datasets. ScEvoNet builds the confusion matrix of cell states and a 

bipartite network connecting genes and cell states. Utilizing this framework and exploring the 

continuum of transcriptome states between developmental stages and cell types will help 

explain cell state dynamics. 

2.5.2 The application architecture 

The workflow of scEvoNet is illustrated in Figure 1A in paper 2. ScEvoNet takes (1) 

an expression matrix, and (2) a list of cell labels as input data per organism/time point of 

interest. For each cell type provided by a user, scEvoNet generates an LGBM binary classifier 

(one cell type vs all other cells). Next, scEvoNet uses each cell type model to predict cells from 

both datasets. This way we get a confusion matrix with cell type to cell type comparison. In the 

next step, scEvoNet builds a network where the nodes are cell types or genes so that cell types 

can only connect to genes. This strategy is similar to GRNboost2 (Moerman et al., 2019) which 

outperformed many other tools in a recent benchmarking study (Pratapa et al., 2020). 

GRNboost2 generates a gene-gene network similarly, whereas scEvoNet extends it to all cell 

types in two datasets. Furthermore, scEvoNet implements next the shortest path search in order 

to generate a subnetwork of interest.  

2.5.3 Validation of the scEvoNet in Mus musculus scRNA-seq dataset 

For the input data, we used whole embryo scRNA-seq datasets for the Xenopus 

tropicalis, a non-amniote tetrapod vertebrate, at an early developmental stage (late gastrulation 

stage 12, and neurulation stages 13 (neural plate) and 14 (neural fold)) and Mus musculus, a 
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mammal, at a similar developmental stage (late gastrulation stage 8.25). We validated how one 

particular NC-based classifier trained on the Xenopus dataset will able to recognize NC cells 

in the mouse dataset and obtained the result of a 0.89 AUC score (Figure 2 in paper 2). AUC 

stands for "area under the curve," and in this context it refers to the area under the curve of a 

receiver operating characteristic (ROC) curve. An ROC curve is a graphical plot that compares 

the true positive rate and false positive rate of a binary classifier, and the AUC score is a metric 

that quantifies the performance of the classifier. AUC scores can range from 0 to 1, with higher 

scores indicating better performance. Our results suggest that the classifier was able to 

accurately recognize NC cells in the mouse dataset. 

2.5.4 scEvoNet can effectively find similar cell types and potentially co-opted 
genes  

Next, using published cluster annotations, we run scEvoNet on mouse and frog datasets 

and obtained the confusion matrix. To identify genes that are highly conserved and cell type-

specific in the evolution of the NC we selected a sub-network that consists of the shortest paths 

from Xenopus NC to mouse NC with the top 3 close cell types according to the confusion 

matrix. We determined several groups of genes differently related to cell types within this 

subnetwork. The first group includes genes that are associated between NC and a closely-

related cell type in only one organism (e.g., NC and neural plate in frog: sox2, sox3, snai2, 

hes1, zic1; NC and midhindbrain in mice: gadd45a, mdk, ptn), which could be the result of 

divergence of function and can be studied using scRNA-seq of the ancestor organisms. The 

second group consists of genes that are characteristic for NC both in Xenopus and Mus 

musculus (pax3, tfap2c, tfap2a, tfap2b, sox9), which are known confirmed markers of NC or 

their progenitors. The third group includes genes that are correlated between the frog NC and 

mouse NC through the mouse NC-related cell types (mafb, cldn6, tfap2a for the neural plate; 

zic3, tfap2a for the midhindbrain).  

Next, we applied scEvoNet to a human breast cancer metastasis dataset (Xu et al., 

2021).  We found 14 genes that are directly connected to both cell types, among them malat1, 

levels of which inversely correlate with breast cancer progression and metastatic capacity (Kim 

et al., 2018), and b2m an important marker involved in carcinogenesis, invasion, and metastasis 

(Liu et al., 2015). Among this list of genes directly connecting two tumor cell types are several 

mitochondrial genes which may indirectly support the importance of mitochondrial genes in 

cancer metastasis (Beadnell et al., 2018) but also might be the consequence of the sample or 
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data processing artifact. Next, we explored what other genes from the close cell types might be 

involved in tumor evolution. To do this, we selected a subnetwork with all the genes related to 

cell types of interest and 5 similar cell types according to the confusion matrix we obtained 

earlier. As a result, we determined two cancer cell types (metastatic and primary) that have a 

common network neighbor lymph node B cells through genes hmgb1 and b2m. It was shown 

previously that exosomal hmgb1 promotes hepatocellular carcinoma immune evasion by 

stimulating TIM-1+ regulatory B cell expansion (Ye et al., 2018). Also, blockade of the hmgb1 

signaling pathway inhibits tumor growth in diffuse large B-cell lymphoma (Zhang et al., 2019). 

In another work, b2m specific B cells were defined as the most important prometastatic B cell 

cluster essentially contributing to distant metastasis in Clear Cell Renal Cell Carcinoma (Yang 

et al., 2021). B2m is also an important element in the immune escape mechanism since a 

decrease in b2m expression reduces the number of antigens presented on the cell surface, 

including tumor-related antigens, which has been shown in particular in diffuse large B-cell 

lymphoma (Challa-Malladi et al., 2011).  

2.5.5 Conclusion 

In this work, we presented scEvoNet, a method for analyzing the evolution of cell states 

from highly sparse scRNA-seq data. We show that it is applicable to studying species-to-

species and tumor-to-metastasis transitions. With this tool, we re-discover a canonical gene 

signature that remains conserved through evolution, and also predict species-specific genes and 

new candidates associated with similar cell types. However, there are several limitations to the 

use of computational tools for predictions from scRNA-seq data. One major limitation is the 

issue of dropout events, which occur when a gene is not detected in a cell even though it is 

present at some level. This can occur for a variety of reasons, including low mRNA abundance 

or technical issues with the sequencing. Dropout events can significantly impact the accuracy 

of predictions made from scRNA-seq data, as they can mask the true expression levels of 

certain genes. Another limitation of scRNA-seq data is the potential for batch effects, which 

occur when the data being analyzed was collected under different conditions or from different 

sources. For example, if the scRNA-seq data was collected from different species or in different 

labs, there may be differences in the way the data was generated that could impact the accuracy 

of predictions. Nevertheless, our findings may imply either co-activation of similar gene 

programs from common progenitor state or the potential co-option of genes from distant cell 

types. 
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Abstract 

● Background 

Exploring the function or the developmental history of cells in various organisms 

provides insights into a given cell type's core molecular characteristics and putative 

evolutionary mechanisms. Numerous computational methods now exist for analyzing 

single-cell data and identifying cell states. These methods mostly rely on the expression 

of genes considered as markers for a given cell state. Yet, there is a lack of scRNA-seq 

computational tools to study the evolution of cell states, particularly how cell states 

change their molecular profiles. This can include novel gene activation or the novel 

deployment of programs already existing in other cell types, known as co-option.  

● Results 

Here we present scEvoNet, a Python tool for predicting cell type evolution in cross-

species or cancer-related scRNA-seq datasets. ScEvoNet builds the confusion matrix 

of cell states and a bipartite network connecting genes and cell states. It allows a user 

to obtain a set of genes shared by the characteristic signature of two cell states even 

between distantly-related datasets. These genes can be used as indicators of either 

evolutionary divergence or co-option occurring during organism or tumor evolution. 

Our results on cancer and developmental datasets indicate that scEvoNet is a helpful 

tool for the initial screening of such genes as well as for measuring cell state similarities. 
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● Conclusions 

The scEvoNet package is implemented in Python and is freely available from 

https://github.com/monsoro/scEvoNet. Utilizing this framework and exploring the 

continuum of transcriptome states between developmental stages and species will help 

explain cell state dynamics. 

Keywords 

scRNA-seq, gradient boosting, evolution, gene programs, cell states, cell types, 

differentiation, cancer 

Background 

Cells, the fundamental construction blocks of multicellular organisms, are characterized 

by great diversity in complex multicellular organisms. They include differentiated and 

function-specific cells, their stem cells for cell renewal during lifetime, and all the transitional 

states between these two points. In disease, cell and tissue homeostasis are     altered, leading 

to the appearance of new pathological and dysfunctional cells. During evolution, the 

diversification of cell types is caused by genomic individualization relying on fundamental 

evolutionary principles such as functional segregation, divergence, co-option of gene modules, 

and de novo gene emergence. Co-option of gene programs is a mechanism allowing the 

emergence of new functions in a cell type by using existing gene networks from other cell types 

[1, 2]. The understanding of cell biology emanates from describing cells by their functions, 

their gene expression, interactions with their environment, and their lineage relationships. The 

emergence of single-cell RNA sequencing (scRNA-seq) began a new age of transcriptomic 

research, extending our understanding of cell heterogeneity and dynamics. Highly detailed 

atlases of cell types were produced for many tissues and organisms, in normal or pathological 

conditions [3–7]. Comparing those highly divergent datasets would allow asking key questions 

regarding the conservation of core genetic programs in poorly-related cellular contexts, the 

origins of cellular diversity and its evolutionary mechanisms, or the transcriptional paths 

leading to disease. However, data received from various biological conditions and various 

organisms is entangled by technical and biological batch effects which vastly complicates their 

comparison [8, 9]. Thus, forces shaping transcriptome dynamics remain poorly understood. 

Another application of scRNA-seq in evolutionary biology is accessing tumor heterogeneity 

and tracking its transformation as well as assessing the selective evolution of tumors during 

therapy or metastatic progression [10]. ScRNA-seq overcomes the constraints of classic bulk 
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RNA sequencing by estimating transcriptome at a single-cell level and characterizing various 

cell types in the tumor microenvironment. Moreover, this allows a better understanding of the 

molecular mechanisms facilitating tumor occurrence. Although it could potentially reveal the 

somatic mutations during tumor evolution, scRNA-seq data sparsity [11] often prevents 

mutation calling (one of the main information sources for studying tumor evolution). Still, the 

scRNA-seq of tumors can determine the dynamic changes in tumor heterogeneity and the 

transcriptional evolution of tumor cells during metastasis development [12].  

Currently, there is a lack of a specific tool that uses closely or distantly-related scRNA-

seq datasets as input to study the potential co-option and evolution of gene programs between 

different organisms during development and differentiation, or between tumor cells at different 

stages of tumor progression. Kun Xu et al. [12] used Monocle [13] and scVelo [14] to study 

transcriptome dynamics of malignant cells between the primary tumor and lymph node 

metastases. They also used NATMI [15] for the generation of the cell-to-cell receptor-ligand 

network where edges are generated based on the expression of the ligand in one cell type and 

of its related receptor in another cell type. However, this latter strategy is not designed to study 

co-option in cancer which is a crucial mechanism forcing the molecular changes that propel 

tumor progression [16].  In another work, Pandey et al. use scRNA-seq to study the evolutions 

of neuronal types by comparing cell types in larva and adult zebrafish. They utilized Random 

Forest to generate a model for each cell type and predict cells with each model to build a 

confusion matrix mapping cell types by the number of cells predicted with each model [17]. 

Yet, this strategy is not wrapped into the usable framework and cannot be used to extract genes 

that are characteristic of cell type transitions. We present scEvoNet, a method that builds a cell 

type-to-gene network using the Light Gradient Boosting Machine (LGBM) algorithm [18] 

overcoming different domain effects (different species/different datasets) and dropouts that are 

inherent for the scRNA-seq data [19]. This tool predicts potentially co-opted genes together 

with genes characteristic of each cell state during development across species. Recently we 

showed the ability of a similar LGBM-based classifier to detect neural crest cells in distantly-

related scRNA-seq datasets [20]. Despite technical batch effects (datasets were made in 

different laboratories with different technologies) and biological batch effects (datasets were 

from two evolutionarily distant organisms and at different developmental time points), we have 

achieved a high AUC score of 0.95 for classifying zebrafish cells with our frog-based NC 

model [20]. Here we have expanded this method: scEvoNet applies to a variety of applications, 

e.g., between different time points during a given organism’s development, between species, 
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and when comparing primary tumor and metastasis. We believe that scEvoNet will facilitate 

the study of cell state transitions in a variety of contexts and from highly divergent datasets. 

 

 
Figure 1. scEvoNet scheme. A) scEvoNet takes a list of clusters and a matrix of expressions for each sample as 

input. For each sample, it generates an object with cell type classifiers and top important features for each cluster 

from the provided set of clusters. In the final step, the tool builds a confusion matrix and a network of genes 

associated with each cell type. B) We use the LGBM algorithm to produce a classifier for each cell type. To 

smooth the data in order to deal with the batch effects we apply the sigmoid function and only the top important 

features to create the final model.  

Implementation 

The workflow of scEvoNet is illustrated in Fig. 1A. scEvoNet takes (1) an expression 

matrix, and (2) a list of cell labels as input data per organism/time point of interest. For each 

cell type provided by a user, scEvoNet generates an LGBM binary classifier (one cell type vs 

all other cells) in two steps (Fig. 1B). Firstly, it generates a model considering all genes in the 

dataset. For the obtained model of the particular cell type, scEvoNet selects the top 3000 
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important features (cell types related genes) and uses only them to re-train the final cell type 

model which will be used for the generation of the cell types confusion matrix. This is part of 

the domain adaptation that we perform to make the resulting model less dependent on the 

number of genes that are missing in another dataset to which the model will be applied. 

Additionally, to reduce the effect of the different biological domains between datasets and to 

reduce the effect of the scRNA-seq data sparsity we apply a sigmoid function that smooths 

expression units more flexible than simple binarization, which has been shown to keep enough 

information for scRNA-seq data analysis [21]. For the model training, we use early stopping 

to avoid overfitting with 10 rounds which determines the actual number of estimators in the 

regressions.  
Next, scEvoNet uses each cell type model to predict cells from both datasets. This way 

we get a confusion matrix with cell type to cell type comparison. In the next step, scEvoNet 

builds a network where the nodes are cell types or genes so that cell types can only connect to 

genes. To do this, firstly we extract top features (genes) which are important for each cell type 

(both positively correlated and negatively correlated) and then combine all the cell type-related 

top important genes into one main network with all cell types and cell type-related genes. This 

strategy is similar to GRNboost2 [22] which outperformed many other tools in a recent 

benchmarking study [23]. GRNboost2 generates a gene-gene network similarly, whereas 

scEvoNet extends it to all cell types in two datasets. Furthermore, scEvoNet implements a 

shortest path search in order to generate a subnetwork of interest. For example, to study the 

evolution of a particular cell type, a user might request all the shortest paths (with a selected 

cut-off on their length) between two cell types and scEvoNet will yield all the genes and cell 

types between these two using the confusion matrix as a metric of the cell types similarity. 

Each gene-to-cell type connection has an importance value (a score displaying how useful each 

feature was in the building of the boosted decision trees within the model) by which users can 

filter sub-networks.   

Results 

First, we applied scEvoNet to identify core characteristics during the evolution of the 

neural crest (NC) cells using two different vertebrate organisms. The NC is a multipotent and 

migratory cell population unique to vertebrates and essential notably for pigment, peripheral 

and enteric nervous system, and craniofacial structures formation [24]. For the input data, we 

used whole embryo scRNA-seq datasets for the Xenopus tropicalis, a non-amniote tetrapod 

vertebrate, at an early developmental stage (late gastrulation stage 12, and neurulation stages 
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13 (neural plate) and 14 (neural fold)) and Mus musculus, a mammal, at a similar 

developmental stage (late gastrulation stage 8.25) [4, 25].  

 

 
Figure 2. The development of the specific cell type between frog and mouse. A) First UMAP represents 

highlighted annotated neural crest cells in the whole embryo dataset, second UMAP represents predicted neural 
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crest cells with our classifier, and third UMAP represents predicted scores of our classifier. B) The AUC score 

for the neural crest classifier is 0.89 C) The confusion matrix for mouse and frog samples (prefix x_ is for Xenopus, 

prefix m_ is for mouse). The values in the confusion matrix are the correlations between two lists of scores for all 

cell type models. D) Selecting the subnetwork of 300 shortest paths from Xenopus neural crest to mouse neural 

crest shows genes that are shared with closely-related cell types, such as mafb or cldn6 (group 3). It reveals two 

groups of genes: genes from group 1 are organism-specific genes, and genes from group 2 are important genes for 

the specific cell type (NC) in both organisms. 

 

Before using scEvoNet, we validated how one NC-based classifier trained on the Xenopus 

dataset will recognize NC cells in the whole embryo mouse dataset and obtained the result of 

a 0.89 AUC score (Fig. 2A, B). Next, using published cluster annotations for these two whole 

embryo scRNA-seq datasets, we run scEvoNet and obtained the confusion matrix (Fig. 2C). In 

this dataset of extended complexity, the highest similarity score for frog NC remains the mouse 

NC. Thereafter, we built a network of cell types and related genes. To identify genes that are 

highly conserved and cell type-specific in the evolution of the NC we selected a sub-network 

that consists of the shortest paths from Xenopus NC to mouse NC with the top 3 close cell types 

according to the confusion matrix. To obtain a larger subnetwork 

number_of_shortest_paths=300 was used. Subsequently, we determined several groups of 

genes differently related to cell types within this subnetwork (Fig. 2D). The first group includes 

genes that are associated between NC and a closely-related cell type in only one organism (e.g. 

NC and neural plate in frog: sox2, sox3, snai2, hes1, zic1; NC and midhindbrain in mice: 

gadd45a, mdk, ptn). If this gene expression signature was the consequence of the evolutionary 

divergence of function, this could be studied using the scRNA-seq of the ancestor organisms. 

The second group consists of genes that are characteristic of NC both in Xenopus and Mus 

musculus (pax3, tfap2c, tfap2a, tfap2b, sox9): all are known markers of NC or their progenitors 

[26]. The third group includes genes that are associated between the frog NC and mouse NC, 

and shared with the mouse NC-related cell types (as defined with confusion matrix of 

similarities): mafb, cldn6 for the neural plate; zic3, tfap2a for the midhindbrain. Thus, our tool 

was not only able to construct a matrix of similar cell types that can be used to study cell types 

similarities, but also defined three groups of genes that may have diverse roles in a cross-

species transformation of the molecular profile of neural crest cells. 

Next, we applied scEvoNet to a human breast cancer metastasis dataset [12]. We 

selected a patient with available datasets for the primary tumor and the lymph node metastases. 

We used a standard Scanpy [27] pipeline to obtain clusters for both matrices (primary tumor 

and metastasis). Marker genes from the source paper were used to annotate obtained clusters 
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(Fig. 3A). First, using scEvoNet, we calculated the confusion matrix (Fig. 3B). As expected, 

we observed high connectivity between cells of the same type from the primary tumor or 

metastasis in lymph nodes, e.g., B cells, plasma cells, immune cells, macrophages, dendritic 

cells, and tumor cells. Next, to study cancer cell evolution, we used scEvoNet to discover 

common cluster-specific genes between the most distant malignant clusters from the primary 

tumor (cluster p_cancer_cells_cox6+) and metastasis (cluster m_cancer_cells_gapdh+). We 

found 14 genes that were directly connected to both cell types (Fig. 3C), among them malat1, 

levels of which inversely correlate with breast cancer progression and metastatic capacity [28], 

and b2m an important marker involved in carcinogenesis, invasion, and metastasis [29]. Among 

this list of genes directly connecting two tumor cell types were several mitochondrial genes. 

Although a common hypothesis relates the expression of mitochondrial genes to sample or data 

processing artifacts, growing evidence supports the importance of mitochondrial genes in 

cancer metastasis [30]. Next, we explored what other genes from close cell types might be 

involved in tumor evolution. To do so, we selected a subnetwork with all the genes related to 

cell types of interest and 5 similar cell types according to the confusion matrix obtained earlier. 

As a result, we determined two cancer cell types (metastatic and primary) that have as a 

common network neighbor the lymph node B cells, through genes hmgb1 and b2m. 

Interestingly, it was shown previously that exosomal hmgb1 promotes hepatocellular 

carcinoma immune evasion by stimulating TIM-1+ regulatory B cell expansion [31]. Also, 

blockade of the hmgb1 signaling pathway inhibits tumor growth in diffuse large B-cell 

lymphoma [32]. In another work, b2m specific B cells were defined as the most important 

prometastatic B cell cluster essentially contributing to distant metastasis in Clear Cell Renal 

Cell Carcinoma [33]. B2m is also an important element in the immune escape mechanism since 

a decrease in b2m expression reduces the number of antigens presented on the cell surface, 

including tumor-related antigens, which has been shown in particular in diffuse large B-cell 

lymphoma [34].  Thus, scEvoNet here provides a result supported by the literature, suggesting 

that users can retrieve meaningful gene candidates involved in tumor progression and immune 

escape in cancer. 
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Figure 3. Primary tumor vs metastasis comparison. A) UMAPs for the primary human breast cancer (left) and 

metastasis in the lymph node (right). B) The confusion matrix shows different rates of similarity between different 

clusters of cancer cells in primary tumor and metastasis (the p_ prefix is for primary, and the m_ prefix is for 

metastasis). The values in the confusion matrix are the correlations between two lists of scores for all cell type 

models. C) Two subnetworks of the relation of the cluster of cancer cells in primary tumor and cancer cells in 

metastasis. On the left subnetwork, we show only genes related to some other cell types, on the right subnetwork 

we selected genes that are directly connected to clusters of interest. 
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Conclusions 

The evolution of cell types and gene programs is one of the main focuses of 

developmental biology and is crucial for a better understanding of the origin of particular 

functions. For the moment, there is a lack of computational tools to address this question using 

the abundant scRNA-seq data publicly available databases. One existing approach is not 

wrapped into the usable framework (e.g., R/Python package) and has only one application (cell 

states comparison) so it cannot be used to extract genes that are responsible for cell types 

transitions such as co-opted genes or genes conservatively important for several cell states [17]. 

In this manuscript, we present scEvoNet, a method for analyzing the evolution of cell states 

from highly sparse scRNA-seq data. We show that it is applicable to studying cross-species 

and tumor-to-metastasis transitions. With this tool, we re-discover a canonical gene signature 

that remains conserved through evolution, and also predict species-specific genes and new 

candidates associated with similar cell types. Our findings may indicate the co-option of genes 

or shared programs in closely related cell types. It also suggests the potential use of an immune 

escape mechanism in breast cancer metastasis, which has previously been shown in another 

cancer type. Yet, one limitation is that scEvoNet does not match gene sequences and only 

works with labels provided by the user, which can reduce the number of genes to be found 

between different cell types in cross-species comparison.  

The tool is adjustable and can be utilized for an initial screening strategy. It is 

compatible with AnnData object format used in the Scanpy Python package [27]. 
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3. Discussion and conclusion 
Neural crest cells form a population of multipotent and migratory progenitors found in 

vertebrate embryos, essential for the peripheral and enteric nervous system, craniofacial 

structures, endocrine and pigment cells among others. Momentarily after gastrulation, in the 

anterior-most part of the embryo, NC cells are induced from the dorsal-lateral "neural border 

zone", an ectoderm domain located between the non-neural ectoderm and the neural plate 

ectoderm (Alkobtawi and Monsoro-Burq, 2020; Plouhinec et al., 2017). During the process of 

neurulation, the specification and induction of neural crest cells progresses in a wave-like 

manner from the anterior to posterior area of the neural plate. This process is accompanied by 

the activation of various gene programs that define the early and immature stages of NCs. In 

addition to the general NC program, several regional molecular modules are also activated 

along the anterior-posterior axis of the body, which help to define sub-populations of NCs with 

specific potential (Ling and Sauka-Spengler, 2019; Tang et al., 2021).  

How these sub-populations-related programs are interconnected with the pan-NC 

module, and how and when they are activated in pre-migratory NC cells are poorly described. 

Later, at the end of neurulation, NC cells leave the dorsal ectoderm by a stereotypical 

epithelium-to-mesenchymal transition followed by extensive migration towards a variety of 

target tissues, where the NC cells differentiate into more than thirty different cell types, 

including peripheral and enteric neurons and glia, craniofacial osteocytes, chondrocytes, 

adipocytes and mesenchyme, chromaffin secretory cells and pigment cells.  

Neural crest biology has been analyzed during development and evolution, leading to 

the elucidation of elaborate gene regulatory networks during the last decade (Monsoro-Burq et 

al., 2005; Simoes-Costa and Bronner, 2016). These networks, however, remain incomplete and 

do not account for most of the defects observed in human neurocristopathies (Medina-Cuadra 

and Monsoro-Burq, 2021).  

This problem is ready to be solved with single-cell transcriptomics which enable a full 

description of NC development, over sequential developmental stages, also in comparison, to 

adjacent tissues (e.g., at the neural border). That would define the developmental genetic 

trajectories of the complete NC lineage tree. Recent scRNAseq studies on NC cells have mainly 

explored NC after emigration, using chick, fish, and mouse embryos (Artinger and Monsoro-

Burq, 2021). In contrast, pre-migratory NC single cells have received limited exploration, 
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mostly around the EMT stage and on small cell numbers at a specific level of the body axis 

(Tang et al., 2021; Zalc et al., 2021).  

In addition to the neural crest, NB territory also gives rise to posterior placodes, non-

neural ectoderm, and the dorsal part of the neural tube (Steventon and Mayor, 2012; Streit and 

Stern, 1999). Whether these four cell types arise from a common and multipotent early 

progenitor state, and how fate decisions are orchestrated at the NB during gastrulation remain 

poorly understood. While the formation of the NB territory has been defined by the expression 

of a few genes during gastrulation (e.g., pax3 and pax7) (Basch et al., 2006; Monsoro-Burq et 

al., 2005; Plouhinec et al., 2017), the timing of NB specification from the rest of the dorsal 

ectoderm and the circuits driving fate decisions between the four NB-derived cell fates (NC, 

placodes, non-neural ectoderm, and dorsal neural tube) remain to be established (Groves and 

LaBonne, 2014; Maharana and Schlosser, 2018; Steventon and Mayor, 2012). Furthermore, 

the timing of lineage decisions in the pre-migratory NC along the anterior-posterior axis, the 

maintenance of a multipotent NC sub-population, and the molecular mechanisms driving each 

state of the pre-migratory NC lineage tree remain unexplored.  

Generally, studies in numerous model systems have underlined important parts of the 

GRN governing NB induction and NC/Placodes fate choice. Notably, the roles of the critical 

regulators are greatly conserved in different species (Seal and Monsoro-Burq, 2020). Yet 

central questions stay unrevealed and while some functional relationships start to be inducted, 

most direct regulations await additional validation.  

Furthermore, complex mechanisms between signaling paths and NB markers are still 

not clearly understood (Garnett et al., 2012). The NB markers pax3/msx1/zic1/tfap2a/hes4 

control each other in a feed-forward loop and need extra WNT signaling (de Crozé et al., 2011; 

Simoes-Costa and Bronner, 2016). Frog placode progenitors’ markers eya1/six1 influence NB 

and NC markers pax3 and foxd3 as well as NB inducers tfap2a, msx1, dlx3, gata2, foxi1 

(Maharana and Schlosser, 2018). Together, these elaborate cross-regulation stabilize fate 

choices in the neural border, neural crest, and placodes. All these studies open a discussion of 

two different models proposed for neural border development: 

1. The “Binary competence” model suggested by Schlosser in which the NC and the 

placodes are yielded individually: the NC on the neural side of the neural border and 

placodes on the non-neural ectoderm side (Pieper et al., 2012; Schlosser, 2008).  
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2. The “NB” model proposes the bi-potent neural border yields both NC and placode 

progenitors, the comparative positions of which are defined at later stages by special 

markers.  

Recent investigations propose a mix of both models in vivo: the multipotent NB indicates co-

expression of specifiers of either fate and no spatial segregation of fate-limited cells (NB 

model), but as development proceeds, the ability to form either NC or placodes would restrict 

sub-zones NB (binary competence [Briggs et al., 2018; Maharana and Schlosser, 2018; Roellig 

et al., 2017]). Recently was proposed another model, gradient border model, this model 

suggests that the fate of a cell, or the type of cell it will become, is influenced by both 

probability and its location in the developing embryo. According to this model, cells located in 

lateral NB are more likely to become cells of the epidermal or placode fates, while cells found 

in medial NB, are more likely to become neural crest cells. However, this model also suggests 

that cells in the NB are not fully committed to a specific fate, but rather are kept in an 

indeterminate state while they continue to express factors that could potentially lead to the 

development of different cell types (placodes, neural crest, non-neural ectoderm, neural 

ectoderm) (Thiery et al., 2022). 

In addition to these questions that remain to be answered about the regulation of neural 

crest cells and neural border, it is also necessary to consider other gene regulatory mechanisms, 

such as the regulation performed by non-coding RNA. A role for miRNAs during development 

was first reported in 2003, when Bernstein removed Dicer (which cuts double-stranded RNA 

and pre-miRNA molecules to create short double-stranded RNA fragments, including 

miRNAs) in mice, detecting early embryonic lethality (Bernstein et al., 2003). Other studies 

also showed miRNAs are significant in many developmental processes (Antonaci and Wheeler, 

2022; Mok et al., 2017). MicroRNAs are essential for normal animal development and are 

involved in different biological processes. Aberrant expression of miRNAs is linked to various 

human diseases (Hanna et al., 2019). Also, miRNAs are secreted into extracellular fluids. These 

miRNAs were widely reported as possible biomarkers for some diseases and they also act as 

signaling molecules to moderate cell-to-cell contacts (Bhaskaran and Mohan, 2014).  

Further actions are required to fit miRNAs in GRN which manage the development of 

different tissues, including NC. It is essential to highlight that not all the players affected in NC 

development were uncovered and NC-GRN that governs is constantly being revised. Other 

gene regulatory mechanisms, such as the regulation managed by miRNA, need to be evaluated. 
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A recent review highlighted the importance of different miRNAs in NC development and 

neurocristopathies, including specification, migration, and differentiation (Antonachi and 

Wheeler, 2022). Further analysis requires to define the exact consequences of these miRNAs 

in NC development. Specifically, at what moment during NC development does it acts, and 

how is it regulated. 

Thus, to answer questions regarding the heterogeneity of the cell fate decisions before 

and after NC induction, we used single-cell transcriptomes from eight consecutive 

developmental stages of Xenopus tropicalis, featuring 6135 NC cells, to provide 

comprehensive developmental profiling of the pre-migratory NC. We have uncovered several 

new NC sub-populations and highlighted their precise trajectories, resulting in eight NC sub-

populations emigrating from anterior to vagal levels of the body axis. Interestingly, we find 

that some fates emerge much earlier than previously anticipated, that NC diversity is 

maintained upon EMT and that further diversification occurs at the onset of migration. We 

propose a temporal sequence of molecular events underlying the successive transcriptomic 

states and the fate decisions supporting the emergence of the NC cells from the neural border 

during gastrulation up until early migratory states at the early organogenesis stage. Moreover, 

we identify key transcription factors involved in main lineage branching and validate several 

regulatory predictions in vivo. We, therefore, provide an extensive gene regulatory network 

describing the emergence of the neural crest lineage in the ectoderm of vertebrate embryos 

(submitted, deposited in BioRxiv). 

Also, to study the cell date decision in NB and the relationships between main 

regulation actors there we (1) used single-cell transcriptomes from 3 developmental stages of 

Xenopus tropicalis, featuring 17138 early ectoderm cells to provide comprehensive 

developmental profiling of the NB, as well as (2) the combination of inducible gene constructs 

and cycloheximide (a drug that blocks protein translation) for Pax3, Zic1, and Dlx3. 

Transcription factor connectome and bifurcation analyses demonstrated the early emergence 

of neural crest fates at the neural plate stage, alongside an unbiased multipotent lineage 

persisting until after epithelial-mesenchymal transition. And perturbation experiments revealed 

shared and unique targets most important actors in NB (study in progress). 

Next, to extend our knowledge about GRN regulating the NC, we selected two 

miRNAs, which has been previously shown to be important for the neural crest prior to 

migration. The main aims were to confirm that miR-196a and miR-219 are actually required 
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for NC development using morpholino-mediated knockdown of microRNAs miR-196a and 

miR-219 and start to decipher at what level the miRNAs are involved in the development of 

Xenopus NC (study in progress).  

Lastly, to know more about the evolution of the NC and other cell types, we developed 

the ML-based computational tool scEvoNet (single-cell Evolutionary networks). For the past 

150 years, cell types have been studied in terms of development and morphology, whereas with 

the advent of single-cell transcriptomics, many distinct and hidden cell types have been 

identified. With the use of scRNA-seq, a completely new era is dawning in understanding the 

evolution of cell types. Seemingly, the ancestral types of animal cell types were poly-functional 

(sponge cell has both neural and immune properties), but during the evolution, functions were 

distributed between different cells (Arendt, 2008). This “division of labor” is one of the key 

ways how cell types evolve. Yet, there is a lack of scRNA-seq computational tools to study the 

evolution of cell states. Thus, here we present scEvoNet, the software that is implemented to 

study this conception from scRNA-seq data. Using this tool for studying the continuum of 

transcriptome states between developmental stages or species will help explain the complex 

dynamics of cell states (submitted, deposited in BioRxiv).
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3.1 A reconciliatory “Model of Dual Convergence” describes the 
converging trajectories initiating neural crest and placode states 

To reveal the molecular mechanisms that distinguish NC and placode induction at the 

neural-nonneural ectoderm border zone during gastrulation and check both models (“Binary 

competence” and “NB”), we generated dataset for all ectoderm cells from stages 11-13 (using 

the whole embryo scRNA-seq dataset). A fate change via a binary fate separation (bifurcation) 

is usually observed when an apparently homogeneous population of precursors divides into 

two cell types with distinct gene expression patterns. The NB itself is interpreted as a general 

competence zone for neural tube, nonneural ectoderm, NC, and placodes. And although it has 

some preferential association of cell fates, which reminds the binary competence model 

proposed by Schlosser (Pieper et al., 2012; Schlosser, 2008) where the NC and the placodes 

are induced separately, we observed that the NB zone contributes NC and PC in parallel to 

convergent contributions from neural plate and non-neural ectoderm progenitors.  

Interestingly, we found that distinct genes were activated to obtain the same state and 

some genes were activated with different expression dynamics relative to different bifurcations. 

For example, during the NB to NC transition, sox9 and c3 were activated before bifurcation 

indicating that these genes could trigger cells from NB progenitors to a NC fate. In contrast, 

during the neural ectoderm to NC transition, sox9 and c3 were late genes (activated after 

bifurcation) while foxd3 and zic1 were expressed early. This observation suggested a new 

model of fate decisions in the developing ectoderm, where parallel and distinct genetic 

programs activated in distinct ectoderm progenitors may lead to a similar state, supporting a 

"Dual convergence Model" for neural crest and placode emergence from dorsal ectoderm, thus 

merging the currently competing models of "Neural border origin" opposed to "Neural / non-

neural ectoderm origin. 

Moreover, NB zone-specific gene pax3 was expressed prior to bifurcation in the NB to 

NC gene program and activated expression of late NC branch markers sox9, sox8, zic1, pcdh8, 

and c3. Additionally, the Ectoderm connectome described NC genes connected to the rest of 

the network through Pax3 and Sox9, suggesting that Sox9 might play a yet undescribed 

function downstream of Pax3 in NC induction and upstream of the other late NC-branch 

markers. This agreed with sox9 being an early gene in the NB➝NC branch. Experimental 

validation showed that co-activation of Sox9 strongly increased snail2 expression in iNC, while 

Sox9 depletion reduced snail2 activation, indicating that Sox9 is required downstream of Pax3 
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for efficient NC induction by Pax3 and Zic1. While Sox9 had been described as essential for 

NC induction, the epistasis mechanism between NB specifiers, Sox9 and Snail2 had remained 

unknown until this experiment. 

There are several limitations to this study. One limitation is that the data was only 

collected from a limited number of stages, so it is not clear how the findings would apply to 

other stages of development. Additionally, the study only focused on the induction of NC and 

placodes, so it is not clear how the findings would apply to the development of other cell types 

or tissues. There are several potential future directions for this research. For example, it would 

be interesting to investigate the role of other transcription factors in the induction of NC and 

placodes, and to study the development of these cell types at later stages. It would also be 

interesting to explore the potential clinical applications of these findings, such as in the 

development of therapies for developmental disorders or in regenerative medicine. 

3.2 A combination of Omics and in vivo strategies validates large sets 
of gene regulations driving the dynamics of neural crest 
diversification 

The puzzle of whether NC clusters use differential biases to navigate a single fate 

landscape, or are presented with fundamentally unique decisions on separate landscapes, may 

be approached by identifying “muted” bifurcations where multilineage priming occurs but one 

fate is never expressed. Single-cell transcriptomics catches sufficient differences across 

transcriptional states, which may mean decision-making processes. Although significant 

transcriptional changes are usually assumed to be linked to fate choice events, it might instead 

mean post-commitment differentiation, at the same time small changes affecting only several 

genes can be actually answerable for homogeneity breaking. New approaches for tracking such 

events across developmental stages are able to define slight changes in gene expression 

patterns.  

3.2.1 Heterogeneity in pre-migratory NC 

ScRNA-seq dataset of the whole embryo with accurate extraction of the NC cells helped 

us to define the temporal dynamics of trajectories that result in 8 neural crest states present 

upon early migration stage along the cranial and vagal axial positions. Our temporal analysis 

highlights three important points deepening our understanding of NC biology. Firstly, there 
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have been long-standing debates about the timing of NC fate decisions, prior to or after EMT 

from the neural tube, in a variety of animal models (Kalcheim and Kumar, 2017). Importantly, 

we did not detect distinctive expression of predictive fate markers before EMT (e.g., for 

neuronal, glial skeletogenic, or melanocyte fates). This suggested that, if some NC progenitors 

were biased toward a given fate prior to EMT, they did not exhibit a detectable signature in our 

dataset. However, our observations are in agreement with several lineages tracing studies 

showing the high multipotency of most NC cells when marked prior to EMT (Baggiolini et al., 

2015). The first differentiation markers are found after emigration, as we detected myosin-like 

expression in a small subset of cells suggesting the emergence of previously poorly described 

NC-derived myofibroblasts shortly after EMT. Secondly, our data support the early 

diversification into several distinct cell states prior to, during, and after EMT, contrasting with 

the recent suggestion that upon EMT the NC progenitors would regroup into a single common 

multipotent state (Zalc et al., 2021). The high cell content of our dataset proves otherwise, 

suggesting that this previous observation made on a smaller subset of cranial NC did not fully 

capture the diversity of pre-migratory NC states. Another key observation is the presence of 

the main population of NC unbiased towards any particular state, expressing markers of the 

immature neural crest cells, from which all the other trajectories emerge. This unbiased cell 

trajectory is maintained during and after EMT suggesting that a very plastic, stem-like NC cell 

population emigrates and is subjected to the signals from the microenvironment prior to fate 

choices. 

3.2.2 NC connectome and multiple bifurcations describe molecular logic of the 
cell fate decisions in vagal and cranial NC 

We expand the network of genes involved in the NC-GRN by predicting gene 

correlations from the NC dataset to link transcription factors to their potential targets in the NC 

transcriptome. The resulting network of >16.000 potential TF-targets connections was partly 

validated by the combination of the knock-down experiments and ChIP-seq for some of the 

most linked nodes of the network. In particular, we have focused on the mid-neurulation role 

of Pax3 and TFAP2e, which were previously known for their earlier functions in NC induction. 

In both Pax3 and Tfap2e cases, we find that the three approaches result in partially overlapping 

gene target lists due to their use of different parameters (stage-wise, expression-wise, etc.). 

Together, these data provide an enlarged and validated NC-specific genome-wide connectome 

for two key NB/NC specifiers revealing a static depiction of the GRN in the NC.  
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To access the temporal dynamics of NC regulation, we examined temporal trajectory 

analysis unraveling the branch-specific dynamics of gene expression underlying bifurcations 

and state diversification. For each bifurcation, we provide a list of key genes likely to control 

branching choices. We further used experimental modulation of pivotal transcription factors 

function in the pre-migratory neural crest (Pax3, TFAP2e) to validate these bifurcation 

predictions. This provides a comprehensive view of the hierarchy of molecular decisions 

driving the cranial and vagal neural crest gene regulatory network from induction at the neural 

border to early migration, with experimental validation. 

3.3. Role of miRNAs in NC development 

It is known that a lot of genes are entangled in NC development, but not all of them 

have been determined. Recently, science focus moved from studying protein-coding genes to 

non-coding genes, e.g., miRNAs. These non-coding RNAs are important during embryo 

development regulating the expression of protein-coding genes, mostly by binding to the 3'-

UTR of messenger RNA and suppressing the production of protein due to the destabilization 

of messenger RNA. Numerous analyses showed that miRNA-mediated gene regulation is 

important during embryo development (Bushati and Cohen, 2007; Stefani and Slack, 2008). 

Dicer mutant zebrafish embryos show defects in gastrulation and somitogenesis (Giraldez et 

al., 2005) and also die (Wienholds et al., 2003). In the retina, Dicer loss leads to retinal 

regression at later stages (Decembrini et al., 2008). Multiple analyses showed involvement of 

miRNAs during neural development (Papagiannakopoulos and Kosik, 2009; Walker and 

Harland, 2009). Therefore, we decided to develop this direction and expand our understanding 

of the NC GRN by studying miRNAs previously shown to be expressed in NC and neural tissue 

in the Xenopus embryos (Godden et al., 2021; Ward et al., 2018).  

We selected miR-219 and miR-196a to determine their function in NC development we 

designed MOs that was designed to knock down the mature miRNA, and be complementary to 

it (Flynt et al., 2017). Through RNA-sequencing on dissected NC tissue that had been treated 

with MOs for miR-196a and miR-219, it was revealed that miRNAs may have a role in the 

development of NC and surrounding tissues. A strong reduction in expression of NC markers:  

foxd3, twist1, sox8, sox9, sox10, and snail2 can be seen, following miRNA-KD, more 

significantly with miR-196a KD. Neural markers sox2, and sox3 were significantly enriched. 

Neural plate border markers were also enriched (gmnn, hes3, pax3, and not significantly zic1) 

and also pluripotency marker pou5f3 was enriched. Functional characterization of Sox10, 
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Snail2, and Pax3 together with the result of the RNA-seq suggest that miR-196a and miR-219 

KD, which reduce the expression of sox10 and snail2, prevent the maintenance of NC cells. 

The study highlights the importance of understanding the different roles of miR-196a and miR-

219 in the development of NC cells in Xenopus embryos. Most importantly, the data presented 

in the study suggests that these two miRNAs have distinct effects on the development of NC 

cells, with miR-196a having a stronger effect on reducing NC marker expression and switching 

the cell fate into NB-like multipotent state, and miR-219 contributing to an increase in 

multipotency without activating the NB program. This suggests that miR-196a and miR-219 

play different roles during the NC development.  

3.4 Pax3, Dlx3 and Zic1 relationships in the Neural border 

In order to precisely examine the immediate-early targets of the most important 

transcription factors in the neural border Pax3, Zic1, and Dlx3 we have started a new project 

by micro-dissection neural border explants which provide us with high spatial specificity. For 

the first step of the project (see Results section 2.4.1) we inspected for stage-specific immediate 

early targets of these transcription factors in the NB at multiple stages.  

Up to this point, we identified a set of genes that are regulated by three transcription 

factors. Our findings confirm the previously known roles of these transcription factors in the 

regulation of genes involved in neural crest formation, such as markers of neural crest cells like 

snai2, twist1, and sox9, as well as foxd3, and tfap2b. It is also notable that the majority of the 

genes identified as targets of Pax3 were found to be downregulated in the absence of Pax3, 

supporting the idea that Pax3 plays a role in activating neural crest specifiers. However, there 

were also a small number of genes found to be upregulated. Moreover, we found that Pax3 and 

Dlx3 have a shared regulatory targets, that were found to play a role in formation of the neural 

crest, like alx1 and hnf1b. Furthermore, our data suggests that the role of Pax3 in neural crest 

formation is more prominent at early stages, as we observed fewer targets for Pax3 at later 

stages. Also, using previous scRNA-seq ectoderm analysis, we found that Pax3-GOF activated 

both the NEàNP and NE/NBàNC programs, while Dlx3-GOF activated the NNEàNNE2 

program but deactivated the NCàNP programs. Overall, our analysis showed distinct 

activation patterns for Pax3 and Dlx3. Overall, this study provides new insight into the 

transcriptional regulatory networks that control the formation of the neural crest. By identifying 

the specific genes and pathways that are targeted by these transcription factors, we can gain a 
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better understanding of the complex molecular processes involved in the development of NB, 

NC, PC and other ectodermal tissues. 

The next goals of the project are [1] examining the cooperation between NB specifiers 

during NC/PC fate induction by defying the immediate early targets of the genes in the absence 

of another e.g., Zic1 targets in the absence of Pax3/Dlx3. And [2] scanning for stage-specific 

requirements of NB specifiers by analyzing NB transcriptome in the absence of one of the 

genes using morpholinos.  

3.5 Cell type evolution with scEvoNet 

For the past 150 years, cell types have been studied in terms of development, 

morphology and molecular features, whereas with the advent of single-cell transcriptomics, 

many distinct and hidden cell types have been identified. With the use of scRNA-seq, a 

completely new era is dawning in understanding the evolution of cell types. Seemingly, the 

ancestral types of animal cells were poly-functional (some sponge cell have both neural and 

immune properties), but during the evolution, functions were distributed between different cells 

(Arendt, 2008). This “division of labor” is one of the key ways how cell types evolve. Yet, 

there is a lack of scRNA-seq computational tools to study the evolution of cell states. Thus, we 

developed a computational tool scEvoNet, a software implemented to study this concept from 

scRNA-seq data. Firstly, our tool creates the matrix of similarities between cell types of two 

datasets provided by users. Secondly, it builds the bipartite network connecting genes and 

different cell states, which can be used as a source for screening potentially co-opted genes 

(shared between cell types), as well as genes that are important for the particular cell type in 

cross-species comparison, and genes that are meaningful only for one specie. Moreover, it can 

be used to study tumor progression and evolution by exploring genes and gene programs that 

are shared between various cell types in the tumor microenvironment. Using this tool for 

studying the continuum of transcriptome states between developmental stages or species, or 

between normal and disease states, will help explain the complex dynamics of cell states. 

Dropout events, where a gene is not detected despite being present, and batch effects can limit 

the accuracy of predictions made from scRNA-seq data. Generating sets of datasets from 

multiple species or using improved scRNA-seq capture techniques will improve the results of 

tools like scEvoNet. 
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3.6 Conclusions 

Although the neural crest cell field is highly analyzed over the years with different cell 

and molecular methods, we still do not know how exactly is the neural crest fate initiated during 

dorsal ectoderm patterning. We do not know how neural crest cells acquire their regional 

diversification during the pre-migratory stage. The neural crest gene regulatory network 

consists only of transcription factors and its few targets, and previous analysis of single-cell 

transcriptomes has so far mainly been focused on subsets of neural crest cells after their 

emigration from the neural tube (Soldatov et al., 2019; Williams et al., 2019). The crucial steps 

of pre-migratory neural crest diversification have not been addressed with those approaches 

yet.  

In my thesis research, I have aimed to explore various aspects of neural crest biology. 

This includes exploring the different models that can explain the development of ectodermal 

tissues (Binary competence, NB, Gradient NB models) and examining the underlying 

molecular causes of heterogeneity in NC cells during the very early stages of development. 

Furthermore, I have aimed to identify and characterize novel subpopulations within the neural 

crest cell cells.  

Thus, we used a combination of a single-cell dataset of a developmental series of 8 

stages spanning gastrulation and neurulation, perturbation-seq for the most important TFs and 

miRNAs to explore how the neural crest fate is initiated at the end of gastrulation and how its 

diversification arises during neurulation. We showed that during the process of gastrulation, 

the neural crest cells are formed in the neural plate and the border region of the ectoderm 

through two converging pathways, paralleled by two other pathways that lead to the initiation 

of placodes (from the neural border region and the non-neural ectoderm). We find essential 

early roles for Sox9, cooperating with neural border factors Pax3 and Zic1 to activate neural 

crest identity. Our findings suggest a “Dual convergence Model” for neural crest and placode 

emergence from dorsal ectoderm, thus merging the currently competing models of “Neural 

border origin” opposed to “Neural / non-neural ectoderm origin”. In comparison to the gradient 

NB model, we found no evidence of NB cells showing an inclination towards NE and NP cell 

fates, which does not necessarily mean that this is impossible, but rather that it is less likely 

than the NC and PC fates. 

Our analysis reveals an unsuspected early NC heterogeneity arising just after induction. 

At stages 12-13 we observed 4 different subpopulations: two cranial, one vagal (early ENSp) 
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and one unbiased. Subsequently, using branching analysis, we generated a new lineage tree, 

starting from the dorsal ectoderm and connecting to the established migration patterns of the 

neural crest, specifically the ENSp, cardiac NC, and migrating cranial NC. We validated key 

bifurcation points using established assays of neural crest genetic perturbation, either in vivo, 

or in explants, or after microdissection, followed by RNA-sequencing or chromatin-

immunoprecipitation and sequencing. Additionally, using these experimental manipulations of 

four selected transcription factors, Pax3, Zic1, TFAP2a, and TFAP2e, which display reiterative 

functions in the neural crest tree, we validate numerous aspects of the predicted gene-regulatory 

network. 

Our integrated approach from scRNA-seq predictions to in vivo functional validation 

on a large scale is an important contribution to the field, as it establishes powerful strategies to 

validate tissue-specific GRNs globally rather than on a gene-by-gene basis. This allowed us to 

provide a comprehensive GRN for neural crest and dorsal ectoderm validated sets of target 

genes for four pivotal regulators. In sum, our work uncovers several important features of 

neural crest biology, such as the persistence of an unbiased (multipotent) lineage throughout 

neurulation, together with the emergence of cranial and vagal cells, and the gene programs 

likely to sustain each nascent branch. Our research addresses significant and unresolved issues 

in the field of neural crest biology and lays the foundation for future experimentation. 

In the second part, I have participated in two projects that use bulk RNA-seq on micro-

dissected tissues to explore [1] the precise roles of two microRNAs (miRNA-219, miRNA-

196a) during NC development in Xenopus embryos, and [2] the relationships between the 

essential NB transcription factors (Pax3, Dlx3, Zic1) during NB/NC patterning. The final 

results after all validations will highlight the importance of microRNAs in regulating gene 

expression during neural crest development, the distinct roles of different microRNAs in 

induction and specification events during neural crest development and the nature of 

cooperation of Pax3, Dlx3 and Zic1 in regulating gene expression during NC/PC induction.  

Last, I have sought to develop a computational tool called scEvoNet, which is 

implemented to study the evolution of cell states from scRNA-seq data. It can be used to study 

tumor progression and evolution by exploring genes and gene programs that are shared between 

various cell types. Furthermore, this tool can also be implemented on a broader set of data, 

including multiple species, which could provide new insights into the development and 

evolutionary history of different cell types. The tool has great potential for understanding the 
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dynamics and evolution of cell types and largely dependent on the data quality and data 

availability. 

Collectively, my work aims at significantly enhancing the understanding of the 

molecular mechanisms involved in the formation of the neural crest. While many questions 

have been answered, there are still areas for exploration, such as investigating the transition 

from NP-like NC cells to ENSp cells. Furthermore, applying scEvoNet on the data for a variety 

of species, including cephalochordates, tunicates, and vertebrates would provide valuable 

insights. 
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