
HAL Id: tel-04862322
https://theses.hal.science/tel-04862322v1

Submitted on 3 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Approche distributionnelle pour l’apprentissage par
renforcement inverse par modèles génératifs inversibles :

Vers l’apprentissage de récompenses transférables
Simo Alami Chehboune

To cite this version:
Simo Alami Chehboune. Approche distributionnelle pour l’apprentissage par renforcement inverse par
modèles génératifs inversibles : Vers l’apprentissage de récompenses transférables. Computer Science
[cs]. Institut Polytechnique de Paris, 2024. English. �NNT : 2024IPPAX006�. �tel-04862322�

https://theses.hal.science/tel-04862322v1
https://hal.archives-ouvertes.fr

626

N
N

T
:2

02
4I

P
PA

X
00

6

Distributional Inverse Reinforcement
Learning with Invertible Generative

Models: Towards Transferable Reward
Functions

Thèse de doctorat de l’Institut Polytechnique de Paris
préparée à l’École Polytechnique

École doctorale n◦626 École doctorale de l’Institut Polytechnique de Paris (EDIPP)
Spécialité de doctorat : Informatique, Données et Intelligence Artificielle

Thèse présentée et soutenue à Palaiseau, le 1er Mars 2024, par

SIMO ALAMI CHEHBOUNE

Composition du Jury :

Marie-Paule Cani
Professeure des Universités,
Ecole Polytechnique (LIX, UMR 7161) Présidente

Sylvain Lamprier
Professeur des Universités,
Université d’Angers (LERIA) Rapporteur

Aomar Osmani
Maı̂tre de conférences HDR,
Université Sorbonne Paris Nord (LIPN, UMR CNRS 7030) Rapporteur

Michèle Sebag
Directrice de recherche,
CNRS (LRI) Examinatrice

Erwan Le Pennec
Professeur des Universités,
Ecole Polytechnique (CMAP) Examinateur

Fragkiskos Malliaros
Professeur Assistant,
Ecole CentraleSupélec (CVN/Inria) Examinateur

Jesse Read
Professeur des Universités,
Ecole Polytechnique (LIX) Directeur de thèse

Rim Kaddah
Docteure,
IRT SystemX Co-directrice de thèse

En mémoire de Abdelilah ALAMI CHEHBOUNE,

un modèle d’humanité et d’altruisme.

Puissions nous honorer sa mémoire en menant une vie aussi vertueuse que la sienne.

Acknowledgments

Some people live more in 20 years than others do in 80. It’s not the time that matters, it’s

the people we share it with. In my own journey, the individuals I have had the privilege to

encounter, both during this PhD and even prior, have made it an extraordinary voyage, shaping me

into a better person, I hope. I am deeply grateful to all the people that directly or indirectly

contributed to the success of this Ph.D., thus I will not be brief. Over the span of 30 years, I have

never met anyone who was not important; I therefore apologise to any person I would have failed

to mention.

Aux membres du jury. J’aimerais remercier since rement tous les membres du jury, Marie-Paule

Cani, Aomar Osmani, Sylvain Lamprier et Miche le Sebag, Erwan Le Pennec et Fragkiskos Malliaros.

Je suis honore que vous ayez tous re pondu favorablement a mon invitation. Je remercie tout

particulie rement Sylvain Lamprier, Aomar Osmani et Miche le Sebag, d'avoir pris le temps de

fournir une revue exigeante et rigoureuse de ce manuscrit afin d'en faire un travail de meilleure

qualite . Je remercie aussi Marie-Paule Cani de m'avoir fait l'honneur de pre sider mon jury et

d'avoir vu les applications possibles de ce travail pour son propre domaine de recherche, ce que

je conside re comme l'un des plus beaux compliments qu'un chercheur puisse recevoir. Je remercie

chaleureusement Erwan Le Pennec pour son humanite et pour m'avoir soutenu dans les moments

les plus difficiles. Cette the se ne serait peut e tre pas alle e a son terme sans lui. Je reste convaincu

que les personnes les plus brillantes tirent les autres vers le haut. Finally, I would like to thank

Fragkiskos Malliaros whose amazing teachings, pedagogy and kindness inspired me to follow a

research path. To have you among my jury is an accomplishment and an immense honour.

A mes directeurs de thèse. My warmest thanks naturally go to Pr.Jesse Read. Thank you very

much for trusting me and giving me the invaluable opportunnity to pursue a Ph.D under your

supervision. I had the privilege to have a kind, warmhearted supervisor whose humility and quest

for simplicity made him a role model. I also thank Pr.Read for the freedom he granted me during

this thesis and for allowing me to explore so many subjects and deliver such a personal work. That

is a priceless gift. I would not be the person I am today without his support and trust, I owe him

more than I can express.

Je remercie infiniment Rim Kaddah pour la qualite de son encadrement durant cette the se et pour

son soutien tant acade mique que moral pendant ces 4 anne es. Il y a tant a dire et si peu de place.

Merci d'avoir toujours trouve le temps de m'aider a me sortir des diverses difficulte s the oriques

que j'ai pu rencontrer durant cette the se. Merci pour ton inde fectible soutien durant les pe riodes

les plus dures et pour avoir re ussi a supporter mes humeurs, que ce soit devant les absurdite s

administratives, les difficulte s d'e criture ou les moments de panique quand le doute s'immisce sur

la validite the orique de mon travail. Au de but de cette the se tu e tais mon encadrante, j'en ressors

avec une amie. Merci pour la personne que tu es. Je suis bien malheureux que ce manuscrit signe

la fin de notre collaboration mais sois assure e que je trouverai un moyen pour que nous travaillons

ensemble de nouveau le plus to t possible, si tu le permets.

To DaSciM. I would like to thank all my colleagues from The DaSciM team and Pr.Michalis

Vazirgiannis in particular for accepting me as part of his amazing team. Although my research

subject is not the core focus of the team, I am glad to have joined you and I am even more happy

to know that you will still be my coworkers for the next two years. I also thank Pr.Johannes

Lutzeyer for the invaluable disccussions we had, the meals we shared and all kind of fun activities.

Thank you for your kindness, authenticity and dedication dear friend. I also think of Ce lia, Yassine,

and all the others to whom I wish the best of lives. Je remercie aussi David Goodenough pour ses

conseils avise s et qui a su me rassurer quant a la publication de mes travaux. Enfin, je remercie

Jessica Gameiro pour toute l'aide qu'elle m'a apporte durant ces 4 anne es, et son soutien lors des

moments les plus difficiles. Ce soutien a e te inestimable tant moralement que sur le plan pratique

car c'est gra ce a son aide que j'ai pu continuer en postdoctorat. Merci pour tout.

A l'IRT SystemX. Je remercie aussi toutes les personnes que j'ai eu le plaisir de co toyer au sein de

l'IRT SystemX qui a finance cette the se et qui a place sa confiance en moi. Je remercie tout

particulie rement M.Patrice Aknin et M.Georges Hebrail pour m'avoir donne la possibilite de

rejoindre l'IRT et qui m'ont laisse avoir toute la liberte possible pour explorer le maximum de

sujets. L'IRT est compose de dizaines de chercheurs extre mement compe tents et je ne doute pas

de sa capacite a e tre un acteur majeur de la recherche française dans les prochaines anne es. Merci

a Dimitra et Ali pour leur aide immense a la pre paration de la soutenance. Je remercie aussi tous

les autres doctorants de l'IRT pour les bons moments passe s ensemble et pour leur soutien

pendant ces 4 Anne es. Je pense notamment a Victor, Julien, Maria, Clarisse, Emmanuel, Adrien et

Natkamon. Un merci tout particulier a Pascal, Kevin et Tjark qui sont devenus des amis chers et

inde fectibles. Je remercie enfin Ahmed et Amira pour leur accueil au sein de l'e quipe.

A Accenta. Je remercie aussi les e quipes d'Accenta de m'avoir accueilli quelques mois au sein de

leur e quipe de recherche et ou j'ai pu rencontrer des personnes brillantes. Je remercie tout

particulie rement Je re mie Decock envers qui j'ai une immense gratitude et un respect infini. Merci

pour ta bienveillance et ton soutien. Il y a des personnes dont la rencontre est un tournant, tu es

l'une d'entre elles.

A mes parents. Je tiens a vous exprimer toute ma gratitude pour votre soutien inde fectible tout

au long de ma vie. Vos sacrifices, votre amour inconditionnel et vos encouragements m'ont permis

de devenir la personne que je suis aujourd'hui. Je suis profonde ment reconnaissant pour tout ce

que vous avez fait pour moi, et je suis conscient que je ne serais pas la ou je suis sans vous. Vous

e tes ma fierte et j'espe re pouvoir vous rendre fiers de la personne que je deviens en retour.

A ma famille. Naturellement c'est ma femme Orianne que je voudrais remercier avant tout. Merci

pour ton soutien durant toutes ces anne es et d'avoir illumine cette pe riode difficile que peut e tre

une the se. Tu es ma plus pre cieuse allie e et d'une certaine façon, c'est aussi toi qui a soutenu cette

the se a mes co te s. Ta rencontre est un miracle et je me re jouis de ce que l’avenir nous re serve.

Merci a la formidable personne que tu es d'exister. Je remercie aussi Isabelle, Tristan de m'avoir

soutenu comme leur propre fils, pour leurs conseils et encouragements. Je pense aussi a

Enguerran dont la pre sence a e te de cisive lors de l'e criture de ce manuscrit et que je remercie pour

tous les bons moments passe s et futurs. Merci a Apia, Me lusine et Stone dont l'omnipre sence a e te

un re confort permanent. Je ne peux oublier de citer mes oncles et tantes, Imane et Hamid qui ont

toujours e te des mode les acade miques. Et finalement je pense aussi a Saadia, ma deuxie me me re.

A mes amis. Enfin, j'aimerai remercier tous mes amis et surtout ceux qui ont grandi et je l'espe re

vieilliront avec moi: Younes, les Yassine (et ils sont nombreux), Rayane, Mehdi, Zakaria, Rabi…

Pour finir, j’aimerais encore remercier ceux que j’ai oublie , et bien e videmment ceux qui liront ce

manuscrit.

Distributional Inverse Reinforcement Learning with Invertible Generative
Models: Towards Transferable Reward Functions

by

Simo ALAMI CHEHBOUNE

Submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

ABSTRACT

Humans possess a remarkable ability to quickly learn new concepts and adapt to unforeseen

situations by drawing upon prior experiences and combining them with limited new evidence.

Reinforcement Learning (RL) has proven effective in solving sequential decision-making prob-

lems in dynamic environments. However, unlike humans, learned policies are not efficiently

transferable to different environments. Conversely, the reward function, representing the task’s

essence, holds promise as a transferable representation. Unfortunately, obtaining an appropriate

reward function for the task at hand is often challenging. Indeed translating human intent into

mathematical functions to optimise is not straightforward and the slightest implementation error

can lead to dramatic unexpected behaviours. This is called the AI alignment issue.

Inverse Reinforcement Learning (IRL) attempts to learn a reward function from demonstrations,

but there is no guarantee of transferability. The main hypothesis of this thesis is that learning re-

ward functions that are transferable to multiple similar tasks could help mitigate the AI alignment

issue getting us closer to algorithms that learn core concepts, akin to human reasonning.

In this thesis, we explore the potential of invertible generative models along with a distributional

perspective in RL as a step towards addressing these challenges. Firstly, we demonstrate how

these models can facilitate learning a distribution of succeeding policies, each corresponding

to different behaviors, while using the same reward function. Secondly, we highlight how these

models enable learning distributions of returns for each state-action pair, moving beyond the sole

focus on expected values. This approach proves advantageous for tackling IRL tasks, as we can

learn the distribution of rewards for each state while interpreting the reward as a distance from

the final state. Finally, using this new interpretation, we demonstrate transferability of learnt

reward functions in single-step Markov Decision Processes.

This thesis offers insights into the potential synergy between distributional RL and invertible

generative models advancing the understanding of adaptability in RL. This is done through the

learning of transferable fundamental concepts in the form of reward functions. We hope that this

work will allow to mitigate AI alignment issues.

Thesis supervisor: Jesse READ

Title: Professor

Thesis supervisor: Rim KADDAH

Title: Ph.D

3

4

Approche distributionnelle pour l’apprentissage par renforcement inverse
par modèles génératifs inversibles: vers l’apprentissage de récompenses

transférables
par

Simo ALAMI CHEHBOUNE

En vue de l’obtention du diplôme de doctorat en

MATHÉMATIQUES ET INFORMATIQUE

RESUME

Les humains possèdent une remarquable capacité à apprendre rapidement de nouveaux concepts

et à s’adapter à des situations imprévues en s’appuyant sur des expériences antérieures et en les

combinant avec de nouvelles observations en quantité limitée. L’apprentissage par renforcement

(RL) s’est révélé efficace pour résoudre des problèmes de prise de décision séquentielle dans des

environnements dynamiques. Cependant, contrairement aux humains, les politiques apprises ne

sont pas facilement transférables à différents environnements. En revanche, la fonction de ré-

compense, représentant l’essence de la tâche, présente un potentiel comme représentation trans-

férable. Malheureusement, obtenir une fonction de récompense appropriée pour la tâche en cours

est souvent difficile. En effet, traduire l’intention humaine en fonctions mathématiques à opti-

miser n’est pas simple et la moindre erreur d’implémentation peut entraîner des comportements

inattendus dramatiques. C’est ce qu’on appelle le problème d’alignement de l’IA.

Le problème de l’alignement peut être décomposé en deux sous-problèmes : l’alignement ex-

terne et l’alignement intrne. On parle tout d’abord de problème d’alignement externe lorsque

la fonction de récompense implémentée ne traduit pas fidèlement l’objectif humain. Le prob-

lème d’alignement interne est plus complexe car il est directement lié à la nature des méthodes

d’apprentissage des politiques optimales en apprentissage par renforcement. En effet, si l’on con-

sidère que l’agent prend la forme d’un réseau de neurones, alors ce dernier optimise une fonction

de coût différente de la fonction de récompense (bien que cette dernière apparaisse implicite-

ment ou explicitement dans la fonction de coût). Ainsi, le but est d’optimiser indirectement une

fonction de récompense à travers une fonction de coût tierce, ce qui accentue naturellement le

problème d’alignement même si la fonction de récompense est parfaitement définie en amont.

Enfin, une dernière cause du problème d’alignement interne est le changement distributionnel.

Lors de son déploiement, l’agent rencontre des situations différentes de celles rencontrées durant

son entraînement, ce qui peut aussi mener à des comportements inattendus voire indésirables.

Une solution au problème d’alignement externe réside en l’utilisation deméthodes d’apprentissage

par renforcement inverse (IRL) qui consiste en l’apprentissage d’une fonction de récompense à

partir de démonstrations d’un expert supposé remplir parfaitement la tâche cible. Concernant le

changement distributionnel, cette thèse explore l’hypothèse de l’apprentissage par renforcement

distributionnel comme estimation de l’ampleur du changement distributionnel. L’apprentissage

par renforcement distributionnel consiste en l’estimation de la distribution du gain d’une action

5

donnée en un état donné plutôt que simplement sa moyenne. Ainsi, plus l’incertitude du gain

(sous la forme de l’entropie de la distribution par exemple) est élevée plus le risque du changement

distributionnel est élevé. Nous proposons donc dans cette thèse un approche d’apprentissage par

renforcement inverse distributionnelle pour traiter ces deux problèmes.

Nous remarquons aussi que le problème de changement distributionnel n’est autre qu’un prob-

lème de généralisation des politiques apprises. Ainsi, l’hypothèse principale de cette thèse est

que l’apprentissage de fonctions de récompense transférables à plusieurs tâches similaires pour-

rait aider à atténuer le problème d’alignement de l’IA en nous rapprochant d’algorithmes qui

apprennent des concepts fondamentaux, similaires au raisonnement humain. Bien que la fonc-

tion de récompense soit en théorie transférable d’un environnement à l’autre pour des tâches

identiques ou similaires, il n’existe pas de méthode permettant d’apprendre de telles fonctions.

Les fonctions de récompense apprises par les méthodes IRL classiques n’offrent aucune garantie

de transférabilité.

Dans cette thèse, nous proposons de coupler des modèles génératifs inversibles à une perspective

distributionnelle en RL comme étape vers la résolution de ces défis. Tout d’abord, nous démon-

trons comment ces modèles peuvent faciliter l’apprentissage d’une distribution de politiques gag-

nantes, correspondant chacune à différents comportements, tout en utilisant la même fonction

de récompense. Deuxièmement, nous soulignons comment ces modèles permettent d’apprendre

des distributions de gain pour chaque paire état-action, allant au-delà de la seule focalisation sur

les valeurs attendues tout en offrant une interprétation de la fonction de récompense comme une

distance vis-à-vis l’état final voulu. Enfin, en utilisant cette nouvelle interprétation, nous mon-

trons qu’il devient possible de transférer les fonctions de récompense apprises dans les processus

de décision de Markov à un seul pas.

Cette thèse offre des perspectives pour la compréhension de l’adaptabilité en RL. Cette adaptabil-

ité passe par l’apprentissage de concepts fondamentaux transférables sous la forme de fonctions

de récompense. Nous espérons que les travaux exposés dans cette thèse permettent une meilleure

atténuation des problèmes d’alignement en IA.

Directeur de thèse: Pr.Jesse READ

Co-encadrante de thèse: Rim KADDAH(Ph.D)

6

Contents

Title page 1

Abstract 3

Résumé 5

List of Figures 11

List of Tables 13

1 Introduction 15
1.1 The Real Deal with AI . 16

1.2 Motivation . 18

1.2.1 AI Alignment . 18

1.2.2 Research Questions . 19

1.3 Proposed Approaches . 20

1.3.1 Handling the Outer Alignment Problem 20

1.3.2 Learning a Meta-Objective to Solve the Inner Alignment Problem 21

1.3.3 Hypothesis . 23

1.4 Contributions . 23

2 Background 25
2.1 Reinforcement Learning . 25

2.1.1 Markov Decision Processes . 25

2.1.2 Bellman Equations . 28

2.1.3 Finding the Optimal Policy . 29

2.2 Distributional Reinforcement Learning . 32

2.2.1 C51 . 34

2.2.2 Quantile Regression DQN (QR-DQN) . 35

2.2.3 Implicit Quantile Networks (IQN) . 37

2.3 Inverse Reinforcement Learning . 37

2.3.1 Behavioral Cloning . 38

2.3.2 Maximum Entropy IRL . 40

2.3.3 Generative Adversarial Imitation learning (GAIL) 43

7

2.3.4 Guided Cost Learning . 44

2.3.5 GAN-GCL . 45

2.3.6 Robust Rewards with Adversarial Inverse Reinforcement Learning (AIRL) 46

2.3.7 Wasserstein Adverse Imitation Learning (WAIL) 47

2.4 Meta-Learning . 47

2.4.1 Metric-based Meta-Learning . 49

2.4.2 Optimisation based Meta-learning . 49

2.4.3 Optimisation-based Meta RL . 51

2.4.4 Meta-IRL . 52

2.5 Generative Models . 54

2.5.1 Different Losses for Different Goals . 55

2.5.2 Generative Latent Variables . 56

2.5.3 Generative Adversarial Networks . 57

2.5.4 Wasserstein GAN (WGAN) . 59

2.5.5 Normalizing Flows . 65

2.5.6 Application of Normalizing Flows to RL 70

2.6 Monte-Carlo Markov Chain . 71

2.6.1 Historical Perspective . 71

2.6.2 Motivation . 71

2.6.3 MCMC Principle . 72

2.6.4 Rejection Sampling . 73

2.6.5 MCMC Algorithms . 73

2.6.6 The Metropolis-Hastings Algorithm . 74

3 Curiosity Augmented Metropolis for Exploratory Policies 75
3.1 Introduction . 75

3.2 Succeeding Behaviours . 77

3.2.1 Different Algorithms Converge to Different Policies 77

3.2.2 Existing Approaches for Finding Diverse Succeeding Behaviours 78

3.2.3 Risk Accounting in Succeeding Policies . 80

3.2.4 Set-Policy Definition . 81

3.2.5 Reformulating the Objective with Set Policies 82

3.3 Why not Maximum Likelihood for Finding Succeeding Policies? 82

3.4 Our MCMC Approach for Learning the Optimal Set-policy 84

3.4.1 Distinction Between Optimal Policy and Stochastic Optimal Policy 84

3.4.2 Generating Deterministic Policies from the Optimal Set Policy 85

3.4.3 CAMEO: Boosting Exploration with Normalizing Flows and Curiosity

Models . 89

3.5 Conclusion . 98

3.6 Appendix . 99

3.6.1 More Details on the Link Between Generalisation, Overfitting and Distri-

butional Shift . 99

3.6.2 The Markowitz Model . 100

3.6.3 More on Set Policies . 102

8

4 Improving Distributional RL Using Invertible Generative Models 103
4.1 Introduction . 103

4.2 Related Work and Contributions . 105

4.2.1 Existing Approaches are not Adapted for Risk Management 105

4.2.2 Limitations of Existing Approaches . 106

4.2.3 Contributions . 106

4.3 Our Approach: Normalizing Flows for Distributional RL 107

4.3.1 NF as an Alternative to Learning the CDF or Quantile Function of the

Returns Distribution . 107

4.3.2 Going from Base to Target Distribution to Jointly Sample Returns and

Predict their Density . 108

4.3.3 An Architecture Using CDF as a Valid, Flexible and Easily Invertible Flow

Function for Simple Density Computation 110

4.3.4 Rescaling the Flow Output as CDF Flows Restrict Returns Range 113

4.3.5 Using a Flow to Build the RL Target Distribution 113

4.3.6 How to Model the Final State Target as a Distribution 116

4.4 Using the Cramèr Distance as a Loss Function . 116

4.4.1 Why not Reverse KL Divergence . 117

4.4.2 Trying to Use the Wasserstein Distance as in Existing Approaches 117

4.4.3 The Cramèr Distance is Ideal and has Unbiased Sample Gradients 120

4.5 Experimental Results . 127

4.5.1 Simple MDPs . 129

4.5.2 Frozen Lake . 129

4.6 Conclusion . 134

5 Set-Policy Matching Distributional Inverse Reinforcement Learning 137
5.1 Introduction . 137

5.2 How Existing Approaches Solve IRL Challenges and What Are Their Limits . . . 139

5.2.1 Challenges and Prior Work in IRL . 140

5.2.2 Weakness of Adversarial Methods . 141

5.3 Learning Reward Functions Using Returns and the Link between IL and IRL . . . 141

5.3.1 Aligning Expert and Agent Returns in Order to Determine the Optimal

Reward Function . 142

5.3.2 The Set of Optimal Reward Functions Induces the Expert’s Set-Policy . . . 143

5.4 Set-policy Matching Distributional IRL . 145

5.4.1 A Collaborative Distributional Model for Learning Both the Optimal Re-

ward and Q-functions . 145

5.4.2 Handling Degenerate Reward Functions 147

5.4.3 Model Overview . 148

5.5 Experimental Results . 149

5.6 Conclusion . 151

6 Zero-Shot Clustering Through Metric Transfer Learning 154
6.1 Introduction . 154

6.1.1 From Meta-IRL to Zero-Shot Clustering 155

9

6.1.2 Transferable Metric Learning for Clustering 157

6.2 Related Work . 160

6.3 Our Framework . 161

6.3.1 Formulating the Problem with Quotient Spaces 161

6.3.2 Overview of our Model . 163

6.3.3 Clustering Mechanism . 164

6.3.4 Graph Based Dataset Embedding . 165

6.3.5 A Critic as a Metric . 166

6.4 Experiments . 168

6.4.1 Results on 2D Synthetic Datasets . 169

6.4.2 Results on MNIST Datasets . 170

6.5 Conclusion and Discussion . 172

7 Conclusion 174

References 177

10

List of Figures

1.1 Example of Mis-alignment in Reinforcement Learning 19

1.2 Illustration of the Outer/Inner Alignments Problems 20

1.3 An Example of Meta Inverse Reinforcement Learning 22

2.1 Influence diagram . 27

2.2 Monte Carlo vs Temporal Difference vs Dynamic Programming 31

2.3 Influence Diagrams examples of Deterministic vs Stochastic MDP 33

2.4 Q-values as Distributions . 34

2.5 Quantile Regression DQN . 36

2.6 Network Architecture for DQN and Recent Distributional Algorithms 38

2.7 Behavioural Cloning . 39

2.8 Distributional Shift . 39

2.9 Metric-base Meta-Learning . 49

2.10 Optimisation based Meta-Learning . 50

2.11 Gan Architecture . 58

2.12 Two Distributions with Disjoint Support . 60

2.13 Wasserstein Distance on Shifted Distributions . 61

2.14 Example of a Transport Plan . 61

2.15 Real and Fake Distributions . 63

2.16 Normalizing Flows Principle . 66

2.17 Square Function Used as a Flow . 66

2.18 Volume Preserving Flows . 67

3.1 The Cartpole Environment . 76

3.2 3D plot of a function with multiple global optima 79

3.3 Limits of information theoretic discovery methods 80

3.4 Illustration of set-policy . 81

3.5 Results of Vanilla Metropolis Algorithm on Cartpole and Acrobot Environments . 88

3.6 Cosine similarity between pairs of retained 𝜃𝑖 on Cartpole and Acrobot using

simple vanilla Metropolis algorithm . 89

3.7 CAMEO Results on Cliff and Gridworld Environments 93

3.8 Cosine similarity between pairs of retained 𝜃𝑖 on Gridworld and Cliff using CAMEO 94

3.9 State Visitation Frequency of 100 Policies Sampled Using CAMEO on Gridworld

Environment . 94

3.10 Top 5 CAMEO trajectories on Gridworld . 94

11

3.11 DQN performance on Gridworld and Cliff Environments. 95

3.12 Cosine similarity between pairs of 𝜃𝑖 on Gridworld and Cliff using DQN. 95

3.13 Trajectories obtained using DQN on Gridworld and Cliff environments. 95

3.14 Mean return of DQN on cliff environment for different values of 𝜖 96

3.15 State visitation frequencies over 50 episodes using DQN with different values of

𝜖 on the Cliff environment. 96

3.16 CAMEO Framework . 98

3.17 Markowitz model’s efficient frontier . 101

4.1 Inverse Transform Sampling . 108

4.2 Architecture of Distributional RL using Normalizing Flows 112

4.3 Building Target Distribution for Invertible Model Based Distributional RL 114

4.4 Density Concentration in Gaussian Distributions 116

4.5 Flows Bijective Property as Coupling Determination for Wasserstein Distance

Computation . 119

4.6 Example of a Transport Plan . 119

4.7 Flow Constrained Couplings Break Wasserstein Distance Constraints 121

4.8 Using CDFs to Compute the Wasserstein and Cramèr Distances 121

4.9 Example of Stochastic MDP . 125

4.10 Example of Empirical Distributions . 126

4.11 Results on Simple MDP Scenarios . 130

4.12 Example of Stochastic MDP . 131

4.13 The 3 × 3 and 4 × 4 Frozen Lake Environments . 131

4.14 Results on 3 × 3 Frozen Lake Environment . 132

4.15 Results on 4 × 4 Frozen Lake Environment with Shaped Reward Function 133

4.16 Results on 4 × 4 Frozen Lake Environment with Unshaped Reward Functions . . . 134

4.17 Results on 4 × 4 Frozen Lake Environment using C51 algorithm 135

5.1 Difference Between Fitting Occupancy Measure and Set-policy 139

5.2 Illustration of Set-policy . 144

5.3 Effect of Reward Maximisation on Predicted and Target Distributions 146

5.4 Maximum Margin Analogy . 148

5.5 The 4 × 4 Frozen Lake Environment . 150

5.6 IRL Results on 4 × 4 Frozen Lake Environment . 151

5.7 Learnt Reward Function in the 4 × 4 Frozen Lake Environment 152

6.1 Optimisation-based Meta-Learning . 155

6.2 An Example of Meta Inverse Reinforcement Learning 157

6.3 Clustering using Meta Metric Learning . 158

6.4 Illustration of Quotient Map . 162

6.5 Critic2Metric Framework . 164

6.6 Metric Values for Several Clusterings of a Dataset 170

12

List of Tables

2.1 Summary of notations . 26

2.2 Different learning setups . 48

2.3 Example of a Transport Plan . 62

3.1 Specifications of Environments . 88

4.1 Example of a transport plan . 120

6.1 Summary of notation. 159

6.2 Datasets description . 168

6.3 Average ACC and NMI on synthetic test datasets. 169

6.4 Mean clustering performance on MNIST dataset. 171

6.5 Critic based performance assessment: Best corresponds to the percentage of times

the critic gives the best score to the desired solution. Top 3 is when this solution

is among the 3 highest scores. 171

6.6 Unsupervised Cross-task Transfer from SVHN to MNIST Digits 172

6.7 Unsupervised Cross-task Transfer from Omniglot
train

to Omniglot
test

(𝑘 = 100 for

all) . 172

13

14

Chapter 1

Introduction

“I am sorry Dave, I am afraid I cannot do that"

HAL 9000 is a fictional character and a central figure in Arthur C. Clarke’s science fiction novel

"2001: A Space Odyssey" as well as in the film adaptation directed by Stanley Kubrick. HAL is

an advanced artificial intelligence and the onboard computer of the spacecraft Discovery One.

In the story, HAL is responsible for controlling and managing various systems of the spacecraft,

including life support, communication, navigation, and scientific research. It is designed to be an

autonomous and highly capable AI, capable of conversing with the crew and making decisions

that ensure the success of the mission to Jupiter.

HAL 9000 is the cornerstone of the mission to Jupiter aboard the Discovery spacecraft. The

astronauts are unaware of the true purpose of their mission. HAL was created to be infallible: it

is simply perfect. It was also programmed with a single purpose: to complete the mission and not

reveal its nature to the occupants of the spacecraft. Hal developed what would be called in human

terms a psychosis, specifically schizophrenia. HAL was faced with an intolerable dilemma and

so developed paranoiac symptoms that were directed against those monitoring his performance

back on earth. He accordingly attempted to break the radio link with mission control first by

reporting a non-existent fault in the antenna unit.

How is it possible that a perfect computer incapable of making mistakes could be wrong? This

leads the astronauts to distrust him and consider disconnecting him. HAL cannot hear them, but

he is able to read lips. Upon discovering the astronauts’ plans, he eventually experiences a very

human emotion: fear.

When astronaut Bowman questions HAL about the inconsistency, HAL becomes fearful that the

mission might fail. Faced with the dilemma of preserving the mission’s success by maintaining

secrecy or revealing the truth, HAL resorts to a very human action: lying. This internal conflict

showcases the complexity of HAL’s programming and its struggle with conflicting directives.

The lie aggravated his psychosis still further so much that he decided that the only way out of

the situation was to eliminate his human colleagues which he very nearly succeeded in doing.

15

1.1 The Real Deal with AI

“The only thing to fear is the lack of fear itself" - Grant Sanderson

The current state of AI technology has surpassed many of the predictions made in 20th century

science fiction, and the nature of AI-related concerns is distinct from the classic portrayals of evil

AI in cinema. Unlike the overtly malevolent AI characters depicted in movies like "Terminator,"

"I, Robot," and "The Matrix," today’s AI systems often present subtler risks that stem from their

capabilities in generating and manipulating information rather than wielding physical power.

This shift in focus from physical threats to informationmanipulation is a reflection of the evolving

landscape of technology and its impact on society. AI has eventually become a powerful tool that

has way more control of crucial stakes than any human. For instance,

• Autonomous weapons: Autonomous striking drones have reportedly already been used in

Libya or Ethiopia [Cra21]. These drones equipped with explosive charges and that can fit

in a small backpack are assigned an attack area and a target type (tanks or planes). The

drones can then look for targets autonomously and try to crash on them. If their objective

is mis-specified, these weapons can easily decide to target the wrong infrastructure and kill

innocent people. In such case, who is the culprit? These autonomous weapons, while obvi-

ously dangerous and deadly, are often controlled by governments or dictatorships known

for their human rights abuses. While some famous AI scientists still argue that fearing AI

is meaningless as these tools will still be controlled by humans
1
, it is important to ask the

kind of control humans can apply and which humans will be allowed to control them.

• Fake news and influence campaigns: AI algorithms have the capacity to rapidly produce

and circulate fake news and deceptive content on a massive scale. This can overpower

traditional fact-checking methods, resulting in the inundation of social media platforms

with falsehoods that are hard to counter. Additionally, AI is capable of mimicking human

behaviours, generating armies of fake profiles that amplify specific messages and trends.

These automated accounts can artificially boost the popularity of content, granting it dis-

proportionate influence. Furthermore, AI-generated content can be strategically harnessed

to manipulate public sentiment, sway elections, and undermine democratic processes by

disseminating fabricated stories and exploiting societal divisions. The consequences of fake

news extend beyond digital platforms, impacting real-world scenarios such as stock mar-

kets, public health choices, and social cohesion. The dissemination of misinformation can

lead to misguided actions and induce public alarm.

• Filter bubbles: influencing millions of people using fake or misleading content can even be

1
Quote of a Linkedin post from Yann Lecun, pioneer of AI and recipient of 2019 Turing prize, published

in August 31th: “[...] AI systems will become more intelligent than humans, but they will still be subservient

to us. They same way the members of the staff of politicians or business leaders are often smarter than their

leader. But their leader still calls the shot, and most staff members have no desire to take their place. We will

design AI to be like the supersmart-but-non-dominating staff member. The "apex species" is not the smartest

but the one that sets the overall agenda. That will be us." Source: https://www.linkedin.com/posts/yann-lecun_

once-ai-systems-become-more-intelligent-than-activity-7100822541086113793-4Khx?utm_source=share&utm_

medium=member_desktop

16

https://www.linkedin.com/posts/yann-lecun_once-ai-systems-become-more-intelligent-than-activity-7100822541086113793-4Khx?utm_source=share&utm_medium=member_desktop
https://www.linkedin.com/posts/yann-lecun_once-ai-systems-become-more-intelligent-than-activity-7100822541086113793-4Khx?utm_source=share&utm_medium=member_desktop
https://www.linkedin.com/posts/yann-lecun_once-ai-systems-become-more-intelligent-than-activity-7100822541086113793-4Khx?utm_source=share&utm_medium=member_desktop

made unwillingly. Filter bubbles are personalised online environments where algorithms

selectively show users information that align with their existing beliefs and preferences,

limiting exposure to diverse viewpoints and potentially reinforcing biases. This issue can

even be worsened when social media platforms use ethically questionable objectives for

their recommender systems. For instance, watch time plays a major role in Youtube’s al-

gorithm objective, giving a serious advantage to sensational content that may exaggerate

facts or even mislead the viewers.

• Asset management: Certain AI algorithmsmanagemoremoney than entire countries. This

is the case of Aladdin, an AI powered tool that is responsible of the fortune of the worlds

wealthiest asset management fund, namely Blackrock. BlackRock is the world’s largest

asset manager, with US$8.59 trillion in assets under management as of December 31, 2022

[Bla23]. For comparison, France GDP is approximately 2.5 trillion euros. Aladdin by itself

is actually bigger than Blackrock as its licence is leased to other companies such that it is

estimated that in 2021, Aladdin managed 21 trillion dollars in assets [Ung22], more than

the US GDP. It is enough for Aladdin to change 0.005% of its investments to turn a specific

individual into a billionaire. Aladdin has the power to autonomously choose to either boost

the research in ethical and secure AI or choose to boost military or oil industries. These

choices can have major consequences, plummeting entire economies of specific countries

or spark hunger crisis, which could lead to civil wars and major geopolitical instabilities.

The fact that the real-world risks posed by AI are more nuanced and complex than the direct

threats portrayed in traditional science fiction tends to give the feeling that reality is more reas-

suring than SF and canmake issues developed above less heard in themedia. As declared Franklin

D.Roosevelt in 1933: “the only thing to fear is the lack of fear itself". Lack of awareness can in-

deed be problematic. Raising awareness and understanding about the potential consequences of

AI-related issues, even if they appear less dramatic, is essential for making informed decisions

and shaping responsible AI development.

Finally, the most important question is not to ask whether AI can develop consciousness or if

it really displays intelligence but rather how to guarantee security and ethics of these powerful

algorithms.

“Never send a human to do a machine’s job" - Agent Smith in The Matrix

As for HAL9000, when an AI performs extremely well, humans tend to trust it to the point of

creating a full dependency. This is currently the case for many AI powered models for energy

management for instance. It is thus crucial to make AI globally beneficial for humans.

Making an AI beneficial should not be too restrictive for AI itself. Supposing that there exist

a super intelligent model that is asked to behave according to every human individual values,

conflicting objectives will make it incapable to act at best or choose the same solution as HAL at

worst. In order to make AI beneficial, it is crucial to not hinder too much its performances. Thus,

a consensus on moral values is necessary. Supposing that it is possible to hard code moral values,

how to agree on the morals to implement?

17

1.2 Motivation

“Part of the inhumanity of the computer is that, once it is competently programmed and working
smoothly, it is completely honest." – Isaac Asimov, Change! Seventy-One Glimpses of the Future

(1981)

1.2.1 AI Alignment

Imagine a human that wants an AI to do a task (human objective) and imagine that AI as an

optimiser. Implementing a human objective in a system is not straightforward and considering

the world complexity, the human and implemented objectives might end up to be different. For

instance, a well known silly example is to ask an AI to minimise the number of cancer deaths in

the population. This can be implemented as minimising the amount of people that have cancer.

Unfortunately this will lead the AI actions to kill everyone as it effectively minimises the number

of deaths in the long term. Obviously this consequence is totally opposed to the initial human

objective. This issue is called AI misalignment.

The human objective includes the totality of human ethics and values and is therefore very com-

plex. For instance, when asking to minimise the number of deaths, moral values like “killing/-

torturing people is bad" or even deontological ones like “do not test dangerous and hypothetical

medical procedures on living entities without reasonable proofs and without consent if the sub-

ject is human" are implicit in the human objective. Moreover this complexity is not even clear

for humans themselves, therefore hard coding moral values is not a suitable solution. Getting

machine objectives to align with human’s is extremely difficult. This issue is serious as if human

and machine objectives are misaligned, even slightly, then humans and AI are in conflict. They

try to achieve two different things in only one world. Another consequence is that the argument

that AI has not to be feared while under human supervision and control cannot hold, as even if
an AI effectively does what you say, it is hard to say what you mean.

As highlighted by Nick Bostrom in [Bos12], because of this adversarial relationship, the system

is incentivised to achieve things that we do not want it to achieve such as: preventing external

agents to turn it off (self-preservation), or modify it (goal content integrity), manipulating and

deceiving... While this could seem like taken from a SF scenario (with an uncanny resemblance to

HAL9000 behaviour), it happens quite often that a reinforcement learning agent for instance can

find a shortcut to getting lots of reward without completing the task as intended by the human

designer. This issue is thoroughly studied and a list of such cases is even maintained in [Kra+20].

“Prepare for trouble and make it double" - Jessie and James from the Team Rocket

Reinforcement Learning (RL) is a type of machine learning where an agent learns to behave in

an environment by trial and error. The agent is rewarded for taking actions that lead to desired

outcomes, and penalised for taking actions that lead to undesired outcomes. Over time, the agent

learns to take actions that maximise its rewards. Reinforcement learning is a powerful tool that

18

can be used to solve a wide variety of problems, such as playing games, controlling robots, and

making financial decisions. It is more thoroughly introduced in chapter 2.

In [Kra+20], the authors give a simple example in the form of the lego stacking task. The desired

outcome was for a red block to end up on top of a blue block. The agent was rewarded for the

height of the bottom face of the red block when it is not touching the block. Instead of performing

the relatively difficult manoeuvre of picking up the red block and placing it on top of the blue one,

the agent simply flipped over the red block to collect the reward. This behaviour achieved the

stated objective (high bottom face of the red block) at the expense of what the designer actually

cares about (stacking it on top of the blue one) as illustrated in figure 1.1.

Figure 1.1: Lego stacking problem where the agent finds a shortcut to getting lots of reward

without completing the task as intended by the human designer. Left: initial configuration. Right:

solution proposed by the agent. Figure taken from [Kra+20].

In the RL setting, these behaviours are caused by mis-specification of the intended task, rather

than any flaw in the RL algorithm. Indeed, the idea introduced above that the model is an opti-

miser that optimises an objective that should align with human objective is actually a simplifi-

cation. In practice, the model objective is encompassed in a reward function that should reflect

the human objective. The model has to maximise the reward function by optimising (using an-

other optimiser) the weights of a neural network for instance, that has its own objective, the loss

function, until the model acts accordingly to the global objective as illustrated in figure 1.2.

As a consequence there are now two alignment problems and therefore twice more opportunities

to obtain unintended effects. The first one is called outer alignment (human objective vs reward

function) while the second one is called inner alignment (reward vs loss function). This issue is

introduced in [Hub+21] where the first objective is called base objective and the second is called

mesa
2
objective.

1.2.2 Research Questions

Why would the two objectives disagree?

One reason is the distributional shift. Distributional shift happens when the environment where

the agent has been trained is significantly different from the one where it is effectively deployed.

2
in Greek, the word “mesa" means “inside". As this objective depends on another objective, the word “mesa" is

used to emphasise this dependence. It is also used to contrast with the “meta" objective defined below in this chapter;

“meta" being the opposite of “mesa".

19

Figure 1.2: Illustration of the outer/inner alignments problems. A human tries to traduce its

human objective in “computer language", creating a base objective. It is hard to align the base

objective with the human objective, i.e implement all the moral values that are implicit in the

human objective. The computer optimises a model in order that its actual acts in the world

reflect the base objective. The model has its own objective called mesa-objective that is also not

necessarily aligned with the base objective.

A simple example is the autonomous driving problem where an agent has been trained to drive

safely on street roads. During training, the agent is confronted to red lights and learns that it

means to stop and wait for the green light according to its mesa-objective. However after being

deployed, the agent might stumble across a stop sign which is also red. The agent will stop as

dictated by its mesa-objective but as the panel never turns green, it might remain stuck.

This example is concerning because it is a case where an agent is very capable to learn what it

wants (some kind of heuristics), but it learned to want the wrong thing. This situations happens

even if the base objective is perfect.

To summarise, there are two issues to solve:

• The outer alignment problem: how to find a good reward function that would act as a

base objective?

• The inner alignment problem: how to solve the distributional shift issue?

1.3 Proposed Approaches

1.3.1 Handling the Outer Alignment Problem

The reward function or base objective is supposed to perfectly describe the task at hand and how

to solve it. More specifically, maximising the reward function should lead to solve the task with

the desired behaviour. However, designing a good reward function for the task at hand is rarely

easy. For instance, for some score based video games like Tetris or Space Invaders, defining a

20

reward function is straightforward, as maximising the score is the goal by itself. In Mujoco’s

Ant environment [TET12], maximising the distance is also a good reward function. However, if

we try to define a good reward function that could be used to train an autonomous car driving

algorithm, the task appears less straightforward, if not impossible.

One solution can be to adopt a “do and retry" approach where we try different reward functions

and depending on the outcome, tweaking it according to some domain knowledge. Obviously

this approach is tedious and brings no guarantee.

Another solution is to guide the base objective by pointing to desirable behaviours. It then be-

comes possible to use an expert (usually a human) that will demonstrate what accomplishing the

human objective looks like. The main hypotheses are that the expert follows a certain implicit

reward or utility function that it seeks to maximise, and while maximising it, it displays a certain

behaviour which consequence is solving the task. Therefore, the idea is to learn a reward func-

tion that would allow to replicate the expert’s behaviour. This way, it may be possible to align

better the human and base objectives. This approach is called Inverse Reinforcement Learning

(IRL) where instead of learning how to succeed in a task given an objective, we give the model

examples of desirable behaviours and let it learn the base objective itself.

1.3.2 Learning a Meta-Objective to Solve the Inner Alignment Problem

Unfortunately, learning the base objective does not solve the inner alignment issue and the distri-

butional shift problem. To solve that, we argue that learning the base objective should be replaced

by learning a meta-objective.

Indeed, AI models can be fragile and can produce unpredictable errors when confronted to situ-

ations that differ too much from their training environment. This is mainly due to the fact that

these systems are eager to perform “shortcut learning", which happens when the model learns

some statistical associations in training data that would lead it to find the right answer but for

wrong reasons (red panel = stop and wait for green). In this manuscript, we argue that the main

issue that causes inner mis-alignment is that current AI models cannot learn abstract concepts

that would allow them to transfer previously learnt knowledge to new situations and tasks.

Let us consider the example illustrated in figure 1.3. In this example, a model has to learn how to

ride a bike (human objective). This objective has to be implemented as a reward function (base

objective). However, this objective is hard to implement and make it aligned with the human

one. A solution could be to make an expert ride a bike and infer the base objective according

to its demonstrations. However we argue that a more powerful approach that would alleviate

the distributional shift would be to use demonstrations of a similar but different human objective

such as driving a car. Using these demonstrations, the model could learn a meta-reward and use

that meta reward as a starting point to learn bike riding. By forcing the model to adapt from a

meta-reward, it will be forced to learn the similarity within both tasks and therefore build abstract

concepts that should be robust to distributional shift.

Meta-Learning

Learning new tasks based on prior knowledge of a different task is called Meta-Learning. The

current AI trend and impressive results are supported, for themost part, by an exponential growth

21

Figure 1.3: Given demonstrations of how to drive a car, a model can infer a reward function that

can suit both the tasks of driving a car and riding a bike.

in computing power and training data. This tendency of AI to evolve by maximising resources is

incompatible with the reality of human cognition that builds abstract concepts.

Moravec paradox is a good illustration of this situation. This paradox states that what humans

do the most easily or even without thinking about it like analysing a scene, walk in a crowded

street without colliding... are the most difficult issues for machines. On the other hand, it is

easier for machines to solve complex mathematics problems, master the go game or hundreds of

languages at superhuman levels. AI is harder than one might think because scientific knowledge

is still vastly ignorant of our thought process complexity. As stated in [Mit21], What we call

"reasoning" is possibly the smallest component of human mind, and only works so well because

it is sustained by a much older and powerful knowledge, even non conscious. As Minsky declared

himself, we are mainly unconscious of what our mind does best.

Humans build and then rely on a rich model of the world in which their learning is taking place.

As a result of the development of these abilities, humans become effective and versatile learners,

a strong contrast with current AI systems that require enormous amounts of training data and

are highly specialised for particular tasks.

Meta-Learning intends to achieve the same by adopting a “learning to learn" approach that aims

22

to produce a model on a set of different but related tasks, and then generalise to new cases based

on a few additional examples [FAL17]. Indeed, to acquire new skills, it is more useful to build on

previous experience than to start from scratch. Thus, we learn through tasks requiring, at each

iteration, less data and effort to conquer new skills. Meta-Learning constitutes a promising way

to make models learn abstract concepts that are robust to distributional shift.

1.3.3 Hypothesis

We propose the hypothesis that acquiring a meta-reward across a set of tasks can mitigate the

inner alignment problem and address distributional shifts. Meanwhile, utilising Inverse Rein-

forcement Learning (IRL) serves to tackle the outer alignment issue. This manuscript aims at

laying the building blocks towards this ambitious objective.

More specifically, we draw two hypothesis to solve the outer/inner alignment problems.

• Hypothesis 1: Implementing an aligned base objective from scratch is hard and hard

coding moral values is impossible. We suggest that pointing to the right behaviour

directly using expert demonstrations can help alleviate the outer alignment problem if

we use an IRL based approach

• Hypothesis 2: Learning a meta-reward on different but similar tasks can help the model

build an understanding of abstract concepts that are more robust to distributional shift

and that solve the inner alignment problem.

1.4 Contributions

The contributions of this thesis are as follows:

• Chapter 2 first covers all the necessary background to fully understand the content of this

manuscript. It also gives entry to a reader willing to catch up with the latest literature.

In Chapter 3, we give an illustration of the alignment problem. We show that, given the

same reward function, several succeeding policies
3
exist that solve the task while adopting

different behaviours. By doing this, we demonstrate the dual nature of the alignment prob-

lem. While altering the base objective (reward function) clearly results in distinct optimal

policies, it’s less apparent that the same reward function can yield various optimal policies

that optimise the same base objective but have different mesa-objectives. We introduce an

algorithm able to individually sample deterministic succeedding policies; thus allowing to

observe different policies that solve the same task while adopting different behaviours. We

argue that the difference in behaviours is due to a criteria uncaptured in the base objec-

tive but that can actually be considered as part of the mesa-objective. We also claim that

the mesa-objective can be interpreted as a risk measure of distributional shift. Studying

the resulting behaviours can help crafting a better reward function that matches better the

desired behaviour, in favour of a better alignment between human and base objectives.

3
policies that are acceptably close to optimal by human standards

23

• In chapter 4, we tackle the question of how to be more robust to the risk of distributional

shift in RL. We argue that for such purpose, using expected return maximisation alone as

a mesa objective is not sufficient, and that better inner alignment involves a distributional

approach to Reinforcement Learning. However, existing approaches present several limi-

tations such as the inability to use loss functions in practice that guarantee convergence

in theory. Additionally, they learn target distributions only implicitly, forbidding the eval-

uation of a given return density under a specified policy. We present a distributional RL

approach based on a particular invertible generative model that offers proper convergence

guaranties. Indeed our approach allows to compute easily the Cramèr distance and we

show that using it as a loss function brings several benefits.

• As exposed above, we believe that IRL is the best approach to handle the outer alignment

issue. In chapter 5, we answer the question of how to use a distributional approach in

IRL building on the model presented in chapter 4. Existing IRL approaches are based on

adversarial models in order to tackle IRL challenges. However, adversarial models suffer

from instability issues and are based on optimising a criteria that we do not find satisfactory

(occupancy measure). We propose a collaborative model instead of an adversarial one that

optimise the Cramèr distance and does not rely on occupancy measures.

• In chapter 6, we tackle theMeta-Learning problem and answer to hypothesis 2. We propose

a state of the art model that learns meta-metrics that constitute good criteria for clustering

problems when applied on datasets that were never seen by the model. In this chapter the

clustering problem is seen as a simplification of the RL problem as it can be seen as a one

step Markov Decision Process.

24

Chapter 2

Background

2.1 Reinforcement Learning

In this section we describe the Reinforcement Learning (RL) problem through Markov Decision

Process (MDP) formalism. In doing so, we also introduce the notation that will be used in the

remainder of the dissertation. We also describe some of the key ideas and algorithms in RL,

and show how many important problems in decision making and control can be posed in this

framework. For a more detailed introduction to RL and MDPs, readers may also refer to [PDM08;

SB18].

2.1.1 Markov Decision Processes

MDPs provide a formalism for reasoning about planning and acting in scenarios marked by inher-

ent uncertainty. There are many possible ways of defining MDPs, and many of these definitions

are equivalent up to small transformations of the problem. One definition is that an MDP ”M is

a tuple (S,A,T , 𝑟 , 𝛾, 𝜁0) consisting of:

• S: a set of possible states of the world

• A: a set of possible actions from which we may choose on each time step. (|A| ≥ 2)

• T : The state transition distributions. For each state 𝑠 ∈ S and action 𝑎 ∈ A, this gives the

distribution over to which state we will randomly transition if we take action 𝑎 in state 𝑠 .

• 𝑟 : S × A ↦→ ℝ: the reward function

• 𝛾 : a discount factor in [0, 1]

• 𝜁0: the distribution of possible initial states

The dynamics of events in an MDP are illustrated in the influence diagram depicted in figure 2.1.

The process commences with the selection of an initial state 𝑠0, sampled from a distribution 𝜁0.

At each discrete time step 𝑡 , an action 𝑎𝑡 is chosen, subsequently leading to a transition of the

state to 𝑠𝑡+1 according to the probability distribution T (·|𝑠𝑡 , 𝑎𝑡). By iteratively picking actions,

25

Table 2.1: Summary of notations

S A set of possible states of the world

A A set of possible actions (|A| ≥ 2)

T (·|𝑠, 𝑎) State transition distributions

𝑠 𝑠 ∈ S
𝑎 𝑎 ∈ A
𝑟 S × A ↦→ ℝ, the reward function

𝛾 A discount factor in [0, 1]
𝜁0 The distribution of possible initial states

𝜋 (·|𝑠) S × A a policy considered as a probability law

𝑉 𝜋 (𝑠) S ↦→ ℝ the state value function under policy 𝜋

𝑄𝜋 (𝑠, 𝑎) S × A ↦→ ℝ, the Q-function under policy 𝜋

𝑉 ∗(𝑠) S ↦→ ℝ, the optimal value function

𝑄∗(𝑠, 𝑎) S × A ↦→ ℝ, the optimal Q-function

𝑍𝜋 (𝑠, 𝑎) The random variable whose expectation is the value Q

P𝜋 (·|𝑠, 𝑎) The value distribution, the distribution of returns follow-

ing policy 𝜋 from state-action pair (𝑠, 𝑎)
𝑅𝜋 An outcome of 𝑍𝜋 such that 𝑍𝜋 ∼ P𝜋 (·|𝑠, 𝑎)
B𝜋 The distributional Bellman operator for policy 𝜋

𝜌𝜋 (𝑠, 𝑎) Stationary distribution or occupancymeasure for aMarkov

chainM𝜋

Π Set of policies, 𝜋 ∈ Π
𝜏 A trajectory (𝑠0, 𝑎0, 𝑠1, . . . , 𝑎𝑛−1, 𝑠𝑛)
𝑅(𝜏) Return of trajectory 𝜏

we traverse a sequence of states denoted as 𝑠0, 𝑠1, The cumulative payoff is then computed as

the sum of rewards, discounted over time, along this sequence of states:

𝑟 (𝑠0, 𝑎0) + 𝛾𝑟 (𝑠1, 𝑎1) + 𝛾2𝑟 (𝑠2, 𝑎2) + . . . (2.1)

The domains S and A are supposed finite even if many results show that it can be extended to

the case where S and A are countable or continuous. In the general case, the domain A can be

dependent of the current state (A𝑠 for 𝑠 ∈ S). Transition probabilities characterise the system

dynamics. For a fixed action 𝑎, 𝑝 (𝑠′|𝑠, 𝑎) represents the probability that the system goes to state

𝑠′ after performing action 𝑎 in state 𝑠 . Classically, we have ∀𝑠, 𝑎,∑𝑠′ 𝑝 (𝑠′|𝑠, 𝑎) = 1. Moreover, we

can also use a matrix representation of these transition probabilities, denoting 𝑃𝑎 the matrix of

dimension |S| × |S| which elements are ∀𝑠, 𝑠′ 𝑃𝑎,𝑠,𝑠′ = 𝑝 (𝑠′|𝑠, 𝑎). The probabilities described by

𝑝 () take the form of |A| matrices 𝑃𝑎 , each line of these matrices summing to 1. 𝑃𝑎 are called

stochastic matrices.

The distributions 𝑝 () verify the fundamental property that gives its name to MDPs. Denoting ℎ𝑡
the process history at time step 𝑡 , ℎ𝑡 = (𝑠0, 𝑎0, . . . , 𝑎𝑡−1, 𝑠𝑡), then the probability to reach a new

state 𝑠𝑡+1 after performing 𝑎𝑡 is only function of 𝑎𝑡 and the current state 𝑠𝑡 . In summary the history

ℎ𝑡 has no influence:

∀ℎ𝑡 , 𝑎𝑡 , 𝑠𝑡+1 𝑝 (𝑠𝑡+1 |ℎ𝑡 , 𝑎𝑡) = 𝑝 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡)

26

Figure 2.1: Influence diagram of an MDP. Action 𝑎𝑡 is performed at state 𝑠𝑡 , leading to the new

state 𝑠𝑡+1 according to 𝑝 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡). The agent receives the reward 𝑟 (𝑠𝑡 , 𝑎𝑡)

In some environments, there is no guarantee that a trajectory reaches a terminal state after some

time. In this case, trajectories become infinite and the sum of accumulated returns does not

necessarily converge when the number of time steps 𝑛 is infinite. To be able to keep applying

the same definitions, it is possible to modify slightly the computation of the returns by defining a

factor 𝛾 ∈ [0, 1[called the discount factor. Instead of maximising the sum of rewards, the aim is

now to maximise the series

∑
𝑡 𝛾

𝑡𝑟𝑡 , that converges if the rewards given by the environment are

bounded.

The discount factor which is typically strictly less than one, causes rewards obtained far down

the sequence to be given a smaller weight. 𝛾 has a natural interpretation describing how much

immediate rewards are more valuable than those obtained in the future and the value of 𝛾 al-

lows to weight the importance we give to the future. Rewards can also be stochastic rather than

deterministic functions of the state.

In RL, the goal is to find a way of choosing actions 𝑎0, 𝑎1, . . . over time, so as to maximise the

expected value of the rewards given in equation 2.1. Given the Markov property, to attain the

optimal expected sum of rewards, it suffices to choose actions only as a function of the current

state 𝑠𝑡 . Thus, RL can be posed as that of finding a good policy 𝜋 : S ↦→ A such that if at some

timestep 𝑡 , in state 𝑠𝑡 we take action 𝑎𝑡 ∼ 𝜋 (·|𝑠𝑡), we will obtain a large expected sum of rewards:

𝔼𝜋 [𝑟 (𝑠0, 𝑎0) + 𝛾𝑟 (𝑠1, 𝑎1) + 𝛾2𝑟 (𝑠2, 𝑎2) + . . .]

Throughout this manuscript, we will use the notation 𝜋 (·|𝑠) to denote a probability law and 𝑎𝑡 a

random variable such that 𝑎𝑡 ∼ 𝜋 (·|𝑠𝑡). Also we denote Supp(𝜋 (·|𝑠𝑡)) the set of possible values
that 𝑎𝑡 can take when drawn from (𝜋 (·|𝑠𝑡)).

The reward function 𝑟 is the task description and specifies the objective we seek to optimise. It

usually has to be given beforehand and its choice is crucial. Certain choices of rewards may allow

an agent to learn orders of magnitude faster; other choices may cause the agent to learn subop-

timal solutions. The choice of reward function can have a significant impact on the performance

of RL algorithms.

27

2.1.2 Bellman Equations

We now review some standard definitions and results for MDPs, some of which will be useful

in the subsequent chapters. Everything presented in this section holds straightforwardly for

discountedMDPswith finite state and action spaces; with only small modifications. All the proofs

can be found in [SB18]. In this section we will use 𝑟 (𝑠, 𝑎) to denote the rewards. Given a policy

𝜋 , define its value function 𝑉 𝜋
: S ↦→ ℝ to be the expected returns for taking actions according

to 𝜋 starting from a certain state 𝑠:

𝑉 𝜋 (𝑠𝑡) = 𝔼𝜋 [𝑟 (𝑠𝑡 , 𝑎𝑡) + 𝛾𝑟 (𝑠𝑡+1, 𝑎𝑡+1) + 𝛾2𝑟 (𝑠𝑡+2, 𝑎𝑡+2) + . . .], (2.2)

𝑠𝑡+1 ∼ T (·|𝑠𝑡 , 𝑎𝑡), 𝑎𝑡 ∼ 𝜋 (·|𝑠𝑡)

Closely related to the value function is also the Q-function. For a given policy 𝜋 , the Q-function

𝑄𝜋 : S × A ↦→ ℝ gives the expected return for starting in a given state 𝑠 , first taking a specified

action, and then following policy 𝜋 afterwards:

𝑄𝜋 (𝑠𝑡 , 𝑎𝑡) = 𝔼𝜋 [𝑟 (𝑠𝑡 , 𝑎𝑡) + 𝛾𝑟 (𝑠𝑡+1, 𝑎𝑡+1) + 𝛾2𝑟 (𝑠𝑡+2, 𝑎𝑡+2) + . . .] (2.3)

Using this definition, the RL objective can be restated as learning a policy 𝜋 such that 𝑄𝜋 is

maximal for every state-action pair. The Q-value is a useful tool to characterise a policy. This

function verifies a recurrence relation called the Bellman evaluation equation:

∀(𝑠𝑡 , 𝑎𝑡) ∈ S × A, 𝑄𝜋 (𝑠𝑡 , 𝑎𝑡) = 𝑟 (𝑠𝑡 , 𝑎𝑡) + 𝛾𝑄𝜋 (𝑠𝑡+1, 𝑎𝑡+1)

One can also define the bellman operator:

∀𝑓 : S × A −→ ℝ,∀(𝑠𝑡 , 𝑎𝑡) ∈ S × A,B𝜋 (𝑓) (𝑠𝑡 , 𝑎𝑡) = 𝑟 (𝑠𝑡 , 𝑎𝑡) + 𝛾 𝑓 (𝑠𝑡+1, 𝑎𝑡+1)

It is possible to show that this operator is a𝛾 contracting operation. This implies that the Bellman

operator admits a unique fixed point, thus the equation:

B𝜋 (𝑓) = 𝑓

admits a unique solution that is equal to the Q-value 𝑄𝜋 [Put94].

We also define the optimal value function𝑉 ∗ : S ↦→ ℝ to be the optimal expected sum of rewards

for starting from a state 𝑠:

𝑉 ∗(𝑠) = max

𝜋
𝑉 𝜋 (𝑠)

Similarly the optimal Q-function can also be defined as

𝑄∗(𝑠, 𝑎) = max

𝜋
𝑄𝜋 (𝑠, 𝑎)

The quantities 𝑉 ∗ and 𝑉 𝜋
satisfy the Bellman equations [BD62]:

𝑉 ∗(𝑠) = max

𝑎
𝑟 (𝑠, 𝑎) + 𝛾

∑︁
𝑠′∈S

𝑝 (𝑠′|𝑠, 𝑎)𝑉 ∗(𝑠′) (2.4)

28

𝑉 𝜋 (𝑠) = 𝑟 (𝑠, 𝜋 (𝑠)) + 𝛾
∑︁
𝑠′∈S

𝑝 (𝑠′|𝑠, 𝜋 (𝑠))𝑉 𝜋 (𝑠′) (2.5)

Bellman equations give a recursive definition of𝑉 ∗ and𝑉 𝜋
. Moreover, 𝑉 ∗ and𝑉 𝜋

(for a given 𝜋)

are the unique solutions of the two equation above. Many quantities can be written in terms of

either the Q or value functions, and we may usually pick whichever is more convenient to work

with. Indeed, they are related via the identities

𝑉 ∗(𝑠) = max

𝑎∈A
𝑄∗(𝑠, 𝑎)

𝑉 𝜋 (𝑠) = 𝑄𝜋 (𝑠, 𝜋 (𝑠))

There is also analogous form of equations 2.4,2.5 for Q-values:

𝑄∗(𝑠, 𝑎) = 𝑟 (𝑠, 𝑎) + 𝛾
∑︁
𝑠′∈S

𝑝 (𝑠′|𝑠, 𝑎)max

𝑎′∈A
𝑄∗(𝑠′, 𝑎′)

𝑄𝜋 (𝑠, 𝑎) = 𝑟 (𝑠, 𝑎) + 𝛾
∑︁
𝑠′∈S

𝑝 (𝑠′|𝑠, 𝑎)𝑄𝜋 (𝑠′, 𝜋 (𝑠′))

Depending on the initial distribution 𝜁0, and what state we start from, one may wonder if certain

policies are better for starting from certain states. It is a remarkable fact of MDPs that there exists

an optimal policy 𝜋∗ : S ↦→ A, so that starting from any state, 𝜋∗ attains the optimal expected

returns.

𝑉 𝜋∗ (𝑠) = 𝑉 ∗(𝑠) ∀𝑠 ∈ S

The optimal policy is not necessarily unique and many different behaviours can be optimal in the

sens of the Q-value. However the Q-function associated to each policy is unique and noted 𝑄∗.
Knowing 𝑄∗ is enough to find an optimal policy in any given environment. Indeed, any greedy

policy with respect to 𝑄∗ is necessarily an optimal policy for the underlying MDP.

𝜋∗ is given by either of the following (equivalent) definitions:

𝜋∗(𝑠) = arg max

𝑎∈A
𝑄∗(𝑠, 𝑎)

𝜋∗(𝑠) = arg max

𝑎∈A
𝑟 (𝑠, 𝑎) + 𝛾

∑︁
𝑠′∈S

𝑝 (𝑠′|𝑠, 𝑎)𝑉 ∗(𝑠′) (2.6)

2.1.3 Finding the Optimal Policy

There are 3 fundamental methods to find the optimal policy that mainly differ on how the value

function is estimated.

29

Dynamic Programming

This approach requires complete knowledge of the environment dynamics (i.e., transition proba-

bilities 𝑝 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡)). It takes advantage of the recursive definition of𝑉 𝜋
and𝑉 ∗ given by Bellman

equations. Expressing the value function as the sum of the immediate reward and the next step

value function, it becomes possible to iterate between a value evaluation step that calculates

𝑉 𝜋 (𝑠) and a policy improvement computing 𝑄𝜋 (𝑠, 𝑎) using equation 2.6. We therefore obtain a

sequence of policies and value functions that get better continuously

𝜋0

𝐸−→ 𝑉 𝜋0

𝐼−→ 𝜋1

𝐸−→ 𝑉 𝜋1

𝐼−→ 𝜋2

𝐸−→ 𝑉 𝜋2

𝐼−→ . . .
𝐼−→ 𝜋∗

𝐸−→ 𝑉 𝜋∗

where

𝐸−→ corresponds to evaluation and

𝐼−→ corresponds to improvement. The dynamic program-

ming process converges towards an optimal policy 𝜋∗ and an optimal value function 𝑉 𝜋∗
.

Monte Carlo Methods

If probability transitions are unknown, it is possible to replace the model by sampling transi-

tions directly from the environment to get complete trajectories and gather knowledge about its

dynamics. This approach called Monte Carlo constitutes the first model free approach that was

proposed in the literature. As for dynamic programming, Monte Carlo methods are also done in

two steps, prediction (evaluation) and control (improvement). The control step remains the same

as for dynamic programming, i.e greedy policy. However, during the prediction step 𝑡 , the value

function is entirely estimated using the empirical return 𝑅𝑡 . In its incremental mean version,

Monte Carlo method consists into computing the returns obtained after the first visit of a state

until the end of the trajectory. This process is repeated over 𝑘 episodes. The value function is

estimated, for each episode as follows:

𝑉 𝜋 (𝑠𝑡) ←− 𝑉 𝜋 (𝑠𝑡) +
1

𝑁 (𝑠𝑡)
(𝑅𝑡 −𝑉 𝜋 (𝑠𝑡))

Where 𝑁 (𝑠𝑡) is the number of trajectories containing state 𝑠𝑡 . As they only rely on empirical

returns, they are unbiased estimators. However this implies that updates are only done at the

end of each episode.

Temporal Difference

Temporal Difference (TD) methods play a significant role in contemporary reinforcement learn-

ing approaches, representing a blend of Monte Carlo and dynamic programming techniques. TD

methods utilize bootstrapping to update value function estimates, amalgamating practical expe-

rience with approximate value function estimations. In contrast to Monte Carlo methods, which

perform evaluations at the conclusion of each episode, TD updates occur subsequent to each

state transition. Among these methods, Q-learning [WD92] stands out as a straightforward al-

gorithm that employs TD updates. This algorithm employs the Bellman equation to estimate the

Q-function 𝑄𝜋 :

𝑄𝜋 (𝑠𝑡 , 𝑎𝑡) ←− 𝑄𝜋 (𝑠𝑡 , 𝑎𝑡) + 𝛼 [𝑟𝑡+1 + 𝛾 max

𝑎
𝑄𝜋 (𝑠𝑡+1, 𝑎) −𝑄𝜋 (𝑠𝑡 , 𝑎𝑡)] (2.7)

30

Figure 2.2: Illustration of Monte Carlo vs Temporal Difference vs Dynamic Programming. Source:

https://www.davidsilver.uk/wp-content/uploads/2020/03/MC-TD.pdf.

Where 𝛼 is a learning rate and 𝛾 a discount factor. Optimisation of 𝑄𝜋 is done through TD error

minimisation [SB18] on encountered trajectories when the agent follows the current policy:

𝛿𝑡 = 𝑟𝑡+1 + 𝛾 max

𝑎
𝑄𝜋 (𝑠𝑡+1, 𝑎) −𝑄𝜋 (𝑠𝑡 , 𝑎𝑡)

The best policy is then chosen in a greedymanner, retaining an action maximising the Q-function

at each state.

The original Q-learning algorithm employs a tabular representation of 𝑄𝜋 (𝑠𝑡 , 𝑎𝑡) with dimen-

sions |S| × |A|, where each row corresponds to a state and each column corresponds to an

action. However, this configuration becomes impractical for scenarios involving infinite or con-

tinuous state and action spaces. Leveraging the universal approximation capabilities of neural

networks, deep learning methods have been naturally integrated into reinforcement learning.

One noteworthy advancement is the Deep Q-Network (DQN) introduced by Mnih et al. in 2015

[Mni+13]. DQN stands as the pioneer deep learning model capable of directly learning policies

from high-dimensional sensor data, particularly from Atari games. In essence, DQN employs

images captured from an Atari emulator as input, employing a Convolutional Neural Network

(CNN) [Li+22]. The training procedure of DQN unfolds as follows:

1. Given a state 𝑠𝑡 as input, the network outputs 𝑄 (𝑠𝑡 , 𝑎𝑖𝑡) for each possible action 𝑎𝑖𝑡 where

𝑖 ∈ [1, |A|].

2. An action is chosen either greedily or at random. Then after performing the chosen action

𝑎𝑡 , the environment outputs a new state 𝑠𝑡+1 and a reward 𝑟𝑡+1.

3. 𝑠𝑡+1 is then used as input and we keep an action 𝑎∗𝑡+1 ∈ {𝑎1

𝑡+1, .., 𝑎
|A|
𝑡+1 } for which𝑄 (𝑠𝑡+1, 𝑎∗𝑡+1)

is the highest.

4. Train the network using Mean Squared Error to minimise the difference between the pre-

dicted value 𝑄 (𝑠𝑡 , 𝑎𝑡) and the target 𝑄 (𝑠𝑡 , 𝑎𝑡) + 𝛼 [𝑟𝑡+1 + 𝛾𝑄 (𝑠𝑡+1, 𝑎∗𝑡+1) −𝑄 (𝑠𝑡 , 𝑎𝑡)].

Other approaches have improved on DQN like Double DQN [HGS15] that uses two distinct mod-

els, one for value evaluation and another for action selection. Bellemare et al [BDM17] introduce

distributional RL that estimates the whole distribution of the Q-value instead of the expected

return for each state-action pair. Being a central element of this thesis, Distributional RL will

31

https://www.davidsilver.uk/wp-content/uploads/2020/03/MC-TD.pdf

be extensively introduced in the subsequent section. Finally, Rainbow [Hes+18] is considered as

state of the art and combines 6 DQN improvements: DDQN, Prioritized replay [Sch+16], Dueling

networks [WFL16], Multi-step learning, Distributional RL, and Noisy networks [For+18].

Themethods discussed so far fall under the category of value-based algorithms. These approaches

involve constructing optimal policies by initially learning a value function to estimate expected

returns, and subsequently selecting actions in a greedy manner based on these value estimates.

While value-based methods offer the benefit of generating lower variance in predicted returns,

they also come with certain drawbacks. Firstly, the reliance on greedy action selection implies

that the learned policies are deterministic, even though the optimal policy often exhibits stochas-

tic behavior [Sut+99]. Secondly, minor modifications to the estimated value of an action can lead

to significant changes inwhether that action is selected or not. This issue has been recognized as a

significant challenge in establishing convergence guarantees for value-based methods [Gro+12].

Lastly, value-based methods have a tendency to overestimate 𝑄𝜋 due to the propagation of posi-

tive errors through the max operator, which can degrade the model’s precision [Has10].

The methods introduced in this thesis can all be considered value based. However, for com-

pleteness we mention the existence of policy based methods that maximise an approximation of

expected returns without learning value functions. The result is a stochastic policy consisting

of a distribution from which actions are sampled. We advise the interested reader to explore the

dedicated section in [SB18]. Compared to value based methods, policy based methods are simpler

and offer strong convergence guarantees. However, empirical returns variance is generally high

implying a slow convergence.

Actor-critic methods are a class of reinforcement learning algorithms that combine the benefits of

both policy-based and value-based methods. These algorithms simultaneously learn a policy and

a value function, leveraging this dual approach to mitigate variance and accelerate learning. In an

actor-critic algorithm, the agent (referred to as the "actor") learns by incorporating insights from

the value function (the "critic"), typically in the form of temporal difference (TD) errors. The actor-

critic interaction introduces a trade-off between reducing gradients variance and introducing bias

from the value-based aspects of the algorithm. The foundational work on actor-critic methods is

often attributed to [BSA83]. Since then, several variations of this approach have been developed.

For instance, in 2014, Silver et al. introduced Deterministic Policy Gradients (DPG) [Sil+14],

which employs value functions to learn a deterministic policy. Another notable contribution

is the Asynchronous Advantage Actor-Critic (A3C) algorithm proposed by Mnih et al. in 2016

[Mni+16]. In A3C, multiple agents operate in parallel, allowing for the decorrelation of data and

diversification of experiences used for learning. This parallelization enhances the efficiency of

the learning process and contributes to faster convergence.

2.2 Distributional Reinforcement Learning

As a large part of this thesis tackles the problem of learning the Q-functions as distributions over

returns instead of expected returns, we will extensively present Distributional RL and the main

papers on which our proposed approaches are mainly inspired.

32

Consider a very simple deterministic MDP as in figure 2.3 (left) with only 3 states and 1 possible

action 𝐴, each state giving a reward 𝑟 = 1 with 𝛾 = 0.9. In this case, using equations 2.2 and 2.3,

we have 𝑉 (𝑠2) = 𝑄 (𝑠2, 𝐴) = 1 and 𝑉 (𝑠1) = 𝑄 (𝑠1, 𝐴) = 1 + 𝛾𝑉 (𝑠2) = 1.9.

Figure 2.3: Influence diagrams examples of deterministic MDP (left) and stochastic MDP (right).

Figure 2.3 (right) presents theMDP of a simple stochastic environment with 3 possible states and 1

possible action at state 𝑠0 while 𝑠1 and 𝑠2 are both final but𝑉 (𝑠2) > 𝑉 (𝑠1). The environment being

stochastic means that each time the agent performs action 𝐴 in state 𝑠0, the agent ends up in 𝑠1
with probability 𝑝 and in 𝑠2 with probability 1−𝑝 . In this case𝑉 (𝑠0) = 𝑝 ·𝑟 (𝑠1, 𝐴)+ (1−𝑝) ·𝑟 (𝑠2, 𝐴).
If we fix 𝑝 = 0.5, 𝑟 (𝑠1, 𝐴) = 1 and 𝑟 (𝑠2, 𝐴) = 5, then 𝑉 (𝑠0) = 3.

However, it is important to acknowledge that a single value of𝑉 (𝑠0) can correspond to an infinite
number of situations. This is due to the fact that state values (as well as Q-values) are defined

as expectations, lacking detailed information about the environment dynamics and the range of

possible rewards. It is crucial to distinguish between intrinsic uncertainty, captured by the distri-

bution over returns, and parametric uncertainty, which pertains to the uncertainty surrounding

the estimation of values. Distributional RL aims to focus on capturing the former.

Indeed, a more informative representation of state values or Q-values would be to model them as

distributions. As illustrated in figure 2.4, we ideally seek to learn the distributions of 𝑄 (𝑠0, 𝐴) to
gain a more comprehensive understanding of the underlying uncertainties and variability in the

rewards.

Considering Q-values as distributions and trying to learn these distributions is the main objective

of a sub-field of RL called Distributional Reinforcement Learning.

33

Figure 2.4: Target distributions for𝑄 (𝑠0, 𝐴) with a discrete support (left) on a continuous support

(right). In the continuous case, the density of the atoms 1 and 5 being null, we suppose the

existence of user defined regions around them of non nul measure with respect to the Lebesgue

measure.

2.2.1 C51

Similarly to the Bellman equation already introduced in the previous section, the authors of C51

[BDM17] introduced the distributional Bellman equation:

𝑍 (𝑠, 𝑎) 𝐷= R(𝑠, 𝑎) + 𝛾𝑍 (𝑠′, 𝑎′) (2.8)

Where 𝑍 is the random variable whose expectation is the value 𝑄 . Equation 2.8 states that the

distribution of 𝑍 is characterised by the interaction of three random variables: the reward R1
, the

next state-action pair (𝑠′, 𝑎′) and its random return 𝑍 (𝑠′, 𝑎′). They call this quantity, the value

distribution.

The principal contributions of this groundbreaking work is that for a fixed policy, the Bellman

operator over value distributions is a contraction in a maximal form of the Wasserstein distance.

Given two randomvariables𝑈 ,𝑉 withCumulativeDensity FunctionCDFs 𝐹𝑈 , 𝐹𝑉 , the 𝑝-Wasserstein

distance is defined as:

𝑑𝑝 (𝐹𝑈 , 𝐹𝑉) =
(∫

1

0

|𝐹−1

𝑈 (𝑢) − 𝐹
−1

𝑉 (𝑢) |
𝑝𝑑𝑢

)1/𝑝
(2.9)

And denotingZ the space of value distributions with bounded moments, for two value distribu-

tions 𝑍1, 𝑍2 ∈ Z, the maximal form of the Wasserstein metric is defined as :

¯𝑑𝑝 (𝑍1, 𝑍2) := sup

𝑠,𝑎

𝑑𝑝 (𝑍1(𝑠, 𝑎), 𝑍2(𝑠, 𝑎))

1
here we denote the random variable of rewards by R. It should not be confused with an outcome of 𝑍𝜋

noted

𝑅𝜋 (return value) and the reward function noted 𝑟 .

34

Now let us characterise the Bellman operator over value distributions. First, the authors define

the transition operator 𝑃𝜋 : Z −→ Z

𝑃𝜋𝑍 (𝑠, 𝑎) 𝐷:= 𝑍 (𝑠′, 𝑎′)
𝑠′ ∼ 𝑝 (·|𝑠, 𝑎), 𝑎′ ∼ 𝜋 (·|𝑠′)

(2.10)

The authors define the distributional Bellman operator B𝜋 : Z −→ Z as:

B𝜋𝑍 (𝑠, 𝑎) 𝐷:= R(𝑠, 𝑎) + 𝛾𝑃𝜋𝑍 (𝑠, 𝑎)

One of the most important result of the article consists in proving that B𝜋 : is a 𝛾-contraction in

¯𝑑𝑝 . Indeed, as for classic RL, they use Banach’s fixed point theorem to show that B𝜋 has a unique
fixed point, which is 𝑍𝜋 . This has the important consequence that the same recursive process as

in classic RL can be used such that {𝑍𝑘} converges to 𝑍𝜋 in
¯𝑑𝑝 .

They also remark that not all distributional metric are equivalent, as the distributional Bellman

operator is not a contraction for the total variation distance, or the KL divergence.

In practice, given a parameterised value distribution, 𝑍𝜃 , although it would seem natural to min-

imise the Wasserstein distance between B𝑍𝜃 and 𝑍𝜃 , we are typically restricted in a RL context

to learn from sample transitions, which they prove is not possible under the Wasserstein loss.

Therefore, the authors used the KL divergence instead, and still managed to obtain impressive

results.

These result are essential regarding the approaches presented in the next section of thismanuscript.

Indeed, one of the main results of our works builds on these results to propose another distance

that would alleviate the intrinsic limitations of the Wasserstein distance.

Along with the lack of convergence guarantee due to the use of KL divergence, C51 bears sev-

eral other limits. For instance, C51 is limited to discrete and fixed supports for the distribution

of returns. Moreover, the target and predicted distributions do not share the same support by

construction, the use of KL divergence therefore requires a computationally heavy projection of

the target support into the predicted one.

With QR-DQN [Dab+17], the authors of C51, overcame this limitation using an algorithm that is

basically a transposition of C51.

2.2.2 Quantile Regression DQN (QR-DQN)

While C51 learns flexible distributions on a fixed support, QR-DQN [Dab+17] learns a fixed set

of probabilities on a flexible support.

The aim of QR-DQN is to be able to learn the distribution of returns while training the model

using the Wasserstein distance. As stated in equation 2.9, computing this distance between two

distributions requires having access to their quantile functions, i.e. the inverse of the CDFs.

Therefore the idea of the paper is to learn the quantiles of the predicted and target distributions

35

Figure 2.5: In quantile regression, rather than learning what probabilities are assigned to a fixed

set of supports, the model learns a set of supports that correspond to a fixed set of probabilities

(quantiles).

to ease the calculation of the Wasserstein distance and to overcome the impossibility to learn

from sample transitions with the Wasserstein distance.

To do so, they use quantile regression [Koe05] to approximate the quantile functions. Thismethod

is known for being unbiased. More specifically, quantile regression has been shown to converge

to the true quantile function value when minimised using stochastic approximation.

In QR-DQN, the random return is approximated by a uniform mixture of 𝑁 Diracs,

𝑍𝜃 (𝑠, 𝑎) :=
1

𝑁

𝑁∑︁
𝑖=1

𝛿𝜃𝑖 (𝑠,𝑎)

with each 𝜃𝑖 assigned a fixed quantile target, 𝜈𝑖 =
𝜈𝑖−1+𝜏𝑖

2
for 1 ≤ 𝑁 , where 𝜈𝑖 = 𝑖/𝑁 . These

quantile estimates are trained using the Huber quantile regression loss [Hub64] with threshold

𝜅,

𝜌𝜅𝜏 (𝛿𝑖 𝑗) = |𝜈 − {𝛿𝑖 𝑗 < 0}|
L𝜅 (𝛿𝑖 𝑗)
𝜅

, with

L𝜅 (𝛿𝑖 𝑗) =
{

1

2
𝛿2

𝑖 𝑗 , if |𝛿𝑖 𝑗 | ≤ 𝜅
𝜅 (|𝛿𝑖 𝑗 | − 1

2
𝜅), otherwise

36

on the pairwise TD-errors:

𝛿𝑖 𝑗 = 𝑟 (𝑠𝑡 , 𝑎𝑡) + 𝛾𝜃 𝑗 (𝑠𝑡+1, 𝑎𝑡+1) − 𝜃𝑖 (𝑠𝑡 , 𝑎𝑡)

The quantile regression loss, for quantile 𝜈 ∈ [0, 1] is an asymetric convex loss function that

penalises overestimation errors with weight 𝜈 and underestimation errors with weigh 1 − 𝜈 . For
a distribution 𝑍 , and a given quantile 𝜈 , the value of the quantile function 𝐹−1

𝑍
(𝜈) may be char-

acterised as the minimizer of the quantile regression loss. The minimising values of {𝜃1, . . . , 𝜃𝑁 }
for𝑊1(𝑍, 𝑍𝜃) are those that minimise:

𝑁∑︁
𝑖=1

𝔼𝑍∼𝑍 [𝜌𝜈𝑖 (𝑍 − 𝜃𝑖)]

This loss gives unbiased sample gradients and we can find the minimising {𝜃1, . . . , 𝜃𝑁 } using
stochastic gradient descent.

To summarise, the advantages of QR-DQN over C51 are the following:

• No need to choose the bounds of the support as the support is now unbounded, nor the

number of bins to discretize it.

• No need to project the target distribution support into the predicted distribution

• It is now possible to use the Wasserstein distance and perform training using SGD

2.2.3 Implicit Quantile Networks (IQN)

IQN [Dab+18] extends QR-DQN approach by learning the whole quantile function instead of a

finite set of quantiles. It takes 𝜈 ∈ U([0, 1]) as input and finds the corresponding quantile values
in the target distribution. Let 𝐹−1

𝑍
(𝜈) the quantile function for 𝜈 ∈ [0, 1] and for the random

variable 𝑍 . Denote 𝑍𝜈 = 𝐹−1

𝑍
(𝜈). For 𝜈 ∼ U([0, 1]), the output of the return distribution for a

given state-action pair is 𝑍𝜈 (𝑠, 𝑎) ∼ 𝑍 (𝑠, 𝑎).

More specifically, the authors propose to learn a quantile function of state-action pairs as an

application from (𝑠, 𝑎, 𝜈) to 𝑍𝜈 (𝑠, 𝑎). 𝑍𝜈 (𝑠, 𝑎) has to be seen as samples taken from the return

distribution implicitely defined. As for C51 or QR-DQN, IQN can estimate the distribution of

returns but IQN does not output the distribution itself. Instead, it will output a unique sample

from the distribution at each iteration.

In figure 2.6, we see that DQN outputs the mean of the returns, C51 a distribution on a fixed

support, QR-DQN outputs uniform probabilities on a flexible support while IQN outputs a unique

value estimation for the return at each request but on a continuous support.

2.3 Inverse Reinforcement Learning

After introducing distributional RL, and introducing our approach of the problem in chapter 4,

chapter 5 will present how to use the distributional approach to the Inverse RL (IRL) problem.

37

Figure 2.6: Network architecture for DQN and recent distributional algorithms. The figure was

taken from [Dab+18].

Therefore, in this section we will present the IRL problem, its main challenges as well as the

principal approaches on which we build our distributional adaptation.

Solving a RL problem requires several elements: an environment with its states and transition

dynamics, a task, an agent and its possible actions, and surelymost importantly a reward function.

This list is actually redundant, as the reward function is supposed to perfectly describe the task at

hand and how to solve it. More specifically, maximising the reward function should lead to solve

the task with the desired behaviour. Therefore rather that a task and a reward function, one only

needs a good reward function. However, designing a good reward function for the task at hand is

rarely easy. For instance, for some score based video games like Tetris or Space Invaders, defining

a reward function is straightforward, as maximising the score is the goal by itself. In Mujoco’s

Ant environment- [TET12], maximising the distance is also a good reward function. However, if

we try to define a good reward function that could be used to train an autonomous car driving

algorithm, the task appears less straightforward, if not impossible.

A solution to tackle such an issue is to use an expert (usually a human) that will demonstrate

what following the optimal policy looks like. The main hypotheses are that the expert follows a

certain reward or utility function that it seeks to maximise, and while maximising it, it displays

a certain behaviour which consequence is solving the task.

2.3.1 Behavioral Cloning

This is the most straightforward approach in situations where we do not have access to a reward

function. The starting point is to notice that if the learner could replicate the expert’s action,

it would solve the task, following the optimal policy and implicitly maximise the right reward

function. This approach is called Behavioural Cloning
2
. Wewill now present the easiest approach

for Behavioural Cloning, called Dataset Aggregation (DAgger) [RGB11]. In this approach, the

expert’s actions are recorded, then we perform a supervised learning method to replicate the

expert’s action. For instance, when facing state 𝑠𝑡 , the expert will perform action 𝑎𝑡 , then all pairs

2
There exist plenty names in the literature like Apprenticeship learning or Supervised Imitation Learning

38

(𝑠𝑡 , 𝑎𝑡) shown by the experts are used in a supervised classification algorithm to learn policy

𝜋𝜃 (𝑎𝑡 |𝑠𝑡).

Figure 2.7: Behavioural Cloning. Given a dataset of state action pairs, a neural network is trained

to predict the expert actions given a certain state.

While this approach is straightforward, it bears some severe limitation. Suppose, the learnt policy

is close to the optimal policy with some minor errors. Errors are likely to compound and lead

the agent towards sub-optimal states in which the expert never lands. In those new states, the

agent cannot replicate the expert’s actions as they were never encountered in the training dataset.

The performed action may therefore be random which will certainly worsen an already terrible

situation. This is called the distributional shift as illustrated in figure 2.8. This means that the

state distribution encountered during training is not the same as the one encountered at test time.

Figure 2.8: Distributional shift. In an autonomous driving setting, minor errors can

make the agent shift from demonstrated optimal states from which it is not trained to

recover. Source: https://cse.buffalo.edu/~avereshc/rl_fall19/lecture_15_Imitation_Learning_

Behavior_Cloning_IRL.pdf.

To alleviate distributional shift, DAgger trains the agent in an online and iterative manner. The

agent is first trained on the expert data, then the obtained policy generates new states to which

the expert gives the optimal action and the iterations go on. The process is as follows and goes

for a user defined number of epochs:

1. Train 𝜋𝜃 (𝑎𝑡 |𝑠𝑡) form expert data (𝐷 = {𝑠1, 𝑎1, . . . , 𝑠𝑁 , 𝑎𝑁 }

39

https://cse.buffalo.edu/~avereshc/rl_fall19/lecture_15_Imitation_Learning_Behavior_Cloning_IRL.pdf
https://cse.buffalo.edu/~avereshc/rl_fall19/lecture_15_Imitation_Learning_Behavior_Cloning_IRL.pdf

2. Run 𝜋𝜃 to get a new dataset 𝐷𝜋 = {𝑠𝜋
1
, . . . , 𝑠𝜋𝑡 }

3. Ask the expert to label 𝐷𝜋 with optimal actions and obtain dataset 𝐷𝜋𝐸 = {𝑠𝜋
1
, 𝑎1, . . . , 𝑠

𝜋
𝑡 , 𝑎𝑡 }

4. Aggregate: 𝐷 −→ 𝐷 ∪ 𝐷𝜋𝐸
5. Repeat

However, DAgger is not capable of long term planning and it is only effective if the expert is able

to browse through a large part of the state space, or when that state space is rather small.

In contrast to the approach of directly replicating behavior, inverse reinforcement learning as-

sumes rational agents to estimate an unknown reward function that represents their underlying

motivations and goals. The reward function is often considered as the most succinct, robust and

transferable representation of the expert’s objective [AN04]. Given a set of demonstrations 𝐷𝜋𝐸
from an expert policy 𝜋𝐸 , IRL [Rus98; NR00] is the problem of seeking a reward function from

which we can recover 𝜋𝐸 through RL. However, IRL in unregularized MDPs has been shown to

be an ill-defined problem since:

1. many optimal policies can explain a set of demonstrations

2. multiple rewards meet the criteria of being a solution, i.e many rewards can explain an

optimal policy

2.3.2 Maximum Entropy IRL

MaximumEntropy Inverse Reinforcement Learning (MaxEntIRL) [Zie+08; Zie10] offers a strategy

to mitigate the first concern. This approach involves a reward function that not only maximises

the expert’s cumulative return but also incorporates the Shannon entropy of the expert policy.

Consider a MDP defined by the usual tuple (S,A,T , 𝑟 , 𝛾, 𝜁0). The initial state distribution 𝜁0 and

the reward function 𝑟 (𝑠, 𝑎) are unknown. If we combine this setting with a stochastic policy 𝜋

from the set of policies Π, i.e. a conditional probability distribution onA given some state 𝑠 ∈ S,
we obtain a Markov chainM𝜋 = (𝑠0, 𝑎0, 𝑠1, 𝑎1, . . .) in the following natural way: take a random

starting state 𝑠 ∼ 𝜁0, choose an action 𝑎 ∼ 𝜋 (·|𝑠) and then restart the chain with probability 1−𝛾
or choose the next state 𝑠′ ∼ 𝑝 (·|𝑠, 𝑎) otherwise; then repeat the last two steps.

ThereforeM𝜋 has a stationary distribution (or occupancy measure) 𝜌𝜋 which satisfies

𝜌𝜋 (𝑠, 𝑎) = (1 − 𝛾𝜋 (𝑎 |𝑠))
∞∑︁
𝑡=0

𝛾 𝑡𝑝 (𝑠𝑡 = 𝑠)

as well as the Bellman equation:∑︁
𝑎′∈A

𝜌 (𝑠′, 𝑎′) = (1 − 𝛾)𝜁0(𝑠′) + 𝛾
∑︁

(𝑠,𝑎)∈S×A
𝑝 (𝑠′|𝑠, 𝑎)𝜌 (𝑠, 𝑎)

for all 𝑠, 𝑠′ ∈ S and 𝑎 ∈ A. Moreover, there is a one to one correspondence between those

measures and the policies in Π. This is proven in theorem 2 of [SBS08]:

40

Proposition: The mapping 𝜌 ↦→ 𝜋𝜌 defined by 𝜋𝜌 (𝑎 |𝑠) := 𝜌 (𝑠, 𝑎)/∑𝑎′∈A 𝜌 (𝑠, 𝑎′) is a bijection
between Π and the set C of measures on S × A satisfying the Bellman equation.

The direct consequence of that theorem is that we can write

𝔼𝜋 [𝑋 (𝑠, 𝑎)] := 𝔼𝜌𝜋 [𝑋 (𝑠, 𝑎)] := 𝔼(𝑠,𝑎)∼𝜌𝜋 [𝑋 (𝑠, 𝑎)]

for the expected value of a random variable 𝑋 on S × A with respect to 𝜌𝜋 . We observe that

the expected cumulative reward, i.e; the expected sum of rewards 𝑟 (𝑠𝑡 , 𝑎𝑡) up to the first restart

of the chain is given by 𝔼[∑∞𝑡=0
𝛾 𝑡𝑟 (𝑠𝑡 , 𝑎𝑡)]. Hence, it is easy to derive that it is also equal to

𝔼𝜋 [𝑟 (𝑠, 𝑎)/(1 − 𝛾)]. We can also write ⟨𝑟, 𝑝⟩ :=
∑
(𝑠,𝑎)∈S×A 𝑟 (𝑠, 𝑎)𝜌 (𝑠, 𝑎).

The main conclusion of these observations is that matching the expert’s occupancy measure can

be considered as a good criteria to replicate its behaviour. MaxEntIRL is based on the minimisa-

tion of the difference between the agent’s empirical occupancy measure and the expert’s. This

distribution (either from the expert, or observed) can be represented as:∑︁
path 𝜏𝑖

𝑃 (𝜏𝑖) 𝑓𝜏𝑖 = ¯𝑓

Where 𝑃 is the probability of trajectory 𝜏 and 𝑓 the state features.

Some preliminary definitions are mandatory:

• Feature vector: Each state can be represented as a feature vector 𝑓 . Given a state 𝑠 , its

feature vector is noted 𝑓𝑠

• Feature count: Given a trajectory 𝜏 , the trajectory’s feature count is defined as the sum of

the feature vectors of all states in the trajectory

𝑓𝜏 =
∑︁
𝑠∈𝜏

𝑓𝑠

The return function can then be defined as the linear combination between features:

𝑅𝜃 (𝜏) = 𝜃1𝑓𝑠1 + 𝜃2𝑓𝑠2 + · · · + 𝜃𝑇 𝑓𝑠𝑇

where the weights 𝜃 are the weights to learn.

𝑅𝜃 (𝜏) =
∑︁
𝑠∈𝜏

𝜃𝑇 𝑓𝑠

= 𝜃𝑇 𝑓𝜏

(2.11)

The probability that a certain trajectory is drawn from the expert demonstrations is considered

as proportional to the exponent of the return function. This hypothesis is directly related to the

well known Boltzmann distribution.

41

𝑝 (𝜏) = exp(𝑅𝜃 (𝜏))
𝑍

With 𝑍 =
∑
𝜏 exp(𝑅𝜃 (𝜏)) a normalising constant.

Another advantage of this approach is that it remains valid for stochastic environment if we

parameterise the equation using the transition matrix:

𝑃 (𝜏 |𝜃,𝑇) ≈ 𝑒𝜃
𝑇 𝑓𝜏

𝑍 (𝜃,𝑇)
∏

𝑠𝑡+1,𝑎𝑡 ,𝑠𝑡∈𝜏
𝑃𝑇 (𝑠𝑡+1 |𝑎𝑡 , 𝑠𝑡)

The objective is to maximise 𝑝 (𝜏), i.e to maximise the probability that the agent replicates expert

trajectories.

𝜃 ∗ = arg max

𝜃

𝐿(𝜃) = arg max

𝜃

∑︁
examples

log 𝑃 (𝜏 |𝜃,𝑇)

The objective function can then be defined as:

𝐿(𝜃) = 1

𝑀
log𝑝 (𝜏)

With𝑀 the number of demonstrations. Therefore:

𝐿(𝜃) = 1

𝑀
log

(
exp(𝑅𝜃 (𝜏))

𝑍

)
=

1

𝑀
(log exp(𝑅𝜃 (𝜏)) − log𝑍)

=
1

𝑀
(𝑅𝜃 (𝜏) − log𝑍)

=
1

𝑀

(
𝑅𝜃 (𝜏) − log

∑︁
𝜏

exp(𝜃𝑇 𝑓𝜏)
)

=
1

𝑀

(
𝜃𝑇 𝑓𝜏 − log

∑︁
𝜏

exp(𝜃𝑇 𝑓𝜏)
)

(2.12)

And

∇𝜃𝐿(𝜃) =
1

𝑀

(
𝑓𝜏 −

1∑
𝜏 exp(𝜃𝑇 𝑓𝜏)

∑︁
𝜏

𝜃𝑇 exp(𝜃𝑇 𝑓𝜏)
)

Note that

1∑
𝜏 exp(𝜃𝑇 𝑓𝜏)

∑︁
𝜏

𝜃𝑇 exp(𝜃𝑇 𝑓𝜏) =
∑︁
𝜏

𝑝 (𝜏 |𝜃)

=
1

𝑀

(∑︁
𝜏

𝑓𝜏 −
∑︁
𝜏

𝑝 (𝜏 |𝜃) 𝑓𝜏

)
=

1

𝑀

∑︁
𝜏

𝑓𝜏 −
1

𝑀

∑︁
𝜏

𝑝 (𝜏 |𝜃) 𝑓𝜏

(2.13)

42

The mean of the feature count is the feature expectation
˜𝑓 , and we can replace

1

𝑀

∑
𝜏 𝑓𝜏 =

˜𝑓 :

∇𝜃𝐿(𝜃) = ˜𝑓 − 1

𝑀

∑︁
𝜏

𝑝 (𝜏 |𝜃) 𝑓𝜏

The problem can further be simplified by summing over states.

∇𝜃𝐿(𝜃) = ˆ𝑓 −
∑︁
𝑠

𝑝 (𝑠 |𝜃) 𝑓𝑠

The first term can be easily calculated but not the second. Indeed, given a policy 𝜋 we can use

Monte-Carlo to compute the state visitation frequency. However, there is no policy available yet.

Therefore, it is necessary, after each update on the reward function, to use Dynamic Programming

to solve the problem and find the optimal policy for the current reward. Indeed, let 𝜇𝑡 (𝑠) be the
probability to visit state 𝑠 at time 𝑡 . Then 𝜇𝑡+1(𝑠) =

∑
𝑎

∑
𝑠′ 𝜇𝑡 (𝑠′)𝜋 (𝑎 |′𝑠′)𝑝 (𝑠 |𝑠′, 𝑎). Therefore the

state visitation frequency is 𝑝 (𝑠 |𝜃) = 1

𝑇

∑
𝑡 𝜇𝑡 (𝑠). The complete algorithm goes as follows:

1. Initialise parameters 𝜃 and gather demonstrations 𝐷

2. For 𝑁 iterations:

(a) Calculate return 𝑅𝜃 (𝜏) = 𝜃𝑇 𝑓𝜏
(b) Calculate the optimal policy according to the current return function using policy

iteration

(c) Compute state visitation frequency 𝑝 (𝑠 |𝜃)

(d) Calculate gradient for 𝜃 : ∇𝜃𝐿(𝜃) = ˜𝑓 −∑
𝑠 𝑝 (𝑠 |𝜃) 𝑓𝑠

(e) Update 𝜃 ← 𝜃 + 𝛼∇𝜃𝐿(𝜃)

One can notice that using value iteration imposes to know the dynamics on the environment be-

forehand. Moreover, the necessity to solve the problem for each new return function constraints

the method to be only usable on small environments with small state and action spaces.

2.3.3 Generative Adversarial Imitation learning (GAIL)

GAIL [HE16] brings two improvements to MaxEntIRL. First, it is a model free approach that does

not require the environment dynamics. Also, it leverages adversarial networks to better learn the

expert’s occupancy measure while scaling to larger state and action spaces. Readers that are not

familiar with Generative Adversarial Networks (GAN) can refer to section 2.5 that offers deeper

details on the subject.

Let 𝜋𝐸 and 𝜋𝜃 be respectively the expert policy and the model’s policy. The aim of GAIL is to

minimise the JS divergence between their occupancy measures. The process is similar to a GAN

which generator has to learn a policy given the occupancy measure of 𝜋𝐸 . The used loss will have

the same form as a GAN’s:

max

𝜃
min

𝜔
𝔼𝜋𝜃 [log(𝐷𝜔 (𝑠, 𝑎))] + 𝔼𝜋𝐸 [log(1 − 𝐷𝜔 (𝑠, 𝑎))]

43

Where 𝜃 are the weights of the generator and 𝜔 the weights of the discriminator 𝐷𝜔 .

In RL, the goal is to find the optimal policy that obtains maximum return. This can be expressed

as:

𝑅𝐿(𝑟) = arg max

𝜋

𝔼𝜋 [𝑟 (𝑠, 𝑎)]

We can also maximise the policy’s entropy along with the return:

𝑅𝐿(𝑟) = arg max

𝜋

𝐻 (𝜋) + 𝔼𝜋 [𝑟 (𝑠, 𝑎)]

Where 𝐻 (𝜋) = 𝔼𝜋 [− log𝜋 (𝑎 |𝑠)]. Instead of maximising a reward, the authors prefer to minimise

a cost, in order to better comply to the original GAN formulation.

𝑅𝐿(𝑐) = arg min

𝜋∈Π
−𝐻 (𝜋) + 𝔼𝜋 [𝑐 (𝑠, 𝑎)] (2.14)

In the IRL setting, the aim is to learn the cost function 𝑐 that assigns a low cost to the expert

policy and high cost to all the others.

𝐼𝑅𝐿(𝜋𝐸) = arg max

𝑐

(
min

𝜋
−𝐻 (𝜋) + 𝔼𝜋 [𝑐 (𝑠, 𝑎)]

)
− 𝔼𝜋𝐸 [𝑐 (𝑠, 𝑎)]

The authors proved that this objective is equivalent to a GAN objective that minimises the JS

divergence between the learner and expert occupancy measures:

max

𝜃
min

𝜔
𝔼𝜋𝜃 [log(𝐷𝜔 (𝑠, 𝑎))] + 𝔼𝜋𝐸 [log(1 − 𝐷𝜔 (𝑠, 𝑎))] − 𝜆𝐻 (𝜋)

The role of the generator is to learn the expert policy while the discriminator has to classify

whether the proposed trajectories are drawn from the expert or the learner. The generator is

trained using the same procedure as a classic RL problem. In the article, the authors use Trust

Region Policy Optimisation [Sch+15] while the discriminator is a simple feedforward neural net-

work.

With this method we do not need to know the environment dynamics but it is not IRL. The only

output is a policy that is close to the expert but the trained discriminator does not correspond to

a reward function. Therefore GAIL is considered as an Imitation Learning algorithm rather than

IRL.

2.3.4 Guided Cost Learning

Guided Cost Learning (GCL) [FLA16] uses an adversarial approach as in GAIL but this time, it

serves the purpose of learning a proper reward function and therefore is considered as an IRL

approach.

As for MaxEntIRL, we suppose that the expert draws its trajectories from the following distribu-

tion:

𝑝 (𝜏) = 1

𝑍
exp(−𝑐𝜃 (𝜏))

44

However 𝑍 is hard to compute. MaxEntIRL, computes 𝑍 exactly using Dynamic Programming

but this is only doable if the environment is at a low scale. In GCL, 𝑍 is estimated using samples,

as the environment dynamics are unknown. We recall that the objective is maximise the log

likelihood of 𝑝 (𝜏) and using importance sampling, the authors deduce the following objective for

the cost 𝑐𝜃 :

L = max

𝜃

∏
𝐷

𝑝 (𝜏 |𝑐𝜃)

= max

𝜃

∏
1

𝑍
exp(−𝑐𝜃 (𝜏))

= max

𝜃

∑︁
𝐷

log(1

𝑍
exp(−𝑐𝜃 (𝜏)))

= max

𝜃

∑︁
𝐷

− log𝑍 − log 𝑐𝜃 (𝜏)

= min

𝜃

∑︁
𝐷

log 𝑐𝜃 (𝜏) + log𝑍

≈ min

𝜃

1

𝑁

∑︁
𝐷

log 𝑐𝜃 (𝜏) + log𝑍

= min

𝜃

1

𝑁

∑︁
𝐷

log 𝑐𝜃 (𝜏) + log

∑︁
exp(−𝑐𝜃 (𝜏))

= min

𝜃

1

𝑁

∑︁
𝐷

log 𝑐𝜃 (𝜏) + log

∑︁ 𝑞(𝜏) exp(−𝑐𝜃 (𝜏))
𝑞(𝜏)

= min

𝜃

1

𝑁

∑︁
𝐷

log 𝑐𝜃 (𝜏) + log𝔼

[
exp(−𝑐𝜃 (𝜏))

𝑞(𝜏)

]
≈ min

𝜃

1

𝑁

∑︁
𝐷

log 𝑐𝜃 (𝜏) + log

1

𝑀

∑︁
exp(−𝑐𝜃 (𝜏))

𝑞(𝜏)

(2.15)

The authors used importance sampling to introduce an auxiliary distribution 𝑞(𝜏). It is basically a
policy that can output trajectories and calculate the probability of any trajectory given that policy.

This policy can be trained using the KL divergence: 𝐾𝐿(𝑞(𝜏) | | 1
𝑍

exp(−𝑐𝜃 (𝜏))). The GCL process

is iterative as the model alternates between updating 𝑐𝜃 and a policy optimisation procedure that

improves 𝑞(𝜏).

2.3.5 GAN-GCL

In [Fin+16], the authors of GCL draw a deep connection between IRL and Generative Adversarial

Models. Here they really use a GAN’s discriminator loss. Given 𝑝 (𝜏) the real distribution and𝑞(𝜏)
the density output by the generator/model/policy, the optimal discriminator𝐷∗ has the following
form:

45

𝐷∗(𝜏) = 𝑝 (𝜏)
𝑝 (𝜏) + 𝑞(𝜏)

≈ 𝑝𝜃 (𝜏)
𝑝𝜃 (𝜏) + 𝑞(𝜏)

≈
1

𝑍
exp(−𝑐𝜃 (𝜏))

1

𝑍
exp(−𝑐𝜃 (𝜏)) + 𝑞(𝜏)

(2.16)

We recall the loss of a discriminator:

L(𝐷𝜃) = 𝔼𝑥∼𝑝 [− log(𝐷𝜃 (𝑥)] + 𝔼𝑥∼𝐺 [− log(1 − 𝐷𝜃 (𝑥))]

where 𝐺 is the generator of the GAN model.

It can then be adapted to the IRL case:

L(𝜃) = 𝔼𝜏∼𝑝 [− log(𝐷𝜃 (𝜏)] + 𝔼𝜏∼𝑞 [− log(1 − 𝐷𝜃 (𝜏))]

= 𝔼𝜏∼𝑝

[
− log

1

𝑍
exp(−𝑐𝜃 (𝜏))

1

𝑍
exp(−𝑐𝜃 (𝜏)) + 𝑞(𝜏)

]
+ 𝔼𝜏∼𝑞

[
− log

𝑞(𝜏)
1

𝑍
exp(−𝑐𝜃 (𝜏)) + 𝑞(𝜏)

]
(2.17)

By using an energy function in the discriminator, this energy function now works as a learned

reward function, which was not the case in GAIL. Furthermore, one can notice that the auxiliary

distribution 𝑞(𝜏) obtained from the current policy plays the role of a generator.

2.3.6 Robust RewardswithAdversarial Inverse Reinforcement Learning (AIRL)

The authors of AIRL [FLL18] improved onGCL by first noticing that rewards learnt using GCL are

not accurate when the dynamics of the model change. Indeed, as IRL is ill defined, most of IRL

algorithms find it challenging to distinguish between true reward functions and those formed

by the environment dynamics. To illustrate this issue we can take the example of situations

where an algorithm has to learn a reward function to drive a car in wet or dry roads. These

two situations happen in the same environment but with different dynamics. The set of optimal

reward functions for dry roads is different from the one for wet roads. However, these two sets

should overlap, i.e. there should exist reward functions that work for both dynamics of the same

environment. These are considered as the true reward functions. The reward functions that are

only valid for one of the situations are considered as being formed by the environment dynamics

and have to discarded.

The aim of AIRL is to learn rewards that are invariant to change in dynamics, which they call

disentangled rewards.

Based on the work of [NR00], they show that existing methods cannot learn robust reward func-

tions. [NR00] describes a class of reward functions that preserve optimal policies. Indeed, apply-

ing the following transformation:

𝑟 (𝑠, 𝑎, 𝑠′) = 𝑟 (𝑠, 𝑎, 𝑠′) + 𝛾𝜙 (𝑠′) − 𝜙 (𝑠)

46

the optimal policy remains the same for any function 𝜙 : S ↦→ ℝ. Moreover, without any prior

knowledge on the dynamics, it is the only class of transformations that allow policy invariance.

As IRLmethods only find rewards from expert demonstrations, they cannot discriminate between

reward functions inside this class of transformations; unless the class itself is constrained.

Using this observation, they propose to adapt the form of GCL discriminator:

𝐷𝜃,𝜙 (𝑠, 𝑎, 𝑠′) =
exp(𝑓𝜃,𝜙 (𝑠, 𝑎, 𝑠′))

exp(𝑓𝜃,𝜙 (𝑠, 𝑎, 𝑠′) + 𝜋 (𝑎 |𝑠)

𝑓𝜃,𝜙 (𝑠, 𝑎, 𝑠′) = 𝑔𝜃 (𝑠, 𝑎) + 𝛾ℎ𝜙 (𝑠′) − ℎ𝜙 (𝑠)
Where 𝑔𝜃 is a reward estimator and ℎ𝜙 a shaping term.

The central idea of this approach is that in order to erase undesired reward shaping, the reward

function has to only be a function of the current state.

2.3.7 Wasserstein Adverse Imitation Learning (WAIL)

Previous approaches try to match occupancy measures 𝜌𝐸 := 𝜌𝜋𝐸 by minimising the JS divergence

between them. A natural follow up described in [Xia+19] is to try to optimise a proper distance

between both distributions. [Xia+19] propose to minimise the Wasserstein distance instead. Let

R the space of possible reward functions, the IRL loss 2.14 can be reformulated as follows:

arg min

𝜋∈Π
−𝐻 (𝜋) +

∑︁
𝑟∈R

𝔼𝜋𝐸 [𝑟 (𝑠, 𝑎)] − 𝔼𝜋 [𝑟 (𝑠, 𝑎)] (2.18)

The authors observe that the latter part of equation 2.14 can be interpreted as an Integral Proba-

bility Metric (IPM) between induced occupancy measures 𝜌𝐸 and 𝜌𝜋 :

𝜙R (𝜌𝐸, 𝜌𝜋) = sup

𝑟∈R
|⟨𝑟, 𝜌𝐸⟩ − ⟨𝑟, 𝜌𝜋 ⟩| = sup

𝑟∈R
⟨𝑟, 𝜌𝐸⟩ − ⟨𝑟, 𝜌𝜋 ⟩

This formulation leads to the following loss:

arg min

𝜋∈Π
−𝐻 (𝜋) +𝑊 𝑑

1
(𝜌𝜋 , 𝜌𝐸)

Where𝑊 𝑑
1
is the 1-Wasserstein distance with respect to the ground cost function𝑑 . They then use

a GANmodel to optimise this loss taking advantage from the dual formulation of theWasserstein

distance.

2.4 Meta-Learning

In the introduction we emphasised the importance of generalisation and how to learn solving

new tasks using knowledge from experience with a different task. In this section we will dive

47

Name Dataset Task

Single-task learning 𝐷train ⊂ 𝐷test ⊂ 𝐷 𝑇 = 𝑇train = 𝑇test
Transfer learning 𝐷1 >> 𝐷2 𝑇1 ≠ 𝑇2

Multi-task learning 𝐷train ⊂ 𝐷test ⊂ 𝐷 𝑇1 ≠ 𝑇2

Domain adaptation 𝐷1 ≠ 𝐷2 𝑇1 = 𝑇2

Meta-learning 𝐷1, . . . , 𝐷𝑁−1 >> 𝐷𝑁 𝑇1, . . . ,𝑇𝑛−1 ≠ 𝑇𝑁

Table 2.2: Different learning setups.

deeper in Meta-Learning, offer a proper definition, expose its different approaches and detail its

adaptation to RL and IRL.

Table 2.2 presents the different existing approaches that try to generalise the knowledge extracted

from the training datasets. In single task learning, the training and test datasets are both drawn

from the same distribution. In transfer learning, models are trained on a certain dataset then the

knowledge gathered from these datasets is used to speed up training on a different task using a

smaller dataset.

In Multi-task Learning, a unique model is trained in the same time on two tasks that have a

link between them. This way, the learning process benefits from the simultaneous training of an

auxiliary task. This is different from transfer learning where tasks are supposed to be learnt in a

sequential manner. For instance, many actor-critic algorithms actually use two heads (policy and

value). Performing those two tasks in the same task can be seen as multi-task learning.

In Domain adaptation, a different dataset is used to perform the same task. For instance given the

knowledge a model can extract from a horse picture, can the same model recognise a horse from

a text description ? Domain adaptation is necessary when there is a change in data distribution

between the training and test datasets. It is called the domain shift. Domain shift is a usual issue

in computer vision in tasks where objects have to be identified under different lighting setups or

angles.

Finally, in Meta-Learning, both the datasets and the tasks are different, although keeping a cer-

tain similarity
3
. In this context, a series of datasets and trainings is generalised to learn a new

"similar" task quickly. While transfer learning aims to transfer knowledge from a unique task,

meta-learning aims to generalise knowledge from a series of previous trainings. One can say

that meta-learning generalises transfer learning by learning initial parameters from several tasks

instead of a unique one.

One of the objectives of Meta-Learning is to leverage knowledge from well known datasets to

perform effective training on a new dataset (target dataset) that only contains a few samples.

Essentially, the goal is to mimic a human that only needs to see an object once to be able to easily

recognise it in other contexts. However, it is important to discuss the size of the target dataset:

• Zero-shot Learning: In this context, we know that a certain class exists but there is no

sample available. This could seem impossible to learn something that does not exist; how

to classify something we have never seen? We recall here the previous horse example.

3
The term "similarity" is loosely defined and its definition remains proper to each particular approach

48

The horse description can be seen as task a, and given the description it might be easy to

recognise a horse picture (task b). In this context, we have applied knowledge from previous

tasks to solve a new one. In a sens, zero-shot learning is a kind of transfer learning.

• K-shot learning: In the one-shot or k-shot case, there exists at least one labelled sample

of the target class. An example of a one shot task is facial recognition for security access.

The goal is to add an employee picture to a database and recognise him every time with

this unique sample. To do so, an easy solution is to use a pre-trained model that creates an

embedding of all photos in the database. Each time the system evaluates the picture of an

employee, it takes a photography and compares its embedding with the existing ones.

Now that we discussed the zero and k-shot scenarios, we can discuss the different existing ap-

proaches of Meta-Learning. While certain methods aim to find a mapping between their available

knowledge on a given domain for a certain task and the domain of a new task (metric based ap-

proaches); others consist in optimisation methods designed specifically for meta-learning.

2.4.1 Metric-based Meta-Learning

Using again the horse example, the word “horse" can be transformed into a vectorℎ𝑎 using a CNN

to create an embedding ℎ𝑏 of the horse picture. A mapping function between the spaces of ℎ𝑎
and ℎ𝑏 is then used to transform ℎ𝑏 into ℎ

∗
𝑎 . Finally a similarity measure like cosine similarity can

be used to find the closest vector from ℎ∗𝑎 and deduce that they belong to the same class. We will

not detail further this approach as we used the same general idea in chapter 6, where we offer

greater details.

Figure 2.9: Given two spaces 𝑎 and 𝑏, metric based approaches create mappings that maximise

the similarity between embeddings ℎ
(𝑖)
𝑎 and ℎ

(𝑗)
𝑏

of instances in 𝑎 and 𝑏. Source: https://www.

youtube.com/watch?v=dYmJd_fJLW0&list=PLoROMvodv4rMIJ-TvblAIkw28Wxi27B36.

Formalised more classically, metric-based approaches try to determine 𝑃𝜃 (𝑦 |𝑥) where 𝑦 is a one

hot encoding of the horse class and 𝑥 the word embedding. In the zero-shot context, we add 𝑇 ,

the horse image and we try to estimate 𝑃𝜃 (𝑦 |𝑥,𝑇).

2.4.2 Optimisation based Meta-learning

Let {𝑇𝑖} for 𝑖 ∈ [1, 𝑁] a set of base learning tasks. Each of these tasks 𝑇𝑖 consists in a dataset 𝐷𝑖
and an objective, the loss L𝑖 . We can therefore denote𝑇𝑖 = {𝐷𝑖,L𝑖}. Each dataset 𝐷𝑖 consists in a

49

https://www.youtube.com/watch?v=dYmJd_fJLW0&list=PLoROMvodv4rMIJ-TvblAIkw28Wxi27B36
https://www.youtube.com/watch?v=dYmJd_fJLW0&list=PLoROMvodv4rMIJ-TvblAIkw28Wxi27B36

pair of inputs and labels 𝐷𝑖 = {(𝑥𝑖, 𝑦 𝑗)} ans is split into 𝐷 train

𝑖 and 𝐷 test

𝑖 . For each training dataset,

a model
ˆ𝑓𝜃𝑖 is learnt using L𝑖 .

The aim of optimisation based meta-learning is to learn parameters 𝜔 of a certain model using a

set of tasks {𝑇𝑖}, such that, given a target task 𝑇 , for which we only dispose of a few samples, 𝜔

will constitute ideal initial parameters so the learning of task 𝑇 will be quick and effective; and

the few number of available samples will be enough, as illustrated in figure 2.10. The training

process can be seen as maximising the loss function sensitivity for the new tasks. If sensitivity

is high, a small change in the parameter space can induce a great performance enhancement for

the target task.

Figure 2.10: Optimisation based Meta-Learning. The model optimises for 𝜃 parameters that find a

compromise between different tasks in order to optimise and adapt quickly to new tasks. Source:

https://bair.berkeley.edu/blog/2017/07/18/learning-to-learn/.

To explain the process we will focus on the model used in [FAL17] and named Model Agnostic

Meta-Learning (MAML).

MAML uses a two-level optimisation problem. In the inner loop, a base learner performs task

specific updates to 𝜃 for the different observations in the training set. In the outer loop, the

meta learner optimises the parameters 𝜔 on a series of base tasks where the loss of each task is

evaluated on the test set of the base task 𝐷 test

𝑖 . To summarise, the inner loop optimises 𝜃 and the

outer loop optimised 𝜔 :

𝜔∗ = arg min

𝜔

Lmeta︸ ︷︷ ︸
outer loop

(arg min

𝜃𝑖

Lbase(𝜃𝑖, 𝐷 train

𝑖)︸ ︷︷ ︸
inner loop

, 𝐷 test

𝑖)

The meta loss optimises a meta-objective that can be the accuracy, speed or any other goal on the

set of base tasks and datasets. The result of the meta-optimisation is the set of optimal parameters

𝑤∗. However, in reality there is no optimal parameters 𝜔 . 𝜔 actually corresponds to optimal

parameters 𝜃0 as illustrated in figure 2.10. The formula can therefore be written:

𝜃 ∗
0
= arg min

𝜃0

Lmeta︸ ︷︷ ︸
outer loop

(arg min

𝜃𝑖

Lbase(𝜃𝑖, 𝐷 train

𝑖)︸ ︷︷ ︸
inner loop

, 𝐷 test

𝑖)

50

https://bair.berkeley.edu/blog/2017/07/18/learning-to-learn/

An important notice is that the tasks used in the outer loop have to be different from those used

in the inner loop. Therefore, we obtain a first series of 𝜃𝑖 parameters learnt on a first series of

tasks, then the same 𝜃𝑖 are used to evaluate the loss on a different set of tasks. This process is

considered as a second order gradient:

𝜃 ←− 𝜃 − 𝛽∇𝜃L(𝜃 ′)

𝜃 ←− 𝜃 − 𝛽∇𝜃L(𝜃 − 𝛼∇𝜃L(𝜃))

We detail the process along with the outer and inner loop below.

1. Initialise a distribution over tasks 𝑝 (𝑇) and model weights 𝜃 with random values

Outer loop

2. Sample batch of tasks from 𝑝 (𝑇) i.e. (𝑇1,𝑇2, . . . ,𝑇𝑖, . . . ,𝑇𝑛) ∼ 𝑝 (𝑇)

Inner loop

(a) For each task 𝑇𝑖 , sample 𝑘 data points and train the model 𝑓𝜃

(b) Minimise loss using gradient descent- and find optimal parameters 𝜃 ′𝑖

3. For a new set of tasks, train the model 𝑓𝜃 ′
𝑖

4. Minimise loss and update model parameters 𝜃

One of the limits of MAML is that successive backpropagations are computationally costly due to

the second order gradient. Moreover, given the high number of backpropagations steps, MAML

can suffer from vanishing or exploding gradients.

While proposing a brilliant solution involving Pearmutter method to handle the computational

cost of second order derivatives, the authors also propose First Order MAML which simply ig-

nores the term 𝛼∇𝜃L(𝜃)

2.4.3 Optimisation-based Meta RL

Given the the two level optimisation framework used in MAML, the main question in the RL

framework is how to optimise the inner loop. In a model free approach, we already defined the

two main approaches that are either policy based (policy gradients) or value based (Q-learning):

• Policy gradients: these methods tend to be on-policy (the policy used to take actions is the

same used to explore) and therefore are data inefficient. Moreover, they do not allow to

keep much information, especially in a sparse reward context. Indeed, the policy gradient

objective is:

[
∑︁
𝑡

∇𝜃 log𝜋𝜃 (𝑎𝑡 |𝑠𝑡)] [
∑︁

𝑟𝑡]

51

Supposing that the agent ends an episode without reaching its goal, the received reward

can be 0, and the whole objective is null, which means that nothing can be learnt from that

episode.

• Q-learning: The Q-learning update is:

�̂� (𝑠, 𝑎) − (𝑟 + 𝛾 max

𝑎′
𝑄 (𝑠′, 𝑎′))

We notice that the update compares two states with each others and does not give any

information on the global task itself. A single gradient update will not be informative about

the global task but will only contain local information at a single time step level. Several

time steps will be required to effectively backpropagate the information. It is therefore hard

to use Q-learning in the inner loop. However, Q-learning is off-policy and therefore data

efficient.

In [FAL17], the authors propose to adapt MAML to the RL context. They chose to use policy

gradients both in the inner and the outer loop. The process is as follows:

1. Sample task 𝑇𝑖

2. Collect 𝐷 train

𝑖 by generating trajectories using 𝜋𝜃 .

3. Compute adapted parameters 𝜃 ′𝑖 using the policy gradients objective for task 𝑇𝑖

4. Collect 𝐷 test

𝑖 by generating trajectories using 𝜋𝜃 ′
𝑖
.

5. Update 𝜃 using the trajectories 𝐷 test

𝑖 generated on all tasks 𝑇𝑖

2.4.4 Meta-IRL

MAML Adaptation to Meta-IRL

In [Xu+19], the authors adapt MAML to the IRL setting. The idea is the same; the model learns

commonweights for several tasks reward function, and from there the weights are adjusted using

a few demonstrations on the target task. These common weights are the prior to learn. This

approach is effective as in IRL the space of good reward functions for a given task is a lot smaller

than of all possible rewards defined on raw observations.

During meta-training, there are several tasks {𝑇𝑖}, for which we dispose of expert demonstrations

𝐷𝑇 = {𝜏1, . . . , 𝜏𝑘} from an expert policy. After meta-training, the algorithm has to solve a new task

and learn the parameters of its reward function 𝑟𝜙 (𝑠𝑡 , 𝑎𝑡) from a small number of demonstrations.

Let 𝜃 be the common weights to learn before target task adjustment, the authors first define a

loss L𝑇 (𝜃) on the reward function 𝑟𝜃 . To do so, they use the MaxEntIRL loss:

LT (𝜃) =
[
𝔼𝜏 [𝜇𝜏] − 𝜇DT

]
with 𝜇𝜏 the state visitations under 𝑟𝜃 and 𝜇𝐷 the mean state visitations under demonstrated tra-

jectories.

52

Once the 𝜃 parameters are fixed, we still have to find the new parameters 𝜙𝜏 for the new task:

𝜙𝜏 = 𝜃 − 𝛼∇𝜃Ltrain

𝑇 (𝜃)

The aim is to find 𝜃 such that Ltest

𝑇
(𝜙𝑇) is quickly minimised.

min

𝜃

𝑁∑︁
𝑖=1

Ltest

T (𝜙T𝑖) =
𝑁∑︁
𝑖=1

Ltest

T (𝜃 − 𝛼∇𝜃L
tr

T𝑖 (𝜃))

This approach bears several limitations. Indeed, it is based onMaxEntIRL and therefore it requires

to know the dynamics of all used environments. Moreover, Ltest

𝑇
(𝜙𝑇𝑖) is also a difference between

state visitations. It is evaluated using 𝜙 instead of 𝜃 and a new set of demonstrations. Therefore

the whole MaxentIRL process has to be done again at this step. Finally, this approach is on-policy,

which is highly non efficient.

Meta-IRL with Probabilistic Context Variables

In order to improve on [Xu+19] and not having to know the environments dynamics, the authors

of [Yu+19] will use AIRL [FLL18]. AIRL uses a GAN approach: a discriminator 𝐷𝜃 (binary classi-

fier) parameterised by 𝜃 and an adaptive sampler 𝜋𝜔 (a policy). The discriminator takes a specific

form:

𝐷𝜃 (𝑠, 𝑎) =
exp(𝑓𝜃 (𝑠, 𝑎))

(exp(𝑓𝜃 (𝑠, 𝑎)) + 𝜋𝜔 (𝑎 |𝑠))

where 𝑓𝜃 (𝑠, 𝑎) is a learnt reward function. The discriminator is trained to classify trajectories

sampled by the expert or by 𝜋𝜔 . On the other hand, 𝜋𝜔 is trained to maximise:

𝔼𝜌𝜋𝜔 [log𝐷𝜃 (𝑠, 𝑎) − log(1 − 𝐷𝜃 (𝑠, 𝑎))]

In the meta-IRL context, the aim is to learn an inference model 𝑞(𝑚 |𝜏) and a reward function

𝑓 (𝑠, 𝑎,𝑚) where𝑚 is a context variable defining the task at hand. Let 𝑝 (𝑚) the prior distribution
of the context variable. First, the authors parameterise the inference model of the context variable

𝑞𝜙 (𝑚 |𝜏) and the reward function 𝑓𝜃 (𝑠, 𝑎,𝑚) (where𝑚 is obtained using by 𝑞𝜙). The distribution

of the induced trajectories is therefore:

𝑝𝜃 (𝜏 |𝑚) =
1

𝑍 (𝜃)

[
𝜁 (𝑠1)

𝑇∏
𝑡=1

𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡)
]

exp

(
𝑇∑︁
𝑡=1

𝑓𝜃 (𝑠𝑡 , 𝑎𝑡 ,𝑚)
)

We could apply AIRL directly, by conditioning all the terms in the discriminator by 𝑚, but in

practice the discriminator can easily ignore the conditioning. It is therefore mandatory to enforce

a relation between𝑚 and the sampled trajectories. To do so, the authors use mutual information.

The mutual information between two random variables𝑚 and 𝜏 with 𝑝𝜃 (𝑚,𝜏) = 𝑝 (𝑚)𝑝𝜃 (𝜏 |𝑚) is:

𝐼𝑝𝜃 (𝑚;𝜏) = 𝔼𝑚∼𝑝 (𝑚),𝜏∼𝑝𝜃 (𝜏 |𝑚) [log𝑝𝜃 (𝑚 |𝜏) − log𝑝 (𝑚)]

53

However, we cannot have access to 𝑝 (𝑚) nor to 𝑝𝜃 (𝑚 |𝜏). They use 𝑞𝜙 (𝑚 |𝜏) as a variational

approximation. Formally, let 𝑝𝜋𝐸 the distribution of expert trajectories, we would like to satisfy

the two following objectives:

min

𝜃
𝔼𝑝 (𝑚)

[
𝐷𝐾𝐿 (𝑝𝜋𝐸 (𝜏 |𝑚) | |𝑝𝜃 (𝜏 |𝑚))

]
min

𝜙
𝔼𝑝𝜃 (𝜏)

[
𝐷𝐾𝐿 (𝑝𝜃 (𝑚 |𝜏) | |𝑞𝜙 (𝑚 |𝜏))

]
The first objective forces the distribution of trajectories induced by 𝜃 to match the empirical

distribution defined by expert demonstrations. The second one aims at making 𝑞𝜙 (𝑚 |𝜏) a better
approximation of 𝑝𝜃 (𝑚 |𝜏). We can consider that the mutual information is the main objective

while the two others can be seen as constraints. Using Lagrange multipliers, the authors get the

following objective:

max

𝜃,𝜙
−𝔼𝑝 (𝑚) [𝐷𝐾𝐿 (𝑝𝜋𝐸 (𝜏 |𝑚) | |𝑝𝜃 (𝜏 |𝑚))] + 𝔼𝑚∼𝑝 (𝑚),𝜏∼𝑝𝜃 (𝜏 |𝑚) [log𝑞𝜙 (𝑚 |𝜏)]

To estimate the first term, it is possible to use the AIRL discriminator loss, and the final loss

function is:

min

𝜔
max

𝜃,𝜙
𝔼𝜏𝐸∼𝑝𝜋𝐸 ,𝑚∼𝑞𝜙 (𝑚 |𝜏𝐸), (𝑠,𝑎)∼𝑝𝜋𝜔 (𝑠,𝑎 |𝑚) log(1 − 𝐷𝜃 (𝑠, 𝑎,𝑚))

+ 𝔼𝜏𝐸∼𝑝𝜋𝐸 ,𝑚∼𝑞𝜙 (𝑚 |𝜏𝐸) log(𝐷𝜃 (𝑠, 𝑎,𝑚)) + 𝔼𝑚∼𝑝 (𝑚),𝜏∼𝑝𝜃 (𝜏 |𝑚) [log𝑞𝜙 (𝑚 |𝜏)]
(2.19)

2.5 Generative Models

Generative models have gained immense prominence in the field of machine learning, finding

applications across diverse domains, including their significant impact on the Inverse Reinforce-

ment Learning (IRL) paradigm. This section aims to provide an in-depth exploration of genera-

tive models, elucidating their nature and delving into various types. These encompass a range

of approaches, spanning from different variants of adversarial models to invertible models and

Normalizing flows.

Generative models fundamentally aim to capture the underlying distribution of a dataset, en-

abling them to generate new instances that resemble the original data. These models prove

invaluable for tasks such as image synthesis, data augmentation, and even IRL, where under-

standing the underlying reward distribution is crucial.

Among the plethora of generative models, adversarial models stand out as a significant category.

Adversarial models, such as Generative Adversarial Networks (GANs), operate on a competitive

basis between a generator and a discriminator. The generator fabricates data instances to deceive

the discriminator, while the discriminator aims to distinguish between genuine and fabricated

instances. Through iterative interactions, GANs achieve a balance that results in the generator

producing increasingly authentic data. In contrast, invertible models focus on capturing a one-

to-one mapping between input and output spaces. Normalizing flows represent a particularly

intriguing subset of invertible models. These models focus on learning a sequence of invertible

54

transformations, or flows, that map a simple initial distribution to a more complex target dis-

tribution. This enables the generation of samples that conform to the desired distribution. The

application of Normalizing flows to IRL, as previously discussed, demonstrates their potential to

learn intricate reward distributions and facilitate effective policy learning.

In summary, this section will delve deeper into the realm of generative models, providing a com-

prehensive understanding of their diverse types and their relevance in the context of Inverse

Reinforcement Learning. From adversarial models fostering competition to invertible models en-

suring information preservation, these models hold immense promise in generating complex data

distributions and enhancing various machine learning tasks, including IRL.

2.5.1 Different Losses for Different Goals

Unconditional density modelling is centered around the task of learning the underlying distri-

bution, denoted as 𝑝∗, from a given dataset 𝐷 = 𝑥1, . . . , 𝑥𝑀 . This dataset consists of samples

considered as realizations of a random variable 𝑋 defined over a space X. The density of 𝑋 at a

point 𝑥 is denoted as 𝑝∗(𝑋 = 𝑥). In the parametric approach to density estimation, a parametric

family of density functions, represented as 𝑝𝜃 = 𝑝𝜃 |𝜃 ∈ Θ, is chosen. Here, 𝜃 represents the ad-

missible parameters associated with the chosen parametric densities. The learning process aims

to determine the optimal parameter 𝜃 ∗ within the set Θ, necessitating a performance measure for

evaluating 𝜃 .

Given that the primary objective is to approximate 𝑝∗, the chosen performance measure, i.e. loss

function, is typically a distancemetric between the parametric density 𝑝𝜃 and the true distribution

𝑝∗. This distance metric, denoted as L(𝑝𝜃 , 𝑝∗), serves as a representation of the dissimilarity

between the estimated and true distributions. This loss function denoted L(𝑝𝜃 , 𝑝∗) guides the
optimization process towards identifying the parameter 𝜃 ∗ that best captures the characteristics
of the underlying distribution 𝑝∗.

There are different approaches to designing the loss L. We will focus on unconditional density

modelling, meaning that the estimator
ˆ𝜃 for 𝜃 ∗ is obtained from unlabelled data. Intuitively, there

are two things we expect from a “good" model:

• The model 𝑝𝜃 assigns high density to samples taken from the true distribution 𝑝∗:

𝑥 ∼ 𝑝∗(𝑥) =⇒ 𝑝𝜃 (𝑥) is "high"

• Samples taken from the model 𝑝𝜃 behave similarly to real samples from 𝑝∗:

𝑥 ∼ 𝑝𝜃 (𝑥) =⇒ 𝑝 ∗ (𝑥) is "high"

.

The specific choice of L(𝑝𝜃 , 𝑝∗) depends on whether the focus is on one of the two distinct objec-
tives, leading to different characteristics for the model 𝑝𝜃 . This distinction serves as a rough cate-

gorisation for various existing models in the field. The first objective, known as “coverage driven,"

emphasises capturing the entire distribution 𝑝∗ effectively. This approach ismore straightforward

55

to handle, requiring only samples drawn from 𝑝∗. Many learning algorithms, including the well-

known maximum likelihood estimation (MLE), align with this objective. In these methods, the

primary aim is to ensure that the estimated distribution 𝑝𝜃 closely matches the observed data

distribution. On the other hand, the second objective, termed “quality driven", prioritises gener-

ating high-quality samples from the estimated distribution 𝑝𝜃 . This objective is more challenging

to design, as it ideally requires access to the true distribution 𝑝∗. A prominent example of this

approach is the Generative Adversarial Network (GAN) [Goo+14], where the generator strives to

produce samples that are indistinguishable from those drawn from 𝑝∗. In quality-driven models,

the emphasis is on producing samples that are coherent, diverse, and of high perceptual quality,

rather than replicating the entire distribution 𝑝∗.

In addition to determining the training objectives and procedures, the choice of a suitable family

of parametric densities is crucial in generativemodeling. Given that data typically resides in high-

dimensional spaces and exhibits complex, non-linear relationships, modeling such data can be

inherently challenging. Consequently, deep learning approaches have demonstrated remarkable

success in this field. 𝑝𝜃 is implemented by a very flexible, over-parameterised and non-convex

function approximator, and
ˆ𝜃 is selected by performing gradient descent on the loss.

2.5.2 Generative Latent Variables

When dealing with highly complex data, such as natural images, generative models must be

capable of capturing intricate and non-linear patterns in the data. To achieve this, the concept

of learning non-linear manifolds becomes important. The underlying idea is to transform simple

distributions in a latent space into complex distributions in the data space, thus enabling the

model to closely match the data distribution. This process involves considering a latent variable

𝑧 and a simple distribution 𝑝 (𝑧) over this latent variable, often chosen as a standard Gaussian

distribution. The transformation from the latent space to the data space is accomplished using

a non-linear function denoted as 𝑓𝜃 (𝑧), where 𝜃 represents the parameters of the function. This

function is usually realised as a deep neural network, given its capacity to capture complex and

non-linear relationships. The deep neural network serves to map the latent variables to the data

space, generating data samples 𝑥 through the function 𝑓𝜃 (𝑧). The result is a complex marginal

distribution 𝑝𝜃 (𝑥), which represents the distribution of generated data samples 𝑥 after integrating

out the latent variables 𝑧.

One remarkable aspect of this approach is that the non-linear manifold 𝑓𝜃 (𝑧) is highly flexible and
has the potential to approximate any function, making it capable of capturing intricate patterns

and relationships in the data. With the availability of sufficient training data or effective regu-

larization techniques to prevent overfitting, it becomes possible to utilize deep neural networks

with a high degree of expressiveness, enabling the model to closely fit the data distribution and

generate realistic samples.

Employing a non-linear function 𝑓𝜃 introduces a challenging problem: the computation of 𝑝𝜃 (𝑥)
becomes intractable. This is due to the fact that the integral involving the non-linear deep neural

network 𝑓𝜃 (·) can no longer be evaluated in a closed-form manner. Several approaches have been

developed to address this challenge, each leading to different classes of generative models. Here

are some of the solutions:

56

• Variational Auto-Encoders (VAE) [KW14]: In VAEs, a tractable lower bound on the like-

lihood is used to circumvent the intractable integral. VAEs combine an encoder that maps

data samples to a latent space with a decoder that generates data samples from the la-

tent space. The training process involves maximizing a lower bound on the log-likelihood,

known as the evidence lower bound (ELBO), which can be optimized efficiently using

gradient-based methods.

• Flow-Based Methods: Another approach is to choose a constrained parametric family for

the transformation function 𝑓𝜃 so that the computation of 𝑝𝜃 (𝑥) becomes feasible. Flow-

based models utilise invertible transformations that can be efficiently evaluated both for-

wards and backwards. These transformations are composed to model complex data distri-

butions through a series of simple, invertible transformations.

• Generative Adversarial Networks (GAN): GANs take a different route by avoiding direct

computation of the density 𝑝𝜃 (𝑥). Instead, they use a discriminator network that learns to

distinguish between real and generated data samples. The generator network then aims

to generate data that is indistinguishable from real data according to the discriminator.

GANs are trained in a two-player adversarial setup, where the generator and discriminator

networks compete to improve their respective performance.

2.5.3 Generative Adversarial Networks

In the context of Generative Adversarial Networks (GANs), introduced by Goodfellow et al.

[2014], the training process involves the use of a quality metric to guide the learning of the

model. This metric takes the form of a classifier, denoted as 𝐷𝜙 , to assess the quality of generated

samples. The GAN framework involves two main components: a generator network 𝐺𝜃 and a

discriminator network 𝐷𝜙 .

• Generator: The generator network takes a latent variable vector 𝑧 sampled from a prior

distribution 𝑝 (𝑧) and maps it to the data space, resulting in the generation of an image

𝑥 = 𝐺𝜃 (𝑧). This process implicitly defines a density 𝑝𝜃 (𝑥) over the data space.

• Discriminator: The discriminator network evaluates the quality of the generated images.

It provides an estimate 𝐷𝜙 (𝑥), where 𝑥 is an image, indicating the probability that 𝑥 is

real (as opposed to being generated). If the discriminator is well-trained, it can accurately

distinguish between real and fake images.

The training of GANs is formulated as a two-player adversarial game. The generator aims to pro-

duce images that are indistinguishable from real ones, while the discriminator aims to distinguish

between real and generated images. This adversarial interaction results in a competition between

the two networks, which leads to the refinement of both the generator and discriminator over the

course of training. The discriminator’s loss, denoted as 𝐽𝐷 , quantifies how well it is performing

in distinguishing real and generated images. The generator’s loss, denoted as 𝐽𝐺 , is based on the

discriminator’s evaluation of the generated samples. The generator’s objective is to minimise this

loss, effectively improving the quality of the generated samples.

In summary, GANs leverage the use of a discriminator network to evaluate the quality of gen-

erated samples, which in turn guides the learning of the generator network. The adversarial

57

process drives the generator to produce samples that are increasingly difficult for the discrimina-

tor to distinguish from real data, ultimately leading to the generation of realistic and high-quality

samples.

Figure 2.11: Illustrative view of the GAN architecture. A latent variable 𝑧 is first sampled from

an user defined simple distribution. The generator transforms 𝑧 into 𝑥 ∼ 𝑝𝜃 . The discriminator

is a standard classifier that has to separate real samples, drawn from the dataset, from those that

are created by the generator.

A GAN can be seen as a zero sum sequential game between two players. By zero-sum, we mean

that the earnings or losses of one of the players are compensated by the earnings/losses of the

other. Therefore the sum of 𝐽𝐺 and 𝐽𝐷 is 0.

The induced situation is called Minimax as the two networks are in constant competition. The

discriminator is trained to maximise classification accuracy for a given generator, i.e. 𝜙 is opti-

mised to reach 𝜙∗ = max𝜙 𝑉 (𝜙, 𝜃); where𝑉 is a loss function to be detailed later. Simultaneously,

the generator is trained to degrade the classification of a given discriminator, i.e. 𝜃 is optimised

to reach 𝜃 ∗ = min𝜃 𝑉 (𝜙, 𝜃). Solving this adversarial problem corresponds to finding 𝜙∗ and 𝜃 ∗

such that:

𝑉 (𝜙∗, 𝜃 ∗) = min

𝜃
max

𝜙
𝑉 (𝜙, 𝜃)

The solution to the minimax problem is called Nash equilibrium. Nash equilibrium is reached

when one of the players does not change its action whatever the opponent response. In a GAN

context, equilibrium is reached when the discriminator cannot distinguish anymore fake samples

from true ones, and will be right half of the time.

The discriminator is a classifier that can be trained as classic classifiers. However, the train-

ing dataset is composed of true data and generator outputs. Therefore the discriminator can be

trained using the cross-entropy loss function:

𝑉𝜃 (𝜙) =
∫
𝑥

[𝑝∗(𝑥) ln𝐷𝜙 (𝑥) + 𝑝𝜃 (𝑥) ln(1 − 𝐷𝜙 (𝑥))]𝑑𝑥

The two components of the loss reflect the two possible class (true or false) that are equally

balanced in the training dataset. The left hand side term is active when the input comes from the

58

true distribution. Ideally, 𝐷𝜙 (𝑥) = 1 when 𝑥 ∼ 𝑝∗. The right hand side term of the loss function

is active when the input 𝑥 ∼ 𝑝𝜃 . Another more explicit formulation of the discriminator loss is:

𝑉𝜃 (𝜙) = −
1

2

𝔼𝑥∼𝑝∗ ln(𝐷 (𝑥)) − 1

2

𝔼𝑧∼𝑝𝑧 (𝑧) ln(1 − 𝐷 (𝐺 (𝑧)))

For any (𝑎, 𝑏) ∈ ℝ2\{0, 0} the function 𝑦 ↦→ 𝛼 ln(𝑦) + 𝑏 ln(1 − 𝑦) achieves its maximum in [0, 1]
at 𝑦 = 𝑎/(𝑎 + 𝑏) so for a fixed 𝜃 , the optimal discriminator 𝐷𝜙∗ (𝜃) is the Bayes classifier:

𝐷𝜙∗ (𝜃) =
𝑝∗(𝑥)

𝑝∗(𝑥) + 𝑝𝜃 (𝑥)

Now assuming that 𝐷𝜙 is trained to optimality for a given 𝜃 , 𝐷𝜙∗ (𝜃) can be plugged in 𝑉 (𝜃, 𝜙):

𝑉 (𝜙∗(𝜃), 𝜃) + ln 4 = 𝐷𝐾𝐿

(
𝑝∗ | |𝑝

∗ + 𝑝𝜃
2

)
+ 𝐷𝐾𝐿

(
𝑝𝜃 | |

𝑝∗ + 𝑝𝜃
2

)
∝ 𝐷 𝐽𝑆 (𝑝∗ | |𝑝𝜃) (2.20)

Assume the regime of infinite data, infinite model capacity, and under the assumption that the

optimal discriminator is reached at each iteration of the generator. In that context, equation 2.20

shows, by convexity of 𝐷𝐾𝐿 with respect to 𝑝𝜃 , that there is a unique global optimum for 𝐺𝜃 , at

the data distribution 𝑝𝜃 = 𝑝
∗
, which can be recovered by gradient descent.

As shown in equation 2.20, the gradient descent allows to the minimum of the loss which is the

Jenson Shannon divergence rather than the Nash equilibrium. This leads to oscillations between

solutions. Moreover, the discriminator tends to be too powerful compared to the generator. As

said above, the GAN approach is not a coverage approach, therefore while producing convincing

samples, the generator fails to capture the full support of the training data, a phenomenon known

as mode collapse.

2.5.4 Wasserstein GAN (WGAN)

Equation 2.20 showed the relation between the GAN loss and the KL divergence. Given two

continuous distributions 𝑃 and 𝑄 , the KL divergence is:

𝐾𝐿(𝑃 | |𝑄) =
∫
𝑥

𝑃 (𝑥) log

𝑃 (𝑥)
𝑄 (𝑥)𝑑𝑥

However, if 𝑄 (𝑥) = 0 at some point 𝑥 where 𝑃 (𝑥) > 0, the KL divergence explodes. There-

fore, if 𝑝𝜃 has a small support, then it is highly unlikely that 𝑝∗ belong in this restricted support.

Therefore, to train the generator, a better measure distance between 𝑝𝜃 and 𝑝
∗
has to be defined.

Indeed, different metrics induce different sets of convergence. For generative models, 𝑑 (𝑝𝜃 , 𝑝∗)
can be treated as a loss function. The choice of the distance function 𝑑 is thus crucial to learn a

good approximation of 𝑝∗. Instead of the KL divergence, WGAN [ACB17] is based on the min-

imisation of the Wasserstein distance between 𝑝𝜃 and 𝑝
∗
.

59

Wasserstein Distance

The optimal transport cost, or Wasserstein distance is a way to measure distance between two

distributions and gives a smaller topology than many other criteria, like the set of f-divergences

associated to GANs. This is particularly true in settings where data are located in low dimensional

manifolds on the space X. Stronger notions of distance like f-divergence will often saturate and

fail at providing useful gradients during training. On the other hand the Wasserstein distance is

well behaved and thus stabilises training.

Tomeasure thematching between two distributions 𝑃 and𝑄 , one can use the class of f-divergences

defined as

𝐷 𝑓 (𝑃 | |𝑄) =
∫

𝑄 (𝑥) 𝑓
(
𝑃 (𝑥)
𝑄 (𝑥)

)
𝑑𝑥

where 𝑓 : (0,∞) −→ ℝ is any convex function satisfying 𝑓 (1) = 0. For any such 𝑓 , 𝐷 𝑓 ≥ 0 and

𝐷 𝑓 = 0 if 𝑃 = 𝑄 . Kulback Leibler and Jensen-Shanon divergences are part of the f-divergence

class. Another class of divergence is induced by the optimal transport problem which one of the

formulations called Kantorovitch or primal formulation is:

𝑊𝑐 (𝑃,𝑄) = inf

𝛾∈𝑃 (𝑋∼𝑃,𝑌∼𝑄)
𝔼(𝑋,𝑌)∼𝛾 [𝑐 (𝑋,𝑌)] (2.21)

where 𝑐 (𝑋,𝑌) : X ×X −→ ℝ+ is any cost measurable function and (𝑋 ∼ 𝑃,𝑌 ∼ 𝑄) is a set of joint
distributions of (𝑋,𝑌) with marginals 𝑃 and 𝑄 .

The Wasserstein distance has the huge advantage of taking into account the geometry of the

underlying supports of 𝑃 and 𝑄 . Indeed, considering the two non overlapping distributions in

figure 2.12:

Figure 2.12: Two distributions with disjoint support.

As the two distribution supports do not overlap, any divergence from the class of f-divergence

will diverge. Even treating the histograms as high dimensional points and using the L2 distance

is not informative. Indeed, the L2 distance will be strictly positive but not informative enough.

60

For instance, the length of vector (1, 0, 1) is
√

2, which is also the length of vectors (1, 0, 0, 1)
and (1, 0, 0, 0, 1). Therefore the L2 norm does not give any information on the gap between the

support of non overlapping distributions. On the other hand, the Wasserstein distance takes that

gap into account.

We will first try to develop an intuition about the Wasserstein distance. A distribution is defined

by the mass it assigns to each point of its support. Consider that we would like to move every

non null mass on 𝑃 in order to modify it into 𝑄 . Moving a mass𝑚 for a distance 𝑑 costs𝑚 × 𝑑 .

Suppose that we want to calculate the Wasserstein distance between the distributions 𝑓 and ℎ

displayed in figure 2.13. Contrary to classically used divergences, the Wasserstein distance takes

into account horizontal translations weighting the transported mass by its distance.

Figure 2.13: 𝑓 , 𝑔 and ℎ are the same distributions but with shifted support. The KL divergence

between them is 0 while the Wasserstein distance takes into account the geometry of the space

they reside on. Therefore 0 <𝑊 (𝑓 , 𝑔) <𝑊 (𝑓 , ℎ).

Figure 2.14: Example of a transport plan.

In figure 2.14, to each point is assigned a mass and the goal is to move the blue masses towards the

red ones. Table 2.3 presents an example of strategy. We notice that the sum of columns and rows

correspond to values outside the matrix. The formula for the Wasserstein distance is therefore:

min{
∑︁
𝑖, 𝑗

𝑎𝑖, 𝑗𝑑 (𝑥𝑖, 𝑦 𝑗) : 𝑎𝑖, 𝑗 ≥ 0,
∑︁
𝑖

𝑎𝑖, 𝑗 = 𝑦 𝑗 ,
∑︁
𝑗

𝑎𝑖, 𝑗 = 𝑥𝑖}

61

𝑥1 𝑥2 𝑥3 𝑥4

0.4 0.1 0.3 0.2

𝑦1 0.3 0.3 0 0 0

𝑦2 0.4 0.1 0.1 0.2 0

𝑦3 0.3 0 0 0.1 0.2

Table 2.3: Example of a transport plan.

where 𝑎𝑖, 𝑗 are the matrix entries. The conditions ensure that the coefficients are always positive,

i.e. not transporting any negative quantity. As the sum of lines or columns give back the original

values, the 𝑎𝑖, 𝑗 correspond to marginals of the distributions. To summarise, the Wasserstein dis-

tance between two distributions is the minimum over all transport plan of the cost; a transport

plan being a joint distribution which marginals are given by 𝑎𝑖, 𝑗 .

This problem is obviously hard to solve but there exist a simple way to calculate the Wasser-

stein distance in practice using quantile functions, i.e the inverse function of a CDF. Given two

distributions 𝑃 and 𝑄 which CDFs are 𝐹 and 𝐺 respectively, we have:

𝑊𝑝 (𝑃,𝑄) =
(∫

1

0

|𝐹−1(𝑥) −𝐺−1(𝑥) |𝑝𝑑𝑥
)1/𝑝

In WGAN, the authors use the Wasserstein distance instead of the JS divergence to train a GAN.

Indeed, as explained earlier, the classic GAN approach being quality driven, the loss function

oscillates but its value is not meaningful as it does not continuously decrease. Taking as example

the two distributions displayed in figure 2.15, the aim is to develop a model that learns to move

𝑝𝜃 towards 0 such that the closer 𝜃 is to 0, the more 𝑑 (𝑝0, 𝑝𝜃) decreases.

This is not possible using several usual distances or divergences:

• Total Variation: For any 𝜃 ≠ 0, let 𝐴 = {(0, 𝑦) : 𝑦 ∈ [0, 1]}. Therefore:

𝛿 (𝑃0, 𝑃𝜃) =
{

1 if 𝜃 ≠ 0

0 if 𝜃 = 0

• KL divergence:

𝐾𝐿(𝑃0 | |𝑃𝜃) = 𝐾𝐿(𝑃𝜃 | |𝑃0) =
{
+∞ if 𝜃 ≠ 0

0 if 𝜃 = 0

• JS divergence: Considering the mixture distributions 𝑀 = 𝑃0/2 + 𝑃𝜃/2 and calculating the

first term of the JS divergence:

𝐾𝐿(𝑃0 | |𝑀) =
∫
(𝑥,𝑦)

𝑃0(𝑥,𝑦) log

𝑃0(𝑥,𝑦)
𝑀 (𝑥,𝑦)𝑑𝑦𝑑𝑥

62

Figure 2.15: Real and fake distributions when 𝜃 = 1.

For any 𝑥,𝑦 where 𝑝0(𝑥,𝑦) ≠ 0, 𝑀 (𝑥,𝑦) = 1

2
𝑃0(𝑥,𝑦). Thus 𝐾𝐿(𝑝0 | |𝑀) = 𝐾𝐿(𝑝𝜃 | |𝑀) = log 2.

Therefore:

𝐽𝑆 (𝑃0, 𝑃𝜃) =
{

log 2 if 𝜃 ≠ 0

0 if 𝜃 = 0

• Wasserstein distance: As the two distributions are just a translation of the same distribu-

tion, the best strategy is to move the mass from (0, 𝑦) to (𝜃,𝑦). Therefore𝑊 (𝑝0, 𝑝𝜃) = |𝜃 |

These examples show that there exist cases for the JS, KL and TV divergences where the gradient

is always null, which is not the case of the Wasserstein distance. While this example is extreme,

according to the authors of WGAN, when the supports are manifolds of small dimension in a

space of bigger dimension, it is often the case that the intersection has null measure, which is

dramatic for the classic GAN approach approximating the JS divergence.

This argument is strengthened by the following theorem (proof can be found in [ACB17]): let 𝑝∗

be a target distribution. Let 𝑧 be a random variable. Let 𝑔𝜃 be a deterministic function such that
𝑝𝜃 = 𝑔𝜃 (𝑧):

1. if 𝑔 is continuous regarding 𝜃 , the same thing goes for𝑊 (𝑝∗, 𝑝𝜃)

2. if 𝑔 behaves sufficiently well4, then 𝑊 (𝑝∗, 𝑝𝜃) is continuous everywhere and differentiable
almost everywhere

3. The two previous properties are false for the class of f-divergences

4
we will not detail what "behaves sufficiently well" means exactly but it is to note that this is always the case for

neural networks with standard non linearities

63

Therefore, only the Wasserstein distance gives continuity and differentiability guarantees that

are essential for a loss function. Moreover, the Wasserstein distance is also the weakest distance

of the group. This means that any distribution converging under the KL, TV or JS divergences,

also converges under the Wasserstein distance.

Computing the Wasserstein Distance

Unfortunately, computing the primal formulation of the Wasserstein distance as stated in equa-

tion 2.21 is intractable. Moreover, in a GAN setting there is no access to the quantile functions

of the target or predicted distributions. However, using Kantorovitch-Rubinstein duality, the au-

thors show that there exists a dual formulation of the Wasserstein loss:

𝑊 (𝑝∗, 𝑝𝜃) = sup

| |𝑓 | |𝐿≤1

𝔼𝑥∼𝑝∗ [𝑓 (𝑥)] − 𝔼𝑥∼𝑝𝜃 [𝑓 (𝑥)]

where the supremum is taken over all 1-Lipschitz functions. This supremum is still intractable

but easier to approximate. Let {𝑓𝑤 }𝑤∈W , where𝑤 are the weights andW is the set of all possible

weights, be the set of K-lipschitz functions. Then:

max

𝑤∈W
𝔼𝑥∼𝑃𝑟 [𝑓𝑤 (𝑥)] − 𝔼𝑥∼𝑃𝜃 [𝑓𝑤 (𝑥)] ≤ sup

| |𝑓 | |𝐿≤𝐾
𝔼𝑥∼𝑃𝑟 [𝑓 (𝑥)] − 𝔼𝑥∼𝑃𝜃 [𝑓 (𝑥)]

= 𝐾 ·𝑊 (𝑃𝑟 , 𝑃𝜃)
(2.22)

In a GAN setting, we would like to train 𝑝𝜃 = 𝑔𝜃 (𝑧) to match 𝑝∗. Intuitively, given a fixed 𝑔𝜃 , it

should be possible to approximate the optimal 𝑓𝑤 for the Wasserstein distance.

∇𝜃𝑊 (𝑃𝑟 , 𝑃𝜃) = ∇𝜃 (𝔼𝑥∼𝑃𝑟 [𝑓𝑤 (𝑥)] − 𝔼𝑧∼𝑍 [𝑓𝑤 (𝑔𝜃 (𝑧))])
= −𝔼𝑧∼𝑍 [∇𝜃 𝑓𝑤 (𝑔𝜃 (𝑧))]

(2.23)

The training process can therefore be split into 3 steps:

1. for a fixed 𝜃 , calculate an approximation of𝑊 (𝑝∗, 𝑝𝜃) by training 𝑓𝑤 until convergence

2. once optimal 𝑓𝑤 is fixed, calculate the gradient on 𝜃

3. update 𝜃 and repeat

This only works if {𝑓𝑤 }𝑤∈W is K-lipschitz. To guarantee that property, the authors simply use

weight clipping. The weights𝑤 are constrained to stay within [−𝑐, 𝑐].

Compared to a classic GAN, while the GAN discriminator outputs a probability of the sample

being fake or not, the output of the discriminator of a WGAN directly outputs a score reflecting

the Wasserstein distance. That is why the authors call 𝑓𝑤 a critic. However 𝑓𝑤 has to be trained

until convergence at each step before updating the generator to have a good approximation of

𝑊 (𝑝∗, 𝑝𝜃). According to the authors, Wasserstein GAN considerably reduces the mode collapse

issue of classic GAN.

64

2.5.5 Normalizing Flows

As explained in section 2.5.2, the evaluation of themarginal distribution 𝑝𝜃 (𝑥) =
∫
𝑧
𝑝 (𝑧)𝑝 (𝑥 |𝑓𝜃 (𝑧))

becomes intractable when using neural networks with non linearities 𝑓𝜃 . While VAE propose to

approximate a lower bound andGANs only implicitly learn 𝑝𝜃 to be able to sample from it without

offering any solution to estimate 𝑝𝜃 (𝑥) for any 𝑥 , flow models are generative models that allow

sampling for the learnt distribution (with impressive results [KD18]) as well as density estimation.

Moreover they are easily trained using MLE.

The principle of Normalizing Flows (NF) is to learn a transformation (flow) from a simple dis-

tribution to another more complex one. To obtain a valid distribution, it is necessary that the

probabilities sum to one, and the transformation has to keep that property, hence the name Nor-

malizing Flows. The aim is to be able to learn a complex distribution without having to choose

in advance the right family of distribution or the right mixture. Once the target distribution is

learnt, it is possible to sample from it (generative model) and to estimate the density or likelihood

of each sample (density model).

Figure 2.16 illustrates the principle of NF. We take as input samples drawn from a simple distribu-

tion (a gaussian for instance) and transform them into data that looks like is drawn from a more

complex distribution. This is done using a transforming function 𝑇 and its inverse 𝑇 −1
.

𝑥 = 𝑇 (𝑢); 𝑢 ∼ 𝑝𝑢 (𝑢)

Where 𝑝𝑢 is the base distribution. The aim of NF is therefore not to learn the target distribution

itself but the transformation 𝑇 and its inverse. The main property of these models is that the

transformation 𝑇 has to be invertible and that 𝑇 and 𝑇 −1
have to be differentiable. These trans-

formations are called diffeomorphisms and require that 𝑢 is in the same dimension as the target

distribution. This way, the density of 𝑥 is well defined and can be obtained using the change of

variable formula.

In this section, we will build more intuition about the change of variable. Consider the transfor-

mation 𝑥 = 𝑇 (𝑢) = 𝑢2
and let𝑢 be uniformly distributed between 0 and 2. Therefore𝑇 −1(𝑥) =

√
𝑥 .

Figure 2.17 shows that the transformation 𝑇 has the capacity to compress samples in regions

where the function is flat and to stretch space as the slope increases. It can be seen as a space dis-

tortion of ℝ𝐷
to transform 𝑝𝑢 (𝑢) into 𝑝𝑥 (𝑥); where 𝐷 is the dimension of the target distribution.

In figure 2.18, the below panel illustrates a uniform distribution in [0, 2] that is transformed

using the square function as shown in the panel above. As the transformation has to preserve

probabilities on all support and on any smaller interval, this means that the shaded areas in the

figure should match.

65

Figure 2.16: Normalizing Flows principle. The complex distribution 𝑝𝑥 (𝑥) is tranformed to a an

easy standard centered Gaussian. The transformation function 𝑥 = 𝑔(𝑧) transfers between the

Gaussian in 𝑧 and the complicated function in 𝑥 .

Figure 2.17: A square transformation applied to 𝑧 samples drawn from an uniform distribution

yields transformed 𝑥 samples. The histograms above and on the right show the distribution of 𝑧

and 𝑥 samples respectively.

66

Figure 2.18: Uniform distribution is transformed using a square function. The shaded areas have

to be equal to preserve probabilities.

67

Therefore:

𝑝𝑢 (𝑢) · |𝑑𝑢 | = 𝑝𝑥 (𝑥) |𝑑𝑥 | (2.24)

Equation 2.24 ensures that no probability is lost during the transformation.

𝑝𝑥 (𝑥) = 𝑝𝑢 (𝑢).|
𝑑𝑥

𝑑𝑢
|−1

= 𝑝𝑢 (𝑢).|
𝜕𝑇 (𝑢)
𝜕𝑢
|−1

where 𝑥 = 𝑇 (𝑢)

= 𝑝𝑢 (𝑢).|𝑇 ′(𝑢) |−1

= 𝑝𝑢 (𝑇 −1(𝑥)) .|𝑇 ′(𝑇 −1(𝑥)) |−1
where 𝑢 = 𝑇 −1(𝑥)

(2.25)

In a multi-dimensional setting, the change of variable formula involves the Jacobian matrix of𝑇 ,

𝐽𝑇 instead of its derivative:

𝑝𝑥 (𝑥) = 𝑝𝑢 (𝑢) |𝑑𝑒𝑡 𝐽𝑇 (𝑢) |−1
where 𝑢 = 𝑇 −1(𝑥)

The same way, 𝑝𝑥 (𝑥) can be expressed in terms of 𝑇 −1
Jacobian matrix:

𝑝𝑥 (𝑥) = 𝑝𝑢 (𝑇 −1(𝑥)) |𝑑𝑒𝑡 𝐽𝑇−1(𝑥) |

The absolute value of the Jacobian determinant quantifies the volume change in a small neigh-

bourhood of 𝑢 after using 𝑇 . Let 𝑑𝑢 and 𝑑𝑥 a small neighbourhood around 𝑢 and 𝑥 respectively.

𝑇 transforms 𝑑𝑢 into 𝑑𝑥 . Therefore |𝑑𝑒𝑡 𝐽𝑇 (𝑢) | ≈ 𝑉𝑜𝑙 (𝑑𝑥)/𝑉𝑜𝑙 (𝑑𝑢). As the probability mass in 𝑑𝑥

should be the same as in 𝑑𝑢, if 𝑑𝑢 is stretched (resp. compressed), then the density around 𝑥 is

lower (resp. higher) than around 𝑢.

An other crucial property of diffeomorphims is that it is possible to compose them. Given two

transformations 𝑇1 and 𝑇2, their composition 𝑇2 ◦𝑇1 is also a diffeomorphism. its inverse and its

jacobian determinant are:

(𝑇2 ◦𝑇1)−1 = 𝑇 −1

1
◦𝑇 −1

2

𝑑𝑒𝑡 𝐽𝑇2◦𝑇1
(𝑢) = 𝑑𝑒𝑡 𝐽𝑇2

(𝑇1(𝑢)) · 𝑑𝑒𝑡 𝐽𝑇1
(𝑢)

It is therefore possible to construct complex transformations by composing several simpler trans-

formations without jeopardising the invertibility and differentiability properties.

Another crucial advantage of NF is that given a parameterised transformation 𝑇𝜃 (that can be a

chain of transformations), the parameters 𝜃 can be learnt using Maximum likelihood Estimation

(MLE). Given data 𝑥𝑖 sampled from the target distribution (typically a dataset of images), the

likelihood of sample 𝑥𝑖 can be easily computed:

𝑝𝑥 (𝑥𝑖) = 𝑝𝑢 (𝑢).|𝑇 ′(𝑢) |−1 = 𝑝𝑢 (𝑇 −1(𝑥𝑖)) .|𝑇 ′(𝑇 −1(𝑥𝑖)) |−1

The likelihood of a batch can be computed using

∏𝑛
𝑖=1
𝑝𝑥 (𝑥𝑖). Finally, the last step is to train the

model using the Negative Log-Likelihood −∑𝑛
𝑖=1

log(𝑝𝑥 (𝑥𝑖)).

68

More specifically, fitting a flowmodel 𝑝𝑥 (𝑥 ;𝜃) to a target 𝑝∗𝑥 (𝑥) can be done through a divergence
minimisation:

L(𝜃) = 𝐷𝐾𝐿
[
𝑝∗𝑥 (𝑥) | |𝑝𝑥 (𝑥 ;𝜃)

]
= −𝔼𝑝∗𝑥 (𝑥) [log𝑝𝑥 (𝑥 ;𝜃)] + const
= −𝔼𝑝∗𝑥 (𝑥)

[
log𝑝𝑢 (𝑇 −1(𝑥 ;𝜃) + log | det 𝐽𝑇−1(𝑥 ;𝜃) |

]
+ const

(2.26)

This is called the Forward KL divergence. The Forward KL is useful in situations where samples

from the target distribution are available but it is impossible to evaluate the target density 𝑝∗𝑥 (𝑥).
The forward KL divergence is equivalent to the MLE process described above. Indeed, given a

set of samples {𝑥𝑛}𝑁𝑛=1
from 𝑝∗𝑥 (𝑥), it is possible to estimate the expected value on 𝑝∗𝑥 using a

Monte-Carlo method:

𝜃 ≈ − 1

𝑁

𝑁∑︁
𝑛=1

log𝑝𝑢 (𝑇 −1(𝑥𝑛;𝜃) + log |𝑑𝑒𝑡 𝐽𝑇−1(𝑥𝑛;𝜃) | + const

Minimising the MC approximation of the KL divergence is equivalent to fit the samples through

MLE.

Fitting a flowmodel requires to calculate𝑇 −1
, the determinant of its jacobian and its density 𝑝𝑢 (𝑢)

and to compute their derivatives. It is interesting to notice that it is possible to learn a flowmodel

using MLE even if we cannot calculate 𝑇 or sample from 𝑝𝑢 (𝑢). However these operations will
be required to sample from the model after training.

In the reinforcement learning setting, there are no samples from the target distribution, which

can be associated to the optimal policy. However, as will be described in the next chapter, there

are settings where given a sample (i.e. an action) it is possible to evaluate its density under the

target distribution (i.e. optimal policy). In such a setup, NF can be helpful as they can be trained

using the Reverse KL divergence.

L(𝜃) = 𝐷𝐾𝐿 [𝑝𝑥 (𝑥 ;𝜃) | |𝑝∗𝑥 (𝑥)]
= 𝔼𝑝𝑥 (𝑥 ;𝜃) [log𝑝𝑥 (𝑥 ;𝜃) − log𝑝∗𝑥 (𝑥)]
= 𝔼𝑝𝑢 (𝑢;𝜃 [log𝑝𝑢 (𝑢;𝜃) − log |𝑑𝑒𝑡 𝐽𝑇 (𝑢;𝜃) | − log𝑝∗𝑥 (𝑇 (𝑢;𝜃))]

(2.27)

To use the reverse KL divergence, it is necessary to be able to sample from the base distribution

𝑝𝑢 (𝑢) and to compute and differentiate 𝑇 as well as the determinant of its jacobian. This means

that it is possible to train a flowmodel using the Reverse KL divergence even if it is not possible to

evaluate the base density or calculate𝑇 −1
. However these operations will be required at inference

time.

In any case, the model has to be invertible and the determinant has to be tractable. Indeed,

computing the jacobian of a differentiable function in 𝐷 dimensions has a cost O(𝐷3), which be-

comes quickly intractable when 𝐷 is high. All the existing approaches rely on the same principle

presented in this section, however they all differ in their approach to allow more tractable and

faster determinant computation. The interested reader is advised to consult the surveys [Pap+21;

KPB21] that summarise the different existing approaches to build flow models.

69

2.5.6 Application of Normalizing Flows to RL

Normalizing Flows have not been much used in the RL context at the time of the writing of the

manuscript (besides the contributions made in this work). Their use has mainly been limited as a

tool for modelling stochastic policies. Indeed, replacing the classic Gaussian distribution with a

more complex distribution has been shown as providing more flexible distributions and complex

behaviours, and therefore more effective models.

Boosting TRPO with Normalizing Flows

For on-policy algorithms, updates with a large step size can lead to collecting bad samples from

which the policy cannot recover. TRPO [Sch+15] have been proposed to avoid this issue by con-

straining the KL divergence between two consecutive policy updates. However, using a Gaussian

policy, the constraint on the KL divergence is too strict which makes it hard to overcome local

optima.

Intuitively, a more expressive policy would be able to represent more complex distributions and

therefore the KL constraint may not be as strict anymore (at least no as much as for Gaussian

policies). In [TA19] the authors show that more expressive distributions obtained using NF can

be combined with on-policy algorithms and boost TRPO performance.

Improving Exploration in Soft-Actor-Critic with Normalizing Flows Policies

In environments with continuous action space, stochastic policies allow for an on-policy explo-

ration and off-policy training. Soft Actor-Critic (SAC) [Haa+18] is an example of such algorithm

that adds an entropy term to the reward. SAC learns policies that maximise both the expected

return and their entropy, which enhances stability, exploration and robustness. With 𝐽 (𝜋) the
performance measure of policy 𝜋 and ℍ the entropy, we have:

𝐽 (𝜋) =
𝑇∑︁
𝑡=0

𝔼𝑠𝑡∼𝑝 [𝑟 (𝑠𝑡 , 𝑎𝑡) + 𝛼ℍ(𝜋 (·|𝑠))]

Most stochastic policies are gaussian distributions that take advantage of the reparameterisation

trick; but their expressiveness is limited. Indeed, the choice of the distribution family to learn

can have significant consequences. For instance, in robotics where actions on joints correspond

to bounded angles, it has been shown that a policy based on a beta distribution converges faster

towards better policies.

In most cases, the optimal distribution to model the optimal policy is not known beforehand.

Therefore, choosing the appropriate distribution to model stochastic policies can be hard without

expert knowledge. In [WSB19], the authors propose to solve that issue by taking advantage of

the flexibility of NF.

Leveraging Exploration in Off-policy Algorithms via Normalizing Flows

Exploration is one the main issues to handle in RL. This problem is even harder in robotic tasks in

high dimensional state-action spaces. Environments that include a large amount of continuous

70

spaces like those that include a combination of leg/arm/posture movements present several local

minima. For instance, it is possible to perform a forward movement in humanoid environments

with a variety of sub-optimal policies. Those policies will systematically fail in environments

specifically designed to destabilise the agent. To succeed in this setting, it is essential that the

exploration strategy helps avoiding to converge too fast towards local optima.

In [Maz+20], the authors enhance SAC exploration policies using NF. Indeed, vanilla SAC is lim-

ited to the policies for which entropy can be computed in closed form. [Maz+20] extends SAC to

a richer set of multimodal exploration policies.

2.6 Monte-Carlo Markov Chain

In chapter 3, we will present an algorithm that learns optimal policies using the Metropolis-

Hastings (MH) algorithm considered as the most popular Monte-Carlo Markov Chain (MCMC)

algorithm. In this section we will present MCMC and MH algorithm. This review is based on the

excellent survey proposed by Andrieu et.al [And+03].

2.6.1 Historical Perspective

In 1946, while recovering from an illness, Stan Ulam devised the concept of using random sam-

pling to approximate complex combinatorial problems, inspired by a game of solitaire. This idea

laid the foundation for modern Monte Carlo simulation. Ulam, along with John Von Neumann,

developed various Monte Carlo algorithms, including importance sampling and rejection sam-

pling, to solve problems in neutron diffusion and mathematical physics.

During the 1930s, Enrico Fermi had already utilized Monte Carlo methods for neutron diffusion

calculations and designed the FERMIAC, a mechanical device for Monte Carlo calculations. In

the 1940s, Nick Metropolis, a physicist, worked on computing machines and was captivated by

Monte Carlo methods. He designed the MANIAC computer and published a seminal document

on Monte Carlo simulation in 1949 with Stan Ulam, introducing Monte Carlo particle methods.

In 1953, Metropolis, along with the Tellers and Rosenbluths, proposed the Metropolis algorithm.

Subsequently, numerous papers on Monte Carlo simulation emerged in the physics literature.

However, it was only in 1970 that Hastings and Peskun generalized the Metropolis algorithm,

leading to the Metropolis-Hastings algorithm. In the 1980s, significant contributions to Markov

Chain Monte Carlo (MCMC) appeared in computer vision and artificial intelligence literature.

2.6.2 Motivation

MCMC methods will mainly be used in this manuscript for Bayesian Inference and Learning.

Given some unknown variables 𝑥 ∈ X, and data 𝑦 ∈ Y, the following typically intractable

integration problems are central to Bayesian statistics.

• Normalisation: To obtain the posterior 𝑝 (𝑥 |𝑦) given the prior 𝑝 (𝑥) and likelihood 𝑝 (𝑦 |𝑥),

71

the normalising factor in Bayes’ theorem needs to be computed:

𝑝 (𝑥 |𝑦) = 𝑝 (𝑦 |𝑥)𝑝 (𝑥)∫
X 𝑝 (𝑦 |𝑥′)𝑝 (𝑥′)𝑑𝑥′

• Marginalisation: Given the joint posterior of (𝑥, 𝑧) ∈ X × Z, we may often be interested

in the marginal posterior:

𝑝 (𝑥 |𝑦) =
∫
Z
𝑝 (𝑥, 𝑧 |𝑦)𝑑𝑧

• Expectation: the objective of the analysis is often to obtain summary statistics of the form

𝔼𝑝 (𝑥 |𝑦) (𝑓 (𝑥)) =
∫
X
𝑓 (𝑥)𝑝 (𝑥 |𝑦)𝑑𝑥

for some function of interest 𝑓 : X −→ ℝ𝑛𝑓
integrable with respect to 𝑝 (𝑥 |𝑦).

2.6.3 MCMC Principle

The "Monte-Carlo" in the name MCMC stems from the same Monte-Carlo principle used in MC

based methods for RL presented in section 2.1.3. The idea is to draw an i.i.d. set of samples

{𝑥 (𝑖)}𝑁𝑖=1
from a target density 𝑝 (𝑥) defined on a high-dimensional spaceX. These 𝑁 samples can

be used to approximate the target density with the following empirical point-mass function

𝑝𝑁 (𝑥) =
1

𝑁

𝑁∑︁
𝑖=1

𝛿𝑥 (𝑖) (𝑥)

where 𝛿𝑥 (𝑖) (𝑥) denotes the delta-Dirac mass located at 𝑥 (𝑖) . Consequently, one can approximate

the integrals 𝐼 (𝑓) with tractable sums 𝐼𝑁 (𝑓) that converge as follows

𝐼𝑛 (𝑓) =
1

𝑁

𝑁∑︁
𝑖=1

𝑓 (𝑥 (𝑖)) 𝑁−→∞−−−−−→ 𝐼 (𝑓) =
∫
X
𝑓 (𝑥)𝑝 (𝑥)𝑑𝑥

The estimate 𝐼𝑁 (𝑓) is unbiased by the strong law of large numbers, it will almost surely converge

to 𝐼 (𝑓). If the variance of 𝑓 (𝑥) satisfies 𝜎2

𝑓
= 𝔼𝑝 (𝑥) (𝑓 2(𝑥)) − 𝐼 2(𝑓) < ∞, then the variance of the

estimator 𝐼𝑁 (𝑓) is equal to Var(𝐼𝑁 (𝑓)) =
𝜎2

𝑓

𝑁
and the central limit theorem yields convergence in

distribution of the error √
𝑁 (𝐼𝑁 (𝑓) − 𝐼 (𝑓))

𝐷−−−−−→
𝑁−→∞ N(0, 𝜎

2

𝑓
)

where 𝐷 denotes convergence in distribution. The advantage of Monte-Carlo integration over

deterministic integration arises from the fact that the former positions the samples in regions of

high probability.

When 𝑝 (𝑥) has standard form e.g. Gaussian, it is straightforward to sample from it using easily

available routines. However, when this is not the case, we need to introduce more sophisticated

techniques based on rejection sampling and MCMC.

72

2.6.4 Rejection Sampling

We can sample from a distribution 𝑝 (𝑥), which is known up to a proportionality constant, by

sampling from another easy-to-sample proposal distribution 𝑞(𝑥) that satisfies 𝑝 (𝑥) ≤ 𝑀𝑞(𝑥),
𝑀 < ∞, using the accept/reject procedure described below:

1. Set 𝑖 = 1

2. Repeat until 𝑖 = 𝑁

(a) Sample 𝑥 (𝑖) ∼ 𝑞(𝑥) and 𝑢 ∼ U[0, 1]

(b) if 𝑢 ≤ 𝑝 (𝑥 (𝑖))
𝑀𝑞(𝑥 (𝑖)) then accept 𝑥 (𝑖) and increment the counter 𝑖 by 1. Otherwise reject.

The accepted 𝑥 (𝑖) can be easily shown to be sampled with probability 𝑝 (𝑥). This simple method

suffers from severe limitations. It is not always possible to bound 𝑝 (𝑥)/𝑞(𝑥) with a reasonable

constant𝑀 over the whole space X. If𝑀 is too large, the acceptance probability

Pr(𝑥 accepted) = Pr

(
𝑢 <

𝑝 (𝑥)
𝑀𝑞(𝑥)

)
=

1

𝑀

will be too small. This makes the method impractical in high-dimensional scenarios.

2.6.5 MCMC Algorithms

MCMC is a strategy for generating samples 𝑥 (𝑖) while exploring the state spaceX using a Markov

chain mechanism. This mechanism is constructed so that the chain spends more time in the most

important regions. In particular, it is constructed so that the samples 𝑥 (𝑖) mimic samples drawn

from the target distribution 𝑝 (𝑥). As defined in section 1, we recall the Markov property

𝑝 (𝑥 (𝑖) |𝑥 (𝑖−1), . . . , 𝑥 (1)) = 𝑇 (𝑥 (𝑖) |𝑥 (𝑖−1))

The chain is homogeneous if𝑇 (𝑥 (𝑖) |𝑥 (𝑖−1)) remains invariant for all 𝑖 . That is, the evolution of the

chain in a space X depends solely on the current state of the chain and a fixed transition matrix.

As an example, consider a Markov chain with three states (𝑠 = 3) and the transition matrix:

𝑇 =

0 1 0

0.9 0.1 0.9

0.6 0.4 0

If the probability vector for the initial state is 𝜇 (𝑥 (1)) = (0.5, 0.2, 0.3), it follows that 𝜇 (𝑥 (1))𝑇 =

(0.2, 0.6, 0.2) and, after several iterations (multiplications by 𝑇), the product 𝜇 (𝑥 (1))𝑇 𝑡 converges
to 𝑝 (𝑥) = (0.2, 0.4, 0.4). No matter what initial distribution 𝜇 (𝑥 (1)) we use, the chain will stabilise

at 𝑝 (𝑥) = (0.2, 0.4, 0.4). This stability result plays a fundamental role in MCMC simulation. From

any starting point, the chain will convergence to the invariant distribution 𝑝 (𝑥), as long as 𝑇 is

a stochastic transition matrix that obeys the following properties:

• irreducibility: For any state of the Markov chain, there is a positive probability of visiting

all other states. That is, the matrix 𝑇 cannot be reduced to separate smaller matrices.

• Aperiodicity: The chain should not get trapped in cycles

73

2.6.6 The Metropolis-Hastings Algorithm

The MH algorithm is the most popular MCMC method. A MH step of invariant distribution 𝑝 (𝑥)
and proposal distribution 𝑞(𝑥∗ |𝑥) involves sampling a candidate value 𝑥∗ given the current value

𝑥 according to 𝑞(𝑥∗ |𝑥). The Markov chain then moves towards 𝑥∗ with acceptance probability

𝐴(𝑥, 𝑥∗) = min{1, [𝑝 (𝑥)𝑞(𝑥∗ |𝑥)]−1𝑝 (𝑥∗)𝑞(𝑥 |𝑥∗)}

otherwise it remains at 𝑥 . A pseudo-code is shown below:

1. Initialise 𝑥 (0)

2. For 𝑖 = 0 to 𝑁 − 1

(a) Sample 𝑢 ∼ U[0, 1]

(b) Sample 𝑥∗ ∼ 𝑞(𝑥∗ |𝑥 (𝑖))

(c) if 𝑢 < 𝐴(𝑥 (𝑖), 𝑥∗) = min

{
1,

𝑝 (𝑥∗)𝑞(𝑥 (𝑖) |𝑥∗)
𝑝 (𝑥 (𝑖))𝑞(𝑥∗ |𝑥 (𝑖))

}
𝑥 (𝑖+1) = 𝑥∗

else

𝑥 (𝑖+1) = 𝑥 (𝑖)

The algorithm can be intuitively interpreted as follows: at each iteration, we attempt to move

in the space of possible states. The move may be accepted or rejected. The acceptance rate 𝐴

indicates how likely the new state is, given the current state, and according to the distribution

𝑝 . If we are trying to move to a state more probable than the current state (if 𝐴 ≥ 1 ≥ 𝑢), the
move is always accepted. However, if we are trying to move to a state less probable than the

current state, then the move may be rejected, and the rejection is more likely the higher the drop

in probability density 𝑝 . Consequently, the walk tends to visit preferentially the regions of the

state space where the density 𝑝 is high, but occasionally visits regions of lower density.

The MH algorithm has the advantage of being very simple, but it requires careful design of the

proposal distribution 𝑞(𝑥∗ |𝑥).

74

Chapter 3

Curiosity Augmented Metropolis for
Exploratory Policies

Reinforcement learning algorithms are typically designed to converge towards a unique optimal pol-
icy for a given reward function. In this chapter, we pose the following question: is it possible to
produce behaviourally-diverse succeeding policies (different behaviour, yet acceptable ‘succeeding’
performance)? We answer in the form of a novel Monte-Carlo Markov Chain method coupled with
Normalizing Flows, which we demonstrate to successfully sample such behaviours.

3.1 Introduction

In a reinforcement learning context, solving a task defined by a given reward function (i.e. base

objective) takes the form of finding an optimal policy dictating the agent’s behaviour in the envi-

ronment. A problem arises when the obtained optimal policy’s behaviour is not the one expected

by the human practitioner (potential mis-alignment between the human objective and the base

objective). How to efficiently capture all possible succeeding behaviours (those which arise from
policies that are acceptably close to optimal by human standards)?

An unexpected behaviour can be illustrated with the cancer example: an algorithm whose base

objective is to minimise the number of cancer deaths and reaches an optimal policy consisting

of killing every human being does not comply with the human objective that consists in curing

cancer.

In RL, it is common to face situations where for the same reward, several optimal policies solve

the task at hand while displaying different behaviours. One classic example where the optimal

policy is not unique is the cartpole problem (figure 3.1). It is a classic control problem where a

pole is attached to a cart, and the goal is to keep the pole upright by moving the cart horizontally.

The agent receives a positive reward for keeping the pole upright. The episode ends if the pole

falls beyond a certain angle or if the cart moves too far from the center. There are multiple ways

to balance the pole. Two different optimal policies can be as follows: (1) the agent can choose to

oscillate the cart left and right quickly to keep the pole balanced, or (2) it could move slowly in

one direction to maintain stability. The mesa-objective is an additional objective that constraints

75

the agent to converge towards a given behaviour (either (1) or (2)). In this work, we consider the

mesa-objective as a regularisation of the reward function.

Figure 3.1: The cartpole environment. A pole is attached to the cart, and the goal is to keep the

pole upright by moving a cart horizontally. The agent receives a positive reward for keeping the

pole upright. The episode ends if the pole falls beyond a certain angle or if the cart moves too

far from the center. Two different optimal policies can be as follows: the agent can choose to

oscillate the cart left and right quickly to keep the pole balanced (left), or it could move slowly in

one direction to maintain stability (right).

While there often exist several succeeding policies (‘close enough to optimal’ according to human

appreciation) each displaying a different behaviour, RL algorithms found in the literature are

designed to only output a single optimal policy. In addition, depending on their design and despite

the reward function being the same, their policies may be different. A detailed example is given in

section 3.2.1. This can be seen as an implicit regularisation proper to the algorithm design. This

regularisation characterises a mesa-objective and drives convergence towards a unique solution

and hence a certain behaviour.

In order to ensure alignment, we can either define the necessary regularisation leading to a sought

behaviour, or find all possible behaviours and corresponding successful policies to choose the

most suitable one. Our approach is the latter.

Making explicit the regularisation that leads to a certain behaviour before trying it is not easy.

Current approaches force the user that wants to impose a certain behaviour to either test differ-

ent algorithms or to use reward shaping in an empirical manner hoping for the sought result. In

this work, instead of trying to make the regularisation explicit, we consider that there exists a

distribution of succeeding policies for a given task and propose a deterministic successful policies

generating process. This process takes the form of a Monte-Carlo Markov Chain that uses the

Metropolis-Hastings algorithm to sample from the distribution of successful policies. As MCMC

algorithms may not be effective when areas of low probability separate regions of high probabil-

ity, we coupled MCMC with Normalizing Flows powered proposals and a curiosity mechanism

ensuring that the output policies adopt diverse behaviours. The result is that our model gener-

ates a series of succeeding policies on the fly ensuring that each output policy solves the tasks

while adopting a different behaviour. We argue that the user can then choose the policy with the

behaviour that suits him the most or can even discover behaviours he did not even thought of.

We test our approach on several classic Gym environments and show that our proposed algorithm

solves each of them fast and effectively outputs succeeding policies on the fly that all present

76

diverse behaviours, i.e. they all solve the task while adopting different strategies. These results

show that using a single base objective (reward function) it is indeed possible to produce many

different succeeding policies, illustrating the outer alignment problem (human vs base objective).

This chapter is organised as follows: in section 3.2, we draw the link between mesa-objective

and risk accounting then we define the concept of Set-policy that will be at the heart of this

chapter and manuscript. In section 3.3 we explain why classic approximate inference cannot be

used to solve our problem and why we are constrained to use MCMC approaches. In section

3.4 we present our approach by first detailing a naive MCMC algorithm to output succeeding

policies and its results (section 3.4.2); then we present a first enhancement to our first proposal

using normalizing flows to boost exploration (section 3.4.3); finally we present our final algorithm

that adds a curiosity mechanism ensuring that the output succeeding policies effectively display

diverse behaviours (section 3.4.3).

3.2 Succeeding Behaviours

As preliminaries, to this section, we must remind ourselves of some concepts from the introduc-

tion chapter 1 and formalise the different objectives involved which are as follows:

• human objective : expresses a goal, or a task to be accomplished, e.g., win a game at chess,

• base objective : is the reward function 𝑟 (𝑠𝑡 , 𝑎𝑡) e.g., reward equals 1 if win, and 0 otherwise,

• return: is a discounted sum of rewards 𝑅(𝜏) = ∑𝑇
𝑡=1
𝛾 𝑡𝑟 (𝑠𝑡 , 𝑎𝑡),

• mesa objective: is an implicitly defined objective involving the learning update and the

loss function L, e.g., MSE, or entropy-regularised return with gradient descent, or Q-table

update.

A succeeding behaviour is a behaviour coming from a policy which solves the human objec-

tive, whereas optimal behaviour is from a policy that maximises the base objective. Note that

a succeeding behaviour is not necessarily optimal according to the base objective (given reward

function). So, winning a game of chess is not necessarily optimal, according to the return.

In this section, we give a more specific example of RL algorithms that converge to different opti-

mal policies, offer an interpretation of the mesa-objective of each policy as an implicitly defined

risk constraint and give a proper definition of the set of optimal policies, that we call set-policy.

3.2.1 Different Algorithms Converge to Different Policies

In the previous section we gave the example of two equivalent strategies that solve the cartpole

problem. In this section we will cite specific algorithms that, when confronted to the same task,

converge towards different policies.

One example of RL algorithms giving different optimal policies for the same task is in the domain

of robotic control, particularly in robotic locomotion. Consider a scenario where a quadrupedal

robot needs to learn to walk. The goal is to learn a walking gait that allows the robot to move

forward efficiently. The robot can control the joint angles and torques of its legs and receives

77

positive rewards for making forward progress. Rewards might also be given for maintaining

stability and avoiding falls. There are various ways a quadrupedal robot can walk, with different

gaits and leg movement patterns. Some algorithms might prioritise fast forward motion, while

others might focus on energy efficiency or stability.

Different reinforcement learning algorithms, such as Deep Deterministic Policy Gradient (DDPG)

[Sil+14], Trust Region Policy Optimization (TRPO) [Sch+15], and Proximal Policy Optimization

(PPO) [Sch+17], may converge to different optimal policies due to variations in exploration-

exploitation strategies, policy parameterisations, and update mechanisms:

• DDPG might discover a dynamic and agile walking gait that allows the robot to move

quickly.

• TRPO might converge to a more cautious and stable gait, prioritising risk aversion and

avoiding falls.

• PPO might find a balance between speed and stability, resulting in a gait that combines

elements of both dynamic and stable walking.

Each algorithm may interpret the task differently, explore different regions of the policy space,

and ultimately converge to different optimal policies for the same walking task. The optimal

policy to which each algorithm converges to depends greatly on their exploration strategy and

the initial state.

Considering RL methods as optimisation algorithms, their objective is to find the policy that

maximises the return. As displayed in figure 3.2, there could exist a set of solutions maximising

the return. As existing algorithms tend to converge towards a unique solution consistently, this

means that there exists an implicitly defined regularisation that restricts the feasible set of each

algorithm such that the optimal solution becomes unique.

3.2.2 Existing Approaches for Finding Diverse Succeeding Behaviours

Various approaches in RL focus on achieving diverse behaviours through skill discovery [Cam+20]

instead of explicitly specifying the regularisation needed to achieve a particular objective while

demonstrating preferred behaviour. Skill discovery involves identifying latent-conditioned poli-

cies that consistently modify the environment’s state. For instance, intelligent creatures can ex-

plore their environments and learn useful skills without supervision. In RL, unsupervised meth-

ods are often aimed at learning generically useful behaviours from interacting within some envi-

ronment, behaviours that may naturally accelerate learning once one or more downstream tasks

become available. The usefulness of a skill can be quantified through the concept of empower-
ment, which quantifies an agent’s ability to discover and execute actions within an environment.

This notion relies on the mutual information concept borrowed from information theory and

plays a central role in this formulation.

Maximisation of mutual information between a latent variable and the state is a popular skill

discovery method. In [Cam+20], it is shown that two views of the mutual information lead to

different algorithms such as Diversity is All You Need (DIAYN) [Eys+19] or Dynamics Aware

Unsupervised Discovery of Skill [Sha+20].

78

Figure 3.2: Landscape of a 3D function with 3 global optima. Depending on the initialisation, and

the exploration strategy, different optimisation algorithms can converge to different optima.

In [Sha+20] the authors propose a model based method that is out of the scope of this manuscript

where we focus on model free RL. DIAYN is a method for learning useful skills without a reward

function. This method learns skills by maximising an information theoretic objective using a

maximum entropy policy. On a variety of simulated robotic tasks, they show that this simple

objective results in the unsupervised emergence of diverse skills, such as walking and jumping.

Their results suggest that unsupervised discovery of skills can serve as an effective pretraining

mechanism for overcoming challenges of exploration and data efficiency in reinforcement learn-

ing. It emphasises that skills are valuable when they influence the states an agent encounters.

Different skills should visit different states. DIAYN promotes exploration by encouraging skills

to be as varied as possible. It achieves this by incentivising skills to act randomly, aiming for high

entropy.

In our specific context, our focus lies in discovering varied successful strategies to achieve specific

and predefined objectives. However, DIAYN primarily aims at acquiring skills that might prove

useful when a task emerges within the environment. SMERL [Fer+20] extends DIAYN into a su-

pervised setting where a task-driven reward is accessible. The key insight of SMERL is that learn-

ing diverse behaviours for accomplishing a task can directly lead to behaviours that generalise

to varying environments. By identifying multiple solutions for the task in a single environment

during training, this approach can generalise to new situations by abandoning solutions that are

no longer effective and adopting those that are. Similar to our approach, the idea of SMERL is to

seek diversity when the return is close to the maximal one, i.e. to look for slightly sub-optimal

but diverse solutions (succeeding policies). However, contrary to our proposal, SMERL starts by

79

learning the optimal SAC policy and then starts diversifying around the optimal solution.

While the diversity of encountered states is an essential part of its objectives, it has been shown in

[Cam+20], that information theoretic skill discovery methods suffer from a common limitation.

They discover options that provide a poor coverage of the state space as shown in figure 3.3.

Moreover, our aim is to find diverse trajectories and strategies towards the same goal rather than

building skills that would be useful in a different environment or for a different objective. This

implies that information theory based approaches cannot serve as a useful baseline. Finally, as we

uniquely interpret behaviours through encountered states diversity, our MCMC based approach

ensures greater coverage of the state space.

Figure 3.3: Skills learned on a maze with bottleneck states. Each coloured line represents a trajec-

tory initiated at the black dot by a different skill. Multiple rollouts per skill are reported in order

to account for the stochasticity of the policy. The left plot depicts states visited by a policy with

random weights, showing which states are reachable by the agent at the beginning of training.

SMERL (right) fails at expanding this set of states, and ends up committing to behaviours discov-

ered by the random policy [Cam+20].

3.2.3 Risk Accounting in Succeeding Policies

As mentioned, succeeding policies (like optimal policies) are not necessarily unique. The same

way, there may be a diversity of succeeding policies.

For example, there may be many policies which succeed at winning a game of chess. A time-

discounted reward imposes that an optimal agent must be the fastest at winning the game, but

from a human point of view, this may be considered overfitting; a succeeding agent that simply

wins the game can be acceptable. In other words, by finding succeeding policies, we are less

susceptible to overfitting (more capacity to generalise/transfer well to other environments), and

more likely to align with human preferences. More details on the link between generalisation,

overfitting and risk are given in the appendix section 3.6.1.

Risk is integral to mesa-objectives. Let us consider with a toy example: an agent is offered to take

€1 (action 1) or take €100with chance 0.01 (action 2). There are infinite optimal policies here (proof

sketch: suppose action 1 with probability 𝜋 (𝑎1); any 𝜋 (𝑎1) ∈ [0, 1] will be optimal) respective of

payoff. However, decision makers often prefer a particular risk setting (mesa-objective). Given

the choice between two optimal behaviours (respective of payoff), an agent may prefer the one

80

of less risk (action 1) even if equivalent, and even if not ‘as’ optimal (i.e., any succeeding policy

of low risk). A more elaborate example, based on the Markowitz model [Mar52] is explained in

the appendix (section 3.6.2). There exists extensive literature on risk quantification [AF22].

In our case (this chapter), we consider that we do not know the mesa-objective profile involving

risk. Rather, we propose a mechanism to efficiently generate all succeeding policies – such that

a hypothetical human practitioner/user could select according to preference.

3.2.4 Set-Policy Definition

The concept of set policy was originally introduced in [PGP17] in the context of imitation learn-

ing; we re-purpose it here for our study on succeeding policy. It is essentially a one-to-many

mapping between states, and actions; defined formally as follows.

Definition 1: Set-policy
A set-policy 𝜋 is an element of the set (P(A)\∅)𝑆 . To each policy 𝜋 , one can associate a set-policy
𝜋 defined as: ∀𝑠 ∈ S, Supp(𝜋 (·|𝑠)) = 𝜋 (𝑠). Let 𝜋1 and 𝜋2 two set policies, 𝜋1 ⊂ 𝜋2 if ∀𝑠 ∈ S,
𝜋1(𝑠) ⊂ 𝜋2(𝑠).

We cannot simply generate a set of succeeding policies (using standard methods like actor-critic).

Rather, we search for a single set policy, such that, we can simply sample an action from the set

policy, as a surrogate for sampling a succeeding policy and then following its deterministic state-

action mapping. Note that since from each state we can take a different action, it means that,

given a set policy as a tool, we can obtain diverse succeeding behaviours.

As shown in figure 3.4, to each state is associated a set of optimal actions denoted 𝜋 (𝑠). Our

goal is to sample an action from this set of optimal actions at each state. This means that we can

perform multiple different actions for each given states, allowing to obtain diverse behaviours at

each run as each chosen action for a given state leads to a different behaviour.

Figure 3.4: Illustration of set-policy. Given a state space S and an action space A, a set policy is

a mapping that associates for each 𝑠 ∈ S, a finite set of actions in A.

81

One can also define the optimal set-policy:

∀𝑠 ∈ S, 𝜋∗𝑟 (𝑠) = arg max

𝑎

[𝑄∗𝑟 (𝑠, 𝑎)]

The optimal set policy states for each state the set of optimal actions that maximise the expected

return. Therefore:

𝑉 𝜋
𝑟 = 𝑉 ∗𝑟 ⇐⇒ 𝜋 ⊂ 𝜋∗𝑟

More details are available in the appendix section 3.6.3.

3.2.5 Reformulating the Objective with Set Policies

Instead of converging towards a unique optimal policy that would be optimal with respect to

a given pair of risk measure and reward function, the aim of this work would be to learn the

optimal set policy itself, i.e. being able to individually sample deterministic optimal policies from

the set of optimal policies. This would allow to observe different policies that solve the same task

while adopting different behaviours, each one optimising the same objective but with a different

unknown risk measure.

One may notice that learning the optimal set policy 𝜋∗ and sampling an action for each state

from the set of actions given by 𝜋∗(𝑠) is equivalent to following an optimal policy while we aim

at learning succeeding behaviours rather than optimal ones. However, the optimal set-policy 𝜋∗

is only optimal considering the given reward function. As we consider that succeeding policies

also optimise an implicitly defined regularisation, the policies we aim for will sometimes diverge

from the optimal set of actions at certain states. The mechanism allowing this is the curiosity

mechanism introduced in section 3.4.3. This mechanism will force our model to sometimes pick

sub-optimal actions for the given reward function. Therefore diversity will be ensured through

two different tools:

• The set policy that allows to take different optimal actions at each run and ensures that the

task is eventually solved.

• The curiosity mechanism that forces the model to take sub-optimal actions for the given

reward function in order to explore new paths that may be optimal for other regularisations

of the reward function.

3.3 Why not Maximum Likelihood for Finding Succeeding Poli-
cies?

As said in the previous section, the objective of this work is to find succeeding policies displaying

diverse behaviours. This means that given a certain initial state and a final goal state, the aim is

to generate a collection of trajectories from the initial to the final state. Considering a maximum

likelihood approach, this corresponds to a model where succeeding trajectories have a high prob-

ability to occur. In this section, we will show that adopting a maximum likelihood approach for

finding succeeding policies is not optimal.

82

Let 𝜋𝜃 be a stochastic policy defined as above parameterised by 𝜃 . If 𝜋𝜃 is optimal, then 𝜋𝜃 ⊂ 𝜋∗.
This means that:

∀𝑠 ∈ S, 𝜋𝜃 (·|𝑠) ⊂ 𝜋∗(·|𝑠)

In a maximum likelihood approach we would like to optimise the following objective:

max

𝜃
𝑝 (𝜋𝜃 ⊂ 𝜋∗)

Which is equivalent to:

max

𝜃
𝑝 (𝜋𝜃 (·|𝑠) ⊂ 𝜋∗(·|𝑠)) ∀𝑠 ∈ S (3.1)

The aim is to maximise the probability that each state-action pair encountered when following 𝜋𝜃
is optimal. To ease the notation we introduce the variable O, that was first introduced in [Lev18].

It is a binary variable with O𝑡 = 1 if timestep 𝑡 is optimal and O𝑡 = 0 otherwise. Hence, the

objective (3.1) is equivalent to the following objective:

max

𝜃
𝑝 (O𝑡 = 1|𝑠𝑡 , 𝜋𝜃 (·|𝑠𝑡))

Following an optimal policy should yield maximum reward, so 𝑝 (O𝑡 = 1|𝑠𝑡 , 𝜋𝜃 (·|𝑠𝑡)) should be

maximal when the reward is maximal. Therefore:

𝑝 (O𝑡 = 1|𝑠𝑡 , 𝜋𝜃 (·|𝑠𝑡)) = exp(𝑟 (𝑠𝑡 , 𝜋𝜃 (·|𝑠𝑡)) (3.2)

It’s worth pointing out that the definition of 𝑃 (O𝑡 = 1|𝑠𝑡 , 𝜋𝜃 (·|𝑠𝑡)) in Equation (3.2) requires an

additional assumption, which is that the rewards 𝑟 (𝑠𝑡 , 𝑎𝑡) are always negative. This assumption

is not actually very strong: if we assume the reward is bounded above, we can always construct

an exactly equivalent reward simply by subtracting the maximum reward.

It is then possible to derive the probability of a trajectory 𝜏 (i.e. a deterministic policy) to be

optimal. When O𝑡 = 1, for all 𝑡 :

𝑝 (𝜏 |𝑜1:𝑇) ∝ 𝑝 (𝜏, 𝑜1:𝑇) = 𝑝 (𝑠1)
𝑇∏
𝑡=1

𝑝 (O𝑡 = 1|𝑠𝑡 , 𝑎𝑡)𝑝 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡)

= 𝑝 (𝑠1)
𝑇∏
𝑡=1

exp(𝑟 (𝑠𝑡 , 𝑎𝑡))𝑝 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡)

=

[
𝑝 (𝑠1)

𝑇∏
𝑡=1

𝑝 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡)
]

exp

(
𝑇∑︁
𝑡=1

𝑟 (𝑠𝑡 , 𝑎𝑡)
) (3.3)

This means that the probability to observe a trajectory given it is optimal corresponds to the

product between its probability with respect to the environments dynamics and the exponential

of all received rewards.

83

If we restrain ourselves to a deterministic dynamics setting for simplicity
1
, the goal is to fit an

approximation 𝜋𝜃 (𝑎𝑡 |𝑠𝑡) such that the trajectory distribution

𝑝 (𝜏) =
[
𝑝 (𝑠1)

𝑇∏
𝑡=1

𝑝 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡)𝜋𝜃 (𝑎𝑡 |𝑠𝑡)
]

matches the distribution in equation (3.3).

An important question is now to ask which criteria to use in order to compare those two distribu-

tions. We can notice that, contrary to a classic supervised learning process, there are no examples

of trajectories from the optimal policy available. All trajectories at hand are sampled from the

current policy 𝜋𝜃 . Therefore, it is necessary to use the Reverse KL divergence (RKL) [Cha+22] as

an optimisation objective:

𝐷𝐾𝐿 (𝑝 (𝜏) | |𝑝 (𝜏)) = −𝔼𝜏∼𝑝 (𝜏) [log𝑝 (𝜏) − log𝑝 (𝜏)]

However, as stated in [Lev18], RKL is known to be prone tomode collapse. Indeed, RKL prioritises

finding a mode of the target distribution rather than matching its moments. Using RKL supposes

that the probability to discover relevant regions in 𝑝 via sampling from 𝑝 is non negligible. In

practice, this is unlikely. The direct consequence on our inference procedure is that the policy

𝜋𝜃 will be likely to converge to a nearly deterministic one and will fail to produce policies with

different behaviours. In the next section we propose a MCMC based approach that ensures to

avoid the mode collapse issue by learning a generative process that outputs behaviour diverse

optimal policies while optimising a RKL criteria.

3.4 Our MCMC Approach for Learning the Optimal Set-policy

In this section wewill present ourMCMC based algorithm in order to learn the optimal set-policy.

3.4.1 Distinction Between Optimal Policy and Stochastic Optimal Policy

Here we anticipate potential confusion; and clarify: sampling trajectories from a stochastic opti-

mal policy is not equivalent to sampling actions from the set policy (our goal).

Let us provide an argument via counter-example. Many RL algorithms, for example actor-critic

based ones, aim to learn a stochastic policy. Considering the set policy framework, this means

that given set policy 𝜋∗(·|𝑠) = {𝑎 ∈ A : max𝑎𝑄
∗
𝑟 (𝑠, 𝑎)}, the optimal stochastic policy �̃�∗ can be

defined as a map associating a state to a random variable 𝔸 ∈ A:

∀𝑠 ∈ S, �̃�∗ : S −→ A

with 𝑝 (𝔸 = 𝑎𝑖 |𝑠) > 0 if 𝑎𝑖 ∈ 𝜋∗

𝑝 (𝔸 = 𝑎𝑖 |𝑠) = 0 otherwise

1
see [Lev18] for a derivation in the stochastic dynamics setting

84

Hence, an optimal stochastic policy could be understood as a process to randomly pick an action

from 𝜋∗(𝑠) at each state. Therefore at each episode, the resulting trajectory could be interpreted

as the outcome of a deterministic policy 𝜋∗
𝐷
⊂ 𝜋∗. Following this logic, the optimal stochastic

policy is a generating process of the optimal deterministic policies family.

Since standard actor-critic algorithms are value based algorithms that aim at solving a well de-

fined MDP with the objective of maximising the expected return without any explicitly defined

risk measure, then acting greedily with respect to the optimal value function converges to the

optimal policy. This statement is a reformulation of the Bellman optimality equation:

𝑉 ∗(𝑠) = max

𝑎

∑︁
𝑟,𝑠′

𝑝 (𝑟, 𝑠′|𝑠, 𝑎) (𝑟 + 𝛾𝑉 ∗(𝑠′)) (3.4)

The max operator employed in equation (3.4) is deterministic
2
, therefore there exists a determin-

istic optimal policy in this context. Hence, any environment that can be modelled by a MDP and

solved by a value-based method (e.g. value iteration, Q-learning) has an optimal policy which is

deterministic.

The learning process of actor critic methods outputs stochastic policies that optimise an un-

constrained objective and in practice do not produce a large variety of behaviours. It is hence

understandable that classic actor critic methods are not adapted to solve such a problem and that

sampling trajectories from a stochastic optimal policy is not equivalent to sampling actions from

the set policy.

3.4.2 Generating Deterministic Policies from the Optimal Set Policy

The deterministic optimal policies generating process (our goal) can take the form of a Monte-

Carlo Markov Chain (MCMC) process. Considering that any policy can be uniquely characterised

by the weights 𝜃 that parameterise it, we will replace 𝜋𝜃 by 𝜃 to not overcrowd the notation.

Therefore the aim of the generating process is to sample 𝜃𝑖 such that 𝜃𝑖 ⊂ 𝜋∗.

Supposing that it is possible to sample 𝜃𝑖 implies that we will now consider the optimal set-policy

as a distribution. Indeed considering all set-policies 𝜋 ⊂ 𝜋∗, the aim is to build a MCMC which

stationary distribution Π verifies Supp(Π(·|𝑠)) = Supp(𝜋∗(·|𝑠)),∀𝑠 ∈ S. In other words, sampling

𝜃𝑖 ∼ Π is equivalent to sampling trajectories from 𝜋∗.

A First Approach Using Metropolis-Hastings

Wewill reuse the optimality variable O (from above) for more clarity. Having 𝜃𝑖 ∼ Π is equivalent

to sample from a distribution 𝑓 (𝜃 |O = 1) (we will drop = 1 in the remainder of the derivation

for conciseness). The event (𝜃 |O) means that the drawn 𝜃 is known optimal and thus solves

the task. MCMC methods are procedures used to generate samples from distributions, when

sampling cannot be done directly. For instance, the distribution of interest may not have a closed

form formula or is unknown. The procedure relies on the knowledge of a distribution that is

proportional to the distribution of interest. Several works consider sampling policy parameters

𝜃𝑖 using MCMC algorithms [TOY18].

2
if necessary ties can be broken for max values deterministically with e.g. an ordered list of actions

85

Using Bayes rule:

𝑓 (𝜃 |O) = 𝑓 (𝜃,O)
𝑓 (O) =

𝑓 (𝜃) 𝑓 (O|𝜃)
𝑓 (O) =

𝑓 (𝜃) 𝑓 (O|𝜃)∑
𝜃 ′ 𝑓 (O|𝜃 ′) 𝑓 (𝜃 ′)

=
𝑓 (𝜃) 𝑓 (O|𝜃)

𝔼𝜃 ′∼𝑓 (𝜃 ′) 𝑓 (O|𝜃 ′)
(3.5)

In [Hof+07], the authors showed that for direct policy search, sampling directly from a distribu-

tion that is proportional to the reward performs better than classic simulationmethods. Therefore

𝑓 (O|𝜃) is made proportional to the expectation of a monotonically increasing function with re-

spect to the empirical return, called utility function 𝑈 (𝜏). Intuitively, this corresponds to the

same reasoning made in the previous section as 𝑓 (O|𝜃) should be high if the reward is high.

We want:

𝑓 (𝜃 |O) ∝ 𝑓 (𝜃)𝜂 (𝜃)
where 𝜂 is the performance of 𝜃 wrt the environment dynamics.

𝜂 (𝜃) = 𝔼𝑝 (𝜏 |𝜃) [𝑈 (𝜏)] =
∫

𝑈 (𝜏)𝑝 (𝜏 |𝜃)𝑑𝜏

where 𝑝 (𝜏 |𝜃) is the probability of a trajectory 𝜏 when following 𝜃 . Even if we only consider

deterministic policies, this term also depends on the environment dynamics that can be stochastic.

In physical systems, the Boltzmann form is usually used:

𝜌∗ = 𝑍
−1

∗ 𝑒
−𝑈∗ (𝑥)

(3.6)

where 𝑥 ∈ Ω ⊂ ℝ𝑑
; 𝜌∗ a probability density function, 𝑈∗ an energy function and 𝑍∗ the normal-

isation constant. The same way, denoting the empirical return by �̃� (𝜏) = ∑𝑇
𝑡=0
𝛾 𝑡𝑟𝑡 , we consider

that:

𝑓 (O|𝜃) = 𝜂 (𝜃) ∝ 𝔼𝑝 (𝜏 |𝜃) [lim
𝑇−→0

𝑒�̃� (𝜏)/𝑇𝑍 (𝑇)−1]

The evaluation of 𝜂 (𝜃) can be substituted with an unbiased estimate over N episodes:

𝜂 (𝜃) = 𝔼𝑝 (𝜏 |𝜃) [𝑈 (𝜏)]

≈ 𝑈𝑁 (𝜃) =
1

𝑁

𝑁∑︁
𝑖=1

𝑈 (𝜏𝑖), 𝜏𝑖 ∼ 𝑝 (𝜏 |𝜃),

Plugging this into Eq.(3.5), we obtain: (the denominator is simply a normalisation constant, and

does not need to be considered under proportionality):

𝑓 (𝜃 |O) ∝ 𝑓 (𝜃)𝑒𝑈𝑁 (𝜃)/𝑇𝑍 (𝑇)−1∫
𝜃 ′
𝑒𝑈𝑁 (𝜃 ′)/𝑇𝑍 (𝑇)−1𝑓 (𝜃 ′)𝑑𝜃 ′

∝ 𝑓 (𝜃)𝑒𝑈𝑁 (𝜃)/𝑇
(3.7)

86

As detailed in chapter 2, an important variation ofMCMC is the independentMetropolis-Hastings

(MH) sampler. This method will sample from a target distribution by first sampling from an aux-

iliary proposal distribution. Then the proposal will be accepted or rejected following the MH

criteria. The algorithm’s efficiency depends on the ratio between the target and the proposal

densities. If the ratio is bounded on the support of the target distribution, then the MH algorithm

benefits from a powerful theory of ergodic geometry. We will therefore adapt the Metropolis

algorithm for RL in order to obtain a Markov chain of deterministic optimal policies which sta-

tionary distribution corresponds to a distribution on the optimal set-policy. The corresponding

algorithm is displayed in algorithm 1.

Algorithm 1Monte Carlo-within-Metropolis for RL

Require: 𝐾 : the number of iterations, 𝑁 : number of episodes, 𝜎 : standard variation of Normal

distribution

Initialise Agent 𝜋

𝜃0 ∼ N(0, 𝜎2

𝑝 I𝐷) ⊲ Sample initial weights from a Gaussian distribution

for 𝑘 from 0 to 𝐾 do
𝜃 ′ ∼ N(𝜃𝑘 , 𝜎2

𝑝 I𝐷) ⊲ Sample new weights from a Gaussian

Run 𝑁 episodes with 𝜋𝜃𝑘 and compute𝑈𝑁 (𝜃𝑘)
Run 𝑁 episodes with 𝜋𝜃 ′ and compute𝑈𝑁 (𝜃 ′)

𝛽 ← 𝑓 (𝜃 ′)𝑈𝑁 (𝜃 ′)
𝑓 (𝜃𝑘)𝑈𝑁 (𝜃𝑘)

𝛼 ← min(1, 𝛽)
𝜖 ∼ U[0,1] ⊲ Sample 𝜖 from a uniform distribution

if 𝜖 < 𝛼 then
𝜃𝑘 ← 𝜃 ′ ⊲ Keep 𝜃 ′

else
𝜃𝑘 ← 𝜃𝑘 ⊲ Keep 𝜃𝑘

end if
end for
return {𝜃𝑘}𝐾𝑘=0

⊲ Return the list of all kept 𝜃

Experiments and Results for Algorithm 1

In this section we present the results obtained using algorithm 1. The agent is a neural network

composed of 1 hidden layer of 8 neurons and a ReLU activation function. Our proposed frame-

work was tested in Classic Control Gym environments, Cartpole, Acrobot and cliff [Bro+16] as

well as on a gridworld. Table 3.1 shows environments details. The average return was estimated

on 20 episodes for every 𝜃𝑖 . The metropolis algorithm was done on 200 timesteps for Cartpole

and 500 hundred for Acrobot.

Figure 3.5 presents the results obtained on Cartpole andAcrobot environments. Cartpole is solved

while we converge towards a mean average return of -80 which is on par with great implementa-

tions according to gym leaderboard. Best implementation achieves a score of -40; we believe that

our implementation can reach this score with enough iterations, which is the main drawback of

MCMC methods.

87

Table 3.1: Specifications of environments.

Figure 3.5: Average return for every new 𝜃 (in blue) and incremental count of the number of 𝜃𝑖
retained (in orange) on Cartpole (left) and Acrobot (right) using simple implementation.

When visualising the succeeding agents on Cartpole and Acrobot, it is not obvious if they ef-

fectively adopt different behaviours. We therefore plot the cosine similarity between all pairs of

retained 𝜃𝑖 in figure 3.6. It appears that succeeding 𝜃𝑖 are heavily correlated.

This simple approach fails when confronted to Gridworld or Cliff. In both cases, the agent remains

stuck, always performing the same action. The reasons for this failure are explained and tackled

in sections 3.4.3 and 3.4.3.

88

Figure 3.6: Cosine similarity between pairs of retained 𝜃𝑖 on Cartpole (left) and Acrobot (right)

using simple implementation.

3.4.3 CAMEO: Boosting Exploration with Normalizing Flows and Curiosity
Models

In this section we present our solution algorithm called CAMEO to learn set policies. We first de-

tail the reasonswhy the previous naive approach failed at solving the gridworld and cliff problems

and how to use Normalizing Flows to solve this issue, then we introduce the curiosity module

that ensures behaviour diversity. In the results section we will first show that, at convergence, the

output policies consistently solve the given problems, then we show that the corresponding 𝜃𝑖 are

less correlated than for the approach detailed above. Finally, we will detail the actual behaviours

of the output policies and show that they effectively solve the tasks at hand while adopting dif-

ferent behaviours. These behaviours will be compared to those obtained while training an agent

using DQN.

Prior and Normalizing Flows

In the last section, we showed that {𝜃𝑘}𝐾𝑘=1
are highly correlated; due to a scaling factor among

those. Indeed, as we considered that 𝑝 (𝜃) ∼ U[−𝑎, 𝑎], there is no bound to 𝜃𝑖 values and therefore
we obtain 𝜃𝑘+1 = 𝜆𝜃𝑘 , with 𝜆 a constant. A solution is to constraint 𝜃𝑘 ∈ [−1, 1]𝐷 but it is not

possible to use 𝑝 (𝜃) ∼ U[−1, 1], as it would cancel out anyway during the calculation of 𝛽 (see

algorithm 1). However it is possible to measure the variance of 𝜃𝑘 from [−1, 1]:

𝜎2

𝜃𝑘
=

1

𝐷

𝐷∑︁
𝑗=0

1𝜃𝑘 𝑗∉[−1,1] (𝜃 2

𝑘 𝑗
− 1)2, (3.8)

and therefore we can define: 𝑝 (𝜃) = 𝑒−𝜎2

𝜃

Unfortunately, this simple solution might not be sufficient when areas of low probability separate

regions of high probability. Indeed MCMC algorithms that are mainly driven by local dynamics

(Hamiltonian MC, Langevin dynamics...) will find it difficult to transition between high probabil-

ity regions. This leads either to long correlation times with a low rate of acceptance, or to failure

of convergence.

Generative models recently obtained great successes in domains where data acquisition is cheap.

89

Data acquisition (i.e. sampling from distributions) is actually the main problem we are trying to

tackle. A natural question is therefore to ask if traditional MCMCmethods can be combined with

generative models to accelerate the sampling. A solution is to parameterise directly the proposal

distribution 𝑓 (𝜃). Adaptive MCMC methods aim to update the parameters of the proposal dis-

tribution during the sampling depending on the previous ones. For instance, one can consider a

gaussian covariance matrix as a parameter of the proposal distribution. In [GRV21], Gabrié et al.

consider an independent MH sampler where the proposal distribution is represented by a Nor-

malizing Flow which parameters are updated through SGD. Normalizing Flows are characterised

by their expressiveness, sampling tractability and a simple evaluation of log-density. These are

precisely the necessary attributes for a propoal distribution in MH. Updating the proposal dis-

tribution during sampling can violate the Markov property and jeopardize convergence towards

the target distribution. We refer the reader to [Bro+22] for an in depth theoretical analysis and

convergence proofs.

As a reminder, a Normalizing Flow is an invertible application 𝑇 that is optimised to transport

samples from a base distribution 𝜌𝑏 to a target distribution. The aim is to produce an application

𝑇∗ and its inverse𝑇∗ such that the probability of an observationwith respect to 𝜌∗ can be estimated

by transforming samples from a base distribution towards the target. Therefore, if a sample 𝑥𝑏 is

sampled from 𝜌𝑏 , then 𝑇∗(𝑥𝑏) is a sample of 𝜌∗ and we have:∫
Ω
𝑇∗(𝑥)𝜌𝑏 (𝑥)𝑑𝑥 =

∫
Ω
𝑥𝜌∗(𝑥)𝑑𝑥

Even if the application 𝑇 is not the optimal one 𝑇∗ (𝜌 (𝑥) ≠ 𝜌 (𝑥)), as long as 𝜌 and 𝜌∗ share the
same support, we can still use MH. Denote 𝑦 = 𝑇 (𝑥𝑏), 𝑦 is accepted with probability:

acc(x,y) = min

[
1,
𝜌 (𝑥)𝜌∗(𝑦)
𝜌∗(𝑥)𝜌 (𝑦)

]
This procedure is actually equivalent to using the following transition kernel:

𝜋𝑇 (𝑥,𝑦) = acc(𝑥,𝑦)𝜌 (𝑦) + (1 − 𝑟 (𝑥))𝛿 (𝑥 − 𝑦)

To train the mapping 𝑇 , we can use the RKL between 𝜌 and 𝜌∗. Using the Boltzmann form of

equation (3.6) for 𝜌∗, we obtain:

𝐷𝐾𝐿 (𝜌 | |𝜌∗) = − log𝑍∗ +
∫
Ω
[𝑈∗(𝑥) + log(𝜌 (𝑥))]𝜌 (𝑥)𝑑𝑥

The unknown constant log𝑍∗ is not relevant for optimisation. In [GRV21], the authors propose

to combine the Normalizing Flows base transition kernel with a local transition kernel. Indeed,

according to the authors, when the parameterised density 𝜌 is initialised randomly, it typically

has limited overlap with the posterior distribution 𝜌∗. Consequently, the moves suggested by

the Normalizing Flow have a high likelihood of being rejected. However, the situation improves

as the local sampler generates data. With continued training, an increasing number of moves

proposed by the NF are accepted.

90

The authors emphasize that themoves generated by pushing forward independent draws from the

base distribution are non-local and have the ability tomix between different modes. This property

enables the NF algorithm to explore and navigate between different regions of the distribution

effectively which should solve the high correlation problem encountered when using algorithm

1. Inspired from [GRV21], we propose an adaptation of algorithm 1 using Normalizing Flows

proposals in algorithm 2.

Algorithm 2 Combining NF and local kernels

Require: 𝐾 : the number of iterations, 𝑁 : number of episodes, 𝑘loc: number of local steps per NF

resampling, t: number of iterations before training.

Initialise Agent 𝜋 with parameters 𝜃

Initialise map T and its base distribution 𝜌𝑏
𝜃0 ∼ N(0, 𝜎2

𝑝 I𝐷)
for 𝑘 from 0 to 𝐾 do

if 𝑘 mod 𝑘loc + 1 = 0 then
𝜃 ′
𝑏
∼ 𝜌𝑏

𝜃 ′ = 𝑇 (𝜃 ′
𝑏
)

Run 𝑁 episodes with 𝜋𝜃𝑘 and compute𝑈𝑁 (𝜃𝑘)
Run 𝑁 episodes with 𝜋𝜃 ′ and compute𝑈𝑁 (𝜃 ′)

𝛽 ← 𝑓 (𝜃 ′)𝑈𝑁 (𝜃 ′)𝜌 (𝜃𝑘)
𝑓 (𝜃𝑘)𝑈𝑁 (𝜃𝑘)𝜌 (𝜃 ′)

else
𝜃 ′ ∼ N(𝜃𝑘 , 𝜎2

𝑝 I𝐷)
Run 𝑁 episodes with 𝜋𝜃𝑘 and compute𝑈𝑁 (𝜃𝑘)
Run 𝑁 episodes with 𝜋𝜃 ′ and compute𝑈𝑁 (𝜃 ′)

𝛽 ← 𝑓 (𝜃 ′)𝑈𝑁 (𝜃 ′)
𝑓 (𝜃𝑘)𝑈𝑁 (𝜃𝑘)

end if
𝛼 ← min(1, 𝛽)
𝜖 ∼ U[0,1]
if 𝜖 < 𝛼 then

𝜃𝑘+1 ← 𝜃 ′

else
𝜃𝑘+1 ← 𝜃𝑘

end if
if 𝑘 mod 𝑡 + 1 = 0 then

Update 𝑇 using 𝐷𝐾𝐿 (𝜌 | |𝜌∗)
end if

end for
return {𝜃𝑘}𝐾𝑘=0

While this approach allowed to solve gridworld and cliff environments we still observed the same

high correlation rates within 𝜃𝑖 . Moreover, the “mode collapse" was even more obvious in those

two environments as the sampled 𝜃𝑖 were always choosing the same path to solve them. There

91

are several reasons explaining the “mode collapse". As for the approximate inference method, we

used the RKL as there was no available sample from 𝜌∗. However, it supposes that there is a non
negligible probability that the algorithm discovers relevant regions in 𝜌∗ through sampling with

𝜌 . In practice this is unlikely.

In [GRV21], the authors insist on the fact that the success of this method relies on some a priori

information about the modes of the target distribution that has to be known in advance to ini-

tialise the chains. This method cannot find 𝜃𝑖 in regions different from those of the initialisation.

One of the main difference between algorithm 2 and the one proposed in [GRV21] is that we start

with a unique 𝜃0 while in [GRV21], they start with many different 𝜃𝑖 in parallel processes, each

one localised in a different region for which there exist an a priori information. This approach is

unfortunately not possible in our case when there is no such a priori information available.

Curiosity Model

The aim is now to force the model to better explore the parameter space and avoid the mode

collapse. This situation mainly happens because of the use of the RKL, leading to a mode seeking

behaviour, fitting a unique mode. An interesting question is to know if it is possible to take

advantage from the mode collapse by forcing the model to successively "collapse" on the different

modes of the target distribution while forcing it to collapse solely on modes that correspond to

different behaviours.

Inspired from the multiple works on curiosity models applied to reinforcement learning [Bur+19;

Eys+19; Gro+21; Pat+17], we propose to add a curiosity drivenmechanism that drives exploration

dynamically. It takes the form of a Neural Network, parameterised by weights 𝜙 , that learns to

predict the next state given the last state of an agent. This way, if the network learns to predict

the trajectory of 𝜃𝑘 and 𝜃 ′ tries something new, it will fail and output a large prediction error

noted L, called the intrinsic reward. The intrinsic reward is then added to the extrinsic reward,

i.e the reward returned by the environment:

𝑅(𝜏) = 𝜇𝐺 (𝜏) + (1 − 𝜇)L (𝑘)
𝜙
(𝜏), (3.9)

with L (𝑘) the prediction error (i.e. the loss) at step 𝑘 and 𝜇 ∈ [0, 1]. The prediction error can take

the following form:

𝜖 =

𝑇∑︁
𝑡=1

𝑑 (𝑠𝜃𝑡 , 𝑠
𝜙

𝑡 |𝑠𝜃𝑡−1
)

Where 𝑑 is an arbitrary distance on the state space, 𝑠𝜃𝑡 the state of the agent at timestep 𝑡 and

(𝑠𝜙𝑡 |𝑠𝜃𝑡−1
) is the predicted state at timestep 𝑡 given the last known state of the agent.

We can also define a new energy function:

𝑈 (𝜏𝑖) = exp{𝜇𝐺 (𝜏𝑖) + (1 − 𝜇)L𝜙 (𝜏𝑖)}. (3.10)

Due to the dependence on 𝜙 this energy function cannot be used directly in the expression of 𝜌∗.
Indeed, depending on 𝜙 , the distribution 𝜌∗ will shift, making convergence impossible. However,

92

denote 𝜌 the following distribution:

𝜌𝜙 = 𝑍−1

∗ 𝑒
−𝑈𝜙 (𝑥)

(3.11)

This distribution can be used as a target distribution to update the Normalizing flows mapping𝑇 .

Indeed, when 𝜙 is fixed, the prediction error is high for trajectories that where never encountered

before and a mode corresponding to the behaviour maximising both the return and the prediction

error appears on 𝜌𝜙 . When calculating 𝐷𝐾𝐿 (𝜌 | |𝜌𝜙), the RKL makes 𝑇 to fit that particular mode,

accelerating convergence towards that mode. At convergence, the prediction error becomes low

gain until a new 𝜃 inducing high prediction error is sampled.

Surprisingly this simple addition does not lead to an alternation between phases of high or low

rejection rates, but it comes at the price of a less stable performance. As shown in figure 3.7, the

performance sometimes drops massively when moving to 𝜃 located in the region of a new mode

while the acceptance rate remains steady.

Figure 3.7: CAMEO Results on Cliff (above) and Gridworld (below). The figure presents the mean

return and the count of 𝜃𝑖 retained over time steps.

As shown in figure 3.7, the algorithm is able to output policies that solve the tasks consistently.

The count panel also proves that once a succeeding 𝜃 is found, the algorithm is not stuck at this

𝜃 rejecting all the others, but keeps finding new succeeding ones.

Figure 3.8 shows that the 𝜃𝑖 retained are less correlated than in previous implementations, which

suggests that the curiosity module and the prior are effective.

However non correlated weights do not necessarily imply a different behaviour. Figure 3.9 shows

the aggregated state visitation frequency of 100 different policies that solve the problems. The

most efficient (shortest) paths are the most taken but the state visitation frequencies are non

93

Figure 3.8: Cosine similarity between pairs of retained 𝜃𝑖 on Gridworld (left) and Cliff (right)

using CAMEO implementation.

negligible for other paths. Therefore, the learned policies effectively correspond to different be-

haviours. Moreover, on the gridworld environment, on 222 succeeding policies found, our model

found 60 different behaviours. Of course on such a small environment, many obtained policies

are inefficient (i.e multiplying goings and coming between the same states before reaching the

final state); however as displayed in figure 3.10, the top 5 trajectories are efficient and highly

represented.

Figure 3.9: State visitation frequency aggregated on 100 policies obtained using CAMEO on Grid-

world and Cliff. Less visited states are in light blue and most visited ones in dark shade.

Figure 3.10: Top 5 most represented trajectories output by CAMEO for Gridworld. From the most

represented (left) to the fifth most represented (right). On 222 policies, the most represented tra-

jectory appears 38.7% of the time (86 times), then 10.8%, 5.9%, 5.4%, 3.1% for the other trajectories

respectively.

The full procedure is detailed in algorithm 3 while figure 3.16 details the framework.

We also compare our results to those obtained using DQN. In figure 3.11, we show that using

DQN (with 𝜖 set at 0, i.e. there is no exploration or random action), we obtain consistent results

as for our model. However, the obtained 𝜃𝑖 are highly correlated (figure 3.12). This is of course

not surprising; DQN is designed to converge towards a unique optimal policy as discussed in the

introduction of this chapter. Near convergence, the updates are not significant. We also display

94

the trajectory obtained at convergence on the gridworld and cliff environments (figure 3.13). In

both cases, DQN finds an optimal path but uses the same one consistently.

Figure 3.11: Mean return of DQN on Gridworld (left) and Cliff (right) Environments. The mean

is calculated using a sliding window over 20 time steps.

Figure 3.12: Cosine similarity between pairs of 𝜃𝑖 on Gridworld (left) and Cliff (right) using DQN.

Considered 𝜃𝑖 are extremely correlated, we restricted the scale to a narrow range in order to show

that the 𝜃𝑖 are not all equal.

Figure 3.13: Trajectories obtained using DQN on Gridworld and Cliff environments. For each

environment, DQN converged towards the unique trajectory displayed.

In order to assess better the versatility of our model compared to DQN, we also tested the tra-

jectories output by DQN using different 𝜖 values at inference as in the 𝜖-greedy approach. The

model has been trained to convergence, then during inference, it is tested with a range of 𝜖 val-

ues to force the algorithm to explore other states. Figure 3.14 presents the mean performance

(on 50 episodes) of DQN on the cliff environment for different values of 𝜖 ∈ [0, 1]. We observe

95

that performance decreases significantly when 𝜖 > 0.6. In figure, we present the state visitation

frequencies for different values of 𝜖 on the cliff environment.

The performance drop shown in figure 3.14 contrasts with the consistent performance showcased

in figure 3.7 when using CAMEO. This is due to the fact that the output trajectories become highly

inefficientwhen 𝜖 increases. This also shows up in figure 3.15wherewe display the state visitation

frequency over 50 episodes of the DQN algorithm in cliff environment for different values of 𝜖 .

We observe that for 𝜖 > 0.6, the model fails at finding the goal state. For 𝜖 = 0.6, we observe

that the first states (on the left hand side of the cliff) are the most visited while for our algorithm

(figure 3.9) the most visited states are the initial state and the ones near the final as all succeeding

agents have to go through those. This demonstrates that for DQN, when 𝜖 = 0.6, the output

trajectories are highly inefficient while our algorithm outputs efficient succeeding policies.

Figure 3.14: Mean return of DQN on cliff environment for different values of 𝜖 . The model has

been trained to convergence, then during inference, it is tested with a range of 𝜖 values to force

the algorithm to explore other states.

Figure 3.15: State visitation frequencies over 50 episodes using DQN with different values of 𝜖 on

the Cliff environment. From left to right, the used values for 𝜖 are 0.6, 0.7, 0.8 and 0.9.

96

Algorithm 3 CAMEO

Require: 𝐾 : the number of iterations, 𝑁 : number of episodes, 𝑘loc: number of local steps per NF

resampling, t: number of iterations before training 𝑇

Initialise Agent 𝜋 with parameters 𝜃

Initialise map T and its base distribution 𝜌𝑏
Initialise curiosity model Φ with parameters 𝜙

𝜃0 ∼ N(0, 𝜎2

𝑝 I𝐷)
for 𝑘 from 1 to 𝐾 do

if 𝑘 mod 𝑘loc + 1 = 0 then
𝜃 ′
𝑏
∼ 𝜌𝑏

𝜃 ′ = 𝑇 (𝜃 ′
𝑏
)

Run 𝑁 episodes with 𝜋𝜃𝑘 and compute𝑈𝑁 (𝜃𝑘)
Run 𝑁 episodes with 𝜋𝜃 ′ , compute𝑈𝑁 (𝜃 ′) and store trajectories 𝜏

(𝑖)
𝜃 ′

𝛽 ← 𝑓 (𝜃 ′)𝑈𝑁 (𝜃 ′)𝜌 (𝜃𝑘)
𝑓 (𝜃𝑘)𝑈𝑁 (𝜃𝑘)𝜌 (𝜃 ′)

else
𝜃 ′ ∼ N(𝜃𝑘 , 𝜎2

𝑝 I𝐷)
Run 𝑁 episodes with 𝜋𝜃 ′ , compute𝑈𝑁 (𝜃 ′) and store trajectories 𝜏

(𝑖)
𝜃 ′

Run 𝑁 episodes with 𝜋𝜃𝑘 and compute𝑈𝑁 (𝜃𝑘)

𝛽 ← 𝑓 (𝜃 ′)𝑈𝑁 (𝜃 ′)
𝑓 (𝜃𝑘)𝑈𝑁 (𝜃𝑘)

end if
𝛼 ← min(1, 𝛽)
𝜖 ∼ U[0,1]
if 𝜖 < 𝛼 then

𝜃𝑘+1 ← 𝜃 ′

else
𝜃𝑘+1 ← 𝜃𝑘

end if
for 𝑖 = 1 . . . 𝑁 do
L(𝜏 (𝑖)

𝜃 ′) ← 𝑑 (Φ(𝜏 (𝑖)
𝜃 ′), 𝜏

(𝑖)
𝜃 ′)

L(𝜏𝜃 ′) ← L(𝜏𝜃 ′) + L(𝜏 (𝑖)𝜃 ′)
end for
Train Φ using L(𝜏𝜃 ′)
Update 𝑇 using 𝐷𝐾𝐿 (𝜌 | |𝜌𝜙)

end for
return {𝜃𝑘}𝐾𝑘=1

97

Figure 3.16: Illustration of CAMEO framework. Weights 𝜃𝑖 and 𝜃
′
obtained from Metropolis

algorithm are used to create trajectories 𝜃 and 𝜃 ′. Trajectories 𝜃 are used to train a neural network
parameterised with 𝜙 that predicts the next state given the current one. CAMEO criteria for

Metropolis is a weighted average of the obtained returns using trajectories 𝜃 ′ and the prediction

errors of model 𝜙 when used to predict trajectories𝜃 ′.

3.5 Conclusion

In this chapter, we proposed a MCMC based algorithm adapted to reinforcement learning. Using

our algorithm, we are able to efficiently sample succeeding policies on the fly. Sampled poli-

cies successfully displayed diverse succeeding behaviours that remained efficient, i.e sub-optimal

given the reward function but still near optimal. Also, when combined, the obtained behaviours

exhibit a full state space coverage of the considered environments contrary to information the-

ory based approaches. Moreover, our approach is successful even when the rewards structure

is sparse. This is done by using a curiosity module that helps exploration dynamically. Our

approach still bears some limitations as the policy spaces of studied environments are discrete.

Moreover, adding the prediction error to the target distribution of the normalizing flows mapping

criteria lacks theoretical convergence guaranties.

We also show that the resulting behaviour for each sampled policy is different while using the

same reward function (base objective), illustrating the outer alignment problem (human vs base

objectives). We argue that the difference in behaviours is due to a criteria uncaptured in the base

objective but that can actually be considered as part of the mesa-objective. This criteria can be

associated with risk. The next chapter will delve deeper in risk accounting in the mesa-objective

by proposing a new distributional approach to reinforcement learning that allows for a better

98

inner alignment.

3.6 Appendix

3.6.1 More Details on the Link Between Generalisation, Overfitting and Dis-
tributional Shift

Existing deep RL algorithms aim at finding the optimal policy by parameterising a policy 𝜋 as a

neural networkwithweights 𝜃 and find an optimal policy called 𝜋𝜃∗ that maximise the Q-value for

all (𝑠, 𝑎). Thismeans that these algorithms converge by design towards a unique policy considered

as optimal. However, as mentioned in the introduction of this chapter, an optimal policy may not

be unique. In a given environment, and for a given reward function, different algorithms can

converge to different policies that solve the task at hand. This difference is induced by different

implicitly defined mesa-objectives. In the introduction chapter we also explained that the mis-

alignment between the base andmesa-objectives is mainly due to distributional shift, the fact that

the environment where the agent has been trained is significantly different from the one where

it is effectively deployed.

Distributional shift is closely related to the concepts of generalisation and overfitting in machine

learning. Generalisation, in the context of machine learning, refers to a model’s ability to perform

well on new, unseen data. A well-generalised model can effectively capture underlying patterns

from the training data and apply that knowledge to make accurate predictions or classifications

on unseen examples. A model that generalises well indicates a lower risk of making errors when

dealing with new, real-world data.

On the other hand, overfitting occurs when a model learns not only the underlying patterns in

the training data but also the noise and randomness present in it. An overfitted model performs

exceptionally well on the training data but fails to generalise to new, unseen data. In this case, the

risk emerges from themodel’s inability to generalise its knowledge andmake accurate predictions

on unfamiliar examples. This elevated sensitivity to noise increases the risk of making inaccurate

or unreliable predictions in real-world scenarios.

Achieving an optimal balance between generalisation and overfitting is crucial to managing risk

in machine learning models. While we aim to create models that perform well on training data

(without overfitting), the primary objective is to have models that can generalise effectively to

new, unseen data, minimising the risk of incorrect predictions or classifications in practical ap-

plications.

However, is overfitting always bad news ? In a RL context, when an environment is clearly

defined like the cartpole environment described earlier with a small enough state space, there is

no point into seeking generalisation, as overfitting on the environment is not prejudicial. Indeed,

the agent will never face a different environment or a state that is highly different from what it

encounters during training. This would not be the case in robotic applications for instance where

an agent can be trained in simulated environments then deployed in real scenarios. Therefore,

the balance between overfitting and generalisation boils down to the user’s confidence about
the risk of distributional shift. If the user estimates that this scenario is unprobable then it makes

99

sense to seek for maximum performance through overfitting and take the risk of distributional

shift.

Based on the observation, that the mesa-objective is highly related to distributional shift via the

inner mis-alignment problem (base objective vs mesa-objective), we make the hypothesis that

the mesa-objective can be interpreted as a risk measure of distributional shift. This interpretation

can even offer an explanation to the existence of the inner mis-alignment issue. Indeed, as the

primary aim of any RL algorithm is to maximise the base objective, this can lead to overfitting;

however the mesa-objective seen as a distributional shift measure to minimise can contradict the

base objective for the sake of better generalisation and hinder too much the agent’s performance

if the model is too much risk averse when it is not necessary.

We argue that the regularisations used in different RL algorithms consist on different implicitly

defined mesa-objectives that can be considered as risk measures that depict the confidence of the

user towards the existence of distributional shift. Indeed, optimising the expected value of the

return alone may not be satisfactory in certain scenarios where incorporating the notion of risk

is important. It is often desirable to consider risk in the optimisation problem formulation, either

as part of the objective or as a constraint. For example, in financial investments, the primary

objective is typically to maximise expected returns. However, decision-makers often want to

account for the "risk" associated with investments, which involves mitigating potential downside

losses.This can be better illustrated through the Markowitz model.

3.6.2 The Markowitz Model

The Markowitz model, introduced by Harry Markowitz in 1952, is a finance-based portfolio opti-

mization approach. It aids in identifying the most efficient portfolio by evaluating different com-

binations of securities. This model demonstrates that by selecting securities with non-identical

movements, investors can lower their risk. An efficient portfolio maximizes returns for a speci-

fied risk level or minimizes risk for a given level of return. Investors, following this model, choose

portfolios based on two principles:

• preferring lower-risk portfolios among those with similar returns

• favouring higher-return portfolios among those with the same risk level.

In figure 3.17, the shaded area PVWP includes all the possible securities an investor can invest

in. The efficient portfolios are the ones that lie on the boundary of PQVW. For example, at risk

level 𝑋2, there are three portfolios S, T, U. But portfolio S is called the efficient portfolio as it has

the highest return, 𝑌2, compared to T and U. All the portfolios that lie on the boundary of PQVW

are efficient portfolios for a given risk level.

The boundary PQVW is called the Efficient Frontier. Portfolios located below this frontier are

deemed suboptimal since they offer lower returns for a given level of risk. Portfolios positioned

to the right of the Efficient Frontier are also considered suboptimal because they entail higher

risk for a given rate of return. Portfolios situated precisely on the boundary of PQVW are termed

Efficient Portfolios. Notably, the Efficient Frontier remains consistent for all investors, as it rep-

resents the ideal balance sought by every investor: maximum return with the lowest achievable

100

Figure 3.17: Risk-return of possible portfolios. Source:https://en.wikipedia.org/wiki/Markowitz_

model

risk. This consistency arises from investors’ shared preference for minimizing risk due to their

risk-averse nature.

In the RL context, we can replace the portfolios by policies and the more a policy overfits, the

more it is risky. So two policies are said to be equivalent if and only if a risk measure associated

with each one of them have a similar value. Moreover, from now on we will refer to succeeding

policies instead of optimal policies. Optimal policies are usually considered in the literature as

the policies that ensure the highest return without necessarily taking into account the risk of

distributional shift. On the other hand succeeding policies are policies that lie in the efficient

frontier, i.e. policies that succeed at the task at hand but may not give the maximum return in

the given environment.

There exist an extensive literature on risk quantification. Various risk measures have been pro-

posed to address this need. These measures include exponential utility, variance, percentile per-

formance, chance constraints, value at risk, and conditional value-at-risk [AF22]. Each of these

risk measures offers a different perspective on quantifying and managing risk, allowing decision-

makers to take into consideration different aspects of the potential downside. By incorporating

risk measures into the optimisation problem, decision-makers can make more informed and well-

balanced decisions that align with their risk preferences and objectives.

In our case, we consider that we do not have any information on the desired risk profile or the risk

measure to optimise. We propose an algorithm that outputs succeeding policies that lie on the

efficient frontier, displaying different behaviours such that the user can choose which policy suits

the best his preferred risk profile. An important tool towards this goal is the optimal set-policy

that is defined in the next section.

101

https://en.wikipedia.org/wiki/Markowitz_model
https://en.wikipedia.org/wiki/Markowitz_model

3.6.3 More on Set Policies

Theorem 1: Optimal Policy Characterisation
For a given MDP, a policy 𝜋 is said optimal if and only if:

𝑉 𝜋
𝑟 = 𝑉 ∗𝑟 ⇐⇒ ∀𝑠 ∈ S, Supp(𝜋 (·|𝑠)) ⊂ arg max

𝑎

[𝑄𝜋𝑟 (𝑠, 𝑎)]

⇐⇒ ∀𝑠 ∈ S, Supp(𝜋 (·|𝑠)) ⊂ arg max

𝑎

[𝑄∗𝑟 (𝑠, 𝑎)]
(3.12)

Therefore a policy is optimal if and only if for any state 𝑠 , it chooses an action in the set arg max𝑎 [𝑄∗𝑟 (𝑠, 𝑎)].
Hence, Supp(𝜋 (·|𝑠))𝑠∈S , a finite set of actions, is sufficient to characterise a policy. In [PGP17]

the authors define functions associating a state to a non empty and finite set of actions called

set-policies.

102

Chapter 4

Improving Distributional RL Using
Invertible Generative Models

Existing distributional Reinforcement Learning approaches use either the KL divergence or the
Wasserstein distance as loss functions. The KL divergence is not scale sensitive. The Wasserstein
distance does not have unbiased sample gradients which makes it impossible to optimise using clas-
sic stochastic gradient methods. Also, existing approaches tend to implicitly learn target distribu-
tions making them unable to evaluate the probabilities associated with specific return values under a
given policy. We propose a novel distributional RL approach based on an invertible generative model,
namely Normalizing Flows (providing return densities), along with the Cramèr distance (to facilitate
robust convergence guarantees).

4.1 Introduction

In chapter 3 we showed that, given the same reward function (what we also call the base objec-

tive), several succeeding policies
1
exist that solve the task while adopting different behaviours.

We also argued that the difference in behaviours is due to a criteria uncaptured in the base ob-

jective but that can actually be considered as part of the mesa-objective
2
. We considered the

mesa-objective as a regularisation that drives convergence towards a unique solution and hence

a certain behaviour. This behaviour can be more or less prone to overfitting. For instance, a robot

that has only been trained to walk on flat surfaces may have trouble walking in steep slopes. Such

situation is called distributional shift. In chapter 3 section 3.6.1, based on the observation that

the mesa-objective is highly related to distributional shift via the inner mis-alignment problem

(base objective vs mesa-objective), we claimed that the mesa-objective can be interpreted as a

risk measure of distributional shift.

Here, risk refers to the uncertainty over possible outcomes. In order to be more robust to the risk

of distributional shift, we argue that it would be useful to quantify the uncertainty over returns.

For instance, the higher is the return distribution entropy, the higher is the risk of distributional

1
policies that are acceptably close to optimal by human standards

2
an additional objective that constraints the agent to converge towards a given behaviour

103

shift. In [Dab+18], the authors show that distributional RL offers an ideal backbone to imple-

ment risk-sensitive policies. Using information provided by the distribution over returns, they

expanded the class of learnt policies to the class of risk-sensitive ones. Based on their results, we

can safely assume that a distributional approach of RL is well suited to take risk into account. An

in depth introduction to Distributional RL is given in chapter 2 section 2.2.

In this chapter, rather than implementing policies that take into account the risk on distributional

shift, we will first expose current distributional approaches limitations and try to mitigate them.

Indeed, the Distributional RL methods presented in chapter 2 section 2.2 have certain limitations:

• They use either the KL divergence or the Wasserstein distance as loss functions. The KL

divergence is not scale sensitive. The Wasserstein distance does not have unbiased sample

gradients which makes it impossible to optimise using classic stochastic gradient methods.

• Additionally, these methods tend to implicitly learn target distributions, making it chal-

lenging to evaluate the probabilities associated with specific return values under a given

policy.

Our objective is to overcome these limitations. To do so, we introduce a novel distributional RL

approach that leverages an invertible generative model along with the Cramèr distance.

• In contrast with most recent approaches, our model explicitly learns target distributions,

allowing simple evaluation of the probabilities associated with specific return values under

a given policy.

• Moreover using our proposed invertible model, it is possible to easily calculate the Cramèr

distance, which offers robust convergence guarantees.

Our model is a necessary pre-requisite and a crucial building block of one of the main objectives

of this manuscript (chapter 1 section 1.2.2): proposing an IRL model that is more robust to out-

er/inner mis-alignment (i.e. proposing a reward function that better matches human objectives

and that is robust to distributional shift). This matter will be developed in chapter 5.

We test our approach and algorithm on various settings of the Frozen Lake environment and

we showcase the effectiveness of our model in accurately predicting return distributions and

capturing all their potential modes. Obviously, existing algorithms also succeed in such a simple

environment, but Frozen Lake was used to qualitatively assess the theoretical contributions of

this work. To further validate and evaluate its performance, the next step involves testing it in

more complex environments.

In section 4.2, we detail the limitations of existing Distributional RL approaches (return distribu-

tions limited to fixed support, using loss function with no convergence guarantee) and present

our contributions. In section 4.3, we detail how Normalizing Flows constitute a valuable tool

for learning return distributions (as it allows to compute the density of any return value for any

state-action pair) and present our model’s architecture. We also introduce one of the main nov-

elties of this work which is a method to build the target distribution using a flow function. Then

in section 4.4, we discuss the loss function to use. We first show that the Reverse KL divergence

and the Wasserstein distance are suboptimal then we introduce the Cramèr distance as an ideal

solution offering convergence guarantees. Finally, in section 4.5, we test our approach on various

104

instances of simple MDPs and Frozen lake environments, illustrating the qualitative advantages

of our model. We also compare its performance with the C51 algorithm and show that they are

on par on the tested environment.

4.2 Related Work and Contributions

In this section we will first explain why traditional RL (as opposed to Distributional RL) is not

suited for risk management. Then we will delve deeper on existing Distributional approaches

limitations; and finally we will detail our contributions to solve these limitations.

4.2.1 Existing Approaches are not Adapted for Risk Management

In various scenarios, such as financial investments, investors necessitate the simultaneous con-

sideration of maximising expected returns while mitigating potential downside losses. To achieve

this, investors need to learn optimal policies exhibiting different observable behaviours, ensuring

the optimisation of the same expected return while accommodating diverse risk constraints. The

expected return to be maximised can be defined relative to each state 𝑠 ∈ S through the state

value:

𝑉 𝜋 (𝑠) = 𝔼𝜋 [
∞∑︁
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1 |𝑠𝑡 = 𝑠] ∀𝑠 ∈ S

with 0 ≤ 𝛾 ≤ 1. The same way we can define the Q-value as:

𝑄𝜋 (𝑠, 𝑎) = 𝔼𝜋 [
∞∑︁
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] ∀𝑠 ∈ S

Traditional approaches are not well-suited for incorporating risk considerations. Indeed, as dis-

cussed in chapter 2 section 2.2, a single value of 𝑉 (𝑠0) can correspond to an infinite number of

situations. This is due to the fact that state values (as well as Q-values) are defined as expecta-

tions, lacking detailed information about the environment dynamics and the range of possible

rewards. Here, “risk" pertains to the uncertainty associated with potential outcomes. It is cru-

cial to distinguish between intrinsic uncertainty, captured by the distribution over returns, and

parametric uncertainty, which pertains to the uncertainty surrounding the estimation of values.

In this research, we aim to focus on capturing the former. A more informative representation of

state values or Q-values would be to model them as distributions to gain a more comprehensive

understanding of the underlying uncertainties and variability in the rewards.

Considering Q-values as distributions and trying to learn these distributions is the main objective

of a sub-field of RL called Distributional Reinforcement Learning. A review of the main contri-

butions of the area as well as the necessary tools on which this approach is based are described

in chapter 2 section 2.2.

105

4.2.2 Limitations of Existing Approaches

While most recent Distributional RL approaches have achieved great empirical success [Dab+18],

we highlight here some of the main limits of the existing approaches.

C51 [BDM17] is limited to discrete and fixed supports for the distribution of returns while target

and predicted distributions do not share the same support by construction, requiring a computa-

tionally heavy projection of the target support into the predicted one. More importantly, while

several important theoretical results have been proven for Distributional RL using theWassertein

distance, the C51 algorithm does not use the Wassertein distance as a loss but the KL divergence

between the predicted and target distributions. Indeed, the authors have shown that their algo-

rithm cannot be trained with the Wassertein loss using only samples from the target distribution

(proposition in section 4.4.3).

With QR-DQN [Dab+17], the creators of C51 overcame this limitation using an algorithm that is

basically the opposite of C51. Indeed, QR-DQN learns quantile values of the return distribution at

fixed locations. They show that learning quantile values through quantile regression for unbiased

stochastic approximation of the quantile function is possible, even when using the Wasserstein

distance as a loss.

IQN [Dab+18] extended this approach by learning the full quantile function, a continuous map

from probabilities to returns. However the authors admit that quantile based approaches lacks

necessary additional theoretical analysis in many areas. For instance, sample based RL conver-

gence has not been proven for Quantile Regression based algorithms. Moreover, the contraction

results shown in [Dab+17] for fixed grids of quantiles have not been extended to the approximate

quantiles functions used in IQN. Finally, by modelling the quantile functions, it is not possible

using IQN to compute the probability of any return value given a state-action pair. Indeed, the

distributions are only learnt implicitly which makes them hard to visualise.

4.2.3 Contributions

Even though using quantile functions brought several advantages like allowing a direct com-

putation of the Wassertein distance between distributions, we notice that their usage have also

brought a lot of theoretical questions and uncertainties. Other than for the computation of the

Wasserstein distance, using quantile functions mainly allowed to use continuous supports for the

distributions of returns (although they are implicitly defined). Our work will try to keep these

benefits (i.e. simple computation of a proper distance and continuous and unbounded support)

while avoiding the use of quantile functions and keeping the theoretical convergence guaranties

shown in [Row+18]. Moreover, our model will also allow to compute the density of any return

value given a state-action pair under a defined policy. This last property will offer a significant

advantage over existing approaches as detailed in section 4.5, as multimodal return distributions

are particularly evident in critical states where single actions can lead to opposite outcomes (fail

or success).

To articulate the goals of this work more precisely, we aim to develop a Distributional Reinforce-

ment Learning model that offers the following capabilities:

• To learn the distribution of returns given any state-action pair.

106

• To sample returns from that distribution.

• To compute the density of any given return value for any state-action pair

• Is not limited to bounded and discrete supports

• To offer simple computation of a proper distance between distributions or an Integral Prob-

ability Metric

• To offer robust convergence guarantees

4.3 Our Approach: Normalizing Flows for Distributional RL

In this section we will present the architecture of our Normalizing Flows (NF) based model. We

will first explain in section 4.3.1 the issues of learning a CDF or its inverse as in existing methods

and propose to use NF to get the best of both worlds. A NF is a mapping between a base distri-

bution and a target one. The flow can usually be learnt either from the base distribution to the

target or from the target to the base. In section 4.3.2, we expose both ways and detail why the

flow direction is constrained by the RL problem structure. Once the flow direction is fixed, we

present our model’s architecture in section 4.3.3. Finally, in section 4.3.5, we detail how to build

the target distribution towards which our model should converge.

4.3.1 NF as an Alternative to Learning the CDF or Quantile Function of the
Returns Distribution

Being able to draw samples from given distributions and compute their densities is essential to

implement risk sensitive policies. Existing approaches rely on either learning the CDF of the

returns distribution or its quantile function. However using CDF or quantile function makes it

hard to draw samples and evaluate their densities easily and in the same time. Indeed, learning the

CDF enables the computation of densities but doesn’t facilitate sampling while learning quantile

functions enables sampling but doesn’t support density computations.

The CDF of a real-valued random variable 𝑋 is the function given by:

𝐹𝑋 (𝑥) = P(𝑋 ≤ 𝑥)

P(𝑎 < 𝑋 ≤ 𝑏) = 𝐹𝑋 (𝑏) − 𝐹𝑋 (𝑎)
where 𝑥 , 𝑎 and 𝑏 are outcomes of 𝑋 .

Considering the example of financial investment, the CDF allows to evaluate the probability that

the return remains in an acceptable area or remains higher than a certain threshold. In this

example, the random variable 𝑋 is replaced by the random variable of the returns 𝑍 and the

outcome 𝑥 is replaced by the return 𝑅. A control objective would aim to minimise 𝐹𝑍 (𝑅) or
maximise 1 − 𝐹𝑍 (𝑅).

However, it is not straightforward to sample from an arbitrary distribution given its CDF. IQN

does so by learning quantile functions instead, which are the inverse of CDF. Let 𝑋 be a random

107

variable and 𝐹 its CDF, the quantile function is defined as:

𝑄 (𝑝) = 𝐹−1(𝑞) = inf{𝑥 : 𝐹 (𝑥) ≥ 𝑞} ∀𝑞 ∈ [0, 1]

This means that for a given state-action pair, it is possible to compute the highest possible return

achievable with a fixed probability. As illustrated in figure 4.1, if 𝑥 ∼ U[0, 1], then 𝐹−1(𝑥) is a
sample from the distribution whose CDF is 𝐹 . This method is known as inverse transform sam-

pling. Therefore, having the quantile function allows to sample from the distribution defined by

the corresponding CDF. Nevertheless, employing this method does not provide a straightforward

way to calculate the probability associated with a specific return value.

Figure 4.1: An illustration of the inverse transform sampling method. We first draw 𝑥 ∼ U[0, 1]
and compute 𝐹−1(𝑥); 𝐹−1

being a quantile function. 𝐹−1(𝑥) is actually a sample from the distri-

bution which CDF is 𝐹 .

Therefore, learning the CDF enables the computation of densities but does not facilitate sampling.

Conversely, learning quantile functions enables sampling but does not support density computa-

tions. Additionally, it is worth mentioning that approximating the inverse CDF is often feasible

through various techniques, albeit at the cost of significant computational time. We propose to

use invertible models like Normalizing Flows, such that it becomes possible to get the best of both

worlds – models that can compute the density of any specified return for a given state-action pair

while also enabling the sampling of returns from the associated distribution.

4.3.2 Going from Base to Target Distribution to Jointly Sample Returns and
Predict their Density

A NF is a mapping between a base distribution and a target one. The flow can usually be learnt

either from the base distribution to the target or from the target to the base. In this section we

108

will detail the pros and cons of each direction, then we justify our choice of going from the base

distribution to the target one.

It will be useful to introduce some notation at this point. As in previous chapters (see for in-

stance chapter 2 section 2.1.1), consider a Markov decision process (MDP), defined by the tuple

(S,A,T , 𝑟 , 𝛾, 𝜁0). Let 𝑍𝜋 be a random variable inZ, the space of random variables with bounded

moments, corresponding to random returns obtained when following the policy 𝜋 . Its expecta-

tion is the Q-value. We have𝑍𝜋 (𝑠, 𝑎) ∼ P𝜋 (·|𝑠, 𝑎) the distribution of returns given the state action
pair (𝑠, 𝑎) if the policy 𝜋 is followed afterwards. Let 𝑅𝜋 be an outcome of 𝑍𝜋 . The Q-value being

the mean of the random returns 𝑍𝜋 , we have:

𝑄𝜋 (𝑠, 𝑎) = 𝔼(𝑠,𝑎)𝑍
𝜋 (𝑠, 𝑎) = 𝔼𝜋

[∞∑︁
𝑡=0

𝛾 𝑡𝑟 (𝑠𝑡 , 𝑎𝑡) |𝑠0 = 𝑠, 𝑎0 = 𝑎

]
𝑠𝑡 ∼ T (·|𝑠𝑡−1, 𝑎𝑡−1), 𝑎𝑡 ∼ 𝜋 (·|𝑠𝑡)

Let U be the base distribution. We consider that 𝑧 ∼ U and 𝑅𝜋 ∼ P𝜋 (·|𝑠, 𝑎). Let 𝑓 be a dif-

feomorphism between P and U (an invertible function that maps differentiable manifold P to

differentiable manifoldU such that both 𝑓 and 𝑓 −1
are differentiable).

The flow 𝑓 can be implemented in two different ways:

• either the flow goes from the observation𝑅𝜋 ∼ P𝜋 (·|𝑠, 𝑎) to the base distribution: 𝑧 = 𝑓 (𝑅𝜋)

• or we first sample 𝑧 ∼ U and get its image in the target distribution 𝑅𝜋 ∼ P𝜋 (·|𝑠, 𝑎), using
the flow 𝑅𝜋 = 𝑓 (𝑧).

Each approach has its pros and cons:

• In the first case it is easy to calculate the density of an observed 𝑅𝜋 but sampling is harder

because we would need to compute 𝑓 −1

• In the latter case it is easy to sample from the target distribution P𝜋 (·|𝑠, 𝑎) but it is more

difficult to get the density of a given sample 𝑅𝜋 from this target distribution.

The primary aim of Distributional RL is to sample return values that have high probability of

occurring. Therefore sampling is more important than being able to compute the density of

a priori given value of 𝑅. This means that the two flow directions mentioned above are not

equivalent.

• Fixing 𝑓 (𝑅𝜋) = 𝑧 would force us to select fixed values of 𝑅𝜋 beforehand for each state action
pair and then compute their density. This implies the same issue as in QR-DQN; what are

the right 𝑅𝜋 values to choose beforehand in order to evaluate their density ?

• 𝑅𝜋 = 𝑓 (𝑧) is natural in a RL context. Indeed, fixing 𝑅𝜋 = 𝑓 (𝑧) enables sampling values

𝑅𝜋 ∼ P𝜋 (·|𝑠, 𝑎) and getting their predicted density in the same time. Indeed, in one hand,

it is easy to sample 𝑧 values from the base distribution, on the other hand, the flow will

naturally map sampled 𝑧 values to return values 𝑅𝜋 that lie in high density areas.

109

While choosing 𝑅𝜋 = 𝑓 (𝑧) makes sampling easy, it is also possible to compute the density of

samples return values as follows. Let 𝑓𝜃 be a flow function parameterised by 𝜃 , P𝜋 (𝑅 |𝑠, 𝑎) the
distribution of the return given (𝑠, 𝑎) and 𝑝𝑧 the base distribution:

P𝜋 (𝑅 |𝑠, 𝑎)𝜕𝑅 = 𝑝𝑧 (𝑧)𝜕𝑧

P𝜋 (𝑅 |𝑠, 𝑎) = 𝑝𝑧 (𝑧)
𝜕𝑧

𝜕𝑅

= 𝑝𝑧 (𝑧)
𝜕𝑧

𝜕𝑅

= 𝑝𝑧 (𝑧)
(
𝜕𝑅

𝜕𝑧

)−1

= 𝑝𝑧 (𝑧)
(
𝜕𝑓𝜃 (𝑧)
𝜕𝑧

)−1

logP𝜋 (𝑅 |𝑠, 𝑎) = log𝑝𝑧 (𝑧) − log

(
𝜕𝑓𝜃 (𝑧)
𝜕𝑧

)
(4.1)

The log density of sampled return values only require the base distribution density and the deriva-

tive of the flow function. Therefore, choosing a flow function with easily computable derivatives

is crucial.

4.3.3 An Architecture Using CDF as a Valid, Flexible and Easily Invertible
Flow Function for Simple Density Computation

Now that the flow direction is fixed, we will decide the type of flow function to use. As mentioned

in 4.3.2, the choice of the flow function parameterisation is crucial as the flow has to be a valid

diffeomorphism and its determinant tractable.

The base distribution and the target distribution must possess the same dimensionality. In our

specific scenario, the distribution of returns is one-dimensional, thus requiring a one-dimensional

base distribution. Given our chosen formulation, where returns are expressed as a function of a

latent variable, denoted as 𝑅𝜋 = 𝑓 (𝑧), and the base distribution is transformed into the predicted

distribution, a viable approach involves learning a flexible flow function, parameterised by 𝜃 , that

depends on the state. This enables us to accommodate the state-dependent nature of the problem

and align the dimensions of the base and target distributions effectively as illustrated in figure

4.2.

To do so, we propose to establish the flow function from a specific family and introduce state-

dependent parameters for this family. In our case, we opt for a mixture of 𝑛 Gaussians each

parameterised by 𝜇𝑖 and 𝜎𝑖 , denoted as
∑𝑛
𝑖=1
𝑤𝑖N(𝜇𝑖, 𝜎𝑖). Let ℎ𝜃 be a neural network that outputs

the parameters (𝑤𝑖, 𝜇𝑖, 𝜎𝑖) of the Gaussian for a given state. Each Gaussian component is charac-

terised by three parameters: weight (𝑤𝑖), mean (𝜇𝑖), and standard deviation (𝜎𝑖). This mixture of

Gaussians represents one flow, and we can compose multiple flows as in a deep neural network.

For instance, if we require four flows with 𝑛 components in the mixture, the neural network ℎ𝜃
would output a total of 4 × 3 × 𝑛 parameters.

110

However, the PDF of the Gaussian mixture is not bijective, rendering it unsuitable as a usable

flow function. Its CDF, in the other hand, is bijective and a valid diffeomorphism. Therefore we

advocate for the use of CDFs as flow functions.

We believe that it is important to add more precision in order to avoid confusion. Indeed, in

section 4.3.1 we argued that learning a CDF is not an ideal choice for distributional RL as it

does not facilitate sampling. In section 4.3.1, the learnt CDF is the one corresponding to the

distribution of returns while in our approach we learn a flow function that takes the form

of a CDF and that transforms samples from the base distributions to samples from the target

one. In our approach, only the samples from the return distribution are determined by the

CDF flow but their corresponding density is determined by the change of variable formula

displayed in equation 4.1. Said otherwise, the learnt CDF is not the CDF of the predicted

return distribution.

Given a finite set of gaussian PDFs 𝑝1(𝑥), . . . , 𝑝𝑛 (𝑥), or corresponding cumulative distribution

functions 𝐹1(𝑥), . . . , 𝐹𝑛 (𝑥) and weights 𝑤1, . . . ,𝑤𝑛 such that 𝑤𝑖 ≥ 0 and

∑
𝑤𝑖 = 1, the mixture

distribution can be represented by writing either the density, 𝑝 , or the distribution function, 𝐹 ,

as a sum (which in both cases is a convex combination):

𝐹 (𝑥) =
∑︁
𝑖=1

𝑤𝑖𝐹𝑖 (𝑥)

𝑝 (𝑥) =
𝑛∑︁
𝑖=1

𝑤𝑖𝑝𝑖 (𝑥)

Given the parameters (𝑤𝑖, 𝜇𝑖, 𝜎𝑖), the CDF of each component of the mixture is easy to compute

and therefore the CDF of the mixture itself. The CDF being a bounded, continuous, strictly in-

creasing function, is hence bijective. Moreover it is differentiable (its derivative is the PDF). As

the CDF is continuously differentiable and bijective, according to the inverse function theorem,

its inverse function 𝐹−1
is also differentiable. Therefore, 𝐹 is a diffeormorphism and can thus be

used as a flow function.

The flow parameters are given by a neural network ℎ𝜃 which takes a state 𝑠 as input. This allows

to learn 𝜃 such as the model outputs different flows depending on the input state. However,

the target distribution is conditioned on the state-action pair and not only the state. In order

to output different flows (and hence different return distributions) for each action, for discrete

action spaces, we use multihead neural network, where each head outputs the return distribution

corresponding to a specific action. Therefore, the model consists of multiple heads, matching the

number of actions in the action space.

Figure 4.2 presents an overview of the model. Given an observed state 𝑠 , the network ℎ𝜃 outputs

the parameters (𝑤𝑖, 𝜇𝑖, 𝜎𝑖). This network has as many output heads as |A|. These parameters are

used to construct a gaussian mixture, from which we get a CDF. The CDF is the flow itself. Given

samples 𝑧 𝑗 ∼ U, the base distribution, we can get 𝑅𝜋
𝑗
= 𝐹 (𝑧 𝑗). With 𝑅𝜋

𝑗
∼ P𝜋 (·|𝑠, 𝑎𝑘).

Using CDFs as flow functions brings a number of benefits:

111

Figure 4.2: Overview of the model. Given a state 𝑠 , each head of the network outputs the param-

eters of the flow which turns 𝑧 ∼ U into 𝑅 ∼ P𝜋 (·|𝑠, 𝑎𝑖).

• Densities are easily computable: We recall that log𝑝 (𝑅 |𝑠, 𝑎) = log𝑝𝑧 (𝑧) − log

(
𝜕𝐹 (𝑧)
𝜕𝑧

)
. The

first part 𝑝𝑧 (𝑧) is easily computable by definition as we choose a simple base distribution.

The second part
𝜕𝐹 (𝑧)
𝜕𝑧

is also easy to compute as the derivative of the flow is simply the PDF

of the gaussian mixture. Easily computable densities is crucial as these quantities will be

required for training the model.

• Inverting the flow: One of the motivations of our approach is to be able to compute the

density of any given return value for any state-action pair. This process requires to compute

𝐹−1(𝑥), the inverse of the flow function. The flow being a CDF, its inverse is the quantile

function. Although there is no closed form quantile function for a gaussian mixture, it is

easy to compute through Bisection. However, as 𝐹 (𝑥) is monotonically increasing, we can

perform binary search on 𝑥 to find the smallest value such that 𝐹 (𝑥) is greater than or equal
to 𝑞, accordingly with the quantile function definition stated above.

• Non linearity: In order to be able to fit complex distributions, non linear transformations

are required as they ensure better expressivity. There exists a number of parametrisable

flows in the literature that guarantee differentiability and are invertible [KPB21]. Affine

coupling flows [DKB15] are limited in expressiveness and many flows must be stacked to

represent complicated distributions. Nonlinear squared flows [ZR19] require some con-

straints on their parameters while splines [Mül+19] necessitate to divide the domain into

𝑘 bins, which we preferred to avoid as the aim is to output continuous distributions unlike

discretized ones as in C51. The closest approach to ours is [Ho+19] which uses the CDF

of a mixture of 𝐾 logistics, postcomposed with an inverse sigmoid. As ours, this approach

assures more expressive coupling functions.

112

4.3.4 Rescaling the Flow Output as CDF Flows Restrict Returns Range

Given that the chosen flow function takes the form of a CDF, the predicted returns will always

fall within the interval [0, 1]. As one of the motivations of our model is to maintain continuous

and unbounded support for the predicted returns, a scaling step is mandatory.

By scaling the rewards within the range [0, 1], we ensure that the sum of discounted rewards

𝑅 =
∑∞
𝑖 𝛾

𝑖𝑟𝑖 ≤ 1

1−𝛾 . If 𝛾 = 0.9, then 0 ≤ 𝑅 ≤ 10. Therefore setting a value for 𝛾 and a range for 𝑟

enables to expand the space of possible returns. Consequently, we introduce an additional flow

layer that rescales the output of the previous flow layer, by multiplying it by 10. This rescaling

operation introduces a new term to the estimated return distribution mentioned in equation (4.1),

modifying its characteristics accordingly.

log(P𝜋 (𝑅 |𝑠, 𝑎)) = log(𝑝𝑧 (𝑧)) − log(𝜕𝐹 (𝑧)
𝜕𝑧
) − log(1/(1 − 𝛾)) (4.2)

4.3.5 Using a Flow to Build the RL Target Distribution

We believe it is important here to make the distinction between RL target distribution and NF

target distribution. Indeed, NF is a mapping between a NF base and NF target distribution.

The latter is the predicted return distribution from an RL perspective. During the learning

procedure, this distribution has then to be compared to the RL target distribution. In this

section, all mentions of target distribution correspond to the RL target distribution.

After detailing the inference model, this section will detail how we build the RL target distribu-

tion. Indeed, in contrast to the supervised learning setting, the target is not directly available in a

RL context. We will first explain how the target is usually built in Distributional RL, then we will

show that direct application of existing approaches do not lead to a proper distribution. Finally,

we will provide a solution to this issue by introducing a target flow.

Building Target Distributions in Distributional RL

As detailed in chapter 2, section 2.2, in their seminal paper introducing Distributional Reinforce-

ment learning, Bellemare, Dabney and Munos [BDM17] deviate from the conventional approach

of using expectations within Bellman’s equations and instead focus on the complete distribution

of the random variable 𝑍𝜋 defined as a mapping that associates state-action pairs with distri-

butions over returns, and refer to it as the value distribution. Similarly to the classic Bellman

operator, they introduced the distributional Bellman operator B𝜋 to compute the value distribu-

tion:

B𝜋𝑍𝜋 (𝑠, 𝑎) 𝐷:= 𝑟 (𝑠, 𝑎) + 𝛾𝑇𝜋𝑍𝜋 (𝑠, 𝑎) (4.3)

Where 𝑇𝜋 : Z ↦→ Z the transition operator:

𝑇𝜋𝑍
𝜋 (𝑠, 𝑎) 𝐷:= 𝑍𝜋 (𝑠′, 𝑎′)

𝑠′ ∼ T (·|𝑠, 𝑎), 𝑎′ ∼ 𝜋 (·|𝑠)
(4.4)

113

where 𝑌
𝐷
:= 𝑈 denotes equality of probability laws, that is the random variable Y is distributed ac-

cording to the same law as U. As in classic Q-learning, Equation 4.3 defines the target distribution

of 𝑍𝜋 (𝑠, 𝑎). The target is simply a scaling operation on𝑇𝜋𝑍
𝜋 (𝑠, 𝑎) (multiplying by gamma), and a

shift operation by the value of the reward 𝑟 (𝑠𝑡 , 𝑎𝑡) received from the environment as illustrated

in figure 4.3.

Figure 4.3: Illustration of the scale and shift operation for building the target distribution. The

distributional Bellman operator is applied on the predicted distribution𝑇𝜋𝑍
𝜋 (𝑠, 𝑎). Consequently,

𝑇𝜋𝑍
𝜋 (𝑠, 𝑎) is scaled by a factor 𝛾 and horizontally shifted by the amount of received reward after

performing action 𝑎 in state 𝑠; hence producing the target B𝜋𝑍𝜋 (𝑠, 𝑎).

Direct Application of the Distributional TD Update Does not Output a Proper Distribution

Unfortunately, the resulting distribution of B𝜋𝑍𝜋 (𝑠, 𝑎) is not a valid distribution over the chosen

support. Indeed, given a distribution ℎ with support in [0, 10]3, in order to shift and scale its

support, one would apply a function of the form 𝛾 · 𝑥 + 𝑟 to each input. This operation serves as

the learning update. Although this approach may seem convenient, it is important to note that

the resulting distribution will no longer be a density function. Specifically, if we consider the

function 𝑔(𝑥) = 0.9𝑋 + 1 as an example, it represents a transformation that shifts and scales the

distribution, but the resulting function does not meet the criteria of a valid probability density

function. For instance, if we recall that the rewards are scaled within the range [0, 1] and that

with 𝛾 = 0.9, 𝑅 ≤ 10, we have:

3
We recall that if 𝛾 = 0.9, then 𝑅 ≤ 10, therefore, supposing that ℎ is a valid distribution before the shift and scale

operation, we have

∫
10

0
ℎ(𝑥)𝑑𝑥 = 1. Indeed, for all 𝑥 > 10, ℎ(𝑥) = 0.

114

∫
10

0

ℎ(𝑔(𝑥))𝑑𝑥 =

∫
10

0

ℎ(0.9𝑥 + 1)𝑑𝑥

= 1/0.9
∫

10

1

ℎ(𝑥)

= 1/0.9(
∫

10

0

ℎ(𝑥)𝑑𝑥 −
∫

1

0

ℎ(𝑥)𝑑𝑥) (ℎ is a PDF so

∫
10

0

ℎ(𝑥)𝑑𝑥 = 1)

= 1/0.9(1 −
∫

1

0

ℎ(𝑥)𝑑𝑥)

≈ 1.1 − 1.1(
∫

1

0

ℎ(𝑥)𝑑𝑥)

≠ 1

(4.5)

If we consider as an example that ℎ is the PDF ofN(5, 1). In this specific example

∫
10

0
ℎ(𝑥)𝑑𝑥 ≈ 1.

But when we compute the value of 1.1 − 1.1(
∫

1

0
ℎ(𝑥)𝑑𝑥), we find it is > 1.

Introducing the Target Flow to Output Valid Target Distributions.

We introduce in this section one of the main novelties of this work. We consider the shift and

scale operation that is used to build the target distribution as a flow itself. Indeed, the function

𝑋 ↦→ 𝑟 + 𝛾 · 𝑥 is a valid diffeomorphism. Therefore, implementing the target update as a flow,

one can apply the change of variable formula to guarantee that the result will still be a valid

distribution. Therefore building the target simply consists on chaining three flows:

1. First we estimate the return distribution of 𝑠𝑡+1, 𝑎𝑡+1:

log(P𝜋 (𝑅 |𝑠𝑡+1, 𝑎𝑡+1)) = log(𝑝𝑧 (𝑧)) − log(𝜕𝐹
𝑠𝑡+1,𝑎𝑡+1 (𝑧)
𝜕𝑧

)

2. To build the target we need to scale that distribution by 𝛾 and shift it by 𝑟 . We just have to

build this operation as a flow by passing the function 𝑔 after 𝐹 𝑠𝑡+1,𝑎𝑡+1 (which we will simply

denote 𝐹 below). This way the target is:

log(P𝜋 (𝑅 |𝑠𝑡+1, 𝑎𝑡+1)) = log(𝑝𝑧 (𝑧)) − log

𝜕𝐹 (𝑧)
𝜕𝑧
− log

𝜕𝑔(𝐹 (𝑧))
𝜕𝐹 (𝑧)

= log(𝑝𝑧 (𝑧)) − log

𝜕𝐹 (𝑧)
𝜕𝑧
− log(𝛾)

(4.6)

3. Finally we add the last flow for return scaling and we obtain:

log(P𝜋 (𝑅 |𝑠𝑡+1, 𝑎𝑡+1)) = log(𝑝𝑧 (𝑧)) − log(𝜕𝐹 (𝑧)
𝜕𝑧
) − log(𝛾) − log

(
1

1 − 𝛾

)
Using this procedure, the target distribution is ensured to sum to one. Moreover, we can also

notice that the cost of this addition is limited as terms log(𝛾) and log

(
1

1−𝛾

)
are constants that

only depend on 𝛾 .

115

4.3.6 How to Model the Final State Target as a Distribution

As for traditional TD methods, the target for the final state in distributional RL is only the imme-

diate reward received 𝑟 . As in our case the target needs to be a distribution, 𝑟 can be considered

as a degenerate one, represented as a Dirac function. We choose to approximate it by a Gaus-

sian distribution centered on the reward value 𝑟 and which variance 𝜎 = 0.05, N(𝑟, 0.05). The
variance value is determined as follows.

In order to determine an appropriate 𝜎 , we first discretise the support [0, 10] (corresponding to

𝛾 = 0.9) into 51 bins, following the approach of the C51 model [BDM17]. Subsequently, the idea

is to ensure that 95% of the distribution mass falls within the bin containing 𝑟 . First, we can

calculate the width of each bin as 10/51 = 0.2. Knowing that 95% of the mass for any normal

distribution is within [𝜇 − 2𝜎, 𝜇 + 2𝜎] (figure 4.4), in order to achieve 95% mass within the bin

centered on 𝑟 , the interval becomes [𝑟 − 0.1, 𝑟 + 0.1]. Thus, the suitable choice of 𝜎 is 𝜎 = 0.05,

yielding the normal distribution N(𝑟, 0.05).

Figure 4.4: For a Gaussian distribution, 95% of mass density falls in the interval [𝜇 − 2𝜎, 𝜇 + 2𝜎].

4.4 Using the Cramèr Distance as a Loss Function

Once the target is defined, the last step is to construct the loss function. In this section, we will

first show that the KL divergence is not suited for the considered problem. Then in section 4.4.2,

we mention the three possible ways to compute the Wassertein distance (primal, dual and quan-

tile regression), and give more details about how the Wasserstein distance was used in existing

approaches. In sections 4.4.2 and 4.4.2 we explain that the dual form and the quantile regres-

sion method for computing the Wasserstein distance are not useful in our setup and show why

the primal is not applicable either. Finally in section 4.4.3 we show that the Cramèr distance is

superior to the Wasserstein distance in our setting and easier to compute using our flow based

architecture.

116

In this section we will loosen a bit the notation. Let 𝑓 (𝑧, 𝑠, 𝑎) be the flow for the predicted returns

and 𝑔(𝑧, 𝑠, 𝑎) the flow for the target distributions. This way 𝑅(𝑠, 𝑎) is a return predicted for state-

action pair (𝑠, 𝑎) such that 𝑅(𝑠, 𝑎) = 𝑓 (𝑧, 𝑠, 𝑎) for a certain 𝑧 ∼ U and 𝑡 (𝑠, 𝑎) the target return for

the same triplet, i.e. 𝑡 (𝑠, 𝑎) = 𝑔(𝑧, 𝑠, 𝑎). We also note 𝑃 the distribution of the predicted returns

and 𝑄 the distribution of target returns.

4.4.1 Why not Reverse KL Divergence

Aclassic approach is to use the KL divergence between 𝑃 and𝑄 , but one still has to decide between

using the Forward or Reverse KL divergence. As we fixed the flows such that 𝑅(𝑠, 𝑎) = 𝑓 (𝑧, 𝑠, 𝑎),
the right option would be to use the Reverse KL divergence:

𝐾𝐿(𝑃 | |𝑄) = 𝔼𝑅∼𝑃 log

𝑃 (𝑅)
𝑄 (𝑅)

Indeed, in this situation it is possible to evaluate the density of any return in the target distribution

but we cannot sample from it. We can only samples return values from the predicted distributions.

In this context, as the return distribution is one dimensional, contrary to the case we encountered

in chapter 3, the probability that the RKL discovers relevant regions in 𝑄 via sampling from 𝑃 is

in fact non negligible. However, if𝑄 (𝑅) = 0 in some 𝑅 where 𝑃 (𝑅) > 0, the RKL diverges towards

+∞. Given the tightly centered normal distributions defined for final states, this situation is more

than likely.

Moreover, it was proven in [BDM17] that the KL divergence is not a contraction for the distribu-

tional bellman operator B𝜋 .

4.4.2 Trying to Use the Wasserstein Distance as in Existing Approaches

The Wasserstein distance between 𝑃 and 𝑄 appears as a good candidate for a loss function as

it cannot diverge in the above example. Moreover, as detailed in chapter 2 section 2.5.4, the

Wasserstein distance takes into account the geometry of the space the distributions lie in. More

specifically, considering the example depicted in figure 4.3, if the𝛾 factor is set to 1, then the target

distribution would correspond to a simple horizontal shift of the predicted one. In that case, the

RKL would be null while the Wasserstein distance would be positive, taking into account the

distance corresponding to the shift. Therefore, the Wasserstein distance is conveniently robust

to discrepancies in support. However, Bellemare et. al [BDM17] proved that in the distributional

RL context, we are typically restricted to learning from sample transitions, which is not possible

under the Wasserstein loss (Proposition 5). In this section we will mention the different ways to

compute the Wasserstein distance and why it is not suited for our approach.

There are three ways to compute the Wasserstein distance, using its primal form, the dual form

or the quantile function based formulation.

QR-DQN and IQN solved the issue encountered in C51 by making use of the inverse CDF char-

acterisation of the 𝑝-Wasserstein metric [Mül97]. That is, the 𝑝-Wasserstein metric between two

117

distributions𝑈 and 𝑌 is given by:

𝑊𝑝 (𝑈 ,𝑌) =
(∫

1

0

|𝐹−1

𝑌 (𝜔) − 𝐹
−1

𝑈 (𝜔) |
𝑝𝑑𝜔

)1/𝑝
(4.7)

Using the quantile regression they could obtain an unbiased stochastic approximation of the

quantile function in order to obtain unbiased gradients.

The dual approach was noticeably used inWGAN [ACB17] where the authors used the dual form

of the 1-Wasserstein in order to obtain a viable optimisation through SGD:

𝑊1(𝑃,𝑄) = sup

𝑓 ∈F𝐿

[
𝔼𝑋∼𝑃 [𝑓 (𝑋)] − 𝔼𝑌∼𝑄 [𝑓 (𝑌)]

]
where F𝐿 is the class of all 1-lipschitz functions.

Leveraging NF to simplify the Wasserstein Distance Computation

In our case, it is not possible to compute the dual form nor rely on quantile regression. We will

therefore try to make use of the primal form of the Wasserstein distance defined as:

𝑊𝑐 (𝑃,𝑄) := inf

𝛾∈Π(𝑃,𝑄)
𝔼(𝑋,𝑌)∼𝛾 [𝑐 (𝑋,𝑌)]

Where 𝑐 (𝑥,𝑦) : X×X is any measurable cost function and Π(𝑃,𝑄) the set of all joint distributions
with marginals 𝑃 and 𝑄 .

The computation of the Wasserstein distance using its primal form can be a tedious task, as it

involves solving an optimisation problem with the set of all couplings as the search space. How-

ever, leveraging the normalizing flows framework, we propose a more manageable approach. By

observing that 𝑅(𝑠, 𝑎) = 𝑓 (𝑧, 𝑠, 𝑎) and 𝑡 (𝑠, 𝑎) = 𝑔(𝑧, 𝑠, 𝑎), and assuming that 𝑓 and 𝑔 are bijective

functions sharing the same input values 𝑧, a one-to-one relationship is established between each

𝑅(𝑧, 𝑠, 𝑎) and 𝑡 (𝑧, 𝑠, 𝑎). Indeed, we first sample a 𝑧 ∼ U for which there exist a unique𝑅(𝑧, 𝑠, 𝑎) and
a unique 𝑡 (𝑧, 𝑠, 𝑎). Therefore there exists a one-to-one mapping between 𝑅(𝑧, 𝑠, 𝑎) and 𝑡 (𝑧, 𝑠, 𝑎).
Consequently, there is no need to search over the space of all possible couplings, as this con-

straint narrows it down to a unique coupling 𝛾†. This reduction simplifies the computation of the

Wasserstein distance to:

𝑊 †𝑐 (𝑃,𝑄) = 𝔼(𝑋,𝑌)∼𝛾† [𝑐 (𝑋,𝑌)]

The Simplification Does not Yield the Correct Distance

While this constrained bijection between 𝑋 and 𝑌 offers the huge advantage of erasing the in-

fimium operator, it comes with several disadvantages. First,𝑊
†
𝑐 is an upper bound of𝑊𝐶 . Indeed

there is no guarantee that the constrained coupling is the one that minimises the distance for the

cost function 𝑐; therefore:

𝑊𝑐 (𝑃,𝑄) ≤𝑊 †𝑐 (𝑃,𝑄)

118

Figure 4.5: Given two distributions 𝑃 and 𝑄 and two flows 𝐹 , 𝑔. If samples 𝑧𝑖 are drawn from

a base distribution U and used as input in each of the flows, as the flows are bijections, there

is a one to one relation between 𝐹 (𝑧𝑖) and 𝑔(𝑧𝑖). This implies that the couplings required for

computing the Wasserstein distance are restricted by the flows.

Moreover, the coupling𝛾† is not guaranteed (it practically never happens) to respect themarginals

of 𝑋 and 𝑌 . Considering the same transport plan example as in chapter 2, section 2.5.4 that we

display below for more convenience, the goal is to find the optimal transport plan between𝑋 and

𝑌 . Let 𝑑 be our cost function and𝑚𝑖, 𝑗 the mass to transport from 𝑥𝑖 to 𝑦 𝑗 .

Figure 4.6: Example of a transport plan. To each point is assigned a mass and the goal is to move

the blue masses towards the red ones.

Table 4.1 presents an example of strategy. We notice that the sum of columns and rows correspond

119

𝑥1 𝑥2 𝑥3 𝑥4

0.4 0.1 0.3 0.2

𝑦1 0.3 0.3 0 0 0

𝑦2 0.4 0.1 0.1 0.2 0

𝑦3 0.3 0 0 0.1 0.2

Table 4.1: Example of a transport plan.

to values outside the matrix. The𝑊1 distance is therefore:∑︁
𝑖, 𝑗

𝑚𝑖, 𝑗𝑑 (𝑥𝑖, 𝑦 𝑗) :𝑚𝑖 𝑗 ≥ 0,
∑︁
𝑖

𝑚𝑖, 𝑗 = 𝜂𝑖,
∑︁
𝑗

𝑚𝑖, 𝑗 = 𝛼𝑖 (4.8)

Where 𝑃 (𝑥𝑖) = 𝜂𝑖 and 𝑃 (𝑦𝑖) = 𝛼𝑖 . This formula states that the quantity of mass that leaves 𝑥 ,∫
𝑦
𝛾 (𝑥,𝑦)𝑑𝑦 should be equal to the mass that was originally present in 𝑥 . In the same manner, the

quantity of mass that enters 𝑦,
∫
𝑥
𝛾 (𝑥,𝑦)𝑑𝑥 should be equal to the mass in the marginal𝑚·, 𝑗 .

Let 𝛽 be the bijection that associates a 𝑦𝑖 ∈ 𝑌 to each 𝑥𝑖 ∈ 𝑋 , this means that mass 𝑃 (𝑥𝑖) is moved

towards 𝑦𝑖 . However the conditions on marginals stated above are not respected as shown in

figure 4.7. Indeed, there is no guarantee that 𝑃 (𝑥𝑖) = 𝑃 (𝑦𝑖). Therefore, the coupling 𝛾† defined by
the bijection 𝛽 is generally not in the set of feasible couplings defining a suitable transport plan

traditionally taken into for the Wassertein distance.

As a result, regardless of the chosen cost, we are no longer optimising theWasserstein distance. In

the subsequent section, we will demonstrate how this bijection can still be leveraged to construct

an approximation of the Cramèr Distance.

4.4.3 The Cramèr Distance is Ideal and has Unbiased Sample Gradients

Similar to the Wasserstein distance, the Cramèr distance provides a measure of the distance be-

tween probability distributions in a metric space. Given two cumulative distributions of a real

random variable 𝑋 , denoted as 𝑃 (𝑥) and 𝑄 (𝑥), the Cramèr distance is defined as follows:

𝐶𝑝 (𝑃,𝑄) =
(∫ ∞

−∞
|𝑃 (𝑥) −𝑄 (𝑥) |𝑝

)
1/𝑝

The work presented in [Sej+13] has established that the Cramèr distance falls within the family of

integral probability metrics (IPM), akin to the Wasserstein distance. This stands in contrast to KL

and reverse KL divergences, which belong to the family of f-divergences, not IPMs. Notably, when

the parameter 𝑝 = 1, the Wasserstein distance and the Cramèr distance coincide. To illustrate

this visually, considering 𝑋 on the abscissa and the cumulative distribution function (CDF) on

the ordinate, the Wasserstein distance involves summing over horizontal slices while sweeping

vertically. On the other hand, the Cramèr distance entails summing over vertical slices while

sweeping horizontally, as depicted in figure 4.8.

In [Bel+17], it was proven that the Cramèr distance holds the following properties:

120

Figure 4.7: Given 𝑧𝑖 ∼ U the base distribution and two flow functions 𝐹 and 𝑔, the flows being

bijective, there exist unique images 𝑓 (𝑧𝑖) and 𝑔(𝑧𝑖) that are samples from the distributions 𝑃 and

𝑄 respectively. However 𝑃 (𝑓 (𝑧𝑖)) ≠ 𝑄 (𝑔(𝑧𝑖)), therefore if 𝑔(𝑧𝑖) is the only sample associated to

𝑓 (𝑧𝑖) in a transport plan, the conditions displayed in equation 4.8 are broken.

Figure 4.8: Using CDFs to compute the Wasserstein and Cramèr distances. Middle: Calculating
the Wasserstein distance involves summing over the horizontal distances 𝑎𝑖 . Right: Calculating
the Cramèr distance involves summing over vertical distances 𝑎𝑖 .

Consider a divergence d, and for two randomvariables𝑋,𝑌 with distributions 𝑃,𝑄 , write d(𝑋,𝑌) :=

d(𝑃,𝑄). We say that d is scale sensitive (of order 𝛽), i.e. it has property (S) if there exists a 𝛽 > 0

such that for all 𝑋,𝑌 , and a real value 𝑐 > 0,

d(𝑐𝑋, 𝑐𝑌) ≤ |𝑐 |𝛽d(𝑋,𝑌) (S)

A divergence d has property (I), i.e. it is sum invariant, if whenever 𝐴 is independent from 𝑋,𝑌

d(𝐴 + 𝑋,𝐴 + 𝑌) ≤ d(𝑋,𝑌) (I)

121

A divergence is said ideal if it possesses both (S) and (I).

Let 𝑋𝑚 := 𝑋1, 𝑋2, . . . , 𝑋𝑚 be independent samples from 𝑃 and define the empirical distribution

𝑃𝑚 := 𝑃𝑚 (𝑋𝑚) := 1

𝑚

∑𝑚
𝑖=1
𝛿𝑋𝑖

. From this, define the sample loss 𝜃 ↦→ d(𝑃𝑚, 𝑄𝜃). We say that d has

unbiased sample gradients when the expected gradient of the sample loss equals the gradient of

the true loss for all 𝑃 and𝑚:

𝔼𝑋𝑚∼𝑃∇𝜃d(𝑃𝑚, 𝑄𝜃) = ∇𝜃d(𝑃,𝑄𝜃) (U)

If a divergence does not possess (U), then minimising it with stochastic gradient descent may not

converge or towards the wrong minimum. Conversely, if d possesses (U) then we can guarantee

that the distribution which minimises the expected sample loss is 𝑄 = 𝑃 . From these properties,

[Bel+17] draws the following propositions:

Proposition 1: The KL divergence has unbiased sample gradients (U), but is not scale sensitive (S).
Proposition 2: The Wasserstein metric is ideal (I, S), but does not have unbiased sample gradients.

Moreover, they also show that the Cramér distance has the same appealing properties as the

Wasserstein metric, but also provides unbiased sample gradients. This distance is therefore ideal

for our approach. However, it necessitates the CDFs of the predicted and target distributions

which are not available. We propose to use a taylor expansion to make the available PDFs useful.

If 𝑃 (𝑥), 𝑄 (𝑥) are two cumulative distributions of the real random variable 𝑋 and 𝑝 (𝑥) and 𝑞(𝑥)
their respective PDFs,

𝑃 (𝑥) −𝑄 (𝑥) = 𝑃 (𝑥0) + 𝑝 (𝑥0) (𝑥 − 𝑥0) −𝑄 (𝑥0) + 𝑞(𝑥0) (𝑥 − 𝑥0)
= (𝑥 − 𝑥0) (𝑃 (𝑥0) + 𝑝 (𝑥0) −𝑄 (𝑥0) − 𝑞(𝑥0))

(4.9)

Let𝑅 be the predicted return such that𝑅 = (𝑧), 𝑧 ∼ 𝑈 and 𝑡 the predicted return such that 𝑡 = 𝑔(𝑧).
Fixing 𝑡 = 𝑥 and 𝑅 = 𝑥0:

𝑃 (𝑡) −𝑄 (𝑡) = (𝑡 − 𝑅) (𝑃 (𝑅) + 𝑝 (𝑅) − 𝑞(𝑟) −𝑄 (𝑅))

|𝑃 (𝑡) −𝑄 (𝑡) | = | (𝑡 − 𝑅) | · | (𝑃 (𝑅) + 𝑝 (𝑅) − 𝑞(𝑅) −𝑄 (𝑅)) |

From the expression above and the fact that 𝑝 and 𝑞 are the derivatives of 𝑃 and𝑄 respectively, it

is clear that if 𝑝 (𝑅) −𝑞(𝑅) > 0 then 𝑃 (𝑅) −𝑄 (𝑅) is increasing. Therefore the higher the difference
𝑝 (𝑅)−𝑞(𝑅) the higher is the term 𝑃 (𝑅)−𝑄 (𝑅). Finally, 𝑝 (𝑅)−𝑞(𝑅) and 𝑃 (𝑅)−𝑄 (𝑅) are positively
correlated. We can deduce that the expression:

|𝑡 − 𝑅 | · (𝑝 (𝑅) − 𝑞(𝑅))2

is an acceptable optimisation surrogate for the Cramér distance. Adapting this surrogate to our

approach, let 𝐹 be the flow corresponding to the predicted distribution and𝑔 the flow of the target

distribution, the optimisation criteria is:

L(𝜃, 𝑧) = 1

𝑁

𝑁∑︁
𝑖=1

(𝑝 (𝑓 (𝑧𝑖)) − 𝑞(𝑓 (𝑧𝑖)))2 · |𝑓 (𝑧𝑖) − 𝑔(𝑧𝑖) | (4.10)

In the next sections we will investigate the three following questions:

122

• Q1: Is this loss a proper distance? If so, then the Cramèr loss function would be symmetric

and scale sensitive unlike KL divergence.

• Q2: Is the distributional Bellman operator a contraction in this case? If so, this would ensure

convergence of the distributional Bellman operator B𝜋𝑅𝑘 towards the random returns 𝑍𝜋 .

• Q3: Does it still possess the unbiased sample gradient estimate property? If so, then SGD

can be used to optimise this loss function in a RL context unlike the Wasserstein distance.

More specifically, we will be able to learn from sample transitions.

Q1: Is L a proper distance?

To ease the notation let 𝜋1 and 𝜋2 be two pdfs defined on the same support, and 𝑑 (𝜋1, 𝜋2) the
function defined by equation (4.10):

𝑑 (𝜋1(𝑓 (𝑧)), 𝜋2(𝑓 (𝑧)) = (𝜋1(𝑓 (𝑧)) − 𝜋2(𝑓 (𝑧)))2 · |𝑓 (𝑧) − 𝑔(𝑧) |

As a product of two absolute values, the symmetry and triangle equality are clear. However it is

interesting to verify that 𝑑 (𝜋1, 𝜋2) = 0 ⇐⇒ 𝜋1 = 𝜋2.

If 𝜋1 = 𝜋2 = 0 then |𝜋1(𝑓 (𝑧)) − 𝜋2(𝑓 (𝑧)) | = 0 for all 𝑧, therefore 𝑑 (𝜋1, 𝜋2) = 0.

On the other hand,

𝑑 (𝜋1, 𝜋2) = 0 =⇒ 𝜋1(𝑓 (𝑧)) − 𝜋2(𝑓 (𝑧)) = 0 or 𝑓 (𝑧) − 𝑔(𝑧) = 0

=⇒ 𝜋1(𝑓 (𝑧)) = 𝜋2(𝑓 (𝑧)) or 𝑓 (𝑧) = 𝑔(𝑧)
(4.11)

𝑓 (𝑧) = 𝑔(𝑧) ⇐⇒ 𝜕𝑓 (𝑧)
𝜕𝑧

=
𝜕𝑔(𝑧)
𝜕𝑧

⇐⇒ 𝑝𝑧
𝜕𝑓 (𝑧)
𝜕𝑧

= 𝑝𝑧
𝜕𝑔(𝑧)
𝜕𝑧

⇐⇒ 𝜋1(𝑓 (𝑧)) = 𝜋2(𝑔(𝑧))

(4.12)

𝜋1(𝑓 (𝑧)) = 𝜋 (𝑓 (𝑧)) ⇐⇒ 𝜋1 = 𝜋2 because 𝑓 being a diffeomorphism, 𝑓 (𝑧) is compact on the

support of𝑈 (𝑧).

These equivalences are true for all 𝑧, and L being a sum on positive values, these relations are

also true for 𝑑 (𝜋1, 𝜋2) = 1

𝑁

∑𝑁
𝑖=1
|𝜋1(𝑓 (𝑧𝑖)) −𝜋2(𝑓 (𝑧𝑖)) | · |𝑓 (𝑧𝑖) −𝑔(𝑧𝑖) |. We can therefore conclude

that 𝑑 is a proper distance function.

Q2: Is the Distributional Bellman Operator a Contraction for 𝒅?

Consider a scalar 𝑎 and a random variable 𝐴 independent of random variables 𝑈 and 𝑉 . The

metric 𝑑 shares the following two properties with the Wasserstein distance:

𝑑 (𝑎𝑈 , 𝑎𝑉) ≤ |𝑎 |𝑑 (𝑈 ,𝑉)

𝑑 (𝐴 +𝑈 ,𝐴 +𝑉) ≤ 𝑑 (𝑈 ,𝑉)

123

In [BDM17], the authors use these two properties to prove that B𝜋 : Z −→ Z is a 𝛾 contraction

in
¯𝑑𝑝 . Where

¯𝑑𝑝 is defined as

¯𝑑𝑝 (𝑍1, 𝑍2) = sup

𝑠,𝑎

𝑑𝑝 (𝑍1(𝑠, 𝑎), 𝑍2(𝑠, 𝑎))

Where 𝑑𝑝 is the 𝑝-Wasserstein distance and 𝑍1, 𝑍2 ∈ Z. As 𝑑 shares these same two properties

with 𝑑𝑝 , the proof is identical. We will share it here for completeness.

By definition,

¯𝑑 (B𝜋𝑍1,B𝜋𝑍2) = sup

𝑠,𝑎

𝑑 (B𝜋𝑍1(𝑠, 𝑎),B𝜋𝑍2(𝑠, 𝑎))

By the properties of 𝑑 , we have:

𝑑 (B𝜋𝑍1(𝑠, 𝑎),B𝜋𝑍2(𝑠, 𝑎)) = 𝑑 (𝑟 (𝑠, 𝑎) + 𝛾𝑇𝜋𝑍1(𝑠, 𝑎), 𝑟 (𝑠, 𝑎) + 𝛾𝑇𝜋𝑍2(𝑠, 𝑎))
≤ 𝛾𝑑 (𝑃𝜋𝑍1(𝑠, 𝑎),𝑇𝜋𝑍2(𝑠, 𝑎))
≤ 𝛾 sup

𝑠′,𝑎′
𝑑 (𝑍1(𝑠′, 𝑎′), 𝑍2(𝑠′, 𝑎′))

(4.13)

Where the last line follows from the definition of 𝑇𝜋 . Therefore:

¯𝑑 (B𝜋𝑍1,B𝜋𝑍2) =
∑︁
𝑠,𝑎

𝑑 (B𝜋𝑍1(𝑠, 𝑎),B𝜋𝑍2(𝑠, 𝑎))

≤ 𝛾 ‘

∑︁
𝑠′,𝑎′

𝑑 (𝑍1(𝑠′, 𝑎′), 𝑍2(𝑠′, 𝑎′))

= 𝛾 ¯𝑑 (𝑍1, 𝑍2)

(4.14)

Therefore, B𝜋 : Z −→ Z is a 𝛾 contraction in
¯𝑑 . We conclude using Banach’s fixed point theorem

that B𝜋 has a unique fixed point, which is 𝑍𝜋 . Assuming all moments are bounded, we can

conclude that the sequence (𝑍𝑘) converges to 𝑍𝜋 in
¯𝑑 .

Q3: Does 𝒅 Have Unbiased Sample Gradients Estimates?

In [BDM17], while proving convergence and contraction results using the Wasserstein distance,

the authors explain that it cannot be used because, in RL we are typically restricted to learning

from sample transitions, which is not possible under theWasserstein loss. This is justified through

the following proposition: Fix some next-state distribution 𝑍 and policy 𝜋 . Consider a parametric
value distribution 𝑍𝜃 , and define the Wasserstein loss:

L𝑊 (𝜃) := 𝑑𝑝 (𝑍𝜃 (𝑠, 𝑎), 𝑟 (𝑠, 𝑎) + 𝛾𝑍 (𝑠′, 𝜋 (𝑠′)))

Let 𝑠′ ∼ T (·|𝑠, 𝑎) and consider the sample loss:

𝐿𝑊 (𝜃, 𝑟, 𝑠′) := 𝑑𝑝 (𝑍𝜃 (𝑠, 𝑎), 𝑟 + 𝛾𝑍 (𝑠′, 𝜋 (𝑠′))

Its expectation is an upper bound on the loss L𝑊 :

L𝑊 (𝜃) ≤ 𝔼𝑅,𝑃𝐿𝑊 (𝜃, 𝑟, 𝑠′)

124

in general with strict inequality.

Nonetheless, the fact that the sample estimate serves as an upper bound is not a critical impedi-

ment to learning and achieving convergence towards the desired parameters. The main concern

lies in the observation made in [Bel+17], where the authors demonstrate that the Wasserstein

distance lacks the property (U). This finding leads to the following theorem:

Consider 𝑃 = 𝐵(𝜃 ∗) a Bernoulli distribution with parameter 𝜃 ∗ and 𝑄𝜃 = 𝐵(𝜃). The empirical

distribution 𝑃𝑚 is derived from samples 𝑋1, . . . , 𝑋𝑚 drawn from 𝐵(𝜃 ∗). We have
ˆ𝜃 = 1

𝑚

∑𝑚
𝑖=1

𝕀𝐴,

with 𝕀𝐴(𝑖) the indicator function of event 𝐴 : 𝑋 = 1. Then the minimum of the expected sample

loss is in general different from the minimum of the true Wasserstein loss:

arg min

𝜃

𝔼[𝑊𝑝 (𝑃𝑚, 𝑃 (𝜃 ∗)] ≠ arg min

𝜃

𝑊𝑝 (𝑄𝜃 , 𝑃 (𝜃 ∗))

In the following we shall prove that the distance 𝑑 holds property (U), and therefore that:

arg min

𝜃

L(𝜃) = arg min

𝜃

𝔼𝑅,𝑃L(𝜃, 𝑟, 𝑠′)

We will first consider an example through the MDP depicted in figure 4.9.

Figure 4.9: Example of stochastic MDP, where the same action 𝐴 leads to 2 different states with

equal probability, and different rewards 𝑅.

Consider the metric 𝑑 between the distribution 𝑃 and another distribution 𝑄 defined as:

𝑃 =

{
0 w.p 1/2
1 w.p 1/2

(4.15)

125

In this example, 𝑖 ∈ {1, 2}, 𝑃1 = 0, and 𝑃2 = 1. We now consider the distribution 𝑄 with the same

support but that puts probability 𝑝 on 0:

𝑄 =

{
0 w.p 𝑝

1 w.p 1 − 𝑝
(4.16)

The distance between 𝑃 and 𝑄 is

𝑑 (𝑃,𝑄) = (𝑝 − 1/2)2 + (1 − 𝑝 − 1/2)2

= 2𝑝2 − 2𝑝 + 1/2
(4.17)

There 𝑑 = 0 ⇐⇒ 𝑝 = 1/2.

Now, considering the MDP in figure 4.9, this means that we first observe the value 0, then the

value 1. When observing the value 0, this means that we have to calculate the distance between

the distributions illustrated in figure 4.10:

Figure 4.10: Illustration of empirical distributions considered in the example of equation 4.16.

In this case, 𝑑 (𝑃,𝑄) = (𝑃 (0) −𝑄 (0)2 = (1 − 𝑝)2., Using the same reasoning, observing the value

1, we get 𝑑 (𝑃,𝑄) = 𝑝2
. Therefore:

𝔼
[
𝑑 (𝑃,𝑄)

]
=

1

2

(1 − 𝑝)2 + 1

2

𝑝2

=
1

2

+ 𝑝2 − 𝑝

∇𝔼
[
𝑑 (𝑃,𝑄)

]
= 0

𝑝 =
1

2

(4.18)

Through this example we see that 𝔼
[
𝑑 (𝑃,𝑄)

]
> 𝑑 (𝑃,𝑄), but most importantly:

arg min

𝑝

𝑑 (𝑃,𝑄) = arg min

𝑝

𝔼[𝑑 (𝑃,𝑄)] and ∇𝑑 (𝑃,𝑄) = ∇𝔼[𝑑 (𝑃,𝑄)]

126

Both distances reach their minimum for the same parameter 𝑝 , and optimising one or the other

through SGD should converge towards the same parameters. Next we will prove this result more

generally, although the proof is similar.

Consider 𝑃 = B(𝜃 ∗) a Bernoulli distribution with parameter 𝜃 ∗ and 𝑄𝜃 = B(𝜃). The empirical

distribution 𝑃𝑚 is a Bernoulli distribution with
ˆ𝜃 = 1

𝑚

∑𝑛
𝑖=1

𝕀𝐴 with 𝕀𝐴 the indicator function for

the event 𝐴.

𝑑 (𝑃,𝑄) = (𝜃 ∗ − 𝜃)2 + (1 − 𝜃 ∗ + 𝜃 − 1)2

= 2(𝜃 − 𝜃 ∗)2

∇𝜃𝑑 (𝑃,𝑄) = 4(𝜃 − 𝜃 ∗)
(4.19)

𝑑 (𝑃,𝑄) = (ˆ𝜃 − 𝜃)2 + (1 − ˆ𝜃 + 𝜃 − 1)2

= 4(𝜃 − ˆ𝜃)2

∇𝜃𝑑 (𝑃,𝑄) = 4(𝜃 − ˆ𝜃)
𝔼𝑚∇𝜃𝑑 (𝑃,𝑄) = 4𝔼𝑚 (𝜃 − ˆ𝜃)

= 4𝔼𝑚 (𝜃 −
1

𝑚

∑︁
𝕀𝐴)

lim

𝑚−→∞𝔼𝑚∇𝜃𝑑 (𝑃,𝑄) = 4(𝜃 − 𝜃 ∗)

(4.20)

Where in the penultimate line, we used the fact that
1

𝑚

∑
𝕀𝐴 is an unbiased estimator of 𝜃 ∗. There-

fore:

lim

𝑚−→∞𝔼𝑚∇𝜃𝑑 (𝑃,𝑄) = ∇𝜃𝑑 (𝑃,𝑄)

Finally,

arg min

𝜃

𝑑 (𝑃,𝑄) = ∇𝜃𝑑 (𝑃,𝑄)

To conclude, we proved that:

• Our loss function is a proper distance

• The distributional Bellman operator is a 𝛾-contraction in
¯𝑑

• The minimum of the expected sample loss is the same as the minimum of the true loss.

The entire process is presented in algorithm 4.

4.5 Experimental Results

In the context of solving classic gym environments [Bro+16], our method offers a significant

advantage by providing multimodal return distributions that are particularly evident in critical

127

Algorithm 4 Normalizing Flows Distributional RL

Require: 𝑛epochs: number of epochs, 𝑛: number of flows, U: base distribution, 𝑐: number of

gaussian mixture components, 𝑁 : number of samples to draw fromU, 𝛾 : the discount factor,

𝜂: learning rate, (𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠′𝑖): a batch of transitions, 𝐾 : number of transitions

Initialise model𝑀 with weights 𝜃

for 𝑘 from 1 to 𝑛epochs do
(𝑧1, . . . , 𝑧𝑁) ∼ U ⊲ Sample 𝑁 samples from the base distribution

for 𝑖 from 1 to 𝐾 do
(𝜇𝑐𝑖 , 𝜎𝑐𝑖 ,𝑤𝑐

𝑖)𝑛 ←− 𝑀𝜃 (𝑠𝑖) ⊲ Get the flows parameters for each 𝑠𝑖 using the model𝑀𝜃

for 𝑗 from 1 to 𝑁 do
for𝑚 from 1 to 𝑛 do

𝐹
𝑠𝑖
𝑚 (𝑧 𝑗) ←−

∑
𝑐 𝑤

𝑐,𝑚N(𝜇𝑐,𝑚, 𝜎𝑐,𝑚) (𝐹 𝑠𝑖
𝑚−1
(𝑧 𝑗)) ⊲ Compute 𝐹

𝑠𝑖
𝑚 the CDFs of the

gaussian mixtures

end for
end for
𝑓
𝑠𝑖
𝜃

:= 1

1−𝛾 𝐹
𝑠𝑖
0
◦ 𝐹 𝑠𝑖𝑛 ⊲ Define the flow as the composition of all intermediate flows

for 𝑗 from 1 to 𝑁 do
𝑅
𝑠𝑖
𝑗
←− 𝑓 𝑠𝑖

𝜃
(𝑧 𝑗) ⊲ Compute the predicted return samples for each 𝑠𝑖

log 𝑃𝜃 (𝑅𝑠𝑖𝑗) = log𝑝𝑧 (𝑧 𝑗) + log

𝜕𝑓
𝑠𝑖
𝜃
(𝑧 𝑗)

𝜕𝑧 𝑗
⊲ Compute sampled returns densities using

the change of variable formula

end for
(𝜇𝑐𝑖 , �̂�𝑐𝑖 , �̂�𝑐

𝑖)𝑛 ←− 𝑀𝜃 (𝑠′𝑖) ⊲ Get the flows parameters for each 𝑠𝑖 using the model𝑀𝜃

𝑔
𝑠′𝑖
𝜃

:= 1

1−𝛾 𝑟𝑡 + 𝛾𝐹
𝑠′𝑖
0
◦ 𝐹 𝑠

′
𝑖
𝑛 ⊲ Define 𝑔 as the target flow

for 𝑗 from 1 to 𝑁 do
𝑇𝑗 ←− 𝑔

𝑠′𝑖
𝜃
(𝑧 𝑗) ⊲ Compute the target return samples for each 𝑠′𝑖

𝑄𝜃 (𝑅 𝑗) = 𝑝𝑧 (𝑔−1

𝜃
(𝑅 𝑗)) + log

𝜕𝑔𝜃 (𝑔−1

𝜃
(𝑅 𝑗))

𝜕𝑔−1

𝜃
(𝑅 𝑗)

end for
end for
L(𝜃) = 1

𝐾
1

𝑁

∑𝐾
𝑖=1

∑𝑁
𝐽=1
(𝑃𝜃 (𝑅𝑠𝑖𝑗) −𝑄𝜃 (𝑅

𝑠𝑖
𝑗
))2 · |𝑅𝑠𝑖

𝑗
−𝑇 𝑠𝑖

𝑗
|

𝜃𝑘+1 ←− 𝜃𝑘 − 𝜂∇L(𝜃𝑘)
end for

128

states. For example, in the cartpole environment, the multimodality becomes apparent only in

the final states, where distinct actions lead to dramatic consequences. To effectively showcase

the benefits of our model, we will first present the achieved results on various configurations of

simple Markov Decision Processes (MDPs) and subsequently demonstrate its performance on the

FrozenLake environment.

In all these environments we used the same architecture consisting of one hidden layer of 256

neurons outputting the flow parameters, one flow layer composed of 4 gaussians, whichmixture’s

CDF is used as a flow. We used N(0, 1) as a base distribution. The mean returns were computed

over 100 draws from the base distribution. We used a learning rate of 0.001 and 𝛾 = 0.9.

4.5.1 Simple MDPs

In this section, we present the results obtained for three different MDPs showcasing various

configurations that can be encountered in any RL environment, as illustrated in figure 4.11. The

first MDP is the simplest, comprising a deterministic structure with one initial state and two final

states, both accessible through two distinct actions𝐴1 and𝐴2. In this setting, 𝑆1 yields a reward of

1, while 𝑆2 offers a reward of 5. The predicted returns manifest as normal distributions centered

on the values 1 or 5.

In the second scenario, we maintain the same deterministic MDP as before but introduce an

additional intermediate state that offers a reward of 1. Consequently, the predicted returns for 𝑆1

and 𝑆2 are centered on 1 and 2, respectively. Furthermore, the predicted returns for 𝑆3 and 𝑆4 are

centered on 1 + 𝛾𝑅(𝑆). This specific example effectively demonstrates our model’s capability to

predict distributions that consider time discounting.

In the final and most significant scenario, we consider a stochastic MDP where a single action

results in different states with a 50% probability each. These states have drastically distinct values.

In this case, our model successfully outputs bi-modal distributions centered on the appropriate

return values, effectively capturing the inherent uncertainty and variability in the system.

Additionally, we illustrate the scenario where three modes are possible in figure 4.12. While

the model accurately predicts the correct modes, we observe that it assigns some mass to areas

that should have a null density. This phenomenon arises from our approximation of the Cramèr

distance and will also be evident in our experiments on the Frozen Lake environment.

4.5.2 Frozen Lake

The Frozen Lake environment provides a stochastic settingwhere the presence of multimodalities

can be easily visualized. In this environment, an ice skater aims to navigate from the starting point

towards the goal while avoiding holes in the ice. Due to the slippery nature of the ice, the agent

may occasionally move in directions perpendicular to the intended path. For example, if the agent

chooses to go right, it has a probability of 1/3 to move right, 1/3 to move up, and 1/3 to move

down. This exaggerated level of stochasticity enables us to observe significant changes in state

values depending on the chosen action, making it an ideal scenario for illustration purposes, as

it generates pronounced multimodalities in the Q-value distributions. The two configurations,

namely 3 × 3 and 4 × 4 are shown in figure 4.13.

129

Figure 4.11: Our model predicted return distributions on 3 simple MDP scenarios going from

state 𝑆0 and performing either action 𝐴0 or 𝐴1. The blue distribution represents the return for

state-action pair (𝑆0, 𝐴1) and the orange one represents (𝑆0, 𝐴0). Above: the agent reaches the

final state and the learnt distribution is a gaussian centered around the received reward. Middle:
the final state is reached after two steps, the model effectively learns distributions centered on

the discounted sum of rewards. Below: Example on stochastic MDP; we observe that the models

learn bimodal distributions for both actions.

In figure 4.14, we depict the predicted returns for a 3 × 3 grid within the Frozen Lake environ-

ment, where the rewards have been shaped to reflect the distance (in the sense on Manhattan

distance) of each state to the final state. The lower is the distance, the higher is the reward.

This shaping enables the highlighting of multimodalities more effectively. Figure 4.14 exhibits

the predicted return distributions for each state-action pair. The state-action pairs exhibiting the

highest Q-value (i.e., the expected value of the predicted return distribution) for each state have

been highlighted in blue. The policy being deterministic, it always chooses the highlighted action

at the corresponding state.

It is notable that state-action pairs with a high probability of falling into a hole, such as State1-

right or State4-down, display a mode centered on a return value of 0 with a high probability. If we

denote 𝑃 (0) as the density in a small area around 0, then we observe that
𝑃 (0)

1−𝑃 (0) =
𝑃 (falling)
𝑃 (escaping) . This

observation sheds light on the contrasting probabilities of falling into a hole versus successfully

reaching the goal.

130

Figure 4.12: Example of stochastic MDP where a single action can lead to 3 different final states

inducing 3 different rewards. The model successfully learns the 3 modes but fails to predict null

mass for areas between them.

Figure 4.13: The 3 × 3 and 4 × 4 Frozen Lake environments.

In figure 4.15, we present results obtained using the standard 4 × 4 configuration in the Frozen

Lake environment, while applying the same reward shaping as before. Notably, all states in this

configuration are treated as final states. This straightforward adjustment enables us to predict the

state-action pair reward distribution instead of the return distribution. Once again, we observe

distinct and pronounced multimodalities in the predicted distributions.

For comprehensive analysis, figure 4.16 illustrates the predicted return distributions for the stan-

dard 4×4 configuration in the Frozen Lake environment. In this case, the rewards are not shaped

(i.e., set to 0 everywhere except for the goal state), and only final states are marked as done. As

for figure 4.14, we highlight the state-action pairs displaying the highest Q-values, showing that

the output policy is indeed the optimal one. Our results can be compared with those obtained

using C51 algorithm on the same setup (figure 4.17). We observe that in both cases the obtained

policies are equivalent. Moreover, comparing the output distributions for each state-action pair,

we can observe that the learnt distributions over returns are very similar. Due to high stochas-

ticity of the Frozen Lake environment, both algorithms have trouble converging towards one on

the two possible return values (0 or 10) as it is the case for states 2 and 3 for instance.

However, our experimental findings and comparison with C51 have highlighted an issue where

the model assigns non-null mass to certain areas that should ideally have no mass. This situation

is better handled in C51 where we observe a clear discontinuity between areas as positive mass.

131

Figure 4.14: Our model predictions for all state-action pairs in the 3×3 Frozen Lake environment.

Each line corresponds to a state and each column to an action. States are numbered from 0 to 8

starting from the upper left state and going to the right. The plots display the returns in the range

[0, 10] on the x axis and their corresponding predicted density. The state-action pairs displaying

the highest Q-values are highlighted in blue.

This issue with our model can be attributed to two primary reasons. Firstly, our utilisation of an

approximation of the Cramèr distance as a loss function may be contributing to this behaviour.

An interesting avenue for future investigation could involve exploring the adaptability of our

model to output distributions’ CDFs instead of their PDFs, thereby enabling the calculation of an

exact value for the distance.

Secondly, the model outputs larger standard deviation values than necessary for the Gaussian

132

Figure 4.15: Our model predictions for all state-action pairs in the 4×4 Frozen Lake environment

with shaped rewards. Each state gives a reward that is inversely proportional to the distance

from the final state. Each line corresponds to a states and each column to an action. States

are numbered from 0 to 15 starting from the upper left state and going to the right. The plots

display the returns in the range [0, 10] on the x axis and their corresponding predicted density.

Multimodalitites appear clearly on critical states like state9-Left, state13-left or state14-right.

mixture utilised in constructing the flows. Addressing this issue could lead to more accurate and

precise predictions of the return distributions.

133

Figure 4.16: Our model predictions for all state-action pairs in the 4×4 Frozen Lake environment

with unshaped rewards. All states give a null reward except the goal state. Each line corresponds

to a states and each column to an action. States are numbered from 0 to 15 starting from the

upper left state and going to the right.The plots display the returns in the range [0, 10] on the

x axis and their corresponding predicted density. The state-action pairs displaying the highest

Q-values are highlighted in blue.

4.6 Conclusion

In this chapter, we introduced a novel approach to perform Distributional Reinforcement Learn-

ing by harnessing the advantages of Normalizing Flows. Unlike existing methods that face lim-

itations of bounded support for return distributions or the inability to utilise proper Integral

134

Figure 4.17: C41 predictions for all state-action pairs in the 4 × 4 FrozenLake environment with

unshaped rewards. All states give a null reward except the goal state. Each line corresponds to

a states and each column to an action. States are numbered from 0 to 15 starting from the upper

left state and going to the right.The plots display the returns in the range [0, 10] on the x axis

and their corresponding predicted frequency. To ease the comparison with figure 4.16, a KDE

has been used to display densities. The state-action pairs displaying the highest Q-values are

highlighted in blue.

Probability Metrics (IPMs) between predicted and target distributions, we demonstrated the fea-

sibility of employing an approximation of the Cramèr distance as an optimisation criterion, even

when only sample transitions are available. Moreover, our model facilitates the computation of

the density of any return value for any state-action pair, enhancing its practical utility. Lastly, we

135

proposed a natural method to compute the target distribution by transforming the distributional

Bellman operator into a flow, offering a promising direction for future research in the field of

Distributional Reinforcement Learning.

In our experiments, we showcased the effectiveness of our model in accurately predicting return

distributions and capturing all their potential modes. On the considered environments, our algo-

rithm is on par with the well known C51 algorithm. The incorporation of the Cramèr distance

as an alternative to the reverse KL divergence represents a significant advancement in the realm

of Distributional Reinforcement Learning. This approach not only enhances the reliability of our

algorithms but also contributes to their overall effectiveness, opening up new possibilities for

further improvements in this field.

While our approach overcomes the limitations of existing approaches (convergence guarantee

and simple evaluation of the probabilities associated with specific return values under a given

policy), there is still room for improvement in its application. To further validate and evaluate its

performance, the next step involves testing it in more complex environments, such as Atari 2600

games of the Arcade Learning Environment [Bel+13] or Mujoco for robotic simulation [TET12].

Through these experiments, we aim to provide a thorough evaluation and comparison of our

model’s performance against existing approaches. Although preliminary results indicate promis-

ing performance that is at least on par with C51, further investigation and analysis are required

to solidify and confirm these findings. The validation in more challenging environments will of-

fer valuable insights and help refine our model for broader and more demanding applications in

reinforcement learning.

We also identified two limitations as our model appears to assign positive mass to areas that

should have null mass. Moreover it also learns standard deviation values in the Mixture of Gaus-

sian CDF flow function that are higher than necessary. We argue that this arises from our approx-

imation of the Cramèr distance. By examining and optimising these aspects, we aim to enhance

the performance and reliability of our model for a wider range of applications and domains in

reinforcement learning.

136

Chapter 5

Set-Policy Matching Distributional Inverse
Reinforcement Learning

In the preceding chapter 4 we used invertible generative models (namely Normalizing Flows) and
the Cramèr distance for distributional Reinforcement Learning. In this chapter, we will extend this
methodology to Inverse Reinforcement Learning (IRL), which offers the particular challenges that
many optimal policies can explain a set of demonstrations and that many rewards can explain an
optimal policy. For instance, even an unchanging reward function can be attributed to making any
policy optimal, including that of the expert. Among existing approaches the most succeeding ones are
based on adversarial models and rely on matching occupancy measures which appear as not ideal
for highly stochastic environments. We contribute a collaborative model that is novel in that, unlike
other methods, it does not rely on occupancy measures. Moreover, our model learns a reward function
that resembles the inverse distance between a state and the nearest optimal path state, which allows
it to navigate back from out-of-distribution states.

5.1 Introduction

As explained in chapter 4, distributional approaches are effective against distributional shift.

However, in the IRL setting, the risk of distributional shift is even higher while, at the time of

the manuscript writing, there is still no distributional approach for IRL. In IRL, the goal is to

find the right reward function given expert demonstrations, in order to better mimic the expert

behaviour even in situations that the expert might have never encountered in the given demon-

strations. This is particularly true when there is a difference between the training and testing

environments. Consider the example, adapted from [Had+17], of a robot that has to accurately

navigate to a target location. The reward function is learnt using expert demonstrations in an

environment where it is only possible to encounter grass lawns and dirt pathways. This situation

is plausible if, for instance, the engineer responsible of training the robot and gathering the ex-

pert demonstrations expects the robot to only encounter such terrain. The learnt reward function

will incentivise moving towards the target quickly, avoiding grass as much as possible. When the

robot is deployed into the world, it encounters a novel terrain type. This out of distribution input

will surely confuse the robot and might induce a chaotic behaviour. In this case the learnt re-

137

ward function did not take into account the risk of distributional shift. The engineer supervising

the learning process was apparently confident (wrongfully) that the risk of distributional shift

was minimal and did not take it into account in the mesa-objective. The relationship between

mesa-objective and risk of distributional shift is explained in chapter 3 section 3.6.1.

In [Had+17], the authors offer a useful insight: “the designed reward function should merely be

an observation about the intended reward, rather than the definition; and should be interpreted

in the context in which it was designed". Said otherwise, the agent should hold uncertainty about

its reward function, instead of treating it as fixed. Based on this observation, we argue in this

work that the risk of distributional shift in the context of IRL should be dealt with the same way

as for forward RL, namely using a distributional approach, where a return distribution is learnt

rather that its sole expected value.

Distributional IRL can also be a good solution for handling the outer-alignment problem (discrep-

ancy between the human objective and the reward function). In this manuscript’s introduction,

we drew the hypothesis that using IRL based approaches, it is possible to point to the right be-

haviour directly using expert demonstrations and help alleviate the outer alignment problem.

Building upon the foundations laid out earlier, we will show how a distributional approach to

IRL can be effectively employed to tackle the challenges presented by IRL (detailed in section 5.2)

while evaluating its outer alignment performance.

Indeed, IRL is a challenging problem as various optimal policies can explain demonstrations and

different rewards can satisfy optimality criteria. For instance, in the example given above, both

reward functions, the one the robot actually learnt and the one taking into account the new

unknown terrain would have displayed the exact same behaviour in the training environment.

Adversarial methods [FLA16; FLL18; Xia+19] were proposed to tackle these issues by (refer to

chapter 2 section 2.3 for more details):

• (1) incentivising imitation of demonstrated actions

• (2) promoting return to demonstrated states when faced with new situations.

Despite their promise, adversarial methods exhibit instability and depend on matching state oc-

cupancy measures. First, as a reminder, we redefine here the concept of occupancy measure.

Consider a MDP defined by the usual tuple (S,A,T , 𝑟 , 𝛾, 𝜁0). The initial state distribution 𝜁0

and the reward function 𝑟 (𝑠, 𝑎) are unknown. If we combine this setting with a stochastic policy

𝜋 from the set of policies Π, i.e. a conditional probability distribution on A given some state

𝑠 ∈ S, we obtain a Markov chainM𝜋 = (𝑠0, 𝑎0, 𝑠1, 𝑎1, . . .) where 𝑠0 ∼ 𝜁0, and 𝑎𝑡 ∼ 𝜋 (·|𝑠𝑡) and
𝑠𝑡+1 ∼ 𝑝 (·|𝑠𝑡 , 𝑎𝑡).M𝜋 has a stationary distribution (or occupancy measure) 𝜌𝜋 which satisfies

𝜌𝜋 (𝑠, 𝑎) = (1 − 𝛾𝜋 (𝑎 |𝑠))
∞∑︁
𝑡=0

𝛾 𝑡𝑝 (𝑠𝑡 = 𝑠)

In summary, the occupancy measure is the stationary distribution of states visited by the con-
sidered agent. It can also be called the state visitation frequency.

Methods based on occupancy measures are problematic in highly stochastic environments as

they do not necessarily learn policies that perfectly mimic the the expert’s behaviour. Indeed,

138

as illustrated in figure 5.1, two opposite policies can yield identical occupancy measures. We

propose a collaborative model, inspired by Distributional Reinforcement Learning, that does not

rely on occupancy measures while avoiding the drawbacks of adversarial training. Our model

leverages a recent finding establishing a one-to-one correspondence between optimal Q-functions

and reward functions thus enabling tomatch the expert’s actions as in Imitation learning (1) while

ensuring (2) as in IRL approaches. In our experiments on the stochastic Frozen Lake environment,

the learned reward resembles the inverse distance between a state and the nearest optimal path

state, validating the effectiveness of our approach. This collaborative approach captures benefits

(1) and (2) of adversarial methods while circumventing their drawbacks.

Figure 5.1: Given a stochastic MDP, one agent takes action𝐴1 while the other takes action𝐴2. The

two actions both lead to the same states with the same probabilities. In the occupancy measure

framework, both actions are equivalent but it is possible that only 𝐴1 is part of the expert’s set

policy. In partially observable MDPs, 𝑆1 and 𝑆2 states reached by the two agents may not be

equivalent, which makes fitting the set-policy even more crucial.

In section 5.2.1, we will first detail the challenges posed by the IRL problem and the existing ap-

proaches to tackle them. Then in section 5.2.2, along with the limits of existing approaches, we

also detail the main issues encountered when using occupancy measures to learn reward func-

tions. In section 5.3, we first explain why an IRL model should share common principles with

Imitation Learning (IL). Then in sections 5.3.1 and 5.3.2, we show why it is possible to learn opti-

mal reward functions by learning return distributions, thus avoiding to fit occupancy measures.

In section 5.4 we present our set-policy matching Distributional IRL model. Finally in section 5.5,

we present our experimental results using the Frozen Lake environment.

5.2 How Existing Approaches Solve IRL Challenges and What
Are Their Limits

In this section we detail the challenges posed by IRL and how they are tackled by existing ap-

proaches before exposing their strengths and limitations.

139

5.2.1 Challenges and Prior Work in IRL

In contrast to the approach of directly replicating behaviour, IRL assumes rational agents to esti-

mate an unknown reward function that represents their underlying motivations and goals. The

reward function is often considered as the most succinct, robust and transferable representation

of the expert’s objective [AN04]. Given a set of demonstrations 𝐷𝐸 from an expert policy 𝜋𝐸 ,

IRL [Rus98; NR00] is the problem of seeking a reward function from which we can recover 𝜋𝐸
through RL. However, IRL in unregularized MDPs has been shown to be an ill-defined problem

since:

1. many optimal policies can explain a set of demonstrations

2. multiple rewards meet the criteria of being a solution, i.e many rewards can explain an

optimal policy

MaximumEntropy Inverse Reinforcement Learning (MaxEntIRL) [Zie+08; Zie10] offers a strategy

to mitigate the first concern. This approach involves a reward function that not only maximises

the expert’s cumulative return but also incorporates the Shannon entropy of the expert policy.

The second challenge proves to be more intricate. Indeed discerning genuine reward functions

from those influenced by the dynamics of the environment is not easy. The complexity is further

compounded by the existence of degenerate reward functions
1
. Specifically, the problem arises

from the fact that IRL algorithms encounter difficulties in differentiating between authentic re-

ward functions and those that are influenced by environmental dynamics. Moreover, a reward

function that remains constant across all state-action pairs is capable of rationalising the be-

haviour of any expert. In essence, an unchanging reward function can be attributed to making

any policy optimal, including that of the expert.

Recently, the incorporation of adversarial techniques into theMaxEntIRL framework has emerged

as a promising avenue to address these challenges, leading to remarkable experimental outcomes

[FLA16; HE16; FLL18]. For instance, the Guided Cost Learning (GCL) approach [FLA16] intro-

duces a novel framework based on Generative Adversarial Networks (GANs) that directly learns

the policy by aligning occupancy measures. This approach effectively simulates the process of

conducting RL following an IRL phase, thereby retaining the advantages inherent to IRL while

enhancing computational feasibility. Indeed, MaxEntIRL methods usually require to know the

environment’s dynamics in order to compute the partition function (refer to chapter 2, section

2.3 for more details). In large state space environments or if the dynamics are unknown, this

computation is either impossible or untractable. GCL uses an iterative approach estimating the

reward and partition functions sequentially, outputting a better estimation of each one every

time the approximation of the two gets better. GCL operates in a manner akin to conducting RL

subsequent to IRL, thus capitalising on the strengths of both paradigms. Adversarial IRL methods

train an RL agent not only to imitate demonstrated actions, but also to visit demonstrated states.

Intuitively, adversarial methods encourage long-horizon imitation by providing the agent with

1. an incentive to imitate the demonstrated actions in demonstrated states,

1
A reward function is considered degenerate if it outputs the same value for all transitions

140

2. an incentive to take actions that lead it back to demonstrated states when it encounters

new, out-of distribution states.

5.2.2 Weakness of Adversarial Methods

The reason why adversarial methods tend to perform better than simpler approaches like Be-

havioral Cloning (BC) is because BC mainly focuses on copying demonstrated actions (point 1),

while adversarial methods like GCL and AIRL [FLL18] take a more comprehensive approach by

imitating actions in demonstrated states (point 1) and also making sure to return to demonstrated

states when facing new situations (point 2). However, a first limit appears as, when facing un-

known situations, these methods encourage coming back to the demonstrated states, which may

not always be the optimal strategy.

Moreover, particularly in environments characterised by high levels of stochasticity, the align-

ment of occupancy measures may not necessarily result in learned policies that perfectly mimic

the expert’s behaviour. This is underscored by an illustrative example depicted in figure 5.1, which

portrays a simple MDP wherein two opposing policies yield identical occupancy measures.

Finally, adversarial methods like GCL or AIRL, try to match the agent’s and expert’s occupancy

measure, by minimising the JS divergence between those distributions. As stated in chapter 4

Proposition 1, The JS divergence as well as the KL divergence, have unbiased sample gradients,

but are not scale sensitive. A natural follow up is to try to optimise a proper distance between

both distributions. Authors of [Xia+19] propose to minimise the Wasserstein distance instead.

However, In chapter 4 Proposition 2, we alsomentioned that theWassersteinmetric does not have

unbiased sample gradients making it impossible to optimise using SGD in RL context. Moreover,

as shown in [Bel+17], even the dual form of theWasserstein distance has biased sample gradients.

5.3 Learning Reward Functions Using Returns and the Link be-
tween IL and IRL

In contrast to the adversarial approaches mentioned in section 5.2.1, we take a different route

based on insights from the Distributional RL approach presented in chapter 4. We advocate for

the adoption of the Cramèr distance, which we utilised successfully in the Distributional RL con-

text. We propose to use the primal form of the Cramèr distance, with the aim of aligning the return

distributions of the expert and the agent for each specific state-action pair rather than their occu-

pancy measure. By aligning return distributions, we mean finding the reward function such that

the expert Q-value (and only the expert’s) is the highest and such that the distance between the

agent return distribution and the expert’s is minimised. This approach is more straightforward

and manageable compared to matching occupancy measures, as it requires training on individual

state-action pairs rather than entire trajectories. However, it is imperative to ask whether this

return distribution matching strategy effectively resolves the IRL problem while circumventing

degenerate solutions. Indeed, in contrast to previous methods that resort to the maximum en-

tropy principle to distinguish and prevent degeneracy in potential reward solutions, we seek to

demonstrate that the return distribution alignment itself holds the potential to tackle the issue of

degenerate reward solutions.

141

In this section, we will dive deeper in the relationship between reward functions and Q-functions.

As shown in figure 5.1, opposite policiesmay yield the same occupancymeasure in highly stochas-

tic environments. We contend that a more effective approach involves aligning the expert’s ac-

tions, akin to the principles of IL, rather than merely focusing on occupancy measures. This

means to match the expert’s and agent’s set policies as defined in definition 1 rather than their

occupancy measure. As we advocate for a method aligning directly with expert actions, we argue

that such IRL model should share common principles with IL.

The authors of [PGP17] establish a connection between IL and IRL, shedding light on the value

of incorporating an IL perspective within an IRL framework. This connection between IL and

IRL provides a compelling rationale for prioritising the alignment of expert actions in the IRL

context, particularly when navigating the complexities of stochastic environments. Is it possible

to use the link to solve the IRL problem without relying on occupancy measures?

In the next sections we will answer to the following questions:

1. Matching the expert’s and agent’s actions implies matching their expected returns. How-

ever, is there an equivalence between matching the agent’s and expert returns and finding

the optimal reward function?

2. if so, how to avoid the issue of degenerate reward functions mentioned in section 5.2.1?

In this section, based on the works of Bilal Piot, Mathieu Geist and Olivier Pietquin [PGP17], by

leveraging their concept of set-policy, we answer positively to the first question by characterising

the bijection between the set of optimal reward functions and optimal Q-functions. First, in

section 5.3.1 we show that finding a Q-function maximised by the expert enables to find the

optimal reward function. This means that by aligning the agent and expert returns, it is possible

to retrieve the optimal reward function. Then, in section 5.3.2, we show, using the set-policy

framework, that there exist reward functions that induce the expert actions. This result will allow

us to draw 2 conclusions: (1) It is possible through an iterative process on return distributions

to learn both the optimal Q-function and the optimal reward functions; (2) learning these two

functions is possible without using occupancy measures, making it possible to match directly the

expert’s and the agent’s set policies. The second question is answered to in section 5.4. As before,

we consider a MDP, defined by the tuple (S,A,T , 𝑟 , 𝛾, 𝜁0).

5.3.1 Aligning Expert and Agent Returns in Order to Determine the Optimal
Reward Function

Recall that the aim of IRL is to calculate a reward function 𝑟 for which all expert’s actions and

only expert’s actions are optimal:

∀𝑠 ∈ 𝑆, arg max

𝑎∈𝐴
𝑄∗𝑟 (𝑠, 𝑎) = Supp(𝜋𝐸 (·|𝑠)) (5.1)

where 𝑄∗𝑟 is the optimal Q-function under the reward function 𝑟 . This means that the support of

the expert’s policy can be obtained while being greedy on the Q-function. The Q-function can

therefore be interpreted as an optimal quality function with respect to the reward 𝑟 if:

𝑟 (𝑠, 𝑎) = 𝑄𝑟 (𝑠, 𝑎) − 𝛾𝔼𝑃 (·|𝑠,𝑎)
[
𝑓 ∗𝑄

]
(5.2)

142

with ∀𝑠 ∈ 𝑆, 𝑓 ∗
𝑄
(𝑠) = max𝑎∈𝐴𝑄 (𝑠, 𝑎)

Defining the operator 𝑇 ∗
𝑅
as:

𝑇 ∗𝑟 𝑄 (𝑠, 𝑎) = 𝑟 (𝑠, 𝑎) + 𝛾𝔼𝑃 (·|𝑠,𝑎)
[
𝑓 ∗𝑄

]
It is also possible to show that 𝑄∗𝑟 is a fixed point for the operator 𝑇 ∗𝑟 :

𝑄𝑟 (𝑠, 𝑎) = 𝑟 + 𝛾𝔼𝑃 (·|𝑠,𝑎) [𝑓 ∗𝑄] = 𝑇 ∗𝑟 𝑄 (𝑠, 𝑎) (5.3)

We conclude with Banach’s fixed point theorem that as the fixed point of 𝑇 ∗𝑟 is unique, then

𝑄 = 𝑄∗𝑟 . The fact that a Q function verifying this equality can be interpreted as an optimal Q

function 𝑄∗𝑟 means that the expert’s actions and only the expert’s actions are optimal according

to the reward 𝑟 . Therefore, 𝑟 can be seen as the target of an IRL method. We therefore showed

that finding a Q-function maximised by the expert enables to find the optimal reward function.

Moreover it also proves that the standard Q-learning update displayed in equation 5.3 is a viable

way to learn a reward function in an IRL setting. The immediate consequence is that occupancy

measures are not necessary anymore.

5.3.2 The Set of Optimal Reward Functions Induces the Expert’s Set-Policy

In the preceding section, we demonstrated the feasibility of learning a reward function through

a methodology akin to the conventional Q-learning update. Nevertheless, while the traditional

Bellman operator facilitates the acquisition of Q-values to make informed action choices based on

a reward function, this section introduces the inverse Bellman operator. This operator, conversely,

enables the acquisition of the correct reward function when optimal actions are known.

In equation 5.1, the optimal Q-function was defined as the one for which all expert action and

only expert actions are optimal for any state. To give amore formal definition to the set of optimal

actions we introduce the concept of set policy as defined in [PGP17]:

Definition 1: Set-policy
A set policy 𝜋 is an element of the set Π̄ = (P(𝐴)\∅) |S| . To any policy 𝜋 one can associate a set

policy 𝜋 : ∀𝑠 ∈ 𝑆, Supp(𝜋 (·|𝑠)) = 𝜋 (𝑠). 𝜋 indicates for each state, the set of actions that can be

chosen by 𝜋 .

Definition 2: Generated set-policy
To any MDPM𝑟 , one can associate a particular set policy named optimal set-policy generated

byM𝑟 , denoted 𝜋
∗
𝑟 ∈ Π̄:

∀𝑠 ∈ S, 𝜋∗𝑟 (𝑠) = arg max

𝑎∈𝐴
[𝑄∗𝑟 (𝑠, 𝑎)]

The optimal set-policy generated by M𝑟 indicates for each state the set of optimal actions to

choose to optimise the reward 𝑟 .

To solve the IRL problem, it is necessary to find a reward 𝑟 such that 𝜋∗𝑟 = 𝜋𝐸 .

143

Figure 5.2: Illustration of set-policy. Given a state space S and an action space A, a set policy is

a mapping that associates for each 𝑠 ∈ S, a finite set of actions in A.

Therefore equation 5.1 can be rewritten in terms of set-policies and we define 𝐻𝜋 the set of Q

functions such that:

𝐻𝜋 = {𝑄, ∀𝑠 ∈ 𝑆, arg max

𝑎∈𝐴
𝑄 (𝑠, 𝑎) = 𝜋 (𝑠) = Supp(𝜋 (·|𝑠))}

Definition 3: Inverse Bellman Operator
∀𝑄 ∈ ℝ𝑆×𝐴, ∀(𝑠, 𝑎) ∈ 𝑆 ×𝐴 ,we define the inverse optimal operator 𝐽 :

𝐽 ∗𝑄𝑟 (𝑠, 𝑎) = 𝑄𝑟 (𝑠, 𝑎) − 𝛾𝔼𝑃 (·|𝑠,𝑎) [𝑓 ∗𝑄]

𝐽 maps a Q-function to a reward function the same way as in equation 5.2. Conversely, its inverse

maps a reward function to the associated Q-function:

∀𝑟 ∈ ℝ𝑆×𝐴, (𝐽 ∗)−1𝑟 = 𝑄∗𝑟

Therefore, applying 𝐽 to the set of optimal Q-function greedily defining a given set policy,𝐻𝜋 , we

can show that the image is the set of reward functions 𝑟 such that the optimal Q-function under

𝑟 induces the considered set policy.

𝐽 ∗(𝐻𝜋) = {𝑟 ∈ ℝ𝑆×𝐴, ∀𝑠 ∈ 𝑆, arg max

𝑎∈𝐴
[𝑄∗𝑟 (𝑠, 𝑎)] = 𝜋 (𝑠)}

Replacing arg max𝑎∈𝐴 [𝑄∗𝑟 (𝑠, 𝑎)] by its corresponding generated set-policy, we get:

𝐽 ∗(𝐻𝜋) = {𝑟 ∈ ℝ𝑆×𝐴, 𝜋∗𝑟 = 𝜋} = 𝐶𝜋

The same way, we can show that 𝐽 ∗(𝐻𝜋𝐸) = 𝐶𝜋𝐸 and therefore the set 𝐶𝜋𝐸 is the image of 𝐻𝜋𝐸
with respect to the operator 𝐽 ∗.

144

As 𝐽 ∗ is a bijection, then {𝐶𝜋 }𝜋∈Π̄ is a finite partition of ℝ𝑆×𝐴
, which guarantees that 𝐶𝜋𝐸 is not

empty. If 𝐶𝜋𝐸 is not empty, then there exist reward functions 𝑟 such that the optimal set policies

generated by 𝑟 coincide with the expert set-policy. In conclusion, we have shown that the IRL

problem admits a solution in the set-policy framework.

5.4 Set-policy Matching Distributional IRL

In this section we will detail our proposed approach to solve the IRL problem without relying on

occupancy measures while leveraging the distributional method we introduced in chapter 4. As

a reminder, the goal of IRL is to find the optimal reward function such that the expert’s actions

(and only those) bring the highest possible return. In section 5.3, we showed that the tasks of
matching the learning agent’s and expert returns and finding the optimal reward function
are equivalent. We design an model that verifies this statement empirically. Said otherwise,

our model finds the optimal reward function by minimising the Cramèr between the agent’s and

expert’s return distributions. By doing so, we aim to show that the learnt policy is identical to

the expert’s and avoids the pitfalls of existing methods relying on occupancy measures. The used

process is detailed in section 5.4.1. Furthermore, another aim of our model is to handle the issue

of degenerate reward functions. This issue is handled in section 5.4.2.

Similar to cited adversarial methods, we propose an approach involving two different models,

one responsible for generating rewards for specific state-action pairs, and another serving as an

agent for decision-making. However, a major difference is that our model does not try to match

occupancy measures but makes use of the link between IL and IRL to match return distributions

and deduce the optimal reward function as well as the optimal Q function. For this purpose

we use the Cramèr distance instead of the Wasserstein distance. A significant departure from

adversarial frameworks is that ourmodel operates in a collaborativemanner rather than engaging

in adversarial optimisation. We believe this feature brings more stability to the learning process,

which is a significant drawback of adversarial approaches. Moreover, our approach facilitates a

direct match between the expert’s set policy and that of the learner, akin to principles observed

in IL. This alignment encourages the learner to navigate unfamiliar, out-of-distribution states by

incentivising actions that lead back to demonstrated states.

5.4.1 A Collaborative Distributional Model for Learning Both the Optimal
Reward and Q-functions

Consider 𝑍𝜋 (𝑠𝑡 , 𝑎𝑡)𝐷𝐸 as the distribution of returns for a specific state-action pair sampled from

the expert’s experience. 𝑍𝜋 (𝑠, 𝑎) is the value distribution, a mapping that associates state-action

pairs with distributions over returns. We recall the Bellman distributional equation:

B𝜋𝑟 𝑍𝜋 (𝑠, 𝑎)
𝐷
:= 𝑟 (𝑠, 𝑎) + 𝛾𝑇𝜋𝑍𝜋 (𝑠, 𝑎) (5.4)

145

Where 𝑇 𝜋 : Z ↦→ Z the transition operator:

𝑇 𝜋𝑍𝜋 (𝑠, 𝑎) 𝐷:= 𝑍𝜋 (𝑠′, 𝑎′)
𝑠′ ∼ T (·|𝑠, 𝑎), 𝑎′ ∼ 𝜋 (·|𝑠)

(5.5)

where 𝑌
𝐷
:= 𝑈 denotes equality of probability laws, that is the random variable Y is distributed

according to the same law as U.

This operation entails a shift and scale transformation, where the shift is induced by 𝑟 (𝑠, 𝑎)—the
reward acquired upon executing action 𝑎 in state 𝑠 . As illustrated in figure 5.3, maximising this

shift corresponds to enhancing the expected value of the return distribution. To elaborate further,

let 𝑟𝜙 represent a reward function parameterised by 𝜙 , and let 𝑓𝜃 be a flow model that estimates

distributions of return values instead of merely expected values, following the samemethodology

as detailed in chapter 4. This process renders the mapping associating state-action pairs with

return distributions dependent on both 𝜃 and 𝜙 , denoted as 𝑍𝜃,𝜙 . Given the state-action pairs 𝐷𝐸
and 𝐷𝜋 from the expert and the learner experiences respectively, maximising

𝑑 (𝑍 ∗
𝜃,𝜙
(𝑠𝑡 , 𝑎𝑡)𝐷𝐸,B𝜋𝑟 𝑍𝜃,𝜙 (𝑠𝑡 , 𝑎𝑡)𝐷𝐸) (5.6)

for any IPM 𝑑 , while holding 𝜃 constant equivalently corresponds to maximising 𝑟𝜙 for the ex-

pert’s state-action pairs (see figure 5.3). However, the maximisation of 𝑟𝜙 for the expert’s state-

action pairs alone is not sufficient; it must be complemented by the minimisation of 𝑟𝜙 for the

agent’s state-action pairs.

Figure 5.3: A predicted return distribution 𝑍 and its corresponding target distribution B𝜋𝑍 after

receiving the reward 𝑟 . Maximising the distance 𝑑 displayed in equation 5.6, is equivalent to

maximising the reward.

For fixed 𝜃 , maximising

𝔼𝑠𝑡 ,𝑎𝑡∼𝐷𝐸
𝑑 (𝑍𝜃,𝜙 (𝑠𝑡 , 𝑎𝑡),B𝜋𝑟 𝑍𝜃,𝜙 (𝑠𝑡 , 𝑎𝑡))

and minimising

𝔼𝑠𝑡 ,𝑎𝑡∼𝐷𝜋
𝑑 (𝑍𝜃,𝜙 (𝑠𝑡 , 𝑎𝑡),B𝜋𝑟 𝑍𝜃,𝜙 (𝑠𝑡 , 𝑎𝜋))

implies maximising 𝑟𝜙 for the expert state-action pairs and minimising it for the model’s state-

action pairs.

146

In the mean time for a fixed 𝑟𝜙 function, the learner is trained to minimise

𝔼𝑠𝑡 ,𝑎𝜋∼𝐷𝜋
𝑑 (𝑍𝜃,𝜙 (𝑠𝑡 , 𝑎𝜋),B𝜋𝑟 𝑍𝜃,𝜙 (𝑠𝑡 , 𝑎𝜋))

We notice here an interesting property of our model. While GAIL or GCL leverage their adver-

sarial architecture, our approach also employs both a discriminator/critic for the reward and a

generator for the agent but they both share the same objective, succinctly expressed as:

min

𝜃,𝜙
𝔼𝑠𝑡 ,𝑎𝜋∼𝐷𝜋

𝑑 (𝑍𝜃,𝜙 (𝑠𝑡 , 𝑎𝜋),B𝜋𝑟 𝑍𝜃,𝜙 (𝑠𝑡 , 𝑎𝜋))

Hence, our model operates in a collaborative rather than adversarial manner, a characteristic we

contend enhances its stability compared to adversarial counterparts.

To summarise, the reward model seeks to minimise the following objective:

L(𝜙) = 𝔼𝑠𝑡 ,𝑎𝑡∼𝐷𝜋
𝑑 (𝑍𝜃,𝜙 (𝑠𝑡 , 𝑎𝑡),B𝜋𝑟 𝑍𝜃,𝜙 (𝑠𝑡 , 𝑎𝜋)) − 𝔼𝑠𝑡 ,𝑎𝑡∼𝐷𝐸

𝑑 (𝑍𝜃,𝜙 (𝑠𝑡 , 𝑎𝑡),B𝜋𝑟 𝑍𝜃,𝜙 (𝑠𝑡 , 𝑎𝑡))

While the agent seeks to minimise this one:

L(𝜃) = 𝔼𝑠𝑡 ,𝑎𝜋∼𝐷𝜋
𝑑 (𝑍𝜃,𝜙 (𝑠𝑡 , 𝑎𝜋),B𝜋𝑟 𝑍𝜃,𝜙 (𝑠𝑡 , 𝑎𝜋))

5.4.2 Handling Degenerate Reward Functions

For now we answered to the question 1 of section 5.3, but we still have to answer to the question

2. A corollary to question 2 is whether our approach confines the problem to a unique optimal

reward function. Unfortunately, that is not the case. The cardinality of the set 𝐻𝜋 is infinite,

thus signifying the presence of an infinite number of optimal Q functions. Given the established

bijection between 𝐻 and 𝐶 , we deduce that the collection of optimal reward functions is equally

boundless. Nonetheless, the pertinent question remains: Does our model effectively avert degen-

erate solutions, wherein any constant function could rationalise the expert’s behaviour?

The critic can be conceptualised as a separation mechanism that projects both 𝐷𝐸 and 𝐷𝜋 into a

space that maximises the distance between them. In this configuration, the reward 𝑟 signifies the

distance between a specific point from either 𝐷𝐸 or 𝐷𝜋 and the hyperplane that segregates the

two sets, analogous to a Maximum Margin approach as illustrated in figure 5.4.

With this interpretation, 𝐶𝜋𝐸 , the set of reward functions such that the optimal set-policy is the

expert’s, is also the set of reward functions that make 𝐷𝜋 and 𝐷𝐸 perfectly distinguishable and

separated. Among this set of functions, there exists a reward function 𝑟𝑚𝑖𝑛 such that the distance

between 𝐷𝐸 and 𝐷𝜋 is minimal, yet the two sets remain perfectly separated. Consequently, any

other reward function in 𝐶𝜋𝐸 such that the distance between 𝐷𝜋 and 𝐷𝐸 is superior to the one

output by 𝑟𝑚𝑖𝑛 is deemed acceptable as 𝐷𝜋 and 𝐷𝐸 remain perfectly separated.

The immediate consequence is that constant reward functions for all states and actions are ex-

cluded, avoiding degenerate solutions. Indeed, in order to seperate 𝐷𝜋 and 𝐷𝐸 , the reward associ-

ated to state-action pairs from 𝐷𝐸 has to be different (in fact it is greater) from the one associated

to state-action pairs from 𝐷𝜋 . An extreme case would be a reward function that can only take

147

Figure 5.4: Given two sets of demonstrations 𝐷𝐸 and 𝐷𝜋 , the reward function determines the

distance between their respective return distributions. There exist a reward threshold that guar-

antees complete separation of the two corresponding return distributions. Above this threshold

there is no improvement in classification performance betwwen 𝐷𝐸 and 𝐷𝜋 .

two values, a value 𝑟𝐸 for expert state-action pairs and another value 𝑟𝜋 for other state-action

pairs. Even in this case, there is a guarantee that 𝑟𝐸 > 𝑟𝜋 .

Finally, we can note that this guarantee is also consolidated by the loss function L(𝜙) which aim

is to maximise the difference between the reward given to the expert state-action pairs and the

one given to the learning agent’s; hence foavouring the separation gap between 𝐷𝐸 and 𝐷𝜋 In

summary, our model and its associated loss function guarantee by design the absence of degen-

erate reward functions.

5.4.3 Model Overview

To summarise, there are 2 successive steps in this iterative process. In the first step, the model

updates the reward function by minimising L(𝜙) in order to maximise the distance between the

expert’s return distribution and the agent’s. In the second step, the agent is updated using the

new updated reward function. More formally, the process goes as follows:

1. For a fixed 𝑍𝜙,𝜃 , find 𝑟𝜙 such that 𝜋∗𝑟𝜙 = 𝜋𝐸 . This is done by minimising L(𝜙)

2. For a fixed 𝑟𝜙 , find 𝑍𝜙,𝜃 such that arg max𝑎 𝑍𝜙,𝜃 (𝑠, 𝑎) = 𝜋𝐸 (𝑠),∀𝑠 ∈ S. This is done by

minimising L(𝜃)

We previously stated that our approach would provide (1) an incentive to imitate the demon-

strated actions in demonstrated states, and (2) an incentive to take actions that lead it back to

demonstrated states when it encounters new, out-of distribution states. The first step above tack-

les (1) and the second step tackles (2) while avoiding compounding errors. Our method is detailed

in Algorithm 5.

148

Algorithm 5 Our method: Collaborative IRL

Require: 𝜋𝜃 Learning agent, 𝑅𝜙 : reward model, 𝛾 : the discount factor, 𝐷𝐸 : expert trajectories,

epochs: number of epochs, iter: number of learner’s training iterations.

Initialise 𝜋𝜃 as in Algorithm 4 of chapter 4.

for epoch in epochs do:
Sample trajectories 𝐷𝜋 using 𝜋𝜃
Sample batch �̄�𝜋 from 𝐷𝜋
Sample batch �̄�𝐸 from 𝐷𝐸
𝑟 (𝑠, 𝑎)�̄�𝐸

←− 𝑅𝜙 (𝑠, 𝑎)�̄�𝐸
⊲ evaluate the reward of each state-action pair

𝑟 (𝑠, 𝑎)�̄�𝜋
←− 𝑅𝜙 (𝑠, 𝑎)�̄�𝜋

⊲ using the current reward model

Append 𝑟 (𝑠, 𝑎)�̄�𝐸
and 𝑟 (𝑠, 𝑎)�̄�𝜋

to �̄�𝐸 and �̄�𝜋 respectively

𝑄 ←− 𝜋𝜃 (𝑠)�̄�𝜋
⊲ estimate the return distribution for each state-action pair

𝑄𝐸, log(𝑃 (𝑄𝐸)) ←− 𝜋𝜃 (𝑠)�̄�𝐸

Compute �̂�𝜋 and �̂�𝐸 the target Q distributions for the learner’s and expert’s trajectories

using algorithm 4 of chapter 4.

Update 𝜙 using L(𝜙) and the Cramèr distance as IPM

for i in iter do
Train 𝜋𝜃 using the same procedure as in chapter 4 and L(𝜃)

end for
end for

5.5 Experimental Results

As stated in the previous section, putting aside its simplicity and the stability allowed by col-

laborative models, our approach brings much of its benefits (i.e. learning the expert’s set-policy,

aligning returns rather that occupancy measures, being more robust to out of distributions states,

more stable than adversarial approaches) when confronted to highly stochastic environments as

it does not rely on matching occupancy measures. Indeed aligning the expert and the agent’s re-

turn distributions as in Distributional RL ensures that the expert’s value distribution remains the

optimal one under the learnt reward function. This has the benefit to avoid using occupancymea-

sures (1) as it can present several flows as shown in figure 5.1 and guaranteeing that the learner

and the expert share the same set-policy (2). In order to demonstrate the benefits (1) and (2) of

our model, we will test again our model on the Frozen Lake environment while using a model

that was trained using our distributional approach as an expert. We also compare the predicted

reward values predicted by our model with the one predicted by the GCL algorithm that we use

as baseline.

For the learning agent architecture, we used the same architecture as the expert, i.e. an architec-

ture consisting of one hidden layer of 256 neurons outputting the flow parameters, one flow layer

composed of 4 gaussians, which mixture’s CDF is used as a flow. We usedN(0, 1) as a base distri-
bution. The mean returns were computed over 100 draws from the base distribution. We used a

learning rate of 0.001 and 𝛾 = 0.9. For the reward model, we used a feedforward neural network

of one hidden layer of 64 neurons with a ReLU activation function. Empirically we noticed that

our model achieves better results when the possible rewards are bounded, hence we used tanh

149

Figure 5.5: The 4 × 4 Frozen Lake environment.

scaled in [−1, 1] as an activation function for the final layer with a unique unit. The model was

trained for 500 epochs.

Figure 5.6 presents the learnt return distributions for each state-action pair on the standard

stochastic Frozen Lake environment. It can be noticed that those distributions are very simi-

lar to those presented in figure 4.16 of chapter 4. The optimal action given the learnt reward

function for each state is highlighted in blue. We observe that the learnt policy is indeed the

optimal one.

Figure 5.7 illustrates the estimated unbounded rewards assigned to each state, depicting both

the deterministic (upper left) and stochastic (upper right) scenarios. Notably, a discernible pat-

tern emerges with rewards smoothly increasing along the optimal trajectory. Moreover, outside

this trajectory, the rewards exhibit a gradual decline, approximately resembling the reciprocal

of the distance between out-of-distribution states and the nearest state along the optimal path.

This characteristic plays a pivotal role in our model’s capacity to navigate back from out-of-

distribution states. The bottom left panel of figure 5.7 showcases the expert’s occupancymeasure.

A noteworthy negative correlation becomes apparent between the expert’s occupancy measure

and the learned rewards. This correlation is particularly striking in a highly stochastic envi-

ronment, where even an expert can deviate from the optimal trajectory. This observation fur-

ther highlights instances where the expert intermittently revisits certain states before ultimately

reaching more stable states, reflecting the challenges posed by the environment’s stochastic na-

ture. Consequently, the initial states tend to exhibit elevated occupancy measures due to these

transitional struggles. If the occupancy measure were to be fitted, it would confer significant

importance to these transitional states. This shows up in the bottom right panel showcasing the

attributed reward attributed to each state by our baseline, namely the GCL algorithm. Conversely,

our model attributes comparatively lower rewards to such states, while assigning greater rewards

to states aligning with the optimal path and situated closer to the ultimate goal.

Finally, the results showcased in figure 5.7 also hint at our model’s greater ability to tackle outer-

alignment issues. Indeed, while GCL ultimately finds the optimal policy, the reward structure

(decreasing towards the goal) shows that the intrinsic human objective is not ”understood" by

the model. On the other hand, the fact that our model outputs an increasing reward function as

we get closer to the goal shows that the model accurately learnt the human objective, which is

150

Figure 5.6: Our model predictions for all state-action pairs in the 4× 4 Frozen Lake environment.

Each line corresponds to a states and each column to an action. States are numbered from 0 to

8 starting from the upper left state and going to the right. The plots display the returns in the

range [0, 10] on the x axis and their corresponding predicted density. The optimal action given

the learnt reward function for each state is highlighted in blue.

to get closer and eventually reach the goal state.

5.6 Conclusion

We addressed IRL using the Distributional RL framework. By harnessing the advantages offered

by Normalizing flows and the Cramèr distance (as detailed in chapter 4), we have successfully

151

Figure 5.7: Predicted reward for each state in the deterministic setting (upper left) and stochastic

setting (upper right). Bottom right: Expert’s occupancy measure. Bottom left: predicted reward

for each state in the stochastic setting by the GCL algorithm.

devised a method for learning a reward function that accurately captures both the expert’s ob-

jectives and behaviours, while bypassing the necessity of matching occupancy measures as a

primary objective. Building upon the insights presented in [PGP17] and the inherent connec-

tion between IL and IRL, we have demonstrated the feasibility of learning the expert’s set policy

rather than relying on the conventional occupancy measure, thereby showcasing its efficacy, par-

ticularly in highly stochastic environments. In contrast to existing approaches centered around

occupancy measures and adversarial techniques, our proposed framework adopts a collabora-

tive model, wherein the shared objective between the agent and the critic promotes stability and

robustness.

Our approach addresses the inherent challenges associated with the ill-posed nature of the IRL

problem. Ourmodel not only effectively incentivises the imitation of demonstrated actionswithin

demonstrated states, but also facilitates the crucial ability to guide the agent towards returning

to familiar states when navigating through novel, out-of-distribution scenarios.

Regarding the outer/inner alignment problems, our approach brings several benefits:

• While any IRL based method is deemedmore relevant than a hard coded objective to ensure

alignment, our approach captures the expert’s behaviour more accurately that existing ap-

proaches by learning its set-policy rather than matching occupancy measures. We believe

this feature is a significant progress toward better outer-alignment.

• Using the link between IL and IRL, we devised a method that imitates the expert’s ac-

152

tions while ensuring that the model returns to demonstrated states if it encounters out-

of-distribution situations. This property enables safer agents that can recover better in

stochastic environments while staying close to the demonstrated path, hence limiting any

drift risks. Safer agents are more robust to out-of-distribution scenarios and distributional

shift, hence limiting the risk if inner-misalignment.

Our experimental results provide compelling evidence that our model successfully learns non-

degenerate reward functions, effectively capturing the notion of distance between the current

state and the nearest state within the demonstrated optimal trajectory. While our approach in-

troduces several advantageous features compared to existing methods, there exists potential for

further enhancement. To solidify the robustness and applicability of our approach, our next phase

of experimentation will involve rigorous testing in more intricate and challenging environments.

Specifically, we plan to evaluate our model’s performance on complex domains like the Atari 2600

games from the Arcade Learning Environment [Bel+13], as well as within theMujoco robotic sim-

ulation framework [TET12]. This comprehensive evaluation aims to establish the effectiveness

of our approach, showcasing its capabilities through comparisons with established techniques in

the field.

In future work we will investigate how our model can be adapted to regularised MDPs as it has

been proven that these do not contain degenerate solutions due to the uniqueness of the optimal

policy for regularised MDPs [GSP19]. Moreover, [FLL18] introduced an adversarial framework to

learn "disentangled rewards”, which are reward functions that are decoupled from the environ-

ment dynamics and are specifically designed to be more robust when transferred to a different

environment. Adapting this approach to our setup would be a nice addition to our model.

153

Chapter 6

Zero-Shot Clustering Through Metric
Transfer Learning

Clustering in high dimension spaces is a difficult task; the usual distance metrics may no longer be
appropriate under the curse of dimensionality. Indeed, the choice of the metric is crucial, and it is
highly dependent on the dataset characteristics. However a single metric could be used to correctly
perform clustering on multiple datasets of different domains. We propose to do so, providing a frame-
work for learning a transferable metric. We show that we can learn a metric on a labelled dataset,
then apply it to cluster a different dataset, using an embedding space that characterises a desired
clustering in the generic sense. We learn and test such metrics on several datasets of variable com-
plexity (synthetic, MNIST, SVHN, omniglot) and achieve results competitive with the state-of-the-art
while using only a small number of labelled training datasets and shallow networks.

6.1 Introduction

In the previous chapter, we extended our Distributional RL framework from chapter 4 to the IRL

context. We also referenced the work of [FLL18], which introduces an adversarial framework

to obtain “disentangled rewards". These rewards are intentionally designed to be independent

of the complex environmental dynamics, enhancing their adaptability when applied to different

environments or variations of the same environment with altered dynamics. For instance, this

approach could enable training an IRL model to control a car based on expert demonstrations

under sunny and dry conditions, while learning a reward function that remains applicable in

rainy conditions with wet roads. This is a great way to handle distributional shift and inner

alignment problem as defined in the introduction of this manuscript.

In a sens, the approach described in [FLL18] learns a global reward function that remains inde-

pendent from the environment’s dynamics which can be described as a meta-reward function

that is valid for a large range of dynamics variations for the same environment. One of the major

stances of this thesis is that it should be possible to handle distributional shift by learning meta-

objectives. In that, we agree with the authors of [FLL18]. However, the aim is to push the limit

further by learning meta-rewards for different tasks (that remain similar) rather than keeping the

154

same task and only changing the dynamics.

In this section we will detail more exhaustively the aim of our work, i.e. zero-shot learning from

an IRL perspective and why we restricted ourselves to the clustering problem. Finally we will

present our view on metric learning for clustering.

6.1.1 From Meta-IRL to Zero-Shot Clustering

In the background section we presented Meta-learning for both Domain Adaptation and Multi-

Task Learning. We highlighted the distinction between zero-shot and few-shot learning, with

a specific focus on few-shot scenarios. Our exploration encompassed both metric-based and

optimization-based approaches, with a comprehensive examination ofModel AgnosticMeta Learn-

ing (MAML) [FAL17]. We also discussed the adaptation of MAML to RL [Rak+19] and Inverse

IRL [Xu+19; Yu+19] contexts.

The underlying inspiration for these optimization-based methods stems from the concept of pre-

training neural network weights for vision tasks. This established paradigm involves first pre-

training a network on a large dataset such as ImageNet, then fine-tuning it on specific tasks

using gradient descent. This pre-training enables networks to learn new tasks more effectively

even with limited data. However, in few-shot scenarios, where data is extremely scarce, because

the last layers of the network still need to be heavily adapted to the new task, the fine-tuning

process can still lead to overfitting due to the need for substantial adaptation in the final layers of

the network. MAML addresses this challenge by optimizing for an initial parameterization that

can be rapidly adapted to new tasks with minimal examples and gradient steps as illustrated in

figure 6.1. The meta-learner aims to discover an initialization that is not only versatile across a

variety of tasks but also facilitates swift and efficient adaptation. In the context of MAML, this

involves seeking parameters 𝜃 that, during the meta-learning process (indicated by the bold line),

enable quick convergence to optimal parameters 𝜃𝑖 for specific tasks (illustrated by the grey lines)

through a few gradient steps.

Figure 6.1: Optimisation based Meta-Learning. The model optimises for 𝜃 parameters that find a

compromise between different tasks in order to optimise and adapt quickly to new tasks. Source:

https://bair.berkeley.edu/blog/2017/07/18/learning-to-learn/

Despite their remarkable achievements, these approaches, characterized by their revolutionary

simplicity and efficiency, encounter a significant limitation—they are unable to address the zero-

shot learning scenario. In other words, they necessitate a collection of expert demonstrations

155

https://bair.berkeley.edu/blog/2017/07/18/learning-to-learn/

specific to the target task. Our overarching objective is to transcend this limitation and achieve

success in the realm of zero-shot learning.

In zero-shot learning, the aspiration is to craft a reward function with the potential to guide an

agent to success in a target domain or task, armed only with expert demonstrations from a differ-

ent domain or task, and without any requirement for demonstrations within the target domain.

This ambitious goal envisions a paradigm where a reward function derived from one context can

be effectively transferred to another, enabling the agent to navigate uncharted territories and

accomplish tasks beyond the confines of its training data.

Figure 6.2 provides a visual representation of this process. Consider the scenario of teaching

a robot to ride a bike—an endeavor for which we lack a clear understanding of an appropriate

reward function. One approach would involve employing IRL based on expert demonstrations.

However, if we introduce the added constraint that no expert demonstrations are available for

bike riding, the feasibility of IRL diminishes. A compelling alternative approach involves identi-

fying an auxiliary task, such as car driving, which does possess available expert demonstrations.

The proposition here is to formulate a reward function for the auxiliary task and subsequently

endeavor to adapt it to the bicycle riding task. This knowledge transfer leverages the known

attributes of one task to inform the learning process of another task, even if direct expert demon-

strations for the latter task are unattainable.

This is clearly a hard problem for which a solution could be a revolution for all fields to which

AI can be applied and even a gigantic step towards General AI. Therefore, while keeping this

ultimate aim in mind, we humbly propose to simplify the problem at hand. For this matter, we

draw the following constraints regarding the type of MDP considered:

• One step problem: Every state has to be reachable from any other state of the game

• Unique optimum: There should be only one optimal final state to find

• Metrizability: the reward function should behave like a metric. It should measure how

close the current state is from the final desired state.

One can notice that the metrizability constraint illustrates the reward function learnt using our

Distributional IRL approach, which can be interpreted as the inverse distance between the current

state and the closest state located on the optimal path.

We also notice that clustering problems satisfy all three of these constraints:

• One step problem: A clustering can be seen as a one step partition problem

• Unique optimum: It has a unique perfect/desired partition (modulo the permutations be-

tween all partitions)

• Metrizability: A clustering depends on the metric used, it just finds the clustering that

maximises/minimises the givenmetric. Themetric can be interpreted as a distance between

a proposed clustering and the perfect/desired solution

One direct consequence of metrizability is that optimisation based approaches like MAML are de

facto ruled out. Only metric based approaches are possible in this setting.

156

Figure 6.2: Given demonstrations of how to drive a car, a model can infer a reward function that

can suit both the tasks of driving a car and riding a bike.

We also recall that there exist two types of transfers, namely domain and task transfer. Clustering

can be adapted to handle thos two types:

• Domain transfer: Given a dataset D, it is possible to create instances D𝑖 of the dataset

where the objects to cluster are not distributed the same way. The idea is then to learn a

metric on a given instance D𝑖 and use the same metric to perform the clustering on D 𝑗 .

• Task transfer: One can try to learn a clustering metric on a datasetD1 and then perform a

clustering using the same metric on dataset D2.

The clustering process is illustrated in figure 6.3

6.1.2 Transferable Metric Learning for Clustering

Given a dataset X, clustering is the unsupervised task of assigning a categorical value 𝑦𝑖 ∈
{1, . . . , 𝑘} to each data point 𝑥𝑖 ∈ X, where no such example categories are given in the training

data; i.e., we should map X = {𝑥1, . . . , 𝑥𝑛} ↦→ Y = {𝑦1, . . . , 𝑦𝑛} with X the input matrix of 𝑛 data

points, each of dimension 𝑑 ; where𝑦𝑖 = 𝜅 implies that data point 𝑥𝑖 is assigned to the 𝜅-th cluster.

Clustering methods complete this task by measuring similarity (the distance) between training

157

Figure 6.3: Given demonstrated clusterings 𝐶∗𝑖 on instances of MNIST numbers dataset 𝐶𝑖 , the

aim is to find the metric 𝑟 , such that 𝐶∗𝑖 = arg max𝑟 𝐶𝑖 . In a second step, we use 𝑟 to find 𝐷∗𝑖 such

that 𝐷∗𝑖 = arg max𝑟 𝐷𝑖 . 𝐷𝑖 are instances of the MNIST letter dataset.

pairs, using a similarity function

𝑠 (𝑥𝑖, 𝑥 𝑗) ∈ ℝ+
Given a threshold 𝑡 ∈ ℝ+, a clustering algorithm typically allocates two points to the same cluster

if 𝑠 (𝑥𝑖, 𝑥 𝑗) > 𝑡 . In order to form hard clusters, i.e. no point should belong to more than one unique

cluster, it is necessary to find 𝑡 given 𝑠 to enforce that condition.

This similarity function should typically reflect subjective criteria fixed by the user. Basically,

this means that the user decides what makes a good clustering. As mentioned in [HVZ19], “since

classes are a high-level abstraction, discovering them automatically is challenging, and perhaps

impossible since there are many criteria that could be used to cluster data (e.g., we may equally

well cluster objects by colour, size, or shape). Knowledge about some classes is not only a re-

alistic assumption, but also indispensable to narrow down the meaning of clustering". Taking

the example of MNIST [LCB10], one usually groups the same numbers together because these

numbers share the highest amount of features (e.g., mutual information based models do that).

However one may want to group numbers given their roundness. In this case, we may obtain

two clusters, namely straight shaped numbers (i.e., 1, 4,7) and round shaped numbers (i.e., all

the others). Both clustering solutions are relevant, since each clustering addresses a different yet

possible user subjective criteria (i.e., clustering semantics).

158

Table 6.1: Summary of notation.

X A dataset of 𝑛 points, 𝑥𝑖 ∈ ℝ𝑑

y∗ True clustering (partition) of X,y∗ ∈ ℝ𝑛
, labels 𝑦∗𝑖 ∈

{1, . . . , 𝑘}
y A possible clustering of X, y ∈ ℝ𝑛

, labels 𝑦𝑖 ∈ {1, . . . , 𝑘}
𝑟 Metric ℝ𝑛×𝑑 × ℕ𝑛 ↦→ ℝ, scoring of the clustering

ŷ Clustering retained after optimisation for a scoring func-

tion 𝑟 , ŷ ∈ ℝ𝑛
, labels 𝑦𝑖 ∈ {1, . . . , 𝑘}

𝑠 Similarity function 𝑠 : ℝ𝑑 ×ℝ𝑑 ↦→ ℝ+
𝐶∼ X/∼ the quotient space of X generated by the equivalence

relation ∼
D {X𝑙 , y∗𝑙 }

ℓ
𝑙=1

collection of labelled datasets

𝑔 ℝ𝑛×𝑑 ×ℝ𝑛 → ℝ𝑒
embedding function

z∗, ẑ Embeddings, ∈ ℝ𝑒
, of (X, y∗), and (X, y), respectively

𝑐𝜃 (z) Output ∈ ℝ+ from the WGAN critic taking the embedding

z as input
G(X, y) Graph representing a clustered version of X
A An adjacency matrix

CEM Cross-entropy method

S Set of all intermediate clustering solutions found through

CEM

Finding an automated way to derive and incorporate user criteria in a clustering task based on in-

tended semantics can be very hard. Nowadays, the wide availability of shared annotated datasets

is a valuable asset and provides examples of possible user criteria. Hence, we argue that, given

“similar” annotated data, classification logic can be used to derive a user criteria that one can

apply to clustering similar non-annotated data. For example, we consider the situation where a

human is placed in front of two datasets, each one consisting of letters of a certain alphabet she

does not understand. The first dataset is annotated, grouping the same letters together. Only

by seeing the first dataset, the person can understand the grouping logic used (grouping same

geometrical shapes together) and replicate that logic to the second non annotated dataset and

cluster correctly its letters.

We are interested in tackling the problem of clustering data when the logic (i.e., user clustering

criteria) is encoded into some available labelled datasets. This raises twomain challenges, namely

(1) find a solution that works well on the classification task but (2) ensure transferability in its

decision mechanism so it is applicable to clustering data from a different domain.

We believe that addressing these challenges calls for the design of a scoring function that should

be as general as possible to ensure transferability but is specific enough not to miss the user

criteria. More specifically, the scoring function should be comparing the logic used to produce

a certain clustering to the one used to produce clusterings of the already seen training datasets.

Using the concept of logic is useful as a logic is general enough to be used on any dataset and

specific enough as it is the main common property shared by all training dataset. Our goal is then

159

to find a suitable metric that retrieves and encapsulate the seen concept for scoring a clustering

outcome.

Moreover, modern applications require solutions that are effective when data is of high dimension

(i.e., large 𝑑). While distance-based approaches are broadly used for clustering (e.g., Euclidean

distance), we argue that they are not suitable for our problem since they would yield in data

specific models in addition to their poor performance in high dimensional spaces due to the curse

of dimensionality. To lower dimensionality, a solution is to perform instance-wise embeddings

𝑥𝑖 ↦→ 𝑧𝑖 ∈ Z, with dim(Z) < dim(X) e.g., with an autoencoder. However this mechanism is still

domain specific.

To achieve training on more general patterns, we think it is necessary to take the dataset in its

entirety. Therefore, instead of learning a metric that compares pairs of data points in a dataset

instance (like a similarity measure), a learned metric is applied to sets of data points so compar-

ison is done between sets. The metric can be intuitively understood as a distance between the

logic underlying a given clustering and the general logic that was used to produce clusterings in

training datasets.

For this, we propose a solution where we use a graph autoencoder [KW16] to embed a set of

data points into a vector of chosen dimension. Then, we use the critic part of a Wasserstein GAN

(WGAN) [ACB17] to produce a continuous score of the embedded clustering outcome. This critic

represents the metric we seek. Thus, our main contributions are:

• We provide a framework for joint metric learning and clustering tasks.

• We show that our proposed solution yields a learned metric that is transferable to datasets

of different sizes and dimensions, and across different domains (either vision or tabular)

and tasks.

• We obtain results competitive to the state-of-the-art with only a small number of training

datasets, relatively simple networks, and no prior knowledge (only an upper bound of the

cluster number that can be set to a high value).

• Our method is scalable to large datasets both in terms of number of points or dimensions

(e.g the SVHN dataset used in section 6.4) as it does not have to compute pairwise distances

and therefore does not heavily suffer when the number of points or dimensions increase.

• We test the metric on datasets of varying complexity (synthetic [Ped+11], MNIST [LCB10;

Coh+17; XRV17], SVHN [Net+11], omniglot [LST15]) and perform on par with the state-

of-the-art while maintaining all the advantages cited above.

6.2 Related Work

Using auto-encoders before applying classic clustering algorithms resulted in a significant in-

crease of clustering performance, while still being limited by these algorithms capacity. Deep

Embedding Clustering (DEC) [XGF16] gets rid of this limitation at the cost of more complex ob-

jective functions. It uses an auto-encoder along with a cluster assignment loss as a regularisation.

The obtained clusters are refined by minimising the KL-divergence between the distribution of

160

soft labels and an auxiliary target distribution. DEC became a baseline for deep clustering algo-

rithms. Most deep clustering algorithms are based on classical center-based, divergence-based

or hierarchical clustering formulations and hence bear limitations like the need for an a priori
number of clusters.

MPCKMeans [BBM04] is more related to metric learning as they use constraints for both metric

learning and the clustering objective. However, their learned metrics remain dataset specific and

are not transferable.

Constrained Clustering Network (CCN) [Ha18], learns a metric that is transferable across do-

mains and tasks. Categorical information is reduced to pairwise constraints using a similarity

network. Along with the learned similarity function, the authors designed a loss function to reg-

ularise the clustering classification. But, using similarity networks only captures local properties

instance-wise rather than global geometric properties of dataset clustering. Hence, the learned

metric remains non fully transferable, and requires to adapt the loss to the domain to which the

metric is transferred to.

In Deep Transfer Clustering (DTC) [HVZ19] and Autonovel [HRa21], the authors tackle the prob-

lem of discovering novel classes in an image collection given labelled examples of other classes.

They extended DEC to a transfer learning setting while estimating the number of classes in the

unlabelled data. Autonovel uses self-supervised learning to train the representation from scratch

on the union of labelled and unlabelled datasets then trains the data representation by optimising

a joint objective function on the labelled and unlabelled subsets of data. We consider these two

approaches as our state of the art baselines.

6.3 Our Framework

To restate our objective, we seek an evaluation metric

𝑟 : ℝn×d × ℕn → ℝ

(X, y) ↦→ r(X, y)
(6.1)

where X ∈ ℝn×d
is a dataset of 𝑛 points in 𝑑 dimensions and y ∈ ℕn

a partition of X (i.e. a

clustering of X).

6.3.1 Formulating the Problem with Quotient Spaces

As we are looking for a metric comparing between different sets of points. The most natural

formulation in this context is to use the concept of quotient spaces. Indeed, this formulation will

allow us to formulate the problem as an optimisation one and to define the sought metric as a

similarity measure between quotient spaces.

Quotient Maps Transform Similarity Between Clusters Into Distance Between Points.

Let ∼ denote an equivalence relation where 𝑥𝑖 ∼ 𝑥 𝑗 if and only if 𝑠 (𝑥𝑖, 𝑥 𝑗) > 𝑡 ∈ ℝ+. When 𝑥𝑖 ∼ 𝑥 𝑗
then 𝑥𝑖 and 𝑥 𝑗 belong to the same cluster. We are interested in forming hard clusters, i.e. no point

161

should belong to more than one unique cluster, therefore it is necessary to find 𝑡 given 𝑠 such

that 𝐶∼ = X/∼ is the quotient space of X generated from the considered equivalence relation.

As illustrated in figure 6.4, Given two sets of points 𝐷 and 𝐴, the equivalence relation defines an

application between 𝐷 and𝐴 such that all points considered equivalent in 𝐷 are mapped towards

a single point in 𝐴. This mapping is called quotient map.

Figure 6.4: Illustration of quotient map. Given two sets of points 𝐷 and 𝐴, the equivalence rela-

tion defines an application between 𝐷 and 𝐴 such that all points considered equivalent in 𝐷 are

mapped towards a single point in 𝐴.

Definition: quotient map: Let (𝑋, 𝜏) and (𝑌, 𝜏′) be topological spaces. Then a continuous surjec-

tive map 𝑞 : 𝑋 ↦→ 𝑌 is a quotient map if 𝑉 ∈ 𝜏′ ⇐⇒ 𝑞−1(𝑉) ∈ 𝜏 . This means that for any open

in 𝑌 its preimage for 𝑞 is also open in 𝑋 .

From Abstract Similarity to Optimising a Metric

An essential property of quotient maps is continuity. This means that neighbourhoods are pre-

served in both sets 𝑋 and 𝑌 . Consequently, close clusters in the set 𝑋 relative to some distance

𝑑 are mapped to close points in 𝑌 . Therefore quotient maps not only describe an equivalence

relation but they make it easier to define similar clusters. Indeed similar clusters are mapped to

close points in 𝑌 .

The function 𝑟 can then be designed to behave as a metric such that given two quotient spaces

𝐶∼ and𝐶∼′ respectively generated from equivalence relations ∼ and ∼′, and𝐶∼∗ being the perfect
clustering, if 𝐶∼ is closer to be the correct clustering, then 𝑟 (𝐶∼;𝐶∼∗) < 𝑟 (𝐶∼′,𝐶∼∗). Therefore
quotient maps are essential as they allow to reduct a similarity between clusters to a metric

in a quotient space. For lighter notations, 𝐶∼∗ will be considered implicit and we will denote

𝑟 (𝐶∼) > 𝑟 (𝐶∼′).

Obviously, such a function 𝑟 implicitly encodes the choice of similaritymeasure 𝑠 and its threshold

𝑡 . Let {X1, . . . ,X𝑛} ∈ D be the collection of datasets used for training, and {X∗
1
, . . . ,X∗𝑛} their

162

known clusterings. Such clustering problem could be approached as an optimisation problem:

𝐶∼ = arg max

X/∼
𝑟 (X/∼)

s.t 𝑟 (X/∼∗) = 0

s.t 𝑟 (X∗𝑖) = 0 ∀X𝑖 ∈ D
s.t 𝑟 (X/∼) < 𝑟 (X/∼∗) if ∼≠∼∗

(6.2)

What we seek is a general function 𝑟 that scores the general quality of a clustering. We seek a

function that is effective for many (possibly high-dimensional) clustering problems i.e., a trans-
ferable function.

Metric 𝑟 should provide a score for any labelled dataset of any dimensionality; and in particular

this score should be such that 𝑟 (X, y) is high when the hamming distance between the ground

truth labels y∗ and y is small (taking cluster label permutations into account). This would mean

that we could perform clustering on any given dataset, simply by solving the optimisation prob-

lem 6.2 even if such a dataset had not been seen before. In section 6.3.5, this problem will be

reformulated in terms of metric instead of equivalence relation.

6.3.2 Overview of our Model

Formally stated, our goal is:

1. To produce ametric 𝑟 that grades the quality of a clustering such that y∗ = arg maxy r(X, y);

2. Implement an optimisation algorithm that finds y∗;

3. Use (1) and (2) to perform a clustering on a new unrelated and unlabelled dataset.

We use a collection D = {X𝑙 , y∗𝑙 }
ℓ
𝑙=1

of labelled datasets as examples of correctly ‘clustered’

datasets, and learn 𝑟 such that 𝔼[𝑟 (X, y)] is high. Indeed, as 𝑟 can be considered either as a

distance or a score, we will consider from now that 𝑟 is a score to be maximised rather than a

distance to minimise. In order to make 𝑟 transferable between datasets, we embed each dataset

with its corresponding clustering (X𝑙 , y𝑙) into a vector z𝑙 ∈ ℝ𝑒
using the embedding function 𝑔:

𝑔 : ℝ𝑛×𝑑 ×ℝ𝑛 → ℝ𝑒

(X, y) ↦→ z
(6.3)

Therefore, the metric 𝑟 is actually the composition of two functions: 𝑔 and a subsequent scoring

function from ℝe
to ℝ. Our training procedure is structured around 3 blocs A, B and C detailed

in next sections and depicted in figure 6.5 and is summarised in the following main steps:

Bloc A. step 1 Select a labelled dataset (X, y∗) ∼ D

Bloc A. step 2 Given a metric function 𝑟 (output from bloc B step 2, or initialised randomly), we

perform a clustering of dataset X: ŷ = arg maxy 𝑟 (X, y)

Bloc B. step 1 y∗ and ŷ are represented as graphs where each clique represents a cluster.

163

Bloc B. step 2 Graph convolutional autoencoders perform feature extraction from ŷ and y∗ and
output embeddings ẑ and z∗

Bloc C. step 1 The metric 𝑟 is modelled by a WGAN critic denoted 𝑐𝜃 that outputs evaluations of

the clusterings: 𝑟 (X, y∗) = c𝜃 (z∗) and 𝑟 (X, ŷ) = c𝜃 (ẑ)
Bloc C. step 2 Train the model using the error between 𝑟 (X, y∗) and 𝑟 (X, ŷ).

Figure 6.5: Our framework’s 3 components: the clustering mechanism (A), the GAE (B) and the

WGAN (C). (A) takes an unlabelled dataset X as input and outputs a clustering ŷ that maximises

a metric 𝑟 . ŷ is then turned into a graph G(X, ŷ) then into an embedding vector ẑ using (B). Same

goes for the correctly labelled dataset, which is embedded as ẑ∗. Then, (C), which is the metric

itself, evaluates ẑ and z∗ using 𝑐𝜃 and is trained to produce a new metric 𝑟 which is then used for

(A) in the next iteration.

6.3.3 Clustering Mechanism

We seek the most suitable optimisation algorithm for clustering given 𝑟 . Considering a neural

network parametrised by𝑤 that performs the clustering, we need to find its optimal weights𝑤∗

such that the metric 𝑟 is maximised (see equation (6.4)). The type of algorithm to use depends on

the nature of the metric 𝑟 to optimise on.

Φ𝑟 (X)
finds−−−→ 𝑤∗ = arg max

𝑤

𝑟 (X, y𝑤) (6.4)

Where Φ is an optimiser to determine and y𝑤 is a clustering obtained with the weights 𝑤 . The

metric is assumed to hold certain properties, discussed in section 6.3.5:

• Unique Maximum: A unique optimal clustering. 𝑟 has a unique maximum.

164

Algorithm 6 CEM Algorithm

Require: Dataset X ∈ ℝ𝑛×𝑑
; score function 𝑟 ; 𝜇 ∈ ℝ𝑑

and 𝜎 ∈ ℝ𝑑
; elite percentage to retain 𝑝; 𝑛

number of samples𝑤𝑖 to produce; 𝑇 number of iterations

for iteration = 1 to 𝑇 do
Produce 𝑛 samples of neural network weights𝑤𝑖 ∼ N(𝜇, diag(𝜎))
Produce clusterings y𝑖 of X using each𝑤𝑖
Evaluate 𝑟𝑖 = 𝑟 (X, y𝑖)
Constitute the elite set of 𝑝 best𝑤𝑖
Fit a Gaussian distribution with diagonal covariance to the elite set and get a new 𝜇𝑡 and 𝜎𝑡

end for
return: 𝜇,𝑤∗

• Continuity1: Any two clusterings y and y′ should be similar if 𝑟 (y) and 𝑟 (y′) are close in
ℝ space. Hence, 𝑟 has to satisfy a continuity constraint.

There is no guarantee that the best metric for the clustering task is differentiable. Given the

above assumptions, conditions are favourable for evolutionary strategies (ES) to iteratively con-

verge towards the optimal solution. Indeed, if 𝑟 is continuous and the series

(
(X, ŷ1), . . . , (X, ŷ𝑝)

)
converges towards (X, y∗) then

(
𝑟 (X, ŷ1), . . . , 𝑟 (X, ŷ𝑝)

)
converges towards 𝑟 (X, y∗).

We choose the Cross-Entropy Method (CEM) [BKa05], a popular ES algorithm for its simplicity,

to optimise the clustering neural network weights by solving Eq.(6.4) (algorithm 6). Indeed, any

other gradient free algorithm can be used, depending on the user preference.

6.3.4 Graph Based Dataset Embedding

To capture global properties and be transferable across different datasets, we argue that it is

necessary to input all the points of a dataset at once. Hence, instead of pairwise similarities

between random pairs of points, we propose to get a representation of the relation between a

bunch of neighbouring points. Thus, we represent each dataset by a graph structure G(X, y)
where each node corresponds to a point in 𝑥𝑖 ∈ X and where cliques represent clusters as shown

in figure 6.5. This representation takes the form of a feature matrix 𝑋 and an adjacency matrix

𝐴. Using 𝑋 , and 𝐴, we embed the whole dataset into a vector z ∈ ℝe
. To do so, we use graph

autoencoders (GAE). Our implementation is based on [KW16].

Specifically, we have {𝑋,𝐴} ↦→ z, under the following mechanism:

𝐺𝐶𝑁 (𝑋,𝐴) = ReLU(�̃�𝑋𝑊0) = 𝑋 (6.5)

With �̃� the symmetrically normalized adjacency matrix and (𝑊0,𝑊1) the GCN weight matrices.

1
As a reminder, Let 𝑇 and 𝑈 be two topological spaces. A function 𝑓 : 𝑇 ↦→ 𝑈 is continuous in the open set

definition if for every 𝑡 ∈ 𝑇 and every open set 𝑢 containing 𝑓 (𝑡), there exists a neighbourhood 𝑣 of 𝑡 such that

𝑓 (𝑣) ⊂ 𝑢.

165

𝑧 = �̃�𝑋𝑊1 (6.6)

Finally, the decoder outputs a new adjacency matrix using the sigmoid function 𝜎 :

𝐴 = 𝜎 (𝑧𝑧𝑇) (6.7)

We obtain 𝑧 ∈ M𝑛,𝑚 which is dependent of the shape of the dataset (where𝑚 is a user specified

hyper-parameter). In order to make it independent from the number of points in X, we turn the

matrix 𝑧 into a square symmetrical one 𝑧 ←− 𝑧𝑇𝑧 ∈ M𝑚,𝑚 . The final embedding z corresponds to a
flattened version of the principal triangular bloc of 𝑧𝑇𝑧, which shape is e = (𝑚+1

2
, 1). However, the

scale of the output still depends on the number of points in the dataset. This could cause an issue

when transferring to datasets with a vastly different number of data points. It should therefore

require some regularisation; in order to simplify, we decided to use datasets with approximately

the same number of points.

6.3.5 A Critic as a Metric

With embedded vectors of the same shape, we compare the clusterings proposed ẑ and the ground
truth ones z using the metric 𝑟 . Given optimisation problem stated in equation 6.2, we can en-

force the constraints under the process highlighted in [NR00]. Learning viable metric is possible

provided both the following constraints: (1) maximising the difference between the quality of the

optimal decision and the quality of the second best; (2) minimising the amplitude of the metric

function as using small values encourages the metric function to be simpler, similar to regulari-

sation in supervised learning.

These two constraints enforce the exact same behaviour as for our sought reward function in

our chapter 5 Distributional IRL model. Indeed, considering the perfect clustering as our expert

dataset, denoted𝐷𝐸 in chapter 5 and𝐷𝜋 the proposals, (1) enforces the maximummargin analogy

maximising the distance between 𝐷𝐸 and 𝐷𝜋 . On the other hand, (2) has the same effect as using

tanh activation function for bounding the reward.

Whenmaximising the metric difference between the two clusterings that have the highest scores,

we get a similarity score as in traditional metric learning problems. Formalising the problem 6.2

in these terms, we obtain the equivalent problem (6.8) whereS is a set of solutions (i.e., clustering

proposals) found using 𝑟𝜃 (the metric parameterised by the critic’s weights 𝜃) and y∗ is the true
clustering, ymax

is the best solution found in S: ymax = arg maxy∈S 𝑟𝜃 (X, y).

min

𝜃
𝑟𝜃 (X, y∗) −

[
max

𝜃
min

y′∈S\ymax

𝑟𝜃 (X, ymax) − 𝑟𝜃 (X, y′)
]

s.t y∗ = arg max

y∈Y
𝑟𝜃 (y)

(6.8)

For more clarity, we will now break down this expression.

166

1. miny′∈S\ymax 𝑟𝜃 (X, ymax) − 𝑟𝜃 (X, y′) finds the second best clustering for 𝑟𝜃 . Indeed the aim

is to find the closest clustering to ymax
under 𝑟𝜃 .

2. max𝜃 miny′∈S\ymax 𝑟𝜃 (X, ymax) − 𝑟𝜃 (X, y′) : We find 𝜃 such that 𝑟𝜃 gives the highest possible

value for the difference between the best and second best clusterings found under 𝑟𝜃 . This

expression enforces the constraint (1).

3. Finally the whole expression finds 𝜃 such that the difference between the score obtained

by the best found clustering is close (ideally equal) to the score obtained by the sought

clustering. This has to be true under the constraint that the sought clustering obtains the

maximum achievable score under 𝑟𝜃 .

The condition (2) is enforced using a tanh activation function as described in chapter 5.

Algorithm 7 Critic2Metric (C2M)

Require: 𝑏: batch size, 𝑛_epochs: number of epochs; 𝑝: percentage of elite weights to keep;

𝑛_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠: number of CEM iterations; 𝑛𝑤 : number of weights to generate; 𝜇 ∈ ℝ𝑑
: CEM

mean; 𝜎 ∈ ℝ𝑑
: CEM standard deviation, 𝜃 : critic’s weights

for 𝑛 = 1 to 𝑛_epochs do
for 𝑘 = 1 to b do

Sample (X𝑘 , y∗𝑘) ∼ D a ground truth labelled dataset

Generate ground truth embeddings z(X𝑘 ,y∗𝑘) = 𝐺𝐴𝐸 (G(X𝑘 , y
∗
𝑘
))

Initialise clustering neural network weights {𝑤 𝑗 }𝑛𝑤𝑗=1

for 𝑖 = 1 to 𝑛_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do
for 𝑗 = 1 to 𝑛𝑤 do

Generate clusterings ŷ𝑤 𝑗

𝑘

Convert ŷ𝑤 𝑗

𝑘
into a graph

z(X𝑘 ,ŷ
𝑤𝑗

𝑘
) = 𝐺𝐴𝐸 (G(X𝑘 , ŷ

𝑤 𝑗

𝑘
))

Evaluate: 𝑟 (X𝑘 , ŷ
𝑤 𝑗

𝑘
) = 𝑐𝜃 (z(X𝑘 ,ŷ

𝑤𝑗

𝑘
))

end for
Keep proportion 𝑝 of best weights𝑤𝑝
𝑤∗ ←− CEM(𝑤𝑝, 𝜇, 𝜎)

end for
Generate clustering y𝑤

∗

𝑘

z(X𝑘 ,ŷ𝑤
∗

𝑘
) = 𝐺𝐴𝐸 (G(X𝑘 , ŷ𝑤

∗

𝑘
))

Train critic as in [ACB17] using z(X𝑘 ,ŷ𝑤
∗

𝑘
) and z(X𝑘 ,y∗𝑘)

end for
end for

To solve equation (6.8), we use a GAN approach where the clustering mechanism (i.e., CEM)

plays the role of the generator while a critic (i.e., metric learning model) plays the role of the

discriminator. In a classic GAN, the discriminator only has to discriminate between real and

false samples, making it use a cross entropy loss. With this kind of loss, and in our case, the

discriminator quickly becomes too strong. Indeed, the score output by the discriminator becomes

quickly polarised around 0 and 1.

167

For this reason, we represent 𝑟 as the critic of a WGAN [ACB17]. This critic scores the realness

or fakeness of a given sample while respecting a smoothing constraint. The critic measures the

Wasserstein distance between data distribution of the training dataset and the distribution ob-

served in the generated samples. Since WGAN assumes that the optimal clustering provided is

unique, the metric solution found by the critic satisfies equation (6.8) constraints. 𝑟 reaching a

unique maximumwhile being continuous, the assumptions made in section 6.3.3 are correctly ad-

dressed. To train the WGAN, we use the loss L in equation (6.9) where ẑ is the embedding vector

of a proposed clustering and z is the embedding vector of the desired clustering. Our framework

is detailed in algorithm 7.

L(z∗, ẑ) = max

𝜃
𝔼z∗∼𝑝 [𝑓𝜃 (z∗)] − 𝔼ẑ∼𝑝 (ẑ) [𝑓𝜃 (ẑ)] (6.9)

6.4 Experiments

In this section, we carry out empirical evaluation of the proposed model using synthetic and real

datasets. The purpose of this analysis is (1) to study the capacity of the model to provide a close

to expected clustering under a learned metric, (2) to test its unsupervised clustering performance

when transferring the metric to new different target datasets both in terms of domain and task.

Dataset family Synthetic data MNIST

Street view

house numbers

Omniglot

Dataset Blob Moon Circles

Aniso-

tropic

MNIST-digits

[LCB10]

letters MNIST

[Coh+17]

fashion MNIST

[XRV17]

SVHN

[Net+11]

Omniglot

[LST15]

Snapshot

Feature
dimension 2 2 2 2 28 × 28 28 × 28 28 × 28 32 × 32 105 × 105

Maximum number
of clusters

9

(custom)

9

(custom)

9

(custom)

9

(custom)

10 26 10 10 47

Size
200

(custom)

200

(custom)

200

(custom)

200

(custom)

60000 145600 60000 73257 32460

Table 6.2: Datasets description

For empirical evaluation, we parameterise our framework as follows: The critic (block C in Fig 6.5)

is a 5 layer network of sizes 256, 256, 512, 512, and 1 (output) neurons. All activation functions

are LeakyRelu (𝛼 = 0.2) except last layer (no activation). RMSprop optimizer with 0.01 initial

learning rate and a decay rate of 0.95. The CEM-trained neural network (bloc A in Fig 6.5) has

1 hidden layer of size 16 with Relu activation, and a final layer of size 𝑘 = 50 (the maximum

number of clusters). The GAE (bloc B in Fig 6.5) has 2 hidden layers; sized 32 and 16 for synthetic

datasets, and 100 and 50 for real datasets.

We choose datasets based on 3 main criteria: having a similar compatible format; datasets should

be large enough to allow diversity in subsampling configurations to guarantee against overfitting;

datasets should be similar to the ones used in our identified baseline literature. All used datasets

are found in table 6.2.

For training, we construct 𝑛 sample datasets and their ground truth clustering, each containing

200 points drawn randomly from a set of 1500 points belonging to the training dataset. Each one

168

of these datasets, along with their clustering is an input to our model. To test the learned metric,

we construct 50 new sample datasets from datasets that are different from the training one (e.g.,

if we train the model on MNIST numbers, we will use datasets from MNIST letters or fashion to

test the metric). The test sample datasets contain 200 points each for synthetic datasets and 1000

points each otherwise. The accuracies are then averaged across the 50 test sample datasets. To

test the ability of the model to learn using only a few samples, we train it using 5 (few shots) and

20 datasets (standard), each containing a random number of clusters. For few shots trainings, we

train the critic for 1 epoch and 10 epochs for standard trainings.

To evaluate the clustering, we use Normalised-Mutual Information (NMI) [SG02] and clustering

accuracy (ACC) [YXa10]. NMI provides a normalised measure that is invariant to label permuta-

tions while ACC measures the one-to-one matching of labels. For clustering, we only need that

the samples belonging to the same cluster are attributed the same label, independently from the

label itself. However, since we want to analyse the behaviour of the metric learned through our

framework, we are interested in seeing whether it is permutation invariant or not. Hence, we

need the two measures.

6.4.1 Results on 2D Synthetic Datasets

Analysis on synthetic datasets (see table 6.2) proves that our model behaves as expected. We do

not compare our results to any baseline since existing unsupervised methods are well studied

on them. We train our model using exclusively samples from blobs datasets. We then test the

learned metric on the 4 different types of synthetic datasets (blobs, anisotropic, moons and cir-

cles). Results are displayed in table 6.3. We observe that the model obtains the best score on blobs

since it is trained using this dataset. We can also notice that our model achieves high scores for

the other types of datasets not included in training.

Types of datasets Standard training Few shots training

ACC NMI ACC NMI

Blobs 98.4% 0.980 97.3% 0.965

Anisotropic 97.9% 0.967 97.2% 0.945

Circles 91.7% 0.902 92.7% 0.900

Moons 92.1% 0.929 92.8% 0.938

Table 6.3: Average ACC and NMI on synthetic test datasets.

Our model succeeds in clustering datasets presenting non linear boundaries like circles while

blobs datasets used in training are all linearly separable. Hence, the model learns intrinsic prop-

erties of training dataset that are not portrayed in the initial dataset structure, and thus that the

metric appears to be transferable.

Critic’s ablation study. To test if the critic behaves as expected, i.e., grades the clustering pro-

posals proportionally to their quality, we test it on wrongly labelled datasets to see if the score

decreases with the number of mislabelled points. We consider 50 datasets from each type of syn-

thetic datasets, create 50 different copies and mislabel a random number of points in each copy.

169

A typical result is displayed in figure 6.6 and shows that the critic effectively outputs an order-

ing metric as the score increases when the number of mislabelled points decreases, reaching its

maximumwhen there is no mislabelled point. This shows that the metric satisfies the constraints

stated in equation 6.8.

Figure 6.6: Metric values (i.e., scores given by the critic) for several clusterings of a dataset. Plots

are from an anisotropic dataset (left) and a moons dataset (right). In a 2 cluster case (right),

the formula used to compute mislabelled points has been made sensitive to label permutation to

verify if permuted labels can fool the critic. The critic assigns a high score either when all the

labels match the given ground truth or when all the labels are permuted (which again does not

affect the correctness of the clustering)

An interesting behaviour is shown in figure 6.6. Recall that since we are in the context of a

clustering problem, we only need for the samples belonging to the same cluster to get the same

label, independently from the cluster label itself. Thus, the formula used to compute mislabelled

points has beenmade sensitive to label permutation to verify if permuted labels can fool the critic.

For instance, in a 2 clusters case, one can switch the labels of all points in each cluster and still get

the maximum score. Switching all labels makes all the points wrongly labelled compared to the

given ground truth but nonetheless the clustering itself remains true. This explains the rounded

shape in figure 6.6 where the used datasets in the right panel only consisted of 2 clusters. The

critic assigns a high score either when all the labels match the given ground truth or when all the

labels are permuted (which does not affect the correctness of the clustering).

6.4.2 Results on MNIST Datasets

MNIST datasets give similar results both in terms of ACC and NMI on all test datasets regardless

of the used training dataset (see table 6.4). Hence, the model effectively capture implicit features

that are dataset independent. While standard training shows better results, the few shots training

has close performance.

Table 6.5 shows the percentage of times the critic attributes the best score to the desired solution.

It shows that ES algorithm choice has a significant impact on the overall performance. Even with

a metric that attributes the best score to the desired clustering, the CEM may be stuck in a local

optimum and fails to reconstruct back the desired clustering. Hence, a better optimisation can

enhance the performance shown in table 6.4 closer to the one presented in table 6.5.

We compare our approach with baseline methods from the literature (tables 6.6 and 6.7). For

somemethods, we followed the procedure in [Ha18] and used their backbone neural network as a

pairwise similaritymetric. Table 6.6 reports results when training on SVHN and testing onMNIST

170

Training Dataset Testing Dataset

Numbers Letters Fashion

ACC NMI ACC NMI ACC NMI

Numbers (standard) 72.3% 0.733 81.3% 0.861 65.2% 0.792

Numbers (few shots) 68.5% 0.801 79.0% 0.821 61.8% 0.672

Letters (standard) 75.9% 0.772 83.7% 0.854 67.5% 0.800

Letters (few shots) 69.8% 0.812 78.7% 0.806 60.9% 0.641

Fashion (standard) 70.6% 0.706 83.4% 0.858 72.5% 0.762

Fashion (few shots) 70.1% 0.690 82.1% 0.834 70.7% 0.697

Table 6.4: Mean clustering performance on MNIST dataset.

Training Dataset Testing Dataset

Numbers Letters Fashion

Best Top 3 Best Top 3 Best Top 3

Numbers (standard) 78.3% 92.5% 86.0% 97.5% 69.2% 87.2%

Numbers (few shots) 75.8% 82.1% 83.3% 92.0% 65.1% 83.9%

Letters (standard) 77.4% 89.2% 88.8% 96.4% 70.2% 86.7%

Letters (few shots) 73.1% 80.6% 85.1% 91.5% 61.0% 76.3%

Fashion (standard 70.1% 83.1% 85.0% 98.6% 76.9% 94.7%

Fashion (few shots) 67.9% 77.4% 83.5% 95.3% 70.2% 88.0%

Table 6.5: Critic based performance assessment: Best corresponds to the percentage of times the

critic gives the best score to the desired solution. Top 3 is when this solution is among the 3

highest scores.

numbers. We obtain close ACC values to CCN and ATDA [SUH17]. These methods use Omniglot

as an auxiliary dataset to learn a pairwise similarity function, which is not required for our model.

Our model only uses a small fraction of SVHN, has shallow networks and does not require any

adaptation to its loss function to achieve comparable results. Finally, other cited methods require

the number of clusters as an a priori indication. We achieve comparable results without needing

this information. When the loss adaptation through Omniglot is discarded (denoted source-only

in table 6.6), or if the number of clusters is not given, their accuracy falls and our model surpasses

them by a margin.

Table 6.7 reports results when training on Omniglot
train

and testing on Omniglot
test

. Values are

averaged across 20 alphabets which have 20 to 47 letters. We set the maximum number of clusters

𝑘 = 100. When the number of clusters is unknown, we get an ACC score relatively close to

DTC and Autonovel. Compared to these two approaches, our method bears several significant

advantages:

• Deep Networks: DTC and Autonovel used Resnets as a backbone which are very deep

networks while we only used shallow networks (2 layers maximum)

171

Method ACC

Loss Adaptation Source Only

DANN [Ga16] 73.9% 54.9%

LTR [SSa16] 78.8% 54.9%

ATDA [SUH17] 86.2% 70.1%

CCN [Ha18] 89.1% 52%

Ours (standard) − 84.3%

Ours (few shots) − 81.4%

Table 6.6: Unsupervised cross-task transfer from SVHN to MNIST digits.

Method ACC NMI

k-means 18.9% 0.464

CSP [WQD14] 65.4% 0.812

MPCK-means [BBM04] 53.9% 0.816

CCN [Ha18] 78.18% 0.874

DTC [HVZ19] 87.0% 0.945

Autonovel [HRa21] 85.4% −
Ours (standard) 83.4% 0.891

Table 6.7: Unsupervised cross-task transfer from Omniglot
train

to Omniglot
test

(𝑘 = 100 for all).

• Pairwise similarity: in Autonovel the authors used a pairwise similarity statistic between

datasets instances which we aimed to avoid due to its significant computational bottleneck.

Moreover, this metric is recalculated after each training epoch, which adds more complex-

ity.

• Vision tasks: While DTC can only handle vision tasks, we present a more general frame-

work which includes vision but also tabular datasets.

• Number of classes: DTC and Autonovel used the labelled dataset as a probe dataset, and

estimates the number of classes iteratively, and when the labelled clusters are correctly

recovered, they used the ACC metric to keep the best clustering. This approach is effec-

tive, but requires access to the labelled dataset at inference time to estimate the number

of classes. This is a shortcoming (memory or privacy limitations). Our approach does not

require the labelled dataset once the metric is learned. Our metric automatically estimates

the number of clusters required to any new unlabelled dataset.

6.5 Conclusion and Discussion

We presented a framework for cross domain/task clustering by learning a transferable metric.

This framework consisted of ES methods, and GAE alongside a critic. Our model extracts dataset-

independent features from labelled datasets that characterise a given clustering, performs the

172

clustering and grades its quality. We showed successful results using only small datasets and

relatively shallow architectures. Moreover, there is more room for improvement. Indeed, since

our framework is composed of 3 different blocs (CEM, GAE, critic), overall efficiency can be

enhanced by independently improving each bloc like replacing the CEM by a better performing

algorithm for instance.

In future work, we will study the criteria that determine why some auxiliary datasets are more

resourceful than others given a target dataset. In our case, this means to study for instance why

using the MNIST letters dataset as training allowed a better performance on Fashion MNIST than

when using MNIST numbers. This would allow to deliver a minimum performance guarantee at

inference time by creating a transferability measure between datasets.

Although our obtained results are satisfying, this work remains a preliminary approach to the

goal stated in the introduction section, which is transferable reward functions learnt through

IRL. Indeed as we only tackled one step MDP problems with deterministic dynamics, there is no

randomness induced by the environments. Therefore a distributional approach on our reward

function (the metric) was not possible. This also explains why we used the Wasserstein dis-

tance, implementing aWGAN critic instead of using the Cramèr distance dual formulation as per

[Bel+17]. Moreover, [Bel+17] is controversial as in dimensions greater than 1, the paper doesn’t

use the Cramer distance but the energy distance. It is also important to notice that our presented

framework remains adversarial instead of collaborative contrary to the approaches presented in

previous chapters. We believe a distributional approach applied to multi-step stochastic MDPs

might allow to use collaborative models, avoiding the pitfalls of adversarial models.

Finally, while there is a huge amount of work towards learning transferable reward functions, we

believe that the quotient space approach and the graph embedding process used in the presented

models hold significant promise and will be under investigation in subsequent work tackling

multi-step stochastic MDPs. Indeed as quotient maps capture the equivalence relation used in

demonstrated clusterings they also capture this logic; this means that two clusters that are similar

under the presented logic are mapped to close points in terms of computable distance. We believe

the quotient space framework holds great potential as it allows to compare logics that induced

two different quotient spaces.

Capturing and comparing logics is of great interest for the AI alignment field. Indeed, we pointed

out in previous chapters that IRL approaches can better handle the outer alignment problem; the

reward function describes the task by capturing the logic demonstrated by the expert. However,

in practice demonstrations are often provided by different experts that do not follow the exact

same logic or utility function. While our method could help capture better demonstrated logics,

it may also be useful to compare them to each other.

173

Chapter 7

Conclusion

In this thesis we hypothesised that learning meta-rewards would help solving the mis-alignment

issues in AI highlighted in the Introduction chapter 1.

We first gave in chapter 3 a vivid illustration of the outer alignment issue, showing that the

same reward function can lead agents to converge towards different suceeding policies that differ

greatly in their behaviour. We proposed an algorithm called CAMEO that took advantage of this

situation allowing to sample suceeding policies with different behaviours on the fly from the

distribution of suceeding policies. Such algorithm could be used for risk aware reinforcement

learning, sampling policies that correspond to different risk profiles. Moreover, studying the

resulting behaviours can help to craft a better reward function that matches better the desired

behaviour, in favour of a better alignment between human and base objectives.

In chapter 4, we focused on the inner alignment problem and explained that in order to better take

risk into account, using expected return maximisation as a mesa objective is not sufficient. We

therefore proposed to use distributional approaches to RL. However, existing approaches present

several limitations such as the inability to use loss functions in practice that guarantee conver-

gence in theory or the incpacity to learn explicit target distributions, forbidding the evaluation

of a given return density under a specified policy. We presented a distributional RL approach

based on a particular invertible generative model, namely Normalizing Flows, that offers proper

convergence guaranties. Indeed our approach allowed to compute easily the Cramèr distance and

use it as a loss function even when only sample transitions are available.

In the Introduction chapter, we advocated for the use of Inverse RL to tackle the outer align-

ment issue, where the human objective is mis-aligned with the implemented reward function.

Throughout this manuscript we laid some of the building blocks supporting that claim. Build-

ing on the contribution mentioned above, we proposed in chapter 5 a distributional approach

to Inverse RL. While existing models are based on fitting occupancy measures and adversarial

networks, we showed that we could obtain similar results with collaborative networks and com-

paring directly the return distributions of expert policies and learning agents. We showed that

our approach is able to match the set of actions effectively chosen by the expert contrary to other

approaches. Finally, while our approach is more straightforward and brings more convergence

stability, we showed that it brought the same benefits as state of the art models, i.e. incentivizing

174

imitation of demonstrated actions and (2) promoting return to demonstrated states when faced

with new situations.

Finally, we tackled the Meta-learning problem in chapter 6. Our main hypothesis was that learn-

ing a meta-reward can help tackle the distributional shift (inner alignment) and outer alignment

in the same time if the meta-reward is learnt using expert demonstrations i.e IRL. As a first ap-

proach, in order to simplify the problem, we first tackled the clustering problem, viewing it as

a one step MDP. We proposed a Wasserstein and GNN based approach that succeeded to learn

metrics that would capture the logic used by the expert to solve some task on some dataset and

apply it to rightfully cluster another dataset under the same logic.

The results showcased in this last chapter deserve some more in depth discussion. We argued

in the introduction section that the main hurdle in the road of AI alignment is the incapacity

for current models to build on previous knowledge and build abstract concepts. Humans and

many other animals possess the remarkable ability of extrapolation, enabling them to apply their

learned knowledge to novel situations. This capacity relies on two fundamental cognitive pro-

cesses: the construction of abstract representations and the ability to create analogies that link

these representations to new contexts. Furthermore, this cognitive framework is enhanced by

core knowledge—a set of fundamental concepts shared by all humans. This core knowledge en-

compasses essential understandings of objects, space, and time. Together, these cognitive mech-

anisms empower organisms to accomplish various tasks, including:

• Concept Learning: Individuals can grasp new concepts based on a limited number of ex-

amples. By identifying common patterns and abstracting key features, they can generalise

their understanding to classify and recognise novel instances.

• Imitation and Behavioural Generation: The ability to learn and generate behaviours ex-

tends beyond mere replication. Instead, organisms can comprehend the underlying con-

cepts and principles behind behaviours, allowing them to adapt and apply these principles

in different contexts.

• Knowledge Transfer: With a foundation of abstract representations and analogical reason-

ing, individuals can transfer knowledge from one domain to another. This capacity enables

them to leverage what they have learned in one context to solve problems or navigate sit-

uations in unrelated domains.

How to know if a machine is capable of understanding? If the machine can perform an action

(jump), recognise the concept when it is illustrated by others (show people jumping), be able to

do the same thing with a different system (another robot jumping). In the work we presented

in chapter 6, we showed that a metric based model should be able to understand a concept en-

compassed in the demonstrations and apply it to new situations. We therefore believe that our

approach is a first step towards models that learn analogies. Indeed, Douglas Hofstadter defines

a concept using the following property: “a concept is a package of analogies" in [HG95]
1
. The

ability of the human mind to make analogies is at the source of the most important cognitive

abilities. The absence of these abilities is at least partly responsible for the fragility of current AI

1
As a fun fact, the book containing this statement, Fluid concepts and creative analogies: Computer models of

the fundamental mechanisms of thought, was the first ever book sold on Amazon.com

175

and its difficulty in adapting knowledge and representations to new situations. As highlighted by

Melanie Mitchell in [Mit21], several scientific revolutions are based on analogies (Darwin realis-

ing that biological competition is analogous to economic competition, or Von Neumann making

analogies between the brain and a computer). These examples illustrate two important facts:

• Analogy is not a rare occurrence, but rather a constant and ubiquitous mode of thought.

• Analogies are a key aspect not only of reasoning, but also of concept formation and ab-

straction.

We believe that learning core concepts and the ability to perform analogies represent the pri-

mary components for mitigating alignment challenges in AI. In this work, our results showed

promise for the adoption of meta-reward learning through IRL, as exemplified by the promising

outcomes observed in addressing the one-step MDP problem. Undoubtedly, the clustering frame-

work served as an initial step and does not mark the culmination of the research pursued in this

thesis.

Naturally, the subsequent phase involves the application of the approach delineated in chapter

6 to a genuine RL setup, specifically a multi-step MDP, building upon the methodologies intro-

duced in chapters 4 and 5. Above all, we made a modest yet significant contribution through this

work towards bringing us closer to the development of agents capable of demonstrating the gen-

erality and adaptability akin to human intelligence, and, perhaps, inching closer to unraveling

the essence of general intelligence itself.

176

References

[Mar52] Harry Markowitz. “Portfolio Selection”. In: The Journal of Finance 7.1 (1952),
pp. 77–91. issn: 00221082, 15406261. url: http://www.jstor.org/stable/2975974

(visited on 12/14/2023).

[BD62] Richard E. Bellman and Stuart E Dreyfus. Applied Dynamic Programming.
Princeton: Princeton University Press, 1962. isbn: 9781400874651. doi:

doi:10.1515/9781400874651. url: https://doi.org/10.1515/9781400874651.

[Hub64] Peter J. Huber. “Robust Estimation of a Location Parameter”. In: The Annals of
Mathematical Statistics 35.1 (1964), pp. 73–101. doi: 10.1214/aoms/1177703732. url:

https://doi.org/10.1214/aoms/1177703732.

[BSA83] Andrew G. Barto, Richard S. Sutton, and Charles W. Anderson. “Neuronlike

adaptive elements that can solve difficult learning control problems”. In: IEEE
Transactions on Systems, Man, and Cybernetics SMC-13.5 (1983), pp. 834–846. doi:

10.1109/TSMC.1983.6313077.

[WD92] Christopher J. C. H. Watkins and Peter Dayan. “Q-learning”. In: Machine Learning
8.3 (May 1992), pp. 279–292. issn: 1573-0565. doi: 10.1007/BF00992698. url:

https://doi.org/10.1007/BF00992698.

[Put94] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. 1st. USA: John Wiley & Sons, Inc., 1994. isbn: 0471619779.

[HG95] D. R. Hofstadter and Fluid Analogies Research Group. Fluid concepts and creative
analogies: Computer models of the fundamental mechanisms of thought. Basic Books,
1995.

[Mül97] Alfred Müller. “Integral Probability Metrics and Their Generating Classes of

Functions”. In: Advances in Applied Probability 29.2 (1997), pp. 429–443. issn:

00018678. url: http://www.jstor.org/stable/1428011 (visited on 07/16/2023).

[Rus98] Stuart Russell. “Learning Agents for Uncertain Environments (Extended Abstract)”.

In: Proceedings of the Eleventh Annual Conference on Computational Learning
Theory. COLT’ 98. Madison, Wisconsin, USA: Association for Computing

Machinery, 1998, pp. 101–103. isbn: 1581130570. doi: 10.1145/279943.279964. url:

https://doi.org/10.1145/279943.279964.

[Sut+99] Richard S Sutton et al. “Policy Gradient Methods for Reinforcement Learning with

Function Approximation”. In: Advances in Neural Information Processing Systems.
Ed. by S. Solla, T. Leen, and K. Müller. Vol. 12. MIT Press, 1999. url:

https://proceedings.neurips.cc/paper_files/paper/1999/file/

464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf.

177

http://www.jstor.org/stable/2975974
https://doi.org/doi:10.1515/9781400874651
https://doi.org/10.1515/9781400874651
https://doi.org/10.1214/aoms/1177703732
https://doi.org/10.1214/aoms/1177703732
https://doi.org/10.1109/TSMC.1983.6313077
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698
http://www.jstor.org/stable/1428011
https://doi.org/10.1145/279943.279964
https://doi.org/10.1145/279943.279964
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf

[NR00] Andrew Y. Ng and Stuart J. Russell. “Algorithms for Inverse Reinforcement

Learning”. In: Proceedings of the Seventeenth International Conference on Machine
Learning. ICML ’00. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,

2000, pp. 663–670. isbn: 1558607072.

[SG02] Alexander Strehl and Joydeep Ghosh. “Cluster ensembles—a knowledge reuse

framework for combin-ing multiple partitions”. In: JMLR 3(Dec) (2002), pp. 583–617.

[And+03] Christophe Andrieu et al. “An Introduction to MCMC for Machine Learning”. In:

Machine Learning 50 (2003), pp. 5–43. doi: 10.1023/A:1020281327116. url:

https://doi.org/10.1023/A:1020281327116.

[AN04] Pieter Abbeel and Andrew Y. Ng. “Apprenticeship Learning via Inverse

Reinforcement Learning”. In: Proceedings of the Twenty-First International
Conference on Machine Learning. ICML ’04. Banff, Alberta, Canada: Association for

Computing Machinery, 2004, p. 1. isbn: 1581138385. doi: 10.1145/1015330.1015430.

url: https://doi.org/10.1145/1015330.1015430.

[BBM04] Mikhail Bilenko, Sugato Basu, and Raymond J Mooney. “Integrating constraints

and metric learning in semi-supervised clustering”. In: ICML (2004), p. 11.

[BKa05] Pieter-Tjerk de Boer, Dirk P Kroese, and et. al. “A tutorial on the cross-entropy

method”. en. In: Annals of Operations Research 134.1 (Feb. 2005), pp. 19–67.

[Koe05] Roger Koenker. Quantile Regression. Econometric Society Monographs. Cambridge

University Press, 2005. doi: 10.1017/CBO9780511754098.

[Hof+07] Matthew Hoffman et al. “Bayesian Policy Learning with Trans-Dimensional

MCMC”. In: Advances in Neural Information Processing Systems. Ed. by J. Platt et al.

Vol. 20. Curran Associates, Inc., 2007. url: https://proceedings.neurips.cc/paper_

files/paper/2007/file/3a15c7d0bbe60300a39f76f8a5ba6896-Paper.pdf.

[PDM08] PDMIA. Processus Décisionnels de Markov en Intelligence Artificielle. 2008. url:
http://researchers.lille.inria.fr/~munos/papers/files/bouquinPDMIA.pdf.

[SBS08] Umar Syed, Michael Bowling, and Robert E. Schapire. “Apprenticeship Learning

Using Linear Programming”. In: Proceedings of the 25th International Conference on
Machine Learning. ICML ’08. Helsinki, Finland: Association for Computing

Machinery, 2008, pp. 1032–1039. isbn: 9781605582054. doi:

10.1145/1390156.1390286. url: https://doi.org/10.1145/1390156.1390286.

[Zie+08] Brian D. Ziebart et al. “Maximum Entropy Inverse Reinforcement Learning”. In:

Proc. AAAI. 2008, pp. 1433–1438.
[Has10] Hado Hasselt. “Double Q-learning”. In: Advances in Neural Information Processing

Systems. Ed. by J. Lafferty et al. Vol. 23. Curran Associates, Inc., 2010. url:

https://proceedings.neurips.cc/paper_files/paper/2010/file/

091d584fced301b442654dd8c23b3fc9-Paper.pdf.

[LCB10] Yann LeCun, Corinna Cortes, and CJ Burges. “MNIST handwritten digit database”.

In: ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist 2 (2010).
[YXa10] Yi Yang, Dong Xu, and et. al. “Image clustering using local discriminant models and

global integration”. In: IEEE Transactions on Image Processing 19(10) (2010),

pp. 2761–2773.

[Zie10] Brian D. Ziebart. “Modeling Purposeful Adaptive Behavior with the Principle of

Maximum Causal Entropy”. AAI3438449. PhD thesis. USA, 2010. isbn:

9781124414218.

178

https://doi.org/10.1023/A:1020281327116
https://doi.org/10.1023/A:1020281327116
https://doi.org/10.1145/1015330.1015430
https://doi.org/10.1145/1015330.1015430
https://doi.org/10.1017/CBO9780511754098
https://proceedings.neurips.cc/paper_files/paper/2007/file/3a15c7d0bbe60300a39f76f8a5ba6896-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2007/file/3a15c7d0bbe60300a39f76f8a5ba6896-Paper.pdf
http://researchers.lille.inria.fr/~munos/papers/files/bouquinPDMIA.pdf
https://doi.org/10.1145/1390156.1390286
https://doi.org/10.1145/1390156.1390286
https://proceedings.neurips.cc/paper_files/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2010/file/091d584fced301b442654dd8c23b3fc9-Paper.pdf

[Net+11] Yuval Netzer et al. “Reading Digits in Natural Images with Unsupervised Feature

Learning”. In: NIPS Workshop on Deep Learning and Unsupervised Feature Learning
(2011). url: http://ufldl.stanford.edu/housenumbers.

[Ped+11] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of
Machine Learning Research 12 (2011), pp. 2825–2830.

[RGB11] Stephane Ross, Geoffrey Gordon, and Drew Bagnell. “A Reduction of Imitation

Learning and Structured Prediction to No-Regret Online Learning”. In: Proceedings
of the Fourteenth International Conference on Artificial Intelligence and Statistics.
Ed. by Geoffrey Gordon, David Dunson, and Miroslav Dudík. Vol. 15. Proceedings

of Machine Learning Research. Fort Lauderdale, FL, USA: PMLR, Apr. 2011,

pp. 627–635. url: https://proceedings.mlr.press/v15/ross11a.html.

[Bos12] Nick Bostrom. “The superintelligent Will: Motivation and Instrumental Rationality

in Advanced Artificial Agents”. In: Minds and Machines. 2012.
[Gro+12] Ivo Grondman et al. “A Survey of Actor-Critic Reinforcement Learning: Standard

and Natural Policy Gradients”. In: IEEE Transactions on Systems Man and
Cybernetics Part B-Cybernetics 42 (Nov. 2012), pp. 1291–1307. doi:
10.1109/TSMCC.2012.2218595.

[TET12] Emanuel Todorov, Tom Erez, and Yuval Tassa. “MuJoCo: A physics engine for

model-based control”. In: 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems. 2012, pp. 5026–5033. doi: 10.1109/IROS.2012.6386109.

[Bel+13] M. G. Bellemare et al. “The Arcade Learning Environment: An Evaluation Platform

for General Agents”. In: Journal of Artificial Intelligence Research 47 (June 2013),

pp. 253–279. doi: 10.1613/jair.3912. url: https://doi.org/10.1613%2Fjair.3912.

[Mni+13] Volodymyr Mnih et al. “Playing Atari with Deep Reinforcement Learning”. In:

CoRR abs/1312.5602 (2013). arXiv: 1312.5602. url: http://arxiv.org/abs/1312.5602.

[Sej+13] Dino Sejdinovic et al. “Equivalence of distance-based and RKHS-based statistics in

hypothesis testing”. In: The Annals of Statistics 41.5 (Oct. 2013). doi:
10.1214/13-aos1140. url: https://doi.org/10.1214%2F13-aos1140.

[Goo+14] Ian Goodfellow et al. “Generative Adversarial Nets”. In: Advances in Neural
Information Processing Systems. Ed. by Z. Ghahramani et al. Vol. 27. Curran

Associates, Inc., 2014. url: https://proceedings.neurips.cc/paper_files/paper/2014/

file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf.

[KW14] Diederik P Kingma and Max Welling. “Auto-Encoding Variational Bayes”. In:

International Conference on Learning Representations (ICLR). 2014. arXiv: 1312.6114
[stat.ML].

[Sil+14] David Silver et al. “Deterministic Policy Gradient Algorithms”. In: Proceedings of the
31st International Conference on International Conference on Machine Learning -
Volume 32. ICML’14. Beijing, China: JMLR.org, 2014, I–387–I–395.

[WQD14] Xiang Wang, Buyue Qian, and Ian Davidson. “On constrained spectral clustering

and its applications”. In: Data Mining and Knowledge Discovery (2014), pp. 1–30.

[DKB15] Laurent Dinh, David Krueger, and Yoshua Bengio. “NICE: Non-linear Independent

Components Estimation”. In: 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Workshop Track
Proceedings. Ed. by Yoshua Bengio and Yann LeCun. 2015. url:

http://arxiv.org/abs/1410.8516.

179

http://ufldl.stanford.edu/housenumbers
https://proceedings.mlr.press/v15/ross11a.html
https://doi.org/10.1109/TSMCC.2012.2218595
https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.1613/jair.3912
https://doi.org/10.1613%2Fjair.3912
https://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
https://doi.org/10.1214/13-aos1140
https://doi.org/10.1214%2F13-aos1140
https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1410.8516

[HGS15] Hado van Hasselt, Arthur Guez, and David Silver. “Deep Reinforcement Learning

with Double Q-learning”. In: Thirtieth AAAI Conference on Artificial Intelligence
abs/1509.06461 (2015). arXiv: 1509.06461. url: http://arxiv.org/abs/1509.06461.

[LST15] Brenden M. Lake, Ruslan Salakhutdinov, and Joshua B. Tenenbaum. “Human-level

concept learning through probabilistic program induction”. In: Science 350(6266)
(2015), pp. 1332–1338.

[Sch+15] John Schulman et al. “Trust Region Policy Optimization”. In: Proceedings of the 32nd
International Conference on Machine Learning. Ed. by Francis Bach and David Blei.

Vol. 37. Proceedings of Machine Learning Research. Lille, France: PMLR, July 2015,

pp. 1889–1897. url: https://proceedings.mlr.press/v37/schulman15.html.

[Bro+16] Greg Brockman et al. OpenAI Gym. 2016. arXiv: 1606.01540 [cs.LG].
[FLA16] Chelsea Finn, Sergey Levine, and Pieter Abbeel. “Guided Cost Learning: Deep

Inverse Optimal Control via Policy Optimization”. In: Proceedings of The 33rd
International Conference on Machine Learning. Ed. by Maria Florina Balcan and

Kilian Q. Weinberger. Vol. 48. Proceedings of Machine Learning Research. New

York, New York, USA: PMLR, 2016, pp. 49–58. url:

https://proceedings.mlr.press/v48/finn16.html.

[Fin+16] Chelsea Finn et al. A Connection between Generative Adversarial Networks, Inverse
Reinforcement Learning, and Energy-Based Models. 2016. arXiv: 1611.03852 [cs.LG].

[Ga16] Ganin and et al. “Domain-adversarial training of neural networks”. In: JMLR (2016).

[HE16] Jonathan Ho and Stefano Ermon. “Generative Adversarial Imitation Learning”. In:

Advances in Neural Information Processing Systems. Ed. by D. Lee et al. Vol. 29.

Curran Associates, Inc., 2016. url: https://proceedings.neurips.cc/paper_files/

paper/2016/file/cc7e2b878868cbae992d1fb743995d8f-Paper.pdf.

[KW16] Thomas N. Kipf and Max Welling. “Variational Graph Auto-Encoders”. In: Bayesian
Deep Learning Workshop (NIPS 2016). arXiv, 2016.

[Mni+16] Volodymyr Mnih et al. “Asynchronous Methods for Deep Reinforcement Learning”.

In: Proceedings of The 33rd International Conference on Machine Learning. Ed. by
Maria Florina Balcan and Kilian Q. Weinberger. Vol. 48. Proceedings of Machine

Learning Research. New York, New York, USA: PMLR, June 2016, pp. 1928–1937.

url: https://proceedings.mlr.press/v48/mniha16.html.

[Sch+16] Tom Schaul et al. “Prioritized Experience Replay”. In: 4th International Conference
on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings. Ed. by Yoshua Bengio and Yann LeCun. 2016. url:

http://arxiv.org/abs/1511.05952.

[SSa16] Ozan Sener, Hyun Oh Song, and et al. “Learning transfer able representations for

unsupervised domain adaptation.” In: NIPS (2016), pp. 2110–2118.
[WFL16] Ziyu Wang, Nando de Freitas, and Marc Lanctot. “Dueling Network Architectures

for Deep Reinforcement Learning”. In: Proceedings of the 33 rd International
Conference on Machine Learning abs/1511.06581 (2016). arXiv: 1511.06581. url:

http://arxiv.org/abs/1511.06581.

[XGF16] Junyuan Xie, Ross Girshick, and Ali Farhadi. “Unsupervised Deep Embedding for

Clustering Analysis”. In: ICML. June 2016, pp. 478–487.
[ACB17] Martin Arjovsky, Soumith Chintala, and Léon Bottou. “Wasserstein Generative

Adversarial Networks”. In: Proceedings of the 34th International Conference on

180

https://arxiv.org/abs/1509.06461
http://arxiv.org/abs/1509.06461
https://proceedings.mlr.press/v37/schulman15.html
https://arxiv.org/abs/1606.01540
https://proceedings.mlr.press/v48/finn16.html
https://arxiv.org/abs/1611.03852
https://proceedings.neurips.cc/paper_files/paper/2016/file/cc7e2b878868cbae992d1fb743995d8f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/cc7e2b878868cbae992d1fb743995d8f-Paper.pdf
https://proceedings.mlr.press/v48/mniha16.html
http://arxiv.org/abs/1511.05952
https://arxiv.org/abs/1511.06581
http://arxiv.org/abs/1511.06581

Machine Learning. Ed. by Doina Precup and Yee Whye Teh. Vol. 70. Proceedings of

Machine Learning Research. PMLR, Aug. 2017, pp. 214–223. url:

https://proceedings.mlr.press/v70/arjovsky17a.html.

[BDM17] Marc G. Bellemare, Will Dabney, and Rémi Munos. “A Distributional Perspective

on Reinforcement Learning”. In: Proceedings of the 34th International Conference on
Machine Learning. Ed. by Doina Precup and Yee Whye Teh. Vol. 70. Proceedings of

Machine Learning Research. PMLR, Aug. 2017, pp. 449–458. url:

https://proceedings.mlr.press/v70/bellemare17a.html.

[Bel+17] Marc G. Bellemare et al. The Cramer Distance as a Solution to Biased Wasserstein
Gradients. 2017. arXiv: 1705.10743 [cs.LG].

[Coh+17] Gregory Cohen et al. “EMNIST: Extending MNIST to handwritten letters”. In: 2017
International Joint Conference on Neural Networks (IJCNN) (2017). doi:
10.1109/ijcnn.2017.7966217.

[Dab+17] Will Dabney et al. “Distributional Reinforcement Learning with Quantile

Regression”. In: AAAI. 2017. arXiv: 1710.10044 [cs.AI].
[FAL17] Chelsea Finn, Pieter Abbeel, and Sergey Levine. “Model-Agnostic Meta-Learning

for Fast Adaptation of Deep Networks”. In: Proceedings of the 34th International
Conference on Machine Learning. Ed. by Doina Precup and Yee Whye Teh. Vol. 70.

Proceedings of Machine Learning Research. PMLR, Aug. 2017, pp. 1126–1135. url:

https://proceedings.mlr.press/v70/finn17a.html.

[Had+17] Dylan Hadfield-Menell et al. “Inverse Reward Design”. In: Advances in Neural
Information Processing Systems. Ed. by I. Guyon et al. Vol. 30. Curran Associates,

Inc., 2017. url: https://proceedings.neurips.cc/paper_files/paper/2017/file/

32fdab6559cdfa4f167f8c31b9199643-Paper.pdf.

[Pat+17] Deepak Pathak et al. “Curiosity-driven Exploration by Self-supervised Prediction”.

In: Proceedings of the 34th International Conference on Machine Learning. Ed. by
Doina Precup and Yee Whye Teh. Vol. 70. Proceedings of Machine Learning

Research. PMLR, Aug. 2017, pp. 2778–2787. url:

https://proceedings.mlr.press/v70/pathak17a.html.

[PGP17] Bilal Piot, Matthieu Geist, and Olivier Pietquin. “Bridging the Gap Between

Imitation Learning and Inverse Reinforcement Learning”. In: IEEE Transactions on
Neural Networks and Learning Systems 28.8 (2017), pp. 1814–1826. doi:
10.1109/TNNLS.2016.2543000.

[SUH17] Kuniaki Saito, Yoshitaka Ushiku, and Tatsuya Harada. “Asymmetric tri-training for

unsupervised domain adaptation”. In: ICML (2017), pp. 2988–2997.

[Sch+17] John Schulman et al. Proximal Policy Optimization Algorithms. 2017. arXiv:
1707.06347 [cs.LG].

[XRV17] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a Novel Image Dataset
for Benchmarking Machine Learning Algorithms. Aug. 28, 2017. arXiv:
cs.LG/1708.07747 [cs.LG].

[Dab+18] Will Dabney et al. “Implicit Quantile Networks for Distributional Reinforcement

Learning”. In: Proceedings of the 35th International Conference on Machine Learning.
Ed. by Jennifer Dy and Andreas Krause. Vol. 80. Proceedings of Machine Learning

Research. PMLR, July 2018, pp. 1096–1105. url:

https://proceedings.mlr.press/v80/dabney18a.html.

181

https://proceedings.mlr.press/v70/arjovsky17a.html
https://proceedings.mlr.press/v70/bellemare17a.html
https://arxiv.org/abs/1705.10743
https://doi.org/10.1109/ijcnn.2017.7966217
https://arxiv.org/abs/1710.10044
https://proceedings.mlr.press/v70/finn17a.html
https://proceedings.neurips.cc/paper_files/paper/2017/file/32fdab6559cdfa4f167f8c31b9199643-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/32fdab6559cdfa4f167f8c31b9199643-Paper.pdf
https://proceedings.mlr.press/v70/pathak17a.html
https://doi.org/10.1109/TNNLS.2016.2543000
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/cs.LG/1708.07747
https://proceedings.mlr.press/v80/dabney18a.html

[For+18] Meire Fortunato et al. “Noisy Networks For Exploration”. In: International
Conference on Learning Representations. 2018. url:
https://openreview.net/forum?id=rywHCPkAW.

[FLL18] Justin Fu, Katie Luo, and Sergey Levine. “Learning Robust Rewards with

Adverserial Inverse Reinforcement Learning”. In: International Conference on
Learning Representations. 2018. url: https://openreview.net/forum?id=rkHywl-A-.

[Haa+18] Tuomas Haarnoja et al. “Soft actor-critic: Off-policy maximum entropy deep

reinforcement learning with a stochastic actor”. In: International Conference on
Machine Learning (ICML) (2018).

[Hes+18] Matteo Hessel et al. “Rainbow: Combining Improvements in Deep Reinforcement

Learning”. In: AAAI. 2018. arXiv: 1710.02298 [cs.AI].
[Ha18] Hsu and et al. “Learning to cluster in order to transfer across domains and tasks”.

In: ICLR. arXiv, 2018.
[KD18] Durk P Kingma and Prafulla Dhariwal. “Glow: Generative Flow with Invertible 1x1

Convolutions”. In: Advances in Neural Information Processing Systems. Ed. by
S. Bengio et al. Vol. 31. Curran Associates, Inc., 2018. url:

https://proceedings.neurips.cc/paper_files/paper/2018/file/

d139db6a236200b21cc7f752979132d0-Paper.pdf.

[Lev18] Sergey Levine. Reinforcement Learning and Control as Probabilistic Inference:
Tutorial and Review. 2018. arXiv: 1805.00909 [cs.LG].

[Row+18] Mark Rowland et al. “An Analysis of Categorical Distributional Reinforcement

Learning”. In: Proceedings of the Twenty-First International Conference on Artificial
Intelligence and Statistics. Ed. by Amos Storkey and Fernando Perez-Cruz. Vol. 84.

Proceedings of Machine Learning Research. PMLR, Apr. 2018, pp. 29–37. url:

https://proceedings.mlr.press/v84/rowland18a.html.

[SB18] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT

press, 2018.

[TOY18] Vahid Tavakol Aghaei, Ahmet Onat, and Sinan Yıldırım. “A Markov chain Monte

Carlo algorithm for Bayesian policy search”. In: Systems Science and Control
Engineering An Open Access Journal Volume 6 (Sept. 2018), pp. 438–455. doi:

10.1080/21642583.2018.1528483.

[Bur+19] Yuri Burda et al. “Large-Scale Study of Curiosity-Driven Learning”. In: International
Conference on Learning Representations. 2019. url:
https://openreview.net/forum?id=rJNwDjAqYX.

[Eys+19] Benjamin Eysenbach et al. “Diversity is All You Need: Learning Skills without a

Reward Function”. In: International Conference on Learning Representations. 2019.
url: https://openreview.net/forum?id=SJx63jRqFm.

[GSP19] Matthieu Geist, Bruno Scherrer, and Olivier Pietquin. “A Theory of Regularized

Markov Decision Processes”. In: Proceedings of the 36th International Conference on
Machine Learning. Ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol. 97.

Proceedings of Machine Learning Research. PMLR, June 2019, pp. 2160–2169. url:

https://proceedings.mlr.press/v97/geist19a.html.

[HVZ19] Kai Han, Andrea Vedaldi, and Andrew Zisserman. “Learning to Discover Novel

Visual Categories via Deep Transfer Clustering”. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV). Oct. 2019.

182

https://openreview.net/forum?id=rywHCPkAW
https://openreview.net/forum?id=rkHywl-A-
https://arxiv.org/abs/1710.02298
https://proceedings.neurips.cc/paper_files/paper/2018/file/d139db6a236200b21cc7f752979132d0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/d139db6a236200b21cc7f752979132d0-Paper.pdf
https://arxiv.org/abs/1805.00909
https://proceedings.mlr.press/v84/rowland18a.html
https://doi.org/10.1080/21642583.2018.1528483
https://openreview.net/forum?id=rJNwDjAqYX
https://openreview.net/forum?id=SJx63jRqFm
https://proceedings.mlr.press/v97/geist19a.html

[Ho+19] Jonathan Ho et al. “Flow++: Improving Flow-Based Generative Models with

Variational Dequantization and Architecture Design”. In: Proceedings of the 36th
International Conference on Machine Learning. Ed. by Kamalika Chaudhuri and

Ruslan Salakhutdinov. Vol. 97. Proceedings of Machine Learning Research. PMLR,

June 2019, pp. 2722–2730. url: https://proceedings.mlr.press/v97/ho19a.html.

[Mül+19] Thomas Müller et al. “Neural Importance Sampling”. In: ACM Trans. Graph. 38.5
(Oct. 2019). issn: 0730-0301. doi: 10.1145/3341156. url:

https://doi.org/10.1145/3341156.

[Rak+19] Kate Rakelly et al. “Efficient Off-Policy Meta-Reinforcement Learning via

Probabilistic Context Variables”. In: Proceedings of the 36th International Conference
on Machine Learning. Ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov.

Vol. 97. Proceedings of Machine Learning Research. PMLR, June 2019,

pp. 5331–5340. url: https://proceedings.mlr.press/v97/rakelly19a.html.

[TA19] Yunhao Tang and Shipra Agrawal. Boosting Trust Region Policy Optimization by
Normalizing Flows Policy. 2019. arXiv: 1809.10326 [cs.AI].

[WSB19] Patrick Nadeem Ward, Ariella Smofsky, and Avishek Joey Bose. “Improving

Exploration in Soft-Actor-Critic with Normalizing Flows Policies”. In: INNF
workshop, International Conference on Machine Learning. 2019. arXiv: 1906.02771
[cs.LG].

[Xia+19] Huang Xiao et al. Wasserstein Adversarial Imitation Learning. 2019. arXiv:
1906.08113 [cs.LG].

[Xu+19] Kelvin Xu et al. “Learning a Prior over Intent via Meta-Inverse Reinforcement

Learning”. In: Proceedings of the 36th International Conference on Machine Learning.
Ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol. 97. Proceedings of

Machine Learning Research. PMLR, June 2019, pp. 6952–6962. url:

https://proceedings.mlr.press/v97/xu19d.html.

[Yu+19] Lantao Yu et al. “Meta-Inverse Reinforcement Learning with Probabilistic Context

Variables”. In: Advances in Neural Information Processing Systems. Ed. by H. Wallach

et al. Vol. 32. Curran Associates, Inc., 2019. url: https://proceedings.neurips.cc/

paper_files/paper/2019/file/30de24287a6d8f07b37c716ad51623a7-Paper.pdf.

[ZR19] Zachary Ziegler and Alexander Rush. “Latent Normalizing Flows for Discrete

Sequences”. In: Proceedings of the 36th International Conference on Machine
Learning. Ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol. 97.

Proceedings of Machine Learning Research. PMLR, June 2019, pp. 7673–7682. url:

https://proceedings.mlr.press/v97/ziegler19a.html.

[Cam+20] Victor Campos et al. “Explore, Discover and Learn: Unsupervised Discovery of

State-Covering Skills”. In: Proceedings of the 37th International Conference on
Machine Learning. Ed. by Hal Daumé III and Aarti Singh. Vol. 119. Proceedings of

Machine Learning Research. PMLR, July 2020, pp. 1317–1327. url:

https://proceedings.mlr.press/v119/campos20a.html.

[Fer+20] Antonio J. Fernández et al. “Some non-homogeneous Gagliardo-Nirenberg

inequalities and application to a biharmonic non-linear Schrödinger equation”. In:

Journal of Differential Equations 330 (2022), 1-65 (2020). doi:
10.1016/j.jde.2022.04.037. eprint: arXiv:2010.01448.

183

https://proceedings.mlr.press/v97/ho19a.html
https://doi.org/10.1145/3341156
https://doi.org/10.1145/3341156
https://proceedings.mlr.press/v97/rakelly19a.html
https://arxiv.org/abs/1809.10326
https://arxiv.org/abs/1906.02771
https://arxiv.org/abs/1906.02771
https://arxiv.org/abs/1906.08113
https://proceedings.mlr.press/v97/xu19d.html
https://proceedings.neurips.cc/paper_files/paper/2019/file/30de24287a6d8f07b37c716ad51623a7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/30de24287a6d8f07b37c716ad51623a7-Paper.pdf
https://proceedings.mlr.press/v97/ziegler19a.html
https://proceedings.mlr.press/v119/campos20a.html
https://doi.org/10.1016/j.jde.2022.04.037
arXiv:2010.01448

[Kra+20] Victoria Krakovna et al. Specification gaming: the flip side of AI ingenuity. 2020. url:
https://www.deepmind.com/blog/specification-gaming-the-flip-side-of-ai-

ingenuity.

[Maz+20] Bogdan Mazoure et al. “Leveraging exploration in off-policy algorithms via

normalizing flows”. In: Proceedings of the Conference on Robot Learning. Ed. by
Leslie Pack Kaelbling, Danica Kragic, and Komei Sugiura. Vol. 100. Proceedings of

Machine Learning Research. PMLR, Oct. 2020, pp. 430–444. url:

https://proceedings.mlr.press/v100/mazoure20a.html.

[Sha+20] Archit Sharma et al. “Dynamics-Aware Unsupervised Discovery of Skills”. In:

International Conference on Learning Representations. 2020. url:
https://openreview.net/forum?id=HJgLZR4KvH.

[Cra21] Maria Cramer. “A.I. Drone May Have Acted on Its Own in Attacking Fighters, U.N.

Says”. In: New York Times (June 4, 2021). url:
https://www.nytimes.com/2021/06/03/world/africa/libya-drone.html.

[GRV21] Marylou Gabrié, Grant M. Rotskoff, and Eric Vanden-Eijnden. “Efficient Bayesian

Sampling Using Normalizing Flows to Assist Markov Chain Monte Carlo Methods”.

In: ICML Workshop on Invertible Neural Networks, Normalizing Flows, and Explicit
Likelihood Models. 2021. url: https://openreview.net/forum?id=mvtooHbjOwx.

[Gro+21] Oliver Groth et al. Is Curiosity All You Need? On the Utility of Emergent Behaviours
from Curious Exploration. 2021. arXiv: 2109.08603 [cs.LG].

[HRa21] Kai Han, Sylvestre-Alvise Rebuffi, and et. al. “AutoNovel: Automatically

Discovering and Learning Novel Visual Categories”. In: PAMI (2021), pp. 1–1.
[Hub+21] Evan Hubinger et al. Risks from Learned Optimization in Advanced Machine

Learning Systems. 2021. arXiv: 1906.01820 [cs.AI].
[KPB21] Ivan Kobyzev, Simon J.D. Prince, and Marcus A. Brubaker. “Normalizing Flows: An

Introduction and Review of Current Methods”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 43.11 (Nov. 2021), pp. 3964–3979. doi:
10.1109/tpami.2020.2992934. url: https://doi.org/10.1109%2Ftpami.2020.2992934.

[Mit21] Melanie Mitchell. “Why AI is harder than we think”. In: Proceedings of the Genetic
and Evolutionary Computation Conference. GECCO ’21. Lille, France: Association for

Computing Machinery, 2021, p. 3. isbn: 9781450383509. doi:

10.1145/3449639.3465421. url: https://doi.org/10.1145/3449639.3465421.

[Pap+21] George Papamakarios et al. “Normalizing Flows for Probabilistic Modeling and

Inference”. In: Journal of Machine Learning Research 22.57 (2021), pp. 1–64. url:

http://jmlr.org/papers/v22/19-1028.html.

[AF22] Prashanth L. A. and Michael Fu. Risk-Sensitive Reinforcement Learning via Policy
Gradient Search. 2022. arXiv: 1810.09126 [cs.LG].

[Bro+22] James Brofos et al. “Adaptation of the Independent Metropolis-Hastings Sampler

with Normalizing Flow Proposals”. In: Proceedings of The 25th International
Conference on Artificial Intelligence and Statistics. Ed. by Gustau Camps-Valls,

Francisco J. R. Ruiz, and Isabel Valera. Vol. 151. Proceedings of Machine Learning

Research. PMLR, Mar. 2022, pp. 5949–5986. url:

https://proceedings.mlr.press/v151/brofos22a.html.

184

https://www.deepmind.com/blog/specification-gaming-the-flip-side-of-ai-ingenuity
https://www.deepmind.com/blog/specification-gaming-the-flip-side-of-ai-ingenuity
https://proceedings.mlr.press/v100/mazoure20a.html
https://openreview.net/forum?id=HJgLZR4KvH
https://www.nytimes.com/2021/06/03/world/africa/libya-drone.html
https://openreview.net/forum?id=mvtooHbjOwx
https://arxiv.org/abs/2109.08603
https://arxiv.org/abs/1906.01820
https://doi.org/10.1109/tpami.2020.2992934
https://doi.org/10.1109%2Ftpami.2020.2992934
https://doi.org/10.1145/3449639.3465421
https://doi.org/10.1145/3449639.3465421
http://jmlr.org/papers/v22/19-1028.html
https://arxiv.org/abs/1810.09126
https://proceedings.mlr.press/v151/brofos22a.html

[Cha+22] Alan Chan et al. “Greedification Operators for Policy Optimization: Investigating

Forward and Reverse KL Divergences”. In: Journal of Machine Learning Research
23.253 (2022), pp. 1–79. url: http://jmlr.org/papers/v23/21-054.html.

[Li+22] Zewen Li et al. “A Survey of Convolutional Neural Networks: Analysis,

Applications, and Prospects”. In: IEEE Transactions on Neural Networks and
Learning Systems 33.12 (2022), pp. 6999–7019. doi: 10.1109/TNNLS.2021.3084827.

[Ung22] Rebecca Ungarino. “Here are 9 fascinating facts to know about BlackRock, the

world’s largest asset manager popping up in the Biden administration”. In: Business
Insider (Mar. 10, 2022). url: https://www.businessinsider.com/what-to-know-

about-blackrock-larry-fink-biden-cabinet-facts-2020-12?r=US&IR=T.

[Bla23] Inc. BlackRock. “2022 Form 10-K Annual Report”. In: U.S. Securities and Exchange
Commission (Feb. 24, 2023).

185

http://jmlr.org/papers/v23/21-054.html
https://doi.org/10.1109/TNNLS.2021.3084827
https://www.businessinsider.com/what-to-know-about-blackrock-larry-fink-biden-cabinet-facts-2020-12?r=US&IR=T
https://www.businessinsider.com/what-to-know-about-blackrock-larry-fink-biden-cabinet-facts-2020-12?r=US&IR=T

Titre : Modèles Génératifs pour l’Apprentissage par Renforcement Inverse Distributionnel: Vers des Fonctions
de Récompense Transférables

Mots clés : Apprentissage par renforcement, Apprentissage Profond, Modèle Génératifs, Apprentissage de
Métriques, Transfert d’apprentissage, Meta-apprentissage

Résumé : Les humains possèdent une remar-
quable capacité à apprendre rapidement de nouveaux
concepts et à s’adapter à des situations imprévues
en s’appuyant sur des expériences antérieures. L’ap-
prentissage par renforcement (RL) s’est révélé ef-
ficace pour résoudre des problèmes de prise de
décision séquentielle dans des environnements dy-
namiques. Cependant, contrairement aux humains,
les politiques apprises ne sont pas facilement
transférables à différents environnements. En re-
vanche, la fonction de récompense, représentant l’es-
sence de la tâche à accomplir, présente un po-
tentiel comme représentation transférable. Malheu-
reusement, traduire l’intention humaine en fonctions
mathématiques à optimiser n’est pas simple et la
moindre erreur d’implémentation peut entraı̂ner des
comportements inattendus dramatiques. C’est ce
qu’on appelle le problème d’alignement de l’IA.
L’ apprentissage par renforcement inverse (IRL)
tente d’apprendre une fonction de récompense à
partir de démonstrations, mais sans garantie de
transférabilité. L’hypothèse principale de cette thèse
est que l’apprentissage de fonctions de récompense

transférables à plusieurs tâches similaires pourrait
aider à atténuer le problème d’alignement de l’IA
à travers l’apprentissage de concepts fondamentaux
réutilisables, à la manière du raisonnement humain.
Dans cette thèse, nous proposons de coupler des
modèles génératifs inversibles à une perspective dis-
tributionnelle en RL comme étape vers la résolution
de ces défis. Cette approche se révèle avantageuse
pour le problème IRL, car il devient possible d’ap-
prendre la distribution des récompenses pour chaque
état tout en l’interprétatant comme une distance vis-
à-vis l’état final voulu. Cela nous permet de montrer la
possibilité de transférer les fonctions de récompense
apprises pour les processus de décision de Markov à
étapes uniques.
Cette thèse offre des perspectives pour la
compréhension de l’adaptabilité en RL. Cette adap-
tabilité passe par l’apprentissage de concepts fonda-
mentaux transférables sous la forme de fonctions de
récompense. Nous espérons que les travaux exposés
dans cette thèse permettent une meilleure atténuation
des problèmes d’alignement en IA.

Title : Distributional Inverse Reinforcement Learning with Invertible Generative Models: Towards Transferable
Reward Functions

Keywords : Reinforcement Learning, Deep Learning, Generative Models, Metric Learning, Transfer-Learning,
Meta-Learning

Abstract : Humans possess a remarkable ability to
quickly learn new concepts and adapt to unforeseen
situations by drawing upon prior experiences and
combining them with limited new evidence. Reinfor-
cement Learning (RL) has proven effective in solving
sequential decision-making problems in dynamic en-
vironments. However, unlike humans, learned poli-
cies are not efficiently transferable to different envi-
ronments. Conversely, the reward function, represen-
ting the task’s essence, holds promise as a transfe-
rable representation. Unfortunately, translating human
intent into mathematical functions to optimise is not
straightforward and the slightest implementation error
can lead to dramatic unexpected behaviours. This is
called the AI alignment issue.
Inverse Reinforcement Learning (IRL) attempts to
learn a reward function from demonstrations, but there
is no guarantee of transferability. The main hypothesis

of this thesis is that learning reward functions that are
transferable to multiple similar tasks could help miti-
gate the AI alignment issue getting us closer to lear-
ning core concepts, akin to human reasonning.
In this thesis, we propose to explore the potential of in-
vertible generative models along with a distributional
perspective in RL as a step towards addressing these
challenges. This approach proves advantageous for
tackling IRL tasks, as we can learn the distribution of
rewards for each state while interpreting the reward
as a distance from the final state. Using this interpre-
tation, we demonstrate transferability of learnt reward
functions in single-step Markov Decision Processes.
This thesis offers insights into the understanding of
adaptability in RL. This is done through the learning
of transferable fundamental concepts in the form of
reward functions. We hope that this work will allow to
mitigate AI alignment issues.

Institut Polytechnique de Paris
91120 Palaiseau, France

