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Vianney avec lesquels j’ai pu passer de très bons moments durant ces trois années. Merci donc à
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qu’un jour on trouvera un sujet de collaboration !
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la brillante avocate que tu es devenue. J’espère que tu le seras au moins autant de moi. Malgré les
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Résumé

L’objectif de cette thèse est d’étudier des algorithmes d’optimisation stochastique de premier
ordre appliquées à la résolution de problème de récupération statistique en haute dimension. Plus
précisément, nous examinerons la mise en œuvre d’algorithmes d’approximation stochastique multi-
étape basés sur une stratégie de redémarrage. Lorsqu’ils sont appliqués au problème de récupération
parcimonieuse, les estimateurs fournis par nos méthodes stochastiques doivent vérifier des bornes
statistiques optimales sur la performance de l’estimation, généralement mesurée par le risque
d’estimation ou le risque de prédiction, avec pour objectif final de supprimer les limitations existantes
des algorithmes connus. Les algorithmes doivent être robustes aux distributions à queue lourde
des observations bruitées et aux observations erronées des régresseurs. Les algorithmes étudiés
devront s’adapter à une implémentation parallélisée, leurs performances numériques devant évoluer
en fonction de la mémoire disponible ou des ressources de traitement et de l’architecture.

Dans la première partie de ce manuscrit, nous développerons et analyseront une méthode
multi-étapes basée sur l’algorithme Stochastique de Descente Miroir basé sur une divergence de
Bregman utilisant une fonction potentiel posédant une structure géométrique non Euclidienne. Nous
fournirons des bornes pour les larges déviations sous l’hypothèse que le bruit stochastique suit une
distribution sous-Gaussienne. Cette méthode est étendue avec des garanties théoriques sous une
hypothèse de convexité uniforme autour de l’optimum, incluant également une analyse de robustesse
de l’algorithme vis à vis de ses paramètres inconnus basée sur la procédure d’adaptation de Lepski.

Dans la seconde partie, nous explorons une variante de la méthode du gradient accéléré de
Nesterov, qui utilise une estimation du vrai gradient par moyennation des gradients stochastiques.
Nous montrerons que cette méthode accelerée atteint à la fois la complexité optimale en terme
d’itération mais également la complexité optimale en terme d’échantillon, tout celà, sous l’hypothèse
d’un bruit stochastique dependant du point de recherche en cours. Notre analyse comprend des
vitesses de convergences valide en espérance, ainsi que des bornes pour de larges déviations en
présence de bruit stochastic suivant des distributions sous-exponentielle. Cette méthode est ensuite
adaptée en une procédure multi-étapes, ciblant spécifiquement les problèmes de récupération de
vecteurs parcimonieux en grande dimension.

Tout au long de ce manuscrit, l’efficacité des méthodes proposées est constamment évaluée dans
le contexte des modèles de régression linéaire généralisée parcimonieuse, un problème important
dans la récupération statistique.
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Abstract

The aim of this thesis is to investigate the properties of stochastic optimization procedures applied to
high-dimensional statistical recovery problems. Specifically, we concentrate on the implementation of
multistage algorithms of stochastic approximation methods. These algorithms are expected to meet
optimal statistical bounds regarding estimation or prediction risks thus addressing the limitations of
existing algorithms. They should demonstrate robustness to heavy-tailed distributions in observation
disturbances and erroneous observations of regressors. Additionally, their design allows heavily
parallelized implementation, allowing numerical performance to scale with the available memory,
processing resources, and architecture.

In the first part of this work we analyze a multistage method based on a non-Euclidean Stochastic
Mirror Descent algorithm. We provide theoretical bounds for large deviations under sub-Gaussian
stochastic noise assumption along with numerical validation of the method. This algorithm is
extended with theoretical guarantees under uniform convexity assumption around the optimum,
including robustness analysis with respect to unknown parameters based on the celebrated Lepski’s
adaptation procedure.

In the second part, we explore a special version of the accelerated gradient algorithm that employs
mini-batch gradient estimation. We demonstrate that this accelerated method achieve both the
optimal iteration and optimal sample complexity under the state-dependent noise assumption. Our
analysis encompasses bounds for estimation error and prediction error that are valid in expectation
as well as for large deviations in the presence of sub-exponential gradient noise. This method is
further utilized in multistage procedures designed to solve sparse recovery problems.

Throughout this manuscript, the effectiveness of the proposed methods is consistently evaluated
in the context of the sparse Generalized Linear Regression model, an important problem in statistical
recovery.
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Résumé 7
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Outline

text
Chapter 1: The link between Optimization and Machine Learning is in the focus of the opening

chapter. First, we explain how some classical ML tasks can be interpreted as minimization prob-
lems of smooth convex functions. We offer an intuitive description of the regularity assumptions
frequently found in Optimization literature and introduce the ubiquitous stochastic setting for
Optimization problems. Subsequently, we present and analyze three renowned first-order stochastic
algorithms: Stochastic Gradient Descent, Stochastic Mirror Descent, and Accelerated Stochastic
Gradient Descent. These will serve as the working horses of this manuscript. Lastly, we address a
specific machine learning problem that emerges in high-dimensional settings, namely sparse recovery.
We explore how first-order optimization methods can leverage sparsity structures, transforming
computationally intensive algorithms into more efficient methods.

Chapter 2: The second chapter of this manuscript discusses an application of Stochastic
Approximation to the estimation of high-dimensional sparse parameter. We consider the problem of
sparse Generalized Linear Regression (GLR) with random design. We provide a refined analysis and
present high-probability convergence rates for the Composite Stochastic Mirror Descent (CSMD)
algorithm under smoothness and quadratic minoration assumptions on the objective function and
sub-Gaussian stochastic perturbations. We subsequently use the aforementionned algorithm as the
primary tool to design an adaptive multistage algorithm for the sparse GLR problem. The proposed
multistage procedure resolves a lasso-type penalized stochastic optimization problem on each stage;
each problem is solved up to the desired accuracy by the non-Euclidean CSMD algorithm. It exhibits
a linear convergence rate in the initial ”preliminary” phase and then follows a sublinear decay during
the ”asymptotic” phase. We further show that in the setting of interest the proposed algorithm
attains the optimal convergence of the estimation error under mild assumptions on the regressors.

This chapter is based on the paper Stochastic Mirror Descent for Large-Scale Sparse Recovery
[1], published at AISTATS 2023.

Chapter 3: Building upon the results of the previous chapter, this chapter we explore two new
ideas. First, we analyze a technique to make the algorithm adaptive to unknown parameters using
Lepski’s adaptation procedure. This procedure boils down to creating a grid of search for the pa-
rameter, launching the algorithm for each elements of the grid, and then selecting the best estimator
based on some criterion. The extra ”cost” of this adaptation procedure increases the required amount
of samples by only a logarithmic factor, making this adaptation technique very valuable. Next, we
extend the multistage method derived in the previous chapter under a quadratic growth condition
into a two phase multistage procedure for objectives which are uniformly convex around the optimum.

Chapter 4: In this chapter we discuss two non-Euclidean accelerated stochastic approximation
algorithms, namely Stochastic Accelerated Gradient Descent (SAGD) and Stochastic Gradient
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Extrapolation (SGE). We use these two algorithms to solve a class of smooth convex optimization
problems under general assumptions on the gradient stochastic pertubations. Unlike common
practices, we do not consider that the variance of the stochastic observations are uniformly bounded
across the entire domain. Instead, we assume that it depends on the ”sub-optimality” of the
approximate solutions delivered by these algorithms. We show that both SAGD and SGE attains
the optimal convergence rate O(1/k2) while simulteneously reaching the optimal sample complexity.
Notably, SGE achieves these optimal complexities under less restrictive assumptions compared to
SAGD. We further develop a multistage scheme based on SGE to solve the sparse GLR problem
with hard-thresholding steps (ℓ0-”norm” penalization) to enforce sparsity.

This chapter is based on the paper Accelerated Stochastic Approximation with State-Dependent
Noise [2], accepted at Mathematical Programming Series B.

Chapter 5: We start this last chapter by first providing a large deviation analysis of the
Stochastic Gradient Extrapolation method. We assume that the dual norm of the stochastic gradient
noise follows a sub-exponential distribution, with the parameter of sub-exponentiallity depending
on the ”suboptimality” of the objective function evaluated on the current search point. These
assumptions lead to special concentration inequalities for supermartingales which form the probabilitic
foundation of our framework. It allows to provide theoretical convergence guarantees that are valid in
high-probability. Additionally, our analysis of the SGE algorithm will be complemented by accuracy
certificates, providing a robust theoretical strategy for stopping criterion. Next, we build upon the
ideas introduced in the second chapter of this manuscript and introduce the Composite Stochastic
Gradient Extrapolation algorithm (CSGE). This method then serves as the main workhorse for an
accelerated multistage approach designed to solve sparse recovery problems. The hard-thresholding
step used in the preceding chapter is replaced by a ℓ1-norm penalization to induce sparsity of
the estimate. We conclude by providing a numerical comparison of the algorithm on the sparse
Generalized Linear Regression (GLR) problem.

This chapter is based on the working paper entitled Accelerated stochastic approximation with
state-dependent noise: high-probability bounds and accuracy certificate.
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Chapter 1

Introduction

Machine learning models have become essential in various research domains, driven by the recent
exponential growth in computing power and the abundance of data in numerous fields. This
development has transformed large-scale machine learning problems, once considered intractable,
into manageable challenges. The effectiveness of these methods largely stems from their ability to
be trained on large datasets, and to continuously improve as data volumes increase.

Key ML applications rely on regression tasks, such as predicting stock prices in finance, by using
historical data, trading volumes, and other economic indicators. In healthcare, classification tasks
are prominent, e.g., tumor detection through medical imaging, where models analyze features such
as texture, shape, or intensity in X-rays or MRIs. The success of these models desmonstrates the
transformative impact of machine learning in harnessing data to solve complex, real-world problems.

It is essential to emphasize that many machine learning tasks fundamentally translate into
optimization problems. Sophisticated models, used for regression or classification tasks, essentially
revolve around optimizing a specific loss function. The model identification process involves fine-
tuning a plethora of parameters to minimize error and maximize accuracy. Progression of machine
learning is thus intricately tied to advances in optimization techniques, which are crucial for efficiently
navigating vast and complex data-driven landscapes. This synergy between ML and optimization is
a cornerstone of the field’s success and evolution.

One of the major challenges is related to large-scale settings where both the sample size and
data dimensions can be exceedingly large. For example, the DOTA dataset [3] comprises over 10,000
aerial images, each with a resolution of 4K × 4K, equating to 1.6 million pixels per image. In such
scenarios, classical deterministic optimization routines may struggle with computational tractability.

To address these challenges, stochastic optimization methods have been developed, offering
substantial improvements in handling computational burdens appearing in large-scale contexts. The
success of these methods is so pronounced that they have become the backbone of training most
renowned deep learning architectures such as transformers [4]. Large Language Models (LLMs) that
currently enjoy a huge success, are predominantly trained using stochastic optimization approaches,
showcasing their effectiveness in managing the complexities of modern, data-intensive machine
learning tasks.

1.1 Optimization and Machine Learning

1.1.1 Mathematical background on Machine Learning

The fundamental goal of machine learning is to approximate an unknown function f : X → Y
that maps elements of an input space X to elements of an output space Y. ”Learning” is made by
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accessing to some data, this can be for instance a finite set of paired elements from both the input
space and output space, in other words elements of the input-output space Z = X× Y. The latter
framework is known as supervised learning [5]. In this paradigm data are typically in the form of
input-output pairs {zi = (xi, yi)}Ni=1 ∈ ZN , given an observation x ∈ X the goal is to predict an output
y = f(x) ∈ Y. Practionners typically categorize problems based on the nature of the output space.
Classification problems arise when the output space is discrete. For instance a classical example is
binary classification when Y = {0, 1} or Y = {−1, 1}. The setting where there are more than two
possible discrete outputs is named multi-class classification problems. On the other hand, regression
problems are characterized by a continuous output space, e.g., Y = R. The inputs are often called
features or attributes and the outputs labels or targets. Here are two examples of classical supervised
learning problems.

• Multi-class classification: Given a set of images of K different animals with its corresponding
label you would like to build a model that is able to classify for each new input images the
corresponding animal related to this input.

• Regression: A typical example of a regression task is forecasting weather temperatures. Given
input data such as historical temperature, humidity levels, and atmospheric pressure, among
others, the objective is to predict the temperature for an upcoming time window.

To give a more formal description of the supervised learning framework, we will have to make the
assumption that the data points z1, . . . , zN are in fact N realisations of a random variable Z such
that zi = (xi, yi) is drawn from the joint distribution Z = (X,Y ) where X and Y are two random
variables respectively on the input space X and the output space Y with probability distribution
p(x, y) on Z = X× Y. In order to quantify ”how good” a prediction is, we consider a loss function
ℓ : Y × Y → R, ℓ(y,w) quantifies the loss of predicting w when the true output is y. The choice
of the loss function is of major importance as it defines how models will be evaluated. Below we
present some examples of the commonly chosen loss function for the two classical ML problems.

• For binary classification Y = {−1, 1} or for multi-class classification Y = {1, . . . ,K} the usual
choice of loss function is the ”0-1” loss defined as ℓ(y,w) = 1{y ̸=w}. When the prediction w is
correct, i.e., is the same class as y then it is 0 and 1 if the prediction does not belong to the
correct class.

• For regression problems the quadratic loss function is widely used, if Y = R then ℓ(y,w) =
(y − w)2.

Expected risk. The goal now is to find the best function, the best ”model” f among all the
functions that maps elements of from the input space X to the output space Y. In order to formalize
this idea we introduce F(X,Y) the set of all measurable functions from X to Y. We can now define
the expected risk

∀f ∈ F(X,Y), R(f) = Ep
[
ℓ(y, f(x))

]
=

∫
X×Y

ℓ(y, f(x))dp(x, y), (1.1.1)

also known as the testing error, population risk or generalization error. The objective of machine
learning is then to minimize the latter quantity and to find the optimal model f∗ among all the
functions in F(X,Y). This can be rephrased as

R(f∗) = inf
f∈F(X,Y)

R(f). (1.1.2)
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Empirical risk. In many problems, the expression for the expected risk is not easily tractable due
to several challenges. For instance the underlying probability distribution p(x, y) is unknown and
cannot be directly accessed, or the associated integrals are hard to evaluate or approximate. In these
cases, empirical risk, which is computed using a finite sample of data, may serve as a practical proxy
for the true expected risk. The idea is to gather N i.i.d realisations z1, . . . , zN of random variable Z
and to approximate the integral in (1.1.1) via its finite-sum Monte-Carlo approximation,

f̂ ∈ Argmin
f∈F(X,Y)

{
R̂(f) =

1

N

N∑
i=1

ℓ(yi, f(xi))

}
. (1.1.3)

This empirical risk [6] also known as training error converges to the expected risk by the law of large
number as N → ∞. In many supervised learning settings, the empirical risk is expressed in terms of
a parametric family fθ : X → Y where θ ∈ Θ ⊂ E. The objective is then to find the best estimator θ̂
that verifies

θ̂ ∈ Argmin
θ∈Θ

{
R̂(fθ) =

1

N

N∑
i=1

ℓ(yi, fθ(xi))

}
. (1.1.4)

Regularization. As an illustrative example, consider the challenge often encountered in machine
learning of minimizing the empirical risk. Specifically, reducing the training loss to zero might cause
the model to overfit to the noise in the dataset, resulting in poor generalization performances. To
address this, a common practice is to incorporate a penalty term into the empirical risk. This results
in what is known as the regularized empirical risk. The function to be minimized, as given in (1.1.5),
becomes

R̂(fθ) + h(θ) =
1

N

N∑
i=1

ℓ(yi, fθ(xi)) + h(θ). (1.1.5)

Here, the additive function h acts as a regularizer that controls the model’s complexity. It is
noteworthy to mention that the parameters that are optimal for the empirical risk are not the
same as the one optimal for the regularized empirical risk. This shift in optimality underlines the
regularization’s core idea: by preventing overfitting, we might obtain a model that, while not perfect
for the training data, generalizes better to unseen data. A popular choice of penalization function is
the ℓp-norm (p ≥ 1) penalization, given by hp(θ) = λ∥θ∥pp, where λ represents the penalty parameter,
and

∥θ∥p :=

(
n∑
i=1

|θi|p
)1/p

.

Problems that incorporate norm penalization are extensively studied in the literature, especially
within the context of linear regression problems. For instance to avoid overfitting in regression
analyses, practitioners often employ the Thikhonov regularization [7]. In this case, the penalization is
introduced through the squared ℓ2-norm and leads to the ridge regression problem. Another popular
choice of regularization in the same context is the ℓ1-norm penalization leading to the famous LASSO
regression problem [8]. The ℓ1-norm penalty is known to have interesting sparsity-inducing properties.
These properties led to the development of numerous fields in statistics such as Compressed Sensing
or feature selection.

Generalized Linear Regression. In this manuscript we will investigate an important problem
in statistical learning, namely the problem of sparse parameter estimation. This will be discussed in
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much details in Section 1.3. One of the application of this study will be the fundamental problem of
parameter estimation in the Generalized Linear Regression (GLR) model [9, 10]. The GLR model
represents a broad framework wherein the estimation process involves determining an unknown
parameter vector β∗ ∈ Rn given observations (xi, yi). The model is defined as :

yi = r(xTi β
∗) + ξi, (1.1.6)

where yi ∈ R are the responses, xi ∈ Rn are random regressors and ξi ∈ R are realizations of a
zero-mean random variable. The function r : R → R is known as the activation function. The
type of regression being studied in a Generalized Linear framework is characterized by the choice
of the activation function. For instance, in the case where the responses are Gaussian distributed
and the link function is the identity function, defined as ∀w ∈ R, r(w) = w, the model corresponds
to linear regression. Alternatively, when the responses follow a Bernoulli distribution and the link
function is the logistic function, defined as ∀w ∈ R, r(w) = (1 + exp(−w))−1, the model aligns with
the framework of logistic regression model.

In the remainder of the manuscript, we transition from the notational conventions commonly
used in the ML community to those prevalent in the Optimization literature. In the sections which
follow, we will introduce the optimization framework that is crucial for the development of tools
aimed at efficiently solving the vector estimation problem, which was briefly discussed in this section.

1.1.2 Optimization

As we have noticed above, solving ML problems amounts to minimize either the expected risk or the
(regularized) empirical risk. This task of searching the extremal value of a function falls into the
field of optimization. The corresponding setup is as follows : we consider a Euclidean space E and
a constraint set X ⊂ E, such that our problem is to find either a minimizer or the minimal value
of a function g : X → R. Formally we aim at finding x∗ a minimum of the following constrained
minimization problem

x∗ ∈ Argmin
x∈X

g(x). (OPT)

The structure of the objective function g can vary depending on the specific framework of the
problem. This function can be expressed as a finite-sum, g(x) =

∑N
i=1 gi(x), where the sum aggre-

gates individual functions gi. Alternatively, g may be represented in the form of an expectation
g(x) = E{G(x, ω)}, where ω ∈ Ω is a random variable whose probability distribution is supported
on Ω. The focus of this thesis will primarily be on the latter representation, which involves the
expectation form of g.

Stochastic Optimization basics. The subject of stochastic optimization are optimization problems
in which the objective function or the constraint set possesses randomness. Such problems often
arise in scenarios where we encounter random observations originating from an unknown distribution,
which subsequently give rise to stochastic losses.

Specifically, consider X, a convex compact set within a Euclidean space E. The goal is to
minimize a loss function g : X → R. This function is represented as the expected value of a
stochastic loss function G : X × Ω → R. In what follows, ω represents a random variable with an
unknown probability distribution P supported on Ω. We also assume that the stochastic loss G(·, ω)
is convex for any ω. The minimization problem that we want to solve writes

g∗ = min
x∈X

{
g(x) = Eω{G(x, ω)} =

∫
Ω
G(x, ω)dP (ω)

}
. (1.1.7)
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The individual instances ω1, ω2, ω3, . . . are considered as realizations of a random variable ω. Given
the inherent random structure of the stochastic loss G(x, ω) and the unaccessibility of the underlying
probability distribution a direct minimization of the following problem is impossible.

From now on, and for the remainder of this introduction, we assume that the objective function
of the optimization problem, as defined in equation (OPT), is expressed as an expectation, in
accordance with the formulation presented in the above equation.

An essential mechanism in stochastic optimization is the first-order stochastic oracle. This
mechanism takes as input a point x ∈ X and provides a stochastic gradient, i.e., a random variable
G(x, ω) that is a noisy approximation of the true gradient of the objective function. In other words,

∀(x, ω) ∈ X × Ω, G(x, ω) := ∇g(x) + ζ(x, ω),

where the random variable ζ(x, ω) is commonly referred to as the stochastic error. A standard
assumption in the literature of stochastic optimization is the unbiased nature of the oracle, which
states that ∀x ∈ X, E {ζ(x, ω)} = 0. However, ensuring unbiasedness alone does not guarantee
convergence. It is also essential to control the fluctuations of the random variable G(x, ω). This
consideration leads to the standard assumption of a finite variance of the stochastic error.

This is summarized in the following assumption.

Assumption 1 We assume the existence of a stochastic first-order oracle that provides, for any
input point (x, ω) ∈ X × Ω, a stochastic observation G(x, ω) verifying

• E {G(x, ω)} = ∇g(x), (1.1.8)

• E
{
∥G(x, ω)−∇g(x)∥2∗

}
≤ σ2, (1.1.9)

where ∥z∥∗ := sup{⟨z, x⟩ : ∥x∥ ≤ 1} is the conjugate norm associated to some given norm ∥ · ∥.

The aforementioned assumption of uniformly bounded variance of the stochastic error may be
substituted by other assumptions. Specifically, it is common to assume that the probability
distribution of the stochastic error exhibits either light-tail or heavy-tail behavior. The standard
assumptions in the light-tail case is the sub-Gaussian assumption of the dual norm of the unbiased
stochastic gradient error.

Assumption 2 (sub-Gaussan tail) Let G(x, ω) be the unbiased stochastic first-order information
provided by the SFO at search point x and with sample ω. The stochastic gradient is said to be
sub-Gaussian if for some σ > 0 we have

E
{
exp

(
∥G(x, ω)−∇g(x)∥2∗/σ2

)}
≤ exp(1). (SG)

Note that the sub-Gaussian tail assumption (SG) is a much more restrictive condition than the
finite variance assumption on the stochastic error. Indeed observe that from Jensen inequality and
convexity of x 7→ exp(x), we have

exp
(
E
{
∥G(x, ω)−∇g(x)∥2∗/σ2

})
≤ E

{
exp

(
∥G(x, ω)−∇g(x)∥2∗/σ2

)}
≤ exp(1),

which implies (1.1.9).
Recent research indicates that, in many machine learning problems, the distribution of the

stochastic gradient noise exhibits tail behavior which are heavier than those of sub-Gaussian
distributions [11–14]. Among various distribution families exhibiting heavier tail than sub-Gaussian
tails, the sub-exponential family appears to be interesting to study.
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Assumption 3 (sub-exponential tail) Let G(x, ω) be the unbiased gradient estimation at search
point x and with sample ω. Then the stochastic gradient noise is assumed to be sub-Gaussian if for
some σ > 0 we have

E
{
exp

(
∥G(x, ω)−∇g(x)∥∗/σ

)}
≤ exp(1). (SE)

It is important to clarify how we quantify the approximation precision of our estimate since in the
stochastic optimization setting, the prediction error exhibits randomness. Let A be a stochastic
optimization algorithm that provides an estimate x̂T of x∗ after T iterations. One may consider to
take the full expectation of the suboptimality gap, these types of bounds are known as in-expectation
bounds. Given a desired inaccuracy ϵ > 0, this can be formalized as controlling the expected
suboptimality gap1

E{g(x̂T )− g∗} ≤ ϵ.

In-expectation bounds provide insights into the average performance of the stochastic algorithm. It
may sometimes be unsatisfactory. Indeed, as stated above, the suboptimality gap is itself a random
variable, influenced by various sources of randomness such as noise in measurements or stochasticity
in the optimization process. In situations where the suboptimality gap is subject to outliers or
extreme values, relying solely on in-expectation bounds may not capture the full variability or
risk associated with the problem. Outliers can significantly affect the expected value and lead to
misinterpretations on the actual performances of the algorithm. Therefore, it becomes imperative to
establish bounds that guarantees with high-probability that the estimate produced by the algorithm
is of high reliability. We define the estimate solution x̂T provided by the stochastic method A as an
(ϵ, δ)-solution for some ϵ, δ ∈ (0, 1), if the suboptimality gap verifies

Prob
(
g(x̂T )− g∗ ≤ ϵ

)
≥ 1− δ.

This criterion ensures that the algorithm’s performance is robust, consistently providing high-
precision solutions in most instances. It is noteworthy that the assumption of the uniformly bounded
variance is often employed when deriving in-expectation bounds. Such an assumption is usually
sufficient for establishing these bounds, as they focus on the average performance. In contrast,
high-probability bounds typically require assumptions about the distribution’s tail behavior, whether
light-tailed or heavy-tailed. These conditions are crucial as high-probability bounds need to account
for rare but significant deviations from the mean. This tail behavior consideration is essential for
providing a more comprehensive and reliable measure of the algorithm’s performance in a single run,
especially in scenarios with potentially extreme outcomes.

Next we define the complexity of an optimization algorithm as the number of iterations T (ϵ) or
the number of samples N(ϵ) required to achieve the specified tolerance level ϵ. This measure of
complexity provides a quantitative assessment of the algorithm’s efficiency in reaching the desired
precision.

In the field of stochastic optimization, two primary paradigms emerge. Firstly, there is the method of
directly attempting to minimize the problem in its genuine form, known as Stochastic Approximation
(SA). On the other hand, one can opt to approximate the expectation of the problem using a
Monte-Carlo approximation, the approach referred as Sample Average Approximation (SAA).

Stochastic Approximation. Stochastic approximation originates from the seminal paper by Robbins
and Monro [15]. It is an iterative method originally aimed at finding the zero of a function.

1In the context of convex optimization, the suboptimality gap or the prediction error is not the only performance
metric that is of interest to study. One can also consider for some norm ∥ · ∥ the estimation error ∥x̂T − x∗∥.
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When applied to the gradient of an objective function in an unconstrained minimization
problem, SA essentially seeks local optima of the objective function. SA can be adapted to
solve the stochastic problem (1.1.7). The core idea of the adapted method is straightforward:
use individual samples sequentially to compute a stochastic subgradient Gt := G(xt, ωt) of the
objective function, and update the current search point xt according to

xt+1 = xt − ηtGt, (1.1.10)

where (ηt) is a sequence of stepsizes. This routine can directly address stochastic problems and
is thereby applicable for solving the expected risk. For a constrained minimization problem,
the projection operator ΠX(·) can be used to ensure the updated point remains within the
constraint set. Stochastic Approximation (SA) methods and their variants continue to be the
predominant approaches in modern large-scale machine learning. Examples of such methods
include the Adaptive Gradient Algorithm (AdaGrad) by Duchi et al. (2011) [16], the Stochastic
Gradient Descent variant by Ghadimi and Lan (2013)[17], and the Adam optimizer by Kingma
and Ba (2014)[18], among others.

Sample Average Approximation. SAA method [19–22] is rather a two stage technique based on
sampling and deterministic optimization aiming to solve problem (1.1.7) than an algorithm. The
first step is a sampling step where N independent, identically distributed realizations ω1, . . . , ωN
of the random variable ω are collected so that the expected loss function is approximated
through Monte-Carlo approximation by the average of the N realizations,

ĝN (x) :=
1

N

N∑
i=1

G(x, ω).

Secondly, a deterministic minimization algorithm is used to solve the approximate problem of
the initial expected problem (1.1.7):

g∗N = min
x∈X

{
ĝN (x) =

1

N

N∑
i=1

G(x, ω)
}
.

Searching the minimum of this problem can be viewed as seeking the minimum of the empirical
risk. SAA has many pros, the main interest is its inherent simplicity, basically it boils down
to forming a deterministic objective function using the collected samples (ωi)

N
i=1 and run a

deterministic optimization method on the problem. Another interesting aspect is that SAA
allows for multiple passes through the data. Therefore it can be interesting when the dataset
is limited and searching new datapoints can be very costly. There are also few downsides.
One obvious problem is that we are no longer tackling the stochastic problem, it is therefore
important to quantify and to control the approximation error |g∗N − g∗|. Another issue is that
in modern era ML problems the sample size can be huge and computing the true gradient of
the deterministic function can take forever to be computed.

Composite Optimization. In the previous section, we introduced the regularized empirical risk
(1.1.5). Unlike the classical empirical risk, this formulation includes an additional penalty term. The
objective now becomes finding the minimum of this new composite function. From the point of
view of optimization, the minimization of composite functions falls within the domain of composite
optimization. In this context, the objective is to minimize the sum of two functions, each possessing
different properties. This is formulated as finding the minimum to

min
x∈X

Ψ(x) := g(x) + h(x). (1.1.11)
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Composite optimization has received significant attention, leading to the development of numerous
algorithms designed to efficiently handle these specialized functions [23–29]. The convergence behav-
iors of these algorithms vary, largely depending on the regularity of the objective function. Within
the scope of our manuscript, our focus will not be on directly minimizing a composite function.
Instead, our primary objective is to develop methods aimed at approximating the optimum x∗ of
Problem (OPT). We will utilize composite problems, together with some theoretical conditions on
the structure of the problem, as intermediary steps or proxies to guide us toward our main objective
: the estimation problem.

GLR by Stochastic Approximation. As a motivating example, we are now going to see
how the problem of vector estimation in the generalized linear regression model can be formulated
as a stochastic optimization problem. First, recall that the objective of vector estimation under the
GLR model is to approximate an unknown vector x∗ ∈ int X based on observations (ϕi, yi). These
observations are connected through the function r : R → R, as described by the relation

yi = r(ϕTi x
∗) + ξi, for i = 1, 2, 3, . . . , (1.1.12)

where the random regressors ϕi ∈ Rn and the zero-mean noise ξi ∈ R are assumed to be mutually
independent. By introducing a primitive function s : R → R of r, we can recast the estimation
problem as

min
x∈X

{
g(x) := E

[
s(ϕTx∗)− ϕTxy

] }
. (1.1.13)

By accessing some observations ω = (ϕ, y), we can form an unbiased gradient estimate G(x, ω) :=
ϕ
(
r(ϕTx)− y

)
of the stochastic loss G(x, ω) := s(ϕTx∗) − ϕTxy. Consequently, Problem (1.1.13)

can be solved by using stochastic approximation methods to iteratively approximate vector x∗.

1.2 Stochastic First-order Methods

In this section, our goal is to offer a comprehensive overview of various stochastic first-order methods
commonly utilized in the field of stochastic optimization. We present the main tools and concepts
discussed in the core of the manuscript to provide a complete understanding of our contributions.
Our focus will be on exploring the theoretical bounds associated with these methods and discussing
their applications.

1.2.1 Stochastic Mirror Descent

Introduced in [30, 31], the Mirror Descent (MD) algorithm can be viewed as an extension of the
projected subgradient descent method solving (OPT). The fundamental concept of this method
originates from the observation that in Banach spaces, the first-order information of the objective
function are elements of the dual space. The groundbreaking idea proposed by Nemirovski and Yudin
is to execute the gradient descent step in the dual space, as opposed to the conventional approach of
operating in the primal space. This technique leverages a mirror map, defined as the gradient of a
distance generating function ϑ, to map the search point into the dual space. This aligns with the
underlying geometry of the optimization problem more effectively. The so-called mirror map must
satisfy several properties; these are detailed, for instance, in [32]. The Mirror Descent algorithm has
two elegant and equivalent formulations, the proximal formulation and the primal-dual formulation.
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Primal Space Dual Space

X

xt

yt

∇ϑ(·)

zt

−ηtG(xt, ωt)

x′t+1

xt+1

∇ϑ∗(·)

ΠϑX(·)

Figure 1.1: Geometric interpretation of Stochastic Mirror Descent algorithm.

We begin by defining the more geometric of the two formulations, namely, the primal-dual formula-
tion. First, we introduce the projection operator onto the space X , which is shaped by a potentially
non-Euclidean geometry induced by the strongly convex function ϑ :

ΠϑX(x) = Argmin
y∈X

Vϑ(x, y),

where Vϑ(x, y) := ϑ(y)− ϑ(x)− ⟨∇ϑ(x), y − x⟩ denotes the Bregman divergence associated to the
prox-function ϑ. We continue by describing the stochastic variant of the deterministic mirror descent
algorithm (SMD), analyzed in [25, 33, 34], where the full gradient is replaced by the stochastic
first-order information. Given an initial point x0 ∈ X, the stochastic mirror descent algorithm is
defined by the following recursions, for t = 0, 1, 2, . . .

yt = ∇ϑ(xt) (1.2.1)

zt = yt − ηtGt (1.2.2)

xt+1 = ΠϑX (∇ϑ∗(zt)) , (1.2.3)

where Gt is an unbiased stochastic subgradient of objective g at search point xt, i.e., E{Gt} ∈ ∂g(xt).
Here, ∇ϑ is the mirror map, defined as the gradient of the strongly convex function ϑ which generates
the Bregman divergence Vϑ, and ∇ϑ∗ is the gradient of the Fenchel conjugate of ϑ. This procedure
is illustrated in Figure 1.1.

To derive the second formulation of the SMD method, known as the proximal formulation, we
first recall the projected stochastic subgradient descent iterations used to solve the minimization
problem in (OPT). It is well-known that the projected subgradient descent method can be rewritten
in a proximal form. The iterations then become

xt+1 = Argmin
x∈X

{
⟨Gt, x⟩+

1

2ηt
∥xt − x∥22

}
. (1.2.4)

Later, as shown by Teboulle in [35], the proximal reformulation of the projected subgradient method
can be generalized by replacing the squared Euclidean norm in (1.2.4) with a more versatile Bregman
Divergence Vϑ associated with the distance-generating function ϑ. This leads to the mirror descent
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recursion emerging as an extension of the Euclidean projected subgradient descent to non-Euclidean
geometry. The SMD algorithm can then be summarized by the following recursion, for t = 0, 1, 2, . . .

xt+1 = Argmin
x∈X

{
⟨Gt, x⟩+

1

ηt
Vϑ(xt, x)

}
. (1.2.5)

Observe that when we substitute ∇ϑ∗(yt+1), as appearing in equation (1.2.3) of the primal-dual
formulation, into the expression of the non-Euclidean projection onto the set X, ΠϑX(·), we obtain the
same definition of xt+1 as in (1.2.5). Indeed, for the sake of conciseness by denoting α = ∇ϑ∗(yt+1),
we have

xt+1 = Argmin
x∈X

{Vϑ(α, x)}

= Argmin
x∈X

{ϑ(x)− ϑ(α)− ⟨∇ϑ(α), x− α⟩}

= Argmin
x∈X

{ϑ(x)− ⟨∇ϑ(xt)− ηtGt, x− α⟩}

= Argmin
x∈X

{⟨ηtGt, x⟩+ ϑ(x)− ϑ(xt)− ⟨∇ϑ(xt), x⟩+ ⟨∇ϑ(xt), xt⟩}

= Argmin
x∈X

{
⟨Gt, x⟩+

1

ηt
Vϑ(xt, x)

}
.

This compact proximal formulation of the SMD algorithm is adopted in the remainder of the
manuscript.

The SMD method serves as a foundational framework from which many famous stochastic
algorithms arise as special cases. Below, we highlight some interesting examples of these methods.

• For X ⊂ Rn, when selecting ϑ(x) = 1
2∥x∥

2
2, the Bregman Divergence becomes Vϑ(x, y) =

1
2∥y − x∥22, which essentially reduces to the stochastic subgradient descent algorithm.

• On the n-dimensional probability simplex X = ∆n := {x ∈ Rn :
∑n

i=1 xi = 1, xi ≥ 0, ∀i =
1, 2, . . . , n}, using the negative entropy as distance generating function ϑ(x) =

∑n
i=1 xi ln(xi),

the Bregman divergence becomes the relative entropy, also known as the KL-divergence,
Vϑ(x, y) =

∑n
i=1 yi ln(yi/xi). This results in the closed-form update of the Exponentiated

Gradient algorithm [36] for stochastic optimization.

• When X is a subset of the spectrahedron defined as Σn = {Z ∈ S++
n : tr(Z) = 1}, using matrix

entropy as a distance-generating ϑ(Z) = tr(Z lnZ), we obtain the Von Neumann relative
entropy Vϑ(Z, Y ) = tr(Y lnY − Y lnZ), which leads to the SMD update presented in [37].

Due to its remarkable versatility and its inherent simplicity, SMD method and its variants are
arguably among the most extensively studied and widely used methods in practice. For instance in
deep learning [38], the method is used to optimize complex overparameterized neural networks [39, 40].
In Reinforcement Learning, especially in policy optimization, it is used to improve decision-making
algorithms [41–44]. Online Learning can also benefit from SMD’s adaptability and low computation
complexity, where it has been extensively studied under the name of Online Mirror Descent [36,
45–47]. Consequently, many theoretical results have been derived to underline the practical utility
of the SMD algorithm. For the general non-smooth convex case, Nemirovsky et al. [33] proved that
SMD has the optimal O(1/

√
T ) convergence rate. In the non-smooth strongly convex case, Juditsky

and Nesterov [48] improved the convergence rate to O(1/T ). Lan [49] studied the L-smooth convex
case and provided in-expectation and high-probability bounds for a modified version of the SMD
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algorithm where the output is the Polyak-Ruppert average [50, 51] over the iterates for a fixed
horizon T , defined as

x̂T :=
1

T

T∑
t=1

xt+1.

A typical in-expectation result is presented in Theorem 1.2.1.

Theorem 1.2.1 (Lan, 2020 [49]) Let x̂T be the output of the SMD algorithm applied over a finite

horizon T ∈ N∗. Let the stepsize η be defined as η = min
(

1
2L ,

DX

σ
√
T

)
, where L represents the Lipschitz

constant of ∇g and D2
X = maxx,y∈X Vϑ(x, y). We also assume that the stochastic gradient noise

verifies Assumption 1 with parameter σ > 0. Under these conditions the expected suboptimality is
bounded as :

E[g(x̂T )− g(x∗)] ≤
2LD2

X

T
+

2DXσ√
T

. (1.2.6)

The high-probability result is provided under the sub-Gaussian assumption (SG) on the dual norm
of the stochastic error.

Theorem 1.2.2 (Lan, 2020 [49]) Let x̂T be the output of the SMD algorithm applied over a finite

horizon T ∈ N∗. Let the stepsize η be defined as η = min
(

1
2L ,

DX

σ
√
T

)
, where L represents the Lipschitz

constant of ∇g, and D2
X = maxx,y∈X Vϑ(x, y). We also assume that the stochastic gradient noise

verifies Assumption 2 with parameter σ > 0. Under these conditions for Λ > 0 we have :

Prob

{
g(x̂T )− g(x∗) ≥

2LD2
X

T
+

2(1 + Λ)DXσ√
T

}
≤ exp{−Λ2/3}+ exp{−Λ}. (1.2.7)

1.2.2 Accelerated Methods

Designing fast optimization methods has always been a cornerstone of research in optimization. This
focus has led to the groundbreaking development of accelerated optimization algorithms.

Momentum methods and acceleration. The first wave of these advanced algorithms emerged
in deterministic optimization, marked by the development of momentum methods. In his ground-
breaking paper of 1964 [52], Polyak proposed the heavy-ball method (HB) for solving smooth and
strongly convex minimization problems. The update rule of the latter algorithm is very similar to
the update rule of the gradient descent algorithm and is defined as follows :

xt+1 = xt − α∇g(xt) + β(xt − xt−1)︸ ︷︷ ︸
momentum

. (1.2.8)

The key idea behind this added momentum term is to utilize the history of past iterates to predict
the future trajectory. This method has been proven to achieve the optimal asymptotic complexity
O(
√
L/µ ln(1/ϵ)) in the L-smooth and µ-strongly convex setting for twice continuously differentiable

functions. Later, Nemirovski and Yudin, in their seminal paper [31] proposed an algorithm with a
complexity of O(

√
L/µ ln(1/ϵ)) by drawing inspiration from the conjugate gradient method applied

for solving convex quadratic minimization problems [53]. In the same paper, focusing on the smooth
convex setting, they demonstrated a lower bound of Ω(1/T 2) for first-order methods, indicating that
no method within this class could achieve a faster convergence rate. This opened a gap as the best
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convergence rate achieved by first-order methods in the smooth convex setting at that time was
O(1/T ). In 1983, Nesterov [54] closes the gap by introducing a simpler method for solving convex
minimization problems with Lipschitz-continuous gradients, achieving the optimal rateO(1/T 2). This
method is known as the accelerated gradient algorithm (NAG). In the L-smooth and µ-strongly convex
setting, this method achieve also the optimal iteration complexity O(

√
L/µ ln(1/ϵ)). Nesterov’s

accelerated algorithm operates by starting with two initialization points x0 = y0 ∈ Rn and updating
them as follows :

xt+1 = yt −
1

L
∇g(yt) (1.2.9)

yt+1 = xt+1 +
t− 1

t+ 2
(xt+1 − xt). (1.2.10)

This method stems from Polyak’s foundational concept of incorporating an additive momentum
term into the gradient descent stage. It significantly enhances this approach by a clever idea, which
consists in evaluating the gradient at a forward-looking point, a ”predictive step” that anticipates
the future position. This forward step, based on the momentum term, allows for a better update,
thus accelerating the convergence. Figure 1.2 illustrates the update rule of the NAG method.

xt−1

yt

xt

xt+1 yt+1

−∇g(·)

Figure 1.2: Visualization of the update of NAG algorithm.

Following this discovery, the idea of acceleration was extended by numerous authors to design
new algorithms for solving composite problems with potentially nonsmooth regularization term [23,
55, 56]. Beck and Teboulle [56], for instance, proposed a reformulation of Nesterov’s fast algorithm,
known as Fast Iterative Shrinkage-Thresholding Algorithm (FISTA), which utilizes the proximal
operator to effectively tackle linear inverse problems.

Multistage algorithms. Another widely used technique to enhance the convergence behav-
ior of nearly any first-order method is the restart scheme. Under certain conditions on the objective
function, it is possible to improve the sublinear convergence rate of an optimization algorithm A to
achieve linear convergence, as illustrated in Figure 1.3. This technique stems from the observation
that even with sublinear convergence, the optimization method may exhibit phases of rapid decrease.
The approach can be succinctly described as follows: we run algorithm A for a predetermined number
of iterations, and once the phase of rapid convergence diminishes, we restart algorithm A using the
last output as the new initial point. This process is repeated until a specific termination criterion
is satisfied. These strategies have been extensively studied and come with strong theoretical and
empirical guarantees [23, 48, 57–59]. For instance O’Donoghue and Candès [58] adapted a restarted
version of an accelerated method with great empirical results.

Stochastic methods. In the stochastic setting accelerated algorithms were also developed taking
inspirations from the work done in the deterministic setting. To solve composite problems with a
smooth convex component and a potentially nonsmooth component, Lan [24] developed a generaliza-
tion of the NAG method, known as the AC-SA algorithm achieving the theoretical optimal iteration
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Figure 1.3: Left: Sublinear convergence of an optimization method. Right: Faster convergence
thanks to restart scheme. From d’Aspremont et al. [62].

complexity for solving stochastic composite problems :

O

(√
LD2

X

ϵ
+
σ2D2

X

ϵ2

)
,

where D2
X = maxx,y∈X Vϑ(x, y) and σ is the variance of the stochastic noise. Later, Ghadimi and

Lan [25] utilized a modified version of the fast AC-SA method to develop an optimal method for
composite problems with smooth strongly convex objectives with potentially nonsmooth regularizer.
Their modified version achieves the following, nearly optimal, iteration complexity for finding and
(ϵ,Λ)-solution for a composite problem

O

(√
LD2

X

ϵ
+
σ2

µϵ
ln

(
1

Λ

)
+

(
σRX(x

∗)

ϵ
ln

(
1

Λ

))2
)
,

where RX(x
∗) := maxx∈X ∥x− x∗∥ and for some Λ ∈ (0, 1). They present in [26] a better rate for

the smooth and strongly convex case. The rate is improved thanks to a multistage strategy and
achieve the optimal iteration complexity of

O

(√
L

µ
max

(
1, ln

(
∆0

ϵ

))
+

[
ln

(
ln(∆0/ϵ)

Λ

)]2 σ2
µϵ

)
,

where for the last two bounds, σ denotes the sub-Gaussianity parameter and ∆0 denotes the initial
suboptimality gap.

Stochastic methods with momentum are still currently the go-to methods for practitionners
in modern machine learning. For example, in deep learning, a variety of algorithms based on the
momentum concept have gained widespread popularity within the community. The most commonly
used algorithms include SGD with momentum, Adadelta [60], Adam [18], and Nadam [61], among
others

1.3 Sparse Recovery

In this section, motivated by the study of high-dimensional statistical estimation problems, we
explore fundamental concepts within the rapidly evolving field of Statistics and Signal Processing
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known as Compressed Sensing (CS). CS is a technique in Signal Processing that efficiently acquires
and reconstructs a signal by finding sparse solutions to underdetermined linear systems. Specifically,
Compressed Sensing is concerned with the recovery of a signal x ∈ Rn from observations y ∈ RN

obtained through a linear model y = Φx+ ζ, where Φ is the sensing matrix and ζ represents noise.
This approach is applicable when the number of observations N is significantly less than the signal’s
dimension n, while being sufficiently large compared to the signal’s ”true” dimension, the count of
its nonzero entries. Compressed sensing (CS) is not limited to exploiting ’vanilla’ sparsity structures;
it also addresses other types of low-dimensional structures inherently present in high-dimensional
data, such as block sparsity and low-rank matrices. We begin with defining the problem of signal
recovery.

1.3.1 Signal recovery basics

In the context of sparse signal recovery, three primary scenarios emerge based on the characteristics
of the sensing matrix Φ and the presence of noise. The deterministic scenario occurs in noise-free
environments (ζ = 0) with a full-rank sensing matrix, typically when the number of observations
N is greater than or equal to the number of variables n, allowing for the unique recovery of the
signal through matrix inversion. Conversely, in the underdetermined scenario, when N < n, the
resulting system has more variables than observations. In this setting, additional assumptions, such
as the effective dimension s < N , are required to ensure recoverability. Here, sparsity assumptions
and techniques like the nullspace condition are crucial for signal recovery. In the noisy scenario
(ζ ̸= 0), which reflects real-world conditions with measurement noise, the distinctions between
having more observations than unknowns (N > n) and fewer observations than unknowns (N < n)
remain significant. This affects the choice of recovery techniques, with robust approaches such as
regularization being employed to approximate the original signal while mitigating the effects of noise.

Compressed sensing and ℓ0-formulation: In the CS [63–68] setup we consider the case N ≪ n
and assume that the signal we want to recover can be well approximated by an s-sparse representation.
To quantify the sparsity of a vector z ∈ Rn, we consider its ℓ0- ”norm” defined as

∥z∥0 := Card({i : zi ̸= 0}).

In the CS setup the a priori information is added by considering the following set

X = {z ∈ Rn : ∥z∥0 ≤ s} .

So the CS framework for the signal recovery problem in the noiseless case (ζ = 0) can be express by
the following combinatorial minimization problem :

min
z∈Rn

{∥z∥0 : Φz = y} . (1.3.1)

This can also be extended for noisy observations, given some norm ∥ · ∥ and ρ > 0, the combinatorial
minimization problem becomes:

min
z∈Rn

{∥z∥0 : ∥Φz − y∥ ≤ ρ} . (1.3.2)

Unfortunately, the problems described in (1.3.1) and (1.3.2) are computationally intractable without
specific information about the support of the targeted signal. An exhaustive search over all possible
subsets of size s is not feasible due to the prohibitively large number of possibilities

(
n
s

)
. Furthermore,
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these minimization problems have been proven to be NP-hard, as established by Natarajan [69] in
the context of sparse signal recovery.

A viable solution to this complex issue exists, and it boils down to ”approximating” the ℓ0-”norm”
by a convex surrogate. The ℓ1 objective is a good proxy to replace the ℓ0 minimization problem.

ℓ1-relaxation: The most natural reformulation of problems (1.3.1) and (1.3.2) appears to be the
ℓ1-norm minimization also known as basis pursuit problem [70, 71]. In the noiseless case we obtain

min
z∈Rn

{∥z∥1 : Φz = y} , (1.3.3)

and in the presence of additive noise this is reformulated as

min
z∈Rn

{∥z∥1 : ∥Φz − y∥ ≤ ρ} . (1.3.4)

These two problems are now convex and can be efficiently solved via convex programming. One
important question to answer is how good the solutions for these convex problems are compared to
their ℓ0-”norm” minimization counterparts. Many studies [72, 73] point out that the ability to recover
exactly s-sparse solutions to (1.3.3) depends on properties of the sensing matrix Φ. Juditsky and
Nemirovski [73] characterize the notion of s-goodness verified by the sensing matrix Φ by observing
that whenever the observations are generated in a noiseless model by an s-sparse signal x ∈ Rn,
then it should be the unique solution to (1.3.3).

Definition 1.3.1 (s-goodness) Let Φ ∈ RN×n be a sensing matrix and consider an integer 0 ≤ s ≤ n.
Then Φ is said to be s-good if for every s-sparse vector x ∈ Rn, x is the unique optimal solution to
the problem

min
z∈Rn

{∥z∥1 : Φz = Φx}. (1.3.5)

We may now define a necessary and sufficient condition that the sensing matrix has to verify to
be s-good. Given an index set I ⊂ {1, . . . , n}, we denote by xI the vector obtained by zeroing all
coefficient of x with indices outside of I. First we define some notation. For vector x ∈ Rn and an
integer 0 ≤ s ≤ n, we denote by xs the vector obtained by setting to 0 all entries except for the s
entries of largest magnitudes. Note that xs is the best s-sparse approximation of x in all ℓp-norms
1 ≤ p ≤ ∞. For p ∈ [1,∞] and s ≤ n, we introduce the norm

∥x∥s,p := ∥xs∥p = max
Card(I)≤s


(∑
i∈I

|xi|p
)1/p

 .

Let now Ic be the complementary set Ic := {1, . . . , n} \ I. The nullspace condition of order s is a
necessary and sufficient condition of exact recovery in the noiseless problem. The condition is stated
as follows

∀I ⊂ {1, . . . , n} such that Card(I) ≤ s, ∀w ∈ Ker(Φ) \ {0} : ∥wI∥1 < ∥wIc∥1, (1.3.6)

where Ker(Φ) := {w ∈ Rn : Φw = 0}. Invoking a compactness argument, the previous condition is
the same as

∃κ ∈ (0, 1/2), ∀w ∈ Ker(Φ) : ∥w∥s,1 ≤ κ∥w∥1. (1.3.7)

Whenever the design matrix Φ satisfies the nullspace condition, the exact recovery of s-sparse vector
in the noiseless case is assured.
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Proposition 1.3.1 Let Φ ∈ RN×n be a sensing matrix. Then Φ is s-good if and only if it verifies
the nullspace condition of order s.

There exists other sufficient conditions which guarantee s-goodness of the sensing matrix. One of
the most studied condition is the Restricted Isometry Property (RIP) introduced by Candès and Tao
[74].

Definition 1.3.2 (RIP) Consider an integer s ≤ N and δ ∈ (0, 1). A N × n sensing matrix Φ is
said to possess RIP(δ, s), when for every s-sparse vector x ∈ Rn

(1− δ)∥x∥22 ≤ ∥Φx∥22 ≤ (1 + δ)∥x∥22. (1.3.8)

In the case of noiseless observations, we have established that exact recovery of the true signal is
guaranteed under specific conditions related to the nullspace of the sensing matrix. However, in
real-world scenarios, observations are often corrupted with noise, rendering exact recovery unfeasible.
Consequently, a practical objective shifts in obtaining an estimator x̂ such that the ℓ2-error ∥x̂−x∗∥2
is well controlled. To this end and to overcome the challenge appearing in the noisy setting, Bickel
et al. [75] introduced the restricted eigenvalue condition.

Definition 1.3.3 (Restricted eigenvalue RE (s, α)) A sensing matrix Φ is said to verify the restricted
eigenvalue condition with parameter 1 ≤ s ≤ n and positive number α, when the following condition
holds

κ(s, α) := min
I⊆{1,...,n},

|I|≤s

min
∆ ̸=0,

∥∆Ic∥1≤α∥∆I∥1

∥Φ∆∥2√
N∥∆∥2

> 0. (1.3.9)

This condition is less restrictive than RIP condition, therefore it has been extensively utilized to
prove accuracy bounds for the Dantzig Selector estimator [67, 75, 76] and the Lasso estimator
[75–79]. First, recall that the Dantzig Selector estimator is defined as follows

x̂DS ∈ Argmin
z∈Rn

{∥z∥1 : ∥ΦT (Φz − y)∥∞ ≤ ρ}, (1.3.10)

and the Lasso estimator has the form

x̂lasso ∈ Argmin
z∈Rn

{ 1
2N ∥Φz − y∥22 + λ∥z∥1}. (1.3.11)

The following theorem provides a typical example of the type of bounds that can be achieved when
employing the Restricted Eigenvalue condition, specifically in the context of the Lasso estimator.

Theorem 1.3.1 (Wainwright, 2019 [80]) Let Φ ∈ RN×n be a deterministic design matrix veri-
fying the restricted eigenvalue property with parameters 1 ≤ s ≤ n and α = 3, and assume also that

it is C-column normalized, meaning that maxj=1,...,n
∥Φj∥2√
N

≤ C. Under the sparse linear model with

an s-sparse signal x∗ and Gaussian random noise, i.e., ζ ∈ RN with i.i.d. centered Gaussian entries

with variance σ2, when choosing the penalty parameter such that λ = 2Cσ

(√
2 ln(n)
N + δ

)
, we have

for any δ > 0, that

Prob

{
∥x̂lasso − x∗∥2 ≤ 6C

σ
√
s

κ(s, 3)

(√2 ln(n)

N
+ δ
)}

≥ 1− 2 exp

(
−Nδ

2

2

)
,
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The Restricted Eigenvalue condition, has been used for deriving theoretical bounds, notably in
scenarios involving random design matrices. For instance, Raskutti et al. [81] demonstrated that the
RE condtion and the nullspace condition are valid with high-probability for random design matrix
with correlated covariates, where the Restricted Isometry Property fails to hold. Specifically, in the
noisy linear model with Gaussian additive noise, they proved that the RE condition and nullspace
condition are both valid for a class of correlated Gaussian design. Under these conditions, they
established that using either the Lasso or the Dantzig selector estimator yields a solution x̂ that

achieves ∥x̂−x∗∥2 = O
(√

s ln(n)/N
)
, provided that the number of samples scales as N = Ω(s ln(n)).

Another analysis of the RE condition and its variants can be found in [82].

In Juditsky and Nemirovski [83], a related condition named Qq(s, κ, λ̂), is proposed to facilitate the
analysis of the Dantzig Selector estimator and the Lasso estimator. It requires that for some s ≤ N ,
q ∈ [1,∞] and λ̂ > 0 it holds

∀w ∈ Rn : ∥w∥s,q ≤ λ̂s
1
q ∥Φw∥2 + κs

1− 1
q ∥w∥1. Qq(s, κ, λ̂)

An important aspect of this condition is that if it is satisfied by a sensing matrix, then the nullspace
property (1.3.7) also holds. Conversly, if a design matrix verifies the nullspace property, then there
exists a parameter λ̂ for which the condition Qq(s, κ, λ̂) is satisfied.

1.3.2 Sparse Recovery and Stochastic Optimization.

Consder the problem of recovery of the signal x∗ ∈ Rn from observations

yi = ϕTi x
∗ + σζi, i = 1, 2, . . . , (1.3.12)

where x∗ ∈ X is s-sparse, while the regressors ϕi ∈ Rn and noises ζi ∈ R are i.i.d. random variables
according to some respective distributions. Then the recovery problem can be formulated as a
stochastic minimization problem as follows

min
x∈X

{
g(x) = E

{
1
2(y − ϕTx)2

}}
. (1.3.13)

In the following development, we describe two famous approaches that aims to tackle this problem.

SAA approaches. When given a collection of N observations y = (y1, . . . , yN )
T and N re-

gressors represented as a sensing matrix ΦT = (ϕ1; . . . ;ϕN ) (C.f. figure 1.4), one can consider the
problem of minimize the sample average approximation (SAA) problem :

Argmin
x∈X

{
ĝN (x) =

1
2N

N∑
i=1

(
ϕTi x− yi

)2
= 1

2N ∥Φx− y∥22

}
. (1.3.14)

This Least-Square minimization problem is typically addressed using deterministic algorithms.
However, simply solving the Sample Average Approximation (SAA) problem does not guarantee a
sparse solution. It is a common practice to enforce sparsity through the iterative hard thresholding
technique [84–86]. This method operates as follows: a deterministic minimization algorithm first
performs a gradient step to minimize the SAA objective ĝN . Subsequently, the resulting estimator is
sparsified by retaining only the s largest components in magnitude and setting all others to 0. This
process is then repeated until a specified termination criterion is met.
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N

n

y Φ σζ

x∗

= × +

Figure 1.4: Sparse linear recovery problem.

As mentioned in the previous section, instead of working with the ℓ0-”norm”, one way consider
its ℓ1-relaxation. Accordingly, the minimization problem (1.3.14) is substituted by its ℓ1-penalized
problem:

Argmin
x∈Rn

{
1
2∥Φx− y∥22 + λ∥x∥1

}
. (1.3.15)

This relaxed problem has been the focus of numerous algorithmic developments. For instance, Beck
and Teboulle [56] introduced the FISTA (Fast Iterative Shrinkage-Thresholding Algorithm) method,
which efficiently solves problem (1.3.15) and achieves a fast convergence rate of O(1/T 2). Many
theoretical results guarantee a sparse solution for the aforementioned problem, relying on the design
matrix Φ meeting some conditions such as those discussed in the last section.
One of the main drawbacks, despite the simplicity of these techniques, is that both the sample size
N and the dimension n can be very large. This scale can make the use of deterministic methods
solving problem (1.3.15) computationally expensive.

Stochastic Approximation methods. An increasingly popular approach to solving sparse
regression problems is the application of Stochastic Approximation algorithms. These methods
address the limitation of having to store a potentially very large sensing matrix Φ in memory and
also benefit from lower computational costs. SA algorithms are particularly useful when observations
are received in an online manner, and when it is possible to form an unbiased estimate of the
gradient. However, despite their numerous benefits, these algorithms face a significant challenge
in high-dimensional sparse linear regression problems due to their bad scaling in the problem’s
dimension. Indeed, the usual bounds on the expected suboptimality gap for the SA methods contain
the term proportional to the expected squared Euclidean norm of the regressors E{∥ϕ∥22}. For
instance, for regressors with i.i.d. Gaussian entries, unless the regressors possess a sparse structure,
the upper bound is inevitably proportional to E{∥ϕ∥22} = O(n). Therefore, to achieve a milder
dependency on the problem’s dimension, particularly in sparse regression, there is a growing interest
in exploring non-Euclidean SA algorithms.
Non-Euclidean SMD have been extensively studied for solving (1.3.13) in the context of stochastic
optimization. For instance, Srebro et al. [87] analyzes the SMD algorithm in a sparse linear regression
context and proved the ”slow” convergence rate

E{g(x̂)} − g(x∗) ≤ O
(√sσ2 ln(n)

N

)
.
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multistage procedures, also known as algorithms with restarting schemes, discussed in Section 1.2.2,
are known to improve the convergence rates under some conditions. These procedures are particularly
valuable in the sparse recovery context, where they have been used to improve the statistical rates
for strongly-convex objectives to achieve the optimal minmax rate for sparse estimation : O(sσ2/N)
(up to logarithmic factors). In studies such as those by Agarwal et al. [88], the authors propose an
online multistage approach that involves solving a sequence of constrained ℓ1-penalized problems.
Specifically, at each stage i of the procedure, a new minimization problem is defined and solved.
This problem is characterized by a sequentially decreasing penalization parameter (λi)i≥1 and an
adjusted constraint set Xi. Agarwal et al. [88] utilize a variant of the SMD algorithm, namely,
the non-Euclidean regularized dual averaging method [23, 89], as a subroutine within their main
multistage solution solving the newly defined problem at the stage i. In the local Lipschitz and
local strong convexity setting, along with sub-Gaussian stochastic gradients and bounded regressors
(∥ϕ∥∞ ≤ B), they achieve, for the sparse linear regression problem, the following statistical rate in
high-probability :

∥x̂− x∗∥22 ≤ O
(sB2σ2 ln(n)

κ2ΣN

)
,

where κΣ denotes the smallest eigenvalue of the population covariance matrix Σ of the regressors. It
is important to notice that at each stage, the number of iterations needed to provide this rate is of
order O(s2 ln(n)/κ2Σ). For a fixed budget N , this implies that their multistage method can achieve
the sparse vector estimation only when the sparsity level is not exceeding O(κΣ

√
N/ ln(n)). On the

other hand, Raskutti et al. [81] showed that the admissible sparsity level for Lasso problem cannot
exceed O(κΣN/ ln(n)).

Recently, Juditsky et al. [59] employ a multistage method incorporating hard-thresholding steps
at the end of each stage to enforce sparsity on the estimator. Their analysis focuses on the study
of smooth convex objective functions that verify also the µ-quadratic growth condition w.r.t the
Euclidean norm,

g(x)− g(x∗) ≥ µ

2
∥x− x∗∥22.

By using the SMD method as the workhorse, the multistage method obtains the linear convergence
rate (with the exponent proportional to κΣ

s ln(n)) for the deterministic term and obtain a similar
statistical rate

E{∥x̂− x∗∥22} ≤ O
(
sσ2 ln(n)

κ2ΣN

)
.

The proposed algorithm performs a fixed number of iterations per stages, that is bounded by
O(s ln(n)/κΣ). Therefore this algorithm can be used whenever the sparsity level is of order
O(κΣN/ ln(n)) thus representing an improvement compared to approach presented in [88].

In this thesis, our objective is to develop and provide rigourous analysis of new fast stochastic
optimization algorithms for general smooth convex stochastic opyimization problems in high di-
mensional settings. Specifically, we compare our methods for problems of the form (1.3.13) in the
context of sparse recovery. The algorithms we develop are designed in the stochastic optimization
paradigm, where sample availability occurs sequentially. This scenario of online data acquisition
renders traditional conditions on the design matrix, as typically seen in deterministic settings,
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inappropriate. Consequently, it necessitates the formulation of new conditions for sparse estimation
on the population covariance matrix of the regressors. Following the work of [26, 48, 59, 88, 90] we
develop fast algorithms based on multistage method. We explore, through both theoretical analysis
and numerical experments, how these methods can be effectively employed to tackle sparse recovery
problems within the GLR framework.

1.4 Contributions

The rest of the manuscript is divided in two parts. The first part studies a non-Euclidean CSMD
algorithm with restarts. We provide in-depth analysis of the main method in the context of stochastic
optimization with an application to the problem of sparse GLR. In the second part of the manuscript
we analyze a non-Euclidean stochastic accelerated method using mini-batch approximation.

Part I of the manuscript is organized in two chapters.

• In Chapter 2, we present an algorithm that aims to solve smooth convex stochastic optimization
problems of the type

min
x∈X

{
g(x) := E

{
G
(
x, ω

)}}
,

where the solution x∗ has a sparse structure. We begin with a refined analysis for the Composite
Stochastic Mirror Descent(CSMD) algorithm for solving a norm-penalized auxiliary composite
problem of the form

min
x∈X

{g(x) + κ∥x∥} .

We assume that the stochastic gradients evaluated at x∗ are sub-Gaussian. Using new results
on large deviations of sub-Gaussian supermartingales, we derive high-probability convergence
guarantees for the CSMD algorithm. The latter allows us to propose the multistage CSMD-SR
algorithm, a two phase multistage procedure. Phases are repetions of stages, and each stage is
a specific instantiation of the non-Euclidean CSMD algorithm solving a composite subproblem.
In the first phase, a fixed step size with iteration count per stage of order O( s ln(n)κΣ

) results in
an estimation error decreasing linearly with the total number of stochastic oracle calls. The
phase terminates when the estimation error is of the same order as the statistical error O( σs√

κΣ
).

During the second phase, at each stage, the step size decreases and the length of the stages

increases linearly, leading to the standard ”sublinear” rate O
(
σs
κΣ

√
ln(n)
N

)
. We prove that, with

high-probability, this routine achieve the sample complexity

Õ
(
sν

κΣ
ln

(
R2

ϵ

)
+

σ2s

κΣ2ϵ

)
where Õ(·) hides logarithmic terms, R is the upper bound for the initial distance to the
optimum, and ν is the expected Lipschitz constant of the stochastic gradient. These results
stems from the Reduced Strong Convexity (RSC) assumption, a new theoretical framework
allowing to study recovery problems with diverse sparsity structures. We show that, in the
GLR model, this assumption is verified when the objective function leverage a quadratic growth
structure and when the population covariance matrix Σ of the regressors verifies the Q(λ, ψ)
condition :

∀z ∈ Rn, ∥zI∥1 ≤
√
s

λ
∥z∥Σ + 1

2(1− ψ)∥z∥1,
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for some λ > 0 and 0 < ψ ≤ 1. This condition is reminiscent of the condition Qq(s, κ, λ̂)
presented earlier in the introduction. However, condition Q(λ, ψ) is less restrictive beacause it
imposes a condition on the distribution of the regressors rather than on the design matrix Φ.
Finally we present a numerical validation of the CSMD-SR algorithm on a high-dimensional
sparse estimation problem under the GLR model.

• In Chapter 3, we provide two extensions to the preceding work. We first define a procedure
based on Lepski’s method [91–93] to turn CSMD-SR algorithm adaptive to unknown values of
the sparsity parameter s and the parameter ρ of the RSC assumption, which is the inverse of
the quadratic growth condition parameter. This procedure is based on the observation that,
the parameterization of the algorithm and the estimation risk depend only on the product
β := ρs and are monotonic in this parameter. The adaptive procedure is as follows. We build
a grid {β1, β2, . . . , βI} and then run the CSMD-SR algorithm with parameters β = βi. Thus
producing I estimators. Lepski’s procedure then amounts to comparing the I estimation risks
associated with these estimators and selecting the best among them using some criterion. The
additional ”cost” of this procedure only deteriorates the bounds given in the last chapter by a
logarithmic factor in I, the size of the grid. The CSMD-SR algorithm has the advantage to
be adaptive to both ρ and s, which is an improvement over the SMD-SR algorithm proposed
in [59], where such adaptation strategies only work for either s or ρ individually. Indeed, the
sparsification step in the latter algorithm necessitates the knowledge of the sparsity parameter
s alone, making such adaptation procedure impossible.

We also extend the analysis of the multistage algorithm to the situation where the RSC
assumption is replaced with the Reduced Uniform Convexity (RUC) assumption. The latter
assumption is verified in the GLR model when two conditions are met. First, the objective
function suboptimality must verify a higher-order polynomial lower bound, expressed as:

g(x)− g(x∗) ≥
µ

p
∥x− x∗∥pΣ,

where µ > 0, p ≥ 2, and ∥x∥Σ :=
√
xTΣx. Second, the population covariance matrix of the

regressors, denoted by Σ, must satisfy the condition Q(λ, ψ), with λ, ψ > 0. Building on
the RUC assumption, we provide a convergence analysis of the CSMD-SR method with new
prescribed parameters.

The second part of the manuscript is motivated by the observation that the CSMD-SR routine
does not achieve the optimal sample complexity. This discrepancy arises from the fact that the
latter multistage algorithm uses the CSMD algorithm as a subroutine, and this algorithm pos-
sesses the suboptimal rate of convergence O(1/T ) in the smooth convex setting (cf. Theorem
1.2.2). To address this issue, in the second part of the manuscript we discuss accelerated methods
using mini-batch approximation, that achieve the optimal rate O(1/T 2) in the smooth convex setting.

Part II of the manuscript is structured as follows :

• In Chapter 4, we focus on analyzing two accelerated non-Euclidean stochastic approximation
algorithms for smooth convex stochastic optimization. We provide a in-expectation analysis
of the mini-batch versions of the non-Euclidean Stochastic Accelerated Gradient Descent and
the Stochastic Gradient Extrapolation algorithms for minimizing L-smooth convex objectives.
The analysis is performed under the assumption of a state-dependent variance bound on the
stochastic gradient noise :

Eξt
[
∥ζ(xt, ξt)∥2∗

]
≤ σ2t (xt) = L[f(xt)− f∗] + σ2∗,
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where ζ(xt, ξt) is the stochastic gradient noise and L, σ∗ > 0. We first provide an analysis
for the SAGD algorithm. We prove that in order to achieve the optimal iteration complexity

O(
√
LD2

X/ϵ), the latter algorithm exhibits a sub-optimal sample complexity

O

(√
LD2

X

ϵ
+

√
LLD3

X

ϵ3/2
+
σ2∗D

2
X

ϵ2

)
.

However, we show that by adding a condition on the second moment of the Lipschitz constant
of the stochastic gradient we improve the second term in the above bound to O (1/ϵ). In
a second analysis, we study the SGE algorithm and show that, in contrast to the SAGD

algorithm, this methods achieves the optimal iteration complexity O(
√
LD2

X/ϵ) while also

exhibiting the optimal sample complexity

O

(√
LD2

X

ϵ
+

LD2
X

ϵ
+
σ2∗D

2
X

ϵ2

)
,

without adding more restrictive conditions. Next, by exploiting the µ-quadratic growth
condition w.r.t. some norm ∥ · ∥, we show that by using the SGE algorithm as the workhorse
within a multistage procedure, we derive an algorithm that achieves, again, the optimal
iteration complexity O(

√
L/µ ln(1/ϵ)) while simultaneously achieving the optimal sample

complexity

O

(√
L

µ
ln

(
R

ϵ

)
+

L
µ
ln

(
R

ϵ

)
+
σ2∗
µϵ

)
.

Finally, to address smooth convex stochastic problems with sparse minimizers, we draw
inspiration from the work [59] and propose a modified multistage procedure. This modification
incorporates a hard-thresholding step at the end of each stage to enforce sparsity of the
estimators. We finally prove that this method achieves the same optimal complexities.

• Finally, in the Chapter 5 of this manuscript we focus on providing high-probability guarantees
for the SGE method and its multistage variant. To this end, we introduce new assumptions
and new tools. We make the assumption that the dual norm of the stochastic error has a sub-
exponential tail with a state-dependant parameter. This assumption is similar to Assumption
3 where the constant parameter σ > 0 is replaced by a state-dependent counterpart. It is
stated as follow

Eξt

[
exp

(
∥ζ(xt, ξt)∥∗
σt(xt)

)]
≤ exp(1),

where σ2t (xt) = L[f(xt)− f∗] + σ2∗ for some L, σ∗ > 0. To build high-probability bounds, we
introduce new Bernstein types concentration inequalities for sequences of sub-exponential
random variables. We prove that both the SGE algorithm and the multistage routine attain
the optimal iteration complexity and sample complexity, up to some logarithmic terms, in
their respective framework of study.

As a by-product of this analysis we derive accuracy certificates which allows to compute
on-the-fly stochastic upper bounds on the suboptimal gap f(x̂T )− f∗, thereby leading to a
stopping criterion for the SGE algorithm.

Finally, we draw inspirations on the work presented in Chapter 2 to solve smooth convex
stochastic optimization problems with sparse solutions and introduce the Composite Stochastic
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Gradient Extrapolation (CSGE) algorithm. This method is then used in a multistage algorithm
for sparse recovery based on an non-Euclidean version of the CSGE algorithm. The idea is to
use the CSGE method as the workhorse for solving auxiliary composite subproblems where
each stages represents a problem of the form:

min
x∈X

{f(x) + κ∥x∥} .

This has the effect of incorporating soft-thresholding at each stage leading to sparse estimators.
We then use the theoretical tools introduced in Chapter 2 along with the setting of this chapter
to provide high-probability guarantees for the CSGE-SR multistage routine. We terminate by
providing a theoretical and numerical analysis of the developed algorithm when applied to a
sparse GLR problem.
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Part II

Stochastic Mirror Descent and Sparse
Recovery
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Chapter 2

Stochastic Mirror Descent for Large
Scale Sparse Recovery

Chapter Abstract

In this paper we discuss an application of Stochastic Approximation to statistical estimation
of high-dimensional sparse parameters. The proposed solution reduces to resolving a penalized
stochastic optimization problem on each stage of a multistage algorithm; each problem being solved
to a prescribed accuracy by the non-Euclidean Composite Stochastic Mirror Descent (CSMD)
algorithm. Assuming that the problem objective is smooth and quadratically minorated and
stochastic perturbations are sub-Gaussian, our analysis prescribes the method parameters which
ensure fast convergence of the estimation error (the radius of a confidence ball of a given norm
around the approximate solution). This convergence is linear during the first “preliminary” phase
of the routine and is sublinear during the second “asymptotic” phase. We consider an application
of the proposed approach to sparse Generalized Linear Regression problem. In this setting, we
show that the proposed algorithm attains the optimal convergence of the estimation error under
weak assumptions on the regressor distribution. We also present a numerical study illustrating the
performance of the algorithm on high-dimensional simulation data.

2.1 Introduction

Our original motivation is the well known problem of (generalized) linear high-dimensional regression
with random design. Formally, consider a dataset of N points (ϕi, ηi), i ∈ {1, . . . , N}, where ϕi ∈ Rn

are (random) features and ηi ∈ R are observations, linked by the following equation

ηi = r(ϕTi x∗) + σξi, i ∈ [N ] := {1, . . . , N} (2.1.1)

where ξi ∈ R are i.i.d. observation noises. The standard objective is to recover the unknown
parameter x∗ ∈ Rn of the Generalized Linear Regression (2.1.1) – which is assumed to belong to a
given convex closed set X and to be s-sparse, i.e., to have at most s≪ n non-vanishing entries from
the data-set.

As mentioned before, we consider random design, where ϕi are i.i.d. random variables, so that
the estimation problem of x∗ can be recast as the following generic Stochastic Optimization problem:

g∗ = min
x∈X

g(x), where g(x) = E
{
G
(
x, (ϕ, η)

)}
, G(x, (ϕ, η)) = s(ϕTx)− ϕTxη, (2.1.2)
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with s(·) any primitive of r(·), i.e., r(t) = s′(t). The equivalence between the original and the stochastic
optimization problems comes from the fact that x∗ is a critical point of g(·), i.e., ∇g(x∗) = 0 since,
under mild assumptions, ∇g(x) = E{ϕ[r(ϕTx) − r(ϕTx∗)]}. Hence, as soon as g has a unique
minimizer (say, g is strongly convex over X), solutions of both problems are identical.

As a consequence, we shall focus on the generic problem (2.1.2), that has already been widely
tackled. For instance, when given an observation sample (ϕi, ηi), i ∈ [N ], one may build a Sample
Average Approximation (SAA) of the objective g(x)

ĝN (x) =
1

N

N∑
i=1

G(x, (ϕi, ηi)) =
1

N

N∑
i=1

[s(ϕTi x)− ϕTi xηi] (2.1.3)

and then solve the resulting problem of minimizing ĝN (x) over sparse x’s. The celebrated ℓ1-norm
minimization approach allows to reduce this problem to convex optimization. We will provide a new
algorithm adapted to this high-dimensional case, and instantiating it to the original problem 2.1.1.

Existing approaches and related works. Sparse recovery by Lasso and Dantzig Selector has
been extensively studied [65, 67, 75, 77, 94, 95]. It computes a solution x̂N to the ℓ1-penalized
problem minx ĝN (x) + λ∥x∥1 where λ ≥ 0 is the algorithm parameter [96]. This delivers “good

solutions”, with high probability for sparsity level s as large as O
(
NκΣ
lnn

)
, as soon as the random

regressors (the ϕi) are drawn independently from a normal distribution with a covariance matrix
Σ such that κΣI ⪯ Σ ⪯ ρκΣI

1, for some κΣ > 0, ρ ≥ 1. However, computing this solution may be
challenging in a very high-dimensional setting: even popular iterative algorithms, like coordinate
descent, loops over a large number of variables. To mitigate this, randomized algorithms [97, 98],
screening rules and working sets [99–101] may be used to diminish the size of the optimization
problem at hand, while iterative thresholding [84–86, 102, 103] is a “direct” approach to enhance
sparsity of the solution.

Another approach relies on Stochastic Approximation (SA). As ∇G(x, (ϕi, ηi)) = ϕi(r(ϕ
T
i x)− ηi)

is an unbiased estimate of ∇g(x), iterative Stochastic Gradient Descent (SGD) algorithm may be
used to build approximate solutions. Unfortunately, unless regressors ϕ are sparse or possess a special
structure, standard SA leads to accuracy bounds for sparse recovery proportional to the dimension
n which are essentially useless in the high-dimensional setting. This motivates non-Euclidean SA
procedures, such as Stochastic Mirror Descent (SMD) [104], its application to sparse recovery enjoys
almost dimension free convergence and it has been well studied in the literature. For instance, under
bounded regressors and with sub-Gaussian noise, SMD reaches “slow rate” of sparse recovery of the

type g(x̂N )− g∗ = O
(
σ
√
s ln(n)/N

)
where x̂N is the approximate solution after N iterations [87,

105]. Multistage routines may be used to improve the error estimates of SA under strong or uniform
convexity assumptions [26, 37, 48]. However, they do not always hold, as in sparse Generalized
Linear Regression, where they are replaced by Restricted Strong Convexity conditions. In that

setting, the multistage procedure by [88] attains the rate O
(
σ
κΣ

√
s lnn
N

)
for the ℓ2-error ∥x̂N − x∗∥2

with high probability.2 This is the best “asymptotic” rate attainable when solving (2.1.2). However,
those algorithms have two major limitations. They both need a number of iterations to reach a given
accuracy proportional to the initial error R = ∥x∗ − x0∥1 and the sparsity level s must be of order

O
(
κΣ

√
N
lnn

)
for the sparse linear regression. These limits may be seen as a consequence of dealing

with non-smooth objective g(x). Although it slightly restricts the scope of corresponding algorithms,

1We use A ⪯ B for two symmetric matrices A and B if B −A ⪰ 0, i.e. B −A is positive semidefinite.
2Some flaws in the proofs in [88] we fixed by [106].
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we shall consider smooth objectives and algorithm for minimizing composite objectives (cf. [23, 107,
108]) to mitigate the aforementioned drawbacks of the multistage algorithms from [88, 106].

Principal contributions. We provide a refined analysis of Composite Stochastic Mirror Descent
(CSMD) algorithms for computing sparse solutions to Stochastic Optimization problem leveraging
smoothness of the objective. This leads to a new “aggressive” choice of parameters in a multistage
algorithm with significantly improved performances compared to those in [88]. We summarize below
some properties of the proposed procedure for problem (2.1.2).

Each stage of the algorithm is a specific CSMD recursion; They fall into two phases. During
the first (preliminary) phase, the estimation error decreases linearly with the exponent proportional

to κΣ
s lnn . When it reaches the value O

(
σs√
κΣ

)
, the second (asymptotic) phase begins, and its stages

contain exponentially increasing number of iterations per stage, hence the estimation error decreases

as O
(
σs
κΣ

√
lnn
N

)
where N is the total iteration count.

Organization and notation The remaining of the paper is organized as follows. In Section
2.2, the general problem is set, and the multistage optimization routine and the study of its basic
properties are presented. Then, in Section 2.3, we discuss the properties of the method and conditions
under which it leads to “small error” solutions to sparse GLR estimation problems. Finally, a small
simulation study illustrating numerical performance of the proposed routines in high-dimensional
GLR estimation problem is presented in Section 2.3.3.

In the following, E is a Euclidean space and ∥ · ∥ is a norm on E; we denote ∥ · ∥∗ the conjugate
norm (i.e., ∥x∥∗ = sup∥y∥≤1⟨y, x⟩). Given a positive semidefinite matrix Σ ∈ Sn, for x ∈ Rn we

denote ∥x∥Σ =
√
xTΣx and for any matrix Q, we denote ∥Q∥∞ = maxij |[Q]ij |. We use a generic

notation c and C for absolute constants; a shortcut notation a ≲ b (a ≳ b) means that the ratio a/b
(ratio b/a) is bounded by an absolute constant; the symbols

∨
,
∧

and the notation (.)+ respectively
refer to ”maximum between”, ”minimum between” and ”positive part”.

2.2 Multistage Stochastic Mirror Descent for Sparse Stochastic
Optimization

This section is dedicated to the formulation of the generic stochastic optimization problem, the
description and the analysis of the generic algorithm.

2.2.1 Problem statement

Let X be a convex closed subset of an Euclidean space E and (Ω, P ) a probability space. We consider
a mapping G : X × Ω → R such that, for all ω ∈ Ω, G(·, ω) is convex on X and smooth, meaning
that ∇G(·, ω) is Lipschitz continuous on X with a.s. bounded Lipschitz constant,

∀x, x′ ∈ X, ∥∇G(x, ω)−∇G(x′, ω)∥∗ ≤ L(ω)∥x− x′∥, L(ω) ≤ ν a.s.. (2.2.1)

We define g(x) := E{G(x, ω)}, where E{·} stands for the expectation with respect to ω, drawn from
P . We shall assume that the mapping g(·) is finite, convex and differentiable on X and we aim at
solving the following stochastic optimization problem

min
x∈X

[g(x) = E{G(x, ω)}], (2.2.2)
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assuming it admits an s-sparse optimal solution x∗ for some sparsity structure.
To solve this problem, stochastic oracle can be queried: when given at input a point x ∈ X,

generates an ω ∈ Ω from P and outputs G(x, ω) and ∇G(x, ω) := ∇xG(x, ω) (with a slight abuse of
notations). We assume that the oracle is unbiased, i.e.,

E{∇G(x, ω)} = ∇g(x), ∀x ∈ X.

To streamline presentation, we assume, as it is often the case in applications of stochastic optimiza-
tion problem (2.2.2), that x∗ is unconditional, i.e., ∇g(x∗) = 0 or stated otherwise E{∇G(x∗, ω)} = 0;
we also suppose the sub-Gaussianity of ∇G(x∗, ω), namely that, for some σ∗ <∞

E
{
exp

(
∥∇G(x∗, ω)∥2∗/σ2∗

)}
≤ exp(1). (2.2.3)

2.2.2 Composite Stochastic Mirror Descent algorithm

As mentioned in the introduction, (stochastic) optimization over the set of sparse solutions can be
done through ”composite” techniques. We take a similar approach here, by transforming the generic
problem (2.2.2) into the following composite Stochastic Optimization problem, adapted to some norm
∥ · ∥, and parameterized by κ ≥ 0,

min
x∈X

[
Fκ(x) :=

1
2g(x) + κ∥x∥ = 1

2E{G(x, ω)}+ κ∥x∥
]
. (2.2.4)

The purpose of this section is to derive a new (proximal) algorithm. We first provide necessary
backgrounds and notations.

Proximal setup, Bregman divergences and Proximal mapping. Let B be the unit ball of
the norm ∥ · ∥ and θ : B → R be a distance-generating function (d.-g.f.) of B, i.e., a continuously
differentiable convex function which is strongly convex with respect to the norm ∥ · ∥,

⟨∇θ(x)−∇θ(x′), x− x′⟩ ≥ ∥x− x′∥2, ∀x, x′ ∈ X.

We assume w.l.o.g. that θ(x) ≥ θ(0) = 0 and denote Θ = max∥z∥≤1 θ(z).
We now introduce a local and renormalized version of the d.-g.f. θ.

Definition 2.2.1 For any x0 ∈ X, let XR(x0) := {z ∈ X : ∥z − x0∥ ≤ R} be the ball of radius R
around x0. It is equipped with the d.-g.f. ϑRx0(z) := R2θ ((z − x0)/R).

Note that ϑRx0(z) is strongly convex on XR(x0) with modulus 1, ϑRx0(x0) = 0, and ϑRx0(z) ≤ ΘR2.

Definition 2.2.2 Given x0 ∈ X and R > 0, the Bregman divergence V associated to ϑ is defined by

Vx0(x, z) = ϑRx0(z)− ϑRx0(x)− ⟨∇ϑRx0(x), z − x⟩, x, z ∈ X.

We can now define composite proximal mapping on XR(x0) [23, 109] with respect to some convex
and continuous mapping h : X → R.

Definition 2.2.3 The composite proximal mapping with respect to h and x is defined by

Proxh,x0(ζ, x) := argmin
z∈XR(x0)

{
⟨ζ, z⟩+ h(z) + Vx0(x, z)

}
= argmin

z∈XR(x0)

{
⟨ζ −∇ϑRx0(x), z⟩+ h(z) + ϑRx0(z)

}
(2.2.5)

If (2.2.5) can be efficiently solved to high accuracy and Θ is “not too large” (we refer to [33, 37,
109]); those setups will be called “prox-friendly”. We now introduce the main building block of our
algorithm, the Composite Stochastic Mirror Descent.
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Composite Stochastic Mirror Descent algorithm. Given a sequence of positive step sizes
γi > 0, the Composite Stochastic Mirror Descent (CSMD) algorithm is defined by the following
recursion

xi = Proxγih,x0(γi−1∇G(xi−1, ωi), xi−1), x0 ∈ X. (2.2.6)

After m steps of CSMD, the final output is x̂m (approximate solution) defined by

x̂m =

∑m−1
i=0 γixi∑m−1
i=0 γi

(2.2.7)

For any integer L ∈ N, we can also define the L-minibatch CSMD. Let ω
(L)
i = [ω1

i , ..., ω
L
i ] be i.i.d.

realizations of ωi. The associated (average) stochastic gradient is then simply defined as

H
(
xi−1, ω

(L)
i

)
=

1

L

L∑
ℓ=1

∇G(xi−1, ω
ℓ
i ),

which yields the following recursion for the L-minibatch CSMD recursion:

x
(L)
i = Proxγih,x0

(
γi−1H

(
xi−1, ω

(L)
i

)
, x

(L)
i−1

)
, x0 ∈ X, (2.2.8)

with its approximate solution x̂
(L)
m =

∑m−1
i=0 γix

(L)
i /

∑m−1
i=0 γi after m iterations.

From now on, we set h(x) = κ∥x∥. The next proposition provides an important result for the
convergence of the CSMD algorithm

Proposition 2.2.1 If step-sizes are constant, i.e., γi ≡ γ ≤ (4ν)−1, i = 0, 1, ..., and the initial
point x0 ∈ X such that x∗ ∈ XR(x0) then for any t ≳

√
1 + lnm, with probability at least 1− 4e−t

Fκ(x̂m)− Fκ(x∗) ≲ m−1
[
γ−1R2(Θ + t) + κR+ γσ2∗(m+ t)

]
, (2.2.9)

and the approximate solution x̂
(L)
m of the L-minibatch CSMD satisfies

Fκ(x̂
(L)
m )− Fκ(x∗) ≲ m−1

[
γ−1R2(Θ + t) + κR+ γσ2∗ΘL

−1(m+ t)
]
. (2.2.10)

For the sake of clarity and conciseness, we denote CSMD(x0, γ, κ,R,m,L) the approximate

solution x̂
(L)
m computed after m iterations of L-minibatch CSMD algorithm with initial point x0,

step-size γ, and radius R using recursion (2.2.8).

2.2.3 Main contribution: a multistage adaptive algorithm

Our approach to find sparse solution to the original stochastic optimization problem (2.2.2) consists
in solving a sequence of auxiliary composite problems (2.2.4), with their sequence of parameters
(κ, x0, R) defined recursively. For the latter, we need to infer the quality of approximate solution
to (2.2.2). To this end, we introduce the following Reduced Strong Convexity (RSC) assumption,
satisfied in the motivating example (it is discussed in the appendix for the sake of fluency):
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Assumption [RSC] There exist some δ, υ > 0 and ρ < ∞ such that for any feasible solution
x̂ ∈ X to the composite problem (2.2.4) satisfying, with probability at least 1− ε,

Fκ(x̂)− Fκ(x∗) ≤ υ,

it holds, with probability at least 1− ε, that

∥x̂− x∗∥ ≤ δ
[
ρsκ+ υκ−1

]
. (2.2.11)

Given the different problem parameters s, ν, δ, ρ, κ,R and some initial point x0 ∈ X such that
x∗ ∈ XR(x0) Algorithm 1 works in stages. Each stage represents a run of CSMD algorithm with
properly set penalty parameter κ. More precisely, at stage k + 1, given the approximate solution x̂km
of stage k, a new instance of CSMD is initialized on XRk+1

(xk+1
0 ) with xk+1

0 = x̂km and Rk+1 = Rk/2.
Furthermore, those stages are divided into two phases which we refer to as preliminary and

asymptotic:

Preliminary phase: During this phase, the step-sizes γ and the number of CSMD iterations per
stage are fixed; the error of approximate solutions converges linearly with the total number
of calls to stochastic oracle. This phase terminates when the error of approximate solution
becomes independent of the initial error of the algorithm; then the asymptotic phase begins.

Asymptotic phase: In this phase, the step-size decreases and the length of the stage increases
linearly; the solution converges sublinearly, with the “standard” rate O

(
N−1/2

)
where N is

the total number of oracle calls. When expensive proximal computation (2.2.5) results in high
numerical cost of the iterative algorithm, minibatches are used to keep the number of iterations
per stage fixed.

In the algorithm description, K1 and K2 ≍ 1+ log( Nm0
) stand for the respective maximal number

of stages of the two phases of the method, here, m0 ≍ sρνδ2(Θ + t) is the length of stages of the
first (preliminary) phase. The pseudo-code for the variant of the asymptotic phase with minibatches
is given in Algorithm 2.

The following theorem states the main result of this paper, an upper bound on the precision of
the estimator computed by our multistage method.

Theorem 2.2.1 Assume that the total sample budget satisfies N ≥ m0, so that at least one stage
of the preliminary phase of Algorithm 1 is completed, then for t ≳

√
lnN the approximate solution

x̂N of Algorithm 1 satisfies, with probability at least 1− C(K1 +K2)e
−t,

∥x̂N − x∗∥ ≲ R exp

{
− c

δ2ρs

N

ν(Θ + t)

}
+ δ2ρsσ∗

√
Θ+ t

N
.

The corresponding solution x̂
(b)
N of the minibatch Algorithm 2 satisfies with probability ≥ 1− C(K1 +

K̃2)e
−t

∥x̂(b)N − x∗∥ ≲ R exp

{
− c

δ2ρs

N

ν (Θ + t)

}
+ δ2ρsσ∗

√
Θ(Θ + t)

N
.

where K̃2 ≍ 1 + ln
(

N
Θm0

)
is the bound for the number of stages of the asymptotic phase of the

minibatch algorithm and c, C > 0 are absolute constant.
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Algorithm 1 Composite Stochastic Mirror Descent for Sparse Recovery (CSMD-SR)

Initialization : Initial point x0 ∈ X, step-size γ = (4ν)−1, initial radius R0, confidence level t, total
budget N .

Set m0 ≍ sρνδ2(Θ + t), K1 ≍ ln
(

R2
0ν

δ2σ2
∗ρs

)
∧ N
m0

, L = 1

if R0 ≳ σ∗δ
√

ρs
ν continue with preliminary stage,

else proceed directly to asymptotic phase
end
for stage k = 1, . . . ,K1 do ▷ Preliminary Phase

Set κk ≍ Rk−1(δρs)
−1

Compute approximate solution x̂km0
= CSMD(x0, γ, κk, Rk,m0, L) at stage k

Reset the prox-center x0 = x̂km0

Set Rk = Rk−1/2
end for
Set x̂N = x̂K1

m0
, B = N −m0K1, m1 ≍ m0

if m1 > B output : x̂N and return; endif ▷ Asymptotic Phase
Set r0 = RK1

Set k = 1
while mk ≤ B do

Set κk ≍ 2−kσ∗(ρνs)
−1/2, γk ≍ 4−kν−1

Compute approximate solution x̂kmk
=CSMD(x0, γk, κk, rk,mk, L) at stage k

Reset the prox-center x0 = x̂kmk

Set B = B −mk, k = k + 1, rk = rk−1/2, mk ≍ 4km0

end while

output : x̂N = x̂k−1
mk−1

Remark 2.2.1 Along with the oracle computation, proximal computation to be implemented at each
iteration of the algorithm is an important part of the computational cost of the method. It becomes
even more important during the asymptotic phase when number of iterations per stage increases
exponentially fast with the stage count, and may result in poor real-time convergence. The interest
of minibatch implementation of the second phase of the algorithm is in reducing drastically the
number of iterations per asymptotic stage. The price to be paid is an extra factor

√
Θ that could

also theoretically hinder convergence. However, in the problems of interest (sparse and group-sparse
recovery, low rank matrix recovery) Θ is logarithmic in problem dimension. Furthermore, in our
numerical experiments we did not observe any accuracy degradation when using the minibatch variant
of the method.

2.3 Sparse generalized linear regression by stochastic approxima-
tion

2.3.1 Problem setting

We now consider again the original problem of recovery of a s-sparse signal x∗ ∈ X ⊂ Rn from
random observations defined by

ηi = r(ϕTi x∗) + σξi, i = 1, 2, ..., N, (2.3.1)

51



2.3. SPARSE GENERALIZED LINEAR REGRESSION BY STOCHASTIC APPROXIMATION

Algorithm 2 Asymptotic phase of CSMD-SR with minibatch

Input : The approximate solution x̂K1
m0

at the end of the preliminary stage, step-size parameter γ,
radius at the end of the preliminary phase RK1

, initial batch size ℓ1 ≍ Θ

1: Set r0 = RK1
, x0 = x̂K1

m0
, B = N −m0K1 ▷ Asymptotic Phase

2: k = 1
3: while m0ℓk ≤ B do
4: κk ≍ 2−kσ∗(ρνs)

−1/2

5: Compute approximate solution x̂km0
=CSMD(x0, γk, κk, rk,m0, L = ℓk) at stage k

6: Reset the prox-center x0 = x̂km0

7: Set B = B −m0ℓk, k = k + 1, rk = rk−1/2, ℓk ≍ 4kℓ1
8: end while

output: x̂
(b)
N = x̂km1

where r : R → R is some non-decreasing and continuous “activation function”, and ϕi ∈ Rn and
ξi ∈ R are mutually independent. We assume that ξi are sub-Gaussian, i.e., E

{
eξ

2
i
}
≤ exp(1), while

regressors ϕi are bounded, i.e., ∥ϕi∥∞ ≤ ν. We also denote Σ = E{ϕiϕTi }, with Σ ⪰ κΣI with some
κΣ > 0, and ∥Σj∥∞ ≤ υ <∞.

We will apply the machinery developed in Section 2.2, with respect to

g(x) = E
{
s(ϕTx)− xTϕη

}
where r(t) = s′(t) for some convex and continuously differentiable s, applied with the norm ∥·∥ = ∥·∥1
(hence ∥ · ∥∗ = ∥ · ∥∞), from some initial point x0 ∈ X such that ∥x∗−x0∥1 ≤ R. It remains to prove
that the different assumptions of Section 2.2 are satisfied.

Proposition 2.3.1 Assume that r is r-Lipschitz continuous and r-strongly monotone (i.e., |r(t)−
r(t′)| ≥ r|t− t′| which implies that s is r-strongly convex) then

1. [Smoothness] G(·, ω) is L(ω)-smooth with L(ω) ≤ rν2.

2. [Quadratic minoration] g satisfies

g(x)− g(x∗) ≥ 1
2r∥x− x∗∥2Σ. (2.3.2)

3. [Reduced Strong Convexity] Assumption [RSC] holds with δ = 1 and ρ = (κΣr)
−1.

4. [Sub-Gaussianity] ∇G(x∗, ωi) is σ2ν2-sub Gaussian.

The proof is postponed to the appendix. The last point is a consequence of a generalization of the
Restricted Eigenvalue property [75], that we detail below (as it gives insight on why Proposition
2.3.1 holds).

This condition, that we state and call Q(λ, ψ) in the following Lemma 2.3.1, and is reminiscent
of [83] with the corresponding assumptions of [81, 110].

Lemma 2.3.1 Let λ > 0 and 0 < ψ ≤ 1, and suppose that for all subsets I ⊂ {1, ..., n} of cardinality
smaller than s the following property is verified:

∀z ∈ Rn ∥zI∥1 ≤
√
s

λ
∥z∥Σ + 1

2(1− ψ)∥z∥1 Q(λ, ψ)
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where zI is obtained by zeroing all its components with indices i /∈ I.
If g(·) satisfies the quadratic minoration condition, i.e., for some µ > 0,

g(x)− g(x∗) ≥ 1
2µ∥x− x∗∥2Σ, (2.3.3)

and that x̂ is an admissible solution to (2.2.4) satisfying, with probability at least 1− ε,

Fκ(x̂) ≤ Fκ(x∗) + υ.

Then, with probability at least 1− ε,

∥x̂− x∗∥1 ≤
sκ

λµψ
+

υ

κψ
. (2.3.4)

Remark 2.3.1 Condition Q(λ, ψ) generalizes the classical Restricted Eigenvalue (RE) property [75]
and Compatibility Condition [77], and is the most relaxed condition under which classical bounds for
the error of ℓ1-recovery routines were established. Validity of Q(λ, ψ) with some λ > 0 is necessary
for Σ to possess the celebrated null-space property [111]

∃ψ > 0 : max
I, |I|≤s

∥zI∥1 ≤ 1
2(1− ψ)∥z∥1 ∀z ∈ Ker(Σ)

which is necessary and sufficient for the s-goodness of Σ (i.e., x̂ ∈ Argminu {∥u∥ : Σu = Σx∗}
reproduces exactly every s-sparse signal x∗ in the noiseless case).

When Σ possesses the nullspace property, Q(λ, ψ) may hold for Σ with nontrivial kernel; this is
typically the case for random matrices [81, 112] such as rank deficient Wishart matrices, etc. When
Σ is a regular matrix, condition Q(λ, ψ) may also holds with constant λ which is much higher than
the minimal eigenvalue of Σ when the eigenspace corresponding to small eigenvalues of Σ does not
contain vectors z with ∥zI∥1 > 1

2(1− ψ)∥z∥1.

Special cases. The quadratic minoration bound (2.3.2) for g(x)−g(x∗) is usually overly pessimistic.
Indeed, consider for instance, Gaussian regressor ϕ ∼ N (0,Σ) (even if they are not a.s. bounded,
this is for illustration purposes) and activation r, define for some 0 ≤ α ≤ 1 (with the convention,
0/0 = 0)

r(t) =

{
t, |t| ≤ 1,
sign(t)[α−1(|t|α − 1) + 1], |t| > 1.

(2.3.5)

When passing from ϕ to φ = Σ−1/2ϕ and from x to z = Σ1/2x and using the fact that

φ =
zzT

∥z∥22
φ+

(
I − zzT

∥z∥22

)
φ︸ ︷︷ ︸

=:χ

with independent zzT

∥z∥22
φ and χ, with E{χ} = 0, we obtain

H(z) =E{φ[r(φT z)]} = E

{
zzT

∥z∥22
φ r(φT z)

}
=

z

∥z∥2
E {ςr(ς∥z∥2)} =

Σ1/2x

∥x∥Σ
E {ςr(ς∥x∥Σ)}
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where ς ∼ N (0, 1). Thus, H(Σ1/2x) is proportional to Σ1/2x
∥x∥Σ with coefficient

h
(
∥x∥Σ

)
= E {ςr(ς∥x∥Σ)} .

Figure 2.1 represents the mapping h for different values of α (on the left), along with the dependence
on r of moduli of strong monotonicity of corresponding mappings H on the centered at the origin
∥ · ∥2-ball of radius r (on the right).
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Figure 2.1: Given the activation function r in (2.3.5) and α = (0, 0.01, 0.1, 0.25, 1); left plot: mappings h;
right plot: moduli of strong monotonicity of mappings H on {z : ∥z∥2 ≤ r} as function of r.

In the case of linear regression where r(t) = t, it holds

g(x) = E
{

1
2(ϕ

Tx)2 − xTϕη
}

= 1
2E
{
(ϕT (x∗ − x))2 − (ϕTx∗)

2
}

= 1
2(x− x∗)

TΣ(x− x∗)− 1
2x

T
∗ Σx∗

= 1
2∥x− x∗∥2Σ − 1

2∥x∗∥
2
Σ

and ∇G(x, ω) = ϕϕT (x− x∗)− σξϕ. In this case L(ω) ≤ ∥ϕϕT ∥∞ ≤ ν2.

2.3.2 Stochastic Mirror Descent algorithm

In this section, we describe the statistical properties of approximate solutions of Algorithm 1 when
applied to the sparse recovery problem. We shall use the following distance-generating function of
the ℓ1-ball of R

n (cf. [37, Section 5.7.1])

θ(x) =
c

p
∥x∥pp, p =

{
2, n = 2
1 + 1

ln(n) , n ≥ 3,
c =

{
2, n = 2,
e lnn, n ≥ 3.

(2.3.6)

It immediately follows that θ is strongly convex with modulus 1 w.r.t. the norm ∥ · ∥1 on its unit
ball, and that Θ ≤ e lnn. In particular, Theorem 2.2.1 entails the following statement.

Proposition 2.3.2 For t ≳
√
lnN , assuming the samples budget is large enough, i.e., N ≥ m0

(so that at least one stage of the preliminary phase of Algorithm 1 is completed), the approximate
solution x̂N output satisfies with probability at least 1− Ce−t lnN ,

∥x̂N − x∗∥1 ≲ R exp

{
−crκΣ

rν2
N

s(lnn+ t)

}
+
σνs

rκΣ

√
lnn+ t

N
(2.3.7)
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The corresponding solution x̂
(b)
N of the minibatch variant of the algorithm satisfies with probability

≥ 1− Ce−t lnN ,

∥x̂(b)N − x∗∥1 ≲ R exp

{
−crκΣ

rν2
N

s (lnn+ t)

}
+
σνs

rκΣ

√
lnn (lnn+ t)

N

Remark 2.3.2 Bounds for the ℓ1-norm of the error x̂N −x∗ (or x̂
(b)
N −x∗) established in Proposition

2.3.2 allows us to quantify prediction error g(x̂N ) − g(x∗) (and g(x̂
(b)
N ) − g(x∗)), and also lead to

bounds for ∥x̂N −x∗∥Σ and ∥x̂N −x∗∥2 (respectively, for ∥x̂(b)N −x∗∥Σ and ∥x̂(b)N −x∗∥2). For instance,
Proposition 2.2.1 in the present setting implies the bound on the prediction error after N steps of
the algorithm that reads

g(x̂N )− g(x∗) ≲
R2κΣr

s
exp

{
−cκΣr
rν2

N

s(Θ + t)

}
+
σ2ν2s(Θ + t)

κΣrN

with probability ≥ 1− C lnNe−t. We conclude by (2.3.2) that

∥x̂N − x∗∥22 ≤ κ−1
Σ ∥x̂N − x∗∥2Σ ≤ 2κ−1

Σ r−1[g(x̂N )− g(x∗)]

≲
R2

s
exp

{
−cκΣr
rν2

N

s(Θ + t)

}
+
σ2ν2s(Θ + t)

κ2Σr
2N

.

In other words, the error ∥x̂N−x∗∥2 converges geometrically to the “asymptotic rate” σν
κΣr

√
s(Θ+t)
N

which is the “standard” rate established in the setting (cf. [75, 96, 102], etc).

Remark 2.3.3 The proposed approach allows also to address the situation in which regressors are
not a.s. bounded. For instance, consider the case of random regressors with i.i.d sub-Gaussian
entries such that

∀j ≤ n, E

[
exp

(
[ϕi]

2
j

κ2

)]
≤ 1.

Using the fact that the maximum of uniform norms ∥ϕi∥∞, 1 ≤ i ≤ m, concentrates around κ
√
lnmn

along with independence of noises ξi of ϕi, the “smoothness” and “sub-Gaussianity” assumptions of
Proposition 2.3.2 can be stated “conditionally” to the event

{
ω : maxi≤m ∥ϕi∥2∞ ≲ κ2(ln[mn] + t)

}
of probability greater than 1− e−t. For instance, when replacing the bound for the uniform norm
of regressors with κ2(ln[mn] + t) in the definition of algorithm parameters and combining with
appropriate deviation inequality for martingales (cf., e.g., [113]), one arrives at the bound for the
error ∥x̂N −x∗∥1 of Algorithm 1 which is similar to (2.3.7) of Proposition 2.3.2 in which ν is replaced
with κ

√
ln[mn] + t.

2.3.3 Numerical experiments

In this section, we present results of a small simulation study illustrating the theoretical part of the
previous section.3 We consider the GLR model (2.3.1) with activation function (2.3.5) where α = 1/2.
In our simulations, x∗ is an s-sparse vector with s nonvanishing components sampled independently
from the standard s-dimensional Gaussian distribution; regressors ϕi are sampled from a multivariate
Gaussian distribution ϕ ∼ N (0,Σ), where Σ is a diagonal covariance matrix with diagonal entries
Σ1,1 ≤ · · · ≤ Σn,n. In Figure 2.2 we report on the experiment in which we compare the performance

3The reader is invited to check Section 2.4.6 of the supplementary material for more experimental results.
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of the CSMD-SR algorithm from Section 2.2.3 to that of four other methods. The contenders are
(1) “vanilla” non-Euclidean SMD algorithm constrained to the ℓ1-ball equipped with the distance
generating function (2.3.6), (2) composite non-Euclidean dual averaging algorithm (p-Norm RDA)
from [89], (3) multistage SMD-SR of [59], and (4) “vanilla” Euclidean SGD. The regularization
parameter of the ℓ1 penalty in (2) is set to the theoretically optimal value λ = 2σ

√
2 log(n)/T . The

corresponding dimension of the parameter space is n = 500000, the sparsity level of the optimal
point x∗ is s = 200, and the “total budget” of oracle calls is N = 250000; we use the identity
regressor covariance matrix (Σ = In) and σ ∈ {0.001, 0.1}. To reduce computation time we use
the minibatch versions of the multi-stage algorithms—CSMD-SR and algorithm (3)), the data to
compute stochastic gradient realizations ∇G(xi, ω) = ϕ(r(ϕTxi)− η) at the current search point xi
being generated “on the fly.” We repeat simulations 20 times and plot the median value along with
the first and the last deciles of the error ∥x̂i − x∗∥1 at each iteration of the algorithm against the
number of oracle calls.

σ = 0.1 σ = 0.001

Figure 2.2: Comparison between CSMD-SR and baseline algorithms in Generalized Linear Regression
problem: ℓ1 error as a function of the number of oracle calls

The proposed method outperforms other algorithms which struggle to reach the regime where
the stochastic noise is dominant.
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Figure 2.3: Preliminary stages of the CSMD-SR and its variant with data recycling: linear regression
experiment (left pane), GLR with activation r1/10(t) (right pane).

In the second experiment we report on here, we study the behavior of the multistage algorithm
derived from Algorithm 2 in which, instead of using independent data samples, we reuse the same
data at each stage of the method. In Figure 2.3 we present results of comparison of the CSMD-SR
algorithm with its variant with data recycle. This version is of interest as it attains fast the noise
regime while using limited amount of samples. In our first experiment, we consider linear regression
problem with parameter dimension n = 100 000 and sparsity level s = 75 of the optimal solution;
we consider the GLR model (2.3.1) with activation function r1/10(t) in the second experiment. We
choose Σ = In and σ = 0.001; we run 14 (preliminary) stages of the algorithm with m0 = 3500 in
the first simulation and m0 = 4500 in the second. We believe that the results speak for themselves.
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2.4. APPENDIX

2.4 Appendix

We use notation Ei for conditional expectation given x0 and ω1, ..., ωi.

2.4.1 Proof of Proposition 2.2.1

The result of Proposition 2.2.1 is an immediate consequence of the following statement.

Proposition 2.4.1 Let
f(x) = 1

2g(x) + h(x), x ∈ X.

In the situation of Section 2.2.2, let γi ≤ (4ν)−1 for all i = 0, 1, ..., and let x̂m be defined in
(2.2.7), where xi are iterations (2.2.6). Then for any t ≥ 2

√
2 + lnm there is Ωm ⊂ Ω such that

Prob(Ωm) ≥ 1− 4e−t and for all ωm = [ω1, ..., ωm] ∈ Ωm,(
m−1∑
i=0

γi

)
[f(x̂m)− f(x∗)] ≤

m−1∑
i=0

[
1
2γi⟨∇g(xi), xi − x∗⟩+ γi+1(h(xi+1)− h(x∗))

]
≤ V (x0, x∗) + γ0[h(x0)− h(x∗)]− γm[h(xm)− h(x∗)]

+ V (x0, x∗) + 15tR2 + σ2∗

[
7
m−1∑
i=0

γ2i + 24tγ2

]
. (2.4.1)

In particular, when using the constant stepsize strategy with γi ≡ γ, 0 < γ ≤ (4ν)−1, one has

1
2 [g(x̂m)− g(x∗)] + [h(x̂m)− h(x∗)]

≤ V (x0, x∗) + 15tR2

γm
+
h(x0)− h(xm)

m
+ γσ2∗

(
7 +

24t

m

)
. (2.4.2)

Proof. Denote Hi = ∇G(xi−1, ωi). In the sequel, we use the shortcut notation ϑ(z) and V (x, z)
for ϑRx0(z) and Vx0(x, z) when exact values x0 and R are clear from the context.

1o. From the definition of xi and of the composite prox-mapping (2.2.5) (cf. Lemma A.1 of [109]),
we conclude that there is ηi ∈ ∂h(xi) such that

⟨γi−1Hi + γiηi +∇ϑ(xi)−∇ϑ(xi−1), z − xi⟩ ≥ 0, ∀ z ∈ X ,

implying, as usual [114], that ∀z ∈ X

⟨γi−1Hi + γiηi, xi − z⟩ ≤ V (xi−1, z)− V (xi, z)− V (xi−1, xi).

In particular,

γi−1⟨Hi, xi−1 − x∗⟩+ γi⟨ηi, xi − x∗⟩
≤ V (xi−1, x∗)− V (xi, x∗)− V (xi−1, xi) + γi−1⟨Hi, xi−1 − xi⟩
≤ V (xi−1, x∗)− V (xi, x∗) +

1
2γ

2
i−1∥Hi∥2∗.

Observe that due to the Lipschitz continuity of ∇G(·, ω) one has

ν⟨∇G(x, ω)−∇G(x′, ω), x− x′⟩ ≥ ∥∇G(x, ω)−∇G(x′, ω)∥2∗, ∀x, x′ ∈ X , (2.4.3)
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so that

∥∇G(x, ω)∥2∗ ≤ 2∥∇G(x, ω)−∇G(x∗, ω)∥2∗ + 2∥∇G(x∗, ω)∥2∗
≤ 2ν⟨∇G(x, ω)−∇G(x∗, ω), x− x∗⟩+ 2∥∇G(x∗, ω)∥2∗
= 2ν⟨∇G(x, ω), x− x∗⟩ − 2ν⟨∇G(x∗, ω), x− x∗⟩+ 2∥∇G(x∗, ω)∥2∗

so that

γi−1⟨Hi, xi−1 − x∗⟩+ γi⟨ηi, xi − x∗⟩
≤ V (xi−1, x∗)− V (xi, x∗) + γ2i−1[ν⟨Hi, xi−1 − x∗⟩ − νζi + τi]

where ζi = ⟨∇G(x∗, ωi), xi−1 − x∗⟩ and τi = ∥∇G(x∗, ω)∥2∗. As a result, by convexity of h we have
for γi ≤ (4ν)−1

3
4γi−1⟨∇g(xi−1), xi−1 − x∗⟩+ γi[h(xi)− h(x∗)]

≤ (γi−1 − γ2i−1ν)⟨∇g(xi−1), xi−1 − x∗⟩+ γi⟨ηi, xi − x∗⟩
≤ V (xi−1, x∗)− V (xi, x∗) + (γi−1 − γ2i−1ν)⟨ξi, xi−1 − x∗⟩+ γ2i−1[τi − νζi]

where we put ξi = Hi −∇g(xi−1). When summing from i = 1 to m we obtain

m∑
i=1

γi−1

(
3
4⟨∇g(xi−1), xi−1 − x∗⟩+ [h(xi−1)− h(x∗)]

)
≤ V (x0, x∗) +

m∑
i=1

[γ2i−1(τi − νζi) + γi−1(1− γi−1ν)⟨ξi, xi−1 − x∗⟩]︸ ︷︷ ︸
=:Rm

+ γ0[h(x0)− h(x∗)]− γm[h(xm)− h(x∗)]. (2.4.4)

2o. We have

γi−1⟨ξi, xi−1 − x∗⟩ = γi−1

υi︷ ︸︸ ︷
⟨[∇G(xi−1, ωi)−∇G(x∗, ωi)]−∇g(xi−1), xi−1 − x∗⟩

+γi−1⟨∇G(x∗, ωi), xi−1 − x∗⟩
= γi−1[υi + ζi],

so that

Rm =
m∑
i=1

γ2i−1τi +
m∑
i=1

(γi−1 − γ2i−1ν)υi +
m∑
i=1

(γi−1 − 2νγ2i−1)ζi =: r(1)m + r(2)m + r(3)m . (2.4.5)

Note that r
(3)
m is a sub-Gaussian martingale. Indeed, one has Ei−1{ζi} = 0 a.s.,4 and

|ζi| ≤ ∥xi−1 − x∗∥ ∥∇G(x∗, ω)∥∗,

so that by the sub-Gaussian hypothesis (2.2.3), Ei−1

{
exp

( ζ2i
4R2σ2∗︸ ︷︷ ︸
ν2∗

)}
≤ exp(1). As a result (cf.

the proof of Proposition 4.2 in [115]),

∀t Ei−1

{
etζi
}
≤ exp

(
tEi−1{ζi}+ 3

4 t
2ν2∗
)
= exp

(
3t2R2σ2∗

)
,

4We use notation Ei−1 for the conditional expectation given x0, ω1, ..., ωi−1.
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and applying (2.4.10a) to Sm = r
(3)
m with

rm = 6R2σ2∗

m−1∑
i=0

(γi − 2νγ2i )
2 ≤ 6R2σ2∗

m−1∑
i=0

γ2i

we conclude that for some Ω
(3)
m such that Prob(Ω

(3)
m ) ≥ 1− e−t and all ωm ∈ Ω

(3)
m

r(3)m ≤ 2

√√√√3tR2σ2∗

m−1∑
i=0

γ2i ≤ 3tR2 + 3σ2∗

m−1∑
i=0

γ2i . (2.4.6)

Next, again by (2.2.3), due to the Jensen inequality, Ei−1{τi} ≤ σ2∗, and

Ei−1 {exp (t∥∇G(x∗, ωi)∥∗)} ≤ exp
(
tEi−1{∥∇G(x∗, ωi)∥∗}+ 3

4 t
2σ2∗
)
≤ exp

(
tσ∗ +

3
4 t

2σ2∗
)
.

Thus, when setting
µi = γi−1σ∗, s2i =

3
2γi−1σ

2
∗, s = max

i
γisi,

Mm = r
(1)
m , vm + hm = 21

4 σ
4
∗
∑m−1

i=0 γ4i , and applying the bound (2.4.10b) of Lemma 2.4.1 we obtain

r(1)m ≤ 3σ2∗

m−1∑
i=0

γ2i +

√√√√21tσ4∗

m−1∑
i=0

γ4i︸ ︷︷ ︸
=:∆

(1)
m

+3tγ2σ2∗

for γ = maxi γi and ω
m ∈ Ω

(1)
m where Ω

(1)
m is of probability at least 1− e−t. Because

γ2
m−1∑
i=0

γ2i ≥
m−1∑
i=0

γ4i ,

whenever
√

21t
∑m−1

i=0 γ4i ≥
∑m−1

i=0 γ2i , one has 21tγ2 ≥
∑m−1

i=0 γ2i and

21t
m−1∑
i=0

γ4i ≤ 21tγ2
m−1∑
i=0

γ2i ≤ (21tγ2)2

Thus,

∆(1)
m ≤ min

[
21tσ2∗γ

2, σ2∗

m−1∑
i=0

γ2i

]
≤ 21tσ2∗γ

2 + σ2∗

m−1∑
i=0

γ2i ,

and

r(1)m ≤ σ2∗

[
4
m−1∑
i=0

γ2i + 24tγ2

]
(2.4.7)

for ωm ∈ Ω
(1)
m .

Finally, by the Lipschitz continuity of ∇G (cf. (2.4.3)), when taking expectation w.r.t. the
distribution of ωi, we get

Ei−1{υ2i } ≤ 4R2Ei−1{∥∇G(xi−1, ωi)−∇G(x∗, ωi)∥2∗}
≤ 4R2νEi−1{⟨∇G(xi−1, ωi)−∇G(x∗, ωi), xi−1 − x∗⟩} = 4R2ν⟨∇g(xi−1), xi−1 − x∗⟩.
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On the other hand, one also has |υi| ≤ 2ν∥xi−1 − xi∥2 ≤ 8νR2. We can now apply Lemma 2.4.2
with σ2i = 4γ2i−1R

2ν⟨∇g(xi−1), xi−1 − x∗⟩ to conclude that for t ≥ 2
√
2 + lnm

r(2)m ≤ 4

√√√√tR2ν
m−1∑
i=0

γ2i ⟨∇g(xi), xi − x∗⟩︸ ︷︷ ︸
=:∆

(2)
m

+16tνR2γ

for all ωm ∈ Ω
(2)
m such that Prob(Ω

(2)
m ) ≥ 1− 2e−t. Note that

∆(2)
m ≤ 2tR2 + 1

4ν

m−1∑
i=0

γ2i ⟨∇g(xi), xi − x∗⟩,

and γi ≤ (4ν)−1, so that

r(2)m ≤ ν
m−1∑
i=0

γ2i ⟨∇g(xi), xi − x∗⟩+ 12tR2 ≤ 1
4

m−1∑
i=0

γi⟨∇g(xi), xi − x∗⟩+ 12tR2 (2.4.8)

for ωm ∈ Ω
(2)
m .

3o. When substituting bounds (2.4.6)–(2.4.8) into (2.4.5) we obtain

Rm ≤ 1
4

m−1∑
i=0

γi⟨∇g(xi), xi − x∗⟩+ 12tR2 + σ2∗

[
4

m−1∑
i=0

γ2i + 24tγ2

]
+ 2

√√√√3tR2σ2∗

m−1∑
i=0

γ2i

≤ 1
4

m−1∑
i=0

γi⟨∇g(xi), xi − x∗⟩+ 15tR2 + σ2∗

[
7

m−1∑
i=0

γ2i + 24tγ2

]

for all ωm ∈ Ωm =
⋂3
i=1Ω

(i)
m with Prob(Ωm) ≥ 1− 4e−t and t ≥ 2

√
2 + lnm.

When substituting the latter bound into (2.4.4) and utilizing the convexity of g and h we arrive
at (

m−1∑
i=0

γi

)(
1
2 [g(x̂m)− g(x∗)] + [h(x̂m)− h(x∗)]

)
≤

m−1∑
i=0

γi

(
1
2 [g(xi)− g(x∗)] + [h(xi)− h(x∗)]

)
≤

m∑
i=1

γi−1

(
1
2⟨∇g(xi−1), xi−1 − x∗⟩+ [h(xi−1)− h(x∗)]

)
≤ V (x0, x∗) + 15tR2 + σ2∗

[
7

m−1∑
i=0

γ2i + 24tγ2

]
+ γ0[h(x0)− h(x∗)]− γm[h(xm)− h(x∗)].

In particular, for constant stepsizes γi ≡ γ we get

1
2 [g(x̂m)− g(x∗)] + [h(x̂m)− h(x∗)]

≤ V (x0, x∗) + 15tR2

γm
+
h(x0)− h(xm)

m
+ γσ2∗

(
7 +

24t

m

)
.

This implies the first statement of the proposition.
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5o. To prove the bound for the minibatch solution x̂
(L)
m =

(∑m−1
i=0 γi

)−1∑m−1
i=0 γix

(L)
i , it suffices to

note that minibatch gradient observation H(x, ω(L)) is Lipschitz-continuous with Lipschitz constant

ν, and that H(x∗, ω
(L)) is sub-Gaussian with parameter σ2∗ replaced with σ2∗,L ≲ Θσ2

∗
L , see Lemma

2.4.3. □

2.4.2 Deviation inequalities

Let us assume that (ξi,Fi)i=1,2,... is a sequence of sub-Gaussian random variables satisfying5

Ei−1

{
etξi
}
≤ etµi+

t2s2i
2 , a.s. (2.4.9)

for some nonrandom µi, si, si ≤ s. We denote by Sn =
∑n

i=1 ξi − µi, rn =
∑n

i=1 s
2
i , vn =∑n

i=1 s
4
i ,Mn =

∑n
i=1 ξ

2
i − (s2i + µ2i ), and hn =

∑n
i=1 2µ

2
i s

2
i . The following well known result is

provided for reader’s convenience.

Lemma 2.4.1 For all x > 0 one has

Prob
{
Sn ≥

√
2xrn

}
≤ e−x, (2.4.10a)

Prob
{
Mn ≥ 2

√
x(vn + hn) + 2xs2

}
≤ e−x. (2.4.10b)

Proof. The inequality (2.4.10a) is straightforward. To prove (2.4.10b), note that for t < 1
2s

−2 and
η ∼ N (0, 1) independent of ξ0, ..., ξn , we have:

Ei−1

{
etξ

2
i

}
= Ei−1

{
Eη

{
e
√
2tξiη

}}
= Eη

{
Ei−1

{
e
√
2tξiη

}}
≤ Eη

{
exp

{√
2tηµi + tη2s2i

}}
= (1− 2ts2i )

−1/2 exp

{
tµ2i

1− 2ts2i

}
a.s.,

and because, cf [116, Lemma 1],

−1
2 ln(1− 2ts2i ) +

tµ2i
1− 2ts2i

− t(s2i + µ2i ) ≤
t2s2i (s

2
i + 2µ2i )

1− 2ts2i
≤ t2s2i (s

2
i + 2µ2i )

1− 2ts2
,

one has for t < 1
2s

−2

E
{
etMn

}
≤ exp

{
t2(vn + hn)

1− 2ts2

}
.

By Lemma 8 of [117], this implies that

Prob
{
Mn ≥ 2

√
x(vn + hn) + 2xs2

}
≤ e−x

for all x > 0. □

Now, suppose that ζi, i = 1, 2, ... is a sequence of random variables satisfying

Ei−1{ζi} = µi, Ei−1{ζ2i } ≤ σ2i , |ζi| ≤ 1 a.s. (2.4.11)

Denote Mn =
∑n

i=1[ζi − µi] and qn =
∑n

i=1 σ
2
i . Note that qn ≤ n.

5Here, same as above, we denote Ei−1 the expectation conditional to Fi−1.
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Lemma 2.4.2 Let x ≥ 1; one has

Prob
{
Mn ≥

√
2xqn + x

}
≤
[
e

(
2x ln

[
9n

2x

]
+ 1

)
+ 1

]
e−x.

In particular, for x ≥ 4
√
2 + lnn one has

Prob
{
Mn ≥

√
2xqn + x

}
≤ 2e−x/2.

Proof. In the premise of the lemma, applying Bernstein’s inequality for martingales [113, 118] we
obtain for all x > 0 and u > 0,

Prob
{
Mn ≥

√
2xu+

x

3
, qn ≤ u

}
≤ e−x.

We conclude that

Prob

{
Mn ≥ x, qn ≤ 2x

9

}
≤ e−x,

and for any u > 0

Prob
{
Mn ≥

√
2(x+ 1)qn +

x

3
, u ≤ qn ≤ u

(
1 + 1/x

)}
≤ e−x,

so that
δn(x;u) := Prob

{
Mn ≥

√
2xqn +

x

3
, u ≤ qn ≤ u

(
1 + 1/x

)}
≤ e−x+1.

Let now u0 = 2x/9, uj = min{n, (1 + 1/x)ju0}, j = 0, ..., J , with

J =
⌋
ln
[
n/u0

]
ln−1[1 + 1/x]

⌊
.

Note that ln[1 + 1/x] ≥ 1/(2x) for x ≥ 1, so that

J ≤ ln
[
n/u0

]
ln−1[1 + 1/x] + 1 ≤ 2x ln

[
n/u0

]
+ 1.

On the other hand,

Prob
{
Mn ≥

√
2xqn + x

}
≤ e−x +

J∑
j=1

δn(x;uj) ≤ e−x + Je−x+1

≤
[
e
(
2x ln

[9n
2x

]
+ 1
)
+ 1
]
e−x

Finally, we verify explicitly that for x ≥ 4
√
2 + lnn one has[

e
(
2x ln

[9n
2x

]
+ 1
)
+ 1
]
e−x/2 ≤ 2,

implying that for such x

Prob
{
Mn ≥

√
2xqn + x

}
≤ 2e−x/2. □

Let (ξi)i=1,... be a sequence of independent random vectors in Rn such that

Ei−1

{
exp

(
∥ξi∥2∗
s2

)}
≤ exp(1), Ei−1 {ξi} = 0,

63



2.4. APPENDIX

and let η =
∑m

i=1 ξi, m ∈ Z+. We are interested in “sub-Gaussian characteristics” of r.v. ζ = ⟨u, η⟩
for some u ∈ Rn, ∥u∥ ≤ R, and of τ = ∥η∥∗.

Because E{⟨u, ξi⟩} = 0 and |⟨u, ξi⟩| ≤ ∥u∥ ∥ξi∥∗, for all t one has (cf.,e.g., Proposition 4.2 of
[115])

E
{
et⟨u,η⟩

}
=

m∏
i=1

E
{
et⟨u,ξi⟩

}
≤

m∏
i=1

exp
(
3
4 t

2s2
)
= exp

(
3
4mt

2s2
)
.

Let ξℓ, ℓ = 1, 2, ... be a sequence of independent random vectors ξℓ ∈ E, such that E{ξℓ} = 0 and

E
{
e∥ξℓ∥

2
∗/s

2
}
≤ exp(1). Denote ηj =

∑j
ℓ=1 ξℓ. We have the following result.

Lemma 2.4.3

∀L ∈ Z+ E

{
exp

(
∥ηL∥2∗
18Θs2L

)}
≤ exp(1) (2.4.12)

where Θ = max∥z∥≤1 θ(z) for the d.-g.f. θ of the unit ball of norm ∥ · ∥ in E, as defined in Section
2.2.2.

Proof. Let for η ∈ E, π(η) = sup∥z∥≤1[⟨η, z⟩ − θ(z)]. Observe that for all β > 0,

∥ηL∥∗ = sup
∥z∥≤1

⟨ηL, z⟩ ≤ max
∥z∥≤1

βθ(z) + βπ(ηL/β) ≤ βΘ+ βπ
(ηL
β

)
. (2.4.13)

On the other hand, we know (cf. [119, Lemma 1]) that π is smooth with ∥∇π∥ ≤ 1, and ∇π is
Lipschitz-continuous w.r.t. to ∥ · ∥∗, i.e.,

∥∇π(z)−∇π(z′)∥ ≤ ∥z − z′∥∗ ∀z, z′ ∈ E.

As a consequence of Lipschitz continuity of π, when denoting πβ(η) = βπ
( η
β

)
, we have

πβ(ηj−1 + ξj)− πβ(ηj−1) ≤ ∥ξj∥∗,

so that E
{
exp

(
[πβ(ηj)− πβ(ηj−1)]

2/s2
)}

≤ exp(1). Furthermore,

πβ(ηj−1 + ξj) ≤ πβ(ηj−1) + ⟨∇πβ(ηj−1), ξj⟩+ ∥ξj∥2∗
2β ,

and, because ηj−1 does not depend on ξj and E{∥ξj∥2∗} ≤ s2, we get

Ej−1{πβ(ηj)− πβ(ηj−1)} ≤ s2

2β .

By [115, Proposition 4.2] we conclude that random variables δj = πβ(ηj)− πβ(ηj−1) satisfy for all
t ≥ 0,

Ej−1

{
etδj
}
≤ exp

(
1
2 ts

2β−1 + 3
4 t

2s2
)
.

Consequently,

E
{
etπβ(ηL)

}
≤ E

{
etπβ(ηL−1)

}
exp

(
1
2 ts

2β−1 + 3
4 t

2s2
)
≤ exp

(
1
2 ts

2Lβ−1 + 3
4 t

2s2L
)
.

When substituting the latter bound into (2.4.13), we obtain for β2 = s2L
2Θ

E
{
et∥ηL∥∗

}
≤ exp

(
ts
√
2ΘL+ 3

4 t
2s2L

)
∀t ≥ 0. (2.4.14)
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To complete the proof of the lemma, it remains to show that (2.4.14) implies (2.4.12). This is
straightforward. Indeed, for χ ∼ N (0, 1), α > 0 and ζ = ∥ηL∥∗ one has

E
{
eαζ

2
}
= E

{
Eη

(
e
√
2αζχ

)}
= Eχ

{
E
{
e
√
2αζχ

}}
≤ Eχ

{
exp

(
2
√
αΘLsχ+ 3

2αLs
2χ2
)}

= (1− 3αLs2)−1/2 exp

{
4αΘLs2

1− 3αLs2

}
When setting α = (18Θs2L)−1, we conclude that

E
{
eαζ

2
}
≤ exp(1)

due to Θ ≥ 1/2. □

2.4.3 Proof of Theorem 2.2.1

We start with analysing the behaviour of the approximate solution x̂km0
at the stages of the preliminary

phase of the procedure.

Lemma 2.4.4 Let m0 = ⌈64δ2ρνs(4Θ + 60t)⌉ (here ⌈a⌉ stands for the smallest integer greater or
equal to a), γ = (4ν)−1, and let t satisfy t ≥ 4

√
2 + log(m0).

Suppose that R ≥ 2δσ∗
√

6ρs/ν, that initial condition x0 of Algorithms 1 and 2 satisfies ∥x0−x∗∥ ≤
R, and that at the stage k of the preliminary phase we choose

κk = Rk−1

√
ν(4Θ + 60t)

ρsm0
(2.4.15)

where (Rk)k≥0 is defined recursively:

Rk+1 =
1
2Rk +

16σ2∗δ
2ρs

νRk
, R0 = R.

Then the approximate solution x̂km0
at the end of the kth stage of the CSMD-SR algorithm satisfies,

with probability ≥ 1− 4ke−t

∥x̂km0
− x∗∥ ≤ Rk ≤ 2−kR+ 4σ∗δ

√
2ρs/ν. (2.4.16)

In particular, the estimate x̂K1
m0

after K1 =
⌈
1
2 log2

(
R2ν

32σ2
∗δ

2ρs

)⌉
stages satisfies with probaility at least

1− 4K1e
−t

∥xK1
m0

− x∗∥ ≤ 8σ∗δ
√

2ρs/ν. (2.4.17)

Proof of the lemma.
1o. Note that initial point x0 satisfies x0 ∈ XR(x∗). Suppose that the initial point xk0 = x̂k−1

m0
of the

kth stage of the method satisfy xk0 ∈ XRk−1
(x∗) with probability 1−4(k−1)e−t. In other words, there

is a set Bk−1 ⊂ Ω, Prob(Bk−1) ≥ 1−4(k−1)e−t, such that for all ωk−1 = [ω1; ...;ωm0(k−1)] ⊂ Bk−1 one

has xk0 ∈ XRk−1
(x∗). Let us show that upon termination of the kthe stage x̂km0

satisfy ∥xkm0
−x∗∥ ≤ Rk

with probability 1− 4ke−t. By Proposition 2.4.1 (with h(x) = κk∥x∥) we conclude that for some
Ωk ⊂ Ω, Prob(Ωk) ≥ 1− 4e−t, solution x̂km0

after m0 iterations of the stage satisfies, for all for all
ωk = [ω(k−1)m0+1, ..., ωkm0 ] ∈ Ωk,

F (x̂km0
)− F (x∗) ≤ 1

m0

(
νR2

k−1(4Θ + 60t) + κkRk−1

)
+
σ2∗
ν

(
7
4 + 6t

m0

)
.

65



2.4. APPENDIX

When using the relationship (2.2.11) of Assumption [RSC] we now get

∥x̂km0
− x∗∥ ≤ δ

[
ρsκk +

Rk−1

m0
+
νR2

k−1

κkm0
(4Θ + 60t) +

σ2∗
νκk

(
7
4 + 6t

m0

)]
. (2.4.18)

Note that κk as defined in (2.4.15) satisfies κk ≤ Rk−1(8δρs)
−1, while κkm0 ≥ 8δ(4Θ + 60t)Rk−1ν.

Because m0 ≥ 3840t due to ρν ≥ 1 and δ ≥ 1, one also has
(
7
4 + 6t

m0

)
κ−1
k < 16δρs/Rk−1. When

substituting the above bounds into (2.4.18) we obtain

∥x̂km0
− x∗∥ ≤ δRk−1

(
1
4δ +

1
m0

)
+

16δ2ρsσ2∗
Rk−1ν

≤ 1
2Rk−1 +

16δ2ρsσ2∗
Rk−1ν

= Rk. (2.4.19)

We conclude that x̂km0
∈ XRk

(x∗) for all ω
k ∈ Bk = Bk−1 ∩ Ωk, and

Prob(Bk) ≥ Prob(Bk−1)− Prob(Ω
c
k) ≥ 1− 4ke−t.

2o. Let now a = 16δ2ρsσ2∗/ν, and let us study the behaviour of the sequence

Rk =
Rk−1

2
+

a

Rk−1
=: f(Rk−1), R0 = R ≥

√
2a.

Function f admits a fixed point at R =
√
2a which is also the minimum of f , so one has Rk ≥

√
2a

∀k. Thus,

dk := Rk −
√
2a =

Rk−1 −
√
2a

2
+

2a−
√
2aRk−1

2Rk−1
≤ 1

2dk−1 ≤ 2−kd0 ≤ 2−k(R−
√
2a).

We deduce that Rk ≤ 2−kR0 +
√
2a which is (2.4.16). Finally, after running K1 stages of the

preliminary phase, the estimate x̂K1
m0

satisfies

∥x̂K1
m0

− x∗∥ ≤ 8δσ∗
√

2ρs/ν. □

We turn next to the analysis of the asymptotic phase of Algorithm 2. We assume that the preliminary
phase of the algorithm has been completed.

Lemma 2.4.5 Let t be such that t ≥ 4
√
2 + log(m1), with m1 = ⌈81δ2ρsν(4Θ + 60t)⌉, γ = (4ν)−1,

and let ℓk = ⌈10× 4k−1Θ⌉. We set

κk = rk−1

√
ν(4Θ + 60t)

ρsm1
, rk = 2−kr0, r0 = 8δσ∗

√
2ρs/ν.

Then the approximate solution by Algorithm 2 x̂km1
at the end of the kth stage of the asymptotic

phase satisfies, with probability ≥ 1− 4(K1 + k)e−t, ∥x̂km1
− x∗∥ ≤ rk, implying that

∥x̂km1
− x∗∥ ≲ δ2σ∗ρs

√
Θ(Θ + t)

Nk
, (2.4.20)

where Nk = m1
∑k

i=1 ℓi is the total count of oracle calls for k asymptotic stages.
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Proof of the lemma. Upon terminating the preliminary phase, the initial condition x0 = x̂K1
m0

of the asymptotic phase satisfies (2.4.17) with probability greater or equal to 1− 4K1e
−t. We are

about to show that ∀k ≥ 1, with probability at least 1− 4(K1 + k)e−t,

∥x̂km1
− x∗∥ ≤ rk = 2−kr0, r0 = 8δσ∗

√
2ρs/ν.

The claim is obviously true for k = 0. Let let us suppose that it holds at stage k − 1 ≥ 0, and let
us prove that it also holds at stage k. To this end, we reproduce the argument used in the proof
of Lemma 2.4.4, while taking into account that now ℓk observations are averaged at each iteration
of the CSMD algorithm. Recall (cf. Lemma 2.4.3) that this amounts to replacing sub-Gaussian
parameter σ2∗ with σ2∗ = 18Θσ2∗/ℓk. When applying the result of Proposition 2.4.1 and the bound of
(2.2.11) we conclude (cf. (2.4.18)) that, with probability 1− (K1 + k)e−t,

∥x̂km1
− x∗∥ ≤ δ

[
ρsκk +

rk−1

m1
+
νr2k−1

κkm1
(4Θ + 60t) +

18Θσ2∗
νκkℓk

(
7
4 + 6t

m1

)]

By simple algebra, we obtain the following analogue of (2.4.19):

∥x̂km1
− x∗∥ < δrk−1

(
2
9δ +

1
m1

)
+ 10

4−k+1δ2ρsσ2∗
rk−1ν

<
rk−1

4 +
rk−1

4 = rk.

Observe that upon the end of the kth stage we used Nk = m1
∑k

i=1 ℓk < 3m1Θ
∑k

j=1 4
j−1 ≤ 4kΘm1

observations of the asymptotic stage. As a consequence, 4−k < Θm1/Nk and

rk = 2−kr0 ≲ δ2sρσ∗

√
Θ(Θ + t)

Nk
. □

Assuming that the preliminary phase of Algorithm 1 was completed, we now consider the asymptotic
phase of the algorithm.

Lemma 2.4.6 Let t ≥ 4
√
2 + logmk, mk =

⌈
4k+4(4Θ + 60t)δ2ρsν

⌉
,

γk =
rk−1

2σ∗

√
(4Θ + 60t)

2mk
, κ2k =

5σ∗rk−1

ρs

√
(4Θ + 60t)

mk
(2.4.21)

where
rk := 2−kr0, r0 = 8δσ∗

√
2ρs/ν.

Then the approximate solution x̂kmk
upon termination of the kth asymptotic stage satisfies with

probability ≥ 1− 4(K1 + k)e−t

∥x̂kmk
− x∗∥ ≤ 2−kr0 ≲ 2−kσ∗δ

√
ρsν−1 ≲ δ2σ∗ρs

√
Θ+t
Nk

(2.4.22)

where Nk =
∑k

j=1mj is the total iteration count of k stages of the asymptotic phase.

Proof of the lemma.
We are about to show that ∀k ≥ 0, ∥x̂kmk

− x∗∥ ≤ rk with probability ≥ 1 − 4(K1 + k)e−t is
true. By Lemma 2.4.4, the claim is true for k = 0 (at the start of the asymptotic phase, the initial

condition x0 = x̂K1
m0

satisfies the bound (2.4.17)). We now assume it to hold for k − 1 ≥ 0, our
objective is to implement the recursive step k − 1 → k of the proof. First, observe that the choice of
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γk in (2.4.21) satisfies γk ≤ (4ν)−1, k = 1, ..., so that Proposition 2.4.1 can be applied. From the
result of the proposition and bound (2.2.11) we conclude (cf. (2.4.18)) that it holds, with probability
1− (K1 + k)e−t,

∥x̂kmk
− x∗∥ ≤ δ

[
ρsκk +

rk−1

mk
+
r2k−1 (4Θ + 60t)

γkκkmk
+ 8

γkσ2∗
κk

]

When substituting the value of γk from (2.4.21) we obtain

∥x̂kmk
− x∗∥ ≤ δ

ρsκk + rk−1

mk
+

4σ∗rk−1

κk

√
2(4Θ + 60t)

mk

 ,
which, by the choice of κk in (2.4.21), results in results in

∥x̂kmk
− x∗∥2 ≤ 2δ2

[
10ρsσ∗rk−1

√
4Θ + 60t

mk
+
r2k−1

m2
k

]
≤
r2k−1

4
= r2k.

It remains to note that the total number Nk =
∑k

j=1mj of iterations during k stages of the

asymptotic phase satisfies Nk ≲ 4k(Θ + t)δ2ρsν, and 2−k ≲ δ
√

(Θ+t)ρsν
Nk

, which along with definition

of r0 implies (2.4.22). □

Proof of Theorem 2.2.1. We can now terminate the proof of the theorem. Let us prove the
accuracy bound of the theorem for the minibatch variant of the procedure.

Assume that the “total observation budget” N is such that only the preliminary phase of
the procedure is implemented. This is the case when either m0K1 ≥ N , or m0K1 < N and
m0K1 +m1ℓ1 > N . The output x̂N of the algorithm is then the last update of the preliminary
phase, and by Lemma 2.4.4 it satisfies ∥x̂N − x∗∥ ≤ R2−k where k is the count of completed stages.
In the case of m0K1 ≥ N this clearly implies that (recall that N ≥ m0) that k ≥ cN/m0 and, with
probability ≥ 1− 4ke−t

∥x̂N − x∗∥ ≲ R exp

{
− c′N

δ2ρsν(Θ + t)

}
. (2.4.23)

On the other hand, when m0K1 < N < m0K1 + m1ℓ1, by definition of m1 and ℓ1, one has
N ≤ Cm0K1, so that bound (2.4.23) still holds in this case.

Now, consider the case where at least one asymptotic stage has been completed. Whenm0K1 >
N
2

we still have N ≤ Cm0K1, so that the bound (2.4.23) holds for the approximate solution x̂
(b)
N at the

end of the asymptotic stage. Otherwise, the number of oracle calls Nk of asymptotic stages satisfies
Nk ≥ N/2, and by (2.4.20) this implies that with probability ≥ 1− 4(K1 +K2)e

−t,

∥x̂(b)N − x∗∥ ≲ δ2σ∗ρs

√
Θ(Θ + t)

N
.

To summarize, in both cases, the bound of Theorem 2.2.1 holds with probability at least 1− 4(K1 +
K2)e

−t.
The proof of the accuracy bound for the “standard” solution x̂N is completely analogous, making

use of the bound (2.4.22) of Lemma 2.4.6 instead of (2.4.20). □
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Remark 2.4.1 Theorem 2.2.1 as stated in Section 2.2.3 does not say anything about convergence
of g(x̂N ) to g(x∗). Such information can be easily extracted from the proof of the theorem. Indeed,
observe that at the end of a stage of the method, one has, with probability 1− Cke−t,

Fκk(x̂
k)− Fκk(x∗) ≤ υk,

or
g(x̂k)− g(x∗) ≤ υk + κk(∥x̂k∥ − ∥x∗∥) ≤ υk + κk∥x̂k − x∗∥

where x̂k is the approximate solution at the end of the stage k. One the other hand, at the end of the kth
stage of the preliminary phase one has ∥x̂k−x∗∥ ≤ Rk ≤ 2−kR, with κk ≲ Rk(δρs)

−1 ≤ 2−kR(δρs)−1

and υk ≲
4−kR2

δ2ρs
implying that

g(x̂k)− g(x∗) ≲ υk +
R2
k

δ2ρs
≲ (δ−2 + δ−1)

R2

ρs
exp

{
− c

δρν

N

s(Θ + t)

}
where N is the current iteration count. Furthermore, at the end of the kth asymptotic stage, one has,

with probability 1 − (K1 + k)e−t, ∥x̂k − x∗∥ ≤ Rk ≲ δ2σ∗ρs
√

Θ+t
mk

, while κk ≍ 2−kδσ∗(ρνs)
−1/2 ≲

δσ∗

√
Θ+t
mk

, and υk ≲ δ2σ2∗ρs(Θ + t)/mk. As a result, the corresponding x̂k satisfies

g(x̂k)− g(x∗) ≤ υk + κk∥x̂k − x∗∥ ≲ (δ2 + δ3)ρσ2∗s
Θ+ t

mk
.

When putting the above bounds together, assuming that at least 1 stage of the algorithm was completed,
we arrive at the bound after N steps:

g(x̂N )− g(x∗) ≲ (δ−2 + δ−1)
R2

ρs
exp

{
− c

δ2ρν

N

s(Θ + t)

}
+ (δ2 + δ3)ρsσ2∗

Θ+ t

N
(2.4.24)

with probability 1− (K1 +K2)e
−t.

2.4.4 Proof of Proposition 2.3.1

1o. Recall that r is r-Lipschitz continuous, i.e., for all t, t′ ∈ Rm

|r(t)− r(t′)| ≤ r|t− t′|.

As a result, for all x, x′ ∈ X,

∥ϕ[r(ϕTi x)− r(ϕTi x
′)]∥∞ ≤ r∥ϕi∥∞|ϕTi (x− x′)| ≤ r∥ϕi∥2∞∥x− x′∥1 ≤ rν2∥x− x′∥1,

so that ∇G(x, ω) = ϕ[r(ϕTx) − η] is Lipschitz continuous w.r.t. ℓ1-norm with Lipschitz constant
L(ω) ≤ rν2.

2o. Due to strong monotonicity of r,

g(x)− g(x∗) =

∫ 1

0
∇g(x∗ + t(x− x∗))

T (x− x∗)dt

=

∫ 1

0
E
{
ϕ[r(ϕT (x∗ + t(x− x∗))− r(ϕTx∗)]

}T
(x− x∗)dt

≥
∫ 1

0
rE
{
(ϕT (x− x∗))

2
}
tdt = 1

2r∥x− x∗∥2Σ,

what is (2.3.2).
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3o. The sub-Gaussianity in the “batchless” case is readily given by ∇G(x∗, ωi) = σϕiξi with
∥ϕiξi∥∞ ≤ ∥ϕi∥∞|ξi| ≤ ν∥ξi∥2 and

E

{
exp

(
∥∇G(x∗, ωi)∥2∞

σ2ν2

)}
≤ e

due to E
{
eξ

2
i
}
≤ exp(1). Because Θ variation of the d.-g.f. θ, as defined in (2.3.6), is bounded with

C lnn, by Lemma 2.4.3 we conclude that batch observation

H
(
x∗, ω

(L)
i

)
=

1

L

L∑
ℓ=1

∇G(x∗, ωℓi ) =
1

L

L∑
ℓ=1

σϕℓi , ξ
ℓ
i

is sub-Gaussian with parameter ≲ σ2ν2 lnn.

4o. In the situation of Section 2.3.1, Σ is positive definite, Σ ⪰ κΣI, κΣ > 0, and condition Q(λ, ψ)
is satisfied with λ = κΣ and ψ = 1. Because quadratic minoration condition (2.3.3) for g is verified
with µ ≥ r due to (2.3.2), when applying the result of Lemma 2.3.1, we conclude that Assumption
[RSC] holds with δ = 1 and ρ = (κΣr)

−1.6 □

2.4.5 Properties of sparsity structures

Sparsity structures

The scope of results of Section 2.2 is much broader than “vanilla” sparsity optimization. We discuss
here general notion of sparsity structure which provides a proper application framework for these
results.

In what follows we assume to be given a sparsity structure [120] on E—a family P of projector
mappings P = P 2 on E such that

A1.1 every P ∈ P is assigned a linear map P on E such that PP = 0 and a nonnegative weight
π(P );

A1.2 whenever P ∈ P and f, g ∈ E such that ∥f∥∗ ≤ 1, ∥g∥∗ ≤ 1,

∥P ∗f + P
∗
g∥∗ ≤ 1

where for a linear map Q : E → F , Q∗ : F → E is the conjugate mapping.

Following [120], we refer to a collection of the just introduced entities and sparsity structure on E.
For a nonnegative real s we set

Ps = {P ∈ P : π(P ) ≤ s}.

Given s ≥ 0 we call x ∈ E s-sparse if there exists P ∈ Ps such that Px = x.
Typically, one is interested in the following “standard examples”:

1. “Vanilla (usual)” sparsity: in this case E = Rn with the standard inner product, P is comprised
of projectors on all coordinate subspaces of Rn, π(P ) = rank(P ), and ∥ · ∥ = ∥ · ∥1.

6We refer to Section 5.7.10 and Lemma 2.4.7 for the proof of Lemma 2.3.1.
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2. Group sparsity: E = Rn, and we partition the set {1, ..., n} of indices into K nonoverlapping
subsets I1, ..., IK , so that to every x ∈ Rn we associate blocks xk with corresponding indices in
Ik, k = 1, ...,K. Now P is comprised of projectors P = PI onto subspaces EI = {[x1, ..., xK ] ∈
Rn : xk = 0 ∀k /∈ I} associated with subsets I of the index set {1, ...,K}. We set π(PI) = cardI,
and define ∥x∥ =

∑K
k=1 ∥xk∥2—block ℓ1/ℓ2-norm.

3. Low rank structure: in this example E = Rp×q with, for the sake of definiteness, p ≥ q, and
the Frobenius inner product. Here P is the set of mappings P (x) = PℓxPr where Pℓ and Pr
are, respectively, q × q and p× p orthoprojectors, P (x) = (I − Pℓ)x(I − Pr), and ∥ · ∥ is the
nuclear norm ∥x∥ =

∑q
i=1 σi(x) where σ1(x) ≥ σ2(x) ≥ ... ≥ σq(x) are singular values of x,

∥ · ∥∗ is the spectral norm, so that ∥x∥∗ = σ1(x), and π(P ) = max[rank(Pℓ), rank(Pr)].

In this case, for ∥f∥∗ ≤ 1 and ∥g∥∗ ≤ 1 one has

∥P ∗(f)∥∗ = ∥PℓfPr∥∗ ≤ 1, ∥P ∗
(g)∥∗ = ∥(I − Pℓ)g(I − Pr)∥∗ ≤ 1,

and because the images and orthogonal complements to the kernels of P and P are orthogonal
to each other, ∥P ∗(f) + P

∗
(g)∥∗ ≤ 1.

Condition Q(λ, ψ)

We say that a positive semidefinite mapping Σ : E → E satisfies condition Q(λ, ψ) for given s ∈ Z+

if for some ψ, λ > 0 and all P ∈ Ps and z ∈ E

∥Pz∥ ≤
√
s/λ∥z∥Σ + ∥Pz∥ − ψ∥z∥. (2.4.25)

Lemma 2.4.7 Suppose that x∗ is an optimal solution to (2.2.2) such that for some P ∈ Ps,
∥(I − P )x∗∥ ≤ ∆, and that condition Q(λ, ψ) is satisfied. Furthermore, assume that objective g of
(2.2.2) satisfies the following minoration condition

g(x)− g(x∗) ≥ µ
(
∥x− x∗∥Σ

)
where µ(·) is monotone increasing and convex. Then a feasible solution x̂ ∈ X to (2.2.4) such that

Prob {Fκ(x̂)− Fk(x∗) ≤ υ} ≥ 1− ϵ.

satisfies, with probability at least 1− ϵ,

∥x̂− x∗∥ ≤
µ∗
(
κ
√
s/λ
)
+ υ

κψ
+

2∆

ψ
(2.4.26)

where µ∗ : R+ → R+ is conjugate to µ(·), µ∗(t) = supu≥0[tu− µ(u)].

Proof. When setting z = x̂− x∗ one has

∥x̂∥ = ∥x∗ + z∥ = ∥Px∗ + (I − P )x∗ + z∥ ≥ ∥Px∗ + z∥ − ∥(I − P )x∗∥
≥ ∥Px∗∥+ ∥Pz∥ − ∥Pz∥ −∆

where we used the relation
∥Px∗ + z∥ ≥ ∥Px∗∥ − ∥Pz∥+ ∥Pz∥
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(cf. Lemma 3.1 of [120] applied to w = Px∗). When using condition Q(λ, ψ) we obtain

∥x̂∥ ≥ ∥Px∗∥ −
√
s/λ∥z∥Σ + ψ∥z∥ −∆,

so that Fk(x̂) ≤ Fk(x∗) + υ implies

κ (∥Px∗∥+ ψ∥z∥ −∆) ≤ 1
2 [g(x∗)− g(x̂)] + κ

√
s/λ∥z∥Σ + κ∥x∗∥+ υ

≤ − 1
2µ(∥z∥Σ) + κ

√
s/λ∥z∥Σ + κ∥x∗∥+ υ

≤ 1
2µ

∗(2κ
√
s/λ) + κ∥x∗∥+ υ,

and we conclude that
κψ∥z∥ ≤ 1

2µ
∗(2κ

√
s/λ) + 2κ∆+ υ

due to ∥x∗∥ − ∥Px∗∥ ≤ ∥(I − P )x∗∥ ≤ ∆. □

Note that when µ(u) = µ
2u

2, one has µ∗(t) = 1
2µ t

2, and in the case of ∥·∥ = ∥·∥1, with probability
1− ϵ,

∥x̂− x∗∥1 ≤
sκ

µλψ
+

υ

κψ
+

2∆

ψ
.

This, in particular, implies bound (2.3.4) of Lemma 2.3.1.

Remark 2.4.2 We discuss implications of condition Q(λ, ψ) and result of Lemma 2.4.7 for “usual”
sparsity in Section 2.3 of the paper. Now, let us consider the case of the low rank sparsity. Let
z ∈ Rp×q with p ≥ q for the sake of definiteness. In this case, ∥ · ∥ is the nuclear norm, and we
put P (z) = PℓzPr where Pℓ and Pr are orthoprojectors of rank s ≤ q such that ∥(I − P )(x)∥ =
∥x∗ − Pℓx∗Pr∥ ≤ ∆.7

Furthermore, for a p× q matrix z let us put

σ(k)(z) =
k∑
i=1

σi(z), 1 ≤ k ≤ q.

With the sparsity parameter s being a nonnegative integer,

∀(z ∈ Rp×q, P ∈ Ps) : ∥P (z)∥ ≤ σ(s)(z), ∥P (z)∥ ≥ ∥z∥ − σ(2s)(z).8

and we conclude that in the present situation condition

σ(s)(z) + σ(2s)(z) ≤
√
s/λ∥z∥Σ + (1− ψ)∥z∥ (2.4.27)

is sufficient for the validity of Q(λ, ψ). As a result, condition (2.4.27) with ψ > 0 is sufficient for
applicability of the bound of Lemma 2.4.7. It may also be compared to the necessary and sufficient
condition of “s-goodness of Σ” in [121]:

∃ψ > 0 : 2σ(s)(z) ≤ (1− ψ)∥z∥ ∀z ∈ Ker(Σ).

7E.g., choose Pℓ and Pr as left and right projectors on the space generated by s principal left and right singular
vectors of x∗, so that ∥x∗ − Pℓx∗Pr∥ = ∥(I − Pℓ)x∗(I − Pr)∥ =

∑q
i=s+1 σi ≤ ∆.

8Indeed, let P ∈ Ps, so that rank(Pℓ) ≤ s and rank(Pr) ≤ s, and ∥P (z)∥ = ∥PℓzPr∥ ≤ σ(s)(z). Since the
matrix P (z) differs from z by a matrix of rank at most 2s, by the Singular Value Interlacing theorem we have
σi(P (z)) ≥ σi+2s(z), whence ∥P (z)∥ ≥ ∥z∥ − σ(2s)(z).
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2.4.6 Supplementary numerical experiments

This section complements the numerical results appearing on the main body of the paper. We
consider the setting in Section 2.3.3 of sparse recovery problem from GLR model observations (2.3.1).
In the experiments below, we consider the choice (2.3.5) of activation function rα(t) with values
α = 1 and α = 1/10; value α = 1 corresponds to linear regression with r(t) = t, whereas when
α = 0.1 activation have a flatter curve with rapidly decreasing with r modulus of strong convexity for
|t| ≤ r. Same as before, in our experiments, the dimension of the parameter space is n = 500 000, the
sparsity level of the optimal point x∗ is s = 100; we use the minibatch Algorithm 2 with the maximal
number of oracle calls is N = 250 000. In Figures 2.4 and 2.5 we report results for κΣ ∈ {0.1, 1} and
σ ∈ {0.001, 0.1}; the simulations are repeated 10 times, we trace the median of the estimation error
∥x̂i − x∗∥1 along with its first and the last deciles against the number of oracle calls.

(a) κΣ = 1, σ = 0.1,m0 = 5000 (b) κΣ = 1, σ = 0.001,m0 = 5000

(c) κΣ = 0.1, σ = 0.1,m0 = 7500 (d) κΣ = 0.1, σ = 0.001,m0 = 7500

Figure 2.4: CSMD-SR and “vanilla” SMD in Linear Regression problem (activation function r(t) = t); ℓ1
error as a function of the number of oracle calls
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In our experiments, multistage algorithms exhibit linear convergence on initial iterations. Surpris-
ingly, “standard” (non-Euclidean) SMD also converges fast in the “preliminary” regime. This may
be explained by the fact that iteration xi of the SMD obtained by the “usual” proximal mapping
Prox(γi−1∇G(xi−1, ωi), xi−1) is computed as a solution to the optimization problem with “penalty”
θ(x) = c∥x∥pp, p = 1+ 1/ lnn which results in a “natural” sparsification of xi. As iterations progress,
such “sparsification” becomes insufficient, and the multistage routine eventually outperforms the
SMD. Implementing the method for “flatter” nonlinear activation r(t) or increased condition number
of the regressor covariance matrix Σ requires increasing the length m0 of the stage of the algorithm.
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(a) κΣ = 1, σ = 0.1,m0 = 8000 (b) κΣ = 1, σ = 0.001,m0 = 8000

(c) κΣ = 0.1, σ = 0.1,m0 = 10 000 (d) κΣ = 0.1, σ = 0.001, ,m0 = 10 000

Figure 2.5: CSMD-SR and “vanilla” SMD in Generalized Linear Regression problem: activation function
r1/10(t) ; ℓ1 error as a function of the number of oracle calls
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Chapter 3

Extensions

3.1 Adaptive CSMD-SR via Lepski’s Procedure

We present in this section an algorithm inspired by the CSMD-SR with hyper-parameters independent
of problem parameters ρ and s, and thus adaptive to the latter. We call this new algorithm Ada-
CSMD-SR.
More precisely, we are given N samples, a desired precision level ϵ ∈ (0, 1) and a starting point x0
with an initial prior R such that ∥x0 − x∗∥ ≤ R. We also assume that parameters σ∗, ν, δ,Θ are
known, and that we have access to a stochastic approximation of objective function g’s gradient, as
in the previous chapter. Here, objective g satisfies the (RSC) assumption with unknown parameter
ρ, and is minimized by x∗ that is a sparse vector with unknown level of sparsity s. With this setting
in place, we aim to produce an estimate x̂(a) with guarantees on the 1− ϵ quantile of

∥x̂(a) − x∗∥

that are almost the same as those we provide for the CSMD-SR estimate computable when knowing
ρ and s.
In deterministic optimization, [122] proposes a first order algorithm adaptive to the smoothness
of the objective, whereas in [48], the proposed multistage method is respectively adaptive to the
uniform convexity-parameter. Authors in [48] also provide a stochastic variant of their algorithm,
whereas [123] proposes a version of SGD adaptive to local strong convexity of the objective.
For the rest of this section, we will say that the pair (g, x∗) satisfies the (RSC) assumption with
parameter ρs if (2.2.11) holds with parameters ρ and s.

3.1.1 Motivation

Observe that in our previous developments, one of the crucial hyper-parameter choice is the constant
stage-length of the preliminary phase. In the situation where one knows ν,Θ, δ, ρ, s, we advocate the
choice

m = ⌈64δ2νρs(4Θ + 60t)⌉, t ≥ 4
√
2 + ln(m).

Observe that this hyper-parameter can replace the term ρs in other ones. Indeed, at the kth stage
of the preliminary phase, recall that

κk = Rk−1

√
ν(4Θ + 60t)

ρsm
≍ Rk−1

δν(Θ + t)

m
,
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Rk =
1
2Rk−1 +

16σ2∗δ
2ρs

νRk−1
≍ 1

2Rk−1 +
(σ∗
ν

)2 m

(Θ + t)Rk−1
.

This illustrates that our algorithm’s hyper-parameters can be formulated based on the stage-length
m, rather than the parameters ρ and s. Hence, for any objective g and its minimizer x∗, an estimate
that adapts to the former is also adaptive to both ρ and s. This leads us to focus on generating
estimates adaptive to the stage-length m. It is worth mentioning that previous work in [124]
introduces a deterministic multistage method that adjusts the length of each stage without knowing
the sharpness parameters of the objective function. We begin by briefly analyzing a version of the
CSMD-SR algorithm where hyper-parameters are modified to depend on m.

The stage-length dependent CSMD estimate.
Let integer m ∈ [⌈4δ⌉, N ], and define β(m) := m

(64δ)2νt
, with

t :=max
{
Θ; 4

√
2 + ln(m); tϵ(m)

}
, (3.1.1)

tϵ(m) := ln

(
4

ϵ
log2

((
2νR

σ∗
√
m

∨
1

)√
1 +

8N

3Θm

))
.

Observe that if (g, x∗) satisfies the RSC with ρs ≤ β(m), then

m ≥
⌈
(64δ)2νtρs

⌉
≥
⌈
64δ2νρs(4Θ + 60t)

⌉
.

Thus, we say that a specific stage-length m is adapted for (g, x∗) if the latter satisfies RSC with
parameter β(m). We now present the notations used to define a version of the CSMD-SR algorithm
that depends on m. For k ≥ 0, define the sequence of preliminary rates

Rk(m) :=
Rk−1(m)

2
+

(
σ∗

ν

)2 m

128Rk−1(m)
, R0(m) = R, (3.1.2)

and asymptotic rates

rk(m) :=
σ∗

ν

√
m

2
2−k. (3.1.3)

Observe that for all k ≥ 1, Rk(m) ≥ σ∗
√
m

16ν , implying in turn that Rk(m) ≤ 2−kR + σ∗
√
m

4ν . In
particular,

RK0(m)(m) ≤ r0(m), with K0(m) :=

(⌈
log2

(
4νR

σ∗
√
m

)⌉)
+

.

With this definition, the total number of stages in the preliminary phase is

KP (m) :=

⌊
N

m

⌋∧
K0(m).

For the asymptotic phase, we consider the mini-batch version of the CSMD-SR algorithm with
batches of size Ll = 4l−1⌈9Θ/8⌉ at its lth stage. Therefore, in the asymptotic phase, one can compute
a maximum of KA(m) stages, with the latter being defined as

KA(m) :=

(⌊
1

2
log2

(
1 +

3

⌈9Θ/8⌉

(⌊
N

m

⌋
−KP (m)

))⌋)
+

(3.1.4)

:= max

{
k : k ≥ 0,

k−1∑
l=0

⌈9Θ/8⌉4l ≤
(⌊

N

m

⌋
−KP (m)

)}
.
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Given these definitions, we define the total number of stages that can be completed with N samples
as K(m) := KP (m) +KA(m).
We now introduce the adaptive version of the CSMD-SR algorithm, beginning with the initial
starting point x0 = x̂0(m). For k ∈ [1 : K(m)], if the algorithm starts

• the preliminary phase, i.e., 1 ≤ k ≤ K0(m), we define the kth stage’s output be

x̂k(m) = CSMD

(
x̂k−1(m),

1

4ν
, κk, Rk−1(m),m, 1

)
, (3.1.5)

with κk := 512δνt
Rk−1(m)

m .

• the asymptotic phase, i.e. k > K0(m), we define the lth stage’s output

x̂k(m) = CSMD

(
x̂k−1(m),

1

4ν
, κk, rl−1(m),m,Ll

)
, (3.1.6)

with l = k −K0(m) and κk := 512δνt
rl−1(m)

m .

Finally, we will denote the output of the final stage

x̂(m) := x̂K(m)(m) (3.1.7)

and refer to it as the CSMD-SR estimate associated with stage-length m. We also use the notation

R(m) := RKP (m)(m)1{KA(m)=0} + rKA(m)(m)1{KA(m)>0}, (3.1.8)

for the high-probability upper bound on its error, as shown in the following result.

Proposition 3.1.1 Let m ∈ [⌈4δ⌉ : N ]. Provided that (g, x∗) is such that ρs ≤ β(m), the inequality

∥x̂(m)− x∗∥ ≤ R(m) (3.1.9)

holds with probability greater than 1− ϵ.

Proof of Proposition 3.1.1:
We use the same arguments as for the proof of 2.4.4 and 2.4.5, adapted to the outlined choices of

hyperparameters.
1°: Assume that we are at the k + 1-th stage of the preliminary phase, starting with point x̂k(m)
such that with probability greater than 1− 4ke−t,

∥x̂k(m)− x∗∥ ≤ Rk(m).

Inserting the values γ = (4ν)−1, κ ≡ κk+1(m) into the equation (2.4.2) results in the upper bound

Fκ(x̂k+1(m))− Fκ(x∗) ≤
64νt (Rk(m))2

m

(
1 +

8δ

m

)
+
σ2∗
ν

(
7

4
+

6t

m

)
.

which occurs on an event of probability greater than 1− 4(k + 1)e−t. Combining the latter with the
RSC assumption being satisfied with ρs ≤ β(m) yields

∥x̂k+1(m)− x∗∥ ≤ Rk(m)

(
1

4
+

δ

m

)
+
(σ∗
ν

)2(7

4
+

6t

m

)
m

64t

1

Rk(m)
.
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Since m ≥ 4δ ≥ 4 and (3.1.14) implies t ≥ 1, one has that on the same event,

∥x̂k+1(m)− x∗∥ ≤ Rk+1(m)

2
+
(σ∗
ν

)2 m

128Rk(m)
= Rk+1(m).

From the results we have just established, it follows through induction that at the conclusion of the
preliminary phase, with a probability exceeding 1− 4KP (m)e−t

∥x̂KP (m)(m)− x∗∥ ≤ RKP (m)(m) ≤ R2−KP (m) +
σ∗

√
m

4ν
, (3.1.10)

holds true. Moreover, if KP (m) = K0(m), the last inequality can be upper bounded by σ∗
√
m

2ν =
r0(m).
2°: Assume that KA(m) > 0 and that we have already completed k stages, with k ∈ [KP (m);K(m)−
1]. It follows that we are in the l + 1-th stage of the asymptotic phase, with l = k −K0(m), with
x̂k(m) as our starting point, such that

Prob [∥x̂k(m)− x∗∥ ≤ rl(m)] ≥ 1− 4ke−t.

We use similar calculations and arguments as for the proof of 2.4.5. Recall that when using batches
of size L, one can replace the sub-gaussianity parameter σ2∗ by 18Θσ2∗/L. This yields that with
probability greater than 1− (k + 1)e−t, one has that

∥x̂k+1(m)− x∗∥ ≤ rl(m)

2
+
(σ∗
ν

)2 m

128rl(m)

18Θ

⌈9Θ/8⌉4l−1

≤ rl(m)

(
1

2
+

18Θ

36Θ

)
= rl+1(m). (3.1.11)

3°: Setting k = K(m) leads to

Prob
[
∥x̂K(m)(m)− x∗∥ ≤ R(m)

]
≥ 1− 4K(m)e−t.

Noting that K0(m) ≤ log2(
2νR
σ∗

√
m

∨
1) and KA(m) ≤ log2

(√
1 + 8N

3Θm

)
, we can derive

4K(m)e−t ≤ 4e−t(K0(m) +KA(m))

≤ 4e−t log2

((
2νR

σ∗
√
m

∨
1

)√
1 +

8N

3Θm

)
≤ ϵ, (3.1.12)

where the final inequality is justified by definition (3.1.1). □

3.1.2 The adaptive CSMD-SR estimate

The adaptive estimate we propose is based on Lepski’s [91] adaptive procedure. In our setting,
the latter is applied to a collection of estimates (x̂(i))Ii=1 to select the best estimate in the context
of (g, x∗). More formally, for an integer I, we assume that we are given the following grid of
stage-lengths

⌈4δ⌉ = m1 < ... < mI ≤ N. (3.1.13)
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For all i, we define estimates x̂(i) := x̂(mi), generated by the CSMD-SR algorithm presented above,
with parameter

ti := max
{
Θ; 4

√
2 + ln(mi); tϵ(mi)

}
+ ln(I) (3.1.14)

instead of t. We also define the associated quantities βi :=
mi

(64δ)2νti
, K(i) := K(mi), and R

(i) :=

R(mi).

Proposition 3.1.2 Let collection of estimates (x̂(i))Ii=1 be as previously stated. The event
”For all i ∈ [1 : I] such that (g, x∗) satisfies the RSC assumption with ρs ≤ βi,

∥x̂(i) − x∗∥ ≤ R(i).” (3.1.15)

holds with probability greater than 1− ϵ.

Proof of Proposition 3.1.2:
1°: Using similar arguments as for the proof of (3.1.12), one has that

4
I∑
i=1

K(i)e−ti ≤ 4
I∑
i=1

log2

((
2νR

σ∗
√
mi

∨
1

)√
1 +

8N

3Θmi

)
e−ti

≤
I∑
i=1

ϵ

I
= ϵ. (3.1.16)

2°: We are now ready to prove (3.1.15). Let us call Ei the event
”If the RSC property is satisfied with parameters smaller than βi, one has ∥x̂(i) − x∗∥ ≤ R(i).”
Proposition 3.1.1 states that Prob [Ei] ≥ 1−4K(i)e−ti . As the event we are interested in is E =

⋂I
i=1 Ei,

the result follows directly from the fact that

Prob [E ] ≥ 1− Prob

[
I⋃
i=1

Ei

]
≥ 1− 4

I∑
i=1

K(i)e−ti ≥ 1− ϵ,

where we have used (3.1.16) to prove the last inequality. □

Given the grid (mi)
I
i=1, we now propose the following construction of our adaptive estimate

• For all i ∈ [1 : I], compute x̂(i), and set x̂(I+1) = x0, R
(I+1) = R.

• Define the set of admissible indexes

A :=
{
i ∈ [1 : I] : ∀j, i < j ≤ 1 + I, ∥x̂(i) − x̂(j)∥ ≤ R(i) +R(j)

}
, (3.1.17)

and let î := minA.

• Select x̂(a) := x̂(̂i) if A is non empty, and x0 otherwise.

Prior to establishing guarantees on the error quantile of its estimation, we define the error of a
CSMD-SR estimate that knows the value of ρs. With notation

m(t) := ⌈(64δ)2ρsνt⌉, (3.1.18)

we define parameters t∗ := max
{
Θ; t∗

}
and tI∗ := t∗ + ln(I), where

t∗ := min
{
t : t ≥ max

{
4
√
2 + ln(m(t)); tϵ(m(t))

}}
. (3.1.19)

The next proposition requires that R, ϵ, ν, σ∗, N, δ are such that they verify the following assumptions.
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Assumption 1:
For all m such that ⌈4δ⌉ ≤ m ≤ N , one has R(m) < R(m+ 1) ≤ 2R(m).

Assumption 2:
One can compute I and integers (mi)

I+1
i=1 such that for all i ∈ [1 : I], ⌈4δ⌉ ≤ mi < mi+1 ≤ N and

2R(i) ≤ R(i+1) ≤ 4R(i), (3.1.20)

and in particular

2R(I) +R(I−1) ≤ R ≤ 2R(I+1) +R(I). (3.1.21)

Assumption 3:
ρ is large enough so that m(t∗) ≥ ⌈4δ⌉.

Proposition 3.1.3 With probability greater than 1− ϵ, one has

∥x̂(a) − x∗∥ ≤ 9R
(
m(tI∗)

)∧
3R (3.1.22)

≤ 27R
(
mI

∗
)
. (3.1.23)

Remark 3.1.1 Observe that assumptions 1 is not overly restrictive. Indeed, it can be computation-
ally verified in a number of operation linear in N by simply calculating all the R(m) for m ∈ [⌈4δ⌉, N ].
Moreover, the second inequality in (3.1.20) being true essentially depends on the ratio σ∗/(ν

√
R).

For instance, if one has
σ2∗⌈4δ⌉
ν2R

≥ 1,

for all considered m, the resulting CSMD-SR algorithm will always be in the asymptotic phase,
and one essentially needs to multiply m by 4 to perform KA(m) − 1 stages, which will result in
multiplying the rate by two. On the other hand, when σ∗/ν → 0, our algorithm always stays in the
preliminary phase, and in that case, we can not ensure the upper bound on R(m+ 1)/R(m) ≤ 2 as
⌊N/(m+ 1)⌋ − ⌊N/m⌋ can be greater than 1, and R(m) ≍ R2−⌊N/m⌋.

Remark 3.1.2 Note that if assumption 1 holds, assumption 2’s fulfillement only depends on N
being large enough. Indeed, starting with m1 = ⌈4δ⌉, one can sequentially choose mi+1 from the
interval [mi + 1 : N ] as the largest m satisfying (3.1.20), until condition (3.1.21) is achieved.

Remark 3.1.3 Note that if the last assumption does not hold, our procedure still yields the upper
bound

∥x̂(a) − x∗∥ ≤ R(⌈4δ⌉),

corresponding to the smallest stage-length ensuring division of the error by 2 in the preliminary
phase. Moreover, it is guaranteed to hold when ρ ≥ 1

4096ν . In the situation of Section 2.3, the latter
is true when

κΣ ≤ 4096r

r
ν2,

where κΣ is such that E
[
ϕϕT

]
⪰ κΣI.
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Proof of Proposition 3.1.3:
1°: We first treat the case where it exists i ∈ [1 : I] such that βi−1 < ρs ≤ βi.

Using proposition 3.1.2, we have that on an event E of prability greater than 1− ϵ, the following is
true:
For all i ≥ i and j > i, one has that

∥x̂(i) − x̂(j)∥ ≤ ∥x̂(i) − x∗∥+ ∥x̂(j) − x∗∥ ≤ R(i) +R(j).

In particluar, this proves that i ∈ A, implying that on event E , î ≤ i. We first treat the case where
î < i, where one has

∥x̂(̂i) − x∗∥ ≤ ∥x̂(̂i) − x̂(i)∥+ ∥x̂(i) − x∗∥

≤ 2R(i) +R(̂i)

≤ 2R(i)(N) + max
l<i

R(l)(N) (3.1.24)

≤ 2R(i)(N) +R(i−1)(N), (3.1.25)

where last inequality is a direct consequence of sequence
(
R(i)

)I
i=1

being increasing. Observe that

in the case where î = i, inequality (3.1.25) is still valid. By definition, one has that mi−1 <
ρs(64δ)2νtI ≤ mi. Using assumption 1, one also has

R(i−1) < R(m(tI∗)) ≤ R(i),

which yields the desired result when combined with first part of assumption 2.
2°: If ρs ≥ βI , then either x0 is selected, or an index j ∈ [1 : I] is. If index j is selected, then

∥x̂(a) − x∗∥ ≤ ∥x̂(a) − x0∥+ ∥x0 − x∗∥ ≤ R(j) + 2R ≤ 3R.

Observing that one has 2R(I+1) +R(I) ≤ 9R(I) implies that R(I) ≥ R/9, and that βI < ρs, one has

3R ≤ 27R(I) ≤ 27R(m(tI∗)),

which yields (3.1.23). □

Under the same assumptions, we state the main result of this section, an upper bound on the
precision of our adaptive estimate.

Theorem 3.1.1 One has with probability greater than 1− ϵ that

∥x̂(a) − x∗∥ ≲ R exp

{
− cN

δ2ρsν(t∗ + ln(I))

}
+ σ∗δ

2ρs

√
Θ(t∗ + ln(I))

νN
. (3.1.26)

Moreover, under assumption 2, the grid-size I is such that

I ≤ log2

(
R

R(⌈4δ⌉)

)
. (3.1.27)

Proof of Theorem 3.1.1: Using the same arguments as for the proof of 2.2.1, one has that
(3.1.23) implies that with probability greater than 1− ϵ,

∥x̂(a) − x∗∥ ≲ R exp

{
− cN

δ2ρsνtI∗

}
+ σ∗δ

2ρs

√
ΘtI∗
νN

.

Moreover, observe that assumptions (3.1.21) and (3.1.20) implies that

R ≥ 5RI−1 ≥ 5R1

4
2I ≥ 2IR1,

which in turn implies (3.1.27) when noticing that R1 = R(⌈4δ⌉).
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3.2 Analysis under Reduced Uniform Convexity hypothesis (RUC)

We present in this section an extension for the analysis of the CSMD-SR algorithm, introduced
in the last chapter, when applying it to solve sparse recovery problem of the form (2.1.2). This
section is justified by the introduction of a new condition on the regularity of the objective function
g, that is linked to the notion of uniform convexity [48, 124–127]. We replace the quadratic lower
bound assumption verified by the objective function g by a higher order polynomial lower bound.
As discussed in the previous chapter, we will see that the Q(λ, ψ) condition and the new lower
bound assumption can be integrated to establish a new assumption, similar to our approach with
the RSC assumption. Before introducing this general assumption, we present for the sake of clarity
a definition of uniform convexity for a differentiable function h.

Definition 3.2.1 Let X be a convex closed subset of an Euclidean space E. A differentiable function
h : X → R is said to be (µ, p)-uniformly convex on X if there exists p ≥ 2 and µ > 0 such that
∀x, y ∈ X,

h(x)− h(y)− ⟨∇h(y), x− y⟩ ≥ µ

p
∥x− y∥p. (3.2.1)

Note that this definition simply reduces to µ-strong convexity when h is (µ, 2)-uniformly convex.
Recall that in the previous chapter, the Reduced Strong Convexity (RSC) assumption was introduced
to offer a comprehensive framework for analyzing sparse problems across various setups of sparsity
structures. The RSC assumption takes it origins from Lemma 2.4.7 where the function µ(x) = µ

2x
2 is

used to provide the quadratic lower bound on the suboptimality. This section is devoted to give the
analysis of the CSMD-SR algorithm when the objective function g satisfies the minoration condition
presented in Lemma 2.4.7 using µ(x) = µ

px
p with p > 2. This leads us to introduce the Reduced

Uniform Convexity assumption (RUC).

Assumption [RUC] For a general norm ∥ · ∥ and two constants p > 2 and q ∈ [1, 2) such that
1/p+ 1/q = 1, there exist δ ≥ 1, and problem dependent positive constants ν, ρ, α such that as long
as feasible solution x̂ ∈ X to the composite problem (2.2.4) satisfies

∥x̂− x∗∥ ≤ RRUC := Γp,n,∥·∥ ·
(
ναp

ρp−1

) 1
p−2

and Fκ(x̂)− Fκ(x∗) ≤ υ,

it holds that

∥x̂− x∗∥ ≤ δκ−1
[
ρs

q
2κq + υ

]
, (3.2.2)

where Γp,n,∥·∥ is a problem dependent constant.
In line with our approach in the previous chapter, where the CSMD-SR algorithm was formulated
based on the RSC assumption, we will now leverage the RUC assumption in the following sections.
This will allow us to explore new parameter choices aimed at adapting the multistage algorithm for
this updated framework.

Remark 3.2.1 Notice that when taking p = 2, we retrieve assumption RSC. The maximal radius
RRUC on which the assumption can hold goes to infinity, meaning that the condition holds on Rn,
while the final bound on ∥x̂− x∗∥ remains unchanged. This is not surprising as assuming uniform
convexity around the optimum tends to assuming strong convexity around the optimum when p goes
to 2.
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3.2.1 An example motivating the RUC assumption

In this section we motivate the use of the RUC assumption by studying a theoretical example. We
place ourselves in the ”vanilla” sparsity setting that has been thoroughly studied in Section 2.4.5 of
the previous chapter. Consider X a convex set such that X ⊂ E = Rn, and we have ∥ · ∥ = ∥ · ∥1.
Our objective is to accurately recover an s-sparse unconditional ground truth x∗. Recall that these
assumptions are made in our analysis :

• the stochastic gradients ∇G(·, ω) are assumed to be ν-Lipschitz almost surely, i.e.,

∀x, x′ ∈ X, ∥∇G(x, ω)−∇G(x′, ω)∥∞ ≤ L(ω)∥x− x′∥1, L(ω) ≤ ν, a.s.. (3.2.3)

• for some Σ ∈ Sn+, g is lower bounded around x∗ such that

∀x ∈ X, g(x)− g(x∗) ≥
µ

p
∥x− x∗∥pΣ. (3.2.4)

• There exists two positive constants λ, ψ, such that condition Q(λ, ψ) holds for the positive
definite matrix Σ.

Let us note initially that the first assumption inherently suggests that the objective function g
exhibits ν-smoothness. When combined with the fact that the optimal point x∗ is unconditional, it
follows that the subsequent inequality holds true

∀x ∈ X, g(x)− g(x∗) ≤
ν

2
∥x− x∗∥21. (3.2.5)

Additionally, recall that both of the following results are valid : ∀x ∈ Rn, ∥x∥21 ≤ n∥x∥22 and

∥x∥Σ =
√
xTΣx = ∥Σ1/2x∥2. These relations enable us to recast the second assumption in the

following manner:

∀x ∈ X, g(x)− g(x∗) ≥
µςmin(Σ)

p/2

pnp/2
∥x− x∗∥p1, (3.2.6)

where ςmin(Σ) represents the smallest eigenvalue of the matrix Σ.
Simple calculations reveal that (3.2.5) and (3.2.6) cannot be both true for all elements of X. The
first and second assumptions are, however, valid whenever x ∈ X statisfies the following condition

∀x ∈ X, ∥x− x∗∥1 ≤

(
pν

2µ

(
n

ςmin(Σ)

)p/2) 1
p−2

=: R. (3.2.7)

This indicates that the compatibility of the first and second assumptions is confined to a particular
region within X of radius R.
Almost analogously, we can draw few consequences from the last assumption leading to assumption
RUC being true. The first consequence being that s-sparsity of x∗ and condition Q(λ, ψ) being true
for some Σ ≽ 0 ensures that for any point x̂ ∈ X the following inequality holds true:

∥x̂∥1 − ∥x∗∥1 ≥ ψ∥x̂− x∗∥1 −
√
s

λ
∥x̂− x∗∥Σ.
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The precedent inequality is obtained by a direct application of the inequality (2.4.25) presented in
the last chapter and adapted to our ”vanilla” sparsity setting. The second one is that lower bound
(3.2.4) being true implies that as soon as x̂ is such that Fκ(x̂)− Fκ(x∗) ≤ υ, one has

υ ≥ µ

2p
∥x̂− x∗∥pΣ + κ

(
ψ∥x̂− x∗∥1 −

√
s

λ
∥x̂− x∗∥Σ

)
≥ −1

2
max
t≥0

{
2κ

√
s

λ
t− µ

p
tp
}
+ κψ∥x̂− x∗∥1

= −
(2κ
√
s/λ)q

2qµq−1
+ κψ∥x̂− x∗∥1,

since the Fenchel-Legendre transform of function t 7→ µ
p t
p is t 7→ 1

qµq−1 t
q where q is such that

p−1 + q−1 = 1. The last inequality can then be rewritten as

∥x̂− x∗∥1 ≤
1

ψ

[
υ

κ
+

1

q

(2κ
µ

)q−1( s
λ

) q
2

]
,

as long as x̂ is at a ∥ · ∥1-radius of at most

R =

(
pν

2µλp/2

(
n
√
λ√

ςmin(Σ)

)p) 1
p−2

.

Remark 3.2.2 In the proposed motivating example, assumption RUC holds for ∥ · ∥ = ∥ · ∥1 and

δ = 1
ψ , ρ = 1

q

(
2

µλp/2

)q−1
, α =

√
λ/ςmin(Σ), and Γp,n,∥·∥ = pnp/(p−2)/4.

3.2.2 Prescribed choice of parameter and convergence results

In this section, we present the analysis of the CSMD-SR algorithm, focusing on its adaptation to
the new setting where the RUC Assumption is valid. Similar to the analysis provided in the last
chapter, the CSMD-SR algorithm is characterized by two distinct phases: a Preliminary phase and
an Asymptotic phase. Accordingly, we will outline a convergence analysis and will prescribe a choice
of parameter that is associated to each phase. For any stage k ≥ 1, we introduce the notations

κ
(P )
k and m

(P )
k to denote the penalization and length of the k-th stage in the CSMD-SR algorithm’s

Preliminary phase, respectively. Similarly, κ
(A)
k and m

(A)
k refer to the penalization and length of the

k-th stage in its Asymptotic phase.
Next lemma provides the theoretical guarantees for the multistage method when applied in solving
the sparse recovery problem.

Lemma 3.2.1 Assume that problem’s parameters and the algorithm’s initialization point x0 are
such that R := ∥x0 − x∗∥ verifies

r0 ≤ R ≤ RRUC ∧R(P ), (3.2.8)

where
r0 := C1(p)δ

√
sρ

p−1
p ν−1/pσ

2/p
∗ and R(P ) := 1

4(p−1)
p−1
p−2

(ρp−1ν)
1

p−2 .
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This ensures that both the RUC Assumption and some other condition that will be discussed in the
proof of the Lemma are verified.

Consider the size of the Preliminary phase defined as K1 :=
⌈
log2

(
2R
r0

)⌉
. Now for k ∈ {1, . . . ,K1}

and t ≥ 4

√
2 + ln

(
m

(P )

K1

)
we define the value of the penalization parameter chosen at the k-th stage

and the length of the k-th stage of the Preliminary phase such as

κ
(P )
k :=

1√
s

(
R2
k−1ν (4Θ + 60t)

m
(P )
k ρ(q − 1)

) p−1
p

and m
(P )
k :=

⌈
4ppp

(p− 1)p−1
δps

p
2 ρp−1ν (4Θ + 60t)R2−p

k−1

⌉
,

where the sequence (Rk)k≥0 verifies the following recursion

Rk+1 =
1

2
Rk +

C0(p)σ
2
∗

ν

δ√sρ p−1
p

R
p−1
p

k

p

, and R0 = R.

Given this setup, for any k ∈ {1, . . . ,K1}, the approximate solution x̂k
m

(P )
k

computed at the end of

the k-th stage of the CSMD-SR algorithm satisfies with probability ≥ 1− 4ke−t

∥x̂k
m

(P )
k

− x∗∥ ≤ Rk ≤ 2−kR+ 1
2C1(p)δν

− 1
pσ

2
p
∗
√
sρ

p−1
p . (3.2.9)

In particular, the estimate x̂K1

m
(P )

K1

computed after K1 stages of the preliminary phase, satisfies with

probability at least 1− 4K1e
−t

∥x̂K1

m
(P )

K1

− x∗∥ ≤ C1(p)σ
2
p
∗ δ

√
sρ

p−1
p ν

− 1
p = r0. (3.2.10)

The values of the ’constants’ C0(p) and C1(p) can be found in the proof of the lemma.

The analysis of the Preliminary phase presented in Lemma 3.2.1 demonstrates that under the
RUC Assumption, the stage lengths exhibit exponential growth with the stage count. This contrasts
with the behavior appearing under the RSC Assumption, where stage lengths remain constant. As a
result, the linear decay observed in the Preliminary phase under the RSC Assumption does not occur
in analyses based on the RUC Assumption. This is presented later in the manuscript in Theorem 3.2.1.

Now we assume that the Preliminary phase of the algorithm is terminated, in other words that
we have completed K1 stages of the Preliminary phase, we transition to analysis of the Asymptotic
phase. For the sake of simplicity, the analysis is provided in the mini-batch setting.

Lemma 3.2.2 Recall that the initial radius verifies r0 ≤ R ≤ RRUC ∧ R(P ) as defined in Lemma
3.2.1. Consider the size of the Asymptotic phase defined as

K2 := max

 k
∣∣∣ k∑
i=1

m
(A)
i ℓi ≤ N −

K1∑
i=1

m
(P )
i

 .
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Now for k ∈ {1, . . . ,K2} and t ≥ 4

√
2 + ln

(
m

(P )

K2

)
we define the value of the penalization parameter,

the length of the stages and the batch-size chosen at the k-th stage of the Asymptotic phase such as

κ
(A)
k = 2−k(p−1)C2(p)

(
σ2∗

s
p

2(p−1) ρν

) p−1
p

, m
(A)
k =

⌈
2k(p−2)C3(p)δ

2(νρ)
2(p−1)

p s(4Θ + 60t)σ
2(2−p)

p
∗

⌉
,

(3.2.11)

ℓk =
⌈
2kpC4(p)Θ

⌉
.

We set the sequence (rk)k≥0 such that it verifies the following recursion

rk = 2−kr0, and r0 = C1(p)σ
2
p
∗ δ

√
sρ

p−1
p ν

− 1
p .

Given this setting, the approximate solution produced by the CSMD-SR Algorithm denoted x̂k
m

(A)
k

,

satisfies at the end of the k-th stage of the Asymptotic phase, for k ∈ {1, . . . ,K2}, with probability
≥ 1− 4(K1 + k)e−t, ∥x̂k

m
(A)
k

− x∗∥ ≤ rk, implying that

∥x̂k
m

(A)
k

− x∗∥ ≤

(
C5(p)σ

2
∗δ

2pspρ2(p−1)Θ(4Θ + 60t)

Nk

) 1
2(p−1)

, (3.2.12)

where Nk =
∑k

i=1m
(A)
i ℓi is the total count of oracle calls for k asymptotic stages. The values of the

constants C2(p), C3(p), C4(p), C5(p) are provided in the proof of the lemma.

Similar to the result appearing in the first lemma, Lemma 3.2.2 shows that during the Asymptotic
phase both the length of the stages and the minibatch size grow exponentially with the stage count.

Now we present the main result of the current analysis. In the following theorem, we present the
rate of recovery achieved by the CSMD-SR algorithm under the RUC assumption when the sample
size N is fixed in advance.

Theorem 3.2.1 Assume that the total sample budget satisfies N ≥ m
(P )
1 , so that at least one stage

of the Preliminary phase of the CSMD-SR Algorithm is completed, then for t ≥ 4
√
2 + ln(m

(A)

K2
), the

corresponding solution x̂
(b)
N of the CSMDR-SR algorithm satisfies with probability at least 1− 4(K1 +

K2)e
−t

∥x̂(b)N − x∗∥ ≤

(
C6(p)δ

ps
p
2 ρp−1ν(Θ + t)

N

) 1
p−2

+

(
C7(p)σ

2
∗δ

2pspρ2(p−1)Θ(Θ + t)

N

) 1
2(p−1)

.

where K2 := max
{
k
∣∣∑k

i=1m
(A)
i ℓi ≤ N −

∑K1
i=1m

(P )
i

}
is the count for the number of stages of

the Asymptotic phase of the algorithm. Value of C6(p) and C7(p) can be found in the proof of the
theorem.

Remark 3.2.3 At first glance there seems to be a discrepancy between the settings where p = 2
and p > 2 since the term related to the Preliminary phase in the bound of Theorem 3.2.1 exhibits
a sublinear decay whereas the same term of Theorem 2.2.1 exhibits a linear decay. This difference
arises due to the majoration made in the proof of the theorem in equation (3.3.10) to obtain equation
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(3.3.11). Indeed, if we look back at (3.3.10) when p is close to 2 we have 2k(p−2) − 1 ∼
p→2

k(p− 2)

and similarly 2p−1 − 1 ∼
p→2

p− 2. Plugging everything together, we have N ≲ m0k, which ultimately

leads to the bound (2.4.23) represented in the preceding chapter.

Remark 3.2.4 In the same way as the CSMD-SR algorithm can be made adaptive to the quantity
ρs under the RSC assumption, it can also made adaptive to the quantity ρs

q
2 by using Lepski’s

adaptation protocole under the RUC assumption. Note that the algorithm can also be made adaptive
to the uniform convexity parameter p since the convergence bounds are monotone in p.

3.3 Appendix: proofs.

3.3.1 Proof of Lemma 3.2.1

Proof.

1o. First let us start by proving that ∀k ≥ 0, we have Rk ≤ 2−kR+ r0/2.

Set α = C0(p)σ
2
∗δ
p√spρp−1ν−1, and let us study the behaviour of the sequence

Rk =
Rk−1

2
+

α

Rp−1
k−1

=: f(Rk−1) ∀k ≥ 1, R0 = R.

One can easily check that function f is convex and admits a minimum at R := (2(p− 1)α)
1
p . For

any initial radius R0 > 0, we have ∀k ≥ 0, Rk+1 = f(Rk) ≥ f(R), where f(R) = q
2 (2(p− 1)α)

1
p , we

thus have ∀k ≥ 1, Rk ≥ q
2 (2(p− 1)α)

1
p . Then, by using the precedent result, we can upper bound

R
−(p−1)
k−1 as follows, R

−(p−1)
k−1 ≤

(
2
q

)p−1
(2(p− 1)α)

− 1
q . We have then shown that

∀k ≥ 1, Rk = f(Rk−1) ≤
1

2
Rk−1 +

(
2

q

)p−1

(2(p− 1))
− 1

q α
1
p

By plugging the value of α into the last inequality and by setting

C1(p)/4 := C0(p)
1/p

(
2

q

)p−1

(2(p− 1))
− 1

q

we obtain that

∀k ≥ 1, Rk ≤
1

2
Rk−1 +

r0
4
. (3.3.1)

Now by invoking the recursive relationship of the sequence (Rk)k≥0 and last inequality, we immediately
have that

∀k ≥ 1, Rk ≤ 2−kR+
r0
4

k−1∑
i=0

2−i ≤ 2−kR+
r0
2
. (3.3.2)

89



3.3. APPENDIX: PROOFS.

2o. We provide a brief explanation of the idea of the proof. Observe that under the hypothesis
validating Proposition 2.2.1, for t ≥ 4

√
2 + ln (m), we have with probability at least 1− 4e−t, for

x̂m an approximate solution obtained after having applied m-step of the CSMD algorithm, that the
following inequality holds true

Fκ(x̂m)− Fκ(x∗) ≤
R2

mγ
(Θ + 15t) +

κR

m
+ σ2∗γ

(
7 +

24t

m

)
:= υ.

Recall that with the choice γ = (4ν)−1, the quantity υ becomes

υ =
R2ν

m
(4Θ + 60t) +

κR

m
+
σ2∗
ν

(
7

4
+

6t

m

)
.

We can now use the Reduced Uniform Convexity assumption since the radius R is such that R ≤ RRUC.
Therefore the above value of υ together with result (3.2.2) results in

∥x̂m − x∗∥ ≤ δ

[
κq−1s

q
2 ρ+

R2ν

κm
(4Θ + 60t) +

R

m
+
σ2∗
κν

(
7

4
+

6t

m

)]
. (3.3.3)

The rest of the proof is carried out by induction. It consists in applying result (3.3.3) for each stage
of the algorithm and choosing its parameters accordingly to the statement of Lemma 3.2.1.
First note that initial point x0 satisfies x0 ∈ XR(x∗) with probability 1 by definition. Now suppose
that the initial point xk0 = x̂k−1

mk−1
of the kth stage of the method satisfy xk0 ∈ XRk−1

(x∗) with

probability 1−4(k−1)e−t. In other words, there is a set Bk−1 ⊂ Ω, with Prob(Bk−1) ≥ 1−4(k−1)e−t,
such that for all ωk−1 = [ω1; ...;ωm(P )

k−1

] ⊂ Bk−1 one has xk0 ∈ XRk−1
(x∗). Let us show that upon

termination of the kth stage x̂k
m

(P )
k

satisfy ∥x̂k
m

(P )
k

− x∗∥ ≤ Rk with probability 1− 4ke−t. By result

(3.3.3) we conclude that for some Ωk ⊂ Ω, Prob(Ωk) ≥ 1− 4e−t, solution x̂k
m

(P )
k

after m
(P )
k iterations

of the stage satisfies, for all for all ωk = [ω
m

(P )
k−1+1

, ..., ω
m

(P )
k

] ∈ Ωk,

∥x̂k
m

(P )
k

− x∗∥ ≤ δ

[
κ
(P )
k

q−1
s

q
2 ρ+

R2
k−1ν

κ
(P )
k m

(P )
k

(4Θ + 60t) +
Rk−1

m
(P )
k

+
σ2∗

κ
(P )
k ν

(
7

4
+

6t

m
(P )
k

)]
. (3.3.4)

We now choose κ
(P )
k in order to minimize the first two terms of equation (3.3.4), i.e.,

κ
(P )
k =

1√
s

(
R2
k−1ν (4Θ + 60t)

m
(P )
k (q − 1)ρ

) 1
q

Plugging the parameter value into (3.3.4) gives

∥x̂k
m

(P )
k

− x∗∥ ≤ δ
[
qR

2
p

k−1

√
sρ

1
q

(
ν (4Θ + 60t)

(q − 1)m
(P )
k

) 1
p

+
Rk−1

m
(P )
k

+
σ2∗

√
s

νR
2
q

k−1

(
7

4
+

6t

m
(P )
k

)(
(q − 1)ρm

(P )
k

ν(4Θ + 60t)

) 1
q ]
. (3.3.5)

Now observe that by choosing the length of each stage such that ∀k ∈ {1, . . . ,K1}

m
(P )
k =

⌈(
4pδ

√
sρ

p−1
p

)p
ν(p− 1)1−p (4Θ + 60t)R2−p

k−1

⌉
,
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we have

m
(P )
k ≥

(
4p

√
sρ

p−1
p δ
)p
ν(p− 1)1−p (4Θ + 60t)R2−p

k−1,

the value is specifically chosen to bound the first term of (3.3.5) by
Rk−1

4 . We will now establish

that the second term is likewise bounded by
Rk−1

4 . Let us introduce K1 := log2

(
2R
r0

)
such that

K1 = ⌈K1⌉. Recall from the initial part of the proof that we proved

∀k ∈ {1, . . . ,K1}, Rk−1 ≤ 2−k+1R+
r0
2
.

Coupling the latter with the choice of the initial point x0 such that R ≥ r0 and

2−K1+1R ≥ 2−K1R =
r0
2

≥ 2−K1R

boils down to state that

∀k ∈ {1, . . . ,K1}, Rk−1 ≤ 2−k+2R. (3.3.6)

By using (3.3.6), the assumption R ≤ RRUC ∧ R(P ) and p ≥ 2, we immediately obtain that the
following inequalities holds true

Rp−2
k−1 ≤

(
2(−k+2)R(P )

)p−2

≤ 2−k(p−2)(p− 1)1−p(ρp−1ν)−1..

The last inequality gives us that

(4p
√
sδ)pρp−1ν(p− 1)1−pR2−p

k−1 ≥ 2k(p−2)(4p
√
sδ)p ≥ 1,

since s, δ ≥ 1, p ≥ 2 and k ∈ {1, . . . ,K1}. We have just proved that from the latter choice of the

length of each stages of the Preliminary phase m
(P )
k we have

m
(P )
k ≥ (4Θ + 60t) > 60t > 339,

this implies that at the same time the following inequalities holds true

Rk−1

m
(P )
k

≤ Rk−1

4
, and

6t

m
(P )
k

≤ 1

4
.

By bringing all these results together we can show that

∥x̂k
m

(P )
k

− x∗∥ ≤ Rk−1

2
+

2σ2∗δ
√
s

νR
2
q

k−1

(
(q − 1)ρm

(P )
k

ν(4Θ + 60t)

) 1
q

(3.3.7)

By using the fact that for all x ≥ 1, ⌈x⌉ ≤ 2x, we can bound m
(P )
k and obtain

∥x̂k
m

(P )
k

− x∗∥ ≤ Rk−1

2
+
σ2∗
ν

δp
√
s
p
ρp−1

Rp−1
k−1

qp−12
1
q
+2p−1︸ ︷︷ ︸

=:C0(p)

= Rk. (3.3.8)

We conclude that x̂k
m

(P )
k

∈ XRk
(x∗) for all ω

k ∈ Bk = Bk−1 ∩ Ωk, and by application of the union

bound we obtain
Prob(Bk) ≥ Prob(Bk−1)− Prob(Ω

c
k) ≥ 1− 4ke−t.

Proof of results (3.2.9) and (3.2.10) follows immediately by bounding the sequence (Rk)k≥0 with
(3.3.2) and plugging the value of K1. This concludes the proof of the lemma. □
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3.3.2 Proof of Lemma 3.2.2

Proof. Note that proof of Lemma 3.2.2 is very similar to the proof of Lemma 3.2.1. It starts
with the exact same arguments as invoked in the precedent proof except that now we consider the

sequence (rk)k≥0 and we replace at each stage the sub-Gaussian parameter σ2∗ by σ2∗ =
18σ2

∗Θ
ℓk

since
we are using mini-batches of increasing size ℓk (cf. Lemma 2.4.3 presented in the previous chapter).
In other words, for k ∈ {1, . . . ,K2} the claim (3.3.4) becomes

∥x̂k
m

(A)
k

− x∗∥ ≤ δ

[
κ
(A)
k

q−1
s

q
2 ρ+

νr2k−1

m
(A)
k κ

(A)
k

(4Θ + 60t) +
rk−1

m
(A)
k

+
18σ2∗Θ

κ
(A)
k ℓkν

(
7

4
+

6t

m
(A)
k

)]
,

We choose the parameters κ
(A)
k and m

(A)
k using the same arguments as presented in the proof of

Lemma 3.2.1, except that now, after having chosen κ
(A)
k and plugged its value in the previous

relationship we obtain

∥x̂k
m

(A)
k

− x∗∥δ

qr 2
p

k−1

√
sρ

1
q

(
ν (4Θ + 60t)

(q − 1)m
(P )
k

) 1
p

+
rk−1

m
(P )
k

+
18σ2∗Θ

κ
(A)
k ℓkν

(
7

4
+

6t

m
(P )
k

)
The parameter m

(A)
k is then chosen to bound each of the appearing first two terms of the last

inequality by
rk−1

8 . The latter choice of parameter still implies that

rk−1

m
(A)
k

≤ rk−1

8
, and

6t

m
(A)
k

<
1

4

since r0 ≤ R ≤ RRUC ∧R(P ), and it results in the following bound

∥x̂k
m

(A)
k

− x∗∥ ≤ rk−1

4
+

36δσ2∗Θ

κ
(A)
k ℓkν

.

Then we choose ℓk = ⌈ 144δσ2
∗Θ

rk−1κ
(A)
k ν

⌉ in order to bound the last term by
rk−1

4 , this finally results in

∀k ∈ {1, . . . ,K2}, ∥x̂k
m

(A)
k

− x∗∥ ≤ rk−1

4
+
rk−1

4
=
rk−1

2
= rk = 2−kr0. (3.3.9)

This immediately results in (3.2.12). Values of the constants are provided below for the interested
reader:

C2(p) =

(
C1(p)

4q

)p−1

, C3(p) = 2(p− 1)(4q)pC1(p)
2−p, C4(p) = 72× (4q)p−1

C1(p)p
.

Now let us express the total count of oracle call after k stages of asymptotic stage.

Nk =
k∑
i=1

m
(A)
i ℓi = C3(p)C4(p)Θ(4Θ + 60t)sδ2(ρν)

2
q σ

2(q−2)
q

∗

k∑
i=1

22i(p−1)

≤ C3(p)C4(p)

4p−1 − 1
Θ(4Θ + 60t)sδ2(ρν)

2
q σ

2(q−2)
q

∗ 22(p−1)k.

By inverting the last inequality, we express 2−k as a function of Nk up to a constant depending only
on p, and result (3.2.12) follows after plugging this value and the value of r0 within result (3.3.9).
The multiplicative term appearing in (3.3.9) and denoted C5(p) is as follows :

C5(p) :=
C1(p)

2(p−1)C3(p)C4(p)

4p−1 − 1
.

□
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3.3.3 Proof of Theorem 3.2.1

Proof. Let assume that the “total observation budget” N is such that only the preliminary phase

of the procedure is implemented. This is the case when either
∑K1

i=1m
(P )
i ≥ N , or

∑K1
i=1m

(P )
i < N

and
∑K1

i=1m
(P )
i + m

(A)
1 ℓ1 > N . The output x̂N of the algorithm is then the last update of the

Preliminary phase, and by Lemma 3.2.1 it satisfies ∥x̂N − x∗∥ ≤ Rk ≤ 2−k+1R where k is the count
of completed stages. In the first case we have that

N ≤
k∑
i=1

m
(P )
i < 2

q−1

(
4q
√
sρ

1
q δ
)p
ν (4Θ + 60t)

k−1∑
i=0

R2−p
i

Note that a proof by induction readily demonstrates that ∀k ∈ {1, . . . ,K1}, we have 2−kR ≤ Rk.
Consequently, it follows that 2−k(p−2)Rp−2 ≤ Rp−2

k , which yields the following result:

N < 2
q−1

(
4q
√
sρ

1
q δ
)p
ν (4Θ + 60t)R2−p

k−1∑
i=0

2i(p−2)

= 2
q−1

(
4q
√
sρ

1
q δ
)p
ν (4Θ + 60t)R2−p 2

k(p−2) − 1

2p−2 − 1
(3.3.10)

< 2
q−1

(
4q
√
sρ

1
q δ
)p
ν (4Θ + 60t)R2−p 2k(p−2)

2p−2 − 1
. (3.3.11)

The following bound can be obtained by rearranging the last equation

2−k ≤ 1

R

(
2
q−1

(
4q
√
sρ

1
q δ
)p ν (4Θ + 60t)

N(2p−2 − 1)

) 1
p−2

.

Finally, we have shown that with probability at least 1− 4ke−t

∥x̂N − x∗∥ ≤

(
C6(p)δ

ps
p
2 ρp−1ν(Θ + t)

N

) 1
p−2

, (3.3.12)

where C6(p) := 30(p− 1) (8q)p

2p−2−1
.

On the other hand, when
∑K1

i=1m
(P )
i < N <

∑K1
i=1m

(P )
i + m

(A)
1 ℓ1, by using the definition of

m
(P )
i ,K1,m

(A)
1 and ℓ1, and by giving a similar reasoning as stated above, one has

N < 4p−1C4(p)C3(p)δ
2(νρ)

2
q sΘ(4Θ + 60t)σ

2(q−2)
q

∗ + 2
q−1

(
4q
√
sρ

1
q δ
)p
ν (4Θ + 60t)R2−p 2

K1(p−2)

2p−2 − 1
.

Recall that we have

K1 =

log2
 2Rν

1
p

C1(p)δσ
2
p
∗
√
sρ

1
q

 ≤ log2

 2Rν
1
p

C1(p)δσ
2
p
∗
√
sρ

1
q

+ 1.

Plugging this into the last equation and using the fact that 2Θ ≥ 1, we have

N <
[
4p−1C4(p)C3(p) +

24p+5qp

(q − 1)(2p−2 − 1)C1(p)p−2︸ ︷︷ ︸
=:C̃7(p)

]
δ2(νρ)

2
q sΘ(4Θ + 60t)σ

2(q−2)
q

∗ .

93



3.3. APPENDIX: PROOFS.

Or similarly,

ν
− 1

p <

 C̃7(p)δ
2ρ

2
q sΘ(4Θ + 60t)σ

2(q−2)
q

∗
N


1

2(p−1)

.

Note that as the Preliminary phase is terminated, bound (3.2.10) is valid with probability greater
than 1− 4K1e

−t, this together with the previous inequality results in the following bound

∥x̂N − x∗∥ ≤ C1(p)σ
2
p
∗ δ

√
sρ

1
q ν

− 1
p ≤

(
C7(p)σ

2
∗δ

2pspρ2(p−1)Θ(Θ + t)

N

) 1
2(p−1)

where C7(p) := 60C1(p)
2(p−1)C̃7(p).

Now, consider the case where at least one asymptotic stage has been completed. When∑K1
i=1m

(P )
i > N

2 we still have N ≤ 2
∑K1

i=1m
(P )
i , so that the bound (3.3.12) holds for the ap-

proximate solution x̂
(b)
N at the end of the Asymptotic stage with the same multiplicative constant.

Otherwise, the number of oracle calls Nk of asymptotic stages satisfies Nk ≥ N/2, and by (3.2.12)
this implies that with probability ≥ 1− 4(K1 +K2)e

−t,

∥x̂(b)N − x∗∥ ≤

(
120C5(p)σ

2
∗δ

2pspρ2(p−1)Θ(Θ + t)

N

) 1
2(p−1)

.

We then set C7(p) := C7(p)
∨
120C5(p) to obtain the value of the last multiplicative term.

To summarize, in both cases, after termination of the algorithm, the bound of Theorem 3.2.1
holds with probability at least 1− 4(K1 +K2)e

−t. This concludes the proof. □
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Chapter 4

Accelerated Stochastic Approximation
with State-Dependent Noise

Chapter Abstract

We consider a class of stochastic smooth convex optimization problems under rather general
assumptions on the noise in the stochastic gradient observation. As opposed to the classical problem
setting in which the variance of noise is assumed to be uniformly bounded, herein we assume that
the variance of stochastic gradients is related to the “sub-optimality” of the approximate solutions
delivered by the algorithm. Such problems naturally arise in a variety of applications, in particular,
in the well-known generalized linear regression problem in statistics. However, to the best of our
knowledge, none of the existing stochastic approximation algorithms for solving this class of problems
attain optimality in terms of the dependence on accuracy, problem parameters, and mini-batch size.

We discuss two non-Euclidean accelerated stochastic approximation routines—stochastic ac-
celerated gradient descent (SAGD) and stochastic gradient extrapolation (SGE)—which carry a
particular duality relationship. We show that both SAGD and SGE, under appropriate conditions,
achieve the optimal convergence rate, attaining the optimal iteration and sample complexities
simultaneously. However, corresponding assumptions for the SGE algorithm are more general; they
allow, for instance, for efficient application of the SGE to statistical estimation problems under
heavy tail noises and discontinuous score functions. We also discuss the application of the SGE to
problems satisfying quadratic growth conditions, and show how it can be used to recover sparse
solutions. Finally, we report on some simulation experiments to illustrate numerical performance of
our proposed algorithms in high-dimensional settings.

4.1 Introduction

This paper focuses on the stochastic optimization problem given by

f∗ := min
x∈X

f(x) (4.1.1)

where X is a closed convex subset of a Euclidean space E and f : X → R is a smooth convex
function with Lipschitz continuous gradient, i.e., for some L ≥ 0,

0 ≤ f(y)− f(x)− ⟨∇f(x), x− y⟩ ≤ L

2
∥y − x∥2, ∀x, y ∈ X. (4.1.2)

We assume throughout the paper that the set of optimal solutions X∗ is nonempty.
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We consider the stochastic setting where only stochastic first-order information about f is
available for solving problem (4.1.1). Specifically, at the current search point xt ∈ X, a stochastic
oracle (SO) generates the stochastic operator G(xt, ξt), where ξt ∈ Ξ denotes a random variable, whose
probability distribution is supported on a set Ξ. We assume ξt is independent of x0, ..., xt, and {ξt}t≥0

are mutually independent. We assume that G(xt, ξt) is an unbiased estimator of g(xt) = ∇f(xt)
satisfying

Eξt [G(xt, ξt)] = g(xt) (4.1.3)

(expectation w.r.t. to the distribution ξt).
Stochastic approximation (SA) and stochastic mirror descent (SMD) methods are routinely used

to solve stochastic optimization problems; see, e.g., [33, 51, 104, 128]. More specifically, it was shown
in [33] that SMD can achieve the optimal sample complexity for general nonsmooth optimization
and saddle point problems. For smooth stochastic optimization problems, Lan [24, 129] introduced
an accelerated stochastic approximation (AC-SA), also known as stochastic accelerated gradient
descent (SAGD), which was obtained by replacing exact gradients with their unbiased estimators
in the celebrated accelerated gradient methods [54] (see also [130–133] for early developments). It
was shown in [24] that AC-SA achieves the optimal sample complexity for smooth, nonsmooth and
stochastic convex optimization (see [25, 26] for generalization to the strongly convex settings). It
should be noted that the original analysis of AC-SA in [24] was carried out under uniformly bounded
variance condition

Eξt [∥G(xt, ξt)− g(xt)∥2∗] ≤ σ2 (4.1.4)

where ∥ · ∥∗ is the norm conjugate to ∥ · ∥. However, it has been observed recently (see, e.g., [59,
87]) that this uniformly bounded variance condition is not necessarily satisfied in some important
applications in which the variance of the stochastic gradient depends on the search point xt. As a
motivation, consider the fundamental to Statistical Learning problem of parameter estimation in the
generalized linear regression (GLR) model in which one aims to estimate an unknown parameter
vector x∗ ∈ X ⊂ Rn given observations (ϕt, ηt),

ηt = u(ϕTt x
∗) + ζt, t = 1, 2, ..., (4.1.5)

where, in generalized linear models terminology, ηt ∈ R are responses, ϕt ∈ Rn are random regressors,
ζt ∈ R are zero-mean random noises which are assumed to be mutually independent and independent
of ϕt, and u : R → R is the (generally nonlinear) “activation function”. Then it follows directly that

E[ϕt(u(ϕ
T
t x

∗)− ηt)] = E[ϕt ζt] = 0. (4.1.6)

Thus, the problem of recovery of x∗ from observations ηt and ϕt may be formulated as a stochastic
optimization problem. Specifically, when denoting v : R → R the primitive of u, i.e., v′(t) = u(t)
and assuming that x∗ ∈ intX, (4.1.6) may be seen as as the optimality condition for the problem

min
x∈X

{
f(x) := E[v(ϕTx)− ϕTxη]

}
. (4.1.7)

Clearly, the gradient of f is given by g(x) = E[ϕ(u(ϕTx)− η)], and one of its unbiased stochastic

estimator is G(x,
=:ξ︷ ︸︸ ︷

(ϕ, ζ)) = ϕ(u(ϕTx)− η). Under mild assumptions, one can show (see Section 4.6.1)
that the noise

G(xt, (ϕt, ζt))− g(xt) = ϕt[u(ϕ
T
t xt)− u(ϕTt x

∗)]− ϕtζt + g(x∗)− g(xt)

98
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(here g(x∗) = 0) of the gradient observation G(xt, (ϕt, ζt)) at xt satisfies the condition

Eξt
[
∥G(xt, ξt)− g(xt)∥2∗

]
≤ σ2t (xt) = L[f(xt)− f∗] + σ2∗ (SN)

for some L, σ∗ > 0. In what follows, with some terminology abuse, we refer to (SN) and similar
conditions as state-dependent noise assumptions. More generally, if compared to the “uniform noise”
condition (4.1.4), (SN) may be seen as a refined assumption on the structure of the stochastic oracle.
Furthermore, one can easily verify that in various settings of the GLR problem, condition (SN) holds,
while condition (4.1.4) of uniformly bounded noise variance is violated (e.g., in the case of unbounded
X and linear u). Similar conditions have been recently introduced in the context of reduced variance
stochastic algorithms for finite sum minimization, see, e.g., [134–137] and references therein. Various
stochastic optimization problems in which similar state-dependent noise assumptions apply can also
be found in recent literature on machine learning [1, 59, 138] and reinforcement learning, see, e.g.,
[139–142].

Motivated by these aforementioned statistical applications, Juditsky et al. [59] proposed an
SMD algorithm that exploits state-dependent noise assumption to attain optimal convergence rates
in the situation of “dominating stochastic error”, i.e., when the amplitude of the error of the
gradient observation is comparable to the amplitude of the gradient ∇f of the problem objective. In
the similar setting, the authors of [138] have recently established sharp lower complexity bounds
for stochastic optimization under state-dependent noise in the Euclidean setting for both general
and strongly convex situations. However, it is well-known that SMD is suboptimal in the so-call
mini-batch setting, where the noise of the gradient estimator is reduced by using a batch of samples.
This setting has been widely used for applications of stochastic optimization algorithms especially
under a distributed computing environment. To achieve the accelerated convergence, the application
of the classical SAGD algorithm of [24] to the state-dependent noise setting was the subject of
[138, 143, 144]. The authors of [138] proved (expected) optimal accuracy bound O

(
H/k2

)
after k

iterations for the “standard” SAGD under condition of uniform (for all ξ) H-Lipschitz continuity
on the stochastic operator G(·, ξ). However, this assumption impose significant limitations on the
form of the stochastic operator in statistical learning applications and is violated in the simple case
of unbounded (e.g., Gaussian) regressors ϕt, etc. To conclude, in spite of these efforts, to the best
of our knowledge, the question of building an optimal stochastic approximation routine of general
smooth convex optimization under state-dependent noise assumption (SN) (when only ∇f rather
than G(·, ξ) is Lipschitz continuous) has not received a complete answer.

4.1.1 Contributions and organization

Given the state of affairs, this paper focuses on designing accelerated algorithms and providing sharp
analysis for the general stochastic optimization problem (4.1.1) with state-dependent noise. Our
contribution is threefold.

1. We analyze the convergence rates of the generic (non-Euclidean) SAGD for solving stochastic
optimization with state-dependent noise. We show that under condition (SN), SAGD attains
a convergence rate

O

(
LR2

k2
+

LR2

km
+

√
LLR2

k
√
m

+

√
σ2∗R

2

km

)

where k is the number of iterations, R is the initial distance to the optimal solution, and m is
the batch size. The terms in the above bound are optimal, except for the third term which
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has a sub-optimal dependence on the batch size m. As a consequence, in order to achieve the
optimal iteration complexity O

(√
LR2/ϵ

)
, SAGD requires a larger batch size, resulting in a

sub-optimal sample complexity1

O

(√
LR2

ϵ
+

√
LLR3

ϵ3/2
+
R2σ2∗
ϵ2

)
.

However, imposing the condition of boundness of the second moment of the Lipschitz constant
of the gradient observation G(·, ξ) allows to improve the second term in the above sample
complexity bound to O (1/ϵ). The corresponding iteration complexity bound O

(√
LR2/ϵ

)
is

an improvement w.r.t. the bound O
(√

HR2/ϵ
)
of [138], and our assumption is more general

than the “uniform” Lipschitz continuity assumption in [138]. Moreover, unlike [138], our
analysis does not require the feasible region X to be a bounded set.

2. Under state-dependent noise assumption (SN) we analyze an alternative accelerated SA
algorithm—stochastic gradient extrapolation method (SGE). The gradient extrapolation
method was introduced in [145] by exchanging the primal and the dual variables in a game
interpretation of Nesterov’s accelerated gradient method (see [145] and Chapter 3 and 4 of
[129]). SGE uses the same sequence of points for both gradient estimations and output solutions.
This appears to be a significant advantage of the SGE over the SAGD in the present setting
and allows for direct “compensation” of the state-dependent noise term by the suboptimality
gap of approximate solutions. As a result, SGE achieves the optimal convergence rate after k
iterations

O

(
LR2

k2
+

LR2

km
+

√
σ2∗R

2

km

)
.

Consequently, it attains the optimal iteration complexity O
(√

LR2/ϵ
)
along with the optimal

sample complexity O
(√

LR2/ϵ+ LR2/ϵ+ R2σ2∗/ϵ
2
)
, as supported by lower bounds in [132,

138].

3. We propose a multi-stage algorithm with restarts for solving problems satisfying the quadratic
growth condition stating that for some µ > 0 and x∗ ∈ X,2

f(x)− f∗ ≥ µ

2
∥x− x∗∥2, ∀x ∈ X. (4.1.9)

We show that this algorithm achieves the optimal iteration complexity O
(√

L/µ ln(1/ϵ)
)

and the optimal sample complexity O
(√

L/µ ln(1/ϵ) + L/µ ln(1/ϵ) + σ2∗/(µϵ)
)
simultaneously.

1In what follows we refer to the total number N = N(ϵ) of calls to the stochastic oracle which are necessary for the
approximate solution x̂k after k = k(ϵ) iterations and N oracle calls to attain the expected (in)accuracy ϵ, i.e.,

E[f(x̂k)]− f∗ ≤ ϵ (4.1.8)

as sample (or information) ϵ-complexity of the method. We also call iteration ϵ-complexity the minimal iteration count
k such that (4.1.8) holds.

2We suppose for convenience that in this case the optimal solution x∗ is unique. Note that (4.1.9) can be seen as a
relaxation of the strong convexity assumption, i.e., for any x, y ∈ X,

f(y)− f(x)− ⟨∇f(x), y − x⟩ ≥ µ∥y − x∥2/2.

100



CHAPTER 4. ACCELERATED STOCHASTIC APPROXIMATION WITH STATE-DEPENDENT NOISE

Furthermore, we specify the multi-stage SGE to solve the sparse recovery problem. This
is done by incorporating hard-thresholding of the approximate solution at the end of each
algorithm stage to enforce the sparsity. The convergence results match the quadratic growth
setting up to a multiplicative factor of the sparsity level s, with only logarithmic dependence
on the dimension n. To the best of our knowledge, the corresponding convergence guarantees
are new to the optimization literature and lead to extremely efficient algorithms for sparse
recovery problems in the distributed setting.

Remaining sections of the paper are organized as follows. In Section 4.2, we formalize the general
problem statement and introduce the mini-batch setup. In Section 4.3, we study the SAGD method
for solving the general convex problem with state-dependent noise. Section 4.4 introduces SGE
and provides convergence guarantees in the general convex problem. We introduce the multi-stage
SGE for solving problems satisfying quadratic growth condition in Section 4.5. Section 4.6 further
extends the multi-stage SGE to be applied to the sparse recovery problem. Finally, in Section 4.7,
we present some results of a preliminary simulation study illustrating the numerical performance of
the proposed algorithms in the high-dimensional setting of sparse recovery. Proofs of the statements
are postponed until the appendix.

4.1.2 Notation

For any n ≥ 1, we use [n] to denote the set of integers {1, ..., n}. For x ∈ R, we let (x)+ = max(x, 0)
and (x)− = max(−x, 0). In what follows, E is a finite-dimensional real-vector (Euclidean) space.
Given a norm ∥ · ∥ on E, the associated dual norm ∥ · ∥∗ is defined as ∥z∥∗ := sup{⟨x, z⟩ : ∥x∥ ≤ 1}.
We define ω : E → R, the distance generating function, which is a continuously differentiable strongly
convex function with modulus 1. Without loss of generality, we assume that ω(x) ≥ ω(0) = 0 and
for some Ω ≥ 1,

ω(x) ≤ Ω
2 ∥x∥

2, ∀x ∈ E. (4.1.10)

Ideally, we want Ω to be “not too large”. Meanwhile, a desired distance generating function should
be “prox-friendly”, i.e., for any a ∈ E, the minimization problem

min
x∈X

{⟨a, x⟩+ ω(x)}

can be easily solved. Note that when ∥ · ∥ is the Euclidean norm, we can set ω(x) =
∥x∥22
2 , and the

corresponding Ω = 1. Another “standard” choice is ∥ · ∥ = ∥ · ∥1, ∥ · ∥∗ = ∥ · ∥∞, and one can choose
the distance generating function ω (cf. [109])

ω(x) = 1
2e lnn · n(p−1)(2−p)/p∥x∥2p, p = 1 + 1

lnn ;

the corresponding Ω satisfies Ω ≤ e2 lnn in this case.
Given an initialization x0 ∈ X, we define the x0-associated Bregman’s divergence of x, y ∈ X as

Vx0(x, y) = ω(y − x0)− ω(x− x0)− ⟨∇ω(x− x0), y − x⟩.

Clearly, for any y, x, x0 ∈ X, we have

Vx0(x0, y) ≤ Ω
2 ∥y − x0∥2 and Vx0(x, y) ≥ 1

2∥x− y∥2. (4.1.11)

We use the shorthand notation V (x, y) for Vx0(x, y) when x0 is clear in the content.
Unless stated otherwise, all relations between random variables are assumed to hold almost

surely.
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4.2 Problem statement

We summarize below the setting of the stochastic optimization problem and our assumptions.

4.2.1 Assumptions

The problem under consideration is a stochastic optimization problem (4.1.1) with a convex and
smooth objective function as given in (4.1.2).

We assume that stochastic oracle G(·, ·) is unbiased, i.e., satisfies (4.1.3). Furthermore, we
consider the following “state-dependent” oracle noise assumption.

• [State-dependent variance] We assume that for some L <∞,

Eξt
[
∥G(xt, ξt)− g(xt)∥2∗

]
≤ σ2t := L[f(xt)− f∗ − ⟨g(x∗), xt − x∗⟩] + σ2∗, t ∈ Z+, (SN)

where x∗ ∈ X∗.

Assumption (SN) can be further weakened to σ2t := L[f(xt)− f∗] + σ2∗. In the case of unconditional
minimizer x∗ ∈ intX, the latter condition is clearly equivalent to (SN). In the case of g(x∗) ̸= 0,
utilizing the relaxed assumption results in convergence guarantees which depend explicitly on
f(x0)− f∗. We use (SN) for the sake of convenience, the term ⟨g(x∗), xt− x∗⟩ in the right-hand side
when combined with smoothness of f allows us to upper bound the variance of G(x0, ξt) at x0 by
the term proportional to ∥x0 − x∗∥2; see, e.g., (4.4.8).

When proving the convergence rates for the stochastic variant of Nesterov’s accelerated gradient
descent method (SAGD; see Section 4.3), we also consider the following assumption:

• [Lipschitz continuous stochastic gradient] For each ξ ∈ Ξ, there exists a K(ξ) > 0, such that
Eξ[K(ξ)2] <∞ and

∥G(x, ξ)− G(y, ξ)∥∗ ≤ K(ξ)∥x− y∥, ∀x, y ∈ X. (LP)

This assumption relaxes the assumption in [138] that assumes G(·, ξ) is H-Lipschitz continuous for all
ξ ∈ Ξ. For instance, for GLR model with Gaussian/sub-Gaussian regressors ϕt, (LP) holds, but the
H-uniform Lipschitz continuous condition is violated. Nevertheless, (LP) is not a necessary condition
of Assumption (SN) since the latter one may hold in various situations of interest where G(·, ξ) is
not Lipschitz (and even not continuous). In Figure 4.1 we present the plot of the expectation in the
left-hand side of (SN) as a function of x for two choices of scalar discontinuous gradient observation
G1(x, ϕ) = ϕ ·u(ϕx) and G2(x, [ϕ, ζ]) = ϕ ·u(ϕx+ ζ) where ϕ and ζ are independent r.v. with Student
t4 distribution and u(t) = (12 +

√
|t|)sign(t).

Given the limitations of Assumption (LP), we will only use it partially in Section 4.3 in order to
improve the convergence rates of SAGD. In the following sections, we will propose an alternative
accelerated algorithm called SGE that does not rely on Assumption (LP) but attains stronger
convergence guarantees; see Section 4.4 for more details.

4.2.2 Mini-batch setup

We consider the mini-batch approach widely used in practice. Specifically, we assume that at each
search point ut, the stochastic oracle is called repeatedly, thus generating mt i.i.d. samples {ξt,i}mt

i=1,
mt being the number of oracle calls. Next, we compute the unbiased estimator Gt(ut) of g(ut),

Gt(ut) =
1

mt

mt∑
i=1

G(ut, ξt,i).
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Figure 4.1: Left plot: variance of the stochastic oracle G1(x, ξ) as function of x (solid line) and upper
bound 4σ2(0) + 3[f(x)− f(0)] (dashed line); right plot: variance of G2(x, ξ) as function of x (solid
line) and upper bound 2.3σ2(0) + 3[f(x)− f(0)] (dashed line).

We define filtration Ft = σ
(
u0, ξ0,1, ..., ξ0,m0 , ..., ξt,1, ..., ξt,mt

)
, so that

• random variables in {ξt,i}mt
i=1 are Ft-measurable.

• search points with index t which are deterministic functions of Gτ (uτ ), τ ≤ t − 1, are Ft−1-
measurable.3

We use the shorthand notation E⌈t⌉ to denote the conditional expectation with respect to the
filtration Ft.

Based on the state-dependent noise Assumption (SN), we have the following characterization of
the properties of the mini-batch estimator:

Lemma 4.2.1 The mini-batch estimator Gt satisfies

E⌈t−1⌉[∥Gt(ut)− g(ut)∥2∗] ≤
Ω

mt
·E⌈t−1⌉[∥Gt(ut, ξt,1)− g(ut)∥2∗], (4.2.1)

where Ω :=

{
1, when mt = 1

Ω, when mt ≥ 2,
and Ω is defined in (4.1.10). Consequently, under Assumption

(SN), we have

E⌈t−1⌉[∥Gt(ut)− g(ut)∥2∗] ≤
Ω

mt

{
L[f(ut)− f∗ − ⟨g(x∗), ut − x∗⟩] + σ2∗

}
. (4.2.2)

In the bound (4.2.2), one has Ω = 1 in the case of Euclidean setup (when ∥ · ∥ = ∥ · ∥∗ = ∥ · ∥2); in
the ℓ1-setup, one has Ω = O(lnn). One can easily see that, in general, the logarithmic factor is
unavoidable in this case. Indeed, when G(x, ξi) ∼ R(n) (are n-dimensional Rademacher vectors),
one has ∥G(x, ξi)∥∞ ≤ 1, while

E

∥∥∥∥∥ 1

m

m∑
i=1

G(x, ξi)

∥∥∥∥∥
2

∞

 ≍ lnn

m
.

3Note that ut here is a general place holder for a Ft−1-measurable search point. With a slight ambiguity of notation,
search points zt and xt in Algorithms 3 and 4 are Ft-measurable.
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On the other hand, for G(x, ξi) ∼ N (0, In), we have thatE[∥G(x, ξi)∥2∞] = 2 lnn, and 1
m

∑m
i=1 G(x, ξi) ∼

N (0, In/m) with

E

∥∥∥∥∥ 1

m

m∑
i=1

G(x, ξi)

∥∥∥∥∥
2

∞

 =
2 lnn

m
,

and there is no extra logarithmic factor in the bound (4.2.2) for the norm of the sum in this situation
(in a sense, it is “already paid” in the bound for the expectation of the norm of a summand).

In the following sections, we present accelerated algorithms equipped with mini-batches that
achieve the optimal iteration complexity for stochastic optimization with state-dependent noise.

4.3 SAGD for general convex problem with state-dependent noise

Algorithm 1 describes a mini-batch variant of the standard stochastic accelerated gradient descent
(SAGD) method. The SAGD method, also called accelerated stochastic approximation (AC-SA),
maintains three sequences of points. Specifically, {zt} is the sequence of “prox-centers” for the
prox-mapping updates (4.3.1b), and yt and xt are weighted averages of the past zt’s; {yt} is the
sequence of search points where stochastic gradients are estimated using mini-batches, and points
{xt} is the trajectory of approximate solutions (outputs) at each iteration.

Algorithm 3 Stochastic Accelerated Gradient Descent method (SAGD)

Input: initial point z0 = x0, nonnegative nonrandom parameters {βt} and {ηt}, and batch size
{mt}.
for t = 1, 2, . . . , do

yt = (1− βt)xt−1 + βtzt−1 (4.3.1a)

Gt =
1
mt

∑mt
i=1 G(yt, ξt,i).

zt = argmin
z∈X

{⟨Gt, z⟩+ ηtV (zt−1, z)}, (4.3.1b)

xt = (1− βt)xt−1 + βtzt, (4.3.1c)

end for

We start with the following characterization of the approximate solution xk of Algorithm 3.

Theorem 4.3.1 Suppose Assumption (SN) is satisfied. Let the algorithmic parameters βt and ηt
satisfy for some θt ≥ 0,

θtβtηt ≤ θt−1βt−1ηt−1, t = 2, ..., k (4.3.2a)

ηt > Lβt, t = 1, ..., k. (4.3.2b)

Furthermore, suppose that β1 = 1 and

θt(1− βt)(1 + rtL) ≤ θt−1, t = 2, ..., k. (4.3.3)

Then

θkE[f(xk)− f∗] + θkβkηkE[V (zk, x
∗)]

≤ θ1β1η1V (z0, x
∗) +

k∑
t=1

θtrtβtLLE[V (zt−1, x
∗)] +

k∑
t=1

θtrtσ
2
∗ (4.3.4)
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CHAPTER 4. ACCELERATED STOCHASTIC APPROXIMATION WITH STATE-DEPENDENT NOISE

where rt :=
βtΩ

2(ηt−Lβt)mt
and Ω is defined in Lemma 4.2.1.

Corollary 4.3.1 In the premise of Theorem 4.3.1, suppose that k ≥ 2, V (z0, x
∗) ≤ D2, and let

θt = (t+ 1)(t+ 2), βt =
3
t+2 , mt = m, and ηt =

η
t+1 with

η = max

4L,
6Ω(k − 1)L

m
,

√
9(k + 1)2ΩLL

m
,

√
2(k + 2)3Ωσ2∗

3D2m

 .

Then E[V (zt, x
∗)] ≤ 3D2 for all 1 ≤ t ≤ k, and

E[f(xk)− f∗] ≤ 12LD2

(k + 1)(k + 2)
+

6ΩLD2

(k + 2)m
+

18
√
ΩLLD2

(k + 1)
√
m

+
4
√

2Ωσ2∗D
2√

(k + 1)m
. (4.3.5)

Remarks. Bound (4.3.5) of Corollary 4.3.1 allows us to establish the complexity bounds for the
SAGD algorithm when solving a general convex problem with state-dependent noise. Let us first
consider the case when m = 1. In this case, we have Ω = 1, thus the total number of iterations/oracle
calls used by SAGD to find an ϵ-optimal solution, i.e., x̂ ∈ X such that E[f(x̂)− f∗] ≤ ϵ, is bounded
by

O

(√
LD2

ϵ
+

LD2

ϵ
+

√
LLD2

ϵ
+
D2σ2∗
ϵ2

)
. (4.3.6)

Considering the setting with L = O(L), as in the context of [138], this upper bound matches the
optimal sample complexity under Assumption (SN), supported by the lower bound in Theorem 4 of
[138].

In the mini-batch setting (where Ω = Ω), the bound in (4.3.5) means that in order to achieve

the optimal iteration complexity of O
(√

LD2/ϵ
)
, the batch size m ≥ max

{
1, kΩL

L , k
2ΩL
L , k

3Ωσ2
∗

D2L2

}
=

max
{
1, k

2ΩL
L , k

3Ωσ2
∗

D2L2

}
is needed. Consequently, the total sample complexity is bounded by

O

(√
LD2

ϵ
+

√
LLΩD3

ϵ3/2
+

ΩD2σ2∗
ϵ2

)
(4.3.7)

in this situation. When comparing (4.3.7) to (4.3.6), we observe that the second term in (4.3.7) is
sub-optimal. This implies that, based on our analysis, SAGD does not simultaneously achieve the
optimal iteration complexity and sample complexity under Assumption (SN).

The analysis on the convergence of SAGD in the state-dependent noise setting reveals the
“bottleneck”: in the recursion (4.3.1), different points yt and xt are used for gradient estimations and
output solutions. Improving the convergence rates in Corollary 4.3.1 requires better control of the
objective value at the points of stochastic gradient estimation. This can be achieved by imposing
the Lipschitz regularity assumption in (LP) on stochastic gradients.

Lemma 4.3.1 Suppose Assumptions (SN) and (LP) hold. Let {xt}, {yt} and {zt} be generated by
Algorithm 3. We have

E⌈t−1⌉
[
∥Gt − g(yt)∥2∗

]
≤ Ω

mt

{
K̄2β2t ∥xt−1 − zt−1∥2 + 3L[f(xt−1)− f∗ − ⟨g(x∗), xt−1 − x∗⟩] + 3σ2∗

}
,

where

K̄ :=
(
3Eξt,1 [K(ξt,1)

2] + 3L2
)1/2

. (4.3.8)
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We have the following analog of Theorem 4.3.1 under Assumptions (SN) and (LP).

Theorem 4.3.2 Let Assumptions (SN) and (LP) hold. Let βt, ηt satisfy (4.3.2) for some θt ≥ 0,
and let also β1 = 1 and

θt(1− βt + 3rtL) ≤ θt−1, t = 2, ..., k. (4.3.9)

Then

θkE[f(xk)− f∗] + θkβkηkE[V (zk, x
∗)]

≤ θ1β1η1V (z0, x
∗) + 3θ1r1LL

2 ∥z0 − x∗∥2 +
k∑
t=1

θtrtβ
2
t K̄2E∥z̄t−1 − zt−1∥2 +

k∑
t=1

3θtrtσ
2
∗ (4.3.10)

where K̄ is defined in (4.3.8) and rt :=
βtΩ

2(ηt−Lβt)mt
.

Corollary 4.3.2 In the premise of Theorem 4.3.2, suppose that k ≥ 2, V (z0, x
∗) ≤ D2, and let

βt =
3
t+2 , mt = m and ηt =

η
t+1 with

η = max

4L,
18Ω(k + 1)L

m
, 12

√
kΩK̄2

m
,

√
2(k + 2)3Ωσ2∗

D2m

 .

Then E[V (zt, z0)] ≤ 3D2, t = 1, ..., k, and

E[f(xk)− f∗] ≤ 13LD2

(k + 1)(k + 2)
+

54ΩLD2

(k + 2)m
+

72K̄D2

(k + 2)
·

√
Ω

m(k + 1)
+ 4

√
6Ωσ2∗D

2

(k + 1)m
. (4.3.11)

Remarks. Let m = 1 (and Ω = 1 in Lemmas 4.2.1 and 4.3.1). By (4.3.11), the iteration/sample
complexity of the SAGD is bounded by

O

{√
LD2

ϵ
+

LD2

ϵ
+

(
K̄D2

ϵ

) 2
3

+
D2σ2∗
ϵ2

}
.

When ϵ = O(L3D2/K̄2), this sample complexity is optimal.
In the mini-batch setting (when Ω = Ω in Lemmas 4.2.1 and 4.3.1), in order to obtain the optimal

iteration complexity O
(√

LD2/ϵ
)
, SAGD batch size m should be in the order of

max

{
1,
kΩL
L

,
kΩK̄2

L2
,
k3Ωσ2∗
L2D2

}
.

As a result, the corresponding sample complexity becomes

O

{√
LD2

ϵ
+

ΩLD2

ϵ
+

ΩK̄2D2

Lϵ
+

ΩD2σ2∗
ϵ2

}
. (4.3.12)

When K̄2 = O(LL), this complexity bound is optimal (cf. Theorem 4 of [138]). The result of
Corollary 4.3.2 refines the corresponding statement of [138] in three aspects. First, the corresponding

iteration complexity bound O
(√

LD2/ϵ
)
is stated in terms of the Lipschitz constant of the expected

gradient. Second, it relies upon Assumption (LP) which is significantly weaker than the assumption
of uniform Lipschitz continuity of the stochastic gradient observation G(x, ·) used in [138]. Third,
unlike [138], our analysis does not require the feasible region X to be a bounded set.

106
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4.4 SGE for general convex problem with state-dependent noise

In this section, we discuss an alternative acceleration scheme to solve the general smooth convex
problem with state-dependent noise which we refer to as stochastic gradient extrapolation (SGE).
SGE (Algorithm 4) is a variant of the gradient extrapolation method proposed in [145]. We consider
here the mini-batch version of the routine.

Algorithm 4 Stochastic Gradient Extrapolation method (SGE)

Input: initial point x0 = z0, nonnegative parameters {αt}, {ηt} and {βt}, and batch size {mt}.
G0 = G−1 =

1
m0

∑m0
i=1 G(x0, ξ0,i).

for t = 1, 2, . . . , do

G̃t = Gt−1 + αt(Gt−1 −Gt−2), (4.4.1a)

zt = argmin
x∈X

{⟨G̃t, x⟩+ ηtVx0(zt−1, x)}, (4.4.1b)

xt = (1− βt)xt−1 + βtzt, (4.4.1c)

Gt =
1
mt

∑mt
i=1 G(xt, ξt,i).

end for

The basic iterative scheme presented in Algorithm 4 is conceptually simple. It involves two
sequences of search points {zt} and {xt}, the latter being weighted averages of the former. Note
that both xt and zt are Ft−1-measurable. Notably, the stochastic gradients are estimated at the
search points {xt}, which are also the approximate output solutions generated by the algorithm at
each iteration. This property brings benefits for dealing with state-dependent noise of the gradient
estimation over the stochastic accelerated gradient descent (SAGD) method, where the output and
gradient estimation use different sequences.

The special relationship between SGE and SAGD merits an explanation. It has been discussed
in detail in [145, Section 3] and [129, Section 5.2]) in the deterministic setting. For the sake of
completeness, we summarize the corresponding argument here.

Let us consider the problem of unconstrained minimization

min
x
f(x)

where f : E → R is strictly convex and continuously differentiable. For ς ∈ E let us denote

φ(ς) = max
x

{
⟨x, ς⟩ − f(x)

}
,

so that φ : E → R is strictly convex and continuously differentiable on E. Then f has the Fenchel
representation

f(x) = max
ς

{
⟨x, ς⟩ − φ(ς)︸ ︷︷ ︸

=:F (x,ς)

}
, x ∈ E,

and we can reformulate the original minimization problem as a saddle point problem:

f∗ := min
x

{
max
ς
F (x, ς)

}
.

Let us define the Bregman divergence associated with φ according to

Wf (χ, ς) = φ(ς)− [φ(χ) + ⟨∇φ(χ), ς − χ⟩], χ, ς ∈ E,
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and the (generalized) prox-mapping

argmaxς

{
F (z, ς)− τWf (χ, ς)

}
, z, χ ∈ E. (4.4.2)

As shown in Lemma 1 of [146] (cf. also Lemma 3.6 of [129]), the maximizer of (4.4.2) is the value of
∇f at certain x ∈ X, specifically,

∇f(x) = argmaxς {F (z, ς)− τWf (χ, ς)}

where x = [z + τ∇φ(χ)]/(1 + τ).
Using the above observation, we can rewrite the corresponding deterministic version of the SGE

recursion in a primal-dual form. It is initialized with (ς−1, ς0) and x0 = ∇φ(ς0), with the updates
(xt, ςt) computed according to

ς̃t = ςt−1 + αt(ςt−1 − ςt−2), (4.4.3a)

zt = argmin
x

{⟨ς̃t, x⟩+ ηtVx0(zt−1, x)} , (4.4.3b)

ςt = argmaxς {F (zt, ς)− τtWf (ςt−1, ς)} . (4.4.3c)

Because ∇φ(ςt−1) = xt−1, by the above, ςt = ∇f(xt) with xt = (zt + τtxt−1)/(1 + τt) which is the
definition of xt in (4.4.1c) with βt = 1/(1 + τt). The corresponding stochastic iteration (4.4.1) is
obtained from (4.4.3) by replacing ςt with its estimation Gt—the mean of mt stochastic gradients
G(xt, ξt,i). Similarly (see [146, Section 2.2] and [129, Section 3.4]), one can show that SAGD iteration
can be viewed as a specific stochastic version of the following (deterministic) primal-dual update:

z̃t = zt−1 + αt(zt−1 − zt−2), (4.4.4a)

ςt = argmaxς {F (z̃t, ς)− τtWf (ςt−1, ς)} , (4.4.4b)

zt = argmin
x

{⟨ςt, x⟩+ ηtVx0(zt−1, x)} . (4.4.4c)

Recursion (4.4.3) can be seen as a dual version of (4.4.4); the principal difference between the two
resides in the extrapolation step which is performed in the dual space in (4.4.3a) and in the primal
space in (4.4.4a).

We now establish the convergence guarantees of SGE method in expectation, i.e., E[f(xk)− f∗].
We should stress here that the convergence analysis of SGE under Assumption (SN) is much more
involved than the ones for its basic scheme in [145], and the SAGD method in Section 4.3. Therefore,
the details are deferred to the appendix.

Theorem 4.4.1 Suppose Assumption (SN) holds. Assume that the parameters {αt}, {ηt} and {βt}
of Algorithm 4 satisfy and a nonnegative sequence {θt} satisfy

θt−1 = αtθt, ηt ≤ αtηt−1, t = 2, . . . , k (4.4.5a)

ηt(1− βt)

αt
≥ 5Lβt, t = 3, . . . , k (4.4.5b)

η1η2
α2

≥ 25L2, ηk(1− βk) ≥ Lβk, (4.4.5c)

Denote

qt :=
θt+1(1 + α2

t+1)

ηt+1
+
θt+2α

2
t+2

ηt+2
+
θ2t+2α

2
t+2

θt+1ηt+1
and ϵt :=

5qtΩ

2mt
. (4.4.6)
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If β1 = 1 and the parameters satisfy

θt(1− βt)

βt
+ Lϵt−1 ≤

θt−1

βt−1
, t ≥ 2, (4.4.7)

then

θk
βk

E[f(xk)− f∗] ≤ θ1η1V (x0, x
∗) +

Lϵ0L
2

∥x0 − x∗∥2 + σ2∗ ·
k−1∑
t=0

ϵt. (4.4.8)

We now specify a particular stepsize policy in order to establish the convergence guarantee of
SGE.

Corollary 4.4.1 Let θt = t, αt =
t−1
t , mt = m, βt =

3
t+2 , and ηt =

η
t for η > 0. Suppose that

V (x0, x
∗) ≤ D2 and that

η = max

30L,
30Ω(k + 2)L

m
,

√
10Ω(k + 1)3σ2∗

3mD2

 .

Then

E[f(xk)− f∗] ≤ 91LD2

k(k + 2)
+

90ΩLD2

mk
+

√
120Ωσ2∗D

2

mk
. (4.4.9)

Furthermore, when ∥x0 − x∗∥ ≤ R and

η = max

30L,
30Ω(k + 2)L

m
,

√
20Ω(k + 1)3σ2∗

3mΩR2

 , (4.4.10)

we have

E[f(xk)− f∗] ≤ 91LΩR2

2k(k + 2)
+

45ΩΩLR2

mk
+

√
60ΩΩσ2∗R

2

mk
. (4.4.11)

Remarks. The bounds of Corollary 4.4.1 merit some comments. Observe first that SGE achieves
the optimal sample complexity

O
{√

LD2

ϵ
+

LD2

ϵ
+
D2σ2∗
ϵ2

}
(4.4.12)

in the case of m = 1. In the mini-batch setting (where Ω = Ω), by setting the batch size of

m ≥ max
{
1, ΩLk

L , Ωk
3σ2

∗
D2L2

}
, the iteration complexity of the algorithm is bounded by O

(√
LD2/ϵ

)
and the overall sample complexity is

O
{√

LD2

ϵ
+

LΩD2

ϵ
+

ΩD2σ2∗
ϵ2

}
. (4.4.13)

Notably, the SGE attains the optimal iteration and sample complexity bounds.
Similarly, using the fact that V (x0, x

∗) ≤ Ω
2 ∥x0 − x∗∥2 (cf. (4.1.11)), (4.4.11) states the con-

vergence rate under condition ∥x0 − x∗∥ ≤ R. This bound will be further used in the proof of the
multi-stage SGE method in the next section.
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4.5 SGE for convex problem with quadratic growth condition

In this section, we consider the problem setting in which the smooth objective f in (4.1.1) satisfies
the quadratic growth condition (cf. (4.1.9)), i.e., when for some µ > 0 and x∗ ∈ X

f(x)− f∗ ≥ µ

2
∥x− x∗∥2, ∀x ∈ X. (4.5.1)

We propose a multi-stage routine with restarts that utilizes Algorithm 4 as a working horse.

Algorithm 5 Multi-stage stochastic gradient extrapolation method

Input: initial point y0 ∈ X. Let R0 be a positive real.
for k = 1, 2, . . . ,K do

(a) Set Rk = R02
−k/2, N =

⌈
10
√

2ΩL
µ

⌉
. Run N iterations of SGE (Algorithm 4) with

x0 = z0 = yk−1 and

θt = t, αt =
t−1
t , βt =

3
t+2 , ηt =

η
t , t = 1, ..., N

η = max

{
30L, 30Ω(N+2)L

mk ,

√
20(N+1)3σ2

∗
6mkR2

k

}
,

mk = max
{
1,
⌈
18ΩL(N+2)

L

⌉
,
⌈
15N(N+2)2σ2

∗
2L2R2

k

⌉}
, t = 0, ..., N. (4.5.2)

(b) Set yk = xN , where xN is the SGE solution obtained in Step (a).
end for

Algorithm 5 has a simple structure. Each stage k of the routine, consists of Nk = N iterations of
the SGE with initial condition x0 = yk−1 being the approximate solution at the end of the stage
k − 1. Method parameters are selected in such a way that the upper bound R2

k for the expected
squared distance E∥yk − x∗∥2 between the approximate solution yk at the end of the k-th stage and
the optimal solutions reduces by factor 2.

Corollary 4.5.1 Let {yK} be approximate solution by Algorithm 5 after K ≥ 1 stages. Assume
that ∥y0 − x∗∥2 ≤ R2

0. Then

E[f(yK)− f∗] ≤ µR2
0 · 2−K−1 and E[∥yK − x∗∥2] ≤ R2

0 · 2−K .

Remarks. By Corollary 4.5.1, the number of stages of Algorithm 5 required to attain the ex-
pected inaccuracy ϵ is bounded with O

(
ln(µR2

0/ϵ)
)
. When recalling what is the total number N

of iterations at each stage, we conclude that the “total” iteration complexity of the method is

O
(√

LΩ/µ · ln(µR2
0/ϵ)

)
. Consequently, the corresponding sample complexity

∑K
k=1

∑N
t=1m

k is

order of

O

{√
LΩ

µ
ln

(
µR2

0

ϵ

)
+

LΩ2

µ
ln

(
µR2

0

ϵ

)
+

Ω2σ2∗
µϵ

}
.

Similarly, the iteration complexity of solution yK satisfying E[∥yK − x∗∥2] ≤ ϵ2 does not exceed

O

(√
LΩ

µ
ln

(
R0

ϵ

))
;
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the corresponding sample complexity is then bounded by

O

{√
LΩ

µ
ln

(
R0

ϵ

)
+

LΩ2

µ
ln

(
R0

ϵ

)
+

Ω2σ2∗
µ2ϵ2

}
.

Similar to Corollary 4.4.1, the three terms in the sample complexity bounds represent the deterministic
error, the state-dependent stochastic error, and the state-independent stochastic error, respectively.
Regardless of the dependence on Ω, the multi-stage SGE achieves the optimal iteration complexity
and sample complexity simultaneously, supported by the lower bound in Theorem 5 of [138].

4.6 SGE for sparse recovery

An interesting application of stochastic optimization with state-dependent noise arises in the relation
to the problem of sparse recovery when it is assumed that (4.1.1) has a sparse or low-rank solution x∗.
This problem is motivated by applications in high-dimensional statistics, where stochastic estimation
under sparsity or low-rank constraints has garnered significant attention. To solve this problem,
one usually builds a sample average approximation (SAA) of the expected risk and solves the
resulting minimization problem. To enhance sparsity, a classical approach consists of incorporating
a regularization term, e.g., ℓ1- or trace-norm penalty (as in Lasso), and minimizing the norm of the
solution under constraint (as in Dantzig Selector), see, e.g., [65, 67, 75, 83, 94, 95, 147–150] among
many others.

Stochastic approximation also serves as a standard approach to deal with the sparse recovery
problem. However, utilizing traditional Euclidean stochastic approximation usually leads to sub-
optimal complexity bounds: in this setting, the expected squared ℓ2-error of the stochastic operator
G(x, ξ) is usually proportional to the problem dimension n. Therefore, non-Euclidean stochastic
mirror descent (SMD) methods have been applied to address this issue. In particular, the SMD
algorithm in [87, 105] attains the high probability complexity bound f(x̂)− f∗ = O(σ

√
s/N) (up

to some “logarithmic factors”) in recovering an s-sparse signal x∗ under the sub-Gaussian noise
assumption with subgaussianity parameter σ2, referred to as “slow rates” for sparse recovery. To
improve the convergence rate to O(σ2s/N), multi-stage routines exploiting the properties similar
to strong/uniform convexity could be used, cf. [25, 37, 48]. In [88, 106], the authors utilize the
“restricted” strong convexity condition to establish O(σ2s/N) complexity bounds when assuming that
N ≫ s2. The latter assumption means that the optimal rates are only valid in the range s≪

√
N of

sparsity parameter. Recently, in [1, 59], new multi-stage stochastic mirror descent algorithms were
proposed which rely on the idea of variance reduction. The proposed method improved the required
number of iterations in each stage to O(s), thus attaining the best-known state-dependent stochastic
error. However, the iteration complexity of those routines is still sub-optimal in the mini-batch
setting, leaving room for further acceleration.

In this section, we suppose that stochastic optimization problem (4.1.1) admits a sparse solution
x∗ ∈ X. Standard examples of the sparsity assumptions are as follows:

• “Vanilla” sparsity: we assume that an optimal solution x∗ ∈ X has at most s≪ n nonvanishing
entries. We put ∥ · ∥ = ∥ · ∥1 and ∥ · ∥∗ = ∥ · ∥∞.

• Group sparsity: let us partition the set [n] into b subsets {I1, ..., IB}, and let xb the bth block
of x, meaning that [xb]i = 0 for all i /∈ Ib. We assume that the optimal x∗ ∈ X is a block vector
with at most s ≤ B nonvanishing blocks xb. We define ∥x∥ =

∑B
b=1 ∥xb∥2 (block ℓ1/ℓ2-norm)

and ∥x∥∗ = maxb≤B ∥xb∥2 (block ℓ∞/ℓ2-norm).
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• Low rank sparsity: consider the matrix space Rp×q where p ≥ q equipped with Frobenius inner
product. We assume that the optimal x∗ ∈ X satisfies rank(x∗) ≤ s. We consider the nuclear
norm ∥x∥ =

∑q
i=1 σi(x) where σi(·) are the singular values of x, so that ∥x∥∗ = maxi∈[q] σi(x)

is the spectral norm.

In what follows we assume that problem (4.1.1) and norms ∥ · ∥ and ∥ · ∥∗ satisfy conditions (4.1.2),
(4.1.3), and state-dependent noise conditions in Assumptions (SN) and (LP) of Section 4.2. Also,
instead of µ-quadratic growth (with µ > 0) condition with respect to ∥ · ∥ as in the previous section,
we suppose f and x∗ verify the quadratic growth condition with respect to the Euclidean norm, i.e.,

f(x)− f∗ ≥ 1
2κ∥x− x∗∥22, ∀x ∈ X, (4.6.1)

for some κ > 0.

4.6.1 Application: sparse generalized linear regression

Let us check that problem assumptions of this section hold in the case of generalized linear regression
problem (GLR), as described in the introduction. Let us assume that

• regressors ϕt satisfy E[ϕ1ϕT1 ] = Σ ⪰ κI with κ > 0 and ∥Σ∥∞:= maxi∈[n],j∈[n]Σi,j ≤ ν;

• noises ζt are zero mean with bounded variance, i.e., E[ζ21 ] ≤ 1 without loss of generality;

• activation function u is strongly monotone and Lipschitz continuous, i.e., for some r̄ ≥ r ≥ 0,(
u(t)− u(t′)

)
· (t− t′) ≥ r(t− t′)2, and |u(t)− u(t′)| ≤ r̄|t− t′|, ∀ t, t′ ∈ R. (4.6.2)

As already explained in the introduction, estimation of x∗ ∈ intX may be addressed through solving
the stochastic optimization problem

min
x∈X

{
f(x) := E[v(ϕTx)− ϕTxη]

}
(4.6.3)

where v′(t) = u(t). The gradient of the problem objective and its stochastic estimate are given by

g(x) = E[ϕ
(
u(ϕTx)− η

)
] and G(x, (ϕ, ζ)) := ϕ

(
u(ϕTx)− η

)
= ϕ

(
u(ϕTx)− u(ϕTx∗)

)
− ϕζ.

It is easy to see that condition (4.1.3) is verified in this case, and invoking E[η] = E[u(ϕTx)], we
conclude that g(x∗) = 0. To check the quadratic growth condition (4.6.1), we write

f(x)− f∗ =

∫ 1

0
g(x∗ + t(x− x∗))T (x− x∗)dt

=

∫ 1

0
E{ϕ[u

(
ϕT (x∗ + t(x− x∗))

)
− u
(
ϕTx∗

)
]}T (x− x∗)dt

[by (4.6.2)] ≥
∫ 1

0
rE{[ϕT (x− x∗)]2}tdt = r

2∥x− x∗∥2Σ ≥ rκ
2 ∥x− x∗∥22. (4.6.4)

Therefore, condition (4.6.1) holds with κ = r · κ which is independent of problem dimension n.
Since we are interested in the high-dimensional setting, the desired recovery error should have, at

most, logarithmic dependence in the problem dimension n. However, the ℓ2 variance of the stochastic
first-order information E∥G − g∥22 is proportional to the problem dimension n, making the standard
Euclidean SA methods not applicable. To address this issue, we work in the non-Euclidean setting
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with ∥ · ∥ = ∥ · ∥1 and ∥ · ∥∗ = ∥ · ∥∞. Next, let us examine the smoothness condition (4.1.2) and
state-dependent variance condition (SN). Note that for all x, x′ ∈ Rn,

∥g(x)− g(x′)∥∞ = sup
∥z∥1≤1

⟨g(x)− g(x′), z⟩ = sup
∥z∥1≤1

E{ϕT z[u(ϕTx)− u(ϕTx′)]}

(i)

≤ sup
∥z∥1≤1

r̄E{|ϕT z||ϕT (x− x′)|}
(ii)

≤ r̄ sup
∥z∥1≤1

√
E{(ϕT z)2} · ∥x− x′∥Σ

≤ r̄
√
ν∥x− x′∥Σ, (4.6.5)

where (i) is a consequence of (4.6.2) and (ii) follows from the Cauchy inequality. Consequently, we
have

E∥G(x, (ϕ, η))− g(x)∥2∞ = E∥ϕ
(
u(ϕTx)− u(ϕTx∗)

)
+ ϕζ + [g(x∗)− g(x)]∥2∞

[by (5.7.45)] ≤ 3E∥ϕ
(
u(ϕTx)− u(ϕTx∗)

)
∥2∞ + 3E{∥ϕ∥2∞}σ2 + 3r̄2ν∥x− x∗∥2Σ

[by (4.6.2)] ≤ 3r̄2E{∥ϕ∥2∞
(
ϕTx− ϕTx∗

)2}+ 3E{∥ϕ∥2∞}σ2 + 3r̄2ν∥x− x∗∥2Σ.

By (4.6.4), we conclude that the condition (SN) holds whenever

E[∥ϕ∥2∞
(
ϕTx− ϕTx∗

)2
] ≲ E[

(
ϕT (x− x∗)

)2
] ≲ ∥x− x∗∥2Σ;

e.g., when the regressor ϕ is bounded or sub-Gaussian. Finally, under similar assumptions on the
regressors and sub-Gaussian assumption on the additive noise ζ, condition (LP) naturally follows.

4.6.2 SGE-SR: stochastic gradient extrapolation for sparse recovery

We extend SGE to solve the sparse recovery problem. Similarly to Algorithm 5, sparse recovery
routine is organized in stages; each stage represents a run of SGE (Algorithm 4). The principal
difference with Algorithm 5, apart from the different choice of algorithm parameters, is the sparsity
enforcing step (see, e.g., [84–86]) implemented at the end of each stage.

Observe that for x ∈ X one can efficiently compute a sparse approximation of x, specifically,
xs = sparse(x), an optimal solution to

min ∥x− z∥2 over s-sparse z ∈ X. (4.6.6)

For instance, in the “vanilla sparsity” case, when the set X is positive monotone,4 xs is obtained by
zeroing all but s largest in amplitude entries of x.5

4For x ∈ Rn, let |x| denote a vector in Rn
+ whose entries are absolute values of the corresponding entries of x. We

say that X is positive monotone if whenever x ∈ X and |y| ≤ |x| (the inequality is understood coordinate-wise), one
also has y ∈ X. A typical example of a monotone convex set X is a ball of an absolute norm in Rn.

5 In the block sparsity case, when X is positive block-monotone, the corresponding “sparsification” amounts to
zeroing out all but s largest (in ℓ2-norm) blocks of x; when X is a ball of a Schatten norm in the space of p× q real
matrices, low rank xs may be obtained from x by trimming the singular values of x.
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Algorithm 6 Stochastic Gradient Extrapolation method for Sparse Recovery (SGE-SR)

Input: initial point y0 ∈ X.
for k = 1, 2, . . . ,K do

(a) Set N = 40
√
sLΩ/κ and Rk = 2−k/2R0. Run N iterations of SGE (Algorithm 4) with

x0 = z0 = yk−1 and

θt = t, αt =
t−1
t , βt =

3
t+2 , ηt =

η
t , t = 1, ..., N

η = max

{
30L, 30Ω(N+2)L

mk ,

√
20(N+1)3σ2

∗
6mkR2

k

}
,

mk = max
{
1,
⌈
18ΩL(N+2)

L

⌉
,
⌈
15N(N+2)2σ2

∗
2L2R2

k

⌉}
, t = 0, ..., N

(b) Set yk = xN , where xN is the solution obtained in Step (a). Calculate

yk = sparse(yk).

end for

The following corollary characterizes the convergence rate of SGE-SR for solving the sparse
recovery problem.

Corollary 4.6.1 Let {yk, yk} be computed by Algorithm 6. Assume ∥y0 − x∗∥2 ≤ R2
0. Then we

have for k ≥ 1

E[f(yk)− f∗] ≤ κs−1R2
0 · 2−k+4 and E[∥yk − x∗∥2] ≤ R2

0 · 2−k.

Remarks. From the result of Corollary 4.6.1 we conclude that the SGE-SR algorithm finds an
s-sparse yk ∈ X such that E[∥yk − x∗∥2] ≤ ϵ2 for any ϵ ∈ (0, R0) in at most k = O (ln(R0/ϵ)) stages.

The corresponding iteration complexity of the SGE-SR is O
(√

sLΩ
κ ln(R0

ϵ )
)
, and the overall sample

complexity is

O

{√
sLΩ

κ
ln

(
R0

ϵ

)
+
sLΩ2

κ
ln

(
R0

ϵ

)
+

Ω2s2σ2∗
κ2ϵ2

}
.

Similarly, the iteration complexity of the solution yk ∈ X (which is not s-sparse in general) such

that E[f(yk)− f∗] ≤ ϵ is O
(√

sLΩ
κ ln(

κR2
0

sϵ )
)
, while the total sample complexity is

O

{√
sLΩ

κ
ln

(
κR2

0

sϵ

)
+
sLΩ2

κ
ln

(
κR2

0

sϵ

)
+

Ω2sσ2∗
κϵ

}
.

The above results may be compared to the convergence guarantees obtained in [59] in the similar
setting of the sparse recovery problem. The iteration complexity of the SGE-SR algorithm attains
the optimal dependence on the problem’s condition number,

√
sL/κ, which improves over the

corresponding result in [59] by a factor of O(
√
sL/κ). Moreover, except for the dependence on Ω, the

proposed solution matches the best-known sample complexity bounds for the stochastic error; the
extra factor Ω being due to the mini-batch use (cf. Lemma 4.2.1 and subsequent remark) and could
theoretically hinder the method precision. Note that in the problems of interest, Ω is logarithmic
in the problem dimension. It should be mentioned that in our numerical experiments we did not
observe any accuracy degradation when using the mini-batch algorithm.
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4.7 Numerical experiments

In this section we present a simulation study illustrating numerical performance of the proposed
routines. We consider the sparse recovery problem in generalized linear regression (GLR) model
with random design as discussed in the previous section. Recall that we are looking to recover the
s-sparse vector x∗ ∈ Rn from i.i.d observations

ηi = u(ϕTi x
∗) + σζi, i = 1, 2, . . . , N.

In experiments we report on below, the activation function u(·) is of the form

uα(x) = x1{|x| ≤ α}+ sign(x)[α−1(|x|α − 1) + 1]1{|x| > α}, α > 0, x ∈ R.

We consider three different activations, namely, the linear link function u1(·), u1/2(·), and u1/10(·)
(cf. Figure 4.2). In our simulations, s nonvanishing components of the signal x∗ are sampled

15 10 5 0 5 10 15
15

10

5

0

5

10

15 u1(x)
u1/2(x)
u1/10(x)

Figure 4.2: Activation functions

from the s-dimensional standard Gaussian distribution. We explore two setups—light tailed and
heavy tailed—for generating regressors and additive noises. In the light-tail setup, regressors ϕi
are independently drawn from a multivariate Gaussian distribution ϕi ∼ N (0,Σ), where Σ is a
diagonal covariance matrix with diagonal entries 0 < Σ1,1 ≤ · · · ≤ Σn,n. In the heavy-tail setup,
regressors are independently drawn from a multivariate Student distribution ϕi ∼ tn(ν, 0,Σ), ν
being the corresponding degree of freedom [151]. The condition number κ of the problem is defined
as the ratio of the largest and the smallest eigenvalues of Σ. The additive noise of the model in
the light-tail setup is the zero-mean Gaussian noise with variance σ2; in the heavy-tail setup, the
additive noises have (scaled) univariate Student distribution ηi ∼ λt(ν), ν ≥ 3, with scale parameter
λ =

√
(ν − 2)/ν with unit variance. Because of the memory limitations, observations (ηi, ϕi) are

generated on the fly at each oracle call.
In all our experiments, we run 50 simulation trials (with randomly generated regressors and

noises); then we trace in the plots the median and the first and the last deciles of the error ∥xt−x∗∥2.
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The aim of the first series of experiments is to compare the procedure described in Section
4.6 to the SMD-SR algorithm of [59];6 in the light-tail noise setting, the corresponding results are
presented in Figure 4.3. In Figure 4.4, we present results of simulations of the accelerated algorithm
in the light-tail and heavy-tail setup. We used the same algorithmic parameters in both simulation
setups. In the above experiments, n = 500 000, the maximal number of calls to the stochastic
oracle (estimation sample size) N = 250 000, and sparsity level s = 250; unless stated otherwise, the
problem condition number is set to κ = 1.
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Figure 4.3: Estimation error ∥xt − x∗∥2 against the number of stochastic oracle calls for SGE-SR
and SMD-SR algorithms. In the left, middle, and right columns of the plot we show results for the
linear activation u1, and nonlinear u1/2 and u1/10, respectively. Two figure rows correspond to two
different noise levels, σ = 0.1 (the upper row) and σ = 0.001 (the bottom row). The legend specifies
the value m0 of the batch size of the preliminary phase of the algorithm for both routines.

In the second series of experiments we put n = 100 000, N = 200 000, and s = 50. Experiments
reported in Figure 4.5 illustrate the impact of the condition number on the convergence of the
SGE-SR algorithm.

Finally, we illustrate the performance of SGE-SR and SMD-SR algorithms which share the same
size of mini-batch. Recall that both algorithms if “normally set”—SGE-SR with mini-batch of
optimal size and SMD-SR with “trivial” mini-batch (of size m0 = 1)—converge linearly during the
preliminary phase. In Figure 4.6 we report on the simulation of algorithms with the same (optimal
for the accelerated algorithm) size of the mini-batch [59].

The series of experiments conducted indicates that the SGE-SR algorithm outperforms its
non-accelerated counterpart. Despite both algorithms exhibiting linear rates of convergence, SGE-SR
reaches a better precision for a fixed number of samples in every setting. This advantage is also
observed when the two algorithms are compared in terms of the number of iterations, where the
accelerated algorithm clearly outperforms its non-accelerated counterpart by a significant margin.

6SMD-SR is a stochastic approximation algorithm for sparse recovery utilizing hard thresholding which relies upon
“vanilla” non-Euclidean mirror descent; both algorithms use the same distance generating function ω(x) = c(n)∥x∥2p.
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Figure 4.4: Estimation error ∥xt − x∗∥2 against the number of stochastic oracle calls for SGE-SR in
Gaussian (light-tail) and Student t5 (heavy-tail) regressor and noise generation setups. In the left,
middle, and right columns of the plot we show results for the linear activation u1, and nonlinear
u1/2 and u1/10, respectively. Two figure rows correspond to two different noise levels, σ = 0.1 (the
upper row) and σ = 0.001 (the bottom row). The legend specifies the value m0 of the batch size of
the preliminary phase of the algorithm for both routines.

The improved iteration complexities make SGE-SR a viable solution for distributed sparse recovery
problems, where it is crucial to reduce the number of communication rounds between the servers
and the clients while keeping high precision.
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Figure 4.5: Error ∥xt − x∗∥2 of the SGE-SR algorithm for three values of the problem condition
number. First row: algorithm error against the number of oracle calls; second row: error against the
number of algorithm iterations. Figure columns correspond to the results for u1, u1/2, and u1/10
activation functions and σ = 0.001.

4.8 Concluding remarks

In this paper, we investigate the problem of stochastic smooth convex optimization with “state-
dependent” variance of stochastic gradients. We study two non-Euclidean accelerated stochastic
approximation algorithms, stochastic accelerated gradient descent (SAGD) and stochastic gradient
extrapolation (SGE), and provide optimal iteration and sample complexities for both algorithms
under appropriate conditions. However, the optimal convergence guarantees for SGE require less
restrictive assumptions, thus leading to wider applications such as statistical estimation problems
with heavy tail noises. In addition, we propose a multistage routine of SGE to solve problems
that satisfy the quadratic growth condition and further extend it to the sparse recovery problem.
Our theoretical guarantees are corroborated by numerical experiments in high-dimensional settings.
Further research will be directed to proving large deviation bounds to ensure the reliability and
robustness of the solutions.
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Figure 4.6: SGE-SR compared to “vanilla” SMD-SR and its mini-batch variant. First row: error
∥xt− x∗∥2 against the number of oracle calls; second row: the error against the number of algorithm
iterations. Figure columns correspond to the results for u1, u1/2, and u1/10 activation functions and
σ = 0.001.

4.9 Appendix: proofs

4.9.1 Proof of Lemmas 4.2.1 and 4.3.1

Proof of Lemma 4.2.1. It is easy to see that (4.2.1) and (4.2.2) hold when mt = 1, so we consider
the case when mt ≥ 2. For notational simplicity, put

δt := Gt(ut)− g(ut), δt,i := Gt(ut, ξt,i)− g(ut).

Let ω∗ denote the convex conjugate of the distance generating function ω. We write

∥δt∥2∗ = Ω2∥ δtΩ ∥
2
∗ = 2Ω2max

z
[⟨ δtΩ , z⟩ −

1
2∥z∥

2] ≤
by (4.1.10)

2Ωmax
z

[⟨δt, z⟩ − ω(z)] = 2Ωω∗(δt). (4.9.1)

By the strong convexity of ω, ω∗ is smooth with 1-Lipschitz continuous gradient. Thus

ω∗(δt) ≤ ω∗

(
1

mt

mt−1∑
i=1

δt,i

)
+

〈
∇ω∗

(
1

mt

mt−1∑
i=1

δt,i

)
,
δt,mt

mt

〉
+

1

2

∥∥∥∥δt,mt

mt

∥∥∥∥2
∗
.

Now, recursively using the above relationship and the independence of δt,i, i ∈ [mt], we get

E⌈t−1⌉[ω
∗(δt)] ≤ 1

2mt
·E∥δt,1∥2∗, (4.9.2)

and we obtain the bound in (4.2.2) by combing the above inequality with (4.9.1). □
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Proof of Lemma 4.3.1. Note that xt−1 and yt are Ft−1-measurable. By Lemma 4.2.1,

E⌈t−1⌉
[
∥Gt − g(yt)∥2∗

]
≤ Ω

mt
E⌈t−1⌉

[
∥G(yt, ξt,1)− g(yt)∥2∗

]
≤ 3Ω

mt

{
E⌈t−1⌉

[
∥G(yt, ξt,1)− G(xt−1, ξt,1)∥2∗

]
+E⌈t−1⌉

[
∥G(xt−1, ξt,1)− g(xt−1)∥2∗

]
(4.9.3)

+E⌈t−1⌉
[
∥g(xt−1)− g(yt)∥2∗

]}
≤ 3Ω

mt

{(
Eξt,1 [K(ξt,1)

2] + L2
)
· ∥yt − xt−1∥2 +

[
L[f(xt−1)− f∗ − ⟨g(x∗), xt−1 − x∗⟩] + σ2∗

]}
,

(4.9.4)

the last inequality being the consequence of Assumptions (LP) and (SN). Now, utilizing xt−1 − yt =
xt−1 − (1− βt)xt−1 − βtzt−1 = βt(xt−1 − zt−1), we obtain the desired result. □

4.9.2 Proof of Theorem 4.3.1

For sake of completeness, we start with the following statement similar to the previous results for
SAGD (e.g., Proposition 3.1 in [129]).

Proposition 4.9.1 Let {zt}, {yt} and {xt} be generated by Algorithm 3. Suppose that {βt} and
{ηt} satisfy (4.3.2) for some θt ≥ 0. Then for any x ∈ X one has

k∑
t=1

θt[f(xt)− f(x)] + θkβkηkV (zk, x)

≤
k∑
t=1

θt(1− βt)[f(xt−1)− f(x)] + θ1β1η1V (z0, x) +

k∑
t=1

θtβt⟨δt, x− zt−1⟩+
k∑
t=1

θtβt∥δt∥2∗
2(ηt − Lβt)

(4.9.5)

where δt := Gt − g(yt).

Proof of the proposition. First, by convexity of f and due to the definition of xt, we have for
all z ∈ X,

f(z) + ⟨g(z), xt − z⟩ = (1− βt)[f(z) + ⟨g(z), xt−1 − z⟩] + βt[f(z) + ⟨g(z), zt − z⟩]
≤ (1− βt)f(xt−1) + βt[f(z) + ⟨g(z), zt − z⟩].

Now, by the smoothness of f ,

f(xt) ≤ f(z) + ⟨g(z), xt − z⟩+ L
2 ∥xt − z∥2

≤ (1− βt)f(xt−1) + βt[f(z) + ⟨g(z), zt − z⟩] + L
2 ∥xt − z∥2,

so that for z = yt we have

f(xt) ≤ (1− βt)f(xt−1) + βt[f(yt) + ⟨g(yt), zt − yt⟩] + L
2 ∥xt − yt∥2. (4.9.6)

On the other hand, the optimality condition for (4.3.1b) in Algorithm 3 implies the following
relationship (see, e.g., Lemma 3.5 of [129]):

⟨Gt, zt − yt⟩+ ηtV (zt−1, zt) + ηtV (zt, x) ≤ ⟨Gt, x− yt⟩+ ηtV (zt−1, x), ∀x ∈ X. (4.9.7)
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By combining (4.9.6) and (4.9.7) we obtain for all x ∈ X,

f(xt) + βtηtV (zt−1, zt) + βtηtV (zt, x)

≤ (1− βt)f(xt−1) + βt[f(yt) + ⟨g(yt), x− yt⟩]
+ βt⟨δt, x− zt⟩+ βtηtV (zt−1, x) +

L
2 ∥xt − yt∥2

≤ (1− βt)f(xt−1) + βt[f(yt) + ⟨g(yt), x− yt⟩]
+ βt⟨δt, zt−1 − zt⟩+ βt⟨δt, x− zt−1⟩+ βtηtV (zt−1, x) +

L
2 ∥xt − yt∥2. (4.9.8)

From (4.3.1a) and (4.3.1c) we have xt − yt = βt(zt − zt−1); after substituting into (4.9.8) and taking
into account (4.1.11), we obtain

f(xt) + βtηtV (zt, x)

≤ (1− βt)f(xt−1) + βt[f(yt) + ⟨g(yt), x− yt⟩]

+ βt⟨δt, x− zt−1⟩+ βtηtV (zt−1, x) + βt∥δt∥∗∥zt−1 − zt∥+ (
Lβ2

t
2 − ηtβt

2 )∥zt − zt−1∥2

≤ (1− βt)f(xt−1) + βt[f(yt) + ⟨g(yt), x− yt⟩] + βt⟨δt, x− zt−1⟩+ βtηtV (zt−1, x) +
βt∥δt∥2∗

2(ηt − Lβt)
,

the last inequality being a consequence of (4.3.1c) and Young’s inequality. When subtracting f(x)
on both sides we get

[f(xt)− f(x)] + βtηtV (zt, x)

≤ (1− βt)[f(xt−1)− f(x)] + βt[f(yt) + ⟨g(yt), x− yt⟩ − f(x)︸ ︷︷ ︸
≤0

] + βtηtV (zt−1, x) + βt⟨δt, x− zt−1⟩+ βt∥δt∥2∗
2(ηt−Lβt)

≤ (1− βt)[f(xt−1)− f(x)] + βtηtV (zt−1, x) + βt⟨δt, x− zt−1⟩+
βt∥δt∥2∗

2(ηt − Lβt)
,

and after multiplying by θt and summing up from t = 1 to k we arrive at

k∑
t=1

θt[f(xt)− f(x)] + θkβkηkV (zk, x)

≤
k∑
t=1

θt(1− βt)[f(xt−1)− f(x)] + θ1β1η1V (z0, x) +
k∑
t=1

θtβt⟨δt, x− zt−1⟩+
k∑
t=1

θtβt∥δt∥2∗
2(ηt − Lβt)

,

which is (4.9.5). □

Proof of the theorem. When setting x = x∗, using (4.2.2) in Lemma 4.2.1, and taking expectation
on both sides of (4.9.5), we get

k∑
t=1

θtE[f(xt)− f∗] + θkβkηkE[V (zk, x
∗)]

≤
k∑
t=1

θt(1− βt)E[f(xt−1)− f∗] + θ1β1η1V (z0, x
∗) +

k∑
t=1

θtrtE
[
L
(
f(yt)− f∗ − ⟨g(x∗), yt − x∗⟩

)
+ σ2∗

]
.
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Recall that yt = (1− βt)xt−1 + βtzt−1. On the other hand, by smoothness of f , when recalling that
⟨g(x∗), xt−1 − x∗⟩ ≥ 0,

f(yt)− f∗ − ⟨g(x∗), yt − x∗⟩
≤ (1− βt)

[
f(xt−1)− f∗ − ⟨g(x∗), xt−1 − x∗⟩

]
+ βt

[
f(zt−1)− f∗ − ⟨g(x∗), zt−1 − x∗⟩

]
≤ (1− βt)

[
f(xt−1)− f∗ − ⟨g(x∗), xt−1 − x∗⟩

]
+ Lβt

2 ∥zt−1 − x∗∥2

≤ (1− βt)
[
f(xt−1)− f∗

]
+ LβtV (zt−1, x

∗).

When combining the above inequalities we obtain

k∑
t=1

θtE[f(xt)− f∗] + θkβkηkE[V (zk, x
∗)]

≤
k∑
t=1

θt(1− βt)(1 + rtL)E[f(xt−1)− f∗] + θ1β1η1V (z0, x
∗) +

k∑
t=1

{
θtrtβtLLE[V (zt−1, x

∗)] + θtrtσ
2
∗
}
.

Due to (4.3.3), and taking into account that β1 = 1, we conclude that

θkE[f(xk)− f∗] + θkβkηkE[V (zk, x
∗)] ≤ θ1β1η1V (z0, x

∗) +

k∑
t=1

θtrtβtLLE[V (zt−1, x
∗)] +

k∑
t=1

θtrtσ
2
∗,

what is (4.3.4). □

4.9.3 Proof of Corollary 4.3.1

1o. Observe first that for η ≥ 4L and mt = m one has

rt =
βtΩ

2[η/(t+ 1)− 3L/(t+ 2)]m
≤ 2βtΩ(t+ 1)

ηm
=

2βtΩ

ηtm
. (4.9.9)

As a result, when η ≥ 6Ω(k−1)L
m and given the definition of βt and θt, we have

θt(1− βt)(1 + rtL) ≤ (t+ 1)(t− 1)

(
1 +

6Ω(t+ 1)L
(t+ 2)ηm

)
≤ (t+ 1)(t− 1)

(
1 +

(t+ 1)

(t+ 2)(k − 1)

)
≤ t(t+ 1) = θt−1,

so that (4.3.3) holds. On the other hand,

θtβtηt = (t+ 1)(t+ 2) · 3η

(t+ 2)(t+ 1)
= 3η = θt−1βt−1ηt−1, (4.9.10)

so condition (4.3.2a) is satisfied, so Theorem 4.3.1 applies. By (4.9.9), we also have

θtrtβtLL ≤ 2θtβ
2
tΩLL
ηtm

≤ 18ΩLL
ηtm

. (4.9.11)
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2o. Next, let us check that E[V (zt, x
∗)] ≤ 3D2 for all t ≥ 1. Indeed, for t = 1 we have by (4.3.4),

the definition of θt, βt, ηt and due to (4.9.9)–(4.9.11)

E[V (z1, x
∗)] ≤ V (z0, x

∗) +
θ1β1r1LL
θ1β1η1

V (z0, x
∗) +

θ1r1
θ1β1η1

σ2∗

≤ V (z0, x
∗) + 8ΩLL

mη2
V (z0, x

∗) +
8Ω

η2m
σ2∗

(ii)

≤ V (z0, x
∗) + V (z0, x

∗) +D2 ≤ 3D2.

where the last inequality follows from η2 ≥ max
{

9(k+1)2ΩLL
m , 2(k+2)3Ωσ2

∗
3D2m

}
.

Now we assume that for s = 1, ..., t− 1, E[V (zs, x
∗)] ≤ 3D2. Then

E[V (zt, x
∗)] ≤ θ1β1η1

θtβtηt
V (z0, x

∗) +

t∑
s=1

θsrsβsLL
θtβtηt

E[V (zs−1, x
∗)] +

t∑
s=1

θsrs
θtβtηt

σ2∗

≤ V (z0, x
∗) +

t∑
s=1

rs
ηs
LLE[V (zs−1, x

∗)] +

t∑
s=1

rs
βtβsηs

σ2∗

≤ V (z0, x
∗) +

3(t+ 1)2ΩLL
η2m

· 3D2 +
2(t+ 2)3Ω

3η2m
· σ2∗

≤ V (z0, x
∗) +D2 +D2 ≤ 3D2

where the last inequality is, again, a consequence of η2 ≥ max
{

9(k+1)2ΩLL
m , 2(k+2)3Ωσ2

∗
3D2m

}
.

3o. Finally, when substituting the above estimates into (4.3.4), we obtain

E[f(xk)− f∗] ≤ 1

θk
·

(
θ1β1η1V (z0, x

∗) +
k∑
t=1

3θtrtβtLLD2 +
k∑
t=1

θtrtσ
2
∗

)
(i)

≤ 1

(k + 1)(k + 2)
·
(
3ηD2 +

27(k + 1)2ΩLLD2

ηm
+

2(k + 2)3Ωσ2∗
ηm

)
(ii)

≤ 12LD2

(k + 1)(k + 2)
+

18ΩLD2

(k + 2)m
+

18
√
ΩLLD2

(k + 1)
√
m

+
2
√

6(k + 2)Ωσ2∗D
2

(k + 1)
√
m

where (i) follows from (4.9.9)–(4.9.11), and (ii) is a consequence of the definition of η. This implies
(4.3.5) due to k+2

k+1 ≤ 4
3 for k ≥ 2. □

4.9.4 Proof of Theorem 4.3.2 and Corollary 4.3.2

The subsequent proofs follow those of Theorem 4.3.1 and Corollary 4.3.1. We present them here for
reader’s convenience.
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Proof of Theorem 4.3.2. Note that assumptions of Proposition 4.9.1 hold. When taking
expectation on both sides of (4.9.5) and using the bound Lemma 4.3.1, we obtain for x = x∗,

k∑
t=1

θtE[f(xt)− f∗] + θkβkηkE[V (zk, x
∗)]

≤
k∑
t=1

θt(1− βt)E[f(xt−1)− f∗] + θ1β1η1V (z0, x
∗)

+
k∑
t=1

θtrtE
[
K̄2β2t ∥xt−1 − zt−1∥2 + 3L

(
f(xt−1)− f∗ − ⟨g(x∗), xt−1 − x∗⟩

)
+ 3σ2∗

]
.

By rearranging the terms and utilizing (4.3.9) and β1 = 1, we get

θkE[f(xk)− f∗] + θkβkηkE[V (zk, x
∗)]

≤ θ1β1η1V (z0, x
∗) + 3θ1r1L

(
f(z0)− f∗ − ⟨g(x∗), z0 − x∗⟩

)
+

k∑
t=1

θtrtE
[
K̄2β2tE∥xt−1 − zt−1∥2 + 3σ2∗

]
≤ θ1β1η1V (z0, x

∗) +
3θ1r1LL

2
∥z0 − x∗∥2 +

k∑
t=1

θtrtE
[
K̄2β2tE∥xt−1 − zt−1∥2 + 3σ2∗

]
,

what is (4.3.10). □

Proof of Corollary 4.3.2. Observe that for η ≥ 4L and mt = m (cf. (4.9.9))

rt ≤
2βtΩ(t+ 1)

ηm
. (4.9.12)

Then, due to η ≥ 18Ω(k+1)L
m ,

θt(1− βt + 3rtL) ≤ (t+ 1)(t+ 2)

(
t− 1

t+ 2
+

18Ω(t+ 1)L
(t+ 2)ηm

)
≤ (t+ 1)

(
t− 1 +

t+ 1

k + 1

)
≤ t(t+ 1) = θt−1,

thus (4.3.9) holds. We have (cf. (4.9.10))

θtβtηt = (t+ 1)(t+ 2) · 3η

(t+ 2)(t+ 1)
= 3η = θt−1βt−1ηt−1, (4.9.13)

so (4.3.2a) is verified and the conclusion of Theorem 4.3.2 applies. We also have

θtrtβ
2
t ≤ 2θtβ

3
tΩ(t+ 1)

ηm
≤ 54Ω

ηm
. (4.9.14)
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Let us now check that E[V (zt, x
∗)] ≤ 3D2 for all t ≥ 1. First, for t = 1, applying (4.3.10) and taking

into account (4.9.12)–(4.9.14), we get

E[V (z1, x
∗)] ≤ V (z0, x

∗) +
3θ1r1LL
2θ1β1η1

∥z0 − x∗∥2 + 3θ1r1
θ1β1η1

σ2∗

≤ V (z0, x
∗) +

12ΩLL
mη2

∥z0 − x∗∥2 + 24Ω

η2m
σ2∗

≤ V (z0, x
∗) +

1

24
V (z0, x

∗) +D2 ≤ 3D2,

the second inequality being due to (4.1.11) and η ≥ max

{
4L, 18Ω(k+1)L

m ,

√
2(k+2)3Ωσ2

∗
D2m

}
.

Now, assume that for s = 1, ..., t− 1, E[V (zs−1, x
∗)] ≤ 3D2. Because xs is a weighted average of

the previous iterates, by convexity of ∥ · ∥2, we have for s < t,

E∥xs − zs∥2 ≤ 2E∥xs − x∗∥2 + 2E∥zs − x∗∥2

≤ 2 max
0≤i≤s

E∥zi − x∗∥2 + 2E∥zs − x∗∥2

≤ 4 max
0≤i≤s

E[V (zi, x
∗)] + 4E[V (zs, x

∗)] ≤ 24D2. (4.9.15)

As a consequence, when substituting into (4.3.10) the bounds of (4.9.12)–(4.9.14)

E[V (zk, x
∗)] ≤ V (z0, x

∗) +
3θ1r1LL
2θkβkηk

∥z0 − x∗∥2 +
k∑
t=2

24θtrtβ
2
tK2D2

θkβkηk
+

k∑
t=1

3θtrtσ
2
∗

θkβkηk

(ii)

≤ V (z0, x
∗) +

12ΩLL
mη2

∥z0 − x∗∥2 + 144Ω(k − 1)K2D2

η2m
+

2(k + 2)3Ωσ2∗
η2m

(i)

≤ 3D2,

due to

η ≥ max

4L,
18Ω(k + 1)L

m
, 12

√
kΩK2

m
,

√
2(k + 2)3Ωσ2∗

D2m

 .

Finally, from (4.3.10) and the definition of η we conclude that

E[f(xk)− f∗] ≤ 1

θk

(
θ1β1η1V (z0, x

∗) +
3θ1r1LL

2
∥z0 − x∗∥2 +

k∑
t=2

θtrtβ
2
tK2E∥z̄t−1 − zt−1∥2 +

k∑
t=1

3θtrtσ
2
∗

)

≤ 1

(k + 1)(k + 2)

(
3ηD2 +

36ΩLL
mη

+
432(k − 1)ΩK2D2

ηm
+

6(k + 2)3Ωσ2∗
ηm

)

≤ 13LD2

(k + 1)(k + 2)
+

54ΩLD2

(k + 2)m
+

72KD2

(k + 2)

√
Ω

m(k + 1)
+

6

k + 1

√
2(k + 2)Ωσ2∗D

2

m
.

This completes the proof due to k+2
k+1 ≤ 4

3 for k ≥ 2. □

4.9.5 Proof of Theorem 4.4.1

For 0 ≤ βt ≤ 1, denote τt =
1−βt
βt

. Relationships (4.4.5) in variables θt, αt, ηt, and τt become

θt−1 = αtθt, ηt ≤ αtηt−1, t = 2, . . . , k (4.9.16a)
ηtτt−1

αt
≥ 5L, t = 3, . . . , k (4.9.16b)

η1η2
α2

≥ 25L2, ηkτk ≥ L, (4.9.16c)
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with (4.4.1c) of Algorithm 4 replaced with

xt = (zt + τtxt−1)/(1 + τt). (4.9.17)

We need the following technical statement.

Proposition 4.9.2 If the algorithm parameters {αt}, {ηt} and {τt} satisfy τ1 ≥ 0, τt > 0 for all
t ≥ 2, along with relations (4.9.16a)–(4.9.16c) for some θt ≥ 0. Then for all x ∈ X

k∑
t=1

θt {τt[f(xt)− f(xt−1)]− ⟨g(xt), x− xt⟩} ≤ θ1η1V (x0, x) +
k−1∑
t=0

[
pt⟨δt, x− zt⟩+

5qt
2
∥δt∥2∗

]
(4.9.18)

where pt :=

{
θt, t ≤ k − 2,

θt+1 + θt, t = k − 1
and δt := Gt − g(xt).

Proof of the proposition.

1o. Denote gt := g(xt). By the smoothness of f ,

1

2L
∥gt − gt−1∥2∗ ≤ f(xt−1)− [f(xt) + ⟨gt, xt−1 − xt⟩].

Then for any x ∈ X, using the above inequality and the fact that x − xt = x − zt − τt(xt−1 − xt)
due to (4.9.17), we get

τtf(xt)− ⟨gt, x− xt⟩ = τt[f(xt) + ⟨gt, xt−1 − xt⟩] + ⟨gt, zt − x⟩

≤ τt

[
f(xt−1)−

1

2L
∥gt − gt−1∥2∗

]
+ ⟨gt, zt − x⟩.

By the optimality condition of (4.4.1b), we have

⟨G̃t, zt − x⟩ ≤ ηtV (zt−1, x)− ηtV (zt, x)− ηtV (zt−1, zt).

Combining two previous inequalities, we obtain

τtf(xt)− ⟨gt, x− xt⟩ − τtf(xt−1)

≤ ηtV (zt−1, x)− ηtV (zt, x) + ⟨gt − G̃t, zt − x⟩ − τt
2L

∥gt − gt−1∥2∗ − ηtV (zt−1, zt). (4.9.19)

Note that

⟨gt − G̃t, zt − x⟩ = ⟨gt − gt−1 − αt(gt−1 − gt−2), zt − x⟩ − ⟨δt−1 + αt(δt−1 − δt−2), zt − x⟩
= ⟨gt − gt−1, zt − x⟩ − αt⟨gt−1 − gt−2, zt−1 − x⟩
+ αt⟨gt−1 − gt−2, zt − zt−1⟩ − ⟨δt−1 + αt(δt−1 − δt−2), zt − x⟩. (4.9.20)

When taking the θt-weighted sum of the above inequalities for t = 1, . . . , k, noting that x0 = z0, and
using (4.9.16a), we obtain

k∑
t=1

θt {τt[f(xt)− f(xt−1)]− ⟨gt, x− xt⟩}

≤ θ1η1V (x0, x)− θkηkV (zk, x) + θk⟨gk − gk−1, zk − x⟩+∆k, (4.9.21)
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where

∆k :=
k∑
t=1

θt
[
αt⟨gt−1 − gt−2, zt − zt−1⟩ −

τt
2L

∥gt − gt−1∥2∗

− ⟨δt−1 + αt(δt−1 − δt−2), zt − x⟩ − ηtV (zt−1, zt)
]
.

Observe that

θtαt⟨gt−1 − gt−2, zt − zt−1⟩ ≤
θ2tα

2
tL

2θt−1τt−1
∥zt − zt−1∥2 +

θt−1τt−1

2L
∥gt−1 − gt−2∥2∗

so that, after rearranging the terms,

∆k ≤ θ2α2⟨g1 − g0, z2 − z1⟩+
k∑
t=3

Lθ2tα
2
t

2θt−1τt−1
∥zt − zt−1∥2 −

θkτk
2L

∥gk − gk−1∥2∗ − 1
5

k∑
t=1

θtηtV (zt−1, zt)︸ ︷︷ ︸
=:∆k,1

−
k∑
t=1

θt⟨δt−1 + αt(δt−1 − δt−2), zt − x⟩ − 4

5

k∑
t=1

θtηtV (zt−1, zt)︸ ︷︷ ︸
=:∆k,2

.

2o. Let us bound ∆k,1. By the Young’s inequality,

α2⟨g1 − g0, z2 − z1⟩ ≤
5α2

2

2η2
∥g1 − g0∥2∗ +

η2
10

∥z2 − z1∥2 ≤
5α2

2

2η2
∥g1 − g0∥2∗ +

η2
5
V (z1, z2),

thus

∆k,1 ≤
5θ2α

2
2∥g1 − g0∥2∗
2η2

− 1

5
θ1η1V (z1, z0) +

k∑
t=3

(
Lθ2tα

2
t

2θt−1τt−1
− θtηt

10

)
∥zt − zt−1∥2 −

θkτk
2L

∥gk − gk−1∥2∗

≤ −θkτk
2L

∥gk − gk−1∥2∗ (4.9.22)

where the last inequality follows from (5.3.2) and the bound

5θ2α
2
2∥g1 − g0∥2∗
2η2

≤ 5θ2α
2
2L

2∥x1 − x0∥2

2η2
=

5θ2α
2
2L

2∥z1 − z0∥2

2η2
≤ 5θ2α

2
2L

2V (z1, z0)

η2
≤ θ1η1V (z1, z0)

5
.

Note that

− ηkV (zk, x) + ⟨gk − gk−1, zk − x⟩ − τk
2L

∥gk − gk−1∥2∗

≤ −ηk
2
∥zk − x∥2 + ⟨gk − gk−1, zk − x⟩ − τk

2L
∥gk − gk−1∥2∗

≤ −
(
ηk
2

− L

2τk

)
∥zk − x∥2 ≤ 0

due to the second relationship in (4.9.16c). Now, substituting the bound (4.9.22) into (4.9.21) results
in

k∑
t=1

θt {τt[f(xt)− f(xt−1)]− ⟨gt, x− xt⟩}

≤ θ1η1V (x0, x)− θkηkV (zk, x) + θk⟨gk − gk−1, zk − x⟩ − θkτk
2L

∥gk − gk−1∥2∗ +∆k,2

≤ θ1η1V (x0, x) + ∆k,2. (4.9.23)
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3o. To bound ∆k,2 we act as follows. Observe that

∆k,2 ≤ −
k∑
t=1

θt[⟨δt−1, zt − zt−1⟩+ ⟨δt−1, zt−1 − x⟩]

−
k∑
t=1

θtαt[⟨δt−1, zt − zt−1⟩+ ⟨δt−1, zt−1 − x⟩]

+

k∑
t=2

θtαt[⟨δt−2, zt − zt−1⟩+ ⟨δt−2, zt−1 − zt−2⟩+ ⟨δt−2, zt−2 − x⟩]

− 2

5

k∑
t=1

θtηt∥zt−1 − zt∥2.

Recall that zt is Ft−1-measurable. When using the bound

⟨δs, zr − zr−1⟩ − a∥zr−1 − zr∥2 ≤ ∥δs∥2∗/(4a)

for s < r and a > 0, we get

∆k,2 ≤
k∑
t=1

[
5θt
2ηt

∥δt−1∥2∗ − θt⟨δt−1, zt−1 − x⟩
]

+
k∑
t=1

[
5θtα

2
t

2ηt
∥δt−1∥2∗ − θtαt⟨δt−1, zt−1 − x⟩

]

+

k∑
t=2

[
5θtα

2
t

2ηt
∥δt−2∥2∗ +

5θ2tα
2
t

2θt−1ηt−1
∥δt−2∥2∗ + θtαt⟨δt−2, zt−2 − x⟩

]

≤
k∑
t=1

5

2

[
θt(1 + α2

t )

ηt
+
θt+1α

2
t+1

ηt+1
+
θ2t+1α

2
t+1

θtηt

]
∥δt−1∥2∗

−
k∑
t=1

θt(1 + αt)⟨δt−1, zt−1 − x⟩+
k−1∑
t=1

θt⟨δt−1, zt−1 − x⟩

≤
k∑
t=1

5

2

[
θt(1 + α2

t )

ηt
+
θt+1α

2
t+1

ηt+1
+
θ2t+1α

2
t+1

θtηt

]
∥δt−1∥2∗

−
k−1∑
t=0

θt⟨δt, zt − x⟩ − θk⟨δk−1, zk−1 − x⟩. (4.9.24)

When substituting the bound (4.9.24) for ∆k,2 into (4.9.23) we obtain (4.9.18). □

Proof of the theorem. By taking expectation on both sides of (4.9.18), and using (SN), (4.2.2),
and the fact that

⟨g(xt), x− xt⟩ ≤ f(x)− f(xt)
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we have for all x ∈ X,

k∑
t=1

θtE {τt[f(xt)− f(xt−1)]− [f(x)− f(xt)]}

≤ θ1η1V (x0, x) +
k∑
t=1

ϵt−1

{
LE[f(xt−1)− f∗ − ⟨g(x∗), xt−1 − x∗⟩] + σ2∗

}
.

Note that (4.4.7) implies that

θtτt + Lϵt−1 ≤ θt−1(1 + τt−1), t ≥ 2. (4.9.25)

Thus, by setting x = x∗ and using ⟨g(x∗), xt − x∗⟩ ≥ 0, f(x0)− f∗ − ⟨g(x∗), x0 − x∗⟩ ≤ L
2 ∥x0 − x∗∥2,

and τ1 = 0, we obtain

θk(1 + τk)E[f(xk)− f∗] ≤
k∑
t=1

θt(1 + τt)E[f(xt)− f∗]−
k−1∑
t=1

θt(1 + τt)E[f(xt)− f∗]

≤
k∑
t=1

θt(1 + τt)E[f(xt)− f∗]−
k∑
t=2

(θtτt + ϵt−1L)E[f(xt−1)− f∗]

≤ θ1η1V (x0, x
∗) +

ϵ0LL
2

∥x0 − x∗∥2 +
k∑
t=1

ϵt−1σ
2
∗

which is (4.4.8). □

4.9.6 Proof of Corollary 4.4.1

1o. Note that in the premise of the corollary one has τt =
t−1
3 . Let us check that with the present

choice of stepsize parameters conditions (4.9.16a)–(4.9.16c) and (5.3.7) (which are equivalents (4.4.5)
and (4.4.7)) are satisfied. It is easy to see that (4.9.16a) holds. Because η ≥ 30L, we have

η1η2=
1

2
· (30L)2 ≥ 25α2L

2,

ηtτt−1=
η

t
· t− 2

3
≥ 10L(t− 2)

t
≥ 5Lαt, t = 3, ..., k

ηkτk ≥
η

k
· k − 1

3
≥ 10L(k − 1)

k
≥ L.

To check (5.3.7), notice that for t ≥ 1,

qt =
θt+1(1 + α2

t+1)

ηt+1
+
θt+2α

2
t+2

ηt+2
+
θ2t+2α

2
t+2

θt+1ηt+1
=

3(t+ 1)2 + t2

η
≤ 4(t+ 1)2

η
,

thus

ϵt =
5Ωqt
2mt

≤ 10Ω(t+ 1)2

ηm
.
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Given the above inequality, for t ≥ 3 we have

θtτt + Lϵt−1 = t · t− 1

3
+ Lϵt−1 ≤

t(t− 1)

3
+

10Ωt2L
ηm

≤ t(t− 1)

3
+
t− 1

3
=

(t+ 1)(t− 1)

3
,

where the second inequality follows from η ≥ 30Ω(k+2)L
m . Combining the above bound with θt−1(1 +

τt−1) =
(t−1)(t+1)

3 , we arrive at

θt−1(1 + τt−1)− (θtτt + Lϵt−1) ≥ 0, t ≥ 2,

which is (5.3.7). We conclude that the bound (4.4.8) of Theorem (4.4.1) holds.

On the other hand, when η ≥
√

10Ω(k+1)3σ2
∗

3mD2 we have

k−1∑
t=0

ϵtσ
2
∗ ≤

k−1∑
t=0

10Ω(t+ 1)2σ2∗
ηm

≤ 10Ω(k + 1)3σ2∗
3ηm

≤

√
10Ω(k + 1)3σ2∗D

2

3m
.

When substituting the above bound into (4.4.8) and noticing that θk(1 + τk) =
k(k+2)

3 and Lϵ0 ≤ 1
3 ,

we conclude that

E[f(xk)− f∗] ≤ 91LD2

k(k + 2)
+

90ΩLD2

mk
+

√
120Ωσ2∗D

2

mk
,

which completes the proof of (4.4.9).

2o. The “Furthermore” part of the statement immediately follows from (4.1.11) and the fact that

when η ≥
√

20(k+1)3Ωσ2
∗

3mΩR2 one has

k−1∑
t=0

ϵtσ
2
∗ ≤ 10Ω(k + 1)3σ2∗

3ηm
≤

√
5ΩΩ(k + 1)3σ2∗R

2

3m
. □

4.9.7 Proofs of Corollaries 4.5.1 and 4.6.1

Proof of Corollary 4.5.1. Note that bound (4.4.11) of Corollary 4.4.1 implies that whenever size
m of the mini-batch satisfies

m ≥ max
{
1, 18(k+2)ΩL

L , 15N(N+2)2σ2
∗

L2R2

}
,

we have for the approximate solution xN by SGE after N iterations,

E[f(xN )− f∗] ≤ 91LΩR2

2N(N + 2)
+

45Ω2LR2

mk
+

√
60Ω2σ2∗R

2

mk

≤ 91LΩR2

2N(N + 2)
+

5LΩR2

2N(N + 2)
+

2LΩR2

N(N + 2)

=
50LΩR2

N(N + 2)
(4.9.26)

where R is an upper bound for the “initial distance to x∗”.
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Note that ∥y0 − x∗∥ ≤ R0. Let us now assume that for 1 ≤ k ≤ K, ∥yk−1 − x∗∥ ≤ Rk, so that at
the beginning of the kth stage ∥x0 − x∗∥ ≤ Rk. Based on the above inequality, by the choice of N ,

E[f(xN )− f∗] ≤
50LΩR2

k−1

N(N + 2)
≤
µR2

k−1

4
= 2−k−1µR2

0 =
1

2
µR2

k.

Due to (4.5.1) this also means that

E[∥xN − x∗∥2] ≤ R2
k = 2−kR2

0. □

Proof of Corollary 4.6.1. We have ∥y0 − x∗∥ ≤ R0. Let us assume that ∥yk−1 − x∗∥ ≤ Rk−1 for
some 1 ≤ k ≤ K. From (4.9.26) we conclude that

E[f(yk)− f∗] ≤
50LΩR2

k−1

N(N + 2)
≤
κR2

k

16s
= 2−k−4s−1κR2

0

by the choice of N . Furthermore, recalling that yk = sparse(yk), we have

∥yk − x∗∥ ≤
√
2s∥yk − x∗∥2 ≤ 2

√
2s∥yk − x∗∥2. (4.9.27)

Indeed, given that both yk and x∗ are s-sparse, we conclude that yk − x∗ is 2s-sparse, thus
∥yk − x∗∥ ≤

√
2s∥yk − x∗∥2. On the other hand, by the optimality of yk for (4.6.6),

∥yk − x∗∥2 ≤ ∥yk − yk∥2 + ∥yk − x∗∥2 ≤ 2∥yk − x∗∥2.

We conclude that

E[∥yk − x∗∥2] ≤ 8s∥yk − x∗∥22 ≤ 16sκ−1E[f(yk)− f∗] ≤ R2
k = 2−kR2

0

which completes the proof. □
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Chapter 5

Large Deviation Bounds, Accuracy
Certificates and Composite Algorithm

Chapter Abstract

In this final chapter, we build upon the accelerated algorithms introduced and discussed in the previous
chapter. We continue to explore stochastic optimization algorithms over a class of smooth convex
objectives. To ensure reliability of the solutions computed by the SGE method and its multistage
conterparts, we provide high-probability guarantees under the assumption of sub-exponential state-
dependent gradient noise. These bounds match the optimal in-expectation bounds up to logarithmic
factors of the confidence level. Following this, we derive accuracy certificates for the SGE algorithm.
This provides an interesting procedure to compute on-the-fly stochastic upper bounds for the unknown
suboptimality gap, ultimately leading to a practical stopping criterion for the SGE algorithm.

Additionally, we propose an adaptive method to address the statistical problem of sparse
parameters estimation. We draw inspiration from the framework introduced in Chapter 2 of the
manuscript to offer an analysis of a multistage algorithm for minimizing over the set of sparse
minimizers. The proposed method involves solving a sequence of norm-penalized stochastic composite
optimization problems at each stage of the multistage routine. Each stage is solved up to a prescribed
accuracy by the non-Euclidean Composite Stochastic Gradient Extrapolation (CSGE) algorithm.
Finally, we apply the multistage algorithm to solve the sparse GLR problem under the ”vanilla”
sparsity structure and provide numerical validation of the approach.

5.1 Introduction

This chapter studies stochastic optimization problems of the form

f∗ := min
x∈X

f(x) (5.1.1)

where X is assumed to be a closed convex subset of a Euclidean space E and f : X → R is a smooth
convex function with Lipschitz continuous gradient, i.e., for some L ≥ 0,

0 ≤ f(y)− f(x)− ⟨∇f(x), x− y⟩ ≤ L

2
∥x− y∥2 (5.1.2)

We assume that the set of minimizers X∗ is nonempty.
We consider the stochastic setting where only stochastic first-order information about f is

available for solving problem (5.1.1). Specifically, at the current search point xt ∈ X, a stochastic

133



5.1. INTRODUCTION

oracle (SO) generates the stochastic operator G(xt, ξt), where ξt ∈ Ξ denotes a random variable
whose probability distribution is supported on a set Ξ. We assume ξt is independent of x0, ..., xt,
and (ξt)t≥0 are mutually independent.

We assume that G(xt, ξt) is an unbiased estimator of g(xt) = ∇f(xt) satisfying:

Eξt [G(xt, ξt)] = g(xt) (5.1.3)

In this chapter we are, again, motivated by the problem of parameter estimation in the generalized
linear regression (GLR) model. We want to estimate the unknown parameter vector x∗ ∈ X ⊂ Rn

given observations (ϕt, ηt),

ηt = u(ϕTt x
∗) + ζt, t = 1, 2, ..., (5.1.4)

where, ηt ∈ R are the responses, ϕt ∈ Rn are random regressors, ζt ∈ R are zero-mean random
noises which are assumed to be mutually independent and independent of ϕt, and u : R → R is the
“activation function”. Given the settings, one clearly has

E[ϕt(u(ϕ
T
t x

∗)− ηt)] = E[ϕt ζt] = 0. (5.1.5)

Thus, the problem of recovery of x∗ from observations ηt and ϕt may be formulated as a stochastic
optimization problem. Specifically, when denoting v : R → R the primitive of u, i.e., v′(t) = u(t)
and assuming that x∗ ∈ intX, (5.1.5) may be seen as as the optimality condition for the problem

min
x∈X

{
f(x) := E[v(ϕTx)− ϕTxη]

}
. (5.1.6)

Expanding on the work laid out in the previous chapter, our current motivation is to provide
high-probability guarantees for the SGE method and its multistage variant. Large deviation bounds
are desirable to ensure the reliability and robustness of the solutions. A sub-Gaussian tail condition,
e.g.,

Eξt
[
exp{∥G(xt, ξt)− g(xt)∥2∗/σ2t (xt)}

∣∣xt] ≤ exp(1), t ∈ Z+,

is often assumed when proving such bounds (cf., e.g., [87, 88, 105], among others).1 However, this
assumption is violated in many well-known applications. For instance, in the GLR problem, it
implies the boundedness of the regressors; one can easily check that if ϕt are Gaussian (see Section
5.5.4), the stochastic oracle noise becomes sub-exponential:

Eξt
[
exp{∥G(xt, ξt)− g(xt)∥∗/σt(xt)}

∣∣xt] ≤ exp(1), t ∈ Z+.

Besides the sub-exponential structure, another challenging problem when proving large deviation
bounds under state-dependent noise assumption stems from the fact that iterates xt of the stochastic
algorithm are random variables, thus the normalizing factor σt(xt) is a random variable itself.
As a consequence, classical large deviation inequalities for martingales (cf., e.g., [113, 118, 153,
154]) are not well suited to obtain precise concentration bounds for the trajectories of stochastic
approximation.

A second aspect explored in this chapter is the derivation of accuracy certificates for the SGE
algorithm. Accuracy certificates usually provide upper and lower bounds on the unknown optimal
objective value in optimization problems. In particular, we focus on stochastic certificates, which are

1It is worth noting that authors of [59] proposed a Median-of-Means type technique [152] to obtain high probability
guarantees without additional assumptions on the tail distribution. However, this technique requires data splitting and
post-manipulation after running stochastic approximation algorithms, introducing additional computational efforts
and implementation issues.
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generated iteratively as the optimization algorithm progresses and are used to evaluate the quality
of the current solution. This approach, combined with a specified inaccuracy level ϵ, allows the
computation of upper and lower estimates for the unknown suboptimality gap. These estimates
can ultimately be used to formulate a stopping criterion for the optimization procedure. Online
accuracy certificates have previously been derived for the Mirror Descent SA algorithm in [155]. In
their work, the authors provide in-expectation and high-probability guarantees for these certificates
by, notably exploiting the assumption of sub-Gaussian stochastic gradients. In our study, we extend
similar ideas to the SGE algorithm. We offer a solution to compute an accuracy certificate for the
objective’s suboptimality. This upper bound possesses a comparable optimal convergence rate of
O(1/k2), characteristic of smooth convex programming, and offers the distinct advantage of being
computable ”on-the-fly” during the execution of the SGE algorithm, providing a real-time measure
for controlling the objective’s suboptimality gap and thus providing a termination criterion for
the algorithm. The theoretical guarantees for this approach are established within the context of
sub-exponential stochastic gradient noise

Finally, we focus on the development of a novel algorithm for the problem of sparse recovery.
Inspired by the work developed in Chapter 2, we propose in Section 5.5.3, a multistage procedure
based on the Composite Stochastic Gradient Extrapolation (CSGE) algorithm. The CSGE algorithm
is a variant of the SGE algorithm in which the usual proximal operator is replaced by the same
composite proximal operator used within the CSMD algorithm. Each stage of the multistage routine
is a specific run of the CSGE algorithm solving a proxy sub-composite stochastic problem. By
considering a sparsity-inducing penalization function, the algorithm produces estimates with a
sparse structure. We derive an analysis for the sparse recovery algorithm, the CSGE-SR algorithm,
by building on the Reduced Strong Convexity assumption introduced in Chapter 2. The latter
assumption offers a general framework to provide an analysis of the multistage procedure adaptable
to different types of sparsity structures. By presenting an application in the context of sparse GLR
with minima x∗ possessing a ”vanilla” sparsity structure, we prove that our accelerated multistage
algorithm achieves the optimal iteration complexity and the optimal sample complexity up to some
logarithmic terms. Similar to the analysis in the previous chapter under noise (SN) which revealed a
sample complexity with three terms: the deterministic error, the state-dependent stochastic error,
and the state-independent stochastic error, the analysis of our CSGE-SR algorithm also reveals these
same three terms in the sample complexity. We show that the CSGE-SR algorithm improves on the
CSMD-SR algorithm, where the algorithm has the optimal dependence on the condition number of
the problem, while achieving a similar state-independent stochastic error. The multistage method
also has the same advantages as CSMD-SR over the SGE-SR algorithm presented in Chapter 4,
since the CSGE-SR algorithm can be made adaptive to two unknown parameters at the same time
using Lepski’s adaptation procedure (see Chapter 3).

The organization of the following sections of this chapter is as follows. In Section 5.2 we present
the state-dependent sub-exponential stochastic noise assumption and we introduce the mini-batch
setup. Additionally, we discuss an important technical result on large deviations for handling
sequences of sub-exponential random variables. This result serves as the basis for providing the
high-probability guarantees in our setup. In Section 5.3, we provide the high-probability guarantees
for the SGE method. In addition, by exploiting the quadratic growth condition on the objective
function, we propose a variant of Algorithm 5 with a shrinking domain, for which we also derive
high-probability bounds. Section 5.4 focuses on the derivation of accuracy certificates for the SGE
algorithm. In Section 5.5 we present a setup, inspired by the results developed in Chapter 2 of
the manuscript, to design an accelerated multistage composite algorithm for sparse recovery based
on the Composite Stochastic Gradient Extrapolation (CSGE) method. Finally, in Section 5.6, we
present a simulation study to illustrate the performance of our multistage accelerated algorithm in a
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high-dimensional sparse recovery problem. Until Section 5.5, we will use the same notation as in the
previous chapter.

5.2 Problem statement

We provide below a brief summary of the setting under which we derive the analysis of the accelerated
methods in order to provide bounds that are valid in high-probability.

5.2.1 Assumptions

We consider the problem of stochastic optimization with a smooth and convex objective.
To derive the high-probability guarantees presented in Sections 5.3, 5.4 and 5.5, Assumption

(SN) introduced in the previous analysis is replaced with the following one:

• [Sub-exponential tails] One has

Eξt

[
exp

{
∥G(xt, ξt)− g(xt)∥∗

σt

}]
≤ exp(1), t ∈ Z+, (SEN)

where, similarly to (SN), for some L <∞ and x∗ ∈ X∗ we have,

σ2t := L[f(xt)− f(x∗)− ⟨g(x∗), xt − x∗⟩] + σ2∗.

5.2.2 Mini-batch setup

Here again, we consider the mini-batch approach widely used in practice. Specifically, we assume
that at each search point xt, the stochastic oracle is called repeatedly, thus generating mt i.i.d.
samples {ξt,i}mt

i=1, mt being the number of oracle calls. Next, we compute the unbiased estimate
Gt(xt) of g(xt),

Gt(xt) =
1

mt

mt∑
i=1

G(xt, ξt,i).

We define filtration Ft = σ
(
x0, ξ0,1, ...ξ0,m0 , ξ1,1, ...ξ1,m1 , ..., ξt,1, ...ξt,mt

)
, so that

• random variables in {ξt,i}mt
i=1 are Ft-measurable.

• search points with index t which are deterministic functions of Gτ (xτ ), τ ≤ t − 1, are Ft−1-
measurable.

We use the shorthand notation E⌈t⌉ to denote the conditional expectation with respect to the
filtration Ft.

Under Assumption (SEN), we can establish sub-exponential bounds for the mini-batch operator
Gt(xt).

Lemma 5.2.1 Let Assumption (SEN) hold, then for λ ∈
[
0, mt

2σt

]
,

E⌈t−1⌉ [exp(λ∥Gt(xt)− g(xt)∥∗)] ≤ exp

(
1.06λσ̄t +

3λ2σ2t
mt

)
(5.2.1)
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almost surely and where

σ̄2t :=
Ω

mt

{
L[f(xt)− f(x∗)− ⟨g(x∗), xt − x∗⟩] + σ2∗

}
.

Consequently, for all mt ≥ 1,

E⌈t−1⌉

{
exp

(
∥Gt(xt)− g(xt)∥∗

3σ̄t

)}
≤ exp(1), (5.2.2)

almost surely.

5.2.3 A preliminary large deviation bound

Notice that we have proved in Lemma 5.2.1 that δt := Gt−g(xt) follows a sub-exponential distribution
with a variance bounded by O(σ̄2t ). However, the challenge arises from the fact that the variance
is a Ft−1-measurable random variable, which makes it difficult to establish sharp large deviation
bounds. A straightforward approach to handle the random variance is to apply a fixed upper bound,
such as σ̄t ≤ σ̂, and then utilize Bernstein’s inequality. However, this approach fails to capture the
reduction in variance as xt converges to x

∗. Therefore, it is necessary to have a “data-driven” bound
that explicitly depends on the random variance of the noise. Towards this end, we first prove a
preliminary result for handling a sequence of sub-exponential random variables with Ft−1-measurable
variance. We believe that this result is of independent interest to the statistics and optimization
community, so we present it in the following lemma using general notation.

Lemma 5.2.2 Let yt, t = 0, 1, 2, ... be a sequence of Ft-measurable random variables such that for
some v > 0 and λ ∈ [0, (vst)

−1],

E⌈t−1⌉{eλyt} ≤ exp{λrt + 1
2λ

2s2t }, (5.2.3)

where st and rt are Ft−1-measurable. Let us set Yj :=
∑j

t=0(yt − rt) , u2j :=
∑j

t=0 s
2
t , and ŝj :=

max0≤i≤j si. Then we have for y, s, s̄, ū > 0,

Prob
{
∃ t ≤ k, s.t. Yt ≥ 2ut

√
2y + 4v(ŝt + s)y, ŝt ≤ s̄, ut ≤ ū

}
≤
[(

log2
(

ū√
2yvs

)
+ 1
)(

log2
(
s̄
s

)
+ 1
)
+ 1
]
e−y.

Consequently, if ŝk ≤ s̄ and uk ≤ ū almost surely, we have

Prob
{
Yk ≥ 2uk

√
2y + 4v(ŝk + s)y

}
≤
[(

log2
(

ū√
2yvs

)
+ 1
)(

log2
(
s̄
s

)
+ 1
)
+ 1
]
e−y. (5.2.4)

5.3 High-probability bounds for SGE

In this section we provide high-probability guarantees for the Stochastic Gradient Extrapolation
algorithm introduced in the previous chapter. We derive high-probability bounds under the sub-
exponential tail Assumption (SEN) by using the result presented in Lemma 5.2.2.
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5.3.1 General smooth convex problem

Before diving into the development of the high-probability convergence guarantees, we first present
an important result verified by the SGE method that will be used in the subsequent analysis. Recall
that in the preceding chapter, we provide in Theorem 4.4.1 a result on the convergence of the SGE
algorithm when the feasible region X is unbounded. Next proposition adapts this result to the
setting when X is bounded.

Proposition 5.3.1 If the algorithm parameters {αt}, {ηt} and {τt} in Algorithm 4 satisfy τ1 ≥ 0,
τt > 0 for all t ≥ 2, and for some θt ≥ 0,

θt−1 = αtθt, ηt ≤ αtηt−1, t = 2, . . . , k (5.3.1)
ηtτt−1

αt
≥ 5L, t = 3, . . . , k (5.3.2)

η1η2
α2

≥ 25L2, ηkτk ≥ L, (5.3.3)

then for a bounded feasible region X, i.e, maxx,x′∈X ∥x− x′∥ ≤ RX , we have for any x ∈ X,

k∑
t=1

θt {τtf(xt)− ⟨g(xt), x− xt⟩ − τtf(xt−1)} ≤ θ1η1V (x0, x) +

k−1∑
t=0

χt(x), (5.3.4)

where δt := Gt − g(xt), qt :=
θt+1(1+α2

t+1)

ηt+1
+

θt+2α2
t+2

ηt+2
+

θ2t+2α
2
t+2

θt+1ηt+1
, pt :=

{
θt, t ≤ k − 2

θt+1 + θt, t = k − 1
, and

χt(x) := min

{
pt⟨δt, x− zt⟩+

5qt
2
∥δt∥2∗, (2θt+1 + θt)∥δt∥∗RX

}
. (5.3.5)

Proof of Proposition 5.3.1 The proof of the proposition follows exactly the same steps as in the
proof of Theorem 4.4.1, except that when X is bounded, we can upper bound ∆k,2 appearing in
Ineq. directly by using Cauchy-Schwarz inequality and δ0 = δ−1, we obtain

∆k,2 ≤
k∑
t=1

θt[(1 + αt)∥δt−1∥∗ + αt∥δt−2∥∗]RX .

□

Given Lemma 5.2.2, let us now focus on the high-probability convergence results for the SGE
method. Recalling Ineq (5.3.4) in Lemma 4.9.2, we need to properly bound the term

∑k−1
t=0 χt(x

∗),
where

χt(x
∗) := min

{
pt⟨δt, x∗ − zt⟩+

5qt
2
∥δt∥2∗, (2θt+1 + θt)∥δt∥∗RX

}
, and pt :=

{
θt, t ≤ k − 2

θt+1 + θt, t = k − 1
.

We have the following lemma which characterizes the sub-exponential distribution of χt(x
∗).

Lemma 5.3.1 Under condition (SEN), we have for λ ∈ [0, 1
6σ̄t(2θt+1+θt)RX

],

E⌈t−1⌉[exp(λ · χt(x∗))] ≤ exp
{
2.8 λqtσ̄

2
t + 27λ2(2θt+1 + θt)

2R2
X σ̄

2
t

}
. (5.3.6)
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By applying Lemma 5.2.2 to upper bound the term
∑k−1

t=0 χt(x
∗) in Proposition 5.3.1, we can

derive the following theorem that characterizes the convergence of the SGE method with high-
probability.

Theorem 5.3.1 Suppose that the algorithm parameters {θt}, {αt}, {ηt} and {τt} in Algorithm 4
satisfy (4.9.16a)-(4.9.16c), τ1 = 0 and

θtτt + Lϵt−1 ≤ θt−1(1 + τt−1), t ≥ 2, (5.3.7)

where

ϵt :=
2.8 qtΩ

mt
(5.3.8)

Also assume that Assumption (SEN) holds and that the feasible region X is bounded, i.e., maxx,x′∈X ∥x−
x′∥2 ≤ R2

X . For δ ∈ (0, 1) and k ∈ Z+, we denote

ςt :=
(2θt+1 + θt)

2R2
XΩ

mt
, and δ̂ := ln


(
1
2 log2(k ·

LLR2
X/2+σ

2
∗

σ2
∗

) + 1
)2

+ 1

δ

 . (5.3.9)

Then, with probability at least 1− δ,

θk(1 + τk)[f(xk)− f(x∗)]

≤ θ1η1V (x0, x
∗) +

Lϵ0L
2

∥x0 − x∗∥2 + 35δ̂

√
Lς0L∥x0 − x∗∥2

2

+
k−1∑
t=0

ϵtσ
2
∗ + 6

√√√√k−1∑
t=0

6ςtσ2∗ δ̂ + 48δ̂ max
0≤t≤k−1

√
ςtσ2∗ +

307δ̂2
∑k−1

t=1 ςtL[f(xt)− f(x∗)]∑k−1
t=1 [θt(1 + τt)− θt+1τt+1 − ϵtL][f(xt)− f(x∗)]

.

We now specify a particular stepsize policy with the convergence guarantee in high-probability.
In fact, this stepsize policy is nearly the same as the stepsize policy introduced in the expectation
bound, i.e., Corollary 4.4.1. The only difference is that the batch size mt in the following corollary
depends explicitly on the variable δ̂ ∼ O(ln(1/δ)).

Corollary 5.3.1 Set

θt = t, αt =
t− 1

t
, and ηt =

24L

t
.

Also let us set τ1 = 0, τt =
t−1
2 − t

24 , t ≥ 2, and

mt = max

{
1,

⌈
216L(t+ 2)(δ̂2 +Ω)

L

⌉
,

⌈
5(k + 1)3(δ̂ +Ω)σ2∗

L2ΩR2
X

⌉}
, t ≥ 0.

For δ ∈ (0, 1), we define δ̂ := ln


(
1
2 log2(k·

LLR2
X/2+σ2

∗
σ2∗

)+1
)2

+1

δ

. Then for any k ≥ δ̂, with probability

at least 1− δ,

f(xk)− f(x∗) ≤
797ΩLR2

X

k(k + 1)
.
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Notice that δ̂ = O{ln(1/δ)} if we neglect terms with log(log) dependence on the problem
parameters. Given Corollary 5.3.1, and assuming k ≥ δ̂, the total number of iterations performed
by the SGE method to find an (ϵ, δ)-optimal solution, i.e., x̄ ∈ X such that f(x̄)− f(x∗) ≤ ϵ with

probability at least 1− δ, is bounded by O
(√

LΩR2
X√

ϵ

)
. The dependence on Ω arises from applying

the inequality V (x, x′) ≤ Ω
2 ∥x− x′∥2 ≤ ΩR2

X
2 . Consequently, the overall sample complexity of the

SGE method to achieve an (ϵ, δ)-optimal solution is bounded by

O
{√

LΩR2
X

ϵ
+

LΩ[Ω + ln2(1/δ)]R2
X

ϵ
+

Ω[Ω + ln(1/δ)]R2
Xσ

2
∗

ϵ2

}
. (5.3.10)

It is important to note that the extra dependence on Ω in the second and third terms comes from
the application the mini-batch operator, as stated in Lemma 4.2.2.

Comparing with the sample complexity under expectation in Eq. (4.4.13), Eq. (5.3.10) has
additional logarithmic dependencies on the probability of confidence δ. However, the dependence
on ln(1/δ) appears to be a combination of multiplication and summation, rather than simple
multiplicative factors. Specifically, the first term (deterministic error) in (5.3.10) is the same as its
analog in (4.4.13). The second and third terms in (5.3.10) reduce to their counterparts in (4.4.13)
when ln(1/δ) ≤ O(

√
Ω) and ln(1/δ) ≤ O(Ω), respectively.

5.3.2 Smooth convex problem with quadratic growth condition

In this section, we consider the case when the smooth convex objective function f also satifies the
µ-quadratic growth condition, i.e., when for some µ > 0 and x∗ ∈ X

f(x)− f(x∗) ≥ µ

2
∥x− x∗∥, ∀x ∈ X. (5.3.11)

In order to generate the high probability convergence guarantee, we introduce a shrinking multi-stage
SGE method, which modifies Algorithm 5 by shrinking the feasible region in each stage.

Algorithm 7 Shrinking multi-stage Stochastic Gradient Extrapolation method

Input: initial point x̃0 ∈ X, accuracy parameter δ ∈ (0, 1). Assume ∥x̃0 − x∗∥ ≤ R2
0.

for k = 1, 2, . . . ,K do
(a) Run N iterations of the SGE method (Algorithm 4) with feasible region

Xk :=
{
x ∈ X : ∥x̃k−1 − x∥2 ≤ R2

k−1 := R2
0 · 2−k+1

}
The algorithm parameters are set as: x0 = x̄0 = x̃k−1 and

θt = t, αt =
t−1
t , ηt =

24L
t , t = 1, ..., N

m
(k)
t = max{1, ⌈216L(t+2)(δ̂2K+Ω)

L ⌉, ⌈5(N+1)3(δ̂2K+Ω)σ2
∗

L2ΩD2
0 ·2−k+1 ⌉}, t = 0, ..., N

τ1 = 0, τt =
t−1
2 − t

24 , t = 2, ..., N

and

N = 57
√
ΩL√
µ . (5.3.12)

(b) Set x̃k = xN , where xN is the solution obtained in Step (a).
end for
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Notice that the confidence level parameter δ̂K is defined as

δ̂K := ln

K
(
1
2 log2(N̄

LLR2
X/2+σ

2
∗

σ2
∗

) + 1
)2

+K

δ

 ,

which is different from the definition in Corollary 5.3.1 because of the uniform probability taken
over the stages. The following corollary characterizes the convergence property of the shrinking
multi-stage SGE method in high probability.

Corollary 5.3.2 Let {x̃K} be computed by Algorithm 7. Assume ∥x̃0 − x∗∥2 ≤ R2
0. Then we have

with probability greater than 1− δ,

f(x̃K)− f(x∗) ≤ µR2
0 · 2−K−1 and ∥x̃K − x∗∥2 ≤ R2

0 · 2−K .

In view of Corollary 5.3.2, the number of stages required by the multi-stage SGE method to
find a solution x̄ ∈ X such that f(x̄)− f(x∗) ≤ ϵ with probability greater than 1− δ is bounded by

O
(
ln(

µR2
0
ϵ )
)
. Considering the iteration number in each stage, the algorithm achieves an iteration

complexity of O
(√

LΩ
µ ln(

µR2
0
ϵ )
)
. By further considering the batch size, the total number of samples∑K

k=1

∑N
t=1m

(k)
t is bounded by

O

{√
LΩ

µ
ln

(
µR2

0

ϵ

)
+

LΩ(Ω + δ̂2K)

µ
ln

(
µR2

0

ϵ

)
+

Ω(Ω + δ̂2K)σ2∗
µϵ

}
.

Similarly, we can obtain the iteration complexity for finding a solution x̄ ∈ X such that ∥x̄−x∗∥2 ≤ ϵ

with high-probability 1− δ by O
(√

LΩ
µ ln(

R2
0
ϵ )
)
. Consequently, the sample complexity is bounded

by

O

{√
LΩ

µ
ln

(
R2

0

ϵ

)
+

LΩ(Ω + δ̂2K)

µ
ln

(
R2

0

ϵ

)
+

Ω(Ω + δ̂2K)σ2∗
µ2ϵ

}
.

Clearly, the above iteration complexities are optimal. To the best of our knowledge, this is the first
high probability bound for strongly convex or quadratic growth stochastic optimization problem
with sub-exponential state-dependent noise.

5.4 Accuracy certificate

In this section we derive a procedure to estimate in an online fashion, i.e., while running the SGE
algorithm, a computationable accuracy certificate for the suboptimality gap. We will see in the
development of this section that this procedure provides a practical termination criterion for the
latter stochastic method.

As a first step, we provide the following proposition, which is similar in the idea to Proposition 4.9.2
and Proposition 5.3.1 but has a telescoping sum from t0 to k, where t0 ∈ Z+.

Proposition 5.4.1 Suppose that the algorithm parameters {θt}, {αt}, {ηt} and {τt} in Algorithm 4
satisfy (4.9.16a)-(4.9.16c). Also assume that the feasible region X is bounded, i.e., maxx,x′∈X ∥x−
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x′∥ ≤ RX . Then for any t0 ≥ 2 and k > t0, we have

k∑
t=t0

θt⟨Gt, xt − x⟩+ θkτk[f(xk)− f(x∗)]

≤ θt0ηt0V (zt0−1, x) + θt0ηt0R
2
X +

θkηk
5

R2
X + θt0τt0 [f(xt0−1)− f(x∗)]

+
k−1∑
t=t0

(θt+1τt+1 − θtτt)[f(xt)− f(x∗)] +
k∑

t=t0−2

χ̃t, (5.4.1)

where

χ̃t := min

{
p̃t⟨δt, xt − zt⟩+

5qt
2
∥δt∥2∗, (2θt + 2θt+1)∥δt∥∗RX

}
, (5.4.2)

and p̃t :=

{
θt, t0 ≤ t ≤ k − 1

0, otherwise
, and qt :=

θt+1(2+α2
t+1)

ηt+1
+

θt+2α2
t+2

ηt+2
.

Next, by choosing the parameters of the SGE algorithm as stated in Corollary 5.3.1 we obtain
the following result.

Corollary 5.4.1 Set the parameters as in Corollary 5.3.1 with

δ̃ := ln

k
(
1
2 log2(k ·

LLR2
X/2+σ

2
∗

σ2
∗

) + 1
)2

+ 1

δ

 .

Then for any k ≥ δ̃, with probability at least 1− δ, we have

max
x∈X


k∑

t=⌈k/2⌉

t⟨Gt, xt − x⟩

 ≤ 1207LΩR2
X .

An immediate consequence of the latter corollary is that while the SGE algorithm is running, it
is possible to compute certificates that provide upper bounds on the suboptimality gap while having
the optimal convergence rate. To that matter, we use a particular averaging of the iterates output
by the SGE algorithm. Indeed, consider k ∈ Z+ such that k ≥ δ̃ and let us denote by

xk :=

∑k
t=⌈k/2⌉ t xt∑k
t=⌈k/2⌉ t

=
2(

⌈k2⌉+ k
) (
k − ⌈k2⌉+ 1

) k∑
t=⌈k/2⌉

t xt.

Now observe that since the objective function f is convex and that

2(
⌈k2⌉+ k

) (
k − ⌈k2⌉+ 1

) k∑
t=⌈k/2⌉

t = 1,
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we have

f(xk)− f(x∗) ≤ 2(
⌈k2⌉+ k

) (
k − ⌈k2⌉+ 1

) k∑
t=⌈k/2⌉

t (f(xt)− f(x∗))

≤ 2(
⌈k2⌉+ k

) (
k − ⌈k2⌉+ 1

)
 k∑
t=⌈k/2⌉

t⟨gt, xt − x∗⟩


=

2(
⌈k2⌉+ k

) (
k − ⌈k2⌉+ 1

)
 k∑
t=⌈k/2⌉

t⟨Gt + δt, xt − x∗⟩


≲

1

k2

max
x∈X


k∑

t=⌈k/2⌉

t⟨Gt, xt − x⟩

+

k∑
t=⌈k/2⌉

t⟨δt, xt − x∗⟩

 (5.4.3)

Observe that the first term of Ineq. (5.4.3) can be computed while the SGE algorithm is running.
Indeed, computing the first term boils down to solving a simple linear programming problem.
Additionally, the latter term can be computed recursively by keeping track of the two quantities,

k∑
t=⌈k/2⌉

⟨Gt, xt⟩, and
k∑

t=⌈k/2⌉

t Gt.

The accuracy certificate is motivated both by the fact that the first term in Ineq. (5.4.3) can be
computed ”on-the-fly” but also by the fact that it is possible to provide a better bound for the
second martingale term than the bound provided in Corollary 5.3.1, as shown in the next Corollary.

Corollary 5.4.2 Let the stepsize parameters as in Corollary 5.3.1 with a batch size

mt = max

{
1,

⌈
216L(t+ 2)(δ̂2 +Ω)

L

⌉
,

⌈
5(k + 1)3δ̂σ2∗

L2R2
X

⌉}
, t ≥ 0. (5.4.4)

Then for any k ≥ δ̂, with probability at least 1− δ, we have

f(xk)− f(x∗) ≤ 16

3k2
·max
x∈X


k∑

t=⌈k/2⌉

t⟨Gt, xt − x⟩

+
203LR2

X

k2
. (5.4.5)

where

xk =

∑k
t=⌈k/2⌉ t xt∑k
t=⌈k/2⌉ t

.

To obtain the termination criterion, we fix a desired inacuracy level ϵ > 0 and then we use the
upper bound for the second martingale term in (5.4.5) to determine the number of iterations needed
to make this term smaller than ϵ/2. Specifically, we choose K1 ∈ Z+ such that

K1 =

⌈√
406LR2

X

ϵ

⌉
.
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This being decided, we can now run the SGE algorithm and keep recursively track of the first
quantity appearing in (5.4.5). We stop the algorithm at time K = max{K1,K2}, where K2 ∈ Z+ is
such that

16

3K2
2

·max
x∈X


K2∑

t=⌈K2/2⌉

t⟨Gt, xt − x⟩

 ≤ ϵ

2
.

After K iterations we finally have
f(xK)− f(x∗) ≤ ϵ.

5.5 A Multistage Accelerated Algorithm for Sparse Recovery

In this section we aim at solving the following sparse estimation problem

x∗ ∈ argmin
x∈X

f(x), (5.5.1)

where x∗ is assumed to be s-sparse, i.e., with at most s-nonvanishing components.
In the optimization literature, addressing sparsity is often approached using ”composite” tech-

niques. Accordingly, we will reformulate Problem (5.5.1) into a composite optimization problem.
Consider the following auxiliary composite problem:

min
x∈X

{
Ψ(x) := 1

2f(x) + h(x)
}
, (5.5.2)

where h is a positive convex function and f is the initial smooth convex objective function. In the
subsequent development we introduce a non-Euclidean composite version of the SGE algorithm. The
latter algorithm is used to control the gap Ψ(x̂)−Ψ(x∗) and it does not minimize the composite
function Ψ. We rather use the composite function and more specifically the penalty function h to
infer some sparse structure on the optimum of the main objective function x∗.

5.5.1 Local Proximal Setup.

Here we introduce the local proximal setup which will be the foundation to build the main algorithm
of this work. Consider B := {x ∈ E : ∥x∥ ≤ 1}, the unit ball associated to the general norm ∥ · ∥,
and ω : B → R a distance-generating function (d.-g.f.) on B, i.e., a continuously differentiable
convex function that is also strongly convex w.r.t. the norm ∥ · ∥,

⟨∇ω(x)−∇ω(y), x− y⟩ ≥ ∥x− y∥2, ∀x, y ∈ X.

We assume w.l.o.g. that ω(x) ≥ ω(0) = 0 and Ω is still such that Ω = max∥z∥≤1 ω(z).
Instead of using function ω, we will consider its local renormalized version defined on XR(x0) :=

X ∩B(x0, R) = {x ∈ X : ∥x− x0∥ ≤ R}, for some x0 ∈ X and R > 0, by

ω̃Rx0(z) := R2ω

(
z − x0
R

)
.

Observe that ω̃Rx0(·) is 1-strongly convex on XR(x0) and we have ω̃Rx0(x0) = 0, and ω̃Rx0(z) ≤ ΩR2.
For a given initialization point x0 ∈ X and R > 0, we can also define the local Bregman

Divergence associated to the d.-g.f. ω̃Rx0(·) such as

∀x, y ∈ XR(x0), V R
x0(x, y) := ω̃Rx0(y)− ω̃Rx0(x)− ⟨∇ω̃Rx0(x), y − x⟩.

For any y, x, x0 ∈ X, we have

V R
x0(x0, y) ≤

Ω

2
∥y − x0∥2 and V R

x0(x, y) ≥
1

2
∥x− y∥2. (5.5.3)
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5.5.2 Composite Stochastic Gradient Extrapolation (CSGE).

Below we present the CSGE algorithm, it is the work horse for our main multistage routine.

Algorithm 8 Composite Stochastic Gradient Extrapolation method (CSGE)

Input: initial point x0 = z0, nonnegative parameters {αt}, {ηt} and {βt}, batch size {mt} and
finite horizon k.
G0 = G−1 =

1
m0

∑m0
i=1 G(x0, ξ0,i).

for t = 1, 2, . . . , k do

G̃t = Gt−1 + αt(Gt−1 −Gt−2), (5.5.4a)

zt = argmin
x∈X

{⟨G̃t, x⟩+ h(x) + ηtV
R
x0(zt−1, x)}, (5.5.4b)

xt = (1− βt)xt−1 + βtzt, (5.5.4c)

Gt =
1
mt

∑mt
i=1 G(xt, ξt,i).

end for

Output: x̂k =
θk(1+τk)xk+

∑k−1
t=1 [θt(1+τt)−θt+1τt+1]xt

θk(1+τk)+
∑k−1

t=1 θt(1+τt)−θt+1τt+1

In the next proposition, we present an important result verified by the estimates provided by
Algorithm 8. For the sake of compactness of the following proposition we introduce the function
Ψ̃ := f + h.

Proposition 5.5.1 For 0 ≤ βt ≤ 1, denote τt =
1−βt
βt

. We consider the following relations

θt−1 = αtθt, ηt ≤ αtηt−1, t = 2, . . . , k (5.5.5a)
ηtτt−1

αt
≥ 5L, t = 3, . . . , k (5.5.5b)

η1η2
α2

≥ 25L2, ηkτk ≥ L. (5.5.5c)

If the algorithm parameters {αt}, {ηt} and {τt} satisfy τ1 ≥ 0, τt > 0 for all t ≥ 2, along with
relations (5.5.5a) - (5.5.5c) for some θt ≥ 0. Then for all x ∈ X

k∑
t=1

θt

{
(1 + τt)Ψ̃(xt)− Ψ̃(x)− τtΨ̃(xt−1)

}
≤ θ1η1V (x0, x) +

k−1∑
t=0

χt(x) (5.5.6)

where

χt(x) := min
{
pt⟨δt, x− zt⟩+ 5qt

2 ∥δt∥2∗, (2θt+1 + θt)∥δt∥∗RX
}
. (5.5.7)

with
pt := θt1{t ≤ k − 2}+ (θt + θt+1)1{t = k − 1} and δt := Gt − g(xt).

By applying Lemma 5.2.2 to upper bound the term
∑k−1

t=0 χt(x
∗) in Proposition 5.5.1, we

can derive the following theorem that characterizes the convergence of the CSGE method with
high-probability.

Now we can state the main result of this section
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Theorem 5.5.1 Suppose that the algorithm parameters {θt}, {αt}, {ηt} and {τt} in Algorithm 8
satisfy (5.5.5a)-(5.5.5c),

τ1 = 0 and ∀t ≥ 1, 1
2(θt+1τt+1 − θt(1 + τt)) + ϵtL < 0. (5.5.8)

Also assume that Assumption (SEN) holds and that the feasible region X is bounded, i.e., maxx,x′∈X ∥x−
x′∥2 ≤ R2

X . For δ ∈ (0, 1) and k ∈ Z∗
+, we denote

ϵt :=
2.8 qtΩ

mt
, ςt :=

(2θt+1 + θt)
2R2

XΩ

mt
, and δ̂ := ln

{(12 log2(k·
LLR2

X/2+σ2
∗

σ2∗
)+1
)2

+1

δ

}
. (5.5.9)

Then with probability at least 1− δ we have

Ψ(x̂k)−Ψ∗ ≤Γ−1
k

[
θ1η1Ω+ ϵ0LL

2
R2
X + 35δ̂

√
ς0LLR2

X

2
+ 6σ∗

√
6δ̂

√√√√k−1∑
t=0

ςt + 48δ̂ max
0≤t≤k−1

√
σ2∗ςt

+ σ2∗

k−1∑
t=0

ϵt +
(35δ̂)2

∑k−1
t=1 ςtL[f(xt)− f(x∗)]

2
∑k−1

t=1

(
θt(1 + τt)− θt+1τt+1 − ϵtL

)
[f(xt)− f(x∗)]

]
, (5.5.10)

where Γk := θk(1 + τk) +
∑k−1

t=1 θt(1 + τt)− θt+1τt+1.

Corollary 5.5.1 Set

θt = t, αt =
t− 1

t
, and ηt =

24L

t
.

Also let us set τ1 = 0, τt =
t−1
2 − t

24 , t ≥ 2, and

mt = max

{
1,

⌈
216L(t+ 2)(δ̂2 +Ω)

L

⌉
,

⌈
5(k + 1)3(δ̂ +Ω)σ2∗

L2ΩR2
X

⌉}
, t ≥ 0.

Consider x̂k, the output of Algorithm 8, and for δ ∈ (0, 1), we consider

δ̂ = ln


(
1
2 log2(k ·

LLR2
X/2+σ

2
∗

σ2
∗

) + 1
)2

+ 1

δ

 .

Then for any k ≥ δ̂, with probability at least 1− δ,

Ψ(x̂k)−Ψ(x∗) ≤
1811ΩLR2

X

k(k + 1)
. (5.5.11)

5.5.3 Composite Stochastic Gradient Extrapolation for Sparse Recovery

In this section we will present our main method for solving the original sparse stochastic optimization
problem (4.1.1). We consider the penalization function of the form h(x) = κ∥x∥ with κ ≥ 0.
Composite problem (5.5.2) becomes

min
x∈X

{
Ψκ(x) :=

1
2f(x) + κ∥x∥

}
, (5.5.12)

Our proposed algorithm is based on a multistage procedure where at the k-th stage we form
an auxiliary composite problem of the form (5.5.12) defined by a triplet of parameters (x0, Rk, κk).
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Subsequently, we run Algorithm 8 for a fixed number of iterations T to form an output x̂T which
will be set as the initialization point x0 of the next stage. It is crucial to emphasize the fact that x∗

is a sparse minimizer of the function f . This implies that our interest does not lie in approximating
Ψκ(x

∗) through the approximate solution generated by the multistage procedure. Instead, we utilize
the composite problem as an auxiliary tool to infer some structure to the approximate solution. To
assess the quality of the solution approximation, which is provided by the main multistage procedure,
we will use the Reduced Strong Convexity (RSC) assumption introduced in [1]. This assumption
provides a quite simple framework for analyzing sparse recovery problems across various general
sparsity structures. In the next section we discuss and study an example where the RSC assumption
is verified.

Assumption 4 (Reduced Strong Convexity) There exist some positive constants Υ, ρ < ∞
such that for any feasible solution x̂ ∈ X to the composite problem (5.5.12) satisfying, with probability
at least 1− ε,

Ψκ(x̂)−Ψκ(x
∗) ≤ Λ,

it holds, with probability at least 1− ε, that

∥x̂− x∗∥ ≤ Υ−1
[
ρsκ+ Λκ−1

]
. (5.5.13)

Given the number of stages K and the parameters of the problem along with the confidence
parameter δ̂K , Algorithm 9 works as follows, at stage k ∈ [K] we instantiate the CSGE method with
a point x0 and run the algorithm for a fixed number of iterations N to solve the composite problem
defined as

min
x∈XRk−1

(x0)
{Ψκk(x) :=

1
2f(x) + κk∥x∥}.

This run of the CSGE-SR algorithm provides an estimate xN which verifies the bound presented in
(5.5.13). Finally, the parameters of the multistage method are appropriately chosen to halve the
bound on ∥x̂N − x∗∥2 at the end of the stage and we set the initialization point of the following
stage to the value of x̂N . We provide below the multistage method along with its parameter values.
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Algorithm 9 Composite Stochastic Gradient Extrapolation method for Sparse Recovery (CSGE-SR)

Input: initial point x̃0 ∈ X, accuracy parameter δ ∈ (0, 1). Assume ∥x̃0 − x∗∥ ≤ R0.
for k = 1, 2, . . . ,K do

(a) Run N iterations of the CSGE method (Algorithm 8) with feasible region

Xk := XRk−1
(x̃k−1) =

{
x ∈ X : ∥x̃k−1 − x∥2 ≤ R2

k−1 := R2
0 · 2−k+1

}
The algorithm parameters are set as: x0 = x̄0 = x̃k−1 and

θt = t, αt =
t−1
t , ηt =

24L
t , t = 1, ..., N

m
(k)
t = max{1, ⌈216L(t+2)(δ̂2K+Ω)

L ⌉, ⌈5(N+1)3(δ̂K+Ω)σ2
∗

L2ΩR2
0·2−k+1 ⌉}, t = 0, ..., N

τ1 = 0, τt =
t−1
2 − t

24 , t = 2, ..., N

and

N =

⌈
121
Υ

√
ρsΩL

⌉
, κk = Rk−1

√
1811ΩL

ρsN(N+1)
. (5.5.14)

(b) Set x̃k = x̂N , where x̂N is the solution obtained in Step (a).
end for

The following theorem characterizes the convergence rate of the CSGE-SR method applied for
solving the main sparse stochastic optimization problem.

Theorem 5.5.2 Let {x̃K} be computed by Algorithm 9 and assume that ∥x̃0 − x∗∥2 ≤ R2
0. Then

we have with probability greater than 1− δ,

f(x̃K)− f(x∗) ≤
Υ(Υ + 1)

ρs
R2

0 · 2−K−1 and ∥x̃K − x∗∥2 ≤ R2
0 · 2−K .

Remark. The result presented in the last theorem states that the CSGE-SR algorithm approach
the s-sparse optimum x∗ by an estimate x̃K with probability at least 1− δ, such that ∥x̂− x∗∥ ≤ ϵ
for any ϵ ∈ (0, R0) in a number of stages bounded by O(ln(R0/ϵ)). The corresponding iteration
complexity in each stage is of order O(

√
sρΩL ln(R0/ϵ)). In terms of the batch size, the total number

of samples used by the CSGE-SR method is bounded by

O

√sρΩL ln

(
R0

ϵ

)
+ sρLΩ

(
ln2
(
δ−1
)
+Ω

)
ln

(
R0

ϵ

)
+

(sρσ∗)
2Ω
(
δ̂K +Ω

)
ϵ2

 .

5.5.4 Application : Sparse Generalized Linear Regression

Problem setup

Recall that the original problem of sparse generalized linear regression problem we want to solve is
as follows. We want to recover the s-sparse signal x∗ ∈ intX ⊂ Rn from observations

ηt = u(ϕTt x
∗) + σζt, t = 1, 2, . . . , N, (5.5.15)

where u : R → R is some non-decreasing and continuous ”activation function”, ϕt ∈ Rn and ζt ∈ R
are mutually independent. On top of this setting we also consider the following assumptions
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• regressors ϕt are independent sub-Gaussian r.v., ϕt ∼ SG(0, S) i.e., for some S ∈ Sn and all
z ∈ Rn,

E
[
ez

Tϕt
]
≤ e

1
2 z

TSz.

Furthermore, we suppose that ∥Σ∥∞ =: maxiΣii ≤ ν, and that for some κΣ,κ > 0, S ⪯ κΣ
where

Σ = E[ϕ1ϕ
T
1 ] ⪰ κΣI;

• noises ζt are mutually independent and independent of ϕt zero mean sub-Gaussian, ζt ∼ SG(0, 1):
E[esζt ] ≤ es

2/2;

• activation function u is strongly monotone and Lipschitz continuous, i.e., for all t ≥ t′

r(t− t′) ≤ u(t)− u(t′) ≤ r̄(t− t′). (5.5.16)

As already explained in the introduction, estimation of x∗ ∈ intX may be addressed through solving
the stochastic optimization problem

min
x∈X

{
f(x) := E[v(ϕTx)− ϕTxη]

}
(5.5.17)

where v′(t) = u(t). The gradient of the problem objective and its stochastic estimate are given by

g(x) = E[ϕ
(
u(ϕTx)− η

)
] and G(x, (ϕ, ζ)︸ ︷︷ ︸

=:ξ

) := ϕ
(
u(ϕTx)− η

)
= ϕ

(
u(ϕTx)− u(ϕTx∗)

)
− ϕζ.

This being introduced, we now place ourselves in the ”vanilla” sparsity setting. In this setting we
have ∥ · ∥ = ∥ · ∥1 and consequently ∥ · ∥∗ = ∥ · ∥∞. We also consider to have at our disposal an
initialization point x0 ∈ X such that ∥x0 − x∗∥1 ≤ R0 for some R0 ≥ 0. In the next proposition we
provide the verification of several assumptions made during this chapter.

Proposition 5.5.2 Assume that the conditions of the setting we have described are valid then

1. [Smoothness] Objective function f is L-smooth with L = rν.

2. [Quadratic minoration] f satisfies

f(x)− f(x∗) ≥ 1
2r∥x− x∗∥2Σ. (5.5.18)

3. [Sub-exponential noise] The dual norm of the stochastic noise ∥G(x, ξ)− g(x)∥∗ is σ(x)-sub
exponential with parameter verifying

σ2(x) ≤ r2ν
(
2.32

√
2κ(1 + ln(n)) +

√
2
)2

∥x− x∗∥2Σ + 10.77 σ2ν(1 + ln(n))

≤ r2ν

r

(
4.64

√
κ(1 + ln(n)) + 2

)2
(f(x)− f(x∗)) + 10.77 σ2ν(1 + ln(n)).

4. [Reduced Strong Convexity] Assumption [RSC] holds with Υ = 1 and ρ = (κΣr)
−1.

Proof of each point of the proposition is deferred to the appendix.
Next, in Lemma 5.5.1 we state the condition Q(λ, ψ) that provides insights on why the RSC

assumption holds in the specific GLR setup we explore.
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Lemma 5.5.1 Let λ > 0 and 0 < ψ ≤ 1, and suppose that for all subsets I ⊂ {1, ..., n} of cardinality
smaller than s the following property is verified:

∀z ∈ Rn ∥zI∥1 ≤
√
s

λ
∥z∥Σ +

1

2
(1− ψ)∥z∥1 Q(λ, ψ)

where zI is obtained by zeroing all its components with indices i /∈ I.
If objective function f satisfies the quadratic minoration condition, i.e., for some µ > 0,

f(x)− f(x∗) ≥ 1

2
µ∥x− x∗∥2Σ, (5.5.19)

and that x̂ is an admissible solution to (5.5.12) satisfying, with probability at least 1− ϵ,

Ψκ(x̂) ≤ Ψκ(x
∗) + Λ.

Then, with probability at least 1− ϵ,

∥x̂− x∗∥1 ≤
sκ

λµψ
+

Λ

κψ
. (5.5.20)

This condition is reminiscent of the family of conditions presented in [83] and appears as a gen-
eralization of both the Restricted Eigenvalue property [75] and the Compatibility Condition [77].
Notably, it represents a more relaxed condition compared to the latter two, as condition Q(λ, ψ)
addresses the distribution of the random designs rather than being limited to scenarios with a fixed
design matrix. This constraint limits applications of such conditions in addressing recovery problems
within online settings, characterized by iterative changes in the design matrix. Thus, condition
Q(λ, ψ) offers a more flexible approach.

Non-Euclidean Stochastic Gradient Extrapolation

In this section, we consider the following distance-generating function of the ℓ1-ball of R
n (cf. [37,

Section 5.7.1])

ω(x) =
c

p
∥x∥pp, p =

{
2, n = 2
1 + 1

ln(n) , n ≥ 3,
c =

{
2, n = 2,
e ln(n), n ≥ 3.

(5.5.21)

It immediately follows that ω is strongly convex with modulus 1 w.r.t. the norm ∥ · ∥1 on its unit
ball, and that Ω ≤ e ln(n). This d.-g.f. is chosen as the main tool of our local proximal setup. We
have now at our disposal a sparse recovery algorithm, the CSGE-SR Algorithm (Alg. 9), that is
specifically tailored to solve the sparse GLR problem of this section.

We can now conclude that running the CSGE-SR Algorithm for K stages, under the framework
described in this section, produces an estimate x̃K such that estimation error ∥x̃K − x∗∥1 ≤ ϵ with
probability at least 1− δ for any ϵ ∈ (0, R0), when the total number of stages K ≍ ln(R0/ϵ). This
entails a corresponding iteration complexity of order

O

(√
srν ln(n)

rκΣ
ln

(
R0

ϵ

))
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In terms of sample complexity, the total number of samples used by the CSGE-SR method to achieve
this optimal iteration complexity is bounded by

O


√
srν ln(n)

rκΣ
ln

(
R0

ϵ

)
+
sr2ν ln(n)

(√
κ ln(n) + 1

)2 (
ln(n) + ln

(
1
δ

)2)
rκΣ

ln

(
R0

ϵ

)
+
σ2s2ν ln(n)2 ln(nδ )

r2κ2Σϵ
2

 ,

when the dimension n > 2.

5.6 Numerical Experiments

In this section we present a numerical comparison of different sparse recovery algorithms in a
high-dimensional estimation problem. We consider the sparse generalized linear regression model
with random design. In this setting we are looking to recover the s-sparse optimum x∗ ∈ Rn from
i.i.d observations

ηi = u(ϕTi x
∗) + σζi, i = 1, 2, . . . , N.

We use the same activation function u(·) used in the preceding chapter, i.e.,

uα(x) = x1{|x| ≤ α}+ sign(x)[α−1(|x|α − 1) + 1]1{|x| > α}, α > 0, x ∈ R.

In this study we explore three different types of activation functions by varying the parameter α
which controls the non-linearity of the latter function. We consider the linear link function u1(·),
and two non-linear activation functions u1/2(·) and u1/10(·). The s non-vanishing components of
the ground truth x∗ are sampled from the s-dimensional standard Gaussian distribution. The
regressors ϕi are independent and identically distributed realizations of the random variable ϕ,
where ϕ ∼ N (0,Σ), and Σ is a diagonal matrix with entries 0 < Σ1,1 ≤ · · · ≤ Σn,n. The additive
observation noise ζ follows the centered Gaussian distribution with variance σ2. Due to memory
constraints, we generate the pairs of observations (ηi, ϕi) on the fly at each oracle calls.

In the first series of numerical simulations (Figure 5.1), we compare the CSGE-SR algorithm
against three other multistage routines. The first two algorithms against which we compare uses
hard-thresholding steps to enforce sparsity of the estimators. These algorithms are SMD-SR [59]
and SGE-SR [2]. An other algorithm that is compared is the CSMD-SR [1]. For the two algorithms
using hard-thresholding steps, the proximal mapping contains the distance generating function
of the form ω(x) = c1(n)∥x∥2p, with p = 1 + 1/ ln(n) which allows the proximal mapping to be
computed in a closed form solution. The composite methods are both similar in the idea, they are
based on the same non-Euclidean composite proximal operator which contains a d.-g.f. of the form
ω(x) = c2(n)∥x∥pp, with p = 1 + 1/ ln(n), a penalization h(x) = κ∥x∥1 and with the constraint of
being inside the ℓ1-ball. For these simulations we set the dimension n = 500 000, we fix the maximal
number of calls to the stochastic oracle (estimation sample size) to N = 250 000, and sparsity level
s = 250; unless stated otherwise the condition number is set to 1.

In the second series of experiments we study the impact of the condition number on the
convergence of the CSGE-SR algorithm. For this setting we set the dimension n = 100 000, we
fix the maximal number of calls to the stochastic oracle to N = 200 000, and sparsity level of the
minizer is set to s = 50.

For each simulation, we run every algorithm to obtain 50 trajectories, and then present the
median of these trajectories along with the first and last deciles.

From the series of experiments we have conducted, several observations emerge. First, from the
first row of Figure 5.1, we can observe that all algorithms exhibit a regime with a fast linear rate
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Figure 5.1: Estimation error ∥xt − x∗∥2 against the number of stochastic oracle calls (top row) and
against the number of algorithms iterations (bottom row) for SMD-SR, SGE-SR, CSMD-SR and
CSGE-SR algorithms. In the left, middle, and right columns of the plot we show the results for the
linear activation function u1, and the nonlinear activation functions u1/2 and u1/10 , respectively.
The noise level is set to σ = 0.1. The legend specifies the value m0 of the batch size of the preliminary
phase of the algorithm for every routines.

of convergence and when they enter the regime where the noise dominates, they face a sublinear
decay. The CSGE-SR algorithm consistently ranks among the best in terms of the lowest estimation
error reached for a fixed number of samples and this across all three scenarios. The second row
compares the performance of the four algorithms when they are compared in terms of the number of
algorithm iterations, in other words, this represents the number of times each algorithm computes
the non-Euclidean proximal operator. This metric is crucial since calculating a proximal operator
can be computationally intensive. A distinct separation is apparent between algorithms for sparse
recovery that utilize mini-batch accelerated methods (non-Euclidean SGE and CSGE) and those
based on non-accelerated variants (non-Euclidean SMD and CSMD). The SGE-SR and CSGE-SR
algorithms use mini-batch approximation, which allows to reduce the variance of the stochastic
gradient estimates, consequently helping to reduce the number of times each algorithms computes a
proximal operator. Their optimal iteration and sample complexities make CSGE-SR and SGE-SR
algorithms viable solutions for distributed sparse recovery problems, where it is crucial to reduce
the number of communication rounds between the servers and the clients. The CSGE-SR also have
the advantage that it can be made adaptive to the sparsity level and the constant of quadratic
growth both at the same time using Lepski’s procedure, which is impossible for its non-composite
counterpart.
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Figure 5.2: Estimation error ∥xt − x∗∥2 against the number of stochastic oracle calls (top row) and
against the number of algorithms iterations (bottom row) for the CSGE-SR algorithms. In the left,
middle, and right columns of the plot we show the results for the linear activation function u1, and
the nonlinear activation functions u1/2 and u1/10 , respectively. The noise level is set to σ = 0.001.
The legend specifies the value m0 of the batch size of the preliminary phase of the algorithm for
each routine and κ denotes the condition number.

5.7 Appendix

5.7.1 Proof of Lemma 5.2.1

For notational simplicity, put

δt := Gt(xt)− g(xt), δt,i := Gt(xt, ξt,i)− g(xt).

For y ∈ E, put

π(y) := sup
∥z∥≤1

[⟨y, z⟩ − ω(z)],

ηj =
∑j

i=1 δt,i for j ∈ [mt], and η0 = 0. Observe that for all β > 0, we have

∥ηmt∥∗ = sup
∥z∥≤1

⟨ηmt , z⟩ ≤ sup
∥z∥≤1

βω(z) + βπ(ηmt/β) ≤
βΩ

2
+ βπ(ηmt/β). (5.7.1)

On the other hand, due to the strong convexity of ω, π is smooth with 1-Lipschitz continuous
gradient, and besides this, as one can easily see, π is Lipschitz continuous with ∥∇π∥ ≤ 1. Let us
denote

πβ(y) := βπ(y/β), ∆j := πβ(ηj)− πβ(ηj−1).
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By the Lipschitz continuity of π, |∆j | ≤ ∥δt,j∥∗, thus

E[exp(|∆j |/σt)|ηj−1] ≤ exp(1)

(here E[·|ηj−1] stands for conditional expectation given ηj−1). Furthermore, we have

πβ(ηj) ≤ πβ(ηj−1) + ⟨∇πβ(ηj−1), δt,j⟩+ 1
2β∥δt,j∥

2
∗.

Combining it with the fact that

E[∥δt,j∥2∗] ≤ 1.12 σ2t , (5.7.2)

we get2

E[∆j |ηj−1] ≤ 0.56σ2t /β.

Next, using the bound x2e−x/2 ≤ 16e−2, ∀x ≥ 0, we obtain for λ ∈ [0, 1
2σt

],

E
[
∆2
je
λ(∆j)+ |ηj−1

]
≤ σ2tE

[
∆2

j

σ2
t
e

|∆j |
2σt |ηj−1

]
≤ 16e−2σ2tE

[
e

|∆j |
σt |ηj−1

]
≤ 6σ2t ,

which implies that for λ ∈ [0, 1
2σt

],

E[eλ∆j |ηj−1]
(i)

≤ 1 +E[λ∆j |ηj−1] +
λ2

2 E[∆2
je
λ(∆j)+ |ηj−1] ≤ 1 + 0.56

λσ2t
β

+ 3λ2σ2t

≤ exp

(
0.56

λσ2t
β

+ 3λ2σ2t

)
, (5.7.3)

where (i) follows from the fact that

ex =
∞∑
n=0

xn

n!
= 1 + x+

x2

2

[ ∞∑
n=2

2xn−2

n!

]
≤ 1 + x+

x2

2

[ ∞∑
n=2

2(xn−2)+
n!

]
≤ 1 + x+ 1

2x
2e(x)+ .

When taking the product of inequalities in (5.7.3) from j = 1 to mt and taking subsequent
expectations, we get

E[eλπβ(ηmt )] ≤ exp

(
0.56

λmtσ
2
t

β
+ 3λ2mtσ

2
t

)
.

Finally, due to Ineq. (5.7.1), we have E[eλ∥ηmt∥∗ ] ≤ eβΩλ/2E[eλπβ(ηmt )]. Taking β2 = 1.12mtσ
2
t , we

obtain that

E {exp(λ∥ηmt∥∗)} ≤ exp
(
2λσt

√
0.28Ωmt + 3λ2σ2tmt

)
,

which, together with mt[Gt(xt)− g(xt)] = ηmt , implies (5.2.1).
To prove the bound in (5.2.2), we take λ = 1

3σ̄t
in (5.2.1), arriving at

E⌈t−1⌉

{
exp

(
∥Gt(xt)− g(xt)∥∗

3σ̄t

)}
≤ exp

(
1.06

3
+

1

3Ω

)
≤ exp(1)

which completes the proof. □

2Indeed, the optimal distribution in the optimization problem maxPξ

{
E[ξ2] : E[eξ] ≤ exp(1), ξ > 0

}
has a 2-point

support, and straightforward computation leads to the solution Prob{ξ = a} = p,Prob{ξ = 0} = 1−p with p = exp(1)−1
exp(a)−1

where a is the maximizer of a2 exp(1)−1
exp(a)−1

, yielding the optimal value of 1.1128... ≤ 1.12.
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5.7.2 Proof of Lemma 5.2.2

Let a ∧ b := min{a, b} for a, b ∈ R. Define

τ(η, s, u) = (k + 1) ∧min{t ∈ Z+ : Yt ≥ η, ŝt ≤ s, ut ≤ u}.

Note that ut and st are Ft−1-measurable, so τ(η, s, u) is a Markov stopping time. We denote

p(η, s, u) = Prob{∃ t ≤ k, s.t. Yt ≥ η, ŝt ≤ s, ut ≤ u}.

By Ineq. (5.2.3), we have that E⌈t−1⌉[exp(λ(yt − rt)− 1
2λ

2s2t )] ≤ 1 when λ ∈ [0, (vst)
−1]. Therefore,

when λ ∈ [0, (vst)
−1] for all t = 0, ..., k, Rt := exp(λYt − 1

2λ
2u2t ) is a nonnegative supermartingale

with E[Rt] ≤ 1. Therefore, we have that for λ ≤ (vs)−1,

1
(i)

≥ E[Rτ(η,s,u)1{τ(η, s, u) ≤ k}]

= E

[
k∑
t=0

Rτ(η,s,u)1{τ(η, s, u) = t}

]
(ii)

≥ exp(λη − 1
2λ

2u2) ·
k∑
t=0

Prob{τ(η, s, u) = t}

= exp(λη − 1
2λ

2u2) · p(η, s, u)

where 1{·} is the 0-1 indicator function, step (i) follows from that Rt is a supermartingale and
τ(η, s, u) is a stopping time, and step (ii) follows from the definition of Rt and the condition
Yt ≥ η, ut ≤ u when 1{τ(η, s, u) = t} = 1. Therefore, we have

p(η, s, u) ≤ exp(−λη + 1
2λ

2u2), ∀λ ≤ (vs)−1. (5.7.4)

By minimizing the right hand side of Ineq. (5.7.4) over λ ≤ (vs)−1, we obtain

p(η, s, u) ≤

e
− η2

2u2 , η ≤ u2

vs

e−
η
vs

+ u2

2v2s2
(i)

≤ e−
η

2vs , η > u2

vs

, (5.7.5)

where (i) follows from that − η
vs +

u2

2v2s2
< − η

2vs when η > u2

vs . Then for any y ≥ 0, by setting
η = u

√
2y + 2vsy, we arrive at

p(η, s, u) = Prob{∃ t ≤ k, s.t. Yt ≥ u
√
2y + 2vsy, ŝt ≤ s, ut ≤ u} ≤ e−y, ∀y ≥ 0. (5.7.6)

This inequality is a Bernstein’s type inequality, while the lower bound on Yt depends on a few
constants, e.g., u and s. However, for the purpose of algorithmic analysis, we want a “data-driven”
version of the above inequality, where the lower bound of Yt depends explicitly on the random
variables ŝt and ut rather than the upper bound constants. To obtain such a result, we will utilize
a sequence of constants {sm} and {um}, which are used to upper and lower bound ŝt and ut,
respectively. And a “data-driven” bound will be obtained by taking union bound of probability.
Specifically, given positive reals y, ū and s̄, we consider positive vectors u ∈ RL+1 and s ∈ RM+1,
where ul = 2−lū, l = 0, ..., L−1 and sm = 2−ms̄, m = 0, ...,M−1. Let sM = s and uL = u =

√
2yvs.

Observe that

L = ⌈log2(ū/u)⌉ and M = ⌈log2(s̄/s)⌉.
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Then by Ineq. (5.7.6) with η = 2yvs, s = s and u = u, we have

Prob{Yt ≥ 4vsy, ŝt ≤ s, ut−1 ≤ u for some t ≤ k} ≤ e−y ∀y ≥ 0.

On the other hand, observe that by Ineq. (5.7.6),

∆p(y,m, l) := Prob{Yt ≥ 2ut
√
2y + 4vŝty, sm < ŝt ≤ sm−1, ul < ut ≤ ul−1 for some t ≤ k}

≤ Prob{Yt ≥ ul−1

√
2y + 2vsm−1y, sm < ŝt ≤ sm−1, ul < ut ≤ ul−1 for some t ≤ k}

≤ Prob{Yt ≥ ul−1

√
2y + 2vsm−1y, ŝt ≤ sm−1, ut ≤ ul−1 for some t ≤ k}

≤ e−y.

Therefore,

Prob{Yt ≥ 2ut
√
2y + 4v(ŝt + s)y, ŝt ≤ s̄, ut ≤ ū for some t ≤ k}

≤
M∑
m=1

L∑
l=1

∆p(y,m, l) + Prob{Yt ≥ 4vsy, ŝt ≤ s, ut−1 ≤ u for some t ≤ k}

≤ (ML+ 1)e−y,

which completes the proof. □

5.7.3 Proof of Lemma 5.3.1

The proof follows the same structure as the proof of Lemma 5.2.1. Specifically, let us denote
χ̂t := χt(x∗)

(2θt+1+θt)RX
. Then by the fact that χt(x

∗) ≤ (2θt+1 + θt)∥δt∥∗RX , we have χ̂t ≤ ∥δt∥∗.
Moreover, we have

−χ̂t =
1

(2θt+1 + θt)RX
max

{
pt⟨δt, zt − x∗⟩ − 5qt

2
∥δt∥2∗,−(2θt+1 + θt)∥δt∥∗RX

}
≤ 1

(2θt+1 + θt)RX
pt⟨δt, zt − x∗⟩ ≤ pt∥δt∥∗RX

(2θt+1 + θt)RX
≤ ∥δt∥∗,

where the last inequality follows from the definition of pt. As a result, we obtain |χ̂t| ≤ ∥δt∥∗. Then
by Lemma 5.2.1,

E⌈t−1⌉

{
exp

(
|χ̂t|
3σ̄t

)}
≤ exp(1). (5.7.7)

On the other hand, by using the fact that for any x ∈ R, ex ≤ 1 + x+ x2 exp{(x)+}
2 , we obtain

E⌈t−1⌉

{
eλχ̂t

}
≤ 1 + λE⌈t−1⌉[χ̂t] +

λ2

2
E⌈t−1⌉[χ̂

2
t e
λ(χ̂t)+ ], (5.7.8)

For λ ∈ [0, 1
6σ̄t

], we can upper bound E⌈t−1⌉[χ̂
2
t e
λ(χ̂t)+ ] as

E⌈t−1⌉[χ̂
2
t e
λ(χ̂t)+ ]

(i)

≤ 9σ̄2tE⌈t−1⌉

[
χ̂2
t

9σ̄2t
exp

{
|χ̂t|
6σ̄t

}]
(ii)

≤ 144e−2σ̄2tE

[
exp

{
|χ̂t|
3σ̄t

}
|ηj−1

]
(iii)

≤ 54σ̄2t ,
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where step (i) follows from the range λ ∈ [0, 1
6σ̄t

], step (ii) follows from the fact that x2ex/2 ≤ 16e−2+x

for all x ≥ 0 and where ηj =
∑j

i=1 δt,i for j ∈ [mt], finally step (iii) follows from Ineq. (5.7.7).
Substituting the above inequality into Ineq. (5.7.8), we obtain

E⌈t−1⌉

{
eλχ̂t

}
≤ 1 + λE⌈t−1⌉ [χ̂t] + 27λ2σ̄2t ≤ exp(λE⌈t−1⌉[χ̂t] + 27λ2σ̄2t ), ∀λ ∈ [0, 1

6σ̄t
].

Reusing the definition χ̂t :=
χt(x∗)

(2θt+1+θt)RX
and replacing λ with λ(2θt+1 + θt)RX , we have

E⌈t−1⌉

{
eλχt(x∗)

}
≤ exp

(
λE⌈t−1⌉[χt(x

∗)] + 27λ2(2θt+1 + θt)
2R2

X σ̄
2
t

)
, ∀λ ∈ [0, 1

6σ̄t(2θt+1+θt)RX
].

(5.7.9)

At last, we upper bound E⌈t−1⌉[χt(x
∗)] as

E⌈t−1⌉[χt(x
∗)] ≤ E⌈t−1⌉[pt⟨δt, x∗ − zt⟩] +

5qt
2
E⌈t−1⌉

[
∥δt∥2∗

]
≤ 1.12 · 5

2
qtσ̄

2
t = 2.8qtσ̄

2
t . (5.7.10)

The last inequality is obtained by combining result from Ineqs. (4.9.1), (4.9.2) and (5.7.2). Finally,
by invoking the relationships in (5.7.9) and (5.7.10) we prove the lemma. □

5.7.4 Proof of Theorem 5.3.1 and Corollary 5.3.1

Proof of Theorem 5.3.1 First, by fixing x = x∗, utilizing the convexity of f , i.e., ⟨gt, x− xt⟩ ≤
f(x)− f(xt), in Ineq. (5.3.4) and rearranging the terms, we obtain

θk(1 + τk)[f(xk)− f(x∗)] ≤ θ1η1V (x0, x
∗) +

k−2∑
t=0

(
θt+2τt+2 − θt+1(1 + τt+1)

)
[f(xt+1)− f(x∗)]

+
k−1∑
t=0

χt(x
∗). (5.7.11)

Recall the sub-exponential tail of χt(x
∗) characterized in Lemma 5.3.1, and notice that

Ωσ2∗
mt

≤ σ̄t ≤
Ω

mt

(
LL∥xt − x∗∥2

2
+ σ2∗

)
≤ Ω

mt

(
LLR2

X

2
+ σ2∗

)
.

Then we use Lemma 5.2.2 to bound the term
∑k−1

t=0 χt(x
∗) with high-probability. More specifically,

we take

s̄ := max
0≤t≤k−1

√
54ςt

(
LLR2

X

2
+ σ2∗

)
,

s := max
0≤t≤k−1

√
54ςtσ2∗,

ū :=

√√√√k−1∑
t=0

54ςt

(
LLR2

X

2
+ σ2∗

)
,

in Lemma 5.2.2. Then we have max0≤t≤k−1

√
54(2θt+1 + θt)2R2

X σ̄
2
t ≤ s̄ and

√∑k−1
t=0 54(2θt+1 + θt)

2R2
X σ̄

2
t ≤

ū. Then by Ineq. (5.2.4) of Lemma 5.2.2 and the definition of δ̂ in (5.5.9), we have with probability
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at least 1− δ,

k−1∑
t=0

χt(x
∗) ≤

k−1∑
t=0

2.8 qtσ̄
2
t + 2

√√√√k−1∑
t=0

54(2θt+1 + θt)2R2
X σ̄

2
t δ̂

+
8√
6

(
max

0≤t≤k−1

√
54(2θt+1 + θt)2R2

X σ̄
2
t + max

0≤t≤k−1

√
54ςtσ2∗

)
δ̂

≤
k−1∑
t=0

[
ϵtL[f(xt)− f(x∗)− ⟨g(x∗), xt − x∗⟩] + ϵtσ

2
∗
]

+ 35δ̂

√√√√k−1∑
t=0

ςtL[f(xt)− f(x∗)− ⟨g(x∗), xt − x∗⟩]

+ 6

√√√√k−1∑
t=0

6ςtσ2∗ δ̂ + 48δ̂ max
0≤t≤k−1

√
ςtσ2∗, (5.7.12)

where the last inequality follows from the definition of ϵt in (5.3.8), the definition of ςt in (5.5.9), the
definition of σ̄t in Lemma 5.3.1, and the fact maxt≤k yt ≤

∑
t≤k yt for yt ≥ 0. By combining Ineqs.

(5.7.11) and (5.7.12), we have

θk(1 + τk)[f(xk)− f(x∗)]

≤ θ1η1V (x0, x
∗) +

k−1∑
t=1

(
θt+1τt+1 − θt(1 + τt) + ϵtL

)
[f(xt)− f(x∗)]

+ ϵ0L[f(x0)− f(x∗)− ⟨g(x∗), x0 − x∗⟩] +
k−1∑
t=0

ϵtσ
2
∗

+ 35δ̂

√√√√k−1∑
t=0

ςtL[f(xt)− f(x∗)− ⟨g(x∗), xt − x∗⟩] + 6

√√√√k−1∑
t=0

6ςtσ2∗ δ̂ + 48δ̂ max
0≤t≤k−1

√
ςtσ2∗ (5.7.13)

Notice that we assume θt+1τt+1 − θt(1 + τt) + ϵtL < 0. Then we have the following inequality.

k−1∑
t=1

(
θt+1τt+1 − θt(1 + τt) + ϵtL

)
[f(xt)− f(x∗)] + 35δ̂

√√√√k−1∑
t=0

ςtL[f(xt)− f(x∗)− ⟨g(x∗), xt − x∗⟩]

(i)

≤
k−1∑
t=1

−
(
θt(1 + τt)− θt+1τt+1 − ϵtL

)
[f(xt)− f(x∗)] + 35δ̂

√√√√k−1∑
t=1

ςtL[f(xt)− f(x∗)]

+ 35δ̂

√
Lς0L∥x0 − x∗∥2

2
(ii)

≤
(35δ̂)2

[∑k−1
t=1 ςtL[f(xt)− f(x∗)]

]
4
[∑k−1

t=1 −
(
θt(1 + τt)− θt+1τt+1 − ϵtL

)
[f(xt)− f(x∗)]

] + 35δ̂

√
Lς0L∥x0 − x∗∥2

2

≤
307δ̂2

[∑k−1
t=1 ςtL[f(xt)− f(x∗)]

][∑k−1
t=1 −

(
θt(1 + τt)− θt+1τt+1 − ϵtL

)
[f(xt)− f(x∗)]

] + 35δ̂

√
Lς0L∥x0 − x∗∥2

2
, (5.7.14)

where step (i) follows from the optimality condition of f , i.e., ⟨g(x∗), xt−x∗⟩ ≥ 0, and the smoothness
of f ; step (ii) follows from Young’s inequality. By substituting Ineq. (5.7.14) in to Ineq. (5.7.13), we
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have

θk(1 + τk)[f(xk)− f(x∗)]

≤ θ1η1V (x0, x
∗) +

Lϵ0L
2

∥x0 − x∗∥2 + 35δ̂

√
Lς0L∥x0 − x∗∥2

2
+ 6

√√√√k−1∑
t=0

6ςtσ2∗ δ̂ + 48δ̂ max
0≤t≤k−1

√
ςtσ2∗

+
307δ̂2

∑k−1
t=1 ςtL[f(xt)− f(x∗)]∑k−1

t=1 [θt(1 + τt)− θt+1τt+1 − ϵtL][f(xt)− f(x∗)]
+

k−1∑
t=0

ϵtσ
2
∗,

which completes the proof. □

Proof of Corollary 5.3.1 We first check that the stepsize conditions (4.9.16a)-(4.9.16c) and
(5.3.7) hold. It is easy to see that condition (4.9.16a) holds. Now let us check that Ineqs. (5.3.2) -
(4.9.16c) hold. We have

η1η2 ≥
1

2
· (24L)2 ≥ 25α2L

2,

ηtτt−1 ≥
24L

t

(
t− 2

2
− t− 1

24

)
≥ 24L

t

11t− 23

24
≥ 10L

3
≥ 5Lαt, t = 3, ..., k

ηkτk ≥
24L

k

(
k − 1

2
− k

24

)
≥ L(11k − 12)

k
≥ L.

To check Ineq. (5.3.7), we have that for t ≥ 1,

qt =
θt+1(1 + α2

t+1)

ηt+1
+
θt+2α

2
t+2

ηt+2
+
θ2t+2α

2
t+2

θt+1ηt+1
=

3(t+ 1)2 + t2

24L
≤ 4(t+ 1)2

24L
,

then considering the batch size mt ≥ ⌈216ΩL(t+2)
L ⌉, we obtain

ϵt =
2.8 Ωqt
mt

≤ 11.2 Ω(t+ 1)2

24Lmt
≤ t+ 1

24L
.

Given the inequality above, we have that for t ≥ 2,

θtτt + Lϵt−1 = t

(
t− 1

2
− t

24

)
+ Lϵt−1 ≤

t(t− 1)

2
− (t− 1)t

24
.

Combining the above inequality with the fact that θt−1(1 + τt−1) =
t(t−1)

2 − (t−1)2

24 , we arrive at

θt−1(1 + τt−1)− (θtτt + Lϵt−1) ≥
t(t− 1)

24
− (t− 1)2

24
=
t− 1

24
, t ≥ 3.

For the case when t = 2, we have

θ2τ2 + Lϵ1 ≤ 1− 1

12
< 1 = θ1(1 + τ1),

which indicates that condition (5.3.7) holds.

On the other hand, we have mt ≥ ⌈216L(t+2)(δ̂2+Ω)
L ⌉, thus

ςt =
(2θt+1 + θt)

2R2
XΩ

mt
=

(3t+ 2)2R2
XΩ

mt
≤

min{ tR
2
XL

24L ,
tΩR2

XL

24Lδ̂2
}, t ≥ 1

min{R
2
XL

108L ,
ΩR2

XL

108Lδ̂2
}, t = 0

.
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Thus we have

307δ̂2
∑k−1

t=1 ςtL[f(xt)− f(x∗)]∑k−1
t=1 [θt(1 + τt)− θt+1τt+1 − ϵtL][f(xt)− f(x∗)]

≤ 307ΩLR2
X . (5.7.15)

Moreover, invoking that mt ≥ ⌈5(k+1)3(δ̂+Ω)σ2
∗

L2ΩR2
X

⌉ we have

6

√√√√k−1∑
t=0

6ςtσ2∗ δ̂ ≤ 20LΩR2
X ,

48δ̂ · max
0≤t≤k−1

√
ςtσ2∗ ≤

22LΩR2
X

√
δ̂√

k
≤ 22LΩR2

X . (5.7.16)

Meanwhile, we have

ϵt =
2.8 Ωqt
mt

≤ 11.2Ω(t+ 1)2

24Lmt
≤

11.2(t+ 1)2LΩR2
X

120(k + 1)3σ2∗
,

thus
∑k−1

t=0 ϵtσ
2
∗ ≤ 1

24LΩR
2
X . By arranging the terms, we obtain the desired result. □

5.7.5 Proof of Corollary 5.3.2

First of all, we show a modified version of Corollary 5.3.1 without the assumption k ≥ δ̂, but with a
modified batch-size policy. Notice that if we modify the batch size in Corollary 5.3.1 to

mt ≥ max
{
1,
⌈
216L(t+2)(δ̂2+Ω)

L

⌉
,
⌈
5(k+1)3(δ̂2+Ω)σ2

∗
L2ΩR2

X

⌉}
, t ≥ 0,

then all the results in the proof of Corollary 5.3.1 holds except for Ineq. (5.7.16). Instead, we have
the following alternative inequality

48δ̂ · max
0≤t≤k−1

√
ςtσ2∗ ≤ 22LΩR2

X , (5.7.17)

due to the condition mt ≥ ⌈5(k+1)3(δ̂2+Ω)σ2
∗

L2ΩR2
X

⌉. As a result, we have that with probability 1− δ,

f(x̄k)− f(x∗) ≤
797ΩLR2

X

k(k + 1)
. (5.7.18)

Now let us utilize the result above to prove Corollary 5.3.2. Specifically, we need to show that
for each stage, we can halve the distance to optimal solution ∥x̃k − x∗∥2 with probability at least
1− δ/K. Then by the uniform bound of probability, we will obtain the desired result. We prove it
by induction.

First, for k = 1, by Ineq. (5.7.18) we have with probability at least 1− δ/K,

f(x̃1)− f(x∗) ≤ 797ΩLR2
0

N(N + 1)

(i)

≤ µ

4
R2

0 =
µ

2
R2

1.

where step (i) follows from the definition of N in (5.5.14). Invoking the relationship ∥x− x∗∥2 ≤
2(f(x)−f(x∗))

µ , we have that with probability at least 1− δ/K,

∥x̃1 − x∗∥2 ≤ R2
1,
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completing the proof of the base case.
Now assume that for k ≤ K, with probability at least 1− (k − 1)δ/K,

f(x̃k−1)− f(x∗) ≤ 1
2µR

2
k−1 and ∥x̃k−1 − x∗∥2 ≤ R2

k−1.

So with probability at least 1 − (k − 1)δ/K, x∗ is in Xs. Then by Corollary 5.3.1, we have with
probability at least 1− kδ/K,

f(x̃k)− f(x∗) ≤
797ΩLR2

k−1

N(N + 1)
≤ µ

4
R2
k−1 =

µ

2
R2
k.

Consequently, we have with probability at least 1− kδ/K

∥x̃k − x∗∥2 ≤ 2[f(x̃k)− f(x∗)]

µ
≤ R2

k,

which completes the proof. □

5.7.6 Proof of Proposition 5.4.1, Corollary 5.4.1 and Corollary 5.4.2

Proof of Proposition 5.4.1 First, notice that Ineqs. (4.9.19) and (4.9.20) in the proof of
Proposition 4.9.2 holds. By taking the telescope sum from t = t0 to k, and using the condition
(4.9.16a), we obtain

k∑
t=t0

θt {τtf(xt)− ⟨Gt, x− xt⟩ − τtf(xt−1)}

≤ θt0ηt0V (zt0−1, x)− θkηkV (zk, x) + θk⟨gk − gk−1, zk − x⟩

− θt0αt0⟨gt0−1 − gt0−2, zt0−1 − x⟩+ ∆̃t0,k

(i)

≤ θt0ηt0V (zt0−1, x) +
θk
2ηk

∥gk − gk−1∥2∗ +
θt0α

2
t0

2ηt0
∥gt0−1 − gt0−2∥2∗ +

θt0ηt0
2

∥zt0−1 − x∥2 + ∆̃t0,k,

(5.7.19)
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where step (i) follows from Cauchy-Schwarz inequality, Ineq. (4.1.11) and Young’s inequality, and
∆̃t0,k is defined as

∆̃t0,k :=
k∑

t=t0

θt

[
αt⟨gt−1 − gt−2, zt − zt−1⟩ −

τt
2L

∥gt − gt−1∥2∗

− ⟨δt−1 + αt(δt−1 − δt−2), zt − x⟩ − ηtV (zt−1, zt)
]
+

k∑
t=t0

θt⟨δt, xt − x⟩

(i)

≤
k∑

t=t0

θt

[
αt∥gt−1 − gt−2∥∗∥zt − zt−1∥ −

τt
2L

∥gt − gt−1∥2∗ −
ηt
10

∥zt−1 − zt∥2

− ⟨δt−1 + αt(δt−1 − δt−2), zt − x⟩ − 2ηt
5

∥zt−1 − zt∥2
]
+

k∑
t=t0

θt⟨δt, xt − x⟩

(ii)

≤
5θt0α

2
t0

2ηt0
∥gt0−1 − gt0−2∥2∗ −

θkτk
2L

∥gk − gk−1∥2∗

+

k∑
t=t0

θt

[
−⟨δt−1 + αt(δt−1 − δt−2), zt − x⟩ − 2ηt

5
∥zt − zt−1∥2 + θt⟨δt, xt − x⟩

]
︸ ︷︷ ︸

=:∆̃
(2)
t0,k

.

where step (i) follows from Cauchy-Schwarz inequality and Ineq. (4.1.11), and step (ii) follows from
Young’s inequality and condition (5.3.2). Substituting the above inequality into Ineq. (5.7.19) and
rearranging the terms, we have

k∑
t=t0

θt⟨Gt, xt − x⟩+ θkτk[f(xk)− f(x∗)]

≤ θt0ηt0V (zt0−1, x) + θt0τt0 [f(xt0−1)− f(x∗)] +

k−1∑
t=t0

(θt+1τt+1 − θtτt)[f(xt)− f(x∗)]

+
3θt0α

2
t0

ηt0
∥gt0−1 − gt0−2∥2∗ +

(
θk
2ηk

− θkτk
2L

)
∥gk − gk−1∥2∗ +

θt0ηt0
2

∥zt0−1 − x∥2 + ∆̃
(2)
t0,k

(i)

≤ θt0ηt0V (zt0−1, x) + θt0τt0 [f(xt0−1)− f(x∗)] +
k−1∑
t=t0

(θt+1τt+1 − θtτt)[f(xt)− f(x∗)]

+
3θt0α

2
t0L

2

ηt0(1 + τt0−1)2
∥zt0−1 − xt0−2∥2∗ +

θt0ηt0
2

∥zt0−1 − x∥2 + ∆̃
(2)
t0,k

(ii)

≤ θt0ηt0V (zt0−1, x) + θt0τt0 [f(xt0−1)− f(x∗)] +

k−1∑
t=t0

(θt+1τt+1 − θtτt)[f(xt)− f(x∗)]

+

(
θt0ηt0
2

+
3θt0ηt0
25

)
R2
X + ∆̃

(2)
t0,k

, (5.7.20)

where step (i) follows from condition (4.9.16c) and the fact that

∥gt0−1 − gt0−2∥2 ≤ L2∥xt0−1 − xt0−2∥2 = L2

∥∥∥∥zt0−1 − xt0−2

1 + τt0−1

∥∥∥∥2 ,
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and step (ii) follows by using condition (5.3.2) to obtain

3θt0α
2
t0L

2

ηt0(1 + τt0−1)2
∥zt0−1 − xt0−2∥2∗ ≤

3θt0α
2
t0η

2
t0τ

2
t0−1R

2
X

25α2
t0
ηt0(1 + τt0−1)2

≤
3θt0ηt0R

2
X

25
.

Next, we work on upper bounding ∆̃
(2)
t0,k

.

∆̃
(2)
t0,k

≤ −
k∑

t=t0+1

θt[⟨δt−1, zt − zt−1⟩+ ⟨δt−1, zt−1 − x⟩]− θt0⟨δt0−1, zt0 − x⟩

−
k∑

t=t0+1

θtαt[⟨δt−1, zt − zt−1⟩+ ⟨δt−1, zt−1 − x⟩]− θt0αt0⟨δt0−1, zt0 − x⟩

+

k∑
t=t0+2

θtαt[⟨δt−2, zt − zt−1⟩+ ⟨δt−2, zt−1 − zt−2⟩+ ⟨δt−2, zt−2 − x⟩] + θt0αt0⟨δt0−2, zt0 − x⟩

+ θt0+1αt0+1⟨δt0−1, zt0+1 − x⟩ − 2

5

k∑
t=t0

θtηt∥zt−1 − zt∥2 +
k∑

t=t0

θt⟨δt, xt − x⟩.

By splitting ∥zt−1 − zt∥2 into 4 copies, and using θtαt = θt−1 and Young’s inequality, i.e., ⟨δ, z⟩ −
at∥z∥2 ≤ ∥δ∥2∗/(4at) for at > 0, we have

∆̃
(2)
t0,k

≤
k∑

t=t0+1

[
5θt
2ηt

∥δt−1∥2∗ − θt⟨δt−1, zt−1 − x⟩
]
+

5θt0
2ηt0

∥δt0−1∥2∗ +
θt0ηt0
10

∥zt0 − x∥2

+
k∑

t=t0+1

[
5θtα

2
t

2ηt
∥δt−1∥2∗ − θt−1⟨δt−1, zt−1 − x⟩

]
+

5θt0α
2
t0

2ηt0
∥δt0−1∥2∗ +

θt0ηt0
10

∥zt0 − x∥2

+

k∑
t=t0+2

[
5θtα

2
t

2ηt
∥δt−2∥2∗ +

5θt−1

2ηt−1
∥δt−2∥2∗ + θt−1⟨δt−2, zt−2 − x⟩

]
+

5θt0α
2
t0

2ηt0
∥δt0−2∥2∗ +

θt0ηt0
10

∥zt0 − x∥2

+
5θt0
2ηt0

∥δt0−1∥2∗ +
θt0ηt0
10

∥zt0+1 − x∥2 +
k∑

t=t0

θt⟨δt, xt − x⟩

≤
k−2∑

t=t0−2

5

2

[
θt+1(2 + α2

t+1)

ηt+1
+
θt+2α

2
t+2

ηt+2

]
∥δt−1∥2∗ +

5θk(1 + α2
k)

2ηk
∥δk−1∥2∗ +

k−1∑
t=t0

θt⟨δt, xt − zt⟩

− θk⟨δk−1, zk−1 − x⟩+ θk⟨δk, xk − x⟩+ 3θt0ηt0
10

∥zt0 − x∥2 + θt0ηt0
10

∥zt0+1 − x∥2

≤
k∑

t=t0−2

5

2

[
θt+1(2 + α2

t+1)

ηt+1
+
θt+2α

2
t+2

ηt+2

]
∥δt−1∥2∗ +

k−1∑
t=t0

θt⟨δt, xt − zt⟩

+
3θt0ηt0
10

∥zt0 − x∥2 + θt0ηt0
10

∥zt0+1 − x∥2 + θkηk
10

∥zk−1 − x∥2 + θkηk
10

∥xk − x∥2

≤
k∑

t=t0−2

5

2

[
θt+1(2 + α2

t+1)

ηt+1
+
θt+2α

2
t+2

ηt+2

]
∥δt−1∥2∗ +

k−1∑
t=t0

θt⟨δt, xt − zt⟩+
2θt0ηt0R

2
X

5
+
θkηkR

2
X

5
.

(5.7.21)
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Alternatively, we can bound ∆̃
(2)
t0,k

directly by using Cauchy-Schwarz inequality,

∆̃
(2)
t0,k

≤
k∑

t=t0

θt[(1 + αt)∥δt−1∥∗ + αt∥δt−2∥∗]RX +
k∑

t=t0

θt∥δt∥∗RX

≤
k∑

t=t0−2

(2θt + 2θt+1)∥δt∥∗RX . (5.7.22)

The result in (5.4.1) follows by combining (5.7.20), (5.7.21) and (5.7.22) and rearranging terms. □

Proof of Corollary 5.4.1 Take t0 = ⌈k2⌉. We first provide a high-probability bound for
∑k

t=t0−2 χ̃t.
Let us define

ς̃t :=
(2θt + 2θt+1)

2R2
XΩ

mt
.

Then following the same arguments as in Ineq. (5.7.12), we can obtain that with probability at least
1− δ/(⌈k/2⌉+ 1),

k∑
t=t0−2

χt(x
∗) ≤

k∑
t=t0−2

[
ϵtL[f(xt)− f(x∗)− ⟨g(x∗), xt − x∗⟩] + ϵtσ

2
∗
]

+ 35δ̃

√√√√ k∑
t=t0−2

ς̃tL[f(xt)− f(x∗)− ⟨g(x∗), xt − x∗⟩]

+ 6

√√√√ k∑
t=t0−2

6ς̃tσ2∗ δ̃ + 48δ̃ max
t0−2≤t≤k

√
ς̃tσ2∗. (5.7.23)

By combining Ineqs. (5.4.1) and (5.7.23), utilizing the fact that V (x, y) ≤ Ω∥x− y∥2 ≤ ΩR2
X , and

rearranging the terms, we obtain that with probability at least 1− δ/(⌈k/2⌉+ 2),

k∑
t=t0

θt⟨Gt, xt − x⟩+ (θkτk − ϵkL)[f(xk)− f(x∗)]

≤ θt0ηt0ΩR
2
X + θt0ηt0R

2
X +

θkηk
5

R2
X + (θt0τt0 + ϵt0−1L)[f(xt0−1)− f(x∗)]

+

k−1∑
t=t0

(θt+1τt+1 − θtτt + ϵtL)[f(xt)− f(x∗)] + ϵt0−2L[f(xt0−2)− f(x∗)]

+

k∑
t=t0−2

ϵtσ
2
∗ + 35δ̃

√√√√ k∑
t=t0−2

ς̃tL[f(xt)− f(x∗)− ⟨g(x∗), xt − x∗⟩]

+ 6

√√√√ k∑
t=t0−2

6ς̃tσ2∗ δ̃ + 48δ̃ max
t0−2≤t≤k

√
ς̃tσ2∗.
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Meanwhile, noticing the condition (5.3.7), we have

k∑
t=t0

θt⟨Gt, xt − x⟩+ (θkτk − ϵkL)[f(xk)− f(x∗)] (5.7.24)

≤ θt0ηt0ΩR
2
X + θt0ηt0R

2
X +

θkηk
5

R2
X + (θt0τt0 + ϵt0−1L)[f(xt0−1)− f(x∗)] (5.7.25)

+

k−1∑
t=t0

θt[f(xt)− f(x∗)] + ϵt0−2L[f(xt0−2)− f(x∗)] (5.7.26)

+
k∑

t=t0−2

ϵtσ
2
∗ + 35δ̃

√√√√ k∑
t=t0−2

ς̃tL[f(xt)− f(x∗)]

+ 6

√√√√ k∑
t=t0−2

6ς̃tσ2∗ δ̃ + 48δ̃ max
t0−2≤t≤k

√
ς̃tσ2∗. (5.7.27)

On the other hand, utilizing Corollary 5.3.1 and the uniform bound of probability, we have that
with probability at least 1− ⌈k/2⌉δ/(⌈k/2⌉+ 2)

f(xt)− f(x∗) ≤
797ΩLR2

X

t(t+ 1)
, ∀t ∈ [t0 − 2, k − 1]

Next, noticing that the mini-batch size mt in this corollary is greater or equal to the one in
Corollary 4.4.1, thus (4.9.16a)-(4.9.16c) and (5.3.7) hold. Meanwhile, we have ϵt ≤ t+1

24L . Therefore,
we have θkτk − ϵkL ≥ 0 and

(θt0τt0 + ϵt0−1L)[f(xt0−1)− f(x∗)] +
k−1∑
t=t0

θt[f(xt)− f(x∗)] + ϵt0−2L[f(xt0−2)− f(x∗)]

≤
[
t0

(
t0 − 1

2
− t0

24

)
+
t0
24

]
797ΩLR2

X

(t0 − 1)t0
+

k−1∑
t=t0

797ΩLR2
X

t+ 1
+

797ΩLR2
X

24(t0 − 2)

≤
797ΩLR2

X

2
+ ln 2 · 797ΩLR2

X ≤ 951ΩLR2
X . (5.7.28)

On the other hand, we have mt ≥ ⌈216L(t+2)(δ̃2+Ω)
L ⌉, thus for t ≥ t0 − 2,

ς̃t =
(2θt+1 + 2θt)

2R2
XΩ

mt
=

(4t+ 2)2R2
XΩ

mt
≤ min

{
tR2

XL

32L
,
tΩR2

XL

32Lδ̃2

}
.

Consequently, we have

35δ̃

√√√√ k∑
t=t0−2

ς̃tL[f(xt)− f(x∗)] ≤ 35δ̃

√√√√ k∑
t=t0−2

tΩR2
XL

32δ̃2
·
797ΩLR2

X

t(t+ 1)
≤ 146ΩLR2

X . (5.7.29)

Moreover, invoking that mt ≥ ⌈5(k+1)3(δ̃+Ω)σ2
∗

L2ΩR2
X

⌉ we have

6

√√√√ k∑
t=t0−2

6ς̃tσ2∗ δ̃ ≤ 27LΩR2
X ,

48δ̃ · max
0≤t≤k−1

√
ς̃tσ2∗ ≤

30LΩR2
X

√
δ̃√

k
≤ 30LΩR2

X . (5.7.30)
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At last, we have

ϵt =
2.8Ωqt
mt

≤ 11.2Ω(t+ 1)2

24Lmt
≤

(t+ 1)2LΩR2
X

12(k + 1)3σ2∗
,

thus

k∑
t=t0−2

ϵtσ
2
∗ ≤ 1

36
LΩR2

X . (5.7.31)

Finally, by substituting the bounds in Ineqs. (5.7.28), (5.7.29), (5.7.30), and (5.7.31) into
Ineq. (5.7.24), we obtain

k∑
t=t0

θt⟨Gt, xt − x⟩ ≤
(
24Ω + 24 +

24

5
+ 951Ω + 146Ω + 27Ω + 30Ω +

Ω

36

)
LR2

X ≤ 1207LΩR2
X ,

and we complete the proof. □

To prove Corollary 5.4.2 we will make use of the following technical lemma.

Lemma 5.7.1 Let Assumption (SEN) hold, then for λ ∈
[
0, mt

2σtRX

]
,

E⌈t−1⌉ [exp(λ⟨gt −Gt, xt − x∗⟩)] ≤ exp

(
3λ2σ2tR

2
X

mt

)
(5.7.32)

almost surely. Consequently, for all mt ≥ 1,

E⌈t−1⌉

{
exp

(
⟨gt −Gt, xt − x∗⟩

2σtRX/
√
mt

)}
≤ exp(1), (5.7.33)

almost surely.

The proof follows from similar argument to Lemma 5.2.1.

Proof of Corollary 5.4.2 First, using Lemma 5.2.2 and Lemma 5.7.1, we have with probability
1− δ,

k∑
t=⌈k/2⌉

t⟨δt, x∗ − xt⟩ ≤ 2

√√√√δ̂
k∑

t=⌈k/2⌉

12t2σ2tR
2
X

mt
+

8δ̂√
6

 max
⌈k/2⌉≤t≤k

√
6t2σ2tR

2
X

mt
+ max

⌈k/2⌉≤t≤k

√
6t2σ2∗R

2
X

mt


≤ (8 + 4

√
3)δ̂

√√√√ k∑
t=⌈k/2⌉

t2L(f(xt)− f(x∗))R2
X

mt
+ 4

√√√√3δ̂

k∑
t=⌈k/2⌉

t2σ2∗R
2
X

mt

+ 16δ̂ · max
⌈k/2⌉≤t≤k

√
t2σ2tR

2
X

mt

≤ (8 + 4
√
3)δ̂

√√√√ k∑
t=⌈k/2⌉

t2L⟨gt, xt − x∗⟩R2
X

mt
+ 4

√√√√3δ̂
k∑

t=⌈k/2⌉

t2σ2∗R
2
X

mt

+ 16δ̂ · max
⌈k/2⌉≤t≤k

√
t2σ2∗R

2
X

mt
.
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Therefore, we have with probability 1− δ

k∑
t=⌈k/2⌉

t

2
⟨gt, xt − x∗⟩

=
k∑

t=⌈k/2⌉

t⟨Gt, xt − x∗⟩+
k∑

t=⌈k/2⌉

t⟨δt, x∗ − xt⟩ −
k∑

t=⌈k/2⌉

t

2
⟨gt, xt − x∗⟩

≤
k∑

t=⌈k/2⌉

t⟨Gt, xt − x∗⟩+ (8 + 4
√
3)δ̂

√√√√ k∑
t=⌈k/2⌉

t2L⟨gt, xt − x∗⟩R2
X

mt
−

k∑
t=⌈k/2⌉

t

2
⟨gt, xt − x∗⟩

+ 4

√√√√3δ̂

k∑
t=⌈k/2⌉

t2σ2∗R
2
X

mt
+ 16δ̂ · max

⌈k/2⌉≤t≤k

√
t2σ2∗R

2
X

mt

(i)

≤
k∑

t=⌈k/2⌉

t⟨Gt, xt − x∗⟩+
112δ̂2

∑k
t=⌈k/2⌉ t

2LR2
X⟨gt, xt − x∗⟩/mt∑k

t=⌈k/2⌉ t⟨gt, xt − x∗⟩

+ 4

√√√√3δ̂

k∑
t=⌈k/2⌉

t2σ2∗R
2
X

mt
+ 16δ̂ · max

⌈k/2⌉≤t≤k

√
t2σ2∗R

2
X

mt
,

where step (i) follows from Young’s inequality. By utilizing the batch size defined in (5.4.4), we have

k∑
t=⌈k/2⌉

t

2
⟨gt, xt − x∗⟩ ≤

k∑
t=⌈k/2⌉

t⟨Gt, xt − x∗⟩+
0.52

∑k
t=⌈k/2⌉ tLR

2
X⟨gt, xt − x∗⟩∑k

t=⌈k/2⌉ t⟨gt, xt − x∗⟩
+

√
14L2R2

X

5
+ 16

√
δ̂L2R4

X

5k

≤
k∑

t=⌈k/2⌉

t⟨Gt, xt − x∗⟩+ 2.2LR2
X + 35.78LR2

X

√
δ̂

k
.

Finally, we conclude by noting that for k ≥ 1 we have

k∑
t=⌈ k

2
⌉

t =
1

2

[(⌈
k

2

⌉
+ k

)(
k −

⌈
k

2

⌉
+ 1

)]
≥ 3k2

8
.

□

5.7.7 Proof of Proposition 5.5.1, Theorem 5.5.1 and Corollary 5.5.1

Proof of Proposition 5.5.1 Let us start by writing the first order optimality condition of (5.5.4b)
:

∀x ∈ X, ⟨G̃t + h′t + ηt∇xV (zt−1, x)(zt), x− zt⟩ ≥ 0,

where h′t ∈ ∂h(zt). This condition together with convexity of h and the three point Lemma can be
rewritten as follows

⟨G̃t, zt − x⟩ ≤ h(x)− h(zt) + ηt [V (zt−1, x)− V (zt, x)− V (zt−1, zt)] . (5.7.34)
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Here and for the rest of the section, τt =
1−βt
βt

, such that (5.5.4c) becomes

xt =
zt + τtxt−1

1 + τt
. (5.7.35)

Smoothness of f together with (5.7.35) writes

τtf(xt)− ⟨gt, x− xt⟩+ (1 + τt)h(xt) = τt[f(xt)− ⟨gt, xt − xt−1⟩] + ⟨gt, zt − x⟩+ (1 + τt)h(xt).

≤ τt[f(xt−1)− 1
2L∥gt − gt−1∥2∗] + ⟨gt, zt − x⟩+ (1 + τt)h(xt)

Now by combining result (5.7.34) and the above equation results in

τtf(xt)−⟨gt, x− xt⟩+ (1 + τt)h(xt)− τtf(xt−1)

≤ − τt
2L∥gt − gt−1∥2∗ + ⟨gt − G̃t, zt − x⟩+ (1 + τt)h(xt)

+ h(x)− h(zt) + ηt [V (zt−1, x)− V (zt, x)− V (zt−1, zt)] . (5.7.36)

Using convexity of h and again (5.7.35) we have

τtΨ̃(xt)−⟨gt, x− xt⟩+ h(xt)− h(x)− τtΨ̃(xt−1)

≤ − τt
2L∥gt − gt−1∥2∗ + ⟨gt − G̃t, zt − x⟩+ ηt [V (zt−1, x)− V (zt, x)− V (zt−1, zt)] . (5.7.37)

Recall that f is convex, which means that

∀x ∈ X, ⟨gt, x− xt⟩ ≤ f(x)− f(xt).

Therefore the L.H.S. of (5.7.37) writes ∀x ∈ X

(1 + τt)Ψ̃(xt)− Ψ̃(x)− τtΨ̃(xt−1)

≤ − τt
2L

∥gt − gt−1∥2∗ + ⟨gt − G̃t, zt − x⟩+ ηt [V (zt−1, x)− V (zt, x)− V (zt−1, zt)] .

(5.7.38)

Note that

⟨gt − G̃t, zt − x⟩ = ⟨gt − gt−1 − αt(gt−1 − gt−2), zt − x⟩ − ⟨δt−1 + αt(δt−1 − δt−2), zt − x⟩
= ⟨gt − gt−1, zt − x⟩ − αt⟨gt−1 − gt−2, zt−1 − x⟩
+ αt⟨gt−1 − gt−2, zt − zt−1⟩ − ⟨δt−1 + αt(δt−1 − δt−2), zt − x⟩.

We now, similarly as what has been done in the proof of Theorem 4.4.1, take the θt-weighted sum of
equation (5.7.38) for t = 1, . . . , k and by noting that x0 = z0, and using (5.5.5a), we obtain

k∑
t=1

θt

{
(1 + τt)Ψ̃(xt)− Ψ̃(x)− τtΨ̃(xt−1)

}
≤ θ1η1V (x0, x)− θkηkV (zk, x) + θk⟨gk − gk−1, zk − x⟩+∆k, (5.7.39)

where

∆k :=
k∑
t=1

θt
[
αt⟨gt−1 − gt−2, zt − zt−1⟩ −

τt
2L

∥gt − gt−1∥2∗

− ⟨δt−1 + αt(δt−1 − δt−2), zt − x⟩ − ηtV (zt−1, zt)
]
.
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Now we analyze the R.H.S of (5.7.39) in the exact same way as what have done in the proof of
Theorem 4.4.1 and we can show that ∀x ∈ X,

k∑
t=1

θt

{
(1 + τt)Ψ̃(xt)− Ψ̃(x)− τtΨ̃(xt−1)

}
≤ θ1η1V (x0, x) +

k−1∑
t=0

[pt⟨δt, x− zt⟩+
5qt
2
∥δt∥2∗],

where pt := θt1{t ≤ k − 2}+ (θt + θt+1)1{t = k − 1} and δt = Gt − g(xt). □

Proof of Theorem 5.5.1 First, by fixing x = x∗ and rearranging the terms in Ineq. (5.5.6), we
obtain

θk(1 + τk)[Ψ̃(xk)− Ψ̃(x∗)] ≤ θ1η1V (x0, x
∗) +

k−1∑
t=1

(
θt+1τt+1 − θt(1 + τt)

)
[Ψ̃(xt)− Ψ̃(x∗)]

+
k−1∑
t=0

χt(x
∗). (5.7.40)

Recall the sub-exponential tail of χt(x
∗) characterized in Lemma 5.3.1, and notice that

Ωσ2∗
mt

≤ σ̄t ≤
Ω

mt

(
LL∥xt − x∗∥2

2
+ σ2∗

)
≤ Ω

mt

(
LLR2

X

2
+ σ2∗

)
.

Then we use Lemma 5.2.2 to bound the term
∑k−1

t=0 χt(x
∗) with high-probability. More specifically,

we take

s̄ := max
0≤t≤k−1

√
54ςt

(
LLR2

X

2
+ σ2∗

)
,

s := max
0≤t≤k−1

√
54ςtσ2∗,

ū :=

√√√√k−1∑
t=0

54ςt

(
LLR2

X

2
+ σ2∗

)
.

Then we have max0≤t≤k−1

√
54(2θt+1 + θt)2R2

X σ̄
2
t ≤ s̄ and

√∑k−1
t=0 54(2θt+1 + θt)

2R2
X σ̄

2
t ≤ ū. Then

by Ineq. (5.2.4) of Lemma 5.2.2 and the definition of δ̂ in (5.5.9), we have with probability at least
1− δ,

k−1∑
t=0

χt(x
∗) ≤

k−1∑
t=0

2.8qtσ̄
2
t + 2

√√√√k−1∑
t=0

54p2tR
2
X σ̄

2
t δ̂

+
8√
6

(
max

0≤t≤k−1

√
54p2tR

2
X σ̄

2
t + max

0≤t≤k−1

√
54ςtσ2∗

)
δ̂

≤
k−1∑
t=0

[
ϵtL[f(xt)− f(x∗)− ⟨g(x∗), xt − x∗⟩] + ϵtσ

2
∗
]

+ 35δ̂

√√√√k−1∑
t=0

ςtL[f(xt)− f(x∗)− ⟨g(x∗), xt − x∗⟩]

+ 6

√√√√k−1∑
t=0

6ςtσ2∗ δ̂ + 48δ̂ max
0≤t≤k−1

√
ςtσ2∗, (5.7.41)

169



5.7. APPENDIX

where the last inequality follows from the definition of ϵt in (5.5.9), the definition of ςt in (5.5.9), the
definition of σ̄t in Lemma 5.3.1, and the fact maxt≤k yt ≤

∑
t≤k yt for yt ≥ 0. By combining Ineqs.

(5.7.40), (5.7.41) and recalling that Ψ = 1
2f + h, we have

θk(1 + τk)[Ψ̃(xk)− Ψ̃(x∗)] +

k−1∑
t=1

(
θt(1 + τt)− θt+1τt+1

)
[Ψ(xt)−Ψ(x∗)]

≤ θ1η1V (x0, x
∗) +

k−1∑
t=1

(
1

2
(θt+1τt+1 − θt(1 + τt)) + ϵtL

)
[f(xt)− f(x∗)]

+ 35δ̂

√√√√k−1∑
t=0

ςtL[f(xt)− f(x∗)− ⟨g(x∗), xt − x∗⟩] + ϵ0L[f(x0)− f(x∗)− ⟨g(x∗), x0 − x∗⟩]

+

k−1∑
t=0

ϵtσ
2
∗ + 6

√√√√k−1∑
t=0

6ςtσ2∗ δ̂ + 48δ̂ max
0≤t≤k−1

√
ςtσ2∗ (5.7.42)

Notice that due to f being convex and x∗ being a minimizer of function f , we have the inequality

Ψ̃(xk)− Ψ̃(x∗) ≥ Ψ(xk)−Ψ(x∗).

Recall that the output of the CSGE algorithm is defined as follows

x̂k = Γ−1
k

(
θk(1 + τk)xk +

k−1∑
t=1

[θt(1 + τt)− θt+1τt+1]xt

)
,

where Γk = θk(1 + τk) +
∑k−1

t=1 θt(1 + τt)− θt+1τt+1. By combining the latter definition of the
algorithm’s output together with the convexity of Ψ and by observing that for all t ≥ 1, θt(1 + τt) >
θt+1τt+1 (a consequence of inequality (5.5.8)), we obtain

Γ−1
k

(
θk(1 + τk)[Ψ(xk)−Ψ(x∗)] +

k−1∑
t=1

(
θt(1 + τt)− θt+1τt+1

)
[Ψ(xt)−Ψ(x∗)]

)
≥ Ψ(x̂k)−Ψ(x∗). (5.7.43)

Let us focus on the R.H.S of Ineq.(5.7.42), after using the optimality condition of f , i.e., ⟨g(x∗), xt−
x∗⟩ ≥ 0 and Young’s inequality this upper bound holds true for the following two terms

−
k−1∑
t=1

(
1
2(θt(1 + τt)− θt+1τt+1)− ϵtL

)
[f(xt)− f(x∗)] + 35δ̂

√√√√k−1∑
t=1

ςtL[f(xt)− f(x∗)− ⟨g(x∗), xt − x∗⟩]

≤
(35δ̂)2

∑k−1
t=1 ςtL[f(xt)− f(x∗)]

2
∑k−1

t=1

(
θt(1 + τt)− θt+1τt+1 − 2ϵtL

)
[f(xt)− f(x∗)]

.

Combining the precedent inequality with result in Ineq. (5.7.43) yields to the following bound

Ψ(x̂k)−Ψ(x∗) ≤ Γ−1
k

[
θ1η1V (x0, x

∗) + ϵ0L[f(x0)− f(x∗)− ⟨g(x∗), x0 − x∗⟩]

+ 35δ̂
√
ς0L[f(x0)− f(x∗)− ⟨g(x∗), x0 − x∗⟩] +

(35δ̂)2
∑k−1

t=1 ςtL[f(xt)− f(x∗)]

2
∑k−1

t=1

(
θt(1 + τt)− θt+1τt+1 − 2ϵtL

)
[f(xt)− f(x∗)]

+

k−1∑
t=0

ϵtσ
2
∗ + 6

√∑k−1
t=0 6ςtσ

2
∗ δ̂ + 48δ̂ max

0≤t≤k−1

√
ςtσ2∗

]
.
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Note that the smoothness assumption verified by f provides this upper bound

f(x0)− f(x∗)− ⟨g(x∗), x0 − x∗⟩ ≤ 1
2L∥x0 − x∗∥.

We then have that following result holds true

Ψ(x̂k)−Ψ(x∗) ≤ Γ−1
k

[
θ1η1V (x0, x

∗) + 1
2ϵ0LL∥x0 − x∗∥2 + 35δ̂

√
ς0LL∥x0 − x∗∥2

2
+ 6

√∑k−1
t=0 6ςtσ

2
∗ δ̂

+
(35δ̂)2

∑k−1
t=1 ςtL[f(xt)− f(x∗)]

2
∑k−1

t=1

(
θt(1 + τt)− θt+1τt+1 − 2ϵtL

)
[f(xt)− f(x∗)]

+
k−1∑
t=0

ϵtσ
2
∗ + 48δ̂ max

0≤t≤k−1

√
ςtσ2∗

]
.

(5.7.44)

Finally, we finish by recalling that ∥x0 − x∗∥2 ≤ R2
X and V (x, y) ≤ Ω

2 ∥x− y∥2 ≤ ΩR2
X

2 which leads
to result in (5.5.10). This concludes the proof of the theorem. □

Proof of Corollary 5.5.1 It is easy to verify that the provided parameters verify the conditions
(5.5.5a) - (5.5.5c). Now we will check that (5.5.8) is also verified. First note that for t ≥ 1 :

qt =
θt+1(1 + α2

t+1)

ηt+1
+
θt+2α

2
t+2

ηt+2
+
θ2t+2α

2
t+2

θt+1ηt+1
=

3(t+ 1)2 + t2

24L
≤ 4(t+ 1)2

24L
,

observe also that the choice of the batch size implies mt ≥ ⌈216L(t+2)(δ̂2+Ω)
L ⌉ ≥ 216L(t+2)Ω

L this leads
to

ϵt =
2.8Ωqt
mt

≤ 11.2(t+ 1)2

24Lmt
≤ t+ 1

24L
.

Combining the above inequality with the parameter value for θt and τt, we arrive at

θt(1 + τt)− (θt+1τt+1 + 2Lϵt) ≥
t(t+ 1)

24
− t2

24
=

t

24
> 0, t ≥ 2.

For the case when t = 1, we have

θ1(1 + τ1)− θ2τ2 − 2Lϵ1 ≥
7

12
>

1

24
.

We have shown that ∀t ≥ 1, θt(1+τt)−(θt+1τt+1+2Lϵt) ≥ t
24 > 0, which writes equivalently as (5.5.8).

This proves that the latter condition holds. On the other hand, we have mt ≥ ⌈216L(t+2)(δ̂2+Ω)
L ⌉, thus

ςt =
(2θt+1 + θt)

2R2
XΩ

mt
=

(3t+ 2)2R2
XΩ

mt
≤

min{ tR
2
XL

24L ,
tΩR2

XL

24Lδ̂2
}, t ≥ 1

min{R
2
XL

108L ,
ΩR2

XL

108Lδ̂2
}, t = 0

.

Thus we have

(35δ̂)2
∑k−1

t=1 ςtL[f(xt)− f(x∗)]

2
∑k−1

t=1 [θt(1 + τt)− θt+1τt+1 − 2ϵtL][f(xt)− f(x∗)]
≤ 613ΩLR2

X .
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Moreover, invoking that mt ≥ ⌈5(k+1)3(δ̂+Ω)σ2
∗

36L2ΩR2
X

⌉ and δ̂ ≤ k we have

6

√√√√k−1∑
t=0

6ςtσ2∗ δ̂ ≤ 69LΩR2
X ,

48δ̂ · max
0≤t≤k−1

√
ςtσ2∗ ≤

387LΩR2
X

√
δ̂√

k
≤ 387LΩR2

X .

Meanwhile, we have

ϵt =
2.8Ωqt
mt

≤ 11.2Ω(t+ 1)2

24Lmt
≤

404(t+ 1)2LΩR2
X

120(k + 1)3σ2∗
,

thus
∑k−1

t=0 ϵtσ
2
∗ ≤ LΩR2

X . With the proposed set of parameter we can also show

35δ̂

√
ς0LLR2

X

2
≤ 3ΩLR2

X

θ1η1Ω+ ϵ0LL
2

R2
X ≤ 13ΩLR2

X .

We now show that for k ≥ 2, Γk ≥ 11
24k(k+ 1). Observe that with the prescribed choice of parameter

we have

Γk = θk(1 + τk) +

k−1∑
t=1

(θt(1 + τt)− θt+1τt+1)

=
1

24
k(12 + 11k) +

k−1∑
t=2

(θt(1 + τt)− θt+1τt+1) + θ1 − θ2τ2

=
1

24
k(12 + 11k) +

1

24

k−1∑
t=2

(2t+ 1) +
1

6

≥ 11

24
k(k + 1).

Finally, by arranging the terms, we obtain the result in (5.5.11). □

5.7.8 Proof of Theorem 5.5.2

We begin by proving the second inequality first. Consider the sequence defined, for any positive
integer k such that k ≥ 1, by

Rk := Rk−1/
√
2 and R0 ≥ ∥x̃0 − x∗∥,

where x̃0 is an initialization point of Algorithm 9. To simplify the analysis we can choose the
intial radius as R0 = RX . The proof is carried out by induction, by using simultaneously Corollary
5.5.1 and Lemma 5.7.54 in order to show that at the end of each stage k ∈ {1, 2, . . . ,K} we have
∥x̃k − x∗∥ ≤ Rk with probability at least 1− kδ/K. For the first stage k = 1, observe that when
applying Algorithm 8 for N iterations to Problem 5.5.12 with κ1 we have, according to Corollary
5.5.1, with probability at least 1− δ/K:

Ψκ1(x̃1)−Ψκ1(x
∗) ≤ 1811 ΩLR2

0

N(N + 1)
:= Λ1
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A direct application of Lemma 5.7.54 gives us that the following bound also holds with probability
at least 1− δ/K

∥x̃1 − x∗∥ ≤ υ

κ1Υ
+ κ1ρsΥ

−1 =
1811 ΩLR2

0

κ1ΥN(N + 1)
+ κ1ρsΥ

−1.

After plugging into the last inequality the value of κ1 = R0

√
1811ΩL

ρsN(N+1)
we obtain

∥x̃1 − x∗∥ ≤ 2R0

Υ

√
1811ρsΩL

N(N + 1)
.

Now observe that N ≥ 121
Υ

√
ρsΩL, therefore we have

∥x̃1 − x∗∥ ≤ 2R0

Υ

√
1811ρsΩL

N(N + 1)
≤ 2R0

√
1811ρsΩL

NΥ
≤ 2R0

√
1811

121
<
R0√
2
= R1.

We have shown that with probability at least 1− δ/K we have ∥x̃1 − x∗∥ ≤ R0/
√
2.

Now let us assume that for some k ∈ {1, 2, . . . ,K}, we have run the multistage procedure up to
stage k− 1. The estimate provided by Algorithm 9 satisfies with probability at least 1− (k− 1)δ/K :

∥x̃k−1 − x∗∥ ≤ Rk−1 = 2−
k−1
2 R0,

in other words, with at least the same probability, we have that x∗ ∈ Xk.
We now launch Algorithm 9 for the k-th stage. Again, Corollary 5.5.1 gives us with probability at
least 1− δ/K that the k-th stage estimate x̃k verifies

Ψκk(x̃k)−Ψκk(x
∗) ≤

1811 ΩLR2
k−1

N(N + 1)
=: Λk.

We can now use the RSC assumption to obtain that with probability at least 1− δ/K the following
holds true

∥x̃k − x∗∥ ≤
1811 ΩLR2

k−1

κkΥN(N + 1)
+
ρκks

Υ
.

Recall that κk = Rk−1

√
1811ΩL

ρsN(N+1)
and N ≥ 121

Υ

√
ρsΩL, this, together with the last inequality results

in

∥x̃k − x∗∥ ≤ Rk−1

Υ

√
1811ρsΩL

N(N + 1)
≤ 2Rk−1

√
1811

121
<
Rk−1√

2
= Rk.

We have proved that with probability at least 1− (k− 1)δ/K, x∗ ∈ Xk and with probability at least
1 − δ/K, x∗ ∈ Xk+1 therefore the union bound gives us that x∗ ∈ Xk ∩Xk+1 with probability at
least 1− (k − 1)δ/K − δ/K = 1− kδ/K.

Now we move onto the proof of the first inequality. Let consider that we have run the CSGE-SR
Algorithm for K stages. Then according to the result provided in the first part of the proof, we
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have shown that with probability greater or equal than 1 − δ that x∗ ∈ XK+1 and together with
Corollary 5.5.1 we have

ΨκK (x̃K)−ΨκK (x
∗) ≤

1811 ΩLR2
K

N(N + 1)
.

We then have that

f(x̃K)− f(x∗) ≤
1811 ΩLR2

K

N(N + 1)
+ κK∥x∗∥ − κK∥x̃K∥

≤
1811 ΩLR2

K

N(N + 1)
+ κK∥x̃K − x∗∥

≤ 1811

1212
Υ2R2

0

ρs
· 2−K +

√
3622

121

ΥR2
0

ρs
· 2−K

≤ Υ(Υ + 1)

ρs
R2

0 · 2−K−1.

Where in the third inequality we have replaced κK and N by their prescribed values as appearing in
Algorithm 9. This concludes the proof of the theorem. □

5.7.9 Proof of Proposition 5.5.2

1o. We start by proving that the objective function f has L-Lipschitz continuous derivatives. Recall
that the gradient of f writes : g(x) = E[ϕ

(
u(ϕTx)− η

)
] and by considering the setup described in

Section 5.5.4 we have

∥g(x)− g(x′)∥∞ = sup
∥z∥1≤1

⟨g(x)− g(x′), z⟩ = sup
∥z∥1≤1

E{ϕT z[u(ϕTx)− u(ϕTx′)]}

≤ sup
∥z∥1≤1

r̄E{|ϕT z||ϕT (x− x′)|} ≤ r̄ sup
∥z∥1≤1

√
E{(ϕT z)2} · ∥x− x′∥Σ

≤ r̄
√
ν∥x− x∗∥Σ ≤ r̄ν∥x− x′∥1. (5.7.45)

We can conclude that the objective function has L-Lipschitz continuous derivatives w.r.t ∥ · ∥1 with
L = r̄ν.

2o. We now proceed to the verification of the quadratic growth condition (5.5.18),

f(x)− f(x∗) =

∫ 1

0
g(x∗ + t(x− x∗))T (x− x∗)dt

=

∫ 1

0
E{ϕ[u(ϕTx∗ + t(x− x∗))− u(ϕTx∗)]}T (x− x∗)dt

[by (5.5.16)] ≥
∫ 1

0
rE{[ϕT (x− x∗)]2}tdt = r

2
∥x− x∗∥2Σ ≥ rκΣ

2
∥x− x∗∥22. (5.7.46)

Therefore, condition (5.5.19) holds with µ = r which is independent of problem dimension n.
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3o. To prove the third point of the proposition we show that the stochastic noise G(x, (ϕ, η))− g(x)
verifies

E

[
exp

(
∥G(x, (ϕ, η))− g(x)∥∞

σ(x)

)]
≤ exp(1) (5.7.47)

where

σ(x) := 2.32
√
ν(1 + lnn)[σ + r̄∥x− x∗∥Σ

√
κ] + r̄

√
ν∥x− x∗∥Σ. (5.7.48)

Using the value of the stochastic estimate of the gradient of the problem objective together with
(5.7.45), we have ∥∥E [ϕ(u(ϕTx)− u(ϕTx∗))

]∥∥
∞ = ∥g(x)∥∞ ≤ r̄

√
ν∥x− x∗∥Σ.

Observe also that

∥G(x, (ϕ, η))− g(x)∥∞ =
∥∥ϕ(u(ϕTx)− u(ϕTx∗)

)
+ σϕζ + [g(x∗)− g(x)]

∥∥
∞

[by (5.7.45)] ≤ ∥ϕ
(
u(ϕTx)− u(ϕTx∗)

)
∥∞ + σ∥ϕζ∥∞ + r̄

√
ν∥x− x∗∥Σ

[by (5.5.16)] ≤ r̄∥ϕ∥∞
∣∣ϕTx− ϕTx∗

∣∣+ σ∥ϕ∥∞|ζ|+ r̄
√
ν∥x− x∗∥Σ. (5.7.49)

• Let us show first that

E

[
exp

(
∥ϕ∥∞|ζ|

2.32
√
ν(1 + lnn)

)]
≤ exp(1). (5.7.50)

Note that for ζ ∼ SG(0, 1) and s < 1
2 , E

[
e

ζ2

2.32

]
≤ exp(1).3 Moreover,

E

[
exp

(
∥ϕ∥2∞
2.32ν

)]
≤

n∑
i=1

E

[
exp

(
[ϕ]2i
2.32ν

)]
≤ nmax

i
E

[
exp

(
[ϕ]2i
2.32ν

)]
≤ n exp(1).

By convexity of the exponential function,

E

[
exp

(
∥ϕ∥2∞

2.32ν(1 + lnn)

)]
≤
(
E

[
exp

(
∥ϕ∥2∞
2.32ν

)]) 1
1+lnn

≤ exp(1). (5.7.51)

As a consequence, one has

E

[
exp

(
∥ϕ∥∞|ζ|

2.32
√
ν(1 + lnn)

)]
≤ E

[
exp

(
∥ϕ∥2∞

4.64ν(1 + lnn)
+

ζ2

4.64

)]
E

[
exp

(
∥ϕ∥2∞

4.64ν(1 + lnn)

)]
E

[
exp

(
ζ2

4.64

)]
≤ exp(12) exp(

1
2) = exp(1).

3For the sake of completeness, here is one-line proof of this standard bound:

Eζ

[
e

ζ2

2.32

]
= Eζ

[
Eη∼N (0,1)

[
e

ζη√
1.16

]]
= Eη∼N (0,1)

[
Eζ

[
e

ζη√
1.16

]]
≤ Eη∼N (0,1)

[
e

η2

2.32

]
=

(
1− 1

1.16

)−1/2 ≤ exp(1).
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• Let us show next that

e(x) := E

[
exp

(
∥ϕ[u(ϕTx)− u(ϕTx∗)]∥∞

2.32
√
κν(1 + lnn)r̄∥x− x∗∥Σ

)]
≤ exp(1).

Let us put

α =
r̄∥x− x∗∥Σ

√
κ√

ν(1 + lnn)
.

One has

∥ϕ[u(ϕTx)− u(ϕTx∗)]∥∞ ≤ r̄∥ϕ∥∞|ϕT (x− x∗)| ≤ α
2 ∥ϕ∥

2
∞ + r̄2

2α(ϕ
T (x− x∗))2.

Now observe that r.v. ϕT (x − x∗) is sub-Gaussian with zero mean and sub-Gaussianity
parameter ∥x− x∗∥2S ≤ κ∥x− x∗∥2Σ. Together with (5.7.51) this implies that

e(x) ≤ E

[
exp

(
∥ϕ∥2∞

4.64ν(1 + lnn)
+

(ϕT (x− x∗))2

4.64κr̄2∥x− x∗∥2Σ

)]
≤ E1/2

[
exp

(
∥ϕ∥2∞

2.32ν(1 + lnn)

)]
+E1/2

[
exp

(
(ϕT (x− x∗))2

2.32κr̄2∥x− x∗∥2Σ

)]
≤ exp(12) exp(

1
2) = exp(1). (5.7.52)

• We now set
µ1 = 2.32σν(1 + lnn), µ2 = 2.32

√
κν(1 + lnn)r̄∥x− x∗∥Σ.

From (5.7.51) and (5.7.52), we conclude that

E

[
exp

(
∥ϕ[u(ϕTx)− u(ϕTx∗)] + σϕζ∥∞

2.32
√
ν(1 + lnn)[σ + r̄∥x− x∗∥Σ

√
κ]

)]
≤ µ1
µ1 + µ2

E
[
exp

(
µ−1
1 σ∥ϕ∥∞|ζ|

)]
+

µ2
µ1 + µ2

E
[
exp

(
µ−1
2 ∥ϕ[u(ϕTx)− u(ϕTx∗)]∥∞

)]
≤ exp(1).

Together with (5.7.49), the latter bound implies (5.7.47), (5.7.48).

4o. In the setting described in Section 5.5.4, Σ is a positive definite matrix, such that Σ ⪰ κΣI with
κΣ > 0, and condition Q(λ, ψ) is satisfied with λ = κΣ and ψ = 1. Because quadratic minoration
condition 5.5.19 of Lemma 5.5.1 for f is verified with µ ≥ r due to (5.5.18), we conclude that
Assumption [RSC] holds with Υ = 1 and ρ = (κΣr)

−1.4

5.7.10 Condition Q(λ, ψ)

We say that a positive semidefinite mapping Σ : E → E satisfies condition Q(λ, ψ) for given s ∈ Z+

if for some ψ, λ > 0 and all P ∈ Ps and z ∈ E

∥Pz∥ ≤
√
s/λ∥z∥Σ + ∥Pz∥ − ψ∥z∥. (5.7.53)

4We refer to Section 5.7.10 and Lemma 5.7.2 for the proof of Lemma 5.5.1.
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Lemma 5.7.2 Suppose that x∗ is an optimal solution to 5.1.1 such that for some P ∈ Ps, ∥(I −
P )x∗∥ ≤ ∆, and that condition Q(λ, ψ) is satisfied. Furthermore, assume that objective f of 5.1.1
satisfies the following growth condition

f(x)− f(x∗) ≥ µ
(
∥x− x∗∥Σ

)
where µ(·) is monotone increasing and convex. Then a feasible solution x̂ ∈ X to (5.5.12) such that

Prob {Ψκ(x̂)−Ψk(x
∗) ≤ υ} ≥ 1− ϵ.

satisfies, with probability at least 1− ϵ,

∥x̂− x∗∥ ≤
1
2µ

∗
(
κ
√
s/λ
)
+ υ

κψ
+

2∆

ψ
(5.7.54)

where µ∗ : R+ → R+ is conjugate to µ(·), µ∗(t) = supu≥0[tu− µ(u)].

Proof. When setting z = x̂− x∗ we have the following inequality

∥x̂∥ = ∥x∗ + z∥ = ∥Px∗ + (I − P )x∗ + z∥
≥ ∥Px∗ + z∥ − ∥(I − P )x∗∥
≥ ∥Px∗∥+ ∥Pz∥ − ∥Pz∥ −∆

where we used the relation

∥Px∗ + z∥ ≥ ∥Px∗∥+ ∥Pz∥ − ∥Pz∥,

(Cf Lemma 3.1 of [120] applied to w = Px∗, here P is such that PP = 0). When using condition
Q(λ, ψ) we obtain

∥x̂∥ ≥ ∥Px∗∥ −
√
s/λ∥z∥Σ + ψ∥z∥ −∆,

such that Ψκ(x̂) ≤ Ψκ(x
∗) + υ implies

κ (∥Px∗∥+ ψ∥z∥ −∆) ≤ 1
2(f(x

∗)− f(x̂)) + κ
√
s/λ∥z∥Σ + κ∥x∗∥+ υ

≤ −1
2µ (∥z∥Σ) + κ

√
s/λ∥z∥Σ + κ∥x∗∥+ υ

≤ 1
2µ

∗
(
2κ
√
s/λ
)
+ κ∥x∗∥+ υ.

Due to ∥x∗∥ − ∥Px∗∥ ≤ ∥(I − P )x∗∥ ≤ ∆ we then finally obtain

∥x̂− x∗∥ ≤
1
2µ

∗
(
2κ
√
s/λ
)
+ υ

κψ
+

2∆

ψ
.

Proof of Lemma 5.5.1 is a particular case of the proof of the preceding lemma. We obtain Lemma
5.5.1 by considering µ(x) = µ

2x
2 which leads to µ∗(t) = 1

2µ t
2 and ∆ = 0.
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Appendix

This appendix is devoted to provide additional information that can facilitate the reading of this
thesis. We detail below useful assumptions used to provide the theoretical guarantees of each chapters
of the manuscript. We also explain how to derive and implement the composite proximal operator,
used in the CSMD and CSGE algorithms, in a time complexity of O(n).

5.8 Regularity in Convex Optimization.

We provide below the definition of several assumptions used in this manuscript. We consider an
objective function g we aim at minimizing. Let E be a Euclidean space. A common assumption in
the optimization literature is the convexity assumption. For clarity and consistency in our discussion,
we provide here the specific definition of convexity that used in the manuscript.

Definition 5.8.1 (Convex set) A set X ⊂ E is said to be convex if λx + (1 − λ)y ∈ X, for any
x, y ∈ X and any λ ∈ [0, 1].

Now we can define the notion of convexity of a function g, it will have many important implications
in the analysis of the optimization algorithms.

Definition 5.8.2 (Convex function) Let X ⊂ E be a convex set. A function g : X → R is said to
be convex on X if it verifies ∀x, y ∈ X and ∀λ ∈ [0, 1],

g (λx+ (1− λ)y) ≤ λg(x) + (1− λ)g(y). (5.8.1)

Function g is said to be stricly convex if the inequality is strict for x ̸= y.

When g is differentiable, there exists an equivalent definition.

Definition 5.8.3 Let X ⊂ E be a convex set. A continuously differentiable function g : X → R is
said to be convex if it verifies ∀x, y ∈ X,

g(x) ≥ g(y) + ⟨∇g(y), x− y⟩. (5.8.2)

An important implication is that whenever there is x ∈ Rn which is a local minimizer it is also a
global minimizer. Convexity can be interprated geometrically as a linear lower-bound approximation
of g at every point. Differentiability is a central concept in convex optimization. We introduce the
notion of subgradients which generalizes the notion of differentiability for convex functions.

Definition 5.8.4 (Subgradients) Let g : X → R be a convex function. We say that c is a subgradient
of g at point x ∈ X if for all y ∈ X

f(y) ≥ f(x) + ⟨c, y − x⟩. (5.8.3)
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The set of all subgradients of g at a given point x is called the subdifferential of g at x and is
denoted ∂g(x). If g is differentiable at point x, then the subdifferential reduces to the singleton
∂g(x) = {∇g(x)}. In the case of the absolute value function f : x 7→ |x|, we have for x ̸= 0 that
∂f(x) = {−1, 1} and for x = 0, the subdifferential of the absolute value function is the segment
∂f(0) = [−1, 1].

Following the work of [34, 126, 156], the notion of convexity can be augmented by introducing the
concept of uniform convexity.

Definition 5.8.5 (Uniformly convex function) Let X ⊂ E be a convex set and p ≥ 2. A function
g : X → R is said to be (µ, p)-uniformly convex if there exists µ > 0 such that ∀x, y ∈ X and
∀λ ∈ [0, 1]

g (λx+ (1− λ)y) ≤ λg(x) + (1− λ)g(y)− µλ(1− λ)

p

[
(1− λ)p−1 + λp

]
∥x− y∥p. (5.8.4)

Equivalently, the definition of the uniform convexity also holds for a continuously differentiable
function g.

Definition 5.8.6 Let X ⊂ E be a convex set, µ > 0, and p ≥ 2. A continuously differentiable
function g : X → R is said to be (µ, p)-uniformly convex if there exists α > 0 such that ∀x, y ∈ X,

g(x)− g(y)− ⟨∇g(y), x− y⟩ ≥ µ

p
∥x− y∥p. (5.8.5)

A special case that has received significant attention is the (µ, 2)-uniform convexity, also known as
µ-strong convexity. This assumption imposes a quadratic lower bound on the objective function.
Additionally, it assures the uniqueness of the optimal solution x∗, an important property for many
optimization problems. Throughout this manuscript, we use a more relaxed variant of the uniform
convexity assumption, a growth condition that provides a lower-bound on the suboptimality gap.

Definition 5.8.7 Let X ⊂ E be a convex set, µ > 0, and p ≥ 2. A continuously differentiable
function g : X → R is said to verify the (µ, p)-growth condition w.r.t. ∥ · ∥, if it verifies, ∀x ∈ X
and x∗ the minimizer of g, the following condition :

g(x)− g(x∗) ≥ µ

p
∥x− x∗∥p. (5.8.6)

This definition relaxes the conditions of Definition 5.8.6, translating the notion of (µ, p)-uniform
convexity to the neighborhood of the optimum x∗. Note that the particular case p = 2 is known in
the optimization literature as the quadratic growth condition.

Given a norm ∥·∥ on E, we define its associated conjugate norm as ∥z∥∗ := sup{⟨z, x⟩ : ∥x∥ ≤ 1}.
For instance, for x ∈ Rn, the conjugate norm of the Euclidean norm ∥x∥2 =

√
xTx is itself. More

generally, the dual norm of the ℓp-norm (p ≥ 1) is the ℓq-norm with q such that 1
p +

1
q = 1.

We now turn our attention to another type of regularity assumptions in optimization: the
smoothness condition.

Definition 5.8.8 Let X ⊂ E be a convex set, let also be ∥ · ∥ and ∥ · ∥∗ a given norm and its
conjugate. A continuously differentiable function g : X → R is said to be L-smooth if it verifies
∀x, y ∈ X,

∥∇g(x)−∇g(y)∥2∗ ≤ L∥x− y∥2. (5.8.7)
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g(x)

T (x) := g(x0) + ⟨∇g(x0), x− x0⟩

T (x) + L
2
∥x− x0∥2

T (x) + µ
2
∥x− x0∥2

x0

Figure 5.3: Geometric interpretation of the quadratic upper bound and quadratic lower bound
provided respectively by L-smoothness (in brown) and µ-strong-convexity (in red) assumption of a
function g at a point x0.

Equivalently, the latter condition can be rewritten as

g(x)− g(y)− ⟨∇g(y), x− y⟩ ≤ L

2
∥x− y∥2. (5.8.8)

Figure 5.3 provides a geometric interpretation of the notions of convexity and smoothness that have
been previously discussed.

Remark 5.8.1 Note that, for a twice continuously differentiable function g at a point x, the notion
of L-smoothness and µ-strong convexity with respect to the Euclidean norm can also be expressed in
terms of a relation on the Hessian of g denoted as ∇2g. We have

µIn ≼ ∇2g(x) ≼ LIn,

where the relation A ≼ B means that B −A is a positive semi-definite matrix and In is the n× n
identity matrix. This immediately introduces the quantity κ = L/µ often referred to as the condition
number of g.

In the following development, we will introduce some important tools that will be used throughout
the chapters of this thesis. We begin by defining the Fenchel-Legendre transform.

Definition 5.8.9 (Fenchel-Legendre transform) The Fenchel-Legendre transform of a function
g : X → R denoted g∗ is a function defined as

g∗(w) = sup
x∈X

{⟨w, x⟩ − g(x)} . (5.8.9)

This transform, also known as Fenchel conjugate has several useful properties. To name a few, the
biconjugate of a function g denoted g∗∗ (the convex conjugate of the convex conjugate of g) is the
largest lower semi-continuous convex function that lower bounds g, i.e., g∗∗ ≤ g. Furthermore, if g is
at least strictly-convex, then ∇g(∇g∗(w)) = w for w ∈ X and ∇g∗(w) = argmaxx∈X{⟨w, x⟩ − g(x)}.
Below we present some examples of Legendre-Fenchel transforms.

• Let X = Rn, define for A ∈ S++
n (R), b ∈ Rn and c ∈ R, the quadratic function g(x) =

1
2x

TAx+ bTx+ c. Then its convex conjugate is defined by g∗(w) = 1
2(w − b)TA−1(w − b)− c.
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z

ϑ(x) + ⟨∇ϑ(x), z − x⟩

x

ϑ(x)

y

ϑ(y)

Vϑ(x, y)

Figure 5.4: Geometric interpretation of the Bregman divergence.

• When X = S++
n (R) and g(Z) = − ln detZ we have g∗(W ) = − ln det(−W )− n.

We will now formally introduce a widely used tool in the optimization literature, namely the Bregman
Divergence. The Bregman Divergence is a measure used in optimization and information theory
to quantify the difference between two points with respect to a strictly convex function ϑ. This
concept is essential in the development of our methods and will be frequently be used throughout
this manuscript.

Definition 5.8.10 (Bregman Divergence) Let X be a closed convex set and ϑ : X → R a con-
tinuously differentiable stricly convex function. The Bregman divergence Vϑ is defined according
to

∀x, y ∈ X, Vϑ(x, y) = ϑ(y)− ϑ(x)− ⟨∇ϑ(x), y − x⟩; (5.8.10)

The latter divergence can be interpreted as the difference between the distance generating function
ϑ evaluated at a point y and the first-order Taylor approximation of ϑ at a point x evaluated at
the point y. The Bregman divergence extends the interesting properties of the squared ℓ2-norm to
non-Euclidean spaces via the distance generating function ϑ. We mention below some examples.

• Squared Euclidean distance. We set X = Rn and ϑ(x) = 1
2x

Tx, then the Bregman divergence
is : Vϑ(x, y) =

1
2∥x− y∥22.

• Logistic loss divergence. We set X = [0, 1]n and ϑ(x) =
∑n

i=1(xi ln(xi) + (1− xi) ln(1− xi)),
the associated Bregman divergence is then Vϑ(x, y) =

∑n
i=1(yi ln

yi
xi

+ (1− yi) ln
1−yi
1−xi )

• Matrix Entropy. We set X = S++
n (R) and ϑ(Z) = tr(Z lnZ) for Z having the following

eigenvalue decomposition Z =
∑

λ∈Sp(Z) λqλq
T
λ such that Zqλ = λqλ, we denote lnZ =∑

λ∈Sp(Z) ln(λ)qλq
T
λ . Then the Bregman divergence is written Vϑ(Z, Y ) = tr(Y lnY − Y lnZ −

Y + Z).

One important property that will be used during the entire manuscript is the 3 points identity. This
can be seen as the generalization to non-Euclidean spaces of the identity verified by the squared
Euclidean distance

1
2∥x− z∥22 = 1

2∥x− y∥22 + 1
2∥y − z∥22 + (x− y)T (y − z).
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When using a non-Euclidean distance generating function ϑ(·), this can be generalized to the following
relation

Vϑ(x, z) = Vϑ(x, y) + Vϑ(y, z) + ⟨∇ϑ(x)−∇ϑ(y), y − z⟩. (5.8.11)

5.9 Composite proximal operator

In this section of the appendix, we propose a procedure aiming at computing the composite proximal
operator that is the building block of our Composite Stochastic Mirror Descent method (algorithm
1) and Composite Stochastic Gradient Extrapolation method (algorithm 8). Recall that the main
idea of our multistage routine is to solve a sequence of subproblems of the form (2.2.4) via either the
CSMD or the CSGE algorithm. To that matter we have to compute a composite proximal operator
of the form

Proxκ∥·∥1,y(η) := argmin
∥z∥1≤1

{
⟨η, z⟩+ κ∥z + y∥1 + χ∥z∥pp

}
, (5.9.1)

where κ, χ > 0, p > 1 and y ∈ X. To compute these types of proximal operator many methods
are available. First, one can look for a closed form solution to the previous optimization problem,
unfortunately in our setting, this option is not feasible. An other option is to solve the problem up
to some precision with optimizers, the main drawback is that these optimizers scale poorly with the
problem’s dimension. For instance by using the CVX framework [157], based notably, on interior
point methods [158], the time complexity is of order O(n3) or O(n3.5) depending on the problem at
hand, which in our high-dimensional setting is prohibitive. In what will follow, we will provide a
procedure to solve this optimization problem, up to a prescribed precision, with a time complexity
of order O(n).

We start by writing the Lagrangian of (5.9.1)

L(z, λ) = ⟨η, z⟩+ κ∥z + y∥1 + χ∥z∥pp + λ(∥z∥1 − 1),

where λ ≥ 0 is a Lagrangian multiplier. We then search at finding

max
λ≥0

min
x

L(z, λ).

Observe that this function is separable, indeed we have L(z, λ) =
∑n

i=1 Li(zi, λ), with

∀i ∈ [n], Li(zi, λ) := ηizi + κ|zi + yi|+ χ|zi|p + λ(|zi| − 1
n).

Instead of dealing with the full Lagrangian, we will concentrate on the Li’s instead. For the sake of
readability, from now on, we will drop the indices of the variables.

The subdifferential of the above function is :

∂zL(z, λ) := η + κ sign(z + y) + χp sign(z)|z|p−1 + λ sign(z). (5.9.2)

Satisfying the first order optimality condition boils down to finding z∗(λ) for a fixed λ ≥ 0 such that
0 ∈ ∂zL(z∗(λ), λ). We will now proceed the analysis by studying three cases, namely y = 0, y > 0
and y < 0.
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Case y = 0 : Here we distinguish three subcases, indeed observe that the first order optimality
condition obtained with (5.9.2) rewrites

−sign (z∗(λ))
[
(κ+ λ) + χp|z∗(λ)|p−1

]
∋ η.

• If |η| < κ+ λ, we have z∗(λ) = 0.

• If η > κ+ λ, then in particular, we have η > 0. For both the first-order optimality condition
and the last inequality to hold, it is necessary that z∗(λ) < 0. This boils down to have

z∗(λ) = −
(
η−κ−λ
χp

) 1
p−1

.

• If η < −κ− λ, now we have η < 0, and similarly for both the first-order optimality condition
and the last inequality to hold, it is necessary that z∗(λ) > 0. This implies that z∗(λ) =(
−η+κ+λ

χp

) 1
p−1

.

Case y > 0 : In this case the first order optimality condition can be reformulated as follows

η + κ sign(z∗(λ) + y) + χp sign(z∗(λ)) |z∗(λ)|p−1 + λ sign(z∗(λ)) ∋ 0.

• If |η − χp|y|p−1 − λ| ≤ κ =⇒ z∗(λ) = −y.

• If η−χp|y|p−1−λ−κ > 0, then we have z∗(λ) < −y, which implies that z∗(λ) = −
(
η−κ−λ
χp

) 1
p−1

.

• Now if η − χp|y|p−1 − λ+ κ < 0 we have z∗(λ) + y > 0. Contrary to the previous case, here
we cannot directly conclude, we have to check the sign of z∗(λ). This bring us to study three
new subcases.

– If |η + κ| ≤ λ, then we immediately have that z∗(λ) = 0.

– Otherwise, if η + κ > λ, in other words if we have η + κ > 0, then it implies that
z∗(λ) < 0. By using the first order optimality condition we can show that we have

z∗(λ) = −
(
η+κ−λ
χp

) 1
p−1

.

– The last case to study is when η + κ < −λ this implies that η + κ < 0 which ultimately

gives that z∗(λ) > 0. We can then conclude that in this case z∗(λ) =
(
−η+κ+λ

χp

) 1
p−1

.

Case y < 0 : The analysis of this case is very similar to the previous one. Here, the first order
optimality condition remains as follows

η + κ sign(z∗(λ) + y) + χp sign(z∗(λ)) |z∗(λ)|p−1 + λ sign(z∗(λ)) ∋ 0.

• If |η + χp|y|p−1 + λ| ≤ κ =⇒ z∗(λ) + y = 0 =⇒ z∗(λ) = −y.

• If η + χp|y|p−1 + λ + κ < 0, then we have z∗(λ) > −y > 0, which implies that z∗(λ) =(
−η+κ+λ

χp

) 1
p−1

.

• Now if η + χp|y|p−1 + λ− κ > 0 we have z∗(λ) < −y. Here again we cannot directly conclude
and we have to check the sign of z∗(λ). Similarly to the previous case, this bring us to study
three subcases.
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– If |η − κ| ≤ λ, then we immediately have that z∗(λ) = 0.

– Now, if η − κ < −λ, in other words if we have η − κ < 0, then we have z∗(λ) > 0. By

using the first order optimality condition we can show that we have z∗(λ) =
(
κ−η−λ
χp

) 1
p−1

.

– Finally the last case to study is η − κ > λ, this implies that η − κ > 0 which ultimately

gives that z∗(λ) < 0. In this case z∗(λ) = −
(
η−κ−λ
χp

) 1
p−1

.

After finding the components z∗i (λ) of the vector z∗(λ) for a fixed non-negative λ, the next idea is to
find λ∗ ∈ argmaxλ≥0 L(z∗(λ), λ). To do so, we will use the complementary slackness condition. In
our context the latter states that λ∗ is such that λ∗(∥z∗(λ∗)∥1 − 1) = 0. So either, λ∗ = 0, meaning
that the inequality constraints is already verified, or ∥z∗(λ∗)∥1 − 1 = 0. To summarize, our strategy
to compute a composite proximal operator of the form (5.9.1) is to first check if ∥z∗(0)∥1 − 1 is
equal to zero (up to a tolerance level), otherwise we iteratively search for the root of the function
λ 7→ ∥z∗(λ)∥1 − 1 by using the bissection method for a fixed number of iterations. It is easy to see
that such a procedure comes with a total time complexity of order O(n).
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