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1 INTRODUCTION 

1.1 IMMUNOLOGY ON MONONUCLEAR PHAGOCYTES 

Immunology, the scientific study of the immune system, explores a 
comprehensive network composed of cells, tissues, and molecular 
mechanisms that collaborate to protect the body against infectious 
agents and diseases. The immune system is broadly classified into two 
primary types: innate immunity and adaptive immunity, each playing a 
unique and critical role in body defence mechanisms. 

Adaptive immunity is characterised by its specificity and memory, 
enabling a tailored and long-lasting response to pathogens. This 
branch involves lymphocytes, specifically B cells and T cells. B cells are 
responsible for a humoral immunity through the production of 
antibodies, whereas T cells mediate cellular immunity. Examples are 
helper T cells (CD4+) activating other immune cells, while cytotoxic T 
cells (CD8+) directly eliminate infected cells (Janeway et al., 2001). 

A fundamental concept in adaptive immunity is antigen recognition. B 
cells recognise antigens via their B cell receptors (BCRs), which are 
membrane-bound antibodies, while T cells recognise processed 
antigen fragments presented by Major Histocompatibility Complex 
(MHC) molecules on antigen-presenting cells (APCs) through their T 
cell receptors (TCRs). This specific interaction is crucial for initiating a 
precise immune response (Chaplin, 2010). 

The clonal selection explains the adaptive immune system’s ability to 
generate diverse antigen-specific lymphocytes. Upon encountering an 
antigen, lymphocytes undergo clonal expansion and differentiation 
into effector and memory cells, ensuring a rapid and robust response 
upon subsequent exposures to the same antigen. Effector mechanisms 
include antibody production by plasma cells, the direct killing of 
infected cells by cytotoxic T lymphocytes, and the activation of other 
immune cells through cytokine secretion by helper T cells, establishing 
immunological memory and forming the basis for vaccination (Chaplin, 
2010; Janeway et al., 2001). 
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In contrast, innate immunity represents the body’s first line of defence, 
providing a rapid, albeit non-specific, response to invaders through 
barriers like the skin and mucous membranes and through various 
immune cells such as macrophages, neutrophils, and natural killer cells. 
This layer of defence also involves soluble factors such as cytokines 
and complement proteins that aid in orchestrating the overall immune 
response. 

Within the innate immunity, the mononuclear phagocyte system plays 
a vital role. It includes monocytes, macrophages, and dendritic cells, 
each contributing to host defence, tissue remodelling, and regulation 
of immune responses. The historical discovery and role of these cells 
were significantly advanced by the pioneering studies of Ilya 
Metchnikoff in the late 19th and early 20th centuries (Metchnikoff, 
1892). Metchnikoff’s discovery of phagocytic cells, which ingest and 
destroy pathogens—a process he named phagocytosis—earned him a 
Nobel Prize and laid the groundwork for our current understanding of 
cellular immunity. 

Monocytes, primarily circulating in the bloodstream, can differentiate 
into macrophages upon entering tissues, where they adapt to the local 
environment. Macrophages are highly versatile and tasked with 
detecting, engulfing, and destroying pathogens. They also have the 
capacity to play a role in orchestrating immune responses by 
presenting antigens to T cells and secreting cytokines that regulate 
inflammation and immunity (Medzhitov and Janeway, 2000). 

Dendritic cells (DC), another integral component of the mononuclear 
phagocyte system, are adept at capturing and processing antigens. 
They are considered the most potent antigen-presenting cells, 
bridging innate and adaptive immunity. After encountering pathogens, 
they migrate to lymphoid tissues, present antigens to T cells, and 
initiate adaptive immune responses—a significant advancement in our 
understanding brought forth by Ralph Steinman in the 1970s 
(Steinman and Cohn, 1973). 
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The innate immune system recognises pathogens through pattern-
associated molecular patterns (PAMPs). These molecular structures, 
which include bacterial peptidoglycan and lipopolysaccharide (LPS), 
are foreign to the host organisms, allowing the immune system to 
differentiate between self and non-self. This discrimination is crucial 
for proper immune functioning (Janeway, 1989). 

Initially overshadowed by the complexities of adaptive immunity, the 
innate immune system’s role has been recognised as equally vital to 
the body. It encompasses various mechanisms beyond lymphocytes, 
such as skin and mucosal barriers, mucus secretion, and chemical 
agents like lysozyme and stomach acidity. Recognising the 
complement system’s classical, alternative, and lectin pathways 
highlights its sophisticated involvement in pathogen detection, 
inflammation activation, and clearance (Al et al., 2023; Netea et al., 
2020). 

Recent studies have showcased the complement system’s regulatory 
properties, with components like C5a enhancing phagocyte survival 
and effector functions and C3 playing a crucial role in maintaining gut 
health by balancing microbial populations (Desai et al., 2023; 
Sherwood et al., 2022; Trouw and Daha, 2011; West et al., 2018). The 
discovery of pattern recognition receptors (PRRs) and their role in 
detecting PAMPs marks a significant leap in our understanding of 
innate immune mechanisms (Kopp and Medzhitov, 1999; West and 
Kemper, 2023). 

Pattern Recognition Receptors (PRRs), such as Toll-like receptors 
(TLRs), NOD-like receptors (NLRs), and RIG-I-like receptors (RLRs), each 
play specific roles in pathogen recognition and the initiation of 
immune responses. TLRs, for instance, recognise conserved 
components of microbes, such as LPS from gram-negative bacteria or 
double-stranded RNA from viruses, triggering immune activation and 
the production of cytokines that help coordinate further immune 
reactions (Medvedev et al., 2006; Medzhitov et al., 1997). 

Additionally, the concept of “trained immunity,” a form of innate 
memory facilitated primarily through epigenetic changes in myeloid 
cells, has revolutionised our understanding of how certain vaccines, 
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like Bacillus Calmette-Guérin (BCG), provide broad protection against 
a range of diseases beyond their specific targets (Sherwood et al., 
2022). The interaction of cytokines in regulating inflammation and 
linking innate to adaptive immunity further emphasises the 
interconnected and dynamic nature of the immune system. 

 

1.2 MONOCYTES AND MACROPHAGES 

1.2.1 Monocytes 

Monocytes originate from bone marrow hematopoietic stem cells and 
circulate in the bloodstream. These cells are conserved across all 
vertebrates and are characterised by specific locations, phenotypic 
features, morphological attributes, and distinct gene expression 
signatures (Ingersoll et al., 2010; Kapellos et al., 2019). In both mice 
and humans, monocytes constitute about 4% to 10% of nucleated cells 
in the the blood, respectively, with significant reserves located in the 
spleen and lungs that can be mobilised when needed (Swirski et al., 
2009; van Furth and Cohn, 1968). 

Monocytes play several crucial roles in the immune system. They can 
differentiate into tissue macrophages to maintain homeostatic 
functions under normal conditions (Ginhoux and Jung, 2014). 
Additionally, monocytes can become inflammatory macrophages 
during acute inflammatory responses and anti-microbial immunity.  

The identification of distinct monocyte populations marked a 
significant advancement in the understanding of their biology. Initially, 
these populations were distinguished in humans based on 
morphology and the differential expression of CD14 and CD16 markers 
(Passlick et al., 1989). This differentiation led to the classification of 
monocytes into three principal subsets: CD14+CD16- monocytes or 
“classical” monocytes, which represent 80–90% of the monocyte pool, 
and the remaining 10–20% comprised of CD14+CD16+ “intermediate” 
and CD14LowCD16+ “non-classical” monocytes (Guilliams et al., 2018; 
Kapellos et al., 2019). 
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In mice, a significant development occurred with the creation of a 
mouse strain with a reporter protein engineered into the Cx3cr1 gene 
(CX3CR1-GFP mice), facilitating the identification of two distinct 
CD11b+CD115+ monocyte subsets (Geissmann et al., 2003; Jung et al., 
2000). The “classical” monocytes in mice are identified as 
Ly6CHiCX3CR1intCCR2+CD62L+CD43Low cells, whereas “non-classical” 
monocytes, also known as patrolling monocytes, have a 
Ly6CLowCX3CR1HiCCR2LowCD62L-CD43+ phenotype (Geissmann et al., 
2003; Jakubzick et al., 2013; Jung et al., 2000; Palframan et al., 2001). 
Comparative transcriptional analyses between mouse and human 
monocytes have correlated Ly6CHi monocytes with ‘classical’ 
CD14+CD16- monocytes and Ly6CLow monocytes with ‘non-classical’ 
CD14LowCD16+ monocytes, highlighting some differences in gene 
expression and surface markers between the species (Guilliams et al., 
2018; Kapellos et al., 2019). 

In addition, less well-defined transitional states have been reported, 
the prevalence of which could have substantial clinical implications. 
The expression of 6-sulfo LacNac sugar antigen linked to the cell 
surface protein PSGL-1 is termed SLAN. SLAN expression defines non-
classical CD16+ in humans and provides a practical way to distinguish 
them from the “intermediate” CD14+CD16+ monocytes (Hofer et al., 
2015). 

The developmental pathways by which monocytes arise from 
hematopoietic stem cells are commonly understood through a model 
that conceptualises it as a hierarchical, tree-like structure based on 
canonical progression. This paradigm assumes that progenitor cells, 
ranging from oligopotent to unipotent, gradually become more 
specialised through a series of branching decisions, culminating in 
forming all types of circulating blood cells. At the foundation of this 
model, a subset of active hematopoietic stem cells (HSCs) (Busch et al., 
2015) exhibit the capacity for self-renewal and give rise to a varied 
population of multipotent progenitors (MPPs) (Pietras et al., 2015). 
These progenitors then differentiate into two primary lineages: 
common myeloid progenitors (CMPs) (Akashi et al., 2000) and 
common lymphoid progenitors (CLPs) (Kondo et al., 1997). 
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CLPs are precursors to lymphoid cells such as T cells, B cells, and 
natural killer cells, but they are incapable of differentiating into the 
myeloerythroid lineage. Conversely, CMPs, which no longer retain the 
potential to develop into lymphoid cells, can differentiate into 
megakaryocyte and erythrocyte progenitors (MEPs) and granulocyte 
and macrophage progenitors (GMPs) (Akashi et al., 2000). It is within 
this GMP category that a monocyte/dendritic cell progenitor (MDP) 
has been identified. This progenitor is suggested to predominantly 
produce monocytes and conventional dendritic cells (cDCs), but not 
neutrophils, in both mice (Fogg et al., 2006; Olsson et al., 2016) and 
humans (Lee et al., 2015). Notably, in murine models, MDPs have also 
been detected in mice within the CMP population and might emerge 
directly from CMPs expressing Flt3 rather than exclusively from GMPs 
(Yáñez et al., 2017). Recent studies have further suggested that Ly6CHi 
monocytes can originate from both the GMP and MDP populations 
(Trzebanski et al., 2024; Yáñez et al., 2017). 

GMP-dependent monocytes coexist alongside MDP-derived 
monocytes, with each playing a crucial role in immune responses  
(Trzebanski et al., 2024; Wolf et al., 2019). MDP-derived monocytes, in 
particular, possess the capacity to generate monocyte-derived 
dendritic cells (moDCs). Through the use of fate mapping studies in 
mice involving Ms4a3 cre/Ms4a3 CreERT2 driver lines, the 
contributions of GMP-dependent monocytes to the tissue-resident 
macrophages (TRMs) pool have been accurately assessed (Liu et al., 
2019). 
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Figure 1: Schematic representation of hematopoietic system 

development based on single-cell analysis. Hematopoietic development 

initiates with a small number of active hematopoietic stem cells (HSCs), 

which populate a pool of multipotent progenitors (MPPs). Within this 

pool, distinct subsets of MPPs (indicated by numbers 2–4, as described 

by Pietras et al., 2015) are already primed toward specific cell lineages 

or exhibit characteristics similar to terminally differentiated cells 

(depicted by light-coloured circles). The further differentiated precursor 

populations comprise a heterogeneous mixture of these primed cells, 

represented within the rectangles, which often share overlapping surface 

marker profiles. Adapted from Guilliams et al., 2018. 
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The transformation of monocytes into cells with dendritic cell-like 
features, initially demonstrated in vitro, has been supported by 
numerous lines of evidence underscoring its physiological importance. 
moDCs are particularly significant in pathophysiological conditions, 
impacting the exacerbation or regulation of inflammation (Coillard and 
Segura, 2019). The development of these cells is intricately regulated 
by transcription factors, further emphasising the complexity of 
monocyte differentiation (Villar et al., 2023). 

Monocyte migration from the bone marrow is predominantly driven in 
mice by CC-chemokine receptor 2 (CCR2), which binds to chemokine 
ligands such as CCL2 and CCL7 (Tsou et al., 2007). Under mild 
inflammatory conditions, mesenchymal stem cells and their progeny, 
including CXCL12-abundant reticular cells, serve as primary sources of 
CCL2 production in the BM of mice (Shi and Pamer, 2011), although 
this may vary under healthy conditions. The role of CCR2 in human 
monocyte egression remains to be fully understood, as it is shown in 
human CCR2 knockout patients with normal levels of monocytes in the 
blood (Neehus et al., 2024).  

Classical monocytes, a transient population, display diverse 
differentiation potentials and are known for their ability to migrate into 
tissues under normal conditions. Once released from the bone marrow 
during healthy homeostasis, they circulate for about a day before 
either repopulating tissue-resident macrophages or converting into 
non-classical monocytes (Patel et al., 2017; Yona et al., 2013). Non-
classical monocytes patrol the vasculature, clear dying endothelial 
cells, and play a role in maintaining vascular health (Auffray et al., 
2007).  

It is important to recognise that the production of monocyte subsets 
during homeostasis is influenced by a dynamic interplay of 
environmental and genetic factors, suggesting that homeostatic 
conditions are far from uniform (Kapellos et al., 2019; Patel and Yona, 
2019). For instance, in the intestine, while macrophages are generally 
short-lived and continuously replenished by monocytes, TIM4+CD4+ 
macrophages in mice are self-sustaining for months and are essential 
for maintaining intestinal homeostasis. Disruption of these cells leads 
to various intestinal issues, including reduced enteric neurons, vascular 
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leakage, and delayed motility (De Schepper et al., 2018). 

 

1.2.2 Macrophages 

Macrophages are highly plastic and adaptable cells, capable of 
performing a wide range of functions depending on their environment. 
Since their early identification as mononuclear phagocytes in both 
invertebrates and vertebrates, macrophages have become increasingly 
important in understanding human health and disease. Their 
fundamental role involves “cleaning” their surroundings by 
phagocytosing cellular debris and regulating tissue repair and 
maintenance, making them key sentinel cells present across various 
organs (Wynn et al., 2013). Remarkably, these tissue-resident 
macrophages (TRMs) participate in a variety of complex processes, 
reflecting their ability to adapt to specific tissue environments while 
retaining core functions as phagocytes (Lavin and Merad, 2013; Lavin 
et al., 2014; Gosselin et al., 2014; Amit et al., 2016; Cohen et al., 2018). 
Their identity is further shaped by tissue-specific signals that can 
remodel their phenotype, gene expression, and chromatin 
architecture, leading to significant heterogeneity. While macrophages 
are essential to all organs in the body, here are some of the more well-
known specific examples of tissue functionality in mice. 

Lung 

The lungs, constantly exposed to the external environment through 
inhaled air, contain three distinct populations of macrophages: 
alveolar macrophages, which reside in the alveoli and are directly 
exposed to air, and two populations of interstitial macrophages 
(Aegerter et al., 2022). Alveolar macrophages play a critical role in 
clearing the alveolar space of cellular and pathogenic debris, as well as 
mucus. Their development and maintenance are dependent on 
granulocyte-macrophage colony-stimulating factor (GM-CSF), which is 
produced by type II airway epithelial cells (Guilliams et al., 2013). In 
mouse models, the absence of GM-CSF or mutations in its receptor 
leads to pulmonary alveolar proteinosis, underscoring the importance 
of these cells (Guilliams et al., 2013) (Suzuki et al., 2008). 
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Liver 

The liver hosts a diverse population of macrophages, including the 
well-known Kupffer cells (KCs) and liver capsular macrophages (LCMs), 
along with central vein macrophages and lipid-associated 
macrophages (Guilliams and Scott, 2022). Kupffer cells, residing in the 
sinusoidal areas exposed to the constant blood flow from the portal 
vein, are involved in the phagocytosis of senescent erythrocytes and 
play critical roles in systemic iron and cholesterol metabolism (Wen et 
al., 2021). They also contribute to microbial defence, cell debris 
clearance, and immune tolerance. In mouse models, Clec4f has been 
identified as a specific marker for targeting Kupffer cells in mice, 
highlighting the role of transcription factors like Zeb2 and LXRα 
induced by DLL4  in their development and function (Sakai et al., 2019; 
Scott et al., 2018). 

Central nervous system 

Macrophages in the central nervous system (CNS), particularly 
microglia, are among the most well-studied macrophages. Microglia, 
which reside in the CNS parenchyma, and other macrophage 
populations that occupy CNS interfaces, maintain themselves via cell-
autonomous proliferation once they are established in the CNS 
(Goldmann et al., 2013; Hashimoto et al., 2013). These long-lived cells 
rarely proliferate throughout their lifespan but rely on specific niche 
factors released by local tissue cells to mature and perform their 
specialised functions during CNS development and homeostasis. The 
two colony-stimulating factor 1 receptor (CSF1R) ligands, CSF1 and IL-
34, released by neurons and astrocytes (Erblich et al., 2011; Greter et 
al., 2012; Wang et al., 2012), are essential for maintaining mature 
microglia in the adult CNS in a regionally defined manner. 
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Gut 

The gut represents a complex system with multiple anatomical layers, 
including the epithelial region, lamina propria, submucosa, and 
muscularis externa, each with different macrophage functions (Delfini 
et al., 2022). Lamina propria macrophages are crucial for maintaining 
intestinal barrier homeostasis, as evidenced by the fact that mutations 
in the IL-10 receptor pathway can cause severe pediatric inflammatory 
bowel disease (Hoffmann et al., 2021; Ye et al., 2021). Intestinal 
macrophages interact with the neuronal components of the gut, 
supporting their survival and development (Gabanyi et al., 2016; Muller 
et al., 2014). In the deeper layers of the intestine, such as the 
submucosa and muscularis externa, long-lived macrophages reside 
within specific tissue niches (Delfini et al., 2022). In the large intestine, 
muscularis macrophages have been shown to play a key role in 
maintaining intestinal motility (De Schepper et al., 2018). 

These examples underscore macrophages' remarkable plasticity and 
adaptability, allowing them to perform essential roles in various tissues 
throughout the body. Their ability to respond to tissue-specific signals 
while carrying out fundamental functions as phagocytes is crucial for 
maintaining health and responding to disease. 

Ontogeny  

Beyond the residency of macrophages, another aspect that contributes 
to their heterogeneity is time, specifically their ontogeny, which 
defines their origin. The understanding that macrophages are not 
solely derived from monocytes began to take shape in the early 2000s. 
Langerhans cells, the epidermal macrophages in the skin, were found 
to resist high radiation levels. Remarkably, after bone marrow 
transplantation, Langerhans cells were repopulated by cells originating 
from the host, while the monocytes were derived from the donor. 
Similar findings were observed for microglia, indicating that these 
macrophage populations can maintain themselves independently of 
bone marrow-derived circulating precursors, even after exposure to 
lethal irradiation (Ajami et al., 2007; F. Ginhoux et al., 2010). 

Further evidence supporting the independence of certain adult 
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macrophage populations from bone marrow or monocyte-derived 
precursors comes from studies using parabiotic mice, which share the 
same blood circulation, leading to a significant mixing of circulating 
precursors. These studies demonstrated that while monocytes mixed 
freely between the paired animals, certain macrophage populations, 
such as Langerhans cells (Merad et al., 2002), microglia and alveolar 
macrophages (Guilliams et al., 2013; Hashimoto et al., 2013; Jakubzick 
et al., 2013), remained distinct and did not mix. In contrast, 
macrophages in the gut, dermis, and heart did show some degree of 
mixing, suggesting that these tissues may receive contributions from 
bone marrow or monocyte-derived cells (Bain et al., 2014; Epelman et 
al., 2014; Molawi et al., 2014; Tamoutounour et al., 2013). 

With the advent of advanced fate-mapping techniques, such as the 
Ms4a3cre system (Liu et al., 2019), tracking macrophages more 
precisely and confirming their origins has become possible. These 
technological developments continue to refine our understanding of 
macrophage biology, revealing the complex and diverse origins of 
macrophage populations across different tissues. 

The recognition that macrophages are not exclusively derived from 
monocytes began to emerge in the early 2000s, challenging traditional 
views of macrophage development. This shift in understanding was 
sparked by observations in Langerhans cells, the epidermal 
macrophages in the skin. These cells were found to withstand high 
radiation levels, and, notably, even after bone marrow transplantation, 
Langerhans cells were repopulated by cells from the original host, 
while monocytes originated from the donor (Merad et al., 2002). 
Similar patterns were later observed in microglia, suggesting that these 
macrophage populations maintain themselves independently of bone 
marrow-derived precursors, even under extreme conditions like lethal 
irradiation (Ajami et al., 2007; Florent Ginhoux et al., 2010). 

Further insights into macrophage origin came from studies using 
parabiotic mice, which share blood circulation and thus experience a 
mixing of circulating precursors. These experiments revealed that, 
while monocytes readily mixed between the animals, certain 
macrophage populations, such as Langerhans cells (Merad et al., 2002, 
p. 200), microglia (Ajami et al., 2007; Florent Ginhoux et al., 2010), and 
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alveolar macrophages (Guilliams et al., 2013; Hashimoto et al., 2013; 
Jakubzick et al., 2013), remained distinct and did not blend. This 
contrasted with macrophages in the gut, dermis, and heart, which 
showed some degree of mixing, indicating possible contributions from 
bone marrow or monocyte-derived cells in these tissues (Bain et al., 
2014; Epelman et al., 2014; Tamoutounour et al., 2013). 

The development of advanced fate-mapping techniques, such as the 
Ms4a3-cre system (Liu et al., 2019), has provided new tools to trace the 
origins of macrophages more accurately. These advancements are 
reshaping our understanding of how macrophage populations 
develop and are maintained across different tissues, revealing a 
complex and varied landscape of macrophage biology. 

Understanding the development and specialisation of macrophages is 
crucial for comprehending their diverse roles in the immune system. 
The monocytes that are the circulating macrophage precursors are 
known to carry a fundamental core macrophage signature even before 
they integrate into tissues (Gautier et al., 2012; Gosselin et al., 2014; 
Guilliams et al., 2020; Hagemeyer et al., 2016; Lavin et al., 2014; Mass 
et al., 2016). This signature includes genes essential for macrophage 
survival and function, such as Csf1r and Maf, which support basic 
survival, as well as genes involved in key macrophage activities like 
efferocytosis (Timd4, Mertk, and Sirpa), non-opsonic phagocytosis 
(Cd14, Cd36, Clec7a, and Mrc1), opsonic receptor-dependent 
phagocytosis (Fcgr1, Fcgr3, Fcgr4, and Itgam), and complement-
mediated immunity (C1qb, C1qc, and C3ar1). 

As fetal macrophages migrate into developing tissues, they acquire 
specific characteristics finely tuned to their new environments 
(Stremmel et al., 2018). This process of tissue-specific programming 
intensifies during late gestation, resulting in the emergence of diverse 
macrophage subtypes in adult tissues (Gautier et al., 2012; Gosselin et 
al., 2014; Mass et al., 2016). The combined influence of intrinsic 
macrophage programming and external tissue signals is important in 
shaping tissue-resident macrophages' unique identities and functions. 
This dynamic relationship highlights macrophage differentiation's 
complexity and the tissue environment's importance in defining their 
specialised roles. 
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Subtissular Macrophage Niches 

Subtissular niches, the specialised microenvironments within tissues, 
play a crucial role in macrophages' survival and functional 
specialisation. These microanatomical neighbourhoods, identified 
across various tissues, exhibit remarkable complexity and adaptability, 
responding to both healthy and diseased states (Mass et al., 2023). 
Originally described as the ‘fibroblast–macrophage circuit’ (Zhou et al., 
2018), it is now recognised that macrophage niches are far more 
intricate and can dynamically adjust to different physiological 
conditions. 

For example, in the liver, Kupffer cells are sustained by a subtissular 
niche formed through the interaction between hepatic stellate cells 
and liver sinusoidal endothelial cells, fibroblasts or lymphocytes 
(Bonnardel et al., 2019; Martinek et al., 2022; Sakai et al., 2019). These 
interactions are essential for maintaining Kupffer cell identity and 
function, and they contribute to restoring homeostasis and supporting 
organ regeneration. In the lungs, alveolar macrophages rely on their 
close proximity to airway epithelial cells to receive GM-CSF, which is 
vital for their maintenance (Gschwend et al., 2021). Similarly, in the 
synovium of joints, macrophages work alongside synovial fibroblasts 
to preserve fibroblast integrity (Knab et al., 2022). 

Macrophages also form specific associations with various tissue 
structures according to their roles. LYVE1hi macrophages, for instance, 
are linked to blood vessels, facilitating growth and branching. In 
contrast, MHCIIhi macrophages are commonly found near nerve 
endings and bundles, as seen in the lung, intestinal muscularis, and 
brown adipose tissue (Chakarov et al., 2019; De Schepper et al., 2018; 
Wolf et al., 2017). Additionally, interactions between macrophages and 
other cell types, such as cardiomyocytes or adipocytes, are essential 
for maintaining tissue health, particularly through processes like 
mitochondrial recycling (Brestoff et al., 2021; Nicolás-Ávila et al., 2020). 
This exchange of metabolites and mitochondrial components is a key 
function of resident macrophages, enabling them to effectively 
regulate tissue function throughout the organism’s lifespan (Scheiblich 
et al., 2021; van der Vlist et al., 2022). 



 

 

 

21 

 

Figure 2: Origin and differentiation of tissue-resident macrophages 

across different tissues. In closed tissues, macrophages may arise solely 

from embryonic-derived sources(Yolk sac Mac & Fetal liver Mo): (A) Yolk 

sac-derived macrophages (e.g., microglia), from a combination of yolk 

sac (YS) macrophages and fetal liver (FL) monocytes (B, Langerhans 

cells—approximately 20% from YS macrophages and 80% from FL 

monocytes), or primarily from FL monocytes (C, alveolar macrophages 

and D, Kupffer cells). In open tissues, bone marrow-derived monocytes 

are recruited and differentiated into macrophages with tissue-specific 

kinetics, showing slower replacement in tissues such as the heart and 

pancreas and faster replacement in tissues like the gut and dermis. 

Adapted from Ginhoux & Guilliams 2016  
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1.3 DENDRITIC CELLS 

Dendritic cells (DCs) are essential players in the immune system, 
serving as key communicators between the body’s adaptive and innate 
immune responses. They achieve this by monitoring their surroundings 
and conveying critical information to leukocytes. However, dendritic 
cells are not uniform; they differ based on their location within the 
body, the danger signals they detect, and the specific molecules they 
produce. 

Human dendritic cells are recognised as antigen-presenting cells 
(APCs), characterised by their consistent expression of MHCII 
(including HLA-DR) and the absence of certain lineage-specific 
markers such as CD3, CD15, CD19, CD20, and CD56. Initially identified 
in peripheral blood due to its accessibility, human dendritic cells share 
similarities with their mouse counterparts. 

Dendritic cells in humans are categorised into two primary subsets: 
plasmacytoid dendritic cells (pDCs) and conventional dendritic cells 
(cDCs) (Guilliams et al., 2014; Merad et al., 2013). Early research 
identified progenitors with the potential to develop into dendritic cells, 
known as “common” DC progenitors (CDPs), see Figure 1, as these 
progenitors were thought to give rise to both cDCs and pDCs (Naik et 
al., 2007; Onai et al., 2007). However, subsequent studies revealed that 
pDC precursors are distinct from those that develop into cDCs, leading 
to a more precise definition of CDPs as progenitors specifically for 
conventional DCs (Cabeza-Cabrerizo et al., 2021; Dress et al., 2019; 
Rodrigues et al., 2018). 

CDPs eventually develop into pre-cDCs, a stage marked by the 
upregulation of CD11c. Pre-cDCs were initially discovered in lymphoid 
tissues (Diao et al., 2006; Naik et al., 2006), and it was later established 
that these cells leave the bone marrow through the bloodstream to 
populate lymphoid and non-lymphoid tissues, where they further 
differentiate into cDCs (Liu et al., 2009). 
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Human pDCs are defined as MHCIIlowCD45RA+CD123(IL-
3Rα)+CD303(BDCA2)+ performing similar functions as in mice; human 
pDCs produce large amounts of IFN-α in response to viruses (Colonna 
et al., 2004). Regarding cDCs, there are considerable differences 
between human and mouse subsets. In mice, circulating pre-cDCs 
mature in the two cDC subsets once they reach the peripheral tissues, 
whereas, in humans, the two subsets are present in peripheral blood. 
The first is the CD141 (BDCA3) expressing cDC1, which corresponds to 
murine CD8α+ /CD103+ cDCs (Ginhoux et al., 2009), and the other is 
CD1c (BDCA1) expressing cDC2, the human counterpart for mouse 
CD11b+ cDCs (Haniffa et al., 2012; Robbins et al., 2008; Watchmaker et 
al., 2014). Although there are phenotypic differences, the two cDC 
subsets were shown to be transcriptionally conserved between species, 
with some markers being shared among mice and humans, such as 
XCR1, CADM1 and CLEC9A in cDC1 and CD2, FcεR1a, CD172a and 
CLEC10A in cDC2 (Brown et al., 2019; Haniffa et al., 2012; Robbins et 
al., 2008; Watchmaker et al., 2014). 

 

1.3.1 Migration/Activation of DC 

Dendritic cells (DCs) play a crucial role in the immune system by 
detecting danger signals, such as pathogen-associated molecular 
patterns (PAMPs) or damage-associated molecular patterns (DAMPs). 
These signals are recognised through pattern recognition receptors 
(PRRs) binding, which are expressed differently across various DC 
subsets. The specific PRRs present on a DC determine its ability to 
respond to particular danger signals and produce a variety of cytokines 
and interferons. 

When dendritic cells (DCs) capture and process antigens, they detect 
associated danger signals that contribute to their activation. This leads 
to increased expression of MHC-II molecules, costimulatory molecules, 
and the production of cytokines and chemokines. The activated DCs 
then migrate to lymph nodes, where they present the processed 
antigens to CD8 and CD4 T cells. This maturation process transforms 
immature DCs, which have a low capacity to stimulate T cells, into 
highly effective stimulators of T-cell responses. 
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As DCs mature, they migrate from peripheral tissues to secondary 
lymphoid organs. This migration is driven by the expression of CCR7, 
a receptor that makes activated DCs responsive to the chemokines 
CCL19 and CCL21 produced by lymphoid tissues (Förster et al., 2008; 
Iwasaki and Medzhitov, 2015). These chemokines guide the DCs 
through the lymphatic system to the local lymphoid tissues. Upon 
arriving in the lymphoid tissues, DCs lose their ability to engulf 
antigens but instead express high levels of MHC -I and -II molecules, 
which are loaded with processed peptides. 

Additionally, mature DCs upregulate the expression of costimulatory 
molecules such as CD80 (B7.1) and CD86 (B7.2), which interact with the 
CD28 receptor on T cells (McLellan et al., 1995). This interaction is 
essential for T cell activation, proliferation, and cytokine production. 
The B7 family of molecules also has an immunoregulatory role, as they 
can bind to CTLA-4 on T cells, inhibiting T cell effector functions 
(Tekguc et al., 2021). 

Another key molecule in DCs is CD40, a transmembrane glycoprotein 
that belongs to the tumour necrosis factor (TNF) superfamily. CD40 
binds to its ligand, CD40L (CD154), which is typically expressed by 
activated CD4 and CD8 T cells (O’Sullivan and Thomas, 2003). This 
interaction further enhances the expression of CD80 and CD86 and 
stimulates the production of IL-12, which drives the differentiation of 
naïve T cells into Th1 cells (Balan et al., 2019). Finally, CD83 is highly 
expressed on DC, which has an effect on CD4+ T cell development in 
the thymus and is upregulated on DCs MHC II and CD86(Fujimoto et 
al., 2002; Tze et al., 2011). Through these mechanisms, DCs effectively 
stimulate and direct specific T-cell responses, playing a vital role in the 
immune system’s ability to fight infections and other threats. 

 

1.3.2 cDC1 

Human myeloid cDC1s are the rarest subset of conventional dendritic 
cells, comprising only about one-tenth the frequency of cDC2s in 
steady-state conditions, which equates to approximately 0.03% of total 
peripheral blood mononuclear cells (PBMCs) (Collin and Bigley, 2018). 
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Initially, cDC1s were identified based on the expression of 
thrombomodulin (CD141/BDCA3) (Dzionek et al., 2000), but it was later 
discovered that CD141 alone is not a definitive marker, as it can also 
be moderately expressed by monocytes and cDC2s in vitro (Collin and 
Bigley, 2018; Haniffa et al., 2012). To more accurately identify cDC1s, 
additional markers are used, including the C-type lectin receptor 
CLEC9A (also known as DNGR1) (Poulin et al., 2012), the cell adhesion 
molecule CADM1, the chemokine receptor XCR1, which is conserved 
across many species (Crozat et al., 2010), and the antigen BTLA (CD272) 
(Collin and Bigley, 2018). While BTLA is also expressed by a subset of 
human peripheral blood cDC2s, it is typically at lower levels, and using 
a combination of at least two of these markers significantly enhances 
the accuracy of identifying cDC1s in both blood and tissues (Guilliams 
et al., 2016a). 

The development of cDC1s is tightly regulated by specific transcription 
factors, similar to their mouse counterparts. Human cDC1s express 
FLT3 (CD135) and depend on FLT3 ligand (FLT3L) for their 
development, both in vitro (Poulin et al., 2012; Proietto et al., 2008) and 
in vivo (Ding et al., 2004). Additionally, like mouse cDC1s, human cDC1s 
require the transcription factors IRF8 and BATF3 to develop. IRF8 plays 
a crucial role in developing all dendritic cell subsets and monocytes, as 
evidenced by the significantly reduced numbers of these cells in 
patients with mutations in the IRF8 gene (Hambleton et al., 2011). The 
role of BATF3 in humans, however, is less clear. Although BATF3 is 
essential for cDC1 expansion in vitro, it seems to be less critical in vivo 
(Poulin et al., 2012). 

Functional differences between mouse and human cDC1s are also 
notable. While murine cDC1s are highly efficient at cross-presenting 
antigens via MHCI to CD8+ T cells (den Haan et al., 2000), this ability is 
less pronounced in human cDC1s, as indicated by lower levels of gene 
transcripts associated with MHCI presentation in human CD141+ DCs 
compared to their mouse counterparts (Ardouin et al., 2016; Balan and 
Dalod, 2016). Despite this, human cDC1s have a range of other 
important functions. They express high levels of TLR3, which senses 
double-stranded RNA (dsRNA), and TLR8, which senses single-
stranded RNA (ssRNA), enabling them to detect viral nucleic acids 
(Collin et al., 2013). When TLR3 is activated by viral hepatitis C virus 
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antigens or synthetic dsRNA (Poly I:C), cDC1s produce significant 
amounts of type III interferon (IFN-λ), aiding in viral clearance (Luber 
et al., 2010; Yoshio et al., 2013). Additionally, human cDC1s secrete 
tumour necrosis factor α (TNF-α) and CXCL10, though they produce 
relatively low levels of IL-12, which is a key difference from their mouse 
counterparts (Haniffa et al., 2012; Jongbloed et al., 2010; Poulin et al., 
2010). Furthermore, cDC1s are particularly adept at sensing dead or 
necrotic cells through their unique marker, CLEC9A (Sancho et al., 
2009). 

 

1.3.3 cDC2 

cDC2s represent the largest population of conventional dendritic cells 
in human blood, tissues, and lymphoid organs, accounting for about 
0.3% of total PBMCs. Human cDC2s are typically identified by the 
expression of markers such as CD1c, FcεR1a, CD172a (SIRPα), and 
myeloid antigens like CD11b, CD11c, and CD33 (Dutertre et al., 2019; 
Heger et al., 2018). CD1c is a commonly used marker for identifying 
cDC2s across various tissues, leading to their frequent designation as 
CD1c+ DCs. However, CD1c is not exclusive to cDC2s; it is also strongly 
expressed by nearly all B cells (Allan et al., 2011). Therefore, when using 
CD1c as a marker for cDC2s, it is essential to exclude CD19+CD20+ B 
cells and include markers specific to cDC1s for accurate identification. 
Additional markers such as CLEC10A (CD301) and FcεR1α have proven 
to be more reliable for distinguishing cDC2s in blood, thymus, and 
spleen (Brown et al., 2019; Dutertre et al., 2019; Heger et al., 2018). 

Blood cDC2s can be further divided into two subpopulations based on 
CD5 expression. CD5+CD1c+ cells are more characteristic of cDC2s, 
while CD5-CD1c+ cells share transcriptional similarities with monocytes 
(Yin et al., 2017). Beyond blood, skin is another valuable source of 
human tissue for studying cDC2 variability. Dermal cDC2s, for example, 
express the marker CD1a and are migratory, capable of exiting in vitro 
dermis explants (Kissenpfennig et al., 2005; Lenz et al., 1993). Although 
Langerhans cells (LCs) also express CD1a, they can be distinguished 
from dermal cDC2s by lower levels of EpCAM, Langerin (CD207), and 
CD1a itself (Bigley et al., 2015; De Monte et al., 2016).  
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The transcriptional regulation of cDC2s is not fully understood, as no 
single transcription factor has been identified as exclusively controlling 
their development. Similar to their mouse counterparts, human cDC2s 
depend on FLT3 ligand (FLT3L) for their development, both in vitro and 
in vivo (Breton et al., 2016; Ding et al., 2014; Jefford et al., 2003; 
Maraskovsky et al., 2000), while patients with FTL3L mutations showed 
almost no presence of cDC2 and cDC1 (Momenilandi et al., 2024). The 
preferential expression of IRF4 suggests its potential role in their 
development (Suzuki et al., 2004), though this has yet to be definitively 
proven. Patients with GATA2 mutations are deficient in cDC2s, 
indicating that this transcription factor is also crucial for their 
development (Bigley et al., 2019). 

 

1.3.4 DC3 

Recent high-dimensional single-cell studies have revealed significant 
cellular diversity in the MNPs, leading to the identification of a new 
dendritic cell subpopulation known as DC3 or DC2b (Brown et al., 2019; 
Dutertre et al., 2019; Villani et al., 2017). This DC3 population is present 
in the blood, bone marrow, spleen, and dermis, and its numbers 
increase under pathological or inflammatory conditions. Unlike 
traditional monocytes, DC3 cells express the CD14 marker but can be 
distinguished from monocytes by using the CD88 marker. Within the 
HLADR+ CD1c+ population, DC3s are identified alongside cDC2 cells 
through the differential expression of CD5 and CD14 (Dutertre et al., 
2019; Villani et al., 2017). A more refined nomenclature was established 
after observing that DC3 expressed a continuum of expression of 
CD163 and CD14 markers depending on the inflammatory state 
(Bourdely et al., 2020; Cytlak et al., 2020). In non-inflammatory 
conditions, DC3s are typically CD1c+ CD5- CD163low CD14low, while 
under inflammatory conditions, they become CD1c+ CD5- CD163high 
CD14high (Dutertre et al., 2019). 

The origins and differentiation pathways of the DC3 is complex, 
particularly when comparing human and mouse models. In mice, 
distinct populations such as cDC2a and cDC2b arise from a cDC lineage 
(Minutti et al., 2024; Rodrigues et al., 2024), while DC3 has been traced 
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back to an MDP progenitor (Bourdely et al., 2020; Liu et al., 2023; 
Rodrigues et al., 2024). Transcriptomic comparisons suggest some 
overlap between mouse and human DC3 cells, though further research 
is needed to fully confirm these findings (Bourdely et al., 2020). 

 

1.3.5 Pre DC 

Despite years of research into dendritic cells (DCs), a more precise 
understanding of their various subpopulations and origins became 
possible only with the advent of high-dimensional single-cell analysis 
technologies. These advanced techniques have allowed for a more 
detailed characterisation and refinement of DC nomenclature. Before 
2017, the “pDC” population was recognized as heterogeneous, with a 
subpopulation of cells expressing CD2, CD81, and AXL, capable of 
producing IL-12p70 and stimulating CD4+ T cells (Matsui et al., 2009). 

Single-cell transcriptomic studies in humans, supported by mass 
cytometry, identified a distinct population of cDC precursor cells in 
peripheral blood and various tissues. These cells, known as pre-DCs or 
ASDCs depending on the source (Alcántara-Hernández et al., 2017; See 
et al., 2017; Villani et al., 2017), differ significantly from pDCs. Human 
pre-DCs, which comprise 2 to 3% of total DCs, are characterised by the 
expression of AXL and SIGLEC-6 receptors, earning them the 
alternative name “ASDC.” These studies revealed that pre-DCs share 
features with both pDCs and cDCs (See et al., 2017; Villani et al., 2017). 
Phenotypically, pre-DCs display both CD45RA and CD123 receptors, 
typical of pDCs, as well as CD11c and CD33, aligning with cDCs. 
Additional markers identified on pre-DCs include Siglec-1 (CD169) and 
CD5 (Dutertre et al., 2019). Functionally, pre-DCs produce IL-12p70 
and stimulate T cells, and when cultured in vitro on stromal cells with 
FLT3L, they preferentially differentiate into a cDC2 phenotype (See et 
al., 2017; Villani et al., 2017) with later more investigation highlighting 
both a DC2a and DC2b predetermined fate in the blood of mice 
(Minutti et al., 2024). These findings suggest that pre-DCs are 
precursors of cDCs, originating from the bone marrow and found in 
the blood and secondary lymphoid organs (See et al., 2017; Villani et 
al., 2017).  
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Interestingly, a similar population of DC precursors had been identified 
in mice years earlier, though without a specific name. It was noted that 
DCs are replenished by progenitors present in tissues, with cDC 
precursors found in mice's bone marrow, blood, and spleen (Liu et al., 
2007, p. 2; Naik et al., 2006). These cDC precursors are thought to be 
produced in the bone marrow and pre-committed to either a cDC1 or 
cDC2 fate before migrating to organs where they mature into cDCs 
(Schlitzer et al., 2015). Around the same time, studies demonstrated 
the existence of a comparable population of pre-cDCs in human blood 
and tissues (Breton et al., 2015; Lee et al., 2015). These cells, marked by 
the expression of CD34, are considered progenitors of cDCs, possibly 
at an earlier stage than the previously identified pre-DCs (See et al., 
2017; Villani et al., 2017). 
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1.4 MACROPHAGES IN THE TUMOUR MICROENVIRONMENT 

Cancer is a complex group of diseases characterised by the 
uncontrolled growth and spread of abnormal cells. These malignant 
cells can invade surrounding tissues and form tumours, disrupting the 
normal functioning of organs. While the causes of cancer are 
multifaceted, involving genetic mutations, environmental factors, and 
lifestyle choices, a key aspect of cancer progression is how it interacts 
with the body’s immune system.  

One of the major challenges in cancer treatment is resistance, which 
can be inherent to the tumour cells themselves or influenced by the 
surrounding non-malignant cells within the tumour microenvironment 
(TME). The TME includes both tissue-resident and recruited immune 
cells, which, in certain cancers like breast cancer, can constitute up to 
50% of the TME. Within this environment, mononuclear phagocytes 
are evidently present. However, the role is less evident.  

Initially, it was believed that immune cells within the TME were 
primarily involved in the body’s attempt to reject tumours. It is still 
thought that in the earliest stages of cancer development, the immune 
system responds by activating T cells and macrophages to clear the 
tumour, thereby reducing cancer incidence (Dunn et al., 2004) 
However, as the tumour progresses past its initial stage, the immune 
environment tends to shift, becoming more supportive of tumour 
growth and suppressing immune-mediated cell death (Gajewski et al., 
2013). In this process, there is clinical and experimental evidence that 
macrophages are highly abundant in most tumour types and have, in 
the majority, a tumour-promoting role (Noy and Pollard, 2014), see 
Figure 3. However, recent studies suggest a more nuanced 
understanding, indicating that certain types of macrophages can also 
exhibit antitumor activity (Pittet et al., 2022).  
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Figure 3: Partitions of immune compartments across various tumours. 

CIBERSORT analysis of tissue microarray data sets from solid human 

tumours, illustrating the average immune cell composition across 

bladder, breast, bowel, stomach, and lung cancers. The data are 

presented as estimated fractions of leukocyte RNA, highlighting that 

immune infiltrates vary by cancer type. Notably, macrophages emerge 

as the predominant population infiltrating most human cancers. 

Adapted from Cassetta and Pollard, 2018. 

 

 

Macrophages have historically been classified into two distinct 
polarization states: M1, pro-inflammatory, and M2, anti-inflammatory 
(Charles D. Mills et al., 2000; Stein et al., 1992). This binary classification 
has been useful for describing macrophage behaviour in vitro, 
particularly in response to various stimuli. Bacterial products like 
lipopolysaccharides and pro-inflammatory cytokines such as 
interferons and TNFa typically induce M1 macrophages. These 
macrophages are known to produce factors like IL-12 and CXCL10, 
which are associated with antitumor immunity. On the other hand, M2 
macrophages are driven by immunoregulatory cytokines like IL-4, IL-
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10, and TGF-β, leading to the secretion of tissue-remodelling and pro-
angiogenic factors such as matrix metalloproteinases and VEGF, which 
are associated to tumour promotion. However, Tumor-associated 
macrophages (TAMs), rarely fit neatly into the M1 or M2 categories 
(Cheng et al., 2021; Locati et al., 2020; Szulzewsky et al., 2015; Yang et 
al., 2018). 

The simple M1/M2 dichotomy has proven inadequate to capture the 
true complexity of macrophage behaviour in vivo, particularly within 
different anatomical sites, tissue niches, and disease contexts (9,29,30). 
To better reflect their diversity, some researchers have proposed 
additional subcategories, such as M2a, M2b, and M2c, or more flexible 
terms like M1-like and M2-like (Mantovani et al., 2017, 2004; Murray 
et al., 2014). 

Despite these efforts, the full complexity of TAMs remains difficult to 
encapsulate within these classifications. For instance, M2-like TAMs are 
often found in hypoxic tumour areas, where they exhibit strong pro-
angiogenic activity, and their numbers tend to increase as tumours 
progress. Yet, TAMs can co-express both M1 and M2 gene signatures, 
and tumour-promoting macrophages may express genes not 
traditionally associated with the M2 phenotype (Cassetta et al., 2019; 
Cheng et al., 2021; Pombo Antunes et al., 2021; Wu et al., 2021; Zilionis 
et al., 2019). This highlights the need for a more nuanced 
understanding of macrophage diversity, especially in the context of 
cancer, where their roles can be multifaceted and context-dependent. 

In cancer, just as in healthy tissues, the origins and local environment 
significantly influence the diverse populations of macrophages found 
within tumours. It was believed that tumour-associated macrophages 
(TAMs) originated primarily from circulating monocytes continuously 
recruited to the tumour site in response to inflammation (van Furth et 
al., 1972). While it has been confirmed that monocyte-derived cells of-
ten make up the majority of TAMs (Cortez-Retamozo et al., 2012; Ruth 
A. Franklin et al., 2014; Qian et al., 2011), these cells coexist within the 
tumour microenvironment (TME) alongside macrophages that were al-
ready present in the tissue before the tumour developed. Notably, 
macrophages derived from embryonic origins (RTMs) and those de-
rived from adult monocytes perform different roles. For example, in 
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murine models of pancreatitis and pancreatic cancer, embryonic RTMs 
are key drivers of fibrotic responses (Baer et al., 2023), whereas mono-
cyte-derived TAMs are more involved in regulating adaptive immune 
responses (Zhu et al., 2017). 
 

However, neither the origins of these macrophages nor their specific 
location within the tumour fully explain when and how they become 
TAMs. Interestingly, monocyte-derived macrophages with TAM-like 
tumour-promoting characteristics can be recruited to tissues even 
before the development of tumours, as seen in cases of injury-induced 
pancreatic metaplasia (Liou et al., 2023). 
 
When monocytes enter the tumour environment, they encounter 
various signals that shape their behaviour as they become TAMs. A 
time-stamping fate-mapping study, which allows for information on 
the timed arrival of monocytes in pancreatic ductal adenocarcinoma 
(PDAC), revealed that monocytes first differentiate into a transient 
intermediate population of TAMs. This population then gives rise to 
longer-lived, terminally differentiated TAMs with distinct gene 
expression profiles, phenotypes, and specific locations within the 
tumour (Dunsmore et al., 2024). This highlights how the tumour 
environment influences the characteristics and functions of TAMs 
within the tumour. 

There is still no clear answer as to which cells are primarily responsi-
ble for TAMs. Ontology seems to play a role, as RTMs are potent pro-
moters of fibrotic responses (Baer et al., 2023). However, overall, the 
majority of TAMs have been shown to be of monocyte-derived origin 
(Ruth A. Franklin et al., 2014). 
 

The classification of tumour-associated macrophages (TAMs) remains 
an unresolved and ongoing area of debate. Currently, the most widely 
accepted approach to categorising TAMs relies on identifying specific 
gene and protein signatures associated with their functions within the 
tumour microenvironment. In the following sections, we will highlight 
some of the more commonly observed TAM populations found in 
tumours. 
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1.4.1 TREM2 TAMs 

TREM2 is a gene associated with lipid metabolism and is found in 
various cell types, including microglia in the brain, osteoclasts in bone, 
and specific subsets of macrophages in tissues such as the liver, 
adipose tissue, skin, gut, and tumours (Colonna, 2023). 
TREM2-expressing TAMs have been frequently identified in single-cell 
immune cell analyses of both early and late-stage metastatic non-
small-cell lung cancer (NSCLC) (Lavin et al., 2017; Leader, 2021; 
Maynard et al., 2020; Zhang et al., 2022). In these tumours, TREM2+ 
TAMs primarily originate from blood monocytes and are characterized 
by the expression of genes associated with lipid metabolism, 
immunosuppression, and complement activation. A high infiltration of 
TREM2+ TAMs has been linked to disease progression (Zhang et al., 
2022). Similar findings have been observed in human breast cancer 
(Azizi et al., 2018; Ramos et al., 2022; Timperi et al., 2022; Wu et al., 
2021; Y. Zhang et al., 2021), where TREM2+ TAMs display a 
transcriptome profile akin to that in lung cancer, also deriving mainly 
from blood monocytes and associated with immunosuppression and 
poor prognosis. Interestingly, TREM2 expression was found to be 
mutually exclusive with folate receptor-β (FOLR2), distinguishing 
immunosuppressive TAMs from immunostimulatory ones (Ramos et 
al., 2022). Histological analysis revealed distinct spatial distributions for 
these subsets: FOLR2+ TAMs were predominantly located in the 
tumour stroma, while TREM2+ TAMs were present in both the stroma 
and tumour nests, particularly along the invasive margin, suggesting 
direct influence by tumour cells.  

In colorectal carcinoma and its liver metastases, a heterogeneous 
population of TAMs has been identified, including a subset expressing 
both TREM2 and the complement component C1QC (Liu et al., 2022). 
TREM2+ TAMs have also been found in melanoma (Xiong et al., 2020), 
clear-cell renal carcinoma (Obradovic et al., 2021), and pancreatic 
ductal adenocarcinoma (Kemp et al., 2021), where they are associated 
with immunosuppression and disease recurrence. Single-cell 
transcriptomics of 15 human parenchymal brain metastases revealed 
the presence of metastasis-associated macrophages expressing 
TREM2, APOE, and C1QB (Gonzalez et al., 2022). 
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The role of TREM2+ TAMs in hepatocellular carcinoma is less clear. One 
study found that these immunosuppressive macrophages were 
associated with decreased survival (Zhou et al., 2022). However, 
another study reported that mice deficient in TREM2 developed more 
diethylnitrosamine-induced liver tumours and increased liver damage, 
inflammation, and oxidative stress (Esparza-Baquer et al., 2021). 
Overall, TREM2+ TAMs typically promote immunosuppression and 
tumour growth, although their impact may vary depending on the type 
and underlying pathology of the tumour. 

 

1.4.2 RTM-TAMs 

RTM-TAMs Macrophages in the tumour are often linked to 
macrophages that resemble normal resident tissue macrophages, 
though their signature can vary. Key genes in this signature include 
LYVE1, HES1, and FOLR2 (Cheng et al., 2021; Li et al., 2024; Sharma et 
al., 2020; Zilionis et al., 2019). RTM-TAMs are characterised by their 
similarity to normal RTMs, showing high expression of embryonic 
precursor genes (Casanova-Acebes et al., 2021; Sharma et al., 2020) 
and often being enriched in tissues adjacent to the tumour (Cheng et 
al., 2021; Ramos et al., 2022).  

In various cancer types and organ sites, RTM-TAMs express gene 
signatures that closely resemble those of their normal counterparts. 
For instance, in lung cancer (Cheng et al., 2021; Kim et al., 2020; Zilionis 
et al., 2019) and lung metastasis of osteosarcoma (Yan Zhou et al., 
2020), RTM-TAMs exhibit high levels of MARCO, scavenger receptors, 
and FABP4, akin to alveolar macrophages. Similarly, in hepatocellular 
carcinoma (HCC) (Massalha et al., 2020; Sharma et al., 2020) and 
colorectal cancer liver metastasis (Che et al., 2021), RTM-TAMs express 
MARCO, VSIG4, and FOLR2, similar to Kupffer cells in the liver. 

While RTM-TAMs are often found in tissues adjacent to tumours, 
studies have shown that they can promote tumour invasiveness by 
inducing epithelial-mesenchymal transition (EMT) in tumour cells and 
recruiting regulatory T cells (Tregs) in lung cancer models (Casanova-
Acebes et al., 2021) and glioblastoma models (Hara et al., 2021). 
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However, in breast cancer, these macrophages can enhance the 
infiltration of CD8+ T cells, contributing to an anti-tumor response 
(Ramos et al., 2022).  

Over time, RTMs adapt to their environment, developing a form of 
“memory” that potentially influences their function within the tumour 
microenvironment (TME). Recently, the concept of “PreTAMs” was 
introduced to highlight macrophages that were present in tissues 
before tumour development, regardless of their specific origin. “Pre” 
signifies their prior existence, while “TAM” underscores their role as key 
cellular contributors to tumour progression (Blériot et al., 2024). 
PreTAMs are thought to connect pre-existing inflammation to cancer 
development, while TAMs, recruited from circulating monocytes after 
tumour formation, work together with PreTAMs in promoting tumour-
related inflammation as they become reprogrammed within the TME. 

Although RTMs may exhibit an embryonic gene signature, it is 
important to note that they can also originate from bone marrow 
monocytes in various organs (Blériot et al., 2020). Thus, the gene 
signature of RTM-TAMs may reflect not only their origin but also the 
influence of the surrounding tissue environment, distinct from the 
tumour microenvironment. 

 

1.4.3 IFN-TAMs 

IFN-TAMs are characterised by high expression of interferon-regulated 
genes, such as CXCL9, CXCL10, PDL1 and ISG15, along with M1-like 
markers, including CD86 and MHCII (Bill et al., 2023; Cheng et al., 2021; 
Zilionis et al., 2019). These TAMs have been identified across various 
tumour types, such as breast cancer (BRCA), colorectal cancer (CRC), 
hepatocellular carcinoma (HCC), head and neck cancer (HNC), 
lymphoma, melanoma, nasopharyngeal carcinoma (NPC), nonsmall 
cell lung cancer (NSCLC), ovarian cancer (OVC), pancreatic ductal 
adenocarcinoma (PDAC), thyroid carcinoma (THCA), and uterine 
corpus endometrial carcinoma (UCEC) (Che et al., 2021; Cheng et al., 
2021; L. Zhang et al., 2020), as well as multiple myeloma, osteosarcoma, 
glioblastoma, and spinal ependymomas (Zavidij et al., 2020; Q. Zhang 
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et al., 2021; Yan Zhou et al., 2020). 

IFN-TAMs bear the closest resemblance to M1-like macrophages 
among the different TAM subsets (Bill et al., 2023). However, unlike the 
typical anti-tumor role associated with M1-like macrophages, IFN-
TAMs have been linked to immunosuppressive functions. They can 
suppress immune responses through mechanisms like tryptophan 
degradation and the recruitment of regulatory T cells (Tregs) (Sadik et 
al., 2020). However, in lung cancer, CXCL10+ TAMs are organised 
around stem-immunity hubs, which benefit treatment (Chen et al., 
2024). 

The high expression of immune checkpoint molecules, such as PD-L1 
and IDO1, in IFN-TAMs is regulated by factors including signal 
transducer and activator of transcription 1 (STAT1), STAT2, ETS variant 
transcription factor 7 (ETV7), and IFN regulatory factor 1 (IRF1). This 
regulation is closely linked to the location of these TAMs within the 
tumour. The possibility that IFN-TAMs may exhibit antitumor functions 
in certain contexts remains an area for further research. 

 

1.4.4 Macrophage crosstalk 

The interaction/crosstalk between macrophages and fibroblasts is 
widely acknowledged as a crucial node/nexus in both tissue 
homeostasis and pathological conditions. These two cell types coexist 
in various tissues under steady-state conditions (Uderhardt et al., 
2019), with a mutual exchange of growth factor signals between them. 
This dynamic has been described as a stable two-cell circuit reliant on 
the exchange of growth factors, characterised by resilience and 
regulatory mechanisms to prevent unchecked proliferation of either 
cell type (Zhou et al., 2018). 

The interplay between macrophages and fibroblasts is even more 
relevant in the context of cancer. In the cancer microenvironment, 
macrophages and stromal cells inherently support tumour growth, 
even when their clients are cancer cells (Okabe and Medzhitov, 2016). 
Tumours have been likened to "wounds that do not heal" (Dvorak, 
1986), where fibroblasts, also known as cancer-associated fibroblasts 
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(CAFs), and macrophages, also known as tumour-associated 
macrophages (TAMs), are recognised as key cellular components. 
TAMs exhibit high heterogeneity in the tumour microenvironment 
(Sharma et al., 2022). When translating these populations into a fibrosis 
context, programs can be found in both fibrosis and cancer settings, 
such as the TREM2 TAMs (Ramachandran et al., 2019). 

Additionally, the macrophage-fibroblast interaction within this unique 
ecosystem varies in functional specialisation depending on the cancer 
type. In colorectal cancer, the interplay between FAP+ fibroblasts and 
SPP1+ macrophages is associated with poor patient survival, 
suggesting a regulatory role in the maintenance and function of both 
cell types through extracellular matrix remodelling (Qi et al., 2022).  

Similarly, in HCC, a cooperative relationship between POSTN+ CAFs 
and FOLR2+ TAMs within the tumour microenvironment emphasises 
the importance of cell-cell communication and immunomodulatory 
functions, with the IL34-CSF1R axis playing a crucial role in 
macrophage differentiation (Li et al., 2024). This paper highlights the 
oncofetal reprogramming, which is on the premise that tumours show 
a fetal-like reprogramming in the tumour microenvironment at a level 
of cellular heterogeneity and plasticity (Sharma et al., 2022). Similar to 
the tumour environment, wound healing, such as epithelial 
regeneration, is driven not only by inflammation but also by the 
crosstalk of the microenvironment (Deyell et al., 2021). This highlights 
how similarity can be found within a disease context, but a complex 
heterogeneity can be found within these environments.  

 

1.4.5 Therapeutic potential 

TAMs are an essential and profound presence in the TME with multiple 
roles, such as orchestration of angiogenesis, extracellular matrix 
remodelling, cancer cell proliferation, metastasis and 
immunosuppression, as well as in resistance to chemotherapeutic 
agents and checkpoint blockade immunotherapy. With the knowledge 
of how heterogeneous the macrophage population is in the tumour 
with a pro or anti-tumour effect, it is essential to have a precise target 



 

 

 

39 

or approach. Macrophage-centred therapeutic strategies have the 
potential to complement and synergise with currently available tools 
in the oncology armamentarium. 

TAMs play a crucial and multifaceted role in the tumour 
microenvironment. They orchestrate processes like angiogenesis, 
extracellular matrix remodelling, cancer cell proliferation, metastasis, 
and immunosuppression. Given the diverse nature of macrophages in 
tumours, which can have either pro-tumour or anti-tumour effects, it’s 
important to develop precise targeting strategies. Focusing on 
macrophage-centered therapies could effectively complement and 
enhance existing cancer treatments (Cassetta and Pollard, 2018; 
Mantovani et al., 2022). 

Recent studies have shown that blocking TREM2, a receptor expressed 
by macrophages in several tissues, including tumours, can significantly 
inhibit tumour growth. For instance, TREM2 deficiency and anti-TREM2 
monoclonal antibody (mAb) treatment have both effectively curbed 
tumour growth in mice (Molgora et al., 2020). When combined with an 
NK cell-activating agent, TREM2 blockade further enhances the 
inhibition of tumour growth (Park et al., 2023). A humanised mAb 
targeting TREM2+ macrophages, known as PY314 (Binnewies et al., 
2021), is currently being tested in a phase I clinical trial for advanced 
solid tumours that have been resistant to previous treatments.  

Inhibition of the CSF1R has shown significant clinical benefits in 
patients with a rare tumour type, diffuse-type tenosynovial giant cells, 
where CSF1 is overexpressed, leading to positive outcomes in 71% of 
patients studied (Bissinger et al., 2021). However, CSF1R inhibitors 
have shown limited effectiveness as single agents in other solid 
tumours. Several clinical trials are ongoing, exploring combinations of 
CSF1R inhibition with chemotherapy, radiotherapy, or immune 
checkpoint blockade (ICB) (Lin et al., 2020; Manji et al., 2021). While 
durable clinical responses have not yet been reported, some patients 
have experienced disease stabilization or partial responses, and the 
potential benefits of this approach are still under investigation 
(Mantovani et al., 2022). 

Additionally, IL-4, derived from bone marrow basophils and 
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eosinophils, has been shown to influence the development of 
immunosuppressive, tumour-promoting myeloid cells (LaMarche et al., 
2024). A clinical trial of the IL-4Rα blocking antibody dupilumab, 
administered in conjunction with PD-1/PD-L1 checkpoint blockade, 
demonstrated promising results in patients with relapsed or refractory 
non-small cell lung cancer (NSCLC) who had previously progressed on 
PD-1/PD-L1 therapy alone (“Study Details | Dupilumab_Metastatic 
NSCLC | ClinicalTrials.gov,” n.d.). The treatment reduced circulating 
monocytes expanded tumour-infiltrating CD8+ T cells and led to a 
near-complete clinical response in one patient within two months. 

Efforts to target monocyte attractants, such as CCL2 and its receptor 
CCR2, have included the use of monoclonal antibodies and receptor 
antagonists in solid tumours and haematological malignancies. 
Preclinical studies in murine tumour models have demonstrated that 
CCR2 antagonism, in combination with anti-PD-1 therapy, can 
enhance tumour response beyond that achieved with anti-PD-1 
monotherapy alone (Nywening et al., 2016; Tu et al., 2020). Although 
these preclinical models showed promise, these strategies have not yet 
yielded positive clinical results and have been discontinued in some 
cases (Mantovani et al., 2022).  
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1.5 DENDRITIC CELLS IN THE TUMOUR MICROENVIRONMENT 

Dendritic cells are specialised antigen-presenting cells that play a key 
role in the link between innate and adaptive immune responses. 
Despite being a relatively rare population within the immune system, 
DCs are critical in generating specific T-cell-mediated antitumor 
responses by cross-presenting tumour-associated antigens to naïve T 
cells. This function is essential for controlling tumour growth and 
preventing the spread of cancer cells. However, the antitumor activity 
of DCs can be significantly compromised within the 
immunosuppressive environment of tumours. While much of what we 
know about DC subsets and their functions comes from studies in 
mouse models, there is a growing focus on understanding the biology 
of human DCs to improve our insights into their role in cancer. 

 

1.5.1 cDC1 

The presence and function of cDC1 cells in the tumour 
microenvironment are closely linked to better survival rates and 
enhanced responsiveness to treatment in various human cancers 
(Barry et al., 2018; Böttcher et al., 2018; Böttcher and Reis e Sousa, 
2018; Michea et al., 2018; Spranger et al., 2017). These cells are 
essential for antitumor immunity, primarily due to their ability to cross-
present tumour antigens to cytotoxic CD8+ T cells (Böttcher and Reis e 
Sousa, 2018; Broz et al., 2014). In addition, studies have shown that 
cDC1 cells can also present tumour-derived antigens to CD4+ T cells in 
animal models (Ferris et al., 2020). Furthermore, cDC1 cells are unique 
among antigen-presenting cells in their ability to transport intact 
antigens to lymph nodes and prime tumour-specific CD8+ T cells 
(Salmon et al., 2016). 

An example of protection, in a mouse melanoma model, systemic 
injections of FLT3L and intratumoral poly I:C expanded and activated 
cDC1 cells, offering protection against tumour rechallenge and 
enhancing responses to BRAF and PD-L1 blockade therapies (Salmon 
et al., 2016). Another study showed that human cDC1 cells increase 
DNA uptake and express T cell–recruiting chemokines like CXCL9 and 
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CXCL11 via a TIM-3-dependent mechanism (de Mingo Pulido et al., 
2021).  

During tumour progression, cDC1 function can be impaired. In a lung 
tumour model, tumour progression inhibited the capability to capture 
antigen by lung cDC1 cells. This was linked to downregulation of the 
TIM4 receptor, impairing cDC1 phagocytic ability and promoting 
tumour growth (Caronni et al., 2021). This was further explored in 
humans, and it was shown that when TIM4 expression was enhanced, 
the prognostic value of the cDC1 signature predicted PD-1 therapy 
response (Caronni et al., 2021). Additionally, tumour-derived G-CSF 
inhibited DC development by suppressing IRF8, correlating with 
reduced DC progenitor levels and lower CD141+ cDC1 frequencies in 
breast and pancreatic cancer patients (Meyer et al., 2018; Roth et al., 
2000). 
 
The ability of cDC1 cells to coordinate immune responses depends on 
their migration and infiltration into tumours. A study showed that 
transgenic expression of FLT3L and XCL1 by tumour cells enhanced 
cDC1-mediated T-cell cross-priming (Sánchez-Paulete et al., 2018). 
XCL1 is a chemotactic ligand for the XCR1 receptor on human cDC1, 
which in turn is a specific receptor on cDC1. NK cells play a key role in 
this recruitment process (Barry et al., 2018; Böttcher et al., 2018). In 
human cancers, cDC1 and NK cell signatures often correlate within 
tumours, predicting better survival in melanoma, head and neck 
squamous cell carcinoma, and lung adenocarcinoma patients (Böttcher 
et al., 2018). In mouse models, cDC1 recruitment depended on NK cell-
derived chemokines, while tumour-derived prostaglandin E2 (PGE2) 
impaired NK and cDC1 function, aiding immune evasion (Böttcher et 
al., 2018). Coexpression of CCL5 and FLT3L in metastatic cancers 
correlated with cDC1 signatures and better survival (Cueto et al., 2021). 
Tumor-secreted gelsolin was found to inhibit CLEC9A binding in cDC1 
cells, reducing their ability to cross-present antigens, a process linked 
to worse outcomes in hepatocellular carcinoma and other cancers 
(Giampazolias et al., 2021).cDC1 cells are an important factor in 
orchestrating antitumor responses at tumour sites and lymph nodes.  
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Their effectiveness is influenced by interactions within the tumour 
microenvironment, which sometimes can be inhibited or enhanced 
with, for example, NK cells. 

 

1.5.2 DC2/3 

cDC2 cells are recognised as key inducers of CD4+ T helper cells 
(Binnewies et al., 2019). However, recent findings suggest that cDC1 
cells also contribute to CD4+ T cell priming (Ferris et al., 2020). Notably, 
human cDC2 cells, unlike their mouse counterparts, secrete high levels 
of interleukin-12 (IL-12), which has the potential to prime cytotoxic T 
cells for antitumour responses (Mittag et al., 2011; Nizzoli et al., 2013). 

As mentioned before, circulating cDC2 cells are now understood to be 
a heterogeneous group, including both true cDC2 and DC3 cells, also 
known as inflammatory DCs (infDCs) due to their inflammatory signa-
ture (Dutertre et al., 2019; Villani et al., 2017). DC3 cells expand during 
immune diseases like systemic lupus erythematosus (SLE) (Dutertre et 
al., 2019) and rely on the proinflammatory cytokine GM-CSF for their 
development (Bourdely et al., 2020; Liu et al., 2023). Similar inflamma-
tory DCs have been observed in tumour ascites from ovarian and 
breast cancer patients before treatment (Segura et al., 2013), initially 
thought to arise from monocytes. These cells share molecular signa-
tures with both DCs and monocytes, expressing markers such as CD1c, 
FceRI, CD206, and lower levels of CD14 compared to monocytes/mac-
rophages (Segura et al., 2013). They also induce autologous naïve CD4+ 
T cell responses and IL-17 production but are absent in cancer-free 
lymph nodes from breast cancer patients or healthy controls (Segura 
et al., 2013) 

The extent to which DC3 and cDC2 cells contribute to T cell activation 
in humans, potentially influencing outcomes ranging from tolerance to 
antitumour immunity, remains unclear and likely varies depending on 
the tumour niche and type. For instance, in breast cancer, a higher 
cDC1 signature is associated with better outcomes in both luminal and 
triple-negative breast cancer, while a cDC2 signature is only linked to 
better outcomes in the luminal type (Michea et al., 2018). Inversely, a 
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higher monocyte/macrophage signature is associated with lower sur-
vival in both cancer types. In head and neck squamous cell carcinoma, 
higher levels of cDC2 and lower levels of T regulatory cells (Tregs) cor-
relate with better prognosis (Binnewies et al., 2019). Therefore, it is es-
sential to explore the specific roles of DC3 cells, which share charac-
teristics with both cDC2 and monocytes/macrophages, in inducing tol-
erance and/or antitumor responses at the tumour site. 

In patients with melanoma and non-small cell lung cancer (NSCLC), the 
DC3 population was found to be increased, although they showed 
weak tumour antigen-specific CD8 T cell activation (Becker et al., 2024). 
In breast cancer, CD5+ cDC2 and CD14+ DC3 cells were present at sim-
ilar frequencies within tumours. DC3 cells were capable of priming na-
ïve CD4+ and CD8+ T cells, though less efficiently than cDC2 cells 
(Bourdely et al., 2020). Interestingly, DC3 cells were particularly effec-
tive at inducing a CD103+ tissue residency phenotype in CD4+ and 
CD8+ T cells compared to cDC2 cells or monocytes. The presence of 
DC3 cells correlated with tissue-resident CD8+CD103+CD69+ T cells 
within breast tumours (Bourdely et al., 2020), a T cell subtype associ-
ated with improved breast cancer prognosis (Savas et al., 2018). How-
ever, a DC3-like CD1c+CD14+ myeloid cell population with PD-L1–me-
diated CD4+ T cell–suppressive capacity was found to expand in pa-
tients with melanoma (Becker et al., 2024).  

Further investigation of the heterogeneous DC2/3 compartment is 
crucial as clear separation is needed from true cDC2 cells from DC3 
and monocyte-derived cells.  
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Figure 4: The effect of human DC in the tumour microenvironment. 

Circulating cDC1, cDC2 and DC3 infiltrate tumours through the entry 

and effects. Once within the tumour, DCs contribute to antitumor 

immunity by inducing, priming, and activating T cells, either directly at 

the tumour site, within surrounding tertiary lymphoid structures, or in 

the lymph nodes. Key interactions include DC-derived IL-12, essential for 

NK and T cell expansion and survival, and DC3-mediated induction of 

tissue-resident memory (TRM) T cells and TH17 cells. Tumours can 

suppress cDC1 cross-presentation and block both cDC1 and NK cell 

functions, disrupting these antitumor responses. A feedback loop 

between cDC1 and NK cells is shown, along with the proximity of 

migratory DCs—potentially mregDCs—near tertiary lymphoid 

structures. DCs migrate to lymph nodes carrying tumour antigens, 

initiating T cell responses and recruiting tumour-specific cytotoxic T 

lymphocytes (CTLs) via cDC1. Adapted from Kvedaraite & Ginhoux, 

2022. 
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1.5.3 Migration of DC in the TME 

While the earlier parts focused on lineage-specific responses of 
dendritic cells (DCs) within the tumour microenvironment (TME), it’s 
important to note that the majority of all DCs share a conserved 
program despite these differences. Within the TME, it has been shown 
that there is a program that induces a state for the DC to have 
immunoregulation (PD-L1, PD-L2, and CD200) and 
migration/maturation (CD40, CCR7, and IL-12) combined with 
migration markers like LAMP3 and CCR7, as per such named mregDCs 
(Maier et al., 2020). In experimental models, both cDC1 and cDC2 have 
been shown to upregulate mregDC-related proteins upon 
encountering tumours, contributing to this cell state (Maier et al., 
2020). These cells, often called mregDCs, LAMP3+ DCs or CCR7+ DCs, 
have been detected in various cancers (Cheng et al., 2021; Li et al., 
2024; Zilionis et al., 2019). While the name and function have been 
associated with cancer, it has also been detected in healthy tissue, 
suggesting it is more to a maturation program (Kvedaraite and 
Ginhoux, 2022). 

In human tumors, mregDCs include cells resembling both cDC1 and 
cDC2. Interestingly, mregDCs may not function identically across all 
tumours. For instance, IL12B expression is specific to cDC1-like 
mregDCs, which can induce a TH1-like response, highlighting the con-
served functional traits of cDC1 in the mregDC state (Cheng et al., 
2021). Within human tumours, better survival has been shown for pri-
mary tumour-draining lymph nodes (Lee et al., 2024; Movassagh et al., 
2004). These megrDCs have been associated in location with tertiary 
lymphoid structures or cluster with T cells in the stroma (Dieu-Nosjean 
et al., 2008; Germain et al., 2014). While this shows a strategic and 
sometimes positive role as an antitumoural function, it has also been 
shown to have a negative effect on the patient with an accumulation 
of Tregs (You et al., 2024).  
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While the mregDC program appears to be a tissue-induced maturation 
state rather than a cancer-specific entity, further research is needed to 
explore its role across various human diseases and the possibility of 
modulation. Understanding the developmental relationship between 
mregDCs and other DC subsets, such as cDC1, cDC2, and DC3, will be 
critical for advancing our knowledge of DC functionality in cancer and 
other conditions. 

 

1.5.4 DC therapy 

Dendritic cells play a central role in antitumor immunity by 
conditioning the tumour microenvironment and priming antitumor T-
cell responses. However, the tumour microenvironment can also 
impair DC functions through various mechanisms, such as inhibiting 
their recruitment, differentiation, and immunostimulatory capacity. 
Despite these challenges, manipulating DCs holds significant potential 
for inducing effective antitumor immunity. 

Chemotherapeutic agents like anthracyclines can trigger immunogenic 
cell death, a process that depends on the presence of DCs to stimulate 
an immune response effectively (Ma et al., 2013). Additionally, small-
molecule inhibitors targeting pathways such as STAT3, MAPK, and 
mTOR can modulate DC function, offering another strategy for 
therapeutic intervention (Nefedova et al., 2005; Oosterhoff et al., 2012; 
Ott and Adams, 2011). Antibodies targeting co-inhibitory receptors, 
such as those in the PD-1/PDL1 axis, or activating costimulatory 
receptors like CD137, have been shown to regulate antitumor immune 
responses (Sánchez-Paulete et al., 2016). Notably, combining 
pembrolizumab, an anti-PD-1 antibody, with TLR9 agonists has 
demonstrated clinical benefits in melanoma, highlighting the potential 
of such combination therapies in cancer treatment (Ribas et al., 2018). 
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Another important aspect of the role of dendritic cells (DCs) in cancer 
regulation is their involvement in cancer vaccinations. The primary 
objectives of anticancer vaccines are to induce tumour-specific 
effector T cell responses and to stimulate long-lived memory T cells. 
These goals are crucial for both overcoming tumour growth and 
controlling tumour relapse. Although developing these therapies is 
challenging and risks failure (Thomas et al., 2018), some trials have 
shown promising results. These studies highlight the potential of 
therapeutic vaccination to induce clinical remission, particularly in low-
burden tumours and suggest that enhancing DC mobilisation could 
further improve outcomes (Harper et al., 2019; Trimble et al., 2015). 

  



 

 

 

49 

1.6 OMICS TO CAPTURE MONONUCLEAR PHAGOCYTES 

Understanding the complexity of the immune system remains a 
significant challenge, requiring the continual development of new 
experimental techniques to better capture its intricacies. Collaborative 
initiatives like the ImmGen project aim to deepen our immunological 
understanding of gene expression and regulatory networks on a global 
scale (Heng et al., 2008). Additionally, many research groups have 
published atlases of various tissues and pathologies (Rozenblatt-
Rosen et al., 2017). Together with these endeavours, technological 
advancements have emerged to facilitate discoveries and further 
enhance our understanding. 

 

1.6.1 Fluorescence-based assays 

In immunology, fluorescence-based assays are among the most 
commonly used techniques. Notable examples include 
immunofluorescence and flow cytometry, which enable the detection 
and localisation of various antigens in different tissue types and cell 
preparations (Fang et al., 2019). Immunofluorescence uses antibodies 
tagged with fluorescent dyes to detect specific antigens in cells or 
tissue sections, which are then examined under a fluorescence 
microscope. The presence and location of antigens are indicated by 
the fluorescent signal. In contrast, flow cytometry involves tagging 
antibodies with fluorescent markers that bind to specific antigens on 
or within cells. As these labelled cells pass through the flow cytometer, 
lasers excite the fluorescent markers, and the emitted light is detected 
and analysed. 

Modern flow cytometry techniques have evolved to include panels of 
multiple fluorochrome-conjugated antibodies (conventional flow 
cytometry) or metal-conjugated antibodies (mass cytometry) to 
measure protein expression profiles of individual cells. This approach 
allows for high-throughput analysis, capturing both common and rare 
cell populations. However, despite these advancements, current 
fluorescence and mass cytometry are still limited to 50 or fewer 
parameters (Konecny et al., 2024). This limitation is stark when 
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considering that at least 371 clusters of differentiation (CD) markers 
are recognized (Engel et al., 2015), excluding other relevant surface 
proteins. To bridge this gap, machine-learning computational tools 
have been developed to target and analyze all available CD markers 
(Becht et al., 2021; Ferchen et al., 2023). In various studies, this 
approach has proven beneficial in uncovering the complexities of 
mononuclear phagocytes (Dunsmore et al., 2024; Dutertre et al., 2019; 
Liu et al., 2023). 

As protocols and techniques continue to evolve, the complexity of data 
analysis is also increasing. Computational methods, such as principal 
component analysis (PCA) (Pearson, 1901) and uniform manifold 
approximation and projection (UMAP), are essential for interpreting 
this complex data (Becht et al., 2019). Traditionally, cell types have 
been annotated through manual gating, a process that is not only 
time-consuming but also prone to issues with reproducibility and 
batch effects. However, the advent of advanced cytometers, like 
spectral flow and mass cytometers, has produced increasingly rich and 
high-dimensional datasets, making manual gating even more 
impractical. 

To address the challenges posed by high-dimensional analyses, new 
tools are being developed. One such tool is Scyan, a deep generative 
model designed to map protein expressions into a biologically 
meaningful latent space (Blampey et al., 2023). Scyan offers batch-
effect correction, debarcoding, and population discovery capabilities, 
making it a valuable asset in modern cytometric analysis. 

 

1.6.2 Single-cell 

Toward the end of the 20th century, the development of technologies 
like flow cytometry, which allowed for measuring multiple proteins on 
individual cells, revolutionized immunology. These advancements 
enabled researchers to categorize immune cells into distinct 
phenotypic groups and lineages based on specific cell-surface 
antigens. Shortly after, the advent of next-generation genomic 
technologies further transformed the field. By 2003, the first complete 
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human genome was sequenced (Collins et al., 2003), marking the 
beginning of a new genomic era in immunology. 

This era allowed scientists to combine marker-based sorting of specific 
cell populations with deep molecular analyses, including RNA, 
epigenetic, and DNA sequencing (Chaussabel et al., 2008; Heng et al., 
2008; Wilson et al., 2009). These advancements have been instrumental 
in making significant discoveries and developing new treatments, such 
as cancer and autoimmune diseases (Smillie et al., 2019).  

The first single-cell RNA sequencing (scRNA-seq) study, published in 
2009, marked a significant milestone in cell biology by profiling an 
individual mouse blastomere from a four-cell stage embryo (Tang et 
al., 2009). The application of scRNA-seq to immune cells began in 2013 
and early 2014, with researchers profiling in vitro bone marrow-derived 
dendritic cells (BMDC) (Shalek et al., 2013) and creating the first 
unbiased scRNA-seq map of immune cells from tissue (Jaitin et al., 
2014). This study, facilitated by the development of MARS-seq, 
produced a combined transcriptional and protein surface marker atlas 
of over 4,000 splenic immune cells from a mouse. By integrating 
transcriptional signatures with canonical protein surface markers, 
distinct murine dendritic cell and monocyte subtypes were identified, 
prompting further research into these heterogeneous cell types. 

Since then, the number of scRNA-seq studies in immunology has 
increased dramatically, as researchers used this technology to explore 
classical immunological models and questions, such as hematopoiesis. 
These studies have led to revisions in our understanding of immune 
cell generation and development (Paul et al., 2015) and have deepened 
our knowledge of complex processes (Pellin et al., 2019) and revise 
classifications (Ginhoux et al., 2022). 

In 2016, scRNA-seq was applied to analyze the ecosystem of tumour, 
immune, and stromal cells from 19 patients with metastatic melanoma, 
revealing patient-specific heterogeneity and T-cell exhaustion 
signatures based on profiles from 4,600 cells (Tirosh et al., 2016). 
Subsequent studies advanced our understanding of the diverse 
immune subsets within the tumour environment and the mechanisms 
of immune regulation in cancer (Azizi et al., 2018; Cassetta et al., 2019; 
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Chen et al., 2024). Additionally, combining scRNA-seq with clinical 
metadata has enabled the identification of molecular features 
associated with the success or failure of immunotherapy (Cohen et al., 
2021; Sade-Feldman et al., 2018). Following that, a multi-tissue analysis 
of more than 200 patients unifying modalities of cell types in one large 
analysis (Cheng et al., 2021). 

An important advancement in single-cell analysis is the integration of 
mRNA and protein markers at the single-cell level. This integration has 
been made possible through techniques like index sorting (Dutertre et 
al., 2019; Paul et al., 2015) which relies on fluorophores, and the use of 
oligonucleotide-labeled antibodies, which are more commercially 
available. These methods allow the simultaneous measurement of 
dozens of protein markers on individual cells. Two technologies were 
introduced in the same year that pushed the boundaries of this 
approach. Cellular Indexing of Transcriptomics and Epitopes by 
Sequencing (CITE-seq) (Stoeckius et al., 2017) and RNA Expression and 
Protein Sequencing (REAP-seq) (Peterson et al., 2017) were developed 
to quantify over a hundred different surface proteins on single cells 
while also generating their transcriptional profiles. 

Despite the challenges posed by high signal-to-noise ratios in surface 
protein measurements, these issues can be mitigated through 
analytical and experimental approaches (Buus et al., 2021). Recent 
advancements have extended these technologies to include 
intracellular protein detection (Katzenelenbogen et al., 2020) and the 
empirical measurement of differentiation trajectories (Kirschenbaum 
et al., 2024), offering more profound insights into cellular processes at 
the single-cell level. 
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1.6.3 Spatial-omics 

One of the challenges with some of the techniques mentioned earlier 
is the potential loss of tissue context. The spatial context within tissues, 
particularly in subtissular niches, is crucial for understanding the 
intricate dynamics of cellular biology. For example, the tumour 
microenvironment is a highly complex ecosystem within the body, 
where its intricate organisation significantly influences cancer 
progression (Bressan et al., 2023). Recognising the spatial arrangement 
of these cells has become increasingly important in cancer research. 
Hematoxylin and eosin (H&E) staining has traditionally been the go-to 
method for analysing tissue architecture or a low plex staining of 
immunofluorescence. However, recent technological advancements 
have allowed for much deeper exploration. 

These advancements fall under the umbrella of spatial-omics. Cutting-
edge imaging technologies now enable the measurement of over 
1,000 genes through Spatial Transcriptomics and analysis of more than 
50 proteins via Multiplex Imaging (Vandereyken et al., 2023). 
Techniques like MerFISH (Chen et al., 2015), ISH (Jin and Lloyd, 1997), 
ISS (He et al., 2022), MICS (Kinkhabwala et al., 2022), PhenoCycler 
(Jhaveri et al., 2023), and IMC (Chang et al., 2017) offer single-cell 
resolution that surpasses the capabilities of earlier spot-based 
methods like 10X Visium or Nanostring GeoMX (Merritt et al., 2020). 
Notably, a recent update to 10X Visium has increased its spot density 
to achieve near single-cell resolution.  

One of the current challenges in the field is effectively analyzing and 
interpreting the complex data generated by these advanced 
techniques. While significant efforts are being made to improve data 
analysis methods (Marconato et al., 2024), there is still much progress 
to be made. The potential for deeper insights is substantial, but 
unlocking this potential requires continued advancements in 
computational tools and methodologies. Despite the complexity of the 
data generated by these techniques, new discoveries are emerging 
rapidly. The next section will delve deeper into some of the significant 
observations and insights gained through spatial-omics. 
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1.7 SPATIAL DISTRIBUTION OF MONONUCLEAR PHAGOCYTES IN THE 

TUMOUR MICROENVIRONMENT 

The role and location of mononuclear phagocytes in the tumour 
microenvironment have long been recognised, but the full complexity 
of their interactions is still being unravelled. As technological 
advancements continue, we are beginning to understand that these 
interactions are not singular but part of a broader ecosystem that 
drives shifts in the tumour environment. 

Recent spatial omics studies in lung tumours have identified CXCL10+ 
macrophages and CCR7+LAMP3+ dendritic cells within a "stem-
immunity hub," where they interact with CCL19+ fibroblasts and 
TCF7+PD-1+CD8+ T cells, contributing to a favourable outcome for 
lung cancer patients (Chen et al., 2024). In human breast and colon 
cancers, distinct macrophage populations have been observed: IL4I1+ 
SPP1+ macrophages localise within necrotic tumour areas, while 
FOLR2 macrophages are found in peri-tumoral regions, often near FAP 
fibroblasts or within a lymphoid niche surrounded by CD4 and CD8 T 
cells. Additionally, LYVE1 macrophages are associated with the 
perivascular niche (Matusiak et al., 2024).  

While in breast and colon cancers, the IL4I1+ SPP1+ macrophages 
localise within necrotic tumour areas. In pancreatic ductal 
adenocarcinoma (PDAC), a subset of tumour-associated macrophages 
(TAMs) expressing interleukin-1β (IL-1β) has been found within 
hypoxic areas, forming an inflammatory loop with tumour cells 
(Caronni et al., 2023). This interaction is driven by a local synergy 
between prostaglandin E2 (PGE2) and tumour necrosis factor (TNF). 

The tumour microenvironment can also exhibit fetal-like 
reprogramming, highlighting these cells' remarkable plasticity and 
heterogeneity (Sharma et al., 2022). In hepatocellular carcinoma (HCC), 
POSTN+ extracellular matrix cancer-associated fibroblasts (EM CAFs) 
play a key role as an oncofetal interacting hub, driving tumour 
progression. Spatial transcriptomics and cell-cell communication 
analyses have shown interactions and co-localization among oncofetal 
cells, including POSTN+ CAFs, FOLR2+ macrophages, and PLVAP+ 
endothelial cells (Li et al., 2024). 
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In patients with HCC treated with PD-1 inhibitors, a positive response 
to immune checkpoint blockade (ICB) was associated with the clonal 
expansion of intratumoral CXCL13+CH25H+IL-21+PD-1+CD4+ T helper 
cells ("CXCL13+ TH") and Granzyme K+ PD-1+ effector-like CD8+ T cells 
(Magen et al., 2023). In contrast, non-responders exhibited a 
dominance of terminally exhausted CD39hiTOXhiPD-1hiCD8+ T cells. 
These Progenitor CD8+ T cells were found to interact with CXCL13+ TH 
cells within cellular triads around dendritic cells enriched in maturation 
and regulatory molecules, also termed "mregDC." This suggests that 
specific intratumoral niches, including mregDC and CXCL13+ TH cells, 
play a potential role in differentiating tumour-specific exhausted CD8+ 

T cells following ICB treatment. 

These observations underscore how the specific microenvironment, or 
subtissular niche, dictates or requires certain functions which are 
essential for maintenance processes. 
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1.8 OBJECTIVES 

The mononuclear phagocyte system, particularly within the tumour 
microenvironment, is characterized by significant heterogeneity and 
diversity. This complexity presents challenges in unifying and accu-
rately defining these diverse cell populations, especially in the context 
of rapidly advancing technologies. 

My PhD focuses on addressing these challenges by gaining a deeper 
understanding of the heterogeneity among monocytes, macrophages, 
and dendritic cells, aiming to align nomenclature with current litera-
ture. By uncovering the intricacies of these cell populations, my re-
search aims to contribute to a more standardized framework for their 
classification. While also uncovering new insight into their role within 
the tumour microenvironment.  

Additionally, as technological advancements continue to evolve, an-
other key objective of my research is to develop more effective ap-
proaches and pipelines for analyzing spatial data. With the prolifera-
tion of new techniques, establishing a unifying methodology will be 
essential for researchers to extract meaningful insights from their 
data, ultimately advancing our understanding of the tumour microen-
vironment and its impact on cancer progression.  
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SUMMARY 

Mononuclear phagocytes (MNP) encompass dendritic cells, 
monocytes and macrophages (MoMac), which exhibit antimicrobial, 
homeostatic and immunoregulatory functions. MNP characterised 
across tissues and diseases using various nomenclature has 
overwhelmed the field. Here, we integrated 178,651 MNP from 13 
tissues across 41 datasets to generate a MNP single-cell RNA 
compendium (MNP-VERSE), a publicly available tool to map MNPs 
(https://gustaveroussy.github.io/FG-Lab/), and defined universal gene 
signatures of MNP populations. Next, we generated a compendium 
(MoMac-VERSE) that revealed an array of specialised cell subsets 
widely distributed across multiple tissues and the expansion of specific 
pathological forms in cancer and inflammation. All neoplastic tissues 
contained conserved tumour-associated macrophage populations. 
Among them, we focused on IL4I1+CD274(PD-L1)+IDO1+ 
macrophages which display immune-suppressive macrophages 
through tryptophan degradation and promotion of regulatory T cell 
entry into tumours. This integrated analysis provides a robust online-
available platform for the uniform annotation, ontological mapping 
and dissection of specific macrophage functions in healthy and 
pathological states. 

 

Keywords: Macrophages, Monocytes, Heterogeneity, Single-cell, 
scRNAseq, Inflammatory diseases, Cancer, MNP-VERSE, MoMac-
VERSE, IDO1, PD-L1, IL4I1, TREM2 

 

Link to the online web site for MNP- and MoMac- VERSES exploration: 

https://gustaveroussy.github.io/FG-Lab/   
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INTRODUCTION 

The mononuclear phagocyte system (MPS) was introduced almost 50 
years ago and proposed a new classification of macrophages, 
monocytes and their precursor cells (van Furth et al., 1972). These cells 
were included in the MPS based on similarities in morphology, 
function, origin and kinetics. Following this, the identification of 
stellate-like cells, now known as dendritic cells (DC) by Steinman & 
Cohn (Steinman and Cohn, 1973), led to a further addition to the MPS 
family. A considerable amount of work has since been done to 
characterize the cells of the MPS, providing an overview of their varied 
functions in development, homeostasis and inflammation, and their 
relationships to one another (Guilliams et al., 2014). Dichotomies have 
thus emerged with classical versus non-classical monocytes, 
plasmacytoid versus classical DC (this latter being subsequently 
divided into cDC1 versus cDC2) and pro-inflammatory M1 versus anti-
inflammatory M2 macrophages (Geissmann et al., 2003; Merad et al., 
2013; C. D. Mills et al., 2000; Passlick et al., 1989; Ziegler-Heitbrock et 
al., 2010a). These classifications have led to substantial conceptual 
advances and remain widely used. However, the application of high-
dimensional approaches such as mass cytometry and single-cell RNA 
sequencing has revealed finer levels of heterogeneity, leading to the 
identification of subpopulations in both healthy and diseased states 
and across various tissues (Passlick et al., 1989; See et al., 2017; Villani 
et al., 2017; Ziegler-Heitbrock et al., 2010a). 

In particular, single-cell transcriptomics have revolutionised our 
understanding of immune cell heterogeneity by providing snapshots 
of individual cell activity with increasing scale and resolution(Giladi and 
Amit, 2018; Stubbington et al., 2017). These technologies have been 
exploited to generate accessible atlases of the mouse (The Tabula 
Muris Consortium et al., 2018; Van Hove et al., 2019) and human 
(Regev et al., 2017; Rozenblatt-Rosen et al., 2017; Svensson et al., 2019) 
immune cells, in addition to organ-specific databases (Peters et al., 
2020). Nevertheless, comparison between these different studies and 
extraction of granular detail is difficult owing to the distinct 
sequencing protocols and analytical pipelines employed. A unified 
analytical approach has the potential to reveal synergy between 
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published data sets and to avoid duplication of effort and irregularities 
of nomenclature. 

This need for transcriptomic data unification is particularly clear for 
studies of MNP, especially in disease settings. MNP are critical for 
immune defence and homeostasis: patients who are deficient in these 
cell populations are highly susceptible to recurrent infections (Bigley 
et al., 2019); while in cancer, tumour-associated macrophages (TAM) 
are implicated in promoting tumour progression, angiogenesis and 
metastasis (Pollard, 2004), and DC are thought to prime anti-tumour 
T-cells (Wculek et al., 2019). Accordingly, many studies aim to elucidate 
the functions of MNP in various pathologies, generating a high volume 
of overlapping data. Multiple studies examining the same or different 
tissues have defined similar MNP subpopulations but designated 
various names for them, as seen in the past for the case of DC 
(Guilliams et al., 2014). In order to achieve clarity and to extract 
fundamental commonalities of potential therapeutic importance, there 
is a need to unify the multiple identities assigned to MNPs across 
healthy and pathological tissues. 

Here we generated an integrated meta-analysis of multiple high-
dimensional transcriptomic studies on MNP in an attempt to elucidate 
system-wide characteristics of the MPS in health and disease. To 
achieve this, we selected and integrated single-cell RNAseq datasets 
from 41 studies to build a comprehensive view of human MNP in 
health and disease states (the MNP-VERSE). All major previously 
defined MNP subsets we delineated, including classical and CD16+ 
monocytes, conventional dendritic cells (cDC) subsets [cDC1, cDC2 
(DC2+DC3)], as well as their progenitors (pre-DC) and terminally 
differentiated mature DCs enriched in immunoregulatory molecules 
(mregDC) (Dutertre et al., 2019; Maier et al., 2009; See et al., 2017; 
Ziegler-Heitbrock et al., 2010a). This organisation was validated using 
complementary analytical pipelines. To demonstrate the utility of this 
approach, we then focused on monocytes and macrophages and 
generated a “MoMac-VERSE”. Using the recently developed Azimuth 
algorithm (Hao et al., 2020), we demonstrated that these VERSES can 
be used to do a de novo mapping of datasets that were not initially 
integrated, a process that can provide a robust annotation tool of MNP 
subsets for any other human scRNAseq dataset. The MoMac-VERSE 
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revealed subsets of TAM that were enriched in all cancers studied. Of 
particular interest was a population of macrophages expressing IL4I1 
and IDO1; these cells appear to be programmed through interactions 
with CD40L+ CD4+ T cells and activated IFNg+ CD8+ T cells. Additionally, 
IL4I1+ macrophages could contribute to tryptophan degradation 
through the IL4I1-induced activation of aryl hydrocarbon receptor 
(AHR), leading to an accumulation of regulatory T cells (Treg), thereby 
establishing an immunosuppressive environment in tumours. This 
work provides a resource to explore MNPs and, more specifically, 
monocyte and macrophages across human healthy and diseased 
tissues and can be explored through an online platform 
(https://gustaveroussy.github.io/FG-Lab/). 
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RESULTS 

The human MNP-VERSE defines universal gene signatures of 

major MNP subsets 

To establish a universal atlas of human MNP across healthy and 
pathologic tissues, we selected 41 single-cell RNA sequencing 
(scRNAseq) datasets from studies that included MNP from healthy and 
pathological tissues (Figure 1A and Table S1). Datasets were initially 
integrated tissue-by-tissue using the Seurat V3 pipeline (Stuart et al., 
2019) to generate sub-atlases where MNP were identified by the 
expression of canonical markers, including S100A8 and S100A9 for 
monocytes (Mo); C1QA, C1QB and CD68 for macrophages (Mac); 
CADM1, CLEC9A and XCR1 for classical DC1 (cDC1); FCER1A, CD1C and 
CD1E for cDC2, and the recently described mature DCs enriched in 
immunoregulatory molecules (mregDC) genes from Maier et al. (Maier 
et al., 2020) (Figure 1A and Figure S1A). Of note, we excluded 
plasmacytoid DC (pDC) from the MNP-VERSE as we and others have 
recently demonstrated the lymphoid origin of these cells (Dress et al., 
2019; Rodrigues et al., 2018). 

A total of 178,651 MNP were extracted from 13 tissues and integrated 
into a common universe - the MNP-VERSE (Figure 1B) - that was 
mapped in a Uniform Manifold Approximation and Projection (UMAP) 
space (Becht et al., 2018) (Figure S1B). Importantly, we included in-
house indexed-SMARTseq2 scRNAseq data of 1,830 cells from 5 
different tissues (spleen, lung, liver, skin and tonsil), which allowed us 
to broadly identify the major MNP populations based on surface 
protein expression, namely CD88+CD16+/-CD14+CD11b+CD206+/- 
Mo/Mac, CD123+CD5+CD169+ pre-DC, CD141+ classical cDC1 and 
CD1c+ cDC2; encompassing both cDC2 and DC3 as recently reported 
(Bourdely et al., 2020; Dutertre et al., 2019) (Figure 1C and Figure S1C, 
Table S2). The populations were validated by independently analysing 
our in-house indexed-SMARTseq2 data that included 5 different 
tissues (tonsil, spleen, blood, lung and liver). We identified the major 
DC and monocyte/macrophage populations based on differentially 
expressed genes (DEGs) and indexed-data protein expression (Figure 

S2A-B) and back-mapped these populations onto the MNP-VERSE. 
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The annotation aligned with the MNP-VERSE annotations (Figure 

S2C), validating the approach of integrating SMARTseq2 datasets with 
10X and other droplet-based scRNAseq datasets. 

In order to analyse gene expression from all cells of the 41 integrated 
datasets, we generated a transformed matrix (transf.matrix) that 
included all the cells of the MNP-VERSE for which the gene expression 
values were transformed, as obtained with the Seurat V3 pipeline 
(Figure 1D). Of the 41 datasets, 6 datasets included relatively less 
genes and were consequently excluded from the transf.matrix (Figure 

S1F). To confirm the annotation of the major MNP populations at the 
gene expression level, we used the Phenograph algorithm (Levine et 
al., 2015) and calculated the differentially-expressed “transformed” 
genes (DEtGs) for all Phenograph clusters using the transf.matrix 
(Figure 1E-F, Table S3). This analysis allowed us to identify 6 major 
MNP subsets defined by uniquely-expressed DEtGs (UEtGs): cDC1, 
cDC2 (cDC2 & DC3), mregDC, classical monocytes (cMo), non-
classical/intermediate monocytes (CD16+ Mo) and macrophages; 
confirming the annotation obtained with our indexed-data (Figure 

1G-H, Figure S1D and Table S4). In addition, a strong correlation 
between transf.matrix and original counts was observed in selected 
genes, validating the integrated approach (Figure S1E). Thus, these 
universal signatures allowed us to precisely define all the major MNP 
subsets from scRNAseq data across human tissues. Together, these 
compiled data define the “MNP-VERSE” and provide a platform to 
assemble findings from existing literature. In line with other reports, 
the MNP-VERSE showed that cDC1 and mregDC were separated from 
the main body of MNP and formed discrete populations, while 
monocytes and cDC2 were clustering more closely as well as the 
monocytes and macrophages. These results support and validate our 
pipeline, allowing further downstream analysis of monocyte and 
macrophage populations across healthy and diseased tissues. 
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Figure 1: The MNP-VERSE reveals universal signatures of major 
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MNP subsets across human tissues. (A) Summary of the data that was 

integrated and scheme of the meta-analysis. An integration was first 

performed at the organ level and MNPs were extracted. Organ-restricted 

MNPs were then integrated generating (B) the human MNP-VERSE. (C) 

Meaning plots of protein expression data from in-house indexed-

SMARTseq2 scRNAseq data overlayed onto the MNP-VERSE. (D) Pipeline 

of the transformed matrix generation. (E) Heatmap of differentially 

expressed “transformed” genes (DEtGs, Log FC>0.25) in Phenograph 

clusters. Selected genes are highlighted. (F) Visualisation of Phenograph 

clusters on the MNP-VERSE UMAP space. (G) Heat map showing relative 

expression levels of MNP universal signature genes across human tissues 

and visualisation of (H) their mean expression overlayed onto the MNP-

VERSE UMAP space. 

 

The human MoMac-VERSE establishes conserved monocyte and 

macrophage states and identifies patterns of tissue-specific 

imprinting in health and disease 

Having established a broad overview of the integrated MNP data, we 
extracted data from macrophages and monocytes (from both healthy 
and pathologic tissues) and re-integrated them to establish the 
MoMac-VERSE (Figure 2A). As before, we mapped cells into a UMAP 
space and calculated DEtGs between the different Phenograph clusters 
using the transf.matrix (Figure 2A, Figure S3A and Table S5). We 
identified two distinct cell populations comprised of monocytes 
(CD16+ Mo, clusters #1 and #5, and CD16- Mo, 
ISG15+ISG20+IFIT1+IFIT2+IFIT3+ “ISG” #4, #8, #12 and “IL1B” #15) and 
macrophages (“HES1” #2, “TREM2” #3, “IL4I1” #6, #7, #13, #16 and 
“FTL” #17), respectively. Mac #16 strongly expressed C1QA/B/C and 
MHCII transcripts and comprised lung alveolar macrophages (Alv. Mac; 
Figure S3B-C). Interestingly, Mo #4 (ISG_Mo) and IL4I1_Mac (#6) 
shared a similar gene expression signature (Figure S3A and Table S5), 
suggestive of a close relationship that we will explore later. Of note, 
DEtGs associated with TREM2_Mac (#3) shared similarities with 
signatures recently described in murine TREM2 macrophages (Figure 

S3D) (Katzenelenbogen et al., 2020; Yingyue Zhou et al., 2020), 
suggesting a potential for the MoMac-VERSE to generate cross-
species comparisons. We were also able to identify the presence of 
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non-MoMac cells: cluster #14 corresponded to contaminating DC2, 
and cluster #9 represented MNP/T cell doublets. A third outlying 
population (#10) was identified as proliferating cells. As above for the 
MNP-VERSE, we confirmed the relationship between transf.matrix of 
the MoMac-VERSE and the TPM of the original datasets. 6 datasets 
(Kim et al., 2020; Lee et al., 2020; Sharma et al., 2020; Smillie et al., 2019; 
L. Zhang et al., 2020; Zheng et al., 2017) were chosen which adequately 
represented the UMAP space of the MoMac-VERSE. DEGs were 
selected across phenograph clusters from the 6 datasets using their 
original TPM. The DEGs identified in the 6 original datasets closely 
resembled to the DEtGs found between phenograph cluster within the 
transf.matrix [Figure S3E and Table S6]. 

Having generated a unified overview of monocytes and macrophages 
across tissues at the gene expression level, we next used the combined 
dataset to establish common and specific features of key 
subpopulations at the transcription factors’ gene regulatory network 
level. Using SCENIC analysis (Aibar et al., 2017), we identified on three 
datasets the differentially-expressed regulons (DER; which are sets of 
transcription factors and genes predicted to be regulated by them) 
common to cells from the colon (L. Zhang et al., 2020), liver (Sharma 
et al., 2020) and lung (Kim et al., 2020) (Figure 2B and Table S7). As 
observed in the DEtGs analysis (Figure 2A, Figure S3A and Table S5), 
ISG_Mo (#4) and IL4I1_Mac (#6) shared a similar DER profile, while 
TREM2_Mac (#3) shared DER with macrophage clusters #6 and 
HES1_Mac (#2). The regulon analysis could also be used to refine 
subpopulation functions, as exemplified by the NFKB1 and NFKB2 DER 
of IL1B_Mo #15, which confirms their classification as inflammatory 
monocytes. 

To address the commonly used M1/M2 classification of macrophages, 
we defined the number of M1- or M2- associated genes as published 
by Martinez et al. (Martinez et al., 2006) that were common to the 
DEtGs of each MoMac-VERSE cluster (Figure 2C-D and Figure S3F). 
ISG_Mo (#4), IL4I1_Mac (#6) and inflam _Mono (#15) were enriched in 
M1 genes, while the other macrophage subsets such as HES1_Mac 
(#2), Cluster_#17, C1Qhi_mac (#16) and Trem2_Mac (#3) expressed 
mostly M2 genes. Other clusters, that included the other monocyte 
subsets as well as cDC2 (#14) had no more than 2 of their DEtGs being 
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classified as M1 or M2 (Figure 2C-D). Of note, although the IL4I1_Mac 
(#6) exhibited a strong M1 program, these cells did not appear to 
express genes such as IL12B (Figure S3G), which has been described 
as a prototypic M1 cytokine of in vitro monocyte-derived 
macrophages. Although, the M1/M2 macrophage classification can be 
useful in profiling human in vivo primary macrophages, discrepancies 
arise in comparison with the historical in vitro derived signatures. 

We next evaluated their reprogramming in pathologic settings. The 
MoMac-VERSE incorporated cells from healthy tissues as well as 
different pathological disease states, containing matched cells from 
healthy individuals, cancer and various inflammatory disease patients, 
allowing for their comparison (Figure S3H).  

Globally, we found that the proportion of monocyte-related cells 
increased in cancer and inflammatory diseases as compared to healthy 
tissues (Figure S3I). Using the transf.matrix, we generated DEtGs 
comparing total macrophages and total monocytes obtained from 
matched healthy tissues and six different cancers (lung, colon, liver, 
breast, stomach and pancreas) (Figure 2E-F, Figure S3J and Table S8). 
Pathway analysis revealed that macrophages in tumours specifically 
expressed genes involved in lipid metabolism and inflammation 
pathways, while monocytes expressed genes involved in pathways 
triggered by their stimulation by inflammatory cytokines (Figure 2G, 
Table S9). Monocytes and macrophages commonly expressed genes 
involved in shared pathways related to their maturation and their 
interaction with T cells. 

We then conducted a similar analysis comparing inflamed tissues from 
colitis and lupus nephritis patients with matched healthy tissues 
(Figure 2H-I). Inflammatory disease monocytes expressed genes 
involved in pathways such as Th1 and Th2 activation and their 
stimulation by cytokines, whilst macrophage-specific pathways were 
related to oxidative phosphorylation, proliferation and cellular stress 
(Figure 2J). During inflammation, monocytes and macrophages also 
shared expression pathways involved in IL-6 and TNF-mediated 
inflammation. 
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Figure 2. The MoMac-VERSE identifies conserved monocyte and 

macrophage states and global imprinting across human tissues. 

Monocyte and macrophage clusters were extracted from the MNP-

VERSE and reintegrated to generate a MoMac-VERSE. (A) Visualisation 

of MoMac-VERSE Phenograph clusters onto the MoMac-VERSE UMAP 
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space. Selected differentially expressed “transformed” genes DEtGs for 

each cluster are highlighted. (B) Heatmap showing relative expression 

levels of differentially expressed regulons (DER) in between Phenograph 

clusters common to colon (Zhang 10X), Liver (Sharma) and Lung (Kim) 

as revealed by a Scenic analysis. (C) Overlay of the expression of 

common M1 and M2 signature genes Martinez et al. (Martinez et al., 

2006) in the MoMac-VERSE UMAP space. (D) Graphical representation 

of the number of M1 and M2 DEtGs expressed by each cluster. (E-F) 

Heatmap showing relative expression levels of DEtGs in the whole (E) 

macrophage or (F) monocyte populations comparing matched cancer 

and healthy tissues. (G) Radar plot showing pathways obtained from 

DEtGs in (E-F). (H-I) Heatmap showing relative expression levels of 

DEtGs in the whole (H) macrophage or (I) monocyte populations 

comparing matched inflamed and healthy tissues. (J) Radar plot 

showing pathways obtained from DEtGs in (H-I). 

MoMac-VERSE as a resource to study MNP across tissues and 

specific pathologies  

The Azimuth algorithm developed by Rahul Satija’s laboratory (Hao et 
al., 2020) proved to be robust when one of the pre-integrated datasets 
(Liver Sharma) was used as a “query” dataset to map onto the MoMac-
VERSE as a reference atlas (Figure 3A), demonstrating high correlation 
of the initially integrated MoMac-VERSE and the de novo mapped 
UMAP coordinates (Figure 3B) and percentage phenograph clusters 
of Liver (Sharma) on the MoMac-VERSE (Figure 3C). 

To further validate and extend the use of MoMac-VERSE as a resource, 
we employed Azimuth to map three new “query” datasets [Arthritic 
diseases synovial tissues, COVID-19 blood and Bronchoalveolar lavage 
(BAL)] on the MoMac-VERSE (Kuo et al., 2019; Liao et al., 2020; Silvin et 
al., 2020). This approach allowed unsupervised recapitulation of the 
major findings of these three studies in terms of macrophage 
heterogeneity by simply mapping their data onto the MoMac-VERSE. 
Of note, monocytes and macrophages were initially identified in these 
datasets using our defined signatures (Figure 1G). This is necessary as 
cells that are neither macrophages nor monocytes will be forced to be 
mapped onto the MoMac-VERSE (data not shown) and can 
consequently be misinterpreted. HBEGF+ (Kuo et al. cluster 1), MERTK+ 
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(Kuo et al. cluster 2), and IFN/STAT (Kuo et al. cluster 4) populations 
identified in the study of Kuo et al. in osteoarthritic and rheumatoid 
arthritis patients corresponded to HES1_Mac (#2), TREM2_Mac (#3) 
and IL4I1_Mac (#6) of the MoMac-VERSE, respectively (Figure 3D-F). 
In addition, we also identified cells that mapped to the FTL_Mac (#17) 
population, which were not pre-defined in Kuo et al., thus highlighting 
how further heterogeneity can be uncovered with the MoMac-VERSE. 

Previous work by Silvin et al. has shown that monocyte populations in 
the blood of severe COVID-19 patients had decreased HLA-DRB1 gene 
expression, and increased NFKBIA and C5AR1 gene expression (Silvin 
et al., 2020). When this data was projected onto the MoMac-VERSE, 
the majority of cells fell within the CD16+_Mono (#1, #5) and CD16-

_Mono (#8, #15) clusters of the MoMac-VERSE with expression of HLA-
DRB1, NKFBIA and C5AR1 following the observations of Silvin et al. 
(Figure 3G-I). We were also able to identify macrophages from the 
bronchoalveolar lavage (BAL) of COVID-19 patients in the MoMac-
VERSE by mapping them with Azimuth. Cells from COVID-19 patients 
fell within the clusters of the TREM2_Mac (#3) ISG_Mono (#4) and 
IL4I1_Mac (#6). In mild COVID-19 samples, mapped macrophage fell 
within the TREM2_Mac (#3) cluster. In contrast, the BAL macrophages 
from severe COVID-19 patients mapped mostly to IL4I_Mac (#6), which 
were in association with stronger CXCL10 and ISG gene expression. 
These results are in agreement with observations made by Zhang et al. 

and Liao et al. respectively and are reiterated within the MoMac-VERSE 
(Liao et al., 2020; F. Zhang et al., 2020). Note that the link between 
COVID-19 BAL ISG_Mo (#4) and IL4I1_Mac (#6) further strengthens the 
connection between these two cell subsets (Figure 3J-M). The results 
of mapping of COVID-19 patient BAL and blood with azimuth reveal 
the capacity of the MoMac-VERSE to recapitulate findings with 
increased specificity to well-conserved and identified 
macrophage/monocyte populations. Note also that blood monocytes 
mapped only to the MoMac-VERSE monocytes while BAL 
macrophages mapped to macrophages. Together, these results show 
that the MoMac-VERSE is capable of both recapitulating findings and 
adding increased depth to observations about cell phenotypes. 
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Figure 3. De novo mapping of rheumatoid arthritis synovial tissue 

and of COVID-19 lung macrophages on the MoMac-VERSE using 

Azimuth. (A) Validation of the Azimuth “query dataset mapping” 

algorithm. Projection of (left panel) initially integrated and of (right 

panel) de novo “mapped query cells” (Liver, Sharma et al. dataset) onto 
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the MoMac-VERSE UMAP space using The Azimuth algorithm (Hao et 

al., 2020). (B) Correlation of the initially integrated MoMac-VERSE and 

the de novo mapped UMAP coordinates. The Pearson correlation co-

efficient (r) was calculated alongside the p-value. (C) Percentage of 

phenograph clusters of Liver (Sharma) on the MoMac-VERSE. (D-M) 

Mapping of (D-F) Rheumatoid Arthritis (Kuo et al., 2019) and of COVID-

19 patients’ blood (Silvin et al., 2020) (G-I) and (J-M) bronchoalveolar 

lavage (BAL) (Liao et al., 2020) new datasets onto the MoMac-VERSE. (D, 

G, J) Mapping of cells from different patient groups and (E, H, K) their 

corresponding frequencies within the MoMac-VERSE Phenograph 

clusters are shown. (F) Mapping of HBEGF+, MERTK+, and IFN/STAT 

clusters identified in the study of Kuo et al. (Kuo et al., 2019) in 

osteoarthritic and rheumatoid arthritic patients that correspond to 

HES1_Mac (#2), TREM2_Mac (#3) and IL4I1_Mac (#6) of the MoMac-

VERSE, respectively. (I) Mapping of HLA-DRB1hi cells (increased in mild 

COVID-19 patients) and of NFKBIAhi and C5AR1hi (increased in severe 

COVID-19 patients) identified in the study of Silvin et al. (Silvin et al., 

2020). (L) Frequency of the TREM2_Mac (#3), ISG_Mono (#4) and 

IL4I1_Mac (#6) in individual Healthy, Mild COVID-19 and Severe 

COVID-19 patients included in the COVID-19 BAL analysis. (M) 

Visualisation of the mean expression of cells for ISGs and IL4I1_Mac (#6) 

genes in the study of Liao et al. and overlaid on the MoMac-VERSE. 

The MoMac-VERSE identifies disease-specific monocyte and 

macrophage states 

Next, we looked at cellular reprogramming events in individual 
pathologies (Figure 4 and Figure S4A-H). Liver cirrhosis was 
associated with an accumulation of CD16+ monocytes (#1) when 
compared to healthy liver (Figure 4A-B). When deconvoluting data 
based on patients, including only healthy liver (excluding “normal 
adjacent” samples from cancer patients and including only patients for 
which at least 100 cells were sequenced), cells from cluster #1 also 
trended to increase. In the kidney of patients with lupus nephritis, cells 
with a monocyte-derived DC genotype (#7) and MNP/T cell doublets 
(#9) were increased (Figure 4C-D); while classical S100A8/A9/A12hi 
monocytes accumulated in the inflamed colon of patients presenting 
with colitis (Figure 4E-F), this latter observation being also confirmed 
at the patient level (Figure 4F). 
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Figure 4. Definition of monocyte and macrophage states triggered 

in inflamed and cancerous tissue. (A-L) Density plots and 
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quantification of the different clusters in different conditions: (A-B) 

cirrhosis, (C-D) lupus, (E-F) colitis and (G-M) cancer. For each condition, 

quantification of each cluster is provided across datasets and (B,F) for 

individual patients for which at least 100 cells per sample were 

sequenced. (K-M) Graphical representation of the relative proportion of 

clusters increased in (K) all cancer studies, (L) only in liver cancer or (M) 

in all cancers excluding liver cancer. (N) Quantification of TREM2_Mac 

(#3), IL4I1_Mac (#6) and proliferating cells (#10) in healthy tissues and 

corresponding tumours in each patient of liver, lung and colon datasets. 

Included patients had at least 35 cells in health or in tumour tissues. (O) 

Summary of clusters increased in the different diseased tissues. P values 

were calculated using a paired t-test. 

We also looked into individual cancers and observed an accumulation 
of HES1_Mac (#2), IL4I1_Mac (#6) and proliferating_Mac (#10) both in 
the tumour and metastatic lymph nodes (LN) of lung cancer patients, 
while TREM2_Mac (#3) also accumulated but only in the tumours 
(Figure 4G-J, Figure S4I-J). Colon and liver tumours also contained 
increased proportions of TREM2_Mac (#3), IL4I1_Mac (#6) and 
proliferating_Mac (#10). Alongside, liver tumours exhibited increased 
HES1_Mac (#2) and C1Qhi_Mac (#16), as recently described (Sharma et 
al., 2020). 

In summary, TREM2_Mac (#3), IL4I1_Mac (#6) and proliferating_Mac 
(#10) were accumulated in all tumours from the 6 cancer types 
included in this study (Figure 4K, Figure S4K-L and Figure 4O). 
Among these cancer types, liver tumours were unique in their 
accumulation of monocyte-like C1Qhi_Mac (#16) and were the only 
tumours in which the inflammatory IL1B_Mo #15 were not 
accumulating (Figure 4L-M). In certain datasets where patient 
information was available, patients for which more than 35 cells were 
sequenced in both the normal adjacent and the tumour were selected 
for the analysis. At the patient level, TREM2_Mac (#3), IL4I1_Mac (#6) 
and proliferating_Mac (#10) were also significantly enriched in the 
tumour (Figure 4N and Figure S4M-N). Together, these results show 
that the MoMac-VERSE provides a platform to identify unique and 
conserved cell types and states across tissues and pathologies. 

 



 

 

 

75 

Identification of long-term resident and monocyte-derived-like 

macrophages across human tissues 

A recent breakthrough in the field of monocyte and macrophage 
biology was the clarification of tissue-resident macrophage ontogeny 
(Blériot et al., 2020). Based on murine studies, it has been shown that 
in most healthy tissues, the majority of tissue-resident macrophages 
do not derive from adult circulating monocytes but directly from 
embryonic precursors seeded in tissues early during development and 
constitute a pool of “long-term resident” macrophages (Florent 
Ginhoux et al., 2010; Mass et al., 2016), while monocyte-derived 
macrophage accumulates notably during inflammation or 
carcinogenesis (R A Franklin et al., 2014; Zhu et al., 2017). 

We next asked whether the MoMac-VERSE could be used to indicate 
the likely “long-term resident” versus recently differentiated adult 
monocytic source of distinct Mac populations from various tissues, 
based on similarities in gene expression profile. We overlayed cells 
expressing the mean universal CD16- monocyte signature derived from 
Figure 1G onto the MoMac-VERSE UMAP space (Figure 5A and 
Figure S5A). This revealed that monocyte-derived DC-like 
macrophages (#7), TREM2_Mac (#3) and IL4I1_Mac (#6) expressed 
monocyte signature genes, whereas HES1_Mac (#2) did not. We 
recently described that most murine tissues were populated by two 
phenotypically-distinct populations of interstitial macrophages that 
can be discriminated based on differential LYVE1 expression (Chakarov 
et al., 2019). In mice, both these populations were initially derived from 
embryonic precursors and then replaced by monocytes at a tissue-
specific pace. Here we also observed that differential LYVE1 expression 
separated the total human macrophage population, but interestingly, 
we noticed that LYVE1+ cells strongly overlap with fetal liver 
macrophages included in the MoMac-VERSE (Figure 5A). This 
suggested either their common embryonic origin or that a full 
reprogramming of monocytes had occurred during the establishment 
of long-term tissue residency. In addition, these LYVE1+ macrophages 
fell mostly within the HES1_Mac (#2) and the Ferritin Light Chain gene 
(FTL) expressing macrophages (FTL_Mac), in line with our recent 
description of the fetal-like reprogramming of HES1+FOLR2+ 
macrophages in liver tumours (Sharma et al., 2020) and the iron 
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metabolism-related program detected in human embryonic 
macrophages (Bian et al., 2020). Of note, similar to what has been 
reported in mouse studies (R A Franklin et al., 2014; Zhu et al., 2017), 
we observed that macrophages accumulating in cancer tissues had a 
more prominent monocyte signature (Figure 5B). Notably, apart from 
liver tumours, where the “long-term resident”-like HES1_Mac (#2) 
accumulated, all macrophage populations that were increased in 
cancer corresponded to the putative monocyte-derived macrophages 
characterised in Figure 4, highlighting the cancer type-specific 
imprinting on certain MNP populations with the recruitment of 
monocyte-derived TAM. 

We were particularly interested in the IL4I1_Mac (TAM, #6) that 
accumulated in all tumour types, and noted that they exhibited a 
marked overlap in DEtGs (transformed genes) and DER (regulons) with 
ISG_Mo (#4) (Figure 2B and Figure S3A). This degree of both DEtG 
and DER overlap was higher than for the other Phenograph cluster 
comparisons, suggesting a close relationship between IL4I1_Mac (#6) 
and ISG_Mo (#4) and a potential differentiation path between the 
ISG_Mo (#4) to the IL4I1_Mac (#6) (Figure 5C). When we dissected the 
expression of genes that might directly regulate the functions of 
ISG_Mo (#4) and IL4I1_Mac (#6) DEtGs (defined in Figure 2A and 
Figure S3A), we identified common key transcription factors among 
DER of both cell types that could be responsible for their specific 
activation program (Figure 5D): STAT1, STAT2, ETV7, IRF1 and IRF7 
could be involved in the regulation of IDO1 and IL4I1 genes. Although 
IDO1 has been considered as a master regulator of the aryl 
hydrocarbon receptor (AHR) activation, a recent study demonstrated 
that IL4I1 was a more potent activator of AHR and thus acts as a 
metabolic immune checkpoint that can promote tumour progression 
through the catabolism of tryptophan (Sadik et al., 2020). Of note, we 
noticed that IL4I1_Mac (#6) had a higher expression of IDO1 and IL4I1 
in tumours than in matched healthy adjacent tissues (Figure S5D-E). 
We also observed that many shared DEtGs between ISG_Mo (#4) and 
IL4I1_Mac (#6) or IL4I1_Mac (#6)-specific DEtGs have also recently 
been described as highly expressed by mature DC enriched in 
immunoregulatory molecules (mregDC), suggesting that similar events 
and interactions could drive both IL4I1_Mac (#6) and mregDC 



 

 

 

77 

programming in tumours (Maier et al., 2020) (Figure 5E).  

We recently developed a new fate-mapping mouse model using the 
expression of Ms4a3 gene to label monocyte-derived cells (Liu et al., 
2019). To further validate the monocytic origin of the IL4I1_Mac (#6), 
we integrated in-house-generated liver data from Ms4a3cre-
RosatdTomato mice with publicly available mouse liver scRNAseq data 
(Remmerie et al., 2020; Seidman et al., 2020) (Figure 5F-H and Figure 

S5F). We confirmed that mouse Trem2+Spp1+ macrophages were 
monocyte-derived, while Hes1+Folr2+ macrophages were mostly of 
non-monocytic origin (Figure 5G) (Sharma et al., 2020). Strikingly, a 
minor subset of cells that shared genes with the human IL4I1_Mac (#6) 
(see Figure 5E) could also be detected in the mouse liver (Figure 5H). 
Mouse Il4i1+-like macrophages were all dTomato+ and thus, derived 
from monocytes. Altogether, human IL4I1_Mac (#6) expressed 
monocyte genes, shared DEtGs and DER with ISG_Mono (#4) and share 
similarities with a monocyte-derived murine orthologous population, 
which argues that the human IL4I1_Mac (#6) population is of 
monocytic origin. 

Finally, we aimed to extend the ontogenical characterization of the 
various macrophage populations included in the MoMac-VERSE. We 
evaluated the commonalities between signatures of macrophage 
subsets from different studies and the top 5 DEtGs of the MoMac-
VERSE Phenograph clusters that were either uniquely-expressed 
transformed genes (UEtGs) or DEtGs with at least a 2-fold increase of 
LogFC expression as compared to DEtGs from other clusters (Figure 

S5G). We grouped the MoMac-VERSE clusters into five main 
categories: monocytes (both classical CD16- Mo and CD16+ Mo), 
monocyte-derived macrophages (moMac), macrophages (Mac), 
proliferating macrophages (Prolif) and cells with low viability (Dead). 
We then compared these 5 main groups with the published cluster 
annotations: monocyte (blue) or macrophage (green) and 
inflammatory (pink), anti-inflammatory (light green) or cycling (light 
blue) (Figure 5I). We observed that most populations reported as 
‘inflammatory macrophages’ had commonalities with monocyte 
clusters of the MoMac-VERSE, arguing for their monocytic origin. In 
addition, the MoMac-VERSE wide integration allows the clarification of 
the annotation of MNP subpopulations. For example, whilst some 
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studies have used the term “macrophages” to annotate cells belonging 
to the S100A8+S100A9+S100A12+ classical monocytes (cluster #8), 
others have called them monocytes. But within the MoMac-VERSE, all 
these differently annotated but highly similar populations belong to a 
common tissue monocyte subpopulation (Figure 5I). 

 
Figure 5. Characterisation of human long-term resident and of 

monocyte-derived macrophages. (A) Overlay of the universal cMo 

mean signature from Figure 1G-H, of LYVE-expressing cells and of 

human fetal liver cells on the MoMac-VERSE UMAP. (B) Overlay of the 

universal cMo mean signature in healthy and cancer tissues. (C) 
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Heatmap showing relative expression levels of the number of common 

DEtGs and DER between Phenograph clusters of the MoMac-VERSE. (D) 

Visualisation of DEtGs predicted as regulated by transcription factors of 

IL4I1_Mac (#6) and ISG_Mo (#4) DER. (E) Overlay of the expression on 

indicated genes on the MoMac-VERSE. Representative common DEtGs 

between ISG_Mo (#4) and IL4I1_Mac (#6; up) and DEtGs specific for 

IL4I1_Mac (#6; down) are displayed. DEtGs identified as specific for 

mregDC (Maier et al., 2020) are indicated in blue frames. (F) UMAP 

space obtained following integration of in-house generated liver data 

originating from Ms4a3cre-RosatdTomato mice and publicly available 

data (Remmerie et al., 2020; Seidman et al., 2020). Briefly, two libraries 

have been generated separately on tdTomato- and tdTomato+ cells and 

integrated with available data coming from healthy mice only. Ms4a3- 

and Ms4a3+ cells are displayed in green and red, respectively. (G-H) 

Expression of genes to define (G) monocytes, Trem2 and Hes1 mouse 

macrophages, and (H) of genes to define mouse Il4i1 macrophages. (I) 

Re-assignment of published monocyte and macrophage clusters 

according to the MoMac-VERSE. The clusters as designed in the original 

studies are compared to the top 3 to 5 DEtGs (selected either as UEtG or 

DEtG with an at least 2-fold increase of LogFC expression as compared 

to DEtGs from other clusters) of the MoMac-VERSE Phenograph clusters. 

Exploring the MoMac-VERSE allows in-depth characterisation of 

IL4I1 tumour-associated macrophages 

We next aimed at clarifying the functions of the different TAM 
subpopulations. Using DEtGs obtained with the transf.matrix (Figure 

2A and Figure S3A), we examined the pathways of the TAM 
populations that were increased in all included cancer studies (Figure 

6A and Table S10) and the ISG_Mo (#4), as we hypothesized that they 
could give rise to IL4I1_Mac (#6). This analysis confirmed the 
inflammatory potential of IL1B_Mac (#15), and suggested that 
TREM2_Mac (#3) were involved in lipid metabolism (Jaitin et al., 2019), 
and that ISG_Mo (#4) were IFN-primed. IL4I1_Mac (#6) were associated 
with antigen presentation, interaction with both Th2 and Th1 T cells, T 
cell exhaustion and, importantly, tryptophan degradation, again 
linking this population to tumour progression through the catabolism 
of tryptophan (Sadik et al., 2020). IL4I1_Mac (#6) were the only 
macrophages that also expressed genes involved in phagosome 
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maturation. Therefore, similarly to the mregDC, with which they share 
a strong common specific gene expression profile (Figure 5E), the 
IL4I1_Mac (#6) could have their gene expression program modulated 
following phagocytosis (Maier et al., 2020). Next, we looked at the 
predicted upstream regulators of these cell subsets. We confirmed that 
IFN-I was the top predicted upstream regulators of ISG_Mo (#4) and 
also observed that IFNG was among the top predicted upstream 
regulators of both ISG_Mo (#4) and IL4I1_Mac (#6) (Figure 6B).  

Next, we focused on three studies (two liver cancer and one colon 
cancer datasets) of the MoMac-VERSE containing cells isolated from 
three distinct anatomical sectors: the normal adjacent tissue, the 
tumour periphery and the tumour core. Contrary to the other subsets, 
ISG_Mo (#4) and IL4I1_Mac (#6) were detected in greater proportion 
in the tumour periphery (Figure 6C). This observation supported the 
hypothesis of a recruitment of monocytes which mature in TAM within 
the tissue microenvironment (TME). Given the strong IFNG imprinting 
in IL4I1_Mac (#6) and that IL4I1_Mac (#6) pathways revolved around 
antigen presentation and interaction with T cells, we hypothesized that 
ISG_Mo (#4) and IL4I1_Mac (#6) interact with IFNg secreting T cells 
present in the tumour periphery. 

We carried out a NicheNet analysis to predict putative T cells 
interactions with monocyte/macrophage subsets in cancer (Figure 6D, 
Figure S6A and Table S11). We chose the ISG_Mo (#4), and the 
MoMac subsets that were increased in all included cancer studies (#2, 
3, 6, 15) as “target” populations, and asked which T cell-related 
molecules and T cell subsets would be predicted to act as “stimulators”. 
We confirmed that IFNG was the top predicted stimulator of ISG_Mo 
(#4) and IL4I1_Mac (#6), but not for the other cell subsets. Importantly, 
CD40LG was also one of the top predicted stimulators of ISG_Mo (#4) 
and IL4I1_Mac (#6), but only in the tumour periphery where these 
subsets were detected most abundantly (Figure 6C). Furthermore, 
IFNG-expressing cytotoxic CD8+ T cells and CD40LG-expressing CD4+ 
T cells were also most abundant within the tumour periphery, where 
higher expression of IFNGR1/2 and CD40 in ISG_Mo (#4) and 
IL4I1_Mac (#6) was evident (Figure 6E-F and Figure S6B-C). This is in 
agreement with a previous study demonstrating that activated 
CD69+CD8+ T cells can induce IDO1 expression in monocyte-derived 
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macrophages in an IFNg-dependent manner (Zhao et al., 2012). In 
addition, several studies have demonstrated that IDO1 expression can 
be induced in vitro in monocyte-derived macrophages through their 
stimulation by CD40-ligand (CD40LG) and IFNg (IFNG) (Munn et al., 
1999; Zhao et al., 2012). Furthermore, CXCL9, CXCL10 and CXCL11 were 
among the top DEtGs of IL4I1_Mac (#6) (Figure 2A, Figure S3A and 
Table S5). CXCR3, the receptor for these 3 chemokines, was strongly 
expressed by regulatory T cells (Tregs) within the tumour periphery 
and core, the two tissue regions where Tregs were also the most 
abundant (Figure 6F-G). Therefore, our observations suggest a 
potential interaction of CD40L-expressing CD4+ T cells and IFNg-
producing CD69+ activated CD8+ T cells with ISG_Mo #4, contributing 
to their reprogramming into immunosuppressive IDO1/IL4I_Mac. 
These macrophages, through their specific chemokine production, 
their expression of PD-L1 and PD-L2 and their IL4I1/AHR tryptophan 
degradation function might in turn suppress T cells and attract Tregs 
into the tumour (Figure 6H). 
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Figure 6. Potential mechanisms leading to pathogenic 

macrophage states in human tumours. (A) Pathway analysis for 

individual tumour-associated macrophage clusters. (B) Top 10 upstream 

regulators for each cluster determined by ingenuity pathway analysis 

(IPA). (C) Repartition of cells from the indicated clusters in cancer sub-

cellular localisations for one colon cancer and the two liver cancer 

studies included. (D) Visualisation of the regulatory potential of the top 

3 predicted ligands associated with DEtG and DER expression in 

IL4I1_Mac (#6) and ISG_Mo (#4) across liver sections in the Sharma 

dataset as determined by NicheNet analysis. (E) Visualisation of the 

expression of IFNG and CD40LG by T cell subsets and of IFNGR1, IFNGR2 
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and CD40 by macrophage subsets in the different liver cancer sections. 

(F) Violin plots of CD69 and IFNG gene counts within CD3+CD8+ T cells 

and of FOXP3 within CD3+CD4+ T cells in real tpm of the indicated 

dataset. (G) Visualisation of the expression of transcripts coding for 

selected chemokine receptors by T cell subsets. (H) Potential mechanism 

leading to IL4I1 macrophage programming and function. P values were 

calculated with one-way ANOVA test in (F). 

 

Validation of the macrophage heterogeneity in human tissues 

Following the establishment of the universal landscape of human 
macrophages, we applied multiparametric flow cytometry to validate 
our findings focusing on the IL4I1_Mac (#6). Our DEtG analysis (Figure 

2A, Figure S3A and Table S5) indicated that CD274 (PD-L1), 
PDCD1LG2 (PD-L2), CCR7, isoforms of HLA-DP/DQ, CD40, CD86 and 
CD38 were highly expressed by IL4I1_Mac (#6) (Figure 7A). The 
MoMac-VERSE also included a scRNAseq/CITE-seq breast cancer 
dataset (Wu et al., 2021), which revealed that at the protein level, 
IL4I1_Mac (#6) significantly expressed more PD-L1, PD-L2, MHC-II, 
CD80 and CD86 proteins as compared to the other monocytes and 
macrophages analysed in this study, thus validating their unique 
genotype and associated phenotype (Figure 7B). We thus combined 
antibodies against the corresponding proteins encoded by these 
genes together with TREM2, FOLR2, CD206 (MRC1, which we recently 
described as a defining marker of HES1/FOLR2 macrophages in liver 
cancer (Sharma et al., 2020)) and monocyte/macrophage lineage 
markers and analysed first by flow cytometry healthy human lung, a 
tissue in which IL4I1_Mac (#6) could be detected even at steady state 
(Figure S7A-B, Table S2). Data were analysed within a first UMAP 
space (Figure S7A-B), from which MNP were extracted and re-
analysed (Figure 7C-D). We detected three major clusters of HLA-DR+ 
MNP, a major population of alveolar macrophages, a population of 
CD16+ monocytes and a population of monocyte/macrophages. While 
we could not clearly identify TREM2_Mac (#3) using an anti-TREM2 
antibody in this healthy human lung sample, within 
monocyte/macrophages we detected FOLR2+CD206+ cells 
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corresponding to the HES1_Mac (#2), FOLR2-CD206+ macrophages 
corresponding to macrophages #16 and notably, a minor population 
of PD-L1hiPL-L2hiHLA-DPhiHA-DQhiCD40hiCD86hi cells that 
corresponded to the IL4I1_Mac (#6) (Figure 7C-D and Figure S7C). We 
next established a classical manual gating strategy that allows to 
define these several macrophage populations in human lung (Figure 

S7C-E). 

Flow cytometry analyses were subsequently performed on matched 
samples obtained from the normal adjacent and tumour cells of three 
lung adenocarcinoma (LUAD) patients (Figure 7E-J and Figure S7F-I). 
In these samples, CD9 was used as a TREM2 surrogate marker to 
identify TREM2_Mac (#3) since TREM2 could not be detected 
previously in healthy human lungs (Figure 7C). Data were analysed 
within a first UMAP space (Figure 7E-F and Figure S7C), from which 
non-alveolar macrophage MNP (Non-Alv. Mac MNP) were extracted 
and re-analysed (Figure 7H-J and Figure S7G-I). While IL4I1_Mac (#6) 
and TREM2_Mac (#3) increased in tumours for all three patients, 
HES1/FOLR2_Mac (#2) only increased in the tumours of two out of the 
three patients, although all three populations were found to be 
increased in the MoMac-VERSE (Figure 7J). Note also that IL4I1_Mac 
had the highest expression of CD38 and HLA-DP, confirming our 
findings from the MoMac-VERSE at the protein level (Figure S7I). 

We also performed flow cytometry analysis on cells from the normal 
adjacent, the tumour periphery and the tumour core of the liver of a 
patient with Hepatocellular carcinoma (HCC, Figure 7K-L and Figure 

S7J). Similar to what was observed in the MoMac-VERSE (Figure 6C), 
IL4I1_Mac (#6) were mostly retrieved in the tumour periphery and were 
totally absent from normal adjacent liver (Figure 7K-L). We also 
confirmed our previous observation of progressive accumulation of 
HES1/FOLR2_Mac (#2) and TREM2_Mac (#3) from normal adjacent 
tissue towards the liver tumour core (Figure 7K-L) (Sharma et al., 
2020). 
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Figure 7. Flow cytometry validation of the MoMac-VERSE 

macrophage subsets (A) Expression of IL4I1_Mac (#6) marker genes 

overlaid onto the MoMac-VERSE UMAP space. (B) Expression of 

IL4I1_Mac (#6) marker proteins revealed by CITE-seq data from the Wu 

et al. Breast cancer CITE-seq/10X scRNAseq data included in the 

MoMac-VERSE. (C) Flow cytometry analysis of healthy human lung using 

antibodies binding proteins of the IL4I1_Mac (#6) markers shown in 



 

 

 

86 

panel (A). Relative expression of surface markers used to define the 

distinct populations as shown in (D). (E-I) Flow cytometry analysis of 

normal adjacent and tumour obtained from three lung cancer (LUAD) 

patients. (E) Mapping of Normal Adjacent (Norm. Adj.) and tumour 

CD45+ cells from the three included patients and (F) frequency among 

CD45+ cells of the populations defined in where histogram colours 

correspond to populations defined in (E). (G-I) For non-alveolar MNP (G) 

visualisation of detected in the Norm. Adj, and tumour tissues of the 

three patients and (H) relative expression of surface markers defining 

cDC2 (CD5, CD1c, FceR1a), cDC1 (CD141) and macrophage subsets 

(other markers). (I-J) Within non-alveolar MNP, (I) gating strategy 

defining cDC2 and macrophage and (J) quantification of IL4I1, 

CD9/TREM2 and FOLR2 macrophages in healthy tissues and 

corresponding tumours in each patient. (K) Flow cytometry analysis of 

Norm. Adj, and Tumour Periphery and Tumour Core obtained from a 

liver cancer (HCC) patient. Cells falling within the MNP and defined as 

HLA-DR+CD88+ macrophages are displayed (see Figure S7J for the 

upstream gating strategy). Within macrophages, PD-L1hiHLA-DQhi 

IL4I1_Mac (#6) were gated. Next, among PD-L1lo/-HLA-DQlo/- cells, 

gating of TREM2+FOLR2lo/- TREM2_Mac (#3) and of TREM2lo/-FOLR2+ 

FOLR2_Mac. (L) Frequency among CD45+ mononuclear cells of 

macrophage subsets from the analysis of panel (K). P values were 

calculated using the non-parametric Mann-Whitney in Figure 7B. 
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DISCUSSION 

Here, we have compiled and meta-analysed a large number of 
available MNP single-cell transcriptomic datasets and built 
comprehensive integrated MNP- and MoMac- VERSEs. These 
exploratory tools allowed us to propose a unified annotation of human 
monocytes and macrophages. Furthermore, they enabled us to identify 
immunosuppressive macrophage populations present and potentially 
involved in the progression of tumours. To our knowledge, this study 
constitutes the largest meta-analysis of human monocytes and 
macrophages, and we believe that it will be helpful for the scientific 
community to better apprehend myeloid cell diversity in normal and 
diseased tissues. As well as elucidating key transcriptional programs at 
play in the different subpopulations of cells, we also validated the 
identities of many of the clusters by integrating large unanchored 
datasets with the more restricted, but index-sorted populations. Of 
note is that the data integration of these two distinct but 
complementary analyses yielded remarkably powerful and unified 
results from many laboratories. Moreover, this “probes and references” 
approach, which we used previously (Dutertre et al., 2019), increases 
the resolution of current analytic pipelines and generates 
comprehensive cell universes (Stuart et al., 2019). Importantly, this 
requires the generation of a transformed matrix comprising all those 
genes that are common to integrated studies. However, a limitation of 
this approach is that during the generation of the transf.matrix, each 
integrated dataset goes through the normalisation of counts, which 
can result in an apparent reduction of the expression of some highly 
expressed genes. On the other hand, this transformation limits the 
artefactual detection of non-relevant genes in isolated datasets and 
provides very accurate targets - in other words, conserved clusters are 
defined by fewer but far more relevant DEtGs. Another very recent 
study (currently at a preprint stage) used a similar strategy to resolve 
lung MNP populations (Peters et al., 2020); our findings here fully 
corroborate this approach while extending it across additional tissues 
and diseases. Furthermore, the possibility offered by workflows such 
as Azimuth, which allows the mapping of “query” datasets to our 
reference MoMac-VERSE, should facilitate the integration of upcoming 
studies by providing a unified framework (Hao et al., 2020). Indeed, by 
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projecting data from published COVID-19 datasets onto the MoMac-
VERSE, we were able to recapitulate findings of previous works along 
with providing novel insight to the biology of macrophage and 
monocytes. The analysis of COVID-19 monocytes and macrophages 
highlighted an increased ISG signature in monocytes as observed by 
Silvin et al. (Silvin et al., 2020). Additionally, we observed an increased 
abundance of IL4I1_Mac expressing CXCL9, CXCL10, CXCL11, IDO1, 
and IL4I1 as found by Zhang et al. in inflammatory diseases and severe 
COVID-19 (F. Zhang et al., 2020). Considering the relationship between 
interferon signalling and the presence of IL4I1 macrophages as shown 
by the MoMac-VERSE, the MoMac-VERSE can be used to unify the 
findings of these two publications to reveal a more robust analysis of 
the biology of monocytes and macrophages in severe COVID-19. 

The integration here of data from healthy and diseased tissues 
revealed conserved pathologic programs, calling for re-visitation of 
the niche concept (Guilliams et al., 2020; Guilliams and Scott, 2017; 
Okabe and Medzhitov, 2014). Indeed, even in distinct tissues and so 
distinct niches, disease-associated programs become predominant 
and therefore strongly imprint myeloid cells (Sharma et al., 2020). In 
this context, the niche should not be conceptually restricted only to 
the tissue of residence, but should incorporate other important 
modifiers, including the sub-tissular niche and the inflammatory status 
of the tissue (Blériot et al., 2020). Previously, we identified two distinct 
subpopulations of interstitial macrophages present across tissues in 
both mice and humans (Chakarov et al., 2019). While confirming these 
findings, the current study improves their resolution considerably. It 
also raises the question of the ontogeny of human macrophages: in 
mice we now know that macrophages can either be derived from adult 
circulating monocytes or from embryonic precursors seeded in tissues 
during early development (Florent Ginhoux et al., 2010; Hashimoto et 
al., 2013; Mass et al., 2016; Perdiguero and Geissmann, 2016; Schulz et 
al., 2012; Yona et al., 2013). These seminal studies used powerful fate-
mapping models but it has been challenging to understand their 
implications for human biology. While single-cell transcriptomics 
approaches go some way towards overcoming such challenges (Bian 
et al., 2020), our observation here that LYVE1+ macrophages harbour 
a signature overlapping with human fetal liver macrophages. Herein, 
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we focused our attention on the three main subsets of macrophages 
present across tissues, designed as TREM2, HES1 and IL4I1 
macrophages. The integrated data (MoMac-VERSE) suggest that 
TREM2 and IL4I1 macs could be mostly monocyte-derived, whereas 
HES1 macs harbour an embryonic signature. To validate this 
hypothesis, we have used our mouse fate-mapping model to identify 
the equivalent murine populations and revealed their ontogeny. This 
further extends the aforementioned “probes and references” approach 
by extending it across species and renders possible the use of fate-
mapping tools that have been developed along the years in animal 
models to reveal human cell population origins.  

Another important point is that these three macrophage populations 
have been reported separately in many isolated studies, but our 
integrated approach reveals them as major conserved subsets. Many 
studies still use the M1/M2 classification initially developed for in vitro 
monocyte-derived macrophages and which indeed splits efficiently 
human primary macrophages. But as demonstrated previously, this 
dichotomy is limited to embrace macrophage diversity, especially in 
the cancer context in which TAM differentiation from circulating 
monocytes appear to be a distinct pathway from the assumed M2 anti-
inflammatory (pro-tumoral) status (R A Franklin et al., 2014). For 
example, although IL4I1 have a strong M1 program, in vitro generated 
M1 monocyte-derived macrophages might not recapitulate the 
primary M1-like macrophages that contrary to in vitro M1 
macrophages, do not produce IL12B, production which is restricted to 
primary tissue activated cDC1 and mregDC. Therefore, the versatility 
of resident macrophages and TAM needs to be taken into account to 
refine our understanding of healthy and diseased tissues. In addition 
to cancer, CD38+ M1-like macrophages have recently been described 
in the context of ageing and ageing-related disease (Covarrubias et al., 
2020), which may correspond to the IL4I1_Mac. Further validation is 
necessary to understand the role of IL4I1_Mac in this context.  

Until recently TREM2 macrophages were mostly studied in the brain 
due to their role in the development of neurodegenerative disorders 
such as Alzheimer’s disease (Krasemann et al., 2017; Parhizkar et al., 
2019). However, a TREM2 macrophage population involved in 
metabolic disorders and obesity has now been detected in adipose 
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tissue (Jaitin et al., 2019); as well as in tumours, where they occupy a 
potentially immune-suppressive position (Katzenelenbogen et al., 
2020; Molgora et al., 2020). In parallel, a subset of immunosuppressive 
IL4I1+ TAM was detected almost a decade ago (Zhao et al., 2012) and 
reconfirmed more recently (Sadik et al., 2020). Herein, the combination 
of data from multiple studies focusing on different cancers and the 
unbiased analytic approach has fully validated these discoveries, and 
accordingly we have detected these populations in all of the 6 cancers 
analysed. From a mechanistic point of view, even if it is clear that these 
TAM are involved in dampening anti-tumoral T cell responses, the 
precise pathways involved are still unclear and deserve further 
investigation to fully decipher the T cell (IFNG+ CD8 T cells and `+ CD4 
T cells)/TAM relationship (Gordon et al., 2017). The third population of 
macrophages on which we focused our attention was the HES1 mac 
subset which corresponds to FOLR2+ mac that were notably detected 
recently in liver cancer (Sharma et al., 2020). Interestingly, these 
macrophages seem to undergo reprogramming towards a fetal 
macrophage identity during cancer development, which is mediated 
by the tumour vasculature. These macrophages could support tumour 
growth by being reprogrammed “as if” they were part of an embryo 
and should support its development. This raises the possibility that 
blocking this reprogramming and thereby promoting anti-tumoral 
responses of TAM could be a novel therapeutic strategy in the fight 
against cancer. 

A major strength of the MoMac-VERSE that we propose is the inclusive 
focus on monocytes as well as macrophages. Within the literature, two 
major monocyte populations (CD16+ and CD16-) have been recognised 
(Passlick et al., 1989; Ziegler-Heitbrock et al., 2010a) which we also saw 
within the MoMac-VERSE. In addition, however, we observed further 
heterogeneity, as in the case of ISG monocytes (#4) and their particular 
enrichment within the tumour periphery of liver and colon cancer 
patients. The resemblance of these cells to IL4I1_Mac (#6) further 
highlighted a potential precursor-product relationship that would 
have been missed in separate analyses. 

Finally, we have validated hypotheses raised by the MoMac-VERSE by 
using multiparametric spectral flow cytometry, quantifying protein 
markers validated thanks to the RNA/protein expression connexion 
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brought by the integrated CITE-seq/scRNAseq breast cancer dataset 
(Wu et al., 2021). Indeed, even if we fully recognise the relevance of the 
in silico approach to integrate large and widespread datasets, ones 
could argue that such analyses require biological validation before to 
be used in clinical settings. Data obtained from tumour biopsies herein 
were in full accordance with the predictions from the MoMac-VERSE 
and so we believed that such results should accelerate translational 
research by providing markers and potential targets for new 
treatments. 

In conclusion, we have revealed here the diverse but conserved array 
of human monocyte and macrophage populations in both health and 
disease. This study also provides an online tool to explore human MNP 
and we believe that this diversity should now be taken into account for 
further studies. The time when cancer-associated myeloid cell were 
called myeloid-suppressor derived cells based on the expression of few 
common but non-specific surface markers is now over: this paradigm 
shift, allowed by the new era of single-cell transcriptomics and their 
integration, will now lead us to go beyond the establishment of atlases, 
descriptive catalogues of cell subsets, and will pave the way to help the 
scientific community better design innovative and more specific 
macrophage-based immunotherapy strategies. 
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Limitations of the study: 

The transformed matrix is made in such a way that only genes common 
to all included datasets are taken forward. Consequently, some genes 
are lost in this process but those included are conserved across studies 
and thus, have a greater chance to be also detected in any other study 
not included here. As a consequence, most genes included in our 
universal MNP subsets and individual monocyte and macrophage 
subset gene expression signatures should also be detected in any 
other study. Since we only included scRNAseq datasets that were 
available at the time when these VERSES were generated, the MNP- 
and MoMac- VERSES could continuously be improved by mapping 
more recent and upcoming datasets through reintegration or using 
Azimuth (Hao et al., 2021). We were also limited by the number of data 
sets that had separately sequenced normal adjacent tissue, periphery 
and tumour core. Consequently, our findings on the accumulation of 
IL4I1_Mac and their IFN-primed monocytes precurors (cluster #4) 
within the tumour periphery were limited to liver and colon. Therefore, 
further validation is required for other tumours. Nevertheless, the 
interactive MNP- and MoMac- VERSES can be used to explore and 
align new findings to the data published here.
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STAR METHODS 

LEAD CONTACT  

Further information and requests for resources and reagents should 
be directed to and will be fulfilled by the Lead Contact, Charles-
Antoine Dutertre (charles-antoine.dutertre@inserm.fr) and Florent 
Ginhoux (Florent_Ginhoux@immunol.a-star.edu.sg).  

 

DATA AND CODE AVAILABILITY 

The MNP- and MoMac- VERSES can be explored and downloaded at 
https://gustaveroussy.github.io/FG-Lab/. Previously unpublished 
single-cell RNA-seq data have been deposited at GEO and are publicly 
available as of the date of publication. Accession numbers are listed in 
the key resources table. 

 

EXPERIMENTAL MODELS AND SUBJECT DETAILS 

Human samples 

Human samples were obtained in accordance with a favourable ethical 
opinion from Singapore SingHealth and National Health Care Group 
Research Ethics Committees. Liver tissues were obtained from living 
donor transplantations (Asian American Liver Centre, Gleneagles 
Hospital, Singapore). Healthy liver perfusates were obtained from the 
liver grafts of donors by flushing intrahepatic veins with cold saline 
prior to transplantation. Explanted liver tissues from patients with 
advanced cirrhosis and/or HCC were obtained and perfused in a similar 
manner in vitro (using syringe and needle) and leukocytes isolated as 
previously described (Tan-Garcia et al., 2017). Spleen tissue was 
obtained from patients with tumours in the pancreas who underwent 
distal pancreatomy (Singapore General Hospital, Singapore). Tonsil 
tissue was obtained from patients with adeno-tonsillar obstruction and 
who underwent adeno-tonsillectomy (KK Hospital, Singapore). Lung 
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tissue was obtained from pancreatic cancer patients from the 
Department of Surgery, Yong Loo Lin School of Medicine, National 
University of Singapore. Tumour and healthy adjacent tissue from lung 
were obtained from lung adenocarcinoma patients following written 
informed consent (Marie Lannelongue Hospital, Paris) and ethical 
approval (N°ID-RCB: 2016-A00732-49). Spleen, lung, liver and tonsil 
tissues were processed as previously described (Dutertre et al., 2019) 
for SMARTseq2. Liver samples for flow cytometry validation were 
processed as previously described (Sharma et al., 2020). All subjects 
provided IRB-approved consent. 

 

METHOD DETAILS 

Flow cytometry and cell sorting 

Cells were thawed from liquid nitrogen and transferred into RPMI 
(ThermoFischer) with 20% decomplemented FCS (ThermoFischer). 
Samples were treated with 1mg/ml DNase I (Sigma-Aldrich) at 37 ̊C. 
Cells were incubated with Live/Dead blue dye (Invitrogen) or with 
Zombie NIR (Invitrogen) for 30 min at 4 ̊C in phosphate buffered saline 
(PBS) and then incubated in 5% heat-inactivated fetal calf serum (FCS) 
for 15 min at 4 ̊C (Sigma Aldrich). Cells were stained with appropriate 
antibodies (listed in the STAR METHODS key resources table) in PBS 
with 2% FCS and 2mM EDTA (Sigma Aldrich) and Brilliant Stain buffer 
(BD) and incubated for 30 min at 4 ̊C, and then washed. For indexed-
sorting, cells were sorted using a an ARIAIII (70μm nozzle; BD 
Biosciences) and for macrophage phenotyping, cells were analysed 
using a Cytek Aurora 4-laser or 5-laser spectral analyser. Fcs files were 
exported and analysed using FlowJo v10.5.3. 
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Algorithms for dimensionality reduction  

For flow cytometry data, marker expression values were transformed 
using the auto-logicle transformation function from the flowCore R 
package. Uniform Manifold Approximation and Projection (UMAP) 
were carried out using all markers (flow cytometry) or significant PCs 
(based on Seurat analysis for scRNAseq data). UMAP was run using 15 
nearest neighbours (nn), a min_dist of 0.001 to 0.2 and Euclidean dis-
tance (Becht et al., 2018; McInnes et al., 2018). Phenograph clustering 
(Levine et al., 2015) was performed using all markers or significant PCs 
(based on Seurat analysis) before dimension reduction, and with the 
number of nearest neighbours equal to 150 and 100, for MoMac-
VERSE and MNP-VERSE, respectively, 30 for flow cytometry and equal 
to 15 for scRNAseq analysis. 
 

MNP extraction and Seurat V3 integration 

The 41 datasets used (Table S1) were either at the raw count matrix or 
already pre-processed and at the filtered stage. We first integrated all 
the datasets in an organ-specific manner. Before running the datasets 
through the integration, we applied universal quality control to keep 
everything in a unified matter. Cells that expressed fewer than 500 
genes and had more than 20% mitochondrial reads were filtered out. 
All datasets where then unified in the same expression matrix format. 
Integration was initiated using the Seurat V3 anchoring method (Stuart 
et al., 2019) and log normalized. The matrix was scaled and a Principal 
Component Analysis (PCA) was performed (Becht et al., 2018) from 
which the first 50 Principal Components (PCs) were selected for UMAP 
analysis. Following the identification of mononuclear phagocytes 
(MNPs) using canonical markers, a global integration (using 100 PCs 
for dimensional reduction) of monocytes and macrophages from all 
tissues was carried out as above.  
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Generation of indexed-sorting and SMARTseq2 single-cell 

transcriptome data 

Cells isolated from organs were indexed-sorted using the Indexed-
sorting panel (Table S2) on a BD FACS ARIAIII (BD Biosciences) into 96 
well plates containing 3 µL Lysis buffer (see below) using a 70 µm noz-
zle. Single-cell cDNA libraries were prepared using the SMARTSeq v2 
protocol (Picelli et al., 2014) with the following modifications: (i) 1 
mg/ml BSA Lysis buffer (Ambion Thermo Fisher Scientific, Waltham, 
MA, USA); and (ii) 200 pg cDNA with 1/5 reaction of Illumina Nextera 
XT kit (Illumina, San Diego, CA, USA). The length distribution of the 
cDNA libraries was monitored using a DNA High Sensitivity Reagent 
Kit on the Perkin Elmer Labchip (Perkin Elmer, Waltham, MA, USA). All 
samples were subjected to an indexed paired-end sequencing run of 
2x151 cycles on an Illumina HiSeq 4000 system (Illumina, San Diego, 
CA, USA), with 300 samples/lane. Data are available through GEO (GEO: 
GSExxx). 

 
Pre-processing, quality assessment and control and analysis of 

SMARTseq2 single-cell transcriptome data 

Paired-end raw reads were aligned to the human reference genome 
(GRCh38 version 25 release; Gencode) using RSEM version 1.3.0. Tran-
script Per Million read (TPM) values were calculated using RSEM and 
used for downstream analysis. Quality control, selection of highly var-
iable genes, PCA, and differential gene expression analysis was per-
formed using the Seurat R package. All scRNAseq dot plots and mean-
ing plots displaying the gene expression levels or mean signature 
genes were generated using SeqGeq v1.6 (Flow Jo LLC). 
 

Generation of transformed matrix 

To allow for universal analyses across all datasets, a transformed matrix 
was generated using datasets that contain more than 10,000 common 
genes inclusive of FOLR2. Datasets of (Cheng et al., 2018; James et al., 
2020; MacParland et al., 2018; Stewart et al., 2019; Vieira Braga et al., 
2019; Xue et al., 2019; Zheng et al., 2017) were excluded as they did 
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not meet the above criteria (Fig S1). The pipeline for the generation 
was adapted from Seurat V3. When loading in the selected datasets, 
we increased the amount of anchoring points (anchor features) and 
also the number of gene features (nfeatures). Both values were set to 
the highest number of genes (56,000) in all the datasets. The 
normalized matrix was extracted from the Seurat object. 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Differentially expressed genes (DEGs) and “transformed” genes 

(DEtGs) analysis 

DEG and DEtG analyses were performed using the Seurat v3 package 
(Stuart et al., 2019). All DEtGs obtained from the transformed matrix 
were calculated on non-normalised values with a logFC threshold of 
0.25 (unless specified otherwise) and DEGs obtained from real 
tpm/count matrixes were calculated on normalised values with a logFC 
threshold of 0.25. In both cases, the likelihood-ratio test for single-cell 
gene expression (bimodal test) was used and correction for multiple 
testing was carried out using the Bonferroni method. DEtGs between 
healthy and cancer tissues (Figure 2E and F), healthy and inflammation 
(Figure 2H and I ) were calculated with a logFC threshold of 0.025. The 
heatmap was generated using the top 50 significant DEtGs from each 
cluster. All DEtGs calculated from the transformed matrix are depicted 
in a red/white/blue colour scheme, whilst DEGs calculated from 
original TPM are shown in a yellow/black/purple colour scheme. 

 

Metadata analysis 

Metadata analysis was performed for selected studies with paired 
conditions (healthy versus cancer or inflammation). The proportion of 
phenograph clusters were plotted for each condition as charts and 
density plots for the selected studies. Further analysis was performed 
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to deconvolute at the patient level in datasets where this information 
was provided. We only analysed datasets where more than 35 cells 
were present. Charts and density plots were made in GraphPad Prism 
v6 and SeqGeq v1.6, respectively. Statistical tests were performed 
using GraphPad Prism v6 and are specified within the figure legends. 

 

M1 and M2 signature 

M1 and M2 signatures were derived from Table 1 published by 
Martinez et al. (Martinez et al., 2006). Those in common with DEtGs 
obtained across phenograph clusters were used to define M1- and 
M2-like signatures. The mean gene expression of M1- and M2-like 
gene signatures were analysed in SeqGeq v1.6 (Figure 2C and Figure 

S3F). We also graphed the number of common genes between the 
DEtGs from each cluster (Figure 2D).  

 

Generation of the major MNP subset DEGs 

Six datasets (Azizi et al., 2018; Cillo et al., 2020; Kim et al., 2020; Smillie 
et al., 2019; Zhang et al., 2019; Zilionis et al., 2019) that cover the UMAP 
space of the MNP-VERSE were selected for calculating DEGs across 
major MNP subsets using the original TPMs. Unique DEG to each of 
these subsets that were common across the six datasets were 
identified as the universal gene signatures. Expression of these 
universal gene signatures on the transformed matrix (DEtGs) was 
plotted as a heatmap (Figure 1G). The mean expression of the 
universal gene signatures for each MNP subset was visualised using 
SeqGeq v1.6 (Figure 1H). 
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Scenic gene regulatory network analyses 

To infer gene regulatory networks (GRNs) from TPM-normalized 
expression matrices of colon (L. Zhang et al., 2020), liver (Sharma et al., 
2020), and lung (Kim et al., 2020), a pySCENIC (single-cell regulatory 
network inference and clustering) v0.10.3 analysis was performed (Van 
de Sande et al., 2020). The analysis consisted of three main steps 
(GitHub/pySCENIC): generation of co-expression modules with 
GRNBoost2, refinement of these modules with RcisTarget and 
evaluation of the regulon activity with AUCell (Van de Sande et al., 
2020). Differentially expressed regulons (DER) were calculated using 
the Seurat pipeline with the same parameters as described above for 
DEG/DEtG analysis (adjusted p-value lower or equal to 0.05 and 
Log2FC cut-off of 0.25). Phenograph cluster-specific DER, as well as 
DER that had similar expression patterns across closely-related 
phenograph clusters were identified and subsequently used to 
generate a heatmap (Figure 2B). 

 

Pathway analysis 

Subset-specific and/or condition specific DEtGs, together with the 
respective fold-change and p-values, were uploaded to the Ingenuity 
Pathway Analysis (IPA) software (QIAGEN). IPA analysis reported the p-
value of canonical pathways and upstream regulators. Predicted 
upregulated or downregulated pathways were represented by a 
positive or negative Z-score, respectively. Canonical pathways 
determined by IPA's default threshold [–log. (p-value)>1.3] were then 
shortlisted and radar plots were used to visualize the p-values and Z-
scores as previously described in (Dutertre et al., 2019). Full lists of 
pathways can be found in Tables S9 and S10. 
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NicheNet analysis 

NicheNet is a computational method that uses scRNAseq data to 
predict interactions between cell populations (Browaeys et al., 2019). 
To identify potential interactions between T cells and subsets of 
macrophages in cancer, we used the HCC dataset from Sharma et al. 
(Sharma et al., 2020), that includes transcriptomic data for MNPs, 
lymphocytes and non-immune cells. The phenograph clusters that 
were enriched in cancer (clusters #2, #3, #4, #6 and # 15) were set as 
“receiver” populations, while the subsets of T cells were set as “sender” 
populations. Ligand-receptor pairs were included in the analysis when 
a minimum of 15% of the cells in the respective population expressed 
the protein (pct=15 in the get_expressed_genes function). The genes 
identified by DEtGs and DER in the MoMac-VERSE were used to predict 
the T cell ligands activities for each phenograph cluster (“geneset” 
input in the predict_ligand_activities function). The putative T cells 
ligands (the output of the predict_ligand_activities function) were 
ranked according to their ability to predict the gene signatures using 
Pearson correlation coefficients and can be found for each MNP 
phenograph cluster in Table S11. The top 3 ligands and their regulatory 
potential were represented in a heatmap following the NicheNet 
pipeline, using the function get_weighted_ligand_target_links on the 
top 20 predicted ligands with n=200 (top target genes), and a cutoff 
of 0.33 in the function prepare_ligand_target_visualization. 
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KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

Anti-goat (Polyclonal) AF488 

Jackson Immuno-

Research Laboratory 

Cat# 705-545-147, 

RRID:AB_2336933 

BTLA (Clone743986) BV605 BD Biosciences Cat# 743986, RRID:AB_2741906 

CCR2 (Clone LS132.1D9) BUV563 BD Biosciences Cat# 749076, RRID:AB_2873470 

CCR7 (Clone G043H7) Biotin BD Biosciences Cat# 552174, RRID:AB_394352 

CD11b (Clone M1/70) Biotin BD Biosciences Cat# 553309, RRID:AB_394773 

CD11b (Clone M1/70) BV570 Biolegend Cat# 101233, RRID:AB_10896949 

CD123 (Clone 6H6) PE/Daz594 Biolegend Cat# 306034, RRID:AB_2566450 

CD123 (Clone 7G3) BUV395 BD Biosciences Cat# 564195, RRID:AB_2714171 

CD14 (Clone 63D3) SparkB550 Biolegend Cat# 367148, RRID:AB_2832724 

CD14 (Clone M5E2) BV650 BD Biosciences Cat# 563419, RRID:AB_2744286 

CD141 (Clone AD5-14H12) APC Miltenyi 

Cat# 130-113-314, 

RRID:AB_2733313 

CD141 (Clone M81) BV421 Biolegend Cat# 344114, RRID:AB_2562956 

CD16 (Clone 3G8) APC/Cy7 Biolegend Cat# 302017, RRID:AB_314217 

CD16 (Clone 3G8) APC/Cy7 Biolegend Cat# 302018, RRID: AB_314218 

CD16 (Clone 3G8) BV650 Biolegend Cat# 302042, RRID:AB_2563801 

CD163 (Clone GHI/61) BV605 Biolegend Cat# 333615, RRID:AB_2562712 

CD163 (Clone GHI/61) BV605 Biolegend Cat# 333616, RRID: AB_2616879 

CD169 (Clone 7-239) BUV661 BD Biosciences Cat# 750363, RRID:AB_2874538 

CD169 (Clone 7-239) PE BD Biosciences Cat# 565248, RRID:AB_2732051 

CD19 (Clone HIB19) BV650 Biolegend Cat# 302238, RRID:AB_2562097 

CD19 (Clone SJ25C1) BV650 BD Biosciences Cat# 563226, RRID: AB_2744313 
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CD1a (Clone HI149) AF700 Biolegend Cat# 300120, RRID:AB_528764 

CD1c (Clone L161) BV421 Biolegend Cat# 331525, RRID:AB_10933249 

CD1c (Clone L161) BV421 Biolegend Cat# 331526, RRID: AB_10962909 

CD1c (Clone L161) SB436 Invitrogen 

Cat# 62-0015-42, 

RRID:AB_2762426 

CD20 (Clone 2H7) BV650 Biolegend Cat# 302336, RRID:AB_2563806 

CD20 (Clone 2H7) BV650 BD Biosciences Cat# 563780, RRID: AB_2744327 

CD206 (Clone 15-2) PP/Cy5.5 Biolegend Cat# 321122, RRID:AB_10899411 

CD206 (Clone 19.2) PE/CF594 BD Biosciences Cat# 564063, RRID:AB_2732052 

CD209 (Clone 9E9A8) PE/Cy7 Biolegend Cat# 330114, RRID:AB_10719953 

CD209 (eB-h209) PercP/Cy5.5 

ThermoFisher 

Scientific 

Cat# 45-2099-73, 

RRID:AB_1106983 

CD3 (Clone SP34-2) BV650 BD Biosciences Cat# 563916, RRID:AB_2738486 

CD3 (Clone UCHT1) BUV805 BD Biosciences Cat# 612895, RRID:AB_2870183 

CD301 (Clone H037G3) PE Biolegend Cat# 354704, RRID:AB_11219002 

CD38 (Clone HIT2) BB515 BD Biosciences Cat# 564498, RRID:AB_2744374 

CD4 (Clone SK3) Cfl.YG584 Cytek Biosciences 

Cat# R7-20041, 

RRID:AB_2885083 

CD40 (Clone 5C3) BV750 BD Biosciences Cat# 746948, RRID:AB_2871735 

CD45 (Clone 30-F11) PercP Biolegend Cat# 103130, RRID:AB_893339 

CD45 (Clone HI30) BV510 BD Biosciences Cat# 563204, RRID:AB_2738067 

CD45 (Clone HI30) V500 BD Biosciences Cat# 560777, RRID:AB_1937324 

CD45RA (Clone 5H9) FITC BD Biosciences Cat# 556626, RRID:AB_396498 

CD5 (Clone UCHT2) APC/R700 BD Biosciences Cat# 565121, RRID:AB_2744433 

CD5 (Clone UCHT2) BV711 BD Biosciences Cat# 563170, RRID:AB_2738044 

CD86 (Clone 2331) BV786 BD Biosciences Cat# 740990, RRID:AB_2870657 
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CD86 (Clone IT2.2) BV605 Biolegend Cat# 305429, RRID:AB_11203889 

CD88 (Clone S5/1) APC/Fire750 Biolegend Cat# 344316, RRID:AB_2750445 

CD88 (Clone S5/1) PE/Cy7 Biolegend Cat# 344307, RRID:AB_11125761 

CD88 (Clone S5/1) PE/Cy7 Biolegend Cat# 344308, RRID: AB_11126750 

CD89 (Clone A59) BUV496 BD Biosciences Cat# 750617, RRID:AB_2874749 

CD9 (Clone M-L13) BV480 BD Biosciences Cat# 746356, RRID:AB_2743675 

CTLA4 (Clone 14D3) PP/eF710 Invitrogen 

Cat# 46-1529-42, 

RRID:AB_2573718 

FceRIa (Clone AER-37 (CRA-1)) BV711 Biolegend Cat# 334638, RRID:AB_2687186 

FceRIa (Clone AER-37 (CRA-1)) PerCP Biolegend Cat# 334616, RRID:AB_2168079 

FOLR2 (Clone 94b/FOLR2) PE Biolegend Cat# 391704, RRID:AB_2721336 

FOLR2 (Clone 94b/FOLR2) APC Biolegend Cat# 391706, RRID:AB_2721303 

HLA-ABC (Clone W6/32) Pacific Blue Biolegend Cat# 311417, RRID:AB_493668 

HLA-ABC (Clone W6/32) Spark Biolegend Cat# 311453, RRID:AB_2876612 

HLA-DP (Clone B7/21) BUV395 BD Biosciences Cat# 750866, RRID:AB_2874962 

HLA-DP (Clone B7/21) eFluor506 BD Biosciences Cat# 334609, RRID:AB_1227656 

HLA-DQ (Clone Tu169) AF647 BD Biosciences Cat# 564806, RRID:AB_2738963 

HLA-DQ (Clone Tu169) BV510 BD Biosciences Cat# 742609, RRID:AB_2740907 

HLA-DR (Clone L243) BV785 Biolegend Cat# 307641, RRID:AB_2561360 

HLA-DR (Clone L243) BV785 Biolegend Cat# 307642, RRID: AB_2563461 

HLADR (Clone L243) APC/Fire810 Biolegend Cat# 307673, RRID:AB_2876603 

NOTCH2 (Clone MHN2-25) BUV615 BD Biosciences Cat# 752315, RRID:AB_2875832 

PD-L1 (Clone MIH1) R700 BD Biosciences Cat# 565188, RRID:AB_2739101 

PD-L1 (Clone MIH1) PE/Cy5 Invitrogen 

Cat# 15-5983-42, 

RRID:AB_2802211 

PD-L2 (Clone 24F.10Ca12) APC Biolegend Cat# 329608, RRID:AB_1089013 
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PD-L2 (Clone MIH18) BUV737 BD Biosciences Cat# 748698, RRID:AB_2873102 

PD-1 (Clone EH12.1) BV750 BD Biosciences Cat# 747446, RRID:AB_2872125 

PD-1 (Clone PD1.3) PE/Cy5.5 Beckman Coulter Cat# B36123 

SLAN (Clone DD-1) VioBlue Miltenyi Biotec 

Cat# 130-119-868, 

RRID:AB_2733608 

Streptavidin (Polyclonal) BV570 Biolegend Cat# 405227 

TREM2 (Polyclonal) pure R&D Systems Cat# AF1828, RRID:AB_2208689 

TREM2 (Clone #237920) AF647 R&D Systems 

Cat# FAB17291P, 

RRID:AB_884528 

XCR1 (Clone S15046E) FITC Biolegend Cat# 372612, RRID:AB_2715831 

Zombie NIR™ Fixable Viability Kit Biolegend Cat# 423106 

LIVE/DEAD™ Fixable Blue Dead Cell Invitrogen Cat# L23105 

Chemicals, Peptides, and Recombinant Proteins 

DNAse I Sigma Aldrich Cat# 48024000 

PBS ThermoFisher  Cat# 20012-027 

Collagenase IV Sigma Aldrich Cat# C5138-500MG 

RPMI ThermoFisher Cat# 31870-025 

Brilliant Stain Buffer BD Biosciences Cat# 563794 

FCS ThermoFisher Cat# 26140079 

Deposited Data 

SMARTseq2 single cell transcriptome 

data of human blood and tissue MNP 

This paper GSE178209 

   

 

Biological samples 

Healthy Lung sample National University Hospital 

(NUH), Singapore 

Healthy Lung sample 
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Matched LUAD lung sample Marie Lannelongue Hospital, 

Paris 
Matched LUAD lung sample 

Matched HCC liver sample Singapore General Hospital 

(SGH) and National University 

(NUH) 

Matched HCC liver sample 

Software and Algorithms 

Anaconda 2018.12 Anaconda https://www.anaconda.com 

DIVA BD Biosciences https://www.bdbiosciences.com/

en-us 

FlowJo v10.5.3 Tree Star https://www.flowjo.com 

GraphPad Prism 6 GraphPad https://www.graphpad.com/scie

ntificsoftware/prism/ 

Ingenuity Pathway Analysis 

v01-16 

QIAGEN https://www.qiagenbioinformati

cs.com/products/ingenuity-

pathway-analysis/ 

NicheNet Browaeys et al., 2019 https://github.com/saeyslab/nich

enetr 

Phenograph Levine et al., 2015 https://github.com/JinmiaoChen

Lab/Rphenograph 

Python v3.7.1 Python Software Foundation https://www.python.org 

R v4.4 The R Foundation https://www.r-project.org 

SCENIC 

Van de Sande et al., 2020 

https://github.com/aertslab/pyS

CENIC 

SeqGeq v1.6 FlowJo https://www.flowjo.com/solutio

ns/seqgeq 

Seurat v3 Stuart et al., 2019 https://satijalab.org/seurat/ 

Seurat v4 Hao et al., 2020 https://satijalab.org/seurat/ 

UMAP McInnes et al., 2018 https://github.com/lmcinnes/um

ap 

  



 

 

 

107 

SUPPLEMENTAL FIGURES 

 

Figure S1 related to Figure 1: The MNP-VERSE reveals universal 

signatures of major MNP subsets across human tissues. (A) 

Integration Strategy at the organ level (up: Liver – down: Tonsil/Lymph 

node). Cells form a common organ but coming from different studies 
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were integrated in a common 2D UMAP space and index sort data was 

used when available to annotate MNPs. (B) Overlay of cells from each 

organ on the MNP-VERSE. (C) Dot plots of RNA (X-axis) versus protein 

(Y-axis) expressions for the indicated markers. (D) Overlay of the 

expression of selected Universal signature genes (defined in Figure 1G) 

of the major MNP subsets. (E) Dot plots of real (X-axis) versus 

transformed matrix (Y-axis) counts for the indicated genes. The Pearson 

correlation co-efficient (r) was calculated alongside the p-value. (F) 

Heatmap showing the presence or absence of any given gene from 

human translatome in all the integrated datasets. 
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Figure S2 related to Figure 1: Analysis of indexed-SMARTseq2 

scRNAseq data and back-mapping onto the MNP-VERSE. (A) DEG 

heatmap obtained from SNN clusters of our in-house indexed-

SMARTseq2 (SS2) scRNAseq data. The heat map is annotated to display 

relative frequency in each cluster of tissues and cell type annotation 
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(obtained from DEGs and from indexed-data protein expression analysis, 

not shown). (B) Overlay of KNN clusters (upper panel), cell subsets 

identification based on indexed-data protein expression analysis (middle 

panel) and of tissue of origin (lower panel) onto the UMAP space. (C) 

Back-mapping of cell subsets defined in the SS2 UMAP space onto the 

MNP-VERSE UMAP space. 
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Figure S3 related to Figure 2: The MoMac-VERSE identifies 

conserved monocyte and macrophage states and global 

imprinting across human tissues (A) Heatmap of the MoMac 

Phenograph cluster DEtGs. (B) Overlay of cells from healthy tissues on 

the MoMac-VERSE. (C) Quantification of the different Phenograph 

clusters in each healthy tissue. (D) Visualisation of the mean expression 

of cells positive for indicated genes used as biomarkers in the mentioned 

studies and overlaid on the MoMac-VERSE. (E) Gene expression in the 
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transformed matrix of the MoMac-VERSE. Heatmap showing the number 

of Phenograph clusters’ DEGs defined on real counts from 6 datasets that 

are also defined as DEtGs when using the transf.matrix. (F) Visualisation 

of M1+M2+, M1-M2+, M1+M2- macrophage polarisation states defined by 

mean signatures obtained from Martinez et al (Martinez et al., 2006) 

onto the MoMac-VERSE. (G) Profile of IL12B RNA expression in the MNP-

VERSE. (H) Density plots and clustering information of the healthy, 

cancer or inflammatory diseased MoMac-VERSE. (I) Quantification of the 

different clusters in the indicated conditions. (J) Definition of monocytes 

and macrophages in the MoMac-VERSE used to analyse these cell 

subsets in Figure 2E-J. 
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Figure S4 related to Figure 4: Definition of monocyte and 

macrophage states triggered in inflamed and cancerous tissue. (A-

H) Percentage of the different clusters in the indicated studies and in the 

corresponding organs: colon – cancer (A), liver (B), breast (C), stomach 

(D), pancreas (E), lung (F), colon - colitis (G) and skin (H). (I) Overlay of 
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metastatic cells of lung cancer data from the indicated dataset on the 

MoMac-VERSE. (J) Quantification of the different phenograph clusters in 

healthy tissues and corresponding tumours. P values were using a paired 

t-test (K,M,N) Graphical representation of the relative proportion of 

clusters increased using Wilcoxon test (related to Figure 4O-P). (L) 

Graphical representation of the relative proportion among CD45+ cells 

of clusters increased in all cancer studies. P values were using a paired 

t-test (*) and a Wilcoxon test (**). 
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Figure S5 related to Figure 5: Characterisation of human 

embryonic-like resident and of monocyte-derived macrophages. 

(A) Overlay of the expression of the mean universal monocyte signature 

and of LYVE1 on the MoMac-VERSE. (B-C) Overlay of the expression of 

indicated (B) monocyte markers, and other (C) mean Universal 

signatures. (D) Violin plots of IDO1 and IL4I1 transf.matrix counts (upper 

panels) or of real TPM (lower panels) in healthy or tumour tissues. (E) 
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Overlay of the expression of IDO1 and IL4I1 genes across tissues. (F) 

Annotation of the mouse liver integration data. P values were calculated 

with two-tailed unpaired t-test for (D). (G) Heat map showing the mean 

expression of DEtGs of the MoMac-VERSE selected for Figure 5I within 

each of the displayed Phenograph clusters. 

 

 

Figure S6 related to Figure 6: Potential mechanisms leading to 

pathogenic macrophage states in human tumours. (A) Visualisation 

of the regulatory potential of the top 3 predicted ligands associated with 

DEtG and DER expression in the indicated myeloid cell populations 

across liver sections in the Sharma dataset as determined by NicheNet 

analysis. (B-C) Identification of (B) major cell subsets and of (C) the 

different T cell populations in the indicated liver dataset. 
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Figure S7 related to Figure 7. Validation of the MoMac-VERSE 

macrophage subsets in healthy human lung and in human lung 

(LUAD) and liver (HCC) cancers. (A) Overlay of defined cell 

populations in the manual gating strategy on the (B) UMAP analysis 

used to resolve human CD45+ immune cell populations in healthy lungs. 

(C) Relative expression of surface markers by the defined cell 

populations. (D) Cell populations within the MNP gate from Figure S5B 

are further defined in the manual gating strategy and overlaid on the 
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(E) UMAP analysis of exported MNP in healthy lungs. (F) Meaning plots 

of surface markers used to define the distinct populations as shown in 

Figure 5D. (G) Quantification of cDC2 in healthy tissues and 

corresponding tumours in each patient. (H-I) Comparison of protein 

expression represented as mean fluorescence intensity (MFI) on (H) 

normal adjacent and tumour MNP, and on (I) IL4I1_Mac (#6) , 

HES1/FOLR2_Mac and TREM2_Mac. (J) Flow cytometry analysis of 

normal adjacent, tumour periphery and tumour core obtained a liver 

cancer (HCC) patient. With the UMAP of flow cytometry data, MNP were 

gated and macrophages were subsequently gated ad HLA-DR+CD88+. 
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SUMMARY 

Dendritic cells (DCs) are professional antigen presenting cells 
(APCs). While plasmacytoid DCs (pDCs) are poor APCs at a steady state, 
myeloid progenitor-derived DCs (mDCs) comprise DC1s, DC2s and 
DC3s specialised in T-cell priming. To have unbiased DC atlases, we 
integrated DCs from 13 tissues across 40 datasets to generate a 
pDC+mDC-VERSE (DC-VERSE) and an mDC-VERSE scRNAseq 
compendiums. We characterised DC subsets and “states” across 
tissues. We found that most studied tumours contained CD207+ DCs 
whose expansion inversely correlated with tumour CD8+ resident 
memory T-cells (TRMs), T-cell clonality and survival of patients that 
received immune checkpoint blockade treatment. Similarly to CCR7-
expressing mDCs (a common “state” of DC1s, DC2s and DC3s), CD207+ 
mDCs were a common state of DC2+DC3s. Spatially-resolved single-
cell transcriptomic and immunohisto-fluorescence of human 
carcinomas demonstrated that lymphocytes and most DCs were 
enriched within tumour stroma, while CD207+ DC2+DC3s were mostly 
embedded within tumour nests. 

 

Keywords: Dendritic cells, DC1, DC2, DC3, Heterogeneity, Cancer, cell 
state, DC-VERSE, mDC-VERSE, CD207, TRM, TEMRA, T-cell clonality, 
Immune checkpoint blockade, ICB, scRNAseq, Single-cell spatial 
transcriptomics. 

 

Link to the online website for DC-VERSE and mDC-VERSE exploration: 

https://macroverse.gustaveroussy.fr/2021_DC-VERSE/ 

https://github.com/gustaveroussy/FG-Lab  
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INTRODUCTION 

The mononuclear phagocyte system (MPS) was initially comprised of 
monocytes and macrophages, which later included conventional 
dendritic cells (cDCs) discovered by Ralph Steinman and colleagues 
(Steinman and Cohn, 1973). These cells were shown to be the unique 
potent activators of naïve T-cells and were viewed as ‘accessory’ cells 
bridging the innate and adaptive immune response (Nussenzweig et 
al., 1980; Steinman et al., 1983; Steinman and Witmer, 1978). Over time, 
the identification of common DC progenitors (CDPs) has aided in 
defining the cDC lineage and understanding the origin of various DC 
subsets (Lee et al., 2015; Liu et al., 2009; Naik et al., 2007; Onai et al., 
2007), including cDC1s (referred to here as DC1s), CD1c+ DCs (initially 
termed cDC2s), and plasmacytoid DCs (pDCs), found across tissues and 
species (Guilliams et al., 2016). However, the advent of high-
dimensional single-cell technologies has unveiled additional subsets 
and states, particularly within human CD1c+ DCs (referred to here as 
DC2s and DC3s, collectively termed DC2+DC3 throughout this study) 
and pDC compartments(Bourdely et al., 2020; Cytlak et al., 2019; 
Dutertre et al., 2019; See et al., 2017; Villani et al., 2017). Notably, 
CD123+ DCs were revealed to harbour both bona fide pDCs and DC 
precursors (pre-DCs) (See et al., 2017; Villani et al., 2017). Within CD1c+ 
DCs, CD5+ DC2s and CD5-CD14+/- DC3s were identified, with the latter 
expanding during inflammation (Bourdely et al., 2020; Dutertre et al., 
2019). The classification of DC3s within the cDC lineage has remained 
a significant question, with recent studies suggesting that DC3s might 
originate directly from a GMP/MDP progenitor, independent of 
CDPs/pre-DCs (Bourdely et al., 2020; Cytlak et al., 2019). The DC 
nomenclature is intricately linked by their ontogeny, and it was 
established that the term “conventional” DC (cDC) would qualify 
CDP/pre-DC-derived DCs (Guilliams et al., 2014). Consequently, the 
common myeloid progenitor origin of pre-DC-derived DC1 and DC2, 
as well as GMP/MDP-derived DC3, allows us to classify these three cell 
subsets as myeloid DCs (mDCs). 

While cell lineages/subsets are determined by their ontogeny, cell 
states are molecular programs that could be acquired in a cell’s 
lifespan in response to specific tissue or inflammatory cues (Ginhoux 
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et al., 2022). One example is the CCR7-expressing mDCs (CCR7 mDCs, 
also called mature DCs enriched in immunoregulatory molecules, 
mregDCs), which represent terminally differentiated and matured 
states of DC1s, DC2s, and potentially DC3s, playing essential roles in 
tumour immunity (Di Pilato et al., 2021; Maier et al., 2020; Zheng et al., 
2017). 

The increased accessibility and feasibility of single-cell RNA 
sequencing (scRNAseq) is a double-edged sword. Whilst the public 
database continues to expand, we are left overwhelmed with 
numerous publications with different annotations and names of DC 
clusters, resulting in confusing misalignment of the nomenclature of 
cell populations (Ginhoux et al., 2022). For example, ‘DC3’ was initially 
coined to describe a subset of inflammatory CD5-CD14+/- “CD1c+ 
mDCs” (Bourdely et al., 2020; Cytlak et al., 2019; Dutertre et al., 2019), 
whereas others have used this term to describe cells (Di Pilato et al., 
2021; Gerhard et al., 2020; Zilionis et al., 2019) that have an apparent 
transcriptomic alignment to CCR7 mDCs (called mregDCs by the 
authors of this study) (Maier et al., 2020). Furthermore, a CD207+ 

(Langerin) population has been described in various contexts (Bell et 
al., 1999; Leader et al., 2021; Y. Zhang et al., 2021). Evidently, there is 
little consensus on how these subsets are characterised, creating 
confusion among experts and newcomers in the field (Ginhoux et al., 
2022). 

In a recent study, we integrated monocytes and macrophages from 41 
scRNAseq datasets across various human tissues in health and disease 
to unify the identities of these cells (Mulder et al., 2021). Building upon 
this approach, we present the pDC+mDC-VERSE (DC-VERSE) and, 
specifically, the mDC-VERSE to unravel the mDC heterogeneity to 
realign the mDC nomenclature comprehensively. The mDC-VERSE 
allowed us to provide an in-depth analysis of DC2 and DC3 
heterogeneity, shedding light on their potential significance in various 
cancers. Notably, a common state of DC2+DC3s that co-expressed 
CD207 and CD1a receptors (CD207+ DC2+DC3s) was observed to: (1) 
accumulate inside the tumour of most cancer studied; (2) inversely 
correlate with T-cell clonal expansion, and the frequency of CD8+ 
resident memory T-cells (TRMs, classically defined as co-expressing 
CD69 and CD103); (3) predominantly embedded within tumour nests 
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while all the other DCs, T and B-cells were mainly detected within the 
tumour stroma of breast and lung adenocarcinomas. Altogether, this 
work provides a comprehensive resource to explore DC heterogeneity, 
including subsets and states across various tissues and will provide the 
foundation for an open discussion on a unified DC nomenclature.  
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RESULTS 

 

DC-VERSE 

We recently performed a meta-analysis of human macrophages and 
monocytes sequenced from 41 published datasets across 13 tissues, 
including healthy, normal adjacent (to tumours) and tumour tissues 
(Mulder et al., 2021) (Table S1). We adopted a similar approach for 
dendritic cells (DCs), where datasets were first integrated tissue by 
tissue, from which mDC and pDC were extracted and re-integrated to 
generate the DC-VERSE (Figure 1A and Table S1). To validate our 
integrated DC-VERSE, we employed established gene markers, 
confirming the presence of pDCs (LILRA4/CLEC4C transcripts), pre-DCs 
(CD5/AXL transcripts), DC2+DC3s (CD1C/FCER1A transcripts), DC1s 
(CLEC9A/CADM1 transcripts), CCR7 mDCs (CCR7/LAMP3 transcripts), 
and proliferating DCs (MKI67/CDK1 transcripts) (Figure 1B). We used 
Phenograph (Levine et al., 2015) to define clusters and calculated the 
differentially expressed genes (DEGs) for all Phenograph clusters (cl. #) 
using the RNA matrix (Figure 1C, Table S2).  

We next implemented dendrogram clustering to understand the 
relationship of Phenograph clusters (cl. #) to one another. We 
identified ten DC mega-clusters, which included known subsets and 
novel ones such as heat shock protein-expressing DCs (cl. #16), low 
nFeature cells (Low nFeat., cl. #3), T-cell-containing doublets (cl. #1), 
and Langerhans cell-like DCs (LC-like DC, cl. #5, #17). (Figure 1D,E). 

DEG analysis of the DC-VERSE mega-clusters showed distinct signature 
genes associated with each mega-clusters (Figure 1F, Table S2). Such 
“universal” signatures can be used to identify all these DC populations 
in scRNAseq data obtained from most human tissues. 

We next evaluated the relative frequency of DC populations across 
normal adjacent (Norm. adj.) “healthy” tissues included in this study 
(Figure 1G). We first focused on pDCs and observed that pDCs were 
detected at the highest frequency in blood compared to other tissues. 
Examination of transcription factors IRF4 and IRF8 showed variations 
in their expression levels among pDC subsets, indicating differences in 
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maturation states (Figure 1H,I,J). However, our meta-analysis 
comparing matched normal adjacent tissues and tumours did not 
reveal significant differences in the frequency of pDC subsets (Figure 

1K). 

 

Figure 1. The DC-VERSE reveals signatures of major DC 

populations across human tissues (A) Summary of the integrated 
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datasets and schematic overview of the meta-analysis. Integration was 

first performed at the organ level, and pDCs and mDCs were extracted. 

Extracted cells were then combined and integrated to generate the DC-

VERSE. (B) Signature genes of major populations (pre-DC, pDC, DC1, 

DC2+DC3 subpopulations, CCR7 mDCs and Prolif. DCs) are shown on 

the DC-VERSE UMAP space. (C) Heatmap showing the expression of the 

top 5 DEGs per phenograph clusters. (D) Dendrogram clustering of 

Phenograph clusters. (E) UMAP where the Phenograph clusters and 

corresponding mega-clusters are overlaid. (F) Heatmap showing the 

expression of the top 15 DEGs per mega-clusters. (G) Composition of 

pDC and mDC clusters across normal adjacent “healthy” tissues. (H) 

Heatmap showing DEGs when comparing only pDC clusters. (I) Flow 

cytometry intranuclear staining of IRF4 and IRF8 in the blood and the 

spleen from different donors. The MFIs are shown in the right panel 

graphic. (K) Percentage of pDC clusters in all integrated datasets 

between matched normal adjacent and tumours. 

 

mDC-VERSE  

In this study, an effort was made to enhance the resolution of myeloid 
DCs (mDCs), specifically focusing on DC2- and DC3-related cell subsets 
and states. The mDCs were extracted from integrated datasets (tissue 
by tissue) to generate the mDC-VERSE (Figure 2 and Table S1). 
Clusters were defined using Phenograph (Levine et al., 2015), and 
differentially expressed genes (DEGs) and differentially expressed 
regulons (DERs) were calculated for all Phenograph clusters (cl. #) 
(Figure S1A,B, Table S2 and Table S3). Cl. #20 consisted of cells with 
a relatively low nFeature_RNA (Low nFeat., Figure S1C), and cl. #15 was 
a minor population of 118 cells (Minor) that were consequently not 
examined further (Figure S1D). 

We examined the expression of well-established signature genes and 
proteins (using CITE-seq data provided by Maier et al.) to identify 
major DC subsets broadly (Figure 2A). Specifically, TCF4/AXL 
transcripts and CD45RA/CD123 protein expression characterized pre-
DCs, while CADM1/CLEC9A transcripts and CD141/CD26 proteins 
identified DC1s. FCER1A/CD1C transcripts and CD33/CD1c proteins 
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marked DC2+DC3s, and CCR7/BIRC3 transcripts along with PD-L1/PD-
L2 proteins denoted CCR7-expressing mDCs. Furthermore, 
PCNA/MKI67 transcripts identified proliferating mDCs (Prolif. mDC). 
Notably, cl. #11 cells expressed T-cell specific membrane proteins, 
which likely represent T/DC cell doublets (Doublets) (Figure S1E). 
Dendrogram clustering was employed to comprehend the 
relationships among Phenograph clusters, leading to the recognition 
of twelve mDC mega-clusters (Figure 2B, Table S2). We identified 
regions encompassing previously defined subsets including pre-DCs 
(cl. #19), DC1s (cl. #8 and #10), DC2s (cl. #12, #13 and #17), DC3s (cl. 
#1, #4 and #9), CCR7 mDCs (cl. #14 & #16), proliferating mDCs (Prolif. 
mDC, cl. #2 and #6) and T/DC doublets (Doublets, cl. #11). The CITE-
seq data from Maier et al., allowed us to quantify the expression of 
CD5 and CD14 proteins and, thus, identify CD5+ DC2s and CD14+ DC3s 
(Maier et al., 2020). Furthermore, DC2 and DC3 gene signatures from 
Dutertre et al. (Dutertre et al., 2019) confirmed the proper 
identification of DC2 and DC3 mega-clusters (Figure 2C and Figure 

S1F-H). The mDC-VERSE also revealed mDC populations that could 
not be clearly associated with the major mDC subsets described above, 
namely CD207 DCs (cl. #7), LTB DCs (cl. #3 and #5) and IL1B DCs (cl. 
#18) (Figure 2B). Lastly, although cl. #17 was clustered with DC2s, and 
its unique gene expression pattern related to IFN-related genes led to 
its classification as an independent mega-cluster termed IFN-primed 
DCs (Figure 2B, Figure S1A). 

 

The mDC-VERSE establishes conserved DC subsets and states 

across human tissues 

In the exploration of human dendritic cell (DC) subsets and states, the 
mDC-VERSE framework provided a meticulous analysis, offering 
insights into their nuanced heterogeneity. Employing sophisticated 
computational techniques, including Label Transfer (SeuratV4) and 
cMAP analysis (Lamb et al., 2006), the study meticulously investigated 
puzzling mDC populations (CD207, IL1B, LTB, and IFN DCs), 
deciphering their categorisation as either distinct cell subsets or states 
(Figure 2D,E and Figure S2I). Both the Label Transfer and cMAP 
showed that while CCR7 mDCs appeared as a common maturation 
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state shared by DC1s, DC2s and DC3s, the CD207, LTB, IFN, and IL1B 
mDC mega-clusters could be a transcriptomic state shared by DC2s 
and DC3s and will then be referred to DC2+DC3 states from now on. 

In addition to finding signature genes for widely recognised mDC 
subsets (pre-DCs, DC2s, DC3s and DC1s) and state (CCR7 mDCs), DEGs 
of mega-clusters also identified genes for the less characterised/well-
known DC2+DC3 states such as LTB and LST1 for LTB DC2+DC3s; 
CD1A, CD207 and HLA-DQB2 for CD207 DC2+DC3s; ISG15, IFI6, IFI44L 
and IFIT3 for IFN-primed DC2+DC3s and AREG, IL1B, CCL17 and NFKB1 
for IL1B DC2+DC3s (Figure 2F and Figure S1J). 

Since DC3s share transcriptomic and phenotypic similarities with 
monocytes(Dutertre et al., 2019), we aimed to address the potential 
contamination of monocyte-derived cells. We observed that the 
monocyte-derived DCs (moDCs) signature was obtained from Gao et 

al. (Gao et al., 2021) mapped mostly within macrophages when 
overlapped onto the MNP-VERSE (Figure S1K) (Mulder et al., 2021). 
This signature could only be detected within the DC-VERSE with a 
lower mean expression within the DC3 cluster cl. #1 (Figure S1K,L). 
Moreover, several genes related to monocytes (C1QA, B, C or CD14) 
are also identified in the DEGs of DC3s (Figure S1A). 

When exploring only healthy tissues (mostly normal adjacent to 
tumours), DC populations were detected in varying frequencies, with 
some clusters such as CCR7 mDCs, LTB and CD207 DC2+DC3s 
detected in tissues but at a low frequency in the blood (Figure S1M,N). 
Note that in the skin datasets, few Langerhans cells were detected and 
regrouped within the CD207 DC2+DC3 cluster. 

DC2+DC3 heterogeneity in humans has also been recognised by 
Brown et al. that described two subsets of CD1c+ DCs in the spleen, 
namely CLEC4A+ cDC2As (cDC2A_Brown) and cDC2Bs (cDC2B_Brown), 
these latter being defined as expressing higher levels of CLEC10A 
(CD301) and CLEC12A (CD371) transcripts (Brown et al., 2019). To 
define cDC2A, Brown et al. regrouped clusters (cl.), cl.3 and cl.4 that 
they described in their analysis. Back-mapping Brown et al.'s. cl.3 and 
cl.4 (cDC2A_Brown) on the mDC-VERSE revealed that cl.3 
corresponded to LTB DC2+DC3s while cells from cl.4 were detected 
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within CD5+ DC2s (Figure S1O). The study of Cheng et al. also 
evaluated the heterogeneity of human DC2+DC3s in various human 
tumours, describing six DC2+DC3 subsets (Cheng et al., 2021). As these 
data were not integrated with the initial 40 datasets, we used 
multimodal reference mapping to project Cheng et al.’s DC 
populations onto the mDC-VERSE as a reference map (Hao et al., 2021). 
We could observe which mega-cluster these cells were assigned to 
(Figure S2A,B). This method also showed that the mDC-VERSE could 
filter out cells with a low nFeature_RNA as they mapped to the mDC-
VERSE cl. #20 (Figure S2C), allowing us to perform a second round of 
quality control to further identify and exclude low-quality cells for 
downstream analyses. When examining the mean expression of the 
top 50 DEGs of all DC2+DC3 mDC-VERSE mega-clusters on the UMAP 
from Cheng et al., we observed how the populations identified by 
these authors corresponded to the mDC-VERSE mega-clusters (Figure 

S2D,E) and vice versa (Figure S2F). The cDC2_ISG15 cluster, defined 
by Cheng et al., corresponded to the IFN-primed DC2+DC3s and the 
cDC2_FCN1 cluster, defined by Cheng et al., corresponded to DC3s. In 
turn, cells with the signature of LTB DC2+DC3s and of CD207 
DC2+DC3s (both defined within the mDC-VERSE) corresponded to 
unique subsets of Cheng et al.’s cDC2_CD1A (Figure S2E), highlighting 
the strength of the mDC-VERSE to identify small discrete populations 
which might otherwise be missed. 

After performing DEG analysis of the mDC-VERSE mega-clusters, we 
performed a gene regulatory network analysis (SCENIC) to identify 
mega-cluster-specific regulons common for two datasets [Lung 
(Maier) and Head & Neck (Cillo)] (Cillo et al., 2020; Maier et al., 2020), 
which adequately represented the UMAP space (Figure 2G and Table 

S3). Regulons included SOX4 and KLF3 for pre-DCs, IRF8, KLF8, FOXB1, 
HOXA7 for DC1s, MEF2C for DC2s, MAFB, CEBPA, STAT2 for DC3s, RXRA 
and RUNX3 for CD207 DC2+DC3s, RFX2 for LTB DC2+DC3s and ZEB1, 
IRF4, RELB for CCR7 mDCs. 

To gain insights into these cells' biological processes and functional 
relevance, we performed pathway analysis for major DC mega-clusters 
(Figure 2H and Table S4). We identified pathways including “Integrin 
signalling” and “mTOR signalling” for LTB DC2+DC3s; “IL-10 signalling” 
and “IL-6 signalling” for IL1B DC2+DC3s, “Aryl Hydrocarbon Receptor 
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(AHR) signalling” and “Dendritic Cell Maturation” for CCR7 mDCs, 
“Phagosome formation” and “complement system” for DC3s, and 
“ERK/MAPK signalling” and “HIF1a signalling” for CD207 DC2+DC3s. 

Given the vast number of recent publications examining DC subsets, 
various names have been assigned to DC subsets due to a lack of unity 
between publications, creating confusion within the field (Ginhoux et 
al., 2022). For example, the denomination ‘DC3’ was initially used to 
describe a subset of CD14+ inflammatory DCs (Dutertre et al., 2019), 
whilst others have used ‘DC3’ to describe DC that have an apparent 
transcriptomic alignment to CCR7 mDCs (Maier et al., 2020), because 
of the shared expression of transcripts such as CCR7, BIRC3, FSCN1 
and LAMP3 among others. Addressing the prevailing challenge of 
inconsistent nomenclature in the field of dendritic cell research, we 
sought to align the subsets identified in the mDC-VERSE with the 
published DEG signatures (Figure 2I). This heatmap proposes a 
nomenclature unification to mDCs, which have been given multiple 
identities. It also demonstrates that mature ‘DC3s’ defined by Gerhard 
et al., and Zilionis et al. (Gerhard et al., 2020; Zilionis et al., 2019), 
mregDCs defined by Maier et al.(Maier et al., 2020), LAMP3 DCs or 
CCR7 DCs identified by Zhang et al. and Qian et al., respectively (Qian 
et al., 2020; Zhang et al., 2019) all shared the gene expression signature 
of CCR7 mDCs defined here. Whilst the DC3 signatures [DC3s as 
defined by Dutertre et al. (Dutertre et al., 2019)] could be appreciated, 
some published signatures are only weakly associated with DC2s or 
DC3s.  

Altogether, the integrative approach used to generate the mDC-VERSE 
allowed us to appreciate the heterogeneity of mDCs and define 
universal signatures of their subsets/states, thus offering the possibility 
to reconcile the different studies that focused on the single-cell 
transcriptomic analysis of these cells. Next, we set out to unravel the 
heterogeneity of mDCs further and study their potential association 
with pathology. 
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Figure 2. The mDC-VERSE identifies mDC subsets and states across 

human tissues. (A) Signature genes (from mDC-VERSE) and protein 

markers (from Maier CITE-seq data) of major DC subsets (pre-DCs, 

DC1s, DC2+DC3 subpopulations, CCR7 mDCs and Prolif. mDCs) are 

shown on the mDC-VERSE. (B) Dendrogram clustering of Phenograph 

clusters to define mega-clusters. (C) Overlay on the mDC-VERSE of DC2 
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and DC3 cells defined based on CITE-seq CD5 and CD14 protein 

expression. (D) Label Transfer of identified cell states onto the mDC-

VERSE. (E) cMAP analysis of identified cell states showing their 

enrichment for DC2 or DC3 gene sets. cMAP permutation p-value < 

0.05. (F) Annotation of mega-clusters within the UMAP space of the 

mDC-VERSE. (G) Heatmap showing the relative expression levels of 

differentially expressed regulons (DERs) between mega-clusters common 

to Lung (Maier) and Head & Neck (Cillo) (Cillo et al., 2020; Maier et al., 

2020) cancer datasets. (H) Ingenuity Pathway Analysis of mDC mega-

clusters. (I) Heatmap showing the score of published DC signatures and 

nomenclature against DC mega-clusters. 

 

The mDC-VERSE reveals changes in DC distribution across 

matched normal adjacent tissues and tumours 

To assess the significance of the identified dendritic cell (DC) subsets, 
a comprehensive metadata analysis was conducted, comparing 
matched normal adjacent tissues with tumours. Initially, DEG analysis 
were performed between matched normal adjacent tissue and tumour 
across all mDCs (Figure 3A,B and Table S1). Notable differentially 
expressed genes (DEGs), including SPP1, CD14, LTB, CD1A, BIRC3 and 
CD207, were found to be upregulated in tumours, whereas CLEC9A (a 
DC1-specific gene) and CPVL were found to be enriched in the normal 
adjacent tissues. Several of the DEGs corresponded to the mDC-VERSE 
mega-cluster DEGs, prompting an exploration of their relative 
proportions across matched normal adjacent tissues and tumours. A 
global comparison of mega-cluster proportions indicated a potential 
increase in CCR7 mDCs, IFN-primed DCs, CD207 and LTB DC2+DC3s 
in tumours (Figure 3C and Figure S3A). For datasets where tumour 
localisation was available, normal adjacent tissue, tumour periphery 
and tumour core had been analysed separately. We observed that 
CCR7 mDCs trended to accumulate in the tumour periphery while 
proliferating mDCs trended to accumulate in the tumour core (Figure 

S3B). Additionally, the ratio of  DC3s to DC2s (DC3/DC2 ratio), 
representing functionally similar but pro-inflammatory counterparts, 
showed an increasing trend in the tumour core (Figure S3A,B). A 
meta-analysis was then conducted on studies with matched normal 
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adjacent and tumour across the identified mDC-VERSE mega-clusters, 
incorporating the predicted clusters from Cheng et al., (Cheng et al., 
2021) (Figure 3D and Figure S3C,D). Only studies with at least 8 cells 
detected were plotted for each cell population. Thus, for datasets with 
enough cells, this meta-analysis revealed a significant increase of 
CD207 DC2+DC3s in tumours where we could identify CD207 
DC2+DC3s, while IFN-primed DCs, CCR7 mDCs, the DC3/DC2 ratio and 
Prolif. mDCs significantly accumulated in most, but not all, tumours 
(Figure 3D,E). Conversely, a significant decrease in DC1s was also 
observed. Interestingly, when examining the constitution of Prolif. 
mDCs using Label Transfer (Seurat V4), the frequency of CD207 
DC2+DC3s among Prolif. mDCs exhibited a 10.75-fold increase in the 
tumour relative to normal adjacent tissue (Figure 3F). Moreover, 
compared to other mega-clusters, CD207 DC2+DC3s and DC1s 
comprised a greater percentage of proliferation in the tumour than in 
their normal adjacent tissue counterpart (Figure 3G). 
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Figure 3. Metadata analysis of mDC populations in cancer. (A) 

Volcano plot and (B) meaningplots of DEGs between globally matched 

normal adjacent and tumour for all cells included in the mDC-VERSE. 

(C) Bar plot of the percentage of mega-clusters and density plot of global 

matched normal adjacent and tumour. (D) Percentage of each mDC 

mega-cluster of the mDC-VERSE in all integrated datasets and query 

datasets (mapped through multimodal reference mapping and 
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annotated with cross symbols) between matched normal adjacent and 

tumour. (E) Overview of all included cancer datasets depicting a change 

in the distribution of DC populations between normal adjacent and 

tumour. (F) Percentage of DC mega-clusters predicted through Label 

Transfer (Seurat V4) within the Prolif. mDC mega-cluster with 

corresponding fold change (Tumour vs normal adjacent tissue). (G) 

Percentage of proliferating cells within each DC mega-cluster in normal 

adjacent and tumour tissues. P-values were calculated using a Wilcoxon 

test. 

 

Flow cytometric evaluation of DC subsets and states in normal 

adjacent and tumour tissues from non-small-cell lung carcinoma 

patients 

Following the identification of markers unravelling antigen presenting 
DCs’ heterogeneity and the characterisation of their putative relative 
changes in tumours, a validation study was conducted using 
multiparametric flow cytometry in normal adjacent tissues and 
tumours from eight non-small-cell lung carcinoma patients (NSCLC, 
Figure 4 and Table S5). Among CD45+ leukocytes, mononuclear 
phagocytes (MNPs) were initially identified, from which we identified 
CD123+ pre-DC+pDCs, DC1s, DC2+DC3s, and 
monocyte/macrophages (MoMac) (Figure 4A and Figure S4A). MNPs 
were exported and reanalysed, revealing all major MNP subsets 
(Figure 4B and Figure S4B,C). The frequencies of pDCs (data not 
shown), DC1s and total DC2+DC3s were comparable between normal 
adjacent and tumour tissues (Figure 4C). We next focused on specific 
DC populations, including DC2s and DC3s, where an increase in the 
percentage of CD14+ DC3s was observed in the tumours of 6 of the 8 
patients (Figure 4D,E). When looking at total DC3 (including CD14- 
DC3s), the DC3 to DC2 ratio was increased in the tumour of 7 of the 8 
patients, as previously shown (Figure 4F). The mDC-VERSE revealed 
that CD207 and CD1A were uniquely expressed genes by CD207 
DC2+DC3s. CITE-seq data also indicated that the CD103 protein was 
expressed on the membrane of all LTB DC2+DC3s and some CD207 
DC2+DC3s (Figure 4G). 
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Subsequently, we analysed CD1a, CD207 and CD103 at the protein 
level to define if cells expressing these membrane proteins correspond 
to unique subsets of CD1c+ DC2+DC3s or if they correspond to cell 
“states” that could be acquired by DC2s and/or DC3s (Figure 4H and 
Figure S4D). This analysis showed that the CCR7 mDC state is a shared 
maturation state of DC1s (CCR7 DC1s), DC2s (CCR7 DC2s) and DC3s 
(CCR7 DC3s). Similarly, CD103+ LTB DCs and CD207+ DCs 
corresponded to shared phenotypic states of CD5+ DC2s and CD5-

CD14+/- DC3s (CD103+ or CD207+ DC2s or DC3s, respectively) since 
they did not constitute a specific subset of either DC2s or DC3s. Note 
that among mDCs, a minor fraction of DC1s was detected within 
CD103+ cells (Figure S4E). Beyond CD5 and CD14, these CD103+ and 
CD207+ cell states also showed variable expression of other makers 
commonly expressed by DC3s, such as CD38 and CD11b (Figure 

S4F,G). 

Upon comparing normal adjacent and tumour tissues, a significantly 
increased frequency of CCR7 DC1 was observed in tumours, whereas 
the frequencies of CCR7 DC2+DC3s (and of CCR7 DC2s or CCR7 DC3s) 
were not significantly different (Figure 4I,J and Figure S4H). 

While CD103+ LTB DC2+DC3s were not expanded in tumours (Figure 

4K,L and Figure S4H), we confirmed that the frequency of 
CD1a+CD207+ DC2+DC3s was increased in the tumour tissue of all 
lung cancer patients with a fold increase ranging from 1.48 to 209.11 
(Figure 4M,N and Figure S4H,I). Notably, CD1a+CD207+CD5- DC3s 
showed a more significant increase as compared to 
CD1a+CD207+CD5+ DC2s in the tumour tissues (Figure S4H), 
mirroring the trend to an increased proportion of total DC3s (Figure 

4D,E).  
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Figure 4. Spectral flow cytometric analysis of DC subsets and 

states in 8 NSCLC patients. (A) UMAP of singlet, live, CD45+ cells from 

normal adjacent and tumour samples obtained from 8 NSCLC patients. 

(B) UMAP of extracted MNPs showing delineation of DC1s, DC2+DC3s, 

CD123+ DCs (pDCs and pre-DCs, see Figure S6C) and 

monocytes/macrophages (MoMac). (C) Percentage of DC1s and 

DC2+DC3s among total CD45+ cells. (D,E) Identification and 
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quantification of DC2s and DC3s and (F) DC3s/DC2s ratio in normal 

adjacent and tumour samples. (G) RNA expression of CD207 and CD1A 

and protein expression of CD103 overlayed on the mDC-VERSE. (H) 

Gating strategy starting from MNPs extracted in panel (B) to define the 

various states of mDCs. (I-J) Identification and percentage of total 

CCR7+ mDCs, CCR7+ DC1s and CCR7+ DC2+DC3s among total CD45+ 

cells. (K-L) Identification and percentage of CD103+ LTB DC2+DC3s 

among total CD45+ cells. (M-N) Identification and percentage of 

CD207+ DC2+DC3s among total CD45+ cells. P-values were calculated 

using a Wilcoxon test. 

 

Spatial mapping of DC subsets and states in breast and lung 

tumours 

Following our transcriptomic and phenotypic analyses, the spatial 
distribution of dendritic cell (DC) subsets defined in the mDC-VERSE 
was explored within tumour lesions from patients with three triple-
negative breast cancer (TNBC) and two estrogen receptor-positive (ER) 
(Figure 5A,B and Figure S5A,B). To this end, we reanalysed Visium 
spatial data of breast cancer tumours (Wu et al., 2021), where we 
performed z-scoring of mDC transcriptomic signatures identified in 
the mDC-VERSE. Most DC subsets and states were found in immune-
enriched/tertiary lymphoid structure (TLS) niches, including CD207 
DC2+DC3s. CD207 DC2+DC3s, and to a lesser extent, IL1B DC2+DC3s, 
were also detected in the “invasive cancer+stroma” niche. 

To have a more refined understanding of the in situ localisation of the 
various subsets and states of DCs at the single-cell resolution and to 
define their localisation in regard to the other immune subsets, breast 
and lung tumours were analysed using Merscope data (Vizgen) (Chen 
et al., 2015). Following the delineation of cells within tissue cross-
sections (segmentation) and the quantification of their transcripts, we 
carried out a principal component analysis (PCA) followed by UMAP 
projection using principal components (PCs) selected for their high 
loading with immune-related genes (Figure S5C). This identified major 
cell populations, including EPCAM-expressing tumour cells, fibroblasts, 
endothelial cells and PTPRC (CD45)-expressing immune cells. Immune 
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cells were next extracted and analysed again as described above, 
revealing some B-cells, subsets of T-cells (CD4 T-cells, CD4 &FOXP3 -
expressing regulatory T-cells (Tregs) and CD8 T-cells), monocytes, 
macrophages and DC populations, including CLEC4C(CD303) & 

IL3RA(CD123) -expressing pDCs (Figure S5D). Notably, CD207 
DC2+DC3s expressed the highest quantity of TNF transcripts among 
all immune cells (Figure S5D), consistent with our observation from 
the mDC-VERSE where TNF was one of the top DEGs of CD207 
DC2+DC3s (Figure 2F). To improve the resolution of mDCs, we 
extracted mDCs for reanalysis, allowing us to identify CCR7 mDCs, 
DC1s, CD207- and CD207+ DC2+DC3s (Figure S5C-E). 

The above-mentioned cell populations were then mapped onto the 
lung and breast tumour cross-sections (Figure S5F), in which insets 
were defined to visualise better the localisation of each immune cell 
population (Figure 5C,D). While pDCs, CCR7 mDCs and DC1s were 
detected within the tumour stroma in close contact with B-cells and T-
cells, CD207 DC2+DC3s were located within tumour nests (surrounded 
by tumour cells) in both cancers. Besides the CD207 DC2+DC3s, a few 
Tregs and CD8+ T-cells were observed within tumours nest in both 
cancers. 

To validate the observation of CD207+ DC2+DC3s’ localisation within 
the tumour nests in a greater number of patients, immunohisto-
fluorescence (IHF) analyses were conducted on formalin-fixed paraffin-
embedded (FFPE) non-small-cell lung carcinoma (NSCLC) tumours 
obtained from 16 patients where CD207, CD3, CD8 and CD20 proteins 
were stained simultaneously (Figure 5E-J and Figure S5G). By re-
analysing our spectral flow cytometry data from Figure 4, we 
confirmed that among live cells of the NSCLC tumour, CD207 
expression was only observed within CD45+ cells and that it was solely 
expressed by CD1a+CD1c+HLA-DR+HLA-DP+ cells (all markers of 
CD207+CD1a+ DC2+DC3s) and that it was not expressed by CD88+ 
cells (monocyte/macrophages), CD3+ cells (T-cells), CD16+ cells (NK 
cells, monocyte/macrophages) nor by CD19+CD20+ cells (B-cells) 
(Figure S4J). Thus, the CD207 membrane protein staining is sufficient 
to identify CD207+ DC2+DC3s specifically. Normal adjacent and 
tumour regions were defined by a pathologist (G.G.) and are 
delineated in green and brown, respectively (Figure 5E,F). 
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Quantification of CD207+ cells (CD207+ DC2+DC3s) confirmed the 
significantly higher density of CD207+ DC2+DC3s in the tumour 
compared to the normal adjacent lung (Figure 5F,G). TLSs were 
detected (inset #2), and CD207+ DC2+DC3s appeared to be excluded 
from these structures (Figure 5H and Figure S5G). Within the tumour, 
CD3+ T-cells (including CD3+CD8+ T-cells) and CD20+ B-cells 
predominantly accumulated in the tumour stroma, while CD207+ 
DC2+DC3s were primarily detected in tumour nests, particularly in 
glandular structures (Figure 5H,I and Figure S5G). The Halo10 
software allowed us to perform an unsupervised delineation of the 
stroma and tumour area only in 13 of the 16 stained cross-sections. 
Quantitative analyses confirmed the significantly higher density of 
CD207+ DC2+DC3s in the tumour nests compared to the tumour 
stroma, while CD3+CD8+ T-cells were accumulating more in the 
tumour stroma than in the tumour nests (Figure 5I,J). 

Thus, these data not only confirmed the intratumoral accumulation of 
CD207+ DC2+DC3s but also allowed us to observe that these cells were 
embedded in between tumour cells, while the other DC populations, 
as well as T and B-cells, were mostly detected within the stroma.
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Figure 5. Spatial analysis of DC subsets and states in lung and 

breast tumours. (A) Visium spatial transcriptomic profiling of TNBC 

breast tumours was initially published by Wu et al. (Wu et al., 2021) 

outlining various tissue compartments in addition to spots showing the 

scaled median enrichment of CD207 DC2+DC3’s signature, overlayed 

on the Hematoxylin and Eosin (H&E) stainings. DCIS = Ductal 
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Carcinoma in situ. (B) Heatmap depicting the correlation of both 

immune and non-immune cell types within tissue niches. Certain non-

immune populations were mapped using the nomenclature and 

signatures from the study of Wu et al. (C-D) Visualisation of insets 

defined in Figure S5F of tumour cells and immune cells in (C) breast 

and (D) lung tumour cross-sections using the Merscope visualiser 

(Vizgen). (E-F) Visualisation of a full NSCLC FFPE cross-section where 

normal adjacent tissues and tumour regions are delineated by a green 

and brown line, respectively, and where insets #1 to #3 magnified in (H) 

are depicted. (E,F) Visualisation of (E) H&E stainings or of (F) the spatial 

mapping of CD207+ cells (CD207+ DC2+DC3s) of the same tumour 

cross-section is shown. (G) Density of CD207+ DC2+DC3s in normal 

adjacent lungs and the tumour regions from the 16 NSCLC tumours 

analysed. (H) Magnified insets defined in (E-F) are shown. (I) H&E 

stainings (upper panels) and the multiplexed fluorescent image (middle 

panel) from inset #4 [defined in (H)] are shown. The yellow dotted line 

delineates the tumour glandular areas from the tumour stroma. (J) 

Density of CD207+ DC2+DC3s and of CD3+CD8+ T-cells from 13 of the 

16 NSCLC tumours that could be analysed for tumour vs stroma regions. 

P-values were calculated using the Wilcoxon paired non-parametric test 

in (G) and (J). 

 

CD207 DC2+DC3s are associated with an unfavourable outcome 

in cancer 

Since mDCs are professional antigen-presenting cells that can prime 
naïve T-cells or reactivate memory T-cells, we explored the potential 
relationship of mDCs with T-cells. To address this, we mapped the 
breast cancer dataset from Bassez et al. (Bassez et al., 2021), where T-
cell clonality was evaluated before and after anti-PD-1 therapy onto 
the mDC-VERSE (using multimodal reference mapping (Hao et al., 
2021), Figure 6A-C and Figure S6A). Contrary to CCR7 mDCs, IFN-
primed DC2+DC3s and DC1s, the percentage of CD207 DC2+DC3s 
among total DCs increased only in tumours of patients without a clonal 
T-cell expansion (Figure 6A and Figure S6B). Interestingly, T-cell 
clonal expansion was only observed in patients with a DC1 to CD207 
DC2+DC3 ratio >1 (both pre-and post-treatment) (Figure 6B). 
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However, T-cell clonality quantification requires single-cell TcR-
sequencing, which is not used routinely due to technical limitations. If 
validated in other cohorts, the DC1s to CD207 DC2+DC3s ratio could 
become a means to predict T-cell clonality within tumours. Further 
analysis correlated mDC-VERSE populations against TEMRAs, TRMs and 
total CD8+ T-cells. This revealed that CD207 DC2+DC3s exhibited a 
negative correlation with CD8 T-cells’ frequency and showed a 
significant inverse correlation with resident memory CD8 T-cells (TRMs) 
(Figure 6C), specifically in patients without T-cell clonal expansion. 
This trend was extended to lung tumours scRNAseq data from Leader 
et al. (Leader et al., 2021), where the percentage of CD207 DC2+DC3s 
but not that of the other DC populations, trended to be higher in 
patients with a low frequency of CD8 TRMs (Figure 6D and Figure S6C). 
We also observed a significant positive correlation between the 
frequencies of DC1 and CD8 TRMs (Figure S6C). Additionally, within the 
Bassez et al. breast cancer data, CD207 DC2+DC3s strongly correlated 
with effector memory T-cells that re-express CD45RA (TEMRAs), which 
are terminally differentiated senescent and hypofunctional cells 
(Reading et al., 2018) (Figure 6C). Reanalysing our flow cytometry data 
from Figure 4, we also observed that the frequencies of CD207+ 
DC2+DC3s significantly negatively correlated with those of CD8+ T-
cells but not with that of CD4+ T-cells, while no correlation was 
observed between the other DC populations and T-cell subsets (Figure 

6E and Figure S6D). 

To confirm these observations in other datasets, bulk RNA-seq data 
from breast (BRCA) and lung (LUAD) adenocarcinoma patients 
obtained from The Cancer Genome Atlas Program (TCGA) were 
analysed (TCGA; Figure 6F and Table S6). DC population signatures 
were obtained from the mDC-VERSE, and other signatures were from 
the study of Nalio Ramos et al. (Nalio Ramos et al., 2022). In both the 
BRCA and LUAD cohorts, among all mDC signatures, the CD207 
DC2+DC3 signature showed the most negative correlation with T-cell 
subset signatures (CD8 T-cells, CD8 TRMs, exhausted T-cells and only 
for LUAD, Tregs) and with the DC1 signature. Furthermore, among the 
different T-cell subsets, the CD8 TRM signature showed the most 
negative correlation with the CD207 DC2+DC3s.  

  



 

 

 

144 

Finally, we further explored cohorts of patients whose tumours were 
sampled and analysed by bulk RNAseq before receiving an immune 
checkpoint blockade treatment (Lánczky and Győrffy, 2021) to 
evaluate the prognostic value when using the gene signatures of major 
DC populations (Figure 6G and Figure S6E). While the mean 
expression of DC1s (XCR1, CLEC9A) and CCR7 mDCs (LAMP3, BIRC3) 
gene signatures correlated with a statistically significant increase in 
overall survival (OS), the mean expression of CD207 DC2+DC3s 
(CD207, CD1A) gene signature was associated to a statistically 
significant decrease in OS. There was also a statistically significant 
increase in OS when looking at individual defining genes for each DC 
population (XCR1/CADM1/CLEC9A for DC1, LAMP3/BIRC3/MARCKS 
for CCR7 mDCs, and CD1C, a pan DC2+DC3 gene). Since the CD1C 
pan DC2+DC3 gene was significantly associated with an increased OS, 
this analysis points out that the “CD207” state of DC2+DC3s was 
specifically of poor prognosis (Figure S6E). Notably, the ratio of DC1 
to CD207 DC2+DC3 transcripts (XCR1/ CD207) was predictive of 
patient survival (Figure 6G), consistent with the observations made 
regarding the expansion of T-cell clonality (Figure 6B). Altogether, this 
analysis suggests that patients with low CD207 DC2+DC3 and high 
DC1 and CCR7 mDC tumour infiltrates respond better to ICB treatment 
and vice versa.
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Figure 6. Characterisation of the pathophysiological involvement 

of mDC populations in human cancer patients. (A) Percentage of 
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predicted mega-clusters by multimodal reference mapping of query data 

from breast cancer patients (Bassez et al., 2021) categorised by T-cell 

clonality and treatment status (anti-PD-1 therapeutic monoclonal 

antibody = Immune Checkpoint Blockade = ICB). (B) DC1 to CD207 

DC2+DC3 ratio for patients from Bassez et al. (Bassez et al., 2021), with 

at least one CD207 DC2+DC3. (C) Pearson correlations between the 

percentage among PTPRC(CD45)-expressing immune cells of CD207 

DC2+DC3s, CCR7 mDCs, IFN DC2+DC3s, or DC1s against total CD8 T-

cells (top), CD8 TRMs (middle) or CD8 TEMRAs (bottom). (D) Correlation 

between the frequencies of CD207 DC2+DC3s and CD8 TRMs among 

immune cells in lung tumours within the Leader et al. scRNAseq data 

(Leader et al., 2021). (E) Pearson correlation between the frequencies 

among CD45+ cells of CD207 DC2+DC3s, DC1s, CCR7+ DC1s, CCR7+ 

DC2s and CCR7+ DC3s against CD8+ T-cells from flow cytometry 

analysis of tumours cells obtained from 8 NSCLC patients. (F) 

Correlation map of DC population signatures (defined in the mDC-

VERSE) and of other signatures obtained from Ramos et al. (Nalio Ramos 

et al., 2022) in the BRCA (Breast) and the LUAD (Lung) adenocarcinoma 

TCGA datasets. (G) Kaplan-Meier plot of the overall survival (OS) of 

patients with different cancers whose tumours were sampled and 

analysed by bulk RNAseq before ICB treatment. Patients were separated 

based on the high or low expression of mDC populations’ mean gene 

signatures (left and middle panels) or the ratio of XCR1 to CD207 

transcripts (right panel). P-values were calculated using a Wilcoxon non-

parametric paired test. Correlations were evaluated using the Pearson 

correlation (r) with two-tailed test. 
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DISCUSSION 

Similar to our previous study investigating monocyte and macrophage 
heterogeneity (Mulder et al., 2021), we provide an integrated analysis 
across multiple tissues in various pathologies to build an in-depth 
overview of human DC heterogeneity. This analysis took advantage of 
40 scRNAseq datasets, along with flow cytometry validation, CITE-seq 
protein expression data, spatial genomics and immunohisto-
fluorescence, and various analytical pipelines to help define a robust 
characterisation of human DCs. 

The DC-VERSE can be useful for the scientific community to map all 
DCs from any scRNAseq dataset using multimodal reference mapping, 
but a more refined mapping of mDCs will be obtained using the mDC-
VERSE. Such an approach allows the mapping of different cells, 
including HSP-expressing DCs that could correspond to stressed cells, 
cells with low viability, B-cell contaminants, and T-cell doublets. 
Importantly, the DC-VERSE has provided “universal” DC population 
signatures applicable to defining these cells within any scRNAseq 
dataset. The DC-VERSE also revealed differences between blood and 
tissue pDCs, the latter presenting a higher IRF4 transcript. Such 
differences, together with the other DEGs, could also help identify 
blood-derived pDCs within tissue scRNAseq datasets. 

By integrating a vast number of cells based on their transcriptome and 
incorporating protein expression data (CITE-seq and indexed-FACS 
data), the mDC-VERSE revealed an unprecedented level of resolution 
of discrete cell subsets/lineages as well as transcriptomic/phenotypic 
states that the different subsets/lineages of DC2s and DC3s can share. 
For example, the CITE-seq data of Maier et al. allowed us to confirm 
the identification of DC2s and DC3s by overlaying the expression of 
CD5 and CD14 proteins. This CITE-seq data also helped us to define 
that LTB DC2+DC3s, and to a lesser extent, CD207 DC2+DC3s, 
expressed CD103 protein at their membrane, information that was 
used to detect and quantify CD103+ LTB DC2+DC3s by flow cytometry. 

Our integrative approach also allowed us to better appreciate the 
heterogeneity of the cDC2A_Brown defined in the study of Brown et 

al. (Brown et al., 2019). Indeed, when mapping cDC2A_Brown in the 
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mDC-VERSE, we observed that these cells were composed of LTB 
DC2+DC3s and CD5+ DC2s, while cDC2B_Brown overlapped with DC3s. 
Furthermore, cDC2A_Brown was described by Brown et al., to comprise 
two clusters (Brown clusters 3 and 4). When back mapping Brown 
clusters 3 and 4 onto the mDC-VERSE, we observed that Brown cluster 
3 overlapped with LTB DC2+DC3s while Brown cluster 4 overlapped 
with DC2s, highlighting that our approach allowed us to delineate DC 
subsets with a higher resolution. Cheng et al., also examined DC2 and 
DC3 heterogeneity by scRNAseq (Cheng et al., 2021). The “CD1A DC2s” 
cluster from Cheng et al., was in fact, composed of the LTB and CD207 
DC2+DC3 populations, which had not been appreciated in their study, 
most probably due to the low abundance of these cells. Within the DC-
VERSE, LC-like DCs also comprised CD207 DC2+DC3s that 
accumulated in tumours and LTB DC2+DC3s that did not. These two 
cell states could only be defined when we analysed only mDCs (mDC-
VERSE), pointing out that reducing the global variance of the dataset 
by analysing less heterogeneous cells makes it possible to define 
discrete cell subsets and states. 

The increasing number of scRNAseq studies has resulted in various 
names assigned to DC populations that share strong similarities, which 
calls for a nomenclature unification. DC3s were initially proposed as a 
subset of CD1c+ DCs harbouring pro-inflammatory CD14+ cells 
(Bourdely et al., 2020; Dutertre et al., 2019). Despite these observations, 
the term “DC3” has also been used to describe cells (Di Pilato et al., 
2021; Gerhard et al., 2020; Zilionis et al., 2019), that have an obvious 
transcriptomic alignment to CCR7 mDCs (Di Pilato et al., 2021; Maier 
et al., 2020; Zheng et al., 2017). Consequently, using the term “DC3” to 
describe these two fundamentally different populations can be 
confusing for researchers, especially since CD5-CD14+/- DC3s 
correspond to a cell subset while CCR7 mDCs correspond to a state 
shared by DC1, DC2s and DC3s (Ginhoux et al., 2022). To resolve this, 
we showed how published signatures aligned with the DC populations 
identified in the mDC-VERSE. For example, the various published 
nomenclature assigned to CCR7 mDCs included 
mregDC/migratory/activated/LAMP3/CCR7/“DC3”. Since the mDC-
VERSE considers several datasets across various diseases and tissues, 
our analysis allows for a comprehensive analysis of mDC 
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heterogeneity.  

In our meta-analysis, we particularly focused on the changes of mDC 
heterogeneity between normal adjacent and tumour tissues and 
observed genes such as SPP1, which was highly expressed in tumour 
tissues, mirroring findings also observed in monocytes and 
macrophages (Mulder et al., 2021). We also revealed a downregulation 
of genes, such as the DC1-specific CLEC9A gene, that suggests a 
reduction of DC1s’ density within human tumours (Kvedaraite and 
Ginhoux, 2022). This was in contrast to CCR7+ DC1s (but not of CCR7+ 

DC2s nor CCR7+ DC3s), whose frequency, evaluated by flow cytometry, 
was increased in the tumour of all the lung cancer patients assessed as 
compared to their matched normal adjacent lung tissue. Recently, an 
enrichment of “ISG+ DC2s” was observed in the tumours of mice, which 
efficiently activate CD8+ T-cells, thus promoting anti-tumour immunity 
(Duong et al., 2021). We also identified IFN-primed DC2+DC3s in 
human tumours, which were increased in most cancers studied when 
comparing tumours to normal adjacent tissues. Additionally, the 
expansion of CCR7 mDCs and DC3s has been reported in lung cancer 
patients (Leader et al., 2021; Maier et al., 2020), which we extended to 
several other cancers. 

While Leader et al. observed an expression of CD1A and CD207 
transcripts by total tumour DC2+DC3s, we could delineate 
CD207+CD1A+ DC2+DC3s (CD207 DC2+DC3s), which correspond to a 
tumour-associated state common to DC2s and DC3s. This population 
was of significant interest as its intratumoral expansion was observed 
in the mDC-VERSE with further validation by spectral flow cytometry 
and IHF in NSCLC patients. Our spectral flow cytometry analysis also 
confirmed that the CD103+ LTB and CD207+CD1a+ DC2+DC3 
populations could correspond to cellular states rather than 
ontogenically distinct cell subsets (or lineage) since they both 
exhibited DC2 (CD5+) and DC3 (CD5-CD14+/-) phenotypes. This is 
similar to CCR7 mDCs, which we also described by flow cytometry as a 
mature (potentially migratory) state shared by DC1s, DC2s and DC3s. 

 

Our investigation into the spatial distribution of DC subsets within 
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tumour tissues has yielded crucial insights into the role of CD207 
DC2+DC3s. Visium spatial transcriptomic analysis of human breast 
tumours suggested that CD207 DC2+DC3s were detected within the 
tumour region, contrary to most other immune cells, including the 
other DC subsets and states detected within normal tissue or immune-
rich niches. To corroborate these observations at the single-cell 
resolution, we analysed one lung and one breast cancer patient using 
the Merfish technology (Merscope, Vizgen). As mentioned above, cell 
segmentation followed by a sequential dimensionality reduction 
approach allowed us to define tumour and stroma niches within the 
two tumours analysed, as well as major immune cell populations (B-
cells, major T-cell subsets) and most DC subsets and states that we had 
defined in the DC- and mDC- VERSEs. This revealed the spatial 
localisation of all these cells, including discrete DC populations, whose 
identification usually requires multiple markers. In the two tumour 
cross-sections, like most lymphocytes, all DC subsets and states, except 
for the CD207 DC2+DC3s, were detected in greater abundance within 
the tumour stroma. CD207 DC2+DC3s were the only DCs detected in 
greater abundance within the tumour nests (surrounded by tumour 
cells). To validate this observation, we carried out 4-colour IHF 
stainings of 16 lung adenocarcinoma patients, focusing on CD207+ 
DC2+DC3s. Our IHF data also confirmed a significant intratumoral 
accumulation of CD207+ DC2+DC3s, specifically within the tumour 
glandular areas of patients' tumours (tumour nests), while B and T 
lymphocytes, including CD8+ T-cells, were significantly accumulating 
in the tumour stroma. 

Furthermore, our study has delved into the potential implications of 
CD207 DC2+DC3s in the context of immunotherapy. By analysing data 
from immune checkpoint blockade-treated breast cancer patients, we 
observed that CD207 DC2+DC3s, contrary to CCR7 mDCs and DC1s, 
were predominantly enriched in patients without T-cell clonal 
expansion. Together with the finding that CD207 DC2+DC3s have a 
negative correlation with CD8 T-cells in ICB scRNAseq, our flow 
cytometry data and TCGA analysis suggest a role in limiting T-cell 
clonality. However, it cannot be ruled out that these are independent 
events requiring further investigation. Furthermore, CD207 DC2+DC3s 
inversely correlate with CD8+ TRM cells, which accumulate in various 
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tumours and are associated with improved disease outcomes and 
survival (Park et al., 2019). Conversely,  these DCs strongly positively 
correlated with CD8+ TEMRA cells, which are senescent/hypofunctional 
cells (Reading et al., 2018). Two hypotheses could explain why CD207 
DC2+DC3s, but not any other DC subset or state, inversely correlated 
with CD8+ TRMs: (1) Many studies have demonstrated that TGF-b can 
induce a CD1a+CD207+ Langerhans cell-like phenotype from blood 
CD1c+ DCs and a CD103+ TRM-like phenotype from CD103- T-cells. 
These two cell types could compete for TGF-b, a phenomenon which 
could explain their inverse correlation; (2) The combined negative and 
positive correlations with TRMs and TEMRAs, respectively, make it possible 
to hypothesise that CD207 DC2+DC3s could favour the progression of 
CD8+ T-cells towards the TEMRA state to the detriment of TRMs through 
a mechanism that we haven’t identified in our study. These data 
provide potential therapeutic targets in favour of reducing the 
abundance of CD207 DC2+DC3s. Furthermore, CD207 DC2+DC3s 
could also serve as a prognostic factor alongside DC1s as the ratio of 
these cells predicted whether patients would develop a T-cell clonal 
expansion, but this will require further investigation in larger 
prospective cancer patient cohorts. 

 

In summary, our study offers a comprehensive analysis of human DC 
heterogeneity, integrating diverse datasets and techniques to 
elucidate their roles in health and disease. The DC-VERSE and mDC-
VERSE platforms provide valuable resources for researchers, enabling 
a deeper understanding of DCs and their implications for 
immunotherapy strategies. By providing an online tool for exploration, 
unifying nomenclature and shedding light on the spatial distribution 
and potential prognostic significance of specific DC subsets, our study 
paves the way for further research and targeted therapeutic 
interventions in the realm of dendritic cell biology. 
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Limitations of the study: 

The DC-VERSE and mDC-VERSE are generated based on integrating 
various datasets, which comes naturally with the limitation of single-
cell analyses. Since the study was performed using a limited number 
of datasets based on availability at the point of analysis, these VERSEs 
could be improved by including newer datasets that have new cancer 
types and other disease datasets. The multimodal reference mapping 
algorithm makes it possible to overcome this feature by using these 
VERSEs as reference maps to query the new, non-integrated datasets. 
Additionally, the inverse correlation of CD207 DC2+DC3s and T-cell 
clonality observed in the study was restricted to one dataset, requiring 
further exploration and validation. 
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STAR METHODS 

 

LEAD CONTACT  

Further information and requests for resources and reagents should 
be directed to and will be fulfilled by the Lead Contacts, Charles-
Antoine Dutertre (charles-antoine.dutertre@inserm.fr) and Florent 
Ginhoux (Florent_Ginhoux@immunol.a-star.edu.sg).  

 

DATA AND CODE AVAILABILITY 

The DC-VERSE and the mDC-VERSE can be explored and downloaded 
at https://gustaveroussy.github.io/FG-Lab/.  

 

EXPERIMENTAL MODELS AND SUBJECT DETAILS 

Human tissue and blood samples 

Spleen tissue used for flow cytometry was obtained in accordance with 
a favourable ethical opinion from Singapore SingHealth and National 
Health Care Group Research Ethics Committees. Spleen tissue was ob-
tained from patients with tumours in the pancreas who underwent dis-
tal pancreatectomy (Singapore General Hospital, Singapore). 
Tumour and normal adjacent tissue from the lung, as well as FFPE 
blocks, were obtained from Non-Small Cell Lung Cancer patients 
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following written informed consent (Marie Lannelongue Hospital, 
Paris) and ethical approval (N°ID-RCB: 2016-A00732-49). All subjects 
provided IRB-approved consent. Human tissues were cut into 0.5 cm 
squares and incubated with 0.8 mg/mL collagenase (Type IV, 
Worthington-Biochemical) in RPMI (PAA) with 10% FCS 
(AutogenBioclear) for 2 and 8 h, respectively, or when stated 
mechanically dispersed.  

 

METHOD DETAILS 

Flow cytometry 

For the NSCLC normal adjacent and tumour samples, cells were 
thawed and transferred into RPMI (Thermo Fischer) with 20% 
decomplemented FCS (Thermo Fischer). Samples were treated with 
1mg/ml DNase I (Sigma-Aldrich) at 37 ̊C. Cells were incubated with 
Live/Dead blue dye (Invitrogen) for 30 min at 4 ̊C in phosphate 
buffered saline (PBS) and then incubated in 5% heat-inactivated fetal 
calf serum (FCS, Sigma Aldrich) for 15 min at 4 ̊C. Cells were stained 
with appropriate antibodies (listed in the STAR METHODS key 
resources table and Table S5 in PBS with 2% FCS, 2mM EDTA (Sigma 
Aldrich) and Brilliant Stain buffer (BD), incubated for 30 min at 4 ̊C, and 
then washed. Cells were analysed using a Cytek Aurora 5-laser spectral 
analyser. FCS files were exported and analysed using FlowJo v10.8.1. 

 

Immunohisto-fluorescence labelling assays 

All immunostainings were performed on 4 µm thick whole sections 
prepared from FFPE blocks of human NSCLC (Marie Lannelongue 
Hospital, Paris). Antigen retrieval was carried out on a PT-link (Dako) 
using the EnVision FLEX Target Retrieval Solutions at High pH (Dako, 
K8004) or Low pH (Dako, K8005). Endogenous peroxidase activity and 
non-specific Fc receptor binding were blocked with 3% H2O2 (Gilbert, 
3518646067907) and Protein Block (Dako, X0909), respectively. 
Necrotic, serous, folded and blurred areas were excluded from image 
analyses. The CD20/CD3/CD207/CD8 4-plex staining was performed 
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manually using the OPAL tyramide system amplification (TSA, Akoya 
Biosciences). Nuclei were stained with DAPI Solution (Thermofisher, 
62248) at 2μg/ml for 5 minutes. After mounting with ProLong™ Glass 
Antifade Mountant (Thermofisher, P36980), the slides were scanned at 
20X magnification using a Zeiss Axio scan Z1 device. The primary, 
secondary antibodies and TSA used are listed in the key resources 
table. 

 

Algorithms for dimensionality reduction  

For flow cytometry data, marker expression values were transformed 
using the auto-logicle transformation function from the flowCore R 
package. Uniform Manifold Approximation and Projection (UMAP) 
were carried out using all markers (flow cytometry) or significant PCs 
(based on Seurat analysis for scRNAseq data). UMAP was run using 15 
nearest neighbours (nn), a min_dist of 0.01 to 0.2 and Euclidean dis-
tance (Becht et al., 2018; McInnes et al., 2018). Phenograph clustering 
(Levine et al., 2015) was performed using all markers or significant PCs 
(based on Seurat analysis) before dimension reduction. The number of 
PCs selected was equal to 50 for the mDC-VERSE, 30 for flow cytometry 
and equal to 15 for scRNAseq analysis. 
 

MNP extraction and Seurat V3 integration 

We previously integrated 41 datasets examining monocyte and 
macrophage heterogeneity (Mulder et al., 2021). Similarly, for DCs, we 
integrated 40 of the 41 datasets (1 of the 41 datasets did not meet the 
cell number criteria for integration). The 40 datasets used (Table S2) 
were either at the raw count matrix or already pre-processed and 
filtered. As previously described (Mulder et al.), we first integrated all 
the datasets in an organ-specific manner. Before integrating the 
datasets, we applied universal quality control to keep everything 
unified. Cells with fewer than 500 genes or more than 20% 
mitochondrial reads were filtered out. All datasets were then unified in 
the same expression matrix format. Integration was initiated using the 
Seurat V3 anchoring method (Stuart et al., 2019) and log-normalised. 
The matrix was scaled, and a Principal Component Analysis (PCA) was 
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performed (Becht et al., 2018), from which the first 50 significant 
Principal Components (PCs) were selected for UMAP analysis. 
Following the identification of MNPs using canonical markers, a global 
integration (using 50 PCs for dimensional reduction) of dendritic cells 
from all tissues was carried out as above.  

 

Label Transfer/ Multimodal reference mapping 

For cell metadata transfer and multimodal reference mapping, we used 
the Label Transfer and the multimodal reference mapping pipeline 
from Seurat (Hao et al., 2021; Stuart et al., 2019). The algorithm returns 
a prediction score for each class for every cell in the query dataset, and 
a cutoff score was set at 0.3. 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Differentially expressed genes (DEGs)  

DEG analyses were performed using the Seurat v3 package (Stuart et 
al., 2019). DEGs obtained from the “RNA” matrix of the Seurat object 
were calculated on normalised values with a logFC threshold of 0.25, 
and the threshold for false discovery is 0.05. The likelihood-ratio test 
for single-cell gene expression (bimodal test) was used, and correction 
for multiple testing was carried out using the Bonferroni method.  

 

Dendrogram Heatmap to define mDC-VERSE mega-clusters 

The average expression of each gene obtained from the DEG analysis 
for each Phenograph cluster was first obtained, and a Spearman 
correlation was calculated. A Dendrogram heatmap was then 
generated using pHeatmap using Ward’s method for hierarchical 
cluster analysis.  
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Published DC Signature score Heatmap 

For the generation of the signature score heatmap, the package 
pHeatmap was used as described above. The signatures were obtained 
from various public datasets. The mDC-VERSE was split into the 
defined mega-clusters in which we obtained the average gene 
expression of every mega-cluster for all the genes present. Following 
this, the mean expression of the signature is calculated and plotted by 
the mega-clusters in the heatmap.  

 

Metadata analysis 

Metadata analysis was performed for selected studies with paired 
conditions (normal adjacent tissues versus tumours). The proportion 
of mega-clusters was plotted for each state as charts and density plots 
for the selected studies. Further analysis was performed to 
deconvolute at the patient level in datasets where this information was 
provided. We only analysed datasets where more than 7 cells were 
present. Charts and density plots were made in GraphPad Prism v6 and 
SeqGeq v1.6, respectively. Statistical tests were performed using 
GraphPad Prism v6 and are specified within the figure legends. 

 

Scenic gene regulatory network analyses 

To infer gene regulatory networks (GRNs) from tpm-normalized 
expression matrices of Lung (Maier et al., 2020) and Head/Neck (Cillo 
et al., 2020), a pySCENIC (single-cell regulatory network inference and 
clustering) v0.10.3 analysis was performed (Van de Sande et al., 2020). 
The analysis consisted of three main steps (GitHub/pySCENIC): 
generation of co-expression modules with GRNBoost2, refinement of 
these modules with RcisTarget and evaluation of the regulon activity 
with AUCell (Van de Sande et al., 2020). Differentially expressed 
regulons (DERs) were calculated using the Seurat pipeline with the 
same parameters described above for DEGs analysis (adjusted p-value 
lower or equal to 0.05 and Log2FC cut-off of 0.25). Phenograph cluster-
specific DERs and DERs with similar expression patterns across closely 
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related Phenograph clusters were identified and subsequently used to 
generate a heatmap. 

 

Spatial transcriptomic analysis (Visium 10X Genomics) 

The analysis is performed as previously described in the paper of Wu 
et al. (Wu et al., 2021). Spatial transcriptomic data for Visium samples 
were deconvoluted using Stereoscope 0.3.1 using Wu et al. Breast 
cancer scRNAseq reference (Wu et al., 2021). Cells in the scRNAseq 
reference were filtered with the --sc_upper_bound option so that no 
more than 1000 (randomly selected) cells of any given cell type were 
used to fit the model. Similarly, genes were filtered by a list of 3695 
highly variable genes, as identified using the 
sc.pp.highly_variable_genes() function from Scanpy with default 
parameters and the --filter-genes option was also enabled. Both model 
fitting and model application was run for 75000 epochs each, with a 
batch size of 100. Wu et al. pathology annotations were used to 
calculate the enrichment of spatially deconvoluted cell subsets, and 
deconvoluted proportion results were mapped onto H&E images 
using Seurat v4. 

 

MERFISH analysis 

Samples from patients with breast and lung cancer were preserved in 
FFPE. Slices from each block were prepared following Vizgen’s FFPE 
protocol using Vizgen’s Cell Boundary Kit (10400009) and imaged on 
the MERSCOPE system (Vizgen 10000001) using a panel of 500 genes 
(Table S7). Cell boundaries were determined using Cellpose (Stringer 
et al., 2021) using boundaries identified from the CLAHE filtered DAPI 
and cell boundary 3 images merged with boundaries identified from 
only CLAHE filtered DAPI images. Segmentation was performed on the 
center z plane imaged on the MERSCOPE system and extrapolated 
across all 7 z planes. Transcripts within each cell boundary were 
tabulated to construct a cell by gene matrix used for cell clustering 
analysis. All MERSCOPE output data is available as part of Vizgen’s data 
release program (https://info.vizgen.com/merscope-ffpe-solution). 
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Following segmentation, a single-cell analysis was performed using the 
Scanpy library. MERFISH single-cell gene expression data were first 
filtered to remove cells with low count or a low number of unique 
genes expressed (25 genes and 10 counts, respectively). Cells were 
then normalised to have equal counts (set to a default median of total 
counts), and gene expression counts were log-transformed and scaled 
to unit variance. PCA, UMAP embedding (10 neighbours, 0.1 min 
distance, and spread 3.0), and Leiden clustering (resolution of 1.5) were 
performed. Leiden clusters were manually labelled for global 
annotation. A PCA was performed for the immune compartment and 
consecutively on the myeloid department, in which the PCs with strong 
loading on immune-associated genes were selected for running UMAP 
embedding (15 neighbours, 0.01 min distance, and spread 3.0) and 
Phenograph clustering (K50). 

 

Pathway analysis 

DEGs of DC populations, together with the respective fold-change and 
p-values, were uploaded to the Ingenuity Pathway Analysis (IPA) 
software (QIAGEN). IPA analysis reported the p-value of canonical 
pathways. Predicted upregulated or downregulated pathways were 
represented by a positive or negative Z-score, respectively. Canonical 
pathways are determined by IPA's default threshold [–log. (p-
value)>1.3] were then shortlisted, and bubble plots were used to 
visualise the p-values and Z-scores. Complete lists of pathways can be 
found in Table S4. 

 

TCGA analysis 

For the generation of the correlation matrix, signatures were used from 
Mulder et al., Nalio Ramos et al. and Mackay et al. (Mackay et al., 2016; 
Mulder et al., 2021; Nalio Ramos et al., 2022). The TCGA datasets were 
scaled by Z-score per patient, of which the average of every signature 
was calculated. A Pearson correlation (r) with two-tailed test was used 
to obtain the correlation matrix and plotted using the corrplot R 
package (0.84). 
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Quantification and statistical analysis of the immunohisto-

fluorescence labelling 

Tumour and normal adjacent tissue areas were defined by a 
pathologist (G.G.). Tumours, tumour nests and stromal regions were 
identified using the Halo10 software (Indica Labs) with a classifier 
based on examples of the two areas. The density of positive cells/mm2: 
CD3+, CD8+, CD20+, and CD207+ cells were quantified in the different 
zones with Halo10 software (Indica Labs) using the fitting counting 
algorithms. 

 

KEY RESOURCES TABLE  

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies for spectral flow cytometry 

Anti-goat (Polyclonal) AF488 
Jackson Immuno-
Research Laboratory 

Cat# 705-545-147, 
RRID:AB_2336933 

CCR2 (Clone LS132.1D9) BUV563 BD Biosciences 
Cat# 749076, 
RRID:AB_2873470 

CD11b (Clone M1/70) BV570 Biolegend 
Cat# 101233, 
RRID:AB_10896949 

CD117 (Clone 104D2) APC Biolegend 
Cat# 313206, 
RRID:AB_314985 

CD123 (Clone 6H6) PE/Daz594 Biolegend 
Cat# 306034, 
RRID:AB_2566450 

CD103 (Clone Ber-ACT8) BV605 Biolegend 
Cat# 350217, 
RRID:AB_2564282 

CD14 (Clone 63D3) SparkB550 Biolegend 
Cat# 367148, 
RRID:AB_2832724 

CD141 (Clone M81) BV421 Biolegend 
Cat# 344114, 
RRID:AB_2562956 

CD169 (Clone 7-239) BUV661 BD Biosciences 
Cat# 750363, 
RRID:AB_2874538 
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CD19 (Clone HIB19) BV650 Biolegend 
Cat# 302238, 
RRID:AB_2562097 

CD1a (Clone SK9) BB660 BD Biosciences Custom 

CD1c (Clone L161) SB436 Invitrogen 
Cat# 62-0015-42, 
RRID:AB_2762426 

CD20 (Clone 2H7) BV650 Biolegend 
Cat# 302336, 
RRID:AB_2563806 

CD25 (Clone CD25-3G10) PE/AF700 
Thermo Fisher 
Scientific 

Cat# MHCD2524, 
RRID:AB_2539740 

CD206 (Clone 19.2) PercP/eFluor 710 
Thermo Fisher 
Scientific 

Cat# 46-2069-42, 
RRID:AB_10853034 

CD207 (Clone 2G3) BB755 BD Biosciences Custom 

CD209 (Clone 9E9A8) PE/Cy7 Biolegend 
Cat# 330114, 
RRID:AB_10719953 

CD3 (Clone SP34-2) BV650 BD Biosciences 
Cat# 563916, 
RRID:AB_2738486 

CD301 (Clone H037G3) PE Biolegend 
Cat# 354704, 
RRID:AB_11219002 

CD38 (Clone HB7) BUV805 BD Biosciences 
Cat# 742074, 
RRID:AB_2871359 

CD4 (Clone SK3) Cfl.YG584 Cytek Biosciences 
Cat# R7-20041, 
RRID:AB_2885083 

CD45 (Clone 30-F11) PercP Biolegend 
Cat# 103130, 
RRID:AB_893339 

CD5 (Clone UCHT2) APC/R700 BD Biosciences 
Cat# 565121, 
RRID:AB_2744433 

CD8 (Clone SK1) APC/Fire 810 Biolegend 
Cat# 344764, 
RRID:AB_2860890 

CD127 (Clone HIL-7R-M21) BB510 BD Biosciences Custom 

CD86 (Clone 2331) BV786 BD Biosciences 
Cat# 740990, 
RRID:AB_2870657 

CD88 (Clone S5/1) APC/Fire750 Biolegend 
Cat# 344316, 
RRID:AB_2750445 

CD89 (Clone A59) BUV496 BD Biosciences 
Cat# 750617, 
RRID:AB_2874749 
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CD9 (Clone M-L13) BV480 BD Biosciences 
Cat# 746356, 
RRID:AB_2743675 

FceRIa (Clone AER-37 (CRA-1)) BV711 Biolegend 
Cat# 334638, 
RRID:AB_2687186 

HLA-ABC (Clone W6/32) Sp. NIR 685 Biolegend 
Cat# 311453, 
RRID:AB_2876612 

HLA-DP (Clone B7/21) BUV395 BD Biosciences 
Cat# 750866, 
RRID:AB_2874962 

HLA-DQ (Clone Tu169) BV510 BD Biosciences 
Cat# 742609, 
RRID:AB_2740907 

HLA-DR (Clone L243) PE/Fire 810 Biolegend Custom 

PD-L1 (Clone MIH1) PE/Cy5 Invitrogen 
Cat# 15-5983-42, 
RRID:AB_2802211 

PD-1 (Clone EH12.1) BV750 BD Biosciences 
Cat# 747446, 
RRID:AB_2872125 

SLAN (Clone DD-1) VioBlue Miltenyi Biotec 
Cat# 130-119-868, 
RRID:AB_2733608 

CADM1 (Clone 3E1) MBL International 
Cat# CM004-3, 
RRID:AB_592783 

IRF4 (Clone 3E4) PE 
Thermo Fisher 
Scientific 

Cat# 12-9858-82, 
RRID:AB_10852721 

IRF8 (Clone V3GYWCH) PercP/eFluor 
710 

Thermo Fisher 
Scientific 

Cat# 46-9852-82, 
RRID:AB_2573904 

CD11c (Clone 3.9) BV605 BioLegend  
Cat# 301636, 
RRID:AB_2563796 

CD16 (Clone 3G8) APC/Cy7 BioLegend  
Cat# 302017, 
RRID:AB_314217 

HLA-DR (Clone L243) BV785 BioLegend  
Cat# 307641, 
RRID:AB_2561360 

CD14 (Clone RMO52) ECD Beckamn Coulter Cat# B92391 

CD123 (Clone 7G3) BUV395 BD Biosciences  
Cat# 564195, 
RRID:AB_2714171 

CD45 (Clone HI30) V500 BD Biosciences  
Cat# 560777, 
RRID:AB_1937324 

ViaDye™ Red Fixable Viability Dye Kit Cytek Biosciences Cat# SKU R7-60008 
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LIVE/DEAD™ Fixable Blue Dead Cell Invitrogen Cat# L23105 

CCR7 (Clone 2-L1-A) BUV737 BD Biosciences 
Cat# 749676, 
RRID:AB_2873937 

Antibodies and reagents for immunohisto-fluorescence experiments 

Rabbit IgG polyclonal anti-CD3 (6 
μg/mL) 

Agilent Cat# : A0452, RRID: 
AB_2335677 

Mouse IgG1 mAb (C8/144B) anti-CD8 
(1.6 µg/mL) 

Agilent Cat# : M7103, RRID: 
AB_2075537 

 

Mouse IgG2a mAb (L26) anti-CD20 
concentrated at 0.3 μg/mL 

Agilent Cat# : M0755, RRID: 
AB_2282030 

Rat IgG2a mAb (929F3.01) anti-
CD207/Langerin (2.5 µg/mL) 

Eurobio Scientific Cat# : DDX0362P-100, 
RRID : AB_2892751 

Polymer anti-Mouse HRP Agilent Cat# : K4001, RRID: 
AB_2827819 

Polyview® plus anti-Rabbit HRP Enzo Life Sciences Cat# : ENZ-ACC103-
0150 

Opal Polymer anti-Rabbit HRP Akoya Biosciences Cat# : ARR1001KT 

Polymer IgG anti-rat HRP Vector Laboratories Cat# : MP-7404, RRID: 
AB_2336531 

OPAL 520 Akoya Biosciences Cat# : FP1487001KT 

OPAL 570 Akoya Biosciences Cat# : FP1488001KT 

OPAL 690 Akoya Biosciences Cat# : FP1497001KT 

OPAL Polaris 780 Akoya Biosciences Cat# : FP1501001KT 

Chemicals, peptides, and recombinant proteins for immunohisto-fluorescence experiments 

EnVision FLEX Target Retrieval 
Solution, High pH 

Agilent Cat# : K8004 

EnVision FLEX Target Retrieval 
Solution, Low pH 

Agilent Cat# : K8005 

H2O2 3% Gilbert Cat# : 3518646067907 

Protein Block Agilent Cat# : X0909 

DAPI Thermofisher Cat# : 62248 
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ProLong™ Glass Antifade Mountant Thermofisher Cat# : P36980 

Chemicals, Peptides, and Recombinant Proteins 

DNAse I Sigma Aldrich Cat# 48024000 

PBS ThermoFisher  Cat# 20012-027 

Collagenase IV Sigma Aldrich Cat# C5138-500MG 

RPMI ThermoFisher Cat# 31870-025 

Brilliant Stain Buffer BD Biosciences Cat# 563794 

FCS ThermoFisher Cat# 26140079 

Biological samples 

Spleen sample Singapore General 
Hospital (SGH) 

 

Matched LUAD lung sample Marie Lannelongue 
Hospital, Paris 

Matched LUAD lung 
sample 

Software and Algorithms 

Anaconda 2018.12 Anaconda https://www.anaconda.
com 

DIVA BD Biosciences https://www.bdbioscien
ces.com/en-us 

FlowJo v10.5.3 Tree Star https://www.flowjo.com 

GraphPad Prism 6 GraphPad https://www.graphpad.c
om/scientificsoftware/pr
ism/ 

Ingenuity Pathway Analysis v01-16 QIAGEN https://www.qiagenbioin
formatics.com/products
/ingenuity-pathway-
analysis/ 

Phenograph Levine et al., 2015 https://github.com/Jinmi
aoChenLab/Rphenogra
ph 

Python v3.7.1 Python Software 
Foundation 

https://www.python.org 

R v4.4 The R Foundation https://www.r-
project.org 
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SCENIC Van de Sande et al., 
2020 

https://github.com/aerts
lab/pySCENIC 

SeqGeq v1.6 FlowJo https://www.flowjo.com/
solutions/seqgeq 

Seurat v3 Stuart et al., 2019 https://satijalab.org/seu
rat/ 

Seurat v4 Hao et al., 2020 https://satijalab.org/seu
rat/ 

UMAP McInnes et al., 2018 https://github.com/lmcin
nes/umap 

Halo version 3.4.2986.166 Indica Labs RRID: SCR_018350 

https://indicalab.com 

MERSCOPE visualizer Vizgen https://vizgen.com/ 
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mDC-VERSE. (B) Heatmap showing the relative expression levels of DERs 

between phenograph clusters common to Lung (Maier) and Tonsil (Cillo) 

cancer datasets. (C) Quality control metrics for each phenograph cluster 

and meaning plot of nFeature_RNA. (D) Annotation of cl. #15 on the 

mDC-VERSE. (E-F) CITE-seq data (from Maier et al.) showing expression 

of signature T & B cell protein markers and DC2 and DC3 protein 

markers (Maier et al., 2020). (G) Meaning plots of DC2 and DC3 gene 

signatures from Dutertre et al. on the DC-VERSE (Dutertre et al., 2019). 

(H) Identification of DC2s and DC3s using CD5 and CD14 protein 

expression from CITE-seq data within the DC2+DC3 region of the mDC-

VERSE (Maier et al., 2020). (I) Overlay of cMAP scores onto the mDC-

VERSE UMAP space. (J) DEG heatmap between mega clusters of the 

mDC-VERSE. (K) Mean expression of the moDC signature from Gao et 

al. (Gao et al., 2021) overlayed onto the MNP-VERSE (from Mulder et al.) 

(Mulder et al., 2021) and onto the mDC-VERSE UMAP spaces. (L) moDC 

signature score for each cell of the different mDC-VERSE Phenograph 

clusters. (M,N) Composition of DC mega clusters across normal adjacent 

“healthy” tissues. (O) Annotation of cl.3 & cl.4 (corresponding to 

cDC2As_Brown) from Brown et al. on the mDC-VERSE (Brown et al., 

2019). 
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Figure S2 related to Figure 2: Comparison of mDC-VERSE 

DC2+DC3 populations to Cheng’s cDC2 subsets. (A-B) Projection of 

all mDC subsets and DC2+DC3 populations defined by Cheng et al.’s 

metadata (Cheng et al., 2021) on the mDC-VERSE using multimodal 

reference mapping (Azimuth). (C) Quality control metrics of predicted 

mDC-VERSE phenograph clusters from Cheng et al. data projected by 

multimodal reference mapping. (D) Mean expression of the top 50 genes 

of mega clusters from the mDC-VERSE mapped onto the UMAP from 

Cheng et al. (E) Mapping of cDC2_CD1A cells from Cheng et al., enriched 

in CD207 or LTB cDC2/DC3 signatures (from the mDC-VERSE) onto the 

UMAP from Cheng et al. (F) Meaning plots of the mean gene signatures 

of DC2+DC3 populations from Cheng et al. shown on the mDC-VERSE.  

  





 

 

 

171 

Figure S3 related to Figure 3: Metadata analysis of mDC 

populations in cancer. (A) Density plots of global colon, liver and lung 

datasets highlighting changes in DC1s, CCR7 mDCs, CD207 DC2+DC3s, 

Prolif. mDCs, IFN-primed DC2+DC3s and LTB DC2+DC3s between 

normal adjacent and cancer tissues. (B) Percentage of CCR7 mDCs and 

Prolif. mDCs, and DC3/DC2 ratio in datasets which had analysed normal 

adjacent tissue, tumour periphery and tumour core. (C,D) Percentage of 

mDC-VERSE (C) phenograph clusters and (D) mega clusters in all 

integrated and query datasets (Obtained through multimodal reference 

mapping and annotated with cross symbol) between matched healthy 

and cancer tissues. P values were calculated using a Wilcoxon test. 
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Figure S4 related to Figure 4 and Figure 5: Gating strategy to 

define DC populations and states and evaluation of their 

phenotype in NSCLC spectral flow cytometry data. (A) Gating 

strategy from singlets, live, CD45+ cells and projection of each gated 

population onto the MNP_UMAP space. (B) MNP_UMAP annotation 

confirmed by protein expression. (C) Gating of pDCs and pre-DCs within 

CD123+ DCs defined in Figure 4A-B. (D) Overlay of DC “states” 

identified in Figure 4H onto the MNP_UMAP space. (E) Expression of 

CADM1 and CD141 by CCR7+ DC2+CCR7+ DC3, by CD103+ DC2+DC3s 

and by CD207+ DC2+DC3s. (F) Gating and phenotype of CD103+ “LTB” 

and CD1a+CD207+ DC2+DC3s. (G) Mean fluorescence intensity (MFI) of 

markers expressed by populations of DC2+DC3s defined in panel (F). (H) 

Percentage of DC “states” identified in (Figure 4H,I, Figure 4K and 

Figure 4M) among total CD45+ cells in normal adjacent tissue versus 

tumour. (I) Fold increase of CD207+ DC2+DC3s in tumour versus normal 

adjacent tissue. (J) Expression of CD45, CD1a, CD1c, HLA-DR, HLA-DP, 

CD88 and CD3/CD16/CD19/CD20 versus CD207 by total live cells 

(including CD45- non-immune cells) from a NSCLC tumour. 
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populations in human breast and lung cancer patients. (A) Visium 

spatial transcriptomic profiling of 3 TNBC and 2 ER breast cancer 

patients from Wu et al. (Wu et al., 2021). For each patient, the left panel 

shows the CD207 DC2+DC3 signature score, middle panel shows tissue 

niches and the right panel shows haematoxylin and eosin (H&E) 

staining. (B) Enrichment score of CD207 DC2+DC3 signature across 

different tissue niches identified in (A). (C) Meaning plots of EPCAM and 

PTPRC expression visualised on the UMAP generated with all cells from 

the Merscope data of the breast cancer patient. Immune cells were 

extracted, and different cell populations were annotated based on a 

curated list of genes. mDCs were then extracted to generate a mDC 

UMAP identifying mDC populations. (D) Meaning plots of representative 

genes used to define the immune populations identified in the Immune 

cells’ UMAP from panel (C). (E,F) Merfish analysis of breast cancer and 

lung cancer cross-sections. (E) Visualisation of the expression of DC 

population-defining transcripts in the segmented Merfish spatial data. 

(F) Spatial distribution of tumour cells (grey) and immune populations 

within the breast and lung tumour cross-sections analysed by Merfish. 

(G) Single fluorescent images for CD207 (green), CD3 (red), CD8 (yellow) 

and CD20 (cyan) of the IHF data shown in Figure 5H. 
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Figure S6 related to Figure 6: Characterisation of the 

pathophysiological involvement of mDC populations in human 

cancer patients. (A) Percentage of predicted phenograph clusters from 

query dataset (Bassez et al.) projected using multimodal reference 

mapping (Azimuth) (Bassez et al., 2021). (B) Percentage of CD207 

DC2+DC3s between patients with non-expanded and expanded T-cell 

clonality in the Bassez et al. data. (C) Upper panel shows the correlation 

between the frequencies among CD45+ cells of DC populations (DC1s, 

IFN DC2+DC3s, DC2s, DC3s and CCR7 mDCs) and CD8 TRMs in lung 

tumours within the Leader et al. scRNAseq data (Leader et al., 2021). 

Lower panel shows the frequencies among PTPRC(CD45)-expressing 

immune cells of the same DC populations split by CD8 TRMs
hi and CD8 

TRMs
lo. (D) Correlation between the frequencies of CD207+ DC2+DC3s 

and CD4+ T-cells from flow cytometry analysis of 8 NSCLC patients. (E) 

Kaplan-Meier plots of the overall survival (OS) of patients with different 

cancers whose tumour was sampled and analysed by bulk RNAseq prior 

to immune checkpoint blockade (ICB) treatment. Patients were 

separated based on high or low expression of genes specifically 

expressed by total DC2+DC3s (CD1C), by CD207 DC2+DC3s, by DC1s 

or by CCR7 mDCs. Correlations were evaluated using the Pearson 

correlation (r) with two-tailed p values. P values were calculated using a 

t-test. 
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Abstract 

Spatial omics data allow in-depth analysis of tissue architectures, 
opening new opportunities for biological discovery. In particular, 
imaging techniques offer single-cell resolutions, providing essential 
insights into cellular organizations and dynamics. Yet, the complexity 
of such data presents analytical challenges and demands substantial 
computing resources. Moreover, the proliferation of diverse spatial 
omics technologies, such as Xenium, MERSCOPE, CosMX in spatial-
transcriptomics, and MACSima and PhenoCycler in multiplex imaging, 
hinders the generality of existing tools. We introduce Sopa (https:// 
github.com/gustaveroussy/sopa), a technology-invariant, memory-
efficient pipeline with a unified visualizer for all image-based spatial 
omics. Built upon the universal SpatialData framework, Sopa optimizes 
tasks like segmentation, transcript/channel aggregation, annotation, 
and geometric/spatial analysis. Its output includes user-friendly web 
reports and visualizer files, as well as comprehensive data files for in-
depth analysis. Overall, Sopa represents a significant step toward 
unifying spatial data analysis, enabling a more comprehensive 
understanding of cellular interactions and tissue organization in 
biological systems. 
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Introduction 

Spatial omics data offer opportunities to improve our understanding 
of cellular interactions within their micro-environment and the 
intricacies of tissue organization (Bressan et al., 2023; Rao et al., 2021). 
Recent advancements in imaging technologies have expanded these 
capabilities, enabling the measurement of 1000+ genes through 
Spatial Transcriptomics (Moses and Pachter, 2022) and/or the analysis 
of 50+ proteins via Multiplex Imaging (Lewis et al., 2021). These include 
Merfish (Chen et al., 2015), ISH (Jin and Lloyd, 1997), ISS (He et al., 
2022), MICS (Kinkhabwala et al., 2022), PhenoCycler (Jhaveri et al., 
2023) and IMC (Chang et al., 2017), all of which provide single-cell 
resolution that could not be achieved by previous spot-based 
techniques like 10X Visium or Nanostring GeoMX (Merritt et al., 2020). 
Therefore, image-based technologies provide a higher resolution — 
up to the subcellular level — which is needed for a detailed exploration 
of individual cells and their gene expression profiles within their spatial 
context. This level of precision has been essential for unravelling tissue 
architecture and understanding cellular interactions; it marks the 
beginning of a significant leap forward in our comprehension of 
biological systems (Chu et al., 2023; Jhaveri et al., 2023; Kumar et al., 
2023). 

In parallel with these technological advancements, the analysis of 
image-based spatial omics has encountered significant computational 
challenges and limitations (Atta and Fan, 2021; Dries et al., 2021; Moses 
and Pachter, 2022; Vandereyken et al., 2023; Zeng et al., 2022). Most 
existing methods (Biancalani et al., 2021; Petukhov et al., 2021; Stringer 
et al., 2021) are not designed to handle large images with millions of 
cells. Their usage typically demands high- performance computational 
clusters with substantial memory resources, which limits accessibility 

to spatial omics due to cost and hardware constraints. As a result, most 
companies have developed proprietary tools for their own data types, 
primarily focusing only on segmentation and visualiza- tion. Yet, these 
proprietary tools have certain constraints, such as (i) a limit on specific 
function- alities, (ii) no incorporation of the latest state-of-the-art 
methods, and (iii) a lack of versatility, as they cannot be applied to 
other technologies. This tool diversity has other limitations in that each 
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suite has a learning and adaptation process and that the tools’ 
specificities lead to variations in the analysis of comparable data types. 
Similarly, current open-source analysis libraries often rely on (i) 
already-segmented data (Hao et al., 2024; Palla et al., 2022), (ii) specific 
data types (Axelrod et al., 2021; Cisar et al., 2023)23,24, or (iii) a subset 
of analysis tasks (Axelrod et al., 2021; Cisar et al., 2023), resulting in 
fragmented approaches and difficulty in adapting one approach to a 
different type of technology. The absence of a unified data 
representation and modular programming interface further 
complicates the integration of various analysis steps. 

To address these gaps, our work introduces Spatial Omics Pipeline and 
Analysis, or Sopa, a computational framework that enhances the 
accessibility, efficiency, and interpretability of image- based spatial 
omics data. Sopa is a memory-efficient pipeline that works across all 
image-based spatial omics technologies and that can display results in 
a common visualizer. This includes the most recent Spatial 
Transcriptomics technologies (Xenium, MERSCOPE, CosMX) and also 
the multiplex imaging techniques (e.g., MACSima, PhenoCycler, 
Hyperion). Sopa’s capabilities in- clude segmentation and multilevel 
annotation, both based on transcripts and/or stainings, as well as 
spatial statistics and niche geometry analysis. We demonstrate Sopa’s 
performance on four public datasets: two spatial-transcriptomics 
(MERSCOPE, Xenium) and two multiplex imaging technolo- gies 
(PhenoCycler, MACSima), and provide a memory and time benchmark 
over multiple dataset sizes. Additionally, we demonstrate Sopa’s 
capabilities for geometric and spatial analysis on the MERSCOPE 
dataset by analyzing cell colocalization with regard to cell types and 
niches, show- ing promise for biological discoveries. All these 
functionalities are accessible via our open-source code, which includes 
a Command Line Interface (CLI), an Application Programming Interface 
(API), and a flexible Snakemake workflow (Köster and Rahmann, 2012), 
enabling users with various levels of expertise to pro- cess spatial 
omics data seamlessly, from no-code simplicity to full flexibility. The 
pipeline’s generic nature ensures effortless transitions to other types 
of spatial omics data, making it a versatile and powerful tool for the 
scientific community. 
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Results 

Technology-invariant pipeline for spatial omics 

To establish versatile tools, a common strategy involves adopting a 
shared data structure that seamlessly integrates across diverse 
technologies. SpatialData serves as one such comprehensive 
framework, including readers tailored for the most widely used spatial 
omics technologies (Marconato et al., 2024). Building upon this, Sopa 
converts any data into a SpatialData object, on which all of the six 
following tasks are performed. First, if needed, users can interactively 
select a region of interest, facilitating the exclusion of less relevant or 
lower-quality areas. Next, we generate overlapping patches of images 
and/or transcripts. Segmentation can then be performed for each 
individual patch, and we currently support Cellpose (Stringer et al., 
2021) (image-based segmentation) and Baysor (Petukhov et al., 2021) 
(transcripts-based segmentation). Afterwards, the cell segmentation 
masks are converted into polygons and merged over all patches to 
remove potential artefacts. Following these first four steps, we average 
the staining intensities and count the transcripts inside each cell, 
allowing further tasks such as annotation. For example, Sopa currently 
supports Tangram (Biancalani et al., 2021) for transcript-based 
annotation, and a simple Z-score method for staining-based 
annotation. Finally, we implemented spatial and geometric analysis 
tools to fully exploit the spatial nature of the data. For convenience, all 
image-based technologies can be visualized in a shared explorer, and 
an HTML report is provided for pipeline quality checks. The full process 
described above is summarised in Figure 1. 
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Visualisation of spatial omics in a cross-technology interactive 

visualizer 

In spatial omics analysis, effective visualization is crucial but has 
presented challenges due to the size of the datasets. While open-
source initiatives like Napari are emerging, they currently face 
limitations in handling large amounts of transcripts. Also, most 
companies provide technology-specific visualizers, offering limited 
user possibilities (see Supplementary Notes). Yet, 10X Genomics has 
introduced the Xenium Explorer, an optimized visualizer whose file 
format is open, i.e., formats that can be generated for various 
SpatialData types. In Sopa, we have incorporated a converter that 
transforms the pipeline output into the input files compatible with the 
Xenium Explorer (see Figure 1c). This integration ensures access to an 
efficient and robust visualizer, extending its functionalities to any 
technology whose data is readable by Sopa. Importantly, this 
adaptation applies to both spatial transcriptomics and multiplex 
imaging data, with the ”Transcripts” panel selectively available for 
transcriptomics data. Figure 3b/e shows views using this Explorer, 
while Supplementary Fig. 2, 3 provide full-window examples. In 
addition to visualisation, the Xenium Explorer contains an interactive 
tool to align images from which we can export a transformation matrix 
and use it to align images on the SpatialData object to benefit from all 
the functionalities in Sopa. 
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Memory and time efficient analysis of spatial omics 

 
Managing large datasets is a critical challenge in spatial omics, 
particularly when dealing with im- ages that can reach hundreds of 
gigabytes and contain hundreds of millions of transcripts in spatial 
transcriptomics data. This necessitates implementing memory 
optimization techniques to ensure the scalability of the analysis. 
Notably, segmentation algorithms like Cellpose (Stringer et al., 2021) 
and Baysor (Petukhov et al., 2021) encounter scalability issues with 
large images, as illustrated in Figure 2a/b. To tackle this, these 
segmentation models are applied to smaller regions called patches, 
drastically decreasing random- access-memory (RAM) usage and time. 
While this patching process generates possible segmentation conflicts, 
we show in Figure 2d/e and in Supplementary Fig. 1 that this does 
not impact segmentation quality, since most conflicting cell 
boundaries have an intersection-over-min-area (IOMA) lower than 
0.07 or higher than 0.8 Indeed, for cells on overlapping regions, most 
of the boundary conflicts correspond to either (i) the same cell 
segmented twice on the two patches (at least one cell is complete, as 
shown in Figure 2c, with one boundary being included in the other), 
or (ii) different cells slightly overlapping (as shown in the right of 
Figure 2c). Additionally, the conventional storage of cell boundaries 
as raster masks demands significant memory for storage and 
processing (see Figure 2f). To address this, we adopt a more efficient 
approach by storing cell boundaries as polygons using Shapely28, 
which proves highly effective for both on-disk and in-memory storage. 
This also facilitates geometry-related operations, such as cell 
expansion, area/perimeter computations, and cell-cell intersections. 
Combined with the image lazy loading feature from SpatialData 
(Marconato et al., 2024) and Xarray (Hoyer and Hamman, 2017), we 
implement a fast channel averaging on cell boundaries by combining 
geometry operations and image chunk lazy loading (see Figure 2f), 
i.e., deferring memory loading until needed for processing. 
Additionally, using memory-efficient tools like Dask (“Dask | Scale the 
Python tools you love,” n.d.), we extend geometric operations of 
GeoPandas31 on chunks of transcripts, ensuring parallel processing of 
as many chunks as possible without exceeding memory limits (see 
Figure 2g). For image conversion to a pyramidal ‘.tif‘, we significantly 
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Figure 2: Computational efficiency of Sopa in terms of RAM and 

time on different dataset sizes. a. Cellpose segmentation comparison: 

with and without patching. The RAM usage is given per core. b. Baysor 

segmentation comparison: with and without patching. The RAM usage 

is given per core. c. Examples of cell boundaries before resolving the 

conflicts over overlapping patches when running Cellpose segmentation 

on DAPI staining (MERSCOPE human liver hepatocellular carcinoma 

dataset). On overlapping regions, cells are segmented twice (middle and 

right). For each conflict, their IOMA determines whether or not to merge 

the two cell boundaries. d. UMAP showing the difference between the 

resolution with and without the patching process. e. Violin plots showing 

the intersection-over-min-area density of segmentation conflicts when 

using patches (for both Cellpose and Baysor). When resolving a conflict, 

the two good cases are either (i) a high concordance between the two 

cells (which will be merged), or (ii) a low concordance between them (the 

two cells are kept). IOMA below 0.07 or above 0.8 correspond to good 

conflict resolution cases. f. Channels averaging for each cell: Sopa and 

standard average inside numpy masks. g. Counting each gene inside 

each cell: with Sopa compared to GeoPandas join operation on the whole 

DataFrame. h. Writing image as a tiff file for the Xenium Explorer: with 

Sopa compared to what is recommended by 10X Genomics, i.e. loading 

the whole image in memory. Source data are provided as a Source Data 

file. 

 
A wide range of use cases for different levels of expertise 

 
Sopa offers three distinct options, each tailored to different use cases: 
(i) a Snakemake (Köster and Rahmann, 2012) pipeline that enables a 
quick start within minutes, (ii) a CLI that facilitates rapid prototyping of 
a personized pipeline, and (iii) an API that allows direct usage of Sopa 
as a Python package (https://github.com/gustaveroussy/sopa), 
providing full flexibility and customization. The Snakemake pipeline 
remains consistent across various technologies, with only its 
configuration dif- fering. Users can leverage existing configuration 
files, selecting one that aligns with their technology, which then 
enables them to execute the pipeline without any code updates. 
Another advantage of Sopa’s generality and scalability is that more 
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advanced users seeking customisable pipelines can use the CLI. 
Notably, Sopa’s general design allows for an easy integration of any 
state-of- the-art or custom segmentation methods such as BIDCell (Fu 
et al., 2024), rendering them memory-efficient and accessible for all 
image-based spatial omics applications. Additionally, the Python API is 
avail- able for users interested in incorporating specific parts of Sopa 
into their personal libraries. This API also facilitates integration with 
other tools of the scverse (Virshup et al., 2023) ecosystem, such as 
Scanpy  or Squidpy (Palla et al., 2022). In particular, the integration with 
Squidpy enables the use of post-processing tools for cell-cell 
interaction and spatially variable gene analysis. 

  



 

 

 

189 

High resolution of the tumour microenvironment 

 
Segmentation plays a crucial role in image-based spatial omics 
analysis. Sopa focuses significantly on improving this step by enabling 
the usage of state-of-the-art segmentation models like Baysor19 on 
large datasets. Indeed, as shown on Figure 2a/b, these high-quality 
segmentation tools use a lot of memory, which hinders their usage on 
large spatial datasets. To evaluate the reso- lution provided by Sopa 
after segmentation, we annotated major cell types and conducted tests 
on four datasets: two spatial-transcriptomics datasets (MERSCOPE and 
Xenium) and two multiplex-imaging datasets (PhenoCycler and 
MACSima), see section and Supplementary Notes for more details. For 
the MERSCOPE and Xenium datasets, proprietary segmentations were 
provided by Vizgen and 10X Genomics, respectively. In comparison to 
these segmentations, Sopa shows an improved cell-type distinction on 
UMAP (McInnes et al., 2018) plots (see Figure 3a/d) by leveraging 
Baysor. To support these visual observations, we used multiple 
metrics , indicating that Sopa can generate more significant 
population-specific genes, greater intra-cluster distance, and 
improved cluster separation (see Figure 3c/f). The increased 
resolution in spatial omics data allows for a more in-depth exploration 
compared to previous segmentations (see Supplementary Fig. 4 for 
more details). 

 
Sopa also facilitates the concurrent analysis of both RNA and proteins. 
To demonstrate this, we used the Xenium dataset, which includes 
transcriptomic expression and protein stainings (CD20, PPY and 
TROP2). CD20 is a common marker for B cells, PPY is expressed by 
endocrine cells, and TROP2 is overexpressed in tumour cells. 10X 
Genomics currently does not produce files with protein expression per 
cell, while Sopa does support the analysis of proteins. To demonstrate 
this feature, we aligned the Xenium staining image to the original 
coordinate system, and Sopa computed the CD20/PPY/TROP2 
intensity within all cell boundaries. Combined with transcriptomic 
expression, CD20 staining greatly facilitates the annotation of B cells, 
as shown by their clear delimitation on Figure 3d and Supplementary 
Fig. 4c. In the future, we expect technologies to be able to run more 
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protein stainings in parallel with transcriptomics data, making this kind 
of analysis even more valuable. 

Regarding multiplex imaging, Sopa shows efficiency in (i) managing 
large protein staining panels and (ii) segmenting millions of cells (using 
Cellpose). The former is exemplified by the MACSima dataset with 61 
stained proteins. Again, we computed staining intensity per cell, and 
Figure 3g demonstrates Sopa’s capacity to annotate high-resolution 
cell types. Secondly, the PhenoCycler dataset underscores Sopa’s 
ability to handle datasets of substantial size, with an area of 3cm², 
containing approximately 2,500,000 cells. The corresponding cell 
resolution is shown in Figure 3h/i. In summary, these studies 
demonstrate that Sopa can (i) be applied across diverse technologies, 
(ii) efficiently handle millions of cells, and (iii) seamlessly operate on 
both transcriptomics and protein stainings. 
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dataset (left) and after Sopa segmentation on the same dataset (right). 

e. Visualization of cell types on the Xenium dataset after annotation with 

Sopa. Colours correspond to the legend of (d). f. Three cluster 

separation metrics compare the quality of these two segmentations on 

the Xenium dataset. The grey hatched boxes extrapolate the score Sopa 

would have without running on patches. g. UMAP of cell types on the 

MACSima dataset (head and neck squamous cell carcinoma), based on 

61 protein stainings. h. UMAP of cell types on the PhenoCycler dataset 

(human tonsil), based on 31 protein stainings. i. Cells of the PhenoCycler 

dataset visualized. The colours correspond to the legend of (h). Source 

data for (c, f) are provided as a Source Data file. 

 

Demonstration of geometric and spatial analyses capabilities 

Spatial omics naturally unlocks multiple biological questions related to 
spatial organization. While some are addressed in libraries such as 
Squidpy (Palla et al., 2022), metrics related to the distance between 
cell- types/niches and the geometric characteristics of those niches are 
not provided. These metrics could help in the understanding of the 
morphology of the tumour micro-environment and its location with 
regard to different cell types. Such statistics have been shown to be 
relevant for predicting disease progression or response to treatment 
(Jass, 2007; Sharma et al., 2005). For instance, it is known that tertiary 
lymphoid structures (TLS) have a good prognosis (Sautès-Fridman et 
al., 2019), but their geometry has not been studied. TLS may come in 
different sizes, shapes, occurrences, or locations with regard to other 
niches. Such statistics are generalized in section for all cell categories 
(usually, cell types or niches). Leveraging this spatial analysis, we 
demonstrate a better understanding of the dynamics among different 
cell types and their relation to different spatial niches on the 
MERSCOPE liver dataset (Figure 4). To use Sopa geometric analysis, 
we run STAGATE (Dong and Zhang, 2022) to identify eight distinct 
niches (or ”spatial domains”) across various tumour regions (Figure 

4a). First, we show in Figure 4b four geometric properties related to 
these niches: for each niche compartment, we counted their 
occurrence on the same slide, as well as their mean area, perimeter, 
and roundness. For instance, our geometric analysis shows a high 
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occurrence of vascular niches, that are small in area and perimeter, but 
have a high roundness. Conversely, the stroma has only one 
occurrence and is highly ”unround”, and Figure 4c shows that this 
shape enables a ”proximity” to every other niche. Figure 4c also 
highlights how far the vascular niche is from the necrosis. While such 
observations are not novel, our geometric computation allows for 
statistical comparisons over multiple patients, which could lead to the 
discovery of significant geometric biomarkers in large-scale studies. 
Finally, Squidpy (Palla et al., 2022) already incorporates functionalities 
on neighbourhood enrichments, which is a local metric and, therefore, 
not suited to capture niche-level information. In comparison, the 
distance metric used in Sopa can capture asymmetrical observations 
and global organizations (see Supplementary Fig. 6 for more details). 

 

Figure 4: Geometric analyses and spatial statistics on the 

MERSCOPE human liver hepatocellular carcinoma dataset. a. 

Niches (or spatial domains) after geometric conversion to shapely 

a. b.

d.

e.

c.

f. g.

Niches

Cell types

Legend

10,000 μm

Niches (or spatial

domains)

1000 μm
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polygons. b. Geometric statistics of the niches: their occurrence, 
perimeter, area, roundness, and inner cell density. c. Heatmap of 
average hop distance between niches and niches. d. Localisation of 
TREM2 macrophages shown in the visualizer. The TREM2 and C1QC 

genes are shown, and cells are coloured by their gene counts for the 
two selected genes. e. Heatmap of average hop distance between cell 
types and all other cell types. LRP1, CEBP, and TREM2 macrophages 
show a high proximity. f. Heatmap of average hop distance between 
cell types and niches. The macrophage subpopulations show 
heterogeneous localisation with respect to the niches. LRP1, CEBP, and 
TREM2 macrophages are enriched in the necrosis niche. g. Network 
plot summarising the distance metrics of (c)/(e)/(f). Each node of the 
network corresponds either to a niche (hexagon) or a cell type (circle). 
The lower the mean distance between the two nodes, the higher the 
weight of the edge between these two nodes. A high node-node 
proximity is shown by a dark edge. Overall, it provides an overview of 
the colocalisation of cell types and niches in the tumour environment. 

 

We also utilised Sopa to assess the intricacies of the tumour 
complexity. We annotated the immune populations of the MERSCOPE 
dataset in higher definition (see Supplementary Fig. 5a/b) and, in 
parallel, performed a differential analysis on each niche to better 
understand niche complexity. This revealed a distinct necrotic niche 
correlated with TREM2 macrophages (expressing TREM2, C1QC and 

CSF1R), a population of macrophages reported across cancer types 
and of- ten associated with bad prognosis (Binnewies et al., 2021; 
Molgora et al., 2020) (see Figure 4d and Supplementary Fig. 5c). To 
deepen this understanding of tissue intricacies, we investigated 
whether these TREM2 macrophages were in close distance with any 
other cell type (see Figure 4e). Strikingly, this figure highlighted that 
three macrophage populations (LRP1, CEBP, and TREM2-
macrophages) exclusively interacted with themselves. Correlating their 
location with the niche revealed that their co-occurrence is specific to 
the necrotic niche (see Figure 4f). When combining all (cell-cell/cell-
niche/niche-niche) interactions, this affirms again the association of 
LRP1/CEBP/TREM2-macrophages in the necrotic niche, yet it also 
highlights the heterogeneity of all macrophage populations and their 
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relation to the niche in the whole tissue environment (see Figure 4g). 
These combined interactions also showed 

  

that, inversely, the conventional dendritic cells (DCs) are not associated 
with any niche environment, accentuating how some populations can 
also be niche-independent. This observed spatial location underscores 
a potential reprogramming feature of macrophages based on their 
specific niche. While it is known that the accumulation of TREM2 
macrophages has been associated with enrichment in the tumour 
regions (Mulder et al., 2021; Sharma et al., 2020; Zhou et al., 2022), 
Sopa can provide insights for a refined understanding of a 
macrophage-specific tumour-associated phenotype. These examples 
illustrate that this geometric and spatial analysis — computed with 
Sopa — helps better understand the tumour’s architecture and its 
relationship with cell type phenotypes. 

 

Incorporation of H&E into the multi-omics spatial analysis 

Some technologies, such as the Xenium, have been developed to get 
Hematoxylin and Eosin (H&E) staining and protein staining on the 
same slide used for Spatial Transcriptomics. By aligning the modalities 
(with the Xenium Explorer, as detailed in the Supplementary Notes), 
Sopa enables analyses that can interplay with all three modalities. 
Especially, the H&E modality, via the colour and texture, captures extra 
information that the two other modalities do not contain. For instance, 
H&E may be stronger in regions with low RNA information, such as 
high collagen regions (see Supplementary Fig. 7). In Figure 5, we 
perform analyses that couple the three layers to provide 
interpretability to the H&E niches (see section for more details on the 
niches computation). Figure 5c shows that H&E-based niches are 
highly heterogeneous in terms of cell types, with some niches being 
highly enriched in some particular populations. Notably, niche 3 is 
highly specific to Acinar cells, niche 5 is specific to Ductal cells, while 
niche 4 is enriched in B cells and Myeloid cells. Also, Figure 5d shows 
differentially expressed genes inside each niche, providing 
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complementary insights to Figure 5c, such as TM4SF4 and APCDD1 

being highly specific to niche 5. Finally, Figure 5e exemplifies the 
analysis of the distribution of protein stainings inside these H&E 
niches, with TROP2 being more expressed in niche 0 and 3, which 
correspond to the tumour-specific niches identified in Figure 5c. 
Overall, these examples show the capability of Sopa to use one spatial 
modality to bring insights into another spatial modality. 

 

 

Figure 5: Spatial multi-omics analyses on the Xenium pancreatic 

cancer dataset. a. Overview of spatial multi-omics alignment. For each 

single cell, the information of (i) transcriptomics, (ii) stainings, and (iii) 

H&E is combined after the alignment of all the different layers. b. H&E 

clusters of patch-level embeddings based on a pre-trained computer 

vision model (denoted as H&E niches). The figure shows the cells 

obtained from spatial transcriptomics data and coloured by the H&E 

patch cluster inside which they are included. c. Proportion of cell types 

inside each H&E niche. The cell types are the cell types annotated using 

both spatial transcriptomics and protein information as in Figure 3. d. 

Differential gene expression performed on the H&E niches using single-

cell resolution. e. Distribution of TROP2 intensities per cell (N=175,022) 

inside each H&E niche, showcasing the usage of the staining layer 

coupled with the H&E information. Source data for (e) are provided as a 

Source Data file. 
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Discussion 

Advances in technology development for spatial omics hold great 
promise for biological discoveries. Yet, to build strong and unified 
foundations for spatial omics data analysis, more tools are required. 
With this purpose in mind, we designed and built Sopa to address 
several crucial aspects of spatial omics analysis: versatility, 
reproducibility, and scalability. It offers a suite of tools — or building 
blocks — designed for spatial omics, which are assembled to build a 
pipeline for any image-based spatial omics technology. At the end of 
the pipeline, it produces standardized outputs, which ease exploration 
and visualization. While each company’s technology comes with its 
own suite of tools — which differ in terms of capabilities and 
functionalities — Sopa does not require learning from multiple data 
types and software. In addition, Sopa is scalable from simple laptops 
to high-performance clusters, offering further versatility for users. 

Moreover, Sopa can easily integrate recent methods and tools: as 
future segmentation or annotation methods are developed, they can 
be added to Sopa once published and validated. This incorporation 
into Sopa enables scalability and availability to any future technology 
with only minor configuration changes. As datasets become 
increasingly bigger, Sopa’s scalability is crucial. For instance, Sopa 
enabled the possibility of running Baysor on data produced by the 
MERSCOPE, which was previously impossible due to RAM usage and 
time. Assessing the effect of patch-based segmentation showed no 
significant difference in segmentation quality. We also demonstrated 
that Baysor significantly increases data quality compared to the default 
Vizgen and 10X Genomics segmentation tools, which aligns with 
Hartman et al. (Hartman and Satija, 2024). 

As shown on the MERSCOPE liver dataset, we were able to annotate 
spatial-specific macrophages, particularly TREM2 macrophages, in the 
necrotic niche. Additionally, TREM2 has been shown to increase with 
HCC, suggesting a potential immunosuppressive role of TREM2 
(Molgora et al., 2020), while necrosis has been associated with worse 
prognosis (Bijelic and Rubio, 2021; Wei et al., 2021). With the help of 
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Sopa, the exploration of this relationship between tissue architecture 
and cell phenotypes can advance biological knowledge. 

Besides higher data resolution, Sopa can also incorporate protein and 
H&E information into spatial analysis. Without this protein layer, ex-
tracting the B cell population in the Xenium data would not have been 
possible. Concerning the H&E layer, we can benefit from the tran-
scriptomics layer to bring interpretability to the H&E tissue character-
ization or also build upon Sopa to develop tools that predict refined 
spatial-transcriptomics cell types based on H&E images. While current 
spatial technologies involve either a high number of proteins or tran-
scripts, future developments could add extra layers of information, 
contributing to a better understanding of biological systems. This pa-
per has demonstrated through various techniques that Sopa is ready 
to handle large multi-modal spatial technologies. 
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Methods 

 
Datasets used 

 
Four public datasets were used to demonstrate Sopa’s abilities. First, 
we used a MERSCOPE dataset (from Vizgen) of the human liver 
hepatocellular carcinoma (HCC), called FFPE Human Immuno-
oncology Data Set May 2022. It is composed of a 500-gene panel, and 
has DAPI staining and PolyT staining. It contains about 500,000 cells, 
depending on the segmentation. Secondly, we used a Xenium dataset 
(from 10X Genomics) of pancreatic cancer (adenocarcinoma, Grade I-
II) with the Xenium Human Multi-Tissue and Cancer Panel, in parallel 
with corresponding H&E image, and a protein-staining image with 
DAPI/CD20/PPY/TROP2. Note that the two latter images has to be 
aligned on the default main DAPI image. It contains about 180,000 
cells, depending on the segmentation. Thirdly, we used a PhenoCycler 
dataset (from Akoya Biosciences) of the human tonsil (FFPE) with 31 
protein stainings. It contains about 2,500,000 cells, depending on the 
segmentation. Finally, we used a MACSima dataset (from Miltenyi) of 
head and neck squamous cell carcinoma (HNSCC) with 61 protein 
stainings. It contains about 40,000 cells, depending on the 
segmentation. For more details about the accessibility of these 
datasets, see section . 

 

Metrics used and computational details 

The Calinski-Harabasz-Score is defined as the ratio of the sum of 
between-cluster dispersion and of within-cluster dispersion. To 
compute this score, we used the implementation in scikit-learn.  The 
mean cluster distance is the average distance between all pairwise 
combinations of cells between two different clusters; thus, a higher 
distance indicates a better cluster separation. For the differential 
expression analysis, we ran the scanpy rank genes groups function, and 
we averaged  the score of the 20 most significant genes for each cell 
type. Since we could not run Baysor on the full datasets in Figure 2, we 
run it on 16,000-pixels-wide crops of the MERSCOPE and Xenium 
datasets, and we computed the ratios between the run with the 
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patches and without patches. We then averaged these ratios across 
these two datasets, with two runs on each dataset, for each of the above 
metrics and used the resulting ratios to extrapolate the Baysor score on 
the full datasets. The time and memory benchmarks were performed 
on a Slurm cluster on the same CPU nodes. The benchmark related to 
Cellpose was performed on crops of the MERSCOPE dataset, while the 
other time and memory benchmarks were performed on a synthetic 
dataset. 

Figure 2e was generated based on the corresponding 16,000-pixels-
wide datasets; this involves 25 Cellpose patches and 4 Baysor patches. 
The percentage of conflicts for Cellpose (compared to all pairs of cells) 
was 0.007%, while this percentage was 0.001% for Baysor. The UMAPs 
of Fig- ure 3 were generated with scanpy, using the default parameters. 
The MERSCOPE and Xenium datasets have been segmented with 
Baysor, while the PhenoCycler and MACSima datasets have been 
segmented with Cellpose. Both the MERSCOPE and Xenium datasets 
have been annotated using Tangram (see Supplementary Notes for 
more details). Concerning the H&E niches, they were obtained by 
running a ResNet model pre-trained on ImageNet and applied on 
patches of size 250x250 pixels. 

 

 

Segmentation on patches 

For computational efficiency, segmentation is performed on patches, 
i.e., small image regions. These patches have a certain overlap, which 
is typically chosen to be at least twice as big as the average diameter 
of cells (e.g., 20 microns). This way, each cell should be complete in at 
least one patch, which avoids artefacts due to cutting cells at the 
border of the patches. Subsequently, any segmentation algorithm 
compatible with images and/or transcripts can be applied. While 
Cellpose and/or Baysor are commonly used, Sopa does allow the 
integration of other segmentation algorithms. Following segmentation 
on individual tiles, the cell boundaries are transformed into polygons 
using Shapely. Since patches overlap, some cells may be segmented 
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across different patches, leading to segmentation conflicts where 
multiple polygons correspond to a single cell. To resolve this, we adopt 
a method similar to the one used in Vizgen’s preprocessing tool (VPT). 
Specifically, we merge pairs of cells when the intersection area exceeds 
half the area of the smaller cell, ensuring a substantial overlap. If the 
intersection area is too small, indicating distinct cells, both polygons 
are retained. When the overlap area divided by the smallest cell area 
is close to 1, this corresponds to two almost identical cells, while a score 
close to 0 corresponds to two cells barely touching. On Figure 2e, we 
studied the distribution of this score, showing that most of the conflicts 
are associated with a score that is either very close to 0 or very close 
to 1, indicating a good conflict resolution. Indeed, statistical 
considerations indicate that scores above 0.8 or below 0.07 are good 
resolutions. Additionally, note that, before segmentation, the user can 
decide to select a region of interest: this can be done interactively with 
matplotlib on a low-resolution image. 

 

When dealing with image-based technologies, a crucial step involves 
averaging the intensity of each channel within each cell. While this task 
can be achieved using cell masks, it proves highly inefficient in terms 
of both time and memory consumption. To address this challenge, we 
adopt a chunk-level approach: (i) For each chunk, we identify cell 
boundaries (i.e., polygons) that intersect with the chunk coordinates, 
then (ii) we determine the bounding box for each of these cells, then 
(iii) we extract the image values for each of these bounding boxes, and 
finally (iv) we rasterize the cell polygons to average the staining 
intensity over the local bounding box. In this way, we only load small 
arrays corresponding to each cell, instead of loading large cell masks. 
This process is repeated over all chunks, and we make sure that the 
channel intensity for cells located on multiple chunks is computed 
correctly. 
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Counting transcripts 

GeoPandas is a Python library that enhances Pandas Dataframes by 
incorporating support for Shapely geometries. It facilitates scaling 
operations on geometries, making it particularly suit- able for 
transcript counting, where transcripts can be represented as Shapely 
points and cells as Shapely polygons. However, without Sopa, the 
memory requirements for such operations can be substantial, 
especially for spatial transcriptomics datasets that may contain up to 
one billion tran- scripts. To optimize this process, we leverage Dask and 
execute the GeoPandas ”join” operation at the partition level to assign 
each point (i.e., a transcript) to a polygon (i.e., a cell). Thus, each op- 
eration is carried out on smaller data frames, each less than 100MB in size. 
Dask efficiently assigns each partition to different workers in parallel, 
mitigating memory concerns. This approach proves highly effective on 
both laptops and high-performance clusters, as Dask is designed to 
seamlessly scale these processes without necessitating any code 
modifications. 

 

 

Converting a spatial omics object into the Xenium Explorer requires the 
creation of six files: (i) the image, (ii) a JSON metadata file, (iii) the cell 
boundaries, (iv) the cell categories (e.g., cell type or clustering), (v) the 
gene counts table, and (vi) the transcripts (if they exist). The conversion 
is done automatically by Sopa, but it can also be done manually via our 
CLI: sopa explorer write <sdata path> <output path>. 

 

For image creation, a Python function is recommended in the Xenium 
Explorer documentation 
(https://www.10xgenomics.com/support/software/xenium-
explorer/tutorials/ xe-image-file-conversion) but is not 
optimized for large images. We updated it to support Dask arrays, i.e. 
(the image type used by Sopa). Pyramids of resolutions are generated 
via the SpatialData library. To decrease memory usage, each 
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(1024x1024) image tile is generated using an iterator that only 
computes the minimally required data from the Dask array at each tile 
generation. For higher pyramidal levels, where the image size 
decreases, we allow loading an image into memory if it fits, 
accelerating conversion. 

As transcripts typically cannot be loaded entirely into memory, the 
Xenium Explorer avoids loading all transcripts. On low-resolution levels, 
only a subset of transcripts is displayed (sub- sampled), while zooming 
in reveals all transcripts from the current field of view. This pyramidal 
transcript view ensures low memory usage during visualization. The 
highest-resolution tiles are 250-micron-wide squares. For each 
pyramid level, the tile width doubles, and only one-fourth of the 
transcripts from the previous level are retained. The process stops 
when there is only one remaining tile that is larger than the original 
slide. Transcript coordinates are stored as separate chunks for each tile 
and resolution, saved as a Zarr file. This allows loading only the 
transcripts corresponding to the displayed tiles when zooming in. 
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Cell boundaries are padded to have the same number of vertices (13). 
Polygon simplification is applied to polygons with more than 13 vertices 
using the Shapely library, reducing the number of vertices while 
preserving shape geometry. A fixed number of vertices enables lighter cell-
boundary storage and faster visualization. 

Transcript counts (cell-by-gene table) use sparse array storage. One 1D 
array stores all non- zero transcript counts, another array stores the cell 
index for each count, and a third array is a pointer indicating the gene 
index for these counts. Cell categories are similarly saved using indices 
and corresponding pointers. Once again, the file format employed is a 
Zarr file. 

 

Cell-type annotation 

Transcript-based annotation. Tangram is used for cell-type 
annotation based on an anno- tated scRNAseq reference. To make 
Tangram scalable for large datasets, we adopt a strategy of splitting 
the data into ”bags of cells”, with the size determined by the user. This 
approach ensures that each Tangram iteration operates within 
manageable memory limits, and we subsequently merge the results 
to obtain the annotation for the entire dataset. Following this, Leiden53 
clustering can be applied to refine the annotation, associating each 
Leiden cluster with its most prevalent Tangram cell type. Additionally, 
we have implemented a multi-level annotation feature based on 
Tangram to enhance the annotation of minor cell types if needed. The 
process involves initially annotating global cell populations, followed 
by running Tangram on specific cell groups (e.g., Myeloid cells) for a 
more detailed annotation (e.g., pDCs, TREM2 macrophages, etc.). All 
that is required is to provide multiple cell-type annotation columns in the 
reference scRNAseq data, and Sopa will seamlessly execute the multi-
level annotation. 
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Staining-based annotation. For non-transcriptomics data, we also 
provide a fluorescence- based annotation. As each channel intensity 
is averaged inside each cell, we obtain a matrix X of shape (N, P ), 
where N is the number of cells, and P the number of stainings/channels. 
Then, these intensities are preprocessed as in a recent article52: 

 

where X′	 is the preprocessed matrix, arcsinh is the inverse hyperbolic 
sinus function, and Q(0.2, Xj) is the 20th percentile of Xj. Afterwards, 
we use a list of stainings corresponding to a population, and each cell 
is annotated according to the channel whose preprocessed intensity is 
the highest. If desired, Leiden clustering can be run to have a deeper 
annotation. Each cluster can be annotated via differential analysis or 
by showing a heatmap of staining expression per cluster. 

 

Spatial statistics  

All spatial statistics are performed after computing a Delaunay graph 
based on the spatial location of cells. This is done with Squidpy, which 
is itself based on Scipy. We also prune long edges that cannot 
correspond to a physical cell-cell interaction (typically, edges longer 
than 40 microns). In the paragraphs below, N denotes the number of 
cells. 

* Cell category to cell-category statistics. One relevant spatial statistic 
is the computation of the mean or minimum distance between two cell 
categories. This includes the pairwise distance be- tween cell types 
(e.g., the mean distance between CD8 T cells and tumour cells), as well 
as the distance between cell types and niches (e.g., the distance 
between tumour cells and tertiary lym- phoid structures). Let (C1, . . . , 

CN ) represent categories assigned to the N cells (e.g., cell types), and 
(C1

′	, . . . , CN
′			)  represent other categories (such as the niche to which 

the cell belongs).  For instance, if cell “i” is a T cell inside the stroma, 
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then Ci = “T cell” and Ci
′	= “stroma”. The sets of unique categories are 

denoted G and G′, respectively; for instance, G can be the set of unique 
cell types, and G′		can be the set of unique niches.  Then, ∀g  ∈ G and 

∀g′		∈ G′, we define the mean distance between the category g and 

g′	as follow: 

 

where Card represents the cardinal, and dij is the hop-distance 
between cell i and cell j. Note  

that minj |	Cj
′ =g′  dij  is the distance between cell i and the closest cell of 

category g′, that is how many hops are needed for cell i to “find” the 
category of interest. In practice, we compute D(g, g′) by multi-node 
graph traversal, starting from all nodes whose category is g′. In this 
way, for each g′		∈ G′, we compute (min

j |	Cj
′ 
=g

′  dij)1≤i≤N  in a single 

graph traversal.  All the resulting distances can be stored in a matrix 
((D(g, g′)))g∈G,g′∈G′    and shown as a heatmap.   Note that this 

heatmap is asymmetric because of the ”minimum” usage in the above 
distance definition. To prevent confusion while reading the 
asymmetrical heatmaps, we precise that one row corresponds to the 
distances from the cell type of the row index to all other cell types. 
Additionally, we combine the four matrices of distances (cell-type to 
cell-type, cell-type to niches, niches to cell type, and niches to niches) 
into an adjacency matrix whose weights are the inverse of the distance. 
Then, the corresponding network can be plotted using the netgraph 
library, as in Figure 4g, providing an interpretable visualization of the 
tumour microenvironment’s structure. 
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g L2 

* Niche geometry statistics. When niches (or spatial domains) are 
performed with an algorithm such as STAGATE39, users can decide to 
extract these niches as geometries to compute some relevant 
statistics, such as their area, perimeter, or roundness. From now on, for 
each cell i, 1 ≤ i ≤ N , Ci denotes the niche to which the cell belongs, 

and G is the corresponding set of unique niches (i.e., for all cell i, Ci ∈ 

G). First, we prune all the edges (i, j) that are in between niches from 
the Delaunay graph, i.e., if Ci ̸= Cj . Then, we extract the connected 

components of the graph. Because of the way we pruned the edges, 
each component corresponds to one niche, but one niche can be 
composed of multiple components (or occurrences). For each 
component, we search simplices (i.e., triangles from the Delaunay 
graph) at the component’s border, that is, the simplices that have one 
or two simplex neighbours. From all the border simplices, we extract the 
corresponding border edges; these edges are then linked to make one 
or multiple rings (i.e. cyclic lines). If we have only one ring, it is 
transformed into a polygon, which corresponds to a “full” component. 
If there are multiple rings, the largest ring is the outer polygon, and 
the others correspond to “holes” inside the main polygon: this can 
happen when some components are completely surrounded by 
another niche. Repeating this process for all components allows the 
transformation of each niche g ∈ G into multiple polygons. We can then 

count how many occurrences (or polygons) each niche is made of, and we 
can also compute the mean area Ag, perimeter Lg, and roundness Rg of 
each niche using Shapely28. Note that Rg = 4πAg ∈ [0, 1], where higher 

values correspond to a “circle-like” shape. The density of cells inside a 
niche is computed as the total number of cells in this niche divided by 
the total area of the niche. Also, for each niche, we filter out 
components whose areas are less than 5% of the area of the same 
niche’s largest component, as they usually correspond to low-quality 
artefacts from the clustering of niches. 
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Data availabilty 

The MERSCOPE dataset is available online at 
https://info.vizgen.com/merscope- ffpe-solution. The 
Xenium dataset is available at https://www.10xgenomics.com/ 
resources/datasets/pancreatic-cancer-with-xenium-

human-multi-tissue- and-cancer-panel-1-standard. The 
PhenoCycler dataset is available upon request to Akoya Biosciences, 
see https://www.akoyabio.com/fusion/data-gallery/. 
The MACSima dataset is available upon request to Miltenyi Biotec. 
Source data are provided with this paper. 

 

Code availability  

The code developed in this article is available as an open-source 
Python package, accessible on Github at 
https://github.com/gustaveroussy/sopa, or with the Zenodo 
DOI 1108443356. The code used to run the benchmark is available at 
https://github.com/quentinblampey/ sopa_benchmark. 
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Supplementary Figures 

 

 

Supplementary Figure 1: Impact of patched-based segmentation over 

the data quality, based on crops of size (16000x16000) of the original 

image. a. UMAPs comparing the representation of the cells obtained 

while running segmentation over the whole image and using patches 

(as in Sopa). This was tested over multiple datasets, for Cellpose (for all 

datasets) and Baysor (for spatial transcriptomics datasets). b. 

a.

b.

d.

f.

c.

e.

g.
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Comparison of segmentation quality metrics for Cellpose run on the 

Xenium dataset. c. Comparison of segmentation quality metrics for 

Baysor run on the Xenium dataset. d. Comparison of segmentation 

quality metrics for Cellpose run on the MERSCOPE dataset. e. 

Comparison of segmentation quality metrics for Baysor run on the 

MERSCOPE dataset. f. Comparison of segmentation quality metrics for 

Cellpose run on the MACSima dataset. g. Comparison of segmentation 

quality metrics for Cellpose run on the PhenoCycler dataset. 

 

 

Supplementary Figure 2: Xenium human pancreatic cancer dataset 

(10X Genomics) open in the Xenium Explorer. The transcript panel is 

shown, with a few genes selected. Cells are coloured by a colour gradient 

representing transcript count. 
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Supplementary Figure 3: MERSCOPE human liver hepatocellular 

carcinoma dataset (Vizgen) open in the Xenium Explorer. The cell panel 

is shown, and the ”annot level0” category is displayed. Colors correspond 

to a cell-type. 
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Supplementary Figure 5: Annotation of the immune cells of the 

MERSCOPE human liver hepatocellular carcinoma dataset and niche 

differential gene expressions (DEGs). a. Heatmap of DEGs per immune 

population on the MERSCOPE liver dataset. b. UMAP of immune cells of 

the MERSCOPE liver dataset c. Heatmap of DEGs per niche of the 

MERSCOPE liver dataset. 

  

a.

b. c.
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Supplementary Figure 6: Comparison between Squidpy and Sopa 

post-processing analyses a. Comparison of Squidpy neighbourhood 

enrichment (cell to cell) and Sopa cell to cell average hop distance. While 

the neighbourhood enrichment is symmetric, the distances are not. In 

terms of insights, this asymmetry can, for instance, show that TREM2 

macrophages are relatively close to the Hepatocytes, while the 

Hepatocytes are generally far from the TREM2 Macrophages. To prevent 

confusion while reading this heatmap, we precise that one row 

corresponds to the distances from the cell type of the row index to all 

other cell types. b. Comparison of Squidpy neighbourhood enrichment 

(niche to niche) and Sopa niche to niche average hop distance. Since 

niches are more global structures, their neighbourhood usually includes 

only the same niche (left), while the distances can capture more global 

organizations and information (right). 
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Supplementary Figure 7: Zoom on Xenium human pancreatic cancer 

dataset a. H&E clusters of patch-level embeddings based on a pre-

trained computer vision model (denoted as H&E niches), red box 

highlighting the image in c. b. H&E image of human pancreatic cancer 

dataset (10X Genomics dataset), red box highlighting the image in c. c. 

Left, zoom of H&E image of human pancreatic cancer dataset (10X 

Genomics dataset). Right, zoom of H&E image with all transcript overlay 

of human pancreatic cancer dataset (10X Genomics dataset). 
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Supplementary Figure 8: Distribution of IOMA when non-touching 3D 

cells are projected on a 2D plane. This computation has been performed 

by simulating random non-touching 3D cells.  
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3 DISCUSSION  

Mononuclear phagocytes (MNPs), a diverse group of immune cells that 
includes dendritic cells, monocytes, and macrophages, play critical 
roles in antimicrobial defence, homeostasis, and immunoregulation. 
However, the complexity and varied nomenclature used to describe 
MNPs across different tissues and diseases have presented challenges 
for the field. To address this, we integrated data from MNPs across a 
multitude of tissues and datasets, creating the MNP-VERSE, a 
comprehensive single-cell RNA sequencing (scRNAseq) compendium. 

 

3.1 CONSOLIDATING THE HETEROGENEOUS MOMAC POPULATIONS 

The generation of the MoMac-VERSE allowed us to propose a unified 
annotation of human monocytes and macrophages. By elucidating key 
transcriptional programs across different cell subpopulations, we 
validated the identities of numerous clusters by integrating large 
transcriptomics datasets with more restricted but index-sorted 
populations. This required generating a transformed matrix 
comprising all genes common to the integrated studies. As with 
continuous development, the limitation of this approach is that during 
the generation of the transformed matrix, it is not needed anymore, 
making the integration of datasets an even more powerful approach. 
Furthermore, the possibility offered by workflows such as reference 
mapping (Azimuth), which allows the mapping of “query” datasets to 
our reference MoMac-VERSE, has given the framework that has been 
a valuable tool to the community (Hao et al., 2020).  

One of the key findings from our analysis was the increased abundance 
of IL4I1_Mac expressing CXCL9, CXCL10, CXCL11, IDO1, and IL4I1 

within tumours, with specific enrichment at the tumour periphery 
compared to normal adjacent tissue. A subset of immunosuppressive 
IL4I1+ tumour-associated macrophages (TAMs) was first detected over 
a decade ago (Zhao et al., 2012) and reconfirmed more recently (Sadik 
et al., 2020). Our integration of data from multiple cancer studies, 
coupled with an unbiased analytic approach, has validated these 
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findings, revealing the presence of these populations in all six cancers 
we analysed. 

From a mechanistic standpoint, the exact pathways involved in the T 
cell (IFNG+ CD8 T cells and CD40L+ CD4 T cells)/TAM interaction 
remains unclear (Gordon et al., 2017). While these TAMs are here 
associated with dampening anti-tumoral T-cell responses, more recent 
studies suggest they may play a more favourable role (Bill et al., 2023; 
Chen et al., 2024). Although there is overlap in the programs observed, 
these findings highlight the need for more robust and detailed 
investigations to better understand the complexities of these TAMs in 
cancer. 

TREM2 macrophages were mostly studied in the brain due to their role 
in the development of neurodegenerative disorders such as 
Alzheimer’s disease (Krasemann et al., 2017; Parhizkar et al., 2019) . 
They are also involved in metabolic disorders, and obesity have now 
been detected in adipose tissue (Jaitin et al., 2019). However, there has 
recently been a surge in the association with the tumour 
microenvironment (Colonna, 2023). TREM2 macrophage populations 
have increased in various tumours, occupying a potentially immune-
suppressive position in the TME. With more recent studies, the location 
of TREM2 mac has come more to light in cancer and seems to have a 
unique location based on the disease (Matusiak et al., 2024; Ramos et 
al., 2022).  

The third population of macrophages we focused on were the HES1 
macrophage subset, which corresponds to FOLR2+ macrophages. 
These cells were identified in various cancer types like liver cancer (Li 
et al., 2024; Ramos et al., 2022; Sharma et al., 2020). These 
macrophages exhibit a signature similar to that of resident, fetal-
derived macrophages in mice, aligning with the concept of oncofetal 
reprogramming (Sharma et al., 2022). This reprogramming could play 
a role in supporting tumour vasculature and growth, as these 
macrophages may be “tricked” into functioning as if they were part of 
an embryo, promoting development in a way that aids the tumour. 
This finding opens up the possibility that targeting this reprogramming 
process could be a novel therapeutic strategy to shift tumor-
associated macrophages (TAMs) toward anti-tumor activity. However, 
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it’s important to note that the role of these macrophages can vary 
depending on the tumour type and location. For instance, in breast 
cancer, these macrophages have been shown to enhance CD8+ T cell 
infiltration, contributing to an anti-tumor response (Ramos et al., 
2022). 

A key insight from our research is that these three macrophage 
populations, often reported separately in various isolated studies, 
actually represent major conserved subsets when viewed through an 
integrated approach. Traditionally, macrophages have been classified 
using the M1/M2 framework, a system originally developed for in vitro 
monocyte-derived macrophages (Charles D. Mills et al., 2000; Stein et 
al., 1992). While this classification efficiently distinguishes between 
certain macrophage types, it falls short of capturing the full diversity 
of macrophages, particularly in the context of cancer. TAM 
differentiation from circulating monocytes follows a distinct pathway 
that does not align neatly with the M2 anti-inflammatory (pro-tumoral) 
classification (Ruth A. Franklin et al., 2014). 

For example, although IL4I1+ macrophages exhibit a strong M1 
program, in vitro-generated M1 monocyte-derived macrophages 
might not fully represent the primary M1-like macrophages found in 
tissues. Unlike in vitro M1 macrophages, these primary macrophages 
do not produce IL12B, which is instead produced by tissue-activated 
cDC1 and CCR7+ dendritic cells (Maier et al., 2020). This highlights the 
importance of avoiding oversimplified classifications, which can lead 
to a narrow and potentially misleading understanding of the tumour 
environment. Our findings emphasize the need for a more nuanced 
approach to characterizing macrophage diversity in cancer. 

It is well established that macrophages display distinct tissue-specific 
characteristics, particularly under homeostatic conditions, and their 
origin often influences their function. However, an intriguing 
observation from the MoMac-VERSE dataset is the lower influence of 
tissue specificity. While this may reflect a limitation of the approach, it 
also highlights the presence of conserved programs that span across 
different diseases. For example, the TREM2 macrophage program is 
prevalent not only in various cancers but also in other disease states, 
such as inflammatory conditions like atherosclerosis (Colonna, 2023; 
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Patterson et al., 2023). 

In cancer, there are well-known hallmarks that remain consistent 
across different tissue types, and similarly, certain macrophage 
populations exhibit similar patterns across cancers (Haigis et al., 2019). 
Although the significance of tissue specificity is increasingly 
recognised in understanding cancer heterogeneity, these conserved 
programs can also be observed in the macrophage function regardless 
of the tissue type. While disease and tissue-specific targets have a high 
potential for efficiency and precision, these consistencies across tissue 
and disease types give an opportunity to find and improve treatments 
that could be used in a universal manner. 

 

3.2 STANDARDISING THE HETEROGENEOUS STATES WITHIN DC SUBSETS 

Similar to our previous study investigating monocyte and macrophage 
heterogeneity, we provide an integrated analysis across multiple 
tissues in various pathologies to build an in-depth overview of human 
DC heterogeneity. This analysis took advantage of 40 scRNAseq 
datasets, along with flow cytometry validation, CITE-seq protein 
expression data, spatial genomics and immunohisto-fluorescence, and 
various analytical pipelines to help define a robust characterisation of 
human DCs. 

By continuing an integration of dendritic cells based on their 
transcriptome and incorporating protein expression data (through 
CITE-seq and indexed-FACS), the mDC-VERSE has provided an 
unprecedented level of detail in identifying discrete cell subsets and 
lineages. For instance, we confirmed the identification of DC2s and 
DC3s by examining the expression of CD5 and CD14 proteins. This data 
also revealed that LTB DC2+DC3s, and to a lesser extent, CD207 
DC2+DC3s, express the CD103 protein on their membranes, which was 
used to detect and quantify CD103+ LTB DC2+DC3s through flow 
cytometry. This integrative approach allowed us to compare multiple 
studies, clarify the annotation in a unifying way, and increase the 
resolution of their defined populations (Brown et al., 2019; Cheng et 
al., 2021). 
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The increasing number of scRNAseq studies has led to various names 
being assigned to DC populations with strong similarities, which calls 
for a unified nomenclature. For example, DC3s were initially described 
as a subset of CD1c+ DCs containing pro-inflammatory CD14+ cells 
(Bourdely et al., 2020; Dutertre et al., 2019). However, the term “DC3” 
has also been used to describe cells that align transcriptomically with 
CCR7 mDCs (Di Pilato et al., 2021; Gerhard et al., 2020; Zilionis et al., 
2019). This dual usage of the term “DC3” can create confusion, as CD5-
CD14+/- DC3s represent a cell subset, whereas CCR7 mDCs represent a 
state shared by DC1, DC2s, and DC3s (Ginhoux et al., 2022). To clarify 
this, we aligned published signatures with the DC populations 
identified in the mDC-VERSE, providing a more consistent framework 
for understanding DC heterogeneity. 

Another key aspect of our study was distinguishing between cell 
subsets and cell states. For example, we showed that the CD207 

program is a shared program, similar to the CCR7+ migration program, 
which can be acquired by cell subsets/types of different lineages. In 
contrast, a subset is defined as a population that does not revert to its 
original state, such as DC1 not becoming DC2. This distinction is crucial 
for extending and clarifying current literature and understanding the 
complexity of the tumour microenvironment. 

The term “lineage” is often used to describe a population of cells that 
lack specific combinations of surface markers associated with other 
lineages (Merad et al., 2013). However, when we think of a “state,” we 
refer to a condition or way of being at a particular moment in time. 
Applying this concept to populations identified in datasets is crucial, 
especially considering that the environment highly influences states 
without being predetermined. 

In the context of macrophages, there is a general agreement that these 
cells exhibit significant plasticity, adapting to their surroundings. The 
identification of various macrophage populations underscores the 
presence of numerous states, which are sometimes labelled as subsets. 
It’s more accurate to consider these as states, as this approach better 
reflects the dynamic nature of macrophages. Whether macrophages 
have the inherent ability to switch states or are locked into a particular 
state still requires further investigation (Dunsmore et al., 2024; 
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Guilliams and Svedberg, 2021). 

For DCs, the situation is more complex, particularly with recent insights 
into the DC3 population (Bourdely et al., 2020; Liu et al., 2023; 
Rodrigues et al., 2024). This new understanding suggests that DC3s 
have an independent determination, distinct from other DC subsets. If 
this distinction is not maintained, the ontological significance could be 
lost in the issues of nomenclature. 

Understanding the difference between a subset and a state is crucial, 
especially when translating these findings into therapeutic strategies. 
The distinction can have a significant impact on the timing and location 
of targeted interventions, influencing the effectiveness of modulating 
immune responses. 

Our meta-analysis focused on the differences in mDC heterogeneity 
between normal adjacent and tumour tissues. We found that genes 
like SPP1 were highly expressed in tumours, consistent with findings in 
monocytes and macrophages. Additionally, the cDC1-specific gene 
CLEC9A was downregulated in tumours, indicating a reduced presence 
of cDC1s (Kvedaraite and Ginhoux, 2022). Notably, CCR7+ cDC1s, 
unlike CCR7+ DC2s or DC3s, were more frequent in tumours than 
adjacent normal lung tissue. We also identified an increase in IFN-
primed DC2+DC3s in various cancers, a trend previously observed in 
lung cancer and now extended to other types (Leader, 2021; Maier et 
al., 2020). 

Further analysis revealed that while CD1A and CD207 transcripts were 
broadly expressed by tumour-associated DC2+DC3s, we specifically 
identified CD207+CD1A+ DC2+DC3s as a distinct tumour-associated 
state. This population’s expansion was validated in NSCLC patients 
using spectral flow cytometry and immunohistochemistry. 

We also examined the role of CD207 DC2+DC3s in immunotherapy. In 
breast cancer patients treated with immune checkpoint blockade, 
CD207 DC2+DC3s were more prevalent in those without T-cell clonal 
expansion. This, along with a negative correlation with CD8 T-cells in 
scRNAseq data, suggests these cells may limit T-cell clonality. 
Additionally, CD207 DC2+DC3s inversely correlated with CD8+ TRM 



 

 

 

223 

cells, which are linked to better outcomes, while positively correlating 
with senescent/hypofunctional CD8+ TEMRA cells (Park et al., 2019; 
Reading et al., 2018). 

There are two potential explanations for why CD207 DC2+DC3s, unlike 
other DC subsets or states, show an inverse correlation with CD8+ 
TRMs. The first possibility is that TGF-b, a cytokine known to induce a 
CD1a+CD207+ Langerhans cell-like phenotype from blood CD1c+ DCs 
and a CD103+ TRM-like phenotype from CD103- T-cells, could be a 
factor. These two cell types might compete for TGF-b, which could 
account for their inverse relationship (Bigley et al., 2015; Yu et al., 
2013). The second hypothesis is that CD207 DC2+DC3s might promote 
the differentiation of CD8+ T-cells into TEMRA cells rather than TRMs 
through a mechanism not yet identified in our study. This could explain 
the observed negative correlation with TRMs and positive correlation 
with TEMRAs. 

These data provide potential therapeutic targets in favour of reducing 
the abundance of CD207 DC2+DC3s. Furthermore, CD207 DC2+DC3s 
could also serve as a prognostic factor alongside cDC1s as the ratio of 
these cells predicted whether patients would develop a T-cell clonal 
expansion, but this will require further investigation in larger 
prospective cancer patient cohorts. 

Our investigation into the spatial distribution of dendritic cell (DC) 
subsets within tumour tissues has provided valuable insights, 
particularly concerning CD207 DC2+DC3s. Visium spatial 
transcriptomics of human breast tumours indicated that CD207 

DC2+DC3s were located within the tumour region itself, unlike most 
other immune cells, including other DC subsets, which were primarily 
found in normal tissue or immune-rich niches. To further validate these 
findings at single-cell resolution, we used Merfish technology 
(Merscope, Vizgen) to analyse one lung and one breast cancer patient. 
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This analysis involved cell segmentation followed by dimensionality 
reduction, allowing us to identify tumour and stroma niches as well as 
major immune cell populations, including B-cells, T-cell subsets, and 
most DC subsets. In both tumour cross-sections, all DC subsets and 
states, except for CD207 DC2+DC3s, were more abundant in the 
tumour stroma. CD207 DC2+DC3s were uniquely concentrated within 
the tumour nests, surrounded by tumour cells. To confirm this 
observation, we performed 4-colour immunohistofluorescence (IHF) 
staining on 16 lung adenocarcinoma patients, which corroborated the 
significant intratumoral presence of CD207+ DC2+DC3s specifically 
within the tumour glandular areas, while B and T lymphocytes, 
including CD8+ T-cells, were more prevalent in the tumour stroma. 

Our findings, coupled with advancements in spatial omics 
technologies, highlighted the need for robust, unified tools for data 
analysis. To address this, we developed Sopa, a versatile, reproducible, 
and scalable platform designed for spatial omics analysis. Sopa offers 
a suite of tools that can be assembled to create pipelines tailored to 
any image-based spatial omics technology, producing standardized 
outputs that facilitate exploration and visualization. Unlike other tools 
tied to specific technologies, Sopa does not require learning multiple 
data types and software, and it is scalable from laptops to high-
performance clusters. 

While the DC-VERSE has expanded our knowledge of dendritic cells, 
including those involved in the CD207 program, achieving a 
comprehensive functional understanding of these cells remains a 
considerable challenge. Single-cell analysis offers valuable insights and 
suggests potential regulatory mechanisms, such as TGF-b. However, 
the interaction between dendritic cells and their surrounding 
environment needs further exploration, particularly from a biological 
perspective. For example, CD207 DC2+DC3 cells exhibit lower 
expression of CXCR4, a marker known to be essential for cell migration, 
which may influence their behaviour within tissue (Liu et al., 2021). 

Although research into the spatial context of macrophages and 
dendritic cells is progressing, it still falls short of the depth achieved 
through single-cell analysis. A key area for future exploration is 
whether the conserved programs observed in macrophages during 



 

 

 

225 

disease states are also reflected in their spatial distribution within 
tissues. Understanding this could provide new perspectives on how 
these cells interact with their environment and may inform the 
development of new therapeutic strategies. Moreover, beyond the 
CD207 DC2+DC3s, it will also be of interest to explore the relationship 
of the other DC populations within their environment.  

 

3.3 STREAMLINING MULTI-LEVEL SPATIAL OMICS 

Sopa is also adaptable, integrating new methods and tools as they are 
developed. For instance, as future segmentation or annotation 
methods are validated, they can be incorporated into Sopa with minor 
configuration changes, ensuring that Sopa remains relevant with the 
advancement of new technologies. 

As datasets continue to grow in size, Sopa’s scalability becomes 
increasingly crucial. It enabled us to run high-demand algorithms that 
were previously challenging due to RAM limitations and processing 
time. Our assessments showed no significant differences in 
segmentation quality, and Baysor notably enhanced the data quality 
compared to default segmentation tools from Vizgen and 10X 
Genomics. 

Beyond high-resolution data, Sopa also integrates protein and H&E 
information into spatial analysis. This capability allowed us to extract B 
cell populations in Xenium data and enhance the interpretability of 
H&E tissue characterisation using transcriptomics. While current 
spatial technologies primarily focus on either a high number of 
proteins or transcripts, future developments could add additional 
layers of information, further enhancing our understanding of 
biological systems. This study demonstrates that Sopa is equipped to 
handle the demands of large, multi-modal spatial technologies. 

Using the MERSCOPE liver dataset, we could annotate spatial-specific 
macrophages, particularly macrophages within the necrotic niche. The 
presence of macrophages, which are known to increase hepatocellular 
carcinoma (HCC) (Molgora et al., 2020; Sharma et al., 2020), suggests 
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a potential immunosuppressive role, especially since necrosis is 
associated with a poorer prognosis (Wei et al., 2021). With Sopa, the 
relationship between tissue architecture and cell phenotypes can be 
explored more effectively, advancing our understanding of these 
interactions. 

The concept of a subtissular or niche environment has gained 
significant importance, especially with recent technological 
advancements. Various populations within the mononuclear 
phagocyte system occupy unique locations and perform specific 
functions in both health and disease. While our understanding of their 
relationship with the environment has traditionally been viewed in a 
somewhat linear manner, the full complexity of this ecosystem remains 
largely unexplored. As combinatory treatments become more 
prevalent, there is a growing emphasis on targeting the entire 
ecosystem rather than isolated components. Through our research and 
the development of advanced tools, we aim to deepen the 
understanding of mononuclear phagocytes in the tumour 
microenvironment, ultimately contributing to the development of 
more effective and targeted therapies. 
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4 CONCLUSION 

In conclusion, our research has unveiled the diverse yet conserved 
array of human monocyte and macrophage populations in both health 
and disease. By offering a comprehensive analysis and an online tool 
for exploring human mononuclear phagocytes (MNPs), we hope to 
influence future studies to consider this diversity more fully. The era of 
broadly categorizing cancer-associated myeloid cells based on a few 
common but nonspecific surface markers is ending. The advent of 
single-cell transcriptomics and their integration marks a paradigm 
shift, moving beyond mere atlases and descriptive catalogues of cell 
subsets. This new approach will enable the scientific community to 
design more innovative and specific macrophage-based 
immunotherapy strategies. 

Furthermore, our study provides an extensive examination of human 
dendritic cell (DC) heterogeneity, integrating various datasets and 
methodologies to clarify their roles in health and disease. The DC-
VERSE and mDC-VERSE platforms serve as valuable resources, 
enhancing the understanding of DCs and their implications for 
immunotherapy. By unifying nomenclature and highlighting the spatial 
distribution and potential prognostic significance of specific DC 
subsets, our work lays the groundwork for further research and 
targeted therapeutic interventions in dendritic cell biology. 

The integration of spatial omics data offers profound insights into 
tissue architectures, creating new opportunities for biological 
discovery. Imaging techniques now provide single-cell resolutions, 
revealing the intricacies of cellular organisation and dynamics. 
However, the complexity of such data requires advanced analytical 
tools and significant computing power. The diversity of spatial omics 
technologies further complicates the generalisation of existing tools, 
necessitating the development of versatile, scalable platforms. 
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As we continue to explore the subtissular or niche environments, the 
significance of these ecosystems becomes increasingly clear. The 
various populations within the mononuclear phagocyte system, each 
with unique locations and functions, play critical roles in both health 
and disease. While our understanding of these relationships has often 
been linear, the true complexity of the ecosystem is still unfolding. 
With combinatory treatments becoming more common, there is a 
growing focus on targeting the entire ecosystem rather than isolated 
components. Our research and the development of advanced tools 
aim to deepen the understanding of mononuclear phagocytes in the 
tumour microenvironment, ultimately contributing to creating more 
effective and targeted therapies. 
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