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Résumé 

Cette thèse vise à développer des méthodologies dédiées à améliorer la fonctionnalité de 

robots mobiles pour accomplir une mission, en particulier la caractérisation électromagnétique 

micro-onde de matériaux dans leur environnement. Le succès de cette mission dépend de la 

navigation précise et de la perception exacte de l'environnement par les robots, un challenge qui 

est souvent perturbé par les défaillances et les incertitudes des capteurs. À cet égard, la thèse se 

concentre principalement sur deux points fondamentaux. Dans le premier, nous développons une 

méthode de localisation robuste pour assurer une navigation autonome précise et tolérante aux 

défauts pour les robots mobiles. Cette méthode repose sur une approche statistique 

informationnelle, incorporant un seuil adaptatif qui facilite la détection rapide et précise des 

défauts de capteurs. L'efficacité de cette méthode est validée par une étude comparative avec des 

approches existantes de la littérature. 

Le deuxième point consiste à développer des techniques de contrôle et d'évaluation non 

destructives par micro-ondes (Microwave Non Destructive Testing & Evaluation - MNDT&E) 

pour la caractérisation des matériaux. Initialement, nous considérons des techniques 

conventionnelles de MNDT&E, associées à une modélisation analytique. Reconnaissant les 

limites de la modélisation analytique, nous présentons trois nouvelles techniques « intelligentes » 

de MNDT&E qui intègrent des modèles d'apprentissage automatique (Machine Learning - ML) et 

d'apprentissage profond (Deep Learning - DL). Ces techniques reposent sur deux approches 

micro-ondes : la propagation en espace libre pour la caractérisation sans contact en utilisant un 

radar mono-statique et la propagation guidée pour la caractérisation en contact en utilisant un 

guide d'ondes rectangulaire (Open-Ended Rectangular Waveguide - OERW). Les capteurs 

développés intègrent des contraintes de faible encombrement et faible coût, compatibles avec un 

contexte hors laboratoire. Dans une première phase, les techniques proposées sont utilisées pour 

mesurer les coefficients de réflexion 𝑆11 des matériaux, générant trois bases de données 

distinctes. La deuxième phase consiste à utiliser les modèles ML et DL afin de relier les réponses 

électromagnétiques mesurées et les types de matériaux identifiés ou la présence de défauts. De 

plus, différentes configurations et topologies de mesure sont introduites et mises en œuvre. La 

performance de chaque configuration est évaluée et analysée en fonction de métriques 

sélectionnées dans des conditions de laboratoire et des conditions réalistes. 

Enfin, nous présentons une étude de faisabilité basée sur un réflectomètre six ports à guide 

d'ondes métallique. Ce dispositif présente des avantages particulièrement bien adaptés à des 

contingences hors laboratoire tels que sa consommation électrique réduite, sa précision de mesure 

électrique et sa capacité à opérer en environnement difficile. De plus, le système développé pour 

un fonctionnement en bande de fréquences V (55-75 GHz) facilite le passage de la caractérisation 

des micro-ondes à celle des ondes millimétriques, jetant les bases d'une analyse précise et 

efficace. La montée en fréquences élargit le spectre des informations capturées, améliorant les 

capacités, la précision et la versatilité des techniques de contrôle et d'évaluation non destructifs. 

Mots clés : filtre de Kalman, tolérance aux défauts, théorie de l'information, 

localisation, average run length, contrôle non-destructif, micro-ondes, analyseur de réseau 
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Abstract 

This thesis aims to develop methodologies dedicated to improve the functionality of mobile 

robots to accomplish a mission, in particular the microwave electromagnetic characterization of 

materials in their environment. The success of this mission depends on precise navigation and 

accurate perception of the environment by the robots, a challenge that is often affected by sensor 

failures and uncertainties. In this regard, the thesis primarily focuses on two fundamental points. 

In the first, we develop a robust localization method to ensure precise and fault-tolerant 

autonomous navigation for mobile robots. This method relies on an informational statistical 

approach, incorporating an adaptive threshold that facilitates fast and accurate detection of sensor 

faults. The effectiveness of this method is validated through a comparative study against existing 

approaches from the literature. 

The second point is to develop nondestructive testing and evaluation techniques using 

microwaves (microwave Non Destructive Testing & Evaluation MNDT&E) for material 

characterization. Initially, we consider conventional MNDT&E techniques, coupled with an 

analytical modeling. Recognizing the limitations of analytical modeling, we present three novel 

« intelligent » MNDT&E techniques that integrate machine learning (ML) and deep learning 

(DL) models. These techniques are based on two microwave approaches: free-space propagation 

for non-contact characterization using a monostatic radar and guided propagation for contact 

characterization using an open-ended rectangular waveguide (OERW). The sensors developed 

integrate the constraints of compactness and low cost, compatible with a non-laboratory context. 

In a first phase, the proposed techniques are employed to measure the reflection coefficients of 

materials 𝑆11, generating three distinct databases. The second phase involves using ML and DL 

models to relate the measured electromagnetic responses and the identified material types or the 

presence of damage. Additionally, various measurement setups and topologies are introduced and 

implemented alongside the proposed methods. The performance of each setup combination is 

assessed and analyzed based on selected metrics under both laboratory and realistic conditions. 

Finally, we present a feasibility study based on a metallic waveguide six-port reflectometer. 

This device offers advantages particularly well suited to non-laboratory requirements, such as 

low power consumption, electrical measurement accuracy and the ability to operate in harsh 

environments. Furthermore, the system developed for operation in V-band frequencies (55-75 

GHz) facilitates a shift from microwave to millimeter-wave characterization, establishing a 

foundation for accurate and efficient analysis. Increasing frequencies expand the spectrum of 

information captured, enhancing the capabilities, accuracies, and versatility of nondestructive 

testing and evaluation techniques. 

Keywords: Kalman filter, fault tolerance, information theory, localization, average run 

length, non-destructive evaluation, microwaves, vector network analyzer, permittivity, 

material characterization, defects detection, machine learning, deep learning, six-port.  
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1. 1 Introduction  

Mobile robots have emerged as an innovative technology, providing solutions in 

environments where human intervention proves challenging or dangerous. Their autonomous 

navigation capabilities have transformed various applications, leading to a significant 

enhancement in efficiency across diverse domains. In this research work, a primary focus 

involves achieving significant advances through the integration of microwave techniques on 

mobile robots. The mission of these techniques is to characterize materials within the surrounding 

environments of the robots. In particular, microwave characterization techniques and tools have 

been widely described in the literature to address nondestructive testing applications in a variety 

of fields. They present advantages such as contactless operation, non-ionizing sensing, and 

penetration into dielectric materials. Consequently, our objective is to equip mobile robots with 

free-space sensing radars to address ultimately scanning / imaging of large areas. Indeed, radar 

techniques are mostly thought as single measurement method with poor scanning capabilities. 

This integration aims to provide scanning capabilities while minimizing the requirement for 

extensive human intervention, consequently reducing the exposure of humans to potential 

dangers in diverse working environments. 

This research represents a continuation of a prior thesis conducted in collaboration between 

the CRIStAL and IEMN laboratories. In the earlier study, a proof-of-concept method for 

nondestructive testing and evaluation of materials in the immediate proximity of robot 

environments was developed. Specifically, microwave instruments were integrated into a multi-

robot system to characterize materials under test, as illustrated in figure 1.1. Adapting this 

approach to collaborative mobile robots posed a significant challenge, particularly in harsh 

environments. The earlier study placed considerable focus on the localization of robots, as well as 

communication and collaboration within the multi-robot system.  

  

Figure 1.1 Microwave on-destructive testing platform. 

In this thesis, we work on two pivotal aspects critical for the successful implementation of 

the MNDT&E techniques on a mobile robot. The first aspect is focused on the development of a 

robust localization approach, acknowledging that precise localization is tolerant to the defects of 

sensors embedded on a system. A robot is equipped with several sensors to determine its precise 
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position (i.e. its location and orientation). In such a system, a large amount of data is transmitted 

simultaneously. At any given time, each sensor may fail and/or lose its performance, resulting in 

loss of information or erroneous data. To achieve real-time, accurate, and robust localization, the 

research introduces multi-sensors data fusion approach using the extended Kalman filter. 

Simultaneously, a complementary diagnostic approach based on the Entropy criterion is 

presented to efficiently identify and isolate malfunctioning sensors. This dual-approach enhances 

system efficiency by accurately detecting sensor anomalies, allowing for effective navigation. 

The effectiveness of this approach is evaluated and compared with other methods in the literature 

using the key performance metric, average run length (ARL). This metric provides insights into 

the delay in defect detection and estimates the false alarm detection. Consequently, this solution 

establishes an automated system that ensures accurate navigation during manufacturing or service 

operations. 

The second aspect of this thesis involves the development of MNDT&E techniques for 

planar material characterization. NDT&E for material characterization is a concept and set of 

techniques used to inspect, analyze, and assess the properties and quality of materials without 

causing any damage to the material being examined. In particular, a key aspect of this process 

involves studying and evaluating the types of materials and determining the presence of defects 

within them. 

 First, we introduce conventional MNDT&E techniques along with an appropriate analytical 

modeling and calibration technique to characterize planar dielectric materials. However, it 

remains challenging to characterize the materials using analytical modelling. The unknown 

material thickness and the position, shape, and size of defects have an impact on the measured 

reflected electromagnetic wave which make this task challenging. Moreover, random noise can 

significantly influence the properties of the signals, which highly affects the detecting and 

characterizing sensitivity. In this regard, we develop three intelligent MNDT&E techniques for 

planar material characterization and surface/subsurface defects detection. This strategy involves 

integrating microwave techniques with ML and DL models to analyze the microwave response. 

Introducing these methods create the opportunity to address a wide range of scenarios and to 

adapt precision levels according to distinct application needs. Moreover, this advancement 

presents advantages such as reducing the dependency on the operators skills and experience, 

reducing the dependency on complex conversion methods, and potentially enhancing the 

sensitivity of material characterization and defects detection [1-2]. 

The first ‘intelligent’ MNDT&E technique is developed by using a free-space propagation 

through a monostatic radar, with the reflection waves analyzed through five ML models 

including decision tree, random forest and support vector machine with three different kernels. In 

contrast, the second technique is based on guided propagation through an OERW in contact with 

the planar material under test. The reflected waves are analyzed through the same five ML 

models for material characterization. The third technique is based on using the OERW, with a 

1D-convolutional neural network (CNN) algorithm to perform the analysis of the measured 

reflection coefficients and detect defects within the materials.  

Furthermore, in the field on NDT&E, a feasibility study has been conducted using a six-port 

reflectometer operating in millimeter wave range, around 60 GHz. The aim of this study is to 

increase the frequency of operation, with the goal of enhancing the accuracy and the sensitivity of 
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material characterization, while maintaining relatively low-cost. Additionally, the adoption of the 

six-port system contributes to increase immunity to surrounding noise, further improving the 

reliability of the testing and evaluation process. 

1. 2 Thesis contributions 

This research presents original contributions in several significant areas. The thesis 

objectives are centered around two main parts. The first objective is to propose a novel method 

for ensuring accurate robot localization, even in the presence of sensor faults. The second 

objective is to introduce three innovative intelligent MNDT&E techniques, combined with ML 

and DL models, to develop new, fully functional material characterization and defects detection 

techniques. Based on these objectives, the major contributions of this work can be described as 

follows: 

- Proposing a multi-sensors fault tolerant fusion approach for accurate robot localization. 

Based on adaptive Entropy-based threshold control chart (AET-Control chart), this 

approach monitors the mean of a residual that follows a normal distribution. A 

performance comparison study in terms of Average Run Length (ARL), with five other 

methods in the literature is presented. 

- Implementing a monostatic free space measurement setup, with a horn antenna operating 

as a radar pointing toward a MUT at a certain distance away from the antenna.  

- Implementing an OERW to provide accurate and reliable measurements, enabling the 

identification and characterization of defects within the MUT with high accuracy and 

resolution. 

- Ensuring measurement precision through specific techniques, which in turn enhance the 

reliability of the measurements.  

- In free-space measurement setup, collecting a database comprising the magnitude and 

phase-shift of the reflection coefficient 𝑆11for different types of materials with different 

thicknesses, providing a diverse range of samples for analysis and classification. 

- Employing classification methods based on ML algorithms. Five algorithms are used and 

compared: random forest (RF), decision tree (DCT) and support vector machine (SVM) 

with three kernels. The performance of these classifiers is evaluated using different 

evaluation metrics: accuracy, precision, sensitivity and F1_score.  

- Evaluating the classifier accuracy for different stand-off distances, providing insights into 

their performance in varying scenarios. 

- Using the OERW, collecting two databases comprising the magnitude and phase shift of 

𝑆11 for: (1) different types of materials, (2) different configurations of defects in several 

materials. We apply the same set of five machine learning models to classify materials 

using the data from database (1). Furthermore, a convolutional neural network model is 

implemented for the purpose of detecting defects based on the information from database 

(2). The performance of these models is evaluated using different evaluation metrics: 

accuracy, precision, sensitivity and F1_score. 
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1. 3 Thesis outlines 

In summary, the thesis introduces a robust localization method for mobile robots. It then 

presents conventional MNDT&E techniques along with an analytical calibration method for 

material characterization. Subsequent sections cover the generation of three databases, derived 

from microwave measurements on various materials, and present the results of applying ML and 

DL models to these databases. The thesis concludes by presenting a six-port based feasibility 

study aimed at enhancing material characterization.  

This first chapter is focused on the motivations, objectives and contributions of this thesis, 

the remainder of this thesis is organized as follows: 

Chapter 2 focuses to establish an advanced localization approach that maintains a robust 

tolerance to sensor faults. To achieve this goal, a combination of positioning sensors is integrated 

on the robot, and a strategy for data fusion is then developed. Additionally, a technique based on 

the concept of the entropy criterion is introduced to effectively identify and isolate 

malfunctioning sensors. This approach allows the system to navigate with efficiency, effectively 

identifying sensor anomalies in a precise manner. This leads to the establishment of a high degree 

of accuracy and robustness. This method is applied to a real-life application and subsequently 

compared with existing literature, based on the key metric ARL.  

Chapter 3 provides an overview of the theoretical foundations of wave/material interactions, 

microwave characterization techniques and associated measurement instrumentations. Following 

the theoretical overview, the chapter details the design and implementation of conventional 

microwave techniques used for material characterization. In initial setup, a corrugated horn 

associated to a Vector Network Analyzer (VNA) measure the reflection coefficient 𝑆11of the 

material under test (MUT). Following the measurements, a calibration method is employed to 

extract the material permittivity, allowing for the identification of its type. In the second setup, 

the corrugated antenna is substituted with a more compact horn antenna, and the same steps are 

repeated. To validate the efficiency of these methodologies, practical experiments are conducted 

using two wooden MUT samples. Subsequently, the findings are compared with results 

documented in the literature. The chapter concludes by highlighting the advantages and 

limitations associated with these techniques. 

Chapter 4 outlines the integration of MNDT&E techniques with ML and DL models for 

material characterization. The first part covers the basics of the ML and DL models used in this 

thesis. Following that, a literature review is presented, highlighting various microwave 

techniques and their integration with ML and DL models, along with a comparative analysis of 

these methods. In the second part, the design and implementation of three intelligent MNDT&E 

techniques for material characterization are presented. The first technique is based on using a 

monostatic free space radar designed for material characterization. The configuration consists of 

a horn antenna combined with a VNA to measure both the magnitude and phase of 𝑆11, primarily 

for materials with three distinct types: wood, Plexiglas, and glass. The measured data are then 

analyzed and classified using five distinct ML algorithms: DCT, RF, SVM with three kernels. 

The measurements are conducted at various distances, aiming to verify effectiveness across 

different ranges The second technique is based on using an OERW with a VNA to measure the 
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𝑆11 for the same group of materials, for contact material characterization. The measured data are 

then analyzed and classified using the same five ML algorithms. A comprehensive performance 

analysis is conducted for these two techniques under two distinct environmental conditions: 

laboratory settings and more realistic settings. The third technique incorporates the use of an 

OERW with a one dimensional convolutional neural network (1D-CNN) model for defect 

detection within materials. The measured data are a set of various types and sizes of intentionally 

generated material defects. Finally, a comparative study between free space and contact 

characterization is proposed. 

Chapter 5 discusses a feasibility study centered around a six-port reflectometer operating 

within the millimeter frequency range (i.e. around 60 GHz). The chapter presents the application 

of the six-port reflectometer in two scenarios: sub-millimeter distance measurements and IQ 

demodulation. This approach is highlighted for its potential to offer enhanced accuracy for 

material characterization.  

1. 4 Scientific production 

International conferences:  

1. N. Alsaleh, B. Daass, D. Pomorski and K. Haddadi, "Fast and Real-Time Sensor-Fault 

Detection using Shannon’s Entropy," 2021 5th International Conference on Control and 

Fault-Tolerant Systems (SysTol), Saint-Raphael, France, pp. 273-278, 2021. 

2. N. Alsaleh, D. Pomorski, M. Sebbache, C. Lenoir and K. Haddadi, "Nano-Positioning 

Test platform for Free-Space Six-Port Interferometric Distance Measurements," 2021 

IEEE Conference on Antenna Measurements & Applications (CAMA), Antibes Juan-les-

Pins, France, pp. 562-564, 2021. 

3. N. Alsaleh, D. Pomorski, M. Sebbache, C. Lenoir and K. Haddadi, "WR15 Six-Port 
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2022 Photonics & Electromagnetics Research Symposium (PIERS), Hangzhou, China, pp. 

414-419, 2022. 

4. N. Alsaleh, D. Pomorski, M. Sebbache and K. Haddadi, "Machine Learning-Based 
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2.1. Introduction  

In mobile robot systems, localization is a fundamental task that has been of increasing 

interest in recent years given its importance in a wide range of applications, such as surveillance 

[3], environment perception, trajectory planning and control [4-5]. Localization techniques can be 

divided into two categories [6-7]: relative localization, relying on internal sensors like encoders, 

accelerometers, and gyrometers; and absolute localization, utilizing external sensors whose 

measurements determine the robot's position in a reference frame linked to the environment, such 

as GNSS receivers, laser rangefinders, and cameras. 

 Numerous solutions are proposed in the literature which differ in terms of the types of used 

sensors and technologies, and localization algorithms. However, a number of challenges are 

considered, for example: 

- Sensors exhibit limitations based on the employed technology, resulting in 

measurements that may be prone to noise. 

- Sensors are vulnerable to external disturbances across different scenarios, especially 

in challenging environments. These difficulties encompass exposure to strong 

magnetic fields, variations in land humidity leading to drift (affecting wheel 

encoders), multipath interference, and tunnel conditions (affecting GNSS receivers), 

along with other potential sources of disruption or security threats.  

- Internal defects in sensors may manifest as mechanical issues or algorithmic bugs. 

- Robot modeling errors: difference in wheel diameter compared to its nominal value, 

different left/right wheel diameters, approximate resolution of a wheel encoder, etc. 

For accurate robot localization, multi-sensors data fusion techniques [8-10] have experienced 

significant growth in robotic fields. These techniques involve combining data from multiple 

potentially noisy sensors to obtain an estimation of unknown state variables, such as position in 

the field of robotics. These methods allow for a more accurate estimation of this position than 

using a single sensor alone [11-12] . The challenge lies in managing the imperfections of the 

integrated sensors by using redundancy and/or complementarity of information. The commonly 

used approach is to implement a probabilistic sequential filter such as the Kalman filter [13], 

information filter [14], particle filter [15], or others. The choice of a filter among others is crucial, 

especially for a mobile robot system with numerous sensors and when real-time estimation is 

required. 

Given the potential disturbances and defects mentioned earlier, the necessity for a more 

robust robot localization becomes evident. Sensor diagnostic step is mandatory to detect and 

locate sensors failures as quickly as possible. A failure in any sensor can limit performance and 

lead to lower localization performance. In this context, the development of statistical methods is 

capable of detecting and locating these failures as quickly as possible. By statistically formulating 

the phenomenon, when a system operates in normal mode (or abnormal mode), its variables are 

characterized by probability distributions corresponding to faultless (or faulty) operation. In 

general, methods for detecting changes in signals require the use of control charts, implementing 

an online-tested statistic. Among the most commonly used control charts: CUSUM (Cumulative 

sum) and EWMA (Exponentially Weighted Moving Average) control charts [16]. These methods 



 

12 | Page 

 

involve comparing a generalized likelihood ratio to a commonly fixed threshold, the value of 

which determines the performance of the detection system. In this work, we present an entropy-

based criterion to enhance the performance of these methods by calculating a more appropriate 

adaptive threshold. Consequently, our approach involves a fault-tolerant multi-sensors data 

fusion.  

In this chapter, we present a fault-tolerant multi-sensors fusion in order to ensure accurate 

and robust localization of the mobile robot. A previous thesis study primarily focused on the 

development of the robot platform, with a particular focus on fault-tolerant localization [17]. The 

contribution of our research lies in the performance evaluation study, which is compared with 

existing literature, using the Average Run Length (ARL) as a key metric. 

The remainder of this chapter is structured as follows: the first section introduces the 

employed robot platform. The next section focuses on presenting the proposed fault-tolerant 

multi-sensors fusion approach, along with the corresponding experimental results. In the 

subsequent section, we conduct a performance comparative study, based on the ARL metric. We 

end this chapter with a conclusion.  

2.2. Robotic platform description 

The platform used in this work is based on the second version of the TurtleBotTM mobile 

robot. This robot was initially designed in 2010 and released for sale in 2011 as a minimalist 

platform for educational purposes and mobile robotics prototyping. In 2012, the second version, 

known as TurtleBot 2, was developed by the Korean company ‘Yujin Robot’, based on the 

research robot ‘iClebo Kobuki’ (figure 2.1). It consists of a small mobile base called ‘Kobuki’, 

equipped with an internal battery, power controllers, and charging contacts. At the top of this 

base, there is a stack of trays allowing the placement of a laptop computer (a notebook or an 

electronic board), providing ample open space for prototyping. 

The TurtleBot 2 is of the unicycle type, meaning it is powered by two independently 

controlled drive wheels and has a free wheel for stability. Its center of rotation is located on the 

axis connecting the two drive wheels. In 2017, a new version (TurtleBot 3) with additional 

features was developed. Nonetheless, our decision to utilize the second version (TurtleBot 2) was 

driven by the limitations of TurtleBot 3, which, due to its extremely compact design, lacked the 

capability to accommodate the onboard sensors and antenna essential for our experiments. 

 
                              (a) 

 
(b) 

Figure 2.1 Robot TurtleBot – (a) version 2; (b) version 3. 
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For the localization purpose, various positioning sensors are installed on the robot, we 

provide a brief description of these sensors in the following. The Kobuki base is equipped with 

the following proprioceptive sensors: 

1. Encoder on each wheel 

It provides the basic wheel rotation information and calculates the distance traveled. These 

encoders are characterized by 11.7 ticks per millimeter. A calculation can be performed to 

estimate the robot's position and orientation relative to its starting point. The data is 

provided at a frequency of 50 Hz. 

2. Electronic gyroscope (3 axes factory-calibrated) 

It allows for determining the robot's orientation. The data is provided at a frequency of 100 

Hz. 

In order to enhance the pose estimation, measurements from proprioceptive sensors (i.e., 

encoders, gyroscope) can be fused with data from exteroceptive sensors onboard the robot. For 

this purpose, we have chosen to use a 2D LIDAR and an indoor navigation system: 

3. 2D LIDAR (RPLIDARTM) 

In this work, a 2D LIDAR of the RPLIDAR type is used (figure 2.2). It is a low-cost laser 

scanner that performs a 2D, 360-degree scan using a rotating head, with a maximum range 

of 6 meters. The rotation speed of this LIDAR ranges from 5.5 to 10 Hz, with a sampling 

frequency of 2000 Hz. 

 

Figure 2.2 2D LIDAR - RPLIDAR. 

The LIDAR provides the position of the robot on which it is mounted by matching two 

consecutive laser scan measurements. The estimation of its pose is performed using a point 

cloud alignment technique based on the Iterative Closest Point (ICP) algorithm [18]. This 

algorithm compares the two consecutive point clouds at each moment and yields translation 

and rotation matrices as results. These two matrices are then used by the kinematic model 

of the differential mobile robot to deduce the new robot pose measurement. 

This technique is robust, even though it accumulates errors as the robot moves [19]. 

However, it is worth noting that this technique yields less reliable results when nearby 

elements are moving within the LIDAR's field of view. During our experiments, the 
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immediate environment of the robot is assumed to contain a small number of dynamic 

elements. 

4. Indoor Navigation System: MarvelmindTM System 

The Marvelmind Indoor Navigation System, also known as ‘indoor GPS’ (figure 2.3), 

provides location data with an accuracy of ±2 cm. This system consists of three essential 

components communicating through a radio interface. The main features of these elements 

are summarized below: 

- Fixed beacons: Fixed to walls or ceilings, with a distance between neighboring 

beacons of less than 30 meters. 

- Mobile beacons: Installed on the robot and interact with it via one of the onboard 

computer's USB ports. These beacons incorporate an Inertial Measurement Unit 

(IMU) and they are similar to fixed beacons. 

- Modem: Serving as the central controller of the system, the modem allows access 

to measurements from the central workstation and can support up to 250 beacons. 

The position of a mobile beacon installed on a robot is determined through triangulation 

based on the time delay of an ultrasonic signal sent to all fixed ultrasonic beacons. 

 

Figure 2.3 Modem and Beacons of the Marvelmind Indoor Navigation System. 

For 3D positioning, an unobstructed line of sight between the mobile beacon and three or 

more fixed beacons must be ensured. The data frequency provided by this navigation 

system is 45 Hz.  

In the following section, we introduce a sensor fault-tolerant fusion approach designed to 

enhance the accuracy of robot localization using the specified platform. 

2.3. Towards a fault tolerant fusion system: A more robust 

robot localization 

2.3.1. Introduction  

Achieving precise localization is a fundamental requirement for an effective and successful 

navigation of the robot. Localization refers to the robot's ability to determine its exact position 
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within its environment. Relying only on a single sensor can be risky, as each sensor has its 

limitations, such as susceptibility to environmental factors or inaccuracies due to noise. To 

enhance localization accuracy, it is common practice to employ a combination of complementary 

sensors and employ data fusion techniques. 

Over the past two decades, multi-sensors data fusion techniques have experienced significant 

growth in various fields [8]-[10]. These techniques involve combining data from multiple 

potentially noisy sensors to obtain estimates of unknown state variables, such as position, 

velocity, and attitude, particularly in the field of robotics. These methods enable a more precise 

estimation of these states compared to relying on a single sensor. The challenge lies in managing 

imperfections in the integrated resources by leveraging redundancy and/or complementarity of 

information. The commonly employed approach is to implement probabilistic sequential filters 

such as the Kalman filter, the information filter, the particle filter, or others. In this study, we opt 

for the extended Kalman filter, renowned for its extensive application in the field of robotics, to 

address this particular challenge. In addition, we plan in this work to enhance our research by 

incorporating a diagnostic aspect into the extended Kalman filter. This addition will enable 

potential sensor malfunctions to be detected and dealt with, further enhancing the robustness and 

reliability of our robotic system. 

The reminder of this section is organized as follows. In the sub-section 2.3.2, we provide an 

overview of the extended Kalman filter's use in sensor fusion. Following that, we detail the fault 

detection strategy, starting with the introduction of the residual generation in the sub-section 

2.3.3 and then delving into a state-of-the-art discussion on Statistical Process Control (SPC) in 

the sub-section 2.3.4. Subsequently, we present in the sub-section 2.3.5 a proposed criterion 

aimed at enhancing sensor fault detection performance. We end this section with the presentation 

of experimental results and a summarizing conclusion. 

2.3.2. Precise robot localization: Extended Kalman filter 

In order to effectively control a dynamic system, an accurate estimation of its state must be 

provided. The following discrete state-space equations are conventionally used: 

𝑋𝑘 = 𝐹𝑘𝑋𝑘−1 + 𝛼𝑘 (2.1) 

𝑍𝑘 = 𝐻𝑘𝑋𝑘 + 𝑣𝑘 (2.2) 

where: 

- 𝑘 represents the discrete time index. 

- 𝑋  represents the state of the system. 

- 𝑍  represents the observation vector of the system. 

- 𝐹 represents the transition matrix. 

- 𝐻 represents the measurement matrix. 

- 𝛼 is the process noise due to disturbances and modeling errors. 

- 𝑣 is the measurement noise. 

Both 𝛼 and 𝑣are Gaussian white noises with zero mean and covariance 𝑄and 𝑅, respectively. 

The covariance of the two noise models is given by: 
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𝑄𝑘 = 𝐸[𝛼𝑘(𝛼𝑘)
𝑇] (2.3) 

𝑅𝑘 = 𝐸[𝑣𝑘(𝑣𝑘)
𝑇] (2.4) 

Where 𝐸 denotes the mathematical expectation. 

Extended Kalman filter 

In the context of multi-sensors fusion, the Kalman filter is among the most widely used due 

to its optimality, tractability, recursivity, and robustness. Its role is to estimate the state of a 

system from a series of incomplete or noisy measurements. Initially designed for linear systems, 

it has been extended to handle nonlinear systems. 

The main problem in filtering is to achieve optimal estimation 𝑋𝑘 𝑘⁄  of the state vector at 

time 𝑘, given the observations 𝑍𝑘 up to time 𝑘. The Kalman filter operates in two distinct steps: 

prediction and update. The prediction step is based on the evolution model, which uses the 

estimated state at the previous time to produce an estimate of the current state. Complementarily, 

the update step is based on the observation vector to correct the predicted state and obtain a more 

precise estimate of the state vector. 

However, due to the nonlinear nature of the evolution model, the Kalman filter cannot be 

applied directly. One solution is to use an extended version. This solution, widely used in 

scientific literature, is well-suited to our context of mobile robot navigation [20]. Due to this 

linearization, the extended Kalman filter is suboptimal. Below we present the equations for each 

step. 

a. The prediction step 

A comprehensive modeling that accurately describes the behavior of wheeled mobile robot is 

a challenging task. Consequently, the following assumptions are formulated: 

 The mobile robot is assumed to be a rigid block without any suspension. 

 The wheels are considered non-deformable, and slip and aerodynamic forces are 

neglected. 

 The surface is assumed to be horizontal, hard, homogeneous, and perfectly flat. 

 The contact between the wheels and the ground is considered to be point-like. 

 The travel velocities are assumed to be very low. 

Based on these assumptions, a model for the motion of the robot can be developed. We have 

chosen to use an odometric model based on measurements obtained from the robot's wheel 

encoders. 

At each instant 𝑘, the state vector is defined as the pose (i.e., position and orientation) of the 

robot in a fixed global coordinate frame. 

𝑋𝑘 = [𝑥 𝑦 𝜃]𝑇 (2.5) 

Where 𝑥 ∧ 𝑦represent the position of the robot, and𝜃 represents its orientation. 
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The odometric evolution model describes the evolution of its state between instants 

(𝑘 − 1) and 𝑘 as follows:  

𝑋𝑘 = 𝑋𝑘 𝑘⁄ −1 + 𝐴𝑘𝑈𝑘 + 𝛼𝑘 (2.6) 

Where: 

 𝑈𝑘 = [∆𝑘 𝜔𝑘]
𝑇 is the input vector, with:  

- ∆𝑘  and 𝜔𝑘 representing respectively the elementary translation and rotation of the robot, 
obtained from measurements of their right and left wheel encoders at instant 𝑘.  

∆𝑘
 = [

𝑟𝑟∆𝑞𝑟 + 𝑟𝑙∆𝑞𝑙

2
]
𝑘

 

 (2.7) 

𝜔𝑘
 = [

𝑟𝑟∆𝑞𝑟 − 𝑟𝑙∆𝑞𝑙

2𝑒
]
𝑘

 

 (2.8) 

- ∆𝑞𝑟 and ∆𝑞𝑙 correspond to the elementary rotations of the right and left wheels between 

instants (𝑘 − 1) and 𝑘. 

-  2𝑒 represents the width of the robot. 

- 𝑟𝑟 and 𝑟𝑙correspond to the radii of the right and left wheels, respectively. 

- 𝐴𝑘 = (

𝑐𝑜𝑠 (𝜃𝑘−1 +
𝜔𝑘

2
) 0

𝑠𝑖𝑛 (𝜃𝑘−1 +
𝜔𝑘

2
) 0

0 1

) 

 𝛼𝑘represents the noise associated with the state model, considered as white Gaussian noise 
with zero mean and a covariance matrix 𝑄𝑘. 

Based on this, the prediction equations can be written as follows: 

𝑋𝑘 𝑘⁄ −1
 = 𝑋𝑘−1

 + 𝐴𝑘
 𝑈𝑘

 = 𝑓(𝑋𝑘−1
 , 𝑈𝑘

 ) (2.9) 

𝑃𝑘 𝑘⁄ −1
 = 𝐹𝑘

 𝑃𝑘−1 𝑘⁄ −1
 (𝐹𝑘

 )𝑇 + 𝐺𝑘
 (𝑄𝑢

 )𝑘(𝐺𝑘
 ) 
𝑇 + 𝑄𝑘

  (2.10) 

Where: 

 𝑃𝑘 𝑘⁄ −1
  is the predicted (i.e., prior) covariance matrix. It measures the predicted accuracy of the 

predicted state 𝑋𝑘 𝑘⁄ −1
 . 

 𝐹𝑘
 =

𝜕𝑓 

𝜕𝑋
|𝑋𝑘−1 𝑘⁄ −1

  and 𝐺𝑘
 =

𝜕𝑓 

𝜕𝑋  
|𝑈𝑘

  are Jacobian matrices calculated by propagating the state 

covariance while taking into account the covariance of the elementary translation and rotation 
of the robot: 

𝐹𝑘
 =

(

 
 
1 0 −∆𝑘

 𝑠𝑖𝑛 (𝜃𝑘−1
 +

𝜔𝑘
 

2
)

0 1 ∆𝑘
 𝑐𝑜𝑠 (𝜃𝑘−1

 +
𝜔𝑘
 

2
)

0 0 1 )

 
 

 (2.11) 
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𝐺𝑘
 =

(

 
 
𝑐𝑜𝑠 (𝜃𝑘−1

 +
𝜔𝑘
 

2
)

−1

2
𝑠𝑖𝑛 (𝜃𝑘−1

 +
𝜔𝑘
 

2
)

𝑠𝑖𝑛 (𝜃𝑘−1
 +

𝜔𝑘
 

2
)

1

2
𝑐𝑜𝑠 (𝜃𝑘−1

 +
𝜔𝑘
 

2
)

0 1 )

 
 

 (2.12) 

 

 𝑄𝑘
  is the covariance matrix associated with the process noise, primarily used to describe 

noises related to slip and other process-related uncertainties. 

b. The update Step 

The update step is based on the use of observations from sensors mounted on the robot. This 

step reduces the uncertainty of the odometric motion model. 

The robot's pose is obtained from two sources: 

 The indoor navigation system (Marvelmind), providing the observation 𝑍1,𝑘 =
[𝑥1 𝑦1 𝜃1]𝑘

𝑇 at time 𝑘. 

 The laser sensor (RPLIDAR) using the ICP algorithm, providing the observation 𝑍2,𝑘 =
[𝑥2 𝑦2 𝜃2]𝑘

𝑇at time 𝑘. 

By combining these two observation vectors, the global observation vector for the robot is 

defined as follows: 

𝑍𝑘 = [𝑥1 𝑦1 𝜃1𝑥2 𝑦2 𝜃2]𝑘
𝑇 = [𝑍1,𝑘 𝑍2,𝑘]𝑇 (2.13) 

Consequently, the equations for the update step can be expressed as follows:  

𝐾𝑘 = 𝑃𝑘 𝑘⁄ −1(𝐻𝑘)
𝑇[𝐻𝑘𝑃𝑘 𝑘⁄ −1(𝐻𝑘)

𝑇 + 𝑅𝑘]
−1

 (2.14) 

𝑋𝑘 𝑘⁄ = (𝐼 − 𝐾𝑘𝐻𝑘)𝑋𝑘 𝑘⁄ −1 + 𝐾𝑘𝑍𝑘 (2.15) 

𝑃𝑘 𝑘⁄ = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘 𝑘⁄ −1 (2.16) 

Where is the Kalman gain and 𝐻𝑘 =
𝜕ℎ

𝜕𝑋
|𝑋𝑘/𝑘−1 is defined as the Jacobian matrix of h with respect 

to 𝑋𝑘 𝑘⁄ −1: 

𝐻 = [

1 0 0
0 1 0
0 0 1 

] (2.17) 

Through the application of the extended Kalman filter, a precise estimation of the robot's 

pose is obtained. Detailed experimental results, highlighting the effectiveness of the filter, are 

provided in [17]. In this study, our attention will be directed towards generating residuals and 
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subsequently detecting sensor faults that may have an adverse impact on the robot's localization 

performance. 

2.3.3. Residual generation 

In the context of the considered application, we have applied data fusion and estimation 

strategy to precisely determine the state (i.e., position and orientation) of the mobile wheeled 

robot. However, the information provided by any sensor can be disrupted at any moment (due to 

factors such as intense magnetic fields, data loss, drift, etc.). In this part, we aim to introduce a 

phase of sensor fault tolerance. This phase involves detecting and isolating faulty sensors to 

exclude them from the fusion process. To achieve this, a commonly used measure of mismatch is 

the difference between the observation from the sensor and the prediction of the state by the used 

evolution model (the odometric model in our case). This measure, called a ‘residual’, is subjected 

to an appropriate change detection methodology, which helps exclude any erroneous observations 

from the fusion and estimation procedure. These residuals serve as anomaly quantifiers between 

the behavior predicted by a model and that observed through the system's sensors. Their analysis 

enables fault detection [21-22]. However, it should be noted that there are other methodologies 

that do not rely on the use of a dynamic evolution model. Examples include fuzzy approaches 

[23] and artificial neural network-based approaches [24]. 

During the robot's motion, its wheel encoders contribute to the odometric evolution model to 

predict its pose. Additionally, at each moment, the robot gathers observations from its onboard 

sensors. In the case of normal operation (i.e., without faults), this information is consistent. 

However, in the event of sensor failure, a drift in the estimation of the robot's state relative to the 

actual state will be observed. After detecting and excluding the faulty sensors, only the correct 

observations are considered in the fusion algorithm. 

At each instant 𝑘, the residual can be defined as follows: 

𝑅𝑒𝑠𝑘 = 𝑍𝑘 − 𝑓(𝑋𝑘 𝑘⁄ −1) (2.18) 

Where 𝑍𝑘 is the measurement vector and 𝑓(𝑋𝑘 𝑘⁄ −1) is the predicted vector.  

After the generation of residuals, we will employ a fault detection method to evaluate the 

state of each sensor, categorizing them as either normal (𝑢𝑘 = 0) or faulty (𝑢𝑘 = 1). In the 

nominal case (i.e., without faults), the value of the residual should be close to 0; otherwise, it 

deviates from it. The primary challenge lies in selecting the threshold applied to these values, 

ensuring the following property: 

𝑢𝑘 = {
0      𝑖𝑓 𝑅𝑒𝑠𝑘 < 𝑇ℎ𝑘
1             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.19) 

In the event of a sensor being faulty, it is removed from the fusion and estimation 

algorithms. In the subsequent section, we will provide an overview of the current state-of-the-art 

methods that deal with handling residuals and the selection of appropriate thresholds. 
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2.3.4. Statistical process control: State of the art 

In the context of mobile robot localization, SPC [25] is a method employed to ensure the 

reliability and accuracy of a robot's position estimation. Residuals, which represent the disparities 

between predicted and actual robot positions, play a pivotal role in this process. SPC leverages 

these residuals to identify deviations from expected localization behavior, serving as valuable 

indicators of localization uncertainty or errors. By monitoring and analyzing residuals, mobile 

robot localization using SPC assists in detecting anomalies, introducing necessary adjustments or 

interventions, and ultimately enhancing the precision and consistency of the robot's position 

estimation, contributing to improved navigation and overall performance in autonomous robotic 

systems. In order to monitor the generated residuals, we propose in this work applying SPC 

methods with an adaptive entropy-based threshold proposed initially in [26].  

In the field of SPC, one of the essential tools is the control chart, also known as the process 

behavior chart. These charts are widely used in a wide range of applications. In particular, they 

have been widely implemented as an effective online tool for the detection of anomalies in areas 

such as industrial manufacturing [27], finance and economics [28-29], computer sciences and 

telecommunications [30] and in other areas of applications (see, e.g., [31-33]).  

First introduced by Shewhart [34], the control chart is recognized as an effective, fast and 

reliable SPC tool able to detect changes and anomalies in the process characteristics. The control 

chart is a straightforward graphical tool using sequentially observed data and having correction 

activities in time. Consequently, the process is focused on a target to maintain its dispersion 

within a specified tolerance interval. The principle of operation of the Shewhart control chart can 

be summarized as follows: Let 𝑥𝑁(𝜇0, 𝜎
2), 𝑘 = 1,2,3, … , 𝑛 is a sequence of independent 

observations following a normal distribution with mean 𝜇0 and standard deviation𝜎. The process 

is considered under control if 𝑥𝑘 doesn’t exceed the upper and the lower control limits (UCL and 

LCL), i.e. thresholds value. Commonly, the thresholds are set to±3𝜎. 

This type of control charts is popular because of its ease of implementation without extensive 

statistical training together with reduced time and computing resources. However, this technique 

is effective when the magnitude of change is 2𝜎 or more. Based only on the current observation, 

it does not take into account previous observations and loses its effectiveness in detecting small 

changes in behavior. In contrast, alternative methods have been introduced specifically to address 

the detection of small changes in the process. The most popular methods are the CUSUM chart 

initiated by Page [35] and the EWMA chart introduced by Roberts [36]. In particular, these latter 

methods have the ability to take into account both past and current observations to establish 

process statistics. Consequently, thanks to this memory aspect, shifts process parameters are 

detected with fast reaction. The following describes the conventional CUSUM and EWMA 

control charts.  

a. Conventional CUSUM control chart 

The CUSUM chart is typically used for detecting small changes in the mean of a process. 

It directly integrates all observations into the observation sequence by plotting the cumulative 

sums of the deviations of the observations from a predefined target value. 
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The CUSUM algorithm operates through two statistics 𝐶𝑘
+ and𝐶𝑘

−. These statistics are 

called upper and lower sums respectively. They are calculated as follows:  

{
𝐶𝑘
+ = 𝑚𝑎𝑥 [0, 𝑋𝑘 − (𝜇0 + 𝐾) + 𝐶𝑘−1

+ ]

𝐶𝑘
− = 𝑚𝑎𝑥 [0, −𝑋𝑘 + (𝜇0 − 𝐾) + 𝐶𝑘−1

− ]
 (2.20) 

Where:  

 𝐶0
+𝐶0

−=0

. 

 K is commonly called reference value or tolerance threshold.  

The process is considered out of control when 𝐶𝑘
+or 𝐶𝑘

− exceeds a threshold 𝑇ℎ. A typical value of 

𝑇ℎ is usually defined as 5𝜎. 

b. Conventional EWMA control chart 

Like the CUSUM chart, the EWMA chart is effective in detecting small changes in the 

mean of the process. The performance of these two charts is approximately equivalent. 

The EWMA statistic is an exponentially weighted average of all previous data, including 

the most recent measurements. The statistic is defined as follows: 

𝑧𝑘 = 𝜆𝑥𝑘 + (1 − 𝜆)𝑧𝑘−1, 0 < 𝜆 ≤ 1 (2.21) 

With𝑧0 = 𝜇0, 𝜆 is defined as a weighting factor. The upper and lower control limits of the EWMA 

algorithm are defined as follows: 

{
 
 

 
 
𝑈𝐶𝐿 = 𝜇0 + 𝐿𝜎√

𝜆

(2 − 𝜆)

𝐿𝐶𝐿 = 𝜇0 − 𝐿𝜎√
𝜆

(2 − 𝜆)

 (2.22) 

The process is considered out of control when the 𝑧𝑘 statistic exceeds one of the control limits. A 

typical value of L is usually defined as 3. 

c. Recent studies on adaptive control charts 

Generally, the use of the control charts requires the determination of three parameters: the 

sampling interval that is, how often to sample; the sample size; and the threshold value. By 

changing one or more of these parameters, control charts are considered adaptive. In this context, 

a vast literature has been devoted to adaptive control charts that can improve the performance of 

monitoring process and detecting shifts faster. The first adaptive control charts were based on 

sample size variation [37-39] . In [40] the author compared the performance of many different 

adaptive Shewhart control charts and concluded that the adaptive aspects significantly improve 

the performance of the standard Shewhart control chart. A comprehensive survey covering 

univariate adaptive control charts up to the end of 1997 was presented by Tagaras [41]. Another 
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detailed survey discussed recent adaptive Shewhart, CUSUM and EWMA charts focusing on 

their design, properties and performance was proposed by Psarakis [42]. 

There have been many recent studies on adaptive charts to improve their performance. Wu et 

al. [43] proposed a new adaptive CUSUM control chart denoted by ACUSUM II. This latter is 

based on adjusting the reference parameter 𝐾 of the conventional CUSUM and adding a new 

feature related to an additional charting parameter 𝑤, i.e., the exponential of the sample mean 

shift in (𝑥𝑡– 𝜇0)
𝑤

. They compared the proposed chart with seven other CUSUM charts. They 

found that the ACUSUM II chart is more preferable as it retains most of the advantages of the 

single-chart schemes, such as the simplicity of design and implementation. 

In [44], Abbasi et al. proposed new adaptive CUSUM chart named as IACCUSUM chart. 

The IACCUSUM chart is an adaptive version of the CCUSUM chart proposed by Crosier in 1986 

[45]. This update based on an unbiased estimator of the mean shift. Monte Carlo simulations have 

been used to compute the ARL of these control charts. It has been found that the proposed charts 

uniformly and significantly outperform their existing counterparts.  

Li [46] proposed an adaptive CUSUM chart having adaptive control limit with new cautious 

parameter learning scheme and he proved that the proposed monitoring procedure is easy to 

implement, and have better overall performance for detecting different mean shifts than existing 

methods. 

A function based adaptive EWMA control chart (FAEWMA) was proposed by Noor-ul-

Amin et al. [47]. The idea of this method is based on the determination of the magnitude of the 

shift with the help with some and then smoothing value of the plotting statistic of the proposed 

chart is computed as per estimated shift size through unbiased estimator. A comparative 

discussion with respect to the ARL values proves that their proposed chart is more sensitive to 

small to moderate shift sizes than the AEWMA chart investigated recently in [48].  

Sarwar and Noor-ul-Amin [49] investigated a design of a new adaptive EWMA control chart 

(AEWMA CC). This novel chart introduces a memory-based control chart for monitoring 

irregular variations in the process mean of a normally distributed process. The concept involves 

estimating the mean shift by using an estimator that relies on the EWMA statistic and 

subsequently determining the smoothing constant for plotting EWMA statistics through the use 

of a proposed continuous function. They found that the AEWMA CC with a small smoothing 

factor is strong and efficient especially at small shift sizes.  

Kim et al. [50] proposed adaptive CUSUM charts with the adaptive runs rule. Abbas et al. 

[51] proposed a mixed EWMA–CUSUM control chart for detecting a shift in the process mean. 

Kouadri et al. [52] have developed an adaptive threshold technique based on a two-dimensional 

defect indicator with a circular control limit. Dey et al. [53] designed an adaptive threshold to 

remove the effects of modelling uncertainties based on its known bounds and nominal system 

dynamics. Bakdi, Kouadri, and Bensmail [54] have developed a threshold technique based on a 

modified EWMA control chart with limited window length.  

More recently, Awais and Haq [55] proposed new Shewhart-EWMA and Shewhart-

CUSUM control charts using Varied L Ranked Set Sampling for monitoring the process mean. 
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Haq, Akhtar and Khoo [56] presented adaptive CUSUM and EWMA charts with variable 

sampling intervals for monitoring the process mean. Haq and Razzaq [57] proposed two types of 

the weighted adaptive CUSUM chart for monitoring different kinds of shifts in the variance of a 

normal process. Many other studies have focused on monitoring both process mean and variance 

– see [58-60].  

As shown above, there have been many studies of adaptive control charts to monitor mean 

or/and variance shifts, either by adjusting the sampling interval, the sample size or the threshold 

value which highly influences the performance. In this work, we propose enhanced control charts 

using Adaptive Entropy-based Threshold (AET-Control chart). The purpose of our approach is to 

find automatically, the threshold value that minimizes the uncertainty of the situation (i.e. normal 

or faulty hypothesis) knowing the decision. This uncertainty is measured by the Shannon 

conditional entropy.  

Consequently, we present in the following, an adaptive control chart, for which the 

threshold is learned automatically using an entropy-based criterion. Moreover, a gradient method 

is presented in order to reduce calculation complexity and facilitate finding this threshold value in 

real-time. Finally, we present experimental results on the robot platform. 

2.3.5. Proposed AET-Control chart 

Introduced by Claude Shannon [61], information theory initially allowed the resolution of 

problems related to data transmission and compression. Later, the applications of this theory have 

been extended to other fields: statistics, signal processing, computer science, cryptography, 

economics, etc. [62]. Accordingly, a reformulation of the detection strategy by using an entropy-

based criterion was initially introduced by Hoballah and Varshney [63]. In this context, we 

propose to apply an Adaptive Entropy-based Threshold Control chart (AET-Control chart) for 

monitoring the mean of a process that follows a normal distribution. 

This criterion has been compared to the Bayesian criterion and has shown interesting 

properties [64-65]. The main benefit of this criterion is the ability to determine an adaptive 

threshold for any change detection techniques based on the (generalized) likelihood ratio.  

In this work, we treat the control charts from the point of view of hypothesis testing. Thus, 

the basic idea of the control charts is similar to the following sequential hypothesis test: 

{
𝐻0 = 𝑆𝑘𝑁(𝜇0, 𝜎0

2),

𝐻1 = 𝑆𝑘𝑁(𝜇1, 𝜎1
2),

𝑘 = 1,2, … , 𝑛

 (2.23) 

Where 𝜇1 ≠ 𝜇0 and/or𝜎1 ≠ 𝜎0. 𝑆𝑘 is the used statistic (e.g. 𝐶𝑘
+∧𝐶𝑘

−

 for CUSUM chart; 𝑧𝑘 for 

EWMA chart). In this work, we assume for simplicity that the distributions are Gaussian and that 

the changes are limited to the mean (𝜎1 = 𝜎0). As long as the statistic 𝑆𝑘is within the control 

limits, the process is assumed to be under control: hypothesis 𝐻0 is considered true. However, a 

statistic that lies outside the control limits is interpreted as evidence that the process is out of 

control: hypothesis 𝐻1 is considered true. Figure 2.4 shows the hypothesis test principle. 
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Figure 2.4 Hypothesis test principle. 

The objective of the control chart is to detect unusual variations as early as possible, while 

keeping the probability of a false alarm at a reasonable level. This principle is similar to the 

hypothesis discrimination. In this context, the decision has two possible values𝑢 ∈ {0,1}, 
depending on whether true hypothesis 𝐻 is considered to be 𝐻0 or𝐻1. 

The threshold 𝑇ℎ is the boundary between the two hypothesis. This value greatly influences 

the performance of the control chart. For this purpose, we aim at finding, in real time, the most 

appropriate threshold 𝑇ℎ based on an entropy criterion. This latter is explained and detailed in the 

following. 

For a given threshold, and knowing that 𝐻0 and 𝐻1 follow Gaussian distribution, we can 

calculate the probability of detection 𝑃𝐷 and false alarm 𝑃𝐹 as follows:  

𝑃𝐷 = 𝑝(𝑢 = 1 𝐻1⁄ ) = 𝑝(𝑆𝑘 > 𝑇ℎ 𝐻1⁄ ) (2.24) 

𝑃𝐹 = 𝑝(𝑢 = 1 𝐻0⁄ ) = 𝑝(𝑆𝑘 > 𝑇ℎ 𝐻0⁄ ) (2.25) 

The proposed criterion is the minimization of the part of 𝐻 which is not explained by the 

decision𝑢. In other words, the objective is to match the entropy of the true hypothesis ℎ(𝐻) to 

that of the taken decisionℎ(𝑢). This quantity is defined by Shannon's conditional entropy 

ℎ(𝐻 𝑢⁄ ) described as follows (see figure 2.5) [61]: 

ℎ(𝐻 𝑢⁄ ) = 𝐸 {log (
1

𝑃(𝐻 𝑢⁄ )
)} = − ∑ 𝑝(𝑢 = 𝑖, 𝐻𝑗)

𝑖,𝑗∈{0,1}

. 𝑙𝑜𝑔𝑝(𝐻𝑗 𝑢⁄ = 𝑖) 
(2.26) 

This quantity represents the uncertainty on 𝐻 knowing the decision 𝑢. It can be expressed 

according to 𝑃0, 𝑃𝐷 and 𝑃𝐹as follows [65]: 

ℎ(𝐻 𝑢⁄ ) = − ∑ [𝛼𝑖𝑙𝑜𝑔
𝛼𝑖

𝛼𝑖 + 𝛽𝑖
+ 𝛽𝑖𝑙𝑜𝑔

𝛽𝑖
𝛼𝑖 + 𝛽𝑖

]

𝑖∈{0,1}

 (2.27) 

With: 
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{
 

 
𝛼1 = 𝑃0𝑃𝐹

𝛼0 = 𝑃0(1 − 𝑃𝐹)

𝛽1 = (1 − 𝑃0)𝑃𝐷
𝛽0 = (1 − 𝑃0)(1 − 𝑃𝐷)

 (2.28) 

 

Figure 2.5 Conditional entropy representation. 

Therefore, the optimal value of the threshold 𝑇ℎ𝑂𝑃𝑇is the one that minimizes the 

conditional entropyℎ(𝐻 𝑢⁄ ). In order to find𝑇ℎ𝑂𝑃𝑇, an exhaustive search can be considered (see 

Algorithm 1). It consists of testing all the possible values of 𝑇ℎ and keeping only the value 

minimizingℎ(𝐻 𝑢⁄ ). We note that [𝑇ℎ𝑚𝑖𝑛, 𝑇ℎ𝑚𝑎𝑥] can be set as the bounds of possible threshold 

values: in our case, we will assume 𝑇ℎ𝑚𝑖𝑛 = 𝜇0 and 𝑇ℎ𝑚𝑎𝑥 = 𝜇1. Furthermore, 𝜇1 can either be 

known from the database measures or set according to the desired 𝐴𝑅𝐿0 value (will be explained 

in more detail in the next section). 

Algorithm 1: The optimization methodology of the entropy threshold by an exhaustive search 

𝑃0 is known, Initialize ℎ𝑚𝑖𝑛 → ∞ 

For 𝑇ℎ = 𝑇ℎ𝑚𝑖𝑛 to 𝑇ℎ𝑚𝑎𝑥 

           Calculate 𝑃𝐷 and 𝑃𝐹 

           Calculate ℎ(𝐻 𝑢⁄ ) (Equation 2.27) 

           If ℎ(𝐻 𝑢⁄ ) < ℎ𝑚𝑖𝑛 

                    ℎ𝑚𝑖𝑛 = ℎ(𝐻 𝑢⁄ ) 

                    𝑇ℎ𝑂𝑃𝑇 = 𝑇ℎ 

            End If 

End For 

For each hypothesis, the prior probabilities 𝑃𝑗 is assumed to be known (i.e. the probability 

𝑃0 of 𝐻0 is calculated iteratively based on previous iterations). In figure 2.6, a ROC curve 

illustrates the efficiency of the criterion for 𝑃0 allowing from 0 to 1. 
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Figure 2.6 ROC curve. 

It is worth noting that the entropy criterion allows for a concentration of the entire potential 

range of values for 𝑃𝐹 and 𝑃𝐷, represented by the small red arc. Therefore, it is a robust criterion 

concerning 𝑃0. Specifically, when 𝑃0 is close to 0 or 1, the ROC curve remains close to the ideal 

point (𝑃𝐹 = 0 and 𝑃𝐷 = 1). This is not the case with the Bayesian criterion. Indeed, when a rare 

event occurs (e.g., a sensor error; 𝑃0tends to approach 1), the Bayesian criterion neglects this 

event. The entropy-based criterion takes this event into account significantly. 

Furthermore, the exhaustive search is time consuming and requires significant computing 

resources. To overcome this challenge, and especially in an application requiring real-time 

operation, a gradient-based technique is much more efficient. The latter will be presented in the 

following. 

A gradient-based technique 

The gradient-based technique consists in finding, as fast as possible, the optimal threshold 

𝑇ℎ𝑂𝑃𝑇 for which ℎ(𝐻 𝑢⁄ ) is minimum. For a given probability𝑃0, the derivative 
𝜕ℎ(𝐻 𝑢⁄ )

𝜕𝑇ℎ
 is a 

decreasing function when𝑇ℎ < 𝑇ℎ𝑂𝑃𝑇, and it is equal to zero for𝑇ℎ𝑂𝑃𝑇. Accordingly, ℎ(𝐻 𝑢⁄ ) 
increasing function otherwise.  

Finding the optimal threshold 𝑇ℎ𝑂𝑃𝑇 is equivalent to find the value of the likelihood ratio 

𝛬 =
𝑝(𝑆𝑘 𝐻1⁄ )

𝑝(𝑆𝑘 𝐻0⁄ )
 for which 

𝜕ℎ(𝐻 𝑢⁄ )

𝜕𝛬
|
𝛬=𝑇ℎ𝑂𝑃𝑇

= 0. This equation leads to the following expression: 

𝑇ℎ𝑂𝑃𝑇 =
𝑃0

1 − 𝑃0
×
𝑙𝑜𝑔(1 𝑝⁄ (𝐻0 𝑢1⁄ )) − 𝑙𝑜𝑔(1 𝑝⁄ (𝐻0 𝑢0⁄ ))

𝑙𝑜𝑔(1 𝑝⁄ (𝐻1 𝑢0⁄ )) − 𝑙𝑜𝑔(1 𝑝⁄ (𝐻1 𝑢1⁄ ))
 (2.29) 

The detection rule is then expressed as follows: 
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𝑝(𝑢 𝐻1⁄ )

𝑝(𝑢 𝐻0⁄ )

𝑢 = 1
≷

𝑢 = 0

𝑃0
1 − 𝑃0

×
𝐶10 − 𝐶00
𝐶01 − 𝐶11

= 𝑇ℎ𝑂𝑃𝑇 (2.30) 

Where 𝐶𝑖𝑗 is the cost corresponding to the decision 𝑢𝑖when 𝐻𝑗 is true. If a wrong decision is 

made, the system is penalized; if on the other hand a good decision is made, then it is favored. 

Minimizing ℎ(𝐻 𝑢⁄ ) thus consists in minimizing an average risk whose costs are no longer 

constants, as in the Bayesian case, but dependent on a posteriori probabilities. These costs are 

proposed as follows: 

𝐶𝑖𝑗 =
1

𝑝(𝐻𝑗 𝑢𝑖⁄ )
, 𝑖, 𝑗 = 0,1. (2.31) 

They can also be represented in terms of detection and false alarm probabilities as follows: 

{
 

 𝐶00 = log
𝛼0 + 𝛽0
𝛼0

𝐶10 = log
𝛼1 + 𝛽1
𝛼1

𝐶01 = log
𝛼0 + 𝛽0
𝛽0

𝐶11 = log
𝛼1 + 𝛽1
𝛽1

 (2.32) 

Let a new threshold 𝑇ℎ𝑘at step𝑘 of the algorithm(𝑘 ≥ 0) calculated from the following equation: 

𝑇ℎ𝑘 =
𝑃0

1 − 𝑃0

𝐶10
𝑘−1 − 𝐶00

𝑘−1

𝐶11
𝑘−1 − 𝐶01

𝑘−1 (2.33) 

Therefore:  

𝑃0(𝐶10
𝑘−1 − 𝐶00

𝑘−1) = 𝑇ℎ𝑘(1 − 𝑃0)(𝐶11
𝑘−1 − 𝐶01

𝑘−1) (2.34) 

 

The derivative of ℎ(𝐻 𝑢⁄ )can be calculated as a function of the threshold𝑇ℎ according to the 

following equation [26]: 

𝜕ℎ(𝐻 𝑢⁄ )

𝜕𝑇ℎ𝑘
=
𝜕𝑃𝐹
𝜕𝑇ℎ𝑘

× [𝑃0(𝐶10
𝑘 − 𝐶00

𝑘 ) + 𝑇ℎ𝑘(1 − 𝑃0)(𝐶11
𝑘 − 𝐶01

𝑘 )] (2.35) 

 

Consequently, we get these equations: 

𝜕ℎ(𝐻 𝑢⁄ )

𝜕𝑇ℎ𝑘−1
=

𝜕𝑃𝐹
𝜕𝑇ℎ𝑘−1

(1 − 𝑃0)(𝐶11
𝑘−1 − 𝐶01

𝑘−1)(𝑇ℎ𝑘 − 𝑇ℎ𝑘−1) (2.36) 
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𝑇ℎ𝑘 = 𝑇ℎ𝑘−1 +
𝜕ℎ(𝐻 𝑢⁄ )

𝜕𝑇ℎ𝑘−1
[
𝜕𝑃𝐹

𝜕𝑇ℎ𝑘−1
(1 − 𝑃0)(𝐶11

𝑘−1 − 𝐶01
𝑘−1)]

−1

 (2.37) 

A recurrence equation is thus obtained: 

𝑇ℎ𝑘 = 𝑇ℎ𝑘−1 − 𝜏𝑘−1
𝜕ℎ(𝐻 𝑢⁄ )

𝜕𝑇ℎ𝑘−1
 (2.38) 

The stopping condition of this algorithm is|𝑇ℎ𝑘 − 𝑇ℎ𝑘−1| < 𝜀, where ε is the accuracy of the 

threshold value defined by the user. Using equation (2.38) and from any initial state of the 

threshold𝑇ℎ0, the gradient-based technique will converge towards a locally-optimal solution. 

The entropy threshold optimization methodology using the gradient technique is summarized by 

the figure 2.7. 

 

Figure 2.7 The optimization methodology of the entropy threshold using gradient technique. 

2.3.6. Experimental results 

In this section, we analyze the application of the proposed AET-Control chart within the 

context of the mobile robot platform.  

In this context, we consider the residual 𝑅𝑒𝑠𝑘 as the disparity between the Marvelmind 

measurement and the odometric evolution model calculated by the wheel encoders (refer to 

section 2.3.3).  

The Marvelmind measurements exhibit proximity to the odometric evolution model with 

some inherent noise (Hypothesis 𝐻0). Consequently, the residual 𝑅𝑒𝑠𝑘 approximately follows a 

Gaussian distribution with a mean 𝜇0 ≅ 0 and a standard deviation 𝜎 ≅ 1. Conversely, after 

adding simulated sensor faults (Hypothesis 𝐻1), the Marvelmind measurements diverge from the 
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odometric evolution model, leading to a change in the mean or standard deviation of the residual 

𝑅𝑒𝑠𝑘. 

The experimental data were obtained in a simple scenario lasting 20 seconds, with a 

frequency of 10Hz, leading to a total of 200 iterations. The robot moved at a speed of 0.11 m/s. 

Figure 2.8 displays the Marvelmind (in green) and the odometric evolution model (in black) 

trajectories. Due to the relatively short travel distance, the trajectories closely align. To simulate 

an out-of-control process (sensor faults), a bias is introduced to the Marvelmind measurements, 

starting from the 101st iteration. The goal is to promptly detect this simulated faults. In Figure 

2.29, the fault-free residuals (on the x-axis) are contrasted with the residuals when a fault is 

introduced into the Marvelmind system. 

 

Figure 2.8 Visualization of the odometric evolution model and the Marvelmind trajectories.  

  

(a) (b) 

Figure 2.9 Visualization of the residuals : 𝑅𝑒𝑠𝑘  (a) without faults – (b) with introduced fault from the 101st iteration 

with a mean shift 1. 

We apply the Shewhart, CUSUM and EWMA charts respectively with the following 

parameters (commonly used in the literature): 

 Shewhart: Fixed threshold 𝑇ℎ = 3  

 CUSUM: Fixed threshold 𝑇ℎ = 5;𝐾 = 0.5 
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 EWMA: 𝐿 = 3.054; 𝜆 = 0.4 

On the other hand, we apply the proposed AET-Control chart. In this context, the 𝑎𝑝𝑟𝑖𝑜𝑟𝑖 
probability of the normal hypothesis 𝐻0(𝑃0) is calculated iteratively as the ratio of the number of 

iterations of 𝐻0 (under the threshold value) to the total number of iterations, starting with an 

initial value of 1. The faulty hypothesis 𝐻1 represents the faulty case (the added sensor faults) to 

be detected:𝑁(𝜇1 = 1, 𝜎 = 1). 

For Shewhart chart, figure 2.10 shows the residual 𝑅𝑒𝑠𝑘 (black curve), the fixed and the 

adaptive threshold (red and green curve respectively). Similarly, figure 2.11 shows the statistics  

𝐶𝑘
+ and 𝐶𝑘

− determined from the CUSUM chart (black curve), the fixed and the adaptive 

thresholds (red and green curve respectively). Finally, figure 2.12 shows the statistic 𝑧𝑘 

determined from the EWMA chart (black curve), the Upper and Lower Control Limits UCL/LCL 

with the fixed and the adaptive threshold (red and green curve respectively). 

 

Figure 2.10 Shewhart – results with fixed/adaptive thresholds. 

 
 

(a) (b) 

Figure 2.11 CUSUM chart– results with fixed/adaptive thresholds. 
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Figure 2.12 EWMA – results with fixed/adaptive thresholds. 

Using the conventional control charts, the threshold being fixed, we observe several missed 

detections (especially in figures 2.10 and 2.12). In contrast, using the proposed approach, the 

calculated threshold is more adapted to the measured statistics. This threshold is intended to be 

more sensitive when the change model has occurred. This is done by learning from the behavior 

of the process, minimizing the uncertainty of the decision with respect to the true hypothesis over 

time (principle of the entropy criterion). Therefore, our approach can detect the anomaly (the 

mean shift) more efficiently and without prior knowledge of the detection threshold. 

2.3.7. Conclusion 

In this section, we have introduced a localization approach based on the extended Kalman 

filter. We have assessed the system's robustness in the face of sensor faults by employing a 

combination of residual generation and change detection methods. For this purpose, we have 

provided an overview of the state of the art in the SPC. Furthermore, we have proposed an 

improvement in the form of an adaptive threshold, by using an entropy-based criterion. 

Additionally, we have presented experimental results conducted on the robot platform, 

showcasing a more robust localization system when faced with sensor faults.  

In the following section, we delve into a detailed examination and evaluation of the 

performance of the adaptive threshold approach, using the most widely used tool: the ARL. We 

also provide a comparative analysis with various approaches found in the existing literature.  

2.4. Performance evaluation: Average Run Length (ARL) 

study 

2.4.1.  Introduction 

In this section, the performance of the proposed AET-Control chart approach is evaluated in 

terms of the ARL values computed through Markov Chain (MC) method. This evaluation is 
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conducted using data obtained from the robot platform. The determined ARL values are 

compared with the following adaptive control charts: 

(a) ACUSUM II [43], 

(b) IACCUSUM [44],  

(c) Adaptive CUSUM with cautious parameters [46], 

(d) FAEWMA [47],  

(e) AEWMA CC [49]. 

The remainder of this section is structured as follows: we first provide an explanation of the 

ARL metric employed for the evaluation. Following that, we proceed to assess the effectiveness 

of the proposed AET-control chart, conducting a comparative analysis against the recently 

published adaptive control charts from the aforementioned literature. 

2.4.2.  Average Run Length definition  

The Average Run Length is a key parameter in control chart analysis, it has been commonly 

used as a performance indicator adopted to compare and evaluate the effectiveness of various 

control charts. The ARL is defined as the average number of samples before an out-of-control 

signal is detected. If the observations of the process are independent (e.g. Shewhart control 

chart), then the ARL can be determined exactly according to the following relationship: 

𝐴𝑅𝐿 =
1

𝑝(𝑜𝑢𝑡 − 𝑜𝑓 − 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑖𝑔𝑛𝑎𝑙)
 (2.39) 

In the case where we have no mean shift in the process, the value of ARL is the ‘in-control’ 

average run length and is denoted as𝐴𝑅𝐿0 = 1 𝛼⁄ , where 𝛼 is the probability of false alarms. 

𝐴𝑅𝐿0 should therefore be as large as possible to minimize the probability that an out-of-control 

signal is a false alarm.  

On the other hand, when we have a change in the process mean, the ARL value is the ‘out-

of-control’ run length and is denoted as𝐴𝑅𝐿1 = 1 𝛽⁄ , where𝛽 is the probability of missed 

detections. 𝐴𝑅𝐿1should be as small as possible so that a change in the process mean is quickly 

detected. 

In the CUSUM and EWMA control charts, the plotted statistics are correlated. Therefore, the 

ARL cannot be calculated directly by the equation (2.39). Various methods are effective 

alternatives for estimating the ARL values. 

The main methods for ARL computation are the Markov chain approach [66], the integral 

equation approach [67] and Monte Carlo simulation [36] . In this study, we have chosen the 

Markov chain approach (APPENDIX A) because of its ease of implementation, as well as the 

accuracy of its results for both CUSUM and EWMA charts. In the following, we outline the 

study focused on evaluating the ARL.  
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2.4.3.  ARL numerical comparison 

Since the 𝐴𝑅𝐿0 represents the false alarm rate of the control charts, it is convenient to set it 

to a desired and identical level for all the control charts being compared. Then, the performance 

evaluation is based mainly on 𝐴𝑅𝐿1 for the out-of-control situation: the control chart is 

considered the most sensitive and best performing if it has the smallest 𝐴𝑅𝐿1 value.  

The ARL values are calculated based on the dataset obtained from the residual 

measurements, which represent the difference between the Marvelmind measurements and 

odometric evolution model, following a normal distribution with mean 𝜇0 = 0 and the standard 

deviation 𝜎 = 1. In this study, the average process shift 𝛿 goes from 0 to 2𝜎 with a step size 

of0.25𝜎. This simulated shift is incorporated in the residual measurements, representing the 

deviation of Marvelmind data from the odometric evolution model. 

For convenience, we refer to the control charts with the proposed entropy-based adaptive 

control chart as the AET-Shewhart chart, AET-CUSUM chart and AET-EWMA chart. 

i. Shewhart charts 

The performance comparison of the conventional Shewhart (with fixed threshold) and the 

AET-Shewhart charts (with adaptive threshold) is presented in the table 2.1. We desire to 

have𝐴𝑅𝐿0 = 370. To attain this target, the fixed threshold of the conventional Shewhart control 

chart will be chosen equal to 3 and for the AET-Shewhart chart we set 𝜇1 = 2.75.  

 

PROCESS MEAN SHIFT (𝛿) SHEWHART AET-SHEWHART 

0 370.38 370.74 

0.25 281.11 106.69 

0.5 155.2 29.86 

0.75 81.21 10.37 

1 43.89 4.68 

1.25 24.95 2.66 

1.5 14.97 1.82 

1.75 9.46 1.43 

2 6.30 1.23 

Table 2.1 ARL comparison of conventional and proposed AET-Shewhart charts for𝐴𝑅𝐿0 = 370. 
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ii. CUSUM charts 

Concerning CUSUM charts, the performance of five methods is compared, the parameters 

are set as follows:  

The conventional CUSUM chart 

We choose the reference𝐾equal to 0.5 as commonly used [68], and the fixed threshold 𝑇ℎis 

equal to 5. Thus, we get the 𝐴𝑅𝐿0 equal to 500. 

The AET-CUSUM chart 

We set 𝜇1 = 4.91to obtain 𝐴𝑅𝐿0 = 740 and 𝜇1 = 4.48 to obtain 𝐴𝑅𝐿0= 500. 

ACUSUM II, IACCUSUM, and Adaptive CUSUM with new cautious parameter 

We directly use the values of ARL existing in the articles for 𝐴𝑅𝐿0=740 and for 𝐴𝑅𝐿0=500. 

The comparison results are presented in the following tables. In table 2.2, we compare our 

proposed approach (AET-CUSUM) with ACUSUM II, for 𝐴𝑅𝐿0 = 740. In table 2.3, we 

compare our proposed approach with the conventional CUSUM, IACCUSUM, and ADAPTIVE 

CUSUM with cautious parameters, all for an 𝐴𝑅𝐿0 of 500. 

PROCESS MEAN SHIFT (𝛿) AET-CUSUM ACUSUM II 

0 740.22 739.16 

0.5 37.91 40.15 

1 9.30 10.14 

1.5 4.65 5.22 

2 2.85 3.38 

2.5 1.90 2.42 

3 1.32 1.85 

Table 2.2 ARL comparison of the AET-CUSUM and ACUSUM II control charts for𝐴𝑅𝐿0 = 740. 
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PROCESS 

MEAN 

SHIFT (𝛿) 

CONVENTIONAL 

CUSUM 
AET-CUSUM IACCUSUM 

ADAPTIVE CUSUM 

WITH CAUTIOUS 

PARAMETERS 

0 500 501.40 500 500 

0.25 145.56 124.10 136.23 184.3 

0.5 38.88 33.49 35.40 36.6 

0.75 17.32 14.30 15.38 17.85 

1 10.52 8.25 8.93 11.25 

1.25 7.49 5.6 6.11 8.02 

1.5 5.82 4.06 4.54 6.09 

1.75 4.77 3.10 3.57 4.78 

2 4.06 2.45 2.93 4.01 

2.5 3.15 1.61 2.13 _ 

3 2.60 1.18 1.66 _ 

Table 2.3 ARL comparison of the conventional CUSUM, AET-CUSUM, IACCUSUM, and adaptive CUSUM with 

cautious parameters control charts for𝐴𝑅𝐿0 = 500. 

iii. EWMA chart 

Concerning EWMA chart, the performance of four methods is compared (table 2.4), the 

parameters are set as follows: 

The conventional EWMA chart 

The ARL values of the conventional EWMA are taken from [69] for𝜆 = 0.5 ∧ 𝐿 = 3.071. 

The AT-EWMA chart 

We set 𝜆 = 0.5 ∧ 𝜇1 = 1.71 in order to obtain 𝐴𝑅𝐿0 = 500. 

FAEWMA and AEWMA CC charts 

The ARL values are those such that the conditions are satisfied with 𝐴𝑅𝐿0 = 500.  
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PROCESS MEAN 

SHIFT (𝛿) 

CONVENTIONAL 

EWMA 
AET- EWMA FAEWMA 

AEWMA 

ACC 

0 500 503.67 500.85 500.51 

0.25 255 82.69 99.49 70.55 

0.5 88.8 21.31 24.44 26.21 

0.75 35.9 8.71 9.64 13.68 

1 17.5 4.86 5.05 8.75 

1.25 _ 3.82 _ 6.04 

1.5 6.53 2.57 2.3 4.57 

2 3.63 1.84 1.54 2.96 

2.5 2.50 1.56 _ 2.09 

3 1.93 1.53 _ 1.56 

Table 2.4. ARL Comparisons of the conventional EWMA, AET-EWMA FAEWMA and AEWMA ACC control 

charts, for𝐴𝑅𝐿0 = 500. 

iv. Discussion 

In our analysis, the effectiveness of the proposed AET-Control chart becomes evident as it 

consistently outperforms conventional Shewhart, CUSUM, and EWMA control charts with fixed 

threshold across all magnitudes of process shifts. Notably, the ARL associated with the AET-

Control chart exhibits a decreasing value as the shift size increases, indicating its ability to 

promptly detect significant alterations in the process mean. 

Tables 2.2 and 2.3 present compelling evidence, showing that the proposed AET-Control 

chart excels in comparison to other adaptive control charts for small to moderate shifts (δ≤1), 

while the performance of these methods tends to converge for detecting larger shifts (δ>1). This 

observation underscores the robustness of the AET-Control chart in a wide range of scenarios. 

Furthermore, in table 2.4, we observe that the AET-EWMA chart consistently outperforms 

FAEWMA and AEWMA ACC for shifts ranging from 0 to 1, with the exception of δ=0.25, 

where AEWMA ACC takes the lead. When it comes to large shifts, the AET-EWMA and 

FAEWMA charts demonstrate similar performance, reinforcing the efficacy of the AET approach 

across various magnitudes of process change. 

2.4.4.  Conclusion 

In this section, a comparative study has been presented with seven different control chart 

techniques in the literature. Markov Chain simulations have been used to compute the ARL 
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values of these control charts. It has been found that the proposed technique outperforms the 

conventional control charts with fixed thresholds and other recent adaptive control charts existing 

in the literature. Based on the current work, AET-Control charts perform well in detecting small 

to large changes in the process mean. 

2.5. Conclusion 

In this chapter, our central objective was to establish a fault tolerant fusion system with the 

capacity to improve the localization of robotic system. This goal necessitated a thorough analysis 

of various components, encompassing the use of the Extended Kalman filter for achieving high 

accuracy in robot localization, the generation of residuals, and a comprehensive overview of the 

latest advancements in SPC. 

The main contribution was the introduction of the AET-Control chart, a promising approach 

to enhancing change detection. Subsequently, we conducted an in-depth performance evaluation 

through an ARL study. This evaluation aimed to quantify the efficiency of our proposed method 

and involved a numerical comparison of ARLs. The results highlighted the robustness of our 

AET-Control chart, particularly in scenarios involving small to moderate shifts, where it 

exhibited superior performance compared to other control charts documented in the literature. In 

summary, this chapter has led to the development of an innovative approach that demonstrates 

substantial promise in the field of robot localization. The fusion of multiple sensors, coupled with 

advanced statistical control techniques, has the potential to significantly enhance the precision 

and fault tolerance of robotic systems.  

An essential aspect of this work is the integration of antennas on the robots. With the 

integration of antennas into our robotic system, with high-precision and fault-tolerant 

localization, we anticipate a substantial improvement in the overall results of our research. It 

should be noted that a previous thesis established the groundwork by carrying out a proof of 

concept for the implementation of microwave techniques on a mobile robot system [17]. 

Expanding upon this foundation, the following chapters introduce microwave techniques 

designed for precise materials characterization. 
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3.1. Introduction 

Nondestructive testing and evaluation (NDT&E) is a concept associated to a set of 

techniques used to inspect, analyze, and assess the properties, integrity, and quality of materials 

without causing any damage to the material being examined [70-71]. More specifically, NDT&E 

allows to identify defects, flaws, irregularities, or potential failures within materials or structures, 

thus enabling proactive maintenance, quality control, and safety assessments. NDT&E plays a 

critical role in various industries, including aerospace, automotive, construction, manufacturing, 

power generation, and more [72-75]. By employing these methods, engineers and technicians can 

gain valuable information about the condition and properties of the tested materials, ensuring that 

they meet required standards and comply with safety regulations. 

NDT&E includes a wide range of testing methods [76-78]. Each method is designed to 

address specific applications and related materials. Established and common NDT&E techniques 

include: visual inspection, ultrasonic testing, radiographic testing, magnetic particle testing, 

liquid penetrant testing, eddy current testing, acoustic emission testing, etc. [79-82]. Among these 

methods, techniques based on electromagnetic radiations have attracted both the scientific and 

industrial communities, as they provide benefits such as penetration into materials and possibility 

to operate in a contact/non contact manner. A classification of these methods thanks to their 

wavelengths of operation is illustrated in figure 3.1. Microwave nondestructive testing and 

evaluation (MNDT&E) concept is considered in this work. 

 

Figure 3.1 Non-destructive and evaluation techniques on the frequency spectrum [83].  

MNDT&E was initially introduced in the 1970’s to characterize the dielectric properties of 

solid materials [84]. The idea was to use microwave electromagnetic waves in the frequency 

range of 300 MHz to 300 GHz to penetrate and interact with materials and provide important 

information about their internal structures and hidden flaws. The potential of MNDT&E lies in its 
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ability to inspect a wide range of materials, including composites, ceramics, polymers, and even 

dielectric materials (e.g. concrete) with a high level of precision and efficiency [85-87]. 

MNDT&E methods are non-ionizing in contrast with X-ray or Gamma-ray techniques. The non-

invasive nature of this technology allows for remote inspection, rapid testing, and real-time 

monitoring. MNDT&E techniques have been widely employed in various applications, such as 

medical application [88-89],the characterization of dielectric materials [90-91], the detection and 

evaluation of defects in different structures [92], and the identification and measurement of 

fatigue cracks on metal surfaces [93].  

This chapter begins with presenting the theoretical background of microwave 

characterization, including general basis of the electromagnetic properties of materials, 

microwave measurement systems, and characterization techniques. Following this, we propose a 

free-space monostatic MNDT&E technique for low-power, non-ionizing, contactless, and real-

time characterization of dielectric materials. The proposed measurement system is built up with 

conventional and commercially available microwave systems to measure the near-field complex 

reflection 𝑆11 of planar dielectric materials. Dedicated modeling and calibration procedure are 

then used to extract the complex permittivity in order to characterize these materials (i.e. 

recognize their types). We initiate the process with the use of a double ridge guide horn antenna 

as the primary instrument, followed by a transition to a more compact and simplified horn 

antenna. Both antennas are subject to comprehensive testing and evaluation under controlled 

laboratory conditions.  

The reminder of this chapter is organized as follows. In the first section, a dedicated state of 

the art is presented. Then, the measurement setup based on the double ridge guide horn antenna is 

presented, along with detailed explanation of the calibration procedure. In the third section, we 

present the measurement setup based on the more compact and simple horn antenna. Finally, the 

chapter concludes with a discussion section, where we analyze and compare the outcomes and 

limitations of the two measurement approaches. 

3.2. Microwave characterization: State of the Art 

For decades, microwave characterization techniques have been employed within both 

research and industry communities. These characterizations provide valuable insights into 

material health and properties. This section aims to provide a comprehensive synthesis of the 

fundamental theoretical principles covering the electromagnetic waves-to-material interaction, 

along with the corresponding instrumentations. Primarily, the electromagnetic properties of 

materials are presented. Subsequently, the definition of the scattering parameters is introduced. 

The final section pertains to the presentation of microwave measurement systems.  

3.2.1. Electromagnetic properties  

At microwave frequencies, the properties of a dielectric materials is basically characterized 

by its complex permittivity [94]. The complex permittivity (𝜀∗) describes the interaction of a 

dielectric material with an applied sinusoidal electric field 𝐸⃗⃗  ⃗. 𝜀∗ has two parts: the real part (𝜀′) 
and the imaginary part (𝜀′′). These parts are related to the storage and dissipation components of 

electrical energy in the dielectric material, respectively. 
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𝜀∗ = 𝜀′ − 𝑗𝜀′′ = 𝜀0𝜀𝑟
∗ = 𝜀0(𝜀𝑟

′ − 𝑗𝜀𝑟
′′) (3.1) 

 𝜀′represents the real part of the complex permittivity, or dielectric constant, which 

indicates how the material responds by storing electrical energy in a varying electric field. 

A higher 𝜀′ implies a higher capacity of the material to store electrical energy as 

polarization. 

 𝜀′′(dielectric loss factor) is the imaginary part of the complex permittivity and represents 

the material's ability to dissipate electrical energy as heat. A higher 𝜀′′ implies a more 

dissipative material that converts electrical energy into heat. 

 𝜀𝑟
∗ represents the complex permittivity relative to free-space. 

 𝜀0 represents the free-space permittivity. 

Thus, by using microwave techniques, electromagnetic waves interact with dielectric materials, 

i.e. are partially reflected by the surface material and partially penetrate dielectric materials. 

Based on the analysis of the material’s permittivity, this interaction provides valuable information 

about the MUT, including its type, geometry, and the presence of surface or subsurface defects. 

3.2.2. Scattering parameters definition  

At microwave and millimeter waves frequencies (300 MHz to 300 GHz), propagation 

phenomena result in variations of voltages and currents along transmission lines. Impedance, 

admittance, or hybrid matrices, which are related to voltage and current concepts, are difficult to 

describe. Instead, pseudo-waves related to the concept of power are preferred, as power is easily 

measurable in microwave and millimeter wave frequency ranges [95]. This approach allows the 

use of the scattering parameters (S-parameters) matrix to describe the system.  

Pseudo-waves are purely mathematical quantities defined with respect to an arbitrary 

reference impedance for each access point of the circuit. The S-parameters are a set of 

measurements used to characterize the behavior of a microwave circuit, network, or device, as 

they provide information about impedance matching, power transfer, and signal integrity. They 

describe the voltage ratios of incident waves 𝑎1, 𝑎2 and reflected electromagnetic waves 𝑏1, 𝑏2 at 

the ports of the circuit (figure 3.2).  

 

Figure 3.2 Graph illustrating a quadrupole circuit [95]. 

For a dipole, the reflection coefficient:  
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𝑆11 =
𝑏1
𝑎1

 
(3.2) 

For a two-port network, the S-parameters are represented as a matrix:  

 

[
𝑏1
𝑏2
] = [

𝑆11 𝑆12
𝑆21 𝑆22

] . [
𝑎1
𝑎2
] (3.3) 

Where,  

 𝑆11 represents the reflection coefficient at port 1 (reflection from port 1). 

 𝑆12 represents the transmission coefficient from port 2 to port 1. 

 𝑆21 represents the transmission coefficient from port 1 to port 2.  

 𝑆22 represents the reflection coefficient at port 2 (reflection from port 2). 

In summary, using microwave techniques to study the variations in electromagnetic 

properties, such as permittivity, by analyzing S-parameters provides a reliable approach for 

material characterization. This thesis specifically focuses on using the measured magnitude and 

phase of the reflection coefficient 𝑆11 considering a monostatic measurement configuration. By 

doing so, it aims to provide an in-depth comprehension of material behavior and enhance the 

capability to identify defects with higher accuracy.  

3.2.3. Microwave measurement systems 

a. Vector network analyzer (VNA) 

The Vector Network Analyzer (VNA) is the commonly employed measurement instrument 

to determine the S-parameters [96]. VNAs were commonly though as laboratory instruments due 

to their high cost, weight, size, and complexity. However, with the development of modern 

commercial VNA solutions, it has become widely used in various applications. These updated 

VNA solutions have effectively addressed the limitations of the past and are now extensively 

used across diverse sectors. 

A VNA generally consists of a frequency synthesizer module, a module for separating 

signals (incident, reflected and transmitted) into various channels, and a heterodyne detection 

module for the vector measurement of waves [94]-[97]. The use of the VNA generates two 

categories of measurement errors: random errors (non-reproducible) and systematic errors 

(reproducible) [96]. Random errors are related to the environmental variations (humidity, 

temperature, mechanical vibrations) and the measurement system itself. These variations can be 

minimized by reducing the intermediate frequency bandwidth (IFBW) and employing averaging 

techniques. On the other hand, systematic errors are characteristics of the measurement set-up 

and are reproducible. These errors can be corrected through a vector calibration procedure, also 

known as ‘calibration’. The standard procedure for calibrating a VNA involves connecting a set 

of well-known DUTs, including a short, open, and known load in one-port configuration. The 

remaining step consists to calculate error parameters that relate measured quantities to calibrated 

ones [94]. 
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The configuration of a VNA requires the precise adjustment of several key parameters to 

ensure accurate measurements and the operational performance of the VNA. These parameters of 

interest are: 

o Frequency range: Setting the desired frequency span for measurements. 

o Sweep Time: Specifies the time the analyzer takes to acquire data for a sweep. 

o Number of points: Specify number of data points that the VNA measures during a 

sweep. 

o Intermediate frequency bandwidth (IFBW): Refers to the width or range of 

frequencies within the intermediate frequency (IF) domain that the VNA is capable of 

measuring during a scan. A smaller IFBW indicates a smaller frequency range, which 

can help reduce noise and improve measurement resolution but may result in longer 

scan times. Inversely, a larger IFBW allows for a wider frequency range to be 

processed, which can speed up measurements but may compromise noise performance 

and resolution. The choice of IFBW depends on the specific measurement 

requirements and the compromise between measurement speed and accuracy. 

o Power level: Adjusting the signal power for optimal measurements. 

b. Six-port reflectometer  

The Six-Port Reflectometer has gained increasing attention in research laboratories and 

metrology institutes. Its simplicity of implementation, low cost, small form factor integration and 

high performance for measuring microwave phase-shifts make it a valuable tool for conducting 

characterizations outside a laboratory environment [98]. 

This instrument was first introduced by Glenn F. Engen in the 1970s [99]. The general 

schematic diagram is illustrated in the figure 3.3. The term ‘six ports’ is directly derived from the 

structure itself, which consists of two input ports and four output ports. The microwave reference 

signal feeds into the six-port network through port 1. The MUT, for which we aim to determine 

the reflection coefficient, is connected to port 2. The remaining four ports are connected to power 

detectors. Power measurements followed by mathematical data processing enable the 

measurement of the complex reflection coefficient. Therefore, the performance of the six-port 

reflectometer depends on both the hardware and the calibration of the measurements. In this 

context, various calibration methods have been proposed [100-102].  

 

Figure 3.3. Six-port architecture [100]. 
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The six-port reflectometer finds numerous applications, such as in radars for distance or 

velocity measurements [103-104], precise geometrical measurements [105-106], radar and 

imaging applications [107-109], medical applications [110], material characterization [111] and 

other applications [112-113]. 

3.2.4. MNDT&E techniques for material characterization and 

defects detection  

MNDT&E field has gained recent recognition from the American Society for Nondestructive 

Testing, being classified as a ‘Method’ on its own [114]. Highly suitable for material 

characterization, defects detection and evaluation, microwaves techniques achieve this capability 

by effectively penetrating the materials with high sensitivity to changes in dielectric properties 

[115-116]. Several practical advantages are associated with these techniques. They include non-

contact operation, low power requirements, real-time data provision, compatibility with 

autonomous robotic systems, generation of high-resolution images, and the ability of cost-

effective testing solutions [117-118]. 

Consequently, a wide variety of MNDT&E techniques have been developed. These methods 

primarily rely around the measurement of S-parameters of the MUT [119]. Subsequently, an 

appropriate approach is necessary to shift from the measured parameters to the electromagnetic 

characteristics of the MUT. Such a procedure might involve well-established mathematical 

modeling based on the physical principles that relate the measured parameters to the 

electromagnetic properties. Alternatively, it could also involve modern technological 

advancements, such as the integration of ML and DL models, which have proven to be valuable 

tools in facilitating this transition.  

Furthermore, various parameters should be considered when selecting a MNDT&E 

measurement method such as frequency range, sample preparation, sample surface roughness, 

required measurement accuracy, moisture and temperature [100] - [110] - [120]. 

In the following, we present most common MNDT&E methods for material characterization 

and evaluation. These methods are categorized into resonant and non-resonant techniques. 

Additionally, we discuss the recent advancements in this field, including the integration of ML 

and DL models with MNDT&E techniques.  

a. Resonant methods  

Resonant methods give precise information on the electromagnetic properties of materials 

over a limited frequency range. The measurements focus on changes in the resonance frequency 

and quality factor (Q). By analyzing these parameters, it becomes possible to determine the 

complex permittivity 𝜀𝑟 of the MUT. This extraction is typically performed within a narrow 

frequency range or at a single frequency [121]. Various studies based on resonant microwave 

technique for material characterization and defect detection can be found in the literature [122-

126]. For example, in[127], the authors presented a novel approach that uses a microwave sensor 

array with an advanced ML model to effectively classify three distinct materials: cardboard, 

wood, and plastic. The sensor array comprises five planar resonating elements, each functioning 

at a unique frequency within the range of 1 GHz to 10 GHz. The study demonstrates that the 

proposed ML model outperforms traditional classification models, highlighting its superior 

performance in material classification tasks. In [90] a compact microwave resonant sensor 
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operating in the unlicensed 2.5 GHz band is used for the identification of four distinct plastic 

materials in pellet form. The classification of these materials is accomplished thanks to ML 

algorithms that use resonant parameters, specifically the resonance frequency and quality factor, 

as features. In [93] authors introduce a microwave direction-sensitive sensor for metal crack 

detection. This sensor adopted two feeding ports to obtain perpendicular polarization currents, 

thus realizing directional detection. The performance was validated by both simulations and 

experiments. The results showed that the two feeding ports had width sensitivities of 100 

MHz/mm and 63.3 MHz/mm respectively.  

b. Non resonant methods  

Non-resonant methods are inherently broadband. They relate the measured S-parameters to 

the dielectric properties of the MUT. These characterization techniques include coaxial probing 

[128], free-space methods [129] or open-ended waveguide (OERW) [130-131]. Every method 

comes with its distinct limitations and constraints, and the selection of the appropriate method is 

determined by the specific application it is intended for. In this context, the thesis we focus on 

two microwave characterization approaches including both a monostatic free-space setup with a 

single antenna and an alternative approach based on a rectangular open-ended waveguide 

(OEWR). 

Free-space measurements techniques have the advantages of allowing reflection and 

transmission measurements without contact with the sample, simplicity in MUT preparation, 

ability to characterize high temperature materials, and simple measurement setup [132]. In its 

standard configuration, the free space measurement setup comprises of a VNA, two horn 

antennas and a sample holder. Each horn antenna will be placed as the transmitter and receiver 

antenna respectively, and the MUT will be placed between them as presented in figure 3.4 [133]. 

However, its implementation within an industrial environment proves to be challenging due to 

the required equipment. In such cases, monostatic measurements are preferred. These 

measurements rely on the use of a single antenna for both transmitting and receiving waves 

(figure 3.5), often associated with radar techniques. This method is particularly well-suited for 

applications where access to only one side of the MUT is feasible [134]. 

The dielectric properties of the MUT are then extracted from the measured reflected and/or 

transmitted signals (i.e. 𝑆11 and𝑆21) using appropriate conversion methods. This latter is 

mandatory to identify the types of materials. Significant studies have taken place using free-space 

measurement techniques for material characterization. For example, in an earlier well cited work 

[132], a system was introduced for measuring dielectric properties of moist granular materials. 

The system used a free-space measurement approach in the frequency range from 5 to 17 GHz at 

a temperature of23𝑜. It is based on employing a horn/lens antenna and a vector network. In [135] 

a microwave free-space measurement system was introduced for evaluating the complex 

permittivity of liquid samples. This approach involved measuring the S-parameters of quartz 

plates. Subsequently, a container was created using these plates, housing liquid samples to form a 

quartz plate-liquid-quartz plate arrangement. The measured S-parameters of the assembly were 

de-embedded, leading to calibrated S-parameters of the tested liquid material. In [91] a 

microwave sensor for characterizing the complex relative permittivity of concrete samples is 

proposed. The sensor operates by measuring the scattering parameters 𝑆11 and 𝑆21 in a free-space 

propagation transmitter-receiver setup. The estimation of the complex relative permittivity values 
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of the concrete blocks is achieved using conversion method named Nicolson-Ross-Weir. In 

[136], a 3-D printed wide band free-space measurement system is demonstrated. It operates 

within a wide frequency range of 2 to 18 GHz to evaluate the complex dielectric properties of 

rigid and flexible materials. The study involved the characterization of four types of 

commercially available materials: polyimide film, liquid crystalline polymer sheet, ceramic 

composites, and polypropylene with different thicknesses. The extracted dielectric properties 

were then compared with experimental parameters for a range of materials to validate the 

effectiveness of the measurement approach. In [137], the feasibility and effectiveness of a 24 

GHz radar microwave system for object detection at varying distance is demonstrated. The 

results indicate a high level of accuracy, approximately 96.6%, in the classification process. The 

proposed approach offers a promising solution for efficient and real-time target identification and 

classification.  

 

Figure 3.4 Principle of bi-static free-space measurement [17]. 

 

Figure 3.5 Principle of monostatic free-space measurement [17]. 

In the category of non-resonant methods, the OERW is commonly used for near field 

applications [83]. This sensor, characterized by its rectangular shape, is used to guide high-

frequency electromagnetic waves, provides strong interaction with thick and multi-layered 

structures [83]-[131]-[138-139]. In OERW-based methods, the MUT is placed against the 

waveguide, or at a standoff distance between the probe and the MUT [140]. Given the operational 

principle of the OERW, it is well suited for accurate and real-time inspection across various types 

of applications. Consequently, significant amount of research and development have been 

invested in these applications. This includes tasks such as dielectric material characterization 

[141], delamination evaluation in the layered dielectric structures [142], thickness variation in a 

stratified composite [143-144] and defect sizing and detection of metal [145]. In [146], the 
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authors present a rapid and robust technique for assessing the complex permittivity of non-

magnetic materials. This method is based on the use of two rectangular waveguides and has 

demonstrated the ability to yield accurate outcomes. The related system is presented in figure 3.6.  

 

Figure 3.6 Measurement setup using millimeter-wave rectangular waveguides. The MUT is positioned between the 

two waveguide flanges [139]. 

In [147], OERW was used for the detection of cracks on substrate under thermal barrier 

coatings. The system operates in the frequency range 26.5 GHz - 40 GHz. The amplitude and 

phase-shift of the complex reflection coefficient are employed as to characterize the cracks, 

through a scanning measurement. In [148], an OERW is used to detect and characterize internal 

defects in coated glass fiber reinforcement plastic pipes (figure 3.7). The results show that the 

proposed method can clearly reveal the area and the depths of the defects.  

 

Figure 3.7 Microwave Open-ended Waveguide for glass fiber reinforcement plastic pipe scanning [148]. 

The table 3.1 presents a comparative study between the two microwave characterization 

techniques: free-space radar and transmission line.  
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Free-space Transmission line (Waveguide) 

Frequency 

range 
50 MHz – 330 GHz 50 MHz – 75 GHz 

S-parameters 
𝑆11 – 𝑆21 

(reflection / transmission) 
𝑆11 – 𝑆21 

MUT 
Moderate to large planar solid / 

liquid 
Small to Moderate planar solid 

Measured 

dielectric 

properties 
Permeability – permittivity Permeability – permittivity 

Strengths 

 Non-contact 
 ability to operate in high 

temperature environments 
 simple measurement setup 
 Minimal constraints on 

sample size and shape 

 Accurate characterization 
 High interaction with thin and 

multilayered structures 
 Particularly effective for small 

samples 

Challenges 
Multiple reflections between the 

sample and the antenna 
Limitation of the air gap effects 

Table 3.1 Summary of measurement methods: free-space and waveguide approaches [133]-[149]. 

3.3. Double ridge guide horn antenna 

3.3.1. Principle of monostatic free-space measurements 

A free-space monostatic radar is designed for applications where access to only one side of 

the target material is possible. In such scenarios, the radar system operates in a monostatic 

configuration, using a single antenna for both transmitting and receiving electromagnetic signals. 

In this work, we propose a monostatic free-space system in order to characterize the dielectric 

MUT in microwave range. Figure 3.8 gives a schematic diagram of the proposed system.  
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Figure 3.8 Schematic diagram of the free-space monostatic microwave measurement instrumentation with MUT 

positioned at distance d. 

In this setup, the antenna is connected to a Vector Network Analyzer (VNA) to measure the 

reflection coefficient of the planar (MUT). The measured reflection coefficient 𝑆11𝑚 is in the 

reflection coefficient measured by the VNA. To establish a relationship between 𝑆11𝑚 and the 

calibrated reflection coefficient 𝑆11of the MUT located at a reference distance d, a calibration 

procedure is required. Figure 3.9 provides the flow chart of the system calibration process.  

 

Figure 3.9 Flow chart of the wave propagation between the aperture of the antenna and the MUT. 

The material in electromagnetic range can be described as mentioned in the state-of-the-art 

chapter by its complex permittivity. This permittivity is defined as:  

𝜀∗ = 𝜀′ −  𝑗𝜀′′ = 𝜀0𝜀𝑟 
∗  =  𝜀0 (𝜀𝑟

′  −  𝑗𝜀𝑟
′′)   (3.4) 

where 𝜀′is the dielectric constant and 𝜀′′ is the loss factor.  

In a first approximation, we consider that the microwave response 𝑆11 of the MUT is mainly 

attributed to the first wave reflection at the air - material interface. Applying boundary conditions 

at the air-material interface, it is found that this parameter is related to the permettivity by the 

following equation [95]:  

√𝜀∗ =
1 − 𝑆11
1 + 𝑆11

 (3.5) 

The relation between 𝑆11 and the measured 𝑆11𝑚 is derived by the flow chart in (3.6) :  

𝑆11 =
𝑆11𝑚 − 𝐸11

𝑇1𝑇2 + 𝐸22(𝑆11𝑚 − 𝐸11)
 (3.6) 
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The calibration step consists to determine 𝐸11, 𝐸22, and 𝑇1𝑇2, which respectively correspond 

to directivity, source match and reflection tracking error terms. Specifically, 𝑇1𝑇2 referred to the 

transmission losses and phase-shift that occur when an electromagnetic wave propagates from the 

VNA towards the reference plane and vice versa. Once the 𝑆11of the MUT is known, it enables 

the determination of the permittivity of the MUT (equation 3.5), and the characterization of its 

type. In this following, we use a double ridge guide horn antenna operates in the frequency range 

between 150 KHz and 6 GHz to introduce a MNDT&E of the dielectric MUT. 

3.3.2. Experimental setup  

The proposed instrumentation consists of the double ridge guide horn antenna [SAS-571] 

(figure 3.10 (a)) associated to the VNA [Anritsu® MS46121B] presented in the figure 3.11(a). 

The SAS-571 double Ridge Guide Horn Antenna is intended for general laboratory use in a wide 

variety of industrial and scientific applications. It is lightweight, compact and has been 

manufactures for broadband response. It has been used as reference antenna, for its good 

compromise between high bandwidth and directivity for a parametric study. Figure 3.10 provides 

a detailed representation of the antenna. Table 3.2 presents the characteristics of the double ridge 

guide horn antenna. Table 3.3 presents the characteristics of the VNA.  

 

 
(b) 

 

(a) (c) 

Figure 3.10 Double ridge guide horn antenna [SAS-571]: (a) front view; (b) physical dimensions of the aperture; (c) 

back view. 

Frequency range 700 MHz - 18 GHz 

Gain 1.4 to 15 dBi 

Connector N-Type, female 

Weight 1.59 kg 

Table 3.2 Specifications of the double ridge guide horn antenna [SAS-571]. 
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Before starting the measurements, the VNA must be calibrated in order to eliminate the 

systematic errors and provide quantitative results. Calibration plays an essential role by 

establishing a reference point at the measurement port and correcting for any known 

imperfections within the VNA system. A short-open-load (SOL) calibration using the calibration-

kit: OSLN50A-8 from Anritsu® (figure 3.11(b)) is applied. The calibration kit features type 

N(m) connectors and is designed for a frequency range from DC to 8 GHz with a 50 Ω 

impedance. For more details about the calibration-kit in Appendix B. 

  
(a) (b) 

Figure 3.11 (a) Compact 1-port vector network analyzer Anritsu® MS46121B (150 kHz – 6GHz). (b) Calibration-kit 

Anritsu® (OSLN50A-8).  

Frequency range 150KHz – 6 GHz 

Output power 

– 5 dBm (for frequency from150 kHz to 46 MHz) 

+ 3 dBm (for frequency from 46 MHz to 4 GHz) 

– 5 dBm (for frequency from 4 GHz to 6 GHz) 

Connecter N-type 

Power (max) 23 dBm 

Dimensions 52 mm x 148 mm x 36 mm 

Weight < 0.4 kg 

Table 3.3 VNA (Anritsu® MS46121B) system specifications. 
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The VNA associated with the antenna attached to a tripod, is employed to measure the 

reflection coefficient 𝑆11 of the planar dielectric material. The MUT is positioned on a 

mechanical displacement system with a step of 500µm, as illustrated in the figure 3.12. The 

measurement configuration is detailed in the table 3.4. The VNA IFBW is set to 100Hz as 

compromise between measurement time and measurement accuracy. The measurements are 

performed in the frequency range between 150 KHz and 6GHz.  

 

Figure 3.12 Picture of the free-space measurement system with wooden MUT. 

The measurement process comprises three distinct steps. In the first step, the reflection 

coefficients are measured under free-space conditions without the presence of the MUT. This 

step involves multiple repetitions of measurements to determine the measurement reproducibility, 

a critical factor that can significantly influence overall performance. Following this, 

measurements associated to the calibration procedure are performed. Specifically, we measured 

the reflection coefficient of a planar metal sample (perfectly conductive and reflective free-space 

material) from contact to 15 cm with step of 1 mm. We repeat the measurements twice to validate 

the reproducibility of the measurements. In the third step, the MUT replaces the metal sample at 

the reference plane established during the calibration step. We measure the 𝑆11𝑚 of the MUTs to 

extract their permittivity and validate the proposed technique. 

 

Frequency range 150 KHz – 6 GHz 

Intermediate frequency 
bandwidth – IFBW (Hz) 

100 

Number of points 201 

Table 3.4 S11 measurement configuration using the double ridge guide horn antenna and the VNA. 
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The 𝑆11measurements in free space are performed before starting measurements on the 

material samples. The resulting measurements are presented in the figure 3.13. The maximum 

errors in magnitude and phase-shift of the complex reflection coefficient are 0.2 % and 0.0027°, 

respectively (figure 3.14, 3.15).  

 

Figure 3.13 Measured S11 without MUT in the frequency range from 1 to 6 GHz. 

 

Figure 3.14 Percentage of the relative errors between the multiple measured S11of the empty free-space. 
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Figure 3.15 The relative errors between the multiple measured S11 of the empty free-space.  

3.3.3. Free-space Calibration procedure  

The free-space calibration step consists of determining the three complex terms 𝐸11,𝐸22 and 

𝑇1𝑇2. This calibration procedure, inspired by [150], is based on the well-known calibration 

technique SOL (Short–Open–Load) commonly used in traditional guided microwave 

measurements. However, this approach introduces a difference by measuring standard material at 

three distinct known distance separations between the antenna and this standard. In our 

calibration setup, we use the metal sample as the standard material. The measured complex 

reflection coefficient 𝑆11𝑚 can be expressed as a function of the real complex reflection 𝑆11 of 

the MUT located at distance d from the antenna by: 

𝑆11𝑚 = 𝐸11 +
𝑇1𝑇2𝑆11
1 − 𝐸22𝑆11

 (3.7) 

 Where 𝑆11 = −𝑒0
−2𝛿0𝛥𝑟with 𝛿0 denotes the free-space propagation constant, 𝛥𝑟 denotes the 

stand-off distance between the reference plane and the MUT. 

A linear system of three equations is required to determine the three error terms 𝐸11,𝐸22 and 

𝑇1𝑇2. Thus, the free-space calibration process consists of the following key steps: 

1. Set the Reference Plane: Fix the reference plane at a fixed distance d and place the metal 

at this reference point. 

2. Measure 𝑆11𝑚: In the presence of the metal, record 𝑆11𝑚at three distinct distances: d, d-1, 

and d+1. 

3. Calculate 𝑆11 of the Metal: Calculate the 𝑆11 parameter of the metal at these three 

distances using the following equation: 

𝑆11 = −𝑒0
−2𝛿0𝛥𝑟 (3.8) 

with 𝛥𝑟 = 0 at the reference plane, 𝛿0 = 𝑗
2𝜋

𝜆0
; 𝜆0 =

𝑐

𝐹
 . 
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4. Solve the System of Equations: Insert the measured of 𝑆11𝑚 values and the calculated 

𝑆11 values in the equation (4) and solve the resulting system of three equations with three 

unknowns to calculate the error terms (𝐸11, 𝐸22, and 𝑇1𝑇2). 

3.3.4. Results and permittivity characterization  

In this following, the operating frequency is set to 6 GHz, wavelength 𝜆 = 50𝑚𝑚. The 

reference calibration plane is set to 𝑑 = 14.9 cm and then at 𝑑 = 10 cm. We intentionally choose 

to operate at a relatively short antenna-to-material distance to minimize the diffraction effects at 

the edges of the sample. 

Case 1: Reference plane for 𝑑 = 14.9cm.  

In case 1, we position the reference plane at 𝑑 = 14.9cm (𝑑 ≃ 3𝜆), leading to measurements 

of the metal at distances of 14.8 cm, 14.9 cm, and 15 cm. The standard parameters are detailed in 

table 3.5. We record three sets of measured 𝑆11𝑚values (both magnitude and phase-shift) at these 

distances. Subsequently, we calculate the corresponding 𝑆11 values using equation (5) with 𝛥𝑟 = -

1, 0, and +1. 𝑆11𝑚 and 𝑆11 values are then fed into equation (4) to form a system of three 

equations. The solution of this system is presented in table 3.6.  

Standard 𝛥𝑟(𝑚𝑚) 𝑆11𝑚(𝐿𝑖𝑛) 𝑆11𝑚(𝑑𝑒𝑔) 𝑆11(𝐿𝑖𝑛) 𝑆11(𝑑𝑒𝑔) 

Cal 1 -1 (148) 0.0801 -125.6012 1 -165.6 

Cal 2 0(149) 0.0929 -133.9922 1 -180 

Cal 3 1(150) 0.1042 -142.781 1 165.6 

Table 3.5 Free-space standards parameters used for free-space calibration with reference plane positioned at 

𝑑 = 14.9𝑐𝑚; frequency: 6GHz. 

Directivity 𝐸11 −0.0557 − 0.0008𝑖 −22.25𝑑𝐵;−87.46° 

Source match 𝐸22 −0.0981 − 0.0735𝑖 −20.41𝑑𝐵;−141.51° 

Reflection tracking 𝑇1𝑇2 0.0128 + 0.0589𝑖 −16.73𝑑𝐵; 77.13° 

Table 3.6 Complex error terms determined from the free-space calibration procedure at 𝑑 = 14.9𝑐𝑚; frequency: 6 

GHz. 

Figure 3.16 presents the measured and modelled 𝑆11𝑚 of the metal as function of the distance 

ranging from 145 to 150 mm (∆𝑟 = −41𝑚𝑚) . The measured and modeled values show close 

similarity near the reference plane (∆𝑟 = 0), but they begin to diverge as the distance from the 

reference plane increases. It is essential to note that when the antenna operates in close proximity 

to the sample, the spherical nature of propagation waves results in amplitude variations in these 
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waves function of the distance traveled. Consequently, this calibration procedure provides 

accurate data only if the calibration standards are close to the material reference plane.  

 

Figure 3.16 Comparison between modelled and measured S11m as a function of ∆𝑟 with reference plane placed at 

𝑑 = 14.9𝑐𝑚– frequency: 6 GHz. 

Figure 3.17 shows the measured and modelled 𝑆11of the metal as function of the distance 

ranging from 145 to 150 mm (∆𝑟 = −41𝑚𝑚). The expected magnitude of 𝑆11for a metal is 1 

(and phase = −𝛱), as it reflects all incoming electromagnetic waves emitted by the antenna. We 

can see that the amplitude of the measured 𝑆11 for the metal closely approaches unity in the 

proximity of the measurement reference plane (∆𝑟 = 0). As previously explained, this occurs 

because we are conducting measurements within the antenna's near-field region, where 

measurements are affected by the spherical nature of the waves.  

 

Figure 3.17 Comparison between modelled and measured S11 as a function of ∆𝑟 with reference plane placed at 

𝑑 = 14.9𝑐𝑚– frequency: 6 GHz. 
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Case2: Reference plane for d=10 cm.  

With the reference plane fixed at a distance of 𝑑 = 10 cm (𝑑 = 2𝜆), we record three sets of 

measured 𝑆11𝑚 values, including both magnitude and phase, at distances 9.9 cm, 10 cm, and 10.1 

cm. Following this, we compute the corresponding 𝑆11values using equation (5) with 𝛥𝑟 = -1, 0, 

and +1. These 𝑆11𝑚 and 𝑆11 values, shown in table 3.7, are subsequently used in equation (4) to 

form a system comprising three equations. The resolution of this system is detailed in the table 

3.8. 

Standard 𝛥𝑟(𝑚𝑚) 𝑆11𝑚(𝐿𝑖𝑛) 𝑆11𝑚(𝑑𝑒𝑔) 𝑆11(𝐿𝑖𝑛) 𝑆11(𝑑𝑒𝑔) 

Cal 1 -1 (99) 0.1055 -122.741 1 -165.6 

Cal 2 0(100) 0.1170 -136.39 1 -180 

Cal 3 1(101) 0.1236 -144.196 1 165.6 

Table 3.7 Free-space standards parameters used for free-space calibration with reference plane positioned at 

d=10 cm; frequency – 6 GHz. 

Directivity 𝐸11 −0.1104 − 0.0201𝑖 −20.36𝑑𝐵;−172.64° 

Source match 𝐸22 −0.4814 + 0.5510𝑖 −2.27𝑑𝐵; 131.38° 

Reflection 

tracking 
𝑇1𝑇2 −0.0467 + 0.0173𝑖 −26.92𝑑𝐵; 158.22° 

Table 3.8 Complex error terms determined from the free-space calibration procedure at 𝑑 = 10𝑐𝑚; frequency: 

6 GHz. 

For the reference plane placed at d=10 cm, the impact of diffraction effects at the edges of 

the MUT decreases. The calibration procedure provides more precise and reliable data. In 

contrast, calibrating at 14.9 cm places the reference farther from the antenna, increasing the 

potential for diffraction-related errors (𝑇1𝑇2 ∨ 0.0495at distance 10 cm is less than 𝑇1𝑇2 ∨
0.06029 at distance 14.9 cm). 

Figure 3.18 presents the measured and modelled 𝑆11𝑚 as function of the distances ranging 

from 96 to 104 mm (∆𝑟 = −44𝑚𝑚). We observe a close correspondence between the measured 

and modeled 𝑆11𝑚 values for distances exceeding 100 mm (the metal is very thin).  
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Figure 3.18 Comparison between modelled and measured S11m as a function of ∆𝑟 with reference plane placed at 

𝑑 = 10𝑐𝑚– frequency: 6 GHz. 

Figure 3.19 presents the measured and modelled 𝑆11as function of the distances ranging from 

96 to 104 mm (∆𝑟 = −44𝑚𝑚). We can see that the amplitude of the measured 𝑆11 for the metal 

closely approaches unity in the proximity of the measurement reference plane and still very close 

to one in the more far distances, the reference at 10 cm lead to better modeling. After calibration 

𝑆11, the modeled phase-shift demonstrates the expected linear behavior.  

 
Figure 3.19 Comparison between modelled and measured S11 as a function of ∆𝑟 with reference plane placed at 

𝑑 = 10cm - frequency: 6 GHz. 

Following the modeling and calibration of the system, we place the wooden MUT at the 

designated reference plane. Subsequently, we measure the reflection coefficient 𝑆11𝑚 for this 

MUT. Figure 3.20 and 3.21, present the measured 𝑆11𝑚 of wood and metal, magnitude and 

phase-shift, at distances 14.9 cm and 10 cm respectively.  
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Figure 3.20 Measured reflection coefficient S11m of the wood and metal MUT as function of frequency ranging from 

1 to 6 GHz; d=10 cm. 

It is important to note that each material has a unique signature, confirming the effectiveness 

of the microwave system in characterizing materials. We applied equation (3) with the measured 

𝑆11𝑚 at frequency 6 GHz to deduce the calibrated 𝑆11. Subsequently, we employed equation (2) 

to calculate the permittivity of the MUT based on the measured 𝑆11 values in the reference plane 

of the MUT. 

  
Figure 3.21 Measured reflection coefficient S11m of the wood and metal MUT as function of frequency ranging from 

1 to 6 GHz; d=14.9 cm. 

In the table 3.9, we present a comparison between our permittivity results and those reported 

in the literature [151-153]. It is important to note that the complex permittivity of dry wood at a 

specific frequency can exhibit variability due to factors such as wood type, moisture content, 

temperature, and other environmental conditions. Consequently, these values should be 
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considered approximate, and the actual values may differ based on the specific wood sample and 

measurement conditions. Our findings fall within the range documented in the existing literature. 

Permittivity 𝜀′ 𝜀′′ 

Literature (F/m) 1.2 - 4.5 0.01 - 0.6 

Reference plane 10 cm 

(F/m) 
1.2325 0.6154 

Reference plane 14.9 cm 

(F/m) 
2.0396 0.6964 

Table 3.9 Extracted complex permittivity of wooden MUT at two reference plans: d = 10 cm and d =14.9 cm; 

frequency is set to 6GHz. 

3.4. Simple horn antenna  

3.4.1. Experimental Setup  

In this section, we introduce an alternative technique for MNDT&E material characterization 

purposes. Our proposed approach relies on the use of a simple and compact horn antenna [from 

ATM®: Advanced Technical Materials, P/N 187-251-6] as depicted in figure 3.22, in 

conjunction with the VNA from [Anritsu® MS46121B]. The reason for choosing this specific 

horn antenna is based on its compact design, which facilitates its integration onto a robot 

platform. Furthermore, preliminary to measurements, we performed 3D electromagnetic 

simulations in CST Microwave Studio to predict the microwave response. The simplicity of the 

antenna structure is better suited for designing the structure. As a result, all subsequent research 

studies within this thesis rely on this antenna for conducting measurements and performing 

analytical assessments. Table 3.10 presents the specifications of the horn antenna. 

Prior to conducting any measurements, it is mandatory to ensure the VNA's accuracy, and 

this is achieved through a calibration process using the same calibration-kit from Anritsu® 

(OSLN50A-8). Following VNA’s calibration, the antenna is connected to the input port of the 

VNA using N-to-SMA coaxial transition and SMA-to-waveguide transition. No coaxial cable is 

considered to minimize random errors commonly attributed to cable movement during 

measurements. 
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Figure 3.22 Horn antenna ATM® (P/N 187-251-6). 

Frequency range 3.95 GHz – 5.85 GHz 

Gain 10 dB nominal 

Connector SMA -Type 

Table 3.10 Specifications of the double ridge guide horn antenna ATM® (P/N 187-251-6). 

For precise positioning and control, both the measurement instruments (antenna and VNA) 

and the MUT are situated within the same mechanical displacement system in section 1, with a 

step size of 500 µm, as depicted in figure 3.23. This setup ensures that the MUT can be 

systematically and accurately analyzed during the experimentation. 

  
(a) (b) 

Figure 3.23 Measurements system (a) without MUT (b) Wood MUT. 

The measurements are conducted within the frequency range covered by the antenna, 

between 3.95 to 5.85 GHz, with the measurement configuration outlined in table 3.11.  
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Frequency range 3.95 - 5.85 GHz 

IFBW (Hz) 100 

Number of points 863 

Table 3.11 S11 measurement configuration using the horn antenna and the VNA. 

The VNA associated with the antenna is used to measure the reflection coefficient of the 

planar dielectric material. Specifically, the measured reflection coefficient, 𝑆11𝑚, is determined at 

the antenna's aperture. To establish the relationship between 𝑆11𝑚 and the real material's 

reflection coefficient 𝑆11 the same free-space calibration procedure, explained in section 1, is 

applied. This measurement process consists of three successive steps:  

(1) Initially, multiple measurements of the reflection coefficient are taken without MUT to 

ensure the reproducibility of the measurements. 

(2) Subsequently, measurements related to the calibration procedure are conducted. The 

reference plane is positioned at a distance 𝑑 = 14.9cm from the antenna.  

(3) Finally, measurements of the MUT's reflection coefficient, which is the primary focus of 

characterization, are executed. 

3.4.2. Results and permittivity characterization  

The 𝑆11measurements in free space are performed before starting measurements on the 

material samples. The resulting measurements are presented in the figure 3.24.  

 
Figure 3.24 Free-space S11 measurements without MUT. 

For the free-space calibration procedure, the operating frequency is set to 5 GHz. The 

reference calibration plane is set to 𝑑 = 14.9 cm. We record three sets of measured 𝑆11𝑚 values 

(magnitude and phase-shift) at distances of 14.8 cm, 14.9 cm, and 15 cm. Subsequently, we 

calculate the corresponding 𝑆11 values using equation (5) with 𝛥𝑟 = -1, 0, and +1. This results in 

a system of three unknowns, and we calculate the error terms.  
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Figure 3.25 shows the measured and modelled 𝑆11𝑚of the metal as function of the distances 

ranging from 142 to 150 mm (∆𝑟 = −71𝑚𝑚). 𝑆11of a metal is theoretically -1, otherwise in the 

figure 3.26 it is shown that 𝑆11𝑚 is between 0 and 0.5. The measured and modeled values show 

close similarity near the reference plane (∆𝑟 = 0). 

 
Figure 3.25 Comparison between modelled and measured reflection coefficient S11m as a function of the stand-off 

distance ∆r from the reference plane (d =14.9 cm) – frequency: 5 GHz. 

Figure 3.26 shows the measured and modelled 𝑆11of the metal as function of the distance 

ranging from 142 to 150 mm (∆𝑟 = −71𝑚𝑚). The expected magnitude of 𝑆11for a metal is 1, as 

it reflects all incoming electromagnetic waves emitted by the antenna. We can see that the 

amplitude of the measured 𝑆11 for the metal closely approaches unity in the proximity of the 

measurement reference plane ∆𝑟 = 0, but they begin to diverge as the distance from the reference 

plane increases. As previously explained, this occurs because we are conducting measurements 

within the antenna's near-field region, where measurements are affected by the spherical nature of 

the waves.  
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Figure 3.26 Comparison between modelled and measured reflection coefficient S11 as a function of the stand-off 

distance ∆r from the reference plane (d=14.9 cm) – frequency: 5 GHz. 

After the free-space calibration procedure, measurements of the wooden MUT are 

performed. We position the MUT at the reference plane, 𝑑 = 14.9cm, and measure the 𝑆11𝑚. We 

use equation (3) to determine its 𝑆11, subsequently deriving its permittivity based on the equation 

(2). 

Figure 3.27 presents the measured 𝑆11𝑚 of the metal and the wooden MUT. We use the same 

MUTs as discussed in section 1. From the measured 𝑆11𝑚values, we calculate 𝑆11and, 

consequently, determine the permittivity of the wooden MUT. 

 
Figure 3.27 Measured S11m of wood and metal in the frequency range 3.95 - 5.85 GHz. 

We applied equation (3) with the measured 𝑆11𝑚 to deduce the measured 𝑆11. Subsequently, 

we employed equation (2) to calculate the permittivity of the MUT based on the measured 

𝑆11values. The results are shown in the table 3.12.  
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Permittivity 𝜀′ 𝜀′′ 

Wood 1.445 0.621 

Table 3.12 Extracted complex permittivity; reference plane 14.9 cm; frequency=5 GHz. 

The complex permittivity of dry wood in the microwave range can vary depending on several 

factors, including the type of wood, its moisture content. 

3.5. Discussion  

Analytical modeling for the determination of the complex permittivity often encounters 

limitations due to various factors, such as the material thickness, frequency dependency, distance 

between the material and the antenna and the simplifying assumptions, etc. These limitations 

can significantly affect the accuracy of the extracted permittivity values. In this study, we 

assumed that the material was very thin, focusing on the analysis of the reflection coefficient at 

the surface of the material, while neglecting the absorption of electromagnetic waves by the 

material. This simplification introduces inaccuracies into the modeling process. On the other 

hand, accounting for absorption effects can result in a more complex modeling approach. 

Moreover, as materials become more complex in terms of composition or geometry, analytical 

models become to increasingly challenging develop and may fail to provide accurate results. This 

underscores the need for alternative approaches. In this regard, ML and DL models offer a 

promising solution to overcome these limitations. By training on a diverse set of data, ML and 

DL models can characterize materials with high precision, regardless of their thickness or 

distance between the reference plane and the antenna. These models learn complex patterns and 

relationships within the data, allowing for more accurate and versatile characterization of 

materials. Consequently, the integration of ML and DL approaches in material characterization 

can lead to more comprehensive and accurate results, particularly when dealing with complex or 

non-standard material configurations. 

3.6. Conclusion  

In this chapter, we presented two MNDT&E techniques tailored for material 

characterization, employing two distinct antennas. These antennas play a central role in 

measuring the reflection coefficient of the MUT. Furthermore, we provided a detailed description 

of a free-space calibration procedure specifically used to establish the relationship between the 

materials' permittivity and the measured reflection coefficient. To validate the efficiency of these 

methodologies, we conducted practical experiments using two wooden MUT samples, and 

subsequently, we compared our findings with previously documented results in the literature. 

In the next chapter, we present three ‘intelligent’ MNDT&E techniques for material 

characterization and defects detection. These techniques rely on using two microwave 

instruments: the simple and compact horn antenna featured in the second section and a 

rectangular open-ended waveguide. ML and DL approaches are used to perform the analysis of 

the measured reflection coefficients, promising enhanced capabilities for material 

characterization and defects detection. 
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4.1. Introduction  

In the previous chapter, we discussed the use of conventional microwave instrumentation 

along with calibration method for material characterization (e.g. material’s permittivity 

determination). However, these methods have limitations related to factors such as environmental 

noise, the thickness of the MUT, and the distance between the radar and the MUT. To address 

these limitations, this chapter propose three ‘intelligent’ MNDT&E techniques for materials 

characterization. This strategy involves integrating microwave techniques with ML and DL 

models to analyze the microwave response. This combination enables automated, accurate and 

fast material inspection even when dealing with complex scenarios involving multiple material 

types and thicknesses. Moreover, this advancement presents advantages such as reducing the 

dependency on the operators skills and experience, reducing the dependency on complex 

conversion methods, and potentially enhancing the sensitivity of material characterization and 

defects detection [1-2].  

The proposed techniques are based on two microwave characterization instruments: 

monostatic free-space radar and an OERW. Our objective is to develop a compact, low-power, 

fast instrument for classifying and evaluating the materials sensed by microwaves, thus 

eliminating the need for quantitative extraction of the material’s complex permittivity. These 

approaches coupled with ML and DL models, are employed and validated within two distinct 

environmental settings: controlled laboratory conditions and more challenging real-world noisy 

conditions. Using these measurement systems yields accurate results when evaluating materials 

in both scenarios.  

The coding of ML and DL algorithms is carried out in Python, harnessing the capabilities of 

its rich libraries and frameworks. For preprocessing tasks and data visualization, MATLAB is 

employed.  

The remaining sections are organized as follows. The first section provides a dedicated 

overview, starting with the foundational concepts of ML and DL models used in this chapter. 

Following this, the state-of-the-art discussion introduces the MNDT&E technique coupled with 

ML and DL models for free-space material characterization. The second section introduces the 

first MNDT&E technique, using monostatic free-space radar with ML models for material 

characterization. In the subsequent section, another MNDT&E technique is introduced, 

employing an OERW combined with ML models for contact material characterization. The third 

part details a distinct MNDT&E technique, integrating an OERW with a 1D-CNN model for 

defect detection within materials. Finally, the chapter concludes by summarizing the findings and 

discussing the practical implications of these techniques. 

4.2. Machine learning fundamentals  

In this section, we provide a general overview of the fundamental concepts of Artificial 

Intelligence (AI), focusing on models used in this work. The aim is to present a basic 
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understanding and highlight key concepts essential for the rest of the thesis. For more 

comprehensive understanding of machine learning (ML) and deep learning (DL) models, readers 

are directed to [154-155]. 

4.2.1. Artificial intelligence 

Artificial intelligence (AI) is a field of computer science dedicated to the construction of 

intelligent programs and machines capable of thinking like humans. This includes the ability to 

learn, solve problems, understand natural language, recognize patterns, and make decisions. AI 

comprises a wide range of techniques, including ML, DL, computer vision, all with the objective 

of developing systems that can autonomously perform intelligent actions and improve their 

performance over time. 

ML is a subset of AI that involves the use of algorithms and statistical models to enable 

computers to learn from and improve their performance on a specific task without being 

explicitly programmed. The essence of ML lies in the ability of the system to recognize patterns 

and make decisions based on data. ML has wide-ranging applications, including natural language 

processing [156], image recognition [157], medical applications [158-161], material 

characterization and defects detection [162-165] and many more [166-168]. It continues to be a 

rapidly evolving field with significant potential to change the face of various industries and 

improve decision-making processes. In a typical ML process, the system is fed with a large 

amount of data, and it uses this data to identify patterns, relationships, and trends. As the system 

processes more data, it adjusts its algorithms and models to improve its accuracy and 

performance on the task at hand. There are three main types of ML, including supervised 

learning, unsupervised learning, and reinforcement learning (figure 4.1).  

 
Figure 4.1 Characteristics of supervised, unsupervised and reinforcement learning. 

In supervised learning (SL), the dataset is commonly divided into two distinct subsets as 

described in figure 4.2: a non-testing subset comprising both training and validation subsets, and 

a testing subset [169]. In the training phase, the system learns from labeled data and selects a 

subset of features. Throughout this phase, the model adjusts its parameters based on the input 

data and corresponding labels [170]. While, in the testing phase, the trained model aims to make 

predictions on new, unseen data (testing subset). Once the testing phase is complete and based on 

its results, the most optimal classification model is selected. This model is then utilized during the 
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application phase, where it gains the ability to classify and assign classes to previously unseen 

new data. SL can be categorized in Classification problem (for discrete output, such as binary or 

labeled predictions, e.g., determining the MUT is wood or glass) and Regression problem (for 

continuous output, e.g., predicting the permittivity of new MUT). This type of learning includes a 

wide range of ML models, like logistic regression, decision trees (DCT), as well as more 

advanced models such as random forests (RF), K-nearest neighbors, support vector machines 

(SVM), and even deep learning (DL) models [169].  

 

Figure 4.2 Supervised learning: data splitting and performance evaluation.  

In Unsupervised learning, the model is trained on unlabeled data, meaning there are no 

corresponding output labels or target values provided during the training process [171]. The 

primary objective of unsupervised learning is to identify patterns, structures, or relationships 

within the data without any explicit guidance or pre-defined categories (e.g., analyzing the 𝑆11 

data obtained from various measurements without labeling them, and identify groups of similar 

reflection patterns). Unsupervised learning finds its primary applications in Clustering, generative 

models, anomaly detection, and Dimensionality Reduction. Some examples of unsupervised 

models include K-means and principal component analysis (PCA). 

Reinforcement learning involves training the system to make decisions in an environment 

by receiving feedback and rewards for its actions. It is applied in various domains, with one of its 

notable applications being in board and video games [172]. 

In the following, our attention is directed towards the methodologies implemented within 

this study. First, we start by presenting the used conventional SL techniques: SVM, DCT and RF. 

Then, the well-known dimensionality reduction method: PCA is presented. Following this, we 

provide an overview of DL principles and introduce the one-dimensional Convolutional Neural 

Network (1D-CNN) model that will be further used in this work. Lastly, we conclude by 

presenting the performance metrics employed in this study to evaluate the used classifiers and 

determine the optimal choice.  

4.2.2. Support vector machine  

The SVM is a powerful and widely used SL algorithm that has demonstrated exceptional 

performance in various classification and regression tasks [173]. The fundamental idea behind 
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SVM is to find the optimal hyperplane that best separates different classes in the feature space, 

while maximizing the margin between them. This hyperplane serves as the decision boundary, 

allowing SVM to efficiently classify new, unseen data points. SVM can handle linearly separable 

as well as non-linearly separable data by using kernel functions. These kernels implicitly map the 

data into a higher-dimensional space, enabling feasible separation. Some common types of 

kernels used in SVM include linear kernel (figure 4.3), radial basis kernel (RBF) and polynomial 

kernel (figure 4.4). 

Its ability to handle high-dimensional data and its robustness against overfitting make SVM a 

versatile tool in a wide range of applications, including material characterization [174], remote 

sensing [175] and medical diagnosis [176]. 

 
Figure 4.3 Linear SVM classification example [177]. 

 
(a) Linear 

 
(b) 2nd order Polynomial 

 
(c) Radial basis 

Figure 4.4 Examples of SVM kernel functions [178]. 

4.2.3. Random forest  

The RF and DCT are two widely used ML algorithms that excel in various classification and 

regression tasks [179]. DCT, described in figure 4.5, is a simple and interpretable model that 

recursively partitions the data based on the features, creating a tree-like structure of decision 

nodes and leaf nodes. Each decision node represents a split based on a feature, and each leaf node 

corresponds to a class or predicted value. While DCT is prone to overfitting on complex datasets, 

RF addresses this issue by constructing an ensemble of multiple decision trees and combining 

their predictions (figure 4.6). By averaging or voting on the outputs of individual trees, RF 

improves generalization and robustness, reducing the risk of overfitting. Moreover, RF takes 
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advantage of training each tree on a randomly sampled subset of the data, further enhancing the 

model's performance.  

 

Figure 4.5 Schematic of decision tree algorithm. 

 

Figure 4.6 Schematic of random forest algorithm. 

4.2.4. Principal component analysis  

The PCA is the most popular dimensionality reduction technique widely used in various 

fields of data analysis and ML [121]. The primary goal of PCA is to transform a high-

dimensional dataset into a lower-dimensional space while preserving its most important features. 

It achieves this by identifying the principal components, which are orthogonal vectors that 

represent the directions of maximum variance in the data. These principal components capture 

the most significant information in the original data, allowing to discard the less relevant features. 

In order to capture 100% of the data variability, all principal components would be required. 

However, by using just the first k principal components, which represent at least 70% of the data 



 

76 | Page 

 

variance, we achieve dimensionality reduction while preserving essential information for 

prediction tasks [180]. By reducing the dimensionality of the data, PCA not only simplifies the 

computational complexity but also helps in data visualization and interpretation. Figure 4.7 

displays the data in its original space and demonstrates its projection based on the first two PCA 

components, specifically denoted as PCA 1 and PCA 2. 

 

Figure 4.7 PCA illustration. PCA1, representing the first principal component, captures the highest variance in the 

data. PCA2, the second component, accounts for the next highest variance while being orthogonal to PCA1. 

4.2.5. Deep learning 

Deep Learning (DL), inspired by the structure and functioning of the human brain, 

constitutes a subset of ML [154]. DL has gained significant dominance in recent years due to its 

exceptional capabilities in handling complex and large datasets, in addition to its ability to 

automatically learn features from input data. It consists of multiple nonlinear processing units 

organized in input, several hidden and an output layers (figure 4.8). The term ‘deep’ refers to the 

number of layers in the network—the more layers, the deeper the network. The layers are 

interconnected via nodes, or neurons, with each hidden layer using the output of the previous 

layer as its input. As the neural network goes deeper, it can progressively extract more abstract 

and high-level features, enabling the model to understand and recognize complex patterns that 

would be challenging for traditional ML methods. However, despite its remarkable success, DL 

also presents challenges, such as the need for large amounts of labeled data, potential overfitting, 

and computational complexity [181]. In the table 4.1, we provide a comparison between DL and 

ML. 
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Figure 4.8 Deep neural network architecture [182]. 

Machine learning Deep learning 

Typically employs simple models 
Uses complex neural networks with multiple 

layers 

Requires manual feature extraction Automatically extract feature from input data 

Well-suited for small dataset Performs well with large dataset 

Requires less computational power and 

time 

Requires significant computational resources 

and time 

Table 4.1 Summary of the main differences between ML and DL. 

In 1957, Frank Rosenblatt created the perceptron, the first prototype of what we now know 

as a neural network [183]. This early development created the basis for complex neural networks 

that have evolved over the years. In the field of DL various models have been emerged, such as 

deep feedforward networks, convolutional neural networks, recurrent neural networks, generative 

adversarial networks, recursive neural networks, deep belief network, etc. [181]. Each with 

distinct characteristics and applications [184]. In the context of this thesis, our focus goes toward 

the Convolutional Neural Network (CNN) model. 

a. Convolutional Neural Network  

CNN stands as one of the most widely used algorithms for DL with images and videos. Its 

key strength lies in integrating the feature extraction and feature classification processes into one 

learning framework (figure 4.9). CNN can extract automatically the ‘learned’ features from the 

input data. The network then learns to detect low-level features like edges and corners in early 

layers and progressively builds up to more complex and abstract features in deeper layers (figure 

4.10). This advantage plays a pivotal role in improving classification performance, making CNN 

particularly attractive for complicated engineering applications. 
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(a) 

 
(b)  

Figure 4.9 Illustrative Scheme of : (a) traditional machine learning models ; (b) CNN: The Network takes an image 

as input, progressing through multiple layers—initiating with automated feature extraction and concluding with 

classification output [182].  

Between the input image and the output layer, the CNN consists of a sequence of linear and 

non-linear operations where each layer is computed based on the previous layer (figure 4.10). 

The hidden layers of a CNN include: 

1. Convolutional Layers: These layers use filters slides over the input image to perform 

convolution operations, producing feature maps that highlight relevant features.  

2. Pooling Layers: Pooling layers down sample the feature maps (e.g. by taking the 

maximum of the feature: MaxPooling), reducing spatial dimensions while retaining 

essential information. Pooling helps make the network more robust to variations in object 

position and scale. 

3. Fully Connected Layers: Also known as dense layers, these layers are typically used in 

the next-to-final layer of the network for classification or regression tasks. Their primary 

function is to establish connections between deep features extracted from feature maps 

and the output.  

The last layer of the CNN architecture uses a Softmax function to provide the classification 

result. Non-linear activation functions are used to introduce non-linearity into the network, 

allowing it to model complex relationships in the data. Common examples are ReLU 

(Rectified Linear Activation) and Sigmoid. 
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Figure 4.10 The illustration of a CNN with 2 convolutions and one fully-connected layers [185]. 

Generally, CNNs aim to learn the relationship between the input image and the output, 

storing the acquired experience in their kernels. Each convolutional layer is defined by its filter 

weights, established during the training stage through an iterative update process. These weights 

are initially initialized and then adjusted via backpropagation to minimize a cost function. Once 

the training is complete, all weights remain fixed during the testing phase.  

The standard CNN provides the primary tool for various 2D signals applications such as 

images and video [121]. However, this option is not practical for many applications with 1D 

signals particularly when learning data is limited [185]. To address this issue, 1D-CNN has been 

recently introduced and rapidly demonstrated exceptional performance in various applications, 

including surface and subsurface defects detection. 

b. 1D-CNN 

1D-Convolutional Neural Network (1D-CNN), the modified version of the standard CNN 

(also known as 2D-CNN), has been recently developed [186-187]. Notably, in 2015, Kiranyaz et 

al. [188] introduced the first compact and adaptable 1D-CNN designed to directly process 

patient’s ECG signals. In a relatively short period of time, 1D-CNN has gained significant 

popularity, by presenting the best performance across various signal processing applications such 

as early anomaly detection in electrocardiogram beats [189-191], structural health monitoring and 

structural damage detection [192-194]. Research has demonstrated that in certain scenarios, 1D-

CNNs are a better choice compared to the 2D-CNN when dealing with 1D signals. The reasons 

for this preference are as follows: 

1. There is a notable difference in the computational complexity between the two models. 

The computational workload of a 1D-CNN is significantly lower than that of a 2D-CNN. 

2. While training a 2D-CNN often requires specialized hardware setups like cloud 

computing or GPU arrays, however, training a 1D-CNN can be efficiently performed on 

standard computers, especially when using a limited number of hidden layers, such as two 

or fewer. 

3. The reduced computational requirements of 1D-CNNs make them well-suited for real-

time applications and cost-effective solutions. This advantage is particularly evident when 

deploying these networks on devices like mobile phones or wearable [195-197]. 



 

80 | Page 

 

The layers used in a 1D-CNN are similar in concept to those used in a 2D-CNN, but they are 

adapted to operate on one-dimensional data. It's important to note that the primary difference 

between 1D and 2D-CNNs lies in how the convolution and pooling operations are applied to the 

data. In a 1D-CNN, these operations are applied along the temporal dimension, whereas in a 2D-

CNN, they are applied spatially to both width and height dimensions. Figure 4.11 illustrates the 

architecture of a 1D-CNN applied to sequential data with dimensions (m*n). In this setup, a 

single convolutional layer is employed. Thus, it is important to note that the width of the 

convolutional filter is the same width of the input dimensions. The convolutional filter is applied 

in one direction along the data. This enables the filter to slide through the sequential data, 

capturing relevant features as it progresses along the sequence. 

 

Figure 4.11 An architecture of the 1D-CNN for classification of two classes [198].  

4.2.6. Performance evaluation 

A robust approach to validate ML models is to train them on non-testing data and 

subsequently evaluating their performance using unseen or testing data. However, when dividing 

a dataset once into training and testing subsets, it is crucial to ensure that the division is 

representative of all classes present in the dataset. If the division is not random and results in an 

unbalanced distribution of classes between the two sets, it can indeed lead to poor performance 

evaluation and potentially biased results. K-fold cross Validation (CV) technique comes in to 

solve the problem [199].  

Using K-fold CV, the non-testing subset is randomly divided into k folds (groups). During 

each round, one fold is kept aside for validation and the remaining folds were used for training 

[200]. The k-fold CV concept is illustrated in figure 4.12. By implementing this process, all the 

data in the dataset are utilized at least once to evaluate the performance of the trained models. k is 

usually chosen to be 5 or 10 as a bias-variance trade-off [201] . In our study k is set to five, 

meaning that the dataset is divided into five folds.  
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Figure 4.12 K-fold cross validation technique. 

After implementing 5-fold cross-validation, the model's performance is assessed using a 

range of performance metrics. These metrics are applied both on the testing subset and a separate 

non-testing subset, enhancing the models' overall robustness. Here, we present the performance 

metrics utilized in this study. 

Evaluation metrics play a crucial role in assessing the performance and effectiveness of ML 

models. These metrics quantify how well the model is performing on a given task and provide 

valuable insights into its strengths and weaknesses. In this study, the following performance 

measures were employed:  

o Accuracy quantifies the number of correct predictions made by the classifier, divided 

by the total number of predictions made. 

o Sensitivity, also known as recall or true positive rate, quantifies the effectiveness of a 

test in correctly detecting positive instances.  

o Precision denotes the accuracy of the positive predictions made by the algorithm. It 

is computed by dividing the true positives by the sum of true positives and false 

positives.  

o F1 score: a harmonic mean of precision and sensitivity, offers a balanced measure 

that considers both false positives and false negatives (as shown in equation 1).  

These performance metrics are often multiplied by 100 to represent them as percentages. 

𝐹1𝑠𝑐𝑜𝑟𝑒 =
2 ∗ (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑡𝑦)

(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑡𝑦)
 (4.1) 

4.3. Material characterization based on ML and microwave 

techniques 

Recently, there has been a growing focus on the advancement of MNDT&E approaches 

[202] due to the necessity of reducing the dependence on the operators' skills and experience 

[145]. Hence, employing intelligent classifiers in signal processing provide reliable and fast 

inspection, potentially enhancing the sensitivity of material characterization and defects detection 

[203]. Using ML is further justified, as its nonlinear classification capabilities can effectively 

address the complexity of the acquired data [204]. 
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Commonly, intelligent MNDT&E progresses through three distinct phases. The first stage is 

a preprocessing phase which aims to eliminate the noise and eliminate unnecessary data. The 

second stage is the features extraction and selection which aims to extract and select the most 

significant features from the input data. Finally, the classification or prediction stage aims to 

classify material’s unique characteristics and recognize the defects as well as to estimate the 

defects’ characteristics.  

In summary, this combination enables accurate and rapid material characterization, even 

when dealing with complex scenarios involving multiple material types. Moreover, it reduces the 

dependency on complex conversion methods and provides an automated process. In the 

following, we present important studies of combined MNDT&E techniques with AI models.  

In [205] the authors propose a novel nondestructive method for health monitoring of wind 

turbine blade. The method utilizes frequency modulated continuous wave radar FMCW sensing 

within the frequency range of 24-25.5 GHz, combined with ML analytics. The study's findings 

indicate that blade types can be accurately classified by their composition, and diameter 

differentials of 3 millimeters with a classification accuracy exceeding 95%. In [206] authors 

introduce a novel approach that uses microwave free-space technique with ML analytics to 

identify foreign materials present in uncleaned peanuts. The method relies on the measurement of 

dielectric properties and bulk density of these materials. Both linear regression and ANN 

algorithms are employed in the analysis. The experimental results demonstrate that the ANN 

algorithm provides the most accurate estimation of foreign material content, with a standard error 

of performance of 1.36%. In comparison, the linear regression algorithm achieves a standard 

error of performance of 2.39%. In [145] a real-life experiment for intelligent crack detection in 

metallic surfaces. the proposed approach is based on using AI-models with a waveguide sensor 

loaded with split-ring resonator. The AI-models combines ANN and SVM algorithms. The 

experimental evaluation of this approach was performed on a metallic plate with different cracks, 

and was able for accurate crack detection. In the following table, we provide a summary of the 

significant studies, including the used techniques and the field of applications.  

Reference 

number 
Technique Application 

[205] 
FMCW Radar with 
ANN, SVM & DCT 

Classification of blade types by their 

composition 

[206] 
Four microwave free-space antenna 

system with linear regression and ANN 
Identification of foreign materials 

present in uncleaned peanuts 

[207] Coaxial line with ANN 
Retrieval of the complex permittivity 

of MUTs 

[208] Coaxial line with CNN 
Prediction of the complex dielectric 

properties of granular catalysts 

[209] 
Waveguide sensor with PCA, ANN and 

SVM 
Detection of sub-millimeter cracks in 

metallic surfaces 

[210] OERW with ANN 
Detection of defects in dielectric 

structures 

[211] FMCW radar with k-means and NN 
Characterization of dielectric material 

properties 

Table 4.2 Summary of MNDT techniques with ML and DL method used in various applications. 
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4.4. ML-based monostatic free-space radar for material 

characterization  

In this section, we introduce and experimentally validate a novel intelligent MNDT&E 

technique to characterize planar dielectric materials in non-contact manner regardless their 

thicknesses. The proposed technique relies on using a monostatic free-space radar system to 

measure the 𝑆11 parameters (magnitude and phase-shift) of the MUT along with the use of ML 

models to categorize three well-known dielectric materials: wood, glass, and plexiglas. The 

antenna is positioned at a distance from the MUT. Given various factors, including the unknown 

geometry of the MUT and the impact of surrounding noise, performing analytical modeling of the 

propagation path through the material becomes impractical. In overcoming these challenges ML 

algorithms have a crucial role to play [212].  

In the following the methodology of the proposed technique is presented in the section 4.4.1. 

Remaining sections present the experimental setup, dataset construction, data processing, the 

implementation of ML models, and conclude with the presentation of results and performance 

evaluation.  

4.4.1. Methodology  

As described in figure 4.13, the proposed methodology consists of three main steps: (1) data 

acquisition, (2) data processing, (3) training and evaluating the ML classifiers. The data 

acquisition step involves generating a novel and unique dataset by conducting measurements in 

two distinct environments conditions. The first group of data was recorded under laboratory 

conditions, while the second group was obtained in relatively noisy environments to simulate 

realistic conditions. Initially, the radar system measures the𝑆11, capturing variations in magnitude 

and phase-shift across a frequency range varying from 3.95 to 5.85 GHz with a step of 2.2MHz. 

The recorded data is influenced by the type of the MUT. Before feeding the data into the ML 

algorithms, a preprocessing step is conducted, applying five different features scenarios. The 

purpose of studying different training features is to identify the optimal features, achieving a 

balance between the number of features and the performance of the ML algorithms. Five ML 

algorithms are then employed to classify the materials, and their output falls into one of the 

following four categories: wood, glass, Plexiglas, or air (no MUT). To evaluate and compare the 

performance of different scenarios, a variety of evaluation metrics are used. These metrics 

provide valuable insights into the effectiveness of the proposed methodologies. 
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Figure 4.13 Block diagram of the proposed methodology for material characterization. 

4.4.2. Experimental setup  

The radar system is built up with a compact one-port VNA [Anritsu® MS46121B – figure 

4.14(a)] connected to a horn antenna [ATM® P/N 187-251-6 – figure 4.14 (b)]. The antenna is 

connected to the input port of the VNA using N-to- SMA coaxial transition and SMA-to-

waveguide transition. No coaxial cable is considered to reduce random errors commonly found 

and attributed to cable movement during measurement operation. The measurement configuration 

is depicted in table 4.3. 

 

             
 

(a) (b) 

Figure 4.14 (a) Compact 1-port vector network analyzer Anritsu® MS46121B (150 kHz – 6GHz). (b) Horn antenna 

[ATM® P/N 187-251-6]. 

In particular, the VNA IFBW is set to 100Hz as compromise between measurement time 

(10s) and measurement accuracy. Before starting the measurement, the VNA must be calibrated 

to correct systematic errors and ensure the quantitative measurements. The calibration procedure 

is performed at the input coaxial plane of the horn antenna. A short-open-load (SOL) calibration 

(calibration-kit: OSLN50A-8 from Anritsu®) is used. 

 

• Wood

• Glass

• Plexiglas

• Air  

Classifiers

SVM: 

Linear, RBF , polynomial 

Decision tree 

Phase spectrum

Magnitude and phase 

spectrum 

Resonance parameters 

PCA 

(magnitude and phase)

Magnitude spectrum

Classification metrics :

Accuracy, precision, 

sensitivity, f1_score

Validate the 

classification model 

Parameters Supervised learning Dataset

Free-space S11

measurements

(magnitude and 

phase ) 

Random forest 

Distance: 

0, 5, 15 cm

Frequency:

3.95-5.85 GHz

Outputs

Data split

Measurements in the 

laboratory

Noisy measurements

(real and noisy 

environment)
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Frequency range (GHz) 3.95 – 5.85 

IFBW (Hz) 100 

Number of points 863 

Table 4.3 S11 measurement configuration using the horn antenna and the VNA. 

4.4.3. Quantifying measurement uncertainties 

Uncertainty quantification step is conducted before any measurements; a repeatability study 

is considered to quantify the overall measurement uncertainty and to ensure the reproducibility of 

measurements including mechanical positioning of the MUT. To that end, the MUT consists of 

wood in planar structure was positioned at a stand-off distance set to 5 cm. 𝑆11 is measured 10 

consecutive times. Between two consecutive measurements, we remove and put back the material 

at the same position. The resulting data are plotted in figure 4.15. From these data, the maximum 

standard deviation between all measurements are computed at each frequency. Maximum 

standard deviations of 0.0018 and 3deg, for the linear magnitude and phase-shift of 𝑆11 

respectively, are obtained. 

 

Figure 4.15 Ten measured S11 in the frequency range 3.95 – 5.85 GHz. MUT = planar wood sample – stand-off 

distance is set to 5 cm. 

The resulting measurement uncertainty, attributed mainly to displacement error, is 

informative as it shows the limits of the measurement device. The results of quantification study 

confirm the precision of the proposed measurement system and provide essential groundwork for 

the upcoming measurements. As we proceed, we will observe that the highest standard deviation 

in both magnitude and phase-shift remains smaller than the fluctuations attributed to the 

difference in MUT types. This highlights the system's ability to effectively distinguish and 

quantify changes in the MUT. 
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4.4.4. Acquisition and construction of an original dataset 

The measurements campaign consists of two steps. First, the𝑆11is measured without MUT. 

Then, 𝑆11 measurements are performed for all samples at three stand-off distances (0 cm, 5 cm, 

and 15 cm) between the antenna and MUT. The steps are repeated under the two conditions: 

controlled laboratory and more challenging realistic conditions. 

The 𝑆11measurements without MUT are performed throughout the experimental days before 

starting any measurements on the material samples. Figure 4.16 presents the photograph of the 

experimental system without MUT.  

 

Figure 4.16 Experimental system of microwave sensing without MUT in front of the horn antenna. 

Figure 4.17 shows the measured magnitude and phase-shift of 𝑆11 without MUT. The magnitude 

has two minima at two frequencies. These minima are referred to as resonance frequencies (table 

4.4). 

 

Figure 4.17 Measured S11 without MUT. 
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Resonance frequency 1 Resonance frequency 2 

4.5145 ± 0.1605 5.0918 ± 0.1590 

Table 4.4 Resonance frequencies presented in the measured 𝑆11by the antenna without MUT. 

After conducting measurements without MUT, the system is used for measuring the 𝑆11of 

different materials. Samples with known material properties, such as, wood, glass and Plexiglas 

are used. Figure 4.18 shows photos of some samples, while table 4.5 presents the thicknesses of 

the samples. 

 

Figure 4.18 Some of the material samples considered for materials classification. 

Material Thickness (cm) 

Wood { 0.6 ; 0.9 ; 1; 1.6; 1.8} 

Glass {0.2; 0.4; 0.5} 

Plexiglas {0.25; 0.4} 

Table 4.5 Thicknesses of the experimental samples. 

Measurement data were collected over twelve days. The experimental measurement system 

set up is shown in the figure 4.19. The antenna is fixed for all experiments and only the MUT is 

moved using a mechanical displacement mechanism with 500μm displacement resolution. 
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Figure 4.19 Experimental system for microwave broadband free-space sensing. Different planar MUT in front of the 

horn antenna.  

The MUT is positioned parallel to the antenna with stand-off distances set respectively to 0, 

5 and 15 cm to maximize the electromagnetic coupling and limit the diffraction effects. In 

particular, operation in the near-field conditions reduce drastically non-systematic errors 

commonly found in conventional configurations operating in the far-field region. In particular, 

diffraction at the edges are eliminated and measurement sensitivity is enhanced. Indeed, as the 

antenna operates in the near-field of the material, electromagnetic coupling between the antenna 

and the material induce free-space interferences between incident and reflected waves. These 

interferences cause frequency resonances in the magnitude spectra of the measured 

broadband𝑆11. The locations and levels of these interferences are specific to the MUT. 

Nevertheless, the analytical modelling of the propagation is challenging, highlighting the interest 

of ML algorithms. 

Table 4.6 presents the number of samples recorded at three stand-off distances under the two 

conditions: first group recorded in laboratory conditions and the second group recorded in noisy 

conditions.  

Stand-off distance (cm) First group Second group 

0 158 45 

5 161 49 

15 154 55 

Table 4.6 Number of recorded measurements using the horn antenna at three stand-off distances for the two groups.  

The measurements conducted without MUT and those for all samples are combined into a 

single dataset. Figure 4.20 illustrates the recorded magnitude and phase-shift of 𝑆11of some wood 

samples with different thicknesses at stand-off distance set to 5 cm. It is worth noting that each 

wood sample exhibits unique characteristics in terms of magnitude and phase-shift, which is 

further supported by slight variations in resonance frequencies as presented in table 4.7. These 

differences are mainly related to the varying thicknesses of the wood samples. 
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Figure 4.20 Measured S11 of wood samples with different thicknesses. The stand-off distance is set to 5 cm. 

In addition, the recorded 𝑆11(magnitude and phase-shift) of various material samples at 

stand-off distance set to 5 cm are presented in figure 4.21. The antenna aperture is positioned at 

the center of each MUT. 

 

Figure 4.21 Measured S11 of some samples. The stand-off distance is set to 5 cm. 
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It is noticed that each type of material has its own resonance frequencies. This observation 

aligns with the results presented in the table 4.7. The unique resonance parameters displayed by 

each material make them suitable as features for training ML algorithms.  

 Wood Glass Plexiglas 

Sample 1 4.317; 4.7548 4.3302; 4.787 4.4776; 5.346 

Sample 2 4.3192; 4.757 4.3412; 4.823 4.4776; 5.3312 

Sample 3 4.6866; 5.8372 4.34258; 4.757 4.4776; 5.3356 

Sample 4 4.7152; 5.2278 4.3236; 4.7548 4.4776; 5.3334 

Table 4.7 Extracted resonance frequencies (GHz) for some samples. The stand-off distance is set to 5 cm. 

Figure 4.22 presents the recorded 𝑆11 (magnitude and phase-shift) of various material 

samples at stand-off distance set to 0 cm. It is worth noting that there are no resonance 

frequencies observed when the MUT is in direct contact with the antenna. However, distinctive 

differences exist in both the magnitude and phase-shift characteristics of each material, 

highlighting their unique properties. 

 

Figure 4.22 Measured S11 of some MUTs. The stand-off distance is set to 0 cm. 

Figure 4.23 presents the recorded 𝑆11 (magnitude and phase-shift) of the same materials with 

stand-off distance set to 15 cm. As previous findings, each material features its distinctive 

characteristics, and resonance frequencies become evident in the recorded magnitude. However, 
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as the stand-off distance between the antenna and the MUT increases, the influence of diffraction 

effects becomes more important. Consequently, as shown in the figure 4.23, the recorded data 

show a degree of proximity, indicating the impact of distance on the measurements.  

 

Figure 4.23 Measured S11 of some MUTs. The stand-off distance is set to 15 cm. 

4.4.5. Data processing and Machine learning  

a. Feature selection 

Feature selection is a process that involves selecting the best subset of features from a large 

set of available features. This process offers advantages such as reducing overfitting (less 

redundant features), increasing classification accuracy, and reducing computational complexity. 

Thus in order to obtain a good classification, the selection of appropriate features is crucial. 

These features must consider correlations with the physical characteristics of the MUTs from the 

point of view of material science. Therefore, we employ two feature selection scenarios.  

Initially, we use recorded magnitude of 𝑆11measurements, then proceed to include recorded 

phase measurements, highlighting the significance of measuring both parameters for material 

characterization. 

We use PCA, which is widely recognized as one of the most popular methods for 

dimensionality reduction in feature selection [213-217]. Specifically, we retain PCA components 

that contribute to more than 90% of the total variance in the magnitude and phase-shift data.  

Furthermore, we used the resonance parameters as features to drive the ML algorithms. The 

use of resonance frequencies as features has recently received a significant attention in the 

literature [90]-[137]. The resonance frequency and the corresponding magnitude (or the quality 

factor at -3dB bandwidth) is directly affected by the MUT’s type where. This observation is 
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aligned with the findings presented in the figure 4.21 and 4.23. For this reason, six features 

(resonance parameters) were extracted from the measured data: both minimum magnitudes, 

corresponding frequencies, named resonance frequency. To achieve robust classification, the 

corresponding phase-shifts are also considered.  

Consequently, the five different scenarios for features selection are used: (a) using only the 

recorded magnitude measurements, (b) using only the phase-shift measurements, (c) using both 

magnitude and phase-shift measurements, (d) using the six resonance parameters, (e) using PCA 

components applied to both magnitude and phase-shift measurements.  

b. Data split  

In this study, the collected data consists of two distinct groups (figure 4.24). The first one, 

which was recorded in laboratory conditions, was used as the non-testing subset to train the ML 

models. This subset was further divided into training and validating subset using 5-fold cross-

validation (CV). The second group, which was recorded in realistic and noisy conditions, was 

used as the testing or unseen subset for the purpose of validating the ML algorithms to avoid 

possible bias, overfitting and poor generalization [218].  

 

Figure 4.24 Training, validation and testing configurations. 

By evaluating the models on this separate and challenging dataset, we could confirm their 

robustness and their ability to address real-world scenarios.  

c. Supervised classification 

Analytical modelling of the wave-to-material interaction is relatively complicated as the 

MUTs are positioned in the near-field region. In addition, modelling requires knowledge of the 
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material thicknesses. This highlights the interest of using ML algorithms. In this work we used 

supervised algorithms to classify the recorded 𝑆11, i.e. specify the types of materials, based on 

five well-known supervised ML algorithms: random forest (RF), decision tree classifier (DTC) 

and support vector machine (SVM) with three kernel functions: linear, polynomial (POL.) and 

radial basis (RBF). Each kernel can be fitted to the corresponding model by adjusting the 

corresponding parameters: cost (C) and gamma ( 𝛾). These parameters were optimized using the 

grid search method in order to maximize the accuracy rates. 

These algorithms are commonly used in the literature and they can provide excellent 

performance for classification and regression. 

4.4.6. Results and performance evaluation 

In this section, we aim to evaluate the performance of the proposed ML models, considering 

various feature scenarios and three distinct stand-off distances: 0, 5, and 10 cm. We analyze these 

performances under both controlled laboratory conditions and more realistic real-world 

conditions. 

The first group of data at 5 cm (161 measurements) is divided using the 5-fold cv technique 

into training and validation subsets. The training process involved five different scenarios for 

features selection, (a) using only the recorded magnitude measurements, (b) using only the phase-

shift measurements, (c) using both magnitude and phase-shift measurements together, (d) using 

the six resonance parameters, (e) using PCA components applied to both magnitude and phase-

shift measurements. Thereafter, we evaluate the performance of the ML models using the 

metrics: accuracy, sensitivity, precision, and F1 score.  

Table 4.8 illustrates the results of the classification performance at stand-off distance set to 5 

cm on two subsets: CV subset (non-testing subset) and unseen subset (second group recorded 

under noisy conditions).  

 
(a) 

Magnitude 

(b) 

Phase-shift 

(c) 

Magnitude 

& 

Phase-shift 

(d) 

Resonance 

elements 

(e) 

PCA 

Data 

Subset 

CV 

subset 

Unseen 

subset 

CV 

subset 

Unseen 

subset 

CV 

subset 

Unseen 

subset 

CV 

subset 

Unseen 

subset 

CV 

subset 

Unseen 

subset 

Accuracy 

(%) 

98 

±0.5 
91 

99 

±0.3 
95 

99 

±0.3 
95 

97 

±0.6 
33 

99 

±0.5 
91 

Sensitivity 

(%) 
98 92 98 92 98 95 97 29 98 92 

Precision 

(%) 
98 91 98 91 98 95 96 33 98 91 

F1_score 

(%) 
98 90 98 90 98 95 96 31 98 90 

Best 

Classifiers 
SVM RBF SVM RBF SVM RBF RF 

SVM POL 

(degree=2) 

SVM RBF 
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Table 4.8 Performance of the best ML classifiers trained with five feature Scenarios. Stand-off distance is set to 

5 cm.  

As shown, SVM with RBF kernel gives the best performance when using magnitude, phase-

shift or both magnitude and phase-shift of 𝑆11as features. RF gives the highest performance when 

using the resonance parameters as features. SVM with polynomial and RBF kernels give similar 

highest performance when using PCA on the measured 𝑆11(magnitude and phase-shift).  

 

Similar performance is demonstrated across all features combinations within the cross-

validation subset. However, an improvement in classifier performance is observed when both 

magnitude and phase-shift features under noisy conditions (unseen subset) were used, achieving 

95% accuracy across all evaluation metrics. 

It is worth noting that the introduction of PCA led to a slight decrease in performance 

(accuracy, sensitivity, precision, and F1 score were respectively 91%, 92%, 91%, and 90%). 

Nevertheless, the use of PCA contributes to a reduction in computational complexity. It is also 

noticed that classifiers trained on resonance features show a significant drop in performance 

when tested on the noisy subset. This can be attributed to the sensitivity of the resonant frequency 

to the influence of environmental noise.  

To further investigate the robustness of the proposed method, further analysis was conducted 

by examining the impact of varying the stand-off distance between the MUT and the antenna. 

Table 4.9 presents the classification performance results using SVM with RBF kernel functions 

(polynomial kernel yielding similar performance) at different stand-off distances: 0 cm, 5 cm, and 

15 cm. The SVM model is trained on the first group of data recorded under controlled laboratory 

conditions and then tested on the second set of data collected under noisy conditions. 

Stand-off 

distances 
0 cm 5 cm 15 cm 

Sample size: 
Training set/ 

Unseen set 

158/45 161/49 154/55 

Features 

Magnitude 
& 

Phase-shift 
PCA 

Magnitude 
& 

Phase-shift 
PCA 

Magnitude 
& 

Phase-shift 
PCA 

Accuracy (%) 100 95 95 91 86 94 

Precision (%) 100 96 95 92 76 95 

Sensitivity (%) 100 95 95 91 86 94 

F1_score (%) 100 95 95 90 90 94 

Table 4.9 Performance of two classifiers: SVM polynomial (POL.), SVM RBF, evaluated at three different stand-off 

distances: 0 cm, 5 cm and 15 cm. 
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The results indicate that the performance is notably better when the objects are in contact (0 

cm). However, even at a stand-off distance of 15 cm, the classifiers still have some level of 

performance, even lower than that observed at closer distances. 

4.5. ML-based OERW for material characterization  

It is proven in the previous section that a monostatic free-space radar with ML classifiers, 

can provide the characterization of dielectric materials with high accuracy. This setup allows for 

remote sensing applications where non-contact measurements are essential.  

In this section, we propose a novel ‘intelligent’ MNDT&E technique for materials 

characterization using contact setups with the MUT. This method is based on scanning the 

dielectric material with the OERW and analyzing its reflections signals using the proposed ML 

models.  

In the following, we describe the material characterization setup using the OERW, starting 

with the methodology, followed by the experimental setup, the construction of the dataset, the 

used ML models and concluding with the presentation of results and performance evaluation. 

4.5.1. Methodology 

In this section, the proposed technique basically consists of three steps: (1) data acquisition, 

(2) data processing, (3) training and evaluating ML classifiers. First, we create a new, original 

dataset based on the utilization of the OERW. The system measures the𝑆11, capturing variations 

in magnitude and phase-shift across a frequency range varying from 3.95 to 5.85 GHz with a step 

of 2.2MHz. The same materials featured in Section 1 are employed in this experimental setup, 

and measurements are conducted in two distinct environmental conditions. The first group is 

recorded under controlled laboratory conditions, while the second group is obtained in noisy 

environments to simulate real-world scenarios. These measurements hold significant importance 

for our application, as the majority of measurements are anticipated to occur in challenging 

conditions.  

 The process pipeline of the proposed technique is presented in the figure 4.25. After 

measuring the 𝑆11for all materials, a preprocessing step is performed, which includes labeling and 

feature extraction. This step primarily involves categorizing the data into specific labels: wood, 

glass, plexiglas, and air. We then proceed with data splitting, where the dataset is divided into 

two subsets. The first subset, referred to as the ‘non-testing subset’, consists of the first group of 

data recorded under controlled laboratory conditions. The second subset, known as the ‘testing 

subset’, consists of the second group of data collected under more realistic conditions. To extract 

the most informative features and reduce dimensionality, PCA is applied to the non-testing 

subset after standardizing the data. Subsequently, the incoming data is divided into training and 

validation subsets using a 5-fold CV approach. This division serves the purpose of training and 

validating five ML models: DCT, RF, and SVM with three distinct kernel functions: linear, RBF, 

and polynomial. The effectiveness of these models is computed using various performance 

metrics applied to the validation subset. After the training phase, these models are put to the test 

using the testing subset, allowing for an evaluation of the performance of the proposed classifiers 
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on new unseen data. The classifier outputs are categorized into four classes: glass, plexiglas, 

wood, and air. 

 

Figure 4.25 Block diagram of the proposed methodology for material characterization using OERW system and ML 

models. 

4.5.2. Experimental setup  

The microwave system used in this work is built up with an OERW [ATM® P/N 187-251-6] 

presented in the figure 4.26 with the VNA [Anritsu® MS46121B MS46121B]. The waveguide 

has a cross section of 50 mm by 25 mm and it is connected to the input port of the VNA using N-

to- SMA coaxial transition and SMA-to-waveguide transition. The measurement operates within 

the frequency covered by the waveguide between 3.95 and 5.85 GHz with a step of 2.2MHz. The 

measurements configuration is depicted in table 4.10. Before starting the measurement, the VNA 

is calibrated using the same calibration-kit: OSLN50A-8 from Anritsu®).  
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(a) Front view (b) Bottom side view (c) Back view 

Figure 4.26 Waveguide [ATM® P/N 187-251-6]. 

Frequency range (GHz) 3.95 – 5.85 

IFBW (Hz) 100 

Number of points 863 

Table 4.10 S11 measurement configuration using the OERW and the VNA. 

4.5.3. Quantifying measurement uncertainties 

Before initiating the measurement campaign, a repeatability study is considered to quantify 

the overall measurement uncertainty. To that end, the MUT consists of wood in planar structure 

was positioned in contact with the OERW. 𝑆11 is measured as a function of frequency 10 

consecutive times. Between two consecutive measurements, we remove and put back the OERW. 

The resulting data are plotted in figure 4.27.  

 

Figure 4.27 Ten measured S11 in the frequency range 3.95 – 5.85 GHz. MUT = planar wood sample. 
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From these data, the maximum standard deviation between all measurements are computed at 

each test frequency (figure 4.28). Maximum standard deviations of 0.0028 and 0.75 degree, for 

the linear magnitude and phase-shift of 𝑆11 respectively, are obtained.  

 

Figure 4.28 Standard deviation calculated on the ten measured S11 in the in the frequency range 3.95 – 5.85 GHz. 

MUT = planar wood sample. 

The resulting measurements uncertainty, attributed mainly to displacement error, is 

informative as it shows the limits of the measurement set-up. The results of this quantification 

study confirm the precision of the proposed measurement system and provide essential 

groundwork for the upcoming measurements. As we proceed, we will observe that the highest 

standard deviation in both magnitude and phase-shift remains smaller than the variations induced 

by the differences in the MUT's properties. This highlights the system's ability to effectively 

distinguish and quantify changes in the MUT. 

4.5.4. Acquisition and Construction of an Original dataset 

A new and original dataset is created. Sample featured in Section 1 are used again here for 

material characterization using the OERW. Table 4.11 presents the used materials and their 

thicknesses.  

Material Thickness (cm) 

Wood { 0.6 ; 0.9 ; 1; 1.6; 1.8} 

Glass {0.2; 0.4; 0.5} 

Plexiglas {0.25; 0.4} 

Table 4.11 Thicknesses of the used samples. 
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The measurement campaign consists of two steps. First, the𝑆11is measured without MUT. 

Then, 𝑆11 measurements are performed for all samples. The steps are repeated under the two 

conditions: controlled laboratory and more challenging realistic conditions.  

The 𝑆11measurements without MUT are performed throughout the experimental days before 

starting any measurements on the material samples. Figure 4.29 presents the measured 𝑆11without 

MUT.  

 

Figure 4.29 Measured S11 without MUT. 

Furthermore,𝑆11 measurements are performed for all samples. The experimental 

measurement system set up is shown in figure 4.30. In a simplified configuration, the OERW is 

manually scanning in contact manner with the MUT to measure its 𝑆11. The data were collected 

on thirteen different days. On each day, the experiment configuration was rebuilt and multiple 

free-space measurements were conducted to ensure full repeatability of the experimental 

findings. Then the data was mixed into one dataset comprising 617 measurements for the first 

group and 270 measurements for the second group (table 4.12). The dataset consists of 

measurements of air (without MUT as well as samples of wood, glass, Plexiglas.  

Stand-off distance (cm) First group Second group 

0 617 270 

Table 4.12 Dataset of recorded measurements using the OERW. 
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(a) (b) 

 

 

(c) (d) 

Figure 4.30 Experimental system for contact microwave sensing. Different planar MUT are in contact with the 

OERW: (a) glass; (b) wood; (c) wood; (d) Plexiglas.  

Figure 4.31 illustrates the recorded 𝑆11magnitude and phase-shift) of some wood samples 

with different thicknesses. It is worth noting that each wood sample exhibits unique 

characteristics in terms of magnitude and phase-shift. These differences are mainly related to the 

varying thicknesses of the wood samples. 
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Figure 4.31 Measured S11 of wood samples with different thicknesses using the OERW. 

Figure 4.32 illustrates the recorded 𝑆11magnitude and phase-shift) of some plexiglas samples 

with different thicknesses: 40 mm and 20 mm. The two signals show similarity in their 𝑆11.  

 

Figure 4.32 Measured S11 of some plexiglas samples with different thicknesses using the OERW.  
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Figure 4.33 illustrates the recorded 𝑆11magnitude and phase-shift) of some glass samples with 

different thicknesses: 20, 40, 50 and 90 mm. As the thickness increase the 𝑆11of glass differs from 

other glass samples. 

 

Figure 4.33 Measured S11 of some glass samples with different thicknesses using the OERW. 

Figure 4.34 illustrates the 𝑆11of different materials characterized by closely similar 

thicknesses. Each material presents distinct 𝑆11 signatures, but even for identical materials, these 

signatures change as thickness varies, as demonstrated by previous results. Thus, it is challenging 

to characterize these materials with analytical models. This highlights the importance of using 

ML models to classify and characterize these materials, regardless their thicknesses; due to the 

robust capabilities of ML models in handling complex and evolving patterns in the data. 
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Figure 4.34 Measured S11 of some samples types using the OERW. 

4.5.5. Supervised learning for material classification  

Material characterization, involving the classification of various material types, is executed 

following two distinct scenarios. In the first scenario, we fed the ML algorithms with the 

magnitude and phase-shift of 𝑆11. Subsequently, we apply PCA to extract the most representative 

PCA components, which will be used as the input for the ML models. PCA identifies a set of 

orthogonal projection vectors. These projected components preserve the most essential 

information from the original samples, while simultaneously reducing variable correlations and 

improving the signal-to-noise ratio. 

PCA was applied following the standardization of the data. In figure 4.35, the results of the 

PCA analysis (variance and cumulative variance) for the first 10 principal components on the 

phase-shift data are presented. It is shown that the first two principal components account for 

more than 75% of the variance. Furthermore, the first three and first six principal components 

collectively explain over 90% and 95%, respectively, of the total variance present in the original 

dataset 
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Figure 4.35 Variance and cumulative variance (%) of the first 10 PCA components applied of the phase-shift data.  

Specifically, we retain PCA components that contribute to more than 90% of the total 

variance in the magnitude and phase-shift data. Following the feature extraction, the resultant 

datasets were delivered to the classification stage. Five well-known supervised ML models are 

used: RF, DTC and SVM with a three kernel functions: linear, polynomial and RBF. Each kernel 

can be fitted to the corresponding model by adjusting the corresponding parameters: cost (C) and 

gamma (𝛾). These parameters were optimized using the grid search method in order to maximize 

the accuracy rates. 

4.5.6. Results and performance evaluation 

The objective is to precisely determine, from the collected data, whether the MUT is wood, 

glass, plexiglas, or if there is no MUT present. To achieve this, the ML models are first trained 

and evaluated using 617 measurements drawn from the first group's (CV subset). Subsequently, 

these trained models are evaluated on unseen data, comprising 270 measurements from the 

second group.  

The table 4.13 offers a comparison of two distinct features representations, namely 

magnitude and phase-shift of 𝑆11, and the PCA on magnitude and phase-shift data using different 

performance evaluation.  

 
Magnitude & 

Phase-shift 
PCA 

(Magnitude & Phase-shift) 

Data Subset 
CV 

subset 
Unseen 
subset 

CV 
subset 

Unseen 
subset 

Accuracy (%) 100 99 .6 100 97.77 

Sensitivity (%) 100 99 .6 100 99.60 

Precision (%) 100 99 .6 100 97.77 

F1_score (%) 100 99 .6 100 98.6 

Best Classifiers DCT – RF RF 
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Table 4.13 Performance of the best ML classifiers trained using: magnitude and phase-shift of 𝑆11 then their PCA 

components.  

The Random Forest (RF) classifier consistently outperforms others, achieving consistently 

high accuracy scores across different data subsets. 

Regarding accuracy, both the complete data (magnitude and phase-shift) and PCA (magnitude 

and phase-shift) representations achieve a perfect score of 100% on the CV subset, demonstrating 

their effectiveness in accurately classifying the data. However, on the Testing subset (unseen 

data), there is a slight drop in accuracy compared to the CV subset, with 99.6% and 97.7% 

accuracy for the magnitude and phase-shift data and PCA features, respectively. 

Sensitivity and precision, follow a similar pattern. Both the magnitude and phase-shift data and 

PCA features achieve values of 100% on the CV subset and maintain high scores on the unseen 

subset. 

F1_score, which balances precision and sensitivity, further confirmed the robust performance of 

the magnitude and phase-shift data and PCA features, with near-perfect scores on CV subsets.  

In conclusion, this analysis underscores the importance of selecting the right feature 

representation and classifier for a given task. Employing PCA features for material classification 

offers the advantage of dimensionality reduction, resulting in faster and less computationally 

classification, while maintaining high accuracy. Furthermore, it highlights the effectiveness of 

integrating OERW with ML techniques for material characterization.  

4.6. DL-based open-ended rectangular waveguide for defects 

detection  

Previous sections have introduced two intelligent MNDT&E techniques for material 

characterization.  

In this section, we shift our focus towards applying the MNDT&E technique to detect defects 

within the MUT and subsequently monitor its health. The proposed technique relies on using an 

OERW along with the implementation of a DL model to detect millimeter-sized cracks in the 

MUT. To accomplish this objective, we measure the 𝑆11 parameters of both defective and defect-

free materials. Subsequently, the collected data further analyzed using 1D convolutional neural 

network (1D-CNN) model. 

In the following sections, we provide detailed explanation on the proposed methodology, the 

experimental setup, the data acquisition process, the DL model employed, and finally, the 

presentation of results, along with performance evaluation.  

4.6.1. Methodology 

The proposed methodology integrates the advantages of the OERW and 1D-CNN model. 

The 1D-CNN serves as a robust data system for automatic feature extraction, enabling the 

establishment of both linear and non-linear relationships between input and output data. Its 

capacity to learn these relationships directly from the modeled data allows it to effectively 



 

106 | Page 

 

address multi-parameter challenges, including variations in MUT thickness, defect sizes, and 

defect depths, all of which influence the 𝑆11characteristics. 

The process consists of three main steps: (1) data acquisition, (2) data preprocessing, (3) 

training and evaluating the DL classifier. The first step concerns the construction of a new dataset 

containing labeled data, which should include both defect-free and defective samples. The 

OERW system provides precise measurement of 𝑆11across a frequency range varying from 3.95 

to 5.85 GHz with a step of 2.2MHz. The data are obtained from various wooden samples, 

including some defect-free and others intentionally modified to introduce defects.  

Following data acquisition, the dataset is divided into training and testing subsets. This 

division is performed using the 5-fold CV approach. According to this approach, each fold, the 

data is randomly divided into five separate groups. One of these groups is designated for testing, 

while the remaining data is used for training. The subsequent step is to design the architecture of 

the 1D-CNN. This requires decisions regarding: 

- the number of convolutional layers, 

- the quantity of filters within each layer, 

- the size of the filter kernels, 

- the number of pooling layer, 

- the number of fully connected layer. 

The selection of these architectural features is an iterative process and take rounds of 

experimentation to identify the optimal architecture. Model performance is then evaluated at each 

CV fold, using five metrics: accuracy, sensitivity, precision, F1_score and computer training 

time. The averages across all folds are then recorded. 

To determine the most effective approach for detecting defects in materials, we employ two 

distinct input data configurations when training and evaluating our 1D-CNN model. First, we use 

the magnitude and phase phase-shift data as input for the model. This means that the model 

receives information regarding the magnitude and phase-shift of the measured 𝑆11of the MUT. 

Then, in a separate experiment, we employ the real and imaginary data as inputs for the same 1D-

CNN model. Here, the model processes the real and imaginary components of the measured 

𝑆11of the MUT. By comparing the performance of the 1D-CNN model with these two different 

input data configurations, we can assess which approach is more effective at defects detection in 

the materials. 

4.6.2. Materials and samples preparation 

In this study, various wooden samples of different thicknesses are used to test and validate 

the proposed technique. We initially measure the 𝑆11 parameter for defect free samples and 

subsequently, we induce defects in selected samples to evaluate their corresponding 𝑆11values 

and simulate real-world scenarios. To achieve this, we intentionally introduce a diverse range of 

surface cracks into certain wooden materials, with depths ranging from 1 mm to 10 mm. These 

cracks were shaped into three distinct forms: circles, rectangles, and triangles, with their specific 

dimensions provided in the table 4.14. In total, there are 53 defects resulting from the diverse 

combinations.  



 

 

107 | Page 

 

 

 

Defects form Radius (mm) Depth (mm) Length (mm) 

Circle {2 ; 6 ; 10 ; 20 ; 30} {1 ; 3 ; 5 ; 8; 10} -  

Triangle -  {1; 3; 5; 8} {3; 30} 

Rectangle -  {1; 2; 3; 5} {60} 

Table 4.14 Dimensions of different cracks intentionally made in the MUT. 

Figure 4.36 displays a range of intentionally introduced cracks in wooden material. These 

defects exclusively present as surface cracks, each distinguished by unique shape, depths and 

dimensions.  

  

(a) Circular cracks 

  

(b) Triangular cracks 

  
(c) Rectangular cracks 

Figure 4.36 Intentionally introduced cracks of varied types and dimensions in wooden material.  

Our main aim was to reproduce realistic defects commonly found in materials, encompassing 

a wide range of shapes. In this study, we initially chose wooden materials to validate the 
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proposed technique. However, it is important to note that this method can be extended to 

encompass a wide range of material types and adapt to various crack configurations. 

4.6.3. Experimental setup  

The measurement system is built up with the OERW [ATM® P/N 187-251-6] with the VNA 

[Anritsu® MS46121B MS46121B]. The waveguide is connected to the input port of the VNA 

using N-to- SMA coaxial transition and SMA-to-waveguide transition. The measurement 

operates within the frequency covered by the waveguide between 3.95 and 5.85 GHz with a step 

of 2.2MHz. The measurements configuration is depicted in table 4.15. Before starting the 

measurement, the VNA is calibrated using the same calibration kit: TOSLKF50A-43.5 from 

Anritsu®) presented in the previous sections. 

Frequency range (GHz) 3.95 – 5.85 

IFBW (Hz) 100 

Number of points 863 

Table 4.15 S11 measurement configuration using the waveguide and the VNA. 

4.6.4. Acquisition and Construction of an Original dataset 

The data collection process occurred over two days. Each day, we reconstructed the 

experimental setup and conducted measurements in an empty space to compare 𝑆11 reflection 

coefficients, ensuring complete measurement repeatability. In our experimental setup, we began 

by scanning the MUT without defects, and subsequently, we scanned the MUT containing 

surface cracks.  

The experimental setup involves the direct contact of the system with the MUT as presented 

in the figure 4.37. The measurement system sends electromagnetic signals, in the frequency range 

between 3.95 and 5.85 GHz, to the MUT and collects the reflection coefficient 𝑆11. The 

information reflected back is valuable since it reveals details about the MUT. Initially, the system 

is used to inspect wooden materials that are known to be defect-free. Subsequently, the setup 

involves the scanning of materials that have been intentionally prepared with defects. The OERW 

is placed directly over the defects, with the assumption that only one defect is scanned at a time. 

This controlled testing approach enables the evaluation of the system's performance in identifying 

and characterizing defects in a precise and targeted manner. 

 

Figure 4.37 Schematic drawing of an OERW scanning a wooden plate with surface defect. 
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The results indicate a distribution of measurements as follows: 85 measurements without 

defects and 53 measurements with defects of various shapes. These measurements are randomly 

mixed on single dataset. Figure 4.38 illustrates the measured 𝑆11 of a wooden sample with and 

without defects: 

 defect 1 has rectangular shape (depth: 2 mm; length: 60 mm).  

 defect 2 has circular shape (depth: 3 mm; radius: 2 mm).  

 defect 3 has triangular shape (depth: 3 mm, length: 3mm). 

 

Figure 4.38 Sample 1 : measured S11 using the OERW.  

Figure 4.39 illustrates the measured 𝑆11of another wooden sample with and without defects: 

 defect 1 has rectangular shape (depth: 2 mm; length: 60 mm).  

 defect 2 has triangular shape (depth: 5 mm; length: 3mm). 

 defect 3 has circular shape (depth: 3 mm; radius: 2 mm).  
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Figure 4.39 Sample 2 : measured S11 using the OERW. 

Given the large number of measurements, we have chosen to showcase just two samples. 

The 𝑆11measurements of the defects and defect-free scenarios display a degree of similarity as 

presented in the figures 4.40 and 4.41. This similarity presents a significant challenge when 

attempting to construct analytical models for defect detection. This highlights the usefulness of 

using DL models, as they can effectively serve as valuable tools for understanding and analyzing 

these measurements. 

 

Figure 4.40 Sample 1 - Difference between measured S11 of defect-free sample and each defect 
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Figure 4.41 Sample 2 - Difference between measured S11 of defect-free sample and each defect. 

4.6.5. 1D-CNN  

The 1D-CNN processes one dimensional signals and offers good real-time performance. For 

the classification targets, the structure of the 1D-CNN is typically divided into the input layer, 

feature-extraction part and the classification part. The feature extraction part is typically 

composed of convolutional layers and pooling layers while the classification part consists of fully 

connected layers.  

The 1D-CNN architecture proposed in this study is illustrated in the figure 4.42. This 

structure comprises several layers, including two one-dimensional convolutional layers 

(Conv1D), one max-pooling layer (MaxPool1D), and a fully connected multilayer consisting of 

one hidden layer and a sigmoid output layer. The input and output shapes, along with the details 

of each layer, are presented in the table 4.16.  

The 𝑆11measurements represented as a matrix with dimensions (863, 2), serve as the input 

data for the model. The feature extraction process begins with the first conv1D layer. This initial 

layer operates by applying a set of 32 filters, each having a size of 5. The filters perform 

convolution on the input data, systematically extracting the most relevant and significant features, 

which are commonly referred to as feature maps. Subsequently, the second conv1D layer is 

introduced, further enhancing the complexity and abstraction of the features initially learned from 

the first layer. In this layer, 64 filters each with a size of 5, are used. This layer's purpose is to 

capture more complex patterns and relationships within the input data, allowing the model to 

recognize more detailed characteristics. It's important to note that in CNNs, the weights of these 

convolutional kernels are learned automatically during the training process. These weight 

adjustments occur through backpropagation and gradient descent, aiming to minimize the loss 

function and enhance the network's efficiency in its designated task. This iterative learning 

process empowers the network to adapt and become effective at feature extraction and pattern 

recognition.  
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Figure 4.42 Block diagram of the proposed 1D-CNN architecture. K: filter number; F: kernel size; P: pooling size; S: 

strides. 

To enhance the convolutional process, we introduce a maxPool1D layer that selects the 

maximum value from each 2-unit pool with a stride of 2, moving the selection window two 

positions at a time across the data to retain the most significant features. This helps to make the 

model more robust to noise, effectively eliminating overfitting, reducing computation time, and 

increasing generalization performance. Additionally, a dropout layer is introduced before the 

maxPool1D layer to randomly deactivate some neurons during training, thus aiding in overfitting 

prevention.  

Layer Parameters Input Output 

Input 
𝑆11 (magnitude & phase-shift) 

or 𝑆11 (real & imaginary) 
(863 , 2) (863 , 2) 

Conv1D 
F: 32; K:5 

activation function: RELU 
(863 , 2) 

(859 , 

32) 

Conv1D 
F: 64; K:5 

activation function: RELU 
(859 , 32) 

(859 , 

64) 

MaxPool1D 
Dropout = 0.5 

P: 2; S: 2 
(859 , 32) 

(430 , 

64) 

Flatten - (430 , 64) (27520) 

Fully connected 

layers 

512 
activation function: RELU 

(27520) (512) 

Output 
1 

activation function: SIGMOID 
(512) (1) 

Table 4.16 Architecture of the proposed 1D-CNN with the shape of the input and output of each layer.  
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To prepare data to the classification phase, we introduce the flatten layer. It converts the 2D 

feature map into a 1D vector, a necessary step before feeding the data into the fully connected 

layer. This helps to simplify the output of the convolutional layer, resulting in reduced 

computational complexity and overall improvement in the model's performance. The data is then 

directed to a fully connected layers (dense layers) consisted of two layers. In these layers, each 

neuron is connected to every neuron in the previous layer. The first dense layer consists of 512 

neurons, while the second dense layer contains a single neuron with a sigmoid activation 

function, specifically chosen for binary classification output. The output of the model is a single 

value between 0 and 1, if the output is greater than or equal to 0.5, the network predicts class 1 

(defective sample); if it's less than 0.5, it predicts class 0 (defect free sample). 

4.6.6. Results and performance evaluation  

In this section, we focus on the evaluation of the performance of the proposed 1D-CNN in 

defects detection in wooden samples. The results indicate a distribution of measurements as 

follows: 85 measurements without defects and 53 measurements with defects of various shapes. 

These measurements are mixed randomly in one dataset and divided following the 5-CV fold 

approach to train and validate the 1D-CNN model.  

Table 4.17 illustrates the results obtained from the 1D-CNN model for classifying the 

measured 𝑆11 data into defective and defect-free samples.  

 Magnitude & Phase Real & Imaginary 

Accuracy (%) 82.05±2.69 98.33± 3.33 

Sensitivity (%) 82.04±2.69 98.33±3.33 

Precision  (%) 82.60 ± 3.65 98.32 ± 3.35 

F1_score (%) 81.84 ± 3.37 98.31 ±3.38 

Computational training 

time (sec) 
463.34 466.61 

Table 4.17 Results of the performance results of the proposed 1D-CNN using two types of input data. 

The evaluation metrics provide an overview of the model's capabilities. In terms of accuracy, 

the 1D-CNN model achieved 82.05%±2.69 accuracy when considering magnitude and phase 

data, and an even higher accuracy 98.33%±3.33 when considering real and imaginary 

components. 

Furthermore, the sensitivity, precision and the F1_score metrics demonstrate consistency 

with accuracy. This metrics achieve around 82% for magnitude and phase data and 98% for real 

and imaginary data.  
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Additionally, the computational training time for the 1D-CNN model taking approximately 

463.34 seconds for magnitude and phase data and slightly longer at 466.61 seconds for real and 

imaginary data. 

The figure 4.43 illustrates the training and validation accuracy of the proposed 1D-CNN 

model, which uses the magnitude and phase-shift of measured𝑆11as input data. These accuracy 

results are derived from the final CV fold. In the graphs, a noticeable early convergence is 

observed, typically occurring around the 40th epoch. The training accuracy rapidly reaches a high 

value, approximately 98%, indicating that the model fits the training data well. However, the 

validation accuracy is slightly lower, stabilizing at around 85%. The observed difference between 

the training and validation accuracy indicates that the model may be overfitting the training data. 

This is particularly relevant because the dataset in use is relatively small. In such cases, when the 

model has limited data to learn from, it can memorize the specific details and noise within the 

training set. This focused learning can limit the model's ability to generalize to new, unseen data, 

and this limitation becomes evident in the form of lower validation accuracy. 

 

Figure 4.43 Training and validation accuracy for the proposed 1D-CNN model using magnitude and phase 

components of the measured 𝑆11.  

The figure 4.44 introduces the training and validation accuracy of the 1D-CNN model 

proposed for processing the complex components (real and imaginary) of the measured 𝑆11 data. 

The accuracy results are derived from the final CV fold. The validation accuracy follows the 

training accuracy and starts to converge after approximately 70 epochs. This convergence results 

in a notable increase in accuracy, achieving a rate of approximately 98%. The results demonstrate 

the effectiveness of the proposed technique, suggesting that the complex components are more 

adaptable than the magnitude and phase-shift components in capturing and representing the 

characteristics that distinguish between defect and defect-free samples. 
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Figure 4.44 Training and validation accuracy for the proposed 1D-CNN model using the complex components of the 

measured 𝑆11. 

These results highlight the efficiency of the 1D-CNN model, particularly when classifying 

𝑆11 data using real and imaginary components. The metrics show that the real and imaginary data 

present a stronger representation of both defective and defect-free samples, resulting in superior 

performance. However, our study was limited by the available number of samples and in 

controlled laboratory conditions.  

In order to enhance the robustness and versatility of this model, a broader range of 

measurements is essential. This can be achieved by introducing various samples and various 

types of cracks. These enhancements will further play a key role in improving the model's 

classification capabilities, enabling it to effectively handle complex scenarios. This includes the 

detection of subsurface defects and its applicability to different types of materials. 

4.7. Free space radar vs. OERW: A Comparative study 

This study proposed two MNDT&E microwave techniques for non-destructive material 

characterization and defect detection based on: free space radar using a horn antenna and open-

ended rectangular waveguide in monostatic setup. Each technique has its own advantages and 

drawbacks in terms of spatial resolution and stand-off distance (radar-MUT). 

The main advantage of free-space radar technique is its ability to operate without the need 

for physical contact. In fact, the radar system inserted perpendicularly to the MUT, transmits 

electromagnetic waves and receives reflected signals through open space. The flexibility in the 

stand-off distance is one of the advantages of monostatic free-space radar. However, it presents 

challenges when the MUT is in the near-field, where the radar response becomes complex due to 

multiple reflections and interference patterns, making interpretation more challenging. 

Conversely, in the far field, diffraction effects caused by the radar's surroundings lead to a 

reduction in spatial resolution. 
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On the other hand, the OERW offers a significant advantage through its high measurement 

precision, due to its metallic guide designed to transmit and receive electromagnetic waves. This 

attribute makes it particularly well-suited for applications requiring high-resolution inspections. It 

excels in detecting small defects and providing fine details about the tested material. However, it 

is important to note that the effectiveness of the OERW is limited to contact setup. For optimal 

high-resolution performance, the OERW must be positioned very close to the MUT. 

In summary, free space radar and open-ended rectangular waveguide are both effective 

techniques for material characterization and defect detection. Each method will depend on the 

specific requirements of the application. For example, if high spatial resolution is required then 

an open-ended rectangular waveguide may be the best option. Otherwise, if the material to be 

characterized is at a distance, then free space radar may be the best option. 

In a future work, the aim is to integrate the microwave instrumentations into an automated 

system designed to regulate and adapt the distance. This automation allows to take the benefits of 

integrating the two techniques. In the initial phase-shift of our setup, we employ a monostatic free 

space radar to characterize the MUT from a predefined distance. This initial distance allows to 

conduct a fast and non-destructive inspection of the MUT. In cases where we identify any 

anomalies or areas of interest, we then reduce the distance between the radar system and the 

MUT. This brings the radar system in close proximity to the MUT. Subsequently, we transition to 

use a waveguide system for the purpose of conducting highly precise and accurate inspections. 

This dual-stage approach enables to first perform a quick and non-invasive assessment using the 

free space radar, and then, when necessary, employ the waveguide system for detailed inspection 

of the MUT.  

4.8. Conclusion 

This chapter presented three intelligent MNDT&E techniques: two focused on materials 

characterization, and one dedicated to defects detection in this material. These approaches 

combine the strengths of microwave technology to capture the reflection coefficient of the MUT, 

with DL and ML models to efficiently characterize materials and identify defects within them. 

The proposed techniques offer many advantages: they enable nondestructive and fast inspections, 

while also being compact, having a low error rate, offering contactless and easy-to-work 

operation, demonstrating versatility across various applications, and effectively handling complex 

materials, regardless of their thicknesses. 

In each technique, a new and original dataset is constructed, resulting in the creation of three 

new datasets within this study. The first technique relied on a monostatic free-space radar 

operating at frequencies ranging between 3.95 and 5.85 GHz, using five ML models (DCT, RF, 

SVM with three different kernels: linear, RBF and polynomial) to characterize materials from a 

distance. It achieved a 99% accuracy in controlled laboratory settings and maintained a 95% 

accuracy even in more challenging and realistic conditions. The second technique relied on using 

an OERW operating at frequencies ranging between 3.95 and 5.85 GHz, applying the same five 

ML models to characterize materials in direct contact to the system. This technique provided 

higher accuracy, achieving 100% accuracy under controlled laboratory conditions and 

maintaining 99.6% accuracy level in more challenging and realistic scenarios. The third 
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technique was specifically designed for detecting defects within materials. It relied on using the 

OERW with frequencies ranging from 3.95 to 5.85 GHz and with a DL model (1D-CNN). The 

accuracy reached 82% when using both the magnitude and phase-shift of the measured 𝑆11for 

training the DL model, and it increased to 98% when employing the complex components (real 

and imaginary part) of the measured 𝑆11.  

The research has achieved significant findings, demonstrating the effectiveness of the 

proposed techniques. However, in the next chapter, we present a feasibility study using a six-port 

reflectometer designed for operation in the millimeter-wave range. This addition aims to further 

strengthen the robustness and versatility of high frequency characterization techniques. 
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5.1. Introduction 

Microwave sensing based on VNA tools has become an essential tool for non-destructive 

testing and evaluation in a wide range of industrial and scientific fields. In the previous chapters, 

we presented promising results in the field of microwave-based material characterization and 

defect detection. These techniques combined with ML and DL algorithms, have proven effective 

in assessing the properties of various materials and identifying potential defects. Nevertheless, 

the application of the VNA also presents a series of challenges, particularly when faced with 

harsh environmental conditions. These challenges include factors such as extreme temperature 

variations and high levels of electromagnetic interference. 

 Six-port technology is a promising alternative to VNAs (conventional heterodyne 

architecture) for microwave sensing in harsh environments [219], offering the power to enhance 

microwave sensing capabilities [220-224]. The various advantages it provides include: 

 Immunity to noise and interference: Six-port technology is designed to be immune to 

noise and interference from other sources. This is because they use a differential 

measurement technique that cancels out common noise and interference signals. 

 Versatility in temperature and environment: This technique operates in a wide range of 

temperatures and environmental conditions.  

 Compact, lightweight, and simple design: The simple design of six-port systems makes 

them ideally suited to monolithic implementation. As well, by integrating all essential 

components on a single substrate, interconnection issues are minimized, resulting in a 

reduction in the size and weight of the system as a whole, making them easier to use in a 

variety of applications. 

 High accuracy: This technology provides high precision, enabling the measurement of 

distances down to micrometers and velocities down to millimeters per second. 

 Ultra-low power consumption and cost efficiency  

 Industrial automation: Six-port technology can be used to measure the position of objects 

on conveyor belts, to detect the presence of objects, and to monitor the condition of 

machinery.  

 Millimeter-wave operation: As the size is directly related to the operation wavelength, 

millimeter-wave frequency operation is preferred to reduce the circuit size. 

Six-port technology was first introduced by Engen and Hoer in 1977 [225]. Significant 

progress has been achieved in recent years in the field of six-port technology, marked by 

advancements including novel circuit designs and the development of new signal processing 

algorithms. As a result, the technology has been widely adopted in a diverse range of applications 

[226-228], covering telecommunications, medical diagnostics [229], metrology [230], remote 

sensing and materials characterization [231-239]. 

 In this context, we introduce a metallic waveguide six-port reflectometer designed for 

operation at 60 GHz. The metallic waveguide technology provides isolation between nearby 

signals and presents immunity to environmental variations [238]-[240]. The purpose is to 

evaluate the accuracy and efficiency of the system in two specific applications: sub-millimeter 

distance measurements and its use as an IQ demodulator. In the first application, we integrate the 
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proposed six-port reflectometer with a horn antenna to create a non-contact free-space 

measurement technique, designed for precise sub-millimeter distance measurements. In the 

second scenario, we introduce an IQ demodulator architecture for accurate phase-shift 

measurements.  

The remaining chapter is organized as follows. The first section describes the fundamental 

principle of the six-port reflectometer and provides a detailed mathematical analysis of its 

behavior. Following this, we introduce the proposed metallic six-port reflectometry and discuss 

our various applications along with experimental results demonstrating the performance of the 

proposed system.  

5.2. Six-port principle  

5.2.1. Definition  

The six-port is a passive structure based on the interferometric principle used in microwave 

and millimeter wave applications for the precise measurement of reflection coefficients of the 

MUT, at a given frequency. The term six-port directly corresponds to the structure itself, which 

consists of two input ports and four output ports. The reference signal is fed into the six-port 

network through port 1, while the MUT, for which we aim to determine the reflection coefficient, 

is connected to port 2. The remaining four ports are connected to power detectors (figure 5.1). 

Power measurements followed by mathematical data processing enable the measurement of the 

reflection coefficient.  

Therefore, the performance of the six-port reflectometer is closely related to both its 

hardware characteristics and calibration modeling adopted. For effective penetration of this 

technology in industrial applications, and a full understanding of its capabilities and limitations, 

dedicated test set-ups are essential. 

5.2.2. Equations of the six-port reflectometer  

The six-port reflectometer is a device based only on power measurements followed by 

mathematical processing of the data to obtain measurements of the reflection coefficients. In this 

section, we present the general architecture of a six-port system along with the equations 

controlling its behavior. The schematic diagram is illustrated the graph given in figure 5.1.  

 

Figure 5.1 Block diagram of six-port reflectometer [95].  
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The reference microwave signal feeds the six-port network on port 1. The MUT with 

reflection coefficient 𝛤, to be determined, is connected to port 2. The remaining four channels are 

connected to power detectors 𝐷3to 𝐷6. After calibrating the device with fully or partially known 

loads, it is possible to determine the value of the 𝛤 coefficient from the four measured powers 𝑃3 

to 𝑃6. 

The state of the six-port is determined by twelve pseudo-waves incident 𝑎𝑖 and emerging 𝑏𝑖 (i = 

1,...6). These pseudo-waves are coupled to the S-parameters of the six-port network by the 

following six equations:  

𝑏𝑖 = ∑ 𝑆𝑖𝑗𝑎𝑗
6
𝑗=1  with𝑖 = 1, … ,6     (5.1) 

Since, the ports 3 to 6 are connected to detectors 𝐷3to 𝐷6, we can add four additional constraints 

whose equations are given by: 

𝑎𝑖 = 𝑏𝑖𝛤𝑖      (5.2) 

where 𝛤𝑖 represents the reflection coefficient of the detector connected to port i (i = 3,...,6) 

The powers measured at the 𝐷𝑖 detectors considered to be perfectly matched to the six-port 

junction are given by the equations:  

𝑃𝑖 = |𝑏𝑖|
2 = |𝐴𝑖𝑎2 + 𝐵𝑖𝑏2|

2 with 𝑖 = 3,4,5,6   (5.3) 

where 𝐴𝑖 and 𝐵𝑖 are complex quantities characteristic of the reflectometer and dependent only 

on S-parameters of the six-port network and the reflection coefficients of the detectors.  

By introducing the reflection coefficient of the MUT to be measured =
𝑎2

𝑏2
 ; we can write the 

equation (5.3) as follows:     

𝑃𝑖 = |𝐴𝑖|
2|𝑏2|

2 |𝛤 +
𝐵𝑖

𝐴𝑖
|
2

with 𝑖 = 3, … ,6    (5.4) 

Six-port reflectometers are often designed in such a way that one of the detectors called reference 

detector (here denoted as 𝐷3), depends only on the 𝑏2 wave incident on the MUT. So, it is 

possible to write the equation (5.4) as follows:  

𝑃3 = |𝐵3|
2|𝑏2|

2|𝑑𝛤 + 1|2 with 𝑑 =
𝐴3

𝐵3
    (5.5) 

For ideal system, the directivity 𝑑 = 0.  

By normalizing the power detected at ports 4, 5 and 6 to that detected at port 3, the measurements 

become independent of the power delivered by the generator. This results in the following system 

of equations: 

𝑃𝑖 =
𝑃𝑖

𝑃3
= 𝐶𝑖 |

𝛤−𝑞𝑖

𝑑𝛤+1
|
2

 with 𝑖 = 4,5,6    (5.6) 

with 𝐶𝑖 = |
𝐴𝑖

𝐴3
|
2

 and 𝑞𝑖 =
−𝐵𝑖

𝐴𝑖
 . 
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To establish the relationship between the measured power and the reflection coefficient 𝛤 of 

the MUT, a calibration step using known load is required [100-101]-[241]-[242]. This step 

involves the calculation of two sets of parameters: 𝐶𝑖 and 𝑞𝑖, these parameters are named 

calibration constants. Once these parameters have been determined, the subsequent phase of the 

process consists of measuring the power at each detector. We must then solve a system of three 

simultaneous nonlinear equations (5.6) to extract the unknown reflection coefficient 𝛤. This 

calibration and measurement procedure is essential for precisely determining the reflection 

coefficient and, by extension, characterizing the behavior of the MUT.  

The calibration constants of the six-port reflectometer can be expressed in terms of S-

parameters using the equation given by Wiedmann, for more details [243]:  

𝑞𝑖 =
−𝑆𝑖1

𝑆22𝑆𝑖1 − 𝑆21𝑆𝑖2
 (5.7) 

5.3. Proposed six-port reflectometer system 

In this study, we use the metallic WR15 waveguide six-port system operating within the 

frequency range of 55-75 GHz. The metallic waveguide technology provides isolation between 

nearby signals and presents immunity to environmental variations. Figure 5.2 depicts both the 

schematic and an image of the used system. 

 
 

(a) (b) 

Figure 5.2 (a) Structure of the six-port; (b) Photograph of the WR15 waveguide six-port. 

The circuit is implemented using power divider (splitter), three 900hybrid couplers 

and four power detectors with typical video sensitivity of 500 𝑚𝑉 𝑚𝑊⁄  and tangential 

sensitivity of -50𝑑𝐵𝑚. The splitter efficiently splits the incoming signal from the port 1 into 

multiple equal parts, allowing for simultaneous signal processing. The couplers are used to 

combine and divide signals with phase differences, ensuring that the signals are distributed 

appropriately in the circuit. The power detectors are used for accurate measurement of the power 

levels of signals at various points in the circuit. To connect these components, metallic straight 

and bended waveguides are employed. 
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In contrast with previous works, no reference detector is used as a stable and high 

performance 60 GHz RF power source is used. In addition, we model directly the 

detected voltage as a function of the unknown quantities, i.e. amplitude and phase-shift 

of the signal 𝑎2. The reference microwave signal 𝑎1 feeds the six-port network through 

the port 1. The signal 𝑎2 (to be determined) is applied to the port 2. Assuming that the two 

millimeter-wave signals 𝑎1and 𝑎2with phase𝜑1and phase𝜑2 respectively. Let𝛥𝜑 = 𝜑2 − 𝜑1 is 

the phase shift between the two signals. The following equations describe the detected voltages at 

the output ports: 

𝑉1 =
𝛾

4
[𝑎1

2 + 𝑎2
2 − 2𝑎1𝑎2𝑐𝑜𝑠 (𝛥𝜑)] (5.8) 

𝑉2 =
𝛾

4
[𝑎1

2 + 𝑎2
2 + 2𝑎1𝑎2𝑐𝑜𝑠 (𝛥𝜑)] (5.9) 

𝑉3 =
𝛾

4
[𝑎1

2 + 𝑎2
2 − 2𝑎1𝑎2𝑠𝑖𝑛 (𝛥𝜑)] (5.10) 

𝑉4 =
𝛾

4
[𝑎1

2 + 𝑎2
2 + 2𝑎1𝑎2𝑠𝑖𝑛 (𝛥𝜑)] (5.11) 

5.4. Detector characterization 

Prior to initiating any measurements, the initial step involves characterizing the four power 

detectors within the six-port reflectometer, in order to model the distortions inherent in their 

electrical responses. The primary objective of this process is to ensure that the system's output 

accurately reflects the input signal, without undesired distortions that could introduce 

inaccuracies into the measurements. 

For this experiment, the port 1 is connected to a frequency synthesizer Keysight TM E8257D 

with the power varying between 10 𝜇W and 2mW and frequency fixed at 60 GHz. The second 

port of the six-port reflectometer is connected to a match termination to make the electrical 

response depending only of the source signal (figure 5.3). A digital scope is used to measure the 

detected voltages: 𝑉1, 𝑉2, 𝑉3, 𝑉4. 

 

Figure 5.3 Proposed six-port reflectometer platform for detector linearization testing.  
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Figure 5.4 presents the input reference power as a function of the measured DC voltage for the 

four detectors.  

 

Figure 5.4 Input reference power as a function of the measured voltage and polynomial interpolation. 

We can notice that the four detectors show distinct responses to incoming signals, indicating 

differences in their sensitivity levels. To characterize these responses, we use an interpolation 

technique aimed at creating a standardized representation of the detectors responses, thus 

reducing the effects of non-linear effects. This interpolation involves fitting the measured data 

with a polynomial function, and in this study, we specifically use a 5th order polynomial. The 

interpolation models for the powers 𝑃1, 𝑃2, 𝑃3, 𝑃4 are given by: 

𝑃1 = −7.6631 × 10
−14𝑉1

5 + 8.1006 × 10−11𝑉1
4 − 3.2462 × 10−8𝑉1

3

+ 9.964410−6𝑉1
2 + 1.0829 × 10−3𝑉1 + 0.927 × 10

−2 
(5.12) 
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𝑃2 = −2.1079 × 10
−14𝑉1

5 + 2.4364 × 10−11𝑉1
4 − 1.2361 × 10−8𝑉1

3

+ 6.6551 × 10−6𝑉1
2 + 1.0986 × 10−3𝑉1 + 0.8386 × 10

−2 
(5.13) 

𝑃3 = −1.3183 × 10
−13𝑉1

5 + 1.6147 × 10−10𝑉1
4 − 7.2808 × 10−8𝑉1

3

+ 1.8125 × 10−5𝑉1
2 + 6.5545 × 10−4𝑉1 + 0.2072 × 10

−1 
(5.14) 

𝑃3 = −1.5935 × 10
−13𝑉1

5 + 1.8046 × 10−10𝑉1
4 − 7.5459 × 10−8𝑉1

3

+ 1.872 × 10−5𝑉1
2 + 8.5338 × 10−4𝑉1 + 0.1058 × 10

−1 
(5.15) 

Therefore, we have derived four equations based on the detected voltages that characterize 

the power detectors of the six-port system. 

5.5. IQ demodulator 

The flexibility of the six-port reflectometer goes well beyond its traditional uses, serving as a 

valuable IQ demodulator for millimeter-wave signals and allowing for highly accurate phase-shift 

measurements. The proposed system is presented in figure 5.5.  

The port 1 is connected to the frequency synthesizer. The port 2 is adjusted with an attenuator 

(MI-WAVE 510 V/385) and phase- shifter (MI-WAVE 528 V/385). A digital scope is used to 

measure the detected voltages. The attenuator allows for precise adjustment of signal power, 

enabling controlled variations in signal intensity for experiments and calibration. Simultaneously, 

the phase-shifter grants precise control over the phase of the signal, making it possible to measure 

and manipulate phase differences, which is essential for experiments involving phase-shift.  

The source power is set to 0 dBm and the test frequency is set to 60 GHz. The attenuation is 

varied from 0to – 24𝑑𝐵𝑚 with steps of 3 dBm. we measure the voltages at the four detectors 

function of the phase-shift (𝛥𝜙) varied from 0 to 360° with steps of 10°. 

 

 

(a) 
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Attenuator

Phase Shifter 
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(b) 

Figure 5.5 The IQ demodulator platform: (a) schematic; (b) photograph.  

Figure 5.6 presents the detected voltages 𝑉1 and 𝑉3 as a function of the phase-shift𝛥𝜙 at 

different attenuation. The detected signatures of 𝑉1 and 𝑉3 have nearly sinusoidal behaviors with 

a relative phase-shift of 90°. And the same results will be observed for 𝑉2 and 𝑉4. We notice that 

the greater the attenuation level, the lower the amplitude of the detected voltages. 

 

Figure 5.6 The detected voltages 𝑉1 and 𝑉3(mV) as function of the phase-shift 𝛥𝜙 (degree) at different attenuations. 
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To take into account all the imperfections and gain the ability to demodulate millimeter-wave 

signals, we determine the phase-shift from the detected voltages by applying a dedicated 

calibration modelling. We consider a linear calibration model introducing calibration coefficients 

taking into account millimeter-wave losses and detectors sensitivities [226]. The calibration 

process includes the following steps:  

(1) Calculate the real IQ components at fixed attenuation function of 𝛥𝜙 varied from 0 to 

360° with steps of 10°, using the equations: 

𝐼 = 𝐴𝑡𝑡. 𝑐𝑜𝑠(𝛥𝜙)        (5.16) 

𝑄 = 𝐴𝑡𝑡. 𝑠𝑖𝑛(𝛥𝜙)     (5.17) 

where 𝐴𝑡𝑡 and 𝛥𝜙 are the attenuation and the phase-shift between the two input signals. 

(2) Determine the calibration coefficients (𝛼𝑖, 𝛼𝑖′) by fitting the measured voltages 𝑉1 and 

𝑉3to the linear calibration model: 

𝑉1 = 𝛼0 + 𝛼1𝐼 + 𝛼2𝑄     (5.18) 

𝑉3 = 𝛼′0 + 𝛼′1𝐼 + 𝛼′2𝑄     (5.19) 

In this study, we use iterative functions using MATLAB, which are based on minimizing 

the sum of the squared differences between the measured data and the values predicted by 

our calibration model. By iteratively refining the calibration coefficients, these functions 

enable to find the optimal parameter values that provide precise and accurate calibration 

for our measurements. Once we calculate the calibration coefficient, we determine the 

detected voltages 𝑉1 and 𝑉3. Figure 5.7 presents the detected voltages 𝑉1 and 𝑉3(mV) and 

their fitting curves.  

 

Figure 5.7 the detected voltages 𝑉1 and 𝑉3(mV) and their fitted curves after calibration as function of the phase-shift 

𝛥𝜙 (degree). 
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(3) Calculate the measured IQ components by the inversion of the calibration model, 

equations (5.18 - 5.19).  

(4) Conclude the measured phase-shift 𝛥𝛷:  

𝛥𝜙 = 𝑎𝑡𝑎𝑛 (
𝑄

𝐼
)      (5.20) 

Following these steps, we compare the phase-shift measurements before and after detector 

linearization. We used the equations (5.12 to 5.15) to deduce the powers from the measured 

voltages, then we apply the calibration method using these powers. Figure 5.8 presents the 

powers 𝑃1and 𝑃3 and there fitted curve after calibration. We find that the average error decreases 

significantly from 6.01 degrees to 2.2 degrees after the detector linearization step. 

 

Figure 5.8 The powers 𝑃1and 𝑃3 and their fitted curves after calibration the powers 𝑃1and 𝑃3 and there fitted curve 

after calibration.  

The calibration system described in this work is linear, and we made certain assumptions. 

However, it is important to acknowledge that an alternative nonlinear calibration system could be 

employed, resulting in enhanced accuracy. More detailes in [101].  

5.6. Free-space measurement  

In this section, we present a six-port based measurement system designed for free-space 

applications, enabling extremely accurate sub-millimeter distance measurements. A schematic 

diagram and photo of the system are shown in the figure 5.9. The system includes the key 

components: a frequency synthesizer, low noise amplifier, circulator and horn antenna working 

as transmitter and receiver and a piezo-based nano-positioning stage that holds a metallic target 
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(dimensions = 3 .2 × 4.2 cm2). The radar operates at the single frequency 60 GHz in relative 

proximity to the target. 

The port 1 of the six-port is directly connected to the frequency synthesizer, acting as its 

reference source. The port 2 is connected to the antenna via an amplifier and the circulator. The 

input signal is directed to the horn antenna, which emits the signal toward the target. 

Subsequently, the metallic plate reflects the signal back to the antenna, effectively receiving the 

signal and transmitting it back to the second port of the six-port radar. The circulator efficiently 

guides the received signal to the second input port of the six-port in a unidirectional manner, 

ensuring strong isolation and minimizing interference. The low noise amplifier is used to enhance 

the signal-to-noise ratio at the signal reception. 

 

(a) 

 

(b) 

Figure 5.9 Proposed test platform for mm-wave free-space distance measurement: (a) schematic; (b) photograph. 

The test platform proposed has been fully automated under Labview® environment to set the 

measurement parameters (reference power, frequency, distance range and step) and to provide 

detected voltages under different measurement configurations.  

First, we perform a repeatability study to evaluate the accuracy of the measurements. We 

repeatedly measure the four voltages, 𝑉1, 𝑉2, 𝑉3, and 𝑉4, while adjusting the distance between the 

metallic target and the antenna, ranging from 5 to 6 mm with step of 500nm (figure 5.10). This 

process is repeated over ten consecutive trials and then the standard deviation between these 
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measurements is calculated. The percentage of maximum standard deviation on 𝑉1, 𝑉2, 𝑉3, and 

𝑉4are 2.0120% and 0.8794%, 1.3089%, 1.1637% respectively.  

 

Figure 5.10 Ten consecutive measurements of 𝑉1(mV) and 𝑉3 (mV) function of distance (mm). 

Then, as a demonstration, experiments are considered for near field distance measurement 

from contact to stand-off set to 5 mm (2 free-space wavelengths). The target is moved along one 

linear stage in steps of 500 nm over the full range. The four detected voltages as a function of the 

distance are given in figure 5.11. 

 

Figure 5.11 Ten consecutive measurements of voltages function of distance (mm). 

Qualitatively, a good measurement sensitivity to the distance is noticed. The measured 

voltages are sensitive to the distance variations in sub-millimeter range. However, the shapes of 
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the curves are not sinusoidal as the target is located in the near-field of the antenna. In addition, 

free-space multiple reflections between the antenna aperture and the target yield to signal 

distortion. The detected voltage as a function of the distance shows the spread propagation losses 

that increase with distance. Furthermore, resonances are related to wave recombination between 

the reflected wave by that target, the guided reflected wave at the antenna input (mismatch) and 

the free-space source match term (reflection of the received wave by the antenna).  

Figure 5.12 presents 𝑉3 − 𝑉4 as a function of 𝑉1 − 𝑉2 that should exhibit graphically a circle 

centered on 0 for an ideal configuration. An elliptical behavior related to the system 

imperfections is noticed. 

 

Figure 5.12 𝑉3 − 𝑉4 as a function of 𝑉1 − 𝑉2. 

We derive equations (5.21) and (5.22) from the expressions provided in equations (5.8 to 

5.11). In ideal conditions, the equations show that 𝑉1 and 𝑉2 should exhibit the same amplitude 

and a 90 degree phase difference, as should 𝑉3 and 𝑉4. This results in a circular pattern when 

plotted in a graph, centered at the origin. Any deviations from this ideal behavior result in 

elliptical patterns, which can be indicative of imperfections or variations in the six-port network 

or the system's components. 

𝑉1 − 𝑉2 = −𝛾𝑎1𝑎2𝑐𝑜𝑠 (𝛥𝜑)      (5.21) 

𝑉3 − 𝑉4 = −𝛾𝑎1𝑎2𝑠𝑖𝑛 (𝛥𝜑)      (5.22) 

As a conclusion, a dedicated free-space calibration method that takes into account these 

effects can be implemented to derive the distance as a function of the measured voltages [228]. 

5.7. Conclusion  

Six-port technology was emerged as a significant alternative to the conventional heterodyne 

architecture for microwave sensing in harsh environments. This technology demonstrates 

increased resilience to environmental impacts, providing higher levels of accuracy and resolution. 

Additionally, six-port technology tends to be simpler and less expensive to manufacture. Recent 
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advances in six-port circuit design, signal processing algorithms, and integrated devices have 

made six-port technology more attractive for a wide range of applications. 

 In this chapter, we started by presenting an overview of the general definition, architecture, 

and principles underlying the six-port reflectometer. Subsequently, we introduced a metallic six-

port reflectometer operating at frequency around 60 GHz and we conducted an evaluation of its 

performance in two distinct applications: as an IQ demodulator for phase-shift measurements, 

and in free-space measurements, with a specific focus on sub-millimeter distance measurements. 

A dedicated method for characterizing power detectors has been used to improve the performance 

of the proposed six-port system.  

The validation of this system highlights its capacity to measure the reflection coefficient of 

the MUT with high accuracy. This allows for applying the ML and DL models proposed in the 

previous chapter to the measurements conducted using the six-port system. As a result, we expect 

an enhancement in the performance of these algorithms, promising more precise and effective 

characterization and evaluation of materials. Moreover, the six-port reflectometer's capability to 

measure distance with high accuracy contributes additional advantages to the system. This 

functionality allows for precise material characterization and for accurate positioning of materials 

with respect to the measurement system.   
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Conclusion  

In summary, the thesis objectives were centered on two main parts: 

(1) The first objective was to propose an approach for ensuring accurate robots localization, 

using multi-sensors fusion. In addition, an entropy-based diagnostic phase was designed 

in order to make the robots work even in the presence of sensors faults. 

(2) The second objective was to introduce three innovative intelligent MNDT&E techniques 

for material characterization. Based on generating three different databases derived from 

the microwave measurements, ML and DL models was applied and discussed.  

After introducing the general context in chapter 1, we introduced in chapter 2 a robust 

localization method for mobile robots, employing a fault-tolerant multi-sensors fusion. The 

Extended Kalman filter was used to estimate the position of the robot by fusing information from 

sensors integrated on the robot. Recognizing the possibility of sensor failures and their influence 

on performance, we incorporated a sensor diagnostic phase to identify and exclude 

malfunctioning sensors. Specifically, control charts based on CUSUM and EWMA statistics were 

applied to generated residual signals and an adaptive threshold was proposed using an entropy-

based criterion. To validate the effectiveness of our approach, we conducted a comparative 

analysis with existing literature, using the key metric ARL. It's worth noting that this statistical 

technique has broader applicability beyond robotic systems, as it can be employed in various 

domains to detect changes and malfunctions in any residual signal. 

In this study, the mission of the mobile robots is to inspect and analyze materials in the 

surrounding environment. To achieve this goal, our focus was directed towards the development 

of NDT&E technique based on microwave technology. This latter relies on a concept to use 

microwave electromagnetic waves in the frequency range of 300 MHz to 300 GHz to inspect, 

analyze, and assess the properties, and quality of the MUT without causing any damage to the 

material being examined. The potential of MNDT&E lies in its ability to inspect dielectric 

materials with a high level of precision and efficiency.  

In chapter 3, the first part presented a theoretical background relevant to microwave 

characterization. Starting with definition of the electromagnetic properties of materials, 

highlighting the interaction between microwaves and materials. We presented further, the 

microwave measurement systems, and the microwave characterization techniques. In a second 

part, we presented two conventional MNDT&E techniques tailored for material characterization, 

employing two distinct antennas: corrugated antenna in a first setup, compact horn antenna in a 

second setup. These antennas, coupled with a VNA, played a central role in measuring the 

amplitude and phase-shift of the complex reflection𝑆11 of the MUT. Furthermore, we provided a 

detailed description of a free-space calibration procedure specifically used to establish the 

relationship between the materials' permittivity and the measured 𝑆11. To validate the efficiency 

of these methodologies, we conducted practical experiments using two wooden MUT samples, 

and subsequently, we compared our findings with previously documented results in the literature.  
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However, analytical modeling for the calculation of complex permittivity often encounters 

limitations due to various factors, such as the material thickness, frequency dependency, distance 

between the material and the antenna and the simplifying assumptions, etc. In this regard, ML 

and DL models were proposed in chapter 4 to offer a promising solution to overcome these 

limitations.  

In chapter 4, we presented the theoretical fundamentals of the ML and DL models applied in 

this thesis. Following this, a comprehensive literature review was presented, focusing on various 

microwave techniques, their integration with ML and DL models for material characterization. In 

a second part, we proposed the design and the implementation of three intelligent MNDT&E 

techniques which included two distinct phases, measuring the 𝑆11 of the MUT using the 

microwave instruments and applying ML and DL models on the generated databases.  

The first technique relies on a free-space setup, operating at frequencies ranging between 

3.95 and 5.85 GHz, and was tested and validated in both laboratory and realistic conditions. Five 

ML models (DCT, RF, SVM with three different kernels: linear, RBF and polynomial) was used 

to classify materials into: wood, glass, Plexiglas, and either if no materials. We achieved a 99% 

accuracy in controlled laboratory settings and maintained a 95% accuracy even in more 

challenging and realistic conditions. The second technique relied on using an OERW operating at 

frequencies ranging between 3.95 and 5.85 GHz for contact material characterization and was 

tested and validated in laboratory conditions and realistic conditions. Applying the same five ML 

models, this technique provided higher accuracy, achieving 100% under controlled laboratory 

conditions and maintaining 99.6% accuracy level in more challenging and realistic scenarios. The 

third technique was specifically designed for detecting defects within materials. It relied on using 

OERW with frequencies ranging from 3.95 to 5.85 GHz. Applying the 1D-CNN model, the 

accuracy reached 82% when the model was trained using both the magnitude and phase-shift of 

the measured 𝑆11, and it increased to 98% when incorporating the complex components (real and 

imaginary parts) of the measured 𝑆11.  

 In chapter 5, we discussed a feasibility study to enhance the effectiveness and simplify the 

shift of microwave instruments from laboratory conditions to real-world scenarios. The key topic 

discussed was using a six-port reflectometer operating within the millimeter frequency range (i.e. 

around 60 GHz). This approach is highlighted for its potential to offer enhanced accuracy in the 

characterization of materials as well as in the detection of defects.  
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Perspectives  
To advance this study and unlock further potential, several perspectives can be mentioned.  

1. In chapter 2, the proposed robust localization approach aimed at eliminating the faulty 

sensor(s). Future work should focus on three aspects:  

- Evaluation under varying faults scenarios: in-depth investigation into the diverse types 

of failures that may impact sensors, ranging from weather-related influences to calibration 

failures and temporal misalignments. This part entails the simulation of these failures, 

followed by a comprehensive testing and evaluation of the proposed approach under 

varying faults scenarios. This exploration could significantly contribute to enhancing the 

resilience and reliability of sensor systems in real-world applications. 

- Fault identification: building upon the benchmarking of failures, an additional phase could 

be introduced to identify, in real-time, the specific types of failures impacting sensors. A 

promising solution involves integrating machine learning classifiers into the diagnostic 

process. This approach aims to enable effective repairs when feasible and, in certain 

situations, support continued sensor usage. For example, in cases of calibration faults, 

automatic extrinsic calibration process could be considered. The objective is to establish a 

framework that detects faulty sensors and classifies the faults based on their types. To 

validate the effectiveness, a comparative study should be conducted, comparing the 

proposed statistical approach with the machine learning models. This research direction 

holds the potential to advance the field of fault identification in sensor systems. 

- Residual generation: our approach defines the residual signal as the disparity between the 

sensor measurement and the value predicted by the fusion model. A prospective avenue for 

future research involves exploring optimization techniques for this residual signal, with a 

focus on criteria such as robustness and sensitivity. One potential criterion worth 

investigating is the α-divergences criterion, seeking to enhance the performance of the 

residual signal in a manner that aligns with these specified criteria. This inquiry aims to 

contribute to the refinement of residual generation methods in the context of sensor fault 

detection. 

- The prior probability 𝑃0 : Regarding the prior probability 𝑃0 (the prior probability of 𝐻0 

representing the fault-free case) in the entropy-based criterion, our current assumption is 

that 𝑃0 is calculated iteratively. A promising direction for future research involves a 

detailed study of this parameter and the development of quantitative methods tailored to 

each case study. This investigation seeks to provide a more nuanced and case-specific 

approach to determining the prior probability, enhancing the adaptability and accuracy of 

the entropy-based criterion in real-world applications. 

2. In chapter 4, ML and DL were employed for material classification and defects detection. To 

enhance the accuracy of these models enabling them to address real-world applications, future 

research should focus on two critical aspects. 

- Additional measurements and scenarios: it is imperative to enrich the databases used in 

training the ML and DL models through real measurements. This process requires real 

measurements covers diversity of materials. In addition, scan and measure additional 
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scenarios consisting of various types of defects, to enhance the system's capacity for 

detecting subsurface defects within materials.  

- Microwave simulation: extending databases requires employing simulations to bridge the 

gap between controlled laboratory conditions and the complexities of real-world scenarios 

that may not be easily reproducible. The two commonly used simulators for microwave 

simulation, are computer simulation technology microwave studio (CST) and Ansys high-

frequency structure simulator (HFSS). 

3. In addition to enhancement in both domains, the aim of the global project is to integrate the 

MNDT&E techniques on the mobile robots, and control it to inspect the surroundings 

autonomously. This integration requires implementing the proposed microwave measurement 

systems onto a mobile robot, subsequently subjecting it to comprehensive evaluation and 

testing in both laboratory and real-world conditions. Such integration and testing offers 

numerous advantages:  

- Enhance robot localization, using microwave technology for precise distance 

measurements, providing high-quality data for the proposed fusion approach. The use of 

microwave-based distance measurements contributes to improved localization accuracy, 

particularly in scenarios where other sensor modalities may face challenges, such as in low-

visibility conditions or environments noise.  

- Enhance the performance of the MNDT&E techniques for material characterization. 

Automating these techniques ensures higher accuracy and enables real-time inspection of 

the MUT. This automation eliminates the potential for human intervention errors, 

enhancing the accuracy of the entire system. 

- Increase efficiency, adaptability, and accuracy of the system. Autonomous inspections by 

mobile robots equipped with MNDT&E capabilities hold promise for enhanced 

accessibility, faster response times, and the ability to navigate diverse and dynamic 

environments, making the technology more versatile and applicable across a wide range of 

applications such as in industrial applications and in challenging and harsh environments 

where human intervention may be impractical or dangerous. 
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APPENDIX A. Markov Chain approach for the ARL 

calculation 
The Markov chain approach is an efficient technique to estimate the ARL. According to this 

approach, the control limit interval is divided into N+1 sub-intervals of width 𝜔. The control 

chart is considered to be in a transient state (𝑖) at the iteration 𝑘 if𝐼𝑖 −
𝜔

2
< 𝑆𝑘 < 𝐼𝑖 +

𝜔

2
, where Ii 

represents the midpoint of the𝑖𝑡ℎ interval. The control statistic is in the absorbing state if 𝑆𝑘falls 

outside the control limits. 

The process is assumed to be in control when 𝑆𝑘 is in a transient state. It is however assumed to 

be out of control when 𝑆𝑘 is in the absorption state. 

The term𝑝𝑖𝑗 refers to the transition probability defined as the probability that the transition from 

state 𝑖 to state 𝑗 occurs.  

𝑝𝑖𝑗 = 𝑝{𝑆𝑘+1 ∈ 𝐼𝑗 ∨ 𝑆𝑘 ∈ 𝐼𝑖}, 𝑖, 𝑗 = 0,1, … ,𝑁 − 1                                (A1) 

The initial probability vector can be represented by: 

𝑝0
𝑇 = (𝑝0, 𝑝1, … , 𝑝𝑁−1 ∨ 0)                                                     (A2) 

Where 𝑝𝑗 represents the probability that 𝑆𝑘 starts I  n state(𝑗).  

The ARL is then determined by its initial probability vector and transition probability matrix. 

Generally, the initial probability vector will contain a single element equal to 1, representing the 

initial state. The ARL is therefore given by the following equation: 

𝐴𝑅𝐿 = 𝑃0
𝑇(𝐼 − 𝑅). 1                                                     (A3) 

Where R is the matrix contains the transition probabilities. I is the identity matrix, and 1 is a 

column vector of ones.  

The transition probabilities are then as follows: 

For the CUSUM control chart: 

{
 

 𝑝𝑖0 = 𝑃{𝑆𝑘 ∈ 𝐼0 ∨ 𝑆𝑘−1 = 𝑖𝜔} = 𝑃 {𝑋𝑘 ≤ 𝐾 − 𝑖𝜔 +
𝜔

2
} ,

𝑝𝑖𝑗 = 𝑃{𝑆𝑘 ∈ 𝐼𝑗 ∨ 𝑆𝑘−1 = 𝑖𝜔} = 𝑃 {(𝑗 − 𝑖)𝜔 −
𝜔

2
< 𝑋𝑘 − 𝐾 ≤ (𝑗 − 𝑖)𝜔 +

𝜔

2
} ,

1 ≤ 𝑗 ≤ 𝑡 − 1.

  (A4) 

It should be noted that we need to estimate the overall ARL of a two-sided CUSUM chart. Thus, 

it can be derived from those of two one-sided schemes, using this formula: 

1

𝐴𝑅𝐿
=

1

𝐴𝑅𝐿
++1
𝐴𝑅𝐿−

                                             (A5) 

For the EWMA control chart: 
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𝑝𝑖𝑗 = 𝑃{𝑆𝑘 ∈ 𝐼𝑗 ∨ 𝑆𝑘−1 = 𝑖𝜔} = 𝑃 {𝑗𝜔 −
𝜔

2
< (1 − 𝜆)𝑖𝜔 + 𝜆𝑋𝑘 ≤ 𝑗𝜔 +

𝜔

2
}   (A6) 

The ARL is then determined based on the initial probability vector and the calculated transition 

probability matrix according to the equation (A6). 
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APPENDIX B. OSLN50A-8 calibration kit specifications 
This calibration kit has been designed to provide superior measurement results when used with 

precision instruments. It is designed for use in both field and lab environments. It is a high 

precision component and should be handled with proper care. Excessive shock, torque, or power 

should be avoided to prevent permanent damage.  

Specifications for units within recommended calibration cycle are guaranteed under the following 

conditions: 

1. Unit is operated within specified temperature range. 

2. Unit has not been subjected to damage from mishandling. 

Length, capacitance, and inductance are nominal values. Open and Short Phase and DC 

Resistance specifications are typical. Phase is measured as a deviation from the model defined by 

offset length and inductance or capacitance. 

Operating Temperature Range 

 

–10 °C to +55 °C (MIL-PRF-

28800F, Class 2) 

Storage Temperature Range 
–51 °C to +71 °C (MIL-PRF-

28800F, Class 2) 

Recommended Calibration 

Interval 
1 year 

Table B.1 OSLN50A-8 Calibration Kit Specifications – Temperature.  

 

Table B.2 OSLN50A-8 Calibration Kit Specifications – Open.  
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Table B.3 OSLN50A-8 Calibration Kit Specifications – Short.

 

Table B.4 OSLN50A-8 Calibration Kit Specifications – Load.  


