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Préface

Dans cette these, nous introduisons d’abord de nouveaux objets combinatoires nommés
“matricubes”, qui sont une généralisation assez naturelle des matroides. De la méme
facon que les matroides fournissent une axiomatisation combinatoire des arrangements
d’hyperplans (ou, de fagon duale, de vecteurs) dans un espace vectoriel, les matricubes
abstraient les arrangements de drapeaux initiaux. Puisque les matroides peuvent étre
définis de maniere équivalente par différents systemes d’axiomes, nous proposons, de méme,
plusieurs définitions cryptomorphes des matricubes en termes de fonction de rang, de
collection de plats, de circuits, et d’indépendants. Cela se fait, en particulier, en étudiant la
structure combinatoire de certaines de ces collections. Nous formulons aussi un concept de
dualité pour les matricubes, et deux opérations de délétion et de contraction qui étendent
celles sur les matroides. Nous exhibons des liens précis entre les matricubes et les tableaux
de permutation et proposons une description des matricubes comme des collections de
matroides locaux vérifiant certaines propriétés. Nous explorons certains problemes de
représentabilité pour les matricubes, et posons plusieurs questions ouvertes.

Ce concept de matricube nous aide ensuite a développer une nouvelle théorie purement
combinatoire des séries linéaires limites sur les graphes métriques. Cette derniere est
également basée sur le formalisme des structures de pentes, qui contraignent les pentes
et les vecteurs de pentes de fonctions affines par morceaux a valeurs réelles et a pentes
entieres sur les graphes métriques. En effet, les matricubes s’averent étre le bon formalisme
pour prescrire les pentes conjointes des fonctions autour des sommets du graphe. Notre
définition de série linéaire combinatoire combine ensuite des propriétés combinatoires et
algébriques pour donner un concept fort. Certaines séries linéaires combinatoires s’obtiennent
naturellement en tropicalisant des séries linéaires sur des courbes algébriques, ce qui souleve
des questions de réalisabilité. En outre, nous explorons les propriétés topologiques des
séries linéaires combinatoires, définissons une bonne notion de diviseur réduit, et proposons
une classification complete des séries linéaires combinatoires de rang 1 : elles sont en
correspondance bijective avec les morphismes harmoniques depuis le graphe vers des arbres
métriques. Ceci entraine un théoreme de lissification. Nous discutons aussi d’autres
applications et de liens avec d’autres concepts de la géométrie algébrique combinatoire.

Enfin, nous étudions les points de Weierstrass tropicaux, qui sont des analogues, sur
les courbes tropicales, de points spéciaux sur les courbes algébriques nommés “points
de Weierstrass”. Ces derniers peuvent étre décrits comme les “points d’inflexion” d’une
courbe lisse plongée ou, de fagon équivalente, comme les points de ramification de fibrés
en droites sur une courbe. Puisque le lieu de Weierstrass tropical d'un diviseur sur un



graphe métrique peut étre infini, nous étudions ses propriétés topologiques, et associons
un poids intrinseque a chacune de ses composantes connexes. Ceci suppose d’analyser
les pentes des fonctions affines par morceaux appartenant a la série linéaire complete du
diviseur. Nous démontrons que ces poids ont de bonnes propriétés combinatoires, en ce
sens que leur somme dépend uniquement du degré du diviseur, de son rang, et du genre du
graphe. De surcroit, dans le cas ou le graphe métrique est la tropicalisation d'une courbe
algébrique, les tropicalisations des points de Weierstrass géométriques atterrissent dans
le lieu de Weierstrass tropical, et nous montrons que nos poids comptent le nombre de
points de Weierstrass géométriques qui dégénerent sur chaque composante connexe du lieu
de Weierstrass tropical. Ce résultat utilise les séries linéaires limites combinatoires, qui
contiennent la bonne quantité d’information combinatoire provenant du monde géométrique
pour permettre ce dénombrement. Nous commentons de multiples exemples de lieux de
Weierstrass tropicaux pour lever partiellement le voile sur la diversité qui émane de ce
concept.



Preface

In this thesis, we first introduce new combinatorial objects called “matricubes”, which
are a rather natural generalization of matroids. In the same way that matroids provide a
combinatorial axiomatization of hyperplane arrangements (or, dually, vectors) in a vector
space, matricubes abstract arrangements of initial flags. Since matroids can be equivalently
defined by a variety of axiomatic systems, we provide, likewise, several cryptomorphic
definitions of matricubes in terms of rank function, collections of flats, circuits, and
independent sets. This is done, in particular, by studying the combinatorial structure of
some of these collections. We also formulate a duality concept for matricubes, and two
operations of deletion and contraction which extend those on matroids. We provide precise
connections between matricubes and permutation arrays, and propose a description of
matricubes as collections of local matroids satisfying certain properties. We explore some
representability problems for matricubes, and ask several open questions.

The concept of matricube then helps to develop a new, purely combinatorial theory of limit
linear series on metric graphs. This is also based on the formalism of slope structures, which
constrains the slopes and slope vectors of piecewise affine linear real-valued functions with
integral slopes on metric graphs. Indeed, matricubes turn out to be the relevant formalism
to prescribe the joint slopes of functions around vertices of the graph. Our definition of
combinatorial linear series then combines combinatorial and algebraic properties to yield a
strong concept. Some combinatorial linear series are naturally obtained by tropicalizing
linear series on algebraic curves, which raises realizability questions. Besides, we explore
the topological properties of combinatorial linear series, define a relevant notion of reduced
divisor, and provide a full classification for combinatorial linear series of rank one: they
are in one-to-one correspondence with harmonic morphisms from the graph to metric trees.
This entails a smoothing theorem. We also discuss some other applications and connections
to other concepts in combinatorial algebraic geometry.

Finally, we study tropical Weierstrass points, which are analogues, on tropical curves, of
special points on algebraic curves called “Weierstrass points”. Those can be described as
the “flex points” of smooth embedded curves or, equivalently, as the ramification points of
line bundles on curves. Since the tropical Weierstrass locus of a divisor on a metric graph
can be infinite, we study its topological properties, and associate intrinsic weights to its
finitely many connected components. This is done by analyzing the slopes of piecewise
linear functions in the complete linear series of the divisor. We prove that these weights
have a nice combinatorial behavior, as their sum depends only on the degree of the divisor,
its rank, and the genus of the graph. Furthermore, in the case the metric graph is the



tropicalization of an algebraic curve, the tropicalizations of geometric Weierstrass points
land inside the tropical Weierstrass locus, and we show that our weights count the number
of geometric Weierstrass points degenerating to each connected component of the tropical
Weierstrass locus. This uses combinatorial limit linear series, which contain the right
amount of combinatorial information from the geometric world to enable this count. We
discuss multiple examples of tropical Weierstrass loci to show some of the diversity arising
from this concept.

10



Table of contents

Remerciements 3
Préface 7
Preface 9
Table of contents 11
List of figures 13
1 Introduction 17
Version francaise . . . . . . . .. L 17
English version . . . . . . . . . 45
2 Combinatorial flag arrangements 71
2.1 Introduction . . . . . . . . 71
2.2 Basic properties . . . . . ..o 78
2.3 Flats . . . . . e e e 86
2.4 CIrcultS . . . . . 92
2.5 Independents . . . . . .. ... 93
2.6 Diamond property for functions . . . . . ... ... ... oL 100
2.7 Permutation arrays . . . . . . . ... Lo e 103
2.8 Local matroids . . . . . . . ... e 107
2.9 Further discussions . . . . . . . . . . . 110
3 Limit linear series: combinatorial theory 119
3.1 OVerview . . . .. 119
3.2 Rank functions on hypercubes . . . . . . . ... . o000 129
3.3 Slope structures . . . . . . . ... e 135
3.4 Crude linear series . . . . . . . . . e 139
3.5 Admissible semimodules . . . . .. .. 143
3.6 Combinatorial limit linear series . . . . . . . . . . . .. ... ... 152
3.7 Reduced divisors . . . . . . .. 155
3.8 Classification of gl’s . . . . . ... L 168
3.9 Limit linear series on the skeleton of a Berkovich curve . . . . . .. .. .. 176

11



3.10 Examples and discussions . . . . . . ... ...

4 Tropical Weierstrass points and Weierstrass weights
4.1 OVerview . . . . . . o e
4.2 Slope sets . . . . . e
4.3 Weierstrass weights . . . . . . . . . ..o
4.4 Generalizations . . . . . ...
4.5 Tropical vs. algebraic Weierstrass loci . . . . .. . .. .. ... .. ... ..
4.6 Examples . . . . ... e
4.7 Further discussions . . . . . . . . . . ...
4.8 Tropicalization of Weierstrass points . . . . . . . . .. ... .. ...

5 Perspectives
5.1 Matricubes, representability questions and Schubert calculus . . . . . . ..
5.2 Tropical linear series, Brill-Noether theory and smoothing results . . . . .
5.3 Further exploration of tropical Weierstrass points . . . . . .. ... .. ..
5.4 Riemann-Roch theorem in higher dimension and tropical Hodge theory . .

Bibliography

12

189
190
200
203
214
229
238
246
252

261
261
262
264
265

267



List of figures

1.1
1.2
1.3
1.4
1.5

1.6

1.7
1.8

1.9

1.10
1.11
1.12
1.13

1.14

1.15
1.16

2.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

Amibe et tropicalisation de la droite complexe £. . . . . . ... ... ...
Trois éventails polyédraux de dimension 1 dans R%. . . . . . ... ... ..
La tropicalisation d'une courbe algébrique. . . . . . . . . . ... ... ...
Le graphe “haltere” et la structure de pentes &. . . . . . . ... ... ...
La courbe elliptique réelle d’équation y? = 23 — 2z + 2 et ses deux points
d’inflexion. . . . . . . .. L
Graphe complet a quatre sommets, et le diviseur de Weierstrass du diviseur
canonique K. . ..o L L e e
Le graphe “haltere” et le lieu de Weierstrass tropical du diviseur K. . . . .
Un graphe avec deux ponts (ou isthmes) et le lieu de Weierstrass Ly, (K) du
diviseur canonique K. . . . . . ... e
Amoeba and tropicalization of the complex line £. . . . . . . ... ... ..
Three one-dimensional polyhedral fans in R?. . . . . . .. . ... ... ...
The tropicalization of an algebraic curve. . . . . . ... . ... ... ....
The barbell graph and the slope structure &.. . . . .. ... ... ... ..
The real elliptic curve of equation 3? = 2® — 22 + 2 and its two inflection
PoINtsS. . . . L e e e
Complete graph on four vertices, and the Weierstrass points of the canonical
divisor K. . . . .. e
The barbell graph and the Weierstrass locus of the divisor K. . . . . . ..
A graph with two bridge edges and the Weierstrass locus Ly (K) of the
canonical divisor K. . . . . ...

The three-dimensional matrix A = (A%,) of size 2 x 3 x 4, and the associated
matricube. . ... oL

An example of a 2-slope structure on the circle. . . . ... ... ... ...
An example of a crude linear series on the circle. . . . . . . . ... ... ..
The path graph with three vertices, and edges of arbitrary positive lengths.
The barbell graph, the canonical divisor and the slope structure &.

The metric graph I with edges of equal length. . . . ... ... ... ...
The metric graph I' with edges of arbitrary lengths. . . . . . .. ... ...
A slope structure of width two on the dipole graph. . . . . ... ... ...
A slope structure of width two on the dipole graph. . . . . ... ... ...

63

13



14

3.9
3.10
3.11

4.1

4.2
4.3
4.4

4.5

4.6

4.7
4.8

4.9

4.10

4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18

4.19

4.20
4.21

4.22

4.23
4.24

The tree T" on which the complete linear series Rat(2 (u)) is defined. . . . .
A cycle of length one with slope structure inherited from &. . . . ... ..
A slope structure of width two on the three-cycle graph. . . . . . ... ..

Construction of the functions f and g using functions f; and f5 taking slopes
ST < 830 v e e e e e e e
Complete graph on four vertices, and its Weierstrass locus Ly, (K). . . . . .
The barbell graph and its Weierstrass locus Ly (K). . . . .. ... ... ..
A hypothetical locus of Weierstrass points, consisting of three connected
components, and an example of a set A appearingin A.. . ... ... ...
An augmented cycle graph with one point of genus two, the canonical divisor
and its Weierstrass locus L, (D, @). - -« v« o v v v v i i
An augmented cycle graph, the canonical divisor and its Weierstrass locus
L (K, 8). o o o o
The barbell graph, the canonical divisor and the slope structure &.

The tropical Weierstrass locus Ly, (M) and the clls Weierstrass divisor
W™ (M) on the barbell graph. . . . . . . . ...
Three-cycle graph with a specified slope structure on Rat(K), defining a
combinatorial limit linear series M < Rat(K). . . . ... . ... ... ...
The tropical Weierstrass locus Ly, (M) (left) and the clls Weierstrass divisor
WM (rvight). . . .
Dipole graph of genus g = 3 and its Weierstrass locus Ly (K). . . ... ..
Tent graph and its Weierstrass locus Ly, (K). . . . . ... ... ... ...
A divisor on the tent graph and its Weierstrass locus. . . . . . . ... ...
A divisor on the tent graph and its Weierstrass locus. . . . . . .. ... ..
Cube graph with its Weierstrass locus Ly (K). . . . . ... ... ... ...
A graph with two bridge edges and its Weierstrass locus Ly (K). . . . . . .
The generalized barbell graph, the divisor D and its Weierstrass locus.

An augmented cycle graph, with its canonical Weierstrass locus Ly, (K, g)
and its Weierstrass locus L, (K, @). -« « v« v v oo i i i
An augmented cycle with two points of positive genus and its Weierstrass
locus Ly (K, @). . . o o o
The three different types of Weierstrass points with g1 =4, go =3. . . . . .
Augmented dipole graph with combinatorial genus h = 3, genera a = b = 1,
all edges of unit length, and its Weierstrass locus Ly, (K,g). . . . . . . . ..
Augmented dipole graph with h = 2, a = 3 and b = 5, edges all of unit
length, and its Weierstrass locus Ly (K, g). . . .« .« o o oo v o
Dipole graph and its clls Weierstrass divisor W™ (M).. . . . . ... .. ..
The canonical divisor of a combinatorial graph and the distribution of the
Weierstrass weights on the edges of the corresponding metric graph with unit
lengths. . . . . . . . e

243

243
244

245

245
246



4.25 The cut in G used to prove that u is in the total Weierstrass locus L, (e) if
val(v) > 2. . . L
4.26 Random trivalent graph and its Weierstrass locus Ly (K). . . . . . . .. ..

15






1 Introduction

We provide a French, and then an English version of the introduction to the manuscript.

Contents of the chapter

Version francaise . . . . . . . . . . ... ... ... 0. 17

English version . . . . . . . . ..o 45

Version francaise

Cette introduction a pour objectif de résumer le contenu du manuscrit de these, en
évitant les détails techniques, qui seront développés dans les chapitres suivants. Elle devrait
étre utile a la fois pour introduire le propos a une personne intéressée a lire le manuscrit
en entier, et pour une personne non-spécialiste voulant jeter un ceil a ces sujets sans pour
autant lire le texte en entier.

Cette these a but d’étudier certains aspects de la géométrie tropicale en lien avec la
géométrie algébrique.

En quelques mots, de nombreux objets de la géométrie algébrique — comme les courbes,
les diviseurs sur les courbes, les espaces de fonctions sur les courbes, ou certains points
spéciaux sur les courbes — peuvent étre déformés en des objets géométriques d’une nature
beaucoup plus simple, ayant des propriétés combinatoires, au moyen d’une procédure
nommée “tropicalisation” — voir ci-dessous pour de plus amples détails. Un fil rouge dans
cette these consiste a étudier la tropicalisation de certains de ces objets de la géométrie
algébrique. Premierement, en développant des théories métriques et combinatoires pour
décrire les objets tropicalisés que 1’on peut obtenir ; ensuite, en établissant des liens entre
les propriétés de ces objets tropicalisés et celles des objets d’origine ; enfin, en tentant de
déterminer, parmi les objets métriques ou combinatoires, lesquels peuvent étre obtenus a
partir d’un objet classique par la procédure de tropicalisation.

L’inspiration pour ce projet de these provient de I’étude des séries linéaires du point de vue
de la géométrie tropicale, qui a eu un succes considérable dans ’application des méthodes
tropicales. La procédure de tropicalisation permet de transformer les sections globales d’un
fibré en droites en fonctions affines par morceaux avec des pentes entieres sur un objet
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polyédral. L’inégalité de spécialisation de Baker en dimension 1 [Bak08, Lemma 2.8], et sa
généralisation en dimension supérieure donnée par Cartwright [Car19, Car21], permettent
ensuite de comparer la dimension de ’espace des sections globales du fibré en droites avec
une notion de rang combinatoire associée a la tropicalisation.

Dans le présent manuscrit, nous nous occuperons principalement d’objets de dimension
1, c’est-a-dire de courbes algébriques, de graphes métriques, et des structures géométriques
qui leurs sont associées. Ceci dit, nous discuterons dans la Section 5.4 des perspectives
de généralisation de nos résultats en dimension supérieure, en lien avec les travaux de
Cartwright mentionnés ci-dessus qui, d’'un point de vue personnel, étaient notre point
d’entrée dans la géométrie tropicale lors de la préparation de notre mémoire de master.

Dans la section suivante de cette introduction, nous proposerons une approche intuitive
de la procédure de tropicalisation, que nous espérons utile pour comprendre comment
fonctionne la tropicalisation.

La procédure de tropicalisation et ’esprit de la géométrie tropicale

L’intuition visuelle que la plupart des gens ont de la géométrie tropicale est qu’elle fournit
des méthodes pour déformer des variétés algébriques jusqu’au point ot elles se transforment
en des objets polyédrauz, tels des complexes de cones ou des complexes polyédraux, parfois
avec des données combinatoires supplémentaires.

L’intéret de ce type de transformation est que les objets polyédraux qu’elle produit sont
fondamentalement faciles a étudier, parce qu’ils peuvent étre décrits avec une quantité finie
d’information combinatoire (les équations définissant chaque polyedre, par exemple).

En outre, et c’est essentiel, les transformations tropicales n’engendrent pas des objets
“quelconques” : elles déforment les variétés algébriques (ou d’autres objets) de telle maniere
que certaines informations pertinentes sont conservées et peuvent étre mesurées du coté
polyédral pour mieux connaitre les objets géométriques d’origine.

C’est pourquoi certaines personnes décrivent la géométrie tropicale comme “une ombre
combinatoire (ou affine par morceaux) de la géométrie tropicale” [MR18, MS21].

Les premieres procédures de tropicalisation effectives furent définies au début des années
1970 par Bergman [Ber71]. Elles s’appliquent principalement a des variétés affines ou
projectives sur le corps C des nombres complexes, et utilisent les fonctions logarithmes pour
transformer ces objets géométriques.

A titre d’exemple, considérons I'ensemble £ des points a coordonnées complexes (z1, z5) €
C? tels que z; + 2z — 1 = 0. C’est tout simplement une droite complexe dans le plan
complexe. Maintenant, définissons, pour 0 < t < 1, I'ensemble L, des points de R? définis
par le logarithme du module des points de £, coordonnée par coordonnée :

Ly = {(z,y) = (log,(|z1]), log,(|22])) | (21, 22) € L},

ou log,: R.y — R est le logarithme réel en base t. L; est un objet courbe, réel, de dimension
réelle 2 (comme L), et est nommé amibe, voir la partie gauche de la Figure 1.1.
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(4+00,0)

Figure 1.1: Amibe et tropicalisation de la droite complexe L.

Si 'on choisit un autre nombre réel ¢’ tel que 0 < ¢’ < t, alors 'amibe Ly est simplement
log(t)

og(t) < 1 : Tamibe se

obtenue a partir de 'amibe L; par une homothétie de facteur
“contracte” de plus en plus lorsque ¢ diminue.

Le phénomene intéressant, au cceur de la géométrie tropicale, se produit lorsque ¢ — 0.
Dans ce cas, 'objet courbe L; dégénére en un certain objet limite Ly, qui a la propriété
d’étre entierement polyédral. Ly est appelé la tropicalisation de la courbe complexe L.
Comme L est une droite complexe, Ly est en fait un objet absolument fondamental en
géométrie tropicale, une brique élémentaire des tropicalisations nommée droite tropicale
dans le plan. Il est unidimensionnel et constitué de trois demi-droites réelles : une verticale,
une horizontale et une diagonale (voir la partie droite de la Figure 1.1). Chacune de ces
demi-droites correspond a un comportement conjoint spécifique des variables z; et z5. Par
exemple, la demi-droite verticale correspond a la situation ou |z;| est proche de 1 et zy est
proche de 0.

Notons que, & strictement parler, puisque £ intersecte les axes de coordonnées de C2,
la droite tropicale contient deux points “a l'infini”, ce qui peut étre décrit dans un cadre
rigoureux. Ce détail technique est évité si 'on considére une sous-variété de (C*)2.

De surcroit, remarquons que, pour chaque point (z1, 22) € £, chaque coordonnée du point
limite lim;_,o(log,(|z1]), log,(|22|)) appartient a I’ensemble fini {0, +c0}. Cependant, la droite
tropicale Ly est 'objet unidimensionnel obtenu comme I’ensemble limite (pour la topologie
de Hausdorff) de L; lorsque t — 0, c’est-a-dire, dans ce cas particulier, I'intersection de
toutes les amibes L; pour ¢ # 0.

Un théoreme d’une importance capitale, le théoreme fondamental de la géométrie tropicale,
donne une description effective de la tropicalisation d’une variété algébrique. Si, pour
prendre le cas le plus simple, une variété algébrique V < C" est définie par ’annulation
d’un certain polynome en n variables P = >} «» akal - X avec ay € C, alors on peut
associer a P un polynome tropical trop(P) obtenu en remplagant chaque occurrence de
la multiplication par une addition, et chaque occurrence de I’addition par un minimum

19



(ou un maximum, selon les conventions). C’est pourquoi le formalisme algébrique utilisant
ces opérations tropicales et nommé algébre tropicale, ou algébre maz-plus. De cette fagon,
trop(P) est une fonction a valeurs réelles, linéaire par morceaux R” — R, définie par

trop(P)(xy,...,2,) = I1£161§l(/{31 X1+ k),
ol S € N est fini. Dans un cas plus général, les coefficients ay dépendent de ¢, on est alors
en présence d'une famille de sous-variétés de C™ ; la tropicalisation de P est alors une
fonction affine par morceaux. Cette situation fait ’objet d’une discussion dédiée plus bas.

Le théoreme fondamental de la géométrie tropicale décrit la tropicalisation V de V
comme ’ensemble des points (x1,...,z,) € R™ ou le polynéme tropical trop(P) s’annule
tropicalement ; et 'on déclare que cela est le cas en un point (z1,...,z,) € R lorsque le
minimum dans mingeg(ky - 1 + - -+ + ky, - @) est atteint au moins deux fois.

Dans notre exemple ci-dessus, n = 2, P = Z; + Zy — 1 et trop(P) = min(z,y,0), dont
I’ensemble des zéros tropicaux est en effet formé des trois demi-droites de la Figure 1.1. En
effet, la demi-droite horizontale (resp. verticale, resp. diagonale) correspond au cas ou les
termes = et 0 (resp. y et 0, resp. z et y) de trop(P) réalisent le minimum simultanément,
et l'origine correspond a la réalisation simultanée par les trois termes. Si ’on remplace le
polynome P par le polynome P, := Z; + Zy —a avec a € C*, on obtient exactement la méme
tropicalisation. Le cas a = 0, toutefois, est a part, puisque la tropicalisation du polynoéme
Py = Z1 + Z; est la fonction définie par trop(Fp)(x,y) = min(z,y, +00) = min(z,y). C'est
la raison pour laquelle, dans I’exemple ci-dessus, nous n’avons pas choisi la droite complexe
définie par z; + zo = 0, dont la tropicalisation est une version dégénérée de la courbe
tropicale ci-dessus, avec seulement une demi-droite diagonale d’équation x = y.

Pour une sous-variété quelconque V < (C*)") il s’avere que la tropicalisation V' sera
toujours le support d'un éventail polyédral, ¢’est-a-dire le support d'un bon arrangement de
cones polyédraux, de dimension pure égale a la dimension complexe de V. La Figure 1.2
montre des exemples d’éventails polyédraux de dimension 1 dans R2.

\7

Figure 1.2: Trois éventails polyédraux de dimension 1 dans R

Peut-on généraliser ce type de procédure a des contextes plus généraux, par exemple
pour des variétés sur un corps autre que C 7 La réponse est ous : il existe une procédure
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de tropicalisation pertinente pour des variétés sur des corps munis d’une valuation non
archimédienne, ce qui ouvre de nouvelles perspectives.
Une valuation non archimédienne val sur un corps K est une fonction

val: K — R,
oit R := R U {40}, vérifiant les propriétés suivantes.
(1) Pour tout z € K, on a val(xz) = +0 si, et seulement si, x = 0.
(2) Pour tous z,y € K, val(zy) = val(z) + val(y).

(3) Pour tous z,y € K, val(z + y) > min(val(z), val(y)), avec égalité lorsque val(z) #
val(y).

Ces propriétés sont en partie semblables aux propriétés algébriques de la fonction
lin%logt(] ]): C - {0,400} =R

utilisée dans le premier type de procédure de tropicalisation, qui porte en fait le nom de
valuation triviale sur C et est définie par val(z) = 0 pour tout z € C* et val(0) = +00. Un
exemple clé de valuation non archimédienne est le degré en t, ou valuation t-adique, définie
sur le corps k((t)) des séries formelles de Laurent sur k, pour x un corps, ou sur le corps
k{t}} des séries de Puiseux sur k, qui a la propriété supplémentaire — et souvent utile —
d’étre algébriquement clos.

A titre d’illustration, la tropicalisation d’une variété affine V < (s{{t}}*)" déterminée par
un idéal de k{{t}}[Z1, ..., Z,] est définie, par analogie avec la procédure précédente, comme
I’adhérence de I'image de V par la fonction

trop: (r{{th*)" — R"
(Ri,...,R,) — (val(Ry),...,val(R,)),

ou val désigne la valuation t-adique. De fagon similaire, trop()) sera toujours un espace
polyédral ayant de bonnes propriétés, avec des parties finies mais aussi des parties infinies
qui doivent éetre traitées avec soin. La Figure 1.3 montre un exemple de courbe tropicalisée
qui peut étre obtenue de cette facon.

La procédure de tropicalisation pour des corps munis d’une valuation non archimédienne
est particulierement utile dans I’étude de la dégénérescence d’'une famille de variétés
algébriques lisses vers une variété limite possiblement non lisse.

Imaginons une famille (X;) de variétés algébriques lisses sur un corps k, dépendant
algébriquement d’un parametre ¢ appartement a une certaine base, comme un disque
épointé A*. La géométrie algébrique et la théorie des singularités tentent de répondre a des
questions telles que les suivantes.
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Figure 1.3: La tropicalisation d’une courbe algébrique.

e Quel est le comportement possible de la variété X; lorsque t — 0 7
e Quelles sont les variétés limites X possibles 7

e Qu’en est-il du comportement limite d’une famille de fibrés en droites sur X;, ou
d’autres objets géométriques définis sur X; ?

Une telle famille qui dégénere, ou chaque variété est définie sur un meéme corps s, peut
étre modélisée par une variété sur une base de dimension 1 sur x, comme £((t)) ou k{t}}
(disons k((t)) pour faire simple). Alors, toute extension de cette famille & ¢ = 0 sera nommée
un modeéle, et sera décrite par un schéma X sur 'anneau R := k[[t]], dont le corps des
fractions est k((t)). Les modeles qui nous intéressent, ayant de bonnes propriétés, sont dits
semi-stables. Leur existence est assurée en caractéristique nulle, et nécessite typiquement de
passer a une extension de corps finie de x((t)). La fibre générique de X (la fibre au-dessus
du complémentaire de 0 dans A*) se souvient essentiellement de la partie de la famille
dégénérescente ou les variétés sont lisses, et la fibre spéciale (la fibre au-dessus de 0) est la
variété limite Xy, qui aura typiquement des points singuliers. Comme R est muni d’une
valuation non archimédienne, on peut tropicaliser la famille X au moyen de la procédure
décrite plus haut, en mettant des coordonnées sur la famille.

Ceci est, pour résumer, la raison pour laquelle, pour étudier les dégénérescences de
familles de variétés algébriques, on peut utiliser la tropicalisation de cette famille en un
objet polyédral. Celui-ci peut, selon la procédure utilisée, étre un objet non borné, tel un
complexe de cones (ou, plus généralement, un complexe polyédral, voir la Figure 1.3), ou
un objet borné, tel un graphe métrique. Un tel graphe apparait en fait comme un squelette
d’un complexe polyédral, ces deux objets étant obtenus a partir de la famille de variétés
par des méthodes de tropicalisation alternatives.

Une explication plus précise nécessite quelques rudiments de théorie de Berkovich. Dans ce
domaine, on définit un espace topologique associé a une variété affine ¥V < (K*)™ déterminée
par un idéal Z de K[Z1, ..., Z,]. Les points z de cet espace topologique paramétrisent les
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semi-valuations v, sur 'anneau K[Z;, ..., Z,]/Z qui étendent la valuation val de K. 1l se
trouve que cet espace, appelé I’analytifié de Berkovich V*" de V, a de bonnes propriétés : il
est séparé, connexe par arcs, assimilable localement a un espace polyédral, et il se rétracte
par déformation sur des sous-espaces polyédraux compacts, ses squelettes. De plus, V"
contient naturellement V), les tropicalisations possibles de V sont toutes issues de I'analytifié
par des projections, et cet analytifié est la limite projective de toutes les tropicalisations de
V [Pay09, FGP14].

A ce stade, ¢élargissons un peu la perspective. Une procédure de tropicalisation pour
les variétés sur un corps muni d’une valuation non archimédienne permet de tropicaliser
des familles de variétés, ce qui aidera a étudier les singularités dans un contexte de
dégénérescence. En fait, si certains objets géométriques (comme un fibré en droites, ou
un espace de sections d’un tel fibré) sont définis de maniere lisse sur une telle famille, il
existe aussi des procédures de tropicalisation pour ces objets. Cela sera un fil rouge dans le
présent manuscrit, qui portera, entre autres, sur le tropicalisation de séries linéaires (des
espaces vectoriels de sections d'un fibré en droites) et de points de Weierstrass (des points
géométriques spéciaux sur les courbes algébriques). Nous renvoyons a la discussion a propos
des Chapitres 4 et 3, plus loin dans cette introduction, pour la suite de cette histoire.

Maintenant que la lectrice ou le lecteur a quelques clés pour comprendre la tropicalisation,
nous allons décrire, dans la prochaine section, 1’organisation du manuscrit.

Organisation du manuscrit

Le manuscrit de these est divisé en cing chapitres.

Le premier chapitre est la présente introduction, dont 'objectif est de résumer le contenu
de la these et de l'introduire a des non-spécialistes.

Les Chapitres 2, 3 et 4 correspondent approximativement aux trois preprints [AG24, AG22,
AGR23], respectivement. Plus exactement, ces chapitres consistent en des élargissements
plus ou moins importants des articles correspondants : les résultats, figures ou commentaires
qui avaient été retirés ou raccourcis dans les papiers pour des raisons de longueur ou de
concision ont été gardés dans leur intégralité dans le présent manuscrit.

Les Chapitres 2 et 3 ont été écrits avec Omid Amini. Le Chapitre 4 a été écrit en
collaboration avec Omid Amini et Harry Richman, de 'université de Washington a Seattle.

Le Chapitre 2, basé sur [AG24|, définit de nouveaux objets combinatoires, nommés
matricubes, qui se trouvent étre une nouvelle généralisation d’objets combinatoires tres
étudiés : les matroides.

Le Chapitre 3, basé sur [AG22|, utilise, entre autres, le formalisme des matricubes
pour jeter les bases d’une nouvelle théorie purement combinatoire des séries linéaires
limites, permettant d’étudier la tropicalisation de séries linéaires algébriques sur des courbes
algébriques vers des graphes métriques de fagon plus approfondie.
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Le Chapitre 4, basé sur [AGR23], prolonge des travaux antérieurs liés aux points de
Weierstrass tropicaux, et fournit de nouveaux résultats de localisation pour la tropicalisation
de points de Weierstrass sur des courbes algébriques vers des graphes métriques.

Enfin, le Chapitre 5 synthétise les différents types de questions ouvertes qui se sont posées
en cours de route, et propose quelques directions de recherche potentiellement intéressantes
en partant des travaux de la these.

Une section de remerciements est située en page 3, suivie d’une préface dans les deux
langues, avant la table des matieres.

Une bibliographie unique pour l'intégralité du manuscrit est proposée, combinant les
bibliographies de tous les chapitres et située a la fin du manuscrit.

Nous allons maintenant introduire les Chapitres 2, 3 et 4 du manuscrit dans de plus
amples détails.

Matroides et matricubes — Chapitre 2

Le Chapitre 2 est un chapitre purement combinatoire, qui est basé sur [AG24] et prend
ses racines dans le concept fondamental de matroide. Un matroide est un objet combinatoire
qui abstrait et axiomatise les relations de dépendance linéaire entre des vecteurs dans un
espace vectoriel, se souvenant uniquement de “qui est linéairement indépendant de qui”,
sans conserver toute l'information sur ces vecteurs.

Par exemple, soit (e;) la base canonique dans R3, et définissons la configuration de
vecteurs suivante.

Tp = €1,T2 = €2,T3 = €3
Ty = 0

Ty = €1 + €2

Cette configuration de vecteurs peut étre représentée par la matrice suivante, dont chaque
colonne représente un vecteur :

Faisons maintenant une liste de tous les indépendants, ¢’est-a-dire les sous-familles linéairement
indépendantes de vecteurs parmi les (z;), donnés par leurs indices.

S = {2, {1}, {2}, {3}, {5}, {1, 2}, {1, 3}, {1, 5}, {2, 3}, {2, 5}, {3, 5}, {1, 2,3}, {1, 3,5}, {2, 3, 5}}

Ici, les indépendants peuvent s’imaginer comme des sous-ensembles de ’ensemble des
colonnes de la matrice ci-dessus, c¢’est-a-dire des sous-ensembles de {1,2,3, 4,5}, en oubliant
la valeur exacte des vecteurs.

Mais I’ensemble .# des indépendants d’une configuration de vecteurs ne peut pas étre
n’importe quelle collection de sous-ensembles de {1,2,3,4,5}, parce qu’il doit satisfaire
certaines propriétés combinatoires non triviales. Un matroide (littéralement, “qui ressemble
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a une matrice”) est précisément une fagon d’axiomatiser et d’abstraire les propriétés
combinatoires de I’ensemble des indépendants d’une configuration de vecteurs.

Plus formellement, un matroide peut étre défini comme un ensemble £ muni d’une
collection .# de parties de E vérifiant les trois propriétés suivantes :

(I1) @ € . (ou, de fagon équivalente en utilisant (12), .7 # &).
(I12) (Propriété d’hérédité) Si I € & et I' < I, alors I' € ..

(I3) (Propriété d’échange pour les indépendants) Si Iy, Ir € & et |I;| < |I3], alors il existe
un élément e € I \ I tel que [; U {e} € .Z.

Il est aisé de montrer que ’ensemble des indépendants d'une configuration de vecteurs
satisfait les propriétés ci-dessus. Ce qui est moins évident est que cette axiomatique définit
un objet combinatoire intéressant et mathématiquement riche.

Il se trouve qu’il y a de nombreuses définitions différentes des matroides qui donnent le
méme concept de matroide. Par exemple, au lieu de définir un matroide par ses indépendants,
on pourrait le définir par ses bases, une collection de sous-ensembles vérifiant un autre
systeme d’axiomes spécifique mimant le comportement des vraies bases d’une configuration
de vecteurs. Pour assouvir la curiosité de la lectrice ou du lecteur, voici une version possible
de I'axiomatique définissant un matroide par sa collection Z# de bases :

(Bl) 2 + @.

(B2) (Propriété d’échange pour les bases) Si By, By € % et x € By \ By, alors il existe
y € By N By tel que By \ {z} u {y} € Z.

Si je vous donne I’ensemble des indépendants d’un matroide, vous pourriez également
en déduire facilement ’ensemble des bases de ce matroide, tout simplement en gardant
seulement les indépendants mazimaux. Par exemple, la configuration de vecteurs décrite
ci-dessus a trois bases :

A = {{1,2,3},{1,3,5},{2,3,5}}.

Comme maniere alternative de décrire un matroide, ’on pourrait aussi retenir, pour
chaque sous-famille de vecteurs, la dimension du sous-espace vectoriel engendré par ces
vecteurs, ce qui donnerait une fonction de rang. Une telle fonction de rang satisfait également
certaines propriétés combinatoires précises qui donnent lieu a une axiomatique, et toute
fonction prenant ses valeurs dans N n’apparait pas comme une fonction de rang. Ces
définitions, de méme que des dizaines d’autres, donnent exactement la méme théorie des
matroides : elles sont dites cryptomorphes. Elles ont été étudiées depuis pres d’un siecle,
voir par exemple [Whi92, Ox106].

Pour pouvoir introduire le Chapitre 2, il est utile de noter qu’a chaque configuration
de vecteurs dans un espace vectoriel peut étre associé un arrangement d’hyperplans dans
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I'espace vectoriel dual (ici, par un abus de langage, un hyperplan désignera soit un vrai
hyperplan, soit I'espace total, lorsque le vecteur dual est le vecteur nul).

Ce faisant, on peut aussi associer un matroide a chaque arrangement d’hyperplans. Si
Fy,...,F,, sont des hyperplans dans un espace vectoriel H, on peut définir la fonction de
rang qui, & chaque A < {1,...,m}, associe I'entier naturel r(A) := codimpy([),.4 F;). Cette
fonction de rang satisfait les propriétés de la fonction de rang d’'un matroide.

Nous pouvons maintenant introduire les matricubes. Ces nouveaux objets combinatoires,
définis dans le Chapitre 2, sont apparus naturellement comme la généralisation de la
construction précédente : quel type d’objet combinatoire obtient-on si ’on remplace ci-
dessus un arrangement d’hyperplans par un arrangement de drapeaux ? Plus précisément,
imagions que pour tout j € {1,...,m}, F? soit un drapeau décroissant

_ 10 1 r—1 T
H—FjQFjQ---QFj QFj,

ou r < dimH et, pour tout 7, F;H est de codimension au plus 1 dans Fj. Si I'on définit,
pour tout z = (x1,...,2y,), x; € {0,...,r}, le rang de z comme

r(z) = codimy(Fy* n--- n Frm),

alors une telle fonction de rang est une généralisation de la fonction de rang d’un matroide.
Elle satisfait un systeme d’axiomes similaire a celui d’'une fonction de rang de matroide,
adapté au fait que sa source est un hypercube 68, := {0,...,7}™ aulieu de P({1,...,m}) ~
{0,1}™, et en utilisant la structure de poset (ensemble partiellement ordonné) de G2, . Nous
appelons ceci un matricube, un nom que nous justifions dans la Section 2.2.3.

Ci-dessous figure un exemple de matricube, décrit par sa fonction de rang, et provenant
d’une paire de drapeaux a quatre sous-espaces dans un espace vectoriel de dimension 4,
pioché dans la Section 2.2.2. L’origine du tableau (les petits indices) est le coin en bas &
gauche, selon la convention que nous utiliserons pour tous les tableaux dans le Chapitre 2.

3 3 4 4
2 2 3 4
112 3
0123

Notons que les fonctions de rang des matricubes ne sont pas nécessairement symétriques
comme celle-ci. De plus, comme ce matricube provient d’une vraie configuration de
vecteurs, il sera dit représentable. L’étude de la représentabilité des matroides est un
domaine de recherche a part entiere. Dans le Chapitre 2, nous posons quelques questions
de représentabilité sur les matricubes, et répondons a certaines d’entre elles (voir la Sec-
tion 2.9.3). Nous montrons aussi qu'un matricube contient une collection de “matroides
locaux” qui gouvernent ses propriétés combinatoires (voir Section 2.8).

Le travail présenté dans le Chapitre 2 explore principalement les propriétés combinatoires
des matricubes, en lien avec leur structure de poset et avec les propriétés de convexité discrete
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de leurs fonctions de rang. Nous proposons également quelques définitions différentes, mais
cependant équivalentes (plus exactement, cryptomorphes), des matricubes, utilisant la
fonction de rang (Section 2.2), la collection des indépendants (Section 2.5), et d’autres
collections (les plats et les circuits dans les Sections 2.3 et 2.4) qui généralisent leurs homo-
logues matroidaux et miment des propriétés concretes des configurations de vecteurs. Dans
ce contexte, les indépendants, plats et circuits sont des points particuliers de ’hypercube
68, . De facon surprenante, & ce stade de I'exploration des matricubes, nous ne sommes pas
parvenus a proposer une axiomatisation pertinente et intéressante de la collection des bases
d’un matricube, ce qui souleve des questions ouvertes intéressantes (voir Section 2.9.1).

En outre, en plus d'un systeme d’axiomes dédié, les indépendants, plats et circuits peuvent
étre décrits explicitement et facilement pour un matricube donné par sa fonction de rang.
Par exemple, les plats d'un matricube sont tous les points de ’hypercube G5, tels qu’en
se déplagant d’une unité dans n’importe quelle direction positive (lorsque c’est possible),
la valeur de la fonction de rang augmente. A titre d’exemple, les plats de la fonction de
rang définie ci-dessus sont représentés en bleu ci-dessous. Notons que 1’ensemble des plats
possede une structure de treillis gradué, ce qui est une propriété générale.

3 3 4 4
2 2 3 4
112 3
0123

Une autre propriété combinatoire des matricubes, démontrée dans le Chapitre 2, est leur
lien avec un objet combinatoire qui généralise les matrices de permutation en dimension
supérieure. Une matrice de permutation est une matrice carrée n x n remplie de 0 et de 1
encodant une permutation o de n éléments : le coefficient a;; est égal a 1 si, et seulement
si, o(i) = j. Par exemple, la matrice ci-dessous (représentée avec la convention usuelle
pour les matrices, 'origine étant donc en haut a gauche) est celle associée a la permutation
o = (14)(235) de cinq éléments.

00010
000O01
01000
1 0000
001O0O0

Ces objets sont intéressants en soi, mais ’on pourrait légitimement se demander si cette
notion admet des généralisations intéressantes en dimension supérieure. Il existe, en effet,
plusieurs généralisations. On peut par exemple penser aux définitions suivantes (toutes
équivalentes) des matrices de permutation, et suggérer en conséquence les généralisations
(non équivalentes) correspondantes en dimension supérieure.

(a) Une matrice de permutation est une matrice carrée de 0 et de 1 telle que chaque ligne
droite complete (ou l'on fait varier une seule coordonnée), c’est-a-dire chaque ligne
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et chaque colonne, contient 1 exactement une fois. v~ Une matrice de permutation
de dimension supérieure est un tableau de 0 et de 1 de dimension supérieure tel que
chaque ligne compléte (ou l'on fait varier une seule coordonnée) contient 1 exactement
une fois.

(b) Une matrice de permutation est une matrice carrée de 0 et de 1 telle que chaque couche
de codimension 1 (avec exactement une coordonnée fixée), c’est-a-dire chaque ligne
et chaque colonne, contient 1 exactement une fois. v~~~ Une matrice de permutation
de dimension supérieure est un tableau de 0 et de 1 de dimension supérieure tel que
chaque couche de codimension 1 (avec exactement une coordonnée fixée) contient 1
exactement une fois.

(c) Une matrice de permutation est une matrice carrée de 0 et de 1 telle que pour tout
choix d’indices (i, j), la sous-matrice formée des éléments d’indices au moins égaux a
(,7) (coordonnée par coordonnée) a la propriété que le nombre de lignes contenant
1 au moins une fois est égal au nombre de colonnes contenant 1 au moins une fois.
v~ Une matrice de permutation de dimension supérieure est un tableau de 0 et de
1 de dimension supérieure tel que pour tout multi-indice x, le sous-tableau formé
des éléments de multi-indice au moins égal a x (coordonnée par coordonnée) a la
propriété que le nombre de couches de codimension 1 contenant 1 au moins une fois
ne dépend pas de la direction dans laquelle les couches sont découpées.

Bien que ces définitions coincident en dimension 2, elles donnent lieu, en dimension
supérieure, a des notions distinctes ayant chacune leurs applications et liens avec d’autres
objets combinatoires. Elles ont été tres étudiées, et ces objets ont été dénombrés, dans de
nombreux travaux.

La Définition (c) donne naissance a des objets appelés tableauz de permutation (per-
mutation arrays), étudiés entre autres par Eriksson et Linusson [ELO00al. II se trouve,
comme nous le démontrons dans la Section 2.7, qu'un certain type de matricubes est en
fait en correspondance bijective avec les tableaux de permutation. Cela donne une nouvelle
perspective sur un objet combinatoire précédemment connu.

Il apparait que les matricubes sont une notion combinatoire nouvelle et intéressante,
digne d’intérét en soi. Cependant, d'un point de vue chronologique, ils sont apparus, dans
le travail de cette these, au détour de I’étude de la tropicalisation des séries linéaires, comme
nous l'expliquerons dans la prochaine section.

Une théorie combinatoire pour les séries linéaires limites — Chapitre 3

Le Chapitre 3 est basé sur [AG22] et son objectif est de proposer une nouvelle théorie
combinatoire pour étudier la tropicalisation des séries linéaires sur les courbes algébriques.
Les séries linéaires sur les variétés algébriques sont des objets géométriques importants et
tres étudiés, car elles gouvernent la géométrie de ces variétés. Elles sont basées sur la théorie
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des diviseurs, que nous présentons brievement ci-apres. Dans ce manuscrit, nous nous
concentrerons sur les courbes algébriques (c’est-a-dire les variétés algébriques de dimension
1).

Soit X une courbe algébrique propre et lisse sur un corps k. Un diviseur sur X est
une somme formelle finie a coefficients dans Z de points de X : D = > ., n; (x;), z; € X.
Le coefficient de D en un point € X est noté D(z). Chaque fonction rationnelle (ou
méromorphe) f € k(X) sur la courbe donne naissance a un diviseur div(f) d’une fagon
naturelle, en retenant les zéros et les poles de f ainsi que leurs ordres :

div(f) == > ord,(f) (x).
zeX
De cette fagon, chaque diviseur D définit un espace vectoriel de fonctions rationnelles sur
X respectant D, défini comme suit :

Rat(D) := {f € (X), D+ div(f) = 0},

ou D + div(f) = 0 signifie que ce diviseur n’a que des coefficients positifs (est effectif).

En résumé, les diviseurs sont utilisés pour imposer des contraintes sur les ordres des
poles et zéros d’une fonction méromorphe sur une courbe algébrique. Un espace de la
forme Rat(D) est précisément ce qu’on appelle une série linéaire compléte, et une série
linéaire de rang r sera définie comme un sous-espace vectoriel H € Rat(D) de dimension
r 4+ 1. (Le décalage d’une unité provient du fait que multiplier une fonction méromorphe
par un scalaire donne le méme diviseur, div(cf) = div(f), et par conséquent r est en fait la
dimension de 'espace des tels diviseurs, et aussi la dimension du projectivisé de Rat(D).) Il
s’avere que les séries linéaires sur une courbe algébrique X correspondent aux applications
de X vers des espaces projectifs, ce qui entraine que la donnée de toutes les séries linéaires
“contient” la géométrie de X ; c’est pourquoi les séries linéaires sont un objet d’étude aussi
central en géométrie algébrique.

La situation est moins bien comprise lorsque la courbe algébrique X n’est pas lisse,
par exemple s’il s’agit d'une courbe stable (une courbe dont les seuls points singuliers
sont des neeuds, le type de singularité le plus “gentil” | avec deux branches s’intersectant
transversalement). En fait, comprendre comment les séries linéaires dégénerent sur des
familles de courbes est une question ouverte depuis longtemps.

Pour énoncer le probleme d’une facon plus intuitive, introduisons I’espace de modules .#,
de toutes les courbes projectives lisses de genre g. C’est un champ de Deligne-Mumford
(une généralisation des schémas) qui, comme espace, paramétrise les courbes, en ce sens
que chaque point de .#, représente une courbe projective lisse, d'une maniere bijective et
cohérente. L’espace .#, n’est pas compact, mais il se trouve qu’il admet une compactification
///_g ayant de bonnes propriétés, dont le bord est exactement constitué des courbes stables.
D’une certaine facon, les courbes stables sont les courbes non lisses que I'on peut obtenir en
faisant dégénérer des courbes lisses. Introduisons a présent le probleme de la dégénérescence
pour les séries linéaires.
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Question 1.0.1. Soit X une courbe stable de genre g et soit x le point de //Z, correspondant.
Quelles sont toutes les limites possibles de séries linéaires pour n’importe quelle suite de
courbes projectives lisses de genre g dont les points correspondants dans .#, convergent vers
x ¢

La géométrie tropicale fournit une approche possible pour répondre a cette question. En
effet, une famille de courbes a un parametre donne naissance a une suite de points de .#,
convergeant vers un point de ,//79. On peut modéliser cette famille par une courbe C sur
un corps K muni d’une valuation non archimédienne non triviale, de telle sorte que x est le
corps résiduel de (K, val) et X est la fibre spéciale du modele semi-stable de C sur I’anneau
de valuation de val. Ainsi, la procédure de tropicalisation ébauchée plus tot dans cette
introduction permet de tropicaliser C en un graphe métrique I' (qu’on peut voir comme
une courbe tropicale), c’est-dire un graphe avec une longueur associée a chaque aréte.

Il s’avere que dans cette configuration, il y a également une maniere naturelle de tropi-
caliser une fonction méromorphe f sur la courbe C en une fonction trop(f): I' — R, qui
soit continue et affine par morceaux a pentes entieres.

La géométrie tropicale encode des informations combinatoires concernant la famille
dégénérescente de courbes C qui sont complémentaires de la donnée de la courbe stable
limite X et de la réduction des fonctions f € K(C) sur X. En effet, ces dernieres capturent
certains aspects algébriques des fonctions limites sur la courbe stable limite, tandis que le
graphe métrique I" associé et les fonctions tropicalisées trop(f) se souviennent également
d’informations plus fines liées a la fagon (depuis quelle direction, a quelle vitesse) la suite
de courbes lisses dégénere vers X.

Par conséquent, on peut raisonnablement espérer que I’étude des fonctions tropicalisées
trop(f) sur la tropicalisation I' de C donne des informations intéressantes sur les séries
linéaires sur C.

C’est précisément le but du travail présenté dans le Chapitre 3, qui développe une théorie
purement combinatoire des séries linéaires sur les graphes métriques, et tisse des liens avec
les séries linéaires géométriques, c’est-a-dire les séries linéaires sur les courbes algébriques.

Le point de départ de ce projet fut 'observation que dans le contexte, présenté plus
haut, d'une famille dégénérescente de courbes munies d'une série linéaire, il existe une
donnée combinatoire finie qui peut étre extraite de la famille dégénérescente et qui devrait
régir la tropicalisation des fonctions de la série linéaire. Cette donnée est liée aux ordres
d’annulation des fonctions. Plus précisément, étant donné une fonction f appartenant a une
série linéaire sur C, on souhaite tout d’abord mesurer, pour chaque composante irréductible
X, de la courbe stable limite X et pour chaque point singulier z de X, I'ordre d’annulation
de la réduction de f a X, en ce point x.

Un résultat classique affirme que le nombre d’ordres d’annulation différents en z que I'on
obtient en faisant varier la fonction f dans la série linéaire considérée est exactement la
dimension de cette série linéaire. Cet ensemble d’entiers est le premier type d’information
combinatoire que I'on peut mesurer pour une dégénérescence de série linéaire. Le second
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type d’information est lié a la corrélation entre ces ordres d’annulation en chaque point
singulier d'une composante irréductible X, donnée. En bref, on retient I’ensemble des ordres
d’annulation conjoints que I'on obtient en faisant varier la fonction f dans la série linéaire.
Cette donnée s’avere étre encodée par des matricubes, les objets présentés dans la section
précédente de l'introduction.

Les propriétés de la procédure de tropicalisation pour les fonctions entrainent que ces
données combinatoires ont des interprétations intéressantes liées aux fonctions tropicalisées
sur le graphe métrique. Chaque sommet v du graphe métrique correspond a une composante
irréductible X, de la courbe stable X, et chaque aréte e = uv joignant deux sommets u et
v du graphe correspond a un point d’intersection entre les composantes irréductibles X,
et X, associées a u et v. Alors, les ordres d’annulation de la réduction d’une fonction f
sur une composante irréductible X, en les points singuliers de X situés sur X, sont égaux
aux pentes de la fonction tropicalisée trop(f) sur le graphe métrique, le long des directions
sortantes autour du sommet v ; et la donnée conjointe des ordres d’annulation de f en
tous les points singuliers de X situés sur une composante irréductible X, se traduit par
un vecteur de pentes de trop(f) autour du sommet v de I' associé a X,. Ceci illustre la
nature des contraintes combinatoires qui seront utilisées pour définir les séries linéaires
combinatoires sur les graphes métriques, que nous présenterons un peu plus tard.

Notons de prime abord que les graphes métriques possedent une théorie des fonc-
tions méromorphes et des diviseurs, tout comme les courbes algébriques. Une fonction
méromorphe f € Rat(I') sur le graphe métrique I' est une fonction continue, affine par
morceaux I' — R avec des pentes entieres ; un diviseur sur I' est une somme formelle finie
a coefficients dans Z de points de I' : D = >, . n; (z;), ; € I'. De plus, toute fonction
méromorphe f € Rat(I") donne naturellement naissance & un diviseur div(f) sur I :

div(f) == ) ord,(f) (x),

zel

ou ord,(f) € Z est, au signe pres, la somme des pentes sortantes de f sur les arétes de
I incidentes a x. Dans le contexte des graphes métriques, un zéro (resp. un paéle) d’une
fonction méromorphe est un changement de pente négatif (resp. positif). Par ailleurs, de
meéme qu’il y a une procédure de tropicalisation pour les fonctions sur les courbes algébriques,
il existe une procédure de tropicalisation pour les diviseurs, envoyant tout diviseur D sur
C sur un diviseur D = trop(D) sur I'. Cette procédure commute opportunément avec
I'application f — div(f). Ainsi, une fonction méromorphe (resp. un diviseur) sur une
courbe algébrique C se tropicalise en une fonction méromorphe (resp. un diviseur) sur le
graphe métrique I" obtenu en tropicalisant C.

Sans entrer dans des détails trop techniques, I'idée générale a propos de cette théorie
des diviseurs et des fonctions méromorphes sur les graphes métriques, qui a déja été tres
étudiée, est qu’elle se comporte de fagon sympathique et similaire a son homologue sur les
variétés algébriques. Par exemple, il a pu étre démontré, par plusieurs méthodes différentes,
qu’il y a un théoreme de Riemann—Roch pour les graphes métriques [AC13, GK08, MZ0§],
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tout comme il y en a un sur les graphes combinatoires [BNO7]. Il y a, de plus, de
nombreuses applications de cette théorie a la géométrie algébrique, comme des techniques
de dégénérescence pour la théorie de Brill-Noether, des résultats sur la dimension de
Kodaira d’espaces de modules de courbes [FJP20], des réponses partielles a la mazimal
rank conjecture, de nouvelles bornes en géométrie arithmétique, ou des outils cruciaux pour
I'étude des points de Weierstrass ; voir [BJ16] pour une revue exhaustive.

A ce stade, il devient assez naturel de décider comment définir une série linéaire complete
sur un graphe métrique I'. Considérons simplement un diviseur D sur I', et définissons
Rat(D) comme I'ensemble des fonctions f € Rat(I") telles que D + div(f) = 0 : un diviseur
controle les zéros et les poles des fonctions de sa série linéaire complete.

Mais le monde tropical a des différences majeures avec le monde de la géométrie algébrique,
'une d’entre elles étant qu'un espace comme Rat(I") ou Rat(D) n’a rien d'un espace vectoriel.
Au lieu de cela, le bon formalisme pour étudier ces espaces est la théorie des semi-modules
tropicauz, c’est-a-dire des ensembles munis d’une opération interne, @, et d'une multiplication
externe, O, qui utilise des scalaires réels. Dans le contexte qui nous intéresse, ces opérations
sont définies comme suit : pour tous f,g € Rat(I') et ce R,

f @ g :=min(f,g) et cOf=f+c

Ce sont les opérations tropicales, qui peuvent étre définies de facon semblable sur divers
espaces tropicaux. Elles sont bien entendu étroitement liées a 1’algebre max-plus évoquée
plus tot.

Maintenant que nous avons ce formalisme tropical en téte, on pourrait étre tenté de
définir une série linéaire sur le graphe métrique I' comme tout sous-semi-module M d’un
semi-module tropical de la forme Rat(D), pour D un diviseur sur I', tout comme une série
linéaire sur une courbe algébrique C est un sous-espace vectoriel H d’une série linéaire
complete de la forme Rat(D). C’est en effet une bonne idée, puisque avec cette définition,
la tropicalisation d’une série lin€aire sur une courbe algébrique donne une série linéaire sur
le graphe métrique associé, dans le sens ou si H est une série linéaire sur C, alors

trop(H) = {trop(f) | feH~{0}}

est une série linéaire sur I', comme nous le démontrons dans la Section 3.9. En fait,
considérer des espaces de la forme Rat(D) ou des sous-semi-modules de tels espaces s’avere
étre une fagon pertinente de définir les séries linéaires sur les graphes métriques.

Cependant, comme souvent en géométrie tropicale, nous aimerions répondre a des
questions de représentabilité, c’est-a-dire des questions de la forme : “est-ce que tel objet
tropical peut se réaliser comme la tropicalisation d’'un objet algébro-géométrique du type
attendu 77 Dans le cas présent, quels sont les sous-semi-modules M d’un certain Rat(D)
qui sont des tropicalisations de séries linéaires sur une courbe algébrique ?

Il se trouve que ce n’est pas le cas de tous les sous-semi-modules. C’est ce fait méme
qui a mené au travail présenté dans le Chapitre 3. L’idée de base est qu'une théorie
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des séries linéaires combinatoires plus pertinente devrait comporter quelques contraintes
supplémentaires sur ces objets, de telle facon qu’on puisse formuler, au moins dans certains
cas, des résultats positifs de représentabilité.

C’est d’ailleurs le moment ot la théorie des matricubes présentée dans le Chapitre 2 entre
en scene. Nous allons ajouter certaines contraintes combinatoires supplémentaires pour
définir les séries linéaires sur les graphes métriques, sous la forme de ce qu’on appellera une
structure de pentes. Comme exposé plus amplement dans la Section 3.3, une structure de
pentes & de largeur r sur I' consiste en :

e pour chaque aréte orientée e de I', la donnée d'un ensemble de r + 1 pentes entieres
admises s§ < s{ < --- < sy ; et

r o

e pour chaque sommet v de I, la donnée d’un matricube (ou fonction de rang) p, sur
dy

i

[ )

ou d, est la valence de v.

Pour rendre les choses plus visuelles, voici un exemple concret de structure de pentes,
pioché dans la Section 3.6.3. Considérons le graphe I' en forme d’“haltere” avec des arétes de
longueur arbitraire, comme sur la Figure 1.4. Définissons une structure de pentes de largeur
1 sur I'. Autorisons les pentes —1 < 1 sur 'aréte centrale et, pour ¢ = 1,2, autorisons les

pentes 0 < 1 sur chacune des deux arétes orientées u;v;, dans la direction donnée par les
fleches.

(0,1)

Figure 1.4: Le graphe “haltere” et la structure de pentes &.

On définit des matricubes appropriés sur les sommets, comme suit. Pour ¢ = 1,2, on

. . P 0 0 :
munit v; de la fonction de rang sur @i définie par le tableau (1 >, et on munit u; du

0
. 3 . . 1 7 .
matricube sur 07, dont les restrictions aux différentes couches sont définies par les deux

0 0 -1 -1
tableaux suivants, respectivement : < ] 0> , < 0 1). Ici, les plats des matricubes

(voir la section précédente de I'introduction) figurent en bleu — pour comprendre pourquoi
I’élément —1 dans le coin en haut a droite du dernier tableau n’est pas un plat dans
ce contexte, on se référera a la Remarque 3.2.16. De plus, la convention utilisée pour
représenter les fonctions de rang est celle choisie pour les séries linéaires, en dualité avec
les matricubes ; cette dualité est précisée dans la Proposition 3.2.3, et implique que les
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fonctions de rang représentées ci-dessus, contrairement aux matricubes, sont des fonctions
décroissantes pouvant prendre la valeur —1. Concernant les deux sommets u; et usq, la
troisieme coordonnée dans les fonctions de rang correspond a l’aréte centrale de I'. Cette
donnée définit une structure de pentes & de largeur 1 sur I'.

On peut désormais définir 'espace Rat(D, &) comme l'espace des fonctions méromorphes
f € Rat(D) telles que :

e f est compatible avec les données d’arétes, c’est-a-dire que sa pente sur chaque aréte
e figure dans ’ensemble des r + 1 entiers prescrits par G sur e ; et

e f est compatible avec les données de sommets, dans le sens ou, autour de chaque
sommet v, le vecteur constitué de ses pentes sortantes le long de chaque aréte incidente,

. d . N
vu comme un point de 3", est un plat du matricube p, associé a v.

Il peut sembler étrange de demander que les vecteurs de pentes de f soient des plats
des matricubes attachés a chaque sommet, mais cela a en fait un sens géométrique dans
le contexte de la tropicalisation. Pour le voir, prenons X, une composante irréductible
(celle associée a v) de la courbe stable limite dans la famille dégénérescente. Soit H
I’espace vectoriel des réductions sur X, des fonctions appartenant a la série linéaire H de
la courbe C. Soit p un point de X,. Alors p définit un drapeau complet F; dans H en
considérant les ordres d’annulation, en p, des fonctions de H. Concretement, définissons
Sp = {ordp(f) ‘ feH~ {O}}, qui est un ensemble fini de cardinal r + 1, comme déja
mentionné, et notons ses éléments s, < --- < sP. Le drapeau E> est ensuite défini en posant,
pour j € {0,...,7},

Fl = {f e H\ {0} | ord,(f) = s} U {0}

En faisant cela pour chaque point singulier p de X situé sur X,, on obtient une collection
finie de drapeaux de H, et donc un matricube, ou fonction de rang.

Demander qu'un point du matricube soit un plat équivaut en fait a demander que le
vecteurs de pentes correspondant autour de v soit réalisé par une certaine fonction f de la
série linéaire. Par conséquent, si un sous-semi-module M de Rat(D) est la tropicalisation
d’une série linéaire géométrique H, et si on note & la structure de pentes définie a partir
de la donnée des ordres d’annulation des fonctions des réductions H de H en tous les points
singuliers de la courbe stable limite X, alors, en fait, M < Rat(D,S).

Nous avons maintenant une définition plus restrictive des séries linéaires sur les graphes,
mais qui englobe toujours toutes les tropicalisations de séries linéaires géométriques.
Nous montrons dans le Chapitre 3 qu'une telle tropicalisation a, en fait, des propriétés
supplémentaires, que I'on peut par conséquent, et en toute sécurité, ajouter a la définition des
séries linéaires combinatoires M < Rat(D, &) de rang (ou “dimension”) r. Ces propriétés
sont de diverse nature ; nous en donnons un apercu ci-dessous.

e Une condition de rang permet d’assurer que M contient suffisamment de fonctions
pour engendrer tous les diviseurs effectifs de degré r (voir la Section 3.4.1) ; ceci est
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I’équivalent tropical du fait que, comme H est un espace vectoriel de dimension r + 1,
on peut imposer r contraintes linéaires et toujours avoir des fonctions non nulles a
disposition.

e Une condition algébrique permet d’assurer que M est finiment engendré, en d’autres
termes qu’il existe un ensemble fini de fonctions de M qui engendrent M en utilisant
les opérations tropicales (voir la Définition 3.6.2).

e Une autre condition algébrique permet d’assurer que M a un rang tropical au plus
égal a r, ce qui signifie que, si fo, ..., fr41 est une collection de r + 2 fonctions de M,
alors elles sont nécessairement tropicalement liées, en ce sens qu’il existe des scalaires
coy - -+, Cri1 € R tels que pour tout x € I', le minimum dans

min (fi(z) + ¢)

O<i<r+1

est atteint au moins deux fois (voir la Définition 3.6.2) ; cette condition est 1’équivalent
tropical du fait que, comme H est un espace vectoriel de dimension r + 1, toute famille
de vecteurs de cardinal r + 2 est liée.

(Notons que le rang défini dans la premiere condition et le rang tropical défini dans la
derniere condition ne coincident pas nécessairement. A I'inverse, en algebre linéaire, la
dimension d'un espace vectoriel est égale a la fois au cardinal de toute base, et au nombre
maximal d’éléments linéairement indépendants. Le fait que ces notions different dans le
monde tropical participe de sa saveur mathématique particuliere.)

Dans le Chapitre 3, on définit par conséquent une série linéaire combinatoire comme
un semi-module M vérifiant toutes ces conditions, qui sont toutes compatibles avec la
procédure de tropicalisation.

Mais comment cela pourrait-il étre utile de complexifier de la sorte la définition 7 La
raison est qu’en ajoutant ces conditions et la donnée combinatoire constituée par la structure
de pentes G, on peut maintenant répondre positivement a des questions de représentabilité,
et démontrer d’autres types de résultats.

Voici un échantillon de ce que nous démontrons dans le Chapitre 3, et qui repose,
notamment, sur le travail concernant les matricubes présenté dans le Chapitre 2. Certains
de ces résultats nécessitent seulement un sous-ensemble des conditions requises pour les
séries linéaires combinatoires.

e Si M est une série linéaire sur I' et v est un sommet de I, alors tout plat du matricube
Py est réalisé par une fonction f e M (Théoreme 3.5.13).

e Par conséquent, si M < Rat(D, &) est une série linéaire, alors la donnée de & peut
étre entierement reconstituée a partir de M seulement (Corollaire 3.5.14).

e Il y a essentiellement un nombre fini de structures de pentes distinctes sur un graphe
métrique donné (Théoreme 3.4.4) ; cela peut s’interpréter comme un premier pas
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pour définir un espace de modules des séries linéaires sur I'espace de modules des
graphes métriques de genre fixé.

e Dans le cas r = 1, nous proposons une classification complete des séries linéaires sur
un graphe métrique fixé : elles sont essentiellement en correspondance bijective avec
les morphismes harmoniques finis depuis le graphe vers des arbres métriques (pour de
plus amples détails sur ce que cela signifie, voir la Section 3.8). Cela est analogue
a la description des séries linéaires algébro-géométriques de rang 1, et résulte d'une
description explicite de la variation des diviseurs réduits — en bref, des diviseurs qui
concentrent le plus grand coefficient possible en un point donné — définies par les
séries linéaires, par rapport au point base (voir Section 3.7).

e Par conséquent, toute série linéaire combinatoire de rang 1 est réalisable, c¢’est-a-
dire peut se réaliser comme tropicalisation d’une certaine série linéaire géométrique
(Théoreme 3.8.8).

Comme cela a été discuté plus haut, la définition d’une structure de pentes utilise la notion
de matricube développée dans la section précédente. En fait, ce nouvel objet combinatoire
est d’abord apparu naturellement dans ce contexte, comme une donnée combinatoire extraite
d’une série linéaire géométrique, et nous nous sommes rendu compte seulement dans un
second temps que les matricubes étaient des généralisations — relativement naturelles — des
matroides qui devraient étre étudiées en soi, d'un point de vue algébrique et combinatoire
(voir Chapitre 2).

Il y a également un lien étroit entre la théorie des séries linéaires combinatoires qui
vient d’étre présentée et ’étude de la tropicalisation des points de Weierstrass, sujet du
Chapitre 4, que nous résumons dans la derniere section de I'introduction.

Localiser la tropicalisation des points de Weierstrass grace aux séries linéaires
combinatoires — Chapitre 4

Dans le méme esprit que le Chapitre 3, le Chapitre 4 concerne la tropicalisation d’un
objet géométrique. De la méme maniere, il comporte, d'une part, le développement dune
nouvelle théorie du coté tropical et combinatoire et, d’autre part, ’étude du lien entre les
objets issus d’une tropicalisation et leurs homologues purement combinatoires.

Les objets géométriques dont il est question dans ce chapitre sont appelés points de
Weierstrass. Ce sont des points géométriques spéciaux définis sur des courbes algébriques.
Essentiellement, les points de Weierstrass sont une généralisation de ce qui est plus com-
munément nommeé les “points d’inflexion”, c¢’est-a-dire les points ou le signe de la courbure
change, par exemple dans I’étude des courbes réelles. A titre d’illustration, la Figure 1.5
ci-dessous montre les points d’inflexion d’une courbe elliptique réelle plongée dans le plan
réel. Néanmoins, on peut en fait définir les points de Weierstrass, de fagon plus générale,
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sur n’importe quelle courbe algébrique lisse X sur un corps algébriquement clos K. Pour
simplifier, nous supposerons que K est de caractéristique nulle.

Figure 1.5: La courbe elliptique réelle d’équation y?> = 2® — 2z + 2 et ses deux points
d’inflexion.

Une maniere de définir les points de Weierstrass dans le contexte plus général d'une
courbe algébrique, sans qu’elle soit forcément plongée dans un espace projectif, utilise
de fagon cruciale la théorie des diviseurs et des fonctions méromorphes sur les courbes
algébriques, exposée dans la section précédente de cette introduction.

Définissons pour cela quelques notions de base que nous n’avions pas encore fait 'effort de
définir jusqu’alors. Si D est un diviseur sur X, le systéme linéaire |D| de D est 1’ensemble
des diviseurs de la forme D + div(f) avec f dans la série linéaire Rat(D) de D. Plus
simplement, c’est ’ensemble des diviseurs effectifs qui peuvent étre obtenus a partir de D
en ajoutant le diviseur d'une fonction méromorphe. Le degré de D est la somme de tous
ses coefficients. Le rang de D est la dimension de I'espace vectoriel Rat(D) (moins un).
Il s’avere que le rang de D admet une définition alternative intéressante : il est égal au
plus grand entier r tel que pour tout point x € X, il existe un diviseur (effectif) £ dans
|D| dont le coefficient au point x est au moins r, c’est-a-dire £ = r (z) ; ou, de maniere
équivalente, c’est le plus grand entier r tel que pour tout choix de points z1,...,x, on X, il
existe un diviseur (effectif) £ dans |D| tel que € = (z1) + - -+ + (x,). En résumé, et comme
noté précédemment, le rang mesure la taille de la série linéaire (ou du systeme linéaire).

L’étude systématique des points de Weierstrass des courbes algébriques remonte aux
années 1870, lorsque Weierstrass et Schottky ont compris que les points de Weierstrass
étaient liés aux ordres d’annulation des fonctions méromorphes. En effet, ils ont d’abord
remarqué qu’étant donné un diviseur D de rang r, 'ensemble S(y) des ordres d’annulation
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décalés de toutes les fonctions méromorphes de Rat(D) en le point y, c’est-a-dire

S(y) = {D(y) + div(f)(y) | f € Rat(D)}
= {D(y) + ord,(f) | fe Rat(D)}
= {&(y) | £ €D},

qui est par définition toujours constitué d’entiers positifs, était en fait égal a ’ensemble
{0, ..., 7} pour tout y € X sauf pour un nombre fini de points ; et, de plus, que ces points
en nombre fini étaient exactement les points de Weierstrass de X.

Notons que la condition S(y) # {0,...,r} est équivalente a la condition max S(y) = r + 1.
Par conséquent, en utilisant 1'une des définitions du rang proposées ci-dessus, on voit qu'un
point de Weierstrass est un point y pour lequel il existe un diviseur dans le systeme linéaire
de D ayant un coefficient en y strictement plus grand que r, la plus grande valeur attendue.
L’existence d'un tel diviseur explique pourquoi les points de Weierstrass sont les points ou
se produit une certaine forme de “résonance”, qui correspond géométriquement a un point
d’inflexion. Si S(y) est méme strictement supérieur a r + 1, le point de Weierstrass y a en
quelque sorte une multiplicité supérieure, ce qui indique qu'un phénomene géométrique
d’ordre supérieur a lieu. En additionnant les points de Weierstrass de D — en nombre
fini —, comptés avec leur multiplicité, on obtient un nouveau diviseur W(D), le diviseur de
Weierstrass de D.

Ceci est bien connu et a été tres étudié depuis plus d’un siecle, mais a priori, on peut
définir les points de Weierstrass seulement sur les courbes lisses. On ne sait pas comment
les définir de facon pertinente, par exemple, sur des courbes stables en toute généralité. Ce
probleme est, aujourd’hui, toujours ouvert.

Un premier pas dans cette direction est 1’étude de ce qui arrive aux points de Weierstrass
sur des courbes lisses lorsqu’on fait dégénérer une famille de courbes lisses vers une courbe
stable limite, dans le contexte de dégénérescence des familles discuté dans la section
précédente de cette introduction. Si I'on se permet des notations moins générales mais plus
intuitives, imaginons que l'ont ait une famille & un parametre (X;);»o de courbes lisses,
munie d’'une famille lisse de diviseurs (D;);0, chaque D; étant un diviseur sur X;. Pour
tout ¢t # 0, on dispose des points de Weierstrass de D;, en nombre fini, et donc d’'un diviseur
de Weierstrass W(D,), sur X;. Nous pouvons maintenant reformuler notre question :

Question 1.0.2. Supposons que la famille peut étre complétée en une famille (Xy):, la
fibre spéciale Xo étant une courbe stable. Quel peut étre le comportement asymptotique de
W(Dy) lorsque t — 0 2

Ou encore, en adoptant un autre point de vue, si X, est une courbe stable donnée,
peut-on localiser, sur X, toutes les limites possibles de points de Weierstrass pour des
familles (X;) qui dégénerent en X, ? Plus largement, le probleme visant a construire un
espace de modules paramétrisant tous les points de Weierstrass limites possibles d’une
courbe stable donnée a été soulevé par Eisenbud et Harris [EH86, EH87a].
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Pour une famille (X;) comme ci-dessus, il y a deux types de points de Weierstrass sur la
courbe lisse X; :

(a) ceux qui, lorsque t — 0, dégénerent hors des neeuds de la courbe stable X ; et
(b) ceux qui, lorsque ¢t — 0, dégéneérent vers un neud de Xj.

Les points de type (b) sont plus difficiles & comprendre, et c¢’est sur eux que se concentre
le Chapitre 4. Des progres graduels ont été faits sur cette question, sous certaines condi-
tions combinatoires sur la courbe stable Xy. Dans [Amil4], Amini démontre un résultat
d’équidistribution pour les points de Weierstrass des puissances d’un fibré en droites, en
utilisant une description concrete des points de Weierstrass limites. Nous proposons une
étude plus raffinée des points de Weierstrass, avec I’apport de la géométrie tropicale.

Pourquoi la géométrie tropicale est-elle utile pour étudier les points de Weierstrass
dégénérant vers un noeud ? C’est parce que la géométrie tropicale fournit des outils pour
“dérouler” les singularités et regarder de plus pres ce qui se passe “a U'intérieur”. En effet,
comme exposé précédemment dans cette introduction, la tropicalisation de la famille (X;)
donne naissance a un graphe métrique dont chaque sommet v correspond a une composante
irréductible X, de Xy, et chaque aréte e = uv correspond a un point d’intersection entre
les composantes irréductibles X, et X,. De surcroit, les propriétés de la procédure de
tropicalisation impliquent que si un point p; de X;, t # 0, dégénere, lorsque ¢ — 0, vers un
neeud p € X, n X, de Xy, alors il atterrira sur ’aréte e = uv du graphe métrique a une
position qui dépend de la maniere dont il dégénere vers p. C’est pourquoi étudier ou les
points de Weierstrass dégénerent sur chaque aréte du graphe métrique associé a la famille
(X¢): donne de I'information sur la géométrie de cette famille. C’est ce chemin que nous
suivons dans le Chapitre 4. Nous allons maintenant expliquer comment.

L’approche naturelle, dans le méme esprit que la théorie combinatoire des séries linéaires,
est de définir ce que devraient étre les points de Weierstrass tropicauz, et ensuite d’étudier
leurs liens avec les tropicalisations de points de Weierstrass géométriques.

Pour définir les points de Weierstrass tropicaux d’un diviseur D sur un graphe métrique
I', on peut raisonner par analogie avec la définition géométrique. Le degré de D est la
somme de ses coefficients, et son rang est le plus grand entier r tel que pour tout choix de
points z1, ..., x, € ', il existe un diviseur (effectif) E dans |D| tel que E = (x1) + -+ (z,).
Pour définir les points de Weierstrass de D, on utilise également une analogie avec la
géométrie : un point x € I' est dit de Weierstrass pour D lorsque la valeur maximale de
D(z) + div(f)(x) pour f € Rat(D) est au moins égale a r + 1.

A titre d’exemple, la figure ci-dessous, issue de la Section 4.3.1, montre le graphe complet
a quatre sommets, muni du diviseur K (pour “canonique”) de degré 4 et de rang 2, ayant
pour coefficient 1 sur chaque sommet. (Le diviseur canonique est défini par K(z) = d, — 2
pour tout x € I'; ol d, est la valence de z. Son degré est toujours 2g — 2, et son rang g — 1,
ou g est le genre de I'.) L’ensemble des points de Weierstrass tropicaux est représenté en
rouge sur la partie droite de la figure. Notons qu’a chaque point de Weierstrass peut étre
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attribuée une multiplicité de 2, parce que la valeur maximale de K(x) + div(f)(z) pour
f € Rat(K) est en fait 4 = r + 2.

1 2

Figure 1.6: Graphe complet a quatre sommets, et le diviseur de Weierstrass du diviseur
canonique K.

Cette définition donne déja des résultats intéressants. Baker a montré [Bak08, Lemma 2.8]
que les points de Weierstrass tropicaux sont compatibles avec les points de Weierstrass
géométriques, dans le sens ou si on dispose d'une famille dégénérescente de courbes munies
de diviseurs, les limites des points de Weierstrass géométriques sont parm: les points de
Weierstrass tropicaux.

Mais en géométrie tropicale, les choses ne se passent pas toujours aussi harmonieusement
qu’en géométrie algébrique classique, comme on 1’a déja noté pour ce qui est des séries
linéaires... Il se trouve que contrairement aux points de Weierstrass géométriques, les points
de Weierstrass tropicaux ne sont pas nécessairement en nombre fini | Par exemple, sur le
graphe “haltere” ci-dessous, en choisissant le diviseur canonique K qui a pour coefficient
1 sur chacun des deux sommets, ’aréte centrale est entierement constituée de points de
Weierstrass. C’est pourquoi on parle du lieu de Weierstrass (potentiellement infini) d’un
diviseur D, que I'on notera L, (D).

Figure 1.7: Le graphe “haltere” et le lieu de Weierstrass tropical du diviseur K. Chaque
point de Weierstrass isolé, en rouge, a multiplicité 1 mais, a ce stade, on ne sait
pas associer une multiplicité a I'aréte centrale.

Ceci entraine que, si une famille dégénérescente de courbes avec des diviseurs a ce graphe
métrique et ce diviseur pour tropicalisation, on ne sera pas capable de déterminer exactement
ou les points de Weierstrass atterrissent si leur limite appartient a ’aréte rouge. La seule
chose que 'on pourrait tenter de déterminer est le nombre de points de Weierstrass qui
atterrissent sur l'aréte rouge, si tant est qu’il soit possible de répondre a cette question.
Mais comment trouver une facon naturelle de définir une multiplicité pour 'aréte centrale
semblable a celle pour les points isolés, dans le but de répondre a cette question d’une
maniere satisfaisante 7
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C’est précisément ce que nous faisons dans la Section 4.3, en deux étapes.

(1) Premierement, remarquer que le lieu de Weierstrass tropical L, (D) est un sous-
ensemble “sympathique” de I' : il est fermé et a un nombre fini de composantes

connexes.

(2) Deuxieémement, trouver une fagon signifiante d’étendre la multiplicité d’un point
de Weierstrass isolé a n'importe quelle composante connexe du lieu de Weierstrass
tropical.

Voici comment définir cette multiplicité. Soit D un diviseur de rang r, et soit C
une composante connexe du lieu de Weierstrass tropical Ly (D). On définit le poids de
Weierstrass tropical de C' comme

(G5 D) = deg (D) + (9(C) — i — Y s(D) (11)
ved™C

ou

deg (D\C) est le degré total de D dans C, défini par deg (D]C) =Y ec D(@) ;

g(C) est le genre de C, c’est-a-dire son premier nombre de Betti dim H;(C,R) ;

0" C' est 'ensemble des directions tangentes sortantes a partir de C' ; et

s§(D) est la pente minimale d'une fonction f € Rat(D) le long de la direction tangente
V.

Observons que cette définition n’utilise que des données combinatoires finies sur I" et D.
Le fait que la pente minimale s{(D) est bien définie et facilement calculable découle du
travail présenté dans la Section 4.2.

Il s’avere que le poids tropical d'une composante connexe réduite a un singleton coincide
avec la multiplicité usuelle évoquée pour un point isolé. Mais ces poids sont-ils intéressants
pour répondre a notre question de dégénérescence 7 Oui, parce qu’ils mesurent des
phénomenes intéressants, a la fois du point de vue tropical et du point de vue géométrique.

Du coté tropical, les poids se comportent bel et bien comme s’ils comptaient quelque
chose. En effet,

e pour toute composante connexe C, u,(C; D) est un entier strictement positif ; et

e la somme des poids pu, (C; D) sur toutes les composantes connexes vaut d — r + rg,
donc est fonction seulement des caractéristiques combinatoires de I' et D.

Ces résultats répondent notamment a une question soulevée par Baker, qui a fait le
commentaire suivant [Bak08, Remark 4.14] concernant un éventuel analogue tropical d’un
fait bien connu en géométrie algébrique pour le diviseur canonique : “it s not clear if there
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is an analogue for metric graphs of the classical fact that the total weight of all Weierstrass
points on a smooth curve of genus g =2 is g —g”.

Du coté géométrique, de bonnes nouvelles nous attendent également. Comme nous le
montrons dans la Section 4.3, nous disposons du théoreme suivant (Théoreme 4.1.10).

Theorem 1.0.3. Supposons que nous ayons une famille de courbes lisses (X;)iz0, munie
d’une famille de diviseurs Dy, et dégénérant vers une courbe stable Xy. Soit I' le graphe
métrique associé, par la procédure de tropicalisation, a la famille (Xy):, et soit D la
tropicalisation des Dy. Soit W(Dy), pour tout t, le diviseur de Weierstrass de Dy, et soit C
une composante conneze du lieu de Weierstrass tropical Ly (D) de D. Supposons de plus
que Dy et D aient le méme rang.

Alors le nombre de points de W(D;) qui convergent vers un point de C' lorsque t — 0 est
dénombré par le poids 1, (C; D), multiplié par r + 1.

Ce théoreme a pour conséquence que les points de Weierstrass géométriques se trop-
icalisent par paquets de r + 1, ce qui généralise un résultat obtenu par Brugallé et De
Medrano [BDM12] sur les multiplicités des points de Weierstrass tropicaux en rang 2.

Dans la Section 4.5, nous démontrons, en fait, une version locale et plus générale de ce
résultat qui, entre autres, implique le résultat suivant.

Theorem 1.0.4. Reprenant les notations du Théoréme 1.0.3, si de plus D est de rang au
moins 1, alors n’importe quel cycle du graphe métrique ' intersecte le lieu de Weierstrass
tropical Ly, (D).

Ce résultat, qui est local, ne semble pas avoir d’analogue pour les courbes algébriques :
la géométrie tropicale a ses propres idiosyncrasies et ne s’aligne pas nécessairement sur la
géométrie algébrique ! En outre, ceci généralise un résultat global obtenu par Baker [Bak08],
énoncant que le lieu de Weierstrass tropical L, (K) du diviseur canonique est non vide si I’
a un genre au moins égal a deux.

Le Théoreme 1.0.4 implique, en particulier, que si le lieu de Weierstrass tropical est fini,
alors tout cycle dans T’ contient un point de Weierstrass limite de la famille (X):, ce qui
est une contrainte relativement forte sur le comportement limite des points de Weierstrass.

J’ai promis qu’il y avait un lien étroit entre les points de Weierstrass tropicaux et les séries
linéaires combinatoires, mais cela n’est toujours pas visible ! En fait, les séries linéaires
combinatoires sont cruciales dans la preuve du Théoreme 1.0.3. En effet, pour étudier la
tropicalisation des points de Weierstrass de la famille de diviseurs D; sur Xy, il est capital
de ne pas seulement considérer le diviseur tropicalisé D, mais aussi la structure de pentes
définie par la série linéaire géométrique Rat(D;), en se souvenant des ordres d’annulation
(conjoints) des fonctions méromorphes réduites en les nceuds de Xy, comme décrit dans
la section précédente de cette introduction. En résumé, cette preuve illustre le fait que
les séries linéaires combinatoires (incluant la donnée de leur structure de pentes) portent
une quantité d’information combinatoire qui se trouve étre la bonne dans I’étude de la
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tropicalisation de certains objets géométriques, que ce soit les séries linéaires ou les points
de Weierstrass.
Bien stur, certaines complications techniques ont ici été mises sous le tapis. Notamment :

e Une formulation rigoureuse des théoremes ci-dessus nécessite de considérer non
seulement des graphes métriques, mais plus généralement des graphes métriques
augmentés, c’est-a-dire des graphes métriques munis d’une fonction de genre g associant
a chaque sommet un entier positif. Le nombre g(v) encode le genre de la composante
irréductible X, de X,.

e Il est de plus nécessaire de définir les points de Weierstrass non seulement d’un diviseur
D, mais aussi de tout sous-semi-module M < Rat(D) raisonnable ; en particulier, de
toute série linéaire combinatoire.

Ces raffinements sont ’objet de la Section 4.4. Notons que les résultats présentés ci-dessus
ne valent pas seulement si le corps de base K est de caractéristique nulle ; nous proposons
des adaptations au cas de la caractéristique positive, ce qui laisse entrevoir des applications
potentielles en géométrie arithmétique.

Pour une gamme d’exemples commentés de lieux de Weierstrass tropicaux, montrant la
diversité combinatoire de ces objets, nous renvoyons la lectrice ou le lecteur a la Section 4.6.

12

2 2

Figure 1.8: Un graphe avec deux ponts (ou isthmes) et le lieu de Weierstrass Ly (K) du
diviseur canonique K.
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English version

This introduction aims to sum up the content of the thesis manuscript, avoiding technical
details which will be developed in the subsequent chapters. It should be useful both for a
person interested to read the full manuscript and for a non-specialist wanting to peek an
eye into these topics without reading the full text.

The goal of this PhD thesis is to study some aspects of tropical geometry related to
algebraic geometry.

In a nutshell, many classical algebro-geometric objects — such as curves, divisors on
curves, spaces of functions on curves, or special points on curves — can be deformed into
other geometric objects of a much simpler kind, having combinatorial features, through a
procedure called “tropicalization” — see below for more details. A central theme in this thesis
consists in studying the tropicalization of some of these algebro-geometric objects. Firstly,
by developing metric and combinatorial theories to describe the tropicalized objects we can
obtain; secondly, by drawing links between the properties of these tropicalized objects and
the original objects; and thirdly, by exploring the question of whether a given metric or
combinatorial object can be obtained from a classical object through the tropicalization
procedure.

The inspiration for this PhD project stems from the study of linear series from the
point of view of tropical geometry, which has been a tremendous success in applying
tropical methods. The tropicalization procedure allows to transform the global sections
of a line bundle into piecewise affine linear functions with integral slopes on a polyhedral
object. Baker’s specialization inequality in dimension one [Bak(08, Lemma 2.8], as well as
its generalization to higher dimensions given by Cartwright [Carl9, Car21], then permit to
compare the dimension of the space of global sections of the line bundle with a notion of
combinatorial rank associated to the tropicalization.

In the present manuscript, we will mainly care about one-dimensional objects, that
is, algebraic curves, metric graphs, and the associated geometric structures. That being
said, we will discuss in Section 5.4 some generalization perspectives for our results to
higher dimensions, in connection with the work by Cartwright mentioned above, which,
from a personal standpoint, has been my point of entry into tropical geometry during the
preparation of my master’s thesis.

In the next section of this introduction, we give an intuitive approach on the tropicalization
procedure which we hope to be helpful to understand how tropicalization works.

The tropicalization procedure and the spirit of tropical geometry

The visual intuition most people have about tropical geometry is that it provides
procedures to deform algebraic varieties to the point where they turn into polyhedral
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objects, like cone complexes or polyhedral complexes, sometimes with some well-chosen
additional combinatorial data.

The point of this type of transformation is that the polyhedral objects it spits out
are fundamentally easy to study, because they can be described using a finite amount of
combinatorial information (the equations defining of each polyhedron, for instance).

Also, and crucially, tropical transformations do not yield “random” objects: they deform
algebraic varieties (or other objects) in such a way that some relevant information is
preserved and can be measured on the polyhedral side to learn more about the original
geometric objects.

This is why some people describe tropical geometry as “a combinatorial (or piecewise
linear) shadow of algebraic geometry” [MR18, MS21].

The first actual tropicalization procedures have been defined in the early 1970’s by
Bergman [Ber71]. They applied mainly to affine or projective algebraic varieties over the
field C of complex numbers, and used logarithmic functions to transform these geometric
objects.

As an example, consider the set £ of complex points (z1, 29) € C? such that z; + 2z, —1 = 0.
This is simply a complex line in the complex plane. Now define, for some 0 < ¢ < 1, the
set L; of points in R? defined by taking the logarithm of the modulus of points of L,
coordinate-wise:

Ly = {(z,y) = (log,(|z1]), logy(|22]) | (21, 22) € L},

where log,: R.y — R denotes the base ¢ real logarithm. L; is a curved, real object, of real
dimension two (like £), and called an amoeba, see the left part of Figure 1.9.

(0, +o0)

(400,0)

Figure 1.9: Amoeba and tropicalization of the complex line L.

If we choose another real number ¢ such that 0 < ¢’ < ¢, then the amoeba Ly is simply
obtained from the amoeba L; by a homothety of factor % < 1: the amoeba “shrinks”

more and more as ¢t becomes smaller.
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The interesting phenomenon, at the core of tropical geometry, happens if we let t — 0.
In this case, the curved object L, will degenerate to some limit object Lgy, which has the
property of being fully polyhedral. Lg is called the tropicalization of the complex curve
L. Since L is a complex line, L is in fact a very fundamental object in tropical geometry,
an elementary building block of tropicalizations called the tropical line in the plane. It
is one-dimensional and made up of three real half-lines: a vertical one, a horizontal and
a diagonal one (see the right part of Figure 1.9). Each of those half-lines corresponds
to a specific joint behavior of the variables z; and z;. For instance, the vertical half-line
corresponds to the situation where |21| is close to 1 and zs close to 0.

Note that, strictly speaking, since £ intersects the coordinate axes of C2, the tropical
line contains two points “at infinity”, in a framework that can be made rigorous. This
technicality is avoided if we consider a subvariety of (C*)".

Moreover, note that, for each particular point (z1, z2) € £, each coordinate of the limit
point lim;_,o(log,(|21]), log,(|22|)) belongs to the finite set {0, +o0}. Nevertheless, the tropical
line Ly is the one-dimensional object obtained as the limit set (in the Hausdorff topology)
of L, ast — 0, i.e., in this particular case, the intersection of all amoebas L; for ¢ # 0.

A theorem of paramount importance, the fundamental theorem of tropical geometry, gives
an effective description of the tropicalization of an algebraic variety. If, to take the simplest
situation, an algebraic variety ¥V < C" is defined by the vanishing of some polynomial in
n variables P = Y}, a X - Xk with ay € C, then we can associate to P a tropical
polynomial trop(P) obtained by replacing every occurrence of the multiplication by an
addition, and every occurrence of the addition by a minimum (or maximum, depending
on the convention). This is why the algebraic formalism using these tropical operations is
called the tropical algebra, or maz-plus algebra. This way, trop(P) becomes a real-valued,
piecewise linear function R” — R, defined by

trop(P)(z1,...,x,) == Iilégl(/{?l X1+ k),
where S < N is finite. In a more general case, the coefficients ay depend on ¢, and we
therefore have a family of subvarieties of C"; the tropicalization of P is, in this broader
case, a piecewise affine linear function. This will be discussed in more detail later on.

The fundamental theorem of tropical geometry describes the tropicalization V' of V
as the set of points (z1,...,x,) € R™ where the tropical polynomial trop(P) wvanishes
tropically; and this is said to happen at a point (z1,...,x,) € R” whenever the minimum
in mingeg(ky - x1 + -+ + ky - 2, is achieved at least twice.

In our example above, n = 2, P = Z; + Zy — 1 and trop(P) = min(z,y,0), whose set
of tropical roots is indeed the three half-lines shown in Figure 1.9. Indeed, the horizontal
(resp. vertical, resp. diagonal) half-line corresponds to the case where the terms z and 0
(resp. y and 0, resp. z and y) of trop(P) realize the minimum together, and the origin
corresponds to the joint realization by all three terms. If we replace the polynomial P by
the polynomial P, := Z; + Zs —a with a € C*, we get exactly the same tropicalization. The
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case a = 0, however, stands out, as the tropicalization of the polynomial Fy := Z; + Z5 is the
function defined by trop(Fp)(z,y) = min(z,y, +00) = min(z, y). This is why in the above
example, we didn’t chose the complex line defined by z; + 29 = 0, whose tropicalization is
a degenerate version of the above tropical half-line, with only a diagonal line of equation
x=y.

For a general subvariety V < (C*)", it turns out that the tropicalization V' will always
be the support of a polyhedral fan, i.e., the support of a nice arrangement of polyhedral
cones, of pure dimension the complex dimension of V. Figure 1.10 shows examples of
one-dimensional polyhedral fans in R2.

\7

Figure 1.10: Three one-dimensional polyhedral fans in R2.

Can we generalize this kind of procedure to more general contexts, for example, for
a variety over a field other than C? The answer is yes: there is a nice tropicalization
procedure for varieties over fields endowed with a non-Archimedean valuation, which opens
new perspectives.

A non-Archimedean valuation val on a field K is a function

val: K — R,
where R := R U {+00}, such that the following properties hold.
(1) For every z € K, we have val(z) = +co if, and only if, x = 0.
(2) For every z,y € K, val(zy) = val(z) + val(y).

(3) For every z,y € K, val(x + y) > min(val(x),val(y)), and the equality holds if
val(z) # val(y).

These properties are partially similar to the algebraic properties of the function
lir%logt(] ]): C - {0,400} =R

used in the first kind of tropicalization procedure, which is in fact called the trivial valuation
on C and is defined by val(z) = 0 for every z € C* and val(0) = +o0. A key example of
non-Archimedean valuation is the degree in t, or t-adic valuation, defined on the field x((t))
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of formal Laurent series over &, for a field &, or on the field k{{t}} of Puiseux series over k&,
which has the additional — and often useful — property of being algebraically closed.

As an illustration, the tropicalization of an affine variety V < (k{t}}*)" cut out by an
ideal of k{{t}}[Z1, ..., Z,] is defined, by analogy with the above procedure, as the closure
of the image of V by the function

trop: (r{th*)" — R”
(Rl, .« oy Rn) = (val(Rl), e ,Val(Rn)),
where val denotes the t-adic valuation. Again, trop(V) will be a nice polyhedral space,

with some finite parts together with some infinite parts which have to be handled with care.
Figure 1.11 shows an example of a tropicalized curve which can be obtained in this way.

Figure 1.11: The tropicalization of an algebraic curve.

The tropicalization procedure for fields endowed with a non-Archimedean valuation is
particularly useful in the study of degenerations of a family of smooth algebraic varieties to
a (possibly non-smooth) limit variety.

Imagine a family (X;) of smooth algebraic varieties over a field x, varying algebraically
with a parameter ¢ belonging to some base, like a punctured disk A*. Algebraic geometry
and singularity theory strive to answer questions such as the following ones.

e What is the possible behavior of the variety X; as ¢t — 07
e What are the possible limit varieties X7

e What about the limit behavior of a family of line bundles on X, or other geometric
objects defined on X7

Such a degenerating family, where each variety is defined over a common field s, can be
modeled by a variety over a base of dimension one, like x((¢)) or x{{t}} (let’s say r((t))
for simplicity). Then, every extension of this family to ¢ = 0 will be called a model, and
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will be described by a scheme X over the ring R = x[[t]], whose field of fractions is x((t)).
The models which are of interest to us, with nice properties, are called semistable. Their
existence is assured in characteristic zero, and typically requires passing to a finite field
extension of k((t)). The generic fiber of X (the fiber over the complement of 0) essentially
remembers the part of the degenerating family where the varieties are smooth, and the
special fiber (the fiber over 0) is the limit variety X, which will typically have singular points.
Since R is endowed with a non-Archimedean valuation, the family X can be tropicalized
using the procedure described above, by putting coordinates on the family.

This is, in a nutshell, the reason why studying the degeneration of a family of algebraic
varieties can make use of the tropicalization of this family into a polyhedral object. This
object, depending on the procedure we use, can either be an unbounded object like cone
complex (more generally, a polyhedral complex, see Figure 1.11), or a bounded object like a
metric graph. Such a graph appears in fact as a skeleton of a polyhedral complex, both
of these objects being obtained from the family of varieties by alternative tropicalization
methods.

A more precise explanation of how this works involves some basics of Berkovich theory.
In this domain, we define a topological space associated to an affine variety V < (K*)"
cut out by an ideal Z of K[Z, ..., Z,]. The points z of this topological space parametrize
semi-valuations v, on the ring K[Z, ..., Z,]/Z which extend the valuation val on K. It
turns out that this space, called the Berkovich analytification V* of V, is well-behaved:
it is Hausdorff, path-connected, locally akin to a polyhedral space, and it deformation
retracts to compact polyhedral subspaces, its skeleta. Moreover, V" naturally contains V,
the possible tropicalizations of V all come from projections of the analytification, and this
analytification is the projective limit of all the tropicalizations of ¥V [Pay09, FGP14].

At this point, let us broaden the perspective a little bit. A tropicalization procedure
for varieties defined over a field with a non-Archimedean valuation allows to tropicalize
families of varieties, which will help study singularities in a degeneration context. In fact,
if some geometric object (e.g. a vector bundle, or a space of sections of such a bundle)
is defined smoothly over such a family, there also are tropicalization procedures for these
objects. This will be a red thread in the present manuscript, which will revolve, among
others, around the tropicalization of linear series (vector spaces of sections of a line bundle)
and Weierstrass points (special geometric points on algebraic curves). We refer to the
discussion about Chapters 4 and 3 later in this introduction for the follow-up of this story.

Now that the reader has some keys to understand tropicalization, we describe the
organization of the manuscript in the next section.

Organization of the manuscript

The thesis manuscript is divided into five chapters.
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The first chapter is the present introduction, which aims to sum up the content of the
thesis, also introducing it to non-specialists.

Chapters 2, 3 and 4 correspond approximately to the three preprints [AG22, AGR23,
AG24], respectively. More exactly, these chapters consist in more or less extensive expansions
on the corresponding articles: the results, figures or comments that have been removed
or shortened in the papers for length or conciseness reasons are kept in full length in the
present manuscript.

Chapters 2 and 3 have been written with Omid Amini. Chapter 4 has been written in
collaboration with Omid Amini and Harry Richman, from the University of Washington,
Seattle.

Chapter 2, based on [AG22], defines new combinatorial objects, dubbed matricubes, which
turn out to be a new generalization of well-known combinatorial objects, called matroids.

Chapter 3 uses, among others, the formalism of matricubes to lay down the foundations for
a new, purely combinatorial theory of limit linear series, allowing to study the tropicalization
of algebraic linear series from algebraic curves to metric graphs in greater depth.

Chapter 4 expands on previous work related to tropical Weierstrass points and yields
new localization results for the tropicalization of Weierstrass points from algebraic curves
to metric graphs.

Finally, Chapter 5 sums up the various kinds of open questions which arose along the
way and proposes a few possibly interesting research directions starting from there.

An acknowledgments section is located on page 3, followed by a bilingual preface, before
the table of contents.

There is a unique bibliography for the whole manuscript, combining the bibliographies of
all chapters and located at the end of the manuscript.

We will now introduce Chapters 2, 3 and 4 of the manuscript in greater detail.

Matroids and matricubes — Chapter 2

Chapter 2 is a purely combinatorial chapter which is based on [AG24] and takes its
roots in the fundamental concept of matroid. A matroid is a combinatorial object which
abstracts and axiomatizes the linear dependence relations between vectors in a vector space,
remembering only “who is linearly dependent with whom”, without keeping the whole
information on those vectors.

For example, let (e;) be the canonical basis in R3, and define the following configuration
of vectors.

T = €1,T2 = €2,T3 = €3
$4:0

Ty = €1 + €2

This configuration of vectors can be represented by the following matrix, where each column
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represents a vector:

Let us now make a list of all independents, i.e., linearly independent sub-families of vectors
among the (z;), described by their indices.

S ={o, {1}, {2}, {3}, {5}, {1, 2}, {1, 3}, {1,5}, {2, 3}, {2,5}, {3, 5}, {1, 2,3}, {1, 3,5}, {2,3,5}}

Here, independents can be viewed as subsets of the set of columns of the matrix above, i.e.,
subsets of {1,2,3,4,5}, forgetting the exact values of the vectors.

But the set .# of independents of a configuration of vectors cannot be any collection of
subsets of {1,2,3,4,5}, because it has to satisfy some non-trivial combinatorial properties.
A matroid (literally, “resembling a matrix”) is precisely a way to axiomatize and abstract
the combinatorial properties of the set of independents of a configuration of vectors.

More formally, a matroid can be defined as a set E together with a collection .# of
subsets of E verifying the following three properties:

(I1) @ € .# (or, equivalently using (12), . # @).
(I2) (Hereditary property) If I € .# and I’ < I, then I' € .¥.

(I3) (Independence augmentation property) If Iy, Ir € .# and |I1| < |I5], then there exists
an element e € I, \ I; such that I; U {e} € .Z.

It is easily shown that the set of independents of a configuration of vectors satisfies the
above properties. What is less obvious is that this axiomatic system leads to an interesting
and mathematically rich combinatorial object.

It turns out that there are numerous different definitions of matroids which lead to the
same concept of matroid. For example, instead of defining a matroid by its independents,
we could define it by its bases, a collection of subsets verifying another specific axiomatic
system mimicking the behavior of actual bases in configuration of vectors. To satiate the
reader’s curiosity, here is one possible version of the axiomatic system defining a matroid
using its collection A of bases:

(Bl) & + @.

(B2) (Basis exchange property) If By, By € 2 and x € By \ By, then there exists y € By \ By
such that By \ {z} u {y} € A.

If T give you the set of independents of a matroid, you could also easily deduce the set of
bases of that matroid, just by choosing only the mazimal independents. For example, the
configuration of vectors described above has three bases:

B = {{1,2,3},{1,3,5},{2,3,5}}.
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As an alternative way of describing a matroid, we could also remember, for each subset
of the family of vectors, the dimension of the vector subspace spanned by these vectors,
obtaining a rank function. Such a rank function also satisfies some precise combinatorial
properties which give rise to an axiomatic system, and not every function whose values are
non-negative integers can arise this way. These definitions, along with dozens of others,
yield the exact same theory of matroids: they are called cryptomorphic. They have been
widely studied for almost a century, see for instance [Whi92, Ox106].

For the purpose of introducing Chapter 2, it is useful to note that to each configuration
of vectors in a vector space can be associated a hyperplane arrangement in the dual vector
space (here, by an abuse of language, a hyperplane can be either an actual hyperplane or
the whole space, when the dual vector is the zero vector).

This way, we can also associate a matroid to each hyperplane arrangement. If Fy, ... F,
are hyperplanes in a vector space H, we can define the rank function which, to each
A < {1,...,m}, associates the natural number r(A) = codimy((),. 4, F;). This rank
function satisfies the properties of the rank function of a matroid.

We can now introduce matricubes. These new combinatorial objects, defined in Chap-
ter 2, appeared naturally as a generalization of the preceding construction: what kind of
combinatorial object do we get if we replace the hyperplane arrangement above by a flag
arrangement? More precisely, imagine that for each j € {1,...,m}, F} is a decreasing flag

H=F) 2F =2---2F ' 2F],

where r < dim H and, for each 1, F;“ is of codimension at most 1 in F}. If we define, for
every = (x1,...,%y), x; € {0,...,7}, the rank of z as

r(z) = codimy(F{* n--- A Frm))

then such a rank function is a generalization of a matroid’s rank function. It satisfies
an axiomatic system similar to that of matroid rank functions, adapted to the fact that
its source is the hypercube 8, := {0,...,7}™ instead of P({1,...,m}) ~ {0,1}", and
using the poset structure on &3, . We dub this a matricube, a name that we justify in
Section 2.2.3.

Below is an example of a matricube, described by its rank function, and originating from
a pair of four-step flags in a four-dimensional vector space, taken from Section 2.2.2. The
origin of the array (the smallest indices) is in the bottom left-hand corner, following the
convention that we use for all arrays throughout Chapter 2.

3 3 4 4
2 2 3 4
1123
0123

Note that rank functions of matricubes need not be symmetric like this one. Moreover, since
this matricube comes from an actual configuration of vectors, it will be called representable.
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The study of representability questions about matroids is an area of research on its own.
In Chapter 2, we ask some representability questions about matricubes, and answer some
of them (see Section 2.9.3). We also show that a matricube contains a collection of “local
matroids” that govern its combinatorial properties (see Section 2.8).

The main part of the work presented in Chapter 2 explores the combinatorial properties
of matricubes, related to their poset structure and to the discrete convexity properties of
their rank functions. We also propose a few different, however equivalent (more exactly,
cryptomorphic), definitions of matricubes, using the rank function (Section 2.2), the
collection of independents (Section 2.5), and other collections (flats, circuits in Sections 2.3
and 2.4) generalizing their matroidal counterparts and mimicking concrete features of
configurations of vectors. In this context, independents, flats and circuits are special points
of the hypercube G5 . Surprisingly, at this point of the exploration of matricubes, we were
not able to provide a relevant and interesting axiomatization of the collection of bases of a
matricube, which raises interesting open questions (see Section 2.9.1).

Furthermore, in addition to a dedicated axiomatic system, independents, flats and circuits
have explicit and concrete descriptions for a matricube given by its rank function. For
instance, the flats of a matricube are all the points of the hypercube GF, such that moving
by a unit in any positive direction (whenever this is possible) leads to an increase of the
value of the rank function. As an example, the flats of the rank function defined above are
represented in blue below. Note that the set of flats has the structure of a graded lattice,
which is a general property.

3 3 4 4
2 2 3 4
112 3
0123

Another combinatorial property of matricubes, proved in Chapter 2, is their link with a
combinatorial object generalizing permutation matrices to higher dimensions. A permutation
matriz is an n x n square matrix filled with ones and zeroes and encoding a permutation o
of n elements: the coefficient a;; is equal to 1 if, and only if, o(i) = j. For example, the
matrix below (represented using the usual notational convention for matrices, the origin
thus being the top left-hand corner) is the one associated to the permutation o = (14)(235)

of five elements.
0

e}

o~ o oo
o

_ o o o o
oo o~
oo~ o

0 0

=}

These objects are interesting as such, but one could rightfully ask: does this notion admit
interesting generalizations to higher dimensions? There are, indeed, several generalizations.
You could for example think of the following (all equivalent) definitions of permutation
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matrices, and consequently suggest the corresponding (non-equivalent) higher-dimensional
generalizations.

(a) A permutation matrix is a 0-1 square matrix such that each complete straight line
(where only one coordinate varies), i.e., each row and column, contains 1 exactly once.
v~ A higher-dimensional permutation matrix is a 0-1 square higher-dimensional array
such that each complete straight line (where only one coordinate varies) contains 1
exactly once.

(b) A permutation matrix is a 0-1 square matrix such that each one-codimensional layer
(with only one coordinate fixed), i.e., each row and column, contains 1 exactly once.
v A higher-dimensional permutation matrix is a 0-1 square higher-dimensional array
such that each one-codimensional layer (with only one coordinate fixed) contains 1
exactly once.

(c) A permutation matrix is a 0-1 square matrix such that for each choice of indices (i, ),
the sub-matrix made up of the elements of indices at least (i,j) (coordinate-wise)
has the property that the number of rows containing 1 at least once is equal to the
number of columns containing 1 at least once. v~ A higher-dimensional permutation
matrix is a 0-1 square higher-dimensional array such that for each multi-index z, the
sub-array made up of the elements of multi-index at least z (coordinate-wise) has the
property that the number of one-codimensional layers containing 1 at least once does
not depend on the direction in which the layers are sliced up.

Although these definitions coincide in dimension two, they give rise, in higher dimension,
to distinct notions with their own applications and links with other combinatorial objects.
They have been well-studied, and such objects have been counted, in numerous works.

Definition (c) leads to objects called permutation arrays, studied among others by Eriksson
and Linusson [EL00a]. It turns out, as we prove in Section 2.7, that a certain kind of
matricubes is in fact in one-to-one correspondence with permutation arrays. This gives a
new perspective on a previously known combinatorial object.

It appears that matricubes are a new and interesting combinatorial notion, worthy of
interest in their own right. However, chronologically speaking, they appeared in the work of
this PhD thesis as a combinatorial by-product of the study of the tropicalization of linear
series, as we explain in the next section.

A combinatorial theory for limit linear series — Chapter 3

Chapter 3 is based on [AG22| and its aim is to propose a new, combinatorial theory to
study the tropicalization of linear series on algebraic curves.

Linear series on algebraic varieties are important and well-studied geometric objects
because they govern the geometry of these varieties. They are based on the theory of
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divisors, which we briefly present below. In this manuscript, we will focus on algebraic
curves (i.e., one-dimensional varieties).

Let X be a smooth and proper algebraic curve over a field k. A divisor on X is a finite
formal sum over Z of points of X: D = > ., n; (x;), ; € X. The coefficient of D at a point
x € X is denoted D(z). Each rational (or meromorphic) function f € x(X) on the curve
gives rises to a divisor div(f) in a natural way, by remembering the zeroes and poles of f
together with their orders:

div(f) == > ord,(f) (x).
weX
This way, each divisor D gives rise to a vector space of rational functions on X respecting
D, defined as follows:

Rat(D) := {f € k(X), D+ div(f) = 0},

where D+ div(f) = 0 means that this divisor only has non-negative coefficients (is effective).

In a nutshell, divisors are used to put constraints on the orders of the poles and zeroes of
a meromorphic function on an algebraic curve. A space of the form Rat(D) is precisely what
is called a complete linear series, and a linear series of rank r will be defined as any vector
subspace H € Rat(D) of dimension 7 + 1. (The shift of one follows the observation that
multiplying a meromorphic function by scalar yields the same divisor, div(cf) = div(f), and
therefore r is actually the dimension of the space of such divisors, but also the dimension
of the projectivization of Rat(D).) It turns out that linear series on an algebraic curve X
correspond to maps from X to projective spaces, and therefore the data of all linear series
“contains” the geometry of X, which is why linear series are such a central object of study
in algebraic geometry.

Less is known when the algebraic curve X is not smooth, for example, if it is a stable
curve (a curve whose only singular points are nodes, the “nicest” form of singularity, with
two branches intersecting transversely). In fact, understanding how linear series degenerate
on families of curves has been widely open for a long time.

To state the problem in a more intuitive way, we introduce the moduli space .#, of all
smooth projective curves of genus ¢g. This is a Deligne-Mumford stack (a generalization
of schemes) which, as a space, parametrizes curves, in the sense that every point in .#,
represents a smooth projective curve, in a bijective and coherent way. The space .# is not
compact, but it turns out that it admits a nice compactification //79, whose boundary is
exactly made up of stable curves. In a way, stable curves are the non-smooth curves you
can get by letting smooth curves degenerate. We now introduce the degeneration problem
for linear series.

Question 1.0.5. Let X be a stable curve of genus g and let x be the corresponding point in
%. What are all the possible limits of linear series for any sequence of smooth projective
curves of genus g when their corresponding points in #, converge to x?
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Tropical geometry provides a possible approach to answer this question. Indeed, a
one-parameter family of curves gives rise to a sequence of points of .#, converging to a
point in //79. The family can be modeled by a curve C over a field K endowed with a
non-trivial non-Archimedean valuation val, such that  is the residue field of (K, val) and
X is the special fiber of the semistable model of C over the valuation ring of val. Then,
the tropicalization procedure outlined sooner in this introduction allows to tropicalize C
into a metric graph I' (which can be seen as a tropical curve), that is, a graph with a length
assigned to each edge.

It turns out that in this configuration, there is also a natural way to tropicalize a
meromorphic function f on the curve C into a function trop(f): I' — R, which is continuous
and piecewise affine linear with integral slopes.

Tropical geometry encodes combinatorial information about the degenerating family of
curves C which is complementary to the data of the limit stable curve X and the reduction
of the functions f € K(C) to X. Indeed, the latter data captures some algebraic aspects of
the limit functions on the limit stable curve, whereas the associated metric graph I'" and
the tropicalized functions trop(f) also remember finer information about how (from which
direction, at which rate) the sequence of smooth curves degenerates to X.

Therefore, one can rightfully hope that the study of tropicalized functions trop(f) on the
tropicalization I' of C will yield interesting information about the linear series on C.

This is precisely the goal of the work presented in Chapter 3, which develops a purely
combinatorial theory of linear series on metric graphs, and draws links with geometric linear
series, i.e., linear series on algebraic curves.

The starting point of this project was the observation that in the context presented above
of a degenerating family of curves bearing a linear series, there is some finite combinatorial
data that can be extracted from the degenerating family and that should govern the
tropicalizations of the functions in the linear series. This data is related to the orders of
vanishing of functions. More precisely, given a function f in a linear series on C, we first
want to measure, for every irreducible component X, of the limit stable curve X, and for
every singular point x of X, the order of vanishing of the reduction of f to X, at that
point z.

A classical result implies that the number of different orders of vanishing at x we get as
we let the function f vary in the linear series is exactly the dimension of the linear series
we started with. This set of integers is the first kind of combinatorial data that we can
measure for a degenerating linear series. The second kind of information is related to the
correlation between those orders of vanishing at every singular point of a given irreducible
component X,,. In short, we record the set of joint orders of vanishing we get as we let the
function f vary in the linear series. This data turns out to be encoded by matricubes, the
objects presented in the previous section of the introduction.

By the properties of the tropicalization procedure for functions, this combinatorial data
has nice interpretations for the tropicalized functions on the metric graph. Each vertex
v of the metric graph corresponds to an irreducible component X, of the stable curve
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X, and each edge e = wuwv joining two vertices u and v of the graph corresponds to a
point of intersection between the irreducible components X, and X, associated to u and v.
Then, the orders of vanishing of the reduction of a function f on an irreducible component
X, at the singular points of X located on X, are equal to the slopes of the tropicalized
function trop(f) on the metric graph, along outgoing directions around the vertex v; and
the joint data of the orders of vanishing of f at all singular points of X located on an
irreducible component X, translates into a vector of slopes of trop(f) around the vertex v
of I' associated to X,. This illustrates the nature of the combinatorial constraints that will
be used to define combinatorial linear series on metric graphs, which we will present a bit
later.

Let us first note that metric graphs have a theory of meromorphic functions and divisors,
just like algebraic curves. A meromorphic function f € Rat(I') on the metric graph I' is
a continuous, piecewise affine linear function I' — R with integral slopes; a divisor on I'
is a finite formal sum over Z of points of I D = >, n; (z;), x; € I'. Furthermore, each
meromorphic function f € Rat(I') naturally gives rise to a divisor div(f) on I':

div(f) = ) ords(f) (x),

zel’

where ord,(f) € Z is, up to a sign, the sum of outgoing slopes of f on the edges of T" starting
at x. In the context of metric graphs, a zero (resp. a pole) of a meromorphic function
is a negative (resp. positive) change of slope. Besides, just like there is a tropicalization
procedure for functions on algebraic curves, there is a tropicalization procedure for divisors,
sending each divisor D on C to a divisor D = trop(D) on I'. This procedure welcomely
commutes with the map f — div(f). This way, a meromorphic function (resp. a divisor)
on an algebraic curve C tropicalizes to a meromorphic function (resp. a divisor) on the
metric graph I" obtained by tropicalizing C.

Without going into more technical detail, the general idea about this theory of divisors
and meromorphic functions on metric graphs, which has already been much studied, is that
if behaves nicely and very similarly to its algebro-geometric counterpart. For example, it
has been shown using several distinct approaches that a Riemann-Roch theorem holds on
metric graphs [AC13, GK08, MZ08], just like on combinatorial graphs [BN07]. There are,
moreover, numerous applications of this theory to algebraic geometry, such as degeneration
techniques in Brill-Noether theory, results about the Kodaira dimension of moduli spaces of
curves [FJP20], partial answers to the maximal rank conjecture, new bounds in arithmetic
geometry, or crucial tools for the study of Weierstrass points; see [BJ16] for a comprehensive
survey.

At this point, it should be rather obvious how to define a complete linear series on a
metric graph I'. Just take a divisor D on I', and define Rat(D) as the set of all functions
f € Rat(I") such that D+div(f) = 0: a divisor controls the zeroes and poles of the functions
in its complete linear series.
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But the tropical world has major differences with the algebro-geometric world, one of
which being that a space like Rat(I") or Rat(D) is nothing like a vector space. Instead,
the right formalism to study these spaces is the theory of tropical semimodules, i.e., sets
endowed with one internal operation, @, and one external multiplication, ®, which uses
real scalars. In the present context, these operations are defined as follows: for every
f,g € Rat(I") and c € R,

f@g:=min(f,g) and cOf=f+c

These are the tropical operations, which can be defined in similar ways on various tropical
spaces. They are, of course, closely related to the max-plus algebra mentioned earlier.

Now that we have this tropical algebraic formalism in mind, we could be tempted to
define a linear series on the metric graph I' as any particular sub-semimodule M of a
tropical semimodule of the form Rat(D), for D a divisor on T, just like a linear series on an
algebraic curve C is any vector subspace H of a complete linear series of the form Rat(D).
This is indeed a good idea, since with this definition, the tropicalization of a linear series
on an algebraic curve yields a linear series on the associated metric graph, in the sense that
if H is a linear series on C, then

trop(H) := {trop(f) | f € H\ {0}}

is a linear series on I', as we prove in Section 3.9. In fact, considering spaces of the form
Rat(D) or sub-semimodules thereof turns out to be a relevant way of defining linear series
on metric graphs.

Nevertheless, like often in tropical geometry, we would like to answer representability
questions, that is, questions of the form: “can this tropical object be realized as the
tropicalization of an algebro-geometric object of the expected type?” In the present case,
what are the sub-semimodules M of some Rat(D) which are tropicalizations of some linear
series on an algebraic curve?

It turns out that not all of them are. This very fact has led to the work presented in
Chapter 3. The basic idea is that a more relevant theory of combinatorial linear series
should add a few more constraints on these objects, so that we can formulate, at least in
some cases, positive representability results.

This is, by the way, where the theory of matricubes presented in Chapter 2 comes into
place. We will add some finite combinatorial constraints to define linear series on metric
graphs, in the form of what we call a slope structure. Following Section 3.3, a slope structure
S of width r on I' consists of:

e for every oriented edge e of I', the data of a set of r + 1 allowed integral slopes
55 < 8§ <---<sg and

e for every vertex v of I, the data of a matricube (or rank function) p, on @iv, where
d, is the valence of v.
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To make things more visual, here is a concrete example of a slope structure, taken from
Section 3.6.3. Consider the barbell graph I' with edges of arbitrary length, see Figure 1.12.
We define a slope structure of width one on I'. Allow slopes —1 < 1 on the middle edge and,
for ¢+ = 1,2, allow slopes 0 < 1 on both oriented edges u;v;, in the direction of the arrows.

(0,1) 0.1

Figure 1.12: The barbell graph and the slope structure G.

We define suitable matricubes on vertices, as follows. For ¢ = 1,2, we endow v; with the

rank function on @i defined by the array ((1] 8), and endow u; with the matricube on

@i whose restrictions to each layer are defined by the following two arrays, respectively:

10 0 -1
introduction) are depicted in blue — to understand why the element —1 in the top-right
hand corner of the last array is not a flat in this context, we refer to Remark 3.2.16. Besides,

-1 -1
(0 0) , ( ) Here, flats of the matricubes (see the previous section of the

the convention used to represent rank functions is the one chosen for linear series, which is
dual to matricubes ; this duality is specified in Proposition 3.2.3, and implies that the rank
functions represented above, contrary to matricubes, are non-increasing functions which
can take the value —1. For the two vertices u; and wus, the third coordinate in the two rank
functions corresponds to the middle edge of I'. This data defines a slope structure & of
width one on T.

We can now define the space Rat(D,&) as the space of all meromorphic functions
f € Rat(D) such that:

e f is compatible with the edge data, i.e., its slope on every edge e is among the set of
r + 1 integers prescribed by & on e; and

e f is compatible with the vertex data, i.e., around every vertex v, the vector made up
of its outgoing slopes along every incident edge, viewed as a point of @iv, is a flat of
the matricube p, associated to v.

It can seem strange to require the vectors of slopes of f to be flats of the matricubes
attached to each vertex, but in fact this has a geometric meaning in the context of
tropicalization. To see this, let X, be an irreducible component (the one associated to v) of
the limit stable curve in the degenerating family. Let H be the vector space of reductions
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to X, of the functions belonging to the linear series H on the main curve C. Let p be a
point of X,,. Then p defines a complete flag F in H by considering the orders of vanishing,
at p, of the functions of H. Concretely, define S, := {ord,(f) | f € H~ {0}}, which is a
finite set of cardinality r + 1, as previously discussed, and whose elements we denote by
s < -+ < sP. The flag F; is then defined by setting, for j € {0,...,r},

F7 = {f e H~ {0} | ord,(f) = 87} U {0}

Doing this for every singular point p of X located on X, yields a finite collection of flags in
H, and thus a matricube, or rank function.

Asking that a point of the matricube is a flat is in fact equivalent to asking that the
corresponding vector of slopes around v is realized by some function f in the linear series.
Consequently, if a sub-semimodule M of Rat(D) is the tropicalization of a geometric linear
series H, and if we call & the slope structure originating from the data of the orders
vanishing of functions of the reductions H of H at all the singular points of the limit stable
curve X, then, in fact, M < Rat(D, G).

We now have a more restrictive definition of linear series on graphs which still encom-
passes all tropicalizations of geometric linear series. We show in Chapter 3 that such a
tropicalization has, in fact, supplementary properties, which can therefore safely add to the
definition of combinatorial linear series M < Rat(D, &) of rank (or “dimension”) r. These
properties are of various kinds; we give an outline below.

e A rank condition ensures that M contains sufficiently many functions to generate all
effective divisors of degree r (see Section 3.4.1); this is the tropical counterpart of the
fact that, since H is a vector space of dimension r + 1, we can cut r linear constraints
through it and still have non-zero functions.

e An algebraic condition ensures that M is finitely generated, i.e., there exists a finite set
of functions of M which generate M using the tropical operations (see Definition 3.6.2).

e Another algebraic condition ensures that M has tropical rank at most r, i.e., if
fo, ..., fry1 is a collection of r + 2 functions of M, then they are necessarily tropically
dependent, in the sense that there exist some scalars cg, ..., c,.1 € R such that for
each z € I', the minimum in

min (fi(z) + ¢;)

O<i<r+1

is achieved at least twice (see Definition 3.6.2); this condition is the tropical counterpart
of the fact that, since H is a vector space of dimension r + 1, every family of vectors
of cardinality r + 2 is linearly dependent.

(Note that the rank defined in the first condition and the tropical rank defined in the
last condition do not necessarily coincide. On the contrary, in linear algebra, the dimension
of a vector space is both equal to the cardinality of every base, and to the maximal number
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of linearly independent elements. The fact that these notions differ in the tropical realm is
part of its particular mathematical flavor.)

In Chapter 3, we therefore define a combinatorial linear series as a semimodule M
satisfying all those conditions, which are all compatible with the tropicalization procedure.

But how is it useful to complexify the definition like this? The answer is that adding
those conditions and the combinatorial data of the slope structure & now permits to answer
representability questions positively, and prove other kinds of results.

Here is a sample of what we show in Chapter 3, and which relies, among others, on the
work on matricubes presented in Chapter 2. Some of these results only require a subset of
the conditions put on combinatorial linear series.

e If M is a linear series on I' and v is a vertex of I', then every flat of the matricube p,
is realized by some function f € M (Theorem 3.5.13).

e As a consequence, if M < Rat(D, &) is a linear series, then the data of & can be
entirely retrieved from M alone (Corollary 3.5.14).

e There are an essentially finite number of distinct slope structures on a given metric
graph (Theorem 3.4.4); this can be seen as a first step toward defining a moduli space
of linear series over the moduli space of metric graphs of fixed genus.

e In the case r = 1, we provide a full classification of linear series on a fixed metric graph:
they are essentially in one-to-one correspondence with finite harmonic morphisms from
the graph to metric trees (for more details about what this means, see Section 3.8).
This is analogous to the description of algebraic geometric linear series of rank one,
and follows from an explicit description of the variation of reduced divisors —in a
nutshell, divisors which concentrate the largest possible coefficient at a given point —
defined by linear series, with respect to the base-point (see Section 3.7).

e As a consequence, every combinatorial linear series of rank one is realizable, i.e., can
be realized as the tropicalization of some geometric linear series (Theorem 3.8.8).

As it was discussed above, the definition of a slope structure uses the notion of matricube
developed in the previous section. In fact, this new combinatorial object first appeared
naturally in this context, as a combinatorial data extracted from a geometric linear series,
and we realized only afterward that matricubes are a — somewhat natural — generalization
of matroids that should be studied from an algebraic and combinatorial viewpoint, for its
own sake (see Chapter 2).

There is also a strong connection between the theory of combinatorial linear series that
was just presented and the study of the tropicalization of Weierstrass points, the subject of
Chapter 4, which we sum up in the next and final section of the introduction.
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Localizing the tropicalization of Weierstrass points using combinatorial linear
series — Chapter 4

In the same spirit as Chapter 3, Chapter 4 is about the study of the tropicalization of a
geometric object. Likewise, it involves, on the one hand, the development of a new theory
on the tropical and combinatorial side, and, on the other hand, the study of the relationship
between tropicalized objects and their purely combinatorial counterparts.

The geometric objects at hand in this chapter are called Weierstrass points. Those are
very special geometric points defined on algebraic curves. Basically, Weierstrass points are
a generalization of what is more often called “flex points” or “inflection points”, i.e., points
where the sign of the curvature changes, for example in the study of real curves. As an
illustration, Figure 1.13 below shows the flex points of a real elliptic curve embedded in
the real plane. However, Weierstrass points can in fact be defined more generally on every
smooth algebraic curve X over an algebraically closed field K. For simplicity, let us assume
that K has characteristic zero.

Figure 1.13: The real elliptic curve of equation y?> = 23 — 2z + 2 and its two inflection
points.

One way of defining Weierstrass points in the broader context of an algebraic curve, not
necessarily embedded in a projective space, makes crucial use of the theory of divisors
and meromorphic functions on algebraic curves, as exposed in the previous section of this
introduction.

Let us first define a few basic notions that we have been shying away from defining since
now. If D is a divisor on X, the linear system |D| of D is the set of all divisors of the form
D + div(f) with f in the linear series Rat(D) of D. It is, put more simply, the set of all
effective divisors that can be obtained from D by adding the divisor of some meromorphic
function. The degree of D is the sum of all its coefficients. The rank of D is the dimension
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of the vector space Rat(D) (minus one). It turns that the rank of D has an interesting
alternate definition: it is equal to the largest integer r such that for every point x € X,
there exists an (effective) divisor £ in |D| having coefficient at least r at the point z, i.e.
E = r (x); or, equivalently, it is the greatest integer r such that for every choice of points
x1,...,x. on X, there exists an (effective) divisor £ in |D| such that € = (z1) + -+ + ().
In a nutshell, and as previously noted, the rank measures the size of the linear series (or
system).

The systematic study of the Weierstrass points of algebraic curves dates back to the
1870’s, when Weierstrass and Schottky understood that Weierstrass points had to do with
the orders of vanishing of meromorphic functions. Indeed, it was first noticed that, given a
divisor D of rank r, the set S(y) of shifted orders of vanishing of all meromorphic functions
of Rat(D) at the point y, namely,

S(y) = {D(y) + div(f)(y) | f € Rat(D)}
= {D(y) + ord,(f) | fe Rat(D)}
={&W) | €€ DI},

which is by definition always made up of non-negative integers, is in fact equal to the set
{0,...,r} for every y € X, except a finite number of points; and, moreover, that those
finitely many points are exactly the Weierstrass points of X.

Note that the condition S(y) # {0,...,r} is equivalent to the condition max S(y) = r + 1.
Consequently, using one of the definitions of the rank provided above, we see that a
Weierstrass point is a point y where some divisor in the linear system of D has a coefficient
at y larger than the expected largest value r. The existence of such a divisor explains
why Weierstrass points are the points where some kind of “resonance” happens, which
corresponds geometrically to an inflection point. If S(y) is even larger than r + 1, the
Weierstrass point y has some higher multiplicity, indicating a geometric phenomenon of
higher order. Adding up the finitely many Weierstrass points of D counted with their
multiplicities gives rise to a new divisor W(D), the Weierstrass divisor of D.

This has been well-known and thoroughly studied for more than a century, but Weierstrass
points are, a priori, only defined on smooth curves. We do not know how to define them in
a relevant way, for instance, on stable curves in full generality. This problem is, at the time,
still open.

One first step in this direction is the study of what happens to Weierstrass points on
smooth curves when we let a family a smooth curves degenerate to a limit stable curve,
in the setting of degenerations of families we discussed in the previous section of this
introduction. If we grant ourselves less general but more intuitive notations, imagine that
we have a one-parameter family (X;);.o of smooth curves, endowed with a smoothly varying
family of divisors (Dy)sx0, each D; being a divisor on X;. For every ¢t # 0, we have some
Weierstrass points of D;, and therefore a Weierstrass divisor W(D;), on X;. We can now
reformulate our question:
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Question 1.0.6. Assume that the family can be completed into a family (X;);, the special
fiber Xo being a stable curve. What can the asymptotic behavior of W(D,) be, ast — 07

Or, changing the standpoint, if X, is a fixed stable curve, can we locate on X all the
possible limits of Weierstrass points for families (X;) which degenerate to X,? More broadly,
the problem of constructing a moduli space parametrizing all possible limit Weierstrass
points of a given stable curve was raised by Eisenbud and Harris [EH86, EH87a].

For a family (X;) as above, there are two types of Weierstrass points on the smooth curve
X

(a) those who, as t — 0, degenerate away from the nodes of the stable curve Xy; and
(b) those who, as t — 0, degenerate to a node of Xj.

Points of type (b) are harder to understand, and they are the focus of Chapter 4.
Some incremental progress has been made on this question, under some combinatorial
conditions on the stable curve Xy. In [Amil4], Amini shows an equidistribution result for
the Weierstrass points of powers of a line bundle, using a concrete description of limit
Weierstrass points. We propose a more refined study of Weierstrass points, using tropical
geometry.

Why is tropical geometry useful to study Weierstrass points degenerating to nodes?
Because tropical geometry provides tools to “unwind” singularities and look more closely
what happens “inside them”. Indeed, as exposed previously in this introduction, tropicalizing
the family (X;) yields a metric graph where each vertex v corresponds to an irreducible
component X, of Xj, and each edge e = uv corresponds to a point of intersection between
the irreducible components X, and X,. Moreover, the properties of the tropicalization
procedure imply that if a point p, on X;, ¢t # 0, degenerates to a node p € X,, n X, of X as
t — 0, then it will land on the edge e = uv of the metric graph at a position which depends
on how it degenerates to p. This is why studying where the Weierstrass points land on
each edge of the metric graph associated to the family (X;); gives information about the
geometry of this family. This is the path we follow in Chapter 4. We will now explain how.

The natural approach, in the same spirit as the combinatorial theory of linear series, is
to define what tropical Weierstrass points should be, and then study their connection with
the tropicalizations of geometric Weierstrass points.

To define the tropical Weierstrass points of a divisor D on a metric graph I', we can work
by analogy with the geometric definition. The degree of D is the sum of its coefficients,
and its rank is the largest integer r such that for every choice of points xy,...,z, € T,
there exists an (effective) divisor £ in |D| such that £ > (x1) + -+ + (z,). To define the
Weierstrass points of D, we also use analogy with geometry: a point z € I' is said to be
Weierstrass for D if the maximal value of D(x) + div(f)(z) for f € Rat(D) is at least r + 1.

As an example, the figure below, taken from Section 4.3.1, shows the complete graph
over four vertices, endowed with the divisor K (for “canonical”) of degree 4 and rank 2
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having coefficient 1 on each vertex. (The canonical divisor is defined by K(x) = d, — 2 for
every x € I', where d, is the valence of x. It has degree 2g — 2 and rank g — 1, where g is
the genus of T'.) The set of tropical Weierstrass points appears in red on the right part of
the figure. Note that each Weierstrass point can be assigned a multiplicity of 2, because
the maximal value of K (z) + div(f)(x) for f € Rat(K) is in fact 4 = r + 2.

1 2

Figure 1.14: Complete graph on four vertices, and the Weierstrass points of the canonical
divisor K.

This definition already gives interesting results. Baker proved [Bak08, Lemma 2.8] that
tropical Weierstrass points are compatible with geometric Weierstrass points, in the sense
that if we have a degenerating family of curves endowed with divisors, the limits of geometric
Weierstrass points are among the tropical Weierstrass points.

But in tropical geometry, things sometimes do not go as smoothly as in classical algebraic
geometry, as we already realized for linear series... It turns out that contrary to the
geometric Weierstrass points, the tropical Weierstrass points are not necessarily finitely
many! For instance, on the barbell graph below, choosing the canonical divisor K having
coefficient 1 on both vertices, the whole central edge is Weierstrass. This is why we speak
about the (potentially infinite) Weierstrass locus of a divisor D, which we denote by Ly, (D).

Figure 1.15: The barbell graph and the Weierstrass locus of the divisor K. Each red isolated
Weierstrass point has multiplicity 1, but at this point we cannot associate a
multiplicity to the central edge.

This entails that, if some degenerating family of curves with divisors has this associated
metric graph and divisor as tropicalization, we will not be able to pinpoint exactly where
the Weierstrass end up if their limit lies on the red edge. The only thing we could try
to determine is how many Weierstrass end up on the red edge, if there can be an answer
to that question. But how could we find a natural way of defining a multiplicity for the
central edge like for the isolated points, in order to answer this question in a satisfyingly
quantitative manner?

This is precisely what we do in Section 4.3, in two steps.
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(1) Firstly, notice that the tropical Weierstrass locus L, (D) is a “nice” subset of I': it is
closed and has finitely many connected components.

(2) Secondly, find a meaningful way to extend the multiplicity of an isolated Weierstrass
point to any connected component of the tropical Weierstrass locus.

Here is how we define this generalized multiplicity. Let D be a divisor of rank r, and
let C' be a connected component of the tropical Weierstrass locus Ly, (D). We define the
tropical Weierstrass weight of C' as

p(C; D) == deg (D) + (9(C) = )r = > st(D) (1.2)
I/E(‘)OMC

where
e deg (D|,) is the total degree of D in C, defined by deg (D|.) = X ¢ D(2);
e ¢(C) is the genus of C| i.e., its first Betti number dim H; (C,R);
e 0""C is the set of outgoing tangent directions from C; and
e sy(D) is the minimum slope along the tangent direction v of any function f € Rat(D).

Observe that this definition only uses finite combinatorial data on I' and D. The fact
that the minimum slope s§(D) is well-defined and easily computed follows from the work
presented in Section 4.2.

It turns out that the tropical weight of a connected component which consists of a single
point coincides with the usual multiplicity of an isolated point. But are these weights
interesting to answer our degeneration question? Yes, because they measure interesting
phenomena, both from a combinatorial and geometric viewpoint.

On the combinatorial side, the weights do behave like if they were counting something.
Indeed,

e for every connected component C, u, (C; D) is a positive integer; and

e the sum of weights ,,(C; D) over all connected components equals d — r + rg, that
is, it is a function only of combinatorial features of I' and D.

These results notably answer a question raised by Baker, who made the following
comment [Bak08, Remark 4.14] regarding a potential tropical analogue of a well-known fact
in algebraic geometry about the canonical divisor: “it is not clear if there is an analogue
for metric graphs of the classical fact that the total weight of all Weierstrass points on a
smooth curve of genus g =2 is g> — g”.

On the geometric side, good news also lies in store for us. As we show in Section 4.3, the
following theorem (Theorem 4.1.10) holds.
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Theorem 1.0.7. Suppose that we have a family of smooth curves (X;)ixo0 endowed with a
family of divisors Dy, degenerating to a stable curve Xo. Let I' be the metric graph associated,
by the tropicalization procedure, to the family (Xy);, and let D be the tropicalization of the
D;. Let W(Dy) be, for every t, the Weierstrass divisor of Dy, and let C' be a connected
component of the tropical Weierstrass locus Ly (D) of D. Assume moreover that Dy and D
have the same rank.

Then, the number of points of W(D;) which converge to a point of C' ast — 0 is counted
by the weight py (C; D), multiplied by r + 1.

This theorem implies that geometric Weierstrass points tropicalize in packs of size
r 4+ 1, which generalizes a result obtained by Brugallé and De Medrano [BDM12] on the
multiplicities of tropical Weierstrass points in rank two.

In Section 4.5, we prove, in fact, a local and more general version of this result, which,
among others, implies the following result.

Theorem 1.0.8. Using the notations of Theorem 1.0.7, if moreover the rank of D is at
least one, then every cycle of the metric graph I intersects the tropical Weierstrass locus

Ly (D).

This result, which is local, does not seem to have an analogue for algebraic curves:
tropical geometry has its own unique features and does not necessarily align on algebraic
geometry! Besides, this generalizes a global result by Baker [Bak08] stating that the tropical
Weierstrass locus Ly, (K) of the canonical divisor is nonempty if I" has genus at least two.

Theorem 1.0.8 implies, in particular, that if the tropical Weierstrass locus is finite, then
every cycle in T contains a limit Weierstrass point of the family (X;);, which is a rather
strong constraint on the limiting behavior of Weierstrass points.

I have promised that there was a strong connection between tropical Weierstrass points
and combinatorial linear series, but this is still not apparent! In fact, combinatorial linear
series are key to the proof of Theorem 1.0.7. Indeed, to study the tropicalization of the
Weierstrass points of the family of divisors D, on X, it is crucial to not only consider the
tropicalized divisor D, but also the slope structure defined by the geometric linear series
Rat(D;), remembering the (joint) orders of vanishing of reduced meromorphic functions at
the nodes of X, as we described in the preceding section of this introduction. In a nutshell,
this proof illustrates the fact that combinatorial linear series (including their slope structure
data) carry an amount of combinatorial information which turns out to be relevant in the
study of the tropicalization of some geometric objects, be it linear series or Weierstrass
points.

Of course, some technical complexity was put under the rug here. Notably:

e An accurate statement of the above theorems requires to consider not simply metric
graphs, but more generally augmented metric graphs, i.e., metric graphs together with
a genus function g associating a non-negative integer to each vertex. The number
g(v) stands for the genus of the irreducible component X, of Xj.
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e [t is moreover necessary to define the Weierstrass points not only of a divisor D,
but also of any well-behaved sub-semimodule M < Rat(D); in particular, to any
combinatorial linear series.

These refinements are the subject of Section 4.4. Note that the results presented above
do not only hold if the base field K is of characteristic zero; we provide adaptations to the
positive characteristic case for potential applications to arithmetic geometry.

For a variety of commented examples of tropical Weierstrass loci, showing the combina-
torial diversity arising among these objects, we refer the reader to Section 4.6.

12
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Figure 1.16: A graph with two bridge edges and the Weierstrass locus Ly, (K) of the canonical
divisor K.
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2 Combinatorial flag arrangements

This chapter is slightly adapted from the preprint [AG24].
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Abstract

We introduce combinatorial objects named matricubes that provide a generalization of the
theory of matroids. As matroids provide a combinatorial axiomatization of hyperplane
arrangements, matricubes provide a combinatorial axiomatization of arrangements of initial
flags in a vector space. We give cryptomorphic axiomatic systems in terms of rank function,
flats, circuits, and independent sets, and formulate a duality concept. We also provide
precise links between matricubes, permutation arrays and matroids, and raise several open
questions.

2.1 Introduction

Consider a vector space H of finite dimension over a ground field x and a collection A of m
initial flags Fy,... Fy,. For j = 1,...,m, the flag F; consists of a chain of r; + 1 vector
subspaces, 0 < r; < dim, (H),

-1

0 1 Tj Tj
H=F,2F 2---2F’ 2F’ 2(0)

71



where, for every je {1,...,m}and i e {1,...,7;}, Fj’ is a vector subspace of codimension 0
or 1in F;_l. We call this collection a flag arrangement. In the case r; = 1 for all j, and
codimension of FJ1 in H equal to one, we obtain a hyperplane arrangement.

The aim of this chapter is to introduce mathematical structures called matricubes that
provide a combinatorial axiomatization for the intersection patterns of a finite collection
of initial flags in a vector space (as the one above). The case rq,...,r,, = 1 recovers the
theory of matroids. Like matroids which in the representable case come from matrices,
representable matricubes come from cubical matrices (i.e., three-dimensional matrices).

Let us start with a few notations. For n a non-negative integer, we set [n] := {0,...,n}.
Let m be a positive integer, and 7y, ..., 7, be non-negative integers. Let o := (ry,..., 7).
The hypercuboid &3, of width g is the product [ [}, [r;]. It is endowed with a natural partial
order < defined by declaring x < y for elements z = (21,...,2,) and y = (y1,. .-, Ym)
in 07, if z; < y; for all j. The minimum and maximum elements of GJ, are the points
0:=(0,...,0) and g. We define two operations v and A of join and meet by taking the
maximum and the minimum coordinate-wise, respectively:

IV g = (max(xl, yl)J s ,max(xm, ym))7 T A g = (min<x17 y1>7 s 7min(xm7 ym))7

for any pair of elements z,y € &J,. For i e {1,...,m} and t € [r;], we denote by t¢, the
point of &, whose i-th coordinate is ¢ and whose other coordinates are zero.

We first give the definition of matricubes in terms of their rank functions, and then
provide cryptomorphic axiomatic systems in terms of their flats, circuits and independent
sets.

2.1.1 Definition in terms of rank function

A function f: 63, — Z is called submodular if for every two elements z and y, we have

fl@)+ fy) = flzvy) + flzny).

A matricube A with ground set &7, is defined in terms of a function r: &3, — Z called

the rank function of .# that satisfies the following conditions:
(R1) r(0) =0, and for every 1 <i<m and 1 <t <r;, we have r(te;) —r((t—1)e,) < 1.
(R2) r is non-decreasing, that is, if z < y, then r(z) < r(y).

(R3) r is submodular.

We call the quantity r = r(A#) = r(g), the maximum value taken by the function r, the
rank of . In the case r; = 1 for all j, .# gives a matroid with ground set £ = {1,...,m}.

Note that it follows from (R1) and (R2) that r(te;) <t. We say that .# is simple if the
following stronger version of (R1) holds:

(R1*) r; >0 and r(te;) =t foralli=1,...,m and t € [r;].
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For a collection A of initial flags F},... F* in a vector space of dimension n, as above,
the codimensions of the intersection patterns of their elements define a rank function. That
is, the function r: G0, — Z defined, for every z = (x1,...,Zm), by

r(z) = codim,(F{* n--- nFim) = n — dim,(F{* n - n Fim)

is the rank function of a matricube that we denote by .#4. Note that .#Z 4 is simple if
all the inclusions in each flag are strict. Like for matroids, a matricube appearing in this
way will be called representable over the field k. Note that by duality of vector spaces, a
representable matricube can be described equivalently by a collection of initial increasing
flags in the dual vector space. This point of view allows to associate a matricube to any
three-dimensional matrix with entries in a given field. We refer to Section 2.2.3 for more
details.

Abstracting the example given above of an arrangement of initial flags in a vector space,
we show in Section 2.2.4 that a finite collection of initial flag matroids, all defined on the
same ground set, defines a matricube.

In the next three sections, we present alternative axiomatic systems for matricubes, that
will be discussed more thoroughly in this chapter.

2.1.2 Flats of matricubes

Let .# be a matricube of rank r with ground set &0, and rank function r. A point a in GJ,

is called a flat of 4 if
(+) for every i =1,...,m such that a + ¢; belongs to @J,, we have r(a +¢;) = r(a) + 1.

Note that in particular, ¢ is a flat of .#. We denote by .7 (.#) < &3, the set of flats of
A . In the case . is a matroid, .Z (.#) is the set of flats of that matroid.

As in the case of matroids, a matricube can be defined in terms of its flats. The axiomatic
system of flats of a matricube is (F1)-(F2)-(F3), provided below.

Given a poset (P, <) and two elements z,y € P, we say that that y covers x, and write
y>x, if y > x in P and there is no element z € P such that y > z > . Let % be a subset
of 67,. Endowed with the partial order < of the hypercuboid &3,, .7 is a poset.

We prove in Section 2.3 that F < G, is the set of flats of a matricube with underling
ground set GF, if, and only if, the following properties hold.

(F1) gisin #.
(F2) # is closed under meet.

(F3) If @ is an element of % and i is such that a + ¢; € GJ,, then there exists an element
b>a+e, in % such that b> a in Z#. N

In other words, the axiomatic systems (F1)-(F2)-(F3) and (R1)-(R2)-(R3) are equivalent.
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2.1.3 Duality, and circuits of matricubes

Again, let .# be a matricube on the ground set GF,. In Section 2.2.6, we define the dual
matricube .#* on the same ground set &J,. In terms of rank functions, the rank function
r* of .#* is given by

r*(z) = |zl, +r(z) —r(A) Vzed,

where z¢ := ¢ — x is the complement of z in &J,, and r denotes the rank function of .Z.

Denote by .% (.4 *) the set of flats of the dual matricube, and consider
@ ={a" | ac F(M*)} <@,

A point ¢ in @3, is called a circuit of A if
(x) cis an element of ¢ which is not the join of any set of elements of % {c}.

We denote by €'(.#) < GF, the set of circuits of .. This definition extends that of
circuits in matroids. Moreover, as in the case of matroids, a matricube can be defined in
terms of its circuits, via the following axiomatic system. We prove in Section 2.4 that a
subset ¢ < &, is the set of circuits of a matricube with underlying ground set &3, if, and
only if, the following properties hold.

(C1) 0is not in Z.
(C2) All elements of € are join-irreducible in €.

(C3) Ifa e ¢ and i € {1,...,m} is such that @ —¢; € &J,, then there exists an element
b<a—¢e,;in € U {0} such that b < a in G U {0}.

In other words, the axiomatic systems (C1)-(C2)-(C3) and (R1)-(R2)-(R3) are equivalent.

2.1.4 Independents of matricubes

Let .# be a matricube on the ground set GF,. We say that a point a of GJ, is an independent
of A if - -

(+) for every i =1,...,m such that a — ¢, € &, we have r(a —¢;) = r(a) — 1.

We denote by & (.#) < @3, the set of independents of .Z.

The set of independents of a matricube is nonempty and closed under meet A. Moreover,
removing unit vectors from an independent reduces the rank in the following sense: for
every independent a € (), and every distinct elements i,...,i; € {1,...,m} with
aj; #0,1<j <k, Wehaver(g—gil—---—gik) =r(a) — k.
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We provide an axiomatic system for independent sets of a matricube. In order to do this,
we need to define an operation of removal in independents.

Let J be a subset of GJ,. Let a be an element of J and i € {1,...,m} such that a; # 0.
If there is at least one element b < a in J which differs from a only in the i-th component,
we define a . 7 to be such an element in J with the largest i-th coordinate. In this case,
we say that a ~ i is the removal of i in a.

Definition 2.1.1. Let J be a subset of @g.

(a) We say that remowvals exist in J if for every a € J and i € {1,...,m}, if a; = 1, the
removal a \ 7 exists in J.

If removals exist in 7, then 0 € J and for every element a, there exists a sequence of
removals that reduces a to 0.

(b) We say that J is orderable if removals exist in J and for every a € 7, all the sequences
of removals that bring a to 0 have the same length.

If J is orderable, we define the size of a, denoted by |a|, as the number of removals
needed to reduce a to 0. o

The axiomatic system of independents can be formulated as follows. Let .# be a subset
of &7, that verifies the following property:

(I1) Removals exist in .# and the following holds. For all p € .# and removals p \ i

and p \ j, with i,5 € {1,...,m}, the meet g := (Q\ z) A (Q\j) belongs to .# and,
moreover, the two intervals [g, AN z] and M, JZAN j] in .# have the same size.

Here, the interval [a,b] in .# means the set of all ¢ € .# which verify a < ¢ < b.

We prove in Section 2.5 that (I1) is equivalent to the orderability of the set .#. In
particular, if .# verifies (I1), we can define the size of a as the number of removals needed
to reduce a to 0. This enables to formulate the second property of interest. For a,be &3,
denote by A(a,b) the set of elements in {1,...,m} such that a; < b;. The following is
understood as a matricube analogue of the augmentation property for independents of

matroids.

(I2) | - | is increasing on independents, i.e., for all a,b € # such that a < b, we have
la| < [b]. Moreover, let a,b be two elements of .# such that |a| < |b] and A(a,b)
contains at least two elements. Then, there exists ¢ € . that verifies:

e c<av,
* [c| > ]al.

e There exists i € A(a,b) such that ¢; < b,.

We prove in Theorem 2.5.5 that (I1)-(I2) are equivalent to (R1)-(R2)-(R3).
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2.1.5 Permutation arrays

A combinatorial approach to the study of intersection patterns of a configuration of complete
flags was introduced by Eriksson—Linusson in the notion of permutation arrays [EL00a,
ELOOb]. Our Theorem 2.7.1 proved in Section 2.7 shows that permutation arrays are in a
one-to-one correspondence with matricubes of rank r or » + 1 on the ground set @i = 0,
with o = (r,7,...,r), that is, with all r; = r. -

2.1.6 Matricubes as coherent complexes of matroids

As we explain in Section 2.8, a matricube locally gives rise to a collection of matroids.
Local obstructions for the representability of a matricube can then be formulated in terms
of matroid representability. In the case of permutation arrays, via our Theorem 2.7.1,
this gives obstructions for representability that generalize the examples found in the work
of Billey and Vakil [BV08]. We moreover go further by proving Theorem 2.9.1, which
shows that the representability of matricubes over infinite fields can be reduced to matroid
representability, see Section 2.1.7.

In Section 2.8.3, we provide a matroidal characterization of matricubes by establishing an
equivalence between matricubes and coherent complexes of matroids labeled by the elements
of a hypercuboid satisfying Properties (CC1) and (CC2) below. Namely, let (Mg)%@g
be a family of matroids indexed by &J,, with M, a matroid on the set I, consisting of
all j € {1,...,m} with a; < r;. Denote the rank function of M, by r,. We say that the
collection (M,) forms a coherent complex of matroids if the following two conditions are
met:

(CC1) For allie {1,...,m} and 0 <t < r;, we have p;. (¢;) < 1.

(CC2) The matroids M, satisfy the following relation:

Ma+e =

MQ/Z' lfCLZ:T‘Z—l
M, 7w {i} else '

Theorem 2.8.6 provides an equivalence between (CC1)-(CC2) and (R1)-(R2)-(R3).

2.1.7 The natural matroid of a matricube and representability

Remembering only the data of the subspaces in a flag arrangement results in a subspace
arrangement, whose combinatorics is encoded in an integer polymatroid. In the same way,
any matricube on the ground set G2,, 0 = (71, ...,7y), gives rise to an integer polymatroid
on the ground set the disjoint union [ry] L -+ L [ry,].

Bases and exchange properties for integer polymatroids have been studied by Herzog
and Hibi [HH02]. Csirmaz [Csi20] gives axiomatic systems for cyclic flats. In recent
work, Bonin, Chun and Fife [BCF23] study bases, circuits, and cyclic flats in integer
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polymatroids, connecting them to a classical construction going back to McDiarmid [McD73],
Lovész [Lov77], and Helgason [Hel06], which shows that the data of an integer polymatroid
on a ground set F is equivalent to the data of a matroid on a larger set E obtained from
E by replacing each element e of E with p(e) distinct copies of that element, called the
natural matroid. (This has gained recent interest in the work [OSW19], in developing a
decomposition theorem for 2-polymatroids, as well as in the works [CHL 22, EL23] related
to combinatorial Hodge theory.)

In our setting, starting from a matricube, we can thus associate to it first an integer
polymatroid and then use the above construction to replace the integer polymatroid by a
matroid on a larger ground set. We will review this construction in Section 2.9.2. As we
explain there, this leads to a story different from the theory presented in this manuscript.

This point of view is however useful for treating the question of the representability of
matricubes. We show in Theorem 2.9.1 that a matricube is representable over an infinite
field (or a field of large enough cardinality) if, and only if, the corresponding natural matroid
is representable over the same field.

2.1.8 Further related work

Our original motivation for developing the theory exposed here comes from the problem
of describing tropical degenerations of linear series on algebraic curves. In companion
work [AG22] (Chapter 3), matricubes are used as the combinatorial structure underlying a
combinatorial theory of limit linear series on metric graphs (the geometric situation behind
this theory is briefly discussed in Section 2.9.7). While working on the degeneration problem
for linear series, we gradually realized how similarly matricubes and matroids behave. Apart
from bases, for which we do not provide a definition and an axiomatic system, the other
relevant constructions in the theory of matroids have their matricube analogues.

The recent work of Baker and Bowler [BB19] develops a theory of matroids over hyperstruc-
tures. The extension of this theory to flag matroids is given by Jarra and Lorscheid [J1.24],
and a generalization to quiver matroids is the subject of a forthcoming work of Jarra,
Lorscheid and Vital. The work by Baker and Lorscheid [BL21, BL20] studies the moduli
space of matroids and deduce applications to representability questions for matroids. It
seems plausible and interesting to generalize these results to the context of matricubes.

In [BDP18], Bollen, Draisma and Pendavingh show that each representation of an
algebraic matroid M over a field of positive characteristic comes naturally with a valuation,
that they name the Lindstrom valuation of that representation. To this end, using the
Frobenius map of the base field, they associate to any such representation what they call
a matroid flock, an infinite family of linear matroids of the same rank as M, indexed by
ZF, where E is the ground set of M. It is interesting to note that, although these notions
arise in totally different contexts, the axiomatic systems of coherent complexes and matroid
flocks are reminiscent of each other. There are however some major differences. Namely,
the matroids appearing in a matroid flock all have the same rank, and there is an invariance
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property with respect to the direction (1,...,1). Besides, the boundary condition imposed
on the coherent complexes does not appear in matroid flocks.

Submodular functions on distributive lattices are a central topic in the study of a large
class of combinatorial optimization problems. We refer to the books by Schrijver [Sch03]
and Fuji [Fuj05] for a discussion of these aspects.

Murota [Mur98| investigates a theory of convex analysis in the discrete setting that
involves functions f: Z" — 7Z. Classical duality theorems about real convex functions are
proved in the discrete setting. Discrete convexity in that setting is similar in spirit to the
submodularity property studied in the present chapter.

2.1.9 Organization of the text

In Section 2.2, we define matricubes using rank functions and give basic examples, including
uniform and representable matricubes. We define operations of deletion and contraction on
matricubes, and formulate a duality concept.

In Sections 2.3, 2.4 and 2.5, we explore alternative axiomatic systems for matricubes,
relying on flats, circuits and independents, respectively.

In Section 2.6, we prove elementary combinatorial results useful throughout the chapter,
which provide a simpler way of checking whether a function on a hypercuboid is a rank
function.

In Section 2.7, we show that particular kinds of matricubes are in a natural one-to-one
correspondence with permutation arrays.

In Section 2.8, we provide the equivalence of matricubes with coherent complexes of
matroids, and provide local obstructions for representability.

Finally, in Section 2.9, we discuss further interesting features of matricubes and raise
several open questions.

2.2 Basic properties

Let n be a non-negative integer and [n] = {0,1,...,n}. For elements ry,...,ry, € [n], the
hypercuboid @B, of width ¢ = (r1,...,7,) is the product [ [i_,[r;]. When ry = --- =1y =1,
we simply denote the hypercuboid by 68, . We denote the elements of oF, by vectors
z = (21,...,2%m), for 1 € [1],...,2m € [rm]. In the hypercuboid, we define, for every
i=1,...,m and t € [r;], the t-th layer in the direction i as L! := {g e,z = t}.

We endow 0F, with the partial order <: For a pair of elements z,y € &J,, we have z <y
provided that x; < y; for all j = 1,...,m. The smallest and largest elements with respect
to < are 0 and g, respectively. Moreover, there is a lattice structure on G, where the two
operations of join v and meet A correspond to taking the maximum and the minimum
coordinate-wise, respectively.

78



A function f: &, — Z is called submodular if for every pair of elements z and y, we have

f@)+f(y) = flzvy) + flzry)

We will be interested in a special kind of submodular function on GF,. For each integer
ie{l,...,m}, we denote by ¢, the vector whose coordinates are all zero except the i-th
coordinate, which is equal to one. For 0 < < r;, the vector t¢, lies in &,

Definition 2.2.1 (Matricube). A matricube .4 with ground set &2, is defined in terms of
a function r: &, — Z called the rank function of ./ that satisfies the following conditions:

(R1) r(0) =0, and for every 1 <i<mand 1 <t <r;, we haver(te,) —r((t—1)¢,;) < 1.
(R2) r is non-decreasing with respect to <, that is, if @ < b, then r(a) < r(b).

(R3) r is submodular.

We call r = r(A) = r(g), the maximum value taken by the function r, the rank of
M. o

Note that (R1) implies that r(te;,) <t foralli=1,...,m and ¢ € [r;]. We say that .#
is simple if the following alternate form of (R1) holds:

(R1*) 7, > 0and r(te;,) =t foralli=1,...,m and ¢ € [r;].

Remark 2.2.2. In .# is simple, then the above properties imply that if z € &, has rank
j, then z; < j for all i = 1,...,m. In particular, 0 is the only element of rank 0 in &, ©

To be able to present examples of rank functions easily, we adopt the following convention.

Convention 2.2.3 (Cases m = 1,2,3). In this article, for m = 1, a function on &3, is
described by a tuple with r + 1 entries (f,...,t.), which means that the value of the
function on the ¢-th entry of &7, is ¢;.

In the same way, for m = 2, a function on &, , , will often be described by an array of

71,72
size (r1 + 1) x (ra + 1), (ij)o<i<r 0<j<rs» Which means that the function takes value ¢;; on

(/L'7 j) € @(T‘l,?"g
direction is vertical, and the origin is the bottom left-hand corner.

)- We choose the convention that the first direction is horizontal, the second

When m = 3 and ¢ = (r1,7r2,73), a function defined on &7, will be specified by 73 + 1
arrays Ry, ..., Ry, of size (r; + 1) x (ry + 1), where Ry, describes the values of the function
on 07 x {k} < &3, o

r1,12)

Here are two examples of matricubes with ¢ = (4, 3).

33345 3 33 3 4
2 2 2 3 4 2 2 2 2 3
1 2 2 3 4 12 2 2 3
0123 4 012 2 3
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The one on the left is simple, the one on the right is not.
For future use, we state the following proposition which implies that the set of values of
the rank function in a matricube of rank r is the interval [r].

Proposition 2.2.4. Let r be a rank function on &3,. Letie {1,...,m}. For an element
x € 08, such that x + ¢, € GF,, we have N

r(z) <r(z+e;) <r(z)+1.

Proof. Let y = (z; +1)¢
the submodularity of r to the vectors z and y, and using (R1) in Definition 2.2.1, we get
r(z) +1>=r(z+¢;). The first inequality follows from the non-decreasing property of r. [

and note that z vy =z +¢, and z Ay = z;¢,. Applying
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2.2.1 Uniform matricubes

Notation as in the previous section, let g = (r1,...,7m), and consider the corresponding
hypercuboid G7,. Let r € [r{ + --- + r,,] be a non-negative integer. We define the uniform
matricube %, of width g and rank r as the matricube defined by the standard rank function
defined as follows

r*(a) == min(r,a; + - - + a,) for a = (ay, ..., a,) € 03,

Notice that the uniform matricube %, is simple if, and only if, r > max; r;.
Below are the uniform matricubes %4 3) 3 and %(43) .

33 3 3 3 345 5 5
23 3 3 3 2 3 455
123 3 3 1 23 45
01233 012 3 4

Proposition 2.2.5. The rank function r of any matricube 4 of rank r on the ground set
@g is dominated by the rank function v of the uniform matricube %, ,. That is, for every
x € 09, we have r(z) < r*(z).

Proof. Tt follows directly from Proposition 2.2.4 that we have r(x) < 21+ - - +,,. Combined
with r(z) < r, we deduce the result. O

2.2.2 Representable matricubes

Let n be a non-negative integer, and let H be a vector space of dimension n over some field
k. An initial (decreasing) flag of H of length r consists of a chain of vector subspaces

H=F'2F'2...2F '2F 2(0),

where for each positive i € [r], F* is a vector subspace of codimension 0 or 1 in F©=1. We
say that F* is simple if each F? has codimension i in H. A complete flag is a simple initial
flag of length n — 1.

80



Let m be a positive integer, and let A be a collection of m initial flags F},... F* of H of
lengths 7y, ..., 7y, respectively. Define the function r: &J, — Z by

r(z) == codim,(F{* n---nFym) Vo= (21,...,2,) € 03, (2.1)

Proposition 2.2.6. The hypercuboid &3, endowed with the function r defined in (2.1) is a
matricube. This matricube is simple if, and only if, all the initial flags are simple.

Proof. Let a and b be two points of &J,, and let z := a A b and y :== a v b. We have an
injection -

(Ffr B2 /(B A nFY) > (B o F2m) /(B Ao A B,
from which, comparing the dimensions, we get r(b) — r(z) = r(y) — r(a). This proves the
submodularity of r. Properties (R1) and (R2) in Definition 2.2.1 are trivially verified. This

proves the first assertion. The matricube is simple if, and only if, each Fj’ has codimension
¢ in H, that is if, and only if, F} is simple, for j =1,...,m. O

We denote by .# 4 the matricube associated to A.

Definition 2.2.7 (Representable matricube). A matricube .# on ground set &3, is called
representable over a field k if it is the matricube associated to an arrangement of m initial
flags F}, ..., Fy of lengths 7y, ..., 7, respectively, in a k-vector space H. o

Example 2.2.8. The matricube %,, is representable over every field of large enough
cardinality. Indeed, it is the matricube associated to an arrangement of m initial flags of
lengths 71, ...,7r, in H of dimension r which are in general relative position, that is, whose
intersection patterns have the smallest possible dimensions. o

Example 2.2.9. We provide the minimal example of a non-representable hypercube rank
function. Let r be the function on @i defined by the following two arrays of size 2 x 2
(encoding the restrictions of r to &7, x {k} for k € {0,1}):

1) GO

It is easy to check that r is a hypercube rank function. However, let us suppose by
contradiction that r is associated to a collection of three flags F?, i € {1,2, 3} of a vector
space H of dimension 2. For every i, the flag F; is determined by a line A;:

H=F 2F = A; 2 F>=(0).

The restrictions of the function r to each of the 0-th layers are:

11\ 1 2
I.|L(1):I‘|L(2): 0 1/’ I.|Lg: 0 1/)°

The first two restrictions imply that A, = A and A; = Ag, respectively, whereas the last
restriction implies that A; n Az = (0), which cannot hold simultaneously. o
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Let .# be a matricube associated to an arrangement of m initial (decreasing) flags
Fy, ..., Fr inside H. For every i € {1,...,m}, duality transforms the initial (decreasing)
flag in H

H=F'SF 2. 2F" SF 2 (0)

into an initial (increasing) flag in H*
0)=G{cGjc--- =G, _, =G ¢ H,

where G; is the orthogonal to FZJ for the duality pairing (-,-): H x H* — &, that is,
Gl = ﬂveFij ker(v: H* — k) and F/ = ﬂéeG;j ker(¢: H — k), so that one filtration can be
recovered from the other. Note that in the case of matroids, this duality corresponds to the
one between arrangements of hyperplanes in H and arrangements of vectors in the dual H*.
The rank function r of .Z, defined in Equation (2.1) using intersections of the F/, can

be alternatively described using the flags G; in the following way:
r(z) = dim, (G, +---+ GI") Vo= (r,... ,2,)€ 00,

(2.2)

We will discuss the representability of matricubes further in Section 2.9.3.

m A
L0 0,
P A —
2Rzl
00‘ AR 3344
20 s | (‘ 2 2 3 4
0 1123
0404 )] 0123
URaal
no/:// ﬂ:/’ 0/
S

Figure 2.1: The left figure represents a three-dimensional matrix A = (A;'»s) of size m xrxn
with m = 2, r = 3 and n = 4. The blue (resp. red, resp. green) layer contains
vertically the coordinates of the vectors v} and v? (resp. vi and v2, resp. vs
and v3). The associated matricube is given on the right.

2.2.3 Matricube induced by a cubical matrix

Using the duality between initial (decreasing) flags in H and initial (increasing) flags in H*,
we explain a procedure that associates a representable matricube to any three-dimensional
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matrix with coordinates in a field k. This construction extends the representation of
representable matroids by matrices. As in the case of matroids, this justifies the terminology
matricube, which encompasses both the idea of cubical matriz (like “matroid”, coming from
“matrix”) and hypercuboid (a matricube is described by a hypercuboid of numbers, given by
the rank function).

Notation as in the previous section, first assume that r; = --- = r,, = r and let
i€ {1,...,m}. We choose vectors vi,... ,v¢ € H* such that for every j € {1,...,7},
Gi = (vi,...,vi). This shows that a representable matricube . can be determined by
the collection of vectors v;'», forie{1,...,m} and j e {1,...,r}. Said otherwise, choosing a
basis of H*, ./ is determined by a three-dimensional matrix A = (A’,) where i € {1,...,m},
je{l,...,r}and s € {1,...,n}, n being the dimension of H*. Inversely, using the definition
of rank function given in (2.2), this procedure gives a way to associate to every three-
dimensional matrix A = (A%,) of size m x r x n with entries in a field  a matricube .#4
on the hypercube GJ, .

In the general case, if not all r; are equal, we set r := max; r; and choose, for every
i€ {l,...,m}, afamily of vectors vi, ... ,vf;i,

now with r — r; copies of the zero vector. This gives a matrix A of size m x r x n. In the

0,...,0, with v} for j < r; as before, completed

matricube .#, associated to A, we now delete, for every i € {1,...,m}, r — r; times the
element i (we refer to Section 2.2.5 below for the definition of the operation of deletion).
This gives the matricube associated to the original family of flags.

It follows from the construction above that every representable matricube is associated to
some three-dimensional matrix, possibly after a few deletions corresponding to zero vectors.

An example of a matricube associated to a three-dimensional real matrix with m = 2,
ry = 1ry = 3 and n = 4, is depicted in Figure 2.1. The ground set of the corresponding
matricube is [3] x [3].

2.2.4 Matricube induced by a collection of flag matroids

We show that a finite collection of initial flag matroids on the same ground set E gives
rise to a (simple) matricube. We refer to [BGWO03, Chapter 1] and [CDMS17] for a nice
introduction to flag matroids.

Let E be a finite set and r be a positive integer. An initial flag of size s is an increasing
chain of subsets [y = 3 < F1 € F» & --- & F, € E with |F;| = j for j = 1,...,s. Note
that the data of an initial flag is equivalent to an ordered sequence ¢4, ..., e, of distinct
elements of E, I} consisting of the first j elements €4,. .., ¢;.

A total order <, on E induces a partial, element-wise order on £°. Through the bijection
between initial flags of size s and ordered sequences of size s in F, <, induces a partial
order on initial flags of size s.

An initial flag matroid M of rank s is a collection .# of initial flags of size s as above such
that for any total order <, on F, there exists a unique flag in .% maximal with respect to
the induced partial order on initial flags of size s. In this case, the following properties hold:
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e the collection consisting of the terms F}; of flags F, appearing in .# forms the set of
bases of a matroid M; of rank j on the ground set I, for j =0, ..., s;

e the matroid M; is a quotient of the matroid M, 1;

e any sequence Fy = J < Fy © Fy < --- < Fy with F} a basis of M; is an element of
F.

(These properties are equivalent to .%# defining a flag matroid, see [BGWO03, Theorem
1.7.1].) Elements of .Z are called bases, and M; is called the j-th constituent of M.

Let now ¢ = (r1,...,7n) be a vector with positive integer entries. Consider a collection
M, ..., M™ of initial flag matroids of respective ranks ry,...,r,, on the ground set E. For
each i = 1,...,m, and each j € [r;], denote by M’ the j-th constituent of M*. This is a
matroid of rank j.

For each z € 03, denote by M, the matroid union M u --- v M of My ,..., M7 .
Recall that the independent sets of the matroid union M, are subsets of E of the form
I U --- U I, where each I; is an independent of the matroid M; fori=1,...,m.

Consider the function r: GJ, — Zx( on the hypercuboid defined by

r(z) = r(Mg) Vz e @,
where r(M,) is the rank of the matroid M,.

Theorem 2.2.10. Notation as above, r is the rank function of a simple matricube # =
MM, M™) with ground set the hypercuboid G,

Proof. We first note that r(te,) = 7(M!) = ¢t for all t € [r;]. This shows that (R1*) is
verified. The axiom (R2) is obviously verified by the definition of the matroid union. It thus
remains to show (R3), i.e., that r is submodular. By Theorem 2.6.2, it will be enough to
show that r verifies the diamond property, that is, for all z € &, and distinct 1 <,j <m
with z +¢;,z + ¢; € &J,, we have

r(z+e;)+r(z+e;)>r(x+e +e;)+ra) (2.3)

Removing an element from each independent set of M’ results in an independent set of

M . This implies that r(z + ¢;) < r(z)+ 1. We thus have r(z) <r(z +¢; +¢;) <r(z) +2.
Leta=z+¢,b=x+ [ and c=2x +¢, + [ Three cases can occur, depending on

whether r(c) = r(z), r(z) + 1, or r(z) + 2.

e In the first case, r(c) = r(x), inequality (2.3) holds trivially.

e Consider the third case r(c) = r(z) + 2. In this case, using the inequality r(y + ¢;) <

r(y) + 1 for all y,y + ¢, € &F,, we infer that r(a) = r(b) = r(z) + 1, and inequality (2.3)

holds again trivially.

e It remains to treat the case r(c) =r(z) + 1. Let I = I U --- U I, be a basis of M, with

I, an independent of M’;k for k = 1,...,m. There exists a basis J of M, which contains /
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and an extra element € of E. Write J = J; U --- U J,, with J, an independent of M’c“k, for
k=1,...,m. Since J is not an independent of M,, ¢ appears in either J; or J;. Removing
it if necessary from one of the two, we can suppose that € appears in exactly one of the two
sets J; or Jj, say, without loss of generality, in J;. Then, J will be an independent set of M,,
and so r(a) = r(z) + 1. This shows that inequality (2.3) holds. The theorem follows. [

Note that if, in the definition of an initial flag matroid, we relax strict inclusions, the
same construction as above gives rise as well to matricubes which are not necessarily simple.

2.2.5 Operations on matricubes

Let .# be a matricube with underlying ground set &3, 0 = (71,...,7m).

Deletion

Let i € {1,...,m}. We define the deletion of ¢ in .# , denoted by .# \i, as the matricube
with ground set &@,, ¢’ = (r1,...,7 — 1,...,7y), defined as follows. We view G5, as the
subset of &, consisting of all the points z with x; < r; and define the rank function r’
of .4 \i to be the restriction of r to GJ,. Obviously, r’ verifies the axiomatic system
(R1)-(R2)-(R3) of matricube rank functions. Furthermore, note that if .# is simple, then
so is A \1i.

As an example, here is a (simple) matricube .# with ¢ = (4,3) (left) and its deletion
A\ 2 in the vertical direction (right).

M 222 3 4
1 2 2 3 4

1 2 2 3 4

012 3 4 012 3 4

Contraction

Let i € {1,...,m}. We define the contraction of i in .# , denoted by .# /i, as the matricube
with ground set 63, o' = (r1,...,7i—1,...,7y), defined as follows. We define an embedding
of @0, in G, by sending each point x to z + ¢;. We then define the rank function r’ of
A /i by setting r'(z) := r(z + ¢;) — r(¢;). The embedding of &3, in &3, respects the two
operations of A and v. It is easy to see that r’ verifies the axiomatic system (R1)-(R2)-(R3)
of matricube rank functions. Note that .# /i is not necessarily simple, even if .Z is so.

As an example, here is a (simple) matricube . with ¢ = (4,3) (left) and its (non-simple)
contraction . /2 in the vertical direction (right).

MO 222 3 4
12934 11123
0123 4 01123
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Minors

A matricube .#" is a minor of another matricube .# if it can be obtained by a sequence of
deletions and contractions from ..

Both operations of contraction and deletion respect the representability over a given
field . It follows that if .# is representable over k, then all of its minors .#’ are also
representable over k. We will discuss the connection between representability and minors
in Section 2.9.3.

2.2.6 Duality

Let .# be a matricube on the ground set G5, with rank function r. The dual matricube
A is the matricube on &, with rank function r* defined by
ri(z) = [z], +r(z°) —r(A) Vzed,

Here,

=0 -z = (1 =1, T — Ty)

is the complement of x and |§\el =1 + -+ + Xy, is the f1-norm of x = (z1,...,2,). A
direct verification shows that r* verifies the axiomatic system (R1)-(R2)-(R3) of matricube
rank functions. Moreover, .#Z* has rank r*(.#*) = ‘Q‘él —r( ), and we have (A*)* = A .
Note however that .# can be simple without .Z™* being so, and vice-versa.

Here is a (simple) matricube .# with ¢ = (4,3) (left) and its (non-simple) dual .#*
(right).

33 3 45 2 2 2 2 2
2 2 2 3 4 1112 2
1 2 2 3 4 0001 2
012 3 4 0001 2

2.3 Flats

In this section, we define flats of matricubes and provide an axiomatic system for them.
This extends the axioms of flats in matroid theory.

2.3.1 Definition and basic properties

Let .# = (GF,,r) be a matricube of rank 7.

Definition 2.3.1 (Flats of a matricube). A point a € GF, is called a flat for r if for every
1 < i < m such that a + ¢; belongs to &F,, we have r(a +¢;) = r(a) + 1. We denote by
F = F (M) = @, the sct of flats of 4. o
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Here are two (simple) matricubes with ¢ = (4, 3) for the first, and ¢ = (5,4) for the
second. The flats in each case are depicted in blue.

233 45 4 45 5 5 6
3455 5 6

22234 23 44 45

1 22 3 4

012 3 4 123 3 45
012345

Proposition 2.3.2 (Stability of flats under meet). The set . () of flats of a matricube
A is stable under A.

We need the following lemma.

Lemma 2.3.3. Letie {1,...,m} and let z,y,z + ¢;,y +¢; be elements of GF, with x <y
and x; = y;. If r(y +e;) =r(y) + 1, then we have r(z + ¢;) = r(z) + 1.

Proof. This follows from the submodularity of r applied to z+¢; and y, and Proposition 2.2.4.
O

Proof of Proposition 2.3.2. Let a and b be two flats and let ¢ = a A b. Let i e {1,...,m}
be such that ¢+ ¢, belongs to GJ,. We have to show that r(c+¢;) = r(c) + 1. By symmetry,
we can suppose that a; < b;, that is, ¢; = a;. Since a is a flat, we have r(a + ¢;) = r(a) + 1.
Applying Lemma 2.3.3 to z = c and y = a, we conclude. O

The above result implies the following.

Theorem 2.3.4. The set F (M) of flats of a matricube endowed with the partial order <
is a graded lattice. The grading is induced by the rank function.

Proof. 7 (#) has a minimum and a maximum element, and is stable under meet. It
follows that it is a lattice, with the operation v between two elements a and b in .# ()
defined as the meet of all the upper bounds ¢ for a and b.

Note that for a < b two distinct and comparable flats of .#, we have r(a) < r(b). The
statement that Z (#) is graded is a consequence of Proposition 2.3.6 below. [

Lemma 2.3.5. Let .# be a matricube on the ground set G3,. Let x be an element of GF,,
and let ¢ be the minimum flat with ¢ > x. Then, we have N

(1) r(e) = r(a).
(2) Letie{l,...,m} be such that x + ¢, € &8,. Then,
).

x) + 1.

o if ¢; > x;, then we have r(x +¢;) =r

e if ¢; = x;, then we haver(z +¢;) =7
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Proof. To prove (1), it will be enough to show there exists a flat b > x with r(b) = r(z).
Then, since flats are closed under meet, b will coincide with ¢ and (1) follows. We proceed
by a reverse induction on the ¢;-norm of z. If x is a flat, in particular, if z = g, there
is nothing to prove. Otherwise, there exists i € {1,...,m} with y := z +¢, € &I, and
r(z+¢;) = r(z). By the induction hypothesis, there is a flat b > y with r(b) = r(y) = r(z),
and we conclude.

We prove (2). If ¢; = x;+1, thenz < z+¢; < ¢, and thus r(z) <r(z+e¢,;) <r(c) = r(z).
We infer that r(z +¢,) = r(z).

If ¢; = x;, then using r(c + ¢;) = r(c) + 1, we apply Lemma 2.3.3 and deduce that
r(z +¢;) =r(z) + 1, as required. O

We get the following corollary.

Proposition 2.3.6. Let a < b be two distinct flats of A with r(b) = r(a) + 2. There exists
a flat a < ¢ < b with r(c) =r(a) + 1.

flat, r(xz) = r(a) +1. Let ¢ be the minimum flat with ¢ > z. Obviously, a < ¢. Also ¢ < b, as
bis a flat and ¢ is minimum. By Property (1) in the previous lemma, r(c) = r(z) = r(a) +1
We thus have strict inequality ¢ < b, and the result follows. O]

2.3.2 Axiomatic system of flats

For a subset % of @@, consider the following properties.
(F1) gisin #.

(F2) Z# is closed under meet.

(F3) If @ is an element of % and i € {1,...,m} is such that a + ¢, € &J,, then there exists
an element b in .# such that b > a +¢;, and b > a in Z. -

We recall that b > a means that b covers a, i.e., b > a in .% and there is no element
c € .% such that b > ¢ > a.
We also introduce the following non-degeneracy property.

(F*) Each layer Li, i = 1,...,m, t € [r;], contains an element of .Z.

We prove the following result.

Theorem 2.3.7. The set of flats # of a matricube A with ground set GB, verifies (F1)-
(F2)-(F3). Conversely, let # < @B, be a subset verifying (F1)-(F2)-(F3). Then, F is the
set of flats of a matricube A with underling ground set G,

Moreover, the matricube 4 is simple if, and only if, Property (F*) holds.
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Remark 2.3.8. The first three conditions (F1)-(F2)-(F3) are the matricube analogs of
the three axioms that define the set of flats of a matroid. Property (F*) requires that the
matricube does not contain any loop: if a layer does not verify this condition, deleting it,
we get a smaller hypercuboid with the same collection .% that verifies the same axioms. <

Remark 2.3.9. The axioms (F2) and (F*) together imply that 0 is in .%. Indeed, (F*)
yields a flat in L} for each ¢ = 1,...,m. The meet of these flats is 0, and by (F'2) belongs

to Z. o
Remark 2.3.10. It is easy to see that if .# verifies (F2), then the element b in (F3) is
unique. o

2.3.3 Flats of a matricube verify the axioms

Let .# be a matricube G5, and let .7 = % (.#') be the set of flats of .#. We prove that .7
verifies properties (F1)-(F2)-(F3). Moreover, if .# is simple, then we show that (F*) holds.

Proof of the first part of Theorem 2.5.7. Property (F1) follows from the definition of flats
of a matricube. We already proved property (F2) in Proposition 2.3.2. It remains to show
(F3). If r(p) =r(a) + 1, then b = g satisfies (F3). Otherwise, we have r(g) = r(a) + 2, and
by Proposition 2.3.6, we have an element b in .% of rank r(a) + 1 with b > a + ¢,. Again,
b > a, as required.

Now suppose that .# is simple. Property (F*) is a consequence of Lemma 2.3.5 above
applied to te,. Let ¢ be the minimum flat with ¢ > te;. If Property (F*) does not hold
for the layer Li, then necessary ¢; > t and thus r((¢t + 1)¢;) = r(te;), contradicting the
simpleness of .Z . ]

In the rest of the section, we prove the second part of the theorem.

2.3.4 Diamond property

We recall the following definition.

Definition 2.3.11 (Diamond property for lattices). Let (L, <) be a lattice with the meet
and join operations A and v, respectively. We say that L has the diamond property if for
every triple of elements a, b, c € L such that b # ¢ and b and ¢ both cover a, the join b v ¢
covers both b and c. o

Lemma 2.3.12. Let L be a lattice that satisfies the diamond property. Then, it admits a
grading, i.e., all its maximal chains have the same length.

Proof. This is well-known. We give a rather informal proof. We apply the diamond property
multiple times to show that two maximal chains C' and C” in L have the same length. This
is done by induction on the elements of C' and C’; the “diamonds” drawn in the Hasse
diagram by repeated application of the diamond property provide a finite sequence of chains
of constant length between C' and C’, ultimately proving that C' and C” have the same
length. ]
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2.3.5 The axiomatic system of flats implies the diamond property

Lemma 2.3.13. Let # < &8, be a subset verifying avioms (F1) and (F2). Then, F is a
lattice. If additionally .F wverifies axioms (F3), then it verifies the diamond property.

Proof. Since .# is closed under meet and it has a maximum element, it is a lattice. The
join of two elements a and b in .% is the meet of all the elements ¢ € .% that verify ¢ > a
and ¢ > b.

Now let a, b, c € % be such that b # ¢, and b and ¢ both cover a. By assumption, b and ¢
are not comparable, so there exist j # k € {1,...,m} such that b; > ¢; and ¢, > bs. In fact,
¢; = a;, because otherwise, we would have a < b A ¢ < b, which is impossible because b > a.

Now, applying (I'3) yields z € # such that z > ¢+ ¢; and z > c. We show that z > b.
Indeed, first, if x * b, then we would have a < £ A b < b, the strictness of the first inequality
coming from the inequalities z; > a; + 1 (because z > ctejand ¢ = a;) and b; > a;. This
would be in contradiction with b > a. Second, x = b is not possible because z > ¢+ ¢ ;=C
and b and ¢ are not comparable. Therefore, x > b.

Symmetrically, (F3) provides an element y € .# such that y > b+ ¢, y>band y > c.

Let u := z Ay and notice that u verifies the chains of inequalities b < u <y and ¢ < u < z.
In other words, u belongs to the interval [l_), ﬂ, defined as the set of all elements z € .% such
that b < 2z < y. This interval is equal to {l_),g} since y > b. Likewise, u € [c, z] = {c, z}.
Since b and ¢ are not comparable, y > b and z > ¢, the only possibility for the sets {l_?, g}
and {c, z} to have the element u in common is that u =z = y. This shows that u covers
b and ¢. Then, u is necessarily equal to b v ¢. We conclude that .%# verifies the diamond
property. O

Applying Lemma 2.3.12, we infer the following.

Proposition 2.3.14. Let 7 < @3, be a subset verifying arioms (F1)-(F2)-(F3). Then, &
15 a graded lattice. -

We denote by r: . # — N u {0} the corresponding grading. The following properties hold.

(a) The function r is increasing on .#, in the following sense: if a < b € %, then
r(a) <r(b).

(b) If a,b € .# are such that b > a, then r(b) = r(a) + 1.

2.3.6 Proof of the second part of Theorem 2.3.7

Let .7 < @F, be a subset verifying the axioms (F'1)-(F2)-(F'3). We define a map
p: 00, > F <O,

as follows. For each x € &8, we define p(z) to be the minimum flat b € F such that b > z.
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Lemma 2.3.15. Notation as above, the map o is well-defined, and ¢ and % have the
following properties.

(i) The map ¢: @, — F < @, is non-decreasing.

(i) Let v € @, and i€ {1,...,m} such that z + ¢; € @,. Then, either p(z + ¢;) = ¢(2),
or p(z + ¢;) > ().

Proof. The first part is immediate by definition. We prove the second one. If we assume
that o(z +¢;) # p(z), then we must have p(z + ¢;) > p(z) + ¢;. Indeed, otherwise,
oz +¢;) > p(z) = x + ¢;, contradicting the minimality of ¢(x + ¢;).

Now, (F3) yields the existence of b > ¢(z) + ¢, in .% such that b > ¢(z). Then, using
Property (i) above and the definition of ¢, we get b > ¢(p(x) +¢;) > ¢(x + ¢;). The chain
of inequalities b > ¢(x + ¢;) > p(z) and the fact that b > x imply b = ¢(z + ¢,). Therefore,
we have p(z + ¢;) > ¢(x), as required. O

We can now complete the proof of Theorem 2.3.7.

Proof of the second part of Theorem 2.5.7. Let .7 be a subset of GF, verifying axioms (F'1)-
(F2)-(F3). As we have shown already in Proposition 2.3.14, .% is a graded lattice.

We first extend the function r: % — N u {0} to a function r: &3, — N u {0} by setting,
for each x € @, r(z) == r(p(z)). We claim that r is the rank function of a matricube. We
will use the properties proven in Lemma 2.3.15.

Part (ii) of the lemma implies directly that r(z +¢;) < r(z) + 1 for each z € 07,
proving (R1).

The fact that r is non-decreasing on GF, is a consequence of Property (i) in the lemma
and Fact (a) stipulating that r is increasing on elements of .%.

We show that r is submodular on G7,. By Theorem 2.6.2 that we will prove in Section 2.6,
it is sufficient to prove the diamond property for functions on hypercuboids (see Section 2.6).
Let x € @3, and i # j € {1,...,m} be such that x+e¢,+¢, € 0J,. Using Property (ii), we may
assume that r(z +e¢; +e¢;) = r(z+e¢;) + 1, and then need to prove that r(z +¢,) = r(z) + 1.
The equality r(z +¢; +¢;) = r(z +¢;) + 1 means that p(z +¢; +¢;) > ¢z +¢;).
This implies that ¢(z +¢;) € Lfm_ (as otherwise, we would get ¢(x + ¢;); = =; + 1, that
is, p(z +¢;) = x+e¢; +¢;, and so we would have p(z +¢; +¢;) = @(z +¢;)). Since
¢(z + ¢;) = ¢(z), this in turn implies that p(z) € L, . However, p(z + ¢,); = z; + 1. We
infer that p(z + ¢;) > ¢(x), and thus r(z +¢;) = r(z) + 1, as desired.

We have shown that r is the rank function of a matricube with ground set &3,. The fact
that the set of flats of r is exactly .% is immediate by the definition of r and the map ¢,
and the fact that r is increasing on .7, see (a).

It remains to show that if (F*) holds, then .# is simple. Let i € {1,...,m}. We show
by induction that for every 0 <t < r;, we have r(te;) = t. The base case ¢t = 0 holds by
definition. We now suppose that r(te;) = ¢ with 0 < ¢ < r; and show that r((t+1)e,;) = t+1.
(F*) implies that p(te;) € L and p((t + 1)¢;) € Li,,. In particular, o((t + 1)¢;) # o(te;).
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Again, Lemma 2.3.15 implies that ¢((t + 1) ¢;) > ¢(t¢;) which, using that r is increasing
on .#, implies r((t + 1)¢;) = r(e((t +1)¢;)) = r(p(te;)) +1 =r(te,) +1 =t +1, as
desired. O

2.4 Circuits

We define circuits in matricubes and provide an intrinsic axiomatic system for them.

2.4.1 Duality and circuits

Let .# be a matricube on the ground set GJ,, and denote by .Z* its dual. Denote by
F (M) the set of flats of the dual matricube, and consider

¢ ={a" | ae F(a")}cd,

where, we recall, a® = ¢ — a. Since F () is closed under meet, % will be closed under the
join operation.

Given a subset A < 07, we say that an element a of A is join-irreducible in A if it is
not the join of any set of elements of A \ {a}.

Definition 2.4.1 (Circuits). The collection of circuits of .Z, denoted by €, is defined as
the set of nonzero join-irreducible elements of €. o

Here is a (simple) matricube .# with o = (5,4). On the left, .# is represented by its
rank function r, with its circuits in red and the join-reducible elements of % in blue. On
the right, the dual .Z™* of .#, which is not simple, is represented by its rank function r*,
with its flats in teal.

444456 333333
334456 2222 2 3
2 23345 111223 (2.4)
112345 111223
012345 000123

Obviously, by definition, % determines ‘(9;, and therefore, gives the set of flats of the dual
matroid .Z*. By Theorem 2.3.7, this implies that ¥ determines .Z .

2.4.2 Axiomatic system of circuits

For a subset ¢ of GJ,, denote by % the join-closure of %, obtained by taking the join of
any set of elements of €. Consider the following set of properties:

(C1) 0is not in Z.
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(C2) All elements of € are join-irreducible in €.

(C3) Ifa e ¢ and i € {1,...,m} is such that @ —¢; € &J,, then there exists an element

I
b<a—¢g,in € U {0} such that b < a in C U {0}.

We also introduce the following simpleness property.
(C*) For every i€ {1,...,m} and t € [r;], te,; is not in €.

We prove the following result.

Theorem 2.4.2. The set of circuits € of a matricube A with ground set B3, verifies
(C1)-(C2)-(C3). Conversely, let € < @B, be a subset verifying (C1)-(C2)-(C3). Then, € is
the set of circuits of a matricube A with underlying ground set G3,.

Moreover, the matricube A is simple if, and only if, Property (C*) holds.

Proof. (=) Let € be the set of circuits of a matricube .# with ground set &3,. Proper-
ties (C1) and (C2) hold by definition of € (see Definition 2.4.1). As for Property (C3), it is
a translation through duality of Property (F3) which holds for the set of flats of the dual
matricube .Z*.

Assume moreover that .# is simple. Let i € {1,...,m} and ¢ € [r;]. We have r(te,) =t
and therefore, denoting by r* the rank function on .Z*, we have r* (Q —t gi) =r* (g) This

implies that for every 7 and ¢, ¢ — te; is not a flat in .#™, which means that t¢; is not in

~

%. As a consequence, te, ¢ €.
(=) Let € < 07, be a subset verifying (C1)-(C2)-(C3), and % the join-closure of €.
Define
F = {Qc}ge?}u{g}.

We claim that .# is the set of flats of a matricube. We need to show that it satisfies
(F1)-(F2)-(F3). By construction, (F1) and (F2) hold. Property (F3) is a translation
through duality of Property (C3) which holds for ¥’. Therefore, .# is the set of flats of
a matricube. We denote the dual of this matricube by .#, so that .% = F(.#*). Tt is
immediate by construction that % is its set of circuits of .Z .

Let r be the rank function of .# and r* that of .Z*.

To prove the last assertion, assume that for every i € {1,...,m} and ¢ € [r;], t ¢, is not in
% . Then, for every i and t, o — te; is not a flat of .#™*. By a simple induction, this implies
that for every ¢ and ¢, r* (Q — tgi) =r* (g), and consequently, r(te,) = t. We infer that .#
is simple. O]

2.5 Independents

In this section, we define the independents of a matricube and study their properties. As in
the case of flats and circuits, we give the axiomatic system of independents of a matricube.
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2.5.1 Definition and basic properties

Let .4 be a matricube on the ground set G,

Definition 2.5.1 (Independents of a matricube). We say that a point p of &2, is called an
independent of A if for each t = 1,...,m such that p—e, € &J,, we have r(]_o — gi) = r(g) —1.
We denote by &/ (.#) = &7, the set of independents of .#. o

Here are two matricubes with ¢ = (4,3) for the first, and ¢ = (5,4) for the second. The
independents in each case are depicted in blue.

333 4 5 4 45 5 5 6
345 55 6
22234 23 4445
1223 4 SRR
012 3 45

The following proposition provides a list of properties of independent sets in a matricube.

Proposition 2.5.2. Let Z () be the set of independents of a matricube A . The following
properties hold.

o I (M) is non-empty and closed under meet.

e For every independent p € (M) and every distinct elements iy, ... i, € {1,...,m}
with p;; #0, 7 =1,...,k, we hcwer(]_o—gil — - —, ) =r(1_9) — k.

=ik
Proof. Both statements follow from Lemma 2.3.3, as in the proof of Proposition 2.3.2. [J

Note that .# (.#) in general does not have a maximum, and lacks the existence of a join.
In order to study more refined properties of independents, we will associate a notion of
size to each independent element in .# by defining a remowval operation on elements of

().

2.5.2 Removal and size

Let J be a subset of G3,. Let a be an element of J and i € {1,...,m} such that a; # 0. If
there is at least one element b < a in J that differs from a only in the i-th component, we
define a \ 7 to be such an element in J with the largest i-th coordinate. In this case, we
say that a \ 7 is the removal of i in a in J.

Definition 2.5.3. Let J be a subset of @g.

(a) We say that remowvals exist in J if for every a € J and i € {1,...,m}, if a; = 1, the
removal a \ 7 exists in J.
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(If removals exist in 7, then necessarily, we have 0 € J. Moreover, for every element a € 7,
there exists a sequence of removals in 7, that reduces a to 0.)

(b) We say that J is orderable if removals exist in J and for every a € J, all the sequences
of removals in 7 that bring a to 0 have the same length.

If J is orderable, we define the size of each element a € J denoted by |a| as the number of
removals needed to reduce a to 0. o

In Lemma 2.5.7 below, we formulate a simple orderability criterion.

2.5.3 Axiomatic system of independents

We first make the following definition, which turns out to be useful in the proof of the main
theorem of this section.

Definition 2.5.4. Let a,b € &, be two elements. We define:

Ala,b) ={k=1,....m | ar < by} and E(a,b) = Z (b, — ay). o
keA(a,b)

For a subset . of @3, consider the following property:

(I1) Removals exist in .# and the following holds. For all p € .# and removals p \ i

and p \ j, with i,5 € {1,...,m}, the meet g := (]3\ i) A (Q\j) belongs to .# and,
moreover, the two intervals [g, JZRN z] and M, JZAN j] in .# have the same size.

(The interval [a,b] in .7 is defined as the set of all ¢ € .# such that a < ¢ < b.)

It follows from Lemma 2.5.7, proved in Section 2.5.5, that a subset .# < &, that verifies
(I1) is orderable. We can thus define the size |a| of each element a € .#. This enables us to
formulate the second property of interest:

(I2) | - | is increasing on independents, i.e., for all a,b € .# such that a < b, we have
la| < |b]. Moreover, let a and b be two elements of .# such that |a| < |b| and A(a,b)
contains at least two elements. Then, there exists ¢ € . that verifies:

e c<avhb,
® || > |al.

e There exists i € A(a,b) such that ¢; < b;.
We also introduce the following notion of simpleness.
(I*) For i =1,...,m, the points te, for t € [r;] are all in .&.

This is the main result of this section.
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Theorem 2.5.5. The set of independents I () of a matricube A with ground set GF,
verifies (11)-(12). Conversely, let & < @B, be a subset that verifies (11)-(12). Then, .7 is
the set of independents of a matricube A with underling ground set GZ,.

Moreover, the matricube A is simple if, and only if, & verifies (I*).

Remark 2.5.6. Axiom (I1) is an analog of the hereditary property for independents of
matroids. It also implies that 0 € ., analog of the first axiom of independents in matroids.
Axiom (I2) plays the role of the augmentation property for independents. These axioms
take into account the more singular nature of independents in the context of matricubes: for
example, in matroids, all maximal (for inclusion) independents have the same cardinality,
whereas in matricubes, maximal independents (for the partial order <) can have different
sizes as one of the two examples above shows (see Section 2.9.1 for further discussion).
Axiom (I*) requires that there is no “loop”. o

2.5.4 Independents of a matricube verify the axioms

Let .# be a matricube GF,. We prove that .#(.#) verifies properties (I1)-(I2). Moreover,
if .# is simple, then we prove that (I*) holds.
The proof shows that the size function on & (.#) coincides with the rank function.

Proof of the first part of Theorem 2.5.5. We start by proving (I1). Let p e .7 (.#) and let
ie{l,...,m} besuch that p; # 0. We claim that @ := p—p;e; € S (A ). By design, a; = 0.
Now, let j € {1,...,m} be an integer different from ¢ such that a; # 0. We have p; = a; # 0
and r(]_y —gj) = r(g) — 1. Applying Lemma 2.3.3 with x = a — ¢;and y =p—¢;, we get
r(a —¢;) = r(a) — 1. This shows that a € .7 (.#). Therefore, removals exist in & (.Z).

We next show that I‘(]_) ~ z) = r(]_)) — 1. For the sake of a contradiction, suppose this not
being the case, that is, r(g ~ 2) < r(]_a) — 2. Then, there would exist p~i < b < p such that
r(b) =r(p) — L and r(b—¢,) = r(b) — 1. Note that b; = p; for all j # i. Applying again
Lemma 2.3.3 as above, we infer that b belongs to . (.#'). This would be a contradiction to
the definition of the removal.

This implies that a sequence of removals bringing p € % (.#) to 0 has size precisely r(]_)).

Now, for distinct 4,5 € {1,...,m}, we consider the removals p \ i and p \ j in ¥ (.Z),
as well as ¢ == (p~i) A (p~j). By Proposition 2.5.2, g € .#(.#). Note that we have
r(p~j) =r(p) —1=r(p~i).

The element ¢ differs from p \ 4 only in the j-th component, and therefore can be
obtained from it by a sequence of removals of j. It follows that [g, AN z] has cardinality
r(g_y N z) — r(g) + 1. Similarly, [Q,g N j] has cardinality r(z_) N j) — r(g) + 1.

We conclude that the two intervals [g, JZAN z] and [g, JZAN j] in Z(.#) have the same
cardinality, and (I1) follows. We thus get a well-defined size function |- | on & (.#). As the
proof shows, we have |a| = r(a) for every a € .&.

The first half of Property (I2) results from the fact that if a < b are two independents,
then A(a,b) # @. Then, taking k € A(a,b), we get r(a) <r(b—¢,) =r(b) — 1.
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For the second half of Property (12), let a,b be two independents such that |a| < |b| and
|A(a,b)| = 2. We consider two cases depending on whether |a| < |b] —2 or |a| = [b| — 1.

First, consider the case |a| < |[b] — 2. Let i € A(a,b). Since b; > a; = 0, we can define
¢ := b~ . Note that |c| = [b| — 1 > |a|. Furthermore, by construction, ¢ < a v b and ¢; < b,.
This shows that ¢ is suitable.

We now consider the case |a| = [b| — 1. Let d:=a v b. Let y < d be an element of &7,
minimal for < under the constraints that r(y) = r(d) and for all k ¢ A(a,b), yx = dy (note
that for all those k, we have dj, = a;,). For all k € A(a, b) with y — ¢, € 67, we thus have
vy —ey) =r(y) - 1.

Next, let z < y be an element of &Z, minimal for < under the constraint that r(z) =
r(y) = r(d), and for all k € A(a,b), zx = yi. Since for all k € A(a, b) with xp =y, > 0, we
have r(y —e¢,) = r(y) — 1, Lemma 2.3.3 implies that r(z —¢,) = r(z) — 1. Morcover, by
the choice of z, we also have, for all i ¢ A(a,b), r(z —¢;) = r(xz) — 1 provided that z — ¢,
belongs to G7,. Therefore, combining all this, we conclude that z € . (.#).

Ify <d, let c:=z € S (M ). There exists then k € A(a,b) such that y, < dy = b. As
a consequence, ¢ < bg. Moreover, r(c) = r(d) = r(b) = r(a) + 1 and therefore |¢| > |a|.
Since by construction ¢ < d, ¢ is suitable.

It remains to consider the case y = d. This means that for every k € A(a,b), r(d —¢;) <
r(d). We claim that in this case, the strict inequality r(d) > r(b) holds. Indeed, for the
sake of a contradiction, suppose r(d) = r(b). Since |A(a,b)| = 2, there are two distinct
elements 4, j € A(a, b), and for these i, j, we would have r(d —¢;) = r(d—¢;) = r(d) — 1. By

i—¢,) = x(d)—2. Since i, j € Ala,b)
—¢, and therefore, we would have r(a) < r(d)—2 = r(b)—2, contradicting

submodularity (see Lemma 2.3.3), we would get r(d—e¢
we havea < d—¢;
the assumption that |a| = |b| — 1. This proves the claim that r(d) > r(b).

Let now ¢ := z \ k for an element k € A(a,b). We have |c| =r(c) =r(z)—1=r(d)—1>
r(b) = |b| > |a|, and therefore |c¢| > |a|. Besides, ¢, < xx = dy = by, and obviously ¢ < d.
This shows that ¢ is suitable in this last case. This ends the proof of (I12). We have proved
that .Z(.#) verifies (11) and (12).

To finish the proof, note that if .# is simple, then (R1*) immediately implies (I*). O

2.5.5 Orderability lemma

Before going to the proof of the second part of Theorem 2.5.5, we show the following
criterion for orderability.

Lemma 2.5.7. Let J be a subset of 63,. The following are equivalent:

(1) J satisfies (11).

(2) T is orderable in the sense of Definition 2.5.3.
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Proof. We first prove (1) = (2). Assume (I1) holds. Proceeding by induction under the
partial order <, we show that for every a € J, the following property holds:

P(a) :  All the sequences of removals that bring a to 0 have the same length.

Obviously, P(0) holds. Let a € J be an element such that for every b € J with b < a, P(b)
holds. We prove that P(a) is true. Let

Q:I_)0>b1>...>l_)kzg and a=cy>c¢ >-->¢=0

be two sequences of removals bringing a to 0. We need to prove that k = ¢. Let i,j €
{1,...,m} be such that b =a~iand ¢, =a\ j, and let ¢ := b, A ¢, € J. Let

g:£0>£1>...>£ng

be any sequence of removals bringing ¢ to 0.
By (I1), the linear intervals M, I_)l] and M, gl] have the same size, that we denote by s+ 1,
with s > 0. Let

[0 = {bi =9, >y, > >y, =af md [g.c] = {er =z > 2> > 2, = .

Then, b, =Yy T Y, > Y, ==L > Ly > > Ty, = ( is a sequence of removals
that brings b, to 0. Property P(b,) therefore implies that the length of this sequence is
equal to the length of the sequence b; > --- > b, = 0, that is, K — 1 = s + m. The same
argument applied to ¢, yields £ —1 = s + m. We conclude that k = /.

The implication (2) = (1) follows from the identities

gl + [[a.p ~ @]l = lp| = la| + |[a., 2~ j]I,

using a sequence of removals of j (resp. i) that brings p \ i (resp. p\ j) to q. ]

2.5.6 Proof of the second part of Theorem 2.5.5

We need the following lemma.

Lemma 2.5.8. Let J be a subset of GF, that verifies (12). Then, for two elements a < b
of J such that A(a,b) has at least two elements, we have |a| < [b| — 2.

Proof. The first part of Property (12) ensures that |a| < |b|. The second part of Property (12)
now implies that there exists an element ¢ € J and ¢ € A(a,b) such that ¢ < a v b =D,
lc| > |a|, and ¢; < b;. Combining the latter with ¢ < b yields that ¢ < b. Applying (12)
again, we get |c| < |b]. All in all, we get a < ¢ < b, and the inequality |a| < [b] — 2
follows. O

We now prove the second part of the main theorem.
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Proof of the second part of Theorem 2.5.5. Notation as in the statement of the theorem,
by Lemma 2.5.7, we have a well-defined size function |- | on .#. We define a function r on
o7, by setting

r(g) = ge.ﬂrsvli%lr}l(ggg |Q| v Le @Q’

and show that r is the rank function of a matricube. Note that by (12), r(a) = |a| for
a€.g.

Obviously, r(0) = 0. Moreover, by orderability of .#, for 1 <i<mand 1 <t <r;, we
have either r(te;) —r((t —1)e;,) =0orr(te,) —r((t—1)¢,) = 1. Therefore (R1) holds.

Since | - | is increasing by (I2), r is non-decreasing on GF,. That is, Property (R2) holds.

We show r is submodular. Using Theorem 2.6.2 proved in Section 2.6, it will be enough
to show that r verifies the diamond property for functions on the hypercuboid.

We first observe that, by orderability of %, for every z € &0, and i € {1,...,m}, we have
r(z +¢;) —r(z) <1, provided that z + ¢, € &3,

Now let x € &, and let 7 # j be elements of {1,...,m} such that z + ¢, + ¢, € B3, Let
y=x+e,z= z+ c;and wi=1x+¢; +¢; Provmg the diamond property for T y,z w
reduces to showing that the situation Where r(z) =r(y) = r(z) and r(w) = r(z) + 1 never
happens. For the sake of a contradiction, assume that we are in the situation where the
above equalities hold. This implies in particular that y,z ¢ .#. The rest of the argument is
a case-by-case analysis. We first treat the case w € .#, then, w ¢ . but z € .#, and then
generalize the argument to treat the remaining case w,z ¢ .#.

First consider the case where w € .#. Let a < x be an element of .# such that r(a) = r(x).
Since a < w and |A(a, w)| = |A(z, w)| = 2, applying Lemma 2.5.8, we get the inequality
r(z) < r(w) — 2, which is a contradiction. This implies that w ¢ .#.

At this point, we have deduced y,z,w ¢ .#. Now consider the case where z € .#. Let
b < w be an element of .# such that r(w) = r(b). Notice that |[b| = r(w) > r(z) = |z|.
Moreover, b; = w; = x; + 1 because otherwise we would have b < z and r(b) > r(z), which
would be impossible since r is non-decreasing. Likewise, we have b; = w; = z; + 1. Since
b<w=gz+e,;+¢;, this shows that A(z,b) = {i,j}. By (I2), there exists an independent
ce J such that c <z v b=w, |c| > |z] and ¢, < by for some k € {i, j}. But if & = i, then
¢ < y and therefore |c| < r(y) = r(z) = |z|, a contradiction; we conclude similarly if k = j.
We have shown that = ¢ .#.

We now treat the remaining case. We define a finite procedure by applying repeatedly
an analogue of the preceding construction, as follows. Let a < z, b < w be elements of .
such that r(z) = |a|] and r(w) = |b|. We have |b| > |a|. We claim b; = w; > x; = a;. Indeed,
otherwise, we would have b < z, impossible by the inequality |b| = r(w) > r(z ) L1kew1se
we have b; = w; > a;. Consequently, we have A(a,b) 2 {7,j}. By (I12), there exists an
independent ¢' € . such that

ct<avb=<uw, lc!| > lal, and cp, < bg, for some ki € A(a,b).

Next, if A(a,c') contains itself at least two elements, since we have |c!| > |a|, we can
apply (12), and the same procedure as above, replacing the pair a, b by the pair a, ¢!, yields
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an element ¢? € .# such that

F<avc <w, 1| > |al, and ¢, < ¢, for some ky € A(a,c').
Repeating the procedure while it is possible, we get a sequence ¢t, 2, ..., ¢, ... of elements
of .7, satistying, for every j > 1,

d<avdl<w, || > |al, and c,i <c£;1 for some kjeA(g,gjfl),

J

with ¢ = b. We claim that this sequence is necessarily finite. Indeed, we observe that for
every j = 1, we have by construction:

Ala,d™") 2 Aa,d) and E(e,d™ ) > Ele,d).

Since the integers F(a,c’) are all non-negative, we infer that the sequence ¢® ends at some
integer j > 0. This means that the condition |A(a, /)| = 2 fails, and thus it is impossible
to have both 7 and j included in A(a,¢’).

Without loss of generality, assume ¢ ¢ A(a,¢’). This implies that CZ < a;, and so, we
have ¢/ < z. We infer that |a| < |¢/| < r(z) = r(z) = |a|, which is a contradiction.

At this point, we have shown the diamond property, and therefore we conclude that r is
submodular, and (R3) follows.

It follows that r is the rank function of a matricube .#. Moreover, by definition of the
rank function, .# coincides with the set of independents of .Z .

Finally, by definition of r, Property (R1%) is seen to be equivalent to (I*), and so .# is
simple if, and only if, (I*) holds. ]

2.6 Diamond property for functions

The aim of this section is to generalize to the setting of matricubes the well-known result
in matroid theory that the submodularity of the rank function of a matroid is equivalent to
the diamond property for its graded lattice of flats [Stall, Proposition 3.3.2]. To this end,
we here introduce a weaker version of submodularity.

Definition 2.6.1 (Diamond property for functions on hypercuboids). We say an integer-
valued function r on &7, satisfies the diamond property if the following holds. For every
point z € &2, and distinct integers i # j € {1,...,m} such that T+e;,x+e; €0, wehave

r(z+e¢;) —r(z)=>r(z+te +e;)—r(xz+e;). o (2.5)
The following theorem shows that the above property is equivalent to submodularity.

Theorem 2.6.2 (Equivalence of submodularity and the diamond property). Let r be an
integer-valued function on @2,. The following properties are equivalent:

(i) r is submodular.
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(ii) r verifies the diamond property.

In preparation for the proof, we provide generalizations of the diamond property, that
allow to proceed by induction. We say an integer-valued function r on OF, satisfies the
unidirectional submodularity at distance one if the following holds. For all i € {1,...,m}
and for all points x <y € ov, such that z; = y; and z + ¢, € &, the inequality

r(z+e¢;)—r(z)=>r(y+e;) —r(y) (2.6)

holds. More generally, we have the following generalization of Property (2.6) in several
directions and at higher distance.

Definition 2.6.3 (Multidirectional submodularity at a given distance). For positive integers
k and n, we define the k-directional submodularity at distance up to n, denoted (*)%, as
follows.

(+)p:  Pick any integer 1 < s < k, any integers 1 <i; < --- <igz<mand0 < n;,...,n;, <
n.

Then, for every pair of elements z < y € &3, such that z;; = y;, for all 1 < j < s, and
£+21<j<s nje; € 09, we have B

r<£+2n¢j5ij) —r(z) Zr(ngZnijgij) —r(y). o
j=1 J=1

Notice that the property stated in (2.6) is exactly ()} as defined above, and the termi-

nologies are consistent. Moreover, any ()? with k,n > 1 implies (x)7.

Remark 2.6.4 (Alternative description of (*)}). Using the notation of Definition 2.6.3,
after the change of variables a :== z, b=y — ijl ni; e;,, property (*)7 can be rewritten as
follows.

For all elements a and b € &J,, we have the submodularity inequality

r(a) +r(b) > r(avb)+r(anb)

as long as there exist an integer 1 < s < k and integers 1 < 4; < --- < 15, < m such that
b+ < jgs(aij — bij) ¢ is an element of OF, greater than or equal to a and such that, for
all 1 < j < s, we have 0 < a;; — b;; <n.

This parametrization using a and b enables to see instantaneously that the submodularity
property of r in the hypercuboid implies all the properties (*)7. The other parametrization,
using z and y, will be useful to prove Theorem 2.6.2 below, in that it behaves linearly
(contrary to formulas involving the symbols A and v ). o

Proof of Theorem 2.6.2. Obviously, (i) implies (ii).

We explain how to deduce (2.6), that is (+)1, from (ii). Let z and y be as in Definition 2.6.1.
The fact that x; = y; implies that y can be written as y = x + Zj# nje; with n; = 0, and
we can sum inequalities of the form (2.5) to get the inequality (2.6).
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We then explain how to deduce (i) from (x)}. Proceeding by induction, we show that
the property (*){ implies («)7? for all k,n > 1. We first show that («); implies ()} for all
n =1 Letie{l,...,m}and 0 <n; <n, and let < y be elements of &I, such that
z+mn;e; € &, and x; = y;. For all 0 < ¢ < n;, the pair (g—i—tgi,g—ktgi) satisfies the
hypotheses needed to apply (#)] in direction 4, so we know that

r(z+ (t+1)e)—r(z+te,) >r(y+(t+1)e) —r(y+te,).

Summing all these inequalities for 0 < t < n;, and canceling out the terms which appear on
both sides, yields

r(z+mn;e;) —r(x) = r(g + nigi) — r(g),
which gives (*)7.

We now show that properties ()7 for n > 1 imply properties (x)5. Let 4,5 € {1,...,m}
and 0 < n;,n; < n, and let x < y be elements of or, such that z + n;e; + n; ¢; € 0,
z; = y; and x; = y;. We apply (%)} to the pair (g, Q) in direction 7 and get

r(z+mn;e;) —r(z) =r(y+nie,;) —r(y).

The pair (g +nie,ytne Z) satisfies the hypotheses required for applying (*)} again, but
this time in direction j. This yields

r(z+mnie;+n5e;)—r(z+nie) =r(y+ne,+nje;) —r(y+nie,).

Summing up these two inequalities shows that r satisfies (x)j. The same procedure

inductively proves that r satisfies all ()7, i.e., r is submodular. O

Remark 2.6.5 (Discrete partial derivatives and transverse local convexity). For i €
{1,...,m}, we can define the discrete partial derivative of v in the direction i as the function
o;r defined by

oir(z) =r(x+e¢;) —r(x), Vr e @@, such that z; < 7;.

We notice that property (x)} is equivalent to the fact that for all i € {1,...,m} and for all

0 <t <y, or|,, is non-increasing. This is why ()} may be alternatively called transverse

local concavity.LtSubmodularity is thus equivalent to transverse local concavity.

In other contexts, submodularity is sometimes referred to as the discrete analogue of
concavity: see, for example, [Sch03, Theorem 44.1]. While this is fully relevant for a
function r defined on the collection P(S) of all subsets of a given set S, that is, on the
hypercube & , it is not exactly true for supermodular functions on 07, for larger values

of 71,...,7m. This is because the functions d;r are non-decreasing only in directions
2 2 3

different from i. For example, for the function r defined on @y, by [ 1 2 3 |, we have
01 2

r((2,1)) —r((2,0)) #r((2,2)) —r((2,1)), i.e., Oor is not non-increasing in direction 2. ¢
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Remark 2.6.6 (Complexity). To make notations easier, we assume in this remark that
o= (r,...,r). Theorem 2.6.2 provides a significant improvement for an algorithm checking
whether a given integer-valued function on G5, is a rank function. Indeed, the naive number
of operations necessary to check Properties (R1) and (R2) in Definition 2.2.1 is as follows.

e Property (R1) is checked in O(mr) operations.

e Property (R2) is checked in O(m - (r + 1)™) operations (check that r does not increase
when adding any unit vector to any point of GZ, ).

Regarding the supermodularity property, whose complexity dominates, a naive check over
all pairs of elements a,b € &3, needs O ((r + 1)?™) operations a priori, but Theorem 2.6.2
provides a way to reduce to only O (m?- (r + 1)™) operations, which is a substantial
improvement in most cases. o

2.7 Permutation arrays

The aim of this section is to study simple matricubes with ground set an actual hypercube
(rp =1y =+ =1y = r) of minimum possible rank r or r + 1. In the representable
case, this corresponds to a collection of m complete flags in a vector space of dimension
r + 1. Theorem 2.7.1 establishes a one-to-one correspondence between these matricubes
and permutation arrays introduced by Eriksson—Linusson [EL00a, ELOOb].

2.7.1 Permutation arrays

First, we recall some terminology from [EL0Oa]. Our presentation differs slightly from the
original setting as our indexing of flags is by codimension while in their work, Eriksson and
Linusson use an indexing by dimension. (Concretely, this amounts to having lower blocks
in [EL0Oa, ELOOb] replaced here by upper blocks.)

Let rq,...,7r, be m non-negative integers. An m-dimensional dot array P is an m-
dimensional array of type [ri] x - -+ x [r,,] where some of the entries are dotted.

For a dot array P, and z € 0J,, we denote by P[z] the upper principal subarray of P,
which consists of all y with y > z. It is naturally a dot array itself.

To be precise, for P[z] to become a dot array, we must coordinate-wise subtract the
point (z1,...,x,,) to all its elements. In the following, we will use both parametrization
conventions freely for the sake of convenience.

For a dot array P and j € {1,...,m}, the rank along the j-axis, denoted by rank;(P), is
the total number of 0 < ¢ < r; such that there is at least one dot in some position whose
J-th index is equal to t, i.e., there is at least one dot in the layer L{ of P. A dot array P is
called rankable if we have rank;(P) = rank;(P) for all 7,5 € {1,...,m}. If P is rankable,
then we call rank;(P) the rank of P for any j e {1,...,m}.

A dot array P is called totally rankable if every upper principal subarray of P is rankable.
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We recall that in the terminology of [EL00a] and [ELOOb], a position z is redundant if
there exist dot positions y vy, F L for some m > 2, such that each Y, has at least one
coordinate in common with z, and such that z = A", Y. The set of redundant positions of
P is denoted by R(P). A redundant dot is a redundant position that is dotted. The reason

2

for the term “redundant” is that placing or removing a redundant dot does not change the
rank of any upper principal subarray of P. (In the language of lattices, a non-redundant
position is meet-irreducible in the set of dotted positions.)

If Ais a subset of GJ,, then P U A (resp. P\ A) denotes the dot array based on P
where, for every x € A, we dot (resp. undot) the position z in P, if necessary.

A permutation array of width r» and dimension m is a totally rankable dot array P of

shape OF, = &g, = [r]™, 0= (r,...,r), of rank r + 1, and with no redundant dots.

2.7.2 Equivalence of permutation arrays with simple matricubes of
rank 7 or r + 1 on &,

Our next theorem establishes an equivalence between permutation arrays and simple
matricubes of rank r or 7 + 1 on the hypercube &3, .

Theorem 2.7.1. Let P be a permutation array of width r and dimension m. The function
rp defined by rp(a) =7+ 1 —rank(P[a]) for every a € 6B, is the rank function of a simple
matricube M p with ground set @;n. This matricube is of rank r or r + 1 depending on
whether the position g in 68, is dotted or not. The set of flats of vp is precisely the union
of the set of dot positions in P with R(P), and o.

Conversely, the rank function r of every simple matricube .# of rank r or r + 1 on the
hypercube @;ﬂ defines a dot array Py on @:L = [r]™ with dots positioned on the set of flats
a # o of M, and also a dot positioned on o if v(A) =r. Then, P:= Py~ R(Ey) is a
permutation array.

The proof of this theorem is given in the next section.

2.7.3 Proof of Theorem 2.7.1

We start by proving the first part of the theorem. Let P be a permutation array on

m

&o. = [r]™. We claim that the function

pp(z) =r+ 1 —rank(P[z]), Vre o,

is the rank function of a simple matricube on the ground set GZ, . We need to show
properties (R1%)-(R2)-(R3).

Since z < y implies P[z] 2 P[g], we deduce that rp is non-decreasing, which shows
(R2).

We now prove (R1). Let ¢ € {1,...,m}. We have to show that rp(te,) =t for t € [r].
By definition, rank(P[te;]) <7+ 1 — ¢, which implies rp(te;) = t. The reverse inequality
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is shown by induction on ¢. The case t = 0 is true by the definition of permutation
arrays, which requires rank(P) = r + 1. Assuming that rank(P[te;]) = r+ 1 —t, we
show that rank(P[(t + 1)¢,]) = r — t. This follows from the inequality rank(P[a + ¢,]) =
rank;(P[a + ¢;]) = rank;(P[a]) — 1 = rank(P[a]) — 1, valid for every a € & such that
a+te el

It remains to show that rp is submodular. Thanks to Theorem 2.6.2, it is sufficient
to show that rp satisfies the diamond property for functions. We thus take two distinct
integers ¢ # j € {1,...,m} and an element z € & such that z + ¢;,z + ¢, € &, . We
assume that r(z+¢;+¢;) —r(z+¢;) = 1 and show that r(z +¢,;) —r(z) = 1. The hypothesis
implies that the layer L? in the dot array Pz + ¢ ;] contains a dotted point. This point
will be counted in the difference r(z + ¢;) — r(z), which proves the result.

The matricube .#p is of rank r or r + 1 depending on whether rank(PM) =1 or 0, that
is, whether g is dotted or not.

Finally, to see the statement about the flats, consider z # ¢ and assume first that x is
dotted. Then, for each direction ¢; with z+e¢, € 67, , we get rank;(P[z]) —rank;(P[z+¢,]) =
1. This shows that z is a flat.

Next, assume that x is not dotted. Since flats are closed under meet, if z is a redundant
position, then it is a flat. It remains to consider the case where x is neither dotted nor a
redundant point. This means there is an i € {1,...,m} such that the layer L in P[z] does
not contain any dot. Two cases can happen:

o Ifx+e, el then
rank(P[z]) = rank;(P[z]) = rank;(P[z + ¢,;]) = rank(P[z + ¢;]),
and thus r(z) = r(z +¢,), and z is not a flat of #p.

e Otherwise, x; = r, and so rank;(P[z]) = 0, that is, r(z) = r + 1. This implies that
A is of rank r + 1, and since z # g, then, again z is not a flat.

This finishes the proof of the first direction.

We now show the other direction. Suppose that .# is a simple matricube of rank r + 1
or r on OB, with rank function r. Let P, be the corresponding dot array where a dot is
positioned on every flat a of .# different from p, and if the rank of .# is r, then a dot is
also positioned on ¢. Let P = Py ~\ R(F;). We show that P is a permutation array.

By construction, P has no redundant dots. We thus need to show that P is totally
rankable and has rank r + 1. We have to prove that for every x € P, and i,j € {1,...,m},
rank;(Py[z]) = rank;(Py[z]). This is a direct consequence of Proposition 2.7.2 below,
which also shows that the rank of P, is r + 1. We conclude that P is a permutation
array. O]

Proposition 2.7.2. Suppose that .# is a simple matricube of rank r or r+1 on the ground

set @:L and denote by r its rank function. Let P, be the corresponding dot array with a

dot positioned at each flat a # o, and also a dot positioned at ¢ in the case v(M)=r.
Let z be an element of the dot array Py and 1 < i < m. Then, rank;(Py[z]) = r+1—r(z).
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Proof. We proceed by reverse induction in the lattice &2, starting from 0. For g, we have

ranki(PJ//@]) = 0 or 1 depending on whether r(.#) = r + 1 or r, respectively, for each

i€ {l,...,m}, as required. Assume z # ©. We suppose the following equalities hold:

rank; (Py[y]) =r+1-x(y) Vy>z and Vie{l,...,m}.

We prove that the equalities hold as well for z.

Suppose first that x is a flat. Two cases can occur.

(I.1) If z has rank 7, then for each i € {1,...,m} with z + ¢, € &, , we have r(z +¢;) =

r + 1. By induction, rank;(Py[z + ¢;]) = r+ 1 —r(z +¢;) = 0. It follows that
rank;(Py[z]) = rank;(Py[z + ¢;]) + 1 = 1, as required. For the other values of i, we
have z + ¢, ¢ GO, , that is, ; = 7, and, in this case, we have as well rank;(P,[z]) = 1.

(I.2) If r(z) < r, then using the inequality x; = r(x;¢;) < r(z), we get x; < r. This implies

that z +¢; € & forallie {1,...,8}. We get
rank;(Py[z]) = rank;(Pylz +¢;]) +1=r+1—r(z+¢;)+1=r+1—r(2),

as required.

Now suppose that x is not a flat of .Z. Again, two cases can occur.

(IL.1) If z; < rforall i € {1,...,m}, then let a be the minimum flat with @ > z and let i €

{1,...,m}. Applying the induction hypothesis to y = z + ¢;, we get ranki(P/// @]) =
r+1— r(g). By Lemma 2.3.5, we deduce that

r(y) = {r@ +1 ifai =,

r(z) if a; > x;.

In the first case, when a; = x;, there is a dot in the layer Lii of Py|z], and thus
rank;(Py|z]) = rank(P/, [g]) + 1. In the second case, when a; > x;, there is no dot
in the layer L. of Py[z], and therefore rank;(Py[z]) = rank(P,[y]). We infer that
rank;(Py[z]) = r + 1 —r(x), as required.

(I1.2) We now treat the remaining case where x; = r for some indices ¢ among 1,...,m. In
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this case, r(z) is either r or r + 1. We treat each of these possibilities separately.

(1) Firstly, suppose that r(z) = r. Consider an index ¢ with z; = r. Then, if
r(.#) = r, there is a dot positioned at g, and thus rank;(P,[z]) = 1 = r+1-r(z).
If r(A) =r+ 1, the minimum flat @ > 2 has rank r, and lives in the layer L.
of Py[z]. Again, we get rank;(P,[z]) = 1.

Now consider an index j with z; < r, so that z + ¢; € @;n. Let a be the
minimum flat dominating z. A reasoning similar to (II.1), based on the use of
Lemma 2.3.5, shows that rank;(P,[z]) = r + 1 — r(z), as required.

(2) Secondly, suppose that r(z) = r + 1. The unique flat @ that dominates z is o,
which is not dotted. Therefore, rank;(Py[z]) = 0 = r+ 1 —r(x), as required. [



2.8 Local matroids

In this section, we define local matroids of matricubes, and formulate a local obstruction to
their representability. We then turn this into an equivalent characterization of matricubes.

2.8.1 Local matroids of a matricube

In the following, for all a € &F,, we define I, as the set of all i € {1,...,m} such that
a+e; €0, -

To motivate the definition, first consider a representable matricube, given by m initial flags
1<i<m laz
The arrangement of subspaces F&*¢ in F2 given by i € I, defines a matroid M, on the

EFr, ... F; of length vy, ..., 1, respectively, in a x-vector space H. Let F¢ :=

ground set I,. The rank one elements of this matroid correspond to those ¢ with F¢*¢: a
proper vector subspace of F¢; all the other elements are loops.

This picture generalizes to any matricube, and defines local matroids associated to
elements of the hypercuboid &2,. Let r be a rank function on &7,. Let a € GJ,, and define
a function p,: 2% — Z- as follows. For every subset X < I, set -

pa(X) = r(g—i— 221-) —r(a).
€X
Proposition 2.8.1. The pair (I, p,) defines a matroid M, on the set of elements 1.

Proof. By Proposition 2.2.4, p, takes values in the set {0, ..., |l,|}, and p,(X) < |X]|. Since
r is non-decreasing, we also have p,(Y) < po(X) for Y < X. Therefore, it is enough to
show that p, is submodular, that is,

VXY Sl pa(X)+pa(Y) Z pa(X UY) + pa(X nY).
This follows from the submodularity of r applied to a + >, v ¢; and a + >,y ¢; in GF,. [

Proposition 2.8.2. A necessary condition for the representability of a matricube .4 with
ground set B3, on a field k is the representability of all the matroids My, a € 63,, on k.

Proof. This follows directly from the above discussions. [

2.8.2 The case of permutation arrays

Let k be a field. By Theorem 2.7.1, the representability of a simple matricube .# of rank r
or r + 1 with the ground set the hypercube &5 is equivalent to the representability of the
corresponding permutation array in the terminology of [EL0O0Ob]. Billey and Vakil [BV08] pro-
vide several examples of permutation arrays which are non-representable. Proposition 2.8.2
above provides a conceptual explanation of the examples treated in [BV08]. Theorem 2.9.1,
combined with Theorem 2.7.1, shows that over an infinite field, the representability for
permutation arrays reduce to the representability of matroids.
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2.8.3 Coherent complexes of matroids and matricubes

We show that the data of a matricube on the ground set GF, is equivalent to the data of a
set of matroids indexed by &, satisfying compatibility properties (CC1) and (CC2) listed
below.

Notation as in the previous section, for the sake of convenience, if i € I,, we write p,(7)
instead of p,({i}). We start with the definitions below.

Definition 2.8.3 (Increasing path). Let a and b be points of od, with a < b. We define an
increasing path from a to b to be any finite sequence

a=CpCpy-- s G =0
such that for every 0 < j < k, we have ¢;,, = ¢; + ¢, for some £ € {1,...,m}. o
Note that the integer k is equal to > ", (b; — a;).

Definition 2.8.4 (Coherent complex of matroids). Let (M), .sp be a set of matroids

indexed by 0F,, with M, a matroid on the set /, and with rank function r,. We say (M,)
form a coherent complex of matroids if the following two properties are satisfied:

(CCL) For allie {1,...,m} and 0 <t < r;, we have p, (i) < 1.

(CC2) The matroids satisfy the following relation.

M . MQ/Z. 1fa2=m*1
e M, /7w {i} else .

Here, M / e denotes the contraction of a matroid M by its element e, and ¢ is the element
of the matroid set corresponding to the direction i. Moreover, M, /¢ u {i} denotes an
extension of M, /¢ by a single element denoted :. o

In the following, we denote by p,.; the rank function on I, \ {i} that defines the matroid
M, 7. It is explicitly given by the following equation, in terms of the rank function p,:

Pasi(X) = pa(X U {i}) — pa(i) for all X < I, \ {i}.

Remark 2.8.5. Property (CC2) above implies the following: let z < y be two points of
6d, and i € {1,... ,m} such that z; = y; and i € I,. Then, i being a loop in M, implies
that ¢ is a loop in M,,. Indeed, M,, is obtained from M, through a sequence of operations
consisting of either the contraction of an element different from i or an extension. These
operations do not change the property of ¢ being a loop. o

Theorem 2.8.6 (Matroidal characterization of matricubes). There is a one-to-one cor-
respondence between coherent complexes of matroids indexed by the hypercuboid GB, and
matricubes with ground set GF,. -

108



Proof. (<=) If we start with a matricube .# of rank function r on GJ,, the collection of
matroids M, defined above forms a coherent complex of matroids. Indeed, Property (CC1)
is trivially satisfied because of Property (R1) in Definition 2.2.1. We check Property (CC2).
Let a € @@, and i € I,. If a; = r; — 1, then I,,,, = I, \ {i}, which is the ground set of
the matroid Mg /4. If a; < 7; — 1, then I,,. = I,, which is the ground set of the matroid
M, /i1 {i}. We now check the equality of the rank functions on subsets of I, \. {i}. Consider
X € Iy, not containing the element i. We need to show that

Pope,(X) = 1a(X 0 {i}) = ra(d).

The left-hand side is by definition r(a + ¢, + Djex® ¢;) —r(a+e¢,), and the right-hand side is

<a+e +Z ) a) —r(a+e;) +r(a)

jeX

Both sides are therefore equal.

(=) The other way around, we consider a coherent complex of matroids (M,), and
associate a matricube .Z on @ by specifying its rank function r. Let a € @ We take
any increasing path 0 = by, b;,...,b, = a from 0 to a, and define

k—1
= Z Pb; (l-’j+1 - l—’j>'
j=0

We first prove that r is well-defined, which amounts to showing that r(a) does not depend
on the choice of the increasing path (b ) Two different such paths can be linked by a finite
sequence of increasing paths such that between two consecutive increasing paths in the
sequence, the only change is an inversion between two consecutive elementary moves ¢, and
¢;, t # j. We thus have to check that, for every a € &, and i, j € I, with i # j, we have

Pale;) + pgﬂi(gj) = pg(gj) *+ Pa+te; (e;)-

But by (CC2), we have pgy.,(e;) = pasi(e;) = pale; +¢;) — pa(e;) in the left-hand part and
Pate,(€;) = pasj(€;) = pa(e; +¢;) — pale;) in the right-hand part, so the desired equality
holds

We now check (R1)-(R2)-(R3). It is obvious by construction that r takes integer Values is
non-decreasing and that r(te;,) —r((t —1)e;,) =0or 1 forallie {1,...,m}and 0 <t < ;.
These imply (R1) and (R2).

It remains to show that r is submodular. By Theorem 2.6.2, it is sufficient to check
the diamond property. We show unidirectional submodularity at distance one stated in
(2.6). Let thus i € {1,...,m} and z,y € @, such that z < y, i € [, and z; = y;. We
assume that r,(e;) = 0 and show that r,(¢;,) = 0. But this has been shown to be the case
in Remark 2.8.5. B

We have defined two maps linking coherent complexes of matroids and matricubes. It is
straightforward to check that they are inverse of each other. ]
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2.9 Further discussions

In this final section, we discuss further related results and questions.

2.9.1 Bases of matricubes and special features of independents

We do not know how to define a good notion of bases for matricubes. We review some
natural attempts in this section. For each definition, we show with an example that the
data of the set of bases according to that definition does not determine the matricube in a
unique way. Below, .# refers to a matricube of rank r on the ground set &2, and a is an
element of GF,.

First, consider the idea closest to that of matroids.

(a) A basis of A is an independent a € & which is mazximal for the partial order <.

This does not carry enough information. The two matricubes below, with ¢ = (2,2), have
the same set of bases according to Definition (a), but not the same sets of independents.
The elements verifying (a) are highlighted in red, the other independents in blue.

2 3 4 2 2 3
123 11 2 (2.7)
01 2 01 2

We note that, unlike matroids, a maximal independent of a matricube is not necessarily
of maximal rank. This is not visible in Example (2.7), but the following matricube provides
such an example. Two maximal independents (in red) have distinct ranks.

— N DN

N W W
—~
[\)
oo
~—

2

1

0
Consider the following alternative to (a).

(b) A basis of A is an independent a € & of mazximal rank r.

The same examples given in (2.7) show that this does not work neither.
Definitions (a) and (b) are global. Seeking for local counterparts, similar to flats, circuits
and independents, treated in the previous sections, leads to the following candidates.

(c) A basis of A is an independent a € & which is locally mazimal, in the sense that for
every i € {1,...,m} with a +¢; € GJ,, we have a + ¢, ¢ 5.

(d) A basis of A is an independent a € & which is locally of mazimal rank, in the sense
that for every i e {1,...,m} with a + ¢; € &8, we have r(a +¢;) = r(a).
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It is immediate that (d) implies (c¢). Definitions (c¢) and (d) are in fact equivalent (the
proof is omitted). The two matricubes below, with ¢ = (5,4), have the same set of bases
according to Definition (c), but not the same sets of independents. The elements verifying (c)
are depicted in red, and the other independents are in blue.

144456 445556
334456 3456556
2 23345 2 34445 (2.9)
112345 123345
012345 012345

The removal operation defined in Section 2.5.2 takes an independent and produces smaller
independents. Consider the following candidate.

(e) A basis of A is an independent a € & which is not the removal b\ i for some be &
andie{l,...,m}.

This is genuinely new, but, if we consider the matricubes in Example (2.7), the bases
given by (e) and (a) are the same.

In a matroid with ground set E and rank function r, every subset S < FE satisfies
r(S) + r*(S¢) < |E|, where r* is the dual rank function and S¢ is the complement of S,
with equality if, and only if, S is a basis. This leads to the following candidate.

(f) A basis of A is an independent a € & such that r(a)+r*(a®) = ‘Q‘el’ where a® = g—a

1s the complement of a and ‘Qb =T
=14y

The inequality r(z) + r*(z¢) < |g| ., does hold for every element z € &, However, some
matricubes have no bases at all according to this definition. This is for instance the case
for both matricubes in Example (2.9).

The question of finding a good notion of bases in matricubes therefore remains open.

2.9.2 The natural polymatroid and the natural matroid associated to a
matricube

We refer to [HHO02] for the definition and basic properties of polymatroids. Let P be an
integer polymatroid on the ground set E with rank function p: 2¥ — Z-,. Replace each
element e of E with p(e) elements, and let E be the resulting set. For each subset S € E,
let S < E be the union of all the elements associated to each e € S. Define p: 2F _, Z=g
by the formula

FY) = min(p($) + ¥\ 5]).

This defines a matroid on the ground set E , called the natural matroid of P, which is
symmetric with respect to the permutation of the p(e) elements associated to each e.
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To a given matricube .# on the ground set &2, we can associate an integer polymatroid
P on the ground set F := [r;] u--- u [r,], that we name the natural polymatroid of A .
The rank function p of P is given by associating to any subset S < E the integer value
p(S) = 1r(\V,4es@). The join is taken in &, and r is the rank function of /.

There is, moreover, a natural way to send elements of . to subsets of E , by mapping
every = (21,...,Ty,) € G, to the subset ¢)(z) == [0,z:] U --- L [0, 7,] € E, where each
interval [0, x;] is taken inside [0,r;]. Note that the polymatroid P can be viewed as a
polytope in the vector space R, but there does not seem to be a natural way of associating
vectors in this polytope to elements of the matricube.

Proceeding as above, we can thus associate to a given matricube .# a natural matroid
M on the ground set £. Note that M has Y7, 37 r(te,) elements.

Using this construction, it seems natural to transfer the notions of flats, independents,
bases, and circuits from the matroid M to the matricube, in the spirit of the work [BCF23]
on integer polymatroids. This however gives a story complementary to the theory exposed
in this manuscript.

In the case of flats, for example, our definition coincides with the definition of flats in
the corresponding polymatroid, in the sense that the map 1 described above establishes
a bijection between the flats of .#Z and the flats of P. However, we are not aware of any
intrinsic axiomatic system for flats in polymatroids, and the one for flats in matricubes
given in the present manuscript does not seem to be directly related to the one for cyclic
flats in polymatroids, due to Csirmaz [Csi20]; see as well [BCF23, Section 5].

When it comes to independents of matricubes, our definition differs entirely from that
of independents in a polymatroid [BCF23, Section 3]. As we observed in the previous
section, maximal independents in matricubes can be of various ranks, whereas maximal
independents in polymatroids all have the same rank. The independents in polymatroids
are only defined as vectors in the corresponding polytope, not set-theoretically. Besides, as
we mentioned previously, we do not have yet a good notion of bases for matricubes.

The same situation holds for circuits: the definition and axiomatic system we give in the
present manuscript differ from the ones given for polymatroids in [BCF23, Section 4]. Like
independents, circuits in polymatroids can only be defined as vectors. Our definition of
circuits does not rely on independents, and yields a different story. Note in particular that
in matricubes, we can have comparable circuits for the partial order < (see Example (2.4)
in Section 2.4.1), whereas two distinct circuits in a polymatroid are never comparable.

2.9.3 Representability and minors

We do not know whether the local obstructions given by Proposition 2.8.2 are the only
obstructions for the representability of a matricube. On the other hand, the representability
of a matricube over an infinite field is equivalent to the representability of the corresponding
natural matroid, as we show in the present section.
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Theorem 2.9.1. A matricube # is representable over an infinite field k if, and only if,
the corresponding natural matroid M is representable over k.

We will deduce this from the observation, firstly, that the representability of a matricube
by a flag arrangement over any field is equivalent to the representability of the associated
natural polymatroid by a subspace arrangement over the same field. And secondly, we
show that the representability of an integer polymatroid by a subspace arrangement over
an infinite field is equivalent to the representability of the natural matroid associated to
the polymatroid over that field. As the proof shows, the latter statement, as well as the
theorem, remains valid for a finite field of large enough cardinality.

Proof. We first prove the equivalence between the representability of a matricube and the
representability of the associated natural polymatroid. We take the dual point of view
described in Section 2.2.2, using increasing initial flags. Let .# be a representable matricube.
The associated natural polymatroid P is obviously representable, remembering only the
data of the subspace arrangement coming from the flag arrangement that represents .. In
the other direction, we assume that the natural polymatroid P associated to a matricube .#
is represented by a subspace arrangement {G¢, i € {1,...,m},j € [r;]}. Let i € {1,...,m}
and j € [r; — 1]. By construction of P, we have p([j + 1]) =r((j +1)e;,) =r(je;) = p([J]),
where [j] and [j + 1] are included in the interval [r;] in the ground set of P. This shows
that for every i and j, we have G} < G, and therefore that the subspace arrangement
can be arranged into a flag arrangement in a compatible way. It is immediate to see that
this flag arrangement is a representation of .Z .

We now prove the equivalence between the representability of an integer polymatroid
(whether or not associated to a matricube) and the representability of its natural matroid,
using vector representations. Let first M be a matroid on a ground set E , with rank function
p, and consider a partition E= | |.cp Ae of E, indexed by a set E. We assume that M is

represented by a configuration of vectors {v, € H, x € E } in a k-vector space H. We define,

for every S € E, p(S) == p(S) = p(Upeq Ae)- It is easy to see that p is submodular on 2%,
and therefore it is the rank function of a polymatroid P(M) on the ground set E. Moreover,
P(M) is represented by the subspace arrangement {G. < H, e € E'}, where, for every e € E,
Ge = (v,, € A, ) is the vector subspace generated by the v,, z € A.. Finally, if M is the
natural matroid of some integer polymatroid P, then P(M) is in fact the polymatroid P,
which concludes.

In the other direction, we use the notation of Section 2.9.2. Let P be an integer
polymatroid on a ground set E, represented by a subspace arrangement {G. € H, e € E}.
Let M be the natural matroid of P, on the ground set E. For every e € F, let B, be a
generic vector basis of the subspace G, i.e., let B, be chosen in a Zariski dense open subset
(to be specified afterwards) of the variety of bases of G.. The (disjoint) union B of the bases

B. is indexed by E in the natural way, say B = {Ux, zekE } Let p be the rank function on
E defined by p(Y) := dim,(v,, z € Y for every Y = E. We show the natural matroid M
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to be representable by proving that p = p. We therefore fix any Y < E. For every S € F,
the inequality 5(Y) < p(S) + [Y ~ S| is immediate. In the rest of the proof, we show the
reverse inequality.

Let S < E be the set of all e € E such that G, < (v,, x € Y). Let Gy be the subspace of
H defined by Go := ¢ Ge, and let Gy, ..., Gy be the other subspaces G, for e € £\ S.
Here, k = |E| — |S|. Rearrange the ground set E so that the first & disjoint intervals
[r1], ..., [rk] that make it up are those indexed by E \ S. For every j € {1,... k}, let Y;
be the family of vectors v, with x € Y n [r;] in the ground set E of M. We then admit, for
now, that for every j € {1,...,k}, the following inequality holds:

dim(Go + Gy + -+ + G;) > dim(Go) + |Yi| + - - + Y]] (2.10)

We show by induction that if Inequality (2.10) is true for every j € {1,...,k}, then, for
every j € {0,...,k}, the configuration of vectors Y; L --- 1'Y] is linearly independent in the
quotient space (GO +Gi+ -+ Gj) / Gg. This is obviously true for 7 = 0. If now this is
true for some j < k, Inequality (2.10) for j + 1 reads

Y| <dim(Go + Gy + -+ - + Gjy1) — (dim(Go) + |Ya| + - -+ + |Yj]).

The induction hypothesis then implies that the quantity on the right is the dimension of
the quotient space

(Go+ Gi+ -+ Gjz1) /(Go + (M1, ..., Y))).
The linear projection map
(Go+Gi+-+Gj+Gj1)/Go— (Go+ Gi+ -+ + G + Gjy1) /(Go + (V1,...,Y)))

now enables to view the family of vectors Y;;; in the quotient space (Go +G + -+
Gj+1)/(G0 +{Y1, ... ,Y]>) Since the number of vectors in Y, is less than the dimension of
this quotient space, and since all the vectors v, are generic, then Y;,; is linearly independent
in this quotient space. This means exactly that Y; L--- 1Y, 1Y), is linearly independent
in the quotient space (Go + G+ + G+ Gj+1) / Go, which concludes the induction.
Specializing the independence property to j = k, we get the desired equality:

pY) = p(S) + ]V N S|.

To finish the proof, before turning to Inequality (2.10), notice that the choice of the
vectors v, determines the subset S € FE. But since there is a finite number of such S, there
is still a non-empty Zariski open set of choices of vectors v, for which the same set S is
associated to all these choices. Now, we have the above equality for a fixed Y. Since there
is a finite number of such subsets Y < E , there is still a non-empty Zariski open set of
choices of the vectors v, for which the above equality holds for every Y.

We now explain why Inequality (2.10) is true for every j. If by contradiction it was not,
let jo = 1 be the smallest j such that it does not hold, i.e.,

Y| = dim(Go + Gy + -+ + Gj, /Go + (Y3,..., V1))
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The preceding argument shows that the vectors in Y; for j < jy are independent in
the quotient space (GO + G+ -+ Gjo_l)/Go. Since the vectors in Yj, are generic,
the above inequality on the size of Y, implies that they generate the quotient space
(Go+Gi+---+Gjy)/(Go+(Yi,...,Yj—1)). This leads to the inclusion G;, < (v,, z € Y),
contradicting the definition of S. ]

We call a matricube .# regular if it is representable over every field. For matroids,
Seymour’s theorem describes regular matroids in terms of sums of graphic, cographic, and
an exceptional regular matroid on 10 elements [Sey80]. A theorem by Tutte characterizes
regular matroids as those representable over the fields Fy and F3 with two and three
elements, respectively. Another result by Tutte characterizes regular matroids as those that
contain as a minor neither the Fano matroid F7 nor its dual F%. We refer to [Tru92, Chap.
9] for a presentation of these results.

Question 2.9.2. Provide a characterization of reqular matricubes.

In analogy with Rota’s conjecture on the characterization of the representability of
matroids over finite fields using a finite set of forbidden minors, we formulate the following
question.

Question 2.9.3 (Rota’s conjecture for matricubes). Let k be a finite field. Does there exist
a finite collection of matricubes such that a matricube is representable over k if, and only if,
it does not contain any of the matricubes in the collection as a minor?

We note that as it was recently shown by Oxley, Semple, and Whittle [OSW16], the
analogue of Rota’s conjecture for 2-polymatroids fails in general. This does not exclude
a positive answer to the above question, as matricubes behave more like matroids than
polymatroids.

2.9.4 Stratification of products of flag varieties

Let k be a field and n be a positive integer. Let H be a k-vector space of dimension
n. For each positive integer r < n, denote by F(r,n) the flag variety parametrizing
initial flags of vector subspaces Gy € Gy < --- < G, of dimensions dim(G;) = j, for
J=1,...,r. Given a vector g = (r1,...,7rm) with m positive integers, consider the product
variety F'(g,n) = F(ri,n) x --- x F(ry,n). We get a natural stratification of F(g,n) by
matricubes as follows. Given a simple matricube .# with ground set &3, the cell Z,
parametrizes those collections of m flags G € F(r;,n), i = 1,...,m, whose associated
matricube, through the constructions of Section 2.2.2, coincides with .# . This stratification
is analogous to that induced by matroids for Grassmannians. Theorem 2.9.1 provides a
correspondence between strata of given rank r in F (g, n) and strata of the Grassmannian
Gr(r,N), for N = 23" (r? 4 r;), see Section 2.9.2. It would be interesting to study the
combinatorics of this stratification, and the geometric meaning of this correspondence.
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2.9.5 Polymatricubes

A polymatricube is a function f: &3, — R with f(0) = 0 which is non-decreasing and
submodular, that is, it verifies (R2) and (R3). Examples of integer polymatricubes are the
representable ones which, by definition, are those associated to a collection of arbitrary
(instead of initial) flags in a vector space. Generalizing the discussion of Section 2.9.2, we
can associate a natural polymatroid and a natural matroid to any integer polymatricube.
Theorem 2.9.1 extends to this setting: an integer polymatricube is representable over an
infinite field if, and only if, the corresponding natural matroid is representable over the same
field. In particular, the discussion of Section 2.9.4 can be extended to arbitrary collections
of flag varieties.

2.9.6 Tutte polynomial

An important algebraic invariant associated to a matroid is its Tutte polynomial. This is a
two-variable polynomial that specializes to the characteristic polynomial of the matroid.
The Tutte polynomial of a matroid M on the ground set E is the unique polynomial
T (X,Y) that verifies the following recursive equation for every e € E:

X T (X, Y) if e is a coloop
Tu(X,Y) =3 YTy X,Y) if e is a loop
Tne(X,Y) + Te(X,Y) if e is neither a loop nor a coloop,
and is defined for the matroid ¢J with empty ground set by 75 = 1.

We can define the notion of loop and coloop in matricubes. We say i € {1,...,m} is a
loop of A if r; > 0 and r(e;) = 0. We say i is a coloop of . if i is a loop of the dual
matricube .Z*. This is equivalent to having r(.# \i) = r(.#) — 1. The recursive equation
above, however, does not lead to an invariant of matricubes.

The Tutte polynomial of a matroid M on the ground set E can be defined directly by
the following formula:

Ra(X,Y) = D1 (X — 1) Oy — 1)lsl=r),
ScE

This definition naturally extends to any matricube.

Definition 2.9.4. Let .# be a matricube of rank r on the ground set GJ,. The Tutle
polynomial of .# is the two-variable polynomial -

Ty(X,Y):= Z (X — 1)@y — 1)kl @)
e 0D,

where |z/, is the £;-norm of . o

Tutte polynomials of matricubes verify the following properties:
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o Let .#* denote the dual of the matricube .Z. Then, we have T ,+(X,Y) =T, (Y, X).
e For two matricubes . and .#Z', we have T g 0 = Ly - Ty

Here, the direct sum .# @ .#" of matricubes .# and .#" on hypercuboids G, and GJ,,
respectively, has ground set OJ, x GJ, and rank function defined by - -

rseu (@) =r14(z) +r0(02).

Question 2.9.5. Does there exist a recursive identity which defines T 4, in terms of deletions
and contractions?

There is a version of the Tutte polynomial for polymatroids defined by Cameron and
Fink [CF22]. This polynomial satisfies a relation involving elementary operations reminiscent
of deletion and contraction in polymatroids, and specializes to the Tutte polynomial for
matroids. We do not know if there is any relation between the Tutte polynomial of a
matricube and the Tutte polynomial of the corresponding natural polymatroid.

2.9.7 Matricubes arising from linear series on curves

As pointed out in Section 2.1.8, matricubes naturally arise in our work on tropical degener-
ations of linear series on algebraic curves. We provide a brief hint to this by explaining
how a finite collection of points and a finite dimensional space of rational functions on an
algebraic curve gives rises to a matricube.

Let k be an algebraically closed field, and let C' be a smooth proper curve over . Let
r be a non-negative integer, and let p be a k-point on C. Let x(C) be the function field
of C, and let H < x(C) be a vector subspace of rational functions of dimension r + 1 over
. The point p leads to a complete flag F of H by looking at the orders of vanishing at
p of functions in H, as follows. Define the set S, := {ord,(f) ‘ feH~{0}}. The set S,
is finite of cardinality r + 1. Denote by sf < --- < s? the elements of S, enumerated in
increasing order. The flag F; is defined by setting, for j = 0,...,7,

Fl o= {fe H~ {0} | ord,(f) = st} U {0}

It follows that Fg has codimension j in H.

Let now m be a natural number, and let A = {p1,...,p,} be a collection of m distinct
r-points on C. By the construction above, each point p; leads to a complete flag F;.
Denoting 5; = {ordpl.( f) ‘ feHN {0}}, and enumerating the elements of S; in increasing
order sj, < --- < s., the flag F} is defined by setting

F/ = {f e H~ {0} | ord,,(f) = sj} v {0},

The data of C,H, p1, ..., pn defines a matricube on the ground set &, = [r]™.

We may call geometric a matricube with ground set GZ, that arises from the above
construction for a curve C' over an algebraically closed field . By construction, geometric
matricubes are all representable over the field x over which the curve C' is defined.
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Question 2.9.6. Is it true that all representable matricubes on GB, of rank r or r + 1
are geometric? What is the smallest possible genus of a curve representing a geometric
matricube?
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3 Limit linear series: combinatorial
theory

This chapter is adapted from an extended version of the preprint [AG22].

Contents of the chapter

3.1 Overview . . . . . . ... e 119
3.2 Rank functions on hypercubes . . . . . . ... .. ... .... 129
3.3 Slope structures . . . . . . ... ..o 135
3.4 Crude linear series . . . . . . . . . .. ... oo 139
3.5 Admissible semimodules . . . . . .. .. .00 000000 L 143
3.6 Combinatorial limit linear series . . . . . . . . ... ... ... 152
3.7 Reduced divisors . . . . . ... .00 155
3.8 Classificationof gl’s . ... ... ... ... ... . ... ... 168
3.9 Limit linear series on the skeleton of a Berkovich curve . . . 176
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Abstract

We develop a purely combinatorial theory of limit linear series on metric graphs. This
will be based on the theory of matricubes, presented in the previous chapter, and the
formalism of slope structures. We show that some of these combinatorial objects are
naturally obtained by tropicalizing linear series on algebraic curves. We provide a full
classification of combinatorial limit linear series of rank one, parametrized by harmonic
morphisms from the graph to metric trees. We also discuss some other applications and
connections to other concepts in combinatorial algebraic geometry, and raise several open
questions.

3.1 Overview

One of the longstanding open questions regarding the asymptotic geometry of curves is
the problem of degeneration of linear series on smooth curves of given genus when they
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approach the boundary of their corresponding moduli space. That is, to fully describe all
the possible limits of linear series of given rank and degree when smooth curves degenerate
to singular ones. This question was studied in a series of works by Eisenbud and Harris
[EH89, EH86, EH87b, EH&87a, EH87c]| for which they managed to provide a satisfactory
answer in the case the limit curve is of compact type, and used this to make major progress
in the study of curves. For curves of pseudo-compact type, these results were generalized
by Esteves—Medeiros [EMO02] (for curves with two components) and by Osserman [Oss19b,
Oss19a, Hel9]. The case of rank zero linear series in the pluricanonical systems is studied
in recent work [BCG*18, BCG"19, MUW20, TT22].

Tropical geometry provides a modern perspective on degeneration methods in algebraic
geometry and a new approach to classical questions in algebraic geometry. Developing
the mathematics behind the tropical approach usually requires the introduction of new
combinatorial structures, and it has become apparent now that from the viewpoint of appli-
cations, it is enough in many cases to understand the geometry behind these combinatorics.
Two such examples are given in the development of a combinatorial theory of divisors on
graphs and metric graphs [BN07, BJ16], and, more recently, in the development of tropical
and combinatorial Hodge theories [AHK18, AP20].

In a previous work [AB15], Amini and Baker introduced linear series on hybrid objects
called metrized complexes and used them to recover and partially generalize the Eisenbud—
Harris theory of limit linear series. In a subsequent work [Amil4], the formalism of slope
structures on metric graphs was introduced as a way to describe the limiting behavior of
Weierstrass points on degenerating families of curves. Slope structures were used in a recent
work of Farkas—Jensen—Payne [FJP20] in the study of the geometry of the moduli space of
curves.

The aim of this chapter is to take the tropical approach one step further by introducing
a purely combinatorial theory of linear series of arbitrary rank and degree on metric graphs.
This can be regarded as a combinatorial theory of limit linear series.

More precisely, we aim to draw relevant combinatorial properties of tropicalizations of
linear series, regarding:

e the slopes taken by the tropicalizations of functions;
e the vectors of slopes taken by these functions around points;
e the tropical dependence between these functions, and

e the topological properties of tropicalizations,

in order to develop a formalism of linear series on metric graphs. This will be based on two
ingredients: hypercube rank functions (which are in close connection to a particular case of
the matricubes defined in the companion work [AG24] (Chapter 2)), and slope structures.
In the rest of this introduction, we give an overview of the setup and the results.
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3.1.1 Degeneration problem for linear series

Recall that a linear series gj; on a projective curve Y is by definition a vector subspace of
dimension 7 + 1 of the space of global sections H°(Y, L) of a line bundle L of degree d on Y.

Let .#, be the moduli space of smooth projective curves of genus g, and //Z, its Deligne—
Mumford compactification. Let X be a stable curve of genus g over an algebraically closed
field k and z the corresponding point in ,//Z]. The degeneration problem for linear series
can be informally stated as follows.

Question 3.1.1. Describe all the possible limits of linear series over any sequence of smooth
projective curves of genus g when their corresponding points in #, converge to x.

3.1.2 Metric graphs and their divisor theory

Metric graphs arise as tropical limits of one-parameter families of smooth projective curves.

We denote by R, the set of positive real numbers. Recall that a metric graph I' is a
compact metric space isomorphic to the metric realization of a pair (G, ¢) consisting of a
finite graph G = (V, E) and a length function ¢: £ — R, : this is obtained by associating
to each edge e a copy of the interval Z, = [0, £.], with the two extremities identified with
those of e, and then further identifying the ends of different intervals corresponding to a
same vertex v. The quotient topology on I' is metrizable by the path metric. The pair
(G, ?) is called a model of T

In the context related to the degeneration of algebraic curves, a metric graph I' with
model (G = (V, E), () is endowed with a function g: V — Z-, associating to each vertex v
the genus of some algebraic curve C, represented by v. Such a triple (G, ¢, g) will be called
an augmented metric graph. However, we will mostly handle non-augmented metric graphs
in this chapter, and make comments about the relevance of the genus function in the theory
developed here.

The set of rational functions on I' is denoted by Rat(I"), and, by definition, consists of
all continuous piecewise affine functions f : I' — R with integral slopes. The tropicalization
of rational functions on curves gives rise to rational functions on metric graphs.

As in the algebraic setting, rational functions on metric graphs are linked to divisors. A
divisor D on a metric graph I' is a finite formal sum with integer coefficients of points of
[. For any rational function f € Rat(I"), the corresponding divisor of zeros and poles is
defined by

div(f) = Ylord,(f) (x),  withord,(f) ==~ > slope,(f),

veT,(T)

where T, (T") is the set of outgoing unit tangent vectors to I" at z, and slope, (f) is the slope
of f along v at x. A divisor obtained in this way is called principal, and two divisors D;
and D, whose difference D; — D, is principal are called linearly equivalent.

Each divisor D gives rise to a line bundle on I" whose space of global sections is denoted
by Rat(D). Concretely, Rat(D) is the set of f € Rat(T") such that div(f) + D is effective
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(that is, has only non-negative coefficients). Contrary to the algebraic setting, Rat(D)
is not a vector space. Nevertheless, Baker and Norine discovered a way to associate a
combinatorial notion of rank to Rat(D) [BN07, MZ08, GKO08]. This is defined as the
maximum integer among —1 and integers r > 0 such that for all points x1,...,x, in I, the
divisor D — (x1) — - -+ — (z,) is linearly equivalent to an effective divisor. We refer to the
survey paper by Baker and Jensen [BJ16] for details, extensions, and several applications.

The results of the present chapter are motivated by the question of describing the tropical
limits of linear series, when the metric graph arises as the tropical limit of a one-parameter
family of smooth proper curves. In the next two sections, we describe two combinatorial
structures that allow to approach this question.

3.1.3 Rank functions on hypercubes

We first describe a combinatorial way of encoding intersection patterns of a flag arrangement.
Let r be a non-negative integer. We set [r] := {0,...,r}. For a positive integer §, the
hypercube @j of dimension ¢ and width r is the product [r]°.
We define a partial order < on @i where for a pair of elements a, b in @j, we write a < b
whenever for every j € {1,...,0}, we have a; < b;. We define two operations v and A by
taking the maximum and the minimum coordinate-wise, respectively: for a = (a4, ..., as)

and b = (by,...,bs) in ®i;

a v b= (max(a, by), ..., max(as, bs)), a A b= (min(aq, by), ..., min(as, bs)).

A function f : @i — 7 is called supermodular if for every two elements a and b, we have

fla) + f(b) < flavb)+ flanb)

A function p : @i — Z is called a (hypercube) rank function if it is supermodular and, in
addition, satisfies the following conditions:

(1) For every i€ {1,...,d}, and each t € [r], we have p(te,) =r —t.

(2) p is non-increasing with respect to the partial order of @i, that is, if a < b, then
o(b) < (o).

(3) The values of p are in the set {—1,0,1,...,r}.

The term “hypercube rank function” defined above is borrowed from [AG24] (Chapter 2)
which defines combinatorial objects called “matricubes”, consisting of a ground set endowed
with a rank function which is submodular and verifies a set of properties reminiscent of
the ones listed above. In fact, this is an abuse of language because matricubes are more
general objects than the rank functions we define in the present chapter. Additionally, it is
more convenient for us in this chapter to work with supermodular functions, as it allows
to considerably simplify the presentation. However, there is a simple way to transform a
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supermodular function into a submodular function by an operation we call conjugation. This
transforms the hypercube rank functions of this section into matricubes on the same ground
set. For more details about the link between hypercube rank functions and matricubes,
see Section 3.2.1, and more specifically Proposition 3.2.3. Using this, we can transfer to
the setting of hypercube rank functions those basic combinatorial properties of matricubes
proved in [AG24] (Chapter 2) which are useful in the present chapter; however, for this
chapter to be self-contained, we fully reprove them here in the language of hypercube rank
functions.

The geometric situation to have in mind in order to interpret hypercube rank functions
is a vector space H of dimension r + 1 over some field x, and a collection of § complete flags
Fr, ... F5. That is, for j = 1,...,d, F; consists of a chain of vector subspaces

0 1 r—1 T
H=F2F 2 2F " 2F 2(0),

with codim(F}) = 4. In this case, the function p: 60 — Z defined by
play,...,a5) = dimg(F{* n - nF§°) —1

is a rank function. Hypercube rank functions appearing in this way are called representable.
On a smooth projective curve, given a finite dimensional vector space of rational functions,
taking the orders of vanishing at a point leads to a complete flag (see Section 3.2.2). Such
flags appear naturally in the degeneration of linear series, see Section 3.9.2.

We say that a point a of the hypercube is a jump of the rank function p if we have
po(a +¢;) < py(a) whenever a + ¢ is in the hypercube. Here, ¢ is the point whose j-th
coordinate is equal to one and whose other coordinates are all zero. In the representable
case, the jumps correspond to extremal points beyond which the dimension drops. It turns
out that the jumps uniquely determine the rank function.

3.1.4 Slope structures on graphs and metric graphs

Slope structures encode the information regarding possible slopes of functions arising from
tropicalizations of linear series.

For a combinatorial graph G = (V| E), we denote by E the set of all the orientations of
edges of G, that is, each edge {u,v} € F gives rise to two oriented edges uv and vu in E.
We suppose that G is simple, i.e., has no parallel edges. In our setting, this can be assumed
without loss of generality, because we may subdivide the parallel edges and the loops of a
non-simple graph to make it simple. The subset E, < [E is the set of all the orientations vu
of edges {v,u} in G. For a vertex v in GG, we denote by d,, the valence of v in the graph;
note that d, = |E,|.

A slope structure & of width r on G, or simply an r-slope structure, is the data of

e For each oriented edge e = uv € E of G, a collection S° of r + 1 integers s < s <
.-+ < s¢ subject to the requirement that s + s, = 0 for each edge {u,v} € E.
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e For each vertex v of G, a rank function p, on the hypercube @iv.

We denote by S < [].cg,
a jump of the rank function p,. Since jumps determine the rank function, using the above

S¢ the set of all points s, = (Say, ..., Sq) for a = (a1, ..., as)

notation, we then write & = {S"; 5, -

Let I be a metric graph. By an r-slope structure on I', we mean an r-slope structure &
on a simple graph model G = (V, E) of T that we naturally extend to any point of I" by
associating to every point x € I' \\ V' the so-called standard rank function, see Section 3.2.2.
More precisely, for every point x € I' \ V' and each outgoing unit tangent vector v € T,(I),
we define S¥ = S, where uv is the unique oriented edge of G which is parallel to v, and
define S* < S x S" as the set of all pairs (i, s7") with i +j <.

Taking into account the slope structure &, we can define a relevant notion of rational
functions. A function f in Rat(I") is said to be compatible with & if the two conditions (7)
and (i7) below are verified. First,

(1) for any point z € T" and any tangent direction v € T,(I"), the outgoing slope of f
along v lies in S”.

Denote by d;(f) the vector in ] cp ) S” which consists of outgoing slopes of f along
v e T,(I"). Then the second condition is:

(77) for any point x € T', the vector d,(f) belongs to S*.

We denote by Rat(I',&) < Rat(I'), or simply Rat(&) if I' is understood, the set of
rational functions on I' compatible with &. Endowed with the operations c® f := f + ¢
and f @ g := min(f,g) for every f,g € Rat(&) and ¢ € R, Rat(&) has the structure of a
tropical semimodule. Moreover, it is naturally endowed with the norm || - | .

If D is a divisor on I', we denote by Rat(D, &) := Rat(D) n Rat(&) the set of all
f € Rat(S) such that D + div(f) is effective. This is a sub-semimodule of Rat(&) (see
Proposition 3.5.1).

3.1.5 Admissible semimodules and combinatorial limit linear series

A semimodule M < Rat(D) is called admissible of rank r if it is closed for the topology
induced by || - | (equivalently, for that of point-wise convergence), and if there exists an
r-slope structure & such that M < Rat(D, &) and the following holds:

(x+) For every effective divisor E of degree r, there exists f € M such that

(1) For every point z € I', p,(0,(f)) = E(x); and in addition,

(2) D +div(f)— E > 0.
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In the degeneration picture for linear series in a one-parameter family of smooth projective
curves, viewing x inside the Berkovich analytification of the generic fiber in the family,
the first condition reflects the dimension counts underlying the reduction at x of rational
functions in the linear series, imposing vanishing conditions along the incident branches.
The second one is the analogue of the Baker—Norine rank condition in this setting.

In order to define a notion of linear series, we use moreover the concept of tropical
rank introduced by Jensen and Payne in their work on applications of tropical divisor
theory to the study of the geometry of generic curves [JP14, JP16] (for the definition, see
Section 3.5.1).

A (combinatorial limit) linear series of rank r and degree d, more simply called a g,
is a pair (D, M) consisting of a divisor D of degree d and an admissible semimodule
M < Rat(D) of rank r which is moreover finitely generated and has tropical rank r.

Here, we mean by “finitely generated” that there exist finitely many elements of M which
generate M using the tropical operations of scalar addition and minimum; the tropical
rank is defined as the maximal number of tropically independent elements of M. See
Sections 3.5.3 and 3.6.1 for more details.

If M is a g, the linear system |M]| is the space of all effective divisors £ on I' of the
form D + div(f) for f e M.

We also define refined linear series to be those linear series which in addition verify the
following stronger version of (x):

(,5) For any effective divisor E on IT" of degree s < r, there exists a linear series Mg of

rank r — s associated to (D, Sg) with &g a slope substructure of & of rank r — s, such
that for every function f € Mg, we have

(1) For every point z € I, p,(0,(f)) = E(z); and in addition,

(2) D+div(f)— E = 0.
3.1.6 Basic properties
Here is a list of interesting properties satisfied by slope structures and linear series.

(1) The vector of allowed slopes defined by a (crude) linear series is non-increasing along
each edge (Proposition 3.4.3).

That is, as we move from one extremity of an edge to the other, the coordinates of
the vector (s§,...,s’) do not increase. This property turns out to be crucial in proving

rer

finiteness theorems about slopes structures underlying linear series on metric graphs.
(2) The space of rational functions Rat(D, &) is a semimodule over R (Proposition 3.5.1).

This is a consequence of the supermodularity of rank functions.
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(3) If M < Rat(D,S) is a closed sub-semimodule, then it is generated by its extremal
points (Proposition 3.5.7). Besides, fixing a function f € M and taking another

g € M, testing on a finite number of points is sufficient to determine whether g = f
(Lemma 3.5.10).

Extremal points are elements of the semimodule which cannot be obtained as the minimum
of other elements of M in a non-trivial way, see Section 3.5.4. The above result yields an
effective method to check whether functions of M are equal by checking equality at finitely
many points.

3.1.7 Realization property for slope vectors

An important feature of admissible semimodules is the following realization property for
jumps, proved in Section 3.5.6.

Theorem 3.1.2 (Realization of slope vectors). Let (D, &) be a pair consisting of a divisor
D and a slope structure S of width r on I', and let M < Rat(D, &) be an admissible
semimodule of rank r. Let v be a point of I' and let a be a jump of p,. Then, there exists
feM such that 0,(f) = Sa-

One immediate consequence is that & can be entirely retrieved from M.

Corollary 3.1.3. The data of an admissible semimodule M < Rat(D) determines the slope
structure G uniquely.

3.1.8 Finiteness of slope structures

Let I' be a metric graph, let D be a divisor on I'. Let G = (V, E) be a combinatorial
graph underlying I" and supporting D. Let M < Rat(D) be an admissible semimodule
with underlying slope structure & defined on some model of I' (possibly different from G).
We prove in Proposition 3.4.3 that the vector of slopes in & is non-increasing along each
edge. That is, as we move from one extremity of an edge to the other, the coordinates of
the vector (sf, ..., s’

»er

) do not increase. This property turns out to be crucial in proving the
following finiteness theorem (see Section 3.4.2 for a more general result).

Theorem 3.1.4 (Finiteness of slopes structures). For each integer r, there are finitely
many subdivisions Hy, ..., Hy of G, and finitely many slope structures &1, ..., Sy of rank
r defined on them, respectively, such that every admissible semimodule M < Rat(D) with
underlying slope structure & has a combinatorial model H; among Hy, ..., Hy such that

This can be regarded as a first result in the direction of defining the moduli space of gJ;’s
over the moduli space of tropical curves of given genus.
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3.1.9 Classification of g;’s

In the case r = 1, we prove in Section 3.8 that the data of a g} on I is equivalent to the
data of a finite harmonic map to a tree.

Theorem 3.1.5 (Classification of gl’s on metric graphs). Let (D, M) be a g5 on T with D
a diwisor of degree d. Suppose that the constant functions are in M. Then, there exist a
tropical modification «: [ —T of I' and a finite harmonic morphzsm P: [>T of degree
d to a metric tree T such that M is the preimage of the unique gi on T, restricted to T.

Using the smoothing theorems proved in [ABBR15a, ABBRI15b] for finite harmonic
morphisms to trees, we deduce the following smoothing theorem for combinatorial g}’s (see
below for the tropicalization, and Section 3.9.2).

Theorem 3.1.6 (Smoothing theorem for g}’s). A g} (D, M) on T is smoothable, that is, it
is the tropicalization of a gl from a smooth curve.

The question of the existence of harmonic morphisms to metric trees of smallest degree,
called geometric gonality, is thoroughly studied by Draisma and Vargas [DV21a], and by
Cool and Draisma [CD18]. The above theorem provides an algebraic characterization of
geometric gonality, as the least integer d such that the metric graph admits a gJ, see [DV21b]
and the references there for the gonality of metric graphs.

In order to prove the above theorem, we generalize in Section 3.7 the theory of reduced
divisors to the setting of linear series, consider the map defined by reduced divisors in
Section 3.8, and connect it to the tropical rank to conclude.

3.1.10 Tropicalization

We now discuss the connection between linear series on algebraic curves and their combina-
torial counterparts. We assume familiarity with the Berkovich theory of algebraic curves,
see Section 3.9 and [BJ16] for more details.

Let K be an algebraically closed field with a non-trivial non-Archimedean valuation val
and C be a smooth proper curve over K. We assume that K is complete with respect to
val and we denote by  the residue field of K, which is also algebraically closed. Denote by
C?" the Berkovich analytification of C. Let I' = C*" be a metric graph skeleton of C*".
For each point = € T, let v, be the valuation on the function field K(C) defined by . For
each nonzero rational function f € K(C), the tropicalization of f, denoted trop(f): I' — R,
is defined by trop(f)(z) = v,(f) for all x € I'. This is a piecewise affine function on I" with
integral slopes.

Let D be a divisor of degree d and rank at least » on C, and (O(D),H) be a g}, on C, so
H is an (r + 1)-dimensional vector subspace of H°(C, O(D)), the space of global sections of
the line bundle associated to D. We can identify H with a subspace of K(C) of dimension
r + 1. We define the tropicalization

M := trop(H) = {trop(f) | f € H \ {0}}.
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The following theorem is proved in Section 3.9.2.

Theorem 3.1.7 (Tropicalization of linear series). Notation as above, let (O(D),H), H <
H°(C,0(D)) « K(C), be a g; on C. Let T be a skeleton of C*™. The slopes of rational
functions F' in M along edges in I' yield a well-defined slope structure & on I'. Let D be
the tropicalization of D to I'. Then, M < Rat(D, &) is a refined gl on I'.

In particular, the tropicalization trop(H) is finitely generated (see Proposition 3.9.4).

A pluricanonical linear series of rank r and order n is a vector subspace H < H° (C, w%”)
of rank r, i.e., of dimension r + 1, with wc the canonical sheaf of C.

Using Temkin metrization [Tem16], one can define tropicalizations of subspaces of global
sections of pluricanonical sheaves. We explain how they fit into our theory of combinatorial
limit linear series.

Let I' be the metric graph skeleton of the Berkovich analytification C*", and K the
canonical divisor of I'. The following theorem is proved in Section 3.10.3.

Theorem 3.1.8 (Tropicalization of pluricanonical linear series). Let H € H 0(C, w%”) be a
pluricanonical linear series of rank r and order n. Let

M := trop(H) = {trop(a) | a € H \ {0}}.

Then M < Rat(nK, &), for the pluricanonical slope structure & defined by H. Moreover,
M is a refined g, on I, for d = n(2g — 2).

The finiteness theorem implies that there are only finitely many combinatorial types
for pluricanonical slope structures of order n on augmented metric graphs I' of a given
combinatorial type. It is an interesting open question to classify all the pluricanonical slope
structures on a given graph G.

3.1.11 Discussion of applications

The formalism of this chapter has applications to the geometry of curves. In particular,
the equidistribution theorem proved in [Amil4] is a consequence of the formalism of slope
structures and the behavior of reduced divisors in a given combinatorial linear series. The
results of [FJP20] also use slope structures and the notion of tropical independence, the
underlying concepts of the materials presented in this chapter. In a joint work with Amini
and Richman [AGR23] (Chapter 4), we apply the formalism of this chapter to associate a
Weierstrass weight to each connected component of the naive Weierstrass locus of a given
divisor on a metric graph. This solves a problem posed by Matt Baker from his original
work on the specialization of linear series from curves to graphs [Bak08]. Using these ideas,
we explain the discrepancy between the naive counting of Weierstrass points on metric
graphs in the work of Richman [Ric24] and the correct count of multiplicities.

The hypercube rank functions considered here are linked to matricubes and a theory
of combinatorial flag arrangements developed in a companion work [AG24] (Chapter 2),
which provide a generalization of the theory of matroids. For more information about the
connection, we refer to Section 3.2.1, and more specifically to Proposition 3.2.3.

128



3.1.12 Further notation

For a subset S € R? d € N, and an element a € R¢, we define S + a as the set of all
elements b + a for b € S. For the rest of the article, A will denote a divisible subgroup of
R — a group is called divisible when multiplication by every positive integer n is surjective.
Examples of such A are Q or R itself.

A A-metric graph, or A-rational metric graph, is a metric graph I' whose edge lengths
are A-rational, that is, lie in A. A point = € I" is said to be A-rational if its distances to
the endpoints of its incident edges are in A. In the case I' is A-rational, a divisor whose
support is made up of A-rational points is said to be a A-rational divisor. We also denote
by Raty (I") the set of functions of Rat(I") which only change slope at A-rational points of T
and which take a value in A on some (equivalently, on every) vertex v of T

We denote by T the semifield of tropical numbers, which is the set R endowed with the
internal operations of tropical addition @ := min and tropical multiplication ® = +. A
(divisible) subgroup A endowed with the operations @ and © defines a sub-semifield of T.

3.2 Rank functions on hypercubes

3.2.1 Definition

Let r be a non-negative integer and [r| = {0, 1,...,r}. For a positive integer §, the hypercube
@i of dimension § and width r is the product [r]°. We denote the elements of @i by
vectors a = (ay,...,as), for 0 <ay,...,as <.

The hypercube @i is endowed with a natural partial order < defined by declaring a < b
for elements a = (ay, ..., as) and b = (by, ..., bs) in 65, if a; <bjforall je{l,...,d}. The
smallest and largest elements of @i with respect to this partial order are 0 := (0,...,0)
and r = (r,...,r), respectively. Moreover, there is a lattice structure on @i, where the two
operations of join v and meet A are defined by

av b= (max(ay,by),...,max(as,b5)), a b= (min(ay,b;),..., min(as,bs)) Va,be @i

A function f: @i — 7 is called supermodular if for every pair of elements g and b, we
have

fla) + f(b) < flavb)+ flanb).
If the inequalities above are all reversed, then we say that f is submodular. We define the
conjugate of f, denoted by f, as the integer-valued function on the hypercube @i given by

fla)=r—fla) VaedD.

Note that f — f. Moreover, f is supermodular, resp. submodular, if, and only if, f is
submodular, resp. supermodular.

In this chapter, we will be working with a special kind of supermodular function on @i.
For each integer i € {1,...,d}, denote by e, the vector whose coordinates are all zero except
the i-th coordinate, which is equal to one. For ¢ € [r], the vector te, lies in &
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Definition 3.2.1 (Hypercube rank function). A function p: @i — Z is called a rank
function if it satisfies the following conditions:

(HR1) for every i € {1,...,d}, and each t € [r], we have p(te,) =r —t.

(HR2) p is non-increasing with respect to the partial order of @i, that is, if a < b, then
o(b) < p(a).

(HR3) p is supermodular.

(HR4) The values of p are in the set {—1,0,1,...,7}.

The integer p(a), for a € &7, is called the rank of a. A hypercube &7 endowed with a rank
function will be called a ranked hypercube. o

Remark 3.2.2. The above properties imply that if a € @i has rank 7, then a; < r — j for
all i € {1,...,d}. In particular, 0 is the only element of rank r in @i o

The following proposition relates hypercube rank functions to matricubes, defined
in [AG24] (Chapter 2).

Proposition 3.2.3. Let p: @i — 7 be an integer-valued function, and r = p be its
conjugate. The following are equivalent:

e p is a hypercube rank function in the sense of Definition 3.2.1.

e 1 is the rank function of a simple matricube of rank r or r+ 1, in the sense of [AG24]

(Chapter 2).

Proof. Properties (HR1)-(HR2)-(HR3) are equivalent to the axioms (R1*)-(R2)-(R3), re-
spectively, in the definition of matricubes in [AG24] (Chapter 2). Property (HR4) for
p is equivalent to requiring .# being of rank r or r + 1, via [AG24, Proposition 2.4]
(Proposition 2.2.4 in the present manuscript). ]

Remark 3.2.4. It turns out that working with hypercube rank functions, instead of their
conjugate matricube rank functions, considerably simplifies the mathematical expressions
appearing in the treatment of combinatorial linear series. For this reason, we prefer them.
We do not use any non-trivial result from [AG24] (Chapter 2). o

Although this is not used in the following, we mention that, combining the above result
with [AG24, Theorem 7.1] (Theorem 2.7.1 in the present manuscript), we get the following
corollary.

Corollary 3.2.5. The data of a hypercube rank function p on @i 15 equivalent to the data
of a permutation array in the terminology of [EL00a, ELO0D].

In order to give examples in low dimension, we choose the following notational convention.
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Convention 3.2.6 (Cases § = 1,2,3). In this article, for § = 1, a function on &3, = [r]
is described by a tuple with r + 1 entries (to, ..., t,), which means that the value of the
function on the i-th entry of @i is t;.

In the same way, for 6 = 2, a function on @i will often be described by an array of size
(r+1) x (r +1), (tij)o<ij<r, which means that the function takes value t;; on (i, ) € GZ..
We choose the convention that the first direction is horizontal, the second direction is
vertical, and the origin is the bottom left-hand corner.

When 6 = 3, a function defined on @i will be specified by r + 1 arrays Ry, ..., R, of size

(r+1) x (r + 1), where Ry describes the values of the function on & x {k} < &Z.. o
Here are two examples of two-dimensional rank functions, with » = 3 and r = 4
respectively.
000 0 0000 —1
1110 -1
L1100 2221 0
2210
5 9 1 0 3221 0
4 3 21 0

3.2.2 Rank functions induced by complete flags

Let r be a non-negative integer, and let H be a vector space of dimension r + 1 over some
field k. A complete flag of H consists of a chain of vector subspaces

H:FOQFl2...;FT_1;FT;FT+1:(O)7

where, for each i € [r + 1], F' is a vector subspace of codimension i in H.
Let 6 be a positive integer, and let F},... F§ be a collection of § complete flags of H.
Define the function p: @i — 7 by

play,...,a5) = dimg(F{* n--- nF§°) — 1. (3.1)
Proposition 3.2.7. The function p defined in (3.1) is a rank function on @j

Proof. This is [AG24, Proposition 2.6] (Proposition 2.2.6 in the present manuscript). Let a
and b be two points of @i, and let z :== a A b and y := a v b. We have an injection

(Fitno nF) /(FY - A FYP) — (Fflm---mFg‘s)/(Fflm---mFg“),

from which, comparing the dimensions, we get p(a) — p(y) < p(z) — p(b). This proves
the supermodularity of p. Properties (HR1)-(HR2)-(HR4) in Definition 3.2.1 are trivially

verified. n

A hypercube rank function p on @i is called representable over a field k if it comes from
a collection of 6 complete flags F7,... F§ as above, in a k-vector space H of dimension
r+ 1.

This is equivalent to the representability of the corresponding matricube. Examples of non-
representable rank functions can therefore be obtained from examples of non-representable
matricubes of rank r or r + 1 over @i.
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Standard rank functions

The simplest kind of rank function is the following.

Definition 3.2.8 (Standard rank function). The standard rank function of dimension 0
and width r is the rank function p* on @i given by

p*(a) = max{-1,r —a; — - — as} Va e @i. o
For instance, the standard rank function of dimension 2 and width 4 is given by

-1 -1 -1 -1
0 -1 -1 -1
1 0 -1 -1
2 1 0 -1
3 2 1 0

- W N = O

Via Proposition 3.2.3, a rank function p on @j is standard if, and only if, its conjugate
r = p is the rank function of the uniform matricube % .1, see [AG24] (Chapter 2) for the
definition.

Proposition 3.2.9. Every rank function p on the hypercube @j dominates the standard
rank function p*. That is, for every a € @i, we have p(a) = p™(a).

Proof. Tt will be enough to show that for every a = (a1, ...,as) € 63, we have p(a) >
r—aj; —---—ag. This can be proved by induction on d, using the supermodularity of p. [

Remark 3.2.10. The standard rank function is induced by complete flags, over an infinite
field, which are in general relative position, that is, whose intersection patterns have the
smallest possible dimensions. o

Geometric rank functions

Let C' be a smooth proper curve over an algebraically closed field k. Let x(C) be the
function field of C', and let H < k(C') be a vector subspace of rational functions of dimension
r+ 1 over k. Each r-point p of C' gives a complete flag F of H by considering the orders
of vanishing at p of functions in H. Define S, := {ord,(f) | f € H~ {0}}. This is a finite
set of cardinality r + 1. Denote by s < --- < s? its elements, enumerated in increasing
order. The flag F; is defined by setting, for j € [r],

FJ = {f e H~ {0} | ord,y(f) = s7} U {0}

Each FJ has codimension j in H.
Let now § be a positive integer, and let A = {p1,...,ps} be a collection of § distinct
r-points on C'. By the construction above, each point p; leads to a complete flag F?. Letting
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S; = {ord,,(f) | f € H~{0}}, and enumerating the elements of S; in increasing order
sy < -+ < st the flag F is defined by setting

F/ = {feH~A{0} | ord,,(f) = si} U {0}

This leads to a rank function p on the hypercube 6. using (3.1) in Section 3.2.2.
A rank function p on @i that arises from the above construction for a curve C' over an
algebraically closed field « is called geometric.

3.2.3 Jumps of a rank function
For a € G, let I, be the set of all i € {1,...,6} such that a + ¢, € 5.

Proposition 3.2.11. Let p be a rank function on @i. For an element a € @i and i € I,
we have p(a) —1 < p(a +¢;) < p(a).

Proof. The first inequality results from the supermodularity property applied to the vectors
a and (a; + 1) ¢;, using Property (HR1) in Definition 3.2.1; the second inequality comes
from the non-increasing property of p. ]

The proposition leads to the following definition.

Definition 3.2.12 (Jumps of a rank function). Let p be a rank function on @i A point a
of @j is called a jump for p if

(1) pla) > 0, and
(2) for every i € {1,...,0} such that a + ¢; belongs to 65, we have p(a + ¢;) = p(a) — 1.
We denote by J, the set of jumps of p. o

Here are three rank functions of dimension two, with r = 3 for the first one, and r = 4
for the second and third ones. The jumps of each rank function are depicted in blue.

000 0 0000 —1 0 -1 -1 -1 -1
1100 1110 -1 1 0 -1 -1 -1
9 9 1 0 2221 0 2 1 0 -1 -1
5910 3221 0 3 2 1 0 -1

4 321 0 4 3 2 1 0

The set of jumps of a rank function has the following properties.
Proposition 3.2.13. The set of jumps J, of a rank function p on @i 15 stable under A.

Proof. Let a,b € J, and let ¢ = a A b. The non-increasing property of p ensures that
p(c) = 0. Let i € {1,...,d} be such that ¢ + ¢; belongs to &@J,. We have to show that
r(c+e¢;) = r(c) + 1. By symmetry, we can suppose that a; < b;, that is, ¢; = a;. Since a
is a jump, we have r(a + ¢;) = r(a) + 1. We conclude by applying the supermodularity
property to the points a + ¢, and c. O
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Proposition 3.2.14. The set of jumps J, is a graded poset. The grading is given by the
conjugate p. In particular, if a < b are two distinct jumps of p, then we have p(a) > p(b).

Proof. Tt is sufficient to show that if a < b are two distinct jumps of p with p(b) < p(a) — 2,
then there exists a jump a < ¢ < b such that p(c) = p(a) — 1. Let i be an index such that
a; < b;, and let  := a + ¢;. Since a is a jump, we have p(z) = p(a) — 1. Let ¢ be the
meet of all the points ¢’ of @i verifying ¢ > x and such that either ¢’ is a jump or ¢ = r.
Since x < b and b is a jump, ¢ is also a jump by virtue of Proposition 3.2.13, and moreover
a < ¢ <b. It is easy to see, by induction on the ¢;-norm of z, that p(c) = p(z) = p(a) — 1,
which implies that ¢ < b. This shows that ¢ is as desired and that the poset J, is graded.
By construction, the grading is given by p. ]

The following fact will be useful in the sequel.

Fact 3.2.15. Let p be a rank function on @j If r is a jump for p, then it is the only
element of J, having some coordinate equal to r. o

Proof. For the sake of a contradiction, let  # r be an element of J, with some coordinate
equal to r, say the first one. By (1) in Definition 3.2.12, we have p(r) = 0. The inequality
z > re, implies that p(z) < 0, and Proposition 3.2.14 implies p(r) < p(z) < 0, a
contradiction. O

Remark 3.2.16. Let .# be the matricube on the ground set @i defined by the conjugate
r = p. The set of jumps J, coincides with the set of flats .# (. #) of A if vr(#) = r and
with ()~ {r} if v(#) = r + 1. Propositions 3.2.13 and 3.2.14 can be deduced from
the analogue properties of flats of matricubes. For the sake of completeness, we provided
the short proofs of these results. Note that contrary to the set of flats of matricubes, the
set of jumps is not necessary a lattice (this happens only in the case r(.#Z) =7 +1). ©

3.2.4 Partition Lemma

In this section, we prove a result about hypercube rank functions which turns out to be
useful in the sequel.

Let p be a rank function on @i. The point 0 is the only point of @i whose image by
p is v (Remark 3.2.2). Besides, the set of jumps J, of p contains the point 0 (because
p(e;) =r—1for all i). Every jump of p of rank r — 1 has only coordinates equal to zero or
one (Remark 3.2.2), among which at least one is equal to one. For each a € J, such that
p(a) = r—1, denote by B, the subset of {1,...,d} consisting of all the indices i with a; = 1,
that is, B, is the support of a. Denote by P, the collection of all sets F, for a € J, \ {0}
verifying p(a) = r — 1. We have the following proposition.

Lemma 3.2.17 (Partition Lemma). Notation as above, P, provides a partition of {1,...,d}.
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Proof. We first prove that the elements of P, are pairwise disjoint. Let a and b be two
distinct elements of J, \ {0} with p(a) = p(b) = r — 1. Since a £ b and b £ a, we have
pla v b) < r — 2. Using the supermodularity property for a and b, we get p(a A b) > r and
therefore p(a A b) = r. This forces a A b = 0, from which we can conclude that [, n | = @.

It remains to prove that the sets B, cover {1,...,0}. For an i e {1,...,d}, we need to
show the existence of a € J, with p(a) = r — 1 and a; = 1. We define a as the meet of all
the jumps @' € J, such that ¢’ > ¢,. As in the proof of Proposition 3.2.14, a is well-defined,
belongs to J, and has rank r(a) = r(e¢;) = » — 1. The non-increasing property of p implies
that a; < 1, as desired. O

Remark 3.2.18. In the case r = 1, in the construction above, the condition p(a) =r — 1
is automatic. This will be crucially used in Section 3.8. o

3.3 Slope structures

In the following sections, we define combinatorial linear series on metric graphs with the
help of an auxiliary data called a slope structure. A slope structure is the data of a family of
hypercube rank functions of given width r, parametrized by the points of the metric graph,
of varying dimension given by the valences of points, and verifying a finiteness condition.

3.3.1 Slope structures on graphs

Let first G = (V, E) be a simple graph. We denote by E the set of all the orientations of
edges of G, so that for an edge {u,v} in E, we have two orientations uv,vu € E. For an
oriented edge e = uv € E, we call u the tail and v the head of e. We denote by € = vu the
oriented edge in E with reverse orientation. For a vertex v € V', we denote by E, € E the
set of oriented edges in E which have tail v, that is, all vu € E for edges {v,u} € FE.

A slope structure & = {SY; Se}veV,eeE of width r on G, or simply an r-slope structure, is
the data of

(SLS1) For every oriented edge e = uv € E of G, a collection S¢ of r + 1 integers

e e e

u
K3

subject to the requirement that si* + s?*, = 0 for every edge {u,v} € E.

(SLS2) For every vertex v of G, a rank function p, on the hypercube &Z.".

If J,, denotes the set of jumps of p, (see Definition 3.2.12), we denote by S” < [,z S°
the set of all points s, for a € J,, .

Here, for a point a = (ac)cc, of the hypercube, the element s, € [ [,z S¢ denotes the
point in the product which has coordinate at e € E, equal to s; . In other words, S" fits
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into the following natural commutative diagram:

dv
Jpy —— @,

lg»—»sg l@»—»sg

SV e—— Ileeg, S¢

We will sometimes need to separate the data relative to edges and the data relative to
vertices. In this case, we will denote by G&° the data of a set of prescribed slopes on each
edge, and by &Y the data of a rank function for each vertex.

3.3.2 Slope structures on metric graphs

Let now I' be a metric graph. By an r-slope structure on I' we mean an r-slope structure
S on a simple graph model G = (V, E) of T, extended to each point of I" as follows.

For every point = and each outgoing unit tangent vector v € T,(I"), there exists a unique
oriented edge uwv of G which is parallel to v. Define S¥ = S". Also, for every point
x € I' XV in the interior of an edge {u, v}, define p, to be the standard rank function on
@i. In particular, S* € S x S** can be identified with the set of all pairs (s}, s7*) with
1+ 7 < r. We call the collection {Sx; Sv ‘ rel,ve Tx(F)} a slope structure of width r,
or simply an r-slope structure on I'. We denote it by Gr, or simply &, if there is no risk
of confusion. We extend the notation &° and &V in the natural way. Note that a slope

structure on a metric graph can arise from choices of slope structures on different graph
models of T

Example 3.3.1. We give an example of a 2-slope structure on a metric graph. Consider
the metric graph I' depicted below, with edges of arbitrary positive lengths.

Figure 3.1: An example of a 2-slope structure on the circle.

Let sp < s1 < s2 and sj < s] < s, be two sets of distinct integers. We define &° by
allowing slopes sp < s; < sy on the top edge and s; < s} < s, on the bottom edge. We
define &Y by choosing the rank functions at u and v to be given by the array

0 00
1 10
2 10
(jumps depicted in blue). The rank functions at all the other points of I' are standard. This
fully describes a 2-slope structure & on I'. o
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3.3.3 Rational functions compatible with a slope structure

We define a notion of rational function on metric graphs compatible with a slope structure.
Let I be a metric graph and let & = {SI; Sv ’ rel,ve TI(F)} = (6°,8") be a slope
structure of width » on I'. Recall that we denote by Rat(I") the set of continuous piecewise
affine functions f: I' — R with integral slopes. For each point x € T', and each v € T,(T),
we denote by slope, (f) the slope of f at x along v.
A function f in Rat(I") is said to be compatible with & if the two conditions (i) and (i)
below are verified:

(1) for each point x € T and each v € T,(T"), the outgoing slope of f along v lies in S”.

Denote by

(e T] 9 () =slope,(f) VveT(T)

veT,(T)

the vector in ]_[VeTI(F) SY with v-coordinate consisting of the outgoing slope of f along
v e T,(I"). Then, the second condition is:

(17) for every point z € I, the vector 0,(f) belongs to S*.

We denote by Rat(I', &), or simply Rat(&) if there is no risk of confusion, the space of
rational functions on I' compatible with &. We also denote by Rat(I', §°) or Rat(&°) the
space of rational functions satisfying (7).

If I is A-rational, we define the spaces Raty (I', &), Raty (I', 6¢) and Rat (I, &) accord-
ingly, adding the constraint that f(z) is in A for all A-rational points of I

3.3.4 Slope substructures

Let " be a metric graph and let & = {Sx; SY ‘ zel,ve Tx(F)} be an r-slope structure
on I
A slope substructure of & of width s < r is a slope structure

S = {98 |vel,veT,I)}
of width s on I' such that for every x € I', we have:
(1) for every v € To(I'), the set of prescribed slopes S is a subset of S”;
(2) the set of prescribed vectors of slopes S'@ is a subset of S?.

Note that if & is a slope substructure of &, then the inclusion Rat(&’) < Rat(&) holds.
We will see in Corollary 3.5.15 that in the case of interest to us, the converse will be also
true.
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3.3.5 Divisors on a metric graph and their rank

A divisor D on a metric graph I' is a finite formal sum over Z of points of I, that is,
D =% ;n;(x;) with n; € Z and distinct points z; € I, for a finite set I. The coefficient of
a point z of I in D is denoted by D(x). A divisor D is called effective, written D > 0, if
D(z) = 0 for all z € I". For any rational function f € Rat(I"), the corresponding divisor is
denoted by

div(f) = Zordm(f) (x), where ord,(f) = — Z slope,, (f).
zel veT(T)
A divisor obtained in this way is called principal. In the case I' is A-rational, a divisor
whose support is made up of A-rational points is said to be a A-rational divisor. Notice
that the space Raty(I") defined in Section 3.1.12 can be redefined as the set of functions of
Rat(I") such that div(f) is A-rational.
We have the following elementary fact.

Proposition 3.3.2. For f,g € Rat(I'), div(f) = div(g) if, and only if, f — g is constant
on I

Two divisors D and Dy are called linearly equivalent if their difference Dy — Dy is
principal. The Baker—Norine rank (D) of a divisor D is defined as the maximum integer
among —1 and the integers r > 0 such that for all points zq,...,x, in I', the divisor
D — (1) — -+ — (z,) is linearly equivalent to an effective divisor.

3.3.6 Linear equivalence of slope structures

We define a notion of linear equivalence for slope structures on a metric graph as follows.

Let &1 = {S§; 9y |z e, veT,(I)} and &, = {S5;55 |z €T, v e T,(')} be two slope
structures on a metric graph I'. We say G; and &, are linearly equivalent, and write
G >~ OG,, if there exists a rational function f on I' such that for every point = of I' and
every v € T, ('), we have S} = S¥ —slope,(f), and S7 = S5 — 0,(f). In this case, we write
Sy = 63 + div(f). Note that if & is a slope structure, then & + div(f) is a slope structure
for every rational function f e Rat(I).

3.3.7 Divisors endowed with a slope structure on I

A divisor endowed with an r-slope structure of degree d is a pair (D, &) consisting of a
divisor D of degree d and a slope structure & of width r. We extend the definition of linear
equivalence between slope structures to all pairs (D, &) with D a divisor of degree d and
S an r-slope structure on I' by declaring that (Dy, &) ~ (Dg, S9) if there exists a rational
function f on I' such that Dy = Dy + div(f) and &; = S + div(f).

Definition 3.3.3. A divisor class endowed with an r-slope structure of degree d on T' is
the linear equivalence class of a pair (D, &) where D is a divisor of degree d and & is an
r-slope structure on I. o
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We now define the space of rational functions relative to a divisor and a slope structure.

Definition 3.3.4 (Space of rational functions and linear system associated to a divisor
endowed with a slope structure). Let (D, &) be a divisor endowed with a slope structure
on I We denote by Rat(D,&) the space of all f € Rat(&) with the property that
D + div(f) = 0, and define the linear system |(D, &)| associated to (D, &) as the space of
all effective divisors F on I' of the form D + div(f) for some f € Rat(D, &). o

Remark 3.3.5. Recall that we define Rat(D) as the set of all functions f € Rat(I") such that
D +div(f) = 0. In a similar way, we can define the space Rat(D, &°), see Section 3.3.3. ¢

Remark 3.3.6. Note that |(D, S)] is independent of the choice of the pair (D, &) in its
linear equivalence class. Also note that if D(z) > 0 for some z € I' in the interior of an
edge of a model G on which & is defined, then, we have

(D, 6)] = [(D = (x), &)] + (). o

Definition 3.3.7. A divisor endowed with a slope structure (D, &) is called effective if
Rat(D, &) contains the null function. o

This is equivalent to asking that D is effective and that we have 0 € S¥ and 0 € S* for
every point x and every v € T, (I).
For future use, we make the following remark.

Remark 3.3.8. Since Rat(D, &) < C%(T,R), it is naturally endowed with the norm | - | o.
The corresponding topology shall be used later on to study linear series (see Definition 3.6.2).
We note that the slopes of all functions in Rat(D, &) are trivially bounded in magnitude
by maxi<i<, [s§]. ©

3.4 Crude linear series

We define crude linear series which are the simplest notion of combinatorial linear series.
The requirement in the definition is reminiscent of the rank condition on divisors on metric
graphs. Moreover, it takes into account the data of the hypercube rank function on points.

3.4.1 Definition

A crude linear series of degree d and rank r, or crude gl is the equivalence class of a divisor
D of degree d endowed with a slope structure & of width r on I'" subject to the following
property:

(x) For every effective divisor F on I' of degree r, there exists a rational function f €
Rat(D, &) such that

(CL1) For every point x € I, p,(0.(f)) = E(x), and in addition,
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(CL2) D + div(f) — E > 0.

We call a crude linear series effective if the underlying divisor endowed with the slope
structure is so. o

We make a set of comments and provide examples in order to clarify the definition.

First, note that Property (CL2) in Definition 3.4.1 implies that the Baker—Norine rank
r(D) is greater than or equal to 7.

Second, for given F and f, (CL1) does not necessarily imply (CL2), for example at points
x such that D(x) < 0 or such that p, is not standard. On the other hand, (CL1) implies
(CL2) generically for all E' and f. More precisely, let G = (V, E) be a graph model of T'
such that & comes from an r-slope structure on G, and D has support on V. Then, for
every point x € I' \ V lying on an edge {u, v}, the rank function p, is standard. The first
condition above is thus equivalent to i + j <7 — E(x) for s and si* the two slopes of f
at z. In particular, since the slopes are all integral, it is easy to see that condition (CL2),
written div,(f) = —sj” — sj* > E(z), is automatically implied by condition (CL1) for z.
This means that (CL1) implies (CL2) outside the (finite) set of vertices of G. Note that
(CL1) can be strictly stronger than (CL2) in the interior of edges e (as long as the possible
slopes on e do not form an integral interval, i.e., in the case there are gaps in S°.

The relevance of (CL1) will be justified in Section 3.9, which treats the geometric situation
in which the slope structure comes from tropicalization.

We finally note that the definition generalizes to A-rational divisors on A-metric graphs.
In this case, we require f to be in Rat(I).

Example 3.4.1. Consider the metric graph I" below, with two edges of equal length this

Figure 3.2: An example of a crude linear series on the circle.

time.

We allow the slopes 0 < 1 < 2 on both edges in the direction of the arrows. We define
the rank functions at v and v by the array

0 0
11
2 1

o O O

(jumps depicted in blue), and the rank functions at all the other points of I" are chosen to
be standard. This fully describes &. Consider the effective divisor D = 4 (u). The pair
(D, ) is an effective crude linear series of degree 4 and rank 2. To see this, we need to
check Property (*) in Definition 3.4.1 for E = (z) + (y), for points z,y in I'. This can be
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done by a case analysis depending on whether = or y coincide with a vertex, or they are in
the interior of the same edge, or in the interior of two different edges of T'.

o If x =y = u, we can take f to be the zero (or any constant) function on I'.

o If z =y = v, we can take for f any function having constant slope 2 on both edges in
the direction of the arrows.

o If x = u, y = v, we can take for f any function having constant slope 1 on both edges
in the direction of the arrows.

o If x =wand y ¢ {u,v}, we can take f with slopes 1 and 0 on both edges as follows:

—— 00—
u=x Y v

The remaining case x ¢ {u,v}, y = v is similar.

o If 2,y ¢ {u,v} and x,y are on the same edge, then we can take f to behave as the
following function (with slopes 2, 1 and 0) on both edges:

u r Yy v
This works even if x = y, in which case f does not take the slope 1.

o If z,y ¢ {u,v} and x,y are on different edges, we define 2’ (resp. y’) to be the point
of the edge containing x (resp. y) symmetrical about the middle of this edge. Then,
we can take f to be the function

UL Y v

with values on one edge represented in blue, values on the other edge represented in
red, and values common to both edges represented in black.

On the same graph, D = 2 (u) + 2 (v) with slopes —1 < 0 < 1 on both edges, and the
same slope structure as above, provides another crude linear series of degree 4 and rank
2. o
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Example 3.4.2. Here is another simple example that will be used later (see Example 3.7.6).
We consider the metric graph I' depicted in Figure 3.3 with arbitrary positive edge lengths.

UE———— i — oUW
(%

Figure 3.3: The path graph I' with three vertices, and edges of arbitrary positive lengths.

We allow slopes —2 < 0 < 2 in the direction of the arrows and take D = 2 (u)+4 (v)+2 (w).
We choose the rank function p, on the vertex v to be the same as in Example 3.4.1. The
rank functions on u and w are automatically standard, since these vertices are of valence 1.
Then, (D, G) is a crude linear series of degree 8 and rank 2.

Without changing D, we can also consider a slope substructure &’ of & of rank one by
allowing slopes 0 < 2 on the edge uv and slopes —2 < 0 on the edge vw. We adapt p) at v

X 0) . The pair (D, &’) is an effective crude linear

as follows (jumps depicted in blue): (1 0

series of degree 8 and rank 1.

We divide the coefficients of D to obtain the divisor D' = 2 (v) + (u) + (w). We then
consider the slope substructure &” with allowed slopes 0 < 1 on uv and —1 < 0 on vw.
This makes (D', &") an effective crude linear series of degree 4 and rank 1. o

3.4.2 Non-increasing property of slope vectors and a finiteness
theorem

In the rest of this section, we prove two important results about crude linear series.

Let (D, &) be a crude linear series on I' of rank . Let G = (V, E) be a model of I" such
that & is defined on G and D is supported on V. Let e = uv be an oriented edge of G. For
each point z in the interior of e, let v € T, (") be the unit tangent vector consistent with
the orientation of e. Let sf(z) < sY(z) < --- < s¥(z) be the corresponding slopes in S°.
By an abuse of notation, for each point y on e, we still denote by v the tangent vector in
T, (") parallel to e, and thus to v € T,(I'), and denote by s{(y) < s¥(y) < --- < s¥(y) the
corresponding slopes.

Proposition 3.4.3 (Non-increasing property of slope vectors). Notation as above, the
collection of vectors (sg,...,sY), as a vector-valued function on the segment corresponding

»er

to e, forms a coordinate-wise non-increasing collection of vectors.

In other words, for every ¢ > 0 small enough, denoting by y = = + cv the point at
distance € from x in the direction of v, we have

s.(y)<sj(x) for every j =0,1,...,7.

Proof. Since the vector of slopes is piecewise constant, we can suppose that x is in the
interior of e. Changing the model by adding x as a new vertex of I', if necessary, we can
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suppose that x is a vertex of GG. Denoting by €’ the edge emanating from z in the direction
v and by €” the other edge incident to z, oriented toward x (that is, with an orientation
compatible with that of ¢’). To prove the proposition, it is sufficient to show that for every
jef{l,... r}, sjl () < sjﬁ (). We will use the divisorial rank property in the definition of
crude linear series. In the following, ¢” denotes the edge ¢” with the reverse orientation.
Let py,...,p; be j distinct points on €’ close enough to z, in this order away from =,
such that the slope structure is constant between x and p;. Likewise, let ¢i,...,¢.—; be
r — 7 distinct points on €” close enough to x, in this order away from x, such that the slope

structure is constant between x and ¢,_;. Consider the effective divisor of degree r

j r—j
L= Z(pz) + ) (a)-

i=1 i=1
By property (*) in Definition 3.4.1, there exists f € Rat(D, &) such that D + div(f) — F is
an effective divisor. The vector of outgoing slopes of f around x, 0,(f), corresponds to some
jump a € J,, . Since by construction D has no support between g,_; and p;, the inequality
D +div(f) — E = 0 implies that f has a positive order of vanishing on all the points p; and
¢;- This in turn implies that ay > j and az > r — j. The fact that div(f)(z) > 0 implies
that 53;, (x) + szT(x) < 0. Finally,

O

Theorem 3.4.4 (Theorem 3.1.4 on the finiteness of slopes structures in crude linear series).
Let T be a metric graph and let D be a divisor on I'. Let G = (V, E) be a combinatorial
model of I that supports D on its vertices. For each integer r, there exist finitely many
subdivisions Hy, ..., Hy of G, and an r-slope structure &; defined on H; for j =1,...k,
such that every crude linear series (D, &) of rank r has a model H; of I' among Hy, . .., Hy
on which it is defined, and moreover, the equality & = &; holds.

Proof. Using [GK08, Lemma 1.8], we infer that the slopes appearing in the slope structure
S are all bounded. Applying Proposition 3.4.3, this implies that the number of graph
models over which the slope structure is defined is finite, and there are only finitely many
possibilities for rank functions on the vertices of each of these graph models. The result
follows. ]

3.5 Admissible semimodules

In this section, we introduce admissible semimodules of rational functions. The idea is
to replace the full space of rational functions Rat(D, &) in a crude linear series (which is
in general not closed, in the topological sense) by a closed semimodule, still enjoying the
properties of crude linear series.
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3.5.1 Semimodule structure on spaces of rational functions

Let T = (R, ®,®) be the semifield of tropical numbers. The space R! of real-valued
functions on I is naturally a T-semimodule: for f,g € R' and ¢ € R, we have operations of
tropical addition and tropical multiplication by scalars

f@®g:=min(f,g) and cOf:=f+c

The relevance of this discussion is in the following basic result, which shows that the
space of rational functions associated to a divisor endowed with a slope structure is a
T-semimodule.

Proposition 3.5.1. The space Rat(I') is a T-semimodule. Both subsets Rat(D) and
(Rat(D, &), for a divisor D and a divisor endowed with a slope structure), respectively, are
T-semimodules.

Proof. For the first two statements see [HMY12, Lemma 4]. In order to prove the last
statement, we need to show that min(f, g) belongs to Rat(D, &) if f and g do. Let v be
a vertex of I' and let d, be the valence of v. Denote by a, b and ¢ the elements of @i”
such that s, = 0,(f), sy = 0y(g9) and s. = J,(min(f,g)). If f(v) = g(v), then we have
Op(min(f, g)) = min(0,(f), d»(g)), which implies ¢ = a A b. Otherwise, we have ¢ = a or b
depending on whether f(v) < g(v) or f(v) > g(v), respectively. Using that J,, is stable
under A (see Proposition 3.2.13), we conclude that, in either case, ¢ belongs to J,,, and
the proposition follows. [

We introduce some terminology that we use later.

Definition 3.5.2. Let S be a subset of RI' and v € I'. By S,, we mean the space of
all functions f of S such that f(v) = 0. This will be used, in particular, when S is a
sub-semimodule M of some linear series Rat(D, ).

For a subset S of R" and f € R, we also define S(—f) =S —f={h—f|heS} o

The latter definition mimics the linear equivalence relation between divisors or slope
structures (Section 3.3.7). Notice that if M is a sub-semimodule of RY, then this is also

true of M(—f).

Definition 3.5.3. A semimodule M < R! is called effective if it contains the null function.
o

Remark 3.5.4. This definition extends Definition 3.3.7 where M = Rat(D, &). Note that
if fe M, then M(—f) is effective. o
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3.5.2 Restriction and extension of scalars

The above notions generalize easily to the case of A-rational divisors on A-metric graphs.

If I' and D are A-rational and if M is a sub-T-semimodule of Rat(D, &), we define
My = M n Raty(I"), the sub-A-semimodule of Rats(D, &) made up of elements f € M
which are A-rational. We say that M, is obtained from M by restriction of scalars.

Assume that I' and D are A-rational. Let A’ be another sub-semi-field of R such that
A < A, and M be a sub-A-semimodule of Raty (D, &). We define M* to be the sub-A’-
semimodule of Raty/ (D, &) generated by M. We say that M A is obtained from M by
extension of scalars.

3.5.3 Finite generation and closedness

A semimodule M over a commutative semi-ring R is finitely generated if there exist
fi,--., fn € M such that for all g € M, there exist ci,...,c, € Rsuch that g = ®,_,_, ¢ ©
fi-

Using cut sets and extremal points, Haase, Musiker and Yu showed in [HMY12] that for
every divisor D, Rat(D) is a finitely generated T-semimodule. This is not necessarily the
case for spaces of the form Rat(D, &) for crude linear series (D, &) (see Example 3.7.6).

A semimodule M < Rat(I") is called closed if it is closed for the norm | - | .

We have the following basic result on the connection between finite generation and
closedness properties.

Proposition 3.5.5. Let M < Rat(I') be a finitely generated semimodule. Then, M is
closed.

Proof. Let (f,)n be a sequence of functions of M converging to a function f in Rat(I") for
the | - || topology. Assume that M is generated by elements hy, ..., h,, and write, for all
n, fn = minjci< (h; + ) with ¢ € R. We can suppose that all h; are zero at some point
v. It follows that the sequences (c}'), are bounded. By extraction, we can assume that for
every i, (cf'), converges to some ¢; € R, implying that f, LEN min;<;<,(h; + ¢;), and thus
feM. ]

We next give an alternative characterization of closedness for semimodules M < Rat(D).
First, notice that each effective divisor D of degree d is written in the form D = (z1) +
-+ 4 (z4) for points x; € I', and can be viewed as a point [z1, ..., z4] in the d-th symmetric
product Sym?(T") of the metric graph, which is a compact metric space. Furthermore, we
can view Sym?(T") as the subspace of Div¥(I") consisting of effective divisors of degree d.
This defines a map

¢: Rat(D) — Sym*(T") — Div¥(T")

by ©(f) = D + div(f). We set |[M| = ¢(M), and view it in Sym?(I"). We endow Rat(D)
with the | - ||, topology.
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Proposition 3.5.6. The map ¢ is continuous. Furthermore, a semimodule M < Rat(D)
is closed if, and only if, |M| < Sym®(T") is closed.

Proof. We omit the proof of the first assertion, and prove only the second.

= If M is closed then so is M,, and |M| = ¢(M,). Let k be a universal bound for
the slopes in & (see [GKO08, Lemma 1.8]), and let B be the space of continuous functions
I' — R whose slopes are bounded by k. By the Arzela—Ascoli theorem, B is compact, and
since M, € B is closed, we infer that M, is compact. Since p is continuous, |M| is compact
and thus closed in Sym®(T").

<= Let (f,)n be a sequence of functions of M converging to some f € Rat(D). Then by
continuity ¢(f,) — @(f). By closedness, ¢(f) € | M|, so there exists some g € M such that
o(f) = p(g). Since div(f) = div(g), f and g differ by some constant, and thus fe M. O

3.5.4 Closedness and extremal generators

In this section, we provide a result linking the closedness property and extremal generators.
We recall that if M is a subset of a semimodule, then x € M is called extremal if an equality
of the form x = y @ 2 with y, 2 € M implies y = x or z = x. If M is a finitely generated
sub-semimodule of R, then it is generated by its extremals, of which there is a finite
number up to tropical scaling, see [HMY12, Proposition 8|. This fact is related to the
following result (see Proposition 3.5.5 for the link between finite generation and closedness).

Proposition 3.5.7. Let D be a divisor on I' and M be a sub-semimodule of Rat(D).
Assume that M is closed in Rat(D). Then M is generated by its extremals.

Remark 3.5.8. A consequence of the above proposition is that a closed sub-semimodule
of Rat(D) is finitely generated if, and only if, it contains a finite number of extremals. ©

The proof relies on the following lemmas, which have their own significance.

Lemma 3.5.9. Using the notations of Proposition 3.5.7 and under the same hypotheses,
let fe M and v e . Then there exists a function g € M which is extremal in M and such

that g = f and g(v) = f(v).

Proof. Without loss of generality, we assume that f(v) = 0. Let P be the (non-empty)
set of all functions h € M such that h(v) = f(v) and h > f. P is closed in M,, which is
compact. Let (hs)ses be a chain in P (i.e., a totally ordered subset). Since P is bounded,
the function h := sup, hs is well-defined. By an argument similar to that used in the proof
of Proposition 3.7.3, and using the fact that {hs, s € S} is totally ordered, h can be written
as the limit of some sequence (h,,),, of functions of P. Since P is closed, we get h € P.
We have shown that every chain in P has an upper bound, so by Zorn’s lemma, P admits
a maximal element g. Since g is maximal, it is extremal, which concludes. ]

Lemma 3.5.10. Using the notations of Proposition 5.5.7, let f € M. Then there exist an
integer nand points x4, ...,x, € I' such that for all g € M, we have g = f if, and only if,

glw:) = f(x;) for alli.
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Proof. We choose a model G of T" such that the supports of D and div(f) are included in
the set of vertices. Then we consider the set of all vertices of G, and add an extra point
strictly between every pair of adjacent vertices: this gives a set of points z1,...,x,. Let
now g € M be such that for all i, g(z;) = f(z;), so f and ¢ coincide at every vertex and
at some point in the interior of every edge. Let now e = z;z; be an edge, containing the
marked point x; in its interior. Since the interior of e contains no point of the support
of div(f), we know that f is linear on e. Since the interior of e contains no point of the
support of D, the slopes of g along e are non-increasing. Combined with the fact that
g(x;) = f(z;) and g(z;) = f(x;), we get that g > f on e. Since g(zy) = f(zx), we have in
fact g = f on e, and this is true on every edge of I', so g = f. ]

Proof of Proposition 3.5.7. Let f be an element of M. For every x € I', Lemma 3.5.9
provides an extremal g* € M such that ¢* > f and ¢*(x) = f(x). We apply this to every
point z; given by Lemma 3.5.10, which yields extremal functions ¢g**, ..., g** € M such that
for all i, g™ > f and g% (x;) = f(x;). Define g := min; g™. For all i, we have g(z;) = f(x;),
and thus g = f, which shows that f is generated by extremals. ]

We end this section with an open question about the topological properties of linear
series.

Question 3.5.11. Let M be a closed sub-semimodule of Rat(D, &). Is there any connection
between M being finitely generated and M being of finite tropical rank? In other words
(in light of Remark 3.5.8), is there any connection between M having a finite number of
extremals and M being of finite tropical rank?

3.5.5 Admissible semimodules

Let d be an integer and D a divisor of degree d on I'.

A semimodule M < Rat(D) is called admissible of rank r if it is closed for the topology
induced by | - [, and if there exists an r-slope structure & such that M < Rat(D, &) and
such that the following holds:

(xx) For every effective divisor E on I" of degree r, there exists f € M such that
(AS1) For every point z € I', p,(0.(f)) = E(z); and in addition,

(AS2) D +div(f) — E > 0.

When I' and D are A-rational, we say a semimodule M < Rat, (D, &) is admissible if
the extension M® < Rat(D, &) is admissible. o

Note that if M is effective as a semimodule, then so is Rat(D, &) and therefore (D, &)
is by definition effective as a crude linear series.

Although it is not clear from the definition, we will show in the next section that
admissibility is a property of the pair (D, M), that is, both the rank r and the slope
structure & (and thus the crude linear series (D, &)) can be extracted from M.
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Example 3.7.6 shows that, in general, the semimodule Rat(D, &) < Rat(D) for a crude
linear series (D, &) may not be closed in Rat(D), and therefore may not be admissible.
Furthermore, a crude linear series (D, &) of rank r might not necessarily admit an admissible
semimodule M < Rat(D, &) of the same rank, although we do not have an example thereof.

Remark 3.5.12. For further use, we note that if (f,,), is a sequence of functions in Rat(D)
converging uniformly to a function f, then f € Rat(D) and, for every = € T, the inequality
0:(f) < 0.(fn) holds coordinate-wise for all large n. This inequality can be strict in general,
and the corresponding point of the hypercube may not be a jump of the rank function at x.
This explains why a semimodule of the form Rat(D, &) is not necessarily closed. o

3.5.6 Realization of jumps in admissible semimodules

Let D be a divisor of degree d. In this section, we prove the following theorem.

Theorem 3.5.13 (Realization of jumps in admissible semimodules). Let (D, &) be a crude
linear series of degree d and rank r, and let M < Rat(D, &) be an admissible semimodule
of rank r. Let v be a point of I" and let a € J,, be a jump. Then, there exists f € M such
that 0,(f) = sq4.

For example, taking E = r(v) for v € I', we deduce from property (+x) the existence of
a function f € M such that p,(0,(f)) = r. This implies that f takes all minimum slopes
around v, that is, 0,(f) = so. The proof for other values of a is more involved.

This theorem immediately implies the following important results.

Corollary 3.5.14 (Corollary 3.1.3). Keeping the notation of Theorem 3.5.13, the slope
structure & can be entirely retrieved from M.

In light of this corollary, we will often drop & and only say that M is an admissible
semimodule of Rat(D).

Corollary 3.5.15. Let (D, &) and (D', &) be two crude linear series on I' of rank r and
', respectively, and M' < Rat(D',&") and M < Rat(D,S) be admissible. Then & is a
slope substructure of & provided that M' < M holds.

Remark 3.5.16. Note that the divisor D cannot be uniquely determined by M, because
if M < Rat(D, &), then M < Rat(D’, &) for every divisor D’ > D. However, there is a
unique base-point free choice for D, that is, a unique minimal choice Dy, for D. Simply
define the coefficient Dy, () of Dy, as the minimum possible integer such that all the
functions f € M verify ord,(f) + Dmin(x) = 0. This is well-defined, and every other choice
D with M < Rat(D, &) verifies D > Dyyy. o

The rest of the section is devoted to the proof of the realization theorem.
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3.5.7 Proof of Theorem 3.5.13

Consider a model G = (V, E) such that & is defined on G and let v be a vertex of V. Let
§ = d,. We show that for each jump a € J,,, there exists f € M such that ,(f) = s,. The
idea is to use the divisorial rank condition (+x) satisfied by the admissible semimodule M
in order to find a sequence of functions with the desired slope at a given tangent direction
at v. We then find f as the limit of a subsequence, using the closedness of M.

We start with a lemma.

Lemma 3.5.17. Let q € @i be any point in the hypercube at v such that p, (g) > 0. Then,
there exists a unique jump a € J,, of rank p, (g) with a > q.

Proof. We reason by contradiction to show existence. If no such jump exists, we can
construct an increasing path (i.e., a finite sequence of points z* of &7, such that z* < z**!
for every i), starting at ¢ and made up of points of constant rank. This process necessarily
ends up at the point r = (r,...,r). We know that p,(r) = p, (g) = 0. Therefore, r is a
jump, r > ¢ and they have the same rank, a contradiction.

We now show uniqueness. Suppose there are two different jumps a and b such that a > g,
b= q, ps(a) = pu(b) = py (g) Since a # b, then a A b is different from at least one among a
and b, say a. Proposition 3.2.14 yields that p,(a A b) > p,(a), which is impossible because

g <aAb<aimplies p,(a) = pu(q) = po(a A b) = py(a). O

We now come to the proof of the theorem. We start by defining an increasing path in @i
that starts at 0, stays below a and moves only along the first direction in the hypercube
@i at the beginning, then only along the second direction, and so on, until direction 4.

Let, for all i € {1,...,6}, e; be the edge incident to v corresponding to the direction 3.
For convenience, we also define, for all i € {1,...,d}, €} := es5_;41, just reversing the order
of the edges around v.

Given a point y € @g with y < @ and a direction ¢; in the hypercube, we say that y is a
fall in the direction e, with respect to a if y; = 0 or p, (g) < pu (g — gi). We say that y is a
largest fall in the direction ¢; with respect to a if y is a fall in the direction ¢; with respect to
a and if for all non-negative integers n such that y + ne; < a, we have p, (g + ngi) = Dy (g)
Saying in words, moving in the direction of ¢, from a largest fall, remaining bounded by a,
the rank does not change.

We construct our increasing path starting from 0, going each time to a largest fall in
the given direction relative to a and remembering only the falls in that direction. More
precisely, suppose that we have already built the path along directions 1,...,7 — 1 with
1 <i < 4, consisting of all the falls in the direction of ¢, then the falls in the direction
of ¢,, ..., and the falls in the direction of ¢, ;. Therefore, the path currently ends at the
point 22;11 tr ey, tr € [r]. We will now let the path continue only in the direction i, by
adding multiples of ¢;, adding the falls in the direction of ¢; to the path, until we reach
the point y = Z;;ll tr ey, +tie; with y < a, which is a largest fall in the direction ¢; with
respect to a. This way, we have built an increasing path starting at 0, composed only of
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falls in some direction, staying below @ and moving successively in directions e, ..., ¢;4.
The turning point, where we move to a different direction, is a largest fall with respect to a
in that direction. The ending point of the path

é
z= Ztkgk
k=1

is a largest fall in the direction ¢ ; with respect to a. In particular, note that z < a.
For every i € {1,...,0}, let ¢; be the rank drop of the path in the direction i:

i—1 7
k=1 k=1

Then, Y0 6 = r — py(2).
Lemma 3.5.18. Let z be the endpoint of the increasing path constructed above. We have
pu(2) = pola). Therefore, p,(a) + X, 4 = .

Proof. Let w e @i be such that z < w < a and let i € {1,...,d} be such that w + ¢; < a.
By construction, we know that

po (Z tiey + Ei) = po (Z tk§k> :
k=1 k=1

This equality, together with supermodularity, implies that p,(w+¢;) = p,(w). Applying this
fact recursively yields p,(z) = py(a). The last equality follows from p,(z) + Zle li=r. O

For every i € {1,...,d}, let pi, ... ,p}}i be distinct points on the edge €; = e, 41, ordered
increasingly with respect to their distance from v. Let

6 4
E = po(a) (v) + 3] ) (#))-

By the preceding lemma, this is an effective divisor of degree r. Since M is admissible,
there exists f € M such that f(v) =0, and

pu(0u(f)) = po(a) and div(f)+ D —E = 0. (3.2)

= 0,(f) € @i Note that b is a jump of p,. The following lemma will imply that

-
=

SIS

e

|

Lemma 3.5.19. We have b > 2.

Proof. The first of the two properties in (3.2) tells us that p,(b) = p,(a) = p,(2).
We will now show that the second property in (3.2), when applied to a sequence of
effective divisors of degree r that starts at E, implies that b > z. The idea is to make all
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the points in the support of E converge to v one after the other, apply the admissibility of
M, and define a decreasing sequence of jumps.

Let (pin)nzo be a sequence of points of €] starting at pj and which converges to v. We
replace pj in E by pj,, to obtain an effective divisor E},, of degree r. Formally,

Elln = py(a) (v) pl n Z Z Z (p;)

i=2j=1

Applying the admissibility of M, we find a function f{, € M with f (v) = 0 such
that div(f{,) + D — B}, = 0. Replacing f{, by min(f, f{,,) € M ensures that for all n,
0o ( flln) < 0y(f). Moreover, since M is closed, we can extract a subsequence so that the
sequence (f{,) converges to an element f{ € M. Let Ef = E — (p}) + (v).

By Remark 3.7.9, for all n,

0o (f1) < 0u(fin) < 0u(f)

Besides, the fact that (0,(f1)); < (0y(f1,,)), implies that 0,(f]) # 0u(f).

What precedes yields a jump by = 0,(f1) < 0,(f) = b, different from b because the first
coordinates verify (b ) < by. Therefore, b < b.

We repeat the same process as above, starting from E]. We take a sequence (p%n)n of
points of €] starting at pi, and define

15 0

L
Ey, = (po(a) + 1) (v) + (pé,n)+Z(p})+ Z(pﬁ»),

7=3 =2

and find an element fy, € M with f; (v) = 0 such that div(f{,) + D — E;,, > 0. After
taking the minimum min( fi, f217n) € M, and passing to a subsequence, we obtain a limit
f} e M. This yields a jump by < by, different from b} because (Z_)%)l < (Qi)l.

We repeat the same process, exhausting first all the points pjl- on €] in the support of E,
then all the points p? on €4, and so on, until finally all the points pg on the last edge. The
above reasoning yields a decreasing path of jumps

1 1 1 o &
b>0by >by > >by > >by > >y

Using Proposition 3.2.14, the sequence of ranks (,01, (l_);)) is increasing. As a consequence,

pv(l—)g(g) = pv(b) + Z& =T,

We thus infer that 1_926 = 0 and all the rank differences between consecutive jumps in the
sequence are exactly one.

Reversing the order in the sequence of jumps constructed above, we get an increasing
path of jumps starting at 0 and ending at b, whereas we defined beforehand an increasing

151



path starting at 0 and ending at z. The two increasing paths have the same length, equal
to r — py(a). To show that b > z, we will prove that the path leading to b remains greater
than or equal to the path leading to z at each step, that is, the k-th element of the former
dominates the k-th element of the latter.

We proceed by induction. The claim is true at the beginning because the starting point of
both paths is 0. Suppose that the inequality is true at some step jo with 0 < jo < r — p,(a).
We denote by z, the current fall and by b; the current jump. The inequality reads b; > z; .

We suppose that the next fall z; , differs from 2, (only) in the direction 4. Let

Cjo = Zjo T ((Z—)jo)io B (gjo)i0> Lio

be the point obtained by starting at z; and moving in the direction ip as much as possible
without overtaking b; along this axis.

Since both paths are parametrized by the same integers ¢;, we know that the next jump
b, +1 will also differ from b, (at least) in the direction ig. The latter statement implies that

b.

bjo+1 = bj, +¢,,. Since b, is a jump, by supermodularity and using b; > c;, we get that

po(cjy + 2iy) = pulc;,) — 1

80 Cj, +¢;) >z, Isa fall in the direction i¢ which coincides with zj, in all directions but g.
Therefore,

Zjo+1 ﬁQjo ¢ <I—)jo te, = b»0+1.

. =0 — =10 — =J

We have proved the claim for j, + 1. We infer that b > 2z, as desired. O

Proof of Theorem 3.5.15. The preceding lemma shows that b > z, and thus p,(b) < p,(2) =
pv(a). Combined with the inequality p,(b) = py(a), we deduce that p,(b) = p,(a). On
the other hand, b > 2 is a jump of p,. Consequently, a and b are two jumps of p, which
dominate z and have the same rank as z. The uniqueness in Lemma 3.5.17 implies that
b = a, which finishes the proof. H

3.6 Combinatorial limit linear series

In this section, we define combinatorial limit linear series on metric graphs.

3.6.1 Tropical rank

In linear algebra, the dimension d of a vector space can be characterized as either the
size of a minimal generating set or as the least integer such that every collection of d + 1
elements is linearly dependent. For spaces of tropical functions, however, there is a priori
no direct link between the two above notions. The former one corresponds to the finite
generation property in semimodules, discussed in Section 3.5.5. We will need a second
notion of finiteness based on tropical independence from [JP14, JP16], see also [AGG09]
where a finite version of this was developed.
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Definition 3.6.1 (Tropical rank). Let M < Rat(I') be a semimodule. We call tropical
rank of M the least integer r € Z~( such that for all elements fy, ..., f.11 € M, there exist
o, - - -, Cry1 € R such that for each x € I', the minimum in

ogggl(fi(x) +¢)
is achieved at least twice, that is, for at least two indices i € [r + 1]. If such r does not

exist, we say that M is of infinite tropical rank.
For a A-semimodule, the tropical rank is defined the same way by imposing ¢; € A. ¢

3.6.2 Limit linear series: Definition

Definition 3.6.2. A combinatorial limit linear series of rank r and degree d on a metric
graph I', more simply called a linear series or a g}, is a pair (D, M) consisting of a divisor
D of degree d and an admissible semimodule M < Rat(D) of rank r which is moreover
finitely generated and has tropical rank r. The linear series is called effective if M is so.
When I' and D are A-rational, we define a A-linear series, or simply A-g/;, as a finitely
generated semimodule M < Raty (D) of tropical rank r such that the semimodule M® <
Rat(D), obtained by extension of scalars, is admissible of rank 7. o

Note that MR is finitely generated, and by Proposition 3.5.5, it is automatically closed.

Remark 3.6.3. For a linear series (D, M), by Corollary 3.5.14, there is a unique slope
structure & with M < Rat(D, &), that is, G is entirely determined by M. This explains
why we do not include the data of & in the linear series.

Moreover, in light of Remark 3.5.16, there is a minimal divisor associated to M. However,
for clarity and since specific divisors on metric graphs appear naturally, we keep track of D
in the definition. o

The relevance of this will be explained by Theorem 3.9.1, which states that a semimodule
M < Rat(D) that comes from the tropicalization of a linear series is finitely generated,
is of tropical rank r, and also verifies property (#x) in Section 3.5.5. In fact, such an M

verifies the stronger property (%, ) below. For the notion of slope substructure, we refer to
Section 3.3.4.

Definition 3.6.4 (Refined linear series). A refined linear series, or refined g, is a pair
(D, M) which is a g}, and which in addition verifies the following stronger version of (#):

() For every effective divisor E of degree s < r on I', there exists a semimodule

Mg < M such that (D, Mg) is a g, * and for every element f € My, we have

(1) pz(0:(f)) = E(z) for each point x € I',; and in addition,

(2) D +div(f)— E > 0. o
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Each linear series (D, M) with underlying slope structure & gives rise to a linear system
(D, M)| < |(D,8)|, defined as follows.

Definition 3.6.5 (Linear system associated to a g}). For a linear series (D, M), we define
the linear system |(D, M)| as the set of all effective divisors E on T" of the form D + div(f)
for fe M. o

Remark 3.6.6. For a finitely generated admissible semimodule M < Rat(D) of rank r,
being a linear series, that is, having tropical rank r, is equivalent to having tropical rank at
most r. In fact, the tropical rank of an admissible semimodule of given rank r is always
at least r. To see this, we observe using Theorem 3.5.13 that at every point x of I, in
every direction, each of the r + 1 slopes in the slope structure underlying M is taken by
an element f; of M. The functions f; therefore take pairwise distinct constant slopes on
a small segment [ based at x. This implies that for all ¢, ...,c. € R, the minimum in
ming<;<,(fi(y) + ¢;) is achieved at least twice only for a finite number of points y € I, which
shows that the r + 1 functions fy,..., f. are tropically independent. Therefore, the tropical
rank of M is at least r. o

3.6.3 Examples

We give two simple examples of linear series, and refer to Sections 3.10.1 and 3.10.1 for
more examples.

Example 3.6.7 (A g} on the barbell graph). Consider the barbell graph " with edges of
arbitrary length, see Figure 3.4. This metric graph has genus two and the canonical divisor
K has rank one. We define a linear series (K, M), M < Rat(K), of rank one on I'. Allow
slopes —1 < 1 on the middle edge and, for ¢« = 1,2, allow slopes 0 < 1 on both oriented
edges u;v;, in the direction of the arrows.

(0,1)

Figure 3.4: The barbell graph, the canonical divisor and the slope structure G.

We define suitable rank functions on vertices, as follows. For i = 1,2, we endow v; with

the rank function on @i = [1]? defined by the array ((1) 8), and endow wu; with the rank

function on &%, = [1]® whose restrictions to [1]% x {0} and [1]2 x {1} are defined by the
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0 0 -1 -1
following two matrices, respectively: (1 0) , < 0 1). Here, jumps are depicted in

blue. For the two vertices u; and wuo, the third coordinate in each of the two rank functions
corresponds to the middle edge of I'. We further endow each other point of I' with the
standard rank function. Set M = Rat(K,S). The pair (K, M) is a linear series of degree
two and rank one on I'.

Note that M is not effective, and thus the constant functions do not belong to M.
Moreover, (K, M) is the unique gj on I' with the underlying divisor K. This shows that
the canonical divisor K on I' is not realizable, that is, K is not the tropicalization of a
divisor K € |w¢| in the canonical linear system |we| on a smooth proper curve C' over an
algebraically closed field with a non-trivial non-Archimedean valuation (otherwise, since K
is effective, the constant functions would belong to the semimodule M). Here, w¢ is the
canonical sheaf of C'. o

Example 3.6.8. Consider the following metric graph I' with two edges of equal length. Let

Ue

o oW
(%

Figure 3.5: The metric graph I" with edges of equal length.

D = (u) + (w) and define a slope structure & by allowing slopes 0 < 1 on the edge uv and
slopes —1 < 0 on the edge vw, in the direction of the arrows. Let M be the sub-semimodule
of Rat(D, &) made up of all functions which are symmetric with respect to v. We define

0 0

1 0/
Here, the jumps of p, are depicted in blue. We endow every other point of I' with the
standard rank function. The pair (D, M) is a ga. o

pv by the array

In the next two sections, we provide a classification of g}’s.

3.7 Reduced divisors

We establish an extension of the machinery of reduced divisors to linear series. The results
of this section are valid without extra effort for the linear system |(D, M)| associated to a
pair (D, M) consisting of a divisor D of degree d and an admissible semimodule M of rank
r, so we present the results in this generality. Moreover, replacing (D, M) with a linearly
equivalent admissible pair, we can assume for the full section that M is effective.

3.7.1 Reduced divisors in the chip-firing context

We briefly recall the definition of reduced divisors in the “chip-firing” context. In terms of
the chip-firing game, the z-reduced divisor is obtained from D by firing chips the closest
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possible to z.

More formally, a cut X in a metric graph I" is a compact subset of I' with finitely many
connected components. The (finite) set of boundary points of X, denoted by ¢X, is the set
of all points of X which are in the closure of the complement of X in I'. For a point x € 0X,
we denote by outy(x) the set of all outgoing branches (given by unit tangent vectors) at x
from X, and by outvalx(z) the number of such branches.

Definition 3.7.1 (Reduced divisors in the classical context). Let = be a point of I'. A
divisor D on I' is x-reduced if the following two conditions are met:

(1) For each y € I' \ {z}, we have D(y) = 0, and

(2) For each cut X < I \ {z}, there exists a point y € 0X with D(y) < outvalx(y). <

For each divisor D and each point x in I, there exists a unique x-reduced divisor linearly
equivalent to D, which we denote by D,. For graphs, this was proved by Baker and Norine
in [BNO7]. The extension to metric graphs was given in [MZ08], see also [Amil3].

3.7.2 Reduced divisors in linear systems

We need the following definition.

Definition 3.7.2. Let M < Rat(D) be an admissible semimodule of rank 7, and let v be a
point of I'. We define the rational function fM, denoted f, when the context is clear, by

fM(x) = inf[g(z) — g(v)] = inf f(x)

gEM fEM'u
for every point = of I. o

(Recall that M, is the set of all functions of M which vanish at v. In particular, f,(v) =0.)
The closedness of M implies that the function fM belongs to M, as we show next.

Proposition 3.7.3. The function fM is well-defined and belongs to M,,.
Note that, by this proposition, since the infimum is reached, we can write f, = mingsep, f.

Proof. We first show that f, is well-defined. This does not require that M is closed in
(Rat(D), | - ) and boils down to proving that the set

{f(x), feM}

is bounded (from below) for any given « € I'. Let k be a bound for the slopes of all functions
of M < Rat(D,S) (see Remark 3.3.8).
It yields a universal bound for values f(z) with z € I" and f € M,:

()| < k Diam(I),
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where Diam(I") is the diameter of I' as a compact metric space. This shows that f, is
well-defined.

We then show that f, can be written as the uniform limit of a (decreasing) sequence
of functions in M,, essentially following the proof of Dini’s theorem. Since the slopes of
functions in M, are universally bounded, this set is uniformly Lipschitz, so f, is itself
Lipschitz and therefore continuous.

Now let n > 1. For every x € I, there exists f € M, such that

1

0< ful(z) = folz) < o

By continuity of f? and f,, there is an open set U? 3 = such that for all y € U?,

3

0< fily) — fuly) < o

Since this is true for all x and I' is compact, we can cover I' using a finite number of open
sets U, 1 < i < s(n), with corresponding functions f* satisfying inequalities as above.
We define

T

fon= min fr

1<i<s(n)
which is an element of M, satisfying, for all z € T', 0 < f,(2) — f,(z) < 2. This implies
that (f,,) converges uniformly to f,. Note that replacing f, by

‘= min f;
Gn Kanz,

we can make this sequence of functions a decreasing sequence, but this it not necessary in
the current proof.
To conclude, we use the closedness of M in Rat(D), which yields f, € M. O

Before giving an example, we make two remarks about the functions of the form f.

Remark 3.7.4. Let M < Rat(D) be an admissible semimodule of rank r, and let & be
the associated slope structure. We assume to be in the particular case where the equality
M = Rat(D, &) holds. Up to subdividing some edges, we suppose that the support of D
is included in V. Then in the computation of f,, we can ignore functions f € Rat(D, &)
which have more than 3 changes of slope on some edge.

T1 T2 T3 Yy Ty
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Indeed, assume that on an edge e = wv, the function f (in red and black) changes slope
at points x1, 2, 3 and x4, placed on e in this order. Then the function ¢ (in blue and
black), which is defined by “pushing downwards” the central segment of the graph of f
until reaching a point where the slope of f changes, is and element of M, = Rat(D, &),
which is < f and which has at most 3 changes of slope on e (at most 2 if by chance y = x4
in the configuration above). o

Remark 3.7.5. A very special case of Theorem 3.5.13 implies that fM takes minimum
slopes around v, that is, for all v € T,(T"), slope, (f) = s4, see the discussion right after
that theorem. o

Example 3.7.6. The following example shows that the closedness condition on M is
necessary for Proposition 3.7.3 to hold, that is, the statement might fail for crude linear
series and their submodules, in general. Consider the metric graph I' and crude linear series
of degree four and rank one defined at the end of Example 3.4.2. We allow slopes 0 < 1

ue oW

v
Figure 3.6: The metric graph I" with edges of arbitrary lengths.

on the edge uv and slopes —1 < 0 on the edge vw, in the direction of the arrows. We set
D = (u) + (w) and we adapt p, as follows:

0 0
1 0/)°
Here, the jumps of p, are depicted in blue. This makes (D,&) a crude linear series of

degree two and rank one. We take M = Rat(D,S). The function f,

u (Y w

Y

takes slopes 1 and —1 on the segments [u,v] and [v,w], respectively, and belongs to
Rat(D,&). But if we choose any = # v, then f, ¢ Rat(D, &).

Indeed, consider a sequence of functions (f;); which coincide with f, on the segment [u, v]
and whose graphs on the segment [v, w] are represented in thin red in the above figure,
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converging uniformly to f, as i — +00. All the functions f; belong to Rat(D,&),; but f,
does not itself belong to Rat(D, &) since it does not take symmetrical slopes around v, a
mandatory condition given the expression of p,. In particular, this shows that Rat(D, &)
is not closed in Rat(D). o

Remark 3.7.7 (Bounds on slopes). In the proof of Proposition 3.7.3, we have used a
universal bound for the slopes of functions of Rat(D, &) using the finiteness of the set of
slopes prescribed by &°. In fact, there is a universal bound for these slopes, even without a
slope structure: we can bound uniformly the slopes of all functions of Rat(D), for D any
effective divisor.

The first such bound was provided by [GKO08, Lemma 1.8], which states that all the
slopes of functions in Rat(D) are bounded by

(deg(D) + N)°,

where N is the maximal valence of a point in I', and e is the number of edges of T'.

However, we believe that there is a small gap in the (purely combinatorial) proof given
in [GKO8]. The issue is that e depends on the graph model G = (V, E) that was chosen
for I' such that all points in the support of D or div(f) are in V. For this reason, the
bound above is not universal in f. But we can make it universal (though weaker) without
fundamentally changing the reasoning: we choose, once and for all, a model G of I' adapted
to D and, for each f, we subdivide the edges of G so that all zeroes of f (points where
div(f) = 0) are vertices, leaving alone the possible poles of f in the interior of edges (they
do not change the inductive reasoning in the proof of [GK08, Lemma 1.8]). Then, we
follow the proof in that paper, noting that the number of edges we had to add is smaller
than the number of distinct poles of f, which is smaller than the number of poles counted
with multiplicities, which is itself smaller than deg(D). This leads to the universal (highly
non-sharp) bound, depending only on deg(D) and the combinatorics of I":

(deg(D) 4 N)e+des(D),

Anyway, a much stronger bound was given a few years later by [HMY12, Lemma 7],
which states that the slopes are simply bounded by deg(D). The proof is however less
elementary than the one above. o

Remark 3.7.8 (Topological discussion). Let k be a universal bound for the slopes in &. Let
us denote by C' the space (C°(T',R),, | - |«) and by B the subspace formed by the functions
of C' whose slopes are bounded by k. Since B is closed in C, bounded and equicontinuous,
it is compact by the Arzela—Ascoli theorem. In particular, a space of the form

A= (Rat(D,8),, | [lx) € B

is compact as long as it is closed. Furthermore, if M is a sub-semimodule of Rat(D, &)
which is closed in Rat(D) (in particular, if M is admissible, or if (D, M) is a g};), then M,

159



is again compact. But Example 3.7.6 shows that when the finiteness condition is dropped,
A is not necessarily compact, that is, it is not necessarily closed in B. It is possible however
to show that the space

A® = (Rat(D,8°),,|  |«) = B

is always closed in B, and thus compact, even if A is not finitely generated.

To prove this, let us consider a sequence (f,,) of functions in A® converging uniformly to
f € B and show that f € A°. The crucial point here is that, by the very nature of the slope
structure &, the slopes of the functions f,, on each edge live in a fixed finite set, and that
the f, change slope a uniformly bounded number of times on each edge.

Indeed, without loss of generality, we assume that all points of the support of D are
vertices, so that each f,, is a concave affine linear function on each edge. As a consequence,
on a given edge e = uw of I'; f,, changes slope at most r times, because its slope can only
decrease as we travel along e in any direction. We can thus encode the graph of f,, on e by
telling its value on the extremity u and giving r numbers

0<ai, <5, < <z, <),
where {(e) is the length of e. In short, f, has slope s between u and z{,,, has slope s;_;
between x{ , and x5, and so on (here, we also denote by z{,, the point on e at distance 7,
from the extremity u). The fact that the inequalities are not strict translates the possibility
that f, does not necessarily realize all possible slopes on each edge (and even globally on
r).

For every edge e, we define an arbitrary path in I' from the starting vertex v to one of
the extremities of e, also chosen arbitrarily. For every n, we see by immediate induction
(and thanks to the fact that f,(v) = 0) that we do not need to specify the values of f, on
one extremity of each edge: the data of the 7, is sufficient to reconstruct f, entirely.

Then, since the edges are compact, we can extract subsequences at most r |E| times and

e
i\n

assume that on every edge e, for all i, the sequence (m )n converges to a certain x§. The

inequalities

e

2§ << at

still hold for every e, so the data of these points defines a new function g € B which is affine
linear and respects &° by construction. It is easy to see that (f,) converges uniformly to g,
and therefore g = f. We have proved that f is affine linear and respects &°.

To conclude, we now prove that D + div(f) > 0. Let v be a vertex of I' such that
div(f)(v) < 0 (we know that div(f) is effective outside V' since D is supported on V). We
have to prove that D(v) + div(f)(v) = 0. We denote by ey, ..., e the edges starting at v
and take the convention that v is their preferred extremity. For 1 < k < s, we define two
integers 0 < oy < B < r by the following properties:

e For all 1 < i < ay, the sequence (xf’jl) converges to zero (the points converge to v),
and x;% = 0 for an infinite number of n.
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\n

e For all o < 7 < S, the sequence (:U ) converges to zero, but :Uf’“n = 0 only for a

finite number of n.

€k
,n

e For all 8, <1 < r, the sequence (x ) does not converge to zero.

We can now extract subsequences so that for all n > 0 and 1 <7 < ay, xf’;l =0 and
assume that n is large enough such that for all ap < i < f, 27 > 0, which implies the
same inequality for 5, < ¢ < r. Then, only the “genuinely converging” sequences contribute
to changing the value of the limit divisor at v:

div(f)(v) = div(f.)(v) + D] (s5 — s ).

1<k<s

But the extra term is non-negative, so from (D + div(f,))(v) = 0 we deduce
(D + div(f))(v) = 0.
Since this is true for all vertex v where the inequality was not automatically true, we have
D + div(f) = 0,

which finishes the proof that f e A°.
To sum up, we have the inclusions

Ac A°c Bc C,

with B compact and A° closed in B, so A° is compact. The fact that A is not necessarily
compact comes from the fact that it is not necessarily closed in A°. It is cut out by the
non-necessarily closed constraints at the level of vertices given by GV.

Note that the argument here also shows that Rat(D), is closed in B, and thus compact. <

Remark 3.7.9. It can be shown that if (f,,), is a sequence of functions in Rat(D) converging
uniformly to a function f and such that for all n, then f € Rat(D) and, for every z € T,
the inequality 0,(f) < 0.(f.) holds for all large n. o

3.7.3 Definition of the reduced divisor
We now define reduced divisors for linear series.

Definition 3.7.10 (Reduced divisor). Let (D, M) be a pair consisting of a divisor D of
degree d and an admissible semimodule M < Rat(D). The effective divisor defined by

DM = D + div(fM),

more simply denoted by D, when M is contextually clear, is called the v-reduced divisor
linearly equivalent to D in the linear system |(D, M)|. Denoting by & the r-slope structure
underlying M, we denote the slope structure & +div(f,) by &,. The effective pair (D,, S,)
is then equivalent to the pair (D, &). Finally, f, gives rise to a modification of M, which is
denoted by M(—f,) according to Definition 3.5.2, and which is effective. o
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Remark 3.7.11. We will see in Proposition 3.7.16 that D, is the unique effective divisor
in the linear system |(D, M)| that satisfies an interesting property involving unsaturated
cuts (see Definition 3.7.13). o

3.7.4 Coefficient at the base-point

We have the following useful result.

Proposition 3.7.12. Let (D, M) be pair consisting of a divisor D and an admissible
semimodule M < Rat(D). Let & be the underlying slope structure. For every point z € T,
we have

veT,(T)

In addition, this quantity is greater than or equal to r.

Proof. This is a direct consequence of Remark 3.7.5. ]

3.7.5 Unsaturated cuts

In this section, we provide another characterization of reduced divisors in terms of unsatu-
rated cuts in a metric graph with respect to admissible pairs (D, M).

Definition 3.7.13 (Unsaturated cut with respect to an admissible pair). Let (D, M) be a
pair consisting of a divisor D of degree d and an admissible semimodule M < Rat(D) of
rank r. Let & be the underlying slope structure. Let v be a point of I'. Consider a cut X
in I' and assume that the point v does not belong to X.

We say that X is unsaturated with respect to v and M if, for a sufficiently small € > 0,
there exists a function f € M which satisfies the following properties:

e for every point x € 0.X, f is linear of positive slope s¥ > 0 on a small segment [, on
each adjacent outgoing branch v € outx(x);

e f is identically equal to —¢ on X; and

e f is zero everywhere else.

In this case, we say that f fires the unsaturated cut X at level ¢. Otherwise, if no such
f exists, X is called saturated. o

Note that if f € M fires the cut X at level € for some £ > 0, then for every ¢’ € (0, ¢), the
element f’ = min(f +ec—¢&’,0) of M fires X at level &. Therefore, the saturation property
for cuts is well-defined.
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Remark 3.7.14. If X is an unsaturated cut with respect to v and M, then for every point
x € 0X, there exists an element s(x) = [ [ oy ) s” € S such that s* > 0 for all v € T, (I'),
with equality s” = 0 if and only if v € T,(T") \ outx(z), and, in addition,

D(x)— > s >0 (3.3)

veT,(T)

Such vectors of slopes s(z) are provided by the vector of slopes 0, (f) of any function f e M
which fires the unsaturated cut X. The data of these vectors of slopes, together with a
small number € > 0, determine the function f entirely. o

Remark 3.7.15. Inequality (3.3) in the previous remark implies that each point z of the
boundary 0X of the cut X is in the support of the divisor D.

In particular, since the support of D is finite, for given v and M, there are finitely many
unsaturated cuts with respect to v and M. o

The following result gives an alternative characterization of reduced divisors.

Proposition 3.7.16 (Characterization of reduced divisors by unsaturated cuts). Let (D, M)
be a pair consisting of a divisor D of degree d and an admissible semimodule M < Rat(D).
Then, D is v-reduced if, and only if, there is no unsaturated cut with respect to v and M.

Proof. We prove the equivalence of the negations.

First, we assume that there is an unsaturated cut X with respect to v and M, and then
show that D is not reduced. By definition, this means that v ¢ X and that there exists
e > 0 and a function f € M which fires X at level . Obviously, f < 0 and f takes negative
values on a non-empty set of points. Moreover, if ¢ is small enough, then f(v) = 0. This
shows that D is not v-reduced.

To prove the other direction, we assume that D is not v-reduced, and prove that there
exists an unsaturated cut with respect to v and M. Since D is not v-reduced, there exists
a non-constant function f € M ~ {0} such that f(v) = 0 and f(z) < 0 for every z € T
Let X be the set of points of I' where f takes its minimum value. This is a compact set
which does not contain v, and since f is piecewise linear, X has finitely many connected
components. X is therefore a cut, and the properties of f imply that it is unsaturated with
respect to v and M. This establishes the proposition. ]

3.7.6 Behavior of reduced divisors with respect to the base point

We give an explicit description of reduced divisors under an infinitesimal change of the base
point. This will be used to prove the continuity of the reduced divisor map, Theorem 3.7.24.
Let (D, M) be a pair consisting of a divisor D of degree d and an admissible semimodule
M < Rat(D) of rank r with underlying slope structure &.
Let (D, M) be a pair consisting of a divisor D of degree d and an admissible semimodule
M < Rat(D) of rank r with underlying slope structure &. Let v be a point of I', v € T, (T'),
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and e the oriented edge of I' parallel to v, all fixed for the remainder of this section. We
give an explicit description of D, for v in a small segment /¢ < e with an endpoint equal
to v.

Replacing (D, &) with the linearly equivalent (D,,S,) and M with M(—f,), we can
assume that D is v-reduced. Note that M remains effective. In particular, the zero function
belongs to M. Also, adapting the combinatorial model accordingly, we suppose that the
slope structure & is constant on every edge. Now, there exists a sufficiently small segment ¢
on e adjacent to v which does not contain any point of the support of D apart from v. For a
point u # v on this segment, we have D(u) = 0 and D, (u) > 0, and thus D # D,,. We infer
that D is not u-reduced. It follows from Proposition 3.7.16 that there exist unsaturated cuts
with respect to uw and M. Since D is v-reduced, we infer that every such cut Y contains v.
In addition, ¥ must belong to outy (v), and therefore v € dY’, since otherwise, the boundary
of that cut would contain a point of e between v and u (see Remark 3.7.15). This would be
impossible by the assumption made on the support of D. We have proved

Claim 3.7.17. For every unsaturated cut Y with respect to w and M, we have v € 0Y.

Since D is v-reduced, we have sf = 0 for every v € T, (I') (see Remark 3.7.5). It follows
that s? > 0, and, by Proposition 3.7.12 and the definition of slope structures, the coefficient
of D, at u is precisely equal to s/ + s = s”, given that —s! and s = 0 are the smallest
possible slopes at u in the direction of v and away from v, respectively. We now claim

Claim 3.7.18. There exists an unsaturated cut Y with respect to w and M for which we
can choose a function f € M firing Y at some level € > 0 with the additional property that
its slope along the tangent vector v is the maximal possible slope sy.

Proof. Let f = f, be the element of M with D + div(f) = D, and f(u) = 0, as in
Definition 3.7.2. Since —s” is the minimum slope at u along e in the direction of v,
Remark 3.7.5 implies that f takes slope —s! away from u on a sufficiently small segment
included in [v, u] containing u. The fact that D, is effective then implies that f has constant
slope along [v,u]. Consequently, f has slope s in the direction of u on the whole segment
[u,v], and in particular along the tangent vector v.

Now, let n be the distance between v and w on ¢, and set € := s’7n. Then, we have
f(v) = —e. Also, note that, by the hypothesis made on D; & and M, we have f, =0 on
[. Therefore, following Definition 3.7.2, we get f > f(v) + f, = —e on I'. Consequently,
—e = f(v) is the minimum of f on I'.

Consider the set Y of all points of I' where f takes this minimum value. Y is a compact
set with finitely many connected components. Moreover, Y does not contain v and, for a
sufficiently small &’ € (0, ¢], the function f’:= min(f 4+ ¢ —&’,0) fires Y at level &’. (Note
that, contrary to f, the function f’ does not necessarily have a constant slope on the whole
segment [v,u].) As a sanity check and as expected (see Claim 3.7.17), v € dY. Since in
addition the slope of f (and thus the slope of f’) along v is equal to s
cut Y has the desired properties. O

, the unsaturated
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Now consider the family X of all the unsaturated cuts Y with respect to u and M such
that Y verifies the properties of Claim 3.7.18. Let X = | Jy., Y.

Since there are finitely many unsaturated cuts with respect to u and M (see Re-
mark 3.7.15), the family X is finite. Therefore, X is still compact and has finitely many
connected components. i.e., it is itself a cut.

Fact 3.7.19. We notice that if we choose another point «’ # v on the segment [v,u], a
cut Y is unsaturated with respect to «’ if, and only if, it is unsaturated with respect to w.
Verifying the stronger property of Claim 3.7.18 also remains unchanged. This shows that
X (and thus X)) does not change when we choose u to be even closer to v, a fact that will
be used in the discussions below and in the proof of Theorem 3.7.22. o

We now claim that
Claim 3.7.20. Notation as above, the cut X itself belongs to X.

Proof. To prove that X is unsaturated with respect to u and M, we first note that u ¢ X.

Then, denote by Y7, ..., Yy the elements of X. By assumption, for every i € {1,..., N},
there exists a function f; € M such that for ¢; > 0 small enough, f; fires the unsaturated
cut Y; at level ¢;, and such that the slope of f; along v is equal to s. For a given 7 and for
a fixed g; > 0, there are finitely many such functions f; € M, one for each choice of joint
outgoing slopes (see Remark 3.7.14). By choosing the minimum of these possible choices,
we ensure that f; takes the minimal possible set of joint slopes on edges leaving Y;, under
the constraint, if v € dY;, of having slope s’ on v. Furthermore, we replace all the numbers
g; with € := min;, ¢;.

For each i € {1,..., N}, each x € Y}, and each /' € outy, (x), we call I,/ the small segment
parallel to v/ on which f; takes a positive slope away from Y;. We then reduce £ > 0 again
so that the outgoing segments [, are essentially disjoint and therefore the functions f;
fire in a “decoupled” way. More precisely, up to reducing ¢ further, we can assume that
for every i, j € {1,...,N}, every x € 0Y;, y € 0Y; and every v/ € outy, (), V" € outy, (y), if
I, nI,» # @, then x =y (and thus one of I/, I,» contains the other).

For a sufficiently small £ chosen this way, the function f¢ := min; f; belongs to M and
fires X at level €. Indeed,

e on X = (.Y, f° takes value —¢, and away from X and the union of I/, for z € 0Y;,
i=1,...,N, and /' € outy, (z), it is identically zero.

e on a segment of the form I,, based at some x € 0.X, the slope of f¢ away from X is
the minimum of the slopes of the functions f; for i such that x € 0Y;.

This shows that X is unsaturated. Moreover, the slope of every f; along v is s, which

concludes. Note that f inherits the slope minimality properties of the functions f;, which
will be useful in the proof of Theorem 3.7.22. O]
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Now, as in the proof of Claim 3.7.18, let n be the distance between v and u on I¢, and set
g0 = s¥n. We look at which number between ¢y and the number ¢ appearing in the proof
of Claim 3.7.20 is smaller. If £g < €, we freely reduce € to €y in the proof of Claim 3.7.20.
If, on the contrary, € < gy, we move u closer to v so that both numbers are equal; we can
do this properly and without self-reference because, as u moves closer to v, the family X
remains constant, by Fact 3.7.19. At this point, X is an unsaturated cut with respect to u
and M, and there exists a function f* := f¢ e M, constructed in the proof of Claim 3.7.20,
with fires X at level exactly € = gy, with constant slope s on the whole segment [v, u].
Moreover, by construction, among the functions with the previous properties, f* has the
smallest possible set of joint slopes on outgoing tangent vectors.

Remark 3.7.21. Given the way it was constructed in the proof of Claim 3.7.20, and thanks
to Fact 3.7.19, the function f* is entirely determined by &g, and its non-zero slopes are
independent of u. More precisely, if v’ € (v, u], denoting by 7 the distance between v and
', and letting ), := s%/, then the function f* is given by f* = min(f" + &y — €}, 0). This
shows that f* depends continuously on wu. o

We can now formulate the main theorem of this section.
Theorem 3.7.22. The u-reduced divisor with respect to M is D, = D + div(f*).

Proof. Let f, be the rational function in M which defines the u-reduced divisor D,,, and
which takes value zero at u (see Definition 3.7.2). We will prove that in fact f, = f*. Note
that f, verifies the following properties.

e f, is linear on the segment [v,u] with slope s%.

This follows from Remark 3.7.5 and the fact that D, is effective (see the first paragraph
of the proof of Claim 3.7.18).

e f, takes it minimum value at v, and its maximum value at u.

The fact that f, takes its maximum value at v comes from the definition of the u-reduced
divisor map, given that 0 € M. The fact that f, takes its minimum value at v was shown
in the proof of Claim 3.7.18.

e Let X be the set of all points where f, takes its minimum value. Then, X, = X.

Obviously, X is an unsaturated cut with respect to u and M which in addition verifies
the property of Claim 3.7.18 (it is the set Y in the proof of that statement). Therefore
Xy € X. This shows by Claim 3.7.20 that Xy € X. The reverse inclusion comes from
the definition of reduced divisors, which implies f, < f*, globally on I'. This shows that
X0 = X.

e Up to reducing 7 further (i.e., up to moving u even closer to v), f, and f* coincide
on all segments of length n around X.
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Note that f, = f* on X by the previous claim. Then, the slope minimality property of
f* (see the proof of Claim 3.7.20) ensures, on the one hand, that the slopes taken by f“
on tangent vectors leaving X do not exceed those taken by f,. On the other hand, the
inequality f, < f* holds on I', as previously noted. All in all, we can move u closer to v
(and thus reduce 7), without changing X (see Fact 3.7.19), and keeping the properties of f,
and f" established so far in the current proof, in such a way that f, and f* coincide on all
segments of length 7 leaving X.

o f, = f* everywhere.

To finish the proof of the theorem, let X’ be the closure of the complement of X U
Uxe@X,l/’eoutX(x) I,. We need to show that f, = f* on X’. In other words, we need to show
that f, =0 on X’. Suppose this is not the case, and consider the minimum locus Y of f,
on X’. Note that Y lies in the interior of X’ i.e., Y n0X’' = &, and v ¢ Y. This shows that
Y is an unsaturated cut with respect to v and M, which contradicts Proposition 3.7.16,
given that D is v-reduced. This finally establishes the theorem. [

Remark 3.7.23. Note that in the proof of Theorem 3.7.22, we did not refer to the
admissibility of M, but this does not contradict Example 3.7.6. Indeed, Proposition 3.7.3
states that, assuming admissibility, D, exists for all v, whereas Theorem 3.7.22 only implies
that if D, does exist for some v, then D, exists for all u in a neighborhood of v, and behaves

as stated in the theorem. In other words, the set of u for which D, exists is an open subset
of I. o

3.7.7 Continuity of the map to |(D, M)| defined by reduced divisors

Theorem 3.7.22 has the following direct consequence, which will be crucial in the next
section.

Let D be a divisor of degree d and M < Rat(D) an admissible semimodule of rank r on a
metric graph I' with underlying slope structure &. Reduced divisors with respect to points
of T define a map from I" to the linear system |(D, M)|. More precisely, define the map

Red: I' — |(D, M)| < |(D, &)| < Sym*(T")

by sending a point v of I' to D,,, the v-reduced divisor linearly equivalent to D with respect
to M.

Theorem 3.7.24. Let M < Rat(D) be an admissible semimodule on I, with D a divisor
of degree d. The map Red: I' — |(D, M)| < Sym*(T") is continuous and non-contracting.

Proof. By Proposition 3.7.12, the coefficient of D, at v is precisely D(v) — ZVGTU(F) 54 >
0 for every point v of I'. This obviously shows that Red cannot be constant on any
segment of positive length, proving that it is non-contracting. Furthermore, it follows from
Theorem 3.7.22 and Remark 3.7.21 that the function f, = f* depends continuously on the
point u € I'. Since D, = D + div(f*), the continuity of Red follows. O
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Remark 3.7.25. The above result is a generalization of [Amil3, Theorem 3|. Note that
the map Red is also integer affine linear with respect to the natural integer affine structures
on I and Sym*(I") as described in [Amil3, Section 2]. Thus, the image of Red is a metric
graph. In the case (D, M) is a g, we will see in Proposition 3.8.16 that the image is a
metric tree. o

3.8 Classification of g,'s

In this section, we consider the case r = 1, and prove, roughly speaking, that the data
of a g} on T is equivalent to the data of a finite harmonic map to a metric tree (see
Theorem 3.8.6 below for a precise statement). Then, we formulate a smoothing theorem for
combinatorial g}’s. In this regard, gh’s on metric graphs are well-behaved, and our theorem
can be regarded as a generalization of the Eisenbud—Harris smoothing result for their limit
gl’s [EH86, Proposition 3.1].

Let (D, M) be a g} on T with underlying slope structure & of width one. By Remarks
3.3.6 and 3.5.4, we can assume that (D, M) is effective. This implies that for every point x
and every outgoing tangent direction v € T,(I") at x, one of the two integers s or s is
equal to zero.

Assume that (D, &) is defined on a model G = (V, E) of T.

Definition 3.8.1 (Orientation associated to a g}). Notation as above, we define an
orientation of G in such a way that the edge {u, v} gets orientation uv if s§ =0 < s¥*. <

Let p be a rank function on @i. The point 0 is the only point of @i of rank one
(Remark 3.2.2). Besides, the set J, of jumps of p contains the point 0 (because p(e;) =
r —1 =0 for all 7) and every other point a # 0 has at least one coordinate equal to one.
For each a € J,, denote by F, the subset of {1,...,d} consisting of all the indices ¢ with
a; = 1 (the support of a). Denote by P, the collection of all sets F, for a € J, \ {0}. By
Lemma 3.2.17 and Remark 3.2.18, P, provides a partition of {1,...,d}.

This construction provides a direct proof of the representability of rank functions of rank
one, which also follows easily from the fact that such a rank function is geometric in the
sense of Section 3.2 (see the results in [ABBR15a] and [ABBR15b]).

Proposition 3.8.2. Fvery rank function on @i is representable, and the field can be chosen
to be of characteristic zero.

Proof. Chose k to be any infinite field of characteristic zero. Let P, = {R, ..., R} be the
partition of {1,...,0} as previously described, each E being a subset of {1,...,0}. In the
plane k%, let Ly, ..., L, be distinct lines. Now let, for each i € {1,..., 8}, F}' := L,(;), where
7(i) € {1,...,0} is the integer such that i € B ;. This, in turn, defines  complete flags in
k%, completing the lines with x* and (0). Then it is easy to check that the collection of
flags F}, ..., Fy is a representation of the rank function p. O
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For every point p of I" (resp. G) of valence d,,, consider the rank function p, on @ip,

and define P, as the partition of T,(I") (resp. E,) given by the previous proposition. Note

v

that SP consists of the point (s§),er, ) (resp. (5§)eek,), and vectors (si; ) (vesp. (s, )) for

ae 6@’ with B e P,.

Proposition 3.8.3. Let v be a vertex of G, and denote by I, c E, the set of all the edges
vw with s§* < 0. Then we have I, € P, or I, = &.

Proof. We know by hypothesis that 0 € M. Let a be the element of &8)" such that d,(0) = Sq.
Then, if vw is an edge incident to v, since exactly one of the possible slopes along vw is
zero, we have s§* < 0 < a,, = 1, which concludes. O

A consequence of this proposition is the following corollary.

Corollary 3.8.4. Let p be a point of I' and let T,(I') = {11,...,vq,}. For each P € Py, all
the coordinates si* with i € P and j € {0,1} have the same sign. In addition, there exists at
most one P € P, such that all sg* for i € P are negative (and, if it exists, this is I,).

Proposition - Definition 3.8.5. Let T' be a metric tree. Then, there exists a unique
effective gi on T up to linear equivalence.

Proof. Let (D, N) be an effective gl on T with underlying slope structure &. Then, we
can assume that D = (v) for some vertex v of the tree. For every point y in the tree, let
fo—sy to be the unique function taking value zero at v with div(f,_,) + (v) = (y). Since
N has rank one and N < Rat(D), f,_,, must belong to N. This shows that Rat(D) = N.
It is easy to see that N is finitely generated and has tropical rank one and from this, the
proposition follows.

Note that, orienting the edges of T" away from v, G&° is fully determined to allow slopes
0 < 1 on each oriented edge, and that &Y is standard at each vertex of T. We moreover
have N = Rat(D,&) = Rat(D) = {fooy + ¢ ’ ye T, ceR}. Finally, Rat(D) is finitely
generated (for every metric graph by [HMY12]), and it is easy to see that Rat(D) has
tropical rank one. O

The following is the main theorem of this section. We recall that a map between metric
graphs is called a morphism if it is integer affine with respect to the natural integer affine
structures of the metric graphs, and it is called finite if the preimage of every point is finite.

Theorem 3.8.6. Let (D, M) be an effective g on a metric graph T with underlying slope
structure &. We suppose that D is xq-reduced for some point xq € I'. Then, we have the
following results.

e The image of the map Red: T' — |M| < Sym*(I") is a metric tree T, and Red is a

finite morphism. Moreover, we have M = Red*(N), where N is the semimodule on
T defined in Proposition—Definition 3.8.5 using the point Red(zo) € T
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e There exist a tropical modification «: [ —T of I' and a finite harmonic morphism
@: I' = T of degree d such that ¢ = Red.

C’onversely, let I' 5T bea finite harmonic morphism from a tropical modification

ofF to a metric tree T', and denote by T: I' - T the contraction map. We put the
semimodule N on T defined in Proposition—Definition 3.8.5 using the point yo = 1(xo).
Then, (7(¥ " (o)), ¥*(N)) is an effective g5 on T' for d equal to the degree of 1.

Remark 3.8.7. The theorem shows that the combinatorial g}’s are the precise analogues
of algebraic geometric linear series of rank one. In the context of linear series on metrized
complexes introduced in [AB15], a smoothing theorem in rank one was previously obtained
by Luo and Manjunath in [LM18]. However, in that context, there are obstructions to
smoothing, and the results are different. o

Using [ABBR15b, Theorem 3.11] and [ABBR15a, Theorem 7.7], we deduce the follow-
ing smoothing theorem. See Section 3.9 for more details about Berkovich curves and
tropicalization of linear series.

Theorem 3.8.8 (Smoothing theorem 3.1.6 for gl’s). Fvery effective gy (D, M), with
M < Rat(D), on I' is smoothable. That is, there exists a smooth proper curve X over
an algebraically closed field with a non-trivial non-Archimedean valuation such that I' is a
skeleton of X™, a divisor E on X, and a vector subspace H € H°(X,O(E)) of rank one
on X such that (D, M) is the tropicalization of the g (E,H) from X to T,

Remark 3.8.9. This crucially uses the fact that rank functions of rank one are geometric
in the terminology of Section 3.2 (see [ABBR15a] and [ABBR15b]). This is applied to every
pp With v eV for G = (V, E) a model a I' on which (D, &) is defined. o

The rest of this section is devoted to the proof of Theorem 3.8.6.

3.8.1 Proof of Theorem 3.8.6

To this end, we will define an equivalence relation and a partial preorder on the points of T,
show that the equivalence classes correspond to the map Red, and prove that the quotient
['/ ~ is a metric tree.

Let (D, M) be an effective g} with underlying slope structure & on I'. We define an
equivalence relation ~j; on the set of points of I' as follows. For two points x,y € I, we
write  ~y y (or simply = ~ y) if, for all f € M, we have f(z) = f(y). We also define a
partial order by writing = <, y (or simply x < y) if, for all f € M, we have f(z) < f(y).
Note that, if x and 2’ belong to the same edge e, then z and 2’ are comparable for <j;:
in this case, the comparability is given by the orientation of e. We also write <, y (or
simply = < y) the corresponding strict partial preorder, when x < y and there exists some
f € M such that f(x) < f(y). The statement x <j; y is equivalent to  <p; y and = %y, y.
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It is immediate that <,; is indeed reflexive and transitive, and <,; irreflexive, transitive
and asymmetric. Also, <j,s, resp. <, induces a well-defined partial order, resp. a
well-defined strict partial order, on the quotient '/ ~.

We first show that ~ is a well-behaved equivalence relation.

Proposition 3.8.10. For all x € ', the class of © under ~ is finite.

Proof. Let x and z’ belong to a common edge e. Suppose without loss of generality that
x < 2/. Then, by Theorem 3.5.13, there exists f € M that takes all minimal slopes around
x’ (for example f = f,/), in particular in the direction of x in which the minimal slope is
negative. Thus f(z) < f(2') and = # 2’. This shows that we can only have x ~ 2’ if x and
2’ do not belong to the same edge, from which the result follows. ]

This shows, in particular, that Red is a finite morphism.

Remark 3.8.11. A consequence of Proposition 3.8.10 is that, at each point, each jump is
realized, which is a particular case of Theorem 3.5.13. o

We now show that the equivalence relation corresponds to the map Red.
Proposition 3.8.12. Let x,y € I'. Then © ~ y <= Red(z) = Red(y).
Proof. = If x ~ y, then the sets M, and M, coincide, which shows, according to

Definition 3.7.2, that f, = f, and, therefore, Red(z) = Red(y).

<= If Red(z) = Red(y), by Proposition 3.3.2, there exists a constant ¢ such that
fy = [ + c. Suppose that ¢ > 0. Then f,(x) = f.(z) + ¢ = ¢ > 0, which is impossible
because for all z e I', f, < 0. So we have, in fact, f, = f, by symmetry. Now, let g be any
function of M such that g(z) = 0. We need to show that ¢g(y) = 0. First, we note that

9(y) = fo(y) = fy(y) =0

Second, let h := g—g(y). h belongs to M and verifies h(y) = 0, so we know that h > f, = f,
and thus, —g(y) = h(z) = f.(x) = 0, which concludes. O

The map Red is equal to the projection map I' — I'/ ~. We denote I'/ ~ by T, and the
goal is now to show that 7" is a metric tree. This amounts to showing that 7" has no cycle
(T is already a metric graph). The proof uses the condition that the tropical rank is one.
In the following, we will transfer the orientation of the edges of I' to the edges of T

Lemma 3.8.13. Let T € T'. Then T has in-degree at most one in T

Proof. Suppose, on the contrary, that = has in-degree at least two, that is, using the
orientation of G defined by &, that two distinct edges € and € incident to T are oriented
toward Z. There are two cases.

(i) € and € originate from two edges of GG, e and € respectively, which are incident to
the same preimage x of 7.
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We show that this cannot happen by proving that, on the contrary, e and ¢’ will be glued
together by Red in the following way: there exist A,e > 0 such that

e c and )\ - ¢ are smaller than £(e), £(¢’), and

e for every choice of ) € (0, ¢), for every y € e at distance 1 from z, for ¢/ € €’ at distance
A -n from x, we have y ~ /.

We know that f, takes all minimum slopes around x, and, in particular, takes negative
slopes on e and ¢’ away from x. These two slopes can be different, but since they are both
negative, the image by f, identifies points of e and €’ close to x as described above for some
fixed € > 0, with a dilation factor A = sie‘% The null function 0 also identifies e and e’ with

the same dilation factor (in fact, with aony dilation factor).

Let now g be any function of M. Without loss of generality, we assume that g(z) = 0.
Since M is assumed to have tropical rank one, there exist ¢, d € R such that for all z € T,
the minimum in

min(0, f.(2) + ¢, g(z) + d)

is attained at least twice. We will show that the image by ¢ identifies e and €’ in the same
way, getting a contradiction.

We will consider three cases, depending on whether ¢ is negative, positive, or zero.

Let us first assume that ¢ is negative. This implies that, for y on e or ¢, f.(y) + ¢ <0
and thus ¢g(y) + d = f.(y) + c. So g = f, on e and ¢’ (evaluate at x) and thus identifies e
and €’ close to = with dilation factor \.

Now, let us assume that ¢ is positive. Then, for y on e or ¢’ close to x, f,(y) + ¢ is still
positive and thus g(y) +d = 0. In fact, d must be zero, and so ¢ is null close to x on e and
¢’. Therefore, g identifies e and ¢’ with dilation factor .

The last case is when ¢ = 0. For y on e different from z, we have f,(y) = ¢g(y) + d and
thus, by continuity, ¢ identifies e and ¢’ with dilation factor .

We have thus shown that in all cases, g identifies the two edges oriented toward x. Since
this is true for all g € M, we infer tha  cannot have in-degree at least two.

(ii) € and € originate from two edges of GG, e and €’ respectively, which are incident
respectively to two different preimages x and 2z’ of Z. Since, by definition, f, = f,
and g(z) = g(2) for all g € M, we can use exactly the same argument, mutadis
mutandis. ]

Remark 3.8.14. We have the following fact: the edges incident to some x € I' that are
glued by Red are exactly those belonging to the same set in the partition P,.

<= Take g € M. Then 0,(g) is a jump in S*, so, using Lemma 3.2.17 and Proposition 3.8.3,
we are in one of the three following cases:

(i) g is constant around z.
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(ii) g takes negative slopes away from x on all incoming edges, and zero slope on all
outgoing edges.

(iii) g takes negative slopes away from z on all incoming edges, positive slopes on some
set S € P, of outgoing edges, and slope zero on all other (outgoing) edges.

In each one of these cases, g identifies the edges of each set of P,. Since this is true for all
g, then Red glues together the edges of each set of P,.

= If e and ¢’ are two edges that do not belong to the same set of P,, then we can
assume without loss of generality that e is an outgoing edge (see Corollary 3.8.4). Moreover,
there is a jump a € @jz such that e € B, and € ¢ B,. The jump a is realized by some
function f e M (Remark 3.8.11). There are two cases:

(a) € is also an outgoing edge. Then f has a positive slope on e (away from ) and slope
zero on €.

(b) €' is an incoming edge. Then f has a positive slope on e and negative slope on €'

In both cases, f does not identify e and €', so Red does not glue these edges.
Finally, every edge incident to = in I' is sent to an actual edge incident to @ in 1" because
Red is affine linear and non-contracting (Theorem 3.7.24). o

Remark 3.8.15. Remark 3.8.14 has an interesting consequence. At a point x € I, we know
that the set of all incoming edges is a set of the partition P, (Proposition 3.8.3). Then,
applying the first part of Remark 3.8.14 gives that all incoming edges at x are glued together
by the map Red, which yields case (i) in Lemma 3.8.13 automatically. However, case (ii)
really requires the argument involving the tropical rank, as developed in the proof. o

We now come to the desired result.
Proposition 3.8.16. T" has no cycles, and therefore is a metric tree.

Proof. First, we claim that T' can have no oriented cycle. Indeed, Proposition 3.8.10 states
that if x and y are the vertices of an edge oriented from x to y, then = < y (using the strict
partial order induced on T'). In an oriented cycle, we would get a strict inequality of the
form x < z, which is absurd.

To conclude, we show that 7' cannot have any cycle. Indeed, a cycle endowed with an
orientation of its edges, if it is not an oriented cycle, gives an in-degree two to at least one
of its vertices, which is impossible by Lemma 3.8.13. O]

We thus conclude that 7" is an acyclic metric graph, that is, a metric tree. Note that the
metric on 7T is the one induced from I' by the gluing. It is the only metric such that the
slopes of the functions 7" — R factored from functions I' — R in Rat(D, &) are in the set
{—1,0,1}. Roughly speaking, this amounts to giving an edge € of T a length equal to the
product of the length of e times the non-zero allowed slope on e, for e any edge of I' sent to
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€ by Red. Equivalently, the metric is such that the relative slope of Red on an edge is the
non-zero slope on this edge in the slope structure G.

We now show the following claim of Theorem 3.8.6: M = Red*(N), where N is associated
to Red(zg) € T

Proof of Theorem 3.8.6: M = Red™(N). We show the assertion in Theorem 3.8.6 that M =
Red*(N), where N is associated to Red(zg) € T

(The inclusion <) Let f € M. By definition of Red, f is constant on the equivalence
classes for ~,;, so it can be written in the form f = g o Red, with g a function 7" —
R. Tt is straightforward that ¢ is continuous and affine linear with integral slopes (see
Proposition 3.8.10 which implies that Red is a local homeomorphism on its image). By
definition of the metric on T', g has slopes zero and one compatible with &°, with & the
slope structure underlying N. To show that g is compatible with D and &V, we simply look
at the possible sets of slopes of f around a point y € I in the cases (i) and (ii) explored in
the proof of Proposition—Definition 3.8.5.

(The inclusion 2) The other way around, let g € N and f := g o Red. We have to show
that f € M. Since g belongs to N, it is of the form g = f, = fRed(zo)—y € Rat((Red(zy)), &)
with y € T. Let w € Red*(y). All the functions fy,_., for such a w are equal thanks to
Proposition 3.8.12. The fact that f belongs to M then comes from the equality f = f,
which is implied by Theorem 3.5.13. O]

To finish the first part of the theorem, we need to show that the morphism Red from I" to
T can be resolved to a finite harmonic morphism of degree d by a tropical modification of T
Given a point & € T' and v € Tz(T'), we denote by T%, the metric subtree of T consisting of
the point z and all the points z of T" which have the property that the unique path from x
to z in T has tangent vector at  equal to v. For the language of harmonic morphisms and
degrees of maps between metric graphs, we refer the reader to [ABBR15a, Section 2.1].

Proof of Theorem 3.8.6: resolution to a finite harmonic morphism. Let Z be a point of T',
and consider a point z of I' with Red(xz) = . We denote by Red,: T,(I') — Tz(T) the
induced map on tangent vectors. For each unit tangent vector v € Tz(T'), consider the
degree of Red at x above v, denoted by deg, Red(z) and defined as the sum

deg, Red(zx) = Z slope,, (Red)(x).
HET 4 (I)
Red s (1)=v
Define the degree of Red at x, denoted by degRed(x), to be the maximum quantity
deg, Red(z) for all v e Tz(T).

We define the tropical modification fo as follows. For each point z € T and each
point x € I' as above, and each v € Tz(T) with deg, Red(z) < degRed(z), we take
deg Red(z) — deg, Red(z) copies of the subtree 1%, of T, glue them to the point = by
identifying the point z of 7%, in each copy with the point z. We then naturally extend
Red to each copy of T;, by the identity map on Tj,. Since degRed(z) — deg, Red(x)
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is non-zero only for finitely many pairs (Z,v), we obtain a tropical modification I, of T
and a map ¢ly: fo — T which coincides with Red on the metric subgraph I' — FO. By
construction, the map ¢!y is harmonic of degree degRed(x) at all points z of I'. Tt is
also harmonic of degree one at all other points of I, ~ . Note that @y is of degree d
at most d. In fact, in the gluing process above, in the construction of fo, when we add
deg Red(x) — deg, Red(x) at z, the degree remains bounded by d. Indeed, for each point
g in the subtree T;,, and each y € I with Red(y) = 7, the coefficient of z in D)’ is at
least deg Red(x) — deg, Red(x), using the explicit description of the variation of reduced
divisors with respect to the base point provided in Section 3.7.6. This implies that the fiber
Red™!(7), counted by multiplicity, is of size bounded by d — deg Red(z) + deg, Red(z), so
that after modification, the degree remains bounded by d. Treating the points one by one
in the gluing process, and proceeding by induction, we obtain dy < d.

To conclude, let [ be the tropical modification of fo obtained by plugging d — dy copies of
T at some point y of f‘o, by identification of the point ¢¢(y) in each copy with y. We extend
¢lo by the identity map on these copies to get the harmonic map ¢: ' > T of degree d, as
required. O

Now we show the second part of Theorem 3.8.6: if 9: I > Tis any finite harmonic
morphism to a metric tree 7" on which we put the semimodule N using the point yy = 1(zy),
then (7(v¥ " (o)), ¥*(N)) is an effective g} on T.

Proof of Theorem 5.8.6: the converse. Tt will be enough to show that (v (yo), ¥*(N)) is
an effective gl on T'.

We first have to define the pullback of the slope structure &’ of N by ¢ to I'. Let D be
the divisor ¥/ ~1(yo). Its degree is d, the degree of 1. At some point x € T', in the direction
v € T,(I'), the non-zero possible slope is defined to be the relative slope of ¢ in the direction
v: this defines G°. We now define &Y around x by saying that the jumps of p, are exactly
the vector 0, and the vectors having ones for all edges belonging to a certain complete set
of edges identified by v, and zero on all other edges, which entirely defines p,. We have
defined the pair (D, &).

We now show that ¢*(NV) is a semimodule included in Rat(D, &). Firstly, it is stable
by the two tropical operations since N is. Secondly, we show that ¢*(N) < Rat(D, &). If
f is a function of ¥*(N), we can write it f = g o with g € N. It is automatic by the
construction of & on I' that f is compatible with &° and &Y. The fact that D +div(f) =0
comes from the harmonicity of .

We now check property (xx) of Section 3.5.5. Let z € I" and E = (z). Let y = ¥(z).
Then, the function fy,_,, o9 has the required properties (1) and (2). This function belongs
to ¢*(N). Therefore, (D,¢*(N)) verifies property (++) of Section 3.5.5. Finally, the finite
generation of 1*(N) and the fact that ¢*(/V) has tropical rank one follow from the same
properties for N. The same is true for effectivity. We have proved that (D, ¢*(N)) is an
effective gl. O

This finishes the classification of g}’s on metric graphs.
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3.9 Limit linear series on the skeleton of a Berkovich curve

In this section, we show that the tropicalization of linear series on C gives combinatorial
limit linear series.

Let K be an algebraically closed field with a non-trivial non-Archimedean valuation val
and let C be a smooth proper curve over K. We assume that K is complete with respect
to val. Let R, m, and k = R/m be the valuation ring, the maximal ideal of R, and the
residue field, respectively. Denote by A the value group of val. We also denote by |- | the
corresponding norm on K, so that val(-) = —log| - |. Let K(C) be the function field of C.

A semistable vertex set for C*" is a finite set of type 2 points V in C*" such that the
complement C*" \ V is a disjoint union of finitely many open annuli and infinitely many
open disks. A semistable vertex set V' gives rise to a skeleton I' for C*", defined as the
union in C*" of V and the skeleta of the open annuli in C*" \\ V. The canonical metric
on the skeleta of the open annuli gives the skeleton a metric graph structure, naturally
embedded in C*". The underlying graph G' = (V, E) has vertex set V' and edge set F in
bijection with the set of open annuli in C** . V. There is an edge between a pair of vertices
v and u in V for each open annulus whose closure contains the points v and u. Moreover,
the edge length function ¢: £ — (0, +00) associates to each edge of G the modulus of the
corresponding annulus.

Let I" be a metric graph skeleton of C** with underlying graph G = (V, F) and denote
by 7: C* — I' the canonical retraction map. We call 7 the tropicalization map. We get a
tropicalization map 7,: Div(C) — Divx(I') that sends a divisor D = 3 k) @z(2) on C
to the divisor 7,.(D) = >} o) 4(T(2)).

We denote by v,: K(C) — R U {+0} the valuation of a point z € C** \. X (K) with
v.(f) = +oo only if f = 0. The residue field of this valuation is denoted by x(x). We also
denote by | - |, = exp(—v,) the corresponding norm.

For each non-zero f € K(C), we define the tropicalization of f, denoted trop(f): I' — R,
as the map that sends each z € I' € C* \. C(K) to v,(f). This induces a tropicalization
map trop: K(C) \ {0} — Rat,(I).

Let D be divisor of degree d and rank at least r on C, and let (O(D),H) be a g}, on C.
We identify H with a subspace of K(C') of dimension r + 1.

Let I" be a skeleton of C**. We define

M := trop(H) = {trop(f) | f € H\ {0}}.
Theorem 3.9.1. The pair (D, M) is a refined A-rational g}, on T

We will call the linear equivalence class of the pair (D, M) the combinatorial limit linear
series on I' induced by (O(D),H). It is easy to see that (D, M) is effective provided that
H contains constants.
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3.9.1 Reduction

For each point z of type 2 in C*", the extension k(z)/k is of transcendence degree one. Let
C, be the smooth projective curve over k with function field x(x). For the point z, the
valuation v, has the same value group as val. For each nonzero f € K(C), choosing a € K
with val(a) = v,(f), we get that a~'f has valuation v,(a'f) = 0, and therefore gives an
element in the residue field x(z) that we denote by f,. We call this the reduction of f at x,
which is nonzero and defined only up to multiplication by a non-zero scalar in . For a
vector subspace H © K(X) of dimension 7 + 1, denote by H, < x(z) the s-vector subspace
spanned by the reductions f, of elements f € H [AB15, Section 4.4]. By [AB15, Lemma
4.3], H, has dimension r + 1 over k.

3.9.2 Slope structure and crude linear series coming from
tropicalization

For a point x in T' of type 2 in C**, each unit tangent direction v € T, (I") gives a
point p% € C,(k). By the slope formula [BPR16], for any non-zero f € K(C), we have
slope,, (trop(f)) = ord,» f2). Moreover, as a consequence of the slope formula [AB15], we
get

T (div(f)) = div(trop(f)).

(Note that there is a sign difference between our definition of the divisor of a rational
function and that of [AB15].)

If H c K(C) is a K-vector subspace of dimension r + 1, for any unit tangent vector
v e Ty(T'), we get a collection of integers slope, (trop(f)) = ord,» (fm>, f e H. Since H,
has dimension 7 + 1, this collection has size r + 1. This means that the collection of slopes
slope, (h), for h € M = trop(H), has size r 4+ 1. For each unit tangent vector v, we order
the slopes slope,,(h), for h € M, in the form sf < sy < --- < s/. Define S” = {s/};cr7. In
addition, the collection of points p € C, (k) for v € T,(I") defines a geometric rank function
pz associated to the corresponding filtrations on H, as in Section 3.2.2. We define S as the

set of jumps of p,. We have the following theorem, which can be regarded as a refinement
of [AB15, Theorem 5.9].

Proposition 3.9.2 (Slope structures induced by tropicalization of rational functions).
Notation as above, let H ¢ K(C) be a K-vector space of dimension r + 1. Let I' be a
skeleton of C*™. There exists a semistable vertex set V' for C such that 3(C,V) =T, and
such that the slopes of the tropicalizations of rational functions £ in H along edges in T’
define a slope structure of width r on T'.

Proof. We already defined S* and S” for type 2 points of I' € C*" and v € T,(I"). We
show that the definitions can be extended to all points of I', and that the collection
S = {S% 5"} ser, ver, () I8 induced by a simple graph model of I' (or, equivalently, by a
semistable vertex set of C*"). To show this, let = be a point of type 2, and let v € T,(T")
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be a tangent direction at x in I'. Let fy, ..., f. be a basis of H such that the reductions
fo = fo,..., fr = f. to k(z) yield the orders of vanishings s, ..., s”

rEr

at the point pZ,
respectively. By the slope formula, the slope of trop(f;) along v at = coincides with sy
There thus exists a half segment IV = [x,y”] on the edge supporting the point x and the
tangent direction v such that the slope of the function trop(f;) along v at every point of
I7 is s¥. Since these are r + 1 integers, they are all the possible slopes along v in I} of
tropicalizations of functions in H. We extend the definition of S*® to every point in the
interior of the segment I” by taking these slopes and by declaring the rank function to be
standard. Applying now the compactness of I', we deduce a finite covering of I' by segments
IV, from which we deduce the statement in the proposition. O

The fact that 7(div(f)) = div(trop(f)) then shows that (D, &) has rank r, as defined in
Definition 3.4.1. This is analogous to the proof of the specialization theorem for metrized
complexes in [AB15], we thus omit the details. This shows that

Proposition 3.9.3. The pair (D, &) defined by tropicalization is a crude linear series on
I’ of degree d and rank r.

Note that for two linearly equivalent divisors D ~ D’ on C, and H a subspace of the
space of global sections of the corresponding line bundles O(D) = O(D’) of dimension
r + 1, the two pairs (D, &) and (D', &') are linearly equivalent.

3.9.3 M < Raty(D) is a semimodule

We show that M < Rata (D) is a semimodule. Changing the vertex set if necessary, we can
assume without loss of generality that the support of D is included in the set of vertices V.
Let f and g be two elements in M, and let A\ € A. By definition, we can write f = trop(f)
and g = trop(g) with f, g € H~ {0}. Let h :== min(f + A, g) for A € A. We show the
existence of h € H such that trop(h) = h. This will show that M is a A-semimodule. Since
A e A =val(K \ {0}), we can write A = val(a) with a € K. We take h := of + g. The
goal is to show that replacing, if necessary, a with af for g € K* of valuation zero, we
have h = trop(h).

Let # € I" be such that f(z) + A # g(z). Then, by the enhanced non-Archimedean
triangular inequality (that is, if val(a) # val(b), then val(a + b) = min(val(a), val(b))), we
get automatically that v, (h) = min(f(z) + A, g(x)) = h(x).

Let now I'g :={z € I', f(z) + XA = g(x)}. Since f and g are piecewise affine linear, 'y can
be written as a union of finitely many segments of I' so that both f and g are affine on
each of these segments. Let now I be any of them, whose extremities we denote x and vy,
on an edge e of I'. A segment of I is a segment of an edge of G it can be reduced to just
a point. Let v be the tangent direction in T, (I") pointing toward y; if x = y, we choose
an arbitrary v € T,(I"). Consider the point p” of C,(k) corresponding to v. By the slope
formula and the fact that f + A = g on all I, we have

ordpy (%) = slope, (f) = slope, (g) = ord,»(g).
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Up to multiplying a by some element 3 of K* of valuation zero, we can ensure that
ord,y (om> = ord,y (%) = ord,(g) = ordyy (&f + g)
Note that only one value for the reduction & in « is forbidden.
Using again the slope formula for om yields ord,» (&? + §> = slope, (h), so that
slope,, (h) = slope, (f) = slope,(g).

We can do the same at the other extremity y of I, and ensure that locally, starting at
either extremity of I, h has the same slope as f and g. Since f and g are linear on [, D
has no support in the interior of I, and h coincides with f + A and ¢ on the extremities of
I, we must have h = f + A\ = g on the full interval I.

Since this can be done for each of the finitely many segments composing Iy, forbidding
at most one value for the reduction & € x each time, and since k is algebraically closed
(and thus infinite), there is some « € K such that val(a) = A and

trop(af + g) = min(f + A\, g) = h

on all I'. We have shown that h € M, so M is a semimodule of Rat, (D, S).

3.9.4 Finite generation property
Proposition 3.9.4. The semimodule M = trop(H) is finitely generated.

We suppose that the slope structure & is defined on the model G = (V, E) of I" associated
to the semistable vertex V.

Let A! = Spec(K[T]) and let A" be its Berkovich analytification. Let A(p) be the
closed annulus in A" of center 0 with outer radius one and inner radius p € (0,1),

Alp) = {z e AV | p <|T], <1}

Let R(p) be the ring of analytic functions on A(p). An analytic function f on A(p) admits

f= Z a,T"

nez

a formal power series expansion

with lim,, 14 |a,|s™ = 0 for all s € [p, 1]. The skeleton of A(p) is a closed interval, which
can be identified with I := [0, —logp|: each point ¢ in this interval corresponds to the
norm |- |¢, (f) = sup,ez |an| exp(—gn) = maxpez |a,| exp(—gn) on any analytic function f as
above. The tropicalization of an analytic function f is the function trop(f) on the interval
I given by

trop(f)(g) = min{val(a,) + ng | n € Z} Vqel.

Each edge e in F is the skeleton of one of the annuli in the complement C*" \\ V| that
we denote by A(e). We have A(e) ~ A(p.) with p. = exp(—~.), where /. is the length of e
in I'. Using this identification, e is identified in I" with the interval [0, £.].
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Proof of Proposition 3.9.4. By restriction, each element f € H gives rise to an analytic
function on the annulus A(e) that we denote by f.. The tropicalization of f restricted to
e coincides with the tropicalization of f., and has slopes among s§ < --- < s7. It follows
that, taking the analytic development f. = >, _ af(f)T™ in A(e), with af(f) € K, the
tropicalization of f, is entirely defined by the truncation

Consider the K-linear map

We infer that the tropicalization trop(f), for f non-zero in H, is entirely determined by
tropicalization

trop(p(f)) = <(Val(a‘;(f)))n:88 >EE c H Tls6-5]

via the expression
trop(f)|_(¢) = min{val(ag(f)) + ng | n = sf,..., st} Vq e [0,2.].

Let H = ¢(H), and M’ = trop(H') = {trop(¢(f)) | f e H~ {0}} < [, TI6<). From
the above discussion we deduce the existence of a surjective morphism of semimodules

" M' — M. We conclude by observing that M’, being the tropicalization of a linear
subspace of K" for n = ). _(s¢ — s§ + 1), is finitely generated, see [Spe08, Theorem 3.1] and
[Gau92, Chap. III, Theorem 1.2.2]. A generating set for M’ gives a generating set for M
via the surjection ¢"". The proposition follows. O

3.9.5 Proof of Theorem 3.9.1

We have proved nearly all the properties to show that (D, M) is a linear series.

We first need to show that M has tropical rank r. Keeping in mind Remark 3.6.6, we
have to prove that the tropical rank is at most r. Let fo,..., f,41 € M. For each 7, we write
fi = trop(f;) with f; € H \ {0}. Since dim(H) = r + 1, there exist some \; € K, i € [r + 1],
such that Z::é \ifi = 0. This shows that for all z € ', the minimum in

min (f;(x) + val(\;))

0<i<r+1

is achieved at least twice. Therefore the tropical rank of M is at most r.
Finally, we need to show that property (% ) in Definition 3.6.4 is verified. Let E be an

effective A-rational divisor on I' of degree s < r. Choose E to be any lift of E to the curve
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C. Let Hg € H be a subspace of H of rank » — s such that for each f € Hg, we have
div(f) + D — E > 0. This space exists since E imposes at most s linear constraints on H.
Let G be the slope structure of width r» — s induced by the tropicalization of Hg, which is
a slope substructure of &. Let Mg = trop(Hg). Then, (D, Mg) is a linear series of rank

r—s, Mg € M, and the properties (1) and (2) of (%, ) are verified.
At this point, the proof of Theorem 3.9.1 is complete. ]

3.10 Examples and discussions

We provide a set of examples and some complementary results.

3.10.1 The dipole graph

We consider the dipole graph with four edges (of unit length to simplify the notation). The
genus is g = 3 and the rank of the canonical divisor K is r = 2. Denote by u and v the two
vertices and by eq, es, e3 and e4 the four edges of I' (see Figure 3.7).

A crude linear series of degree 4 and rank 2

For ¢« = 1,2,3,4, let t; € (O, %] For each choice of the t;’s, we will construct a slope
structure & of width two.

Let the t;’s be fixed. For each i, we endow the edge e; with the slope sets 0 < 1 < 2 on the
interval [0, % — ti] in the direction of the arrows, —1 < 0 < 1 on the interval [% — 1 % + ti],

and —2 < —1 < 0 on the interval [% + 1, 1].

0,1,2) Lo (—2,-1,0)
9 9
(0,1,2) ot (—2,-1,0)

Figure 3.7: A slope structure of width two on the dipole graph.

We now define suitable rank functions. Endow the eight points % — ti,% + t; on the
edges e; for i = 1,2,3,4, respectively, with the rank function on [2]* defined by the array
00 -1
1 1 0 | (jumps in blue) and all the other points of I', including w and v, with the
21 0
standard rank function. This defines a slope structure & of width two on I', and (K, &) is

a crude linear series of rank two on I'.
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An elementary g2 on the dipole graph

We will present an example of a combinatorial limit linear series of degree 4 and rank 2 on
the dipole graph with four edges of unit length, the same graph as in Section 3.10.1.

Like in the aforementioned section, we consider the canonical divisor K on I', which has
degree 4 and rank 2. We keep the notations of Section 3.10.1. The linear series will be
based on a degenerate version of the slope structure defined in that section, essentially
corresponding to the limit ¢; = 0 for every ¢ = 1,2, 3, 4.

More precisely, as shown in Figure 3.8, we endow, for each 7, the edge e; with the slope
sets 0 < 1 < 2 on the interval [O, %], and —2 < —1 < 0 on the interval [%, 1], in the
direction of the arrows. We moreover endow every point of I', including u, v and the middle
point m; of each edge e;, with the standard rank function. This defines a slope structure &

of width two on I'.

(0,1,2) (—=2,-1,0)

(0,1,2) (—2,-1,0)

Figure 3.8: A slope structure of width two on the dipole graph.

Denote by Rat®™(K) (resp., Rat™™ (K, &)) the set of functions f € Rat(K) (resp.,
f € Rat(K, &)) whose restriction to each e; is symmetric with respect to the middle point
m,;. It is not difficult to see that the following holds:

Rat™™(K, &) = Rat™™(K) < Rat(K, &) < Rat(K),
where both inclusions are moreover closed. The linear series will be defined as
M := Rat™™(K, &) = Rat™¥™(K).

Then, M is a sub-semimodule of Rat(K,S) of rank two, which here also implies the
same for Rat(K, &) and Rat(K). The symmetries of the functions f € M then imply that
M can be viewed as a complete linear series: it is isomorphic to the linear series Rat(2 (u))
on the tree T obtained as the left half of I', see Figure 3.9 below.

Now that we have essentially reduced to the case of a complete linear series, we
use [HMY12, Theorem 6] and [HMY12, Corollary 9], which show that M is generated by its
finitely many extremal points, and provide a characterization of the extremal points which
enables to enumerate them all. Using this, M is seen to be generated by the functions
defined as follows. For every i = 1,2,3,4, let f; be the function on I' whose graph on the
edge e; is
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Figure 3.9: The tree T' on which the complete linear series Rat(2 (u)) is defined.

IS

v

with slopes 2 and —2, and which is identically zero on all other edges. For every choice of
indices 1 < i < j <4, let g;; be the function on I' whose graph on the edges e; and e; is

N

u (%

with slopes 1 and —1, and which is identically zero on both other edges. Then M is
generated by the functions f; and g; ;, which amounts to 10 generators.

Finally, a case-by-case analysis on the generators shows that M has tropical rank two,
concluding the proof that M is a g3.

A more involved g2 on the dipole graph

Keeping the same dipole graph as in the preceding two sections, we now present another
example of a combinatorial limit linear series of degree 4 and rank 2. Unlike in Section 3.10.1,
we here specialize the slope structure defined in Section 3.10.1 to the choice of parameters
ti=g,1=1,2,34.

Unlike the linear series in Section 3.10.1, symmetrical functions will not be sufficient to
get a g2 compatible with &, but we will constrain the functions in another way. Let

M < Rat(K, S)

be the subset of functions f € Rat(K,S) which have slope 2 along at most one tangent
vector based at u or v. Equivalently, a function f € Rat(K, &) belongs to M if, and only if,
on every edge e;, if f has slope 2 close to u on e;, then its slope close to v on e; is less than
2 (in fact, it consequently has to be 1).

It is easily verified that M is a sub-semimodule of Rat(K,&). We will show that it is
a linear series of degree 4 and rank 2. Firstly, M can be shown to have rank 2; the key
observation here is that functions of Rat(K, &) which take slope 2 on both endpoints of
some edge are not needed.
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To prove that M is finitely generated, we then divide the functions f € M into two
categories, and find a finite number of generators for each category, following the kind of
strategy deployed in Section 3.10.1.

Namely, we consider, on the one hand, the functions which are non-constant on exactly
two distinct edges. Those functions cannot use the slope 2. Like in Section 3.10.1, it is easy
to see that they are consequently generated by the functions g; ;, for indices 1 <@ < j <4,

N

u (%

whose graph on the edges e; and e; is

with slopes 1 and —1, and which is identically zero on the other edges.

On the other hand, we look at the sub-semimodule M’ < M of functions which are
non-constant on at most one edge. For example, denote by M] the sub-semimodule of M’
consisting of the functions which are constant on all edges e;, © = 2, 3,4. Since all functions
in Rat(K) have the same value on w and v, and thanks to the slope constraint defining M,
it follows that Mj] is isomorphic to the complete linear series Rat(3 (u)) = Rat(3 (u), &)
on the cycle obtained by identifying the endpoints of e; and deleting the other edges, see
Figure 3.10.

(—1,0,1)

0,1, 2)@(0, 1,2)

3

Figure 3.10: A cycle of length one with slope structure inherited from &.

As in Section 3.10.1, reducing to a complete linear series provides a set of generators for
M, obtained as the extremal points. It follows that M] is generated by the function h,
whose graph on the edge e; is

u v
with slopes 2 on [O, %] and —1 on [%, 1], and which is identically zero on both other edges,
together with the function A} obtained from h; by symmetry with respect to the midpoint
of each edge. Likewise, for i = 2, 3,4, we define functions h; and h;. Then the set of all
these functions generates M’.

All in all, it follows that

M ={gij, hi | 1<i<j<4, 1<k<4),
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which amounts to 14 generators.
Finally, an elementary check on these generators shows that M has tropical rank two
and therefore is a g3.

3.10.2 Realizability and genera

In the context of tropicalization of linear series, the metric graph I' can be enriched with a
supplementary numerical data consisting of a genus function g: V' — Z-( associating to
each vertex v the genus of the curve C,; the pair (T, g) is called an augmented metric graph.
The study of linear series on metric graphs is not dependent on the data of a genus function.
However, considering genus functions becomes important in making connections to geometry
when asking realizability questions. Indeed, for a slope structure to be realizable, that is,
to be the tropicalization of a linear series on a curve defined over a non-Archimedean field,
it is necessary that the divisor defined on I" by

Mvil(as) =(r+1)K(x)+ 7,(7,2——'_1) (dy + g(x Z Z st (3.4)

veT, (") j=0

be effective (here, d, is the valence of z and g(x) denotes the genus of the curve C,
corresponding to x). See Section [AGR23, Section 5], and more specifically Proposition 5.12
in loc. cit.. The realizability of a linear series on an augmented graph will depend on the
genus function g. On the one hand, the general form of Equation (3.4) puts constraints on
g for the linear series to be realizable; and, on the other hand, the property of each rank
function p, being geometric will depend on the genus g(v) of C,.

To give an example, consider the metric graph I' below with arbitrary edge lengths, and
the divisor K with coefficient one at the trivalent vertices. Consider a family of slope
structures on I, as follows.

First, for each bridge edge oriented outwards (towards the adjacent circle), allow slopes
—1 < 1 < 3. Divide each circle into three equal parts, in a way compatible with the position
of the attachment points. On each circle, on the two edges adjacent to the attachment
points, allow slopes 0 < 1 < 2 away from the attachment point, and on the remaining edge,
allow slopes —1 < 0 < 1. We endow the vertices of I' with the following rank functions. The
central vertex gets the standard rank function. The three attachment points are endowed
with the rank function on [2]* whose restrictions to [2]? x {0}, [2]* x {1} and [2]* x {2} are
given respectively by the three matrices

0 0 -1 -1 -1 -1 -1 -1 -1
11 0], 0 0 —-1}and -1 -1 -1
21 0 1 0 -1 0 -1 -1

Jumps are depicted in blue and the third coordinate corresponds to the edge connecting
the attachment point to the central vertex. Finally, the six other vertices of I' are endowed
with the rank function on [2]? defined by the first of the three arrays above. The standard
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rank function is imposed on all other points of I'. This defines a slope structure of width
two & on I', and M := Rat(K, &) is an admissible semimodule.

(—1,0,1)

Figure 3.11: A slope structure of width two on the three-cycle graph.

Now, consider the example where, instead of allowing the slopes —1 < 1 < 3 on the three
central edges, we allow the slopes —1 < 1 < 3 on (possibly trivial) intervals incident to the
central vertex on these edges, and the slopes —1 < 1 < 2 on the rest of the edges, with the
same choice of rank functions. Choosing the lengths of these intervals independently yields
a three-parameter family of slope structures on I'.

Among these possibilities, with genus function 0, only the one where all three intervals
carrying the slopes —1 < 1 < 3 are trivial can be realizable.

3.10.3 Limit linear series defined by pluricanonical sheaves

In this section, we discuss the tropicalization of subspaces of global sections of pluricanonical
sheaves, and explain how it fits into the theory presented in the previous sections.

Let C be a smooth proper curve over an algebraically closed complete non-trivially valued
non-Archimedean field K. We assume that the residue field x of K has characteristic zero.
We denote by we the canonical sheaf of C, and by w%” its n-th power, for n € N.

Definition 3.10.1 (Pluricanonical linear series). By a pluricanonical linear series of rank
r and order n, we mean a vector subspace H < H° (C, w%n) of rank r, i.e., of dimension
r+1. o

We follow the notation of the previous section and denote by I' a skeleton of C** with
combinatorial model G = (V, E). The vertex set is included in the set of points of type 2
and, for each v € V', the corresponding curve over the residue field « is denoted by C,,.

Temkin metrization and tropicalization

Let || - | be the Kéhler norm on the sheaf of differentials we defined by Temkin in [Tem16].
It induces a norm on each wg", n € N, that we continue to denote by | - |.
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Definition 3.10.2 (Tropicalization of pluricanonical forms). For each non-zero section «
of w%”, the tropicalization of « is the function

trop(a): I' — R, x —> —log ||a|,. o

Let K = Kt be the canonical divisor of the augmented metric graph I', given explicitly
by
K =) (2g(z) — 2 + d,) (x).
zel
The tropicalization F' = trop(a) of a pluricanonical differential form of order n is a
piecewise affine function with integral slopes. It verifies the slope formula

div(F) +n K = 7. (div(«))

with div(a) the divisor of zeroes of «, defined by div(a) == >, ord, (), 7: C* — T
the retraction map to I, and 7, the induced map on the level of divisors. (The first
claim is a consequence of [Tem16, Theorem 8.2.4]. For the second, see [BT20], as well
as [Amil4, KRZ16, BN16]. The scaled reduction & of a at a point x € C** of type 2 is a
pluricanonical meromorphic form on C,., which is well-defined up to scaling by a scalar in
k*. And, for every tangent direction v at x, the order of vanishing of & at the point p” of
C, is given by —n — slope, F'(z).

Let HS H O(C, w%”) be a pluricanonical linear series of rank r and order n. Let M =
trop(H) = {trop(a) | o € H\ {0}}, and denote by H, the vector space of pluricanonical
meromorphic forms of the same order on C, generated by the reductions & of a € H at
x. As in the case of the reduction of functions, the dimension of H, k(Cy) isr+ 1, and
the orders of vanishing of reductions a € H, of elements o € H at pY define a sequence of
integers s < sV < --- < s¥. We define S¥ := {s”}, and denote by p, the geometric rank
function associated to the collection of points p” € C, (k) for v € T, (). Moreover, we define
S* as the set of jumps of p,. We have the following theorem.

Theorem 3.10.3 (Specialization of pluricanonical linear series). Let H < H° (C, w%") be a
pluricanonical linear series of rankr and ordern. Let M = trop(H) = {trop(a) | « € H \ {0}}.
Then, M < Rat(nK,&). Moreover, (nK, M) is a refined g on I', for d = n(2g — 2), with

g the genus of C.

Proof. The proof is similar to that of Theorem 3.9.1 given in the previous section. O]
Definition 3.10.4 (Pluricanonical limit linear series). Notation as above, the semimodule
M = trop(H’(C,w")) < Rat(nk, &)

is called the tropical semimodule of pluricanonical differential forms on I' induced by C.
The slope structure & is called the pluricanonical slope structure of order n on I' induced
by C. For every pluricanonical linear series H € H°(C,w&") of rank r and order n, the
sub-semimodule M of M:" defined by the tropicalization of H gives rise to the pair (nk, M),
called the limit pluricanonical linear series O (29-2) of rank r and order n on I' induced by
H. o
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Combinatorial pluricanonical types

For each pluricanonical slope structure on I' of order n, its combinatorial type is the pair
(G, &), where G is the minimal graph model of I" over which & is defined.

Theorem 3.10.5 (Finiteness of pluricanonical slope structures). There are only finitely
many combinatorial types for pluricanonical slope structures of order n on augmented metric
graphs ' of the same combinatorial type.

Proof. This follows directly from Theorem 3.4.4. [

Let G = (V, E) be a given graph that we assume to be augmented with a genus function.
A slope structure & on G is called pluricanonical if there exists a length function /: £ — R
on the edges of GG such that G defines a pluricanonical slope structure on I'.

Problem 3.10.6. Provide a classification of all pluricanonical slope structures on a given
augmented graph G.
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4 Tropical Weierstrass points and
Weierstrass weights

This chapter is adapted from the preprint [AGR23].
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Abstract

In this chapter, we study tropical Weierstrass points. These are the analogues for tropical
curves of ramification points of line bundles on algebraic curves.

For a divisor on a tropical curve, we associate intrinsic weights to the connected compo-
nents of the locus of tropical Weierstrass points. This is obtained by analyzing the slopes of
rational functions in the complete linear series of the divisor. We prove that for a divisor D
of degree d and rank r on a genus g tropical curve, the sum of weights is equal to d —r + rg.
We establish analogous statements for tropical linear series.

In the case D comes from the tropicalization of a divisor, these weights control the
number of Weierstrass points which are tropicalized to each component. Our results provide
answers to open questions originating from the work of Baker on specialization of divisors
from curves to graphs.

We conclude with multiple examples which illustrate interesting features appearing in
the study of tropical Weierstrass points, and raise several open questions.

189



4.1 Overview

Weierstrass points have a rich history in the development of algebraic geometry as they
provide an important tool for the study of smooth algebraic curves and their moduli spaces.
It is natural to ask how their theory can be extended to stable curves, which correspond
to boundary points in the Deligne-Mumford compactification ,//7g of the moduli space of
genus g smooth curves. One strategy is to take the limit Weierstrass points induced by a
one-parameter family (X;);»o of smooth curves degenerating to a stable curve Xy; there will
be ¢ — ¢ limit Weierstrass points on X, when counted with appropriate weights. However,
the limit points generally depend on the chosen family, and a stable curve X, has many
possible smoothings corresponding to paths in =//7g that end at the point representing Xj.

Tropical geometry provides a new perspective on degeneration methods in algebraic
geometry by enriching it with polyhedral geometry. Given the successes of tropical methods
in the past two decades in the study of algebraic curves and their moduli spaces, it is natural
to ask whether tropical geometry can be used to gain insight about the limiting behavior of
Weierstrass points on degenerating families of curves. In the tropical perspective, the data
of a stable curve Xy is replaced by the data of its dual graph. The collection of all stable
curves having the same dual graph forms a stratum of ///_g . This gives a correspondence
between the strata of .#, and the set of stable graphs of genus g [Cap15].

The prototype of what we can expect to address using tropical techniques is the following
natural question.

Question 4.1.1. Given a stratum of //l_g, and a log-tangent direction of approaching that
stratum, what can be said about the limit Weierstrass points of a smooth family (X;)o
degenerating to a stable curve in that stratum along the chosen direction?

The arithmetic geometric version of the above question is the following.

Question 4.1.2. Given a smooth proper curve over the field Q, of p-adic numbers with
stable reduction lying in a given stratum of/Z, (over the algebraic closure of the residue
field F,,), what can be said about the specialization of the Weierstrass points?

Previously, there has been much work making incremental progress on the first question
[EH87a, EM02, ES07, Dia85, Amil4, Gen21] and on the second question [Ogg78, L.N64,
Atk67, AP03, Bak08]; see Section 4.1.4 for a more thorough discussion.

Our aim in this chapter is to provide an answer to the above questions from the point of
view of tropical geometry. This is done by introducing new tools which allow us to solve
problems related to the tropical geometry of curves, whose origin goes back to the beginning
of the use of tropical methods in the study of algebraic curves.

Our answer to Question 4.1.1 can be summarized as follows: we can specify how many
Weierstrass points degenerate to each component and to each node of a stable curve X
lying in the given stratum. This is done without specifying their precise position within
each irreducible component, giving instead a more precise location of those degenerating to
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a node by specifying their position on the dual metric graph of the family (X;). Our result
also applies to limits of ramification points of arbitrary line bundles, in addition to the case
of the canonical bundle.

Similarly, we answer Question 4.1.2 by specifying where Weierstrass points specialize
when reducing modulo p.

Moreover, these results lead to an effective way of locating the limit Weierstrass points.

We next give an overview of our results.

4.1.1 Tropical perspective

The central concept studied in this chapter is that of tropical Weierstrass points. The
definition is based on divisor theory on metric graphs, and we refer to the survey paper [BJ16]
and the references there for more details.

Let I' be a metric graph, and let D be a divisor of degree d and rank » on I'.

Definition 4.1.3 (Weierstrass points). A point z in I is called a Weierstrass point, or
ramification point, for D if there exists an effective divisor E in the linear system of D
whose coefficient at z is at least r + 1. The (tropical) Weierstrass locus of D, denoted by
Ly (D), is the set of all such points in I o

The set Ly, (D) is a closed subset of I which can be infinite, in contrast with the classical
setting of algebraic curves. In this regard, Baker comments in [Bak08, Remark 4.14],
regarding the canonical divisor, that “it is not clear if there is an analogue for metric graphs
of the classical fact that the total weight of all Weierstrass points on a smooth curve of
genus ¢ is g° — ¢g.” More generally, we can ask the following question.

Question 4.1.4. Is it possible to associate intrinsic tropical weights to the connected
components of Ly (D)? What is the total sum of weights associated to these components?

The following question is a special case.

Question 4.1.5. Assume the locus of Weierstrass points of D is finite. What is the total
weight of these points?

Our aim in this chapter is to provide answers to the above questions. In order to streamline
the presentation which follows, we first discuss our results in the case of non-augmented
metric graphs. From the geometric perspective, this corresponds to the situation of a
totally degenerate stable curve, that is, a stable curve whose irreducible components are
all projective lines. This is the same as requiring that the arithmetic genus of the stable
curve is equal to the genus of the dual graph. We have an analogue of these statements for
augmented metric graphs (respectively, arbitrary stable curves), see the discussion which
follows below.

In order to solve Question 4.1.4, we make the following definition.
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Definition 4.1.6 (Intrinsic Weierstrass weight of a connected component). Let D be a
divisor of rank 7, and let C' be a connected component of the Weierstrass locus Ly (D). We
define the tropical Weierstrass weight of C' as

pn(C; D) = deg (D] ,) + (9(C) = )r — Y s4(D) (4.1)
ved™*C

where
e deg (D\C) is the total degree of D in C| defined by deg (D\C) = Yec D(@);
e g(C) is the genus of C| i.e., its first Betti number dim H; (C,R);
e 0""C is the set of outgoing unit tangent directions from C'; and

e s5(D) is the minimum slope along tangent direction v of any rational function f on I'
with div(f) + D > 0.

We abbreviate pu,(C; D) simply as ju,,(C) if D is understood from the context. o

Although it is not obvious from the definition, we will show in Theorem 4.3.6 that the
tropical Weierstrass weight of any component is positive. Note as well that a connected
component of L, (D) is always a metric subgraph of I", see Proposition 4.3.1.

We say that D is Weierstrass finite or simply W-finite if the tropical Weierstrass locus
Ly (D) has finite cardinality. In this case, connected components of L, (D) are isolated
points in I, and we define the tropical Weierstrass divisor W (D) as the effective divisor

WD) = Y pule) (@)

xELW (D)

where () == uy ({z}). The support |IW(D)| of the tropical Weierstrass divisor is exactly
the tropical Weierstrass locus Ly, (D). The tropical Weierstrass weight of = can be identified
as fy(x) = Dy(x) — r, with D, denoting the unique z-reduced divisor in the linear system
of D, see Remark 4.3.3.

This gives the following geometric meaning to the Weierstrass weights, in the spirit of
the classical definition on algebraic curves. The coefficient of the reduced divisor at a point
x € I' corresponds precisely to the maximum order of vanishing at x of any global section of
the line bundle O(D) defined by the divisor. The Weierstrass weight of the point z is thus
obtained by comparing this quantity to r, which would be the expected minimum value,
over points y € I, of the largest order of vanishing of global sections at y. (Note, however,
that r is not always equal to the actual minimum largest order of vanishing, as examples in
Section 4.6.5 show.) That being said, the definition differs from the algebraic setting, where
we need to take into account all the orders of vanishing of global sections of the line bundle
at a given point (and then compare them with the standard sequence, the one obtained for
a point in general position on the curve).

The following theorem answers Questions 4.1.4 and 4.1.5, and is proved in Section 4.3.3.
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Theorem 4.1.7 (Total weight of the Weierstrass locus). Let I' be a metric graph of genus
g, and let D be an effective divisor of degree d and rank r on I'. Then, the total sum of
weights of the connected components of Ly (D) is equal to d —r + rg. In particular, if D is
W-finite, then we have deg(W (D)) =d —r + rg.

The proof of this theorem will imply in particular the following result, proved in Sec-
tion 4.3.4.

Theorem 4.1.8. If the rank r of D is at least one, then every cycle in 1" intersects the
tropical Weierstrass locus Ly (D). In particular, if I' has genus at least two, then every
cycle intersects the Weierstrass locus of the canonical divisor K.

In [Bak08], Baker proves that the tropical Weierstrass locus of the canonical divisor is
nonempty if I' has genus at least two. This earlier tropical result is obtained as a consequence
of the analogous algebraic statement, using the specialization lemma. In contrast, our
theorem above states that tropical Weierstrass points obey a stronger “local” existence
condition, which has seemingly no algebraic analogue. In the case that the canonical divisor
of I' is W-finite, our result implies that for an arbitrary family (X;);xo of smooth curves
tropicalizing to I', every cycle in I' contains a limit Weierstrass point of the family.

To prove Theorem 4.1.7, we will show that in fact (4.1) defines a consistent notion of
Weierstrass weight when applied to any connected, closed subset of I' whose boundary
points are not in the interior of L,,(D); see Theorem 4.3.9. To do so, we retrieve information
about the slopes of rational functions in the linear series Rat(D) along tangent directions
in I'. We have the following description, proved in Section 4.2.

Theorem 4.1.9. Let D be a divisor of rank r on I'. We take a model for I' whose vertex
set contains the support of D. Let x € I be a point and v € T,(I") be a tangent direction.

(a) If the open interval (x,z + ev) is disjoint from Ly (D) for some e > 0, then the set
of slopes {slope, f(x) : f € Rat(D)} consists of r + 1 consecutive integers {sg, st +
L,...,s4 +r}

(b) If the open interval (z, x+cv) is contained in Ly, (D), then the set of slopes {slope,, f(z) :
f € Rat(D)} is a set of consecutive integers of size at least r + 2.

4.1.2 Comparison results and extensions

We further justify our definition of weights by making a precise link to tropicalizations of
Weierstrass points on algebraic curves.

Suppose that I' and D come from geometry; that is, let X be a smooth proper curve of
genus g over an algebraically closed non-Archimedean field K of characteristic zero with a
non-trivial valuation and a residue field of arbitrary characteristic. Let £ = O(D) be a line
bundle of degree d on X. Assume that I is a skeleton of the Berkovich analytification X*"
of X. Denote by 7 the tropicalization map from X to I', and suppose that D = 7,(D) is
the tropicalization of D on I' where 7,: Div(X) — Div(T") the induced map on divisors.
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Denote by W(D) the Weierstrass divisor of D on X, and by 7,(W(D)) its tropicalization
on I'. The following result, proved in Section 4.5.3, uses the notion of L, (D)-measurable set,
for which the connected components of Ly (D) form the atoms, and the natural counting
measure fi,, on such sets, induced by Weierstrass weights (see Section 4.3.3 for more details).

Theorem 4.1.10 (Algebraic versus tropical Weierstrass weights). Assume that D and D
have the same rank, and let A = T be a closed, connected subset which is Ly, (D)-measurable.
Then, the total weight of Weierstrass points of W(D) tropicalizing to points in A is precisely
(r 4+ 1) iw(A; D); that is,

deg (W(D)|T_1(A)> =(r+1) (deg (D\A) +r(g(A)—1) — Z sg(D)).

ved™ A

In particular, if D is W-finite, then we have the equality
T:(W(D)) = (r + 1) W(1(D)).

This statement, which involves the metric of I" in a crucial way, gives an essentially
complete description of the behavior of Weierstrass points in the tropical limit. In particular,
if the limit divisor is W-finite, then for every family (X;);xo of smooth proper curves
approaching a stable curve with dual metric graph I', the limit Weierstrass points are
precisely described by the tropical Weierstrass divisor. This rigidity type theorem on the
limiting behavior of Weierstrass points allows us to give a precise count of the number of
Weierstrass points going to the nodes or to the smooth parts of a limit stable curve X
on the given stratum of ./, along the given log-tangent direction from which the family
(X¢)i20 approaches Xy. Moreover, as a special case, the theorem also applies in the context
of arithmetic geometry in which the curve X is defined over a finite extension of Q,. As we
will show in Section 4.5.3, this theorem holds as well over a field K of positive characteristic
provided that the gap sequence of £, defined as the sequence of orders of vanishing of the
global sections of L at a general point of X, is the standard sequence 0,1,...,r. (In this
case, L is called classical [Lak81, Nee84].)

We provide natural extensions and refinements of the above results to the setting of
augmented metric graphs, which, from the degeneration perspective, corresponds to the
situation where the limit stable curve has irreducible components of possibly positive
genus. Since a given vertex of positive genus hides information about the geometry of the
corresponding component, it turns out that there will be an ambiguity when talking about
the Weierstrass locus of a divisor D. In fact, the right setup in this context is a divisor D
endowed with the data of a closed sub-semimodule M of Rat(D), which plays the role of a
(not necessarily complete) linear series on the augmented metric graph.

In this regard, first, we use the weights defined in Definition 4.1.6 with a relevant notion
of divisorial rank associated to the sub-semimodule which we further modify by including
the data of the genus function. We get Theorem 4.4.12; which provides a global count of
weights in this setting.
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To the question of whether it is still possible to associate a natural Weierstrass locus to a
divisor in the augmented setting, we provide an answer by introducing two special classes of
semimodules, the generic semimodule associated to any divisor (see Section 4.4.2), and the
canonical semimodule associated to the canonical divisor on an augmented metric graph
(see Section 4.4.3). Both of them require some level of genericity, which we properly justify
in Section 4.4.4 using the framework of metrized complexes.

The case of the canonical divisor on an augmented metric graph is particularly interesting
as it reveals new facets of divisor theory in the augmented setting. We associate a canonical
linear series to any augmented metric graph, show that it has the appropriate rank, and
study its Weierstrass locus. To justify the definition and prove these results, we use the
setting of metrized complexes and their divisor theory from [AB15]. Using that framework,
we show that the canonical linear series on an augmented metric graph is the tropical part
of the canonical linear series on any metrized complex with that underlying augmented
metric graph, provided that the markings associated to edges on the curves of the metrized
complex are in general position. It is interesting to note that this is the assumption made
in the works by Esteves and coauthors [EM02, ES07], and our results here complement
these works by developing the tropical part of the story in greater generality.

As we show in Theorem 4.5.5, the statement of Theorem 4.1.10 remains valid in these
settings (when including the genera of points of A on the right-hand side of the stated
equality). The following theorem is a direct application of our results on Weierstrass
weights for an augmented metric graph. We use the setting of tropicalization preceding
Theorem 4.1.10.

Theorem 4.1.11. Suppose D is a divisor on an algebraic curve X over an algebraically
closed non-Archimedean field K of characteristic zero with a non-trivial valuation and a
residue field of arbitrary characteristic. Let (I, g) be an (augmented) skeleton of X**. Let H
be a vector space of global sections of O(D) of rank r and denote by W(H) the Weierstrass
divisor of H. Let M be the tropicalization of H. Then, for any connected, closed subset
A < T which is Ly (M, g)-measurable, we have the bound

deg (W(H)|T,1(A)> > (r?+7) <g<A) + 3] g(x)).
zeA

The proof of this theorem will be given in Section 4.5.3. As in the case of Theorem 4.1.10,
the statement holds as well over a field K of positive characteristic provided the gap
sequence of H is the standard sequence.

In the case Ly (M,g) is finite, this inequality holds for any closed subset A < I'. In
particular, we have the following application to stable curves: suppose Xj is a stable curve
with dual augmented graph (G, g), and suppose (X;) is a family degenerating to X, with
tropicalization (I",g). If the locus of canonical Weierstrass points of (I', g) is finite, then
for every connected subgraph A of G, the number of limit Weierstrass points lying on
components and nodes of Xy which correspond to vertices and edges of A, respectively, is

at least (g% — ¢9)(9(A) + Xc4 8(v)).
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Semimodules inside Rat(D) that come from the tropicalization of linear series verify an
extra set of properties. These are thoroughly studied in recent works [AG22]| (Chapter 3)
and [JP22] that develop a combinatorial theory of (limit) linear series. In particular, such
a semimodule M of rank r satisfies the following:

(x) For each point z in I' and any unit tangent direction v € T,(I"), the set of slopes
taken by functions in M has size r + 1.

(We refer to Section 4.8.3 for more details.)

In Section 4.5, we associate a refined notion of Weierstrass divisor to any divisor D and
any closed sub-semimodule M < Rat(D) that verifies the above property. The definition
takes into account the higher orders of vanishing of the combinatorial limit linear series,
and is closer to the spirit of the algebraic definition of Weierstrass weights on curves.

Using this together with the results proved in Section 4.8, discussed below, we provide a
proof of Theorem 4.1.10 and its extensions to the augmented and incomplete settings. Finally,
using combinatorial Weierstrass divisors, we formulate obstructions to the realizability of
combinatorial limit linear series.

4.1.3 Tropicalization of Weierstrass divisors

The proof of our comparison results, Theorem 4.1.10 and its extension Theorem 4.5.5,
makes use of the results proved by Amini in Section 4.8. An earlier version of these results
was written around 2014.

Let X be a smooth proper curve defined over K. Let D be a divisor of degree d on
X and let £ = O(D) be the corresponding line bundle. Let H € H°(X, £) be a space of
sections of dimension r + 1 and denote by W = W(D, H) the corresponding Weierstrass
divisor. We assume that the gap sequence of H is the sequence 0,1,...,r, that is, for a
general point x € X (K), the orders of vanishing of sections of £ in H are 0,1,...,r. Let
7 be the tropicalization map from X to I'. We describe the tropicalization W = 7,(W).
The divisor W is equal to (r + 1)D + div(Wiz) for a section Wrz of the sheaf w1/
called the Wronskian. The sheaf w%ﬂ(wl)/ ? admits a natural norm; using this norm, we can
tropicalize the section Wrz, and define a rational function F' = trop(Wrz): I' — R. Denote
by K the canonical divisor of (I', g). Using the slope formula for sections of powers of the
canonical sheaf, Lemma 4.8.1, it is shown in Theorem 4.8.2 that for any x € I, we have

r(r+1)

W(z)=(r+1)D(z) + 5

K(x)— Z slope, F.

veT,(T)
It follows from the results proved in Section 4.8.7, that for a point x € I' and v € T, (T), if
e cither, the residue field x is of characteristic zero,

e or, the sequence sg, ..., s; forms an interval, that is, s = s§ + j,
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then the slope slope, [ is given by the sum s; + --- + s;, see Proposition 4.8.4 and
Theorem 4.8.2. This result is needed to prove in Section 4.5 our comparison results between
tropical and algebraic Weierstrass loci.

Note that over a field K of equicharacteristic zero, the first item in the above condition
is verified, and we get all the coefficients W (z),

W) = (r+ D)D) + Y k) — Y is;f,

2 veT(T) i

see Theorem 4.8.5.

4.1.4 Previous work

The study of Weierstrass points from a tropical perspective was initiated by Baker [Bak08,
Section 4. Baker defines Weierstrass points for graphs and metric graphs, and uses
his Specialization Lemma [Bak08, Lemma 2.8] to prove an essential compatibility with
Weierstrass points on stable curves—namely, that the tropicalization of the algebraic
Weierstrass locus is a subset of the tropical Weierstrass locus. To be more precise, for a
divisor D on a non-Archimedean curve with Weierstrass divisor W(D), if 7,.(D) has the
same rank as D and D has classical gap sequence, then we have an inclusion

I(W(D))| € L (7(D)),

which may be strict in general. (This is stated for the canonical divisor in loc. cit., but
the proof works in greater generality.) This statement has strong implications for the
behavior of Weierstrass points on a family of degenerating Riemann surfaces, and for p-adic
reduction of curves over QQ,,, discussed earlier in the introduction. Indeed, Baker motivates
his study of Weierstrass points on graphs with several results from the arithmetic geometry
of modular curves, in particular, as a way to decide whether certain cusps are Weierstrass
points, c.f. [Ogg78, LN64, Atk67, AP03].

The question of how to determine the tropicalization of Weierstrass points on a non-
Archimedean curve was settled in [Amil4]; these results appear in Section 4.8 and are used
to prove our comparison results. The question of determining tropical Weierstrass loci
and their weights, and the way to properly count them in the tropical setting remained
however open. The work [Ric24] by Richman studies Weierstrass points on tropical curves.
Although the tropical Weierstrass locus may be infinite in general, [Ric24] shows that for a
generic divisor class (i.e., lying in a nonempty open subset of Picd), this locus is finite, and
moreover computes its cardinality. It is worth mentioning that important divisor classes
such as the canonical divisor are non-generic, so they are not covered by the methods
of [Ric24]. The way tropical Weierstrass points distribute when the degree of divisor classes
tend to infinity is studied in [Amil4, Ric24]. For an extended discussion of how divisor
theory on graphs is connected to the degeneration of smooth curves to nodal curves, with
various applications, see the survey by Baker—Jensen [BJ16], in particular Section 12.
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For an extensive and informative survey describing the history and applications of
Weierstrass points, starting with Weierstrass and Hiirwitz [Wei67, Hur92] in the 1800s, see
Del Centina [DCO08]. The study of Weierstrass points on stable curves was initiated by
Eisenbud and Harris [EH87a], who proved results on nodal curves of compact type, i.e., curves
whose dual graph is a tree. This work served as an application of their newly-developed
theory of limit linear series [EH86]. They moreover raised the question of constructing a
moduli space parametrizing all possible limit Weierstrass divisors of a given stable curve, a
problem which has been widely open since then.

Moving beyond stable curves of compact type, Lax [Lax87] studied Weierstrass points
on stable curves consisting of one rational component with nodes; in this case, the dual
graph is a single vertex with self-loops. (The term tree-like is used in the literature to
describe curves whose dual graph consists of a tree after removing self-loops.) A further
breakthrough came with Esteves-Medeiros [EM02] who worked with stable curves with
two components, i.e., curves whose dual graph is a dipole graph. (We refer to Section 4.6.8
for a discussion of our results applied to dipole graphs and the connection to [EM02].)
Esteves—Salyehan [ES07] studied further cases of nodal curves, including when the dual
graph is a complete graph. Cumino—Esteves—Gatto [CEGO8] studied limits of special
Weierstrass points on certain stable curves, i.e., Weierstrass points with weight at least
two. The problem of describing limits of Weierstrass points away from the nodes in a given
one-parameter family in characteristic zero is addressed in [Est98].

Although not directly related to the results of this manuscript, we mention that other
works treat the case of irreducible Gorenstein curves, and associate Weierstrass weights
to their singular points, see e.g. [LW90, dCS94, GL95, BGI5] and the references there. It
might be possible to use tropical geometry to describe these weights.

Weierstrass points have appeared in other interesting work on moduli spaces of curves.
Arbarello [Arb74] studied subvarieties of the moduli space of curves cut out by Weierstrass
points; further results were found in Lax [Lax75] and Diaz [Dia85]. Eisenbud-Harris [EH87b]
showed that the moduli space of curves has positive Kodaira dimension, using loci of
Weierstrass points as part of their argument. Cukierman(-Fong) [Cuk89, CF91] found the
coefficients for the Weierstrass locus in the universal curve ¢, of genus g, in a standard
basis for the Picard group of 4. We discuss the behavior of tropical Weierstrass loci over
the moduli space of tropical curves in Section 4.7.1.

4.1.5 Organization of the text

The chapter is organized as follows. We first treat the case of non-augmented metric graphs,
and then provide refinements. This choice has the advantage of making the presentation
less technical, and we hope this will add to readability.

We define slope sets and prove Theorem 4.1.9 in Section 4.2.

In Section 4.3, we study Weierstrass weights and the Weierstrass measure they define
on a metric graph. We state and prove Theorem 4.3.9, which provides a description of
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the Weierstrass measure using the slopes, from which we deduce Theorem 4.1.7 and other
interesting consequences. This section contains the proof of positivity of Weierstrass weights
as well, and a discussion of the case of combinatorial graphs. The case of the canonical
Weierstrass locus on non-augmented metric graphs is treated in Section 4.3.7.

Section 4.4 provides several refinements and generalizations of the previous sections. The
setting is extended in two ways. First, complete linear series Rat(D) are replaced with
incomplete linear series, by taking closed sub-semimodules of Rat(D). Second, metric graphs
are replaced with augmented metric graphs. We provide justification for our definitions in
the augmented setting and provide the corresponding generalizations of Theorem 4.3.9 on
the Weierstrass measure and of Theorem 4.1.7.

In Section 4.5, we explain how to associate Weierstrass divisors to combinatorial limit
linear series. This is particularly interesting in the case where the locus of Weierstrass
points associated to the underlying divisor becomes infinite after forgetting the slopes. We
show the compatibility of the definitions appearing in this section with the previous ones.

Using the above materials, we establish a precise link between the tropical Weierstrass
divisors with tropicalizations of Weierstrass divisors on smooth curves. This includes the
proof of Theorem 4.1.10, and its generalizations.

In the last two Sections 4.6 and 4.7, we provide several examples with the aim of clarifying
the concepts introduced in previous sections, and discuss other interesting results related
to them. We also raise several open questions.

Section 4.8 proves the results we need on the tropicalization of Weierstrass divisors.

4.1.6 Basic notations

A (combinatorial) graph G = (V, E) is defined by a set of vertices V' and a set of edges £
between certain vertices. In the current chapter, graphs will always be taken to be finite
and connected. Moreover, they will allow loops and multiple edges.

A metric graph is a compact, connected metric space I' verifying the following properties:

(i) For every point x € I, there exist a positive integer n, and a real number r, > 0 such
that the r,-neighborhood of x is isometric to the star of radius r, with n, branches.

(ii) The metric on I is given by the path metric, i.e., for points x and y in I, the distance
between x and y is the infimum (in fact minimum) length of any path from z to y.

The integer n, above is called the valence of = and is denoted by val(z).

Given a graph G = (V, E) and a length function ¢: E — (0,+400) assigning to every
edge of G' a positive length, we can build from this data a metric graph I" by gluing a
closed interval of length ¢(e) between the two endpoints of the edge e, for every e € E, and
endowing I with the path metric. The space I' is then called the geometric realization of
the pair (G, /).
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A model of a metric graph I" is a pair (G, ¢) consisting of a graph G = (V, E) and a
length function ¢: E' — (0, +0) such that I' is isometric to the geometric realization of
(G,¢). By an abuse of notation, we also call G a model of T

For a metric graph I" and a point z € I', the tangent space T, (I") is defined as the set
of all unit outgoing tangent vectors to I' at x. This is a finite set of cardinality val(x).
If G = (V,E) is a loopless model for I" such that z € V, then T,(I') is in one-to-one
correspondence with the edges of GG incident to . Through this natural bijection, a tangent
direction v is said to be supported by the corresponding edge e € F.

Each edge e supports two tangent directions, which belong to either endpoint of e,
respectively. If v is one of those tangent directions, the opposite direction is denoted by 7.
For v € T(I'), we denote by x, the point x with v € T,(T).

In this chapter, all the semimodules will be assumed to be nonempty.

4.2 Slope sets

In this section, we prove Theorem 4.1.9. We first recall some terminology for divisors and
functions on metric graphs.

Given a metric graph I, let Div(I") denote the group of divisors of T', which is the free
abelian group generated by points x € I'. Let Rat(I") denote the set of real-valued piecewise
affine linear functions on I" whose slopes are all integers. Given a function f € Rat(I'), let
div(f) denote the principal divisor of f, defined as

div(f) = Z a,(z) where a, = — Z slope,, f(z).

zel veT,(T)

Let D be a divisor of rank 7 on I". Let Rat(D) denote the set of rational functions in the
complete linear series of D defined as

Rat(D) := {f € Rat(T) : D + div(f) = 0}.
Given a point x € D, there is a unique representative f, of the linear series of D defined by

fz = min
feRat(D)
f(2)=0

The corresponding divisor D + div(f,), denoted by D,, is the (unique) z-reduced divisor
linearly equivalent to D. This statement is a consequence of the maximum principle, see
e.g. [BS13, Lemma 4.11].

Definition 4.2.1 (Slope sets and minimum slopes). Let D be an effective divisor on I'.
Given a point z € I' and a tangent direction v € T, ("), let &”(D) denote the slope set

S"(D) := {slope, f(z) : f € Rat(D)}.
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Let sg(D) denote the minimum slope in the slope set &”(D), i.e.,
s¢(D) := min{slope, f(x) : f € Rat(D)}.
When the divisor D is clear from context, we will simply use sf to denote s§(D). o

Lemma 4.2.2. Suppose D is a divisor of rank r. Then, for every x € T' and every v € T, ('),
there are at least r + 1 integers in the set of slopes {slope, f(x) : f € Rat(D)}.

Proof. Let xy,...,xz, be a set of distinct points in the branch incident to z in the direction
of v sufficiently close to z. There exists a function f € Rat(D) such that

D +div(f) = (z1) + - + ().

The function f changes slope at the points z1,...,z,. Each of the slopes taken at z; in the
direction of v can be obtained as the slope of a function in Rat(D) at x along v. O

The minimum slope s (D) is related to the reduced divisor D, at x.

Lemma 4.2.3. Let D be an effective divisor on I', and x a point of I'. Let D, be the
x-reduced divisor linearly equivalent to D.

(a) Let f, be the above defined rational function satisfying div(f,) + D = D,, then, for
any outgoing tangent vector v € T,(T'),

so(D) = slope,, fz().
(b) The coefficient of D, at x satisfies

D,(x) = D(z)— > s4(D).

veT,(T)

Proof. The first result is obtained by observing that f, = minh for h € Rat(D) verifying
h(z) = 0. The second result is a direct consequence of (a) and the definition of the principal
divisor div(f;). O

We now turn to the proof of Theorem 4.1.9. Let D be a divisor of rank r on I". Recall
(Definition 4.1.3) that the Weierstrass locus of D, denoted by L, (D), is the subset of I'
formed by the points x such that there exists an effective divisor £ ~ D with E(x) > r + 1.
Equivalently, Ly (D) is defined in terms of reduced divisors as

Ly(D)={x el : Dy(x)>r},

where D, denotes the x-reduced divisor linearly equivalent to D.
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Proof of Theorem /.1.9. We first assume that the open interval (z,x + ev) is disjoint from
Ly (D). Along the branch incident to z in the direction of v, there is a small segment
on which s§ is the slope of a function in Rat(D), and it is the smallest slope taken by a
function of Rat(D) on this segment. If a slope of s +r + 1 or larger is achieved at z, then,
again on a small segment, it will be achieved at any point of that segment. This means that
on the interior of this segment, the two minimum outgoing slopes at every point are sf and
—sy — s with s’ = r + 1. Therefore, by Lemma 4.2.3, we infer that on the interior of this
segment, the reduced divisor at each point has coefficient at least r» + 1. This contradicts
the assumption that a neighborhood (x,z + ev) is disjoint from L, (D), and shows that the
highest possible slope is s§ + r. Combining this with Lemma 4.2.2, the slopes achieved at x
along v must be precisely s, s§ + 1,..., sy + r. This proves (a).

We now assume that (z,z + ev) < L, (D) and that € is small enough so that the set of
slopes of functions of Rat(D) along v is constant on this interval. By Lemma 4.2.3, this
means that on the interior of a small segment starting at z, the two minimum outgoing
slopes at every point are s and —s{ — s’ with s’ = r + 1. Therefore, close to z, a slope of
at least s + r + 1 is achieved by a function in Rat(D). To prove (b), it is thus sufficient
to show that the set of slopes slope, f(x) of functions f € Rat(D) is always made up of
consecutive integers. Take s; < sy < s3 to be three integers, and suppose that for i € {1, 3}
there exists a function f; € Rat(D) such that slope, fi(z) = s;. Using fi, f3 and tropical
operations, it is easy to construct a function f taking slopes s3 and then s; away from =z,
changing slope at a point we denote by y (see Figure 4.1). We can then “chop up” the graph
of f to construct a function h equal to f everywhere except on a small interval around y
where it takes slope sy. Since (z,x + €v) is disjoint from the support of D, h still belongs
to Rat(D). The assumption made on ¢ at the beginning ensures that in fact there exists a

function f, € Rat(D) taking slope sy at x along v, which concludes the argument. ]
[
Sq 1 S1 f S5 S1 g
S3 53 S3
[
x v x Yy v x Y v

Figure 4.1: Construction of the functions f and ¢ using functions f; and f3 taking slopes
S1 < S3.

Remark 4.2.4. In particular, note that along a given unit tangent vector v attached to
a point z, the slopes slope, f(z) for = € Rat(D) always form a set of consecutive integers.
Moreover, if t is a positive integer such that for every z € e, for e an edge of some model
of I', the z-reduced divisor D, satisfies D, = t(x), then for any = € é, the set of slopes
{slope,f(z) : f € Rat(D)} contains at least ¢ + 1 consecutive integers. This claim is
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analogous to [Amil3, Theorem 14] and is proved using Theorem 3 of the same paper, which
gives a concrete description of the variations of the reduced divisor D, with respect to x.
See also [AG22, Section 7.6] (Section 3.7.6 in the present manuscript). o

For future use, we note the following generalization of part (b) of Lemma 4.2.3.

Proposition 4.2.5. Suppose D is a diwvisor of rank r. Then, for any closed, connected
subset A < T', we have

deg (D|,) — Z sg(D) = .

ved™ A

Proof. Let E be an effective divisor of degree r, with support contained in A. Since D
has rank r, there exists a function f € Rat(D) such that D + div(f) > E. Evaluating the
respective degrees restricted to A yields

deg (D’A) - Z slope, f(z,) = deg (E‘A) =7

t
ved™™ A

where, we recall, x, is the point x of I" with v € T,(I"). By definition of the minimum slope
s¥(D), we have s4(D) < slope, f(x,) for each v € 0™ A, so the result follows. O

4.3 Weierstrass weights

Using the structure of slope sets in Rat(D), we prove Theorem 4.1.7, which will follow from
the more general Theorem 4.3.9.

4.3.1 Definition of weights and basic properties of the Weierstrass
locus

We start by establishing basic properties of Weierstrass loci. (Definition 4.1.3) The Weier-
strass locus Ly, (D) is defined as the set of points x in I" such that there exists an effective
divisor E in the linear system of D whose coefficient at x is at least » 4+ 1. This is equivalent
to requiring that D,(z) = r + 1. Let us now recall Definition 4.1.6 from the introduction.
Given a connected component C' of the Weierstrass locus Ly (D), the tropical Weierstrass
weight of C' is defined as

pw(C) = p(C3 D) 1= deg (D) + (9(C) = r— > s5(D)
ved™ C
where deg (D|,) = Y,cc D(x) is the degree of D in C, g(C) = dim H;(C,R) is the genus
of C, 0™ C is the set of outgoing unit tangent directions from C, and s%(D) is the minimum
slope at x along a tangent direction v, as defined in Definition 4.2.1. The following
proposition shows that L, (D) is topologically nice.

Proposition 4.3.1. The Weierstrass locus Ly (D) is closed and has finitely many compo-
nents. Fach connected component is a metric graph.
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Proof. By the continuity of variation of reduced divisors proved in [Amil3, Theorem 3],
the function x — D,(z) is upper semicontinuous, which implies that the subset L, (D) is
closed. Then, by Theorem 4.1.9, the number of connected components of L, (D) is finite.
The last statement follows as any connected component of a closed subset in a metric graph
is itself a metric graph. N

Remark 4.3.2. We have the following geometric construction of Ly (D), which gives
another proof for Proposition 4.3.1. Let Pic?(T") denote the space of divisor classes of
degree d on T, and let Eff*(I") denote the space of effective divisor classes of degree d. Let
¢ : ' — Pic™™}(T') be the map defined by ¢(z) = [D — (r + 1) (z)].

The condition that D,(x) > r is equivalent to D, > (r +1) (z). This is in turn equivalent
to the condition that the divisor class [D — (r+1) (z)] has an effective representative. Using
this observation and the above terminology, Ly (D) = ¢~ (¢(I') 1 Effd”"l(l“)). In other
words, Ly, (D) is described by the following pullback diagram.

Both Eff™""!(T) and ¢(I") are polyhedral subsets of Pic®""}(I") with finitely many facets.
Thus their intersection has finitely many components, and each component is a union of
finitely many closed intervals. o

Remark 4.3.3. As before, let D, denote the z-reduced divisor linearly equivalent to D.
Since the Weierstrass locus Ly, (D) is defined as {z € T : D,(x) — r > 0}, the expression
D,(x) — r is a natural “naive” candidate for defining a tropical Weierstrass weight. In fact,
this ends up being the correct definition when z is an isolated component of Ly (D). When
x is not an isolated component, our more technical definition of weight is required.

If the singleton {x} is a connected component of Ly (D), then we verify that the weight of
x is simply given by D, (x)—r. Since the genus of the component {x} is zero, Definition 4.1.6
states that

pw () = D(w) — 1 — Z so(D),

veT,(T)

and Lemma 4.2.3 states that D, (z) = D(z) — X cr, r S0 (D). This verifies the claim.
Note that this applies for every connected component of Ly, (D) if D is W-finite. o

We now give two examples of metric graphs and their Weierstrass loci. The first
Weierstrass locus is finite whereas the second one is infinite.

Example 4.3.4. Suppose I' is the complete graph on four vertices with unit edge lengths;
see Figure 4.2. This graph has genus three, and the rank of the canonical divisor K is
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r = g—1 = 2. It is easy so see that the slopes on each edge are {—1,0, 1}. This can be proved
by direct verification, or by using the reflexivity of each edge of I', see Definition 4.3.21.
The Weierstrass locus Ly, (K) is finite and consists of the four vertex points. At a vertex v,
the reduced divisor at v is K, = 4 (v). Thus, py(v) = K,(v) —r =4 —2 = 2.

A A

Figure 4.2: Complete graph on four vertices, and its Weierstrass locus Ly,

We will treat the example of the complete graph on five or more vertices in Section 4.6.5.
o

Example 4.3.5. Suppose [ is the “barbell graph” consisting of two cycles joined by a
bridge edge; see Figure 4.3. (The edge lengths may be arbitrary.) This graph has genus
two, and the canonical divisor K has rank r =g —1 = 1.

The Weierstrass locus Ly, (K) consists of the middle edge and the outer midpoint on each
cycle. The latter have weight one. If we divide each cycle into two equal parts according to
its two distinguished points, then the slopes on each half-circle are {0, 1} starting on the
middle edge. This implies that the weight of the middle edge is also one.

) L)

Figure 4.3: The barbell graph and its Weierstrass locus Ly, (K

We will show in greater generality in Section 4.6.4 that if e is a bridge edge of I' such that
each component of I" \ € has positive genus, then e is contained in the canonical Weierstrass
locus. o

4.3.2 Positivity of Weierstrass weights

We now prove the following theorem.

Theorem 4.3.6. Let D be a divisor on I' with non-negative rank r, and let C' be a connected
component of the Weierstrass locus Ly, (D). Then, the weight j1,,(C') given in Definition /.1.6
18 positive.

Proof. We use the notations introduced previously. Let x be a point in the connected
component C', and let D, be the z-reduced divisor equivalent to D. By definition of the
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Weierstrass locus Ly, (D), we have D,(z) —r > 0. Let f, be a rational function such that
D, = D + div(f,). We have

Dy(x) = D(z)— ), slope,fs(x).

veT,(T)

Let A be any connected subgraph of I', and recall that deg (D$| A) denotes the sum
Yiyea Dz(y). For a tangent vector v € 0™ A, let, as before, z, denote the associated
boundary point. We have

deg (D, ,) = deg (D|A) — Z slope,, f.(z,)
ved®™ A

by applying Stokes theorem to the derivative of f, on the region A.

Because x € C' and D, is effective, we have deg (Dx|c) > D,(z) > r. For each tangent
direction v € ¢"C, the minimum slope s%(D) satisfies s4(D) < slope,, f.(x,) by definition
(Definition 4.2.1). Therefore,

pw (C) = deg (D|,) + (9(C) = 1)r = > s4(D) = deg (D|,) —r— >, s(D)
ved®™ C ved™ C

(D) —r— 3] soperfuln) — deg(Dule) 7> 0
ved®' C

as claimed. ]

The proof of Theorem 4.3.6 shows the stronger bound p,,(C') > ¢g(C)r. This is addressed
later, in greater generality, in Corollary 4.3.13.

4.3.3 Weierstrass measure

We prove Theorem 4.3.9 below, which will imply Theorem 4.1.7.

Definition 4.3.7. Fix a divisor D on a metric graph I', with Weierstrass locus Ly, (D). A
subset A < I" is Ly (D)-measurable if A is a Borel set and, for every component C' of the
Weierstrass locus Ly (D), we have either

CcA or Ccl' A
Let A = A(D) denote the o-algebra of L (D)-measurable subsets of I'. o

In other words, given a Weierstrass locus Ly, (D) € I', we can construct the quotient map
7w : ' - T’y in which each component C; < L, (D) is contracted to a single point. Then,
the L, (D)-measurable sets of I" are the preimages of Borel sets of I'y. If the divisor D is
We-finite, then all Borel sets in I" are Ly (D)-measurable.
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Definition 4.3.8 (Weierstrass measure). Notations as above, let D be an effective divisor
of rank r on I', and let A denote the o-algebra of L, (D)-measurable subsets of I'. We
define the Weierstrass measure [i,, as the “weighted counting measure” on I' whose atoms
are the connected components in the Weierstrass locus Ly (D). More precisely, fi, is the
measure on (I, A) defined by

fu(A) = ) lC),

CcA

where the sum is taken over components of L, (D) contained in A, and pu, (C) is given
by (4.1). o

We have the following description of the Weierstrass measure.

Theorem 4.3.9. Notations as above, for any closed connected A € A, we have

fn(A) = deg (D] ) + (9(A) = 1)r — > st(D). (4.2)
ved™ A

Proof. Let A = {C,...,C,} denote the set of components of L, (D) contained in A. Let
G = (V,E) be a model for I' whose vertex set V' contains the support of D, and let
Vn (AN Lw(D)) = {v1,...,v,} denote the set of non-Weierstrass vertices in A. For each
such vertex v;, let C,; = {v;} denote the corresponding singleton, and let 2 denote the
union

A=2A0 {vi},..., {vm}} ={C1,...,Cn,Crs1,...,Ca}  where 7 =n+m.

Finally, let || = >, C; be the underlying subset of T'. Note that 2| < A, and A~ |2
consists of a union of finitely many open intervals; let & denote their number.
Let V' :=V ~ Ly (D), as in Figure 4.4. For each v € V', we have D,(v) = r, so

p({v}) = D) =r = 3 s5(D) = Dy(v) =1 =0.

veT,(T)

Thus, the “components” C,,,; = {v;} inside 2 . 2 do not contribute to the total weight, so
it suffices to show that Z ww (C;) satisfies (4.2).

CZEQN[
From Definition 4.1.6, we have

n

D p(Ci) = ) deg <D|Ci> )@ -n=2 Y S0 (4.3)

=1 \ peo™™ C;

We treat separately the three terms appearing on the right-hand side of (4.3). The first
term ). deg <D| c-) is equal to deg (D| A), since the vertex set V' was chosen to contain the

support of D.
For the second term, we apply the identity

deg (K|,) = 29(B) — 2 + outval(B) for B<T closed and connected
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(see Lemma 4.3.16) twice to obtain

ri_zl(g g;(deg ( ) - outval(C’Z-))
g(deg (K|,) — outval(A) — 2k)
=r(9(A) = 1) =1k,

where k, we recall, denotes the numbers of edges of I' \ |§l| whose endpoints are both in |9~l|

For the third term, the collection of all tangent directions UCZEQNL{U € (90“‘01-} can be
partitioned into “paired” directions, if following v leads to another component in QNI, and
“unpaired” directions, if following v leads out of A. For any paired tangent direction
v € 0" C;, there is a matching opposite direction 7 € 0™ C; (see Section 4.1.6) and their
minimum slopes satisfy s§(D) + s§(D) = —r. For any unpaired tangent direction v € 0™ C;,
the minimum slope s%(D) is equal to s¥ (D) for some parallel tangent direction v/ € 6" A.
Moreover, this gives a bijection between ¢ A and the unpaired tangent directions. Using
this, we have

Zn: 2, D= X s+ Y si(D)

=1 \ peo”™C; unpaired v paired v
k
= > sb(D)+ ) (s¢'(D) + st(D))
ved™ A =1
= Z sg(D) —rk
ved®™ A
Combining the above identities shows that fi, (A) satisfies (4.2). O

Remark 4.3.10. For a closed subset A € A with a finite number of connected components,
the weight fi,,(A) can be expressed equivalently as

fun(A) = deg (D) + (9(A) — c(A))r — > s§(D)

ved®™ A

where ¢(A) = hg(A) denotes the number of connected components of A. Note that
g(A) = hi(A), so that in terms of the Euler characteristic x, the middle term is —r-y(A). ©

The following result can be obtained by the same method. Let U be a connected open
subset of I' which is Ly, (D)-measurable.

Theorem 4.3.11. Notations as above, the Weierstrass weight fi,,(U) can be recovered from
the slopes around the incoming branches as the sum

i (U) = deg (D)) + (9(U) = )r + 3 (D)

ved™U
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Figure 4.4: The part in red in the left figure is the (hypothetical) locus of Weierstrass points,
and consists of three connected components. Red thickened points are on the
boundary of the Weierstrass locus. Black vertices are those belonging to V”,
that is, outside the Weierstrass locus. They are three in number. The right
figure is an example of a set A appearing in A. There is no vertex in A outside
the Weierstrass locus, so m = 0. There are two connected components of the
Weierstrass locus in A, so n = 2. The subset A \ ]Q~l| consists of four intervals.
This means k = 4.

where 0"U denotes the set of incoming unit tangent vectors from the boundary of U, and

s (D) the mazimum slope along the incoming tangent vector v of any rational function

in Rat(D).

Note that since U is open and Ly (D) is closed, every v € 0"U is tangent to an open
interval on I which is outside Ly (D) and thus s?, (D) = sg(D) + r (see Theorem 4.1.9).

max

Thus we have

fi (U) = deg (D|,,) + (9(U) =1 + inval(U)) r + 2 sy (D).

ved" U

Proof of Theorem j.1.7. We apply Theorem 4.3.9 with A = I'. The statement about
W-finite divisors follows from the first statement and Remark 4.3.3. O

4.3.4 Consequences

We now provide some direct consequences of the above results, starting with the following
remark.

Remark 4.3.12. Theorem 4.1.7 and [Ric24, Theorem A] together imply that a generic
divisor D of degree d = g has a finite Weierstrass locus made up of g (d — g + 1) points, all

209



of weight one. Indeed, the cardinality of L, (D) given by [Ric24, Theorem A]is g (d—g+1),
whereas the total weight given by Theorem 4.1.7 is d — r + rg. But r = d — g generically
and in this case we have g(d—g+ 1) =g(r+1)=d—r +rg. o

Corollary 4.3.13. Suppose D is a divisor of rank r. For any closed, connected, Ly (D)-
measurable subset A < I', we have

i (A) = g(A) .
Proof. This follows from Theorem 4.3.9 and Lemma 4.2.5. ]

Corollary 4.3.14 (Theorem 4.1.8). Suppose that the rank r of D is at least one. Then,
the complement of the Weierstrass locus Ly, (D) is a disjoint union of (open) metric trees.
In other words, every cycle in T" intersects the tropical Weierstrass locus.

Proof. For the sake of a contradiction, suppose that A is a cycle in I" disjoint from the Weier-
strass locus Ly (D). Then, A is Ly (D)-measureable, and by definition (Definition 4.3.8),
fw(A) = 0. However, Corollary 4.3.13 states that ji,(A) = g(A)r > 0, which gives a
contradiction. ]

4.3.5 Special cases of weights

Here, we point out some special cases of the weight formula.

(i) If a divisor D has rank r = 0, then fi,,(I') = d. Suppose D is effective in its linear
equivalence class. For any tangent direction v outside the Weierstrass locus, the slope
set &”(D) contains a single slope, and this slope must be zero since D is effective.
Thus, a component C' of the Weierstrass locus has weight p,, (C) = deg (D|c)'

(ii) If the genus g = 0, then for any divisor fi,,(I') =d—r = 0. (In general 0 < d—r < g.)
In particular, this implies that the Weierstrass locus L, (D) is empty.

(iii) If the genus g = 1, then for a divisor of degree d, the total Weierstrass weight is
fw (I') = d. Every component C' of the Weierstrass locus has weight pu, (C') = 1.

(iv) If the rank satisfies r = d — g, then fi,,(I') = d—r +rg = g (r +1). In particular, this
holds for a generic divisor class with degree d > ¢, and for every divisor with degree

d>=2g—1.

(v) If D = K is the canonical divisor, then d = 29 — 2 and r = g — 1, so fi([) = ¢*> — 1.
See Section 4.3.7 below for more discussion of this case.
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4.3.6 Combinatorial graphs

In this section we assume I' is a combinatorial graph. By this we mean I' admits a model
(G = (V, E), () which has unit edge lengths. We assume the divisor D is supported on the
vertex set V.

Theorem 4.3.15. Suppose e = wv is an edge in G whose interior € is Ly, (D)-measurable.
Let f., be a rational function that satisfies div(fy,) = Dy — D,,. Let v be the unit tangent
vector at v along e, towards w. Then, the Weierstrass weight of the interior of e is

ﬂw(é) =Tr- Slopeu(fuv)'

Proof. Let U = é. Since Ly, (D) is closed, we can take the open interval U a little bit
smaller so that its extremities are distinct from u and v and U still contains the same
components of Ly, (D). Theorem 4.3.11 states that the sum of Weierstrass weights on U = ¢é
is equal to

fu (U) = deg (D|,,) + (9(U) = 1)r+ > sk (D).

ved"U

Since D is supported on the vertex set, we have deg (D|U) = 0, and we also have g(U) = 0.
Thus, the expression simplifies to

fiw(U) = =1 + (st (D) + sur (D))

max ( max

where v and 7 are tangent directions towards u and v, respectively. If f, and f, satisfy
div(f.) = D, — D and div(f,) = D, — D,

then we have

slope, fu(u) = Sg’ﬁ(D) = s’ (D) —r and slope, f,(v) = sg”(D) = s (D) —r,

max max

and the relation f,, = f, — f, implies

SlOpeywa(U) = slopey(fu - fv)(u) = —(SEEX(D) - T) - (Sfﬁgx(D) - T)
= 2r — (it (D) + sur (D).

max max

Note that the slope of f,, is constant along the interior of e, since the reduced divisors D,
and D, are supported on vertices. O

4.3.7 Canonical Weierstrass locus

In this section we discuss the case of the canonical divisor on a metric graph.
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Weierstrass weight

The weight formula (4.1) for u, (C; D) may be specialized to the case of the canonical
divisor D = K. We need the following lemma.

Lemma 4.3.16. Let K = ) (val(z) — 2) (z) denote the canonical divisor of I', and let
A< T be a closed connected subset. Then

deg (K| ,) = 29(A) — 2 + outval(A).

Proof. The proof can be obtained by direct calculation using an adapted graph model. The
details are omitted. [

By direct summation, this result generalizes to closed subsets with finitely many connected
components.

Theorem 4.3.17. Suppose I' is a metric graph of genus g, and let K be its canonical
divisor. The weight of any component C' of the Weierstrass locus Ly, (K) is

(G5 K) = (g + 1)(9(C) = 1) = Y (sg(K) = 1).
ved™ C
More generally, for any closed, connected subset A € T' that is Ly (K)-measurable,
(A K) = (g +1)(g(A) 1) = > (s§(K) —1).
ved™ A

Proof. Let 0" C denote the set of outgoing tangent directions from C'in I, and let outval(C)
denote its cardinality. From (4.1) we have

(G K) = deg (K|,) +7(g(C) =1) = >, sH(K).
ved®™ C

The canonical divisor K has rank » = g — 1. By Lemma 4.3.16, on a closed connected set
B < T, the degree deg (K|,) satisfies deg (K|,) = 29(B) — 2 + outval(B). Therefore,

(G K) = deg (K|,) + (9= D(g(C) = 1) = > s§(K)

l/E@O"tC
= 2(g(C) — 1) + outval(C) + (g — 1)(9(C) = 1) = > s{(K)
ved™ C
= (g+D(g(C)=1) = > (sh(K)—1),
ved™ C
which concludes. O

If we repeat the same computation for the pluricanonical divisor nK, where n > 2, we

find that

i (AsnK) = (20— Dg(g(A) = 1) = 3 (sh(nk) —n).
ved™™ A
This next corollary to Theorem 4.3.17 is also a direct consequence of Theorem 4.1.7.
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Corollary 4.3.18. Suppose I' is a genus g metric graph.

(a) The sum of Weierstrass weights over all components of Ly (K) is equal to g* — 1.

(b) For any integer n = 2, the sum of Weierstrass weights over all components of Ly, (nK)
is equal to (2n — 1)g(g — 1).

The next result is a special case of Corollary 4.3.13.

Corollary 4.3.19. Suppose I' is a metric graph of genus g. For any closed, connected,
Ly (K)-measurable subset A < T', we have

ﬂW(A> = g(A) (g - 1)‘

We end this section by providing a geometric interpretation of the tropical canonical
Weierstrass locus. For the general description for any divisor D, see Remark 4.3.2.

The tropical canonical Weierstrass locus Ly (K) can be described as an intersection
as follows. Suppose f : I' — Pic? *(T") sends x to the divisor class [K — g (z)], and let
h : Efff~*(T") — Pic?"%(T") be the inclusion of effective divisor classes in the space of all
divisor classes of fixed degree g—2. The points in Ly (K) are those such that [K —g ()] = 0,
or equivalently [K — g (x)] € EffY *(I"). This description is summarized by the following
pullback diagram.

Ly(K) —— Efff ()

Lok
I — 5 Pies2(I)

The bottom horizontal map f sends z to the divisor class [K — g (x)]. The right vertical
map h is the inclusion of effective divisor classes in the space of all divisor classes of fixed
degree g — 2. The points in L, (K) are those such that [K — g (z)] = 0, or equivalently
[K — g(x)] € Ef**(D).

This description, which makes L., (K) sit inside the polyhedral complex EffY"*(T), brings
forward the following open question.

Question 4.3.20. [t is possible to express the Weierstrass weights using this geometric
description in a meaningful way?

Edge symmetry

We now discuss properties of some specific Weierstrass points under some symmetry
condition; see as well Section 4.6.5.

Definition 4.3.21. An edge e of a metric graph I' is reflexive if there is an automorphism
o :T'— T such that o(e) =€, i.e., o reverses the direction of e. o
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We show that the midpoint of a reflexive edge is either a Weierstrass point of K, or a
Weierstrass point of nK for all n > 2.

Theorem 4.3.22. Suppose ' is a metric graph of genus g = 2, and let K denote the
canonical divisor of I'. Suppose e is a reflerive edge in I'.

(a) If g is even, then the midpoint of e is in the Weierstrass locus Ly (K).

(b) If g is odd, then the midpoint of e is in the Weierstrass locus Ly, (nK) for any integer
n = 2.

Proof. Let x denote the midpoint of the reflexive edge e. The tangent space T, (I') contains
two directions {v1,15}, and the reflexive assumption implies that the minimum slopes
are equal in both directions, i.e., sg'(K) = sg?(K). If x is outside the Weierstrass locus,
then the singleton {z} is L, (K )-measurable and we may apply the weight formula from
Theorem 4.3.17,

f (23 K) = (g+ 1)(=1) = 2(sg*(K) —1) =g+ 1 mod 2.

Hence if g is even, then /i, () is nonzero, which contradicts our assumption that x is outside
the Weierstrass locus. This proves part (a).

Now consider D = nK for n > 2. By a similar argument, if x is outside the Weierstrass
locus Ly, (nK), then its Weierstrass weight is

fw(x;nK) = (2n—1)g(—1) — 2(sg'(nK) —n) =g mod 2.

If ¢ is odd, then the weight fi,(x) is nonzero, which again gives a contradiction. This proves
part (b). O

4.4 Generalizations

In this section, we generalize the setting of the previous sections to the case of augmented
metric graphs, that is, in the presence of genera associated to the vertices.

Since the genus of a given vertex hides information about the geometry of the component,
it turns out that there will be an ambiguity when talking about the Weierstrass locus of a
divisor D. In fact, the right setup in this context is a divisor D endowed with the data of a
closed sub-semimodule M of Rat(D), which plays the role of a (not necessarily complete)
linear series on the augmented metric graph. In what follows, we will explain how the
preceding definitions and results extend from divisors to semimodules in the more general
setting of augmented metric graphs. We then introduce two special classes of semimodules,
the generic semimodule associated to any divisor, and the canonical semimodule associated
to the canonical divisor. We properly justify both of them using the framework of metrized
complexes.

In the following, we assume all semimodules are nonempty unless specified otherwise.
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4.4.1 Weierstrass loci of semimodules and augmented metric graphs
Semimodules

Let T' be a metric graph, and D a divisor of degree d on I'. The set of functions Rat(D)
naturally has the structure of a semimodule on the tropical semifield; we refer to [HMY12,
AG22] (Chapter 3) for a discussion on this semimodule structure. Let M be a sub-
semimodule of Rat(D). We endow Rat(D) with the topology induced by | - |, and say
M < Rat(D) is closed if it is closed with respect to this topology. The following is a
direct extension to semimodules of the rank of divisors on graphs introduced by Baker and
Norine [BNO7].

Definition 4.4.1 (Divisorial rank). The divisorial rank or simply rank of M < Rat(D)
(also called the rank of D with respect to M) is the greatest integer r such that for any
effective divisor E on I" of degree r, there exists a function f € M verifying D + div(f) > E.
It is denoted by r(M, D). o

In fact, as the following statement shows, the divisorial rank will only depend on the
semimodule M, if we additionally assume that M is closed. Therefore, we will work only
with closed semimodules in the following, and will denote their rank simply by (M ). Note
that any (nonempty) semimodule has rank (M) > 0. Also note that by definition, we have
the immediate inequality (M) < r(D).

Proposition 4.4.2. The divisorial rank r(M, D) of a closed semimodule M < Rat(D)
depends only on M.

Proof. First note that there is a unique minimal divisor Dy such that M < Rat(Dy), which
is obtained by taking the (point-wise) minimum of all such divisors.

Then, we denote r(M, D) by r and (M, Dy) by 1o. It is clear from the inequality Dy < D
that the inequality ro < r holds. We thus prove that rq = r. We choose a model G = (V, E)
such that the vertex set contains the support of D.

First, we suppose that F is an effective divisor of degree r on I" whose support is disjoint
from the support of D. By definition of r, there exists f € M such that D + div(f) > E.
Since M < Rat(Dy) and D coincides with Dy outside V', it follows that Dy + div(f) > E.

Now, let ' be an effective divisor of degree r on I" whose support may intersect that of
D. Let (E,), be a sequence of divisors of degree r converging to E, such that for each n,
the support of FE, is disjoint from V. By what precedes, for each n, there exists a function
fn € M such that Dy +div(f,) = E,. Without loss of generality, assume that f,,(zo) = 0 for
some o € I'. Thanks to the boundedness of the slopes of functions in Rat(Dy) (see [GKOS,
Lemma 1.8]), we can assume that (f,), converges uniformly to a function f, which satisfies
Do+ div(f) = E at the limit. The limit function f is in M by assumption that M is closed,
which concludes the argument. ]

Remark 4.4.3. In essence, the above proof shows that the complement of the support of
D is a “rank-determining set” for the semimodule M in the sense of [Luoll]. o
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The notion of minimum slopes naturally extends to closed semimodules.

Definition 4.4.4 (Slope sets and minimum slopes). Let M < Rat(D) be a closed sub-
semimodule. Given a point x € I and a tangent direction v € T,(T"), let &”(M) denote the
slope set

&Y (M) := {slope, f(z) : f € M}.
Let sg(M) denote the minimum slope along v of functions in M. More generally, let s%(M)
denote the (j + 1)-smallest slope along v of functions in M, i.e.,

sg(M) = min{&" (M)}, s7(M) = min{s € (M), s > s7_,}.

J

When the semimodule M is clear from context, we will simply use s7 to denote s7(M). o
The following result is obtained similarly to Proposition 4.2.5; we omit the details.

Proposition 4.4.5. Suppose M < Rat(D) is a closed semimodule of divisorial rank r.
Then for any closed, connected subset A < I', we have

deg (D|,) — Z sg(M) = .
Ve A

Reduced divisors

For closed M < Rat(D), there is a well-defined and well-behaved notion of z-reduced
divisor, denoted DM linearly equivalent to D with respect to M for every x € I'. Simply,
we define f,: I' — R by setting

fa(p) = }3\5 f(p) VYpel.

f(x)=0
Using the boundedness of slopes [GKO08, Lemma 1.8|, the infimum in the definition above
turns out to be a minimum, and f, is the uniform limit of a sequence of elements in
M. Therefore, f, € M. We set DM := D + div(f,). It follows from the definition that
slope, f.(z) = sy for all v € T,('), and D¥(z) = D(z) — 2er,(r) So- Therefore, the
analogue of Lemma 4.2.3 holds.

Augmented metric graphs

An augmented metric graph is a metric graph I" endowed with a model (G = (V, E), ()
and a genus function g : V' — Z-,. The genus of (I', g), denoted by ¢(I", g) or simply g, is
defined by

9(T,9) = g(T) + > a(v).

veV

This terminology follows [ABBR15al; “vertex-weighted graph” is used in other places.
Augmented metric graphs arise from the semistable reduction of smooth proper curves
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over a valued field, when remembering the genera g(v) = g(X,) of the components X,, for
veV.

Note that any metric graph is naturally an augmented metric graph, by declaring the
genus function to be the zero function. This means that what we will discuss below applies
equally to the setting of non-augmented metric graphs.

Weierstrass locus

We now extend the notion of tropical Weierstrass locus to semimodules in the general
setting of augmented metric graphs. Let (I', g) be an augmented metric graph. Let D be a
divisor on I' and M be a closed sub-semimodule of Rat(D) of divisorial rank r < r(D).

Definition 4.4.6 (Tropical Weierstrass locus of a closed semimodule). The tropical Weier-
strass locus of M, denoted by Ly, (M, D,g) (or L, (M,g) if D is clear from the context), is
the set of all points z € I" which verify D (z) + (g(x) —1)r > 0.

In the case the genus function g is zero, we lighten the notations and simply write
Ly (M, D), instead of L, (M, D,0). We abbreviate L, (M, D) as L, (M) if D is clear from
context. o

The set Ly (M, g) is a closed subset of I' that can in general be infinite. Note that for
every ¥ € I', we have DM (x) > r and therefore DM (z) + (g(z) — 1)r = g(z)r > 0. In
particular, if g(x) > 0 and r > 0, then = belongs to the tropical Weierstrass locus.

We now associate an intrinsic weight to each connected component of the Weierstrass
locus. The definition is analogous to Definition 4.1.6; here it is adapted to semimodules
and depends on the genus function.

Let D be a divisor of degree d on I', and let M < Rat(D) be a closed sub-semimodule of
divisorial rank r. We use the notations of Definition 4.1.6 for deg (D|,), ¢(C), and "' C;
sy(M) is introduced in Definition 4.4.4.

Definition 4.4.7 (Intrinsic Weierstrass weight of a connected component). Let C' be a
connected component of the tropical Weierstrass locus Ly, (M, g). The Weierstrass weight

of C', denoted by u(C; M, D, g), is defined by

i (C; M, D, g) = deg (D|,) + (g(C) + Z g(z) — 1>r — Z sg(M). (4.4)

zeC ved®™ C

It is also denoted simply by p, (C; M, g) or uy (C;g) if M and D are understood from the
context.

In the case the genus function is zero, we use puy (C; M, D), puy(C; M) or pu,(C) for
ww (C5; M, D, 0). o

This quantity is well-defined because any connected component of Ly, (M, g) is a metric
graph, a result that adapts directly from Proposition 4.3.1. As in the case of divisors
(Proposition 4.3.1), L, (M, g) has a finite number of connected components. And since
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Theorem 4.3.6 extends directly, we get u, (C; M, g) > 0. We denote by g(C,g) the sum
9(C) + X ,cc 8(x), that is, the genus of C' in the augmented metric graph (I, g).

Definition 4.4.8 (Tropical Weierstrass divisor). We say that (M, D, g) is Weierstrass
finite or simply W-finite if the tropical Weierstrass locus Ly, (M, D, g) is finite. In this case,
we define the tropical Weierstrass divisor W (M, D, g) as the effective divisor

W(M,D,g):= >, pu(x; M, D,g)(x).

:EGLW (Mvg)

The tropical weight of z verifies uy(x; M, D, g) = DM(z) + (g(z) — 1) r. We abbreviate

W(M,D,g) as W(M,g) if D is clear from the context. Note that the support |(W (M, g))|
of the tropical Weierstrass divisor is exactly the tropical Weierstrass locus Ly, (M, g).

In the case the genus function is zero, we simply use W (M, D) or W (M) for W (M, D, 0).

o

Remark 4.4.9. If we set M = Rat(D), and if the genus function is g = 0, then we recover
the definitions given in Section 4.3 for a complete linear series on a non-augmented metric
graph. Namely,

(i) For every z € I', we have Dy*") = D_.
(ii) We have Ly (Rat(D),0) = Ly (D).

(iii) For every connected component C' of L, (Rat(D),0), we have

MW(C; Rat(D)7 0) = MW(C; D)

(iv) D is W-finite if, and only if, Rat(D) is so. In this case, W(Rat(D),0) = W (D). o

The following proposition, a direct consequence of the definitions, states how the Weier-
strass locus and Weierstrass weights on an augmented graph are related to the non-
augmented definition.

Proposition 4.4.10. If M < Rat(D) is a closed semimodule of rank r, then the following
equalities hold.

(a) LW<M79) = LW(M) Y |g|
(b) For every connected component C of Ly,(M,g), we have

pw (C; M, D, g) = puy (C; M, D) + 1) g(x).
xeC
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Total sum of Weierstrass weights

The following theorem is an analogue of Theorem 4.1.9 for closed sub-semimodules of
Rat(D), and is proved using a natural analogue of Lemma 4.2.3, given in Section 4.4.1. The
only difference is that in the case of semimodules, sets of slopes are no longer necessarily
made up of consecutive integers.

Theorem 4.4.11. Let D be a divisor on I and M be a closed sub-semimodule of Rat(D)
of divisorial rank r. We take a model for (', g) such that the support of D is made up of
vertices. Let x € T be a point and v € T(T') be a tangent direction.

(a) If the open interval (x,x + ev) is disjoint from the Weierstrass locus Ly (M,g), for
e > 0, then the set of slopes {slope, f(x) : f € M} consists of r+1 consecutive integers
{sg, s +1,....s8 +r}.

(b) If the open interval (x,x + €v) is contained in the Weierstrass locus Ly (M, g), then
the set of slopes {slope, f(x) : f € M} consists of integers {s§ < sf < --- < s/} with
t>rand sy —s;=r+1.

Part (a) implies in particular that for any edge e outside the Weierstrass locus of M, the
number of slopes of functions on e is r + 1 and these slopes are consecutive.

As a corollary, following the same computation as in the case of a divisor, we get an
analogue of Theorem 4.3.9.

Theorem 4.4.12 (Sum of Weierstrass weights for an incomplete series on an augmented
metric graph). Suppose (I', g) is a genus g = g(I', g) augmented metric graph, D is a degree
d divisor, and M < Rat(D) is a closed semimodule of divisorial rank r = 0.

Then, the total sum of weights associated to connected components of Ly (M,g) is equal
tod—r+rg. In particular, if M is W-finite, then we have deg(W (M, g)) =d —r + rg.

More generally, let A denote the o-algebra of Ly, (M, g)-measurable subsets of T' and i,
the counting measure on (I', A) associated to the weights p, (C; M, g) given as above. Then,
for any closed, connected A € A, we have

fun (A; M, g) = deg (D] ) + (9(A,g) = Dr — > st(M), (4.5)

where g(A, g) denotes g(A) + 3, _,9(x).
Theorem 4.4.12 implies the following analogue of Theorem 4.1.8.

Theorem 4.4.13. If the divisorial rank r of M is at least one, then every closed connected
subset A of T" with g(A,g) = 1 contains a point of Ly (M, g).

Proof. Theorem 4.4.12 and Proposition 4.4.5 imply that for any closed, connected, L, (M, g)-
measurable subset A < I', we have

fo (A; M, g) = g(A, o),

an analogue of Corollary 4.3.13 for closed semimodules. Then, the argument used in the
proof of Theorem 4.1.8 yields the result. [
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Coherence under inclusion of semimodules

We have the following coherence property for the Weierstrass loci and weights associated to
semimodules.

Proposition 4.4.14. Let M < M’ < Rat(D) be two closed semimodules of rank r. Then,
Ly (M,g) < Ly(M',g) and any Ly (M, g)-measurable subset A of I' is Ly, (M, g)-measurable.
Moreover, the equality iy (A; M,g) = jw(A; M, g) holds.

Proof. Note that the inclusion M < M’ implies that we have D (y) < DM (y) for every
y € I'. This, in turn, implies that L, (M,g) < L, (M’,g). The claim that A is L, (M, g)-
measurable follows then, since A is assumed to be L, (M’, g)-measurable.

To see that fi,(A; M,g) = fw(A; M',g), it suffices to show that sf(M) = sf(M’) for
each v € 0™ A. Suppose v is such a tangent direction pointing out of A. By part (a) of
Theorem 4.4.11, there are exactly r + 1 consecutive slopes of functions F' € M’ along v.
The same statement holds for M. Since M < M’ we infer that these slopes are the same.
In particular, s§(M) = sf(M’'), as desired. O

In the following two sections, we specialize the above constructions to two special families
of closed semimodules M: the generic semimodule associated to any divisor D, and the
canonical semimodule.

4.4.2 The generic semimodule associated to a divisor

Let (T, g) be an augmented metric graph. Denote by |g| the support of g. For any divisor
D on T', we define a closed semimodule Rat™ (D, g) < Rat(D).

Definition 4.4.15. The generic linear series or generic semimodule Rat™ (D, g) consists
of all rational functions f on I' such that for every x € I', we have the inequality

D(z) + div(f)(z) = g(x). °

Equivalently, we have the equality Rat”™ (D, g) = Rat(Dy) for the divisor Dy defined by
Dy(z) := D(z) — g(z), for every z € I'. (The claimed containment Rat™ (D, g) < Rat(D) is
clear.)

It follows that Rat™ (D, g) is closed in the | - |, topology of Rat(D).

Remark 4.4.16. The superscript “gen” stands for “generic” because, from the viewpoint
of the degeneration of smooth projective curves, augmented metric graphs can be obtained
from intermediate geometric objects called metrized complexes of curves. If this is the case,
the above definition gives, precisely, the tropical part of the linear series of a divisor on the
metrized complex in the case where the restriction of the divisor on every curve component
of the metrized complex is generic. See Section 4.4.4 for more details. o

The following statement computes the divisorial rank of the generic semimodule associated
to a divisor.
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Proposition 4.4.17. Denote by r the divisorial rank of the generic semimodule Rat”™ (D, g),
and let (D) and r(Dy) denote the respective ranks of the two divisors D and Dy in T
without the genus function. We have the following (in)equalities.

(a) r < r(D);

(b) r=1r(Dy).

n

Proof. (a) The inequality follows from the containment Rat™ (D, g) < Rat(D).
(b) This follows from Proposition 4.4.2 applied to M := Rat™ (D, g) = Rat(Dy). O

Now that we have a closed sub-semimodule Rat™ (D, g) of Rat(D) with a well-known
divisorial rank, we can apply the machinery developed above.

Definition 4.4.18 (Generic tropical Weierstrass weights and locus of a divisor). Notations
as above, let D be a divisor on an augmented metric graph (I', g). The tropical Weierstrass
locus, the Weierstrass weights, and the Weierstrass divisor (if it exists) are defined by
plugging the semimodule M := Rat™ (D, g) into Definitions 4.4.6, 4.4.7 and 4.4.8.

To lighten the notations while stressing the choice of the generic semimodule and the
dependence on D and g, we write:

(i) Ly (D,g) for L, (Rat™ (D, g), 9);
(ii) 4(C; D, g) for py (C;Rat™ (D, g),g); and
(iii) W*(D, g) for W(Rat™ (D, g),g).
When D is clear from context, we simply use p&(C'; g) for pz(C; D, g). o

Note that when g is the zero function, we have the equality Rat™" (D, g) = Rat(D), and
so the above definition recovers the one given in the previous sections for the Weierstrass
divisor associated to a divisor.

Proposition 4.4.10 and a straightforward computation gives the following description of
the generic Weierstrass locus.

Proposition 4.4.19. The following equalities hold:
(a) L, (D,g) = Liw(Do) v lal;
(b) 153(C; D, g) = pw(C; Do) + (r + 1) X,cc 0().

In the remainder of this section, we discuss the generic semimodule associated to the
canonical divisor. We first recall the definition of the canonical divisor in the augmented
setting.
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Definition 4.4.20 (Canonical divisor on an augmented metric graph). Given an augmented
metric graph (T, g), the canonical divisor K on (I', g) is defined by

K(x) = val(z) — 2+ 2g(x) (4.6)
for each z € T'. o

Remark 4.4.21. In the context of augmented metric graphs, Lemma 4.3.16 becomes the
following statement: for every closed connected subset A < T,

deg (K| ,) = 29(A) —2 +2 Z g(z) + outval(A). o

TEA

The following statement gives the rank of the semimodule Rat™ (K, g), which is not g — 1
as one might expect.

n

Proposition 4.4.22 (Rank of the generic semimodule Rat™" (K, g)). If the genus function
g is nontrivial, the semimodule Rat™ (K, g) has rank g — 2.

Proof. The rank of Rat™ (K, g) coincides with the rank of Ky := K — Y] g(x) (x) within
the non-augmented metric graph I'. Since the genus function is nontrivial, we have
deg(Ko) =29(")—2+>, g(z) > 2 g(I")—2 with g(I") the genus of the non-augmented metric
graph, and so, by Riemann—Roch on I', we have r(Ky) = deg(Ky) —g(I') = g(I',g) —2. O

In the next section, we define the canonical linear series for an augmented metric graph,
and show it has the correct rank g — 1.

Example 4.4.23. We compute the Weierstrass locus of the generic semimodule Rat™ (K, g)
on a cycle with one point of positive genus equal to two.

Let (T, g) be the augmented metric graph where I is the cycle of length one, parametrized
by the interval [0, 1], the single vertex v coincides with the endpoints v = 0 = 1, and
g(v) = 2. The genus of this augmented metric graph is g = 3.

We consider the canonical divisor K and the associated generic semimodule Rat™ (K, g),
as defined in the present section (see Definition 4.4.15). The rank is r = g —2 = 1 according
to Proposition 4.4.22, and the total weight of the Weierstrass locus is 6. The Weierstrass
locus consists of the vertex v and the point of coordinate % It is easy to compute that
the weights are p&7(v; K, g) = 5 and ,ug;,“(%; K, g) = 1. Figure 4.5 shows the augmented
metric graph and its Weierstrass locus. A generalization for any value of g(v) is presented
in Section 4.6.6. o

4.4.3 The canonical linear series on an augmented metric graph

Consider the augmented metric graph (I',g) and its canonical divisor K, defined by
K(x) = val(z) — 2 + 2g(z) for each x € I'. In this section, we define the linear series
KRat(g) associated to K, that we call the canonical linear series or canonical semimodule.
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Figure 4.5: An augmented cycle graph with one point of genus two, the canonical divisor
and its Weierstrass locus L;, (D, g).

Definition 4.4.24. We define the canonical semimodule KRat(g) as the set of all functions
f € Rat(T") which verify the following conditions:

(1) For every z € I', we have K (z) + div(f)(z) = g(x) — 1.

(2) If x has a tangent direction v € T, (') such that slope,f(z) < 0, then K(z) +
div(f)(z) = g(). °

The following set of conditions is equivalent to that of Definition 4.4.24.

(1) (local-minimum condition) If x € T" is an isolated local minimum of f, i.e., slope, f(x) =
1 for every v € T,(T"), then we impose K (z) + div(f)(z) = g(x) — 1.

(2) (generic condition) For all other points x € I', we impose the stricter condition
K(z) +div(f)(z) = g(x).

Note that according to the above definition, if a point = has g(x) = 0, then x cannot
be an isolated local minimum of f € KRat(g). Indeed, an isolated local minimum of f
satisfies div(f)(z) < —val(z), and so K(x) + div(f)(z) < —2 assuming g(z) = 0, which
would violate both conditions. This means that, for any x € I' and f € KRat(g), we have
K(x) 4+ div(f)(z) = 0, which implies that KRat(g) is a subset of Rat(K). (It is easy to
see that it is in fact a semimodule.) This shows, moreover, that the above definition is
equivalent to Definition 4.4.15 outside of the support of g. Also note that we have the
inclusion of semimodules Rat™ (K, g) < KRat(g).

Remark 4.4.25. The definition of the canonical semimodule differs from the generic
semimodule Rat™ (K, g) given by Definition 4.4.15. This is because the earlier definition,
suitable for every divisor D on I', assumed D has “generic support” in the vertices with
“hidden genus.” The canonical divisor, however, is not generic. Its specific properties
suggest a distinct definition for the complete linear series of K. The relevance of the above
modification compared to Definition 4.4.15 will be further clarified in Section 4.4.4. o

We have the following theorem which justifies the name given to the linear series KRat(g).
Recall that g = g(T', g).

Theorem 4.4.26. The divisorial rank of the semimodule KRat(g) is g — 1.

Proof. The proof of this theorem will be given in Section 4.4.4. [

223



We have a closed sub-semimodule KRat(g) of Rat(K) of divisorial rank r = g — 1, and
we can apply the machinery developed for semimodules on augmented metric graphs.

Definition 4.4.27 (Canonical tropical Weierstrass weights and locus). Notations as above,
the canonical tropical Weierstrass locus, the Weierstrass weights, and the Weierstrass divisor
on an augmented metric graph are defined by plugging the semimodule M := KRat(g) into
Definitions 4.4.6, 4.4.7 and 4.4.8.

To lighten the notations while stressing the choice of the canonical semimodule and the
dependence on g, we write:

(i) Ly (K,g) for Ly, (KRat(g), g);
(i) pw(C; K, g) for puy (C; KRat(g), g); and
(i) W(K,g) for W(KRat(g), g). o

Example 4.4.28. In this example, we compute the canonical Weierstrass locus on an
augmented cycle with a point of genus two. For the case of the generic Weierstrass locus
associated to the same divisor K, see Example 4.4.23.

Let (T, g) be the augmented metric graph where I is the cycle of length one, parametrized
by the interval [0, 1], the single vertex v coincides with the endpoints v = 0 = 1, and
g(v) = 2. The genus of this augmented metric graph is g = 3.

We consider the canonical divisor K and the associated canonical semimodule KRat(g),
as defined in the present section (see Definition 4.4.24). The rank is r = g — 1 = 2 according
to Theorem 4.4.26, and the total weight of the Weierstrass locus is ¢> — 1 = 8. The
Weierstrass locus consists of the vertex v and the points of coordinates % and % The
Weierstrass weights are i, (v; K, g) = 6 and py (5; K,9) = e (3;K,g) = 1. Figure 4.6
shows the locus of Weierstrass points. A generalization for any value of g(v) is presented in
Section 4.6.6. o

1

Figure 4.6: An augmented cycle graph, the canonical divisor and its Weierstrass locus
Lu/(K, g) .

In the rest of the chapter, when handling the canonical divisor K on an augmented
metric graph, the semimodule KRat(g) will be preferred over Rat™ (K, g), unless explicitly
specified otherwise.
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4.4.4 Justification of the definition of Weierstrass loci for augmented
metric graphs, in the generic and canonical case

In this section, we provide a justification for the definitions we gave in Sections 4.4.2
and 4.4.3. This will be through divisor theory on metrized complexes, that we recall first.
A purely metric graph justification, using metric graphs with shrinking parts, is sketched in
Remark 4.4.34.

Divisor theory on a metrized complex of curves

We fix k an algebraically closed field. A metrized complex of curves is, roughly speaking,
the (metric realization of the) data of an augmented metric graph (I', g) endowed with a
model G = (V, F) and, for every v € V, of a smooth, proper, connected, marked k-curve
C, of genus g(v) with marked points A, in bijection with the branches of I" incident to v.
That is, a metrized complex of curves is a hybrid refinement of an augmented metric graph.
For a full definition, see [AB15, Definition 2.17].

Let € be a metrized complex of curves. A divisor ® on € is a formal sum with integer
coefficients of a finite number of points in €. We denote its hybrid rank on € by r¢(D).
By the forgetful projection map from € to I', this gives rise to a divisor D on I' of the
same degree. Moreover, by restriction to each curve C,, for v € V, we get a divisor D, on
C,. A rational function f on € consists of a rational function f on I' and, for every v e V|
a nonzero rational function f, on C,. The space of such functions f = (f, f, : v e V) is
denoted by Rat(€).

Let now € be a metrized complex of curves, with underlying metric graph I'. Let ® be
a divisor on €. We follow [AB15] and consider the linear series Rat(®, €) defined as the
subset of Rat(€) consisting of all rational functions f = (f € Rat(I'); f, € k(C,),v € V) on
¢ that verify © + div(f) = 0. This means that D + div(f) is effective on ', and for each
v eV, the divisor Dy — >y, ) slope, f(v) (z7) + div(f,) is effective on C,. Here, z7 is the
marked point on C, that corresponds to v.

Definition 4.4.29. We define Rat™" (D, €) to be the subset of Rat(D) consisting of the
tropical parts of all functions f € Rat(®, €). o

We omit the proof of the following result.
Proposition 4.4.30. Rattmp(D, @) is a closed sub-semimodule of Rat(D).

We have the following comparison result, whose proof is direct from the definition of
rank of divisors.

Proposition 4.4.31. Let r(D,€) be the divisorial rank of the semimodule Rat™” (D, ).
Then we have the inequality
T@(@) < T’(D, Q:)
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The inequality in the above proposition can be strict in general. However, in some
situations, e.g., for generic divisors on € and for the canonical divisor, when the marked
curves (C,, A,), for all v € V, are generic in their moduli, we have the equality, as we
explain now.

The case of augmented metric graphs with generic divisors

The second condition in the definition of Rat(®, €) in the previous section justifies Defi-
nition 4.4.15. Indeed, take a rational function f on I' such that for every x € I', we have
D(z) +div(f)(xz) = g(x). Assume that the augmented metric graph (I", g) comes from a
metrized curve complex €. Let v € I" be a point underlying a curve C,. On the curve C,, the
divisor Dy — >, cr,(ry slope, f(v) (z7) has degree > g(v) by assumption. Therefore, by the
Riemann—Roch theorem, its rank is non-negative, which is precisely the second condition in
the definition of Rat(®, €). Now, in the other direction, if D, is generic in the Picard group
of C, of relevant degree, then the divisor D, — >} .1 ) slope, f(v) (z7) on C, appearing in
the second condition has non-negative rank only if it has degree at least g(v). This means
that Definition 4.4.15 is equivalent to the definition given for metrized complexes with a
generic choice of divisors on components.

The case of canonical divisor in augmented metric graphs

We now justify Definition 4.4.24 using the terminology of Section 4.4.4, and also prove
Theorem 4.4.26.

Let G = (V, E)) be a model of I" whose vertex set contains all the points of valence different
from two, and the support of g. Let € be a metrized complex with underlying augmented
metric graph (I', g). Denote by £ a canonical divisor for € given by the collection of divisors
Ke, + Ay = Ke, + 2er,(ry(2y) on Cy, where K¢, denotes a canonical divisor on C,, i.e.,
O(Ke¢,) = we,. The following claim justifies our definition of the canonical semimodule. We
denote by Rat(R)™" the tropical part of Rat(£).

Proposition 4.4.32. Notations as above, we have KRat(g) < Rat(8)"™". Moreover, if
the markings A, on the curves C, are in general position, for all v eV, then we have the
equality KRat(g) = Rat(R)"™".

Remark 4.4.33. This general position condition is the same as the one imposed in the
work by Esteves and coauthors [EM02, ES07] in the special case of stable curves with two
irreducible components, and stable curves in which any pair of components intersect. We
will treat examples of augmented dipole graphs in Section 4.6.

The results in this special case can be viewed as complementing from the tropical
perspective the work by Esteves and Medeiros [EMO02], by analyzing the proportion and
precise locus of points specializing to the nodes on considered in their paper. o

Proof of Proposition /.4.32. We first prove the inclusion KRat(g) < Rat(f)"". Consider
an element f € KRat(g). We claim the existence of rational functions f, on C,, for each
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v € V, such that the collection {f, f,,v € V} forms a rational function in Rat(8). This
proves the claim. Let v € V| and consider the divisor D on C, defined by f as follows:

Dyi=Ke,+ Y (@)= Y, slope,f(v) (at).

veTy(T) veTy(T)

Note that the degree of D, is precisely K(v) + div(f)(v). If the genus of v is zero, then
by the condition K (v) + div(f) = 0, the degree of D, is non-negative and so there exists
a rational function f, on C, such that D, + div(f,) = 0. If g(v) > 1 and v is not an
isolated local minimum, then by the definition of KRat(g), we have deg(D,) = g(v). By
Riemann—Roch, this implies the existence of a function f, such that D, + div(f,) = 0. Let
v eI be a vertex of I' such that g(v) > 0 and which is an isolated local minimum of f. In
this case, by the definition of KRat(g), we have deg(D,) = g(v) — 1. The divisor D, can be
rewritten as K¢, — F, where

Ei= Y (slope, f(v) ~ 1) (x)

veT,(T)

is effective because v is an isolated local minimum of f. The Riemann—-Roch theorem on
Cy, combined with the inequality r(FE) > 0, thus yields

r(D,) =r(Ke, — E) = r(E) + deg(D,) — g(v) + 1 > 0.

That is, there exists a function f, such that D, + div(f,) = 0. The rational function
f=(f,fo:veV)on € verifies R + div(f) = 0, as desired.

We now prove the inclusion Rat(f)"”" < KRat(g) provided that the markings A, on the
curves C,, for all v € V, are generic. First, we observe that Rat(£)"” < Rat(/). Combining
this with the results we proved in Section 4.2, it follows that the slopes taken by functions
in Rat(&)"" are bounded. Let f be an element of Rat(£)"”. We claim that under the
general position assumption, we have f € KRat(g). Let v be a vertex of I'. Resuming the
notations introduced above, we write D, for the divisor on C, induced by f, and write it in
the form D, = K¢, — E.

First consider the case where v is an isolated local minimum of f. In this case, F
is an effective divisor. We need to show that deg(F) < g(v) — 1. Indeed, otherwise, if
deg(E) = g(v), then if the points z¥, for v € T,(I"), are in general position on C,, we will
get 7(D,) < r(Ke,) — g(v) = —1, which contradicts the assumption that f e Rat(&)"".

Consider the other case, where v is not an isolated minimum. In this case, the divisor F
is not effective. We write K = E, — E_ where E/, and E_ are the positive and negative
parts of E, respectively. Note that £, and E_ are effective and they have disjoint support.
Since FE is not effective, E_ is non-zero, and so by Riemann—Roch, we have

r(Ke, + E_) =2g(v) — 2+ deg(E_) — g(v) = g(v) — 2 + deg(FE_).

Now, we write
Dy,=Ke,—E=Ke, + E- — F,

227



and observe, by the general position assumption on the points of A,, that
r(D,) = max{—1,7(K¢, + E_) — deg(E)}.
Combining the two observations, we get

r(D,) = max{—1,g(v) — 2+ deg(E_) — deg(E,)} = max{—1,deg(K¢, — E) — g(v)}
= max{—1,deg(D,) — g(v)}.

If deg(D,) < g(v), we get r(D,) < 0, which would be a contradiction to the assumption
that f € Rat(R)"™". We conclude that deg(D,) = g(v), which leads to the inclusion
Rat(8)"™ < KRat(g). O

We now show that KRat(g) has the expected rank g — 1.

Proof of Theorem 4.4.26. We keep the notations as above. We denote by r the divisorial
rank of KRat(g).

It will be enough to show that if the markings A, on the curves C,, for all v e V', are
in general position, then we have r¢(8) = r. By Riemann—Roch for metrized complexes
proved in [AB15], we then obtain the equality r = g — 1, as desired.

The inequality r > r¢(R) follows from the case of equality Rat(f)™" = KRat(g) proved
in the previous proposition, and by the definition of the rank in the metrized complex.

It remains to show the inequality r¢(8) = r. Let £ be an effective divisor of degree r on
¢, and let E be the corresponding divisor on I'. There exists a function f € KRat(g) =
Rat(8)" such that E + div(f) = 0. If E has support outside the vertices of T, that is, £
is entirely supported at the interior of edges of I', then using the arguments we used in the
first part of Proposition 4.4.32, we deduce the existence of rational functions f, on C,, for
all v € V, such that the rational function f = (f, f, : v € V) on € gives K — £ + div(f) = 0,
as desired.

Otherwise, if £ has support in some of the curves C,, for v € V', we write F as a limit of
effective divisors E,,, for n > 0, of the same degree with support outside the vertices of I,
and find elements f, in Rat(8)"" = KRat(g) which verify K — E,, + div(f,) = 0. Going to
a subsequence, and using the boundedness of the slopes in KRat(g), we can suppose that all
the f, have the same slopes along tangent directions at v, for each vertex v € V. Moreover,
changing the function f € KRat(g) = Rat(f)™" under the constraint that E + div(f) = 0
if necessary, we can assume furthermore that f, converges to f as n tends to infinity.

Denote by s” the slope of the f,, along the tangential direction v € T,(T"). Let

Dyi=Ke+ 3 @)= 3 slope, f(v) ()

veTy(T) veTy(T)

that we rewrite in the form

Dy =Ke,+ Y, (L—sb)(ah)+ Y my (z})

veT,(T)
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with m,, denoting the (weighted) number of points in the support of E,, tending to v through
the tangential direction v. Note that we have Y 1. ™, = E(v). Let

D, =FKe, + Y, (1—s%) ().
veTy(T)

Two cases can happen. Either, some of the slopes s”, for v € T,(I"), are not positive,
that is, v is not an isolated local minimum of f,. In this case, the divisor D/ has degree at
least g(v), which implies that it has non-negative rank. Or, all the slopes s, for v € T, (I),
are positive, that is, v is an isolated local minimum of f, for all n. In this case, the divisor
D! has degree at least g(v) — 1, and is the difference of K¢, and an effective divisor on C,.
So again, it has non-negative rank.

In either case, we conclude that the divisor D, = D, — 3, 1 1 M (27) has non-negative
rank. Since the points z} are assumed to be in general position on C,, it follows that the
divisor D, has rank at least E(v) = Xy, ) my. This shows the existence of a rational
function f, on C, such that D, — &, + div(f,) = 0, with &, being the part of £ supported in
C». We conclude with the existence of a rational function § = (f, f, : v € V') which verifies
R — & +div(f) = 0. This implies the inequality r¢(f) = r, and finishes the proof of our
theorem. [

Remark 4.4.34. Definition 4.4.24 can be also justified using only the formalism of metric
graphs and their limits. We briefly discuss this.

Suppose that the augmented metric graph (I'y, g) comes from a “limit family” of non-
augmented metric graphs in the following sense. Let I' be a (non-augmented) metric graph
and X € I' a closed subset, where ¥ has connected components >4, ...,>,. For each £ > 0,
consider the graph I'. defined by shrinking every edge in ¥ by the factor e. As e — 0, the
family T'. converges to a metric graph Iy (in the sense of Gromov—Hausdorff convergence).
The limit metric graph Iy is naturally equipped with a genus function g where g(v;) = g(%;)
for each v; € 'y that is the limit of a component ¥;, and g(z) = 0 for all other z € I'y. In
this situation, we say that the augmented metric graph (I'g, g) is the limit of the shrinking
family of the pair X < I'.

Now consider the corresponding family of canonical series Rat(K.) on I'.. For each € > 0,
the linear series Rat(K.) has rank g—1 on I'.. The limit as ¢ — 0 produces a semimodule of
rational functions on I'y. We claim that this limit semimodule always contains KRat(I'y, g),
as described in Definition 4.4.24, and that if > is “generic” in an appropriate sense, then
this limit is equal to KRat(Lo, g).

We omit a proof of these claims here. The details can be verified using the theory of higher
rank tropical curves and their algebro-geometric properties developed in [AN22, AN24]. o

4.5 Tropical vs. algebraic Weierstrass loci

In the first sections of this chapter, we associated a Weierstrass locus to a fixed divisor D
on a metric graph, and then generalized this to a closed sub-semimodule of M the space
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Rat(D) on an augmented metric graph. However, those semimodules which come from
tropicalization verify an extra set of properties, in particular, the following important one
(see Section 4.8.3):

(x) for each point z in I' and any unit tangent direction v € T,(I"), the set of slopes
GY(M) taken by functions in M has size r + 1.

In this section, we associate to any pair (M, D) consisting of a divisor D and a closed
sub-semimodule M < Rat(D) that verifies (*) a refined notion of Weierstrass divisor. It is
inspired from the formula given in Theorem 4.8.5, with the slopes being directly retrieved
from M using property (x). We then provide a comparison of this definition with that
of Section 4.4. Using this link, we prove the main result of this section, Theorem 4.5.5,
which relates tropical Weierstrass loci studied in the previous sections to tropicalization of
Weierstrass divisors. We deduce then Theorem 4.1.10 as a special case of this result.

In the following, by an abuse of terminology, we refer to any pair (M, D) as above
as a combinatorial limit linear series (clls). The terminology is borrowed from [AG22]
(Chapter 3), however, the precise definition of combinatorial linear series requires more
properties for the semimodule M. In our setting, we only need property (x). The results
can be thus applied more generally, in particular to the setting of tropical linear series
developed in [JP22].

4.5.1 Weierstrass divisor of a combinatorial limit linear series

Let D be a divisor on an augmented metric graph (I', g) and M < Rat(D) a closed sub-
semimodule that verifies (x). Since M < Rat(D) is closed, we can apply the machinery of
Section 4.4. This point of view on Weierstrass loci however results in a loss in information
provided by the slopes of M, unless the Weierstrass locus is finite. The following definition
relies on the knowledge of the slopes along edges of GG prescribed by M.

Definition 4.5.1. Suppose D is a divisor of degree d and M is a closed sub-semimodule
in Rat(D) such that M verifies (x). The clls Weierstrass divisor of (M, D) is the divisor
W™ (M, D, g) defined as

W (M, D, g) = ) iy (@) (@)

zel’

where the clls Weierstrass weight i, () of  is defined by

<

clls 7’(7’ + 1)

Wy () = (r+1)D(x) + 5 (val(x) + 2g(x) — 2) — Z s7(M). (4.7)

veT4(I) j=0

We write WCHS(]\/[,D,g) simply as WC“S(M, g), the clls Weierstrass divisor of M, if D is
understood from the context. If the genus function is trivial, g = 0, then we abbreviate
W (M, g) to W (M). o

230



Note that WC“S(M ,8) has finite support. Indeed, since elements in M are piecewise affine
linear, we can find a model G = (V, E) of I" such that s < s < --- < s¥ is constant in the
interior of any edge of G = (V, E) for parallel unit tangent vectors v based at points of
the edge and pointing in the same direction. It follows that if z ¢ V' and x is outside the
supports of D and g, then ,u;ljs (x) = 0. Also note that the central term in the expression of

clls

1, () above is equal to 3r(r + 1)K (z), where K is the canonical divisor on (T, g).

Example 4.5.2. Consider the non-augmented barbell graph I' with edges of arbitrary
length, see Figure 4.7. This metric graph has genus two and the canonical divisor has rank
one. We define a sub-semimodule M < Rat(K) of rank one on I' by prescribing the slopes
—1 < 1 on the middle edge and, for i = 1,2, slopes 0 < 1 on both oriented edges u;v;. Then,
we define M as the set of all functions in Rat(K) that, along any unit tangent vector at a
given point of I', take one of the two prescribed slopes. It is easy to see that M is closed
and verifies ().

Figure 4.7: The barbell graph, the canonical divisor and the slope structure &.

The clls Weierstrass divisor is
W (M) = (u1) + (us) + 2 (v1) + 2 (v2)

(see Figure 4.8, right). For comparison, the tropical Weierstrass locus Ly, (M, g) of the
semimodule M with trivial genus function g = 0 (as defined in Section 4.4), is shown on
the same figure (left). Here, L, (M) turns out to be identical to the tropical Weierstrass
locus of the complete linear series Ly, (K) (see Example 4.3.5). o

Figure 4.8: The tropical Weierstrass locus Ly, (M) (left) and the clls Weierstrass divisor
W™ (M) (right) on the barbell graph.

4.5.2 Comparison with the tropical Weierstrass locus

The following proposition shows that the notion of clls Weierstrass divisor can be viewed as
a refinement of the tropical Weierstrass locus defined in Section 4.4.
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Proposition 4.5.3 (Comparison of the tropical and clls Weierstrass loci). Suppose
M < Rat(D) is a combinatorial limit linear series of rank r with clls Weierstrass di-
visor WC“S(M, g). Let Ly (M, g) denote its Weierstrass locus, defined as in Section 4.4.1. If
A < T is closed, connected, and Ly, (M, g)-measurable, then we have the equality

deg (W™ (M. g)|,) = (r + 1) fu (4; M, g).
In particular, if M is W-finite as a semimodule, then the following equality holds:
W (M, g) = (r + 1) W(M, g).
Proof. We have

e (W 0),) = 4 1) T 0+ D Tk - B[ N N

TEA zeA zeA \veTz(T) Jj

where K denotes the canonical divisor on (I, g) (see Definition 4.4.20) and s% = s%(M).
The terms (r + 1) D(z) add up to the term (r + 1) deg (D|,). Remark 4.4.21 yields that
the terms K (z) add up to 2g(A) —2+ 23 _, g(z) + outval(A), where outval(A4) := |0™ A|
is the number of outgoing branches from A.

The terms in the third part can be rearranged as a sum over directed edges of A, using
some compatible model. Each edge has two in-going tangent directions, and the slope sums
r—; = 0. The only
terms that do not cancel are the tangent directions which point out of A, i.e.,

5 2 2e)- 3 (59)

zeA \veT,(T) j=0 ved® A \j=0

cancel out for this pair (v,7) of opposing in-going directions since 5 + s¥

Combining these terms, we have

deg <WCHS(M, 9)|A) = (r+1)deg (D|A) + r(r; b (29(A, g) — 2 + outval(A))

DI

ved® AJ=0
= (r+1)deg (D|A) +r(r+1)(g(A,g) —1) — Z Z(s;’ — 7).
ved®t AJ=0

Finally, we use the fact that s/ = j + s for every j and for tangent directions v outside
the Weierstrass locus Ly, (M, g), by Theorem 4.4.11. Thus,

deg <Wcus<M, g)|A> =(r+1) <deg (D|A) + (g(A,9)—1)r — Z sﬁ),

ved® A

which, using the same technique as in the proof of Theorem 4.3.9, gives the first statement.
The second statement follows from the first by the expression of the Weierstrass weight of
a connected component of the tropical Weierstrass locus which is reduced to a point. [J
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We have the following extension of the above proposition, using the notion of tangential
ramifications introduced later in Section 4.5.5. In particular, the statement holds even if A
is not Ly (M, g)-measurable.

Proposition 4.5.4. Notations as in Proposition 4.5.3, for any closed, connected A < T,
the following equality holds

deg (WCHS(M, g)|A) =(r+1) (deg (D1,) + (g(A9) = 1)r— > SS(M)>

-3 San,

vea™ A j=0

where o/ (M) := s¥(M) — j — sg(M) are the tangential ramifications along v.

4.5.3 Tropicalization of Weierstrass loci

The goal of this section is to prove Theorem 4.5.5, using the machinery developed for
semimodules on augmented metric graphs (see Section 4.4.1). This provides a precise link
between tropical Weierstrass loci and the tropicalization of Weierstrass divisors on algebraic
curves. Using this result, we will deduce Theorem 4.1.11.

Let X be a smooth proper curve of genus g over an algebraically closed non-Archimedean
field K of arbitrary characteristic with a non-trivial valuation. Let £ = O(D) be a line
bundle of positive degree d on X. Let H be a vector subspace of global sections of £ of
rank r (i.e., dimH = r + 1), that we naturally view in the function field of X. When K
has positive characteristic, we suppose that £ is classical [Lak81, Nee84], that is, the gap
sequence of H is the standard sequence 0 < 1 < --- < r. We denote by W = W(H) the
corresponding Weierstrass divisor on X. Recall that W is the zero divisor of a global section,
called the Wronskian, of the line bundle w2 @ £80+1) | see [Laks1] and Section 4.8.4.
In particular, we have

r(r+1)

deg(W) = —;

29—2)+(r+1)d=(r+1)(d—r+rg).

Let (T, g) be a skeleton of X*" and let 7: X®" — I" denote the specialization map. Let
W = 7,(W) be the specialization of W to I'. Note that (I', g) is an augmented metric
graph. We let D := 7,(D) be the specialization of D to I, and let M < Rat(D) be the sub-
semimodule consisting of the tropicalizations of non-zero rational functions in H. It follows
from the slope formula that the divisorial rank of M is equal to the rank of H, see [AG22,
Theorem 9.1] (Theorem 3.9.1 in the present manuscript) and [JP22, Proposition 4.1].

The following theorem compares the algebraic Weierstrass divisor of H on the curve X
with the tropical Weierstrass divisor of M on the augmented metric graph (T, g).
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Theorem 4.5.5 (Algebraic versus tropical weights: general case). Notations as above,
let A be a closed, connected, Ly, (M, g)-measurable subset of I'. Then, the total weight of
Weierstrass points of VW which tropicalize to A is given by

deg <W|T_1(A)) = (r+1)aw(A; M, g)
where

fuy(A; M, g) = deg (D|,) + (Q(A) + Y alx) - 1>T — > sh(M).

zeA ved™ A
In particular, if M is W-finite, we have the following equality of divisors on I':

T«W) = (r+ 1) W (M, g).
Before proceeding to the proof, a remark is in order.

Remark 4.5.6. By Proposition 4.4.14, Theorem 4.5.5 holds in a slightly more general
setting. Let M’ be any closed sub-semimodule of Rat(D) of divisorial rank r containing M.
Then, we have

deg <W|7——1(A)> = (7" + 1) ﬂW(A; Mlv g)
for every Ly (M’  g)-measurable subset A of I. o

Proof of Theorem 4.5.5. In the case the residue field of K has characteristic zero, we use
Theorem 4.8.5 which provides a description of the divisor W = 7,(W) in terms of slope
structures. As explained in Section 4.8.3, the slopes at any point z and any unit tangent
vector v € T,(I") of elements of the tropicalization M of H form a set of r + 1 integers

v

8¢, 87, ..,sr. The definition of the Weierstrass divisor associated to a tropical linear series

y<r:e

is chosen to ensure the equality W = WC“S(M ,8), which implies

deg <W|771(A)) = deg (WCHS(M, g)\A) )

Proposition 4.5.3 states that if A is L, (M, g)-measurable, then

deg (WCHS(M79)’A) = (r+1) aw(A; M, g),

from which the result follows.

In the general case, when the characteristic of K is arbitrary and the gap sequence of H is
standard, we use the description of the reduction of the Weierstrass divisor to the skeleton
given in Theorem 4.8.2. Using the notations of Section 4.8, letting W = 7,.(W), we have

r(r+1)

W(zx)=(r+1)D(x) + 5

K(x) — Z slope, I,

veT,(T)

with F' = trop(Wrz). Furthermore, slope, F' = @ + ordp;\fN\r}w.
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Since the slopes along the unit tangent vectors v € T, (I") which are outgoing from A
form a consecutive sequence of integers, by Proposition 4.8.4 we infer that the quantity
ordp;\?\/\r;:w is equal to s§ + - -- + s¥. Using Theorem 4.8.2, we get slope, [’ = s + -+ + s/.

Moreover, since F' belongs to Rat(T"), the total sum of the slopes of F' for the edges which
appear in the interior of A vanishes. We infer that

deg <W|771(A)> =(r+1) 2 D(x) + 7“(7“24— D 2 K(z)— 2 2 slope, F’

z€EA z€EA €A veT4(T)
r(r+1) S
= (r+1) ), D(z)+ 5 DK@ =Y > DS
€A €A z€A \veT,(T) j=0

—deg (W (M, g)[,) = (r + 1) fu(4; M, 9),

as required. H

4.5.4 Proofs of Theorems 4.1.10 and 4.1.11

We deduce Theorem 4.1.10 from Theorem 4.5.5.

Proof of Theorem /J.1.10. Since D and D have the same rank r, we can plug H := Rat(D)
and M’ := Rat(D) into Remark 4.5.6, following Theorem 4.5.5, to get

deg (W(D)|T71(A)> =(r+1) (deg (D|A) +r(g(A,g)—1) — Z sS(D)). (4.8)

lleaout A

In the context of Theorem 4.1.10, g = 0. The result follows. ]

Using this result, we can prove Theorem 4.1.11.

Proof of Theorem 4.1.11. This follows from the combination of Theorem 4.4.12, Proposi-
tion 4.4.5 and Theorem 4.5.5. ]

4.5.5 Tangential ramification sequence and effectivity

Unlike the tropical Weierstrass divisors defined earlier in this chapter, the Weierstrass divisor
defined in Definition 4.5.1 is not automatically effective. We can rewrite the Weierstrass
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weight as

clls

i (@) = (r+1) (D(as) + Zval(z) + (9(x) = 1)7)

— Z Zso+j+(8 —80—]))

N 3

veT,(T") j=0
= (r+ 1)(D)(x) + (g() - > Z s — st —J)
veT(T) J
=T(r+1)g(x)+gr+1)(D£/[(x) Z Z ¥ —s5—17)-
¥ ueT () =0

=

o

J

~
=0

Definition 4.5.7 (Tangential ramification sequence). We call the sequence
{o (M) = s (M) —sg(M) —j:j=0,1,....r}

the ramification sequence of M at x along the tangential direction v. This sequence is
non-decreasing. o

This motivates the following definition.

Definition 4.5.8 (g-effective linear series). Let g be a genus function on I'. The combi-
natorial limit linear series M is called g-effective it W (M, g) is effective. That is, for all
zel,

r(r+1)g(z) + (r + 1) (DY () > Z Z o (4.9)

veT, (T

<&

We say that M < Rat([, g) is realizable if there exists a smooth proper curve X of genus
g over K, a line bundle £ = O(D) of degree d and a subspace H € H°(X, L) of rank r such
that (T, g) is a skeleton of X?" and M = {trop (f) : f € H~ {0}}. If this happens over K
of equicharacteristic zero, we say M is realizable in equicharacteristic zero.

Proposition 4.5.9. If M is realizable in equicharacteristic zero, then the following hold:
(i) WCHS(M, g) is effective, i.e., M is g-effective.

(i) the divisor of degree zero

clls r\r 1
W (M,g)—(r+1)D — <; )K=2 Z Zs” (x)

zel’ \ veT (T

18 principal.
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Proof. Both statements follow from Theorem 4.8.5. ]

Example 4.5.10. Consider the non-augmented metric graph I' below and its canonical
divisor K. We consider the following combinatorial limit linear series M < Rat(K'). For
each bridge edge oriented outwards (towards the adjacent circle), allow slopes —1 <1 < 3.
Divide each circle into three equal parts, in a way compatible with the position of the
attachment points. On the two edges adjacent to the attachment points, allow slopes
0 < 1 < 2 away from the attachment points, and on the remaining edges, allow slopes
—1 <0 <1 (see Figure 4.9).

(—1,0,1)

Figure 4.9: Three-cycle graph with a specified slope structure on Rat(K), defining a combi-
natorial limit linear series M < Rat(K).

We can define a suitable closed sub-semimodule M < Rat(K) of rank two of functions
compatible with this choice of slopes. The tropical Weierstrass locus Ly (M) of the
semimodule M, in the sense of Section 4.4.1 (with g = 0), contains the bridge edges and
the points of coordinates % and % on the circles (see Figure 4.10, left). In particular, M is
not W-finite. The clls Weierstrass divisor W*" (M) is also shown in the figure (right). In
particular, M is not g-effective. o

1 1

1 1

Figure 4.10: The tropical Weierstrass locus Ly, (M) (left) and the clls Weierstrass divisor
W (M) (right).

Remark 4.5.11. Note that instead of allowing the slopes —1 < 1 < 3 on the three central
edges, we could allow the slopes —1 < 1 < 3 on (possibly trivial) intervals incident to the
central vertex on these edges, and the slopes —1 < 1 < 2 on the rest of the edges, with the
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same choice of rank functions. This gives three degrees of freedom to choose combinatorial
limit linear series on I' and leads to different tropical Weierstrass loci and clls Weierstrass
divisors. The clls Weierstrass coefficient on the central vertex is non-negative only when
the three edges are entirely endowed with the slopes —1 < 1 < 2. This implies that the
corresponding combinatorial limit linear series in the case g = 0 is the only (possibly)
realizable one (see Proposition 4.5.9). o

4.6 Examples

We here discuss several examples in order to illustrate the results of the previous sections.

4.6.1 Dipole graph

Suppose I is a dipole graph of genus g > 2 (also known as a “banana” graph), consisting of
two vertices joined by g + 1 edges, possibly of different lengths. The canonical divisor K
has coefficient g — 1 on each vertex. The Weierstrass locus L, (K) consists of the interval
[(/g, ¢ — £/g] on every edge, with ¢ the length of that edge (see Figure 4.11 for g = 3).
Each component C' < Ly, (K) has two outgoing directions, and in each outgoing direction,
the minimum slope is s§ = —(¢g — 1). By Theorem 4.3.17, the Weierstrass weight of each
component is

(€)= (g+1)(g(C)=1) = > (s§—1=(g+ (-1 —(-g—g) =g— L

The total Weierstrass weight of L, (K) is g* — 1, as expected (Corollary 4.3.18 (a)).

2

2

Figure 4.11: Dipole graph of genus g = 3 and its Weierstrass locus Ly, (K).

4.6.2 Tent graph

Consider the tent graph G, consisting of three vertices and five edges, as shown in Fig-
ures 4.12, 4.13 and 4.14. We first consider the case D = K, a divisor of rank r = g — 1 = 2.
We have, for each of the Weierstrass points located at the endpoints of the bottom edge in
Figure 4.12, uy (v) = (3 +1)(—=1) — (=2 — 2 — 2) = 2. The other four Weierstrass points
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are located on either of the four other edges respectively, one third of the distance from the
top vertex to the other endpoints. Their weight is 1.

() = B+ 1)(=1) = (=2-3) = 1.

1 1

Figure 4.12: Tent graph and its Weierstrass locus Ly, (K).

Now consider the case D = K + (v) for v the vertex of degree four, a divisor also of rank
r = 2. Ly(D) has a unique component, see Figure 4.13, and by Theorem 4.3.17, its weight
is iy (C) = deg (D|,) + (9(C) = 1) r =Y comesg =5+ (2—1)-2—(=1—1) = 9.

3

1 1

Figure 4.13: A divisor on the tent graph and its Weierstrass locus.

Finally, consider D = K + (u) for u one of the vertices of degree three, a divisor still of
rank 7 = 2. See Figure 4.14. The two singleton components of L, (D) each have weight
one. Suppose C' is the non-singleton component of L, (D), whose boundary points on both
left-hand edges are located one third of the distance from the top vertex. Theorem 4.3.17

gives uy (C) =T7.

p(C) = deg (D) + (9(C) = 1)r— > st=3+(0-1)-2—(-2-2-1-1)=T.
ved®™ C

2 1

Figure 4.14: A divisor on the tent graph and its Weierstrass locus.
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4.6.3 Cube graph

The cube graph is shown in Figure 4.15, with all edges of length one. It has genus 5 and
the canonical divisor K has rank 4. The Weierstrass locus Ly (K) consists of the closed
segment [2/5, 3/5] on each edge, and excludes the vertices. Each component C' of Ly (K)
has out-valence 2, with minimum slopes in Rat(K) in each outgoing direction equal to —3.
Theorem 4.3.17 gives p,, (C) = 2.

ue(C) = (g + 1(g(C) =) = D} (sg—1)

ved™™ C
— 6 (1)~ (—4—4) =2.

There are 12 components, so the total weight is 24.

Figure 4.15: Cube graph with its Weierstrass locus Ly, (K).

4.6.4 Bridge edges
We expand on the barbell graph (Example 4.3.5).

Theorem 4.6.1 (Weierstrass loci and bridge edges). Let I" be a metric graph which has a
bridge edge e such that each component of I \. é has positive genus. Then, the edge e is
contained in the canonical Weierstrass locus Ly (K).

Proof. To show this, let u; and uy, denote the endpoints of e, and I'; and I's be the
components of I' \ € containing u; and us, respectively. If g, g, and g, are the genera of T',
I'; and I'; respectively, then g = g1+ go. Let » = g—1 be the rank of the canonical divisor on
I'. We want to show that we can move r+1 = g; + g2 chips to every point x € e. Fori = 1,2,
denoting by K the canonical divisor of I';, we have rr, (K\Fi —(u) ) =1, (K;) =¢;—1>=0,
which implies that, using only functions on I' that are constant outside I';, we can move g;
chips to u;. It is easy to see that we can move chips along e to put g; + g chips at x. [J

Figure 4.16 shows an example where the Weierstrass locus strictly contains the bridge
edges. I" has two bridge edges and is of genus 5. All the edges of I' are taken of unit length.
The boundary points of the Weierstrass locus on the left and right circle are the points of
coordinates %, % and % on each of the six corresponding edges, 1 being the outermost point.
The sum of all Weierstrass weights is 12 4+ 6 -2 = 24 = ¢> — 1, as expected.
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12

Figure 4.16: A graph with two bridge edges and its Weierstrass locus Ly, (K).

4.6.5 Cases where the whole graph is Weierstrass

We provide two infinite families of examples for which the Weierstrass locus is the whole
graph, and discuss related questions.
Example 4.3.4 treated the complete graph on four vertices with unit edge lengths, with

the Weierstrass locus consisting of the four vertices. Now consider the case I' is the complete

n2—3n+2
2

the canonical divisor K has rank @ The Weierstrass locus of K is the whole graph
as K,(z) = ¢g. Indeed, K(v) = n — 3 on each vertex v, and the reduced divisor at v is

graph on n > 5 vertices with unit edge lengths. This graph has genus g = , and

K, = (n* — 3n) (v) (move all chips to v in a single firing). For x in the interior of an edge,
the reduced divisor K, leaves (n — 1) chips away from z, i.e., K,(x) = n?> —4n + 1. Note
that n? —4n +1> % for n = 5. This provides a first infinite family with the whole
metric graph Weierstrass.

We now give a second such family. In this family, the choice of the length function is free
and there are infinitely many possible choices of divisors with this property on the same
metric graph. See also [Ric24, Example 4.6]. Let I" be the metric graph generalizing the
barbell graph (Example 4.3.5) to any number of cycles. More precisely, take g > 2 cycles of
arbitrary length and join them all to a central vertex v with a bridge edge of positive length,
as in Figure 4.17. Consider the divisor D = d (v), with d = 3. By Clifford’s theorem, the
rank of D satisfies the bound r < d — 2. Since a divisor of positive degree on a cycle has
rank one less than the degree, and since chips can move freely on bridge edges, it is easy to
show D (x) > d—1=>=r+ 1 for every z € I'. Therefore, the Weierstrass locus is the whole
graph.

Note that in the second family the quantity min,er (D,(z) — r) can be arbitrarily large.
The existence of these two families of examples, with very different combinatorial properties
(for example, the first is made up of graphs with high connectivity, whereas the graphs of
the second have many bridge edges), suggests the following.

Question 4.6.2. Provide a classification of all graphs G that admit a length function and
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Figure 4.17: The generalized barbell graph, the divisor D and its Weierstrass locus Ly, (D).

a diwisor with Weierstrass locus the whole metric graph. Among them, what are the ones
for which this property holds for every choice of edge lengths?

4.6.6 Augmented cycle with one point of positive genus

We compute Weierstrass loci for the canonical divisor with respect to the canonical and
generic linear systems on an augmented cycle on which one point has positive genus,
generalizing Examples 4.4.28 and 4.4.23. The canonical case recovers a result of Diaz [Dia85,
Theorem A2.1]: the generic non-separating node on a uninodal stable curve is a limit of
exactly g(g — 1) Weierstrass points on nearby smooth curves.

Let a be a positive integer, and consider the augmented metric graph (', g) where T is
the cycle of length one, parametrized by the interval [0, 1], the single vertex v coincides
with the endpoints v = 0 = 1, and g(v) = a. The genus of this augmented metric graph is
g=a+ 1.

The case of the canonical linear system

We expand on Example 4.4.28 for which a = 2 was fixed. Consider the canonical divisor K
and the associated canonical semimodule KRat(g), as defined in Section 4.4.3. The rank
isr = g — 1 = a according to Theorem 4.4.26, and the total weight of the Weierstrass
locus is g> — 1 = a® + 2a. The Weierstrass locus consists of the vertex v and all the points
of the form a—il for k = 1,...,a. The Weierstrass weights are ju, (v; K,g) = a*> + a and
,uw(ﬁ; K, g) = 1. Figure 4.18 shows the canonical divisor and its (canonical) Weierstrass

locus depicted in the middle.

The case of the generic linear system

In the second case, we generalize Example 4.4.23 and consider the same divisor K as above,
but take the generic semimodule Rat™ (K, g) as defined in Section 4.4.2. In this case, the
rank is 7 = g — 2 = a — 1 (see Proposition 4.4.22) and the total weight of the Weierstrass
locus is a? + a. The Weierstrass points are v, and all the points g with k =1,...,a— 1.
The weights are p, (v; K, g) = a* + 1 and p, (%; K, g) = 1. Figure 4.18 shows the canonical
divisor on the left, and its generic Weierstrass locus depicted on the right.

We note that the Weierstrass loci are different even though they are both finite. The

total weights are also different, as the underlying semimodules have different ranks.
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g(v) =a
K(v) =2a

Figure 4.18: An augmented cycle graph, with its canonical Weierstrass locus Ly, (K, g) in
the middle, and its Weierstrass locus L, (K, g) on the right. The drawing is
made for a = 4.

4.6.7 Augmented cycle with two points of positive genus

Now consider an augmented cycle with exactly two points of positive genus. We describe
the Weierstrass locus Ly, (K, g).

Suppose the augmented metric graph (I', g) consists of two vertices u and v connected by
two edges of length a and (3, and the vertices have genus g(u) = ¢; and g(v) = go. The
genus of (T',g) is g = g1 + g2 + 1, and the rank of the canonical linear system KRat(g) is
g1 + go. We parametrize T" by the interval [0, a + 3] with 0 and « + 8 identified, u = 0 and
v = «a (see Figure 4.19).

The canonical system is W-finite, and W (K, g) = Waug + Wine, where

® Waug = 919 (0) + 929 (v) = g1(g91 + g2 + 1) (w) + g2(g1 + g2 + 1) (v), see Figure 4.20; and

L4 met — i]il(xz) + Z?il(yj) where

1 +1—1
T = o+ b — g1 a, and y; =
g1+9g2+1 g1+ 9g2+1

J o S2t1l-J
g +g2+1 g tg+1

modulo a + 3, for every 1 < i < g1, and 1 < j < g9, see Figure 4.20. It turns out that these
g1 + go points are all distinct.

If we additionally assume that the edge lengths o and [ are generic, then all z;’s and
y;’s are also distinct from u and v. The total weight is g? — 1. If g» = 0, we recover the
example in Section 4.6.6.

g(v) = g2, K(v) = 2g;

g(u) = g1
K(u) = 2g,

Figure 4.19: An augmented cycle with two points of positive genus and its Weierstrass locus
Ly (K, g) (here, g1 =4, go = 3). Weights are given in Figure 4.20.
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929 1 v

919 1 1

1
1

Figure 4.20: The three different types of Weierstrass points with g; = 4, go = 3. The points
in blue are the (g; + 1)-torsion points with respect to u, and the points in teal
are the (g2 + 1)-torsion points with respect to v.

4.6.8 Augmented dipole graph

We now consider an augmented dipole graph made up of two vertices u and v joined by
n = h + 1 edges of arbitrary lengths, where h is the genus of the corresponding metric
graph. We assume g has support in {u, v}, and denote by a and b the genus of u and v,
respectively, with a < b. This metric graph is the one that appears in the work by Esteves
and Medeiros [EMO02]. As we explained previously, the canonical linear series reflects the
genericity of the points of intersection on each of the two components.

The canonical divisor has coefficients K (u) = h — 1 + 2a and K(v) = h — 1 + 2b. The
total genus is g = g(I', g) = h + a + b, and the rank r of the canonical linear series is equal
tog—1=h+a+b—1 according to Theorem 4.4.26. We compute L, (K, g).

In the case h = 0, if a and b are both positive, then L, (K, g) = I'. Otherwise, if a = 0,
and b is at least two, then L, (K, g) = {v}, and the Weierstrass weight is ¥*>—1. If b = 1 or 0,
then the Weierstrass locus is empty. The case h = 1 was treated separately in Section 4.6.7.

We now suppose h > 2. The determination of the Weierstrass locus turns out to be
complicated in general, and its shape depends on the values of a, b, h and the edge lengths.
We illustrate the computation in two concrete cases.

First particular case

Suppose a = b = 1, all the edges have unit length, and the genus of the metric graph is
h>=2. Wehaver =h+1and g =h+ 2.

Then the Weierstrass locus is made up of both vertices u and v, along with the segment

2 _h
[h_+2’ h+2
and each segment in the interior of an edge has weight h — 1. The total weight is ¢ — 1.

] on each edge (see Figure 4.21). The vertices u and v and have weight 2h + 2

Second particular case

Suppose a = 3, b = 5, h = 2, and all the edges have unit length. We have r = 9 and
g = 10. The Weierstrass locus is made up of the vertex v (weight 50), the union of the
three segments [0, 1/10] lying on each edge (weight 34), the point of coordinate 6/10 on
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@ 41_2-2}%’_2

Figure 4.21: Augmented dipole graph with combinatorial genus h = 3, genera a = b =1,
all edges of unit length, and its Weierstrass locus Ly (K, g).

each edge (weight 1), and the segments [3/10, 4/10] and [8/10, 9/10] on each edge (each of
weight 2). See Figure 4.22. The total weight is 50 + 34 +3 - (2+1+2) =99 = g® — 1.

K(u) =7 ) =11
2
2 1

Figure 4.22: Augmented dipole graph with h = 2, a = 3 and b = 5, edges all of unit length,
and its Weierstrass locus Ly, (K, g).

4.6.9 Weierstrass divisor of a combinatorial limit linear series

We go back to the non-augmented dipole graph with four edges (of unit length to simplify
the notations), a particular case of the class of examples presented in Section 4.6.1. The
genus is ¢ = 3 and the rank of the canonical divisor K is r = 2. Denote by u and v
the two vertices and by eq, e, e3 and ey the four edges of T' (see Figure 4.23, left). For
1=1,2,3,4,let t; € [O, 6] For each choice of the t;’s, we will construct a semimodule M
of rank two that verifies condition (x) from Section 4.5, and compute its clls Weierstrass
divisor W (M) (here, g = 0).

Assume t;’s are fixed. We prescribe the set of slopes taken by functions in M as in
Figure 4.23. For each i, we endow the edge e; with the slope sets 0 < 1 < 2 on the interval
[O, % — ti], slopes —1 < 0 < 1 on the interval [% —t;, L 5+ t] and slopes —2 < —1 < 0 on
the interval [% + 1, 1].

We define M as the sub-semimodule of Rat(K) consisting of all the functions that take
one of the prescribed slopes above at any point of I'" along any unite tangent vector. We
thus get a 4-parameter family of pairs (M, D) of rank two, M < Rat(K), that verify (x).

The clls Weierstrass divisor is given by (4.7), and yields W™ (M) = 3321 ((z:) + (),
where z; and y; denote the points of coordinates 1/2 — ¢; and 1/2 + ¢; on the edge e;,
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respectively. Figure 4.23 gives a visual rendering of W (M) for the choice (¢, ta, t3,t4) =

19 L1 l)
(6’07 1278/

(_]—7071) 3 3

(0,1,2) (—2,-1,0) A
2 2 T
0,1,2) (—2,-1,0) m

(=1,0,1) 3 3

Figure 4.23: Dipole graph and its clls Weierstrass divisor W (M).

4.6.10 Combinatorial graphs without Weierstrass points

There exist combinatorial graphs which do not have any Weierstrass point. Using [HKN13],
this is equivalent to saying that in the metric graph obtained by assigning uniform edge
lengths equal to one to all edges of (G, the connected components of the Weierstrass
locus Ly (K) of the canonical divisor live in the interior of the edges of G. Such graphs
are interesting from the point of view of arithmetic geometry, see [Bak08, Section 4]
and [Ogg78, LN64, Atk67, AP03].

The dipole graph is an example of such a graph, see Figure 4.11. So is the cube graph,
see Figure 4.15. Figure 4.24 shows another example. We refer to Section 4.7.5 for further
discussion.

oSy

Figure 4.24: The canonical divisor of a combinatorial graph and the distribution of the
Weierstrass weights on the edges of the corresponding metric graph with unit
lengths. A black edge has total weight zero, and the interior of a light-red edge
has total weight one. This indicates that the Weierstrass locus is concentrated
in the interior of certain edges and does not contain any vertex.

4.7 Further discussions

We discuss other interesting questions and results related to the content of the chapter.
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4.7.1 Total locus of Weierstrass points

Let G = (V, E, g) be a stable augmented graph of genus g, that is, a combinatorial graph
of genus h endowed with a genus function g: V' — N u {0} such that any vertex of genus
zero has valence at least three. Its total genus is g = h + Y, ., g(v). We view G as the
dual graph of a stable curve X of total genus ¢ with components X,, for v € V. Any
one-parameter family of curves X; with fiber Xy = X and smooth fibers away from 0 gives
rise to an edge length function ¢: E — (0, +o0). Reparametrization of the family leads to
another length function which is a homothety of . Every length function ¢ arises in this
way from a one-parameter family of curves X, see e.g. [ABBR15a, Theorem 3.24].

Given a fixed edge e € F, consider the set of all the edge length functions ¢ which give
¢(e) = 1. Any family of curves with a stable curve X as fiber at zero whose dual graph is
G gives rise, after a possible reparametrization, to such a length function. We will refer to
such a family as being (G, e)-admissible.

Denote by I', the augmented metric graph associated to the pair (G, ¢) augmented with
the genus function g. The metric graphs I'y all share an interval of length one corresponding
to the edge e. We denote by L, (I';) the Weierstrass locus of the canonical divisor in (T'y, g),
using the semimodule KRat(g) of functions on I'y as in Section 4.4.3.

We define the total Weierstrass locus of the canonical divisor, denoted L, (e), as the
portion of the edge e covered by Weierstrass points of all the augmented metric graphs I'y,
for those verifying ¢(e) = 1, that is,

Ly(e)= |J LiT)ne
€ with £(e)=1
Question 4.7.1.

(i) What is the shape of L., (e), that is, how many components can it have on the edge e?

(ii) What is the size of L, (e)? That is, what proportion of e is covered by Weierstrass
points of metric graphs of combinatorial type (G, g)?

(iii) How is L, (e) placed on e? That is, characterize the boundary of L, (e).

(iv) Characterize all the points in L., (e) which can arise as a limit of Weierstrass points
on nearby smooth curves. More precisely, characterize those points p for which there
exists a (G, e)-admissible family of curves X; and a Weierstrass point p, on X; such
that p is the tropical limit of p;.

(v) What is the quantity sup, |L,, (I's) ne|, where |L, (I'y) ne| refers to the Lebesgue
measure of L, (T'y) n e and the supremum is taken over all length functions € such
that ¢(e) =17

Inspired by Baker [Bak08, Lemma 4.7], we can prove Theorem 4.7.5 below which shows
that the total Weierstrass locus L, (¢) on the edge e is not always connected. This provides
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a partial answer to Question (i) above. We do not know of any example with a number of
connected components larger than two.

We can define a refined version of L., (e) by requiring the stable curve in the admissible
family to be a fixed stable curve X, as follows. We define L, (e, X) as the locus of all the
points in e that are limits of Weierstrass points in a one-parameter family of smooth curves
converging to X.

Question 4.7.2. What is the quantity supy ‘L":V"(G,X)
Lebesgue measure of L, (e, X)?

, where |L,, (e, X)| refers to the

Here, the supremum is taken over all stable curves X with the same stable dual graph G.

The discussion above is related to the work of Diaz [Dia85] and Gendron [Gen2l].
Translated into the above language, Diaz and Gendron show in loc. cit. that the set L, (e)
is nonempty. In fact, they prove that for any X with dual graph G, the set L, (e, X)
is nonempty provided that e is not a bridge edge in G. If e is a bridge, then Gendron
has a characterization of the situations where L. (e, X) is nonempty. The statement on
non-bridge edges can be proved by using tropical arguments, by reducing to the example of
the augmented cycle 4.6.6.

In a similar vein, we cite the following theorem of Eisenbud and Harris.

Theorem 4.7.3 (Eisenbud-Harris [EH87a]). Suppose X is a smooth curve of genus g,
and E is an elliptic curve with identity eg € E. Let X' = X u, E denote the nodal curve
obtained by joining eg € E to x € X by a node. If x is not a Weierstrass points of X, then
the limit Weierstrass points of X' contained in E are exactly the torsion points of order g
on E.

Remark 4.7.4. Let G be a simple graph of genus g. Assume that G is 2-connected, that
is, it does not have bridge edges. Then, we believe the following should be true. Given an
edge e, there should exist a choice of edge lengths for which the Weierstrass locus contains
a connected component in the interior of e. o

The above questions and the results we proved in this chapter provide a tropical refinement
of the problem raised by Eisenbud and Harris on the determination of the limit Weierstrass
loci on stable curves.

An example with a disconnected locus L, (¢)

We first prove the following result.

Theorem 4.7.5. Let G = (V, E) be a graph containing an edge e = uv such that deleting
e along with a small open neighborhood of its endpoints creates a tree. Assume e is

parametrized by the interval [0, 1], and suppose that its endpoints have valence val(u) = a+2
b b+1 .

, 7
a+b+1 a+b+1

and val(v) = b+ 2. Then, L, (e) is disjoint from the interval [ ne.
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Note that a graph satisfying the conditions in Theorem 4.7.5 has genus g = a + b + 1.

Proof. Let I'y be metric graph of model G with ¢(e) = 1. Consider a point x in the interval
b b+1

a+b+1 a+b+1
point in I'y, we will prove that the rank of D is negative. We proceed as follows.

and let D := K — g (x). In order to prove that x is not a Weierstrass

Let T := G — u — v be the tree obtained by removing u, v, and all the incident edges to
them from G. Let y be a point in the interior of e in I'y, that will be determined later as a
function of . The set V' = V' U {y} is the vertex set of another model of I';. We enumerate
the vertices of the tree T" as vy, ..., v, such that each vertex v; for j € {0,1,...,n} is
connected to exactly one vertex among vy, ...,v;_1. Consider the total order o on V' given
by the enumeration vy, ..., v,,u,v,y. The corresponding divisor D, is explicitly given as
Dy =a(u) +b(v)+ (y) — (vg). Denote by @ the total order on V' opposite to o, and D5
the corresponding divisor. The divisors D, and Dg have degree g — 1 = a + b, they are of
negative rank, and moreover, D, + D5 = K, see [BN07, BJ16].

We now write
D=K-g(x)=Do+ Ds—g(z) =Ds— E — (vg)

where E = g(x) — Do — (v9) = (a+b+ 1) (z) —a(u) —b(v) — (y). The claim r(D) = —1
now follows by observing that for x in the above interval, there exists y in e such that the
divisor F is principal, that is, ' = div(f) for a function f € Rat(I'y). Explicitly, using the

parametrization of e by the interval [0, 1] for a given z, we take y = (a +b+ 1)z — b. We

b b+1
h 0,1 b f th tion that . The desired
ave y € [0, 1] because of the assumption that = € e e desire

function f on I'y is constant outside e, has slopes slope, f(u) = a and slope, f(v) = b, and
has orders of vanishing at x and y given by a + b + 1 and —1, respectively. ]

Now consider a graph G verifying conditions of Theorem 4.7.5. Note that this implies
there is a single edge between u and v. Assume that the leaves in the tree T" are connected
to both v and v. In this case, if val(u) > 2 (which is equivalent, according to the previous
assumption, to the fact that 7" has at least two leaves, i.e., T' is not made up of a single
vertex), then v € L, (e), and similarly, if val(v) > 2, then u € L, (e).

To prove this, using symmetry and keeping the notations of Theorem 4.7.5, we assume
b > 0. Take the union of T" and v, as in Figure 4.25. Set the length of edges between u
and T equal to b, that of uv equal to one, and the others arbitrary. Let f be the function
defined to be affine linear on edges and which takes value b at u and zero at other vertices.
Then, b > 0 implies that £ = K + div(f) is effective and has coefficient at least a + b+ 1
at u. So u belongs to the total Weierstrass locus, as required.

In the case a and b are both positive, this implies that v and v are both in the total
Weierstrass locus L, (¢). Therefore, L, (e) will be disconnected.
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Figure 4.25: The cut in G used to prove that u is in the total Weierstrass locus L, () if
val(v) > 2.

4.7.2 Variation of Weierstrass loci over the moduli space of metric
graphs

Let G = (V, E) be a stable graph of genus g. Consider the cone 7, := R¥ of positive metrics
on G, and let 7, be its closure. The (coarse) moduli space of metric graphs of genus g,
denoted by .#,", is obtained by gluing of the cones 7, for every stable graph G of genus g.
More precisely, it is the direct limit of the diagram of inclusions i, < 7, for pairs H and
G of stable graphs of genus g such that H is obtained by contraction of some edges in G}
see [ACP15] for more details. We endow ,///g'qr with the topology induced by those on 7, as
the corresponding quotient topology on the limit. For each stable graph G of genus g, we
get a canonical map 7, — .4, . The universal metric graph ¥, is defined over these charts.
That is, over the cone 7, we have the universal metric graph .

Let D = (Dy)sey,, be a continuous family of effective divisors of degree d and rank r. At
each point ¢ € 7, we consider the Weierstrass locus Ly, (D;) which lives in the metric graph
... We denote by L, (D) the Weierstrass locus of the family defined as the union of all
Ly (Dy), for t € n,. We have the following theorem.

Theorem 4.7.6. The Weierstrass locus Ly (D) is a closed subset of ¥4,.

Sketch of the proof. We need to show that any point z;, in a fiber ¥, which is a limit
of Weierstrass points x; in ¥, as t tends to ty, is Weierstrass. This amounts to showing
the existence of a function f in Rat(Dy,) such that D;, — (r + 1) (tc) + div(f) = 0. By
assumption, there exists f; € Rat(Dy,) such that D, — (r+1) (¢) +div(f;) = 0, and such that
moreover f;(x,) = 0. A compactness argument then shows the existence of a subsequence
of fi’s converging to a function f on ¥,,. This limit function is in Rat(Dy,), from which
the theorem follows. O

More generally, we can define the Weierstrass locus over the full moduli space ///;T. Let
D = (Dy), for t € .4, , be a continuous family of effective divisors of degree d and rank r
over the moduli space of metric graphs of genus g.
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Theorem 4.7.7. The Weierstrass locus Ly, (D) is closed.

Proof. The proof is similar to that of Theorem 4.7.6. ]

4.7.3 Effective determination of minimum slopes

We discuss a concrete way of determining the Weierstrass locus and weights in a given
metric graph.

Let D be an effective divisor on I'. There is an algorithmic way for determining all the
minimum slopes of functions in Rat(D) along unit tangent vectors in I'. This is based
on chip-firing on metric graphs. More precisely, [Luoll] gives a generalization of Dhar’s
burning algorithm for metric graphs, which allows us to test whether a divisor is z-reduced
for any point x € I' and eventually to compute reduced divisors. See Definition 2.10,
Algorithm 2.13 and Theorem 2.15 in [Luoll].

We can extract the minimum slopes from this procedure. Let x be a point of I' and
v e T,(T') be a tangent direction at z. At step i of the algorithm, following the notations
of [Luoll, Definition 2.10], we count the number n; of indices 1 < j < J such that le)
contains a segment of I' starting at x and supporting the direction v. The number n; is
either zero or one and represents the number of chips that go through this segment toward
the point x at step i. We denote by n the sum of the n;’s. It is the total number of
chips that are brought to by Dhar’s algorithm via the branch supporting v. This means
that s§ = —n, which shows that the minimum slope on v can be computed using Dhar’s
algorithm.

4.7.4 Tropical Weierstrass points in positive characteristic

The treatment of Weierstrass points for curves over positive characteristic fields suggests the
following possible modification of the theory of tropical Weierstrass points in the isolated
cases where the whole graph is Weierstrass. We replace the rank r with the integer
b =0T, D) = min D,(z),
zel’

and define the Weierstrass locus as the subset of points = € I' verifying D,(x) = b+ 1. The
weight of a connected component C' of this modified Weierstrass locus is modified by setting

pi (C; D) == deg (D)) + (9(C) — 1)b — Z sq(D).
ved®™t C

This leads to a consistent theory on the tropical side, with the weights of components of
the Weierstrass locus adding up to d — b + bg (instead of d — r 4+ rg). This is reminiscent
of the setting of curves in the situation where the standard sequence of vanishing orders
differs from the sequence 0,1, ..., r, cf. [Lak81]. However, at this point, we are not aware
of any geometric meaning to this tropical count.

251



4.7.5 Weierstrass points of random combinatorial graphs

There exist combinatorial graphs without any Weierstrass points among their vertices (see
Section 4.6.10). This seems, however, to be a rare phenomenon, as a computer verification of
examples indicates. Examples of random graphs were created and visualized using Python,
Matplotlib [Hun07], and NetworkX [HSS08].

Question 4.7.8. What is the proportion of combinatorial graphs which do not have any
Weierstrass point among their vertices? That is, what is the probability that a combinatorial
graph on n vertices has no Weierstrass point?

Figure 4.26: Random trivalent graph and its Weierstrass locus Ly, (K). The graph has genus
26, and the vertex labels indicate the coefficients K, (v) — 25.

Randomness is understood within a class of graphs, for example regular graphs of given
degree, or Erdés—Rényi random graphs. This is related to the following question of Baker.

Question 4.7.9 (Baker [Bak08]). Provide a classification of combinatorial graphs without
Weierstrass points among their vertices.

4.8 Tropicalization of Weierstrass points

In this section, adapted from the Appendix of [AGR23], we describe the tropicalization of
the Weierstrass divisor of a line bundle on a smooth curve over a non-Archimedean field.
The notations and the presentation of the context have been kept, as well as the statement
of the main results. For the proofs, we refer to the preprint cited above.

Let K be an algebraically closed complete non-Archimedean field with a non-trivial
valuation denoted by val. Let R, m, and k = R/m be the valuation ring, the maximal ideal
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of R, and the residue field, respectively. We also denote by |- | the corresponding norm on
K, so that val(-) = —log| - |.

Let X be a smooth proper curve defined over K. Let D be a divisor of degree d on X
and let £ = O(D) be the corresponding line bundle, with O = Oy, the structure sheaf of
X. Denote by wx the canonical line bundle on X.

Let H < HY(X, L) be a space of sections of dimension r + 1 and denote by W = W(D, H)
the corresponding Weierstrass divisor. We assume that the gap sequence of H is the standard
sequence 0, 1,...,r, that is, for a general point = € X (K), the orders of vanishing of sections
of £Lin H are 0,1,...,r. In particular, if K is of characteristic zero, this is automatic.

4.8.1 Tropicalization

We denote by X®" the Berkovich analytification of X. We assume familiarity with the
theory of Berkovich analytic curves, and refer to [AB15, Section 4] and [BPR16, Section 5]
that contain what we need.

A semistable vertex set for X" is a finite set of type 2 points V in X*" such that the
complement X® \ V is a disjoint union of finitely many open annuli and infinitely many
open disks. A semistable model for X is an integral proper relative curve X over R with
generic fiber X, = X and special fiber X, that is reduced and has nodal singularities. Any
irreducible component of the special fiber X, of a semistable model X gives a valuation
on K(X) and defines a point of type 2 in X*". The set V' of points in X" associated to
the irreducible components of X, is a semistable vertex set for X?". This process provides,
in fact, a bijection between semistable vertex sets of X®" and semistable models of X
(see [BPR16, Thm. 5.38]). Moreover, each point of type 2 appears in a semistable vertex
set.

A semistable vertex set V' gives rise to a skeleton I' for X*", defined as the union in X*"
of V' and the skeletons of the open annuli in X?" \\ V. The canonical metric on the skeletons
of the open annuli gives the skeleton a metric graph structure, naturally embedded in X®".

The underlying graph G = (V, E') has vertex set V and edge set E in bijection with the
set of open annuli in X* \ V. There is an edge between a pair of vertices v and u in V for
each open annulus whose closure contains the points v and u. Moreover, the edge length
function ¢: E — (0, +o0) associates to each edge of G the modulus of the corresponding
annulus. Using the correspondence between semistable models and semistable vertex sets,
the graph G is identified with the dual graph of X, the special fiber of X, with vertices in
bijection with the irreducible components of Xy, and edges in bijection with the nodes of
Xo. There is an edge e = uv in G for each node that lies on the irreducible components
associated to u and v. The length of an edge corresponds to the singularity degree in X of
the corresponding node.

For each point z of type 2 in X®", the extension x(x)/k is of transcendence degree one.
We denote by C, the corresponding smooth proper curve over k. In a semistable model X
in which x is in the vertex set, C, is the normalization of the irreducible component in X,

253



associated to x, and k(z) is the function field of this component.

We denote by B the standard open ball in the Berkovich affine line A%#", The complement
of I' in X*" is a disjoint union of open balls B, in bijection with v € T,(X*") ~\ T, (") for
all points x of type 2 in I', each isomorphic to B,. For a given ball B, in X*" \ T', the
corresponding point x is the unique point in I' that lies in the closure of B,. Denote by pZ
the point of C, (k) corresponding to v € T,(X*") \ T,(I).

Let I" be a metric graph skeleton of X*" with underlying graph G' = (V| FE) and denote
by 7: X* — I" the canonical retraction map. We call 7 the tropicalization map. In the
notations of the previous paragraph, the tropicalization map sends all the points in B,
to the point z. The restriction of 7 to X (K) € X®" is compatible with the specialization
map from the generic fiber X, to Xy, that is, a point specialized to a node is sent by 7
to a point in the corresponding edge, and a point specialized to a smooth point of X; is
sent by 7 to the vertex of GG corresponding to this component. We get a tropicalization
map 7,: Div(X) — Div(I') that sends a divisor D = ¥ vk, @z(x) on X to the divisor
(D) = erX(K) az(7(x)).

We denote by v,: K(X) — R u {400} the valuation of a point x € X* \ X (K) with
v.(f) = +oo only if f = 0. The residue field of this valuation is denoted by x(x). We also
denote by | - |, = exp(—v,) the corresponding norm.

For each non-zero f € K(X), we define the tropicalization of f, denoted trop(f): I' —» R,
as the map that sends each z € I' € X" \ X(K) to v,(f). This induces a tropicalization
map trop: K(X) ~ {0} — Rat(I).

For a vector subspace H  K(X), we call M = trop(H \ {0}) the tropicalization of H,
and denote it, by a slight abuse of notation, by trop(H).

We define the genus function g on X*" to be the genus of C, for a point of type 2,
extended by zero everywhere else. The restriction of g to I' gives an augmented metric
graph of genus g equal to that of X. We denote by K the canonical divisor of the augmented
metric graph (I, g), with K(x) = 2g(z) — 2 + val(z) for all z € T.

4.8.2 Reduction

For a point of type 2, the valuation v, has the same value group as val. For each
nonzero f € K(X), choosing a € K with val(a) = v,(f), we get that a~!f has valuation
v,(a~'f) = 0, and therefore gives an element in the residue field x(z) that we denote by f,.
We call this the reduction of f at x, which is nonzero and defined only up to multiplication
by a non-zero scalar in k. For a vector subspace H ¢ K(X) of dimension r + 1, denote by
H, c k(z) the k-vector subspace spanned by the reductions f, of elements f e H [AB15,
Section 4.4]. By [AB15, Lemma 4.3], H, has dimension r + 1 over .

4.8.3 Slopes

For point z in T" of type 2 in X®" each unit tangent direction v € T,(I") gives a point
py € C.(k). By the slope formula [BPR16], for any non-zero f € K(X), we have
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slope,, (trop(f)) = ord,y < fx> Moreover,

T« (div(f)) = div(trop(f)).

If Hc K(X) is a K-vector subspace of dimension r + 1, for any point = € I' and unit
tangent vector v € T,(T'), we get a collection of integers slope, (trop(f)) = ord,y(f.), f € H.
Since f]x has dimension r + 1, this collection has size r + 1. This means that the collection
of slopes slope, (h), for h € M = trop(H), has size r + 1. In particular, Property () in
Section 4.5 is satisfied by M = trop(H).

For each unit tangent vector v, we order the slopes slope, (h), for h € M, in the form
sy < s¥ < --- < s¥. Since elements of trop(H) are piecewise affine linear, adding more
points of I' to the semistable vertex set, we can suppose that the set of slopes

v v v
Sp < sy <---<sy

is constant in the interior of any edge of G = (V, F) for parallel tangent directions v at the
point of the edge that point in the same direction.

4.8.4 Weierstrass divisor and Wronskian

Let X be a smooth proper curve defined over K. Let D be a divisor of degree d on X and
let £ = O(D) be the corresponding line bundle, with O = Oy, the structure sheaf of X.
Denote by wy the canonical line bundle on X.

Let H < H°(X, L) be a space of sections of dimension r + 1 and denote by W = W(D, H)

the corresponding Weierstrass divisor. The Weierstrass divisor W is the divisor of a global
r(r+1)

section of the line bundle w?( > LB called the Wronskian. It is described as follows.
In local coordinates, for any point p € X (K), the local ring O, is a discrete valuation
ring. We choose a uniformizer that we denote by t,. We have £, ~ O, as an Op,-module.
Taking the generator g, = tg ®) of L,, each global section f of £ can be written in the form
[ = Jrgp with f, € O,.
We define the Hasse derivative of order j, for j € Z=, on K[t,] by

DY ¢m = <m) g for m > 0,
J

and extend it by linearity to all K[t], and then to all K(t). Since the extension K(X)/K(t)
is separable, DY is extended to K(X). Note that if K has characteristic zero, we can
recursively define for any j > 0, the j-th derivative fISJ ) by

) d )
f(J) _ _f(]*l)
p dtp p

with féo) = fp. In this case, we have j! D(j>fp - [gj)'
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Let F := {fo,..., f+} be a basis for H € H°(X, L), and for each i, write f; = f;,gp-

r(r+1)

Viewing Wrr as a meromorphic section of wy * , the stalk of the Wronskian Wrz at p is
given by

r(r1) ®r(r+l)

o) -
(dt,) 2 ewp

er’p = det <D fi,p) 0<,j<r

We have
W = (r + 1)D + div(Wrx).

We note, without going into details, that the Wronskian Wrz can also be defined without
local coordinates, in terms of a filtration of the jet bundle and the diagonal embedding of

X.

Wronskian without local coordinates

Consider the diagonal embedding A: X — X x X and let I = I be the ideal of the
diagonal in X x X. Denote by 7; and 7y the projections of X x X to the first and second
factors, respectively. The jet bundle J, = (75 (L)/I"™") defined on X inherits a filtration
induced by powers of I, and quotients are identified with £ ® w$', fori = 0,1,...,7.

Let F == {fo,..., fr} be a basis for H < H°(X, L). Each section f; of £ defines a section
75 (fi) of J.. The determinant of the sections 73 (f;) with respect to the filtration by powers
of I is well-defined, that is, does not depend on the choice of the basis F, and gives a global
section of w%r(rﬂ)/ > ® L&) This is Wrr. Since we assumed that the gap sequence is
0,1,...,r, the Wronskian Wrz is non-vanishing [Lak81].

r(r+1) r(r+1)

The divisor D identifies wy 2 @ L8+ with the twist wy 2 ((r + 1)D) of the

r(r+1)
2

pluricanonical sheaf wy Under this identification, sections become meromorphic

pluricanonical forms with poles having order bounded at a point = of X by (r + 1)D(x).

4.8.5 Slope formula for meromorphic differentials

We denote by ||| the Kahler norm introduced by Temkin in [Tem16] on the sheaf of
differentials wx that at any point x € X?" associates to any section « of wx the real number
|- For each positive integer n, the Kihler norm | - | induces a metric on w§" which, by
an abuse of notation, we still denote by | - |. Given a meromorphic section o of w¥", the
tropicalization of o denoted by trop(«) is the map

trop(a): T' — R, x — —log o

The tropicalization of any meromorphic n-form on X is a rational function on I, that is,
trop(a) € Rat(I"). Moreover, the following slope formula holds.

Lemma 4.8.1 (Slope formula for meromorphic differentials). For any meromorphic section
a of W, we have
Te(div(a)) = nK + div(trop(a)).
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Moreover, for any point x € I' of type 2 and for any v € T,(I'), we have slope, (trop(a)) =
ord,y (&) + n.

Here, &, is the reduction of v at z, and is a meromorphic form on C,, see [TT22, Section
2].
The proof of Lemma 4.8.1 can be found in [AGR23, Appendix A].

4.8.6 Tropicalization of the Wronskian

Notations as in Section 4.8.4, let F' := trop(Wrz) be the tropicalization of the Wronskian
Wrz, which is a meromorphic (r(r + 1)/2)-form. Let W = 1,(W) be the tropicalization of
W to I'. Let D = 7,(D). The following result is a direct consequence of Lemma 4.8.1, with
a = WI']:.

Theorem 4.8.2. Notations as above, we have

r(r+1)
2

W(zx)=(r+1)D(x) + K(x) — Z slope, F,

veT,(T)
where F' = trop(Wrx). Furthermore, slope,F' = @ + ordp;\%z.

Here, \7\7\;@ denotes the reduction of Wrz at x.

4.8.7 The Wronskian of analytic functions on annuli

Let A' = Spec(K|[T]) and A be its Berkovich analytification. Let A(p) be the closed
annulus in A" of center 0 with outer radius one and inner radius p € (0, 1),

Ap) = {z e AV |p <|T], <1},
Let R(p) be the ring of analytic functions on A(p). An analytic function f on A(p) admits

f= Z ay, T"

neZ

a formal power series expansion

with lim,, 14 |a,|s™ = 0 for all s € [p, 1]. The skeleton of A(p) is a closed interval, which
can be identified with I := [0, —log p|: each point ¢ in this interval corresponds to the
norm |- |¢, (f) = sup,ez |an| exp(—gn) = maxyez |a,| exp(—gn) on any analytic function f as
above. The tropicalization of an analytic function f is the function trop(f) on the interval
I given by
trop(f)(g) = min{val(a,) + ng |n € Z} Vge I
Let ¢ = (o € A(p) be the boundary point corresponding to the extremity 0 of I, that is,

|flc = max,ez |a,| on any analytic function f as above. The reduction at ¢ of an analytic
function f with |f|; = 1 is a Laurent polynomial

fg = Z ant"

neZ
|an|=1
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where ¢ is the reduction of T" at ¢ and a, € k is a,, modulo m. The slope of trop(f) at 0
along the unit tangent direction v € T(([) is the minimum exponent that appears in fc.

Let fo,..., fr be r + 1 K-linearly independent analytic functions on A(p) with

fi = Z ai,nTn7 Qjpn € K

neZ

the analytic expansion of f;. Suppose that |fi|¢ = 1 for all ¢ = 0,1,...,r and that
trop(fo), - - ., trop(f,,) have slopes sy < .-+ < s, at 0 along the unit tangent direction
v € To(I). This means the reduction fm of f; at ¢ has initial term ¢%.

Consider the analytic function on A(p) defined by

h = det (D(” f)

4,j=0

where DY fi denotes the Hasse derivative of f;. The following proposition describes the
slope of trop(h) at the point 0 along the direction v.

Proposition 4.8.3. Notations as above, assume

e cither, the residue field k is of characteristic zero,

e or, the sequence s, ...,s, forms an interval, that is, s; = sy + j for all j =0,... 7.
Then, we have

r(r+1)
—

The proof of Proposition 4.8.3 can be found in [AGR23, Appendix A].

slope, (trop(h)) = sg+ -+ + 8, —

4.8.8 Order of vanishing of the reduction of the Wronskian

A consequence of Proposition 4.8.3 is the following description of the slopes appearing in
Theorem 4.8.2.

Proposition 4.8.4. Let x be a point of type 2 in I" and v € T,(I"). Denote by si, ..., s’
the sequence of slopes associated by tropicalization of H to v. Assume

e cither, the residue field k is of characteristic zero,
e or, the sequence sg, ..., s, forms an interval, that is, si = sg + j.
Then, we have

~ r(r+1
ord,y Wrr =SS+-"+8Z—%.

The proof of Proposition 4.8.4 can be found in [AGR23, Appendix A].
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4.8.9 Reduction of Weierstrass points in equal characteristic zero

Assume the residue field x has characteristic zero. As in Section 4.8.3, denote by s/,
i=0,...,r, the slopes of functions of the form trop(f) € trop(H), for f € H.

Theorem 4.8.5. Let W = 1, (W). We have

W) = 1 DD + "k - Y Ve

2 veT,(T) =0

Proof. This follows by combining Proposition 4.8.4 with Theorem 4.8.2. ]
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5 Perspectives

Numerous open questions and research perspectives emerged from the work presented in
the current manuscript. Hereafter, we present some of them.

Contents of the chapter

5.1 Matricubes, representability questions and Schubert calculus 261

5.2 Tropical linear series, Brill-Noether theory and smoothing
results . . . ..o 262

5.3 Further exploration of tropical Weierstrass points . . . . . . . 264

5.4 Riemann—Roch theorem in higher dimension and tropical
Hodge theory . . . . . . . . . .. ... ... ... 265

5.1 Matricubes, representability questions and Schubert
calculus

In Chapter 2, we provide cryptomorphic definitions of matricubes, which are a generalization
of matroids, in terms of rank function, flats, circuits, and independents. To propose these
definitions, we tried to stick as much as possible to their matroidal counterparts. However,
some of these axiomatic systems seem to necessarily involve some dedicated combinatorial
aspects related to the structure of matricubes. This is for example the case regarding
independents, where our definition requires to define the “size” of independents to formulate
the independent augmentation property (I12). It would be interesting to try to enhance these
definitions and make them “purer”, i.e., simpler and more parallel to the corresponding
axiomatic systems for matroids.

As explained in Section 2.9.1, we were not able to give a relevant axiomatic system for
the bases of matricubes. All the natural generalizations of bases of matroids we could
think about (locally or globally maximal independents, independents locally or globally
of maximal rank, etc.) yield a poor notion in matricubes, not cryptomorphic to the other
definitions. A deeper understanding of matricubes would surely involve finding a relevant
axiomatic system for bases, or a reasonable explanation why the formalism of matricubes
does not allow to define bases.

In Section 2.9.2, we associate to every matricube an integer polymatroid and a matroid
in a natural way. This enables, among others, to characterize the representability of the
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matricube by that of the associated matroid (see Section 2.9.3). However, the question of
characterizing matricubes representable over every field (Question 2.9.2) remains open. We
also do not know if the representability of all local matroids of a matricube is sufficient
for the matricube to be representable — Proposition 2.8.2 tells us that this condition is
necessary. Furthermore, it would be interesting to understand the connections between the
definitions of circuits and independents in matricubes and those given for polymatroids
in [BCF23].

We explain in Section 2.9.7 (and, more thoroughly, in Chapter 3) how a linear series on a
smooth proper curve with marked points naturally gives rise to a matricube, in this case
called geometric. Question 2.9.6 asks whether every representable matricube is necessarily
geometric, and whether one can bound the genus of a curve representing a geometric
matricube.

We also define, in Section 2.9.6, a Tutte polynomial for matricubes, defined by a global
formula involving the rank function in the exponents of the polynomial. Although this
definition is a quite natural generalization of the Tutte polynomial for matroids, it does not
appear to verify a recursive equation involving deletions and contractions, like its matroidal
counterpart. A better understanding of this object could probably be achieved by exploring
its connections with the Tutte polynomial for polymatroids defined in [CF22].

Finally, it is reasonable to think that matricubes could be a useful tool to study the
geometry of Grassmannians. As exposed briefly in Section 2.9.4, there is a stratification of
products of initial Grassmannians by matricubes, where each stratum is defined by asking
that the intersection pattern of the tuple of initial flags be encoded by a given matricube.
The equivalence between the realizability of a matricube and that of the associated natural
matroid entails a one-to-one-correspondence between this stratification and the stratification
of a unique Grassmannian. One could ask whether this correspondence has a geometric
meaning. Furthermore, we hope that the formalism of matricubes could be used to formulate
positivity results for the intersection theory of flag varieties, in order to extend the results
about the Littlewood—Richardson rules proved by Coskun [Cos09] for two-step flag varieties.

5.2 Tropical linear series, Brill-Noether theory and
smoothing results

In Chapter 3, we define a new, combinatorial theory of limit linear series, and start exploring
the algebraic, combinatorial and topological properties of the spaces of functions defined
in this framework. But these tropical spaces, which are infinite-dimensional contrary to
the (well-studied) tropical subspaces of T¢, probably conceal some well-guarded mysteries
which have to be uncovered.

For instance, Question 3.5.11 asks, for a closed sub-semimodule M of Rat(D, &), whether
there is a connection between M being finitely generated and M being of finite tropical rank,
i.e., between M having a finite number of extremals and M being of finite tropical rank.
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Also, not much is known, for these spaces, about the connections between the cardinality
of generating sets and several notions of rank (divisorial rank, tropical rank, Kapranov
rank, and Barnikov rank) defined by various authors, mostly in the finite-dimensional
context [DSS03]. It seems, moreover, that some supplementary combinatorial tools would
be needed to check more easily whether a given admissible semimodule is finitely generated,
or compute its tropical rank.

A firmer grasp on the properties of tropical semimodules of functions should be useful
in tropical Brill-Noether theory. There is a well-known result by Baker stating that in
the tropical realm, like in the algebro-geometric world, the property of the Brill-Noether
number p(d,r, g) == g— (r+1)(g—d+r) being non-negative implies the existence of divisors
of degree d and rank at least r on a given metric graph I' [Bak08, Theorem 3.20]. The
surprising fact is that the only known proof as of today is based on the geometric analogue
of the theorem and the use of Baker’s specialization lemma.

We hope that better understanding combinatorial linear series and developing relevant
tools in the tropical linear algebra of semimodules could help to give a direct combinatorial
proof of the tropical Brill-Noether theorem. Moreover, if the Brill-Noether number is
negative, we do not know in general whether the tropical counterpart of the converse of the
algebro-geometric Brill-Noether theorem holds. Cartwright, Jensen and Payne showed that
in the particular case where I is a chain of g loops of generic lengths, then p(d,r,g) <0
implies that there are no divisors of degree d and rank at least r on I" [CJP15]; but this
question is still open for general metric graphs and may be solved using combinatorial linear

series.

In Section 3.8, we classify rank one combinatorial limit linear series on a metric graph,
by providing a bijection with finite harmonic morphisms from the metric graph to metric
trees (Theorem 3.8.6). Another interesting goal is to do the same for higher rank tropical
linear series. This means, for instance, finding correspondences with morphisms from the
metric graph to some models of tropical projective spaces. To obtain such a classification
of combinatorial limit linear series, one could try to make a precise connection between the
content of Chapter 3 and a parallel work by Jensen and Payne [JP22] in which they define
strong tropical linear series, a notion that relies on the data of a valuated matroid.

Another natural open question arises from the study of concrete examples of (crude)
linear series, in particular the examples in Sections 3.10.2 (rank two crude linear series
on a tripod graph) and 3.10.1 (rank two linear series on a dipole graph). In part of these
examples, it turns out that with some fixed given choice of rank functions, there exist
whole families of crude linear series depending on a choice of locations for the vertices of
a combinatorial model of the slope structure. More simply said, we can sometimes move
the points where the allowed set of slopes changes, continuously along some edges, which
provides a space of crude linear series. It would be interesting to study these spaces for
their own sake — understand their structure, compute their dimension.
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5.3 Further exploration of tropical Weierstrass points

In Chapter 4, we explore the concept of tropical Weierstrass points on metric graphs and
the topological properties of tropical Weierstrass loci. We also associate intrinsic weights
to each connected component of these loci, and show that, in addition to having nice
combinatorial properties, these weights count the number of algebraic Weierstrass points
which are being tropicalized to each connected component of the tropical locus, if the graph
and divisor come from geometry.

This raises the question of the combinatorial diversity achieved by tropical Weierstrass
loci. In Section 4.6 and in other examples disseminated in Chapter 4, we give an overview
of this diversity: the tropical Weierstrass locus can be finite or infinite, connected or not
(and there can be many connected components), supported by the set of vertices or disjoint
from the vertices of a combinatorial model, and can even cover the whole metric graph.

Section 4.6.5 provides a countably infinite family of such examples where the whole graph
is Weierstrass, using the canonical divisor on complete graphs endowed with a uniform
length function; it also presents an uncountably infinite family of examples, using cycles
of arbitrary lengths joined to a central vertex by bridge edges of arbitrary lengths, with a
divisor concentrated on the central vertex. This second family is particularly striking, since
it shows that the quantity

min(D,(x) — r),

zell

which compares the minimum, over all points x € I, of the largest coefficient at = in the
linear system of D, with the expected number r, is unbounded.

These two families are however very different from a combinatorial point of view: the first
one has high connectivity whereas the second one has many bridge edges. This suggests to
try and provide a classification of all combinatorial graphs G that admit a length function
and a divisor with Weierstrass locus the whole metric graph. Among them, it would also be
interesting to determine for which ones this property holds for every choice of edge lengths.
See Question 4.6.2.

The observation that the quantity b := min,cr(D,(z) — 7) can be positive suggests the
following variant of the theory of tropical Weierstrass points: replace r by b in the definition
of Weierstrass points. The total weight of the tropical Weierstrass locus on a metric graph
is still a nice function of the basic combinatorial parameters, but a natural direction of
research would be to find a possible geometric meaning to this.

Another open question related to the tropical Weierstrass loci associated with com-
binatorial graphs is raised in Section 4.6.10. It suggests to establish a classification of
combinatorial graphs which have no Weierstrass points, i.e., such that endowing them with
a uniform length function yields a metric graph whose tropical Weierstrass locus is disjoint
from the vertices.

In Section 4.7.1, finally, we define the total Weierstrass locus of a divisor on a metric
graph as the union of the Weierstrass loci for every choice of length functions, with a
relevant normalization. In a nutshell, this locus registers all the possible tropical Weierstrass
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points as we change the graph’s metric. Theorems 4.7.6 and 4.7.7 imply that this subset
is closed, as could be expected. It would be interesting to answer Question 4.7.1, which
asks how this total locus behaves: what number of connected components can it have on
each edge?” What can its Lebesgue measure be? How does its boundary behave? Which
of its points come from geometry? And finally, as we vary the edge lengths, what is the
maximal proportion of a given edge which is covered by tropical Weierstrass points? So far,
we only provide a partial answer to the question related to connectedness, by providing in
Theorem 4.7.5 an example where the restriction of the total Weierstrass locus to a given
edge is disconnected.

5.4 Riemann—Roch theorem in higher dimension and
tropical Hodge theory

The combinatorial limit linear series presented in Chapter 3 are defined on algebraic curves
and metric graphs (therefore, one-dimensional tropical varieties), and it is natural to look
for higher-dimensional generalizations. In [Car21], Cartwright studies a generalization of
dual graphs to higher-dimensional algebraic varieties, by associating polyhedral complexes
enriched with additional combinatorial data. This allows him to formulate a conjectural
version of the Riemann—Roch theorem for surfaces [Car21, Conjecture 3.6].

A promising direction of research could be to try and prove an inequality of this form,
using the language of combinatorial Chow rings to expand Cartwright’s formalism with
hybrid data. Our current ongoing work on this topic is based upon recent developments,
including the combinatorial Hodge theory developed by Adiprasito-Huh-Katz [AHK18],
and the tropical Hodge theory developed by Amini and Piquerez [AP20, AP23]. It would
be interesting as well to extend the formalism of slope structures and combinatorial limit
linear series to higher dimension.
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Résumé : Nous introduisons d’abord un nouvel objet
combinatoire nommé “matricube”, une généralisation
naturelle des matroides. De méme que les matroides
fournissent une axiomatisation combinatoire des ar-
rangements d’hyperplans dans un espace vectoriel,
les matricubes représentent des arrangements de
drapeaux. Comme pour les matroides, nous don-
nons des définitions cryptomorphes des matricubes
en termes de fonction de rang, plats, circuits et
indépendants. Nous donnons des liens précis entre
les matricubes et les tableaux de permutation, et pro-
posons une description des matricubes selon des ma-
troides locaux.

Nous utilisons ensuite les matricubes pour développer
une théorie purement combinatoire des séries
linéaires sur les graphes métriques. Ceci se fonde
également sur le formalisme des structures de
pentes, donnant des contraintes sur les pentes des
fonctions méromorphes tropicales. Nous montrons
gue les séries linéaires combinatoires apparaissent
naturellement par tropicalisation de séries linéaires
sur des courbes algébriques. Nous explorons leurs
propriétés topologiques et développons des outils
pour les étudier. Nous proposons une classification

complete des séries linéaires combinatoires de rang
un, montrant qu’elles sont en bijection avec les mor-
phismes harmoniques du graphe vers des arbres
métriques. Ceci donne un théoréme de lissification.
Enfin, nous étudions les points de Weierstrass tropi-
caux, qui sont des analogues, sur les courbes tropi-
cales, de points de ramification de fibrés en droites
sur les courbes algébriques. Le lieu de Weierstrass
tropical d’un diviseur sur un graphe métrique peut
étre infini. Cependant, nous associons un poids in-
trinséque a chacune de ses composantes connexes.
Nous montrons que le poids total du lieu de Weiers-
trass tropical ne dépend que du degré du diviseur, de
son rang, et du genre de la courbe tropicale. De plus,
dans le cas d’un graphe métrique obtenu comme tro-
picalisation d’'une courbe algébrique, nous montrons,
en utilisant les séries linéaires combinatoires, que
ces poids comptent le nombre de points de Weiers-
trass algébriques tropicalisés sur chaque composante
connexe du lieu tropical.

Dans chacune de ces contributions, nous présentons
de nombreux exemples et posons des questions
ouvertes menant vers d’autres perspectives de re-
cherche.

Title : Tropical linear series, combinatorial flag arrangements and applications to the study of Weierstrass

points

Keywords : Tropical geometry, Linear series, Matroids, Weierstrass points, Moduli spaces

Abstract : We first introduce new combinatorial ob-
jects called “matricubes”, a natural generalization of
matroids. In the same way that matroids provide a
combinatorial axiomatization of hyperplane arrange-
ments in a vector space, matricubes abstract arrange-
ments of flags. As for matroids, we provide cryptomor-
phic definitions of matricubes in terms of rank func-
tion, flats, circuits, and independent sets. We provide
precise connections between matricubes and permu-
tation arrays, and propose a description of matricubes
in terms of local matroids.

We then use matricubes to develop a purely combi-
natorial theory of limit linear series on metric graphs.
This is based as well on the formalism of slope struc-
tures, which constrains the slopes of tropical mero-
morphic functions. We show that combinatorial linear
series arise naturally by tropicalizing linear series on
algebraic curves. We explore their topological proper-
ties and develop tools to study them. We provide a
full classification of combinatorial linear series of rank

one, showing that they are in one-to-one correspon-
dence with harmonic morphisms from the graph to
metric trees. This entails a smoothing theorem.
Finally, we study tropical Weierstrass points, which
are analogues, on ftropical curves, of ramification
points of line bundles on algebraic curves. The tropi-
cal Weierstrass locus of a divisor on a metric graph
can be infinite. Nevertheless, we associate intrinsic
weights to each of its connected components. We
prove that the total weight of the tropical Weierstrass
locus depends only on the degree of the divisor, its
rank, and the genus of the tropical curve. Further-
more, in the case the metric graph is the tropicaliza-
tion of an algebraic curve, we show, using combinato-
rial linear series, that our weights count the number of
algebraic Weierstrass points which are tropicalized to
each connected component of the tropical locus.

In each of these contributions, we discuss multiple
examples and ask open questions leading to other
perspectives of research.
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