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Résumé vii

Confinement magnétique dans les stellarators : champs harmoniques et différentiation de
forme

Résumé
Dans cette thèse, nous considérons des problèmes de différentiation de forme de champs harmoniques
ayant pour applications l’étude de propriétés de confinement magnétique dans des stellarators.
Les stellarators sont des réacteurs à fusion ayant comme objectif de confiner un plasma dans une enceinte
toroïdale à l’aide de champs magnétiques. Contrairement aux tokamaks, les stellarators n’induisent pas
directement de courant électrique dans le plasma, et les champs magnétiques utilisés peuvent donc être
considérés comme des champs harmoniques en première approximation. Nous considérons ainsi dans
cette thèse comment les variations de la forme géométrique du plasma modifient le champ harmonique
associé ainsi que certaines de ses propriétés. Nous étudions ainsi dans un premier chapitre le problème
général de différentiation de forme des champs harmoniques dans des domaines toroïdaux. Dans un
deuxième chapitre, nous définissons une fonction de forme correspondant à l’hélicité des champs har-
moniques et étudions les problèmes de différentiation et d’optimisation de forme associés. Enfin, nous
étudions dans un troisième chapitre la dynamique des applications de Poincaré associées aux champs
harmoniques via une approche de différentiation de forme.

Mots clés : stellarators, champs harmoniques, différentiation de forme, hélicité, applications de
Poincaré, théorie de Hodge, éléments finis exterieurs

Magnetic confinement in stellarators: harmonic fields and shape differentiation
Abstract

In this thesis, we consider shape differentiation problems for harmonic fields with applications to the
study of magnetic confinement in stellarators.
Stellarators are fusion reactors designed to confine a plasma in a toroidal chamber using magnetic
fields. Unlike tokamaks, stellarators do not directly induce electric currents in the plasma so that the
corresponding magnetic fields may be identified, as an initial approximation, with harmonic fields. In this
thesis, we consider how variations in the geometric shape of the plasma modify the associated harmonic
field and some of its properties. In the first chapter, we study the general problem of shape differentiation
of harmonic fields in toroidal domains. In a second chapter, we define a shape function corresponding to
the helicity of harmonic fields and study the associated shape differentiation and optimization problems.
Finally, in a third chapter, we study the dynamics of Poincaré maps associated with harmonic fields via
a shape differentiation approach.

Keywords: stellarators, harmonic fields, shape differentiation, helicity, Poincaré maps, Hodge theory,
finite element exterior calculus

Laboratoire Jacques-Louis Lions
Sorbonne Université – Campus Pierre et Marie Curie – 4 Place Jussieu – 75005 Paris –
France
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1.1 General introduction
In this thesis, we are interested in some shape differentiation and optimization problems

arising from the context of magnetic confinement in stellarator fusion reactors. Stellarators aim to
confine a plasma in which fusion reactions take place by using an external magnetic field without
inducing electric current inside the plasma. As such, we obtain from the Maxwell equations that
the confining magnetic field may be well approximated by a curl free and divergence free vector
field. We refer to such magnetic fields as harmonic fields.

The general approach of this manuscript is to consider how changing the shape of the plasma
domain may affect the corresponding harmonic field as well as some of its properties which may
be relevant in the context of magnetic confinement. In Chapter 2 we begin by considering the
general problem of shape differentiation of harmonic fields, that is, how perturbing the shape of
the plasma domain changes the corresponding harmonic field itself. In Chapter 3, we consider the
helicity of harmonic fields, which is an important quantity in magnetohydrodynamics models. We
proceed to study helicity of harmonic fields as a shape functional, compute the shape gradient of
this quantity and propose a numerical scheme to evaluate helicity of harmonic fields and perform
a numerical optimization of this functional. Finally, we consider in Chapter 4 the problem of
shape differentiation for Poincaré maps of harmonic fields, that is, how perturbing the shape of
the plasma domain affects the Poincaré map of the harmonic field of the underlying domain. In
this context, we obtain a general shape differential formula and study two particular cases in
which we are able to find explicit properties of the shape differential.

Before developing the contributions of this thesis, we begin by introducing the relevant
scientific context in Chapter 1. This chapter is organized as follows. In Section 1.2, we introduce
some relevant concepts for fusion reactors and, in particular, magnetic confinement of plasmas.
We then give in Section 1.3 a first definition of harmonic fields in toroidal domains, which will be
studied in the rest of the manuscript, and we expose some relevant mathematical objects and
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problems in the context of magnetic confinement. Finally, we discuss the scientific contributions
of this thesis and give a general overview of the rest of the manuscript in Section 1.4.

This thesis manuscript was prepared at the Laboratoire Jacques-Louis Lions under the
supervision of Ugo Boscain 1 and Mario Sigalotti 2.

1.2 Physical context
In this section, we introduce some key concepts for magnetic confinement in fusion reactors.

In Section 1.2.1, we give a general introduction to the basic principles of power production by
nuclear fusion. In particular, we motivate the necessity of plasmas and the basic idea of magnetic
confinement. Afterwards, we introduce in Section 1.2.2 three models to describe the dynamics
of plasmas and discuss their physical and computational relevance. After that, we introduce
in Section 1.2.3 a simpler Lagrangian model to describe the dynamics of charged particles in
electromagnetic fields and discuss some of its implications. In particular, we use this to motivate
the necessity of a poloidal component in magnetic fields used for confinement. Finally, we
introduce two families of fusion reactors in Section 1.2.4, the tokamak and the stellarator. In
this section, we explain that the key difference between the two approaches is the way in which a
poloidal component is obtained for the magnetic field. For an introduction to the key concepts of
magnetic confinement, in particular in the case of stellarators, we refer the interested reader to
[IPW20].

1.2.1 Fusion reactors
Fusion type reactors aim to produce energy using nuclear fusion. It is known that while atoms

with large atomic numbers tend to release energy by splitting, smaller atoms release energy by
fusing. Indeed, the binding energy of atoms tends to increase with the number of atomic nuclei
up to Iron-56 after which it slowly decreases (see Fig. 1.1). However, although small atoms release
energy when fusing, igniting the fusion reactions necessitates high energies. Indeed, as positively
charged particles repel each other, one needs to overcome the Coulomb barrier in order for the
strong nuclear force to fuse nuclei together, that is, atoms need to have enough kinetic energy
when colliding to overcome the large Coulomb potential energy when the distance between the
atomic nuclei is of the order of the size of a proton 3. As temperature is proportional to the
average kinetic energy of the atoms, we find that fusion reactions necessitate high temperatures.
In particular, the kinetic energy of the atoms needs to be much higher than their ionization
energy, so that nuclear fusion takes place in a plasma, that is, a mixture of electrons and positively
charged ions. Although one may think that using Hydrogen is the best option as it has no internal
binding energy, it is known that hydrogen-hydrogen fusion has a small cross-section so that fusion
reactions happen with low probability. In fact, it is known that the fusion reaction with the
highest reactivity is given by deuterium and tritium, that is, isotopes of the Hydrogen with one
and two neutrons respectively. This reaction is then optimal at a temperature of the order of
100MK, or about ten times the temperature of the sun.

Research for fusion power started as early as the 1940s as this option allows generating
large amounts of energy with low quantities of reactants. Furthermore, deuterium can be easily
extracted from water while tritium, which is a radioactive isotope of hydrogen, can be produced
through a process called tritium breeding. Also, the byproducts of deuterium-tritium fusion

1. https://www.ljll.fr/ boscain/
2. https://www.ljll.fr/sigalotti/
3. Statistically, the kinetic energy needed to achieve fusion is in fact smaller than the Coulomb barrier because

of quantum tunneling.

https://www.ljll.fr/~boscain/
https://www.ljll.fr/sigalotti/
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Figure 1.1 – Binding energy of atoms in function of the number of nucleons. Source: Nuclear
binding energy Wikipedia page

reaction are simply helium atoms and neutrons, so that, in contrast to fission reactors, one
does not have to handle radioactive waste. However, achieving stable fusion reactors for power
production comes with many challenges so that, up to now, research on fusion power is purely
experimental and not industrial.

As we just saw, fusion reactions occur at very high temperatures. In particular, the needed
energies for fusion reactions are orders of magnitudes higher than ionization energies so that fusion
occurs in plasmas. Moreover, the high temperatures of the plasma imply that it diffuses extremely
quickly. For nuclear reactions occurring in stars, this diffusion is compensated by gravitational
forces which cannot be used in man made fusion reactors. One of the most challenging aspects of
fusion reactors is thus to confine the plasma in a small enough region to maintain high enough
pressure and temperature for nuclear fusion. One approach, which will not be further discussed in
this thesis, is inertial confinement, which uses lasers to confine the plasma in a small region. The
other common approach is magnetic confinement, used for example in tokamaks and stellarators.
Indeed, since the plasma is an ionized gas, the charge separation implies that it interacts with
magnetic fields. The goal of magnetic confinement is thus to confine the plasma in a chamber,
which is toroidally shaped for stellarators and tokamaks, through the use of an external magnetic
field generated by electrical currents circulating in coils outside the fusion chamber. As will be
discussed later in the introduction, the coupled dynamics of the plasma and the magnetic field
are intricate so that finding magnetic fields which are well-suited for magnetic confinement is a
challenging problem. Magnetic confinement devices also come with many physical and engineering
challenges, such as the design and production of high temperature superconducting coils in order
to generate the needed magnetic field.

https://en.wikipedia.org/wiki/Nuclear_binding_energy
https://en.wikipedia.org/wiki/Nuclear_binding_energy
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1.2.2 Plasma models
As in the general context of particle dynamics, one can study plasmas at three different levels.

First, the microscopic level aims to describe the motion of individual charged particles and their
coupling with an external electromagnetic field. Second, the mesoscopic level gives a statistical
description of the plasma, that is, we are only interested in the particle density in phase space
rather than the description of each individual particle. Finally, the macroscopic scale gives a fluid
description of the plasma, with objects such as the velocity, temperature and pressure fields of
the plasma, and their coupling with the electromagnetic field.

Microscopic model

Suppose we are given a set of N particles, with position xi, velocity vi, charge qi and mass
mi, as well as an external magnetic field given by Eext and Bext, two vector fields of R3. For a
given particle, its motion is described by the second Newton law

ẋi = vi,

miv̇i = Fi(xi, vi),

where Fi is the force applied to the i-th particle. If the particles only experiences electromagnetic
forces, Fi is given by the Lorentz force

Fi(x, v) = qi (Ei(x) + v ×Bi(x)) .

Ei and Bi are the total electromagnetic fields experienced by the particle, which differ from Eext
and Bext through the electromagnetic fields generated by the other N − 1 particles. These fields
are given by

Ei(x) = Eext(x) +
∑
j 6=i

qj
4πε0

x− xj
|x− xj |3

,

Bi(x) = Bext(x) +
∑
j 6=i

µ0qj
4π

vj × (x− xj)
|x− xj |3

.

Combining the expressions of the total electromagnetic fields and the Lorentz force into the
equations of motion, we see that we obtain a 6N -dimensional system of coupled nonlinear ODEs.
If one wants to simulate plasmas on the scales of reactors, the number of particles is impossible
to track 4. Even if one wants to simulate for example a few thousand or millions of atoms,
computations become quickly very expensive as the number of interactions evolves as N2.

Vlasov–Maxwell equations

For practical purposes, it is often unnecessary to track individual particles. To this aim, the
Vlasov–Maxwell equations give a mesoscopic description of charged particles given by a density
function f on phase space, that is, a function of position and momentum. Intuitively, given
a small volume element dxdp centered on a point (x, p) in phase space, f(x, p)dxdp gives the
number of particles at position x and momentum p in this volume element.

More specifically, in the case of a monoatomic plasma, the mesoscopic description is given by
two density functions; fe for the electrons, and fi for the positively charged ions. The evolution

4. For example, one gram of Deuterium corresponds to N = 3,0× 1023 particles.
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equations of these quantities is then the following.

∂tfe + ve · ∇xfe − e
(
E + ve

c
×B

)
· ∇pfe = 0,

∂tfi + vi · ∇xfi + Zie
(
E + vi

c
×B

)
· ∇pfi = 0,

(1.1)

where the velocity vα of the species α is related to its momentum p through the mass of an
individual particle mα by vα = p/mα

5, c is the speed of light in a vacuum, e is the elementary
charge of a proton and Zi is the atomic number of the ions. Each equation can be seen as a
transport equation in phase space, where the first transport term indicates that the position is
transported by the velocity while the second term indicates that momentum is transported by the
Lorentz force. The electromagnetic fields are then given by solutions to the Maxwell equations

curlB = 4πj
c

+ 1
c
∂tE,

curlE = −1
c
∂tB,

divB = 0,
divE = 4πρ.

Finally, the charge density ρ and current density j are given by the density functions by

ρ = e

ˆ
R3
Zifi − fedp,

j = e

ˆ
R3
Zifivi − fevedp.

Combining the Maxwell equations with the evolution equations, we obtain a nonlinear nonlocal
system of PDEs called the Vlasov–Maxwell system. One may also add a collision operator on the
right hand side of Eq. (1.1) to obtain the Vlasov–Maxwell–Boltzmann system.

Magnetohydrodynamics

The last model we will discuss in this section to describe plasmas is a fluid model referred to
as magnetohydrodynamics (MHD). For derivations of MHD equations from the Vlasov–Maxwell–
Boltzmann system, we refer to [JM12; AS19; Zha21]. The MHD equations describe the evolution
of macroscopic fluid quantities given by the velocity field u, the mass density n and pressure p.
The mass density n satisfies the conservation law

∂tn+ div (nu) = 0,

while the velocity field satisfies the law of motion

n (∂tu+ u · ∇u)− ν∆u = j ×B −∇p,

where ν is the fluid viscosity and p is given by the equation of state

d

dt

( p

nγ

)
= 0.

5. This formula is valid when p is negligible in comparison to mαc. Otherwise, one needs to use the relativistic
formula.
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Moreover, combining Ohm’s law
E + u×B = ηJ,

where η is the magnetic resistivity, with Maxwell’s equations, we obtain the following equation of
motion for the magnetic field

∂tB = curl (u×B) + η

µ0
∆B.

The case where viscosity and magnetic resistivity are zero is referred to as ideal MHD. We also
note that the last equation may be seen as a transport diffusion equation for the magnetic field
when seen as a two-form (see Section 1.3.2 for the transport part).

The notion of MHD equilibrium is also important when designing magnetic fields for fusion
reactors. In this case, the velocity field of the fluid is assumed to be zero, and the magnetic field
to be time independent. In the ideal case, the MHD equations are thus reduced to the force
balance equation

j ×B = ∇p,

as well as the Gauss and Ampère laws for the magnetic field

divB = 0, curlB = µ0j.

As will be discussed in Section 1.3.3, solving for MHD equilibria is often used for preliminary
designs of magnetic fields in stellarators. It is then common to study more subtle kinetic
phenomenons of plasma dynamics, such as neoclassical transport or bootstrap currents, starting
from this MHD equilibrium (see for example [Bei+90] for the case of the W7X reactor). We
also note that as the harmonic fields we will study in the main contributions verify j = 0, they
correspond to MHD equilibria with constant pressure.

1.2.3 Trajectories of charged particles in magnetic fields

As the plasma models we discussed in Section 1.2.2 are complex to work with for explicit
computations, we introduce a common simple model used to describe trajectories of charged
particles in a plasma. In this model, we consider a single charged particle traveling in an
electromagnetic field. Thus, we consider no influence of the particle on the electromagnetic field,
and no particle to particle interaction as opposed to what was done in the complete microscopic
model given in Section 1.2.2. We are thus led to consider the following ODE

ẋ(t) = v(t),
mv̇(t) = q(E(x(t)) + v ×B(x(t))),

where E and B are given electromagnetic fields.

Particles in a uniform magnetic field

We first consider the case of a particle in a uniform magnetic field. Let
(
e‖, e

1
⊥, e

2
⊥
)
be a

positively oriented orthonormal basis of R3, and consider the magnetic field

B = be‖.
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Figure 1.2 – Trajectory of a charged particle in a uniform magnetic field. Field lines are in blue
and the trajectory is in green.

Using the orthogonal decomposition v = v⊥ + v‖e‖, the ODE satisfied by the velocity vector
becomes

v̇‖ = 0,

v̇⊥ = qb

m
v⊥ × e‖.

Using the relations e1
⊥ × e‖ = −e2

⊥ and e2
⊥ × e‖ = e1

⊥, we obtain that v⊥ verifies the equations of
a harmonic oscillator with angular frequency qb/m. As a result, we find that charged particles
travel in the direction of the magnetic field with constant velocity while oscillating around field
lines (see Fig. 1.2). Importantly, the orientation of the oscillation is determined by the sign of the
charge and the amplitude of the oscillation in space, which is given by m|v⊥|/(qb), is inversely
proportional to the strength of the magnetic field. The oscillation radius and angular frequencies
are referred to as the gyroradius and gyrofrequency respectively. In the case of a Deuterium
plasma heated at 100MK in a uniform field of 1T, average electrons will have a gyroradius of
1,9× 10−4m and a gyrofrequency of 1,8× 1011s−1, while deuterium ions will have an average
gyroradius of 1,9× 10−2m and a gyrofrequency of 4,8× 107s−1. Compared the typical time and
space scales of a fusion reactor, we therefore see that the oscillations are narrow and fast so that
one can make the approximation that charged particles follow the magnetic field lines.

Particles in non-uniform fields and the gyroaveraged Lagrangian

We now consider the motion of a charged particle in a general time independent electromagnetic
field. To do so, we use the Lagrangian framework, and more specifically the gyroaveraged
Lagrangian. Although our notations are slightly different, this section is largely inspired by and
synthesizes [IPW20, Section 5.2].

First, we recall that the Lagrangian giving the motions of particles in a potential is given as
a function of the position and velocity by the difference of the kinetic energy and the potential
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energy. In the case of an electromagnetic field, if we have an electric potential E = ∇Φ and a
vector magnetic potential B = curlA, the Lagrangian is given by

L (x, ẋ) = 1
2m |ẋ|

2 + qẋ ·A(x)− qΦ(x).

We now suppose that there exists a global positively oriented orthonormal frame (e1, e2, e3) such
that the magnetic field is given by B(x) = b(x)e1(x). In this case, the first key idea of the
gyroaveraged Lagrangian is to decompose the position of the particle as a guiding center motion
and a gyroradius r in the (e2(R), e3(R)) plane, that is, we define

x = R+ r(R),

where R is in R3 and r is given by

r = ρ(− cosϕe2(R) + sinϕe3(R)).

The aim is to try to separate the fast oscillations around the field lines from the gradual drift of
the particles away from the field lines coming from non-uniformities in the magnetic field. We
thus describe points in R3 using three parameters for the guiding center and two parameters for
the gyromotion.

After defining the general Lagrangian and the gyrocoordinates, the next step is to take the
average of the Lagrangian in the new coordinates with respect to the variable ϕ. Intuitively, r
should be a small correction, so that the angle variable ϕ does not play an important role in the
description of the Lagrangian. After making an assumption on the smallness of some parameters
related to the gyromotion, we obtain the following gyroaveraged Lagrangian

L(R, ρ, Ṙ, ϕ̇) = 1
2m

((
Ṙ · e1(R)

)2 + ρ2ϕ̇2
)

+ qṘ ·A(R)− q ϕ̇ρ
2

2 b(R)− qΦ(R).

We refer the interested reader to [IPW20, Section 5.2] for the details of the computations and the
smallness assumptions.

From the Euler–Lagrange equations, one then obtains ϕ̇ = ω(R) := qb(R)/m, which cor-
responds to a space-dependent version of the gyrofrequency introduced previously. From the
independence of the gyroaveraged Lagrangian with respect to ϕ, we also obtain that the magnetic
moment µ(r,R) = (rω(R))2/(2b(R)) is an invariant of the dynamics generated by the gyroaverage
Lagrangian. We say that µ is an adiabatic invariant as variations in this quantity for the full
dynamics happen on timescales much longer than that of the gyromotion. Once we have these
quantities, we can discuss the evolution equations for the gyromotion using the gyroaveraged
approximation. More specifically, we consider the normal part of the change in R, which is the
orthogonal projection of Ṙ onto the (e2(R), e3(R)) plane denoted Ṙ⊥. Indeed, this term gives us
the drift of the gyromotion away from the magnetic field lines, and thus allows us to understand
the qualitative difference between the motion of charged particles in non-uniform fields and in
uniform fields. We obtain the following formula

Ṙ⊥ =
v2
‖
(
Ṙ, R

)
ω(R) e1(R)× κ(R) + µ

ω(R)e1(R)×∇b(R) + E(R)×B(R)
b(R)2 . (1.2)

The first term of the right-hand side is known as curvature drift. This terms points in the direction
perpendicular to the magnetic field and the curvature vector κ of the magnetic field lines, and its
direction depends on the sign of the charge. The second term is referred to as grad-B drift, and
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Figure 1.3 – Trajectory of a charged particle in a toroidal magnetic field. Field lines are in blue
and the trajectory is in green. We see that the particle gradually drifts up and does not stay
close to the invariant torus of the magnetic field.

points in the direction perpendicular to the magnetic field and the gradient of the magnetic field
magnitude. The direction of this term is also dependent on the sign of the charge. Finally, the
thrid term is in the direction perpendicular to the magnetic and electric field, and is independent
of the sign of the charge. We also note that, as the first two terms depend on the sign of the
charge, their contributions tend to generate charge separations in the plasma which leads to the
creation of an additional electric field which aims to recover charge neutrality.

Although it seems like the first two terms of Eq. (1.2) inevitably leads to drifts away from the
field lines in non-uniform fields, these drifts can be averaged out over time when we consider a
magnetic field in a torus with a poloidal component, that is, a component in the short direction
of the torus. Considering first the case of a purely toroidal magnetic field, we see that the first
two contributions in Eq. (1.2) point in the ez direction. As mentioned earlier, this will create a
charge separation creating an electric field in the ez direction (see Fig. 1.3), and thus, the last
term of Eq. (1.2) will create a drift in the radial direction, independently of the charge of the
particle. We thus see that a purely toroidal magnetic field cannot lead to good properties for
magnetic confinement. However, in the case where the magnetic field has a poloidal component
on invariant surfaces, the curvature and grad-B drifts will alternatively pull the guiding center
away from and towards the invariant surface, so that the particle remains close to this surface over
time (see Fig. 1.4). We thus understand that considering magnetic fields with invariant toroidal
surfaces on which the field lines have a twist is a desirable property for magnetic confinement, as
opposed to the purely toroidal case. For more precise computations justifying the necessity of a
poloidal component in the axisymmetric case, we refer to [IPW20, Section 7.2].
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Figure 1.4 – Trajectory of a charged particle in a magnetic field with a poloidal component. Field
lines are in blue and the trajectory is in green. We observe that the particle drifts away from the
field lines but stays close to the invariant torus of the magnetic field.

1.2.4 Tokamaks and stellarators: two different approaches to generate
twist

As we have seen in the previous section, the use of the gyroaveraged Lagrangian indicates
that having a magnetic field with a poloidal component generating a twist on invariant tori
is a desirable property for magnetic confinement. In this section, we introduce the tokamak
and stellarator type reactors and explain how they correspond to two different approaches for
introducing twist in the magnetic field.

Tokamaks

To simplify computations, one may wish to work with reactors where all relevant quantities are
axisymmetric as this removes one degree of freedom. A standard fact is that, given a magnetic field
B in an axisymmetric toroidal domain Ω of R3 which is tangent to ∂Ω, B is either toroidal or has
nonzero curl. For this fact, we refer to [IPW20, Section 7.6.1], but this can also be understood with
basic properties of harmonic fields in toroidal domains which will be used throughout the thesis.
Since the curl of the magnetic field is proportional to the electric current, we understand that the
induction of current inside the plasma is necessary for magnetic confinement in axisymmetric
toroidal domains.

Tokamak type reactors aim to preserve axisymmetry, and thus need to introduce an electrical
current inside the plasma. The toroidal component of the magnetic field is generated by currents
circulating in poloidal coils around the fusion chamber, while the electric current in the plasma
necessary for the poloidal component is generated by an electric field induced by the presence of
a transformer in the middle of the device (see Fig. 1.5). Since the induced electric field in the
plasma depends on the time variation of the currents circulating in the transformer, tokamaks
do not operate in steady-state but in short pulses. Furthermore, the introduction of induced
currents can lead to instabilities of the plasma referred to as current driven instabilities [de 06].
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Figure 1.5 – The different components for the magnetic field of a tokamak. Source: International
Atomic Energy Agency

Tokamaks reactors are therefore easier to design from a computational and engineering point of
view, but their operation is a much more delicate task. The interested reader may find much
more information on Tokamaks in [WW11].

Stellarators

As discussed in the previous paragraph, axisymmetric magnetic confinement necessitates the
introduction of an electric current in the plasma in order to generate a poloidal twist. However,
this current is generally induced by a transformer so that these devices cannot operate continuously.
Furthermore, the induced currents lead to current driven instabilities.

The other main approach to generate a poloidal component on the magnetic field is to remove
the assumption of axisymmetry. This leads to the notion of stellarator reactors (see Fig. 1.6).
As a consequence, the necessary magnetic fields are much more complex to study theoretically.
For example, as will be discussed in Section 1.3.3, while all axisymmetric magnetic fields in
toroidal domains are foliated, constructing interesting magnetic fields such as MHD equilibria
which are foliated without being axisymmetric is very challenging. For example, Grad conjectured
in [Gra67] that there exists no smooth MHD equilibria with nonconstant pressure which are
not axisymmetric. On the other hand, axisymmetric MHD equilibria can be reduced to the
Grad–Shafranov equation, which is considerably easier to work with. Furthermore, from an
engineering point of view, removing the axisymmetry assumption also leads to complications
as, for example, one often needs to construct non-planar poloidal coils with different shapes in
order to construct the desired non-axisymmetric magnetic fields. This modular coil approach
was for example taken in the design of the W7X reactor [Bei+90]. However, these additional
technicalities when designing stellarators come with the advantage that such reactors would
greatly reduce current driven instabilities and allow for a steady state operation rather than the
pulsed operation necessary for tokamaks.

Although, some experimental reactors have been built, such as the NCSX [Zar+01] or the
W7X [Bei+90], no global collaboration project on the scale of ITER exists for stellarators. Indeed,

https://www.iaea.org/bulletin/magnetic-fusion-confinement-with-tokamaks-and-stellarators
https://www.iaea.org/bulletin/magnetic-fusion-confinement-with-tokamaks-and-stellarators
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Figure 1.6 – The different components for the magnetic field of a stellarator. Source: International
Atomic Energy Agency

even if the idea for stellarators predates the first tokamak 6, it is only more recently that such
reactors have started to gain traction again as the gradual increase of computational power now
allows for more precise non-axisymmetric designs.

1.3 Underlying mathematical concepts

In this section, we introduce some mathematical concepts which will be used in the rest of
the manuscript, or which are in general relevant in the context of magnetic confinement, and
discuss some of the underlying theory and existing results. In Section 1.3.1, we give a definition
of harmonic fields in regular toroidal domains, which is one of the key concepts of this manuscript.
We in particular make the link with homology through the use of Hodge theory and the de Rham
theorem to justify the normalization criterion which will be used for harmonic fields throughout
the manuscript. The general definition for harmonic fields in less regular domains will be given in
Section 2.2. In Section 1.3.2, we introduce the notion of helicity, which is a quadratic form on
harmonic fields. We then discuss its physical and mathematical relevance in the context of MHD,
introduce the topological interpretation of Arnold of this quantity, and discuss some ongoing
literature for a related isoperimetric problem. Afterwards, we introduce the notion of foliations
for magnetic fields in Section 1.3.3. Although these concepts will mostly be unused in the rest of
the manuscript, we explain the key role that foliations play for the theoretical study of magnetic
fields and the design of confining magnetic fields. In particular, we discuss Grad’s conjecture
in MHD, and discuss a similar issue for the existence of foliated harmonic fields. We then give
the construction of a family of foliated harmonic fields which have trivial Poincaré maps but
which are non-axisymmetric. Finally, we introduce a family of finite elements in Section 1.3.4
called finite element exterior calculus (FEEC) which is often used in the context of numerical
electromagnetism. We begin by giving a general introduction to general finite elements before
giving some of the constructions and main properties of FEEC.

6. The first concept for a stellarator was given in 1951 by Lyman Spitzer, while the first tokamak was built in
1954 in the Soviet Union. Tokamak designs then started giving more promising results by the end of the 1960s so
that they gradually became the most studied type of fusion reactors.

https://www.iaea.org/bulletin/magnetic-fusion-confinement-with-tokamaks-and-stellarators
https://www.iaea.org/bulletin/magnetic-fusion-confinement-with-tokamaks-and-stellarators
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1.3.1 Harmonic fields
As discussed earlier, stellarators aim to confine the plasma using magnetic fields without

introducing any electrical current inside it. The aim of this section is to explain how this naturally
leads to the notion of harmonic fields, and to introduce some underlying concepts in differential
geometry and algebraic topology. More precisely, we will motivate the choice of normalization of
harmonic fields using circulation along a toroidal loop. For convenience, we will only work with
smooth manifolds with boundaries throughout this section. This means in particular that, when
studying domains of R3, we will assume that their boundaries are C∞, and not only Lipschitz for
example. Therefore, not all the contents of this manuscript regarding harmonic fields will fall
under this context. We still believe that the contents of this section may be useful for motivation
purposes in more general contexts.

For useful elements of differential geometry, and more specifically Hodge theory, we refer for
example to [AFW06; Sch95]. For an introduction to the aspects of homology and cohomology
theory that will be used in this section, we refer to [Lee12, Chapters 17-18] and [Hat02].

Definition

Before introducing the notion of harmonic fields, we wish to motivate its definition from the
context of stellarators.

First, since for time independent electromagnetic fields, the electrical current is proportional
to the curl of the magnetic field, confining magnetic fields in stellarators should be curl free.
Moreover, if we assume that the plasma is contained in a fixed domain Ω, the confining magnetic
field should be tangent to ∂Ω. Indeed, since charged particles locally wind around magnetic field
lines as seen in Section 1.2.3, the magnetic field should be tangent to the plasma domain Ω if we
do not want charged particles to escape from Ω. These two observations lead us to the following
definition of harmonic fields of a domain Ω

K(Ω) =
{
B ∈ L2(Ω)3 | divB = 0, curlB = 0, B · n = 0

}
,

where n is the unit outward pointing normal vector field on ∂Ω, and the divergence and curl
operators should be understood in the weak sense. Using the integration by parts formula

ˆ
Ω

(div u)ϕ = −
ˆ

Ω
u · ∇ϕ+

ˆ
∂Ω

(u · n)ϕ,

it is also clear that a vector field is divergence free and tangent to the boundary if and only if it
is L2 orthogonal to ∇H1(Ω). Therefore, the set of harmonic vector fields may be written as

K(Ω) = H
(
curl 0,Ω

)
∩∇H1(Ω)⊥, (1.3)

where H
(
curl 0,Ω

)
is the set of curl free square integrable vector fields. In the rest of this section,

we will investigate some links between this space and some geometrical objects arising from
differential geometry, Hodge theory and algebraic topology. This will allow us to understand from
a geometric perspective how fixing the toroidal circulation allows us to obtain a single harmonic
field when Ω is bounded and has the topology of a full torus.

Vector fields and differential forms in three dimensions

Let M be an oriented n-dimensional Riemannian manifold with boundary and let us denote
the space of smooth differential k-forms on M as Λk(M). Since M is an oriented Riemannian
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manifold, it is naturally equipped with a volume form vol ∈ Λn(M). For q in M , we denote the
set of k-forms on TqM as Altk(TqM). The Riemannian structure on M induces a scalar product
on Alt(TqM), which we denote 〈, 〉. These structures allow to define the so-called Hodge star
operator, which is an isomorphism from Altk(TqM) to Altn−k(TqM), and is characterized by

α ∧ β = 〈∗α, β〉volq,

for all α in Altk(TqM) and β in Altn−k(TqM). Furthermore, the metric tensor g on M allows to
define an isomorphism between TqM and (TqM)′ = Alt1(TqM) defined by

v[ = ιvgq,

where v is in TqM and ιv is the interior product with v, and [ and its inverse ] are the so-called
musical isomorphisms of M .
Finally, for α, β in Λk(M), we then have the inner product

〈〈α, β〉〉L2Λk =
ˆ
M

〈α, β〉vol.

This inner product allows to define the norm

‖α‖2HΛk = 〈〈α, α〉〉L2Λk + 〈〈dα, dα〉〉L2Λk .

HΛk(M) is then defined as the completion of Λk(M) using this norm. One can then define the
set of closed and exact differential forms by

Zk(M) =
{
α ∈ HΛk(M) | dα = 0

}
, Bk(M) = dHΛk−1(M).

This allows us to define the space of harmonic forms as

Hk(M) = Zk(M) ∩ Bk(M)⊥, (1.4)

where the orthogonal of Bk(M) is taken with respect to the L2 inner product on HΛk(M).

When M is three-dimensional, the Hodge star operator and musical isomorphisms allow us to
obtain the following commutative diagram

HΛ0(M) HΛ1(M) HΛ2(M) HΛ3(M)

H1(M) H(curl ,M) H(div ,M) L2(M)

d d d

id # #∗ ∗

∇ curl div

. (1.5)

If M = Ω̄ is a manifold with boundary in R3, this commutative diagram and Eqs. (1.3) and (1.4)
allow us to obtain the following correspondence between the spaces of harmonic fields and
harmonic 1-forms,

K(Ω) = ]H1(Ω̄),

which are therefore isomorphic.
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Elements of Hodge theory

Let M be a smooth compact manifold with boundary. From d ◦ d = 0, we obtain that the de
Rham complex

0 HΛ0(M) HΛ1(M) · · · HΛn−1(M) HΛn(M) 0d d d d ,

is a cochain map. This therefore gives rise to a notion of cohomology called de Rham cohomology 7.
The de Rham cohomology spaces are thus defined as the quotient spaces

Hk
dR(M) = Zk(M)/Bk(M).

It is then known that the space of harmonic forms Hk(M) is isomorphic to Hk
dR(M). This follows

from the fact that, when V is a closed subspace of a Hilbert space H, H/V is isomorphic to
H ∩ V ⊥. In other words, elements of H which are orthogonal to V give natural representatives in
the quotient space H/V . The fact that Zk(M) is L2 closed is straightforward, while Bk(M) being
L2 closed follows from a Poincaré type inequality on differential forms (see [AFW06, Theorem
2.2 and 2.3]).

de Rham theorem and characterization of harmonic forms

We now aim to understand how the de Rham theorem allows us to characterize harmonic
forms using integration along chains. To do so, we begin by shortly introducing singular homology
to state the de Rham theorem. Let X be a topological space. A k-cell is a continuous map

c : ∆k → X,

where ∆k is the standard k-simplex. The space of k-chains Ck(X) is then defined as the set of
formal sums of k-cells, that is, the free abelian group generated by the set of k-cells. One can
then define boundary maps ∂ : Ck(X) → Ck−1(X) which verify ∂k−1 ◦ ∂k = 0. This therefore
gives rise to a notion of homology, called singular homology, which is defined as

Hk(X) = ker ∂k/im∂k+1.

One should think of nonzero elements of Hk(M) as equivalence classes of "k-dimensional submani-
folds" with empty boundary, which are not the boundary of a "(k+1)-dimensional submanifold". By
dualizing the singular chain complex, we can then obtain a notion of singular cohomology. Let R be
a ring, and consider the R-module of singular k-cochain to be defined as Ck(X) = Hom(Ck(X), R),
that is, the space of group homomorphisms from Ck(X) to R. We then obtain a co-boundary
map dk : Ck(X)→ Ck+1(X) defined by

dkf(c) = f(∂k+1c).

We immediately obtain dk+1 ◦dk = 0, so that we can define cohomology spaces Hk(X,R) referred
to as the singular cohomology groups of X.

7. Since we are working with Sobolev spaces instead of smooth forms, this is not technically the usual de Rham
complex. However, in this context, the two cohomologies are isomorphic.
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For a smooth manifold with boundary, we now define the map I : Λk(M)→ Ck(M,R) by 8

I(α)(c) =
ˆ
c

α.

Stoke’s theorem then implies that this map is a cochain map, so that it induces a morphism between
de Rham cohomology to singular cohomology over R. Indeed, I(dα)(c) = I(α)(∂k+1c) = dkI(α)(c).
The de Rham theorem states that I induces an isomorphism between Hk

dR(M) and Hk(M,R).
In the case where Hk(M) is finitely generated, we have an isomorphism from Hom(Hk(M),R)

to Hk(M,R) 9. In this case, we have Hk(M) = Fk ⊕ Tk, where Fk ∼= Zβk(M) is the free part
of Hk(M), βk(M) being the k-th Betti number of M , and Tk is its torsion subgroup. Given
c in Tk, there exists by definition an integer i > 0 such that ic = 0. Therefore, given f in
Hom(Hk(M),R), we have f(c) = 0 for all c in Tk. If we have Fk =

⊕βk(M)
i=1 Zci, we deduce that

f ∈ Hom(Hk(M),R) is uniquely determined by f(ci) for 1 ≤ i ≤ βk(M).
To summarize what we have discussed so far, suppose that M is a smooth compact manifold

with boundary. In this case, the spaces Hk(M) are finite dimensional, and the harmonic forms
are smooth so that they may be integrated on k-chains [Sch95, Theorems 2.2.2 and 2.2.6]. We
thus obtain the isomorphism I : Hk(M) → Hom(Hk(M),R). We therefore find that, given
a1, . . . , aβk(M) in R, there exists a unique α in Hk(M) such that

ˆ
ci

α = ai,

for all 1 ≤ i ≤ βk(M). In other words, given a set of generating cycles in the free part of Hk(M),
there exists a unique corresponding basis of Hk(M).

Harmonic fields in toroidal domains and toroidal circulation

We now wish to understand how one may apply the characterizations we discussed in the
previous paragraphs for harmonic fields in toroidal domains.

Suppose Ω ⊂ R3 is a toroidal domain, that is, Ω̄ is smoothly diffeomorphic to the full torus
S1 ×D2. Since S1 ×D2 is homotopy equivalent to S1, we have H1(Ω̄) ∼= H1(S1) ∼= Z. Let γ′ be
a generator of H1(Ω̄), with unit tangent vector field t′. We then have for α in Λ1(Ω̄)

ˆ
γ′
α =

ˆ
γ

α] · t′.

In view of the isomorphism K(Ω) = ]H1(Ω̄), we know that there exists a unique harmonic field
B(Ω) in K(Ω) such that ˆ

γ′
B(Ω) · t′ = 1.

Therefore, given a toroidal domain Ω and γ′ a generator of H1(Ω̄), one can define the normalized
harmonic field B(Ω). Strictly speaking, this field also depends on the choice of γ′. However, since

8. Strictly speaking, one should replace singular chains with smooth singular chains in order to define this
integral properly. These two notions however define the same homology and cohomology [Lee12, Theorem 18.7].

9. This can be seen for example using the short exact sequence

0 Ext(Hk−1(M), R) Hk(M,R) Hom(Hk(M), R) 0 ,

given by the universal coefficient theorem, and the fact that Ext(H,R) = 0 for any finitely generated abelian group
H. We refer to [Hat02, Section 3.1] for more details.
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H1(Ω̄) ∼= Z, the only generators of H1(Ω̄) are ±γ′, so that changing the generator changes B(Ω)
only by a sign.

A large part of this manuscript aims at understanding how changing Ω affects B(Ω) and some
of its properties. In particular, this will be done by giving variational formulations for B(Ω) in
Chapter 2, which will also allow us to define the normalized harmonic field in toroidal domains
with lower regularity.

1.3.2 Helicity
In this section, we introduce the notion of helicity of a magnetic field, and discuss some of

its properties. First, we define the quantity, and make the connection between the Biot–Savart
operator and vector potentials. Then, we discuss the physical relevance of helicity in MHD, both
ideal and resistive. We then introduce a topological interpretation of the quantity due to Arnold,
as a space average of the asymptotic linking number of the field lines. Finally, we discuss some
open problems and results on helicity maximizers, and the related isoperimetric problem.

Definition

Let Ω be an open set of R3. Given F in L2(Ω)3, we define its helicity as

H (F ) = 1
4π

ˆ
Ω×Ω

F (y) ·
(
F (x)× y − x

|y − x|3

)
dxdy. (1.6)

Introducing the Biot–Savart operator as

BS(F )(y) = 1
4π

ˆ
Ω
F (x)× y − x

|y − x|3
dx, (1.7)

we then obtain that BS is continuous from L2(Ω)3 to itself [CDG01, Theorem D], and that
H (F ) =

´
L2 F · BS(F ). In physical contexts, H(F ) is often referred to as the Biot–Savart or

magnetic helicity of F .
For magnetic fields F of Ω, that is, divergence free vector fields which are tangent to ∂Ω, it is

known that BS(F ) is a vector potential of F , meaning that curl BS(F ) = F [CDG01]. When Ω is
simply connected, it is known that all curl free vector fields are in ∇H1(Ω), so that any potential
vector of a magnetic field F can be written as A = BS(F ) +∇ϕ for ϕ in H1(Ω). Since being
divergence free and tangent to the boundary is equivalent to being L2 orthogonal to gradients,
we obtain for any potential vector A of F

ˆ
Ω
F ·A = H (F ).

When Ω is not simply connected, not all curl free vector fields are gradients, so that this gauge
invariance does not hold anymore for any magnetic field F . When Ω has the topology of a full
torus, a gauge invariant formula can be recovered using the Bevir–Gray formula [BG80] which
will be recalled in Section 3.2.1. We note that a similar formula can be obtained in more general
cases for different topologies of Ω [MV19].

Relation with MHD and physical relevance

An important physical property of helicity is that it is conserved in ideal MHD assuming
enough regularity on the solutions. In the case of a simply connected domain Ω, this can be
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understood with the following geometric explanation, which is inspired from [Arn14]. We recall
that the time evolution of B in ideal MHD reads as

∂tB = curl (u×B),

v being the velocity field. We wish to prove that this corresponds to a transport equation when
B is seen as a two-form. Therefore, we consider the two-form β = ιBvol corresponding to B,
where vol is the volume form on R3. Since B is divergence free, β is closed, and we obtain using
Cartan’s formula

Luβ = dιuβ,

where Lv is the Lie derivative in the direction of u, and ιu is the interior product with u. Using
the usual identifications between vector fields and differential forms from Section 1.3.1, as well
as the corresponding formulas for Lie derivatives (see Section 2.1.1), we see that the evolution
equation of B is equivalent to

∂tβ = Luβ.

As a consequence, we have β(t) = (ϕt)∗ β(0), where ϕt is the flow of u at time t. This property
is often referred to as the frozen-in flux theorem, or Alfvén’s theorem. Physically, this result
means that fluxes of B are conserved along surfaces which are transported by the flow of the
velocity field. Furthermore, this also implies that the field lines of B are transported by ϕt,
so that all their topological and dynamical properties are preserved. We suppose that Ω is a
simply connected domain, and Ωt = ϕt(Ω). In this case, we know that if B(t) is tangent to the
boundary 10, then for all vector potentials A(t) of B(t), we have

H (B(t)) =
ˆ

Ωt
B(t) ·A(t).

If α(0) is a one-form potential of β(0), that is, dα(0) = β(0), the commutativity of the pullback
and the exterior derivative implies d

(
(ϕt)∗ α(0)

)
= β(t), so that α(t) = (ϕt)∗ α(0) is a one-form

potential of β(t). The corresponding formula for helicity using differential forms is then given by

H (β(t)) =
ˆ

Ωt
β(t) ∧ α(t)

=
ˆ

Ωt

(
ϕt
)∗ (β(0) ∧ α(0)) .

Finally, since pullbacks by orientation preserving diffeomorphisms preserve integrals, we deduce
that

H (β(t)) =
ˆ

Ω
β(0) ∧ α(0)

= H (β(0)).

A property that we also note is that, in the incompressible case, u being divergence free implies
that ϕt is volume preserving. This implies that B being transported as a two form is equivalent
to it being transported as a vector field. More precisely, we have β = ιBvol, so that for a volume

10. From the formula β(t) =
(
ϕt
)∗
β(0), one can obtain that the tangency boundary condition is preserved over

time.
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preserving diffeomorphism ϕ, we compute

ϕ∗β(X,Y ) = vol (B,ϕ∗X,ϕ∗Y )
= vol

(
ϕ∗
(
ϕ−1)

∗B,ϕ∗X,ϕ∗Y
)

= ϕ∗vol
((
ϕ−1)

∗B,X, Y
)
.

ϕ being volume preserving, we deduce ϕ∗β = ι(ϕ−1)∗Bvol. This gives us B(t) =
(

(ϕt)−1
)
∗
B(0).

We also note that this argument for helicity conservation can be adapted in the case where Ω is
not simply connected. One may do this by using the gauge invariant formulas from [MV19], or
by proving that pullbacks of the Biot–Savart operator as one-forms behave well 11.

In the presence of small resistivity, Taylor conjectured that helicity is still approximately
preserved [Tay74]. More specifically, Taylor discusses in this paper how, although the presence of
arbitrarily small resistivity generally leads to magnetic reconnections, the global magnetic helicity
of the system seems to be approximately preserved over time. This result was rigorously proven
recently in [FL20] for simply connected domains and in [Far+22] in general. More specifically,
it was proven that weak limits of Leray–Hopf solution preserve helicity in time as the viscosity
and resistivity parameters tend to zero. However, it was also proven in [FLS24] that helicity
preservation can sometimes fail in the ideal case when considering weak enough solutions.

Furthermore, the approximate conservation of helicity in presence of small resistivity leads to
the Woltjer–Taylor relaxation theory. This theory conjectures that, in the presence of resistivity,
magnetic energy decreases much faster than helicity. This then leads MHD solutions to relax
towards minimizers of magnetic energy with fixed helicity. As shown by Woltjer [Wol58], such
minimizers are force free (or Beltrami) fields, that is, magnetic fields verifying

curlB = αB,

where α is a constant.
For more discussions on these concepts, as well as a review on the more recent mathematical

results on the subject, we refer the reader to [FLS22].

Topological interpretation

We now wish to discuss a topological interpretation of the helicity defined by Eq. (1.6), which
was first exhibited by Arnold.

Given two non-intersecting simple closed curves γ1 and γ2 of R3, the Gauss linking number
is denoted as L(γ1, γ2). Intuitively, this quantity counts the number of times the two curves
link with each other, where linkings with opposite orientations cancel out. When the curves
γi : S1 → R3 are parametrized, Gauss found that this quantity can in fact be computed using the
following integral formula

L(γ1, γ2) = 1
4π

ˆ
S1×S1

γ1(s)− γ2(t)
|γ1(s)− γ2(t)|3 · (γ̇1(s)× γ̇2(t))dsdt.

One can already notice a similarity between this formula for Linking number, and the helicity
defined by Eq. (1.6). Indeed, it seems that the helicity of a magnetic field should correspond to
the space average of the linking number of its field lines. This result was proven by Arnold in

11. The Biot–Savart does not directly commute with this pullback, but we can prove that the commutator is
always a gradient vector field, so that this does not affect the value of the helicity.
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[Arn14]. Before stating the theorem, we give a few definitions which will allow us to understand
some ideas of the proof.

Let F be a magnetic field of a bounded domain Ω, that is, F is divergence free and tangent to
the boundary. For t in R, we define ϕt as the flow of F at time t (which is a diffeomorphism of Ω
as F is tangent to the boundary). One then wants to define an asymptotic linking number for the
field lines of F . Indeed, we do not assume that the field lines are closed, so that the definition
of Gauss is not applicable. This is done by choosing a way of closing the field lines. Given two
points x and y in Ω, we define ∆(x1, x2) as a short path connecting x1 and x2. Given x in Ω
and T > 0, we define the closed curve ΓT (x) as the union of the curve {ϕt(x) | 0 ≤ t ≤ T} and
∆(ϕT (x), x). Arnold then shows that, under some assumptions on the choices of small paths
∆(x, y), for almost all x1, x2, T1, T2, the two curves ΓT1(x1) and ΓT2(x2) are non-intersecting, and
that

λ(x1, x2) := lim
T1,T2→+∞

L(ΓT1(x1),ΓT2(x2))
T1T2

,

is equal to

λ̂(x1, x2) := lim
T1,T2→+∞

1
T1T2

1
4π

ˆ T1

0

ˆ T2

0

ϕt1(x1)− ϕt2(x2)
|ϕt1(x1)− ϕt2(x2)|3

·
(
ϕt1(x1)× ϕt2(x2)

)
,

for almost all x1, x2. In particular, the asymptotic linking number λ does not depend on the
choice of small paths to reconnect the field lines. Arnold then proves that

H (F ) = 1
|Ω× Ω|

ˆ
Ω×Ω

λ(x, y)dxdy.

Although the details of the proof are not discussed here, we note that Birkhoff’s ergodic theorem
is used so that F being divergence free is indeed crucial.

Helicity maximizers and isoperimetric problem

First, a natural problem one may ask is the existence of magnetic fields maximizing the
absolute value of the helicity for a given domain Ω. More precisely, since helicity is a quadratic
quantity, we search for maximizers in the unit L2 sphere.

We introduce a modification of the Biot–Savart operator in order to obtain a simpler functional
context. We define H0

(
div 0,Ω

)
as the space of square integrable divergence free vector fields of

Ω which are tangent to ∂Ω. Given a magnetic field F in H0
(
div 0,Ω

)
, it is known that BS(F ) is

divergence free. However, it is not always tangent to the boundary. This inconvenient property
can be corrected by introducing the modified Biot–Savart operator BS′, which is defined by

BS′(F ) = BS(F )−∇ϕF ,

where, for F in H0
(
div 0,Ω

)
, ϕF is defined as the zero average solution to 12{

∆ϕF = 0 in Ω,
∇ϕF · n = BS(F ) · n on ∂Ω.

12. Since, for F in H0
(
div 0,Ω

)
, BS(F ) is divergence free, it is in H(div ,Ω). As a consequence, BS(F ) · n is

in H−1/2(∂Ω), so that the PDE for ϕF is well posed. We refer to Section 2.2 for the relevant definitions and
properties.
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In other words, BS′(F ) is the L2 projection of BS(F ) ontoH0
(
div 0,Ω

)
. Importantly, H0

(
div 0,Ω

)
being the space of vector fields which are L2 orthogonal to ∇H1(Ω), we have

ˆ
Ω

BS′(F ) · F =
ˆ

Ω
BS(F ) · F −

ˆ
Ω
∇ϕF · F (1.8)

= H (F ). (1.9)

Therefore, this modification of the Biot–Savart operator does not change the value of the helicity.
The operator BS′ : H0

(
div 0,Ω

)
→ H0

(
div 0,Ω

)
is known to be compact and self-adjoint [Can+00].

By the spectral theorem, H0
(
div 0,Ω

)
admits a Hilbert basis composed of eigenfields of BS′

with a corresponding sequence of eigenvalues which converges towards zero. Let λ be the largest
eigenvalue in absolute value, and F a corresponding eigenfield. From the fact that BS, and thus
BS′ is a right inverse of the curl operator on H0(div 0,Ω), it follows that

curlF = 1
λ
F.

In other words, F is also an eigenfield of the curl operator. Such vector fields are often referred
to as Beltrami fields or force free fields 13. We note however that eigenfields of the curl are in
general not eigenfields of BS′.

Now, since H (F ) =
´

Ω F · BS′(F ), we know that extremals of the helicity on the unit L2

sphere are the eigenvectors of the modified Biot–Savart operator. Furthermore, |λ| corresponds
to the maximum of the absolute value of the helicity. Once we have this result, another natural
question is to consider the corresponding isoperimetric problem. That is, for a fixed volume, can
we find a domain which maximizes the largest eigenvalue of the modified Biot–Savart operator.
This question was posed in [Can+99; Can+00], in which we can find computations suggesting
that there may be no optimal shape. To the author’s knowledge, this problem was only revisited
by Gerner in [Ger23a], who proved the existence of maximizers when imposing a uniform ball
condition 14 on the set of admissible shapes. There still seems to be no satisfactory result on the
existence of optimal shapes without assumptions on the regularity of the domain. We still refer to
the series of article by Enciso, Peralta-Salas and Gerner [EP23b; EGP24; Ger23b; EGP23; Ger23a]
giving partial results of existence and non-existence for the related but different isoperimetric
problem of the first curl eigenvalue.

1.3.3 Foliations
One important quantity for stellarator design is the rotational transform. Indeed, this quantity

allows to quantify the presence of a poloidal component in the magnetic field, which, as was
discussed in Section 1.2.3, is crucial for magnetic confinement of charged particles. However, in
order to rigorously define this notion, one needs to assume that the plasma domain is foliated
by invariant tori. Indeed, given an invariant torus of the magnetic field, often referred to as a
flux surface, the rotational transform on it is defined as the average number of poloidal rotation
per toroidal rotation of the field lines. This may be formalized mathematically as the rotation
number of the Poincaré map of the magnetic field on a poloidal cut of the flux surface. One may

13. We note that force free fields also often refer to vector fields verifying curlF = αF where α may be non-
constant in space. The name comes from the fact that such fields are the solutions to stationary MHD equations
with constant pressure.
14. A set of shapes is said to verify a uniform ball condition if there exists r > 0 such that for all admissible

shapes Ω and all x in ∂Ω, there exists a ball of radius r in the complement of Ω touching x, and a ball of radius r
included in Ω touching x



1.3. Underlying mathematical concepts 25

thus be able to associate the rotational transform with each invariant surface, so that a foliated
magnetic field admits a rotational transform profile.

Magnetic coordinates, and MHD equilibria computations.

Suppose B is a magnetic field in a plasma domain Ω diffeomorphic to a full torus. We assume
that Sψ for 0 ≤ ψ ≤ 1 is a foliation of Ω̄ into invariant manifolds, with S0 diffeomorphic to a circle
and Sψ diffeomorphic to a torus for 0 < ψ ≤ 1. Furthermore, we assume that Sψ is a foliation of
the magnetic field, that is, B is tangent to Sψ for all ψ. S0 is referred to as the magnetic axis
of B. We identify ψ with the function from Ω̄ to R such that ψ(x) = ψ if x is in Sψ, which is
assumed to be smooth. The tangency condition then becomes B · ∇ψ = 0. One can then define
coordinates (ψ, θ, φ) in Ω̄\S0, such that, for fixed ψ, θ and φ are poloidal and toroidal coordinates
respectively. Furthermore, one can construct these coordinates so that

B = ∇ψ ×∇θ − ι(ψ)∇ψ ×∇φ
= √g−1 (∂φ + ι(ψ)∂θ) ,

where ι(ψ) is the rotational transform of the invariant surface Sψ. These types of coordi-
nates are called magnetic coordinates [IPW20, Chapter 9]. Importantly, these coordinates
linearize the magnetic field in the sense that they straighten the field lines on each invariant
surface. Indeed, one can simply integrate the magnetic field so that the field lines take the form
{(ψ0, θ0 + ι (ψ0) s, φ0 + s) | s ∈ R} in these coordinates. One may find it surprising at first that
assuming a toroidal foliation is enough to be able to construct such coordinates 15. The existence
of such coordinates in fact follows from the divergence free condition on the magnetic field,
which allows to make a connection between the dynamics of the magnetic fields and Hamiltonian
dynamics, where the toroidal angle should be understood as time [Mor00]. In this sense, one can
understand the existence of magnetic coordinates as an Arnold–Liouville type theorem, giving
action-angle coordinates trivializing the dynamics of the field.

When the magnetic field is also assumed to satisfy stationary ideal MHD equations, one can
construct specific magnetic coordinates such as Boozer coordinates [IPW20, Section 9.3]. In this
context, one can also mention the code VMEC [HvM86], which aims to find numerical ideal MHD
equilibria given a set of prescribed flux surfaces and rotational transforms assuming the existence
of a foliation. The code uses a Fourier parametrization for flux surfaces and components of the
magnetic field, and performs a gradient descent type algorithm on a variational formulation for
ideal MHD equilibria. VMEC has been widely used since its creation for preliminary designs of
magnetic fields in experimental stellarators (see for example [Bei+90] for W7X).

Grad’s conjecture

An important topic in the context of foliations for stationary ideal MHD solutions is Grad’s
conjecture. We recall that a magnetic field B is said to be an ideal MHD equilibrium if it verifies

B × curlB = ∇p,
divB = 0.

From this equation, one obtains B · ∇p = 0, so that regular pressure level sets are invariant
surfaces of the magnetic field. Grad conjectured in [Gra67] that all smooth MHD equilibria with

15. For example, the existence of such coordinates implies that, on each invariant torus, all field lines are either
periodic or dense in the torus. We in particular cannot have hyperbolic periodic field lines on invariant tori.
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nonconstant pressure should be axisymmetric. Indeed, in the case of axisymmetry, one can write
B as

B = ∇ψ ×∇φ+ g∇φ,

where (R,φ, z) are the usual cylindrical coordinates, and g and ψ are scalar functions. In this
case, the equations of ideal MHD equilibria reduce to the Grad–Shafranov equation

∂2
Rψ −

1
R
∂Rψ + ∂2

zψ = −R2 dp

dψ
− 1

2
dg2

dψ
.

This scalar equation is better understood than the usual ideal MHD equilibrium equations (see
for example [Ata+04] for explicit solutions and [BB80] for an existence result), and is often used
for the construction of axisymmetric equilibria in tokamaks.

Some theoretical constructions

Although the existence of smooth non-axisymmetric ideal MHD equilibria with nonconstant
pressure is still unknown, a recent family of solutions with stepped-pressure equilibria was recently
constructed by Enciso, Luque and Peralta-Salas [ELP22]. We note that another similar result was
found earlier by Bruno and Laurence for perturbations of axisymmetric domains [BL96] whereas
the construction of Enciso et al. works with thin enlargements of generic closed curves of R3. To
discuss the construction of Enciso et al., we first give a few results for harmonic and Beltrami
fields in thin tubes.

Let γ be a closed simple analytic curve of R3. We denote by t̂, n̂ and b̂ the tangent, normal
and binormal vector fields on γ respectively, and κ and τ be the curvature and torsion. Given
ε > 0 sufficiently small, we know that

Tε(γ) :=
{
x ∈ R3 | d(x, γ) < ε

}
is a toroidal domain of R3 with analytic boundary. Defining the coordinates

(x, y, z) = γ(α) + εr cos θn̂(α) + εr sin θb̂(α),

Enciso et al. then prove in [EP15] that the harmonic field of Tε(γ) can be approximated by

h = χ(∂α + τ∂θ),

where χ is a scalar function depending explicitly on the geometrical properties of the curve. The
stepped pressure equilibria are then constructed in the following way. They start with a thin tube
Tε(γ), with γ and ε chosen such that there exists a Beltrami field B1 with small eigenvalue which
is conjugate to a diophantine vector field on ∂Tε. Using the approximate formula for harmonic
fields in thin tubes discussed earlier, they prove that the set of curves verifying this condition
is in fact generic. Once this field is obtained, they use a Cauchy–Kovaleskaya type theorem for
the curl operator to extend the field to another Beltrami field B2 with a different eigenvalue. To
obtain that the constructed extension is an MHD equilibrum with a jump in pressure, one needs
to verify that |B2|2− |B1|2 is constant on ∂Tε. Using the Cauchy–Kovaleskaya type theorem, this
is obtained through the existence of an analytic solution to a nonlinear Hamilton–Jacobi equation
on T2. The existence of such solutions is established with a quadratic Newton scheme, using the
fact that B1 is conjugate to a diophantine rotation on ∂Tε(γ), similar to what is commonly done
in KAM theory. Finally, using an additional twist assumption on (B2)∂Tε , one shows that there
is an accumulation of invariant tori for B2 near ∂Tε, so that this construction may be repeated on
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such invariant tori to construct an MHD equilibrum with an arbitrary number of pressure jumps.
Although this construction is a right step towards a resolution of Grad’s conjecture, we believe

that its complete resolution is still far from reach. Indeed, the pressure in such solutions is
piecewise constant, so that it is not smooth. As a result, the constructed field does not a priori
admit a tangent foliation, but a finite number of invariant tori. Even if this result is in itself
an interesting construction, the author believes that the method could not easily be adapted
to smooth solutions as it heavily uses Beltrami fields, which in themselves do not produce any
change in pressure. We also note that the approximate formulas for harmonic fields in thin tubes
were also used in [EP15; ELP20; EP23a] for constructions of knotted vortex tubes for the Euler
equations, and the study of the dynamical properties of Beltrami fields.

Foliations for harmonic fields

To the author’s knowledge, there are few explicit rigorous formulas for harmonic fields in
toroidal domains, namely, the axisymmetric harmonic fields, and the approximate formula for
thin tubes given in [EP15]. In particular, we believe that it is not known whether there exists
foliated harmonic fields besides in the axisymmetric case, in which the field is purely toroidal. In
this section, we construct other foliated fields with planar field lines by combining axisymmetric
fields with different singular axes. We begin by constructing the usual axisymmetric solutions
using a Hamiltonian formulation.

We equip R3\{x = y = 0} with cylindrical coordinates (R,φ, z) and R2\{0} with polar
coordinates (R,φ). We also define the projection π : R3 → R2 by π(x, y, z) = (x, y). Let H0 be
the Hamiltonian function defined in polar coordinates by

H0(R) = 1
2π ln(R).

Then, one obtains that

b0 := J∇H0

= 1
2π∇φ,

where, in Cartesian coordinates
J =

(
0 1
−1 0

)
,

is the canonical symplectic matrix in R2. Since b0 is a Hamiltonian vector field, it is divergence
free, and since it is locally the gradient of a function, it is curl free. The field lines of b0 are
then positively oriented circles centered at the origin with period 1/R. One then defines, for
x̄ = (x1, . . . , xN ) ∈

(
R2)N and ᾱ = (α1, . . . , αN ) ∈ (R+\{0})N

Hx̄,ᾱ =
N∑
i=1

αiH0(· − xi),

The set of points verifying ∇Hx̄,ᾱ = 0 is then a subset of the intersection of two polynomial curves
without common factors, so that there is only a finite number of solutions. As a consequence, all
but a finite number of level sets of Hx̄,ᾱ are regular. Furthermore, we have lim|x|→∞Hx̄,ᾱ = +∞
and limx→xi Hx̄,ᾱ = −∞ so that all level sets of Hx̄,ᾱ are compact. Defining

bx̄,ᾱ = J∇Hx̄,ᾱ,
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Figure 1.7 – Field lines of bx̄,ᾱ for x̄ = ((−1, 0), (1, 0)) and ᾱ = (1, 1). The field lines of Bx̄,ᾱ are
the same on each horizontal plane of R3.

we deduce that the trajectories generated by bx̄,ᾱ starting on regular level sets are all periodic.
We now define Bx̄,ᾱ as the vector field of R3\∪Ni=1 {π(x) = xi} obtained from bx̄,ᾱ by lifting it

on each horizontal plane. From the previous computations, it is clear that Bx̄,ᾱ is divergence and
curl free, and that for all x such that π(x) is a regular value of Hx̄,ᾱ, the trajectory generated by
Bx̄,ᾱ starting at x is planar and periodic. We refer to such trajectories as regular trajectories.
We now choose a surface S ⊂ R3 diffeomorphic to an open disk, such that all the trajectories
starting on S are regular. Moreover, we assume that if x and y are distinct points on S, then
their trajectories are distinct. Defining Ω as the set of orbits starting on S, we obtain that Ω is a
toroidal domain. Furthermore, Bx̄,ᾱ is by definition tangent to ∂Ω, so that it is a harmonic field
of Bx̄,ᾱ.

The harmonic field we have constructed is foliated as all the field lines are closed, but if
x̄ contains multiple points, it is not axisymmetric. We thus deduce that, contrary to the case
of MHD equilibria where Grad conjectured that no smooth solutions exist with non-constant
pressure without axisymmetry, one can easily construct non-axisymmetric harmonic fields which
are foliated. However, the fields resulting from this construction have planar closed field lines, so
that no twist is produced. The author believes that the question of existence of foliated harmonic
fields in toroidal domains producing twist or non-trivial Poincaré maps is much more delicate.

1.3.4 Finite element method for electromagnetism
The most common way of writing Maxwell’s equations is using the vectorial calculus language

in three-dimensions, that is, using the gradient, curl and divergence operators. As a consequence,
when setting variational formulations for these equations, one often encounters variational spaces
involving only one of these operators such as H1(Ω), H(curl ,Ω) or H(div ,Ω). When tackling
the problem of finding numerical approximations using the finite element method, one therefore
wishes to construct approximation spaces which are well-behaved with these differential operators.
In the case of the gradient, the variational space is H1, so that the classical Pr elements may be
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used. However, when dealing with the divergence or curl operators, which do not involve the
whole Jacobian matrix, using Pr elements component-wise is not natural. Indeed, the obtained
finite element spaces then discretize H1(Ω)3, which is more restrictive than desired. For an
example in which this discrepancy can cause issues, we refer to [AFW10, Section 2.3.2]. Indeed,
it is shown that a vector Laplacian problem can be given by the minimization of a quadratic
functional on H(curl ,Ω) ∩H0(div ,Ω). However, in the case of nonconvex polyhedra, this space
is known to be a closed strict subspace of H1(Ω)3 ∩H0(div ,Ω), so that using elements adapted
to H1(Ω)3 does not in general give us convergence of numerical solutions.

To remedy this problem, one needs to construct finite element spaces that are well adapted
to the curl and divergence operators. This was first done in the late 1970s and early 1980s by
Raviart, Thomas and Nedelec [RT77; Ned80]. Then, in the early 2000s, Arnold, Falk and Winther
developped a more general theory refered to as finite element exterior calculus (FEEC) [AFW06;
AFW10], which synthesizes and generalizes these finite elements to Hilbert complexes, and in
particular, the de Rham complex. Although Arnold et al. gave a first comprehensive formulation
of FEEC, one can note that similar constructions were made by Whitney in the 1950s when
establishing a de Rham type theorem for simplicial cohomology [Whi57].

In the context of this manuscript, notions of FEEC will be used in Section 3.4 to obtain
numerical approximations of harmonic fields in toroidal domains as well as vector potentials in
order to construct a numerical method to compute the helicity of harmonic fields.

Finite element method

Before going into the specifics of FEEC, we give a small introduction to the general theory of
finite elements. For general introductions to the finite element method, we refer the reader to
the book of Ciarlet [Cia02] as well as the series of book of Ern and Guermond [EG21a; EG21b;
EG21c]. We begin by giving a framework for variational problems.

For Ω ⊂ Rn regular enough, typically Lipschitz, we consider a Hilbert space V (Ω). If Ω′ is
a subset of Ω, we have a bounded surjection π : V (Ω) → V (Ω′). V (Ω) is typically a space of
functions over Ω, and π a restriction operator. Given an invertible affine mapping F of Rn, we
also define an isomorphism F ∗ : V (Ω)→ V (F (Ω)). For example, if V (Ω) is a space of real valued
functions over Ω, F ∗ may be the composition with F−1. For Ω fixed, a a bilinear form on V (Ω)
and l in V (Ω)′, we now consider the following variational formulation. Find u in V (Ω) such that
for all v in V (Ω),

a(u, v) = l(v).

We assume that this variational problem is well posed, that is, there exists a unique bounded
resolvent R from V (Ω)′ to V (Ω) verifying a(R(l), v) = l(v) for all v.

Generally, the space V (Ω) has infinite dimension, so that explicitly solving this problem is
impossible in practice. The aim of the finite element method is to consider finite dimensional
subspaces Vn(Ω) ⊂ V (Ω) on which solving the variational formulation becomes a classical linear
inversion problem in finite dimensions. The hope is then that, by choosing n large enough, Vn(Ω)
is a "good approximation" of V (Ω) so that the solution in Vn(Ω) is close to the one in V (Ω).

A more specific and standard definition for what are finite elements is the one of Ciarlet
[Cia02]. A finite element is a triple (K,V,L) where

• K ⊂ Rn is a reference element, often a simplex or a hypercube, which is composed of
subentities.

• V is a finite dimensional space of polynomials on K 16.

16. More precisely, one may consider in general V to be a subspace of P ⊗ E, where P is a finite dimensional
space of polynomials on K, and E a finite dimensional vector space. This allows for example to take into account
vector valued functions by taking E = Rn, or differential forms valued functions by taking E = Altk(Rn).
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• L = {l1, . . . , lk} is a basis of V ′ such that each li is associated to a subentity of K.
Often, the functionals li are integral moments over subentities of K, such as point evaluation, or
integration over edges. One may take the simple case of P1 finite elements. In this case, K is the
standard n dimensional simplex, V is the space of polynomials of order at most 1 on K, and li is
the evaluation on the i-th vertex of K.

Once a finite element is defined on a standard element K, one may define finite element spaces
on meshes. Suppose Ω is a subset of Rn equipped with a family of meshes (Th)h>0 each composed
of a finite set of affine invertible mappings Fi,h in Rn such that, Ω is the union over i of Fi,h(K),
and for all i, j, the intersection of Fi,h(K) and Fj,h(K) is obtained by a sub-union of sets of the
form Fi,h(σ) or Fj,h(σ) where the σ are taken over all the subentities of K. h is then defined to
be the largest diameter of all the cells Fi,h(K). One defines the finite element space Vh(Ω) as the
set of v such that

• For all i, F ∗i,h
(
v|Fi,h(K)

)
is in V.

• Interelement continuity is satisfied, that is, corresponding linear functionals over a common
subentity are equal when evaluated on v.

In the context of a global Hilbert space V (Ω) as in the beginning of this section, we say that
Vh(Ω) is V (Ω)-conforming if the second point is equivalent to saying that v is in V (Ω).

Now that the finite element space Vh(Ω) ⊂ V (Ω) is constructed, we return to the variational
problem stated earlier. The discrete problem is the following. Find uh in Vh(Ω) such that for all
vh in Vh(Ω)

a (uh, vh) = l(vh).

We also suppose that the discrete variational problem is well posed with resolvent Rh : V (Ω)′ →
Vh(Ω), which is for example a direct consequence of well-posedness in the continuous case when
the Lax–Milgram theorem applies. When one wishes to prove convergence results of discrete
solutions, the most common method comes in two steps.

First, we prove an approximation result which does not depend on the variational problem
itself, but only on how well functions of Vh(Ω) can approximate functions of V (Ω). Often, such
results are obtained either by assuming some regularity on the approximated function, or by
measuring the error with respect to a weaker norm than the one of V (Ω). In the former case,
assume that Ṽ (Ω) is a Hilbert space which injects continuously and densely in V (Ω). One then
may wish to obtain estimates of the form

inf
vh∈Vh(Ω)

‖v − vh‖V (Ω) ≤ Ch
s‖v‖Ṽ (Ω),

for all v in Ṽ (Ω), where s is a positive constant. In other words, if one assumes some additional
regularity on the target function, one may approximate it with functions in Vh(Ω). The order s is
often bounded by two factors, the order of the polynomials in the finite element space and the
difference of regularity between Ṽ (Ω) and V (Ω). To obtain such approximation results, it is also
common to make some additional assumptions on the family of meshes, such as shape regularity
or quasi-uniformity.

Once one has obtained approximation results for the finite element space, the second step
is often to prove that the discrete solution is quasi-optimal. For example, when a verifies the
hypotheses of Lax–Milgram, Céa’s lemma states that for all l in V (Ω)′, we have

‖Rl −Rhl‖V (Ω) ≤ C inf
vh∈Vh(Ω)

‖Rl − vh‖ .

In other words, Rhl is, up to a constant independent of h, the optimal approximation of Rl in
Vh(Ω). When combining this with the type of approximation results that was given earlier, we
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obtain convergence in the case where the continuous solution Rl is in Ṽ (Ω). In the case of elliptic
PDEs, such regularity assumptions are often obtained through elliptic regularity techniques.
Otherwise, as was mentioned earlier, one can often obtain convergence in weaker norms without
assuming any further regularity on the solution in the continuous case.

Finite element exterior calculus

As mentioned in the introduction of this section, one often needs to deal with finite element
discretizations of variational spaces involving the curl and divergence operators when constructing
numerical methods for electromagnetism. The first H(curl ,Ω) and H(div ,Ω) conforming finite
elements were introduced by Raviart, Thomas and Nedelec in the late 70s and early 80s [RT77;
Ned80]. However, we choose to introduce directly the framework of FEEC as given by Arnold et
al. in [AFW06] in the context of differential forms. The link with the special cases of H(curl ,Ω)
and H(div ,Ω) conforming spaces of Raviart, Thomas and Nedelec are then obtained as specific
cases of FEEC when using the identifications between differential forms and vector fields in three
dimensions (see Section 1.3.1). The precise construction and properties of FEEC spaces are
technical, so we only choose to introduce some aspects of it. We refer the reader to [AFW06,
Sections 2 to 6] for more details on the constructions and properties of these spaces.

Let Pr(Rn) be the space of polynomials of degree at most r on Rn. We then define the spaces
of polynomial differential forms as

PrΛk(Rn) = Pr(Rn)⊗Altk(Rn),

where Altk(Rn) is the space of k-multilinear antisymmetric forms on Rn. We also introduce the
space of reduced polynomial differential forms P−r Λk(Rn), which is an intermediate space between
Pr−1Λk(Rn) and PrΛk(Rn), with P−r Λ0(Rn) = PrΛ0(Rn) and P−r Λn(Rn) = Pr−1Λn(Rn). The
definition and properties of these spaces involve the Koszul operator, which we choose to omit for
conciseness.

Given an n-simplex T in Rn, we now wish to define bases for
(
PrΛk(T )

)′ and (P−r Λk(T )
)′.

Since PrΛk(T ) is composed of k forms, a natural thing to consider is to integrate it against
elements of ∆k(T ), the set of k-dimensional sub-simplices of T . Furthermore, one may integrate
it on sub-simplices of dimension greater than k by taking the exterior product with polynomial
differential forms. The general case for defining the degrees of freedom can be found in [AFW06],
but we choose to introduce it only for the space P−1 Λk(T ), which corresponds to the Whitney
forms [Whi57]. In this case, the degrees of freedom correspond to

lf (ω) =
ˆ
f

ω

for all f in ∆k(T ).
When given a mesh T of a domain Ω composed of n-simplices Ti, we define the spaces PrΛk(T )

as the set of differential forms ω in L2Λk(Ω) such that ω|T is in PrΛk(Ti) for all i, and which
verifies interelement continuity. Defining HΛk(Ω) as the space of square integrable differential
forms ω such that dω is in L2Λk+1(Ω), we find that these spaces are HΛk(Ω) conforming, that is,
interelement continuity is equivalent to requiring that ω is in HΛk(Ω). The spaces P−r Λk(T ) are
defined in the identical way and are also HΛk(Ω)-conforming.

One can then define projection operators from L2Λk(Ω) to PrΛk(T ) and P−r Λk(T ) denoted
Π. In this case, one cannot only use the canonical projections defined by identifying the degrees
of freedom as the latter are not bounded in L2Λk(Ω). Therefore, these canonical projections are
regularized using a smooth convolution kernel to obtain continuity. These smoothed projections
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are constructed to obtain the following commutative diagrams

HΛk(Ω) HΛk+1(Ω)

PrΛk(T ) Pr−1Λk+1(T )

d

d

Π Π

HΛk(Ω) HΛk+1(Ω)

PrΛk(T ) P−r Λk+1(T )

d

d

Π Π

HΛk(Ω) HΛk+1(Ω)

P−r Λk(T ) P−r Λk+1(T )

d

d

Π Π

HΛk(Ω) HΛk+1(Ω)

P−r Λk(T ) Pr−1Λk+1(T )

d

d

Π Π

As a consequence, we can then combine any sequence of such diagrams to obtain a subcomplex of
the de Rham sequence. In turn, the smoothed projections Π induce a linear map on cohomology
spaces, which is in fact an isomorphism for the de Rham cohomology.

Although we choose to end this introduction to FEEC here, we note that many more
constructions can be found in [AFW06; AFW10], such as approximation estimates, Hodge theory
on the discrete de Rham complex and an application to the numerical resolution of the Hodge
Laplacian. In the three dimenstional vectorial setting, the spaces we will use in Section 3.4 are
the spaces P−r Λk(T ), which correspond to Lagrange, Nedelec first kind, Raviart-Thomas and
discontinuous elements of degrees r, r, r and r − 1 respectively 17.

1.4 Contributions of the thesis
In this manuscript, we are interested in studying magnetic confinement in stellarators using

harmonic fields. As was discussed in Section 1.3.1, one may associate to each toroidal domain a
normalized harmonic field. This allows to consider the problem through a shape optimization
and shape differentiation approach. The scientific content of this thesis is mostly contained in the
following published papers.

• R. Robin and R. Roussel. “Shape Optimization of Harmonic Helicity in Toroidal
Domains”. In: Journal of Optimization Theory and Applications 204.1 (2024), p. 10.
doi: 10.1007/s10957-024-02588-y

• R. Roussel. “Shape Differentiation for Poincaré Maps of Harmonic Fields in
Toroidal Domains”. In: The Journal of Geometric Analysis 35.1 (2024), p. 19. doi:
10.1007/s12220-024-01849-6

1.4.1 Shape differentiation approach
As we saw in Section 1.3.1, one can associate with each toroidal domain Ω and a generator γ′

of H1(Ω̄) a unique harmonic field B(Ω) verifying
ˆ
γ′
B(Ω) · t′ = 1.

17. The fact that we obtain one lesser degree in the last case comes from the equality P−r Λn(Rn) = Pr−1Λn(Rn).

https://doi.org/10.1007/s10957-024-02588-y
https://doi.org/10.1007/s12220-024-01849-6
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One may then choose a cost function J , which associates with each magnetic field a quantity
describing an aspect of the quality of magnetic confinement. We may thus obtain a shape
functional J ◦B which associates with each toroidal domain Ω the quantity J (B(Ω)). Strictly
speaking, the harmonic field B(Ω) is only defined up to a sign, so that J ◦B may also depend on
the choice of generator of H1(Ω̄).

In practice however, it can be hard to obtain a simple functional J which evaluates the quality
of confinement directly from the magnetic field. In this manuscript, we therefore choose to use
only two simple properties of magnetic fields, the magnetic helicity, and the Poincaré map on the
boundary. We then study the shape derivatives of these shape functions, to obtain a numerical
optimization scheme in the first case, and to obtain local properties on the Poincaré maps of
harmonic fields under small perturbations of the domain in the second case.

One way to define shape differentials is the following. Consider a set of admissible shapes O
of Rn, and a Banach space V of vector fields of Rn which leaves O invariant. That is, if Ω ∈ O is
an admissible shape and V ∈ V is small enough, then (I + V )(Ω) is in O. Considering a shape
function F : O →W where W is a Banach space, we say that F is shape differentiable at Ω with
respect to deformations in V if

F((I + V )Ω) = F(Ω) + F ′(Ω;V ) + o (‖V ‖V) ,

where F ′(Ω) ∈ L(V,W) is a bounded linear map.
Finally, we note that although we choose to normalize the harmonic field using toroidal

circulation, one could easily repeat this process for other normalizations. Suppose for example
that we wish to normalize the harmonic field with respect to the L2 norm. Considering a functional
of the form F = J ◦B as earlier, we may define

F̃(Ω) = J
(

1
N (Ω)B(Ω)

)
,

where N (Ω) = ‖B(Ω)‖L2 . Then, if F is shape differentiable, we may obtain the shape derivative
of F̃ in practice using composition like formulas for differentials. In the simple case where J = H
is the helicity (see Section 1.3.2), we obtain

F̃(Ω) = 1
N (Ω)2F(Ω),

so that

F̃ ′(Ω;V ) = −
(
N 2)′ (Ω;V )
N (Ω)4 F(Ω) + 1

N (Ω)2F
′(Ω;V ).

We therefore see that, when the normalization criterion may be differentiated, which is simple
in the case of the square norm of the harmonic field using the techniques we will introduce in
Section 3.3, one may obtain the shape derivative of the modified functional, although the formula
may in general be more complex.

1.4.2 Shape differentiation of harmonic fields

In Chapter 2, we consider shape differentiation problems for normalized harmonic fields.
Indeed, if one wishes to obtain derivatives of shape functionals defined using the normalized
harmonic field, one needs to be able to differentiate it with respect to the shape.
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Variational formulations for harmonic fields

In order to obtain the shape derivatives of the normalized harmonic field in a rigorous way,
one needs to obtain a variational formulation for it. These formulations are given in Section 2.2.
To obtain such a formulation, we consider a poloidal cutting surface Σ of a toroidal domain Ω,
that is, a Lipschitz surface in Ω such that ∂Σ ⊂ ∂Ω is a poloidal loop 18. Ω\Σ is then a simply
connected pseudo-Lipschitz domain, and the restriction of B(Ω) to it verifies B(Ω) = ∇u where u
is solution to 

∆u = 0 in Ω\Σ,
∇u · n = 0 on ∂Ω,
[[u]]Σ = 1,

where [[u]]Σ denotes the jump of u across Σ (see for example [Amr+98]).
One can then obtain two variational formulations for this PDE. The first one is the following

classical variational formulation for Poisson equations. Find u in V1(Ω\Σ) such that for all v in
H1(Ω) ˆ

Ω
∇u · ∇v = 0,

where V1(Ω\Σ) is the affine subspace of functions in H1(Ω\Σ) verifying [[u]]Σ = 1. The second
one is given by the following mixed formulation. Find (σ, u) ∈ H0(div ,Ω)× L2

0(Ω) such that, for
all (τ, v) ∈ H0(div ,Ω)× L2(Ω) we have

ˆ
Ω

(div σ) v = 0,
ˆ

Ω
σ · τ +

ˆ
Ω
u(div τ) =

ˆ
Σ
τ · nΣ,

where L2
0(Ω) is the set of zero average functions in L2(Ω).

We observe that these two variational formulations give two different variational spaces for
B(Ω), namely, H(curl ,Ω) for the first one 19 and H0(div ,Ω) for the second. In view of the
vectorial de Rham complex

H1(Ω) H(curl ,Ω) H(div ,Ω) L2(Ω)∇ curl div ,

which is isomorphic to the de Rham complex on differential forms, we see that the first variational
formulation gives a harmonic field which corresponds to a one-form while the second one gives a
harmonic field which corresponds to a two-form 20.

Pullbacks of vector fields onto a fixed domain

We now consider the shape differentiability problem for harmonic fields. Let Ω be a Lipschitz
toroidal domain and V a small enough Lipschitz vector field of R3. Our aim is to express the
harmonic field of the deformed domain ΩV := (I + V )(Ω) as the sum of B(Ω), a term which is
linear in V , and a higher order remainder. However, B(ΩV ) and B(Ω) do not live in the same

18. that is, a loop which is contractible in Ω̄ but which generates the first homology group of R3\Ω.
19. Indeed, gradients of functions in V1(Ω\Σ) are in H(curl ,Ω) [Amr+98, Lemma 3.11].
20. One can note that in the first case, B(Ω) corresponds to a harmonic one form, while in the second case, it

corresponds to a harmonic two-form with essential boundary conditions. The equivalence between the two is given
by Poincaré duality [AFW06].
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space so that this naive approach does not work directly. To remedy this problem, we consider
pullbacks of the harmonic fields in the deformed domain ΩV back on to Ω.

As seen in the previous section, we have two variational formulations for B(Ω). The first
one corresponds to seeing the harmonic field as a one-form, while the other one corresponds
to seeing it as a two-form. One may thus consider two ways to pull B(ΩV ) onto Ω, by using
a pullback as a one-form and by using a pullback as a two-form. Furthermore, each of these
pullbacks denoted Φ1

VB(ΩV ) and Φ2
VB(ΩV ) preserve the variational spaces of the corresponding

variational formulations. We then wish to obtain results of the form

ΦiVB(ΩV ) = B(Ω) +B′i(Ω;V ) + o(‖V ‖).

The norms we will use for these differentiability results will differ in the two cases. We also note
that one may pullback the harmonic field using the pushforward by (I + V )−1. In this case, one
preserves the field lines, but none of the variational spaces of the variational formulations are
preserved by this transformation. These notions of pullbacks and all the relevant properties in
the vectorial context will be given in Section 2.3.

Shape differentiability results

A general idea to prove shape differentiability of PDE solutions, as can be seen for example in
[HP18], is to use an implicit function theorem on the variational formulation which is pulled back
on the fixed domain Ω. As such, it is important to use definitions of pullbacks which preserve the
variational spaces.

For the case of the mixed formulation of the normalized harmonic field, which is studied
in Section 2.4, this procedure is obtained simply by using the pullback Φ2

VB(ΩV ). Indeed,
this transformation maps H0(div ,ΩV ) to H0(div ,Ω). One then obtains the differentiability of
V 7→ Φ2

VB(ΩV ) from W 1,∞(R3)3 to H0(div ,Ω), which is given by Theorem 2.4.1. In the case
of the classical formulation, which is studied in Section 2.5, there is the first difficulty that the
variational space is an affine space. This can be remedied simply by choosing an arbitrary function
in V1(Ω\Σ), and removing it from the solution to the pulled back variational formulation. Then,
we prove that when Ω has smooth boundary, classical results from elliptic regularity allow us to
use the implicit function theorem in more regular spaces. From this, we obtain the differentiability
of the map V 7→ Φ1

VB(ΩV ) from W k,∞ (R3)3 to Hk+1(Ω)3, which is given by Theorem 2.5.1.

Expression of the shape derivatives

As we use two different pullbacks for the two variational formulations, it is clear that the
resulting expressions for the shape derivative will differ. However, as we will see, the resulting
shape derivative can be seen as the sum of two terms. First, a transport term given by the choice
of the pullback, and then a Eulerian term independent of the choice of pullback.

To give an intuition for this expression of shape derivatives, we give the following argument.
Let ω be a differential form on a manifold M and V a complete vector field on M . Then, one
obtains

d

dt
∣∣t=0

(
etV
)∗
ω = LV ω,

where etV is the flow of V at time t. If t 7→ ωt is now a differentiable path of differential forms,
one obtains

d

dt
∣∣t=0

(
etV
)∗
ωt = LV ω0 + d

dt
∣∣t=0

ωt.
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One sees that the total, or Lagrangian, derivative of t 7→
(
etV
)∗ decomposes as the sum of a Lie

derivative LV ω0 and a Eulerian derivative. Furthermore, using Cartan’s formula

LV ω = dιV ω + ιV dω,

we define the equivalent Lie derivatives in the vectorial context

L1
V u = ∇(u · V ) + curl u× V,
L2
V u = curl (u× V ) + (div u)V.

In analogy with the previous computations, we define the Eulerian shape derivatives of the
harmonic field as

B′i,E(Ω;V ) = B′i(Ω;V )− LiVB(Ω).

We then prove that for both cases of shape derivatives, we obtain B′i,E(Ω;V ) = ∇uV , where uV
solves {

∆uV = 0 in Ω,
∇uV · n = div Γ (B(Ω)(V · n)) on ∂Ω,

(1.10)

where div Γ is the tangential divergence on ∂Ω.

1.4.3 Shape optimization of harmonic helicity

In Chapter 3, we consider the problem of shape optimization of harmonic helicity. Harmonic
helicity is the shape functional defined as the helicity of the normalized harmonic field of a toroidal
domain.

Bevir–Gray formula and potential vectors

We recall that the helicity of a magnetic field F ∈ H0(div ,Ω) may be defined as

H(F ) =
ˆ

Ω
F · BS(F ).

Also, the Biot–Savart operator BS is a convolution operator with a singular kernel. As a
result, computing it numerically is not an easy task. However, we recall that the Biot–Savart
operator gives a vector potential when evaluated on a magnetic field in H0(div ,Ω), that is,
curl (BS(F )) = F . Furthermore, when Ω is simply connected, the quantity

´
Ω F ·A is invariant

on the choice of potential vector A of F . However, this gauge invariance no longer holds when Ω
is not simply connected, and in particular when it is a toroidal domain. To remedy this problem,
the Bevir–Gray formula [BG80] gives the following gauge invariant expression in the case of a
toroidal domain ˆ

Ω
F ·A−

(ˆ
γ

A · t
)(ˆ

γ′
A · t′

)
, (1.11)

where γ and γ′ are poloidal and toroidal loops respectively. Furthermore, the toroidal circulation
of BS(F ) always vanishes [CDG01, Section III] so that this quantity is in fact equal to the helicity
defined by the Biot–Savart operator. We also note that the Bevir–Gray formula was generalized
in [MV19] for domains with more complex topology.

Given the Bevir–Gray formula, we now explain how one may choose specific vector potentials.
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First, we use the Coulomb gauge, that is{
divA = 0 in Ω,
A · n = 0 on ∂Ω,

which is equivalent to saying that the chosen vector potential is L2 orthogonal to gradient vector
fields. However, since the space of harmonic fields is nonempty, this gauge is not sufficient to
fix the vector potential. Indeed, adding a harmonic field to a Coulomb potential gives another
Coulomb potential. One may choose two ways to fix the vector potentials. The first one is given
by ˆ

Ω
B(Ω) ·A1 = 0,

while the second one is given by ˆ
γ′
A2 · t′ = 0.

When the chosen magnetic field is B(Ω), choosing the first vector potential A1 makes the first
term of Eq. (1.11) vanish, while the second choice A2 makes the second term equal to zero.

Each vector potential comes with a variational formulation. The first one is the following mixed
formulation for the vector Laplacian, adapted from [AFW06, Section 7] in the vectorial language.
Find

(
A1(Ω), u

)
∈ H(curl ,Ω)×H(div ,Ω) such that, for all (τ, v) ∈ H(curl ,Ω)×H(div ,Ω)

ˆ
Ω
A1(Ω) · τ =

ˆ
Ω

curl τ · u,
ˆ

Ω
curlA1(Ω) · v +

ˆ
Ω

(div u)(div v) =
ˆ

Ω
B(Ω) · v.

The variational formulation for A2 is the following, given in [Val19]. Find (A2(Ω), u) ∈ Z(Ω)×
∇H1(Ω) such that for all (τ, v) ∈ Z(Ω)×∇H1(Ω)

ˆ
Ω

curlA2(Ω) · curl τ +
ˆ

Ω
u · τ =

ˆ
Ω
B(Ω) · curl τ,

ˆ
Ω
A2(Ω) · v = 0,

where
Z(Ω) =

{
u ∈ H(curl ,Ω) | curlu · n = 0,

ˆ
γ′
u · t′ = 0

}
.

In fact, as is shown in [Val19], one finds that A2(Ω) is equal to the modified Biot–Savart BS′(B(Ω))
defined in Section 1.3.2.

Shape differentiation

We now define the harmonic helicity shape functional of a toroidal domain Ω as H(Ω) =
H(B(Ω)). We begin Section 3.3 by proving some properties of this shape functional given in
Proposition 3.3.2. Namely, we prove that given λ > 0, we have H(λΩ) = λH(Ω), and that given
a planar symmetry R, H(RΩ) = −H(Ω). The first point indicates that a shape optimization
problem for harmonic helicity should be considered at fixed volume, while the first point shows
that domains with planar symmetries, in particular axisymmetric domains, have zero harmonic
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helicity. The second property can also be understood using the characterization of helicity using
the asymptotic linking numbers of the field lines given in Section 1.3.2. Indeed, applying a planar
symmetry amounts to changing the orientation of the field lines, and thus, the sign of the linking
numbers.

In Section 3.3, we then consider the shape differentiation problem of the harmonic helicity.
We prove that it is differentiable for Lipschitz toroidal domains under Lipschitz deformations,
and if Ω is s-regular 21, then the shape derivative is given by the following formula

H′(Ω;V ) =
ˆ
∂Ω

(
B(Ω) ·A2(Ω)

)
(V · n).

This result is given in Theorem 3.3.4. In order to prove this theorem, we use the vector fields
pullbacks introduced in Section 2.3. Moreover, we use the shape differentiability of the harmonic
field when pulled back as a two-form given by Theorem 2.4.1, and we prove a similar result for
the vector potential V 7→ A2(ΩV ) when pulling it back as a one-form. The rest of the proof then
follows easily by pulling back the integral of H(ΩV ) onto Ω, and using a variational formulation
for the shape derivative of the harmonic field as a two-form.

Computing harmonic helicity using FEEC

In Section 3.4, we wish to obtain a numerical scheme to approximate the harmonic helicity of
a domain and its shape gradient. Indeed, the PDEs for harmonic fields and their vector potentials
use the classical vectorial calculus operators of electromagnetism, and it is thus natural to design
numerical schemes to compute them using the FEEC framework introduced in Section 1.3.4.

Given a family of meshes (Th)h>0 of a toroidal domain Ω, we consider the scalar and vectorial
equivalents of the FEEC spaces P−r Λk(Th) introduced in Section 1.3.4. These correspond to
the Lagrange, Raviart–Thomas, Nedelec first kind and discontinuous elements of degree r, r, r
and r − 1 respectively for k going from 0 to 3. We then use these spaces to solve the different
variational formulations for the harmonic field of Ω and its vector potentials in these finite element
spaces. Furthermore, we prove the L2 convergence of these numerical solutions to the continuous
ones using classical estimates of FEEC that can be found in [AFW06]. As a consequence, the
harmonic field being the L2 product of B(Ω) with A2(Ω), we find that the harmonic helicity of
the discrete harmonic field converges to the harmonic helicity of Ω. These results are given by
Propositions 3.4.7 and 3.4.9 and Theorem 3.4.12. Finally, we prove that the numerical shape
gradient converges to the continuous one. This is done using trace inequalities in cells of the
mesh from [EG21a].

Numerical results and shape optimization for stellarators

Finally, we give in Section 3.5 some numerical results for computation of harmonic fields,
vector potentials and harmonic helicity using the scheme described in Section 3.4. The scheme
is implemented in the python library FEniCSx [Scr+22b; Scr+22a; Aln+14], with meshes
generated by Gmsh [GR09]. The boundary of the toroidal domains are parametrized in cylindrical
coordinates by

(
R(u, v), 2πv

Np
, Z(u, v)

)
, where Np is an integer describing the discrete rotational

symmetry of the domain and R and Z are given by a Fourier expansion. In practice, we fix a
finite number of Fourier coefficients to perform numerical computations.

We then present some plots for harmonic fields and vector potentials in a section of the NCSX
plasma domain, and perform a numerical convergence test. Finally, we perform numerical shape

21. We refer to Section 2.2.1 for the definition of s-regular domains.
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optimizations by using the numerical shape gradient on the Fourier coefficients of the surface. To
this end, we propose two optimization programs. In the first one, we aim to bound the perimeter
and the curvature of the surface, while in the second, we aim to bound the volume and the
curvature. In both cases, we impose a bound on the curvature to ensure that the surfaces are
regular enough. Physically, this can be understood as producing surfaces with high curvature
can be challenging from an engineering perspective. Moreover, imposing uniform ball conditions
on the surface, which in particular imply bounds on the curvature, is a classical tool to ensure
existence of optimal shapes [PRS24; Ger23a].

1.4.4 Shape differentiation for Poincaré maps of harmonic fields
In Chapter 4 of this manuscript, we consider the problem of shape differentiation for the

Poincaré maps of harmonic fields in toroidal domains. As was mentioned in Section 1.3.3, magnetic
fields used for plasma confinement in toroidal devices should have a poloidal component, which
can be quantified using the rotational transform. However, defining this object necessitates the
assumption of a toroidal foliation of the magnetic field, which as was discussed in Section 1.3.3, is
far from trivial for harmonic fields. We therefore choose to only study the Poincaré map of the
harmonic field on the boundary of the toroidal domain, as the boundary is by definition an invariant
surface of the harmonic field. This allows us to obtain a Poincaré map as a diffeomorphism of the
circle, to which we can associate a rotation number corresponding to the rotational transform on
the boundary. We then study the Poincaré maps of harmonic fields using shape differentiation
techniques. To the author’s knowledge, this is a new approach to study the dynamics generated
by solutions to vectorial PDEs.

Definition using admissible embeddings

In order to properly define the boundary Poincaré map as a diffeomorphism of the circle, one
needs some additional data on the toroidal domain. First, we need to choose a poloidal Poincaré
cut of the boundary. Then, in order to obtain a diffeomorphism of the circle, and not of the
Poincaré cut itself, one needs to choose coordinates on this Poincaré cut.

This necessary data is obtained through the definition of admissible embeddings from the
two-dimensional torus to R3 denoted Embad

(
T2;R3) given in Definition 4.2.1. Intuitively, an

embedding is said to be admissible if its image is the boundary of a toroidal domain Ω, if the
embedding define toroidal and poloidal coordinates, and if the poloidal cuts correspond to Poincaré
cuts of B(Ω). This allows us to define a mapping

Π : Embad
(
T2;R3)→ Diff

(
S1) ,

which associates to each admissible embedding the Poincaré map of the underlying domain B(Ω)
on the poloidal cut φ = 0 with coordinates on this cut induced by the embedding. The precise
definition of this map is given in Section 4.2.

Shape differentiation in the general case

In Section 4.3, we aim to study local properties of the mapping Π using a shape differentiation
approach. We do note that Π is not technically a shape function as it also depends on the choice
of embedding. However, the chosen approach is largely inspired by shape differentiation, and
uses results from Chapter 2 for shape differentiability of harmonic fields.

The shape differentiation process is the following. Suppose E is an admissible embedding, and
t 7→ Pt is a smooth path of diffeomorphisms of R3 starting at the identity with d

dt |t=0Pt = V .
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Defining Et = Pt ◦ E , we wish to write

Π (Et) = Π(E) + Π′(E ;V ) + o(‖V ‖).

In order to prove such a result, we adapt the shape differentiation result for harmonic field from
Section 2.5 by replacing the pullback as one-forms by the pushforward by P−1

t . Indeed, this
pushforward maps field lines of B(Pt(Ω)) to field lines of

(
P−1
t

)
∗B(Pt(Ω)), and thus preserves

the dynamics. The shape differentiability result then follows easily from the definition of the
Poincaré map, and from the differentiation of a flow with respect to a parameter. The general
shape differentiability of Π is given by Theorem 4.3.5.

Although we choose not to include the general formula in this section, we introduce the simpler
formula in the case where B(Ω) is rectified on the boundary in the coordinates (φ, θ) = E−1

induced by E . We suppose that B(Ω) = χ (∂φ + ω∂θ), where χ is a smooth function of ∂Ω and ω
is a real number corresponding to the rotational transform of B(Ω) on ∂Ω. In this case, we obtain

Π′(E ;V ) =
ˆ
S1

(X ′V )θ (φ, θ + ωφ)dφ,

where

(X ′V )θ = f
2II(B(Ω), B(Ω)⊥)

√
gχ2 +

〈
~ω,∇T2

(
ωV φΓ − V

θ
Γ

)〉
+ 1
√
gχ2B(Ω)⊥ · ∇ΓuV . (1.12)

Here, f is the normal component of V and VΓ its tangential component. The precise definition of
all the terms will be introduced throughout Chapter 4, but we already give a short interpretation
of all three terms. Intuitively, the first term corresponds to the fact that, through the normal
component of V , we are changing the shape of the domain, and thus the surface on which we
study the dynamics of the harmonic field. In this case, the term II is the second fundamental
form of ∂Ω. The second term indicates how changing the coordinates on ∂Ω affects the Poincaré
map. In particular, this term does not affect the rotation number of the Poincaré map. Finally,
the third term comes from the fact that changing the shape of the domain affects the harmonic
field, and thus its dynamics.

Image of the differential in the axisymmetric case

In Section 4.4, we consider the case of the standard axisymmetric torus given by the following
embedding

E(φ, θ) = ((RT + rP cos(2πθ)) cos(2πφ), (RT + rP cos(2πθ)) sin(2πφ), rP sin(2πθ)) ,

where RT is the major radius, and rP < RT is the minor radius. We then prove Theorem 4.4.1
which states that for all smooth vector fields V of R3, we have

Π′(E ;V ) = 0.

This means that one needs to go to second order in order to obtain information of the local
behavior of Π around E . To prove this result, we first show that the first term of Eq. (1.12)
vanishes. To do this, we compute the second fundamental of ∂Ω and show that the harmonic
field, which is explicit in this case, is everywhere aligned with the principal directions of curvature.
Then, we obtain simply that the second term of Eq. (1.12) is of zero average along all toroidal
curves, so that its contribution to Π′(E ;V ) also vanishes. Finally, we exhibit some symmetries of
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the function uV which solves Eq. (1.10) to prove that the last term of Eq. (1.12) always vanishes
when integrated along toroidal curves.

We also note that, although we chose the standard torus for simplicity, the method applies to
all smooth axisymmetric tori, so that Theorem 4.4.1 remains valid in general.

Image of the differential in the diophantine case

In Section 4.5, we study the case where B(Ω) is a diophantine vector field on ∂Ω.
We recall that a real number ω is said to be diophantine if there exist positive constants C, τ

such that, for all p/q ∈ Q
|ω − p/q| ≥ C|q|−(τ+1).

For all τ > 1, we know that the set of diophantine numbers is of full measure in the reals. We
now suppose that for the coordinates (φ, θ) associated to an admissible embedding, we have
B(Ω) = χ(∂φ+ω∂θ) where ω is diophantine. We then prove that, under the additional assumption
that II

(
B(Ω), B(Ω)⊥

)
vanishes nowhere, the mapping{

Vec
(
R3)→ C∞(S1)

V 7→ Π′(E ;V )

is surjective. This result is given by Theorem 4.5.1. In order to prove this theorem, we proceed
in two steps. First, we consider only tangential vector fields so that only the second term of
Eq. (1.12) is nonzero. We then prove that, by choosing the right tangential vector field, one may
obtain any zero average smooth function of the circle as Π′(E ;VΓ). This is done by solving two
cohomological equations. From this, we know that the image of V 7→ Π′(E ;V ) is of codimension at
most one. As a result, we only need to generate the extra dimension in order to prove surjectivity.
This is done using the assumption on II

(
B(Ω), B(Ω)⊥

)
, and a specific normal deformation field

so that the third term of Eq. (1.12) vanishes.
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Shape differentiation of harmonic fields
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2.1 Introduction
In the context of stellarator fusion reactors, one aims to confine a plasma inside a toroidal

chamber without inducing additional electric currents into the plasma. As such, using Maxwell’s
equation, one obtains in first approximation that magnetic fields in stellarators should be
divergence free and curl free. We thus define the set of harmonic fields of a domain Ω of R3 as

K(Ω) =
{
u ∈ L2(Ω)3 | div u = 0, curlu = 0, u · n = 0

}
.

As we discussed in Section 1.3.1 using elements of differential geometry and algebraic topology, if
Ω is a Lipschitz toroidal domain, K(Ω) is one-dimensional. Furthermore, given γ′ a generator
of H1

(
Ω̄
)
with t′ a unit tangent vector field of γ′, there exists a unique harmonic field B(Ω)

satisfying
ˆ
γ′
B(Ω) · t′ = 1,

which is referred to as the harmonic field of Ω. This approach allows us to consider the design
of magnetic fields in stellarators using a shape optimization approach. That is, considering a

43
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cost function J defined for magnetic fields, and a set of admissible toroidal domains O, we can
consider the minimization problem associated to the shape functional 1.

J ◦B :
{
O → R
Ω 7→ J (B(Ω))

.

One may also consider a shape function taking values in spaces other than R to obtain more
precise data on the harmonic fields, which will for example be the case in Chapter 4 when studying
Poincaré maps. We note that, from a physical point of view, the choice of cost function is in
general a complicated task as many aspects come into the design of magnetic fields in fusion
reactors, and the associated costs are often hard to express directly from the magnetic field itself.

When dealing with shape functionals, it is often useful to obtain an expression for the shape
derivative. First, this can be used numerically to perform gradient descents on the shape functional.
Second, this can be used theoretically to study the local behavior of the shape functional, such as
finding critical shapes, or in general, finding the image of the differential when the shape function
takes values in spaces other than R. Given a set of admissible domains O of Rn, and an open
ball B centered at zero in a Banach space V of vector fields in Rn, we say that a shape functional
F : O → R is Fréchet shape differentiable at Ω with respect to deformations in V if:

• O is B invariant. That is, for all V in B and Ω in O, ΩV := (I + V )(Ω) is in O.
• There exists F ′(Ω; ·) in V ′ such that

F(ΩV ) = F(Ω) + F ′(Ω;V ) + o (‖V ‖V) .

If we have as earlier a shape functional of the form J ◦B, we see that, in order to obtain its shape
derivative, we need first to differentiate V 7→ B(ΩV ). Intuitively, we would obtain a formula of
the form

(J ◦B)′ (Ω;V ) = J ′ (B(Ω);B′(Ω;V )) .

However, this formula only makes sense in a formal way. Indeed, since B(Ω) is a vector field in Ω,
changing the domain changes the space in which the harmonic field is defined, and one cannot
make sense of

B(ΩV ) = B(Ω) +B′(Ω;V ) + o (‖V ‖V) .

To remedy this problem, we define ways to pull vector fields back from ΩV onto Ω. Given ΦV

which maps vector fields of ΩV to vector fields of Ω, one may hope to obtain the differentiability
of V 7→ ΦVB(ΩV ) with respect to a certain norm for vector fields of Ω. Naively, one may define
such a transformation by composing the vector field with (I + V ) component-wise. However, this
approach is not geometrically meaningful, and does not in general lead to simple expressions for
shape derivatives. Given a vector field u of ΩV , we identify three natural ways to pull it back
onto Ω:

• By taking the pushforward of u by (I + V )−1, that is,

Φvf
V u = (I + V )−1

∗ u.

• By taking the pullback of u by I + V when seen as a one-form, that is,(
Φ1
V u
)[ = (I + V )∗

(
u[
)
.

1. To be rigorous, this function may also depend on the choice of generator γ′, and thus not exactly be a shape
functional.
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• By taking the pullback of u by I + V when seen as a two-form, that is,

∗
(
Φ2
V u
)[ = (I + V )∗

(
∗u[
)

Here, [ is the isometry taking vector fields to one-forms, and ∗ is the Hodge-star operator mapping
one-forms to two-forms. We refer the reader to Section 1.3.1 for a short introduction to these
concepts, and to [Lee18] for more precise definitions. We note however that all the computations
of this chapter will be done using vector fields, so that these descriptions are only used to motivate
the definitions of the transformations.

The goal of this chapter is thus to obtain shape differentiability results for mappings of the
form V 7→ ΦVB(ΩV ) and expressions for the corresponding shape derivatives. As we have seen,
the way in which we choose to pull vector fields back onto a fixed domain may change the results
of the shape derivative. Furthermore, as we will see in Section 2.5 requiring more regularity on
the set of admissible shapes and deformations may lead to shape differentiability results with
respect to stronger norms. Although we have mentioned the transformation Φvf

V , we will not be
studying the shape differentiability of harmonic fields using it. This comes from the fact that,
although this transformation may have desirable geometric properties (such as preserving the field
lines), it is less convenient to work with when using the variational formulations of the harmonic
fields we will introduce in Section 2.2.2. A shape differentiability result using this transformation
will however be given in Chapter 4 when considering Poincaré maps of harmonic fields.

To obtain the shape differentiability of harmonic fields, we will be using a classical approach of
shape differentiation for PDE solutions given for example in [HP18]. The idea is to consider pulled
back versions of the variational formulations of B(ΩV ) onto the fixed domain Ω. Afterwards,
if the chosen pullback ΦV preserves the variational space, one can prove the differentiability of
V 7→ ΦVB(ΩV ) using an implicit function argument on the pulled back variational formulation.
Therefore, to the author’s knowledge, the novelty of our results does not lie on the general
approach to prove shape differentiability of PDE solutions, but on the chosen pullbacks which
commute with the vectorial de Rham complex and thus preserve the usual variational spaces of
electromagnetism.

2.1.1 Lagrangian and Eulerian derivatives
As was mentioned earlier, we will be studying throughout this chapter the shape differentiability

properties of harmonic fields using pullbacks onto a fixed reference domain, that is, differentiability
of maps of the form V 7→ ΦVB(ΩV ). Using a simplified framework, we will understand in this
section how the choice of pullback affects the resulting notion of shape derivative.

Let M be a smooth manifold. Given a diffeomorphism Φ of M and T a (p, q) tensor field over
M 2, we define the pullback of T by Φ as

Φ∗T (ω1, · · · , ωp, X1, · · · , Xq) = T
(
Φ∗ω1, · · · ,Φ∗ωp,

(
Φ−1)

∗X1, · · · ,
(
Φ−1)

∗Xq

)
.

Given V a complete vector field of M and etV its flow at time t, we then define the Lie derivative
of T in the direction V as

LV T = d

dt
∣∣t=0

(
etV
)∗
T.

One verifies that we then recover usual formulas for Lie derivatives, that is, for vector fields

LVX = [V,X],

2. Vector fields correspond to (p, q) = (1, 0) and k-forms to (p, q) = (0, k)



46 CHAPTER 2. Shape differentiation of harmonic fields

is the Lie bracket, and for k-forms

LV ω = ιV dω + dιV ω, (2.1)

is Cartan’s formula. If t 7→ Tt is now a differentiable path of tensor fields, we obtain

d

dt
∣∣t=0

(
etV
)∗
Tt = LV T0 + d

dt
∣∣t=0

Tt. (2.2)

We refer to the derivative of t 7→ Tt as the Eulerian derivative, and the derivative of t 7→
(
etV
)∗
Tt

as the Lagrangian derivative. We then observe that the Lagrangian derivative decomposes as the
sum of a transport term, given by the Lie derivative, and of the Eulerian derivative.

Suppose now that O is a collection of admissible open sets of M , and that to each Ω in O,
one may associate a (p, q) tensor field T (Ω) of Ω. Assuming that, given Ω in O, the mapping
V 7→ (I+V )∗T (ΩV ) is differentiable with differential T ′(Ω;V ), we define in analogy with Eq. (2.2)

T ′E(Ω;V ) := T ′(Ω;V )− LV T (Ω),

as the Eulerian derivative of Ω 7→ T (Ω). That is, since we use a pullback to define the shape
differential, we obtain a derivative analogous to the Lagrangian one. We therefore subtract the
Lie derivative in order to obtain the Eulerian one.

As was explained earlier, we have three natural ways of viewing harmonic fields, which lead to
three notions of pullbacks and shape derivatives. What we will observe in the main results of the
chapter is that the Eulerian derivative of the harmonic fields does not depend on how we choose
our pullbacks. Using the identifications in three-dimensional manifolds given in Section 1.3.1
as well as Cartan’s formula, we have the following notions of Lie derivatives which correspond
respectively to Φvf

V , Φ1
V and Φ2

V

Lvf
V u = [V, u],
L1
V u = ∇(u · V ) + curl u× V,
L2
V u = curl (u× V ) + (div u)V.

The Eulerian derivatives of the harmonic field are then given by

B′E,vf(Ω;V ) = B′vf(Ω;V )− [V, u],
B′E,1(Ω;V ) = B′1(Ω;V )−∇(B(Ω) · V ),
B′E,2(Ω;V ) = B′2(Ω;V )− curl (B(Ω)× V ),

where B′vf(Ω;V ), B′1(Ω;V ) and B′2(Ω;V ) correspond respectively to the differentials of V 7→
Φvf
V B(ΩV ), V 7→ Φ1

VB(ΩV ) and V 7→ Φ2
VB(ΩV ) at zero. In the latter two cases, we will see in this

chapter that, when we have sufficient regularity to define these objects, the Eulerian derivatives
is equal to ∇uV where uV solves{

∆uV = 0 in Ω,
∇uV · n = div Γ (B(Ω)(V · n)) on ∂Ω.

The author also notes that shape differentiation using a differential form language was also studied
in [HL13], although the chosen approach and the problems considered differ from our context.
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2.1.2 Contents of the chapter

This chapter is organized as follows.
• In Section 2.2.1, we introduce the necessary Sobolev spaces as well as some geometrical

constructions in Lipschitz toroidal domains which will be used throughout the chapter. In
Section 2.2.2, we introduce two variational formulations for the harmonic fields. The first
one, which was already used for example in [Amr+98; Alo+18], corresponds to a slight
adaptation of classical Poisson equations with Neumann boundary conditions. The second
one is given by a mixed formulation of the Poisson equation. For the first (resp. second)
formulation, the natural functional space is H(curl ,Ω) (resp. H0(div ,Ω)), which behaves
well when identifying vector fields as one-forms (resp. two-forms).

• In Section 2.3, we define rigorously the transformations ΦkV for k in {0, 1, 2, 3}, and prove
some useful properties. As mentioned earlier, these transformations correspond to usual
pullbacks of differential forms. As such, the required properties, such as commutativity
with differential operators, preservation of the circulations (resp. fluxes) by Φ1

V (resp. Φ2
V )

are not surprising. However, we prove these results assuming as little regularity as possible,
so that these properties are not immediate.

• In Section 2.4, we prove that for Ω a Lipschitz toroidal domain, the mapping V 7→ Φ2
VB(ΩV )

is smooth at zero in H0(div ,Ω). We also provide a formula for its differential B′2(Ω;V )
assuming some further regularity on the domain Ω. The shape differentiability is obtained
using a classical implicit function argument with a pulled back version of the mixed
formulation for the harmonic field. The expression of the shape derivative then comes
from differentiating this variational formulation and using formulas proved in Section 2.3.

• In Section 2.5, we prove that for Ω a smooth toroidal domain, the mapping V 7→ Φ1
VB(ΩV )

is smooth in Sobolev spaces with higher regularity. The proof strategy is essentially
the same as in Section 2.5, except that the implicit function argument is adapted using
classical results of elliptic regularity to work with stronger norms. In this context, seeing
the harmonic field as a one-form is convenient, as this naturally leads to more classical
variational formulations used in elliptic regularity theory.

2.2 Harmonic fields in toroidal domains

2.2.1 Toroidal domains

We recall the definitions of the following classical functional spaces:

H(curl ,Ω) =
{
u ∈ L2(Ω)3 | curlu ∈ L2(Ω)3} ,

H(div ,Ω) =
{
u ∈ L2(Ω)3 | div u ∈ L2(Ω)

}
.

(2.3)

OnH(curl ,Ω) andH(div ,Ω), the tangential and normal traces u×n : ∂Ω→ R3 and u·n : ∂Ω→ R
are defined respectively by

ˆ
∂Ω

(u× n) · ϕ =
ˆ

Ω
u · curlϕ−

ˆ
Ω

curlu · ϕ, (2.4)

for every ϕ in H1(Ω)3, and
ˆ
∂Ω

(u · n)ϕ =
ˆ

Ω
u · ∇ϕ+

ˆ
Ω

(div u)ϕ, (2.5)
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for every ϕ in H1(Ω). Since the traces of H1(Ω)3 and H1(Ω) are H1/2(∂Ω)3 and H1/2(∂Ω)
respectively, u× n can be defined in H−1/2(∂Ω)3 3, and u · n in H−1/2(∂Ω). Then, we can define

H0(curl ,Ω) = {u ∈ H(curl ,Ω) | u× n = 0} ,
H0(div ,Ω) = {u ∈ H(div ,Ω) | u · n = 0} .

(2.6)

We also denote by L2
0(Ω) the set of functions in L2(Ω) which have zero average in Ω. Introducing

the following spaces where the differential operator vanishes will also prove to be useful

H
(
curl 0,Ω

)
= {u ∈ H(curl ,Ω) | curlu = 0} ,

H
(
div 0,Ω

)
= {u ∈ H(div ,Ω) | div u = 0} ,

H0
(
curl 0,Ω

)
= H

(
curl 0,Ω

)
∩H0(curl ,Ω),

H0
(
div 0,Ω

)
= H

(
div 0,Ω

)
∩H0(div ,Ω).

(2.7)

We introduce a poloidal cut Σ of Ω, that is, a Lipschitz surface included in Ω, with boundary γ
contained in ∂Ω which generates the first homology group of Ωc = R3 \Ω. Similarly, we introduce
Σ′ a Lipschitz surface in Ωc with boundary γ′ that generates the first homology group of Ω̄.
Fig. 2.1 illustrates these objects. We refer to γ as a poloidal loop of Ω, and to γ′ as a toroidal
loop.
We also define t (resp. t′) as a unit tangent vector field on γ (resp. γ′), and nΣ (resp. nΣ′) as a
unit normal vector field on Σ (resp. Σ′). These vector fields define orientations on Σ, Σ′, γ and
γ′ which are compatible with each other. We refer to [Alo+18, Section 1] and [Amr+98, Section
3.a] for the constructions and more precise definitions of these objects.

Since Ω\Σ is a pseudo-Lipschitz domain (see e.g. [Amr+98, Definition 3.1]), we can define two
traces on Σ of functions in H1(Ω\Σ). For u in H1(Ω\Σ), u|Σ− is the trace of u when approaching
Σ in the direction of nΣ, and uΣ+ when approaching Σ in the other direction. We then define
[[u]]Σ = u|Σ+ − u|Σ− , which is a function of H1/2(Σ) representing the jump of u across Σ, and for
c in R

Vc(Ω\Σ) =
{
u ∈ H1(Ω\Σ) | [[u]]Σ = c

}
.

We then have the identification H1(Ω) ∼= V0(Ω\Σ). For u in H1(Ω\Σ), we also denote ∇̃u as the
L2 extension of ∇u on Ω. It is then known that v is in H

(
curl 0,Ω

)
if and only if there exists c

in R and u in Vc(Ω\Σ) such that v = ∇̃u [Amr+98][Lemma 3.11].

Finally, we recall some results on the notion of s-regularity (see for example [AFW06, Section
7.8]). We say that a domain Ω is s-regular if H0(div ,Ω) ∩ H(curl ,Ω) continuously injects in
Hs(Ω), when equipped with the norm

‖u‖2 = ‖u‖2L2 + ‖div u‖2L2 + ‖curlu‖2L2 .

It is then known that Lipschitz domains are 1/2-regular, that polyhedral domains are s-regular
for 1/2 < s ≤ 1, and that C1,1 domains are 1-regular.

3. In fact, as was shown in [BCS02], the space of tangential traces of H(curl ,Ω) is H−1/2(div Γ, ∂Ω), so that it
is a proper subspace of H−1/2(∂Ω)3.
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γ

Σ

γ′

Σ′

Ω

Figure 2.1 – Illustration of the curves γ and γ′, and the surfaces Σ and Σ′

2.2.2 Variational formulations for harmonic fields
The set of harmonic fields in Ω is defined in the following way

K(Ω) =
{
u ∈ L2(Ω)3 | div u = 0, curlu = 0, u · n = 0

}
(2.8)

= H
(
curl 0,Ω

)
∩H0

(
div 0,Ω

)
,

As was explained in Section 1.3.1, this space is isomorphic to the first de Rham cohomology space
of Ω, with each harmonic field giving a natural representative of the corresponding cohomology
class. Another useful characterization is the following

K(Ω) = H
(
curl 0,Ω

)
∩∇H1(Ω)⊥.

Indeed, one can easily see using Eq. (2.5) that H0
(
div 0,Ω

)
= ∇H1(Ω)⊥.

Hence, as shown in [Amr+98, Proposition 3.14], we can define the normalized harmonic field
B(Ω) on Ω by B(Ω) = ∇̃u with u ∈ H1(Ω\Σ) defined as follows. u is the unique solution of the
variational problem. Find u in V1(Ω\Σ) such that, for all v in H1(Ω)

ˆ
Ω\Σ
∇u · ∇v = 0, (2.9)

for all v ∈ H1(Ω).

Remark 2.2.1. Although this characterization of the normalized harmonic field makes use of Σ,
choosing another cutting surface may change B only up to a sign. Indeed, B is in K(Ω) which
is one-dimensional. Therefore, changing Σ may change B only by multiplying it by a constant.
Furthermore, since B integrates to 1 along γ′, we see that this constant is equal to 1 if we preserve
the orientation of Σ and γ′, and equal to −1 otherwise.

Once we have the normalized harmonic field of Ω, we can define rigorously the circulation
of vector fields in H(curl ,Ω) with curl tangent to the boundary. To do this, we define similarly
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the harmonic field of Ωext = B ∩ Ω̄c, denoted Bext, where B is an open ball containing Ω̄. The
normalized harmonic field of Ωext is the gradient of uext ∈ V1(Ωext\Σ′), which verifies

ˆ
Ωext\Σ′

∇uext · ∇v = 0, (2.10)

for all v in H1 (Ωext). Then, as in [Alo+18, Section 2], we are able to define the circulations of a
vector field u in H(curl ,Ω) with curl tangent to the boundary as

ˆ
γ′
u · t′ =

ˆ
Ωext

curl ũ ·Bext, (2.11)
ˆ
γ

u · t =
ˆ

Ω
curlu ·B(Ω), (2.12)

where ũ is a continuous extension of u from H(curl ,Ω) to H(curl ,B). Similarly, we can also
write ˆ

γ′
u · t′ = −

ˆ
∂Ω

(u× n) ·Bext, (2.13)
ˆ
γ

u · t = −
ˆ
∂Ω

(u× n) ·B(Ω). (2.14)

Since these definitions of circulations correspond to the usual one for vector fields in C∞(Ω̄\Σ̄), it
is clear by density that for all u in Vc(Ω\Σ), we have

ˆ
γ′
∇̃u · t′ = c.

In particular, we recover that the toroidal circulation of B(Ω) is equal to one. Furthermore, since
H
(
curl 0,Ω

)
= ∪c∈R∇̃Vc(Ω\Σ) (see [Amr+98, Lemma 3.11]), we obtain that a vector field of

H
(
curl 0,Ω

)
is the gradient of a function in H1(Ω) if and only if its circulation along γ′ is zero.

Note that the definition of the normalized harmonic field in Eq. (2.9) is equivalent to the
following mixed formulation. Since the variational space for the harmonic field in this formulation
is H0(div ,Ω), it will prove to be useful when studying the shape derivative of the harmonic fields
when pulled back as two-forms in Section 2.4.

Proposition 2.2.2. There exists a unique solution to the following problem. Find (Bdiv , udiv ) ∈
H0(div ,Ω)× L2

0(Ω) such that, for all (τ, v) ∈ H0(div ,Ω)× L2(Ω) we have
ˆ

Ω
(divBdiv ) v = 0,

ˆ
Ω
Bdiv · τ +

ˆ
Ω
udiv (div τ) =

ˆ
Σ
τ · nΣ.

(2.15)

Furthermore, we have Bdiv = B(Ω).

Proof. The left-hand side of Eq. (2.15) is the bilinear form for the mixed formulation of the
Poisson equation with Neumann boundary conditions. As such, it is known to verify inf-sup
conditions (see for example [EG21b, Section 51.1]), so that one only needs to prove the continuity
of the linear form in the right-hand side to prove well-posedness. This can be obtained by
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continuity of the normal trace from H(div ,Ω) to H−1/2(Σ). As a consequence, we get∣∣∣∣ˆ
Σ
τ · nΣ

∣∣∣∣ ≤ ‖1‖H1/2(Σ)‖τ · nΣ‖H−1/2(Σ)

≤ C‖τ‖H(div ,Ω).

To prove that Bdiv and B(Ω) coincide, we show that Bdiv is a harmonic field, and that they are
normalized in the same way. Equality then follows from the fact that the set of harmonic fields is
one-dimensional. To find that Bdiv is a harmonic field, we prove it is orthogonal to ∇H1(Ω) and
curlH0(curl ,Ω).
The first fact follows from the first equation of (2.15). Indeed, we find that divBdiv = 0, so that
Bdiv ∈ H0(div 0,Ω) = ∇H1(Ω)⊥.
Now, take τ = curl σ in the second equation of (2.15), with σ ∈ H0(curl ,Ω). As a consequence,
we have div τ = 0, and ˆ

Σ
τ · nΣ =

ˆ
γ

σ · t = 0.

This gives us
´

ΩBdiv · τ = 0 for all τ ∈ curlH0(curl ,Ω). Since Bdiv is orthogonal to both
∇H1(Ω) and curlH0(curl ,Ω), we get that it is a harmonic field by Hodge decomposition (see
Proposition A.1 of Appendix A).

Finally, we set Bdiv = λB(Ω), and want to prove that λ = 1. First, by plugging τ = Bdiv in
Eq. (2.15), we get

‖Bdiv ‖2 =
ˆ

Σ
Bdiv · nΣ.

Now, using the jump condition on u as defined in Eq. (2.9), and an integration by parts, we get

‖B(Ω)‖2 =
ˆ

Ω\Σ
B(Ω) · ∇u

=
ˆ

Σ
B(Ω) · nΣ.

Now, on the one side we have
ˆ

Σ
Bdiv · nΣ = λ

ˆ
Σ
B(Ω) · nΣ,

and on the other side ˆ
Σ
Bdiv · nΣ = ‖Bdiv ‖2

= λ2‖B(Ω)‖2

= λ2
ˆ

Σ
B(Ω) · nΣ.

Since B(Ω) and Bdiv are both nonzero, we come to the conclusion that λ = 1.
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2.3 Pullbacks on the de Rham complex
In this section, we define maps which allow us to transform elements of our functional spaces

on a deformed domain ΩV back to Ω. These transformations correspond to pullbacks in the
language of differential forms, and their formulas are given by the Piola mappings, which are often
encountered in finite element exterior calculus. This non-naive treatment is needed as composition
by I + V does not map H(curl ,ΩV ) (resp. H(div ,ΩV )) to H(curl ,Ω) (resp. H(div ,Ω)).

For k ≥ 1, we define

Bk =
{
V ∈W k,∞(R3)3 | ‖DV ‖L∞ < 1

}
,

where DV denotes the Jacobian matrix of V in Cartesian coordinates, and we use an operator
norm on matrices. It is then clear that, for V in Bk, I + V is a W k,∞ diffeomorphism of R3.
Throughout this section, Ω is a Lipschitz toroidal domain as defined in Section 2.2.1. As a
consequence, ΩV = (I + V )(Ω) is also a Lipschitz toroidal domain for V in B1, and the curves γV ,
γ′V and surfaces ΣV , Σ′V are given by the image by I + V of the corresponding objects in Ω.
Definition 2.3.1. Let u0 and u3 be in Lp(ΩV ), u1 and u2 be in Lp(ΩV )3 for p in [1,∞], and V
be in B1. We define

Φ0
V u0 = u0 ◦ (I + V ),

Φ1
V u1 =

(
I +DV T

)
u1 ◦ (I + V ),

Φ2
V u2 = JV (I +DV )−1u2 ◦ (I + V ),

Φ3
V u3 = JV u3 ◦ (I + V ).

where JV := det(I +DV ).
Before giving the key properties of these transformations, we start by stating the following

useful algebraic identities. These can be found by direct computations.
Lemma 2.3.2. We have the following identities.(

Φ0
V u
) (

Φ3
V v
)

= Φ3
V (uv) ∀u, v ∈ L2(ΩV ),(

Φ1
V u
)
·
(
Φ2
V v
)

= Φ3
V (u · v) ∀u, v ∈ L2(ΩV )3,

(α(V )Φ1
V u) ·

(
Φ1
V v
)

= Φ3
V (u · v) ∀u, v ∈ L2(ΩV )3,

(α(V )−1Φ2
V u) ·

(
Φ2
V v
)

= Φ3
V (u · v) ∀u, v ∈ L2(ΩV )3,

where α(V ) = JV (I +DV )−1(I +DV T )−1.
Proposition 2.3.3. Let c be a real number. The diagram

Vc(ΩV \ΣV ) H(curl ,ΩV ) H(div ,ΩV ) L2(ΩV )

Vc(Ω\Σ) H(curl ,Ω) H(div ,Ω) L2(Ω)

∇̃ curl div

Φ0
V Φ1

V Φ2
V Φ3

V

∇̃ curl div

is commutative. Furthermore, the same diagram can be made when c = 0 with the corresponding
traceless spaces.
Proof. We begin by proving the commutativity of the first cell of the diagram. First, from
[Amr+98][Lemma 3.11], we know that ∇̃ maps Vc (ΩV \ΣV ) to H

(
curl 0,ΩV

)
. Then, if u is in
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H1 (ΩV \ΣV ), Φ0
V u = u◦(I+V ) is inH1(Ω\Σ) as I+V is a Lipschitz diffeomorphism. Furthermore,

it is clear that [[u]]ΣV ◦ (I + V ) =
[[

Φ0
V u
]]

Σ, so that Φ0
V maps Vc(ΩV \ΣV ) to Vc(Ω\Σ). We also

have, using the composition formula for Jacobians, that

D
(
Φ0
V u
)

= Du ◦ (I + V )(I +DV ),

so that, since ∇Φ0
V u = D

(
Φ0
V u
)T , we obtain

∇Φ0
V u = (I +DV T )∇u ◦ (I + V )

= Φ1
V∇u.

For the rest of the proof, we use smooth functions or vector fields u, and suppose that V is
smooth for simplicity. The general statements can then be obtained by density, and continuity of
the desired equalities with respect to the relevant norms.
We now prove that curl ◦ Φ1

V = Φ2
V ◦ curl by taking u in C∞(Ω̄V )3. We have

D
(
Φ1
V

)
u = D

(
(I +DV T )u ◦ (I + V )

)
= D

(
DV T

)
u ◦ (I + V ) +

(
I +DV T

)
Du ◦ (I + V )(I +DV ),

where D
(
DV T

)
u is a symmetric matrix given by

(
D
(
DV T

)
u
)
i,j

=
3∑
k=1

∂2V k

∂xi∂xj
uk,

Therefore, we find

D
(
Φ1
V u
)
−
(
D
(
Φ1
V u
))T =

(
I +DV T

)
(Du−DuT ) ◦ (I + V )(I +DV ).

Now, defining cr : so(3)→ R3, where so(3) is the space of skew-symmetric matrices, by

cr

 0 −v3 v2
v3 0 −v1
−v2 v1 0

 =

v1
v2
v3

 ,

we can prove that, for any invertible matrix B and skew-symmetric matrix A, cr(BTAB) =
det(B)B−1cr(A). Since curlu = cr

(
Du−DuT

)
, we find

curl Φ1
V u = JV (I +DV )−1curlu ◦ (I + V )

= Φ2
V curlu.

For the last commutativity relation div ◦Φ2
V = Φ3

V ◦div , we proceed by duality. Take u in C∞(Ω̄V )3

and v in C∞0 (ΩV ). First, we notice that the Φk
V are isomorphisms, as

(
ΦkV
)−1 = Φk

(I+V )−1−I.
Therefore,

ˆ
Ω

(
div Φ2

V u
)
v = −

ˆ
Ω

(
Φ2
V u
)
· ∇v

= −
ˆ

Ω

(
Φ2
V u
)
·
[
Φ1
V

(
∇
(
Φ0
V

)−1
v
)]
,
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where we used Φ1
V∇v = ∇Φ0

V v. Using Lemma 2.3.2, we then find
ˆ

Ω

(
div Φ2

V u
)
v = −

ˆ
Ω

Φ3
V

(
u · ∇

(
Φ0
V

)−1
v
)

= −
ˆ

ΩV
u · ∇

(
Φ0
V

)−1
v

=
ˆ

ΩV
div u ·

(
Φ0
V

)−1
v

=
ˆ

Ω

(
Φ3
V div u

)
v.

Now, we prove that traceless functions or vector fields are preserved by the maps ΦkV . For k = 0,
we simply take u ∈ C∞0 (Ω), and verify that u ◦ (I + V ) is in H1

0 (Ω). We then find the desired
result by density.
The proofs for k = 1 and k = 2 being similar, we only write the first one. Take u in H0(curl ,ΩV )
and v in H(curl ,Ω). Then, we have

ˆ
∂Ω

((
Φ1
V u
)
× n

)
· v =

ˆ
Ω

curl
(
Φ1
V u
)
· v −

ˆ
Ω

(
Φ1
V u
)
· curl v

=
ˆ

Ω
Φ2
V (curlu) · Φ1

V

((
Φ1
V

)−1
v
)
−
ˆ

Ω

(
Φ1
V u
)
· Φ2

V

(
curl

(
Φ1
V

)−1
v
)

=
ˆ

ΩV
curlu ·

((
Φ1
V

)−1
v
)
−
ˆ

ΩV
u ·
(

curl
(
Φ1
V

)−1
v
)

= 0,

so that Φ1
V u is in H0(curl ,Ω) as claimed.

As the ΦkV transformations correspond to pullbacks of k-forms, it is not surprising that Φ1
V

preserves circulations, and Φ2
V preserves fluxes. This result is given by the following lemma.

Lemma 2.3.4. Let u be in H(curl ,ΩV ) with curlu · n = 0, and v be in H0(div ,ΩV ). We then
have the following identities

ˆ
γ′
V

u · t′V =
ˆ
γ′

Φ1
V u · t′,

ˆ
ΣV

v · nΣV =
ˆ

Σ
Φ2
V v · nΣ.

Proof. For the first equality, we suppose that u is smooth so that we can study the circulation in
the usual sense. The general case then follows from a density argument, and the continuity of the
circulation as defined in [Alo+18, Section 2] with respect to the H(curl ,Ω) norm. We identify γ′
with a Lipschitz embedding γ′ : S1 → ∂Ω, so that the derivative γ̇′(s) is defined for a.e. s ∈ S1.
γ′V is then identified as the embedding (I + V ) ◦ γ′, for which the derivative is given by

γ̇′V = ((I +DV ) ◦ γ′) γ̇′.

The circulation of u along γ′V is then given by
ˆ
γ′
V

u · t′V =
ˆ
S1

[u ◦ γ′V ] (s) · γ̇′V (s)ds.



2.3. Pullbacks on the de Rham complex 55

Using the formula for γ′V and its derivative as an embedding, we get
ˆ
γ′
V

u · t′V =
ˆ
S1

[u ◦ (I + V ) ◦ γ′] (s) · [((I +DV ) ◦ γ′) γ̇′] (s)ds

=
ˆ
S1

[(
I +DV T

)
u ◦ (I + V )

]
◦ γ′(s) · γ̇′(s)ds

=
ˆ
γ′

Φ1
V u · t′.

For the second equality, we choose v ∈ H0 (div ,ΩV ) and use the following equality given in
[Alo+18, Lemma 1] for ψ ∈ H1(ΩV \ΣV )

ˆ
ΣV

v · nΣV [[ψ]]ΣV =
ˆ

ΩV \ΣV
v · ∇ψ +

ˆ
ΩV \ΣV

(div v)ψ. (2.16)

Taking ψ = u(ΩV ) in V1 (ΩV \ΣV ) to be the solution of Eq. (2.9) in ΩV , we get
ˆ

ΣV
v · nΣV =

ˆ
ΩV \ΣV

v · ∇u(ΩV ) +
ˆ

ΩV \ΣV
(div v)u(ΩV )

=
ˆ

Ω\Σ

(
Φ2
V v
)
· ∇
(
Φ0
V u(ΩV )

)
+
ˆ

Ω\Σ

(
div Φ2

V v
) (

Φ0
V u(ΩV )

)
=
ˆ

Σ

(
Φ2
V v
)
· nΣ

[[
Φ0
V u(ΩV )

]]
Σ .

From Proposition 2.3.3, we have that Φ0
V u(ΩV ) is in V1(Ω\Σ) so that

[[
Φ0
V u(ΩV )

]]
Σ = 1, which

proves the desired equality.

We know from Lemma 2.3.2 that when we pullback products in H(curl ,Ω) or H(div ,Ω),
there is a non-homogeneous term α(V ) which appears. We will have to consider such products in
the next sections to differentiate the variational formulations of the harmonic fields. The next
lemma shows how V 7→ α(V ) behaves under differentiation when integrated against products of
vector fields.

Lemma 2.3.5. Let k be a non-negative integer. Then, the mapping V 7→ α(V ) from Bk+1 to
W k,∞ (R3;M3(R)

)
defined in Lemma 2.3.2 is smooth. Furthermore, denoting its differential at

zero by α′(0;V ), we have:
• If u and v are in H0(div ,Ω) ∩H(curl ,Ω) and Ω is 1-regular

ˆ
Ω

(α′(0;V )u) · v =
ˆ

Ω
(div u)V · v +

ˆ
Ω

curl (u× V ) · v −
ˆ

Ω
(curlu)× V · v

+
ˆ

Ω
(div v)u · V.

(2.17)

• If u is in H0(div ,Ω) ∩H(curl ,Ω), v is in H(curl ,Ω) and Ω is 1-regular
ˆ

Ω
(α′(0;V )u) · v =

ˆ
Ω

(div u)V · v +
ˆ

Ω
(u× V ) · curl v−

ˆ
∂Ω

(u× V )× n · v

−
ˆ

Ω
(curlu)× V · v −

ˆ
Ω
∇(u · V ) · v.

(2.18)
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• If u and v are in H0(div ,Ω) ∩H(curl ,Ω) and Ω is s-regular with s > 1/2
ˆ

Ω
(α′(0;V )u) · v =

ˆ
Ω

(div u)V · v +
ˆ

Ω
(u× V ) · curl v +

ˆ
∂Ω

(u · v)(V · n)

−
ˆ

Ω
(curlu)× V · v +

ˆ
Ω

(div v)u · V.
(2.19)

Proof. We recall that α(V ) = JV (I +DV )−1 (I +DV T
)−1. To find that α is smooth, we simply

notice that the maps defined on the unit ball ofM3(R) given by A 7→ (I +A)−1, A 7→ (I +AT )−1

and A 7→ det(I + A) are smooth. We also have that V 7→ DV is linear and bounded from
W k+1,∞ (R3)3 to W k,∞ (R3;M3(R)

)
. We conclude by composition that α is smooth.

Using that the differential of the determinant and the inverse at the identity are, respectively, the
trace and minus the identity, we find

α′(0;V ) = (divV )I−DV −DV T .

To prove the different formulas, we begin by choosing u and v in H1(Ω)3. Then, u · V and u× V
are in H1, and we have

∇(u · V ) = DuTV +DV Tu,

curl (u× V ) = DuV −DV u− (div u)V + (divV )u.

Combining these formulas, we find

∇(u · V )− curl (u× V ) = −DuV +DV u+ (div u)V − (divV )u+DuTV +DV Tu

= −α′(0;V )u− (Du−DuT )V + (div u)V
= −α′(0;V )u− curlu× V + (div u)V,

so that
α′(0;V )u = (div u)V + curl (u× V )− curlu× V −∇(u · V ).

We therefore haveˆ
Ω

(α′(0;V )u) · v =
ˆ

Ω
(div u)V · v +

ˆ
Ω

curl (u× V )−
ˆ

Ω
(curlu)× V · v −

ˆ
Ω
∇(u · V ) · v.

For Eq. (2.17), Ω is assumed to be 1-regular so that H0(div ,Ω) ∩ H(curl ,Ω) coincides with
H1(Ω)3. We find the relation using

ˆ
Ω
∇(u× V ) · v = −

ˆ
Ω

(div v)(u · V ) +
ˆ
∂Ω

(v · n)(u · V ).

For Eq. (2.18), we use
ˆ

Ω
curl (u× V ) · v =

ˆ
Ω

(u× V ) · curl v −
ˆ
∂Ω

(u× V )× n · v.

We then use that u× V is in H1(Ω)3 so that its tangential trace is in H1/2(Ω)3, and conclude
by using the density of H1(Ω)3 in H(curl ,Ω) and that the tangential trace is continuous from
H(curl ,Ω) to H−1/2(∂Ω)3.
Finally, for Eq. (2.19), we use the two previous integration by parts formula, together with



2.4. Shape differentiation as two-forms in the Lipschitz category 57

(u×V )×n = (u·n)V −(V ·n)u. We then conclude by density of H1(Ω)3 in H0(div ,Ω)∩H(curl ,Ω),
and s-regularity with s > 1/2 to obtain convergence of the boundary integrals.

2.4 Shape differentiation as two-forms in the Lipschitz cat-
egory

In this section we prove the differentiability of V 7→ Φ2
VBV . As is classical in shape variation

of PDEs (see for example [HP18, Chapter 5]), this is done using an implicit function argument
on a pulled back version of the variational formulations. Since we are interested in the harmonic
fields as two forms, we will be using the mixed formulation given by Eq. (2.15). Furthermore, we
will obtain an expression for the shape derivative of V 7→ Φ2

VB(ΩV ). As expected, this is given
by the sum of the Lie derivative of B(Ω) when seen as a two-form and of a "Eulerian" derivative
which only depends on the normal trace of V .
Theorem 2.4.1. The mapping {

B1 → H0(div ,Ω)
V 7→ Φ2

VB(ΩV )
,

is smooth at zero. Furthermore, if Ω is 1-regular (see Section 2.2.1), the differential of this
mapping B′2(Ω;V ) is given by

B′2(Ω;V ) = curl (B(Ω)× V ) +∇uV ,

where uV verifies {
∆uV = 0 in Ω,
∇uV · n = div Γ(B(Ω)(V · n)) on ∂Ω.

Proof. We denote by (B(ΩV ), u(ΩV )) the solutions to Eq. (2.15) in ΩV , that is
ˆ

ΩV
B(ΩV ) · τ +

ˆ
ΩV

u(ΩV )div τ =
ˆ

ΣV
τ · nΣV , (2.20)

ˆ
ΩV

divB(ΩV )v = 0, (2.21)

for all (τ, v) in H0 (div ,ΩV )× L2 (ΩV ). The proof of Theorem 2.4.1 comes in two steps. First,
we prove that V 7→ Φ2

VB(ΩV ) is smooth. Then, we find an expression for the differential of this
mapping at zero.

Shape differentiability Pulling back Eq. (2.20) onto Ω, and using Lemmas 2.3.2, 2.3.4
and 2.3.5, we get

ˆ
Ω

Φ3
V (B(ΩV ) · τ) +

ˆ
Ω

Φ3
V (u(ΩV )div τ) =

ˆ
Σ

(
Φ2
V τ
)
· nΣ,

ˆ
Ω

(
α(V )−1Φ2

VB(ΩV )
)
·
(
Φ2
V τ
)

+
ˆ

Ω

(
Φ0
V u(ΩV )

) (
div Φ2

V τ
)

=
ˆ

Σ

(
Φ2
V τ
)
· nΣ. (2.22)

Similarly, pulling back Eq. (2.21) onto Ω, we get
ˆ

Ω

(
div Φ2

VB(ΩV )
) (

Φ0
V v
)

= 0. (2.23)
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Of course, since the ΦkV define isomorphisms, we can take test functions (τ, v) inH0(div ,Ω)×L2(Ω).
We now define

F : W 1,∞(R3)3 ×
(
H0(div ,Ω)× L2

0(Ω)
)
→
(
H0(div ,Ω)× L2(Ω)

)′
by

F (V ;σ, u)(τ, v) =
ˆ

Ω

(
α(V )−1σ

)
· τ +

ˆ
Ω
udiv τ +

ˆ
Ω

(div σ) v −
ˆ

Σ
τ · nΣ,

so that F (V ; Φ2
VB(ΩV ),Φ0

V u(ΩV )) = 0.
Now, we know from Lemma 2.3.5 that V 7→ α(V )−1 is smooth. Since (σ, u) 7→ F (V ;σ, u) is

linear and bounded, we deduce that F is smooth as well. Furthermore, denoting by Dσ,uF the
differential of F with respect to the (σ, u) variables, we have

Dσ,uF (0;B0, u0)(σ′, u′)(τ, v) =
ˆ

Ω
σ′ · τ +

ˆ
Ω
u′div τ +

ˆ
Ω

(div σ′) v.

We therefore find that Dσ,uF (0;B0, u0) is an isomorphism from H0(div ,Ω)× L2
0(Ω) to the dual

space
(
H0(div ,Ω)× L2(Ω)

)′ by the same inf-sup inequalities used to prove the well-posedness
of Proposition 2.2.2. Using the implicit function theorem, we deduce that for small enough V ,
there is a unique smooth mapping V 7→ (σ(V ), u(V )) such that F (V ;σ(V ), u(V )) = 0. From
uniqueness, we find that (σ(V ), u(V )) = (Φ2

VB(ΩV ),Φ0
V u(ΩV )).

Expression of the shape derivative We now wish to obtain the expression of the shape
derivative of Φ2

V (ΩV ). We write the differential of V 7→
(
Φ2
VB(ΩV ),Φ0

V u(ΩV )
)
at zero as

(B′2(Ω;V ), u′0(Ω;V )) and decompose it as

B′2(Ω;V ) = curl (B(Ω)× V ) +B′E,2(Ω;V ),
u′0(Ω;V ) = B(Ω) · V + u′E,0(Ω;V ).

Assuming that Ω is 1-regular, we know that B(Ω) is in H1(Ω)3, so that B(Ω)× V is in H1(Ω)3

and B(Ω) · V is in H1(Ω). Then, differentiating Eqs. (2.22) and (2.23) with respect to V and
using Lemma 2.3.4 for the flux term, we obtain

ˆ
Ω
B′2(Ω;V ) · τ +

ˆ
Ω
u′0(Ω;V )div τ =

ˆ
Ω

(α′(0;V )B(Ω)) · τ,
ˆ

Ω
(divB′2(Ω;V )) v = 0,

for all (τ, v) in H0(div ,Ω)× L2(Ω). Now, using Eq. (2.17) of Lemma 2.3.5, we have
ˆ

Ω
(α′(0;V )B(Ω)) · τ =

ˆ
Ω

curl (B(Ω)× V ) · τ +
ˆ

Ω
(div τ)(B(Ω) · V ),

so that ˆ
Ω
B′E,2(Ω;V ) · τ +

ˆ
Ω
u′E,0(Ω;V )div τ = 0, (2.24)

ˆ
Ω

(
divB′E,2(Ω;V )

)
v = 0, (2.25)
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To prove that B′E,2(Ω;V ) is a gradient, we apply the Hodge decomposition Eq. (A.2) to Eq. (2.24).
Taking τ = B(Ω), we obtain

´
ΩB

′
E,2(Ω;V ) ·B(Ω) = 0, so that B′E,2(Ω;V ) is orthogonal to K(Ω).

Taking τ in curlH0(curl ,Ω), we obtain
´

ΩB
′
E,2(Ω;V ) · τ = 0. We conclude that there exists a

unique zero average function uV in H1(Ω) such that B′E,2(Ω;V ) = ∇uV . Eq. (2.25) then implies
∆uV = 0. For the boundary condition, we know that B′2(Ω;V ) · n = 0, so that

∇uV · n = curl (V ×B(Ω)) · n.

From [BCS02, Section 4], we then know that (V ×B(Ω))× n is in H−1/2(div Γ, ∂Ω), and that

curl (V ×B(Ω)) · n = div Γ ((V ×B(Ω))× n) .

Finally, we use the formula (a× b)× c = (a · c)b− (b · c)a to obtain the desired boundary condition
for uV .

2.5 Shape differentiation as one-forms in the smooth cate-
gory

The aim of this section is to prove a shape differentiability result for the harmonic fields
when pulled pack as one-forms in the smooth category. We will thus be using the variational
formulation given by Eq. (2.9), and will be able to use classical elliptic regularity results to
deal with shape differentiability with higher regularity. Indeed, since Eq. (2.9) is essentially a
classical variational formulation for the Poisson equation (instead of the mixed formulation used
in Section 2.4), the corresponding pulled back variational formulation on the fixed domain Ω is a
"div-A-grad" equation, for which the elliptic regularity theory is well known.
Throughout this section, we suppose that there exists a smooth diffeomorphism F : S1×D2 → Ω̄,
so that, in particular, Ω is a toroidal domain with smooth boundary. This also implies from
[Sch95][Theorem 2.2.7] that B(Ω) is in fact smooth up to the boundary. We denote the first
component of F−1 as φ, which is a smooth function from Ω̄ to S1. We also assume that the
cutting surface Σ̄ is given by F({0} ×D2). Therefore, F defines a smooth diffeomorphism from
(0, 1)×D2 to Ω̄\Σ̄. We denote the first component of its inverse by φ̃, which is a smooth function
from Ω̄\Σ̄ to R.
The main theorem of this section is the following.

Theorem 2.5.1. Let k be a positive integer. The mapping{
Bk → Hk+1(Ω)3

V 7→ Φ1
VB(ΩV )

,

is smooth at zero, and its differential verifies

B′1(Ω;V ) = ∇(V ·B(Ω)) +∇uV ,

where uV solves {
∆uV = 0 in Ω,
∇uV · n = div Γ (B(Ω)(V · n)) on ∂Ω.

Before proving Theorem 2.5.1, we prove the following technical Lemma.

Lemma 2.5.2. φ̃ is in V1(Ω\Σ), and its partial derivatives are in C∞(Ω̄).



60 CHAPTER 2. Shape differentiation of harmonic fields

In order to prove Lemma 2.5.2, we proceed with a differential geometry argument. To do so,
we begin by recalling some elementary constructions from differential geometry.

Let M and N be smooth manifolds, with or without boundaries. We recall that, given a
smooth function F ∈ C∞(M ;N), we can associate its pushforward F∗ ∈ C∞(TM ;TN). Moreover,
given a smooth vector field X of M , F∗X defines a vector field along F , that is, F∗X is a smooth
map from M to TN verifying that (F∗X) (x) is in TF (x)N for x in TxM .

Denoting π as the quotient projection from R to S1 = R/Z and êR as the canonical unit vector
field on R, we obtain in this particular case that π∗êR may be associated with a vector field of
S1. We denote this vector field as êS1 . This comes from the fact that, for all x, x′ such that
π(x) = π(x′), we have (π∗êR) (x) = (π∗êR) (x′).

Proof of Lemma 2.5.2. For the first statement, it is clear from the definition of φ̃ that its traces
on Σ are equal to 1 and 0, so that the jump across Σ is equal to 1. As a consequence, we find
that φ̃ is indeed in V1(Ω\Σ).

For the second statement, we begin by noticing that, using the notations from the introduction
of this section, we have π ◦ φ̃ = φ|S1\{0}. As a consequence, we obtain directly that π ◦ φ̃ extends
to a smooth function from Ω̄ to S1. The idea is now to prove that the partial derivatives of φ̃
may be obtained in a simple way from the pushforward of the canonical vector fields of Ω̄ by
π ◦ φ̃. Let xi be one of the canonical Cartesian coordinates of R3.

On one side, since π ◦ φ̃ is a smooth function from Ω̄ to S1, we know that
(
π ◦ φ̃

)
∗ ∂xi is a

smooth vector field along π ◦ φ̃. As a consequence, there exists fi in C∞(Ω̄) such that, for all x in
Ω̄. ((

π ◦ φ̃
)
∗ ∂xi

)
(x) = fi(x)êS1(π ◦ φ̃(x)).

On the other side, we know that for all x in Ω\Σ, we have((
π ◦ φ̃

)
∗ ∂xi

)
(x) = π∗

[
φ̃∗∂xi(x)

]
= π∗

[
∂xi φ̃(x)êR(φ̃(x))

]
= ∂xi φ̃(x)π∗

[
êR(φ̃(x))

]
= ∂xi φ̃(x)êS1(π ◦ φ̃(x)).

From this, we find that ∂xi φ̃ is equal to fi on Ω\Σ. As a consequence, we obtain that ∂xi φ̃
extends to a smooth function of Ω̄.

Proof of Theorem 2.5.1. The proof comes in two steps. First, we prove that V 7→ Φ1
VB(ΩV ) is

indeed differentiable in the desired norms. This is given by an implicit function argument together
with elliptic regularity results, which is similar to the proof of [HP18][Theorem 5.5.1]. Then, we
obtain an expression for the shape derivative of Φ1

VB(ΩV ). This is done by differentiating the
pulled-back variational formulation given in Eq. (2.9) with respect to V , and using Lemma 2.3.5.
As expected, we obtain the sum of the Lie derivative of B(Ω) as a one-form and of the "Eulerian"
derivative which we also obtained in Theorem 2.4.1.

Shape differentiability We recall that B(ΩV ) = ∇̃u(ΩV ), where u(ΩV ) is the solution to the
following variational problem. Find u(ΩV ) in V1(ΩV \ΣV ) such that, for all v in H1(ΩV ), we have

ˆ
ΩV
∇u(ΩV ) · ∇v = 0.
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In order to work in H1(Ω), we define ũ(ΩV ) by

Φ0
V ũ(ΩV ) = Φ0

V u(ΩV )− φ̃.

We then have, using Proposition 2.3.3
ˆ

Ω

(
α(V )∇

(
Φ0
V ũ(ΩV )

))
·
(
∇Φ0

V v
)

=
ˆ

Ω
∇φ̃ ·

(
∇Φ0

V v
)

for all v in H1(ΩV ). Since Φ0
V is an isomorphism from H1(ΩV ) to H1(Ω), we obtain that

ˆ
Ω

(
α(V )∇

(
Φ0
V ũ(ΩV )

))
· ∇v =

ˆ
Ω
∇φ̃ · ∇v

for all v in H1(Ω), which is the variational formulation of{
div (α(V )∇u) = ∆φ̃, in Ω,
(α(V )∇u) · n = 0, on ∂Ω.

We now proceed with an inverse function theorem argument. Since, using Lemma 2.5.2, we know
that ∆φ is in C∞

(
Ω̄
)
, we may define

Fk :
{
Bk+2 ×Hk+2(Ω)→ Hk(Ω)×Hk+1/2(∂Ω)
(V, u) 7→

(
div (α(V )∇u)−∆φ̃, (α(V )∇u) · n

) .

From Lemma 2.3.5, we know that V 7→ α(V ) is smooth from Bk+2 to W k+1,∞(R3;M3(R)) so
that, since Fk is linear and bounded with respect to u, Fk is smooth as well. Furthermore, we
have Fk(0, ũ(Ω)) = 0 and

DuFk(0, ũ(Ω))(v) = (∆v,∇v · n).

From [Gri11][Section 2.5.1], we then know that DuFk(0, ũ(Ω)) is an isomorphism from Hk+2(Ω)
to Hk(Ω) × Hk+1/2(∂Ω). Using the implicit function theorem, we know that, for ‖V ‖Wk+2,∞

small enough, there is a unique smooth mapping V 7→ u(V ) such that Fk(u(V ), V ) = 0. From
uniqueness, we deduce that u(V ) = Φ0

V ũ(ΩV ).
Finally, we are now able to conclude that V 7→ Φ1

VB(ΩV ) is smooth at zero. Indeed, we have by
definition

Φ0
V u(ΩV ) = ũ(ΩV ) + φ̃,

so that
Φ1
VB(ΩV ) = ∇

(
Φ0
V ũ(ΩV )

)
+∇φ̃.

Since ∇φ̃ is in Hk+1(Ω)3, and Bk+2 3 V 7→ Φ0
V ũ(ΩV ) ∈ Hk+2(Ω) is smooth at zero, we deduce

that V 7→ Φ1
VB(ΩV ) ∈ Hk+1(Ω)3 is also smooth at zero.

Expression of the shape derivative We now wish to find an expression for the differential
of V 7→ Φ1

VB(ΩV ), which we denote B′1(Ω;V ). We begin by writing

B′1(Ω;V ) = ∇(B(Ω) · V ) +B′E,1(Ω;V ).
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Using, Proposition 2.3.3, we know that curl
(
Φ1
VB(ΩV )

)
= 0, so that B′1(Ω;V ) is curl free.

Similarly, using Lemma 2.3.4, we have
ˆ
γ′

(
Φ1
VB(ΩV )

)
· t′ = 1,

so that ˆ
γ′
B′1(Ω;V ) · t′ = 0.

Since B′1(Ω;V ) and B′E,1(Ω;V ) differ from each other by a gradient, we know that B′E,1(Ω;V )
is also curl free and circulation free. We then know that there exists a unique zero average
function uV in H1(Ω) such that B′E,1(Ω;V ) = ∇uV (see Section 2.2.2). To obtain the variational
formulation for uV , we now write

ˆ
Ω

(
α(V )Φ1

VB(ΩV )
)
· ∇v = 0,

for all v in H1(Ω). Differentiating with respect to V , we obtain
ˆ

Ω
(α′(0;V )B(Ω)) · ∇v +

ˆ
Ω

(∇ (V ·B(Ω)) +∇uV ) · ∇v = 0.

Using Eq. (2.18) of Lemma 2.3.5 for v in C∞
(
Ω̄
)
, as well as (B(Ω)× V )× n = −B(Ω)(V · n), we

then obtainˆ
∂Ω

(B(Ω) · ∇v) (V · n)−
ˆ

Ω
∇(B(Ω) · V ) · ∇v +

ˆ
Ω

(∇(B(Ω) · V ) +∇uV ) · ∇v = 0,

so that, integrating by part on the boundary term, we obtain
ˆ

Ω
∇uV · ∇v =

ˆ
∂Ω

div Γ (B(Ω) (V · n)) v.

We are then able to conclude from density of C∞
(
Ω̄
)
in H1(Ω).

2.6 Conclusion and perspectives
Conclusion In this chapter, we have studied the shape differentiability properties of normalized
harmonic fields in toroidal domains. To this end, we have introduced in Section 2.2 two equivalent
variational formulations for the normalized harmonic field, a first one where H(curl ,Ω) is the
variational space, and second one where it is H0(div ,Ω). We then defined in Section 2.3 ways to
pull vector fields back from a deformed domain ΩV onto a fixed one Ω. These transformations,
which correspond to usual pullbacks in the differential forms setting, allow us to preserve the
variational spaces of the variational formulations. Using these transformations, we then obtained
a shape differentiability result for each variational formulation of the normalized harmonic fields.
For the case of H0(div ,Ω), we proved in Section 2.4 the smoothness of V 7→ Φ2

VB(ΩV ) and
provided a formula for the differential under the assumption that Ω is 1-regular. For the case of
H(curl ,Ω), we proved in Section 2.5 the smoothness of V 7→ Φ1

VB(ΩV ) from Bk to Hk+1(Ω)3

under the additional assumption that Ω is smooth and gave a formula for the differential. In
both cases, we found that the formula for the shape derivative is given by the sum of a Lie
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derivative, corresponding to the choice of pullback, and a Eulerian part, independent of the choice
of pullback.

Perspectives First, we saw in the introduction of this chapter that one may also pull the
normalized harmonic fields back using the pushforward by (I+V )−1. Although this transformation
does not preserve the divergence or the curl, it is natural to use it when considering dynamical
properties of the harmonic field. We will consider this way of transforming the normalized harmonic
field in Chapter 4. In this case, we will adapt Theorem 2.5.1 to fit this case and find that the
differential of V 7→ (I +V )−1

∗ B(ΩV ) at zero is unsurprisingly given by B′vf(Ω;V ) = [V,B0] +∇uV .
On another note, we have proven that V 7→ Φk

VB(ΩV ) is not only differentiable at zero,
but smooth. One may then wonder what the higher order shape derivatives of the harmonic
fields may be, and under what regularity assumptions we may obtain geometrically meaningful
formulas for these derivatives. Intuitively, one may expect that higher order derivative should
be given by the sum of a composition of Lie derivatives by the deformation vector fields and of
a Eulerian part independent on the choice of pullback. Having rigorous derivations for these
formulas would necessitate adapting Lemma 2.3.5 to higher order derivatives of V 7→ α(V ), for
which the computations may be more involved if one wishes to obtain geometrically meaningful
terms.
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3.1 Introduction
For a given vector field F on a three-dimensional domain Ω, we recall from Section 1.3.2 that

its helicity (also known as magnetic or Biot–Savart helicity) is defined by the formula

H (F ) = 1
4π

ˆ
Ω×Ω

F (y) ·
(
F (x)× y − x

|y − x|3

)
dxdy. (3.1)

This quantity plays an important role in plasma physics, fluid dynamics and magnetohydro-
dynamics (see e.g. [Arn66; AK21; FLS24]). In the context of electromagnetism, helicity of a
magnetic field (called magnetic helicity) can be seen as a scalar quantifying the linkage of the
magnetic field [Mof69; Arn14]. As was seen in Section 1.3.2, Eq. (3.1) can be interpreted as the
average linking number of the field lines of F when it is a magnetic field, that is, divergence free
and tangent to the boundary.

65
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When working with magnetic fields of Ω, a natural connection with vector potentials appears.
First note that if one introduces the Biot–Savart operator of F

BS (F )(y) = 1
4π

ˆ
Ω

F (x)× (y − x)
|y − x|3

dx, (3.2)

one obtains that the helicity of F is the L2 inner product of F with BS (F ). For simply connected
domains, the latter remains true if we replace BS (F ) by any vector potential of F (we recall that
curl BS (F ) = F ). For three-dimensional domains that are not simply connected, the connection
between helicity and vector potentials is slightly more involved and have been established by
Bevir and Gray in [BG80] for toroidal domains 1 and [MV19] for more general ones. We recall
the definition and main properties of the magnetic helicity in Section 3.2.1.

A classical mathematical problem related to helicity studied in e.g. [Can+00; Can+99; Val19;
Mon23] is the maximization of the helicity on H0(div 0,Ω) 2 with fixed L2 norm. The critical
vector field of this optimization problem are in fact eigenfields of the curl operator which can be
seen thanks to a modified Biot–Savart operator denoted here BS ′ [Can+00].

Elements of shape optimization were also discussed in [Can+00] and [Can+99] to characterize
the domain with the highest eigenvalue of BS ′ for a given volume. Some properties of the
maximizing fields on such a domain were given, but it is also unclear whether the optimal shape
exists, as some computations suggest that it would have to be a singular sphere, with North and
South Pole collapsed to a single point. Recent works on the existence of an optimal shape and
its characterization for the related problem of the first curl eigenvalue can be found in [EP23b;
Ger23b; Ger23a].

In this chapter, we are interested in a slightly different problem. Given a toroidal domain
Ω, we consider the set of harmonic fields, that is the set of vector fields that are divergence
free, curl free and tangent to the boundary. By classical results of Hodge theory, this set is a
one-dimensional vector space. We are then interested in the helicity of the normalized harmonic
field B(Ω) introduced in Chapter 2, where physically, the normalization is related to total flux of
currents through the central hole of the torus. Thus, for any regular enough toroidal domain, we
define a scalar quantity that we call the harmonic helicity of the domain Ω.

Designing a numerical scheme to compute this shape functional is not obvious. A close problem
is the spectral approximation of the curl operator in multiply connected domains; this has been
tackled in [LRV15; Alo+18] using the finite element method. For efficiency considerations, it is
important to avoid the computation of the double integral in Eq. (3.1) and use another vector
potential than the Biot–Savart. Using classical results on vector potentials characterizations
[Amr+98] and tools from finite element exterior calculus [AFW06; AFW10], we provide efficient
numerical approximation schemes and implementation for the harmonic helicity.

Physical motivations for considering harmonic helicity arise from the design of stellarators,
advanced nuclear fusion devices that rely on the confinement of intensely hot plasma through a
sophisticated magnetic field. A significant challenge arises due to the inherent impossibility of
creating a non-zero magnetic field with constant magnitude on a toroidal domain. Additionally,
variations in the magnetic field amplitude, typically inversely proportional to the major radius,
result in a vertical drift, which can be mitigated through the implementation of a twisted magnetic
field. Optimization of the shape of the coils is a very active field [Pau+18; PRS22]. A measure
of the twisted nature of the magnetic field is expressed by the magnetic helicity. We refer to
[IPW20] for a very nice introduction to the topic.

In contrast to Tokamaks, which are axisymmetric devices inducing a current inside the plasma

1. That is bounded open subsets of R3 homeomorphic to a full torus.
2. we refer to Section 2.2.1 for the definition of this Hilbert space.
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to generate a twisting magnetic field, stellarators aim for stability without requiring a current
within the plasma. Consequently, the magnetic field employed to stabilize the plasma in a
stellarator can be reasonably approximated as a harmonic field within the domain representing
the plasma. Hence, we believe that the optimization of the shape of the plasma to increase the
harmonic helicity could give rise to interesting new forms of plasma.

This chapter is organized as follows:
• In Section 3.2, we introduce the necessary functional framework for the rest of the chapter.

We begin by recalling some aspects of the constructions given in Section 2.2 for toroidal
domains and for the variational formulations of the normalized harmonic fields. Next,
we give two PDE formulations to characterize vector potentials. Finally, we make the
connection between vector potentials and the helicity through the Bevir–Gray formula.

• In Section 3.3, we begin by introducing the precise definition of the harmonic helicity of
a toroidal domain. We then give a few basic properties of this shape functional, that is,
its dependence on scaling and planar reflections of the domain. The rest of the section
is dedicated to the computation of the shape derivative of the harmonic helicity. This
is done using shape differentiation of several PDE problems and a subtle use of the
transformations introduced in Section 2.3. To the best of the authors’ knowledge, the
employed methodology is original and may hold applicability in addressing new shape
differentiation problems involving other Hilbert complexes.

• In Section 3.4, we recall the framework of finite element exterior calculus. We then use
classical results on approximations of Hodge Laplacian problems. The adaptations of these
tools to our problem is not straightforward and provides a method to compute both the
helicity and the shape gradient.

• In Section 3.5, we provide numerical results of the proposed numerical methods on specific
shapes motivated by the study of stellarator plasmas. Then we present two numerical
experiments to improve the harmonic helicity of a standard plasma shape.

3.2 Prerequisites
We begin by recalling some elements of Section 2.2 for the functional framework and the

variational formulations of the harmonic fields.
Let Ω be a Lipschitz toroidal domain, that is, a Lipschitz open set Ω such that Ω̄ is homeo-

morphic to the full torus S1 ×D2. As in Section 2.2.1, we introduce a toroidal and a poloidal
loop on ∂Ω denoted as γ′ and γ with unit tangent vector fields t′ and t respectively. We are then
able to define notions of circulations along γ′ and γ as in Section 2.2.2 for vector fields with curl
tangent to the boundary.

We also recall that H(curl ,Ω) (resp. H(div ,Ω)) is the space of square integrable vector fields
with curl in L2(Ω)3 (resp. divergence in L2(Ω)). Furthermore, elements of H(curl ,Ω) (resp.
H(div ,Ω)) have tangential (resp. normal) traces in H−1/2 with

ˆ
∂Ω

(u× n) · ϕ =
ˆ

Ω
u · curlϕ−

ˆ
Ω

curlu · ϕ, (3.3)

for every ϕ in H1(Ω)3, and
ˆ
∂Ω

(u · n)ϕ =
ˆ

Ω
u · ∇ϕ+

ˆ
Ω

(div u)ϕ, (3.4)

for every ϕ in H1(Ω). We also denote as H
(
curl 0,Ω

)
(resp. H

(
div 0,Ω

)
) the space of square
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integrable vector fields of Ω with vanishing curl (resp. divergence) and define L2
0(Ω) as the space

of square integrable functions of Ω with zero average. We finally recall that H0(curl ,Ω) (resp.
H0(div ,Ω)) is the space of vector fields in H(curl ,Ω) (resp. H(div ,Ω)) with vanishing trace, and

H0
(
curl 0,Ω

)
= H0(curl ,Ω) ∩H

(
curl 0,Ω

)
H0
(
div 0,Ω

)
= H0(div ,Ω) ∩H

(
div 0,Ω

)
.

The set of harmonic fields of Ω is then defined as

K(Ω) =
{
u ∈ L2(Ω)3 | div u = 0, curlu = 0 , u · n = 0

}
,

= H
(
curl 0,Ω

)
∩H0

(
div 0,Ω

)
.

This space has dimension equal to the first Betti number of Ω, so that it is one-dimensional for
toroidal domains. We thus only need to prescribe a degree of freedom to single out an element of
K(Ω), which in our case is the circulation along the toroidal loop γ′.

We now recall how one may find variational formulations for the normalized harmonic field.
We introduce as in Section 2.2.1 a Lipschitz cutting surface Σ ⊂ Ω with unit normal vector field
nΣ. Ω\Σ is then a pseudo-Lipschitz domain, and we may define [[u]]Σ as the jump of u along Σ in
the direction of nΣ for u in H1(Ω\Σ). To define the normalized harmonic field of Ω, we recall
that there exists a unique function u ∈ H1(Ω\Σ) such that [[u]]Σ = 1 and for all v in H1(Ω)

ˆ
Ω\Σ
∇u · ∇v = 0. (3.5)

The normalized harmonic field B(Ω) is then defined as the L2 extension of ∇u to Ω. Finally, we
recall that Proposition 2.2.2 states that the following variational problem is well posed. Find
(Bdiv , udiv ) ∈ H0(div ,Ω)× L2

0(Ω) such that, for all (τ, v) ∈ H0(div ,Ω)× L2(Ω) we have
ˆ

Ω
(divBdiv ) v = 0,

ˆ
Ω
Bdiv · τ +

ˆ
Ω
udiv (div τ) =

ˆ
Σ
τ · nΣ.

(3.6)

Furthermore, we have Bdiv = B(Ω).

3.2.1 Vector potentials and Bevir–Gray formula

As was mentioned earlier, the numerical computation of the Biot–Savart operator can be
very costly. As a consequence, we chose to compute the helicity of the normalized harmonic
field by substituting BS(B(Ω)) by an appropriate vector potential of B(Ω). Indeed, since
curl BS(B(Ω)) = B(Ω), we know that any vector potential A(Ω) of B(Ω) can only differ from BS(B)
by the sum of a gradient and a harmonic field (see Eqs. (A.2) and (A.7) in Appendix A). Since
vector fields of H0

(
div 0,Ω

)
are orthogonal to gradient vector fields, we know that

´
ΩB(Ω) ·A(Ω)

can differ from H(B(Ω)) only through the harmonic part of the difference between A(Ω) and
BS(B(Ω)). However, this difference can be accounted for by modifying the formula of the magnetic
helicity, giving a quantity which is invariant under a change of the vector potential. This is given
by the well known Bevir–Gray formula [BG80] in toroidal domains, which was later generalized
to a large class of non-simply connected domains in [MV19]. In our case, for a vector field F in
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H0
(
div 0,Ω

)
and A any of its vector potentials, this invariant quantity is given by

H(F ) =
ˆ

Ω
F ·A−

(ˆ
γ

A · t
)(ˆ

γ′
A · t′

)
. (3.7)

Note that BS(V ) has zero circulation along γ′ [CDG01, Section III.A], so that this invariant
quantity does correspond to the usual Biot–Savart helicity.

From this formulation, a natural problem is to find good vector potentials, which are simple
to study, both theoretically and numerically. Getting back to the helicity of the normalized
harmonic field, we will study two natural vector potential candidates. First, a vector potential
given by a classical vector Laplacian problem, which is orthogonal to B(Ω), therefore canceling
the first term of Eq. (3.7). Second, a vector potential given in [Val19], which is of zero circulation
along the toroidal loop γ′, therefore canceling the second term. As we will see in Section 3.5,
using these two vector potentials also allows us to stay in a finite element exterior calculus setting
throughout the numerical computation of the harmonic helicity, and its shape gradient.

The first vector potential, which we denote by A1(Ω), is given by the following proposition.

Proposition 3.2.1. There exists a unique
(
A1(Ω), u

)
∈ H(curl ,Ω)×H(div ,Ω) such that, for

all (τ, v) ∈ H(curl ,Ω)×H(div ,Ω)
ˆ

Ω
A1(Ω) · τ =

ˆ
Ω

curl τ · u, (3.8)
ˆ

Ω
curlA1(Ω) · v +

ˆ
Ω

(div u)(div v) =
ˆ

Ω
B(Ω) · v. (3.9)

Furthermore, A1(Ω) verifies
1. A1(Ω) is in H0(div 0,Ω),
2. curlA1(Ω) = B(Ω),
3.

´
ΩA

1(Ω) ·B(Ω) = 0.

Proof. Since the second de Rham cohomology space of Ω is trivial, the space of harmonic 2-forms
of Ω vanishes, and this variational problem is equivalent to [AFW06, Equation (7.1)] for the case
k = 2. Existence and uniqueness is then given by [AFW06, Theorem 7.2].

To prove Item 1, we simply take τ in ∇H1(Ω) in Eq. (3.8). This gives us
´

ΩA
1(Ω) · τ = 0, so

that A1(Ω) is orthogonal to ∇H1(Ω), and therefore is in H0
(
div 0,Ω

)
by Eq. (A.4) in Appendix A.

To find Item 2, we proceed with the same splitting analysis used in [AFW06]. We define using the
Hodge decomposition Eq. (A.3), u = u∇ + ucurl with ucurl ∈ curlH(curl ,Ω) and u∇ ∈ ∇H1

0 (Ω).
We now want to prove that u∇ = 0. Choosing v ∈ H

(
div 0,Ω

)⊥ ∩H(div ,Ω) in Eq. (3.9), we get
ˆ

Ω
(div u∇) (div v) =

ˆ
Ω
B · v = 0.

Using the Poincaré inequality from Proposition A.2 of Appendix A, we get u∇ = 0, so that
div u = 0. As a consequence, Eq. (3.9) gives curlA1(Ω) = B(Ω).
Finally, since curlB(Ω) = 0, we simply get by choosing τ = B(Ω) in Eq. (3.8)

ˆ
Ω
A1(Ω) ·B(Ω) = 0,

proving Item 3.
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For the second vector potential A2(Ω), we first need to introduce the following spaces.

X (Ω) = {u ∈ H(curl ,Ω) | curlu · n = 0} ,

Z(Ω) =
{
u ∈ X (Ω) |

ˆ
γ′
u · t′ = 0

}
.

We then introduce the second vector potential A2(Ω), given by the following result proven in
[Val19]

Proposition 3.2.2. The following problem has a unique solution. Find (A2(Ω), u) ∈ Z(Ω) ×
∇H1(Ω) such that for all (τ, v) ∈ Z(Ω)×∇H1(Ω)

ˆ
Ω

curlA2(Ω) · curl τ +
ˆ

Ω
u · τ =

ˆ
Ω
B(Ω) · curl τ,

ˆ
Ω
A2(Ω) · v = 0.

(3.10)

Furthermore, we have curlA2(Ω) = B(Ω) and A2(Ω) ∈ H0
(
div 0,Ω

)
.

Of course, the two choices of potential vectors are related to each other. Since A1(Ω) and
A2(Ω) are in H0

(
div 0,Ω

)
and have the same curl, we get that A1(Ω)−A2(Ω) is in K(Ω). The

fact that A2(Ω) has zero circulation along γ′, and that B(Ω) has a circulation of 1 allows us to
find the relation

A2(Ω) = A1(Ω)−
(ˆ

γ′
A1(Ω) · t′

)
B(Ω). (3.11)

3.3 Harmonic helicity and its shape derivative
As we have seen in the previous section, with each Lipschitz toroidal domain Ω, we are able to

associate a normalized harmonic field B(Ω) and a vector potential of B(Ω), denoted A2(Ω), with
zero circulation along γ′. As a consequence of the Bevir–Gray formula Eq. (3.7), the magnetic
helicity of B(Ω) is then given by H(B(Ω)) =

´
ΩB(Ω) ·A2(Ω). In turn, this allows us to define

the helicity of the normalized magnetic field of Ω, which we refer to as the harmonic helicity of Ω
for simplicity. As was noted in Remark 2.2.1, B(Ω) is actually defined as a function of Ω only
up to a sign. However, since the helicity is a quadratic form, this sign indetermination is not
relevant, and the harmonic helicity is well-defined as a shape functional.

Definition 3.3.1. Let Ω be a Lipschitz toroidal domain. Then, the harmonic helicity of Ω is
defined as

H(Ω) =
ˆ

Ω
B(Ω) ·A2(Ω),

where B(Ω) and A2(Ω) are given by the solutions to Eqs. (3.5) and (3.10).

The aim of this section is to study how the harmonic helicity varies as a function of the
domain Ω. More precisely, we prove that the harmonic helicity is shape Fréchet differentiable
under Lipschitz deformation, and we give a formula for its shape derivative.

Before studying the shape differentiability of H, we state the following properties of harmonic
helicity.

Proposition 3.3.2. The following scaling and symmetry properties hold:
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• Given λ > 0, we have H(λΩ) = λH(Ω).
• Given a planar reflection R ∈ O3, we have H(RΩ) = −H(Ω).

Proof. We begin by proving the first point. Let u(Ω) and u(λΩ) be the solution to Eq. (3.5)
in Ω and λΩ respectively. Then, it is clear that u(λΩ) = u(Ω) (·/λ). Therefore, we have
B(λΩ) = ∇̃uλ = 1

λB(Ω)(·/λ). Similarly, we have A2(λΩ) = 1
λA(Ω)(·/λ). Writing

H(λΩ) =
ˆ
λΩ
B(λΩ) ·A2(λΩ)

= λ3
ˆ

Ω

(
1
λ
B(Ω)

)
·
(

1
λ
A2(Ω)

)
= λH(Ω)

For the second point, let R be a planar reflection. We introduce as in Definition 2.3.1

Φ1
Ru = RTu ◦R,

Φ2
Ru = (detR)R−1u ◦R,

for u a vector field of RΩ. One then finds, using identical proofs, that Proposition 2.3.3
and Lemma 2.3.4 remain true for these transformations. Since R is a planar reflection, we have
detR = −1 and R−1 = RT so that Φ2

Ru = −Φ1
Ru. Let u(Ω) and u(RΩ) be the solutions to

Eq. (3.5) in Ω and RΩ respectively. Then, since R is an isometry, we have

u(Ω) = u(RΩ) ◦R,

so that using the definition of the normalized harmonic field and Proposition 2.3.3, we have
B(Ω) = Φ1

RB(RΩ). We now prove that A2(Ω) = Φ2
RA

2(RΩ). First, since Φ2
R = −Φ1

R, it is clear
from Proposition 2.3.3 that Φ2

RA
2(RΩ) is in H0

(
div 0,Ω

)
. Using once again Proposition 2.3.3,

we also have

curl Φ2
RA

2(RΩ) = −curl Φ1
RA

2(RΩ)
= −Φ2

RB(RΩ)
= Φ1

RB(RΩ)
= B(Ω).

Moreover, using Lemma 2.3.4, we know that Φ2
RA

2(RΩ) = −Φ1
RA

2(RΩ) is in Z(Ω). It is then
known (see for example [Val19, Proposition 2]) that Φ2

RA
2(RΩ) solving

div
(
Φ2
RA

2(RΩ)
)

= 0 in Ω,
curl

(
Φ2
RA

2(RΩ)
)

= B(Ω) in Ω,(
Φ2
RA

2(RΩ)
)
· n = 0, on ∂Ω,´

γ′

(
Φ2
RA

2(RΩ)
)
· t′ = 0,

is equivalent to Φ2
RA

2(RΩ) solving Eq. (3.10). From unicity, we then obtain Φ2
RA

2(RΩ) = A2(Ω).
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Finally, since R is an isometry, we have

H(RΩ) =
ˆ
RΩ

B(RΩ) ·A2(RΩ)

=
ˆ

Ω

(
RTB(RΩ) ◦R

)
·
(
RTA2(RΩ) ◦R

)
,

= −
ˆ

Ω
Φ1
RB(RΩ) · Φ2

RA
2(RΩ)

= −H(Ω).

Corollary 3.3.3. If Ω admits a planar symmetry, we have H(Ω) = 0. In particular, this is the
case if Ω is axisymmetric.

As was mentioned in the introduction of this chapter, another notion for the helicity of a
domain which was studied in [Can+00; Can+99; Val19; Mon23] is the maximal value of the
helicity on the unit L2 sphere for fields in H0

(
div 0,Ω

)
, that is

H̃(Ω) = sup
{

H(V ) | V ∈ H0
(
div 0,Ω

)
, ‖V ‖L2 = 1

}
.

Since the helicity is quadratic, it is therefore clear that we have the following inequality

H(Ω) ≤ ‖B(Ω)‖2L2H̃(Ω).

To remove the L2 norm in this inequality, one may normalize the harmonic field using the L2

norm instead of the circulation. Although this makes the comparison between the two quantities
more direct, this normalization is less convenient to work with in our context. We note however
that one may easily obtain the shape derivative of ‖B(Ω)‖2L2 using the methods we will introduce
in this section, so that this change of normalization may be done without issues for computing
the shape derivative of harmonic helicity. We also note that, although H̃ is known to be bounded
when fixing the volume (see [Can+00, Theorem E]), it is not immediately clear whether this is
the case for H. The optimization problems we will consider numerically will be described more
precisely in Section 3.5.

In order to state the shape differentiability result, we recall some notations from Chapter 2.
We define

B1 =
{
V ∈W 1,∞ (R3)3 | ‖DV ‖L∞ < 1

}
,

so that for all V in B1, I + V is a Lipschitz diffeomorphism of R3. For Ω a Lipschitz toroidal
domain and V in B1, we denote ΩV = (I + V )(Ω).

In order to write the shape derivative of the harmonic helicity as a surface integral, we need to
assume that Ω is s-regular for some s > 1/2 [AFW06, Section 7.7], that is we have the continuous
embedding

H(curl ,Ω) ∩H0(div ,Ω) ↪−→ Hs(Ω). (3.12)

Indeed, we need B(Ω) and A2(Ω) to have traces in L2(∂Ω)3. For example Ω being Lipschitz-
polyhedral or C1,1 is sufficient [Amr+98, Prop. 3.7 or Th. 2.9].



3.3. Harmonic helicity and its shape derivative 73

Theorem 3.3.4. Let Ω be a Lipschitz toroidal domain. The mapping{
B1 → R
V 7→ H(ΩV )

,

is smooth at zero. Furthermore, if Ω is s-regular with s > 1/2, its differential is given by

H′(Ω;V ) = 2
ˆ
∂Ω

(
B(Ω) ·A2(Ω)

)
(V · n) . (3.13)

In order to prove this theorem, we will be using the transformations defined in Section 2.3
to pull vector fields and variational formulations back from ΩV to Ω. We will also be using the
fact that V 7→ Φ2

VB(ΩV ) is smooth at zero as proven in Theorem 2.4.1, and prove a similar
smoothness property for V 7→ Φ1

VA
2(Ω). The rest of the proof then follows easily using once again

the transformations defined in Section 2.3 and Lemma 2.3.5 to obtain the necessary properties on
the differential of V 7→ Φ2

VB(ΩV ).
Let V be in B1 and Ω a Lipschitz toroidal domain. Throughout the rest of this section nV

is the unit outward pointing vector field on ∂ΩV , and we define γV , γ′V , ΣV and Σ′V in the
deformed domain ΩV as the image by I + V of the corresponding geometrical constructions given
in Section 2.2.1, with tangent and normal vector fields tV , t′V , nΣV , nΣ′

V
respectively.

In order to prove Theorem 3.3.4, we will use the smoothness of V 7→ Φ2
VB(ΩV ) and V 7→

Φ1
VA

2(ΩV ). The former was already proven in Theorem 2.4.1. Indeed, we will use Proposition 2.3.3
to write

Φ3
V

(
B(ΩV ) ·A2(ΩV )

)
=
(
Φ2
VB(ΩV )

)
·
(
Φ1
VA

2(ΩV )
)
.

Then, since Φ3
V preserves volume integrals, the result will follow naturally. We thus still need to

prove that V 7→ Φ1
VA

2(ΩV ) is smooth, which is given by the following proposition.

Proposition 3.3.5. Let Ω be a Lipschitz toroidal domain, and for V in B1, let us denote by
A2(ΩV ) the solution of Eq. (3.10) in ΩV = (I + V )(Ω). Then, the mapping{

B1 7→ Z(Ω)
V 7→ Φ1

VA
2(ΩV )

is smooth at zero.

Proof. We proceed with an implicit function theorem argument, similar to the one used for
Theorem 2.4.1. For V in B1, we know that A2(ΩV ) solves the following variational formulation.
Find (A2(ΩV ), u(ΩV )) ∈ Z(ΩV )×∇H1(ΩV ) such that for all (τ, v) ∈ Z(ΩV )×∇H1(ΩV )

ˆ
ΩV

curlA2(ΩV ) · curl τ +
ˆ

ΩV
u(ΩV ) · τ =

ˆ
ΩV

B(ΩV ) · curl τ, (3.14)
ˆ

ΩV
A2(ΩV ) · v = 0. (3.15)

First, we note that from Proposition 2.3.3 and Lemma 2.3.4, we get Φ1
V Z(ΩV ) = Z(Ω), so that

the functional spaces of Eqs. (3.14) and (3.15) are preserved by the pullbacks.
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Pulling back Eqs. (3.14) and (3.15) onto Ω and using Lemma 2.3.2, we get
ˆ

Ω

(
α(V )−1Φ2

VB(ΩV )
)
·
(
curl Φ1

V τ
)

=
ˆ

Ω

(
α(V )−1curl Φ1

VA
2(ΩV )

)
·
(
curl Φ1

V τ
)

+
ˆ

Ω

(
α(V )Φ1

V u(ΩV )
)
·
(
Φ1
V τ
)
,

ˆ
Ω

(
α(V )Φ1

VA
2(ΩV )

)
·
(
Φ1
V v
)

=0.

We therefore define

F : B1 ×
(
Z(Ω)×∇H1(Ω)

)
→
(
Z(Ω)×∇H1(Ω)

)′
by

F (V ;σ, u)(τ, v) =
ˆ

Ω

(
α(V )−1curl σ

)
· curl τ +

ˆ
Ω

(α(V )u) · τ +
ˆ

Ω
(α(V )σ) · v

−
ˆ

Ω

(
α(V )−1Φ2

VB(ΩV )
)
· curl τ,

so that (A2(ΩV ), u2(ΩV )) solving Eqs. (3.14) and (3.15) is equivalent to

F (V ; Φ1
VA

2(ΩV ),Φ1
V u(ΩV )) = 0.

By Lemma 2.3.5, we know that V 7→ α(V ) and V 7→ α(V )−1 are smooth. Furthermore, we know
from Theorem 2.4.1 that V 7→ Φ2

VB(ΩV ) is smooth. Therefore, by linearity and continuity of F
with respect to (σ, u), we know that F is smooth. We have

Dσ,uF (0;A(Ω), u(Ω))(σ′, u′)(τ, v) =
ˆ

Ω
curl σ′ · curl τ +

ˆ
Ω
u′ · τ +

ˆ
Ω
σ′ · v,

so that Dσ,uF (0;A0, v0) is an isomorphism by the inf-sup conditions proven in [Val19, Section
IV]. This proves, by the implicit function theorem, that for V small enough there is a unique
smooth mapping V 7→ (σ(V ), u(V )) such that F (V ;σ(V ), u(V )) = 0. By uniqueness, we get
(σ(V ), u(V )) = (Φ1

VA(ΩV ),Φ1
V u(ΩV )).

Now that we have proved the smoothness of V 7→ Φ2
VB(ΩV ) and V 7→ Φ1

VA
2(ΩV ), we can

conclude the proof of Theorem 3.3.4. To do so, we simply pullback the integral of B(ΩV ) against
A2(ΩV ) onto Ω using Lemma 2.3.2, and use the differentiability results for the harmonic field
and the vector potential.

Proof. We have

H(ΩV ) =
ˆ

ΩV
B(ΩV ) ·A2(ΩV )

=
ˆ

Ω
Φ3
V (B(ΩV ) ·A2(ΩV ))

=
ˆ

Ω

(
Φ2
VB(ΩV )

)
·
(
Φ1
VA

2(ΩV )
)
.

From Theorem 2.4.1 and Proposition 3.3.5, we know that V 7→ Φ2
VBV and V 7→ Φ1

VAV are smooth
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at zero, so that V 7→ H(ΩV ) is smooth at zero. Denoting the differentials of V 7→ Φ2
VB(ΩV ) and

V 7→ Φ1
VA

2(ΩV ) by B′2(Ω;V ) and A′(Ω;V ) respectively, we have

H′(Ω;V ) =
ˆ

Ω
B′2(Ω;V ) ·A2(Ω) +

ˆ
Ω
B(Ω) ·A′(Ω;V ).

Since B(Ω) = curlA2(Ω), and A2(Ω) and A′(Ω;V ) are both in Z(Ω), we know from [Alo+18,
Lemma 7] that

ˆ
Ω
B(Ω) ·A′(Ω;V ) =

ˆ
Ω

curlA2(Ω) ·A′(Ω;V ) =
ˆ

Ω
curlA′(Ω;V ) ·A2(Ω).

Furthermore, since curlA2(ΩV ) = B(ΩV ) for all V , we get curl Φ1
VA

2(ΩV ) = Φ2
VB(ΩV ). By

differentiating, we get curlA′(Ω;V ) = B′2(Ω;V ), so that

H′(Ω;V ) = 2
ˆ

Ω
B′2(Ω;V ) ·A2(Ω).

Now, we know from the proof of Theorem 2.4.1 that we have
ˆ

ΩV
B′2(Ω;V ) ·A2(Ω) =

ˆ
Ω

(α′(0;V )B(Ω)) ·A2(Ω).

Assuming that Ω is s-regular for s > 1/2, we know from Eq. (2.19) of Lemma 2.3.5 that
ˆ

Ω
(α′(0;V )B(Ω)) ·A2(Ω) =

ˆ
Ω

(divB(Ω)) ·A2(Ω) +
ˆ

Ω
(B(Ω)× V ) · curlA2(Ω)

−
ˆ

Ω
(curlB(Ω))× V ·A2(Ω) +

ˆ
Ω

(B(Ω) · V )
(
divA2(Ω)

)
+
ˆ
∂Ω

(
B(Ω) ·A2(Ω)

)
(V · n)

=
ˆ
∂Ω

(
B(Ω) ·A2(Ω)

)
(V · n).

3.4 Approximation by finite element exterior calculus
In this section we assume that Ω is a toroidal domain with polyhedral boundary and that

(Th)h>0 is a quasi-uniform and shape regular 3 family of tetrahedron meshes of Ω̄, with h the
largest diameter of the cells. From [Amr+98, Proposition 3.7], we know that we can choose
s > 1/2 so that Ω is s-regular. We denote by ∆0(Th), ∆1(Th), ∆2(Th) and ∆3(Th) the sets of
points, edges, faces and cells of the mesh Th, respectively. For a k-simplex S of the mesh Th,
we define ∆i(S) as the set of i-simplices which have non-empty intersection with S̄ for i < k.
Moreover, we assume that the cutting surface Σ and toroidal curve γ′ introduced in Section 2.2.1
which are used in the variational formulations of the harmonic field are compatible with the mesh,
that is, are given by unions of elements of ∆2(Th) and ∆1(Th) respectively. Throughout this
section, inequality constants denoted by C are independent of h, but may depend on the domain
Ω.

3. We refer to [EG21a] for the definition of quasi-uniformity and shape regularity.
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Our goal is to provide a finite elements scheme to compute both the harmonic helicity of the
domain Ω and its shape gradient. In Section 3.4.1, we recall the main properties of classical
families of elements coming from finite element exterior calculus. Then, we recall in Section 3.4.2
some notions related to the discrete version of the de Rham complex, and the related discrete
harmonic fields. Afterwards, in Section 3.4.3 we prove the convergence of the numerical harmonic
helicity. Finally, we prove in Section 3.4.4 that the numerical shape gradient converges to the
continuous one.

3.4.1 Classical finite element exterior calculus families
Here, we introduce some classical families in finite element exterior calculus. The main idea

is to define a discretized version of each functional space in the de Rham complex, and stable
projections onto these spaces which commute with the differential operators. All these notions
were first introduced in [RT77; Ned80], and later generalized for differential forms in [AFW06].
We also recall that a short introduction to the subject was given in Section 1.3.4.

For r an integer and T a tetrahedral domain in R3, we define Pr(T ) as the set of polynomials
on T with degree at most r, and P̃r(T ) the set of homogeneous polynomials on T of degree r.
Then, P−,curl

r (T ) and P−,div
r are defined as

P−,curl
r (T ) = Pr−1(T )3 ⊕

{
p ∈ P̃r(T )3 | p · x = 0

}
,

P−,div
r (T ) = Pr−1(T )3 ⊕

{
xp | p ∈ P̃r−1(T )

}
.

For r positive, we then define the discretizations

V 0
h (Ω) =

{
u ∈ H1(Ω) | u|K ∈ Pr(T ) ∀T ∈ Th

}
,

V 1
h (Ω) =

{
u ∈ H(curl ,Ω) | u|K ∈ P−,curl

r (T ) ∀T ∈ Th
}
,

V 2
h (Ω) =

{
u ∈ H(div ,Ω) | u|K ∈ P−,div

r (T ) ∀T ∈ Th
}
,

V 3
h (Ω) =

{
u ∈ L2(Ω) | u|K ∈ Pr−1(T ) ∀T ∈ Th

}
.

We then obtain the following sequence

V 0
h (Ω) V 1

h (Ω) V 2
h (Ω) V 3

h (Ω)∇ curl div .

These finite element spaces correspond respectively to the Lagrange P r elements, the Nedelec
first kind elements of order r, the Raviart Thomas elements of order r, and the discontinuous
P r−1 elements.

One can check easily, using integration by parts, that u is in V 1
h (Ω) if and only if the tangential

trace of u is continuous along all shared faces of Ω. More precisely, if T1 and T2 are in ∆3(Th)
and S1, S2 are in ∆2(K1) and ∆2(K2) respectively with T1 ∩ T2 = S1 = S2, we have

u× nS1 + u× nS2 = 0.

Similarly, we have that u is in V 2
h (Ω) if and only the normal trace of u is continuous along all

shared faces of Ω.
We also introduce the discrete affine space V aff

h to solve Eq. (3.5) numerically. It is defined by

V aff
h (Ω) =

{
v ∈ H1(Ω\Σ) | v|T ∈ Pr(T ) ∀T ∈ Th, and [[v]]Σ = 1

}
,

where [[v]]Σ denotes the jump of v across Σ. The corresponding linear space is V 0
h (Ω).
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We also use the smoothed quasi interpolators built for example in [AFW06, Section 5.4.] for
differential forms and [EG21a, Chapter 23] for vector fields. The usual quasi interpolators are
denoted by Πk

h, and the trace preserving quasi interpolators by Πk
h,0. It is known that these quasi

interpolators are stable, and that they make the following diagram commute

H1(Ω) H(curl ,Ω) H(div ,Ω) L2(Ω)

V 0
h (Ω) V 1

h (Ω) V 2
h (Ω) V 3

h (Ω)

∇ curl div

Π0
h Π1

h Π2
h Π3

h

∇ curl div

,

with a similar diagram for the traceless spaces. We then have the following approximation
estimates on the quasi interpolators (see for example [EG18, Theorem 2.2. and 2.3.]).
Proposition 3.4.1. We have, for all k between 0 and 3 and u Hs regular,∥∥u−Πk

hu
∥∥
L2 ≤ Chs |u|Hs ,∥∥u−Πk

h,0u
∥∥
L2 ≤ Chs |u|Hs .

3.4.2 Discretization of the de Rham complex
In this section we state some results about the discretization of the de Rham complex. We

borrow here most of our notations and lemmas from [AFW06]. We begin by defining discrete
equivalents of closed and exact fields, which allow us to define the discrete harmonic fields. This
then allows us to derive Hodge decompositions in the discrete setting, and uniform Poincaré
inequalities. We then state some lemmas which will be useful for the coming convergence results.

First, we use some notations from the differential forms setting to unify some definitions and
results. We denote

HΛ0(Ω) = H1(Ω), HΛ1(Ω) = H(curl ,Ω), HΛ2(Ω) = H(div ,Ω), and HΛ3(Ω) = L2(Ω),

as well as
d0 = ∇, d1 = curl , and d2 = div .

We also denote dk = 0 when k is negative or larger than 2. The corresponding traceless spaces
are denoted H̊Λk(Ω), and the discrete traceless spaces are given by V̊ kh (Ω) = V kh (Ω) ∩ H̊Λk(Ω).

We are now able to define the discrete harmonic fields. We denote

Bkh(Ω) = dk−1V k−1
h (Ω), Zkh(Ω) =

{
u ∈ V kh (Ω) | dku = 0

}
,

and
Kkh(Ω) = Zkh(Ω) ∩ Bkh(Ω)⊥.

Similarly, we define for traceless spaces

B̊kh(Ω) = dk−1V̊ k−1
h (Ω), Z̊kh(Ω) =

{
u ∈ V̊ kh (Ω) | dku = 0

}
,

and
K̊kh(Ω) = Z̊kh(Ω) ∩ B̊kh(Ω)⊥.

From the equivalence of discrete and continuous de Rham cohomology (see e.g. [AFW10, Section
5.6]), we get

K0
h(Ω) ∼= R, K1

h(Ω) ∼= R, K2
h(Ω) ∼= 0 and K3

h(Ω) ∼= 0.
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Similarly, from the equivalence of discrete and continuous de Rham cohomology with boundary
condition, and Poincaré duality, we get

K̊0
h(Ω) ∼= 0, K̊1

h(Ω) ∼= 0, K̊2
h(Ω) ∼= R and K̊3

h(Ω) ∼= R.

Remark 3.4.2. In the continuous case, we defined the harmonic fields as K(Ω) = H
(
curl 0,Ω

)
∩

H0
(
div 0,Ω

)
. By using H0

(
div 0,Ω

)
= ∇H1(Ω)⊥ and H

(
curl 0,Ω

)
= curlH0 (curl ,Ω)⊥ from

Proposition A.3 of Appendix A, we recover two expressions for K(Ω) which are similar to the
discrete ones. However, in the discrete case, the two spaces K1

h(Ω) and K̊2
h(Ω) do not coincide.

Indeed, elements of K1
h(Ω) are curl free but only weakly divergence free and tangent to the boundary

meaning that they are not orthogonal to ∇H1(Ω) but only to the finite dimensional space ∇V 0
h (Ω).

On the other hand, elements of K̊2
h(Ω) are divergence free and tangent to the boundary, but only

weakly curl free, that is, not orthogonal to curlH0
(
curl 0,Ω

)
but to curl V̊ 1

h (Ω).

From these definitions, it is now straightforward to find the discrete Hodge decompositions.

V kh (Ω) = Zkh(Ω)⊥ ⊕Kkh(Ω)⊕ Bkh(Ω),
V̊ kh (Ω) = Z̊kh(Ω)⊥ ⊕ K̊kh(Ω)⊕ B̊kh(Ω).

There is also an equivalent of the Poincaré inequality in the discrete case which is given in
[AFW06][Lemma 5.11].

Proposition 3.4.3. There exists a constant C, independent of h, such that for all u in Zkh(Ω)⊥

‖u‖L2 ≤ C
∥∥dku∥∥

L2 .

We will also be using the following lemma for the proof of convergence of the harmonic field.
This lemma is proven in [AFW06][Lemma 5.9] for harmonic forms.

Lemma 3.4.4. For all uh in K1
h(Ω) there exists u in K(Ω) such that ‖u‖ ≤ ‖uh‖ and

‖uh − u‖L2 ≤
∥∥u−Π1

hu
∥∥
L2 .

3.4.3 Numerical convergence of the harmonic helicity
We begin by studying the approximation of the harmonic field. As we have seen in Section 2.2.2,

there are two different variational formulations for the harmonic fields. Although they give the
same fields in the continuous case, this will not be true at the discrete level. As we will see,
the classical Poisson formulation will give a discrete harmonic field in K1

h(Ω), and the mixed
formulation will give a discrete harmonic field in K̊2

h(Ω). Since the domain Ω is fixed throughout
this section, we denote B(Ω), A2(Ω) and A1(Ω) as B, A1 and A2 respectively.

Before studying the convergence of the numerical solutions, we state their well-posedness.

Proposition 3.4.5. There exists a unique solution to the following variational formulation. Find
uh ∈ V aff

h (Ω) such that, for all vh ∈ V 0
h (Ω),
ˆ

Ω
∇uh · ∇vh = 0. (3.16)

Furthermore, Bcurl
h = ∇uh is in K1

h(Ω).



3.4. Approximation by finite element exterior calculus 79

Proof. We denote by u the solution to Eq. (3.5), and B = ∇u the normalized harmonic field of
Ω. First, we notice that for all h there exists a function ϕh in V aff

h (Ω) such that ‖ϕh‖H1(Ω\Σ) ≤
C‖u‖H1(Ω\Σ). This may for example be obtained by taking the H1 orthogonal projection of u
onto V aff

h (Ω). We then notice that there is a unique solution to the following variational problem.
Find ũh ∈ V 0

h (Ω) with zero average such that for all vh ∈ V 0
h (Ω)

ˆ
Ω
∇ũh · ∇vh = −

ˆ
Ω
∇ϕh · ∇vh. (3.17)

Indeed, this problem is a classical discretization of a Poisson equation, so that the Lax–Milgram
theorem applies.
Now, define uh = ũh + ϕh. Since ∇uh = ∇ũh +∇ϕh, and ϕh is in V aff

h (Ω), we notice that uh is
solution to Eq. (3.16) if and only if ũh is solution to Eq. (3.17). As a consequence, Eq. (3.16) is
also well-posed.

We now prove that ∇uh is in V 1
h (Ω). It is straightforward that interelement continuity will be

verified on all surfaces which are not included in Σh. Therefore, we take S ∈ ∆2(Th) included in
Σh. We know that there exist two cells T1 and T2 in ∆3(Th) such that S ∈ ∆2(T1) ∩∆2(T2). We
then denote S = S1 when seen as an element of ∆2(T1), and S = S2 when seen as an element
of ∆2(T2), and order T1 and T2 so that the exterior normal of T1 on S1 is nΣh . Since uh is in
V aff
h (Ω), we have uh|S2 − uh|S1 = 1, so that ∇uh × nΣh |S2

= ∇uh × nΣh |S1
. As a consequence,

interelement continuity is verified across S, so that Bcurl
h = ∇uh is in V 1

h (Ω).
Finally, we prove that Bcurl

h is in K1
h(Ω). The fact that Bcurl

h is in B1
h(Ω)⊥ is given directly

by Eq. (3.16). Now, we take T in ∆3(Th). Since Bcurl
h

∣∣
T

= ∇uh|T , we have Bcurl
h

∣∣
T
∈ B1

h(T ).
Now, using that B1

h(T ) is a subset of Z1
h(T ), and that Bcurl

h is in Z1
h(Ω) if and only if Bcurl

h

∣∣
T
is

in Z1
h(T ) for all T , we are able to conclude.

Proposition 3.4.6. There exists a unique solution to the following variational formulation. Find
(Bdiv

h , uh) ∈ V̊ 2
h (Ω)×

(
V 3
h (Ω) ∩ L2

0(Ω)
)
such that, for all (τh, vh) ∈ V̊ 2

h (Ω)× V 3
h (Ω)

ˆ
Ω

(
divBdiv

h

)
vh = 0,

ˆ
Ω
Bdiv
h · τh +

ˆ
Ω
uh (div τh) =

ˆ
Σ
τh · nΣ.

(3.18)

Furthermore, Bdiv
h is in K̊2

h(Ω).

Proof. The well-posedness comes from the exact same arguments as in the continuous case, by
replacing the Poincaré inequalities and Hodge decompositions by their discrete counterparts.

We now prove that Bdiv
h is in K̊2

h(Ω). The fact that Bdiv
h is in Z̊2

h(Ω) comes directly from the
first equation of (3.18). Now, taking τh = curl ρh in the second equation for ρh ∈ V̊ 1

h (Ω), we get
ˆ

Ω
Bdiv
h · curl ρh =

ˆ
Σ

curl ρh · nΣ

=
ˆ
γ′
ρh · t′

= 0,

so that Bdiv
h is in B̊2

h(Ω)⊥.

We now prove the two following approximation results.
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Proposition 3.4.7. There exists a constant C independent of h such that∥∥Bcurl
h −B

∥∥
L2 ≤ Chs ‖B‖L2 ,∥∥Bdiv

h −B
∥∥
L2 ≤ Chs ‖B‖L2 .

Proof. We begin by proving the convergence for Bcurl
h . From Lemma 3.4.4, we know there exists

B̃h in K(Ω) such that ∥∥B̃h −Bcurl
h

∥∥
L2 ≤

∥∥B̃h −Π1
hB̃h

∥∥
L2 .

From the continuity of the circulation along γ with respect to the Hcurl norm, we have∣∣∣∣ˆ
γ

(
B̃h −B

)
· t
∣∣∣∣ =

∣∣∣∣ˆ
γ

(
B̃h −Bcurl

h

)
· t
∣∣∣∣

≤ C
∥∥B̃h −Bcurl

h

∥∥
Hcurl

≤ C
∥∥B̃h −Bcurl

h

∥∥
L2

≤ C
∥∥B̃h −Π1

hB̃h
∥∥
L2 .

Since B and B̃h are in K(Ω), we get from [Val19, Lemma 5] that

∥∥B̃h −B∥∥L2 ≤ C
(∥∥div B̃h − divB

∥∥
L2 +

∥∥curl B̃h − curlB
∥∥
L2 +

∣∣∣∣ˆ
γ

(
B̃h −B

)
· t
∣∣∣∣)

≤ C
∥∥B̃h −Π1

hB̃h
∥∥
L2 .

We then get by triangle inequality∥∥Bcurl
h −B

∥∥
L2 ≤

∥∥Bcurl
h − B̃h

∥∥
L2 +

∥∥B̃h −B∥∥L2

≤ C
∥∥B̃h −Π1

hB̃h
∥∥
L2 .

Finally, using Proposition 3.4.1 and the continuous injection of H(curl ,Ω) ∩ H0(div ,Ω) into
Hs(Ω)3, we get ∥∥Bcurl

h −B
∥∥
L2 ≤ Chs

∣∣B̃h∣∣Hs
≤ Chs

∥∥B̃h∥∥L2

≤ Chs ‖Bh‖L2

≤ Chs ‖B‖L2 ,

where we used the inequality
∥∥B̃h∥∥L2 ≤ ‖Bh‖L2 from Lemma 3.4.4. We now prove the convergence

of Bdiv
h to B. Using Eqs. (2.15) and (3.18), we have

ˆ
Ω
B · τ +

ˆ
Ω
u (div τh) =

ˆ
Σ
τh · nΣ,

ˆ
Ω
Bdiv
h · τ +

ˆ
Ω
uh (div τh) =

ˆ
Σ
τh · nΣ,

for all τh in V̊ 2
h (Ω). As a consequence, for all τh in Z̊2

h(Ω), we get
ˆ

Ω

(
Bdiv
h −B

)
· τh = 0.
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Since both Bdiv
h and Π2

h,0B are in Z̊2
h(Ω), we have

ˆ
Ω

(
Bdiv
h −B

)
·
(
Bdiv
h −B

)
=
ˆ

Ω

(
Bdiv
h −B

)
·
(
Π2
h,0B −B

)
,

so that ∥∥Bdiv
h −B

∥∥
L2 ≤

∥∥Π2
h,0B −B

∥∥
L2 .

Using again Proposition 3.4.1 and the fact that Ω is s-regular, we get the desired result∥∥Bdiv
h −B

∥∥
L2 ≤ Chs‖B‖L2 .

We now study the well-posedness and the convergence of the vector potentials of B. A first
remark is that the vector potential orthogonal to B is well studied in the literature via the Hodge
Laplacian (see for example [AFW06]). As such, we study the approximation of such vector
potentials which we denote A1

h, and recover A2
h, the one which is circulation free, by the discrete

counterpart of Eq. (3.11)

A2
h = A1

h −
(ˆ

γ′
A1
h · t′

)
Bcurl
h . (3.19)

Proposition 3.4.8. There exists a unique solution to the following variational formulation. Find
(A1

h, uh) ∈ V 1
h (Ω)× V 2

h (Ω) such that, for all (τh, vh) ∈ V 1
h (Ω)× V 2

h (Ω),

ˆ
Ω
A1
h · τh =

ˆ
Ω

curl τh · uh,
ˆ

Ω
curlA1

h · vh +
ˆ

Ω
(div uh) (div vh) =

ˆ
Ω
Bdiv
h · vh.

(3.20)

Furthermore, we have curlA1
h = Bdiv

h .

Proof. The well-posedness is proven in the exact same way as in the continuous case Propo-
sition 3.2.1, by replacing the Hodge decomposition and Poincaré inequality by their discrete
counterparts. The fact that curlA1

h = Bdiv
h is also proven in a similar way as in Proposition 3.2.1.

Using K2
h(Ω) = 0, and the discrete Hodge decomposition (see Section 3.4.2), we have

V 2
h (Ω) = Z2

h(Ω)⊥ ⊕ B2
h(Ω),

so that uh = u∇h +ucurl
h with

´
Ω u
∇
h · vh = 0 for all vh in V 2

h (Ω) with div vh = 0, and div ucurl
h = 0.

Therefore, taking vh = ucurl
h in the second equation of Eq. (3.20), we get

ˆ
Ω

(div uh)
(
div u∇h

)
= 0,

so that, since div ucurl
h = 0, we obtain div u∇h = div uh = 0. From this, we get

´
ΩA

1
h · vh =´

ΩB
div
h · vh for all vh ∈ V 2

h (Ω), and Bdiv
h ∈ V 2

h (Ω) implies the desired equality.

Proposition 3.4.9. There exists a constant C independent of h such that∥∥A1
h −A1∥∥

L2 ≤ Chs ‖B‖L2 .
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Proof. Define
(
Ã1
h, ũh

)
as the solution to the following variational problem. Find

(
Ã1
h, ũh

)
∈

V 1
h (Ω)× V 2

h (Ω) such that, for all (τh, vh) ∈ V 1
h (Ω)× V 2

h (Ω),
ˆ

Ω
Ã1
h · τh =

ˆ
Ω

curl τh · ũh,
ˆ

Ω
curl Ã1

h · vh +
ˆ

Ω
(div ũh) (div vh) =

ˆ
Ω
B · vh.

The well-posedness of this equation is obtained in the same way as for A1
h. Furthermore, by

continuity of the resolvent, and independence of the discrete Poincaré inequality constants in h,
we get ∥∥Ã1

h −A1
h

∥∥
L2 ≤ C

∥∥B −Bdiv
h

∥∥
L2 .

Furthermore, we obtain from of [AFW06, Theorem 7.9] that∥∥Ã1
h −A1∥∥

L2 ≤ Chs‖B‖L2 .

We then get the desired result from a triangle inequality and Proposition 3.4.7.

As we have seen in Section 3.2.1, there are two ways of computing the harmonic helicity of Ω.
The first one is done by computing circulations of A1, and the second by taking the L2 product
of B and A2. As we shall see in the following results, we can also recover the numerical harmonic
helicity in two similar ways. To do this, we first need to establish convergence of the circulation
of A1

h, which is given by the following lemma.

Lemma 3.4.10. We have ∣∣∣∣ˆ
γ′

(A1
h −A1) · t′

∣∣∣∣ ≤ Chs‖B‖L2 .

Proof. From Proposition 3.4.8, we have∥∥A1
h −A1∥∥2

Hcurl
=
∥∥A1

h −A1∥∥2
L2 +

∥∥curlA1
h − curlA1∥∥2

L2

=
∥∥A1

h −A1∥∥2
L2 +

∥∥Bdiv
h −B

∥∥2
L2 ,

so that by Propositions 3.4.7 and 3.4.9, we get∥∥A1
h −A1∥∥

Hcurl
≤ Chs‖B‖L2 .

Now, since curlA1
h = Bdiv

h , which is in H0(div ,Ω), the circulation of A1
h along γ′ is well-defined

by Eq. (2.13), and this circulation is bounded by the H(curl ,Ω) norm. We therefore have∣∣∣∣ˆ
γ′

(A1
h −A1) · t

∣∣∣∣ ≤ Chs‖B‖L2 .

Corollary 3.4.11. Defining A2
h as in Eq. (3.19), we get∥∥A2

h −A2∥∥
L2 ≤ Chs‖B‖L2 .
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Proof. We get this result by writing

A2
h −A2 = A1

h −A1 −
(ˆ

γ′

(
A1
h −A1) · t)Bcurl

h +
(ˆ

γ′
A1 · t

)(
B −Bcurl

h

)
.

We are then able to conclude using Propositions 3.4.7 and 3.4.9 and Lemma 3.4.10.

Theorem 3.4.12 (Convergence of harmonic helicity). We have∣∣H(Ω)−H(Bdiv
h )

∣∣ ≤ Chs‖B‖2L2 ,

where H(Bdiv
h ) can be either computed as

H(Bdiv
h ) = −

(ˆ
γ′
A1
h · t′

)(ˆ
γ

A1
h · t

)
,

or as
H(Bdiv

h ) =
ˆ

Ω
Bdiv
h ·A2

h.

Proof. We use the formulation of the helicity through A2
h, the other one being a simple consequence

of the Bevir–Gray formula. To obtain the desired estimate, we write
ˆ

Ω
Bdiv
h ·A2

h −H(Ω) =
ˆ

Ω
(Bdiv

h −B) ·A2
h +

ˆ
Ω
B · (A2

h −A2).

The conclusion then follows from Proposition 3.4.7 and Corollary 3.4.11.

3.4.4 Convergence of the Shape Gradient
In this section, we aim to prove the convergence of the numerical shape gradient to the

continuous one. This is given by the following theorem.

Theorem 3.4.13. Let Bh be either Bcurl
h or Bdiv

h as defined in Section 3.4.3, and A2
h as defined

by Eq. (3.19). Then, for all V in B1, we have∣∣∣∣2 ˆ
∂Ω

(
Bh ·A2

h

)
(V · n)−H′(Ω;V )

∣∣∣∣ ≤ Chs−1/2‖B‖2L2‖V · n‖L∞(∂Ω)

The idea of the proof is to estimate the L2 error for Bh and A2
h on faces of Th which are on

the boundary of Ω. In order to do so, we begin by noting that for each such face F in ∆2(Th),
there exists a unique cell T in ∆3(Th) such that F is in ∆2(T ). For a cell T , we also denote its
diameter as hT . From quasi-uniformity of the mesh, we know that there exists C > 0 such that
for all T in ∆3(Th), we have hT ≥ Ch. Furthermore, using shape regularity, we know that there
exists C > 0 such that |T | ≥ Ch3

T .
In order to prove Theorem 3.4.13, we use the following Lemmas from [EG21a, Chapter 12].

The author also notes that the proof of Theorem 3.4.13 was suggested by Alexandre Ern.

Lemma 3.4.14 (Remark 12.19 in [EG21a]). Let T be in ∆3(Th) and F be in ∆2(T ). Then, there
exists C > 0 such that for all v in Hs(T )

‖v‖L2(F ) ≤ C
(
h
−1/2
T ‖v‖L2(T ) + h

s−1/2
T |v|Hs(T )

)
.
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Lemma 3.4.15 (Lemma 12.8 in [EG21a]). Let T be in ∆3(Th) and F be in ∆2(T ). Then, there
exists C > 0 such that for all v in Pr(T )

‖v‖L2(F ) ≤ Ch
−1/2
T ‖v‖L2(T ).

Lemma 3.4.16 (Lemma 12.12 in [EG21a]). Let T be in ∆3(Th). Then, there exists C > 0 such
that for all v in Hs(T )

‖v − v̄T ‖L2(T ) ≤ hsT
(
hdT
|T |

)1/2

|v|Hs(T ),

where v̄T is the average of v on T .

In order to prove Theorem 3.4.13, we prove the following local estimate.

Proposition 3.4.17. Let T be in ∆3(Th) and F in ∆2(T ). Then, for all v in Hs(T ) and vh in
Pr(T ), we have

‖vh − v‖L2(F ) ≤ C
(
h
−1/2
T ‖vh − v‖L2(T ) + h

s−1/2
T |v|Hs(T )

)
.

Proof. We begin by writing

‖vh − v‖L2(F ) ≤ ‖vh − v̄T ‖L2(F ) + ‖v̄T − v‖L2(F ). (3.21)

Then, using Lemma 3.4.14 and the fact that |v̄T − v|Hs(T ) = |v|Hs(T ), we obtain

‖v̄T − v‖L2(F ) ≤ C
(
h
−1/2
T ‖v̄T − v‖L2(T ) + h

s−1/2
T |v|Hs(T )

)
.

Moreover, using Lemma 3.4.16 and shape regularity, we obtain

‖v̄T − v‖L2(T ) ≤ ChsT |v|Hs(T ),

so that
‖v̄T − v‖L2(F ) ≤ Ch

s−1/2
T |v|Hs(T ). (3.22)

Now, for the first term of Eq. (3.21), we use Lemma 3.4.15 to obtain

‖vh − v̄T ‖L2(F ) ≤ Ch
−1/2
T ‖vh − v̄T ‖L2(T )

≤ Ch−1/2
T

(
‖vh − v‖L2(T ) + ‖v − v̄T ‖L2(T )

)
≤ C

(
h
−1/2
T ‖vh − v‖L2(T ) + h

s−1/2
T |v|Hs(T )

)
, (3.23)

where Lemma 3.4.16 was once again used for the last inequality. Combining Eq. (3.22) and
Eq. (3.23) in Eq. (3.21), we obtain the desired result.

Corollary 3.4.18. We have

‖Bcurl
h −B‖L2(∂Ω) ≤ Chs−1/2‖B‖L2(Ω),

‖Bdiv
h −B‖L2(∂Ω) ≤ Chs−1/2‖B‖L2(Ω),

‖A2
h −A2‖L2(∂Ω) ≤ Chs−1/2‖B‖L2(Ω).
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Proof. We only prove the first inequality, the latter two being proven in the same way. Using
Proposition 3.4.17 on the components of Bh and B, we obtain

‖Bcurl
h −B‖L2(F ) ≤ C

(
h
−1/2
T

∥∥Bcurl
h −B

∥∥
L2(T ) + h

s−1/2
T |B|Hs(T )

)
for all F in ∆2(Th) such that F ⊂ ∂Ω, and T the cell in ∆3(Th) such that F is in ∆2(T ). Summing
over all such faces, we then obtain

‖Bcurl
h −B‖L2(∂Ω) =

∑
F∈∆2(Th),
F⊂∂Ω

‖Bcurl
h −B‖L2(F )

≤ C
∑

T∈∆3(Th),
T̄∩∂Ω6=∅

(
h
−1/2
T

∥∥Bcurl
h −B

∥∥
L2(T ) + h

s−1/2
T |B|Hs(T )

)

≤ C
∑

T∈∆3(Th)

(
h
−1/2
T

∥∥Bcurl
h −B

∥∥
L2(T ) + h

s−1/2
T |B|Hs(T )

)
≤ C

(
h−1/2 ∥∥Bcurl

h −B
∥∥
L2(Ω) + hs−1/2|B|Hs(Ω)

)
,

where we used quasi-uniformity of the mesh for the last inequality. Finally, from Proposition 3.4.7
and s-regularity of the domain, we obtain the desired result.

Proof of Theorem 3.4.13. For V in B1, we write
ˆ
∂Ω

(B ·A2)(V · n)−
ˆ
∂Ω

(Bh ·A2
h)(V · n) =

ˆ
∂Ω

(B −Bh) ·A2(V · n) +
ˆ
∂Ω
Bh · (A2 −A2

h)(V · n).

The result is then a simple consequence of Corollary 3.4.18 together with the expression of the
shape derivative of H given in Theorem 3.3.4.

3.5 Numerical implementation and results

3.5.1 Specificity of simulations for stellarators

For both historical and practical considerations, it is frequently advantageous for the surfaces
under examination to exhibit specific symmetries. In particular, a majority of stellarators are
invariant under discrete rotations along the Oz axis, with an angle of 2π/Np, where Np takes
values of 3 (as in the case of NCSX [Zar+01]) or 5 (as observed in W7X [War+17]). Additionally,
stellarators commonly exhibit invariance under the continuous symmetry known as stellarator
symmetry, as discussed in detail in [IPW20, Section 12.3] and [DH98]. In practice, these surfaces
are represented by a set of coefficients (Rm,n), (Zm,n) for m ∈ N and n ∈ Z which define the
functions

R(u, v) =
∑
m≥0

∑
n∈Z

Rm,n cos(2π(mu+ nv)), (3.24)

Z(u, v) =
∑
m≥0

∑
n∈Z

Zm,n sin(2π(mu+ nv)). (3.25)
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Note the absence of sin terms for R and cos terms for Z due to the imposition of stellarator
symmetry. The surface is then parametrized in cylindrical coordinates by

(
R(u, v), 2πv

Np
, Z(u, v)

)
where Np stands for the discrete symmetry imposed.

For the numerical simulation, we truncate the number of Fourier components in (3.24) and
(3.25).

3.5.2 Implementation
Using the symmetries of the system, we only work with one section of the stellarator, char-

acterized by the coefficients (Rm,n, Zm,n). Our first step is to use Gmsh [GR09] to mesh the
interior of a polyhedral approximation of the surface.

Then we use the finite element library FEniCSx ([Scr+22b; Scr+22a; Aln+14]) to assemble
the finite element problems Eqs. (3.16), (3.18) and (3.20) to obtain Bdiv

h , Bcurl
h and A1

h. We
implemented both first or second order FEEC elements defined in Section 3.4.1 with adequate
periodic conditions at the cuts of our section. To solve the linear system required to get Bcurl

h ,
that is a Poisson equation, we use the solver MUMPS: MUltifrontal Massively Parallel sparse
direct Solver [Ame+01; Ame+06]. Bdiv

h and A1
h are more expensive and complex to solve as

both are defined in mixed formulations. Both are solved using the iterative Krylov method
GMRES [SS86] applied after a careful preconditioning. More precisely, we use the block diagonal
preconditioner proposed by Arnold et al. in [AFW06, Section 10.2] for Hodge-Laplacian problems.
The preconditioning problems are solved using MUMPS. We believe that using an Auxiliary-space
Maxwell (AMS) Solver [HX07] instead 4 of a direct solver for the preconditioner would improve the
efficiency and scalability of our method when using more than a few million degrees of freedom.

3.5.3 Numerical tests
Once we have computed Bdiv

h , Bcurl
h and A1

h that are represented in Fig. 3.1, we compute
the harmonic helicity and its shape gradient. As was stated in Corollary 3.3.3, we know that
axisymmetric tori have zero harmonic helicity. Numerically, we have found in this case a value of
10−9. This was computed with a major and minor radius of 1 and 0.1 respectively, second order
elements, and h equal to 0.025. For more interesting shapes, as NCSX’s plasma, we do not have
a reference. As mentioned in Section 3.5.1, we have a continuous description of the shape (i.e.
not a polyhedral one), thus we perform two tests.

1. On the left side of Fig. 3.2, we perform a better and better approximation of the continuous
shape. To this aim we provide finer and finer grid description of the surface to the mesher.
Hence, variation of the obtained magnetic helicity are due both to variations of the domain
and to the finite element approximation error.

2. On the right side of Fig. 3.2, we fix at the beginning a polyhedral shape that is an
approximation of the continuous surface described by the set of coefficients (Rm,n, Zm,n)
and use finer and finer meshes of this fixed polyhedral shape as h goes to 0. Hence,
variations of the magnetic helicity are only due to the numerical approximation of the
fields. This is the situation described by the theoretical analysis in Section 3.4. The
reference solution was obtained on a high-performance computing cluster using a mesh
size of h = 0.025 with second-order finite elements. This resulted in linear systems with
approximately 5 million degrees of freedom, which were solved in a matter of minutes.

Except for the reference solution, all simulations can be conveniently performed on a laptop with
32 GB of RAM.

4. We had issues porting AMS hypre [FY02] solvers to the background sparse linear library Petsc [Bal+98]
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Figure 3.1 – One section (i.e. one third) of NCSX plasma. In the upper plot, we represent the
function uh of Eq. (3.16). Its gradient Bcurl

h is shown in the middle figure. The bottom figure is
a representation of A2

h which is computed from A1
h and Bcurl

h using Eq. (3.19).
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Figure 3.2 – On the left, we provide better and better approximations of the surface to the mesher.
We then plot the characteristic size of an element versus the harmonic helicity. On the right, we
mesh with different characteristic size h the same polyhedral approximation of the continuous
surface and compare it to a reference solution obtained with second order elements and h = 0.025.
The two lines are merely indicative as their slopes correspond to theoretical first order (blue) and
second order (red) convergence rates.

The shape gradient is shown in Fig. 3.3. As mentioned in Section 3.4.4, we have not exactly
proven that this numerical approximation converges toward the correct shape gradient, but that
it is the case for a regularized version of the numerical solutions. This regularization step is not
performed numerically, so that we have no guaranty of convergence. However, we performed
numerical tests using finite differences on the Fourier coefficients of the surface, which were
consistent with the numerical shape gradient computed with A2

h and Bcurl
h .

3.5.4 Two optimization programs
As the harmonic helicity of NCSX plasma is a negative quantity 5, we are interested in

minimizing it. Indeed, we recall that in a stellarator, one generates a magnetic field that is in
first approximation a harmonic field in the plasma domain Ω. As the stability of the plasma is
related to the twisting of the magnetic field, we are trying to increase the absolute value of the
harmonic helicity to search for interesting and hopefully more stable plasma configurations.

As proved in Proposition 3.3.2, the harmonic helicity scales as H(λΩ) = λH(Ω) for λ > 0.
For this reason we impose an upper bound either on the volume of Ω or on the area of ∂Ω.
Under one of these constraints, it is unclear whether an optimal shape exists. Hence, we add the
condition that ∂Ω satisfies a uniform ball condition. This imposes a strong regularity constraint
on the surface and ensures existence of an optimal shape among these regular shapes, we refer for
example to [PRS24; Ger23a]. Numerically, we set the uniform ball condition by imposing a lower
limit on the minimal curvature radius everywhere on the surface ∂Ω. These three constraints,
namely upper bound on the volume Ω or on the area of ∂Ω and lower bound on the minimal
curvature radii on ∂Ω, along with their corresponding shape gradients, can be efficiently computed

5. Using a planar symmetry, we could also choose to take a positive value, see Proposition 3.3.2.
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Figure 3.3 – One section of NCSX plasma. The plot shows the shape gradient 2A2
h ·Bcurl

h on the
boundary. NCSX plasma configuration has a negative harmonic helicity. Improving our criterion
implies following the opposite of the shape gradient.

using the smooth parametrization of the surface outlined in Eqs. (3.24) and (3.25) and performing
quadrature across either ∂Ω or Ω.

Subsequently, we introduce smooth non-linear costs that blow up to guarantee the fulfillment
of the specified constraints. Once all the costs are assembled, we apply the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) minimization algorithm from the scipy library [Vir+20] on the Fourier
components of the description of the surface.

Bounded Perimeter and Curvature (BPC) We initially focus on optimization with a
bounded perimeter, employing a soft threshold set at 25 m2 to ensure comparability with the
NCSX plasma shape. Our goal also involves achieving a minimal inverse curvature radius of
50 m−1, surpassing the regularity of the NCSX reference. The results of this simulation are
depicted in Fig. 3.4 and summarized in Table 3.1. Notably, we observe a remarkable 30-fold
improvement in harmonic helicity. While the shape appears to collapse toward the Oz axis, this
effect is restrained by the imposed curvature constraints. This behavior may be attributed to our
normalization choice for the harmonic field; as proximity to the Oz axis increases, the magnitude
rises, given our fixed toroidal circulation.

Bounded Volume and Curvature (BVC) We also perform the optimization using a con-
straint on the volume instead of the perimeter. We apply an upper bound at 3 m3 along with
the same curvature constraints. This time, we achieve more than a 3-fold improvement, and the
shape does not seem to collapse toward the Oz axis. The shape is more intricate than the initial
plasma shape of NCSX.
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Figure 3.4 – The results of the two optimization problems, BPC (shown in green above) and BVC
(shown in blue below). The associated costs are reported in Table 3.1. Additionally, the reference
NCSX plasma is plotted in transparent orange.
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Plasma shape Perimeter (m2) Volume (m3) max curvature (m−1) Harmonic helicity
NCSX (ref) 24.52 2.96 119.3 -0.0220

BPC 25.02 5.45 53.0 -0.6427
BVC 33.5 2.99 50.0 -0.0726

Table 3.1 – harmonic helicity and geometric properties of the optimized shapes in Fig. 3.4. As we
aim to compare the optimized shapes with the NCSX reference, for BPC we penalized the area
of the surface ∂Ω above 25m2, whereas for BVC we penalized the volume of Ω above 3m3. In
both cases, we targeted a minimal curvature radius of 2 cm; thus a more regular shape than the
reference NCSX plasma shape.

3.6 Conclusion and perspectives
Conclusion We introduced a new shape functional for toroidal domains capturing the linkage
of the corresponding harmonic field. We then introduced variational formulations in order to
obtain this quantity from the solution of PDEs. Then, using careful differential form pullbacks,
we have been able to prove its shape differentiability and obtain a formula for the shape derivative.
We also showed that this functional can be efficiently computed numerically. We illustrated
this using finite element exterior calculus and applied it to a stellarator device for magnetic
confinement in nuclear fusion.

It seems to us that the pure optimization of harmonic helicity provides degenerate shapes,
which appear to be less usable for applications in magnetic confinement. However, given the very
significant potential gain (factors of 3 and 30 in our two simulations), studying multi-objective
optimization with more conventional costs could yield interesting results.

Perspective First, we showed that the harmonic helicity shape functional is smooth at Lipschitz
domains under Lipschitz deformations. However, we only gave a formula for the first order shape
derivative. A first thing that could thus be studied in the future is how to obtain higher order
shape derivatives. In particular, an explicit formula for the shape hessian could give necessary
conditions for optimal shapes. For example, some simple arguments which we choose to omit
here for conciseness allow to find that, in the case of an axisymmetric torus, A2(Ω) is everywhere
orthogonal to B(Ω). Therefore, from the expression of the shape derivative of harmonic helicity,
we find that axisymmetric tori are critical shapes. However, from the planar symmetry of such
domains, we conjecture that they are in fact saddle points. Indeed, if there exists a deformation
field V such that

H′′(Ω;V, V ) > 0,

then, using Proposition 3.3.2, we find that

H′′(Ω;RV,RV ) < 0,

for a planar symmetry R leaving Ω invariant. We thus conclude that the shape hessian is either
zero for all deformation fields, or neither positive nor negative. This argument could be generalized
for all critical domains exhibiting a planar symmetry. However, in order to complete such an
argument, one would need to have an explicit enough expression for the shape hessian. Although
we believe that this task may be attainable, we expect the expressions for the second order shape
derivatives of harmonic fields to be trickier to obtain, and it is complicated to predict in advance
if one may obtain a simple enough expression of the shape hessian in order to deduce explicit
results. The regularity assumptions on the domain in order to obtain such a formula are also still
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unclear to the author.
Finally, we have mentioned that adding a reach constraint for such shape optimization problems

often leads to existence of optimal shapes, and we do believe that such a result would also hold
in our case. However, we expect that studying the existence of optimal toroidal shapes in the
Lipschitz context should be a much harder task. We do note that the numerical results we have
obtained when removing the curvature constraint suggest that the shape optimization problem in
the Lipschitz case may not have optimal shapes, but this is only a conjecture.

Data availability statement The code created for this chapter is openly accessible through
the GitLab repository https://plmlab.math.cnrs.fr/rrobin/helicity.

https://plmlab.math.cnrs.fr/rrobin/helicity
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4.1 Introduction
When designing magnetic fields for confinement in fusion reactors, such as tokamaks or

stellarators, dynamical properties of the field lines play a key role in the stability properties of
the plasma. In this context, spatial variations of the magnetic field magnitude lead to a drift
of charged particles. However, as was discussed in Section 1.2.3, introducing a twist in the
magnetic field lines is known to average out the drift along the trajectories of charged particles.
We also refer to [IPW20, Chapter 5][Lit83][HS05, Chapter 7]. To quantify this notion of twist,
an important object in reactor design is the so-called rotational transform [IPW20][Chapter
7]. Assuming the plasma domain foliates into tori tangent to the magnetic field, the rotational
transform is defined on each leaf by the average ratio of poloidal turns and toroidal turns along
the field lines. Mathematically, this is given by the rotation number of the Poincaré map on each
leaf.

In addition to giving information on the stability of charged particles in the plasma, the
rotational transform is also useful in studying the topological and dynamical stability of the

93
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magnetic field itself. Indeed, due to errors arising from the coil design and fluctuations in
the plasma, the actual magnetic field inside a reactor will be a perturbation of the theoretical
one. Loosely speaking, KAM theory and Hamiltonian representations of magnetic fields lead
to non-degenerate leaves of the magnetic field with a diophantine rotational transform being
preserved after perturbations, whereas leaves with rational rotational transform may lead to
chaotic regions and magnetic islands [IPW20, Chapter 10][LHL90].

Mathematically, however, the assumption of a foliated magnetic field leads to complications.
Indeed, the existence of such foliated magnetic fields is still closely linked to open questions.
As was discussed in Section 1.3.3, the most notable problem related to existence of foliations is
Grad’s conjecture [Gra67], which states that foliated smooth MHD equilibria with non-constant
pressure should be axisymmetric. Theoretical results as well as a solid mathematical framework
are therefore scarce when it comes to the study of rotational transform profiles. We still refer to
a series of articles by Enciso, Luque and Peralta-Salas [EP15; ELP20; ELP22], also discussed in
Section 1.3.3, which study the dynamical properties of Beltrami fields. These articles develop a
thorough theory to study Poincaré maps of Beltrami fields with small eigenvalue in thin toroidal
tubes, and deduce several interesting results from this, such as the construction of non-trivial
stepped pressure MHD equilibria in [ELP22].

In this chapter, we are more specifically interested in the study of harmonic fields. Given a
domain Ω of R3, we say that a vector field on Ω is harmonic if it is divergence free, curl free,
and tangent to the boundary. When Ω has the topology of a full torus, the space of harmonic
fields is one dimensional, and we may therefore single out a generator of this space by picking a
normalization criterion, such as the circulation along a toroidal loop. We refer to Section 1.3.1
for the justification of this normalization using concepts from differential geometry and algebraic
topology. From a physical point of view, harmonic fields are important in the design of stellarators,
which aim to stabilize plasma without inducing current inside it. This therefore leads to magnetic
fields with small curl inside the plasma domain, which may be approximated by harmonic fields.
The fact that one may assign a harmonic field to each toroidal domain can lead to stellarator
design using shape optimization techniques.

Although, to the author’s knowledge, there is no clearly established conjecture in this direction,
there seems to be no result on the existence of non-trivial foliated harmonic fields. We still refer
to Section 1.3.3 for the construction of a family of non-axisymmetric harmonic fields which are
foliated. However, this construction leads to harmonic fields with trivial dynamics. To simplify
things, we therefore choose to study the Poincaré maps of harmonic fields on the boundary only.
Indeed, since harmonic fields of Ω are by definition tangent to the boundary, they define a flow
on ∂Ω. Therefore, if Ω is a toroidal domain, the Poincaré map of the harmonic field restricted to
the boundary is a circle diffeomorphism, to which we may associate a rotation number. Since one
may assign a harmonic field to each toroidal domain, the approach of this chapter is to investigate
properties of the Poincaré maps of harmonic fields on the boundary using a shape differentiation
approach, that is, to study how variations of the domain may lead to variations of the Poincaré
map in the space of diffeomoprhisms of the circle. To avoid technicalities related to regularity, we
choose to work in the C∞-smooth category throughout the chapter. We will therefore only be
working with smooth domains, use smooth functions and vector fields, and prove smoothness of
the studied objects when needed.

4.1.1 General approach and main results
Before discussing the contributions of the chapter, we give a formal introduction to the main

objects we will study. The precise definitions will be given in Section 4.2. Let Ω be a smooth
toroidal domain, that is, a smooth open set of R3 such that Ω̄ is diffeomorphic to the full torus
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S1×D2, where D2 is the closed unit disk of R2, and S1 = R/Z. Given a curve γ′ which generates
the first homology group of Ω̄ with unit tangent vector field t′, there exists a unique harmonic
field B(Ω) verifying ˆ

γ′
B(Ω) · t′ = 1.

As was explained in Section 1.3.1, this can bee seen by identifying harmonic fields as representatives
of the first de Rham cohomology space of Ω, and using de Rham’s theorem. In order to define the
Poincaré map of B(Ω) on the boundary as a diffeomorphism of the circle, we need the following
data:

• γ′, a generator of the first homology group of Ω̄,
• P , a poloidal cut of ∂Ω,
• Coordinates on P , that is, a diffeomorphism between S1 and P .

Furthermore, Σ needs to be a Poincaré cut of B(Ω)|∂Ω. All the required data and assumptions
will be given by the notion of admissible embeddings of the torus in R3, which we denote
Embad

(
T2;R3) (see Definition 4.2.1). We are thus able to consider the mapping

Π : Embad
(
T2;R3)→ Diff(S1),

which associates with each admissible embedding the Poincaré map of B(Ω), where Ω is the
smooth toroidal domain whose boundary is the image of the embedding. We also note that
we model S1 as R/Z throughout the paper, so that S1 is equipped with canonical coordinates
inherited from R.

Although Π is not, strictly speaking, a shape function (as it also depends on the coordinates on
the boundary), the techniques we will use to study it are largely inspired by shape differentiation.
Let E be an admissible embedding, and t 7→ Pt a smooth path of smooth diffeomorphisms of R3

with P0 = I. Let V in Vec
(
R3), the set of smooth vector fields of R3, be the derivative of t 7→ Pt

at time t = 0. As will be further explained later in the chapter, Et := Pt ◦ E is then admissible as
well for t small enough. Our goal is then to study the derivative of t 7→ Π(Et) in the space of
circle diffeomorphisms. More precisely, we will show that there exist a linear map V 7→ Π′(E ;V )
such that

Π(Et) = Π(E) + tΠ′(E ;V ) + o(t).

We refer to Π′(E ;V ) as the shape derivative of the Poincaré map at E in the direction V .
In this chapter, we establish this shape differentiability result and we study the image of the

map V 7→ Π′(E ;V ) in specific cases. The first case we will study is the one where E is the usual
embedding of the standard axisymmetric torus. In this case, we will show that Π′(E ;V ) actually
vanishes for all V . This result is given in Theorem 4.4.1. Then, we will study the case where
Π(E) is a diophantine rotation. In this case, we will show that under an additional assumption
on the geometry of the domain, the mapping V 7→ Π′(E ;V ) is surjective. This result is given in
Theorem 4.5.1.

4.1.2 Outline of the chapter
The chapter is organized as follows.
• In Section 4.2, we give a proper definition of the objects we will study throughout the

paper. Firstly, we recall some properties of harmonic fields in toroidal domains given in
Sections 1.3.1 and 2.2.2. We then define the notion of Poincaré map we will be studying.
This is done first by defining a notion of admissible embeddings of the torus in R3 which
provides the necessary data, and then by describing how we construct the Poincaré map
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from an admissible embedding.
• In Section 4.3, we study the general shape differentiability of the Poincaré map of harmonic

fields. We first use a shape differentiation result from Chapter 2, which we adapt to our
context. This gives us a shape differentiability result for harmonic fields in the smooth
category which is well suited to describe the dynamics of the field lines. In Section 4.3.2,
we then obtain the shape derivative of the Poincaré map. We also provide a useful formula
for the case in which the coordinates on the boundary linearize the harmonic field, which
will be used in Sections 4.4 and 4.5.

• In Section 4.4, we study the particular case of a standard axisymmetric torus. For
axisymmetric domains the harmonic field is explicitly known, greatly simplifying the
computations. We prove in Theorem 4.4.1 that, in this case, the shape derivative of the
Poincaré map always vanishes. This implies that around these domains, it is necessary to
go to second-order in order to find local information about the Poincaré map of harmonic
fields. The geometry of the domain plays a role in two steps of the proof. First through
the explicit expression of the harmonic field and its relation with the curvature of the
boundary, and second, through symmetries of the solution to a PDE which appears in the
expression of the shape derivative of the harmonic field.

• In Section 4.5, we study the case where the Poincaré map has diophantine rotation number.
Under an additional assumption relating the curvature of the boundary and the harmonic
field, we prove Theorem 4.5.1, which states that the shape derivative of the Poincaré
map can be any smooth function of the circle if we choose a correct perturbation of the
embedding. For this, we use cohomological equations to prove that the shape derivative of
the Poincaré map can be any zero average function of the circle, and a specific normal
perturbation to generate the last remaining dimension.

4.1.3 Notations
• S1

` = R/(`Z) and S1 = S1
1 . We also define T2 = R2/Z2 ∼= S1 × S1 and denote the closed

unit disk of R2 as D2.
• For two vectors u and v in R3, u · v is their Euclidean scalar product.
• Given a smooth manifold M with (possibly empty) smooth boundary and k in N ∪ {∞},
Ck(M) is the space of real valued k times differentiable functions on M , and Vec(M) is
the set of smooth vector fields of M .

• Given a smooth manifoldM and a continuous family of vector fields s ∈ R 7→ Xs ∈ Vec(M),
we denote

−→exp
ˆ t

0
Xsds,

as the flow of s 7→ Xs at time t when it is well-defined. That is, if x(·) is the solution to{
ẋ(t) = Xt(x(t)),
x(0) = x0,

then −→exp
´ t

0 Xsds(x0) := x(t). In our case, the manifold will always be compact without
boundary, so that there is global existence of flow.

• Let X,Y be topological spaces and f : X → Y a continuous function. For k in N, Hk(X) is
the k-th singular homology group of X, and f∗ : Hk(X)→ Hk(Y ) is the group morphism
associated to f . We refer to [Hat02][Chapter 2] for the precise definitions of these objects.
We note however that only basic homological notions will be used so that an intuitive
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understanding of singular homology and its relation with de Rham cohomology will be
sufficient to understand its use in the paper.

• Suppose Ω is a smooth toroidal domain of R3, that is an open set such that Ω̄ is smoothly
diffeomorphic to S1 ×D2, and (φ, θ) : ∂Ω→ T2 are smooth coordinates on ∂Ω.
– n is the unit normal outward pointing vector field on ∂Ω.
– div Γ is the divergence on ∂Ω, and ∇Γ the tangential gradient. Both are defined using

the metric on ∂Ω inherited from the Euclidean metric on R3.
– √g is the square root of the determinant of the metric matrix in the (φ, θ) coordinates.

As such, the surface form on ∂Ω is given by √gdφdθ.
– Given ~ω = (ω1, ω2) in R2 and f in C∞(∂Ω), we denote 〈~ω,∇T2f〉 = ω1∂φf + ω2∂θf .
– Given a tangent vector u on ∂Ω, u⊥ := n× u.

• Given a Riemannian manifold M and an oriented one codimensional submanifold N with
unit normal vector field n, the second fundamental form of N is defined as

II :
{

Vec(N)×Vec(N)→ C∞(N)
(X,Y ) 7→ ∇X Ỹ · n

.

Here, Ỹ is a smooth extension of Y to M , and ∇X Ỹ is the covariant derivative of Ỹ along
X using the Riemannian metric on M . It is then known that II(X,Y ) is independent
of the choice of extension of Y , that II is a tensor, that is, a bilinear form on Vec(N)
as a C∞(N)-module, and that it is symmetric. We refer to [Lee18, Section 8] for more
information on this definition of the second fundamental form.
In the particular case where N ⊂ R3 is a surface defined via an embedding E : T2 7→ R3,
the fact that the Christoffel symbols vanish in Cartesian coordinates and that ∂φ (resp.
∂θ) is given in coordinates by ∂φE (resp. ∂θE) implies the usual formula

II(∂i, ∂j) = ∇∂i∂j · n
= ∂i∂jE · n,

where i and j are either φ or θ.

4.2 Definitions
In this section, we wish to define a notion of Poincaré maps for harmonic fields in toroidal

domains. First, we give a few reminders on the notions of harmonic fields (see Section 1.3.1 and
Section 2.2.2 for more details.)

We recall that, given a bounded Lipschitz domain Ω of R3, the set of harmonic vector fields is
given by

K(Ω) =
{
u ∈ L2(Ω)3 | curlu = 0, div u = 0 and u · n = 0

}
,

and that its dimension is equal to the first Betti number of Ω̄. If Ω̄ is smoothly diffeomorphic to
the full torus, its first Betti number is equal to one. One therefore finds that, given a generator
γ′ of the first singular Homology group H1(Ω̄), there is a unique vector field B(Ω) such that

ˆ
γ′
B(Ω) · t′ = 1.

We note that, Ω̄ having a smooth boundary implies that elements of K(Ω) are smooth up to the
boundary so that the above circulation may be defined in the usual way (see [Sch95, Theorem
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2.2.2]). We also note that B(Ω) in fact also depends on the choice of generator γ′. However, since
H1(Ω̄) is isomorphic to Z, changing the generator may change B(Ω) only by a sign. We therefore
choose to omit this dependence in our notations for convenience.

We now wish to define the Poincaré maps of harmonic fields on the boundary of toroidal
domains. In order to do so, we proceed by specifying coordinates on the boundary. Indeed,
having such coordinates allows us to define a Poincaré cut and coordinates on this Poincaré cut,
which is the required data to obtain the Poincaré map as a diffeomorphism of S1. This is done
by working with the set of smooth embeddings of T2 into R3, which we denote by Emb

(
T2;R3).

We recall that, with an element E of Emb
(
T2;R3), we can associate an isomorphism E∗ between

the singular homology groups of T2 and the ones of E(T2). We denote by γφ and γθ the canonical
generators of the homology group H1(T2). In order to be able to define the Poincaré map, we
need to make some further assumptions on the embedding which are given by the following
definition.

Definition 4.2.1. Let E be in Emb
(
T2;R3). We say E is admissible if it satisfies the following

conditions.
• E(T2) bounds a smooth toroidal domain Ω in R3.
• E is toroidal, that is

– E∗γφ is trivial in H1 (Ωc) and generates H1
(
Ω̄
)
,

– E∗γθ is trivial in H1
(
Ω̄
)
and generates H1 (Ωc).

• E is transverse, that is, if B(Ω) = B(Ω)φ∂φ+B(Ω)θ∂θ is the harmonic field of Ω associated
to the generator E∗γφ where (φ, θ) = E−1 are the coordinates induced on ∂Ω by E, then
B(Ω)φ is positive on ∂Ω.

We denote by Embad
(
T2;R3) the set of admissible embeddings of T2 into R3.

Remark 4.2.2. Here are a few remarks which may help the reader to interpret the definition of
admissible embeddings:

• The first condition of Definition 4.2.1 is not redundant. Indeed, although a smoothly
embedded torus in S3 always bounds a full torus, this result is not true for embeddings in
R3. We refer to [Arn10][Definition 3] for a description of such domains, referred to as
knotted anti-toi, as well as [CDG02][Figure 13] for an illustration of such embedded tori.

• The second condition of Definition 4.2.1 essentially states that (φ, θ) = E−1 define toroidal
and poloidal coordinates respectively on the boundary of Ω. Although it is only necessary to
assume that E∗γφ generates H1

(
Ω̄
)
to define the Poincaré map, the additional assumptions

are here to ensure that the Poincaré map we will construct corresponds to what we may
expect geometrically. For example, the assumption that E∗γθ is trivial in H1

(
Ω̄
)
means

that curves of constant φ correspond to poloidal cuts of ∂Ω.
• The last condition of Definition 4.2.1 ensures that B(Ω) is transverse to poloidal cuts, that

is, nowhere tangent to curves of constant φ. Therefore, its Poincaré map may be defined
on such cuts.

We now explain how we can define the Poincaré maps of harmonic fields. Let E be an
admissible embedding, Ω be the toroidal domain such that ∂Ω = E

(
T2), B(Ω) the harmonic field

of Ω associated to the generator E∗γφ, and (φ, θ) the coordinates on ∂Ω associated with E . First,
to define the Poincaré map, we need to normalize the harmonic field. This is done by defining
the following vector field on ∂Ω:

X(E) = B(Ω)
B(Ω)φ . (4.1)

From this definition, and the fact that B(Ω)φ is positive, we know that the field lines of X(E)
correspond to the ones of B(Ω) up to an order-preserving reparametrization of time. Furthermore,
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φ = 0 φ = 0

E

Figure 4.1 – Example of an admissible embedding with Poincaré cut in blue and field line in red.

we get that X(E)φ = 1, so that the field lines of X(E) evolve linearly in φ. This implies that if a
field line starts on the poloidal cut φ = 0 at time t = 0, it will return to the same cut at time
t = 1, which is precisely what we need for the Poincaré map.
We may therefore define the Poincaré map of B(Ω) as the one time flow of X(E) restricted
to the cut φ = 0. However, it is more convenient to work on the fixed space S1 in order to
study variations of the Poincaré map. This can be done once again using the (φ, θ) coordinates
associated with E . Let S1 3 φ 7→ Xφ(E) ∈ Vec(S1) be the one-parameter family of vector fields
given by

Xφ(E)(θ) = X(E)θ(φ, θ)eθ, (4.2)

where eθ is the canonical unit vector field of S1. We then define the Poincaré map Π(E) as

Π(E) = −→exp
ˆ 1

0
Xφ(E)dφ, (4.3)

which is a diffeomorphism of the circle. It will also prove to be useful to define the same flow at
time φ, which we denote by Πφ(E).

Remark 4.2.3. Since φ 7→ Πφ(E) defines a homotopy between the identity on S1 and Π(E), there
is a canonical choice of lift for the Poincaré map. This implies in particular that the rotation
number of Π(E) may be seen as a real number, and not just an element of S1.

4.3 Shape differentiation
In this section, we consider an admissible embedding E , Ω its corresponding domain, and

t 7→ Pt a differentiable family of diffeomorphisms of R3 with P0 = id. We denote

V := d

dt
∣∣t=0

Pt,

which is a smooth vector field of R3. Denoting Et = Pt ◦ E , our goal is to prove that t 7→ Π(Et) is
differentiable in Diff(S1). More precisely, we will identify a linear map V 7→ Π′(E ;V ) such that

Π(Et) = Π(E) + tΠ′(E ;V ) + o(t).
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In order to obtain shape differentiability results, we need to mention the topologies we will be
using. Given a manifold M , we equip C∞(M) with its natural Fréchet structure (see for example
[AS02, Section 2.2]). In this topology, convergence is equivalent to convergence in every Ck norm
in every compact subset. Given an open set Ω of R3, we may identify Vec(Ω̄) with C∞(Ω̄)3, so
that the corresponding topology comes naturally. Since, in the context of Poincaré maps, we
are working with specific lifts, we may identify Diff(S1) as a subset of C∞(R). This therefore
equips Diff(S1) with a natural Fréchet topology. Importantly, since convergence in C∞ spaces
is equivalent to convergence in Ck spaces for all k, proving differentiability in C∞ topologies is
equivalent to proving differentiability in the corresponding Ck topologies for all k. We will often
be using this fact throughout the section without further mention.

4.3.1 Shape differentiation of harmonic fields in the smooth category
In order to differentiate t 7→ Πt := Π(Et), we first need to differentiate t 7→ Bt := B(Ωt),

where Ωt = Pt(Ω) and Ω is the domain associated to E . This is given in the sense of the main
results of Chapter 2. Recalling the definitions of the pullbacks given in Section 2.3, we denote
Φ1

I−Pt as (Pt)∗1. Theorem 2.5.1 then implies that t 7→ (Pt)∗1Bt is smooth at t = 0 in Ck for all k
and that its derivative is given by

∇(V ·B(Ω)) +∇uV ,

where uV solves {
∆uV = 0, in Ω,
∇uV · n = div Γ(B(Ω)(V · n)).

(4.4)

However, we are here interested in the dynamics of the field lines of Bt. It is therefore more
relevant to consider (P−1

t )∗Bt rather than (Pt)∗1Bt as the former transformation preserves the
field lines of Bt. Indeed, the field lines of (P−1

t )∗Bt are equal to the ones of Bt up to composition
with P−1

t . We recall that, given a smooth vector field X,
(
P−1
t

)
∗X is given by

(P−1
t )∗X = (DPt)−1

X ◦ Pt,

and that
d

dt
∣∣t=0

(P−1
t )∗X = [V,X].

In order to differentiate t 7→ (P−1
t )∗Bt, we prove the following lemma.

Lemma 4.3.1. Let X be a vector field in Vec
(
Ω̄
)
. We have

d

dt
∣∣t=0

(P−1
t )∗

(
(P−1
t )∗1X

)
= [V,X]−∇(V ·X)− curlX × V.

Proof. First, we extend X to a smooth vector field of R3, which we also denote X. Now, we
compute

(P−1
t )∗1X = D(P−1

t )TX ◦ P−1
t .

We have

X ◦ P−1
t = X − t(DX)V + o(t),

D(P−1
t )T = I − tDV T + o(t),
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so that
(P−1
t )∗1X = X − t

((
DV T

)
X + (DX)V

)
+ o(t).

Now, combining the identities

∇(V ·X) =
(
DV T

)
X +

(
DXT

)
V,

curlX × V =
(
DX −DXT

)
V,

we obtain
(P−1
t )∗1X = X − t(∇(V ·X) + curlX × V ) + o(t).

Finally, defining Yt = (P−1
t )∗1X and using

(P−1
t )∗Yt = Yt + t[V, Yt] + o(t),

we obtain the desired formula.

We now prove the following proposition

Proposition 4.3.2. The mapping {
R→ Vec

(
Ω̄
)

t 7→
(
P−1
t

)
∗Bt

is smooth at zero, and its derivative is given by

B′(Ω;V ) = [V,B(Ω)] +∇uV , (4.5)

where uV solves Eq. (4.4)

Remark 4.3.3. Using the notations introduced in Chapter 2, this notion of shape derivative of
the harmonic field should be denoted B′vf(Ω;V ). However, since this is the only notion of shape
derivative of the harmonic field we will use in the rest of this chapter, we will keep the notation
B′(Ω;V ) for convenience.

Proof.

(P−1
t )∗Bt = (P−1

t )∗
(
(P−1
t )∗1(Pt)∗1Bt

)
.

Using Theorem 2.5.1 and Lemma 4.3.1, we thus know that t 7→ (P−1
t )∗Bt is smooth at zero in Ck

for all k. Furthermore, its derivative is given by

d

dt
∣∣t=0

(P−1
t )∗Bt = d

dt
∣∣t=0

(Pt)∗1Bt + [V,B(Ω)]−∇(V ·B(Ω))− curlB(Ω)× V

= ∇uV +∇(V ·B(Ω)) + [V,B(Ω)]−∇(V ·B(Ω))
= [V,B(Ω)] +∇uV ,

as claimed.

4.3.2 Shape differentiation of the Poincaré map
Now that we have obtained the shape differentiability of the harmonic field, we proceed to

compute the shape derivative of its Poincaré map. We denote with an additional t subscript



102 CHAPTER 4. Shape differentiation for Poincaré maps of harmonic fields

all the objects defined in Section 4.2 associated with the embedding Et = Pt ◦ E . We recall in
particular that Xt ∈ Vec(∂Ωt) is defined as

Xt = Bt

Bφtt
,

where (φt, θt) = E−1
t .

Proposition 4.3.4. For |t| < ε sufficiently small, Et is admissible and the mapping{
(−ε, ε)→ Vec(∂Ω)
t 7→

(
P−1
t

)
∗Xt

is smooth at zero. Furthermore, if (∂φ, ∂θ) is positively oriented, the θ component of its derivative
is given by

(X ′V )θ = 1
√
g
(
Bφ0

)2B
′(Ω;V ) ·B(Ω)⊥, (4.6)

and we obtain the same formula with opposite sign if the orientation of the coordinates is reversed.

Before proving Proposition 4.3.4, we introduce some geometrical notations for vector fields
on the boundary. We denote by ∇Γφ (resp. ∇Γθ) the vector field of ∂Ω dual to dφ (resp. dθ).
These are therefore defined by the relations

∇Γφ · v = dφ(v), ∇Γθ · v = dθ(v),

for all vectors v which are tangent to ∂Ω. Contrary to what the notations may suggest, these
vector fields are not gradient vector fields, but are only curl Γ-free. This is similar to the fact that
dφ and dθ are not differentials of global functions, but are closed one-forms. In coordinates, we
have

∇Γφ = gφφ∂φ + gφθ∂θ, ∇Γθ = gθφ∂φ + gθθ∂θ. (4.7)

By definition, it is clear that ∇Γφ is orthogonal to ∂θ, and that ∇Γθ is orthogonal to ∂φ.
Furthermore, if (∂φ, ∂θ) is a positively oriented frame on ∂Ω, a straightforward computation in
coordinates shows that

∂⊥φ = √g∇Γθ, ∂
⊥
θ = −√g∇Γφ, (4.8)

with opposite signs if the orientation of the coordinates is reversed. Because of this dependence
on orientation for the sign of orthogonal vectors in coordinates, we will often only treat the case
where (∂φ, ∂θ) is positively oriented. Treating the other case is however a straightforward process,
so we will often omit this technicality when writing the main results.

Proof of Proposition 4.3.4. For the first point of the proposition, we observe that Et = Pt ◦ E
automatically verifies the first two assumptions of Definition 4.2.1. We therefore only need to
prove that Bφtt is positive on ∂Ω for t small enough. To do so, we note that since Et = Pt ◦ E , we
have φt = φ ◦ P−1

t , so that
Bφtt =

((
P−1
t

)
∗Bt

)φ ◦ P−1
t . (4.9)

We then deduce from the differentiability of t 7→
(
P−1
t

)
∗Bt in Vec

(
Ω̄
)
and the admissibility of E

that Bφtt is positive for small enough t, so that Et is admissible.
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Now, using Eq. (4.9), we obtain

(
P−1
t

)
∗Xt =

(
P−1
t

)
∗

(
Bt

Bφtt

)

=
(
P−1
t

)
∗Bt((

P−1
t

)
∗Bt

)φ .
Therefore, from the differentiability of t 7→

(
P−1
t

)
∗Bt given by Proposition 4.3.2 and the fact that((

P−1
t

)
∗Bt

)φ is nowhere zero for small enough t, we obtain that t 7→
(
P−1
t

)
Xt is differentiable

in Vec(∂Ω) at t = 0, and its derivative at zero is given by

X ′V = 1
(B(Ω)φ)2

(
B(Ω)φB′(Ω;V )− (B′(Ω;V ))φB(Ω)

)
.

Now, using the fact that (∂φ, ∂θ) is positively oriented and Eq. (4.8), we obtain

B(Ω)⊥ = √g
(
B(Ω)φ∇Γθ −B(Ω)θ∇Γφ

)
,

so that

(X ′V )θ = 1
(B(Ω)φ)2

(
B(Ω)φ (B′(Ω;V ))θ − (B′(Ω;V ))φB(Ω)θ

)
= 1

(B(Ω)φ)2
(
B(Ω)φ∇Γθ −B(Ω)θ∇Γφ

)
·
(

(B′(Ω;V ))φ ∂φ + (B′(Ω;V ))θ ∂θ
)

= 1
√
g (B(Ω)φ)2B(Ω)⊥ ·B′(Ω;V ).

We are now able to prove that the Poincaré map is shape differentiable.

Theorem 4.3.5. The mapping {
(−ε, ε)→ Diff(S1)
t 7→ Πt

is smooth at zero, and its derivative is given by

Π′(E ;V )(θ) =
ˆ 1

0
T (φ, θ)(X ′V )θ(φ,Πφ

0 (θ))dφ,

where
T (φ, θ) = exp

(ˆ 1

φ

∂θX
θ
0

(
φ′,Πφ′

0 (θ)
)
dφ′
)
.

Proof. Let xt(·) be the solution to

d

dφ
xt(φ) = Xθt

t (φ, xt(φ)), (4.10)
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with xt(0) = θ ∈ S1, so that Πφ
t (θ) = xt(φ). Using θt = θ ◦ P−1

t , we get

Xθt
t =

((
P−1
t

)
∗Xt

)θ
,

so that from Proposition 4.3.4, t 7→ Xθt
t is smooth at t = 0 in C∞

(
T2). As a consequence,

t 7→ xt(·) is also smooth at t = 0, and we can write

xt(φ) = x(0)(φ) + tx(1)(φ) + o(t),

Xθt
t (φ, θ) = Xθ

0 (φ, θ) + t (X ′V )θ (φ, θ) + o(t),

Where o(t) is here a shorthand for a function whose Ck norms on all compact subsets are o(t).
Since Πt(θ) = xt(1), we obtain that t 7→ Πt is smooth at t = 0, and its derivative is given by
Π′(E ;V ) = x(1)(1). Inserting the expansions for Xθt

t and xt in Eq. (4.10), we obtain

d

dφ
x(0)(φ) + t

d

dφ
x(1)(φ) =Xθ

0

(
φ, x(0)(φ)

)
+t
[
∂θX

θ
0

(
φ, x(0)(φ)

)
x(1)(φ) + (X ′V )θ

(
φ, x(0)(φ)

)]
+ o(t),

so that x(1)(·) solves the following linear equation with a drift term

d

dφ
x(1)(φ) = ∂θX

θ
0

(
φ,Πφ

0 (θ)
)
x(1)(φ) + (X ′V )θ

(
φ,Πφ

0 (θ)
)
,

with x(1)(0) = 0. Using Duhamel’s formula, we thus obtain

x(1)(1) =
ˆ 1

0
e
´ 1
φ
∂θX

θ
0

(
φ′,Πφ

′
0 (θ)

)
dφ′ (X ′V )θ (φ,Πφ

0 (θ))dφ,

which is the desired result.

In the case where B(Ω) is linearized in the (φ, θ) coordinates, that is, (B(Ω))|∂Ω = χ(∂φ+ω∂θ)
where χ is a smooth function of ∂Ω and ω is in R, we have the following formulas for (X ′V )θ and
Π′(E ;V ). We note that, in such coordinates, we have B(Ω)φ = χ and ω = B(Ω)θ/B(Ω)φ is a
constant number characterizing the slope of the field lines in the (φ, θ) coordinates.

Proposition 4.3.6. Suppose there exist χ in C∞(∂Ω) positive and a real number ω such that
(B(Ω))|∂Ω = χ(∂φ + ω∂θ) with (∂φ, ∂θ) positively oriented. Let ñ be a smooth extension of n to
R3 and ~ω = (1, ω)T . Decomposing V ∈ Vec(R3) as V = fñ+ VΓ where (VΓ)|∂Ω is tangent to ∂Ω,
we have

(X ′V )θ = f
2II(B(Ω), B(Ω)⊥)

√
gχ2 +

〈
~ω,∇T2

(
ωV φΓ − V

θ
Γ

)〉
+ 1
√
gχ2B(Ω)⊥ · ∇ΓuV , (4.11)

where II is the second fundamental form of ∂Ω. Furthermore, we also have

Π′(E ;V )(θ) =
ˆ 1

0
(X ′V )θ(φ, θ + ωφ)dφ.
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Proof. From Proposition 4.3.2 and Proposition 4.3.4, we have

(X ′V )θ = 1
√
gχ2B(Ω)⊥ ·B′(Ω;V )

= 1
√
gχ2B(Ω)⊥ · ([V,B(Ω)] +∇uV )

= 1
√
gχ2B(Ω)⊥ · [fñ, B(Ω)] + 1

√
gχ2B(Ω)⊥ · [VΓ, B(Ω)] + 1

√
gχ2B(Ω)⊥ · ∇ΓuV . (4.12)

For the first term of Eq. (4.12), we have

[fñ, B(Ω)] = f [ñ, B(Ω)]− (B(Ω) · ∇f) ñ,

so that
B(Ω)⊥ · [fñ, B(Ω)] = fB(Ω)⊥ · [ñ, B(Ω)].

We note that since B(Ω) is in Vec
(
Ω̄
)
and Ω is a smooth domain, we may extend B(Ω) and

B(Ω)⊥ to smooth vector fields of R3 when necessary. Now, denoting by ∇XY the covariant
derivative of a vector field Y in the direction X in R3, and using the fact that the Levi–Civita
connection is torsion free, we have

[ñ, B(Ω)] = ∇ñB(Ω)−∇B(Ω)ñ.

We also have

∇(B(Ω) · ñ) = ∇ñB(Ω) +∇B(Ω)ñ+ ñ× curlB(Ω) +B(Ω)× curl ñ.

It is straightforward to see that the tangential part of [ñ, B(Ω)] does not depend on the choice of
extension of the normal, so that we may choose ñ in a specific way. Since ∂Ω is smooth, we know
that the signed distance to ∂Ω (which we denote σ∂Ω) is smooth in a neighborhood U of ∂Ω.
Let K be a compact subset of U containing a neighborhood of ∂Ω, and η be a smooth positive
function which is equal to one in K, and has support included in U . Then, ñ := η∇σ∂Ω is smooth
extension of the normal, and curl ñ = 0 in K. Therefore, we have curl ñ = 0 on ∂Ω. Furthermore,
we also have curlB(Ω) = 0 in Ω̄. As such, using that B(Ω)⊥ is tangent to ∂Ω, and that B(Ω) · ñ
is equal to zero on ∂Ω, we have

B(Ω)⊥ · ∇ñB(Ω) +B(Ω)⊥ · ∇B(Ω)ñ = B(Ω)⊥ · ∇(B(Ω) · ñ) = 0,

so that
B(Ω)⊥ · [ñ, B(Ω)] = −2B(Ω)⊥ · ∇B(Ω)ñ.

Now, using the fact that the Levi–Civita is compatible with the metric, we write

B(Ω) · ∇(B(Ω)⊥ · ñ) = ∇B(Ω)B(Ω)⊥ · ñ+B(Ω)⊥ · ∇B(Ω)ñ.

Therefore, since B(Ω) · ∇(B(Ω)⊥ · ñ) vanishes on ∂Ω, we have

B(Ω)⊥ · ∇B(Ω)ñ = −∇B(Ω)B(Ω)⊥ · ñ
= −II(B(Ω), B(Ω)⊥).

We refer to [Lee18][Section 8] for the definition of the second fundamental form of 1-codimensional
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manifolds using the Levi–Civita connection. As a consequence, the first term of Eq. (4.12) is
given by

1
√
gχ2 [fñ, B(Ω)] = f

2II(B(Ω), B(Ω)⊥)
√
gχ2 .

Now, we compute the second term of Eq. (4.12). Since VΓ and B(Ω) are tangent vector fields,
the tangential part of [VΓ, B(Ω)] is given by the Lie bracket of VΓ and B(Ω) as vector fields of
∂Ω, which we denote [VΓ, B(Ω)]∂Ω. We have B(Ω) = χ(∂φ + ω∂θ) = χX0, so that

[VΓ, B(Ω)]∂Ω = VΓ · (∇Γχ)X0 + χ[VΓ, X0]∂Ω.

Since X0 is collinear to B(Ω) it is orthogonal to B(Ω)⊥ which implies

B(Ω)⊥ · [VΓ, B(Ω)] = χB(Ω)⊥ · [VΓ, X0]∂Ω.

Now, we write in coordinates

X0 = ∂φ + ω∂θ,

VΓ = V φΓ ∂φ + V θΓ ∂θ,

which gives us
[VΓ, X0]∂Ω = −(∂φV φΓ + ω∂θV

φ
Γ )∂φ − (∂φV θΓ + ω∂θV

θ
Γ )∂θ.

Finally, using B(Ω)⊥ = √gχ(∇Γθ − ω∇Γφ), we get

B(Ω)⊥ · [VΓ, B(Ω)] = −√gχ2(∇Γθ − ω∇Γφ) ·
[
(∂φV φΓ + ω∂θV

φ
Γ )∂φ + (∂φV θΓ + ω∂θV

θ
Γ )∂θ

]
= −√gχ2

(
∂φV

θ
Γ + ω∂θV

θ
Γ − ω∂φV

φ
Γ − ω

2∂θV
φ
Γ

)
,

= √gχ2
〈
~ω,∇T2

(
ωV φΓ − V

θ
Γ

)〉
,

which completes the proof of the first statement. The second result is then a simple consequence
of Theorem 4.3.5 and the fact that, since (X0)|∂Ω = ∂φ + ω∂θ, we have Πφ(θ) = θ + ωφ and
T (φ, θ) = 1.

4.4 The axisymmetric case
In this section, we consider the embedding of the standard axisymmetric torus defined in

Cartesian coordinates by

E(φ, θ) = ((RT + rP cos(2πθ)) cos(2πφ), (RT + rP cos(2πθ)) sin(2πφ), rP sin(2πθ)) , (4.13)

where RT and rP are the major and minor radius respectively with rP < RT . We also denote

R(θ) = RT + rP cos(2πθ),

which is the distance of the point E(φ, θ) to the z-axis. The aim of this section is to prove the
following theorem.
Theorem 4.4.1. Let E be as described above. We have for all V in Vec(R3)

Π′(E ;V ) = 0.
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Although we are working with a torus with circular cross-section for simplicity, it will be clear
during the proof that one may choose any smooth axisymmetric torus. We begin by computing the
relevant geometric objects associated with this embedding. The basis vectors of the coordinates
(φ, θ) are given by

∂φ = −2πR(θ) sin(2πφ)∂x + 2πR(θ) cos(2πφ)∂y,
∂θ = −2πrP sin(2πθ) cos(2πφ)∂x − 2πrP sin(2πθ) sin(2πφ)∂y + 2πrP cos(2πθ)∂z,

so that
g = 4π2R(θ)2dφ2 + 4π2r2

P dθ
2.

We also deduce √g = 4π2rPR(θ). One also verifies that

n = cos(2πθ) cos(2πφ)∂x + cos(2πθ) sin(2πφ)∂y + sin(2πθ)∂z.

Computing the second-order derivatives of E , we get

∂2
φE = −4π2R(θ) cos(2πφ)∂x − 4π2R(θ) sin(2πφ)∂y,

∂φ∂θE = 4π2rP sin(2πθ) sin(2πφ)∂x − 4π2rP sin(2πθ) cos(2πφ)∂y,
∂2
θE = −4π2rP cos(2πθ) cos(2πφ)∂x − 4π2rP cos(2πθ) sin(2πφ)∂y − 4π2rP sin(2πθ)∂z,

so that

II =
(
∂2
φE · n

)
dφ2 + 2 (∂φ∂θE · n) dφdθ +

(
∂2
θE · n

)
dθ2,

= −4π2R(θ) cos(2πθ)dφ2 − 4π2rP dθ
2.

(4.14)

We now turn to the underlying domain Ω, and the associated harmonic field. E(T2) bounds
the domain

Ω = {((RT + rPx) cos(2πφ), (RT + rPx) sin(2πφ), rP y) ∈ R3 | (φ, x, y) ∈ S1 ×D2}.

In this case, the harmonic field of Ω is explicitly known, and is given by the formula

B(Ω) = 1
2π

(
− y

x2 + y2 ∂x + x

x2 + y2 ∂y

)
,

where the 1/2π constant ensures that B(Ω) has unit circulation along positively oriented toroidal
loops. Moreover, the restriction of B(Ω) to the boundary is given by

B(Ω)|∂Ω = 1
4π2R(θ)2 ∂φ. (4.15)

It is then clear that E is indeed an admissible embedding. We are now able to prove the following
lemma.

Proposition 4.4.2. Let E, B(Ω) and (φ, θ) be as defined above. We then have
• X(E) = ∂φ,
• Π(E) = id,
• II(B(Ω), B(Ω)⊥) = 0.

Proof. The first two statements are straightforward using Eq. (4.15). As for the third statement,
using the fact that the coordinates (φ, θ) are orthogonal, we know that B(Ω)⊥ is colinear to ∂θ.
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Furthermore, we know from Eq. (4.14) that the second fundamental form is diagonalized in the
coordinates (φ, θ), which gives us the desired result.

Corollary 4.4.3. Let E and Ω be as defined above, and uV be the solution to Eq. (4.4). Then

Π′(E ;V )(θ) = R(θ)2

r2
P

ˆ 1

0
∂θuV (φ, θ)dφ.

Proof. Using Proposition 4.4.2, we know that we can apply Proposition 4.3.6 with ω = 0. We
decompose V ∈ Vec

(
R3) as V = fñ + VΓ, where ñ is a smooth extension of n to R3, and VΓ

is tangent to ∂Ω. Since (∂φ, ∂θ) is positively oriented, we know from Proposition 4.3.6 and
Proposition 4.4.2 that

(X ′V )θ = −∂φV θΓ + 1
√
g(B(Ω)φ)2B(Ω)⊥ · ∇ΓuV .

Using the fact that v 7→ v⊥ is an isometry on each tangent plane of ∂Ω and that
(
v⊥
)⊥ = −v,

we find

B(Ω)⊥ · ∇ΓuV = −B(Ω) · (∇ΓuV )⊥

= −
(
B(Ω)φ∂φ

)
·
(

1
√
g
∂φuV ∂θ −

1
√
g
∂θuV ∂φ

)
= B(Ω)φ∂θuV

gφφ√
g
,

where we used ∇ΓuV = ∂φuV∇Γφ+∂θuV∇Γθ, as well as ∇Γφ
⊥ = 1/√g∂θ and ∇Γθ

⊥ = −1/√g∂φ,
which are simple consequences of Eqs. (4.7) and (4.8). Therefore, we obtain

(X ′V )θ = −∂φV θΓ + gφφ
(det g)B(Ω)φ ∂θuV

= −∂φV θΓ + R(θ)2

r2
P

∂θuV .

Using once again Proposition 4.3.6, we obtain

Π′(E ;V ) =
ˆ 1

0
(X ′V )θ (φ, θ)dφ

= R(θ)2

r2
P

ˆ 1

0
∂θuV (φ, θ)dφ.

The proof of Theorem 4.4.1 follows from Corollary 4.4.3 taking into account suitable symmetry
properties described in the following lemmas.

Lemma 4.4.4. Let Ω be as defined above and uV be a solution to Eq. (4.4). Then, for all θ in
S1, we have ˆ 1

0
∇uV (φ, θ) · ndφ = 0. (4.16)
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Proof. We recall that uV is a harmonic function of Ω satisfying the boundary condition

∇uV · n = div Γ(B(Ω)(V · n)).

A quick computation in coordinates shows that div Γ(B(Ω)) = 0, so that

div Γ(B(Ω)(V · n)) = B(Ω) · ∇Γ(V · n).

Furthermore, since B(Ω) = 1/(4π2R(θ)2)∂φ, we have B(Ω) · ∇Γ(V · n) = 1/(4π2R(θ)2)∂φ(V · n).
Finally, we deduce

ˆ 1

0
∇uV (φ, θ) · ndφ = 1

4π2R(θ)2

ˆ 1

0
∂φ(V · n)(φ, θ)dφ

= 0.

Since uV is harmonic in Ω, we know that ∇uV ·n must be of zero average on ∂Ω. Lemma 4.4.4
then tells us that ∇uV ·n must moreover be of zero average along any toroidal loop. In particular,
uV may not be any harmonic function of Ω̄ and its trace may not be any smooth function of ∂Ω.
This fact is then used to prove the following lemma, for which we introduce the notation

 
∂Ω
f =

´
∂Ω f

|∂Ω| =
´
∂Ω f´
∂Ω 1 ,

where f is an integrable function on ∂Ω.

Lemma 4.4.5. Let Ω be as defined above and uV be as in Eq. (4.4). Let f be a smooth function
on ∂Ω such that ∂φf = 0. We have

ˆ
∂Ω
fuV =

 
∂Ω
f

ˆ
∂Ω
uV . (4.17)

Proof. First, suppose that f has zero average on ∂Ω. We then define v as the zero average
solution to {

∆v = 0 in Ω,
∇v · n = f on ∂Ω.

We now show that ∂φv = 0. Indeed, call RΦ the rotation of angle Φ around the z-axis. We then
get that v ◦RΦ satisfies

∆(v ◦RΦ) = (∆v) ◦RΦ = 0,

because RΦ is an isometry, and

∇(v ◦RΦ) · n = (∇v · n) ◦RΦ = f,

because RΦ is an isometry which leaves Ω unchanged and ∂φf = 0. Therefore, v and v ◦RΦ satisfy
the same PDE, and have the same average. As a consequence, v ◦RΦ = v for all Φ, meaning that
∂φv = 0.
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Now, using the equations satisfied by uV and v, and Lemma 4.4.4, we get
ˆ
∂Ω
fuV =

ˆ
∂Ω

(∇v · n)uV

=
ˆ

Ω
∇v · ∇uV

=
ˆ
∂Ω
v (∇uV · n)

= 4π2rP

ˆ 1

0
R(θ)v(θ)

ˆ 1

0
∇uV · n(φ, θ)dφdθ

= 0.

Finally, if we now take any f in C∞(∂Ω), we can repeat the procedure with f −
ffl
∂Ω f , and get

ˆ
∂Ω

[(
f −

 
∂Ω
f

)
uV

]
= 0,

which gives us our desired result.

We now have all the ingredients to prove Theorem 4.4.1.

Proof of Theorem 4.4.1. To prove that Π′(E ;V ) vanishes, we use Lemma 4.4.5 on approximations
of δθ0 . We define f̃θ0,ε ∈ C∞(S1) so that 4π2rPRf̃θ0,ε is a family of smooth approximations of
the Dirac at θ0. We may take for example

R(θ)f̃θ0,ε(θ) = Cε
∑
k∈Z

exp
(
−ε

2(θ − θ0 − k)2

2

)
,

with Cε chosen so that ˆ 1

0
4π2rPR(θ)f̃θ0,ε(θ)dθ = 1.

Then, defining fθ0,ε(φ, θ) = f̃θ0,ε(θ) and using √g = 4π2rPR(θ), we get
ˆ
∂Ω
fθ0,εuV =

ˆ 1

0

ˆ 1

0
4π2rPR(θ)f̃θ0,ε(θ)uV (φ, θ)dθdφ

ε→0−−−→
ˆ 1

0
uV (φ, θ0)dφ.

On the other hand, Lemma 4.4.5 gives us
ˆ
∂Ω
fθ0,εuV =

 
∂Ω
fθ0,ε

ˆ
∂Ω
uV

=
 
∂Ω
uV .

As a consequence, we have for all θ in S1

ˆ 1

0
uV (φ, θ)dφ =

 
∂Ω
uV ,
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and thus ˆ 1

0
∂θuV (φ, θ)dφ = 0.

We then conclude using the formula of Π′(E ;V ) given in Corollary 4.4.3.

4.5 The diophantine case
In this section, we suppose that E is an admissible embedding such that, in the corresponding

coordinates (φ, θ), we have B|∂Ω = χ (∂φ + ω∂θ), where χ is a smooth function on the boundary
and ω is a diophantine number, that is, there exist C, τ positive constants such that, for all
p/q ∈ Q

|ω − p/q| ≥ C|q|−(τ+1). (4.18)

We note that this definition of diophantine numbers implies two other inequalities which will be
used in this section. The first one, which is generally used for cohomological equations in the
continuous context, is the following. For all n 6= 0 in Z2, we have

|~ω · n| ≥ C|n|−τ , (4.19)

with ~ω = (1, ω)T . The second one, which is generally more common in discrete contexts, is the
following. For all q 6= 0 in Z, we have∣∣e2πiωq − 1

∣∣ ≥ C|q|−τ , (4.20)

where C is not necessarily the same constant as before. To obtain this inequality, we write using
Eq. (4.18)

inf
p∈Z
|ωq − p| ≥ C|q|−τ .

The quantity on the right-hand side of this inequality is the distance between ωq and 0 in
S1 = R/Z using the quotient metric induced from the usual metric on R. This metric is then
equivalent to the metric on S1 when seen as the unit circle in C, which gives us Eq. (4.20).

In this section, we prove the following theorem

Theorem 4.5.1. Suppose E is an admissible embedding with associated domain Ω and coordinates
(φ, θ) verifying the following hypotheses.

1. There exists χ in C∞(∂Ω) and a diophantine number ω such that B(Ω)|∂Ω = χ(∂φ+ω∂θ).
2. II

(
B(Ω), B(Ω)⊥

)
vanishes nowhere on ∂Ω.

Then, the mapping V 7→ Π′(E ;V ) is surjective from Vec(R3) to C∞(S1).

Remark 4.5.2. For a point x of ∂Ω, the second fundamental form IIx at x is related to the shape
operator Sx by IIx(u, v) = Sx(u) · v. Since IIx is a symmetric bilinear form, Sx is self adjoint
and there exist two orthonormal eigenvectors E1 and E2 of Tx∂Ω with associated eigenvalues κ1
and κ2. Ei are the principal directions at x, and κi the related principal curvatures. We can also
assume that (E1, E2) is positively oriented on Tx∂Ω. If we decompose B(Ω) at x as

B(Ω) = α1E1 + α2E2,

then
IIx(B(Ω), B(Ω)⊥) = α1α2(κ2 − κ1).
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Therefore, we find that II(B(Ω), B(Ω)⊥) does not vanish at x if and only if two conditions are
met:

• x is not an umbilical point of ∂Ω, that is κ1 6= κ2.
• B(Ω) is not in a principal direction at x.

The proof of Theorem 4.5.1 comes in two steps. First, we prove that by choosing V tangent
to the boundary, we can generate any Π′(E ;V ) which is of zero average on S1. This result is not
surprising as having V tangent to the boundary amounts to changing the coordinates on ∂Ω, which
in turn changes the Poincaré map by a conjugation by a diffeomorhism on S1. As such, tangent
deformations do not generate a change in the rotation number, and the only possible changes in
Πt have zero average at first-order in t. Then, the image of V 7→ Π(E ;V ) has co-dimension at
most one in C∞(S1), and one only needs to find a normal deformation which generates Π′(E ;V )
with nonzero average. This is achieved using the assumption on II

(
B(Ω), B(Ω)⊥

)
.

Proposition 4.5.3. For all µ in C∞(S1) such that
ˆ
S1
µ = 0,

there exists VΓ in Vec(R3) such that (VΓ)|∂Ω is tangent to ∂Ω and Π′(E ;VΓ) = µ.

Proof. Let µ in C∞(S1) be given in Fourier basis by

µ(θ) =
∑
n∈Z

µ̂ne
2πinθ,

with µ̂0 = 0. Since µ is real-valued, we have (µ̂−n)∗ = µ̂n. We define Φ̂n = (2πinω)/(e2πinω−1)µ̂n
for n 6= 0, and

Φ(φ, θ) =
∑

n∈Z\{0}

Φ̂ne2πinθ.

Using the discrete diophantine condition on ω given by Eq. (4.20), we get∣∣∣∣ 2πinω
e2πinω − 1 µ̂n

∣∣∣∣ ≤ C ∣∣e2πiωn − 1
∣∣−1 |n| |µ̂n| ,

≤ C|n|τ+1 |µ̂n| ,

so that Φ is smooth on T2. Furthermore, using the symmetries of µ̂n, it is straightforward that Φ
is also real-valued. Now, define VΓ as a smooth extension of −ϕ∂θ to R3, where ϕ is the zero
average solution to

〈~ω,∇T2ϕ〉 = Φ.

This solution is known to exist using the continuous diophantine condition given by Eq. (4.19)
and the fact that Φ has zero average on T2 (see for example [Lla03]). Moreover, we have VΓ ·n = 0
so that the solution uVΓ to Eq. (4.4) is constant. Using Proposition 4.3.6, we get

(X ′VΓ
)θ =

〈
~ω,∇T2

(
ωV φΓ − V

θ
Γ

)〉
= 〈~ω,∇T2ϕ〉
= Φ.
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Now, we compute using Proposition 4.3.6

Π′(E ;VΓ)(θ) =
ˆ 1

0

(
X ′VΓ

)θ (φ, θ + ωφ)dφ

=
ˆ 1

0
Φ(φ, θ + ωφ)dφ

=
∑

n∈Z\{0}

Φ̂n
ˆ 1

0
e2πin(θ+ωφ)dφ

=
∑

n∈Z\{0}

Φ̂n
e2πinω − 1

2πin e2πinθ

=
∑
n∈Z

µ̂ne
2πiθ

= µ(θ).

Proof of Theorem 4.5.1. From Proposition 4.5.3, we know that the image of V 7→ Π′(E ;V )
contains all the smooth zero average functions on S1. By linearity, we therefore only need to find
one deformation which produces a derivative of the Poincaré map with nonzero average. This
is done by picking V = 1/(√gχ)ñ, where ñ is an extension of the normal. Indeed, this verifies
V · n = 1/(√gχ), so that

div Γ(B(Ω)(V · n)) = 1
√
g

(
∂φ

(
√
g

χ

χ
√
g

)
+ ∂θ

(
√
g
ωχ

χ
√
g

))
= 0.

As a consequence, the solution uV of Eq. (4.4) is constant, and by Proposition 4.3.6 (X ′V )θ is
given by

(X ′V )θ =
2II
(
B(Ω), B(Ω)⊥

)
(det g)χ3 .

Since we assume that II
(
B(Ω), B(Ω)⊥

)
vanishes nowhere, it is either positive or negative on ∂Ω.

As a consequence

θ 7→
ˆ 1

0
(X ′V )θ(φ, θ + ωφ)dφ,

is also either positive or negative on S1, and has therefore a nonzero average.

4.6 Conclusion and perspectives
Conclusion In this chapter, we have established a shape differentiability result for the Poincaré
maps of harmonic fields, and studied some properties of the shape derivative in specific cases.
The proof of shape differentiability in the general case followed from an easy adaptation of the
shape differentiation result of harmonic fields given in Section 2.5 in the smooth category. We
then studied the case of axisymmetric domains, for which we found that the shape derivative of
the Poincaré map of harmonic fields always vanishes. After that, we have found that when the
domain has a Poincaré map which is a diophantine rotation on the boundary, the shape derivative
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may be any smooth function of the circle under an additional assumption relating the curvature
of the boundary and the harmonic field.

Perspectives First, we defined the Poincaré map of harmonic fields Π using the notion of
admissible embeddings of the torus into R3. As such, the map that we obtain is not technically
speaking a shape function. One may then wonder how changing the embedding of the torus may
change the Poincaré map when fixing the shape of the corresponding domain. Indeed, if Π were a
true shape functional, such changes in embeddings would not affect the Poincaré map. However,
although the coordinates in which we consider the Poincaré map changes, the underlying dynamics
of the harmonic field does not. What we expect to find is that, if the embedding preserves a
certain notion of orientation, the change of embedding would lead to a change in the Poincaré
map given by a conjugation in the group of diffeomorphisms of the circle. In the other case, we
expect to find that the Poincaré map associated to the modified embedding would be the inverse
of the original Poincaré map up to conjugation. Indeed, changing orientation would intuitively
lead to reversing the direction of time for the flow of the harmonic field.

Second, we saw in Section 4.4 that the shape derivative of the Poincaré map of the harmonic
field is always zero in the case of the standard torus. One could then naturally ask if the second
order derivative may in this case produce changes in the Poincaré map, and in particular, changes
in the rotation number. For this, one would need to find an expression for this shape derivative.
Although the author has made some preliminary computations in this direction, it seems that
the formulas we obtain are much more difficult to deal with that in the first order case so that
coming up with deformations of the domain leading to changes in the Poincaré map at second
order is not an easy task.

Finally, we believe that the main result of Section 4.5 leads to two questions which we leave
open. First, it is not still clear to the author if the assumption relating the harmonic field and the
second fundamental form in Theorem 4.5.1 is often realized in practice. The author attempted to
study this assumption in the case of the thin toroidal domains from [EP15], but it seems that
this assumption is not verified in this case. In fact, we found that the approximate harmonic
field denoted as h0 in [EP15, Section 5] is exactly aligned with the lowest principal curvature
direction of the boundary, and that taking some finer approximations leads to changes in sign
for the quantity used in the assumption. Although this fact is interesting in itself, it means that
the additional assumption used for Theorem 4.5.1 is not satisfied for thin toroidal domains (see
Remark 4.5.2). One could then try to find other domains for which the assumption is satisfied, but
this does not seem like an easy task. Another thing one may try to do is to weaken the curvature
assumption used in Theorem 4.5.1. Indeed, we see when studying the proof that only the first two
terms of the shape derivative given by Eq. (4.11) are used to prove surjectivity so that also using
the third term may lead to weaker assumptions. Second, we believe that Theorem 4.5.1 may
lead to interesting local properties of Π around embeddings where it applies. Indeed, if we were
working in the simpler case of Banach spaces, we would obtain that Π is locally surjective around
such domains. As a consequence, we would find that generic perturbations of such domains
would lead to Morse–Smale diffeomorphisms of the circle, and thus rational rotation numbers 1.
However, surjectivity of the differential does not imply local surjectivity in Fréchet spaces, so that
this result is harder to establish. We refer the reader to [Ham82] for a local surjectivity theorem
in Fréchet spaces, but we do not expect that the assumptions would be verified in our case.

1. See for example [OS98] for the notion of Morse–Smale diffeomorphisms of the circles and some of their
properties.



AppendixA
Translation from differential forms and
Hodge decomposition

It is common in the literature to find the types of problems we are studying in the language
of differential forms. Although this approach deals with more abstract mathematical objects, it
allows the use of a unique framework. This approach can notably be found in [AFW06], and is
relatively common in the finite element exterior calculus literature.

Since results using the differential forms language are quite often referenced in this manuscript,
we choose to write a small appendix to explain how to translate expressions from the language of
differential forms to the one of functions and vector fields in three dimensional manifolds. This is
done using usual identifications from Riemannian geometry and Hodge theory, that is, the musical
isomorphisms and Hodge star operator (see Section 1.3.1). In the case of a three-dimensional
manifold, these identifications work perfectly to equate 0 and 3 forms with functions, 1 and 2
forms with vector fields, and to translate the exterior derivatives and coderivatives with the
usual differential operators of electromagnetism. These identifications are then summed up in the
following commutative diagram, and table.

HΛ0(Ω) HΛ1(Ω) HΛ2(Ω) HΛ3(Ω)

H1(Ω) H(curl,Ω) H(div,Ω) L2(Ω)

d d d

id # #∗ ∗

∇ curl div

(A.1)

HΛk(Ω) H∗Λk(Ω) d δ Tr(u) ιV u LV u
k = 0 H1(Ω) L2(Ω) ∇ 0 u|∂Ω 0 ∇u · V
k = 1 H(curl ,Ω) H(div ,Ω) curl −div u× n u · V curlu× V +∇(u · V )
k = 2 H(div ,Ω) H(curl ,Ω) div curl u · n u× V (div u)V + curl (u× V )
k = 3 L2(Ω) H1(Ω) 0 −∇ – uV div (uV )

Figure A.1 – Table of correspondence between differential forms language and vector calculus
language

Here, HΛk(Ω) denotes the set of square integrable k-forms whose exterior derivative is square
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integrable, H∗Λk(Ω) the set of square integrable k-forms whose exterior coderivative is square
integrable, d the exterior derivative, δ the exterior coderivative, ∗ the Hodge star operator, #
the musical isomorphism taking 1-forms to vector fields, Tr(ω) the trace of a differential form ω
defined by the pullback of ω onto ∂Ω by the inclusion map i : ∂Ω→ Ω̄, ιV is the interior product
with a vector field V and LV is the Lie derivative in the direction of a vector field V .

We now give three proposition which are used throughout the manuscript. Proposition A.1 is
a vectorial Hodge decomposition, Proposition A.2 gives Poincaré type inequalities, and Proposi-
tion A.3 gives L2 orthogonality relations between functional spaces. We also note that similar
results may be found directly in the vectorial context for example in [EG23], although the
notations and approaches used here are slightly different.

Proposition A.1. Let Ω be a Lipschitz toroidal domain as defined in Section 2.2.1. We have
the following L2 orthogonal decompositions

L2(Ω)3 = curlH0(curl ,Ω)⊕⊥ K(Ω)⊕⊥ ∇H1(Ω), (A.2)
L2(Ω)3 = curlH(curl ,Ω)⊕⊥ ∇H1

0 (Ω). (A.3)

Proof. This is a simple consequence of the Hodge decomposition given in [AFW06, Section 2], in
the cases k = 1 and k = 2 respectively. The reason no harmonic term appears in Eq. (A.3) is
that the second de Rham cohomology space vanishes in Ω, and thus, that the set of harmonic
two forms is trivial.

Proposition A.2. There exists C such that for all u1 ∈ H
(
curl 0,Ω

)⊥ ∩ H(curl ,Ω), u2 ∈
H
(
div 0,Ω

)⊥ ∩H(div ,Ω)

‖u1‖ ≤ C ‖curlu1‖ ,
‖u2‖ ≤ C ‖div u2‖ .

Proof. This is given by [AFW06, Eq. (2.17)] in the cases k = 1 and k = 2.

Proposition A.3. We have the following orthogonality relations in L2(Ω)3

∇H1(Ω)⊥ = H0
(
div 0,Ω

)
, (A.4)

curlH(curl ,Ω)⊥ = H0
(
curl 0,Ω

)
, (A.5)

∇H1
0 (Ω)⊥ = H

(
div 0,Ω

)
, (A.6)

curlH0(curl ,Ω)⊥ = H
(
curl 0,Ω

)
. (A.7)

Furthermore, all these linear subspaces are L2 closed, so that the relations are still correct by
taking the orthogonal to the other side.

Proof. Eqs. (A.4) to (A.7) are given by [AFW06, Eqs. (2.15) and (2.16)] in the cases k = 1
and k = 2. The fact that all the subspaces are L2 closed is given by the continuity of div :
H(div ,Ω) → L2(Ω) and curl : H(curl ,Ω) → L2(Ω)3 on the right-hand sides of Eqs. (A.4)
to (A.7), and by [AFW06, Th. 2.3.] for the left-hand side.
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