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Abstract

As machine learning continues to demonstrate robust predictive capabilities,

it has emerged as a very valuable tool in several scientific and industrial do-

mains. Over recent years, machine learning models have proven to be indis-

pensable across fields such as healthcare, finance, autonomous systems, and

even climate modeling. These applications rely heavily on machine learning

models to make accurate predictions, classify data, and optimize systems.

However, as machine learning models evolve to achieve higher accuracy and

better performance, they also become increasingly complex, requiring more

parameters and more intricate architectures. In fact, some of the most accu-

rate models, such as deep neural networks, can have millions of parameters

and hidden layers that are difficult to interpret. This complexity can make

the decision-making processes of machine learning models opaque, or what

is commonly referred to as a ”black box.” In scenarios where these models

are deployed to support decision-making in high-stakes areas like medical

diagnosis or financial risk assessment, this lack of interpretability raises con-

cerns. Understanding the inner workings of machine learning models has

therefore become crucial. To establish trust in the predictions generated by

these models, it is essential to provide insights into why a particular pre-

diction is made. Trust and interpretability go hand in hand, especially in

domains where decisions impact human lives or carry significant financial

consequences. In response to these concerns, researchers in the field of ex-

plainable AI (XAI) have developed various explanation methods aimed at

making machine learning models more transparent and interpretable. These

explanation methods attempt to break down the complex processes within

models and present them in ways that are comprehensible to users, including

non-technical stakeholders. Explanation techniques such as SHAP (SHap-

ley Additive exPlanations) and LIME (Local Interpretable Model-agnostic

Explanations) have gained popularity because they provide post-hoc expla-

nations that help clarify why a model arrived at a certain prediction. De-

spite these advances, explanation methods often fall short in accurately and

consistently explaining model predictions in a manner that is intuitive to

domain experts. This gap in effectiveness and usability makes it challenging

for experts in fields like medicine, finance, and law to fully leverage these ex-

planations for practical decision-making. It is crucial, therefore, to identify
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the limitations and shortcomings of current ML explanations and work to-

ward enhancing their reliability, interpretability, and ease of use. Moreover,

given that many machine learning tasks are becoming increasingly data-

intensive and the demand for machine learning integration is rising across

industries, there is a growing need for explanation methods that not only

provide transparency but do so in a way that is computationally efficient and

cost-effective. Addressing these challenges will ensure that machine learning

explanations can be trusted and widely adopted in real-world applications

where decisions must be both accurate and justifiable. In this dissertation,

we address these critical issues through two main research thrusts: First, we

propose a comprehensive methodology for evaluating various explainability

methods in the context of specific data properties, such as noise levels, fea-

ture correlations, and class imbalance. Our approach highlights how certain

data characteristics can influence the effectiveness of different explainability

techniques, offering practitioners and researchers a set of guidelines to help

them choose the most suitable explainability method based on the specific

characteristics of their datasets. By conducting extensive experiments across

a range of datasets, we reveal where existing methods excel and where they

fall short. In particular, we focus on use cases in healthcare, providing clin-

icians with personalized explanations for cervical cancer risk factors. These

explanations are designed to align with the clinicians’ desired properties,

including ease of understanding, consistency across cases, and the stability

of the explanations when input data changes slightly. This personalized ap-

proach ensures that domain experts can confidently use machine learning

outputs to support their decision-making processes. Second, we introduce

Shapley Chains, a novel explanation technique designed to address the lack

of interpretability in multi-output predictions involving interdependent la-

bels. In situations where labels depend on each other, such as sequential

decisions in medical diagnoses or financial risk assessments, existing meth-

ods struggle to explain how features contribute to these chained predictions.

Shapley Chains offer a new way to capture and explain the indirect contri-

butions of features to subsequent labels in a prediction chain. For example,

in healthcare, a feature such as patient age might not directly influence the

final diagnosis, but it may have an indirect impact by affecting intermediate

outcomes along the diagnostic chain. Shapley Chains allow users to trace

these contributions throughout the sequence of predictions. Additionally,
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we propose an enhancement to Shapley Chains called Bayes LIME Chains,

which improves the robustness and reliability of the explanations by in-

corporating Bayesian inference techniques. This combination ensures that

explanations remain consistent and reliable even in the presence of noisy or

uncertain data.
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Résumé

L’apprentissage automatique continue de démontrer de solides capacités

prédictives et s’est révélé être un outil très précieux dans plusieurs domaines

scientifiques et industriels. Ces dernières années, les modèles d’apprentissage

automatique se sont révélés indispensables dans des domaines tels que la

santé, la finance, les systèmes autonomes et même la modélisation clima-

tique. Ces applications s’appuient largement sur les modèles d’apprentissage

automatique pour faire des prédictions précises, classer les données et opti-

miser les systèmes. Cependant, à mesure que les modèles d’apprentissage au-

tomatique évoluent pour atteindre une plus grande précision et de meilleures

performances, ils deviennent également de plus en plus complexes, nécessitant

davantage de paramètres et des architectures plus complexes. En fait, cer-

tains des modèles les plus précis, tels que les réseaux neuronaux profonds,

peuvent avoir des millions de paramètres et des couches cachées difficiles à

interpréter. Cette complexité peut rendre les processus de prise de décision

des modèles d’apprentissage automatique opaques, ou ce que l’on appelle

communément une ≪ bôıte noire ≫. Dans les scénarios où ces modèles

sont déployés pour soutenir la prise de décision dans des domaines à enjeux

élevés comme le diagnostic médical ou l’évaluation des risques financiers,

ce manque d’interprétabilité suscite des inquiétudes. Comprendre le fonc-

tionnement interne des modèles d’apprentissage automatique est donc de-

venu crucial. Pour établir la confiance dans les prédictions générées par

ces modèles, il est essentiel de fournir des informations sur les raisons pour

lesquelles une prédiction particulière est faite. La confiance et l’interprétabilité

vont de pair, en particulier dans les domaines où les décisions ont un impact

sur la vie humaine ou ont des conséquences financières importantes. En

réponse à ces préoccupations, les chercheurs dans le domaine de l’IA expli-

cable (XAI) ont développé diverses méthodes d’explication visant à rendre

les modèles d’apprentissage automatique plus transparents et interprétables.

Ces méthodes d’explication tentent de décomposer les processus complexes

au sein des modèles et de les présenter de manière compréhensible pour

les utilisateurs, y compris les parties prenantes non techniques. Les tech-

niques d’explication telles que SHAP (SHapley Additive exPlanations) et

LIME (Local Interpretable Model-agnostic Explanations) ont gagné en pop-

ularité car elles fournissent des explications post-hoc qui aident à clari-
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fier pourquoi un modèle est arrivé à une certaine prédiction. Malgré ces

avancées, les méthodes d’explication ne parviennent souvent pas à expli-

quer avec précision et cohérence les prédictions du modèle d’une manière

intuitive pour les experts du domaine. Ce manque d’efficacité et de facilité

d’utilisation fait qu’il est difficile pour les experts de domaines comme la

médecine, la finance et le droit d’exploiter pleinement ces explications pour

la prise de décision pratique. Il est donc crucial d’identifier les limites et

les lacunes des explications actuelles du ML et de travailler à améliorer

leur fiabilité, leur interprétabilité et leur facilité d’utilisation. De plus, étant

donné que de nombreuses tâches d’apprentissage automatique nécessitent de

plus en plus de données et que la demande d’intégration de l’apprentissage

automatique augmente dans tous les secteurs, il existe un besoin crois-

sant de méthodes d’explication qui non seulement offrent une transparence,

mais le font d’une manière efficace et rentable sur le plan informatique.

Relever ces défis garantira que les explications de l’apprentissage automa-

tique peuvent être fiables et largement adoptées dans des applications du

monde réel où les décisions doivent être à la fois précises et justifiables.

Dans cette thèse, nous abordons ces questions critiques à travers deux axes

de recherche principaux : tout d’abord, nous proposons une méthodologie

complète pour évaluer diverses méthodes d’explicabilité dans le contexte

de propriétés de données spécifiques, telles que les niveaux de bruit, les

corrélations de caractéristiques et le déséquilibre des classes. Notre ap-

proche met en évidence comment certaines caractéristiques des données

peuvent influencer l’efficacité de différentes techniques d’explicabilité, of-

frant aux praticiens et aux chercheurs un ensemble de lignes directrices pour

les aider à choisir la méthode d’explicabilité la plus appropriée en fonction

des caractéristiques spécifiques de leurs ensembles de données. En menant

des expériences approfondies sur une gamme d’ensembles de données, nous

révélons où les méthodes existantes excellent et où elles échouent. En par-

ticulier, nous nous concentrons sur les cas d’utilisation dans le domaine

de la santé, en fournissant aux cliniciens des explications personnalisées

sur les facteurs de risque du cancer du col de l’utérus. Ces explications

sont conçues pour s’aligner sur les propriétés souhaitées par les cliniciens,

notamment la facilité de compréhension, la cohérence entre les cas et la

stabilité des explications lorsque les données d’entrée changent légèrement.

Cette approche personnalisée garantit que les experts du domaine peu-
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vent utiliser en toute confiance les résultats de l’apprentissage automa-

tique pour soutenir leurs processus de prise de décision. Deuxièmement,

nous présentons les châınes de Shapley, une nouvelle technique d’explication

conçue pour remédier au manque d’interprétabilité dans les prédictions à

sorties multiples impliquant des étiquettes interdépendantes. Dans les situ-

ations où les étiquettes dépendent les unes des autres, comme les décisions

séquentielles dans les diagnostics médicaux ou les évaluations des risques

financiers, les méthodes existantes ont du mal à expliquer comment les

caractéristiques contribuent à ces prédictions enchâınées. Les châınes de

Shapley offrent une nouvelle façon de capturer et d’expliquer les contri-

butions indirectes des caractéristiques aux étiquettes ultérieures dans une

châıne de prédiction. Par exemple, dans le domaine de la santé, une car-

actéristique telle que l’âge du patient peut ne pas influencer directement

le diagnostic final, mais elle peut avoir un impact indirect en affectant

les résultats intermédiaires tout au long de la châıne de diagnostic. Les

châınes de Shapley permettent aux utilisateurs de retracer ces contribu-

tions tout au long de la séquence de prédictions. De plus, nous proposons

une amélioration des châınes Shapley appelées châınes Bayes LIME, qui

améliorent la robustesse et la fiabilité des explications en incorporant des

techniques d’inférence bayésienne. Cette combinaison garantit que les expli-

cations restent cohérentes et fiables même en présence de données bruyantes

ou incertaines.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

1.1 Context and Motivation

Artificial intelligence has become ubiquitous in our daily lives. From per-

sonalized recommendations on streaming platforms to autonomous vehicles

on the road, AI systems are increasingly integrated into the very fabric of

our existence.

Definition 1.1.1. “Artificial Intelligence refers to the simulation of human

intelligence in machines that are programmed to think and mimic human

actions.” [70]

As AI technology advances, it becomes crucial to understand and govern

every decision made by the machine learning (ML) systems. The urgency to

achieve this understanding stems from the recognition that the capabilities

of AI are evolving at an exponential rate, and we may soon reach a point

where the transition into a more autonomous AI era becomes a reality.

Definition 1.1.2. “Machine Learning is the field of study that gives com-

puters the ability to learn without explicitly being programmed.” [82]

One of the significant challenges in this context is the “black box” nature

of many ML models. Deep learning (DL) models for example, while highly

effective, can be difficult to interpret. They make predictions and decisions

based on complex interactions and the logic behind their conclusions may

not be easily apparent. This lack of transparency raises concerns about the
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Figure 1.1: Trade-off between achievable accuracy and interpretability of
ML and DL algorithms. DL can achieve the highest accuracy but shows the
lowest interpretability [73].

risks associated with the decision-making, especially when these decisions

impact critical domains like finance and healthcare.

Definition 1.1.3. “white box model refers to all recognized interpretable

machine learning models, e.g. the models that are understandable for hu-

mans. The white box models are, for example: decision trees, linear models,

rule based models, etc.” [32]

Definition 1.1.4. “black box model refers to a machine-learning obscure

model, whose internals are either unknown to the observer or they are known

but uninterpretable by humans.” [32]

Therefore, companies like Société Générale1 are participating in the de-

velopment 2 of transparent AI systems for several reasons, ranging from

regulatory compliance to risk management, customer trust, ethical consid-

erations and competitive advantage. Regulatory compliance requires banks

to ensure transparency and explainability of their AI-enabled operations,

reducing the risk of legal repercussions. Improving transparency also fa-

1https://www.societegenerale.com/en/responsability/ethics-and-governance
2https://github.com/MAIF/shapash

2

https://www.societegenerale.com/en/responsability/ethics-and-governance
https://github.com/MAIF/shapash
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cilitates risk management by providing visibility into decision-making pro-

cesses, enabling proactive identification and mitigation of potential biases or

errors. Additionally, transparent AI systems build customer trust by provid-

ing clear explanations of how decisions are made, fostering strong relation-

ships, and increasing customer engagement. From an ethical perspective,

transparency ensures that AI-based decisions are consistent with societal

values and ethical principles. Finally, transparent AI systems provide com-

petitive advantage, drive innovation, attract customers and position banks

as industry leaders.

To bridge the gap between the inherent complexity of machine learning

models and human understanding, various approaches known as explainabil-

ity and interpretability have been proposed [77, 56, 8]. These approaches

encompass a diverse range of techniques and methods aimed at unveiling

the black box nature of machine learning models, making their decisions

comprehensible and transparent. These efforts are fundamental, as they

enable the generation of interpretable explanations that shed light on the

underlying logic of these models predictions.

Definition 1.1.5. “Interpretability is the ability to present the model in

terms understandable by humans.” [22]

Definition 1.1.6. “Explainability is an attribute of a machine-learning

model that enables humans to understand the model’s rationale for its out-

come.” [68]

Although a consensus on a singular definition of explainability remains

elusive, and the distinction between explainability and interpretability is

subject to ongoing debate [47, 6], the main objective shared by researchers

in this field is to unlock the inner workings of black box models by ad-

dressing two fundamental questions: why and how, in order to provide a

comprehensive understanding of the decisions made by machine learning

models. Researchers are driven by the imperative need to generate expla-

nations that can be conveyed in various forms, such as the importance [56]

or effect [30] of each feature in the decision-making process or articulating

decision rules that empower users to comprehend the model’s reasoning.

Definition 1.1.7. “An explanation is additional meta information, gener-

ated by an external algorithm or by the machine learning model itself, to
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describe the feature importance or relevance of an input instance towards a

particular output classification.” [21]

Various feature importance methods such as SHAP [56] and LIME [77]

have been proposed to explain black box models including deep neural net-

works and ensemble trees such as Random Forest (RF) and XGBoost. These

methods despite their differences in computing the feature importance distri-

bution, have been widely used in real world applications such as in finance

and healthcare. However, the difference in their attribution mechanisms

[47] and the lack of ground truth feature importance to which the gener-

ated feature importance can be compared to and be validated, made these

methods subject to criticism about their usefulness [81]. The feature inde-

pendence and interactions hypothesis is one example of the limitations of

these methods that is hard to satisfy in real-wold scenarios, specifically in

a multi-output setting. These feature relationships can be represented with

directed acyclic graphs such as classifier chains.

Definition 1.1.8. “Classifier Chains (CC) is an ensemble learning technique

used in multi-label classification tasks, where multiple binary classifiers are

trained in a chain-like fashion. Each classifier in the chain is responsible for

predicting the presence or absence of a single label, and the predictions of

earlier classifiers in the chain are used as input features for subsequent clas-

sifiers. Classifier Chains are effective for capturing label dependencies and

have been shown to improve classification performance in scenarios where

labels are correlated.” [75]

1.2 Challenges of the Explainability Methods

Explainability methods in machine learning play a pivotal role in bridging

the gap between the power and opacity of complex models, providing insights

into their decision-making processes. However, these methods face several

challenges as they struggle with inherent limitations and complexities. Some

of these challenges include method diversity, feature interactions, absence of

Ground Truth for Validation, scalability, regulatory compliance, robustness

and security.
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Method diversity. The field of explainability is diverse, with a multi-

tude of techniques and approaches, each with its strengths and limitations.

Disagreements among these methods on the ideal explanation or feature

importance distribution can be confusing and challenge the standardization

of best practices. Practitioners must carefully select the most appropriate

method for their specific application, considering trade-offs between accu-

racy and comprehensibility.

Human-understandable and context and domain-specific explana-

tions. Four, even when explanations are generated, ensuring that they

are human-understandable and context and domain-specific remains a chal-

lenge. Balancing the depth of information and simplicity for users who may

not have technical expertise is a fine line that must be walked carefully. For

example, when interpreting medical diagnoses made by a machine learning

model, providing explanations that are clinically meaningful and align with

medical knowledge requires understanding not only the input features and

model predictions but also the broader context of the patient’s condition

and relevant medical literature.

Feature Interactions. Many explainability methods make the simplify-

ing assumption of feature independence, which often doesn’t hold in real-

world datasets. In reality, features can be correlated and exhibit complex

interactions that are difficult to capture. Methods that fail to account for

these interactions may provide incomplete or inaccurate explanations. Con-

sider a machine learning model deployed by a bank to assess the creditwor-

thiness of loan applicants. The model takes various features into account,

such as income, credit history, debt-to-income ratio, and employment sta-

tus, to make predictions about whether an applicant is likely to default on

a loan.

In real-world scenarios, these features are often correlated and exhibit

complex interactions. For example, applicants with higher incomes may

also have better credit histories and lower debt-to-income ratios. Similarly,

applicants who are employed full-time may be more likely to have stable

incomes and lower default risks.

However, many explainability methods may make the simplifying as-

sumption of feature independence, treating each feature as if it operates in
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isolation from the others. This assumption may lead to incomplete or in-

accurate explanations of the model’s predictions. For instance, an explain-

ability method that attributes a loan rejection to a low credit score without

considering the applicant’s high income and stable employment status may

provide an incomplete explanation. In reality, the applicant’s credit score

may have been adversely affected by other factors, such as a recent job loss

or unexpected medical expenses, which are not captured by the explanation.

No ground truth for validation. A fundamental challenge is the ab-

sence of a definitive ground truth for feature importance. In most cases, the

true importance of features in a prediction is unknown, making it challenging

to validate the accuracy of the explanations generated. This lack of vali-

dation can lead to debates over the efficacy and reliability of explainability

methods.

Despite these challenges, the pursuit of more transparent and inter-

pretable machine learning models is crucial for building trust, ensuring ac-

countability, and advancing responsible AI applications in various fields.

Overcoming these challenges will require continued research and collabora-

tion to develop more robust and reliable explainability methods that can

empower stakeholders and end-users to make informed and ethical decisions

in the era of AI.

In order to contribute to this goal, we dedicate this thesis to explore the

last three challenges faced by explainability methods and their implications

for the field, by addressing two key research questions described in the next

section (Section 1.3).

1.3 Research Questions

The focus of this thesis is on contributing to the ongoing efforts in the ex-

plainability field by addressing four challenges, including method diversity,

the generation of human-understandable and context and domain-specific

explanations, inclusion of feature/label interactions in the explanation de-

sign and evaluation metrics for XAI methods. Specifically in Sections 3.1,

3.2, 4.1 and 4.2, we sought to answer the following research questions:

The first question focuses understanding explanations diversity with re-

spect to the data properties such as noise levels, feature correlations and
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class imbalance.

RQ1: Can we discover a relationship between the local explana-

tions computed in existing explainability methods and the data

properties like noise level, feature correlations and class imbal-

ance, draw conclusions about how each explainability method han-

dles each of these data properties and make recommendation on

when the user should trust or not these explanations based on the

properties of their data?

Several local explanation methods exist, each offering unique insights into

the behavior of machine learning models on a per-instance basis. However,

these methods often produce different explanations for the same prediction,

leading to what is known as the disagreement problem.

While various research efforts have examined this issue, there remains a

lack of assessment of these explanations based on underlying data properties.

Yet, these properties, such as data distribution, feature correlations, and

sample size, can significantly influence explanation generation. Investigating

the relationship between explanations and data properties is crucial as it can

provide valuable insights into the reliability, consistency, and robustness of

local explanations. Understanding how different data characteristics impact

explanation methods can lead to the development of more accurate and

trustworthy interpretability techniques.

Additionally, we tackle the problem of human understandable and do-

main specific explanations by leveraging personalized, consistent and simple

explanations of the risk factors of the cervical cancer and help clinicians to

understand each patient specific risk factors. Cervical cancer stands as one

of the most devastating and fatal cancers for women worldwide.

Despite numerous predictive models developed to identify women at risk,

a comprehensive understanding of the underlying risk factors remains elu-

sive. To address this gap, we use explainability methods as invaluable tools

to assist clinicians in comprehending model predictions for cervical cancer

on an individual patient level. By utilizing these methods, clinicians can

gain insight into the factors contributing to a patient’s risk, thereby en-

abling more informed decision-making regarding screening, prevention, and

treatment strategies.

Understanding the individual risk factors associated with cervical cancer
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is beneficial for both women and clinicians alike. For women, it empowers

them with personalized information about their risk profile, allowing for

proactive measures to mitigate risk and potentially prevent the development

of cervical cancer. For clinicians, it facilitates more targeted and tailored

approaches to patient care, leading to improved patient outcomes and overall

healthcare delivery in the fight against cervical cancer.

The second question concerns the explanation methodology for multi-

output tasks where the labels are interdependent.

RQ2: Can we design a post hoc and model agnostic local explain-

ability method that can take into consideration label interactions

when computing feature importance in a way to make the feature

importance more complete compared to when the labels are in-

dependent and illustrate how these new feature importance can

help understand the chaining of the labels ?

Recent studies [2, 33, 94, 55] have shown that considering label interde-

pendencies when predicting multi-output tasks yields superior performance

compared to methods that neglect these dependencies. Despite the availabil-

ity of numerous explainability methods capable of elucidating single or multi

independent output predictions, many fail to account for label dependen-

cies. Therefore, there is a pressing need for explainable artificial intelligence

methods that incorporate label dependencies into explanation generation.

These explanations, which we can term as indirect feature importance on

label prediction, have the potential to enhance our understanding of model

predictions like classifier chain predictions.

Classifier chains [75] are a technique used in multi-label classification

where binary classifiers are trained sequentially, with each classifier consid-

ering the predictions of the previous ones as additional features. By com-

puting indirect feature importance in the chaining of labels, these methods

can provide insights into the factors influencing the prediction of each label

in the chain, considering the dependencies between them, thus which chain

order is best. This approach is beneficial as it enables a more comprehensive

understanding of model behavior and facilitates informed decision-making

in various applications, including multi-label classification tasks. Addition-

ally, it empowers users to identify critical features that contribute to the

prediction of specific labels within a chain, thereby improving multi-output
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model interpretability and trustworthiness.

Furthermore, we suggest a way to make the explanations provided by

Shapley Chains more reliable. We achieve this by measuring the uncertainty

in how the explanations are generated, using local surrogate models. Shapley

Chains uses local surrogate models such as Kernel SHAP and LIME to explain

multi-output predictions by evaluating the importance of direct and indirect

features on labels, and presents a robust tool for explaining complex models.

Despite LIME’s popularity, its instability often gives rise to inconsistent

explanations.

Measuring the uncertainty around local explanations is crucial to build-

ing confidence in methods such as LIME and Kernel SHAP. Although Bayes

LIME and Bayes SHAP attempt to address uncertainty, they lack a reliable

assessment of uncertainty intervals and, if used for multiple-output expla-

nations, they both ignore indirect label features . We propose Bayes LIME

Chains to address the challenges mentioned above. The Bayes LIME make

it possible to calculate the indirect importance of features as well as the

measurement of credible intervals around these explanations. Unlike Bayes

LIME and Bayes SHAP, we evaluate the comparison with the importance of

ground truth features on synthetic datasets with multiple outputs.

1.4 Thesis Outline

The challenging properties of explanability methods as presented in Section

1.2, pose significant barriers on the usefulness of these methods and therefore

the trust that the users may have in the field of explainable AI in general.

While several studies focus on explaining Deep Learning architectures

in various tasks and domains of applications, there is yet few studies on

when and for what contexts to use the explainbility methods designed to

explain the predictions made by ensembles of trees such as Random forest

and XGboost. At the same time, there is room for improvements in existing

approaches, in terms of feature importance attribution, as well as objective

metrics to validate the explanations.

Therefore, our study consists in providing understanding of the existing

explainable methods with regards to data properties such as feature correla-

tions, presence of irrelevant variables, noise and class imbalance on various

synthetic and real world datasets, in assessing local explanations on the cer-
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vical cancer prediction where human understanding is paramount, as well

as designing and developing a new method that takes label interactions in

the explanation design in order to ensure a complete representation of the

feature/output interactions by computing the direct and indirect feature

importance.

These indirect feature importance can be important in many cases, for

example, in healthcare diagnosis using multi-label classification, direct fea-

ture importance can identify clinical biomarkers or symptoms directly as-

sociated with each diagnosed condition. Indirect feature importance can

reveal how the presence of certain conditions or comorbidities influences the

prediction of other related conditions, therefore indirect effects of some clin-

ical biomarkers or symptoms on the related conditions, providing insights

into disease interactions and patient health profiles.

We next present the organization of the presentation of the studies con-

ducted in terms of this thesis, as well as the theoretical background infor-

mation provided for understanding the topics discussed in each chapter.

Introduction and Background. In Chapter 1, we presented some of the

most dominant challenges on explainability of machine learning models for

real-world data. In this chapter, we also provide the thesis organization and

an outline of the main chapters and topics that are discussed. In Chapter

2, we provide some key definitions and notations for the explainability field

and an overview of existing methods. Those are important for understanding

the background of the existing methods in this field and contain information

about modules and properties to which we will refer in the main chapters

that follow.

Chapter 3 presented in two section address the research question RQ1.

Feature Importance Depends on Properties of the Data: Towards

Choosing the Correct Explanations for Your Data and Decision

Tree based Model. In order to ensure the reliability of the explanations

of machine learning models, it is crucial to establish their advantages and

limits and in which case one should use each of these methods, especially

with regards to the data properties. However, the current understanding of

when and how each method of explanation can be used is insufficient and

for which data properties each of these methods can be used. To fill this

10
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gap, in Section 3.1 we perform an empirical evaluation by synthesizing mul-

tiple datasets with different properties, e.g., feature correlation and noise.

Our main objective is to assess make recommendations of when each of the

feature importance estimates provided by local explanation methods should

be used, and when users should be careful and why.

Local Explainability Methods for Cervical Cancer Risk Assess-

ment. Cervical cancer is a life-threatening disease and one of the most

prevalent types of cancer affecting women worldwide. Being able to ad-

equately identify and assess factors that elevate risk of cervical cancer is

crucial for early detection and treatment. In Section 3.2, we use local ex-

plainability methods to assess then recommend which method a clinician

should choose to explain and understand the cervical cancer risk factors

for each patient based on their specific profiles and a set of fixed desired

properties such as compactness and stability.

Lastly, Chapter 4 presented in two sections address the research question

RQ2.

Shapley Chains: Local Explanations for Multi-output Decisions. in

Section 4.1, we present Shapley Chains, which is a post-hoc model agnostic

local explainability method designed to explain a multi-output classifier out-

puts using the Shapley value to compute feature importance. Shapley Chains

attributes feature importance to all features that directly or indirectly con-

tribute to the prediction of a given output, by tracking all the related outputs

in the given chain order. Compared to existing methods such as Shapley

flow that is restricted to causal graphs, we show a complete distribution of

feature importance scores in multi-output synthetic and real-world datasets.

Our method is model agnostic, meaning that it can be applied on any type of

graphical model that represent complex feature and label interactions such

as classifier chains.

Bayes LIME Chains. Shapley Chains incorporate label interdependence

into the explanation design process to ensure that explanations reflect the

interdependence of multiple outputs. This process has improved the expla-

nation attribution in the context of multi-label and unveiled how the features

contribute to the outputs directly and through subsequent related outputs

11
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in different chain orders of the classifier chain. Therefore, in Section 4.2, we

extend our method Shapley Chains to include a measurement of the uncer-

tainty of the direct and indirect feature importance generated by Shapley

Chains. Measuring uncertainty in the local explanations is a way to increase

robustness and reliability of the generated explanations in general and in

the direct and indirect feature importance computed by Shapley Chains in

particular.

Conclusion. Chapter 5 summarizes our contributions, addresses the limi-

tations of each proposed approach, and outlines perspectives for future work.

In this concluding chapter, we reflect on the key findings and novel insights

uncovered throughout our research journey and highlight the significance of

our contributions to the field. Furthermore, we critically evaluate the lim-

itations inherent in each proposed approach, acknowledging the challenges

and constraints encountered during the research process.
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Chapter 2

Notation and Background

This section is dedicated to the notation that we use in the subsequent

chapters and background information vital to understanding the intricacies

of the research presented in this thesis.

2.1 Notations

This set of notations will be consistently used throughout the thesis to repre-

sent the key entities and mathematical operations in the context of machine

learning.

• X is an input set of d-dimensional feature vectors;

• x ∈ X is an instance, described by a feature vector x = [x1, . . . , xd]

• x′ is a perturbed input instance;

• Y is an output set of m-dimensional target vectors;

• D is the set of features;

• S is a random subset of D;

• Each instance x ∈ X is associated with an output vector y = [y1, . . . , ym],

y ∈ Y ;

• xi denotes the i’th input instance x;

• xj denotes the j’th feature of input instance x;

13
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• xj
i denotes the j’th feature of the i’th input instance x;

• D = {(xi, yi)}
N
i=1 is a dataset of n samples;

• f : X → Y is a predictive model that learns a single output in Y ;

• L is a loss function;

• gθ : X → Y is an interpretable surrogate single-output model with

parameters θ, such as a logistic regression or a decision tree;

• h : X → Y is a multi-output set of classifiers, h = [h1, h2, . . . , hm];

• ŷ = h(x) is a prediction of multi-output model h for instance x, ŷ =

[ŷ1, ..., ŷm];

• P (y|x; θ) is a conditional probability of the output y given the instance

x;

• y′ is a perturbed output instance;

• N (µ, σ2) is a Gaussian distribution with mean µ and variance σ2;

• P (Y ; θ) =
∏m

k=1 P (yk): Marginal output independencies;

• P (Y |X; θ) =
∏m

k=1 P (yk|X, y1, ..., yk−1): Conditional output interde-

pendencies;

• φxj denotes the feature contribution (also referred to as feature im-

portance) of the feature xj ;

• φxj (yk) denotes the feature contribution (also referred to as feature

importance) of the feature xj to the prediction of the output yk;

• φ⋆

xj is the true value (ground truth) feature contribution of xj to the

prediction of the single output ŷ;

2.2 Background

The background section of this thesis provides a foundational understanding

of essential concepts and methodologies. We begin by examining decision

tree-based models, highlighting their significance in classification and regres-

sion tasks. We then focus on multi-output learning, exploring how models

14
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predict multiple variables simultaneously. Next, we investigate explainabil-

ity methods, which explain black box models by providing interpretable

insights. Finally, we discuss the evaluation of explanations, focusing on

metrics and methodologies used to assess their quality and trustworthiness.

This overview sets the stage for our contributions in subsequent chapters.

2.2.1 Decision Tree Methods

Tree-based models stand out as some of the most prevalent machine learning

techniques that can be used both for regression and classification tasks. A

decision tree [11] is a hierarchical graph structure and consists of nodes con-

nected by directed edges. Every node may have outgoing edges connecting

it to its children, known as the leaves. The top node where the first split

takes place is called the root.

The decision tree is defined by a set of rules represented by the internal

nodes of the tree. Each internal node tests a specific feature against a split

criteria, directing the flow to the left or right child node based on the out-

come of the test. Leaf nodes provide the final output, either a class label in

classification or a continuous value in regression. Formally, the decision tree

output is given by: The construction of the decision tree involves recursively

partitioning the input space into regions, each associated with a unique set

of rules. The decision tree is trained to optimize the purity of these regions

in classification or the reduction of variance in regression, resulting in a

predictive model that is interpretable and easy to understand. Fig 2.1 1 il-

lustrates a classification decision tree in which the task is to predict whether

a day is suitable for playing outside based on three characteristics, namely

humidity level, weather, and whether it is windy or not.

Decision trees offer an intuitive and interpretable framework for under-

standing the decision-making process, making them accessible even to in-

dividuals with limited expertise in the field. However, while these models

provide transparency in their rule-based structure, they often fall short in

accuracy, particularly when confronted with complex datasets or tasks with

intricate feature-target relationships. As a solution, random forest, a pop-

ular ensemble method, has emerged as a preferred alternative to decision

trees due to its superior performance in handling complexity.

1https://www.baeldung.com/cs/decision-trees-vs-random-forests
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Figure 2.1: An example of a binary classification decision tree.

A random forest [10] is an ensemble learning method that constructs

multiple decision trees. Each tree is built on a random subset of features,

sampled with bootstrap sampling. The final prediction is a major vote for

all tree predictions in the classification scenario or their mean average in the

regression case. The combination of these randomization decision trees helps

to decorrelate the individual trees, making the random forest less prone to

overfitting and improving its overall predictive performance. While build-

ing multiple trees instead of a single one may seem more computationally

expensive, taking a random subsample of features per tree alleviates this

drawback. Nonetheless, random forest introduces its own layer of complex-

ity, necessitating interpretation and understanding to effectively harness its

full potential. This highlights the ongoing challenge in machine learning

to strike a balance between model transparency and predictive power, ulti-

mately emphasizing the importance of selecting the most suitable approach

for the given task and dataset.

Figure 2.2 2 illustrates the above example with three decision trees built

on two features each. Here the overall prediction should be “yes” as the

majority of the individual trees predict that the considered day is suitable

to play outside.

2.2.2 Multi-Output Learning

In the field of machine learning, there exists a diverse range of models de-

signed to tackle various prediction tasks. One fundamental distinction lies

2https://www.baeldung.com/cs/decision-trees-vs-random-forests
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Figure 2.2: An example of a a random forest where each decision tree is
built on 2 features.

in the number of outputs these models are capable of predicting. Some

models are designed to predict only a single output variable, encapsulat-

ing tasks such as classification and regression. On the other hand, there

are models explicitly engineered to handle scenarios where multiple output

variables are involved. These multi-output models [100] are adept at cap-

turing complex relationships and dependencies between input features and

multiple target variables simultaneously, enabling tasks such as multi-label

classification and regression.

One common example of multi-output classification is image tagging,

where the task involves assigning multiple labels to an image. For instance,

consider a scenario where an image classification model is trained to identify

objects and activities within an image. Instead of predicting a single label

for the entire image (e.g., “cat” or “dog”), the model may be required to

predict multiple labels simultaneously (e.g., “cat,” “outdoor,” “playing”). In

this case, the model is performing multi-output classification by predicting

a binary or multi-class label for each distinct attribute or concept present

in the image. This approach enables the model to capture the complex and

diverse nature of visual content, providing more detailed and informative

annotations for downstream tasks such as content-based image retrieval,

image understanding, and automated tagging systems.

A multi-output binary classifier denoted as h learns a vector of base

classifiers:

h(x) = [h1(x), h2(x), . . . , hm(x)]
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for a given instance x and returns a binary vector of predicted values:

ŷ = [ŷ1, ŷ2, . . . , ŷm]

The main challenge in multi-output learning lies in managing the inher-

ent complexity of the output space and the interdependencies among the

outputs. While each target can be addressed as an independent single-

output problem often referred to as marginal learning (and as binary rel-

evance [29, 94] in the case of classification), without explicitly considering

the dependencies or relationships with other tasks, designing classifiers that

learn jointly multiple outputs by incorporating these output dependencies

makes it possible to better represent the relationships in the data (between

outputs, therefore between features and outputs). In the first case, the m

models are trained separately. This approach allows to different algorithms

or hyperparameters to be used for each model, based on specific character-

istics of each task. However, completely ignoring interdependencies between

the targets can lead to suboptimal performance or prediction of impossible

combinations [2]. While in the joint learning, the goal is to maximise model

accuracy by considering all tasks or variables together, capturing the depen-

dencies and interactions between them and maximizing the joint probability:

P (y|x) =
m
∏

k=1

P (yk|x, y1, ..., yk−1) (2.1)

Classifier chains. A classifier chain is one multi-output classification method

that incorporates the chaining of the outputs in the learning of multiple clas-

sifiers (one classifier for each output, also referred to as base classifier). The

choice of the base model depends on the characteristics of the problem and

the desired performance.

The initial idea of the chaining approach, for classification [75], was to

arrange per-target models in a chain, such that the previous labels are used

to train each next model in the training phase and the output prediction

of one model becomes an additional feature for the subsequent models in

the prediction phase. Classifier Chains have proved to have high predictive

performance and are widely known as one of the state-of-the-art techniques

for multi-label modeling [75].

As opposed to independent modeling such as the binary relevance in
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Figure 2.3: Different chain structures for a problem with m = 4 outputs.

classification, the chaining approach allows the model to capture the depen-

dencies and interactions between the target variables. The chaining method

is exactly an expression of Eq. 2.1, if expressed according to the chain rule

of probability (i.e., Fig. 2.3 (B) as a probabilistic graphical model represen-

tation). That is one reason why conditional dependencies are interesting in

this context. However, a classifier chain is not faithful to a ‘proper’ infer-

ence procedure, and rather takes a greedy approach to inference, plugging

in predictions as observations; and proceeds much as a forward pass across

a neural network. This creates some ambiguity between how much effect

is gained from probabilistic dependence (as a probabilistic graphical model

would) and feature effect (as one encounters via the latent layers of deep

learning). Although discussion has been ongoing e.g., [76, 75], there is not

yet a consistent understanding in practice of what role a prediction plays as

a feature to another label.

The order of the chain has an impact on the model’s ability to learn in-

terdependencies between the targets and thus predictive performance. Dif-

ferent approaches have been suggested to optimize chain order including

using correlation to build the best structure [60].
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Figure 2.4: The taxonomy of XAI methods with examples.

2.2.3 Explainability Methods

In this section, we provide a comprehensive literature review on Explain-

able Artificial Intelligence. We begin by presenting a taxonomy of XAI ap-

proaches, categorizing these methods based on their underlying principles,

applications, and interpretative paradigms. Subsequently, we focus on an in-

depth analysis of the most prominent and state-of-the-art XAI approaches,

highlighting both their strengths and limitations. Figure 2.4 illustrates the

taxonomy of XAI methods.
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Taxonomy of Explainability Methods

Various terms are employed to illustrate the significance or impact of in-

put features on model predictions. These terms include feature importance,

contribution, participation, and feature effect, each offering distinct insights

into the relationship that the features may bring to the model decision mak-

ing. To illustrate the significance of each of these terms, let’s consider the

example of a credit risk assessment model.

Feature importance quantifies the relative influence of individual features

on the model’s predictions. In this case, feature importance analysis might

reveal that the borrower’s credit score is the most important factor affecting

the model’s predictions of loan approval or rejection. This indicates that

the credit score has the highest impact among all features considered in the

model. By calculating the feature importance, one can conclude the feature

ranking and then select the most important features, which can also be used

as a dimensionality reduction tool.

On the other hand, feature contribution zooms in on the specific effect

of a single feature on a particular prediction. For instance, suppose the

model predicts loan approval for a specific applicant. The contribution of

the borrower’s credit score would indicate the extent to which it affects the

likelihood of loan approval for that particular applicant. A higher credit

score would likely contribute positively to the likelihood of loan approval,

while a lower credit score might have a negative contribution.

Feature Participation assesses the involvement of each feature in the

decision-making process of the model. In this case, the participation of the

borrower’s credit score would indicate its active role in the model’s decision

to approve or reject a loan application. A high participation value for the

credit score suggests that it plays a significant role in determining the final

decision.

Finally, feature effect can either show the single or the collective impact

of multiple features on model predictions. Considering the borrower’s credit

score alongside other relevant features such as income, employment history,

and debt-to-income ratio, the feature effect would illustrate how these factors

collectively influence the model’s predictions of loan approval or rejection.

The feature effect provides insights into how changes in multiple features

simultaneously impact the overall outcome of the model’s predictions.
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White box vs black box models. White box models as defined in 1.1.3,

often referred to as interpretable models, are characterized by their trans-

parency and ease of interpretation. These models include linear regression,

decision trees, and logistic regression, among others. Their appeal lies in

their simplicity, as they are built on straightforward, human-understandable

principles. Some of their advantages include: transparency such that each

feature’s contribution to the model’s output can be easily understood, inter-

pretability which makes it easier to derive actionable insights and identify

factors influencing predictions, trust that enables users to validate and ver-

ify the model’s decisions, also crucial in domains like healthcare and finance,

and finally their alignment with regulatory requirements, as they can provide

clear explanations for their decisions.

On the other hand, black box models (Definition 1.1.4), such as deep neu-

ral networks, ensemble methods, and support vector machines, are known

for their complexity and opacity. Their decisions are derived from intricate

mathematical computations that are challenging for humans to intuitively

grasp. These complex models are widely used for their high predictive ac-

curacy, often outperforming white box models on complex tasks, and their

ability to capture intricate relationships in data that might be beyond the

capacity of simpler models, making them well-suited for image recognition,

natural language processing, and other complex domains. These models

can also generalize from data effectively, adapting to various patterns and

making them versatile in a wide range of applications.

Post hoc vs in-process methods. While simple models such as deci-

sion trees offer some degree of interpretability, several efforts have proposed

techniques that interpret the local and global decisions made by the black

box models such as deep neural networks. These techniques can either in-

clude the interpretation process within the model learning also known as

in-process methods, or explain its decision in a post hoc manner, meaning

that these are applied after a machine learning model has been trained.

These post hoc methods are often model-agnostic, meaning that they can

be applied to a wide range of machine learning models without requiring

changes to the model architecture and allow for analyzing existing models

without the need to modify the training process, making them suitable for

legacy systems. The generated post hoc explanations are typically tailored
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for end-users, ensuring that the explanations are human-understandable and

relevant to the specific context. Post hoc techniques include feature impor-

tance scores, perturbation-based methods, and surrogate models, based on

the specific use case.

In-process methods, on the other hand, incorporate explainability con-

siderations directly into the machine learning model’s development and

training process. The model is designed to be interpretable from the out-

set and embed transparency within its architecture, resulting in a model

that is inherently easier to understand and explain. By avoiding the need

for additional post hoc steps, in-process methods can be computationally

more efficient and the explanations provided by such methods are consis-

tent with the model’s design and decision-making process, reducing the risk

of explanation-model inconsistencies.

Model agnostic vs model specific methods. Model-agnostic methods

are designed to provide explanations for a wide range of machine learning

models, regardless of their architecture, complexity, or learning algorithm.

These methods are often applied in a post hoc manner and can be used

with any machine learning model, from decision trees to deep neural net-

works, without requiring modifications to the model itself. They are valu-

able for analyzing and explaining existing models, making them suitable for

auditing or improving the transparency of legacy systems. Model-agnostic

explanations are often designed with the end-users in mind, emphasizing

human-understandable insights that enhance user trust and confidence.

On the other hand, Model-specific methods, as the name suggests, are

tailored to a particular machine learning model or family of models. These

methods are often developed in conjunction with the model’s architecture or

learning process and can build interpretability directly into the model’s ar-

chitecture, resulting in inherently interpretable models from the outset. By

eliminating the need for additional post hoc steps, model-specific methods

can be computationally efficient and more closely aligned with the model’s

design. Same as for in-process explainability methods, the explanations

provided by model-specific methods are also consistent with the model’s

decision-making process, reducing the risk of inconsistencies between the

model and its explanations.
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Local vs global methods. Local methods focus on examining specific,

localized aspects of data or model behavior for a specific instance. They are

designed to provide insights into a single and specific data point, making

them useful for fine-grained analysis, offering a detailed, close-up view of

data patterns and model behavior in a specific context. They are valuable

for assessing the sensitivity of a model’s predictions to small changes in input

data and provide insights into the model’s stability and reliability. These

methods are adept at detecting anomalies or outliers in a dataset, aiding

in quality control and identifying data irregularities. The local feature im-

portance analysis focuses on understanding how individual features impact

model predictions in specific instance.

In contrast, global methods take a broader perspective, aiming to pro-

vide insights into the overall behavior and performance of data or models

across the entire dataset. These methods analyze the data or model as a

whole, offer a holistic view of data patterns and model performance, enabling

a comprehensive assessment, are effective in recognizing recurring patterns

and trends within data and are suitable for assessing a model’s overall pre-

dictive accuracy, generalization, and robustness. The global feature impor-

tance analysis identifies trends and patterns in how features impact model

predictions across the entire dataset.

Post Hoc Explainability

Features, or variables, encapsulate crucial information within datasets, in-

fluencing the performance and interpretability of models. The emergence of

feature importance generation based methods has offered a profound avenue

for comprehending the significance and impact of these features on model

outputs. In this section, we present some of most popular methods for post

hoc local and global explanations that can either be model agnostic or model

specific.

Shapley Additive exPlanations (SHAP). SHAP introduced in [56],

serve as a powerful tool for explaining the output of a machine learning

model by attributing a value to each feature based on its contribution to

individual predictions. These values are computed by considering all possible

feature combinations, employing the Shapley value concept [79]. The general

formula for computing the Shapley value of feature xj can be expressed as
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follows:

φxj =
∑

S⊆D\{j}

|S|! (|D| − |S| − 1)!

|D|!

(

f∗

x∈RS∪{j}(x) − f∗
x∈RS (x)

)

(2.2)

Here, f∗

x∈RS∪{j} and f∗
x∈RS respectively denote predictions of the black

box model for subsets with and without the feature xj included.

The Shapley value use four axioms to serve as foundational principles

guiding the fair attribution of feature importance. These axioms, rooted in

cooperative game theory, ensure that attribution methods exhibit desirable

properties such as consistency and fairness.

The Shapley value, a concept rooted in cooperative game theory, is gov-

erned by four axioms that define fair distributions of benefits within coali-

tions. Efficiency ensures that the total benefits produced by the grand coali-

tion are equally distributed among its members. Symmetry mandates that

players who contribute equally to all coalition subsets receive an equal share

of benefits. Linearity allows for the additive combination of values from dif-

ferent coalition games when constructing a new cooperative game. Finally,

the Dummy player axiom dictates that non-contributing players receive no

benefits. While this axiom may raise ethical concerns in certain fields, such

as economics, it poses no such issues in machine learning contexts where it is

used to measure variable contributions to model predictions. These axioms

collectively ensure that the Shapley value provides a unique and fair division

of benefits within coalitions.

In order to understand the predictions of black box models, SHAP of-

fers a wide range of explainers including Kernel SHAP, Sampling SHAP, Tree

SHAP, and Deep SHAP, tailored to different model architectures. Among

the multiple proposed explainers, Tree SHAP is a post hoc model specific

method that is designed to explain the predictions of complex tree based

model. It traverses the decision tree from root to leaf, computing feature

contributions at each node based on the Shapley value concept, reflecting

the difference between the model’s output for the current instance and the

output if that node were the root. These contributions are propagated

back along the traversal path, considering feature interactions and split-

ting criteria. Aggregating contributions across all paths yields final feature

importance values, offering insights into the impact of each feature on the
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model’s prediction. For ensemble models, Tree SHAP averages contributions

across all trees to provide comprehensive explanations, facilitating a deeper

understanding of model behavior and feature influence.

Deep SHAP, another technique of SHAP proposed to explain the intri-

cate relationships between features and predictions in deep neural networks

(DNNs). It navigates through the neural network layers, capturing feature

attributions at each step by employing a combination of backpropagation

and sampling techniques. It computes the contribution of each feature to

the model’s output by analyzing the changes in predictions when individ-

ual features are included or excluded. Through this process, Deep SHAP

disentangles the complex interactions within DNNs, providing interpretable

explanations for model predictions.

Furthermore, Kernel SHAP on the other hand, is a post hoc model ag-

nostic explanation method allowing to compute local explanations for any

complex model. It learns loally a surrogate model that mimics the black box

model behavior on a locally generated new dataset around a given instance,

that is also the istance we want explanations for. The weights of the sur-

rogate linear model are then considered as the feature importance for that

instance.

Lastly, Sampling SHAP is very similar to Kernel SHAP designed for high-

dimensional datasets, offering a scalable solution for computing Shapley

values in complex models. By leveraging sampling techniques, Sampling

SHAP addresses the computational challenges associated with large feature

spaces, ensuring efficient and practical computation of feature attributions.

Like its counterpart, Sampling SHAP provides interpretable insights into

the importance of features in machine learning models. With its ability to

handle high-dimensional datasets, Sampling SHAP serves as a valuable tool

for explaining the behavior of intricate models across diverse domains.

Local Interpretable Model-agnostic Explanations (LIME). LIME

[77] is another local surrogate based methodology designed to provide in-

terpretable approximations of the decision boundaries of complex black box

models in the local vicinity (neighborhood) of a specific instance as shown

in Figure 2.5. Let f denote the black box model of interest, and g represent

the local interpretable model created by LIME. For a particular instance x

in the input space, LIME seeks to approximate the behavior of f through a
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Figure 2.5: To explain a given instance, LIME trains a local linear model on
a locally sampled data. The weights of the linear model are then considered
as the explanations for the given instance [77].

simplified, interpretable model g that is locally faithful.

Formally, the local interpretable model g is obtained by solving the fol-

lowing optimization problem:

g(x) = arg min
k∈K

L(f(x, k(x′)) + Ω(k) (2.3)

where K is the set of possible interpretable models, L is a loss function

measuring the dissimilarity between the predictions of the black box model

f and the surrogate model k ∈ K, x′ is a set of perturbed instances gener-

ated around x to train the local model, and Ω(k) is a regularization term

penalizing model complexity.

The primary objective of LIME is to generate a locally faithful and inter-

pretable model that approximates the decision boundary of the black box

model within a small neighborhood of the given instance while keeping the

surrogate model as simple as possible. This facilitates a better understand-

ing of the black box model’s decision-making process in specific regions of

the input space.

Global and Local Surrogates. Mimic explainer in Interpret community3

is based on the idea of training global surrogate models to mimic blackbox

models. A global surrogate model is an intrinsically interpretable model

3https://interpret.ml
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that is trained to approximate the predictions of any black box model as ac-

curately as possible, using one of the following interpretable models as your

surrogate model: Light GBM (LGBM Explainable Model), Linear Regres-

sion (Linear Explainable Model), Stochastic Gradient Descent explainable

model (SGD Explainable Model), and Decision Tree (Decision Tree Explain-

able Model).

Local surrogates [63] on the other hand, are interpretable models de-

signed to approximate the behavior of a complex black box model within

a local region of the input space. Let f represent the black box model of

interest, and g denote the local surrogate model. For a specific instance x in

the input space, the local surrogate model g is trained to approximate the

response of the black box model f in the vicinity of x.

Formally, the local surrogate model g is defined as:

g(x) = arg min
k∈K

L(f(x), k(x’))

Where K is the space of interpretable models, L is a loss function mea-

suring the distance between the predictions of the black box model f and

the surrogate models k ∈ K, and x’ denotes the set of sampled instances in

the local neighborhood of x used to train the surrogate model.

Kernel SHAP, LIME, and local surrogates 4, share several fundamental

similarities in their approaches to model interpretation. Firstly, all three

methods aim to provide local explanations for individual predictions, en-

abling users to understand the model’s decision-making process on a per-

instance basis. Secondly, they adopt a model-agnostic perspective, allowing

them to be applied to a wide range of machine learning models without re-

lying on specific model structures. This flexibility makes them particularly

useful in scenarios where the underlying model’s complexity varies or is not

fully understood. Thirdly, they employ local approximation techniques to

explain model predictions, whether through kernel-based approximation (as

in Kernel SHAP), generating interpretable surrogate models (as in LIME),

or constructing local linear models (as in local surrogates). Despite their

differences in implementation details, these methods share the common goal

of enhancing model transparency and interpretability, enabling users to gain

insights into model behavior at the individual prediction level.

4interpret community package https://interpret.ml
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Counterfactual Explanations. While local explanations help understand

why a model makes a particular decision, they do not explicitly reveal what

needs to change to get a different outcome for a prediction. As a result,

there are a growing number of methods that explain the decisions of these

models to affected individuals and provide means for recourse [96].

DiCE [67] is a model-agnostic method for generating diverse and in-

terpretable counterfactual explanations for individual predictions. It finds

instances similar to original instance x (Figure 2.6 5), but with different

predicted outcomes. Optimization requires minimizing a distance metric

between the counterfactuals and x, subject to constraints that ensure dis-

similarity among generated counterfactuals. Counterfactuals are generated

by perturbing the features of x while staying within the feasible range of

feature values. The optimization problem can be formulated as:

min
x′

i∈X
δ(x′

i, xi) ∈ C(x′
i) = y′

i, x′
i &= xi

where x′
i is a counterfactual instance, X is the feasible range of feature val-

ues, δ(x′
i, xi) is a distance metric between the counterfactual and the original

instance, C(x′
i) is a constraint function that enforces the counterfactual to

have a desired predicted outcome y′
i, and x′

i &= xi ensures that the counter-

factual is different from the original instance.

For example, recourse offers a person denied a loan by a credit risk

model a reason for why the model made the prediction and what can be

done to change the decision. Beyond providing guidance to stakeholders in

model decisions, algorithmic recourse is also used to detect discrimination

in machine learning models [34, 43, 84].

Tree Interpreter. Tree Interpreter [52] is a model-specific method for

interpreting predictions of tree-based models, such as random forests and

XGBoost. It provides a way to attribute feature importance values for

predictions made by tree-based models, by tracing the decision path of an

instance through the tree and measuring the contribution of each feature

towards the prediction. As introduced in [71], this is done by summing the

changes in prediction associated with each decision node along the path,

weighted by the proportion of instances that pass through each decision

5https://interpret.ml
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Figure 2.6: An example of counterfactual generation with DiCE for the loan
approval for a given client. In order to approve the client’s rejected loan,
DiCE recommends increasing his income and waiting for one additional year
of credit history.

node. The prediction can be decomposed into the sum of the feature contri-

butions and the “bias” β (i.e. the mean of training set), and can be written

down as:

f(x) = β +
D
∑

j=1

φxj

Unlike in the linear regression where the feature coefficients are fixed

with a single constant for every feature that determines the contribution,

the contribution of each feature φxj in this tree prediction decomposition

is not a single predetermined value, but depends on the rest of the feature

vector which determines the decision path that traverses the tree and thus

the contributions that are passed along the way.

2.2.4 Explanation Evaluation

In this section, we address the evaluation of explanations in the absence of

ground truth, employing a diverse range of metrics to assess their properties.

These metrics [16] reflects desired aspects such as local stability, faithfulness,

and consistency.
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The Local Stability Metric. evaluates how consistent explanations are

for instances in the same neighborhood in a dataset. Essentially, if two

instances have similar features and produce similar predictions, they should

also receive similar explanations [72]. However, instances that are on the

edge of a decision boundary may have different explanations, even if their

features are alike. This is because many explanation methods base their

explanations on the model’s predictions. To assess stability, we employ the

local Lipschitz metric [3], which measures the stability of explanations across

instances in the same neighborhood. This helps us understand how robust

the explanations are when the input data changes slightly.

L̂(xi) = argmax
xj∈Bǫ(xi)

‖φ(xi) − φ(xj)‖2

‖xi − xj‖2
(2.4)

where xi refers to an instance, Bǫ(xi) is the ǫ-sphere centered at xi, and

φ(xi) and φ(xj) are the explanation parameters for xi and xj . Lower values

indicate more stable explanations.

The Compactness metric. 6 measures how simple an explanation is by

looking at how many features are needed to explain a certain part of the

model’s prediction. We decide on a percentage of the prediction we want

to explain, then see how many features it takes to explain that percentage.

This helps us understand how straightforward the explanation is in terms

of the number of features it uses to explain a specific part of the model’s

output.

RemOve And Retrain (ROAR). [39] involves iteratively removing a

subset of features from a dataset, retraining the model on the reduced

dataset, and then evaluating the changes in model accuracy or feature im-

portance. By systematically testing the impact of feature removal on model

performance, it offers valuable information about the model’s sensitivity to

different features and its overall interpretability.

The Faithfulness Metric [47] is a crucial aspect of explainability evalu-

ation, aiming to assess how faithfully an explanation method represents the

true relationship between features and model predictions. It measures the

6https://github.com/MAIF/shapash
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extent to which the explanations provided accurately reflect the underlying

behavior of the model. One common approach to evaluating faithfulness

involves comparing the explanations generated by a method against the

ground truth feature importances, if available [1]. However, in many prac-

tical scenarios, accessing such ground truth information may be challenging

or impossible. As an alternative, faithfulness can be evaluated based on

the consistency and agreement of feature importance rankings and signs

across different explanation methods. This approach focuses on determin-

ing whether the explanations generated by various methods align in terms

of which features are considered important and how they contribute to pre-

dictions. Other measures of faithfulness from [1] can be viewed as variants

of these.

The Consistency Metric. measures how much different explanation meth-

ods agree on the importance of features for the same data points. It calcu-

lates the distance between pairs of explanations using the l2 distance [89].

When two methods provide similar explanations for the same data, it boosts

the user’s confidence in the model’s predictions. This alignment in explana-

tions makes it easier for users to trust the model’s decisions.

Feature and Rank Agreements. [47] While feature agreement com-

putes the fraction of common features between the sets of top-k features of

two explanations, the rank agreement computes the fraction of features that

are not only common between the sets of top-k features of two explanations,

but also have the same position in the respective rank orders. Rank agree-

ment is a stricter metric than feature agreement since it also considers the

ordering of the top-k features.
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Chapter 3

A Critical Evaluation of

Local Explainability Methods

This chapter presents two important contributions to understanding and

using local explainability methods in machine learning. First, we discover

a relationship between the local explanations computed in existing explain-

ability methods and the data properties like noise level, feature correlations

and class imbalance. This helps us see how well they work in different situa-

tions. Second, we leverage personalized, consistent and simple explanations

of the risk factors of the cervical cancer and help clinicians to understand

each patient specific risk factors. By doing this, we can see how well the

explanations help us understand the factors contributing to cervical cancer

risk in individual cases. These contributions help us learn more about how

local explainability methods work in different scenarios, both general and

specific.

3.1 Feature Importance and Data Properties

In order to ensure the reliability of the explanations of machine learning

models, it is crucial to establish their advantages and limits and in which case

each of these methods. Several existing studies have addressed the challenges

of post-hoc analysis in machine learning models, particularly when feature

dependence is present. These studies recognize that real-world datasets of-

ten exhibit complex relationships among features, such as correlations or

interactions, which can impact the interpretability and reliability of model
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explanations. For instance, [89] discussed the implications of feature de-

pendence on the consistency of explanation methods, highlighting the need

for robust techniques that account for such dependencies. Additionally, [4]

proposed methods for analyzing the stability of explanations in the presence

of feature correlations, emphasizing the importance of understanding how

explanations vary with changes in the input data. However, the current

understanding of when and how each method of explanation can be used

is insufficient. To fill this gap, we perform a comprehensive empirical eval-

uation by synthesizing multiple datasets with the desired properties. Our

main objective is to assess the faithfulness, local stability and consistency of

feature importance estimates provided by local explanation methods, which

are used to explain predictions made by decision tree-based models. Analyz-

ing the results obtained from synthetic datasets as well as publicly available

binary classification datasets, we observe different magnitude and sign of

the feature importance estimates generated by these methods. Moreover,

we find that these estimates are sensitive to specific properties present in

the data. Although some model hyper-parameters do not significantly influ-

ence feature importance assignment, it is important to recognize that each

method of explanation has limitations in specific contexts. Our assessment

highlights these limitations and provides valuable insight into the suitability

and reliability of different explanatory methods in various scenarios.

3.1.1 Introduction

Decision tree based models such as random forest [10] are widely used ma-

chine learning algorithms in data science. Although deep learning has been

increasingly popular, especially in domains such as computer vision and

natural language processing, random forest, for example continues to be

a competitive option on many kinds of tabular data in a diverse number

of domains, including biology [49] and medicine [78], where interpretation

is paramount. Small decision trees operating on understandable feature

spaces are naturally interpretable, and although this interpretability is di-

luted across a large forest, it can be recovered in terms of feature importance,

which is a major tool that can be used in practical applications for data un-

derstanding, model improvement, or model explainability. However, practi-

tioners may lose trust in the importance scores provided for random forest

[90], or simply be unable to use them to answer their research questions
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from the feature importance result due to a number of reasons [93, 64], for

example: (1) a relative lack of training examples leads to instability where

the importance scores change due to only minor changes or additions to

the dataset or hyper-parameters. (2) even with a large training set, mul-

tiple (possibly equivalent) feature scores can be presented. (3) the feature

importance scoring mechanism is thrown off by particular properties of the

data distribution such as noise, imbalance and feature type (in particular,

the importance of continuous features is often over-estimated). (4) results

where feature importance is assigned to spurious or even random features.

Practitioners are thus often right to be reluctant to draw conclusions from or

place trust in off-the-shelf feature-importance scorers, and we aim to remedy

this to some extent with a benchmarking study.

To remedy this, researchers proposed explainability methods such as

LIME [77] and SHAP [56] to explain black box models by attributing feature

importance estimates as explanations of the model’s predictions. While prior

research [47, 7, 12, 9, 69] has already taken the first steps towards analyzing

the disagreement of explanation methods for models such as deep neural

networks, analyzing the behavior of the wide range of existing explanation

methods for random forest or in general ensemble trees still insufficiently

explored, with regard to particular data properties and model parameters

[25].

Compared to other work which is either model agnostic focused or deep

neural networks specific, we study the explainability methods suited to ex-

plain decision tree based models. Some of these methods are specific to tree

ensembles and the rest are general model-agnostic (which, thus, can also be

applied to random forest). We do so with extensive experiments on synthetic

alongside real-world datasets, and certain manipulations thereof, which we

carry out to isolate and identify aspects which lead to particular results in-

sofar as feature importance. This provides a more thorough understanding,

which we use to highlight some limitations of existing methods, and formu-

late a number of recommendations for practitioners. The contribution of

this work is twofold:

• Conducting a thorough evaluation of various explainability methods

in the context of specific data properties, such as noise levels, fea-

ture correlations, and class imbalance, elucidating their strengths and

limitations.
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• Offering valuable guidance for practitioners and researchers on select-

ing the most suitable explainability method based on the characteris-

tics of their dataset.

3.1.2 Explainability Benchmarking Frameworks

The landscape of explainable artificial intelligence has witnessed a surge in

research efforts aimed at understanding and evaluating the diverse method-

ologies employed for interpreting complex machine learning models. Several

survey and benchmarking papers, including XAI-survey [9] and BenchXAI

[54], have played a crucial role in shedding light on the disagreement problem

within existing explainability methods [47, 69, 12, 35, 95]. Notably, these

contributions have been important to the understanding of the challenges

and nuances associated within the field of machine learning explainability.

While the majority of existing benchmarks have primarily focused on

explaining neural networks for text and image data with feature importance

generation methods such as [40, 7, 9, 103, 106, 36], the research community

has introduced several frameworks to facilitate the transparent evaluation

of explainability methods. Examples include OpenXAI [1], Captum [46],

Quantus [37], and many others such as [31, 50]. In addition, [95] intro-

duced a quantitative framework with specific metrics for assessing the per-

formance of post-hoc interpretability methods, particularly in the context

of time-series classification. This research provides a targeted approach to

evaluating the temporal aspects of interpretability. These frameworks aim

to provide a structured approach to assess the effectiveness and reliability

of various explainability techniques.

The evaluation of post-hoc interpretability methods for ensemble trees

predictions with respect to different data properties is crucial for understand-

ing the robustness and reliability of these methods across various real-world

scenarios. Despite the growing interest in interpretability, there remains a

gap in understanding how these methods perform under diverse data con-

ditions. This gap is significant because real-world datasets often exhibit

varying properties such as noise levels, feature correlations, and class imbal-

ances, which can influence the effectiveness of interpretability techniques.

For instance, consider the scenario where a bank utilizes an ensemble tree

model to assess credit risk. In such cases, the interpretability of the model’s

predictions is crucial for regulatory compliance and risk management. How-
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ever, banking datasets often exhibit complex characteristics, such as high

dimensionality, imbalanced classes, and correlations between financial vari-

ables. These data properties can significantly impact the performance of

interpretability methods, potentially leading to misinterpretations or unre-

liable insights. This work addresses this gap by investigating how existing

interpretability methods designed for ensemble trees predictions behave un-

der different data conditions.

3.1.3 Synthetic Data Generation

x1x2

Y

x1x2

Y

x1x2

Y

x1x2

Y

Full Partial-XOR Partial-NOT Partial-CAUS

Figure 3.1: Bayesian networks that we use as a schema to generate synthetic

data, illustrating one full and three partial factorizations of P (X, Y ).

Considering only two features, we could represent the concept as a Bayesian

network (Fig. 3.1 illustrates).

P (X, Y ) = P (x1, x2, Y ) = P (Y |x1, x2)P (x2|x1)P (x1)

i.e., a Full factorization of the joint, and thus we could consider the following

properties (as nodes and edges):

1. P (x1): specifying the type of the feature x1;

2. P (x2|x1): the amount of conditional dependence of x2 on x1; and

3. P (Y |x1, x2): the amount and type of correlation between features and

target, revealing the special case of P (Y |x1, x2) = P (Y ) when there is

no correlation.

Partial-XOR and Partial-NOT exhibit feature independence (features are in-

dependent from each other – when the target is observed), and both features

are required to make a perfect prediction for Partial-XOR, and only x1 is re-

quired to perfectly predict Partial-NOT; in this case deterministic.
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In real-world settings, Full represents the case where one feature is re-

lated to another feature and both participate to make the prediction of the

output, for example in Adult Income dataset (that we later include in

our experiments) the feature occupation is correlated to age and both

predict the output income. Partial-CAUS on the other hand, may represent

a causal relationship between one feature and the outcome through a chain

of causality; or an indirect correlation of one feature on the output through

another feature (or even multiple features), forming a chain of correlations.

Full and Partial-CAUS are specific cases of respectively Partial-XOR and

Partial-NOT when x1 is dependent on x2, thus for the rest of this section,

we denote XOR to refer to both Full and Partial-XOR, and use NOT to refer

to Partial-CAUS and Partial-NOT. The data can be generated as:

P (X) ∼ N (µ, Σ) (3.1)

Where N is a bi-variate normal distribution and Σ is the covariance

matrix, and the amount of correlation between the two random variables x1

and x2 is denoted as ρ. In order to introduce noise, we invert ǫ percentage

of predictions ŷ and we keep the rest unchanged.

Ground truth feature importance. We use φ∗
X(f∗) to denote the ground

truth feature importance that are given by the true model f∗ to which we

compare φX(f), the feature importance estimates that is generated by each

of the local explainability methods to explain the predictions of the learned

model f . Intuitively, the true model f∗ can be illustrated with a d-depth

decision tree. With d = 2 for XOR dataset variants (the first split on x1 and

the second on x2) and d = 1 for NOT dataset variants (only one split on

x1).

When ǫ = 0, the ground truth feature importance φ⋆

X for all variants

of XOR datasets are fixed as φ⋆

x1 = φ⋆

x2 = .5, because both x1 and x2 are

necessary to make the prediction of XOR. The amount of the correlation ρ

between x1 and x2 doesn’t affect the importance as both are necessary to

make the prediction of XOR. Meanwhile, only x1 is necessary to make the

prediction of NOT, thus φ⋆

x1 = 1 and φ⋆

x2 = ρ, because when x2 is correlated

to x1, x2 have an indirect influence estimated by ρ to predict NOT.

On the other hand, when ǫ &= 0, φ⋆

x1 = φ⋆

x2 = .5 ∗ ǫ for XOR dataset
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variants, and φ⋆

x1 = 1 ∗ ǫ and φ⋆

x2 = ρ ∗ ǫ for NOT dataset variants.

For the XOR function, both x1and x2 are equally important in determin-

ing the output, and their importance scores should ideally converge to 0.5

when considering a large amount of data points. Consider a decision tree

model that aims to predict the XOR function using features x1 and x2. For

simplicity, let’s assume that the decision tree splits on both x1 and x2 at

each level. The decision tree’s predictions can be expressed as:

ŷ = f(x1, x2)

Now, let’s define the feature importance scores (φx1 and φx2) using the Gini

impurity criterion, a common metric for decision trees:

φx1 =
∑

nodes splitting on x1

Gini decrease at the node

φx2 =
∑

nodes splitting on x2

Gini decrease at the node

In a large dataset, the decision tree will be able to accurately capture the

XOR relationship, and both x1 and x2 should contribute equally to the

impurity decrease, leading to similar importance scores. For a balanced

decision tree, these Gini decreases would be distributed among the splits

involving x1 and x2. In the limit of a large dataset, we would expect:

lim
large dataset

φx1 = lim
large dataset

φx2 = 0.5

This indicates that, as the dataset size increases, the decision tree’s feature

importance for predicting the XOR function would converge to 0.5 for both

x1 and x2, reflecting their equal importance in determining the output.

3.1.4 Empirical Setup

To carry out our experiments, we demonstrate our findings on four real-

world datasets: Heart Diagnosis, Cervical Cancer, Adult Income

and German Credit Risk. These datasets include properties such as

feature interactions (dependence or independence), noise, random irrelevant

variables and class imbalance.
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We generate 24 synthetic datasets (Figures 3.2 and 3.3) expressing dif-

ferent combinations of these properties by varying several parameters such

as the correlation amount of the normal distribution from which the data

points are drawn and the probability of each class, thus, the amount of gen-

erated noise and class imbalance. Each dataset is divided to 80% for training

and 20% for testing. We report the results of the feature importance esti-

mates on the test set. We compute feature importance estimates on the

true model f∗ and learned model f , so that we can compare the generated

feature importance estimates to their ground truth values. Finally, we an-

alyze the advantages and limitations of each explainability method on the

synthetic datasets and we run larger experiments on the above real-world

datasets from the UCI repository [23].

Datasets, Models and Metrics

Datasets. Figures 3.2 and 3.3 show the generated datasets by varying

the parameters as in Eq 3.1.3: µ ∈ {[0, 1], [1, 0]}, ǫ ∈ {0, .25, .5}, and Σ ∈

{[[1, 0], [0, 1]], [[1, .1], [.1, 1]], [[1, .9], [.9, 1]], [[1, 1], [1, 1]]}.

In addition, Table 3.1 summarizes the properties of the four real-world

datasets that we use to demonstrate our findings.

Dataset #instances #features % discrete % continuous imbalance

Heart Diagnosis 303 13 43 57 yes

Cervical Cancer 858 35 62 38 yes

Adult Income 32561 11 65 35 no

German Credit Risk 1 000 23 70 30 yes

Table 3.1: Summary of the real-world datasets we include in our experi-

ments.

Models. For the synthetic datasets, we compute the feature importance

scores of the learned model f on datasets with 1 000 instances. The learned

model f can be either a decision tree or a random forest. On the other

hand, we use the random forest model with parameters learned using grid

search and evaluated with 10-fold cross-validation for each of the real-world

datasets. Table 3.2 summarizes the performances and the feature impor-

tance of the decision tree and the random forest models for the generated

datasets.

40



CHAPTER 3. A CRITICAL EVALUATION OF LOCAL
EXPLAINABILITY METHODS

Figure 3.2: Synthetic data XOR with decision boundaries. X ∼ N (µ, Σ).
Each dataset expresses a different combination of properties.

41



CHAPTER 3. A CRITICAL EVALUATION OF LOCAL
EXPLAINABILITY METHODS

Figure 3.3: Synthetic data NOT with decision boundaries. X ∼ N (µ, Σ).
Each dataset expresses a different combination of properties.
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Decision function ǫ ρ DT Accuracy DT feature importance RF Accuracy RF feature importance

XOR 0.00 0.00 1.00 φx1=0.44, φx2=0.56 0.85 φx1=0.69, φx2=0.31

XOR 0.00 0.10 1.00 φx1=0.41, φx2=0.59 0.90 φx1=0.63, φx2=0.37

XOR 0.00 0.90 1.00 φx1=0.51, φx2=0.49 1.00 φx1=0.55, φx2=0.45

XOR 0.00 1.00 1.00 φx1=0.5, φx2=0.5 1.00 φx1=0.53, φx2=0.47

XOR 0.25 0.00 0.70 φx1=0.47, φx2=0.53 0.61 φx1=0.62, φx2=0.38

XOR 0.25 0.10 0.72 φx1=0.4, φx2=0.6 0.62 φx1=0.64, φx2=0.36

XOR 0.25 0.90 0.72 φx1=0.51, φx2=0.49 0.72 φx1=0.56, φx2=0.44

XOR 0.25 1.00 0.71 φx1=0.51, φx2=0.49 0.71 φx1=0.53, φx2=0.47

XOR 0.50 0.00 0.52 φx1=0.83, φx2=0.17 0.50 φx1=0.57, φx2=0.43

XOR 0.50 0.10 0.53 φx1=0.69, φx2=0.31 0.56 φx1=0.57, φx2=0.43

XOR 0.50 0.90 0.49 φx1=0.64, φx2=0.36 0.46 φx1=0.53, φx2=0.47

XOR 0.50 1.00 0.54 φx1=0.55, φx2=0.45 0.47 φx1=0.53, φx2=0.47

NOT 0.00 0.00 1.00 φx1=1.0, φx2=0.0 1.00 φx1=0.84, φx2=0.16

NOT 0.00 0.10 1.00 φx1=1.0, φx2=0.0 1.00 φx1=0.83, φx2=0.17

NOT 0.00 0.90 1.00 φx1=1.0, φx2=0.0 1.00 φx1=0.61, φx2=0.39

NOT 0.00 1.00 1.00 φx1=1.0, φx2=0.0 1.00 φx1=0.49, φx2=0.51

NOT 0.25 0.00 0.72 φx1=1.0, φx2=0.0 0.72 φx1=0.77, φx2=0.23

NOT 0.25 0.10 0.69 φx1=0.99, φx2=0.01 0.72 φx1=0.8, φx2=0.2

NOT 0.25 0.90 0.71 φx1=1.0, φx2=0.0 0.71 φx1=0.63, φx2=0.37

NOT 0.25 1.00 0.72 φx1=0.97, φx2=0.03 0.72 φx1=0.49, φx2=0.51

NOT 0.50 0.00 0.50 φx1=0.39, φx2=0.61 0.48 φx1=0.55, φx2=0.45

NOT 0.50 0.10 0.58 φx1=0.0, φx2=1.0 0.57 φx1=0.5, φx2=0.5

NOT 0.50 0.90 0.50 φx1=0.69, φx2=0.31 0.46 φx1=0.53, φx2=0.47

NOT 0.50 1.00 0.48 φx1=0.49, φx2=0.51 0.50 φx1=0.51, φx2=0.49

Table 3.2: Parameterization and performances of the decision tree (DT) and

the random forest (RF) for the 24 generated datasets with 1.000 instances.

Maximum depth of both DT and RF is set to 2.

Metrics. To evaluate the quality of the feature importance estimates at-

tributed by the methods in Section 2.2.3, we compare the feature importance

estimates to the ground truth feature importance in Section 3.1.3 of the syn-

thetic datasets because the ground truth feature importance estimates in the

real-world datasets are hard to obtain. We also evaluate the stability, com-

pactness, consistency, feature and rank agreements for the synthetic and

real-world datasets.

3.1.5 Experiments

Synthetic Datasets

Figures 3.4 and 3.5 show the normalized feature importance estimates at-

tributed by the selected explainability methods. After the normalization of

the absolute importance of x1 and x2, their contributions sum to one. We
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perform the normalization to faithfully compare the feature attributions to

their ground truth values.

Explainability methods based on learning surrogate models over-

estimate the importance to irrelevant variables, Tree interpreter

is sensitive to noise and SHAP explainers always favor one feature

over the other. Overall, all explainers except local surrogates overesti-

mate the importance of x1 over x2 across the XOR datasets. Also, none of

these methods perfectly matches ground truth feature importance on av-

erage across all datasets. Moreover, LSurro and LIME feature importance

attributions are the least affected by noise and feature correlation. Indeed,

LSurro and and LIME attribute comparable importance to x1 and x2 for

XOR and NOT dataset variants, and both overestimate the importance of

unimportant features (such as x2 in case of NOT). Notably, TI is the most

affected by noise, that is confirmed in its decomposition of the the feature

and noise contributions to the prediction. Additionally, feature correlations

increase the importance and instability of x2 importance in XOR datasets

attributed by SHAP explainers, and noise lowers the importance of x1 and

x2 for all the explainers. Finally, SHAP explainers and TI have the highest

variance of feature importance estimates in the NOT datasets.

SHAP explainers yield very comparable explanations. Figure 3.6

shows the faithfulness of the explanations to the ground truth measured by

mean consistency and mean feature agreements across the XOR and NOT

generated datasets.
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Figure 3.4: Normalized feature importance estimates of the XOR datasets.
These feature importance estimates are obtained for the decision trees
trained on datasets with 1 000 instances.
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Figure 3.5: Normalized feature importance estimates of the NOT datasets.
These feature importance estimates are obtained for the decision trees
trained on datasets with 1 000 instances.
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Figure 3.6: Mean consistency, mean feature agreements for XOR and NOT

datasets. Consistency is expressed in l2 distance (the lower the better).

Feature agreement measures the fraction of common features between the

sets of top-k features of the two rankings (the higher the better).

SHAP explainers yield consistent explanations due to the same feature

importance attribution mechanism they all employ. However their expla-

nations are the most inconsistent with respect to the ground truth values.

Furthermore and for both XOR and NOT datasets, on average the fraction

of common feature importance between TI and KShap and between SShap
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and TShap match perfectly.

function Methods # Features for 90% approximation Distance with 1 feature(%) Mean consistency Mean Stability (10)

XOR Kshap 1.00 0.10 0.21 0.21

XOR Sshap 1.00 0.11 0.23 0.24

XOR Tshap 1.00 0.10 0.24 0.25

XOR TI 1.00 0.17 0.26 0.24

XOR LIME 1.00 0.16 0.28 0.33

XOR LSurro 1.33 0.43 0.32 0.15

NOT Kshap 1.00 0.03 0.14 0.16

NOT Sshap 1.00 0.03 0.15 0.20

NOT Tshap 1.00 0.03 0.19 0.19

NOT TI 1.00 0.02 0.15 0.19

NOT LIME 1.00 0.04 0.17 0.27

NOT LSurro 1.17 0.30 0.25 0.08

Table 3.3: Compactness (represented in distance reached with fewer features

and nmber of features needed to achieve 90% of the model performance) and

stability of the explanations for the XOR datasets. Tshap and TI are the most

stable explainers for XOR and LSurro uses only one feature to make nearly

half of the prediction of NOT.

LSurro is the most locally stable, overestimates unimportant fea-

tures and achieves better model accuracy with less features. Table

3.3 shows mean consistency, mean stability and compactness across the XOR

and NOT datasets. For XOR and NOT datasets respectively, Kshap is the

most consistent to the rest of the explanatory methods on average. Addi-

tionally, on average, LSurro generates the most locally stable explanations in

XOR and NOT datasets, achieves higher model estimation and often consider

both features as important fr both datasets.

3.1.6 Real-World Data

For the real-world datasets the ground truth feature importance is unavail-

able, we perform evaluation of the different metrics in Section 2.2.4.

Local surrogates achieves 100% of model accuracy with 5 fea-

tures on Adult Income dataset. Figure 3.7 shows feature agreements

for Adult Income Income dataset. Kshap and Sshap have exactly the same

top-10 feature attributions and ranking. TI and Tshap share the same set

of top-10 features. The rest of the explainers share 90% of the top 10 most

important features. LIME share the lowest of top-10 important features with
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TI, Kshap and Sshap on the ranking of the top 10 features. Additionally,

Table 3.4 illustrates the compactness, mean consistency and stability of the

different methods on the Adult Income Income dataset. LSurro explains

100% of model output with only 5 features. Kshap, Tshap and TI are the

most stable for this dataset and LIME have the highest mean consistency

across all the datasets.

Figure 3.7: Feature and rank agreements for Adult Income Income

dataset.

Methods # Features for 90% Accuracy Accuracy with 5 feature(%) Mean consistency Mean Stability

Kshap 1 09 0.43 0.00

Tshap 1 09 0.43 0.00

Sshap 1 08 0.43 0.01

LIME 1 07 0.15 0.07

TI 1 10 0.5 0.00

LSurro 3 100 0.7 0.01

Table 3.4: Compactness, mean consistency and stability for Adult Income

dataset.

SHAP explainers generate the most consistent explanations for

German Credit Risk dataset. Figure 3.8 and Table 3.5 show the com-

puted metrics on German Credit Risk dataset. Overall, all the explainers

achieve 90% of model accuracy with only 1 feature and SHAP explainers are

the most consistent among the methods. LIME is the most stable among the

explainers. Moreover, SHAP explainers have same top-10 most important
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features as they all use the same mechanism of computation of the Shapley

values the feature importance estimates, LIME have only 6 top features in

common with SHAP explainers, and Kshap and Tshap share 7 features with

the same rankings.

Figure 3.8: Feature and rank agreements for German Credit Risk

dataset.

Methods # Features for 90% Accuracy Accuracy with 5 feature(%) Mean consistency Mean Stability

Kshap 1 12 0.45 0.03

Tshap 1 13 0.45 0.03

Sshap 1 12 0.45 0.03

LIME 1 41 1.18 0.00

TI 1 13 0.54 0.02

LSurro 1 57 0.74 0.03

Table 3.5: Compactness, mean consistency and stability for German

Credit Risk dataset.

SHAP explainers and TI share the top-10 most important feature

for Heart Diagnosis dataset. In Figure 3.9 and Table 3.6, SHAP ex-

plainers and TI share the top-10 most important feature, contrary to LIME

which doesn’t share same ranking of the top features with other explainers.

Kshap and TI have exactly the same top-10 features and in the same rank-

ings. On the other hand, LSurro estimates 100% of model accuracy with

only 5 features and SHAP explainers and TI generate the most stable and

consistent explanations.
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Figure 3.9: Feature and rank agreements for Heart Diagnosis dataset.

Methods # Features for 90% Accuracy Accuracy with 5 feature(%) Mean consistency Mean Stability

Kshap 1 18 0.4 0.00

Tshap 1 21 0.4 0.00

Sshap 1 18 0.4 0.00

LIME 1 31 1.2 0.03

TI 1 25 0.45 0.00

LSurro 6 100 0.63 0.03

Table 3.6: Compactness, mean consistency and stability for Heart Diag-

nosis dataset.

Local surrogates are the most consistent and explains 100% of

model output with 5 features for Cervical Cancer dataset. Fig-

ure 3.10 and Table 3.7 illustrate above metrics on the Cervical Cancer

dataset. Tshap and Kshap share the top 10 features. LIME and Sshap have

the lowest top features in common. LIME and LSurro have no comparable

rankings of the the features with TI, although they both learn a surrogate

linear model in the neighborhood of each instance but use different mech-

anisms of the generation of the local neighborhood, which can explain the

disagreement in their features importance estimates. Additionally, LSurro is

the most consistent and explains 100% of model output with 5 features, and

SHAP explainers have the highest mean stability.
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Figure 3.10: Feature and rank agreements for Cervical Cancer dataset.

Methods # Features for 90% Accuracy Accuracy with 5 feature(%) Mean consistency Mean Stability

Kshap 1 12 1.44 0.34

Sshap 1 12 0.87 0.34

Tshap 1 12 0.36 0.34

LIME 1 45 0.66 0.46

TI 1 19 0.59 0.42

LSurro 3 100 0.22 0.54

Table 3.7: Compactness, stability and consistency of local explainability

methods for predicting Cervical Cancer risk. Some methods predomi-

nantly require only one feature to achieve 90% prediction accuracy. LSurro

have the highest mean stability, while SHAP variants have the highest mean

consistency.

3.1.7 Conclusion

The experiments on the synthetic and real-world datasets showed that fea-

ture importance attribution can be affected by multiple factors such as data

properties, the black box model and the assumptions on which the explain-

able method is built to attribute feature contributions. We restricted our

study to the first factor with a focus on some data properties, decision tree

based models, on tabular data and for a binary classification task. For the

matter of simplicity and ease of understanding of the model’s behavior, we

restricted our generation model to two variables in order to easily track the
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feature interactions, which can be a limit in real-world scenarios because of

the need to to handle high-dimensional data in many situations.

• For datasets with irrelevant variables, avoid using LSurro and LIME

because both overestimate the importance of unimportant features.

• We recommend to avoid using TI for highly noisy datasets because TI

is the most unstable compared to other explainers in such datasets.

This can be justified by the decomposition of of the feature importance

used by TI, which allocates importance to the noise.

• Kernel, Sampling and Tree SHAP explainers give very similar explana-

tions, thus we recommend using Sshap or Tshap for faster computations

and adaptability for decision trees.

Perspectives. Future work should further focus on each single explain-

ability method separately to be able to explore in depth the effect of its

assumptions and its inner workings for a single model parameter and on

one specific data property on the feature importance attribution. Also, it

is of interest to assess these feature importance estimates on other data pa-

rameters such as the number of instances in the test set and the number

of features. Our work can be applied on other tasks such as regression and

multi-class classification, to image and text data.

3.2 Application on Cervical Cancer Risk Assess-

ment

Cervical cancer is a life-threatening disease and one of the most prevalent

types of cancer affecting women worldwide. Being able to adequately iden-

tify and assess factors that elevate risk of cervical cancer is crucial for early

detection and treatment. Advances in machine learning have produced new

methods for predicting cervical cancer risk, however their complex black box

behaviour remains a key barrier to their adoption in clinical practice. Re-

cently, there has been substantial rise in the development of local explainabil-

ity techniques aimed at breaking down a model’s predictions for particular

instances in terms of, for example, meaningful concepts, important features,

decision tree or rule-based logic, among others. While these techniques can

53



CHAPTER 3. A CRITICAL EVALUATION OF LOCAL
EXPLAINABILITY METHODS

help users better understand key factors driving a model’s decisions in some

situations, they may not always be consistent or provide faithful predictions,

particularly in applications with heterogeneous outcomes. In this section,

we present a critical analysis of several existing local interpretability meth-

ods for explaining risk factors associated with cervical cancer. Our goal is to

help clinicians who use AI to better understand which types of explanations

to use in particular contexts. We present a framework for studying the qual-

ity of different explanations for cervical cancer risk and contextualise how

different explanations might be appropriate for different patient scenarios

through an empirical analysis. Finally, we provide practical advice for prac-

titioners as to how to use different types of explanations for assessing and

determining key factors driving cervical cancer risk.

3.2.1 Introduction

Cervical cancer is a dangerous cancer of the uterus affecting women’s health

worldwide. It is the fourth most prevalent type of cancer in women, with

an estimated 604 000 new cases and 342 000 deaths in 2020 alone [92]. Left

undetected and untreated, cervical cancer can result in damage to the tissue

of the cervix and can gradually reach other areas of the human body, such as

the lungs, liver, and vagina. A few risk factors such as prior exposure to Hu-

man Papillovirus (HPV), smoking, weakened immunity and starting sexual

activity at a young age, are known to increase the likelihood of developing

cervical cancer [44]. Yet there may be many other unknown driving factors

that increase a patient’s chances of developing cervical cancer. Being able to

accurately identify these factors is crucial for early detection and treatment.

Recent advances in AI have contributed to a growing body of research

aimed at using machine learning (ML) algorithms for early assessment of

cervical cancer risk. Among these, [74, 48] compare the performances of

random forests, deep learning and Naive Bayes for predicting cervical can-

cer risk, while [59] present an algorithm known as CervDetect for feature

selection and subsequently use a deep neural network to determine those

variables, such as history of STDs and age, most correlated with elevated

risk of cervical cancer. These methods, though predictive, exhibit high vari-

ance, particularly when applied to heterogeneous patients. Prior research

has also proposed several methods [14, 51, 20, 19, 15] using ensembles of

decision trees and neural networks applied to tabular and image data to
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predict cervical cancer risk. Though performant, these methods are not

interpretable making them difficult to use in practice.

To overcome these issues, [62] survey explainability methods to better

understand the risk factors that are responsible for the development of cer-

tain types of cancer. Unfortunately however, these methods often provide

competing explanations and there is little agreement as to which explana-

tion makes sense for a particular context, nor are these accompanied by any

uncertainty metric or objectively compared to one another [47, 7, 12, 9, 69].

In our work, we review and synthesize properties, desiderata and defini-

tions in the interpretable machine learning literature relevant for assessing

cervical cancer risk. We provide a framework for assessing the quality of dif-

ferent explanations for cervical cancer risk and compute different metrics for

determining which explanation makes the most sense for cervical cancer risk

assessment. In our experiments, we provide, to the best of our knowledge,

the first empirical study analysing the performances of different methods for

explaining cervical cancer risk factors. For each method, we contextualise

how different formulations of these explanations might be appropriate for

different patient contexts and when an explainability technique may not be

suitable for use. Finally, we provide advice for practitioners as to how to

use different types of explanations in practice for assessing and determining

key factors driving cervical cancer risk.

3.2.2 Related Work

A number of ML approaches for assessing cervical cancer risk have been de-

veloped. These works are either not interpretable or do not always produce

consistent or faithful predictions, particularly in applications with heteroge-

neous outcomes. Several works on interpretable and explainable ML have

also focused on reviewing and characterizing what makes a good explana-

tion in terms of properties and evaluation metrics. However, to the best of

our knowledge, there has not been prior work that critically evaluates the

quality of these explanations for assessing cervical cancer risk.

Cervical Cancer Risk Assessment Methods. Prior research has pro-

posed several approaches [14, 51, 20, 19, 15] to train highly performing

models in order to accurately predict the cervical cancer disease, using dif-

ferent categories of models and types of data. Unfortunately, not all of these
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methods are interpretable. Other propositions include simple models such

as decision trees and complex black box models like neural networks and

ensemble methods [102] which are applied on tabular and image datasets

to predict cervical cancer risk. Similarly, [62] used explainability methods

to better understand the risk factors responsible for development of certain

types of cancer. Unfortunately however, these methods often provide com-

peting explanations and there is little agreement as to which explanation

makes sense for a particular context. Unlike these, our work provides an

empirical analysis comparing different types of local explanations for assess-

ing cervical cancer risk. We provide guidance to clinicians who use black box

machine learning models to better understand which types of explanations

are more suitable for cervical cancer risk assessment.

Local Explanations. Local explanations provide explanation for a spe-

cific input. [77] show that using the weights of a sparse linear model, one

can explain the decisions of a black box model in a small area near a fixed

data point. Similarly, [86] and [45] output a simple program or an influ-

ence function, respectively. Other approaches have used input gradients to

characterize local logic [57, 83]. However, such local explanations often do

not match with human notions of contexts [61]: a user may have difficulty

knowing if and when explanations generated locally for input x translate to

new inputs x′ and research on which local explanations to use in different

contexts remains limited. In our work, we empirically assess the properties

of local explanations for use when applied to the task of assessing cervical

cancer risk, and provide guidance as to which of these explanations may be

suitable in different contexts.

Reviews of Explanation Types and Metrics. Several review papers

e.g. [1, 17, 107] have identified and described important properties and

desiderata for explanations. Among these, [107] provide an overview of var-

ious metrics for evaluating explanation types. [53] conduct a user survey

to build a taxonomony of desired properties of explanations; [98] provide

a review of evaluation metrics based on how compliant they are with ex-

isting laws. Some of these papers focus on characterizing different types of

explanations [58]. Others such as [17] provide a survey of explanation qual-

ity in terms of properties defined in interpretable machine learning papers,
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synthesizes them based on what they measure, and describe the theoretical

trade-offs between different formulations of these properties. Our work is

complementary to these works and provides an empirical evaluation of these

explanations, specifically applying some of the metrics described in [17] in

the context of cervical cancer risk assessment. Unlike [1], we do not use

the faithfulness metric to compare explanations produced to ground truth

feature importances, since in reality it is implausible to have access to these

and we choose not to compute the unfairness metric, since there is increasing

evidence that fairness metrics can in fact preserve or even perpetuate bias

(e.g. [99]) which we want to avoid. Instead, we compute the ROAR metric

to measure the impact of removing top features on the model performance.

3.2.3 A Local Feature Contribution Assessment Framework

Our goal in this work is to provide a framework for assessing the quality of

different explanations for cervical cancer risk and compute different metrics

for determining which explanation makes the most sense for cervical cancer

risk assessment. We propose a systematic approach for interpreting the pre-

dictions of a black box model using multiple interpretability methods, and

compare the explanations based on desired criteria. Our approach consists

of three key phases: a) first we train a series of models for cervical cancer

risk assessment and choose the best among these models; b) next, we inter-

pret the models from a) using a series of local explainability techniques; c)

we compute a series of metrics to assess the plausibility and coherency of

each of the explainability methods considered. An overview of this frame-

work is provided in Figure 3.11. Overall, our framework provides domain

experts with a means of understanding not only which factors contribute to

patient risk of cervical cancer, but also contextualises when certain types of

explanations may be preferable to others for cervical cancer risk assessment.

Problem Setup

We propose a multistage analysis pipeline. First, we test the performances

of supervised learning models f : R
N×D → {0, 1} for predicting cervical

cancer risk. From these models, we find the model f∗ that best predicts

a patient’s risk of cervical cancer based on their data. Assume L denotes

the loss function used to train f , x represent an instance of interest and ψ
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Figure 3.11: Ilustration of the two stages pipeline. (1) choosing the best
model and (2) selecting the best explanation for individual patients.

represent a regularization term added to L to prevent overfitting.

L(y, f(x)) := −
1

N

N
∑

i=1

yi log f(xi) + (1 − yi) log(1 − f(xi)) + ψ(xi), (3.2)

where yi is the actual label (0 or 1) for the ith data point, and f(xi) is

the predicted probability of the positive class for the ith data point. In our

work, we consider five different model architectures for f that widely been

used in prior literature for cervical cancer risk assessment, namely Logistic

Regression (LR), Random Forest (RF), Support Vector Machine (SVM), k-

Nearest Neighbors (KNN), and Multilayer Perceptron (MLP). The model

that best predicts a patient’s risk of cervical cancer is given by:

f∗(xi) = min
f

L(yi, f(xi)). (3.3)

Generating Local Explanations

Next, we use the predictions of the chosen model to generate explanations

for each patient using existing local explainability techniques. Our objective

is to assess the quality of explanations for the predictions made by f∗. Let

g represent an interpretable model used to produce local explanations of the

predictions of f∗. The types of local explanations we consider in this section

are detailed in the background section. We focus on these methods as they

are most widely used across several healthcare applications.
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Evaluation Metrics

Our objective is to assess the quality of each of the explanation techniques

described earlier for the task of cervical cancer risk prediction. The quality

of an explanation is determined by several desiderata quantified using the

metrics in Background section, based on those in [17]. Note that although

these metrics are not necessarily specific to cervical cancer, there are several

works from medicine which demonstrate these properties of explanations

may be effective for AI in healthcare (for instance, [42, 5]).

A number of works deem stability, consistency, compactness and faith-

fulness as important facets of interpretability for healthcare domains overall.

These include [5] and [42]. Note that these quality metrics and explanations

are not meant as a replacement for clinical expertise. We believe combining

domain expertise and these explanations and performing external validation

on another dataset is necessary to deduce context-specific explanations that

are grounded in clinical utility, which is the focus of future work.

Algorithm for Assessing Local Feature Contribution

We summarize our approach for assessing the quality of different expla-

nations in Algorithm 1. We start by cleaning and balancing the dataset,

then we test existing supervised machine learning models and select Ran-

dom Forest as it is the most performing one in terms of AUC. Next, we

use the selected explainability methods in order to explain the predictions

attributed to each patient in the dataset. Finally, we choose the method

that satisfies the desired properties that are fixed by the clinician. Code is

available at 1.

3.2.4 Cervical Cancer Risk Assessment

The following section provides details of our cohort selection and data pro-

cessing for predicting and assessing the quality of explanations for cervical

cancer risk.

Cohort Selection. We use Cervical cancer risk factors dataset from the

UCI repository [24] to predict whether a female has high or low risk of get-

ting diagnosed with cervical cancer. This data contains 858 female patients

1https://github.com/cwayad/Local-Explanations-for-Cervical-Cancer
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Algorithm 1 A Local Feature Contribution Assessment Framework

Data: f ∈ F, g ∈ G, m ∈ M, w ∈ W
⊲ F:models, G: explainable models, M: explainability metrics and W:

weights of the explanations
Result: θ∗

θ ← ∅
D ← ADASY N(D)
Xtrain, ytrain, Xtest, ytest ← split(D)

while f in F do
f(x) = argmin L(y, f(x)) ⊲ Learn the best model.
remove f from F

end
f∗ ← minf L(y, f(x))
while g ∈ G do

append featureImportance(g, Xtest) to θ ⊲ featureImportance computes
feature importance of the test set using the explainable model g.

end
while m ∈ M do

scores ← evaluate(θ, m) ⊲ Evaluate each explainable model with each
metric.

end

θ∗ ← max(
∑M

i=1 scoresi ∗ wi) ⊲ wi are defined by the clinician for the
desired explanation properties.
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Age No. of sexual partners First sexual intercourse No. of Pregnancies Smokes Cancer Diagnosis Contraceptives Total STDs No. of Tests

20’s 2.54 17.01 2.10 0.14 0.03 0.72 0.14 0.24
30’s 2.67 18.09 2.83 0.17 0.04 0.75 0.15 0.26
40’s 2.50 18.59 3.29 0.07 0.05 0.68 0.23 0.27
50’s 2.80 16.40 4.80 0.40 0.20 0.40 0.00 1.00
70+ 2.50 19.75 7.25 0.50 0.00 0.00 0.00 0.25
Teen 2.25 15.08 1.40 0.11 0.01 0.56 0.18 0.20

Table 3.8: A summary of cohort characteristics and demographics based on
age.

characterized by 35 features including demographic information such as age

and number of pregnancies, clinical tests such as Hinselmann, Schiller and

Citology, many Sexually Transmitted Diseases such as HPV and AIDS, and

diagnosis taken by the patients such as HPV and CIN. A summary of cohort

characteristics and demographics can be found in Table 3.8.

We also contextualise the results we obtain by examining different pa-

tient instances from the cohort. The summary statistics of these patients

relative to the population mean are provided in Table B.1 in Appendix B.

Data Processing. To conduct our experiments, we impute missing values

and generate synthetic additional samples for class 1 (presence of cancer)

using the ADASYN (Adaptive Synthetic Sampling) technique in order to

balance balanced the dataset by oversampling the minority class. After

preprocessing with ADASYN, the new dataset contains 1677 patients. We

split the balanced dataset into 80% for training and 20% for testing, ensuring

an unbiased evaluation of our models.

Model selection for f∗. f is trained to predict risk of cervical cancer y

from X. For our experiments, we trained five different models for f namely

LR, RF, SVM, KNN and MLP. Specifically, each of the models was trained

using 10-fold cross validation and the parameters for each were selected by

conducting a grid search over parameters and choosing those values that

produce the best accuracy. f∗ was subsequently obtained by selecting the

model minimizing the loss in Eqn 3.2. For our experiments this was a RF

model. These results are consistent with prior studies that showed RFs as

one of the top-performing ML models used for predicting cervical cancer

risk.

Local Explanation Generation. We generated feature importance ex-

planations using LIME, three variants of SHAP: Tree SHAP (TSHAP), Kernel
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SHAP (KSHAP) and Sampling SHAP (SSHAP), Tree Interpreter, DiCE and

Local Surrogates. These provide local explanations for individual instances,

highlighting the contribution of each feature towards the model’s prediction.

We apply these methods to the test set.

3.2.5 Results

We first compared the quality of each of the local explanation techniques

when applied to f∗ and examined the top features produced by each of these

techniques. This gives us those features that best explain the optimal model

f∗. Next, we measure the decrease in accuracy of f∗ when we successively

removed a fraction of the top features for each explanation. A summary of

these results across the test set can be found in Figure 3.12. Overall, we

see that LIME is the most robust to removal of features, while the model

accuracy of all other explanations drops significantly after removing the top

features.

The top 30% important feature given by TreeSHAP have the most

impact on model learning. We observe very different accuracy drop af-

ter removing 30% of the features and model retraining. Indeed, training the

model without the top 30% of features given by TreeSHAP drops the model’s

accuracy to 53%, meaning that those features have the most significant im-

pact on the model learning. Similar accuracy drops can be seen for other

variants of SHAP. This is because models trained withSHAPpredominantly

rely on one feature for predicting cervical cancer risk namely prior HPV

infection. Dropping the same percentage of top features given by LIME will

only decrease the accuracy by 15%, making LIME the model that produces

the most faithful explanations. UnlikeSHAPmethods, DiCE and Surrogates,

LIME makes use of multiple features to produce a model explanation. Here,

dropping the top features do not drastically decrease the model’s accuracy

as other features may still be predictive. Table 3.9 further describes how

many features each explanation uses to produce a model with 90% accuracy,

as well as the mean stability and coherency of these explanations.

All explainers agree on HPV being the most important risk factor for

cervical cancer. Next, we examined the feature contributions produced

by each explanation technique for each of the patients from Table B.1 in
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(a) ROAR performances (b) Consistency of the XAI methods

Figure 3.12: (a) The decrease in model’s accuracy after removing a % from
the top features and model retraining on the new feature set using ROAR.
The feature rankings are taken from the mean feature contributions that
have been computed locally. Removing the top 30% most important fea-
tures given by Tree SHAP decreases the accuracy of the RF by 50%. On
the other hand, removing between 30% and 50% of the feature ranking pro-
vided by LIME doesn’t affect the model’s accuracy, making it the model
with the most faithful explanations across the cohort.(b) For each pair of
methods, Consistency calculates the distance between the contributions for
all instances using l2 norm. Tree SHAP and Sampling SHAP is the most
consistent pair, while Local Surrogate and DiCE is the least consistent pair.

Methods # Features for 90% Accuracy Accuracy with 5 features(%) Mean Stability Mean Consistency

SSHAP 1 12 0.87 0.34
TSHAP 1 12 0.36 0.34
KSHAP 1 12 1.44 0.34
LIME 1 45 0.66 0.46
TI 1 19 0.59 0.42
DiCE 9 100 1.66 1.11
Local Surrogates 3 100 0.22 0.54

Table 3.9: Compactness, stability and consistency of local explainability
methods for predicting cervical cancer risk. Some methods predominantly
require only one feature to achieve 90% prediction accuracy. Local surro-
gates have the highest mean stability, whileSHAPvariants have the highest
mean consistency.
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Appendix B. The results for Patient 0 and 1 are shown in Figures 3.13 and

B.3. We see that for Patient 1, all explainers identify prior incidence of HPV

as a predominant determinant of cervical cancer. In contrast, all explainers

identify use of hormonal contraception and IUD as the third driving risk

factors in determining cervical cancer. Local surrogates on the other hand,

uses smoking, and age as key risk factors.

These explanations, though different in terms of the risk factors used, are

all plausible explanations for cervical cancer assessment and are consistent

with existing literature. We compared these results to those of Patient 0

from Table B.1 in Appendix B, who is diagnosed as not having cancer.

These results are shown in Figure B.3. Notably the first two driving factors

in both cases are similar. Interestingly, except for Local surrogates, all

explainers show that starting sex intercourse after 18-years old may help

prevent from being diagnosed with cervical cancer. Finally,SHAPexplainers

indentify contraceptives (hormonal and IUD) may lead cervical cancer. In

contrast, LIME and Tree Interpreter are unsure of its positive or negative

impact on cervical cancer.

SHAP explainers have exactly the same top 10 most important fea-

tures for Patient 1. Next we examined the explanations produced by

each technique in terms of feature and rank agreements for the same pa-

tients: (a) Patient 0 and (b) Patient 1. These results are shown in Figure

3.15. We observe similar top features given by SHAP explainers for Patient

1, and comparable feature ranking between TSHAP, KSHAP and Tree In-

terpreter for Patient 0. On the other hand, DiCE is have the most distinct

feature and rankings among the explainers, which can be justified by the

unsigned nature of feature importance identified by DiCE.
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Figure 3.13: Patient 0 diagnosed as not having cancer (Dx:Cancer=0).
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Figure 3.14: Patient 1 diagnosed with cancer (Dx:Cancer=1).
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(a)

(b)

Figure 3.15: Feature and rank agreements for the Patients 0 and 1. For

each patient in sub-figures, (a) Feature agreement measures the fraction of

common features between the sets of top-10 features of each pair of the rank-

ings, and (b) Rank agreement checks that the feature order is comparable

between each pair of the rankings. Tree SHAP and Kernel SHAP have the

highest feature and rank agreements for the first patient, while DiCE and

Local surrogates have the least feature and rank agreements.
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The most unstable explainers are those that depend on creating

local neighborhoods. We also compared each explanation in terms of its

local stability and compactness. These results are shown in Figure B.1 in

Appendix B and Figure 3.16 respectively. Figure B.1 in Appendix B. shows

the stability in the neighborhood of five features, namely: age, smokes, HPV,

first sexual intercourse, and IUD. We observe that LIME, KSHAP and Local

surrogates are the least stable explainers as their feature importance for the

given features vary between negative and positive values. LIME is the less

varying compared to the other two surrogates.

Local surrogates and DiCE approximate 100% model’s output with

5 features. Figure 3.16 shows the complexity of the selected local methods

in terms of how many features are needed in order to explain 90% of the

accuracy of the model and how much accuracy achieved with fewer features,

here 5. Local surrogates and DiCE need respectively 3 and 9 features in

order to achieve 90% of model accuracy, while the other explainers can

approximate it with only 1 feature on average. While Local surrogates and

DiCE are the only two features that can approximate full model accuracy

with 5 features, Tree Interpreter achieves only 12 % of the model accuracy

with 5 features.

No single explanation performs optimally across patients and met-

rics. Local explanation methods perform differently across different pa-

tients. Eg, for high risk patients [18, 13]. Counterfactuals and Local Surro-

gates give more compact explanations compared to other methods. LIME is

the most stable and SHAP the most consistent in terms of feature and rank

agreements. Notably, local explanations are not meant to replace insights

from aggregation. Aggregation enables showing the tendencies and average

importance of the features for a global understanding of cervical cancer, but

for personalized treatment, using a local approach is preferable to find those

risk factors most likely to affect patients individually. E.g. some global risk

factors for cervical cancer include exposure to herpes and immune system

deficiency [13] . Yet for Patient 1, we see contraception may play a role,

which is not always the case for other patients in the cohort (Appendix B

for details)
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(a) (b)

(c) (d)

(e) (f)

Figure 3.16: Compactness of the explanations generated by (a) Kernel SHAP,
(b) Sampling SHAP, (c) Tree SHAP, (d) LIME,(e) Tree Interpreter, (f) Local

surrogates.
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3.2.6 Discussion

In this section, we presented a framework to compare local feature attribu-

tion methods in order to identify key risk factors causing cervical cancer for

individual patients and demonstrated on two patients having very similar

characteristic but different predictions (cancer and no cancer). Overall we

observe that though the explainers may agree on the importance of some

features, there is no single explanation or technique that performs optimally

across all metrics of consistency, compactness, stability, faithfulness and ac-

curacy. Rather, a clinician may choose an explanation method based on the

context or choose to compute a weighted sum of these metrics. The best

explanation would then correspond to the method producing the highest

cumulative score overall, but the weights of each metric in the combina-

tion should be left to clinical experts to choose. Local explanations are also

not meant to replace insights from aggregation, but may be preferable to

determine those risk factors most likely to affect patients individually.

Regardless of the nature of the SHAP used, one obtains very similar

feature importance. However, SHAP values are all largely determined by one

predominant driving risk factor namely prior HPV infection and explanation

quality significantly drops if this feature is not available. Methods such as

Local surrogates, LIME and Kernel SHAP learn local interpretable models

in the neighborhood of the instance we desire to explain, however can be

sensitive to the choice of neighbourhood for two instances with the same

characteristics and predictions. Clinicians should exercise caution with these

methods unless they have experience in identifying which groups a patient

may be most similar to. If global stability is desirable, local surrogates may

be the most suitable method to use.

Yet, if a clinician is treating an older patient at higher risk of developing

cervical cancer, they may desire explanations that are more compact and

stable to isolate factors chiefly responsible for risk to develop a more focused

treatment plan. If however, a clinician is treating a patient with many other

comorbidities, it might be more useful to have a less compact explanation

to be able to view the impact all comorbidities may have on overall risk.

Counterfactual generation may be suitable when a patient has a genetic

predisposition to a cervical cancer and wants to reason about possibilities

under which they may be at higher risk of getting the disease by isolating
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the most important features from an initial set, or reason about alternative

ways to reduce this risk.

Limitations. Firstly, the manner in which local explanations are aggre-

gated to draw conclusions on the decrease in model accuracy after removing

top features needs careful consideration. Currently, using the mean of lo-

cal explanations may inadvertently assign higher importance to irrelevant

features, resulting in issues with feature ranking during each step of feature

removal. To mitigate this, a new aggregation method can be developed that

does not adversely affect the aggregation of explanations from each method

used in the evaluation of explanations. Additionally, the use of generated

additional patients to balance the dataset raises concerns about whether

these generated patients deviate from the original distribution, which could

impact the correctness of the explanations. Future research can explore the

use of additional data or take precautions when generating new instances to

ensure they align with the original distribution. Moreover, the inclusion of

only seven local methods that are compatible with random forest may limit

the comprehensiveness of the approach. Future work can expand the set

of methods used to include as many relevant methods as possible, thereby

enhancing the robustness and applicability of the framework.

3.2.7 Conclusion

While cervical cancer remains a devastating disease for women’s health

worldwide, machine learning shows promise as an effective tool for early

detection and treatment. This is especially crucial as clinicians strive to ac-

curately identify the root causes of the disease and prevent its onset, rather

than simply treating it after it has occurred. In this work, we presented a

framework and demonstrated its application on a cervical cancer dataset.

Our approach allows selecting the suitable explanations to reason about

each patient’s risk of developing cervical cancer, while satisfying several de-

sired explanatory properties. There are many potential avenues for future

research, such as extending our framework to other healthcare applications

and areas where explanation is needed. This could open up new possibili-

ties for leveraging machine learning in general and explainability methods

in particular to understand patient outcomes and address critical healthcare

challenges. Finally, future work could perform a user study with clinicians
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to assess how different weighted sums may lead to context-specific explana-

tions.
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Chapter 4

Feature Importance Chains

4.1 Computing Indirect Feature Importance with

Shapley Chains

In spite of increased attention on explainable machine learning models, ex-

plaining multi-output predictions has not yet been extensively addressed.

Methods that use Shapley values to attribute feature contributions to the

decision making are one of the most popular approaches to explain local

individual and global predictions. By considering each output separately

in multi-output tasks, these methods fail to provide complete feature ex-

planations. We propose Shapley Chains to overcome this issue by including

label interdependencies in the explanation design process. Shapley Chains

assign Shapley values as feature importance scores in multi-output classifi-

cation using classifier chains, by separating the direct and indirect influence

of these feature scores. Compared to existing methods, this approach al-

lows to attribute a more complete feature contribution to the predictions of

multi-output classification tasks. We provide a mechanism to distribute the

hidden contributions of the outputs with respect to a given chaining order

of these outputs. Moreover, we show how our approach can reveal indirect

feature contributions missed by existing approaches. Shapley Chains help to

emphasize the real learning factors in multi-output applications and allows

a better understanding of the flow of information through output interde-

pendencies in synthetic and real-world datasets.
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4.1.1 Introduction

A multi-output model predicts several outputs from one input. This is an

important learning problem for decision-making involving multiple factors

and complex criteria in the real-world scenarios, such as in healthcare, the

prediction of multiple diseases for individual patients. Classifier chains [76]

is one such approach for multi-output classification, taking output depen-

dencies into account by connecting individual base classifiers, one for each

output. The order of output nodes and the choice of the base classifiers are

two parameters yielding different predictions thus different explanations for

the given classifier chain.

To address the lack of transparency in existing machine learning models,

solutions such as SHAP [56], LIME [77], DEEPLIFT [85] and Integrated Gra-

dients [91] have been proposed. Using Shapley values [80] is one approach

to attribute feature importance in machine learning. The framework SHAP

[56] provides Shapely values used to explain model predictions, by computing

feature marginal contributions to all subsets of features. This theoretically

well founded approach provides instance-level explanations and a global in-

terpretation of model predictions by combining these local (instance-level)

explanations.

However, these methods are not suitable for multi-output configurations,

especially when these outputs are interdependent. In addition, the SHAP

framework provides separate feature importance scores only for independent

multi-output classifiers. By assuming the independence of outputs, one ig-

nores the indirect connections between features and outputs, which leads to

assigning incomplete feature contributions, thus an inaccurate explanation

of the predictions.

Fig. 4.1 is a graphical representation of a classifier chain: patients with

two conditions, obesity (yOB) and psoriasis (yPSO), given four features: ge-

netic components (XGC), environmental factors (XEF), physical activity

(XPA) and eating habits (XEH). From a clinical point of view, all factors X

are associated with both conditions Y , obesity and psoriasis. However, since

obesity is a strong feature for predicting psoriasis [41] (indeed, a motivating

factor for using such a model is that predictive accuracy can be improved by

incorporating outputs as features), it may mask the effects of other features.

Namely, XPA and XEH will be found by methods as SHAP applied to each
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output separately to have zero contribution towards predicting yPSO, and

one might interpret that psoriasis is mainly affected by factors which cannot

be modified by the patient (environment and genetics). The indirect effects

(physical activity and eating habits) will not be detected or explained.

We propose Shapley Chains to address this limitation of incomplete attri-

bution of feature importance in multi-output classification tasks by taking

into account the relationships between outputs and distributing their im-

portance among the features with respect to a given order of these outputs.

Calculating the Shapley values of outputs helps to better understand the

importance of the chaining that connects these outputs and to visualize this

relationship impact on the prediction of subsequent outputs in the chain.

For these subsequent outputs, the computation of the Shapley values of the

associated outputs shows the indirect influence of some features through

the chain, which is generally not intuitive and missed by existing work. Our

method will successfully explain these indirect effects. By attributing im-

portance to the features XPA and XEH, Shapley Chains will help doctors to

emphasize the importance of eating healthy and practicing physical activ-

ities in order to prevent and better cure psoriasis instead of blaming only

genetics and exterior environmental factors.

XP A

y OB yP SO

XEF XEHXGC

Figure 4.1: An example of a multi-output task: predicting Y -outputs from
X-features. A classifier chain uses the first output yOB as an additional
feature to predict the second output yPSO.

This work addresses the problem of attributing feature contributions

in multi-output classification tasks with classifier chains when outputs are

interdependent. Our contribution in this work is resumed to :

• We propose Shapley Chains, a novel post-hoc model agnostic explain-

ability method designed for multi-output classification task using clas-

sifier chains.
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• Shapley Chains attribute feature importance to all features that directly

or indirectly contribute to the prediction of a given output, by tracking

all the related outputs in the given chain order.

• Compared to existing methods, we show a more complete distribution

of feature importance scores in multi-output synthetic and real-world

datasets.

We devote Section 4.1.2 related work. In Section 4.1.3, we detail our pro-

posed method Shapley Chains. Finally in Section 4.1.4, we run experiments

on a synthetic and real-world datasets. The results of our method compared

to SHAP values applied to independent classifiers are then discussed.

4.1.2 Related Work

The explainability of machine learning is an active research topic in the re-

cent years. Several contributions have been made to explain single-output

models and predictions. Inspecting feature importance scores of existing

models is an intuitive approach that has served for many studies. These

feature importance scores are either derived directly from feature weights in

a linear regression for instance, or learned from feature permutations based

on the decrease in model performance. Other more complex methods like

LIME [77] learn a surrogate model locally (around a given instance) in order

to explain the predictions of the initial model with simple and interpretable

models like decision trees. On the other hand, DeepLift [85], Integrated

gradient [91] and LRP [65] are some neural network specific methods pro-

posed to explain deep neural networks. The SHAP framework is one popular

method attributing Shapley values as feature contributions. It provides a

wide range of model-specific and model-agnostic explainers. Researchers

have also proposed other Shapley value inspired methods incorporating fea-

ture interactions in the explanation process. For example, asymmetric Shap-

ley values [27] incorporates causal knowledge into model explanations. This

method attributes importance scores to features that do not directly partic-

ipate in the prediction process (confounders), but fails to capture all direct

feature contribution. On the other hand, On-manifold Shapley values [26]

focus on better representing the out of coalition feature values but provides

misleading interpretation of feature contributions. Wang et al. [101] have
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Figure 4.2: Representation of direct and indirect contributions for a dataset
with 4 outputs (y1, y2, y3 and y4). For example: the 4th output y4 has 7
indirect Shapley values (7 paths ending with square leaves) and one direct
Shapley value (one path ending with a circle leaf).

proposed Shapley Flow, providing both direct and indirect feature contri-

butions when a causal graph is provided. Assuming the causal graph is

available and accurate for real-world data sets limits the applicability of

this method. These methods significantly contributed to advancing the

explainability of machine learning models but none of them have tackled

multi-output problems, more specifically when outputs are interdependent.

Shapley Chains address this limitation.

4.1.3 Proposed Method: Shapley Chains

In this section, we introduce our approach to compute direct and indirect

feature Shapley values for a classifier chain model. Note that our proposed

method is model-agnostic, meaning that our computations do not depend

directly on the chosen base learner used by the classifier chain.

We want to compute feature contributions to the prediction of each out-

put yj ∈ Y for each instance x. For example, Fig. 4.2 shows the direct and

indirect contributions of xi to predict output y4 given in Fig. 2.3 (B). In the
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next two sections, we detail the computations of the Shapley value of each

feature to predict each output. We refer to these Shapley values as direct

and indirect feature contributions.

Direct contributions. The direct contributions are computed for fea-

tures and outputs as in Eq. 2.2. Consider again the example of patients

with the two conditions: psoriasis and obesity. For both yOB and yPSO, we

use the framework SHAP in order to compute the Shapley value of each

feature : XGC, XEF, XPA and XEH. This will attribute non zero Shapley

values to XGC and XEF to predict yOB and yPSO separately. On the other

hand, XEF and XPA will have non-zero Shapley values to predict yOB and

zero values for the prediction of yPSO. The classifier chain method will add

yOB to the feature set to predict yPSO. By running the SHAP framework on

this new set, yOB will have a non zero Shapley value because it is dependent

to yPSO. This Shapley value will be attributed to the features that are cor-

related to yOB. The attribution mechanism of direct feature (and output)

contributions can be generalized to the classifier H with m base classifiers

as shown in Algorithm 2.

Algorithm 2 Computing direct feature contributions

procedure diContribution(X, Y, H) ⊲ features, outputs, classifier
chain model

j ← 1, Φ ← ∅
while j < m do

i ← 1
while i < d do

φxi(yj) ← SHAP(X, yj , H) ⊲ Shapley values of inputs w.r.t. yj

append φxi(yj) to Φ

i ← i + 1
end

append yj to X
j ← j + 1
end

return Φ ⊲ Φ is the set of the direct feature importance of features
and the labels that were included as features.
end procedure

For the first output y1, we calculate the Shapley value of each feature

according to Eq. 2.2, as done in the SHAP framework. This marginal value of

all possible subsets to which the feature can be associated to is the feature’s
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contribution to predict the first output y1. For the second output y2, we

append the predictions y1 made by the first classifier h1 to the features set,

and we train a second classifier h2 to learn the second output y2. We again

use the SHAP framework to assign Shapley values to features and the first

output y1. Here, the feature set includes the first prediction. We perform the

same steps for each remaining output. At each step, we calculate the Shapley

values for features and previous predicted outputs that are linked via the

chaining to the current output. At the final step, the feature set will contain

the n features and m − 1 outputs: X = {x1, x2, ..., xn, y1, y2, ..., ym−1}.

Indirect contributions. The indirect contribution Φxi
indirect

(yj) of xi to

predict yj is the weighted sum of the direct contributions of all yk ∈ Y that

are chained to yj . Φxi
indirect

(yj) is computed according to the Eq. 4.1.

Φxi
indirect

(yj) =

j−1
∑

k=1

Φyk(yj) · Zk(xi) (4.1)

where j > 1 and the function Zk(xi) computes the weight vector for all

paths from output yk down to xi. For k > 1 and Z1(xi) = W (y1, xi), Zk(xi)

is recursively computed as follows:

Zk(xi) =
k−1
∑

l=1

W (yk, yk−l) · Zk−l(x
i) + W (yk, xi) (4.2)

where W (yk, yk−l) is the corresponding weight of yk−l to predict the next

output yk (the direct contribution of yk−l to predict yk). And, W (yk, xi) is

the weight of xi to predict yk (the direct contribution of xi to predict yk).

The weights W (yk, yk−l) and W (yk, xi) are calculated according to:

W (yk, .) =
|Φ.(y

k)|
(

∑n
q=1 |Φxq (yk)| +

∑

p<k |Φyp(yk)|
) (4.3)

where Φxq (yk) is the direct contribution, as in Eq. 2.2; of each feature xq

to predict yk. p < k means the output p is chained to the output j forming

a directed acyclic graph illustrated in Fig. 2.3.

The overall feature Shapley values for a classifier chain are obtained

by marginalizing over all possible output chain structures. Specifically, the

contribution of feature xi to the prediction of output yj within a given
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chaining order c is computed as:

φxi(yj) =
1

|C|

∑

c⊆C

φxi(yj)
c

In this equation, φxi(yj)
c

represents the contribution of feature xi to the

prediction of yj with respect to the chaining order c and C is the possible

chain orders. We want to consider the average feature importance if the

chain order is not fixed. By reporting feature contributions for each chain

structure independently and demonstrating the impact of different chain-

ing orders through marginalization, we aim to elucidate the significance of

considering interdependencies among outputs in feature attribution, as dis-

cussed in Section 4.1.4.

For instance, in order to have a complete fair distribution of feature

importance for the prediction of yPSO, we compute the indirect Shapley

values of the features XPA and XEH. We do so by distributing the direct

Shapley value of yOB computed previously to the four features. By the

distribution operation, we mean the multiplication of the direct Shapley

value of each feature by the direct Shapley value of yOB, divided by the sum

of the Shapley values of all features for to predict the same output (yOB).

We generalize this mechanism in Algorithm 3 of calculating indirect

Shapley values to the chain structure in Fig. 2.3 (B). The first output y1 has

always zero indirect Shapley values because there is no output that precedes

it in the chaining. Thus, for the rest of this section, we compute feature

indirect contributions for yj ∈ {y2, y3, ..., ym}. For each output yj , there

exists one direct path to the features thus one direct feature contributions

and 2j − 1 indirect paths for each feature.

One should notice that for the matter of the simplicity of understanding,

we take the absolute value in Eq. 4.3. Thus, all the contributions will be

positive. These absolute values can be replaced by the raw Shapley values in

order to keep the positive or negative sign of feature contributions. Keeping

the sign helps to understand if the feature penalizes or is in favor of the

prediction.

In classifier chains, the sequence in which labels are considered plays

a crucial role in optimizing model performance. Traditionally, labels are

classified based on their meaning or their association with other labels. Sev-

eral strategies exist for determining this ordering, including randomization,
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Algorithm 3 Computing indirect feature contributions to predict a given
yj with j > 1

procedure inContribution(X, Y, Φ) ⊲ inputs, outputs, Shapley values
of features and outputs

k ← 1
while k < j do

l ← 1
while l < k do

compute W (yk, yk−l)
i ← 1

while i < d do
compute W (yk, xi) in Eq. 4.3
compute Zk(xi) in Eq. 4.2
i ← i + 1

end
l ← l + 1

end
k ← k + 1
end

return Φindirect in Eq. 4.1 ⊲ returning indirect feature contributions.
end procedure

frequency-based ordering, or the use of correlation matrices between features

and labels and between labels. Direct feature importance reflects correla-

tions between features and labels, while indirect feature importance reflects

correlations between the labels. Therefore, leveraging the concept of indirect

feature importance offers a promising approach to help choose the sequence

(order) in which these labels are learned.

4.1.4 Experiments

In order to assess the importance of the features that is attributed by our

proposed framework1 to explain their contributions to predict multiple out-

puts with a classifier chain, we run experiments on both synthetic and real-

world datasets: a XOR data that we describe next, and the Adult Income

dataset from the UCI repository [23]. Here, we rely on human explanation

to validate our results.

1https://github.com/cwayad/Shapleychains
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Synthetic Datasets

To demonstrate our work, we first run experiments on a multi-output syn-

thetic dataset containing two features (x1 and x2) and three outputs (AND,

OR and XOR) corresponding to the logical operations of the same names

performed on x1 and x2. We split this dataset to 80% for the training and

20% for the test of our classifier.

X and or xor

Figure 4.3: The classifier chain structure for XOR data. X is the set of
features x1 and x2. AND, OR and XOR are the outputs for which we want
to compute direct and indirect feature importance and uncertainty intervals.

Next, we construct a classifier chain with the chaining order illustrated

in Fig. 4.3. We use a logistic regression as the base learner. Our method is

model agnostic meaning that it can be applied to a classifier chain with any

other base learners. The use of the logistic regression as the base learner to

predict XOR is justified by the accuracy that this model achieves compared

to other classifiers like decision trees. The classifier chain is trained on the

train set using x1 and x2 to predict AND and OR separately. Then, we

append these two predicted outputs to the features set in order to predict

XOR. Here, the order in which we predict AND and OR does not change our

method’s behavior.

To explain the influence of x1 and x2 on the prediction of XOR, we

compared the application of the framework SHAP on each classifier inde-

pendently and Shapley Chains on the trained classifier chain. We report our

analysis on the test data. The results of the comparison shown in Fig. 4.4

indicate that the output chaining propagates the contributions of x1 and x2

to predict XOR via AND and OR. Specifically, Fig. 4.4(a) and Fig. 4.4(b)

illustrate that our method detects the indirect contributions of x1 and x2

(indirect xor) to predict XOR thanks to the chaining of AND and OR to XOR

implemented with the classifier chain model, which tracks down all feature

contributions through the chaining of outputs. Furthermore, Fig. 4.4(a)

and Fig. 4.4(b) confirm that predicting OR before AND or vice versa does

not affect the feature contributions attribution, which confirms the chain

structure for this data. On the other hand, these contributions of x1 and x2
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(a) Chain order= [AND, OR, XOR] (b) Chain order= [OR, AND, XOR]

(*) Independent SHAP

Figure 4.4: A comparison of SHAP applied on independent classifiers and
Shapley Chains. From the left to the right. (a) and (b) Normalized direct
and indirect feature contributions made by Shapley Chains to predict AND,
OR and XOR for chain orders [AND, OR, XOR] and [OR, AND, XOR]. (∗)
Independent SHAP assigns contributions to x1 and x2 only to predict AND

and OR outputs and completely misses their contributions to predict XOR.
Absent colors refer to null Shapley values.

are completely neglected by the SHAP framework on independent classifiers

(Fig. 4.4(∗)).

Impact of the chaining order on the classifier chain explainability.

In order to measure the impact of the chaining order on the explainability of

our classifier chain model with Shapley Chains, we performed analysis on the

3 ! = 6 possible output chaining orders in the synthetic dataset (scenarios

(a) and (b) in Fig. 4.4 and scenarios (c), (d), (e) and (f) in Fig. 4.5).

The information known to the classifier chain when training each output

changes depending on the order of these outputs. For instance, in scenarios

a and b (Fig. 4.4), we first learn the two outputs AND and OR using x1

and x2 features. XOR is then predicted using AND and OR. Here, in both

scenarios, both features x1 and x2 contribute indirectly (through AND and
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(c) Chain order= [AND, XOR, OR] (d) Chain order= [OR, XOR, AND]

(e) Chain order= [XOR, AND, OR] (f) Chain order= [XOR, OR, AND]

Figure 4.5: Possible output chaining orders for XOR data. Normalized total
feature contributions (direct and indirect Shapley values) for c, d, e and f .

OR) to predict XOR. Meanwhile in the scenario c (or d), the model relies on

AND (or OR), x1 and x2 to predict XOR. We observe that x1 and x2 have

direct and indirect contributions, meaning that the classifier chain relies

partially on these two features to predict XOR (direct contributions of x1

and x2), and on AND (indirect contributions of x1 and x2 via AND). The

last two scenarios e and f show no contribution of x1 and x2 to predict XOR,

which is explained by the fact that using only these two features, the model

can not predict XOR without having the information about the dependencies

of XOR to AND and OR.

These results show that the chain order of AND, OR and XOR outputs

has an important role in the explainability of the classifier chain, because

feeding different inputs to the classifier chain yields different predictions,

thus different Shapley values are attributed to the features. x1 and x2

importance scores can either be derived from a direct inference of XOR

output only if there is additional information on output dependencies (for

example AND is linked to XOR) or by extracting it from the chain that links
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AND and OR to XOR. In the absence of all output dependencies of AND or

OR to XOR, the model completely ignores the importance of features x1 and

x2 in the prediction of XOR.

Explaining Adult Income with Shapley Chains

We run Shapley Chains on the UCI Adult Income dataset. This dataset

contains over 32500 instances with 15 features. We first perform a nominal

encoding on workclass, marital status and relationship features. We re-

move race, education and native country and normalize the dataset with

the min/max normalizer. Next, we split it into two subsets, using 80% for

the training and the remaining 20% for testing. We evaluated the hamming

loss of a classifier chain with different base learners and we kept the best

base classifier, the logistic regression in this case.

In order to explain feature contributions to the predictions of the three

outputs sex, occupation and income, we compared the results of Shapley

Chains against classic Shapley values applied on separate logistic regression

classifiers for different chain orders. Fig. 4.6 shows graphical representa-

tion of normalized and stacked feature contributions when applying Shapley

Chains on our data set (Fig. 4.6.(a)), and stacked feature contributions from

independent logistic regression classifiers (Fig. 4.6.(b)). In both cases, the

magnitude of the feature contributions is greater in Shapley Chains com-

pared to independent Shapley values, which confirms our initial hypothesis

of some contributions are missed by SHAP framework, and these contri-

butions can be detected when we take into account output dependencies.

For example, the number of hours worked in a week (hours.per.week) has

a more important indirect contribution to predict individual’s occupation

than a direct contribution. This is explained by the fact that sex is related

to occupation, and this relationship is propagated to the features by Shapley

Chains. relationship is another example of Shapley Chains detecting indirect

feature contributions to predict occupation. Furthermore, feature rankings

are different in Shapley Chains. For example, the ranking of capital.gain

comes in the fourth position (before workclass) using SHAP applied to in-

dependent classifiers. In our method, this feature’s ranking is always less

important (according to different chaining orders) than workclass to predict

sex, occupation and income which makes more sens to us.

We also tested the impact of different chain orders of these three outputs
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(a) Shapley Chains (b) SHAP on independent classifiers

Figure 4.6: (a) Direct and indirect Shapley values on Adult Income data:
we normalize and stack each feature’s direct and indirect contributions to
each output. sex has only direct contributions because it is the first output
we predict in this chain order. (b) Stacked Shapley values of independent
classifiers on Adult Income data.

on the feature importance attribution. Fig. 4.7 illustrates three different

chaining orders. Each different order allows each classifier to use different

prior knowledge to learn these outputs. For example in Fig. 4.7(b), we first

predict income and sex and we use this information to predict occupation.

Intuitively, occupation is correlated to individual’s sex and income. The

classifier chain uses this information provided to the third classifier to predict

occupation. Here, Shapley Chains attribute more importance to the factors

that predict both income and sex, when predicting occupation. Shapley

Chains preserve the order of feature importance scores across all the chaining

orders in general, but the magnitude of each feature’s importance differs

from one chain to another. This is due to the prior knowledge that is fed

into the classifier when learning each output. In addition, these feature

importance scores are always more important in Shapley Chains compared

to Shapley values of independent classifiers for all chain orders.

Shapley chains attributes Shapley Flow on the direct and indirect

feature importance across the synthetic and real world datasets.

Table 4.1 shows the mean distance to ground truth of the feature impor-

tance attributed by Shapley Chains, Shapley Flow, on manifold SHAP and

independent SHAP. Only Shapley Flow and Shapley Chains compute the di-

rect and indirect feature importance. Shapley Chains outperforms Shapley

Flow across the synthetic and real-world datasets.
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(a) (b) (c)

Figure 4.7: Stacked direct and indirect feature importance for 3 different
chain orders over Adult Income data.

Method ADULT(D) ADULT(I) XOR(D) XOR(I)

Shapley Chains 3.42 0.22 2.46 3.50
Shapley Flow 3.66 2.31 10.00 3.45
Independent 1.90 NA 10.05 NA
On-manifold 4.69 NA 5.0 NA

Table 4.1: Mean distance to ground truth (lower distances represent more
similar explanations to the ground truth). Similar to [101], we compare the
distance to ground truth. The ground truth for the real world datasets is the
weights of the local linear model trained on 10k instances. Shapley chains
attribution is the most similar to ground truth for the direct and indirect
feature importance across the datasets.

4.1.5 Conclusion

In this work, we presented Shapley Chains, a novel method for calculating

feature importance scores based on Shapley values for multi-output classi-

fication with a classifier chain. We defined direct and indirect contribution

and demonstrated on synthetic and real-world data how the attribution of

indirect feature contribution to the prediction is more complete with Shap-

ley Chains. Our method helps practitioners to better understand hidden

influence of the features on the outputs by detecting indirect feature con-

tributions hidden in output dependencies. Although the rankings of feature

importance are not always different from independent feature importance

scores, the magnitude of these scores is always important in Shapley Chains,

which is more important to look at in applications that are sensitive to

the magnitude of these importance scores rather than their rankings. By

87



CHAPTER 4. FEATURE IMPORTANCE CHAINS

extending the Shapley value to feature importance attribution of classifier

chains, we make use of output interdependencies that is implemented in clas-

sifier chains in order to represent the real learning factors of a multi-output

classification task.

To extend this work, Shapley Chains could be evaluated on multi-output

regression tasks. Exploring the relationship’s type between the outputs,

and studying weather Shapley Chains preserve all these relationships when

attributing feature contributions is another open question of our work.

4.2 Quantifying Uncertainty with Bayes LIME Chains

As machine learning models become more prevalent in various fields, the

need for interpretability and decision understanding of these models becomes

more critical. Local explanations offer valuable insights into the decision-

making process of machine learning models at the local level, i.e. for individ-

ual predictions. However, ensuring the reliability, robustness, and stability

of these explanations remains a challenge. Although methods like Bayes

LIME, Bayes SHAP, and Bay LIME have introduced Bayesian frameworks to

enhance the reliability of these explanations, they are limited in their appli-

cability to multi-output settings involving interdependent labels. Quantify-

ing these uncertainties is crucial to enhance the reliability of explanations

and making informed decisions based on them. Meanwhile, Shapley Chains

captures the indirect effects of a feature on the prediction of interdependent

labels, its lack a mechanism for quantifying the associated uncertainties. To

address this gap, we propose Bayes LIME Chains, a novel method aimed at

quantifying the uncertainty surrounding the indirect contribution of each

feature to the prediction of interdependent labels. Our findings suggest that

the uncertainty intervals computed using Bayes LIME Chains are reliable and

provide a comprehensive assessment of the uncertainty associated with fea-

ture importance estimates. These results underscore the effectiveness of our

approach in generating explanations with quantified uncertainties.

4.2.1 Introduction

One way to gain insights into a model’s behavior is by examining the contri-

bution of individual features to the predicted output. LIME [77] and Kernel

SHAP [56] are two popular methods to quantify the impact of a feature on
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the model’s prediction for a given instance. These two methods learn an in-

terpretable surrogate model in the neighborhood of the instance to explain.

While such methods have many advantages, prior research showed that the

generated explanations lack desired properties such as the local stability,

compactness, inconsistency and reliability [47, 97, 81, 28, 38].

To address these challenges, researchers introduced Bayesian frameworks

like Bayes SHAP, Bayes LIME [87], and Bay LIME [105]. These methods

aim to provide local explanations while also quantifying the uncertainty

associated with those explanations. They allow users to specify the desired

level of uncertainty and optimize the number of perturbations to achieve

accurate explanations. However, they are not well-suited for multi-output

tasks whith interdependent labels.

The interpretation of feature contributions becomes more complex when

dealing with interdependent multiple labels. In such cases, it becomes nec-

essary to take into consideration hidden dependencies among features and

outputs. To remedy this, researchers have proposed Shapley Chains[8] that

computes direct and indirect feature impacts in a chain of interdependent la-

bels. Although the authors demonstrate the effectiveness of their approach

on synthetic and real-world datasets, showing that it can identify impor-

tant features that are missed by explainability methods designed for single

output tasks and provide valuable insights into the relationships between

features and labels, this method fail to provide insights on the reliability of

the feature importance attribution.

This information is valuable, especially in high-stakes applications such

as medical diagnosis or financial risk assessment, where incorrect explana-

tions can have serious consequences. Therefore, it’s essential to understand

both direct and indirect feature importances to gain insights into how each

feature contributes to the predictions of each output label. For example, the

administration of one drug in an intensive care unit setting can indirectly

impact the administration of a second drug due to various factors, including

drug interactions, organ function, allergies, adverse effects, and the patient’s

overall condition. In our example, it is crucial for healthcare professionals

to carefully evaluate these factors by knowing reliable indirect feature im-

portance and allow them to identify specific risk factors or interventions for

each condition independently, in order to ensure patient safety and optimize

treatment outcomes.
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Therefore, in this section, we propose Bayes LIME Chains, a novel method

to measure uncertainty around the local indirect feature contributions to

predict interdependent labels as a measure to assess the reliability of the

explanation to predict the multiple interdependent labels. We use synthetic

datasets where ground truth is known in order to evaluate the feature im-

portance and their credible intervals.

4.2.2 Related work

Several methods have been proposed to measure uncertainties around local

explanations in machine learning models. Bayes LIME and Bayes SHAP, in-

troduced by Slack et al. [88], leverage Bayesian frameworks to generate local

explanations with associated uncertainties. These methods provide valuable

insights into the reliability and robustness of local explanations, enhancing

the interpretability of machine learning models. Additionally, Bay LIME,

proposed by Zhao et al. [104], offers a Bayesian approach to LIME, enabling

the quantification of uncertainties in local explanations. While these meth-

ods contribute to a deeper understanding of the uncertainties inherent in

direct local explanations, there is currently no established mechanism for

evaluating the quality or reliability of indirect feature importance estimates

across diverse datasets in both single and multi-output settings.

4.2.3 Proposed Method: Bayes LIME Chains

y1y2

Xφdirect, σ2
direct φindirect, σ2

indirect

y1y2

X

(a) (b)

Figure 4.8: (a) An example of a 2-output task with interdependent labels.
(b) Direct and indirect importance of X to predict the label y2

.

Let’s consider an instance x for which we aim to provide an explanation

of its prediction made by the black box model f , along with an assessment

of the uncertainty associated with this explanation. Local explainability

models such as LIME and Kernel SHAP utilize surrogate linear models g to
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emulate the behavior of the black box model f in the vicinity of the instance

x for explanation purposes. The surrogate linear model g is trained on a

sampled dataset x′, with the width parameter πx(x′) being a user-specified

value. In order to measure the uncertainty of the explanations, Bayes LIME

employs a Bayesian linear model [66] trained on the sampled dataset to

compute feature importance φ along with their uncertainties. The model

prediction y for a given instance x′ in the sampled dataset is expressed as:

y|x′, φ, ǫ ∼ φT x′ + ǫ (4.4)

The prior distribution of the feature importance vector φ can be written as:

φ|σ2 ∼ N (0, σ2I) (4.5)

The error term ǫ and the width of the neighborhood around instance x:

ǫ ∼ N (0, σ2/πx(x′)); πx(x′) = exp(−dist(x, x′)2/σ2) (4.6)

And the prior distribution of the variance:

σ2 ∼ Inv − χ2(n0, σ2
0) (4.7)

Where n0 and σ0 are set to 10−6 to ensure an uninformative prior and

dist is distance metric which can be l2 or cosine.

On the other hand, Shapley Chains enables the computation of both di-

rect and indirect feature importance in multi-output tasks using techniques

like Kernel SHAP or LIME. To leverage the benefits of both approaches (Bayes

LIME and Shapley Chains), we propose a novel method called Bayes LIME

Chains. This method aims to provide explanations and their uncertainties for

both direct and indirect feature importance in multi-output tasks. There-

fore, we measure the uncertainties of the indirect feature importance by

distributing the uncertainties associated with direct label importance when

used as a feature to predict subsequent labels in the chain among the set of

features involved in predicting that label. This can be written as:

The direct contribution and uncertainty of the features on the each label

independently are computed as in Bayes LIME (Equations. 4.4,4.5,4.6 and

4.7), and the indirect contribution of the features Φindirect(y
j) to predict
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label yj is computed as in Shapley Chains, i.e. by computing the direct label

importance on subsequent labels and distributing them on the features. On

the other hand, for each label yj in the chain, the indirect feature uncertainty

measured with σ2
indirect(y

j) is computed as follows using the same mechanism

in Equations 4.1, 4.2 and 4.3:

σ2
indirect(y

j) =

j−1
∑

k=1

σ2(yk) · Uk (4.8)

j > 1 and Uk computes the weight vector for all paths from output yk

down to the features. For k > 1 and U1 = W (y1), Uk is recursively computed

as follows:

Uk =

k−1
∑

l=1

W (yk, yk−l) · Uk−l + W (yk) (4.9)

W (yk, yk−l) is the corresponding weight of yk−l to predict the next out-

put yk (the direct contribution of yk−l to predict yk). And, W (yk) is the

weight of the features to predict yk (the direct contribution of the features

to predict yk). The weights W (yk, yk−l) and W (yk) are calculated according

to:

W (yk, .) =
|σ2(yk)|

(

∑n
q=1 |σ2

xq (yk)| +
∑k

p=1 |σ2
yp(yk)|

) (4.10)

Where σ2
xq (yk) is the direct uncertainty interval (in Eq. 4.7) of each

feature xq to predict yk. σ2
yp(yk) is the direct uncertainty interval of each

label yp that is now considered as a new feature to predict yj .

4.2.4 Experiments

To demonstrate the efficacy of our work, we use the synthetic and the Adult

Income datasets and set up the experiments such as in Section 4.1.4.
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Figure 4.9: Direct and indirect feature importance of the features x1 and
x2 to predict the labels AND, OR and XOR, with the uncertainty on each
contribution. Unlike LIME, which only calculates direct feature contribu-
tions, Bayes LIME chains assign equal total contributions (combining direct
and indirect effects) of features to predict each label, reflecting the ground
truth.

Figure 4.10: [87] An example of an explanation attributed by Bayes LIME

Chains to a given instance in the XOR test set to explain the indirect impact
of the feature to predict XOR label (corresponds to the brown illustration
in Fig. 4.9). The vertical lines illustrate the indirect feature importance
(red represents negative effect, green represents positive) and the shaded
region visualizes the indirect uncertainty estimated by Bayes LIME Chains.
The uncertainty intervals computed on different numbers of perturbations
confirm that x1 and x2 are equivally important to predict the label XOR.
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Figure 4.11: [87] An illustration of an explanation provided by Bayes LIME

Chains for a specific instance within the Adult test set. The overlapping
uncertainty intervals in the explanation generated with 100 perturbations
indicate challenges in discerning the most influential feature. Conversely,
narrower uncertainty intervals observed in the explanation generated with
2000 perturbations highlight marital status and relationship as the primary
influential features.

Quality of the uncertainty intervals

Figure 4.12 illustrates the uncertainty intervals computed for the indirect

feature importance of the XOR label using Bayes LIME Chains. Our anal-

ysis demonstrates that the uncertainty intervals are robust and encompass

the ground truth feature importance values(as in Section 3.1.3) for most

features. In contrast, for the real-world dataset, we conducted experiments

with a larger neighborhood of instances to explain (N = 10k) and consid-

ered the feature importance obtained from Bayes LIME Chains as the ground

truth. Figure 4.13 presents the uncertainty intervals computed for the indi-

rect feature importance of the Occupation label. The results indicate that

the uncertainty intervals remain robust and effectively capture the variabil-

ity in the feature importance estimates.

4.2.5 Conclusion

In conclusion, we have introduced a novel method called Bayes LIME Chains

for computing reliable direct and indirect feature importance in multi-label

classification tasks with interdependent labels. This work is crucial for gen-

erating robust explanations that aid in understanding model predictions

and building trust in the decision-making process. Through experiments
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Method Direct Indirect

XOR(100) 98.0 91.0
XOR(2K) 95.0 94.0
Adult(100) 97.5 96.8
Adult(2K) 95.8 90.5

Table 4.2: Similar to [87], we assess the calibration of the credible intervals,
by computing the percentage of instances where the 95% credible intervals
of the direct and indirect feature importance to predict the XOR and IN-

COME, computed using 100 and 2K perturbations, encapsulate their true
values (determined from 10k perturbations). Higher values indicate better
calibration. Bayes LIME chains yield well-calibrated intervals despite the
number of perturbations.

Figure 4.12: [87] Normalized indirect feature importance and uncertainty
to predict XOR compared to the ground truth. The black vertical lines
correspond to the ground truth for the XOR dataset. Since both features
are important and necessary for the prediction of XOR label, they share
equal importance (.5 for each). For different numbers of perturbations, both
features are around .5 importance.

Figure 4.13: [87] Indirect feature importance and uncertainty compared to
the ground truth. The black vertical lines correspond to the ground truth
for the Adult dataset. The ground truth feature importance is obtained by
running Bayes LIME Chains on 10k perturbations and is often included in
the estimated intervals.
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Method Bayes LIME Chains Shapley Flow Independent On-manifold

Adult(D) 97.5 40.6 13.0 47.3
Adult(I) 86.2 53.8 NA NA
XOR(D) 98.0 83.3 87.5 77.9
XOR(I) 91.0 66.7 NA NA

Table 4.3: Similar to [87], we assess the calibration of the credible intervals,
by computing the percentage of instances where the 95% credible intervals
of the direct and indirect feature importance to predict the XOR and Adult

Income. Higher values indicate better calibration. Bayes LIME chains yield
well-calibrated intervals across the datasets.

conducted on synthetic and real-world datasets, we have demonstrated the

effectiveness of our approach in providing explanations with associated un-

certainties. However, it is important to acknowledge the limitations of our

work, particularly the absence of ground truth for real-world datasets against

which the direct and indirect feature importance and credible intervals could

be compared. Moving forward, future research could explore extending this

methodology to other local explanation models such as Kernel SHAP and lo-

cal surrogates. Additionally, incorporating Bayesian model averaging tech-

niques for heterogeneous data could be an interesting avenue for further

investigation.
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Chapter 5

Conclusion

In conclusion, this thesis has made significant contributions to the field of

reliable XAI. Our work has provided novel insights into advantages and

limitations of existing methods, shedding light on previously unexplored

areas such as finding where these methods work or fail with respect to data

properties. Our work also provided new reliable explanation methodologies

for multi-output tasks by including label interdependencies in the feature

importance attribution.

Limitations However, it’s important to acknowledge the limitations of

each proposed approach. For instance, in the first chapter we evaluate the

local explanation methods on synthetic datasets with two features. While

the aim was to simplify the feature interactions and focus on specific cases for

different parameters, this over simplification might be inadequate to repre-

sent the complex feature interactions that are present in real-world datasets.

Moreover, we restricted our evaluation to decision tree based models such

as random forest, although this can be applied to other decision tree based

models such as XGboost and other complex models like deep neural net-

works. In addition, the Shapley chain method, while applicable to any type

of label interdependencies and doesn’t necessitate a prior causal knowledge

on which label affects the others, it doesn’t permit to clarify these type

of label interdependencies. Also, the computation of the Shapley value for

multi-output is very time and memory consuming. Moreover, Bayes LIME

Chains is tested on synthetic datasets where the ground truth is available, it

is hard to make same conclusions on real-world datasets where ground truth
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is missing, unless we consider the parameters of the best fit local linear

model, which is true to the model and not to the data itself. Despite these

constraints, our research has laid the groundwork for future investigations

in this domain.

Perspectives Moving forward, there are several promising avenues for fu-

ture work. One such direction could involve the assessment of explanations

should be extended to other types of data such as images and text. Ad-

ditionally, extend it to other more complex synthetic datasets to include

many features that can be more representative of real world scenarios, to

other tasks such as multi-class classification and regression, to other deci-

sion trees based models such as XGBoost and other blackbox models such

as deep neural networks. Another might focus on exploring the direct and

indirect feature importance computed by Shapley Chains on specific label

interdependencies such as causal relationships and correlations, and to ex-

plore the mays that the total feature importance can help understand the

best order to lean each label in the chain in order to maximise the perfor-

mance for the given task (for instance, accuracy or Hamming loss for the

multi-output classification). Additionally, future work should focus on opti-

mizing the time complexity of the compuatation of the Shapley Chains. On

the other hand, Bayes LIME Chains can also be applied to other data modal-

ities such as images and text and extended to other local surrogate XAI

based methods such as Local surrogates. Finally, future work can also build

more robust and reliable explanations by exploring other ways of measuring

the uncertainty intervals such as using Bayesian models averaging (BMA)

instead of single linear models.

By addressing these avenues, we aim to further advance the field and

continue to contribute to the ongoing discourse on reliable local explanations

for single and multi-output tasks on tabular data.
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APPENDIX A. FEATURE IMPORTANCE DEPENDS ON DATA
PROPERTIES

Appendix A

Feature Importance depends

on Data Properties

A.1 DT and a RF for the 48 generated datasets

with 50 000 instances

Decision function ǫ ρ DT Accuracy feature importance by DT RF Accuracy feature importance by RF

NOT 0.00 0.00 1.00 φx1=1.0, φx2=0.0 1.00 φx1=0.68, φx2=0.32

NOT 0.00 0.10 1.00 φx1=1.0, φx2=0.0 1.00 φx1=0.7, φx2=0.3

NOT 0.00 0.90 1.00 φx1=1.0, φx2=0.0 1.00 φx1=0.51, φx2=0.49

NOT 0.00 1.00 1.00 φx1=0.0, φx2=1.0 1.00 φx1=0.4, φx2=0.6

NOT 0.00 0.00 1.00 φx1=1.0, φx2=0.0 1.00 φx1=0.65, φx2=0.35

NOT 0.00 0.10 1.00 φx1=1.0, φx2=0.0 1.00 φx1=0.7, φx2=0.3

NOT 0.00 0.90 1.00 φx1=1.0, φx2=0.0 1.00 φx1=0.52, φx2=0.48

NOT 0.00 1.00 1.00 φx1=0.0, φx2=1.0 1.00 φx1=0.4, φx2=0.6

NOT 0.25 0.00 0.90 φx1=1.0, φx2=0.0 0.90 φx1=0.67, φx2=0.33

NOT 0.25 0.10 0.90 φx1=1.0, φx2=0.0 0.90 φx1=0.7, φx2=0.3

NOT 0.25 0.90 0.90 φx1=1.0, φx2=0.0 0.90 φx1=0.51, φx2=0.49

NOT 0.25 1.00 0.90 φx1=0.0, φx2=1.0 0.90 φx1=0.4, φx2=0.6

NOT 0.25 0.00 0.89 φx1=1.0, φx2=0.0 0.89 φx1=0.6, φx2=0.4

NOT 0.25 0.10 0.90 φx1=1.0, φx2=0.0 0.90 φx1=0.7, φx2=0.3

NOT 0.25 0.90 0.90 φx1=1.0, φx2=0.0 0.90 φx1=0.52, φx2=0.48

NOT 0.25 1.00 0.90 φx1=0.0, φx2=1.0 0.90 φx1=0.4, φx2=0.6

NOT 0.5 0.00 0.50 φx1=0.0, φx2=1.0 0.50 φx1=0.37, φx2=0.63

NOT 0.5 0.10 0.50 φx1=0.66, φx2=0.34 0.50 φx1=0.43, φx2=0.57

NOT 0.5 0.90 0.51 φx1=1.0, φx2=0.0 0.50 φx1=0.34, φx2=0.66

NOT 0.5 1.00 0.49 φx1=0.74, φx2=0.26 0.49 φx1=0.39, φx2=0.61

NOT 0.5 0.00 0.50 φx1=0.66, φx2=0.34 0.50 φx1=0.37, φx2=0.63

NOT 0.5 0.10 0.51 φx1=0.0, φx2=1.0 0.50 φx1=0.39, φx2=0.61

NOT 0.5 0.90 0.50 φx1=1.0, φx2=0.0 0.49 φx1=0.4, φx2=0.6

NOT 0.5 1.00 0.49 φx1=0.6, φx2=0.4 0.49 φx1=0.32, φx2=0.68

Table A.1: Parameterization and performances on the test set of a decision

tree and a random forest for the 48 generated datasets with 50 000 instances.

The feature importance estimates of the decision tree converge to the ground

truth feature importance estimates when number of generated instances =

50 000. DT and RF learning are extremely affected by the noise.
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Decision function ǫ ρ DT Accuracy feature importance by DT RF Accuracy feature importance by RF

XOR 0.00 0.00 1.00 φx1=0.48, φx2=0.52 0.97 φx1=0.53, φx2=0.47

XOR 0.00 0.10 1.00 φx1=0.46, φx2=0.54 0.94 φx1=0.53, φx2=0.47

XOR 0.00 0.90 1.00 φx1=0.52, φx2=0.48 1.00 φx1=0.38, φx2=0.62

XOR 0.00 1.00 1.00 φx1=0.48, φx2=0.52 1.00 φx1=0.35, φx2=0.65

XOR 0.00 0.00 1.00 φx1=0.54, φx2=0.46 0.99 φx1=0.13, φx2=0.87

XOR 0.00 0.10 1.00 φx1=0.53, φx2=0.47 0.84 φx1=0.13, φx2=0.87

XOR 0.00 0.90 1.00 φx1=0.48, φx2=0.52 0.96 φx1=0.32, φx2=0.68

XOR 0.00 1.00 1.00 φx1=0.48, φx2=0.52 1.00 φx1=0.35, φx2=0.65

XOR 0.25 0.00 0.90 φx1=0.46, φx2=0.54 0.90 φx1=0.53, φx2=0.47

XOR 0.25 0.10 0.90 φx1=0.47, φx2=0.53 0.88 φx1=0.54, φx2=0.46

XOR 0.25 0.90 0.90 φx1=0.52, φx2=0.48 0.90 φx1=0.38, φx2=0.62

XOR 0.25 1.00 0.90 φx1=0.48, φx2=0.52 0.90 φx1=0.35, φx2=0.65

XOR 0.25 0.00 0.90 φx1=0.54, φx2=0.46 0.78 φx1=0.17, φx2=0.83

XOR 0.25 0.10 0.90 φx1=0.53, φx2=0.47 0.76 φx1=0.14, φx2=0.86

XOR 0.25 0.90 0.90 φx1=0.48, φx2=0.52 0.87 φx1=0.32, φx2=0.68

XOR 0.25 1.00 0.90 φx1=0.49, φx2=0.51 0.90 φx1=0.35, φx2=0.65

XOR 0.5 0.00 0.50 φx1=0.0, φx2=1.0 0.50 φx1=0.39, φx2=0.61

XOR 0.5 0.10 0.50 φx1=1.0, φx2=0.0 0.49 φx1=0.37, φx2=0.63

XOR 0.5 0.90 0.50 φx1=0.0, φx2=1.0 0.50 φx1=0.36, φx2=0.64

XOR 0.5 1.00 0.50 φx1=0.63, φx2=0.37 0.50 φx1=0.32, φx2=0.68

XOR 0.5 0.00 0.50 φx1=0.4, φx2=0.6 0.49 φx1=0.44, φx2=0.56

XOR 0.5 0.10 0.50 φx1=0.33, φx2=0.67 0.50 φx1=0.35, φx2=0.65

XOR 0.5 0.90 0.50 φx1=0.0, φx2=1.0 0.50 φx1=0.37, φx2=0.63

XOR 0.5 1.00 0.51 φx1=0.69, φx2=0.31 0.51 φx1=0.37, φx2=0.63

Table A.2: Parameterization and performances on the test set of a decision

tree and a random forest for the 48 generated datasets with 50 000 instances.

The feature importance estimates of the decision tree converge to the ground

truth feature importance estimates when number of generated instances =

50 000. DT and RF learning are extremely affected by the noise.
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Appendix B

Cervical Cancer Risk Factors

B.1 Contribution of the Data Points to the Pre-

diction Making.

Figure B.1: Local variability of the feature importance for Patient 1. We

compute the feature importance of 30 nearest neighbors to this patient,

among these we keep the patients having the same explanations and pre-

dictions and compute the distance between each data point and Patient 1.

Small distances mean more stable explanations. For example, Local surro-

gates is the most stable method for feature Dx:HPV of the Patient 1.
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Figure B.2: Contribution of the Age of all patients to the class 1 (diagnosed

with Cancer).
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B.2 Comparing Different Patient Explanations

Feature Patient 0 Patient 1 Patient 2 Patient 3 Mean in population

Age 27.00 27.00 14.00 70.00 26.82

Number of sexual partners 2.00 2.00 2.00 1.00 2.51

First sexual intercourse 19.00 14.00 14.00 16.00 17.00

Num of pregnancies 2.00 3.00 1.00 10.00 2.26

Hormonal Contraceptives (years) 7.00 0.86 0.00 0.00 2.04

STDs: Time since first diagnosis 4.00 4.00 4.00 4.00 4.18

STDs: Time since last diagnosis 3.00 3.00 3.00 3.00 3.23

HPV 0.00 1.00 0.00 0.00 0.02

IUD 0.00 0.00 0.00 1.00 0.10

Table B.1: Summary statistics of four different patients diagnosed with

cervical cancer relative to the mean of the population.
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B.2.1 Patient 2 with Age =14 and Dx:Cancer= 0

Feature importance attributions

Figure B.3: Feature importance attribution for Patient 2, with Age =14 and

Dx:Cancer= 0.
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Stability of the features in the neighborhood

Figure B.4: Local variability of the feature importance for Patient with

id=2. We compute the feature importance of 30 nearest neighbors to this

patient, among these we keep the patients having the same explanations and

predictions and compute the distance between each data point and Patient

with id=2. Small distances mean more stable explanations. For example,

LIME is the most stable method for feature Dx of the Patient with id=2.
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Rank and feature agreements

Figure B.5: Feature agreement for patient 2 (Age=14).
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B.2.2 Patient 3 with Age =70 and Dx:Cancer= 0

Feature importance attributions

Figure B.6: Feature importance attributions for Patient 3, with Age =70

and Dx:Cancer= 0.
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Stability of the features in the neighborhood

Figure B.7: Local variability of the feature importance for Patient with

id=3. We compute the feature importance of 30 nearest neighbors to this

patient, among these we keep the patients having the same explanations and

predictions and compute the distance between each data point and Patient

with id=3. Small distances mean more stable explanations. For example,

LIME is the most stable method for feature Dx:HPV of the Patient with

id=3.
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Rank and feature agreements

Figure B.8: Feature agreement for patient 3 (Age=70).
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B.3 Fooling Explanations with Random Variables

Figure B.9: Adding a binary, a continuous random variables and noise to

the features (ǫ ∈ N (0, .1)).
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B.4 Effect of Changing a Feature Value on the Ex-

planations for Patient 1.

B.4.1 Changing Age from 27 to 80

Figure B.10: Feature importance attributions for Patient with id=291 and

Age = 80.
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B.4.2 Changing Number of pregnancies from 3 to 0

Figure B.11: Feature importance attributions for Patient with id=291 and

Number of pregnancies = 0.
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B.4.3 Changing Smokes from 0 to 1

Figure B.12: Feature importance attributions for Patient with id=291 and

Smokes = 1.
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B.4.4 Changing Number of sexual partners from 2 to 60

Figure B.13: Feature importance attributions for Patient with id=291 and

Number of sexual partners = 60.
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B.4.5 Changing First sexual intercourse from 14 to 40

Figure B.14: Feature importance attributions for Patient with id=291 and

First sexual intercourse = 40.

B.16



APPENDIX B. CERVICAL CANCER RISK FACTORS

B.5 Difference in the Explanations for Different

Age Categories

B.5.1 Patients with Age 14 and 19

Figure B.15: Feature importance attributions for Patient with id=29.
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Figure B.16: Feature importance attributions for Patient with id=19.
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B.5.2 Patients with Age=24

Figure B.17: Feature importance attributions for Patient with id=11.
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Figure B.18: Feature importance attributions for Patient with id=136.
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B.5.3 Patients with Age=34

Figure B.19: Feature importance attributions for Patient with id=6.
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Figure B.20: Feature importance attributions for Patient with id=307.
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B.5.4 Patients with Age=44 and 45

Figure B.21: Feature importance attributions for Patient with id=45.
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Figure B.22: Feature importance attributions for Patient with id=158.
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B.5.5 Patients with Age=54

Figure B.23: Feature importance attributions for Patient with id=222.
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Figure B.24: Feature importance attributions for Patient with id=141.
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B.5.6 Patient with Age=74

Figure B.25: Feature importance attributions for Patient with id=57.

B.27



APPENDIX B. CERVICAL CANCER RISK FACTORS

B.6 Explanation Difference between Smoking and

Non Smoking Patients

B.6.1 Patients with Smokes=1

Figure B.26: Feature importance attributions for Patient with id=30.
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Figure B.27: Feature importance attributions for Patient with id=4.
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B.6.2 Patients with Smokes=0

Figure B.28: Feature importance attributions for Patient with id=0.
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Figure B.29: Feature importance attributions for Patient with id=1.

B.7 Second Best Model: MLP

We tested the second best model (MLP) in terms of AUROC and accuracy.

Results of the feature importance show small changes in feature ranking and

sign. For example, Kernel SHAP for an MLP shows that for Patient 1, the

age of first sexual activity is positively correlated with the prediction, while

for a random forest this is negative. Sampling SHAP ranks age in the top 4

features for the random forest for Patient 1 while age is not in the top 10
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features of the MLP. Similar insights can be found on other patients.

B.7.1 Feature importance for Patient 1

Figure B.30: Feature importance attributions for Patient 1. The predictions

are made by the MLP model.
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B.7.2 ROAR and Consistency of the explanations

Figure B.31: Consistency

Figure B.32: ROAR
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B.7.3 Faithfulness: Rank and feature agreements

Figure B.33: Feature agreement for Patient 1.
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B.7.4 Compactness, global stability and consistency

Methods # Features for 90% Accuracy Accuracy with 5 features(%) Mean Stability Mean Consistency

Surrogates 2 100 0.22 0.62

KSHAP 1 18 1.05 0.54

SSHAP 1 16 1.66 0.54

LIME 1 100 0.52 0.72

DICE 8 100 2.04 1.23

Table B.2: Compactness, stability and consistency of the explanation for

Patient 1 for the prediction made by the MLP.

B.8 Comparing Different Patients with Different

Risk Factors

Methods # Features for 90% Accuracy Accuracy with 5 features(%) Stability Mean Feature Agree Mean Rank Agree

Surrogates 3 23 0.02 0.80 0.10

KSHAP 1 02 0.03 1.00 1.00

TSHAP 1 00 0.03 1.00 0.50

SSHAP 1 20 0.03 1.00 0.70

LIME 1 23 0.01 0.60 0.20

TI 1 03 0.02 0.80 0.40

DiCE 2 50 0.03 0.10 0.00

Table B.3: Patient with ID: 29, Age: 14, First Sexual Intercourse: 14,

Number of Sexual Partners: 2, Number of pregnancies : 1, and Smokes: 1.

Methods # Features for 90% Accuracy Accuracy with 5 features(%) Stability Mean Feature Agree Mean Rank Agree

Surrogates 3 64 0.02 0.80 0.40

KSHAP 1 06 0.03 1.00 1.00

TSHAP 1 04 0.03 1.00 0.80

SSHAP 1 05 0.03 1.00 1.00

LIME 1 23 0.01 0.60 0.20

TI 1 07 0.02 0.90 0.40

DiCE 4 70 0.03 0.30 0.10

Table B.4: Patient with ID: 285, Age: 26, First Sexual Intercourse: 16,

Number of Sexual Partners: 10, Number of pregnancies : 1 and Smokes: 0.
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Methods # Features for 90% Accuracy Accuracy with 5 features(%) Stability Mean Feature Agree Mean Rank Agree

Surrogates 4 100 0.02 0.6 0.20

KSHAP 1 06 0.03 1.00 1.00

TSHAP 1 05 0.02 1.00 1.00

SSHAP 1 07 0.02 1.00 0.80

LIME 1 03 0.01 0.60 0.30

TI 1 10 0.02 0.90 0.40

DiCE 4 60 0.03 0.40 0.00

Table B.5: Patient with ID: 263, Age: 29, First Sexual Intercourse: 10,

Number of Sexual Partners: 4, Number of pregnancies: 5 and Smokes: 0.
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Résumé :L'apprentissage automatique continue
de démontrer de solides capacités prédictives,
ce qui en fait un outil précieux dans les
domaines scientifiques et industriels.
Cependant, à mesure que les modèles
deviennent de plus en plus complexes, il est
essentiel de comprendre leur fonctionnement
et de renforcer la confiance dans leurs
prédictions, en particulier dans des domaines
critiques comme la santé et la finance. Les
chercheurs ont développé des méthodes
d'explication pour rendre les modèles ML plus
transparents, mais ceux-ci ne parviennent
souvent pas à expliquer clairement les
prédictions, ce qui limite leur utilisation pour
les experts du domaine.
Dans cette thèse, nous nous concentrons sur
deux axes de recherche :

Tout d'abord, nous proposons un cadre pour
évaluer les méthodes d'explicabilité basées sur
des caractéristiques de données spécifiques
(par exemple, le bruit, les corrélations de
caractéristiques, le déséquilibre des classes),
offrant des conseils sur la sélection de la
meilleure méthode pour différents ensembles
de données. De plus, nous fournissons aux
cliniciens des explications personnalisées des
facteurs de risque de cancer du col de l'utérus,
adaptées pour être compréhensibles et
cohérentes.
Deuxièmement, nous introduisons les chaînes
de Shapley, une nouvelle technique
d'explication pour les prédictions à sorties
multiples avec des étiquettes
interdépendantes, et les chaînes LIME de Bayes
pour améliorer sa robustesse.
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Abstract : As machine learning continues to
demonstrate robust predictive capabilities, it
has become a valuable tool across scientific and
industrial fields. However, as models grow in
complexity, understanding their workings and
building trust in their predictions, particularly in
critical areas like healthcare and finance, is
essential. Researchers have developed
explanation methods to make ML models more
transparent, but these often fail to explain
predictions clearly, limiting their usability for
domain experts.
In this dissertation, we focus on two research
directions:

First, we propose a framework to evaluate
explainability methods based on specific data
characteristics (e.g., noise, feature correlations,
class imbalance), offering guidance on selecting
the best method for different datasets.
Additionally, we provide clinicians with
personalized explanations for cervical cancer
risk factors, tailored to be understandable and
consistent.
Second, we introduce Shapley Chains, a novel
explanation technique for multi-output
predictions with interdependent labels, and
Bayes LIME Chains to enhance its robustness.
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