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Erwan Brugallé (absent lors de la soutenance)
Professeur, Nantes Université Rapporteur
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Préface

Dans cette thèse, nous introduisons d’abord de nouveaux objets combinatoires nommés

“matricubes”, qui sont une généralisation assez naturelle des matröıdes. De la même

façon que les matröıdes fournissent une axiomatisation combinatoire des arrangements

d’hyperplans (ou, de façon duale, de vecteurs) dans un espace vectoriel, les matricubes

abstraient les arrangements de drapeaux initiaux. Puisque les matröıdes peuvent être

définis de manière équivalente par différents systèmes d’axiomes, nous proposons, de même,

plusieurs définitions cryptomorphes des matricubes en termes de fonction de rang, de

collection de plats, de circuits, et d’indépendants. Cela se fait, en particulier, en étudiant la

structure combinatoire de certaines de ces collections. Nous formulons aussi un concept de

dualité pour les matricubes, et deux opérations de délétion et de contraction qui étendent

celles sur les matröıdes. Nous exhibons des liens précis entre les matricubes et les tableaux

de permutation et proposons une description des matricubes comme des collections de

matröıdes locaux vérifiant certaines propriétés. Nous explorons certains problèmes de

représentabilité pour les matricubes, et posons plusieurs questions ouvertes.

Ce concept de matricube nous aide ensuite à développer une nouvelle théorie purement

combinatoire des séries linéaires limites sur les graphes métriques. Cette dernière est

également basée sur le formalisme des structures de pentes, qui contraignent les pentes

et les vecteurs de pentes de fonctions affines par morceaux à valeurs réelles et à pentes

entières sur les graphes métriques. En effet, les matricubes s’avèrent être le bon formalisme

pour prescrire les pentes conjointes des fonctions autour des sommets du graphe. Notre

définition de série linéaire combinatoire combine ensuite des propriétés combinatoires et

algébriques pour donner un concept fort. Certaines séries linéaires combinatoires s’obtiennent

naturellement en tropicalisant des séries linéaires sur des courbes algébriques, ce qui soulève

des questions de réalisabilité. En outre, nous explorons les propriétés topologiques des

séries linéaires combinatoires, définissons une bonne notion de diviseur réduit, et proposons

une classification complète des séries linéaires combinatoires de rang 1 : elles sont en

correspondance bijective avec les morphismes harmoniques depuis le graphe vers des arbres

métriques. Ceci entrâıne un théorème de lissification. Nous discutons aussi d’autres

applications et de liens avec d’autres concepts de la géométrie algébrique combinatoire.

Enfin, nous étudions les points de Weierstrass tropicaux, qui sont des analogues, sur

les courbes tropicales, de points spéciaux sur les courbes algébriques nommés “points

de Weierstrass”. Ces derniers peuvent être décrits comme les “points d’inflexion” d’une

courbe lisse plongée ou, de façon équivalente, comme les points de ramification de fibrés

en droites sur une courbe. Puisque le lieu de Weierstrass tropical d’un diviseur sur un
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graphe métrique peut être infini, nous étudions ses propriétés topologiques, et associons

un poids intrinsèque à chacune de ses composantes connexes. Ceci suppose d’analyser

les pentes des fonctions affines par morceaux appartenant à la série linéaire complète du

diviseur. Nous démontrons que ces poids ont de bonnes propriétés combinatoires, en ce

sens que leur somme dépend uniquement du degré du diviseur, de son rang, et du genre du

graphe. De surcrôıt, dans le cas où le graphe métrique est la tropicalisation d’une courbe

algébrique, les tropicalisations des points de Weierstrass géométriques atterrissent dans

le lieu de Weierstrass tropical, et nous montrons que nos poids comptent le nombre de

points de Weierstrass géométriques qui dégénèrent sur chaque composante connexe du lieu

de Weierstrass tropical. Ce résultat utilise les séries linéaires limites combinatoires, qui

contiennent la bonne quantité d’information combinatoire provenant du monde géométrique

pour permettre ce dénombrement. Nous commentons de multiples exemples de lieux de

Weierstrass tropicaux pour lever partiellement le voile sur la diversité qui émane de ce

concept.
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Preface

In this thesis, we first introduce new combinatorial objects called “matricubes”, which

are a rather natural generalization of matroids. In the same way that matroids provide a

combinatorial axiomatization of hyperplane arrangements (or, dually, vectors) in a vector

space, matricubes abstract arrangements of initial flags. Since matroids can be equivalently

defined by a variety of axiomatic systems, we provide, likewise, several cryptomorphic

definitions of matricubes in terms of rank function, collections of flats, circuits, and

independent sets. This is done, in particular, by studying the combinatorial structure of

some of these collections. We also formulate a duality concept for matricubes, and two

operations of deletion and contraction which extend those on matroids. We provide precise

connections between matricubes and permutation arrays, and propose a description of

matricubes as collections of local matroids satisfying certain properties. We explore some

representability problems for matricubes, and ask several open questions.

The concept of matricube then helps to develop a new, purely combinatorial theory of limit

linear series on metric graphs. This is also based on the formalism of slope structures, which

constrains the slopes and slope vectors of piecewise affine linear real-valued functions with

integral slopes on metric graphs. Indeed, matricubes turn out to be the relevant formalism

to prescribe the joint slopes of functions around vertices of the graph. Our definition of

combinatorial linear series then combines combinatorial and algebraic properties to yield a

strong concept. Some combinatorial linear series are naturally obtained by tropicalizing

linear series on algebraic curves, which raises realizability questions. Besides, we explore

the topological properties of combinatorial linear series, define a relevant notion of reduced

divisor, and provide a full classification for combinatorial linear series of rank one: they

are in one-to-one correspondence with harmonic morphisms from the graph to metric trees.

This entails a smoothing theorem. We also discuss some other applications and connections

to other concepts in combinatorial algebraic geometry.

Finally, we study tropical Weierstrass points, which are analogues, on tropical curves, of

special points on algebraic curves called “Weierstrass points”. Those can be described as

the “flex points” of smooth embedded curves or, equivalently, as the ramification points of

line bundles on curves. Since the tropical Weierstrass locus of a divisor on a metric graph

can be infinite, we study its topological properties, and associate intrinsic weights to its

finitely many connected components. This is done by analyzing the slopes of piecewise

linear functions in the complete linear series of the divisor. We prove that these weights

have a nice combinatorial behavior, as their sum depends only on the degree of the divisor,

its rank, and the genus of the graph. Furthermore, in the case the metric graph is the
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tropicalization of an algebraic curve, the tropicalizations of geometric Weierstrass points

land inside the tropical Weierstrass locus, and we show that our weights count the number

of geometric Weierstrass points degenerating to each connected component of the tropical

Weierstrass locus. This uses combinatorial limit linear series, which contain the right

amount of combinatorial information from the geometric world to enable this count. We

discuss multiple examples of tropical Weierstrass loci to show some of the diversity arising

from this concept.
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1 Introduction

We provide a French, and then an English version of the introduction to the manuscript.

Contents of the chapter

Version française . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

English version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Version française

Cette introduction a pour objectif de résumer le contenu du manuscrit de thèse, en

évitant les détails techniques, qui seront développés dans les chapitres suivants. Elle devrait

être utile à la fois pour introduire le propos à une personne intéressée à lire le manuscrit

en entier, et pour une personne non-spécialiste voulant jeter un œil à ces sujets sans pour

autant lire le texte en entier.

Cette thèse a but d’étudier certains aspects de la géométrie tropicale en lien avec la

géométrie algébrique.

En quelques mots, de nombreux objets de la géométrie algébrique – comme les courbes,

les diviseurs sur les courbes, les espaces de fonctions sur les courbes, ou certains points

spéciaux sur les courbes – peuvent être déformés en des objets géométriques d’une nature

beaucoup plus simple, ayant des propriétés combinatoires, au moyen d’une procédure

nommée “tropicalisation” – voir ci-dessous pour de plus amples détails. Un fil rouge dans

cette thèse consiste à étudier la tropicalisation de certains de ces objets de la géométrie

algébrique. Premièrement, en développant des théories métriques et combinatoires pour

décrire les objets tropicalisés que l’on peut obtenir ; ensuite, en établissant des liens entre

les propriétés de ces objets tropicalisés et celles des objets d’origine ; enfin, en tentant de

déterminer, parmi les objets métriques ou combinatoires, lesquels peuvent être obtenus à

partir d’un objet classique par la procédure de tropicalisation.

L’inspiration pour ce projet de thèse provient de l’étude des séries linéaires du point de vue

de la géométrie tropicale, qui a eu un succès considérable dans l’application des méthodes

tropicales. La procédure de tropicalisation permet de transformer les sections globales d’un

fibré en droites en fonctions affines par morceaux avec des pentes entières sur un objet
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polyédral. L’inégalité de spécialisation de Baker en dimension 1 [Bak08, Lemma 2.8], et sa

généralisation en dimension supérieure donnée par Cartwright [Car19, Car21], permettent

ensuite de comparer la dimension de l’espace des sections globales du fibré en droites avec

une notion de rang combinatoire associée à la tropicalisation.

Dans le présent manuscrit, nous nous occuperons principalement d’objets de dimension

1, c’est-à-dire de courbes algébriques, de graphes métriques, et des structures géométriques

qui leurs sont associées. Ceci dit, nous discuterons dans la Section 5.4 des perspectives

de généralisation de nos résultats en dimension supérieure, en lien avec les travaux de

Cartwright mentionnés ci-dessus qui, d’un point de vue personnel, étaient notre point

d’entrée dans la géométrie tropicale lors de la préparation de notre mémoire de master.

Dans la section suivante de cette introduction, nous proposerons une approche intuitive

de la procédure de tropicalisation, que nous espérons utile pour comprendre comment

fonctionne la tropicalisation.

La procédure de tropicalisation et l’esprit de la géométrie tropicale

L’intuition visuelle que la plupart des gens ont de la géométrie tropicale est qu’elle fournit

des méthodes pour déformer des variétés algébriques jusqu’au point où elles se transforment

en des objets polyédraux, tels des complexes de cônes ou des complexes polyédraux, parfois

avec des données combinatoires supplémentaires.

L’intérêt de ce type de transformation est que les objets polyédraux qu’elle produit sont

fondamentalement faciles à étudier, parce qu’ils peuvent être décrits avec une quantité finie

d’information combinatoire (les équations définissant chaque polyèdre, par exemple).

En outre, et c’est essentiel, les transformations tropicales n’engendrent pas des objets

“quelconques” : elles déforment les variétés algébriques (ou d’autres objets) de telle manière

que certaines informations pertinentes sont conservées et peuvent être mesurées du côté

polyédral pour mieux connâıtre les objets géométriques d’origine.

C’est pourquoi certaines personnes décrivent la géométrie tropicale comme “une ombre

combinatoire (ou affine par morceaux) de la géométrie tropicale” [MR18, MS21].

Les premières procédures de tropicalisation effectives furent définies au début des années

1970 par Bergman [Ber71]. Elles s’appliquent principalement à des variétés affines ou

projectives sur le corps C des nombres complexes, et utilisent les fonctions logarithmes pour

transformer ces objets géométriques.

À titre d’exemple, considérons l’ensemble L des points à coordonnées complexes pz1, z2q P

C2 tels que z1 ` z2 ´ 1 “ 0. C’est tout simplement une droite complexe dans le plan

complexe. Maintenant, définissons, pour 0 ă t ă 1, l’ensemble Lt des points de R2 définis

par le logarithme du module des points de L, coordonnée par coordonnée :

Lt :“
␣

px, yq “ plogtp|z1|q, logtp|z2|qq
ˇ

ˇ pz1, z2q P L
(

,

où logt : Rą0 Ñ R est le logarithme réel en base t. Lt est un objet courbe, réel, de dimension

réelle 2 (comme L), et est nommé amibe, voir la partie gauche de la Figure 1.1.
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p`8, 0q

p0,`8q

Figure 1.1: Amibe et tropicalisation de la droite complexe L.

Si l’on choisit un autre nombre réel t1 tel que 0 ă t1 ă t, alors l’amibe Lt1 est simplement

obtenue à partir de l’amibe Lt par une homothétie de facteur logptq
logpt1q

ă 1 : l’amibe se

“contracte” de plus en plus lorsque t diminue.

Le phénomène intéressant, au cœur de la géométrie tropicale, se produit lorsque t Ñ 0.

Dans ce cas, l’objet courbe Lt dégénère en un certain objet limite L0, qui a la propriété

d’être entièrement polyédral. L0 est appelé la tropicalisation de la courbe complexe L.

Comme L est une droite complexe, L0 est en fait un objet absolument fondamental en

géométrie tropicale, une brique élémentaire des tropicalisations nommée droite tropicale

dans le plan. Il est unidimensionnel et constitué de trois demi-droites réelles : une verticale,

une horizontale et une diagonale (voir la partie droite de la Figure 1.1). Chacune de ces

demi-droites correspond à un comportement conjoint spécifique des variables z1 et z2. Par

exemple, la demi-droite verticale correspond à la situation où |z1| est proche de 1 et z2 est

proche de 0.

Notons que, à strictement parler, puisque L intersecte les axes de coordonnées de C2,

la droite tropicale contient deux points “à l’infini”, ce qui peut être décrit dans un cadre

rigoureux. Ce détail technique est évité si l’on considère une sous-variété de pC˚q2.

De surcrôıt, remarquons que, pour chaque point pz1, z2q P L, chaque coordonnée du point

limite limtÑ0plogtp|z1|q, logtp|z2|qq appartient à l’ensemble fini t0,`8u. Cependant, la droite

tropicale L0 est l’objet unidimensionnel obtenu comme l’ensemble limite (pour la topologie

de Hausdorff) de Lt lorsque t Ñ 0, c’est-à-dire, dans ce cas particulier, l’intersection de

toutes les amibes Lt pour t ‰ 0.

Un théorème d’une importance capitale, le théorème fondamental de la géométrie tropicale,

donne une description effective de la tropicalisation d’une variété algébrique. Si, pour

prendre le cas le plus simple, une variété algébrique V Ď Cn est définie par l’annulation

d’un certain polynôme en n variables P “
ř

kPNn akX
k1
1 ¨ ¨ ¨Xkn

n , avec ak P C, alors on peut

associer à P un polynôme tropical troppP q obtenu en remplaçant chaque occurrence de

la multiplication par une addition, et chaque occurrence de l’addition par un minimum
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(ou un maximum, selon les conventions). C’est pourquoi le formalisme algébrique utilisant

ces opérations tropicales et nommé algèbre tropicale, ou algèbre max-plus. De cette façon,

troppP q est une fonction à valeurs réelles, linéaire par morceaux Rn Ñ R, définie par

troppP qpx1, . . . , xnq :“ min
kPS

pk1 ¨ x1 ` ¨ ¨ ¨ ` kn ¨ xnq,

où S Ď N est fini. Dans un cas plus général, les coefficients ak dépendent de t, on est alors

en présence d’une famille de sous-variétés de Cn ; la tropicalisation de P est alors une

fonction affine par morceaux. Cette situation fait l’objet d’une discussion dédiée plus bas.

Le théorème fondamental de la géométrie tropicale décrit la tropicalisation V de V
comme l’ensemble des points px1, . . . , xnq P Rn où le polynôme tropical troppP q s’annule

tropicalement ; et l’on déclare que cela est le cas en un point px1, . . . , xnq P Rn lorsque le

minimum dans minkPSpk1 ¨ x1 ` ¨ ¨ ¨ ` kn ¨ xnq est atteint au moins deux fois.

Dans notre exemple ci-dessus, n “ 2, P “ Z1 ` Z2 ´ 1 et troppP q “ minpx, y, 0q, dont

l’ensemble des zéros tropicaux est en effet formé des trois demi-droites de la Figure 1.1. En

effet, la demi-droite horizontale (resp. verticale, resp. diagonale) correspond au cas où les

termes x et 0 (resp. y et 0, resp. x et y) de troppP q réalisent le minimum simultanément,

et l’origine correspond à la réalisation simultanée par les trois termes. Si l’on remplace le

polynôme P par le polynôme Pa :“ Z1 `Z2 ´a avec a P C˚, on obtient exactement la même

tropicalisation. Le cas a “ 0, toutefois, est à part, puisque la tropicalisation du polynôme

P0 :“ Z1 ` Z2 est la fonction définie par troppP0qpx, yq “ minpx, y,`8q “ minpx, yq. C’est

la raison pour laquelle, dans l’exemple ci-dessus, nous n’avons pas choisi la droite complexe

définie par z1 ` z2 “ 0, dont la tropicalisation est une version dégénérée de la courbe

tropicale ci-dessus, avec seulement une demi-droite diagonale d’équation x “ y.

Pour une sous-variété quelconque V Ď pC˚qn, il s’avère que la tropicalisation V sera

toujours le support d’un éventail polyédral, c’est-à-dire le support d’un bon arrangement de

cônes polyédraux, de dimension pure égale à la dimension complexe de V. La Figure 1.2

montre des exemples d’éventails polyédraux de dimension 1 dans R2.

Figure 1.2: Trois éventails polyédraux de dimension 1 dans R2.

Peut-on généraliser ce type de procédure à des contextes plus généraux, par exemple

pour des variétés sur un corps autre que C ? La réponse est oui : il existe une procédure
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de tropicalisation pertinente pour des variétés sur des corps munis d’une valuation non

archimédienne, ce qui ouvre de nouvelles perspectives.

Une valuation non archimédienne val sur un corps K est une fonction

val : K Ñ R,

où R :“ R Y t`8u, vérifiant les propriétés suivantes.

(1) Pour tout x P K, on a valpxq “ `8 si, et seulement si, x “ 0.

(2) Pour tous x, y P K, valpxyq “ valpxq ` valpyq.

(3) Pour tous x, y P K, valpx ` yq ě minpvalpxq,valpyqq, avec égalité lorsque valpxq ‰

valpyq.

Ces propriétés sont en partie semblables aux propriétés algébriques de la fonction

lim
tÑ0

logtp| ¨ |q : C Ñ t0,`8u Ă R

utilisée dans le premier type de procédure de tropicalisation, qui porte en fait le nom de

valuation triviale sur C et est définie par valpzq “ 0 pour tout z P C˚ et valp0q “ `8. Un

exemple clé de valuation non archimédienne est le degré en t, ou valuation t-adique, définie

sur le corps κpptqq des séries formelles de Laurent sur κ, pour κ un corps, ou sur le corps

κtttuu des séries de Puiseux sur κ, qui a la propriété supplémentaire – et souvent utile –

d’être algébriquement clos.

À titre d’illustration, la tropicalisation d’une variété affine V Ď pκtttuu˚qn déterminée par

un idéal de κtttuurZ1, . . . , Zns est définie, par analogie avec la procédure précédente, comme

l’adhérence de l’image de V par la fonction

trop: pκtttuu˚
q
n

Ñ Rn

pR1, . . . , Rnq ÞÑ pvalpR1q, . . . ,valpRnqq,

où val désigne la valuation t-adique. De façon similaire, troppVq sera toujours un espace

polyédral ayant de bonnes propriétés, avec des parties finies mais aussi des parties infinies

qui doivent être traitées avec soin. La Figure 1.3 montre un exemple de courbe tropicalisée

qui peut être obtenue de cette façon.

La procédure de tropicalisation pour des corps munis d’une valuation non archimédienne

est particulièrement utile dans l’étude de la dégénérescence d’une famille de variétés

algébriques lisses vers une variété limite possiblement non lisse.

Imaginons une famille pXtq de variétés algébriques lisses sur un corps κ, dépendant

algébriquement d’un paramètre t appartement à une certaine base, comme un disque

épointé ∆˚. La géométrie algébrique et la théorie des singularités tentent de répondre à des

questions telles que les suivantes.
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Figure 1.3: La tropicalisation d’une courbe algébrique.

• Quel est le comportement possible de la variété Xt lorsque t Ñ 0 ?

• Quelles sont les variétés limites X0 possibles ?

• Qu’en est-il du comportement limite d’une famille de fibrés en droites sur Xt, ou

d’autres objets géométriques définis sur Xt ?

Une telle famille qui dégénère, où chaque variété est définie sur un même corps κ, peut

être modélisée par une variété sur une base de dimension 1 sur κ, comme κpptqq ou κtttuu

(disons κpptqq pour faire simple). Alors, toute extension de cette famille à t “ 0 sera nommée

un modèle, et sera décrite par un schéma X sur l’anneau R :“ κrrtss, dont le corps des

fractions est κpptqq. Les modèles qui nous intéressent, ayant de bonnes propriétés, sont dits

semi-stables. Leur existence est assurée en caractéristique nulle, et nécessite typiquement de

passer à une extension de corps finie de κpptqq. La fibre générique de X (la fibre au-dessus

du complémentaire de 0 dans ∆˚) se souvient essentiellement de la partie de la famille

dégénérescente où les variétés sont lisses, et la fibre spéciale (la fibre au-dessus de 0) est la

variété limite X0, qui aura typiquement des points singuliers. Comme R est muni d’une

valuation non archimédienne, on peut tropicaliser la famille X au moyen de la procédure

décrite plus haut, en mettant des coordonnées sur la famille.

Ceci est, pour résumer, la raison pour laquelle, pour étudier les dégénérescences de

familles de variétés algébriques, on peut utiliser la tropicalisation de cette famille en un

objet polyédral. Celui-ci peut, selon la procédure utilisée, être un objet non borné, tel un

complexe de cônes (ou, plus généralement, un complexe polyédral, voir la Figure 1.3), ou

un objet borné, tel un graphe métrique. Un tel graphe apparâıt en fait comme un squelette

d’un complexe polyédral, ces deux objets étant obtenus à partir de la famille de variétés

par des méthodes de tropicalisation alternatives.

Une explication plus précise nécessite quelques rudiments de théorie de Berkovich. Dans ce

domaine, on définit un espace topologique associé à une variété affine V Ď pK˚qn déterminée

par un idéal I de KrZ1, . . . , Zns. Les points x de cet espace topologique paramétrisent les
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semi-valuations vx sur l’anneau KrZ1, . . . , Zns{I qui étendent la valuation val de K. Il se

trouve que cet espace, appelé l’analytifié de Berkovich Van de V , a de bonnes propriétés : il

est séparé, connexe par arcs, assimilable localement à un espace polyédral, et il se rétracte

par déformation sur des sous-espaces polyédraux compacts, ses squelettes. De plus, Van

contient naturellement V , les tropicalisations possibles de V sont toutes issues de l’analytifié

par des projections, et cet analytifié est la limite projective de toutes les tropicalisations de

V [Pay09, FGP14].

À ce stade, élargissons un peu la perspective. Une procédure de tropicalisation pour

les variétés sur un corps muni d’une valuation non archimédienne permet de tropicaliser

des familles de variétés, ce qui aidera à étudier les singularités dans un contexte de

dégénérescence. En fait, si certains objets géométriques (comme un fibré en droites, ou

un espace de sections d’un tel fibré) sont définis de manière lisse sur une telle famille, il

existe aussi des procédures de tropicalisation pour ces objets. Cela sera un fil rouge dans le

présent manuscrit, qui portera, entre autres, sur le tropicalisation de séries linéaires (des

espaces vectoriels de sections d’un fibré en droites) et de points de Weierstrass (des points

géométriques spéciaux sur les courbes algébriques). Nous renvoyons à la discussion à propos

des Chapitres 4 et 3, plus loin dans cette introduction, pour la suite de cette histoire.

Maintenant que la lectrice ou le lecteur a quelques clés pour comprendre la tropicalisation,

nous allons décrire, dans la prochaine section, l’organisation du manuscrit.

Organisation du manuscrit

Le manuscrit de thèse est divisé en cinq chapitres.

Le premier chapitre est la présente introduction, dont l’objectif est de résumer le contenu

de la thèse et de l’introduire à des non-spécialistes.

Les Chapitres 2, 3 et 4 correspondent approximativement aux trois preprints [AG24, AG22,

AGR23], respectivement. Plus exactement, ces chapitres consistent en des élargissements

plus ou moins importants des articles correspondants : les résultats, figures ou commentaires

qui avaient été retirés ou raccourcis dans les papiers pour des raisons de longueur ou de

concision ont été gardés dans leur intégralité dans le présent manuscrit.

Les Chapitres 2 et 3 ont été écrits avec Omid Amini. Le Chapitre 4 a été écrit en

collaboration avec Omid Amini et Harry Richman, de l’université de Washington à Seattle.

Le Chapitre 2, basé sur [AG24], définit de nouveaux objets combinatoires, nommés

matricubes, qui se trouvent être une nouvelle généralisation d’objets combinatoires très

étudiés : les matröıdes.

Le Chapitre 3, basé sur [AG22], utilise, entre autres, le formalisme des matricubes

pour jeter les bases d’une nouvelle théorie purement combinatoire des séries linéaires

limites, permettant d’étudier la tropicalisation de séries linéaires algébriques sur des courbes

algébriques vers des graphes métriques de façon plus approfondie.
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Le Chapitre 4, basé sur [AGR23], prolonge des travaux antérieurs liés aux points de

Weierstrass tropicaux, et fournit de nouveaux résultats de localisation pour la tropicalisation

de points de Weierstrass sur des courbes algébriques vers des graphes métriques.

Enfin, le Chapitre 5 synthétise les différents types de questions ouvertes qui se sont posées

en cours de route, et propose quelques directions de recherche potentiellement intéressantes

en partant des travaux de la thèse.

Une section de remerciements est située en page 3, suivie d’une préface dans les deux

langues, avant la table des matières.

Une bibliographie unique pour l’intégralité du manuscrit est proposée, combinant les

bibliographies de tous les chapitres et située à la fin du manuscrit.

Nous allons maintenant introduire les Chapitres 2, 3 et 4 du manuscrit dans de plus

amples détails.

Matröıdes et matricubes — Chapitre 2

Le Chapitre 2 est un chapitre purement combinatoire, qui est basé sur [AG24] et prend

ses racines dans le concept fondamental de matröıde. Un matröıde est un objet combinatoire

qui abstrait et axiomatise les relations de dépendance linéaire entre des vecteurs dans un

espace vectoriel, se souvenant uniquement de “qui est linéairement indépendant de qui”,

sans conserver toute l’information sur ces vecteurs.

Par exemple, soit peiq la base canonique dans R3, et définissons la configuration de

vecteurs suivante.
$

’

’

&

’

’

%

x1 “ e1, x2 “ e2, x3 “ e3

x4 “ 0

x5 “ e1 ` e2

Cette configuration de vecteurs peut être représentée par la matrice suivante, dont chaque

colonne représente un vecteur :
¨

˝

1 0 0 0 1

0 1 0 0 1

0 0 1 0 0

˛

‚.

Faisons maintenant une liste de tous les indépendants, c’est-à-dire les sous-familles linéairement

indépendantes de vecteurs parmi les pxiq, donnés par leurs indices.

I “ t∅, t1u, t2u, t3u, t5u, t1, 2u, t1, 3u, t1, 5u, t2, 3u, t2, 5u, t3, 5u, t1, 2, 3u, t1, 3, 5u, t2, 3, 5uu

Ici, les indépendants peuvent s’imaginer comme des sous-ensembles de l’ensemble des

colonnes de la matrice ci-dessus, c’est-à-dire des sous-ensembles de t1, 2, 3, 4, 5u, en oubliant

la valeur exacte des vecteurs.

Mais l’ensemble I des indépendants d’une configuration de vecteurs ne peut pas être

n’importe quelle collection de sous-ensembles de t1, 2, 3, 4, 5u, parce qu’il doit satisfaire

certaines propriétés combinatoires non triviales. Un matröıde (littéralement, “qui ressemble
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à une matrice”) est précisément une façon d’axiomatiser et d’abstraire les propriétés

combinatoires de l’ensemble des indépendants d’une configuration de vecteurs.

Plus formellement, un matröıde peut être défini comme un ensemble E muni d’une

collection I de parties de E vérifiant les trois propriétés suivantes :

(I1) ∅ P I (ou, de façon équivalente en utilisant (I2), I ‰ ∅).

(I2) (Propriété d’hérédité) Si I P I et I 1 Ď I, alors I 1 P I .

(I3) (Propriété d’échange pour les indépendants) Si I1, I2 P I et |I1| ă |I2|, alors il existe

un élément e P I2 ∖ I1 tel que I1 Y teu P I .

Il est aisé de montrer que l’ensemble des indépendants d’une configuration de vecteurs

satisfait les propriétés ci-dessus. Ce qui est moins évident est que cette axiomatique définit

un objet combinatoire intéressant et mathématiquement riche.

Il se trouve qu’il y a de nombreuses définitions différentes des matröıdes qui donnent le

même concept de matröıde. Par exemple, au lieu de définir un matröıde par ses indépendants,

on pourrait le définir par ses bases, une collection de sous-ensembles vérifiant un autre

système d’axiomes spécifique mimant le comportement des vraies bases d’une configuration

de vecteurs. Pour assouvir la curiosité de la lectrice ou du lecteur, voici une version possible

de l’axiomatique définissant un matröıde par sa collection B de bases :

(B1) B ‰ ∅.

(B2) (Propriété d’échange pour les bases) Si B1, B2 P B et x P B1 ∖ B2, alors il existe

y P B2 ∖B1 tel que B1 ∖ txu Y tyu P B.

Si je vous donne l’ensemble des indépendants d’un matröıde, vous pourriez également

en déduire facilement l’ensemble des bases de ce matröıde, tout simplement en gardant

seulement les indépendants maximaux. Par exemple, la configuration de vecteurs décrite

ci-dessus a trois bases :

B “ tt1, 2, 3u, t1, 3, 5u, t2, 3, 5uu.

Comme manière alternative de décrire un matröıde, l’on pourrait aussi retenir, pour

chaque sous-famille de vecteurs, la dimension du sous-espace vectoriel engendré par ces

vecteurs, ce qui donnerait une fonction de rang. Une telle fonction de rang satisfait également

certaines propriétés combinatoires précises qui donnent lieu à une axiomatique, et toute

fonction prenant ses valeurs dans N n’apparâıt pas comme une fonction de rang. Ces

définitions, de même que des dizaines d’autres, donnent exactement la même théorie des

matröıdes : elles sont dites cryptomorphes. Elles ont été étudiées depuis près d’un siècle,

voir par exemple [Whi92, Oxl06].

Pour pouvoir introduire le Chapitre 2, il est utile de noter qu’à chaque configuration

de vecteurs dans un espace vectoriel peut être associé un arrangement d’hyperplans dans
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l’espace vectoriel dual (ici, par un abus de langage, un hyperplan désignera soit un vrai

hyperplan, soit l’espace total, lorsque le vecteur dual est le vecteur nul).

Ce faisant, on peut aussi associer un matröıde à chaque arrangement d’hyperplans. Si

F1, . . . ,Fm sont des hyperplans dans un espace vectoriel H, on peut définir la fonction de

rang qui, à chaque A Ď t1, . . . ,mu, associe l’entier naturel rpAq :“ codimHp
Ş

iPA Fiq. Cette

fonction de rang satisfait les propriétés de la fonction de rang d’un matröıde.

Nous pouvons maintenant introduire les matricubes. Ces nouveaux objets combinatoires,

définis dans le Chapitre 2, sont apparus naturellement comme la généralisation de la

construction précédente : quel type d’objet combinatoire obtient-on si l’on remplace ci-

dessus un arrangement d’hyperplans par un arrangement de drapeaux ? Plus précisément,

imagions que pour tout j P t1, . . . ,mu, F‚
j soit un drapeau décroissant

H “ F0
j Ě F1

j Ě ¨ ¨ ¨ Ě Fr´1
j Ě Fr

j ,

où r ď dim H et, pour tout i, Fi`1
j est de codimension au plus 1 dans Fi

j. Si l’on définit,

pour tout x “ px1, . . . , xmq, xi P t0, . . . , ru, le rang de x comme

rpxq :“ codimHpFx1
1 X ¨ ¨ ¨ X Fxm

m q,

alors une telle fonction de rang est une généralisation de la fonction de rang d’un matröıde.

Elle satisfait un système d’axiomes similaire à celui d’une fonction de rang de matröıde,

adapté au fait que sa source est un hypercube �
m

r :“ t0, . . . , rum au lieu de Ppt1, . . . ,muq »

t0, 1um, et en utilisant la structure de poset (ensemble partiellement ordonné) de �
m

r . Nous

appelons ceci un matricube, un nom que nous justifions dans la Section 2.2.3.

Ci-dessous figure un exemple de matricube, décrit par sa fonction de rang, et provenant

d’une paire de drapeaux à quatre sous-espaces dans un espace vectoriel de dimension 4,

pioché dans la Section 2.2.2. L’origine du tableau (les petits indices) est le coin en bas à

gauche, selon la convention que nous utiliserons pour tous les tableaux dans le Chapitre 2.
¨

˚

˚

˚

˝

3 3 4 4

2 2 3 4

1 1 2 3

0 1 2 3

˛

‹

‹

‹

‚

Notons que les fonctions de rang des matricubes ne sont pas nécessairement symétriques

comme celle-ci. De plus, comme ce matricube provient d’une vraie configuration de

vecteurs, il sera dit représentable. L’étude de la représentabilité des matröıdes est un

domaine de recherche à part entière. Dans le Chapitre 2, nous posons quelques questions

de représentabilité sur les matricubes, et répondons à certaines d’entre elles (voir la Sec-

tion 2.9.3). Nous montrons aussi qu’un matricube contient une collection de “matröıdes

locaux” qui gouvernent ses propriétés combinatoires (voir Section 2.8).

Le travail présenté dans le Chapitre 2 explore principalement les propriétés combinatoires

des matricubes, en lien avec leur structure de poset et avec les propriétés de convexité discrète
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de leurs fonctions de rang. Nous proposons également quelques définitions différentes, mais

cependant équivalentes (plus exactement, cryptomorphes), des matricubes, utilisant la

fonction de rang (Section 2.2), la collection des indépendants (Section 2.5), et d’autres

collections (les plats et les circuits dans les Sections 2.3 et 2.4) qui généralisent leurs homo-

logues matröıdaux et miment des propriétés concrètes des configurations de vecteurs. Dans

ce contexte, les indépendants, plats et circuits sont des points particuliers de l’hypercube

�
m

r . De façon surprenante, à ce stade de l’exploration des matricubes, nous ne sommes pas

parvenus à proposer une axiomatisation pertinente et intéressante de la collection des bases

d’un matricube, ce qui soulève des questions ouvertes intéressantes (voir Section 2.9.1).

En outre, en plus d’un système d’axiomes dédié, les indépendants, plats et circuits peuvent

être décrits explicitement et facilement pour un matricube donné par sa fonction de rang.

Par exemple, les plats d’un matricube sont tous les points de l’hypercube �
m

r tels qu’en

se déplaçant d’une unité dans n’importe quelle direction positive (lorsque c’est possible),

la valeur de la fonction de rang augmente. À titre d’exemple, les plats de la fonction de

rang définie ci-dessus sont représentés en bleu ci-dessous. Notons que l’ensemble des plats

possède une structure de treillis gradué, ce qui est une propriété générale.
¨

˚

˚

˚

˝

3 3 4 4

2 2 3 4

1 1 2 3

0 1 2 3

˛

‹

‹

‹

‚

Une autre propriété combinatoire des matricubes, démontrée dans le Chapitre 2, est leur

lien avec un objet combinatoire qui généralise les matrices de permutation en dimension

supérieure. Une matrice de permutation est une matrice carrée n ˆ n remplie de 0 et de 1

encodant une permutation σ de n éléments : le coefficient aij est égal à 1 si, et seulement

si, σpiq “ j. Par exemple, la matrice ci-dessous (représentée avec la convention usuelle

pour les matrices, l’origine étant donc en haut à gauche) est celle associée à la permutation

σ “ p14qp235q de cinq éléments.
¨

˚

˚

˚

˚

˚

˝

0 0 0 1 0

0 0 0 0 1

0 1 0 0 0

1 0 0 0 0

0 0 1 0 0

˛

‹

‹

‹

‹

‹

‚

Ces objets sont intéressants en soi, mais l’on pourrait légitimement se demander si cette

notion admet des généralisations intéressantes en dimension supérieure. Il existe, en effet,

plusieurs généralisations. On peut par exemple penser aux définitions suivantes (toutes

équivalentes) des matrices de permutation, et suggérer en conséquence les généralisations

(non équivalentes) correspondantes en dimension supérieure.

(a) Une matrice de permutation est une matrice carrée de 0 et de 1 telle que chaque ligne

droite complète (où l’on fait varier une seule coordonnée), c’est-à-dire chaque ligne
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et chaque colonne, contient 1 exactement une fois. ù Une matrice de permutation

de dimension supérieure est un tableau de 0 et de 1 de dimension supérieure tel que

chaque ligne complète (où l’on fait varier une seule coordonnée) contient 1 exactement

une fois.

(b) Une matrice de permutation est une matrice carrée de 0 et de 1 telle que chaque couche

de codimension 1 (avec exactement une coordonnée fixée), c’est-à-dire chaque ligne

et chaque colonne, contient 1 exactement une fois. ù Une matrice de permutation

de dimension supérieure est un tableau de 0 et de 1 de dimension supérieure tel que

chaque couche de codimension 1 (avec exactement une coordonnée fixée) contient 1

exactement une fois.

(c) Une matrice de permutation est une matrice carrée de 0 et de 1 telle que pour tout

choix d’indices pi, jq, la sous-matrice formée des éléments d’indices au moins égaux à

pi, jq (coordonnée par coordonnée) a la propriété que le nombre de lignes contenant

1 au moins une fois est égal au nombre de colonnes contenant 1 au moins une fois.

ù Une matrice de permutation de dimension supérieure est un tableau de 0 et de

1 de dimension supérieure tel que pour tout multi-indice x, le sous-tableau formé

des éléments de multi-indice au moins égal à x (coordonnée par coordonnée) a la

propriété que le nombre de couches de codimension 1 contenant 1 au moins une fois

ne dépend pas de la direction dans laquelle les couches sont découpées.

Bien que ces définitions cöıncident en dimension 2, elles donnent lieu, en dimension

supérieure, à des notions distinctes ayant chacune leurs applications et liens avec d’autres

objets combinatoires. Elles ont été très étudiées, et ces objets ont été dénombrés, dans de

nombreux travaux.

La Définition (c) donne naissance à des objets appelés tableaux de permutation (per-

mutation arrays), étudiés entre autres par Eriksson et Linusson [EL00a]. Il se trouve,

comme nous le démontrons dans la Section 2.7, qu’un certain type de matricubes est en

fait en correspondance bijective avec les tableaux de permutation. Cela donne une nouvelle

perspective sur un objet combinatoire précédemment connu.

Il apparâıt que les matricubes sont une notion combinatoire nouvelle et intéressante,

digne d’intérêt en soi. Cependant, d’un point de vue chronologique, ils sont apparus, dans

le travail de cette thèse, au détour de l’étude de la tropicalisation des séries linéaires, comme

nous l’expliquerons dans la prochaine section.

Une théorie combinatoire pour les séries linéaires limites — Chapitre 3

Le Chapitre 3 est basé sur [AG22] et son objectif est de proposer une nouvelle théorie

combinatoire pour étudier la tropicalisation des séries linéaires sur les courbes algébriques.

Les séries linéaires sur les variétés algébriques sont des objets géométriques importants et

très étudiés, car elles gouvernent la géométrie de ces variétés. Elles sont basées sur la théorie
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des diviseurs, que nous présentons brièvement ci-après. Dans ce manuscrit, nous nous

concentrerons sur les courbes algébriques (c’est-à-dire les variétés algébriques de dimension

1).

Soit X une courbe algébrique propre et lisse sur un corps κ. Un diviseur sur X est

une somme formelle finie à coefficients dans Z de points de X : D “
ř

iPI ni pxiq, xi P X.

Le coefficient de D en un point x P X est noté Dpxq. Chaque fonction rationnelle (ou

méromorphe) f P κpXq sur la courbe donne naissance à un diviseur divpfq d’une façon

naturelle, en retenant les zéros et les pôles de f ainsi que leurs ordres :

divpfq :“
ÿ

xPX

ordxpfq pxq.

De cette façon, chaque diviseur D définit un espace vectoriel de fonctions rationnelles sur

X respectant D, défini comme suit :

RatpDq :“ tf P κpXq, D ` divpfq ě 0u,

où D ` divpfq ě 0 signifie que ce diviseur n’a que des coefficients positifs (est effectif ).

En résumé, les diviseurs sont utilisés pour imposer des contraintes sur les ordres des

pôles et zéros d’une fonction méromorphe sur une courbe algébrique. Un espace de la

forme RatpDq est précisément ce qu’on appelle une série linéaire complète, et une série

linéaire de rang r sera définie comme un sous-espace vectoriel H Ď RatpDq de dimension

r ` 1. (Le décalage d’une unité provient du fait que multiplier une fonction méromorphe

par un scalaire donne le même diviseur, divpcfq “ divpfq, et par conséquent r est en fait la

dimension de l’espace des tels diviseurs, et aussi la dimension du projectivisé de RatpDq.) Il

s’avère que les séries linéaires sur une courbe algébrique X correspondent aux applications

de X vers des espaces projectifs, ce qui entrâıne que la donnée de toutes les séries linéaires

“contient” la géométrie de X ; c’est pourquoi les séries linéaires sont un objet d’étude aussi

central en géométrie algébrique.

La situation est moins bien comprise lorsque la courbe algébrique X n’est pas lisse,

par exemple s’il s’agit d’une courbe stable (une courbe dont les seuls points singuliers

sont des nœuds, le type de singularité le plus “gentil”, avec deux branches s’intersectant

transversalement). En fait, comprendre comment les séries linéaires dégénèrent sur des

familles de courbes est une question ouverte depuis longtemps.

Pour énoncer le problème d’une façon plus intuitive, introduisons l’espace de modules Mg

de toutes les courbes projectives lisses de genre g. C’est un champ de Deligne–Mumford

(une généralisation des schémas) qui, comme espace, paramétrise les courbes, en ce sens

que chaque point de Mg représente une courbe projective lisse, d’une manière bijective et

cohérente. L’espace Mg n’est pas compact, mais il se trouve qu’il admet une compactification

Mg ayant de bonnes propriétés, dont le bord est exactement constitué des courbes stables.

D’une certaine façon, les courbes stables sont les courbes non lisses que l’on peut obtenir en

faisant dégénérer des courbes lisses. Introduisons à présent le problème de la dégénérescence

pour les séries linéaires.
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Question 1.0.1. Soit X une courbe stable de genre g et soit x le point de Mg correspondant.

Quelles sont toutes les limites possibles de séries linéaires pour n’importe quelle suite de

courbes projectives lisses de genre g dont les points correspondants dans Mg convergent vers

x ?

La géométrie tropicale fournit une approche possible pour répondre à cette question. En

effet, une famille de courbes à un paramètre donne naissance à une suite de points de Mg

convergeant vers un point de Mg. On peut modéliser cette famille par une courbe C sur

un corps K muni d’une valuation non archimédienne non triviale, de telle sorte que κ est le

corps résiduel de pK,valq et X est la fibre spéciale du modèle semi-stable de C sur l’anneau

de valuation de val. Ainsi, la procédure de tropicalisation ébauchée plus tôt dans cette

introduction permet de tropicaliser C en un graphe métrique Γ (qu’on peut voir comme

une courbe tropicale), c’est-dire un graphe avec une longueur associée à chaque arête.

Il s’avère que dans cette configuration, il y a également une manière naturelle de tropi-

caliser une fonction méromorphe f sur la courbe C en une fonction troppfq : Γ Ñ R, qui

soit continue et affine par morceaux à pentes entières.

La géométrie tropicale encode des informations combinatoires concernant la famille

dégénérescente de courbes C qui sont complémentaires de la donnée de la courbe stable

limite X et de la réduction des fonctions f P KpCq sur X. En effet, ces dernières capturent

certains aspects algébriques des fonctions limites sur la courbe stable limite, tandis que le

graphe métrique Γ associé et les fonctions tropicalisées troppfq se souviennent également

d’informations plus fines liées à la façon (depuis quelle direction, à quelle vitesse) la suite

de courbes lisses dégénère vers X.

Par conséquent, on peut raisonnablement espérer que l’étude des fonctions tropicalisées

troppfq sur la tropicalisation Γ de C donne des informations intéressantes sur les séries

linéaires sur C.

C’est précisément le but du travail présenté dans le Chapitre 3, qui développe une théorie

purement combinatoire des séries linéaires sur les graphes métriques, et tisse des liens avec

les séries linéaires géométriques, c’est-à-dire les séries linéaires sur les courbes algébriques.

Le point de départ de ce projet fut l’observation que dans le contexte, présenté plus

haut, d’une famille dégénérescente de courbes munies d’une série linéaire, il existe une

donnée combinatoire finie qui peut être extraite de la famille dégénérescente et qui devrait

régir la tropicalisation des fonctions de la série linéaire. Cette donnée est liée aux ordres

d’annulation des fonctions. Plus précisément, étant donné une fonction f appartenant à une

série linéaire sur C, on souhaite tout d’abord mesurer, pour chaque composante irréductible

Xv de la courbe stable limite X et pour chaque point singulier x de Xv, l’ordre d’annulation

de la réduction de f à Xv en ce point x.

Un résultat classique affirme que le nombre d’ordres d’annulation différents en x que l’on

obtient en faisant varier la fonction f dans la série linéaire considérée est exactement la

dimension de cette série linéaire. Cet ensemble d’entiers est le premier type d’information

combinatoire que l’on peut mesurer pour une dégénérescence de série linéaire. Le second
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type d’information est lié à la corrélation entre ces ordres d’annulation en chaque point

singulier d’une composante irréductible Xv donnée. En bref, on retient l’ensemble des ordres

d’annulation conjoints que l’on obtient en faisant varier la fonction f dans la série linéaire.

Cette donnée s’avère être encodée par des matricubes, les objets présentés dans la section

précédente de l’introduction.

Les propriétés de la procédure de tropicalisation pour les fonctions entrâınent que ces

données combinatoires ont des interprétations intéressantes liées aux fonctions tropicalisées

sur le graphe métrique. Chaque sommet v du graphe métrique correspond à une composante

irréductible Xv de la courbe stable X, et chaque arête e “ uv joignant deux sommets u et

v du graphe correspond à un point d’intersection entre les composantes irréductibles Xu

et Xv associées à u et v. Alors, les ordres d’annulation de la réduction d’une fonction f

sur une composante irréductible Xv en les points singuliers de X situés sur Xv sont égaux

aux pentes de la fonction tropicalisée troppfq sur le graphe métrique, le long des directions

sortantes autour du sommet v ; et la donnée conjointe des ordres d’annulation de f en

tous les points singuliers de X situés sur une composante irréductible Xv se traduit par

un vecteur de pentes de troppfq autour du sommet v de Γ associé à Xv. Ceci illustre la

nature des contraintes combinatoires qui seront utilisées pour définir les séries linéaires

combinatoires sur les graphes métriques, que nous présenterons un peu plus tard.

Notons de prime abord que les graphes métriques possèdent une théorie des fonc-

tions méromorphes et des diviseurs, tout comme les courbes algébriques. Une fonction

méromorphe f P RatpΓq sur le graphe métrique Γ est une fonction continue, affine par

morceaux Γ Ñ R avec des pentes entières ; un diviseur sur Γ est une somme formelle finie

à coefficients dans Z de points de Γ : D “
ř

iPI ni pxiq, xi P Γ. De plus, toute fonction

méromorphe f P RatpΓq donne naturellement naissance à un diviseur divpfq sur Γ :

divpfq :“
ÿ

xPΓ

ordxpfq pxq,

où ordxpfq P Z est, au signe près, la somme des pentes sortantes de f sur les arêtes de

Γ incidentes à x. Dans le contexte des graphes métriques, un zéro (resp. un pôle) d’une

fonction méromorphe est un changement de pente négatif (resp. positif). Par ailleurs, de

même qu’il y a une procédure de tropicalisation pour les fonctions sur les courbes algébriques,

il existe une procédure de tropicalisation pour les diviseurs, envoyant tout diviseur D sur

C sur un diviseur D “ troppDq sur Γ. Cette procédure commute opportunément avec

l’application f ÞÑ divpfq. Ainsi, une fonction méromorphe (resp. un diviseur) sur une

courbe algébrique C se tropicalise en une fonction méromorphe (resp. un diviseur) sur le

graphe métrique Γ obtenu en tropicalisant C.

Sans entrer dans des détails trop techniques, l’idée générale à propos de cette théorie

des diviseurs et des fonctions méromorphes sur les graphes métriques, qui a déjà été très

étudiée, est qu’elle se comporte de façon sympathique et similaire à son homologue sur les

variétés algébriques. Par exemple, il a pu être démontré, par plusieurs méthodes différentes,

qu’il y a un théorème de Riemann–Roch pour les graphes métriques [AC13, GK08, MZ08],
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tout comme il y en a un sur les graphes combinatoires [BN07]. Il y a, de plus, de

nombreuses applications de cette théorie à la géométrie algébrique, comme des techniques

de dégénérescence pour la théorie de Brill–Noether, des résultats sur la dimension de

Kodaira d’espaces de modules de courbes [FJP20], des réponses partielles à la maximal

rank conjecture, de nouvelles bornes en géométrie arithmétique, ou des outils cruciaux pour

l’étude des points de Weierstrass ; voir [BJ16] pour une revue exhaustive.

À ce stade, il devient assez naturel de décider comment définir une série linéaire complète

sur un graphe métrique Γ. Considérons simplement un diviseur D sur Γ, et définissons

RatpDq comme l’ensemble des fonctions f P RatpΓq telles que D ` divpfq ě 0 : un diviseur

contrôle les zéros et les pôles des fonctions de sa série linéaire complète.

Mais le monde tropical a des différences majeures avec le monde de la géométrie algébrique,

l’une d’entre elles étant qu’un espace comme RatpΓq ou RatpDq n’a rien d’un espace vectoriel.

Au lieu de cela, le bon formalisme pour étudier ces espaces est la théorie des semi-modules

tropicaux, c’est-à-dire des ensembles munis d’une opération interne, ‘, et d’une multiplication

externe, d, qui utilise des scalaires réels. Dans le contexte qui nous intéresse, ces opérations

sont définies comme suit : pour tous f, g P RatpΓq et c P R,

f ‘ g :“ minpf, gq et c d f :“ f ` c.

Ce sont les opérations tropicales, qui peuvent être définies de façon semblable sur divers

espaces tropicaux. Elles sont bien entendu étroitement liées à l’algèbre max-plus évoquée

plus tôt.

Maintenant que nous avons ce formalisme tropical en tête, on pourrait être tenté de

définir une série linéaire sur le graphe métrique Γ comme tout sous-semi-module M d’un

semi-module tropical de la forme RatpDq, pour D un diviseur sur Γ, tout comme une série

linéaire sur une courbe algébrique C est un sous-espace vectoriel H d’une série linéaire

complète de la forme RatpDq. C’est en effet une bonne idée, puisque avec cette définition,

la tropicalisation d’une série linéaire sur une courbe algébrique donne une série linéaire sur

le graphe métrique associé, dans le sens où si H est une série linéaire sur C, alors

troppHq :“
␣

troppfq
ˇ

ˇ f P H∖ t0u
(

est une série linéaire sur Γ, comme nous le démontrons dans la Section 3.9. En fait,

considérer des espaces de la forme RatpDq ou des sous-semi-modules de tels espaces s’avère

être une façon pertinente de définir les séries linéaires sur les graphes métriques.

Cependant, comme souvent en géométrie tropicale, nous aimerions répondre à des

questions de représentabilité, c’est-à-dire des questions de la forme : “est-ce que tel objet

tropical peut se réaliser comme la tropicalisation d’un objet algébro-géométrique du type

attendu ?” Dans le cas présent, quels sont les sous-semi-modules M d’un certain RatpDq

qui sont des tropicalisations de séries linéaires sur une courbe algébrique ?

Il se trouve que ce n’est pas le cas de tous les sous-semi-modules. C’est ce fait même

qui a mené au travail présenté dans le Chapitre 3. L’idée de base est qu’une théorie
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des séries linéaires combinatoires plus pertinente devrait comporter quelques contraintes

supplémentaires sur ces objets, de telle façon qu’on puisse formuler, au moins dans certains

cas, des résultats positifs de représentabilité.

C’est d’ailleurs le moment où la théorie des matricubes présentée dans le Chapitre 2 entre

en scène. Nous allons ajouter certaines contraintes combinatoires supplémentaires pour

définir les séries linéaires sur les graphes métriques, sous la forme de ce qu’on appellera une

structure de pentes. Comme exposé plus amplement dans la Section 3.3, une structure de

pentes S de largeur r sur Γ consiste en :

• pour chaque arête orientée e de Γ, la donnée d’un ensemble de r ` 1 pentes entières

admises se0 ă se1 ă ¨ ¨ ¨ ă ser ; et

• pour chaque sommet v de Γ, la donnée d’un matricube (ou fonction de rang) ρv sur

�
dv

r , où dv est la valence de v.

Pour rendre les choses plus visuelles, voici un exemple concret de structure de pentes,

pioché dans la Section 3.6.3. Considérons le graphe Γ en forme d’“haltère” avec des arêtes de

longueur arbitraire, comme sur la Figure 1.4. Définissons une structure de pentes de largeur

1 sur Γ. Autorisons les pentes ´1 ă 1 sur l’arête centrale et, pour i “ 1, 2, autorisons les

pentes 0 ă 1 sur chacune des deux arêtes orientées uivi, dans la direction donnée par les

flèches.

v1 u1 u2 v2
p´1, 1q

p0, 1q

p0, 1q

p0, 1q

p0, 1q

Figure 1.4: Le graphe “haltère” et la structure de pentes S.

On définit des matricubes appropriés sur les sommets, comme suit. Pour i “ 1, 2, on

munit vi de la fonction de rang sur �
2

1 définie par le tableau

ˆ

0 0

1 0

˙

, et on munit ui du

matricube sur �
3

1 dont les restrictions aux différentes couches sont définies par les deux

tableaux suivants, respectivement :

ˆ

0 0

1 0

˙

,

ˆ

´1 ´1

0 ´1

˙

. Ici, les plats des matricubes

(voir la section précédente de l’introduction) figurent en bleu – pour comprendre pourquoi

l’élément ´1 dans le coin en haut à droite du dernier tableau n’est pas un plat dans

ce contexte, on se référera à la Remarque 3.2.16. De plus, la convention utilisée pour

représenter les fonctions de rang est celle choisie pour les séries linéaires, en dualité avec

les matricubes ; cette dualité est précisée dans la Proposition 3.2.3, et implique que les
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fonctions de rang représentées ci-dessus, contrairement aux matricubes, sont des fonctions

décroissantes pouvant prendre la valeur ´1. Concernant les deux sommets u1 et u2, la

troisième coordonnée dans les fonctions de rang correspond à l’arête centrale de Γ. Cette

donnée définit une structure de pentes S de largeur 1 sur Γ.

On peut désormais définir l’espace RatpD,Sq comme l’espace des fonctions méromorphes

f P RatpDq telles que :

• f est compatible avec les données d’arêtes, c’est-à-dire que sa pente sur chaque arête

e figure dans l’ensemble des r ` 1 entiers prescrits par S sur e ; et

• f est compatible avec les données de sommets, dans le sens où, autour de chaque

sommet v, le vecteur constitué de ses pentes sortantes le long de chaque arête incidente,

vu comme un point de �
dv

r , est un plat du matricube ρv associé à v.

Il peut sembler étrange de demander que les vecteurs de pentes de f soient des plats

des matricubes attachés à chaque sommet, mais cela a en fait un sens géométrique dans

le contexte de la tropicalisation. Pour le voir, prenons Xv une composante irréductible

(celle associée à v) de la courbe stable limite dans la famille dégénérescente. Soit H

l’espace vectoriel des réductions sur Xv des fonctions appartenant à la série linéaire H de

la courbe C. Soit p un point de Xv. Alors p définit un drapeau complet F‚
p dans H en

considérant les ordres d’annulation, en p, des fonctions de H. Concrètement, définissons

Sp :“
␣

ordppfq
ˇ

ˇ f P H ∖ t0u
(

, qui est un ensemble fini de cardinal r ` 1, comme déjà

mentionné, et notons ses éléments sp0 ă ¨ ¨ ¨ ă spr. Le drapeau F‚
p est ensuite défini en posant,

pour j P t0, . . . , ru,

Fj
p :“

␣

f P H ∖ t0u
ˇ

ˇ ordppfq ě spj
(

Y t0u.

En faisant cela pour chaque point singulier p de X situé sur Xv, on obtient une collection

finie de drapeaux de H, et donc un matricube, ou fonction de rang.

Demander qu’un point du matricube soit un plat équivaut en fait à demander que le

vecteurs de pentes correspondant autour de v soit réalisé par une certaine fonction f de la

série linéaire. Par conséquent, si un sous-semi-module M de RatpDq est la tropicalisation

d’une série linéaire géométrique H, et si on note S la structure de pentes définie à partir

de la donnée des ordres d’annulation des fonctions des réductions H de H en tous les points

singuliers de la courbe stable limite X, alors, en fait, M Ď RatpD,Sq.

Nous avons maintenant une définition plus restrictive des séries linéaires sur les graphes,

mais qui englobe toujours toutes les tropicalisations de séries linéaires géométriques.

Nous montrons dans le Chapitre 3 qu’une telle tropicalisation a, en fait, des propriétés

supplémentaires, que l’on peut par conséquent, et en toute sécurité, ajouter à la définition des

séries linéaires combinatoires M Ď RatpD,Sq de rang (ou “dimension”) r. Ces propriétés

sont de diverse nature ; nous en donnons un aperçu ci-dessous.

• Une condition de rang permet d’assurer que M contient suffisamment de fonctions

pour engendrer tous les diviseurs effectifs de degré r (voir la Section 3.4.1) ; ceci est
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l’équivalent tropical du fait que, comme H est un espace vectoriel de dimension r ` 1,

on peut imposer r contraintes linéaires et toujours avoir des fonctions non nulles à

disposition.

• Une condition algébrique permet d’assurer que M est finiment engendré, en d’autres

termes qu’il existe un ensemble fini de fonctions de M qui engendrent M en utilisant

les opérations tropicales (voir la Définition 3.6.2).

• Une autre condition algébrique permet d’assurer que M a un rang tropical au plus

égal à r, ce qui signifie que, si f0, . . . , fr`1 est une collection de r ` 2 fonctions de M ,

alors elles sont nécessairement tropicalement liées, en ce sens qu’il existe des scalaires

c0, . . . , cr`1 P R tels que pour tout x P Γ, le minimum dans

min
0ďiďr`1

pfipxq ` ciq

est atteint au moins deux fois (voir la Définition 3.6.2) ; cette condition est l’équivalent

tropical du fait que, comme H est un espace vectoriel de dimension r`1, toute famille

de vecteurs de cardinal r ` 2 est liée.

(Notons que le rang défini dans la première condition et le rang tropical défini dans la

dernière condition ne cöıncident pas nécessairement. À l’inverse, en algèbre linéaire, la

dimension d’un espace vectoriel est égale à la fois au cardinal de toute base, et au nombre

maximal d’éléments linéairement indépendants. Le fait que ces notions diffèrent dans le

monde tropical participe de sa saveur mathématique particulière.)

Dans le Chapitre 3, on définit par conséquent une série linéaire combinatoire comme

un semi-module M vérifiant toutes ces conditions, qui sont toutes compatibles avec la

procédure de tropicalisation.

Mais comment cela pourrait-il être utile de complexifier de la sorte la définition ? La

raison est qu’en ajoutant ces conditions et la donnée combinatoire constituée par la structure

de pentes S, on peut maintenant répondre positivement à des questions de représentabilité,

et démontrer d’autres types de résultats.

Voici un échantillon de ce que nous démontrons dans le Chapitre 3, et qui repose,

notamment, sur le travail concernant les matricubes présenté dans le Chapitre 2. Certains

de ces résultats nécessitent seulement un sous-ensemble des conditions requises pour les

séries linéaires combinatoires.

• Si M est une série linéaire sur Γ et v est un sommet de Γ, alors tout plat du matricube

ρv est réalisé par une fonction f P M (Théorème 3.5.13).

• Par conséquent, si M Ď RatpD,Sq est une série linéaire, alors la donnée de S peut

être entièrement reconstituée à partir de M seulement (Corollaire 3.5.14).

• Il y a essentiellement un nombre fini de structures de pentes distinctes sur un graphe

métrique donné (Théorème 3.4.4) ; cela peut s’interpréter comme un premier pas
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pour définir un espace de modules des séries linéaires sur l’espace de modules des

graphes métriques de genre fixé.

• Dans le cas r “ 1, nous proposons une classification complète des séries linéaires sur

un graphe métrique fixé : elles sont essentiellement en correspondance bijective avec

les morphismes harmoniques finis depuis le graphe vers des arbres métriques (pour de

plus amples détails sur ce que cela signifie, voir la Section 3.8). Cela est analogue

à la description des séries linéaires algébro-géométriques de rang 1, et résulte d’une

description explicite de la variation des diviseurs réduits – en bref, des diviseurs qui

concentrent le plus grand coefficient possible en un point donné – définies par les

séries linéaires, par rapport au point base (voir Section 3.7).

• Par conséquent, toute série linéaire combinatoire de rang 1 est réalisable, c’est-à-

dire peut se réaliser comme tropicalisation d’une certaine série linéaire géométrique

(Théorème 3.8.8).

Comme cela a été discuté plus haut, la définition d’une structure de pentes utilise la notion

de matricube développée dans la section précédente. En fait, ce nouvel objet combinatoire

est d’abord apparu naturellement dans ce contexte, comme une donnée combinatoire extraite

d’une série linéaire géométrique, et nous nous sommes rendu compte seulement dans un

second temps que les matricubes étaient des généralisations – relativement naturelles – des

matröıdes qui devraient être étudiées en soi, d’un point de vue algébrique et combinatoire

(voir Chapitre 2).

Il y a également un lien étroit entre la théorie des séries linéaires combinatoires qui

vient d’être présentée et l’étude de la tropicalisation des points de Weierstrass, sujet du

Chapitre 4, que nous résumons dans la dernière section de l’introduction.

Localiser la tropicalisation des points de Weierstrass grâce aux séries linéaires

combinatoires — Chapitre 4

Dans le même esprit que le Chapitre 3, le Chapitre 4 concerne la tropicalisation d’un

objet géométrique. De la même manière, il comporte, d’une part, le développement d’une

nouvelle théorie du côté tropical et combinatoire et, d’autre part, l’étude du lien entre les

objets issus d’une tropicalisation et leurs homologues purement combinatoires.

Les objets géométriques dont il est question dans ce chapitre sont appelés points de

Weierstrass. Ce sont des points géométriques spéciaux définis sur des courbes algébriques.

Essentiellement, les points de Weierstrass sont une généralisation de ce qui est plus com-

munément nommé les “points d’inflexion”, c’est-à-dire les points où le signe de la courbure

change, par exemple dans l’étude des courbes réelles. À titre d’illustration, la Figure 1.5

ci-dessous montre les points d’inflexion d’une courbe elliptique réelle plongée dans le plan

réel. Néanmoins, on peut en fait définir les points de Weierstrass, de façon plus générale,
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sur n’importe quelle courbe algébrique lisse X sur un corps algébriquement clos K. Pour

simplifier, nous supposerons que K est de caractéristique nulle.

-2.5-2.5 -2-2 -1.5-1.5 -1-1 -0.5-0.5 0.50.5 11 1.51.5 22

-2-2

-1.5-1.5

-1-1

-0.5-0.5

0.50.5

11

1.51.5

22

00

Figure 1.5: La courbe elliptique réelle d’équation y2 “ x3 ´ 2x ` 2 et ses deux points

d’inflexion.

Une manière de définir les points de Weierstrass dans le contexte plus général d’une

courbe algébrique, sans qu’elle soit forcément plongée dans un espace projectif, utilise

de façon cruciale la théorie des diviseurs et des fonctions méromorphes sur les courbes

algébriques, exposée dans la section précédente de cette introduction.

Définissons pour cela quelques notions de base que nous n’avions pas encore fait l’effort de

définir jusqu’alors. Si D est un diviseur sur X, le système linéaire |D| de D est l’ensemble

des diviseurs de la forme D ` divpfq avec f dans la série linéaire RatpDq de D. Plus

simplement, c’est l’ensemble des diviseurs effectifs qui peuvent être obtenus à partir de D
en ajoutant le diviseur d’une fonction méromorphe. Le degré de D est la somme de tous

ses coefficients. Le rang de D est la dimension de l’espace vectoriel RatpDq (moins un).

Il s’avère que le rang de D admet une définition alternative intéressante : il est égal au

plus grand entier r tel que pour tout point x P X, il existe un diviseur (effectif) E dans

|D| dont le coefficient au point x est au moins r, c’est-à-dire E ě r pxq ; ou, de manière

équivalente, c’est le plus grand entier r tel que pour tout choix de points x1, . . . , xr on X, il

existe un diviseur (effectif) E dans |D| tel que E ě px1q ` ¨ ¨ ¨ ` pxrq. En résumé, et comme

noté précédemment, le rang mesure la taille de la série linéaire (ou du système linéaire).

L’étude systématique des points de Weierstrass des courbes algébriques remonte aux

années 1870, lorsque Weierstrass et Schottky ont compris que les points de Weierstrass

étaient liés aux ordres d’annulation des fonctions méromorphes. En effet, ils ont d’abord

remarqué qu’étant donné un diviseur D de rang r, l’ensemble Spyq des ordres d’annulation
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décalés de toutes les fonctions méromorphes de RatpDq en le point y, c’est-à-dire

Spyq :“
␣

Dpyq ` divpfqpyq
ˇ

ˇ f P RatpDq
(

“
␣

Dpyq ` ordypfq
ˇ

ˇ f P RatpDq
(

“
␣

Epyq
ˇ

ˇ E P |D|
(

,

qui est par définition toujours constitué d’entiers positifs, était en fait égal à l’ensemble

t0, . . . , ru pour tout y P X sauf pour un nombre fini de points ; et, de plus, que ces points

en nombre fini étaient exactement les points de Weierstrass de X.

Notons que la condition Spyq ‰ t0, . . . , ru est équivalente à la condition maxSpyq ě r` 1.

Par conséquent, en utilisant l’une des définitions du rang proposées ci-dessus, on voit qu’un

point de Weierstrass est un point y pour lequel il existe un diviseur dans le système linéaire

de D ayant un coefficient en y strictement plus grand que r, la plus grande valeur attendue.

L’existence d’un tel diviseur explique pourquoi les points de Weierstrass sont les points où

se produit une certaine forme de “résonance”, qui correspond géométriquement à un point

d’inflexion. Si Spyq est même strictement supérieur à r ` 1, le point de Weierstrass y a en

quelque sorte une multiplicité supérieure, ce qui indique qu’un phénomène géométrique

d’ordre supérieur a lieu. En additionnant les points de Weierstrass de D – en nombre

fini –, comptés avec leur multiplicité, on obtient un nouveau diviseur WpDq, le diviseur de

Weierstrass de D.

Ceci est bien connu et a été très étudié depuis plus d’un siècle, mais a priori, on peut

définir les points de Weierstrass seulement sur les courbes lisses. On ne sait pas comment

les définir de façon pertinente, par exemple, sur des courbes stables en toute généralité. Ce

problème est, aujourd’hui, toujours ouvert.

Un premier pas dans cette direction est l’étude de ce qui arrive aux points de Weierstrass

sur des courbes lisses lorsqu’on fait dégénérer une famille de courbes lisses vers une courbe

stable limite, dans le contexte de dégénérescence des familles discuté dans la section

précédente de cette introduction. Si l’on se permet des notations moins générales mais plus

intuitives, imaginons que l’ont ait une famille à un paramètre pXtqt‰0 de courbes lisses,

munie d’une famille lisse de diviseurs pDtqt‰0, chaque Dt étant un diviseur sur Xt. Pour

tout t ‰ 0, on dispose des points de Weierstrass de Dt, en nombre fini, et donc d’un diviseur

de Weierstrass WpDtq, sur Xt. Nous pouvons maintenant reformuler notre question :

Question 1.0.2. Supposons que la famille peut être complétée en une famille pXtqt, la

fibre spéciale X0 étant une courbe stable. Quel peut être le comportement asymptotique de

WpDtq lorsque t Ñ 0 ?

Ou encore, en adoptant un autre point de vue, si X0 est une courbe stable donnée,

peut-on localiser, sur X0, toutes les limites possibles de points de Weierstrass pour des

familles pXtq qui dégénèrent en X0 ? Plus largement, le problème visant à construire un

espace de modules paramétrisant tous les points de Weierstrass limites possibles d’une

courbe stable donnée a été soulevé par Eisenbud et Harris [EH86, EH87a].
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Pour une famille pXtq comme ci-dessus, il y a deux types de points de Weierstrass sur la

courbe lisse Xt :

(a) ceux qui, lorsque t Ñ 0, dégénèrent hors des nœuds de la courbe stable X0 ; et

(b) ceux qui, lorsque t Ñ 0, dégénèrent vers un nœud de X0.

Les points de type (b) sont plus difficiles à comprendre, et c’est sur eux que se concentre

le Chapitre 4. Des progrès graduels ont été faits sur cette question, sous certaines condi-

tions combinatoires sur la courbe stable X0. Dans [Ami14], Amini démontre un résultat

d’équidistribution pour les points de Weierstrass des puissances d’un fibré en droites, en

utilisant une description concrète des points de Weierstrass limites. Nous proposons une

étude plus raffinée des points de Weierstrass, avec l’apport de la géométrie tropicale.

Pourquoi la géométrie tropicale est-elle utile pour étudier les points de Weierstrass

dégénérant vers un nœud ? C’est parce que la géométrie tropicale fournit des outils pour

“dérouler” les singularités et regarder de plus près ce qui se passe “à l’intérieur”. En effet,

comme exposé précédemment dans cette introduction, la tropicalisation de la famille pXtq

donne naissance à un graphe métrique dont chaque sommet v correspond à une composante

irréductible Xv de X0, et chaque arête e “ uv correspond à un point d’intersection entre

les composantes irréductibles Xu et Xv. De surcrôıt, les propriétés de la procédure de

tropicalisation impliquent que si un point pt de Xt, t ‰ 0, dégénère, lorsque t Ñ 0, vers un

nœud p P Xu X Xv de X0, alors il atterrira sur l’arête e “ uv du graphe métrique à une

position qui dépend de la manière dont il dégénère vers p. C’est pourquoi étudier où les

points de Weierstrass dégénèrent sur chaque arête du graphe métrique associé à la famille

pXtqt donne de l’information sur la géométrie de cette famille. C’est ce chemin que nous

suivons dans le Chapitre 4. Nous allons maintenant expliquer comment.

L’approche naturelle, dans le même esprit que la théorie combinatoire des séries linéaires,

est de définir ce que devraient être les points de Weierstrass tropicaux, et ensuite d’étudier

leurs liens avec les tropicalisations de points de Weierstrass géométriques.

Pour définir les points de Weierstrass tropicaux d’un diviseur D sur un graphe métrique

Γ, on peut raisonner par analogie avec la définition géométrique. Le degré de D est la

somme de ses coefficients, et son rang est le plus grand entier r tel que pour tout choix de

points x1, . . . , xr P Γ, il existe un diviseur (effectif) E dans |D| tel que E ě px1q ` ¨ ¨ ¨ ` pxrq.

Pour définir les points de Weierstrass de D, on utilise également une analogie avec la

géométrie : un point x P Γ est dit de Weierstrass pour D lorsque la valeur maximale de

Dpxq ` divpfqpxq pour f P RatpDq est au moins égale à r ` 1.

À titre d’exemple, la figure ci-dessous, issue de la Section 4.3.1, montre le graphe complet

à quatre sommets, muni du diviseur K (pour “canonique”) de degré 4 et de rang 2, ayant

pour coefficient 1 sur chaque sommet. (Le diviseur canonique est défini par Kpxq “ dx ´ 2

pour tout x P Γ, où dx est la valence de x. Son degré est toujours 2g ´ 2, et son rang g ´ 1,

où g est le genre de Γ.) L’ensemble des points de Weierstrass tropicaux est représenté en

rouge sur la partie droite de la figure. Notons qu’à chaque point de Weierstrass peut être
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attribuée une multiplicité de 2, parce que la valeur maximale de Kpxq ` divpfqpxq pour

f P RatpKq est en fait 4 “ r ` 2.

1 1

1

1

2 2

2

2

Figure 1.6: Graphe complet à quatre sommets, et le diviseur de Weierstrass du diviseur

canonique K.

Cette définition donne déjà des résultats intéressants. Baker a montré [Bak08, Lemma 2.8]

que les points de Weierstrass tropicaux sont compatibles avec les points de Weierstrass

géométriques, dans le sens où si on dispose d’une famille dégénérescente de courbes munies

de diviseurs, les limites des points de Weierstrass géométriques sont parmi les points de

Weierstrass tropicaux.

Mais en géométrie tropicale, les choses ne se passent pas toujours aussi harmonieusement

qu’en géométrie algébrique classique, comme on l’a déjà noté pour ce qui est des séries

linéaires... Il se trouve que contrairement aux points de Weierstrass géométriques, les points

de Weierstrass tropicaux ne sont pas nécessairement en nombre fini ! Par exemple, sur le

graphe “haltère” ci-dessous, en choisissant le diviseur canonique K qui a pour coefficient

1 sur chacun des deux sommets, l’arête centrale est entièrement constituée de points de

Weierstrass. C’est pourquoi on parle du lieu de Weierstrass (potentiellement infini) d’un

diviseur D, que l’on notera LWpDq.

1 1
?

1 1

Figure 1.7: Le graphe “haltère” et le lieu de Weierstrass tropical du diviseur K. Chaque

point de Weierstrass isolé, en rouge, a multiplicité 1 mais, à ce stade, on ne sait

pas associer une multiplicité à l’arête centrale.

Ceci entrâıne que, si une famille dégénérescente de courbes avec des diviseurs a ce graphe

métrique et ce diviseur pour tropicalisation, on ne sera pas capable de déterminer exactement

où les points de Weierstrass atterrissent si leur limite appartient à l’arête rouge. La seule

chose que l’on pourrait tenter de déterminer est le nombre de points de Weierstrass qui

atterrissent sur l’arête rouge, si tant est qu’il soit possible de répondre à cette question.

Mais comment trouver une façon naturelle de définir une multiplicité pour l’arête centrale

semblable à celle pour les points isolés, dans le but de répondre à cette question d’une

manière satisfaisante ?
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C’est précisément ce que nous faisons dans la Section 4.3, en deux étapes.

(1) Premièrement, remarquer que le lieu de Weierstrass tropical LWpDq est un sous-

ensemble “sympathique” de Γ : il est fermé et a un nombre fini de composantes

connexes.

(2) Deuxièmement, trouver une façon signifiante d’étendre la multiplicité d’un point

de Weierstrass isolé à n’importe quelle composante connexe du lieu de Weierstrass

tropical.

Voici comment définir cette multiplicité. Soit D un diviseur de rang r, et soit C

une composante connexe du lieu de Weierstrass tropical LWpDq. On définit le poids de

Weierstrass tropical de C comme

µWpC;Dq :“ deg
`

D|C

˘

` pgpCq ´ 1qr ´
ÿ

νPB
outC

sν0pDq (1.1)

où

• deg
`

D|C

˘

est le degré total de D dans C, défini par deg
`

D|C

˘

“
ř

xPC Dpxq ;

• gpCq est le genre de C, c’est-à-dire son premier nombre de Betti dimH1pC,Rq ;

• B
out

C est l’ensemble des directions tangentes sortantes à partir de C ; et

• sν0pDq est la pente minimale d’une fonction f P RatpDq le long de la direction tangente

ν.

Observons que cette définition n’utilise que des données combinatoires finies sur Γ et D.

Le fait que la pente minimale sν0pDq est bien définie et facilement calculable découle du

travail présenté dans la Section 4.2.

Il s’avère que le poids tropical d’une composante connexe réduite à un singleton cöıncide

avec la multiplicité usuelle évoquée pour un point isolé. Mais ces poids sont-ils intéressants

pour répondre à notre question de dégénérescence ? Oui, parce qu’ils mesurent des

phénomènes intéressants, à la fois du point de vue tropical et du point de vue géométrique.

Du côté tropical, les poids se comportent bel et bien comme s’ils comptaient quelque

chose. En effet,

• pour toute composante connexe C, µWpC;Dq est un entier strictement positif ; et

• la somme des poids µWpC;Dq sur toutes les composantes connexes vaut d ´ r ` rg,

donc est fonction seulement des caractéristiques combinatoires de Γ et D.

Ces résultats répondent notamment à une question soulevée par Baker, qui a fait le

commentaire suivant [Bak08, Remark 4.14] concernant un éventuel analogue tropical d’un

fait bien connu en géométrie algébrique pour le diviseur canonique : “it is not clear if there
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is an analogue for metric graphs of the classical fact that the total weight of all Weierstrass

points on a smooth curve of genus g ě 2 is g3 ´ g”.

Du côté géométrique, de bonnes nouvelles nous attendent également. Comme nous le

montrons dans la Section 4.3, nous disposons du théorème suivant (Théorème 4.1.10).

Theorem 1.0.3. Supposons que nous ayons une famille de courbes lisses pXtqt‰0, munie

d’une famille de diviseurs Dt, et dégénérant vers une courbe stable X0. Soit Γ le graphe

métrique associé, par la procédure de tropicalisation, à la famille pXtqt, et soit D la

tropicalisation des Dt. Soit WpDtq, pour tout t, le diviseur de Weierstrass de Dt, et soit C

une composante connexe du lieu de Weierstrass tropical LWpDq de D. Supposons de plus

que Dt et D aient le même rang.

Alors le nombre de points de WpDtq qui convergent vers un point de C lorsque t Ñ 0 est

dénombré par le poids µWpC;Dq, multiplié par r ` 1.

Ce théorème a pour conséquence que les points de Weierstrass géométriques se trop-

icalisent par paquets de r ` 1, ce qui généralise un résultat obtenu par Brugallé et De

Medrano [BDM12] sur les multiplicités des points de Weierstrass tropicaux en rang 2.

Dans la Section 4.5, nous démontrons, en fait, une version locale et plus générale de ce

résultat qui, entre autres, implique le résultat suivant.

Theorem 1.0.4. Reprenant les notations du Théorème 1.0.3, si de plus D est de rang au

moins 1, alors n’importe quel cycle du graphe métrique Γ intersecte le lieu de Weierstrass

tropical LWpDq.

Ce résultat, qui est local, ne semble pas avoir d’analogue pour les courbes algébriques :

la géométrie tropicale a ses propres idiosyncrasies et ne s’aligne pas nécessairement sur la

géométrie algébrique ! En outre, ceci généralise un résultat global obtenu par Baker [Bak08],

énonçant que le lieu de Weierstrass tropical LWpKq du diviseur canonique est non vide si Γ

a un genre au moins égal à deux.

Le Théorème 1.0.4 implique, en particulier, que si le lieu de Weierstrass tropical est fini,

alors tout cycle dans Γ contient un point de Weierstrass limite de la famille pXtqt, ce qui

est une contrainte relativement forte sur le comportement limite des points de Weierstrass.

J’ai promis qu’il y avait un lien étroit entre les points de Weierstrass tropicaux et les séries

linéaires combinatoires, mais cela n’est toujours pas visible ! En fait, les séries linéaires

combinatoires sont cruciales dans la preuve du Théorème 1.0.3. En effet, pour étudier la

tropicalisation des points de Weierstrass de la famille de diviseurs Dt sur Xt, il est capital

de ne pas seulement considérer le diviseur tropicalisé D, mais aussi la structure de pentes

définie par la série linéaire géométrique RatpDtq, en se souvenant des ordres d’annulation

(conjoints) des fonctions méromorphes réduites en les nœuds de X0, comme décrit dans

la section précédente de cette introduction. En résumé, cette preuve illustre le fait que

les séries linéaires combinatoires (incluant la donnée de leur structure de pentes) portent

une quantité d’information combinatoire qui se trouve être la bonne dans l’étude de la

42



tropicalisation de certains objets géométriques, que ce soit les séries linéaires ou les points

de Weierstrass.

Bien sûr, certaines complications techniques ont ici été mises sous le tapis. Notamment :

• Une formulation rigoureuse des théorèmes ci-dessus nécessite de considérer non

seulement des graphes métriques, mais plus généralement des graphes métriques

augmentés, c’est-à-dire des graphes métriques munis d’une fonction de genre g associant

à chaque sommet un entier positif. Le nombre gpvq encode le genre de la composante

irréductible Xv de X0.

• Il est de plus nécessaire de définir les points de Weierstrass non seulement d’un diviseur

D, mais aussi de tout sous-semi-module M Ď RatpDq raisonnable ; en particulier, de

toute série linéaire combinatoire.

Ces raffinements sont l’objet de la Section 4.4. Notons que les résultats présentés ci-dessus

ne valent pas seulement si le corps de base K est de caractéristique nulle ; nous proposons

des adaptations au cas de la caractéristique positive, ce qui laisse entrevoir des applications

potentielles en géométrie arithmétique.

Pour une gamme d’exemples commentés de lieux de Weierstrass tropicaux, montrant la

diversité combinatoire de ces objets, nous renvoyons la lectrice ou le lecteur à la Section 4.6.

122
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Figure 1.8: Un graphe avec deux ponts (ou isthmes) et le lieu de Weierstrass LWpKq du

diviseur canonique K.

43





English version

This introduction aims to sum up the content of the thesis manuscript, avoiding technical

details which will be developed in the subsequent chapters. It should be useful both for a

person interested to read the full manuscript and for a non-specialist wanting to peek an

eye into these topics without reading the full text.

The goal of this PhD thesis is to study some aspects of tropical geometry related to

algebraic geometry.

In a nutshell, many classical algebro-geometric objects – such as curves, divisors on

curves, spaces of functions on curves, or special points on curves – can be deformed into

other geometric objects of a much simpler kind, having combinatorial features, through a

procedure called “tropicalization” – see below for more details. A central theme in this thesis

consists in studying the tropicalization of some of these algebro-geometric objects. Firstly,

by developing metric and combinatorial theories to describe the tropicalized objects we can

obtain; secondly, by drawing links between the properties of these tropicalized objects and

the original objects; and thirdly, by exploring the question of whether a given metric or

combinatorial object can be obtained from a classical object through the tropicalization

procedure.

The inspiration for this PhD project stems from the study of linear series from the

point of view of tropical geometry, which has been a tremendous success in applying

tropical methods. The tropicalization procedure allows to transform the global sections

of a line bundle into piecewise affine linear functions with integral slopes on a polyhedral

object. Baker’s specialization inequality in dimension one [Bak08, Lemma 2.8], as well as

its generalization to higher dimensions given by Cartwright [Car19, Car21], then permit to

compare the dimension of the space of global sections of the line bundle with a notion of

combinatorial rank associated to the tropicalization.

In the present manuscript, we will mainly care about one-dimensional objects, that

is, algebraic curves, metric graphs, and the associated geometric structures. That being

said, we will discuss in Section 5.4 some generalization perspectives for our results to

higher dimensions, in connection with the work by Cartwright mentioned above, which,

from a personal standpoint, has been my point of entry into tropical geometry during the

preparation of my master’s thesis.

In the next section of this introduction, we give an intuitive approach on the tropicalization

procedure which we hope to be helpful to understand how tropicalization works.

The tropicalization procedure and the spirit of tropical geometry

The visual intuition most people have about tropical geometry is that it provides

procedures to deform algebraic varieties to the point where they turn into polyhedral
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objects, like cone complexes or polyhedral complexes, sometimes with some well-chosen

additional combinatorial data.

The point of this type of transformation is that the polyhedral objects it spits out

are fundamentally easy to study, because they can be described using a finite amount of

combinatorial information (the equations defining of each polyhedron, for instance).

Also, and crucially, tropical transformations do not yield “random” objects: they deform

algebraic varieties (or other objects) in such a way that some relevant information is

preserved and can be measured on the polyhedral side to learn more about the original

geometric objects.

This is why some people describe tropical geometry as “a combinatorial (or piecewise

linear) shadow of algebraic geometry” [MR18, MS21].

The first actual tropicalization procedures have been defined in the early 1970’s by

Bergman [Ber71]. They applied mainly to affine or projective algebraic varieties over the

field C of complex numbers, and used logarithmic functions to transform these geometric

objects.

As an example, consider the set L of complex points pz1, z2q P C2 such that z1 `z2 ´1 “ 0.

This is simply a complex line in the complex plane. Now define, for some 0 ă t ă 1, the

set Lt of points in R2 defined by taking the logarithm of the modulus of points of L,

coordinate-wise:

Lt :“
␣

px, yq “ plogtp|z1|q, logtp|z2|qq
ˇ

ˇ pz1, z2q P L
(

,

where logt : Rą0 Ñ R denotes the base t real logarithm. Lt is a curved, real object, of real

dimension two (like L), and called an amoeba, see the left part of Figure 1.9.

p`8, 0q

p0,`8q

Figure 1.9: Amoeba and tropicalization of the complex line L.

If we choose another real number t1 such that 0 ă t1 ă t, then the amoeba Lt1 is simply

obtained from the amoeba Lt by a homothety of factor logptq
logpt1q

ă 1: the amoeba “shrinks”

more and more as t becomes smaller.
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The interesting phenomenon, at the core of tropical geometry, happens if we let t Ñ 0.

In this case, the curved object Lt will degenerate to some limit object L0, which has the

property of being fully polyhedral. L0 is called the tropicalization of the complex curve

L. Since L is a complex line, L0 is in fact a very fundamental object in tropical geometry,

an elementary building block of tropicalizations called the tropical line in the plane. It

is one-dimensional and made up of three real half-lines: a vertical one, a horizontal and

a diagonal one (see the right part of Figure 1.9). Each of those half-lines corresponds

to a specific joint behavior of the variables z1 and z2. For instance, the vertical half-line

corresponds to the situation where |z1| is close to 1 and z2 close to 0.

Note that, strictly speaking, since L intersects the coordinate axes of C2, the tropical

line contains two points “at infinity”, in a framework that can be made rigorous. This

technicality is avoided if we consider a subvariety of pC˚qn.

Moreover, note that, for each particular point pz1, z2q P L, each coordinate of the limit

point limtÑ0plogtp|z1|q, logtp|z2|qq belongs to the finite set t0,`8u. Nevertheless, the tropical

line L0 is the one-dimensional object obtained as the limit set (in the Hausdorff topology)

of Lt as t Ñ 0, i.e., in this particular case, the intersection of all amoebas Lt for t ‰ 0.

A theorem of paramount importance, the fundamental theorem of tropical geometry, gives

an effective description of the tropicalization of an algebraic variety. If, to take the simplest

situation, an algebraic variety V Ď Cn is defined by the vanishing of some polynomial in

n variables P “
ř

kPNn akX
k1
1 ¨ ¨ ¨Xkn

n , with ak P C, then we can associate to P a tropical

polynomial troppP q obtained by replacing every occurrence of the multiplication by an

addition, and every occurrence of the addition by a minimum (or maximum, depending

on the convention). This is why the algebraic formalism using these tropical operations is

called the tropical algebra, or max-plus algebra. This way, troppP q becomes a real-valued,

piecewise linear function Rn Ñ R, defined by

troppP qpx1, . . . , xnq :“ min
kPS

pk1 ¨ x1 ` ¨ ¨ ¨ ` kn ¨ xnq,

where S Ď N is finite. In a more general case, the coefficients ak depend on t, and we

therefore have a family of subvarieties of Cn; the tropicalization of P is, in this broader

case, a piecewise affine linear function. This will be discussed in more detail later on.

The fundamental theorem of tropical geometry describes the tropicalization V of V
as the set of points px1, . . . , xnq P Rn where the tropical polynomial troppP q vanishes

tropically ; and this is said to happen at a point px1, . . . , xnq P Rn whenever the minimum

in minkPSpk1 ¨ x1 ` ¨ ¨ ¨ ` kn ¨ xnq is achieved at least twice.

In our example above, n “ 2, P “ Z1 ` Z2 ´ 1 and troppP q “ minpx, y, 0q, whose set

of tropical roots is indeed the three half-lines shown in Figure 1.9. Indeed, the horizontal

(resp. vertical, resp. diagonal) half-line corresponds to the case where the terms x and 0

(resp. y and 0, resp. x and y) of troppP q realize the minimum together, and the origin

corresponds to the joint realization by all three terms. If we replace the polynomial P by

the polynomial Pa :“ Z1 `Z2 ´ a with a P C˚, we get exactly the same tropicalization. The
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case a “ 0, however, stands out, as the tropicalization of the polynomial P0 :“ Z1 `Z2 is the

function defined by troppP0qpx, yq “ minpx, y,`8q “ minpx, yq. This is why in the above

example, we didn’t chose the complex line defined by z1 ` z2 “ 0, whose tropicalization is

a degenerate version of the above tropical half-line, with only a diagonal line of equation

x “ y.

For a general subvariety V Ď pC˚qn, it turns out that the tropicalization V will always

be the support of a polyhedral fan, i.e., the support of a nice arrangement of polyhedral

cones, of pure dimension the complex dimension of V. Figure 1.10 shows examples of

one-dimensional polyhedral fans in R2.

Figure 1.10: Three one-dimensional polyhedral fans in R2.

Can we generalize this kind of procedure to more general contexts, for example, for

a variety over a field other than C? The answer is yes: there is a nice tropicalization

procedure for varieties over fields endowed with a non-Archimedean valuation, which opens

new perspectives.

A non-Archimedean valuation val on a field K is a function

val : K Ñ R,

where R :“ R Y t`8u, such that the following properties hold.

(1) For every x P K, we have valpxq “ `8 if, and only if, x “ 0.

(2) For every x, y P K, valpxyq “ valpxq ` valpyq.

(3) For every x, y P K, valpx ` yq ě minpvalpxq,valpyqq, and the equality holds if

valpxq ‰ valpyq.

These properties are partially similar to the algebraic properties of the function

lim
tÑ0

logtp| ¨ |q : C Ñ t0,`8u Ă R

used in the first kind of tropicalization procedure, which is in fact called the trivial valuation

on C and is defined by valpzq “ 0 for every z P C˚ and valp0q “ `8. A key example of

non-Archimedean valuation is the degree in t, or t-adic valuation, defined on the field κpptqq
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of formal Laurent series over κ, for a field κ, or on the field κtttuu of Puiseux series over κ,

which has the additional – and often useful – property of being algebraically closed.

As an illustration, the tropicalization of an affine variety V Ď pκtttuu˚qn cut out by an

ideal of κtttuurZ1, . . . , Zns is defined, by analogy with the above procedure, as the closure

of the image of V by the function

trop: pκtttuu˚
q
n

Ñ Rn

pR1, . . . , Rnq ÞÑ pvalpR1q, . . . ,valpRnqq,

where val denotes the t-adic valuation. Again, troppVq will be a nice polyhedral space,

with some finite parts together with some infinite parts which have to be handled with care.

Figure 1.11 shows an example of a tropicalized curve which can be obtained in this way.

Figure 1.11: The tropicalization of an algebraic curve.

The tropicalization procedure for fields endowed with a non-Archimedean valuation is

particularly useful in the study of degenerations of a family of smooth algebraic varieties to

a (possibly non-smooth) limit variety.

Imagine a family pXtq of smooth algebraic varieties over a field κ, varying algebraically

with a parameter t belonging to some base, like a punctured disk ∆˚. Algebraic geometry

and singularity theory strive to answer questions such as the following ones.

• What is the possible behavior of the variety Xt as t Ñ 0?

• What are the possible limit varieties X0?

• What about the limit behavior of a family of line bundles on Xt, or other geometric

objects defined on Xt?

Such a degenerating family, where each variety is defined over a common field κ, can be

modeled by a variety over a base of dimension one, like κpptqq or κtttuu (let’s say κpptqq

for simplicity). Then, every extension of this family to t “ 0 will be called a model, and
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will be described by a scheme X over the ring R “ κrrtss, whose field of fractions is κpptqq.

The models which are of interest to us, with nice properties, are called semistable. Their

existence is assured in characteristic zero, and typically requires passing to a finite field

extension of κpptqq. The generic fiber of X (the fiber over the complement of 0) essentially

remembers the part of the degenerating family where the varieties are smooth, and the

special fiber (the fiber over 0) is the limit variety X0, which will typically have singular points.

Since R is endowed with a non-Archimedean valuation, the family X can be tropicalized

using the procedure described above, by putting coordinates on the family.

This is, in a nutshell, the reason why studying the degeneration of a family of algebraic

varieties can make use of the tropicalization of this family into a polyhedral object. This

object, depending on the procedure we use, can either be an unbounded object like cone

complex (more generally, a polyhedral complex, see Figure 1.11), or a bounded object like a

metric graph. Such a graph appears in fact as a skeleton of a polyhedral complex, both

of these objects being obtained from the family of varieties by alternative tropicalization

methods.

A more precise explanation of how this works involves some basics of Berkovich theory.

In this domain, we define a topological space associated to an affine variety V Ď pK˚qn

cut out by an ideal I of KrZ1, . . . , Zns. The points x of this topological space parametrize

semi-valuations vx on the ring KrZ1, . . . , Zns{I which extend the valuation val on K. It

turns out that this space, called the Berkovich analytification Van of V, is well-behaved:

it is Hausdorff, path-connected, locally akin to a polyhedral space, and it deformation

retracts to compact polyhedral subspaces, its skeleta. Moreover, Van naturally contains V ,

the possible tropicalizations of V all come from projections of the analytification, and this

analytification is the projective limit of all the tropicalizations of V [Pay09, FGP14].

At this point, let us broaden the perspective a little bit. A tropicalization procedure

for varieties defined over a field with a non-Archimedean valuation allows to tropicalize

families of varieties, which will help study singularities in a degeneration context. In fact,

if some geometric object (e.g. a vector bundle, or a space of sections of such a bundle)

is defined smoothly over such a family, there also are tropicalization procedures for these

objects. This will be a red thread in the present manuscript, which will revolve, among

others, around the tropicalization of linear series (vector spaces of sections of a line bundle)

and Weierstrass points (special geometric points on algebraic curves). We refer to the

discussion about Chapters 4 and 3 later in this introduction for the follow-up of this story.

Now that the reader has some keys to understand tropicalization, we describe the

organization of the manuscript in the next section.

Organization of the manuscript

The thesis manuscript is divided into five chapters.
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The first chapter is the present introduction, which aims to sum up the content of the

thesis, also introducing it to non-specialists.

Chapters 2, 3 and 4 correspond approximately to the three preprints [AG22, AGR23,

AG24], respectively. More exactly, these chapters consist in more or less extensive expansions

on the corresponding articles: the results, figures or comments that have been removed

or shortened in the papers for length or conciseness reasons are kept in full length in the

present manuscript.

Chapters 2 and 3 have been written with Omid Amini. Chapter 4 has been written in

collaboration with Omid Amini and Harry Richman, from the University of Washington,

Seattle.

Chapter 2, based on [AG22], defines new combinatorial objects, dubbed matricubes, which

turn out to be a new generalization of well-known combinatorial objects, called matroids.

Chapter 3 uses, among others, the formalism of matricubes to lay down the foundations for

a new, purely combinatorial theory of limit linear series, allowing to study the tropicalization

of algebraic linear series from algebraic curves to metric graphs in greater depth.

Chapter 4 expands on previous work related to tropical Weierstrass points and yields

new localization results for the tropicalization of Weierstrass points from algebraic curves

to metric graphs.

Finally, Chapter 5 sums up the various kinds of open questions which arose along the

way and proposes a few possibly interesting research directions starting from there.

An acknowledgments section is located on page 3, followed by a bilingual preface, before

the table of contents.

There is a unique bibliography for the whole manuscript, combining the bibliographies of

all chapters and located at the end of the manuscript.

We will now introduce Chapters 2, 3 and 4 of the manuscript in greater detail.

Matroids and matricubes — Chapter 2

Chapter 2 is a purely combinatorial chapter which is based on [AG24] and takes its

roots in the fundamental concept of matroid. A matroid is a combinatorial object which

abstracts and axiomatizes the linear dependence relations between vectors in a vector space,

remembering only “who is linearly dependent with whom”, without keeping the whole

information on those vectors.

For example, let peiq be the canonical basis in R3, and define the following configuration

of vectors.
$

’

’

&

’

’

%

x1 “ e1, x2 “ e2, x3 “ e3

x4 “ 0

x5 “ e1 ` e2

This configuration of vectors can be represented by the following matrix, where each column
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represents a vector:
¨

˝

1 0 0 0 1

0 1 0 0 1

0 0 1 0 0

˛

‚.

Let us now make a list of all independents, i.e., linearly independent sub-families of vectors

among the pxiq, described by their indices.

I “ t∅, t1u, t2u, t3u, t5u, t1, 2u, t1, 3u, t1, 5u, t2, 3u, t2, 5u, t3, 5u, t1, 2, 3u, t1, 3, 5u, t2, 3, 5uu

Here, independents can be viewed as subsets of the set of columns of the matrix above, i.e.,

subsets of t1, 2, 3, 4, 5u, forgetting the exact values of the vectors.

But the set I of independents of a configuration of vectors cannot be any collection of

subsets of t1, 2, 3, 4, 5u, because it has to satisfy some non-trivial combinatorial properties.

A matroid (literally, “resembling a matrix”) is precisely a way to axiomatize and abstract

the combinatorial properties of the set of independents of a configuration of vectors.

More formally, a matroid can be defined as a set E together with a collection I of

subsets of E verifying the following three properties:

(I1) ∅ P I (or, equivalently using (I2), I ‰ ∅).

(I2) (Hereditary property) If I P I and I 1 Ď I, then I 1 P I .

(I3) (Independence augmentation property) If I1, I2 P I and |I1| ă |I2|, then there exists

an element e P I2 ∖ I1 such that I1 Y teu P I .

It is easily shown that the set of independents of a configuration of vectors satisfies the

above properties. What is less obvious is that this axiomatic system leads to an interesting

and mathematically rich combinatorial object.

It turns out that there are numerous different definitions of matroids which lead to the

same concept of matroid. For example, instead of defining a matroid by its independents,

we could define it by its bases, a collection of subsets verifying another specific axiomatic

system mimicking the behavior of actual bases in configuration of vectors. To satiate the

reader’s curiosity, here is one possible version of the axiomatic system defining a matroid

using its collection B of bases:

(B1) B ‰ ∅.

(B2) (Basis exchange property) If B1, B2 P B and x P B1∖B2, then there exists y P B2∖B1

such that B1 ∖ txu Y tyu P B.

If I give you the set of independents of a matroid, you could also easily deduce the set of

bases of that matroid, just by choosing only the maximal independents. For example, the

configuration of vectors described above has three bases:

B “ tt1, 2, 3u, t1, 3, 5u, t2, 3, 5uu.
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As an alternative way of describing a matroid, we could also remember, for each subset

of the family of vectors, the dimension of the vector subspace spanned by these vectors,

obtaining a rank function. Such a rank function also satisfies some precise combinatorial

properties which give rise to an axiomatic system, and not every function whose values are

non-negative integers can arise this way. These definitions, along with dozens of others,

yield the exact same theory of matroids: they are called cryptomorphic. They have been

widely studied for almost a century, see for instance [Whi92, Oxl06].

For the purpose of introducing Chapter 2, it is useful to note that to each configuration

of vectors in a vector space can be associated a hyperplane arrangement in the dual vector

space (here, by an abuse of language, a hyperplane can be either an actual hyperplane or

the whole space, when the dual vector is the zero vector).

This way, we can also associate a matroid to each hyperplane arrangement. If F1, . . . ,Fm

are hyperplanes in a vector space H, we can define the rank function which, to each

A Ď t1, . . . ,mu, associates the natural number rpAq :“ codimHp
Ş

iPA Fiq. This rank

function satisfies the properties of the rank function of a matroid.

We can now introduce matricubes. These new combinatorial objects, defined in Chap-

ter 2, appeared naturally as a generalization of the preceding construction: what kind of

combinatorial object do we get if we replace the hyperplane arrangement above by a flag

arrangement? More precisely, imagine that for each j P t1, . . . ,mu, F‚
j is a decreasing flag

H “ F0
j Ě F1

j Ě ¨ ¨ ¨ Ě Fr´1
j Ě Fr

j ,

where r ď dim H and, for each i, Fi`1
j is of codimension at most 1 in Fi

j. If we define, for

every x “ px1, . . . , xmq, xi P t0, . . . , ru, the rank of x as

rpxq :“ codimHpFx1
1 X ¨ ¨ ¨ X Fxm

m q,

then such a rank function is a generalization of a matroid’s rank function. It satisfies

an axiomatic system similar to that of matroid rank functions, adapted to the fact that

its source is the hypercube �
m

r :“ t0, . . . , rum instead of Ppt1, . . . ,muq » t0, 1um, and

using the poset structure on �
m

r . We dub this a matricube, a name that we justify in

Section 2.2.3.

Below is an example of a matricube, described by its rank function, and originating from

a pair of four-step flags in a four-dimensional vector space, taken from Section 2.2.2. The

origin of the array (the smallest indices) is in the bottom left-hand corner, following the

convention that we use for all arrays throughout Chapter 2.
¨

˚

˚

˚

˝

3 3 4 4

2 2 3 4

1 1 2 3

0 1 2 3

˛

‹

‹

‹

‚

Note that rank functions of matricubes need not be symmetric like this one. Moreover, since

this matricube comes from an actual configuration of vectors, it will be called representable.
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The study of representability questions about matroids is an area of research on its own.

In Chapter 2, we ask some representability questions about matricubes, and answer some

of them (see Section 2.9.3). We also show that a matricube contains a collection of “local

matroids” that govern its combinatorial properties (see Section 2.8).

The main part of the work presented in Chapter 2 explores the combinatorial properties

of matricubes, related to their poset structure and to the discrete convexity properties of

their rank functions. We also propose a few different, however equivalent (more exactly,

cryptomorphic), definitions of matricubes, using the rank function (Section 2.2), the

collection of independents (Section 2.5), and other collections (flats, circuits in Sections 2.3

and 2.4) generalizing their matroidal counterparts and mimicking concrete features of

configurations of vectors. In this context, independents, flats and circuits are special points

of the hypercube �
m

r . Surprisingly, at this point of the exploration of matricubes, we were

not able to provide a relevant and interesting axiomatization of the collection of bases of a

matricube, which raises interesting open questions (see Section 2.9.1).

Furthermore, in addition to a dedicated axiomatic system, independents, flats and circuits

have explicit and concrete descriptions for a matricube given by its rank function. For

instance, the flats of a matricube are all the points of the hypercube �
m

r such that moving

by a unit in any positive direction (whenever this is possible) leads to an increase of the

value of the rank function. As an example, the flats of the rank function defined above are

represented in blue below. Note that the set of flats has the structure of a graded lattice,

which is a general property.
¨

˚

˚

˚

˝

3 3 4 4

2 2 3 4

1 1 2 3

0 1 2 3

˛

‹

‹

‹

‚

Another combinatorial property of matricubes, proved in Chapter 2, is their link with a

combinatorial object generalizing permutation matrices to higher dimensions. A permutation

matrix is an nˆ n square matrix filled with ones and zeroes and encoding a permutation σ

of n elements: the coefficient aij is equal to 1 if, and only if, σpiq “ j. For example, the

matrix below (represented using the usual notational convention for matrices, the origin

thus being the top left-hand corner) is the one associated to the permutation σ “ p14qp235q

of five elements.
¨

˚

˚

˚

˚

˚

˝

0 0 0 1 0

0 0 0 0 1

0 1 0 0 0

1 0 0 0 0

0 0 1 0 0

˛

‹

‹

‹

‹

‹

‚

These objects are interesting as such, but one could rightfully ask: does this notion admit

interesting generalizations to higher dimensions? There are, indeed, several generalizations.

You could for example think of the following (all equivalent) definitions of permutation
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matrices, and consequently suggest the corresponding (non-equivalent) higher-dimensional

generalizations.

(a) A permutation matrix is a 0-1 square matrix such that each complete straight line

(where only one coordinate varies), i.e., each row and column, contains 1 exactly once.

ù A higher-dimensional permutation matrix is a 0-1 square higher-dimensional array

such that each complete straight line (where only one coordinate varies) contains 1

exactly once.

(b) A permutation matrix is a 0-1 square matrix such that each one-codimensional layer

(with only one coordinate fixed), i.e., each row and column, contains 1 exactly once.

ù A higher-dimensional permutation matrix is a 0-1 square higher-dimensional array

such that each one-codimensional layer (with only one coordinate fixed) contains 1

exactly once.

(c) A permutation matrix is a 0-1 square matrix such that for each choice of indices pi, jq,

the sub-matrix made up of the elements of indices at least pi, jq (coordinate-wise)

has the property that the number of rows containing 1 at least once is equal to the

number of columns containing 1 at least once. ù A higher-dimensional permutation

matrix is a 0-1 square higher-dimensional array such that for each multi-index x, the

sub-array made up of the elements of multi-index at least x (coordinate-wise) has the

property that the number of one-codimensional layers containing 1 at least once does

not depend on the direction in which the layers are sliced up.

Although these definitions coincide in dimension two, they give rise, in higher dimension,

to distinct notions with their own applications and links with other combinatorial objects.

They have been well-studied, and such objects have been counted, in numerous works.

Definition (c) leads to objects called permutation arrays, studied among others by Eriksson

and Linusson [EL00a]. It turns out, as we prove in Section 2.7, that a certain kind of

matricubes is in fact in one-to-one correspondence with permutation arrays. This gives a

new perspective on a previously known combinatorial object.

It appears that matricubes are a new and interesting combinatorial notion, worthy of

interest in their own right. However, chronologically speaking, they appeared in the work of

this PhD thesis as a combinatorial by-product of the study of the tropicalization of linear

series, as we explain in the next section.

A combinatorial theory for limit linear series — Chapter 3

Chapter 3 is based on [AG22] and its aim is to propose a new, combinatorial theory to

study the tropicalization of linear series on algebraic curves.

Linear series on algebraic varieties are important and well-studied geometric objects

because they govern the geometry of these varieties. They are based on the theory of
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divisors, which we briefly present below. In this manuscript, we will focus on algebraic

curves (i.e., one-dimensional varieties).

Let X be a smooth and proper algebraic curve over a field κ. A divisor on X is a finite

formal sum over Z of points of X: D “
ř

iPI ni pxiq, xi P X. The coefficient of D at a point

x P X is denoted Dpxq. Each rational (or meromorphic) function f P κpXq on the curve

gives rises to a divisor divpfq in a natural way, by remembering the zeroes and poles of f

together with their orders:

divpfq :“
ÿ

xPX

ordxpfq pxq.

This way, each divisor D gives rise to a vector space of rational functions on X respecting

D, defined as follows:

RatpDq :“ tf P κpXq, D ` divpfq ě 0u,

where D`divpfq ě 0 means that this divisor only has non-negative coefficients (is effective).

In a nutshell, divisors are used to put constraints on the orders of the poles and zeroes of

a meromorphic function on an algebraic curve. A space of the form RatpDq is precisely what

is called a complete linear series, and a linear series of rank r will be defined as any vector

subspace H Ď RatpDq of dimension r ` 1. (The shift of one follows the observation that

multiplying a meromorphic function by scalar yields the same divisor, divpcfq “ divpfq, and

therefore r is actually the dimension of the space of such divisors, but also the dimension

of the projectivization of RatpDq.) It turns out that linear series on an algebraic curve X

correspond to maps from X to projective spaces, and therefore the data of all linear series

“contains” the geometry of X, which is why linear series are such a central object of study

in algebraic geometry.

Less is known when the algebraic curve X is not smooth, for example, if it is a stable

curve (a curve whose only singular points are nodes, the “nicest” form of singularity, with

two branches intersecting transversely). In fact, understanding how linear series degenerate

on families of curves has been widely open for a long time.

To state the problem in a more intuitive way, we introduce the moduli space Mg of all

smooth projective curves of genus g. This is a Deligne–Mumford stack (a generalization

of schemes) which, as a space, parametrizes curves, in the sense that every point in Mg

represents a smooth projective curve, in a bijective and coherent way. The space Mg is not

compact, but it turns out that it admits a nice compactification Mg, whose boundary is

exactly made up of stable curves. In a way, stable curves are the non-smooth curves you

can get by letting smooth curves degenerate. We now introduce the degeneration problem

for linear series.

Question 1.0.5. Let X be a stable curve of genus g and let x be the corresponding point in

Mg. What are all the possible limits of linear series for any sequence of smooth projective

curves of genus g when their corresponding points in Mg converge to x?
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Tropical geometry provides a possible approach to answer this question. Indeed, a

one-parameter family of curves gives rise to a sequence of points of Mg converging to a

point in Mg. The family can be modeled by a curve C over a field K endowed with a

non-trivial non-Archimedean valuation val, such that κ is the residue field of pK,valq and

X is the special fiber of the semistable model of C over the valuation ring of val. Then,

the tropicalization procedure outlined sooner in this introduction allows to tropicalize C

into a metric graph Γ (which can be seen as a tropical curve), that is, a graph with a length

assigned to each edge.

It turns out that in this configuration, there is also a natural way to tropicalize a

meromorphic function f on the curve C into a function troppfq : Γ Ñ R, which is continuous

and piecewise affine linear with integral slopes.

Tropical geometry encodes combinatorial information about the degenerating family of

curves C which is complementary to the data of the limit stable curve X and the reduction

of the functions f P KpCq to X. Indeed, the latter data captures some algebraic aspects of

the limit functions on the limit stable curve, whereas the associated metric graph Γ and

the tropicalized functions troppfq also remember finer information about how (from which

direction, at which rate) the sequence of smooth curves degenerates to X.

Therefore, one can rightfully hope that the study of tropicalized functions troppfq on the

tropicalization Γ of C will yield interesting information about the linear series on C.

This is precisely the goal of the work presented in Chapter 3, which develops a purely

combinatorial theory of linear series on metric graphs, and draws links with geometric linear

series, i.e., linear series on algebraic curves.

The starting point of this project was the observation that in the context presented above

of a degenerating family of curves bearing a linear series, there is some finite combinatorial

data that can be extracted from the degenerating family and that should govern the

tropicalizations of the functions in the linear series. This data is related to the orders of

vanishing of functions. More precisely, given a function f in a linear series on C, we first

want to measure, for every irreducible component Xv of the limit stable curve X, and for

every singular point x of Xv, the order of vanishing of the reduction of f to Xv at that

point x.

A classical result implies that the number of different orders of vanishing at x we get as

we let the function f vary in the linear series is exactly the dimension of the linear series

we started with. This set of integers is the first kind of combinatorial data that we can

measure for a degenerating linear series. The second kind of information is related to the

correlation between those orders of vanishing at every singular point of a given irreducible

component Xv. In short, we record the set of joint orders of vanishing we get as we let the

function f vary in the linear series. This data turns out to be encoded by matricubes, the

objects presented in the previous section of the introduction.

By the properties of the tropicalization procedure for functions, this combinatorial data

has nice interpretations for the tropicalized functions on the metric graph. Each vertex

v of the metric graph corresponds to an irreducible component Xv of the stable curve
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X, and each edge e “ uv joining two vertices u and v of the graph corresponds to a

point of intersection between the irreducible components Xu and Xv associated to u and v.

Then, the orders of vanishing of the reduction of a function f on an irreducible component

Xv at the singular points of X located on Xv are equal to the slopes of the tropicalized

function troppfq on the metric graph, along outgoing directions around the vertex v; and

the joint data of the orders of vanishing of f at all singular points of X located on an

irreducible component Xv translates into a vector of slopes of troppfq around the vertex v

of Γ associated to Xv. This illustrates the nature of the combinatorial constraints that will

be used to define combinatorial linear series on metric graphs, which we will present a bit

later.

Let us first note that metric graphs have a theory of meromorphic functions and divisors,

just like algebraic curves. A meromorphic function f P RatpΓq on the metric graph Γ is

a continuous, piecewise affine linear function Γ Ñ R with integral slopes; a divisor on Γ

is a finite formal sum over Z of points of Γ: D “
ř

iPI ni pxiq, xi P Γ. Furthermore, each

meromorphic function f P RatpΓq naturally gives rise to a divisor divpfq on Γ:

divpfq :“
ÿ

xPΓ

ordxpfq pxq,

where ordxpfq P Z is, up to a sign, the sum of outgoing slopes of f on the edges of Γ starting

at x. In the context of metric graphs, a zero (resp. a pole) of a meromorphic function

is a negative (resp. positive) change of slope. Besides, just like there is a tropicalization

procedure for functions on algebraic curves, there is a tropicalization procedure for divisors,

sending each divisor D on C to a divisor D “ troppDq on Γ. This procedure welcomely

commutes with the map f ÞÑ divpfq. This way, a meromorphic function (resp. a divisor)

on an algebraic curve C tropicalizes to a meromorphic function (resp. a divisor) on the

metric graph Γ obtained by tropicalizing C.

Without going into more technical detail, the general idea about this theory of divisors

and meromorphic functions on metric graphs, which has already been much studied, is that

if behaves nicely and very similarly to its algebro-geometric counterpart. For example, it

has been shown using several distinct approaches that a Riemann–Roch theorem holds on

metric graphs [AC13, GK08, MZ08], just like on combinatorial graphs [BN07]. There are,

moreover, numerous applications of this theory to algebraic geometry, such as degeneration

techniques in Brill–Noether theory, results about the Kodaira dimension of moduli spaces of

curves [FJP20], partial answers to the maximal rank conjecture, new bounds in arithmetic

geometry, or crucial tools for the study of Weierstrass points; see [BJ16] for a comprehensive

survey.

At this point, it should be rather obvious how to define a complete linear series on a

metric graph Γ. Just take a divisor D on Γ, and define RatpDq as the set of all functions

f P RatpΓq such that D`divpfq ě 0: a divisor controls the zeroes and poles of the functions

in its complete linear series.
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But the tropical world has major differences with the algebro-geometric world, one of

which being that a space like RatpΓq or RatpDq is nothing like a vector space. Instead,

the right formalism to study these spaces is the theory of tropical semimodules, i.e., sets

endowed with one internal operation, ‘, and one external multiplication, d, which uses

real scalars. In the present context, these operations are defined as follows: for every

f, g P RatpΓq and c P R,

f ‘ g :“ minpf, gq and c d f :“ f ` c.

These are the tropical operations, which can be defined in similar ways on various tropical

spaces. They are, of course, closely related to the max-plus algebra mentioned earlier.

Now that we have this tropical algebraic formalism in mind, we could be tempted to

define a linear series on the metric graph Γ as any particular sub-semimodule M of a

tropical semimodule of the form RatpDq, for D a divisor on Γ, just like a linear series on an

algebraic curve C is any vector subspace H of a complete linear series of the form RatpDq.

This is indeed a good idea, since with this definition, the tropicalization of a linear series

on an algebraic curve yields a linear series on the associated metric graph, in the sense that

if H is a linear series on C, then

troppHq :“
␣

troppfq
ˇ

ˇ f P H∖ t0u
(

is a linear series on Γ, as we prove in Section 3.9. In fact, considering spaces of the form

RatpDq or sub-semimodules thereof turns out to be a relevant way of defining linear series

on metric graphs.

Nevertheless, like often in tropical geometry, we would like to answer representability

questions, that is, questions of the form: “can this tropical object be realized as the

tropicalization of an algebro-geometric object of the expected type?” In the present case,

what are the sub-semimodules M of some RatpDq which are tropicalizations of some linear

series on an algebraic curve?

It turns out that not all of them are. This very fact has led to the work presented in

Chapter 3. The basic idea is that a more relevant theory of combinatorial linear series

should add a few more constraints on these objects, so that we can formulate, at least in

some cases, positive representability results.

This is, by the way, where the theory of matricubes presented in Chapter 2 comes into

place. We will add some finite combinatorial constraints to define linear series on metric

graphs, in the form of what we call a slope structure. Following Section 3.3, a slope structure

S of width r on Γ consists of:

• for every oriented edge e of Γ, the data of a set of r ` 1 allowed integral slopes

se0 ă se1 ă ¨ ¨ ¨ ă ser; and

• for every vertex v of Γ, the data of a matricube (or rank function) ρv on �
dv

r , where

dv is the valence of v.
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To make things more visual, here is a concrete example of a slope structure, taken from

Section 3.6.3. Consider the barbell graph Γ with edges of arbitrary length, see Figure 1.12.

We define a slope structure of width one on Γ. Allow slopes ´1 ă 1 on the middle edge and,

for i “ 1, 2, allow slopes 0 ă 1 on both oriented edges uivi, in the direction of the arrows.

v1 u1 u2 v2
p´1, 1q

p0, 1q

p0, 1q

p0, 1q

p0, 1q

Figure 1.12: The barbell graph and the slope structure S.

We define suitable matricubes on vertices, as follows. For i “ 1, 2, we endow vi with the

rank function on �
2

1 defined by the array

ˆ

0 0

1 0

˙

, and endow ui with the matricube on

�
3

1 whose restrictions to each layer are defined by the following two arrays, respectively:
ˆ

0 0

1 0

˙

,

ˆ

´1 ´1

0 ´1

˙

. Here, flats of the matricubes (see the previous section of the

introduction) are depicted in blue – to understand why the element ´1 in the top-right

hand corner of the last array is not a flat in this context, we refer to Remark 3.2.16. Besides,

the convention used to represent rank functions is the one chosen for linear series, which is

dual to matricubes ; this duality is specified in Proposition 3.2.3, and implies that the rank

functions represented above, contrary to matricubes, are non-increasing functions which

can take the value ´1. For the two vertices u1 and u2, the third coordinate in the two rank

functions corresponds to the middle edge of Γ. This data defines a slope structure S of

width one on Γ.

We can now define the space RatpD,Sq as the space of all meromorphic functions

f P RatpDq such that:

• f is compatible with the edge data, i.e., its slope on every edge e is among the set of

r ` 1 integers prescribed by S on e; and

• f is compatible with the vertex data, i.e., around every vertex v, the vector made up

of its outgoing slopes along every incident edge, viewed as a point of �
dv

r , is a flat of

the matricube ρv associated to v.

It can seem strange to require the vectors of slopes of f to be flats of the matricubes

attached to each vertex, but in fact this has a geometric meaning in the context of

tropicalization. To see this, let Xv be an irreducible component (the one associated to v) of

the limit stable curve in the degenerating family. Let H be the vector space of reductions
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to Xv of the functions belonging to the linear series H on the main curve C. Let p be a

point of Xv. Then p defines a complete flag F‚
p in H by considering the orders of vanishing,

at p, of the functions of H. Concretely, define Sp :“
␣

ordppfq
ˇ

ˇ f P H ∖ t0u
(

, which is a

finite set of cardinality r ` 1, as previously discussed, and whose elements we denote by

sp0 ă ¨ ¨ ¨ ă spr. The flag F‚
p is then defined by setting, for j P t0, . . . , ru,

Fj
p :“

␣

f P H ∖ t0u
ˇ

ˇ ordppfq ě spj
(

Y t0u.

Doing this for every singular point p of X located on Xv yields a finite collection of flags in

H, and thus a matricube, or rank function.

Asking that a point of the matricube is a flat is in fact equivalent to asking that the

corresponding vector of slopes around v is realized by some function f in the linear series.

Consequently, if a sub-semimodule M of RatpDq is the tropicalization of a geometric linear

series H, and if we call S the slope structure originating from the data of the orders

vanishing of functions of the reductions H of H at all the singular points of the limit stable

curve X, then, in fact, M Ď RatpD,Sq.

We now have a more restrictive definition of linear series on graphs which still encom-

passes all tropicalizations of geometric linear series. We show in Chapter 3 that such a

tropicalization has, in fact, supplementary properties, which can therefore safely add to the

definition of combinatorial linear series M Ď RatpD,Sq of rank (or “dimension”) r. These

properties are of various kinds; we give an outline below.

• A rank condition ensures that M contains sufficiently many functions to generate all

effective divisors of degree r (see Section 3.4.1); this is the tropical counterpart of the

fact that, since H is a vector space of dimension r` 1, we can cut r linear constraints

through it and still have non-zero functions.

• An algebraic condition ensures that M is finitely generated, i.e., there exists a finite set

of functions of M which generate M using the tropical operations (see Definition 3.6.2).

• Another algebraic condition ensures that M has tropical rank at most r, i.e., if

f0, . . . , fr`1 is a collection of r` 2 functions of M , then they are necessarily tropically

dependent, in the sense that there exist some scalars c0, . . . , cr`1 P R such that for

each x P Γ, the minimum in

min
0ďiďr`1

pfipxq ` ciq

is achieved at least twice (see Definition 3.6.2); this condition is the tropical counterpart

of the fact that, since H is a vector space of dimension r ` 1, every family of vectors

of cardinality r ` 2 is linearly dependent.

(Note that the rank defined in the first condition and the tropical rank defined in the

last condition do not necessarily coincide. On the contrary, in linear algebra, the dimension

of a vector space is both equal to the cardinality of every base, and to the maximal number
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of linearly independent elements. The fact that these notions differ in the tropical realm is

part of its particular mathematical flavor.)

In Chapter 3, we therefore define a combinatorial linear series as a semimodule M

satisfying all those conditions, which are all compatible with the tropicalization procedure.

But how is it useful to complexify the definition like this? The answer is that adding

those conditions and the combinatorial data of the slope structure S now permits to answer

representability questions positively, and prove other kinds of results.

Here is a sample of what we show in Chapter 3, and which relies, among others, on the

work on matricubes presented in Chapter 2. Some of these results only require a subset of

the conditions put on combinatorial linear series.

• If M is a linear series on Γ and v is a vertex of Γ, then every flat of the matricube ρv
is realized by some function f P M (Theorem 3.5.13).

• As a consequence, if M Ď RatpD,Sq is a linear series, then the data of S can be

entirely retrieved from M alone (Corollary 3.5.14).

• There are an essentially finite number of distinct slope structures on a given metric

graph (Theorem 3.4.4); this can be seen as a first step toward defining a moduli space

of linear series over the moduli space of metric graphs of fixed genus.

• In the case r “ 1, we provide a full classification of linear series on a fixed metric graph:

they are essentially in one-to-one correspondence with finite harmonic morphisms from

the graph to metric trees (for more details about what this means, see Section 3.8).

This is analogous to the description of algebraic geometric linear series of rank one,

and follows from an explicit description of the variation of reduced divisors – in a

nutshell, divisors which concentrate the largest possible coefficient at a given point –

defined by linear series, with respect to the base-point (see Section 3.7).

• As a consequence, every combinatorial linear series of rank one is realizable, i.e., can

be realized as the tropicalization of some geometric linear series (Theorem 3.8.8).

As it was discussed above, the definition of a slope structure uses the notion of matricube

developed in the previous section. In fact, this new combinatorial object first appeared

naturally in this context, as a combinatorial data extracted from a geometric linear series,

and we realized only afterward that matricubes are a – somewhat natural – generalization

of matroids that should be studied from an algebraic and combinatorial viewpoint, for its

own sake (see Chapter 2).

There is also a strong connection between the theory of combinatorial linear series that

was just presented and the study of the tropicalization of Weierstrass points, the subject of

Chapter 4, which we sum up in the next and final section of the introduction.
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Localizing the tropicalization of Weierstrass points using combinatorial linear

series — Chapter 4

In the same spirit as Chapter 3, Chapter 4 is about the study of the tropicalization of a

geometric object. Likewise, it involves, on the one hand, the development of a new theory

on the tropical and combinatorial side, and, on the other hand, the study of the relationship

between tropicalized objects and their purely combinatorial counterparts.

The geometric objects at hand in this chapter are called Weierstrass points. Those are

very special geometric points defined on algebraic curves. Basically, Weierstrass points are

a generalization of what is more often called “flex points” or “inflection points”, i.e., points

where the sign of the curvature changes, for example in the study of real curves. As an

illustration, Figure 1.13 below shows the flex points of a real elliptic curve embedded in

the real plane. However, Weierstrass points can in fact be defined more generally on every

smooth algebraic curve X over an algebraically closed field K. For simplicity, let us assume

that K has characteristic zero.

-2.5-2.5 -2-2 -1.5-1.5 -1-1 -0.5-0.5 0.50.5 11 1.51.5 22

-2-2

-1.5-1.5

-1-1

-0.5-0.5

0.50.5

11

1.51.5

22

00

Figure 1.13: The real elliptic curve of equation y2 “ x3 ´ 2x ` 2 and its two inflection

points.

One way of defining Weierstrass points in the broader context of an algebraic curve, not

necessarily embedded in a projective space, makes crucial use of the theory of divisors

and meromorphic functions on algebraic curves, as exposed in the previous section of this

introduction.

Let us first define a few basic notions that we have been shying away from defining since

now. If D is a divisor on X, the linear system |D| of D is the set of all divisors of the form

D ` divpfq with f in the linear series RatpDq of D. It is, put more simply, the set of all

effective divisors that can be obtained from D by adding the divisor of some meromorphic

function. The degree of D is the sum of all its coefficients. The rank of D is the dimension
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of the vector space RatpDq (minus one). It turns that the rank of D has an interesting

alternate definition: it is equal to the largest integer r such that for every point x P X,

there exists an (effective) divisor E in |D| having coefficient at least r at the point x, i.e.

E ě r pxq; or, equivalently, it is the greatest integer r such that for every choice of points

x1, . . . , xr on X, there exists an (effective) divisor E in |D| such that E ě px1q ` ¨ ¨ ¨ ` pxrq.

In a nutshell, and as previously noted, the rank measures the size of the linear series (or

system).

The systematic study of the Weierstrass points of algebraic curves dates back to the

1870’s, when Weierstrass and Schottky understood that Weierstrass points had to do with

the orders of vanishing of meromorphic functions. Indeed, it was first noticed that, given a

divisor D of rank r, the set Spyq of shifted orders of vanishing of all meromorphic functions

of RatpDq at the point y, namely,

Spyq :“
␣

Dpyq ` divpfqpyq
ˇ

ˇ f P RatpDq
(

“
␣

Dpyq ` ordypfq
ˇ

ˇ f P RatpDq
(

“
␣

Epyq
ˇ

ˇ E P |D|
(

,

which is by definition always made up of non-negative integers, is in fact equal to the set

t0, . . . , ru for every y P X, except a finite number of points; and, moreover, that those

finitely many points are exactly the Weierstrass points of X.

Note that the condition Spyq ‰ t0, . . . , ru is equivalent to the condition maxSpyq ě r` 1.

Consequently, using one of the definitions of the rank provided above, we see that a

Weierstrass point is a point y where some divisor in the linear system of D has a coefficient

at y larger than the expected largest value r. The existence of such a divisor explains

why Weierstrass points are the points where some kind of “resonance” happens, which

corresponds geometrically to an inflection point. If Spyq is even larger than r ` 1, the

Weierstrass point y has some higher multiplicity, indicating a geometric phenomenon of

higher order. Adding up the finitely many Weierstrass points of D counted with their

multiplicities gives rise to a new divisor WpDq, the Weierstrass divisor of D.

This has been well-known and thoroughly studied for more than a century, but Weierstrass

points are, a priori, only defined on smooth curves. We do not know how to define them in

a relevant way, for instance, on stable curves in full generality. This problem is, at the time,

still open.

One first step in this direction is the study of what happens to Weierstrass points on

smooth curves when we let a family a smooth curves degenerate to a limit stable curve,

in the setting of degenerations of families we discussed in the previous section of this

introduction. If we grant ourselves less general but more intuitive notations, imagine that

we have a one-parameter family pXtqt‰0 of smooth curves, endowed with a smoothly varying

family of divisors pDtqt‰0, each Dt being a divisor on Xt. For every t ‰ 0, we have some

Weierstrass points of Dt, and therefore a Weierstrass divisor WpDtq, on Xt. We can now

reformulate our question:
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Question 1.0.6. Assume that the family can be completed into a family pXtqt, the special

fiber X0 being a stable curve. What can the asymptotic behavior of WpDtq be, as t Ñ 0?

Or, changing the standpoint, if X0 is a fixed stable curve, can we locate on X0 all the

possible limits of Weierstrass points for families pXtq which degenerate to X0? More broadly,

the problem of constructing a moduli space parametrizing all possible limit Weierstrass

points of a given stable curve was raised by Eisenbud and Harris [EH86, EH87a].

For a family pXtq as above, there are two types of Weierstrass points on the smooth curve

Xt:

(a) those who, as t Ñ 0, degenerate away from the nodes of the stable curve X0; and

(b) those who, as t Ñ 0, degenerate to a node of X0.

Points of type (b) are harder to understand, and they are the focus of Chapter 4.

Some incremental progress has been made on this question, under some combinatorial

conditions on the stable curve X0. In [Ami14], Amini shows an equidistribution result for

the Weierstrass points of powers of a line bundle, using a concrete description of limit

Weierstrass points. We propose a more refined study of Weierstrass points, using tropical

geometry.

Why is tropical geometry useful to study Weierstrass points degenerating to nodes?

Because tropical geometry provides tools to “unwind” singularities and look more closely

what happens “inside them”. Indeed, as exposed previously in this introduction, tropicalizing

the family pXtq yields a metric graph where each vertex v corresponds to an irreducible

component Xv of X0, and each edge e “ uv corresponds to a point of intersection between

the irreducible components Xu and Xv. Moreover, the properties of the tropicalization

procedure imply that if a point pt on Xt, t ‰ 0, degenerates to a node p P Xu XXv of X0 as

t Ñ 0, then it will land on the edge e “ uv of the metric graph at a position which depends

on how it degenerates to p. This is why studying where the Weierstrass points land on

each edge of the metric graph associated to the family pXtqt gives information about the

geometry of this family. This is the path we follow in Chapter 4. We will now explain how.

The natural approach, in the same spirit as the combinatorial theory of linear series, is

to define what tropical Weierstrass points should be, and then study their connection with

the tropicalizations of geometric Weierstrass points.

To define the tropical Weierstrass points of a divisor D on a metric graph Γ, we can work

by analogy with the geometric definition. The degree of D is the sum of its coefficients,

and its rank is the largest integer r such that for every choice of points x1, . . . , xr P Γ,

there exists an (effective) divisor E in |D| such that E ě px1q ` ¨ ¨ ¨ ` pxrq. To define the

Weierstrass points of D, we also use analogy with geometry: a point x P Γ is said to be

Weierstrass for D if the maximal value of Dpxq ` divpfqpxq for f P RatpDq is at least r` 1.

As an example, the figure below, taken from Section 4.3.1, shows the complete graph

over four vertices, endowed with the divisor K (for “canonical”) of degree 4 and rank 2
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having coefficient 1 on each vertex. (The canonical divisor is defined by Kpxq “ dx ´ 2 for

every x P Γ, where dx is the valence of x. It has degree 2g ´ 2 and rank g ´ 1, where g is

the genus of Γ.) The set of tropical Weierstrass points appears in red on the right part of

the figure. Note that each Weierstrass point can be assigned a multiplicity of 2, because

the maximal value of Kpxq ` divpfqpxq for f P RatpKq is in fact 4 “ r ` 2.

1 1

1

1

2 2

2

2

Figure 1.14: Complete graph on four vertices, and the Weierstrass points of the canonical

divisor K.

This definition already gives interesting results. Baker proved [Bak08, Lemma 2.8] that

tropical Weierstrass points are compatible with geometric Weierstrass points, in the sense

that if we have a degenerating family of curves endowed with divisors, the limits of geometric

Weierstrass points are among the tropical Weierstrass points.

But in tropical geometry, things sometimes do not go as smoothly as in classical algebraic

geometry, as we already realized for linear series... It turns out that contrary to the

geometric Weierstrass points, the tropical Weierstrass points are not necessarily finitely

many ! For instance, on the barbell graph below, choosing the canonical divisor K having

coefficient 1 on both vertices, the whole central edge is Weierstrass. This is why we speak

about the (potentially infinite) Weierstrass locus of a divisor D, which we denote by LWpDq.

1 1
?

1 1

Figure 1.15: The barbell graph and the Weierstrass locus of the divisor K. Each red isolated

Weierstrass point has multiplicity 1, but at this point we cannot associate a

multiplicity to the central edge.

This entails that, if some degenerating family of curves with divisors has this associated

metric graph and divisor as tropicalization, we will not be able to pinpoint exactly where

the Weierstrass end up if their limit lies on the red edge. The only thing we could try

to determine is how many Weierstrass end up on the red edge, if there can be an answer

to that question. But how could we find a natural way of defining a multiplicity for the

central edge like for the isolated points, in order to answer this question in a satisfyingly

quantitative manner?

This is precisely what we do in Section 4.3, in two steps.

66



(1) Firstly, notice that the tropical Weierstrass locus LWpDq is a “nice” subset of Γ: it is

closed and has finitely many connected components.

(2) Secondly, find a meaningful way to extend the multiplicity of an isolated Weierstrass

point to any connected component of the tropical Weierstrass locus.

Here is how we define this generalized multiplicity. Let D be a divisor of rank r, and

let C be a connected component of the tropical Weierstrass locus LWpDq. We define the

tropical Weierstrass weight of C as

µWpC;Dq :“ deg
`

D|C

˘

` pgpCq ´ 1qr ´
ÿ

νPB
outC

sν0pDq (1.2)

where

• deg
`

D|C

˘

is the total degree of D in C, defined by deg
`

D|C

˘

“
ř

xPC Dpxq;

• gpCq is the genus of C, i.e., its first Betti number dimH1pC,Rq;

• B
out

C is the set of outgoing tangent directions from C; and

• sν0pDq is the minimum slope along the tangent direction ν of any function f P RatpDq.

Observe that this definition only uses finite combinatorial data on Γ and D. The fact

that the minimum slope sν0pDq is well-defined and easily computed follows from the work

presented in Section 4.2.

It turns out that the tropical weight of a connected component which consists of a single

point coincides with the usual multiplicity of an isolated point. But are these weights

interesting to answer our degeneration question? Yes, because they measure interesting

phenomena, both from a combinatorial and geometric viewpoint.

On the combinatorial side, the weights do behave like if they were counting something.

Indeed,

• for every connected component C, µWpC;Dq is a positive integer ; and

• the sum of weights µWpC;Dq over all connected components equals d ´ r ` rg, that

is, it is a function only of combinatorial features of Γ and D.

These results notably answer a question raised by Baker, who made the following

comment [Bak08, Remark 4.14] regarding a potential tropical analogue of a well-known fact

in algebraic geometry about the canonical divisor: “it is not clear if there is an analogue

for metric graphs of the classical fact that the total weight of all Weierstrass points on a

smooth curve of genus g ě 2 is g3 ´ g”.

On the geometric side, good news also lies in store for us. As we show in Section 4.3, the

following theorem (Theorem 4.1.10) holds.
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Theorem 1.0.7. Suppose that we have a family of smooth curves pXtqt‰0 endowed with a

family of divisors Dt, degenerating to a stable curve X0. Let Γ be the metric graph associated,

by the tropicalization procedure, to the family pXtqt, and let D be the tropicalization of the

Dt. Let WpDtq be, for every t, the Weierstrass divisor of Dt, and let C be a connected

component of the tropical Weierstrass locus LWpDq of D. Assume moreover that Dt and D

have the same rank.

Then, the number of points of WpDtq which converge to a point of C as t Ñ 0 is counted

by the weight µWpC;Dq, multiplied by r ` 1.

This theorem implies that geometric Weierstrass points tropicalize in packs of size

r ` 1, which generalizes a result obtained by Brugallé and De Medrano [BDM12] on the

multiplicities of tropical Weierstrass points in rank two.

In Section 4.5, we prove, in fact, a local and more general version of this result, which,

among others, implies the following result.

Theorem 1.0.8. Using the notations of Theorem 1.0.7, if moreover the rank of D is at

least one, then every cycle of the metric graph Γ intersects the tropical Weierstrass locus

LWpDq.

This result, which is local, does not seem to have an analogue for algebraic curves:

tropical geometry has its own unique features and does not necessarily align on algebraic

geometry! Besides, this generalizes a global result by Baker [Bak08] stating that the tropical

Weierstrass locus LWpKq of the canonical divisor is nonempty if Γ has genus at least two.

Theorem 1.0.8 implies, in particular, that if the tropical Weierstrass locus is finite, then

every cycle in Γ contains a limit Weierstrass point of the family pXtqt, which is a rather

strong constraint on the limiting behavior of Weierstrass points.

I have promised that there was a strong connection between tropical Weierstrass points

and combinatorial linear series, but this is still not apparent! In fact, combinatorial linear

series are key to the proof of Theorem 1.0.7. Indeed, to study the tropicalization of the

Weierstrass points of the family of divisors Dt on Xt, it is crucial to not only consider the

tropicalized divisor D, but also the slope structure defined by the geometric linear series

RatpDtq, remembering the (joint) orders of vanishing of reduced meromorphic functions at

the nodes of X0, as we described in the preceding section of this introduction. In a nutshell,

this proof illustrates the fact that combinatorial linear series (including their slope structure

data) carry an amount of combinatorial information which turns out to be relevant in the

study of the tropicalization of some geometric objects, be it linear series or Weierstrass

points.

Of course, some technical complexity was put under the rug here. Notably:

• An accurate statement of the above theorems requires to consider not simply metric

graphs, but more generally augmented metric graphs, i.e., metric graphs together with

a genus function g associating a non-negative integer to each vertex. The number

gpvq stands for the genus of the irreducible component Xv of X0.
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• It is moreover necessary to define the Weierstrass points not only of a divisor D,

but also of any well-behaved sub-semimodule M Ď RatpDq; in particular, to any

combinatorial linear series.

These refinements are the subject of Section 4.4. Note that the results presented above

do not only hold if the base field K is of characteristic zero; we provide adaptations to the

positive characteristic case for potential applications to arithmetic geometry.

For a variety of commented examples of tropical Weierstrass loci, showing the combina-

torial diversity arising among these objects, we refer the reader to Section 4.6.

122

2

2

2

2 2

Figure 1.16: A graph with two bridge edges and the Weierstrass locus LWpKq of the canonical

divisor K.
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2 Combinatorial flag arrangements

This chapter is slightly adapted from the preprint [AG24].
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Abstract

We introduce combinatorial objects named matricubes that provide a generalization of the

theory of matroids. As matroids provide a combinatorial axiomatization of hyperplane

arrangements, matricubes provide a combinatorial axiomatization of arrangements of initial

flags in a vector space. We give cryptomorphic axiomatic systems in terms of rank function,

flats, circuits, and independent sets, and formulate a duality concept. We also provide

precise links between matricubes, permutation arrays and matroids, and raise several open

questions.

2.1 Introduction

Consider a vector space H of finite dimension over a ground field κ and a collection A of m

initial flags F‚
1 , . . . ,F

‚
m. For j “ 1, . . . ,m, the flag F‚

j consists of a chain of rj ` 1 vector

subspaces, 0 ď rj ď dimκpHq,

H “ F0
j Ě F1

j Ě ¨ ¨ ¨ Ě F
rj´1
j Ě F

rj
j Ľ p0q
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where, for every j P t1, . . . ,mu and i P t1, . . . , rju, Fi
j is a vector subspace of codimension 0

or 1 in Fi´1
j . We call this collection a flag arrangement. In the case rj “ 1 for all j, and

codimension of F1
j in H equal to one, we obtain a hyperplane arrangement.

The aim of this chapter is to introduce mathematical structures called matricubes that

provide a combinatorial axiomatization for the intersection patterns of a finite collection

of initial flags in a vector space (as the one above). The case r1, . . . , rm “ 1 recovers the

theory of matroids. Like matroids which in the representable case come from matrices,

representable matricubes come from cubical matrices (i.e., three-dimensional matrices).

Let us start with a few notations. For n a non-negative integer, we set rns :“ t0, . . . , nu.

Let m be a positive integer, and r1, . . . , rm be non-negative integers. Let ϱ :“ pr1, . . . , rmq.

The hypercuboid �ϱ of width ϱ is the product
śm

j“1rrjs. It is endowed with a natural partial

order ĺ defined by declaring x ĺ y for elements x “ px1, . . . , xmq and y “ py1, . . . , ymq

in �ϱ, if xj ď yj for all j. The minimum and maximum elements of �ϱ are the points

0 :“ p0, . . . , 0q and ϱ. We define two operations _ and ^ of join and meet by taking the

maximum and the minimum coordinate-wise, respectively:

x _ y :“ pmaxpx1, y1q, . . . ,maxpxm, ymqq, x ^ y :“ pminpx1, y1q, . . . ,minpxm, ymqq,

for any pair of elements x, y P �ϱ. For i P t1, . . . ,mu and t P rris, we denote by t e i the

point of �ϱ whose i-th coordinate is t and whose other coordinates are zero.

We first give the definition of matricubes in terms of their rank functions, and then

provide cryptomorphic axiomatic systems in terms of their flats, circuits and independent

sets.

2.1.1 Definition in terms of rank function

A function f : �ϱ Ñ Z is called submodular if for every two elements x and y, we have

fpxq ` f
`

y
˘

ě f
`

x _ y
˘

` f
`

x ^ y
˘

.

A matricube M with ground set �ϱ is defined in terms of a function r : �ϱ Ñ Zě0 called

the rank function of M that satisfies the following conditions:

(R1) rp0q “ 0, and for every 1 ď i ď m and 1 ď t ď ri, we have rpt e iq ´ rppt ´ 1q e iq ď 1.

(R2) r is non-decreasing, that is, if x ĺ y, then rpxq ď r
`

y
˘

.

(R3) r is submodular.

We call the quantity r “ rpM q :“ r
`

ϱ
˘

, the maximum value taken by the function r, the

rank of M . In the case rj “ 1 for all j, M gives a matroid with ground set E “ t1, . . . ,mu.

Note that it follows from (R1) and (R2) that rpt e iq ď t. We say that M is simple if the

following stronger version of (R1) holds:

(R1˚) ri ą 0 and rpt e iq “ t for all i “ 1, . . . ,m and t P rris.
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For a collection A of initial flags F‚
1 , . . . ,F

‚
m in a vector space of dimension n, as above,

the codimensions of the intersection patterns of their elements define a rank function. That

is, the function r : �ϱ Ñ Z defined, for every x “ px1, . . . , xmq, by

rpxq :“ codimκpFx1
1 X ¨ ¨ ¨ X Fxm

m q “ n ´ dimκpFx1
1 X ¨ ¨ ¨ X Fxm

m q

is the rank function of a matricube that we denote by MA. Note that MA is simple if

all the inclusions in each flag are strict. Like for matroids, a matricube appearing in this

way will be called representable over the field κ. Note that by duality of vector spaces, a

representable matricube can be described equivalently by a collection of initial increasing

flags in the dual vector space. This point of view allows to associate a matricube to any

three-dimensional matrix with entries in a given field. We refer to Section 2.2.3 for more

details.

Abstracting the example given above of an arrangement of initial flags in a vector space,

we show in Section 2.2.4 that a finite collection of initial flag matroids, all defined on the

same ground set, defines a matricube.

In the next three sections, we present alternative axiomatic systems for matricubes, that

will be discussed more thoroughly in this chapter.

2.1.2 Flats of matricubes

Let M be a matricube of rank r with ground set �ϱ and rank function r. A point a in �ϱ

is called a flat of M if

p˚q for every i “ 1, . . . ,m such that a ` e i belongs to �ϱ, we have rpa ` e iq “ rpaq ` 1.

Note that in particular, ϱ is a flat of M . We denote by F pM q Ď �ϱ the set of flats of

M . In the case M is a matroid, F pM q is the set of flats of that matroid.

As in the case of matroids, a matricube can be defined in terms of its flats. The axiomatic

system of flats of a matricube is (F1)-(F2)-(F3), provided below.

Given a poset pP,ĺq and two elements x, y P P , we say that that y covers x, and write

y ą̈ x, if y ą x in P and there is no element z P P such that y ą z ą x. Let F be a subset

of �ϱ. Endowed with the partial order ĺ of the hypercuboid �ϱ, F is a poset.

We prove in Section 2.3 that F Ď �ϱ is the set of flats of a matricube with underling

ground set �ϱ if, and only if, the following properties hold.

(F1) ϱ is in F .

(F2) F is closed under meet.

(F3) If a is an element of F and i is such that a ` e i P �ϱ, then there exists an element

b ľ a ` e i in F such that b ą̈ a in F .

In other words, the axiomatic systems (F1)-(F2)-(F3) and (R1)-(R2)-(R3) are equivalent.
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2.1.3 Duality, and circuits of matricubes

Again, let M be a matricube on the ground set �ϱ. In Section 2.2.6, we define the dual

matricube M ˚ on the same ground set �ϱ. In terms of rank functions, the rank function

r˚ of M ˚ is given by

r˚
pxq :“ |x|ℓ1 ` rpxcq ´ rpM q @ x P �ϱ,

where xc :“ ϱ ´ x is the complement of x in �ϱ, and r denotes the rank function of M .

Denote by F pM ˚q the set of flats of the dual matricube, and consider

qC :“
␣

ac
ˇ

ˇ a P F pM ˚
q
(

Ď �ϱ.

A point c in �ϱ is called a circuit of M if

p˚q c is an element of qC which is not the join of any set of elements of qC ∖ tcu.

We denote by C pM q Ď �ϱ the set of circuits of M . This definition extends that of

circuits in matroids. Moreover, as in the case of matroids, a matricube can be defined in

terms of its circuits, via the following axiomatic system. We prove in Section 2.4 that a

subset C Ď �ϱ is the set of circuits of a matricube with underlying ground set �ϱ if, and

only if, the following properties hold.

(C1) 0 is not in F .

(C2) All elements of C are join-irreducible in C .

(C3) If a P qC and i P t1, . . . ,mu is such that a ´ e i P �ϱ, then there exists an element

b ĺ a ´ e i in qC Y t0u such that b ă̈ a in qC Y t0u.

In other words, the axiomatic systems (C1)-(C2)-(C3) and (R1)-(R2)-(R3) are equivalent.

2.1.4 Independents of matricubes

Let M be a matricube on the ground set �ϱ. We say that a point a of �ϱ is an independent

of M if

p˚q for every i “ 1, . . . ,m such that a ´ e i P �ϱ, we have rpa ´ e iq “ rpaq ´ 1.

We denote by I pM q Ď �ϱ the set of independents of M .

The set of independents of a matricube is nonempty and closed under meet ^. Moreover,

removing unit vectors from an independent reduces the rank in the following sense: for

every independent a P I pM q, and every distinct elements i1, . . . , ik P t1, . . . ,mu with

aij ‰ 0, 1 ď j ď k, we have r
`

a ´ e i1 ´ ¨ ¨ ¨ ´ e ik
˘

“ rpaq ´ k.
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We provide an axiomatic system for independent sets of a matricube. In order to do this,

we need to define an operation of removal in independents.

Let J be a subset of �ϱ. Let a be an element of J and i P t1, . . . ,mu such that ai ‰ 0.

If there is at least one element b ă a in J which differs from a only in the i-th component,

we define a∖ i to be such an element in J with the largest i-th coordinate. In this case,

we say that a∖ i is the removal of i in a.

Definition 2.1.1. Let J be a subset of �ϱ.

(a) We say that removals exist in J if for every a P J and i P t1, . . . ,mu, if ai ě 1, the

removal a∖ i exists in J .

If removals exist in J , then 0 P J and for every element a, there exists a sequence of

removals that reduces a to 0.

(b) We say that J is orderable if removals exist in J and for every a P J , all the sequences

of removals that bring a to 0 have the same length.

If J is orderable, we define the size of a, denoted by |a|, as the number of removals

needed to reduce a to 0. ˛

The axiomatic system of independents can be formulated as follows. Let I be a subset

of �ϱ that verifies the following property:

(I1) Removals exist in I and the following holds. For all p P I and removals p ∖ i

and p∖ j, with i, j P t1, . . . ,mu, the meet q :“
`

p∖ i
˘

^
`

p∖ j
˘

belongs to I and,

moreover, the two intervals
“

q, p∖ i
‰

and
“

q, p∖ j
‰

in I have the same size.

Here, the interval ra, bs in I means the set of all c P I which verify a ĺ c ĺ b.

We prove in Section 2.5 that (I1) is equivalent to the orderability of the set I . In

particular, if I verifies (I1), we can define the size of a as the number of removals needed

to reduce a to 0. This enables to formulate the second property of interest. For a, b P �ϱ,

denote by ∆pa, bq the set of elements in t1, . . . ,mu such that ai ă bi. The following is

understood as a matricube analogue of the augmentation property for independents of

matroids.

(I2) | ¨ | is increasing on independents, i.e., for all a, b P I such that a ă b, we have

|a| ă |b|. Moreover, let a, b be two elements of I such that |a| ă |b| and ∆pa, bq

contains at least two elements. Then, there exists c P I that verifies:

• c ĺ a _ b,

• |c| ą |a|.

• There exists i P ∆pa, bq such that ci ă bi.

We prove in Theorem 2.5.5 that (I1)-(I2) are equivalent to (R1)-(R2)-(R3).
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2.1.5 Permutation arrays

A combinatorial approach to the study of intersection patterns of a configuration of complete

flags was introduced by Eriksson–Linusson in the notion of permutation arrays [EL00a,

EL00b]. Our Theorem 2.7.1 proved in Section 2.7 shows that permutation arrays are in a

one-to-one correspondence with matricubes of rank r or r ` 1 on the ground set �
d

r :“ �ϱ

with ϱ “ pr, r, . . . , rq, that is, with all rj “ r.

2.1.6 Matricubes as coherent complexes of matroids

As we explain in Section 2.8, a matricube locally gives rise to a collection of matroids.

Local obstructions for the representability of a matricube can then be formulated in terms

of matroid representability. In the case of permutation arrays, via our Theorem 2.7.1,

this gives obstructions for representability that generalize the examples found in the work

of Billey and Vakil [BV08]. We moreover go further by proving Theorem 2.9.1, which

shows that the representability of matricubes over infinite fields can be reduced to matroid

representability, see Section 2.1.7.

In Section 2.8.3, we provide a matroidal characterization of matricubes by establishing an

equivalence between matricubes and coherent complexes of matroids labeled by the elements

of a hypercuboid satisfying Properties (CC1) and (CC2) below. Namely, let pMaq
aP �ϱ

be a family of matroids indexed by �ϱ, with Ma a matroid on the set Ia consisting of

all j P t1, . . . ,mu with aj ă rj. Denote the rank function of Ma by ra. We say that the

collection pMaq forms a coherent complex of matroids if the following two conditions are

met:

(CC1) For all i P t1, . . . ,mu and 0 ď t ă ri, we have ρt e ipe iq ď 1.

(CC2) The matroids Ma satisfy the following relation:

Ma`e i
“

#

Ma i if ai “ ri ´ 1

Ma i \ tiu else
.

Theorem 2.8.6 provides an equivalence between (CC1)-(CC2) and (R1)-(R2)-(R3).

2.1.7 The natural matroid of a matricube and representability

Remembering only the data of the subspaces in a flag arrangement results in a subspace

arrangement, whose combinatorics is encoded in an integer polymatroid. In the same way,

any matricube on the ground set �ϱ, ϱ “ pr1, . . . , rmq, gives rise to an integer polymatroid

on the ground set the disjoint union rr1s \ ¨ ¨ ¨ \ rrms.

Bases and exchange properties for integer polymatroids have been studied by Herzog

and Hibi [HH02]. Csirmaz [Csi20] gives axiomatic systems for cyclic flats. In recent

work, Bonin, Chun and Fife [BCF23] study bases, circuits, and cyclic flats in integer
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polymatroids, connecting them to a classical construction going back to McDiarmid [McD73],

Lovász [Lov77], and Helgason [Hel06], which shows that the data of an integer polymatroid

on a ground set E is equivalent to the data of a matroid on a larger set pE obtained from

E by replacing each element e of E with ρpeq distinct copies of that element, called the

natural matroid. (This has gained recent interest in the work [OSW19], in developing a

decomposition theorem for 2-polymatroids, as well as in the works [CHL`22, EL23] related

to combinatorial Hodge theory.)

In our setting, starting from a matricube, we can thus associate to it first an integer

polymatroid and then use the above construction to replace the integer polymatroid by a

matroid on a larger ground set. We will review this construction in Section 2.9.2. As we

explain there, this leads to a story different from the theory presented in this manuscript.

This point of view is however useful for treating the question of the representability of

matricubes. We show in Theorem 2.9.1 that a matricube is representable over an infinite

field (or a field of large enough cardinality) if, and only if, the corresponding natural matroid

is representable over the same field.

2.1.8 Further related work

Our original motivation for developing the theory exposed here comes from the problem

of describing tropical degenerations of linear series on algebraic curves. In companion

work [AG22] (Chapter 3), matricubes are used as the combinatorial structure underlying a

combinatorial theory of limit linear series on metric graphs (the geometric situation behind

this theory is briefly discussed in Section 2.9.7). While working on the degeneration problem

for linear series, we gradually realized how similarly matricubes and matroids behave. Apart

from bases, for which we do not provide a definition and an axiomatic system, the other

relevant constructions in the theory of matroids have their matricube analogues.

The recent work of Baker and Bowler [BB19] develops a theory of matroids over hyperstruc-

tures. The extension of this theory to flag matroids is given by Jarra and Lorscheid [JL24],

and a generalization to quiver matroids is the subject of a forthcoming work of Jarra,

Lorscheid and Vital. The work by Baker and Lorscheid [BL21, BL20] studies the moduli

space of matroids and deduce applications to representability questions for matroids. It

seems plausible and interesting to generalize these results to the context of matricubes.

In [BDP18], Bollen, Draisma and Pendavingh show that each representation of an

algebraic matroid M over a field of positive characteristic comes naturally with a valuation,

that they name the Lindström valuation of that representation. To this end, using the

Frobenius map of the base field, they associate to any such representation what they call

a matroid flock, an infinite family of linear matroids of the same rank as M, indexed by

ZE, where E is the ground set of M. It is interesting to note that, although these notions

arise in totally different contexts, the axiomatic systems of coherent complexes and matroid

flocks are reminiscent of each other. There are however some major differences. Namely,

the matroids appearing in a matroid flock all have the same rank, and there is an invariance
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property with respect to the direction p1, . . . , 1q. Besides, the boundary condition imposed

on the coherent complexes does not appear in matroid flocks.

Submodular functions on distributive lattices are a central topic in the study of a large

class of combinatorial optimization problems. We refer to the books by Schrijver [Sch03]

and Fuji [Fuj05] for a discussion of these aspects.

Murota [Mur98] investigates a theory of convex analysis in the discrete setting that

involves functions f : Zn Ñ Z. Classical duality theorems about real convex functions are

proved in the discrete setting. Discrete convexity in that setting is similar in spirit to the

submodularity property studied in the present chapter.

2.1.9 Organization of the text

In Section 2.2, we define matricubes using rank functions and give basic examples, including

uniform and representable matricubes. We define operations of deletion and contraction on

matricubes, and formulate a duality concept.

In Sections 2.3, 2.4 and 2.5, we explore alternative axiomatic systems for matricubes,

relying on flats, circuits and independents, respectively.

In Section 2.6, we prove elementary combinatorial results useful throughout the chapter,

which provide a simpler way of checking whether a function on a hypercuboid is a rank

function.

In Section 2.7, we show that particular kinds of matricubes are in a natural one-to-one

correspondence with permutation arrays.

In Section 2.8, we provide the equivalence of matricubes with coherent complexes of

matroids, and provide local obstructions for representability.

Finally, in Section 2.9, we discuss further interesting features of matricubes and raise

several open questions.

2.2 Basic properties

Let n be a non-negative integer and rns “ t0, 1, . . . , nu. For elements r1, . . . , rm P rns, the

hypercuboid �ϱ of width ϱ “ pr1, . . . , rmq is the product
śm

j“1rrjs. When r1 “ ¨ ¨ ¨ “ rd “ r,

we simply denote the hypercuboid by �
m

r . We denote the elements of �ϱ by vectors

x “ px1, . . . , xmq, for x1 P rr1s, . . . , xm P rrms. In the hypercuboid, we define, for every

i “ 1, . . . ,m and t P rris, the t-th layer in the direction i as Li
t :“

!

x P �ϱ, xi “ t
)

.

We endow �ϱ with the partial order ĺ: For a pair of elements x, y P �ϱ, we have x ĺ y

provided that xj ď yj for all j “ 1, . . . ,m. The smallest and largest elements with respect

to ĺ are 0 and ϱ, respectively. Moreover, there is a lattice structure on �ϱ, where the two

operations of join _ and meet ^ correspond to taking the maximum and the minimum

coordinate-wise, respectively.
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A function f : �ϱ Ñ Z is called submodular if for every pair of elements x and y, we have

fpxq ` f
`

y
˘

ě f
`

x _ y
˘

` f
`

x ^ y
˘

.

We will be interested in a special kind of submodular function on �ϱ. For each integer

i P t1, . . . ,mu, we denote by e i the vector whose coordinates are all zero except the i-th

coordinate, which is equal to one. For 0 ď t ď ri, the vector t e i lies in �ϱ.

Definition 2.2.1 (Matricube). A matricube M with ground set �ϱ is defined in terms of

a function r : �ϱ Ñ Z called the rank function of M that satisfies the following conditions:

(R1) rp0q “ 0, and for every 1 ď i ď m and 1 ď t ď ri, we have rpt e iq ´ rppt ´ 1q e iq ď 1.

(R2) r is non-decreasing with respect to ĺ, that is, if a ĺ b, then rpaq ď rpbq.

(R3) r is submodular.

We call r “ rpM q :“ r
`

ϱ
˘

, the maximum value taken by the function r, the rank of

M . ˛

Note that (R1) implies that rpt e iq ď t for all i “ 1, . . . ,m and t P rris. We say that M

is simple if the following alternate form of (R1) holds:

(R1˚) ri ą 0 and rpt e iq “ t for all i “ 1, . . . ,m and t P rris.

Remark 2.2.2. In M is simple, then the above properties imply that if x P �ϱ has rank

j, then xi ď j for all i “ 1, . . . ,m. In particular, 0 is the only element of rank 0 in �ϱ. ˛

To be able to present examples of rank functions easily, we adopt the following convention.

Convention 2.2.3 (Cases m “ 1, 2, 3). In this article, for m “ 1, a function on �r is

described by a tuple with r ` 1 entries pt0, . . . , trq, which means that the value of the

function on the i-th entry of �r is ti.

In the same way, for m “ 2, a function on �pr1,r2q will often be described by an array of

size pr1 ` 1q ˆ pr2 ` 1q, ptijq0ďiďr1,0ďjďr2 , which means that the function takes value tij on

pi, jq P �pr1,r2q. We choose the convention that the first direction is horizontal, the second

direction is vertical, and the origin is the bottom left-hand corner.

When m “ 3 and ϱ “ pr1, r2, r3q, a function defined on �ϱ will be specified by r3 ` 1

arrays R0, . . . , Rr3 of size pr1 ` 1q ˆ pr2 ` 1q, where Rk describes the values of the function

on �pr1,r2q ˆ tku Ď �ϱ. ˛

Here are two examples of matricubes with ϱ “ p4, 3q.

¨

˚

˚

˚

˝

3 3 3 4 5

2 2 2 3 4

1 2 2 3 4

0 1 2 3 4

˛

‹

‹

‹

‚

¨

˚

˚

˚

˝

3 3 3 3 4

2 2 2 2 3

1 2 2 2 3

0 1 2 2 3

˛

‹

‹

‹

‚
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The one on the left is simple, the one on the right is not.

For future use, we state the following proposition which implies that the set of values of

the rank function in a matricube of rank r is the interval rrs.

Proposition 2.2.4. Let r be a rank function on �ϱ. Let i P t1, . . . ,mu. For an element

x P �ϱ such that x ` e i P �ϱ, we have

rpxq ď rpx ` e iq ď rpxq ` 1.

Proof. Let y “ pxi ` 1q e i, and note that x _ y “ x ` e i and x ^ y “ xi e i. Applying

the submodularity of r to the vectors x and y, and using (R1) in Definition 2.2.1, we get

rpxq ` 1 ě rpx` e iq. The first inequality follows from the non-decreasing property of r.

2.2.1 Uniform matricubes

Notation as in the previous section, let ϱ “ pr1, . . . , rmq, and consider the corresponding

hypercuboid �ϱ. Let r P rr1 ` ¨ ¨ ¨ ` rms be a non-negative integer. We define the uniform

matricube Uϱ,r of width ϱ and rank r as the matricube defined by the standard rank function

defined as follows

rstpaq :“ minpr, a1 ` ¨ ¨ ¨ ` amq for a “ pa1, . . . , amq P �ϱ.

Notice that the uniform matricube Uϱ,r is simple if, and only if, r ě maxi ri.

Below are the uniform matricubes Up4,3q,3 and Up4,3q,5.
¨

˚

˚

˚

˝

3 3 3 3 3

2 3 3 3 3

1 2 3 3 3

0 1 2 3 3

˛

‹

‹

‹

‚

¨

˚

˚

˚

˝

3 4 5 5 5

2 3 4 5 5

1 2 3 4 5

0 1 2 3 4

˛

‹

‹

‹

‚

Proposition 2.2.5. The rank function r of any matricube M of rank r on the ground set

�ϱ is dominated by the rank function rst of the uniform matricube Uϱ,r. That is, for every

x P �ϱ, we have rpxq ď rstpxq.

Proof. It follows directly from Proposition 2.2.4 that we have rpxq ď x1`¨ ¨ ¨`xm. Combined

with rpxq ď r, we deduce the result.

2.2.2 Representable matricubes

Let n be a non-negative integer, and let H be a vector space of dimension n over some field

κ. An initial (decreasing) flag of H of length r consists of a chain of vector subspaces

H “ F0
Ě F1

Ě ¨ ¨ ¨ Ě Fr´1
Ě Fr

Ľ p0q,

where for each positive i P rrs, Fi is a vector subspace of codimension 0 or 1 in Fi´1. We

say that F‚ is simple if each Fi has codimension i in H. A complete flag is a simple initial

flag of length n ´ 1.
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Let m be a positive integer, and let A be a collection of m initial flags F‚
1 , . . . ,F

‚
m of H of

lengths r1, . . . , rm, respectively. Define the function r : �ϱ Ñ Z by

rpxq :“ codimκpFx1
1 X ¨ ¨ ¨ X Fxm

m q @x “ px1, . . . , xmq P �ϱ. (2.1)

Proposition 2.2.6. The hypercuboid �ϱ endowed with the function r defined in (2.1) is a

matricube. This matricube is simple if, and only if, all the initial flags are simple.

Proof. Let a and b be two points of �ϱ, and let x :“ a ^ b and y :“ a _ b. We have an

injection

`

Fa1
1 X ¨ ¨ ¨ X Fam

m

˘L`

Fy1
1 X ¨ ¨ ¨ X Fym

m

˘

ãÑ
`

Fx1
1 X ¨ ¨ ¨ X Fxm

m

˘L`

Fb1
1 X ¨ ¨ ¨ X Fbm

m

˘

,

from which, comparing the dimensions, we get rpbq ´ rpxq ě r
`

y
˘

´ rpaq. This proves the

submodularity of r. Properties (R1) and (R2) in Definition 2.2.1 are trivially verified. This

proves the first assertion. The matricube is simple if, and only if, each Fi
j has codimension

i in H, that is if, and only if, F‚
j is simple, for j “ 1, . . . ,m.

We denote by MA the matricube associated to A.

Definition 2.2.7 (Representable matricube). A matricube M on ground set �ϱ is called

representable over a field κ if it is the matricube associated to an arrangement of m initial

flags F‚
1 , . . . ,F

‚
m of lengths r1, . . . , rm, respectively, in a κ-vector space H. ˛

Example 2.2.8. The matricube Uϱ,r is representable over every field of large enough

cardinality. Indeed, it is the matricube associated to an arrangement of m initial flags of

lengths r1, . . . , rm in H of dimension r which are in general relative position, that is, whose

intersection patterns have the smallest possible dimensions. ˛

Example 2.2.9. We provide the minimal example of a non-representable hypercube rank

function. Let r be the function on �
3

1 defined by the following two arrays of size 2 ˆ 2

(encoding the restrictions of r to �
2

1 ˆ tku for k P t0, 1u):
ˆ

1 2

0 1

˙ ˆ

1 2

1 1

˙

.

It is easy to check that r is a hypercube rank function. However, let us suppose by

contradiction that r is associated to a collection of three flags F‚
i , i P t1, 2, 3u of a vector

space H of dimension 2. For every i, the flag F‚
i is determined by a line ∆i:

H “ F0
i Ľ F1

i “: ∆i Ľ F2
i “ p0q.

The restrictions of the function r to each of the 0-th layers are:

r|L1
0

“ r|L2
0

“

ˆ

1 1

0 1

˙

; r|L3
0

“

ˆ

1 2

0 1

˙

.

The first two restrictions imply that ∆2 “ ∆3 and ∆1 “ ∆3, respectively, whereas the last

restriction implies that ∆1 X ∆3 “ p0q, which cannot hold simultaneously. ˛

81



Let M be a matricube associated to an arrangement of m initial (decreasing) flags

F‚
1 , . . . ,F

‚
m inside H. For every i P t1, . . . ,mu, duality transforms the initial (decreasing)

flag in H

H “ F0
i Ě F1

i Ě ¨ ¨ ¨ Ě Fri´1
i Ě Fri

i Ľ p0q

into an initial (increasing) flag in H˚

p0q “ Gi
0 Ď Gi

1 Ď ¨ ¨ ¨ Ď Gi
ri´1 Ď Gi

ri
Ĺ H˚,

where Gi
j is the orthogonal to Fj

i for the duality pairing x¨ , ¨y : H ˆ H˚ Ñ κ, that is,

Gi
j :“

Ş

vPFj
i

kerpv : H˚ Ñ κq and Fj
i :“

Ş

ℓPGi
j
kerpℓ : H Ñ κq, so that one filtration can be

recovered from the other. Note that in the case of matroids, this duality corresponds to the

one between arrangements of hyperplanes in H and arrangements of vectors in the dual H˚.

The rank function r of M , defined in Equation (2.1) using intersections of the Fj
i , can

be alternatively described using the flags Gi
j in the following way:

rpxq “ dimκ

`

G1
x1

` ¨ ¨ ¨ ` Gm
xm

˘

@ x “ px1, . . . , xmq P �ϱ. (2.2)

We will discuss the representability of matricubes further in Section 2.9.3.
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0

0

0

π

0

0

0

0

1

0

0

0

0

0

1

0

0

1

0

1

0

0.5

0

j

s

i

1‚ ‚
r
‚

1
m

1

2

...

n

¨

˚

˚

˚

˝

3 3 4 4

2 2 3 4

1 1 2 3

0 1 2 3

˛

‹

‹

‹

‚

Figure 2.1: The left figure represents a three-dimensional matrix A “ pAi
jsq of size mˆrˆn

with m “ 2, r “ 3 and n “ 4. The blue (resp. red, resp. green) layer contains

vertically the coordinates of the vectors v11 and v21 (resp. v12 and v22, resp. v13
and v23). The associated matricube is given on the right.

2.2.3 Matricube induced by a cubical matrix

Using the duality between initial (decreasing) flags in H and initial (increasing) flags in H˚,

we explain a procedure that associates a representable matricube to any three-dimensional
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matrix with coordinates in a field κ. This construction extends the representation of

representable matroids by matrices. As in the case of matroids, this justifies the terminology

matricube, which encompasses both the idea of cubical matrix (like “matroid”, coming from

“matrix”) and hypercuboid (a matricube is described by a hypercuboid of numbers, given by

the rank function).

Notation as in the previous section, first assume that r1 “ ¨ ¨ ¨ “ rm “ r and let

i P t1, . . . ,mu. We choose vectors vi1, . . . , v
i
r P H˚ such that for every j P t1, . . . , ru,

Gi
j “

@

vi1, . . . , v
i
j

D

. This shows that a representable matricube M can be determined by

the collection of vectors vij , for i P t1, . . . ,mu and j P t1, . . . , ru. Said otherwise, choosing a

basis of H˚, M is determined by a three-dimensional matrix A “ pAi
jsq where i P t1, . . . ,mu,

j P t1, . . . , ru and s P t1, . . . , nu, n being the dimension of H˚. Inversely, using the definition

of rank function given in (2.2), this procedure gives a way to associate to every three-

dimensional matrix A “ pAi
jsq of size m ˆ r ˆ n with entries in a field κ a matricube MA

on the hypercube �
m

r .

In the general case, if not all ri are equal, we set r :“ maxi ri and choose, for every

i P t1, . . . ,mu, a family of vectors vi1, . . . , v
i
ri
, 0, . . . , 0, with vij for j ď ri as before, completed

now with r ´ ri copies of the zero vector. This gives a matrix A of size m ˆ r ˆ n. In the

matricube MA associated to A, we now delete, for every i P t1, . . . ,mu, r ´ ri times the

element i (we refer to Section 2.2.5 below for the definition of the operation of deletion).

This gives the matricube associated to the original family of flags.

It follows from the construction above that every representable matricube is associated to

some three-dimensional matrix, possibly after a few deletions corresponding to zero vectors.

An example of a matricube associated to a three-dimensional real matrix with m “ 2,

r1 “ r2 “ 3 and n “ 4, is depicted in Figure 2.1. The ground set of the corresponding

matricube is r3s ˆ r3s.

2.2.4 Matricube induced by a collection of flag matroids

We show that a finite collection of initial flag matroids on the same ground set E gives

rise to a (simple) matricube. We refer to [BGW03, Chapter 1] and [CDMS17] for a nice

introduction to flag matroids.

Let E be a finite set and r be a positive integer. An initial flag of size s is an increasing

chain of subsets F0 “ H Ĺ F1 Ĺ F2 Ĺ ¨ ¨ ¨ Ĺ Fs Ď E with |Fj| “ j for j “ 1, . . . , s. Note

that the data of an initial flag is equivalent to an ordered sequence ε1, . . . , εs of distinct

elements of E, Fj consisting of the first j elements ε1, . . . , εj.

A total order ăO on E induces a partial, element-wise order on Es. Through the bijection

between initial flags of size s and ordered sequences of size s in E, ăO induces a partial

order on initial flags of size s.

An initial flag matroid M of rank s is a collection F of initial flags of size s as above such

that for any total order ăO on E, there exists a unique flag in F maximal with respect to

the induced partial order on initial flags of size s. In this case, the following properties hold:
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• the collection consisting of the terms Fj of flags F‚ appearing in F forms the set of

bases of a matroid Mj of rank j on the ground set E, for j “ 0, . . . , s;

• the matroid Mj is a quotient of the matroid Mj`1;

• any sequence F0 “ H Ă F1 Ă F2 Ă ¨ ¨ ¨ Ă Fs with Fj a basis of Mj is an element of

F .

(These properties are equivalent to F defining a flag matroid, see [BGW03, Theorem

1.7.1].) Elements of F are called bases, and Mj is called the j-th constituent of M.

Let now ϱ “ pr1, . . . , rmq be a vector with positive integer entries. Consider a collection

M1, . . . ,Mm of initial flag matroids of respective ranks r1, . . . , rm on the ground set E. For

each i “ 1, . . . ,m, and each j P rris, denote by Mi
j the j-th constituent of Mi. This is a

matroid of rank j.

For each x P �ϱ, denote by Mx the matroid union M1
x1

Y ¨ ¨ ¨ Y Mm
xm

of M1
x1
, . . . ,Mm

xm
.

Recall that the independent sets of the matroid union Mx are subsets of E of the form

I1 Y ¨ ¨ ¨ Y Im where each Ii is an independent of the matroid Mi
xi

for i “ 1, . . . ,m.

Consider the function r : �ϱ Ñ Zě0 on the hypercuboid defined by

rpxq :“ rpMxq @x P �ϱ,

where rpMxq is the rank of the matroid Mx.

Theorem 2.2.10. Notation as above, r is the rank function of a simple matricube M “

M pM1, . . . ,Mmq with ground set the hypercuboid �ϱ.

Proof. We first note that rpt e iq “ rpMi
tq “ t for all t P rris. This shows that (R1˚) is

verified. The axiom (R2) is obviously verified by the definition of the matroid union. It thus

remains to show (R3), i.e., that r is submodular. By Theorem 2.6.2, it will be enough to

show that r verifies the diamond property, that is, for all x P �ϱ and distinct 1 ď i, j ď m

with x ` e i, x ` ej P �ϱ, we have

rpx ` e iq ` rpx ` ejq ě rpx ` e i ` ejq ` rpxq. (2.3)

Removing an element from each independent set of Mi
xi`1 results in an independent set of

Mi
xi

. This implies that rpx` e iq ď rpxq ` 1. We thus have rpxq ď rpx` e i ` ejq ď rpxq ` 2.

Let a “ x ` e i, b “ x ` ej, and c “ x ` e i ` ej. Three cases can occur, depending on

whether rpcq “ rpxq, rpxq ` 1, or rpxq ` 2.

‚ In the first case, rpcq “ rpxq, inequality (2.3) holds trivially.

‚ Consider the third case rpcq “ rpxq ` 2. In this case, using the inequality r
`

y ` ek
˘

ď

r
`

y
˘

` 1 for all y, y ` ek P �ϱ, we infer that rpaq “ rpbq “ rpxq ` 1, and inequality (2.3)

holds again trivially.

‚ It remains to treat the case rpcq “ rpxq ` 1. Let I “ I1 Y ¨ ¨ ¨ Y Im be a basis of Mx with

Ik an independent of Mk
xk

for k “ 1, . . . ,m. There exists a basis J of Mc which contains I
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and an extra element ε of E. Write J “ J1 Y ¨ ¨ ¨ Y Jm with Jk an independent of Mk
ck

, for

k “ 1, . . . ,m. Since J is not an independent of Mx, ε appears in either Ji or Jj. Removing

it if necessary from one of the two, we can suppose that ε appears in exactly one of the two

sets Ji or Jj , say, without loss of generality, in Ji. Then, J will be an independent set of Ma,

and so rpaq “ rpxq ` 1. This shows that inequality (2.3) holds. The theorem follows.

Note that if, in the definition of an initial flag matroid, we relax strict inclusions, the

same construction as above gives rise as well to matricubes which are not necessarily simple.

2.2.5 Operations on matricubes

Let M be a matricube with underlying ground set �ϱ, ϱ “ pr1, . . . , rmq.

Deletion

Let i P t1, . . . ,mu. We define the deletion of i in M , denoted by M i, as the matricube

with ground set �ϱ1 , ϱ1 “ pr1, . . . , ri ´ 1, . . . , rmq, defined as follows. We view �ϱ1 as the

subset of �ϱ consisting of all the points x with xi ă ri and define the rank function r1

of M i to be the restriction of r to �ϱ1 . Obviously, r1 verifies the axiomatic system

(R1)-(R2)-(R3) of matricube rank functions. Furthermore, note that if M is simple, then

so is M i.

As an example, here is a (simple) matricube M with ϱ “ p4, 3q (left) and its deletion

M 2 in the vertical direction (right).

¨

˚

˚

˚

˝

3 3 3 4 5

2 2 2 3 4

1 2 2 3 4

0 1 2 3 4

˛

‹

‹

‹

‚

¨

˝

2 2 2 3 4

1 2 2 3 4

0 1 2 3 4

˛

‚

Contraction

Let i P t1, . . . ,mu. We define the contraction of i in M , denoted by M i, as the matricube

with ground set �ϱ1 , ϱ1 “ pr1, . . . , ri´1, . . . , rmq, defined as follows. We define an embedding

of �ϱ1 in �ϱ by sending each point x to x ` e i. We then define the rank function r1 of

M i by setting r1pxq :“ rpx ` e iq ´ rpe iq. The embedding of �ϱ1 in �ϱ respects the two

operations of ^ and _. It is easy to see that r1 verifies the axiomatic system (R1)-(R2)-(R3)

of matricube rank functions. Note that M i is not necessarily simple, even if M is so.

As an example, here is a (simple) matricube M with ϱ “ p4, 3q (left) and its (non-simple)

contraction M 2 in the vertical direction (right).

¨

˚

˚

˚

˝

3 3 3 4 5

2 2 2 3 4

1 2 2 3 4

0 1 2 3 4

˛

‹

‹

‹

‚

¨

˝

2 2 2 3 4

1 1 1 2 3

0 1 1 2 3

˛

‚
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Minors

A matricube M 1 is a minor of another matricube M if it can be obtained by a sequence of

deletions and contractions from M .

Both operations of contraction and deletion respect the representability over a given

field κ. It follows that if M is representable over κ, then all of its minors M 1 are also

representable over κ. We will discuss the connection between representability and minors

in Section 2.9.3.

2.2.6 Duality

Let M be a matricube on the ground set �ϱ with rank function r. The dual matricube

M ˚ is the matricube on �ϱ with rank function r˚ defined by

r˚
pxq :“ |x|ℓ1 ` rpxcq ´ rpM q @ x P �ϱ.

Here,

xc :“ ϱ ´ x “ pr1 ´ x1, . . . , rm ´ xmq

is the complement of x and |x|ℓ1
:“ x1 ` ¨ ¨ ¨ ` xm is the ℓ1-norm of x “ px1, . . . , xmq. A

direct verification shows that r˚ verifies the axiomatic system (R1)-(R2)-(R3) of matricube

rank functions. Moreover, M ˚ has rank r˚pM ˚q “
ˇ

ˇϱ
ˇ

ˇ

ℓ1
´ rpM q, and we have pM ˚q˚ “ M .

Note however that M can be simple without M ˚ being so, and vice-versa.

Here is a (simple) matricube M with ϱ “ p4, 3q (left) and its (non-simple) dual M ˚

(right).
¨

˚

˚

˚

˝

3 3 3 4 5

2 2 2 3 4

1 2 2 3 4

0 1 2 3 4

˛

‹

‹

‹

‚

¨

˚

˚

˚

˝

2 2 2 2 2

1 1 1 2 2

0 0 0 1 2

0 0 0 1 2

˛

‹

‹

‹

‚

2.3 Flats

In this section, we define flats of matricubes and provide an axiomatic system for them.

This extends the axioms of flats in matroid theory.

2.3.1 Definition and basic properties

Let M “ p �ϱ, rq be a matricube of rank r.

Definition 2.3.1 (Flats of a matricube). A point a P �ϱ is called a flat for r if for every

1 ď i ď m such that a ` e i belongs to �ϱ, we have rpa ` e iq “ rpaq ` 1. We denote by

F “ F pM q Ď �ϱ the set of flats of M . ˛
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Here are two (simple) matricubes with ϱ “ p4, 3q for the first, and ϱ “ p5, 4q for the

second. The flats in each case are depicted in blue.

¨

˚

˚

˚

˝

3 3 3 4 5

2 2 2 3 4

1 2 2 3 4

0 1 2 3 4

˛

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˝

4 4 5 5 5 6

3 4 5 5 5 6

2 3 4 4 4 5

1 2 3 3 4 5

0 1 2 3 4 5

˛

‹

‹

‹

‹

‹

‚

Proposition 2.3.2 (Stability of flats under meet). The set F pM q of flats of a matricube

M is stable under ^.

We need the following lemma.

Lemma 2.3.3. Let i P t1, . . . ,mu and let x, y, x ` e i, y ` e i be elements of �ϱ with x ĺ y

and xi “ yi. If r
`

y ` e i
˘

“ r
`

y
˘

` 1, then we have rpx ` e iq “ rpxq ` 1.

Proof. This follows from the submodularity of r applied to x`e i and y, and Proposition 2.2.4.

Proof of Proposition 2.3.2. Let a and b be two flats and let c “ a ^ b. Let i P t1, . . . ,mu

be such that c` e i belongs to �ϱ. We have to show that rpc` e iq “ rpcq ` 1. By symmetry,

we can suppose that ai ď bi, that is, ci “ ai. Since a is a flat, we have rpa ` e iq “ rpaq ` 1.

Applying Lemma 2.3.3 to x “ c and y “ a, we conclude.

The above result implies the following.

Theorem 2.3.4. The set F pM q of flats of a matricube endowed with the partial order ĺ

is a graded lattice. The grading is induced by the rank function.

Proof. F pM q has a minimum and a maximum element, and is stable under meet. It

follows that it is a lattice, with the operation _ between two elements a and b in F pM q

defined as the meet of all the upper bounds c for a and b.

Note that for a ă b two distinct and comparable flats of M , we have rpaq ă rpbq. The

statement that F pM q is graded is a consequence of Proposition 2.3.6 below.

Lemma 2.3.5. Let M be a matricube on the ground set �ϱ. Let x be an element of �ϱ,

and let c be the minimum flat with c ľ x. Then, we have

(1) rpcq “ rpxq.

(2) Let i P t1, . . . ,mu be such that x ` e i P �ϱ. Then,

• if ci ą xi, then we have rpx ` e iq “ rpxq.

• if ci “ xi, then we have rpx ` e iq “ rpxq ` 1.
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Proof. To prove (1), it will be enough to show there exists a flat b ľ x with rpbq “ rpxq.

Then, since flats are closed under meet, b will coincide with c and (1) follows. We proceed

by a reverse induction on the ℓ1-norm of x. If x is a flat, in particular, if x “ ϱ, there

is nothing to prove. Otherwise, there exists i P t1, . . . ,mu with y :“ x ` e i P �ϱ and

rpx` e iq “ rpxq. By the induction hypothesis, there is a flat b ľ y with rpbq “ r
`

y
˘

“ rpxq,

and we conclude.

We prove (2). If ci ě xi ` 1, then x ĺ x` e i ĺ c, and thus rpxq ď rpx` e iq ď rpcq “ rpxq.

We infer that rpx ` e iq “ rpxq.

If ci “ xi, then using rpc ` e iq “ rpcq ` 1, we apply Lemma 2.3.3 and deduce that

rpx ` e iq “ rpxq ` 1, as required.

We get the following corollary.

Proposition 2.3.6. Let a ă b be two distinct flats of M with rpbq ě rpaq ` 2. There exists

a flat a ă c ă b with rpcq “ rpaq ` 1.

Proof. Since a ă b, there is an index i such that ai ă bi. Let x :“ a ` e i ĺ b. Since a is a

flat, rpxq “ rpaq`1. Let c be the minimum flat with c ľ x. Obviously, a ă c. Also c ĺ b, as

b is a flat and c is minimum. By Property (1) in the previous lemma, rpcq “ rpxq “ rpaq ` 1.

We thus have strict inequality c ă b, and the result follows.

2.3.2 Axiomatic system of flats

For a subset F of �ϱ, consider the following properties.

(F1) ϱ is in F .

(F2) F is closed under meet.

(F3) If a is an element of F and i P t1, . . . ,mu is such that a ` e i P �ϱ, then there exists

an element b in F such that b ľ a ` e i, and b ą̈ a in F .

We recall that b ą̈ a means that b covers a, i.e., b ą a in F and there is no element

c P F such that b ą c ą a.

We also introduce the following non-degeneracy property.

(F˚) Each layer Li
t, i “ 1, . . . ,m, t P rris, contains an element of F .

We prove the following result.

Theorem 2.3.7. The set of flats F of a matricube M with ground set �ϱ verifies (F1)-

(F2)-(F3). Conversely, let F Ď �ϱ be a subset verifying (F1)-(F2)-(F3). Then, F is the

set of flats of a matricube M with underling ground set �ϱ.

Moreover, the matricube M is simple if, and only if, Property (F˚) holds.
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Remark 2.3.8. The first three conditions (F1)-(F2)-(F3) are the matricube analogs of

the three axioms that define the set of flats of a matroid. Property (F˚) requires that the

matricube does not contain any loop: if a layer does not verify this condition, deleting it,

we get a smaller hypercuboid with the same collection F that verifies the same axioms. ˛

Remark 2.3.9. The axioms (F2) and (F˚) together imply that 0 is in F . Indeed, (F˚)

yields a flat in Li
0 for each i “ 1, . . . ,m. The meet of these flats is 0, and by (F2) belongs

to F . ˛

Remark 2.3.10. It is easy to see that if F verifies (F2), then the element b in (F3) is

unique. ˛

2.3.3 Flats of a matricube verify the axioms

Let M be a matricube �ϱ and let F “ F pM q be the set of flats of M . We prove that F

verifies properties (F1)-(F2)-(F3). Moreover, if M is simple, then we show that (F˚) holds.

Proof of the first part of Theorem 2.3.7. Property (F1) follows from the definition of flats

of a matricube. We already proved property (F2) in Proposition 2.3.2. It remains to show

(F3). If r
`

ϱ
˘

“ rpaq ` 1, then b “ ϱ satisfies (F3). Otherwise, we have r
`

ϱ
˘

ě rpaq ` 2, and

by Proposition 2.3.6, we have an element b in F of rank rpaq ` 1 with b ľ a` e i. Again,

b ą̈ a, as required.

Now suppose that M is simple. Property (F˚) is a consequence of Lemma 2.3.5 above

applied to t e i. Let c be the minimum flat with c ľ t e i. If Property (F˚) does not hold

for the layer Li
t, then necessary ci ą t and thus rppt ` 1q e iq “ rpt e iq, contradicting the

simpleness of M .

In the rest of the section, we prove the second part of the theorem.

2.3.4 Diamond property

We recall the following definition.

Definition 2.3.11 (Diamond property for lattices). Let pL,ĺq be a lattice with the meet

and join operations ^ and _, respectively. We say that L has the diamond property if for

every triple of elements a, b, c P L such that b ‰ c and b and c both cover a, the join b_ c

covers both b and c. ˛

Lemma 2.3.12. Let L be a lattice that satisfies the diamond property. Then, it admits a

grading, i.e., all its maximal chains have the same length.

Proof. This is well-known. We give a rather informal proof. We apply the diamond property

multiple times to show that two maximal chains C and C 1 in L have the same length. This

is done by induction on the elements of C and C 1; the “diamonds” drawn in the Hasse

diagram by repeated application of the diamond property provide a finite sequence of chains

of constant length between C and C 1, ultimately proving that C and C 1 have the same

length.
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2.3.5 The axiomatic system of flats implies the diamond property

Lemma 2.3.13. Let F Ď �ϱ be a subset verifying axioms (F1) and (F2). Then, F is a

lattice. If additionally F verifies axioms (F3), then it verifies the diamond property.

Proof. Since F is closed under meet and it has a maximum element, it is a lattice. The

join of two elements a and b in F is the meet of all the elements c P F that verify c ľ a

and c ľ b.

Now let a, b, c P F be such that b ‰ c, and b and c both cover a. By assumption, b and c

are not comparable, so there exist j ‰ k P t1, . . . ,mu such that bj ą cj and ck ą bk. In fact,

cj “ aj , because otherwise, we would have a ă b^ c ă b, which is impossible because b ą̈ a.

Now, applying (F3) yields x P F such that x ľ c ` ej and x ą̈ c. We show that x ą b.

Indeed, first, if x ­ľ b, then we would have a ă x^ b ă b, the strictness of the first inequality

coming from the inequalities xj ě aj ` 1 (because x ľ c` ej and cj “ aj) and bj ą aj . This

would be in contradiction with b ą̈ a. Second, x “ b is not possible because x ľ c ` ej ľ c

and b and c are not comparable. Therefore, x ą b.

Symmetrically, (F3) provides an element y P F such that y ľ b ` ek, y ą̈ b and y ą c.

Let u :“ x^y and notice that u verifies the chains of inequalities b ĺ u ĺ y and c ĺ u ĺ x.

In other words, u belongs to the interval
“

b, y
‰

, defined as the set of all elements z P F such

that b ĺ z ĺ y. This interval is equal to
␣

b, y
(

since y ą̈ b. Likewise, u P rc, xs “ tc, xu.

Since b and c are not comparable, y ą̈ b and x ą̈ c, the only possibility for the sets
␣

b, y
(

and tc, xu to have the element u in common is that u “ x “ y. This shows that u covers

b and c. Then, u is necessarily equal to b _ c. We conclude that F verifies the diamond

property.

Applying Lemma 2.3.12, we infer the following.

Proposition 2.3.14. Let F Ď �ϱ be a subset verifying axioms (F1)-(F2)-(F3). Then, F

is a graded lattice.

We denote by r : F Ñ N Y t0u the corresponding grading. The following properties hold.

(a) The function r is increasing on F , in the following sense: if a ă b P F , then

rpaq ă rpbq.

(b) If a, b P F are such that b ą̈ a, then rpbq “ rpaq ` 1.

2.3.6 Proof of the second part of Theorem 2.3.7

Let F Ď �ϱ be a subset verifying the axioms (F1)-(F2)-(F3). We define a map

φ : �ϱ Ñ F Ď �ϱ

as follows. For each x P �ϱ, we define φpxq to be the minimum flat b P F such that b ľ x.

90



Lemma 2.3.15. Notation as above, the map φ is well-defined, and φ and F have the

following properties.

(i) The map φ : �ϱ Ñ F Ď �ϱ is non-decreasing.

(ii) Let x P �ϱ and i P t1, . . . ,mu such that x ` e i P �ϱ. Then, either φpx ` e iq “ φpxq,

or φpx ` e iq ą̈ φpxq.

Proof. The first part is immediate by definition. We prove the second one. If we assume

that φpx ` e iq ‰ φpxq, then we must have φpx ` e iq ľ φpxq ` e i. Indeed, otherwise,

φpx ` e iq ą φpxq ľ x ` e i, contradicting the minimality of φpx ` e iq.

Now, (F3) yields the existence of b ľ φpxq ` e i in F such that b ą̈ φpxq. Then, using

Property (i) above and the definition of φ, we get b ľ φpφpxq ` e iq ľ φpx` e iq. The chain

of inequalities b ľ φpx` e iq ľ φpxq and the fact that b ą̈ x imply b “ φpx` e iq. Therefore,

we have φpx ` e iq ą̈ φpxq, as required.

We can now complete the proof of Theorem 2.3.7.

Proof of the second part of Theorem 2.3.7. Let F be a subset of �ϱ verifying axioms (F1)-

(F2)-(F3). As we have shown already in Proposition 2.3.14, F is a graded lattice.

We first extend the function r : F Ñ N Y t0u to a function r : �ϱ Ñ N Y t0u by setting,

for each x P �ϱ, rpxq :“ rpφpxqq. We claim that r is the rank function of a matricube. We

will use the properties proven in Lemma 2.3.15.

Part (ii) of the lemma implies directly that rpx ` e iq ď rpxq ` 1 for each x P �ϱ,

proving (R1).

The fact that r is non-decreasing on �ϱ is a consequence of Property (i) in the lemma

and Fact (a) stipulating that r is increasing on elements of F .

We show that r is submodular on �ϱ. By Theorem 2.6.2 that we will prove in Section 2.6,

it is sufficient to prove the diamond property for functions on hypercuboids (see Section 2.6).

Let x P �ϱ and i ‰ j P t1, . . . ,mu be such that x`e i`ej P �ϱ. Using Property (ii), we may

assume that rpx` e i ` ejq “ rpx` ejq ` 1, and then need to prove that rpx` e iq “ rpxq ` 1.

The equality rpx ` e i ` ejq “ rpx ` ejq ` 1 means that φpx ` e i ` ejq ą φpx ` ejq.

This implies that φpx ` ejq P Li
xi

(as otherwise, we would get φpx ` ejqi ě xi ` 1, that

is, φpx ` ejq ě x ` e i ` ej, and so we would have φpx ` e i ` ejq “ φpx ` ejq). Since

φpx ` ejq ľ φpxq, this in turn implies that φpxq P Li
xi

. However, φpx ` e iqi ě xi ` 1. We

infer that φpx ` e iq ą φpxq, and thus rpx ` e iq “ rpxq ` 1, as desired.

We have shown that r is the rank function of a matricube with ground set �ϱ. The fact

that the set of flats of r is exactly F is immediate by the definition of r and the map φ,

and the fact that r is increasing on F , see (a).

It remains to show that if (F˚) holds, then M is simple. Let i P t1, . . . ,mu. We show

by induction that for every 0 ď t ď ri, we have rpt e iq “ t. The base case t “ 0 holds by

definition. We now suppose that rpt e iq “ t with 0 ď t ă ri and show that rppt`1q e iq “ t`1.

(F˚) implies that φpt e iq P Li
t and φppt ` 1q e iq P Li

t`1. In particular, φppt ` 1q e iq ‰ φpt e iq.
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Again, Lemma 2.3.15 implies that φppt ` 1q e iq ą̈ φpt e iq which, using that r is increasing

on F , implies rppt ` 1q e iq “ rpφppt ` 1q e iqq “ rpφpt e iqq ` 1 “ rpt e iq ` 1 “ t ` 1, as

desired.

2.4 Circuits

We define circuits in matricubes and provide an intrinsic axiomatic system for them.

2.4.1 Duality and circuits

Let M be a matricube on the ground set �ϱ, and denote by M ˚ its dual. Denote by

F pM ˚q the set of flats of the dual matricube, and consider

qC :“
␣

ac
ˇ

ˇ a P F pM ˚
q
(

Ď �ϱ,

where, we recall, ac “ ϱ´ a. Since F pM q is closed under meet, qC will be closed under the

join operation.

Given a subset A Ď �ϱ, we say that an element a of A is join-irreducible in A if it is

not the join of any set of elements of A∖ tau.

Definition 2.4.1 (Circuits). The collection of circuits of M , denoted by C , is defined as

the set of nonzero join-irreducible elements of qC . ˛

Here is a (simple) matricube M with ϱ “ p5, 4q. On the left, M is represented by its

rank function r, with its circuits in red and the join-reducible elements of qC in blue. On

the right, the dual M ˚ of M , which is not simple, is represented by its rank function r˚,

with its flats in teal.
¨

˚

˚

˚

˚

˚

˝

4 4 4 4 5 6

3 3 4 4 5 6

2 2 3 3 4 5

1 1 2 3 4 5

0 1 2 3 4 5

˛

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˝

3 3 3 3 3 3

2 2 2 2 2 3

1 1 1 2 2 3

1 1 1 2 2 3

0 0 0 1 2 3

˛

‹

‹

‹

‹

‹

‚

(2.4)

Obviously, by definition, C determines qC , and therefore, gives the set of flats of the dual

matroid M ˚. By Theorem 2.3.7, this implies that C determines M .

2.4.2 Axiomatic system of circuits

For a subset C of �ϱ, denote by qC the join-closure of C , obtained by taking the join of

any set of elements of C . Consider the following set of properties:

(C1) 0 is not in F .
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(C2) All elements of C are join-irreducible in C .

(C3) If a P qC and i P t1, . . . ,mu is such that a ´ e i P �ϱ, then there exists an element

b ĺ a ´ e i in qC Y t0u such that b ă̈ a in qC Y t0u.

We also introduce the following simpleness property.

(C˚) For every i P t1, . . . ,mu and t P rris, t e i is not in C .

We prove the following result.

Theorem 2.4.2. The set of circuits C of a matricube M with ground set �ϱ verifies

(C1)-(C2)-(C3). Conversely, let C Ď �ϱ be a subset verifying (C1)-(C2)-(C3). Then, C is

the set of circuits of a matricube M with underlying ground set �ϱ.

Moreover, the matricube M is simple if, and only if, Property (C˚) holds.

Proof. pùñq Let C be the set of circuits of a matricube M with ground set �ϱ. Proper-

ties (C1) and (C2) hold by definition of C (see Definition 2.4.1). As for Property (C3), it is

a translation through duality of Property (F3) which holds for the set of flats of the dual

matricube M ˚.

Assume moreover that M is simple. Let i P t1, . . . ,mu and t P rris. We have rpt e iq “ t

and therefore, denoting by r˚ the rank function on M ˚, we have r˚
`

ϱ ´ t e i
˘

“ r˚
`

ϱ
˘

. This

implies that for every i and t, ϱ ´ t e i is not a flat in M ˚, which means that t e i is not in
qC . As a consequence, t e i R C .

pðùq Let C Ď �ϱ be a subset verifying (C1)-(C2)-(C3), and qC the join-closure of C .

Define

F :“
!

ac
ˇ

ˇ a P qC
)

Y
␣

ϱ
(

.

We claim that F is the set of flats of a matricube. We need to show that it satisfies

(F1)-(F2)-(F3). By construction, (F1) and (F2) hold. Property (F3) is a translation

through duality of Property (C3) which holds for C . Therefore, F is the set of flats of

a matricube. We denote the dual of this matricube by M , so that F “ F pM ˚q. It is

immediate by construction that C is its set of circuits of M .

Let r be the rank function of M and r˚ that of M ˚.

To prove the last assertion, assume that for every i P t1, . . . ,mu and t P rris, t e i is not in

C . Then, for every i and t, ϱ´ t e i is not a flat of M ˚. By a simple induction, this implies

that for every i and t, r˚
`

ϱ ´ t e i
˘

“ r˚
`

ϱ
˘

, and consequently, rpt e iq “ t. We infer that M

is simple.

2.5 Independents

In this section, we define the independents of a matricube and study their properties. As in

the case of flats and circuits, we give the axiomatic system of independents of a matricube.
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2.5.1 Definition and basic properties

Let M be a matricube on the ground set �ϱ.

Definition 2.5.1 (Independents of a matricube). We say that a point p of �ϱ is called an

independent of M if for each i “ 1, . . . ,m such that p´e i P �ϱ, we have r
`

p ´ e i
˘

“ r
`

p
˘

´1.

We denote by I pM q Ď �ϱ the set of independents of M . ˛

Here are two matricubes with ϱ “ p4, 3q for the first, and ϱ “ p5, 4q for the second. The

independents in each case are depicted in blue.

¨

˚

˚

˚

˝

3 3 3 4 5

2 2 2 3 4

1 2 2 3 4

0 1 2 3 4

˛

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˝

4 4 5 5 5 6

3 4 5 5 5 6

2 3 4 4 4 5

1 2 3 3 4 5

0 1 2 3 4 5

˛

‹

‹

‹

‹

‹

‚

The following proposition provides a list of properties of independent sets in a matricube.

Proposition 2.5.2. Let I pM q be the set of independents of a matricube M . The following

properties hold.

• I pM q is non-empty and closed under meet.

• For every independent p P I pM q and every distinct elements i1, . . . , ik P t1, . . . ,mu

with pij ‰ 0, j “ 1, . . . , k, we have r
`

p ´ e i1 ´ ¨ ¨ ¨ ´ e ik
˘

“ r
`

p
˘

´ k.

Proof. Both statements follow from Lemma 2.3.3, as in the proof of Proposition 2.3.2.

Note that I pM q in general does not have a maximum, and lacks the existence of a join.

In order to study more refined properties of independents, we will associate a notion of

size to each independent element in M by defining a removal operation on elements of

I pM q.

2.5.2 Removal and size

Let J be a subset of �ϱ. Let a be an element of J and i P t1, . . . ,mu such that ai ‰ 0. If

there is at least one element b ă a in J that differs from a only in the i-th component, we

define a∖ i to be such an element in J with the largest i-th coordinate. In this case, we

say that a∖ i is the removal of i in a in J .

Definition 2.5.3. Let J be a subset of �ϱ.

(a) We say that removals exist in J if for every a P J and i P t1, . . . ,mu, if ai ě 1, the

removal a∖ i exists in J .
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(If removals exist in J , then necessarily, we have 0 P J . Moreover, for every element a P J ,

there exists a sequence of removals in J , that reduces a to 0.)

(b) We say that J is orderable if removals exist in J and for every a P J , all the sequences

of removals in J that bring a to 0 have the same length.

If J is orderable, we define the size of each element a P J denoted by |a| as the number of

removals needed to reduce a to 0. ˛

In Lemma 2.5.7 below, we formulate a simple orderability criterion.

2.5.3 Axiomatic system of independents

We first make the following definition, which turns out to be useful in the proof of the main

theorem of this section.

Definition 2.5.4. Let a, b P �ϱ be two elements. We define:

∆pa, bq :“
␣

k “ 1, . . . ,m
ˇ

ˇ ak ă bk
(

and Epa, bq :“
ÿ

kP∆pa,bq

pbk ´ akq. ˛

For a subset I of �ϱ, consider the following property:

(I1) Removals exist in I and the following holds. For all p P I and removals p ∖ i

and p∖ j, with i, j P t1, . . . ,mu, the meet q :“
`

p∖ i
˘

^
`

p∖ j
˘

belongs to I and,

moreover, the two intervals
“

q, p∖ i
‰

and
“

q, p∖ j
‰

in I have the same size.

(The interval ra, bs in I is defined as the set of all c P I such that a ĺ c ĺ b.)

It follows from Lemma 2.5.7, proved in Section 2.5.5, that a subset I Ď �ϱ that verifies

(I1) is orderable. We can thus define the size |a| of each element a P I . This enables us to

formulate the second property of interest:

(I2) | ¨ | is increasing on independents, i.e., for all a, b P I such that a ă b, we have

|a| ă |b|. Moreover, let a and b be two elements of I such that |a| ă |b| and ∆pa, bq

contains at least two elements. Then, there exists c P I that verifies:

• c ĺ a _ b,

• |c| ą |a|.

• There exists i P ∆pa, bq such that ci ă bi.

We also introduce the following notion of simpleness.

(I˚) For i “ 1, . . . ,m, the points t e i for t P rris are all in I .

This is the main result of this section.
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Theorem 2.5.5. The set of independents I pM q of a matricube M with ground set �ϱ

verifies (I1)-(I2). Conversely, let I Ď �ϱ be a subset that verifies (I1)-(I2). Then, I is

the set of independents of a matricube M with underling ground set �ϱ.

Moreover, the matricube M is simple if, and only if, I verifies (I˚).

Remark 2.5.6. Axiom (I1) is an analog of the hereditary property for independents of

matroids. It also implies that 0 P I , analog of the first axiom of independents in matroids.

Axiom (I2) plays the role of the augmentation property for independents. These axioms

take into account the more singular nature of independents in the context of matricubes: for

example, in matroids, all maximal (for inclusion) independents have the same cardinality,

whereas in matricubes, maximal independents (for the partial order ĺ) can have different

sizes as one of the two examples above shows (see Section 2.9.1 for further discussion).

Axiom (I˚) requires that there is no “loop”. ˛

2.5.4 Independents of a matricube verify the axioms

Let M be a matricube �ϱ. We prove that I pM q verifies properties (I1)-(I2). Moreover,

if M is simple, then we prove that (I˚) holds.

The proof shows that the size function on I pM q coincides with the rank function.

Proof of the first part of Theorem 2.5.5. We start by proving (I1). Let p P I pM q and let

i P t1, . . . ,mu be such that pi ‰ 0. We claim that a :“ p´pi e i P I pM q. By design, ai “ 0.

Now, let j P t1, . . . ,mu be an integer different from i such that aj ‰ 0. We have pj “ aj ‰ 0

and r
`

p ´ ej
˘

“ r
`

p
˘

´ 1. Applying Lemma 2.3.3 with x “ a ´ ej and y “ p ´ ej, we get

rpa ´ ejq “ rpaq ´ 1. This shows that a P I pM q. Therefore, removals exist in I pM q.

We next show that r
`

p∖ i
˘

“ r
`

p
˘

´ 1. For the sake of a contradiction, suppose this not

being the case, that is, r
`

p∖ i
˘

ď r
`

p
˘

´ 2. Then, there would exist p∖ i ă b ă p such that

rpbq “ r
`

p
˘

´ 1 and rpb ´ e iq “ rpbq ´ 1. Note that bj “ pj for all j ‰ i. Applying again

Lemma 2.3.3 as above, we infer that b belongs to I pM q. This would be a contradiction to

the definition of the removal.

This implies that a sequence of removals bringing p P I pM q to 0 has size precisely r
`

p
˘

.

Now, for distinct i, j P t1, . . . ,mu, we consider the removals p∖ i and p∖ j in I pM q,

as well as q :“
`

p∖ i
˘

^
`

p∖ j
˘

. By Proposition 2.5.2, q P I pM q. Note that we have

r
`

p∖ j
˘

“ r
`

p
˘

´ 1 “ r
`

p∖ i
˘

.

The element q differs from p ∖ i only in the j-th component, and therefore can be

obtained from it by a sequence of removals of j. It follows that
“

q, p∖ i
‰

has cardinality

r
`

p∖ i
˘

´ r
`

q
˘

` 1. Similarly,
“

q, p∖ j
‰

has cardinality r
`

p∖ j
˘

´ r
`

q
˘

` 1.

We conclude that the two intervals
“

q, p∖ i
‰

and
“

q, p∖ j
‰

in I pM q have the same

cardinality, and (I1) follows. We thus get a well-defined size function | ¨ | on I pM q. As the

proof shows, we have |a| “ rpaq for every a P I .

The first half of Property (I2) results from the fact that if a ă b are two independents,

then ∆pa, bq ‰ ∅. Then, taking k P ∆pa, bq, we get rpaq ď rpb ´ ekq “ rpbq ´ 1.
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For the second half of Property (I2), let a, b be two independents such that |a| ă |b| and

|∆pa, bq| ě 2. We consider two cases depending on whether |a| ď |b| ´ 2 or |a| “ |b| ´ 1.

First, consider the case |a| ď |b| ´ 2. Let i P ∆pa, bq. Since bi ą ai ě 0, we can define

c :“ b∖ i. Note that |c| “ |b| ´ 1 ą |a|. Furthermore, by construction, c ĺ a_ b and ci ă bi.

This shows that c is suitable.

We now consider the case |a| “ |b| ´ 1. Let d :“ a _ b. Let y ĺ d be an element of �ϱ

minimal for ĺ under the constraints that r
`

y
˘

“ rpdq and for all k R ∆pa, bq, yk “ dk (note

that for all those k, we have dk “ ak). For all k P ∆pa, bq with y ´ ek P �ϱ, we thus have

r
`

y ´ ek
˘

“ r
`

y
˘

´ 1.

Next, let x ĺ y be an element of �ϱ minimal for ĺ under the constraint that rpxq “

r
`

y
˘

“ rpdq, and for all k P ∆pa, bq, xk “ yk. Since for all k P ∆pa, bq with xk “ yk ą 0, we

have r
`

y ´ ek
˘

“ r
`

y
˘

´ 1, Lemma 2.3.3 implies that rpx ´ ekq “ rpxq ´ 1. Moreover, by

the choice of x, we also have, for all i R ∆pa, bq, rpx ´ e iq “ rpxq ´ 1 provided that x ´ e i
belongs to �ϱ. Therefore, combining all this, we conclude that x P I pM q.

If y ă d, let c :“ x P I pM q. There exists then k P ∆pa, bq such that yk ă dk “ bk. As

a consequence, ck ă bk. Moreover, rpcq “ rpdq ě rpbq “ rpaq ` 1 and therefore |c| ą |a|.

Since by construction c ă d, c is suitable.

It remains to consider the case y “ d. This means that for every k P ∆pa, bq, rpd´ ekq ă

rpdq. We claim that in this case, the strict inequality rpdq ą rpbq holds. Indeed, for the

sake of a contradiction, suppose rpdq “ rpbq. Since |∆pa, bq| ě 2, there are two distinct

elements i, j P ∆pa, bq, and for these i, j, we would have rpd´ e iq “ rpd´ ejq “ rpdq ´ 1. By

submodularity (see Lemma 2.3.3), we would get rpd´e i ´ejq “ rpdq´2. Since i, j P ∆pa, bq,

we have a ĺ d´e i´ej , and therefore, we would have rpaq ď rpdq´2 “ rpbq´2, contradicting

the assumption that |a| “ |b| ´ 1. This proves the claim that rpdq ą rpbq.

Let now c :“ x∖k for an element k P ∆pa, bq. We have |c| “ rpcq “ rpxq ´ 1 “ rpdq ´ 1 ě

rpbq “ |b| ą |a|, and therefore |c| ą |a|. Besides, ck ă xk “ dk “ bk, and obviously c ĺ d.

This shows that c is suitable in this last case. This ends the proof of (I2). We have proved

that I pM q verifies (I1) and (I2).

To finish the proof, note that if M is simple, then (R1˚) immediately implies (I˚).

2.5.5 Orderability lemma

Before going to the proof of the second part of Theorem 2.5.5, we show the following

criterion for orderability.

Lemma 2.5.7. Let J be a subset of �ϱ. The following are equivalent:

(1) J satisfies (I1).

(2) J is orderable in the sense of Definition 2.5.3.
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Proof. We first prove (1) ñ (2). Assume (I1) holds. Proceeding by induction under the

partial order ĺ, we show that for every a P J , the following property holds:

P paq : All the sequences of removals that bring a to 0 have the same length.

Obviously, P p0q holds. Let a P J be an element such that for every b P J with b ă a, P pbq

holds. We prove that P paq is true. Let

a “ b0 ą b1 ą ¨ ¨ ¨ ą bk “ 0 and a “ c0 ą c1 ą ¨ ¨ ¨ ą cℓ “ 0

be two sequences of removals bringing a to 0. We need to prove that k “ ℓ. Let i, j P

t1, . . . ,mu be such that b1 “ a∖ i and c1 “ a∖ j, and let q :“ b1 ^ c1 P J . Let

q “ x0 ą x1 ą ¨ ¨ ¨ ą xm “ 0

be any sequence of removals bringing q to 0.

By (I1), the linear intervals
“

q, b1
‰

and
“

q, c1
‰

have the same size, that we denote by s` 1,

with s ě 0. Let

“

q, b1
‰

“

!

b1 “ y
0

ą y
1

ą ¨ ¨ ¨ ą y
s

“ q
)

and
“

q, c1
‰

“

!

c1 “ z0 ą z1 ą ¨ ¨ ¨ ą zs “ q
)

.

Then, b1 “ y
0

ą y
1

ą ¨ ¨ ¨ ą y
s

“ q “ x0 ą x1 ą ¨ ¨ ¨ ą xm “ 0 is a sequence of removals

that brings b1 to 0. Property P pb1q therefore implies that the length of this sequence is

equal to the length of the sequence b1 ą ¨ ¨ ¨ ą bk “ 0, that is, k ´ 1 “ s ` m. The same

argument applied to c1 yields ℓ ´ 1 “ s ` m. We conclude that k “ ℓ.

The implication (2) ñ (1) follows from the identities

|q| ` |
“

q, p∖ i
‰

| “ |p| “ |q| ` |
“

q, p∖ j
‰

|,

using a sequence of removals of j (resp. i) that brings p∖ i (resp. p∖ j) to q.

2.5.6 Proof of the second part of Theorem 2.5.5

We need the following lemma.

Lemma 2.5.8. Let J be a subset of �ϱ that verifies (I2). Then, for two elements a ă b

of J such that ∆pa, bq has at least two elements, we have |a| ď |b| ´ 2.

Proof. The first part of Property (I2) ensures that |a| ă |b|. The second part of Property (I2)

now implies that there exists an element c P J and i P ∆pa, bq such that c ĺ a _ b “ b,

|c| ą |a|, and ci ă bi. Combining the latter with c ĺ b yields that c ă b. Applying (I2)

again, we get |c| ă |b|. All in all, we get a ă c ă b, and the inequality |a| ď |b| ´ 2

follows.

We now prove the second part of the main theorem.
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Proof of the second part of Theorem 2.5.5. Notation as in the statement of the theorem,

by Lemma 2.5.7, we have a well-defined size function | ¨ | on I . We define a function r on

�ϱ by setting

rpxq :“ max
aPI with aĺx

|a| @ x P �ϱ,

and show that r is the rank function of a matricube. Note that by (I2), rpaq “ |a| for

a P I .

Obviously, rp0q “ 0. Moreover, by orderability of I , for 1 ď i ď m and 1 ď t ď ri, we

have either rpt e iq ´ rppt ´ 1q e iq “ 0 or rpt e iq ´ rppt ´ 1q e iq “ 1. Therefore (R1) holds.

Since | ¨ | is increasing by (I2), r is non-decreasing on �ϱ. That is, Property (R2) holds.

We show r is submodular. Using Theorem 2.6.2 proved in Section 2.6, it will be enough

to show that r verifies the diamond property for functions on the hypercuboid.

We first observe that, by orderability of I , for every x P �ϱ and i P t1, . . . ,mu, we have

rpx ` e iq ´ rpxq ď 1, provided that x ` e i P �ϱ.

Now let x P �ϱ and let i ‰ j be elements of t1, . . . ,mu such that x ` e i ` ej P �ϱ. Let

y :“ x ` e i, z :“ x ` ej and w :“ x ` e i ` ej. Proving the diamond property for x, y, z, w

reduces to showing that the situation where rpxq “ r
`

y
˘

“ rpzq and rpwq “ rpxq ` 1 never

happens. For the sake of a contradiction, assume that we are in the situation where the

above equalities hold. This implies in particular that y, z R I . The rest of the argument is

a case-by-case analysis. We first treat the case w P I , then, w R I but x P I , and then

generalize the argument to treat the remaining case w, x R I .

First consider the case where w P I . Let a ĺ x be an element of I such that rpaq “ rpxq.

Since a ă w and |∆pa, wq| ě |∆px,wq| “ 2, applying Lemma 2.5.8, we get the inequality

rpxq ď rpwq ´ 2, which is a contradiction. This implies that w R I .

At this point, we have deduced y, z, w R I . Now consider the case where x P I . Let

b ă w be an element of I such that rpwq “ rpbq. Notice that |b| “ rpwq ą rpxq “ |x|.

Moreover, bi “ wi “ xi ` 1 because otherwise we would have b ĺ z and rpbq ą rpzq, which

would be impossible since r is non-decreasing. Likewise, we have bj “ wj “ xj ` 1. Since

b ă w “ x ` e i ` ej, this shows that ∆px, bq “ ti, ju. By (I2), there exists an independent

c P I such that c ĺ x _ b “ w, |c| ą |x| and ck ă bk for some k P ti, ju. But if k “ i, then

c ĺ y and therefore |c| ď r
`

y
˘

“ rpxq “ |x|, a contradiction; we conclude similarly if k “ j.

We have shown that x R I .

We now treat the remaining case. We define a finite procedure by applying repeatedly

an analogue of the preceding construction, as follows. Let a ă x, b ă w be elements of I

such that rpxq “ |a| and rpwq “ |b|. We have |b| ą |a|. We claim bi “ wi ą xi ě ai. Indeed,

otherwise, we would have b ĺ z, impossible by the inequality |b| “ rpwq ą rpzq. Likewise,

we have bj “ wj ą aj. Consequently, we have ∆pa, bq Ě ti, ju. By (I2), there exists an

independent c1 P I such that

c1 ĺ a _ b ĺ w, |c1| ą |a|, and c1k1 ă bk1 for some k1 P ∆pa, bq.

Next, if ∆pa, c1q contains itself at least two elements, since we have |c1| ą |a|, we can

apply (I2), and the same procedure as above, replacing the pair a, b by the pair a, c1, yields
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an element c2 P I such that

c2 ĺ a _ c1 ĺ w, |c2| ą |a|, and c2k2 ă c1k2 for some k2 P ∆pa, c1q.

Repeating the procedure while it is possible, we get a sequence c1, c2, . . . , cj, . . . of elements

of I , satisfying, for every j ě 1,

cj ĺ a _ cj´1 ĺ w, |cj| ą |a|, and cjkj ă cj´1
kj

for some kj P ∆pa, cj´1
q,

with c0 “ b. We claim that this sequence is necessarily finite. Indeed, we observe that for

every j ě 1, we have by construction:

∆pa, cj´1
q Ě ∆pa, cjq and Epe, cj´1

q ą Epe, cjq.

Since the integers Epa, cjq are all non-negative, we infer that the sequence c‚ ends at some

integer j ą 0. This means that the condition |∆pa, cjq| ě 2 fails, and thus it is impossible

to have both i and j included in ∆pa, cjq.

Without loss of generality, assume i R ∆pa, cjq. This implies that cji ď ai, and so, we

have cj ĺ z. We infer that |a| ă |cj| ď rpzq “ rpxq “ |a|, which is a contradiction.

At this point, we have shown the diamond property, and therefore we conclude that r is

submodular, and (R3) follows.

It follows that r is the rank function of a matricube M . Moreover, by definition of the

rank function, I coincides with the set of independents of M .

Finally, by definition of r, Property (R1˚) is seen to be equivalent to (I˚), and so M is

simple if, and only if, (I˚) holds.

2.6 Diamond property for functions

The aim of this section is to generalize to the setting of matricubes the well-known result

in matroid theory that the submodularity of the rank function of a matroid is equivalent to

the diamond property for its graded lattice of flats [Sta11, Proposition 3.3.2]. To this end,

we here introduce a weaker version of submodularity.

Definition 2.6.1 (Diamond property for functions on hypercuboids). We say an integer-

valued function r on �ϱ satisfies the diamond property if the following holds. For every

point x P �ϱ and distinct integers i ‰ j P t1, . . . ,mu such that x` e i, x` ej P �ϱ, we have

rpx ` e iq ´ rpxq ě rpx ` e i ` ejq ´ rpx ` ejq. ˛ (2.5)

The following theorem shows that the above property is equivalent to submodularity.

Theorem 2.6.2 (Equivalence of submodularity and the diamond property). Let r be an

integer-valued function on �ϱ. The following properties are equivalent:

(i) r is submodular.
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(ii) r verifies the diamond property.

In preparation for the proof, we provide generalizations of the diamond property, that

allow to proceed by induction. We say an integer-valued function r on �ϱ satisfies the

unidirectional submodularity at distance one if the following holds. For all i P t1, . . . ,mu

and for all points x ĺ y P �ϱ such that xi “ yi and x ` e i P �ϱ, the inequality

rpx ` e iq ´ rpxq ě r
`

y ` e i
˘

´ r
`

y
˘

(2.6)

holds. More generally, we have the following generalization of Property (2.6) in several

directions and at higher distance.

Definition 2.6.3 (Multidirectional submodularity at a given distance). For positive integers

k and n, we define the k-directional submodularity at distance up to n, denoted p˚qnk , as

follows.

p˚qnk : Pick any integer 1 ď s ď k, any integers 1 ď i1 ă ¨ ¨ ¨ ă is ď m and 0 ď ni1 , . . . , nis ď

n.

Then, for every pair of elements x ĺ y P �ϱ such that xij “ yij for all 1 ď j ď s, and

x `
ř

1ďjďs nj e ij P �ϱ, we have

r
´

x `

s
ÿ

j“1

nij e ij

¯

´ rpxq ě r
´

y `

s
ÿ

j“1

nij e ij

¯

´ r
`

y
˘

. ˛

Notice that the property stated in (2.6) is exactly p˚q11 as defined above, and the termi-

nologies are consistent. Moreover, any p˚qnk with k, n ě 1 implies p˚q11.

Remark 2.6.4 (Alternative description of p˚qnk). Using the notation of Definition 2.6.3,

after the change of variables a :“ x, b :“ y ´
řs

j“1 nij e ij , property p˚qnk can be rewritten as

follows.

For all elements a and b P �ϱ, we have the submodularity inequality

rpaq ` rpbq ě rpa _ bq ` rpa ^ bq

as long as there exist an integer 1 ď s ď k and integers 1 ď i1 ă ¨ ¨ ¨ ă is ď m such that

b `
ř

1ďjďspaij ´ bijq e ij is an element of �ϱ greater than or equal to a and such that, for

all 1 ď j ď s, we have 0 ď aij ´ bij ď n.

This parametrization using a and b enables to see instantaneously that the submodularity

property of r in the hypercuboid implies all the properties p˚qnk . The other parametrization,

using x and y, will be useful to prove Theorem 2.6.2 below, in that it behaves linearly

(contrary to formulas involving the symbols ^ and _). ˛

Proof of Theorem 2.6.2. Obviously, (i) implies (ii).

We explain how to deduce (2.6), that is p˚q11, from (ii). Let x and y be as in Definition 2.6.1.

The fact that xi “ yi implies that y can be written as y “ x `
ř

j‰i nj ej with nj ě 0, and

we can sum inequalities of the form (2.5) to get the inequality (2.6).
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We then explain how to deduce (i) from p˚q11. Proceeding by induction, we show that

the property p˚q11 implies p˚qnk for all k, n ě 1. We first show that p˚q11 implies p˚qn1 for all

n ě 1. Let i P t1, . . . ,mu and 0 ď ni ď n, and let x ĺ y be elements of �ϱ such that

x ` ni e i P �ϱ and xi “ yi. For all 0 ď t ă ni, the pair
`

x ` t e i, y ` t e i
˘

satisfies the

hypotheses needed to apply p˚q11 in direction i, so we know that

rpx ` pt ` 1q e iq ´ rpx ` t e iq ě r
`

y ` pt ` 1q e i
˘

´ r
`

y ` t e i
˘

.

Summing all these inequalities for 0 ď t ă ni, and canceling out the terms which appear on

both sides, yields

rpx ` ni e iq ´ rpxq ě r
`

y ` ni e i
˘

´ r
`

y
˘

,

which gives p˚qn1 .

We now show that properties p˚qn1 for n ě 1 imply properties p˚qn2 . Let i, j P t1, . . . ,mu

and 0 ď ni, nj ď n, and let x ĺ y be elements of �ϱ such that x ` ni e i ` nj ej P �ϱ,

xi “ yi and xj “ yj. We apply p˚qn1 to the pair
`

x, y
˘

in direction i and get

rpx ` ni e iq ´ rpxq ě r
`

y ` ni e i
˘

´ r
`

y
˘

.

The pair
`

x ` ni e i, y ` ni e i
˘

satisfies the hypotheses required for applying p˚qn1 again, but

this time in direction j. This yields

rpx ` ni e i ` nj ejq ´ rpx ` ni e iq ě r
`

y ` ni e i ` nj ej
˘

´ r
`

y ` ni e i
˘

.

Summing up these two inequalities shows that r satisfies p˚qn2 . The same procedure

inductively proves that r satisfies all p˚qnk , i.e., r is submodular.

Remark 2.6.5 (Discrete partial derivatives and transverse local convexity). For i P

t1, . . . ,mu, we can define the discrete partial derivative of r in the direction i as the function

Bir defined by

Birpxq :“ rpx ` e iq ´ rpxq, @x P �ϱ such that xi ă ri.

We notice that property p˚q11 is equivalent to the fact that for all i P t1, . . . ,mu and for all

0 ď t ă ri, Bir|Li
t

is non-increasing. This is why p˚q11 may be alternatively called transverse

local concavity. Submodularity is thus equivalent to transverse local concavity.

In other contexts, submodularity is sometimes referred to as the discrete analogue of

concavity: see, for example, [Sch03, Theorem 44.1]. While this is fully relevant for a

function r defined on the collection PpSq of all subsets of a given set S, that is, on the

hypercube �
m

1 , it is not exactly true for supermodular functions on �ϱ for larger values

of r1, . . . , rm. This is because the functions Bir are non-decreasing only in directions

different from i. For example, for the function r defined on �p2,2q by

¨

˝

2 2 3

1 2 3

0 1 2

˛

‚, we have

rpp2, 1qq ´ rpp2, 0qq ğ rpp2, 2qq ´ rpp2, 1qq, i.e., B2r is not non-increasing in direction 2. ˛
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Remark 2.6.6 (Complexity). To make notations easier, we assume in this remark that

ϱ “ pr, . . . , rq. Theorem 2.6.2 provides a significant improvement for an algorithm checking

whether a given integer-valued function on �
m

r is a rank function. Indeed, the naive number

of operations necessary to check Properties (R1) and (R2) in Definition 2.2.1 is as follows.

• Property (R1) is checked in Opmrq operations.

• Property (R2) is checked in Opm ¨ pr ` 1qmq operations (check that r does not increase

when adding any unit vector to any point of �
m

r ).

Regarding the supermodularity property, whose complexity dominates, a naive check over

all pairs of elements a, b P �
m

r needs O ppr ` 1q2mq operations a priori, but Theorem 2.6.2

provides a way to reduce to only O pm2 ¨ pr ` 1qmq operations, which is a substantial

improvement in most cases. ˛

2.7 Permutation arrays

The aim of this section is to study simple matricubes with ground set an actual hypercube

(r1 “ r2 “ ¨ ¨ ¨ “ rm “ r) of minimum possible rank r or r ` 1. In the representable

case, this corresponds to a collection of m complete flags in a vector space of dimension

r ` 1. Theorem 2.7.1 establishes a one-to-one correspondence between these matricubes

and permutation arrays introduced by Eriksson–Linusson [EL00a, EL00b].

2.7.1 Permutation arrays

First, we recall some terminology from [EL00a]. Our presentation differs slightly from the

original setting as our indexing of flags is by codimension while in their work, Eriksson and

Linusson use an indexing by dimension. (Concretely, this amounts to having lower blocks

in [EL00a, EL00b] replaced here by upper blocks.)

Let r1, . . . , rm be m non-negative integers. An m-dimensional dot array P is an m-

dimensional array of type rr1s ˆ ¨ ¨ ¨ ˆ rrms where some of the entries are dotted.

For a dot array P , and x P �ϱ, we denote by P rxs the upper principal subarray of P ,

which consists of all y with y ľ x. It is naturally a dot array itself.

To be precise, for P rxs to become a dot array, we must coordinate-wise subtract the

point px1, . . . , xmq to all its elements. In the following, we will use both parametrization

conventions freely for the sake of convenience.

For a dot array P and j P t1, . . . ,mu, the rank along the j-axis, denoted by rankjpP q, is

the total number of 0 ď t ď rj such that there is at least one dot in some position whose

j-th index is equal to t, i.e., there is at least one dot in the layer Lj
t of P . A dot array P is

called rankable if we have rankjpP q “ rankipP q for all i, j P t1, . . . ,mu. If P is rankable,

then we call rankjpP q the rank of P for any j P t1, . . . ,mu.

A dot array P is called totally rankable if every upper principal subarray of P is rankable.
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We recall that in the terminology of [EL00a] and [EL00b], a position x is redundant if

there exist dot positions y
1
, . . . , y

m
‰ x, for some m ě 2, such that each y

i
has at least one

coordinate in common with x, and such that x “
Źm

i“1 yi. The set of redundant positions of

P is denoted by RpP q. A redundant dot is a redundant position that is dotted. The reason

for the term “redundant” is that placing or removing a redundant dot does not change the

rank of any upper principal subarray of P . (In the language of lattices, a non-redundant

position is meet-irreducible in the set of dotted positions.)

If A is a subset of �ϱ, then P Y A (resp. P ∖ A) denotes the dot array based on P

where, for every x P A, we dot (resp. undot) the position x in P , if necessary.

A permutation array of width r and dimension m is a totally rankable dot array P of

shape �
m

r “ �ϱ “ rrsm, ϱ “ pr, . . . , rq, of rank r ` 1, and with no redundant dots.

2.7.2 Equivalence of permutation arrays with simple matricubes of

rank r or r ` 1 on �
m

r

Our next theorem establishes an equivalence between permutation arrays and simple

matricubes of rank r or r ` 1 on the hypercube �
m

r .

Theorem 2.7.1. Let P be a permutation array of width r and dimension m. The function

rP defined by rP paq :“ r` 1 ´ rankpP rasq for every a P �
m

r is the rank function of a simple

matricube MP with ground set �
m

r . This matricube is of rank r or r ` 1 depending on

whether the position ϱ in �
m

r is dotted or not. The set of flats of rP is precisely the union

of the set of dot positions in P with RpP q, and ϱ.

Conversely, the rank function r of every simple matricube M of rank r or r ` 1 on the

hypercube �
m

r defines a dot array PM on �
m

r “ rrsm with dots positioned on the set of flats

a ‰ ϱ of M , and also a dot positioned on ϱ if rpM q “ r. Then, P :“ PM ∖ RpPM q is a

permutation array.

The proof of this theorem is given in the next section.

2.7.3 Proof of Theorem 2.7.1

We start by proving the first part of the theorem. Let P be a permutation array on

�
m

r “ rrsm. We claim that the function

ρP pxq :“ r ` 1 ´ rankpP rxsq, @x P �
m

r ,

is the rank function of a simple matricube on the ground set �
m

r . We need to show

properties (R1˚)-(R2)-(R3).

Since x ĺ y implies P rxs Ě P
“

y
‰

, we deduce that rP is non-decreasing, which shows

(R2).

We now prove (R1). Let i P t1, . . . ,mu. We have to show that rP pt e iq “ t for t P rrs.

By definition, rankpP rt e isq ď r ` 1 ´ t, which implies rP pt e iq ě t. The reverse inequality
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is shown by induction on t. The case t “ 0 is true by the definition of permutation

arrays, which requires rankpP q “ r ` 1. Assuming that rankpP rt e isq ě r ` 1 ´ t, we

show that rankpP rpt` 1q e isq ě r ´ t. This follows from the inequality rankpP ra` e isq “

rankipP ra ` e isq ě rankipP rasq ´ 1 “ rankpP rasq ´ 1, valid for every a P �
m

r such that

a ` e i P �
m

r .

It remains to show that rP is submodular. Thanks to Theorem 2.6.2, it is sufficient

to show that rP satisfies the diamond property for functions. We thus take two distinct

integers i ‰ j P t1, . . . ,mu and an element x P �
m

r such that x ` e i, x ` ej P �
m

r . We

assume that rpx`e i`ejq´rpx`ejq “ 1 and show that rpx`e iq´rpxq “ 1. The hypothesis

implies that the layer Li
xi

in the dot array P rx ` ejs contains a dotted point. This point

will be counted in the difference rpx ` e iq ´ rpxq, which proves the result.

The matricube MP is of rank r or r` 1 depending on whether rank
`

P
“

ϱ
‰˘

“ 1 or 0, that

is, whether ϱ is dotted or not.

Finally, to see the statement about the flats, consider x ‰ ϱ and assume first that x is

dotted. Then, for each direction e i with x`e i P �
m

r , we get rankipP rxsq´rankipP rx`e isq “

1. This shows that x is a flat.

Next, assume that x is not dotted. Since flats are closed under meet, if x is a redundant

position, then it is a flat. It remains to consider the case where x is neither dotted nor a

redundant point. This means there is an i P t1, . . . ,mu such that the layer Li
xi

in P rxs does

not contain any dot. Two cases can happen:

• If x ` e i P �
m

r , then

rankpP rxsq “ rankipP rxsq “ rankipP rx ` e isq “ rankpP rx ` e isq,

and thus rpxq “ rpx ` e iq, and x is not a flat of MP .

• Otherwise, xi “ r, and so rankipP rxsq “ 0, that is, rpxq “ r ` 1. This implies that

M is of rank r ` 1, and since x ‰ ϱ, then, again x is not a flat.

This finishes the proof of the first direction.

We now show the other direction. Suppose that M is a simple matricube of rank r ` 1

or r on �
m

r with rank function r. Let PM be the corresponding dot array where a dot is

positioned on every flat a of M different from ϱ, and if the rank of M is r, then a dot is

also positioned on ϱ. Let P “ PM ∖RpPM q. We show that P is a permutation array.

By construction, P has no redundant dots. We thus need to show that P is totally

rankable and has rank r ` 1. We have to prove that for every x P PM and i, j P t1, . . . ,mu,

rankipPM rxsq “ rankjpPM rxsq. This is a direct consequence of Proposition 2.7.2 below,

which also shows that the rank of PM is r ` 1. We conclude that P is a permutation

array.

Proposition 2.7.2. Suppose that M is a simple matricube of rank r or r` 1 on the ground

set �
m

r and denote by r its rank function. Let PM be the corresponding dot array with a

dot positioned at each flat a ‰ ϱ, and also a dot positioned at ϱ in the case rpM q “ r.

Let x be an element of the dot array PM and 1 ď i ď m. Then, rankipPM rxsq “ r`1´rpxq.
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Proof. We proceed by reverse induction in the lattice �
m

r , starting from ϱ. For ϱ, we have

ranki

`

PM

“

ϱ
‰˘

“ 0 or 1 depending on whether rpM q “ r ` 1 or r, respectively, for each

i P t1, . . . ,mu, as required. Assume x ‰ ϱ. We suppose the following equalities hold:

ranki

`

PM

“

y
‰˘

“ r ` 1 ´ r
`

y
˘

@ y ą x and @ i P t1, . . . ,mu.

We prove that the equalities hold as well for x.

Suppose first that x is a flat. Two cases can occur.

(I.1) If x has rank r, then for each i P t1, . . . ,mu with x ` e i P �
m

r , we have rpx ` e iq “

r ` 1. By induction, rankipPM rx ` e isq “ r ` 1 ´ rpx ` e iq “ 0. It follows that

rankipPM rxsq “ rankipPM rx ` e isq ` 1 “ 1, as required. For the other values of i, we

have x` e i R �
m

r , that is, xi “ r, and, in this case, we have as well rankipPM rxsq “ 1.

(I.2) If rpxq ă r, then using the inequality xi “ rpxi e iq ď rpxq, we get xi ă r. This implies

that x ` e i P �
m

r for all i P t1, . . . , δu. We get

rankipPM rxsq “ rankipPM rx ` e isq ` 1 “ r ` 1 ´ rpx ` e iq ` 1 “ r ` 1 ´ rpxq,

as required.

Now suppose that x is not a flat of M . Again, two cases can occur.

(II.1) If xi ă r for all i P t1, . . . ,mu, then let a be the minimum flat with a ľ x and let i P

t1, . . . ,mu. Applying the induction hypothesis to y “ x ` e i, we get ranki

`

PM

“

y
‰˘

“

r ` 1 ´ r
`

y
˘

. By Lemma 2.3.5, we deduce that

r
`

y
˘

“

#

rpxq ` 1 if ai “ xi,

rpxq if ai ą xi.

In the first case, when ai “ xi, there is a dot in the layer Li
xi

of PM rxs, and thus

rankipPM rxsq “ rank
`

PM

“

y
‰˘

` 1. In the second case, when ai ą xi, there is no dot

in the layer Li
xi

of PM rxs, and therefore rankipPM rxsq “ rank
`

PM

“

y
‰˘

. We infer that

rankipPM rxsq “ r ` 1 ´ rpxq, as required.

(II.2) We now treat the remaining case where xi “ r for some indices i among 1, . . . ,m. In

this case, rpxq is either r or r ` 1. We treat each of these possibilities separately.

(1) Firstly, suppose that rpxq “ r. Consider an index i with xi “ r. Then, if

rpM q “ r, there is a dot positioned at ϱ, and thus rankipPM rxsq “ 1 “ r`1´rpxq.

If rpM q “ r ` 1, the minimum flat a ľ x has rank r, and lives in the layer Li
r

of PM rxs. Again, we get rankipPM rxsq “ 1.

Now consider an index j with xj ă r, so that x ` ej P �
m

r . Let a be the

minimum flat dominating x. A reasoning similar to (II.1), based on the use of

Lemma 2.3.5, shows that rankipPM rxsq “ r ` 1 ´ rpxq, as required.

(2) Secondly, suppose that rpxq “ r ` 1. The unique flat a that dominates x is ϱ,

which is not dotted. Therefore, rankipPM rxsq “ 0 “ r`1´rpxq, as required.
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2.8 Local matroids

In this section, we define local matroids of matricubes, and formulate a local obstruction to

their representability. We then turn this into an equivalent characterization of matricubes.

2.8.1 Local matroids of a matricube

In the following, for all a P �ϱ, we define Ia as the set of all i P t1, . . . ,mu such that

a ` e i P �ϱ.

To motivate the definition, first consider a representable matricube, given by m initial flags

F‚
1 , . . . ,F

‚
m of length r1, . . . , rm, respectively, in a κ-vector space H. Let Fa :“

Ş

1ďiďm Fai
i .

The arrangement of subspaces Fa`e i in Fa given by i P Ia defines a matroid Ma on the

ground set Ia. The rank one elements of this matroid correspond to those i with Fa`e i a

proper vector subspace of Fa; all the other elements are loops.

This picture generalizes to any matricube, and defines local matroids associated to

elements of the hypercuboid �ϱ. Let r be a rank function on �ϱ. Let a P �ϱ, and define

a function ρa : 2Ia Ñ Zě0 as follows. For every subset X Ď Ia, set

ρapXq :“ r
´

a `
ÿ

iPX

e i

¯

´ rpaq.

Proposition 2.8.1. The pair pIa, ρaq defines a matroid Ma on the set of elements Ia.

Proof. By Proposition 2.2.4, ρa takes values in the set t0, . . . , |Ia|u, and ρapXq ď |X|. Since

r is non-decreasing, we also have ρapY q ď ρapXq for Y Ď X. Therefore, it is enough to

show that ρa is submodular, that is,

@X, Y Ď Ia ρapXq ` ρapY q ě ρapX Y Y q ` ρapX X Y q.

This follows from the submodularity of r applied to a`
ř

iPX e i and a`
ř

iPY e i in �ϱ.

Proposition 2.8.2. A necessary condition for the representability of a matricube M with

ground set �ϱ on a field κ is the representability of all the matroids Ma, a P �ϱ, on κ.

Proof. This follows directly from the above discussions.

2.8.2 The case of permutation arrays

Let κ be a field. By Theorem 2.7.1, the representability of a simple matricube M of rank r

or r ` 1 with the ground set the hypercube �
m

r is equivalent to the representability of the

corresponding permutation array in the terminology of [EL00b]. Billey and Vakil [BV08] pro-

vide several examples of permutation arrays which are non-representable. Proposition 2.8.2

above provides a conceptual explanation of the examples treated in [BV08]. Theorem 2.9.1,

combined with Theorem 2.7.1, shows that over an infinite field, the representability for

permutation arrays reduce to the representability of matroids.
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2.8.3 Coherent complexes of matroids and matricubes

We show that the data of a matricube on the ground set �ϱ is equivalent to the data of a

set of matroids indexed by �ϱ satisfying compatibility properties (CC1) and (CC2) listed

below.

Notation as in the previous section, for the sake of convenience, if i P Ia, we write ρapiq

instead of ρaptiuq. We start with the definitions below.

Definition 2.8.3 (Increasing path). Let a and b be points of �ϱ with a ĺ b. We define an

increasing path from a to b to be any finite sequence

a “ c0, c1, . . . , ck “ b

such that for every 0 ď j ă k, we have cj`1 “ cj ` eℓ for some ℓ P t1, . . . ,mu. ˛

Note that the integer k is equal to
řm

i“1pbi ´ aiq.

Definition 2.8.4 (Coherent complex of matroids). Let pMaq
aP �ϱ

be a set of matroids

indexed by �ϱ, with Ma a matroid on the set Ia and with rank function ra. We say pMaq

form a coherent complex of matroids if the following two properties are satisfied:

(CC1) For all i P t1, . . . ,mu and 0 ď t ă ri, we have ρt e ipiq ď 1.

(CC2) The matroids satisfy the following relation.

Ma`e i
“

#

Ma i if ai “ ri ´ 1

Ma i \ tiu else
.

Here, M e denotes the contraction of a matroid M by its element e, and i is the element

of the matroid set corresponding to the direction i. Moreover, Ma i \ tiu denotes an

extension of Ma i by a single element denoted i. ˛

In the following, we denote by ρa i the rank function on Ia ∖ tiu that defines the matroid

Ma i. It is explicitly given by the following equation, in terms of the rank function ρa:

ρa ipXq “ ρapX Y tiuq ´ ρapiq for all X Ď Ia ∖ tiu.

Remark 2.8.5. Property (CC2) above implies the following: let x ĺ y be two points of

�ϱ and i P t1, . . . ,mu such that xi “ yi and i P Ix. Then, i being a loop in Mx implies

that i is a loop in My. Indeed, My is obtained from Mx through a sequence of operations

consisting of either the contraction of an element different from i or an extension. These

operations do not change the property of i being a loop. ˛

Theorem 2.8.6 (Matroidal characterization of matricubes). There is a one-to-one cor-

respondence between coherent complexes of matroids indexed by the hypercuboid �ϱ and

matricubes with ground set �ϱ.
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Proof. pðùq If we start with a matricube M of rank function r on �ϱ, the collection of

matroids Ma defined above forms a coherent complex of matroids. Indeed, Property (CC1)

is trivially satisfied because of Property (R1) in Definition 2.2.1. We check Property (CC2).

Let a P �ϱ and i P Ia. If ai “ ri ´ 1, then Ia`e i
“ Ia ∖ tiu, which is the ground set of

the matroid Ma i. If ai ă ri ´ 1, then Ia`e i
“ Ia, which is the ground set of the matroid

Ma i\tiu. We now check the equality of the rank functions on subsets of Ia∖tiu. Consider

X Ď Ia`e i
not containing the element i. We need to show that

ra`e i
pXq “ rapX Y tiuq ´ rapiq.

The left-hand side is by definition r
`

a` e i `
ř

jPX ej
˘

´ rpa` e iq, and the right-hand side is

r
´

a ` e i `
ÿ

jPX

ej

¯

´ rpaq ´ rpa ` e iq ` rpaq.

Both sides are therefore equal.

pùñq The other way around, we consider a coherent complex of matroids pMaqa and

associate a matricube M on �ϱ by specifying its rank function r. Let a P �ϱ. We take

any increasing path 0 “ b0, b1, . . . , bk “ a from 0 to a, and define

rpaq :“
k´1
ÿ

j“0

ρbj
`

bj`1 ´ bj
˘

.

We first prove that r is well-defined, which amounts to showing that rpaq does not depend

on the choice of the increasing path
`

bj
˘

. Two different such paths can be linked by a finite

sequence of increasing paths such that between two consecutive increasing paths in the

sequence, the only change is an inversion between two consecutive elementary moves e i and

ej, i ‰ j. We thus have to check that, for every a P �ϱ and i, j P Ia with i ‰ j, we have

ρape iq ` ρa`e i
pejq “ ρapejq ` ρa`e j

pe iq.

But by (CC2), we have ρa`e i
pejq “ ρa ipejq “ ρapej ` e iq ´ ρape iq in the left-hand part and

ρa`e j
pe iq “ ρa jpe iq “ ρape i ` ejq ´ ρapejq in the right-hand part, so the desired equality

holds.

We now check (R1)-(R2)-(R3). It is obvious by construction that r takes integer values, is

non-decreasing and that rpt e iq ´ rppt ´ 1q e iq “ 0 or 1 for all i P t1, . . . ,mu and 0 ď t ď ri.

These imply (R1) and (R2).

It remains to show that r is submodular. By Theorem 2.6.2, it is sufficient to check

the diamond property. We show unidirectional submodularity at distance one stated in

(2.6). Let thus i P t1, . . . ,mu and x, y P �ϱ such that x ĺ y, i P Ix and xi “ yi. We

assume that rxpe iq “ 0 and show that rype iq “ 0. But this has been shown to be the case

in Remark 2.8.5.

We have defined two maps linking coherent complexes of matroids and matricubes. It is

straightforward to check that they are inverse of each other.
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2.9 Further discussions

In this final section, we discuss further related results and questions.

2.9.1 Bases of matricubes and special features of independents

We do not know how to define a good notion of bases for matricubes. We review some

natural attempts in this section. For each definition, we show with an example that the

data of the set of bases according to that definition does not determine the matricube in a

unique way. Below, M refers to a matricube of rank r on the ground set �ϱ and a is an

element of �ϱ.

First, consider the idea closest to that of matroids.

(a) A basis of M is an independent a P I which is maximal for the partial order ĺ.

This does not carry enough information. The two matricubes below, with ϱ “ p2, 2q, have

the same set of bases according to Definition (a), but not the same sets of independents.

The elements verifying (a) are highlighted in red, the other independents in blue.

¨

˝

2 3 4

1 2 3

0 1 2

˛

‚

¨

˝

2 2 3

1 1 2

0 1 2

˛

‚ (2.7)

We note that, unlike matroids, a maximal independent of a matricube is not necessarily

of maximal rank. This is not visible in Example (2.7), but the following matricube provides

such an example. Two maximal independents (in red) have distinct ranks.

¨

˝

2 2 3

1 2 3

0 1 2

˛

‚ (2.8)

Consider the following alternative to (a).

(b) A basis of M is an independent a P I of maximal rank r.

The same examples given in (2.7) show that this does not work neither.

Definitions (a) and (b) are global. Seeking for local counterparts, similar to flats, circuits

and independents, treated in the previous sections, leads to the following candidates.

(c) A basis of M is an independent a P I which is locally maximal, in the sense that for

every i P t1, . . . ,mu with a ` e i P �ϱ, we have a ` e i R I .

(d) A basis of M is an independent a P I which is locally of maximal rank, in the sense

that for every i P t1, . . . ,mu with a ` e i P �ϱ, we have rpa ` e iq “ rpaq.
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It is immediate that (d) implies (c). Definitions (c) and (d) are in fact equivalent (the

proof is omitted). The two matricubes below, with ϱ “ p5, 4q, have the same set of bases

according to Definition (c), but not the same sets of independents. The elements verifying (c)

are depicted in red, and the other independents are in blue.

¨

˚

˚

˚

˚

˚

˝

4 4 4 4 5 6

3 3 4 4 5 6

2 2 3 3 4 5

1 1 2 3 4 5

0 1 2 3 4 5

˛

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˝

4 4 5 5 5 6

3 4 5 5 5 6

2 3 4 4 4 5

1 2 3 3 4 5

0 1 2 3 4 5

˛

‹

‹

‹

‹

‹

‚

(2.9)

The removal operation defined in Section 2.5.2 takes an independent and produces smaller

independents. Consider the following candidate.

(e) A basis of M is an independent a P I which is not the removal b∖ i for some b P I

and i P t1, . . . ,mu.

This is genuinely new, but, if we consider the matricubes in Example (2.7), the bases

given by (e) and (a) are the same.

In a matroid with ground set E and rank function r, every subset S Ď E satisfies

rpSq ` r˚pScq ď |E|, where r˚ is the dual rank function and Sc is the complement of S,

with equality if, and only if, S is a basis. This leads to the following candidate.

(f) A basis of M is an independent a P I such that rpaq`r˚pacq “
ˇ

ˇϱ
ˇ

ˇ

ℓ1
, where ac “ ϱ´a

is the complement of a and
ˇ

ˇϱ
ˇ

ˇ

ℓ1
“
ř

i ri.

The inequality rpxq ` r˚pxcq ď
ˇ

ˇϱ
ˇ

ˇ

ℓ1
does hold for every element x P �ϱ. However, some

matricubes have no bases at all according to this definition. This is for instance the case

for both matricubes in Example (2.9).

The question of finding a good notion of bases in matricubes therefore remains open.

2.9.2 The natural polymatroid and the natural matroid associated to a

matricube

We refer to [HH02] for the definition and basic properties of polymatroids. Let P be an

integer polymatroid on the ground set E with rank function ρ : 2E Ñ Zě0. Replace each

element e of E with ρpeq elements, and let pE be the resulting set. For each subset S Ď E,

let pS Ď pE be the union of all the elements associated to each e P S. Define pρ : 2
pE Ñ Zě0

by the formula

pρpY q :“ min
SĎE

´

ρpSq ` |Y ∖ pS|

¯

.

This defines a matroid on the ground set pE, called the natural matroid of P, which is

symmetric with respect to the permutation of the ρpeq elements associated to each e.
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To a given matricube M on the ground set �ϱ, we can associate an integer polymatroid

P on the ground set E :“ rr1s \ ¨ ¨ ¨ \ rrms, that we name the natural polymatroid of M .

The rank function ρ of P is given by associating to any subset S Ď E the integer value

ρpSq :“ r
`
Ž

aPS a
˘

. The join is taken in �ϱ and r is the rank function of M .

There is, moreover, a natural way to send elements of M to subsets of E, by mapping

every x “ px1, . . . , xmq P �ϱ to the subset ψpxq :“ r0, x1s \ ¨ ¨ ¨ \ r0, xms Ď E, where each

interval r0, xis is taken inside r0, ris. Note that the polymatroid P can be viewed as a

polytope in the vector space RE, but there does not seem to be a natural way of associating

vectors in this polytope to elements of the matricube.

Proceeding as above, we can thus associate to a given matricube M a natural matroid

M on the ground set pE. Note that M has
řm

i“1

řri
t“1 rpt e iq elements.

Using this construction, it seems natural to transfer the notions of flats, independents,

bases, and circuits from the matroid M to the matricube, in the spirit of the work [BCF23]

on integer polymatroids. This however gives a story complementary to the theory exposed

in this manuscript.

In the case of flats, for example, our definition coincides with the definition of flats in

the corresponding polymatroid, in the sense that the map ψ described above establishes

a bijection between the flats of M and the flats of P. However, we are not aware of any

intrinsic axiomatic system for flats in polymatroids, and the one for flats in matricubes

given in the present manuscript does not seem to be directly related to the one for cyclic

flats in polymatroids, due to Csirmaz [Csi20]; see as well [BCF23, Section 5].

When it comes to independents of matricubes, our definition differs entirely from that

of independents in a polymatroid [BCF23, Section 3]. As we observed in the previous

section, maximal independents in matricubes can be of various ranks, whereas maximal

independents in polymatroids all have the same rank. The independents in polymatroids

are only defined as vectors in the corresponding polytope, not set-theoretically. Besides, as

we mentioned previously, we do not have yet a good notion of bases for matricubes.

The same situation holds for circuits: the definition and axiomatic system we give in the

present manuscript differ from the ones given for polymatroids in [BCF23, Section 4]. Like

independents, circuits in polymatroids can only be defined as vectors. Our definition of

circuits does not rely on independents, and yields a different story. Note in particular that

in matricubes, we can have comparable circuits for the partial order ĺ (see Example (2.4)

in Section 2.4.1), whereas two distinct circuits in a polymatroid are never comparable.

2.9.3 Representability and minors

We do not know whether the local obstructions given by Proposition 2.8.2 are the only

obstructions for the representability of a matricube. On the other hand, the representability

of a matricube over an infinite field is equivalent to the representability of the corresponding

natural matroid, as we show in the present section.
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Theorem 2.9.1. A matricube M is representable over an infinite field κ if, and only if,

the corresponding natural matroid M is representable over κ.

We will deduce this from the observation, firstly, that the representability of a matricube

by a flag arrangement over any field is equivalent to the representability of the associated

natural polymatroid by a subspace arrangement over the same field. And secondly, we

show that the representability of an integer polymatroid by a subspace arrangement over

an infinite field is equivalent to the representability of the natural matroid associated to

the polymatroid over that field. As the proof shows, the latter statement, as well as the

theorem, remains valid for a finite field of large enough cardinality.

Proof. We first prove the equivalence between the representability of a matricube and the

representability of the associated natural polymatroid. We take the dual point of view

described in Section 2.2.2, using increasing initial flags. Let M be a representable matricube.

The associated natural polymatroid P is obviously representable, remembering only the

data of the subspace arrangement coming from the flag arrangement that represents M . In

the other direction, we assume that the natural polymatroid P associated to a matricube M

is represented by a subspace arrangement
␣

Gi
j, i P t1, . . . ,mu, j P rris

(

. Let i P t1, . . . ,mu

and j P rri ´ 1s. By construction of P, we have ρprj ` 1sq “ rppj ` 1q e iq ě rpj e iq “ ρprjsq,

where rjs and rj ` 1s are included in the interval rris in the ground set of P. This shows

that for every i and j, we have Gi
j Ď Gi

j`1, and therefore that the subspace arrangement

can be arranged into a flag arrangement in a compatible way. It is immediate to see that

this flag arrangement is a representation of M .

We now prove the equivalence between the representability of an integer polymatroid

(whether or not associated to a matricube) and the representability of its natural matroid,

using vector representations. Let first M be a matroid on a ground set pE, with rank function

pρ, and consider a partition pE “
Ů

ePE Ae of pE, indexed by a set E. We assume that M is

represented by a configuration of vectors
!

vx P H, x P pE
)

in a κ-vector space H. We define,

for every S Ď E, ρpSq :“ pρppSq “ pρp
Ť

ePS Aeq. It is easy to see that ρ is submodular on 2E,

and therefore it is the rank function of a polymatroid PpMq on the ground set E. Moreover,

PpMq is represented by the subspace arrangement tGe Ď H, e P Eu, where, for every e P E,

Ge :“ xvx, x P Aey is the vector subspace generated by the vx, x P Ae. Finally, if M is the

natural matroid of some integer polymatroid P, then PpMq is in fact the polymatroid P,

which concludes.

In the other direction, we use the notation of Section 2.9.2. Let P be an integer

polymatroid on a ground set E, represented by a subspace arrangement tGe Ď H, e P Eu.

Let M be the natural matroid of P, on the ground set pE. For every e P E, let Be be a

generic vector basis of the subspace Ge, i.e., let Be be chosen in a Zariski dense open subset

(to be specified afterwards) of the variety of bases of Ge. The (disjoint) union B of the bases

Be is indexed by pE in the natural way, say B “

!

vx, x P pE
)

. Let ρ be the rank function on

pE defined by ρpY q :“ dimκxvx, x P Y y for every Y Ď pE. We show the natural matroid M
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to be representable by proving that ρ “ pρ. We therefore fix any Y Ď pE. For every S Ď E,

the inequality ρpY q ď ρpSq ` |Y ∖ pS| is immediate. In the rest of the proof, we show the

reverse inequality.

Let S Ď E be the set of all e P E such that Ge Ď xvx, x P Y y. Let G0 be the subspace of

H defined by G0 :“
ř

ePS Ge, and let G1, . . . ,Gk be the other subspaces Ge for e P E ∖ S.

Here, k “ |E| ´ |S|. Rearrange the ground set pE so that the first k disjoint intervals

rr1s, . . . , rrks that make it up are those indexed by E ∖ S. For every j P t1, . . . , ku, let Yj
be the family of vectors vx with x P Y X rrjs in the ground set pE of M. We then admit, for

now, that for every j P t1, . . . , ku, the following inequality holds:

dimpG0 ` G1 ` ¨ ¨ ¨ ` Gjq ą dimpG0q ` |Y1| ` ¨ ¨ ¨ ` |Yj|. (2.10)

We show by induction that if Inequality (2.10) is true for every j P t1, . . . , ku, then, for

every j P t0, . . . , ku, the configuration of vectors Y1 \ ¨ ¨ ¨ \ Yj is linearly independent in the

quotient space
`

G0 ` G1 ` ¨ ¨ ¨ ` Gj

˘L

G0. This is obviously true for j “ 0. If now this is

true for some j ă k, Inequality (2.10) for j ` 1 reads

|Yj`1| ă dimpG0 ` G1 ` ¨ ¨ ¨ ` Gj`1q ´ pdimpG0q ` |Y1| ` ¨ ¨ ¨ ` |Yj|q.

The induction hypothesis then implies that the quantity on the right is the dimension of

the quotient space
`

G0 ` G1 ` ¨ ¨ ¨ ` Gj`1

˘L`

G0 ` xY1, . . . , Yjy
˘

.

The linear projection map
`

G0 ` G1 ` ¨ ¨ ¨ ` Gj ` Gj`1

˘L

G0 ↠
`

G0 ` G1 ` ¨ ¨ ¨ ` Gj ` Gj`1

˘L`

G0 ` xY1, . . . , Yjy
˘

now enables to view the family of vectors Yj`1 in the quotient space
`

G0 ` G1 ` ¨ ¨ ¨ `

Gj`1

˘L`

G0 ` xY1, . . . , Yjy
˘

. Since the number of vectors in Yj`1 is less than the dimension of

this quotient space, and since all the vectors vx are generic, then Yj`1 is linearly independent

in this quotient space. This means exactly that Y1 \ ¨ ¨ ¨ \ Yj \ Yj`1 is linearly independent

in the quotient space
`

G0 ` G1 ` ¨ ¨ ¨ ` Gj ` Gj`1

˘L

G0, which concludes the induction.

Specializing the independence property to j “ k, we get the desired equality:

ρpY q “ ρpSq ` |Y ∖ pS|.

To finish the proof, before turning to Inequality (2.10), notice that the choice of the

vectors vx determines the subset S Ď E. But since there is a finite number of such S, there

is still a non-empty Zariski open set of choices of vectors vx for which the same set S is

associated to all these choices. Now, we have the above equality for a fixed Y . Since there

is a finite number of such subsets Y Ď pE, there is still a non-empty Zariski open set of

choices of the vectors vx for which the above equality holds for every Y .

We now explain why Inequality (2.10) is true for every j. If by contradiction it was not,

let j0 ě 1 be the smallest j such that it does not hold, i.e.,

|Yj0 | ě dimpG0 ` G1 ` ¨ ¨ ¨ ` Gj0

L

G0 ` xY1, . . . , Yj0´1yq.
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The preceding argument shows that the vectors in Yj for j ă j0 are independent in

the quotient space
`

G0 ` G1 ` ¨ ¨ ¨ ` Gj0´1

˘L

G0. Since the vectors in Yj0 are generic,

the above inequality on the size of Yj0 implies that they generate the quotient space
`

G0 ` G1 ` ¨ ¨ ¨ ` Gj0

˘L`

G0 ` xY1, . . . , Yj0´1y
˘

. This leads to the inclusion Gj0 Ď xvx, x P Y y,

contradicting the definition of S.

We call a matricube M regular if it is representable over every field. For matroids,

Seymour’s theorem describes regular matroids in terms of sums of graphic, cographic, and

an exceptional regular matroid on 10 elements [Sey80]. A theorem by Tutte characterizes

regular matroids as those representable over the fields F2 and F3 with two and three

elements, respectively. Another result by Tutte characterizes regular matroids as those that

contain as a minor neither the Fano matroid F7 nor its dual F˚
7 . We refer to [Tru92, Chap.

9] for a presentation of these results.

Question 2.9.2. Provide a characterization of regular matricubes.

In analogy with Rota’s conjecture on the characterization of the representability of

matroids over finite fields using a finite set of forbidden minors, we formulate the following

question.

Question 2.9.3 (Rota’s conjecture for matricubes). Let κ be a finite field. Does there exist

a finite collection of matricubes such that a matricube is representable over κ if, and only if,

it does not contain any of the matricubes in the collection as a minor?

We note that as it was recently shown by Oxley, Semple, and Whittle [OSW16], the

analogue of Rota’s conjecture for 2-polymatroids fails in general. This does not exclude

a positive answer to the above question, as matricubes behave more like matroids than

polymatroids.

2.9.4 Stratification of products of flag varieties

Let κ be a field and n be a positive integer. Let H be a κ-vector space of dimension

n. For each positive integer r ď n, denote by F pr, nq the flag variety parametrizing

initial flags of vector subspaces G1 Ă G2 Ă ¨ ¨ ¨ Ă Gr of dimensions dimpGjq “ j, for

j “ 1, . . . , r. Given a vector ϱ “ pr1, . . . , rmq with m positive integers, consider the product

variety F
`

ϱ, n
˘

:“ F pr1, nq ˆ ¨ ¨ ¨ ˆ F prm, nq. We get a natural stratification of F
`

ϱ, n
˘

by

matricubes as follows. Given a simple matricube M with ground set �ϱ, the cell ZM

parametrizes those collections of m flags Gi
‚ P F pri, nq, i “ 1, . . . ,m, whose associated

matricube, through the constructions of Section 2.2.2, coincides with M . This stratification

is analogous to that induced by matroids for Grassmannians. Theorem 2.9.1 provides a

correspondence between strata of given rank r in F
`

ϱ, n
˘

and strata of the Grassmannian

Grpr,Nq, for N “ 1
2

řm
i“1pr

2
i ` riq, see Section 2.9.2. It would be interesting to study the

combinatorics of this stratification, and the geometric meaning of this correspondence.
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2.9.5 Polymatricubes

A polymatricube is a function f : �ϱ Ñ R with fp0q “ 0 which is non-decreasing and

submodular, that is, it verifies (R2) and (R3). Examples of integer polymatricubes are the

representable ones which, by definition, are those associated to a collection of arbitrary

(instead of initial) flags in a vector space. Generalizing the discussion of Section 2.9.2, we

can associate a natural polymatroid and a natural matroid to any integer polymatricube.

Theorem 2.9.1 extends to this setting: an integer polymatricube is representable over an

infinite field if, and only if, the corresponding natural matroid is representable over the same

field. In particular, the discussion of Section 2.9.4 can be extended to arbitrary collections

of flag varieties.

2.9.6 Tutte polynomial

An important algebraic invariant associated to a matroid is its Tutte polynomial. This is a

two-variable polynomial that specializes to the characteristic polynomial of the matroid.

The Tutte polynomial of a matroid M on the ground set E is the unique polynomial

TMpX, Y q that verifies the following recursive equation for every e P E:

TMpX, Y q “

$

’

’

&

’

’

%

X TM epX, Y q if e is a coloop

Y TM epX, Y q if e is a loop

TM epX, Y q ` TM epX, Y q if e is neither a loop nor a coloop,

and is defined for the matroid H with empty ground set by TH ” 1.

We can define the notion of loop and coloop in matricubes. We say i P t1, . . . ,mu is a

loop of M if ri ą 0 and rpe iq “ 0. We say i is a coloop of M if i is a loop of the dual

matricube M ˚. This is equivalent to having rpM iq “ rpM q ´ 1. The recursive equation

above, however, does not lead to an invariant of matricubes.

The Tutte polynomial of a matroid M on the ground set E can be defined directly by

the following formula:

TMpX, Y q “
ÿ

SĎE

pX ´ 1q
r´rpSq

pY ´ 1q
|S|´rpSq.

This definition naturally extends to any matricube.

Definition 2.9.4. Let M be a matricube of rank r on the ground set �ϱ. The Tutte

polynomial of M is the two-variable polynomial

TM pX, Y q :“
ÿ

xP �ϱ

pX ´ 1q
r´rpxq

pY ´ 1q
|x|ℓ1

´rpxq,

where |x|ℓ1 is the ℓ1-norm of x. ˛

Tutte polynomials of matricubes verify the following properties:
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• Let M ˚ denote the dual of the matricube M . Then, we have TM ˚pX, Y q “ TM pY,Xq.

• For two matricubes M and M 1, we have TM ‘M 1 “ TM ¨ TM 1 .

Here, the direct sum M ‘ M 1 of matricubes M and M 1 on hypercuboids �ϱ and �ϱ,

respectively, has ground set �ϱ ˆ �ϱ and rank function defined by

rM ‘M 1px ‘ x1
q “ rM pxq ` rM 1px1

q.

Question 2.9.5. Does there exist a recursive identity which defines TM , in terms of deletions

and contractions?

There is a version of the Tutte polynomial for polymatroids defined by Cameron and

Fink [CF22]. This polynomial satisfies a relation involving elementary operations reminiscent

of deletion and contraction in polymatroids, and specializes to the Tutte polynomial for

matroids. We do not know if there is any relation between the Tutte polynomial of a

matricube and the Tutte polynomial of the corresponding natural polymatroid.

2.9.7 Matricubes arising from linear series on curves

As pointed out in Section 2.1.8, matricubes naturally arise in our work on tropical degener-

ations of linear series on algebraic curves. We provide a brief hint to this by explaining

how a finite collection of points and a finite dimensional space of rational functions on an

algebraic curve gives rises to a matricube.

Let κ be an algebraically closed field, and let C be a smooth proper curve over κ. Let

r be a non-negative integer, and let p be a κ-point on C. Let κpCq be the function field

of C, and let H Ď κpCq be a vector subspace of rational functions of dimension r ` 1 over

κ. The point p leads to a complete flag F‚
p of H by looking at the orders of vanishing at

p of functions in H, as follows. Define the set Sp :“
␣

ordppfq
ˇ

ˇ f P H ∖ t0u
(

. The set Sp

is finite of cardinality r ` 1. Denote by sp0 ă ¨ ¨ ¨ ă spr the elements of Sp, enumerated in

increasing order. The flag F‚
p is defined by setting, for j “ 0, . . . , r,

Fj
p :“

␣

f P H ∖ t0u
ˇ

ˇ ordppfq ě spj
(

Y t0u.

It follows that Fj
p has codimension j in H.

Let now m be a natural number, and let A “ tp1, . . . , pmu be a collection of m distinct

κ-points on C. By the construction above, each point pi leads to a complete flag F‚
i .

Denoting Si :“
␣

ordpipfq
ˇ

ˇ f P H ∖ t0u
(

, and enumerating the elements of Si in increasing

order si0 ă ¨ ¨ ¨ ă sir, the flag F‚
i is defined by setting

Fj
i :“

␣

f P H ∖ t0u
ˇ

ˇ ordpipfq ě sij
(

Y t0u.

The data of C,H, p1, . . . , pm defines a matricube on the ground set �
m

r “ rrsm.

We may call geometric a matricube with ground set �
m

r that arises from the above

construction for a curve C over an algebraically closed field κ. By construction, geometric

matricubes are all representable over the field κ over which the curve C is defined.
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Question 2.9.6. Is it true that all representable matricubes on �
m

r of rank r or r ` 1

are geometric? What is the smallest possible genus of a curve representing a geometric

matricube?
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3 Limit linear series: combinatorial

theory

This chapter is adapted from an extended version of the preprint [AG22].
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Abstract

We develop a purely combinatorial theory of limit linear series on metric graphs. This

will be based on the theory of matricubes, presented in the previous chapter, and the

formalism of slope structures. We show that some of these combinatorial objects are

naturally obtained by tropicalizing linear series on algebraic curves. We provide a full

classification of combinatorial limit linear series of rank one, parametrized by harmonic

morphisms from the graph to metric trees. We also discuss some other applications and

connections to other concepts in combinatorial algebraic geometry, and raise several open

questions.

3.1 Overview

One of the longstanding open questions regarding the asymptotic geometry of curves is

the problem of degeneration of linear series on smooth curves of given genus when they
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approach the boundary of their corresponding moduli space. That is, to fully describe all

the possible limits of linear series of given rank and degree when smooth curves degenerate

to singular ones. This question was studied in a series of works by Eisenbud and Harris

[EH89, EH86, EH87b, EH87a, EH87c] for which they managed to provide a satisfactory

answer in the case the limit curve is of compact type, and used this to make major progress

in the study of curves. For curves of pseudo-compact type, these results were generalized

by Esteves–Medeiros [EM02] (for curves with two components) and by Osserman [Oss19b,

Oss19a, He19]. The case of rank zero linear series in the pluricanonical systems is studied

in recent work [BCG`18, BCG`19, MUW20, TT22].

Tropical geometry provides a modern perspective on degeneration methods in algebraic

geometry and a new approach to classical questions in algebraic geometry. Developing

the mathematics behind the tropical approach usually requires the introduction of new

combinatorial structures, and it has become apparent now that from the viewpoint of appli-

cations, it is enough in many cases to understand the geometry behind these combinatorics.

Two such examples are given in the development of a combinatorial theory of divisors on

graphs and metric graphs [BN07, BJ16], and, more recently, in the development of tropical

and combinatorial Hodge theories [AHK18, AP20].

In a previous work [AB15], Amini and Baker introduced linear series on hybrid objects

called metrized complexes and used them to recover and partially generalize the Eisenbud–

Harris theory of limit linear series. In a subsequent work [Ami14], the formalism of slope

structures on metric graphs was introduced as a way to describe the limiting behavior of

Weierstrass points on degenerating families of curves. Slope structures were used in a recent

work of Farkas–Jensen–Payne [FJP20] in the study of the geometry of the moduli space of

curves.

The aim of this chapter is to take the tropical approach one step further by introducing

a purely combinatorial theory of linear series of arbitrary rank and degree on metric graphs.

This can be regarded as a combinatorial theory of limit linear series.

More precisely, we aim to draw relevant combinatorial properties of tropicalizations of

linear series, regarding:

• the slopes taken by the tropicalizations of functions;

• the vectors of slopes taken by these functions around points;

• the tropical dependence between these functions, and

• the topological properties of tropicalizations,

in order to develop a formalism of linear series on metric graphs. This will be based on two

ingredients: hypercube rank functions (which are in close connection to a particular case of

the matricubes defined in the companion work [AG24] (Chapter 2)), and slope structures.

In the rest of this introduction, we give an overview of the setup and the results.
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3.1.1 Degeneration problem for linear series

Recall that a linear series grd on a projective curve Y is by definition a vector subspace of

dimension r` 1 of the space of global sections H0pY, Lq of a line bundle L of degree d on Y .

Let Mg be the moduli space of smooth projective curves of genus g, and Mg its Deligne–

Mumford compactification. Let X be a stable curve of genus g over an algebraically closed

field κ and x the corresponding point in Mg. The degeneration problem for linear series

can be informally stated as follows.

Question 3.1.1. Describe all the possible limits of linear series over any sequence of smooth

projective curves of genus g when their corresponding points in Mg converge to x.

3.1.2 Metric graphs and their divisor theory

Metric graphs arise as tropical limits of one-parameter families of smooth projective curves.

We denote by R` the set of positive real numbers. Recall that a metric graph Γ is a

compact metric space isomorphic to the metric realization of a pair pG, ℓq consisting of a

finite graph G “ pV,Eq and a length function ℓ : E Ñ R`: this is obtained by associating

to each edge e a copy of the interval Ie “ r0, ℓes, with the two extremities identified with

those of e, and then further identifying the ends of different intervals corresponding to a

same vertex v. The quotient topology on Γ is metrizable by the path metric. The pair

pG, ℓq is called a model of Γ.

In the context related to the degeneration of algebraic curves, a metric graph Γ with

model pG “ pV,Eq, ℓq is endowed with a function g : V Ñ Zě0 associating to each vertex v

the genus of some algebraic curve Cv represented by v. Such a triple pG, ℓ, gq will be called

an augmented metric graph. However, we will mostly handle non-augmented metric graphs

in this chapter, and make comments about the relevance of the genus function in the theory

developed here.

The set of rational functions on Γ is denoted by RatpΓq, and, by definition, consists of

all continuous piecewise affine functions f : Γ Ñ R with integral slopes. The tropicalization

of rational functions on curves gives rise to rational functions on metric graphs.

As in the algebraic setting, rational functions on metric graphs are linked to divisors. A

divisor D on a metric graph Γ is a finite formal sum with integer coefficients of points of

Γ. For any rational function f P RatpΓq, the corresponding divisor of zeros and poles is

defined by

divpfq :“
ÿ

x

ordxpfq pxq, with ordxpfq :“ ´
ÿ

νPTxpΓq

slopeνpfq,

where TxpΓq is the set of outgoing unit tangent vectors to Γ at x, and slopeνpfq is the slope

of f along ν at x. A divisor obtained in this way is called principal, and two divisors D1

and D2 whose difference D1 ´ D2 is principal are called linearly equivalent.

Each divisor D gives rise to a line bundle on Γ whose space of global sections is denoted

by RatpDq. Concretely, RatpDq is the set of f P RatpΓq such that divpfq ` D is effective
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(that is, has only non-negative coefficients). Contrary to the algebraic setting, RatpDq

is not a vector space. Nevertheless, Baker and Norine discovered a way to associate a

combinatorial notion of rank to RatpDq [BN07, MZ08, GK08]. This is defined as the

maximum integer among ´1 and integers r ě 0 such that for all points x1, . . . , xr in Γ, the

divisor D ´ px1q ´ ¨ ¨ ¨ ´ pxrq is linearly equivalent to an effective divisor. We refer to the

survey paper by Baker and Jensen [BJ16] for details, extensions, and several applications.

The results of the present chapter are motivated by the question of describing the tropical

limits of linear series, when the metric graph arises as the tropical limit of a one-parameter

family of smooth proper curves. In the next two sections, we describe two combinatorial

structures that allow to approach this question.

3.1.3 Rank functions on hypercubes

We first describe a combinatorial way of encoding intersection patterns of a flag arrangement.

Let r be a non-negative integer. We set rrs :“ t0, . . . , ru. For a positive integer δ, the

hypercube �
δ

r of dimension δ and width r is the product rrsδ.

We define a partial order ĺ on �
δ

r where for a pair of elements a, b in �
δ

r, we write a ĺ b

whenever for every j P t1, . . . , δu, we have aj ď bj. We define two operations _ and ^ by

taking the maximum and the minimum coordinate-wise, respectively: for a “ pa1, . . . , aδq

and b “ pb1, . . . , bδq in �
δ

r,

a _ b :“ pmaxpa1, b1q, . . . ,maxpaδ, bδqq, a ^ b :“ pminpa1, b1q, . . . ,minpaδ, bδqq.

A function f : �
δ

r Ñ Z is called supermodular if for every two elements a and b, we have

fpaq ` fpbq ď fpa _ bq ` fpa ^ bq.

A function ρ : �
δ

r Ñ Z is called a (hypercube) rank function if it is supermodular and, in

addition, satisfies the following conditions:

(1) For every i P t1, . . . , δu, and each t P rrs, we have ρpt e iq “ r ´ t.

(2) ρ is non-increasing with respect to the partial order of �
δ

r, that is, if a ĺ b, then

ρpbq ď ρpaq.

(3) The values of ρ are in the set t´1, 0, 1, . . . , ru.

The term “hypercube rank function” defined above is borrowed from [AG24] (Chapter 2)

which defines combinatorial objects called “matricubes”, consisting of a ground set endowed

with a rank function which is submodular and verifies a set of properties reminiscent of

the ones listed above. In fact, this is an abuse of language because matricubes are more

general objects than the rank functions we define in the present chapter. Additionally, it is

more convenient for us in this chapter to work with supermodular functions, as it allows

to considerably simplify the presentation. However, there is a simple way to transform a
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supermodular function into a submodular function by an operation we call conjugation. This

transforms the hypercube rank functions of this section into matricubes on the same ground

set. For more details about the link between hypercube rank functions and matricubes,

see Section 3.2.1, and more specifically Proposition 3.2.3. Using this, we can transfer to

the setting of hypercube rank functions those basic combinatorial properties of matricubes

proved in [AG24] (Chapter 2) which are useful in the present chapter; however, for this

chapter to be self-contained, we fully reprove them here in the language of hypercube rank

functions.

The geometric situation to have in mind in order to interpret hypercube rank functions

is a vector space H of dimension r` 1 over some field κ, and a collection of δ complete flags

F‚
1 , . . . ,F

‚
δ . That is, for j “ 1, . . . , δ, F ‚

j consists of a chain of vector subspaces

H “ F0
j Ľ F1

j Ľ ¨ ¨ ¨ Ľ Fr´1
j Ľ Fr

j Ľ p0q,

with codimpFi
jq “ i. In this case, the function ρ : �

δ

r Ñ Z defined by

ρpa1, . . . , aδq :“ dimκpFa1
1 X ¨ ¨ ¨ X Faδ

δ q ´ 1

is a rank function. Hypercube rank functions appearing in this way are called representable.

On a smooth projective curve, given a finite dimensional vector space of rational functions,

taking the orders of vanishing at a point leads to a complete flag (see Section 3.2.2). Such

flags appear naturally in the degeneration of linear series, see Section 3.9.2.

We say that a point a of the hypercube is a jump of the rank function ρ if we have

ρvpa ` ejq ă ρvpaq whenever a ` ej is in the hypercube. Here, ej is the point whose j-th

coordinate is equal to one and whose other coordinates are all zero. In the representable

case, the jumps correspond to extremal points beyond which the dimension drops. It turns

out that the jumps uniquely determine the rank function.

3.1.4 Slope structures on graphs and metric graphs

Slope structures encode the information regarding possible slopes of functions arising from

tropicalizations of linear series.

For a combinatorial graph G “ pV,Eq, we denote by E the set of all the orientations of

edges of G, that is, each edge tu, vu P E gives rise to two oriented edges uv and vu in E.

We suppose that G is simple, i.e., has no parallel edges. In our setting, this can be assumed

without loss of generality, because we may subdivide the parallel edges and the loops of a

non-simple graph to make it simple. The subset Ev Ď E is the set of all the orientations vu

of edges tv, uu in G. For a vertex v in G, we denote by dv the valence of v in the graph;

note that dv “ |Ev|.

A slope structure S of width r on G, or simply an r-slope structure, is the data of

• For each oriented edge e “ uv P E of G, a collection Se of r ` 1 integers se0 ă se1 ă

¨ ¨ ¨ ă ser subject to the requirement that suvi ` svur´i “ 0 for each edge tu, vu P E.
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• For each vertex v of G, a rank function ρv on the hypercube �
dv

r .

We denote by Sv Ď
ś

ePEv
Se the set of all points sa “ psa1 , . . . , saδq for a “ pa1, . . . , aδq

a jump of the rank function ρv. Since jumps determine the rank function, using the above

notation, we then write S “ tSv;SeuvPV,ePE.

Let Γ be a metric graph. By an r-slope structure on Γ, we mean an r-slope structure S

on a simple graph model G “ pV,Eq of Γ that we naturally extend to any point of Γ by

associating to every point x P Γ ∖ V the so-called standard rank function, see Section 3.2.2.

More precisely, for every point x P Γ ∖ V and each outgoing unit tangent vector ν P TxpΓq,

we define Sν “ Suv, where uv is the unique oriented edge of G which is parallel to ν, and

define Sx Ď Suv ˆ Svu as the set of all pairs psuvi , s
vu
j q with i ` j ď r.

Taking into account the slope structure S, we can define a relevant notion of rational

functions. A function f in RatpΓq is said to be compatible with S if the two conditions piq

and piiq below are verified. First,

piq for any point x P Γ and any tangent direction ν P TxpΓq, the outgoing slope of f

along ν lies in Sν .

Denote by Bxpfq the vector in
ś

νPTxpΓq
Sν which consists of outgoing slopes of f along

ν P TxpΓq. Then the second condition is:

piiq for any point x P Γ, the vector Bxpfq belongs to Sx.

We denote by RatpΓ,Sq Ă RatpΓq, or simply RatpSq if Γ is understood, the set of

rational functions on Γ compatible with S. Endowed with the operations c d f :“ f ` c

and f ‘ g :“ minpf, gq for every f, g P RatpSq and c P R, RatpSq has the structure of a

tropical semimodule. Moreover, it is naturally endowed with the norm } ¨ }8.

If D is a divisor on Γ, we denote by RatpD,Sq :“ RatpDq X RatpSq the set of all

f P RatpSq such that D ` divpfq is effective. This is a sub-semimodule of RatpSq (see

Proposition 3.5.1).

3.1.5 Admissible semimodules and combinatorial limit linear series

A semimodule M Ď RatpDq is called admissible of rank r if it is closed for the topology

induced by } ¨ }8 (equivalently, for that of point-wise convergence), and if there exists an

r-slope structure S such that M Ď RatpD,Sq and the following holds:

p˚˚q For every effective divisor E of degree r, there exists f P M such that

(1) For every point x P Γ, ρxpBxpfqq ě Epxq; and in addition,

(2) D ` divpfq ´ E ě 0.
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In the degeneration picture for linear series in a one-parameter family of smooth projective

curves, viewing x inside the Berkovich analytification of the generic fiber in the family,

the first condition reflects the dimension counts underlying the reduction at x of rational

functions in the linear series, imposing vanishing conditions along the incident branches.

The second one is the analogue of the Baker–Norine rank condition in this setting.

In order to define a notion of linear series, we use moreover the concept of tropical

rank introduced by Jensen and Payne in their work on applications of tropical divisor

theory to the study of the geometry of generic curves [JP14, JP16] (for the definition, see

Section 3.5.1).

A (combinatorial limit) linear series of rank r and degree d, more simply called a grd,

is a pair pD,Mq consisting of a divisor D of degree d and an admissible semimodule

M Ď RatpDq of rank r which is moreover finitely generated and has tropical rank r.

Here, we mean by “finitely generated” that there exist finitely many elements of M which

generate M using the tropical operations of scalar addition and minimum; the tropical

rank is defined as the maximal number of tropically independent elements of M . See

Sections 3.5.3 and 3.6.1 for more details.

If M is a grd, the linear system |M | is the space of all effective divisors E on Γ of the

form D ` divpfq for f P M .

We also define refined linear series to be those linear series which in addition verify the

following stronger version of p˚˚q:

p ˚
˚˚ q For any effective divisor E on Γ of degree s ď r, there exists a linear series ME of

rank r ´ s associated to pD,SEq with SE a slope substructure of S of rank r ´ s, such

that for every function f P ME, we have

(1) For every point x P Γ, ρxpBxpfqq ě Epxq; and in addition,

(2) D ` divpfq ´ E ě 0.

3.1.6 Basic properties

Here is a list of interesting properties satisfied by slope structures and linear series.

(1) The vector of allowed slopes defined by a (crude) linear series is non-increasing along

each edge (Proposition 3.4.3).

That is, as we move from one extremity of an edge to the other, the coordinates of

the vector psν0, . . . , s
ν
rq do not increase. This property turns out to be crucial in proving

finiteness theorems about slopes structures underlying linear series on metric graphs.

(2) The space of rational functions RatpD,Sq is a semimodule over R (Proposition 3.5.1).

This is a consequence of the supermodularity of rank functions.
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(3) If M Ď RatpD,Sq is a closed sub-semimodule, then it is generated by its extremal

points (Proposition 3.5.7). Besides, fixing a function f P M and taking another

g P M , testing on a finite number of points is sufficient to determine whether g “ f

(Lemma 3.5.10).

Extremal points are elements of the semimodule which cannot be obtained as the minimum

of other elements of M in a non-trivial way, see Section 3.5.4. The above result yields an

effective method to check whether functions of M are equal by checking equality at finitely

many points.

3.1.7 Realization property for slope vectors

An important feature of admissible semimodules is the following realization property for

jumps, proved in Section 3.5.6.

Theorem 3.1.2 (Realization of slope vectors). Let pD,Sq be a pair consisting of a divisor

D and a slope structure S of width r on Γ, and let M Ď RatpD,Sq be an admissible

semimodule of rank r. Let v be a point of Γ and let a be a jump of ρv. Then, there exists

f P M such that Bvpfq “ sa.

One immediate consequence is that S can be entirely retrieved from M .

Corollary 3.1.3. The data of an admissible semimodule M Ă RatpDq determines the slope

structure S uniquely.

3.1.8 Finiteness of slope structures

Let Γ be a metric graph, let D be a divisor on Γ. Let G “ pV,Eq be a combinatorial

graph underlying Γ and supporting D. Let M Ă RatpDq be an admissible semimodule

with underlying slope structure S defined on some model of Γ (possibly different from G).

We prove in Proposition 3.4.3 that the vector of slopes in S is non-increasing along each

edge. That is, as we move from one extremity of an edge to the other, the coordinates of

the vector psν0, . . . , s
ν
rq do not increase. This property turns out to be crucial in proving the

following finiteness theorem (see Section 3.4.2 for a more general result).

Theorem 3.1.4 (Finiteness of slopes structures). For each integer r, there are finitely

many subdivisions H1, . . . , Hk of G, and finitely many slope structures S1, . . . ,Sk of rank

r defined on them, respectively, such that every admissible semimodule M Ă RatpDq with

underlying slope structure S has a combinatorial model Hj among H1, . . . , Hk such that

S “ Sj.

This can be regarded as a first result in the direction of defining the moduli space of grd’s

over the moduli space of tropical curves of given genus.
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3.1.9 Classification of g1d’s

In the case r “ 1, we prove in Section 3.8 that the data of a g1d on Γ is equivalent to the

data of a finite harmonic map to a tree.

Theorem 3.1.5 (Classification of g1d’s on metric graphs). Let pD,Mq be a g1d on Γ with D

a divisor of degree d. Suppose that the constant functions are in M . Then, there exist a

tropical modification α : rΓ ÝÑ Γ of Γ and a finite harmonic morphism φ : rΓ Ñ T of degree

d to a metric tree T such that M is the preimage of the unique g11 on T , restricted to Γ.

Using the smoothing theorems proved in [ABBR15a, ABBR15b] for finite harmonic

morphisms to trees, we deduce the following smoothing theorem for combinatorial g1d’s (see

below for the tropicalization, and Section 3.9.2).

Theorem 3.1.6 (Smoothing theorem for g1d’s). A g1d pD,Mq on Γ is smoothable, that is, it

is the tropicalization of a g1d from a smooth curve.

The question of the existence of harmonic morphisms to metric trees of smallest degree,

called geometric gonality, is thoroughly studied by Draisma and Vargas [DV21a], and by

Cool and Draisma [CD18]. The above theorem provides an algebraic characterization of

geometric gonality, as the least integer d such that the metric graph admits a g1d, see [DV21b]

and the references there for the gonality of metric graphs.

In order to prove the above theorem, we generalize in Section 3.7 the theory of reduced

divisors to the setting of linear series, consider the map defined by reduced divisors in

Section 3.8, and connect it to the tropical rank to conclude.

3.1.10 Tropicalization

We now discuss the connection between linear series on algebraic curves and their combina-

torial counterparts. We assume familiarity with the Berkovich theory of algebraic curves,

see Section 3.9 and [BJ16] for more details.

Let K be an algebraically closed field with a non-trivial non-Archimedean valuation val

and C be a smooth proper curve over K. We assume that K is complete with respect to

val and we denote by κ the residue field of K, which is also algebraically closed. Denote by

Can the Berkovich analytification of C. Let Γ Ă Can be a metric graph skeleton of Can.

For each point x P Γ, let vx be the valuation on the function field KpCq defined by x. For

each nonzero rational function f P KpCq, the tropicalization of f , denoted troppfq : Γ Ñ R,

is defined by troppfqpxq “ vxpfq for all x P Γ. This is a piecewise affine function on Γ with

integral slopes.

Let D be a divisor of degree d and rank at least r on C, and pOpDq,Hq be a grd on C, so

H is an pr` 1q-dimensional vector subspace of H0pC,OpDqq, the space of global sections of

the line bundle associated to D. We can identify H with a subspace of KpCq of dimension

r ` 1. We define the tropicalization

M :“ troppHq “
␣

troppfq
ˇ

ˇ f P H∖ t0u
(

.
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The following theorem is proved in Section 3.9.2.

Theorem 3.1.7 (Tropicalization of linear series). Notation as above, let pOpDq,Hq, H Ď

H0pC,OpDqq Ă KpCq, be a grd on C. Let Γ be a skeleton of Can. The slopes of rational

functions F in M along edges in Γ yield a well-defined slope structure S on Γ. Let D be

the tropicalization of D to Γ. Then, M Ď RatpD,Sq is a refined grd on Γ.

In particular, the tropicalization troppHq is finitely generated (see Proposition 3.9.4).

A pluricanonical linear series of rank r and order n is a vector subspace H Ď H0
`

C, ωbn
C

˘

of rank r, i.e., of dimension r ` 1, with ωC the canonical sheaf of C.

Using Temkin metrization [Tem16], one can define tropicalizations of subspaces of global

sections of pluricanonical sheaves. We explain how they fit into our theory of combinatorial

limit linear series.

Let Γ be the metric graph skeleton of the Berkovich analytification Can, and K the

canonical divisor of Γ. The following theorem is proved in Section 3.10.3.

Theorem 3.1.8 (Tropicalization of pluricanonical linear series). Let H Ď H0
`

C, ωbn
C

˘

be a

pluricanonical linear series of rank r and order n. Let

M :“ troppHq “
␣

troppαq
ˇ

ˇ α P H∖ t0u
(

.

Then M Ď RatpnK,Sq, for the pluricanonical slope structure S defined by H. Moreover,

M is a refined grd on Γ, for d “ np2g ´ 2q.

The finiteness theorem implies that there are only finitely many combinatorial types

for pluricanonical slope structures of order n on augmented metric graphs Γ of a given

combinatorial type. It is an interesting open question to classify all the pluricanonical slope

structures on a given graph G.

3.1.11 Discussion of applications

The formalism of this chapter has applications to the geometry of curves. In particular,

the equidistribution theorem proved in [Ami14] is a consequence of the formalism of slope

structures and the behavior of reduced divisors in a given combinatorial linear series. The

results of [FJP20] also use slope structures and the notion of tropical independence, the

underlying concepts of the materials presented in this chapter. In a joint work with Amini

and Richman [AGR23] (Chapter 4), we apply the formalism of this chapter to associate a

Weierstrass weight to each connected component of the naive Weierstrass locus of a given

divisor on a metric graph. This solves a problem posed by Matt Baker from his original

work on the specialization of linear series from curves to graphs [Bak08]. Using these ideas,

we explain the discrepancy between the naive counting of Weierstrass points on metric

graphs in the work of Richman [Ric24] and the correct count of multiplicities.

The hypercube rank functions considered here are linked to matricubes and a theory

of combinatorial flag arrangements developed in a companion work [AG24] (Chapter 2),

which provide a generalization of the theory of matroids. For more information about the

connection, we refer to Section 3.2.1, and more specifically to Proposition 3.2.3.
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3.1.12 Further notation

For a subset S Ď Rd, d P N, and an element a P Rd, we define S ` a as the set of all

elements b ` a for b P S. For the rest of the article, Λ will denote a divisible subgroup of

R – a group is called divisible when multiplication by every positive integer n is surjective.

Examples of such Λ are Q or R itself.

A Λ-metric graph, or Λ-rational metric graph, is a metric graph Γ whose edge lengths

are Λ-rational, that is, lie in Λ. A point x P Γ is said to be Λ-rational if its distances to

the endpoints of its incident edges are in Λ. In the case Γ is Λ-rational, a divisor whose

support is made up of Λ-rational points is said to be a Λ-rational divisor. We also denote

by RatΛpΓq the set of functions of RatpΓq which only change slope at Λ-rational points of Γ

and which take a value in Λ on some (equivalently, on every) vertex v of Γ.

We denote by T the semifield of tropical numbers, which is the set R endowed with the

internal operations of tropical addition ‘ :“ min and tropical multiplication d :“ `. A

(divisible) subgroup Λ endowed with the operations ‘ and d defines a sub-semifield of T.

3.2 Rank functions on hypercubes

3.2.1 Definition

Let r be a non-negative integer and rrs “ t0, 1, . . . , ru. For a positive integer δ, the hypercube

�
δ

r of dimension δ and width r is the product rrsδ. We denote the elements of �
δ

r by

vectors a “ pa1, . . . , aδq, for 0 ď a1, . . . , aδ ď r.

The hypercube �
δ

r is endowed with a natural partial order ĺ defined by declaring a ĺ b

for elements a “ pa1, . . . , aδq and b “ pb1, . . . , bδq in �
δ

r, if aj ď bj for all j P t1, . . . , δu. The

smallest and largest elements of �
δ

r with respect to this partial order are 0 :“ p0, . . . , 0q

and r “ pr, . . . , rq, respectively. Moreover, there is a lattice structure on �
δ

r, where the two

operations of join _ and meet ^ are defined by

a _ b “ pmaxpa1, b1q, . . . ,maxpaδ, bδqq, a ^ b “ pminpa1, b1q, . . . ,minpaδ, bδqq @a, b P �
δ

r.

A function f : �
δ

r Ñ Z is called supermodular if for every pair of elements a and b, we

have

fpaq ` fpbq ď fpa _ bq ` fpa ^ bq.

If the inequalities above are all reversed, then we say that f is submodular. We define the

conjugate of f , denoted by f̄ , as the integer-valued function on the hypercube �
δ

r given by

f̄paq :“ r ´ fpaq @ a P �
δ

r.

Note that ¯̄f “ f . Moreover, f is supermodular, resp. submodular, if, and only if, f̄ is

submodular, resp. supermodular.

In this chapter, we will be working with a special kind of supermodular function on �
δ

r.

For each integer i P t1, . . . , δu, denote by e i the vector whose coordinates are all zero except

the i-th coordinate, which is equal to one. For t P rrs, the vector t e i lies in �
δ

r.
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Definition 3.2.1 (Hypercube rank function). A function ρ : �
δ

r Ñ Z is called a rank

function if it satisfies the following conditions:

(HR1) for every i P t1, . . . , δu, and each t P rrs, we have ρpt e iq “ r ´ t.

(HR2) ρ is non-increasing with respect to the partial order of �
δ

r, that is, if a ĺ b, then

ρpbq ď ρpaq.

(HR3) ρ is supermodular.

(HR4) The values of ρ are in the set t´1, 0, 1, . . . , ru.

The integer ρpaq, for a P �
δ

r, is called the rank of a. A hypercube �
δ

r endowed with a rank

function will be called a ranked hypercube. ˛

Remark 3.2.2. The above properties imply that if a P �
δ

r has rank j, then ai ď r ´ j for

all i P t1, . . . , δu. In particular, 0 is the only element of rank r in �
δ

r. ˛

The following proposition relates hypercube rank functions to matricubes, defined

in [AG24] (Chapter 2).

Proposition 3.2.3. Let ρ : �
δ

r Ñ Z be an integer-valued function, and r “ ρ̄ be its

conjugate. The following are equivalent:

• ρ is a hypercube rank function in the sense of Definition 3.2.1.

• r is the rank function of a simple matricube of rank r or r` 1, in the sense of [AG24]

(Chapter 2).

Proof. Properties (HR1)-(HR2)-(HR3) are equivalent to the axioms (R1˚)-(R2)-(R3), re-

spectively, in the definition of matricubes in [AG24] (Chapter 2). Property (HR4) for

ρ is equivalent to requiring M being of rank r or r ` 1, via [AG24, Proposition 2.4]

(Proposition 2.2.4 in the present manuscript).

Remark 3.2.4. It turns out that working with hypercube rank functions, instead of their

conjugate matricube rank functions, considerably simplifies the mathematical expressions

appearing in the treatment of combinatorial linear series. For this reason, we prefer them.

We do not use any non-trivial result from [AG24] (Chapter 2). ˛

Although this is not used in the following, we mention that, combining the above result

with [AG24, Theorem 7.1] (Theorem 2.7.1 in the present manuscript), we get the following

corollary.

Corollary 3.2.5. The data of a hypercube rank function ρ on �
δ

r is equivalent to the data

of a permutation array in the terminology of [EL00a, EL00b].

In order to give examples in low dimension, we choose the following notational convention.
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Convention 3.2.6 (Cases δ “ 1, 2, 3). In this article, for δ “ 1, a function on �
1

r “ rrs

is described by a tuple with r ` 1 entries pt0, . . . , trq, which means that the value of the

function on the i-th entry of �
1

r is ti.

In the same way, for δ “ 2, a function on �
2

r will often be described by an array of size

pr ` 1q ˆ pr ` 1q, ptijq0ďi,jďr, which means that the function takes value tij on pi, jq P �
2

r.

We choose the convention that the first direction is horizontal, the second direction is

vertical, and the origin is the bottom left-hand corner.

When δ “ 3, a function defined on �
3

r will be specified by r` 1 arrays R0, . . . , Rr of size

pr ` 1q ˆ pr ` 1q, where Rk describes the values of the function on �
2

r ˆ tku Ď �
3

r. ˛

Here are two examples of two-dimensional rank functions, with r “ 3 and r “ 4

respectively.
¨

˚

˚

˚

˝

0 0 0 0

1 1 0 0

2 2 1 0

3 2 1 0

˛

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˝

0 0 0 0 ´1

1 1 1 0 ´1

2 2 2 1 0

3 2 2 1 0

4 3 2 1 0

˛

‹

‹

‹

‹

‹

‚

3.2.2 Rank functions induced by complete flags

Let r be a non-negative integer, and let H be a vector space of dimension r ` 1 over some

field κ. A complete flag of H consists of a chain of vector subspaces

H “ F0
Ľ F1

Ľ ¨ ¨ ¨ Ľ Fr´1
Ľ Fr

Ľ Fr`1
“ p0q,

where, for each i P rr ` 1s, Fi is a vector subspace of codimension i in H.

Let δ be a positive integer, and let F‚
1 , . . . ,F

‚
δ be a collection of δ complete flags of H.

Define the function ρ : �
δ

r Ñ Z by

ρpa1, . . . , aδq :“ dimκpFa1
1 X ¨ ¨ ¨ X Faδ

δ q ´ 1. (3.1)

Proposition 3.2.7. The function ρ defined in (3.1) is a rank function on �
δ

r.

Proof. This is [AG24, Proposition 2.6] (Proposition 2.2.6 in the present manuscript). Let a

and b be two points of �
δ

r, and let x :“ a ^ b and y :“ a _ b. We have an injection
`

Fa1
1 X ¨ ¨ ¨ X Faδ

δ

˘L`

Fy1
1 X ¨ ¨ ¨ X Fyδ

δ

˘

ãÑ
`

Fx1
1 X ¨ ¨ ¨ X Fxδ

δ

˘L`

Fb1
1 X ¨ ¨ ¨ X Fbδ

δ

˘

,

from which, comparing the dimensions, we get ρpaq ´ ρ
`

y
˘

ď ρpxq ´ ρpbq. This proves

the supermodularity of ρ. Properties (HR1)-(HR2)-(HR4) in Definition 3.2.1 are trivially

verified.

A hypercube rank function ρ on �
δ

r is called representable over a field κ if it comes from

a collection of δ complete flags F‚
1 , . . . ,F

‚
δ as above, in a κ-vector space H of dimension

r ` 1.

This is equivalent to the representability of the corresponding matricube. Examples of non-

representable rank functions can therefore be obtained from examples of non-representable

matricubes of rank r or r ` 1 over �
δ

r.

131



Standard rank functions

The simplest kind of rank function is the following.

Definition 3.2.8 (Standard rank function). The standard rank function of dimension δ

and width r is the rank function ρst on �
δ

r given by

ρst
paq :“ maxt´1, r ´ a1 ´ ¨ ¨ ¨ ´ aδu @a P �

δ

r. ˛

For instance, the standard rank function of dimension 2 and width 4 is given by

¨

˚

˚

˚

˚

˚

˝

0 ´1 ´1 ´1 ´1

1 0 ´1 ´1 ´1

2 1 0 ´1 ´1

3 2 1 0 ´1

4 3 2 1 0

˛

‹

‹

‹

‹

‹

‚

Via Proposition 3.2.3, a rank function ρ on �
δ

r is standard if, and only if, its conjugate

r “ ρ̄ is the rank function of the uniform matricube Ur,r`1, see [AG24] (Chapter 2) for the

definition.

Proposition 3.2.9. Every rank function ρ on the hypercube �
δ

r dominates the standard

rank function ρst. That is, for every a P �
δ

r, we have ρpaq ě ρstpaq.

Proof. It will be enough to show that for every a “ pa1, . . . , aδq P �
δ

r, we have ρpaq ě

r´ a1 ´ ¨ ¨ ¨ ´ aδ. This can be proved by induction on δ, using the supermodularity of ρ.

Remark 3.2.10. The standard rank function is induced by complete flags, over an infinite

field, which are in general relative position, that is, whose intersection patterns have the

smallest possible dimensions. ˛

Geometric rank functions

Let C be a smooth proper curve over an algebraically closed field κ. Let κpCq be the

function field of C, and let H Ă κpCq be a vector subspace of rational functions of dimension

r ` 1 over κ. Each κ-point p of C gives a complete flag F‚
p of H by considering the orders

of vanishing at p of functions in H. Define Sp :“
␣

ordppfq
ˇ

ˇ f P H ∖ t0u
(

. This is a finite

set of cardinality r ` 1. Denote by sp0 ă ¨ ¨ ¨ ă spr its elements, enumerated in increasing

order. The flag F‚
p is defined by setting, for j P rrs,

Fj
p :“

␣

f P H ∖ t0u
ˇ

ˇ ordppfq ě spj
(

Y t0u.

Each Fj
p has codimension j in H.

Let now δ be a positive integer, and let A “ tp1, . . . , pδu be a collection of δ distinct

κ-points on C. By the construction above, each point pi leads to a complete flag F‚
i . Letting

132



Si :“
␣

ordpipfq
ˇ

ˇ f P H ∖ t0u
(

, and enumerating the elements of Si in increasing order

si0 ă ¨ ¨ ¨ ă sir, the flag F‚
i is defined by setting

Fj
i :“

␣

f P H ∖ t0u
ˇ

ˇ ordpipfq ě sij
(

Y t0u.

This leads to a rank function ρ on the hypercube �
δ

r using (3.1) in Section 3.2.2.

A rank function ρ on �
δ

r that arises from the above construction for a curve C over an

algebraically closed field κ is called geometric.

3.2.3 Jumps of a rank function

For a P �
δ

r, let Ia be the set of all i P t1, . . . , δu such that a ` e i P �
δ

r.

Proposition 3.2.11. Let ρ be a rank function on �
δ

r. For an element a P �
δ

r and i P Ia,

we have ρpaq ´ 1 ď ρpa ` e iq ď ρpaq.

Proof. The first inequality results from the supermodularity property applied to the vectors

a and pai ` 1q e i, using Property (HR1) in Definition 3.2.1; the second inequality comes

from the non-increasing property of ρ.

The proposition leads to the following definition.

Definition 3.2.12 (Jumps of a rank function). Let ρ be a rank function on �
δ

r. A point a

of �
δ

r is called a jump for ρ if

(1) ρpaq ě 0, and

(2) for every i P t1, . . . , δu such that a ` e i belongs to �
δ

r, we have ρpa ` e iq “ ρpaq ´ 1.

We denote by Jρ the set of jumps of ρ. ˛

Here are three rank functions of dimension two, with r “ 3 for the first one, and r “ 4

for the second and third ones. The jumps of each rank function are depicted in blue.

¨

˚

˚

˚

˝

0 0 0 0

1 1 0 0

2 2 1 0

3 2 1 0

˛

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˝

0 0 0 0 ´1

1 1 1 0 ´1

2 2 2 1 0

3 2 2 1 0

4 3 2 1 0

˛

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˝

0 ´1 ´1 ´1 ´1

1 0 ´1 ´1 ´1

2 1 0 ´1 ´1

3 2 1 0 ´1

4 3 2 1 0

˛

‹

‹

‹

‹

‹

‚

The set of jumps of a rank function has the following properties.

Proposition 3.2.13. The set of jumps Jρ of a rank function ρ on �
δ

r is stable under ^.

Proof. Let a, b P Jρ and let c “ a ^ b. The non-increasing property of ρ ensures that

ρpcq ě 0. Let i P t1, . . . , δu be such that c ` e i belongs to �r. We have to show that

rpc ` e iq “ rpcq ` 1. By symmetry, we can suppose that ai ď bi, that is, ci “ ai. Since a

is a jump, we have rpa ` e iq “ rpaq ` 1. We conclude by applying the supermodularity

property to the points a ` e i and c.
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Proposition 3.2.14. The set of jumps Jρ is a graded poset. The grading is given by the

conjugate ρ̄. In particular, if a ă b are two distinct jumps of ρ, then we have ρpaq ą ρpbq.

Proof. It is sufficient to show that if a ă b are two distinct jumps of ρ with ρpbq ď ρpaq ´ 2,

then there exists a jump a ă c ă b such that ρpcq “ ρpaq ´ 1. Let i be an index such that

ai ă bi, and let x :“ a ` e i. Since a is a jump, we have ρpxq “ ρpaq ´ 1. Let c be the

meet of all the points c1 of �
δ

r verifying c1 ľ x and such that either c1 is a jump or c1 “ r.

Since x ĺ b and b is a jump, c is also a jump by virtue of Proposition 3.2.13, and moreover

a ă c ĺ b. It is easy to see, by induction on the ℓ1-norm of x, that ρpcq “ ρpxq “ ρpaq ´ 1,

which implies that c ă b. This shows that c is as desired and that the poset Jρ is graded.

By construction, the grading is given by ρ̄.

The following fact will be useful in the sequel.

Fact 3.2.15. Let ρ be a rank function on �
δ

r. If r is a jump for ρ, then it is the only

element of Jρ having some coordinate equal to r. ˛

Proof. For the sake of a contradiction, let x ‰ r be an element of Jρ with some coordinate

equal to r, say the first one. By (1) in Definition 3.2.12, we have ρprq ě 0. The inequality

x ľ r e1 implies that ρpxq ď 0, and Proposition 3.2.14 implies ρprq ă ρpxq ď 0, a

contradiction.

Remark 3.2.16. Let M be the matricube on the ground set �
δ

r defined by the conjugate

r “ ρ̄. The set of jumps Jρ coincides with the set of flats F pM q of M if rpM q “ r and

with F pM q ∖ tru if rpM q “ r ` 1. Propositions 3.2.13 and 3.2.14 can be deduced from

the analogue properties of flats of matricubes. For the sake of completeness, we provided

the short proofs of these results. Note that contrary to the set of flats of matricubes, the

set of jumps is not necessary a lattice (this happens only in the case rpM q “ r ` 1). ˛

3.2.4 Partition Lemma

In this section, we prove a result about hypercube rank functions which turns out to be

useful in the sequel.

Let ρ be a rank function on �
δ

r. The point 0 is the only point of �
δ

r whose image by

ρ is r (Remark 3.2.2). Besides, the set of jumps Jρ of ρ contains the point 0 (because

ρpe iq “ r ´ 1 for all i). Every jump of ρ of rank r ´ 1 has only coordinates equal to zero or

one (Remark 3.2.2), among which at least one is equal to one. For each a P Jρ such that

ρpaq “ r´ 1, denote by Pa the subset of t1, . . . , δu consisting of all the indices i with ai “ 1,

that is, Pa is the support of a. Denote by Pρ the collection of all sets Pa for a P Jρ ∖ t0u

verifying ρpaq “ r ´ 1. We have the following proposition.

Lemma 3.2.17 (Partition Lemma). Notation as above, Pρ provides a partition of t1, . . . , δu.
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Proof. We first prove that the elements of Pρ are pairwise disjoint. Let a and b be two

distinct elements of Jρ ∖ t0u with ρpaq “ ρpbq “ r ´ 1. Since a ­ĺ b and b ­ĺ a, we have

ρpa _ bq ď r ´ 2. Using the supermodularity property for a and b, we get ρpa ^ bq ě r and

therefore ρpa^ bq “ r. This forces a^ b “ 0, from which we can conclude that Pa X Pb “ ∅.

It remains to prove that the sets Pa cover t1, . . . , δu. For an i P t1, . . . , δu, we need to

show the existence of a P Jρ with ρpaq “ r ´ 1 and ai “ 1. We define a as the meet of all

the jumps a1 P Jρ such that a1 ľ e i. As in the proof of Proposition 3.2.14, a is well-defined,

belongs to Jρ and has rank rpaq “ rpe iq “ r ´ 1. The non-increasing property of ρ implies

that ai ď 1, as desired.

Remark 3.2.18. In the case r “ 1, in the construction above, the condition ρpaq “ r ´ 1

is automatic. This will be crucially used in Section 3.8. ˛

3.3 Slope structures

In the following sections, we define combinatorial linear series on metric graphs with the

help of an auxiliary data called a slope structure. A slope structure is the data of a family of

hypercube rank functions of given width r, parametrized by the points of the metric graph,

of varying dimension given by the valences of points, and verifying a finiteness condition.

3.3.1 Slope structures on graphs

Let first G “ pV,Eq be a simple graph. We denote by E the set of all the orientations of

edges of G, so that for an edge tu, vu in E, we have two orientations uv, vu P E. For an

oriented edge e “ uv P E, we call u the tail and v the head of e. We denote by e “ vu the

oriented edge in E with reverse orientation. For a vertex v P V , we denote by Ev Ď E the

set of oriented edges in E which have tail v, that is, all vu P E for edges tv, uu P E.

A slope structure S “ tSv;SeuvPV,ePE of width r on G, or simply an r-slope structure, is

the data of

(SLS1) For every oriented edge e “ uv P E of G, a collection Se of r ` 1 integers

se0 ă se1 ă ¨ ¨ ¨ ă ser

subject to the requirement that suvi ` svur´i “ 0 for every edge tu, vu P E.

(SLS2) For every vertex v of G, a rank function ρv on the hypercube �
dv

r .

If Jρv denotes the set of jumps of ρv (see Definition 3.2.12), we denote by Sv Ď
ś

ePEv
Se

the set of all points sa for a P Jρv .

Here, for a point a “ paeqePEv of the hypercube, the element sa P
ś

ePEv
Se denotes the

point in the product which has coordinate at e P Ev equal to seae . In other words, Sv fits
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into the following natural commutative diagram:

Jρv �
dv

r

Sv ΠePEvS
e

aÞÑsa aÞÑsa

We will sometimes need to separate the data relative to edges and the data relative to

vertices. In this case, we will denote by Se the data of a set of prescribed slopes on each

edge, and by Sv the data of a rank function for each vertex.

3.3.2 Slope structures on metric graphs

Let now Γ be a metric graph. By an r-slope structure on Γ we mean an r-slope structure

S on a simple graph model G “ pV,Eq of Γ, extended to each point of Γ as follows.

For every point x and each outgoing unit tangent vector ν P TxpΓq, there exists a unique

oriented edge uv of G which is parallel to ν. Define Sν “ Suv. Also, for every point

x P Γ ∖ V in the interior of an edge tu, vu, define ρx to be the standard rank function on

�
2

r. In particular, Sx Ď Suv ˆ Svu can be identified with the set of all pairs psuvi , s
vu
j q with

i ` j ď r. We call the collection
␣

Sx;Sν
ˇ

ˇ x P Γ, ν P TxpΓq
(

a slope structure of width r,

or simply an r-slope structure on Γ. We denote it by SΓ, or simply S, if there is no risk

of confusion. We extend the notation Se and Sv in the natural way. Note that a slope

structure on a metric graph can arise from choices of slope structures on different graph

models of Γ.

Example 3.3.1. We give an example of a 2-slope structure on a metric graph. Consider

the metric graph Γ depicted below, with edges of arbitrary positive lengths.

u v

Figure 3.1: An example of a 2-slope structure on the circle.

Let s0 ă s1 ă s2 and s1
0 ă s1

1 ă s1
2 be two sets of distinct integers. We define Se by

allowing slopes s0 ă s1 ă s2 on the top edge and s1
0 ă s1

1 ă s1
2 on the bottom edge. We

define Sv by choosing the rank functions at u and v to be given by the array

¨

˝

0 0 0

1 1 0

2 1 0

˛

‚

(jumps depicted in blue). The rank functions at all the other points of Γ are standard. This

fully describes a 2-slope structure S on Γ. ˛
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3.3.3 Rational functions compatible with a slope structure

We define a notion of rational function on metric graphs compatible with a slope structure.

Let Γ be a metric graph and let S “
␣

Sx;Sν
ˇ

ˇ x P Γ, ν P TxpΓq
(

“ pSe,Svq be a slope

structure of width r on Γ. Recall that we denote by RatpΓq the set of continuous piecewise

affine functions f : Γ Ñ R with integral slopes. For each point x P Γ, and each ν P TxpΓq,

we denote by slopeνpfq the slope of f at x along ν.

A function f in RatpΓq is said to be compatible with S if the two conditions piq and piiq

below are verified:

piq for each point x P Γ and each ν P TxpΓq, the outgoing slope of f along ν lies in Sν .

Denote by

Bxpfq P
ź

νPTxpΓq

Sν , Bxpfqpνq “ slopeνpfq @ ν P TxpΓq

the vector in
ś

νPTxpΓq
Sν with ν-coordinate consisting of the outgoing slope of f along

ν P TxpΓq. Then, the second condition is:

piiq for every point x P Γ, the vector Bxpfq belongs to Sx.

We denote by RatpΓ,Sq, or simply RatpSq if there is no risk of confusion, the space of

rational functions on Γ compatible with S. We also denote by RatpΓ,Seq or RatpSeq the

space of rational functions satisfying piq.

If Γ is Λ-rational, we define the spaces RatΛpΓ,Sq, RatΛpΓ,Seq and RatΛpΓ,Svq accord-

ingly, adding the constraint that fpxq is in Λ for all Λ-rational points of Γ.

3.3.4 Slope substructures

Let Γ be a metric graph and let S “
␣

Sx;Sν
ˇ

ˇ x P Γ, ν P TxpΓq
(

be an r-slope structure

on Γ.

A slope substructure of S of width s ď r is a slope structure

S1
“
␣

S 1x;S 1ν
ˇ

ˇ x P Γ, ν P TxpΓq
(

of width s on Γ such that for every x P Γ, we have:

(1) for every ν P TxpΓq, the set of prescribed slopes S
1ν is a subset of Sν ;

(2) the set of prescribed vectors of slopes S
1x is a subset of Sx.

Note that if S1 is a slope substructure of S, then the inclusion RatpS1q Ď RatpSq holds.

We will see in Corollary 3.5.15 that in the case of interest to us, the converse will be also

true.
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3.3.5 Divisors on a metric graph and their rank

A divisor D on a metric graph Γ is a finite formal sum over Z of points of Γ, that is,

D “
ř

iPI ni pxiq with ni P Z and distinct points xi P Γ, for a finite set I. The coefficient of

a point x of Γ in D is denoted by Dpxq. A divisor D is called effective, written D ě 0, if

Dpxq ě 0 for all x P Γ. For any rational function f P RatpΓq, the corresponding divisor is

denoted by

divpfq :“
ÿ

xPΓ

ordxpfq pxq, where ordxpfq :“ ´
ÿ

νPTxpΓq

slopeνpfq.

A divisor obtained in this way is called principal. In the case Γ is Λ-rational, a divisor

whose support is made up of Λ-rational points is said to be a Λ-rational divisor. Notice

that the space RatΛpΓq defined in Section 3.1.12 can be redefined as the set of functions of

RatpΓq such that divpfq is Λ-rational.

We have the following elementary fact.

Proposition 3.3.2. For f, g P RatpΓq, divpfq “ divpgq if, and only if, f ´ g is constant

on Γ.

Two divisors D1 and D2 are called linearly equivalent if their difference D1 ´ D2 is

principal. The Baker–Norine rank rpDq of a divisor D is defined as the maximum integer

among ´1 and the integers r ě 0 such that for all points x1, . . . , xr in Γ, the divisor

D ´ px1q ´ ¨ ¨ ¨ ´ pxrq is linearly equivalent to an effective divisor.

3.3.6 Linear equivalence of slope structures

We define a notion of linear equivalence for slope structures on a metric graph as follows.

Let S1 “
␣

Sx
1 ;Sν

1

ˇ

ˇ x P Γ, ν P TxpΓq
(

and S2 “
␣

Sx
2 ;Sν

2

ˇ

ˇ x P Γ, ν P TxpΓq
(

be two slope

structures on a metric graph Γ. We say S1 and S2 are linearly equivalent, and write

S1 » S2, if there exists a rational function f on Γ such that for every point x of Γ and

every ν P TxpΓq, we have Sν
1 “ Sν

2 ´ slopeνpfq, and Sx
1 “ Sx

2 ´ Bxpfq. In this case, we write

S1 “ S2 ` divpfq. Note that if S is a slope structure, then S ` divpfq is a slope structure

for every rational function f P RatpΓq.

3.3.7 Divisors endowed with a slope structure on Γ

A divisor endowed with an r-slope structure of degree d is a pair pD,Sq consisting of a

divisor D of degree d and a slope structure S of width r. We extend the definition of linear

equivalence between slope structures to all pairs pD,Sq with D a divisor of degree d and

S an r-slope structure on Γ by declaring that pD1,S1q » pD2,S2q if there exists a rational

function f on Γ such that D1 “ D2 ` divpfq and S1 “ S2 ` divpfq.

Definition 3.3.3. A divisor class endowed with an r-slope structure of degree d on Γ is

the linear equivalence class of a pair pD,Sq where D is a divisor of degree d and S is an

r-slope structure on Γ. ˛
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We now define the space of rational functions relative to a divisor and a slope structure.

Definition 3.3.4 (Space of rational functions and linear system associated to a divisor

endowed with a slope structure). Let pD,Sq be a divisor endowed with a slope structure

on Γ. We denote by RatpD,Sq the space of all f P RatpSq with the property that

D ` divpfq ě 0, and define the linear system |pD,Sq| associated to pD,Sq as the space of

all effective divisors E on Γ of the form D ` divpfq for some f P RatpD,Sq. ˛

Remark 3.3.5. Recall that we define RatpDq as the set of all functions f P RatpΓq such that

D` divpfq ě 0. In a similar way, we can define the space RatpD,Seq, see Section 3.3.3. ˛

Remark 3.3.6. Note that |pD,Sq| is independent of the choice of the pair pD,Sq in its

linear equivalence class. Also note that if Dpxq ą 0 for some x P Γ in the interior of an

edge of a model G on which S is defined, then, we have

|pD,Sq| “ |pD ´ pxq,Sq| ` pxq. ˛

Definition 3.3.7. A divisor endowed with a slope structure pD,Sq is called effective if

RatpD,Sq contains the null function. ˛

This is equivalent to asking that D is effective and that we have 0 P Sν and 0 P Sx for

every point x and every ν P TxpΓq.

For future use, we make the following remark.

Remark 3.3.8. Since RatpD,Sq Ă C0pΓ,Rq, it is naturally endowed with the norm } ¨ }8.

The corresponding topology shall be used later on to study linear series (see Definition 3.6.2).

We note that the slopes of all functions in RatpD,Sq are trivially bounded in magnitude

by max1ďiďr |sei |. ˛

3.4 Crude linear series

We define crude linear series which are the simplest notion of combinatorial linear series.

The requirement in the definition is reminiscent of the rank condition on divisors on metric

graphs. Moreover, it takes into account the data of the hypercube rank function on points.

3.4.1 Definition

A crude linear series of degree d and rank r, or crude grd, is the equivalence class of a divisor

D of degree d endowed with a slope structure S of width r on Γ subject to the following

property:

p˚q For every effective divisor E on Γ of degree r, there exists a rational function f P

RatpD,Sq such that

(CL1) For every point x P Γ, ρxpBxpfqq ě Epxq, and in addition,
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(CL2) D ` divpfq ´ E ě 0.

We call a crude linear series effective if the underlying divisor endowed with the slope

structure is so. ˛

We make a set of comments and provide examples in order to clarify the definition.

First, note that Property (CL2) in Definition 3.4.1 implies that the Baker–Norine rank

rpDq is greater than or equal to r.

Second, for given E and f , (CL1) does not necessarily imply (CL2), for example at points

x such that Dpxq ă 0 or such that ρx is not standard. On the other hand, (CL1) implies

(CL2) generically for all E and f . More precisely, let G “ pV,Eq be a graph model of Γ

such that S comes from an r-slope structure on G, and D has support on V . Then, for

every point x P Γ ∖ V lying on an edge tu, vu, the rank function ρx is standard. The first

condition above is thus equivalent to i ` j ď r ´ Epxq for suvi and svuj the two slopes of f

at x. In particular, since the slopes are all integral, it is easy to see that condition (CL2),

written divxpfq “ ´suvi ´ svuj ě Epxq, is automatically implied by condition (CL1) for x.

This means that (CL1) implies (CL2) outside the (finite) set of vertices of G. Note that

(CL1) can be strictly stronger than (CL2) in the interior of edges e (as long as the possible

slopes on e do not form an integral interval, i.e., in the case there are gaps in Se.

The relevance of (CL1) will be justified in Section 3.9, which treats the geometric situation

in which the slope structure comes from tropicalization.

We finally note that the definition generalizes to Λ-rational divisors on Λ-metric graphs.

In this case, we require f to be in RatΛpΓq.

Example 3.4.1. Consider the metric graph Γ below, with two edges of equal length this

time.

u v

Figure 3.2: An example of a crude linear series on the circle.

We allow the slopes 0 ă 1 ă 2 on both edges in the direction of the arrows. We define

the rank functions at u and v by the array

¨

˝

0 0 0

1 1 0

2 1 0

˛

‚

(jumps depicted in blue), and the rank functions at all the other points of Γ are chosen to

be standard. This fully describes S. Consider the effective divisor D “ 4 puq. The pair

pD,Sq is an effective crude linear series of degree 4 and rank 2. To see this, we need to

check Property p˚q in Definition 3.4.1 for E “ pxq ` pyq, for points x, y in Γ. This can be
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done by a case analysis depending on whether x or y coincide with a vertex, or they are in

the interior of the same edge, or in the interior of two different edges of Γ.

• If x “ y “ u, we can take f to be the zero (or any constant) function on Γ.

• If x “ y “ v, we can take for f any function having constant slope 2 on both edges in

the direction of the arrows.

• If x “ u, y “ v, we can take for f any function having constant slope 1 on both edges

in the direction of the arrows.

• If x “ u and y R tu, vu, we can take f with slopes 1 and 0 on both edges as follows:

u “ x
‚

y
‚

v
‚

The remaining case x R tu, vu, y “ v is similar.

• If x, y R tu, vu and x, y are on the same edge, then we can take f to behave as the

following function (with slopes 2, 1 and 0) on both edges:

u
‚

x
‚

y
‚
v
‚

This works even if x “ y, in which case f does not take the slope 1.

• If x, y R tu, vu and x, y are on different edges, we define x1 (resp. y1) to be the point

of the edge containing x (resp. y) symmetrical about the middle of this edge. Then,

we can take f to be the function

u
‚
x
‚
y1
‚
y
‚
x1
‚
v
‚

with values on one edge represented in blue, values on the other edge represented in

red, and values common to both edges represented in black.

On the same graph, D “ 2 puq ` 2 pvq with slopes ´1 ă 0 ă 1 on both edges, and the

same slope structure as above, provides another crude linear series of degree 4 and rank

2. ˛
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Example 3.4.2. Here is another simple example that will be used later (see Example 3.7.6).

We consider the metric graph Γ depicted in Figure 3.3 with arbitrary positive edge lengths.

u
v

w

Figure 3.3: The path graph Γ with three vertices, and edges of arbitrary positive lengths.

We allow slopes ´2 ă 0 ă 2 in the direction of the arrows and take D “ 2 puq`4 pvq`2 pwq.

We choose the rank function ρv on the vertex v to be the same as in Example 3.4.1. The

rank functions on u and w are automatically standard, since these vertices are of valence 1.

Then, pD,Sq is a crude linear series of degree 8 and rank 2.

Without changing D, we can also consider a slope substructure S1 of S of rank one by

allowing slopes 0 ă 2 on the edge uv and slopes ´2 ă 0 on the edge vw. We adapt ρ1
v at v

as follows (jumps depicted in blue):

ˆ

0 0

1 0

˙

. The pair pD,S1q is an effective crude linear

series of degree 8 and rank 1.

We divide the coefficients of D to obtain the divisor D1 “ 2 pvq ` puq ` pwq. We then

consider the slope substructure S2 with allowed slopes 0 ă 1 on uv and ´1 ă 0 on vw.

This makes pD1,S2q an effective crude linear series of degree 4 and rank 1. ˛

3.4.2 Non-increasing property of slope vectors and a finiteness

theorem

In the rest of this section, we prove two important results about crude linear series.

Let pD,Sq be a crude linear series on Γ of rank r. Let G “ pV,Eq be a model of Γ such

that S is defined on G and D is supported on V . Let e “ uv be an oriented edge of G. For

each point x in the interior of e, let ν P TxpΓq be the unit tangent vector consistent with

the orientation of e. Let sν0pxq ă sν1pxq ă ¨ ¨ ¨ ă sνrpxq be the corresponding slopes in Se.

By an abuse of notation, for each point y on e, we still denote by ν the tangent vector in

TypΓq parallel to e, and thus to ν P TxpΓq, and denote by sν0pyq ă sν1pyq ă ¨ ¨ ¨ ă sνrpyq the

corresponding slopes.

Proposition 3.4.3 (Non-increasing property of slope vectors). Notation as above, the

collection of vectors psν0, . . . , s
ν
rq, as a vector-valued function on the segment corresponding

to e, forms a coordinate-wise non-increasing collection of vectors.

In other words, for every ε ą 0 small enough, denoting by y “ x ` εν the point at

distance ε from x in the direction of ν, we have

sνj pyq ď sνj pxq for every j “ 0, 1, . . . , r.

Proof. Since the vector of slopes is piecewise constant, we can suppose that x is in the

interior of e. Changing the model by adding x as a new vertex of Γ, if necessary, we can
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suppose that x is a vertex of G. Denoting by e1 the edge emanating from x in the direction

ν and by e2 the other edge incident to x, oriented toward x (that is, with an orientation

compatible with that of e1). To prove the proposition, it is sufficient to show that for every

j P t1, . . . , ru, se
1

j pxq ď se
2

j pxq. We will use the divisorial rank property in the definition of

crude linear series. In the following, e2 denotes the edge e2 with the reverse orientation.

Let p1, . . . , pj be j distinct points on e1 close enough to x, in this order away from x,

such that the slope structure is constant between x and pj. Likewise, let q1, . . . , qr´j be

r ´ j distinct points on e2 close enough to x, in this order away from x, such that the slope

structure is constant between x and qr´j. Consider the effective divisor of degree r

E :“
j
ÿ

i“1

ppiq `

r´j
ÿ

i“1

pqiq.

By property p˚q in Definition 3.4.1, there exists f P RatpD,Sq such that D ` divpfq ´E is

an effective divisor. The vector of outgoing slopes of f around x, Bxpfq, corresponds to some

jump a P Jρx . Since by construction D has no support between qr´j and pj, the inequality

D` divpfq ´E ě 0 implies that f has a positive order of vanishing on all the points pi and

qi. This in turn implies that ae1 ě j and ae2 ě r ´ j. The fact that divpfqpxq ě 0 implies

that se
1

ae1
pxq ` se

2

a
e2

pxq ď 0. Finally,

se
1

j pxq ď se
1

ae1
pxq ď ´se

2

a
e2

pxq ď ´se
2

r´jpxq “ se
2

j pxq.

Theorem 3.4.4 (Theorem 3.1.4 on the finiteness of slopes structures in crude linear series).

Let Γ be a metric graph and let D be a divisor on Γ. Let G “ pV,Eq be a combinatorial

model of Γ that supports D on its vertices. For each integer r, there exist finitely many

subdivisions H1, . . . , Hk of G, and an r-slope structure Sj defined on Hj for j “ 1, . . . , k,

such that every crude linear series pD,Sq of rank r has a model Hj of Γ among H1, . . . , Hk

on which it is defined, and moreover, the equality S “ Sj holds.

Proof. Using [GK08, Lemma 1.8], we infer that the slopes appearing in the slope structure

S are all bounded. Applying Proposition 3.4.3, this implies that the number of graph

models over which the slope structure is defined is finite, and there are only finitely many

possibilities for rank functions on the vertices of each of these graph models. The result

follows.

3.5 Admissible semimodules

In this section, we introduce admissible semimodules of rational functions. The idea is

to replace the full space of rational functions RatpD,Sq in a crude linear series (which is

in general not closed, in the topological sense) by a closed semimodule, still enjoying the

properties of crude linear series.
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3.5.1 Semimodule structure on spaces of rational functions

Let T “ pR,‘,dq be the semifield of tropical numbers. The space RΓ of real-valued

functions on Γ is naturally a T-semimodule: for f, g P RΓ and c P R, we have operations of

tropical addition and tropical multiplication by scalars

f ‘ g :“ minpf, gq and c d f :“ f ` c.

The relevance of this discussion is in the following basic result, which shows that the

space of rational functions associated to a divisor endowed with a slope structure is a

T-semimodule.

Proposition 3.5.1. The space RatpΓq is a T-semimodule. Both subsets RatpDq and

pRatpD,Sq, for a divisor D and a divisor endowed with a slope structure), respectively, are

T-semimodules.

Proof. For the first two statements see [HMY12, Lemma 4]. In order to prove the last

statement, we need to show that minpf, gq belongs to RatpD,Sq if f and g do. Let v be

a vertex of Γ and let dv be the valence of v. Denote by a, b and c the elements of �
dv

r

such that sa “ Bvpfq, sb “ Bvpgq and sc “ Bvpminpf, gqq. If fpvq “ gpvq, then we have

Bvpminpf, gqq “ minpBvpfq, Bvpgqq, which implies c “ a ^ b. Otherwise, we have c “ a or b

depending on whether fpvq ă gpvq or fpvq ą gpvq, respectively. Using that Jρv is stable

under ^ (see Proposition 3.2.13), we conclude that, in either case, c belongs to Jρv , and

the proposition follows.

We introduce some terminology that we use later.

Definition 3.5.2. Let S be a subset of RΓ and v P Γ. By Sv, we mean the space of

all functions f of S such that fpvq “ 0. This will be used, in particular, when S is a

sub-semimodule M of some linear series RatpD,Sq.

For a subset S of RΓ and f P RΓ, we also define Sp´fq :“ S ´ f “
␣

h ´ f
ˇ

ˇ h P S
(

. ˛

The latter definition mimics the linear equivalence relation between divisors or slope

structures (Section 3.3.7). Notice that if M is a sub-semimodule of RΓ, then this is also

true of Mp´fq.

Definition 3.5.3. A semimodule M Ď RΓ is called effective if it contains the null function.

˛

Remark 3.5.4. This definition extends Definition 3.3.7 where M “ RatpD,Sq. Note that

if f P M , then Mp´fq is effective. ˛
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3.5.2 Restriction and extension of scalars

The above notions generalize easily to the case of Λ-rational divisors on Λ-metric graphs.

If Γ and D are Λ-rational and if M is a sub-T-semimodule of RatpD,Sq, we define

MΛ :“ M X RatΛpΓq, the sub-Λ-semimodule of RatΛpD,Sq made up of elements f P M

which are Λ-rational. We say that MΛ is obtained from M by restriction of scalars.

Assume that Γ and D are Λ-rational. Let Λ1 be another sub-semi-field of R such that

Λ Ď Λ1, and M be a sub-Λ-semimodule of RatΛpD,Sq. We define MΛ1

to be the sub-Λ1-

semimodule of RatΛ1pD,Sq generated by M . We say that MΛ1

is obtained from M by

extension of scalars.

3.5.3 Finite generation and closedness

A semimodule M over a commutative semi-ring R is finitely generated if there exist

f1, . . . , fn P M such that for all g P M , there exist c1, . . . , cn P R such that g “
À

1ďiďn ci d

fi.

Using cut sets and extremal points, Haase, Musiker and Yu showed in [HMY12] that for

every divisor D, RatpDq is a finitely generated T-semimodule. This is not necessarily the

case for spaces of the form RatpD,Sq for crude linear series pD,Sq (see Example 3.7.6).

A semimodule M Ď RatpΓq is called closed if it is closed for the norm } ¨ }8.

We have the following basic result on the connection between finite generation and

closedness properties.

Proposition 3.5.5. Let M Ď RatpΓq be a finitely generated semimodule. Then, M is

closed.

Proof. Let pfnqn be a sequence of functions of M converging to a function f in RatpΓq for

the } ¨ }8 topology. Assume that M is generated by elements h1, . . . , hr, and write, for all

n, fn “ min1ďiďrphi ` cni q with cni P R. We can suppose that all hi are zero at some point

v. It follows that the sequences pcni qn are bounded. By extraction, we can assume that for

every i, pcni qn converges to some ci P R, implying that fn
}¨}8
ÝÝÑ min1ďiďrphi ` ciq, and thus

f P M .

We next give an alternative characterization of closedness for semimodules M Ď RatpDq.

First, notice that each effective divisor D of degree d is written in the form D “ px1q `

¨ ¨ ¨ ` pxdq for points xj P Γ, and can be viewed as a point rx1, . . . , xds in the d-th symmetric

product Symd
pΓq of the metric graph, which is a compact metric space. Furthermore, we

can view Symd
pΓq as the subspace of Divd

pΓq consisting of effective divisors of degree d.

This defines a map

φ : RatpDq ÝÑ Symd
pΓq ãÑ Divd

pΓq

by φpfq :“ D ` divpfq. We set |M | “ φpMq, and view it in Symd
pΓq. We endow RatpDq

with the } ¨ }8 topology.
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Proposition 3.5.6. The map φ is continuous. Furthermore, a semimodule M Ď RatpDq

is closed if, and only if, |M | Ď Symd
pΓq is closed.

Proof. We omit the proof of the first assertion, and prove only the second.

ùñ If M is closed then so is Mv, and |M | “ φpMvq. Let k be a universal bound for

the slopes in S (see [GK08, Lemma 1.8]), and let B be the space of continuous functions

Γ Ñ R whose slopes are bounded by k. By the Arzelá–Ascoli theorem, B is compact, and

since Mv Ď B is closed, we infer that Mv is compact. Since φ is continuous, |M | is compact

and thus closed in Symd
pΓq.

ðù Let pfnqn be a sequence of functions of M converging to some f P RatpDq. Then by

continuity φpfnq ÝÑ φpfq. By closedness, φpfq P |M |, so there exists some g P M such that

φpfq “ φpgq. Since divpfq “ divpgq, f and g differ by some constant, and thus f P M .

3.5.4 Closedness and extremal generators

In this section, we provide a result linking the closedness property and extremal generators.

We recall that if M is a subset of a semimodule, then x P M is called extremal if an equality

of the form x “ y ‘ z with y, z P M implies y “ x or z “ x. If M is a finitely generated

sub-semimodule of RΓ, then it is generated by its extremals, of which there is a finite

number up to tropical scaling, see [HMY12, Proposition 8]. This fact is related to the

following result (see Proposition 3.5.5 for the link between finite generation and closedness).

Proposition 3.5.7. Let D be a divisor on Γ and M be a sub-semimodule of RatpDq.

Assume that M is closed in RatpDq. Then M is generated by its extremals.

Remark 3.5.8. A consequence of the above proposition is that a closed sub-semimodule

of RatpDq is finitely generated if, and only if, it contains a finite number of extremals. ˛

The proof relies on the following lemmas, which have their own significance.

Lemma 3.5.9. Using the notations of Proposition 3.5.7 and under the same hypotheses,

let f P M and v P Γ. Then there exists a function g P M which is extremal in M and such

that g ě f and gpvq “ fpvq.

Proof. Without loss of generality, we assume that fpvq “ 0. Let P be the (non-empty)

set of all functions h P M such that hpvq “ fpvq and h ě f . P is closed in Mv, which is

compact. Let phsqsPS be a chain in P (i.e., a totally ordered subset). Since P is bounded,

the function h :“ sups hs is well-defined. By an argument similar to that used in the proof

of Proposition 3.7.3, and using the fact that ths, s P Su is totally ordered, h can be written

as the limit of some sequence phnqn of functions of P . Since P is closed, we get h P P .

We have shown that every chain in P has an upper bound, so by Zorn’s lemma, P admits

a maximal element g. Since g is maximal, it is extremal, which concludes.

Lemma 3.5.10. Using the notations of Proposition 3.5.7, let f P M . Then there exist an

integer n and points x1, . . . , xn P Γ such that for all g P M , we have g “ f if, and only if,

gpxiq “ fpxiq for all i.
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Proof. We choose a model G of Γ such that the supports of D and divpfq are included in

the set of vertices. Then we consider the set of all vertices of G, and add an extra point

strictly between every pair of adjacent vertices: this gives a set of points x1, . . . , xn. Let

now g P M be such that for all i, gpxiq “ fpxiq, so f and g coincide at every vertex and

at some point in the interior of every edge. Let now e “ xixj be an edge, containing the

marked point xk in its interior. Since the interior of e contains no point of the support

of divpfq, we know that f is linear on e. Since the interior of e contains no point of the

support of D, the slopes of g along e are non-increasing. Combined with the fact that

gpxiq “ fpxiq and gpxjq “ fpxjq, we get that g ě f on e. Since gpxkq “ fpxkq, we have in

fact g “ f on e, and this is true on every edge of Γ, so g “ f .

Proof of Proposition 3.5.7. Let f be an element of M . For every x P Γ, Lemma 3.5.9

provides an extremal gx P M such that gx ě f and gxpxq “ fpxq. We apply this to every

point xi given by Lemma 3.5.10, which yields extremal functions gx1 , . . . , gxn P M such that

for all i, gxi ě f and gxipxiq “ fpxiq. Define g :“ mini g
xi . For all i, we have gpxiq “ fpxiq,

and thus g “ f , which shows that f is generated by extremals.

We end this section with an open question about the topological properties of linear

series.

Question 3.5.11. Let M be a closed sub-semimodule of RatpD,Sq. Is there any connection

between M being finitely generated and M being of finite tropical rank? In other words

(in light of Remark 3.5.8), is there any connection between M having a finite number of

extremals and M being of finite tropical rank?

3.5.5 Admissible semimodules

Let d be an integer and D a divisor of degree d on Γ.

A semimodule M Ď RatpDq is called admissible of rank r if it is closed for the topology

induced by } ¨ }8, and if there exists an r-slope structure S such that M Ď RatpD,Sq and

such that the following holds:

p˚˚q For every effective divisor E on Γ of degree r, there exists f P M such that

(AS1) For every point x P Γ, ρxpBxpfqq ě Epxq; and in addition,

(AS2) D ` divpfq ´ E ě 0.

When Γ and D are Λ-rational, we say a semimodule M Ď RatΛpD,Sq is admissible if

the extension MR Ď RatpD,Sq is admissible. ˛

Note that if M is effective as a semimodule, then so is RatpD,Sq and therefore pD,Sq

is by definition effective as a crude linear series.

Although it is not clear from the definition, we will show in the next section that

admissibility is a property of the pair pD,Mq, that is, both the rank r and the slope

structure S (and thus the crude linear series pD,Sq) can be extracted from M .
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Example 3.7.6 shows that, in general, the semimodule RatpD,Sq Ď RatpDq for a crude

linear series pD,Sq may not be closed in RatpDq, and therefore may not be admissible.

Furthermore, a crude linear series pD,Sq of rank r might not necessarily admit an admissible

semimodule M Ď RatpD,Sq of the same rank, although we do not have an example thereof.

Remark 3.5.12. For further use, we note that if pfnqn is a sequence of functions in RatpDq

converging uniformly to a function f , then f P RatpDq and, for every x P Γ, the inequality

Bxpfq ď Bxpfnq holds coordinate-wise for all large n. This inequality can be strict in general,

and the corresponding point of the hypercube may not be a jump of the rank function at x.

This explains why a semimodule of the form RatpD,Sq is not necessarily closed. ˛

3.5.6 Realization of jumps in admissible semimodules

Let D be a divisor of degree d. In this section, we prove the following theorem.

Theorem 3.5.13 (Realization of jumps in admissible semimodules). Let pD,Sq be a crude

linear series of degree d and rank r, and let M Ď RatpD,Sq be an admissible semimodule

of rank r. Let v be a point of Γ and let a P Jρv be a jump. Then, there exists f P M such

that Bvpfq “ sa.

For example, taking E “ rpvq for v P Γ, we deduce from property p˚˚q the existence of

a function f P M such that ρvpBvpfqq ě r. This implies that f takes all minimum slopes

around v, that is, Bvpfq “ s0. The proof for other values of a is more involved.

This theorem immediately implies the following important results.

Corollary 3.5.14 (Corollary 3.1.3). Keeping the notation of Theorem 3.5.13, the slope

structure S can be entirely retrieved from M .

In light of this corollary, we will often drop S and only say that M is an admissible

semimodule of RatpDq.

Corollary 3.5.15. Let pD,Sq and pD1,S1q be two crude linear series on Γ of rank r and

r1, respectively, and M 1 Ď RatpD1,S1q and M Ď RatpD,Sq be admissible. Then S1 is a

slope substructure of S provided that M 1 Ď M holds.

Remark 3.5.16. Note that the divisor D cannot be uniquely determined by M , because

if M Ď RatpD,Sq, then M Ď RatpD1,Sq for every divisor D1 ě D. However, there is a

unique base-point free choice for D, that is, a unique minimal choice Dmin for D. Simply

define the coefficient Dminpxq of Dmin as the minimum possible integer such that all the

functions f P M verify ordxpfq ` Dminpxq ě 0. This is well-defined, and every other choice

D with M Ď RatpD,Sq verifies D ě Dmin. ˛

The rest of the section is devoted to the proof of the realization theorem.
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3.5.7 Proof of Theorem 3.5.13

Consider a model G “ pV,Eq such that S is defined on G and let v be a vertex of V . Let

δ “ dv. We show that for each jump a P Jρv , there exists f P M such that Bvpfq “ sa. The

idea is to use the divisorial rank condition p˚˚q satisfied by the admissible semimodule M

in order to find a sequence of functions with the desired slope at a given tangent direction

at v. We then find f as the limit of a subsequence, using the closedness of M .

We start with a lemma.

Lemma 3.5.17. Let q P �
δ

r be any point in the hypercube at v such that ρv
`

q
˘

ě 0. Then,

there exists a unique jump a P Jρv of rank ρv
`

q
˘

with a ľ q.

Proof. We reason by contradiction to show existence. If no such jump exists, we can

construct an increasing path (i.e., a finite sequence of points xi of �
δ

r such that xi ă xi`1

for every i), starting at q and made up of points of constant rank. This process necessarily

ends up at the point r “ pr, . . . , rq. We know that ρvprq “ ρv
`

q
˘

“ 0. Therefore, r is a

jump, r ľ q and they have the same rank, a contradiction.

We now show uniqueness. Suppose there are two different jumps a and b such that a ě q,

b ě q, ρvpaq “ ρvpbq “ ρv
`

q
˘

. Since a ‰ b, then a^ b is different from at least one among a

and b, say a. Proposition 3.2.14 yields that ρvpa ^ bq ą ρvpaq, which is impossible because

q ď a ^ b ď a implies ρvpaq “ ρv
`

q
˘

ě ρvpa ^ bq ě ρvpaq.

We now come to the proof of the theorem. We start by defining an increasing path in �
δ

r

that starts at 0, stays below a and moves only along the first direction in the hypercube

�
δ

r at the beginning, then only along the second direction, and so on, until direction δ.

Let, for all i P t1, . . . , δu, ei be the edge incident to v corresponding to the direction i.

For convenience, we also define, for all i P t1, . . . , δu, e1
i :“ eδ´i`1, just reversing the order

of the edges around v.

Given a point y P �
r

δ with y ĺ a and a direction e i in the hypercube, we say that y is a

fall in the direction e i with respect to a if yi “ 0 or ρv
`

y
˘

ă ρv
`

y ´ e i
˘

. We say that y is a

largest fall in the direction e i with respect to a if y is a fall in the direction e i with respect to

a and if for all non-negative integers n such that y`n e i ĺ a, we have ρv
`

y ` n e i
˘

“ ρv
`

y
˘

.

Saying in words, moving in the direction of e i from a largest fall, remaining bounded by a,

the rank does not change.

We construct our increasing path starting from 0, going each time to a largest fall in

the given direction relative to a and remembering only the falls in that direction. More

precisely, suppose that we have already built the path along directions 1, . . . , i ´ 1 with

1 ď i ď δ, consisting of all the falls in the direction of e1, then the falls in the direction

of e2, . . . , and the falls in the direction of e i´1. Therefore, the path currently ends at the

point
ři´1

k“1 tk ek, tk P rrs. We will now let the path continue only in the direction i, by

adding multiples of e i, adding the falls in the direction of e i to the path, until we reach

the point y “
ři´1

k“1 tk ek ` ti e i with y ĺ a, which is a largest fall in the direction e i with

respect to a. This way, we have built an increasing path starting at 0, composed only of
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falls in some direction, staying below a and moving successively in directions e1, . . . , eδ.

The turning point, where we move to a different direction, is a largest fall with respect to a

in that direction. The ending point of the path

z “

δ
ÿ

k“1

tk ek

is a largest fall in the direction e δ with respect to a. In particular, note that z ĺ a.

For every i P t1, . . . , δu, let ℓi be the rank drop of the path in the direction i:

ℓi :“ ρv

˜

i´1
ÿ

k“1

tk ek

¸

´ ρv

˜

i
ÿ

k“1

tk ek

¸

.

Then,
řδ

i“1 ℓi “ r ´ ρvpzq.

Lemma 3.5.18. Let z be the endpoint of the increasing path constructed above. We have

ρvpzq “ ρvpaq. Therefore, ρvpaq `
řδ

i“1 ℓi “ r.

Proof. Let w P �
δ

r be such that z ĺ w ĺ a and let i P t1, . . . , δu be such that w ` e i ĺ a.

By construction, we know that

ρv

˜

i
ÿ

k“1

tk ek ` e i

¸

“ ρv

˜

i
ÿ

k“1

tk ek

¸

.

This equality, together with supermodularity, implies that ρvpw`e iq “ ρvpwq. Applying this

fact recursively yields ρvpzq “ ρvpaq. The last equality follows from ρvpzq `
řδ

i“1 ℓi “ r.

For every i P t1, . . . , δu, let pi1, . . . , p
i
ℓi

be distinct points on the edge e1
i “ en´i`1, ordered

increasingly with respect to their distance from v. Let

E :“ ρvpaq pvq `

δ
ÿ

i“1

ℓi
ÿ

j“1

`

pij
˘

.

By the preceding lemma, this is an effective divisor of degree r. Since M is admissible,

there exists f P M such that fpvq “ 0, and

ρvpBvpfqq ě ρvpaq and divpfq ` D ´ E ě 0. (3.2)

Let b :“ Bvpfq P �
δ

r. Note that b is a jump of ρv. The following lemma will imply that

b “ a.

Lemma 3.5.19. We have b ľ z.

Proof. The first of the two properties in (3.2) tells us that ρvpbq ě ρvpaq “ ρvpzq.

We will now show that the second property in (3.2), when applied to a sequence of

effective divisors of degree r that starts at E, implies that b ľ z. The idea is to make all
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the points in the support of E converge to v one after the other, apply the admissibility of

M , and define a decreasing sequence of jumps.

Let
`

p11,n
˘

ně0
be a sequence of points of e1

1 starting at p11 and which converges to v. We

replace p11 in E by p11,n to obtain an effective divisor E1
1,n of degree r. Formally,

E1
1,n :“ ρvpaq pvq `

`

p11,n
˘

`

ℓ1
ÿ

j“2

`

p1j
˘

`

δ
ÿ

i“2

ℓi
ÿ

j“1

`

pij
˘

.

Applying the admissibility of M , we find a function f 1
1,n P M with f 1

1,npvq “ 0 such

that divpf 1
1,nq ` D ´ E1

1,n ě 0. Replacing f 1
1,n by min

`

f, f 1
1,n

˘

P M ensures that for all n,

Bv
`

f 1
1,n

˘

ĺ Bvpfq. Moreover, since M is closed, we can extract a subsequence so that the

sequence
`

f 1
1,n

˘

n
converges to an element f 1

1 P M . Let E1
1 “ E ´ pp11q ` pvq.

By Remark 3.7.9, for all n,

Bv
`

f 1
1

˘

ĺ Bv
`

f 1
1,n

˘

ĺ Bvpfq.

Besides, the fact that pBvpf 1
1 qq1 ă pBvpf1,nqq1 implies that Bvpf 1

1 q ‰ Bvpfq.

What precedes yields a jump b11 :“ Bvpf 1
1 q ĺ Bvpfq “ b, different from b because the first

coordinates verify
`

b11
˘

1
ă b1. Therefore, b11 ă b.

We repeat the same process as above, starting from E1
1 . We take a sequence

`

p12,n
˘

n
of

points of e1
1 starting at p12, and define

E1
2,n :“ pρvpaq ` 1q pvq `

`

p12,n
˘

`

ℓ1
ÿ

j“3

`

p1j
˘

`

δ
ÿ

i“2

ℓi
ÿ

j“1

`

pij
˘

,

and find an element f 1
2,n P M with f 1

2,npvq “ 0 such that divpf 1
1,nq ` D ´ E1

2,n ě 0. After

taking the minimum min
`

f 1
1 , f

1
2,n

˘

P M , and passing to a subsequence, we obtain a limit

f 1
2 P M . This yields a jump b12 ĺ b11, different from b11 because

`

b12
˘

1
ă
`

b11
˘

1
.

We repeat the same process, exhausting first all the points p1j on e1
1 in the support of E,

then all the points p2j on e1
2, and so on, until finally all the points pδj on the last edge. The

above reasoning yields a decreasing path of jumps

b ą b11 ą b12 ą ¨ ¨ ¨ ą b1ℓ1 ą ¨ ¨ ¨ ą bδ1 ą ¨ ¨ ¨ ą bδℓδ .

Using Proposition 3.2.14, the sequence of ranks
`

ρvpbijq
˘

is increasing. As a consequence,

ρvpbδℓδq ě ρvpbq `

δ
ÿ

i“1

ℓi ě r.

We thus infer that bδℓδ “ 0 and all the rank differences between consecutive jumps in the

sequence are exactly one.

Reversing the order in the sequence of jumps constructed above, we get an increasing

path of jumps starting at 0 and ending at b, whereas we defined beforehand an increasing
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path starting at 0 and ending at z. The two increasing paths have the same length, equal

to r ´ ρvpaq. To show that b ľ z, we will prove that the path leading to b remains greater

than or equal to the path leading to z at each step, that is, the k-th element of the former

dominates the k-th element of the latter.

We proceed by induction. The claim is true at the beginning because the starting point of

both paths is 0. Suppose that the inequality is true at some step j0 with 0 ď j0 ă r´ ρvpaq.

We denote by zj0 the current fall and by bj0 the current jump. The inequality reads bj0 ľ zj0 .

We suppose that the next fall zj0`1 differs from zj0 (only) in the direction i0. Let

cj0 :“ zj0 `

´

`

bj0
˘

i0
´
`

zj0
˘

i0

¯

e i0

be the point obtained by starting at zj0 and moving in the direction i0 as much as possible

without overtaking bj0 along this axis.

Since both paths are parametrized by the same integers ℓi, we know that the next jump

bj0`1 will also differ from bj0 (at least) in the direction i0. The latter statement implies that

bj0`1 ľ bj0 ` e i0 . Since bj0 is a jump, by supermodularity and using bj0 ľ cj0 , we get that

ρv
`

cj0 ` e i0
˘

“ ρv
`

cj0
˘

´ 1

so cj0 ` e i0 ľ zj0 is a fall in the direction i0 which coincides with zj0 in all directions but i0.

Therefore,

zj0`1 ĺ cj0 ` e i0 ĺ bj0 ` e i0 ĺ bj0`1.

We have proved the claim for j0 ` 1. We infer that b ľ z, as desired.

Proof of Theorem 3.5.13. The preceding lemma shows that b ľ z, and thus ρvpbq ď ρvpzq “

ρvpaq. Combined with the inequality ρvpbq ě ρvpaq, we deduce that ρvpbq “ ρvpaq. On

the other hand, b ľ z is a jump of ρv. Consequently, a and b are two jumps of ρv which

dominate z and have the same rank as z. The uniqueness in Lemma 3.5.17 implies that

b “ a, which finishes the proof.

3.6 Combinatorial limit linear series

In this section, we define combinatorial limit linear series on metric graphs.

3.6.1 Tropical rank

In linear algebra, the dimension d of a vector space can be characterized as either the

size of a minimal generating set or as the least integer such that every collection of d ` 1

elements is linearly dependent. For spaces of tropical functions, however, there is a priori

no direct link between the two above notions. The former one corresponds to the finite

generation property in semimodules, discussed in Section 3.5.5. We will need a second

notion of finiteness based on tropical independence from [JP14, JP16], see also [AGG09]

where a finite version of this was developed.
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Definition 3.6.1 (Tropical rank). Let M Ď RatpΓq be a semimodule. We call tropical

rank of M the least integer r P Zě0 such that for all elements f0, . . . , fr`1 P M , there exist

c0, . . . , cr`1 P R such that for each x P Γ, the minimum in

min
0ďiďr`1

pfipxq ` ciq

is achieved at least twice, that is, for at least two indices i P rr ` 1s. If such r does not

exist, we say that M is of infinite tropical rank.

For a Λ-semimodule, the tropical rank is defined the same way by imposing ci P Λ. ˛

3.6.2 Limit linear series: Definition

Definition 3.6.2. A combinatorial limit linear series of rank r and degree d on a metric

graph Γ, more simply called a linear series or a grd, is a pair pD,Mq consisting of a divisor

D of degree d and an admissible semimodule M Ď RatpDq of rank r which is moreover

finitely generated and has tropical rank r. The linear series is called effective if M is so.

When Γ and D are Λ-rational, we define a Λ-linear series, or simply Λ-grd, as a finitely

generated semimodule M Ď RatΛpDq of tropical rank r such that the semimodule MR Ď

RatpDq, obtained by extension of scalars, is admissible of rank r. ˛

Note that MR is finitely generated, and by Proposition 3.5.5, it is automatically closed.

Remark 3.6.3. For a linear series pD,Mq, by Corollary 3.5.14, there is a unique slope

structure S with M Ď RatpD,Sq, that is, S is entirely determined by M . This explains

why we do not include the data of S in the linear series.

Moreover, in light of Remark 3.5.16, there is a minimal divisor associated to M . However,

for clarity and since specific divisors on metric graphs appear naturally, we keep track of D

in the definition. ˛

The relevance of this will be explained by Theorem 3.9.1, which states that a semimodule

M Ď RatpDq that comes from the tropicalization of a linear series is finitely generated,

is of tropical rank r, and also verifies property p˚˚q in Section 3.5.5. In fact, such an M

verifies the stronger property p ˚
˚˚ q below. For the notion of slope substructure, we refer to

Section 3.3.4.

Definition 3.6.4 (Refined linear series). A refined linear series, or refined grd, is a pair

pD,Mq which is a grd and which in addition verifies the following stronger version of p˚˚q:

p ˚
˚˚ q For every effective divisor E of degree s ď r on Γ, there exists a semimodule

ME Ď M such that pD,MEq is a gr´s
d and for every element f P ME, we have

(1) ρxpBxpfqq ě Epxq for each point x P Γ, and in addition,

(2) D ` divpfq ´ E ě 0. ˛
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Each linear series pD,Mq with underlying slope structure S gives rise to a linear system

|pD,Mq| Ď |pD,Sq|, defined as follows.

Definition 3.6.5 (Linear system associated to a grd). For a linear series pD,Mq, we define

the linear system |pD,Mq| as the set of all effective divisors E on Γ of the form D ` divpfq

for f P M . ˛

Remark 3.6.6. For a finitely generated admissible semimodule M Ď RatpDq of rank r,

being a linear series, that is, having tropical rank r, is equivalent to having tropical rank at

most r. In fact, the tropical rank of an admissible semimodule of given rank r is always

at least r. To see this, we observe using Theorem 3.5.13 that at every point x of Γ, in

every direction, each of the r ` 1 slopes in the slope structure underlying M is taken by

an element fi of M . The functions fi therefore take pairwise distinct constant slopes on

a small segment I based at x. This implies that for all c0, . . . , cr P R, the minimum in

min0ďiďrpfipyq ` ciq is achieved at least twice only for a finite number of points y P I, which

shows that the r` 1 functions f0, . . . , fr are tropically independent. Therefore, the tropical

rank of M is at least r. ˛

3.6.3 Examples

We give two simple examples of linear series, and refer to Sections 3.10.1 and 3.10.1 for

more examples.

Example 3.6.7 (A g12 on the barbell graph). Consider the barbell graph Γ with edges of

arbitrary length, see Figure 3.4. This metric graph has genus two and the canonical divisor

K has rank one. We define a linear series pK,Mq, M Ď RatpKq, of rank one on Γ. Allow

slopes ´1 ă 1 on the middle edge and, for i “ 1, 2, allow slopes 0 ă 1 on both oriented

edges uivi, in the direction of the arrows.

v1 u1 u2 v2
1 1

p´1, 1q

p0, 1q

p0, 1q

p0, 1q

p0, 1q

Figure 3.4: The barbell graph, the canonical divisor and the slope structure S.

We define suitable rank functions on vertices, as follows. For i “ 1, 2, we endow vi with

the rank function on �
2

1 “ r1s2 defined by the array

ˆ

0 0

1 0

˙

, and endow ui with the rank

function on �
3

1 “ r1s3 whose restrictions to r1s2 ˆ t0u and r1s2 ˆ t1u are defined by the

154



following two matrices, respectively:

ˆ

0 0

1 0

˙

,

ˆ

´1 ´1

0 ´1

˙

. Here, jumps are depicted in

blue. For the two vertices u1 and u2, the third coordinate in each of the two rank functions

corresponds to the middle edge of Γ. We further endow each other point of Γ with the

standard rank function. Set M :“ RatpK,Sq. The pair pK,Mq is a linear series of degree

two and rank one on Γ.

Note that M is not effective, and thus the constant functions do not belong to M .

Moreover, pK,Mq is the unique g12 on Γ with the underlying divisor K. This shows that

the canonical divisor K on Γ is not realizable, that is, K is not the tropicalization of a

divisor K P |ωC | in the canonical linear system |ωC | on a smooth proper curve C over an

algebraically closed field with a non-trivial non-Archimedean valuation (otherwise, since K
is effective, the constant functions would belong to the semimodule M). Here, ωC is the

canonical sheaf of C. ˛

Example 3.6.8. Consider the following metric graph Γ with two edges of equal length. Let

u
v

w

Figure 3.5: The metric graph Γ with edges of equal length.

D “ puq ` pwq and define a slope structure S by allowing slopes 0 ă 1 on the edge uv and

slopes ´1 ă 0 on the edge vw, in the direction of the arrows. Let M be the sub-semimodule

of RatpD,Sq made up of all functions which are symmetric with respect to v. We define

ρv by the array
ˆ

0 0

1 0

˙

.

Here, the jumps of ρv are depicted in blue. We endow every other point of Γ with the

standard rank function. The pair pD,Mq is a g12. ˛

In the next two sections, we provide a classification of g1d’s.

3.7 Reduced divisors

We establish an extension of the machinery of reduced divisors to linear series. The results

of this section are valid without extra effort for the linear system |pD,Mq| associated to a

pair pD,Mq consisting of a divisor D of degree d and an admissible semimodule M of rank

r, so we present the results in this generality. Moreover, replacing pD,Mq with a linearly

equivalent admissible pair, we can assume for the full section that M is effective.

3.7.1 Reduced divisors in the chip-firing context

We briefly recall the definition of reduced divisors in the “chip-firing” context. In terms of

the chip-firing game, the x-reduced divisor is obtained from D by firing chips the closest
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possible to x.

More formally, a cut X in a metric graph Γ is a compact subset of Γ with finitely many

connected components. The (finite) set of boundary points of X, denoted by BX, is the set

of all points of X which are in the closure of the complement of X in Γ. For a point x P BX,

we denote by outXpxq the set of all outgoing branches (given by unit tangent vectors) at x

from X, and by outvalXpxq the number of such branches.

Definition 3.7.1 (Reduced divisors in the classical context). Let x be a point of Γ. A

divisor D on Γ is x-reduced if the following two conditions are met:

(1) For each y P Γ ∖ txu, we have Dpyq ě 0, and

(2) For each cut X Ă Γ ∖ txu, there exists a point y P BX with Dpyq ă outvalXpyq. ˛

For each divisor D and each point x in Γ, there exists a unique x-reduced divisor linearly

equivalent to D, which we denote by Dx. For graphs, this was proved by Baker and Norine

in [BN07]. The extension to metric graphs was given in [MZ08], see also [Ami13].

3.7.2 Reduced divisors in linear systems

We need the following definition.

Definition 3.7.2. Let M Ď RatpDq be an admissible semimodule of rank r, and let v be a

point of Γ. We define the rational function fM
v , denoted fv when the context is clear, by

fM
v pxq :“ inf

gPM
rgpxq ´ gpvqs “ inf

fPMv

fpxq

for every point x of Γ. ˛

(Recall that Mv is the set of all functions of M which vanish at v. In particular, fvpvq “ 0.)

The closedness of M implies that the function fM
v belongs to M , as we show next.

Proposition 3.7.3. The function fM
v is well-defined and belongs to Mv.

Note that, by this proposition, since the infimum is reached, we can write fv “ minfPMv f .

Proof. We first show that fv is well-defined. This does not require that M is closed in

pRatpDq, } ¨ }8q and boils down to proving that the set

tfpxq, f P Mvu

is bounded (from below) for any given x P Γ. Let k be a bound for the slopes of all functions

of M Ď RatpD,Sq (see Remark 3.3.8).

It yields a universal bound for values fpxq with x P Γ and f P Mv:

|fpxq| ď kDiampΓq,
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where DiampΓq is the diameter of Γ as a compact metric space. This shows that fv is

well-defined.

We then show that fv can be written as the uniform limit of a (decreasing) sequence

of functions in Mv, essentially following the proof of Dini’s theorem. Since the slopes of

functions in Mv are universally bounded, this set is uniformly Lipschitz, so fv is itself

Lipschitz and therefore continuous.

Now let n ě 1. For every x P Γ, there exists fx
n P Mv such that

0 ď fx
n pxq ´ fvpxq ď

1

n
.

By continuity of fx
n and fv, there is an open set Ux

n Q x such that for all y P Ux
n ,

0 ď fx
n pyq ´ fvpyq ď

3

n
.

Since this is true for all x and Γ is compact, we can cover Γ using a finite number of open

sets Uxi
n , 1 ď i ď spnq, with corresponding functions fxi

n satisfying inequalities as above.

We define

fn :“ min
1ďiďspnq

fxi
n ,

which is an element of Mv satisfying, for all x P Γ, 0 ď fnpxq ´ fvpxq ď 3
n
. This implies

that pfnq converges uniformly to fv. Note that replacing fn by

gn :“ min
1ďiďn

fi,

we can make this sequence of functions a decreasing sequence, but this it not necessary in

the current proof.

To conclude, we use the closedness of M in RatpDq, which yields fv P M .

Before giving an example, we make two remarks about the functions of the form fM
v .

Remark 3.7.4. Let M Ď RatpDq be an admissible semimodule of rank r, and let S be

the associated slope structure. We assume to be in the particular case where the equality

M “ RatpD,Sq holds. Up to subdividing some edges, we suppose that the support of D

is included in V . Then in the computation of fv, we can ignore functions f P RatpD,Sq

which have more than 3 changes of slope on some edge.

u
‚

v
‚

f

g

x1
‚

x2
‚

x3
‚

x4
‚

y
‚
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Indeed, assume that on an edge e “ uv, the function f (in red and black) changes slope

at points x1, x2, x3 and x4, placed on e in this order. Then the function g (in blue and

black), which is defined by “pushing downwards” the central segment of the graph of f

until reaching a point where the slope of f changes, is and element of Mv “ RatpD,Sqv

which is ď f and which has at most 3 changes of slope on e (at most 2 if by chance y “ x4
in the configuration above). ˛

Remark 3.7.5. A very special case of Theorem 3.5.13 implies that fM
v takes minimum

slopes around v, that is, for all ν P TvpΓq, slopeνpfM
v q “ sν0, see the discussion right after

that theorem. ˛

Example 3.7.6. The following example shows that the closedness condition on M is

necessary for Proposition 3.7.3 to hold, that is, the statement might fail for crude linear

series and their submodules, in general. Consider the metric graph Γ and crude linear series

of degree four and rank one defined at the end of Example 3.4.2. We allow slopes 0 ă 1

u
v

w

Figure 3.6: The metric graph Γ with edges of arbitrary lengths.

on the edge uv and slopes ´1 ă 0 on the edge vw, in the direction of the arrows. We set

D “ puq ` pwq and we adapt ρv as follows:

ˆ

0 0

1 0

˙

.

Here, the jumps of ρv are depicted in blue. This makes pD,Sq a crude linear series of

degree two and rank one. We take M “ RatpD,Sq. The function fv

u
‚
v
‚

w
‚

,

takes slopes 1 and ´1 on the segments ru, vs and rv, ws, respectively, and belongs to

RatpD,Sq. But if we choose any x ‰ v, then fx R RatpD,Sq.

u
‚

w
‚

fx
f1
f2f3

x
‚
v
‚

Indeed, consider a sequence of functions pfiqi which coincide with fx on the segment ru, vs

and whose graphs on the segment rv, ws are represented in thin red in the above figure,
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converging uniformly to fx as i Ñ `8. All the functions fi belong to RatpD,Sqx; but fx
does not itself belong to RatpD,Sq since it does not take symmetrical slopes around v, a

mandatory condition given the expression of ρv. In particular, this shows that RatpD,Sq

is not closed in RatpDq. ˛

Remark 3.7.7 (Bounds on slopes). In the proof of Proposition 3.7.3, we have used a

universal bound for the slopes of functions of RatpD,Sq using the finiteness of the set of

slopes prescribed by Se. In fact, there is a universal bound for these slopes, even without a

slope structure: we can bound uniformly the slopes of all functions of RatpDq, for D any

effective divisor.

The first such bound was provided by [GK08, Lemma 1.8], which states that all the

slopes of functions in RatpDq are bounded by

pdegpDq ` Nq
e,

where N is the maximal valence of a point in Γ, and e is the number of edges of Γ.

However, we believe that there is a small gap in the (purely combinatorial) proof given

in [GK08]. The issue is that e depends on the graph model G “ pV,Eq that was chosen

for Γ such that all points in the support of D or divpfq are in V . For this reason, the

bound above is not universal in f . But we can make it universal (though weaker) without

fundamentally changing the reasoning: we choose, once and for all, a model G of Γ adapted

to D and, for each f , we subdivide the edges of G so that all zeroes of f (points where

divpfq ě 0) are vertices, leaving alone the possible poles of f in the interior of edges (they

do not change the inductive reasoning in the proof of [GK08, Lemma 1.8]). Then, we

follow the proof in that paper, noting that the number of edges we had to add is smaller

than the number of distinct poles of f , which is smaller than the number of poles counted

with multiplicities, which is itself smaller than degpDq. This leads to the universal (highly

non-sharp) bound, depending only on degpDq and the combinatorics of Γ:

pdegpDq ` Nq
e`degpDq.

Anyway, a much stronger bound was given a few years later by [HMY12, Lemma 7],

which states that the slopes are simply bounded by degpDq. The proof is however less

elementary than the one above. ˛

Remark 3.7.8 (Topological discussion). Let k be a universal bound for the slopes in S. Let

us denote by C the space pC0pΓ,Rqv, } ¨ }8q and by B the subspace formed by the functions

of C whose slopes are bounded by k. Since B is closed in C, bounded and equicontinuous,

it is compact by the Arzelà–Ascoli theorem. In particular, a space of the form

A :“ pRatpD,Sqv, } ¨ }8q Ď B

is compact as long as it is closed. Furthermore, if M is a sub-semimodule of RatpD,Sq

which is closed in RatpDq (in particular, if M is admissible, or if pD,Mq is a grd), then Mv
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is again compact. But Example 3.7.6 shows that when the finiteness condition is dropped,

A is not necessarily compact, that is, it is not necessarily closed in B. It is possible however

to show that the space

Ae :“ pRatpD,Se
qv, } ¨ }8q Ď B

is always closed in B, and thus compact, even if A is not finitely generated.

To prove this, let us consider a sequence pfnq of functions in Ae converging uniformly to

f P B and show that f P Ae. The crucial point here is that, by the very nature of the slope

structure S, the slopes of the functions fn on each edge live in a fixed finite set, and that

the fn change slope a uniformly bounded number of times on each edge.

Indeed, without loss of generality, we assume that all points of the support of D are

vertices, so that each fn is a concave affine linear function on each edge. As a consequence,

on a given edge e = uw of Γ, fn changes slope at most r times, because its slope can only

decrease as we travel along e in any direction. We can thus encode the graph of fn on e by

telling its value on the extremity u and giving r numbers

0 ď xe1,n ď xe2,n ď ¨ ¨ ¨ ď xer,n ď ℓpeq,

where ℓpeq is the length of e. In short, fn has slope ser between u and xe1,n, has slope ser´1

between xe1,n and xe2,n, and so on (here, we also denote by xei,n the point on e at distance xei,n
from the extremity u). The fact that the inequalities are not strict translates the possibility

that fn does not necessarily realize all possible slopes on each edge (and even globally on

Γ).

For every edge e, we define an arbitrary path in Γ from the starting vertex v to one of

the extremities of e, also chosen arbitrarily. For every n, we see by immediate induction

(and thanks to the fact that fnpvq “ 0) that we do not need to specify the values of fn on

one extremity of each edge: the data of the xei,n is sufficient to reconstruct fn entirely.

Then, since the edges are compact, we can extract subsequences at most r |E| times and

assume that on every edge e, for all i, the sequence
`

xei,n
˘

n
converges to a certain xei . The

inequalities

xe1 ď ¨ ¨ ¨ ď xer

still hold for every e, so the data of these points defines a new function g P B which is affine

linear and respects Se by construction. It is easy to see that pfnq converges uniformly to g,

and therefore g “ f . We have proved that f is affine linear and respects Se.

To conclude, we now prove that D ` divpfq ě 0. Let v be a vertex of Γ such that

divpfqpvq ă 0 (we know that divpfq is effective outside V since D is supported on V ). We

have to prove that Dpvq ` divpfqpvq ě 0. We denote by e1, . . . , es the edges starting at v

and take the convention that v is their preferred extremity. For 1 ď k ď s, we define two

integers 0 ď αk ď βk ď r by the following properties:

• For all 1 ď i ď αk, the sequence
`

xeki,n
˘

converges to zero (the points converge to v),

and xeki,n “ 0 for an infinite number of n.
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• For all αk ă i ď βk, the sequence
`

xeki,n
˘

converges to zero, but xeki,n “ 0 only for a

finite number of n.

• For all βk ă i ď r, the sequence
`

xeki,n
˘

does not converge to zero.

We can now extract subsequences so that for all n ě 0 and 1 ď i ď αk, x
ek
i,n “ 0 and

assume that n is large enough such that for all αk ă i ď βk, x
ek
i,n ą 0, which implies the

same inequality for βk ă i ď r. Then, only the “genuinely converging” sequences contribute

to changing the value of the limit divisor at v:

divpfqpvq “ divpfnqpvq `
ÿ

1ďkďs

`

sekβk
´ sekαk

˘

.

But the extra term is non-negative, so from pD ` divpfnqqpvq ě 0 we deduce

pD ` divpfqqpvq ě 0.

Since this is true for all vertex v where the inequality was not automatically true, we have

D ` divpfq ě 0,

which finishes the proof that f P Ae.

To sum up, we have the inclusions

A Ă Ae
Ă B Ă C,

with B compact and Ae closed in B, so Ae is compact. The fact that A is not necessarily

compact comes from the fact that it is not necessarily closed in Ae. It is cut out by the

non-necessarily closed constraints at the level of vertices given by Sv.

Note that the argument here also shows that RatpDqv is closed in B, and thus compact. ˛

Remark 3.7.9. It can be shown that if pfnqn is a sequence of functions in RatpDq converging

uniformly to a function f and such that for all n, then f P RatpDq and, for every x P Γ,

the inequality Bxpfq ď Bxpfnq holds for all large n. ˛

3.7.3 Definition of the reduced divisor

We now define reduced divisors for linear series.

Definition 3.7.10 (Reduced divisor). Let pD,Mq be a pair consisting of a divisor D of

degree d and an admissible semimodule M Ď RatpDq. The effective divisor defined by

DM
v :“ D ` divpfM

v q,

more simply denoted by Dv when M is contextually clear, is called the v-reduced divisor

linearly equivalent to D in the linear system |pD,Mq|. Denoting by S the r-slope structure

underlying M , we denote the slope structure S`divpfvq by Sv. The effective pair pDv,Svq

is then equivalent to the pair pD,Sq. Finally, fv gives rise to a modification of M , which is

denoted by Mp´fvq according to Definition 3.5.2, and which is effective. ˛
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Remark 3.7.11. We will see in Proposition 3.7.16 that Dv is the unique effective divisor

in the linear system |pD,Mq| that satisfies an interesting property involving unsaturated

cuts (see Definition 3.7.13). ˛

3.7.4 Coefficient at the base-point

We have the following useful result.

Proposition 3.7.12. Let pD,Mq be pair consisting of a divisor D and an admissible

semimodule M Ď RatpDq. Let S be the underlying slope structure. For every point x P Γ,

we have

Dxpxq “ Dpxq ´
ÿ

νPTxpΓq

sν0.

In addition, this quantity is greater than or equal to r.

Proof. This is a direct consequence of Remark 3.7.5.

3.7.5 Unsaturated cuts

In this section, we provide another characterization of reduced divisors in terms of unsatu-

rated cuts in a metric graph with respect to admissible pairs pD,Mq.

Definition 3.7.13 (Unsaturated cut with respect to an admissible pair). Let pD,Mq be a

pair consisting of a divisor D of degree d and an admissible semimodule M Ď RatpDq of

rank r. Let S be the underlying slope structure. Let v be a point of Γ. Consider a cut X

in Γ and assume that the point v does not belong to X.

We say that X is unsaturated with respect to v and M if, for a sufficiently small ε ą 0,

there exists a function f P M which satisfies the following properties:

• for every point x P BX, f is linear of positive slope sν ą 0 on a small segment Iν on

each adjacent outgoing branch ν P outXpxq;

• f is identically equal to ´ε on X; and

• f is zero everywhere else.

In this case, we say that f fires the unsaturated cut X at level ε. Otherwise, if no such

f exists, X is called saturated. ˛

Note that if f P M fires the cut X at level ε for some ε ą 0, then for every ε1 P p0, εq, the

element f 1 :“ minpf ` ε´ ε1, 0q of M fires X at level ε1. Therefore, the saturation property

for cuts is well-defined.
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Remark 3.7.14. If X is an unsaturated cut with respect to v and M , then for every point

x P BX, there exists an element spxq “
ś

νPTxpΓq
sν P Sx such that sν ě 0 for all ν P TxpΓq,

with equality sν “ 0 if and only if ν P TxpΓq ∖ outXpxq, and, in addition,

Dpxq ´
ÿ

νPTxpΓq

sν ě 0. (3.3)

Such vectors of slopes spxq are provided by the vector of slopes Bxpfq of any function f P M

which fires the unsaturated cut X. The data of these vectors of slopes, together with a

small number ε ą 0, determine the function f entirely. ˛

Remark 3.7.15. Inequality (3.3) in the previous remark implies that each point x of the

boundary BX of the cut X is in the support of the divisor D.

In particular, since the support of D is finite, for given v and M , there are finitely many

unsaturated cuts with respect to v and M . ˛

The following result gives an alternative characterization of reduced divisors.

Proposition 3.7.16 (Characterization of reduced divisors by unsaturated cuts). Let pD,Mq

be a pair consisting of a divisor D of degree d and an admissible semimodule M Ď RatpDq.

Then, D is v-reduced if, and only if, there is no unsaturated cut with respect to v and M .

Proof. We prove the equivalence of the negations.

First, we assume that there is an unsaturated cut X with respect to v and M , and then

show that D is not reduced. By definition, this means that v R X and that there exists

ε ą 0 and a function f P M which fires X at level ε. Obviously, f ď 0 and f takes negative

values on a non-empty set of points. Moreover, if ε is small enough, then fpvq “ 0. This

shows that D is not v-reduced.

To prove the other direction, we assume that D is not v-reduced, and prove that there

exists an unsaturated cut with respect to v and M . Since D is not v-reduced, there exists

a non-constant function f P M ∖ t0u such that fpvq “ 0 and fpxq ď 0 for every x P Γ.

Let X be the set of points of Γ where f takes its minimum value. This is a compact set

which does not contain v, and since f is piecewise linear, X has finitely many connected

components. X is therefore a cut, and the properties of f imply that it is unsaturated with

respect to v and M . This establishes the proposition.

3.7.6 Behavior of reduced divisors with respect to the base point

We give an explicit description of reduced divisors under an infinitesimal change of the base

point. This will be used to prove the continuity of the reduced divisor map, Theorem 3.7.24.

Let pD,Mq be a pair consisting of a divisor D of degree d and an admissible semimodule

M Ď RatpDq of rank r with underlying slope structure S.

Let pD,Mq be a pair consisting of a divisor D of degree d and an admissible semimodule

M Ď RatpDq of rank r with underlying slope structure S. Let v be a point of Γ, ν P TvpΓq,
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and e the oriented edge of Γ parallel to ν, all fixed for the remainder of this section. We

give an explicit description of Du for u in a small segment Ie Ă e with an endpoint equal

to v.

Replacing pD,Sq with the linearly equivalent pDv,Svq and M with Mp´fvq, we can

assume that D is v-reduced. Note that M remains effective. In particular, the zero function

belongs to M . Also, adapting the combinatorial model accordingly, we suppose that the

slope structure S is constant on every edge. Now, there exists a sufficiently small segment Ie

on e adjacent to v which does not contain any point of the support of D apart from v. For a

point u ‰ v on this segment, we have Dpuq “ 0 and Dupuq ą 0, and thus D ‰ Du. We infer

that D is not u-reduced. It follows from Proposition 3.7.16 that there exist unsaturated cuts

with respect to u and M . Since D is v-reduced, we infer that every such cut Y contains v.

In addition, ν must belong to outY pvq, and therefore v P BY , since otherwise, the boundary

of that cut would contain a point of e between v and u (see Remark 3.7.15). This would be

impossible by the assumption made on the support of D. We have proved

Claim 3.7.17. For every unsaturated cut Y with respect to u and M , we have v P BY .

Since D is v-reduced, we have sν0 “ 0 for every ν P TvpΓq (see Remark 3.7.5). It follows

that sνr ą 0, and, by Proposition 3.7.12 and the definition of slope structures, the coefficient

of Du at u is precisely equal to sνr ` sν0 “ sνr , given that ´sνr and sν0 “ 0 are the smallest

possible slopes at u in the direction of v and away from v, respectively. We now claim

Claim 3.7.18. There exists an unsaturated cut Y with respect to u and M for which we

can choose a function f P M firing Y at some level ε ą 0 with the additional property that

its slope along the tangent vector ν is the maximal possible slope sνr .

Proof. Let f “ fu be the element of M with D ` divpfq “ Du and fpuq “ 0, as in

Definition 3.7.2. Since ´sνr is the minimum slope at u along e in the direction of v,

Remark 3.7.5 implies that f takes slope ´sνr away from u on a sufficiently small segment

included in rv, us containing u. The fact that Du is effective then implies that f has constant

slope along rv, us. Consequently, f has slope sνr in the direction of u on the whole segment

ru, vs, and in particular along the tangent vector ν.

Now, let η be the distance between v and u on Ie, and set ε :“ sνrη. Then, we have

fpvq “ ´ε. Also, note that, by the hypothesis made on D, S and M , we have fv ” 0 on

Γ. Therefore, following Definition 3.7.2, we get f ě fpvq ` fv “ ´ε on Γ. Consequently,

´ε “ fpvq is the minimum of f on Γ.

Consider the set Y of all points of Γ where f takes this minimum value. Y is a compact

set with finitely many connected components. Moreover, Y does not contain u and, for a

sufficiently small ε1 P p0, εs, the function f 1 :“ minpf ` ε ´ ε1, 0q fires Y at level ε1. (Note

that, contrary to f , the function f 1 does not necessarily have a constant slope on the whole

segment rv, us.) As a sanity check and as expected (see Claim 3.7.17), v P BY . Since in

addition the slope of f (and thus the slope of f 1) along ν is equal to sνr , the unsaturated

cut Y has the desired properties.
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Now consider the family X of all the unsaturated cuts Y with respect to u and M such

that Y verifies the properties of Claim 3.7.18. Let X :“
Ť

Y PX Y .

Since there are finitely many unsaturated cuts with respect to u and M (see Re-

mark 3.7.15), the family X is finite. Therefore, X is still compact and has finitely many

connected components. i.e., it is itself a cut.

Fact 3.7.19. We notice that if we choose another point u1 ‰ v on the segment rv, us, a

cut Y is unsaturated with respect to u1 if, and only if, it is unsaturated with respect to u.

Verifying the stronger property of Claim 3.7.18 also remains unchanged. This shows that

X (and thus X) does not change when we choose u to be even closer to v, a fact that will

be used in the discussions below and in the proof of Theorem 3.7.22. ˛

We now claim that

Claim 3.7.20. Notation as above, the cut X itself belongs to X .

Proof. To prove that X is unsaturated with respect to u and M , we first note that u R X.

Then, denote by Y1, . . . , YN the elements of X . By assumption, for every i P t1, . . . , Nu,

there exists a function fi P M such that for εi ą 0 small enough, fi fires the unsaturated

cut Yi at level εi, and such that the slope of fi along ν is equal to sνr . For a given i and for

a fixed εi ą 0, there are finitely many such functions fi P M , one for each choice of joint

outgoing slopes (see Remark 3.7.14). By choosing the minimum of these possible choices,

we ensure that fi takes the minimal possible set of joint slopes on edges leaving Yi, under

the constraint, if v P BYi, of having slope sνr on ν. Furthermore, we replace all the numbers

εi with ε :“ mini εi.

For each i P t1, . . . , Nu, each x P BYi, and each ν 1 P outYi
pxq, we call Iν1 the small segment

parallel to ν 1 on which fi takes a positive slope away from Yi. We then reduce ε ą 0 again

so that the outgoing segments Iν1 are essentially disjoint and therefore the functions fi
fire in a “decoupled” way. More precisely, up to reducing ε further, we can assume that

for every i, j P t1, . . . , Nu, every x P BYi, y P BYj and every ν 1 P outYi
pxq, ν2 P outYj

pyq, if

I̊ν1 X I̊ν2 ‰ ∅, then x “ y (and thus one of Iν1 , Iν2 contains the other).

For a sufficiently small ε chosen this way, the function f ε :“ mini fi belongs to M and

fires X at level ε. Indeed,

• on X “
Ť

i Yi, f
ε takes value ´ε, and away from X and the union of Iν1 , for x P BYi,

i “ 1, . . . , N , and ν 1 P outYi
pxq, it is identically zero.

• on a segment of the form Iν1 based at some x P BX, the slope of f ε away from X is

the minimum of the slopes of the functions fi for i such that x P BYi.

This shows that X is unsaturated. Moreover, the slope of every fi along ν is sνr , which

concludes. Note that f inherits the slope minimality properties of the functions fi, which

will be useful in the proof of Theorem 3.7.22.
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Now, as in the proof of Claim 3.7.18, let η be the distance between v and u on Ie, and set

ε0 :“ sνrη. We look at which number between ε0 and the number ε appearing in the proof

of Claim 3.7.20 is smaller. If ε0 ă ε, we freely reduce ε to ε0 in the proof of Claim 3.7.20.

If, on the contrary, ε ă ε0, we move u closer to v so that both numbers are equal; we can

do this properly and without self-reference because, as u moves closer to v, the family X
remains constant, by Fact 3.7.19. At this point, X is an unsaturated cut with respect to u

and M , and there exists a function fu :“ f ε P M , constructed in the proof of Claim 3.7.20,

with fires X at level exactly ε “ ε0, with constant slope sνr on the whole segment rv, us.

Moreover, by construction, among the functions with the previous properties, fu has the

smallest possible set of joint slopes on outgoing tangent vectors.

Remark 3.7.21. Given the way it was constructed in the proof of Claim 3.7.20, and thanks

to Fact 3.7.19, the function fu is entirely determined by ε0, and its non-zero slopes are

independent of u. More precisely, if u1 P pv, us, denoting by η1 the distance between v and

u1, and letting ε1
0 :“ sνrη

1, then the function fu1

is given by fu1

“ minpfu ` ε0 ´ ε1
0, 0q. This

shows that fu depends continuously on u. ˛

We can now formulate the main theorem of this section.

Theorem 3.7.22. The u-reduced divisor with respect to M is Du “ D ` divpfuq.

Proof. Let fu be the rational function in M which defines the u-reduced divisor Du, and

which takes value zero at u (see Definition 3.7.2). We will prove that in fact fu “ fu. Note

that fu verifies the following properties.

• fu is linear on the segment rv, us with slope sνr .

This follows from Remark 3.7.5 and the fact that Du is effective (see the first paragraph

of the proof of Claim 3.7.18).

• fu takes it minimum value at v, and its maximum value at u.

The fact that fu takes its maximum value at u comes from the definition of the u-reduced

divisor map, given that 0 P M . The fact that fu takes its minimum value at v was shown

in the proof of Claim 3.7.18.

• Let X0 be the set of all points where fu takes its minimum value. Then, X0 “ X.

Obviously, X0 is an unsaturated cut with respect to u and M which in addition verifies

the property of Claim 3.7.18 (it is the set Y in the proof of that statement). Therefore

X0 P X . This shows by Claim 3.7.20 that X0 Ď X. The reverse inclusion comes from

the definition of reduced divisors, which implies fu ď fu, globally on Γ. This shows that

X0 “ X.

• Up to reducing η further (i.e., up to moving u even closer to v), fu and fu coincide

on all segments of length η around X.
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Note that fu “ fu on X by the previous claim. Then, the slope minimality property of

fu (see the proof of Claim 3.7.20) ensures, on the one hand, that the slopes taken by fu

on tangent vectors leaving X do not exceed those taken by fu. On the other hand, the

inequality fu ď fu holds on Γ, as previously noted. All in all, we can move u closer to v

(and thus reduce η), without changing X (see Fact 3.7.19), and keeping the properties of fu
and fu established so far in the current proof, in such a way that fu and fu coincide on all

segments of length η leaving X.

• fu “ fu everywhere.

To finish the proof of the theorem, let X 1 be the closure of the complement of X Y
Ť

xPBX,ν1PoutXpxq
Iν1 . We need to show that fu “ fu on X 1. In other words, we need to show

that fu ” 0 on X 1. Suppose this is not the case, and consider the minimum locus Y of fu
on X 1. Note that Y lies in the interior of X 1, i.e., Y X BX 1 “ ∅, and v R Y . This shows that

Y is an unsaturated cut with respect to v and M , which contradicts Proposition 3.7.16,

given that D is v-reduced. This finally establishes the theorem.

Remark 3.7.23. Note that in the proof of Theorem 3.7.22, we did not refer to the

admissibility of M , but this does not contradict Example 3.7.6. Indeed, Proposition 3.7.3

states that, assuming admissibility, Dv exists for all v, whereas Theorem 3.7.22 only implies

that if Dv does exist for some v, then Du exists for all u in a neighborhood of v, and behaves

as stated in the theorem. In other words, the set of u for which Du exists is an open subset

of Γ. ˛

3.7.7 Continuity of the map to |pD,Mq| defined by reduced divisors

Theorem 3.7.22 has the following direct consequence, which will be crucial in the next

section.

Let D be a divisor of degree d and M Ă RatpDq an admissible semimodule of rank r on a

metric graph Γ with underlying slope structure S. Reduced divisors with respect to points

of Γ define a map from Γ to the linear system |pD,Mq|. More precisely, define the map

Red: Γ Ñ |pD,Mq| Ď |pD,Sq| Ď Symd
pΓq

by sending a point v of Γ to Dv, the v-reduced divisor linearly equivalent to D with respect

to M .

Theorem 3.7.24. Let M Ď RatpDq be an admissible semimodule on Γ, with D a divisor

of degree d. The map Red: Γ Ñ |pD,Mq| Ď Symd
pΓq is continuous and non-contracting.

Proof. By Proposition 3.7.12, the coefficient of Dv at v is precisely Dpvq ´
ř

νPTvpΓq
sν0 ą

0 for every point v of Γ. This obviously shows that Red cannot be constant on any

segment of positive length, proving that it is non-contracting. Furthermore, it follows from

Theorem 3.7.22 and Remark 3.7.21 that the function fu “ fu depends continuously on the

point u P Γ. Since Du “ D ` divpfuq, the continuity of Red follows.
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Remark 3.7.25. The above result is a generalization of [Ami13, Theorem 3]. Note that

the map Red is also integer affine linear with respect to the natural integer affine structures

on Γ and Symd
pΓq as described in [Ami13, Section 2]. Thus, the image of Red is a metric

graph. In the case pD,Mq is a g1d, we will see in Proposition 3.8.16 that the image is a

metric tree. ˛

3.8 Classification of g1
d’s

In this section, we consider the case r “ 1, and prove, roughly speaking, that the data

of a g1d on Γ is equivalent to the data of a finite harmonic map to a metric tree (see

Theorem 3.8.6 below for a precise statement). Then, we formulate a smoothing theorem for

combinatorial g1d’s. In this regard, g1d’s on metric graphs are well-behaved, and our theorem

can be regarded as a generalization of the Eisenbud–Harris smoothing result for their limit

g1d’s [EH86, Proposition 3.1].

Let pD,Mq be a g1d on Γ with underlying slope structure S of width one. By Remarks

3.3.6 and 3.5.4, we can assume that pD,Mq is effective. This implies that for every point x

and every outgoing tangent direction ν P TxpΓq at x, one of the two integers sν0 or sν1 is

equal to zero.

Assume that pD,Sq is defined on a model G “ pV,Eq of Γ.

Definition 3.8.1 (Orientation associated to a g1d). Notation as above, we define an

orientation of G in such a way that the edge tu, vu gets orientation uv if suv0 “ 0 ă suv1 . ˛

Let ρ be a rank function on �
δ

1. The point 0 is the only point of �
δ

1 of rank one

(Remark 3.2.2). Besides, the set Jρ of jumps of ρ contains the point 0 (because ρpe iq “

r ´ 1 “ 0 for all i) and every other point a ‰ 0 has at least one coordinate equal to one.

For each a P Jρ, denote by Pa the subset of t1, . . . , δu consisting of all the indices i with

ai “ 1 (the support of a). Denote by Pρ the collection of all sets Pa for a P Jρ ∖ t0u. By

Lemma 3.2.17 and Remark 3.2.18, Pρ provides a partition of t1, . . . , δu.

This construction provides a direct proof of the representability of rank functions of rank

one, which also follows easily from the fact that such a rank function is geometric in the

sense of Section 3.2 (see the results in [ABBR15a] and [ABBR15b]).

Proposition 3.8.2. Every rank function on �
δ

1 is representable, and the field can be chosen

to be of characteristic zero.

Proof. Chose κ to be any infinite field of characteristic zero. Let Pρ “ tP1, . . . , Psu be the

partition of t1, . . . , δu as previously described, each Pi being a subset of t1, . . . , δu. In the

plane κ2, let L1, . . . , Ls be distinct lines. Now let, for each i P t1, . . . , δu, F1
i :“ Lτpiq, where

τpiq P t1, . . . , δu is the integer such that i P Pτpiq. This, in turn, defines δ complete flags in

κ2, completing the lines with κ2 and p0q. Then it is easy to check that the collection of

flags F‚
1 , . . . ,F

‚
δ is a representation of the rank function ρ.
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For every point p of Γ (resp. G) of valence dp, consider the rank function ρp on �
dp

1 ,

and define Pp as the partition of TppΓq (resp. Ep) given by the previous proposition. Note

that Sp consists of the point psν0qνPTppΓq (resp. pse0qePEp), and vectors psνaν q (resp. pseaeq) for

a P �
dp

1 with Pa P Pp.

Proposition 3.8.3. Let v be a vertex of G, and denote by Iv Ă Ep the set of all the edges

vw with svw0 ă 0. Then we have Iv P Pv or Iv “ H.

Proof. We know by hypothesis that 0 P M . Let a be the element of �
dv

1 such that Bvp0q “ sa.

Then, if vw is an edge incident to v, since exactly one of the possible slopes along vw is

zero, we have svw0 ă 0 ô avw “ 1, which concludes.

A consequence of this proposition is the following corollary.

Corollary 3.8.4. Let p be a point of Γ and let TppΓq “ tν1, . . . , νdpu. For each P P Pp, all

the coordinates sνij with i P P and j P t0, 1u have the same sign. In addition, there exists at

most one P P Pp such that all sνi0 for i P P are negative (and, if it exists, this is Ip).

Proposition - Definition 3.8.5. Let T be a metric tree. Then, there exists a unique

effective g11 on T up to linear equivalence.

Proof. Let pD,Nq be an effective g11 on T with underlying slope structure S. Then, we

can assume that D “ pvq for some vertex v of the tree. For every point y in the tree, let

fvÑy to be the unique function taking value zero at v with divpfvÑyq ` pvq “ pyq. Since

N has rank one and N Ď RatpDq, fvÑy must belong to N . This shows that RatpDq “ N .

It is easy to see that N is finitely generated and has tropical rank one and from this, the

proposition follows.

Note that, orienting the edges of T away from v, Se is fully determined to allow slopes

0 ă 1 on each oriented edge, and that Sv is standard at each vertex of T . We moreover

have N “ RatpD,Sq “ RatpDq “
␣

fvÑy ` c
ˇ

ˇ y P T, c P R
(

. Finally, RatpDq is finitely

generated (for every metric graph by [HMY12]), and it is easy to see that RatpDq has

tropical rank one.

The following is the main theorem of this section. We recall that a map between metric

graphs is called a morphism if it is integer affine with respect to the natural integer affine

structures of the metric graphs, and it is called finite if the preimage of every point is finite.

Theorem 3.8.6. Let pD,Mq be an effective g1d on a metric graph Γ with underlying slope

structure S. We suppose that D is x0-reduced for some point x0 P Γ. Then, we have the

following results.

• The image of the map Red: Γ Ñ |M | Ď Symd
pΓq is a metric tree T , and Red is a

finite morphism. Moreover, we have M “ Red˚
pNq, where N is the semimodule on

T defined in Proposition–Definition 3.8.5 using the point Redpx0q P T .
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• There exist a tropical modification α : rΓ ÝÑ Γ of Γ and a finite harmonic morphism

φ : rΓ Ñ T of degree d such that φ|Γ “ Red.

Conversely, let ψ : rΓ Ñ T be a finite harmonic morphism from a tropical modification
rΓ of Γ to a metric tree T , and denote by τ : rΓ Ñ Γ the contraction map. We put the

semimodule N on T defined in Proposition–Definition 3.8.5 using the point y0 “ ψpx0q.

Then, pτpψ´1py0qq, ψ˚pNqq is an effective g1d on Γ for d equal to the degree of ψ.

Remark 3.8.7. The theorem shows that the combinatorial g1d’s are the precise analogues

of algebraic geometric linear series of rank one. In the context of linear series on metrized

complexes introduced in [AB15], a smoothing theorem in rank one was previously obtained

by Luo and Manjunath in [LM18]. However, in that context, there are obstructions to

smoothing, and the results are different. ˛

Using [ABBR15b, Theorem 3.11] and [ABBR15a, Theorem 7.7], we deduce the follow-

ing smoothing theorem. See Section 3.9 for more details about Berkovich curves and

tropicalization of linear series.

Theorem 3.8.8 (Smoothing theorem 3.1.6 for g1d’s). Every effective g1d pD,Mq, with

M Ď RatpDq, on Γ is smoothable. That is, there exists a smooth proper curve X over

an algebraically closed field with a non-trivial non-Archimedean valuation such that Γ is a

skeleton of Xan, a divisor E on X, and a vector subspace H Ď H0pX,OpEqq of rank one

on X such that pD,Mq is the tropicalization of the g1d pE,Hq from X to Γ.

Remark 3.8.9. This crucially uses the fact that rank functions of rank one are geometric

in the terminology of Section 3.2 (see [ABBR15a] and [ABBR15b]). This is applied to every

ρv with v P V for G “ pV,Eq a model a Γ on which pD,Sq is defined. ˛

The rest of this section is devoted to the proof of Theorem 3.8.6.

3.8.1 Proof of Theorem 3.8.6

To this end, we will define an equivalence relation and a partial preorder on the points of Γ,

show that the equivalence classes correspond to the map Red, and prove that the quotient

Γ{ „ is a metric tree.

Let pD,Mq be an effective g1d with underlying slope structure S on Γ. We define an

equivalence relation „M on the set of points of Γ as follows. For two points x, y P Γ, we

write x „M y (or simply x „ y) if, for all f P M , we have fpxq “ fpyq. We also define a

partial order by writing x ďM y (or simply x ď y) if, for all f P M , we have fpxq ď fpyq.

Note that, if x and x1 belong to the same edge e, then x and x1 are comparable for ďM :

in this case, the comparability is given by the orientation of e. We also write x ăM y (or

simply x ă y) the corresponding strict partial preorder, when x ď y and there exists some

f P M such that fpxq ă fpyq. The statement x ăM y is equivalent to x ďM y and x ȷM y.

170



It is immediate that ďM is indeed reflexive and transitive, and ăM irreflexive, transitive

and asymmetric. Also, ďM , resp. ăM , induces a well-defined partial order, resp. a

well-defined strict partial order, on the quotient Γ{ „.

We first show that „ is a well-behaved equivalence relation.

Proposition 3.8.10. For all x P Γ, the class of x under „ is finite.

Proof. Let x and x1 belong to a common edge e. Suppose without loss of generality that

x ď x1. Then, by Theorem 3.5.13, there exists f P M that takes all minimal slopes around

x1 (for example f “ fx1), in particular in the direction of x in which the minimal slope is

negative. Thus fpxq ă fpx1q and x ȷ x1. This shows that we can only have x „ x1 if x and

x1 do not belong to the same edge, from which the result follows.

This shows, in particular, that Red is a finite morphism.

Remark 3.8.11. A consequence of Proposition 3.8.10 is that, at each point, each jump is

realized, which is a particular case of Theorem 3.5.13. ˛

We now show that the equivalence relation corresponds to the map Red.

Proposition 3.8.12. Let x, y P Γ. Then x „ y ðñ Redpxq “ Redpyq.

Proof. ùñ If x „ y, then the sets Mx and My coincide, which shows, according to

Definition 3.7.2, that fx “ fy and, therefore, Redpxq “ Redpyq.

ðù If Redpxq “ Redpyq, by Proposition 3.3.2, there exists a constant c such that

fy “ fx ` c. Suppose that c ą 0. Then fypxq “ fxpxq ` c “ c ą 0, which is impossible

because for all z P Γ, fz ď 0. So we have, in fact, fx “ fy by symmetry. Now, let g be any

function of M such that gpxq “ 0. We need to show that gpyq “ 0. First, we note that

gpyq ě fxpyq “ fypyq “ 0.

Second, let h :“ g´gpyq. h belongs to M and verifies hpyq “ 0, so we know that h ě fy “ fx,

and thus, ´gpyq “ hpxq ě fxpxq “ 0, which concludes.

The map Red is equal to the projection map Γ Ñ Γ{ „. We denote Γ{ „ by T , and the

goal is now to show that T is a metric tree. This amounts to showing that T has no cycle

(T is already a metric graph). The proof uses the condition that the tropical rank is one.

In the following, we will transfer the orientation of the edges of Γ to the edges of T .

Lemma 3.8.13. Let x P T . Then x has in-degree at most one in T .

Proof. Suppose, on the contrary, that x has in-degree at least two, that is, using the

orientation of G defined by S, that two distinct edges e and e1 incident to x are oriented

toward x. There are two cases.

(i) e and e1 originate from two edges of G, e and e1 respectively, which are incident to

the same preimage x of x.
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We show that this cannot happen by proving that, on the contrary, e and e1 will be glued

together by Red in the following way: there exist λ, ε ą 0 such that

• ε and λ ¨ ε are smaller than ℓpeq, ℓpe1q, and

• for every choice of η P p0, εq, for every y P e at distance η from x, for y1 P e1 at distance

λ ¨ η from x, we have y „ y1.

We know that fx takes all minimum slopes around x, and, in particular, takes negative

slopes on e and e1 away from x. These two slopes can be different, but since they are both

negative, the image by fx identifies points of e and e1 close to x as described above for some

fixed ε ą 0, with a dilation factor λ “
se0

se
1

0

. The null function 0 also identifies e and e1 with

the same dilation factor (in fact, with any dilation factor).

Let now g be any function of M . Without loss of generality, we assume that gpxq “ 0.

Since M is assumed to have tropical rank one, there exist c, d P R such that for all z P Γ,

the minimum in

minp0, fxpzq ` c, gpzq ` dq

is attained at least twice. We will show that the image by g identifies e and e1 in the same

way, getting a contradiction.

We will consider three cases, depending on whether c is negative, positive, or zero.

Let us first assume that c is negative. This implies that, for y on e or e1, fxpyq ` c ă 0

and thus gpyq ` d “ fxpyq ` c. So g “ fx on e and e1 (evaluate at x) and thus identifies e

and e1 close to x with dilation factor λ.

Now, let us assume that c is positive. Then, for y on e or e1 close to x, fxpyq ` c is still

positive and thus gpyq ` d “ 0. In fact, d must be zero, and so g is null close to x on e and

e1. Therefore, g identifies e and e1 with dilation factor λ.

The last case is when c “ 0. For y on e different from x, we have fxpyq “ gpyq ` d and

thus, by continuity, g identifies e and e1 with dilation factor λ.

We have thus shown that in all cases, g identifies the two edges oriented toward x. Since

this is true for all g P M , we infer tha x cannot have in-degree at least two.

(ii) e and e1 originate from two edges of G, e and e1 respectively, which are incident

respectively to two different preimages x and x1 of x. Since, by definition, fx “ fx1

and gpxq “ gpx1q for all g P M , we can use exactly the same argument, mutadis

mutandis.

Remark 3.8.14. We have the following fact: the edges incident to some x P Γ that are

glued by Red are exactly those belonging to the same set in the partition Px.

ðù Take g P M . Then Bxpgq is a jump in Sx, so, using Lemma 3.2.17 and Proposition 3.8.3,

we are in one of the three following cases:

(i) g is constant around x.
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(ii) g takes negative slopes away from x on all incoming edges, and zero slope on all

outgoing edges.

(iii) g takes negative slopes away from x on all incoming edges, positive slopes on some

set S P Px of outgoing edges, and slope zero on all other (outgoing) edges.

In each one of these cases, g identifies the edges of each set of Px. Since this is true for all

g, then Red glues together the edges of each set of Px.

ùñ If e and e1 are two edges that do not belong to the same set of Px, then we can

assume without loss of generality that e is an outgoing edge (see Corollary 3.8.4). Moreover,

there is a jump a P �
dx

1 such that e P Pa and e1 R Pa. The jump a is realized by some

function f P M (Remark 3.8.11). There are two cases:

(a) e1 is also an outgoing edge. Then f has a positive slope on e (away from x) and slope

zero on e1.

(b) e1 is an incoming edge. Then f has a positive slope on e and negative slope on e1.

In both cases, f does not identify e and e1, so Red does not glue these edges.

Finally, every edge incident to x in Γ is sent to an actual edge incident to x in T because

Red is affine linear and non-contracting (Theorem 3.7.24). ˛

Remark 3.8.15. Remark 3.8.14 has an interesting consequence. At a point x P Γ, we know

that the set of all incoming edges is a set of the partition Px (Proposition 3.8.3). Then,

applying the first part of Remark 3.8.14 gives that all incoming edges at x are glued together

by the map Red, which yields case (i) in Lemma 3.8.13 automatically. However, case (ii)

really requires the argument involving the tropical rank, as developed in the proof. ˛

We now come to the desired result.

Proposition 3.8.16. T has no cycles, and therefore is a metric tree.

Proof. First, we claim that T can have no oriented cycle. Indeed, Proposition 3.8.10 states

that if x and y are the vertices of an edge oriented from x to y, then x ă y (using the strict

partial order induced on T ). In an oriented cycle, we would get a strict inequality of the

form x ă x, which is absurd.

To conclude, we show that T cannot have any cycle. Indeed, a cycle endowed with an

orientation of its edges, if it is not an oriented cycle, gives an in-degree two to at least one

of its vertices, which is impossible by Lemma 3.8.13.

We thus conclude that T is an acyclic metric graph, that is, a metric tree. Note that the

metric on T is the one induced from Γ by the gluing. It is the only metric such that the

slopes of the functions T Ñ R factored from functions Γ Ñ R in RatpD,Sq are in the set

t´1, 0, 1u. Roughly speaking, this amounts to giving an edge e of T a length equal to the

product of the length of e times the non-zero allowed slope on e, for e any edge of Γ sent to
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e by Red. Equivalently, the metric is such that the relative slope of Red on an edge is the

non-zero slope on this edge in the slope structure S.

We now show the following claim of Theorem 3.8.6: M “ Red˚
pNq, where N is associated

to Redpx0q P T .

Proof of Theorem 3.8.6: M “ Red˚
pNq. We show the assertion in Theorem 3.8.6 that M “

Red˚
pNq, where N is associated to Redpx0q P T .

(The inclusion Ď) Let f P M . By definition of Red, f is constant on the equivalence

classes for „M , so it can be written in the form f “ g ˝ Red, with g a function T Ñ

R. It is straightforward that g is continuous and affine linear with integral slopes (see

Proposition 3.8.10 which implies that Red is a local homeomorphism on its image). By

definition of the metric on T , g has slopes zero and one compatible with Se, with S the

slope structure underlying N . To show that g is compatible with D and Sv, we simply look

at the possible sets of slopes of f around a point y P Γ in the cases (i) and (ii) explored in

the proof of Proposition–Definition 3.8.5.

(The inclusion Ě) The other way around, let g P N and f :“ g ˝ Red. We have to show

that f P M . Since g belongs to N , it is of the form g “ fy “ fRedpx0qÑy P RatppRedpx0qq,Sq

with y P T . Let w P Red´1
pyq. All the functions fx0Ñw for such a w are equal thanks to

Proposition 3.8.12. The fact that f belongs to M then comes from the equality f “ fw
which is implied by Theorem 3.5.13.

To finish the first part of the theorem, we need to show that the morphism Red from Γ to

T can be resolved to a finite harmonic morphism of degree d by a tropical modification of Γ.

Given a point x̄ P T and ν P Tx̄pT q, we denote by Tx̄,ν the metric subtree of T consisting of

the point x̄ and all the points z of T which have the property that the unique path from x̄

to z in T has tangent vector at x̄ equal to ν. For the language of harmonic morphisms and

degrees of maps between metric graphs, we refer the reader to [ABBR15a, Section 2.1].

Proof of Theorem 3.8.6: resolution to a finite harmonic morphism. Let x̄ be a point of T ,

and consider a point x of Γ with Redpxq “ x̄. We denote by Red˚ : TxpΓq Ñ Tx̄pT q the

induced map on tangent vectors. For each unit tangent vector ν P Tx̄pT q, consider the

degree of Red at x above ν, denoted by degν Redpxq and defined as the sum

degν Redpxq :“
ÿ

µPTxpΓq

Red˚pµq“ν

slopeµpRedqpxq.

Define the degree of Red at x, denoted by deg Redpxq, to be the maximum quantity

degν Redpxq for all ν P Tx̄pT q.

We define the tropical modification rΓ0 as follows. For each point x̄ P T and each

point x P Γ as above, and each ν P Tx̄pT q with degν Redpxq ă deg Redpxq, we take

deg Redpxq ´ degν Redpxq copies of the subtree Tx̄,ν of T , glue them to the point x by

identifying the point x̄ of Tx̄,ν in each copy with the point x. We then naturally extend

Red to each copy of Tx̄,ν by the identity map on Tx̄,ν . Since deg Redpxq ´ degν Redpxq
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is non-zero only for finitely many pairs px̄, νq, we obtain a tropical modification rΓ0 of Γ

and a map ϕ!0 : rΓ0 Ñ T which coincides with Red on the metric subgraph Γ ãÑ rΓ0. By

construction, the map ϕ!0 is harmonic of degree deg Redpxq at all points x of Γ. It is

also harmonic of degree one at all other points of rΓ0 ∖ Γ. Note that ϕ!0 is of degree d0
at most d. In fact, in the gluing process above, in the construction of rΓ0, when we add

deg Redpxq ´ degν Redpxq at x, the degree remains bounded by d. Indeed, for each point

ȳ in the subtree Tx̄,ν , and each y P Γ with Redpyq “ ȳ, the coefficient of x in DM
y is at

least deg Redpxq ´ degν Redpxq, using the explicit description of the variation of reduced

divisors with respect to the base point provided in Section 3.7.6. This implies that the fiber

Red´1
pȳq, counted by multiplicity, is of size bounded by d ´ deg Redpxq ` degν Redpxq, so

that after modification, the degree remains bounded by d. Treating the points one by one

in the gluing process, and proceeding by induction, we obtain d0 ď d.

To conclude, let rΓ be the tropical modification of rΓ0 obtained by plugging d´ d0 copies of

T at some point y of rΓ0, by identification of the point ϕ0pyq in each copy with y. We extend

ϕ!0 by the identity map on these copies to get the harmonic map ϕ : rΓ Ñ T of degree d, as

required.

Now we show the second part of Theorem 3.8.6: if ψ : rΓ Ñ T is any finite harmonic

morphism to a metric tree T on which we put the semimodule N using the point y0 “ ψpx0q,

then pτpψ´1py0qq, ψ˚pNqq is an effective g1d on Γ.

Proof of Theorem 3.8.6: the converse. It will be enough to show that pψ´1py0q, ψ
˚pNqq is

an effective g1d on rΓ.

We first have to define the pullback of the slope structure S1 of N by ψ to rΓ. Let D be

the divisor ψ´1py0q. Its degree is d, the degree of ψ. At some point x P Γ, in the direction

ν P TxpΓq, the non-zero possible slope is defined to be the relative slope of ψ in the direction

ν: this defines Se. We now define Sv around x by saying that the jumps of ρx are exactly

the vector 0, and the vectors having ones for all edges belonging to a certain complete set

of edges identified by ψ, and zero on all other edges, which entirely defines ρx. We have

defined the pair pD,Sq.

We now show that ψ˚pNq is a semimodule included in RatpD,Sq. Firstly, it is stable

by the two tropical operations since N is. Secondly, we show that ψ˚pNq Ď RatpD,Sq. If

f is a function of ψ˚pNq, we can write it f “ g ˝ ψ with g P N . It is automatic by the

construction of S on rΓ that f is compatible with Se and Sv. The fact that D` divpfq ě 0

comes from the harmonicity of ψ.

We now check property p˚˚q of Section 3.5.5. Let x P Γ and E “ pxq. Let y “ ψpxq.

Then, the function fy0Ñy ˝ ψ has the required properties (1) and (2). This function belongs

to ψ˚pNq. Therefore, pD,ψ˚pNqq verifies property p˚˚q of Section 3.5.5. Finally, the finite

generation of ψ˚pNq and the fact that ψ˚pNq has tropical rank one follow from the same

properties for N . The same is true for effectivity. We have proved that pD,ψ˚pNqq is an

effective g1d.

This finishes the classification of g1d’s on metric graphs.
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3.9 Limit linear series on the skeleton of a Berkovich curve

In this section, we show that the tropicalization of linear series on C gives combinatorial

limit linear series.

Let K be an algebraically closed field with a non-trivial non-Archimedean valuation val

and let C be a smooth proper curve over K. We assume that K is complete with respect

to val. Let R, m, and κ “ R{m be the valuation ring, the maximal ideal of R, and the

residue field, respectively. Denote by Λ the value group of val. We also denote by | ¨ | the

corresponding norm on K, so that valp¨q “ ´ log | ¨ |. Let KpCq be the function field of C.

A semistable vertex set for Can is a finite set of type 2 points V in Can such that the

complement Can ∖ V is a disjoint union of finitely many open annuli and infinitely many

open disks. A semistable vertex set V gives rise to a skeleton Γ for Can, defined as the

union in Can of V and the skeleta of the open annuli in Can ∖ V . The canonical metric

on the skeleta of the open annuli gives the skeleton a metric graph structure, naturally

embedded in Can. The underlying graph G “ pV,Eq has vertex set V and edge set E in

bijection with the set of open annuli in Can∖V . There is an edge between a pair of vertices

v and u in V for each open annulus whose closure contains the points v and u. Moreover,

the edge length function ℓ : E Ñ p0,`8q associates to each edge of G the modulus of the

corresponding annulus.

Let Γ be a metric graph skeleton of Can with underlying graph G “ pV,Eq and denote

by τ : Can Ñ Γ the canonical retraction map. We call τ the tropicalization map. We get a

tropicalization map τ˚ : DivpCq Ñ DivΛpΓq that sends a divisor D “
ř

xPCpKq
axpxq on C

to the divisor τ˚pDq “
ř

xPCpKq
axpτpxqq.

We denote by vx : KpCq Ñ R Y t`8u the valuation of a point x P Can ∖ XpKq with

vxpfq “ `8 only if f “ 0. The residue field of this valuation is denoted by κpxq. We also

denote by | ¨ |x “ expp´vxq the corresponding norm.

For each non-zero f P KpCq, we define the tropicalization of f , denoted troppfq : Γ Ñ R,

as the map that sends each x P Γ Ď Can ∖CpKq to vxpfq. This induces a tropicalization

map trop: KpCq ∖ t0u Ñ RatΛpΓq.

Let D be divisor of degree d and rank at least r on C, and let pOpDq,Hq be a grd on C.

We identify H with a subspace of KpCq of dimension r ` 1.

Let Γ be a skeleton of Can. We define

M :“ troppHq “
␣

troppfq
ˇ

ˇ f P H∖ t0u
(

.

Theorem 3.9.1. The pair pD,Mq is a refined Λ-rational grd on Γ.

We will call the linear equivalence class of the pair pD,Mq the combinatorial limit linear

series on Γ induced by pOpDq,Hq. It is easy to see that pD,Mq is effective provided that

H contains constants.
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3.9.1 Reduction

For each point x of type 2 in Can, the extension κpxq{κ is of transcendence degree one. Let

Cx be the smooth projective curve over κ with function field κpxq. For the point x, the

valuation vx has the same value group as val. For each nonzero f P KpCq, choosing a P K

with valpaq “ vxpfq, we get that a´1f has valuation vxpa´1fq “ 0, and therefore gives an

element in the residue field κpxq that we denote by f̃x. We call this the reduction of f at x,

which is nonzero and defined only up to multiplication by a non-zero scalar in κ. For a

vector subspace H Ă KpXq of dimension r` 1, denote by rHx Ă κpxq the κ-vector subspace

spanned by the reductions f̃x of elements f P H [AB15, Section 4.4]. By [AB15, Lemma

4.3], rHx has dimension r ` 1 over κ.

3.9.2 Slope structure and crude linear series coming from

tropicalization

For a point x in Γ of type 2 in Can, each unit tangent direction ν P TxpΓq gives a

point pνx P Cxpκq. By the slope formula [BPR16], for any non-zero f P KpCq, we have

slopeνptroppfqq “ ordpνx

´

f̃x

¯

. Moreover, as a consequence of the slope formula [AB15], we

get

τ˚pdivpfqq “ divptroppfqq.

(Note that there is a sign difference between our definition of the divisor of a rational

function and that of [AB15].)

If H Ă KpCq is a K-vector subspace of dimension r ` 1, for any unit tangent vector

ν P TxpΓq, we get a collection of integers slopeνptroppfqq “ ordpνx

´

f̃x

¯

, f P H. Since rHx

has dimension r ` 1, this collection has size r ` 1. This means that the collection of slopes

slopeνphq, for h P M “ troppHq, has size r ` 1. For each unit tangent vector ν, we order

the slopes slopeνphq, for h P M , in the form sν0 ă sν1 ă ¨ ¨ ¨ ă sνr . Define Sν :“ tsνi uiPrrs. In

addition, the collection of points pνx P Cxpκq for ν P TxpΓq defines a geometric rank function

ρx associated to the corresponding filtrations on rHx as in Section 3.2.2. We define Sx as the

set of jumps of ρx. We have the following theorem, which can be regarded as a refinement

of [AB15, Theorem 5.9].

Proposition 3.9.2 (Slope structures induced by tropicalization of rational functions).

Notation as above, let H Ă KpCq be a K-vector space of dimension r ` 1. Let Γ be a

skeleton of Can. There exists a semistable vertex set V for C such that ΣpC, V q “ Γ, and

such that the slopes of the tropicalizations of rational functions f in H along edges in Γ

define a slope structure of width r on Γ.

Proof. We already defined Sx and Sν for type 2 points of Γ Ď Can and ν P TxpΓq. We

show that the definitions can be extended to all points of Γ, and that the collection

S “ tSx;SνuxPΓ, νPTxpΓq
is induced by a simple graph model of Γ (or, equivalently, by a

semistable vertex set of Can). To show this, let x be a point of type 2, and let ν P TxpΓq
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be a tangent direction at x in Γ. Let f0, . . . , fr be a basis of H such that the reductions

f0 “ f̃0, . . . , fr “ f̃r to κpxq yield the orders of vanishings sν0, . . . , s
ν
r at the point pνx,

respectively. By the slope formula, the slope of troppfjq along ν at x coincides with sνj .

There thus exists a half segment Iνx “ rx, yνs on the edge supporting the point x and the

tangent direction ν such that the slope of the function troppfjq along ν at every point of

Iνx is sνj . Since these are r ` 1 integers, they are all the possible slopes along ν in Iνx of

tropicalizations of functions in H. We extend the definition of S‚ to every point in the

interior of the segment Iνx by taking these slopes and by declaring the rank function to be

standard. Applying now the compactness of Γ, we deduce a finite covering of Γ by segments

Iνx , from which we deduce the statement in the proposition.

The fact that τpdivpfqq “ divptroppfqq then shows that pD,Sq has rank r, as defined in

Definition 3.4.1. This is analogous to the proof of the specialization theorem for metrized

complexes in [AB15], we thus omit the details. This shows that

Proposition 3.9.3. The pair pD,Sq defined by tropicalization is a crude linear series on

Γ of degree d and rank r.

Note that for two linearly equivalent divisors D „ D1 on C, and H a subspace of the

space of global sections of the corresponding line bundles OpDq “ OpD1q of dimension

r ` 1, the two pairs pD,Sq and pD1,S1q are linearly equivalent.

3.9.3 M Ď RatΛpDq is a semimodule

We show that M Ď RatΛpDq is a semimodule. Changing the vertex set if necessary, we can

assume without loss of generality that the support of D is included in the set of vertices V .

Let f and g be two elements in M , and let λ P Λ. By definition, we can write f “ troppfq

and g “ troppgq with f , g P H ∖ t0u. Let h :“ minpf ` λ, gq for λ P Λ. We show the

existence of h P H such that tropphq “ h. This will show that M is a Λ-semimodule. Since

λ P Λ “ valpK ∖ t0uq, we can write λ “ valpαq with α P K. We take h :“ αf ` g. The

goal is to show that replacing, if necessary, α with αβ for β P Kˆ of valuation zero, we

have h “ tropphq.

Let x P Γ be such that fpxq ` λ ‰ gpxq. Then, by the enhanced non-Archimedean

triangular inequality (that is, if valpaq ‰ valpbq, then valpa` bq “ minpvalpaq,valpbqq), we

get automatically that vxphq “ minpfpxq ` λ, gpxqq “ hpxq.

Let now Γ0 :“ tx P Γ, fpxq ` λ “ gpxqu. Since f and g are piecewise affine linear, Γ0 can

be written as a union of finitely many segments of Γ so that both f and g are affine on

each of these segments. Let now I be any of them, whose extremities we denote x and y,

on an edge e of Γ. A segment of Γ is a segment of an edge of G; it can be reduced to just

a point. Let ν be the tangent direction in TxpΓq pointing toward y; if x “ y, we choose

an arbitrary ν P TxpΓq. Consider the point pνx of Cxpκq corresponding to ν. By the slope

formula and the fact that f ` λ “ g on all I, we have

ordpνx

´

rf
¯

“ slopeνpfq “ slopeνpgq “ ordpνxprgq.
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Up to multiplying α by some element β of Kˆ of valuation zero, we can ensure that

ordpνx

´

Čαf ` g
¯

“ ordpνx

´

rf
¯

“ ordpνxprgq “ ordpνx

´

rαrf ` rg
¯

.

Note that only one value for the reduction rα in κ is forbidden.

Using again the slope formula for Čαf ` g yields ordpνx

´

rαrf ` rg
¯

“ slopeνphq, so that

slopeνphq “ slopeνpfq “ slopeνpgq.

We can do the same at the other extremity y of I, and ensure that locally, starting at

either extremity of I, h has the same slope as f and g. Since f and g are linear on I, D

has no support in the interior of I, and h coincides with f ` λ and g on the extremities of

I, we must have h “ f ` λ “ g on the full interval I.

Since this can be done for each of the finitely many segments composing Γ0, forbidding

at most one value for the reduction α̃ P κ each time, and since κ is algebraically closed

(and thus infinite), there is some α P K such that valpαq “ λ and

troppαf ` gq “ minpf ` λ, gq “ h

on all Γ. We have shown that h P M , so M is a semimodule of RatΛpD,Sq.

3.9.4 Finite generation property

Proposition 3.9.4. The semimodule M “ troppHq is finitely generated.

We suppose that the slope structure S is defined on the model G “ pV,Eq of Γ associated

to the semistable vertex V .

Let A1 “ SpecpKrT sq and let A1,an be its Berkovich analytification. Let Apρq be the

closed annulus in A1,an of center 0 with outer radius one and inner radius ρ P p0, 1q,

Apρq “
␣

x P A1,an
ˇ

ˇ ρ ď |T |x ď 1
(

.

Let Rpρq be the ring of analytic functions on Apρq. An analytic function f on Apρq admits

a formal power series expansion

f “
ÿ

nPZ

anT
n

with limnÑ˘8 |an|sn “ 0 for all s P rρ, 1s. The skeleton of Apρq is a closed interval, which

can be identified with I :“ r0,´ log ρs: each point q in this interval corresponds to the

norm | ¨ |ζqpfq “ supnPZ |an| expp´qnq “ maxnPZ |an| expp´qnq on any analytic function f as

above. The tropicalization of an analytic function f is the function troppfq on the interval

I given by

troppfqpqq “ mintvalpanq ` nq
ˇ

ˇ n P Zu @q P I.

Each edge e in E is the skeleton of one of the annuli in the complement Can ∖ V , that

we denote by Apeq. We have Apeq » Apρeq with ρe “ expp´ℓeq, where ℓe is the length of e

in Γ. Using this identification, e is identified in Γ with the interval r0, ℓes.

179



Proof of Proposition 3.9.4. By restriction, each element f P H gives rise to an analytic

function on the annulus Apeq that we denote by fe. The tropicalization of f restricted to

e coincides with the tropicalization of fe, and has slopes among se0 ă ¨ ¨ ¨ ă ser. It follows

that, taking the analytic development fe “
ř

nPZ a
e
npfqT n in Apeq, with aenpfq P K, the

tropicalization of fe is entirely defined by the truncation

f e :“

see
ÿ

n“se0

aenpfqT n.

Consider the K-linear map

φ : H ÝÑ
ź

e

Krse0,s
r
es

f ÞÝÑ

´

paenpfqqn“se0,...,s
r
e

¯

ePE
.

We infer that the tropicalization troppfq, for f non-zero in H, is entirely determined by

tropicalization

troppφpfqq :“
´

pvalpaenpfqqqn“se0,...,s
r
e

¯

ePE
P
ź

e

Trse0,s
r
es

via the expression

troppfq|epqq “ min
␣

valpaenpfqq ` nq
ˇ

ˇ n “ se0, . . . , s
e
r

(

@q P r0, ℓes.

Let H1 “ φpHq, and M 1 “ troppH1q :“
␣

troppφpfqq
ˇ

ˇ f P H∖ t0u
(

Ă
ś

e Trse0,s
r
es. From

the above discussion we deduce the existence of a surjective morphism of semimodules

φ
trop

: M 1 Ñ M . We conclude by observing that M 1, being the tropicalization of a linear

subspace of Kn for n “
ř

eps
e
r ´ se0 ` 1q, is finitely generated, see [Spe08, Theorem 3.1] and

[Gau92, Chap. III, Theorem 1.2.2]. A generating set for M 1 gives a generating set for M

via the surjection φ
trop

. The proposition follows.

3.9.5 Proof of Theorem 3.9.1

We have proved nearly all the properties to show that pD,Mq is a linear series.

We first need to show that M has tropical rank r. Keeping in mind Remark 3.6.6, we

have to prove that the tropical rank is at most r. Let f0, . . . , fr`1 P M . For each i, we write

fi “ troppfiq with fi P H∖ t0u. Since dimpHq “ r ` 1, there exist some λi P K, i P rr ` 1s,

such that
řr`1

i“0 λifi “ 0. This shows that for all x P Γ, the minimum in

min
0ďiďr`1

pfipxq ` valpλiqq

is achieved at least twice. Therefore the tropical rank of M is at most r.

Finally, we need to show that property p ˚
˚˚ q in Definition 3.6.4 is verified. Let E be an

effective Λ-rational divisor on Γ of degree s ď r. Choose E to be any lift of E to the curve
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C. Let HE Ă H be a subspace of H of rank r ´ s such that for each f P HE, we have

divpfq ` D ´ E ě 0. This space exists since E imposes at most s linear constraints on H.

Let SE be the slope structure of width r´ s induced by the tropicalization of HE, which is

a slope substructure of S. Let ME :“ troppHEq. Then, pD,MEq is a linear series of rank

r ´ s, ME Ď M , and the properties p1q and p2q of p ˚
˚˚ q are verified.

At this point, the proof of Theorem 3.9.1 is complete.

3.10 Examples and discussions

We provide a set of examples and some complementary results.

3.10.1 The dipole graph

We consider the dipole graph with four edges (of unit length to simplify the notation). The

genus is g “ 3 and the rank of the canonical divisor K is r “ 2. Denote by u and v the two

vertices and by e1, e2, e3 and e4 the four edges of Γ (see Figure 3.7).

A crude linear series of degree 4 and rank 2

For i “ 1, 2, 3, 4, let ti P
`

0, 1
6

‰

. For each choice of the ti’s, we will construct a slope

structure S of width two.

Let the ti’s be fixed. For each i, we endow the edge ei with the slope sets 0 ă 1 ă 2 on the

interval
“

0, 1
2

´ ti
‰

in the direction of the arrows, ´1 ă 0 ă 1 on the interval
“

1
2

´ ti,
1
2

` ti
‰

,

and ´2 ă ´1 ă 0 on the interval
“

1
2

` ti, 1
‰

.

p0, 1, 2q
p´1, 0, 1q

p´2,´1, 0q

p0, 1, 2q
p´1, 0, 1q

p´2,´1, 0q

2 2

Figure 3.7: A slope structure of width two on the dipole graph.

We now define suitable rank functions. Endow the eight points 1
2

´ ti,
1
2

` ti on the

edges ei for i “ 1, 2, 3, 4, respectively, with the rank function on r2s2 defined by the array
¨

˝

0 0 ´1

1 1 0

2 1 0

˛

‚ (jumps in blue) and all the other points of Γ, including u and v, with the

standard rank function. This defines a slope structure S of width two on Γ, and pK,Sq is

a crude linear series of rank two on Γ.
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An elementary g24 on the dipole graph

We will present an example of a combinatorial limit linear series of degree 4 and rank 2 on

the dipole graph with four edges of unit length, the same graph as in Section 3.10.1.

Like in the aforementioned section, we consider the canonical divisor K on Γ, which has

degree 4 and rank 2. We keep the notations of Section 3.10.1. The linear series will be

based on a degenerate version of the slope structure defined in that section, essentially

corresponding to the limit ti “ 0 for every i “ 1, 2, 3, 4.

More precisely, as shown in Figure 3.8, we endow, for each i, the edge ei with the slope

sets 0 ă 1 ă 2 on the interval
“

0, 1
2

‰

, and ´2 ă ´1 ă 0 on the interval
“

1
2
, 1
‰

, in the

direction of the arrows. We moreover endow every point of Γ, including u, v and the middle

point mi of each edge ei, with the standard rank function. This defines a slope structure S

of width two on Γ.

p0, 1, 2q p´2,´1, 0q

p0, 1, 2q p´2,´1, 0q

2 2

Figure 3.8: A slope structure of width two on the dipole graph.

Denote by RatSympKq (resp., RatSympK,Sq) the set of functions f P RatpKq (resp.,

f P RatpK,Sq) whose restriction to each ei is symmetric with respect to the middle point

mi. It is not difficult to see that the following holds:

RatSympK,Sq “ RatSympKq Ĺ RatpK,Sq Ĺ RatpKq,

where both inclusions are moreover closed. The linear series will be defined as

M :“ RatSympK,Sq “ RatSympKq.

Then, M is a sub-semimodule of RatpK,Sq of rank two, which here also implies the

same for RatpK,Sq and RatpKq. The symmetries of the functions f P M then imply that

M can be viewed as a complete linear series: it is isomorphic to the linear series Ratp2 puqq

on the tree T obtained as the left half of Γ, see Figure 3.9 below.

Now that we have essentially reduced to the case of a complete linear series, we

use [HMY12, Theorem 6] and [HMY12, Corollary 9], which show that M is generated by its

finitely many extremal points, and provide a characterization of the extremal points which

enables to enumerate them all. Using this, M is seen to be generated by the functions

defined as follows. For every i “ 1, 2, 3, 4, let fi be the function on Γ whose graph on the

edge ei is
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2

Figure 3.9: The tree T on which the complete linear series Ratp2 puqq is defined.

u
‚

v
‚

with slopes 2 and ´2, and which is identically zero on all other edges. For every choice of

indices 1 ď i ă j ď 4, let gi,j be the function on Γ whose graph on the edges ei and ej is

u
‚

v
‚

with slopes 1 and ´1, and which is identically zero on both other edges. Then M is

generated by the functions fi and gi,j, which amounts to 10 generators.

Finally, a case-by-case analysis on the generators shows that M has tropical rank two,

concluding the proof that M is a g24.

A more involved g24 on the dipole graph

Keeping the same dipole graph as in the preceding two sections, we now present another

example of a combinatorial limit linear series of degree 4 and rank 2. Unlike in Section 3.10.1,

we here specialize the slope structure defined in Section 3.10.1 to the choice of parameters

ti “ 1
6
, i “ 1, 2, 3, 4.

Unlike the linear series in Section 3.10.1, symmetrical functions will not be sufficient to

get a g24 compatible with S, but we will constrain the functions in another way. Let

M Ĺ RatpK,Sq

be the subset of functions f P RatpK,Sq which have slope 2 along at most one tangent

vector based at u or v. Equivalently, a function f P RatpK,Sq belongs to M if, and only if,

on every edge ei, if f has slope 2 close to u on ei, then its slope close to v on ei is less than

2 (in fact, it consequently has to be 1).

It is easily verified that M is a sub-semimodule of RatpK,Sq. We will show that it is

a linear series of degree 4 and rank 2. Firstly, M can be shown to have rank 2; the key

observation here is that functions of RatpK,Sq which take slope 2 on both endpoints of

some edge are not needed.
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To prove that M is finitely generated, we then divide the functions f P M into two

categories, and find a finite number of generators for each category, following the kind of

strategy deployed in Section 3.10.1.

Namely, we consider, on the one hand, the functions which are non-constant on exactly

two distinct edges. Those functions cannot use the slope 2. Like in Section 3.10.1, it is easy

to see that they are consequently generated by the functions gi,j, for indices 1 ď i ă j ď 4,

whose graph on the edges ei and ej is

u
‚

v
‚

with slopes 1 and ´1, and which is identically zero on the other edges.

On the other hand, we look at the sub-semimodule M 1 Ď M of functions which are

non-constant on at most one edge. For example, denote by M 1
1 the sub-semimodule of M 1

consisting of the functions which are constant on all edges ei, i “ 2, 3, 4. Since all functions

in RatpKq have the same value on u and v, and thanks to the slope constraint defining M ,

it follows that M 1
1 is isomorphic to the complete linear series Ratp3 puqq “ Ratp3 puq,Sq

on the cycle obtained by identifying the endpoints of e1 and deleting the other edges, see

Figure 3.10.

p0, 1, 2qp0, 1, 2q

p´1, 0, 1q

3

u

Figure 3.10: A cycle of length one with slope structure inherited from S.

As in Section 3.10.1, reducing to a complete linear series provides a set of generators for

M 1
1, obtained as the extremal points. It follows that M 1

1 is generated by the function h1
whose graph on the edge e1 is

u
‚

v
‚

with slopes 2 on
“

0, 1
3

‰

and ´1 on
“

1
3
, 1
‰

, and which is identically zero on both other edges,

together with the function h1
1 obtained from h1 by symmetry with respect to the midpoint

of each edge. Likewise, for i “ 2, 3, 4, we define functions hi and h1
i. Then the set of all

these functions generates M 1.

All in all, it follows that

M “
@

gi,j, hk
ˇ

ˇ 1 ď i ă j ď 4, 1 ď k ď 4
D

,
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which amounts to 14 generators.

Finally, an elementary check on these generators shows that M has tropical rank two

and therefore is a g24.

3.10.2 Realizability and genera

In the context of tropicalization of linear series, the metric graph Γ can be enriched with a

supplementary numerical data consisting of a genus function g : V Ñ Zě0 associating to

each vertex v the genus of the curve Cv; the pair pΓ, gq is called an augmented metric graph.

The study of linear series on metric graphs is not dependent on the data of a genus function.

However, considering genus functions becomes important in making connections to geometry

when asking realizability questions. Indeed, for a slope structure to be realizable, that is,

to be the tropicalization of a linear series on a curve defined over a non-Archimedean field,

it is necessary that the divisor defined on Γ by

µ
clls

W
pxq :“ pr ` 1qKpxq `

rpr ` 1q

2
pdx ` gpxq ´ 2q ´

ÿ

νPTxpΓq

r
ÿ

j“0

sνj (3.4)

be effective (here, dx is the valence of x and gpxq denotes the genus of the curve Cx

corresponding to x). See Section [AGR23, Section 5], and more specifically Proposition 5.12

in loc. cit.. The realizability of a linear series on an augmented graph will depend on the

genus function g. On the one hand, the general form of Equation (3.4) puts constraints on

g for the linear series to be realizable; and, on the other hand, the property of each rank

function ρv being geometric will depend on the genus gpvq of Cv.

To give an example, consider the metric graph Γ below with arbitrary edge lengths, and

the divisor K with coefficient one at the trivalent vertices. Consider a family of slope

structures on Γ, as follows.

First, for each bridge edge oriented outwards (towards the adjacent circle), allow slopes

´1 ă 1 ă 3. Divide each circle into three equal parts, in a way compatible with the position

of the attachment points. On each circle, on the two edges adjacent to the attachment

points, allow slopes 0 ă 1 ă 2 away from the attachment point, and on the remaining edge,

allow slopes ´1 ă 0 ă 1. We endow the vertices of Γ with the following rank functions. The

central vertex gets the standard rank function. The three attachment points are endowed

with the rank function on r2s3 whose restrictions to r2s2 ˆ t0u, r2s2 ˆ t1u and r2s2 ˆ t2u are

given respectively by the three matrices

¨

˝

0 0 ´1

1 1 0

2 1 0

˛

‚,

¨

˝

´1 ´1 ´1

0 0 ´1

1 0 ´1

˛

‚ and

¨

˝

´1 ´1 ´1

´1 ´1 ´1

0 ´1 ´1

˛

‚.

Jumps are depicted in blue and the third coordinate corresponds to the edge connecting

the attachment point to the central vertex. Finally, the six other vertices of Γ are endowed

with the rank function on r2s2 defined by the first of the three arrays above. The standard
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rank function is imposed on all other points of Γ. This defines a slope structure of width

two S on Γ, and M :“ RatpK,Sq is an admissible semimodule.

p0, 1, 2qp0, 1, 2q

p´1, 0, 1q

p´1, 1, 3q

1

1

1 1

Figure 3.11: A slope structure of width two on the three-cycle graph.

Now, consider the example where, instead of allowing the slopes ´1 ă 1 ă 3 on the three

central edges, we allow the slopes ´1 ă 1 ă 3 on (possibly trivial) intervals incident to the

central vertex on these edges, and the slopes ´1 ă 1 ă 2 on the rest of the edges, with the

same choice of rank functions. Choosing the lengths of these intervals independently yields

a three-parameter family of slope structures on Γ.

Among these possibilities, with genus function 0, only the one where all three intervals

carrying the slopes ´1 ă 1 ă 3 are trivial can be realizable.

3.10.3 Limit linear series defined by pluricanonical sheaves

In this section, we discuss the tropicalization of subspaces of global sections of pluricanonical

sheaves, and explain how it fits into the theory presented in the previous sections.

Let C be a smooth proper curve over an algebraically closed complete non-trivially valued

non-Archimedean field K. We assume that the residue field κ of K has characteristic zero.

We denote by ωC the canonical sheaf of C, and by ωbn
C its n-th power, for n P N.

Definition 3.10.1 (Pluricanonical linear series). By a pluricanonical linear series of rank

r and order n, we mean a vector subspace H Ď H0
`

C, ωbn
C

˘

of rank r, i.e., of dimension

r ` 1. ˛

We follow the notation of the previous section and denote by Γ a skeleton of Can with

combinatorial model G “ pV,Eq. The vertex set is included in the set of points of type 2

and, for each v P V , the corresponding curve over the residue field κ is denoted by Cv.

Temkin metrization and tropicalization

Let } ¨ } be the Kähler norm on the sheaf of differentials ωC defined by Temkin in [Tem16].

It induces a norm on each ωbn
C , n P N, that we continue to denote by } ¨ }.
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Definition 3.10.2 (Tropicalization of pluricanonical forms). For each non-zero section α

of ωbn
C , the tropicalization of α is the function

troppαq : Γ ÝÑ R, x ÞÝÑ ´ log }α}x. ˛

Let K “ KΓ be the canonical divisor of the augmented metric graph Γ, given explicitly

by

K “
ÿ

xPΓ

p2gpxq ´ 2 ` dxq pxq.

The tropicalization F “ troppαq of a pluricanonical differential form of order n is a

piecewise affine function with integral slopes. It verifies the slope formula

divpF q ` nK “ τ˚pdivpαqq

with divpαq the divisor of zeroes of α, defined by divpαq :“
ř

xPC ordxpαq, τ : Can ÝÑ Γ

the retraction map to Γ, and τ˚ the induced map on the level of divisors. (The first

claim is a consequence of [Tem16, Theorem 8.2.4]. For the second, see [BT20], as well

as [Ami14, KRZ16, BN16]. The scaled reduction rα of α at a point x P Can of type 2 is a

pluricanonical meromorphic form on Cx, which is well-defined up to scaling by a scalar in

κˆ. And, for every tangent direction ν at x, the order of vanishing of rα at the point pνx of

Cx is given by ´n ´ slopeνF pxq.

Let H Ď H0
`

C, ωbn
C

˘

be a pluricanonical linear series of rank r and order n. Let M :“

troppHq “
␣

troppαq
ˇ

ˇ α P H∖ t0u
(

, and denote by rHx the vector space of pluricanonical

meromorphic forms of the same order on Cx generated by the reductions rα of α P H at

x. As in the case of the reduction of functions, the dimension of rHx Ă κpCxq is r ` 1, and

the orders of vanishing of reductions rα P rHx of elements α P H at pνx define a sequence of

integers sν0 ă sν1 ă ¨ ¨ ¨ ă sνr . We define Sν :“ tsνi u, and denote by ρx the geometric rank

function associated to the collection of points pνx P Cxpκq for ν P TxpΓq. Moreover, we define

Sx as the set of jumps of ρx. We have the following theorem.

Theorem 3.10.3 (Specialization of pluricanonical linear series). Let H Ď H0
`

C, ωbn
C

˘

be a

pluricanonical linear series of rank r and order n. LetM :“ troppHq “
␣

troppαq
ˇ

ˇ α P H∖ t0u
(

.

Then, M Ď RatpnK,Sq. Moreover, pnK,Mq is a refined grd on Γ, for d “ np2g ´ 2q, with

g the genus of C.

Proof. The proof is similar to that of Theorem 3.9.1 given in the previous section.

Definition 3.10.4 (Pluricanonical limit linear series). Notation as above, the semimodule

M can

n :“ trop
`

H0
`

C, ωbn
C

˘˘

Ď RatpnK,Sq

is called the tropical semimodule of pluricanonical differential forms on Γ induced by C.

The slope structure S is called the pluricanonical slope structure of order n on Γ induced

by C. For every pluricanonical linear series H Ď H0pC, ωbn
C q of rank r and order n, the

sub-semimodule M of M can

n defined by the tropicalization of H gives rise to the pair pnK,Mq,

called the limit pluricanonical linear series grnp2g´2q
of rank r and order n on Γ induced by

H. ˛
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Combinatorial pluricanonical types

For each pluricanonical slope structure on Γ of order n, its combinatorial type is the pair

pG,Sq, where G is the minimal graph model of Γ over which S is defined.

Theorem 3.10.5 (Finiteness of pluricanonical slope structures). There are only finitely

many combinatorial types for pluricanonical slope structures of order n on augmented metric

graphs Γ of the same combinatorial type.

Proof. This follows directly from Theorem 3.4.4.

Let G “ pV,Eq be a given graph that we assume to be augmented with a genus function.

A slope structure S on G is called pluricanonical if there exists a length function ℓ : E Ñ R
on the edges of G such that S defines a pluricanonical slope structure on Γ.

Problem 3.10.6. Provide a classification of all pluricanonical slope structures on a given

augmented graph G.
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4 Tropical Weierstrass points and

Weierstrass weights

This chapter is adapted from the preprint [AGR23].
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Abstract

In this chapter, we study tropical Weierstrass points. These are the analogues for tropical

curves of ramification points of line bundles on algebraic curves.

For a divisor on a tropical curve, we associate intrinsic weights to the connected compo-

nents of the locus of tropical Weierstrass points. This is obtained by analyzing the slopes of

rational functions in the complete linear series of the divisor. We prove that for a divisor D

of degree d and rank r on a genus g tropical curve, the sum of weights is equal to d´ r` rg.

We establish analogous statements for tropical linear series.

In the case D comes from the tropicalization of a divisor, these weights control the

number of Weierstrass points which are tropicalized to each component. Our results provide

answers to open questions originating from the work of Baker on specialization of divisors

from curves to graphs.

We conclude with multiple examples which illustrate interesting features appearing in

the study of tropical Weierstrass points, and raise several open questions.

189



4.1 Overview

Weierstrass points have a rich history in the development of algebraic geometry as they

provide an important tool for the study of smooth algebraic curves and their moduli spaces.

It is natural to ask how their theory can be extended to stable curves, which correspond

to boundary points in the Deligne–Mumford compactification Mg of the moduli space of

genus g smooth curves. One strategy is to take the limit Weierstrass points induced by a

one-parameter family pXtqt‰0 of smooth curves degenerating to a stable curve X0; there will

be g3 ´ g limit Weierstrass points on X0 when counted with appropriate weights. However,

the limit points generally depend on the chosen family, and a stable curve X0 has many

possible smoothings corresponding to paths in Mg that end at the point representing X0.

Tropical geometry provides a new perspective on degeneration methods in algebraic

geometry by enriching it with polyhedral geometry. Given the successes of tropical methods

in the past two decades in the study of algebraic curves and their moduli spaces, it is natural

to ask whether tropical geometry can be used to gain insight about the limiting behavior of

Weierstrass points on degenerating families of curves. In the tropical perspective, the data

of a stable curve X0 is replaced by the data of its dual graph. The collection of all stable

curves having the same dual graph forms a stratum of Mg. This gives a correspondence

between the strata of Mg and the set of stable graphs of genus g [Cap15].

The prototype of what we can expect to address using tropical techniques is the following

natural question.

Question 4.1.1. Given a stratum of Mg, and a log-tangent direction of approaching that

stratum, what can be said about the limit Weierstrass points of a smooth family pXtqt‰0

degenerating to a stable curve in that stratum along the chosen direction?

The arithmetic geometric version of the above question is the following.

Question 4.1.2. Given a smooth proper curve over the field Qp of p-adic numbers with

stable reduction lying in a given stratum of Mg (over the algebraic closure of the residue

field Fp), what can be said about the specialization of the Weierstrass points?

Previously, there has been much work making incremental progress on the first question

[EH87a, EM02, ES07, Dia85, Ami14, Gen21] and on the second question [Ogg78, LN64,

Atk67, AP03, Bak08]; see Section 4.1.4 for a more thorough discussion.

Our aim in this chapter is to provide an answer to the above questions from the point of

view of tropical geometry. This is done by introducing new tools which allow us to solve

problems related to the tropical geometry of curves, whose origin goes back to the beginning

of the use of tropical methods in the study of algebraic curves.

Our answer to Question 4.1.1 can be summarized as follows: we can specify how many

Weierstrass points degenerate to each component and to each node of a stable curve X0

lying in the given stratum. This is done without specifying their precise position within

each irreducible component, giving instead a more precise location of those degenerating to
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a node by specifying their position on the dual metric graph of the family pXtq. Our result

also applies to limits of ramification points of arbitrary line bundles, in addition to the case

of the canonical bundle.

Similarly, we answer Question 4.1.2 by specifying where Weierstrass points specialize

when reducing modulo p.

Moreover, these results lead to an effective way of locating the limit Weierstrass points.

We next give an overview of our results.

4.1.1 Tropical perspective

The central concept studied in this chapter is that of tropical Weierstrass points. The

definition is based on divisor theory on metric graphs, and we refer to the survey paper [BJ16]

and the references there for more details.

Let Γ be a metric graph, and let D be a divisor of degree d and rank r on Γ.

Definition 4.1.3 (Weierstrass points). A point x in Γ is called a Weierstrass point, or

ramification point, for D if there exists an effective divisor E in the linear system of D

whose coefficient at x is at least r ` 1. The (tropical) Weierstrass locus of D, denoted by

LWpDq, is the set of all such points in Γ. ˛

The set LWpDq is a closed subset of Γ which can be infinite, in contrast with the classical

setting of algebraic curves. In this regard, Baker comments in [Bak08, Remark 4.14],

regarding the canonical divisor, that “it is not clear if there is an analogue for metric graphs

of the classical fact that the total weight of all Weierstrass points on a smooth curve of

genus g is g3 ´ g.” More generally, we can ask the following question.

Question 4.1.4. Is it possible to associate intrinsic tropical weights to the connected

components of LWpDq? What is the total sum of weights associated to these components?

The following question is a special case.

Question 4.1.5. Assume the locus of Weierstrass points of D is finite. What is the total

weight of these points?

Our aim in this chapter is to provide answers to the above questions. In order to streamline

the presentation which follows, we first discuss our results in the case of non-augmented

metric graphs. From the geometric perspective, this corresponds to the situation of a

totally degenerate stable curve, that is, a stable curve whose irreducible components are

all projective lines. This is the same as requiring that the arithmetic genus of the stable

curve is equal to the genus of the dual graph. We have an analogue of these statements for

augmented metric graphs (respectively, arbitrary stable curves), see the discussion which

follows below.

In order to solve Question 4.1.4, we make the following definition.
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Definition 4.1.6 (Intrinsic Weierstrass weight of a connected component). Let D be a

divisor of rank r, and let C be a connected component of the Weierstrass locus LWpDq. We

define the tropical Weierstrass weight of C as

µWpC;Dq :“ deg
`

D|C

˘

` pgpCq ´ 1qr ´
ÿ

νPB
outC

sν0pDq (4.1)

where

• deg
`

D|C

˘

is the total degree of D in C, defined by deg
`

D|C

˘

“
ř

xPC Dpxq;

• gpCq is the genus of C, i.e., its first Betti number dimH1pC,Rq;

• B
out

C is the set of outgoing unit tangent directions from C; and

• sν0pDq is the minimum slope along tangent direction ν of any rational function f on Γ

with divpfq ` D ě 0.

We abbreviate µWpC;Dq simply as µWpCq if D is understood from the context. ˛

Although it is not obvious from the definition, we will show in Theorem 4.3.6 that the

tropical Weierstrass weight of any component is positive. Note as well that a connected

component of LWpDq is always a metric subgraph of Γ, see Proposition 4.3.1.

We say that D is Weierstrass finite or simply W-finite if the tropical Weierstrass locus

LWpDq has finite cardinality. In this case, connected components of LWpDq are isolated

points in Γ, and we define the tropical Weierstrass divisor W pDq as the effective divisor

W pDq :“
ÿ

xPLW pDq

µWpxq pxq

where µWpxq :“ µWptxuq. The support |W pDq| of the tropical Weierstrass divisor is exactly

the tropical Weierstrass locus LWpDq. The tropical Weierstrass weight of x can be identified

as µWpxq “ Dxpxq ´ r, with Dx denoting the unique x-reduced divisor in the linear system

of D, see Remark 4.3.3.

This gives the following geometric meaning to the Weierstrass weights, in the spirit of

the classical definition on algebraic curves. The coefficient of the reduced divisor at a point

x P Γ corresponds precisely to the maximum order of vanishing at x of any global section of

the line bundle OpDq defined by the divisor. The Weierstrass weight of the point x is thus

obtained by comparing this quantity to r, which would be the expected minimum value,

over points y P Γ, of the largest order of vanishing of global sections at y. (Note, however,

that r is not always equal to the actual minimum largest order of vanishing, as examples in

Section 4.6.5 show.) That being said, the definition differs from the algebraic setting, where

we need to take into account all the orders of vanishing of global sections of the line bundle

at a given point (and then compare them with the standard sequence, the one obtained for

a point in general position on the curve).

The following theorem answers Questions 4.1.4 and 4.1.5, and is proved in Section 4.3.3.

192



Theorem 4.1.7 (Total weight of the Weierstrass locus). Let Γ be a metric graph of genus

g, and let D be an effective divisor of degree d and rank r on Γ. Then, the total sum of

weights of the connected components of LWpDq is equal to d ´ r ` rg. In particular, if D is

W-finite, then we have degpW pDqq “ d ´ r ` rg.

The proof of this theorem will imply in particular the following result, proved in Sec-

tion 4.3.4.

Theorem 4.1.8. If the rank r of D is at least one, then every cycle in Γ intersects the

tropical Weierstrass locus LWpDq. In particular, if Γ has genus at least two, then every

cycle intersects the Weierstrass locus of the canonical divisor K.

In [Bak08], Baker proves that the tropical Weierstrass locus of the canonical divisor is

nonempty if Γ has genus at least two. This earlier tropical result is obtained as a consequence

of the analogous algebraic statement, using the specialization lemma. In contrast, our

theorem above states that tropical Weierstrass points obey a stronger “local” existence

condition, which has seemingly no algebraic analogue. In the case that the canonical divisor

of Γ is W-finite, our result implies that for an arbitrary family pXtqt‰0 of smooth curves

tropicalizing to Γ, every cycle in Γ contains a limit Weierstrass point of the family.

To prove Theorem 4.1.7, we will show that in fact (4.1) defines a consistent notion of

Weierstrass weight when applied to any connected, closed subset of Γ whose boundary

points are not in the interior of LWpDq; see Theorem 4.3.9. To do so, we retrieve information

about the slopes of rational functions in the linear series RatpDq along tangent directions

in Γ. We have the following description, proved in Section 4.2.

Theorem 4.1.9. Let D be a divisor of rank r on Γ. We take a model for Γ whose vertex

set contains the support of D. Let x P Γ be a point and ν P TxpΓq be a tangent direction.

(a) If the open interval px, x ` ενq is disjoint from LWpDq for some ε ą 0, then the set

of slopes tslopeνfpxq : f P RatpDqu consists of r ` 1 consecutive integers tsν0, s
ν
0 `

1, . . . , sν0 ` ru.

(b) If the open interval px, x`ενq is contained in LWpDq, then the set of slopes tslopeνfpxq :

f P RatpDqu is a set of consecutive integers of size at least r ` 2.

4.1.2 Comparison results and extensions

We further justify our definition of weights by making a precise link to tropicalizations of

Weierstrass points on algebraic curves.

Suppose that Γ and D come from geometry; that is, let X be a smooth proper curve of

genus g over an algebraically closed non-Archimedean field K of characteristic zero with a

non-trivial valuation and a residue field of arbitrary characteristic. Let L “ OpDq be a line

bundle of degree d on X. Assume that Γ is a skeleton of the Berkovich analytification Xan

of X. Denote by τ the tropicalization map from X to Γ, and suppose that D “ τ˚pDq is

the tropicalization of D on Γ where τ˚ : DivpXq Ñ DivpΓq the induced map on divisors.
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Denote by WpDq the Weierstrass divisor of D on X, and by τ˚pWpDqq its tropicalization

on Γ. The following result, proved in Section 4.5.3, uses the notion of LWpDq-measurable set,

for which the connected components of LWpDq form the atoms, and the natural counting

measure µ̂W on such sets, induced by Weierstrass weights (see Section 4.3.3 for more details).

Theorem 4.1.10 (Algebraic versus tropical Weierstrass weights). Assume that D and D
have the same rank, and let A Ď Γ be a closed, connected subset which is LWpDq-measurable.

Then, the total weight of Weierstrass points of WpDq tropicalizing to points in A is precisely

pr ` 1q µ̂WpA;Dq; that is,

deg
´

WpDq|τ´1pAq

¯

“ pr ` 1q

˜

deg
`

D|A

˘

` rpgpAq ´ 1q ´
ÿ

νPB
outA

sν0pDq

¸

.

In particular, if D is W-finite, then we have the equality

τ˚pWpDqq “ pr ` 1qW pτ˚pDqq.

This statement, which involves the metric of Γ in a crucial way, gives an essentially

complete description of the behavior of Weierstrass points in the tropical limit. In particular,

if the limit divisor is W-finite, then for every family pXtqt‰0 of smooth proper curves

approaching a stable curve with dual metric graph Γ, the limit Weierstrass points are

precisely described by the tropical Weierstrass divisor. This rigidity type theorem on the

limiting behavior of Weierstrass points allows us to give a precise count of the number of

Weierstrass points going to the nodes or to the smooth parts of a limit stable curve X0

on the given stratum of Mg along the given log-tangent direction from which the family

pXtqt‰0 approaches X0. Moreover, as a special case, the theorem also applies in the context

of arithmetic geometry in which the curve X is defined over a finite extension of Qp. As we

will show in Section 4.5.3, this theorem holds as well over a field K of positive characteristic

provided that the gap sequence of L, defined as the sequence of orders of vanishing of the

global sections of L at a general point of X, is the standard sequence 0, 1, . . . , r. (In this

case, L is called classical [Lak81, Nee84].)

We provide natural extensions and refinements of the above results to the setting of

augmented metric graphs, which, from the degeneration perspective, corresponds to the

situation where the limit stable curve has irreducible components of possibly positive

genus. Since a given vertex of positive genus hides information about the geometry of the

corresponding component, it turns out that there will be an ambiguity when talking about

the Weierstrass locus of a divisor D. In fact, the right setup in this context is a divisor D

endowed with the data of a closed sub-semimodule M of RatpDq, which plays the role of a

(not necessarily complete) linear series on the augmented metric graph.

In this regard, first, we use the weights defined in Definition 4.1.6 with a relevant notion

of divisorial rank associated to the sub-semimodule which we further modify by including

the data of the genus function. We get Theorem 4.4.12, which provides a global count of

weights in this setting.
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To the question of whether it is still possible to associate a natural Weierstrass locus to a

divisor in the augmented setting, we provide an answer by introducing two special classes of

semimodules, the generic semimodule associated to any divisor (see Section 4.4.2), and the

canonical semimodule associated to the canonical divisor on an augmented metric graph

(see Section 4.4.3). Both of them require some level of genericity, which we properly justify

in Section 4.4.4 using the framework of metrized complexes.

The case of the canonical divisor on an augmented metric graph is particularly interesting

as it reveals new facets of divisor theory in the augmented setting. We associate a canonical

linear series to any augmented metric graph, show that it has the appropriate rank, and

study its Weierstrass locus. To justify the definition and prove these results, we use the

setting of metrized complexes and their divisor theory from [AB15]. Using that framework,

we show that the canonical linear series on an augmented metric graph is the tropical part

of the canonical linear series on any metrized complex with that underlying augmented

metric graph, provided that the markings associated to edges on the curves of the metrized

complex are in general position. It is interesting to note that this is the assumption made

in the works by Esteves and coauthors [EM02, ES07], and our results here complement

these works by developing the tropical part of the story in greater generality.

As we show in Theorem 4.5.5, the statement of Theorem 4.1.10 remains valid in these

settings (when including the genera of points of A on the right-hand side of the stated

equality). The following theorem is a direct application of our results on Weierstrass

weights for an augmented metric graph. We use the setting of tropicalization preceding

Theorem 4.1.10.

Theorem 4.1.11. Suppose D is a divisor on an algebraic curve X over an algebraically

closed non-Archimedean field K of characteristic zero with a non-trivial valuation and a

residue field of arbitrary characteristic. Let pΓ, gq be an (augmented) skeleton of Xan. Let H

be a vector space of global sections of OpDq of rank r and denote by WpHq the Weierstrass

divisor of H. Let M be the tropicalization of H. Then, for any connected, closed subset

A Ď Γ which is LWpM, gq-measurable, we have the bound

deg
´

WpHq|τ´1pAq

¯

ě
`

r2 ` r
˘

˜

gpAq `
ÿ

xPA

gpxq

¸

.

The proof of this theorem will be given in Section 4.5.3. As in the case of Theorem 4.1.10,

the statement holds as well over a field K of positive characteristic provided the gap

sequence of H is the standard sequence.

In the case LWpM, gq is finite, this inequality holds for any closed subset A Ď Γ. In

particular, we have the following application to stable curves: suppose X0 is a stable curve

with dual augmented graph pG, gq, and suppose pXtq is a family degenerating to X0 with

tropicalization pΓ, gq. If the locus of canonical Weierstrass points of pΓ, gq is finite, then

for every connected subgraph A of G, the number of limit Weierstrass points lying on

components and nodes of X0 which correspond to vertices and edges of A, respectively, is

at least pg2 ´ gqpgpAq `
ř

vPA gpvqq.

195



Semimodules inside RatpDq that come from the tropicalization of linear series verify an

extra set of properties. These are thoroughly studied in recent works [AG22] (Chapter 3)

and [JP22] that develop a combinatorial theory of (limit) linear series. In particular, such

a semimodule M of rank r satisfies the following:

(‹) For each point x in Γ and any unit tangent direction ν P TxpΓq, the set of slopes

taken by functions in M has size r ` 1.

(We refer to Section 4.8.3 for more details.)

In Section 4.5, we associate a refined notion of Weierstrass divisor to any divisor D and

any closed sub-semimodule M Ď RatpDq that verifies the above property. The definition

takes into account the higher orders of vanishing of the combinatorial limit linear series,

and is closer to the spirit of the algebraic definition of Weierstrass weights on curves.

Using this together with the results proved in Section 4.8, discussed below, we provide a

proof of Theorem 4.1.10 and its extensions to the augmented and incomplete settings. Finally,

using combinatorial Weierstrass divisors, we formulate obstructions to the realizability of

combinatorial limit linear series.

4.1.3 Tropicalization of Weierstrass divisors

The proof of our comparison results, Theorem 4.1.10 and its extension Theorem 4.5.5,

makes use of the results proved by Amini in Section 4.8. An earlier version of these results

was written around 2014.

Let X be a smooth proper curve defined over K. Let D be a divisor of degree d on

X and let L “ OpDq be the corresponding line bundle. Let H Ď H0pX,Lq be a space of

sections of dimension r ` 1 and denote by W “ WpD,Hq the corresponding Weierstrass

divisor. We assume that the gap sequence of H is the sequence 0, 1, . . . , r, that is, for a

general point x P XpKq, the orders of vanishing of sections of L in H are 0, 1, . . . , r. Let

τ be the tropicalization map from X to Γ. We describe the tropicalization W “ τ˚pWq.

The divisor W is equal to pr ` 1qD ` divpWrFq for a section WrF of the sheaf ω
brpr`1q{2
X

called the Wronskian. The sheaf ω
brpr`1q{2
X admits a natural norm; using this norm, we can

tropicalize the section WrF , and define a rational function F “ troppWrFq : Γ Ñ R. Denote

by K the canonical divisor of pΓ, gq. Using the slope formula for sections of powers of the

canonical sheaf, Lemma 4.8.1, it is shown in Theorem 4.8.2 that for any x P Γ, we have

W pxq “ pr ` 1qDpxq `
rpr ` 1q

2
Kpxq ´

ÿ

νPTxpΓq

slopeνF.

It follows from the results proved in Section 4.8.7, that for a point x P Γ and ν P TxpΓq, if

• either, the residue field κ is of characteristic zero,

• or, the sequence sν0, . . . , s
ν
r forms an interval, that is, sνj “ sν0 ` j,
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then the slope slopeνF is given by the sum sν0 ` ¨ ¨ ¨ ` sνr , see Proposition 4.8.4 and

Theorem 4.8.2. This result is needed to prove in Section 4.5 our comparison results between

tropical and algebraic Weierstrass loci.

Note that over a field K of equicharacteristic zero, the first item in the above condition

is verified, and we get all the coefficients W pxq,

W pxq “ pr ` 1qDpxq `
rpr ` 1q

2
Kpxq ´

ÿ

νPTxpΓq

r
ÿ

i“0

sνi ,

see Theorem 4.8.5.

4.1.4 Previous work

The study of Weierstrass points from a tropical perspective was initiated by Baker [Bak08,

Section 4]. Baker defines Weierstrass points for graphs and metric graphs, and uses

his Specialization Lemma [Bak08, Lemma 2.8] to prove an essential compatibility with

Weierstrass points on stable curves—namely, that the tropicalization of the algebraic

Weierstrass locus is a subset of the tropical Weierstrass locus. To be more precise, for a

divisor D on a non-Archimedean curve with Weierstrass divisor WpDq, if τ˚pDq has the

same rank as D and D has classical gap sequence, then we have an inclusion

|τ˚pWpDqq| Ď LWpτ˚pDqq,

which may be strict in general. (This is stated for the canonical divisor in loc. cit., but

the proof works in greater generality.) This statement has strong implications for the

behavior of Weierstrass points on a family of degenerating Riemann surfaces, and for p-adic

reduction of curves over Qp, discussed earlier in the introduction. Indeed, Baker motivates

his study of Weierstrass points on graphs with several results from the arithmetic geometry

of modular curves, in particular, as a way to decide whether certain cusps are Weierstrass

points, c.f. [Ogg78, LN64, Atk67, AP03].

The question of how to determine the tropicalization of Weierstrass points on a non-

Archimedean curve was settled in [Ami14]; these results appear in Section 4.8 and are used

to prove our comparison results. The question of determining tropical Weierstrass loci

and their weights, and the way to properly count them in the tropical setting remained

however open. The work [Ric24] by Richman studies Weierstrass points on tropical curves.

Although the tropical Weierstrass locus may be infinite in general, [Ric24] shows that for a

generic divisor class (i.e., lying in a nonempty open subset of Picd), this locus is finite, and

moreover computes its cardinality. It is worth mentioning that important divisor classes

such as the canonical divisor are non-generic, so they are not covered by the methods

of [Ric24]. The way tropical Weierstrass points distribute when the degree of divisor classes

tend to infinity is studied in [Ami14, Ric24]. For an extended discussion of how divisor

theory on graphs is connected to the degeneration of smooth curves to nodal curves, with

various applications, see the survey by Baker–Jensen [BJ16], in particular Section 12.
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For an extensive and informative survey describing the history and applications of

Weierstrass points, starting with Weierstrass and Hürwitz [Wei67, Hur92] in the 1800s, see

Del Centina [DC08]. The study of Weierstrass points on stable curves was initiated by

Eisenbud and Harris [EH87a], who proved results on nodal curves of compact type, i.e., curves

whose dual graph is a tree. This work served as an application of their newly-developed

theory of limit linear series [EH86]. They moreover raised the question of constructing a

moduli space parametrizing all possible limit Weierstrass divisors of a given stable curve, a

problem which has been widely open since then.

Moving beyond stable curves of compact type, Lax [Lax87] studied Weierstrass points

on stable curves consisting of one rational component with nodes; in this case, the dual

graph is a single vertex with self-loops. (The term tree-like is used in the literature to

describe curves whose dual graph consists of a tree after removing self-loops.) A further

breakthrough came with Esteves–Medeiros [EM02] who worked with stable curves with

two components, i.e., curves whose dual graph is a dipole graph. (We refer to Section 4.6.8

for a discussion of our results applied to dipole graphs and the connection to [EM02].)

Esteves–Salyehan [ES07] studied further cases of nodal curves, including when the dual

graph is a complete graph. Cumino–Esteves–Gatto [CEG08] studied limits of special

Weierstrass points on certain stable curves, i.e., Weierstrass points with weight at least

two. The problem of describing limits of Weierstrass points away from the nodes in a given

one-parameter family in characteristic zero is addressed in [Est98].

Although not directly related to the results of this manuscript, we mention that other

works treat the case of irreducible Gorenstein curves, and associate Weierstrass weights

to their singular points, see e.g. [LW90, dCS94, GL95, BG95] and the references there. It

might be possible to use tropical geometry to describe these weights.

Weierstrass points have appeared in other interesting work on moduli spaces of curves.

Arbarello [Arb74] studied subvarieties of the moduli space of curves cut out by Weierstrass

points; further results were found in Lax [Lax75] and Diaz [Dia85]. Eisenbud–Harris [EH87b]

showed that the moduli space of curves has positive Kodaira dimension, using loci of

Weierstrass points as part of their argument. Cukierman(–Fong) [Cuk89, CF91] found the

coefficients for the Weierstrass locus in the universal curve Cg of genus g, in a standard

basis for the Picard group of Cg. We discuss the behavior of tropical Weierstrass loci over

the moduli space of tropical curves in Section 4.7.1.

4.1.5 Organization of the text

The chapter is organized as follows. We first treat the case of non-augmented metric graphs,

and then provide refinements. This choice has the advantage of making the presentation

less technical, and we hope this will add to readability.

We define slope sets and prove Theorem 4.1.9 in Section 4.2.

In Section 4.3, we study Weierstrass weights and the Weierstrass measure they define

on a metric graph. We state and prove Theorem 4.3.9, which provides a description of
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the Weierstrass measure using the slopes, from which we deduce Theorem 4.1.7 and other

interesting consequences. This section contains the proof of positivity of Weierstrass weights

as well, and a discussion of the case of combinatorial graphs. The case of the canonical

Weierstrass locus on non-augmented metric graphs is treated in Section 4.3.7.

Section 4.4 provides several refinements and generalizations of the previous sections. The

setting is extended in two ways. First, complete linear series RatpDq are replaced with

incomplete linear series, by taking closed sub-semimodules of RatpDq. Second, metric graphs

are replaced with augmented metric graphs. We provide justification for our definitions in

the augmented setting and provide the corresponding generalizations of Theorem 4.3.9 on

the Weierstrass measure and of Theorem 4.1.7.

In Section 4.5, we explain how to associate Weierstrass divisors to combinatorial limit

linear series. This is particularly interesting in the case where the locus of Weierstrass

points associated to the underlying divisor becomes infinite after forgetting the slopes. We

show the compatibility of the definitions appearing in this section with the previous ones.

Using the above materials, we establish a precise link between the tropical Weierstrass

divisors with tropicalizations of Weierstrass divisors on smooth curves. This includes the

proof of Theorem 4.1.10, and its generalizations.

In the last two Sections 4.6 and 4.7, we provide several examples with the aim of clarifying

the concepts introduced in previous sections, and discuss other interesting results related

to them. We also raise several open questions.

Section 4.8 proves the results we need on the tropicalization of Weierstrass divisors.

4.1.6 Basic notations

A (combinatorial) graph G “ pV,Eq is defined by a set of vertices V and a set of edges E

between certain vertices. In the current chapter, graphs will always be taken to be finite

and connected. Moreover, they will allow loops and multiple edges.

A metric graph is a compact, connected metric space Γ verifying the following properties:

(i) For every point x P Γ, there exist a positive integer nx and a real number rx ą 0 such

that the rx-neighborhood of x is isometric to the star of radius rx with nx branches.

(ii) The metric on Γ is given by the path metric, i.e., for points x and y in Γ, the distance

between x and y is the infimum (in fact minimum) length of any path from x to y.

The integer nx above is called the valence of x and is denoted by valpxq.

Given a graph G “ pV,Eq and a length function ℓ : E Ñ p0,`8q assigning to every

edge of G a positive length, we can build from this data a metric graph Γ by gluing a

closed interval of length ℓpeq between the two endpoints of the edge e, for every e P E, and

endowing Γ with the path metric. The space Γ is then called the geometric realization of

the pair pG, ℓq.
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A model of a metric graph Γ is a pair pG, ℓq consisting of a graph G “ pV,Eq and a

length function ℓ : E Ñ p0,`8q such that Γ is isometric to the geometric realization of

pG, ℓq. By an abuse of notation, we also call G a model of Γ.

For a metric graph Γ and a point x P Γ, the tangent space TxpΓq is defined as the set

of all unit outgoing tangent vectors to Γ at x. This is a finite set of cardinality valpxq.

If G “ pV,Eq is a loopless model for Γ such that x P V , then TxpΓq is in one-to-one

correspondence with the edges of G incident to x. Through this natural bijection, a tangent

direction ν is said to be supported by the corresponding edge e P E.

Each edge e supports two tangent directions, which belong to either endpoint of e,

respectively. If ν is one of those tangent directions, the opposite direction is denoted by ν.

For ν P TpΓq, we denote by xν the point x with ν P TxpΓq.

In this chapter, all the semimodules will be assumed to be nonempty.

4.2 Slope sets

In this section, we prove Theorem 4.1.9. We first recall some terminology for divisors and

functions on metric graphs.

Given a metric graph Γ, let DivpΓq denote the group of divisors of Γ, which is the free

abelian group generated by points x P Γ. Let RatpΓq denote the set of real-valued piecewise

affine linear functions on Γ whose slopes are all integers. Given a function f P RatpΓq, let

divpfq denote the principal divisor of f , defined as

divpfq :“
ÿ

xPΓ

axpxq where ax “ ´
ÿ

νPTxpΓq

slopeνfpxq.

Let D be a divisor of rank r on Γ. Let RatpDq denote the set of rational functions in the

complete linear series of D defined as

RatpDq :“ tf P RatpΓq : D ` divpfq ě 0u.

Given a point x P D, there is a unique representative fx of the linear series of D defined by

fx :“ min
fPRatpDq

fpxq“0

f.

The corresponding divisor D ` divpfxq, denoted by Dx, is the (unique) x-reduced divisor

linearly equivalent to D. This statement is a consequence of the maximum principle, see

e.g. [BS13, Lemma 4.11].

Definition 4.2.1 (Slope sets and minimum slopes). Let D be an effective divisor on Γ.

Given a point x P Γ and a tangent direction ν P TxpΓq, let SνpDq denote the slope set

Sν
pDq :“ tslopeνfpxq : f P RatpDqu.
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Let sν0pDq denote the minimum slope in the slope set SνpDq, i.e.,

sν0pDq :“ mintslopeνfpxq : f P RatpDqu.

When the divisor D is clear from context, we will simply use sν0 to denote sν0pDq. ˛

Lemma 4.2.2. Suppose D is a divisor of rank r. Then, for every x P Γ and every ν P TxpΓq,

there are at least r ` 1 integers in the set of slopes tslopeνfpxq : f P RatpDqu.

Proof. Let x1, . . . , xr be a set of distinct points in the branch incident to x in the direction

of ν sufficiently close to x. There exists a function f P RatpDq such that

D ` divpfq ě px1q ` ¨ ¨ ¨ ` pxrq.

The function f changes slope at the points x1, . . . , xr. Each of the slopes taken at xj in the

direction of ν can be obtained as the slope of a function in RatpDq at x along ν.

The minimum slope sν0pDq is related to the reduced divisor Dx at x.

Lemma 4.2.3. Let D be an effective divisor on Γ, and x a point of Γ. Let Dx be the

x-reduced divisor linearly equivalent to D.

(a) Let fx be the above defined rational function satisfying divpfxq ` D “ Dx, then, for

any outgoing tangent vector ν P TxpΓq,

sν0pDq “ slopeνfxpxq.

(b) The coefficient of Dx at x satisfies

Dxpxq “ Dpxq ´
ÿ

νPTxpΓq

sν0pDq.

Proof. The first result is obtained by observing that fx “ minh for h P RatpDq verifying

hpxq “ 0. The second result is a direct consequence of (a) and the definition of the principal

divisor divpfxq.

We now turn to the proof of Theorem 4.1.9. Let D be a divisor of rank r on Γ. Recall

(Definition 4.1.3) that the Weierstrass locus of D, denoted by LWpDq, is the subset of Γ

formed by the points x such that there exists an effective divisor E „ D with Epxq ě r` 1.

Equivalently, LWpDq is defined in terms of reduced divisors as

LWpDq “ tx P Γ : Dxpxq ą ru,

where Dx denotes the x-reduced divisor linearly equivalent to D.
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Proof of Theorem 4.1.9. We first assume that the open interval px, x ` ενq is disjoint from

LWpDq. Along the branch incident to x in the direction of ν, there is a small segment

on which sν0 is the slope of a function in RatpDq, and it is the smallest slope taken by a

function of RatpDq on this segment. If a slope of sν0 ` r ` 1 or larger is achieved at x, then,

again on a small segment, it will be achieved at any point of that segment. This means that

on the interior of this segment, the two minimum outgoing slopes at every point are sν0 and

´sν0 ´ s1 with s1 ě r ` 1. Therefore, by Lemma 4.2.3, we infer that on the interior of this

segment, the reduced divisor at each point has coefficient at least r ` 1. This contradicts

the assumption that a neighborhood px, x` ενq is disjoint from LWpDq, and shows that the

highest possible slope is sν0 ` r. Combining this with Lemma 4.2.2, the slopes achieved at x

along ν must be precisely sν0, s
ν
0 ` 1, . . . , sν0 ` r. This proves (a).

We now assume that px, x ` ενq Ă LWpDq and that ε is small enough so that the set of

slopes of functions of RatpDq along ν is constant on this interval. By Lemma 4.2.3, this

means that on the interior of a small segment starting at x, the two minimum outgoing

slopes at every point are sν0 and ´sν0 ´ s1 with s1 ě r ` 1. Therefore, close to x, a slope of

at least sν0 ` r ` 1 is achieved by a function in RatpDq. To prove (b), it is thus sufficient

to show that the set of slopes slopeνfpxq of functions f P RatpDq is always made up of

consecutive integers. Take s1 ă s2 ă s3 to be three integers, and suppose that for i P t1, 3u

there exists a function fi P RatpDq such that slopeνfipxq “ si. Using f1, f3 and tropical

operations, it is easy to construct a function f taking slopes s3 and then s1 away from x,

changing slope at a point we denote by y (see Figure 4.1). We can then “chop up” the graph

of f to construct a function h equal to f everywhere except on a small interval around y

where it takes slope s2. Since px, x ` ενq is disjoint from the support of D, h still belongs

to RatpDq. The assumption made on ε at the beginning ensures that in fact there exists a

function f2 P RatpDq taking slope s2 at x along ν, which concludes the argument.

x
‚

ν

f3

f1
s3

s1

x
‚

ν

f

y
‚

s3

s1

x
‚

ν

g

y
‚

s3

s2
s1

Figure 4.1: Construction of the functions f and g using functions f1 and f3 taking slopes

s1 ă s3.

Remark 4.2.4. In particular, note that along a given unit tangent vector ν attached to

a point x, the slopes slopeνfpxq for x P RatpDq always form a set of consecutive integers.

Moreover, if t is a positive integer such that for every x P e, for e an edge of some model

of Γ, the x-reduced divisor Dx satisfies Dx ě t pxq, then for any x P e̊, the set of slopes

tslopeνfpxq : f P RatpDqu contains at least t ` 1 consecutive integers. This claim is
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analogous to [Ami13, Theorem 14] and is proved using Theorem 3 of the same paper, which

gives a concrete description of the variations of the reduced divisor Dx with respect to x.

See also [AG22, Section 7.6] (Section 3.7.6 in the present manuscript). ˛

For future use, we note the following generalization of part (b) of Lemma 4.2.3.

Proposition 4.2.5. Suppose D is a divisor of rank r. Then, for any closed, connected

subset A Ď Γ, we have

deg
`

D|A

˘

´
ÿ

νPB
outA

sν0pDq ě r.

Proof. Let E be an effective divisor of degree r, with support contained in A. Since D

has rank r, there exists a function f P RatpDq such that D ` divpfq ě E. Evaluating the

respective degrees restricted to A yields

deg
`

D|A

˘

´
ÿ

νPB
outA

slopeνfpxνq ě deg
`

E|A

˘

“ r,

where, we recall, xν is the point x of Γ with ν P TxpΓq. By definition of the minimum slope

sν0pDq, we have sν0pDq ď slopeνfpxνq for each ν P B
out

A, so the result follows.

4.3 Weierstrass weights

Using the structure of slope sets in RatpDq, we prove Theorem 4.1.7, which will follow from

the more general Theorem 4.3.9.

4.3.1 Definition of weights and basic properties of the Weierstrass

locus

We start by establishing basic properties of Weierstrass loci. (Definition 4.1.3) The Weier-

strass locus LWpDq is defined as the set of points x in Γ such that there exists an effective

divisor E in the linear system of D whose coefficient at x is at least r` 1. This is equivalent

to requiring that Dxpxq ě r ` 1. Let us now recall Definition 4.1.6 from the introduction.

Given a connected component C of the Weierstrass locus LWpDq, the tropical Weierstrass

weight of C is defined as

µWpCq “ µWpC;Dq :“ deg
`

D|C

˘

` pgpCq ´ 1q r ´
ÿ

νPB
outC

sν0pDq

where deg
`

D|C

˘

“
ř

xPC Dpxq is the degree of D in C, gpCq “ dimH1pC,Rq is the genus

of C, B
out

C is the set of outgoing unit tangent directions from C, and sν0pDq is the minimum

slope at x along a tangent direction ν, as defined in Definition 4.2.1. The following

proposition shows that LWpDq is topologically nice.

Proposition 4.3.1. The Weierstrass locus LWpDq is closed and has finitely many compo-

nents. Each connected component is a metric graph.
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Proof. By the continuity of variation of reduced divisors proved in [Ami13, Theorem 3],

the function x ÞÑ Dxpxq is upper semicontinuous, which implies that the subset LWpDq is

closed. Then, by Theorem 4.1.9, the number of connected components of LWpDq is finite.

The last statement follows as any connected component of a closed subset in a metric graph

is itself a metric graph.

Remark 4.3.2. We have the following geometric construction of LWpDq, which gives

another proof for Proposition 4.3.1. Let PicdpΓq denote the space of divisor classes of

degree d on Γ, and let Effd
pΓq denote the space of effective divisor classes of degree d. Let

φ : Γ Ñ Picd´r´1
pΓq be the map defined by φpxq “ rD ´ pr ` 1q pxqs.

The condition that Dxpxq ą r is equivalent to Dx ě pr` 1q pxq. This is in turn equivalent

to the condition that the divisor class rD´pr`1q pxqs has an effective representative. Using

this observation and the above terminology, LWpDq “ φ´1
`

φpΓq X Effd´r´1
pΓq

˘

. In other

words, LWpDq is described by the following pullback diagram.

LWpDq Effd´r´1
pΓq

Γ Picd´r´1
pΓq

{

φ

Both Effd´r´1
pΓq and φpΓq are polyhedral subsets of Picd´r´1

pΓq with finitely many facets.

Thus their intersection has finitely many components, and each component is a union of

finitely many closed intervals. ˛

Remark 4.3.3. As before, let Dx denote the x-reduced divisor linearly equivalent to D.

Since the Weierstrass locus LWpDq is defined as tx P Γ : Dxpxq ´ r ą 0u, the expression

Dxpxq ´ r is a natural “naive” candidate for defining a tropical Weierstrass weight. In fact,

this ends up being the correct definition when x is an isolated component of LWpDq. When

x is not an isolated component, our more technical definition of weight is required.

If the singleton txu is a connected component of LWpDq, then we verify that the weight of

x is simply given by Dxpxq´r. Since the genus of the component txu is zero, Definition 4.1.6

states that

µWpxq “ Dpxq ´ r ´
ÿ

νPTxpΓq

sν0pDq,

and Lemma 4.2.3 states that Dxpxq “ Dpxq ´
ř

νPTxpΓq
sν0pDq. This verifies the claim.

Note that this applies for every connected component of LWpDq if D is W-finite. ˛

We now give two examples of metric graphs and their Weierstrass loci. The first

Weierstrass locus is finite whereas the second one is infinite.

Example 4.3.4. Suppose Γ is the complete graph on four vertices with unit edge lengths;

see Figure 4.2. This graph has genus three, and the rank of the canonical divisor K is
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r “ g´1 “ 2. It is easy so see that the slopes on each edge are t´1, 0, 1u. This can be proved

by direct verification, or by using the reflexivity of each edge of Γ, see Definition 4.3.21.

The Weierstrass locus LWpKq is finite and consists of the four vertex points. At a vertex v,

the reduced divisor at v is Kv “ 4 pvq. Thus, µWpvq “ Kvpvq ´ r “ 4 ´ 2 “ 2.

2 2

2

2

Figure 4.2: Complete graph on four vertices, and its Weierstrass locus LWpKq.

We will treat the example of the complete graph on five or more vertices in Section 4.6.5.

˛

Example 4.3.5. Suppose Γ is the “barbell graph” consisting of two cycles joined by a

bridge edge; see Figure 4.3. (The edge lengths may be arbitrary.) This graph has genus

two, and the canonical divisor K has rank r “ g ´ 1 “ 1.

The Weierstrass locus LWpKq consists of the middle edge and the outer midpoint on each

cycle. The latter have weight one. If we divide each cycle into two equal parts according to

its two distinguished points, then the slopes on each half-circle are t0, 1u starting on the

middle edge. This implies that the weight of the middle edge is also one.

1
1 1

Figure 4.3: The barbell graph and its Weierstrass locus LWpKq.

We will show in greater generality in Section 4.6.4 that if e is a bridge edge of Γ such that

each component of Γ∖ e̊ has positive genus, then e is contained in the canonical Weierstrass

locus. ˛

4.3.2 Positivity of Weierstrass weights

We now prove the following theorem.

Theorem 4.3.6. Let D be a divisor on Γ with non-negative rank r, and let C be a connected

component of the Weierstrass locus LWpDq. Then, the weight µWpCq given in Definition 4.1.6

is positive.

Proof. We use the notations introduced previously. Let x be a point in the connected

component C, and let Dx be the x-reduced divisor equivalent to D. By definition of the
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Weierstrass locus LWpDq, we have Dxpxq ´ r ą 0. Let fx be a rational function such that

Dx “ D ` divpfxq. We have

Dxpxq “ Dpxq ´
ÿ

νPTxpΓq

slopeνfxpxq.

Let A be any connected subgraph of Γ, and recall that deg
`

Dx|A

˘

denotes the sum
ř

yPADxpyq. For a tangent vector ν P B
out

A, let, as before, xν denote the associated

boundary point. We have

deg
`

Dx|A

˘

“ deg
`

D|A

˘

´
ÿ

νPB
outA

slopeνfxpxνq

by applying Stokes theorem to the derivative of fx on the region A.

Because x P C and Dx is effective, we have deg
`

Dx|C

˘

ě Dxpxq ą r. For each tangent

direction ν P B
out

C, the minimum slope sν0pDq satisfies sν0pDq ď slopeνfxpxνq by definition

(Definition 4.2.1). Therefore,

µWpCq “ deg
`

D|C

˘

` pgpCq ´ 1q r ´
ÿ

νPB
outC

sν0pDq ě deg
`

D|C

˘

´ r ´
ÿ

νPB
outC

sν0pDq

ě deg
`

D|C

˘

´ r ´
ÿ

νPB
out

C

slopeνfxpxνq “ deg
`

Dx|C

˘

´ r ą 0

as claimed.

The proof of Theorem 4.3.6 shows the stronger bound µWpCq ą gpCqr. This is addressed

later, in greater generality, in Corollary 4.3.13.

4.3.3 Weierstrass measure

We prove Theorem 4.3.9 below, which will imply Theorem 4.1.7.

Definition 4.3.7. Fix a divisor D on a metric graph Γ, with Weierstrass locus LWpDq. A

subset A Ď Γ is LWpDq-measurable if A is a Borel set and, for every component C of the

Weierstrass locus LWpDq, we have either

C Ď A or C Ď Γ ∖ A.

Let A “ ApDq denote the σ-algebra of LWpDq-measurable subsets of Γ. ˛

In other words, given a Weierstrass locus LWpDq Ď Γ, we can construct the quotient map

π : Γ Ñ Γ0 in which each component Ci Ď LWpDq is contracted to a single point. Then,

the LWpDq-measurable sets of Γ are the preimages of Borel sets of Γ0. If the divisor D is

W-finite, then all Borel sets in Γ are LW pDq-measurable.
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Definition 4.3.8 (Weierstrass measure). Notations as above, let D be an effective divisor

of rank r on Γ, and let A denote the σ-algebra of LWpDq-measurable subsets of Γ. We

define the Weierstrass measure µ̂W as the “weighted counting measure” on Γ whose atoms

are the connected components in the Weierstrass locus LWpDq. More precisely, µ̂W is the

measure on pΓ,Aq defined by

µ̂WpAq :“
ÿ

CĎA

µWpCq,

where the sum is taken over components of LWpDq contained in A, and µWpCq is given

by (4.1). ˛

We have the following description of the Weierstrass measure.

Theorem 4.3.9. Notations as above, for any closed connected A P A, we have

µ̂WpAq “ deg
`

D|A

˘

` pgpAq ´ 1qr ´
ÿ

νPB
outA

sν0pDq. (4.2)

Proof. Let A “ tC1, . . . , Cnu denote the set of components of LWpDq contained in A. Let

G “ pV,Eq be a model for Γ whose vertex set V contains the support of D, and let

V X pA∖ LW pDqq “ tv1, . . . , vmu denote the set of non-Weierstrass vertices in A. For each

such vertex vi, let Cn`i “ tviu denote the corresponding singleton, and let rA denote the

union

rA “ A Y ttv1u, . . . , tvmuu “ tC1, . . . , Cn, Cn`1, . . . , Cñu where ñ “ n ` m.

Finally, let |rA| “
Ťñ

i“1Ci be the underlying subset of Γ. Note that |rA| Ď A, and A∖ |rA|

consists of a union of finitely many open intervals; let k denote their number.

Let V 1 :“ V ∖ LWpDq, as in Figure 4.4. For each v P V 1, we have Dvpvq “ r, so

µWptvuq “ Dpvq ´ r ´
ÿ

νPTvpΓq

sν0pDq “ Dvpvq ´ r “ 0.

Thus, the “components” Cn`i “ tviu inside rA∖A do not contribute to the total weight, so

it suffices to show that
ÿ

CiPrA

µWpCiq satisfies (4.2).

From Definition 4.1.6, we have

ñ
ÿ

i“1

µWpCiq “

ñ
ÿ

i“1

deg
´

D|Ci

¯

` r
ñ
ÿ

i“1

pgpCiq ´ 1q ´

ñ
ÿ

i“1

¨

˝

ÿ

νPB
outCi

sν0pDq

˛

‚. (4.3)

We treat separately the three terms appearing on the right-hand side of (4.3). The first

term
ř

i deg
´

D|Ci

¯

is equal to deg
`

D|A

˘

, since the vertex set V was chosen to contain the

support of D.

For the second term, we apply the identity

deg
`

K|B

˘

“ 2gpBq ´ 2 ` outvalpBq for B Ď Γ closed and connected
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(see Lemma 4.3.16) twice to obtain

r
ñ
ÿ

i“1

pgpCiq ´ 1q “
r

2

ñ
ÿ

i“1

´

deg
´

K|Ci

¯

´ outvalpCiq

¯

“
r

2

`

deg
`

K|A

˘

´ outvalpAq ´ 2k
˘

“ rpgpAq ´ 1q ´ rk,

where k, we recall, denotes the numbers of edges of Γ∖ |rA| whose endpoints are both in |rA|.

For the third term, the collection of all tangent directions
Ť

CiPrA

␣

ν P B
out

Ci

(

can be

partitioned into “paired” directions, if following ν leads to another component in rA, and

“unpaired” directions, if following ν leads out of A. For any paired tangent direction

ν P B
out

Ci, there is a matching opposite direction ν P B
out

Cj (see Section 4.1.6) and their

minimum slopes satisfy sν0pDq ` sν0pDq “ ´r. For any unpaired tangent direction ν P B
out

Ci,

the minimum slope sν0pDq is equal to sν
1

0 pDq for some parallel tangent direction ν 1 P B
out

A.

Moreover, this gives a bijection between B
out

A and the unpaired tangent directions. Using

this, we have

ñ
ÿ

i“1

¨

˝

ÿ

νPB
outCi

sν0pDq

˛

‚“
ÿ

unpaired ν

sν0pDq `
ÿ

paired ν

sν0pDq

“
ÿ

νPB
outA

sν0pDq `

k
ÿ

ℓ“1

`

sνℓ0 pDq ` sνℓ0 pDq
˘

“
ÿ

νPB
outA

sν0pDq ´ rk.

Combining the above identities shows that µ̂WpAq satisfies (4.2).

Remark 4.3.10. For a closed subset A P A with a finite number of connected components,

the weight µ̂WpAq can be expressed equivalently as

µ̂WpAq “ deg
`

D|A

˘

` pgpAq ´ cpAqqr ´
ÿ

νPB
outA

sν0pDq

where cpAq “ h0pAq denotes the number of connected components of A. Note that

gpAq “ h1pAq, so that in terms of the Euler characteristic χ, the middle term is ´r ¨χpAq. ˛

The following result can be obtained by the same method. Let U be a connected open

subset of Γ which is LWpDq-measurable.

Theorem 4.3.11. Notations as above, the Weierstrass weight µ̂WpUq can be recovered from

the slopes around the incoming branches as the sum

µ̂WpUq “ deg
`

D|U

˘

` pgpUq ´ 1qr `
ÿ

νPB
inU

sνmaxpDq
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C3

C1

V 1

C2

Figure 4.4: The part in red in the left figure is the (hypothetical) locus of Weierstrass points,

and consists of three connected components. Red thickened points are on the

boundary of the Weierstrass locus. Black vertices are those belonging to V 1,

that is, outside the Weierstrass locus. They are three in number. The right

figure is an example of a set A appearing in A. There is no vertex in A outside

the Weierstrass locus, so m “ 0. There are two connected components of the

Weierstrass locus in A, so n “ 2. The subset A∖ |rA| consists of four intervals.

This means k “ 4.

where B
in

U denotes the set of incoming unit tangent vectors from the boundary of U , and

sνmaxpDq the maximum slope along the incoming tangent vector ν of any rational function

in RatpDq.

Note that since U is open and LWpDq is closed, every ν P B
in

U is tangent to an open

interval on Γ which is outside LWpDq and thus sνmaxpDq “ sν0pDq ` r (see Theorem 4.1.9).

Thus we have

µ̂WpUq “ deg
`

D|U

˘

` pgpUq ´ 1 ` invalpUqq r `
ÿ

νPB
inU

sν0pDq.

Proof of Theorem 4.1.7. We apply Theorem 4.3.9 with A “ Γ. The statement about

W-finite divisors follows from the first statement and Remark 4.3.3.

4.3.4 Consequences

We now provide some direct consequences of the above results, starting with the following

remark.

Remark 4.3.12. Theorem 4.1.7 and [Ric24, Theorem A] together imply that a generic

divisor D of degree d ě g has a finite Weierstrass locus made up of g pd´ g ` 1q points, all
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of weight one. Indeed, the cardinality of LWpDq given by [Ric24, Theorem A] is g pd´g`1q,

whereas the total weight given by Theorem 4.1.7 is d´ r ` rg. But r “ d´ g generically

and in this case we have g pd ´ g ` 1q “ g pr ` 1q “ d ´ r ` rg. ˛

Corollary 4.3.13. Suppose D is a divisor of rank r. For any closed, connected, LWpDq-

measurable subset A Ď Γ, we have

µ̂WpAq ě gpAq r.

Proof. This follows from Theorem 4.3.9 and Lemma 4.2.5.

Corollary 4.3.14 (Theorem 4.1.8). Suppose that the rank r of D is at least one. Then,

the complement of the Weierstrass locus LWpDq is a disjoint union of (open) metric trees.

In other words, every cycle in Γ intersects the tropical Weierstrass locus.

Proof. For the sake of a contradiction, suppose that A is a cycle in Γ disjoint from the Weier-

strass locus LWpDq. Then, A is LWpDq-measureable, and by definition (Definition 4.3.8),

µ̂WpAq “ 0. However, Corollary 4.3.13 states that µ̂WpAq ě gpAq r ą 0, which gives a

contradiction.

4.3.5 Special cases of weights

Here, we point out some special cases of the weight formula.

(i) If a divisor D has rank r “ 0, then µ̂WpΓq “ d. Suppose D is effective in its linear

equivalence class. For any tangent direction ν outside the Weierstrass locus, the slope

set SνpDq contains a single slope, and this slope must be zero since D is effective.

Thus, a component C of the Weierstrass locus has weight µWpCq “ deg
`

D|C

˘

.

(ii) If the genus g “ 0, then for any divisor µ̂WpΓq “ d´ r “ 0. (In general 0 ď d´ r ď g.)

In particular, this implies that the Weierstrass locus LWpDq is empty.

(iii) If the genus g “ 1, then for a divisor of degree d, the total Weierstrass weight is

µ̂WpΓq “ d. Every component C of the Weierstrass locus has weight µWpCq “ 1.

(iv) If the rank satisfies r “ d´ g, then µ̂WpΓq “ d´ r` rg “ g pr` 1q. In particular, this

holds for a generic divisor class with degree d ě g, and for every divisor with degree

d ě 2g ´ 1.

(v) If D “ K is the canonical divisor, then d “ 2g ´ 2 and r “ g ´ 1, so µ̂WpΓq “ g2 ´ 1.

See Section 4.3.7 below for more discussion of this case.
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4.3.6 Combinatorial graphs

In this section we assume Γ is a combinatorial graph. By this we mean Γ admits a model

pG “ pV,Eq, ℓq which has unit edge lengths. We assume the divisor D is supported on the

vertex set V .

Theorem 4.3.15. Suppose e “ uv is an edge in G whose interior e̊ is LWpDq-measurable.

Let fuv be a rational function that satisfies divpfuvq “ Du ´Dv. Let ν be the unit tangent

vector at v along e, towards u. Then, the Weierstrass weight of the interior of e is

µ̂W p̊eq “ r ´ slopeνpfuvq.

Proof. Let U :“ e̊. Since LWpDq is closed, we can take the open interval U a little bit

smaller so that its extremities are distinct from u and v and U still contains the same

components of LWpDq. Theorem 4.3.11 states that the sum of Weierstrass weights on U “ e̊

is equal to

µ̂WpUq “ deg
`

D|U

˘

` pgpUq ´ 1q r `
ÿ

νPB
inU

sνmaxpDq.

Since D is supported on the vertex set, we have deg
`

D|U

˘

“ 0, and we also have gpUq “ 0.

Thus, the expression simplifies to

µ̂WpUq “ ´r `
`

sv,νmaxpDq ` su,νmaxpDq
˘

where ν and ν are tangent directions towards u and v, respectively. If fu and fv satisfy

divpfuq “ Du ´ D and divpfvq “ Dv ´ D,

then we have

slopeνfupuq “ su,ν0 pDq “ su,νmaxpDq ´ r and slopeνfvpvq “ sv,ν0 pDq “ sv,νmaxpDq ´ r,

and the relation fuv “ fu ´ fv implies

slopeνfuvpuq “ slopeνpfu ´ fvqpuq “ ´
`

su,νmaxpDq ´ r
˘

´ psv,νmaxpDq ´ rq

“ 2r ´
`

sv,νmaxpDq ` su,νmaxpDq
˘

.

Note that the slope of fuv is constant along the interior of e, since the reduced divisors Du

and Dv are supported on vertices.

4.3.7 Canonical Weierstrass locus

In this section we discuss the case of the canonical divisor on a metric graph.
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Weierstrass weight

The weight formula (4.1) for µWpC;Dq may be specialized to the case of the canonical

divisor D “ K. We need the following lemma.

Lemma 4.3.16. Let K “
ř

xPΓpvalpxq ´ 2q pxq denote the canonical divisor of Γ, and let

A Ď Γ be a closed connected subset. Then

deg
`

K|A

˘

“ 2gpAq ´ 2 ` outvalpAq.

Proof. The proof can be obtained by direct calculation using an adapted graph model. The

details are omitted.

By direct summation, this result generalizes to closed subsets with finitely many connected

components.

Theorem 4.3.17. Suppose Γ is a metric graph of genus g, and let K be its canonical

divisor. The weight of any component C of the Weierstrass locus LWpKq is

µWpC;Kq “ pg ` 1qpgpCq ´ 1q ´
ÿ

νPB
outC

psν0pKq ´ 1q.

More generally, for any closed, connected subset A Ď Γ that is LWpKq-measurable,

µ̂WpA;Kq “ pg ` 1qpgpAq ´ 1q ´
ÿ

νPB
outA

psν0pKq ´ 1q.

Proof. Let B
out

C denote the set of outgoing tangent directions from C in Γ, and let outvalpCq

denote its cardinality. From (4.1) we have

µWpC;Kq “ deg
`

K|C

˘

` r pgpCq ´ 1q ´
ÿ

νPB
outC

sν0pKq.

The canonical divisor K has rank r “ g ´ 1. By Lemma 4.3.16, on a closed connected set

B Ď Γ, the degree deg
`

K|B

˘

satisfies deg
`

K|B

˘

“ 2gpBq ´ 2 ` outvalpBq. Therefore,

µWpC;Kq “ deg
`

K|C

˘

` pg ´ 1qpgpCq ´ 1q ´
ÿ

νPB
outC

sν0pKq

“ 2pgpCq ´ 1q ` outvalpCq ` pg ´ 1qpgpCq ´ 1q ´
ÿ

νPB
outC

sν0pKq

“ pg ` 1qpgpCq ´ 1q ´
ÿ

νPB
outC

psν0pKq ´ 1q,

which concludes.

If we repeat the same computation for the pluricanonical divisor nK, where n ě 2, we

find that

µ̂WpA;nKq “ p2n ´ 1qgpgpAq ´ 1q ´
ÿ

νPB
outA

psν0pnKq ´ nq.

This next corollary to Theorem 4.3.17 is also a direct consequence of Theorem 4.1.7.
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Corollary 4.3.18. Suppose Γ is a genus g metric graph.

(a) The sum of Weierstrass weights over all components of LWpKq is equal to g2 ´ 1.

(b) For any integer n ě 2, the sum of Weierstrass weights over all components of LWpnKq

is equal to p2n ´ 1qgpg ´ 1q.

The next result is a special case of Corollary 4.3.13.

Corollary 4.3.19. Suppose Γ is a metric graph of genus g. For any closed, connected,

LWpKq-measurable subset A Ď Γ, we have

µ̂WpAq ě gpAq pg ´ 1q.

We end this section by providing a geometric interpretation of the tropical canonical

Weierstrass locus. For the general description for any divisor D, see Remark 4.3.2.

The tropical canonical Weierstrass locus LWpKq can be described as an intersection

as follows. Suppose f : Γ Ñ Picg´2
pΓq sends x to the divisor class rK ´ g pxqs, and let

h : Effg´2
pΓq Ñ Picg´2

pΓq be the inclusion of effective divisor classes in the space of all

divisor classes of fixed degree g´2. The points in LWpKq are those such that rK´g pxqs ě 0,

or equivalently rK ´ g pxqs P Effg´2
pΓq. This description is summarized by the following

pullback diagram.

LWpKq Effg´2
pΓq

Γ Picg´2
pΓq

{
h

f

The bottom horizontal map f sends x to the divisor class rK ´ g pxqs. The right vertical

map h is the inclusion of effective divisor classes in the space of all divisor classes of fixed

degree g ´ 2. The points in LWpKq are those such that rK ´ g pxqs ě 0, or equivalently

rK ´ g pxqs P Effg´2
pΓq.

This description, which makes LWpKq sit inside the polyhedral complex Effg´2
pΓq, brings

forward the following open question.

Question 4.3.20. It is possible to express the Weierstrass weights using this geometric

description in a meaningful way?

Edge symmetry

We now discuss properties of some specific Weierstrass points under some symmetry

condition; see as well Section 4.6.5.

Definition 4.3.21. An edge e of a metric graph Γ is reflexive if there is an automorphism

σ : Γ Ñ Γ such that σpeq “ e, i.e., σ reverses the direction of e. ˛
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We show that the midpoint of a reflexive edge is either a Weierstrass point of K, or a

Weierstrass point of nK for all n ě 2.

Theorem 4.3.22. Suppose Γ is a metric graph of genus g ě 2, and let K denote the

canonical divisor of Γ. Suppose e is a reflexive edge in Γ.

(a) If g is even, then the midpoint of e is in the Weierstrass locus LWpKq.

(b) If g is odd, then the midpoint of e is in the Weierstrass locus LWpnKq for any integer

n ě 2.

Proof. Let x denote the midpoint of the reflexive edge e. The tangent space TxpΓq contains

two directions tν1, ν2u, and the reflexive assumption implies that the minimum slopes

are equal in both directions, i.e., sν10 pKq “ sν20 pKq. If x is outside the Weierstrass locus,

then the singleton txu is LWpKq-measurable and we may apply the weight formula from

Theorem 4.3.17,

µ̂Wpx;Kq “ pg ` 1qp´1q ´ 2psν10 pKq ´ 1q ” g ` 1 mod 2.

Hence if g is even, then µ̂Wpxq is nonzero, which contradicts our assumption that x is outside

the Weierstrass locus. This proves part (a).

Now consider D “ nK for n ě 2. By a similar argument, if x is outside the Weierstrass

locus LWpnKq, then its Weierstrass weight is

µ̂Wpx;nKq “ p2n ´ 1qgp´1q ´ 2psν10 pnKq ´ nq ” g mod 2.

If g is odd, then the weight µ̂Wpxq is nonzero, which again gives a contradiction. This proves

part (b).

4.4 Generalizations

In this section, we generalize the setting of the previous sections to the case of augmented

metric graphs, that is, in the presence of genera associated to the vertices.

Since the genus of a given vertex hides information about the geometry of the component,

it turns out that there will be an ambiguity when talking about the Weierstrass locus of a

divisor D. In fact, the right setup in this context is a divisor D endowed with the data of a

closed sub-semimodule M of RatpDq, which plays the role of a (not necessarily complete)

linear series on the augmented metric graph. In what follows, we will explain how the

preceding definitions and results extend from divisors to semimodules in the more general

setting of augmented metric graphs. We then introduce two special classes of semimodules,

the generic semimodule associated to any divisor, and the canonical semimodule associated

to the canonical divisor. We properly justify both of them using the framework of metrized

complexes.

In the following, we assume all semimodules are nonempty unless specified otherwise.
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4.4.1 Weierstrass loci of semimodules and augmented metric graphs

Semimodules

Let Γ be a metric graph, and D a divisor of degree d on Γ. The set of functions RatpDq

naturally has the structure of a semimodule on the tropical semifield; we refer to [HMY12,

AG22] (Chapter 3) for a discussion on this semimodule structure. Let M be a sub-

semimodule of RatpDq. We endow RatpDq with the topology induced by } ¨ }8, and say

M Ď RatpDq is closed if it is closed with respect to this topology. The following is a

direct extension to semimodules of the rank of divisors on graphs introduced by Baker and

Norine [BN07].

Definition 4.4.1 (Divisorial rank). The divisorial rank or simply rank of M Ď RatpDq

(also called the rank of D with respect to M) is the greatest integer r such that for any

effective divisor E on Γ of degree r, there exists a function f P M verifying D` divpfq ě E.

It is denoted by rpM,Dq. ˛

In fact, as the following statement shows, the divisorial rank will only depend on the

semimodule M , if we additionally assume that M is closed. Therefore, we will work only

with closed semimodules in the following, and will denote their rank simply by rpMq. Note

that any (nonempty) semimodule has rank rpMq ě 0. Also note that by definition, we have

the immediate inequality rpMq ď rpDq.

Proposition 4.4.2. The divisorial rank rpM,Dq of a closed semimodule M Ď RatpDq

depends only on M .

Proof. First note that there is a unique minimal divisor D0 such that M Ď RatpD0q, which

is obtained by taking the (point-wise) minimum of all such divisors.

Then, we denote rpM,Dq by r and rpM,D0q by r0. It is clear from the inequality D0 ď D

that the inequality r0 ď r holds. We thus prove that r0 ě r. We choose a model G “ pV,Eq

such that the vertex set contains the support of D.

First, we suppose that E is an effective divisor of degree r on Γ whose support is disjoint

from the support of D. By definition of r, there exists f P M such that D ` divpfq ě E.

Since M Ď RatpD0q and D coincides with D0 outside V , it follows that D0 ` divpfq ě E.

Now, let E be an effective divisor of degree r on Γ whose support may intersect that of

D. Let pEnqn be a sequence of divisors of degree r converging to E, such that for each n,

the support of En is disjoint from V . By what precedes, for each n, there exists a function

fn P M such that D0 `divpfnq ě En. Without loss of generality, assume that fnpx0q “ 0 for

some x0 P Γ. Thanks to the boundedness of the slopes of functions in RatpD0q (see [GK08,

Lemma 1.8]), we can assume that pfnqn converges uniformly to a function f , which satisfies

D0 ` divpfq ě E at the limit. The limit function f is in M by assumption that M is closed,

which concludes the argument.

Remark 4.4.3. In essence, the above proof shows that the complement of the support of

D is a “rank-determining set” for the semimodule M in the sense of [Luo11]. ˛
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The notion of minimum slopes naturally extends to closed semimodules.

Definition 4.4.4 (Slope sets and minimum slopes). Let M Ď RatpDq be a closed sub-

semimodule. Given a point x P Γ and a tangent direction ν P TxpΓq, let SνpMq denote the

slope set

Sν
pMq :“ tslopeνfpxq : f P Mu.

Let sν0pMq denote the minimum slope along ν of functions in M . More generally, let sνj pMq

denote the pj ` 1q-smallest slope along ν of functions in M , i.e.,

sν0pMq “ mintSν
pMqu, sνj pMq “ mints P Sν

pMq, s ą sνj´1u.

When the semimodule M is clear from context, we will simply use sνj to denote sνj pMq. ˛

The following result is obtained similarly to Proposition 4.2.5; we omit the details.

Proposition 4.4.5. Suppose M Ď RatpDq is a closed semimodule of divisorial rank r.

Then for any closed, connected subset A Ď Γ, we have

deg
`

D|A

˘

´
ÿ

νPB
outA

sν0pMq ě r.

Reduced divisors

For closed M Ď RatpDq, there is a well-defined and well-behaved notion of x-reduced

divisor, denoted DM
x , linearly equivalent to D with respect to M for every x P Γ. Simply,

we define fx : Γ Ñ R by setting

fxppq :“ inf
fPM

fpxq“0

fppq @p P Γ.

Using the boundedness of slopes [GK08, Lemma 1.8], the infimum in the definition above

turns out to be a minimum, and fx is the uniform limit of a sequence of elements in

M . Therefore, fx P M . We set DM
x :“ D ` divpfxq. It follows from the definition that

slopeνfxpxq “ sν0 for all ν P TxpΓq, and DM
x pxq “ Dpxq ´

ř

νPTxpΓq
sν0. Therefore, the

analogue of Lemma 4.2.3 holds.

Augmented metric graphs

An augmented metric graph is a metric graph Γ endowed with a model pG “ pV,Eq, ℓq

and a genus function g : V Ñ Zě0. The genus of pΓ, gq, denoted by gpΓ, gq or simply g, is

defined by

gpΓ, gq :“ gpΓq `
ÿ

vPV

gpvq.

This terminology follows [ABBR15a]; “vertex-weighted graph” is used in other places.

Augmented metric graphs arise from the semistable reduction of smooth proper curves

216



over a valued field, when remembering the genera gpvq “ gpXvq of the components Xv, for

v P V .

Note that any metric graph is naturally an augmented metric graph, by declaring the

genus function to be the zero function. This means that what we will discuss below applies

equally to the setting of non-augmented metric graphs.

Weierstrass locus

We now extend the notion of tropical Weierstrass locus to semimodules in the general

setting of augmented metric graphs. Let pΓ, gq be an augmented metric graph. Let D be a

divisor on Γ and M be a closed sub-semimodule of RatpDq of divisorial rank r ď rpDq.

Definition 4.4.6 (Tropical Weierstrass locus of a closed semimodule). The tropical Weier-

strass locus of M , denoted by LWpM,D, gq (or LWpM, gq if D is clear from the context), is

the set of all points x P Γ which verify DM
x pxq ` pgpxq ´ 1q r ą 0.

In the case the genus function g is zero, we lighten the notations and simply write

LWpM,Dq, instead of LWpM,D, 0q. We abbreviate LWpM,Dq as LWpMq if D is clear from

context. ˛

The set LWpM, gq is a closed subset of Γ that can in general be infinite. Note that for

every x P Γ, we have DM
x pxq ě r and therefore DM

x pxq ` pgpxq ´ 1q r ě gpxq r ě 0. In

particular, if gpxq ą 0 and r ą 0, then x belongs to the tropical Weierstrass locus.

We now associate an intrinsic weight to each connected component of the Weierstrass

locus. The definition is analogous to Definition 4.1.6; here it is adapted to semimodules

and depends on the genus function.

Let D be a divisor of degree d on Γ, and let M Ď RatpDq be a closed sub-semimodule of

divisorial rank r. We use the notations of Definition 4.1.6 for deg
`

D|C

˘

, gpCq, and B
out

C;

sν0pMq is introduced in Definition 4.4.4.

Definition 4.4.7 (Intrinsic Weierstrass weight of a connected component). Let C be a

connected component of the tropical Weierstrass locus LWpM, gq. The Weierstrass weight

of C, denoted by µWpC;M,D, gq, is defined by

µWpC;M,D, gq :“ deg
`

D|C

˘

`

˜

gpCq `
ÿ

xPC

gpxq ´ 1

¸

r ´
ÿ

νPB
outC

sν0pMq. (4.4)

It is also denoted simply by µWpC;M, gq or µWpC; gq if M and D are understood from the

context.

In the case the genus function is zero, we use µWpC;M,Dq, µWpC;Mq or µWpCq for

µWpC;M,D, 0q. ˛

This quantity is well-defined because any connected component of LWpM, gq is a metric

graph, a result that adapts directly from Proposition 4.3.1. As in the case of divisors

(Proposition 4.3.1), LWpM, gq has a finite number of connected components. And since
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Theorem 4.3.6 extends directly, we get µWpC;M, gq ą 0. We denote by gpC, gq the sum

gpCq `
ř

xPC gpxq, that is, the genus of C in the augmented metric graph pΓ, gq.

Definition 4.4.8 (Tropical Weierstrass divisor). We say that pM,D, gq is Weierstrass

finite or simply W-finite if the tropical Weierstrass locus LWpM,D, gq is finite. In this case,

we define the tropical Weierstrass divisor W pM,D, gq as the effective divisor

W pM,D, gq :“
ÿ

xPLW pM,gq

µWpx;M,D, gq pxq.

The tropical weight of x verifies µWpx;M,D, gq “ DM
x pxq ` pgpxq ´ 1q r. We abbreviate

W pM,D, gq as W pM, gq if D is clear from the context. Note that the support |pW pM, gqq|

of the tropical Weierstrass divisor is exactly the tropical Weierstrass locus LWpM, gq.

In the case the genus function is zero, we simply use W pM,Dq or W pMq for W pM,D, 0q.

˛

Remark 4.4.9. If we set M “ RatpDq, and if the genus function is g “ 0, then we recover

the definitions given in Section 4.3 for a complete linear series on a non-augmented metric

graph. Namely,

(i) For every x P Γ, we have D
RatpDq
x “ Dx.

(ii) We have LWpRatpDq, 0q “ LWpDq.

(iii) For every connected component C of LWpRatpDq, 0q, we have

µWpC; RatpDq, 0q “ µWpC;Dq.

(iv) D is W-finite if, and only if, RatpDq is so. In this case, W pRatpDq, 0q “ W pDq. ˛

The following proposition, a direct consequence of the definitions, states how the Weier-

strass locus and Weierstrass weights on an augmented graph are related to the non-

augmented definition.

Proposition 4.4.10. If M Ď RatpDq is a closed semimodule of rank r, then the following

equalities hold.

(a) LWpM, gq “ LWpMq Y |g|.

(b) For every connected component C of LWpM, gq, we have

µWpC;M,D, gq “ µWpC;M,Dq ` r
ÿ

xPC

gpxq.
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Total sum of Weierstrass weights

The following theorem is an analogue of Theorem 4.1.9 for closed sub-semimodules of

RatpDq, and is proved using a natural analogue of Lemma 4.2.3, given in Section 4.4.1. The

only difference is that in the case of semimodules, sets of slopes are no longer necessarily

made up of consecutive integers.

Theorem 4.4.11. Let D be a divisor on Γ and M be a closed sub-semimodule of RatpDq

of divisorial rank r. We take a model for pΓ, gq such that the support of D is made up of

vertices. Let x P Γ be a point and ν P TxpΓq be a tangent direction.

(a) If the open interval px, x ` ενq is disjoint from the Weierstrass locus LWpM, gq, for

ε ą 0, then the set of slopes tslopeνfpxq : f P Mu consists of r`1 consecutive integers

tsν0, s
ν
0 ` 1, . . . , sν0 ` ru.

(b) If the open interval px, x ` ενq is contained in the Weierstrass locus LWpM, gq, then

the set of slopes tslopeνfpxq : f P Mu consists of integers tsν0 ă sν1 ă ¨ ¨ ¨ ă sνt u with

t ě r and sνt ´ sν0 ě r ` 1.

Part (a) implies in particular that for any edge e outside the Weierstrass locus of M , the

number of slopes of functions on e is r ` 1 and these slopes are consecutive.

As a corollary, following the same computation as in the case of a divisor, we get an

analogue of Theorem 4.3.9.

Theorem 4.4.12 (Sum of Weierstrass weights for an incomplete series on an augmented

metric graph). Suppose pΓ, gq is a genus g “ gpΓ, gq augmented metric graph, D is a degree

d divisor, and M Ď RatpDq is a closed semimodule of divisorial rank r ě 0.

Then, the total sum of weights associated to connected components of LWpM, gq is equal

to d ´ r ` rg. In particular, if M is W-finite, then we have degpW pM, gqq “ d ´ r ` rg.

More generally, let A denote the σ-algebra of LWpM, gq-measurable subsets of Γ and µ̂W

the counting measure on pΓ,Aq associated to the weights µWpC;M, gq given as above. Then,

for any closed, connected A P A, we have

µ̂WpA;M, gq “ deg
`

D|A

˘

` pgpA, gq ´ 1qr ´
ÿ

νPB
outA

sν0pMq, (4.5)

where gpA, gq denotes gpAq `
ř

xPA gpxq.

Theorem 4.4.12 implies the following analogue of Theorem 4.1.8.

Theorem 4.4.13. If the divisorial rank r of M is at least one, then every closed connected

subset A of Γ with gpA, gq ě 1 contains a point of LWpM, gq.

Proof. Theorem 4.4.12 and Proposition 4.4.5 imply that for any closed, connected, LWpM, gq-

measurable subset A Ď Γ, we have

µ̂WpA;M, gq ě gpA, gq r,

an analogue of Corollary 4.3.13 for closed semimodules. Then, the argument used in the

proof of Theorem 4.1.8 yields the result.
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Coherence under inclusion of semimodules

We have the following coherence property for the Weierstrass loci and weights associated to

semimodules.

Proposition 4.4.14. Let M Ď M 1 Ď RatpDq be two closed semimodules of rank r. Then,

LWpM, gq Ď LWpM 1, gq and any LWpM 1, gq-measurable subset A of Γ is LWpM, gq-measurable.

Moreover, the equality µ̂WpA;M, gq “ µ̂WpA;M 1, gq holds.

Proof. Note that the inclusion M Ď M 1 implies that we have DM
y pyq ď DM 1

y pyq for every

y P Γ. This, in turn, implies that LWpM, gq Ď LWpM 1, gq. The claim that A is LWpM, gq-

measurable follows then, since A is assumed to be LWpM 1, gq-measurable.

To see that µ̂WpA;M, gq “ µ̂WpA;M 1, gq, it suffices to show that sν0pMq “ sν0pM 1q for

each ν P B
out

A. Suppose ν is such a tangent direction pointing out of A. By part (a) of

Theorem 4.4.11, there are exactly r ` 1 consecutive slopes of functions F P M 1 along ν.

The same statement holds for M . Since M Ď M 1, we infer that these slopes are the same.

In particular, sν0pMq “ sν0pM 1q, as desired.

In the following two sections, we specialize the above constructions to two special families

of closed semimodules M : the generic semimodule associated to any divisor D, and the

canonical semimodule.

4.4.2 The generic semimodule associated to a divisor

Let pΓ, gq be an augmented metric graph. Denote by |g| the support of g. For any divisor

D on Γ, we define a closed semimodule Rat
gen

pD, gq Ď RatpDq.

Definition 4.4.15. The generic linear series or generic semimodule Rat
gen

pD, gq consists

of all rational functions f on Γ such that for every x P Γ, we have the inequality

Dpxq ` divpfqpxq ě gpxq. ˛

Equivalently, we have the equality Rat
gen

pD, gq “ RatpD0q for the divisor D0 defined by

D0pxq :“ Dpxq ´ gpxq, for every x P Γ. (The claimed containment Rat
gen

pD, gq Ď RatpDq is

clear.)

It follows that Rat
gen

pD, gq is closed in the } ¨ }8 topology of RatpDq.

Remark 4.4.16. The superscript “gen” stands for “generic” because, from the viewpoint

of the degeneration of smooth projective curves, augmented metric graphs can be obtained

from intermediate geometric objects called metrized complexes of curves. If this is the case,

the above definition gives, precisely, the tropical part of the linear series of a divisor on the

metrized complex in the case where the restriction of the divisor on every curve component

of the metrized complex is generic. See Section 4.4.4 for more details. ˛

The following statement computes the divisorial rank of the generic semimodule associated

to a divisor.

220



Proposition 4.4.17. Denote by r the divisorial rank of the generic semimodule Rat
gen

pD, gq,

and let rpDq and rpD0q denote the respective ranks of the two divisors D and D0 in Γ

without the genus function. We have the following (in)equalities.

(a) r ď rpDq;

(b) r “ rpD0q.

Proof. (a) The inequality follows from the containment Rat
gen

pD, gq Ď RatpDq.

(b) This follows from Proposition 4.4.2 applied to M :“ Rat
gen

pD, gq “ RatpD0q.

Now that we have a closed sub-semimodule Rat
gen

pD, gq of RatpDq with a well-known

divisorial rank, we can apply the machinery developed above.

Definition 4.4.18 (Generic tropical Weierstrass weights and locus of a divisor). Notations

as above, let D be a divisor on an augmented metric graph pΓ, gq. The tropical Weierstrass

locus, the Weierstrass weights, and the Weierstrass divisor (if it exists) are defined by

plugging the semimodule M :“ Rat
gen

pD, gq into Definitions 4.4.6, 4.4.7 and 4.4.8.

To lighten the notations while stressing the choice of the generic semimodule and the

dependence on D and g, we write:

(i) L
gen

W
pD, gq for LW

`

Rat
gen

pD, gq, g
˘

;

(ii) µgen

W
pC;D, gq for µW

`

C; Rat
gen

pD, gq, g
˘

; and

(iii) W
gen

pD, gq for W
`

Rat
gen

pD, gq, g
˘

.

When D is clear from context, we simply use µgen

W
pC; gq for µgen

W
pC;D, gq. ˛

Note that when g is the zero function, we have the equality Rat
gen

pD, gq “ RatpDq, and

so the above definition recovers the one given in the previous sections for the Weierstrass

divisor associated to a divisor.

Proposition 4.4.10 and a straightforward computation gives the following description of

the generic Weierstrass locus.

Proposition 4.4.19. The following equalities hold:

(a) L
gen

W
pD, gq “ LWpD0q Y |g|;

(b) µgen

W
pC;D, gq “ µWpC;D0q ` pr ` 1q

ř

xPC gpxq.

In the remainder of this section, we discuss the generic semimodule associated to the

canonical divisor. We first recall the definition of the canonical divisor in the augmented

setting.
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Definition 4.4.20 (Canonical divisor on an augmented metric graph). Given an augmented

metric graph pΓ, gq, the canonical divisor K on pΓ, gq is defined by

Kpxq :“ valpxq ´ 2 ` 2 gpxq (4.6)

for each x P Γ. ˛

Remark 4.4.21. In the context of augmented metric graphs, Lemma 4.3.16 becomes the

following statement: for every closed connected subset A Ď Γ,

deg
`

K|A

˘

“ 2gpAq ´ 2 ` 2
ÿ

xPA

gpxq ` outvalpAq. ˛

The following statement gives the rank of the semimodule Rat
gen

pK, gq, which is not g´ 1

as one might expect.

Proposition 4.4.22 (Rank of the generic semimodule Rat
gen

pK, gq). If the genus function

g is nontrivial, the semimodule Rat
gen

pK, gq has rank g ´ 2.

Proof. The rank of Rat
gen

pK, gq coincides with the rank of K0 :“ K ´
ř

gpxq pxq within

the non-augmented metric graph Γ. Since the genus function is nontrivial, we have

degpK0q “ 2 gpΓq´2`
ř

x gpxq ą 2 gpΓq´2 with gpΓq the genus of the non-augmented metric

graph, and so, by Riemann–Roch on Γ, we have rpK0q “ degpK0q ´ gpΓq “ gpΓ, gq ´ 2.

In the next section, we define the canonical linear series for an augmented metric graph,

and show it has the correct rank g ´ 1.

Example 4.4.23. We compute the Weierstrass locus of the generic semimodule Rat
gen

pK, gq

on a cycle with one point of positive genus equal to two.

Let pΓ, gq be the augmented metric graph where Γ is the cycle of length one, parametrized

by the interval r0, 1s, the single vertex v coincides with the endpoints v “ 0 “ 1, and

gpvq “ 2. The genus of this augmented metric graph is g “ 3.

We consider the canonical divisor K and the associated generic semimodule Rat
gen

pK, gq,

as defined in the present section (see Definition 4.4.15). The rank is r “ g´ 2 “ 1 according

to Proposition 4.4.22, and the total weight of the Weierstrass locus is 6. The Weierstrass

locus consists of the vertex v and the point of coordinate 1
2
. It is easy to compute that

the weights are µgen

W
pv;K, gq “ 5 and µgen

W

`

1
2
;K, g

˘

“ 1. Figure 4.5 shows the augmented

metric graph and its Weierstrass locus. A generalization for any value of gpvq is presented

in Section 4.6.6. ˛

4.4.3 The canonical linear series on an augmented metric graph

Consider the augmented metric graph pΓ, gq and its canonical divisor K, defined by

Kpxq “ valpxq ´ 2 ` 2 gpxq for each x P Γ. In this section, we define the linear series

KRatpgq associated to K, that we call the canonical linear series or canonical semimodule.
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gpvq “ 2

Dpvq “ 4
5 1

Figure 4.5: An augmented cycle graph with one point of genus two, the canonical divisor

and its Weierstrass locus L
gen

W
pD, gq.

Definition 4.4.24. We define the canonical semimodule KRatpgq as the set of all functions

f P RatpΓq which verify the following conditions:

(1) For every x P Γ, we have Kpxq ` divpfqpxq ě gpxq ´ 1.

(2) If x has a tangent direction ν P TxpΓq such that slopeνfpxq ď 0, then Kpxq `

divpfqpxq ě gpxq. ˛

The following set of conditions is equivalent to that of Definition 4.4.24.

(1) (local-minimum condition) If x P Γ is an isolated local minimum of f , i.e., slopeνfpxq ě

1 for every ν P TxpΓq, then we impose Kpxq ` divpfqpxq ě gpxq ´ 1.

(2) (generic condition) For all other points x P Γ, we impose the stricter condition

Kpxq ` divpfqpxq ě gpxq.

Note that according to the above definition, if a point x has gpxq “ 0, then x cannot

be an isolated local minimum of f P KRatpgq. Indeed, an isolated local minimum of f

satisfies divpfqpxq ď ´ valpxq, and so Kpxq ` divpfqpxq ď ´2 assuming gpxq “ 0, which

would violate both conditions. This means that, for any x P Γ and f P KRatpgq, we have

Kpxq ` divpfqpxq ě 0, which implies that KRatpgq is a subset of RatpKq. (It is easy to

see that it is in fact a semimodule.) This shows, moreover, that the above definition is

equivalent to Definition 4.4.15 outside of the support of g. Also note that we have the

inclusion of semimodules Rat
gen

pK, gq Ď KRatpgq.

Remark 4.4.25. The definition of the canonical semimodule differs from the generic

semimodule Rat
gen

pK, gq given by Definition 4.4.15. This is because the earlier definition,

suitable for every divisor D on Γ, assumed D has “generic support” in the vertices with

“hidden genus.” The canonical divisor, however, is not generic. Its specific properties

suggest a distinct definition for the complete linear series of K. The relevance of the above

modification compared to Definition 4.4.15 will be further clarified in Section 4.4.4. ˛

We have the following theorem which justifies the name given to the linear series KRatpgq.

Recall that g “ gpΓ, gq.

Theorem 4.4.26. The divisorial rank of the semimodule KRatpgq is g ´ 1.

Proof. The proof of this theorem will be given in Section 4.4.4.
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We have a closed sub-semimodule KRatpgq of RatpKq of divisorial rank r “ g ´ 1, and

we can apply the machinery developed for semimodules on augmented metric graphs.

Definition 4.4.27 (Canonical tropical Weierstrass weights and locus). Notations as above,

the canonical tropical Weierstrass locus, the Weierstrass weights, and the Weierstrass divisor

on an augmented metric graph are defined by plugging the semimodule M :“ KRatpgq into

Definitions 4.4.6, 4.4.7 and 4.4.8.

To lighten the notations while stressing the choice of the canonical semimodule and the

dependence on g, we write:

(i) LWpK, gq for LWpKRatpgq, gq;

(ii) µWpC;K, gq for µWpC; KRatpgq, gq; and

(iii) W pK, gq for W pKRatpgq, gq. ˛

Example 4.4.28. In this example, we compute the canonical Weierstrass locus on an

augmented cycle with a point of genus two. For the case of the generic Weierstrass locus

associated to the same divisor K, see Example 4.4.23.

Let pΓ, gq be the augmented metric graph where Γ is the cycle of length one, parametrized

by the interval r0, 1s, the single vertex v coincides with the endpoints v “ 0 “ 1, and

gpvq “ 2. The genus of this augmented metric graph is g “ 3.

We consider the canonical divisor K and the associated canonical semimodule KRatpgq,

as defined in the present section (see Definition 4.4.24). The rank is r “ g´ 1 “ 2 according

to Theorem 4.4.26, and the total weight of the Weierstrass locus is g2 ´ 1 “ 8. The

Weierstrass locus consists of the vertex v and the points of coordinates 1
3

and 2
3
. The

Weierstrass weights are µWpv;K, gq “ 6 and µW

`

1
3
;K, g

˘

“ µW

`

2
3
;K, g

˘

“ 1. Figure 4.6

shows the locus of Weierstrass points. A generalization for any value of gpvq is presented in

Section 4.6.6. ˛

gpvq “ 2

Kpvq “ 4
6

1

1

Figure 4.6: An augmented cycle graph, the canonical divisor and its Weierstrass locus

LWpK, gq.

In the rest of the chapter, when handling the canonical divisor K on an augmented

metric graph, the semimodule KRatpgq will be preferred over Rat
gen

pK, gq, unless explicitly

specified otherwise.
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4.4.4 Justification of the definition of Weierstrass loci for augmented

metric graphs, in the generic and canonical case

In this section, we provide a justification for the definitions we gave in Sections 4.4.2

and 4.4.3. This will be through divisor theory on metrized complexes, that we recall first.

A purely metric graph justification, using metric graphs with shrinking parts, is sketched in

Remark 4.4.34.

Divisor theory on a metrized complex of curves

We fix κ an algebraically closed field. A metrized complex of curves is, roughly speaking,

the (metric realization of the) data of an augmented metric graph pΓ, gq endowed with a

model G “ pV,Eq and, for every v P V , of a smooth, proper, connected, marked κ-curve

Cv of genus gpvq with marked points Av in bijection with the branches of Γ incident to v.

That is, a metrized complex of curves is a hybrid refinement of an augmented metric graph.

For a full definition, see [AB15, Definition 2.17].

Let C be a metrized complex of curves. A divisor D on C is a formal sum with integer

coefficients of a finite number of points in C. We denote its hybrid rank on C by rCpDq.

By the forgetful projection map from C to Γ, this gives rise to a divisor D on Γ of the

same degree. Moreover, by restriction to each curve Cv, for v P V , we get a divisor Dv on

Cv. A rational function f on C consists of a rational function f on Γ and, for every v P V ,

a nonzero rational function fv on Cv. The space of such functions f “ pf, fv : v P V q is

denoted by RatpCq.

Let now C be a metrized complex of curves, with underlying metric graph Γ. Let D be

a divisor on C. We follow [AB15] and consider the linear series RatpD,Cq defined as the

subset of RatpCq consisting of all rational functions f “ pf P RatpΓq; fv P κpCvq, v P V q on

C that verify D ` divpfq ě 0. This means that D ` divpfq is effective on Γ, and for each

v P V , the divisor Dv ´
ř

νPTvpΓq
slopeνfpvq pxνvq ` divpfvq is effective on Cv. Here, xνv is the

marked point on Cv that corresponds to ν.

Definition 4.4.29. We define Rat
trop

pD,Cq to be the subset of RatpDq consisting of the

tropical parts of all functions f P RatpD,Cq. ˛

We omit the proof of the following result.

Proposition 4.4.30. Rat
trop

pD,Cq is a closed sub-semimodule of RatpDq.

We have the following comparison result, whose proof is direct from the definition of

rank of divisors.

Proposition 4.4.31. Let rpD,Cq be the divisorial rank of the semimodule Rat
trop

pD,Cq.

Then we have the inequality

rCpDq ď rpD,Cq.
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The inequality in the above proposition can be strict in general. However, in some

situations, e.g., for generic divisors on C and for the canonical divisor, when the marked

curves pCv, Avq, for all v P V , are generic in their moduli, we have the equality, as we

explain now.

The case of augmented metric graphs with generic divisors

The second condition in the definition of RatpD,Cq in the previous section justifies Defi-

nition 4.4.15. Indeed, take a rational function f on Γ such that for every x P Γ, we have

Dpxq ` divpfqpxq ě gpxq. Assume that the augmented metric graph pΓ, gq comes from a

metrized curve complex C. Let v P Γ be a point underlying a curve Cv. On the curve Cv, the

divisor Dv ´
ř

νPTxpΓq
slopeνfpvq pxνvq has degree ě gpvq by assumption. Therefore, by the

Riemann–Roch theorem, its rank is non-negative, which is precisely the second condition in

the definition of RatpD,Cq. Now, in the other direction, if Dv is generic in the Picard group

of Cv of relevant degree, then the divisor Dv ´
ř

νPTvpΓq
slopeνfpvq pxνvq on Cv appearing in

the second condition has non-negative rank only if it has degree at least gpvq. This means

that Definition 4.4.15 is equivalent to the definition given for metrized complexes with a

generic choice of divisors on components.

The case of canonical divisor in augmented metric graphs

We now justify Definition 4.4.24 using the terminology of Section 4.4.4, and also prove

Theorem 4.4.26.

Let G “ pV,Eq be a model of Γ whose vertex set contains all the points of valence different

from two, and the support of g. Let C be a metrized complex with underlying augmented

metric graph pΓ, gq. Denote by K a canonical divisor for C given by the collection of divisors

KCv ` Av “ KCv `
ř

νPTvpΓq
pxνvq on Cv, where KCv denotes a canonical divisor on Cv, i.e.,

OpKCvq “ ωCv . The following claim justifies our definition of the canonical semimodule. We

denote by RatpKq
trop

the tropical part of RatpKq.

Proposition 4.4.32. Notations as above, we have KRatpgq Ď RatpKq
trop

. Moreover, if

the markings Av on the curves Cv are in general position, for all v P V , then we have the

equality KRatpgq “ RatpKq
trop

.

Remark 4.4.33. This general position condition is the same as the one imposed in the

work by Esteves and coauthors [EM02, ES07] in the special case of stable curves with two

irreducible components, and stable curves in which any pair of components intersect. We

will treat examples of augmented dipole graphs in Section 4.6.

The results in this special case can be viewed as complementing from the tropical

perspective the work by Esteves and Medeiros [EM02], by analyzing the proportion and

precise locus of points specializing to the nodes on considered in their paper. ˛

Proof of Proposition 4.4.32. We first prove the inclusion KRatpgq Ď RatpKq
trop

. Consider

an element f P KRatpgq. We claim the existence of rational functions fv on Cv, for each
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v P V , such that the collection tf, fv, v P V u forms a rational function in RatpKq. This

proves the claim. Let v P V , and consider the divisor D on Cv defined by f as follows:

Dv :“ KCv `
ÿ

νPTvpΓq

pxνvq ´
ÿ

νPTvpΓq

slopeνfpvq pxνvq.

Note that the degree of Dv is precisely Kpvq ` divpfqpvq. If the genus of v is zero, then

by the condition Kpvq ` divpfq ě 0, the degree of Dv is non-negative and so there exists

a rational function fv on Cv such that Dv ` divpfvq ě 0. If gpvq ě 1 and v is not an

isolated local minimum, then by the definition of KRatpgq, we have degpDvq ě gpvq. By

Riemann–Roch, this implies the existence of a function fv such that Dv ` divpfvq ě 0. Let

v P Γ be a vertex of Γ such that gpvq ą 0 and which is an isolated local minimum of f . In

this case, by the definition of KRatpgq, we have degpDvq ě gpvq ´ 1. The divisor Dv can be

rewritten as KCv ´ E, where

E :“
ÿ

νPTvpΓq

pslopeνfpvq ´ 1q pxνvq

is effective because v is an isolated local minimum of f . The Riemann–Roch theorem on

Cv, combined with the inequality rpEq ě 0, thus yields

rpDvq “ rpKCv ´ Eq “ rpEq ` degpDvq ´ gpvq ` 1 ě 0.

That is, there exists a function fv such that Dv ` divpfvq ě 0. The rational function

f “ pf, fv : v P V q on C verifies K ` divpfq ě 0, as desired.

We now prove the inclusion RatpKq
trop

Ď KRatpgq provided that the markings Av on the

curves Cv, for all v P V , are generic. First, we observe that RatpKq
trop

Ď RatpKq. Combining

this with the results we proved in Section 4.2, it follows that the slopes taken by functions

in RatpKq
trop

are bounded. Let f be an element of RatpKq
trop

. We claim that under the

general position assumption, we have f P KRatpgq. Let v be a vertex of Γ. Resuming the

notations introduced above, we write Dv for the divisor on Cv induced by f , and write it in

the form Dv “ KCv ´ E.

First consider the case where v is an isolated local minimum of f . In this case, E

is an effective divisor. We need to show that degpEq ď gpvq ´ 1. Indeed, otherwise, if

degpEq ě gpvq, then if the points xνv , for ν P TvpΓq, are in general position on Cv, we will

get rpDvq ď rpKCvq ´ gpvq “ ´1, which contradicts the assumption that f P RatpKq
trop

.

Consider the other case, where v is not an isolated minimum. In this case, the divisor E

is not effective. We write E “ E` ´ E´ where E` and E´ are the positive and negative

parts of E, respectively. Note that E` and E´ are effective and they have disjoint support.

Since E is not effective, E´ is non-zero, and so by Riemann–Roch, we have

rpKCv ` E´q “ 2gpvq ´ 2 ` degpE´q ´ gpvq “ gpvq ´ 2 ` degpE´q.

Now, we write

Dv “ KCv ´ E “ KCv ` E´ ´ E`
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and observe, by the general position assumption on the points of Av, that

rpDvq “ maxt´1, rpKCv ` E´q ´ degpE`qu.

Combining the two observations, we get

rpDvq “ maxt´1, gpvq ´ 2 ` degpE´q ´ degpE`qu “ maxt´1, degpKCv ´ Eq ´ gpvqu

“ maxt´1, degpDvq ´ gpvqu.

If degpDvq ă gpvq, we get rpDvq ă 0, which would be a contradiction to the assumption

that f P RatpKq
trop

. We conclude that degpDvq ě gpvq, which leads to the inclusion

RatpKq
trop

Ď KRatpgq.

We now show that KRatpgq has the expected rank g ´ 1.

Proof of Theorem 4.4.26. We keep the notations as above. We denote by r the divisorial

rank of KRatpgq.

It will be enough to show that if the markings Av on the curves Cv, for all v P V , are

in general position, then we have rCpKq “ r. By Riemann–Roch for metrized complexes

proved in [AB15], we then obtain the equality r “ g ´ 1, as desired.

The inequality r ě rCpKq follows from the case of equality RatpKq
trop

“ KRatpgq proved

in the previous proposition, and by the definition of the rank in the metrized complex.

It remains to show the inequality rCpKq ě r. Let E be an effective divisor of degree r on

C, and let E be the corresponding divisor on Γ. There exists a function f P KRatpgq “

RatpKq
trop

such that E ` divpfq ě 0. If E has support outside the vertices of Γ, that is, E
is entirely supported at the interior of edges of Γ, then using the arguments we used in the

first part of Proposition 4.4.32, we deduce the existence of rational functions fv on Cv, for

all v P V , such that the rational function f “ pf, fv : v P V q on C gives K ´ E ` divpfq ě 0,

as desired.

Otherwise, if E has support in some of the curves Cv, for v P V , we write E as a limit of

effective divisors En, for n ě 0, of the same degree with support outside the vertices of Γ,

and find elements fn in RatpKq
trop

“ KRatpgq which verify K ´En ` divpfnq ě 0. Going to

a subsequence, and using the boundedness of the slopes in KRatpgq, we can suppose that all

the fn have the same slopes along tangent directions at v, for each vertex v P V . Moreover,

changing the function f P KRatpgq “ RatpKq
trop

under the constraint that E ` divpfq ě 0

if necessary, we can assume furthermore that fn converges to f as n tends to infinity.

Denote by sνv the slope of the fn along the tangential direction ν P TvpΓq. Let

Dv :“ KCv `
ÿ

νPTvpΓq

pxνvq ´
ÿ

νPTvpΓq

slopeνfpvq pxνvq

that we rewrite in the form

Dv “ KCv `
ÿ

νPTvpΓq

p1 ´ sνvq pxνvq `
ÿ

ν

mν pxνvq
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with mν denoting the (weighted) number of points in the support of En tending to v through

the tangential direction ν. Note that we have
ř

νPTvpΓq
mν “ Epvq. Let

D1
v :“ KCv `

ÿ

νPTvpΓq

p1 ´ sνvq pxνvq.

Two cases can happen. Either, some of the slopes sνv , for ν P TvpΓq, are not positive,

that is, v is not an isolated local minimum of fn. In this case, the divisor D1
v has degree at

least gpvq, which implies that it has non-negative rank. Or, all the slopes sνv , for ν P TvpΓq,

are positive, that is, v is an isolated local minimum of fn for all n. In this case, the divisor

D1
v has degree at least gpvq ´ 1, and is the difference of KCv and an effective divisor on Cv.

So again, it has non-negative rank.

In either case, we conclude that the divisor D1
v “ Dv ´

ř

νPTvpΓq
mν pxνvq has non-negative

rank. Since the points xνv are assumed to be in general position on Cv, it follows that the

divisor Dv has rank at least Epvq “
ř

νPTvpΓq
mν . This shows the existence of a rational

function fv on Cv such that Dv ´ Ev ` divpfvq ě 0, with Ev being the part of E supported in

Cv. We conclude with the existence of a rational function f “ pf, fv : v P V q which verifies

K ´ E ` divpfq ě 0. This implies the inequality rCpKq ě r, and finishes the proof of our

theorem.

Remark 4.4.34. Definition 4.4.24 can be also justified using only the formalism of metric

graphs and their limits. We briefly discuss this.

Suppose that the augmented metric graph pΓ0, gq comes from a “limit family” of non-

augmented metric graphs in the following sense. Let Γ be a (non-augmented) metric graph

and Σ Ď Γ a closed subset, where Σ has connected components Σ1, . . . ,Σn. For each ε ą 0,

consider the graph Γε defined by shrinking every edge in Σ by the factor ε. As ε Ñ 0, the

family Γε converges to a metric graph Γ0 (in the sense of Gromov–Hausdorff convergence).

The limit metric graph Γ0 is naturally equipped with a genus function g where gpviq “ gpΣiq

for each vi P Γ0 that is the limit of a component Σi, and gpxq “ 0 for all other x P Γ0. In

this situation, we say that the augmented metric graph pΓ0, gq is the limit of the shrinking

family of the pair Σ Ď Γ.

Now consider the corresponding family of canonical series RatpKεq on Γε. For each ε ą 0,

the linear series RatpKεq has rank g´1 on Γε. The limit as ε Ñ 0 produces a semimodule of

rational functions on Γ0. We claim that this limit semimodule always contains KRatpΓ0, gq,

as described in Definition 4.4.24, and that if Σ is “generic” in an appropriate sense, then

this limit is equal to KRatpΓ0, gq.

We omit a proof of these claims here. The details can be verified using the theory of higher

rank tropical curves and their algebro-geometric properties developed in [AN22, AN24]. ˛

4.5 Tropical vs. algebraic Weierstrass loci

In the first sections of this chapter, we associated a Weierstrass locus to a fixed divisor D

on a metric graph, and then generalized this to a closed sub-semimodule of M the space
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RatpDq on an augmented metric graph. However, those semimodules which come from

tropicalization verify an extra set of properties, in particular, the following important one

(see Section 4.8.3):

(‹) for each point x in Γ and any unit tangent direction ν P TxpΓq, the set of slopes

SνpMq taken by functions in M has size r ` 1.

In this section, we associate to any pair pM,Dq consisting of a divisor D and a closed

sub-semimodule M Ď RatpDq that verifies (‹) a refined notion of Weierstrass divisor. It is

inspired from the formula given in Theorem 4.8.5, with the slopes being directly retrieved

from M using property (‹). We then provide a comparison of this definition with that

of Section 4.4. Using this link, we prove the main result of this section, Theorem 4.5.5,

which relates tropical Weierstrass loci studied in the previous sections to tropicalization of

Weierstrass divisors. We deduce then Theorem 4.1.10 as a special case of this result.

In the following, by an abuse of terminology, we refer to any pair pM,Dq as above

as a combinatorial limit linear series (clls). The terminology is borrowed from [AG22]

(Chapter 3), however, the precise definition of combinatorial linear series requires more

properties for the semimodule M . In our setting, we only need property (‹). The results

can be thus applied more generally, in particular to the setting of tropical linear series

developed in [JP22].

4.5.1 Weierstrass divisor of a combinatorial limit linear series

Let D be a divisor on an augmented metric graph pΓ, gq and M Ď RatpDq a closed sub-

semimodule that verifies p‹q. Since M Ď RatpDq is closed, we can apply the machinery of

Section 4.4. This point of view on Weierstrass loci however results in a loss in information

provided by the slopes of M , unless the Weierstrass locus is finite. The following definition

relies on the knowledge of the slopes along edges of G prescribed by M .

Definition 4.5.1. Suppose D is a divisor of degree d and M is a closed sub-semimodule

in RatpDq such that M verifies (‹). The clls Weierstrass divisor of pM,Dq is the divisor

W
clls

pM,D, gq defined as

W
clls

pM,D, gq :“
ÿ

xPΓ

µ
clls

W
pxq pxq

where the clls Weierstrass weight µ
clls

W
pxq of x is defined by

µ
clls

W
pxq :“ pr ` 1qDpxq `

rpr ` 1q

2
pvalpxq ` 2gpxq ´ 2q ´

ÿ

νPTxpΓq

r
ÿ

j“0

sνj pMq. (4.7)

We write W
clls

pM,D, gq simply as W
clls

pM, gq, the clls Weierstrass divisor of M , if D is

understood from the context. If the genus function is trivial, g “ 0, then we abbreviate

W
clls

pM, gq to W
clls

pMq. ˛
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Note that W
clls

pM, gq has finite support. Indeed, since elements in M are piecewise affine

linear, we can find a model G “ pV,Eq of Γ such that sν0 ă sν1 ă ¨ ¨ ¨ ă sνr is constant in the

interior of any edge of G “ pV,Eq for parallel unit tangent vectors ν based at points of

the edge and pointing in the same direction. It follows that if x R V and x is outside the

supports of D and g, then µ
clls

W
pxq “ 0. Also note that the central term in the expression of

µ
clls

W
pxq above is equal to 1

2
rpr ` 1qKpxq, where K is the canonical divisor on pΓ, gq.

Example 4.5.2. Consider the non-augmented barbell graph Γ with edges of arbitrary

length, see Figure 4.7. This metric graph has genus two and the canonical divisor has rank

one. We define a sub-semimodule M Ď RatpKq of rank one on Γ by prescribing the slopes

´1 ă 1 on the middle edge and, for i “ 1, 2, slopes 0 ă 1 on both oriented edges uivi. Then,

we define M as the set of all functions in RatpKq that, along any unit tangent vector at a

given point of Γ, take one of the two prescribed slopes. It is easy to see that M is closed

and verifies p‹q.

v1 u1 u2 v2
1 1

p´1, 1q

p0, 1q

p0, 1q

p0, 1q

p0, 1q

Figure 4.7: The barbell graph, the canonical divisor and the slope structure S.

The clls Weierstrass divisor is

W
clls

pMq “ pu1q ` pu2q ` 2 pv1q ` 2 pv2q

(see Figure 4.8, right). For comparison, the tropical Weierstrass locus LWpM, gq of the

semimodule M with trivial genus function g “ 0 (as defined in Section 4.4), is shown on

the same figure (left). Here, LWpMq turns out to be identical to the tropical Weierstrass

locus of the complete linear series LWpKq (see Example 4.3.5). ˛

1
1 1 2

1 1
2

Figure 4.8: The tropical Weierstrass locus LWpMq (left) and the clls Weierstrass divisor

W
clls

pMq (right) on the barbell graph.

4.5.2 Comparison with the tropical Weierstrass locus

The following proposition shows that the notion of clls Weierstrass divisor can be viewed as

a refinement of the tropical Weierstrass locus defined in Section 4.4.
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Proposition 4.5.3 (Comparison of the tropical and clls Weierstrass loci). Suppose

M Ď RatpDq is a combinatorial limit linear series of rank r with clls Weierstrass di-

visor W
clls

pM, gq. Let LWpM, gq denote its Weierstrass locus, defined as in Section 4.4.1. If

A Ď Γ is closed, connected, and LWpM, gq-measurable, then we have the equality

deg
´

W
clls

pM, gq|A

¯

“ pr ` 1q µ̂WpA;M, gq.

In particular, if M is W-finite as a semimodule, then the following equality holds:

W
clls

pM, gq “ pr ` 1qW pM, gq.

Proof. We have

deg
´

W
clls

pM, gq|A

¯

“ pr ` 1q
ÿ

xPA

Dpxq `
rpr ` 1q

2

ÿ

xPA

Kpxq ´
ÿ

xPA

¨

˝

ÿ

νPTxpΓq

r
ÿ

j“0

sνj

˛

‚

where K denotes the canonical divisor on pΓ, gq (see Definition 4.4.20) and sνj “ sνj pMq.

The terms pr ` 1qDpxq add up to the term pr ` 1q deg
`

D|A

˘

. Remark 4.4.21 yields that

the terms Kpxq add up to 2gpAq ´ 2 ` 2
ř

xPA gpxq ` outvalpAq, where outvalpAq :“
ˇ

ˇB
out

A
ˇ

ˇ

is the number of outgoing branches from A.

The terms in the third part can be rearranged as a sum over directed edges of A, using

some compatible model. Each edge has two in-going tangent directions, and the slope sums

cancel out for this pair pν, νq of opposing in-going directions since sνj ` sνr´j “ 0. The only

terms that do not cancel are the tangent directions which point out of A, i.e.,

ÿ

xPA

¨

˝

ÿ

νPTxpΓq

r
ÿ

j“0

sνj

˛

‚“
ÿ

νPB
outA

˜

r
ÿ

j“0

sνj

¸

.

Combining these terms, we have

deg
´

W
clls

pM, gq|A

¯

“ pr ` 1q deg
`

D|A

˘

`
rpr ` 1q

2
p2gpA, gq ´ 2 ` outvalpAqq

´
ÿ

νPB
outA

r
ÿ

j“0

sνj

“ pr ` 1q deg
`

D|A

˘

` rpr ` 1qpgpA, gq ´ 1q ´
ÿ

νPB
outA

r
ÿ

j“0

psνj ´ jq.

Finally, we use the fact that sνj “ j ` sν0 for every j and for tangent directions ν outside

the Weierstrass locus LWpM, gq, by Theorem 4.4.11. Thus,

deg
´

W
clls

pM, gq|A

¯

“ pr ` 1q

˜

deg
`

D|A

˘

` pgpA, gq ´ 1q r ´
ÿ

νPB
out

A

sν0

¸

,

which, using the same technique as in the proof of Theorem 4.3.9, gives the first statement.

The second statement follows from the first by the expression of the Weierstrass weight of

a connected component of the tropical Weierstrass locus which is reduced to a point.
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We have the following extension of the above proposition, using the notion of tangential

ramifications introduced later in Section 4.5.5. In particular, the statement holds even if A

is not LWpM, gq-measurable.

Proposition 4.5.4. Notations as in Proposition 4.5.3, for any closed, connected A Ď Γ,

the following equality holds

deg
´

W
clls

pM, gq|A

¯

“ pr ` 1q

˜

deg
`

D|A

˘

` pgpA, gq ´ 1q r ´
ÿ

νPB
outA

sν0pMq

¸

´
ÿ

νPB
outA

r
ÿ

j“0

αν
j pMq,

where αν
j pMq :“ sνj pMq ´ j ´ sν0pMq are the tangential ramifications along ν.

4.5.3 Tropicalization of Weierstrass loci

The goal of this section is to prove Theorem 4.5.5, using the machinery developed for

semimodules on augmented metric graphs (see Section 4.4.1). This provides a precise link

between tropical Weierstrass loci and the tropicalization of Weierstrass divisors on algebraic

curves. Using this result, we will deduce Theorem 4.1.11.

Let X be a smooth proper curve of genus g over an algebraically closed non-Archimedean

field K of arbitrary characteristic with a non-trivial valuation. Let L “ OpDq be a line

bundle of positive degree d on X. Let H be a vector subspace of global sections of L of

rank r (i.e., dim H “ r ` 1), that we naturally view in the function field of X. When K

has positive characteristic, we suppose that L is classical [Lak81, Nee84], that is, the gap

sequence of H is the standard sequence 0 ă 1 ă ¨ ¨ ¨ ă r. We denote by W “ WpHq the

corresponding Weierstrass divisor on X. Recall that W is the zero divisor of a global section,

called the Wronskian, of the line bundle ω
brpr`1q{2
X b Lbpr`1q, see [Lak81] and Section 4.8.4.

In particular, we have

degpWq “
rpr ` 1q

2
p2g ´ 2q ` pr ` 1q d “ pr ` 1q pd ´ r ` rgq.

Let pΓ, gq be a skeleton of Xan, and let τ : Xan Ñ Γ denote the specialization map. Let

W :“ τ˚pWq be the specialization of W to Γ. Note that pΓ, gq is an augmented metric

graph. We let D :“ τ˚pDq be the specialization of D to Γ, and let M Ď RatpDq be the sub-

semimodule consisting of the tropicalizations of non-zero rational functions in H. It follows

from the slope formula that the divisorial rank of M is equal to the rank of H, see [AG22,

Theorem 9.1] (Theorem 3.9.1 in the present manuscript) and [JP22, Proposition 4.1].

The following theorem compares the algebraic Weierstrass divisor of H on the curve X

with the tropical Weierstrass divisor of M on the augmented metric graph pΓ, gq.
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Theorem 4.5.5 (Algebraic versus tropical weights: general case). Notations as above,

let A be a closed, connected, LWpM, gq-measurable subset of Γ. Then, the total weight of

Weierstrass points of W which tropicalize to A is given by

deg
´

W |τ´1pAq

¯

“ pr ` 1q µ̂WpA;M, gq

where

µ̂WpA;M, gq “ deg
`

D|A

˘

`

˜

gpAq `
ÿ

xPA

gpxq ´ 1

¸

r ´
ÿ

νPB
outA

sν0pMq.

In particular, if M is W-finite, we have the following equality of divisors on Γ:

τ˚pWq “ pr ` 1qW pM, gq.

Before proceeding to the proof, a remark is in order.

Remark 4.5.6. By Proposition 4.4.14, Theorem 4.5.5 holds in a slightly more general

setting. Let M 1 be any closed sub-semimodule of RatpDq of divisorial rank r containing M .

Then, we have

deg
´

W |τ´1pAq

¯

“ pr ` 1q µ̂WpA;M 1, gq

for every LWpM 1, gq-measurable subset A of Γ. ˛

Proof of Theorem 4.5.5. In the case the residue field of K has characteristic zero, we use

Theorem 4.8.5 which provides a description of the divisor W “ τ˚pWq in terms of slope

structures. As explained in Section 4.8.3, the slopes at any point x and any unit tangent

vector ν P TxpΓq of elements of the tropicalization M of H form a set of r ` 1 integers

sν0, s
ν
1, . . . , s

ν
r . The definition of the Weierstrass divisor associated to a tropical linear series

is chosen to ensure the equality W “ W
clls

pM, gq, which implies

deg
´

W |τ´1pAq

¯

“ deg
´

W
clls

pM, gq|A

¯

.

Proposition 4.5.3 states that if A is LWpM, gq-measurable, then

deg
´

W
clls

pM, gq|A

¯

“ pr ` 1q µ̂WpA;M, gq,

from which the result follows.

In the general case, when the characteristic of K is arbitrary and the gap sequence of H is

standard, we use the description of the reduction of the Weierstrass divisor to the skeleton

given in Theorem 4.8.2. Using the notations of Section 4.8, letting W “ τ˚pWq, we have

W pxq “ pr ` 1qDpxq `
rpr ` 1q

2
Kpxq ´

ÿ

νPTxpΓq

slopeνF,

with F “ troppWrFq. Furthermore, slopeνF “
rpr`1q

2
` ordpνx

ĄWrF x
.
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Since the slopes along the unit tangent vectors ν P TxpΓq which are outgoing from A

form a consecutive sequence of integers, by Proposition 4.8.4 we infer that the quantity

ordpνx
ĄWrF x

is equal to sν0 ` ¨ ¨ ¨ ` sνr . Using Theorem 4.8.2, we get slopeνF “ sν0 ` ¨ ¨ ¨ ` sνr .

Moreover, since F belongs to RatpΓq, the total sum of the slopes of F for the edges which

appear in the interior of A vanishes. We infer that

deg
´

W |τ´1pAq

¯

“ pr ` 1q
ÿ

xPA

Dpxq `
rpr ` 1q

2

ÿ

xPA

Kpxq ´
ÿ

xPA

ÿ

νPTxpΓq

slopeνF

“ pr ` 1q
ÿ

xPA

Dpxq `
rpr ` 1q

2

ÿ

xPA

Kpxq ´
ÿ

xPA

¨

˝

ÿ

νPTxpΓq

r
ÿ

j“0

sνj

˛

‚

“ deg
´

W
clls

pM, gq|A

¯

“ pr ` 1q µ̂WpA;M, gq,

as required.

4.5.4 Proofs of Theorems 4.1.10 and 4.1.11

We deduce Theorem 4.1.10 from Theorem 4.5.5.

Proof of Theorem 4.1.10. Since D and D have the same rank r, we can plug H :“ RatpDq

and M 1 :“ RatpDq into Remark 4.5.6, following Theorem 4.5.5, to get

deg
´

WpDq|τ´1pAq

¯

“ pr ` 1q

˜

deg
`

D|A

˘

` rpgpA, gq ´ 1q ´
ÿ

νPB
out

A

sν0pDq

¸

. (4.8)

In the context of Theorem 4.1.10, g “ 0. The result follows.

Using this result, we can prove Theorem 4.1.11.

Proof of Theorem 4.1.11. This follows from the combination of Theorem 4.4.12, Proposi-

tion 4.4.5 and Theorem 4.5.5.

4.5.5 Tangential ramification sequence and effectivity

Unlike the tropical Weierstrass divisors defined earlier in this chapter, the Weierstrass divisor

defined in Definition 4.5.1 is not automatically effective. We can rewrite the Weierstrass
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weight as

µ
clls

W
pxq “ pr ` 1q

´

Dpxq `
r

2
valpxq ` pgpxq ´ 1q r

¯

´
ÿ

νPTxpΓq

r
ÿ

j“0

`

sν0 ` j `
`

sνj ´ sν0 ´ j
˘˘

“ pr ` 1q
`

DM
x pxq ` pgpxq ´ 1q r

˘

´
ÿ

νPTxpΓq

r
ÿ

j“0

`

sνj ´ sν0 ´ j
˘

“ rpr ` 1qgpxq ` pr ` 1q
`

DM
x pxq ´ r

˘

looooooooooomooooooooooon

ě0

´
ÿ

νPTxpΓq

r
ÿ

j“0

`

sνj ´ sν0 ´ j
˘

looooooooooooomooooooooooooon

ě0

.

Definition 4.5.7 (Tangential ramification sequence). We call the sequence

tαν
j pMq :“ sνj pMq ´ sν0pMq ´ j : j “ 0, 1, . . . , ru

the ramification sequence of M at x along the tangential direction ν. This sequence is

non-decreasing. ˛

This motivates the following definition.

Definition 4.5.8 (g-effective linear series). Let g be a genus function on Γ. The combi-

natorial limit linear series M is called g-effective if W
clls

pM, gq is effective. That is, for all

x P Γ,

rpr ` 1qgpxq ` pr ` 1q
`

DM
x pxq ´ r

˘

ě
ÿ

νPTxpΓq

r
ÿ

j“0

αν
j pMq. (4.9)

˛

We say that M Ď RatpΓ, gq is realizable if there exists a smooth proper curve X of genus

g over K, a line bundle L “ OpDq of degree d and a subspace H Ď H0pX,Lq of rank r such

that pΓ, gq is a skeleton of Xan, and M “ ttrop pfq : f P H ∖ t0uu. If this happens over K

of equicharacteristic zero, we say M is realizable in equicharacteristic zero.

Proposition 4.5.9. If M is realizable in equicharacteristic zero, then the following hold:

(i) W
clls

pM, gq is effective, i.e., M is g-effective.

(ii) the divisor of degree zero

W
clls

pM, gq ´ pr ` 1qD ´
rpr ` 1q

2
K “

ÿ

xPΓ

¨

˝

ÿ

νPTxpΓq

r
ÿ

j“0

sνj

˛

‚pxq

is principal.
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Proof. Both statements follow from Theorem 4.8.5.

Example 4.5.10. Consider the non-augmented metric graph Γ below and its canonical

divisor K. We consider the following combinatorial limit linear series M Ď RatpKq. For

each bridge edge oriented outwards (towards the adjacent circle), allow slopes ´1 ă 1 ă 3.

Divide each circle into three equal parts, in a way compatible with the position of the

attachment points. On the two edges adjacent to the attachment points, allow slopes

0 ă 1 ă 2 away from the attachment points, and on the remaining edges, allow slopes

´1 ă 0 ă 1 (see Figure 4.9).

p0, 1, 2qp0, 1, 2q

p´1, 0, 1q

p´1, 1, 3q

1

1

1 1

Figure 4.9: Three-cycle graph with a specified slope structure on RatpKq, defining a combi-

natorial limit linear series M Ď RatpKq.

We can define a suitable closed sub-semimodule M Ď RatpKq of rank two of functions

compatible with this choice of slopes. The tropical Weierstrass locus LWpMq of the

semimodule M , in the sense of Section 4.4.1 (with g “ 0), contains the bridge edges and

the points of coordinates 1
3

and 2
3

on the circles (see Figure 4.10, left). In particular, M is

not W-finite. The clls Weierstrass divisor W
clls

pMq is also shown in the figure (right). In

particular, M is not g-effective. ˛

11

1

1 1

1
2

3

33

3

3

3

3

3

3

´3

Figure 4.10: The tropical Weierstrass locus LWpMq (left) and the clls Weierstrass divisor

W
clls

pMq (right).

Remark 4.5.11. Note that instead of allowing the slopes ´1 ă 1 ă 3 on the three central

edges, we could allow the slopes ´1 ă 1 ă 3 on (possibly trivial) intervals incident to the

central vertex on these edges, and the slopes ´1 ă 1 ă 2 on the rest of the edges, with the
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same choice of rank functions. This gives three degrees of freedom to choose combinatorial

limit linear series on Γ and leads to different tropical Weierstrass loci and clls Weierstrass

divisors. The clls Weierstrass coefficient on the central vertex is non-negative only when

the three edges are entirely endowed with the slopes ´1 ă 1 ă 2. This implies that the

corresponding combinatorial limit linear series in the case g “ 0 is the only (possibly)

realizable one (see Proposition 4.5.9). ˛

4.6 Examples

We here discuss several examples in order to illustrate the results of the previous sections.

4.6.1 Dipole graph

Suppose Γ is a dipole graph of genus g ě 2 (also known as a “banana” graph), consisting of

two vertices joined by g ` 1 edges, possibly of different lengths. The canonical divisor K

has coefficient g ´ 1 on each vertex. The Weierstrass locus LWpKq consists of the interval

rℓ{g, ℓ ´ ℓ{gs on every edge, with ℓ the length of that edge (see Figure 4.11 for g “ 3).

Each component C Ď LWpKq has two outgoing directions, and in each outgoing direction,

the minimum slope is sν0 “ ´pg ´ 1q. By Theorem 4.3.17, the Weierstrass weight of each

component is

µWpCq “ pg ` 1qpgpCq ´ 1q ´
ÿ

νPB
outC

psν0 ´ 1q “ pg ` 1qp´1q ´ p´g ´ gq “ g ´ 1.

The total Weierstrass weight of LWpKq is g2 ´ 1, as expected (Corollary 4.3.18 (a)).

2 2

2

2

2

2

Figure 4.11: Dipole graph of genus g “ 3 and its Weierstrass locus LWpKq.

4.6.2 Tent graph

Consider the tent graph G, consisting of three vertices and five edges, as shown in Fig-

ures 4.12, 4.13 and 4.14. We first consider the case D “ K, a divisor of rank r “ g ´ 1 “ 2.

We have, for each of the Weierstrass points located at the endpoints of the bottom edge in

Figure 4.12, µWpvq “ p3 ` 1qp´1q ´ p´2 ´ 2 ´ 2q “ 2. The other four Weierstrass points
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are located on either of the four other edges respectively, one third of the distance from the

top vertex to the other endpoints. Their weight is 1.

µWpxq “ p3 ` 1qp´1q ´ p´2 ´ 3q “ 1.

1 1

2

2 2

1

1 1

1

Figure 4.12: Tent graph and its Weierstrass locus LWpKq.

Now consider the case D “ K ` pvq for v the vertex of degree four, a divisor also of rank

r “ 2. LWpDq has a unique component, see Figure 4.13, and by Theorem 4.3.17, its weight

is µWpCq “ deg
`

D|C

˘

` pgpCq ´ 1q r ´
ř

νPB
outC s

ν
0 “ 5 ` p2 ´ 1q ¨ 2 ´ p´1 ´ 1q “ 9.

1 1

3
9

Figure 4.13: A divisor on the tent graph and its Weierstrass locus.

Finally, consider D “ K ` puq for u one of the vertices of degree three, a divisor still of

rank r “ 2. See Figure 4.14. The two singleton components of LWpDq each have weight

one. Suppose C is the non-singleton component of LWpDq, whose boundary points on both

left-hand edges are located one third of the distance from the top vertex. Theorem 4.3.17

gives µWpCq “ 7.

µWpCq “ deg
`

D|C

˘

` pgpCq ´ 1q r ´
ÿ

νPB
outC

sν0 “ 3 ` p0 ´ 1q ¨ 2 ´ p´2 ´ 2 ´ 1 ´ 1q “ 7.

2 1

2

7
1

1

Figure 4.14: A divisor on the tent graph and its Weierstrass locus.
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4.6.3 Cube graph

The cube graph is shown in Figure 4.15, with all edges of length one. It has genus 5 and

the canonical divisor K has rank 4. The Weierstrass locus LWpKq consists of the closed

segment r2{5, 3{5s on each edge, and excludes the vertices. Each component C of LWpKq

has out-valence 2, with minimum slopes in RatpKq in each outgoing direction equal to ´3.

Theorem 4.3.17 gives µWpCq “ 2.

µWpCq “ pg ` 1qpgpCq ´ 1q ´
ÿ

νPB
outC

psν0 ´ 1q

“ 6 ¨ p´1q ´ p´4 ´ 4q “ 2.

There are 12 components, so the total weight is 24.

Figure 4.15: Cube graph with its Weierstrass locus LWpKq.

4.6.4 Bridge edges

We expand on the barbell graph (Example 4.3.5).

Theorem 4.6.1 (Weierstrass loci and bridge edges). Let Γ be a metric graph which has a

bridge edge e such that each component of Γ ∖ e̊ has positive genus. Then, the edge e is

contained in the canonical Weierstrass locus LWpKq.

Proof. To show this, let u1 and u2 denote the endpoints of e, and Γ1 and Γ2 be the

components of Γ ∖ e̊ containing u1 and u2, respectively. If g, g1 and g2 are the genera of Γ,

Γ1 and Γ2 respectively, then g “ g1`g2. Let r “ g´1 be the rank of the canonical divisor on

Γ. We want to show that we can move r`1 “ g1`g2 chips to every point x P e. For i “ 1, 2,

denoting by Ki the canonical divisor of Γi, we have rΓi

´

K|Γi
´ puiq

¯

“ rΓi
pKiq “ gi ´1 ě 0,

which implies that, using only functions on Γ that are constant outside Γi, we can move gi
chips to ui. It is easy to see that we can move chips along e to put g1 ` g2 chips at x.

Figure 4.16 shows an example where the Weierstrass locus strictly contains the bridge

edges. Γ has two bridge edges and is of genus 5. All the edges of Γ are taken of unit length.

The boundary points of the Weierstrass locus on the left and right circle are the points of

coordinates 1
5
, 3

5
and 4

5
on each of the six corresponding edges, 1 being the outermost point.

The sum of all Weierstrass weights is 12 ` 6 ¨ 2 “ 24 “ g2 ´ 1, as expected.
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1
2 1 1 2

1

122

2

2

2

2 2

Figure 4.16: A graph with two bridge edges and its Weierstrass locus LWpKq.

4.6.5 Cases where the whole graph is Weierstrass

We provide two infinite families of examples for which the Weierstrass locus is the whole

graph, and discuss related questions.

Example 4.3.4 treated the complete graph on four vertices with unit edge lengths, with

the Weierstrass locus consisting of the four vertices. Now consider the case Γ is the complete

graph on n ě 5 vertices with unit edge lengths. This graph has genus g “ n2´3n`2
2

, and

the canonical divisor K has rank n2´3n
2

. The Weierstrass locus of K is the whole graph

as Kxpxq ě g. Indeed, Kpvq “ n ´ 3 on each vertex v, and the reduced divisor at v is

Kv “ pn2 ´ 3nq pvq (move all chips to v in a single firing). For x in the interior of an edge,

the reduced divisor Kx leaves pn ´ 1q chips away from x, i.e., Kxpxq “ n2 ´ 4n ` 1. Note

that n2 ´ 4n` 1 ě n2´3n`2
2

for n ě 5. This provides a first infinite family with the whole

metric graph Weierstrass.

We now give a second such family. In this family, the choice of the length function is free

and there are infinitely many possible choices of divisors with this property on the same

metric graph. See also [Ric24, Example 4.6]. Let Γ be the metric graph generalizing the

barbell graph (Example 4.3.5) to any number of cycles. More precisely, take g ě 2 cycles of

arbitrary length and join them all to a central vertex v with a bridge edge of positive length,

as in Figure 4.17. Consider the divisor D “ d pvq, with d ě 3. By Clifford’s theorem, the

rank of D satisfies the bound r ď d ´ 2. Since a divisor of positive degree on a cycle has

rank one less than the degree, and since chips can move freely on bridge edges, it is easy to

show Dxpxq ě d´ 1 ě r ` 1 for every x P Γ. Therefore, the Weierstrass locus is the whole

graph.

Note that in the second family the quantity minxPΓ pDxpxq ´ rq can be arbitrarily large.

The existence of these two families of examples, with very different combinatorial properties

(for example, the first is made up of graphs with high connectivity, whereas the graphs of

the second have many bridge edges), suggests the following.

Question 4.6.2. Provide a classification of all graphs G that admit a length function and
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d

Figure 4.17: The generalized barbell graph, the divisor D and its Weierstrass locus LWpDq.

a divisor with Weierstrass locus the whole metric graph. Among them, what are the ones

for which this property holds for every choice of edge lengths?

4.6.6 Augmented cycle with one point of positive genus

We compute Weierstrass loci for the canonical divisor with respect to the canonical and

generic linear systems on an augmented cycle on which one point has positive genus,

generalizing Examples 4.4.28 and 4.4.23. The canonical case recovers a result of Diaz [Dia85,

Theorem A2.1]: the generic non-separating node on a uninodal stable curve is a limit of

exactly gpg ´ 1q Weierstrass points on nearby smooth curves.

Let a be a positive integer, and consider the augmented metric graph pΓ, gq where Γ is

the cycle of length one, parametrized by the interval r0, 1s, the single vertex v coincides

with the endpoints v “ 0 “ 1, and gpvq “ a. The genus of this augmented metric graph is

g “ a ` 1.

The case of the canonical linear system

We expand on Example 4.4.28 for which a “ 2 was fixed. Consider the canonical divisor K

and the associated canonical semimodule KRatpgq, as defined in Section 4.4.3. The rank

is r “ g ´ 1 “ a according to Theorem 4.4.26, and the total weight of the Weierstrass

locus is g2 ´ 1 “ a2 ` 2a. The Weierstrass locus consists of the vertex v and all the points

of the form k
a`1

for k “ 1, . . . , a. The Weierstrass weights are µWpv;K, gq “ a2 ` a and

µW

`

k
a`1

;K, g
˘

“ 1. Figure 4.18 shows the canonical divisor and its (canonical) Weierstrass

locus depicted in the middle.

The case of the generic linear system

In the second case, we generalize Example 4.4.23 and consider the same divisor K as above,

but take the generic semimodule Rat
gen

pK, gq as defined in Section 4.4.2. In this case, the

rank is r “ g ´ 2 “ a´ 1 (see Proposition 4.4.22) and the total weight of the Weierstrass

locus is a2 ` a. The Weierstrass points are v, and all the points k
a

with k “ 1, . . . , a ´ 1.

The weights are µWpv;K, gq “ a2 ` 1 and µW

`

k
a
;K, g

˘

“ 1. Figure 4.18 shows the canonical

divisor on the left, and its generic Weierstrass locus depicted on the right.

We note that the Weierstrass loci are different even though they are both finite. The

total weights are also different, as the underlying semimodules have different ranks.
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gpvq “ a

Kpvq “ 2a
a2 ` a

1

1

1

1

a2 ` 1

1

1

1

Figure 4.18: An augmented cycle graph, with its canonical Weierstrass locus LWpK, gq in

the middle, and its Weierstrass locus L
gen

W
pK, gq on the right. The drawing is

made for a “ 4.

4.6.7 Augmented cycle with two points of positive genus

Now consider an augmented cycle with exactly two points of positive genus. We describe

the Weierstrass locus LWpK, gq.

Suppose the augmented metric graph pΓ, gq consists of two vertices u and v connected by

two edges of length α and β, and the vertices have genus gpuq “ g1 and gpvq “ g2. The

genus of pΓ, gq is g “ g1 ` g2 ` 1, and the rank of the canonical linear system KRatpgq is

g1 ` g2. We parametrize Γ by the interval r0, α` βs with 0 and α` β identified, u “ 0 and

v “ α (see Figure 4.19).

The canonical system is W-finite, and W pK, gq “ Waug ` Wmet where

‚ Waug “ g1g puq ` g2g pvq “ g1pg1 ` g2 ` 1q puq ` g2pg1 ` g2 ` 1q pvq, see Figure 4.20; and

‚ Wmet “
řg1

i“1pxiq `
řg2

j“1pyjq where

xi :“ α `
i

g1 ` g2 ` 1
β ´

g1 ` 1 ´ i

g1 ` g2 ` 1
α, and yj :“

j

g1 ` g2 ` 1
α ´

g2 ` 1 ´ j

g1 ` g2 ` 1
β

modulo α` β, for every 1 ď i ď g1, and 1 ď j ď g2, see Figure 4.20. It turns out that these

g1 ` g2 points are all distinct.

If we additionally assume that the edge lengths α and β are generic, then all xi’s and

yj’s are also distinct from u and v. The total weight is g2 ´ 1. If g2 “ 0, we recover the

example in Section 4.6.6.

gpuq “ g1

Kpuq “ 2g1

gpvq “ g2, Kpvq “ 2g2

α

β

Figure 4.19: An augmented cycle with two points of positive genus and its Weierstrass locus

LWpK, gq (here, g1 “ 4, g2 “ 3). Weights are given in Figure 4.20.
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g1g

g2g

1

1

1
1

u 1

1
1

v

Figure 4.20: The three different types of Weierstrass points with g1 “ 4, g2 “ 3. The points

in blue are the pg1 ` 1q-torsion points with respect to u, and the points in teal

are the pg2 ` 1q-torsion points with respect to v.

4.6.8 Augmented dipole graph

We now consider an augmented dipole graph made up of two vertices u and v joined by

n “ h ` 1 edges of arbitrary lengths, where h is the genus of the corresponding metric

graph. We assume g has support in tu, vu, and denote by a and b the genus of u and v,

respectively, with a ď b. This metric graph is the one that appears in the work by Esteves

and Medeiros [EM02]. As we explained previously, the canonical linear series reflects the

genericity of the points of intersection on each of the two components.

The canonical divisor has coefficients Kpuq “ h ´ 1 ` 2a and Kpvq “ h ´ 1 ` 2b. The

total genus is g “ gpΓ, gq “ h ` a ` b, and the rank r of the canonical linear series is equal

to g ´ 1 “ h ` a ` b ´ 1 according to Theorem 4.4.26. We compute LWpK, gq.

In the case h “ 0, if a and b are both positive, then LWpK, gq “ Γ. Otherwise, if a “ 0,

and b is at least two, then LWpK, gq “ tvu, and the Weierstrass weight is b2 ´1. If b “ 1 or 0,

then the Weierstrass locus is empty. The case h “ 1 was treated separately in Section 4.6.7.

We now suppose h ě 2. The determination of the Weierstrass locus turns out to be

complicated in general, and its shape depends on the values of a, b, h and the edge lengths.

We illustrate the computation in two concrete cases.

First particular case

Suppose a “ b “ 1, all the edges have unit length, and the genus of the metric graph is

h ě 2. We have r “ h ` 1 and g “ h ` 2.

Then the Weierstrass locus is made up of both vertices u and v, along with the segment
“

2
h`2

, h
h`2

‰

on each edge (see Figure 4.21). The vertices u and v and have weight 2h ` 2

and each segment in the interior of an edge has weight h ´ 1. The total weight is g2 ´ 1.

Second particular case

Suppose a “ 3, b “ 5, h “ 2, and all the edges have unit length. We have r “ 9 and

g “ 10. The Weierstrass locus is made up of the vertex v (weight 50), the union of the

three segments r0, 1{10s lying on each edge (weight 34), the point of coordinate 6{10 on
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gpuq “ 1

Kpuq “ h ` 1

gpvq “ 1

Kpvq “ h ` 1
2h ` 2 2h ` 2

h ´ 1

h ´ 1

h ´ 1

h ´ 1

Figure 4.21: Augmented dipole graph with combinatorial genus h “ 3, genera a “ b “ 1,

all edges of unit length, and its Weierstrass locus LWpK, gq.

each edge (weight 1), and the segments r3{10, 4{10s and r8{10, 9{10s on each edge (each of

weight 2). See Figure 4.22. The total weight is 50 ` 34 ` 3 ¨ p2 ` 1 ` 2q “ 99 “ g2 ´ 1.

gpuq “ 3

Kpuq “ 7

gpvq “ 5

Kpvq “ 11
34

2 1
2

50

Figure 4.22: Augmented dipole graph with h “ 2, a “ 3 and b “ 5, edges all of unit length,

and its Weierstrass locus LWpK, gq.

4.6.9 Weierstrass divisor of a combinatorial limit linear series

We go back to the non-augmented dipole graph with four edges (of unit length to simplify

the notations), a particular case of the class of examples presented in Section 4.6.1. The

genus is g “ 3 and the rank of the canonical divisor K is r “ 2. Denote by u and v

the two vertices and by e1, e2, e3 and e4 the four edges of Γ (see Figure 4.23, left). For

i “ 1, 2, 3, 4, let ti P
“

0, 1
6

‰

. For each choice of the ti’s, we will construct a semimodule M

of rank two that verifies condition p‹q from Section 4.5, and compute its clls Weierstrass

divisor W
clls

pMq (here, g “ 0).

Assume ti’s are fixed. We prescribe the set of slopes taken by functions in M as in

Figure 4.23. For each i, we endow the edge ei with the slope sets 0 ă 1 ă 2 on the interval
“

0, 1
2

´ ti
‰

, slopes ´1 ă 0 ă 1 on the interval
“

1
2

´ ti,
1
2

` ti
‰

, and slopes ´2 ă ´1 ă 0 on

the interval
“

1
2

` ti, 1
‰

.

We define M as the sub-semimodule of RatpKq consisting of all the functions that take

one of the prescribed slopes above at any point of Γ along any unite tangent vector. We

thus get a 4-parameter family of pairs pM,Dq of rank two, M Ď RatpKq, that verify p‹q.

The clls Weierstrass divisor is given by (4.7), and yields W
clls

pMq “ 3
ř4

i“1ppxiq ` pyiqq,

where xi and yi denote the points of coordinates 1{2 ´ ti and 1{2 ` ti on the edge ei,
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respectively. Figure 4.23 gives a visual rendering of W
clls

pMq for the choice pt1, t2, t3, t4q “
`

1
6
, 0, 1

12
, 1
8

˘

.

p0, 1, 2q
p´1, 0, 1q

p´2,´1, 0q

p0, 1, 2q
p´1, 0, 1q

p´2,´1, 0q

2 2

3 3

3 3

6

3 3

Figure 4.23: Dipole graph and its clls Weierstrass divisor W
clls

pMq.

4.6.10 Combinatorial graphs without Weierstrass points

There exist combinatorial graphs which do not have any Weierstrass point. Using [HKN13],

this is equivalent to saying that in the metric graph obtained by assigning uniform edge

lengths equal to one to all edges of G, the connected components of the Weierstrass

locus LWpKq of the canonical divisor live in the interior of the edges of G. Such graphs

are interesting from the point of view of arithmetic geometry, see [Bak08, Section 4]

and [Ogg78, LN64, Atk67, AP03].

The dipole graph is an example of such a graph, see Figure 4.11. So is the cube graph,

see Figure 4.15. Figure 4.24 shows another example. We refer to Section 4.7.5 for further

discussion.

1

11

1

Figure 4.24: The canonical divisor of a combinatorial graph and the distribution of the

Weierstrass weights on the edges of the corresponding metric graph with unit

lengths. A black edge has total weight zero, and the interior of a light-red edge

has total weight one. This indicates that the Weierstrass locus is concentrated

in the interior of certain edges and does not contain any vertex.

4.7 Further discussions

We discuss other interesting questions and results related to the content of the chapter.
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4.7.1 Total locus of Weierstrass points

Let G “ pV,E, gq be a stable augmented graph of genus g, that is, a combinatorial graph

of genus h endowed with a genus function g : V Ñ N Y t0u such that any vertex of genus

zero has valence at least three. Its total genus is g “ h `
ř

vPV gpvq. We view G as the

dual graph of a stable curve X of total genus g with components Xv, for v P V . Any

one-parameter family of curves Xt with fiber X0 “ X and smooth fibers away from 0 gives

rise to an edge length function ℓ : E Ñ p0,`8q. Reparametrization of the family leads to

another length function which is a homothety of ℓ. Every length function ℓ arises in this

way from a one-parameter family of curves Xt, see e.g. [ABBR15a, Theorem 3.24].

Given a fixed edge e P E, consider the set of all the edge length functions ℓ which give

ℓpeq “ 1. Any family of curves with a stable curve X as fiber at zero whose dual graph is

G gives rise, after a possible reparametrization, to such a length function. We will refer to

such a family as being pG, eq-admissible.

Denote by Γℓ the augmented metric graph associated to the pair pG, ℓq augmented with

the genus function g. The metric graphs Γℓ all share an interval of length one corresponding

to the edge e. We denote by L
can

W
pΓℓq the Weierstrass locus of the canonical divisor in pΓℓ, gq,

using the semimodule KRatpgq of functions on Γℓ as in Section 4.4.3.

We define the total Weierstrass locus of the canonical divisor, denoted L
tot

W
peq, as the

portion of the edge e covered by Weierstrass points of all the augmented metric graphs Γℓ,

for those verifying ℓpeq “ 1, that is,

L
tot

W
peq :“

ď

ℓ with ℓpeq“1

L
can

W
pΓℓq X e.

Question 4.7.1.

(i) What is the shape of L
tot

W
peq, that is, how many components can it have on the edge e?

(ii) What is the size of L
tot

W
peq? That is, what proportion of e is covered by Weierstrass

points of metric graphs of combinatorial type pG, gq?

(iii) How is L
tot

W
peq placed on e? That is, characterize the boundary of L

tot

W
peq.

(iv) Characterize all the points in L
tot

W
peq which can arise as a limit of Weierstrass points

on nearby smooth curves. More precisely, characterize those points p for which there

exists a pG, eq-admissible family of curves Xt and a Weierstrass point pt on Xt such

that p is the tropical limit of pt.

(v) What is the quantity supℓ |L
can

W
pΓℓq X e|, where |L

can

W
pΓℓq X e| refers to the Lebesgue

measure of L
can

W
pΓℓq X e and the supremum is taken over all length functions ℓ such

that ℓpeq “ 1?

Inspired by Baker [Bak08, Lemma 4.7], we can prove Theorem 4.7.5 below which shows

that the total Weierstrass locus L
tot

W
peq on the edge e is not always connected. This provides
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a partial answer to Question (i) above. We do not know of any example with a number of

connected components larger than two.

We can define a refined version of L
tot

W
peq by requiring the stable curve in the admissible

family to be a fixed stable curve X, as follows. We define L
tot

W
pe,Xq as the locus of all the

points in e that are limits of Weierstrass points in a one-parameter family of smooth curves

converging to X.

Question 4.7.2. What is the quantity supX

ˇ

ˇL
tot

W
pe,Xq

ˇ

ˇ, where
ˇ

ˇL
tot

W
pe,Xq

ˇ

ˇ refers to the

Lebesgue measure of L
tot

W
pe,Xq?

Here, the supremum is taken over all stable curves X with the same stable dual graph G.

The discussion above is related to the work of Diaz [Dia85] and Gendron [Gen21].

Translated into the above language, Diaz and Gendron show in loc. cit. that the set L
tot

W
peq

is nonempty. In fact, they prove that for any X with dual graph G, the set L
tot

W
pe,Xq

is nonempty provided that e is not a bridge edge in G. If e is a bridge, then Gendron

has a characterization of the situations where L
tot

W
pe,Xq is nonempty. The statement on

non-bridge edges can be proved by using tropical arguments, by reducing to the example of

the augmented cycle 4.6.6.

In a similar vein, we cite the following theorem of Eisenbud and Harris.

Theorem 4.7.3 (Eisenbud–Harris [EH87a]). Suppose X is a smooth curve of genus g,

and E is an elliptic curve with identity e0 P E. Let X 1 “ X Yx E denote the nodal curve

obtained by joining e0 P E to x P X by a node. If x is not a Weierstrass points of X, then

the limit Weierstrass points of X 1 contained in E are exactly the torsion points of order g

on E.

Remark 4.7.4. Let G be a simple graph of genus g. Assume that G is 2-connected, that

is, it does not have bridge edges. Then, we believe the following should be true. Given an

edge e, there should exist a choice of edge lengths for which the Weierstrass locus contains

a connected component in the interior of e. ˛

The above questions and the results we proved in this chapter provide a tropical refinement

of the problem raised by Eisenbud and Harris on the determination of the limit Weierstrass

loci on stable curves.

An example with a disconnected locus L
tot

W
peq

We first prove the following result.

Theorem 4.7.5. Let G “ pV,Eq be a graph containing an edge e “ uv such that deleting

e along with a small open neighborhood of its endpoints creates a tree. Assume e is

parametrized by the interval r0, 1s, and suppose that its endpoints have valence valpuq “ a`2

and valpvq “ b ` 2. Then, L
tot

W
peq is disjoint from the interval

„

b

a ` b ` 1
,

b ` 1

a ` b ` 1

ȷ

in e.
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Note that a graph satisfying the conditions in Theorem 4.7.5 has genus g “ a ` b ` 1.

Proof. Let Γℓ be metric graph of model G with ℓpeq “ 1. Consider a point x in the interval
„

b

a ` b ` 1
,

b ` 1

a ` b ` 1

ȷ

and let D :“ K´g pxq. In order to prove that x is not a Weierstrass

point in Γℓ, we will prove that the rank of D is negative. We proceed as follows.

Let T :“ G ´ u ´ v be the tree obtained by removing u, v, and all the incident edges to

them from G. Let y be a point in the interior of e in Γℓ, that will be determined later as a

function of x. The set V 1 “ V Y tyu is the vertex set of another model of Γℓ. We enumerate

the vertices of the tree T as v0, . . . , vn such that each vertex vj for j P t0, 1, . . . , nu is

connected to exactly one vertex among v0, . . . , vj´1. Consider the total order O on V 1 given

by the enumeration v0, . . . , vn, u, v, y. The corresponding divisor DO is explicitly given as

DO “ a puq ` b pvq ` pyq ´ pv0q. Denote by O the total order on V 1 opposite to O, and DO

the corresponding divisor. The divisors DO and DO have degree g ´ 1 “ a ` b, they are of

negative rank, and moreover, DO ` DO “ K, see [BN07, BJ16].

We now write

D “ K ´ gpxq “ DO ` DO ´ g pxq “ DO ´ E ´ pv0q

where E “ g pxq ´ DO ´ pv0q “ pa ` b ` 1q pxq ´ a puq ´ b pvq ´ pyq. The claim rpDq “ ´1

now follows by observing that for x in the above interval, there exists y in e such that the

divisor E is principal, that is, E “ divpfq for a function f P RatpΓℓq. Explicitly, using the

parametrization of e by the interval r0, 1s for a given x, we take y “ pa ` b ` 1qx ´ b. We

have y P r0, 1s because of the assumption that x P

„

b

a ` b ` 1
,

b ` 1

a ` b ` 1

ȷ

. The desired

function f on Γℓ is constant outside e, has slopes slopeefpuq “ a and slopeefpvq “ b, and

has orders of vanishing at x and y given by a ` b ` 1 and ´1, respectively.

Now consider a graph G verifying conditions of Theorem 4.7.5. Note that this implies

there is a single edge between u and v. Assume that the leaves in the tree T are connected

to both u and v. In this case, if valpuq ą 2 (which is equivalent, according to the previous

assumption, to the fact that T has at least two leaves, i.e., T is not made up of a single

vertex), then v P L
tot

W
peq, and similarly, if valpvq ą 2, then u P L

tot

W
peq.

To prove this, using symmetry and keeping the notations of Theorem 4.7.5, we assume

b ą 0. Take the union of T and v, as in Figure 4.25. Set the length of edges between u

and T equal to b, that of uv equal to one, and the others arbitrary. Let f be the function

defined to be affine linear on edges and which takes value b at u and zero at other vertices.

Then, b ą 0 implies that E “ K ` divpfq is effective and has coefficient at least a ` b ` 1

at u. So u belongs to the total Weierstrass locus, as required.

In the case a and b are both positive, this implies that u and v are both in the total

Weierstrass locus L
tot

W
peq. Therefore, L

tot

W
peq will be disconnected.
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vu

Figure 4.25: The cut in G used to prove that u is in the total Weierstrass locus L
tot

W
peq if

valpvq ą 2.

4.7.2 Variation of Weierstrass loci over the moduli space of metric

graphs

Let G “ pV,Eq be a stable graph of genus g. Consider the cone ηG :“ RE
` of positive metrics

on G, and let ηG be its closure. The (coarse) moduli space of metric graphs of genus g,

denoted by M
gr

g , is obtained by gluing of the cones ηG, for every stable graph G of genus g.

More precisely, it is the direct limit of the diagram of inclusions ηH ãÑ ηG for pairs H and

G of stable graphs of genus g such that H is obtained by contraction of some edges in G;

see [ACP15] for more details. We endow M
gr

g with the topology induced by those on ηG as

the corresponding quotient topology on the limit. For each stable graph G of genus g, we

get a canonical map ηG Ñ M
gr

G
. The universal metric graph Gg is defined over these charts.

That is, over the cone ηG, we have the universal metric graph GG.

Let D “ pDtqtPηG be a continuous family of effective divisors of degree d and rank r. At

each point t P ηG, we consider the Weierstrass locus LWpDtq which lives in the metric graph

GG,t. We denote by LWpDq the Weierstrass locus of the family defined as the union of all

LWpDtq, for t P ηG. We have the following theorem.

Theorem 4.7.6. The Weierstrass locus LWpDq is a closed subset of GG.

Sketch of the proof. We need to show that any point xt0 in a fiber GG,t0 which is a limit

of Weierstrass points xt in GG,t, as t tends to t0, is Weierstrass. This amounts to showing

the existence of a function f in RatpDt0q such that Dt0 ´ pr ` 1q pt0q ` divpfq ě 0. By

assumption, there exists ft P RatpDt0q such that Dt ´pr`1q ptq`divpftq ě 0, and such that

moreover ftpxt0q “ 0. A compactness argument then shows the existence of a subsequence

of ft’s converging to a function f on GG,t0. This limit function is in RatpDt0q, from which

the theorem follows.

More generally, we can define the Weierstrass locus over the full moduli space M
gr

g . Let

D “ pDtq, for t P M
gr

g , be a continuous family of effective divisors of degree d and rank r

over the moduli space of metric graphs of genus g.
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Theorem 4.7.7. The Weierstrass locus LWpDq is closed.

Proof. The proof is similar to that of Theorem 4.7.6.

4.7.3 Effective determination of minimum slopes

We discuss a concrete way of determining the Weierstrass locus and weights in a given

metric graph.

Let D be an effective divisor on Γ. There is an algorithmic way for determining all the

minimum slopes of functions in RatpDq along unit tangent vectors in Γ. This is based

on chip-firing on metric graphs. More precisely, [Luo11] gives a generalization of Dhar’s

burning algorithm for metric graphs, which allows us to test whether a divisor is x-reduced

for any point x P Γ and eventually to compute reduced divisors. See Definition 2.10,

Algorithm 2.13 and Theorem 2.15 in [Luo11].

We can extract the minimum slopes from this procedure. Let x be a point of Γ and

ν P TxpΓq be a tangent direction at x. At step i of the algorithm, following the notations

of [Luo11, Definition 2.10], we count the number ni of indices 1 ď j ď J such that Q
p1q

j

contains a segment of Γ starting at x and supporting the direction ν. The number ni is

either zero or one and represents the number of chips that go through this segment toward

the point x at step i. We denote by n the sum of the ni’s. It is the total number of

chips that are brought to x by Dhar’s algorithm via the branch supporting ν. This means

that sν0 “ ´n, which shows that the minimum slope on ν can be computed using Dhar’s

algorithm.

4.7.4 Tropical Weierstrass points in positive characteristic

The treatment of Weierstrass points for curves over positive characteristic fields suggests the

following possible modification of the theory of tropical Weierstrass points in the isolated

cases where the whole graph is Weierstrass. We replace the rank r with the integer

b “ bpΓ, Dq :“ min
xPΓ

Dxpxq,

and define the Weierstrass locus as the subset of points x P Γ verifying Dxpxq ě b` 1. The

weight of a connected component C of this modified Weierstrass locus is modified by setting

µWpC;Dq :“ deg
`

D|C

˘

` pgpCq ´ 1qb ´
ÿ

νPB
outC

sν0pDq.

This leads to a consistent theory on the tropical side, with the weights of components of

the Weierstrass locus adding up to d´ b` bg (instead of d´ r ` rg). This is reminiscent

of the setting of curves in the situation where the standard sequence of vanishing orders

differs from the sequence 0, 1, . . . , r, cf. [Lak81]. However, at this point, we are not aware

of any geometric meaning to this tropical count.
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4.7.5 Weierstrass points of random combinatorial graphs

There exist combinatorial graphs without any Weierstrass points among their vertices (see

Section 4.6.10). This seems, however, to be a rare phenomenon, as a computer verification of

examples indicates. Examples of random graphs were created and visualized using Python,

Matplotlib [Hun07], and NetworkX [HSS08].

Question 4.7.8. What is the proportion of combinatorial graphs which do not have any

Weierstrass point among their vertices? That is, what is the probability that a combinatorial

graph on n vertices has no Weierstrass point?

Figure 4.26: Random trivalent graph and its Weierstrass locus LWpKq. The graph has genus

26, and the vertex labels indicate the coefficients Kvpvq ´ 25.

Randomness is understood within a class of graphs, for example regular graphs of given

degree, or Erdős–Rényi random graphs. This is related to the following question of Baker.

Question 4.7.9 (Baker [Bak08]). Provide a classification of combinatorial graphs without

Weierstrass points among their vertices.

4.8 Tropicalization of Weierstrass points

In this section, adapted from the Appendix of [AGR23], we describe the tropicalization of

the Weierstrass divisor of a line bundle on a smooth curve over a non-Archimedean field.

The notations and the presentation of the context have been kept, as well as the statement

of the main results. For the proofs, we refer to the preprint cited above.

Let K be an algebraically closed complete non-Archimedean field with a non-trivial

valuation denoted by val. Let R, m, and κ “ R{m be the valuation ring, the maximal ideal
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of R, and the residue field, respectively. We also denote by | ¨ | the corresponding norm on

K, so that valp¨q “ ´ log | ¨ |.

Let X be a smooth proper curve defined over K. Let D be a divisor of degree d on X

and let L “ OpDq be the corresponding line bundle, with O “ OX , the structure sheaf of

X. Denote by ωX the canonical line bundle on X.

Let H Ď H0pX,Lq be a space of sections of dimension r` 1 and denote by W “ WpD,Hq

the corresponding Weierstrass divisor. We assume that the gap sequence of H is the standard

sequence 0, 1, . . . , r, that is, for a general point x P XpKq, the orders of vanishing of sections

of L in H are 0, 1, . . . , r. In particular, if K is of characteristic zero, this is automatic.

4.8.1 Tropicalization

We denote by Xan the Berkovich analytification of X. We assume familiarity with the

theory of Berkovich analytic curves, and refer to [AB15, Section 4] and [BPR16, Section 5]

that contain what we need.

A semistable vertex set for Xan is a finite set of type 2 points V in Xan such that the

complement Xan ∖ V is a disjoint union of finitely many open annuli and infinitely many

open disks. A semistable model for X is an integral proper relative curve X over R with

generic fiber Xη “ X and special fiber X0 that is reduced and has nodal singularities. Any

irreducible component of the special fiber X0 of a semistable model X gives a valuation

on KpXq and defines a point of type 2 in Xan. The set V of points in Xan associated to

the irreducible components of X0 is a semistable vertex set for Xan. This process provides,

in fact, a bijection between semistable vertex sets of Xan and semistable models of X

(see [BPR16, Thm. 5.38]). Moreover, each point of type 2 appears in a semistable vertex

set.

A semistable vertex set V gives rise to a skeleton Γ for Xan, defined as the union in Xan

of V and the skeletons of the open annuli in Xan∖V . The canonical metric on the skeletons

of the open annuli gives the skeleton a metric graph structure, naturally embedded in Xan.

The underlying graph G “ pV,Eq has vertex set V and edge set E in bijection with the

set of open annuli in Xan ∖ V . There is an edge between a pair of vertices v and u in V for

each open annulus whose closure contains the points v and u. Moreover, the edge length

function ℓ : E Ñ p0,`8q associates to each edge of G the modulus of the corresponding

annulus. Using the correspondence between semistable models and semistable vertex sets,

the graph G is identified with the dual graph of X0, the special fiber of X, with vertices in

bijection with the irreducible components of X0, and edges in bijection with the nodes of

X0. There is an edge e “ uv in G for each node that lies on the irreducible components

associated to u and v. The length of an edge corresponds to the singularity degree in X of

the corresponding node.

For each point x of type 2 in Xan, the extension κpxq{κ is of transcendence degree one.

We denote by Cx the corresponding smooth proper curve over κ. In a semistable model X

in which x is in the vertex set, Cx is the normalization of the irreducible component in X0
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associated to x, and κpxq is the function field of this component.

We denote by B` the standard open ball in the Berkovich affine line A1,an. The complement

of Γ in Xan is a disjoint union of open balls Bν in bijection with ν P TxpXanq ∖ TxpΓq for

all points x of type 2 in Γ, each isomorphic to B`. For a given ball Bν in Xan ∖ Γ, the

corresponding point x is the unique point in Γ that lies in the closure of Bν . Denote by pνx
the point of Cxpκq corresponding to ν P TxpXanq ∖ TxpΓq.

Let Γ be a metric graph skeleton of Xan with underlying graph G “ pV,Eq and denote

by τ : Xan Ñ Γ the canonical retraction map. We call τ the tropicalization map. In the

notations of the previous paragraph, the tropicalization map sends all the points in Bν

to the point x. The restriction of τ to XpKq Ď Xan is compatible with the specialization

map from the generic fiber Xη to X0, that is, a point specialized to a node is sent by τ

to a point in the corresponding edge, and a point specialized to a smooth point of X0 is

sent by τ to the vertex of G corresponding to this component. We get a tropicalization

map τ˚ : DivpXq Ñ DivpΓq that sends a divisor D “
ř

xPXpKq
axpxq on X to the divisor

τ˚pDq “
ř

xPXpKq
axpτpxqq.

We denote by vx : KpXq Ñ R Y t`8u the valuation of a point x P Xan ∖ XpKq with

vxpfq “ `8 only if f “ 0. The residue field of this valuation is denoted by κpxq. We also

denote by | ¨ |x “ expp´vxq the corresponding norm.

For each non-zero f P KpXq, we define the tropicalization of f , denoted troppfq : Γ Ñ R,

as the map that sends each x P Γ Ď Xan ∖XpKq to vxpfq. This induces a tropicalization

map trop: KpXq ∖ t0u Ñ RatpΓq.

For a vector subspace H Ă KpXq, we call M “ troppH ∖ t0uq the tropicalization of H,

and denote it, by a slight abuse of notation, by troppHq.

We define the genus function g on Xan to be the genus of Cx for a point of type 2,

extended by zero everywhere else. The restriction of g to Γ gives an augmented metric

graph of genus g equal to that of X. We denote by K the canonical divisor of the augmented

metric graph pΓ, gq, with Kpxq “ 2gpxq ´ 2 ` valpxq for all x P Γ.

4.8.2 Reduction

For a point of type 2, the valuation vx has the same value group as val. For each

nonzero f P KpXq, choosing a P K with valpaq “ vxpfq, we get that a´1f has valuation

vxpa´1fq “ 0, and therefore gives an element in the residue field κpxq that we denote by f̃x.

We call this the reduction of f at x, which is nonzero and defined only up to multiplication

by a non-zero scalar in κ. For a vector subspace H Ă KpXq of dimension r ` 1, denote by
rHx Ă κpxq the κ-vector subspace spanned by the reductions f̃x of elements f P H [AB15,

Section 4.4]. By [AB15, Lemma 4.3], rHx has dimension r ` 1 over κ.

4.8.3 Slopes

For point x in Γ of type 2 in Xan, each unit tangent direction ν P TxpΓq gives a point

pνx P Cxpκq. By the slope formula [BPR16], for any non-zero f P KpXq, we have
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slopeνptroppfqq “ ordpνx

´

f̃x

¯

. Moreover,

τ˚pdivpfqq “ divptroppfqq.

If H Ă KpXq is a K-vector subspace of dimension r ` 1, for any point x P Γ and unit

tangent vector ν P TxpΓq, we get a collection of integers slopeνptroppfqq “ ordpνxpf̃xq, f P H.

Since rHx has dimension r ` 1, this collection has size r ` 1. This means that the collection

of slopes slopeνphq, for h P M “ troppHq, has size r ` 1. In particular, Property p‹q in

Section 4.5 is satisfied by M “ troppHq.

For each unit tangent vector ν, we order the slopes slopeνphq, for h P M , in the form

sν0 ă sν1 ă ¨ ¨ ¨ ă sνr . Since elements of troppHq are piecewise affine linear, adding more

points of Γ to the semistable vertex set, we can suppose that the set of slopes

sν0 ă sν1 ă ¨ ¨ ¨ ă sνr

is constant in the interior of any edge of G “ pV,Eq for parallel tangent directions ν at the

point of the edge that point in the same direction.

4.8.4 Weierstrass divisor and Wronskian

Let X be a smooth proper curve defined over K. Let D be a divisor of degree d on X and

let L “ OpDq be the corresponding line bundle, with O “ OX , the structure sheaf of X.

Denote by ωX the canonical line bundle on X.

Let H Ď H0pX,Lq be a space of sections of dimension r` 1 and denote by W “ WpD,Hq

the corresponding Weierstrass divisor. The Weierstrass divisor W is the divisor of a global

section of the line bundle ω
b

rpr`1q

2
X bLbpr`1q called the Wronskian. It is described as follows.

In local coordinates, for any point p P XpKq, the local ring Op is a discrete valuation

ring. We choose a uniformizer that we denote by tp. We have Lp » Op as an Op-module.

Taking the generator gp “ t
Dppq
p of Lp, each global section f of L can be written in the form

f “ fpgp with fp P Op.

We define the Hasse derivative of order j, for j P Zě0, on Krtps by

D
pjq

tm “

ˆ

m

j

˙

tm´j for m ą 0,

and extend it by linearity to all Krts, and then to all Kptq. Since the extension KpXq{Kptq

is separable, D
pjq

is extended to KpXq. Note that if K has characteristic zero, we can

recursively define for any j ě 0, the j-th derivative f
pjq
p by

f pjq
p “

d

dtp
f pj´1q
p

with f
p0q
p “ fp. In this case, we have j! D

pjq

fp “ f
pjq
p .
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Let F :“ tf0, . . . , fru be a basis for H Ď H0pX,Lq, and for each i, write fi “ fi,pgp.

Viewing WrF as a meromorphic section of ω
b

rpr`1q

2
X , the stalk of the Wronskian WrF at p is

given by

WrF ,p “ det
´

D
pjq

fi,p

¯

0ďi,jďr
pdtpq

rpr`1q

2 P ω
b

rpr`1q

2
p .

We have

W “ pr ` 1qD ` divpWrFq.

We note, without going into details, that the Wronskian WrF can also be defined without

local coordinates, in terms of a filtration of the jet bundle and the diagonal embedding of

X.

Wronskian without local coordinates

Consider the diagonal embedding ∆: X ãÑ X ˆ X and let I “ I∆ be the ideal of the

diagonal in X ˆ X. Denote by π1 and π2 the projections of X ˆ X to the first and second

factors, respectively. The jet bundle Jr :“ π1˚pπ˚
2 pLq{Ir`1q defined on X inherits a filtration

induced by powers of I, and quotients are identified with L b ωbi
X , for i “ 0, 1, . . . , r.

Let F :“ tf0, . . . , fru be a basis for H Ď H0pX,Lq. Each section fi of L defines a section

π˚
2 pfiq of Jr. The determinant of the sections π˚

2 pfiq with respect to the filtration by powers

of I is well-defined, that is, does not depend on the choice of the basis F , and gives a global

section of ω
brpr`1q{2
X b Lbpr`1q. This is WrF . Since we assumed that the gap sequence is

0, 1, . . . , r, the Wronskian WrF is non-vanishing [Lak81].

The divisor D identifies ω
b

rpr`1q

2
X b Lbpr`1q with the twist ω

b
rpr`1q

2
X ppr ` 1qDq of the

pluricanonical sheaf ω
b

rpr`1q

2
X . Under this identification, sections become meromorphic

pluricanonical forms with poles having order bounded at a point x of X by pr ` 1qDpxq.

4.8.5 Slope formula for meromorphic differentials

We denote by }¨} the Kähler norm introduced by Temkin in [Tem16] on the sheaf of

differentials ωX that at any point x P Xan associates to any section α of ωX the real number

}α}x. For each positive integer n, the Kähler norm } ¨ } induces a metric on ωbn
X which, by

an abuse of notation, we still denote by } ¨ }. Given a meromorphic section α of ωbn
X , the

tropicalization of α denoted by troppαq is the map

troppαq : Γ Ñ R, x ÞÑ ´ log }α}x.

The tropicalization of any meromorphic n-form on X is a rational function on Γ, that is,

troppαq P RatpΓq. Moreover, the following slope formula holds.

Lemma 4.8.1 (Slope formula for meromorphic differentials). For any meromorphic section

α of ωbn
X , we have

τ˚pdivpαqq “ nK ` divptroppαqq.
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Moreover, for any point x P Γ of type 2 and for any ν P TxpΓq, we have slopeνptroppαqq “

ordpνxpα̃xq ` n.

Here, α̃x is the reduction of α at x, and is a meromorphic form on Cx, see [TT22, Section

2].

The proof of Lemma 4.8.1 can be found in [AGR23, Appendix A].

4.8.6 Tropicalization of the Wronskian

Notations as in Section 4.8.4, let F :“ troppWrFq be the tropicalization of the Wronskian

WrF , which is a meromorphic prpr ` 1q{2q-form. Let W “ τ˚pWq be the tropicalization of

W to Γ. Let D “ τ˚pDq. The following result is a direct consequence of Lemma 4.8.1, with

α “ WrF .

Theorem 4.8.2. Notations as above, we have

W pxq “ pr ` 1qDpxq `
rpr ` 1q

2
Kpxq ´

ÿ

νPTxpΓq

slopeνF,

where F “ troppWrFq. Furthermore, slopeνF “
rpr`1q

2
` ordpνx

ĄWrF x
.

Here, ĄWrF x
denotes the reduction of WrF at x.

4.8.7 The Wronskian of analytic functions on annuli

Let A1 “ SpecpKrT sq and A1,an be its Berkovich analytification. Let Apρq be the closed

annulus in A1,an of center 0 with outer radius one and inner radius ρ P p0, 1q,

Apρq “
␣

x P A1,an
ˇ

ˇ ρ ď |T |x ď 1
(

.

Let Rpρq be the ring of analytic functions on Apρq. An analytic function f on Apρq admits

a formal power series expansion

f “
ÿ

nPZ

anT
n

with limnÑ˘8 |an|sn “ 0 for all s P rρ, 1s. The skeleton of Apρq is a closed interval, which

can be identified with I :“ r0,´ log ρs: each point q in this interval corresponds to the

norm | ¨ |ζqpfq “ supnPZ |an| expp´qnq “ maxnPZ |an| expp´qnq on any analytic function f as

above. The tropicalization of an analytic function f is the function troppfq on the interval

I given by

troppfqpqq “ mintvalpanq ` nq
ˇ

ˇn P Zu @q P I.

Let ζ “ ζ0 P Apρq be the boundary point corresponding to the extremity 0 of I, that is,

|f |ζ “ maxnPZ |an| on any analytic function f as above. The reduction at ζ of an analytic

function f with |f |ζ “ 1 is a Laurent polynomial

f̃ζ “
ÿ

nPZ
|an|“1

ãnt
n
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where t is the reduction of T at ζ and ãn P κ is an modulo m. The slope of troppfq at 0

along the unit tangent direction ν P T0pIq is the minimum exponent that appears in f̃ζ .

Let f0, . . . , fr be r ` 1 K-linearly independent analytic functions on Apρq with

fi “
ÿ

nPZ

ai,nT
n, ai,n P K

the analytic expansion of fi. Suppose that |fi|ζ “ 1 for all i “ 0, 1, . . . , r and that

troppf0q, . . . , troppfrq have slopes s0 ă ¨ ¨ ¨ ă sr at 0 along the unit tangent direction

ν P T0pIq. This means the reduction f̃i,ζ of fi at ζ has initial term tsi .

Consider the analytic function on Apρq defined by

h :“ det
´

D
pjq

fi

¯r

i,j“0
,

where D
pjq

fi denotes the Hasse derivative of fi. The following proposition describes the

slope of tropphq at the point 0 along the direction ν.

Proposition 4.8.3. Notations as above, assume

• either, the residue field κ is of characteristic zero,

• or, the sequence s0, . . . , sr forms an interval, that is, sj “ s0 ` j for all j “ 0, . . . , r.

Then, we have

slopeνptropphqq “ s0 ` ¨ ¨ ¨ ` sr ´
rpr ` 1q

2
.

The proof of Proposition 4.8.3 can be found in [AGR23, Appendix A].

4.8.8 Order of vanishing of the reduction of the Wronskian

A consequence of Proposition 4.8.3 is the following description of the slopes appearing in

Theorem 4.8.2.

Proposition 4.8.4. Let x be a point of type 2 in Γ and ν P TxpΓq. Denote by sν0, . . . , s
ν
r

the sequence of slopes associated by tropicalization of H to ν. Assume

• either, the residue field κ is of characteristic zero,

• or, the sequence sν0, . . . , s
ν
r forms an interval, that is, sνj “ sν0 ` j.

Then, we have

ordpνx
ĄWrF x

“ sν0 ` ¨ ¨ ¨ ` sνr ´
rpr ` 1q

2
.

The proof of Proposition 4.8.4 can be found in [AGR23, Appendix A].
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4.8.9 Reduction of Weierstrass points in equal characteristic zero

Assume the residue field κ has characteristic zero. As in Section 4.8.3, denote by sνi ,

i “ 0, . . . , r, the slopes of functions of the form troppfq P troppHq, for f P H.

Theorem 4.8.5. Let W “ τ˚pWq. We have

W pxq “ pr ` 1qDpxq `
rpr ` 1q

2
Kpxq ´

ÿ

νPTxpΓq

r
ÿ

i“0

sνi .

Proof. This follows by combining Proposition 4.8.4 with Theorem 4.8.2.
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5 Perspectives

Numerous open questions and research perspectives emerged from the work presented in

the current manuscript. Hereafter, we present some of them.

Contents of the chapter

5.1 Matricubes, representability questions and Schubert calculus 261

5.2 Tropical linear series, Brill–Noether theory and smoothing

results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

5.3 Further exploration of tropical Weierstrass points . . . . . . . 264

5.4 Riemann–Roch theorem in higher dimension and tropical

Hodge theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

5.1 Matricubes, representability questions and Schubert

calculus

In Chapter 2, we provide cryptomorphic definitions of matricubes, which are a generalization

of matroids, in terms of rank function, flats, circuits, and independents. To propose these

definitions, we tried to stick as much as possible to their matroidal counterparts. However,

some of these axiomatic systems seem to necessarily involve some dedicated combinatorial

aspects related to the structure of matricubes. This is for example the case regarding

independents, where our definition requires to define the “size” of independents to formulate

the independent augmentation property (I2). It would be interesting to try to enhance these

definitions and make them “purer”, i.e., simpler and more parallel to the corresponding

axiomatic systems for matroids.

As explained in Section 2.9.1, we were not able to give a relevant axiomatic system for

the bases of matricubes. All the natural generalizations of bases of matroids we could

think about (locally or globally maximal independents, independents locally or globally

of maximal rank, etc.) yield a poor notion in matricubes, not cryptomorphic to the other

definitions. A deeper understanding of matricubes would surely involve finding a relevant

axiomatic system for bases, or a reasonable explanation why the formalism of matricubes

does not allow to define bases.

In Section 2.9.2, we associate to every matricube an integer polymatroid and a matroid

in a natural way. This enables, among others, to characterize the representability of the
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matricube by that of the associated matroid (see Section 2.9.3). However, the question of

characterizing matricubes representable over every field (Question 2.9.2) remains open. We

also do not know if the representability of all local matroids of a matricube is sufficient

for the matricube to be representable – Proposition 2.8.2 tells us that this condition is

necessary. Furthermore, it would be interesting to understand the connections between the

definitions of circuits and independents in matricubes and those given for polymatroids

in [BCF23].

We explain in Section 2.9.7 (and, more thoroughly, in Chapter 3) how a linear series on a

smooth proper curve with marked points naturally gives rise to a matricube, in this case

called geometric. Question 2.9.6 asks whether every representable matricube is necessarily

geometric, and whether one can bound the genus of a curve representing a geometric

matricube.

We also define, in Section 2.9.6, a Tutte polynomial for matricubes, defined by a global

formula involving the rank function in the exponents of the polynomial. Although this

definition is a quite natural generalization of the Tutte polynomial for matroids, it does not

appear to verify a recursive equation involving deletions and contractions, like its matroidal

counterpart. A better understanding of this object could probably be achieved by exploring

its connections with the Tutte polynomial for polymatroids defined in [CF22].

Finally, it is reasonable to think that matricubes could be a useful tool to study the

geometry of Grassmannians. As exposed briefly in Section 2.9.4, there is a stratification of

products of initial Grassmannians by matricubes, where each stratum is defined by asking

that the intersection pattern of the tuple of initial flags be encoded by a given matricube.

The equivalence between the realizability of a matricube and that of the associated natural

matroid entails a one-to-one-correspondence between this stratification and the stratification

of a unique Grassmannian. One could ask whether this correspondence has a geometric

meaning. Furthermore, we hope that the formalism of matricubes could be used to formulate

positivity results for the intersection theory of flag varieties, in order to extend the results

about the Littlewood–Richardson rules proved by Coskun [Cos09] for two-step flag varieties.

5.2 Tropical linear series, Brill–Noether theory and

smoothing results

In Chapter 3, we define a new, combinatorial theory of limit linear series, and start exploring

the algebraic, combinatorial and topological properties of the spaces of functions defined

in this framework. But these tropical spaces, which are infinite-dimensional contrary to

the (well-studied) tropical subspaces of Td, probably conceal some well-guarded mysteries

which have to be uncovered.

For instance, Question 3.5.11 asks, for a closed sub-semimodule M of RatpD,Sq, whether

there is a connection between M being finitely generated and M being of finite tropical rank,

i.e., between M having a finite number of extremals and M being of finite tropical rank.

262



Also, not much is known, for these spaces, about the connections between the cardinality

of generating sets and several notions of rank (divisorial rank, tropical rank, Kapranov

rank, and Barnikov rank) defined by various authors, mostly in the finite-dimensional

context [DSS03]. It seems, moreover, that some supplementary combinatorial tools would

be needed to check more easily whether a given admissible semimodule is finitely generated,

or compute its tropical rank.

A firmer grasp on the properties of tropical semimodules of functions should be useful

in tropical Brill–Noether theory. There is a well-known result by Baker stating that in

the tropical realm, like in the algebro-geometric world, the property of the Brill–Noether

number ρpd, r, gq :“ g´pr`1qpg´d`rq being non-negative implies the existence of divisors

of degree d and rank at least r on a given metric graph Γ [Bak08, Theorem 3.20]. The

surprising fact is that the only known proof as of today is based on the geometric analogue

of the theorem and the use of Baker’s specialization lemma.

We hope that better understanding combinatorial linear series and developing relevant

tools in the tropical linear algebra of semimodules could help to give a direct combinatorial

proof of the tropical Brill–Noether theorem. Moreover, if the Brill–Noether number is

negative, we do not know in general whether the tropical counterpart of the converse of the

algebro-geometric Brill–Noether theorem holds. Cartwright, Jensen and Payne showed that

in the particular case where Γ is a chain of g loops of generic lengths, then ρpd, r, gq ă 0

implies that there are no divisors of degree d and rank at least r on Γ [CJP15]; but this

question is still open for general metric graphs and may be solved using combinatorial linear

series.

In Section 3.8, we classify rank one combinatorial limit linear series on a metric graph,

by providing a bijection with finite harmonic morphisms from the metric graph to metric

trees (Theorem 3.8.6). Another interesting goal is to do the same for higher rank tropical

linear series. This means, for instance, finding correspondences with morphisms from the

metric graph to some models of tropical projective spaces. To obtain such a classification

of combinatorial limit linear series, one could try to make a precise connection between the

content of Chapter 3 and a parallel work by Jensen and Payne [JP22] in which they define

strong tropical linear series, a notion that relies on the data of a valuated matroid.

Another natural open question arises from the study of concrete examples of (crude)

linear series, in particular the examples in Sections 3.10.2 (rank two crude linear series

on a tripod graph) and 3.10.1 (rank two linear series on a dipole graph). In part of these

examples, it turns out that with some fixed given choice of rank functions, there exist

whole families of crude linear series depending on a choice of locations for the vertices of

a combinatorial model of the slope structure. More simply said, we can sometimes move

the points where the allowed set of slopes changes, continuously along some edges, which

provides a space of crude linear series. It would be interesting to study these spaces for

their own sake – understand their structure, compute their dimension.
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5.3 Further exploration of tropical Weierstrass points

In Chapter 4, we explore the concept of tropical Weierstrass points on metric graphs and

the topological properties of tropical Weierstrass loci. We also associate intrinsic weights

to each connected component of these loci, and show that, in addition to having nice

combinatorial properties, these weights count the number of algebraic Weierstrass points

which are being tropicalized to each connected component of the tropical locus, if the graph

and divisor come from geometry.

This raises the question of the combinatorial diversity achieved by tropical Weierstrass

loci. In Section 4.6 and in other examples disseminated in Chapter 4, we give an overview

of this diversity: the tropical Weierstrass locus can be finite or infinite, connected or not

(and there can be many connected components), supported by the set of vertices or disjoint

from the vertices of a combinatorial model, and can even cover the whole metric graph.

Section 4.6.5 provides a countably infinite family of such examples where the whole graph

is Weierstrass, using the canonical divisor on complete graphs endowed with a uniform

length function; it also presents an uncountably infinite family of examples, using cycles

of arbitrary lengths joined to a central vertex by bridge edges of arbitrary lengths, with a

divisor concentrated on the central vertex. This second family is particularly striking, since

it shows that the quantity

min
xPΓ

pDxpxq ´ rq,

which compares the minimum, over all points x P Γ, of the largest coefficient at x in the

linear system of D, with the expected number r, is unbounded.

These two families are however very different from a combinatorial point of view: the first

one has high connectivity whereas the second one has many bridge edges. This suggests to

try and provide a classification of all combinatorial graphs G that admit a length function

and a divisor with Weierstrass locus the whole metric graph. Among them, it would also be

interesting to determine for which ones this property holds for every choice of edge lengths.

See Question 4.6.2.

The observation that the quantity b :“ minxPΓpDxpxq ´ rq can be positive suggests the

following variant of the theory of tropical Weierstrass points: replace r by b in the definition

of Weierstrass points. The total weight of the tropical Weierstrass locus on a metric graph

is still a nice function of the basic combinatorial parameters, but a natural direction of

research would be to find a possible geometric meaning to this.

Another open question related to the tropical Weierstrass loci associated with com-

binatorial graphs is raised in Section 4.6.10. It suggests to establish a classification of

combinatorial graphs which have no Weierstrass points, i.e., such that endowing them with

a uniform length function yields a metric graph whose tropical Weierstrass locus is disjoint

from the vertices.

In Section 4.7.1, finally, we define the total Weierstrass locus of a divisor on a metric

graph as the union of the Weierstrass loci for every choice of length functions, with a

relevant normalization. In a nutshell, this locus registers all the possible tropical Weierstrass
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points as we change the graph’s metric. Theorems 4.7.6 and 4.7.7 imply that this subset

is closed, as could be expected. It would be interesting to answer Question 4.7.1, which

asks how this total locus behaves: what number of connected components can it have on

each edge? What can its Lebesgue measure be? How does its boundary behave? Which

of its points come from geometry? And finally, as we vary the edge lengths, what is the

maximal proportion of a given edge which is covered by tropical Weierstrass points? So far,

we only provide a partial answer to the question related to connectedness, by providing in

Theorem 4.7.5 an example where the restriction of the total Weierstrass locus to a given

edge is disconnected.

5.4 Riemann–Roch theorem in higher dimension and

tropical Hodge theory

The combinatorial limit linear series presented in Chapter 3 are defined on algebraic curves

and metric graphs (therefore, one-dimensional tropical varieties), and it is natural to look

for higher-dimensional generalizations. In [Car21], Cartwright studies a generalization of

dual graphs to higher-dimensional algebraic varieties, by associating polyhedral complexes

enriched with additional combinatorial data. This allows him to formulate a conjectural

version of the Riemann–Roch theorem for surfaces [Car21, Conjecture 3.6].

A promising direction of research could be to try and prove an inequality of this form,

using the language of combinatorial Chow rings to expand Cartwright’s formalism with

hybrid data. Our current ongoing work on this topic is based upon recent developments,

including the combinatorial Hodge theory developed by Adiprasito–Huh–Katz [AHK18],

and the tropical Hodge theory developed by Amini and Piquerez [AP20, AP23]. It would

be interesting as well to extend the formalism of slope structures and combinatorial limit

linear series to higher dimension.
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Martin Möller. Strata of k-differentials. Algebraic Geometry, 6(2):196–233,

2019.
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Titre : Séries linéaires tropicales, arrangements combinatoires de drapeaux et applications à l’étude des
points de Weierstrass

Mots clés : Géométrie tropicale, Séries linéaires, Matroı̈des, Points de Weierstrass, Espaces de modules

Résumé : Nous introduisons d’abord un nouvel objet
combinatoire nommé “matricube”, une généralisation
naturelle des matroı̈des. De même que les matroı̈des
fournissent une axiomatisation combinatoire des ar-
rangements d’hyperplans dans un espace vectoriel,
les matricubes représentent des arrangements de
drapeaux. Comme pour les matroı̈des, nous don-
nons des définitions cryptomorphes des matricubes
en termes de fonction de rang, plats, circuits et
indépendants. Nous donnons des liens précis entre
les matricubes et les tableaux de permutation, et pro-
posons une description des matricubes selon des ma-
troı̈des locaux.
Nous utilisons ensuite les matricubes pour développer
une théorie purement combinatoire des séries
linéaires sur les graphes métriques. Ceci se fonde
également sur le formalisme des structures de
pentes, donnant des contraintes sur les pentes des
fonctions méromorphes tropicales. Nous montrons
que les séries linéaires combinatoires apparaissent
naturellement par tropicalisation de séries linéaires
sur des courbes algébriques. Nous explorons leurs
propriétés topologiques et développons des outils
pour les étudier. Nous proposons une classification

complète des séries linéaires combinatoires de rang
un, montrant qu’elles sont en bijection avec les mor-
phismes harmoniques du graphe vers des arbres
métriques. Ceci donne un théorème de lissification.
Enfin, nous étudions les points de Weierstrass tropi-
caux, qui sont des analogues, sur les courbes tropi-
cales, de points de ramification de fibrés en droites
sur les courbes algébriques. Le lieu de Weierstrass
tropical d’un diviseur sur un graphe métrique peut
être infini. Cependant, nous associons un poids in-
trinsèque à chacune de ses composantes connexes.
Nous montrons que le poids total du lieu de Weiers-
trass tropical ne dépend que du degré du diviseur, de
son rang, et du genre de la courbe tropicale. De plus,
dans le cas d’un graphe métrique obtenu comme tro-
picalisation d’une courbe algébrique, nous montrons,
en utilisant les séries linéaires combinatoires, que
ces poids comptent le nombre de points de Weiers-
trass algébriques tropicalisés sur chaque composante
connexe du lieu tropical.
Dans chacune de ces contributions, nous présentons
de nombreux exemples et posons des questions
ouvertes menant vers d’autres perspectives de re-
cherche.

Title : Tropical linear series, combinatorial flag arrangements and applications to the study of Weierstrass
points
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Abstract : We first introduce new combinatorial ob-
jects called “matricubes”, a natural generalization of
matroids. In the same way that matroids provide a
combinatorial axiomatization of hyperplane arrange-
ments in a vector space, matricubes abstract arrange-
ments of flags. As for matroids, we provide cryptomor-
phic definitions of matricubes in terms of rank func-
tion, flats, circuits, and independent sets. We provide
precise connections between matricubes and permu-
tation arrays, and propose a description of matricubes
in terms of local matroids.
We then use matricubes to develop a purely combi-
natorial theory of limit linear series on metric graphs.
This is based as well on the formalism of slope struc-
tures, which constrains the slopes of tropical mero-
morphic functions. We show that combinatorial linear
series arise naturally by tropicalizing linear series on
algebraic curves. We explore their topological proper-
ties and develop tools to study them. We provide a
full classification of combinatorial linear series of rank

one, showing that they are in one-to-one correspon-
dence with harmonic morphisms from the graph to
metric trees. This entails a smoothing theorem.
Finally, we study tropical Weierstrass points, which
are analogues, on tropical curves, of ramification
points of line bundles on algebraic curves. The tropi-
cal Weierstrass locus of a divisor on a metric graph
can be infinite. Nevertheless, we associate intrinsic
weights to each of its connected components. We
prove that the total weight of the tropical Weierstrass
locus depends only on the degree of the divisor, its
rank, and the genus of the tropical curve. Further-
more, in the case the metric graph is the tropicaliza-
tion of an algebraic curve, we show, using combinato-
rial linear series, that our weights count the number of
algebraic Weierstrass points which are tropicalized to
each connected component of the tropical locus.
In each of these contributions, we discuss multiple
examples and ask open questions leading to other
perspectives of research.
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