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Abstract

As machine learning continues to demonstrate robust predictive capabilities,
it has emerged as a very valuable tool in several scientific and industrial do-
mains. Over recent years, machine learning models have proven to be indis-
pensable across fields such as healthcare, finance, autonomous systems, and
even climate modeling. These applications rely heavily on machine learning
models to make accurate predictions, classify data, and optimize systems.
However, as machine learning models evolve to achieve higher accuracy and
better performance, they also become increasingly complex, requiring more
parameters and more intricate architectures. In fact, some of the most accu-
rate models, such as deep neural networks, can have millions of parameters
and hidden layers that are difficult to interpret. This complexity can make
the decision-making processes of machine learning models opaque, or what
is commonly referred to as a ”"black box.” In scenarios where these models
are deployed to support decision-making in high-stakes areas like medical
diagnosis or financial risk assessment, this lack of interpretability raises con-
cerns. Understanding the inner workings of machine learning models has
therefore become crucial. To establish trust in the predictions generated by
these models, it is essential to provide insights into why a particular pre-
diction is made. Trust and interpretability go hand in hand, especially in
domains where decisions impact human lives or carry significant financial
consequences. In response to these concerns, researchers in the field of ex-
plainable AI (XAI) have developed various explanation methods aimed at
making machine learning models more transparent and interpretable. These
explanation methods attempt to break down the complex processes within
models and present them in ways that are comprehensible to users, including
non-technical stakeholders. Explanation techniques such as SHAP (SHap-
ley Additive exPlanations) and LIME (Local Interpretable Model-agnostic
Explanations) have gained popularity because they provide post-hoc expla-
nations that help clarify why a model arrived at a certain prediction. De-
spite these advances, explanation methods often fall short in accurately and
consistently explaining model predictions in a manner that is intuitive to
domain experts. This gap in effectiveness and usability makes it challenging
for experts in fields like medicine, finance, and law to fully leverage these ex-

planations for practical decision-making. It is crucial, therefore, to identify



the limitations and shortcomings of current ML explanations and work to-
ward enhancing their reliability, interpretability, and ease of use. Moreover,
given that many machine learning tasks are becoming increasingly data-
intensive and the demand for machine learning integration is rising across
industries, there is a growing need for explanation methods that not only
provide transparency but do so in a way that is computationally efficient and
cost-effective. Addressing these challenges will ensure that machine learning
explanations can be trusted and widely adopted in real-world applications
where decisions must be both accurate and justifiable. In this dissertation,
we address these critical issues through two main research thrusts: First, we
propose a comprehensive methodology for evaluating various explainability
methods in the context of specific data properties, such as noise levels, fea-
ture correlations, and class imbalance. Our approach highlights how certain
data characteristics can influence the effectiveness of different explainability
techniques, offering practitioners and researchers a set of guidelines to help
them choose the most suitable explainability method based on the specific
characteristics of their datasets. By conducting extensive experiments across
a range of datasets, we reveal where existing methods excel and where they
fall short. In particular, we focus on use cases in healthcare, providing clin-
icians with personalized explanations for cervical cancer risk factors. These
explanations are designed to align with the clinicians’ desired properties,
including ease of understanding, consistency across cases, and the stability
of the explanations when input data changes slightly. This personalized ap-
proach ensures that domain experts can confidently use machine learning
outputs to support their decision-making processes. Second, we introduce
Shapley Chains, a novel explanation technique designed to address the lack
of interpretability in multi-output predictions involving interdependent la-
bels. In situations where labels depend on each other, such as sequential
decisions in medical diagnoses or financial risk assessments, existing meth-
ods struggle to explain how features contribute to these chained predictions.
Shapley Chains offer a new way to capture and explain the indirect contri-
butions of features to subsequent labels in a prediction chain. For example,
in healthcare, a feature such as patient age might not directly influence the
final diagnosis, but it may have an indirect impact by affecting intermediate
outcomes along the diagnostic chain. Shapley Chains allow users to trace

these contributions throughout the sequence of predictions. Additionally,
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we propose an enhancement to Shapley Chains called Bayes LIME Chains,
which improves the robustness and reliability of the explanations by in-
corporating Bayesian inference techniques. This combination ensures that
explanations remain consistent and reliable even in the presence of noisy or

uncertain data.
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Résumé

L’apprentissage automatique continue de démontrer de solides capacités
prédictives et s’est révélé étre un outil trés précieux dans plusieurs domaines
scientifiques et industriels. Ces derniéres années, les modeles d’apprentissage
automatique se sont révélés indispensables dans des domaines tels que la
santé, la finance, les systemes autonomes et méme la modélisation clima-
tique. Ces applications s’appuient largement sur les modeéles d’apprentissage
automatique pour faire des prédictions précises, classer les données et opti-
miser les systemes. Cependant, a mesure que les modeles d’apprentissage au-
tomatique évoluent pour atteindre une plus grande précision et de meilleures
performances, ils deviennent également de plus en plus complexes, nécessitant
davantage de parametres et des architectures plus complexes. En fait, cer-
tains des modeles les plus précis, tels que les réseaux neuronaux profonds,
peuvent avoir des millions de parametres et des couches cachées difficiles a
interpréter. Cette complexité peut rendre les processus de prise de décision
des modeles d’apprentissage automatique opaques, ou ce que 'on appelle
communément une < boite noire >. Dans les scénarios ol ces modeles
sont déployés pour soutenir la prise de décision dans des domaines a enjeux
élevés comme le diagnostic médical ou I’évaluation des risques financiers,
ce manque d’interprétabilité suscite des inquiétudes. Comprendre le fonc-
tionnement interne des modeles d’apprentissage automatique est donc de-
venu crucial. Pour établir la confiance dans les prédictions générées par
ces modeles, il est essentiel de fournir des informations sur les raisons pour
lesquelles une prédiction particuliére est faite. La confiance et 'interprétabilité
vont de pair, en particulier dans les domaines ou les décisions ont un impact
sur la vie humaine ou ont des conséquences financiéres importantes. En
réponse a ces préoccupations, les chercheurs dans le domaine de I'TA expli-
cable (XAI) ont développé diverses méthodes d’explication visant a rendre
les modeles d’apprentissage automatique plus transparents et interprétables.
Ces méthodes d’explication tentent de décomposer les processus complexes
au sein des modeles et de les présenter de maniere compréhensible pour
les utilisateurs, y compris les parties prenantes non techniques. Les tech-
niques d’explication telles que SHAP (SHapley Additive exPlanations) et
LIME (Local Interpretable Model-agnostic Explanations) ont gagné en pop-

ularité car elles fournissent des explications post-hoc qui aident a clari-
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fier pourquoi un modele est arrivé a une certaine prédiction. Malgré ces
avancées, les méthodes d’explication ne parviennent souvent pas a expli-
quer avec précision et cohérence les prédictions du modele d’une maniéere
intuitive pour les experts du domaine. Ce manque d’efficacité et de facilité
d’utilisation fait qu’il est difficile pour les experts de domaines comme la
médecine, la finance et le droit d’exploiter pleinement ces explications pour
la prise de décision pratique. Il est donc crucial d’identifier les limites et
les lacunes des explications actuelles du ML et de travailler & améliorer
leur fiabilité, leur interprétabilité et leur facilité d’utilisation. De plus, étant
donné que de nombreuses taches d’apprentissage automatique nécessitent de
plus en plus de données et que la demande d’intégration de ’apprentissage
automatique augmente dans tous les secteurs, il existe un besoin crois-
sant de méthodes d’explication qui non seulement offrent une transparence,
mais le font d’une maniere efficace et rentable sur le plan informatique.
Relever ces défis garantira que les explications de ’apprentissage automa-
tique peuvent étre fiables et largement adoptées dans des applications du
monde réel ou les décisions doivent étre a la fois précises et justifiables.
Dans cette thése, nous abordons ces questions critiques a travers deux axes
de recherche principaux : tout d’abord, nous proposons une méthodologie
compléte pour évaluer diverses méthodes d’explicabilité dans le contexte
de propriétés de données spécifiques, telles que les niveaux de bruit, les
corrélations de caractéristiques et le déséquilibre des classes. Notre ap-
proche met en évidence comment certaines caractéristiques des données
peuvent influencer l'efficacité de différentes techniques d’explicabilité, of-
frant aux praticiens et aux chercheurs un ensemble de lignes directrices pour
les aider & choisir la méthode d’explicabilité la plus appropriée en fonction
des caractéristiques spécifiques de leurs ensembles de données. En menant
des expériences approfondies sur une gamme d’ensembles de données, nous
révélons ou les méthodes existantes excellent et ou elles échouent. En par-
ticulier, nous nous concentrons sur les cas d’utilisation dans le domaine
de la santé, en fournissant aux cliniciens des explications personnalisées
sur les facteurs de risque du cancer du col de 'utérus. Ces explications
sont congues pour s’aligner sur les propriétés souhaitées par les cliniciens,
notamment la facilité de compréhension, la cohérence entre les cas et la
stabilité des explications lorsque les données d’entrée changent légerement.

Cette approche personnalisée garantit que les experts du domaine peu-



vent utiliser en toute confiance les résultats de l'apprentissage automa-
tique pour soutenir leurs processus de prise de décision. Deuxiemement,
nous présentons les chaines de Shapley, une nouvelle technique d’explication
congue pour remédier au manque d’interprétabilité dans les prédictions a
sorties multiples impliquant des étiquettes interdépendantes. Dans les situ-
ations ou les étiquettes dépendent les unes des autres, comme les décisions
séquentielles dans les diagnostics médicaux ou les évaluations des risques
financiers, les méthodes existantes ont du mal a expliquer comment les
caractéristiques contribuent a ces prédictions enchainées. Les chaines de
Shapley offrent une nouvelle fagon de capturer et d’expliquer les contri-
butions indirectes des caractéristiques aux étiquettes ultérieures dans une
chaine de prédiction. Par exemple, dans le domaine de la santé, une car-
actéristique telle que I’dge du patient peut ne pas influencer directement
le diagnostic final, mais elle peut avoir un impact indirect en affectant
les résultats intermédiaires tout au long de la chalne de diagnostic. Les
chaines de Shapley permettent aux utilisateurs de retracer ces contribu-
tions tout au long de la séquence de prédictions. De plus, nous proposons
une amélioration des chalnes Shapley appelées chaines Bayes LIME, qui
améliorent la robustesse et la fiabilité des explications en incorporant des
techniques d’inférence bayésienne. Cette combinaison garantit que les expli-
cations restent cohérentes et fiables méme en présence de données bruyantes

ou incertaines.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

1.1 Context and Motivation

Artificial intelligence has become ubiquitous in our daily lives. From per-
sonalized recommendations on streaming platforms to autonomous vehicles
on the road, Al systems are increasingly integrated into the very fabric of

our existence.

Definition 1.1.1. “Artificial Intelligence refers to the simulation of human
intelligence in machines that are programmed to think and mimic human

actions.” [70]

As Al technology advances, it becomes crucial to understand and govern
every decision made by the machine learning (ML) systems. The urgency to
achieve this understanding stems from the recognition that the capabilities
of Al are evolving at an exponential rate, and we may soon reach a point

where the transition into a more autonomous Al era becomes a reality.

Definition 1.1.2. “Machine Learning is the field of study that gives com-
puters the ability to learn without explicitly being programmed.” [82]

One of the significant challenges in this context is the “black box” nature
of many ML models. Deep learning (DL) models for example, while highly
effective, can be difficult to interpret. They make predictions and decisions
based on complex interactions and the logic behind their conclusions may

not be easily apparent. This lack of transparency raises concerns about the
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Figure 1.1: Trade-off between achievable accuracy and interpretability of
ML and DL algorithms. DL can achieve the highest accuracy but shows the
lowest interpretability [73].

risks associated with the decision-making, especially when these decisions

impact critical domains like finance and healthcare.

Definition 1.1.3. “white box model refers to all recognized interpretable
machine learning models, e.g. the models that are understandable for hu-
mans. The white box models are, for example: decision trees, linear models,

rule based models, etc.” [32]

Definition 1.1.4. “black box model refers to a machine-learning obscure
model, whose internals are either unknown to the observer or they are known

but uninterpretable by humans.” [32]

Therefore, companies like Société Généraleﬂ are participating in the de-
velopment E| of transparent Al systems for several reasons, ranging from
regulatory compliance to risk management, customer trust, ethical consid-
erations and competitive advantage. Regulatory compliance requires banks
to ensure transparency and explainability of their Al-enabled operations,

reducing the risk of legal repercussions. Improving transparency also fa-

1ht‘cps ://wuw.societegenerale.com/en/responsability/ethics-and-governance
*https://github.com/MAIF/shapash
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cilitates risk management by providing visibility into decision-making pro-
cesses, enabling proactive identification and mitigation of potential biases or
errors. Additionally, transparent Al systems build customer trust by provid-
ing clear explanations of how decisions are made, fostering strong relation-
ships, and increasing customer engagement. From an ethical perspective,
transparency ensures that Al-based decisions are consistent with societal
values and ethical principles. Finally, transparent Al systems provide com-
petitive advantage, drive innovation, attract customers and position banks
as industry leaders.

To bridge the gap between the inherent complexity of machine learning
models and human understanding, various approaches known as explainabil-
ity and interpretability have been proposed [77, 56, 8]. These approaches
encompass a diverse range of techniques and methods aimed at unveiling
the black box nature of machine learning models, making their decisions
comprehensible and transparent. These efforts are fundamental, as they
enable the generation of interpretable explanations that shed light on the

underlying logic of these models predictions.

Definition 1.1.5. “Interpretability is the ability to present the model in

terms understandable by humans.” [22]

Definition 1.1.6. “Explainability is an attribute of a machine-learning
model that enables humans to understand the model’s rationale for its out-

come.” [68]

Although a consensus on a singular definition of explainability remains
elusive, and the distinction between explainability and interpretability is
subject to ongoing debate [47, [6], the main objective shared by researchers
in this field is to unlock the inner workings of black box models by ad-
dressing two fundamental questions: why and how, in order to provide a
comprehensive understanding of the decisions made by machine learning
models. Researchers are driven by the imperative need to generate expla-
nations that can be conveyed in various forms, such as the importance [56]
or effect [30] of each feature in the decision-making process or articulating

decision rules that empower users to comprehend the model’s reasoning.

Definition 1.1.7. “An explanation is additional meta information, gener-

ated by an external algorithm or by the machine learning model itself, to
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describe the feature importance or relevance of an input instance towards a

particular output classification.” [21]

Various feature importance methods such as SHAP [56] and LIME [77]
have been proposed to explain black box models including deep neural net-
works and ensemble trees such as Random Forest (RF) and XGBoost. These
methods despite their differences in computing the feature importance distri-
bution, have been widely used in real world applications such as in finance
and healthcare. However, the difference in their attribution mechanisms
[47] and the lack of ground truth feature importance to which the gener-
ated feature importance can be compared to and be validated, made these
methods subject to criticism about their usefulness [81]. The feature inde-
pendence and interactions hypothesis is one example of the limitations of
these methods that is hard to satisfy in real-wold scenarios, specifically in
a multi-output setting. These feature relationships can be represented with

directed acyclic graphs such as classifier chains.

Definition 1.1.8. “Classifier Chains (CC) is an ensemble learning technique
used in multi-label classification tasks, where multiple binary classifiers are
trained in a chain-like fashion. Each classifier in the chain is responsible for
predicting the presence or absence of a single label, and the predictions of
earlier classifiers in the chain are used as input features for subsequent clas-
sifiers. Classifier Chains are effective for capturing label dependencies and
have been shown to improve classification performance in scenarios where

labels are correlated.” [75]

1.2 Challenges of the Explainability Methods

Explainability methods in machine learning play a pivotal role in bridging
the gap between the power and opacity of complex models, providing insights
into their decision-making processes. However, these methods face several
challenges as they struggle with inherent limitations and complexities. Some
of these challenges include method diversity, feature interactions, absence of
Ground Truth for Validation, scalability, regulatory compliance, robustness

and security.
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Method diversity. The field of explainability is diverse, with a multi-
tude of techniques and approaches, each with its strengths and limitations.
Disagreements among these methods on the ideal explanation or feature
importance distribution can be confusing and challenge the standardization
of best practices. Practitioners must carefully select the most appropriate
method for their specific application, considering trade-offs between accu-

racy and comprehensibility.

Human-understandable and context and domain-specific explana-
tions. Four, even when explanations are generated, ensuring that they
are human-understandable and context and domain-specific remains a chal-
lenge. Balancing the depth of information and simplicity for users who may
not have technical expertise is a fine line that must be walked carefully. For
example, when interpreting medical diagnoses made by a machine learning
model, providing explanations that are clinically meaningful and align with
medical knowledge requires understanding not only the input features and
model predictions but also the broader context of the patient’s condition

and relevant medical literature.

Feature Interactions. Many explainability methods make the simplify-
ing assumption of feature independence, which often doesn’t hold in real-
world datasets. In reality, features can be correlated and exhibit complex
interactions that are difficult to capture. Methods that fail to account for
these interactions may provide incomplete or inaccurate explanations. Con-
sider a machine learning model deployed by a bank to assess the creditwor-
thiness of loan applicants. The model takes various features into account,
such as income, credit history, debt-to-income ratio, and employment sta-
tus, to make predictions about whether an applicant is likely to default on
a loan.

In real-world scenarios, these features are often correlated and exhibit
complex interactions. For example, applicants with higher incomes may
also have better credit histories and lower debt-to-income ratios. Similarly,
applicants who are employed full-time may be more likely to have stable
incomes and lower default risks.

However, many explainability methods may make the simplifying as-

sumption of feature independence, treating each feature as if it operates in
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isolation from the others. This assumption may lead to incomplete or in-
accurate explanations of the model’s predictions. For instance, an explain-
ability method that attributes a loan rejection to a low credit score without
considering the applicant’s high income and stable employment status may
provide an incomplete explanation. In reality, the applicant’s credit score
may have been adversely affected by other factors, such as a recent job loss

or unexpected medical expenses, which are not captured by the explanation.

No ground truth for validation. A fundamental challenge is the ab-
sence of a definitive ground truth for feature importance. In most cases, the
true importance of features in a prediction is unknown, making it challenging
to validate the accuracy of the explanations generated. This lack of vali-
dation can lead to debates over the efficacy and reliability of explainability
methods.

Despite these challenges, the pursuit of more transparent and inter-
pretable machine learning models is crucial for building trust, ensuring ac-
countability, and advancing responsible Al applications in various fields.
Overcoming these challenges will require continued research and collabora-
tion to develop more robust and reliable explainability methods that can
empower stakeholders and end-users to make informed and ethical decisions
in the era of Al

In order to contribute to this goal, we dedicate this thesis to explore the
last three challenges faced by explainability methods and their implications

for the field, by addressing two key research questions described in the next

section (Section [L.3)).

1.3 Research Questions

The focus of this thesis is on contributing to the ongoing efforts in the ex-
plainability field by addressing four challenges, including method diversity,
the generation of human-understandable and context and domain-specific
explanations, inclusion of feature/label interactions in the explanation de-
sign and evaluation metrics for XAI methods. Specifically in Sections [3.1,
32 and [£.2] we sought to answer the following research questions:

The first question focuses understanding explanations diversity with re-

spect to the data properties such as noise levels, feature correlations and
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class imbalance.

RQ1: Can we discover a relationship between the local explana-
tions computed in existing explainability methods and the data
properties like noise level, feature correlations and class imbal-
ance, draw conclusions about how each explainability method han-
dles each of these data properties and make recommendation on
when the user should trust or not these explanations based on the

properties of their data?

Several local explanation methods exist, each offering unique insights into
the behavior of machine learning models on a per-instance basis. However,
these methods often produce different explanations for the same prediction,
leading to what is known as the disagreement problem.

While various research efforts have examined this issue, there remains a
lack of assessment of these explanations based on underlying data properties.
Yet, these properties, such as data distribution, feature correlations, and
sample size, can significantly influence explanation generation. Investigating
the relationship between explanations and data properties is crucial as it can
provide valuable insights into the reliability, consistency, and robustness of
local explanations. Understanding how different data characteristics impact
explanation methods can lead to the development of more accurate and
trustworthy interpretability techniques.

Additionally, we tackle the problem of human understandable and do-
main specific explanations by leveraging personalized, consistent and simple
explanations of the risk factors of the cervical cancer and help clinicians to
understand each patient specific risk factors. Cervical cancer stands as one
of the most devastating and fatal cancers for women worldwide.

Despite numerous predictive models developed to identify women at risk,
a comprehensive understanding of the underlying risk factors remains elu-
sive. To address this gap, we use explainability methods as invaluable tools
to assist clinicians in comprehending model predictions for cervical cancer
on an individual patient level. By utilizing these methods, clinicians can
gain insight into the factors contributing to a patient’s risk, thereby en-
abling more informed decision-making regarding screening, prevention, and
treatment strategies.

Understanding the individual risk factors associated with cervical cancer
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is beneficial for both women and clinicians alike. For women, it empowers
them with personalized information about their risk profile, allowing for
proactive measures to mitigate risk and potentially prevent the development
of cervical cancer. For clinicians, it facilitates more targeted and tailored
approaches to patient care, leading to improved patient outcomes and overall
healthcare delivery in the fight against cervical cancer.

The second question concerns the explanation methodology for multi-

output tasks where the labels are interdependent.

RQ2: Can we design a post hoc and model agnostic local explain-
ability method that can take into consideration label interactions
when computing feature importance in a way to make the feature
importance more complete compared to when the labels are in-
dependent and illustrate how these new feature importance can

help understand the chaining of the labels ¢

Recent studies [2] 33, 94], 55] have shown that considering label interde-
pendencies when predicting multi-output tasks yields superior performance
compared to methods that neglect these dependencies. Despite the availabil-
ity of numerous explainability methods capable of elucidating single or multi
independent output predictions, many fail to account for label dependen-
cies. Therefore, there is a pressing need for explainable artificial intelligence
methods that incorporate label dependencies into explanation generation.
These explanations, which we can term as indirect feature importance on
label prediction, have the potential to enhance our understanding of model
predictions like classifier chain predictions.

Classifier chains [75] are a technique used in multi-label classification
where binary classifiers are trained sequentially, with each classifier consid-
ering the predictions of the previous ones as additional features. By com-
puting indirect feature importance in the chaining of labels, these methods
can provide insights into the factors influencing the prediction of each label
in the chain, considering the dependencies between them, thus which chain
order is best. This approach is beneficial as it enables a more comprehensive
understanding of model behavior and facilitates informed decision-making
in various applications, including multi-label classification tasks. Addition-
ally, it empowers users to identify critical features that contribute to the

prediction of specific labels within a chain, thereby improving multi-output
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model interpretability and trustworthiness.

Furthermore, we suggest a way to make the explanations provided by
Shapley Chains more reliable. We achieve this by measuring the uncertainty
in how the explanations are generated, using local surrogate models. Shapley
Chains uses local surrogate models such as Kernel SHAP and LIME to explain
multi-output predictions by evaluating the importance of direct and indirect
features on labels, and presents a robust tool for explaining complex models.
Despite LIME’s popularity, its instability often gives rise to inconsistent
explanations.

Measuring the uncertainty around local explanations is crucial to build-
ing confidence in methods such as LIME and Kernel SHAP. Although Bayes
LIME and Bayes SHAP attempt to address uncertainty, they lack a reliable
assessment of uncertainty intervals and, if used for multiple-output expla-
nations, they both ignore indirect label features . We propose Bayes LIME
Chains to address the challenges mentioned above. The Bayes LIME make
it possible to calculate the indirect importance of features as well as the
measurement of credible intervals around these explanations. Unlike Bayes
LIME and Bayes SHAP, we evaluate the comparison with the importance of

ground truth features on synthetic datasets with multiple outputs.

1.4 Thesis Outline

The challenging properties of explanability methods as presented in Section
pose significant barriers on the usefulness of these methods and therefore
the trust that the users may have in the field of explainable Al in general.

While several studies focus on explaining Deep Learning architectures
in various tasks and domains of applications, there is yet few studies on
when and for what contexts to use the explainbility methods designed to
explain the predictions made by ensembles of trees such as Random forest
and XGboost. At the same time, there is room for improvements in existing
approaches, in terms of feature importance attribution, as well as objective
metrics to validate the explanations.

Therefore, our study consists in providing understanding of the existing
explainable methods with regards to data properties such as feature correla-
tions, presence of irrelevant variables, noise and class imbalance on various

synthetic and real world datasets, in assessing local explanations on the cer-
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vical cancer prediction where human understanding is paramount, as well
as designing and developing a new method that takes label interactions in
the explanation design in order to ensure a complete representation of the
feature/output interactions by computing the direct and indirect feature
importance.

These indirect feature importance can be important in many cases, for
example, in healthcare diagnosis using multi-label classification, direct fea-
ture importance can identify clinical biomarkers or symptoms directly as-
sociated with each diagnosed condition. Indirect feature importance can
reveal how the presence of certain conditions or comorbidities influences the
prediction of other related conditions, therefore indirect effects of some clin-
ical biomarkers or symptoms on the related conditions, providing insights
into disease interactions and patient health profiles.

We next present the organization of the presentation of the studies con-
ducted in terms of this thesis, as well as the theoretical background infor-

mation provided for understanding the topics discussed in each chapter.

Introduction and Background. In Chapter|l] we presented some of the
most dominant challenges on explainability of machine learning models for
real-world data. In this chapter, we also provide the thesis organization and
an outline of the main chapters and topics that are discussed. In Chapter
we provide some key definitions and notations for the explainability field
and an overview of existing methods. Those are important for understanding
the background of the existing methods in this field and contain information
about modules and properties to which we will refer in the main chapters
that follow.
Chapter [3] presented in two section address the research question RQ1.

Feature Importance Depends on Properties of the Data: Towards
Choosing the Correct Explanations for Your Data and Decision
Tree based Model. In order to ensure the reliability of the explanations
of machine learning models, it is crucial to establish their advantages and
limits and in which case one should use each of these methods, especially
with regards to the data properties. However, the current understanding of
when and how each method of explanation can be used is insufficient and

for which data properties each of these methods can be used. To fill this

10
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gap, in Section [3.1| we perform an empirical evaluation by synthesizing mul-
tiple datasets with different properties, e.g., feature correlation and noise.
Our main objective is to assess make recommendations of when each of the
feature importance estimates provided by local explanation methods should

be used, and when users should be careful and why.

Local Explainability Methods for Cervical Cancer Risk Assess-
ment. Cervical cancer is a life-threatening disease and one of the most
prevalent types of cancer affecting women worldwide. Being able to ad-
equately identify and assess factors that elevate risk of cervical cancer is
crucial for early detection and treatment. In Section we use local ex-
plainability methods to assess then recommend which method a clinician
should choose to explain and understand the cervical cancer risk factors
for each patient based on their specific profiles and a set of fixed desired
properties such as compactness and stability.

Lastly, Chapter [4] presented in two sections address the research question
RQ2.

Shapley Chains: Local Explanations for Multi-output Decisions. in
Section we present Shapley Chains, which is a post-hoc model agnostic
local explainability method designed to explain a multi-output classifier out-
puts using the Shapley value to compute feature importance. Shapley Chains
attributes feature importance to all features that directly or indirectly con-
tribute to the prediction of a given output, by tracking all the related outputs
in the given chain order. Compared to existing methods such as Shapley
flow that is restricted to causal graphs, we show a complete distribution of
feature importance scores in multi-output synthetic and real-world datasets.
Our method is model agnostic, meaning that it can be applied on any type of
graphical model that represent complex feature and label interactions such

as classifier chains.

Bayes LIME Chains. Shapley Chains incorporate label interdependence
into the explanation design process to ensure that explanations reflect the
interdependence of multiple outputs. This process has improved the expla-
nation attribution in the context of multi-label and unveiled how the features

contribute to the outputs directly and through subsequent related outputs

11
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in different chain orders of the classifier chain. Therefore, in Section [4.2], we
extend our method Shapley Chains to include a measurement of the uncer-
tainty of the direct and indirect feature importance generated by Shapley
Chains. Measuring uncertainty in the local explanations is a way to increase
robustness and reliability of the generated explanations in general and in
the direct and indirect feature importance computed by Shapley Chains in

particular.

Conclusion. Chapter [5|summarizes our contributions, addresses the limi-
tations of each proposed approach, and outlines perspectives for future work.
In this concluding chapter, we reflect on the key findings and novel insights
uncovered throughout our research journey and highlight the significance of
our contributions to the field. Furthermore, we critically evaluate the lim-
itations inherent in each proposed approach, acknowledging the challenges

and constraints encountered during the research process.

1.5 Publications

The research conducted in this thesis has been submitted to and published
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Chapter 2

Notation and Background

This section is dedicated to the notation that we use in the subsequent
chapters and background information vital to understanding the intricacies

of the research presented in this thesis.

2.1 Notations

This set of notations will be consistently used throughout the thesis to repre-
sent the key entities and mathematical operations in the context of machine

learning.

e X is an input set of d-dimensional feature vectors;

e X € X is an instance, described by a feature vector x = [z!,...  x
e X' is a perturbed input instance;

e Y is an output set of m-dimensional target vectors;

e D is the set of features;

e S is a random subset of D;

« Each instance x € X is associated with an output vectory = [y, ..., y™]

yeyY;

)

e x; denotes the ¢’th input instance x;

« 27 denotes the j’th feature of input instance x;

13
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. a:f denotes the j’th feature of the i’th input instance x;

o D= {(w;,y;)}Y, is a dataset of n samples;

e f:X — Y is a predictive model that learns a single output in Y/
e L is a loss function;

e g9 : X — Y is an interpretable surrogate single-output model with

parameters 6, such as a logistic regression or a decision tree;
e h:X —Y is a multi-output set of classifiers, h = [h1, ha, ..., hn];

o ¥ = h(x) is a prediction of multi-output model h for instance x, y =
(9 0);

o P(y|x;0) is a conditional probability of the output y given the instance
X3

o y is a perturbed output instance;

e N(p,0?) is a Gaussian distribution with mean p and variance o?;

o P(Y;0) =TI, P(y*): Marginal output independencies;

o P(Y|X;0) = [I1~, P(W*|X,y}, ...,y¥1): Conditional output interde-

pendencies;

o ¢,; denotes the feature contribution (also referred to as feature im-

portance) of the feature z7;

e ¢,i(y*) denotes the feature contribution (also referred to as feature

importance) of the feature 27 to the prediction of the output 3*;

e ¢%; is the true value (ground truth) feature contribution of 27 to the

prediction of the single output ¥;

2.2 Background

The background section of this thesis provides a foundational understanding
of essential concepts and methodologies. We begin by examining decision
tree-based models, highlighting their significance in classification and regres-

sion tasks. We then focus on multi-output learning, exploring how models

14
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predict multiple variables simultaneously. Next, we investigate explainabil-
ity methods, which explain black box models by providing interpretable
insights. Finally, we discuss the evaluation of explanations, focusing on
metrics and methodologies used to assess their quality and trustworthiness.

This overview sets the stage for our contributions in subsequent chapters.

2.2.1 Decision Tree Methods

Tree-based models stand out as some of the most prevalent machine learning
techniques that can be used both for regression and classification tasks. A
decision tree [I1] is a hierarchical graph structure and consists of nodes con-
nected by directed edges. Every node may have outgoing edges connecting
it to its children, known as the leaves. The top node where the first split
takes place is called the root.

The decision tree is defined by a set of rules represented by the internal
nodes of the tree. Each internal node tests a specific feature against a split
criteria, directing the flow to the left or right child node based on the out-
come of the test. Leaf nodes provide the final output, either a class label in
classification or a continuous value in regression. Formally, the decision tree
output is given by: The construction of the decision tree involves recursively
partitioning the input space into regions, each associated with a unique set
of rules. The decision tree is trained to optimize the purity of these regions
in classification or the reduction of variance in regression, resulting in a
predictive model that is interpretable and easy to understand. Fig E| il-
lustrates a classification decision tree in which the task is to predict whether
a day is suitable for playing outside based on three characteristics, namely
humidity level, weather, and whether it is windy or not.

Decision trees offer an intuitive and interpretable framework for under-
standing the decision-making process, making them accessible even to in-
dividuals with limited expertise in the field. However, while these models
provide transparency in their rule-based structure, they often fall short in
accuracy, particularly when confronted with complex datasets or tasks with
intricate feature-target relationships. As a solution, random forest, a pop-
ular ensemble method, has emerged as a preferred alternative to decision

trees due to its superior performance in handling complexity.

'https://www.baeldung.com/cs/decision-trees-vs-random-forests
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Figure 2.1: An example of a binary classification decision tree.

A random forest [I0] is an ensemble learning method that constructs
multiple decision trees. Each tree is built on a random subset of features,
sampled with bootstrap sampling. The final prediction is a major vote for
all tree predictions in the classification scenario or their mean average in the
regression case. The combination of these randomization decision trees helps
to decorrelate the individual trees, making the random forest less prone to
overfitting and improving its overall predictive performance. While build-
ing multiple trees instead of a single one may seem more computationally
expensive, taking a random subsample of features per tree alleviates this
drawback. Nonetheless, random forest introduces its own layer of complex-
ity, necessitating interpretation and understanding to effectively harness its
full potential. This highlights the ongoing challenge in machine learning
to strike a balance between model transparency and predictive power, ulti-
mately emphasizing the importance of selecting the most suitable approach
for the given task and dataset.

Figure E| illustrates the above example with three decision trees built

¢

on two features each. Here the overall prediction should be “yes” as the
majority of the individual trees predict that the considered day is suitable

to play outside.

2.2.2 Multi-Output Learning

In the field of machine learning, there exists a diverse range of models de-

signed to tackle various prediction tasks. One fundamental distinction lies

*https://www.baeldung.com/cs/decision-trees-vs-random-forests
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Figure 2.2: An example of a a random forest where each decision tree is
built on 2 features.

in the number of outputs these models are capable of predicting. Some
models are designed to predict only a single output variable, encapsulat-
ing tasks such as classification and regression. On the other hand, there
are models explicitly engineered to handle scenarios where multiple output
variables are involved. These multi-output models [I00] are adept at cap-
turing complex relationships and dependencies between input features and
multiple target variables simultaneously, enabling tasks such as multi-label
classification and regression.

One common example of multi-output classification is image tagging,
where the task involves assigning multiple labels to an image. For instance,
consider a scenario where an image classification model is trained to identify
objects and activities within an image. Instead of predicting a single label
for the entire image (e.g., “cat” or “dog”), the model may be required to

2 @

predict multiple labels simultaneously (e.g., “cat,” “outdoor,” “playing”). In
this case, the model is performing multi-output classification by predicting
a binary or multi-class label for each distinct attribute or concept present
in the image. This approach enables the model to capture the complex and
diverse nature of visual content, providing more detailed and informative
annotations for downstream tasks such as content-based image retrieval,
image understanding, and automated tagging systems.

A multi-output binary classifier denoted as h learns a vector of base
classifiers:

h(x) = [h1(x), ha(Xx), ..., hp(x)]

17
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for a given instance x and returns a binary vector of predicted values:

The main challenge in multi-output learning lies in managing the inher-
ent complexity of the output space and the interdependencies among the
outputs. While each target can be addressed as an independent single-
output problem often referred to as marginal learning (and as binary rel-
evance [29, 94] in the case of classification), without explicitly considering
the dependencies or relationships with other tasks, designing classifiers that
learn jointly multiple outputs by incorporating these output dependencies
makes it possible to better represent the relationships in the data (between
outputs, therefore between features and outputs). In the first case, the m
models are trained separately. This approach allows to different algorithms
or hyperparameters to be used for each model, based on specific character-
istics of each task. However, completely ignoring interdependencies between
the targets can lead to suboptimal performance or prediction of impossible
combinations [2]. While in the joint learning, the goal is to maximise model
accuracy by considering all tasks or variables together, capturing the depen-

dencies and interactions between them and maximizing the joint probability:

m

P(ylx) = [[ P I y"s o) (2.1)
k=1

Classifier chains. A classifier chain is one multi-output classification method
that incorporates the chaining of the outputs in the learning of multiple clas-
sifiers (one classifier for each output, also referred to as base classifier). The
choice of the base model depends on the characteristics of the problem and
the desired performance.

The initial idea of the chaining approach, for classification [75], was to
arrange per-target models in a chain, such that the previous labels are used
to train each next model in the training phase and the output prediction
of one model becomes an additional feature for the subsequent models in
the prediction phase. Classifier Chains have proved to have high predictive
performance and are widely known as one of the state-of-the-art techniques
for multi-label modeling [75].

As opposed to independent modeling such as the binary relevance in
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Figure 2.3: Different chain structures for a problem with m = 4 outputs.

classification, the chaining approach allows the model to capture the depen-
dencies and interactions between the target variables. The chaining method
is exactly an expression of Eq. if expressed according to the chain rule
of probability (i.e., Fig. (B) as a probabilistic graphical model represen-
tation). That is one reason why conditional dependencies are interesting in
this context. However, a classifier chain is not faithful to a ‘proper’ infer-
ence procedure, and rather takes a greedy approach to inference, plugging
in predictions as observations; and proceeds much as a forward pass across
a neural network. This creates some ambiguity between how much effect
is gained from probabilistic dependence (as a probabilistic graphical model
would) and feature effect (as one encounters via the latent layers of deep
learning). Although discussion has been ongoing e.g., [76, [75], there is not
yet a consistent understanding in practice of what role a prediction plays as
a feature to another label.

The order of the chain has an impact on the model’s ability to learn in-
terdependencies between the targets and thus predictive performance. Dif-
ferent approaches have been suggested to optimize chain order including

using correlation to build the best structure [60].
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Figure 2.4: The taxonomy of XAI methods with examples.

2.2.3 Explainability Methods

In this section, we provide a comprehensive literature review on Explain-
able Artificial Intelligence. We begin by presenting a taxonomy of XAl ap-
proaches, categorizing these methods based on their underlying principles,
applications, and interpretative paradigms. Subsequently, we focus on an in-
depth analysis of the most prominent and state-of-the-art XAl approaches,
highlighting both their strengths and limitations. Figure illustrates the
taxonomy of XAI methods.
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Taxonomy of Explainability Methods

Various terms are employed to illustrate the significance or impact of in-
put features on model predictions. These terms include feature importance,
contribution, participation, and feature effect, each offering distinct insights
into the relationship that the features may bring to the model decision mak-
ing. To illustrate the significance of each of these terms, let’s consider the
example of a credit risk assessment model.

Feature importance quantifies the relative influence of individual features
on the model’s predictions. In this case, feature importance analysis might
reveal that the borrower’s credit score is the most important factor affecting
the model’s predictions of loan approval or rejection. This indicates that
the credit score has the highest impact among all features considered in the
model. By calculating the feature importance, one can conclude the feature
ranking and then select the most important features, which can also be used
as a dimensionality reduction tool.

On the other hand, feature contribution zooms in on the specific effect
of a single feature on a particular prediction. For instance, suppose the
model predicts loan approval for a specific applicant. The contribution of
the borrower’s credit score would indicate the extent to which it affects the
likelihood of loan approval for that particular applicant. A higher credit
score would likely contribute positively to the likelihood of loan approval,
while a lower credit score might have a negative contribution.

Feature Participation assesses the involvement of each feature in the
decision-making process of the model. In this case, the participation of the
borrower’s credit score would indicate its active role in the model’s decision
to approve or reject a loan application. A high participation value for the
credit score suggests that it plays a significant role in determining the final
decision.

Finally, feature effect can either show the single or the collective impact
of multiple features on model predictions. Considering the borrower’s credit
score alongside other relevant features such as income, employment history,
and debt-to-income ratio, the feature effect would illustrate how these factors
collectively influence the model’s predictions of loan approval or rejection.
The feature effect provides insights into how changes in multiple features

simultaneously impact the overall outcome of the model’s predictions.
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White box vs black box models. White box models as defined in[I.1.3]
often referred to as interpretable models, are characterized by their trans-
parency and ease of interpretation. These models include linear regression,
decision trees, and logistic regression, among others. Their appeal lies in
their simplicity, as they are built on straightforward, human-understandable
principles. Some of their advantages include: transparency such that each
feature’s contribution to the model’s output can be easily understood, inter-
pretability which makes it easier to derive actionable insights and identify
factors influencing predictions, trust that enables users to validate and ver-
ify the model’s decisions, also crucial in domains like healthcare and finance,
and finally their alignment with regulatory requirements, as they can provide
clear explanations for their decisions.

On the other hand, black box models (Deﬁnition, such as deep neu-
ral networks, ensemble methods, and support vector machines, are known
for their complexity and opacity. Their decisions are derived from intricate
mathematical computations that are challenging for humans to intuitively
grasp. These complex models are widely used for their high predictive ac-
curacy, often outperforming white box models on complex tasks, and their
ability to capture intricate relationships in data that might be beyond the
capacity of simpler models, making them well-suited for image recognition,
natural language processing, and other complex domains. These models
can also generalize from data effectively, adapting to various patterns and

making them versatile in a wide range of applications.

Post hoc vs in-process methods. While simple models such as deci-
sion trees offer some degree of interpretability, several efforts have proposed
techniques that interpret the local and global decisions made by the black
box models such as deep neural networks. These techniques can either in-
clude the interpretation process within the model learning also known as
in-process methods, or explain its decision in a post hoc manner, meaning
that these are applied after a machine learning model has been trained.
These post hoc methods are often model-agnostic, meaning that they can
be applied to a wide range of machine learning models without requiring
changes to the model architecture and allow for analyzing existing models
without the need to modify the training process, making them suitable for

legacy systems. The generated post hoc explanations are typically tailored
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for end-users, ensuring that the explanations are human-understandable and
relevant to the specific context. Post hoc techniques include feature impor-
tance scores, perturbation-based methods, and surrogate models, based on
the specific use case.

In-process methods, on the other hand, incorporate explainability con-
siderations directly into the machine learning model’s development and
training process. The model is designed to be interpretable from the out-
set and embed transparency within its architecture, resulting in a model
that is inherently easier to understand and explain. By avoiding the need
for additional post hoc steps, in-process methods can be computationally
more efficient and the explanations provided by such methods are consis-
tent with the model’s design and decision-making process, reducing the risk

of explanation-model inconsistencies.

Model agnostic vs model specific methods. Model-agnostic methods
are designed to provide explanations for a wide range of machine learning
models, regardless of their architecture, complexity, or learning algorithm.
These methods are often applied in a post hoc manner and can be used
with any machine learning model, from decision trees to deep neural net-
works, without requiring modifications to the model itself. They are valu-
able for analyzing and explaining existing models, making them suitable for
auditing or improving the transparency of legacy systems. Model-agnostic
explanations are often designed with the end-users in mind, emphasizing
human-understandable insights that enhance user trust and confidence.

On the other hand, Model-specific methods, as the name suggests, are
tailored to a particular machine learning model or family of models. These
methods are often developed in conjunction with the model’s architecture or
learning process and can build interpretability directly into the model’s ar-
chitecture, resulting in inherently interpretable models from the outset. By
eliminating the need for additional post hoc steps, model-specific methods
can be computationally efficient and more closely aligned with the model’s
design. Same as for in-process explainability methods, the explanations
provided by model-specific methods are also consistent with the model’s
decision-making process, reducing the risk of inconsistencies between the

model and its explanations.
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Local vs global methods. Local methods focus on examining specific,
localized aspects of data or model behavior for a specific instance. They are
designed to provide insights into a single and specific data point, making
them useful for fine-grained analysis, offering a detailed, close-up view of
data patterns and model behavior in a specific context. They are valuable
for assessing the sensitivity of a model’s predictions to small changes in input
data and provide insights into the model’s stability and reliability. These
methods are adept at detecting anomalies or outliers in a dataset, aiding
in quality control and identifying data irregularities. The local feature im-
portance analysis focuses on understanding how individual features impact
model predictions in specific instance.

In contrast, global methods take a broader perspective, aiming to pro-
vide insights into the overall behavior and performance of data or models
across the entire dataset. These methods analyze the data or model as a
whole, offer a holistic view of data patterns and model performance, enabling
a comprehensive assessment, are effective in recognizing recurring patterns
and trends within data and are suitable for assessing a model’s overall pre-
dictive accuracy, generalization, and robustness. The global feature impor-
tance analysis identifies trends and patterns in how features impact model

predictions across the entire dataset.

Post Hoc Explainability

Features, or variables, encapsulate crucial information within datasets, in-
fluencing the performance and interpretability of models. The emergence of
feature importance generation based methods has offered a profound avenue
for comprehending the significance and impact of these features on model
outputs. In this section, we present some of most popular methods for post
hoc local and global explanations that can either be model agnostic or model

specific.

Shapley Additive exPlanations (SHAP). SHAP introduced in [56],
serve as a powerful tool for explaining the output of a machine learning
model by attributing a value to each feature based on its contribution to
individual predictions. These values are computed by considering all possible
feature combinations, employing the Shapley value concept [79]. The general

formula for computing the Shapley value of feature 7 can be expressed as

24



CHAPTER 2. NOTATION AND BACKGROUND

follows:
S|t (D[ =[S =D)! /. "
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SCD\{j} '
Here, f7 CRSUG) and f7_ps respectively denote predictions of the black

box model for subsets with and without the feature 27 included.

The Shapley value use four axioms to serve as foundational principles
guiding the fair attribution of feature importance. These axioms, rooted in
cooperative game theory, ensure that attribution methods exhibit desirable
properties such as consistency and fairness.

The Shapley value, a concept rooted in cooperative game theory, is gov-
erned by four axioms that define fair distributions of benefits within coali-
tions. Efficiency ensures that the total benefits produced by the grand coali-
tion are equally distributed among its members. Symmetry mandates that
players who contribute equally to all coalition subsets receive an equal share
of benefits. Linearity allows for the additive combination of values from dif-
ferent coalition games when constructing a new cooperative game. Finally,
the Dummy player axiom dictates that non-contributing players receive no
benefits. While this axiom may raise ethical concerns in certain fields, such
as economics, it poses no such issues in machine learning contexts where it is
used to measure variable contributions to model predictions. These axioms
collectively ensure that the Shapley value provides a unique and fair division
of benefits within coalitions.

In order to understand the predictions of black box models, SHAP of-
fers a wide range of explainers including Kernel SHAP, Sampling SHAP, Tree
SHAP, and Deep SHAP, tailored to different model architectures. Among
the multiple proposed explainers, Tree SHAP is a post hoc model specific
method that is designed to explain the predictions of complex tree based
model. It traverses the decision tree from root to leaf, computing feature
contributions at each node based on the Shapley value concept, reflecting
the difference between the model’s output for the current instance and the
output if that node were the root. These contributions are propagated
back along the traversal path, considering feature interactions and split-
ting criteria. Aggregating contributions across all paths yields final feature

importance values, offering insights into the impact of each feature on the
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model’s prediction. For ensemble models, Tree SHAP averages contributions
across all trees to provide comprehensive explanations, facilitating a deeper
understanding of model behavior and feature influence.

Deep SHAP, another technique of SHAP proposed to explain the intri-
cate relationships between features and predictions in deep neural networks
(DNNs). It navigates through the neural network layers, capturing feature
attributions at each step by employing a combination of backpropagation
and sampling techniques. It computes the contribution of each feature to
the model’s output by analyzing the changes in predictions when individ-
ual features are included or excluded. Through this process, Deep SHAP
disentangles the complex interactions within DNNs, providing interpretable
explanations for model predictions.

Furthermore, Kernel SHAP on the other hand, is a post hoc model ag-
nostic explanation method allowing to compute local explanations for any
complex model. It learns loally a surrogate model that mimics the black box
model behavior on a locally generated new dataset around a given instance,
that is also the istance we want explanations for. The weights of the sur-
rogate linear model are then considered as the feature importance for that
instance.

Lastly, Sampling SHAP is very similar to Kernel SHAP designed for high-
dimensional datasets, offering a scalable solution for computing Shapley
values in complex models. By leveraging sampling techniques, Sampling
SHAP addresses the computational challenges associated with large feature
spaces, ensuring efficient and practical computation of feature attributions.
Like its counterpart, Sampling SHAP provides interpretable insights into
the importance of features in machine learning models. With its ability to
handle high-dimensional datasets, Sampling SHAP serves as a valuable tool

for explaining the behavior of intricate models across diverse domains.

Local Interpretable Model-agnostic Explanations (LIME). LIME
[77] is another local surrogate based methodology designed to provide in-
terpretable approximations of the decision boundaries of complex black box
models in the local vicinity (neighborhood) of a specific instance as shown
in Figure Let f denote the black box model of interest, and g represent
the local interpretable model created by LIME. For a particular instance x

in the input space, LIME seeks to approximate the behavior of f through a
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Figure 2.5: To explain a given instance, LIME trains a local linear model on
a locally sampled data. The weights of the linear model are then considered
as the explanations for the given instance [77].

simplified, interpretable model g that is locally faithful.
Formally, the local interpretable model g is obtained by solving the fol-

lowing optimization problem:

9(x) = argmin £(f(x, k(z')) + (k) (2.3)

where I is the set of possible interpretable models, £ is a loss function
measuring the dissimilarity between the predictions of the black box model
f and the surrogate model k € K, 2’ is a set of perturbed instances gener-
ated around x to train the local model, and Q(k) is a regularization term
penalizing model complexity.

The primary objective of LIME is to generate a locally faithful and inter-
pretable model that approximates the decision boundary of the black box
model within a small neighborhood of the given instance while keeping the
surrogate model as simple as possible. This facilitates a better understand-
ing of the black box model’s decision-making process in specific regions of

the input space.

Global and Local Surrogates. Mimic explainer in Interpret commum’t;ﬂ
is based on the idea of training global surrogate models to mimic blackbox

models. A global surrogate model is an intrinsically interpretable model

3https://interpret.ml
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that is trained to approximate the predictions of any black box model as ac-
curately as possible, using one of the following interpretable models as your
surrogate model: Light GBM (LGBM Explainable Model), Linear Regres-
sion (Linear Explainable Model), Stochastic Gradient Descent explainable
model (SGD Explainable Model), and Decision Tree (Decision Tree Explain-
able Model).

Local surrogates [63] on the other hand, are interpretable models de-
signed to approximate the behavior of a complex black box model within
a local region of the input space. Let f represent the black box model of
interest, and g denote the local surrogate model. For a specific instance x in
the input space, the local surrogate model g is trained to approximate the
response of the black box model f in the vicinity of x.

Formally, the local surrogate model g is defined as:

g(x) = arg min L(f(x),k(x))

Where K is the space of interpretable models, £ is a loss function mea-
suring the distance between the predictions of the black box model f and
the surrogate models k € IC, and x’ denotes the set of sampled instances in
the local neighborhood of x used to train the surrogate model.

Kernel SHAP, LIME, and local surrogates H share several fundamental
similarities in their approaches to model interpretation. Firstly, all three
methods aim to provide local explanations for individual predictions, en-
abling users to understand the model’s decision-making process on a per-
instance basis. Secondly, they adopt a model-agnostic perspective, allowing
them to be applied to a wide range of machine learning models without re-
lying on specific model structures. This flexibility makes them particularly
useful in scenarios where the underlying model’s complexity varies or is not
fully understood. Thirdly, they employ local approximation techniques to
explain model predictions, whether through kernel-based approximation (as
in Kernel SHAP), generating interpretable surrogate models (as in LIME),
or constructing local linear models (as in local surrogates). Despite their
differences in implementation details, these methods share the common goal
of enhancing model transparency and interpretability, enabling users to gain

insights into model behavior at the individual prediction level.

Yinterpret community package https://interpret.ml
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Counterfactual Explanations. While local explanations help understand
why a model makes a particular decision, they do not explicitly reveal what
needs to change to get a different outcome for a prediction. As a result,
there are a growing number of methods that explain the decisions of these
models to affected individuals and provide means for recourse [96].

DiCE [67] is a model-agnostic method for generating diverse and in-
terpretable counterfactual explanations for individual predictions. It finds
instances similar to original instance x (Figure EI), but with different
predicted outcomes. Optimization requires minimizing a distance metric
between the counterfactuals and x, subject to constraints that ensure dis-
similarity among generated counterfactuals. Counterfactuals are generated
by perturbing the features of x while staying within the feasible range of

feature values. The optimization problem can be formulated as:

i o(xf, ;) € Clag) =y, @ # @i
where 2 is a counterfactual instance, X is the feasible range of feature val-
ues, d(z}, ;) is a distance metric between the counterfactual and the original
instance, C'(z}) is a constraint function that enforces the counterfactual to
have a desired predicted outcome y;, and z # x; ensures that the counter-
factual is different from the original instance.

For example, recourse offers a person denied a loan by a credit risk
model a reason for why the model made the prediction and what can be
done to change the decision. Beyond providing guidance to stakeholders in
model decisions, algorithmic recourse is also used to detect discrimination

in machine learning models [34], 43, 84].

Tree Interpreter. Tree Interpreter [52] is a model-specific method for
interpreting predictions of tree-based models, such as random forests and
XGBoost. It provides a way to attribute feature importance values for
predictions made by tree-based models, by tracing the decision path of an
instance through the tree and measuring the contribution of each feature
towards the prediction. As introduced in [71], this is done by summing the
changes in prediction associated with each decision node along the path,

weighted by the proportion of instances that pass through each decision

Shttps://interpret.ml
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Counterfactual Examples

ML model’s decision boungy,
"dary

Original class: Desired class:
Loan rejected Loan approved

Increase income by $5000
and have 1 more year
of credit history

Original input

Figure 2.6: An example of counterfactual generation with DiCE for the loan
approval for a given client. In order to approve the client’s rejected loan,
DiCE recommends increasing his income and waiting for one additional year
of credit history.

node. The prediction can be decomposed into the sum of the feature contri-
butions and the “bias” § (i.e. the mean of training set), and can be written

down as:

D
j=1

Unlike in the linear regression where the feature coefficients are fixed
with a single constant for every feature that determines the contribution,
the contribution of each feature ¢,; in this tree prediction decomposition
is not a single predetermined value, but depends on the rest of the feature
vector which determines the decision path that traverses the tree and thus

the contributions that are passed along the way.

2.2.4 Explanation Evaluation

In this section, we address the evaluation of explanations in the absence of
ground truth, employing a diverse range of metrics to assess their properties.
These metrics [16] reflects desired aspects such as local stability, faithfulness,

and consistency.
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The Local Stability Metric. evaluates how consistent explanations are
for instances in the same neighborhood in a dataset. Essentially, if two
instances have similar features and produce similar predictions, they should
also receive similar explanations [72]. However, instances that are on the
edge of a decision boundary may have different explanations, even if their
features are alike. This is because many explanation methods base their
explanations on the model’s predictions. To assess stability, we employ the
local Lipschitz metric [3], which measures the stability of explanations across
instances in the same neighborhood. This helps us understand how robust
the explanations are when the input data changes slightly.

; [o(xi) — ¢(;)]l2

L(x;) = argmax : :
e;€Be(a) 1T — T2

(2.4)

where x; refers to an instance, B((z;) is the e-sphere centered at z;, and
¢(x;) and ¢(x;) are the explanation parameters for x; and x;. Lower values

indicate more stable explanations.

The Compactness metric. E] measures how simple an explanation is by
looking at how many features are needed to explain a certain part of the
model’s prediction. We decide on a percentage of the prediction we want
to explain, then see how many features it takes to explain that percentage.
This helps us understand how straightforward the explanation is in terms
of the number of features it uses to explain a specific part of the model’s

output.

RemOve And Retrain (ROAR). [39] involves iteratively removing a
subset of features from a dataset, retraining the model on the reduced
dataset, and then evaluating the changes in model accuracy or feature im-
portance. By systematically testing the impact of feature removal on model
performance, it offers valuable information about the model’s sensitivity to

different features and its overall interpretability.

The Faithfulness Metric [47] is a crucial aspect of explainability evalu-
ation, aiming to assess how faithfully an explanation method represents the

true relationship between features and model predictions. It measures the

Shttps://github.com/MAIF/shapash
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extent to which the explanations provided accurately reflect the underlying
behavior of the model. One common approach to evaluating faithfulness
involves comparing the explanations generated by a method against the
ground truth feature importances, if available [I]. However, in many prac-
tical scenarios, accessing such ground truth information may be challenging
or impossible. As an alternative, faithfulness can be evaluated based on
the consistency and agreement of feature importance rankings and signs
across different explanation methods. This approach focuses on determin-
ing whether the explanations generated by various methods align in terms
of which features are considered important and how they contribute to pre-
dictions. Other measures of faithfulness from [I] can be viewed as variants
of these.

The Consistency Metric. measures how much different explanation meth-
ods agree on the importance of features for the same data points. It calcu-
lates the distance between pairs of explanations using the lo distance [89].
When two methods provide similar explanations for the same data, it boosts
the user’s confidence in the model’s predictions. This alignment in explana-

tions makes it easier for users to trust the model’s decisions.

Feature and Rank Agreements. [47] While feature agreement com-
putes the fraction of common features between the sets of top-k features of
two explanations, the rank agreement computes the fraction of features that
are not only common between the sets of top-k features of two explanations,
but also have the same position in the respective rank orders. Rank agree-
ment is a stricter metric than feature agreement since it also considers the

ordering of the top-k features.
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Chapter 3

A Critical Evaluation of
Local Explainability Methods

This chapter presents two important contributions to understanding and
using local explainability methods in machine learning. First, we discover
a relationship between the local explanations computed in existing explain-
ability methods and the data properties like noise level, feature correlations
and class imbalance. This helps us see how well they work in different situa-
tions. Second, we leverage personalized, consistent and simple explanations
of the risk factors of the cervical cancer and help clinicians to understand
each patient specific risk factors. By doing this, we can see how well the
explanations help us understand the factors contributing to cervical cancer
risk in individual cases. These contributions help us learn more about how
local explainability methods work in different scenarios, both general and

specific.

3.1 Feature Importance and Data Properties

In order to ensure the reliability of the explanations of machine learning
models, it is crucial to establish their advantages and limits and in which case
each of these methods. Several existing studies have addressed the challenges
of post-hoc analysis in machine learning models, particularly when feature
dependence is present. These studies recognize that real-world datasets of-
ten exhibit complex relationships among features, such as correlations or

interactions, which can impact the interpretability and reliability of model
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explanations. For instance, [89] discussed the implications of feature de-
pendence on the consistency of explanation methods, highlighting the need
for robust techniques that account for such dependencies. Additionally, [4]
proposed methods for analyzing the stability of explanations in the presence
of feature correlations, emphasizing the importance of understanding how
explanations vary with changes in the input data. However, the current
understanding of when and how each method of explanation can be used
is insufficient. To fill this gap, we perform a comprehensive empirical eval-
uation by synthesizing multiple datasets with the desired properties. Our
main objective is to assess the faithfulness, local stability and consistency of
feature importance estimates provided by local explanation methods, which
are used to explain predictions made by decision tree-based models. Analyz-
ing the results obtained from synthetic datasets as well as publicly available
binary classification datasets, we observe different magnitude and sign of
the feature importance estimates generated by these methods. Moreover,
we find that these estimates are sensitive to specific properties present in
the data. Although some model hyper-parameters do not significantly influ-
ence feature importance assignment, it is important to recognize that each
method of explanation has limitations in specific contexts. Our assessment
highlights these limitations and provides valuable insight into the suitability

and reliability of different explanatory methods in various scenarios.

3.1.1 Introduction

Decision tree based models such as random forest [10] are widely used ma-
chine learning algorithms in data science. Although deep learning has been
increasingly popular, especially in domains such as computer vision and
natural language processing, random forest, for example continues to be
a competitive option on many kinds of tabular data in a diverse number
of domains, including biology [49] and medicine [78], where interpretation
is paramount. Small decision trees operating on understandable feature
spaces are naturally interpretable, and although this interpretability is di-
luted across a large forest, it can be recovered in terms of feature importance,
which is a major tool that can be used in practical applications for data un-
derstanding, model improvement, or model explainability. However, practi-
tioners may lose trust in the importance scores provided for random forest

[90], or simply be unable to use them to answer their research questions
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from the feature importance result due to a number of reasons [93], 64], for
example: (1) a relative lack of training examples leads to instability where
the importance scores change due to only minor changes or additions to
the dataset or hyper-parameters. (2) even with a large training set, mul-
tiple (possibly equivalent) feature scores can be presented. (3) the feature
importance scoring mechanism is thrown off by particular properties of the
data distribution such as noise, imbalance and feature type (in particular,
the importance of continuous features is often over-estimated). (4) results
where feature importance is assigned to spurious or even random features.
Practitioners are thus often right to be reluctant to draw conclusions from or
place trust in off-the-shelf feature-importance scorers, and we aim to remedy
this to some extent with a benchmarking study.

To remedy this, researchers proposed explainability methods such as
LIME [77] and SHAP [56] to explain black box models by attributing feature
importance estimates as explanations of the model’s predictions. While prior
research [47, [7, 12, 9, 69] has already taken the first steps towards analyzing
the disagreement of explanation methods for models such as deep neural
networks, analyzing the behavior of the wide range of existing explanation
methods for random forest or in general ensemble trees still insufficiently
explored, with regard to particular data properties and model parameters
[25].

Compared to other work which is either model agnostic focused or deep
neural networks specific, we study the explainability methods suited to ex-
plain decision tree based models. Some of these methods are specific to tree
ensembles and the rest are general model-agnostic (which, thus, can also be
applied to random forest). We do so with extensive experiments on synthetic
alongside real-world datasets, and certain manipulations thereof, which we
carry out to isolate and identify aspects which lead to particular results in-
sofar as feature importance. This provides a more thorough understanding,
which we use to highlight some limitations of existing methods, and formu-
late a number of recommendations for practitioners. The contribution of

this work is twofold:

e Conducting a thorough evaluation of various explainability methods
in the context of specific data properties, such as noise levels, fea-
ture correlations, and class imbalance, elucidating their strengths and

limitations.
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o Offering valuable guidance for practitioners and researchers on select-
ing the most suitable explainability method based on the characteris-

tics of their dataset.

3.1.2 Explainability Benchmarking Frameworks

The landscape of explainable artificial intelligence has witnessed a surge in
research efforts aimed at understanding and evaluating the diverse method-
ologies employed for interpreting complex machine learning models. Several
survey and benchmarking papers, including XAl-survey [9] and BenchXAI
[54], have played a crucial role in shedding light on the disagreement problem
within existing explainability methods [47, [69} 12, 35, [95]. Notably, these
contributions have been important to the understanding of the challenges
and nuances associated within the field of machine learning explainability.

While the majority of existing benchmarks have primarily focused on
explaining neural networks for text and image data with feature importance
generation methods such as [40, [7, 9] 103} 106, [36], the research community
has introduced several frameworks to facilitate the transparent evaluation
of explainability methods. Examples include OpenXAI [I], Captum [46],
Quantus [37], and many others such as [31, 50]. In addition, [95] intro-
duced a quantitative framework with specific metrics for assessing the per-
formance of post-hoc interpretability methods, particularly in the context
of time-series classification. This research provides a targeted approach to
evaluating the temporal aspects of interpretability. These frameworks aim
to provide a structured approach to assess the effectiveness and reliability
of various explainability techniques.

The evaluation of post-hoc interpretability methods for ensemble trees
predictions with respect to different data properties is crucial for understand-
ing the robustness and reliability of these methods across various real-world
scenarios. Despite the growing interest in interpretability, there remains a
gap in understanding how these methods perform under diverse data con-
ditions. This gap is significant because real-world datasets often exhibit
varying properties such as noise levels, feature correlations, and class imbal-
ances, which can influence the effectiveness of interpretability techniques.
For instance, consider the scenario where a bank utilizes an ensemble tree
model to assess credit risk. In such cases, the interpretability of the model’s

predictions is crucial for regulatory compliance and risk management. How-
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ever, banking datasets often exhibit complex characteristics, such as high
dimensionality, imbalanced classes, and correlations between financial vari-
ables. These data properties can significantly impact the performance of
interpretability methods, potentially leading to misinterpretations or unre-
liable insights. This work addresses this gap by investigating how existing
interpretability methods designed for ensemble trees predictions behave un-

der different data conditions.

3.1.3 Synthetic Data Generation

bbb o b

Full Partial-XOR Partial-NOT Partial-CAUS

Figure 3.1: Bayesian networks that we use as a schema to generate synthetic

data, illustrating one full and three partial factorizations of P(X,Y).

Considering only two features, we could represent the concept as a Bayesian
network (Fig. illustrates).

P(X,Y) = P(z",2%Y) = P(Y|2', 2?)P(2*|z) P(2")
i.e., a Full factorization of the joint, and thus we could consider the following
properties (as nodes and edges):
1. P(x'): specifying the type of the feature z';
2. P(z?|z'): the amount of conditional dependence of 2% on x!; and

3. P(Y|z!,2?): the amount and type of correlation between features and
target, revealing the special case of P(Y|x!,2?) = P(Y) when there is

no correlation.

Partial-XOR and Partial-NOT exhibit feature independence (features are in-
dependent from each other — when the target is observed), and both features
are required to make a perfect prediction for Partial-XOR, and only z is re-

quired to perfectly predict Partial-NOT; in this case deterministic.
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In real-world settings, Full represents the case where one feature is re-
lated to another feature and both participate to make the prediction of the
output, for example in ADULT INCOME dataset (that we later include in
our experiments) the feature OCCUPATION is correlated to AGE and both
predict the output INCOME. Partial-CAUS on the other hand, may represent
a causal relationship between one feature and the outcome through a chain
of causality; or an indirect correlation of one feature on the output through
another feature (or even multiple features), forming a chain of correlations.

Full and Partial-CAUS are specific cases of respectively Partial-XOR and
Partial-NOT when z! is dependent on 22, thus for the rest of this section,
we denote XOR to refer to both Full and Partial-XOR, and use NOT to refer
to Partial-CAUS and Partial-NOT. The data can be generated as:

P(X) ~ N (11, %) (3.1)

Where N is a bi-variate normal distribution and ¥ is the covariance
matrix, and the amount of correlation between the two random variables z!
and 22 is denoted as p. In order to introduce noise, we invert e percentage

of predictions § and we keep the rest unchanged.

Ground truth feature importance. We use ¢% (f*) to denote the ground
truth feature importance that are given by the true model f* to which we
compare ¢x (f), the feature importance estimates that is generated by each
of the local explainability methods to explain the predictions of the learned
model f. Intuitively, the true model f* can be illustrated with a d-depth
decision tree. With d = 2 for XOR dataset variants (the first split on x! and
the second on #?) and d = 1 for NOT dataset variants (only one split on
zl).

When € = 0, the ground truth feature importance ¢% for all variants
of XOR datasets are fixed as ¢%; = ¢7, = .5, because both z! and 22 are
necessary to make the prediction of XOR. The amount of the correlation p
between x! and x? doesn’t affect the importance as both are necessary to
make the prediction of XOR. Meanwhile, only x! is necessary to make the
prediction of NOT, thus ¢7; = 1 and ¢}, = p, because when 22 is correlated
to x!, 2 have an indirect influence estimated by p to predict NOT.

On the other hand, when e # 0, ¢7; = ¢, = .5* € for XOR dataset
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variants, and ¢*; = 1 x € and ¢, = p* e for NOT dataset variants.

For the XOR function, both z'and z? are equally important in determin-
ing the output, and their importance scores should ideally converge to 0.5
when considering a large amount of data points. Consider a decision tree
model that aims to predict the XOR function using features ! and x2. For
simplicity, let’s assume that the decision tree splits on both z! and z? at

each level. The decision tree’s predictions can be expressed as:
)= f(z',2%

Now, let’s define the feature importance scores (¢,1 and ¢,2) using the Gini

impurity criterion, a common metric for decision trees:

Pyt = Z Gini decrease at the node

nodes splitting on !

Gp2 = Z Gini decrease at the node
nodes splitting on z2
In a large dataset, the decision tree will be able to accurately capture the
XOR relationship, and both z! and z? should contribute equally to the
impurity decrease, leading to similar importance scores. For a balanced
decision tree, these Gini decreases would be distributed among the splits

involving #' and 2. In the limit of a large dataset, we would expect:

lim = lim =0.5
large dataset ¢xl large dataset d)m?
This indicates that, as the dataset size increases, the decision tree’s feature
importance for predicting the XOR function would converge to 0.5 for both

2! and 22, reflecting their equal importance in determining the output.

3.1.4 Empirical Setup

To carry out our experiments, we demonstrate our findings on four real-
world datasets: HEART DIAGNOSIS, CERVICAL CANCER, ADULT INCOME
and GERMAN CREDIT RISK. These datasets include properties such as
feature interactions (dependence or independence), noise, random irrelevant

variables and class imbalance.
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We generate 24 synthetic datasets (Figures and expressing dif-
ferent combinations of these properties by varying several parameters such
as the correlation amount of the normal distribution from which the data
points are drawn and the probability of each class, thus, the amount of gen-
erated noise and class imbalance. Each dataset is divided to 80% for training
and 20% for testing. We report the results of the feature importance esti-
mates on the test set. We compute feature importance estimates on the
true model f* and learned model f, so that we can compare the generated
feature importance estimates to their ground truth values. Finally, we an-
alyze the advantages and limitations of each explainability method on the
synthetic datasets and we run larger experiments on the above real-world

datasets from the UCI repository [23].

Datasets, Models and Metrics

Datasets. Figures [3.2] and [3.3] show the generated datasets by varying
the parameters as in Eq w € {[0,1],[1,0]}, € € {0,.25,.5}, and ¥ €
{{[L, 01,0, 1]), [[1, 1], [, 1], [[1, .91, [.9, 1]}, [[1, 1], [1, 1]}

In addition, Table summarizes the properties of the four real-world

datasets that we use to demonstrate our findings.

Dataset #instances | #features | % discrete | % continuous | imbalance
HEART DI1AGNOSIS 303 13 43 57 yes
CERVICAL CANCER 858 35 62 38 yes
ADpULT INCOME 32561 11 65 35 no
GERMAN CREDIT Risk 1000 23 70 30 yes

Table 3.1: Summary of the real-world datasets we include in our experi-

ments.

Models. For the synthetic datasets, we compute the feature importance
scores of the learned model f on datasets with 1000 instances. The learned
model f can be either a decision tree or a random forest. On the other
hand, we use the random forest model with parameters learned using grid
search and evaluated with 10-fold cross-validation for each of the real-world
datasets. Table summarizes the performances and the feature impor-
tance of the decision tree and the random forest models for the generated

datasets.
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xor: £€=0.0, p=0 xor: £=0.0, p=0.1

xor: £€=0.0, p=0.9
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X1
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Figure 3.2:

X1 ’
Synthetlc data XOR with decision boundaries. X ~ N (1,2
Fach dataset expresses a different combination of properties.
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Figure 3.3:
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Decision function € p | DT Accuracy | DT feature importance | RF Accuracy | RF feature importance
XOR 0.00 | 0.00 1.00 ¢,1=0.44, $,2=0.56 0.85 ¢,1=0.69, ¢,2=0.31
XOR 0.00 | 0.10 1.00 ¢,1=0.41, $,2=0.59 0.90 ¢,1=0.63, ¢,2=0.37
XOR 0.00 | 0.90 1.00 ¢,1=0.51, ¢,2=0.49 1.00 ¢,1=0.55, ¢,2=0.45
XOR 0.00 | 1.00 1.00 ¢,1=0.5, ¢,2=0.5 1.00 ¢,1=0.53, ¢,2=0.47
XOR 0.25 | 0.00 0.70 ¢,1=0.47, $,2=0.53 0.61 ¢,1=0.62, ¢,2=0.38
XOR 0.25 | 0.10 0.72 ¢p1=0.4, ¢,2=0.6 0.62 ¢,1=0.64, ¢,2=0.36
XOR 0.25 | 0.90 0.72 ¢,1=0.51, $,2=0.49 0.72 ¢,1=0.56, ¢,2=0.44
XOR 0.25 | 1.00 0.71 ¢,1=0.51, ¢,2=0.49 0.71 ¢,1=0.53, ¢,2=0.47
XOR 0.50 | 0.00 0.52 ¢,1=0.83, ¢,2=0.17 0.50 ¢,1=0.57, ¢,2=0.43
XOR 0.50 | 0.10 0.53 ¢,1=0.69, ¢,2=0.31 0.56 ¢,1=0.57, ¢,2=0.43
XOR 0.50 | 0.90 0.49 ¢,1=0.64, $,2=0.36 0.46 ¢,1=0.53, ¢,2=0.47
XOR 0.50 | 1.00 0.54 ¢,1=0.55, ¢,2=0.45 0.47 ¢,;1=0.53, ¢,2=0.47
NOT 0.00 | 0.00 1.00 ¢,1=1.0, ¢,2=0.0 1.00 ¢,1=0.84, ¢,2=0.16
NOT 0.00 | 0.10 1.00 ¢p1=1.0, ¢,2=0.0 1.00 ¢,1=0.83, ¢,2=0.17
NOT 0.00 | 0.90 1.00 ¢p1=1.0, ¢,2=0.0 1.00 ¢,1=0.61, ¢,2=0.39
NOT 0.00 | 1.00 1.00 ¢p1=1.0, ¢,2=0.0 1.00 ¢,1=0.49, ¢,2=0.51
NOT 0.25 | 0.00 0.72 $1=1.0, $,2=0.0 0.72 $1=0.77, $,2=0.23
NOT 0.25 | 0.10 0.69 ¢,1=0.99, ¢,2=0.01 0.72 ¢,1=0.8, ¢,2=0.2
NOT 0.25 | 0.90 0.71 ¢,1=1.0, ¢,2=0.0 0.71 ¢,1=0.63, ¢,2=0.37
NOT 0.25 | 1.00 0.72 ¢,1=0.97, $,2=0.03 0.72 ¢,1=0.49, ¢,2=0.51
NOT 0.50 | 0.00 0.50 ¢,1=0.39, ¢,2=0.61 0.48 ¢;1=0.55, ¢,2=0.45
NOT 0.50 | 0.10 0.58 ¢,1=0.0, ¢,2=1.0 0.57 ¢1=0.5, ¢,2=0.5
NOT 0.50 | 0.90 0.50 ¢,1=0.69, ¢,2=0.31 0.46 ¢,1=0.53, ¢,2=0.47
NOT 0.50 | 1.00 0.48 ¢,1=0.49, $,2=0.51 0.50 ¢,1=0.51, ¢,2=0.49

Table 3.2: Parameterization and performances of the decision tree (DT) and
the random forest (RF) for the 24 generated datasets with 1.000 instances.
Maximum depth of both DT and RF is set to 2.

Metrics. To evaluate the quality of the feature importance estimates at-
tributed by the methods in Section[2.2.3] we compare the feature importance
estimates to the ground truth feature importance in Section [3.1.3] of the syn-
thetic datasets because the ground truth feature importance estimates in the
real-world datasets are hard to obtain. We also evaluate the stability, com-
pactness, consistency, feature and rank agreements for the synthetic and

real-world datasets.

3.1.5 Experiments

Synthetic Datasets

Figures and show the normalized feature importance estimates at-
tributed by the selected explainability methods. After the normalization of

the absolute importance of z' and 22, their contributions sum to one. We
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perform the normalization to faithfully compare the feature attributions to

their ground truth values.

Explainability methods based on learning surrogate models over-
estimate the importance to irrelevant variables, Tree interpreter
is sensitive to noise and SHAP explainers always favor one feature
over the other. Overall, all explainers except local surrogates overesti-

2 across the XOR datasets. Also, none of

mate the importance of z! over x
these methods perfectly matches ground truth feature importance on av-
erage across all datasets. Moreover, LSurro and LIME feature importance
attributions are the least affected by noise and feature correlation. Indeed,
LSurro and and LIME attribute comparable importance to z' and z? for
XOR and NOT dataset variants, and both overestimate the importance of
unimportant features (such as 2 in case of NOT). Notably, Tl is the most
affected by noise, that is confirmed in its decomposition of the the feature
and noise contributions to the prediction. Additionally, feature correlations
increase the importance and instability of 22 importance in XOR datasets
attributed by SHAP explainers, and noise lowers the importance of ! and
22 for all the explainers. Finally, SHAP explainers and T have the highest

variance of feature importance estimates in the NOT datasets.

SHAP explainers yield very comparable explanations. Figure
shows the faithfulness of the explanations to the ground truth measured by
mean consistency and mean feature agreements across the XOR and NOT

generated datasets.
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Figure 3.6: Mean consistency, mean feature agreements for XOR and NOT
datasets. Consistency is expressed in [y distance (the lower the better).
Feature agreement measures the fraction of common features between the

sets of top-k features of the two rankings (the higher the better).

SHAP explainers yield consistent explanations due to the same feature
importance attribution mechanism they all employ. However their expla-
nations are the most inconsistent with respect to the ground truth values.
Furthermore and for both XOR and NOT datasets, on average the fraction

of common feature importance between Tl and KShap and between SShap
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and TShap match perfectly.

function | Methods | # Features for 90% approximation | Distance with 1 feature(%) | Mean consistency | Mean Stability (10)
XOR Kshap 1.00 0.10 0.21 0.21
XOR Sshap 1.00 0.11 0.23 0.24
XOR Tshap 1.00 0.10 0.24 0.25
XOR Tl 1.00 0.17 0.26 0.24
XOR LIME 1.00 0.16 0.28 0.33
XOR LSurro 1.33 0.43 0.32 0.15
NOT Kshap 1.00 0.03 0.14 0.16
NOT Sshap 1.00 0.03 0.15 0.20
NOT Tshap 1.00 0.03 0.19 0.19
NOT Tl 1.00 0.02 0.15 0.19
NOT LIME 1.00 0.04 0.17 0.27
NOT LSurro 1.17 0.30 0.25 0.08

Table 3.3: Compactness (represented in distance reached with fewer features
and nmber of features needed to achieve 90% of the model performance) and
stability of the explanations for the XOR datasets. Tshap and Tl are the most
stable explainers for XOR and LSurro uses only one feature to make nearly
half of the prediction of NOT.

LSurro is the most locally stable, overestimates unimportant fea-
tures and achieves better model accuracy with less features. Table
3.3| shows mean consistency, mean stability and compactness across the XOR
and NOT datasets. For XOR and NOT datasets respectively, Kshap is the
most consistent to the rest of the explanatory methods on average. Addi-
tionally, on average, LSurro generates the most locally stable explanations in
XOR and NOT datasets, achieves higher model estimation and often consider

both features as important fr both datasets.

3.1.6 Real-World Data

For the real-world datasets the ground truth feature importance is unavail-
able, we perform evaluation of the different metrics in Section

Local surrogates achieves 100% of model accuracy with 5 fea-
tures on Adult Income dataset. Figure shows feature agreements
for ADULT INCOME Income dataset. Kshap and Sshap have exactly the same
top-10 feature attributions and ranking. Tl and Tshap share the same set
of top-10 features. The rest of the explainers share 90% of the top 10 most

important features. LIME share the lowest of top-10 important features with
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Tl, Kshap and Sshap on the ranking of the top 10 features. Additionally,
Table illustrates the compactness, mean consistency and stability of the
different methods on the ADULT INCOME Income dataset. LSurro explains
100% of model output with only 5 features. Kshap, Tshap and Tl are the
most stable for this dataset and LIME have the highest mean consistency

across all the datasets.

Feature Agreement Feature Rank Agreement
Adult dataset Adult dataset

Kshap
Kshap

Avg. Agrmnt : 0.91 Avg. Agrmnt : 0.27
Avg. Agrmnt b/t FI & FR: 0.90 Avg. Agrmnt b/t FI & FR: 0.11

10)
Sshap

Sshap

N
C
Il o g Il o
Eg 0.9 0.9 Eg
= g =
c 3 C
[} "r'u' [
GE) F 09 0.9 1 P g F 0.3
I o0
[=) Qo
< w < w
= 0.9 0.9 0.9 0.9 = 0 0 0.2 0
- -
e e
5 0.9 0.9 0.9 0.9 0.9 5 0.2 0.2 0.1 0.2 0.1
i 4
Kshap Sshap Tshap Il LIME LSurro Kshap Sshap Tshap Tl LIME LSurro

Figure 3.7: Feature and rank agreements for ADULT INCOME Income
dataset.

Methods | # Features for 90% Accuracy | Accuracy with 5 feature(%) | Mean consistency | Mean Stability
Kshap 1 09 0.43 0.00
Tshap 1 09 0.43 0.00
Sshap 1 08 0.43 0.01
LIME 1 07 0.15 0.07
TI 1 1