
HAL Id: tel-04861222
https://theses.hal.science/tel-04861222v1

Submitted on 2 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contributions to the Verification and Monitoring of
Neural Network Systems

Fateh Boudardara

To cite this version:
Fateh Boudardara. Contributions to the Verification and Monitoring of Neural Network Systems.
Automatic Control Engineering. Université Gustave Eiffel, 2024. English. �NNT : 2024UEFL2020�.
�tel-04861222�

https://theses.hal.science/tel-04861222v1
https://hal.archives-ouvertes.fr

Université de Lille - Sciences et Technologies

Université Gustave Eiffel

THÈSE
présentée en vue d’obtenir le grade de

DOCTEUR
en

Automatique, Génie Informatique

par

Fateh BOUDARDARA
Doctorat délivré par l’université de Gustave Eiffel

Titre de la thèse :

Contributions to the Verification and Monitoring of
Neural Network Systems

Contributions à la Vérification et au Monitoring
des Systèmes de Réseaux de Neurones

Soutenue le 23/05/2024 devant le jury d’examen :

Rapporteur Nesrine Zoghlami Professeur d’université Université de Tunis El-Manar
Rapporteur Mohamed Sallak Maître de conférence / HDR UTC de Compiègne - HEUDIASYC
Directeur de thèse Mohamed Ghazel Directeur de recherche Université Gustave Eiffel - COSYS/ESTAS
Encadrant de thèse Abderraouf Boussif Chargé de recherche Université Gustave Eiffel - COSYS/ESTAS

Thèse préparée au Laboratoire d’Évaluation des Systèmes de Transports
Automatisés et de leur Sécurité

Université Gustave Eiffel, COSYS/ESTAS, Villeneuve d’Ascq
École Doctorale MADIS-631 - Université Lille Nord de France

Abstract iii

Contributions to the verification and monitoring of neural network systems

Abstract

The evaluation and verification of neural networks (NNs), as a part of their safe design
and deployment, becomes a hot research topic, particularly with the recent studies
showing their sensitivity and vulnerability to operational conditions (adversarial attacks,
environment conditions, etc.). Despite its importance in ensuring the accuracy and
the reliability of NNs, test-based approaches for NNs evaluation suffer from several
limitations that may impact their effectiveness. To overcome the limitation of NN
testing, researchers are exploring formal verification as complementary activity to
enhance the reliability and safety of NN-based systems. Indeed, while testing can
illustrate the ability of a system to maintain its level of performance under varying
conditions, proving this requires some form of formal analysis. NN verification aims to
provide formal guarantees regarding the behavior and properties of NNs. It involves
analyzing the model’s inputs, outputs, and internal computations to ensure that the
network behaves correctly and meets the desired specifications. While NN verification is
applied before the deployment of the network, NN runtime verification (or monitoring)
is used to continuously check and assess the correct behavior of the network during
runtime. Broadly speaking, NN monitoring consists in building a monitor that runs in
parallel to the network in order to supervise its behavior and decision. If the monitor
detects a malfunctioning of the network, or some abnormal behavior, it raises alarms
demanding an examination of the current decision. Although these techniques have
been successfully applied in solving certain properties of NN, NN verification and
monitoring remains challenging, particularly when it comes to verifying large networks
with practical interests. This is mainly due to the complexity and the non-linearity of
NN models, and the limitations of the traditional formal methods to scale up to large
real-world models.
In this dissertation, we propose two main contributions to address these challenges,
namely (i) NN abstraction (model reduction) for verification purposes and (ii) NN
runtime monitoring. In order to enhance the scalability of NN verification, we propose
two approaches involving the merging of neurons within the same hidden layer of a
network to reduce its size. Both approaches ensure that the resulting reduced model
over-approximates the original network. The over-approximation relation is crucial, as it
guarantees that any verified property on the reduced model remains valid on the original
network. Our proposed approaches rely on mathematical formulas to formally establish
and ensure this over-approximation relationship. Additionally, we provide formal proofs
of this relation for each approach, thus ensuring the rigor and reliability of our methods.
The second contribution involves the development of a monitoring system specifically
designed for NNs used in image classification tasks. The key idea behind this approach
is to identify and extract relevant path activations that are referred to as NAPath. The
computation of NAPaths is performed for each class of images using the training set.
Each NAPath serves as a reference pattern that captures the essential characteristics of
the associated class. During the runtime, the monitoring system compares the network’s
classification results to the most similar NAPath. This comparison analysis enables the
monitor to evaluate the consistency of the network’s classification decisions and detect
any potential deviations or misclassification. To evaluate the proposed approaches,
we have implemented them as Python tools and carried out a set of experiments on
well-known NN benchmarks and/ or railway use cases.

Keywords: railway system safety; safe artificial intelligence (safe ai); formal verification;
neural networks; neural networks verification; neural networks abstraction; neural
networks monitoring

iv Abstract

Résumé

L’évaluation et la vérification des réseaux neuronaux (NN), lors de leur conception et
de leur déploiement sécurisé, suscitent un vif intérêt de recherche, en particulier à la
lumière d’études récentes mettant en évidence leur sensibilité et leur vulnérabilité face
à diverses conditions opérationnelles telles que les attaques adverses et les variations
environnementales. Bien que leur importance soit cruciale dans l’assurance de la
précision et de la fiabilité des NN, les approches fondées sur les tests pour l’évaluation
des NN sont entravées par plusieurs limitations qui peuvent compromettre leur efficacité.
Afin de remédier à ces limites, des travaux de recherche explorent la vérification formelle
comme approche complémentaire pour vérifier la fiabilité et la sécurité des NN. Si les
tests peuvent démontrer la capacité d’un système à maintenir ses performances dans
des conditions variables, démontrer cela nécessite une analyse formelle approfondie. La
vérification des NN vise ainsi à fournir des garanties formelles quant au comportement
et aux propriétés des NN. Cela implique une analyse minutieuse des entrées, des sorties
et des calculs internes du modèle pour s’assurer que le réseau se comporte correctement
vis-à-vis des spécifications requises. Alors que la vérification des NN est, d’une manière
générale, effectuée lors de la conception des systèmes, le monitoring des NN, quant
à lui, est cruciale pour garantir l’exécution du bon comportement lors de la phase
opérationnelle. Pour ce faire, un système de monitoring fonctionne en parallèle du NN,
détectant toute anomalie ou comportement inattendu et déclenchant des alertes en
cas de besoin. Bien que des succès aient été rencontrés dans certaines applications, la
vérification et le monitoring des NN restent des défis, notamment lorsqu’il s’agit de
NN complexes ou de taille importante. Cette difficulté découle en grande partie de la
complexité et de la non-linéarité des modèles NN, ainsi que des limites des méthodes
formelles existantes pour s’adapter à des modèles réels de grande taille.
Dans cette thèse, nous proposons deux contributions principales pour répondre aux deux
défis susmentionnés. Concrètement, nous proposons des techniques d’abstraction des
NN (réduction de modèle) à des fins de vérification, ainsi qu’une approche de monitoring
des NN en temps réel spécifiquement conçu pour les tâches de classification d’images.
Ces approches d’abstraction de NN visent à améliorer la scalabilité et l’efficacité de la
vérification des NN. En se basant sur des formulations mathématiques, nous garantissons
que les modèles abstraits résultants conservent les propriétés essentielles (e.g., la
sur-approximation) des réseaux d’origine, assurant ainsi la validité des résultats de
vérification. Pour la partie monitoring, nous développons un système de surveillance qui
identifie et évalue en temps réel les décisions de classification des réseaux par rapport
à des modèles de référence spécifiques (motives de surveillance). Enfin, nous validons
nos approches à travers des expérimentations menées sur des benchmarks académiques,
ainsi qu’un cas d’étude spécifique au domaine ferroviaire.

Mots clés : sécurité des systèmes ferroviaires ; sécurité de l’intelligence artificielle ;
réseaux de neurones ; vérification formelle, vérification des réseaux de neurones ;
abstraction des réseaux de neurones, monitoring des réseaux de neurones

Acknowledgment

This thesis manuscript cannot be considered complete without expressing my
heartfelt thanks to all the persons who supported and encouraged me throughout
my PhD journey. I thank all those who have contributed in any way to the
completion of this thesis.

To my family.
To my mother & my father.

To my wife & my prince Amir.

Contents

Abstract iii

Contents vii

List of Tables xi

List of Figures xiii

List of Acronyms xvii

1 Introduction 1
1.1 General Context . 2
1.2 Problem Statement . 5
1.3 Main Contributions . 8

1.3.1 Neural Networks Abstraction 8
1.3.2 Neural Networks Monitoring 9

1.4 Outlines . 11
1.5 List of Publications . 12

I Background & Literature Review 15

2 Neural Networks and Formal Verification 17
2.1 Introduction . 18
2.2 Artificial Intelligence & Neural Networks 18

2.2.1 Basic Concepts . 20
2.2.2 Sensitivity & Vulnerability of Neural Networks 27

2.3 Formal Methods & Formal Verification 28
2.4 Verification and Monitoring of Neural Networks 32

2.4.1 Neural Networks Verification 34
2.4.1.1 Expressing NN Properties for Verification 35
2.4.1.2 NN Modeling for Verification 37

2.4.2 Neural Networks Monitoring 44
2.5 Conclusion . 48

vii

viii Contents

3 A Review on Abstraction Methods for NN Verification 49
3.1 Introduction . 50
3.2 Abstraction Approaches for NN Verification 50

3.2.1 NN Abstraction Principle 51
3.2.2 Abstraction of the Activation Function 52
3.2.3 Neural Networks’ Model Reduction 56
3.2.4 Discussion . 63

3.3 Neural Networks compression . 66
3.4 Conclusion . 67

II Neural Networks Abstraction 69

4 Two Model-Reduction Approaches for Efficient NN Verification 71
4.1 Introduction . 72
4.2 Preliminaries & Notations . 73

4.2.1 Neural Networks Notations 73
4.2.2 Interval Neural Networks 75

4.3 The INNAbstract Approach . 76
4.3.1 Model Reduction for NN with Odd Activation Functions . 77

Proof of Proposition 4.1 . 80
4.3.2 Model Reduction Method for ReLU-NN 83

Proof of Proposition 4.3 86
4.3.3 A Heuristic strategy for Nodes Selection 90

4.4 Model Reduction approach for Non-negative Activation Functions 91
4.5 Discussion w.r.t. Related Works 95
4.6 Conclusion . 96

5 Experimental Evaluation of NN Model-Reduction Approaches 99
5.1 Introduction . 100
5.2 Experimental Setup and Configuration 100

5.2.1 Implementation and Experimental Environment 100
5.2.2 Used NN Models and Benchmarks 101

5.2.2.1 Random NNs . 102
5.2.2.2 MNIST Benchmark 102
5.2.2.3 ACAS Xu Benchmark 103

5.3 Results & Discussion . 104
5.3.1 Results on Tanh Networks 104
5.3.2 Results on ReLU Networks 108
5.3.3 Heuristic’s Improvement for INNAbstract 111

5.4 Conclusion . 115

III Neural Networks Monitoring 117

Contents ix

6 NAPath: Runtime Monitoring of Neural Networks 119
6.1 Introduction . 120
6.2 Background . 121

6.2.1 Neural Activation Patterns (NAP) 121
6.2.2 Neuron Activation Paths (NAPath) 123

6.3 Monitoring using NAPaths . 125
6.3.1 NAPathing Phase . 125
6.3.2 Monitoring Phase . 127

6.4 Experimental Results on the MNIST Benchmark 129
6.4.1 NAPathing Phase . 129
6.4.2 Monitoring Phase . 130

6.5 Experimental Results on Weather Conditions Detection Networks 135
6.5.1 System & Dataset Characteristics 136
6.5.2 NN Models Configuration 136
6.5.3 Experimental Settings & Results 140

6.5.3.1 NAPathing Phase 140
6.5.3.2 Monitoring Phase 143

6.6 Related Works . 145
6.7 Conclusion . 146

7 Conclusions & Perspectives 149
7.1 General Conclusion . 150
7.2 Perspectives & Future Works . 152

7.2.1 Neural Networks Abstraction 152
Short term future works . 152
Long term future works . 153

7.2.2 Neural Networks Monitoring 154
Short term future works . 154
Long term future works . 154

Bibliography 157

x Contents

List of Tables

3.1 A list of NN model reduction methods used for verification. The
underscore symbol "−" is used to denote that no information is
provided in the corresponding original paper. 61

5.1 Output results on randomly generated Tanh-NN, L = 20 layers. . 105
5.2 Abstraction time and total computation time on randomly generated

Tanh-NN, L = 20 layers. 105

6.1 The impact of the parameter p on the precision of NAPath-based
monitoring. The symbols # and % represent the number and the
percentage, respectively. 132

6.2 Comparison results between NAP and NAPath. 134
6.3 Comparison between NAP and NAPath using updated formulas

for computing performance metrics. 135
6.4 Size of training set, validation set, and test set, for each class. . . 137
6.5 NN configurations and accuracies 140
6.6 Alarms rates for the network N1 144
6.7 Alarms rates for the network N2 144

xi

xii List of Tables

List of Figures

2.1 A general learning process of AI algorithms. 20
2.2 Example of a neural network. 21
2.3 An illustration of the connection of a layer li to its preceding and

succeeding layers. 22
2.4 Example of a CNN. 25
2.5 Example of an RNN. 26
2.6 Illustration of the overall process of formal verification methods. 31
2.7 Complete formal verification - General overview. 32
2.8 Incomplete formal verification - General overview. 32
2.9 Complete formal verification of neural networks. 38
2.10 Incomplete formal verification of neural networks. 39
2.11 An example showing the state-space explosion of ReLU-NN

verification. 41
2.12 Main phases and general process of the runtime monitoring. . . 45

3.1 Illustration of the state-space explosion: for two ReLU nodes, case
splitting leads to four linear subproblems. 51

3.2 The activation function Sigmoid (σ) and its abstraction on x ∈
[−2,2]. The solid line represents y = σ (x) and each small region
(yellow rectangles) is an over-approximation of y (Pulina et al.
2010). 53

3.3 ReLU activation function abstractions using different abstract
domains. The ReLU (y = relu(x)) is represented by the green line
and its over-approximation on the range x ∈ [l,u] by the blue filled
area. 55

3.4 Model reduction of a small neural network. 56
3.5 The abstract network using INN method (Prabhakar and Rahimi

Afzal 2019) and ANN (Sotoudeh et al. 2020). For v(s1) = 1, v̂(s5) =
[0,17], and we have v(s5) ∈ v̂(s5). 57

3.6 The abstract network using the method of Elboher et al. (2020).
For v(s1) = 1, v(s5) = −2, v̂(s5) = 12, and we have v(s5) ≤ v̂(s5). . . 59

3.7 Counterexample of Elboher et al. (2020) abstraction method. . . 65

4.1 An example explaining how to replace the bias vector by a weight
vector. 74

4.2 An example of an INN of three layers. 76

xiii

xiv List of Figures

4.3 An example showing the transformation of an NN (a) to an
equivalent INN (b). 76

4.4 An example explaining the main idea of the proposed approach,
where the incoming weight to the abstract node ŝ is: ŵl =
min{sign(c)× a,sign(d)× b} and ŵu = max{sign(c)× a,sign(d)× b}. 77

4.5 An example of the abstraction method applied on two neurons
of a hidden layer li . For v(si−1,1) = 1, we have v(si+1,1) = 0 and
v(si+1,2) = 5, v(ŝi+1,1) = [−10,15] and v(ŝi+1,2) = [−4,6]. Hence, the
over-approximation is fulfilled, since v(si+1,k) ∈ v(ŝi+1,k) for k = 1,2. 79

4.6 A counterexample of applying Algorithm 2 on a ReLU-NN. . . . 84
4.7 The application of the proposed model reduction method on a toy

example of NN. 93

5.1 The organization of the experimental study. 101
5.2 An illustration of the MNIST benchmark 103
5.3 A representation of the sensors measurements inputs of the ACAS

Xu networks. 103
5.4 Total computation time, IBP and abstraction time obtained on

randomly generated Tanh-NN. 106
5.5 Output range results on randomly generated Tanh-NNs. 106
5.6 Total computation time, IBP and abstraction time results on

MNIST Tanh-NN. 107
5.7 Output ranges on MNIST Tanh-NN. 107
5.8 Output range results on ReLU-NN. 113
5.9 Total computation time, IBP and abstraction time results on ReLU-

NN. 113
5.10 The total computation time and the abstraction time for INNAbstract,

NoNeg, and INN on ReLU-NN. 113
5.11 Output range results on ACAS Xu ReLU-NN. 114
5.12 Total computation time, IBP and abstraction time results on ACAS

Xu ReLU-NN. 114
5.13 The total computation time and abstraction time results of

INNAbstract, NoNeg, and INN on ACAS Xu ReLU-NN. 114
5.14 A graph representing the improvement of the output range using

the proposed heuristic. 115
5.15 The Output range and the abstraction time on ReLU-NNs with

random and heuristics based selection strategies. 115

6.1 An example showing the NAPath of an input x on a neural network.123
6.2 The general structure of the monitoring system. 125
6.3 The flowchart of the NAPathing phase. 126
6.4 The flowchart of the the monitoring procedure using NAPaths. . 128
6.5 The number of active paths for different values of δ (0.8, 0.85,

0.90, 0.95). 130
6.6 The number of inputs following the NAPath for different values

of δ (0.8, 0.85, 0.90, 0.95). 131

List of Figures xv

6.7 The rate of correct alarms and correct reclassification for different
values of p. 133

6.8 The rate of false and missed alarms for different values of p. . . . 134
6.9 Example images depicting foggy weather condition. 137
6.10 Example images depicting rainy weather condition. 137
6.11 Example images depicting snowy weather condition. 137
6.12 Example images depicting sunny weather condition. 137
6.13 The general architecture of the used networks for classifying

weather conditions. 138
6.14 Details about the used networks (ONNX) format. 139
6.15 The number of active paths for N1 across different values of δ . . 141
6.16 The number of covered inputs by the NAPaths of N1 across

different values of δ . 142
6.17 The number of active paths for N2 across different values of δ . . 142
6.18 The number of covered inputs by the NAPaths of N2 across

different values of δ . 143

xvi List of Figures

List of Acronyms

ACAS Xu Airborne Collision Avoidance System Xu
AI Artificial Intelligence
BaB Branch and Bound
CNN Convolutional Neural Networks
DL Deep Learning
FM Formal Methods
FFNN Feed-Forward Neural Networks
ML Machine Learning
MNIST Modified National Institute of Standards and Technology
NN Neural Network
ReLU Rectified Linear Unit
RNN Reccurent Neural Networks
ReLU Rectified Linear Unit
SAT Satisfiability problem
SMT Satisfiability Modulo Theories
SVM Support Vector Machine
Tanh Hyperbolic Tangent
UNSAT Unsatisfiable

xvii

xviii List of Acronyms

Chapter1
Introduction

Outline of the current chapter

1.1 General Context 2

1.2 Problem Statement 5

1.3 Main Contributions 8
1.3.1 Neural Networks Abstraction 8

1.3.2 Neural Networks Monitoring 9

1.4 Outlines 11

1.5 List of Publications 12

1

2 CHAPTER 1. Introduction

1.1 General Context

Today, Artificial Intelligence (AI) has become an ubiquitous term, reflecting

its broad range of applications and its growing impact across various domains.

Indeed, AI has been successfully employed to handle various tasks that are

playing a significant role in our daily lives, ranging from daily applications like

voice assistants, predictive text auto-completion and personalized recommendations

for articles and videos, to complex applications in healthcare, finance, and

autonomous transportation systems (Zhang and Lu 2021).

Despite its current prominence, AI is not a novel concept. The first use of the

term AI can be traced back to the 1950s. At the Dartmouth Conference in 1956,

John McCarthy defined the AI problem as follows: “For the present purpose, the
artificial intelligence problem is taken to be that of making a machine behaves in ways
that would be called intelligent if a human were so behaving” (McCarthy et al. 1955).

Nowadays, there exist many definitions of AI. (Rich 1983) stated that: ”AI is the
study of how to make computers do things at which, at the moment, people are better.”.

The European Commission Joint Research Centre1 defines AI as ”any machine
or algorithm that is capable of observing its environment, learning, and based on the
knowledge and experience gained, take intelligent actions or propose decisions” (Nativi

et al. 2019). Despite this number of definitions, the majority of them technically

agree that AI includes a set of techniques and methods designed to mimic the

intelligent behaviors of the living beings, including human brain, insects, etc

(Sheikh et al. 2023). Algorithms such as Artificial Bee Colony (Karaboga et al.

2014), Ant Colony Optimization (Dorigo et al. 2019), and Genetic Algorithm

(Lambora et al. 2019) are widely applied to solve several optimization problems.

In the last decade, artificial neural networks (or shortly Neural Networks

(NNs)) have witnessed huge success stories. NNs rely on imitating the learning

behavior of the human brain from past experiences and its ability to analyze data.

NNs are widely used in solving complex problems in various domains: natural

language processing, computer vision, healthcare, etc. (Liu, Wang, et al. 2017).

These successful applications motivated people to deploy AI in some safety-

critical systems such as transportation systems. Indeed, AI can be applied in

different development stages and operational phases of transportation systems,

helping them to be safer and more comfortable. For instance, AI can be applied

to identify risks, avoid traffic congestion, reduce CO2 emission, and optimize

the utilization of equipment and infrastructure (Tang, De Donato, et al. 2022b;

1https://publications.jrc.ec.europa.eu/

https://publications.jrc.ec.europa.eu/

1.1. General Context 3

Wäschle et al. 2022).

The accomplishments of AI dealing with tasks that typically require human

intelligence motivated people to integrate these techniques in safety-critical

systems, such as transportation systems. The railway domain is no exception, as

AI has found utility in numerous tasks, including maintenance and inspection,

traffic management, passenger mobility, autonomous driving and control, just

to name a few (Tang, De Donato, et al. 2022a). The purpose of applying

AI in the railway domain is to efficiently exploit the railway infrastructure

leading to an improved performance and capacity. AI can also be used to

help build sustainable transport by reducing the energy consumption and CO2

emissions. All this should enhance the services’ quality for a better and safer

travelling experience (Trentesaux et al. 2018a). One highly illustrative instance

of AI application in railway remains the pivotal role in the automation and

digitalization of train operations. The underlying goal is toincrease punctuality,

expand mobility, enhance safety, reliability, and ultimately improve the overall

capacity of existing rail networks.

From the AI technology viewpoint, numerous techniques and tools have the

potential to contribute significantly in improving the performance of different

Railway modules. Techniques such as Support Vector Machine (Gibert et al. 2015;

Hua et al. 2020) and Particle Swarm Optimization (PSO) (Pu et al. 2019), Ant

Colony Optimization (ACO) (Zhang, Yuan, et al. 2018), and Genetic Algorithm

(GA) (Brenna et al. 2016; Hickish et al. 2020) have been employed in different

Railway activities such as, for instance, traffic and planning management, energy

management, scheduling, maintenance and infrastructure monitoring, etc. (Tang,

De Donato, et al. 2022a). However, the major research efforts focus on applying

computer vision and pattern recognition methods, specifically, neural networks

(NNs) due to their fast improvements and their achievements in dealing with

large image-data (Ristić-Durrant et al. 2021). Indeed, NN-based techniques are

applied for Railway maintenance and inspection (Gibert et al. 2017; Yang, Wang,

et al. 2022), environment monitoring and autonomous driving (Hadded et al.

2022; Mahtani et al. 2020), and on-board events’ monitoring (Laurendin et al.

2021; Velastin et al. 2017).

This surge of interest in deploying AI for automating trains has also been

witnessed by numerous international and national projects, where most of them

involve collaboration between academia and industry. Prominent initiatives

4 CHAPTER 1. Introduction

like X2Rail-42, TAURO3, SafeTrAIn4, and R2DATO5 are few examples showing

the huge interest of different actors in applying AI for the digitalization and

automation of the railway domain. In France, the ambition of autonomous

trains targets several improvements in the railway system, including the overall

safety level as presented in (Lagay et al. 2018). In early 2017, the Directorate of

Railway Systems at SNCF (French Public Sector Undertaking for National Railways)
initiated a technological program called Tech4Rail to build the fundamentals of

future autonomous railway systems and to prepare the deployment of the safe

autonomous and semi-autonomous trains (see (Lagay et al. 2018; Masson et al.

2019; Trentesaux et al. 2018b)). Within the framework of the Autonomous Train

program at the Railway Technological Research Institute – Railenium (with

industrial and academic partners), two consortia have launched three major

projects in this direction, setting their sight to develop, respectively, a remote

driving train (TC-Rail project), an autonomous freight train (TFA project), and

an autonomous passenger train (TASV).

While artificial intelligence and neural networks have the ability to become

an overwhelmingly beneficial utility for railway transportation and mobility,

yet their trustworthiness and safety assurance require a particular attention.

Indeed, the use of AI in general, and in railway particularly, gives rise to

numerous challenges and multidisciplinary issues, encompassing ethical, social,

economic, and technical dimensions (De Donato et al. 2022). From the safety

viewpoint, the main technical issues that are limiting the safe integration of AI

(and particularly NNs) in the context of autonomous trains are related to their

vulnerability and sensitivity (robustness), as well as to their black-box nature

(explainability). While robustness6 is used to describe the ultimate ability of

an AI system to maintain its level of performance under any circumstances

including external interference (e.g., adversarial attacks) or harsh environmental

conditions (ISO/IEC TR 24028 2020), explainability (known as XAI) is presented

as an attribute of the transparency of an AI system, and represents the degree

to which a stakeholder with defined needs can understand the reasons of an AI

model’s output (DIN-SPEC 92001 2020).

As safety is a major requirement in railways, as well as in other critical

2https://projects.shift2rail.org/s2r_ip2_n.aspx?p=X2RAIL-4
3https://cordis.europa.eu/project/id/101014984
4https://safetrain-projekt.de/en/
5https://projects.rail-research.europa.eu/eurail-fp2/
6Another definition of robustness is the capability of an AI module to cope with erroneous,

noisy, unknown, or adversarially constructed date (DIN SPEC 92001-2:2020).

https://projects.shift2rail.org/s2r_ip2_n.aspx?p=X2RAIL-4
https://cordis.europa.eu/project/id/101014984
https://safetrain-projekt.de/en/
https://projects.rail-research.europa.eu/eurail-fp2/

1.2. Problem Statement 5

transport systems, sophisticated risk management and safety assurance processes

must be developed to integrate AI techniques in the whole life cycle of such

systems (De Donato et al. 2022). In the the last few years, several research

works, R&D projects, and standardization initiative are proposed to set up

processes, approaches and tools for the safety assurance and certification of

systems integrating AI, particularly NNs (Hawkins et al. 2021; Koopman et al.

2019; Mamalet et al. 2021; VDE-AR-E 2842-61 2021).

1.2 Problem Statement

The evaluation and verification of NNs, as part of their safe design and

deployment, becomes a hot topic, especially with the recent studies showing

their sensitivity and vulnerability to operational conditions (adversarial attacks,

environment conditions, etc.). Test-based verification (testing for short), formal

verification, and runtime monitoring are three key verification activities for

assuring the safe and reliable deployment of neural network systems. Testing

utilises the verification data to demonstrate that the model generalises to cases

not present in the model learning; concretely, it involves evaluating the trained

model through the process of comparing the predictions made by the model

on various data sets to the actual labels in the data, with respect to given

performance metric (Goodfellow, Bengio, et al. 2016). Formal verification

involves using mathematical techniques to prove that the learnt model satisfies

formally-specified properties (Gehr et al. 2018; Katz, Barrett, et al. 2017).

When formal verification is applied, counter-examples are typically generated

which demonstrate the properties that are violated (Hawkins et al. 2021).

While testing and formal verification are performed during the system design

phase, monitoring is an ongoing runtime activity performed during the system

operational phase. It involves real-time tracking of inputs, the performance and

the behavior of the model (Cheng, Nührenberg, and Yasuoka 2019). For instance,

inputs can be monitored with appropriate statistical techniques to make sure

that they are close to the training data distributions (Hawkins et al. 2021).

Despite its importance in ensuring the accuracy and the reliability of NN,

test-based approaches for NN verification suffer from several limitations that

may impact their effectiveness. These approaches rely on a set of data, commonly

referred to as the test set, which does not cover all possible cases the system may

encounter during operation its operational phase. Additionally, although testing

may offer insights into the network’s performance, such performance depends

6 CHAPTER 1. Introduction

highly on the used test set, and the obtained results remain valid only on this

set. Consequently, a high accuracy achieved by a network on a specific test set

does not provide any formal guarantees regarding its behavior when processing

new, unseen inputs. This issue becomes more obvious with adversarial attacks,

where even slight modifications to inputs can deceive the network to generate

wrong and unpredictable outputs (Xu, Ma, et al. 2020).

To overcome the limitation of NN testing, researchers are exploring formal

verification as complementary activity to enhance the reliability and safety of

neural network systems. Indeed, while testing can enhance the ability of a

system to maintain its level of performance under varying conditions, proving it

requires some form of formal analysis.

Conventional approach to using formal methods consists in three main steps:

(i) the system to be analysed is formally defined in a model that precisely captures

all possible behaviors of the system, (ii) the property of the requirement to be

verified is defined or specified using a formal language; and finally, (iii) a formal

technique, such as solver, abstract interpretation or model checking, is used to

assess whether the system meets the given property, yielding either a proof or

a counterexample. Standard ISO/IEC 24029-2:2022 provides a methodology,

including recommendation and requirements, on the use of formal methods to

assess properties related to the robustness of neural networks during their life

cycle.

In the research literature, many works have been proposed to adapt formal

verification methods to evaluate the safety and the correctness of NNs (Urban

et al. 2021). The first attempts toward verifying NNs were based on transforming

the NN verification problem into a Satifiability problem (SAT) and use solvers

on the shelf to check the desired properties (Ehlers 2017; Huang, Kwiatkowska,

et al. 2017; Katz, Huang, et al. 2019). Another similar works consider encoding

the verification problem as a Linear Programming(LP) problem and then use

Mixed-Integer Linear Programming (MILP) (Cheng, Nührenberg, and Ruess

2017; Dutta et al. 2018; Lomuscio et al. 2017; Tjeng et al. 2019). These methods

(SAT/SMT MILP) provide a definitive answer on the compliance of the NN to the

property of interest, at the price of a greatly increased computational complexity

(i.e., state explosion problem that hamper them from scaling well to verify large

networks). As a result, other research were directed toward abstracting and

over-approximating the behavior of the network using techniques like Abstract

Interpretation and bound propagation to provide an answer subject to a degree

of uncertainty (Eramo et al. 2022). The abstraction of the network’s behavior

1.2. Problem Statement 7

helps making the verification process more scalable, and thus, can be used to

verify larger networks (Ashok et al. 2020; Boudardara, Boussif, Meyer, et al.

2022; Elboher et al. 2020; Gehr et al. 2018; Prabhakar and Rahimi Afzal 2019;

Wang et al. 2018a,b; Xiang et al. 2020).

Another significant aspect of NN evaluation and verification is pertaining

to monitoring NN during its operational phase. Runtime monitoring provides

a more realistic and applicable alternative to verification in the setting of real

neural networks used in industry (Hashemi, Křetínskỳ, Rieder, et al. 2023). This

involves the construction of a separate model, namely the monitor, that operates

alongside the network to oversee its behavior and performance. The construction

of the monitor is an important step, as it directly influences the efficacy of

the whole monitoring process. For NN, the idea is to build a monitor that

captures some of the features learned by the network. Then, this monitor is used

to continuously observe and supervise the network and compare its behavior

against the expected one. It is designed to identify deviations, anomalies, or any

degradation in its performance that may indicate a malfunction or a breach of

the desired behavior. Additionally, it can be particularly useful for detecting

out-of-distribution (OOD) inputs, for which the network was not trained and

can yield erroneous results (Hashemi, Křetínskỳ, Rieder, et al. 2023). Concretely,

when the monitor identifies a misbehavior, such as misclassificaiton or unusual

patterns, it promptly raises an alarm to inform the control unit (responsible

individual or another systems). These alarms serve as notifications, alerting of

the existence of a malfunctioning or an undesired behavior.

Although such evaluation techniques exist, NN evaluation presents significant

challenges. Namely, it suffers from the lack of formal verification tools suitable

to check properties on the generated networks. This is mainly related to the

complexity of the NN models, e.g., NNs used in autonomous trains. The

complexity is mainly related to the NNs architectures, the large number of

parameters, the non-linearity of functions, and the size of the networks in

terms of the number of layers and neurons. Furthermore, the available NN

verification methods face issues when it comes to scaling up and handling real-

world sized networks. The complexity and the non-linearity of NN models make

the verification process computationally expensive and resource-demanding. As

a result, the scalability of these methods becomes a significant concern.

Additionally, the challenges faced by existing NN verification techniques

include difficulties in formally expressing certain specifications of interest on

NNs. This lack of formal specifications becomes particularly crucial when

8 CHAPTER 1. Introduction

dealing with perception modules (Leucker 2020). For instance, ensuring that

all images of a stop sign are correctly classified as a stop sign by the network

is a desirable verification specification. However, such a specification cannot

be formally expressed. This is due to the inherent difficulty in mathematically

representing all the possible forms of an image of a stop sign.

Finally, one can point out that even NN verification remains insufficient for

the assurance of safe operations of the NN models; and thus, runtime verification

and monitoring are needed to supervise the NN during the operation phase.

1.3 Main Contributions

In this section, we present a general overview of our contributions addressing

the aforementioned challenges and issues related to both the deployment of NN

in safety-critical systems and the evaluation of such models (networks). More

precisely, our contributions mainly focus on NN abstraction and NN monitoring.

1.3.1 Neural Networks Abstraction

To tackle the non-scalability issue of the existing NN verification methods, we

propose two abstraction approaches based on model reduction. The main idea of

the approaches is to abstract the network by reducing its size, allowing for a fast

and more scalable verification process. This is achieved by merging its neurons

while maintaining an over-approximation relationship with the original network.

This relationship helps to straightforwardly lift the correctness proof from the

reduced to the original network. To mitigate the loss of precision resulting

from the abstraction, we propose a heuristic for nodes selection. Integrating

this heuristic with the proposed approaches aim to enhance the precision of

the abstract network, and yields tighter output range bounds (on the abstract

network).

The first proposed approach is called INNAbstract. It is based on Interval

Neural Networks (INN) and aims to ensure that the output of the original

network is within the obtained abstract network’s output, i.e., N (x) ⊆ N (x).

INNAbstract can be applied on NN with numerous activation functions,

including monotone odd activation functions and the ReLU function. To

construct such abstract networks, INNAbstract explores the signs of the weights

in the original NN and represents the weights of the abstract NN as intervals.

Specifically, the abstract outgoing weights are the sum of the absolute values of

1.3. Main Contributions 9

the corresponding weights in the original network, and the incoming weights

are intervals represented by the minimum and the maximum of the signs of

outgoing weights multiplied by the corresponding incoming ones in the original

network.

Our second model reduction approach supports NNs with non-negative

activation functions, such as ReLU and Sigmoid. The abstraction process is

performed in two main steps: removing negative weights and then merging

neurons. The first step involves building an initial abstract network by

eliminating edges that have negative weights. The second step involves merging

the selected set of neurons and replacing it with a single abstract neuron. Upon

neurons’ merging, the weights of the obtained abstract neuron is calculated as

follows: the outgoing weights correspond to the sum of the absolute values of

the outgoing weights of the selected neurons, and the incoming weights are the

maximum values over the incoming weights. This guarantees that the output of

the abstract network is always greater or equal to the original network’s output.

The proposed approaches are implemented as Python software tool, which

is used to perform some experimental studies. The experiments are used to

evaluate the efficiently and the scalability of our approaches, firstly on randomly

generated NNs and then on two well-known benchmarks, namely MNIST (LeCun

1998) and ACAS Xu (Kochenderfer 2015). Additionally, a comparison study

between our approaches and other selected approaches from the literature is

performed. The obtained results through this series of experiments show that

our approaches efficiently outcome the existing approaches on the literature.

Furthermore, the experiments also illustrates that the proposed heuristics for

INNAbstract can effectively improve its precision, i.e., INNAbstract with the

proposed heuristics generates more precise abstract NNs.

1.3.2 Neural Networks Monitoring

The second part of contributions lies in a monitoring approach for NNs used

in image classification. Since formally verifying such models remains an open

challenge, their monitoring become an important alternative. For instance, when

it is not possible to formally express properties on NN like in image classification,

the NN monitoring can be used to provide some guarantees, and complement

the verification process. In this regard, the proposed approach is typically used

as a complementary to formal verification. The later is used before deploying

the network, while monitoring is meant to be run during runtime, in parallel to

10 CHAPTER 1. Introduction

the network execution.

In this topic, we propose an approach for monitoring NN with ReLU

activation function used for image classification. The approach is mainly used

to supervise the network’s outputs with respect to the input images. It relies

on extracting (learned) features by hidden neurons for each class of images,

and uses these features to supervise the network’s classification decision during

runtime. In our work, the features are represented as paths connecting the

input layer to the output layer of the network; this allows for maintaining the

dependency relationship between different layers of the network.

The NN monitor is synthesized through a paths’ extraction (NAPathing)

process. The objective of the NAPathing process is to extract patterns

(represented as paths) for each class. To do so, we divide the training set of

the network into subsets, where each subsets contains only images of the same

class. Then, for a single subset, the network is fed with all images to extract

neurons’ activations (active or inactive). Subsequently, neurons of two adjacent

layers whose activations are similar are connected to build paths. Hence, we

obtain a set of active paths (containing only active neurons) and a set of inactive

paths (containing only inactive neurons) for the class at hand. These two sets

constitute the NAPath of this class. This process is repeated for each class, to

finally obtain a set of NAPaths, where each NAPath is associated with a class

of images. Once the NAPathing phase is completed and the generated set of

NAPaths is validated, these NAPaths are used for monitoring the network during

runtime. The monitor supervises the classification decision made by the network;

it examines the consistency of the network’s decision with the extracted patterns.

Alarms are triggered by the monitor whenever it detects any abnormal behavior

in the network.

To evaluate the effectiveness of our approach, we performed a series of

experiments on NNs trained for digit classification on the MNIST dataset (LeCun

1998). The experimental results illustrate how the proposed approach enhances

efficiently the reliability and accuracy of the classification decision made by

the network. Additionally, we conducted a comparative analysis between our

approach and the closest one from the literature (Cheng, Nührenberg, and

Yasuoka 2019). According to the obtained results, our monitoring approach

demonstrates interesting performances.

1.4. Outlines 11

1.4 Outlines

The dissertation consists of four main parts, organized as follows:

PART I: this part contains two chapters. In the first chapter (Chapter 2) we

provide necessary preliminaries and background that will be used throughout

this dissertation. The chapter also includes a detailed overview of the context

of this thesis: NN evaluation approaches, particularly NN verification and

monitoring. Additionally, issues and challenges related to NN evaluation are

discussed in the same chapter. An extended literature review of model reduction

techniques applied to NNs (or NN abstraction) for verification purposes is

presented in the second chapter of this part (Chapter 3).

PART II: this part is dedicated to present our contributions regarding NN

model reduction. This part is composed of two chapters:

• Chapter 4: in this chapter we focus on the theoretical aspects of the

proposed approaches. First, we provide some relevant notations before

getting into the details of the approaches. Since we have two contributions

regarding model reduction, each contribution is presented in a separate

section, namely, Section 4.3 and Section 4.4. The former section introduces

INNAbstract, a general model reduction approach based on Interval

Neural Networks (INN) that supports a wide range of activation functions.

Section 4.4 discusses our second model reduction method for NNs with

non-negative functions. At the end of this chapter, we discuss relevant

related model reduction works.

• Chapter 5: this chapter is specifically dedicated to present the evaluation

study of our contributions, presented in the previous chapter. We evaluate

the two approaches on randomly generated networks with different sizes.

Additionally, we investigate the applicability of the approaches on two

well-known benchmarks, namely ACAS XU (Julian et al. 2016) and MNIST

(LeCun 1998). Furthermore, a comparison study is conducted on both

randomly generated NNs and on the selected benchmarks with relevant

model reduction methods from the literature.

PART III: in this part, we discuss our contribution related to NN monitoring.

This part contains two chapters:

12 CHAPTER 1. Introduction

• Chapter 6: this chapter discusses our contribution related to NN monitoring.

We begin by introducing a new concept, namely NAPath, to represent

hidden neurons’ activation. This concept is then used to build the

monitoring system for NN used in image classification. A detailed

explanation of the whole monitoring process is provided in this chapter.

To evaluate our approach, an experimental study is conducted on the

MNIST benchmark. Furthermore, in the same chapter, we illustrate a real

application of our monitoring approach on weather conditions’ recognition

networks developed within the TASV project.

PART IV: this part includes Chapter 7 that present some concluding remarks

regarding the dissertation contributions, and outlines potential avenues for

future research and perspectives relevant to the thesis’s topic.

1.5 List of Publications

Journals

1) Boudardara Fateh, Boussif Abderraouf, Meyer Pierre-Jean, and Ghazel

Mohamed (2023). INNAbstract: an INN-based abstraction method for
large-scale neural network verification. In: IEEE Transactions On Neural

Networks And Learning Systems (TNNLS), IF=10.4. DOI=10.1109/tnnls.

2023.3316551.

2) Boudardara Fateh, Boussif Abderraouf, Meyer Pierre-Jean, and Ghazel

Mohamed (2023). A review of abstraction methods towards verifying
neural networks. In: ACM Transactions on Embedded Computing Systems

(ACM TECS), IF=2.25. DOI=10.1145/3617508.

Conferences & Workshops

3) Boudardara Fateh, Boussif Abderraouf, Meyer Pierre-Jean, and Ghazel

Mohamed (2022). Interval Weight-Based Abstraction for Neural Network
Verification. In: Computer Safety, Reliability, and Security. SAFECOMP

2022 Workshops. DOI=10.1007/978-3-031-14862-0_24

4) Boudardara Fateh, Boussif Abderraouf, Meyer Pierre-Jean, and Ghazel

Mohamed (2022). Deep Neural Networks Abstraction using An Interval
Weights Based Approach. In: Confiance.ai Days 2022 Workshop. https:

//hal.science/hal-04024209/ (page 52).

https://ieeexplore.ieee.org/document/10271317
https://ieeexplore.ieee.org/document/10271317
https://dl.acm.org/doi/abs/10.1145/3617508
https://link.springer.com/chapter/10.1007/978-3-031-14862-0_24
https://hal.science/hal-04024209/
https://hal.science/hal-04024209/

1.5. List of Publications 13

5) Boudardara Fateh, Boussif Abderraouf, and Ghazel Mohamed (2024). A
sound abstraction method towards efficient neural networks verification.

In: In: Ben Hedia, B., Maleh, Y., Krichen, M. (eds) Verification and

Evaluation of Computer and Communication Systems. VECoS 2023.

Lecture Notes in Computer Science, vol 14368. Springer, Cham. DOI=10.1007

/978-3-031-49737-7_6

https://link.springer.com/chapter/10.1007/978-3-031-49737-7_6
https://link.springer.com/chapter/10.1007/978-3-031-49737-7_6

14 CHAPTER 1. Introduction

Part I

Background & Literature Review

Chapter2
Neural Networks and Formal

Verification

Outline of the current chapter

2.1 Introduction 18

2.2 Artificial Intelligence & Neural Networks 18
2.2.1 Basic Concepts . 20

2.2.2 Sensitivity & Vulnerability of Neural Networks . . . 27

2.3 Formal Methods & Formal Verification 28

2.4 Verification and Monitoring of Neural Networks 32
2.4.1 Neural Networks Verification 34

2.4.1.1 Expressing NN Properties for Verification . . 35

2.4.1.2 NN Modeling for Verification 37

2.4.2 Neural Networks Monitoring 44

2.5 Conclusion 48

17

18 CHAPTER 2. Neural Networks and Formal Verification

2.1 Introduction

In this chapter, we recall essential foundations pertaining to the formal

verification of neural networks as well as a literature review on the works

related to the NN verification and monitoring. We begin by examining the

fundamental principles of artificial intelligence (AI), with a specific focus on

neural networks (NNs). Then, we delve into the fundamental concepts of formal

methods, encompassing verification. Subsequently, we explore the application of

formal verification techniques to examine some features in the neural networks.

Concretely, this chapter is organized as follows:

1. AI & NN: in Section 2.2, we present the general concepts of artificial

intelligence with a main focus on neural networks. An important part

of this section will be dedicated to present the essential notations and

mathematical formulations, offering a deeper insight into the inner

workings of neural networks.

2. Formal verification & formal methods: Section 2.3 discusses the basics of

formal methods and the various verification techniques used to provide

formal guarantees on software and hardware systems.

3. Formal verification on NN: finally, in Section 2.4, we discuss the bridges

between the two research fields by introducing neural network verification.

In particular, we present a detailed formulation of the problem of verifying

neural networks. A literature review of NN verification and NN monitoring

is also provided in this section.

In each section, we provide necessary notations and definitions that will be

used through this dissertation. We provide a brief literature review of relevant

techniques within each section. Given that the main focus of this dissertation is

pertaining to NN evaluation, a detailed and comprehensive literature review of

NN evaluation methods, including NN verification and monitoring, is provided

in Section 2.4.1 and Section 2.4.2, respectively.

2.2 Artificial Intelligence & Neural Networks

Artificial intelligence (AI) is a specialized field within computer science aiming

to develop machines that are capable to perform tasks that typically require

2.2. Artificial Intelligence & Neural Networks 19

some human intelligence (Zhang and Lu 2021). AI systems achieve this

by either imitating certain intelligent behaviors observed in humans, or by

drawing inspiration from the processes of biological evolution. There exist many

definitions of the AI; however, with respect to the scope of this dissertation, we

opt for the definition presented by Besinovic et al. (2022): AI is the discipline
gathering all the aspects that allow an entity to determine how to perform a task
and/or make a decision based on the experience matured by observing samples and/or
by interacting with an environment, possibly competing against or cooperating with
other entities.

Machine learning (ML) as a sub-field of AI allows machines (or programs) to

learn and perform specific tasks from experiences without the need for explicit

rule-based programming. These learning experiences are derived from a set of

data called the training dataset. Based on their way of learning, ML techniques

are divided mainly into four categories: supervised learning, unsupervised

learning, semi-supervised learning, and reinforcement learning (Mahesh 2020).

For supervised learning, the training dataset is a collection of samples organized

as input-output pairs. The inputs are the features or attributes that describe the

sample, and the outputs represent the desired target or label associated with

that input. The purpose of an ML algorithm is to find a mapping function, also

called a model, that can accurately associate each input with the corresponding

desired output. When the targeted outputs are unknown, the term unsupervised

learning is often used. The goal of this sub-category of ML is to group inputs

sharing similar features into clusters (Berry et al. 2019).

An ML algorithm iterates over the training dataset and adjusts the model’s

parameters with the objective of minimizing the error between the desired

outputs (ground truth) and the predicted output by the model. This error

is mainly measured using a loss function. One of the core capabilities of ML

methods is their ability to generalize the learned input-output relationships (the

mapping function), allowing them to make predictions on unseen data. Notice

that there exist several ML techniques such as linear regression, decision trees,

clustering, support vector machines, and neural networks, etc. The selection of

the learning algorithm, loss function, and model’s architecture and parameters

depends on the ML technique and the application domain (Mahesh 2020).

The performance of a model is often measured by calculating its accuracy
in predicting unseen samples, which are referred to as the test set. This

accuracy measurements involves computing the rate (percentage) of the correct

predictions made by the ML model on the test set. Once the model achieves an

20 CHAPTER 2. Neural Networks and Formal Verification

acceptable accuracy, e.g., exceeds a predefined threshold, it is considered suitable

for deployment to reason on unseen samples. An illustration of the learning

process of ML model is presented in Figure 2.1.

Figure 2.1: A general learning process of AI algorithms.

Artificial neural networks, often abbreviated as neural networks (NN), stand

as one of the most widely used ML techniques. This technique has witnessed a

remarkable success in dealing with complex problems, like object detection and

recognition, natural language processing, etc (Liu, Wang, et al. 2017). Given the

extensive deployment of NN in AI-based systems applied in the railway domain

(Tang, De Donato, et al. 2022a; Yang, Wang, et al. 2022), we focus more on this

techniques in the subsequent sections of the manuscript. Firstly, we provide a

comprehensive background of NNs in the following section.

2.2.1 Basic Concepts

Neural networks have become a significant game changer in modern ML

techniques. NNs are known for their efficient capabilities of learning and

pattern identification, their high classification accuracy for testing datasets,

their ability to generalize from the training data to unseen examples, and their

adaptability to re-learn new patterns (transfer learning). As a results, NNs have

found widespread and successful application to solve different classification and

decision-making problems (Liu, Wang, et al. 2017).

NN are inspired by the way that the human brain works. Initially, the brain

captures signals from the surrounding environment by means of the sensory

organs likes eye, hand, tongue, etc. These signals are then propagated through

a network of connected cells, namely neurons, enables the brain to process,

interpret and output meaningful response about the received signals. Similarly,

an NN has an input layer to receive data (using captures), process these data by

propagating them through a set of connected computation units, namely nodes

2.2. Artificial Intelligence & Neural Networks 21

or neurons, and returns the final result via an output layer.

While there are numerous types and architectures of NNs, our primarily

focus is on Feedforward-Neural Networks (FFNN) (Bebis et al. 1994). This is

because other types of NN are often derived from FFNN for specific application

domains. In this dissertation, when there is no ambiguity, unless otherwise

specified, we will use the term NN to refer to FFNN.

A FFNN, or shortly NN, is a set of connected layers {l0, l1, . . . , ln}, where l0 is

the input layer, ln is the output layer, and li : i ∈ {1,2, . . . ,n− 1} represents the set

of hidden layers. Each layer li : i ∈ {0,1, . . . ,n} contains a set of nodes Si . Thus,

the set of nodes in the input and the output layers (vectors) are denoted by S0

and Sn, respectively. The number of nodes within Si is represented by |Si |. We

denote by sij the jth node within the ordered set Si .

For i ∈ {1, . . . ,n}, two successive layers li−1 and li are connected via a weight-

matrix W i for all 0 ≤ i ≤ n, such that: wijk = w(si−1,k , si,j) is the weight value

of the edge connecting the node si−1,k ∈ Si−1 to the node si,j ∈ Si , where k ∈
{1,2, . . . , |Si−1|} and j ∈ {1,2, . . . , |Si |} are indexes . A hidden layer li is associated

with a bias vector bi , such that bij is the bias of the node sij ∈ Si . Figure 2.2

depicts an example of an NN of with three-dimensional inputs, two-dimensional

outputs, and two hidden layers. In this example, the two hidden layers consist

of four and three hidden neurons, respectively.

x1

x2

x3

y1

y2

Hidden
layer 1

Input
layer

Hidden
layer 2

Output
layer

Figure 2.2: Example of a neural network.

Formally, a neural network of n layers can be seen as a function N : R|S0|→
R
|Sn|, where |S0| (resp. Sn|) represents the size of its input layer (resp. output

layer). N is a composition of vector functions zi : i ∈ {1,2, . . . ,n}, such that:

for an input x ∈ R|S0|, N (x) = zn(zn−1(. . . (z1(x)))), where zi : R|Si−1| → R
|Si | is the

22 CHAPTER 2. Neural Networks and Formal Verification

associated function of layer li , defined as:

zi(x) = α(ẑi) (2.1)

where:

ẑi(x) =W i ẑi−1 + bi (2.2)

In Equation (2.1), the function α is called the activation function, and thus zi
and ẑi are called activated and pre-activated values of x, respectively. In other

words, for i ∈ {1,2, . . . ,n}, N can be defined recursively as follows:

z0 = x

ẑi =Wi × zi−1 + bi

zi = α(ẑi)

N (x) = zn

(2.3)

Similarly, we define zi,j = α(ẑi,j) as the activation value of a neuron si,j (i.e., the

jth neuron of the ith layer), where ẑi,j is its corresponding pre-activation value.

Figure 2.3 illustrates the operations performed by the hidden node si1 of a layer

li .

Figure 2.3: An illustration of the connection of a layer li to its preceding and
succeeding layers.

There exist many used activation functions, and they are usually non-linear.

In the following we provide the definitions of some of these functions (Nwankpa

et al. 2018):

2.2. Artificial Intelligence & Neural Networks 23

1. The rectified linear activation unit (ReLU):

relu : R→R
+

relu(x) =max(0,x)
(2.4)

2. The hyperbolic tangent activation function (Tanh):

tanh : R→ [−1,1]

tanh(x) =
ex − e−x

ex + e−x
(2.5)

3. The Sigmoid activation function (σ):

σ : R→ [0,1]

σ (x) =
1

1 + e−x
(2.6)

As an ML technique, an NN learns to identify the mapping function that

associates inputs with the corresponding outputs from the training data and aims

to generalize this mapping relationship to make accurate predictions on unseen

data. The training process of NNs involves several key steps. First and before

starting the learning procedure, a set of parameters, namely hyper-parameters,

must be determined. This includes defining the dimensions of the input and

the output layers, determining the number of hidden layers and the number

of nodes within each layer, choosing an appropriate activation function, and

setting an initialization strategy to generate the initial weights matrices and

biases vectors of the network. Next, an iterative learning procedure is performed

to continuously fine-tune the weights and biases of the network. Within this

procedure, the following steps are executed:

1. Forward propagation: the network receives an input from the training

dataset and propagates it forward through the network’s layers. The value

of a neuron is computed based on this input data and the current weights

and biases of the network. This process is repeatedly performed on each

layer till the output layer.

2. Loss function calculation: the loss function calculates an error (also called

loss) value measuring the difference between the predicted output by the

network and the expected output (ground-truth). The goal of training a

network is to minimize this error.

24 CHAPTER 2. Neural Networks and Formal Verification

3. Back-propagation: to optimize the error calculated using a defined loss

function, an optimization algorithm is used to fine-tune the weights and the

biases of the network. Among the available algorithms, gradient descent

optimization or its variants are often selected. During this phase, the

gradient descent of the loss function with respect to each weight and bias

is calculated. These weights and biases are updated in a way that reduces

the error value.

The optimization process aims to find the optimal configuration of weights and

biases that minimizes the loss value and allows the neural network to accurately

generalize to unseen data. Once the network is trained, it is tested on a new

data (the test dataset) to evaluate its performance and assess its ability to make

accurate predictions on these samples. After testing, if the network achieves the

desired performance on the test set, it is deployed to be used in real systems. For

the verification phase, we assume that the network has been sufficiently trained

and its parameters, specifically weights and biases, are fixed.

It is worth mentioning here that there exist various architectures and

techniques that are derived from NNs, for instance, Convolution Neural

Networks (CNN), Recurrent Neural Networks (RNN), Residual Neural Network

(ResNet). (Liu, Wang, et al. 2017). In the following, we briefly present CNN and

RNN, respectively.

1- Convolution Neural Networks (CNN)
CNN are designed to efficiently process data presented in matrices, making

them well-suited in dealing with images, such as object detection and recognition

(Li, Liu, Yang, Peng, et al. 2022).

A CNN is composed of multiple layers. Generally, it contains a sequence of

convolutional layers followed by one or more dense layers (or fully-connected

layers). While both the convolutional and dense layers play crucial roles in the

CNN, the convolutional layers stand out as the fundamental building blocks

of this architecture (Wu 2017). In fact, convolutional layers are designed

specifically for processing data with grid-like structures (multidimensional

matrices), such as images. They work by using kernels (also known as filters)

that move systematically across the input data allowing for recognizing its

(relevant) features and patterns. Similar to FFNN, a convolutional layer may

have some biases. A convolutional layer is generally followed by a pooling

layer (max-pooling, average-pooling, etc.). The purpose of introducing such

operation is to reduce the spatial dimensions of the data while retaining its

2.2. Artificial Intelligence & Neural Networks 25

essential features. Finally, the fully-connected layers process the high-level

features extracted by the convolutional layers and learn to make predictions

based on them. The output from these layers leads to the final classification or

regression results. Figure 2.4 depicts an example of a CNN.

Notice that during training, the kernels’ values of the convolutional layers,

the weights of the fully-connected part of the network, and the existing biases

are adjusted (Wu 2017).

Figure 2.4: Example of a CNN.

2- Recurrent Neural Networks (RNN)

RNN are built in a way to save some information from previous layers for

later use (memory-based NN). This is achieved via recurrent connections, which

allow for creating a form of memory or temporal dependence. Additionally, and

unlike traditional FFNNs, RNNs are capable of handling sequences of data with

varying lengths, which makes this technique achieves astounding results across

various domains such as speech recognition, machine translation, speech-to-text

transcription, etc. (Lipton et al. 2015).

As depicted in Figure 2.5, an individual neuron within an RNN holds an

internal memory, often referred to as the hidden state. This state is designed

to store past values, which are subsequently employed in the computation of

the current output. The process of an RNN begins with the initialization of the

hidden state for each neuron.

When an RNN receives an input, presented as a sequence of data, it processes

this data one element at a time. For instance, in natural language processing,

a sentence is handled word by word. Upon processing each element within

the input sequence, the hidden states of the neurons are updated based on the

newly acquired information. Using these updated hidden states, the network

26 CHAPTER 2. Neural Networks and Formal Verification

generates an output relevant to the current input element. In the context of

natural language processing, this output might be a prediction of the next word

in the sentence.

These fundamental steps are reiterated for each element of the input

sequence. The hidden states are continually updated during each iteration and

are persistently employed in subsequent iterations. Ultimately, after processing

all elements in the sequence, the network produces its final output, which

depends on the specific task at hand (Sherstinsky 2020).

It is important to note that these steps provide a high-level overview of

how RNNs process sequential data. In practice, variants like Long Short-Term

Memory (LSTM) and Gated Recurrent Unit (GRU) have been introduced. More

details about RNNs and its variants can be found in the survey of Lipton et al.

(2015).

Figure 2.5: Example of an RNN.

NNs are widely used in different domains. For more details about different

architectures of NNs and their applications, the reader can refer to Liu, Wang,

et al. (2017). For instance, in image classification, the network is often called

image classifier. A definition of an image classifier is provided in Definition 2.1.

Definition 2.1 An image classifier is an NN used to classify images into predefined
classes. Similar to NN, an image classifier is defined as a function N : R|S0|→R

|Sn|

that maps an input image x ∈R|S0| to classification label cl = argmax
1≤j≤|Sn|

(Nj(x)), where

Nj : R|S0|→R is the score function for the jth class.

Here, argmax stands for the ”argument of the maxima” function. Such a function

is used to find the class-index j∗ that has the highest score Nj∗, i.e., for the given

input x, Nj ∗ (x) > Nj(x), ∀j ∈ {1,2, . . . , |Sn|} ∧ j , j∗. In Definition 2.1, the input

data (images) are in the form of multi-dimensional matrices. However, when

2.2. Artificial Intelligence & Neural Networks 27

working with FFNN, a process called vectorization is performed to transform

these multi-dimensional matrix inputs into equivalent vector inputs.

2.2.2 Sensitivity & Vulnerability of Neural Networks

Despite their successful achievements in solving various complex problems,

recent studies have demonstrated that NNs are vulnerable, and a small

perturbation on the inputs can lead the network to make incorrect and

unpredictable decisions, even for an NN with high accuracy metrics (Szegedy

et al. 2014). For instance, given an image classifier N : R|S0|→R
|Sn| and an

input-image x̂ from class cl (its real class). Although the classifier N has

correctly classified x̂ as class cl , i.e., argmax
1≤j≤|Sn|

(Ni(x̂)) = cl , it may be easily

fooled to misclassify a perturbed image of x̂ by introducing a small and

imperceptible perturbation ϵ (Kurakin et al. 2018; Xu, Ma, et al. 2020). This can

be mathematically expressed as:

∃x : ∥x − x̂∥p ≤ ϵ∧ argmax
1≤j≤|Sn|

(Ni(x̂)) = cl ∧ argmax
1≤j≤|Sn|

(Ni(x)) , cl (2.7)

where ∥.∥p refers to the distance measurement using an Lp norm1, and ϵ ∈R+ is

the perturbation’s threshold.

Due to the introduced perturbations, the obtained inputs are called

adversarial examples. Such inputs can occur naturally as a result of various

factors such as weather conditions, occlusions, or distortions in the environment,

etc. For example, in the context of object detection systems, if a camera

is partially obstructed or affected by adverse weather conditions like rain

or fog, the resulting images may contain perturbations that can lead to

misclassifications and false decision. Similarly, in autonomous driving scenarios,

environmental factors like shadows, reflections, or lighting conditions can

introduce perturbations that impact the performance of the object detection

system. In addition to this natural perturbation, there are also deliberate

adversarial examples carried out by human-beings. This type of adversarial

examples is often referred to as adversarial attacks. Such attacks involve

intentionally manipulating the input data to exploit the vulnerabilities of the

NN and deceive it into making incorrect predictions. Adversarial attacks can be

1An Lp norm measures the distance between to entities using the p-norm distance. For
instance L1 and L2 refers to as the Manhattan and the Euclidean distance measurements,
respectively.

28 CHAPTER 2. Neural Networks and Formal Verification

applied to various domains, such as image classification, speech recognition, or

natural language processing (Szegedy et al. 2014; Xu, Ma, et al. 2020).

The sensitivity and vulnerability of neural networks raise concerns about the

trustworthiness of these models when deployed in real-world systems. This issue

becomes particularly crucial in the context of safety-critical systems, such as

autonomous driving (Besinovic et al. 2022) and medical diagnosis (Litjens et al.

2017), where the correct functioning of NN is not only desirable but imperative.

To address this issue, several approaches have been proposed by adapting formal

verification methods to provide more safety assurance of NN (Huang, Kroening,

et al. 2020; Urban et al. 2021).

In the subsequent sections, we will first discuss formal verification methods

in a general context, and then we will focus on how these techniques can be

adapted for verifying NN.

2.3 Formal Methods & Formal Verification

Formal Methods (FMs) is a scientific discipline that includes a set of rigorous

mathematical techniques and approaches used to specify, model, design and

verify software and hardware systems. FMs can be used across all stages of

a system life-cycle, including requirements engineering, architecture, design,

implementation, testing, and maintenance (Clarke and Wing 1996). With the

growing utilization and increasing complexity of both hardware and software

systems, the probability of encountering subtle errors has significantly increased.

Moreover, such errors may be the source of money and time losses, and more

importantly they can even affect human lives such as in safety-critical systems

(SCS)2 (Grimm et al. 2018). Indeed, the design, development and operation of

safety-critical systems are subject to rigorous safety standards and regulations.

Such standards and regulations highly recommend (sometimes require) the

use of FMs to minimize the risk of failures that could lead to catastrophic

losses (CENELEC-EN50128 2011). Consequently, FMs have extensively applied

to increase the confidence in the correctness of SCS. For instance, FMs are

commonly used to ensure the safety of railway systems (Ferrari et al. 2022),

nuclear power plant control systems (Lawford et al. 2012), and automotive and

aviation systems (Woodcock et al. 2009).

Formal verification methods are used to formally check whether a system

2Safety-critical systems are systems in which the consequences of a failure or a malfunctioning
can harm human lives.

2.3. Formal Methods & Formal Verification 29

(represented by its model) satisfies a given specification or property. This

is achieved by either providing a proof of correctness of the property, or by

generating a counterexample witnessing the violation of the property at hand. To

this end, the formal verification procedure of a system often includes: modeling

the system’s behavior, formalizing the desired specification, and applying a

verification technique or engine to check the property on the system’s model

(Clarke, Henzinger, et al. 2018).

1. System modeling: this step involves building a model M which accurately

describes the system’s behavior. The model should capture the system’s

structure and the interactions between its components in a formal and

precise manner. Various modeling languages can be employed in formal

methods, depending on the nature of the system, the type of properties to

be verified, and the level of required details. A system can be expressed

using Finite-state machines (FSMs), Petri nets, or programming languages

with formal semantics. The choice of the modeling language is crucial,

and it should be adequate to describe the system’s behavior, and formally

express the specifications to be verified.

2. Specification formalization: this step consists in formalizing the desired

specification as mathematical property p. The specifications are expressed

using appropriate mathematical notations, such as temporal logics (e.g.,

LTL, CTL, etc.).

3. Verification algorithm: formal verification algorithms (or techniques) are

applied once the system model and the property are formally expressed.

Such algorithms aim to check whether the system model M satisfies some

property p:

M |=? p (2.8)

The verification technique often prove that the property p holds on M,

i.e., M |= p, or provides a counterexample (i.e., a scenario in the system

behavior) demonstrating that M ̸|= p.

The current state of the art in the field of formal verification, encompassing

both academic and industrial sectors, comprises a multitude of verification

techniques that are supported by software tools, including formal verification

techniques (or algorithms). For instance, Model Checking (MC), Theorem

Proving, Satisfiability Modulo Theories (SMT), and abstract interpretation are

30 CHAPTER 2. Neural Networks and Formal Verification

successfully applied to verify many complex systems (Fantechi et al. 2012;

Garavel 2012). In the sequel, we briefly present each of these techniques.

1. Model Checking (MC): is a widely used formal verification technique

that involves exhaustively exploring the state space of the system model

to check whether the investigated properties hold in all possible states. It

provides a systematic way to verify properties such as safety and liveness in

a finite-state or temporal logic framework (Clarke, Henzinger, et al. 2018).

2. Theorem Proving: is another formal method that employs mathematical

logic and reasoning to construct formal proofs. It allows for the

establishment of system properties by using formal deduction rules and

logical inference (Davis et al. 1962).

3. Satisfiability Modulo Theories (SMT): is a problem-solving technique

used to determine the satisfiability of logical formulas. SMT is a

generaliztion of the boolean Satisfiability probelm solving (SAT) by

handling multiple theories and formulas, involving real numbers, integers,

etc. SAT/SMT solvers play a crucial role in formal methods, especially in

the context of automated reasoning and verification, where they are used

to find solutions or counterexamples to logical formulae (Biere et al. 2009).

4. Abstraction interpretation: is a technique that aims to analyze systems

by abstracting certain details or aspects of the system while preserving

important properties. It allows for the efficient analysis of complex systems

by considering a simplified or abstract representation (Cousot et al. 1977).

The depicted diagram in Figure 2.6 outlines the general procedure of

applying formal verification to check whether a system satisfies a set of

specifications3. If M |= P , the procedure outputs a correctness proof of p on M,

otherwise, a counterexample is (often) generated as a demonstration that the

property does not hold. In the case of MC, the system’s model is often a transition

system (i.e., a finite state automaton), and the properties are formulated using

temporal logic. The verification algorithm exhaustively explores all states to

check if the property holds. On the other hand, in Theorem Proving, both the

model and the property are expressed using formal logic. Instead of exploring

states and transitions as in MC, Theorem Proving aims to construct a formal

proof using logical inference (Ouimet et al. 2007).

3As mentioned, the figure represents a general procedure; additional details can be
incorporated for each category of FMs.

2.3. Formal Methods & Formal Verification 31

Figure 2.6: Illustration of the overall process of formal verification methods.

Depending on the provided level of certainty and exhaustiveness in

determining whether a model satisfies a given property, formal verification

methods can be grouped into two main categories: complete methods and

incomplete methods.

1. Complete methods: this category of verification methods aims to provide

a deterministic answer (i.e., property is satisfied or not) by modeling the

exact and complete behavior of the system (i.e., without abstraction). When

a complete method indicates that a property is valid, it means that this

property holds under all possible scenarios (exhaustiveness). Similarly, if

the method returns that the property does not hold, it provides an actual

counterexample that demonstrates the property violation on at least a path

or a scenario in the model. A general process of complete verification

methods is illustrated in Figure 2.7. These methods exhaustively analyze

all possible states or behaviors of a system to prove whether the property

is satisfied or not. Thus, they are computationally expensive and may not

be feasible for large or complex systems (due to combinatorial explosion).

2. Incomplete methods: these methods are designed to offer improved

computational efficiency and scalability compared to complete methods,

addressing the resource-intensive nature of the latter. They often involve

the generation of an abstract model (i.e., reduced model), which represents

an abstraction of the system’s behavior. These incomplete methods

guarantee that whenever a property holds on the abstract model, it must

hold on the initial original model. However, owing to the inherent

approximation aspects, if an incomplete method indicates that a property

does not hold on the abstract model, it does not necessarily mean that

the property is false in the original model. Indeed, the generated

counterexample when the property does not hold may be spurious and

not a real counterexample in the original model (Cousot et al. 1977). As a

result, a refinement step is typically integrated into these methods. This

additional step attempts to reduce the abstraction level, thereby reducing

32 CHAPTER 2. Neural Networks and Formal Verification

Figure 2.7: Complete formal verification - General overview.

Figure 2.8: Incomplete formal verification - General overview.

the generated spurious counterexamples and enhancing the precision of

the generated abstract model. Figure 2.8 depicts the general procedure of

incomplete verification methods.

In the subsequent section, we will explore how these formal verification

methods are adopted to assess different properties of neural networks.

2.4 Verification and Monitoring of Neural Networks

Despite the widespread use of NNs in various domains, deploying them

in safety-critical systems raises many concerns due to the high safety and

dependability requirements of these systems. Thus, there is a growing demand

2.4. Verification and Monitoring of Neural Networks 33

on developing rigorous methods for verifying and evaluating NNs. This demand

becomes particularly crucial given the vulnerability and the sensitivity of NN to

adversarial attacks.

In this context, several techniques have been suggested in order to ensure

the safety and the dependability of NN. These techniques can be classified, with

respect to the system life-cycle, into two categories, which are:

1) Offline evaluation (during the design phase): this category includes

testing and formal verification of NNs. Testing involves checking the

performance of the trained network on a set of data known as test set. On

the other hand, NN verification consists of applying formal verification

methods to formally prove (or disapprove) the correctness of a set of

properties on the network. Both testing and formal verification are

performed before the deployment of the network. Indeed, the network

must have an acceptable accuracy (the percentage of outputs that match

the predicted ones), and verify the defined formal properties before its

deployment (Huang, Kroening, et al. 2020).

2) Online evaluation (during the runtime phase): techniques that belong to

this category are often called monitoring techniques. Monitoring allows

for real-time tracking of the behavior and the performance of the network

during runtime. The purpose of monitoring is to identify any abnormal

behavior or degradation in performance exhibited by the network. A

monitoring system typically consists of a pre-processing phase and an

execution phase. During the former phase, a monitor module is developed.

This module defines the metrics, properties, or criteria that will be used

to supervise the network’s behavior and performance. It establishes a

set of guidelines (rules) to distinguish normal or expected behaviors of

the network from those that are considered outliers or abnormal. In the

execution phase, the monitor module is executed in parallel with the

network. It continuously observes the inputs, outputs and internal states

of the network, and then analyzes them in real-time. The monitoring

system compares the observed behavior against the predefined metrics or

criteria to assess the network’s performance. If any anomaly or abnormal

behavior occurs, the monitoring system raises warnings to immediately

notify the decision and control unit (Cheng, Nührenberg, and Yasuoka

2019).

After this brief introduction to NN evaluation, the following sections provide

34 CHAPTER 2. Neural Networks and Formal Verification

further details about these approaches and review the related scientific literature,

with a main focus on NN verification and NN monitoring.

2.4.1 Neural Networks Verification

The evaluation of NNs has primarily centered around traditional testing. NN

testing consists in evaluating the performance and the behavior of a trained

network using a set of data samples. These data, referred to as the “test dataset”,

consist of new samples that the network has not encountered during its training

phase. During testing, the network takes inputs from the test dataset iteratively

and produces corresponding outputs (predictions or classifications). These

outputs are then compared to the actual/expected outputs (ground-truth) of

the test dataset. Finally, after processing all the input data, the accuracy of

the network is calculated to measure its performance. This metric is a rate

(percentage) calculated by dividing the number of correct predictions by the

total number of samples (or the size of the test dataset) (LeCun et al. 2015).

Another interesting set of methods focuses on testing NNs against corner

cases inputs. The generation of such inputs, namely adversarial example

(Section 2.2.2), is based on sophisticated algorithms such as Fast Gradient Sign

Method (FGSM) (Goodfellow, Shlens, et al. 2014), Basic Iterative Method (BIM)

(Kurakin et al. 2018), Projected Gradient Descent (PGD) (Madry et al. 2017),

Carlini and Wagner (CW) attacks (Carlini et al. 2017), and others (Akhtar et

al. 2021; Chakraborty et al. 2021). Similarly to traditional testing, the goal of

this family of techniques is to check the performance of the network on these

generated samples.

While both testing on a data set and against adversarial examples remain

important and essential steps in evaluating NN, they both fail to provide formal

guarantees about the absence of inputs that may fool the network. Indeed,

testing does not cover the whole behavior of the network since it is restricted to a

limited test set (lack of exhaustiveness). Indeed, a tiny perturbation of inputs can

lead the network to drastically change the corresponding output. For instance,

adding a small imperceptible perturbation to an image may lead the network

to misclassify the perturbed image. Therefore, formal verification of NN has

become crucial to complete and support the traditional testing in providing

confident guarantees about the NN performances and behaviors. Indeed, these

methods aim to obtain formal guarantees about the correctness of the model

with respect to a set of desired properties.

2.4. Verification and Monitoring of Neural Networks 35

Generally, formal verification consists of checking whether a model M of the

considered system satisfies a defined property p.

M |=? p (2.9)

As discussed in the previous section, this involves three main steps: (i) modeling

the system, (ii) formalizing the desired specification, and finally (iii) applying an

adequate verification algorithm to check whether or not the system model M

satisfies the property p.

Similarity, NN verification consists of modeling the network’s behavior,

expressing the properties using mathematical notations (and languages), and

then applying a verification engine to check whether the property p holds on the

network’s model N , or not. This is formulated as:

N |=? p (2.10)

In the sequel, we outline various formulations of NN properties, and then we

discuss different approaches to solve and verify them.

2.4.1.1 Expressing NN Properties for Verification

As highlighted in the survey conducted by Leofante et al. (2018), the works

and studies regarding the verification of NNs have mainly focused on three

fundamental types of properties:

1. Invertibility: this property considers one single network N , an input and

an output regions defined by their respective constraints pre and post. For

any given output y =N (x) that satisfies the constraints post, the property

expresses whether the corresponding input x satisfies the set of constraints

pre. This property is formulated as:

∀y, ∃x : (post(y)∧ y =N (x)) =⇒ pre(x) (2.11)

2. Invariance: this property also focuses on verifying a single networkN with

respect to a set of constraints pre and post that define an input region and

an output region, respectively. The objective of this property is to ensure

that for all inputs that satisfy the constraints pre, their corresponding

outputs generated by N also satisfy the constraints post. Equation (2.12)

36 CHAPTER 2. Neural Networks and Formal Verification

provides the formal definition of the invariance property.

∀x, ∀y : (pre(x)∧ y =N (x)) =⇒ post(y) (2.12)

3. Equivalence: while the invertibility and the invariance properties consider

only one network, the equivalence property involves two networks N1

and N2. The aim of this property is to check whether these networks are

equivalent with respect to some defined input and output regions. For

an input region defined by a set of constraints pre, and an output region

defined by a set of constraints post, we seek to check if: for all inputs

satisfying the input-constraints pre, and their corresponding outputs

obtained using N1 and N2 satisfy the output-constraints post, are the

outputs of N1 and N2 equal? In other words:

∀x, ∀y1, ∀y2 :

(pre(x)∧ y1 =N1(x)∧ post(y1)

∧ y2 =N2(x)∧ post(y2)) =⇒ y1 = y2

(2.13)

It is important to note that the invariance property, also known as input-

output relation property, is the most used in NN verification. This property is

used to verify safety property such as properties on Aircraft Collision Avoidance

System (ACAS Xu) system (Katz, Barrett, et al. 2017; Kochenderfer 2015), as well

as to check the robustness of image classification networks (Meng et al. 2022).

The set of constraints pre and post can take various forms. However, due to

the current limitations of available verification tools, these constraints are often

expressed through first-order logic formulas. Thus, the regions defined by the

set of constraints pre and post have often polytopic forms4.

For image classifiers, that are networks used in classifying images into some

pre-defined classes, the robustness property is widely investigated to verify

that the network is robust against adversarial examples (see Equation (2.7)).

A classifier N is considered robust for an input image x0 of a class ci , if it

consistently assigns the label ci to all inputs within a small region surrounding

4A polytope is a generalization of a polygon (2D) and a polyhedron (3D) to higher dimensions.
It is defined by a finite set of linear inequalities or equations that specify its shape.

2.4. Verification and Monitoring of Neural Networks 37

x0. The robustness verification problem can be formulated as:For x0 ∈Dx :N (x0) = ci

pre(x) : ∥x − x0∥p ≤ ϵ =⇒ post(y) : y = ci
(2.14)

In Equation (2.14), ϵ ∈R+ represents the intensity of the perturbation, and ∥.∥p
is the used norm for calculating the distance between x0 and x, e.g., the infinity

norm (∥.∥∞) is defined as: ∥X∥∞ = max
x∈X

(|x|) (Huang, Kroening, et al. 2020).

In contrast to testing using adversarial examples, robustness verification

offers more formal assurance of the network’s stability in classifying inputs

within the region surrounding a given input x0 ∈Dx. This region, also called the

robustness region of x0, is controlled by two parameters: the p−norm and the

magnitude ϵ.

2.4.1.2 NN Modeling for Verification

The verification of a system relies on how accurately the used model represents

its behavior. In other words, using model-based techniques, the verification

is only as good as the modeling of the system (Grimm et al. 2018). In NN

verification, and depending on whether we exactly or approximately model the

behavior of the network, there exist two main categories of NN verifiers. A

complete (exact) verifier encodes the exact behavior of the network, and thus

can solve exactly the verification problem by returning either a confirmation

of the correctness of the property, or a counterexample witnessing its violation

(Figure 2.9). On the other hand, an incomplete verifier soundly over-approximates

(or abstracts) the NN behavior by relaxing and/or linearizing the NN operations.

The over-approximation guarantees that the property holds on the original

network whenever it holds on the abstract one. However, when the property

does not hold on the abstract network, an incomplete verifier may not be

able to conclude if the property is truly violated on the original network.

Thus, incomplete verification methods have generally an additional step, called

refinement, which allows for refining the abstraction and re-generate a more

precise abstract network (Figure 2.10).

Since ReLU has been the main focus of most of the existing NN verification

methods, in this dissertation we focus on ReLU-NNs. Given a ReLU neuron

sij ∈ Si , where lij ≤ ẑi,j ≤ uij] is its pre-activation value, the activation status of

the neuron sij can be either stable or unstable, such that:

38 CHAPTER 2. Neural Networks and Formal Verification

Figure 2.9: Complete formal verification of neural networks.

1. Stable: if lij ≥ 0 or uij < 0, the activated value of sij is either zij = ẑij , or

zij = 0, respectively. In both cases, the ReLU function can be safely replaced

by the respective linear formula, namely ReLU (ẑij) = ẑij or ReLU (ẑij) = 0,

respectively.

2. Unstable: if lij ≤ 0 and uij ≥ 0. In this case no exact linear formula can be

derived to replace the ReLU function; and thus at least two linear formulas

are required to represent the ReLU function.

In ReLU-based NN verification, the completeness of the verification process

is generally assessed based on how the verifier handles the stability or not of

the ReLU neurons. A comprehensive discussion about complete and incomplete

verification of NNs is given below.

a) Complete methods:

Modeling an NN was initially based on the encoding of its behavior as a

system of constraints (i.e., linear programming) and then using off-the-shelf

tools for verification. As explained in Section 2.2, each neuron sij ∈ Si has two

different operations:

2.4. Verification and Monitoring of Neural Networks 39

Figure 2.10: Incomplete formal verification of neural networks.

• The linear affine transformation: ẑij =
∑
si−1,k∈Si−1

(w(si−1,k , sij)×v(si−1,k))+bij .

• The activation function: zij = α(ẑij).

While the linear affine transformation can be directly encoded, the challenge of

encoding a network as a linear programming problem is mainly related to the

non-linearity of the used activation function α.

SAT/SMT-based NN verifiers: Historically, the interest in verifying NNs

dates back to 2000s (Taylor 2006); however, the first complete and concrete

work in this area was proposed in 2010 (Pulina et al. 2010). In this work, the

authors introduced a method based on SAT/SMT for NNs with Sigmoid activation

function. The method relies on splitting the Sigmoid function in linear segments,

while ensuring that the actual values of the Sigmoid function lay within these

segments. Each segment is considered as a linear problem that is solved using

a SAT/SMT solver. Following that work, the authors conduced a comparison

study of different SMT solvers for their approach on a set of networks with

different sizes (Pulina et al. 2012). They concluded that the splitting of the

Sigmoid function leads to the generation of numerous linear sub-problems. The

number of linear problems to be solved by SAT/SMT increases exponentially

with the number of hidden neurons, which raises the scalability issue of this

approach and limits its application to relatively small NNs.

Since ReLU is a linear piece-wise function5, most of works focused their

studies on verifying NN with this activation functions. Modeling a ReLU-

5A piece-wise function is function defined on several pieces or segments of intervals or
subdomains. When each "piece" or segment of the function is a linear equation, the function is
called linear piece-wise.

40 CHAPTER 2. Neural Networks and Formal Verification

NN relied on splitting each ReLU neuron into two linear constraints that

correspond to the two linear regions of ReLU, and then employ an adequate

solver for verification. For instance, the application of SAT/SMT solvers has been

extensively studied (Huang, Kroening, et al. 2020). An example of encoding

a ReLU-NN of n layers N : R|S0| → R as a SAT/SMT problem is presented in

Equation (2.15) (Bunel et al. 2018). In this example, the objective is to verify that

the output of the network is always positive while considering some constraints

on the inputs.

lbi ≤ xi ≤ ubi ∀i ∈ {1, . . . , |S0|} (2.15a)

ẑi =Wi × zi−1 + bi ∀i ∈ {1,n− 1} (2.15b)

zi = max(0, ẑi) ∀i ∈ {1, . . . ,n− 1} (2.15c)

zn < 0 (2.15d)

Equation (2.15a) and Equation (2.15d) represent the input constraints (pre) and

the negation of the output constraints (post), respectively. Equation (2.15b)

encodes the affine transformation of the network, and Equation (2.15c) encodes

the ReLU activation function. An assignment that satisfies all the problem’s

constraints represents a valid counterexample witnessing the violation of the

property. In case the problem is UNSAT, we can conclude that the property

holds on N . Note that, in the worst case, Equation (2.15c) leads to split

every ReLU neuron into two linear constraints. Consequently, the complexity

of the verification problem grows exponentially with the number of ReLU

neurons within the network, which makes the verification of ReLU-NN an

NP-complete problem. Figure 2.11 depicts the problem of ReLU-NN verification

state explosion.

Katz, Barrett, et al. (2017) introduced Reluplex as a verification method

for ReLU-NNs. Reluplex is an adjusted version of the Simplex optimization

method to handle the ReLU constraints. Moreover, Reluplex applies a SAT

solver for splitting the ReLU neurons into linear constraints. An improved

version of Reluplex is proposed by Katz, Huang, et al. (2019), namely Marabou.

By introducing input region’s splitting and developing their own SMT solver

instead of using an external SMT solver, the authors claim that Marabou is

faster and can be applied to verify larger networks. Huang, Kwiatkowska, et al.

(2017) proposed an SMT-based method to prove that a classifier is robust and

no adversarial example exists within the neighborhood of the given input. The

approach relies on discretizing the infinite neighborhood region into a reduced

2.4. Verification and Monitoring of Neural Networks 41

relu(x)

relu(v)

v ≥ 0 v < 0

x ≥ 0

relu(v)

v ≥ 0 v < 0

x < 0

Figure 2.11: An example showing the state-space explosion of ReLU-NN
verification.

finite set of points. Then, by means of an SMT solver, the set of constraints

linking the representative points between layers is propagated through the

network, to finally check that the network provides the same output (the same

class). Ehlers (2017) introduced “Planet”, a verification method for ReLU-NN,

which encodes the network’s behavior as a combination of linear constraints.

The ReLU constraints are approximated using three linear constraints and the

verification problem is transformed into a satisfiability problem by taking the

negation of the desired safety property. In one of the most recent works, Duong

et al. (2023) presents NeuralSAT, an SMT framework for NN verification. In

this work, the DPLL(T)6 algorithm (Davis et al. 1962), which is widely used

in modern SAT/SMT solvers, is redesigned to be more appropriate for NN

verification. The framework includes clause learning, abstraction, and theory

solving. NeuralSAT is claimed to be sound and complete, and it supports piece-

wise linear activation functions and different types of neural networks: FFNN,

CNN and residual networks (He et al. 2016).

While the above mentioned SAT/SMT-based methods generally deal with

FFNN and CNN with pieace-wise functions (e.g., ReLU and maxpoling),

Narodytska et al. (2018) introduced an exact encoding of Binary Neural

Networks7 (BNNs) as Boolean formulas. Then, the verification problem is

handled by means of a SAT solver. The approach is limited to BNN with only

binarized components. Recently, Amir et al. (2021) presented an extension of the

6DPLL stands for ”Davis-Putnam-Logemann-Loveland”, which is a widely used algorithm
for solving the Boolean satisfiability problem (SAT).

7Briefly, a Binary Neural Network (BNN) is a type of neural network in which the network’s
weights and activations are binary values. Please check the survey of Yuan et al. (2023) for more
details about BNNs.

42 CHAPTER 2. Neural Networks and Formal Verification

Reluplex method (Katz, Barrett, et al. 2017) that can handle both binarized and

non-binarized components of BNN. A parallelization of the verification process

is also proposed to enhance the scalability of the approach.

MILP-based NN verifiers: MILP-based approaches transform the network

behavior and the property to be verified to a mixed integer linear problem. The

encoding of the investigated property (see Equation (2.10)) is straightforward.

However, the challenging part is related to the encoding of the network’s

behavior, particularly the activation function behavior. Several encodings have

been proposed for the ReLU activation function.

Let us consider a network N : R|S0| → R of n layers and one output (see

Equation (2.3)), and we assume that we want to verify that for a bounded input,

the output must be positive. Tjeng et al. (2019) introduced a MILP encoding for

ReLU-NN using binary variables to handle the ReLU constraints:

lbi ≤ xi ≤ ubi ∀i ∈ {1, . . . , |S0|} (2.16a)

ẑi =Wi × zi−1 + bi ∀i ∈ {1,n− 1} (2.16b)

δi ∈ {0,1}|zi |, 0 ≤ zi ≤ ui × δi , ẑi ≤ zi ≤ ẑ − li × (1− δi) ∀i ∈ {1, . . . ,n− 1}(2.16c)

min(zn) (2.16d)

Equation (2.16a) denotes the input constraints, where lbi and ubi is the lower

and upper bounds of the ith element of the input x. Equation (2.16b) represents

the affine transformation performed by N . Equation (2.16c) represents the

encoding of the ReLU function using binary variables (δi). The variables ui and

li represent an estimation of the upper and lower bounds of zi , respectively.

Interval or symbolic bounds propagation algorithms (Wang et al. 2018b; Xiang

et al. 2020) can be used to estimate their values. Finally, Equation (2.16d) is

the objective function of the MILP optimization problem. If the solver returns

a negative solution to this problem, i.e., min(xn) ≤ 0, we can conclude that the

property does not hold, and the corresponding input is a valid counterexample.

Otherwise, we conclude that the given property does hold on the network N .

Cheng, Nührenberg, and Ruess (2017) proposed an alternative MILP

encoding of the ReLU-NN verification, known as Big-M encoding. The developed

approach is then used to solve the global robustness of the given network: the

approach seeks to find the largest neighborhood of an input where no adversarial

example exists. The encoding of the input constraints, the affine transformations

and the objective function are the same as presented in Formula (2.16a), (2.16b),

and (2.16d), respectively. However, the Equation (2.16c) was updated as

2.4. Verification and Monitoring of Neural Networks 43

presented in Equation (2.17).

δi ∈ {0,1}|zi |, 0 ≤ zi ≤Mi × δi , ẑi ≤ zi ≤ ẑ −Mi × (1− δi) ∀i ∈ {1, . . . ,n− 1}(2.17a)

where Mi = max(ui ,−li)

These two formulations of the NN verification problem are then adapted to

check local robustness property, adversarial examples identification (Fischetti et

al. 2018; Tjeng et al. 2019), and reachability analysis (Dutta et al. 2018; Lomuscio

et al. 2017). Similarly to SAT/SMT based verification, the straightforward

application of MILP is computationally expensive. Thus, some works address

this issue by applying optimization algorithms to reduce the number of generated

linear instances (Fischetti et al. 2018; Lomuscio et al. 2017; Tjeng et al. 2019).

For instance, Botoeva et al. (2020) analysed the dependency relation between

the ReLU neurons to reduce the MILP search space. Concretely, the dependency

analysis allows for fixing the state of ReLU neurons (positive or negative), and

thus help pruning the search tree generated by MILP. The performance of the

approach is further improved when combined with input domain splitting and

symbolic interval propagation (Wang et al. 2018b).

Branch and Bound (BaB) based methods were also proposed to accelerate

the verification process of NNs. BaB is adapted for ReLU-NN by using Linear

Programming (LP) to establish bounds, and ReLU neuron split refinement for

branching (Bunel et al. 2018; Hashemi, Kouvaros, et al. 2021; Henriksen et al.

2021). Moreover, some approaches exploring branching over the input domain

(Wang et al. 2018a).

These methods rely on extensively explore the search space, which can

limit their scalability when applied to large networks. To address this issue,

incomplete methods that offer a trade-off between precision and scalability are

often employed. In the following section, we will review and discuss these

alternative methods.

b) Incomplete methods:

As discussed above, splitting each neuron into linear regions is computationally

expensive and increases the complexity of the verification problem exponentially

with the number of neurons to split. For example, for a ReLU-NN of n neurons

(considering all hidden layers), splitting all its hidden neurons leads to generate

2n sub-problems (see Section 3 for more details). One way to overcome this

44 CHAPTER 2. Neural Networks and Formal Verification

issue is to resort to approximation and abstraction methods. There are two

main categories of methods: abstraction of the activation function, and model

reduction. The main idea of the former is to use linear constraints instead

of the exact activation function to avoid the splitting. In order to ensure the

soundness of these approaches, the linear constraints must over-approximate the

activation function at hand (Huang, Kroening, et al. 2020; Urban et al. 2021). For

instance, techniques based on abstract interpretation (Gehr et al. 2018; Singh,

Gehr, Mirman, et al. 2018) and reachability analysis (Wang et al. 2018a,b; Xiang

et al. 2020) are successfully applied to verify some NN models.

The second sub-category of abstraction methods consists in reducing the

NN size by merging its neurons. These methods are generally referred to as

model reduction, and their goal is to construct an abstract (reduced) network

that constitutes a sound over-approximation of the original one (Boudardara,

Boussif, Meyer, et al. 2023a). This helps verifying properties on the reduced

model in less computation time, and infer their correctness on the original one.

In Chapter 3, we will review in more details abstraction methods, including

both activation function abstraction and model reduction methods.

2.4.2 Neural Networks Monitoring

While verification focuses on providing some guarantees on a network prior

to its deployments, monitoring tends to continuously track the NN behavior

and performance during runtime. The primary goal of monitoring is to detect

potential errors, deviations, or incorrect behavior exhibited by the network

in real-time, where ground-truth labels are not available. Before diving into

the application of runtime monitoring for NNs, let first introduce runtime

monitoring in a general context.

Runtime monitoring is an old topic. It may be presented with various

alternative names, such as runtime analysis, runtime verification, or runtime

checking (Watterson et al. 2007). Runtime monitoring has been introduced as

a tradeoff between formal verification and testing. Indeed, formal verification

methods are known to be computationally demanding, which makes them hard

to apply on large-scale applications. Conversely, testing, typically reliant on

a set of test cases, proves to be a time-consuming process, compounded by

the limitation that not all errors are detectable during the development phase.

Consequently, runtime monitoring is often employed to complement formal

verification and testing, aiming to increase the safety assurance by continuously

2.4. Verification and Monitoring of Neural Networks 45

tracking the behavior and the performance of the system (Leucker and Schallhart

2009).

An online monitoring system relies on two main phases, (i)building the

monitor and then (ii) using the monitor in real-time.

1. Building the monitor (offline): this phase is performed during the

development of the monitoring system. It consists in defining properties

and measurement metrics that are used to implement the core (algorithms)

of the monitor. This enables the monitor to observe and analyze the

runtime behavior of the system.

2. Using the monitor in real-time (online): after building and validating the

monitor, it is used in real-time to observe and analyse the behavior of the

system. The monitor is executed in parallel with the system allowing for

raising alarms for potential misbehavior, errors of the system decisions, or

performance insufficiency.

Figure 2.12 illustrates the general process of monitoring, including the two main

phases presented above. In some cases, further information may be needed in

order to build the monitor, e.g., details about the architecture and the internal

state of the system. The output of the monitor can be a confirmation that the

system’s behavior meets the defined requirements and measures, an alarm of a

mis-behavior, or a feedback to the system itself and to the controller suggesting

possible improvements.

Figure 2.12: Main phases and general process of the runtime monitoring.

Similar to the general runtime monitoring process, NN monitoring consists

of two main phases: buidling the monitor, and using the monitor to supervise

46 CHAPTER 2. Neural Networks and Formal Verification

the NN during runtime. In the context of NN, the monitor building phase

relies on extracting learned patterns from the network, using some data. Next,

the monitor represented by these patterns is used to supervise the network’s

decisions during runtime. The former phase is essential, since it results in

extracting relevant patterns, which constitute the core of the monitor. Although

it is hard to formally prove that the used patterns represent exactly the learned

patterns by the networks, researchers attempt to provide empirical guarantees

by assessing the efficiency of the proposed monitoring system on different data

sets and scenarios (Cheng, Nührenberg, and Yasuoka 2019).

Most of NN monitoring research works seeks to analyze the inner activations

of the network. The broad idea is to feed the network N with a set of labeled

data, e.g., the training set. Next, the values of hidden neurons of N with respect

to the set of data is calculated. These hidden neurons’ values are referred to

as hidden neurons activations. The monitor is then constructed using these

activations, where each set of activations represents a pattern, such as in an

image classification problem (Cheng, Nührenberg, and Yasuoka 2019; Geng et al.

2022; Henzinger et al. 2020).

In the context of NN monitoring, Cheng, Nührenberg, and Yasuoka (2019)

proposed a runtime monitoring system based on activation patterns. First, they

use the training set to calculate hidden activations. Then, they build an activation

pattern for each class and save it by means of Binary Decision Diagrams (BDD).

The set of activation patterns is called Neural Activation Patterns (NAPs). During

runtime, in addition to making a classification decision using the network, the

monitoring system checks whether the activation patterns of the input are

similar to one of the pre-built NAPs. In their work, they use the Hamming

distance to measure the similarity between NAPs. If no similar NAP is found,

the system raises a warning notifying that the classification decision should be

re-checked. The effectiveness of this approach is constrained by the performance

of BDDs, which have several limitations, including restrictions on the number of

variables that can be handled. Recently, Geng et al. (2022) proposed a new type

of specifications called neural representation as specification. They introduced

a new formula of the robustness property by adding a new constraint using

NAPs. The specification states that all inputs following a NAP shall never be

misclassified. This means that, for an input-image of class c that follows a NAP

NAPc, if the perturbed image also follow NAPc, the network has to classify

this image as class c. The authors updated the Marabou verifier (Katz, Huang,

et al. 2019) to support the new formula of robustness. Additionally, in case the

2.4. Verification and Monitoring of Neural Networks 47

property is violated, the authors claim that the generated counter-examples are

more realistic.

The problem of detecting novel inputs, which is called novelty or out-of-

distribution problem, has been studied for many years, and many methods

have been proposed (Pimentel et al. 2014; Yang, Zhou, et al. 2021). One of

the most promising approaches involves analyzing the activation patterns of

hidden neurons. Henzinger et al. (2020) proposed a monitoring method for

neural networks based on abstraction. The method involves constructing box

abstractions by over-approximating the output of selected hidden layers using

the training data. At the end of this phase, the hidden neurons of the selected

layers are associated with a box that over-approximates their values in response

to the fed inputs. During the monitoring phase, the system checks whether the

values of these layers lie within the range of the calculated intervals or boxes. If

they are outside the calculated boxes, the corresponding input is considered as

novel, which results in triggering a warning. This approach has been refined in

a subsequent work by Wu et al. (2023). The enhancement involves incorporating

both ”good” (correct decisions) and ”bad” (incorrect decisions) behaviors of the

network as references to construct the box abstractions. Incorporating both

types of references introduces an uncertainty verdict, enabling the identification

of suspicious regions when their abstractions overlap. Additionally, the paper

introduces the box resolution, which enables controlling the precision of the box

and measuring how coarse is the abstraction. Hashemi, Křetínskỳ, Mohr, et al.

(2021) introduced a method by modelling the neuron’s activations as a Gaussian

model. During runtime, this model is used as an out-of-distribution detector. In

a recent work, Olber et al. (2022) extended NAPs to extract activation patterns

on convolution layers, and then used these patterns to detect out-of-distribution

image samples on CNNs.

NAPs have also been applied in various studies for the purposes of

explainability and interpretability. For example, Bäuerle et al. (2022) leveraged

the activation values of neurons to analyze and extract learned features. Then,

they identified groups of similar NAPs that could be used to visually interpret

the learned features within a layer. While Krug et al. (2018) utilized NAPs

for interpreting CNN models used in speech recognition, Stano et al. (2020)

proposed a method that involves encoding the behavior of neurons using a

Gaussian Mixture Model (GMM) when exposed to a set of inputs from the

same class. The resulting GMM model is then used to explain the classification

decision made by the network.

48 CHAPTER 2. Neural Networks and Formal Verification

2.5 Conclusion

In this chapter, we firstly provided preliminaries and foundations related to

AI, its evaluation, focusing specifically on NN verification. Concretely, we

presented a quite comprehensive explanation of the functioning of NNs, along

with necessary notations and foundations that will be used throughout this

dissertation. Then, we presented the basis of formal verification, existing

verification techniques, and their applications to ensure the correctness of safety-

critical systems. Next, we explained how formal verification methods are adapted

to formally verify properties on NNs. The chapter also provided a detailed

literature review of verification techniques applied on NNs, highlighting their

corresponding issues when dealing with such models. The main focus of this

chapter was on complete NN verification methods, since the following chapter

will deeply discuss the incomplete ones.

Chapter3
A Review on Abstraction Methods for

NN Verification

Outline of the current chapter

3.1 Introduction 50

3.2 Abstraction Approaches for NN Verification 50
3.2.1 NN Abstraction Principle 51

3.2.2 Abstraction of the Activation Function 52

3.2.3 Neural Networks’ Model Reduction 56

3.2.4 Discussion . 63

3.3 Neural Networks compression 66

3.4 Conclusion 67

49

50 CHAPTER 3. A Review on Abstraction Methods for NN Verification

3.1 Introduction

As discussed in the previous chapter, NN verification has gained significant

attention in recent years, driven by the rapid advancements in NN and

their intensive deployment across various domains, including safety-critical

systems (Julian et al. 2016; Urban et al. 2021). This heightened attention

towards NN verification is witnessed by the amount of developed methods,

and published works and surveys (Huang, Kroening, et al. 2020; Leofante et al.

2018; Liu, Arnon, et al. 2021; Tran, Xiang, et al. 2020). The research community

roughly agrees that one of the major drawbacks of the existing methods is

their applicability and scalability when it comes to deal with large networks.

Abstraction methods are seen as a potential solution to overcome this issue. In

this chapter, we will provide a literature review of the existing NN abstraction

approaches.

In this chapter, we conduct an in-depth examination of existing activation

function abstraction and model reduction methods from the literature, that are

employed for the purpose of NN verification. Concretely, we perform a critical

analysis of each presented technique, outlining its advantages and drawbacks,

and discussing its related formal guarantees. For model reduction techniques,

we particularly highlight the impact of each method on the verification process,

and we discuss further research directions related to these techniques. Although

the main focus of the considered works is on feed-forward NNs, we also provide

some perspectives on how these abstraction methods can be adjusted to support

other types of NNs.

It is worthwhile to notice that the core of this chapter relies on our recently

published survey paper concerning abstraction methods for the purpose of

NN verification (Boudardara, Boussif, Meyer, et al. 2023a). To the best of our

knowledge, our work represents the first comprehensive overview within this

specific sub-field of NN verification.

3.2 Abstraction Approaches for NN Verification

Recently, many approaches enabling to check properties on NNs have been

proposed (Huang, Kroening, et al. 2020; Liu, Arnon, et al. 2021). The

straightforward verification way consists in encoding the NN behavior, as well

as the property to be checked, as a system of linear equations, and then using an

appropriate engine to perform the verification process. For instance, SAT/SMT

3.2. Abstraction Approaches for NN Verification 51

and MILP encoding are widely used to verify NN properties (Cheng, Nührenberg,

and Ruess 2017; Dutta et al. 2018; Huang, Kwiatkowska, et al. 2017; Katz,

Barrett, et al. 2017; Katz, Huang, et al. 2019; Lomuscio et al. 2017; Tjeng

et al. 2019). These methods are also called complete because they encode the

exact behavior of the network. However, since most of the common activation

functions are nonlinear, this kind of verification methods does not scale in

the case of large neural networks, and suffers from state-space explosion. For

example, for the piece-wise linear activation function ReLU, each ReLU node

has to be split into two linear constraints, i.e.: if y = relu(x), then y = 0 when

x < 0 and y = x when x is positive. Therefore, solving a verification problem on a

network of n ReLU nodes requires solving 2n linear sub-problems as illustrated

in Figure 3.1. To address this issue, several approaches based on abstraction

have been proposed. The next section provides more details about this category

of techniques.

relu(x)

relu(v)

v ≥ 0 v < 0

x ≥ 0

relu(v)

v ≥ 0 v < 0

x < 0

Figure 3.1: Illustration of the state-space explosion: for two ReLU nodes, case
splitting leads to four linear subproblems.

3.2.1 NN Abstraction Principle

In order to overcome the drawbacks of complete verification methods for

NN, some abstraction approaches are proposed. The main idea behind these

approaches consists in generating an abstract model from the original network

ensuring that whenever the property p holds on the abstract model N, it

necessarily holds on the original one N, i.e.,:

N |= p =⇒ N |= p. (3.1)

52 CHAPTER 3. A Review on Abstraction Methods for NN Verification

However, these approaches may fail to provide any conclusion on the original

network when the property is violated on the abstract model. This is in fact

due to spurious counterexamples. Namely, when the property does not hold, a

counterexample (CE) on the abstract model is generated, but due to the over-

approximation of the abstract model, this CE might not correspond to any real

behavior in the original model (thus the term spurious counterexample).

Concretely, the abstraction of NN can be performed in two different manners:

• Activation function abstraction: to ease the verification process, non-linear

activation functions of the NN are over-approximated by a set of linear

constraints.

• NN model reduction: abstracting the network model by merging some nodes

in order to reduce the size of the network, and thus improve the scalability

of existing verification techniques.

In is worth noticing that the above two manners can be combined in order

to generate the abstract models. A detailed survey of these methods is given in

Sections 3.2.2 and 3.2.3, respectively.

Remark 3.1 (Refinement) Some works consider improving the incomplete verification
methods by ruling out as many spurious CE as possible by introducing a refinement
phase. During this phase, the verification method refines the abstract model iteratively
until we can prove either the property holds or the generated CE exhibits a real
behavior on the original model (Ehlers 2017; Tran, Bak, et al. 2020; Tran, Manzanas
Lopez, et al. 2019; Wang et al. 2018a,b).

3.2.2 Abstraction of the Activation Function

The key challenge of NN verification pertains to the non-linearity of activation

functions. Activation function-based abstraction approaches are applied to

handle this issue by over-approximating the activation functions with linear

constraints.

The earliest work dealing with NN abstraction for verification purposes was

introduced by Pulina et al. (2010). In their work, the authors divide the nonlinear

Sigmoid activation function into small regions, then a linear over-approximation

is computed for each region, as shown in Figure 3.2.

With the same spirit, Ehlers (2017) proposed a precise ReLU-abstraction

technique where ReLU is replaced by a system of linear constraints (see

3.2. Abstraction Approaches for NN Verification 53

Figure 3.2: The activation function Sigmoid (σ) and its abstraction on x ∈ [−2,2].
The solid line represents y = σ (x) and each small region (yellow rectangles) is an
over-approximation of y (Pulina et al. 2010).

Figure 3.3a) and hence the verification problem of NNs is reformulated as a linear

programming (LP) problem that can be solved using classic LP solvers. The

approach in (Ehlers 2017) was implemented in a tool called Planet1 and brings

the LP toolkit GLPK2 into play along with the Minisat solver3 for verification.

Gehr et al. (2018) applied an abstract interpretation method (Cousot et al.

1977) on NN for the first time. They proposed a framework called AI2 (Abstract

Interpretation for Artificial Intelligence) that soundly over-approximates NN

operations by means of zonotope abstract domain. The approach can be

extended to support other abstract domains. AI2 can handle feed-forward and

convolutional neural networks (CNN) with ReLU and max-pooling functions.

The approach in (Gehr et al. 2018) was extended by Singh, Gehr, Mirman,

et al. (2018) to support the Sigmoid and T anh activation functions. This is

accomplished by means of abstract transformers based on zonotopes for each

function. As an example, the abstraction of ReLU is given in Figure 3.3b

Definition 3.1 An abstract domain is a set of logical constraints that define a
geometric shape. The most popular abstract domains are: box (or Interval), zonotope
and polyhedra. For example, a zonotope abstract domain (Ghorbal et al. 2009) Z is
defined by a set of constraints zi , s.t: zi = ai +

∑m
j=1 bijϵj , where ϵj ∈ [li ,ui] is an error

term and ai , bij are constants.

Furthermore, Singh, Gehr, Püschel, et al. (2019a) proposed a new method,

called DeepP oly, based on Abstract Interpretation by introducing a new abstract

domain. DeepPoly combines floating point polyhedra and intervals. Each neuron

is represented by its concrete and symbolic upper and lower bounds. Moreover,

the authors introduced abstract transformers for popular NN operations: affine

1The Planet verifier is available here: https://github.com/progirep/planet
2https://www.gnu.org/software/glpk/
3http://minisat.se/

//github.com/progirep/planet
https://www.gnu.org/software/glpk/
http://minisat.se/

54 CHAPTER 3. A Review on Abstraction Methods for NN Verification

transformation, ReLU , Sigmoid, T anh andMax-pooling to propagate the inputs

successively through the layers of the network. For ReLU , two different

abstractions are proposed, as shown in Figures 3.3c and 3.3d. It is worthwhile to

mention that the approach supports both feed-forward and CNN.

While the previous works consider only a single neuron, some others try to

define sound approximations of a set of neurons, jointly. Singh, Ganvir, et al.

(2019) introduced a new method that provides an approximation of k ReLU

nodes (in the same layer) at a time in order to capture dependencies of the ReLU

inputs. First, the k nodes are selected and then the convex relaxation of the

group of nodes is calculated. The framework has a parameter k which represents

the number of ReLU nodes to be considered together. Based on the work of

Singh, Ganvir, et al. (2019), a more general framework was recently proposed

by Müller et al. (2022). The framework, called P RIMA (PRecIse Multi-neuron

Abstraction), computes the convex over-approximation of a set of k outputs

of an arbitrary activation function, including ReLU , Sigmoid and T anh. The

approach decomposes the set of neurons in each hidden layer into overlapping

groups of size k, then calculates the convex approximation of the octahedral

over-approximation for each group. Finally, it takes the union of all the obtained

output constraints. These constraints combined with the encoding of the whole

NN are used for verification.

Other techniques based on symbolic propagation are proposed in (Li, Liu,

Yang, Chen, et al. 2019; Yang, Li, et al. 2021) to enhance the precision of abstract

interpretation-based approaches. In symbolic propagation every neuron is

associated with a formula expressed using the activations of neurons in its

previous layers. In (Singh, Gehr, Püschel, et al. 2019b), a combination of over-

approximation techniques with linear relaxation methods is proposed so as to

gain more precision of over-approximation techniques and the scalability of

complete methods.

Finally, we should notice that the above-mentioned techniques can be adapted

to support further types of NNs. For instance, one way to deal with recurrent

NNs (RNN) is to generate an equivalent FFNN and then apply the abstraction

method (Akintunde et al. 2019; Jacoby et al. 2020). For CNN, most of the

techniques are straightforwardly applicable with the only restriction that the

activation function of the convolution layer has to be ReLU or other supported

functions such as Sigmoid and Tanh (Singh, Gehr, Püschel, et al. 2019a).

3.2. Abstraction Approaches for NN Verification 55

(a) The abstraction of the
ReLU activation function

proposed in (Ehlers 2017).

(b) The abstraction of the
ReLU activation function

using zonotopes (Gehr et al.
2018; Singh, Gehr, Mirman,

et al. 2018).

(c) An abstraction of the
ReLU activation function
proposed in (Singh, Gehr,

Püschel, et al. 2019a).

(d) An abstraction of the
ReLU activation function
proposed in (Singh, Gehr,

Püschel, et al. 2019a).

Figure 3.3: ReLU activation function abstractions using different abstract
domains. The ReLU (y = relu(x)) is represented by the green line and its over-
approximation on the range x ∈ [l,u] by the blue filled area.

56 CHAPTER 3. A Review on Abstraction Methods for NN Verification

(a) An NN before abstraction
(the concrete NN model).

(b) The NN after model
reduction (the two hidden

nodes are merged).

Figure 3.4: Model reduction of a small neural network.

3.2.3 Neural Networks’ Model Reduction

The main objective of NN model reduction is to reduce the size of the NN model

while guaranteeing and preserving some behavioral relationship, mainly, some

desired property p that holds on the original model N remains fulfilled in the

reduced model N as defined in (3.1). Figure 3.4 provides an illustrative example

of the main idea behind model reduction applied on a small neural network.

Such a behavioral relation is obtained by ensuring that N is an over-

approximation of N . Therefore, the reduction process must carefully select

the set of neurons to be merged (or removed), and determine how to calculate

the weights of the new edges.

Prabhakar and Rahimi Afzal (2019) proposed a method based on Interval

Neural Networks (INN) for output range analysis. In this method, the nodes of

the same layer are merged while replacing the weights of their input edges by

the interval hull of the incoming edges. In other words, the weights of incoming

edges are replaced by [min(Win),max(Win)], where Win are the values of the

incoming weights to the nodes to be merged. The weights of the outgoing edges

from these nodes (Wout) are replaced by the interval hull multiplied by the

number of merged nodes n, i.e., n× [min(Wout),max(Wout)]. Figure 3.5 depicts

an application example of this method on a toy network.

For the verification part, Prabhakar and Rahimi Afzal (2019) adapted INN

to MILP big-M encoding (Cheng, Nührenberg, and Ruess 2017) and used

the Gurobi MILP solver4 for verification. The performance of this method

is evaluated on the airborne collision avoidance ACAS Xu benchmark (Julian

et al. 2016; Katz, Barrett, et al. 2017). The authors claim that the abstraction

enhances the verification process. Namely, Gurobi was not able to verify a

number of properties on the original model (no return - out of time), while the

4https://www.gurobi.com/

https://www.gurobi.com/

3.2. Abstraction Approaches for NN Verification 57

(a) The original network. For
v(s1) = 1, we have v(s5) = 2.

(b) The obtained reduced
network.

Figure 3.5: The abstract network using INN method (Prabhakar and Rahimi
Afzal 2019) and ANN (Sotoudeh et al. 2020). For v(s1) = 1, v̂(s5) = [0,17], and
we have v(s5) ∈ v̂(s5).

same properties have been successfully checked when Gurobi was applied on

the abstract model.

By introducing the notion of Abstract Neural Networks (ANN), Sotoudeh

et al. (2020) provided a formalization of a general abstraction approach. In

ANN, the weights are represented using abstract domains (see Definition 3.1).

Accordingly, the approach proposed by Prabhakar and Rahimi Afzal (2019) can

be considered as a particular instantiation of this approach using the interval

abstract domain. Notice that the proposed approach supports a wide range of

activation functions. Moreover, it can be instantiated using other convex abstract

domains and it is not restricted to intervals as used in INN (Prabhakar and

Rahimi Afzal 2019). The approach provides a generic formula to calculate the

weight merging matrix W from the original weight matrix W and the partitions

P in and P out of two successive abstract layers li and li+1, respectively. A partition

Pi is a rearrangement of a set Si of neurons, i.e., if Si = {ni1,ni2,ni3}, a possible

partition of Si would be Pi = {{ni1,ni2}, {ni3}}, which means that ni1 and ni2 will

be merged in the abstract network. W is the convex combination (calculated by

a function g) of the partitioning combination matrix of P in and P out, denoted by

C and D, respectively, and the weight matrix W , i.e., W = g(D,W ,C). Next, the

abstract weight matrix, denoted by Wabs, is built by applying a convex abstract

domain αA on the obtained W : Wabs = αA(W). The reduced model is obtained by

applying the same procedure to every layer, iteratively. Therefore, the obtained

reduced model is an over-approximation for any non-negative activation function

that satisfies the Weakened Intermediate Value Property (WIVP)5. Although

5As defined in (Sotoudeh et al. 2020), a function f : R → R satisfies the Weakened
Intermediate Value Property if, for every a1 ≤ a2 ≤ · · · ≤ an ∈R, there exists some b ∈ [a1, a2] such
that f (b) =

∑i=n
i=1

f (ai)
n .

58 CHAPTER 3. A Review on Abstraction Methods for NN Verification

some activation functions can have negative values and others are not continuous

(thus not WIVP), the authors of (Sotoudeh et al. 2020) claim that there is always

a way to overcome these problems, as they showed for Leaky ReLU and the

threshold activation functions.

In (Ashok et al. 2020), the authors apply K-means clustering algorithms to

partition each hidden layer li into ki subgroups, such that ki ≤ |Si |, then replace

each subgroup with its representative neuron. The abstraction method, called

DeepAbstract, has three parameters: the original network N , a finite set of

input-points X and a vector KL which contains the number of nodes on each

abstract layer. For each hidden layer li , the following steps are performed:

1. For every x ∈ X, calculate the value vij(x) of each neuron in Si ,

2. Apply K-means to split each layer li into ki clusters. Let Cli denote the set

of clusters of li ,

3. For each cluster C ∈ Cli :

(a) Determine the representative neuron repC ,

(b) Calculate the corresponding outgoing weights of repC :

W
i
∗, repC =

∑
nij∈C

W i
∗ ,nij

(c) Replace all the neurons in C with repC .

Note that the representative neuron repC of a cluster C is the nearest neuron to

the centroid of C; thus, the incoming weights of repC remain the same as the

corresponding neuron before abstraction. All the other neurons from cluster C

are omitted with their incoming edges.

In addition, Ashok et al. (2020) provide a method to lift the verification

results from the abstract model to the original one. The idea is to calculate the

accumulated error induced by replacing a cluster of neurons by its representative

for each image x in X, and then propagate this error through the successive

layers using the DeepPoly verification Algorithm6. A set of experiments were

conducted to check the performance of DeepAbstract. Local robustness of some

MNIST7 images was checked and the authors claim that the verification time

was reduced by 25% when DeepPoly is combined with DeepAbstract.

6https://github.com/eth-sri/ERAN
7http://yann.lecun.com/exdb/mnist/

https://github.com/eth-sri/ERAN
http://yann.lecun.com/exdb/mnist/

3.2. Abstraction Approaches for NN Verification 59

(a) The original
network. For
v(s1) = 1, we have
v(s5) = 2.

(b) Neurons’
classification:
positive /negative
and increasing /
decreasing (Elboher
et al. 2020).

(c) The obtained
abstract network.

Figure 3.6: The abstract network using the method of Elboher et al. (2020). For
v(s1) = 1, v(s5) = −2, v̂(s5) = 12, and we have v(s5) ≤ v̂(s5).

Elboher et al. (2020) proposed an abstraction approach based on merging

neurons of the same category (see hereafter) to build a smaller model so as

to enhance the scalability of the existing verification tools. Regarding the

verification property, which has the form: p : ∀x ∈ pre(x) =⇒ y ≤ c, the aim of

this approach is to build a reduced model N , such that: ∀x ∈ Dx, N (x) ≥ N (x).

Therefore, N |= p whenever N |= p (i.e., N (x) ≤ c). To obtain the neurons

categories, each neuron is firstly labelled according to the sign of its outgoing

weights. A neuron is split if it has positive and negative outgoing weights

at the same time. Next, to guarantee that N is an over-approximation of N ,

the proposed method seeks to increase the output of the abstract model by

classifying each neuron as I or D. The class I means the output will increase

by increasing the value of the neuron at hand, while a neuron is marked as D

if decreasing its value leads to increasing the output’s value. Finally, the nodes

of the same layer and the same category can be merged by summing up the

weights of their outgoing edges and taking the min value of the the weights of

their incoming edges if they are marked as D, or the max value for any I group

of nodes (Figure 3.6 illustrates these steps on a small network). Moreover, some

heuristics are proposed in (Elboher et al. 2020) to enhance the abstraction process.

The proposed method is applied on ACAS Xu networks while Marabou tool (Katz,

Huang, et al. 2019) is used as a back-end verification tool. A comparison study

between the abstraction method combined with Marabou and the vanilla version

of Marabou was conducted, and the results show that the abstraction method

allows Marabou to verify more properties in less execution time.

A novel approach based on Bisimulation (Larsen et al. 1991) is proposed

by Prabhakar (2022). The generated abstract neural network is equivalent, or

60 CHAPTER 3. A Review on Abstraction Methods for NN Verification

bisimilar, to the original one. To guarantee the equivalence between N and N ,

two neurons nij and nik to be merged must have the same activation function,

the same bias value (bij = bik) and the same weights for each incoming edge

respectively, i.e., ∀n′ ∈ Si−1,w(n′,nij) = w(n′,nik). Due to the strict conditions that,

generally, do not hold in most of real networks, Prabhakar (2022) extends the

NN bisimulation to a more feasible relaxed method, called NN δ-bisimulation.

Using NN δ-bisimulation (δ ∈R+), two nodes nij and nik in Si can be merged if

the following conditions are satisfied:

1. nij and nik have the same activation function

2. |bij − bik | ≤ δ, where δ ≥ 0

3. ∀n′ ∈ Si−1, |w(n′,nij)−w(n′,nik)| ≤ δ

It is important to note that the obtained network N is no longer (exactly)

equivalent to the original networkN , but the two networks are called δ-bisimilar.

Taking advantages of code refactoring (Fowler 2018), Shriver et al. (2019)

introduced the concept of refactoring neural networks to restructure the initial

model and preserve its accuracy to enhance further operations on it, for instance

verification. Concretely, NN refactoring consists of two steps: architecture

transformation and distillation. The former applies some changes on the

network’s architecture by dropping or changing some layers and/or their

types that are not supported by verification tools (e.g. residual blocks and

convolutional layers). The latter updates the model’s parameters: weights and

biases, while preserving the original model’s behavior, which is captured by its

accuracy and test error according to Shriver et al. (2019). A tool called R4V

(Refactoring for Verification) was developed from this approach. R4V was tested

on DAVE-2 (Bojarski et al. 2016) and DroNet (Loquercio et al. 2018) networks.

The used verification tools are presented in Table 3.1. The results show that

applying the verification tools on the refactored model improves their scalability.

For example, Planet (Ehlers 2017) fails to check any property on DroNet within

24 hours. However, after refactoring the network, Planet was able to verify three

out of the ten selected properties. The main features of the above discussed

neural networks reduction techniques are summarized in Table 3.1. The last two

columns of the table contain verification methods and the data sets used during

the evaluation of the abstraction method. Verification methods are those used

during the evaluation of the abstraction in the original paper; notice that other

methods can be used to verify the obtained abstract model.

3.2. Abstraction Approaches for NN Verification 61

M
et

ho
d

P
u

b.
Ye

ar
Su

p
p

or
te

d
A

Fs
V

er
ifi

ca
ti

on
m

et
ho

d
s

E
va

lu
at

io
n

on
G

u
ar

an
te

es
of

th
e

re
du

ce
d

m
od

el

R
4V

(S
h

ri
ve

r
et

al
.2

01
9)

20
19

R
eL

U
R

eL
U

p
ex

(K
at

z,
B

ar
re

tt
,

et
al

.
20

17
),

E
R

A
N

(S
in

gh
,

G
eh

r,
M

ir
m

an
,

et
al

.
20

18
),

N
eu

ri
fy

(W
an

g
et

al
.

20
18

a)
,

P
la

n
et

(E
h

le
rs

20
17

)

D
A

V
E

-
2(

B
oj

ar
sk

i
et

al
.

20
16

),
D

ro
N

et
(L

oq
ue

rc
io

et
al

.2
01

8)

N
on

e

IN
N

(P
ra

bh
ak

ar
an

d
R

ah
im

i
A

fz
al

20
19

)

20
19

R
eL

U
M

IL
P

(L
om

u
sc

io
et

al
.2

01
7)

A
C

A
S

X
u

(K
at

z,
B

ar
re

tt
,

et
al

.
20

17
)

N
(x

)∈
N

(x
)

A
N

N
(S

ot
ou

d
eh

et
al

.2
02

0)
20

20
R

eL
U

,
Le

ak
y

R
eL

U
8

-
-

N
(x

)∈
N

(x
)

D
ee

p
A

bs
tr

ac
t

(A
sh

ok
et

al
.

20
20

)

20
20

R
eL

U
E

R
A

N
M

N
IS

T
(L

eC
u

n
19

98
)

D
ep

en
d

s
on

th
e

d
at

a
se

t

E
lb

oh
er

et
al

.
(2

02
0)

20
20

R
eL

U
M

ar
ab

ou
(K

at
z,

H
u

an
g,

et
al

.
20

19
)

A
C

A
S

X
u

K
at

z,
B

ar
re

tt
,

et
al

.
(2

01
7)

N
(x

)≤
N

(x
)

B
is

im
u

la
ti

on
(P

ra
bh

ak
ar

20
22

)

20
21

R
eL

U
-

-
N

≡
N

,
s.

t.
≡

re
p

re
se

n
ts

th
e

eq
u

iv
al

en
t

re
la

ti
on

9

Ta
b

le
3.

1:
A

li
st

of
N

N
m

od
el

re
d

u
ct

io
n

m
et

h
od

s
u

se
d

fo
r

ve
ri

fi
ca

ti
on

.T
h

e
u

n
d

er
sc

or
e

sy
m

bo
l"
−"

is
u

se
d

to
d

en
ot

e
th

at
n

o
in

fo
rm

at
io

n
is

p
ro

vi
d

ed
in

th
e

co
rr

es
p

on
d

in
g

or
ig

in
al

p
ap

er
.

8
T

he
au

th
or

s
cl

ai
m

th
at

th
e

m
et

ho
d

ca
n

be
ad

ju
st

ed
to

su
p

p
or

t
ot

he
r

ac
ti

va
ti

on
fu

nc
ti

on
9

T
he

ab
st

ra
ct

ne
tw

or
k

is
eq

u
iv

al
en

t
to

th
e

or
ig

in
al

on
e

w
he

n
bi

si
m

u
la

ti
on

is
u

se
d

w
hi

ch
is

no
t

th
e

ca
se

fo
r
δ-

bi
si

m
u

la
ti

on

62 CHAPTER 3. A Review on Abstraction Methods for NN Verification

Figures 3.5 and 3.6 illustrate the application of (Prabhakar and Rahimi

Afzal 2019) and (Elboher et al. 2020), respectively. Notice that the abstract

network using the ANN method (Sotoudeh et al. 2020) with the box (or interval)

abstract domain is the same as the abstract network obtained using the method

of INN (Prabhakar and Rahimi Afzal 2019) (see Figure 3.5). Due to the need of

supplementary details to apply the other methods, we did not include them in

this illustrative example. For instance, DeepAbstract (Ashok et al. 2020) needs a

data set for the clustering algorithm.

Note that the figures show a segment of a ReLU-NN, i.e, s1 is an arbitrary

neuron of some hidden layer and not necessarily the input of the network, and

all nodes are assigned a ReLU activation function. We apply abstraction (using

the selected methods) to merge the two nodes s3 and s4, while assuming that

v(s1) = 1, and we calculate the values10 of s5, v(s5) and v̂(s5) on the original and

the abstract networks, respectively. While model reduction methods (Prabhakar

and Rahimi Afzal 2019; Sotoudeh et al. 2020) (Figure 3.5) ensure that the output

of the original network is within the range of the output of the abstract network,

i.e.: v(s5) ∈ v̂(s5), the method introduced in (Elboher et al. 2020) (Figure 3.6)

guarantees that the output of the obtained abstract network is always higher

than the output’s value of the original network, i.e.: v(s5) ≤ v̂(s5).

We should mention here that these techniques can be adjusted to support

further types of NNs. For instance, an RNN can be transformed into an

equivalent FFNN (Akintunde et al. 2019; Jacoby et al. 2020), and then model

reduction approaches can be applied to generate the abstract network. On the

other hand, model reduction can be applied on the fully connected part of CNNs

(Ostrovsky et al. 2022; Xu, Li, et al. 2021). Regarding Binarized Neural Networks

(BNN), due to their binary behavior and their small size compared to other

types of NNs, their verification does not require abstracting their behavior and,

generally, exact methods such as SAT and MILP can be applied directly (Jia et al.

2020; Lazarus et al. 2022; Narodytska et al. 2018).

It is also worth noting that another family of techniques based on merging

neurons and removing some edges without affecting the accuracy of the

model exists in the literature. These techniques are called NN compression

and acceleration, and their objective is to build a smaller network with low

computational complexity, so that it can be embedded on devices with limited

resources and used in real-time applications, while keeping the accuracy as

high as possible (Cheng, Wang, et al. 2017; Han et al. 2015; Liang et al. 2021).

10The valuation of a neuron is defined in Part II, chapter 4 (Definition 4.2)

3.2. Abstraction Approaches for NN Verification 63

Although both NN model reduction and NN compression strive to reduce the

number of neurons, NN compression techniques cannot be used for verification,

since the generated models do not fulfil the abstraction condition presented in

Formula (3.1). In other words, verifying a property p on the compressed network

obtained by any compression method does not imply that the property does hold

on the original network.

3.2.4 Discussion

This section discusses the aforementioned model reduction methods, while

highlighting their strengths and limitations, and suggesting potential areas

for enhancement. In order to fairly compare the efficiency of the discussed

approaches, we analyze them according to three main criteria (with respect

to the available information in the original papers): (i) the precision of the

over-approximation, (ii) the minimal number of neurons that can be obtained

when the reduction method is applied until saturation, and (iii) the efficiency

regarding the verification time and the number of verified properties on the

reduced model versus the original one.

The abstraction method based on INN, proposed by Prabhakar and Rahimi

Afzal (2019) seems to be very efficient in terms of output range. An exhaustive

application of this method leads to merge all neurons of each hidden layer and

replace each layer by one single abstract neuron. The results of their paper show

that the precision highly depends on the number and the set of selected nodes to

be merged. The method needs some improvements to be more precise, since no

study was provided for neuron selection. In addition, operations on intervals

may impact the precision of the method. MILP encoding is proposed to address

the verification problem on INN, and to the best of our knowledge, no other

verification method is proposed to verify INN. Furthermore, the main constraint

of this approach lies in its limitation to abstract NNs with non-negative activation

functions. Notice that Sotoudeh et al. (2020) have proposed some fundamentals

to abstract any NN with different activation functions using any convex abstract

domain and which is not limited to intervals. In (Sotoudeh et al. 2020), the

authors provide an example of abstraction based on octagons, but no explanation

was given of the meaning of using such an abstract domain to represent the

merged neurons. Moreover, the work would have been more relevant if it had

included an evaluation study to concretely show how the ANN can be extended

to deal with other abstract domains.

64 CHAPTER 3. A Review on Abstraction Methods for NN Verification

Regarding the DeepAbstract approch proposed by Ashok et al. (2020), it is

mainly parameterized by the number of clusters on each layer; hence, when

there are few clusters, the model is more abstract and less precise. In addition,

this method relies on the discrete input set X that is used during the clustering

phase and can only verify the robustness of the model on points within this set

X. Ashok et al. (2020) claim that the verification time is reduced by 25% when

DeepAbstract is used along with DeepPoly; however, only 195 out of 200 images

could be verified to be robust against 197/200 when DeepPoly is used without

abstraction.

The abstraction-refinement approach proposed by Elboher et al. (2020)

boosted the Marabou verifier (Katz, Huang, et al. 2019) to check more properties

(58 out of 90 property vs. 35 of 90). Moreover, the abstraction method reduces

the total query median runtime by 60% . As a consequence of the neurons

classification, this method can abstract a layer to four neurons at most. This is

one of the main drawbacks of the method, since only neurons belonging to the

same category can be merged. It should also be mentioned that only properties

in the form: y ≤ c are considered, although the authors claim that the approach

is adaptable to cope with various types of properties by adjusting the output

layer. In addition, this method cannot be applied if some neurons have negative

values. For instance, this method cannot be applied in hidden layers if the used

activation function returns negative values such as sigmoid and Leaky ReLU. For

the same reason, the first hidden layer cannot be abstracted if the inputs are

negative. An example demonstrating this case is given in Figure 3.7, where x is

an input, y is the output.

The NN in Figure 3.7.b is generated using the method of (Elboher et al. 2020),

which is supposed to be an abstraction of the original model of Figure 3.7.a.

Both N and N use the ReLU activation function on the hidden layer. Although

for negative inputs the output of N is always zero: ∀x ≤ 0, y = 0, the output of

N is always positive, for instance, for x = −1, y = 3, thus the condition of the

over-approximation ∀x ∈Dx :N (x) ≥N (x) does not hold.

The NN bisimulation method proposed by Prabhakar (2022) guarantees the

equivalence between the abstract and the original models; and thus offers an

exact abstraction. However, the set of conditions are hard to satisfy on real neural

network, especially the condition on weights. On the other hand, the relaxed

version, NN-δ-bisimulation, looks more feasible but needs further improvements

to keep trace of the verified property on the abstract model and lift it to provide

guarantees on the original network.

3.2. Abstraction Approaches for NN Verification 65

(a) The concrete model N
after the classification of
nodes (I+ for increasing

positive node).

(b) The abstract model N .

Figure 3.7: Counterexample of Elboher et al. (2020) abstraction method.

In (Shriver et al. 2019), the authors propose an efficient approach along with

a dedicated tool, called R4V, to simplify and compress NN models. The wide

experimental study they performed with different verification tools and data

sets shows that R4V offers actual benefits to overcome the limitations of some

NN verification techniques. However, this method enables to verify properties

on the refactored model and proposes no way to lift these guarantees to the

original model. In other words, it does not provide any guarantee of whether

the property holds on the original model.

To sum up, regarding the challenges of NN verification, we believe that

developing a new general approach that overcomes the issues related to the

existing abstraction methods mentioned above is necessary. The works (Ashok

et al. 2020; Prabhakar 2022; Shriver et al. 2019) could be adopted and combined

with some heuristics to select candidate neurons to be merged. For instance, the

δ-bisimulation method (Prabhakar 2022) can be used to select similar nodes by

analyzing their incoming weights. The approach in (Ashok et al. 2020) can be

adapted using discretization of the input region, so that the nodes that are close

to each other (in the same cluster) are good candidates for abstraction.

While the technique in (Elboher et al. 2020) ensures that N (x) ≤ N (x), the

three methods presented in (Prabhakar and Rahimi Afzal 2019; Sotoudeh et al.

2020) go further by guaranteeing that the output of the original network is

always included within the output range of the obtained abstract network, i.e.,

N (x) ∈N (x). However, it is necessary to conduct a comparative study to assess

the performance of these methods. On the other hand, an abstract network

obtained using DeepAbstract (Ashok et al. 2020) can be used only to verify the

robustness of the model on inputs within the set of images X that is used during

the clustering phase. The last column of Table 3.1 gives the relationship between

the original and the abstract networks using the various considered methods.

66 CHAPTER 3. A Review on Abstraction Methods for NN Verification

3.3 Neural Networks compression

This section is dedicated to introduce NN compression, which is a research

topic quite close to NN model reduction. The objective of the developed

compression techniques is to enhance operations by reducing the size of the

network. Concretely, these techniques focus on providing smaller compressed

networks in order to make them more lightweight and computationally efficient,

while attempting to retain similar performances, i.e, maintain the accuracy of

the compressed network as close as possible to that of the original one (Han

et al. 2015). This aspect is particularly critical when dealing with devices

that have limited resources, such as low memory and CPU capabilities. This

is due to the fact that NN models used in applications like computer vision

and natural language processing can contain billions of parameters, including

weights and biases. Training and deploying such resource-intensive models often

require high-performance computing, making NN compression essential for

efficient use in resource-constrained environments (Neill 2020). For instance, NN

compression enables the deployment of NNs on mobile phones and embedded

systems while maintaining performance levels close to the original large network

(Cheng, Wang, et al. 2017).

Several NN compression techniques have been developed in the literature.

These techniques include:

1. Pruning: it is one of the most used NN compression techniques. Prunning

involves removing irrelevant connections represented by weights (or

kernels in the context of CNN). This can lead to a significant reduction

in the network’s size and also the computational cost. It is important to

note that pruning is not performed randomly; in fact some algorithms for

identifying and eliminating irrelevant weights are used in order to keep

the compressed network as accurate as possible (Liang et al. 2021).

Furthermore, many proposed pruning techniques adopt an iterative

approach. They repeatedly prune and retrain the network until they

achieve a desired trade-off between accuracy and network size. This

approach ensures that the network’s performance is carefully balanced

with the reduction in its size and the computational constraints (Neill

2020).

2. Quantization: this technique consists in efficiently representing NN

parameters, typically weights and biases, with reduced number of bits.

3.4. Conclusion 67

For instance, the values of a network’s parameters might be converted

from 32-bit floating-point (which is generally used) into a more compact

representation such as 8-bit or 4-bit integers. This conversion helps

reducing the amount of memory required for storing the parameters and

accelerating the training and the execution of inference operations of NN.

This process may lead to some loss in terms of model accuracy. However,

well-designed quantization techniques aim to minimize this impact. The

goal is to ensure that the obtained model retains the capability to make

accurate predictions (Gholami et al. 2022).

3. Knowledge distillation: this NN compression technique involves learning

a compact and small network to replicate and inherit the behavior or

the “knowledge” of a larger and more complex network. The former

network is referred to as student network and the latter is referred to as

the teacher network. To ensure the knowledge transfer, the training of

the student network is performed under the supervision of the teacher

network. This is achieved by minimizing the entropy, the distance, and the

divergence between the probabilistic estimates of the student and teacher

networks (Buciluǎ et al. 2006; Neill 2020).

3.4 Conclusion

In this chapter, we reviewed and discussed the state-of-the art related to the

abstraction and model reduction of neural networks for verification purposes.

We showed that the NN abstraction can be a valuable approach for mitigating

the non-linearity and the complexity of the generated networks. Abstraction

of NNs can be applied in two levels: abstracting the activation functions

and reducing the network’s size (model reduction). While the abstraction of

activation functions aims to over-approximate the non-linear activation functions

with linear constraints, model reduction is used to reduce the number of neurons

within the network. Both categories are applied to improve the scalability of the

verification process. It is important to note that the abstraction has to be sound,

ensuring that any property that holds on the abstract network necessarily holds

on the original network.

After discussing the advantages, limitations and the formal guarantees

provided by the reviewed reduction methods, we will proceed to present our

two main contributions concerning model reduction in the following chapter.

68 CHAPTER 3. A Review on Abstraction Methods for NN Verification

Part II

Neural Networks Abstraction

Chapter4
Two Model-Reduction Approaches for

Efficient NN Verification

Outline of the current chapter

4.1 Introduction 72

4.2 Preliminaries & Notations 73
4.2.1 Neural Networks Notations 73

4.2.2 Interval Neural Networks 75

4.3 The INNAbstract Approach 76
4.3.1 Model Reduction for NN with Odd Activation Functions 77

Proof of Proposition 4.1 80

4.3.2 Model Reduction Method for ReLU-NN 83

Proof of Proposition 4.3 86

4.3.3 A Heuristic strategy for Nodes Selection 90

4.4 Model Reduction approach for Non-negative Activation
Functions 91

4.5 Discussion w.r.t. Related Works 95

4.6 Conclusion 96

71

72CHAPTER 4. Two Model-Reduction Approaches for Efficient NN Verification

4.1 Introduction

Verifying NNs has become a hot research topic, particularly with the huge

interest shown by industry and academia in applying NNs in safety-critical

systems. Despite the amount of developed works in this area, the problem

of verifying NNs of practical interest remains challenging. As discussed in

Chapter 3, the existing NN verification methods face issues when it comes to

scaling up and handling real-world sized networks. The complexity and the non-

linearity of NN models make the verification process computationally expensive

and resource-demanding. As a result, the scalability of these methods becomes a

significant concern. To address this issue, model reduction methods, as a part of

NN abstraction methods, are seen as a promising research direction to handle

larger models.

The main objective of model reduction methods is to reduce the network’s

size by merging its neurons, while ensuring that the abstract model is an over-

approximation of the original one. This process is crucial for enhancing the

scalability of the verification process, as it reduces computational complexity.

To achieve this objective, model reduction techniques rely on mathematical

formulas to calculate the new weights of the reduced network. By establishing

an over-approximation relationship between the original network and its

abstraction, the desired verification properties can be checked on the (small)

abstract network instead of the (larger) original one. By doing so, computational

costs are significantly reduced, allowing for more efficient and scalable

verification procedures.

In this chapter, we discuss our contributions related to model reduction. Our

first approach, called INNAbstract (Boudardara, Boussif, Meyer, et al. 2022,

2023b), is based on Interval Neural Networks (INN) and ensures that the output

of the original network is within the obtained abstract network’s output, i.e.,

N (x) ⊆ N (x). INNAbstract can be applied on NNs with numerous activation

functions, including monotone odd activation functions and the ReLU function.

The broad idea of the approach is to merge neurons belonging to the same layer,

and define the new weights. Mathematical formulas and algorithmic procedures

to compute the incoming and outgoing weights of abstract net neurons, while

preserving the over-approximation relationship, are proposed. Detailed proof of

the over-approximation is also presented.

Our second contribution is a model reduction method for NNs with non-

negative activation functions (Boudardara, Boussif, and Ghazel 2023). The

4.2. Preliminaries & Notations 73

proposed method leverages merging neurons whose outgoing weights are

positive. However, if the set of neurons to be merged has some negative outgoing

weights, a pre-processing step is required. This step involves building an initial

abstract network by eliminating edges that have negative weights. Next, the

model reduction procedure is applied to merge the preselected set of nodes

and computes its corresponding incoming and outgoing weights. This method

guarantees that the obtained abstract network’s output is always greater than or

equal to the original network N , i.e., N (x) ≥ N (x). Notice that the approach is

used for checking properties such that N (x) ≤ c.
This chapter is dedicated to present our approaches along with the related

background, notations, and the corresponding formal proofs. Next, the

evaluation of efficiency and scalability of our approaches, including a comparison

to some selected relevant related works from the literature, is provided in

Chapter 5.

In this chapter, we first present some preliminaries and notations related

to our contributions in Section 4.2. Then, Section 4.3 introduces our first

contribution related to NN abstraction, namely INNAbstract. In Section 4.4,

we provide the theoretical development of the second approach. Finally, in

Section 4.5, we present a comprehensive discussion of related works, before

concluding this chapter with Section 4.6.

4.2 Preliminaries & Notations

Before delving into the details of the two approaches, it is essential to introduce

some key definitions and notations that will be employed throughout this

chapter.

4.2.1 Neural Networks Notations

Definition 4.1 For a NN N , the set of nodes of a layer li is represented by Si . S0

is the input set, Sn is the output set, and ∀i ∈ {1,2, . . . ,n − 1}, Si represents the set
of nodes of the hidden layer li . Two successive layers, li−1 and li , are connected via
a weighted-matrix Wi , such that: for i ∈ {1,2, . . . ,n}, wijk = w(si−1,k , si,j) denotes the
weight of the edge connecting si−1,k ∈ Si−1 to sij ∈ Si , for all k ∈ {1,2, . . . , |Si−1|} and
j ∈ {1,2, . . . , |Si |}.

74CHAPTER 4. Two Model-Reduction Approaches for Efficient NN Verification

(a) A network with bias vector. (b) An equivalent network
to the one presented in 4.1a
where biases are replaced by
weights, s.t. v(si−1,b) = 1.

Figure 4.1: An example explaining how to replace the bias vector by a weight
vector.

Definition 4.2 Given a node sij ∈ Si , i ∈ {1,2, . . . ,n}, its valuation v(sij) = vij is
calculated as follows:

v(sij) = α

 ∑
si−1,k∈Si−1

w(si−1,k , sij)× v(si−1,k)

 (4.1)

where ∀s0j ∈ S0, j ∈ {1,2, . . . , |S0|},v(s0j) = xj is the value of the jth element of the
input x, and α : R→R is the activation function of the NN (assumed to be the same
for every neuron in the NN).

Notice that several types of activation functions can be used with NNs. For

instance, Equations (4.2), (4.3), and (4.4) define the Tanh, ReLU and Sigmoid
functions, respectively.

tanh(x) =
ex − e−x

ex + e−x
; x ∈R (4.2)

ReLU (x) =max(0,x) ; x ∈R (4.3)

σ (x) =
1

1 + e−x
; x ∈R (4.4)

From Definition 4.2, and with a slight abuse of notation, we use v(Si) or Vi to

4.2. Preliminaries & Notations 75

denote the valuation set corresponding to all nodes of layer Si , i.e.,

Vi = v(Si) = [v(si1),v(si2), . . . , v(si|Si |)]
τ

Definition 4.3 Given a NN composed of n layers with its associated function N :

R
|S0|→R

|Sn|, its valuation for a given input x is N (x) = v(Sn)

In Definition 4.3, the functionN is the composition of a set of vector functions

fi where i ∈ {1,2, ...,n}, i.e., N = fn ◦ fn−1 ◦ · · · ◦ f1, where fi is the function of layer

li and is defined as follows:

fi = α (Wi × v(Si−1)) (4.5)

where Wi ∈ R|Si |×|Si−1| is the weight matrix of layer li . In the remainder of this

chapter, we exchangeably use wijk or w(si−1,k , sij) to represent the weight of the

edge connecting the node si−1,k ∈ Si−1 to the node sij ∈ Si .

Remark 4.1 For the sake of simplicity of formulas and proofs, we did not include
biases explicitly in the definition of NN. In fact, the bias vector bi of a layer li can be
replaced by a weight vector connecting a new node si−1,b ∈ Si−1 to all the nodes sij of
Si such that: v(si−1,b) = 1 and w(si−1,b, sij) = bij . An illustrative example is given in
Figure 4.1.

4.2.2 Interval Neural Networks

As presented in chapter 2, the parameters of a NN are scalars, usually of type float

(∈R). However, Prabhakar and Rahimi Afzal (2019) have recently introduced a

new structure to represent an NN, namely Interval Neural Networks (INN). This

structure is initially designed to build an INN that captures and abstracts some

behaviors of an original standard NN.

In the context of INNs, the weights (and biases) are represented as intervals.

These intervals define the lower and upper bounds of each weight. Formally, a

weight w within an INN model is defined as: w = [wl ,wu], where wl and wu are

the respective lower and upper bounds, such that wl ∈R, wu ∈R, and wl ≤ wu.

Notice that, due to the fact that the weights are intervals, the output of an INN

is always an interval, even when the received input is a scalar.

Figure 4.2 depicts an example of an INN. The presented INN has three layers

(input, hidden and output layers), where the weights connecting the successive

76CHAPTER 4. Two Model-Reduction Approaches for Efficient NN Verification

Figure 4.2: An example of an INN of three layers.

layers are intervals. For v(s1) = 1, the corresponding values of the outputs are:

v(s4) = [5,12.5] and v(s5) = [−13,9].

In fact, INNs can be seen as a general representation of NNs. Notice that

any NN can be transformed into an equivalent INN by defining its weights as

w = [wl ,wu], such that wl = wu. An example illustrating this transformation is

presented in Figure 4.3.

In the sequel, and in order to simplify the presentation and the notations, we

consider the INN representation of the NN to be abstracted; thus, with a slight

abuse of notation, we can write that N (x) ⊆ N̄ (x).

(a) A standard NN. (b) The equivalent INN.

Figure 4.3: An example showing the transformation of an NN (a) to an equivalent
INN (b).

4.3 The INNAbstract Approach

The objective of our method is to reduce the NN size by merging some sets of

nodes. Abstracting a set of nodes requires providing formulas to determine the

incoming and outgoing weights of the obtained abstract node, and a formal proof

ensuring that the reduced network over-approximates by design the original one.

The broad idea of the approach is to define the output weights of the abstract

node as the sum of the absolute values over the outgoing weights of the set of

4.3. The INNAbstract Approach 77

(a) The original network. (b) The abstract network.

Figure 4.4: An example explaining the main idea of the proposed approach,
where the incoming weight to the abstract node ŝ is: ŵl = min{sign(c)×a,sign(d)×
b} and ŵu = max{sign(c)× a,sign(d)× b}.

merged nodes, and bring back their signs to be used with their incoming weights

to calculate the new incoming weights of the abstract node. Figure 4.4 provides

an illustration of the abstraction procedure, where Figure 4.4a represents the

original network N, and Figure 4.4b the obtained abstract network. Mathematical

formulations and examples of the application of the proposed method are

presented below. First, we start by giving a general formula for NNs with

odd and monotone activation functions, and then provide a modified version to

support NNs with the ReLU activation function.

4.3.1 Model Reduction for NN with Odd Activation Functions

Before discussing the details of the approach, let us first recall the definitions of

an odd function and a monotone function.

Definition 4.4 A function g : R→R is odd if:

∀x ∈R : g(−x) = −g(x)

Definition 4.5 A function g : Dg ⊆ R→ R is monotone if it is either (exclusively)
increasing or decreasing over its entire domain Dg .

1. g is monotone increasing if:

∀x1,x2,∈Dg , if x1 ≤ x2 =⇒ g(x1) ≤ g(x2)

2. g is monotone decreasing if:

∀x1,x2,∈Dg , if x1 ≤ x2 =⇒ g(x1) ≥ g(x2)

78CHAPTER 4. Two Model-Reduction Approaches for Efficient NN Verification

Examples of some used odd activation functions are Tanh, Bipolar Sigmoid,

LeCun’s Tanh, the identity function, Hard Tanh, etc. (Nwankpa et al. 2018).

Our method consists in merging a set of nodes Ŝ ⊆ Si , where Si is the set of

nodes of hidden layer li , and replace the subset Ŝ by an abstract node ŝ which is

determined by its weights as follows:

1. Incoming weights:

∀si−1,k ∈ Si−1, w(si−1,k , ŝ) = [ŵlk , ŵ
u
k], such that:

ŵlk = min
si∈Ŝ,si+1,j∈Si+1

{sign(w(si , si+1,j))×w(si−1,k , si)}

ŵuk = max
si∈Ŝ,si+1,j∈Si+1

{sign(w(si , si+1,j))×w(si−1,k , si)}
(4.6)

2. Outgoing weights:

∀si+1,j ∈ Si+1,w(ŝ, si+1,j) =
∑
si∈Ŝ

|w(si , si+1,j)| (4.7)

where |.| is the absolute value, and sign is the sign function defined as: sign :

R→ {−1,1}

sign(x) =

 1, if x ≥ 0

−1, otherwise
(4.8)

The selection of nodes of Ŝ can be done using some nodes selection strategies,

such as random selection or heuristics based selection. More details about nodes

selection strategies will be discussed later in this chapter.

The main steps of the abstraction method are presented in Algorithm 1.

The algorithm takes as input two parameters: the original network N and the

nodes selection strategy. First, a copy of the original network, denoted N̄ , is

generated. Next, for each layer, a partition Pi of disjoint subsets of Si is created

using the nodes selection strategy procedure SelectNodes. In other words, Pi is

a set of subsets Ŝk, each contains a number of neurons to be merged. Assume

m ≤ |Si | the number of subsets fo neurons to be merged, Pi = {Ŝ1, . . . , Ŝm}, where

(Ŝk , Ŝk′) ⊆ Si×Si and Ŝk∩ Ŝk′ = ∅, ∀k,k′ ∈ {1, . . . ,m}. Once SelectNodes is completed,

the procedure AbstractOneLayer presented in Algorithm 2 is applied for merging

each subset Ŝ in the partition Pi and calculating the weights of the obtained

abstract nodes. Finally, the algorithm returns the abstract netwrok N̄ . SelectNodes
may correspond to a random selection, or may implement some heuristics as

4.3. The INNAbstract Approach 79

(a) A network N: sip and siq are to be
merged.

(b) The obtained abstract model N .

Figure 4.5: An example of the abstraction method applied on two neurons
of a hidden layer li . For v(si−1,1) = 1, we have v(si+1,1) = 0 and v(si+1,2) = 5,
v(ŝi+1,1) = [−10,15] and v(ŝi+1,2) = [−4,6]. Hence, the over-approximation is
fulfilled, since v(si+1,k) ∈ v(ŝi+1,k) for k = 1,2.

will be discussed in Section 4.3.3.

The execution of Algorithm 1 is illustrated in Figure 4.5. In this example, we

assume that the network uses the identity activation function (α(x) = x). The

application of Algorithm 1 on a network N allows the generation of an abstract

network that is an over-approximation of N. Based on Algorithm 1, the following

results can be stated.

Algorithm 1 Pseudo-code of INNAbstract
1: procedure Abstract(N , selectStrategy)
2: N̄ ← duplicate(N) ▷ Initialize the abstract network
3: for i← 1 to n− 1 do ▷ Explore all layers
4: Pi ← SelectNodes(N̄ , i, selectStrategy)
5: AbstractOneLayer(N̄ , i,Pi)
6: end for
7: return N̄
8: end procedure

Proposition 4.1 Let N be a NN. Assume that the activation function of N is odd
and monotone. Let Ŝi = (Si\Ŝ)∪ {ŝ} be the set of nodes in layer i after applying the
abstraction procedure on this layer. Then, we have:

∀v(Si−1), v(Si+1) ∈ v(Ŝi+1)

Proposition 4.2 Let N be a NN. Assume that the activation function of N is odd and
monotone. Let N̄ be the abstract network of N , obtained using Algorithm 1. Then we
have :

∀x ∈R|S0|, N (x) ⊆ N̄ (x)

80CHAPTER 4. Two Model-Reduction Approaches for Efficient NN Verification

Algorithm 2 Pseudo-code of the abstraction method applied on one hidden layer
li .

1: procedure AbstractOneLayer(N , i, Pi) ▷ Pi a set containing the partitions
2: for every subset Ŝ in Pi do
3: create a node ŝ
4: for si−1,k ∈ Si−1 do
5: calculate ŵ(si−1,k , ŝ) using Equation (4.6)
6: end for
7: for si+1,j ∈ Si+1 do
8: calculate ŵ(ŝ, si+1,j) using Equation (4.7)
9: end for

10: for si ∈ Ŝ do
11: remove si
12: end for
13: add ŝ to Si
14: end for
15: end procedure

The proof of Proposition 4.1 is given below. The proof of Proposition 4.2

is straightforward and can be derived from the proof of Proposition 4.1 by

propagating the abstraction rom layer li to li+1, starting from layer l1 up to ln−1.

Proof of Proposition 4.1

In Proposition 4.1, v(Si+1) ∈ v(Ŝi+1) means that v(si+1,j) ∈ v(ŝi+1,j),∀j ∈ {1,2, . . .m|},
wherem = |Si+1| = |Ŝi+1|. Proposition 1 considers merging many nodes on a hidden

layer li , yet for the sake of simplicity, we provide the proof of merging two nodes.

The generalization of this proof by considering multiple nodes can be done

following the same steps.

Assume that we want to merge two hidden nodes s1 and s2 of a hidden layer

li , such that li−1, li and li+1 all have an odd and monotone activation function,

and let ŝ denote the obtained abstract node.

We denote by ak (resp. bk) the incoming weights of s1 (resp. s2) from node

si−1,k ∈ Si−1, ak = w(si−1,k , s1)

bk = w(si−1,k , s2)

and we denote by cj (resp. dj) the outgoing weight of s1 (resp. s2) toward node

4.3. The INNAbstract Approach 81

si+1,j ∈ Si+1, i.e., cj = w(s1, si+1,j)

dj = w(s2, si+1,j)

The weights of the remaining edges connecting other nodes than s1 and s2
(s ∈ Si \ {s1, s2}) to each node si+1,j ∈ Si+1 are defined as follows:

w(s, si+1,j) = ws,sj

We denote by ŝ the obtained abstract node upon merging s1 and s2 using

Algorithm 2. The new abstract layer is denoted as Ŝi = ŝ∪ {Si \ {s1, s2}}. And for

clarity, we use vk instead of vi−1,k. Since the activation function α is monotone

and odd, we can state the following:

∀x ∈R : α(−x) = −α(x)

and

∀x1,x2 ∈R : x1 ≤ x2 =⇒ α(x1) ≤ α(x2)

For each j ∈ {1,2, ..., |Si+1|}, we have:

vi+1,j = α(zi+1,j) = α

cj ×α(
m∑
k=1

akvk) + dj ×α(
m∑
k=1

bkvk) +
∑

s∈Si\s1,s2
ws,sjv(s)



v̂i+1,j = α(ẑi+1,j) = α

(|cj |+ |dj |)×α(
m∑
k=1

ŵkvk) +
∑

s∈Si\s1,s2
ws,sjv(s)


where zi+1,j (resp. ẑi+1,j) is the value of si+1,j (resp. ŝi+1,j) before applying the

activation function α, m = |Si−1| is the number of nodes of layer li−1 and ŵk =

[ŵlk , ŵ
u
k] is the abstract weight connecting each node sk ∈ Si−1 to the abstract node

ŝ ∈ Ŝi as defined in Algorithm 2. The main result is to prove that vi+1,j ∈ v̂i+1,j .

By definition of ŵk we have ∀k = {1,2, ...,m},∀j ∈ {1,2, ...,n}:

ŵ
l
k ≤ sign(cj)ak ≤ ŵuk

ŵlk ≤ sign(dj)bk ≤ ŵuk

82CHAPTER 4. Two Model-Reduction Approaches for Efficient NN Verification

Thus, we have : ŵ
l
kvk ≤ sign(cj)akvk ≤ ŵuk vk if vk ≥ 0

ŵuk vk ≤ sign(cj)akvk ≤ ŵlkvk Otherwise

Two cases need to be considered, vk ≥ 0 and vk < 0. We provide a detailed proof

for the case vk ≥ 0, below. The proof of the second case, i.e., vk < 0, is omitted

and can be inferred similarly by just inverting the lower and upper bounds of

ŵk when multiplying it by vk.

Assume that vk ≥ 0, multiplying the aforementioned inequality by sign(cj),

we obtain: 

if cj ≥ 0:

sign(cj)ŵ
l
kvk ≤ sign(cj)sign(cj)akvk ≤ sign(cj)ŵ

u
k vk

Otherwise:

sign(cj)ŵ
u
k vk ≤ sign(cj)sign(cj)akvk ≤ sign(cj)ŵ

l
kvk

The proof contains two parts: cj ≥ 0 and cj < 0. Here we provide details of

the proof for the first case: sign(cj) ≥ 0. The proof of the other case (sign(cj) < 0)

can be performed following the same logic, using the fact that α is odd, and

hence α(sign(cj)× x) = sign(cj)×α(x), and that we have sign(cj)× cj = |cj |

For sign(cj) ≥ 0 and by taking the sum over all k we have:

m∑
k=1

sign(cj)ŵ
l
kvk ≤

m∑
k=1

akvk ≤
m∑
k=1

sign(cj)ŵ
u
k vk

And since α is monotone increasing, we have:

α(
m∑
k=1

sign(cj)ŵ
l
kvk) ≤ α(

m∑
k=1

akvk) ≤ α(
m∑
k=1

sign(cj)ŵ
u
k vk)

On the other hand, since α is odd, we have α(sign(cj)× x) = sign(cj)×α(x),

thus the previous inequality is equivalent to:

sign(cj)α(
m∑
k=1

ŵlkvk) ≤ α(
m∑
k=1

akvk) ≤ sign(cj)α(
m∑
k=1

ŵuk vk) (4.9)

4.3. The INNAbstract Approach 83

Multiplying Equality (4.9) by cj gives:

|cj | ×α(
m∑
k=1

ŵlkvk) ≤ cj ×α(
m∑
k=1

akvk) ≤ |cj | ×α(
m∑
k=1

ŵuk vk) (4.10)

Recalling that sign(cj)× cj = |cj |. The same reasoning applies when we replace ak
by bk and cj by dj :

|dj | ×α(
m∑
k=1

ŵlkvk) ≤ dj ×α(
m∑
k=1

bkvk) ≤ |dj | ×α(
m∑
k=1

ŵuk vk) (4.11)

Summing inequalities (4.10) and (4.11) with the remaining incoming nodes

values to si+1,j ∈ Si+1 \ {s1, s2} we obtain:

(|cj |+ |dj |)×α(
m∑
k=1

ŵlkvk) +
∑

s∈Si\s1,s2
ws,sjv(s)

≤ cj ×α(
m∑
k=1

akvk) + dj ×α(
m∑
k=1

bkvk) +
∑

s∈Si\s1,s2
ws,sjv(s)

≤ (|cj |+ |dj |)×α(
m∑
k=1

ŵuk vk) +
∑

s∈Si\s1,s2
ws,sjv(s)

(4.12)

And since α is monotone, by applying the activation α on the Inequality (4.12),

we obtain:

v̂(ŝi+1,j)
l ≤ v(si+1,j) ≤ v̂(ŝi+1,j)

u

Finally we conclude that:

vi+1,j ∈ v̂i+1,j , ∀j ∈ {1, ...,n}

□

4.3.2 Model Reduction Method for ReLU-NN

In this section, we present a relaxation of our method presented in Section 4.3.1

in such a way as it can support ReLU-NNs. Recall that the piece-wise linear

function ReLU is monotone; however it is not odd, thus the model reduction

method presented in the previous section is not straightforwardly applicable on

ReLU-NN. Concretely, applying the approach presented in the previous section

on a ReLU-NN does not guarantee the over-approximation, i.e., the output of

84CHAPTER 4. Two Model-Reduction Approaches for Efficient NN Verification

(a) A network N: s2 and s3 are to be
merged.

(b) The obtained abstract model N .

Figure 4.6: A counterexample of applying Algorithm 2 on a ReLU-NN.

the original network may not be within the range of the output of the reduced

network.

For illustration, a counterexample is presented in Figure 4.6, where the

original network is on the left (Figure 4.6b) and the reduced network on the

right (Figure 4.6a) is obtained using our method presented in Section 4.3.1. Let

consider that the activation function of the network is the ReLU functoin, and

let assume that v(s1) = 2, then the value of the neuron s4 of the original network

(Figure 4.6a) is v(s4) = 8, and for the same input value (v(s1) = 2), the value of

ŝ4 of the reduce network (Figure 4.6b) is v(ŝ4) = [12,18]. Hence v(s4) < v(ŝ4) and

the over-approximation is not preserved.

The idea of this relaxation for ReLU-NNs is to check whether the incoming

weight to every node s ∈ Ŝ has the same sign as its corresponding outgoing

weight, and if so, the lower bounds are calculated using Equation (4.13) instead

of Equation (4.6)1.
ŵlk =min

si∈Ŝ
{w(si−1,k , si)}

ŵuk = max
si∈Ŝ,si+1,j∈Si+1

{sign(w(si , si+1,j))×w(si−1,k , si)}
(4.13)

For two nodes si−1,k ∈ Si−1 and s ∈ Ŝ ⊆ Si , we define w∗i+1,j ∈ {w(s, si+1,j) :

si+1,j ∈ Si+1} as the weight minimizing {sign(w(s, si+1,j)) × w(si−1,k , s)}. For a

subset Ŝ ⊆ Pi of nodes to be abstracted, if all the concrete nodes s ∈ Ŝ satisfy

Equation (4.14) below, then the incoming weights of the abstract node ŝ are

1The formula for calculating the upper bounds of the incoming weights is the same as NN
with odd and monotone, i.e., Equation (4.7)

4.3. The INNAbstract Approach 85

calculated using Equation (4.13).∧
s∈ŝ

(
sign(w∗i+1,j) = sign(w(si−1,k , s))

)
(4.14)

The second step consists of replacing every scalar-weight w of layer li by an

interval weight ŵ = [min(w,0),w]. This is done at the end of the abstraction

process of layer li and before switching to layer li+1. The main steps of abstracting

a set of nodes of a hidden layer li of a ReLU-NN are summarized in Algorithm 3.

The algorithm can be applied on multiple layers as presented in Algorithm 4.

Algorithm 3 Pseudo-algorithm of the abstraction method applied on one ReLU
hidden layer li .

1: procedure Abstract1ReLULayer(N , i, Pi) ▷ N : the network, i : the layer’s
number

2: for every subset Ŝ in Pi do
3: create a node ŝ
4: for si−1,k ∈ Si−1 do
5: calculate ŵ(si−1,k , ŝ) using Equation (4.6) and determine w∗i+1,j
6: if Equation (4.14) holds then
7: update ŵ(si−1,k , ŝ) using Equation (4.13)
8: end if
9: end for

10: for si+1,j ∈ Si+1 do
11: calculate ŵ(ŝ, si+1,j) using Equation (4.7)
12: end for
13: for si ∈ Ŝ do
14: remove si
15: end for
16: add ŝ to Si
17: end for
18: replace all the scalar-weights w of layer li by an interval [min(w,0),w]
19: end procedure

In the following, we state the main results pertaining to the abstraction of

ReLU-NNs, then we provide the complete proof of Proposition 4.3. The proof of

Proposition 4.4 can be derived from that of Proposition 4.3 by straightforwardly

propagating the abstraction from layer li to li+1, up to ln−1.

Proposition 4.3 Let N be a NN. Assume that ReLU is the activation function of N .
Let Ŝi = (Si\Ŝ)∪ {ŝ} be the set of nodes in the ith layer upon abstracting the nodes in

86CHAPTER 4. Two Model-Reduction Approaches for Efficient NN Verification

Algorithm 4 Pseudo-algorithm of INNAbstract for ReLU-NNs.
1: procedure Abstract(N , selectStrategy)
2: N̄ ← duplicate(N) ▷ Initialize the abstract network
3: for i← 1 to n− 1 do ▷ Explore all layers
4: Ŝ← SelectNodes(N̄ , i, selectStrategy)
5: Abstract1ReLULayer(N̄ , i, Ŝ)
6: end for
7: return N̄
8: end procedure

Ŝ ⊆ Si into ŝ. Then we have :

∀v(Si−1), v(Si+1) ∈ v(Ŝi+1)

Proposition 4.4 Let N be a NN. Assume that ReLU is the activation function of N .
Let N̄ be the abstract network of N obtained using Algorithm 4. Then the following
holds:

∀x ∈R|S0|,N (x) ⊆ N̄ (x)

Proof of Proposition 4.3

Proposition 4.3 considers merging certain nodes in a hidden layer li ; yet for the

sake of clarity and readability, we provide the proof of merging two nodes. The

generalization of this proof by considering multiple nodes can be done following

the same steps.

Assume that we want to merge two hidden nodes s1 and s2 of some given

hidden layer li , such that li−1, li and li+1 are all Relu-layers, and denote by ŝ the

obtained abstract node be.

We denote by ak the incoming weight of s1 from node si−1,k ∈ Si−1, similarly,

bk denotes the incoming weight of s2 from node si−1,k. i.e.,ak = w(si−1,k , s1)

bk = w(si−1,k , s2)

Let us denote by cj (resp. dj) the outgoing weights of s1 (resp. s2) toward node

si+1,j ∈ Si+1, i.e., cj = w(s1, si+1,j)

dj = w(s2, si+1,j)

The weights of the remaining edges connecting other nodes than s1 and s2

4.3. The INNAbstract Approach 87

(s ∈ Si \ {s1, s2}) to any node sj ∈ Si+1 are defined as follows:

w(s, sj) = ws,sj

We denote by ŝ the obtained abstract node after merging s1 and s2. The set of

nodes of the new abstract layer is Ŝi = ŝ∪ (Si \ {s1, s2}).
We know that the activation function α is Relu(x) =max(x,0),∀x ∈R, and for

clarity, we use vk instead of vi−1,k. For each j ∈ {1,2, ...,n}, such that n = |Si+1|, we

have:

vi+1,j = α(zi+1,j) = α

cj ×α(
m∑
k=1

akvk) + dj ×α(
m∑
k=1

bkvk) +
∑

s∈Si\{s1,s2}
ws,sjv(s)


and

v̂i+1,j = α(ẑi+1,j)

= α

(|cj |+ |dj |)×α(
m∑
k=1

ŵkvk) +
∑

s∈Si\{s1,s2}
ŵs,sjv(s)


where zi+1,j (resp. ẑi+1,j) is the value of si+1,j (resp. ŝi+1,j) before applying

the activation function α, and m = |Si−1| is the number of nodes of layer li−1,

ŵs,sj = [min(ws,sj ,0),ws,sj], and ŵk = [ŵlk , ŵ
u
k] is the abstract weight connecting

node sk ∈ Si−1 to the abstract node ŝ ∈ Ŝi as defined in Algorithm 3. The main

result is to prove that vi+1,j ∈ v̂i+1,j , which is equivalent to prove that:

1. vi+1,j ≤ v̂ui+1,j , and

2. v̂li+1,j ≤ vi+1,j

1- Proving that vi+1,j ≤ v̂ui+1,j

By definition of ŵk, we have:sign(cj)ak ≤ ŵuk
sign(dj)bk ≤ ŵuk

∀k = {1,2, ...,m},∀j ∈ {1,2, ...,n}

In addition, by definition of Relu we know that: vk ≥ 0,∀k ∈ {1,2, ...,m}. Thus:

sign(cj)akvk ≤ ŵuk vk ,∀k = {1,2, ...,m},∀j ∈ {1,2, ...,n}

88CHAPTER 4. Two Model-Reduction Approaches for Efficient NN Verification

This implies:
m∑
k=1

sign(cj)akvk ≤
m∑
k=1

ŵuk vk

Because Relu is monotone increasing, applying Relu on the previous inequality

gives:

α(
m∑
k=1

sign(cj)akvk) ≤ α(
m∑
k=1

ŵuk vk)

Using the property of Relu: x ×Relu(y) ≤ Relu(x × y), we obtain:

sign(cj)α(
m∑
k=1

akvk) ≤ α(
m∑
k=1

sign(cj)akvk) ≤ α(
m∑
k=1

ŵuk vk)

Which implies:

cjα(
m∑
k=1

akvk) ≤ |cj |α(
m∑
k=1

ŵuk vk) (4.15)

Following the same steps for dj and bk, we obtain:

djα(
m∑
k=1

bkvk) ≤ |dj |α(
m∑
k=1

ŵuk vk) (4.16)

From Equations (4.15) and (4.16):

cjα(
m∑
k=1

akvk)+djα(
m∑
k=1

bkvk)+
∑

s∈Si\{s1,s2}
ws,sjv(s) ≤ (|cj |+|dj |)α(

m∑
k=1

ŵuk vk)+
∑

s∈Si\{s1,s2}
ws,sjv(s)

Finally, applying the activation function Relu:

α(cjα(
m∑
k=1

akvk)+djα(
m∑
k=1

bkvk)+
∑

s∈Si\{s1,s2}
ws,sjv(s)) ≤ α((|cj |+|dj |)α(

m∑
k=1

ŵuk vk)+
∑

s∈Si\{s1,s2}
ws,sjv(s))

which is equivalent to: vi+1,j ≤ v̂ui+1,j .

2- Proving that vi+1,j ≥ v̂li+1,j

By definition of ŵs,sj , we have ŵls,sj = min(ws,sj ,0) ≤ ws,sj for all j and all s ∈
Si \ {s1, s2}. Then, since v(s) ≥ 0 for all s ∈ Si \ {s1, s2}, we have∑

s∈Si\{s1,s2}
ŵls,sjv(s) ≤

∑
s∈Si\{s1,s2}

ws,sjv(s). (4.17)

4.3. The INNAbstract Approach 89

The definition of ŵk in Algorithm 3 can be decomposed into three cases for

each k ∈ {1, . . . ,m}:

• Case 1: sign(ak) , sign(c∗j) or sign(bk) , sign(d∗j).

• Case 2: sign(ak) = sign(c∗j) and sign(bk) = sign(d∗j), with either ak ≤ 0 or

bk ≤ 0.

• Case 3: sign(ak) = sign(c∗j) and sign(bk) = sign(d∗j), with both ak ≥ 0 and

bk ≥ 0.

where c∗j and d∗j are the corresponding weights w∗i+1,j for s1 and s2, respectively

(please see Section IV-B).

We also know that by definition of ŵk, in Cases 1 and 2 we have ŵlk ≤ 0, and

in Case 3 we have ŵlk ≥ 0.

If we are in Cases 1 or 2 for all k ∈ {1, . . . ,m}, then we have ŵlk ≤ 0 for

all k, which implies that
∑m
k=1 ŵ

l
kvk ≤ 0 (since vk ≥ 0 for all k), and then

(|cj | + |dj |)α(
∑m
k=1 ŵ

l
kvk) = 0 since α(x) = max(x,0). From the definition of

ŵls,sj = min(ws,sj ,0) ≤ 0, this implies that ẑli+1,j ≤ 0 and thus v̂li+1,j = α(ẑli+1,j) = 0.

Since α(x) ≥ 0 for all x, we have vi+1,j = α(zi+1,j) ≥ 0 which allows us to conclude

that v̂li+1,j ≤ vi+1,j .

Otherwise, there is necessarily at least one k in Case 3, which means that

for this particular k we have ak ≥ 0, bk ≥ 0, c∗j ≥ 0 and d∗j ≥ 0. By definition of c∗j
and d∗j , we can conclude that for all j ∈ {1, . . . ,n} we have cj ≥ 0 and dj ≥ 0. This

implies that the definition of ŵlk is reduced to ŵlk = min{ak ,bk} for all k ∈ {1, . . . ,m}.
From the knowledge that ŵlk ≤ ak, ŵ

l
k ≤ bk and vk ≥ 0 for all k ∈ {1, . . . ,m}, and

that the activation function α is monotonically increasing, we obtain:

α(
m∑
k=1

ŵlkvk) ≤ α(
m∑
k=1

akvk) (4.18)

and

α(
m∑
k=1

ŵlkvk) ≤ α(
m∑
k=1

bkvk). (4.19)

Then, multiplying (4.18) by |cj | = cj , (4.19) by |dj | = dj , and taking the sum of the

resulting two inequalities and (4.17) gives ẑli+1,j ≤ zi+1,j . From the monotonicity

of α, we can finally conclude that v̂li+1,j ≤ vi+1,j . □

90CHAPTER 4. Two Model-Reduction Approaches for Efficient NN Verification

4.3.3 A Heuristic strategy for Nodes Selection

It is worth noticing that the efficiency and the precision of the reduced model

strongly depends on the characteristics of the merged nodes. One of the most

important features is the sign of the outgoing weights, since we use this feature

to calculate the weights of the abstract node. Therefore, we propose a heuristic

method to select the set of nodes to be merged in each layer based on the sign

of their outgoing weights. Recall that the sign of outgoing weights of the initial

network affects the sign of both incoming and outgoing weights of the abstract

network after merging (multiplying incoming weights by this sign, and taking

the absolute value for outgoing weights). Therefore, intuitively, it seems more

likely that the abstract network will be closer to the original one when the

outgoing weights are positive.

In our approach, we propose a heuristic for nodes selection giving priority to

nodes having positive outgoing weights, i.e., the nodes that have more outgoing

positive weights are to be merged first. This is done by calculating the sign of the

outgoing weight matrix of the hidden layer li , sum the obtained matrix by rows,

and then sort the obtained list. Finally, the selection of the nodes to be merged is

done by picking a number of nodes from the top of this ordered list.

Algorithm 5 summarizes the main steps of the heuristics based nodes

selection. In the algorithm, the parameter nbAbst determines the number of

nodes to be merged. Notice also that NodeSelectionHeuris is used within

the procedure SelectNodes in Algorithms 1 and 4 by setting the parameter

selectStrategy to heursitics, i.e., selectStrategy = heursitics.

Algorithm 5 Nodes selection strategy based on heuristics.
1: procedure NodeSelectionHeuris(N, i, nbAbst)
2: W ← the outgoing weight matrix of layer li
3: Wsign← sign(W) ▷ calculate the sign matrix of W
4: sumrows← sum(Wsign, axis = 1) ▷ Sum by row
5: sort(sumrows)
6: save the first nbAbst nodes in a set Ŝ
7: return Ŝ
8: end procedure

4.4. Model Reduction approach for Non-negative Activation Functions 91

4.4 Model Reduction approach for Non-negative

Activation Functions

The approach presented in the previous section supports NNs with odd

and monotone activation functions, and also ReLU-NNs with the proposed

relaxation. In this section, we present a second approach that supports NNs

with any monotone non-negative activation function. A non-negative function

is a function that does not return negative values (see Definition 4.6). For

instance, the ReLU and Sigmoid functions, presented in Equations (4.3) and (4.4),

respectively, are examples of non-negative activation functions.

Definition 4.6 A function α : R→R is non-negative if: ∀x ∈R : α(x) ≥ 0.

The aim of this method is to construct a reduced network, denoted as N ,

from the original networkN by merging a set of neurons within the same hidden

layer, while ensuring that the output of N is always greater than or equal to the

output of the original network N , formally written:

∀x ∈R|S0| :N (x) ≥N (x) (4.20)

The approach is mainly used to check properties of the form ∀x,P re(x) =⇒
N (x) < c. Notice that other properties of interest can be reformulated (or reduced)

to a one-single output property by adding additional neurons to the network

(see Elboher et al. (2020) for more details).

In the following and for the sake of simplicity, we consider that the network

N has a single output y (i.e., Sn has one neuron, |Sn| = 1) and we want to verify

that N (x) < c, for a given constant c ∈R and some constraints P re on the input x,

formally written:

∀x,P re(x) =⇒ N (x) < c (4.21)

Thus, whenever we are able to demonstrate that N (x) < c, we can directly infer

the correctness of the property for the original network N :

∀x, [P re(x) =⇒ N (x) < c) =⇒ (P re(x) =⇒ N (x) < c]

To construct an abstract network N from the original network N , we start

by eliminating the negative connections of the relevant neurons. Concretely, to

abstract a set of nodes Ŝ ⊆ Si of the hidden layer li , we first remove the negative

92CHAPTER 4. Two Model-Reduction Approaches for Efficient NN Verification

weights starting from the hidden layer li towards the succeeding layers until

reaching the last hidden layer of the network. Then, we replace a set of neurons

Ŝ with a single abstract neuron ŝ. This abstract neuron is then connected to the

previous and next layers through new weighted edges. The calculation of the

incoming and outgoing weights for this abstract neuron ŝ is computed in a way

to ensure that the over-approximation relation presented in Equation (4.20) is

always satisfied, namely:

• Incoming weight: the maximum value among the incoming weights of the

individual neurons to merge.

• Outgoing weight: the sum of the outgoing weights of the corresponding

individual neurons to merge.

Formally, let us consider a set of neurons Ŝ ⊆ Si , which belong to a hidden

layer li . Each neuron s in the set Ŝ has incoming and outgoing weights denoted

as w(si−1,k , s) and w(s, si+1,j), respectively. Here, si−1,k ∈ Si−1 represents a neuron

of the preceding layer li−1, and si+1,j ∈ Si−1 represents a neuron of the succeeding

layer li+1. The first step consists in eliminating negative weights to ensure that:

∀i ≤ t ≤ n− 1,∀s1 ∈ St ∧ s2 ∈ St+1 : w(s1, s2) ≥ 0. The second step is to replace the

set of neurons Ŝ by the abstract neuron ŝ such that the weights of ŝ are calculated

as follows:

1. Incoming weights w(si−1,k , ŝ):

∀si−1,k ∈ Si−1 : w(si−1,k , ŝ) = max
s∈Ŝ
{w(si−1,k , s)} (4.22)

2. Outgoing weights w(ŝ, si+1,j):

∀si+1,j ∈ Si+1 : w(ŝ, si+1,j) =
∑
s∈Ŝ

w(s, si+1,j) (4.23)

Figure 4.7 depicts an example of the model reduction method applied on

a small network employing the ReLU activation function, where the objective

in this example is to merge the set of neurons Ŝ = {s1, s2, s3} of the original

network N (Figure 4.7a) and replace it with the abstract neuron ŝ. The first

step involves eliminating the negative outgoing weights of neurons in Ŝ. The

resulting network of this step is presented in Figure 4.7b. Subsequently, the

model reduction method is applied on this network to merge the set of neurons Ŝ,

4.4. Model Reduction approach for Non-negative Activation Functions 93

(a) An example
network N before
abstraction (the
original network).

(b) The obtained
network after the
pre-processing
phase applied on
the NN presented in
Figure 4.7a (removing
negative weights).

(c) The abstract
network N using the
proposed method.

Figure 4.7: The application of the proposed model reduction method on a toy
example of NN.

and calculate the incoming and outgoing weights of the obtained abstract neuron

ŝ using Equations (4.22) and (4.23), respectively. The final abstract network is

shown in Figure 4.7c. Notice that N (x) ≥N (x), for all possible value of x.

Remark 4.2 Theoretically, the proposed method allows for merging all neurons,
leading to a network with only one neuron in each hidden layer. However, in practical
applications, this may not be beneficial as there is a trade-off to be found between
reducing the size of the original model and maintaining the precision of the abstract
model.

Algorithm 6 provides a summary of the main steps involved in the model

reduction procedure applied to some given hidden layer li . The procedure

assumes that all neurons in set s have positive outgoing weights. To apply the

model reduction on different hidden layers, a general procedure is presented

in Algorithm 7. The algorithm begins by eliminating negative weights and

then, for each set of neurons to be merged in a hidden layer li , it invokes the

AbstractOneLayer procedure (presented in Algorithm 6). The algorithm finally

returns the abstract network N . In this algorithm, SelectNodes is the procedure

responsible for selecting the sets of nodes to be merged. In this work, we applied

random nodes selection. However, this procedure can be re-implemented to

support some heuristics.

In the following, we state the main results for model reduction of NN with

non-negative activation function.

Lemma 4.1 Let v1,v2, ...,vn be positive numbers, and w1,w2, ...,wn be real numbers.
Let z =

∑n
i=1wivi and z =

∑n
i=1,wi≥0wivi . Then we have: z ≥ z.

94CHAPTER 4. Two Model-Reduction Approaches for Efficient NN Verification

Algorithm 6 Pseudo-algorithm of the proposed model reduction method for one
hidden layer.

1: procedure AbstractOnLayer(N , i, Ŝ) ▷ N is the original network, Ŝis the
set of nodes of layer li

2: for si−1,k ∈ Si−1 do ▷ Incoming weights
3: w(si−1,k , ŝ)←max

s∈Ŝ
{w(si−1,k , s)}

4: end for
5: for si+1,j ∈ Si+1 do ▷ Outgoing weights
6: w(ŝ, si+1,j)←

∑
s∈Ŝw(s, si+1,k)

7: end for
8: replace Ŝ with ŝ
9: end procedure

Algorithm 7 Pseudo-algorithm of the proposed model reduction method.
1: procedure Abstract(N) ▷ N : the original network
2: N ← duplicate(N) ▷ Create a copy of N
3: for i← 1 to n− 1 in N do ▷ Pre-processing: remove negative weights
4: for s1 ∈ Si do
5: for s2 ∈ Si+1 do
6: if w(s1, s2) < 0 then
7: w(s1, s2)← 0
8: end if
9: end for

10: end for
11: end for
12: for i← 1 to n− 1 in N do
13: Ŝ← SelectNodes(N,i)
14: AbstractOneLayer(N,i, Ŝ)
15: end for
16: return N
17: end procedure

Proposition 4.5 For a NNN : R|S0|→R that has a non-negative activation function.
Let N : R|S0|→R be the abstract network of N obtained using Algorithm 7. Then, the
following holds:

∀x ∈R|S0|,N (x) ≥N (x)

The proof of Proposition 4.5 relies on Lemma 4.1, which states that removing

negative elements from a sum yields a value greater than the original sum

including the negative values.

4.5. Discussion w.r.t. Related Works 95

4.5 Discussion w.r.t. Related Works

As discussed in Chapter 3, existing formal verification methods for NNs do

not scalar to large networks. This is mainly due to the fact that generated

NN models can often be complex and non-linear. One promising solution to

remedy this problem is model reduction. Model reduction methods aim in

reducing the state space of the verification problem by reducing the number of

neurons in the network. In this context, several approaches have been proposed

in the literature (Elboher et al. 2020; Prabhakar 2022; Prabhakar and Rahimi

Afzal 2019; Sotoudeh et al. 2020). Please refer to chapter 3 and to our review

(Boudardara, Boussif, Meyer, et al. 2023a) for more details.

Compared to the aforementioned model reduction works, the approaches

we proposed in the present chapter are more general. Indeed, while most of the

discussed works in chapter 3 are limited to the ReLU activation function, our

methods support NNs with different types of activation functions, including

Tanh, Sigmoid, ReLU, etc. Moreover, compared to (Ashok et al. 2020), where the

abstraction depends on the set of input images on which one wants to check the

robustness of the network, the presented approaches generate abstract networks

independently of any specific input domains.

We should mention that the two techniques presented in (Elboher et al. 2020)

and (Liu, Xing, et al. 2022), focus on categorizing the weights of the network by

analyzing their signs and impact on the output (increasing or decreasing). Both

techniques require a preprocessing phase to classify all nodes of the networks.

Additionally, these approaches can only merge nodes that belong to the same

category. In contrast, INNAbstract does not require any preprocessing phase,

and if applied until saturation, a layer can (theoretically) be reduced to a single

abstract node. Finally, we should highlight that the approach proposed in

Prabhakar and Rahimi Afzal (2019) is the closest to INNAbstract, since both

approaches are based on INNs. However, there is a significant advantage within

our approach. Indeed, while Prabhakar and Rahimi Afzal (2019) define the

abstract weights as the interval-hull of the corresponding weights in the original

network, in our method we define the abstract outgoing weights as the sum

of absolute values over the original weights, and transfer their signs to the

corresponding incoming weights. This subtle technique helps building more

precise abstract networks2, as can be observed through the experimental results

discussed in the next chapter.

2In the sense that its output is closer to the output of the original network.

96CHAPTER 4. Two Model-Reduction Approaches for Efficient NN Verification

Among the previously presented works (see Chapter 3), the method of

Elboher et al. (2020) is the most similar one to our second proposed approach

(Boudardara, Boussif, and Ghazel 2023). Both approaches share the same

objective of constructing abstract networks whose output are greater than or

equal to that of the original network. However, in their approach, Elboher

et al. (2020) categorize neurons into four distinct groups, and when this is not

applicable on the original network, a neuron splitting phase is performed. Beside

the computation cost of this phase, neuron splitting may lead to generating a

network up to four times larger than the original network. In addition, the

minimum size of the generated abstract network using the method presented

in Elboher et al. (2020) is four neurons per layer. In contrast to their approach

(Elboher et al. 2020), our technique theoretically allows for merging all neurons

within the same layer, and replace the whole layer with a single abstract neuron.

Additionally, compared to the approach proposed by Prabhakar and Rahimi

Afzal (2019), our method does not rely on INN. Consequently, the reduced

networks generated by this approach can be analyzed using a variety of NN

verifiers without requiring any adjustments or modifications.

4.6 Conclusion

In this chapter, we presented two methods for NN abstraction with the aim of

reducing the size of NNs and ensuring that the obtained network is an over-

approximation of the original one. This contributes to enhance the sclability of

NN analysis operations such as verification.

The first approach, called INNAbstract, consists of merging nodes of the

same layer and provides a formula to calculate the new weights ensuring that

the output range of the original model is always included within that of the

abstract one. The approach leverages INNs, and supports NNs with ReLU, odd

and monotone activation functions, including Tanh and Sigmoid. With the aim of

enhancing the performance of the approach, we proposed a heuristic for nodes

selection based on some features of the network’s nodes.

Our second approach is a model reduction method that supports NNs with

non-negative activation functions, such as ReLU and Sigmoid, and provides

formal guarantees that the output of the abstract network is always greater than

the output of the original one.

In the following chapter, we will evaluate these two approaches on a series of

experiments, including randomly generated NNs and well-known benchmarks

4.6. Conclusion 97

from the literature. Additionally, an experimental comparison study with other

relevant works from the literature will be presented and discussed.

98CHAPTER 4. Two Model-Reduction Approaches for Efficient NN Verification

Chapter5
Experimental Evaluation of NN

Model-Reduction Approaches

Outline of the current chapter

5.1 Introduction 100

5.2 Experimental Setup and Configuration 100
5.2.1 Implementation and Experimental Environment . . 100

5.2.2 Used NN Models and Benchmarks 101

5.2.2.1 Random NNs 102

5.2.2.2 MNIST Benchmark 102

5.2.2.3 ACAS Xu Benchmark 103

5.3 Results & Discussion 104
5.3.1 Results on Tanh Networks 104

5.3.2 Results on ReLU Networks 108

5.3.3 Heuristic’s Improvement for INNAbstract 111

5.4 Conclusion 115

99

100CHAPTER 5. Experimental Evaluation of NN Model-Reduction Approaches

5.1 Introduction

In this chapter, we present the experimental settings used to evaluate our model

reduction approaches introduced in the previous chapter (Chapter 4), and

we discuss the obtained results. This experimental study includes evaluating

the proposed approaches on randomly generated NNs, and on some known

benchmarks, namely MNIST (LeCun 1998) and ACAS Xu (Kochenderfer 2015).

Additionally, it includes a comparison study between our approaches and other

reference approaches from the literature.

The Tanh-NNs, including randomly generated NNs and the MNIST benchmark,

are only used in the evaluation of our INNAbstract approach. Indeed, our

technique is the only method that supports the Tanh activation function. In

contrast, the ReLU-NNs, i.e., including randomly generated NNs and the ACAS

Xu benchmark, are used to evaluated our two approaches, while performing

comparisons with some approaches from the literature. It is worth noticing that

for a fair comparison with other existing model reduction methods, a random

selection strategy is employed for all methods. On the other hand, the proposed

heuristics for INNAbstract are employed specifically to check its impact on the

INNAbstract method’s performance. Figure 5.1 illustrates through a diagram

the organization of our evaluation experiments.

The remaining of this chapter is organized as follows: Section 5.2.1 gives

details about the implemented tools and the used machine-configuration to

conduct this series of experiments. In Section 5.2.2, we present the various used

NNs and benchmarks. Next, Section 5.3 exposes the obtained results. A detailed

discussion of these results is provided within the same section. Finally, some

concluding remarks are given in Section 5.4.

5.2 Experimental Setup and Configuration

5.2.1 Implementation and Experimental Environment

We implemented our two model reduction approaches as Python software

tools. For both methods, the implementation includes the following three main

modules:

1. Network_Reader: reads the NN model and the inputs’ constraints. The

tool supports both NNET and ONNX formats.

5.2. Experimental Setup and Configuration 101

Figure 5.1: The organization of the experimental study.

2. Abstractor: proof-of-concept implementation of the approach. This

module is used to generate abstract networks from the initial one brought

by the first module (Network_Reader).

3. Analyzer: we re-implemented the Interval Bounds Propagation (IBP)

algorithm to calculate the output range of neural networks by propagating

the inputs’ constraints through the layers of the network. For the

INNAbstract method, since initially the IBP algorithm does not support

interval neural networks, we have adjusted the algorithm to support this

specific format of NN whose weights have the form of intervals, instead of

scalars.

This modular architecture enables users to easily apply our methods (via

the developed tools) to their NN models while customizing the corresponding

parameters. Such parameters include the number of the (desired) remaining

nodes on each hidden layer after the abstraction and the strategy for nodes

selection.

We should mention that all the experiments in this chapter have been carried

out on a machine equipped with an Intel(R) Core(TM) i7-1065G7 CPU, ranging

from 1.30GHz to 1.50GHz in frequency, and featuring a RAM memory capacity

of 8GB.

5.2.2 Used NN Models and Benchmarks

To effectively evaluate our approaches, we used randomly generated NNs with

Tanh and ReLU activation functions. Moreover, in order to check the performance

of the approaches, we also conducted a series of experiments on two well-used

benchmarks, namely ACAS Xu and MNIST. More details about the generation

102CHAPTER 5. Experimental Evaluation of NN Model-Reduction Approaches

of random Tanh-NNs, ReLU-NNs, the ACAS Xu NN benchmark and the MNIST

NN benchmark are provided in the following sections, successively.

5.2.2.1 Random NNs

The generated network has five inputs, a single output and twenty hidden

layers (L = 20) with thirty neurons per layer (nl = 30). The abstraction is then

applied to reduce the size of the initial network. Different abstract networks are

generated by varying the number of desired remaining nodes on hidden layers:

n̂l ∈ {25,20,15,10}. For instance, n̂l = 15 indicates that each layer of the abstract

network has 15 neurons, i.e., the layer’s size is reduced by 50%. More details

about this step are outlined in Table 5.1. Next, for a randomly generated input

x∗ ∈ [−1,1]5 we apply a perturbation ϵ ∈ [0.01,0.1] to generate input bounds

[x∗ − ϵ,x∗ + ϵ]. Notice that this procedure is performed for generating both

Tanh-NNs and ReLU-NNs. The only difference lies in the considered activation

function.

5.2.2.2 MNIST Benchmark

To evaluate INNAbstract on a more practicle Tanh-NNs, we use the ONNX

networks trained on the dataset of handwriting digits, namely MNIST (LeCun

1998). An illustrative example of the MNIST benchmark is presented in

Figure 5.2. In this dissertation, we utilized the benchmark networks available

in the VNN 2020 Competition’s GitHub repository1. An MNIST network has

784 inputs and 10 outputs. The inputs represent the vectorial representation

of images of 28 × 28 pixel, and the outputs correspond to the ten digits

(0,1,2,3,4,5,6,7,8,9). While these networks have the same input and output

size, there may be variations in terms of their depth (number of layers) and

width (number of neurons per hidden layer). In this study, our experiments are

conducted on the network tansig_200_100_50_onnx.onnx which consists of three

hidden layers with 200, 100, 50 nodes, successively. We select an image from

the MNIST dataset and then we apply a perturbation (ϵ) on each pixel using the

L∞ norm (Huang, Kroening, et al. 2020). This perturbation is then propagated

through the networks (original and abstract networks) using the IBP algorithm.

1Available in: https://github.com/verivital/vnn-comp/tree/master/2020/NLN/

benchmark/mnist/tanh

 https://github.com/verivital/vnn-comp/tree/master/2020/NLN/benchmark/mnist/tanh
 https://github.com/verivital/vnn-comp/tree/master/2020/NLN/benchmark/mnist/tanh

5.2. Experimental Setup and Configuration 103

Figure 5.2: An illustration of the MNIST benchmark

5.2.2.3 ACAS Xu Benchmark

Figure 5.3: A representation of the sensors measurements inputs of the ACAS
Xu networks.

To evaluate our methods on realistic ReLU-NN, we consider the Airborne

Collision Avoidance System (ACAS) Xu benchmark. ACAS Xu is derived

from ACAS X (Kochenderfer 2015) and it is created for unmanned airborne.

Originally, it was designed using a large lookup table mapping the inputs

(sensors measurements) to their corresponding outputs (advisories). Nonetheless,

this approach requires a huge amount of memory (over 2 GB), which raises some

resources concerns regarding the certification of such an avionics system. To

address this challenge, an alternative solution involving the replacement of the

lookup table with a neural network has been proposed. The resulting system

requires less than 3 MB while maintaining an acceptable performance level, and

in some cases, even outperforms the initial lookup table (Julian et al. 2016).

The ACAS Xu benchmark is a collection of 45 networks trained to offer

advisories for an unmanned aircraft (ownship) to avoid a collision with another

104CHAPTER 5. Experimental Evaluation of NN Model-Reduction Approaches

aircraft (intruder) (Julian et al. 2016). Each network has seven inputs and five

outputs. The network’s inputs represent sensors measurements, and the outputs

correspond to the given advisories. The objective is to establish a mapping

between the inputs and the advised actions that ensure collision avoidance. The

seven inputs are:

1. ρ: the distance between the ownship and the intruder (in feet).

2. θ: the angle to the intruder, w.r.t. the ownship’s direction (in radians).

3. ψ: the heading angle (direction) of the intruder, w.r.t. the direction of the

ownship (in radians).

4. vown: the speed of the ownship (in feet/second).

5. vint: the speed of the intruder (in feet/second).

6. τ : the required time until loss of vertical separation between the two

aircraft (in seconds).

7. aprev : the previous advisory (the previous output of the network).

The network processes these inputs and returns five outputs that are scores

corresponding to potential advisories for the ownship. The output with the

lowest score is considered as the best action. These outputs include the following

advisories: (i) clear-of-conflict (COC), (ii) strong turn to the left (SL), (iii) weak

turn to the left (WL), (iv) strong turn to the right (SR), and (v) weak turn to the

right (WR). The terms strong turn and weak turn respectively correspond to

heading rates of 3.0°/second and 1.5°/second.

5.3 Results & Discussion

5.3.1 Results on Tanh Networks

In this section, we present and discuss the obtained results on Tanh-NNs.

The experiments are conducted on randomly generated NNs and the MNIST

benchmark. Notice that in these experiments we only used INNAbstract to

generate the abstract networks. This is due to the fact that the other model

reduction methods does not support the Tanh activation function.

For a given network (random Tanh-NN or MNIST), we calculate the average

values of the output’s upper bound and the IBP computation time over 50 runs.

5.3. Results & Discussion 105

For abstract networks obtained using INNAbstract, we additionally calculate the

abstraction time and the total computation time, which represents the sum of

the abstraction time and the IBP computation time.

The obtained results on random Tanh-NNs are presented in Tables 5.1 and 5.2.

To provide a visual representation, we also graphically depict these results in

Figures 5.4 and 5.5.

For the MNIST benchmark, Figures 5.6 and 5.7 summarize the obtained

results. As the hidden layers do not have the same number of nodes, the X-

axis in Figures 5.6 and 5.7 denotes the percentage of remaining nodes after

abstraction. For instance, the value 0.9 indicates a reduction 10% in the number

of nodes of each hidden layer of the abstract network (180, 90, and 45 nodes

successively).

Output range (UB) Output range’s width
Nb. Nodes Original INNAbstract Original INNAbstract

25 6.90 7.19 13.78 14.39
20 6.90 7.39 13.78 14.78
15 6.90 7.52 13.78 15.05
10 6.90 7.61 13.78 15.21

Table 5.1: Output results on randomly generated Tanh-NN, L = 20 layers.

Abstraction time (ms) Total computation time (ms)
Nb. Nodes INNAbstract Original INNAbstract

25 48.77 233.66 205.86
20 70.91 230.21 168.47
15 85.59 228.23 141.19
10 88.07 230.97 113.64

Table 5.2: Abstraction time and total computation time on randomly generated
Tanh-NN, L = 20 layers.

As depicted in Figures 5.4 and 5.6, reducing the size of the network (i.e.,

decreasing the number of remaining nodes) by performing more abstraction

leads to a linear increase in the abstraction time and a significant decrease in the

IBP computation time. Consequently, as shown in Figure 5.4c and 5.6c, the total

computation time (the sum of the abstraction time and the IBP computation

time) is also decreased. Additionally, the IBP algorithm is consistently faster on

the abstract networks generated using INNAbstract than on the original ones.

Figures. 5.5 and 5.7 illustrate the output range results on the original network

and on the obtained abstract ones using INNAbstract. Figure. 5.5 shows that

106CHAPTER 5. Experimental Evaluation of NN Model-Reduction Approaches

(a) IBP computation time. (b) Abstraction time.

(c) Total computation time.

Figure 5.4: Total computation time, IBP and abstraction time obtained on
randomly generated Tanh-NN.

Figure 5.5: Output range results on randomly generated Tanh-NNs.

decreasing the size of the network leads to wider output range, hence negatively

impacting the precision of the network. From Figure 5.7, it can be observed that

the upper bound of the abstract networks is greater than that of the original

one. However, they both remain fairly close. Interestingly, we can observe

that the output’s upper bound of different abstract networks does not change

5.3. Results & Discussion 107

(a) IBP computation time. (b) Abstraction time.

(c) Total computation time.

Figure 5.6: Total computation time, IBP and abstraction time results on MNIST
Tanh-NN.

Figure 5.7: Output ranges on MNIST Tanh-NN.

while varying the number of remaining nodes. This is most likely related to the

behavior of the Tanh activation function with large (resp. small) values, where

the slope is almost null and the output of Tanh is basically 1 (resp. −1).

Subsequently, we conducted a series of experimental evaluations on ReLU

networks to further assess the performance of INNAbstract and compare

108CHAPTER 5. Experimental Evaluation of NN Model-Reduction Approaches

it against other methods, including our second approach (for non-negative

activation functions).

5.3.2 Results on ReLU Networks

The section is dedicated to the experimental study on ReLU NNs. Our two

approaches are evaluated on both randomly generated ReLU-NNs (Section 5.2.2.1)

and on the ACAS Xu benchmark network (Section 5.2.2.3). Furthermore, we

conducted a comparison study between our approaches and two other model

reduction methods proposed by Prabhakar and Rahimi Afzal (2019) and Elboher

et al. (2020) using the same networks.

To evaluate and compare the performance of our methods on randomly

generated ReLU-NNs, we used the configuration steps presented in Section 5.2.2.1.

The same procedure is used to derive abstract networks using the two selected

model reduction methods from the literature, namely, (Elboher et al. 2020) and

INN (Prabhakar and Rahimi Afzal 2019). Over 50 runs, we calculate the average

of the output’s upper bound, the IBP computation time, the abstraction time, and

the total computation time. Figures 5.8 and 5.9 illustrate the obtained results on

the randomly generated ReLU-NNs.

Considering the evaluation on the ACAS Xu benchmark, for a given network

and inputs’ constraints of a specific property2, we generated eight abstract

networks by varying the number of remaining neurons in each hidden layer. The

eight configurations have 45, 40, 35, 30, 25, 20, 15, and 10 neurons, respectively.

Then, by means of the IBP algorithm, we compute the corresponding output

range on the original network as well as on the generated abstract networks

using the four methods, namely, INNAbstract, our non-negative model reduction

method (denoted as NoNeg on the graphs), INN (Prabhakar and Rahimi Afzal

2019), and the technique presented in Elboher et al. (2020) (denoted as Elboher

on the graphs). Over 50 runs, and for each network, we calculate the output

upper bound average, the average of the IBP computation time, the abstraction

time and the total computation time. The results are shown in Figures 5.11

and 5.12.

Through the performed experiments on both ACAS Xu and randomly

generated networks, we can observe that the computation time and the

abstraction time values (Figures 5.9 and 5.12) obtained using the Elboher

2We used the property φ5 presented in Katz, Barrett, et al. (2017), and the network
ACASXU_experimental_v2a_1_1.nnet

5.3. Results & Discussion 109

et al.’s method were excessively high, making it challenging to compare the

original network with the abstract networks generated using the model reduction

methods. Therefore, we separately present the computation time values for

INN and our two approaches (INNAbstract, NoNeg), and compare them to the

computation time on the original networks. Figures 5.10 and 5.13 summarize

the obtained results on the ReLU-NNs and ACAS Xu benchmark, respectively.

As shown by Figures 5.9, 5.10, 5.12, and 5.13, the four model reduction

methods exhibit similar evolution of the abstraction time, the IBP computation

time and the total computation. When more abstraction is performed, i.e.,

reducing the number of remaining nodes, we observe that the abstraction time

increases while the IBP computation time experiences a noticeable decrease. For

the latter, it is consistently lower on the abstract networks than on the original

ones. This reduction in the IBP computation time contributes to an overall

decrease in the total computation time, whose values remain always below those

obtained on the original networks (see Figures 5.10a and 5.13a). However, there

is an exception for the method proposed by (Elboher et al. 2020). In fact, the

computation time for the abstract networks generated using this method is

higher than the computation time on the original networks. Additionally, from

Figures 5.9 and 5.12, we can clearly notice that this method is computationally

expensive compared to the other methods. This could be attributed to the

pre-processing phase. Recall that this phase involves classifying neurons into

different categories, and potentially splitting a number of neurons prior to

the abstraction procedure per-se. Hence, the network to be abstracted might

end up being larger than the original one, thereby significantly increasing the

abstraction time.

Furthermore, by comparing the abstraction time among the selected methods,

it can be observed that our methods are faster. Specifically, when considering the

same number of abstract neurons, both our methods generate abstract networks

in less time compared to the other methods from the literature.

Moreover, the abstraction time using INNAbstract and NoNeg increases at a

slower rate compared to INN approach (see Figures 5.10b and 5.13b). As a result,

the total computation time, defined as the sum of the abstraction time and the

IBP computation time, is also lower when using our methods. This illustrates the

efficiency of the proposed method, which is capable of handling larger networks

with a significant decrease in the overall computation time.

Additionally, when comparing our approaches exclusively, it is clear that the

NoNeg method outperforms INNAbstract across all metrics. This includes

110CHAPTER 5. Experimental Evaluation of NN Model-Reduction Approaches

the abstraction time (Figures 5.10b and 5.13b), the IBP computation time

(Figures 5.9a and 5.12b) and the total computation time (Figures 5.10a and 5.13a).

While the abstraction time for INNAbstract increases linearly and steadily

compared to the two alternative methods, the abstraction time using the NoNeg

method exhibits only minor fluctuations and tends to remain stable when varying

the number of neurons of the abstract networks. Moreover, the NoNeg method

is computationally more efficient, consistently showcasing lower abstraction and

IBP computation times compared to all other selected methods.

Figures 5.8 and 5.11 present the output range results for both the original

networks and on the abstract networks generated using the four abstraction

methods. A prominent observation from these figures is that as the number of

remaining neurons decreases, indicating a reduction in the network size, the

upper bound of the output tends to increase. Furthermore, when comparing

the output range results of the four abstraction methods, we can see that

the output range’s upper bounds of the abstract networks obtained using our

methods are generally smaller than the output ranges of the abstract networks

generated using Elboher et al. (2020) and INN (Prabhakar and Rahimi Afzal

2019). Specifically, our methods significantly outperforms that of Elboher et

al. considering different sizes of the abstract networks. In fact, although the

INN abstraction method initially demonstrates a slightly better performance

than INNAbstract when only few neurons are merged, its performance drops

drastically as the abstraction becomes more intensive (more neurons are merged).

This is reflected in the rapid increase of the output range of the obtained abstract

networks using INN method. In contrast, we can notice that the output range

on abstract networks obtained using our methods exhibits a slow and gradual

increase as the number of remaining nodes decreases, hence outperforming the

INN method when substantial abstraction is applied.

While INNAbstract ourperforms the two model reduction methods, our

NoNeg method outperforms all the aforementioned methods, including INNAbstract.

Indeed, the generated abstract networks using NoNeg provide tighter bounds

compared to the other three methods. The upper bounds obtained on the

abstract networks of the NoNeg method are always lower than the upper bounds

of abstract networks generated using the three other methods.

The main conclusion that can be drawn from this series of experiments is

that, reducing the network’s size by applying the established model reduction

methods allows for significantly reducing the total computation time (including

both the abstraction and output range computation). On the other hand, this size

5.3. Results & Discussion 111

reduction leads to a linear and gradual increase in the output range. Furthermore,

according to the conducted experiments and the obtained results, our methods

outperform the approach from (Elboher et al. 2020) and INN (Prabhakar and

Rahimi Afzal 2019) approaches in the sense that they produce tighter output

bounds in less time. This highlights the effectiveness of our methods in reducing

the computation time, thus allowing for faster analysis and operations on NN.

Particularly, for the NoNeg method, which exhibits a high performance compared

to all other methods, the computation time increases slowly and it remains

always lower than the computation time of all considered methods. In addition,

its generated abstract networks’ upper bounds are tighter. Finally, we can see

that the precision of the abstract model is strongly influenced by the number

of merged nodes. Specifically, as more nodes are merged, resulting in a higher

level of abstraction and more abstract nodes, the upper bound of the abstract

networks tends to increase.

5.3.3 Heuristic’s Improvement for INNAbstract

The objective of this section is to assess the performance of INNAbstract when

combined with the proposed heuristic for nodes selection (Algorithm 5). To

achieve this, we conduct a series of experiments on a set of randomly generated

ReLU-NNs using two nodes selection strategies: random selection and heuristic-

based selection. Namely, we generate a set of networks with different sizes by

varying the number of layers L and the number of nodes nl in each layer to

examine their impact on the the heuristic’s performance. More details about

the generation of these networks can be found in Section 5.2.2.1. Next, we

calculate the output range of the obtained abstract networks with both nodes

selection strategies and we determine the improvement rate (Irate) in terms of

precision using the proposed heuristic. We define this rate as the percentage of

the difference between the output range (using heuristics) with respect to the

output range obtained when INNAbstract is combined with the random nodes

selection. Formally speaking, Irate is calculated as follows:

Irate =
Urand −Uheuris

Urand
× 100

such that Urand and Uheuris are the upper bounds of the abstract network using

INNAbstract with the random and heuristic based strategies for nodes selection,

respectively.

112CHAPTER 5. Experimental Evaluation of NN Model-Reduction Approaches

Figure 5.14 depicts the obtained results. Specifically, Figure 5.14a represents

the results on networks with different numbers of layers (L = 20, L = 40) and the

same number of nodes in hidden layers (nl = 30), while Figure 5.14b represents

the results on networks whose numbers of layers are set to 20 (L = 20) and have

different hidden layer sizes (nl = 30, nl = 40).

As shown by the results presented in Figure 5.14, the combination of

the proposed heuristic with INNAbstract has improved the precision of the

generated abstract networks. We can also notice that the number of layers

and hidden nodes in the initial network has an impact on the performance of

the heuristic. Particularly, the proposed heuristic performs better with large

networks, as the population from which the nodes are selected is larger. This

can be explained by the fact that the algorithm has a greater pool of options,

increasing the likelihood of finding suitable candidates.

To illustrate the improvement in terms of precision through the proposed

heuristics, we chose the configuration L = 20 and nl = 40 to create a random

network of 20 layers, with 40 nodes in each hidden layer. Subsequently, we

compute the output range and the abstraction time of the resultant abstract

networks, employing both random and heuristic selection strategies.

As demonstrated in Figure 5.15a, the output range obtained on abstract

networks generated using the combination of INNAbstract and the proposed

heuristic is tighter compared to the output range of those obtained using

INNAbstract with a random selection of nodes. Furthermore, these improvements

become more significant when more nodes are merged. However, it is important

to note that achieving these improvements comes at the cost of increased

abstraction time, as illustrated in Figure 5.15b.

Finally, it is worth noticing that we have conducted the same experiments on

Tanh-NNs; however, the improvement rate remains negligible. This is mainly

due to the nature of the Tanh function (illustrated by its hyperbolic behavior)

which tends to push the output value to either ends of the curve (1 or -1) due to

its S-like shape, i.e., in the region close to zero, if we slightly change the input

value, the respective changes in the output are very large and vice versa.

5.3. Results & Discussion 113

Figure 5.8: Output range results on ReLU-NN.

(a) IBP computation time. (b) Abstraction time.

(c) Total computation time.

Figure 5.9: Total computation time, IBP and abstraction time results on ReLU-
NN.

(a) Total computation time. (b) Abstraction time.

Figure 5.10: The total computation time and the abstraction time for
INNAbstract, NoNeg, and INN on ReLU-NN.

114CHAPTER 5. Experimental Evaluation of NN Model-Reduction Approaches

Figure 5.11: Output range results on ACAS Xu ReLU-NN.

(a) IBP computation time. (b) Abstraction time.

(c) Total computation time.

Figure 5.12: Total computation time, IBP and abstraction time results on ACAS
Xu ReLU-NN.

(a) Total computation time. (b) Abstraction time.

Figure 5.13: The total computation time and abstraction time results of
INNAbstract, NoNeg, and INN on ACAS Xu ReLU-NN.

5.4. Conclusion 115

(a) Results on networks with different
number of layers, L = 20 and L = 40.

(b) Results on networks with different
number of nodes per layer, nl = 30 and
nl = 40.

Figure 5.14: A graph representing the improvement of the output range using
the proposed heuristic.

(a) Output range (upper bound). (b) Abstraction time.

Figure 5.15: The Output range and the abstraction time on ReLU-NNs with
random and heuristics based selection strategies.

5.4 Conclusion

This chapter summarizes the results of our comprehensive evaluation study,

which aimed to assess the performance of our proposed methods in the context

of NN model reduction. The conducted study includes experiments on randomly

generated networks and some well-known benchmarks from the literature,

namely ACAS Xu and MNIST. The former networks are generated by varying

their sizes in order to analyse the performance of the abstraction methods across

networks of different scales. On the other hand, the used benchmarks allowed

us to evaluate our methods on real-world networks. In addition, to assess the

performance of our methods against existing ones, a comparison study with some

reference methods from the literature is carried out within this experimental

study.

The results obtained through these experiments highlight the efficiency of

our methods, namely INNAbstract and NoNeg, in reducing the size of networks

while preserving acceptable precision (i.e., the output range). Furthermore, our

116CHAPTER 5. Experimental Evaluation of NN Model-Reduction Approaches

two methods outperformed all other selected model reduction methods in terms

of computational time and precision. Particularly, the NoNeg method which has

proven to be the top performer, allowing the generation of more precise abstract

networks while requiring significantly less computation time compared to all

other methods, including INNAbstract.
While NN model reduction methods are applied to enhance the scalability of

NN verification, and thus brought into play before the deployment of the NN on

the intended system, the following part will shift the focus to the evaluation of

networks during runtime. Hereafter, we present our contribution in this domain

regarding NN monitoring.

Part III

Neural Networks Monitoring

Chapter6
NAPath: Runtime Monitoring of

Neural Networks

Outline of the current chapter

6.1 Introduction 120

6.2 Background 121
6.2.1 Neural Activation Patterns (NAP) 121

6.2.2 Neuron Activation Paths (NAPath) 123

6.3 Monitoring using NAPaths 125
6.3.1 NAPathing Phase . 125

6.3.2 Monitoring Phase . 127

6.4 Experimental Results on the MNIST Benchmark 129
6.4.1 NAPathing Phase . 129

6.4.2 Monitoring Phase . 130

6.5 Experimental Results on Weather Conditions Detection
Networks 135
6.5.1 System & Dataset Characteristics 136

6.5.2 NN Models Configuration 136

6.5.3 Experimental Settings & Results 140

6.5.3.1 NAPathing Phase 140

6.5.3.2 Monitoring Phase 143

6.6 Related Works 145

6.7 Conclusion 146

119

120 CHAPTER 6. NAPath: Runtime Monitoring of Neural Networks

6.1 Introduction

As discussed earlier in this dissertation (see Chapter 1), testing, formal

verification, and monitoring are three key techniques to help ensure the safe

and reliable deployment of neural network based systems. Testing involves

evaluating the trained model through the process of comparing the predictions

made by the model on various data sets to the actual labels in the data, with

respect to given performance metrics (Goodfellow, Bengio, et al. 2016); and

formal verification involves using mathematical techniques to verify whether

the model satisfies a set of desired properties (Gehr et al. 2018; Katz, Barrett,

et al. 2017). While testing and formal verification are performed during the

system design phase, monitoring involves online tracking of the performance

and the behavior of the model during the operation phase (Cheng, Nührenberg,

and Yasuoka 2019). It is particularly essential in the scenarios where the

consequences of incorrect predictions may be severe.

In this chapter, we present our contribution for monitoring NNs with ReLU

activation function used for image classification. The proposed approach is used

to supervise the network’s outputs with respect to the input images, towards

adding another level of confidence and reliable guarantees to the NN. The

approach relies on the concept of Neuron Activation Path (NAPath) that we

introduce as part of this contribution. NAPath is used to identify relevant paths

of activations (i.e., activation patterns) for each class in the network. A path

is defined as a sequence of neurons of the same status in terms of activation

(active or inactive) linking the network’s input to the output. For a NN with a

ReLU activation function, NAPath extracts (learned) features of the network by

processing the representative set of images that belong to the same class. We

define a feature, or a pattern, as a set of paths on the network that are similarly

activated or deactivated for the selected images. It is worth mentioning that our

approach is inspired by the Neuron Activation Pattern (NAP) concept discussed

by (Geng et al. 2022). The key difference between NAP and NAPath is that NAP

defines a pattern as a set of active and inactive neurons, while NAPath defines a

pattern as a set of paths linking the input of the network to its output.

Recall that a monitoring systems has mainly two phases: the construction of

a monitor and runtime monitoring. In our approach, the former phase consists

of identifying active and inactive paths for each class of inputs. A NAPath,

which is a set of active and inactive paths, is then associated with this class of

image. During the second phase which intervenes during runtime, the monitor

6.2. Background 121

uses the set of NAPaths to supervise the network’s output when it processes

an input-image. Concretely, the monitor analyzes the NAPath generated when

the network is fed with some given input, and compares it to the most similar

NAPath from the pre-calculated set of NAPaths. The intuitive idea is that the

inputs belonging to the same class should activate / deactivate the same paths.

Accordingly, the monitor can raise misclassification alarms, or novelty alarms.

While the former indicates that the network may have misclassified the input,

and it suggests a new reclassification, the latter indicates that the input at hand

does not have any similar NAPath with the set of pre-calculated NAPaths, thus

the input is considered as a novel sample. More details about how the set of

NAPaths is extracted, which data are used, how the similarity between NAPaths

is calculated, and other information about the approach is provided in the

remaining of this chapter.

The remaining of this chapter is organized as follows: in Section 6.2 we

introduce the NAPath concept, and we provide necessary definitions and

notations. Section 6.3 presents the proposed monitoring method, including

a detailed discussion of each phase: the monitor construction, and runtime

monitoring. The experiments’ setups and the obtained results on the MNIST

are given in Section 6.4. In Section 6.5, we present the experimental results

of applying the approach to an AI-based perception system used within the

autonomous train, the weather conditions’ recognizer. In Section 6.6, we provide

a review of related works. Finally, we conclude this chapter in Section 6.7.

6.2 Background

As mentioned in the Introduction section, NAPath draws inspiration from the

concept of NAPs. Therefore, before delving into the definition of NAPath, we

first recall the concept of Neuron Activation Pattern (NAP).

6.2.1 Neural Activation Patterns (NAP)

A NAP is a representation of the activation status of neurons in a neural network

in response to a given input or a set of inputs, indicating which neurons (from

the hidden layers) are active or inactive (Geng et al. 2022). A definition of this

concept for networks with the ReLU activation function is given below.

Definition 6.1 Let N be a ReLU-NN, and let S be the set of its hidden neurons. The
set of all active (resp. inactive) neurons for an input x on the network N is denoted as

122 CHAPTER 6. NAPath: Runtime Monitoring of Neural Networks

Ax (resp. Dx) and defined such that:Ax = {s ∈ S : vs(x) > 0}

Dx = {s ∈ S : vs(x) = 0}
(6.1)

In definition 6.1, vs(x) denotes the output value of the hidden neuron s ∈ S
when we consider an input x of the network. Recall that S is the set containing

all hidden neurons of the network N , i.e, S = {S1,S2, . . . ,Sn−1}, where Si is the set

of neurons of the hidden layer li , for 1 ≤ i ≤ n− 1. For a ReLU-NN, a NAP of an

input x on N (denoted by NAP (N,x)) is defined as the set of its corresponding

active and inactive sets of neurons, i.e., NAP (N,x) = (Ax,Dx).

For a set of inputs Xc such that ∀x ∈ Xc : N (x) = c, we define its associated

NAP, denoted as NAPc, as the common NAP between all inputs in Xc:Ac = {s ∈ S : ∀x ∈ Xc,vs(x) > 0}

Dc = {s ∈ S : ∀x ∈ Xc,vs(x) = 0}
(6.2)

For a set Xc considered as a representative set of inputs of class c, (Ac,Dc) is

calculated using Equation (6.2) represents the NAP corresponding to this class,

which is denoted as NAPc = (Ac,Dc). In general, Xc represents the set of inputs

of class c used to train the network.

Notice that the definition of NAPc according to Equation (6.2) is too

constrained, and in practice it may lead to an empty NAP, i.e., Ac = ∅ and Dc = ∅.
Thus, a control parameter δ ∈]0,1] is used to build a relaxed NAP, denoted as

δ_NAP (Geng et al. 2022). A neuron is considered active (resp. inactive) if it

is activated (resp. deactivated) at least δ × |Xc| times. In other words, for each

neuron s ∈ S, we firstly calculate its value for all x ∈ Xc; and then, we calculate

the total number of activations and deactivations of s, let us denote them by

as and ds, respectively. Next, if as ≥ (δ × |Xc|) then s is added to Ac). Similarly,

if ds ≥ (δ × |Xc|) then s is added to Dc. Finally, the relaxed NAP is defined as:

δ_NAPc = (Ac,Dc) and expressed by Equation (6.3):

Ac = {s ∈ S : as ≥ δ × |Xc|}

Dc = {s ∈ S : ds ≥ δ × |Xc|}
(6.3)

6.2. Background 123

6.2.2 Neuron Activation Paths (NAPath)

In this section, we introduce the concept of NAPath. Although NAPath is

built upon the concept of NAP, NAPath aims to represent learned features

through paths, instead of solely focusing on the activation status of individual

neurons. Specifically, a path is a sequence of neurons that connects the input

and output layers, passing through all hidden layers. This concept provides

a more comprehensive view of the network’s learned features, as it allows us

to maintain the relation between neurons of different layers. By following the

paths, we can better understand the sequence of (neural) activations that leads

to a classification decision.

Formally, a path on a network N of (n − 1) hidden layers is a sequence of

neurons P = s1, . . . , sn−1 such that sk is a neuron of the kth layer, i.e., sk ∈ Sk, for

1 ≤ k ≤ n−1. Recall that l0 and ln are the input and the output layers, respectively.

In our work, we define two types of paths:

1. Active path: For an input x and a network N of (n − 1) hidden layers,

an active path is a sequence of neurons P = s1, . . . , sn−1 such that for all k:

1 ≤ k ≤ n− 1, we have sk ∈ Sk and vsk (x) > 0.

2. Inactive path: For an input x and a network N of (n−1) layers, an inactive

path is a sequence of neurons P = s1, . . . , sn−1 such that for all k: 1 ≤ k ≤ n−1,

we have sk ∈ Sk and vsk (x) = 0.

Figure 6.1 presents an example of network with marked active and inactive

paths for the input x = 1. In Figure 6.1b, the active paths are highlighted in

green, while the inactive paths are in red.

(a) An example of a neural network. (b) The paths of the network shown
in Figure 6.1a.

Figure 6.1: An example showing the NAPath of an input x on a neural network.

124 CHAPTER 6. NAPath: Runtime Monitoring of Neural Networks

Definition 6.2 For a given input x and a network N , the corresponding NAPath is
the tuple NAP ath(N,x) = (Ax,Dx), such that:

1. Ax is the set of paths that are active for x.

2. Dx is the set of paths that are inactive for x.

To maintain consistency with the definition of NAP, in Definition 6.2 we use

the notationAx andDx to denote the set of active and inactive paths, respectively.

When there is no ambiguity, we omit the argument N and write NAP ath(x) =

NAP athx = (Ax,Dx).
For a set of inputs Xc of class c, we define its associated NAPath as the

intersection of all active and inactive paths for all x ∈ Xc, NAP athc = (Ac,Dc),
such that:

1. Ac: is the set of paths that are active for all x in the Xc.

2. Dc: is the set of paths that are inactive for all x in the Xc.

Defining the NAPath as the intersection between all active and inactive paths

for a large set of images can lead to an empty NAPath, i.e., no common active or

inactive path. Therefore, similarly to the NAP feature, we introduce a relaxed

NAPath using a control parameter δ ∈]0,1]. In this relaxed version, NAP athc is

defined as a set of active and inactive paths, Ac and Dc, respectively. For a path

to be in Ac (resp. Dc), it must be activated (resp. deactivated) for at least δ × |Xc|
inputs. For example, δ = 1 means that a path has to be active for all inputs within

Xc in order to belong to Ac. Similarly, setting δ = 0.5 means that an active path

within Ac has to be active for at least half of inputs in Xc. This relaxed version

of NAPath is explained in details in the remaining of this chapter.

Remark 6.1 It is worth noting that the NAP of an individual input x, denoted as
NAP (N,x) = (Ax,Dx), is a partition of the set of all hidden neurons S of the network
N , such that Ax ∩Dx = ∅ and Ax ∪Dx = S. However, the NAP of a class c generated
using a set of inputs and denoted as NAPc = (Ac,Dc) only forms a subset of S, i.e.,
Ac ∪Dc ⊆ S. This is due to the fact that NAPc is an intersection of the NAPs of the
inputs belonging to the class c. On the other hand, a NAPath of the same input is a
subset of paths of N , and consequently, the set of participating neurons (the neurons
in Ax and Dx) is a subset of S. This is due to the fact that some paths of the network
may be neither active nor inactive. For example, a sequence of neurons that are all
active except one neuron is not considered as an active path, neither an inactive one.

6.3. Monitoring using NAPaths 125

6.3 Monitoring using NAPaths

In this section, we present our NAPath-based approach for runtime monitoring

of NN image classifiers. The approach consists in firstly (i) building offline the

monitor using the NAPath concept, and then (ii) using the monitor in runtime

operation (in parallel to the NN model). The former phase, which we call

NAPathing, allows for computing the set of NAPaths, and the latter phase,

namely runtime monitoring, enables the use of the set of NAPaths to supervise

the classification decision of the network during the runtime operation. The

general structure of the monitoring process is presented in Figure 6.2, and a

detailed explanation of the two phases is given below.

Figure 6.2: The general structure of the monitoring system.

6.3.1 NAPathing Phase

NAPathing is performed during the development phase of the monitor, and the

objective is to compute a set of NAPaths, i.e., a NAPath for each class. For this

purpose, NAPathing involves computing the set of active and inactive paths for

each class based on the training data set. The specification of the following three

parameters is required for this phase:

1. A network N .

2. The set of inputs X from which the NAPaths shall be computed, e.g., the

training set used to establish N .

126 CHAPTER 6. NAPath: Runtime Monitoring of Neural Networks

3. The parameter δ specifies the threshold of activations and inactivations

required for a path to be considered as active or inactive, respectively.

Paths’ computation is an important step. First, we partition the set X into

subsets such that images within a subset must belong to the same class. Then,

for a given class c, we start by filtering its associated subset of images to remove

those that are misclassified by the network N . The obtained subset of images

is denoted as Xc. Next, we define the control parameter δ ∈]0,1], which defines

the threshold for paths to be considered as activated or deactivated. Concretely,

a path is considered as active if it is activated at least for δ × |Xc| samples from

Xc. Similarly, a path is considered inactive if it is inactive for δ × |Xc| samples.

The next step consists in assuring that the NAPath is valid; this is performed

by checking that the sets of active and inactive paths are not empty, and they

cover a sufficient number of inputs in Xc. If the NAPath is valid, it is saved as the

NAPath of class c (NAP athc); otherwise, the value of δ is updated to generate a

new NAPath. The main steps of this process are presented in Figure 6.3. These

steps are performed for each class of images to obtain at the end a set of NAPaths,

where each NAPath is associated with a single class. Once all the NAPaths are

computed and validated, they are saved and can be used during the monitoring

phase.

Figure 6.3: The flowchart of the NAPathing phase.

6.3. Monitoring using NAPaths 127

6.3.2 Monitoring Phase

During the operational phase of the system, the monitor is executed in parallel

to the network N to supervise its decisions in real-time. The monitor takes as

input:

• the set of pre-calculated NAPaths (determined during the NAPathing

phase),

• the input-image x,

• the output y corresponding to input x, i.e., N (x) = y,

• the NAPath calculated in run-time using the networkN , i.e.,NAP ath(N,x) =

NAP athx,

Next, the monitor calculates the similarity between NAP athx and the other

NAPaths obtained from the NAPathing phase. This involves comparing the set

of active and inactive paths of NAP athx to those of each pre-calculated NAPath.

Accordingly, we can distinguish two different cases:

1. Misclassification detection: among the pre-computed NAPaths, a high

similar (similarity will be formulated in the following) NAPath toNAP athx
is found. Lets assume that this NAPath is associated with a class c, thus

we denote it as NAP athc. The next step consists in checking whether the

classification decision by the network (N (x) = y) is consistent with the

NAPath similarity to class c detected by the monitor.

• Case y = c: this strengthens the classification decision and confirms

that the input image shares similar features with the other images of

the same class, represented by NAP athc.

• Case y , c: since NAP athx and NAP athc are similar and share a large

portion of common paths, it is expected that x belongs to the class

c. Therefore, the monitoring system shall raise an alarm indicating a

need to check the network’s classification decision. Furthermore, the

monitor suggests a re-classification of the input based on its NAPath,

recommending that this image should be of class c instead of class y.

2. Novelty detection: Novelty detection arises when the NAP athx exhibits no

similarity with any other NAPath within the set. In other words, NAP athx
does not share any path with any other NAPath in the set. Consequently,

128 CHAPTER 6. NAPath: Runtime Monitoring of Neural Networks

the monitor shall raise a “novelty” alarm indicating that the image is new

to the network and may represent an out of the operational domain input.

The main steps of the monitoring phase are illustrated in Figure 6.4.

Figure 6.4: The flowchart of the the monitoring procedure using NAPaths.

An essential function during the monitoring phase is measuring the similarity

between the NAPath of the current input (NAP athx) and each of the pre-

computed NAPaths. Such function is responsible for identifying the most

similar pre-computed NAPath, if exists, to that of the considered input. For an

input x and its corresponding NAPath: NAP athx = (Ax,Dx), and a NAPath of

class c denoted as NAP athc = (Ac,Dc), we define the similarity degree between

NAP athx and NAP athc as follows:

sim(NAP athc,NAP athx) = p × |Ac ∩Ax|
|Ac|

+ (1− p)× |Dc ∩Dx|
|Dc|

(6.4)

where |·| stands for the cardinality of the set and the parameter p ∈ [0,1] is used

to control the rate of active (or inactive) paths that contribute to calculating the

similarity degree. In the context of the proposed approach, two NAPaths are

considered similar if they have a high degree of overlap in terms of their paths.

By adjusting the value of p, we can gain insights into which type of paths have

more importance in the similarity degree’s calculation. For instance, when p is

close to 1, it indicates that similar NAPaths share more identical active paths

6.4. Experimental Results on the MNIST Benchmark 129

and less inactive paths. Notice that the parameter p can be tuned empirically

from the evaluation of the training and testing data.

To evaluate the performance of the proposed approach, we present in the

following section the experimental setup and the obtained results. Additionally,

we compare our method to another NN monitoring approach from the literature.

6.4 Experimental Results on the MNIST Benchmark

In this section, we conduct a series of experiments using a neural network trained

on the MNIST dataset. The NN model is obtained from the official website of

VNNCOMP 20211, which is an international competition for researchers to test

their NN verification tools on a set of benchmarks, such as MNIST. The conducted

experiments aim to evaluate the effectiveness of our approach for monitoring

image classification NN. The MNIST is a popular benchmark dataset in the field

of machine learning and computer vision. It is a collection of handwritten digits

ranging from 0 to 9, each digit represented as a 28x28 grayscale image. The

dataset consists of 60,000 training images (around 6000 images per class) and

10,000 test images. The network used in this section consists of an input layer of

size 784, which corresponds to the number of pixels of accepted input images.

It is followed by four hidden layers, each containing 256 ReLU neurons. The

output layer has a size of 10, which represents the 10 possible classes (digits 0 to

9).

6.4.1 NAPathing Phase

Firstly, we applied our NAPathing method on the training set to generate the set

of NAPaths, where each class has its own NAPath. Next, to analyse the impact of

the NAPathing precision’s parameter δ, we conducted a series of experiments

for various values of δ, and we calculated the number of samples following the

NAPath of the corresponding class and the NAPath’s size. In our experiments,

we observed that the number of inactive paths was consistently large across all

classes. Therefore, to represent the size of a NAPath, we focused solely on the

number of its active paths.The results of our analysis are presented in Figures 6.5

and 6.6.

We observe in Figure 6.5 that the size of the NAPaths (active paths) decreases

1Available at https://github.com/stanleybak/vnncomp2021/tree/main/benchmarks/

mnistfc

https://github.com/stanleybak/vnncomp2021/tree/main/benchmarks/mnistfc
https://github.com/stanleybak/vnncomp2021/tree/main/benchmarks/mnistfc

130 CHAPTER 6. NAPath: Runtime Monitoring of Neural Networks

rapidely as the value of δ increases. On the other hand, Figure 6.6 shows that

the number of inputs involved in the computation of NAPaths increases with

the incrementation of parameter δ. This means that the obtained NAPaths cover

a larger number of inputs. This is mainly due to the fact that increasing the

value of δ leads to a decrease in the number of paths. Thus, the corresponding

NAPaths are less constrained (the larger the NAPath is, the more constraints

it contains). Consequently, as fewer paths are included, the number of inputs

participating in building the NAPath increases. These results suggest that the

value of the parameter δ can be adjusted to control the sensitivity of the NAPath

approach, enabling a trade-off between the coverage and the size of the NAPath.

It is worth noticing that during our experiments, we have observed that the

pre-trained network2 misclassifies a significant portion of the training images

for classes 3, 5, 6, and 7. As a result, we can see that the number of covered

inputs belonging to these classes is significantly low, considering different values

of δ (see Figure 6.6).

Figure 6.5: The number of active paths for different values of δ (0.8, 0.85, 0.90,
0.95).

6.4.2 Monitoring Phase

In the second part of our experiments, we investigate the impact of the

control parameter p on the monitoring performances. To do so, we set

δ = 0.9, and we generate the NAPaths for the considered classes using their

respective training data. This set of NAPaths is then used to assess the

2Available at: https://github.com/stanleybak/vnncomp2021/tree/main/benchmarks/

mnistfc/mnist-net_256x4.onnx

https://github.com/stanleybak/vnncomp2021/tree/main/benchmarks/mnistfc/mnist-net_256x4.onnx
https://github.com/stanleybak/vnncomp2021/tree/main/benchmarks/mnistfc/mnist-net_256x4.onnx

6.4. Experimental Results on the MNIST Benchmark 131

Figure 6.6: The number of inputs following the NAPath for different values of δ
(0.8, 0.85, 0.90, 0.95).

monitoring system’s performance across a range of p values, specifically, p ∈
{0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1}.

The monitoring evaluation is conducted on the MNIST testing set, which

includes a total of 6112 images equally distributed among the six selected

classes: {0,1,2,4,8,9}. For each value of p and the considered classes of images,

we measure the monitoring precision in terms of the rate of correct no alarms

(true negative), correct alarms (true positive), false alarms (false positive), missed

alarms (false negative), and the rate of correctly re-classified samples proposed

by the monitor. We define these four types of alarms as follows:

• Correct no alarms (true negative): the network correctly classifies the

input-image, and the monitor does not raise an alarm

correct no alarms =
number of passes for well classified images

total number of well classified images
(6.5)

• Correct alarms (true positive): the network misclassifies the input, and

the monitor detects this misclassification and raises an alarm.

correct alarms =
number of alarms for misclassified images

total number of misclassified images
(6.6)

• Missed alarms (false negative): the network misclassifies the input-

image, and the monitor does not detect this misclassification (no alarm is

triggered)

missed alarms =
number of no alarms for misclassified images

total number of misclassified images
(6.7)

132 CHAPTER 6. NAPath: Runtime Monitoring of Neural Networks

Value
of p

All
alarms
(#)

Correct
alarms
(%)

Missed
alarms
(%)

Correct
no
alarms
(%)

False
alarms
(%)

Re-
classification
(%)

0 185 76.06 23.94 99.46 0.55 61.34
0.1 178 76.06 23.94 99.68 0.32 67.40
0.2 177 74.65 25.35 99.71 0.30 69.32
0.3 175 74.18 25.82 99.73 0.27 69.54
0.4 175 73.18 25.82 99.75 0.25 69.94
0.5 175 73.71 26.29 99.75 0.25 69.77
0.6 176 73.71 26.29 99.75 0.25 70.35
0.7 176 73.71 26.29 99.75 0.25 70.93
0.8 176 73.71 26.29 99.75 0.25 71.51
0.9 176 73.71 26.29 99.76 0.24 71.93
1.0 177 75.12 24.88 99.24 0.77 43.42

Table 6.1: The impact of the parameter p on the precision of NAPath-based
monitoring. The symbols # and % represent the number and the percentage,
respectively.

• False alarms (false positive): the network correctly classifies the image,

however the monitor considers it as a misclassification and raises an alarm

false alarms =
number of alarms for well classified images

total number of well classified images
(6.8)

For inputs misclassifed by the network, the monitor suggests to re-classify these

inputs (based on NAPaths’ similarities). The rate of correctly re-classified inputs

is calculated as follows:

correct re-classification =
number of correctly re-classified images

total number of raised alarms (all alarms)
(6.9)

Figures 6.7 and 6.8 provide a visual representation of the monitoring

performances based on the defined metrics for different values of the control

parameter p. In general, the results demonstrate that the monitoring system

reaches its best performance with respect to most of the metrics when the value

of p is low, i.e., the rate of inactive paths participating in the calculation of the

similarity degree is higher than the rate of active paths. As shown in Figure 6.7,

the percentage of correct no alarms (correctly classified and no alarm is triggered)

is almost stable and very close to 100%. Accordingly, the rate of false alarms

(raised alarms for correctly classified images) is almost zero (see Figure 6.8).

For the other metrics, while the rate of correct raised alarms for misclassified

6.4. Experimental Results on the MNIST Benchmark 133

images slightly decreases with p, the rate of correct reclassification roughly

increases by increasing the value of p. It means that for high values of p, the

monitor raises less alarms for misclassified images, but the re-classification

of these images is more accurate. The rate of missed alarms is generally

between 23% and 27%. It slightly increases when the value of p increases,

and then decreases when p is greater than 0.9. Moreover, the performance of the

monitoring system is significantly reduced when only active paths or inactive

paths are used in the similarity computation. This is demonstrated by the case

when p = 0 or p = 1, where the rate of correct reclassification is notably low.

Hence, it is crucial to consider both active and inactive paths for the similarity

computation to achieve better results.

Through this series of experiments, we can conclude that tuning the

parameter p directly affects the monitoring performance. Generally, the lower

the value of p, the more alarms are raised by the monitor, resulting in fewer

missed alarms and more correct alarms, but less precision (less correct re-

classification). Therefore, considering a small value of p (p ≤ 0.3), to include

more inactive paths, tends to provide better performance of the monitoring

system. For re-classification purposes, the system performs better when p is

close to 0.9. However, the adequate value of p depends on the specific case

study; including factors such as the network architecture and size, and the

characteristics of the training and test sets. Therefore, these findings cannot

be generalized, and additional research is required to determine the adequate

values of p for different datasets and network configurations.

Figure 6.7: The rate of correct alarms and correct reclassification for different
values of p.

134 CHAPTER 6. NAPath: Runtime Monitoring of Neural Networks

Figure 6.8: The rate of false and missed alarms for different values of p.

Metrics All
alarms

Correct
alarms
(%)

False
alarms
(%)

Missed
alarms
(%)

NAP 3995 84.98 64.66 15.02
NAPath 178 76.06 0.32 23.94

Table 6.2: Comparison results between NAP and NAPath.

In our last set of experiments, we conducted a comparison study between our

approach based on NAPath and the NAP-based approach (Cheng, Nührenberg,

and Yasuoka 2019). To this end, we generated the NAP set using the same

training data and setting δ = 0.9. During the monitoring phase, we used the

Hamming distance3 (Cheng, Nührenberg, and Yasuoka 2019), to compare the

NAP of the input-image to the pre-computed NAPs, using the same configuration

as for NAPath. Additionally, we fixed the control parameter p to 0.1. We

evaluated the performance of both approaches based on the rate of correct

alarms, false alarms, and missed alarms. Table 6.2 presents a summary of the

obtained results.

When comparing the number of raised alarms, we observe that the NAP-based

monitor generates more alarms than the NAPath-based monitor. However, the

NAPath-based monitor is more precise, as it raises less alarms, and the greater

part of them (76.06%) are correct, with very low rate of false alarms (0.32%). On

the other hand, the NAP-based monitor triggers an important number of alarms

(3995 in total), most of which are for correctly classified images, leading to a high

rate of false alarms (64.66%). Although the rates of correct alarms and missed

3The Hamming distance between two vectors of the same size is the number of positions at
which the corresponding values are different.

6.5. Experimental Results on Weather Conditions Detection Networks 135

Metrics All
alarms

Correct
alarms
%

False
alarms
%

Missed
alarms
%

NAP 3995 4.53 95.47 1.15
NAPath 178 89.50 10.50 0.86

Table 6.3: Comparison between NAP and NAPath using updated formulas for
computing performance metrics.

alarms using the NAP-based monitor are better, these results are less significant

because most of alarms are unnecessary, and raising more alarms increases the

chances of covering more misclassified images (less missed alarms). In order

to obtain a more significant representation of the results and a more accurate

comparison of the performance of the two monitoring systems, we utilize new

formulas presented in Equations (6.10), (6.11), and (6.12) to calculate the rate

of correct alarms, false alarms and missed alarms, respectively. The obtained

results using these formulas are presented in Table 6.3.

correct alarms =
number of alarms for misclassified images

total number of raised alarms
(6.10)

false alarms =
number of alarms for well classified images

total number of raised alarms
(6.11)

missed alarms =
number of passes for misclassified images

total number of no alarms
(6.12)

The results presented in Table 6.3 show that the NAPath-based monitor

clearly outperforms the NAP-based monitor across all metrics. Specifically, the

NAPath monitor is more precise with 89.50% of raised alarms being correct and

low rates of missed alarms (0.86%) and false alarms (10.50%).

6.5 Experimental Results on Weather Conditions

Detection Networks

In this section, we evaluate the efficiency and the scalability of the NAPAth

monitoring approach using a real-world NN system developed within the

Autonomous train project (TASV) coordinated by Railenium. The NN model is

designed as part of the perception system of the autonomous train, and aims

to detect and classify weather conditions based on real images captured by the

AI-based perception system of the train. The experiments include evaluating

the monitoring system on NN models with various sizes (number of layers and

136 CHAPTER 6. NAPath: Runtime Monitoring of Neural Networks

number of neurons).

Before presenting the experiments’ settings and results, let us first introduce

the system and the architectures and configurations of its corresponding model.

6.5.1 System & Dataset Characteristics

Weather conditions recognition plays a crucial role in the operation of perception

systems for autonomous trains. Such a function relies on accurate detection and

classification of weather conditions to ensure safe and efficient train operation in

diverse environmental settings. Therefore, there is a growing need for automated

methods that can accurately identify weather conditions from images captured

in railway environments. Addressing this challenge requires the development

of robust and efficient algorithms that are capable of analyzing image data to

classify various weather conditions accurately.

In the context of the TASV project, the AI team of IRT Railenium has

conducted a study for weather detection and classification from images using

NNs. The team has developed NN models using the Pytorch framework4. To

train these models, a railway dataset of images comprising images representing

four distinct weather conditions (represented by classes) was employed: foggy,

rainy, snowy, and sunny. A total of 1963 images are used, with approximately

490 images per class. Figures 6.9, 6.10, 6.11, and 6.12 provide examples of

images corresponding to these four classes.

The dataset is partitioned into three subsets: the training set, validation set,

and test set. Approximately 70% of the dataset is allocated for training purposes,

while 20% is set aside for validation, and the remaining 10% is designated

as the test set. Recall that the validation set is used to fine-tune the model’s

hyperparameters and supervise its performance during training, while the test

set serves as an independent dataset to evaluate the model’s generalization ability

and assess its performance on unseen data. Table 6.4 provides the number of

inputs by class across training, validation, and test sets.

6.5.2 NN Models Configuration

Image classification is the process of segmenting images into different categories

based on their features. A feature could be the edges in an image, the pixel

intensity, the change in pixel values, and many others. In short, think of NN as a

4https://pytorch.org/

6.5. Experimental Results on Weather Conditions Detection Networks 137

Class Size of the training set Size of the validation set Size of the test set

Foggy 342 100 50
Rainy 349 100 50
Snowy 343 100 50
Sunny 329 100 50

Table 6.4: Size of training set, validation set, and test set, for each class.

(a) (b) (c)

Figure 6.9: Example images depicting foggy weather condition.

(a) (b) (c)

Figure 6.10: Example images depicting rainy weather condition.

(a) (b) (c)

Figure 6.11: Example images depicting snowy weather condition.

(a) (b) (c)

Figure 6.12: Example images depicting sunny weather condition.

machine learning algorithm that can take in an input image, assign importance

(learnable weights and biases) to various aspects/objects in the image, and be

able to differentiate one from the other.

The trained networks work by extracting features from the images. The

138 CHAPTER 6. NAPath: Runtime Monitoring of Neural Networks

Figure 6.13: The general architecture of the used networks for classifying
weather conditions.

implemented networks consist of the following characteristics:

• The input layer: it accepts a colored input image of dimension [3 ∗ 224 ∗ 224],

which is equivalent to a vector of 150528 inputs, after reshaping it to one

dimensional vector of pixels. Notice that a pre-processing phase, including

resizing the inputs, is performed in order to obtain images of the above-

mentioned dimension.

• Hidden layers: they are a sequence of fully connected layers of different

widths. All hidden layers use ReLU as an activation function. By varying

the configuration of the networks, namely the depth (number of hidden

layers), a set of networks with different performances is generated. These

networks are used to analyze the performance and the scalability of the

monitoring system.

• The output layer: it is a multi-class labels of dimension [1 ∗ 4] representing

the four possible classes: foggy, rainy, snowy, and sunny. This layer returns

the classification decision of the network. The output layer applies the

logarithmic Sof tmax function to smooth and sort out the final predictions.

The general architecture of the used networks is presented in Figure 6.13.

Table 6.5 summarizes the different configurations of the learned models (with

respect to the number of hidden layers), as well as the corresponding accuracy

obtained by each configuration.

After having introduced the system of weather condition recognition,

described the used dataset, and presented the configuration and performance

6.5. Experimental Results on Weather Conditions Detection Networks 139

(a) N1: two
hidden layer.

(b) N2: five
hidden layer.

Figure 6.14: Details about the used networks (ONNX) format.

140 CHAPTER 6. NAPath: Runtime Monitoring of Neural Networks

Network Number of hidden layers Size of hidden layers Accuracy

N1 2 224, 84 71%
N2 5 3136, 392, 196, 98, 49 65%

Table 6.5: NN configurations and accuracies

metrics of the utilized NN models, the subsequent section presents the evaluation

of our NN monitoring approach on these models. We begin by detailing the

settings of the conducted experiments. Subsequently, we present the results

obtained from these experiments, accompanied by a thorough discussion and

analysis of our findings.

6.5.3 Experimental Settings & Results

As presented in Chapter 6, our NN monitoring approach is implemented

as a Python tool. The tool is designed to accept several inputs, including

inputs of the NN model in ONNX format, the training set, and the test set.

Additionally, NAPath control parameters initialization is required. We divide

our experimental study into two series: (i): NAPathing for extracting the set of

NAPaths, and (ii) monitoring, for calculating the different alarms rates to assess

the performance of the monitoring system.

6.5.3.1 NAPathing Phase

The first step of the NAPath technique consists in extracting the classes’ NAPaths.

With respect to the output of the NN models, a set of four NAPaths, where each

NAPath is associated with a weather class, is extracted and stored to be used

later during runtime monitoring. During this phase, the training set is used to

compute the set of NAPaths. One of the important parameters of the NAPathing

phase is the precision parameter δ. We experimented multiple values of δ,

and we carried out a series of tests to determine an appropriate value of this

parameter. Concretely, we considered the following values of δ: 0.80, 0.85, 0.90,

0.95, and we run the NAPath computation for each network. Figures 6.15 and

6.16 depict the obtained results on the network N1, while the obtained results

on the network N2 are presented in Figures 6.17 and 6.18.

The obtained results on networks N1 and N2 are consistent with our findings

on MNIST benchmark (Chapter 6), which show that increasing the value of

δ leads to a decrease in the number of active paths. This implies that the

NAPaths are less constrained, and therefore the number of covered inputs by

6.5. Experimental Results on Weather Conditions Detection Networks 141

Figure 6.15: The number of active paths for N1 across different values of δ

these NAPaths (or inputs that follow them) increases as δ decreases.

By focusing on the number of active paths and the number of covered inputs

across different networks, we can observe that increasing the number of layers

leads to a significant increase in the size of the NAPaths, and to a decrease in

the number of covered inputs. For instance, when we compare the number of

active paths obtained on N1 and N2, we can clearly see that the NAPaths on N2

have more active paths than those on N1. On the contrary, for the same value of

δ, the number of covered inputs by NAPaths obtained using N2 is often lower

than the number of covered inputs by NAPaths obtained using N1. This can

be explained by the fact that adding more layers increases the total number of

neurons within the network, which in turn increases the size of the NAPath.

Larger NAPaths impose more constraints, resulting in fewer inputs that can

satisfy these constraints. Therefore, as the NAPath size grows larger, the number

of covered inputs decreases.

One interesting observation lies in the fact that the NAPath corresponding

to class snowy has a very small size, and the number of active paths associated

with it is almost zero for most of the values of δ. This phenomenon occurs for all

the networks that we tested, regardless of their architecture or parameters. This

suggests that the snowy class is either underrepresented or difficult to classify in

the dataset, or the networks have not learned well to distinguish it from the other

classes. A deep analysis of the learning process quality and the investigation

of further performance metrics could help to understand and handle this issue

(which is out of the scope of the present work).

142 CHAPTER 6. NAPath: Runtime Monitoring of Neural Networks

Figure 6.16: The number of covered inputs by the NAPaths ofN1 across different
values of δ

Figure 6.17: The number of active paths for N2 across different values of δ

6.5. Experimental Results on Weather Conditions Detection Networks 143

Figure 6.18: The number of covered inputs by the NAPaths ofN2 across different
values of δ

6.5.3.2 Monitoring Phase

Once the NAPaths are generated, the next step consists in evaluating our monitor.

As shown on the MNIST benchmark, small values of the control parameter

p for similarity calculation between NAPaths (p ≤ 0.3) provided satisfactory

results. Therefore, in this second series of experiments, it is straightforwardly

set at p = 0.3. Then, we employed the test set to evaluate the performance of

the monitor using the set of NAPaths computed previously while considering

various values of δ. It is worth mentioning that the NAPaths’ set of the ”snowy”

class are excluded due to their low count (mostly equal to zero). The performance

evaluation entails computing the various alarm rates, including false alarms,

correct alarms, and missed alarms. Additionally, metrics such as correct no alarm

(or correct passes) and correct re-classification rates are calculated. Tables 6.6

and 6.7 illustrate the obtained results for N1, and N2, respectively. For detailed

insights into the computation of these metrics, please refer to Chapter 6.

As presented in Table 6.6, the monitoring performance of the network N1

remains stable across all values of δ. The rate of false alarms is relatively

high at 63.63%, while the rate of correct no alarms is slightly lower at 36.37%.

Additionally, the rate of correctly reclassified images is around 6%. However,

the rates of correct alarms and missed alarms are deemed acceptable, with a

high correct alarm rate of 86.21% and a low missed alarm rate of 13.79%. It’s

worth noting that the latter metrics have a significant importance in safety

critical systems, particularly the rate of missed alarms which must be as small

144 CHAPTER 6. NAPath: Runtime Monitoring of Neural Networks

Value
of δ

All
alarms
(#)

Correct
alarms
(%)

Missed
alarms
(%)

Correct
no
alarms
(%)

False
alarms
(%)

Re-
classification
(%)

0.80 102 86.21 13.79 36.37 63.63 5.88
0.85 102 86.21 13.79 36.37 63.63 5.88
0.90 102 86.21 13.79 36.37 63.63 5.88
0.95 102 86.21 13.79 36.37 63.63 5.88

Table 6.6: Alarms rates for the network N1

as possible.

For network N2, as shown in Table 6.7, the performance of the monitoring

system is impacted by the selected set of NAPaths (represented by the parameter

δ). For δ = 0.80, both the rates of missed alarms and correct alarms are equal to

50%. However, the rates of correct no alarms and false alarms are very acceptable,

with high correct alarm rate and low false alarm rate. Using the set of NAPaths

obtained with higher values of δ (δ ≥ 0.85) tends to increase the total number of

alarms. Consequently, the rates of correct no alarms decreases, while the rate

of false alarms increases. On the other hand, the monitor exhibits improved

performance in terms of correct alarms (with a higher rate) and missed alarms

(with a lower rate) when increasing the value of δ. Indeed, the best performance

of the monitoring system considering these two metrics is achieved using the set

of NAPaths for δ = 0.95: the rates of correct alarms and missed alarms are equal

to 90% and 10%, respectively.

Comparing the performances of our monitoring approach on both networks,

we can notice that the approach performs better on the larger network (N2). One

possible explanation for this observation is that adding more layers increases

the total number of paths within the network. Consequently, this allows for

the extraction of more accurate NAPaths, which serve as reference patterns for

Value
of δ

All
alarms
(#)

Correct
alarms
(%)

Missed
alarms
(%)

Correct
no
alarms
(%)

False
alarms
(%)

Re-
classification
(%)

0.80 49 50 50 82.50 17.50 12.25
0.85 109 88.57 11.43 41.25 58.75 17.43
0.90 86 78.57 21.43 61.25 38.75 13.95
0.95 113 90 10 37.50 62.50 17.70

Table 6.7: Alarms rates for the network N2

6.6. Related Works 145

monitoring the network’s behavior.

To summarize, our monitoring system shows an overall acceptable performance

in weather condition detection, despite the inherent challenges of the task.

Indeed, weather conditions do not manifest as distinct objects, but rather as

states that affect the overall appearance of the image. Consequently, visually

similar conditions pose a significant challenge for computer vision algorithms, as

distinguishing between them accurately can be quite challenging. For example,

the difference between an image taken in rainy weather and another in foggy

conditions may be subtle. Moreover, it’s worth noting that the used dataset

is relatively small for this task. With less than 350 images per class in the

training set and only 50 images per class in the testing set, the model may

face limitations in learning the intricate details necessary for accurate weather

condition detection. The small size of the dataset also impacts our approach,

which relies on extracting NAPaths from the training set.

6.6 Related Works

Several works have been proposed in the NN literature for addressing the

supervision and monitoring of NN-based systems. Our approach closely aligns

with those that involve building a monitor by extracting some “learned” patterns.

In this context, Neural Activation Pattern (NAP) (Krug et al. 2018) has been

used as a basis of the monitoring of NN-based system. Cheng, Nührenberg,

and Yasuoka (2019) used the training dataset to build a NAP for each class of

images. The extracted patterns are saved using Binary Decision Diagrams (BDD).

During execution, each class of images is supposed to have the same class by the

NN as that of the closest NAP. Geng et al. (2022) introduced a new formula of

the robustness property of NN, called neural representation as specification. New

constraints using NAP are combined with the standard robustness property,

stating that the inputs following the same NAP shall have the same class. While

the previous works focus on FFNN, Olber et al. (2022) presented an extension of

NAP to support CNN. Additionally, NAP have also been exploited for explaining

the NN decisions (Bäuerle et al. 2022).

Henzinger et al. (2020) proposed a method for detecting novel inputs (or

out-of-distribution inputs) using abstraction. The method constructs an over-

approximation of a set of selected hidden layers using box abstraction. This

over-approximation is used during runtime to check whether the hidden layers’

values corresponding to an input are within the defined ranges, if not, the

146 CHAPTER 6. NAPath: Runtime Monitoring of Neural Networks

input is marked as novel. Hashemi, Křetínskỳ, Mohr, et al. (2021) modelled the

activation patterns as a Gaussian model, and then used this model to detect

out-of-distribution inputs.

Examining the aforementioned approaches, the NAP-based approaches share

some similarities with ours. They both focus on analyzing the network’s behavior

when fed with its training set in order to extract the activations of the hidden

neurons. However, there are significant differences between them. Indeed,

while the NAP method represents the activation patterns as a set of neurons,

the NAPath uses the hidden activations and represents the features using the

concept of paths. These paths connect the input to the output of the network. As

shown through the experimental results, this concept allows for preserving the

dependency between hidden neurons, which provide more accurate monitoring

system compared to the NAP-based method presented in (Cheng, Nührenberg,

and Yasuoka 2019).

6.7 Conclusion

In this chapter, we presented an approach called NAPath to extract and represent

the learned features by NNs. The approach allows for analyzing the behavior of

hidden neurons in response to a set of inputs belonging to the same class, and

then computes paths (both active and inactive) that connect the input layer to the

output layer of the network. These paths define a NAPath. In our approach, we

construct a set of NAPaths, where each NAPath is associated with a single class.

These NAPaths are subsequently used to monitor the classification decision of

the network, whereby a novelty detection alarm is issued if the NAPath has no

similar NAPath from the set of pre-computed NAPaths, or a misclassification

alarm is issued if an input’s predicted class is different from the class of the most

similar NAPath to the one of this input. In the latter, the monitor suggests a new

classification of this input based on the similarity degree between its NAPath

and the set of pre-computed NAPaths. The similarity degree is calculated using

both active and inactive paths. This is based on the assumption that inputs of

the same class share similar paths.

To assess the effectiveness of the NAPath approach, we conducted an

experimental study on the MNIST benchmark. The study included tuning

various parameters and comparing NAPath to NAP. The experiments showed

that NAPath can efficiently be used as a tool for monitoring NNs decisions used

in image classification, and it can significantly enhance their reliability and

6.7. Conclusion 147

trustworthiness. Furthermore, to evaluate the applicability and the efficiency of

the proposed approach within real-world application, we applied our monitoring

approach on a set of networks with various sizes used for railway weather

conditions’ recognition. These NN models are developed within the TASV

project. The results of these experiments show that NAPath can effectively scale

up and be applied to monitor and supervise NN models of larger sizes.

148 CHAPTER 6. NAPath: Runtime Monitoring of Neural Networks

Chapter7
Conclusions & Perspectives

Outline of the current chapter

7.1 General Conclusion 150

7.2 Perspectives & Future Works 152
7.2.1 Neural Networks Abstraction 152

Short term future works 152

Long term future works 153

7.2.2 Neural Networks Monitoring 154

Short term future works 154

Long term future works 154

149

150 CHAPTER 7. Conclusions & Perspectives

7.1 General Conclusion

This dissertation falls within the scope of verification and monitoring of NN

systems in view of their application in safety-critical transportation systems. We

firstly presented a comprehensive literature review of existing NN verification

and monitoring techniques in Part I. Then, we introduced our main contributions

related to NN abstraction for verification on one hand (Part II) and NN

monitoring on the other hand (Part III).

In Chapter 2, we discussed the vulnerability and the sensitivity of NNs

w.r.t. adversarial attacks and environment perturbations; hence motivating the

need for rigorous NN evaluation techniques. In this chapter, We focused on NN

verification and NN monitoring techniques. Regarding verification, we discussed

two main categories of approaches, namely complete and incomplete methods.

A NN verification method is called complete (or exact) if it always returns a

complete, definitive answer: either the property holds or not. An NN incomplete

verification method may return an “uncertain” answer when the verification

process cannot decide whether the property holds or not.

In Chapter 3, we conducted a comprehensive review and critical analysis of

the abstraction techniques that leverage neurons merging in order to reduce the

NN size while preserving a formal relationship of over-approximation between

the reduced network and the original one. Such a relationship is important to

lift the verification output to the original network without explicitly applying

the verification on it. Through our analysis, we compared several methods in

terms of supported activation functions and provided formal guarantees. This

study allowed us to identify some limitations of the existing techniques, which

helped us to develop new approaches that are presented in Part II.

In the second part, we discussed our contributions for NN abstraction using

model reduction. We split this part into two chapters: Chapter 4 and Chapter 5,

where the former included the theoretical foundation of our NN model reduction

approaches, and the latter presented the results of the experimental evaluation

of these approaches. Namely, the first approach, called INNAbstract, supports

NNs with odd-monotone activation functions, with an alternative to support the

ReLU function. In INNAbstract, the incoming weights of an abstract neuron are

intervals, and defined as min/max of the signs of the corresponding outgoing

weights multiplied by the incoming weights of the original network. The

outgoing weights are defined as the sum of absolute values of the outgoing

weights of the merged neurons. As demonstrated by the provided proof, this

7.1. General Conclusion 151

definition guarantees that the output of the original NN is always within the

output interval of the reduced NN. The second approach is a Model reduction

for non-negative activation functions. The approach can be applied to reduce

the size of NNs with non-negative monotone activation functions. Using the

presented approach, the outputs of the generated reduced NNs are always greater

or equal to that of the original one. To fulfill this feature, the weights of the

abstract neurons are computed in a way to ensure that the output of the network

shall be increased. Concretely, we start by eliminating the negative outgoing

weights. Then, the incoming weight of the new abstract neuron is defined as

the max among the incoming weights of the set of neurons to merge, and the

outgoing weight is the sum of the corresponding outgoing weights of the same

set.

Chapter 5 was dedicated to a series of experiments to evaluate the two model

reduction approaches. The evaluation included a set of randomly generated

NNs, and two well-known benchmarks in NN verification, namely, ACAS Xu and

MNIST. Additionally, the two approaches are compared to other relevant model

reduction methods from the literature. Throughout the conducted experimental

study, our methods consistently demonstrated high performances by efficiently

and significantly reducing the overall computation time while preserving

acceptable output ranges. Indeed, this is confirmed in the comparison study,

where both approaches outperformed the others in most of the cases. Notably,

the second approach outperformed all other methods, including INNAbstract,

considering all metrics. In particular, the approach achieved the smallest

computation times with the tightest output ranges. Although the obtained

output range using our methods is tighter than those using other methods, there

is always an important loss of precision due to the over-approximation.

In Part III, we presented our contribution regarding the monitoring of NN

classifiers. In Chapter 6, we presented the fundamentals of our approach based

on the NAPAth concept. NAPath is used to monitor image-classification decisions

of NNs. The approach extracts internal activations for each class of image

represented by its training set. Then, from these activations, we built paths

linking the input to the output of the network. The shared set of paths by the

inputs constructs a NAPath of the corresponding output class. This process is

repeated for each class of images, which allowed us to have a set of NAPaths,

where each one represents exclusively a class. Then, the set of NAPaths is used

during runtime to check and supervise the network’s decisions, and the monitor

raises alarms if the decision does not fit the extracted NAPaths. We carried

152 CHAPTER 7. Conclusions & Perspectives

out an experimental study on the MNIST benchmark in order to analyze the

impact of some NAPath’s control parameters. Next, we compared our approach

to a reference monitoring approach in the literature. Through the conducted

experiments, the alarms raised by our monitoring system were more accurate.

This shows the effectiveness of the NAPath feature in monitoring NN decisions

during runtime. Additionally, we applied our monitoring approach on a set of

networks with various sizes used for weather conditions’ recognition. These NN

models are developed within the TASV project. The results of these experiments

indicate that NAPath can effectively scale up and be applied to monitor and

supervise NN models of larger sizes. The conducted study may have some critical

points; for instance, the proposed approach remains empirical and does not offer

any guarantees regarding the extracted features. We should also mention that

the proposed extension for CNNs has not yet been tested.

7.2 Perspectives & Future Works

Regarding our contributions and the critical points discussed above, we

identified a number of future opportunities for enhancing the results of our

research.

7.2.1 Neural Networks Abstraction

We plan to pursue our work on NN abstraction to further enhance the

proposed methods and their applicability. In this regard, our future works

and perspectives are delineated into short-term and long-term objectives.

Short term future works

• In this dissertation, we applied our model reduction methods on two

benchmarks and some others which are randomly generated NNs. To

broaden the scope of our findings, future work will involve extending the

experimental study to include more benchmarks with larger networks to

evaluate the performance and the scalability of the two reduction methods.

This extension aims to provide a more comprehensive understanding of

the methods’ effectiveness across diverse NN benchmarks.

• To tackle the issue of precision loss caused by the abstraction, we intend

to advance our heuristics for node selection. These heuristics should

7.2. Perspectives & Future Works 153

produce tighter output ranges. The pivotal idea is to further explore the

characteristics of neurons before merging, e.g., by examining the incoming

and the outgoing weights’ signs and the sign of the neurons’ outputs. In

this regard, some optimization algorithms can be investigated to extract

optimal subgroups of neurons. By optimal, we mean that the constructed

abstract network shall have the tightest output range with respect to the

number of merged neurons. Additionally, applying a clustering algorithm

is a way to group neurons behaving similarly. Then, each group can be

merged and replaced by a single neuron that abstracts the group’s behavior.

• Another line of works within this context may consist in suggesting a

refinement phase to further enhance the precision of the abstraction

approaches. Refinement is the inverse of abstraction, meaning that if the

abstraction is too coarse, refinement can be used to split back some merged

neurons, and thus providing more precise outputs. The naive way to do

this is just to redo the previous iteration. This step can be repeated many

times, till we get an acceptable precision-abstraction tradeoff. A smarter

way is to identify an abstract neuron that causes the coarseness; thus,

splitting this neuron should enhance the precision more than splitting

any other abstracted neuron. This procedure can be implemented to

iterate over a set of neurons till an appropriate precision is found. Some

optimization algorithms and heuristics can be deployed to help identify

the set of candidate neurons for splitting.

Long term future works

In the long term, we aim to explore the following research directions:

• We plan to combine our model reduction methods with NN verification

techniques, and implement the obtained method as a full and complete NN

verification tool. This combination, along with heuristics and a refinement

strategy, aims to facilitate the formal verification of properties on NNs.

The main idea is to extend existing verification tools to support INNs.

Then, once this issue is solved, it will be interesting to apply our model

reduction methods (depending on the network’s characteristics, namely

the activation function) to reduce the network’s size. The next step consists

in forwarding the obtained reduced network to the verification engine.

During the verification process, several refinement steps may be invoked

in order to get the final result.

154 CHAPTER 7. Conclusions & Perspectives

• The second research subject consists in extending the applicability of our

approach to support other NN architectures, such as Convolutional Neural

Networks (CNNs). This extension is particularly relevant given our focus

on verifying NN-based modules deployed in autonomous trains.

• Finally, our ultimate goal is to combine all these features towards

verifying real-world NNs, particularly an application case on NN models

implemented for the autonomous train.

7.2.2 Neural Networks Monitoring

Short term future works

• We believe that conducting an extensive experimental study is imperative

to thoroughly assess our approach. In this regard, we intend to consider a

wide and diverse range of networks and benchmarks, varying in size, in

terms of the number of layers and the number of neurons per layer. Such

extended experimental study shall enable us to gain deeper insights into

the behavior of both the neural networks (NNs) and the monitor. Such

a comprehensive analysis shall also enhance our understanding of how

different network configurations (e.g., size, number of neurons per layer,

etc.) and monitor settings influence the overall performance and efficacy of

the monitoring system. Additionally, it shall allow us to identify potential

challenges and limitations that may arise under various scenarios.

• Furthermore, we plan to meticulously tune the parameters of the monitor

to provide comprehensive recommendations regarding their adequate

values. By conducting rigorous experiments and parameter tuning, we aim

to refine our approach and develop relevant guidelines for deploying and

configuring the monitor in real-world scenarios.

Long term future works

• In this dissertation, the presented version of NAPath works specifically

with feed-forward NNs. As future works, we plan to extend the NAPath

concept to support other types of NNs, such as CNN, ResNet, RNN, etc.

For instance, a CNN model contains mainly two parts: the convolutional

part and the fully-connected one. While the former is mainly used to

extract patterns from images, the latter is known to be in charge of the

classification decision. Our first step towards adapting NAPath on CNNs

7.2. Perspectives & Future Works 155

is to consider the fully-connected part as a separate FFNN; its inputs are

the output of the convolutional part and its outputs are the output of the

initial CNN model. Then, the main idea consists in applying the approach

on the FFNN part. In the second step, we plan to extract paths through the

whole network. To this aim, we need to identify active and inactive cells

on the CNN kernels, and use these cells to build the NAPath.

• Another research direction involves analyzing the extracted paths to offer

assurances regarding the triggered alarms by the network. While our

approach has shown promising performance using test sets, the lack of

certainty regarding the results remains a limitation. To mitigate this issue,

we aim to delve deeper into the internal states and the outcomes of the

monitor to provide statistical guarantees about the obtained results. This

entails a comprehensive examination of the paths extracted during the

NAPathing process. The first step consists of demonstrating that the

extracted patterns represent (with some confidence level) the learned

patterns by the network. Next, and through rigorous analysis and statistical

techniques, we seek to quantify the level of confidence associated with the

alarms triggered by the network.

• NAPath for explainable NNs: Finally, we plan to develop an approach

based on NAPath to help explain NN decisions. The approach shall involve

analyzing the paths associated with each class in the network to gain

insights on the decision-making process. Recall that the key idea behind

NAPath is to uncover the underlying patterns and features learned by the

network during the training process. By examining the paths traversed

by the network for the different classes, we aim to identify the distinctive

patterns and characteristics that influence its decision-making. These paths

represent the sequence of activated neurons or traversed by the network

when processing some inputs that belong to a specific class.

156 CHAPTER 7. Conclusions & Perspectives

Bibliography

Akhtar, Naveed, Ajmal Mian, Navid Kardan, and Mubarak Shah (2021).
“Advances in adversarial attacks and defenses in computer vision: A survey”.
In: IEEE Access 9, pp. 155161–155196 (cit. on p. 34).

Akintunde, Michael E, Andreea Kevorchian, Alessio Lomuscio, and Edoardo
Pirovano (2019). “Verification of RNN-based neural agent-environment
systems”. In: Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 33. 01, pp. 6006–6013 (cit. on pp. 54, 62).

Amir, Guy, Haoze Wu, Clark Barrett, and Guy Katz (2021). “An SMT-based
approach for verifying binarized neural networks”. In: Tools and Algorithms
for the Construction and Analysis of Systems: 27th International Conference,
TACAS 2021, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2021, Luxembourg City, Luxembourg, March 27–
April 1, 2021, Proceedings, Part II 27. Springer, pp. 203–222 (cit. on p. 41).

Ashok, Pranav, Vahid Hashemi, Jan Křetínskỳ, and Stefanie Mohr (2020).
“DeepAbstract: Neural network abstraction for accelerating verification”. In:
International Symposium on Automated Technology for Verification and Analysis.
Springer, pp. 92–107 (cit. on pp. 7, 58, 61, 62, 64, 65, 95).

Bäuerle, Alex, Daniel Jönsson, and Timo Ropinski (2022). “Neural activation
patterns (NAPs): Visual explainability of learned concepts”. In: arXiv preprint
arXiv:2206.10611 (cit. on pp. 47, 145).

Bebis, George and Michael Georgiopoulos (1994). “Feed-forward neural networks”.
In: IEEE Potentials 13.4, pp. 27–31 (cit. on p. 21).

Berry, Michael W, Azlinah Mohamed, and Bee Wah Yap (2019). Supervised and
unsupervised learning for data science. Springer (cit. on p. 19).

Besinovic, Nikola, Lorenzo De Donato, Francesco Flammini, Rob M. P. Goverde,
Zhiyuan Lin, Ronghui Liu, Stefano Marrone, Roberto Nardone, Tianli Tang,
and Valeria Vittorini (2022). “Artificial Intelligence in Railway Transport:
Taxonomy, Regulations, and Applications”. In: IEEE Transactions on Intelligent
Transportation Systems 23.9, pp. 14011–14024. doi: 10.1109/TITS.2021.
3131637 (cit. on pp. 19, 28).

Biere, Armin, Marijn Heule, and Hans van Maaren (2009). Handbook of
satisfiability. Vol. 185. IOS press (cit. on p. 30).

Bojarski, Mariusz, Davide Del Testa, Daniel Dworakowski, Bernhard Firner,
Beat Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller,
Jiakai Zhang, et al. (2016). “End to end learning for self-driving cars”. In:
arXiv preprint arXiv:1604.07316 (cit. on pp. 60, 61).

157

https://doi.org/10.1109/TITS.2021.3131637
https://doi.org/10.1109/TITS.2021.3131637

158 Bibliography

Botoeva, Elena, Panagiotis Kouvaros, Jan Kronqvist, Alessio Lomuscio, and Ruth
Misener (2020). “Efficient verification of relu-based neural networks via
dependency analysis”. In: Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 34. 04, pp. 3291–3299 (cit. on p. 43).

Boudardara, Fateh, Abderraouf Boussif, and Mohamed Ghazel (2023). “A sound
abstraction method towards efficient neural networks verification”. In: The
16th International Conference on Verification and Evaluation of Computer and
Communication Systems (VECoS), 18-20 October 2023, Marrakech, Morocco,
Proceedings, p. 14 (cit. on pp. 72, 96).

Boudardara, Fateh, Abderraouf Boussif, Pierre-Jean Meyer, and Mohamed Ghazel
(2022). “Interval Weight-Based Abstraction for Neural Network Verification”.
In: International Conference on Computer Safety, Reliability, and Security.
Springer, pp. 330–342 (cit. on pp. 7, 72).

— (2023a). “A Review of Abstraction Methods towards Verifying Neural
Networks”. In: ACM Trans. Embed. Comput. Syst. issn: 1539-9087. doi: 10.
1145/3617508. url: https://doi.org/10.1145/3617508 (cit. on pp. 44, 50,
95).

— (2023b). “INNAbstract: an INN-based abstraction method for large-scale
neural network verification”. In: IEEE Transactions on Neural Networks and
Learning Systems (TNNLS), p. xxx (cit. on p. 72).

Brenna, Morris, Federica Foiadelli, and Michela Longo (2016). “Application
of genetic algorithms for driverless subway train energy optimization”. In:
International Journal of Vehicular Technology 2016 (cit. on p. 3).

Buciluǎ, Cristian, Rich Caruana, and Alexandru Niculescu-Mizil (2006). “Model
compression”. In: Proceedings of the 12th ACM SIGKDD international conference
on Knowledge discovery and data mining, pp. 535–541 (cit. on p. 67).

Bunel, Rudy R, Ilker Turkaslan, Philip Torr, Pushmeet Kohli, and Pawan K
Mudigonda (2018). “A unified view of piecewise linear neural network
verification”. In: Advances in Neural Information Processing Systems 31 (cit. on
pp. 40, 43).

Carlini, Nicholas and David Wagner (2017). “Towards evaluating the robustness
of neural networks”. In: 2017 ieee symposium on security and privacy (sp). Ieee,
pp. 39–57 (cit. on p. 34).

CENELEC-EN50128 (2011). Railway applications - Communication, signalling and
processing systems - Software for railway control and protection systems (cit. on
p. 28).

Chakraborty, Anirban, Manaar Alam, Vishal Dey, Anupam Chattopadhyay,
and Debdeep Mukhopadhyay (2021). “A survey on adversarial attacks and
defences”. In: CAAI Transactions on Intelligence Technology 6.1, pp. 25–45
(cit. on p. 34).

Cheng, Chih-Hong, Georg Nührenberg, and Harald Ruess (2017). “Maximum
resilience of artificial neural networks”. In: International Symposium on
Automated Technology for Verification and Analysis. Springer, pp. 251–268
(cit. on pp. 6, 42, 51, 56).

https://doi.org/10.1145/3617508
https://doi.org/10.1145/3617508
https://doi.org/10.1145/3617508

Bibliography 159

Cheng, Chih-Hong, Georg Nührenberg, and Hirotoshi Yasuoka (2019). “Runtime
monitoring neuron activation patterns”. In: 2019 Design, Automation & Test
in Europe Conference & Exhibition (DATE). IEEE, pp. 300–303 (cit. on pp. 5,
10, 33, 46, 120, 134, 145, 146).

Cheng, Yu, Duo Wang, Pan Zhou, and Tao Zhang (2017). “A survey of model
compression and acceleration for deep neural networks”. In: arXiv preprint
arXiv:1710.09282 (cit. on pp. 62, 66).

Clarke, Edmund M, Thomas A Henzinger, Helmut Veith, Roderick Bloem, et al.
(2018). Handbook of model checking. Vol. 10. Springer (cit. on pp. 29, 30).

Clarke, Edmund M and Jeannette M Wing (1996). “Formal methods: State of
the art and future directions”. In: ACM Computing Surveys (CSUR) 28.4,
pp. 626–643 (cit. on p. 28).

Cousot, Patrick and Radhia Cousot (1977). “Abstract interpretation: a unified
lattice model for static analysis of programs by construction or approximation
of fixpoints”. In: Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, pp. 238–252 (cit. on pp. 30, 31, 53).

Davis, Martin, George Logemann, and Donald Loveland (1962). “A machine
program for theorem-proving”. In: Communications of the ACM 5.7, pp. 394–397
(cit. on pp. 30, 41).

De Donato, Lorenzo, Francesco Flammini, stefano Marrone, Roberto Nardone,
and Valeria Vittorini (2022). “Trustworthy AI for safe autonomy of smart
railways: directions and lessons learnt from other sectors”. In: World Congress
on Railway Research (cit. on pp. 4, 5).

DIN-SPEC 92001 (2020). Inofrmation technology - Life cycle processes and quality
requirements - quality meta model. Accessed: 2023-12-12 (cit. on p. 4).

Dorigo, Marco and Thomas Stützle (2019). Ant colony optimization: overview and
recent advances. Springer (cit. on p. 2).

Duong, Hai, Linhan Li, ThanhVu Nguyen, and Matthew Dwyer (2023). “A
DPLL (T) Framework for Verifying Deep Neural Networks”. In: arXiv preprint
arXiv:2307.10266 (cit. on p. 41).

Dutta, Souradeep, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari
(2018). “Output Range Analysis for Deep Feedforward Neural Networks”.
In: Proc. 10th NASA Formal Methods, pp. 121–138. isbn: 978-3-319-77934-8
(cit. on pp. 6, 43, 51).

Ehlers, Ruediger (2017). “Formal verification of piece-wise linear feed-forward
neural networks”. In: International Symposium on Automated Technology for
Verification and Analysis. Springer, pp. 269–286 (cit. on pp. 6, 41, 52, 53, 55,
60, 61).

Elboher, Yizhak Yisrael, Justin Gottschlich, and Guy Katz (2020). “An abstraction-
based framework for neural network verification”. In: International Conference
on Computer Aided Verification. Springer, pp. 43–65 (cit. on pp. 7, 59, 61, 62,
64, 65, 91, 95, 96, 108–111).

Eramo, Romina, Tiziana Fanni, Dario Guidotti, Laura Pandolfo, Luca Pulina, and
Katiuscia Zedda (2022). “Verification of Neural Networks: Challenges and
Perspectives in the AIDOaRt Project”. In: 10th Italian Workshop on Planning

160 Bibliography

and Scheduling, RiCeRcA Italian Workshop, and SPIRITWorkshop on Strategies,
Prediction, Interaction, and Reasoning in Italy. (Cit. on p. 6).

Fantechi, Alessandro, Wan Fokkink, and Angelo Morzenti (2012). “Some trends
in formal methods applications to railway signaling”. In: Formal methods for
industrial critical systems: A survey of applications, pp. 61–84 (cit. on p. 30).

Ferrari, Alessio and Maurice H Ter Beek (2022). “Formal methods in railways:
a systematic mapping study”. In: ACM Computing Surveys 55.4, pp. 1–37
(cit. on p. 28).

Fischetti, Matteo and Jason Jo (2018). “Deep neural networks and mixed integer
linear optimization”. In: Constraints 23.3, pp. 296–309 (cit. on p. 43).

Fowler, Martin (2018). Refactoring: improving the design of existing code. Addison-
Wesley Professional (cit. on p. 60).

Garavel, Hubert (2012). “Three decades of success stories in formal methods”.
In: International Conference on Formal Methods for Industrial Critical Systems
(FMICS), p. 2 (cit. on p. 30).

Gehr, Timon, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat
Chaudhuri, and Martin Vechev (2018). “AI2: Safety and robustness certification
of neural networks with abstract interpretation”. In: 2018 IEEE Symposium
on Security and Privacy. IEEE, pp. 3–18 (cit. on pp. 5, 7, 44, 53, 55, 120).

Geng, Chuqin, Nham Le, Xiaojie Xu, Zhaoyue Wang, Arie Gurfinkel, and
Xujie Si (2022). “Toward Reliable Neural Specifications”. In: arXiv preprint
arXiv:2210.16114 (cit. on pp. 46, 120–122, 145).

Gholami, Amir, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and
Kurt Keutzer (2022). “A survey of quantization methods for efficient neural
network inference”. In: Low-Power Computer Vision. Chapman and Hall/CRC,
pp. 291–326 (cit. on p. 67).

Ghorbal, Khalil, Eric Goubault, and Sylvie Putot (2009). “The zonotope abstract
domain taylor1+”. In: International Conference on Computer Aided Verification.
Springer, pp. 627–633 (cit. on p. 53).

Gibert, Xavier, Vishal M Patel, and Rama Chellappa (2015). “Robust fastener
detection for autonomous visual railway track inspection”. In: 2015 IEEE
winter conference on applications of computer vision. IEEE, pp. 694–701 (cit. on
p. 3).

— (2017). “Deep Multitask Learning for Railway Track Inspection”. In: IEEE
Transactions on Intelligent Transportation Systems 18.1, pp. 153–164. doi: 10.
1109/TITS.2016.2568758 (cit. on p. 3).

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep learning. MIT
press (cit. on pp. 5, 120).

Goodfellow, Ian J, Jonathon Shlens, and Christian Szegedy (2014). “Explaining
and harnessing adversarial examples”. In: arXiv preprint arXiv:1412.6572
(cit. on p. 34).

Grimm, Tomás, Djones Lettnin, and Michael Hübner (2018). “A survey on formal
verification techniques for safety-critical systems-on-chip”. In: Electronics 7.6,
p. 81 (cit. on pp. 28, 37).

https://doi.org/10.1109/TITS.2016.2568758
https://doi.org/10.1109/TITS.2016.2568758

Bibliography 161

Hadded, Mohamed Amine, Ankur Mahtani, Sébastien Ambellouis, Jacques
Boonaert, and Hazem Wannous (2022). “Application of Rail Segmentation in
the Monitoring of Autonomous Train’s Frontal Environment”. In: Pattern
Recognition and Artificial Intelligence. Ed. by Mounîm El Yacoubi, Eric
Granger, Pong Chi Yuen, Umapada Pal, and Nicole Vincent. Cham: Springer
International Publishing, pp. 185–197 (cit. on p. 3).

Han, Song, Huizi Mao, and William J Dally (2015). “Deep compression:
Compressing deep neural networks with pruning, trained quantization and
huffman coding”. In: arXiv preprint arXiv:1510.00149 (cit. on pp. 62, 66).

Hashemi, Vahid, Panagiotis Kouvaros, and Alessio Lomuscio (2021). “OSIP:
Tightened Bound Propagation for the Verification of ReLU Neural Networks”.
In: Software Engineering and Formal Methods: 19th International Conference,
SEFM 2021, Virtual Event, December 6–10, 2021, Proceedings 19. Springer,
pp. 463–480 (cit. on p. 43).

Hashemi, Vahid, Jan Křetínskỳ, Stefanie Mohr, and Emmanouil Seferis (2021).
“Gaussian-based runtime detection of out-of-distribution inputs for neural
networks”. In: Runtime Verification: 21st International Conference, RV 2021,
Virtual Event, October 11–14, 2021, Proceedings. Springer, pp. 254–264 (cit. on
pp. 47, 146).

Hashemi, Vahid, Jan Křetínskỳ, Sabine Rieder, and Jessica Schmidt (2023).
“Runtime Monitoring for Out-of-Distribution Detection in Object Detection
Neural Networks”. In: International Symposium on Formal Methods. Springer,
pp. 622–634 (cit. on p. 7).

Hawkins, Richard, Colin Paterson, Chiara Picardi, Yan Jia, Radu Calinescu, and
Ibrahim Habli (2021). “Guidance on the assurance of machine learning in
autonomous systems (AMLAS)”. In: arXiv preprint arXiv:2102.01564 (cit. on
p. 5).

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2016). “Deep residual
learning for image recognition”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 770–778 (cit. on p. 41).

Henriksen, Patrick and Alessio Lomuscio (2021). “DEEPSPLIT: An Efficient
Splitting Method for Neural Network Verification via Indirect Effect Analysis”.
In: Proceedings of the Thirtieth International Joint Conference on Artificial
Intelligence, pp. 2549–2555. doi: 10.24963/ijcai.2021/351. url: https:
//doi.org/10.24963/ijcai.2021/351 (cit. on p. 43).

Henzinger, Thomas A, Anna Lukina, and Christian Schilling (2020). “Outside the
Box: Abstraction-Based Monitoring of Neural Networks”. In: 24th European
Conference on Artificial Intelligence-ECAI 2020, pp. 2433–2440 (cit. on pp. 46,
47, 145).

Hickish, Bob, David I Fletcher, and Robert F Harrison (2020). “Investigating
Bayesian Optimization for rail network optimization”. In: International
Journal of Rail Transportation 8.4, pp. 307–323 (cit. on p. 3).

Hua, Gaofeng, Li Zhu, Jinsong Wu, Chunzi Shen, Linyan Zhou, and Qingqing
Lin (2020). “Blockchain-Based Federated Learning for Intelligent Control in

https://doi.org/10.24963/ijcai.2021/351
https://doi.org/10.24963/ijcai.2021/351
https://doi.org/10.24963/ijcai.2021/351

162 Bibliography

Heavy Haul Railway”. In: IEEE Access 8, pp. 176830–176839. doi: 10.1109/
ACCESS.2020.3021253 (cit. on p. 3).

Huang, Xiaowei, Daniel Kroening, Wenjie Ruan, James Sharp, Youcheng Sun,
Emese Thamo, Min Wu, and Xinping Yi (2020). “A survey of safety and
trustworthiness of deep neural networks: Verification, testing, adversarial
attack and defence, and interpretability”. In: Computer Science Review 37,
p. 100270. issn: 1574-0137 (cit. on pp. 28, 33, 37, 40, 44, 50, 102).

Huang, Xiaowei, Marta Kwiatkowska, Sen Wang, and Min Wu (2017). “Safety
verification of deep neural networks”. In: International conference on computer
aided verification. Springer, pp. 3–29 (cit. on pp. 6, 40, 51).

ISO/IEC TR 24028 (2020). Inofrmation technology - Artificial Intelligence -
Overview of trustworthiness in artificial intelligence. Accessed: 2023-12-12
(cit. on p. 4).

Jacoby, Yuval, Clark Barrett, and Guy Katz (2020). “Verifying recurrent neural
networks using invariant inference”. In: Automated Technology for Verification
and Analysis: 18th International Symposium, ATVA 2020, Hanoi, Vietnam,
October 19–23, 2020, Proceedings 18. Springer, pp. 57–74 (cit. on pp. 54, 62).

Jia, Kai and Martin Rinard (2020). “Efficient exact verification of binarized
neural networks”. In: Advances in neural information processing systems 33,
pp. 1782–1795 (cit. on p. 62).

Julian, Kyle D, Jessica Lopez, Jeffrey S Brush, Michael P Owen, and Mykel J
Kochenderfer (2016). “Policy compression for aircraft collision avoidance
systems”. In: Proc. 35th Digital Avionics Systems Conference (DASC). IEEE,
pp. 1–10 (cit. on pp. 11, 50, 56, 103, 104).

Karaboga, Dervis, Beyza Gorkemli, Celal Ozturk, and Nurhan Karaboga
(2014). “A comprehensive survey: artificial bee colony (ABC) algorithm and
applications”. In: Artificial intelligence review 42, pp. 21–57 (cit. on p. 2).

Katz, Guy, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer
(2017). “Reluplex: An efficient SMT solver for verifying deep neural
networks”. In: International conference on computer aided verification. Springer,
pp. 97–117 (cit. on pp. 5, 36, 40, 42, 51, 56, 61, 108, 120).

Katz, Guy, Derek A Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus,
Rachel Lim, Parth Shah, Shantanu Thakoor, Haoze Wu, Aleksandar Zeljić,
et al. (2019). “The marabou framework for verification and analysis of deep
neural networks”. In: International Conference on Computer Aided Verification.
Springer, pp. 443–452 (cit. on pp. 6, 40, 46, 51, 59, 61, 64).

Kochenderfer, Mykel J (2015). Decision making under uncertainty: theory and
application. MIT press (cit. on pp. 9, 36, 100, 103).

Koopman, Philip, Uma Ferrell, Frank Fratrik, and Michael Wagner (2019). “A
safety standard approach for fully autonomous vehicles”. In: Computer Safety,
Reliability, and Security: SAFECOMP 2019 Workshops, ASSURE, DECSoS,
SASSUR, STRIVE, and WAISE, Turku, Finland, September 10, 2019, Proceedings
38. Springer, pp. 326–332 (cit. on p. 5).

Krug, Andreas, René Knaebel, and Sebastian Stober (2018). “Neuron activation
profiles for interpreting convolutional speech recognition models”. In:

https://doi.org/10.1109/ACCESS.2020.3021253
https://doi.org/10.1109/ACCESS.2020.3021253

Bibliography 163

NeurIPS Workshop on Interpretability and Robustness in Audio, Speech, and
Language (IRASL) (cit. on pp. 47, 145).

Kurakin, Alexey, Ian J Goodfellow, and Samy Bengio (2018). “Adversarial
examples in the physical world”. In: Artificial intelligence safety and security,
pp. 99–112 (cit. on pp. 27, 34).

Lagay, Rémy and Gemma Morral Adell (2018). “The Autonomous Train: a game
changer for the railways industry”. In: 2018 16th international conference on
intelligent transportation systems telecommunications (ITST). IEEE, pp. 1–5
(cit. on p. 4).

Lambora, Annu, Kunal Gupta, and Kriti Chopra (2019). “Genetic algorithm-A
literature review”. In: 2019 international conference on machine learning, big
data, cloud and parallel computing (COMITCon). IEEE, pp. 380–384 (cit. on
p. 2).

Larsen, Kim G and Arne Skou (1991). “Bisimulation through probabilistic
testing”. In: Information and computation 94.1, pp. 1–28 (cit. on p. 59).

Laurendin, Olivier, Sébastien Ambellouis, Anthony Fleury, Ankur Mahtani,
Sanaa Chafik, and Clément Strauss (2021). “Hazardous Events Detection in
Automatic Train Doors Vicinity Using Deep Neural Networks”. In: 2021 17th
IEEE International Conference on Advanced Video and Signal Based Surveillance
(AVSS), pp. 1–7. doi: 10.1109/AVSS52988.2021.9663863 (cit. on p. 3).

Lawford, Mark and Alan Wassyng (2012). “Formal verification of nuclear
systems: Past, present, and future”. In: 1st International Workshop on Critical
Infrastructure Safety and Security (CrISS-DESSERT’11). Vol. 1, pp. 43–51 (cit.
on p. 28).

Lazarus, Christopher and Mykel J Kochenderfer (2022). “A mixed integer
programming approach for verifying properties of binarized neural networks”.
In: arXiv preprint arXiv:2203.07078 (cit. on p. 62).

LeCun, Yann (1998). The MNIST database of handwritten digits (cit. on pp. 9–11,
61, 100, 102).

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton (2015). “Deep learning”. In:
nature 521.7553, pp. 436–444 (cit. on p. 34).

Leofante, Francesco, Nina Narodytska, Luca Pulina, and Armando Tacchella
(2018). “Automated verification of neural networks: Advances, challenges
and perspectives”. In: arXiv preprint arXiv:1805.09938 (cit. on pp. 35, 50).

Leucker, Martin (2020). “Formal Verification of Neural Networks?” In: Formal
Methods: Foundations and Applications. Ed. by Gustavo Carvalho and Volker
Stolz. Cham: Springer International Publishing, pp. 3–7. isbn: 978-3-030-
63882-5 (cit. on p. 8).

Leucker, Martin and Christian Schallhart (2009). “A brief account of runtime
verification”. In: The Journal of Logic and Algebraic Programming 78.5. The 1st
Workshop on Formal Languages and Analysis of Contract-Oriented Software
(FLACOS’07), pp. 293–303. issn: 1567-8326. doi: https://doi.org/10.
1016/j.jlap.2008.08.004. url: https://www.sciencedirect.com/
science/article/pii/S1567832608000775 (cit. on p. 45).

https://doi.org/10.1109/AVSS52988.2021.9663863
https://doi.org/https://doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/https://doi.org/10.1016/j.jlap.2008.08.004
https://www.sciencedirect.com/science/article/pii/S1567832608000775
https://www.sciencedirect.com/science/article/pii/S1567832608000775

164 Bibliography

Li, Jianlin, Jiangchao Liu, Pengfei Yang, Liqian Chen, Xiaowei Huang, and Lijun
Zhang (2019). “Analyzing deep neural networks with symbolic propagation:
Towards higher precision and faster verification”. In: International Static
Analysis Symposium. Springer, pp. 296–319 (cit. on p. 54).

Li, Zewen, Fan Liu, Wenjie Yang, Shouheng Peng, and Jun Zhou (2022). “A
Survey of Convolutional Neural Networks: Analysis, Applications, and
Prospects”. In: IEEE Transactions on Neural Networks and Learning Systems
33.12, pp. 6999–7019. doi: 10.1109/TNNLS.2021.3084827 (cit. on p. 24).

Liang, Tailin, John Glossner, Lei Wang, Shaobo Shi, and Xiaotong Zhang (2021).
“Pruning and quantization for deep neural network acceleration: A survey”.
In: Neurocomputing 461, pp. 370–403 (cit. on pp. 62, 66).

Lipton, Zachary C, John Berkowitz, and Charles Elkan (2015). “A critical review
of recurrent neural networks for sequence learning”. In: arXiv preprint
arXiv:1506.00019 (cit. on pp. 25, 26).

Litjens, Geert, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso
Setio, Francesco Ciompi, Mohsen Ghafoorian, Jeroen A.W.M. Van Der Laak,
Bram Van Ginneken, and Clara I. Sánchez (2017). “A survey on deep learning
in medical image analysis”. In: Medical Image Analysis 42, pp. 60–88. issn:
1361-8415. doi: https://doi.org/10.1016/j.media.2017.07.005 (cit. on
p. 28).

Liu, Changliu, Tomer Arnon, Christopher Lazarus, Christopher Strong, Clark
Barrett, Mykel J Kochenderfer, et al. (2021). “Algorithms for verifying
deep neural networks”. In: Foundations and Trends® in Optimization 4.3-4,
pp. 244–404 (cit. on p. 50).

Liu, Jiaxiang, Yunhan Xing, Xiaomu Shi, Fu Song, Zhiwu Xu, and Zhong Ming
(2022). “Abstraction and Refinement: Towards Scalable and Exact Verification
of Neural Networks”. In: arXiv preprint arXiv:2207.00759 (cit. on p. 95).

Liu, Weibo, Zidong Wang, Xiaohui Liu, Nianyin Zeng, Yurong Liu, and Fuad E
Alsaadi (2017). “A survey of deep neural network architectures and their
applications”. In: Neurocomputing 234, pp. 11–26 (cit. on pp. 2, 20, 24, 26).

Lomuscio, Alessio and Lalit Maganti (2017). “An approach to reachability
analysis for feed-forward relu neural networks”. In: arXiv preprint (cit. on
pp. 6, 43, 51, 61).

Loquercio, Antonio, Ana I Maqueda, Carlos R Del-Blanco, and Davide Scaramuzza
(2018). “Dronet: Learning to fly by driving”. In: IEEE Robotics and Automation
Letters 3.2, pp. 1088–1095 (cit. on pp. 60, 61).

Madry, Aleksander, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu (2017). “Towards deep learning models resistant to adversarial
attacks”. In: arXiv preprint arXiv:1706.06083 (cit. on p. 34).

Mahesh, Batta (2020). “Machine learning algorithms-a review”. In: International
Journal of Science and Research (IJSR).[Internet] 9.1, pp. 381–386 (cit. on p. 19).

Mahtani, Ankur, Wael Ben-Messaoud, Abdelmalik Taleb-Ahmed, Smail Niar,
and Clément Strauss (2020). “Pedestrian Detection and Classification for
Autonomous Train”. In: 2020 IEEE 4th International Conference on Image

https://doi.org/10.1109/TNNLS.2021.3084827
https://doi.org/https://doi.org/10.1016/j.media.2017.07.005

Bibliography 165

Processing, Applications and Systems (IPAS), pp. 52–57. doi: 10 . 1109 /

IPAS50080.2020.9334938 (cit. on p. 3).
Mamalet, Franck, Eric Jenn, Gregory Flandin, Hervé Delseny, Christophe

Gabreau, Adrien Gauffriau, Bernard Beaudouin, Ludovic Ponsolle, Lucian
Alecu, Hugues Bonnin, et al. (2021). “White paper machine learning in
certified systems”. PhD thesis. IRT Saint Exupéry; ANITI (cit. on p. 5).

Masson, Émilie, Philippe Richard, Santiago Garcia-Guillen, and Gemma MORRAL
Adell (2019). “TC-Rail: Railways remote driving”. In: Proceedings of the 12th
World Congress on Railway Research, Tokyo, Japan. Vol. 28 (cit. on p. 4).

McCarthy, John, Marvin Minsky, Nathan Rochester, and Claude Shannon (1955).
A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence.
https : / / www - formal . stanford . edu / jmc / history / dartmouth /

dartmouth.html. Accessed: 2024-01-25 (cit. on p. 2).
Meng, Mark Huasong, Guangdong Bai, Sin Gee Teo, Zhe Hou, Yan Xiao, Yun Lin,

and Jin Song Dong (2022). “Adversarial Robustness of Deep Neural Networks:
A Survey from a Formal Verification Perspective”. In: IEEE Transactions on
Dependable and Secure Computing (cit. on p. 36).

Müller, Mark Niklas, Gleb Makarchuk, Gagandeep Singh, Markus Püschel,
and Martin Vechev (2022). “PRIMA: general and precise neural network
certification via scalable convex hull approximations”. In: Proceedings of the
ACM on Programming Languages 6, pp. 1–33 (cit. on p. 54).

Narodytska, Nina, Shiva Kasiviswanathan, Leonid Ryzhyk, Mooly Sagiv, and
Toby Walsh (2018). “Verifying properties of binarized deep neural networks”.
In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 32. 1 (cit.
on pp. 41, 62).

Nativi, Stefano. and A. Gómez Losada (2019). “Artificial Intelligence at the JRC”.
In: Publications Office of the European Union. doi: doi:10.2760/705074.
url: https://www.academia.edu/42766402/AI_at_JRC_final_29_Jul_
2019_ (cit. on p. 2).

Neill, James O’ (2020). “An overview of neural network compression”. In: arXiv
preprint arXiv:2006.03669 (cit. on pp. 66, 67).

Nwankpa, Chigozie, Winifred L. Ijomah, Anthony Gachagan, and Stephen
Marshall (2018). “Activation Functions: Comparison of trends in Practice
and Research for Deep Learning”. In: ArXiv abs/1811.03378 (cit. on pp. 22,
78).

Olber, Bartlomiej, Krystian Radlak, Adam Popowicz, Michal Szczepankiewicz,
and Krystian Chachula (2022). “Detection of out-of-distribution samples
using binary neuron activation patterns”. In: arXiv preprint arXiv:2212.14268
(cit. on pp. 47, 145).

Ostrovsky, Matan, Clark Barrett, and Guy Katz (2022). “An abstraction-
refinement approach to verifying convolutional neural networks”. In:
Automated Technology for Verification and Analysis: 20th International Symposium,
ATVA 2022, Virtual Event, October 25–28, 2022, Proceedings. Springer,
pp. 391–396 (cit. on p. 62).

https://doi.org/10.1109/IPAS50080.2020.9334938
https://doi.org/10.1109/IPAS50080.2020.9334938
https://www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html
https://www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html
https://doi.org/doi:10.2760/705074
https://www.academia.edu/42766402/AI_at_JRC_final_29_Jul_2019_
https://www.academia.edu/42766402/AI_at_JRC_final_29_Jul_2019_

166 Bibliography

Ouimet, Martin and Kristina Lundqvist (2007). “Formal software verification:
Model checking and theorem proving”. In: Embedded Systems Laboratory
Technical Report ESL-TIK-00214, Cambridge USA (cit. on p. 30).

Pimentel, Marco AF, David A Clifton, Lei Clifton, and Lionel Tarassenko (2014).
“A review of novelty detection”. In: Signal processing 99, pp. 215–249 (cit. on
p. 47).

Prabhakar, Pavithra (2022). “Bisimulations for Neural Network Reduction”.
In: International Conference on Verification, Model Checking, and Abstract
Interpretation. Springer, pp. 285–300 (cit. on pp. 59–61, 64, 65, 95).

Prabhakar, Pavithra and Zahra Rahimi Afzal (2019). “Abstraction based Output
Range Analysis for Neural Networks”. In: Advances in Neural Information
Processing Systems. Vol. 32. Curran Associates, Inc. (cit. on pp. 7, 56, 57,
61–63, 65, 75, 95, 96, 108, 110, 111).

Pu, Hao, Taoran Song, Paul Schonfeld, Wei Li, Hong Zhang, Jianping Hu, Xianbao
Peng, and Jie Wang (2019). “Mountain railway alignment optimization
using stepwise & hybrid particle swarm optimization incorporating genetic
operators”. In: Applied Soft Computing 78, pp. 41–57 (cit. on p. 3).

Pulina, Luca and Armando Tacchella (2010). “An abstraction-refinement
approach to verification of artificial neural networks”. In: International
Conference on Computer Aided Verification. Springer, pp. 243–257 (cit. on
pp. 39, 52, 53).

— (2012). “Challenging SMT solvers to verify neural networks”. In: Ai Communications
25.2, pp. 117–135 (cit. on p. 39).

Rich, Elaine (1983). Artificial intelligence (cit. on p. 2).
Ristić-Durrant, Danijela, Marten Franke, and Kai Michels (2021). “A review of

vision-based on-board obstacle detection and distance estimation in railways”.
In: Sensors 21.10, p. 3452 (cit. on p. 3).

Sheikh, Haroon, Corien Prins, and Erik Schrijvers (2023). “Artificial Intelligence:
Definition and Background”. In: Mission AI: The New System Technology.
Cham: Springer International Publishing, pp. 15–41. isbn: 978-3-031-21448-
6. doi: 10.1007/978-3-031-21448-6_2. url: https://doi.org/10.1007/
978-3-031-21448-6_2 (cit. on p. 2).

Sherstinsky, Alex (2020). “Fundamentals of recurrent neural network (RNN)
and long short-term memory (LSTM) network”. In: Physica D: Nonlinear
Phenomena 404, p. 132306 (cit. on p. 26).

Shriver, David, Dong Xu, Sebastian Elbaum, and Matthew B Dwyer (2019).
“Refactoring neural networks for verification”. In: arXiv preprint (cit. on
pp. 60, 61, 65).

Singh, Gagandeep, Rupanshu Ganvir, Markus Püschel, and Martin Vechev (2019).
“Beyond the single neuron convex barrier for neural network certification”.
In: Advances in Neural Information Processing Systems 32 (cit. on p. 54).

Singh, Gagandeep, Timon Gehr, Matthew Mirman, Markus Püschel, and Martin
Vechev (2018). “Fast and effective robustness certification”. In: Advances in
neural information processing systems 31 (cit. on pp. 44, 53, 55, 61).

https://doi.org/10.1007/978-3-031-21448-6_2
https://doi.org/10.1007/978-3-031-21448-6_2
https://doi.org/10.1007/978-3-031-21448-6_2

Bibliography 167

Singh, Gagandeep, Timon Gehr, Markus Püschel, and Martin Vechev (2019a).
“An abstract domain for certifying neural networks”. In: Proceedings of the
ACM on Programming Languages 3.POPL, pp. 1–30 (cit. on pp. 53–55).

— (2019b). “Boosting robustness certification of neural networks”. In: International
Conference on Learning Representations (cit. on p. 54).

Sotoudeh, Matthew and Aditya V Thakur (2020). “Abstract Neural Networks”.
In: International Static Analysis Symposium. Springer, pp. 65–88 (cit. on pp. 57,
58, 61–63, 65, 95).

Stano, Martin, Wanda Benesova, and Lukas Samuel Martak (2020). “Explaining
predictions of deep neural classifier via activation analysis”. In: arXiv preprint
arXiv:2012.02248 (cit. on p. 47).

Szegedy, Christian, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru
Erhan, Ian Goodfellow, and Rob Fergus (2014). “Intriguing properties of
neural networks”. In: In 2nd International Conference on Learning Representations,
ICLR 2014 (cit. on pp. 27, 28).

Tang, Ruifan, Lorenzo De Donato, Nikola Besinovic, Francesco Flammini, Rob
M.P. Goverde, Zhiyuan Lin, Ronghui Liu, Tianli Tang, Valeria Vittorini,
and Ziyulong Wang (2022a). “A literature review of Artificial Intelligence
applications in railway systems”. In: Transportation Research Part C: Emerging
Technologies 140, p. 103679. issn: 0968-090X. doi: https://doi.org/10.
1016 / j . trc . 2022 . 103679. url: https : / / www . sciencedirect . com /
science/article/pii/S0968090X22001206 (cit. on pp. 3, 20).

Tang, Ruifan, Lorenzo De Donato, Nikola Besinović, Francesco Flammini, Rob
MP Goverde, Zhiyuan Lin, Ronghui Liu, Tianli Tang, Valeria Vittorini,
and Ziyulong Wang (2022b). “A literature review of Artificial Intelligence
applications in railway systems”. In: Transportation Research Part C: Emerging
Technologies 140, p. 103679 (cit. on p. 2).

Taylor, Brian J (2006). Methods and procedures for the verification and validation of
artificial neural networks. Springer Science & Business Media (cit. on p. 39).

Tjeng, Vincent, Kai Y. Xiao, and Russ Tedrake (2019). “Evaluating Robustness
of Neural Networks with Mixed Integer Programming”. In: International
Conference on Learning Representations (cit. on pp. 6, 42, 43, 51).

Tran, Hoang-Dung, Stanley Bak, Weiming Xiang, and Taylor T Johnson (2020).
“Verification of deep convolutional neural networks using imagestars”. In:
International conference on computer aided verification. Springer, pp. 18–42
(cit. on p. 52).

Tran, Hoang-Dung, Diago Manzanas Lopez, Patrick Musau, Xiaodong Yang,
Luan Viet Nguyen, Weiming Xiang, and Taylor T Johnson (2019). “Star-based
reachability analysis of deep neural networks”. In: Formal Methods–The Next
30 Years: Third World Congress, FM 2019, Porto, Portugal, October 7–11, 2019,
Proceedings 3. Springer, pp. 670–686 (cit. on p. 52).

Tran, Hoang-Dung, Weiming Xiang, and Taylor T Johnson (2020). “Verification
approaches for learning-enabled autonomous cyber-physical systems”. In:
IEEE Design & Test (cit. on p. 50).

https://doi.org/https://doi.org/10.1016/j.trc.2022.103679
https://doi.org/https://doi.org/10.1016/j.trc.2022.103679
https://www.sciencedirect.com/science/article/pii/S0968090X22001206
https://www.sciencedirect.com/science/article/pii/S0968090X22001206

168 Bibliography

Trentesaux, Damien, Rudy Dahyot, Abel Ouedraogo, Diego Arenas, Sébastien
Lefebvre, Walter Schön, Benjamin Lussier, and Hugues Chéritel (2018a). “The
Autonomous Train”. In: 2018 13th Annual Conference on System of Systems
Engineering (SoSE), pp. 514–520. doi: 10.1109/SYSOSE.2018.8428771 (cit.
on p. 3).

— (2018b). “The autonomous train”. In: 2018 13th Annual Conference on System
of Systems Engineering (SoSE). IEEE, pp. 514–520 (cit. on p. 4).

Urban, Caterina and Antoine Miné (2021). “A review of formal methods applied
to machine learning”. In: arXiv preprint (cit. on pp. 6, 28, 44, 50).

VDE-AR-E 2842-61 (2021). Development and trustworthiness of autonomous/cognitive
systems. Accessed: 2023-12-12 (cit. on p. 5).

Velastin, Sergio A and Diego A Gómez-Lira (2017). “People detection and pose
classification inside a moving train using computer vision”. In: Advances in
Visual Informatics: 5th International Visual Informatics Conference, IVIC 2017,
Bangi, Malaysia, November 28–30, 2017, Proceedings 5. Springer, pp. 319–330
(cit. on p. 3).

Wang, Shiqi, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana
(2018a). “Efficient formal safety analysis of neural networks”. In: Advances in
Neural Information Processing Systems 31 (cit. on pp. 7, 43, 44, 52, 61).

— (2018b). “Formal security analysis of neural networks using symbolic
intervals”. In: 27th USENIX Security Symposium (USENIX Security 18),
pp. 1599–1614 (cit. on pp. 7, 42–44, 52).

Wäschle, Moritz, Florian Thaler, Axel Berres, Florian Pölzlbauer, and Albert
Albers (2022). “A review on AI Safety in highly automated driving”. In:
Frontiers in Artificial Intelligence 5, p. 952773 (cit. on p. 2).

Watterson, Conal and Donal Heffernan (2007). “Runtime verification and
monitoring of embedded systems”. In: IET software 1.5, pp. 172–179 (cit.
on p. 44).

Woodcock, Jim, Peter Gorm Larsen, Juan Bicarregui, and John Fitzgerald (2009).
“Formal methods: Practice and experience”. In: ACM computing surveys
(CSUR) 41.4, pp. 1–36 (cit. on p. 28).

Wu, Changshun, Yliès Falcone, and Saddek Bensalem (2023). “Customizable
Reference Runtime Monitoring of Neural Networks Using Resolution Boxes”.
In: Runtime Verification. Ed. by Panagiotis Katsaros and Laura Nenzi. Cham:
Springer Nature Switzerland, pp. 23–41. isbn: 978-3-031-44267-4 (cit. on
p. 47).

Wu, Jianxin (2017). “Introduction to convolutional neural networks”. In: National
Key Lab for Novel Software Technology. Nanjing University. China 5.23, p. 495
(cit. on pp. 24, 25).

Xiang, Weiming, Hoang-Dung Tran, Xiaodong Yang, and Taylor T Johnson (2020).
“Reachable set estimation for neural network control systems: A simulation-
guided approach”. In: IEEE Transactions on Neural Networks and Learning
Systems 32.5, pp. 1821–1830 (cit. on pp. 7, 42, 44).

Xu, Han, Yao Ma, Hao-Chen Liu, Debayan Deb, Hui Liu, Ji-Liang Tang, and
Anil K Jain (2020). “Adversarial attacks and defenses in images, graphs and

https://doi.org/10.1109/SYSOSE.2018.8428771

Bibliography 169

text: A review”. In: International Journal of Automation and Computing 17,
pp. 151–178 (cit. on pp. 6, 27, 28).

Xu, Jin, Zishan Li, Miaomiao Zhang, and Bowen Du (2021). “Conv-Reluplex:
a verification framework for convolution neural networks”. In: Proceedings
of the 33rd International Conference on Software Engineering and Knowledge
Engineering (SEKE) (cit. on p. 62).

Yang, Hongfei, Yanzhang Wang, Jiyong Hu, Jiatang He, Zongwei Yao, and Qiushi
Bi (2022). “Deep Learning and Machine Vision-Based Inspection of Rail
Surface Defects”. In: IEEE Transactions on Instrumentation and Measurement
71, pp. 1–14. doi: 10.1109/TIM.2021.3138498 (cit. on pp. 3, 20).

Yang, Jingkang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu (2021). “Generalized
out-of-distribution detection: A survey”. In: arXiv preprint arXiv:2110.11334
(cit. on p. 47).

Yang, Pengfei, Jianlin Li, Jiangchao Liu, Cheng-Chao Huang, Renjue Li, Liqian
Chen, Xiaowei Huang, and Lijun Zhang (2021). “Enhancing robustness
verification for deep neural networks via symbolic propagation”. In: Formal
Aspects of Computing 33.3, pp. 407–435 (cit. on p. 54).

Yuan, Chunyu and Sos S Agaian (2023). “A comprehensive review of binary
neural network”. In: Artificial Intelligence Review, pp. 1–65 (cit. on p. 41).

Zhang, Caiming and Yang Lu (2021). “Study on artificial intelligence: The state of
the art and future prospects”. In: Journal of Industrial Information Integration
23, p. 100224 (cit. on pp. 2, 19).

Zhang, Haoran, Meng Yuan, Yongtu Liang, Bohong Wang, Wan Zhang, and
Jianqin Zheng (2018). “A risk assessment based optimization method for
route selection of hazardous liquid railway network”. In: Safety science 110,
pp. 217–229 (cit. on p. 3).

https://doi.org/10.1109/TIM.2021.3138498

170 Bibliography

Contributions to the verification and monitoring of neural network systems

Abstract

The evaluation and verification of neural networks (NNs), as a part of their safe design
and deployment, becomes a hot research topic, particularly with the recent studies
showing their sensitivity and vulnerability to operational conditions (adversarial attacks,
environment conditions, etc.). Despite its importance in ensuring the accuracy and
the reliability of NNs, test-based approaches for NNs evaluation suffer from several
limitations that may impact their effectiveness. To overcome the limitation of NN
testing, researchers are exploring formal verification as complementary activity to
enhance the reliability and safety of NN-based systems. Indeed, while testing can
illustrate the ability of a system to maintain its level of performance under varying
conditions, proving this requires some form of formal analysis. NN verification aims to
provide formal guarantees regarding the behavior and properties of NNs. It involves
analyzing the model’s inputs, outputs, and internal computations to ensure that the
network behaves correctly and meets the desired specifications. While NN verification is
applied before the deployment of the network, NN runtime verification (or monitoring)
is used to continuously check and assess the correct behavior of the network during
runtime. Broadly speaking, NN monitoring consists in building a monitor that runs in
parallel to the network in order to supervise its behavior and decision. If the monitor
detects a malfunctioning of the network, or some abnormal behavior, it raises alarms
demanding an examination of the current decision. Although these techniques have
been successfully applied in solving certain properties of NN, NN verification and
monitoring remains challenging, particularly when it comes to verifying large networks
with practical interests. This is mainly due to the complexity and the non-linearity of
NN models, and the limitations of the traditional formal methods to scale up to large
real-world models.
In this dissertation, we propose two main contributions to address these challenges,
namely (i) NN abstraction (model reduction) for verification purposes and (ii) NN
runtime monitoring. In order to enhance the scalability of NN verification, we propose
two approaches involving the merging of neurons within the same hidden layer of a
network to reduce its size. Both approaches ensure that the resulting reduced model
over-approximates the original network. The over-approximation relation is crucial, as it
guarantees that any verified property on the reduced model remains valid on the original
network. Our proposed approaches rely on mathematical formulas to formally establish
and ensure this over-approximation relationship. Additionally, we provide formal proofs
of this relation for each approach, thus ensuring the rigor and reliability of our methods.
The second contribution involves the development of a monitoring system specifically
designed for NNs used in image classification tasks. The key idea behind this approach
is to identify and extract relevant path activations that are referred to as NAPath. The
computation of NAPaths is performed for each class of images using the training set.
Each NAPath serves as a reference pattern that captures the essential characteristics of
the associated class. During the runtime, the monitoring system compares the network’s
classification results to the most similar NAPath. This comparison analysis enables the
monitor to evaluate the consistency of the network’s classification decisions and detect
any potential deviations or misclassification. To evaluate the proposed approaches,
we have implemented them as Python tools and carried out a set of experiments on
well-known NN benchmarks and/ or railway use cases.

Keywords: railway system safety; safe artificial intelligence (safe ai); formal verification;
neural networks; neural networks verification; neural networks abstraction; neural
networks monitoring

Résumé

L’évaluation et la vérification des réseaux neuronaux (NN), lors de leur conception et
de leur déploiement sécurisé, suscitent un vif intérêt de recherche, en particulier à la
lumière d’études récentes mettant en évidence leur sensibilité et leur vulnérabilité face
à diverses conditions opérationnelles telles que les attaques adverses et les variations
environnementales. Bien que leur importance soit cruciale dans l’assurance de la
précision et de la fiabilité des NN, les approches fondées sur les tests pour l’évaluation
des NN sont entravées par plusieurs limitations qui peuvent compromettre leur efficacité.
Afin de remédier à ces limites, des travaux de recherche explorent la vérification formelle
comme approche complémentaire pour vérifier la fiabilité et la sécurité des NN. Si les
tests peuvent démontrer la capacité d’un système à maintenir ses performances dans
des conditions variables, démontrer cela nécessite une analyse formelle approfondie. La
vérification des NN vise ainsi à fournir des garanties formelles quant au comportement
et aux propriétés des NN. Cela implique une analyse minutieuse des entrées, des sorties
et des calculs internes du modèle pour s’assurer que le réseau se comporte correctement
vis-à-vis des spécifications requises. Alors que la vérification des NN est, d’une manière
générale, effectuée lors de la conception des systèmes, le monitoring des NN, quant
à lui, est cruciale pour garantir l’exécution du bon comportement lors de la phase
opérationnelle. Pour ce faire, un système de monitoring fonctionne en parallèle du NN,
détectant toute anomalie ou comportement inattendu et déclenchant des alertes en
cas de besoin. Bien que des succès aient été rencontrés dans certaines applications, la
vérification et le monitoring des NN restent des défis, notamment lorsqu’il s’agit de
NN complexes ou de taille importante. Cette difficulté découle en grande partie de la
complexité et de la non-linéarité des modèles NN, ainsi que des limites des méthodes
formelles existantes pour s’adapter à des modèles réels de grande taille.
Dans cette thèse, nous proposons deux contributions principales pour répondre aux deux
défis susmentionnés. Concrètement, nous proposons des techniques d’abstraction des
NN (réduction de modèle) à des fins de vérification, ainsi qu’une approche de monitoring
des NN en temps réel spécifiquement conçu pour les tâches de classification d’images.
Ces approches d’abstraction de NN visent à améliorer la scalabilité et l’efficacité de la
vérification des NN. En se basant sur des formulations mathématiques, nous garantissons
que les modèles abstraits résultants conservent les propriétés essentielles (e.g., la
sur-approximation) des réseaux d’origine, assurant ainsi la validité des résultats de
vérification. Pour la partie monitoring, nous développons un système de surveillance qui
identifie et évalue en temps réel les décisions de classification des réseaux par rapport
à des modèles de référence spécifiques (motives de surveillance). Enfin, nous validons
nos approches à travers des expérimentations menées sur des benchmarks académiques,
ainsi qu’un cas d’étude spécifique au domaine ferroviaire.

Mots clés : sécurité des systèmes ferroviaires ; sécurité de l’intelligence artificielle ;
réseaux de neurones ; vérification formelle, vérification des réseaux de neurones ;
abstraction des réseaux de neurones, monitoring des réseaux de neurones

	Abstract
	Contents
	List of Tables
	List of Figures
	List of Acronyms
	1 Introduction
	1.1 General Context
	1.2 Problem Statement
	1.3 Main Contributions
	1.3.1 Neural Networks Abstraction
	1.3.2 Neural Networks Monitoring

	1.4 Outlines
	1.5 List of Publications

	I Background & Literature Review
	2 Neural Networks and Formal Verification
	2.1 Introduction
	2.2 Artificial Intelligence & Neural Networks
	2.2.1 Basic Concepts
	2.2.2 Sensitivity & Vulnerability of Neural Networks

	2.3 Formal Methods & Formal Verification
	2.4 Verification and Monitoring of Neural Networks
	2.4.1 Neural Networks Verification
	2.4.2 Neural Networks Monitoring

	2.5 Conclusion

	3 A Review on Abstraction Methods for NN Verification
	3.1 Introduction
	3.2 Abstraction Approaches for NN Verification
	3.2.1 NN Abstraction Principle
	3.2.2 Abstraction of the Activation Function
	3.2.3 Neural Networks' Model Reduction
	3.2.4 Discussion

	3.3 Neural Networks compression
	3.4 Conclusion

	II Neural Networks Abstraction
	4 Two Model-Reduction Approaches for Efficient NN Verification
	4.1 Introduction
	4.2 Preliminaries & Notations
	4.2.1 Neural Networks Notations
	4.2.2 Interval Neural Networks

	4.3 The INNAbstract Approach
	4.3.1 Model Reduction for NN with Odd Activation Functions
	4.3.2 Model Reduction Method for ReLU-NN
	4.3.3 A Heuristic strategy for Nodes Selection

	4.4 Model Reduction approach for Non-negative Activation Functions
	4.5 Discussion w.r.t. Related Works
	4.6 Conclusion

	5 Experimental Evaluation of NN Model-Reduction Approaches
	5.1 Introduction
	5.2 Experimental Setup and Configuration
	5.2.1 Implementation and Experimental Environment
	5.2.2 Used NN Models and Benchmarks

	5.3 Results & Discussion
	5.3.1 Results on Tanh Networks
	5.3.2 Results on ReLU Networks
	5.3.3 Heuristic's Improvement for INNAbstract

	5.4 Conclusion

	III Neural Networks Monitoring
	6 NAPath: Runtime Monitoring of Neural Networks
	6.1 Introduction
	6.2 Background
	6.2.1 Neural Activation Patterns (NAP)
	6.2.2 Neuron Activation Paths (NAPath)

	6.3 Monitoring using NAPaths
	6.3.1 NAPathing Phase
	6.3.2 Monitoring Phase

	6.4 Experimental Results on the MNIST Benchmark
	6.4.1 NAPathing Phase
	6.4.2 Monitoring Phase

	6.5 Experimental Results on Weather Conditions Detection Networks
	6.5.1 System & Dataset Characteristics
	6.5.2 NN Models Configuration
	6.5.3 Experimental Settings & Results

	6.6 Related Works
	6.7 Conclusion

	7 Conclusions & Perspectives
	7.1 General Conclusion
	7.2 Perspectives & Future Works
	7.2.1 Neural Networks Abstraction
	7.2.2 Neural Networks Monitoring

	Bibliography

