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doute été essentiels à la réussite de ce projet de thèse. Les nombreuses heures que vous avez consacrées
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pour tes imitations, tes pranks a répétition et le nombre incalculable de parties de Battleground ou tu
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Abstract

This thesis explores various aspects of sub-Doppler spectroscopy, ranging from fundamental studies
of the Zeeman effect to coherent pumping processes. It provides a general overview of past and
present advancements using thin spectroscopic cells of nanometric and micrometric thickness. From
a theoretical perspective, we recall the model describing the interaction between a laser and a vapor
confined in a thin cell. We present a comprehensive theoretical description of the behavior of a
sodium vapor under magnetic fields up to 10 000 G. Additionally, we develop a complete theoretical
framework for dipole moment cancellation and calculate the magnetic field values at which Zeeman
transitions of alkali atoms are canceled. These values depend solely on physical constants and can serve
as standards for calibrating magnetometers. We also present a magnetometer scheme utilizing thin
potassium cells allowing to measure magnetic fields with high spatial resolution, potentially beneficial
for magnetometry in challenging environments. The formation of EIT resonances in strong magnetic
fields is investigated both theoretically and experimentally, showing promise for laser frequency locking
on strongly detuned frequencies. Lastly, we explore the formation of narrow 𝑁 -resonances and examine
the effect of additional buffer gas on their width and contrast. 𝑁 -resonances are promising candidates
for atomic frequency standards that can be achieved with commercially available diode lasers.

Keywords: atomic spectroscopy ; alkali ; Zeeman effect ; magnetometry ; magneto-optical processes





Résumé

Cette thèse explore divers aspects de la spectroscopie sous-Doppler, allant des études fondamentales
de l’effet Zeeman aux processus de pompage cohérent. Elle offre une vue d’ensemble des avancées
antérieures et actuelles en utilisant des cellules spectroscopiques fines d’épaisseur nanométrique et
micrométrique. Du point de vue théorique, nous rappelons lemodèle décrivant l’interaction entre un laser
et une vapeur confinée dans une cellule fine. Nous présentons une description théorique complète du
comportement d’une vapeur de sodium dans un champ magnétique allant jusqu’à 10 000 G. De plus, nous
développons un cadre théorique complet pour l’annulation du moment dipolaire et calculons les valeurs
de champ magnétique pour lesquelles les transitions Zeeman des atomes alcalins sont annulées. Ces
valeurs dépendent uniquement de constantes physiques et peuvent servir de références pour l’étalonnage
de magnétomètres. Nous présentons également un schéma de magnétomètre utilisant de fines cellules
de potassium permettant de mesurer les champs magnétiques avec une haute résolution spatiale,
potentiellement bénéfique pour la magnétométrie dans des environnements difficiles. La formation de
résonances EIT dans des champs magnétiques forts est étudiée théoriquement et expérimentalement,
montrant une faisabilité pour le verrouillage de la fréquence laser sur des fréquences fortement décalées.
Enfin, nous explorons la formation de résonances 𝑁 étroites et examinons l’effet d’un gaz tampon
supplémentaire sur leur largeur et leur contraste. Les résonances 𝑁 sont des candidates prometteuses
pour des étalons de fréquence atomique pouvant être réalisés avec des lasers à diode disponibles dans le
commerce.

Mots-clés : spectroscopie atomique ; alcalins ; effet Zeeman ; magnétométrie ; procédés magnéto-
optiques
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Introduction
Lasers [1] are pivotal in investigating quantum systems and manipulating their properties. Alkali atoms
(Li, Na, K, Rb, Cs, and, to a lesser extent, Fr) are favored in atomic physics for their high atomic vapor
density at low temperatures (fig. 1a) and strong optical transitions (𝐷 lines) in the visible or near-infrared
spectrum, which are accessible with relatively inexpensive continuous wave (CW) lasers. Their simple
energy level structure comprising a single valence electron makes them very well-documented species
[2–7] and greatly simplifies theoretical calculations. Understanding magneto-optical effects in alkali
metal vapors is crucial for applications such as electromagnetically induced transparency (EIT) studies
[8, 9], Faraday filters [10, 11], optical magnetometry [12–17] and laser frequency stabilization [18].

In recent decades, extensive studies on alkali atoms have focused on phenomena such as the Faraday
effect [19–21], Hanle effect [22–25], Dicke effect [26, 27], prolonged resonance interaction times in
buffered vapor cells [28, 29], and magneto-optical processes [30–32]. These studies have paved the way
for innovations like alkali vapor-based lasers [33–35], precise optical magnetometers, and advancements
in quantum information technologies such as optical quantum memory devices [36, 37] and logic gates
[38, 39]. Other more fundamental applications of alkali atoms include (but are not by any means limited
to) the study of Rydberg states [40, 41], dipole-dipole and cooperative interactions [42, 43], atom-surface
interactions [44], formation and studies of dimers [45, 46]. They were for example used in the first
experimental realizations of Bose-Einstein condensates in 1995 [47, 48].

Studying atomic systems, especially their hyperfine structures, is complex. The hyperfine structure
cannot be described by the Schrödinger equation alone. The influence of external magnetic and electric
fields, which lead to the Zeeman [49], Paschen-Back [50], and Stark [51] effects, requires a more complex
description using the Dirac equation. Additionally, the increasing precision of measurements in recent
decades necessitates implementing advanced mathematical and physical tools, such as the Liouville
equation or von Neumann formalism. More and more powerful computers are essential for performing
numerical simulations that match the precision of these measurements.

For a vapor media, the thermal motion of atoms results in Doppler broadening (see fig. 1). A laser of
frequency 𝜔𝐿 and wavevector k will be seen by an atom with a velocity v as 𝜔 = 𝜔𝐿 − k · v, resulting in
a line broadening [53]

Γ𝐷 = 𝜔0

√︂
8 ln(2)𝑘𝐵𝑇

𝑚𝑐2 (1)

where 𝜔0 is the transition frequency (line center),𝑚 is the atomic mass, 𝑘𝐵 is the Boltzmann constant
and 𝑇 is the temperature. This broadening inevitably leads to the overlapping of hyperfine transitions
and their Zeeman components, thus limiting their spectroscopic applicability. Significant sub-Doppler
narrowing of atomic transitions can be attained with the use of so-called optical nanocells (NCs) [54–56].
Being enclosed in optical cells with a thickness of the order of the resonant wavelength, alkali metal
vapors become a powerful tool for the high-resolution atomic spectroscopy, opening new possibilities
for studying magneto-optical processes, where spectral resolution of individual transitions between
magnetic sublevels (Zeeman transitions) is essential.

Complete determination of the behavior of all the possible individual Zeeman transitions can be
done using a well-known theoretical model first provided by Tremblay et al. [57]. Importantly, besides
frequency splitting in a magnetic field, Zeeman transitions also undergo significant probability changes.
This allows us to observe the appearance of several peculiarities, such as Guiding Transitions and
two different types of so-called magnetically induced circular dichroism (MCD) [58, 59]. Several
efficient techniques have been developed to enhance the spectral visibility of Zeeman transitions while
preserving their relative probability scaling, such as the derivative of Selective Reflection [60] and
Second Derivative of absorption [61, 62].
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1. Motivation

Figure 1 – a) Atomic number density 𝑁 [cm−3] of Na, K, Rb, and Cs as a function of the temperature,
calculated according to 𝑁 = 𝑃𝑣/𝑘𝐵𝑇 with log10 (𝑃𝑣) = 𝐴 + 𝐵𝑇 −1. The empirical parameters 𝐴 and
𝐵 can be found in [52]. b) Doppler broadening Γ𝐷 of the 𝐷1 line of Na, K, Rb, and Cs calculated
according to eq. (1) with the data provided in appendix B.

In summary, alkali metal vapors offer versatile tools for exploring fundamental and applied physics,
from quantum phenomena to advanced optical technologies, owing to their unique spectroscopic
properties and practical advantages in experimental setups.

1 Motivation

This thesis focuses on different aspects of sub-Doppler spectroscopy, from fundamental Zeeman effect
studies to coherent pumping processes. It gives a general overview of what has been done and what can
be done with thin spectroscopic cells.

Chapter 2 stems from the observation that most experimental studies typically use rubidium and
cesium atomic vapors due to the availability of relatively inexpensive CW diode lasers operating in their
resonant wavelength range. Magneto-optical effects on sodium 𝐷 lines have been much less studied.
Although some information concerning Zeeman transitions of sodium exists in the literature [63–65],
the available information is far from being complete. We have decided to illustrate the theoretical
description of the behavior of alkali vapors in NCs, with and without applying an external magnetic
field. In the meantime, we observed that several transitions got canceled for very precise values of
the external magnetic field. This effect had been observed by Davis, Metcalf, and Phillips in 1979 [66].
We noticed that it was possible to derive theoretically these values. All the values have been exactly
determined either by numerical simulation or analytical calculation. As they only depend on physical
constants, one can envisage the reciprocal effect: the annihilation of a transition for a very precise value
of the magnetic field means this value could be used as a standard for the calibration of a magnetometer.
This is done in chapter 3.

Chapter 4 focuses on magnetometry applications. We have decided to use cells filled with 39K,
a promising candidate for table-top vapor cell magnetometry setups as its characteristic magnetic
field value 𝐵0 (determining when the nuclear spin and total electron angular momentum decouple) is
substantially lower than the analogous value for Rb and Cs. Therefore, when 39K atoms are placed in an
external magnetic field, important specific features of the behavior of the Zeeman transitions, such as a
strong change in their probability and a significant decrease in their number can be easily observed
[6, 67–71] by applying a much weak magnetic field weaker than for Cs or Rb [appendix B]. Modern
state-of-the-art magnetometers now achieve excellent sensitivity but are focused on the measurement
of extremely low magnetic fields in shielded environments [72, 73]. Here, we choose to focus more
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2. Outline of the thesis

on measurement range and spatial resolution than sensitivity. As our theory agrees very well with
the experiment, experimental setups to retrieve magnetic field values can be built with good spatial
resolution, with the advantage of being immune to external perturbations and thermal drift.

Chapter 5 explores coherent processes and various ways to generate narrow, all-optical resonances.
This is typically done with a bichromatic laser setup, usually denoted “probe” and “coupling”. Such
resonances heavily depend on the properties of Zeeman transitions, and mainly on their huge shift
with respect to the magnetic field. We have noticed that by wisely choosing the probe and coupling
polarizations, it was possible to form EIT resonances far detuned from the 𝐷 line transition frequency
of cesium (and possibly other alkali isotopes). These resonances can be used for laser frequency locking
[18]. We then investigate 𝑁 -resonances, which have the advantage of being even narrower. EIT
and 𝑁 -resonances have a significant number of important applications in a variety of fields, such as
information storage, quantum communication, optical magnetometry, or metrology [74–76].

2 Outline of the thesis

This thesis is 171 pages long and contains 5 chapters, 87 figures, 13 tables, and 240 references.

2.1 Chapters

The five main chapters are organized as follows:

• In chapter 1, we explore the fundamentals and advantages of NC spectroscopy, allowing sub-
Doppler resolution with a single laser. This concept was first theoretically proposed by Vartanyan
and Lin [77] and further refined by Zambon and Nienhuis [78], and Dutier et al. [79], who
considered interferometric effects within the cells, leading to asymmetrical lineshapes and coherent
Dicke narrowing. We discuss the benefits of NCs over traditional techniques, such as achieving
high-resolution spectra without crossover resonances using a simple experimental setup. The
manufacturing process, described by Sarkisyan et al. [54], involves polished sapphire windows
and a wedge-shaped structure, allowing precise control over the cell thickness and spectroscopic
conditions. The theoretical description of NCs considers reflections at cell interfaces and solutions
for lineshapes are given using Maxwell’s formalism and optical Bloch equations. Experimental
studies include measurements of van der Waals (vdW) interactions for Cs and Rb atoms, revealing
the retardation effect predicted by Carvalho et al. [80] and Laliotis et al. [81]. A comparison with
traditional sub-Doppler techniques, like saturated absorption spectroscopy, shows that NCs offer
superior resolution and simplicity. Applications of NCs in studying magneto-optical processes,
molecular spectroscopy, and cooperative effects demonstrate their value in precise measurements
and fundamental research.

• In chapter 2, we describe the behavior of alkali atoms in electromagnetic fields using the Dirac
equation. We examine the Dirac Hamiltonian terms like kinetic energy and spin-orbit coupling.
We derive the Hamiltonian for alkali atoms in a static magnetic field, discuss the hyperfine
structure and the Zeeman effect, and present a theoretical model from Tremblay et al. [57] used
to calculate alkali transition frequencies and intensities. We then apply this model to the 𝐷 lines
of sodium, incorporating the NC model from chapter 2. We investigate sodium vapor behavior
under different magnetic fields and laser polarizations, detailing Zeeman transitions and their
intensities. We analyze the effects of state mixing and selection rules, noting that high magnetic
fields lead to the hyperfine Paschen–Back (HPB) regime where nuclear spin and electronic angular
momentum decouple. Finally, we explore MCD in alkali metal isotopes with a nuclear spin of 3/2.
We focus on forbidden transitions with Δ𝐹 = ±2, which can have high probabilities under certain
magnetic fields. We describe an experimental setup for studying the 𝐷2 line transitions of 87Rb
using circularly polarized laser radiation, analyze intensity ratios of magnetically induced (MI)
transitions, and highlight their potential applications in magneto-optical processes.
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• In chapter 3, we develop a theoretical model to determine the magnetic field values that cancel
the 𝐷1 and 52𝑆1/2 → 62𝑃1/2 transitions of all stable alkali isotopes. We start with a general
definition of the hyperfine structure and build Hamiltonians for the ground and excited states
of each Zeeman transition in the coupled basis |𝐹,𝑚⟩. After extensive calculations, we derive
an analytical formula for the roots of specific transition intensities, revealing a symmetric “pair”
behavior in some transitions. We then use this formula to identify all possible cancellation values.
We review the physical constants used and the influence of their precision on the results and
provide an exhaustive overview of the canceled or maximized transitions and their corresponding
magnetic field magnitudes. Relevant graphs and tables are presented, and the phenomenon is
illustrated using derivative of selective reflection (dSR) spectra. We also discuss the feasibility
of experimentally measuring these magnetic field values. Finally, we examine the cancellation
values of the 𝐷2 and 52𝑆1/2 → 62𝑃3/2 lines of 85Rb and 87Rb. Since an analytical formula could not
be derived, we determined the magnetic field values numerically. Due to the complexity of the
hyperfine structure, we present the results in tables for clarity.

• In chapter 4, we present two methods that can be used to measure magnetic fields using thin
cells. First, a method using a NC is presented. This approach allows for measuring magnetic
fields ranging from 0.1 to 10 kG with high micrometer spatial resolution. It is particularly
effective in environments where there are significant magnetic field gradients, reaching up to
3 G per micrometer. Experimental results obtained from absorption spectra measurements using
the NC are compared to theoretical predictions derived from models developed in previous
chapters, demonstrating excellent agreement. Secondly, a method using a micrometric-thin cell is
introduced. Unlike NCs, microcells (MCs) have a thickness of around 30 𝜇m. They are designed
to produce narrow atomic lines in transmission spectra without unwanted crossover resonances.
However, while microcells offer easier manufacturing compared to NCs, they provide a lower
spatial resolution. Despite this limitation, microcells offer a practical solution for magnetic field
measurements due to their straightforward fabrication process.

• In chapter 5, we explore two main types of coherent processes in alkali vapors. In the first part,
we investigate the formation of EIT resonances using cesium’s 𝜎+ 𝐹 = 3 → 𝐹 = 5 MI transitions
as probe radiation in strong magnetic fields (1 - 3 kG). The experiment, conducted in a NC with
a vapor column thickness corresponding to the cesium 𝐷2 line transition, shows significant
and frequency-shifted EIT resonances due to the MI transitions’ steep frequency shift slope.
Preliminary theoretical calculations based on Doppler-broadened three-level systems reasonably
agree with experimental findings. In the second part, the study focuses on 𝑁 -resonances
observed in centimeter-scale vapor cells. These resonances exhibit enhanced contrast and reduced
linewidths when a buffer gas (typically Neon) is introduced into the alkali vapor. Research
explores various vapor cell configurations with different buffer gas pressures (0 to 400 Torr),
optimizing resonance characteristics and analyzing their behavior under external magnetic fields.
This research contributes to advancing precision magnetometry techniques through experimental
and theoretical investigations of novel light-matter interactions.

2.2 Appendices

As an addition, three appendices containing useful theoretical complements to the work presented in
this thesis are provided:

• In appendix A, we study the coupling of two and three angular momenta, necessary for the
derivation of the fine and hyperfine structures. We introduce the Wigner–Eckart (WE) theorem,
Clebsch–Gordan (CG) coefficients, 3 𝑗- and 6 𝑗-symbols, and irreducible tensor operators (ITOs).

• In appendix B, we provide a number of numerical values used in the computations performed in
this thesis. These values relate to the hyperfine structure of various alkali isotopes and are all
either taken from the literature or recalculated.
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• In appendix C, we recall the main lines of the density matrix formalism for an ensemble of
atoms interacting with a classical light field. We then build the interaction Hamiltonian of a
three-level Λ-system using the dipole and rotating wave approximation (RWA) and briefly explain
the phenomenon of EIT in the dark state formalism.

3 Outcome

The work presented in this thesis has been mostly published and widely disseminated at several
international conferences.

3.1 Published articles

The work presented in this thesis gave rise to the publication of the following journal articles:

• R. Momier, A. Aleksanyan, E. Gazazyan, A. Papoyan, and C. Leroy. New standard magnetic field
values determined by cancellations of 85Rb and 87Rb atomic vapors 52𝑆1/2 → 62𝑃1/2,3/2 transitions. J.
Quant. Spectrosc. Radiat. Transf. 257 (2020), p. 107371

• A. Aleksanyan, R. Momier, E. Gazazyan, A. Papoyan, and C. Leroy. Transition cancellations of
87Rb and 85Rb atoms in a magnetic field. J. Opt. Soc. Am. B 37 (11) (2020), 3504–3514

• R. Momier, A. V. Papoyan, and C. Leroy. Sub-Doppler spectra of sodium D lines in a wide range of
magnetic field: Theoretical study. J. Quant. Spectrosc. Radiat. Transf. 272 (2021), p. 107780

• A. Sargsyan, R. Momier, A. Papoyan, and D. Sarkisyan. Sub-Doppler Spectroscopy of Room-
Temperature Cs Atomic Vapor in a 400-nm-Thick Nanocell. J. Exp. Theor. Phys. 133 (4) (2021),
pp. 404–410

• A. Sargsyan, A. Tonoyan, R. Momier, C. Leroy, and D. Sarkisyan. Dominant magnetically induced
transitions in alkali metal atoms with nuclear spin 3/2. J. Opt. Soc. Am. B 39 (4) (2022), p. 973

• M. Auzinsh, A. Sargsyan, A. Tonoyan, C. Leroy, R. Momier, D. Sarkisyan, and A. Papoyan. Wide
range linear magnetometer based on a sub-microsized K vapor cell. Appl. Opt. 61 (19) (2022), p. 5749

• A. Sargsyan, R. Momier, C. Leroy, and D. Sarkisyan. Saturated absorption technique used in
potassium microcells for magnetic field sensing. Laser Phys. 32 (10) (2022), p. 105701

• A. Aleksanyan, R. Momier, E. Gazazyan, A. Papoyan, and C. Leroy. Cancellation of 𝐷1 line
transitions of alkali-metal atoms by magnetic-field values. Phys. Rev. A 105 (4) (2022), p. 042810

• A. Sargsyan, A. Tonoyan, R. Momier, C. Leroy, and D. Sarkisyan. Formation of strongly shifted EIT
resonances using “forbidden” transitions of Cesium. J. Quant. Spectrosc. Radiat. Transf. 303 (2023),
p. 108582

• A. Sargsyan, R. Momier, C. Leroy, and D. Sarkisyan. Competing van der Waals and dipole-dipole
interactions in optical nanocells at thicknesses below 100 nm. Phys. Lett. A 483 (2023), p. 129069

• A. Tonoyan, A. Sargsyan, R. Momier, C. Leroy, and D. Sarkisyan. Formation of Narrow Atomic
Lines of Rb in the UV Region Using a Magnetic Field. Opt. Mem. Neural Networks 32 (S3) (2023),
S343–S348

• R. Momier, A. Sargsyan, A. Tonoyan, C. Leroy, and D. Sarkisyan. Micrometric-Thin Cell Filled
with Rb Vapor for High-Resolution Atomic Spectroscopy. Opt. Mem. Neural Networks 32 (3) (2023),
S349–S355

Links to the preprints can be found here.
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3.2 Unpublished articles

The following article is under review (submitted to Spectrochimica Acta Part B) as of July 2024:

• A. Sargsyan, R. Momier, C. Leroy, and D. Sarkisyan. Influence of buffer gas on the formation of 𝑁 -
resonances in rubidium vapors. 2024. DOI: 10.48550/arXiv.2402.09184. arXiv: 2402.09184
[physics]. Pre-published

3.3 Dissemination at international conferences

All slides and posters presented at international conferences are available by clicking the links below.

• R. Momier, A. Papoyan, and C. Leroy. Theoretical study of sodium 𝐷 lines in a wide range of
magnetic field with sub-Doppler resolution. Student presentation, International Conference Laser
Physics 21, Ashtarak, Armenia, Sep 21-24 2021.

• R. Momier, A. Aleksanyan, A. Sargsyan, A. Tonoyan, M. Auzinsh, D. Sarkisyan, A. Papoyan, and
C. Leroy. Magnetometry with a nanometric-thin K vapor cell. Invited speaker, 14th European
Conference on Atoms, Molecules and Photons (ECAMP 14), Vilnius, Lithuania, Jun 27 - Jul 1 2022.

• R. Momier, A. Sargsyan, A. Tonoyan, M. Auzinsh, D. Sarkisyan, A. Papoyan, and C. Leroy.
Magnetometry with a nanometric-thin K vapor cell. Student presentation, International Conference
Laser Physics 22, Ashtarak, Armenia, Sep 14-16 2022.

• R. Momier, A. Sargsyan, A. Tonoyan, M. Auzinsh, D. Sarkisyan, A. Papoyan, and C. Leroy. Sub-
Doppler spectroscopy of 39K for magnetic field measurements. Poster presentation, 54th conference
of the European Group on Atomic Systems (EGAS 54), Strasbourg, France, Jun 18-22 2023.

• R. Momier, A. Sargsyan, A. Tonoyan, D. Sarkisyan, and C. Leroy. Formation of strongly shifted EIT
resonances using "forbidden" transitions of Cesium. Poster presentation, 54th conference of the
European Group on Atomic Systems (EGAS 54), Strasbourg, France, Jun 18-22 2023.

• R. Momier, A. Sargsyan, A. Tonoyan, D. Sarkisyan, and C. Leroy. Formation of strongly shifted
EIT resonances using "forbidden" transitions of Cesium. Poster presentation, 28th Colloquium on
High-Resolution Molecular Spectroscopy (HRMS), Dijon, France, Aug 28 - Sep 1 2023.

• R. Momier, A. Sargsyan, A. Tonoyan, D. Sarkisyan, and C. Leroy. Sub-Doppler spectroscopy of
39K for magnetic field measurements. Poster presentation, 28th Colloquium on High-Resolution
Molecular Spectroscopy (HRMS), Dijon, France, Aug 28 - Sep 1 2023.

• R. Momier, A. Sargsyan, A. Tonoyan, D. Sarkisyan, and C. Leroy. Generation of EIT resonances with
Δ𝐹 = +2 transitions of Cs 𝐷2 line. Student presentation, International Conference Laser Physics
23, Ashtarak, Armenia, Sep 12-15 2023.

The results were also presented at internal seminars of the Institute for Physical Research, Ashtarak,
Armenia, and of the Laboratoire ICB, Dijon, France, as well as during joint seminars between both
institutions.

This thesis is intended to be as self-sufficient as possible; however, typos and/or mistakes and/or
(especially) dead links may remain. If you notice any while reading the electronic version, please send
me an email at momier.rodolphe@gmail.com. I would be grateful for any corrections.
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Chapter 1

Nanometric-thin cell spectroscopy
In this chapter, we first demonstrate the advantage of nanometric-thin cells over usual spectroscopic cells. We then
provide a theoretical model allowing us to compute transmission and selective reflection spectra. The spectra are in
very good agreement with experimental measurements. In the last part, we use our nanometric-thin cells to measure
atom-surface interaction coefficients of Rb and Cs and confirm several theoretical predictions recently performed by
other groups.
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1.4.3 Van der Waals effect on Cs and Rb 𝐷1 lines . . . . . . . . . . . . . . . . . . . 24
1.4.4 Retardation of the van der Waals (vdW) effect . . . . . . . . . . . . . . . . . . 27

1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.1 Introduction

Thin alkali vapor cells of nanometric thickness are fascinating spectroscopic tools, gaining strong interest
from the research community since the early 2000s as they allow to obtain sub-Doppler resolution easily
with only one laser. Such a cell is commonly referred to as a nanocell (NC) and is commonly described
as two dielectric windows enclosing an ensemble of two-level systems, where the gap between the
windows is of the order of the transition wavelength 𝜆 of the system. It was first shown theoretically
by Vartanyan and Lin [77] that Doppler-free resonances may occur in selective reflection (SR) spectra
of NC for specific thicknesses. The symmetry properties of transmitted and reflected lineshapes have
been studied again by Zambon and Nienhuis [78] where Faraday rotation and dichroism lineshape
expressions were derived. However, the reflection from the second window was not taken into account.
This was later done by Dutier et al. [79], where the cell was considered as a Fabry–Pérot (FP) cavity,
taking into account the reflection from the second window. This leads to an interferometric behavior
of the different fields and a significant asymmetry of the lineshapes. Moreover, it was proven that no
reflected signal can be observed if the thickness of the cell is a multiple of 𝜆, while strong narrowing of
the transmission signal occurs if the thickness is a multiple of 𝜆/2, which is a manifestation of coherent
Dicke narrowing [95].

Experimental realization of such cells was first performed by Sarkisyan et al. at the Institute for
Physical Research (Ashtarak, Armenia). In [54], they successfully reported the fabrication of a 150 -
300 nm thin NC allowing them to observe with a single beam the sub-Doppler structure of Cs 𝐷2 line,
with a linewidth an order of magnitude smaller than the room temperature Doppler-broadening. Since
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then, NCs have been used in a variety of studies ranging from fundamental studies of magneto-optical
processes in strong magnetic fields [69] to molecular spectroscopy [96]. This chapter is aimed at
recalling the basics of NC spectroscopy, and is organized as follows:

• In section 1.2, we recall the advantages of NC spectroscopy compared to other spectroscopic
techniques. We describe the basic principles of sub-Doppler confinement in such cells and their
manufacturing process.

• Section 1.3 is dedicated to the theoretical description of a NC, largely based on the work of Dutier
et al. [79] and Zambon and Nienhuis [78], taking into account all the possible reflections at the
different interfaces of the cell. The description of the fields in and out of the cell is performed
using the Maxwell formalism coupled with the optical Bloch equations, assimilating the vapor to
an ensemble of two-level systems. Analytical solutions of the lineshapes are given in the weak
probe limit.

• In section 1.4 we present an experimental study of atom-surface interactions in a NC performed
by recording various spectra of Cs and Rb 𝐷1 lines. We measure the 𝐶3 coefficient of van der
Waals interaction of Cs and Rb atoms with the windows and, going to very low thicknesses
(< 60 nm), we highlight that this coefficient is often overestimated in the literature. We also
present experimental evidence of the so-called “retardation” of the van der Waals effect predicted
in recent theoretical studies [80, 81].

1.2 Nanometric-thin cells

At the Institute for Physical Research (Ashtarak, Armenia), NCs can be manufactured. As it has been
first shown by Sarkisyan et al. in [54], such cells allow to easily record sub-Doppler spectra with a
single low-power laser beam, as opposed to saturated absorption (SA) spectroscopy.

Laser

Figure 1.1 – Schematic diagram of a NC of thickness 𝐿 with a laser beam propagating along 𝑧.

To put it simply, the essence of the process is the following: let us consider a 1 mm diameter laser beam
propagating along the 𝑧 direction hitting a NC at perpendicular incidence. The cell contains atoms
moving at 300 m.s−1 (of the order of the typical most probable thermal velocity of alkali atoms at room
temperature), and its thickness is typically around half a transition wavelength 𝜆. If we take 𝐿 ≃ 400 nm,
the time of flight of atoms moving along the propagation direction is therefore

𝑡𝐿 =
𝐿

𝑣𝑧
=

400 · 10−9

300 ≃ 1.3 ns, (1.1)

while the time of flight of the atoms crossing (in a perfectly orthogonal way1) the laser beam, say along
1For the sake of simplicity of this explanation, we consider only atoms moving along 𝑥 , 𝑦 or 𝑧. Of course, in reality, atoms

may (and do) move in other directions.
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𝑥 , is

𝑡𝐷 =
𝐷

𝑣𝑥
=

10−3

300 ≃ 3 𝜇s. (1.2)

It directly comes that 𝑡𝐿 is much smaller than the typical lifetime 𝜏 (inverse of the decay rate Γ/2𝜋 ,
typically several tens of ns) of an alkali atom while 𝑡𝐷 is much bigger, implying that only the atoms
flying orthogonally to the laser have time to be pumped and thus participate to absorption. Since for
these atoms k · v = 0, Doppler broadening is virtually killed simply due to the geometry of the cell. Of
course, residual broadening remains due to atoms moving in other directions. This residual broadening
is not significant and the typical linewidth obtained experimentally with a NC is an order of magnitude
narrower than the Doppler broadening and allows to observe hyperfine transitions (between 𝐹 states)
separately [54] and obtain full resolution of all transitions occurring between Zeeman sublevels in a
magnetic field [60] (and references therein).

1.2.1 Manufacturing and structure of the cell

In fig. 1.2, we present a schematic description of the cells manufactured in our laboratory. As seen in
the front view (a), the cell consists of a sandwich of two 20 × 30 × 3 mm3 windows. The windows
are usually made of sapphire (Al2O3) due to its chemical stability against alkali vapors. One could
use windows made of glass, but they would irreversibly darken at high temperatures (the process is
described for sodium in [97]). The sapphire is cut so that its natural birefringence is minimized if the
cell is excited under normal incidence (i.e. the crystal 𝑐-axis is orthogonal to the window)2. To avoid
various losses, the windows must be well polished, typically to a roughness smaller than 𝜆/10.

Front view Side view

Si
d

ea
rm

window

Holder

Glue
Reservoir

a) b) c) d)

Figure 1.2 – Front (a) and side (b-c) views of a NC with typical dimensions. c) Zoom on the dashed
rectangle showing the wedged structure of the cell. d) Real picture of a NC.

As can be seen on the side view (b), the windows are glued together around their perimeter. On
the top and bottom, rectangular sapphire strips are created by vacuum deposition3 to give the cell a
wedge-shaped structure, see the zoom in fig. 1.4c. This allows to access different cell thicknesses during
experiments, simply by adjusting the height of the cell. The width of the vapor column will typically
vary between 40 nm and 1 𝜇m or more, which can still be considered virtually uniform within a small

2Sapphire may sometimes be replaced by Yttrium-Aluminium garnet (YAG, Y3Al5O12). Depending on the study (requiring
high laser power, for example), it may be more useful to use garnet as it has no natural birefringence.

3For “regular” thin cells (micrometric for example) we follow roughly the same procedure, but titanium strips are used as
spacers instead of sapphire deposition. Titanium is also chemically stable against alkali vapors.
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laser beam (1 mm). On the bottom, once the windows are glued together, a hole is drilled in the glue, and
a sapphire tube (sidearm, inner diameter 1 mm) containing solid alkali metal (Na, K, Rb or Cs4) is placed.
The whole process takes place in a vacuum chamber and filling is performed like for usual glass cells.

To increase the vapor density during experiments, the cell is placed in an oven. It is possible to
determine the vapor density by knowing the temperature of the upper part of the metallic column
in the sidearm [98]. To prevent causing damage to the windows (for example, condensation), their
temperature has to be kept slightly higher than that of the sidearm. We typically use a two-section
oven if the temperature is high and has to be precisely controlled, or simply use a regular oven with the
sidearm out. A chromel-alumel thermocouple is soldered to the sapphire sidearm, as shown in fig. 1.2c,
allowing us to retrieve the temperature of the metallic column.

1.2.2 Brief comparison to other experimental techniques

The best way of highlighting the advantage of NCs over regular sub-Doppler techniques is probably
to compare spectra side to side. In fig. 1.3, we present an experimental transmission spectrum of Cs
𝐷2 line (3 → 2′, 3′, 4′ transitions) recorded with a NC and a usual SA spectrum. It is clearly seen that
the peaks are better pronounces in NC than in SA, and that unnecessary crossover (CO) resonances
(dips located exactly between two transitions) strongly complicate the SA spectrum, without carrying
relevant information on the vapor. As it has been thoroughly discussed in other works (e.g. [99] and

Figure 1.3 – Blue: experimental transmission spectrum of the 3 → 2′, 3′, 4′ transitions of Cs 𝐷2
line recorded with a NC (𝐿 = 𝜆/2, 𝑇 = 110 ◦C). Orange: SA spectrum recorded with a cm-long
cell. The grey dashed lines indicate the position of the transitions and the red dashed lines indicate
cross-over resonances.

references therein), NC spectroscopy has striking advantages compared to the use of usual cells. One
can note that:

• Sub-Doppler atomic lines can be observed with the use of a single low-power beam [54]. Despite
the advantages, it is seen that the spectral width in the case of a NC is bigger than the spectral
width of SA spectra.

• Sub-Doppler molecular spectroscopy can be performed [96],
• A very simple experimental setup is needed, only requiring an additional oven to increase the
vapor density in the cell at will,

• Full resolution of hyperfine and Zeeman transitions can be achieved, thus magneto-optical
processes can be precisely studied [60, 68, 69],

4We do not own a lithium cell. Due to their small size, Li atoms evaporate through the glue when the cell is heated. Cs may
be liquid at room temperature (its melting point is 28.4 ◦C) but is in fact in a supercooled state.

10



1.3. Fabry-Pérot nanocavity model

• Absorption and reflection spectra (and their derivatives) have a much bigger signal-to-noise ratio
than SA spectra and do not include any crossover resonances, only complicating the spectra
without carrying any information on the atomic vapor [55, 61],

• It is possible to investigate cooperative effects and atom-surface interactions due to the small
thickness of the cell [44, 100–102].

1.3 Fabry-Pérot nanocavity model

1.3.1 Propagation equation

We will now focus on the theoretical description of the fields reflected and transmitted by the cell.
Let us consider a cavity made of two dielectric windows of refractive indices 𝑛1 and 𝑛2 separated by a
distance 𝐿, enclosing a dilute5 atomic vapor. Any effect that could be caused by the windows such as
birefringence and diffraction are neglected. The windows are considered to be parallel and transparent
(neither absorption nor scattering losses are taken into account). The system is represented in fig. 1.4.

Figure 1.4 – Scheme of a cavity of thickness 𝐿 made of two windows of refractive indices 𝑛1
and 𝑛2, with the incident (E𝑖 ), transmitted (E𝑡 ) and reflected (E𝑟 ) laser fields. The reflected laser
field E𝑟 accounts for reflections at the air-window, window-vapor, vapor-window, and window-air
interfaces, omitted in this figure for the sake of clarity.

We focus here on a purely one-dimensional problem (polarization effects are neglected), where the
atomic medium is excited under normal incidence by an incident plane wave E𝑖 of wavevector k and
angular frequency 𝜔 :

E𝑖 (𝑧, 𝑡) =
1
2𝐸𝑖 exp [−𝑖 (𝜔𝑡 − 𝑘𝑛1𝑧)] · e𝑖 + c.c., (1.3)

where 𝑘 = 𝜔/𝑐 and e𝑖 is a unit vector denoting an arbitrary polarization. The portion of the field
transmitted through the vapor and the second window is of the form

E𝑡 (𝑧, 𝑡) =
1
2𝐸𝑡 exp [−𝑖 (𝜔𝑡 − 𝑘𝑛2𝑧 + 𝜙)] · e𝑡 + c.c., (1.4)

while the reflected field, taking into account various reflections such as the air-window, window-vapor,
vapor-window, and window-air interfaces can be written

E𝑟 (𝑧, 𝑡) =
1
2𝐸𝑟 exp [−𝑖 (𝜔𝑡 + 𝑘𝑛1𝑧)] · e𝑟 + c.c.. (1.5)

In eqs. (1.3) to (1.5), the amplitudes 𝐸𝑟 and 𝐸𝑡 are constant and 𝐸𝑖 is assumed to be real. The goal of this
chapter is to express the amplitude of the reflected and transmitted fields. The field E0 inside the atomic

5The refractive index of the vapor can be neglected.
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medium (between 0 and 𝐿) and the atomic response P0 can be described by6

E0(𝑧, 𝑡) =
1
2𝐸0(𝑧) exp [−𝑖 (𝜔𝑡 − 𝑘𝑧)] + c.c. (1.6)

P0(𝑧, 𝑡) =
1
2𝑃0(𝑧) exp [−𝑖 (𝜔𝑡 − 𝑘𝑧)] + c.c.. (1.7)

To express the reflected and transmitted amplitudes, we use the electromagnetic continuity relations for
the fields at each interface, coupled with the Maxwell equations describing the propagation of the field
in the atomic medium. At 𝑧 = 0 and 𝑧 = 𝐿, these relation respectively read

𝐸𝑖 + 𝐸𝑟 = 𝐸0(0)
𝑖𝑛1𝑘 (𝐸𝑖 − 𝐸𝑟 ) = 𝑖𝑘𝐸0(0) +

𝜕

𝜕𝑧
𝐸0(0)

and

𝐸0(𝐿) = 𝐸𝑡
𝑖𝑘𝐸0(𝐿) +

𝜕

𝜕𝑧
𝐸0(𝐿) = 𝑖𝑛2𝑘𝐸𝑡

. (1.8)

Inside the vapor, under stationary continuous wave (CW) excitation, the field satisfies the propagation
equation

𝜕2

𝜕𝑧
𝐸0(𝑧) + 2𝑖𝑘𝐸0(𝑧) = −𝑘

2

𝜖0
𝑃0(𝑧), (1.9)

or, more conveniently:
𝜕

𝜕𝑧

[
exp (2𝑖𝑘𝑧) 𝜕𝐸0(𝑧)

𝜕𝑧

]
= −𝑘

2

𝜖0
𝑃0(𝑧) exp (2𝑖𝑘𝑧). (1.10)

Assuming the atomic response is known (we will derive it later in this chapter), one can integrate
eqs. (1.9) and (1.10) between 0 and 𝐿 to get

𝜕𝐸0(𝐿)
𝜕𝑧

− 𝜕𝐸0(0)
𝜕𝑧

+ 2𝑖𝑘 [𝐸0(𝐿) − 𝐸0(0)] = −𝑘
2

𝜖0

∫ 𝐿

0
𝑃0(𝑧)d𝑧 (1.11)

𝜕𝐸0(𝐿)
𝜕𝑧

exp (2𝑖𝑘𝐿) − 𝜕𝐸0(0)
𝜕𝑧

= −𝑘
2

𝜖0

∫ 𝐿

0
𝑃0(𝑧) exp (2𝑖𝑘𝑧)d𝑧. (1.12)

Equations (1.11) and (1.12) can be written

𝜕𝐸0(𝐿)
𝜕𝑧

− 𝜕𝐸0(0)
𝜕𝑧

+ 2𝑖𝑘 [𝐸0(𝐿) − 𝐸0(0)] = 2𝑖𝑘𝐼𝑓 (1.13)

𝜕𝐸0(𝐿)
𝜕𝑧

exp (2𝑖𝑘𝐿) − 𝜕𝐸0(0)
𝜕𝑧

= 2𝑖𝑘𝐼𝑏, (1.14)

where the so-called forward and backward integrals of the atomic response 𝐼𝑓 and 𝐼𝑏 were defined as
follows:

𝐼𝑓 =
𝑖𝑘

2𝜖0

∫ 𝐿

0
𝑃0(𝑧)d𝑧 (1.15)

𝐼𝑏 =
𝑖𝑘

2𝜖0

∫ 𝐿

0
𝑃0(𝑧) exp (2𝑖𝑘𝑧)d𝑧. (1.16)

In the limit 𝐿 → ∞, these integrals are respectively associated with the usual long cell transmission and
SR signals [103, 104]. From this point, it is possible to solve the linear system of equations consisting in
eqs. (1.8), (1.13) and (1.14) with respect to the transmitted and reflected amplitudes 𝐸𝑡 and 𝐸𝑟 . We obtain
the following solution:

𝐸𝑡 = 𝑡02𝑡10𝐸𝑖/𝐹 + 𝑡02
(
𝐼𝑓 − 𝑟1𝐼𝑏

)
/𝐹 = 𝐸FP𝑡 + 𝐸R𝑡 (1.17)

𝐸𝑟 = [𝑟1 − 𝑟2 exp (2𝑖𝑘𝐿)] 𝐸𝑖/𝐹 + 𝑡01
[
𝐼𝑏 − 𝑟2𝐼𝑓 exp (2𝑖𝑘𝐿)

]
/𝐹 = 𝐸FP𝑟 + 𝐸R𝑟 , (1.18)

6To possibly take into account inhomogeneities that could occur along the propagation axis (saturation, pumping, transient
effects due to atomic motion or atom-surface interactions), no assumptions are made regarding the form of the amplitudes
𝐸0 (𝑧) and 𝑃0 (𝑧).
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1.3. Fabry-Pérot nanocavity model

where 𝐸FP𝑡 and 𝐸FP𝑟 are the solutions that would be obtained in the case of an empty FP cavity, ie. if
𝐼𝑏 = 𝐼𝑓 = 0, and 𝐸R𝑡 and 𝐸R𝑟 are resonant contributions induced by the excitation of the atomic medium.
In eqs. (1.17) and (1.18), 𝐹 = 1 − 𝑟1𝑟2 exp (2𝑖𝑘𝐿) is the quality factor of the FP cavity, 𝑟1 and 𝑟2 are the
reflection coefficients of each window, and 𝑡01, 𝑡10 and 𝑡02 are the transmission coefficients at each
interface:

𝑟𝑖 =
𝑛𝑖 − 1
𝑛𝑖 + 1 𝑡0𝑖 =

2
𝑛𝑖 + 1 𝑡10 =

2𝑛1
𝑛1 + 1 . (1.19)

It is clear from eqs. (1.17) and (1.18) that the backward integral of atomic response 𝐼𝑏 cannot be neglected
in transmission spectra, even with an antireflection coating7 on the second window. If an antireflection
coating was applied to the first window, 𝐼𝑏 would vanish. However in that case no reflection signal can
be detected. Analogously, the forward response cannot be neglected in the reflection spectrum and
would vanish only in the presence of an antireflection coating on the second window. If none of the
windows are coated, it is necessary to take into account both forward and backward responses when
computing spectra of vapors contained in thin cells. In longer cells, 𝐼𝑏 can be safely neglected as it has
a rather small coherence length (one optical wavelength). As we will see later, 𝐼𝑏 will have a strong
influence on the line shape compared to absorption (or reflection) lines recorded in longer cells.

1.3.2 Reflected and transmitted signals

We will now express the intensities of the transmitted and reflected signals as this is what is recorded
during experiments. The intensity of an electric field reads in general as follows:

𝐼 =
1
2𝜖0𝑐𝐸𝐸

∗ ∝ |𝐸 |2 . (1.20)

As shown in eqs. (1.17) and (1.18), 𝐸𝑟 and 𝐸𝑡 are in fact superpositions of two fields. We can write

|𝐸𝑡 |2 =
��𝐸FP𝑡 ��2 + ��𝐸R𝑡 ��2 + 2 Re

[
𝐸FP𝑡 𝐸

R
𝑡

]
(1.21)

|𝐸𝑟 |2 =
��𝐸FP𝑟 ��2 + ��𝐸R𝑟 ��2 + 2 Re

[
𝐸FP𝑟 𝐸

R
𝑟

]
. (1.22)

Calculating each term separately, we obtain the transmitted and reflected intensities

|𝐸𝑡 |2 =
𝑡2
02𝑡

2
10

|𝐹 |2 𝐸
2
𝑖︸   ︷︷   ︸

Empty FP signal

+
𝑡2
02

|𝐹 |2
(��𝐼𝑓 ��2 + 𝑟 2

1 |𝐼𝑏 |2 − 2𝑟1 Re
[
𝐼 ∗
𝑓
𝐼𝑏

] )
︸                                         ︷︷                                         ︸

Signal re-emitted by the vapor

+ 2
𝑡2
02𝑡10

|𝐹 |2 Re
[
𝐼𝑓 − 𝑟1𝐼𝑏

]
︸                     ︷︷                     ︸

Homodyne beating ∝ Re
[
𝐸FP𝑡 𝐸

R
𝑡

]
(1.23)

|𝐸𝑟 |2 =
𝐸𝑖

|𝐹 |2
[
𝑟 2

1 + 𝑟 2
2 − 2𝑟1𝑟2 cos(2𝑘𝐿)

]
︸                                  ︷︷                                  ︸

Empty FP signal

+
𝑡2
01

|𝐹 |2
(
|𝐼𝑏 |2 + 𝑟 2

2
��𝐼𝑓 ��2 − 2𝑟2 Re

[
𝐼𝑓 𝐼

∗
𝑏

exp (2𝑖𝑘𝐿)
] )

︸                                                        ︷︷                                                        ︸
Signal re-emitted by the vapor

(1.24)

+ 2𝐸𝑖𝑡01
|𝐹 |2 Re

[
{𝑟1 − 𝑟2 exp (−2𝑖𝑘𝐿)}

{
𝐼𝑏 − 𝑟2 exp (2𝑖𝑘𝐿)𝐼𝑓

}]
︸                                                                     ︷︷                                                                     ︸

Homodyne beating ∝ Re
[
𝐸FP𝑟 𝐸

R
𝑟

]
. (1.25)

Each signal has three contributions: an empty FP signal that can be seen as background since in most
experiments the scanning range of the laser is much smaller than the free spectral range of the cavity, a
contribution re-emitted by the vapor, and a contribution that may be interpreted as a homodyne beating
with the transmitted (or reflected) field of an empty FP cavity. One can finally show that, in the case

7An antireflection coating on one of the windows (or both) can be taken into account in the model by setting 𝑛1 = 1 or
𝑛2 = 1, resulting in 𝑟1 = 0 or 𝑟2 = 0.
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1.3. Fabry-Pérot nanocavity model

of a dilute vapor, since 𝐸FP𝑡 ≫ 𝐸R𝑡 and 𝐸FP𝑟 ≫ 𝐸R𝑟 , it is possible to express the recorded transmitted and
reflected signals 𝑆𝑡 and 𝑆𝑟 with the following simple expressions:

𝑆𝑡 = 2
𝑡2
02𝑡10

|𝐹 |2 Re
[
𝐼𝑓 − 𝑟1𝐼𝑏

]
(1.26)

𝑆𝑟 = 2𝐸𝑖𝑡01
|𝐹 |2 Re

[
{𝑟1 − 𝑟2 exp (−2𝑖𝑘𝐿)}

{
𝐼𝑏 − 𝑟2 exp (2𝑖𝑘𝐿)𝐼𝑓

}]
. (1.27)

The empty FP cell background vanishes for 𝐿 =𝑚𝜆/2 with𝑚 ∈ N if the two cell windows are identical.
In that case, the reflected signal reduces to

𝑆𝑟 =

��𝐼𝑏 − 𝑟𝐼𝑓 ��2
(1 + 𝑟 )2 . (1.28)

Determination of the thickness

As a consequence of the proximity of the cell windows, an interferometric pattern may be observed due
to the reflection of ambient on the inner interfaces of the cell, as shown in fig. 1.2d (the dark central halo
corresponds to a point where optical contact is almost achieved). This pattern may be used to determine
roughly the different cell thicknesses with the eye but will not yield a precise result. Theoretically
speaking, the thickness can be calculated using the ratio of the intensity of the field reflected by the
second window 𝐼2 to the intensity reflected by the first window 𝐼1. Using eqs. (1.23) to (1.25), this ratio
can be written [105]

𝐼𝑅2

𝐼𝑅1
=

(1 − 𝑅)2

𝑅

𝐹 sin2(2𝜋𝐿/𝜆)
1 + 𝐹 sin2(2𝜋𝐿/𝜆)

, (1.29)

where we considered two identical windows of reflection coefficient 𝑟 (𝑅 = 𝑟 2 is the reflection coefficient
in intensity) and denoted 𝐹 = 4𝑅/(1 − 𝑅)2. This ratio is presented for several wavelengths in fig. 1.5 for
𝐿 varying between 0 and 1600 nm.

Figure 1.5 – Ratio of the reflected intensities as a function of the cell length for 𝜆 = 795 nm (Rb 𝐷1
line) and 𝜆 = 895 nm (Cs 𝐷1 line).

As expected from a FP cavity, we obtain constructive interferences for 𝐿 = (2𝑚+1)𝜆/4 and destructive
interferences8 for 𝐿 = 𝑚𝜆/2 with𝑚 ∈ N. The thickness therefore cannot be measured with a single
evaluation of the ratio and either needs to be followed very carefully from a known position or to be
measured using two perfectly aligned laser beams with different wavelengths [105, Section 2.4].

8In reality, one may not expect perfect extinction at 𝐿 =𝑚𝜆/2 due to possible losses caused, for example, by absorption,
diffusion, or remaining birefringence, which are all neglected here.
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1.3. Fabry-Pérot nanocavity model

1.3.3 Derivation of the macroscopic polarization

Let us consider a simple resonant two-level atomic medium of Rabi frequency Ω and decay rate Γ, as
depicted in fig. 1.6. Now that we have derived the expressions of the transmitted and reflected fields,

Figure 1.6 – Scheme of a two-level system of decay rate Γ driven by the Rabi frequency Ω.

we need to determine the forward and backward responses 𝐼𝑓 and 𝐼𝑏 , ie. determine the macroscopic
polarization of the atomic medium. In the density matrix formalism [details regarding this formalism
are provided in appendix C], this macroscopic polarization 𝑃0(𝑧, 𝜔) can be written as follows [23, 106]:

𝑃𝑜 (𝑧, 𝜔) = 𝑁𝑑
〈
𝜌𝑒𝑔 (𝑧, 𝑣)

〉
= 𝑁𝑑𝑒𝑔

∫
𝑀 (𝑣)𝜌𝑒𝑔 (𝑧, 𝑣)d𝑣, (1.30)

where 𝑁 is the number density, 𝑑𝑒𝑔 the transition dipole moment,𝑀 (𝑣) is the atomic velocity distribution
(assumed to be Maxwellian9, as shown in fig. 1.7) and 𝜌𝑒𝑔 are the off-diagonal elements of the density
matrix, whose dynamical behavior is given by the Liouville - von Neumann equation:

d𝜌
d𝑡 = − 𝑖

ℏ
[H , 𝜌] + L(𝜌), (1.31)

where [H , 𝜌] is the commutator of the total Hamiltonian (bare states + laser interaction) and the density
matrix 𝜌 , and L(𝜌) is the Lindblad operator describing dissipative processes occurring in the system
(for example spontaneous decay and dephasing). In the general case, the density matrix of a thermal
vapor is a function of the atomic position r and can be written

d𝜌 (r, 𝑡)
d𝑡 =

(
𝜕𝜌 (r, 𝑡)
𝜕𝑥

𝑣𝑥 +
𝜕𝜌 (r, 𝑡)
𝜕𝑦

𝑣𝑦 +
𝜕𝜌 (r, 𝑡)
𝜕𝑧

𝑣𝑧

)
+ 𝜕𝜌 (r, 𝑡)

𝜕𝑡
(1.32)

= ∇𝜌 (r, 𝑡) · v + 𝜕𝜌 (r, 𝑡)
𝜕𝑡

(1.33)

We can introduce the so-called reduced density matrix by performing a transformation to a rotating
frame:

𝜌 (𝑧, 𝑣, 𝑡) = 𝜎 (𝑧, 𝑣) exp [𝑖 (𝑘𝑧 − 𝜔𝑡)] + c.c. (1.34)

Due to the geometry of our problem, we can limit ourselves to the one-dimensional case. Keeping only
the 𝑧-component and assuming 𝑣 ≡ 𝑣𝑧 , one can rewrite eq. (1.31) as

𝜕

𝜕𝑡
𝜌 (𝑧, 𝑣, 𝑡) + 𝑣 𝜕

𝜕𝑧
𝜌 (𝑧, 𝑣, 𝑡) = − 𝑖

ℏ
[H , 𝜌] + L(𝜌) . (1.35)

Injecting eq. (1.34) into eq. (1.35) allows us to find the evolution of the reduced density matrix in the
steady state regime

𝑣
𝜕𝜎 (𝑧, 𝑣)
𝜕𝑧

= − 𝑖
ℏ
[H , 𝜎] + L(𝜎) + 𝑖 (𝜔 − 𝑘𝑣)𝜎, (1.36)

9The most probable thermal velocity [the peak of the probability density function 𝑣2𝑀 (𝑣)] is given by 𝑢 =
√︁

2𝑘𝐵𝑇 /𝑚 and
the mean thermal velocity is ⟨𝑣⟩ =

√︁
8𝑘𝐵𝑇 /𝜋𝑚 = 2𝑣𝑝/

√
𝜋 , where𝑚 is the atomic mass (in kg).
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Figure 1.7 – Probability density function of the Maxwell-Boltzmann velocity distribution 𝑀 (𝑣)
calculated for Na, K, Rb, and Cs at room temperature (𝑇 = 293.15 K).

which gives for the coherences

𝑣
𝜕𝜎𝑒𝑔

𝜕𝑧
= 𝑖Ω(𝜎𝑔𝑔 − 𝜎𝑒𝑒) − Λ±𝜎𝑒𝑔, (1.37)

where Λ± = Γ/2− 𝑖 (Δ∓𝑘𝑣) if we only take into account the natural decay rate (homogeneous linewidth)
of the system. The term Γ/2 can be replaced by 𝛾 such that 𝛾 = Γ/2 + 𝛾𝑑𝑒𝑐 to account for a potential
additional broadening arising from decoherence effects.
Using the reduced density matrix, the induced polarization [eq. (1.30)] finally becomes

𝑃0(𝑧) = 𝑁𝑑𝑒𝑔
∫ +∞

−∞
𝑀 (𝑣)𝜎𝑒𝑔 (𝑧, 𝑣)d𝑣 (1.38)

= 𝑁𝑑𝑒𝑔

∫ +∞

0
𝑀 (𝑣)

[
𝜎+𝑒𝑔 (𝑧, 𝑣) + 𝜎−

𝑒𝑔 (𝑧,−𝑣)
]

d𝑣 . (1.39)

Equation (1.39) is valid if the cell windows are not antireflection-coated. In that case, we can safely
assume that the atoms lose coherence when colliding with the windows [𝜎𝑒𝑔 (0, 𝑣) = 𝜎𝑒𝑔 (𝐿, 𝑣) = 0]. This
allows to decompose the coherences into two parts: 𝜎+𝑒𝑔 (𝑧, 𝑣) corresponding to atoms moving from 𝑧 = 0
to 𝑧 = 𝐿 at velocity +𝑣 and 𝜎−

𝑒𝑔 (𝑧,−𝑣) corresponding the atoms moving from 𝑧 = 𝐿 to 𝑧 = 0 at velocity
−𝑣 . One can thus split the integral in eq. (1.38) assuming 𝑀 (𝑣) is symmetrical, which yields a more
convenient expression for numerical simulations.

1.3.4 Linear regime of interaction approximation

Working with closed atomic systems imposes the condition 𝜎𝑔𝑔 + 𝜎𝑒𝑒 = 1. Upon excitation by a weak,
non-saturating laser field (Ω ≪ Γ), we may neglect the population of the upper state |𝑒⟩ so that

𝜎𝑔𝑔 + 𝜎𝑒𝑒 ≃ 𝜎𝑔𝑔 ≃ 1. (1.40)

This implies, for atoms moving from 𝑧 = 0 to 𝑧 = 𝐿 (positive velocities), that eq. (1.37) becomes:

𝜕𝜎+𝑒𝑔

𝜕𝑧
= 𝑖

Ω

𝑣
− Λ+

𝑣
𝜎+𝑒𝑔 . (1.41)
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This can be easily solved by taking into account the boundary conditions on the coherences mentioned
earlier, yielding the solution

𝜎+𝑒𝑔 (𝑧, +𝑣,Δ) =
𝑖Ω

Λ+

[
1 − exp

(
−Λ+
𝑣
𝑧

)]
(1.42)

𝜎−
𝑒𝑔 (𝑧,−𝑣,Δ) =

𝑖Ω

Λ−

{
1 − exp

[
−Λ−
𝑣

(𝐿 − 𝑧)
]}
. (1.43)

Let us now come back to the expressions of the fields [eqs. (1.17) and (1.18)] and the continuity relations
[eq. (1.8)] derived earlier. Assuming the atomic medium is dilute, ie. 𝐸FP𝑡 ≫ 𝐸R𝑡 and 𝐸FP𝑟 ≫ 𝐸R𝑟 , the field
𝐸0(𝑧) inside the vapor driving the polarization 𝑃0(𝑧) mainly consists in the field 𝐸FP0 (𝑧) inside an empty
FP:

𝐸0(𝑧) = 𝐸FP0 (𝑧) + 𝐸R0 (𝑧) ≃ 𝐸FP0 (𝑧), (1.44)

where the components 𝐸FP0 (𝑧) and 𝐸R0 (𝑧) are defined in a similar manner as in section 1.3.1. We may
assume that the atomic medium responds linearly to the weak incident field. In that frame, one may
show that we have

𝐸0(𝑧) = 𝐸𝑖𝑡10 (1 − 𝑟2 exp[−2𝑖𝑘 (𝑧 − 𝐿)]) . (1.45)

We can decompose 𝐸0(𝑧) and 𝑃0(𝑧) into forward and backward contributions:

𝐸0(𝑧) =
1
2

{
𝐸+0 exp [−𝑖 (𝜔𝑡 − 𝑘𝑧)] + 𝐸−0 exp [−𝑖 (𝜔𝑡 + 𝑘𝑧)]

}
+ c.c. (1.46)

𝑃0(𝑧) =
1
2

{
𝑃+0 exp [−𝑖 (𝜔𝑡 − 𝑘𝑧)] + 𝑃−

0 exp [−𝑖 (𝜔𝑡 + 𝑘𝑧)]
}
+ c.c., (1.47)

where the forward and backward polarization amplitude 𝑃+0 (𝑧) and 𝑃−
0 (𝑧) are driven only by the constant

forward and backward field amplitudes 𝐸+0 and 𝐸−0 respectively. After injecting eq. (1.45) in eq. (1.46), by
identification one easily obtains

𝐸+0 = 𝐸𝑖𝑡10/𝐹 and 𝐸−0 = −𝑟2 exp (2𝑖𝑘𝐿)𝐸+0 , (1.48)

with 𝐹 = 1 − 𝑟1𝑟2 exp (2𝑖𝑘𝐿). Since eq. (1.47) has to be consistent with eq. (1.7), we have

𝑃0(𝑧) = 𝑃+0 (𝑧) + exp (−2𝑖𝑘𝑧)𝑃−
0 (𝑧) . (1.49)

Making some assumptions regarding the symmetry of the problem10, we can write

𝑃−
0 (𝐿 − 𝑧) = −𝑟2 exp (2𝑖𝑘𝐿)𝑃+0 (𝑧) (1.50)

This allows us get rid of the backward contribution 𝑃−
0 in eq. (1.49) by reformulating it as follows:

𝑃0(𝑧) = 𝑃+0 (𝑧) − 𝑟2𝑃
+
0 (𝐿 − 𝑧) exp [2𝑖𝑘 (𝐿 − 𝑧)] . (1.51)

The field 𝐸0(𝑧) driving the polarization 𝑃0(𝑧) is therefore seen by the atoms as a traveling wave of
constant amplitude 𝐸+0 , corresponding to a single constant Rabi frequency Ω = 𝑑𝑒𝑔𝐸

+
0/ℏ. In that case,

the induced polarization given by eq. (1.39) can be reduced to

𝑃+0 (𝑧) = 𝑁𝑑𝑒𝑔
∫ +∞

0
𝑀 (𝑣)

[
𝜎+𝑒𝑔 (𝑧, 𝑣) + 𝜎−

𝑒𝑔 (𝑧,−𝑣)
]

d𝑣 . (1.52)

10Namely considering symmetrical atom-surface interactions and symmetrical velocity distribution.
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1.3. Fabry-Pérot nanocavity model

One can thus express the resonant contribution to the transmitted and reflected fields as a combination
of the common transmission and reflection signals calculating with only one traveling-wave excitation:

𝐼 𝑙𝑇 =
𝑖𝑘

2𝜖0

∫ 𝐿

0
𝑃+0 (𝑧)d𝑧 (1.53)

=
𝑖𝑘

2𝜖0
𝑁𝑑𝑒𝑔

∫ +∞

0
𝑀 (𝑣)

(∫ 𝐿

0

[
𝜎+𝑒𝑔 (𝑧, 𝑣) + 𝜎−

𝑒𝑔 (𝑧,−𝑣)
]

d𝑧
)

d𝑣 (1.54)

𝐼 𝑙𝑅 =
𝑖𝑘

2𝜖0
𝑃+0 (𝑧) exp (2𝑖𝑘𝑧)d𝑧. (1.55)

=
𝑖𝑘

2𝜖0
𝑁𝑑𝑒𝑔

∫ +∞

0
𝑀 (𝑣)

(∫ 𝐿

0

[
𝜎+𝑒𝑔 (𝑧, 𝑣) + 𝜎−

𝑒𝑔 (𝑧,−𝑣)
]

exp (2𝑖𝑘𝑧) d𝑧
)

d𝑣 . (1.56)

Combining the latter with eqs. (1.15) and (1.16) we eventually obtain

𝐼𝑓 = 𝐼
𝑙
𝑇 − 𝑟2𝐼

𝑙
𝑅 (1.57)

𝐼𝑏 = 𝐼 𝑙𝑅 − 𝑟2 exp (2𝑖𝑘𝐿)𝐼 𝑙𝑇 . (1.58)

The last step is now to perform the integration over 𝑧 in eqs. (1.54) and (1.56). Doing so, the final
expressions of the transmitted and reflected intensities read

𝐼 𝑙𝑇 =
𝑁 |𝑑𝑒𝑔 |2

2ℏ𝜖0

𝑡10𝐸𝑖
𝐹

∫ +∞

−∞
𝑀 (𝑣)𝑔(𝑣,Δ)d𝑣 (1.59)

𝐼 𝑙𝑅 =
𝑁 |𝑑𝑒𝑔 |2

2ℏ𝜖0

𝑡10𝐸𝑖
𝐹

∫ +∞

−∞
𝑀 (𝑣)ℎ±(𝑣,Δ)d𝑣 (1.60)

with the functions 𝑔 and ℎ given by

𝑔(𝑣,Δ, 𝐿) = −−𝑘
Λ+

{
𝐿 − |𝑣 |

Λ+

[
1 − exp

(
−Λ+𝐿

|𝑣 |

)]}
(1.61)

ℎ±(𝑣,Δ, 𝐿) =
1
2𝑖

(
1
Λ∓

− exp (2𝑖𝑘𝐿)
Λ±

)
− 𝑘 |𝑣 |
Λ+Λ−

exp
(
−Λ∓𝐿

|𝑣 |

)
. (1.62)

The general procedure used to compute spectra we use throughout this thesis is therefore the following:

1. Compute the functions 𝑔 and ℎ [eqs. (1.61) and (1.62)],
2. Inject the result into eqs. (1.59) and (1.60) and averaging over the velocity distribution𝑀 (𝑣) to

obtain 𝐼 𝑙
𝑇
and 𝐼 𝑙

𝑅
,

3. Calculate the forward and backward responses 𝐼𝑓 and 𝐼𝑏 [eqs. (1.57) and (1.58)] using the previous
results,

4. Inject 𝐼𝑓 and 𝐼𝑏 into eqs. (1.26) and (1.27) to obtain the reflected and transmitted signals.

Alternatively, one can expand eq. (1.31) and solve the system of ODEs to obtain the induced polarization.
In most cases, it will not be possible to extract analytical solutions apart from the approximations
derived in this section.

1.3.5 Lineshape analysis

Before simulating real spectra, we will try to reproduce the theoretical lineshapes presented in [79] to
check whether our simulations are correct. In fig. 1.8a, we present theoretical transmission line shapes
computed for a realistic NC made of two identical sapphire windows of refractive indices 𝑛1 = 𝑛2 = 1.76,
corresponding to 𝑟1 = 𝑟2 ≃ 0.275. The cell thickness 𝐿 varies between 𝜆/4 and 9𝜆/8 with a step of 𝜆/8.
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1.3. Fabry-Pérot nanocavity model

(a) (b)

(c) (d)

Figure 1.8 – Normalized transmitted signal 𝑆𝑡 for various cell thicknesses in a cell made of two
identical sapphire windows without (a-b) and with (c-d) antireflection coating on the second window.
The lines were calculated with 𝛾/𝑘𝑢 = 0.025.

(a) (b)

(c) (d)

Figure 1.9 – Normalized reflected signal 𝑆𝑟 for various cell thicknesses in a cell made of two
identical sapphire windows without (a-b) and with (c-d) antireflection coating on the second window.
The lines were calculated with 𝛾/𝑘𝑢 = 0.025.
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1.3. Fabry-Pérot nanocavity model

Following the derivation performed earlier, one can clearly see that the signal transmitted through a
thin cell is an interferometric combination of the common transmitted and reflected signals 𝐼 𝑙

𝑇
and 𝐼 𝑙

𝑅
:

𝐼𝑇 = [1 + 𝑟1𝑟2 exp (2𝑖𝑘𝐿)]𝐼 𝑙𝑇 − (𝑟1 + 𝑟2)𝐼 𝑙𝑅 . (1.63)

The transmitted signal includes a dispersive contribution and results in a strongly asymmetric line
profile. Even if the spectra exhibit sub-Doppler features [arising from the contribution of atoms
undergoing a long interaction time, ie. flying perpendicularly to the incident laser, see eqs. (1.59)
and (1.60)], one can observe additional narrowing of the transmission lineshape for 𝐿 = (2𝑝 + 1)𝜆/2,
𝑝 ∈ N. This phenomenon was first observed in the microwave domain [95] and is called coherent
Dicke narrowing. An additional shift of the line profile was unveiled by Ermolaev and Vartanyan
in [107] arising from quenching of the atomic polarization upon collisions of atoms with the cell
windows, this is not taken into account here. Figure 1.8b presents the case of a second window being
antireflection-coated (𝑟2 = 0). In that case, we recover some symmetry, the cell does not behave like a
FP cavity anymore and the results are in agreement with what was predicted in [78]. The reflected
signal (presented in fig. 1.9) can be expressed as

𝐼𝑅 = [1 + 𝑟 2
2 exp (2𝑖𝑘𝐿)]𝐼 𝑙𝑅 − 2𝑟2 exp (2𝑖𝑘𝐿)𝐼 𝑙𝑇 (1.64)

and involves a transmission contribution. The reflection profile is also asymmetric and, as amanifestation
of the FP nature of the cavity, vanishes for 𝐿 = 𝑝𝜆/2 [as predicted by eq. (1.27)]. Let us note that
in this model, the linewidth of the system is a free parameter that can be fitted to the experimental
measurements. Moreover, the impact of the temperature is not properly reflected on the lineshapes
obtained with this model. One only observes an increase in the signal amplitude with the number
density 𝑁 . One would expect to observe broadening due to the increase in the number of atom-atom
and atom-surface collisions with the temperature.

1.3.6 Ensemble of two-level systems

Until now, we have considered a toy vapor consisting of an ensemble of identical two-level systems.
In practice, we can approximate real alkali vapors by an ensemble of two-level systems with different
transition frequencies and transition dipole moments. In that case, each two-level system having a
transition dipole moment 𝑑𝑘 will see the incident laser with a detuning Δ𝑘 = 𝜔 − 𝜔𝑘 , where 𝜔𝑘 is the
transition frequency of the system. The transmitted and reflected contributions 𝐼 𝑙

𝑇
and 𝐼 𝑙

𝑅
[eqs. (1.59)

and (1.60)] become

𝐼 𝑙𝑇 =
∑︁
𝑘

𝐶𝑘

∫ +∞

−∞
𝑀 (𝑣) 𝑔(𝑣,Δ𝑘 ) d𝑣 (1.65)

𝐼 𝑙𝑅 =
∑︁
𝑘

𝐶𝑘

∫ +∞

−∞
𝑀 (𝑣) ℎ±(𝑣,Δ𝑘 ) d𝑣, (1.66)

where 𝐶𝑘 is, rigorously, a strength factor given by

𝐶𝑘 =
𝑁 |𝑑𝑘 |2𝑡10𝐸𝑖

2ℏ𝜖0𝐹
. (1.67)

We can then sum the contribution of each system to the induced atomic polarization to obtain

𝑃+0 (𝑧) = 𝑁
∑︁
𝑘

𝑑𝑘

∫ +∞

0
𝑀 (𝑣)

[
𝜎+𝑒𝑔 (𝑧, 𝑣,Δ𝑘 ) + 𝜎−

𝑒𝑔 (𝑧,−𝑣,Δ𝑘 )
]

d𝑣 . (1.68)

The computing procedure for a full spectrum with several transitions (each modeled by an independent
two-level system) is the same as before, but looped over the different systems, summing all the
contributions. One can for example compute spectra of the 𝐷1 and 𝐷2 lines of alkali atoms, as presented
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1.3. Fabry-Pérot nanocavity model

(a) Natural Rb

(b) Cs (c) Cs

Figure 1.10 – (a) Typical theoretical SR spectrum of Cs 𝐷2 line obtained for 𝐿 = 350 nm. (b-c)
Theoretical transmission spectrum of Cs 𝐷2 line obtained for 𝐿 = 𝜆/2. The dashed lines are usual
Doppler-broadened transmission profiles that would be obtained in regular cells.

(a) Natural Rb

(b) Cs (c) Cs

Figure 1.11 – (a) Typical theoretical dSR spectrum of natural Rb 𝐷2 line obtained for 𝐿 = 350 nm.
(b-c) Theoretical SD spectrum of Cs 𝐷2 line obtained for 𝐿 = 𝜆/2.
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1.4. Atom-surface interactions

(a) Cs (b) Cs

Figure 1.12 – Theoretical (blue) and experimental (orange dots) spectra of Cs 𝐷2 line 4 → 3′, 4′, 5′
transitions (a) and 3 → 2′, 3′, 4′ transitions (b) recorded with a NC (𝐿 = 𝜆/2,𝑇 = 110 ◦C). Green: SA
spectrum recorded with a usual cm-long cell. The grey dashed lines indicate the position of the
transitions and the red dashed lines indicate cross-over resonances.

in fig. 1.10. As NCs allow to obtain sub-Doppler resolution, one can safely consider for example each
hyperfine transition of Rb 𝐷2 line as an independent two-level system and apply the procedure given
above. In fig. 1.10a, we present a theoretical SR spectrum of natural Rb 𝐷2 line obtained for 𝐿 = 350 nm
where the hyperfine structure is mostly resolved. In fig. 1.10b and fig. 1.10c, we present a transmission
(𝑆𝑡 ) spectrum of Cs 𝐷2 line. For clarity, we present the red (b) and blue (c) wings of the spectrum
separately. Here, we see that the hyperfine structure is resolved (compared with the Doppler-broadened
profiles plotted in dashed lines). All spectra were obtained for an arbitrary 𝛾 ≃ 60 MHz (HWHM).
We may now come back to fig. 1.3 and compare our experimental results with the theoretical model.
In fig. 1.12, we present the two wings (𝐹𝑔 = 4 and 𝐹𝑔 = 3) of Cs 𝐷2 line. The model is in very good
agreement with the theoretical measurements. To improve the resolution and obtain clearer spectra, one
can study either the derivative of selective reflection (dSR) (d𝑆𝑟/d𝜔) or the second derivative (SD)11 of
the transmitted signal (d2𝑆𝑡/d𝜔2), as presented in fig. 1.11. This combined with the use of NCs allows to
completely resolve the hyperfine structure in most cases and is one of the main experimental techniques
used throughout this thesis.

1.4 Atom-surface interactions

In this section, we will present some results recently obtained on atom-surface interaction in Rb and Cs
NCs. We experimentally observe the so-called "retardation" of the vdW effect predicted by de Aquino
Carvalho et al. [80, 81], using the techniques described above. The work presented in this section gave
rise to the following journal article:

• A. Sargsyan, R. Momier, C. Leroy, and D. Sarkisyan. Competing van der Waals and dipole-dipole
interactions in optical nanocells at thicknesses below 100 nm. Phys. Lett. A 483 (2023), p. 129069

1.4.1 Van der Waals effect

In the theoretical treatment we performed in section 1.3, we considered that atom-surface interactions
are negligible. However, as the cell size decreases, the distance between the atoms and the surface of the
cell is reduced and, consequently, the influence of the cell windows on the spectroscopic characteristics
of the atom cannot be ignored anymore. Numerous studies of the influence of the cell windows on

11This technique may lead to a slight loss of accuracy in the transition intensities, as can be seen when comparing fig. 1.10c
with fig. 1.11c. This is not a problem if we are only interested in studying frequency positions.
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-

+

-

+

MI

Figure 1.13 – Transition frequency shift versus atom-windows distance for the interwindow
distance 𝐿 = 50 nm. The red and blue rectangles labeled represent the sapphire windows of the
NC, respectively located at 𝑧 = 0 and 𝑧 = 𝐿 = 50 nm. The red dashed line shows the red frequency
shift caused by the left window, while the blue dashed line shows the frequency shift caused by the
right window. The green curve shows the total frequency shift Δ𝜈vdW caused by both windows
simultaneously.

the atoms are based on the analysis of the shape of SR lines, see eg. [107–110] and references therein,
where the determining contribution to the shape comes from atoms located 𝐿 ∼ 𝜆/2𝜋 ∼ 100 nm away
from the cell window. However, due to the smallness of the vdW interaction of atoms with the surface
of the window, such values of 𝐿 lead to small redshifts of the transition frequencies of several MHz,
which are difficult to accurately determine in noisy SR spectra. The NCs developed by our group are a
convenient tool for such studies as they allow to reach 𝐿 < 100 nm and proved useful to measure the
vdW coefficient 𝐶3 of Cs, Rb and 39K atoms 𝐷1,2 lines through either absorption [100, 102, 111, 112], SR
[56, 113] or fluorescence [44, 101] measurements.

In what follows, we show that vdW and dipole-dipole (Lorentz-Lorenz Rb-Rb or Cs-Cs) interactions
cause a redshift of the transition frequencies and that dipole-dipole interactions (neglected in [110])
induce an additional frequency shift and results in an overestimation of previous measurements of the
𝐶3 coefficient. We also observe experimentally the recently predicted so-called "retardation" of the vdW
effect. To do so, we have studied the 𝐷1 lines of Cs (by absorption) and Rb (by SR), due to the large
hyperfine splitting of their excited states (1168 and 814 MHz, respectively), which makes it possible to
study individual transitions. In the inset of fig. 1.13 we schematically show an atom (as a dipole) and its
mirror image by one of the cell windows. The atom is influenced by the electric field induced by its
mirror image on the dielectric window. This electric field affects the atomic transitions, inducing a shift
and a spectral broadening of the transitions. The frequency shift Δ𝜈vdW induced by the interaction of
the vapor with a dielectric window can be estimated with [114]:

Δ𝜈vdW = −𝐶3
𝑧3

− 𝐶3
(𝐿 − 𝑧)3 . (1.69)

The contributions of each window, as well as the total shift Δ𝜈vdW, are plotted in fig. 1.13 for Cs 𝐷1 line,
with 𝐶3 = 1.0 kHz 𝜇m3 and 𝐿 = 50 nm. From eq. (1.69), we see that in the center of the cell (𝑧 = 𝐿/2),
the total frequency shift is

Δ𝜈vdW = −16𝐶3
𝑧3

. (1.70)

Atoms located at 𝐿/2 ± 5 nm from the windows experience a relatively small frequency shift, around 30
MHz (shown by the small shaded box in fig. 1.13), compared to those situated at 𝐿/4 ± 5 nm from either
window, which encounter a much larger frequency shift of approximately 2500 MHz (shown by the gray
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1.4. Atom-surface interactions

rectangles). Assuming an even distribution of atoms across the windows, it is thus apparent from the
plotted curve that the spectral density in the absorption spectrum is maximum for atoms positioned at
the center of the NC (𝑧 = 𝐿/2), where the frequency shift is minimal. Measuring the frequency shift of
the absorption or SR spectra at specific cell thicknesses combined with eq. (1.70), allows us to determine
the 𝐶3 coefficient governing the van der Waals interactions between the atoms and the cell windows.

1.4.2 Experimental setup

FI

Ref. channel
M

F

OSC

PD1

M

NC

PD2

M

PD3

BS

Measurement channel

ECDL
BS

Figure 1.14 – Scheme of the experimental setup. FI: Faraday insulator, NC: nanocell (in its oven)
containing either Rb or Cs atoms, F: filter, M: mirror, BS: beam splitter, PD: photodetector, OSC:
oscilloscope. The NC height can be adjusted to modify the thickness 𝐿 with the help of the
interference rings visible in the inset picture.

In fig. 1.14, we illustrate the experimental setup used to investigate atom surface interactions. For Cs
absorption measurements, we used an extended cavity diode laser (ECDL) [115] with a wavelength
𝜆 = 895 nm and a linewidth of 1 MHz. Another laser with 𝜆 = 795 nm resonant with Rb 𝐷1 line was
used for SR measurements with the Rb cell. In both cases, the laser beam (diameter 0.6 mm, 100 𝜇W)
was directed perpendicularly through a cell mounted on a micrometric state so that its height could be
adjusted. Due to the wedged inner shape of the cell, this allows us to perform measurements at various
cell thicknesses (see section 1.2). Absorption or SR was measured while scanning the laser frequency
near Rb and Cs 𝐷1 lines. Signals were recorded by photodiodes, amplified, and sent to a Tektronix
TDS2014B oscilloscope. Additionally, part of the laser radiation was directed to a separate cell (Ref.
channel) to create a SA frequency reference using a 1 cm-long cell.

1.4.3 Van der Waals effect on Cs and Rb 𝑫1 lines

As discussed before (in sections 1.2 and 1.3), it was shown that using a NC with thickness 𝐿 = 𝜆/2 yields
nearly four times spectral narrowing of the atomic transitions in the absorption spectrum compared to
Doppler broadened spectra recorded in cm-long cells (where the typical width is ≃ 400 − 600 MHz).
This narrowing is even more important when taking the second derivative of the spectrum. In that case,
as expected, correct frequency intervals between transitions and correct relative transition probabilities
are observed [61]. In fig. 1.15, SD spectra of Cs 𝐷1 line 4 → 3′, 4′ transitions for various cell thicknesses
(200 ± 5, 90 ± 5, 70 ± 5, 55 ± 5 and 45 ± 5 nm) are presented. The solid vertical lines are to guide the
eye, showing the unshifted position of the transitions. It can be seen that a redshift of the transitions
occurs from 𝐿 ≤ 90 nm onwards. For 𝐿 = 200 ± 5 nm, the temperature of the cell reservoir was set to
𝑇 = 120 ◦C. As long as the absorption is small, it follows 𝜎𝑁𝐿, where 𝜎 is the cross section of Cs 𝐷1 line
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Ref.

Abs.

Figure 1.15 – Spectra of the 4 → 3′, 4′ transitions of Cs 𝐷1 line for various cell thicknesses.
The dashed vertical lines are the positions of unshifted atomic transitions from which the total
Δ𝜈 = Δ𝜈vdW +Δ𝜈LL frequency shift is measured. The lower curve is a reference spectrum (SD of SA).

(𝜎 ≃ 10−11 cm2), resulting in around 1% absorption at 𝐿 ≃ 400 nm and 𝑇 = 120 ◦C (𝑁 ≃ 5 × 1013 cm−3).
The absorption decreases with the cell thickness, making increasing the vapor density necessary for
reliable registration of the signal. Below 𝐿 < 70 nm the reservoir temperature is increased to𝑇 = 170 ◦C
(𝑁 ≃ 5.5 × 1014 cm−3). In this regime, the relation 𝑁 /𝑘3 ≫ 1 is fulfilled and Cs-Cs dipole-dipole
interactions are observed. The dipole-dipole (Lorentz-Lorenz) induced frequency shift can be estimated
by

Δ𝜈LL = −𝜋𝑁 Γ

𝑘3 , (1.71)

and is clearly visible as long as 𝐿/𝜆 ≪ 1 [100]. Therefore, the total red transition frequency shift consists
of two terms:

Δ𝜈 = Δ𝜈vdW + Δ𝜈LL. (1.72)
For thicknesses 𝐿 < 60 nm the “Lorentz-Lorenz” shift Δ𝜈LL is ∼ −44 MHz while for 𝐿 = 90 and 200
nm (because the temperature 𝑇 of the NC reservoir was lower), this shift was −7 MHz and −4 MHz,
respectively. In fig. 1.16a, we show the shift of the 4 → 3′ transition of 87Rb𝐷1 line while the temperature
(and thus the vapor density) is varied from 170 to 325 ◦C and the cell thickness is fixed to 𝐿 = 60 ± 5 nm.
Both dipole-dipole and vdW (atom-wall) frequency shifts are indicated with respect to the original
transition frequency, shown on the reference SA spectrum. In fig. 1.16b, the dipole-dipole frequency
shift is plotted against the vapor density. Since in this regime, the shift is linear with respect to the
density, it is possible to extrapolate the measurements on the small density side and extract a “purely”
atom-wall related vdW shift, in that case around ≃ −60 MHz. Therefore, to determine correctly Δ𝜈vdW
from the total frequency shifts presented in fig. 1.15 (−4, −37, −60, −117 and −180 MHz), we subtract
Δ𝜈LL, yielding Δ𝜈vdW = 0, −30, −38, −70 and −136 MHz respectively. Using the quantities of Δ𝜈vdW and
the corresponding cell thicknesses, the coefficient𝐶3 of vdW interaction for Cs 𝐷1 line with the sapphire
windows of the NC is measured according to eq. (1.70), as presented in fig. 1.18a. The relatively large
inaccuracy on the 𝐶3 coefficients measurements is due to the inaccuracy ±5 nm in the determination of
the cell thickness. It was shown in [56, 113] that the SR of laser radiation for thicknesses 𝐿 ≪ 𝜆/2 is also
a convenient tool for the study of the vdW interaction of an atom with the NC window. In the bottom
panel of fig. 1.17 we present an experimental and a theoretical SR spectrum of the 1 → 1′, 2′ transitions
of 87Rb 𝐷1 line recorded at 𝐿 = 130 ± 5 nm. As expected from SR, the line shapes are dispersive. In the
top panel, dSR spectra for various cell thicknesses (𝐿 = 80± 5 nm, 50± 5 nm, and 35± 5 nm, respectively)
are presented. The dotted curves are to guide the eye and show the original transition frequencies.
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(a) (b)DD shift 

vdW
Ref.

Figure 1.16 – a) SD of absorption spectra of the 4 → 3′ transition of Cs 𝐷1 line as a function of
the cell temperature for a fixed thickness 𝐿 = 60 ± 5 nm. The lower curve (Ref.) is a reference
spectrum showing the initial transition frequency. The dipole-dipole and vdW shifts are indicated.
b) Dipole-dipole frequency shift as a function of the atomic vapor density.

exp

th

th

Ref.
exp

Figure 1.17 – Spectra of the 1 → 1′, 2′ transitions of 87Rb 𝐷1 line. Bottom: experimental SR
spectrum (black), theoretical SR spectrum (blue), and theoretical dSR spectrum (orange), all obtained
for 𝐿 = 130 ± 5 nm. Top: reference spectrum (derivative of SA, black) and experimental dSR spectra
obtained for different cell thicknesses. The dashed lines indicate the frequencies of the 1 → 1′, 2′
transitions.
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1.4. Atom-surface interactions

(a) (b)

Figure 1.18 – Values of the 𝐶3 coefficient of Cs 𝐷1 line (a) and Rb 𝐷1 line (b) as a function of the
thickness L, calculated with eq. (1.70). Black squares: total red frequency shift Δ𝜈vdW + Δ𝜈LL was
used, red circles: only Δ𝜈vdW. Since it is commonly accepted to give the value 𝐶3 in kHz 𝜇m3, the
cell thickness is given in 𝜇m on the 𝑥-axis.

The total Δ = Δ𝜈vdW + Δ𝜈LL frequency shift of the dSR peaks as the thickness 𝐿 decreases is clearly
visible. As before with the absorption, the dSR amplitude decreases with the cell thickness. Thus, for
reliable registration of the spectra, the temperature 𝑇 of the NC reservoir was increased from 145 ◦C
(at 𝐿 = 130 nm) to 220 ◦C (at 𝐿 = 35 nm), corresponding to 𝑁 ≃ 5.5 × 1014 cm−3. From these spectra,
the values of Δ𝜈vdW for different thicknesses (subtracting Δ𝜈LL) are Δ𝜈vdW (130 nm) = −10 MHz, Δ𝜈vdW
(80 nm) = −30MHz, Δ𝜈vdW (50 nm) = −81 MHz and Δ𝜈vdW (35 nm)= −205 MHz. The values of 𝐶3 for
87Rb 𝐷1 line obtained with eq. (1.70) are presented in fig. 1.18b. It is relevant to note that Δ𝜈vdW for a
given atom will be the same if it is measured by absorption or SR for a given thickness 𝐿, i.e., unlike SR
in a centimeter cell, where only the input window is involved, both cell windows are involved in the
formation of SR when using a NC. From fig. 1.18 it follows that neglecting dipole-dipole interaction
in previous works led to an erroneous, overestimated value of the coefficient 𝐶3. Thus, in [110], the
≃ 100 MHz redshift of Cs 𝐷1 line for the thickness 𝐿 = 80 nm measured by SR is attributed exclusively
to the vdW interaction, but there is no information regarding the temperature 𝑇 for which the shift was
obtained12. The aim there was to demonstrate a large redshift. However, if we assume that the cell
temperature was 180 ◦𝐶 , then the value of Δ𝜈LL reaches ∼ 65 MHz, which reduces the real vdW shift to
−35 MHz.

1.4.4 Retardation of the vdW effect

In fig. 1.18, at 𝐿 < 100 nm a slight decrease of the 𝐶3 coefficient is visible. This decrease was also
experimentally observed in [111, 113] for K atoms, however no explanation was given. In these articles,
due to the big Doppler broadening of K atoms (around 0.9 GHz), the spectra of vdW interaction consist
of several overlapped transitions, and full resolution of the hyperfine structure was not achieved. This
behavior of the vdW process was theoretically predicted in recent papers [80, 81] and was named
“retardation” of the vdW effect. Therefore, due to the smaller Doppler broadening of Rb and Cs, here
pure experimental “retardation” was measured. The calculated curves for the 𝐶3 coefficient taking into
account the “retardation” effect presented in fig. 1a (inset) of [80] for the Cs 𝐷1 line transition fit well
with our experimental results. Particularly, for 𝐿 ≃ 100 nm, 70 and 50 nm, the theoretical 𝐶3 coefficient
is ∼ 1.5, ∼ 1.4 and ∼ 1.3 kHz 𝜇m3, meanwhile in our experiment we obtain 1.36 ± 0.3, 0.85 ± 0.3
and 0.8 ± 0.3 kHz 𝜇m3, respectively. The signal (SR/absorption) measures the difference between the
potential of the excited state and the ground state. The excited state potential does not feel so much

12In this work, one of the NCs produced at our laboratory was used.
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retardation effects (−𝐶3/𝑧3 is a good approximation) but the ground state “feels” retardation effects. In
fact, for the ground state the −𝐶3/𝑧3 dependence quickly (after ∼ 50 nm) turns to a −𝐶4/𝑧4 faster decay.
The difference between the two potentials thus actually appears larger than when predicted simply
by applying the −𝐶3/𝑧3 approximation, as shown in [80, Fig. 1a]. Observation of this delicate effect
therefore requires a NC with thickness below 100 nm.

1.5 Conclusion

In summary, we have shown that NCs are extremely useful spectroscopic tools. We have provided an
overview of their manufacture and theoretical modeling, as well as their advantages. Bymodeling the cell
as a FP cavity, it is possible to compute accurate transmission and SR spectra in excellent agreement with
the experimental measurements. We have then investigated experimentally atom-surface interactions.
By examining the spectral characteristics of Cs and Rb 𝐷1 lines using absorption and SR techniques,
we uncovered redshifts in transition frequencies attributable to vdW and dipole-dipole interactions.
Accounting for the latter led to more accurate measurements of the vdW coefficient 𝐶3. Moreover, we
observed a slight decrease in 𝐶3 at smaller NC thicknesses, consistent with theoretical predictions of
retardation effects in vdW interactions. The development of NC techniques offers a powerful platform
for exploring such interactions and opens avenues for further exploration in the field of quantum optics
and atomic physics. Aside from atom-surface interaction studies, NCs are very promising candidates for
sensing applications due to their small size. In the next chapters, we will consider the influence of an
external magnetic field on the atomic vapor, both theoretically and experimentally, and dig deeper into
this perspective.
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Chapter 2

Alkali vapors in a magnetic field
In this chapter, we describe the interaction between an alkali atom and an external static homogeneous magnetic field
starting from the fundamental Dirac equation for a single electron. We perform a thorough theoretical description
of the behavior of sodium 𝐷 lines with respect to the magnetic field. We then study in details both experimentally
and theoretically the so-called “forbidden” transitions of Rb 𝐷2 line, as they exhibit quite surprising magneto-optical
properties. The results are applicable to all alkali isotopes with nuclear spin 3/2.
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2.1 Introduction

The Zeeman effect, named after physicist Pieter Zeeman who discovered it in 1896, is a fundamental
phenomenon in atomic physics. It describes how the spectral lines emitted or absorbed by atoms are
split into multiple components when a magnetic field is applied. Notable applications of the Zeeman
effect includes laser cooling experiments [116], laser frequency stabilization [117], electron spin and
nuclear magnetic resonance spectroscopy [118, 119] or single photon sources [120]. Tremblay et al.
[57] proposed a theoretical model to describe the behavior of alkali 𝐷 lines under the influence of an
external magnetic field. Their model focused on magnetic fields up to 2.5 kG, but they encountered
limitations when dealing with weaker magnetic fields due to Doppler broadening. In chapter 2, we have
demonstrated that the use of nanocells (NCs) allows to overcome this limitation.
This chapter is divided in three main parts:

• In section 2.2, we describe how alkali atoms behave in electromagnetic fields, starting with the
fundamental Dirac equation. We study the different terms involved in the Dirac Hamiltonian,
such as kinetic energy and spin-orbit coupling, to understand their significance. We consider the
single valence electron of alkali atoms independent and use these results to derive the expression
of the Hamiltonian describing the interaction of alkali atoms with a homogeneous static magnetic
field. We discuss the interaction between nuclear spin and electronic angular momentum, giving
rise to the hyperfine structure and the Zeeman effect induced by an external magnetic field. We
present the main parts of the derivation of the model presented in [57], describing the evolution
of alkali transition frequencies and intensities as a function of the magnetic field and write a
computer program based on this model.
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2.2. The Dirac equation, hyperfine structure and Zeeman effect

• In section 2.3 we apply the model to 𝐷 lines of sodium coupled with the NC model derived in
chapter 2 to explore the behavior of a sodium vapor in a NC under different magnetic fields and
incident laser polarizations. We study in details all the possible Zeeman transitions of sodium
𝐷 lines and their intensities. We highlight how magnetic-field induced state mixing influences
the behavior of the transitions and discuss the selection rules. We analyze numerous spectra in
different regimes. For sufficiently high magnetic fields, the strong-field limit of the Zeeman effect
is reached. This effect is called hyperfine Paschen–Back (HPB) regime and corresponds here to
the decoupling of the nuclear spin momentum I and the total electronic angular momentum J.

• In section 2.4, we explore magnetically induced circular dichroism (MCD) in alkali metal isotopes
with a nuclear spin of 3/2 . We focus on forbidden transitions with Δ𝐹 = ±2 which can have
probabilities higher than ordinary atomic transitions under certain magnetic field conditions. We
present a simple experimental setup used to study the absorption spectra of the 𝐷2 line transitions
of 87Rb using circularly polarized laser radiation. We analyze the intensity ratios of magnetically
induced (MI) transitions and found good agreement between theory and experiment. We highlight
the potential of MI transitions for various applications, particularly in magneto-optical processes.

2.2 The Dirac equation, hyperfine structure and Zeeman effect

2.2.1 General overview

To describe an alkali atom in an electromagnetic field, we start from the Dirac equation. For a single
electron1 of mass𝑚, charge −𝑒 and spin momentum S the equation reads (to the order 𝑣2/𝑐2)[

1
2𝑚

(
p + 𝑒

𝑐
A
)2

+ 𝑒

𝑚𝑐
S · (∇ × A) − 𝑝4

8𝑚3𝑐2 − 𝑒ℏ

8𝑚2𝑐2∇
2𝑉 − 𝑒

2𝑚2𝑐2 S · (∇𝑉 × p) − 𝑒𝑉
]

︸                                                                                                            ︷︷                                                                                                            ︸
Dirac Hamiltonian

Ψ = 𝐸Ψ, (2.1)

where 𝑝 is the magnitude of the electron generalized momentum p, and S its spin momentum2. The
electromagnetic vector potential A and the scalar potential 𝑉 are related to the electric and magnetic
fields E and B such that

E =
𝜕A
𝜕𝑡

− ∇𝑉 and B = ∇ × A. (2.2)

Equation (2.1) includes many terms each describing something specific:

• 1
2𝑚

(
p + 𝑒

𝑐
A
)2

is the kinetic energy (H𝑘 ) and interaction of the electron with the vector potential,

• 𝑒

𝑚𝑐
S · (∇ ×A) describes the interaction of the spin momentum with the magnetic field B = ∇ ×A,

• 𝑝4

8𝑚3𝑐2 is the first-order relativistic correction (H𝑟 ) to the kinetic energy,

• 𝑒ℏ

8𝑚2𝑐2∇
2𝑉 is called the Darwin term (H𝐷 ) and induces a shift of the 𝑆-states,

• 𝑒

2𝑚2𝑐2 S · (∇𝑉 × p) is the spin-orbit coupling term (HSO) ,

• −𝑒𝑉 is a scalar potential energy (𝑈 ).

1Alkali atoms have a single valence electron. This is the electron we consider here.
2S = ℏ/2 · 𝝈 where 𝝈 = (𝜎𝑥 , 𝜎𝑦, 𝜎𝑧) are the Pauli matrices.
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2.2. The Dirac equation, hyperfine structure and Zeeman effect

2.2.2 Fine structure

Let us have a look at the non-field-dependent contributions to the Dirac Hamiltonian. For a non-
relativistic3 electron in the case {A = 0,𝑉 }, eq. (2.1) reduces to the eigenvalue equation

[H𝑘 +𝑈 ] Ψ =

[
ℏ2

2𝑚∇2 +𝑈
]
Ψ = H0Ψ = 𝐸Ψ, (2.3)

where p = −𝑖ℏ∇. In spherical coordinates, eq. (2.3) reads

𝑟 2
[
𝜕2

𝜕𝑟 2 + 2
𝑟

𝜕

𝜕𝑟

]
Ψ + 2𝑚𝑟 2

ℏ2 (𝐸 −𝑈 )Ψ =
𝐿2

ℏ2 Ψ (2.4)

where 𝐿 is the orbital angular momentum. In a spherically symmetric Coulomb potential𝑈 (𝑟 ) = −𝑍𝑒2/𝑟
(the electron interacts with a nucleus of charge 𝑍𝑒), the eigenstates of eq. (2.4) are known to be

Ψ𝑛𝑙𝑚 (𝑟, 𝜃, 𝜙) = 𝑅𝑛𝑙 (𝑟 )𝑌𝑙𝑚 (𝜃, 𝜙) ≡ |𝑛𝑙𝑚⟩ , (2.5)

where −𝑚 < 𝑙 < 𝑚 and 0 < 𝑙 < 𝑛 − 1. These states are called bound4 states and are functions of the
spherical harmonics 𝑌𝑙𝑚 (𝜃, 𝜙). Their energies are discrete and obey the famous relation

𝐸𝑛 = −𝑅∞
𝑍 2

𝑛2 , (2.6)

where 𝑅∞ = 𝑚𝑒4/8𝜖2
0ℎ

3𝑐 ≃ 109737 cm−1 is the Rydberg constant5. Let us now take a look at the
spin-orbit interaction. The spin-orbit HamiltonianHSO reads

HSO =
𝑒

2𝑚2𝑐2 S · (∇𝑉 × p) . (2.7)

This interaction is responsible for the atomic fine structure. Indeed, in the same spherical potential, the
Hamiltonian can be rewritten as

HSO =
𝑍𝑒2

2𝑚2𝑐2𝑟 3L · S. (2.8)

The Hamiltonian of an electron bound to a nucleus by a potential 𝑉 (𝑟 ) taking into account spin-orbit
interactions can be obtained by incorporating eq. (2.8) in eq. (2.3) which yields

H0 + HSO = − ℏ2

2𝑚∇2 − 𝑍𝑒2

𝑟
+ 𝑍𝑒2

2𝑚2𝑐2𝑟 3L · S. (2.9)

Using perturbation theory, one can show that the diagonal6 elements of HSO in the coupled basis |𝐽 ,𝑚⟩
are

𝐸SO = ⟨𝐽 ,𝑚 |HSO |𝐽 ,𝑚⟩

=
𝑍𝑒2

4𝑚2𝑐2 ℏ
2 [𝐽 (𝐽 + 1) − 𝐿(𝐿 + 1) − 𝑆 (𝑆 + 1)] ⟨𝑛𝐿 |𝑟−3 |𝑛𝐿⟩

=
𝑍 4𝑒2ℏ2

4𝑎0𝑚2𝑐2
𝐽 (𝐽 + 1) − 𝐿(𝐿 + 1) − 𝑆 (𝑆 + 1)

𝑛2𝐿(𝐿 + 1) (𝐿 + 1/2) ,

(2.10)

where J = L + S, ie. |𝐿 − 𝑆 | ≤ 𝐽 ≤ 𝐿 + 𝑆 and −𝐽 ≤ 𝑚 ≤ 𝐽 . The matrix elements ⟨𝑛𝐿 |𝑟−𝑘 |𝑛𝐿⟩ can be found
in the literature [121] or can be calculated, see eg. [122, 123], and 𝑎0 = 4𝜋𝜖0ℏ

2(𝑚𝑒2)−1 ≃ 0.53 Å is the
3This implies that we can get rid of the terms proportional to 𝑐−2.
4of Hydrogen if 𝑍 = 1, of Hydrogen-like atoms if 𝑍 > 1.
5The Rydberg constant 𝑅∞ can be converted to the Rydberg unit of energy 𝑅𝑦 = ℎ𝑐𝑅∞ ≃ 13.6 eV.
6𝐿2, 𝑆2 and 𝐽 2 only have diagonal elements, see appendix A.
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2.2. The Dirac equation, hyperfine structure and Zeeman effect

Bohr radius. Spin-orbit interaction raises the degeneracy of a given level |𝑛⟩: a given eigenvalue of
H0 +HSO is degenerated 2𝐽 + 1 times. The first order relativistic correction termH𝑟 can also be written

H𝑅 = − 1
2𝑚𝑐2

(
H0 +

𝑍𝑒2

𝑟

)2
(2.11)

taking into account thatH0 = 𝑝
2/2𝑚 − 𝑍𝑒2/𝑟 . We may again use perturbation theory, considering the

relativistic correction as a perturbation, to obtain its matrix elements. They read [124, Section 5.3]
𝐸𝑅 = ⟨𝐽 ,𝑚 |H𝑅 |𝐽 ,𝑚⟩

= −𝐸2
𝑛

𝑍 2𝛼2

𝑛2

(
𝑛

𝐿 + 1/2 − 3
4

)
.

(2.12)

The Darwin termHD produces an energy shift affecting 𝐿 = 0 states:

𝐸𝐷 =
𝑍 4𝑒2ℏ2

2𝑛3𝑚2𝑐2𝑎3
0
. (2.13)

All the terms above form the atomic fine structure:

Hfs = H𝑘 +𝑈 + HSO + H𝑅 + H𝐷 . (2.14)

In the fine structure, it is predicted that the energies of the states𝑛2𝑆1/2 and𝑛2𝑃1/2 are identical. However,
experiments using hydrogen atoms have shown small discrepancies. This difference, called the Lamb
shift, can be corrected using higher-order radiative corrections [125].

2.2.3 Zeeman effect

Magnetic Hamiltonian, Landé factors

Let us consider a static uniform magnetic field7 such that ∇ · A = 0, in other terms:

B =
1
2∇ × (B × r) and A =

1
2B × r. (2.15)

From eq. (2.1), the magnetic partH𝑚 of the Dirac Hamiltonian reads

H𝑚 =
1

2𝑚

(
p + 𝑒

𝑐
A
)2

+ 𝑒

𝑚𝑐
S · (∇ × A) . (2.16)

As p and A do not necessarily commute8 since A depends on r [see eq. (2.15)], the expansion of eq. (2.16)
must be performed carefully. Dropping the kinetic term to focus only on the magnetic interaction part,
H𝑚 can be rewritten

H𝑚 =
𝑒

2𝑚𝑐 [(B × r) · p + 2(S · B)] (2.17)

or equivalently, with 𝐿 = r × p,
H𝑚 =

𝜇𝐵

ℏ
B (L + 2S) , (2.18)

where 𝜇𝐵 = 𝑒ℏ/2𝑚𝑐 is the Bohr magneton. Alternatively, eq. (2.18) can also be written

H𝑚 = −𝝁𝐿 · L − 𝝁𝑆 · S (2.19)

with 𝝁𝐿 = −𝑔𝐿𝜇𝐵ℏ−1B and 𝝁𝑆 = −𝑔𝑆𝜇𝐵ℏ−1B to be interpreted as magnetic moments associated to L and
S respectively. These involve the electron orbital Landé factor 𝑔𝐿 and spin Landé factor 𝑔𝑆 . In this
derivation, it comes that 𝑔𝐿 = 1 and 𝑔𝑆 = 2. In reality, 𝑔𝐿 must account for the ratio between the mass of
the electron𝑚 and the mass of the nucleus𝑚𝑛 such that

𝑔𝐿 = 1 − 𝑚

𝑚𝑛

. (2.20)

The electron spin Landé factor 𝑔𝑆 slightly deviates from 2 when quantum electrodynamics effects are
considered, and its current up-to-date value is 𝑔𝑆 = 2.00231930436 [126].

7This is a reasonable approximation due to the small size of the NCs.
8They do commute here since we chose ∇ · A = 0.
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Matrix elements

We consider here a magnetic field directed along 𝑧 (B = 𝐵𝑧e𝑧), chosen as the quantization axis of our
problem. Using J = L + S and writing 𝐽𝑧 and 𝑆𝑧 as rank 1 Irreducible Tensor Operators (ITOs) [see
appendix A], the magnetic Hamiltonian reads

H𝑚 =
𝜇𝐵

ℏ
(𝑔𝐿L + 𝑔𝑆S) · B =

𝜇𝐵

ℏ
𝐵𝑧

[
𝑔𝐿 𝐽

(1)
0 + (𝑔𝑆 − 𝑔𝐿)𝑆 (1)0

]
. (2.21)

In the |𝐽 ,𝑚⟩ basis, the matrix elements ofH𝑚 read

⟨𝐽 ,𝑚 | H𝑚 |𝐽 ′,𝑚′⟩ = 𝜇𝐵𝐵𝑧𝛿𝐿𝐿′𝛿𝑆𝑆 ′𝛿𝑚𝑚′

[
𝑔𝐿𝑚 𝐽 𝛿 𝐽 𝐽 ′ − (−1)𝑚+𝐿+𝑆 (𝑔𝑆 − 𝑔𝐿)

√︁
2𝐽 + 1

√︁
2𝐽 ′ + 1

×
√︁
𝑆 (𝑆 + 1) (2𝑆 + 1)

(
𝐽 1 𝐽 ′

−𝑚 0 𝑚

) {
𝐿 𝑆 𝐽

1 𝐽 ′ 𝑆

}
.

] (2.22)

By developing the Wigner 3 𝑗- and 6 𝑗-symbols [127, 128], this rather inconvenient formulation can be
simplified. The diagonal elements (𝐽 = 𝐽 ′,𝑚 =𝑚′) become

⟨𝐽 ,𝑚 | H𝑚 |𝐽 ,𝑚⟩ = 𝐸0(𝐽 ) − 𝜇𝐵𝑔𝐽𝑚𝐵𝑧 (2.23)

where the Landé factor 𝑔𝐽 is given by

𝑔𝐽 = 𝑔𝐿
𝐽 (𝐽 + 1) − 𝑆 (𝑆 + 1) + 𝐿(𝐿 + 1)

2𝐽 (𝐽 + 1) + 𝑔𝑆
𝐽 (𝐽 + 1) + 𝑆 (𝑆 + 1) − 𝐿(𝐿 + 1)

2𝐽 (𝐽 + 1) . (2.24)

The off-diagonal terms read

⟨𝐽 ,𝑚 | H𝑚 |𝐽 − 1,𝑚⟩ = ⟨𝐽 − 1,𝑚 | H𝑚 |𝐽 ,𝑚⟩

= −𝜇𝐵𝐵𝑧2 (𝑔𝐿 − 𝑔𝑆 )

√︄
𝐽 2 −𝑚2

𝐽 (2𝐽 + 1) (2𝐽 − 1)

×

√︄
[(𝐿 + 𝑆 + 1)2 − 𝐽 2] [𝐽 2 − (𝐿 − 𝑆)2]

𝐽
.

(2.25)

As a consequence of the Wigner symbols, these terms are non-zero only if Δ𝐿 = 𝐿 − 𝐿′ = 0,
Δ𝐽 = 𝐽 − 𝐽 ′ = ±1, and Δ𝑚 =𝑚 −𝑚′ = 0.

Nuclear spin

It is important to note that the electron spin momentum appears naturally when constructing the Dirac
equation and the atomic fine structure (|𝐽 ,𝑚⟩ states) is a direct consequence of the latter. However, the
interaction between the nuclear spin momentum I and the total electronic angular momentum J giving
rise to the hyperfine structure (F = J + I thus |𝐼 − 𝐽 | ≤ 𝐹 ≤ 𝐼 + 𝐽 and −𝐹 ≤ 𝑚 ≤ 𝐹 ) is not taken into
account. The zero-field Hamiltonian H0 can be rewritten as

H0 = Hfs +
∑︁
𝑘

T(𝑘 ) ·M(𝑘 ) = Hfs + Hhfs (2.26)

whereHfs is the fine structure Hamiltonian [eq. (2.14)] and the product of the spherical tensor operators
T(𝑘 ) and M(𝑘 ) describes the electron-nucleus interaction. Expanding Hhfs to the 2nd order taking
T(𝑘 ) = I and M(𝑘 ) = J yields

Hhfs = 𝐴hfsI · J + 𝐵hfs
3(I · J)2 + 3

2 I · J − 𝐼 (𝐼 + 1) 𝐽 (𝐽 + 1)
2𝐼 (2𝐼 − 1) (2𝐽 − 1) , (2.27)
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(a) (b)

Figure 2.1 – Block structure of the magnetic Hamiltonian. a) Blocks representing the fine structure
states. b) close-up on the 2𝑃1/2 state: the matrix is block diagonal in the |𝐹,𝑚𝐹 ⟩ basis, each block
corresponding to a different value of𝑚𝐹 , and 𝐹 is equal to either 1 or 2.

where 𝐴hfs and 𝐵hfs are respectively the magnetic dipole and electric quadrupole interaction constants
(odd 𝑘 values in eq. (2.26) represent magnetic interactions while even 𝑘 values represent electric
interactions). The hyperfine energy shift is

Δ𝐸hfs =
𝐴hfs𝐾

2 +
3
2𝐾 (𝐾 + 1) − 2𝐼 (𝐼 + 1) 𝐽 (𝐽 + 1)

2𝐼 (2𝐼 − 1)2𝐽 (2𝐽 − 1) (2.28)

where 𝐾 = 𝐹 (𝐹 + 1) − 𝐼 (𝐼 + 1) − 𝐽 (𝐽 + 1). The higher-order terms (for example, magnetic octupole
constant) can be neglected as they induce an energy shift of the order of the kHz [129]. As we did for
the fine structure eq. (2.21), we can incorporate the hyperfine structure in the magnetic Hamiltonian:

H𝑚 =
𝜇𝐵

ℏ
𝐵𝑧 (𝑔𝐿𝐿𝑧 + 𝑔𝑆𝑆𝑧 + 𝑔𝐼 𝐼𝑧). (2.29)

In the |𝐹,𝑚𝐹 ⟩ basis, the diagonal matrix elements ofH𝑚 read

⟨𝐹,𝑚𝐹 | H𝑚 |𝐹,𝑚𝐹 ⟩ = 𝐸0(𝐹 ) − 𝜇𝐵𝑔𝐹𝑚𝐹𝐵𝑧 (2.30)

where the Landé factor 𝑔𝐽 is given by

𝑔𝐹 = 𝑔𝐽
𝐹 (𝐹 + 1) − 𝐼 (𝐼 + 1) + 𝐽 (𝐽 + 1)

2𝐹 (𝐹 + 1) + 𝑔𝐼
𝐹 (𝐹 + 1) + 𝐼 (𝐼 + 1) − 𝐽 (𝐽 + 1)

2𝐹 (𝐹 + 1) . (2.31)

The off-diagonal terms ofH𝑚 are non-zero only if Δ𝐹 = ±1 and Δ𝑚𝐹 = 0. They read

⟨𝐹,𝑚𝐹 | H𝑚 |𝐹 − 1,𝑚𝐹 ⟩ = ⟨𝐹 − 1,𝑚𝐹 | H𝑚 |𝐹,𝑚𝐹 ⟩

= −𝜇𝐵𝐵𝑧2 (𝑔𝐽 − 𝑔𝐼 )

√︄
𝐹 2 −𝑚2

𝐹

𝐹 (2𝐹 + 1) (2𝐹 − 1)

×
√︂

[(𝐽 + 𝐼 + 1)2 − 𝐹 2] [𝐹 2 − (𝐽 − 𝐼 )2]
𝐹

.

(2.32)

The magnetic Hamiltonian H𝑚 , therefore, has a block diagonal structure. It can be represented by
several blocks, one for each fine structure state (2𝑆1/2, 2𝑃1/2, 2𝑃3/2) [fig. 2.1a]. Each of these blocks is
itself block diagonal, each block corresponding to a different value of𝑚𝐹 (fig. 2.1b).
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2.3. Spectra of alkali 𝐷 lines in a magnetic field

2.3 Spectra of alkali 𝑫 lines in a magnetic field

Our goal is to study the evolution of alkali 𝐷 lines in a magnetic field. Starting from the expression of
the magnetic Hamiltonian H𝑚 [eqs. (2.30) and (2.32)], we first observe how the energy levels |𝐹,𝑚⟩ will
shift according to the magnetic field and show the evolution of the transition frequencies. We will then
recall the procedure used to calculate transition dipole moment which, coupled to the theoretical model
developed in chapter 2, will allow us to generate spectra of alkali 𝐷 lines in a magnetic field taking
into account the geometry of the cell. The work presented in this section gave rise to the following
publication:

• R. Momier, A. V. Papoyan, and C. Leroy. Sub-Doppler spectra of sodium D lines in a wide range of
magnetic field: Theoretical study. J. Quant. Spectrosc. Radiat. Transf. 272 (2021), p. 107780

The discussion presented hereafter is valid for all alkali atoms, the only difference being the nuclear
spin value (up to 7/2 for 133Cs, which will give rise to a different number of Zeeman sublevels) and the
magnetic dipole and electric quadrupole interaction constants. The calculation procedure does not
change.

2.3.1 Energy shifts and transition frequencies

Weak magnetic field regime

In a weak magnetic field 𝐵𝑧 ≪ 𝐵0 = 𝐴hfs/𝜇𝐵 , the magnetic Hamiltonian H𝑚 simply acts as a small
perturbation of the eigenstates ofHhfs and, to the lowest order, the energy levels split according linearly
according to eq. (2.30):

Δ𝐸 |𝐹,𝑚𝐹 ⟩ = −𝜇𝐵𝑔𝐹𝑚𝐹𝐵𝑧 . (2.33)

This regime is called the anomalous Zeeman effect and |𝐹,𝑚𝐹 ⟩ is a good basis, as represented in fig. 2.2.

(a) (b)

(d)(c)

Figure 2.2 – Hyperfine structure of the (a-c) ground state 32𝑆1/2 and (b-d) excited state 32𝑃1/2 of
sodium 𝐷1 line in a weak magnetic field (|𝐹,𝑚𝐹 ⟩ basis).

Strong magnetic field regime

In a strong magnetic field 𝐵𝑧 ≫ 𝐵0, only 𝐽 is a good quantum number. The magnetic Hamiltonian can
be written as

H𝑚 =
𝜇𝐵

ℏ
𝐵𝑧 (𝑔𝐽 𝐽𝑧 + 𝑔𝐼 𝐼𝑧). (2.34)
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2.3. Spectra of alkali 𝐷 lines in a magnetic field

and dominates the hyperfine energies. In the |𝐽 ,𝑚 𝐽 , 𝐼 ,𝑚𝐼 ⟩ basis, the energy levels shift according to

Δ𝐸 | 𝐽 ,𝑚 𝐽 ,𝐼 ,𝑚𝐼 ⟩ = 𝐴hfs𝑚𝐼𝑚 𝐽 + 𝐵hfs
3(𝑚𝐼𝑚 𝐽 )2 + 3

2𝑚𝐼𝑚 𝐽 − 𝐼 (𝐼 + 1) 𝐽 (𝐽 + 1)
2𝐽 (𝐽 − 1)𝐼 (2𝐼 − 1) + 𝜇𝐵 (𝑔𝐽𝑚 𝐽 + 𝑔𝐼𝑚𝐼 )𝐵𝑧 . (2.35)

Intermediate magnetic field regime

For intermediate magnetic fields, the energy shifts are usually obtained by numerically diagonalizing
H𝑚 except in special cases. The Breit-Rabi [130] formula can be used to compute analytically the shifts
of the ground states of 𝐷 lines (2𝑆1/2):

𝐸 |1/2,𝑚 𝐽 ,𝐼 ,𝑚𝐼 ⟩ = −𝐴hfs(𝐼 + 1/2)
2(2𝐼 + 1) + 𝑔𝐼 𝜇𝐵 (𝑚𝐼 ±𝑚 𝐽 )𝐵𝑧 ±

𝐴hfs(𝐼 + 1/2)
2

√︂
1 +

4(𝑚𝐼 ±𝑚 𝐽 )𝑥
2𝐼 + 1 + 𝑥2 , (2.36)

with
𝑥 =

(𝑔𝐽 − 𝑔𝐼 )𝜇𝐵𝐵𝑧
𝐴hfs(𝐼 + 1/2) . (2.37)

The transition frequencies can then simply be obtained as follows:

𝜔𝑒𝑔 (𝐵𝑧) =
𝐸𝑒 (𝐵𝑧) − 𝐸𝑔 (𝐵𝑧)

ℏ
. (2.38)

In fig. 2.3, we present the eigenvalues of sodium 𝐷1 line obtained by diagonalizing H𝑚 , where the three
different regimes are clearly visible. For convenience, throughout this thesis we will always refer to the
Zeeman states in the |𝐹,𝑚𝐹 ⟩ basis even when 𝐹 is not a good quantum number.

(a) (b)

Figure 2.3 – Hyperfine structure of the (a) ground 32𝑆1/2 and (b) excited 32𝑃1/2 states of sodium 𝐷1
line as a function of the magnetic field obtained by numerical diagonalization of H𝑚 .

2.3.2 Transition dipole moments

We now want to compute the evolution of the transition intensities between Zeeman sublevels as a
function of the magnetic field. Let us consider an atomic electric dipole D interacting with a laser field
E. The interaction term is −D · E, where D and E are, in terms of standard components, given by

D · e =
∑︁
𝑞

(−1)𝑞𝐷−𝑞𝑒𝑞 and E · e =
∑︁
𝑞

(−1)𝑞𝐸−𝑞𝑒𝑞 . (2.39)

where e𝑞 are unit vectors of the spherical basis linked to the usual cartesian coordinates by

e±1 = ∓
e𝑥 ± 𝑖e𝑦√

2
and e0 = e𝑧 . (2.40)
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Since the 𝑧-axis was chosen as the quantization axis of our problem eq. (2.21), 𝐸𝑞=0 corresponds
to a linearly polarized electric field and 𝐸𝑞=+1 (resp. 𝐸𝑞=−1) corresponds to a left-circularly (resp.
right-circularly) polarized electric field. In our case, the magnetic field induces a mixing of the Zeeman
states having the same𝑚. Transitions will therefore occur, rigorously, between mixed states |Ψ(𝐹,𝑚)⟩
called perturbed states. These states9 read

|Ψ(𝐹,𝑚)⟩ =
∑︁
𝐹 ′
𝛼𝐹𝐹 ′ |𝐹 ′,𝑚⟩ , (2.41)

where the mixing coefficients 𝛼𝐹𝐹 ′ are obtained by diagonalizingH𝑚 . It was shown in [131] that the
spontaneous emission probability 𝐴 between two states |Ψ(𝐹𝑔,𝑚𝑔)⟩ and |Ψ(𝐹𝑒 ,𝑚𝑒)⟩ can be written

𝐴 |Ψ(𝐹𝑒 ,𝑚𝑒 ) ⟩→|Ψ(𝐹𝑔,𝑚𝑔 ) ⟩ =
𝜔3

3𝜋𝜖0ℏ𝑐3 | ⟨Ψ(𝐹𝑒 ,𝑚𝑒) |𝐷𝑞 |Ψ(𝐹𝑔,𝑚𝑔)⟩ |2 (2.42)

Injecting eq. (2.41) in eq. (2.42) allows us to write the mixed states in terms of the original unperturbed
Zeeman states:

𝐴 |Ψ(𝐹𝑒 ,𝑚𝑒 ) ⟩→|Ψ(𝐹𝑔,𝑚𝑔 ) ⟩ =
𝜔3

3𝜋𝜖0ℏ𝑐3
©«
∑︁
𝐹 ′𝑔

∑︁
𝐹 ′𝑒

𝛼𝐹𝑒𝐹 ′𝑒 ⟨𝐹
′
𝑒 ,𝑚𝑒 |𝐷𝑞 |𝐹 ′𝑔,𝑚𝑔⟩ 𝛼𝐹𝑔𝐹 ′𝑔

ª®¬
2

=
𝜔3

3𝜋𝜖0ℏ𝑐3𝑎
2 [Ψ(𝐹𝑒 ,𝑚𝑒),Ψ(𝐹𝑔,𝑚𝑔), 𝑞],

(2.43)

where 𝑎2 [Ψ(𝐹𝑒 ,𝑚𝑒),Ψ(𝐹𝑔,𝑚𝑔), 𝑞] are modified transfer coefficients due to the influence of the magnetic
field. The standard component of 𝐷𝑞 of the electric dipole moment D [eq. (2.39)] may be written as

⟨𝐹𝑒 ,𝑚𝑒 |𝐷𝑞 |𝐹𝑔,𝑚𝑔⟩ = (−1)1+𝐼+𝐽𝑒+𝐹𝑒+𝐹𝑔−𝑚𝑒

√︁
2𝐹𝑒 + 1

√︁
2𝐹𝑔 + 1

(
𝐹𝑒 1 𝐹𝑔
−𝑚𝑒 𝑞 −𝑚𝑔

) {
𝐹𝑒 1 𝐹𝑔
𝐽𝑔 𝐼 𝐽𝑒

}
⟨𝐽𝑒 ∥𝐷 ∥ 𝐽𝑔⟩ .

(2.44)

Using the properties derived in appendix A and the relation [131]:

Γ = | ⟨𝐽𝑒 ∥𝐷 ∥ 𝐽𝑔⟩ |2
𝜔3

3𝜋𝜖0ℏ𝑐3
1

2𝐽𝑒 + 1 (2.45)

we can define the following unperturbed transfer coefficients:

𝑎(𝐹𝑒 ,𝑚𝑒 , 𝐹𝑔,𝑚𝑔, 𝑞) = (−1)1+𝐼+𝐽𝑒+𝐹𝑒+𝐹𝑔−𝑚𝑒

√︁
2𝐹𝑒 + 1

√︁
2𝐹𝑔 + 1

√︁
2𝐽𝑒 + 1

(
𝐹𝑔 1 𝐹𝑒
𝑚𝑔 𝑞 −𝑚𝑒

) {
𝐹𝑒 1 𝐹𝑔
𝐽𝑔 𝐼 𝐽𝑒

}
.

(2.46)
These coefficients are such that

𝐴 |Ψ(𝐹𝑒 ,𝑚𝑒 ) ⟩→|Ψ(𝐹𝑔,𝑚𝑔 ) ⟩ = Γ𝑎2 [Ψ(𝐹𝑒 ,𝑚𝑒),Ψ(𝐹𝑒 ,𝑚𝑒), 𝑞]

= Γ
©«
∑︁
𝐹 ′𝑔

∑︁
𝐹 ′𝑒

𝛼𝐹𝑒𝐹 ′𝑒𝑎(𝐹𝑒 ,𝑚𝑒 , 𝐹𝑔,𝑚𝑔, 𝑞)𝛼𝐹𝑔𝐹 ′𝑔
ª®¬

2

,
(2.47)

where 𝑞 = Δ𝑚 is the same standard component as in eq. (2.39) which thus corresponds to the following
selection rule (where 𝐹 denotes a ground state and 𝐹 ′ an excited state):

• a linearly polarized electric field 𝐸0 (along 𝑧) will excite transitions between a ground |𝐹,𝑚⟩ and an
excited |𝐹 ′,𝑚⟩ state having the same𝑚, ie. 𝑞 = Δ𝑚 = 0. These transitions are called 𝜋 transitions.

9Energy level crossings may cause degeneracy of the eigenvector components. This needs to be taken into account when
performing the diagonalization to ensure proper assignment of each transition.
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Figure 2.4 – Block scheme of the program used to compute transition dipole moments, frequencies,
and spectra.

• a left-circularly polarized electric field 𝐸+1 will excite transitions between a ground |𝐹,𝑚⟩ and an
excited |𝐹 ′,𝑚 + 1⟩ ie. 𝑞 = Δ𝑚 = +1. These transitions are called 𝜎+ transitions.

• a right-circularly polarized electric field 𝐸−1 will excite transitions between a ground |𝐹,𝑚⟩ and
an excited |𝐹 ′,𝑚 − 1⟩ ie. 𝑞 = Δ𝑚 = −1. These transitions are called 𝜎− transitions.

Following the derivation performed in the previous chapter, we may consider the vapor confined in the
NC as an ensemble of independent two-level systems. Each transition between two |𝐹,𝑚⟩ states has a
transition frequency given by eq. (2.38) and a dipole moment proportional to the spontaneous emission
probability given by eq. (2.42) and ultimately eq. (2.47). Looping the computation of the lineshape
(described in section 1.3.6) over all the possible Zeeman transitions allows us to generate spectra with
enough resolution to distinctively observe them. A schematic diagram of the computational procedure
is presented in fig. 2.4.

2.3.3 Sodium 𝑫1 line

Sodium only has one stable isotope 23Nawith a natural abundance of nearly 100%. Its𝐷1 line corresponds
to transitions occuring between the states 𝐹 = 1, 2 of 32𝑆1/2 and 𝐹 ′ = 1, 2 of 32𝑃1/2. The Zeeman manifold
is thus analogous to that of 87Rb or 39K 𝐷1 line. A 𝜋-polarized incident laser will excite 14 transitions,
whereas left (or right) circularly polarized light will excite only 12 transitions. In total for sodium 𝐷1
line, 38 |𝐹,𝑚⟩ → |𝐹 ′,𝑚′⟩ Zeeman transitions are possible. A scheme depicting all of them is presented
in fig. 2.5.
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8 10

56
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(a) (b) (c)

Figure 2.5 – All Zeeman transitions of the 𝐷1 line of sodium in the basis |𝐹,𝑚𝐹 ⟩. a) 𝜎−-transitions,
b) 𝜋-transitions, c) 𝜎+-transitions.
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Figure 2.6 – Sodium 𝐷1 line Zeeman transition intensities for linear (𝜋 ) polarization in arbitrary
units. a) transitions from 𝐹 = 1, b) transitions from 𝐹 = 2. Transitions occuring between extreme
angular momentum states (|2,−2⟩ → |2,−2⟩ and |2, +2⟩ → |2, +2⟩ are represented by a red line.
In blue (dashed lines), we represent the transitions whose intensities remain considerable past
𝐵0 ≃ 633 G, as opposed to the orange curves (solid lines). The magnetic field varies up to 2000 G
here for clarity. Numbering and color coding are consistent with fig. 2.5b.

Linearly polarized incident radiation

Let us first focus on 𝜋-transitions. As mentioned before, 14 transitions are possible in this case. All
these transitions are so-called “allowed” since they respect the selection rule Δ𝐹 = 0,±1. The results
obtained for 𝑎2 [|Ψ(𝐹 ′,𝑚′)⟩ , |Ψ(𝐹,𝑚)⟩ , 0] are presented in fig. 2.6.
Several observations can be made from fig. 2.6. The amplitudes of transitions 1, 3 and 5 (fig. 2.6a), 7,
9, 11, 13 and 14 (fig. 2.6b) remain considerable for 𝐵𝑧 ≫ 𝐵0, implying that 8 transitions will remain
present in the spectrum when the magnetic field is high enough. These transitions will be denoted as
𝑟 -transitions, where 𝑟 stands for remaining. Here, they obey the selection rule Δ𝐹 = 0 at low magnetic
fields, and Δ𝑚𝐼 = Δ𝑚 𝐽 = 0 for high magnetic fields where 𝐹 is not a good quantum number anymore.
The 𝑟 -transitions 1, 3, 5 occur between 𝐹 = 𝐹 ′ = 1 and the others between 𝐹 = 𝐹 ′ = 2 . Analogously,
transitions 2, 4, 6, 8, 10 and 12 will be called 𝑣-transitions, where 𝑣 stands for vanishing, since their
amplitude becomes negligible for 𝐵𝑧 ≫ 𝐵0. One can notice that some of the 𝑟 -transitions show 𝑎2 ≈ 0
for a low magnetic field and experience a huge amplitude growth as the magnetic field increases. For
this reason, we call them MI (MI1 in [86]), although they are theoretically allowed by the selection rule
Δ𝐹 = 0,±1. Another peculiarity that appears is the presence of two 𝑟 -transitions (7 and 14) having a
constant amplitude throughout the whole magnetic field range. These transitions occur between extreme
angular momentum states [following the definition of relation eq. (2.41)]: such states do not experience
any mixing with their neighbors (with the same𝑚 value), thus leading to magnetic-field-independent
transition amplitudes. These transitions are usually called guiding transitions (GTs) [132]. For further
analysis, we present in fig. 2.7 the transition frequencies computed from eq. (2.38). From fig. 2.7, one
can notice the following: the two guiding transitions (represented by red lines) have a perfectly linear
frequency shift with respect to 𝐵𝑧 and only differ by sign. Going back to the model of section 2.2.3,
the uncoupled states give rise to “1 × 1” blocks inH𝑚 , and thus their Zeeman splitting is described by
relation eq. (2.33). It is straightforward to show that their slope is

𝑠± ≈ ±2𝜇𝐵
3 , (2.48)

under the approximation 𝑔𝑆 ≈ 2, 𝑔𝐿 ≈ 1 and 𝑔𝐼 ≪ 𝑔𝐽 . Numerically, using the values provided in
appendix B [table B.2], we obtain a slope of ±0.935269 MHz/G. Each group of 𝑟 -transitions is thus driven
by one of the GTs, more precisely 𝑟 -transitions 1, 3 and 5 are driven by the GT labeled 7 having a slope
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Figure 2.7 – Sodium 𝐷1 line transition frequencies (𝜋 polarization) as a function of the magnetic
field. The color code corresponds to the one used in figure fig. 2.6.

𝑠− = −2𝜇𝐵/3, and 𝑟 -transitions 9, 11 and 13 are driven by the GT labeled 14 having a slope 𝑠+ = 2𝜇𝐵/3.
Here, driven means that each transition belonging to a given group is bounded in amplitude by either
one of the GT and all the frequency shifts asymptotically tend to a linear behavior when 𝐵𝑧 ≫ 𝐵0 is
high enough, with the slope being 𝑠±𝑟 = 𝑠±, as written in relation (2.48). Due to the absence of coupling
between states, the modified transfer coefficient of a GT occurring between two uncoupled states is
exactly equal to the unperturbed transfer coefficient 𝑎2(𝐹𝑒 ,𝑚𝐹𝑒 , 𝐹𝑔,𝑚𝐹𝑔 , 0). For transitions 7 and 14, we
obtain

𝑎(2,±2; 2,±2;𝑞 = 0) = ± 1
√

3
⇒ 𝑎2 =

1
3 . (2.49)

Past 𝐵0, the 8 𝑟 -transitions remain in the spectrum, which is a manifestation of the HPB regime. This
behavior has been observed experimentally for Cs, Rb, and K (for example in [133]). Experimental
results are harder to provide due to the lack of diode lasers operating in the wavelength range of
sodium in our laboratory. However, a sodium NC is available [62]. A set of theoretical absorption
spectra for all 𝜋-transitions of sodium 𝐷1 line is presented in fig. 2.8 for visualization. All the previous
statements can be seen. As the magnetic field increases, the 𝑟 -transitions can be separated into two
groups, all tending to the same amplitude and a complete symmetry between the red and blue wings of
the spectrum appears when 𝐵𝑧 is high enough. Although becoming invisible, the 𝑣-transition frequency
shifts also exhibit a linear behavior at high magnetic fields, tending to a slope twice bigger than that of
the 𝑟 -transitions. Precisely, 𝑠±𝑣 ≈ 2𝑠±𝑟 ≈ ±4𝜇𝐵/3 using the same approximations as before. It is usually
estimated that the complete HPB regime is reached when a magnetic field 𝐵𝑧 > 10𝐵0 is applied. This
corresponds here to a magnetic field 𝐵𝑧 ≈ 630 G. As a comparison, for 87Rb we would expect 𝐵𝑧 ≈ 24000
G [4] and for 133Cs, 𝐵0 ≈ 16000 G [2]. Theoretically this makes sodium, as well as 39K [134], more
convenient than cesium or rubidium for the experimental study of magnetic-optical processes occurring
in the complete HPB since it is reached for a much weaker magnetic field. However, since the natural
linewidth of Na 𝐷1 line Γ/2𝜋 = 9.765 MHz [5] is nearly twice bigger than that of the 𝐷1 lines of Cs or Rb,
one expects to obtain significantly broader lines. The linewidth is also affected by the inhomogeneous
Doppler broadening Γ𝐷 given by

Γ𝐷 = 𝜔0

√︂
8𝑘𝐵𝑇 log 2
𝑚𝑐2 (2.50)

(see [53]), bigger for the 𝐷1 line of sodium than in the case of rubidium or cesium. In eq. (2.50), 𝜔0 is
the central angular frequency of the transition,𝑚 is the atomic mass, 𝑇 is the temperature of vapor, 𝑐
is the speed of light and 𝑘𝐵 is the Boltzmann constant. In fig. 2.9, we present a theoretical absorption
spectrum of sodium 𝐷1 𝜋-transitions, computed with the same numerical parameters as before, as long
with the second derivative (SD) spectrum.
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Figure 2.8 – Absorption spectra of sodium 𝐷1 line for a magnetic field varying from 0 to 0.21 T
with a step of 0.03 T in case of 𝜋 excitation. Blue and orange shadow lines in the (𝑥,𝑦) plane
represent the transition frequencies. As before, each peak has a FWHM of approximately 100 MHz.

Due to the linewidth 𝜔FWHM ≈ 100 MHz, even for 𝐵𝑧 ≫ 10𝐵0 the peaks are not completely resolved,
resulting in a variation of their amplitude. Experimentally, as hinted in fig. 2.9, SD would allow us
to obtain completely resolved peaks, all having the same amplitude. derivative of selective reflection
(dSR) would also be suitable here. One can also see that all the peaks are evenly spaced, which is a
manifestation of the linear behavior of the frequency shifts mentioned earlier and a good sign HPB
regime is reached. Moreover, the red and blue wings of the spectrum are completely symmetric. The
frequency detuning Δ𝜔𝑟 between the two groups of 4 𝑟 -transitions (see the dashed blue lines in fig. 2.9)
for 𝐵𝑧 ≫ 𝐵0 can be estimated roughly by performing the difference between the two GTs, thus

Δ𝜔𝑟 ≈
����4𝜇𝐵𝐵𝑧3

���� . (2.51)

For a magnetic field 𝐵𝑧 = 9000 G, we obtain Δ𝜔𝑟 ≈ 16.8 GHz which is in excellent agreement with the

16.9 GHz

Figure 2.9 – Blue: Absorption spectrum of the 𝐷1 line of sodium for 𝜋-polarized incident laser
radiation in the HPB regime (𝐵𝑧 = 9000 G). Orange: SD spectrum. Both spectra have been
normalized so that their maximum amplitude is 1.
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Figure 2.10 – Sodium 𝐷1 line Zeeman transition intensities for circularly polarized laser radiation.
a) 𝜎−-transitions. b) 𝜎+-transitions. Labeling is provided only for the 𝑟 -vanishing transitions
(dashed blue lines) and is the same as in fig. 2.5a and fig. 2.5c.

value 16.9 GHz computed numerically and shown in fig. 2.9.

Circularly polarized incident radiation

All the possible 𝜎− (resp. 𝜎+) transitions of the 𝐷1 line of sodium are schematized in fig. 2.5a (resp.
fig. 2.5c) and their associated intensities are presented in fig. 2.10. As a first remark, no transition has a
constant amplitude throughout the whole magnetic field range, which is because none occurs between
uncoupled states. At best, only the excited state is uncoupled (transitions 1 and 6 for 𝜎−[fig. 2.5a], and
their “symmetric" transitions 5 and 12 for 𝜎+ [fig. 2.5c]), but this is not enough to avoid the magnetic-field
dependence of the transition intensities, implying there is no guiding behavior as for 𝜋-transitions. Each
circular polarization gives rise to a group of four 𝑟 -transitions, all tending to an amplitude (≈ 0.66 a. u.)
twice bigger than the amplitude of the 𝜋 guiding transitions (≈ 0.33 a. u.). The 𝑟 -transitions obey
the selection rules Δ𝑚𝐼 = 0, Δ𝑚 𝐽 = ±1 depending on the sign of the incident polarization. A set of
absorption spectra is presented in fig. 2.10. Due to the absence of GTs for circularly polarized incident
radiation, fewer peculiarities occur in this case. As seen in fig. 2.11, the behavior of the 𝑟 -transitions is
somewhat different from before: for 𝜎+ polarization, the frequency shifts all tend to a linear behavior
with a slope twice bigger than for the 𝜋 𝑟 -transitions. For example, let us take a look at transition 11
(𝜎−) occurring between the ground state |2, 2⟩ and the excited state |1′, 1′⟩. Using eq. (2.30), we can
easily determine that

𝐸𝑔 = 𝜁 − 𝜇𝐵𝐵𝑧 , (2.52)
where 𝜁 is the ground state hyperfine splitting [appendix B]. For the excited state, we only compute the
block of H𝑚 corresponding to𝑚′ = 1 using eq. (2.30). This leads to

H𝑚′=1 =

(
𝑋 −

√
3𝑋

−
√

3𝑋 𝜁 ′ − 𝑋

)
(2.53)

where we denoted 𝑋 = 𝜇𝐵𝐵𝑧/6. DiagonalizingH𝑚′=1 and performing an asymptotic expansion allows
to obtain the energy 𝐸′ of state |1, 1⟩ for 𝐵𝑧 ≫ 𝐵0:

𝐸𝑒 =
𝜁 ′ + [𝜁 ′2 − 4𝜁 ′𝑋 + 16𝑋 2]1/2

2 ∼
𝑋→+∞

2𝑋 + 𝜁
′

4 + 3𝜁 ′2

64𝑋 + O
(

1
𝑋 2

)
. (2.54)

Subtracting (2.52) to (2.54) gives 𝐸𝑒 − 𝐸𝑔 = 8𝑋 + 𝜁 ′/4 − 𝜁 + O(1/𝑋 ), thus we obtain the asymptotic slope
of the frequency shift of transition 11 (𝜎−) and by extension of all 𝜎± 𝑟 -transitions:

𝑠±𝑟 ≈ ∓4𝜇𝐵
3 . (2.55)
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Figure 2.11 – Absorption spectra of sodium 𝐷1 line for a magnetic field varying from 0 to 2100
G with a step of 300 G in case of simultaneous 𝜎+ and 𝜎− excitation. Blue and orange shadow
lines in the (𝑥,𝑦) plane represent the transition frequencies. As before, each peak has a FWHM of
approximately 100 MHz.

This method is the same that was used before for the 𝜋-transitions [eq. (2.48)]. As we can see in fig. 2.11,
the 𝑣-transitions (orange solid lines) that are not overlapped with any 𝑟 -transition (blue dashed lines)
have a frequency shift slope twice smaller than the value given by relation eq. (2.55). We present two
spectra for 𝐵𝑧 ≫ 𝐵0 in fig. 2.12. The numerical parameters used for the computation of the spectra are
the same as the ones used before in the case of 𝜋 transitions. On the top panel, the peaks are overlapped
due to the linewidth. However, a clear manifestation of the HPB regime is visible when looking at the
derivative where all the peaks are evenly spaced and have the same amplitude. Because the slope of
the frequency shifts corresponding to the two groups of 𝑟 -transitions is twice bigger, the frequency
detuning between them can also be roughly estimated by

Δ𝜔𝑟 ≈
����8𝜇𝐵𝐵𝑧3

���� . (2.56)

33.6 GHz

Figure 2.12 – Blue: absorption spectrum of the 𝐷1 line of sodium for simultaneous 𝜎±-polarized
incident laser radiation in the HPB regime (𝐵𝑧 = 9000 G). Orange: SD spectrum. Both spectra have
been normalized so that their maximum amplitude is 1.
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Here, we obtain Δ𝜔𝑟 ≈ 33.59 GHz which is in perfect agreement with the value 33.6 GHz measured
in fig. 2.12. In this section, we have provided a complete description of the influence of the magnetic
field on the behavior of the Zeeman transitions of sodium 𝐷1 line for the three main types of incident
laser radiation. We will now analyze deeply what happens for the 𝐷2 line, with many more transitions,
where different phenomena arise.

2.3.4 Sodium 𝐷2 line

The 𝐷2 line of sodium corresponds to the transitions occurring between the states 32𝑆1/2 and 32𝑃3/2.
Due to the bigger value of 𝐽 ′, many more transitions are possible than for the 𝐷1 line (in total 68 for
all three polarizations). Since natural sodium is only composed of one isotope of nuclear spin 𝐼 = 3/2,
the hyperfine manifold is simpler than the one of natural rubidium (two isotopes) or cesium (only one
isotope but 𝐼 = 7/2). For the numerical computations, we take the parameters given in appendix B and
references therein.

Linearly polarized incident radiation

23 5

12

-2 -1 0 +1 +2

8

23211815

-3 +3

7 10

16

Figure 2.13 – Zeeman transitions of the 𝐷2 line of sodium in the basis |𝐹,𝑚𝐹 ⟩ for 𝜋 excitation.

Twenty-four 𝜋 transitions are possible for the 𝐷2 line of sodium. A complete scheme as well as the
transition intensities are presented in figs. 2.13 and 2.14. In this case, 𝐹 = 1, 2 and 𝐹 ′ = 0, 1, 2, 3 [5]. The
behavior of the 𝜋 transitions of sodium 𝐷2 line is quite different from the 𝐷1 line. Firstly, the absence of
transitions between uncoupled states results in the absence of guiding transitions. Overall, the general
shape is different, and this is because the states experience “more coupling" (for a given spectroscopic
state in the case of 𝐷1 line, the magnetic field can mix at most two 𝐹 -levels, whereas for the 𝐷2 line,
the mixing goes up to four 𝐹 levels. Many transition intensities are very small throughout the whole
range of magnetic field, and most of them quickly vanish, as seen from the insets of fig. 2.14. Using
the same denomination, we denote as 𝑟 -transitions the transitions 2, 5, 8, 12, 15, 18, 21 and 23 since
they obey the selection rules Δ𝑚𝐼 = Δ𝑚 𝐽 = 0, and all the others will be denoted as 𝑣-transitions. It is
worth noticing that for the 𝐷1 line, we could emphasize the fact that all 𝑟 -transitions obeyed Δ𝐹 = 0.
No such rule can be exhibited here in the uncoupled basis. In the previous section, we called MI the
transitions whose intensity was 0 for a very small magnetic field. In fig. 2.14, this phenomenon is visible
for 𝑟 -transitions 5 and 18. For the sake of clarity, labeling is not presented here for the 𝑣-transitions
although it is completely possible to assign each curve to a given transition. However, this notion of
MI transitions needs to be completed. Here, we will also denote transitions 3, 7, 10, and 16 [fig. 2.13]
as MI. All of them are 𝑣-transitions, and their amplitude tends to 0 for 𝐵𝑧 → 0, except for transition 3
(|1,−1⟩ → |3′,−1⟩) which experiences a huge increase in amplitude. Here, MI refers to the fact that,
due to the coupling of states by 𝐵𝑧 , so-called “forbidden” transitions (Δ𝐹 = ±2) become possible. These
transitions are referred to as MI2 in [86]. Here, we have 3 𝑟 -transitions arising from 𝐹 = 1 and 5 from
𝐹 = 2 (transitions 12 and 23 are exactly overlapped in fig. 2.14). The total number of 𝜋 𝑟 -transitions is
the same as for the 𝐷1 line but there are many more 𝑣-transitions here (16 compared to 6). In fig. 2.15,
we present a set of absorption spectra along with the transition frequencies to observe their behavior
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Figure 2.14 – Sodium 𝐷2 line Zeeman transition intensities for linearly polarized laser radiation. a)
transitions from 𝐹 = 1. b) transitions from 𝐹 = 2. Labeling is provided only for the transitions of
interest and is the same as in fig. 2.13.

Figure 2.15 – Absorption spectra of the 𝐷2 line of sodium for 𝜋-polarized incident laser radiation.
The magnetic field intensity varies from 0 to 2100 G with a step of 300 G.
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8.46 GHz

Figure 2.16 – Blue: absorption spectrum of the 𝐷2 line of sodium for 𝜋-polarized excitation in the
HPB regime (𝐵𝑧 = 9000 G). Orange: SD spectrum. Both spectra have been normalized so that their
maximum amplitude is 1.

as the magnetic field increases. Since the hyperfine splittings of the state 2𝑃3/2 are much smaller for
sodium than for rubidium or cesium (see appendix B) the peaks are in general much closer here. At
zero-field, the 6 peaks remain completely overlapped. Using SD or dSR is a good way to recover the
spectral information. At first, for the same values of the magnetic field as before, one notices that all
the transitions experiencing the largest frequency shift with respect to the magnetic field are the 16
𝑣-transitions. They can be divided into three groups of same frequency shift (in absolute value). The
frequency shifts of the two groups of 𝑟 -transitions tend asymptotically to a linear behavior with a slope

𝑠±𝑟 ≈ ±𝜇𝐵3 . (2.57)

All the slopes are derived using similar procedures used in relations (2.52) to (2.55). The 𝑣-transitions
undergo much bigger frequency shifts and can be divided into three groups having asymptotically the
same slope in absolute value. Under the approximation 𝑔𝑆 ≈ 2, 𝑔𝐿 ≈ 1 and 𝑔𝐼 ≪ 𝑔𝐽 , the first group of
𝑣-transitions (in terms of proximity with the 𝑟 -transitions) experiences a frequency shift of asymptotic
slope ±𝜇𝐵 . The frequency shifts of the second group of 𝑣-transitions have an asymptotic slope ±5𝜇𝐵/3.
The slope for the last group is ±3𝜇𝐵 . This is consistent with fig. 2.15 where we can see the last group of
𝑣-transitions experiencing the biggest shifts (more than 4 MHz/G, 9 times more than the 𝑟 -transitions).
Numerically, we obtain respectively ±1.40061, ±2.29035 and ±4.15417 MHz/G. A spectrum for 𝐵𝑧 ≫ 𝐵0
is presented in fig. 2.16. HPB regime is reached since all the peaks are evenly spaced and tend to have
the same amplitude. It is again possible to estimate the frequency detuning between the two groups of
𝑟 -transitions as

Δ𝜔𝑟 ≈
����2𝜇𝐵𝐵𝑧3

���� . (2.58)

Here, we obtain Δ𝜔𝑟 ≈ 8.40 GHz (by numerical computation, we obtain 8.46 GHz). The small variation
is because when calculating the slopes, the hyperfine splittings are neglected.

Circularly polarized incident laser radiation

Fourty-four Zeeman transitions are possible in the case of circularly polarized radiation for the 𝐷2 line
of sodium. All these possible 𝜎±-transitions are schematized in fig. 2.17.
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Figure 2.18 – Sodium 𝐷2 line Zeeman transition intensities for circularly polarized laser radiation.
a) 𝜎− transitions. b) 𝜎+ transitions. Labeling is provided only for the transitions of interest and is
the same as in fig. 2.17.
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Figure 2.17 – All possible 𝜎± Zeeman transitions for the 𝐷2 line of sodium in the basis |𝐹,𝑚𝐹 ⟩. a)
𝜎−-transitions. b) 𝜎+-transitions.

One directly sees on the manifold presented in fig. 2.17 that, due to the selection rule Δ𝑚𝐹 = ±1,
transitions between uncoupled states are again possible. These transitions are labelled 10 (𝜎−) and 22
(𝜎+). They occur between states |2,±2⟩ and |3,±3⟩ depending on the polarization, and obey Δ𝐹 = 1.
They are again called GTs and their constant amplitude for any magnetic field is visible in fig. 2.18. For
each polarization appears a group of 𝑟 -transitions (1, 3, 6 and 10 for 𝜎− and 16, 19, 21, 22 for 𝜎+) denoted
𝑟1-transitions. Transition 10 (𝜎−) is a GT for transitions 1, 3 and 6, and transition 22 (𝜎+) is a GT for
transitions 16, 19 and 21. As we did in relation (2.49), we can prove that for both of these transitions,
the squared modified transfer coefficients 𝑎2 (relation (2.46)) are always equal to 1. Two other groups
of 𝑟 -transitions, denoted as 𝑟2-transitions, represented in purple (dash-dotted lines), appear and all
tend to an amplitude equal to a third of the amplitude of the 𝑟1-transitions. For both polarizations,
𝑟2-transitions tend to reach their maximum amplitude much faster than 𝑟1-transitions. In orange are
represented the vanishing transitions (𝑣-transitions) for each polarization. Apart from transitions 11
and 13 (𝜎−) and transitions 4 and 7 (𝜎+), all the 𝑣-transitions have overall smaller amplitudes than all 𝑟1
and 𝑟2-transitions.
The 22 possible 𝜎−-transitions are shown in fig. 2.19. The GT (labeled 10 in fig. 2.17a) has a constant
amplitude, and the three other 𝑟1-transitions are also driven by the GT in terms of frequency shift. The
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Figure 2.19 – Absorption spectra of the 𝐷2 line of sodium for 𝜎−-polarized incident laser radiation
(a) and 𝜎+-polarized incident laser radiation (b). The magnetic field varies from 0 to 2100 G with a
step of 300 G.

GT has a perfectly linear frequency shift of slope

𝑠𝐺𝑇 ≈ 𝜇𝐵, (2.59)

under the usual approximations, the numerical value being ≈ −1.39958 MHz/G. The 𝑟2-transitions,
having an amplitude three times smaller, experience a frequency shift of approximately 5𝜇𝐵/3 for high
𝐵𝑧 . Numerically, we obtain approximately −2.331 MHz/G. As for the previous cases, the 𝑣-transitions
experience much bigger frequency shifts, reaching again as much as approximately 3𝜇𝐵 = −4.199 MHz/G
(numerically, −4.202 MHz/G). The behavior of the 𝜎+ is symmetrical compared to that of 𝜎− transitions,
as we can see in fig. 2.19. The guiding transition (in this case 22) experiences a frequency shift −𝑠𝐺𝑇
and so do all the 𝑟1-transitions when 𝐵𝑧 is high enough so that the frequency shift becomes linear.
The 𝑟2-transitions will also similarly experience a linear frequency shift −5𝜇𝐵/3 (numerically, ≈ 2.331
MHz/G).When the HPB regime is reached (𝐵𝑧 > 10𝐵0), only the 𝑟1 and 𝑟2-transitions of each polarization
remain visible in the spectrum (16 peaks in total). This is demonstrated in figure 2.20 where the spectrum
is presented in case of simultaneous 𝜎± excitation for 𝐵𝑧 = 9000 G. From the obtained slopes, we can
estimate that the frequency detuning between the two groups of 𝑟1-transitions is approximately

Δ𝜔𝑟1 ≈ |2𝜇𝐵𝐵𝑧 | , (2.60)

leading to Δ𝜔𝑟1 ≈ 25.19 GHz, perfectly consistent with the value 25.15 GHz on the top panel of fig. 2.20,
again with the difference coming from the fact that hyperfine splittings are neglected. Similarly, we can
estimate Δ𝜔𝑟2 to be

Δ𝜔𝑟2 ≈
����10𝜇𝐵𝐵𝑧

3

���� (2.61)

that is to say approximately 41.98 GHz, to compare with the value 42.07 GHz of fig. 2.20. Reaching the
HPB regime combined with sub-Doppler spectroscopic techniques allows for the formation of narrow
resonances far-detuned from the resonant frequency of the transitions. Choosing the right alkali atom
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42.07 GHz
25.15 GHz

Figure 2.20 – Blue: Absorption spectrum of the 𝐷2 line of sodium for simultaneous 𝜎± polarized
excitation in the HPB regime (𝐵𝑧 = 9000 G). Orange: SD spectrum. Both spectra have been
normalized so that their maximum amplitude is 1.

for such studies is a key point since 𝐵0 varies a lot. Hyperfine splittings and natural linewidths are also
to be taken into account depending on the desired resolution.
In this section, we have performed a complete theoretical description of the behavior of a sodium
vapor confined in a NC cell for a wide range of magnetic fields (varying up to 10 kG) and for three
incident laser polarizations (linear, left- and right-circular). While the Zeeman structure of sodium
is identical to the one of 87Rb or 39K, several changes can be reported such as 𝐵0 and the hyperfine
splittings, leading to slight changes in the behavior of transition intensities and transition frequencies.
As mentioned before, the natural linewidth Γ of sodium is twice bigger than for other alkalis and leads
to much broader absorption lines. However, for the same temperature, the vapor pressure of sodium is
much smaller than for heavier alkali atoms (≃ 10−7 torr, whereas for cesium it is ≃ 6 × 10−4 torr and
≃ 2.5 × 10−4 torr for 85Rb). This leads to smaller collisional broadening, but also makes the transmitted
and reflected signal smaller so that either a higher temperature or more sensitive detectors would be
required to record the signal when performing experiments. In addition, we provided rough estimates
of the frequency detuning between the various groups of transitions that remain present in the spectra
when the hyperfine Paschen-Back regime is reached.

2.4 Magnetically-Induced Circular Dichroism in alkali metal isotopes
with nuclear spin 3/2

Wewill now focus on the so-called forbidden transitions, obeying Δ𝐹 = ±2. MI transitions are interesting
objects of study because, in certain ranges of magnetic fields, their probabilities can significantly exceed
the probabilities of ordinary atomic transitions allowed at 𝐵𝑧 = 0. The work presented in this section
gave rise to the following publication:

• A. Sargsyan, A. Tonoyan, R. Momier, C. Leroy, and D. Sarkisyan. Dominant magnetically induced
transitions in alkali metal atoms with nuclear spin 3/2. J. Opt. Soc. Am. B 39 (4) (2022), p. 973

As mentioned before, the frequency shifts of MI transitions can reach 20 − 30 GHz, which is of practical
interest for example to stabilize lasers on strongly shifted resonances [18]. The first type of MI transitions
MI1 includes |𝐹, 0⟩ → |𝐹 ′ = 𝐹, 0⟩ exhibiting a zero-probability at 𝐵𝑧 = 0 (see section 2.3.3). The second
type MI2 (see section 2.3.4) transitions |𝐹,𝑚⟩ → |𝐹 ′,𝑚′⟩,where 𝐹 ′ = 𝐹 ± 2 and 𝑚′ −𝑚 = 0,±1. In
this case, there is a steep rise in the probability of these transitions as 𝐵𝑧 increases. However, with
a further increase of the magnetic field 𝐵 ≫ 𝐵0, the probabilities of these transitions tend back to
zero. Nevertheless, the 1 → 3′ MI2 transitions of the 𝐷2 line 87Rb can be detected up to 8 kG magnetic
fields. In this case, a strong frequency shift of 30 GHz occurs relative to the initial (zero-field) transition
frequency. In [58], the following rule was established for the probabilities (intensities) of MI2 transitions:
MI2 transitions obeying Δ𝐹 = +2 are maximum when excited with 𝜎+-polarized laser radiation, while
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the probabilities of the MI2 transitions obeying Δ𝐹 = −2 are maximum when excited with 𝜎−-polarized
laser radiation. For some MI2 transitions, the difference between the intensities obtained when using
𝜎+ or 𝜎− radiation can reach several orders of magnitude. This difference has been termed Type 1
Magnetically Induced Circular Dichroism (MCD1). Revealing the strongest MI2 transitions which,
in certain intervals of magnetic fields have probabilities that can exceed the ones of many ordinary
(so-called allowed) atomic transitions, is a key point for their application in magneto-optical processes.
It was demonstrated in [135] that the strongest transition of the MI2 group 2 → 4′ of 85Rb (nuclear spin
𝐼 = 5/2) is the transition |2,−2⟩ → |4′,−1′⟩ (𝜎+-transition). Its intensity is approximately 2 times higher
(in the range of magnetic fields 0.2 kG - 2.5 kG) than the intensity of the strongest 𝜎− MI2 transition.
It was demonstrated in [59] that the strongest transition of the MI2 group (transition 3′ → 5′ of Cs,
nuclear spin 𝐼 = 7/2) when using 𝜎+ radiation is the 𝜎+ transition |3,−3⟩ → |5′,−2′⟩. Its intensity is
approximately twice higher (in the range of magnetic fields 0.2 kG - 5 kG) than the intensity of the
strongest 𝜎− MI2 transition. This difference has been termed Type 2 Magnetically Induced Circular
Dichroism (MCD2). Here, we will present experimental evidence that for atoms with a nuclear spin
𝐼 = 3/2 (87Rb, 39K, 23Na, 7Li) the probability of the strongest 𝜎+ MI2 transition of the group 1 → 3′
(transition |1,−1⟩ → |3′, 0′⟩ is about four times higher than the probabilities of the strongest 𝜎− MI2
transitions |1,−1⟩ → |3′,−2′⟩ and |2, +1⟩ → |0′, 0′⟩ for 𝐵𝑧 > 100 G. We will consider 87Rb but the results
will be similar for all other alkali isotopes with 𝐼 = 3/2.

2.4.1 Experimental setup

FI

Ref. channel
M

OSC

PD
ECDL

NC

BS GP

NC
PMPM

PD

Measurement channel

Figure 2.21 – Layout of the experiment. ECDL: continuous wave (CW) diode laser with the
wavelength 𝜆 = 780 nm, FI: Faraday insulator, BS: beam splitter, GP: Glan polarizer, 𝜆/4: quarter
waveplate, NC: nanocell (in its oven), PM: permanent magnets, PD: photodiodes, OSC: oscilloscope.
A second NC (ref. channel) was used to create a frequency reference.

Figure 2.21 shows the layout of the experimental setup. A MOGLabs Cateye extended cavity diode
laser (ECDL) with a wavelength of 780 nm and a spectral width of around 100 kHz was used. The laser
beam diameter is 1 mm. To detect the transmission (absorption) spectrum, we used a NC filled with Rb
atomic vapor of thickness 𝜆/2 (≃ 390 nm) along the direction of the laser radiation, 𝜆 being the resonant
wavelength of Rb 𝐷2 line. A NC with thickness 𝐿 = 𝜆/2 method was used to ensure the narrowing of
atomic lines in the absorption spectrum. To further narrow the atomic lines, we study the SD of the
absorption spectra. This is particularly important to separate transitions in case some of them overlap.
The NC was placed in a furnace with a hole allowing for the laser radiation passage and was heated to
120 ◦𝐶 to ensure an atomic density 𝑁 ≈ 2 × 1013 cm−3 (details of the design of the NC are presented
in chapter 2). The main NC was placed between strong permanent magnets which produce a strong
longitudinal magnetic field, and the wave vector of laser radiation k was directed along the magnetic
field 𝐵 [136] to be consistent with the theoretical model derived in chapter 2. To form a frequency
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reference, we used the SD of the absorption spectrum of an additional 390 nm-thick cell containing Rb,
towards which part of the laser radiation was directed [61]. The absorption signals were recorded by
FD-24K photodiodes, the signals from which were fed to a Tektronix TDS2014B oscilloscope.

2.4.2 Experimental results

-2 -1 0 +1 +2-3 +3

Figure 2.22 – Scheme of 87Rb 𝐷2 line transitions. The 1 → 3′ 𝜎+ MI transitions are numbered
1-3, the strongest of them is denoted 3, transitions |2, 2⟩ → |3′, 3′⟩ and |2,−2⟩ → |3′,−3′⟩ are
respectively labelled GT+ and GT− . The strongest 𝜎− MI transitions are numbered 2′ and 3′.

Figure 2.22 shows a diagram of the atomic transitions of the 𝐷2 line of 87Rb. The group of MI transitions
1 → 3′ (hereafter, we consider only MI2 transitions, so we omit the number “2”) excited by 𝜎+ radiation
are numbered 1-3. The strongest of them, the transition |1,−1⟩ → |3′, 0′⟩ is denoted 3. The 𝜎+ transition
|2, +2⟩ → |3′, +3′⟩ is labeled as GT+ and the 𝜎−-transition |2,−2⟩ → |3′,−3′⟩ is labeled as GT− . GT+

and GT− transitions are called "guiding transitions" [sections 2.3.3 and 2.3.4]: their intensities are
constantly equal to each other and do not depend on the 𝐵-field since they occur between states that are
not mixed by the magnetic field [68]. These features of the GT transitions are used in the experiment
described below to compare the amplitudes of MI transitions upon excitation by circularly polarized
laser radiation (𝜎+ or 𝜎−). Registering the spectra upon excitation by 𝜎− (which contains MI transitions
on the low-frequency wing of the spectrum) and by 𝜎+ radiation (which contains MI transitions on
the high-frequency wing of the spectrum) and direct comparison of their amplitudes can lead to errors
(the parameters of the used diode laser can change when scanning the frequency in a wide frequency
range). Therefore, we compare the amplitude of the MI transition to the GT transition located close to
it in frequency. Since the intensities of GT transitions for 𝜎+ or 𝜎− radiations are equal to each other
𝐴(GT+) = 𝐴(GT−), this allows us to determine the intensities of the MI transitions of 87Rb of interest.
This technique with the involvement of GT transitions was successfully used to study MI transitions of
85Rb and Cs in [59, 135].
The upper red curves in fig. 2.23a-c (Abs.) are the experimental absorption spectra of transition
1, 2 → 0′, 1′, 2′, 3′ of the 𝐷2 line of Rb (both isotopes are present in the spectra) for the following
magnetic field values: 𝐵𝑧 = 850 G (a), 𝐵𝑧 = 950 G (b), and 𝐵 = 1450 G (c) obtained by the 𝐿 = 𝜆/2 = 390
nm method when 𝜎− polarized radiation is applied (transitions frequencies are shifted towards low
frequencies as the magnetic field increases). The laser power was 30 𝜇W. As can be seen, some transitions
in the absorption spectra are partially overlapped. Orange lines (SD exp.) are SD of absorption spectra
(here and below, the SD is inverted for convenience). The transition |2, +1⟩ → |0′, 0′⟩ numbered 2′
is among the strongest MI transitions (along with transition numbered 3′ shown in fig. 2.22). The
spectra also include the guiding transition GT− (87Rb) whose application is discussed above. We need to
determine the ratio of the amplitude of the GT− transition to the amplitude of the transition numbered 2′,
in the cases indicated in fig. 2.23b and c, the GT− transition is overlapped with other atomic transitions;
therefore, the insets show the fitted spectra. The ratios of the amplitude of the GT− transition to the
amplitude of the transition numbered 2′ for 850, 950, and 1450 G (experimental results are also given for
other values of 𝐵𝑧) are presented in fig. 2.24a. Blue lines (Theor.) are the SD of theoretical absorption
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Abs.

SD exp.

Theor.

Ref.

(b)

(a)

(c)

(d)

(f)

(e)

Figure 2.23 – (a-c) Absorption spectra of transitions 1, 2 → 0′, 1′, 2′, 3′ of the 𝐷2 line of 87Rb for 𝜎−

polarized incident laser radiation. (d-f) SD of absorption spectra of transitions 1, 2 → 0′, 1′, 2′, 3′
of the 𝐷2 line of 87Rb for 𝜎+ polarized incident laser radiation. (a,d) 𝐵𝑧 = 850 G, (b,e) 𝐵𝑧 = 950 G,
(c,f) 𝐵𝑧 = 1450 G. The spectra were all obtained with a cell of thickness 𝐿 = 390 nm. For each
figure, the orange curve is the SD of the experimental absorption spectrum (SD exp.), and the blue
curve (Theor.) is theoretical. When provided, absorption spectra (Abs.) are represented in red. The
lower black curves (Ref.) are the SD of the peaks corresponding to 𝐹 = 1 transitions. Occasional
non-linearity of the laser frequency scanning is caused by the imperfect grating control of the laser.
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(b)

(a)

Figure 2.24 – Calculated transition intensity ratios with respect to the magnetic field 𝐵𝑧 . a) Blue
curve: 𝐼 (GT+)/𝐼 (2′) (|2, 1⟩ → |0′, 0′⟩). Orange curve: 𝐼 (GT+)/𝐼 (3) (|1,−1⟩ → |3′, 0′⟩) b) Blue curve:
𝐼 (3)/𝐼 (2′). Orange curve: 𝐼 (3)/𝐼 (3′). Experimental measurements are depicted by the black squares
with error bars. Experimental measurements are depicted by the black squares with error bars.

spectra for atomic transitions with a FWHM (full width at half maximum) of 40 MHz. As is seen, there is
a good agreement between experiment and theory regarding the amplitude and the (frequency) position
of the peaks. The orange lines in fig. 2.23d-f are SD of the experimental absorption spectra (not shown)
for the 𝜎+ transitions 1, 2 → 0′, 1′, 2′, 3′, at 𝐵𝑧 = 850 G (d), 𝐵𝑧 = 950 G (e) and 1450 G (f). Transitions
frequencies are shifted from the zero field frequencies towards the high-frequency wing of the spectrum.
The transition |1,−1⟩ → |3′, 0′⟩ labelled 3 is the strongest 𝜎+ MI transition. The spectra also include the
guiding transition GT+. We need to determine its amplitude but there is no need to fit the absorption
peak corresponding to this transition as it is not overlapped with any other transition. The ratio of the
amplitude of the GT+ transition to the amplitude of the transition labeled 3 for 850, 950, and 1450 G
are presented in curve 2 of Fig. 2.24a (experimental points for other values of 𝐵 are also provided).
Blue lines (Theor.) in Fig. 2.23d-f are the SD of the calculated absorption spectra with a FWHM of 40
MHz. It can be seen here again that good agreement between the theory and experiments is obtained.
Lower lines (Ref.) in fig. 2.23d-f are the SD of the absorption spectra of transitions 1 → 0′, 1′, 2′ at zero
magnetic field. The inset in Fig. 2.23d shows the SD spectrum of the MI transition numbered 3 for 𝜎+
polarized radiation and MI transition numbered 3′ for 𝜎− polarized radiation (which are normalized
to the amplitudes of GT− and GT+), the ratio of the amplitudes is equal to 4. The frequency distance
between them is around 3 GHz for 𝐵 ≈ 1000 G. Nevertheless, for comparison, we brought them together.
As it is seen from the inset, the ratio of the amplitudes of MI transitions 𝐴(3)/𝐴(3′) is equal to 4, which
coincides with the value predicted theoretically and measured experimentally [58]. In Fig. 2.24a curve 1
is the ratio of amplitudes of the GT+ transition to the MI transition numbered 2′ with respect to the
magnetic field 𝐵, the theory and the experimental are in perfect agreement. The ratio of the amplitude
of the GT+ transition to the amplitude of the MI transition numbered 3 for 𝐵 = 850, 1000, and 1500 G is
presented by the curve 2 in Fig. 2.24a (experimental results are also given for other values of 𝐵). The
ratio of the amplitude of the MI transition numbered 3 to the amplitude of the transition numbered
2′ with respect to the magnetic field 𝐵 is presented by curve 1 in Fig. 2.24 (both the theory and the
experiment). The calculated ratio of the amplitude of the transition numbered 3 to the amplitude of the
transition numbered 3′ as a function of the magnetic field is presented by curve 2 in Fig. 2.24. As seen
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from curve 1 in Fig. 2.24 for 𝐵 > 500 G, the probability of the strongest 𝜎+ MI transition (𝐹 = 1 → 𝐹 = 3)
is 4.5 times higher than the probability of the strongest 𝜎− MI transition. Let us note that the short
range of experimental data is due to the overlapping of the transitions of 87Rb and 85Rb occurring for
stronger magnetic fields (the cell is filled with natural Rb).

2.5 Conclusion

Starting from the Dirac equation, we have derived the theoretical model used to describe the behavior
of an alkali vapor under the influence of an external magnetic field. This model, coupled with the
Fabry–Pérot (FP) model presented in chapter 2, allows to simulate sub-Doppler spectra with complete
resolution of each transition occuring between two Zeeman sublevels.
We have then performed a complete theoretical description of the behavior of a sodium vapor confined in
a NC for a wide range of magnetic field (varying up to 10 000 G) and for three incident laser polarizations
(linear, left- and right-circular). While the Zeeman structure of sodium is identical to the one of 87Rb
or 39K, parameters such as the hyperfine splittings differ, leading to slight changes in the behavior
of transition intensities and transition frequencies. As mentioned before, the natural linewidth Γ of
sodium is twice bigger than for other alkalis, and leads to much broader absorption lines. However,
for the same temperature the vapor pressure of sodium is much smaller than for heavier alkali atoms
(≃ 10−7 torr, whereas for cesium it is ≃ 6× 10−4 torr and ≃ 2.5× 10−4 torr for 85Rb). This leads to smaller
collisional broadening, but also makes the transmitted and reflected signal smaller so that either a
higher temperature or more sensitive detectors would be required to record the signal when performing
experiments. In addition, we provided rough estimates of the frequency detuning between the various
groups of transitions that remain present in the spectra when the HPB regime is reached.
Finally we have studied, both experimentally and theoretically, that for an atom with a nuclear spin
𝐼 = 3/2 (here 87Rb, but the results are similar for 39K, 23Na, and 7Li) in magnetic fields larger than 100 G,
the intensity of the strongest 𝜎+ MI transition 1 → 3′ is 4.5 and 4 times higher than the probability of
the strongest 𝜎− MI transitions 2 → 0′ and 1 → 3′, respectively. This difference, denoted MCD2, is
more strongly expressed than that of the Cs and 85Rb 𝐷2 lines. Thus, it is important to note that the
𝜎+ MI transition 1 → 3′ is very promising for applications of magneto-optical processes occuring in
strong magnetic fields. This transition has for example been used experimentally for the creation of
a dark resonance via electromagnetically induced transparency (EIT) in [137]. Formation of EIT on
other MI transitions is presented in [138, 139] Complete description and understanding of all these
magnetooptical processes are of utmost importance for further applications, for example in optical
magnetometry. Upcoming experiments involving sodium NCs are planned at the Institute for Physical
Research, NAS of Armenia, to provide an experimental verification of the results presented in this
chapter. Complete agreement between experiments and theory is expected as it was proven for all other
alkali (except lithium, for which it is very hard to fabricate a NC, see chapter 2). In the next chapter, we
carry on the study of magneto-optical processes in alkali vapors by having a look at transition dipole
moment cancellations.
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Chapter 3

Transition cancellations in all stable al-
kali isotopes
In this chapter, we present a complete theoretical investigation of Zeeman transition cancellations of all stable and
long-lived alkali isotopes. In the simplest cases, we are able to derive analytical formulas for the cancellation values.
For more complicated manifolds, we perform a complete numerical analysis. These values, if measured extremely
precisely, could become a standard for the calibration of magnetometers.
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3.1 Introduction

In recent decades, there has been significant interest in investigating various magneto-optical processes
in alkali metal vapors, primarily due to the development of new optical magnetometry techniques [14,
17]. These processes include modifications in the frequency and intensity of optical transitions between
the magnetic sublevels of the hyperfine structure of atoms in a magnetic field. These modifications
can be experimentally observed using sub-Doppler spectroscopic methods and specialized devices like
a nanocell (NC) [140–142]. Notably, NC spectroscopy, such as the derivative of selective reflection
(dSR) technique [60, 143], reduces inhomogeneous broadening of transitions while maintaining a linear
response of the medium, where the atomic signal magnitude is directly proportional to the transition
probability [79] (chapter 2). Among the observed phenomena are strong transitions forbidden by
zero-field selection rules (magnetically induced transitions) and the significant suppression of initially
allowed transitions, achieved by varying the polarization of the exciting laser radiation, as presented in
chapter 2.
Here, we use a theoretical model to identify polarization configurations and magnetic field values that
can completely cancel transitions between individual magnetic sublevels of alkali atoms, driving the
transition probability to zero. The theory is valid for 𝑛2𝑆1/2 → 𝑘2𝑃1/2,3/2 transitions, where 𝑘 > 𝑛

(𝑘 ∈ N) is the principal quantum number of the excited 2𝑃1/2 or 2𝑃3/2 state. From the point of view
of theoretical calculations, the only difference between these two types of transitions is the energy
differences of the excited states. For the 𝐷2 and 52𝑆1/2 → 62𝑃3/2 transitions, the study is done mostly
using numerical methods, but in several cases, we were able to extract analytical formulas depending on
the size of the Hamiltonian submatrices. This information can enhance the precision of the fundamental
physical constants used in the model. Additionally, we address the experimental feasibility of achieving
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magnetic field cancellation of transitions and discuss potential applications, such as optical mapping of
magnetic fields and magnetic field control of optical information.
This chapter is divided into three main parts:

• In section 3.2, we develop a theoretical model allowing us to determine the magnetic field values
canceling 𝐷1 and 52𝑆1/2 → 62𝑃1/2 transitions of all stable alkali isotopes. Starting from a general
definition of the hyperfine structure, we build Hamiltonians corresponding to the ground and
excited states of each Zeeman transition in the coupled basis |𝐹,𝑚⟩. After simplifications and
tedious calculations, we obtain a single analytical formula corresponding to the roots of specific
transition intensities. We observe an intriguing symmetric “pair” behavior of some transitions.

• In section 3.3 we use this formula to determine all the possible cancellation values. After recalling
the physical constants used in the computations, we give an exhaustive overview of which
transitions are canceled or maximized and for which magnetic field magnitude. Relevant graphs
and tables are presented, and the phenomenon is highlighted by the calculation of dSR spectra
using the model described in chapter 2. We discuss the feasibility of an eventual experimental
measurement of these magnetic field values.

• In section 3.4, we give an overview of all the possible cancellation values of the 𝐷2 and
52𝑆1/2 → 62𝑃3/2 lines of 85Rb and 87Rb. Here, no analytical formula could be obtained, thus
the magnetic field values are determined numerically. Due to the complexity of the hyperfine
structure for the sake of readability, we only present tables.

The work presented in this section gave rise to the publication of the three following journal articles:

• R. Momier, A. Aleksanyan, E. Gazazyan, A. Papoyan, and C. Leroy. New standard magnetic field
values determined by cancellations of 85Rb and 87Rb atomic vapors 52𝑆1/2 → 62𝑃1/2,3/2 transitions. J.
Quant. Spectrosc. Radiat. Transf. 257 (2020), p. 107371

• A. Aleksanyan, R. Momier, E. Gazazyan, A. Papoyan, and C. Leroy. Transition cancellations of
87Rb and 85Rb atoms in a magnetic field. J. Opt. Soc. Am. B 37 (11) (2020), 3504–3514

• A. Aleksanyan, R. Momier, E. Gazazyan, A. Papoyan, and C. Leroy. Cancellation of 𝐷1 line
transitions of alkali-metal atoms by magnetic-field values. Phys. Rev. A 105 (4) (2022), p. 042810

3.2 𝐷1 line: theoretical considerations

As mentioned in the previous chapters, the atomic fine structure arises from the coupling between the
orbital angular momentum L and the spin angular momentum S of the electron, yielding a total electron
angular momentum J. Similarly, the hyperfine structure results from the coupling between the total
electron angular momentum J and the nuclear angular momentum I, yielding a total atomic angular
momentum F. Let us consider here the 𝐷1 line of alkali atoms, corresponding in the general case to the
following transition:

𝑛2𝑆1/2 → 𝑛2𝑃1/2 . (3.1)

where 𝑛 = 2 for Li, 𝑛 = 3 for Na, 𝑛 = 3 for K, 𝑛 = 5 for Rb and 𝑛 = 6 for Cs. In that case, 𝐽 = 1/2 for both
ground and excited states. The total atomic angular momentum F thus obeys

𝐼 − 1/2 ≤ 𝐹 ≤ 𝐼 + 1/2. (3.2)

Each fine state (ground 𝑛2𝑆1/2 or excited 𝑛2𝑃1/2) splits into two hyperfine states 𝐹 −𝑔 and 𝐹+𝑔 (resp. 𝐹 −𝑒
and 𝐹+𝑒 ) that take the following values:

𝐹±𝑔,𝑒 = 𝐼 ± 1/2. (3.3)
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a) b)

Figure 3.1 – Scheme of all the possible alkali 𝐷1 lines in a magnetic field. a) 𝐼 is an integer. b) 𝐼 is a
half-integer (the hyperfine structure is inverted).

3.2.1 Zeeman Hamiltonian

Within a magnetic field, the hyperfine states split into several magnetic (Zeeman) sublevels, as described
in chapter 2. These levels are indexed by the magnetic quantum𝑚 that obeys

−𝐹 ≤ 𝑚 ≤ 𝐹 . (3.4)

Schemes presenting the general cases are shown in fig. 3.1. In these schemes, 𝑛 is the principal
quantum number, 𝜁 and 𝜀 are the ground and excited states hyperfine splittings 𝜁 = 𝐸0(𝐹+𝑔 ) − 𝐸0(𝐹 −𝑔 )
and 𝜀 = 𝐸0(𝐹+𝑒 ) − 𝐸0(𝐹 −𝑒 ). The hyperfine structure is inverted when the nuclear spin 𝐼 is a half-integer
quantity. With these new notations, the diagonal elements of the Zeeman HamiltonianH𝑚 given by
eq. (2.30) [chapter 2, section 2.2.3] can be rewritten

⟨𝐹±𝑔,𝑒 ,𝑚 | H |𝐹±𝑔,𝑒 ,𝑚⟩ = 𝐸0(𝐹 ) − 𝜇𝐵𝑔𝐹 (𝐹±𝑔,𝑒)𝑚𝐵𝑧 . (3.5)

The off-diagonal elements given by eq. (2.32) read

⟨𝐹±𝑔,𝑒 ,𝑚 | H𝑚 |𝐹±𝑔,𝑒 − 1,𝑚⟩ = ⟨𝐹±𝑔,𝑒 − 1,𝑚 | H𝑚 |𝐹±𝑔,𝑒 ,𝑚⟩

= −𝜇𝐵𝐵𝑧2 (𝑔𝐽 − 𝑔𝐼 )

√︄
1 −

(
2𝑚

1 + 2𝐼

)2
, (3.6)

where 𝑔𝐽 and 𝑔𝐼 are the total angular and nuclear Landé factors. We may denote as 𝑔𝑔
𝐽
the Landé 𝑔𝐽 -factor

of the ground state (resp. 𝑔𝑒
𝐽
for the excited state). From eq. (2.24) with 𝐽 = 1/2 and 𝑆 = 1/2, we have

𝑔
𝑔

𝐽
= 𝑔𝑆 and 𝑔𝑒𝐽 =

4𝑔𝐿 − 𝑔𝑆
3 . (3.7)

Since 𝐹 quantum numbers are the same for both ground and excited states, we obtain

𝑔𝐹 (𝐹 −𝑔,𝑒) = 𝑔𝐼 +
𝑔𝐼 − 𝑔𝑔,𝑒𝐽

2𝐼 + 1 and 𝑔𝐹 (𝐹+𝑔,𝑒) =
𝑔
𝑔,𝑒

𝐽
+ 2𝑔𝐼 𝐼

2𝐼 + 1 . (3.8)

Our goal being to obtain analytical magnetic field values for which specific Zeeman transitions get
canceled, we are obviously not interested in transitions having a constant amplitude as the magnetic
field varies. We thus forget about extreme angular momentum states that experience no mixing and
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write general 2 × 2 matrices for the ground and excited states. For the ground state, we can write the
following Zeeman HamiltonianH𝑔 for any𝑚𝑔 except𝑚𝑔 = ±𝐹±𝑔 . The matrix reads

H𝑔 =

©«

|𝐹+𝑔 ,𝑚𝑔 ⟩ |𝐹 −
𝑔 ,𝑚𝑔 ⟩

⟨𝐹+𝑔 ,𝑚𝑔 | 𝜁 − 𝜇𝐵
𝑓𝑔

1 + 2𝐼𝑚𝑔𝐵 𝜇𝐵
𝑔𝑔𝐵

2

√︄
1 −

( 2𝑚𝑔

1 + 2𝐼

)2

⟨𝐹 −
𝑔 ,𝑚𝑔 | 𝜇𝐵

𝑔𝑔𝐵

2

√︄
1 −

( 2𝑚𝑔

1 + 2𝐼

)2
−𝜇𝐵

(
𝑔𝐼 +

𝑔𝑔

1 + 2𝐼

)
𝑚𝑔𝐵

ª®®®®®¬
, (3.9)

with 𝑔𝑔 = 𝑔𝐼 − 𝑔𝑆 and 𝑓𝑔 = 𝑔𝑆 + 2𝑔𝐼 𝐼 . The Hamiltonian of the excited state is very similar:

H𝑒 =

©«

|𝐹+𝑒 ,𝑚𝑒 ⟩ |𝐹 −
𝑒 ,𝑚𝑒 ⟩

⟨𝐹+𝑒 ,𝑚𝑒 | 𝜀 − 𝜇𝐵
𝑓𝑒

1 + 2𝐼𝑚𝑒𝐵 𝜇𝐵
𝑔𝑒𝐵

2

√︄
1 −

(
2𝑚𝑒

1 + 2𝐼

)2

⟨𝐹 −
𝑒 ,𝑚𝑒 | 𝜇𝐵

𝑔𝑒𝐵

2

√︄
1 −

(
2𝑚𝑒

1 + 2𝐼

)2
−𝜇𝐵

(
𝑔𝐼 +

𝑔𝑒

1 + 2𝐼

)
𝑚𝑔𝐵

ª®®®®®¬
, (3.10)

where we denoted𝑔𝑒 = (3𝑔𝐼 −4𝑔𝐿+𝑔𝑆 )/3 and 𝑓𝑒 = (4𝑔𝐿−𝑔𝑆 +6𝑔𝐼 𝐼 )/3. These matrices can be diagonalized
analytically. The eigenvalues, corresponding to the energy shift of the magnetic sublevels as a function
of the magnetic field, read

Λ±
𝑔 =

𝜁 − 2𝜇𝐵𝑔𝐼𝑚𝑔𝐵

2 ± 1
2

√︂
𝜁 2 + 𝜇2

𝐵
𝑔2
𝑔𝐵

2 +
4𝜁 𝜇𝐵𝑔𝑔𝑚𝑔𝐵

2𝐼 + 1 (3.11)

Λ±
𝑒 =

𝜀 − 2𝜇𝐵𝑔𝐼𝑚𝑒𝐵

2 ± 1
2

√︂
𝜀2 + 𝜇2

𝐵
𝑔2
𝑒𝐵

2 + 4𝜀𝜇𝐵𝑔𝑒𝑚𝑒𝐵

2𝐼 + 1 . (3.12)

To calculate the transition intensities, we need to derive the eigenvectors ofH𝑔 andH𝑒 .

3.2.2 Transition intensities

Let us come back to the expression of the eigenvectors. The states experiencing mixing due to the
external magnetic field can be expressed as a linear combination of the unperturbed states [chapter 2,
eq. (2.41)]. In this case, they can be written as follows:

|Ψ(𝐹±𝑔 ,𝑚𝑔)⟩ =
1√︃

1 + 𝜅2
𝑔±

|𝐹+𝑔 ,𝑚𝑔⟩ +
𝜅𝑔±√︃

1 + 𝜅2
𝑔±

|𝐹 −𝑔 ,𝑚𝑔⟩ (3.13)

|Ψ(𝐹±𝑒 ,𝑚𝑒)⟩ =
1√︁

1 + 𝜅2
𝑒±

|𝐹+𝑒 ,𝑚𝑒⟩ +
𝜅𝑒±√︁

1 + 𝜅2
𝑒±

|𝐹 −𝑒 ,𝑚𝑒⟩ , (3.14)

with

𝜅𝑔± =
2(2𝐼 + 1) (Λ±

𝑔 − 𝜁 ) + 2𝜇𝐵 𝑓𝑔𝑚𝑔𝐵

𝜇𝐵𝑔𝑔𝐵

√︃
(2𝐼 + 1)2 − 4𝑚2

𝑔

and 𝜅𝑒± =
2(2𝐼 + 1) (Λ±

𝑒 − 𝜁 ) + 2𝜇𝐵 𝑓𝑒𝑚𝑒𝐵

𝜇𝐵𝑔𝑒𝐵

√︃
(2𝐼 + 1)2 − 4𝑚2

𝑔

. (3.15)

The unperturbed transfer coefficients [chapter 2, eq. (2.46)] can be simplified to

𝑎(𝐹𝑒 ,𝑚𝑒 , 𝐹𝑔,𝑚𝑔, 𝑞) = (−1)3/2+𝐼+𝐹𝑒+𝐹𝑔−𝑚𝑒
√

2
√︁

2𝐹𝑒 + 1
√︁

2𝐹𝑔 + 1
(
𝐹𝑔 1 𝐹𝑒
𝑚𝑔 𝑞 −𝑚𝑒

) {
𝐹𝑒 1 𝐹𝑔

1/2 𝐼 1/2

}
. (3.16)
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1

2

3

4

Figure 3.2 – Possible 𝜋 transition intensities for a general system of two ground magnetic sublevels
and two excited magnetic sublevels with 𝐼 = 3/2 and𝑚 = −1. The numbering used here is consistent
with eq. (3.17). The dashed lines are drawn to guide the eye.

We now focus on 𝜋 transitions (𝑞 = Δ𝑚 = 0). For a given𝑚, four transitions are possible1. The four
cases to consider are the following

1 : |𝐹 −𝑔 ,𝑚⟩ → |𝐹 −𝑒 ,𝑚⟩
2 : |𝐹+𝑔 ,𝑚⟩ → |𝐹 −𝑒 ,𝑚⟩
3 : |𝐹 −𝑔 ,𝑚⟩ → |𝐹+𝑒 ,𝑚⟩
4 : |𝐹+𝑔 ,𝑚⟩ → |𝐹+𝑒 ,𝑚⟩

(3.17)

The four transition intensities are depicted in fig. 3.2 for𝑚 = −1. In that case, since𝑚𝑔 =𝑚𝑒 =𝑚, we
can obtain unperturbed transfer coefficients depending solely on𝑚. We obtain for the first two cases

𝑎(𝐹±𝑒 ,𝑚; 𝐹±𝑔 ,𝑚; 0) = ± 2𝑚
√

3 (2𝐼 + 1)
, (3.18)

and for the last two cases

𝑎(𝐹±𝑒 ,𝑚; 𝐹∓𝑔 ,𝑚; 0) = 1
√

3

√︄
1 −

(
2𝑚

2𝐼 + 1

)2
. (3.19)

And the transfer coefficients [chapter 2, eq. (2.47)] corresponding to the transitions experiencing dipole
moment cancellation (transitions 1 and 4) are finally

𝑎[|Ψ(𝐹±𝑒 ,𝑚)⟩ , |Ψ(𝐹±𝑔 ,𝑚)⟩ , 0] = 𝜅𝑒±√︁
1 + 𝜅2

𝑒±
𝑎(𝐹 −𝑒 ,𝑚, 𝐹 −𝑔 ,𝑚, 0)

𝜅𝑔±√︃
1 + 𝜅2

𝑔±

+ 𝜅𝑒±√︁
1 + 𝜅2

𝑒±
𝑎(𝐹 −𝑒 ,𝑚, 𝐹+𝑔 ,𝑚, 0)

1√︃
1 + 𝜅2

𝑔±

+ 1√︁
1 + 𝜅2

𝑒±
𝑎(𝐹+𝑒 ,𝑚, 𝐹 −𝑔 ,𝑚, 0)

𝜅𝑔±√︃
1 + 𝜅2

𝑔±

+ 1√︁
1 + 𝜅2

𝑒±
𝑎(𝐹+𝑒 ,𝑚, 𝐹+𝑔 ,𝑚, 0)

1√︃
1 + 𝜅2

𝑔±

.

(3.20)

1We still do not consider transitions between extreme angular momentum magnetic sublevels.
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1

2

3

4

Figure 3.3 – Possible 𝜋 transfer coefficients for a general system of two ground magnetic sublevels
and two excited magnetic sublevels with 𝐼 = 3/2 and𝑚 = −1. The numbering used here is consistent
with eq. (3.17). The dashed lines are drawn to guide the eye.

As we look for transition cancellations, we want to solve 𝑎[|Ψ(𝐹±𝑒 ,𝑚)⟩ , |Ψ(𝐹±𝑔 ,𝑚)⟩ , 0] = 0 (fig. 3.3).
Analytically, the solutions are given by

𝐵±± = − 4𝑚𝜁𝜀
𝜇𝐵 (2𝐼 + 1) (𝑔𝑔𝜀 + 𝑔𝑒𝜁 )

, (3.21)

where𝑚 has to fulfill the condition

0 ≤ (−1)2𝐼𝑚 ≤ 𝐼 − 1/2. (3.22)

From eq. (3.21), we can notice that for isotopes having a half-integer nuclear spin, transition cancellations
exist for 𝜋 transitions between magnetic sublevels with 𝑚 = 0. However, as the atomic states are
degenerated, it is not possible to observe the cancellation of these transitions. The modified transfer
coefficients 𝑎[|Ψ(𝐹±𝑒 ,𝑚)⟩ , |Ψ(𝐹∓𝑔 ,𝑚)⟩ , 0] (transitions 2 and 3) can not be equal to zero, but these
quantities have a very interesting behavior. While for certain values of 𝐵, transition intensities
corresponding to 𝑎[|Ψ(𝐹±𝑒 ,𝑚)⟩ , |Ψ(𝐹±𝑔 ,𝑚)⟩ , 0] become zero (dipole moment cancellation), the transition
intensities corresponding to 𝑎[|Ψ(𝐹±𝑒 ,𝑚)⟩ , |Ψ(𝐹∓𝑔 ,𝑚)⟩ , 0] reach a maximum value which corresponds
to the intensity of a 𝜋 transition occurring between pure states, ie the so-called guiding transitions
(GTs) described in chapter 2. This is ensured by the calculation of the derivative of modified transfer
coefficients squared with respect to the magnetic field

d𝑎2 [|Ψ(𝐹±𝑒 ,𝑚)⟩ , |Ψ(𝐹∓𝑔 ,𝑚)⟩ , 0]
d𝐵 = 0. (3.23)

Equation (3.23) has the exact same solution as the one given in eq. (3.21). We will call quantities
𝑎[|Ψ(𝐹±𝑒 ,𝑚)⟩ , |Ψ(𝐹∓𝑔 ,𝑚)⟩ , 0] and 𝑎[|Ψ(𝐹±𝑒 ,𝑚)⟩ , |Ψ(𝐹±𝑔 ,𝑚)⟩ , 0] pair-modified transfer coefficients, and
the corresponding transitions will be called pair-transitions. As one can notice, cancellations occur
only for transitions obeying Δ𝐹 = 𝐹𝑒 − 𝐹𝑔 = 0 and maximum values take place when Δ𝐹 = 𝐹𝑒 − 𝐹𝑔 = ±1.
From now on, we use 𝐹 to denote ground and 𝐹 ′ to denote excited states, for clarity and to remain
consistent with the rest of the thesis.

3.3 Analytical treatment of 𝑫1 and 𝑫1 - like transitions

In this section we will provide a complete analytical treatment of the 𝐷1 line transition cancellations and
maxima of all stable2 and long-lived3 alkali isotopes, as well as of the 52𝑆1/2 → 62𝑃1/2 transition of both

2The following isotopes are stable: 23Na, 39K, 41K, 85Rb and 133Cs.
3The half-life of 40K is 1.248(3) × 109 years and that of 87Rb is 49.23(22) × 109 years.
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rubidium isotopes. Due to the lack of data, we do not study all alkali metal isotopes (e.g. Francium4).
However, the theoretical considerations still hold.

Isotope 𝐼 Transition Parameters Reference

3/2

𝐷1

𝑔𝐿 = 0.99997613 [5]
𝑔𝐼 = −0.00080461080(80) [6]
𝜁 = 1771.6261288(10) MHz [6]

23Na

𝜀 = 188.697(14) MHz [144, 145]
𝑔𝐿 = 0.99997905339670(14)∗
𝑔𝐼 = −0.00014193489(12) [6]
𝜁 = 461.73(14) MHz [146]

39K

𝜀 = 57.696(10) MHz [144]

4

𝑔𝐿 = 0.99997974531640(14)∗
𝑔𝐼 = 0.000176490(34) [6]
𝜁 = −1285.87(35) MHz [146]

40K

𝜀 = −155.31(35) MHz [146]

3/2

𝑔𝐿 = 0.99998039390246(13)∗
𝑔𝐼 = −0.00007790600(8) [6]
𝜁 = 253.99(12) MHz [6, 134, 146]

41K

𝜀 = 30.50(16) MHz [146]

5/2

𝐷1

𝑔𝐿 = 0.999 99354 [3]
𝑔𝐼 = −0.00029364000(60) [6]
𝜁 = 3035.7324390(60) MHz [6, 147]

𝜀 = 361.58(17) MHz [147–149]

52𝑆1/2 → 62𝑃1/2

𝑔𝐿 = 0.99999354 [3]
𝑔𝐼 = −0.00029364000(60) [6]
𝜁 = 3035.7324390(60) MHz [6, 147]

85Rb

𝜀 = 117.33(66) MHz [150]

3/2

𝐷1

𝑔𝐿 = 0.99999369 [4]
𝑔𝐼 = −0.0009951414(10) [6]

𝜁 = 6834.682610904290(90) MHz [151]
𝜀 = 814.50(13) MHz [6, 148, 149]

52𝑆1/2 → 62𝑃1/2

𝑔𝐿 = 0.99999369 [4]
𝑔𝐼 = −0.0009951414(10) [6]

𝜁 = 6834.682610904290(90) MHz [151]

87Rb

𝜀 = 265.12(66) MHz [150]

7/2 𝐷1

𝑔𝐿 = 0.99999587 [2]
𝑔𝐼 = −0.00039885395(52) [6]

𝜁 = 9192.631770 MHz (exact) [2]
133Cs

𝜀 = 1167.680(30) MHz [152, 153]

Table 3.1 – Table of hyperfine structure constants and Landé factors for various isotopes and
transitions. The values marked with an asterisk (*) are theoretical, computed using the exact
formula5 of Phillips [154] and the values for the isotopes of Audi et al. [155]. The most imprecise
values (𝜀) are given in red cells.

In table 3.1 we recall all the atomic parameters used in the calculations with their uncertainties. As one
can see, the most imprecise values, in general, are 𝜀 (excited state hyperfine splitting, in red in the table).
For 39K, 40K and 41K even the ground state splittings are not precisely known. These quantities have the
biggest influence on the uncertainties of the calculated 𝐵-values (all the other numerical parameters are

4Francium’s most stable isotope, 223Fr, has a half-life of 22 minutes. Less than 30 grams of it exist on Earth.
5We noticed that 1/𝑚 is missing in the second term of the exact formula for 𝑔𝐿 in [154]
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known with at least 10-digit precision). It should be noted that when the value of 𝐼 is an integer (only for
40K in this work), the values of 𝜁 and 𝜀 take a minus sign to be in agreement with our notation. Part of
these numbers can be found in appendix B. For further calculations, for the Bohr magneton and 𝑔𝑆 spin
Landé factor we used the values 𝜇𝐵/ℎ = −1.3996245042(86) MHz/G and 𝑔𝑆 = 2.00231930436256(35),
respectively. The magnetic field values are calculated directly using eq. (3.21).

3.3.1 Sodium and potassium

1
2
3
4
5
6

Figure 3.4 – 𝜋 transitions (𝑚 = −1) of 23Na, 39K and 41K exhibiting a cancellation. The labeling is
given in table 3.2. All other transitions are represented in the background.

Isotope Index 𝐹 𝑚 𝐵 [G] 𝐵∗ [G]
1 1

-1

153.2007(86) 153.2007024(11)23Na 2 2
3 1 44.991(10) 44.9915(37)39K 4 2
5 1 24.042(95) 24.0418(30)41K 6 2

Table 3.2 – Magnetic field values 𝐵 and 𝐵∗ cancelling𝑚 = −1 𝜋 transitions of 23Na, 39K and 41K.

In fig. 3.4, we plot the 23Na, 39K and 41K 𝐷1 line 𝜋 transitions showing a cancellation. As these three
isotopes have the same nuclear spin 𝐼 = 3/2, they share the same hyperfine manifold. Transitions will
occur between 𝐹 = 1, 2 and 𝐹 ′ = 1, 2, and cancellations can be observed only for𝑚 = −1. In table 3.2 we
present all the magnetic field values cancelling the 𝐷1 transitions of 23Na, 39K and 41K plotted earlier.
The index (column 2) is consistent with fig. 3.4. The third column gives the angular momentum 𝐹 of
both ground and excited states, as cancellations appear only for Δ𝐹 = 0. In the fourth column, we
give the value of the magnetic quantum number of both ground and excited states (𝜋 transitions are
such that Δ𝑚 = 0). In the last columns, we present the values for which the transitions are canceled.
These values are calculated using eq. (3.21), where 𝐵 is obtained by taking into account all uncertainties,
and 𝐵∗ is obtained by ignoring the uncertainty on the excited state hyperfine splitting 𝜀. The goal of
these calculations is to show how precisely the magnetic field values could be determined if 𝜀 was more
precisely known. The most crucial part is thus to improve the precision of 𝜀. If this was done, these
𝐵∗ values could become a new standard for the calibration of magnetometers as they depend only on
fundamental physical constants. Potassium 40 (40K) has a slightly weirder hyperfine structure since
its nuclear spin is an integer. Transitions occur between 𝐹 = 9/2, 7/2 and 𝐹 ′ = 9/2, 7/2. Cancellations
are observed for 𝑚 = 7/2, 5/2, 3/2 and 𝑚 = 1/2. The magnetic field values corresponding to these
cancellations are presented in table 3.3, with the same formatting as before.
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1
2
3
4
5
6
7
8

Figure 3.5 – 40K 𝐷1 line 𝜋 transitions exhibiting a cancellation. Labeling is given in table 3.3. The
dashed line is drawn to guide the eye.

Isotope Index 𝐹 𝑚 𝐵 [G] 𝐵∗ [G]
1 9/2 7/2 190.20(33) 190.204(13)2 7/2
3 9/2 5/2 135.85(24) 135.8602(98)4 7/2
5 9/2 3/2 81.5(15) 81.5161(59)6 7/2
7 9/2 1/2 27.171(48) 27.1720(19)

40K

8 7/2

Table 3.3 – Magnetic field values 𝐵 and 𝐵∗ cancelling 𝜋 transitions of 40K.

3.3.2 Rubidium

Let us now look at 85Rb 𝐷1 line 𝜋 transitions. For this isotope, transitions will occur between 𝐹 = 2, 3
and 𝐹 ′ = 2, 3. The transfer coefficients 𝑎 and transition intensities 𝑎2 [eq. (3.20)] are plotted in fig. 3.6a-c
for𝑚 = −3,−2 and𝑚 = −1. Cancellations appear for𝑚 = −2 (transitions 1-2) and𝑚 = −1 (transitions
3-4) and again correspond to Δ𝐹 = 0. The pair behavior described in section 3.2.2 is clearly visible here.
The 𝜋 transitions corresponding to Δ𝐹 = ±1 (transitions 5-8) reach their maximum intensity while the
others get canceled. In fig. 3.6a, the modified transfer coefficients 𝑎[|Ψ(𝐹 ′,𝑚)⟩ , |Ψ(𝐹,𝑚)⟩ , 0] quantities)
are depicted for𝑚 = −2 and𝑚 = −1 for the 𝐷1 line of 85Rb. Transitions numbered 5, 6, 7, and 8 have no
cancellation and are nothing more than transfer coefficients between ground and excited states with
Δ𝐹 = ±1. The dashed line shows that transitions 1 and 2 are equal to zero for the same value of 𝐵. In
fig. 3.6b we show the squared transfer coefficients 𝑎2 (i.e. the transition intensities). Comparing the
two figures, it immediately appears that the maxima of transitions 1-2 and 3-4 respectively coincide
with the minima of transitions 5-6 and 7-8. The maximum intensity is that of the guiding transition
9 (|3,−3⟩ → |3′,−3⟩) whose intensity is constant as neither its ground nor excited state experiences
magnetic-field induced mixing. The situation is similar albeit simpler for 87Rb. As it has a smaller
nuclear spin, 87Rb has less magnetic sublevels and transition cancellations occur only for 𝑚 = −1.
Transitions 1-2 (|1,−1⟩ → |1′,−1⟩ and |2,−1⟩ → |2′,−1⟩ reach their minimum while transitions 3-4
(|1,−1⟩ → |2′,−1⟩ and |2,−1⟩ → |1′,−1⟩) reach their maximum. The transfer coefficients and transition
intensities are visible in fig. 3.6b-d. The calculated values of 𝐵 and 𝐵∗ corresponding to the minima and
maxima are given in table 3.4. We also give the equivalent values for 52𝑆1/2 → 62𝑃1/2.
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1
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7-8

1-2
3-4
5-6
7-8
9
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3-4
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3-4

a) b)

c) d)

Figure 3.6 – Rubidium 𝐷1 line 𝜋 modified transfer coefficients (a-b) and transition intensities (c-d).
a) 85Rb,𝑚 = −2 and𝑚 = −1. b) 87Rb,𝑚 = −1. c) 85Rb,𝑚 = −3,−2 and −1. d) 87Rb,𝑚 = −1. The
dashed lines are drawn to guide the eye. All other transitions are represented in the background.
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Figure 3.7 – Rubidium 52𝑆1/2 → 62𝑃1/2 line 𝜋 modified transfer coefficients (a-b) and transition
intensities (c-d). a) 85Rb,𝑚 = −2 and𝑚 = −1. b) 87Rb,𝑚 = −1. c) 85Rb,𝑚 = −3,−2 and −1. d) 87Rb,
𝑚 = −1. The dashed lines are drawn to guide the eye.
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Cancelled Magnetic field Maximised
Isotope Excited state Index 𝐹 𝑚 𝐵 [G] 𝐵∗ [G] Index Δ𝐹 𝑚

1 2 5 −1
2 3 −2 380.73(13) 380.7362466(29) 6 +1 −2

3 2 7 −152𝑃1/2

4 3 −1 190.368(66) 190.3681233(15) 8 +1 −1

1 2 5 −1
2 3 −2 150.31(76) 150.31738954(20) 6 +1 −2

3 2 7 −1

85Rb

62𝑃1/2

4 3 −1 75.15(38) 75.15869477(10) 8 +1 −1

1 1 3 −152𝑃1/2 2 2 −1 642.590(76) 642.5904743(48) 4 +1 −1

1 1 3 −1
87Rb

62𝑃1/2 2 2 −1 254.39(57) 254.398160387(80) 4 +1 −1

Table 3.4 – Magnetic field values cancelling and maximizing several 𝐷1 and 52𝑆1/2 → 62𝑃1/2 𝜋
transitions of both Rb isotopes with their uncertainties.

3.3.3 Cesium

1
2
3
4
5
6

Figure 3.8 – 133Cs 𝐷1 line 𝜋 transitions exhibiting a cancellation (for𝑚 = −3,𝑚 = −2 and𝑚 = −1.
Labeling is consistent with table 3.5. All other transitions are represented in the background.

Isotope Index 𝐹 𝑚 𝐵 [G] 𝐵∗ [G]
1 3 -3 1359.237(26) 1359.2372467(92)2 4
3 3 -2 906.158(17) 906.1581644(61)4 4
5 3 -1 453.0790(84) 453.0790822(31)

133Cs

6 4

Table 3.5 – Magnetic field values cancelling 𝐷1 transitions of 133Cs with their uncertainties.

The isotope having the biggest Zeeman structure is 133Cs with 𝐹 = 3, 4 and 𝐹 ′ = 3, 4. In that case,
cancellations are observed for𝑚 = −3,𝑚 = −2, and𝑚 = −1. In fig. 3.8, modified transfer coefficients
for all 𝜋 transitions exhibiting a cancellation are plotted. The values corresponding to the transition
cancellations are given in table 3.5. Since the ground state hyperfine splitting of 133Cs is exactly known
(table 3.1), the formula [eq. (3.21)] used to compute the magnetic field values yields more precision here.
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3.3. Analytical treatment of 𝐷1 and 𝐷1 - like transitions

3.3.4 Experimental feasibility

As an illustration of our calculations, we computed dSR spectra of 85Rb (see chapter 2 for explanations
and details regarding the simulations) for 𝐵 = 300 G, 𝐵 = 460 G and 𝐵 = 380.73 G to highlight the
cancellation of transition |2,−2⟩ → |2,−2⟩ of 85Rb 𝐷1 line (table 3.4). In fig. 3.9, the peak labeled 1
is the one canceling for the mentioned value 380.73 G of 𝐵-field while, according to the theoretical
model, the peak labeled 2 reaches its maximum for the same value. These spectra were obtained by
simulating a dSR experiment performed with a nanocell of length 𝐿 = 𝜆/2 (𝜆 ≃ 794 nm) at the typical
temperature of 130 ◦𝐶 (corresponding to 𝑁at ≃ 1013 cm−3. These spectra clearly indicate the challenge
of an eventual experimental determination of the magnetic field values discussed in this chapter. Since
more transitions are considered here, we use a simpler labeling pattern described in fig. 3.10.

460 G

380.73 G

300 G2

3
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Figure 3.9 – dSR spectra of 85Rb 𝐷1 line 𝐹 = 2 → 𝐹 ′ = 2, 3 𝜋 transitions for different external
magnetic field values. The parameters used for the simulation are 𝐿 = 𝜆/2, 𝑃𝐿 = 1 𝜇W, 𝑇 = 130 ◦C.
The dSR amplitudes are normalized to that of the second spectrum.

-2 -1 0 +1 +2 +3-3

1 2 3 4 5 6 7 8 9 10

Figure 3.10 – Labelling of 85Rb 𝐷1 line 𝐹 = 2 → 𝐹 = 2, 3 𝜋 transitions.

The computation of transition cancellations in a magnetic field using the theoretical model described
above is based on physical constants and fundamental parameters characterizing the atomic system,
taken in the literature (see eg. table 3.1 and appendix B). Accurate measurement of the magnetic field at
the point of optical transition cancellation can in principle help one to improve the precision on these
parameters, notably of the frequency differences between the upper states (𝜖 , 𝛼 , 𝛽 , 𝛾 ) which currently
have the biggest uncertainties. Achieving this would require a meticulously designed experimental
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3.3. Analytical treatment of 𝐷1 and 𝐷1 - like transitions

setup allowing to measure the applied magnetic field with an extremely high accuracy (≃ 10−10 G),
making this a very challenging task.
Let us briefly analyze the requirements for the experimental setup and the characteristics needed to
attain transition cancellation. This can be used, in particular, for precise calibration of magnetometers.
In thermal atomic vapors, hyperfine transitions, especially those between magnetic sublevels of the
hyperfine states, are Doppler-broadened and overlapped. To isolate a chosen individual transition, it
must be frequency-separated from adjacent ones. High-resolution spectroscopic techniques providing
sub-Doppler or Doppler-free frequency resolution, such as NC spectroscopy, can achieve this, as
described in chapter 2. Additionally, the tuning range of a single-frequency continuous wave (CW) laser
should be sufficiently large to track the frequency shift of the chosen transition in a 𝐵 field. Inexpensive
diode lasers and Rb vapor nanocells with a thickness of approximately 𝜆/2 in a selective reflection
(SR) configuration, providing a ≃ 40 MHz linewidth, or in a fluorescence configuration providing a
≃ 60 MHz linewidth, fulfill these requirements. These widths are adequate for the complete separation
of individual transitions in magnetic fields above ≃ 100 G. Both techniques assure a linear response
of the atomic medium [140, 156], unlike saturated absorption (SA) spectroscopy. Nanocells are also
advantageous due to the extremely small size of the interaction region inside which the magnetic field
can be considered uniform. The measurement of the maximum of a pair-transition [which is easier than
directly measuring the cancellation value due to bigger signal to noise ratio (SNR) ratio] then yields the
cancellation value.
Detection sensitivity is another crucial factor. The precision of transition cancellation is physically
limited by the noise level, with the SNR being the figure of merit. The level of a typical SR signal
varies within ≃ 5% of the incident light signal, whereas the fluorescence signal has a zero off-resonance
background. Conventional signal acquisition and processing techniques enable reliable detection with
an SNR up to 10 000. For selective reflection and fluorescence measurements, the magnitude of a
canceled transition is estimated to be about 0.1% of the initial value. The signal magnitude can also be
affected by the accuracy of setting and maintaining the NC thickness in the interaction region, which is
manageable by controlling the radiation beam diameter and precise positioning of the beam using a
micro-controlled translation stage.
The main limitations are expected to come from the precision of applying and measuring the 𝐵 field.
Two aspects need to be distinguished:

1. the accuracy of the magnitude and direction of the applied 𝐵 field needed to cancel the transition
2. the precision of measuring this field.

A promising solution combining magnetic field control and measurement is optical compensation
magnetometry [157]. Here, the interaction region, i.e., the vapor nanocell, is placed within a system of
calibrated Helmholtz coils (three mutually perpendicular pairs). Coil currents are scanned according to
a special algorithm controlled by the studied transition signal. Through successive approximations, a
magnetic field value corresponding to theminimumatomic signal is achieved, and from the corresponding
coil currents, the canceling field value is determined. This method allows for control and measurement
of a 𝐵 field with ≃ 1 mG accuracy.
Furthermore, during the measurements, the laser radiation frequency should be stabilized on the
transition under study. This can be achieved by implementing feedback-based tunable locking of the
radiation frequency to an atomic resonance with approximately 2 MHz accuracy [143], using an auxiliary
setup with a second nanocell.
The realistic accuracy of applying and measuring the 𝐵 field in the experiment remains less precise than
the calculated values provided in sections 3.3 and 3.4. However, uncertainties in excited state frequency
differences can be reduced by measuring the cancellation 𝐵 field values for different transitions, where
the uncertainties depend on a single frequency difference (for example, the last line of table 3.8).
Besides more accurate determination of physical quantities, the results have practical applications in
magnetometry and optical information processing. Continuous detection of an atomic signal while
moving the NC across a highly nonuniform magnetic field enables high-contrast optical mapping of a 𝐵
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field. Modulating the magnetic field around the transition cancellation point allows modulation of the
amplitude of the optical atomic signal carrying optical information.
Finally, not all 𝐵 field values canceling transitions are relevant for specific practical tasks. Another
critical factor is the rate of variation of the transition probability with the 𝐵 field around the cancellation
value. The higher this rate, the more accurately one can determine the canceling 𝐵 field value.

3.4 Numerical treatment of 𝑫2 and 𝑫2 like transitions of rubidium

We will now present a thorough investigation of the 𝐷2 line and 52𝑆1/2 → 62𝑃3/2 transitions of 85Rb and
87Rb. In this general case, we were not able to derive formulas describing the magnetic field values. We
will provide numerical values obtained by using Newton’s method6, carefully observing the change of
sign in 𝑎[|Ψ(𝐹 ′,𝑚′)⟩ ; |Ψ(𝐹,𝑚)⟩ ;𝑞] to ensure the nullity of the transition intensities. To ensure this
procedure is reliable, we performed the same analysis on the transitions presented in the previous
section and compared the results with the analytical results obtained for 2 × 2 matrices. Both methods
are in excellent agreement, with 10−12 adequacy. It is therefore reasonable to use the same procedures to
compute cancellations of the 52𝑆1/2 → 62𝑃3/2 transitions, involving 3 × 3 and 4 × 4 Hamiltonian blocks7.
We have studied all the possible hyperfine transitions (𝜋 , 𝜎+ and 𝜎−) of the 𝐷2 line and 52𝑆1/2 → 62𝑃3/2
transition of 87Rb and 85Rb. We will provide a complete set of precise magnetic field values for both lines.
Graphs are provided only for 87Rb 52𝑆1/2 → 62𝑃3/2 line for the sake of readibility. The procedure is fully
reliable and may be used for any alkali atom. An atlas summarizing all possible transition cancellations
of 𝐷1, 𝐷2 and 62𝑃3/2 lines of all alkali atoms would be a convenient tool for magnetometer calibration
and is envisaged.

3.4.1 87Rb

𝜋 transitions

Isotope Line Splitting Value Ref Isotope Value Ref
𝛼 72.2180(40) 29.372(90)
𝛽 156.9470(70) 63.401(61)𝐷2
𝛾 266.6500(90)

[158]
120.640(68)

[6, 148]

𝛼 23.744 (28) 9.802(25)
𝛽 51.445(25) 20.850(24)

87Rb

62𝑃3/2
𝛾 87.050(23)

[150]

85Rb

39.265(23)
[150]

Table 3.6 – Hyperfine splittings of the 𝐷2 and 62𝑃3/2 lines of both Rb isotopes

All the modified transfer coefficients exhibiting a cancellation are represented in fig. 3.11. In this case,
transitions 3, 7, 10, and 16 are forbidden in the general case but none of them cross the 𝑥-axis. In this
figure, all the curves vary according to the magnetic field since none of them correspond to transitions
between two pure states. Among the 24 possible transitions, the transitions labeled 6, 9, 14, 17, and 20
have a cancellation. These transitions have a magnetic quantum number of either −1, 0 or +1, unlike
for 𝐷1 and 52𝑆1/2 → 62𝑃1/2 transitions where we only had𝑚 = −1 for 87Rb. Here, each transition is
canceled for a different value of 𝐵. However, experimental measurements could be more difficult in this
case due to the proximity of certain values.

6An iterative root-finding algorithm providing approximations of the roots of real-valued functions. This method is
implemented in Mathematica as the FindRoot function.

7In this cases, the eigenvalues of 3 × 3 and 4 × 4 matrices can be calculated with Cardano and Ferrari’s formulas [135],
which we were not able to simplify. Analytical formulas analogous to eq. (3.21) exist, but it is yet unclear whether they can be
written in a compact, convenient form.
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Figure 3.11 – 52𝑆1/2 → 62𝑃3/2 𝜋 transition modified transfer coefficients and scheme. For the
sake of clarity, only the ones with a cancellation are labeled. As an indication, all other remaining
transitions are plotted in the background.

Isotope Line Index 𝐹 𝐹 ′ 𝑚 𝐵 [G] 𝐵∗ [G] Δ𝐸𝑒
6 0 38.21(19) 38.211312878(40) 𝛼, 𝛽,𝛾

9 1 +1 36.31(16) 36.318455634(38)
14

2
-1 17.895(66) 17.895382415(19) 𝛽,𝛾

17 0 24.77(13) 24.771185393(26) 𝛼, 𝛽,𝛾

62𝑃3/2

20
2 1 +1 24.36(11) 24.361280734(26) 𝛽,𝛾

6 0 118.7058(51) 118.70586363(82) 𝛼, 𝛽,𝛾

9 1 +1 114.2418(50) 114.24183482(79)
14

2
-1 55.6964(22) 55.69646550(39) 𝛽,𝛾

17 0 77.5048(35) 77.50487199(54) 𝛼, 𝛽,𝛾

87Rb

𝐷2

20
2 1 +1 77.2414(35) 77.24147013(54) 𝛽,𝛾

Table 3.7 – 𝐵-values cancelling 87Rb 𝐷2 and 52𝑆1/2 → 62𝑃3/2 𝜋 transitions.

Table 3.7 shows the 𝐵-values for each cancellation, determined numerically with (third column) and
without (fourth column) taking into account the uncertainty on the energies of the excited states.
The last column, Δ𝐸𝑒 , shows which hyperfine splitting is involved in the calculation of the transition
intensity. The numerical values are given in table 3.6.

𝜎 transitions

All the modified 𝜎+ transfer coefficients are plotted and schematized in fig. 3.12a.
Eight 𝜎+ transitions (respectively labelled 1, 10, 13, 14, 15, 17, 18 and 20) are cancelled for a certain
value of 𝐵. Transition 13 is a forbidden transition. The 𝐵-values are presented in table 3.8. Note the
important number of cancellations compared to the case of 52𝑆1/2 → 62𝑃1/2 where no cancellation could
be observed for 𝜎±. We notice that the three 𝐵-values of transitions 1, 10, and 13 have much bigger
uncertainties than the others. For transition 20, we were able to exhibit the following analytical formula
(among all these transitions it is the only one where Hamiltonians are of maximum 2 × 2 dimension):

𝐵 = − 1
𝜇𝐵

4𝛾𝜁 [3𝑔𝐼 (𝛾 − 𝜁 ) + 2𝜁𝑔𝐿 + 𝑔𝑆 (𝜁 − 3𝛾)]
𝑐1𝑐2

(3.24)

where we denoted 𝑐1 = 6𝛾𝑔𝐼 − 3𝜁𝑔𝐼 + 2𝜁𝑔𝐿 − 6𝛾𝑔𝑆 + 𝜁𝑔𝑆 and 𝑐2 = 2𝛾𝑔𝐼 − 3𝜁𝑔𝐼 + 2𝜁𝑔𝐿 − 2𝛾𝑔𝑆 + 𝜁𝑔𝑆 . This
formula provides a 𝐵-value for the cancellation 𝐵 = 64.133588295 G (all uncertainties ignored) showing
the theory to be in perfect agreement with the simulation.
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Figure 3.12 – 52𝑆1/2 → 62𝑃3/2 𝜎
± modified transfer coefficients and scheme. a) 𝜎+, b) 𝜎− . For the

sake of clarity, only the ones with a cancellation are labeled.

Isotope Line Index 𝐹 𝐹 ′ 𝑚 𝐵 [G] 𝐵∗ [G] Δ𝐸𝑒
1 1 0 -1 524(68) 517.98168965(55) 𝛼, 𝛽,𝛾

10 1 -2 633(45) 630.07368077(67) 𝛽,𝛾

13 0 606(45) 603.37498565(64)
14 1 12.219(77) 12.219830989(13)
15 2

-1
50.30(20) 50.306012284(52)

𝛼, 𝛽,𝛾

17 1 11.259(66) 11.259065240(12)
18 2 0 57.11(20) 57.111350606(60) 𝛽,𝛾

62𝑃3/2

20

2

2 +1 64.13(20) 64.133588295(68) 𝛾

1 1 0 -1 1595.84(93) 1595.846039(12) 𝛼, 𝛽,𝛾

10 1 -2 1792.8(1.2) 1792.854752(13) 𝛽,𝛾

13 0 1762.3(1.7) 1762.305097(13)
14 1 37.7187(20) 37.71876912(27)
15 2

-1
157.6244(63) 157.6244550(11)

𝛼, 𝛽,𝛾

17 1 35.0323(19) 35.03235682(25)
18 2 0 183.1469(71) 183.1469403(13) 𝛽,𝛾

87Rb

𝐷2

20

2

2 +1 211.1182(80) 211.1182479(15) 𝛾

Table 3.8 – Magnetic field values cancelling 87Rb 𝐷2 and 52𝑆1/2 → 62𝑃3/2 𝜎
+ transitions. The most

imprecise values are given in red cells.
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Isotope Line Index 𝐹 𝐹 ′ 𝑚 𝐵 [G] 𝐵∗ [G] Δ𝐸𝑒
4 2 0 36.32(16) 36.320508551(38) 𝛽,𝛾

7 1 1 44.13(31) 44.137763913(46)62𝑃3/2
8 1 2 +1 23.01(18) 23.016986486(24) 𝛼, 𝛽,𝛾

4 2 0 114.3072(50) 114.30723113(80) 𝛽,𝛾

7 1 1 140.8256(71) 140.82560775(98)

87Rb

𝐷2
8 1 2 +1 71.9264(47) 71.92641933(50)) 𝛼, 𝛽,𝛾

Table 3.9 – Magnetic field values cancelling 87Rb 52𝑆1/2 → 62𝑃3/2 𝜎
− transitions.

The modified transfer coefficients corresponding to 𝜎− transitions are represented in fig. 3.12b. Since
canceled transitions involve 3 × 3 or 4 × 4 blocks, we do not derive any analytical formula although it
should be possible based on Ferrari and Cardano’s formulas.
Among all transitions, three get cancelled (transitions 4, 7 and 8, corresponding to respectively
𝑚𝐹𝑔 = 0, +1, +1) for precise values of 𝐵. Unlike before, no transition starting from 𝐹𝑔 = 2 is canceled. The
magnetic field values canceling the transitions are given in table 3.9. We will now present numerical
data obtained for all 52𝑆1/2 → 62𝑃3/2 transitions of 85Rb.

3.4.2 85Rb

Hereafter we present all the 52𝑆1/2 → 62𝑃3/2 and𝐷2 transitions of rubidium 85 which show a cancellation
and their associated 𝐵-values. The 85Rb 𝐷2 and 62𝑃3/2 lines are much more complicated systems than
the 87Rb 𝐷2 and 62𝑃3/2 lines, with large total atomic angular momentum (𝐹 ) numbers. For the sake of
clarity, we will not show any scheme or transfer coefficients concerning transitions since 116 transitions
are possible in total. We present only tables where magnetic field values that cancel certain transitions
are indicated. As one can notice, for the 85Rb 𝐷2 line, the frequency differences between the excited
states are smaller than in the case of the 87Rb 𝐷2 line. Because of that, the values of the 𝐵 field that
cancel certain transitions are generally smaller than the 𝐵 field values obtained in the case of 87Rb.
One may notice that some of the magnetic field values are quite big. Accordingly, the uncertainties of
these values are big too. There are no such results for 87Rb. In some cases, transitions can exhibit two
cancellations. In this table, red cells indicate values for which the uncertainty is relatively big. These
values correspond to asymptotic cancellations where the transition intensity variation is almost flat.

3.5 Conclusion

In the first two parts of this work (sections 3.2 and 3.3), we have studied the 𝐷1 and 52𝑆1/2 → 62𝑃1/2 lines
of all stable alkali isotopes. For specific values of the applied external magnetic field, some 𝜋 transitions
(this behavior does not occur for 𝜎 transitions in this case) exhibit a cancellation, ie. their intensity
reduces to zero, while others reach their maximum intensity. We have determined an analytical formula
allowing us to calculate these “roots”. We have calculated all the transition-canceling 𝐵-values using
two different methods. In the first method, all the physical parameters involved in the calculation are
kept with their uncertainties. The precision is strongly affected by the uncertainty of the excited state
frequency differences. In the second method, the excited state frequency differences uncertainties were
not taken into account.
In the second part [section 3.4], we dressed an overview of transitions cancellations in the 𝐷2 and
52𝑆1/2 → 62𝑃3/2 lines of Rb. In this case, transitions occur between stronglymixed states (theHamiltonian
blocks of the excited state are 3 × 3 or even 4 × 4) thus we were not able to determine a single formula
like before. Only some hints of a formula were obtained in very specific cases. We have determined the
magnetic field values using numerical methods tested against the analytical results. Excellent agreement
(10−10) was obtained, ensuring the reliability of the determination even when no formula can be found.
There are several important reasons for determining these values with high precision. Firstly, highly
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𝑞 𝐹 𝐹 ′ 𝑚 Line 𝐵 [G] 𝐵∗ [G] Line 𝐵 [G] 𝐵∗ [G]
3 14.972(15) 14.972413447(12) 46.630(40) 46.63046914(32)
4 -1 5158(27) 5158.554086(13) 4718(20) 4718.168407(41)
2 16.224(22) 16.224059190(13) 50.440(68) 50.44005212(34)
3 10.393(14) 10.3937170637(80) 32.361(41) 32.36112827(22)
3

0
4807(24) 4807.443620(13) 4354(19) 4354.588882(38)

2 16.708(28) 16.708656930(13) 51.930(93) 51.93093445(35)
3 9.456(17) 9.4569409901(74) 29.726(51) 29.72652541(20)
3

+1
4467(22) 4467.802090(12) 4005(19) 4004.977769(35)

2 16.853(33) 16.853016860(14) 52.27(12) 52.27464320(36)
3 8.759(18) 8.7592563674(69) 27.764(58) 27.76483242(19)

𝜎− 2

3
-2

62𝑃3/2

4139(22) 4139.600083(11)

𝐷2

3669(21) 3669.632908(32)
𝑞 𝐹 𝐹 ′ 𝑚 Line 𝐵 [G] 𝐵∗ [G] Line 𝐵 [G] 𝐵∗ [G]

3 3 −2 10.3043(87) 10.3043976319(79) 31.977(23) 31.97774839(22)
2 2 2.2199(46) 2.2199898843(17) 6.565(17) 6.565192522(44)
2 3 14.860(17) 14.860250029(12) 48.463(58) 48.46368819(33)
2 4 6271(30) 6271.265407(16) 5686(29) 5686.364269(49)
3 2 11.416(14) 11.4168589034(88) 35.228(43) 35.22828802(24)
3 3

-1

4.1621(39) 4.1621397468(32) 12.811(11) 12.811030753(85)
2 3 15.369(18) 15.369857179(12) 47.491(54) 47.49141288(32)
2 4 6603(33) 6603.849559(17) 6013(29) 6012.951766(52)
3 2

0
11.334(14) 11.3343927931(88) 35.218(43) 35.21852774(24)

2 3 15.812(19) 15.812955622(12) 46.336(49) 46.33622671(31)
2 4 6942(36) 6942.545196(18) 6345(29) 6345.448972(54)
3 2

+1
11.147(14) 11.1479877220(88) 34.945(40) 34.94502121(24)

2 3 14.322(16) 14.322575163(11) 45.099(42) 45.09972813(31)
2 4 7285(40) 7285.070415(19) 6681(30) 6681.226747(57)

𝜋

3 2
+2

62𝑃3/2

10.953(13) 10.9539851230(87)

𝐷2

34.689(33) 34.68962622(24)
𝑞 𝐹 𝐹 ′ 𝑚 Line 𝐵 [G] 𝐵∗ [G] Line 𝐵 [G] 𝐵∗ [G]

3 2 −3 96.22(53) 96.220676416(72) 278.3(1.4) 278.3151250(19)
2 1 63.40(50) 63.398936275(50) 180.9(1.5) 180.9519212(13)
3 1 87.42(52) 87.425519697(67) 254.1(1.3) 254.1070281(17)
3 2 5.5486(85) 5.5486439413(42) 16.798(26) 16.79814373(12)
3 3

-2

20.228(20) 20.228037283(16) 62.626(59) 62.62663916(42)
2 1 56.18(53) 56.182412663(44) 156.9(1.6) 156.9842182(11)
3 1 79.54(49) 79.538277943(62) 231.6(1.3) 231.6749004(16)
3 2 5.2424(79) 5.2424910523(40) 15.983(23) 15.98380527(11)
3 3

-1

23.044(21) 23.044654730(18) 72.575(61) 72.57573219(49)
2 1 50.02(54) 50.018924381(39) 137.2(1.6) 137.21112478(91)
3 1 72.46(47) 72.459280144(56) 211.1(1.3) 211.1105805(15)
3 2 4.9968(73) 4.9968609804(39) 15.337(20) 15.33734519(11)
3 3

0

26.036(21) 26.036555825(21) 83.643(63) 83.64378929(57)
3 2 4.7932(69) 4.7932030491(38) 14.808(18) 14.80813301(10)
3 3 +1 29.242(21) 29.242109204(24) 96.085(66) 96.08519850(66)

𝜎+

3 3 +2

62𝑃3/2

32.693(22) 32.693414753(27)

𝐷2

110.162(71) 110.16208826(76)

Table 3.10 – Magnetic field values cancelling 85Rb 𝐷2 and 52𝑆1/2 → 62𝑃3/2 𝜎
− , 𝜎+ and 𝜋 transitions.

The most imprecise values are given in red cells.
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3.5. Conclusion

sensitive magnetometer calibration requires reliable standards, and these values would serve as excellent
standards for atomic systems because they are independent of external conditions or parameters.
Secondly, eq. (3.21) provides an exact theoretical expression for the 𝐵-values that cancel the transitions,
based on fundamental quantities such as energy differences, Landé factors, Bohr magneton, nuclear
spin value, and quantum numbers. Therefore, accurately determining these 𝐵-values experimentally
can lead to improvements in the precision of these fundamental quantities.
Experimentally, it is more challenging to measure small signals precisely compared to larger ones due to
the presence of noise. Consequently, direct measurement of transition cancellations is a challenging
task. Since smaller peaks have a lower signal-to-noise ratio than larger peaks, it is more effective to
measure peaks with higher intensity. Finding the magnetic field magnitude at which the transition
intensity is at its peak will indicate a pair-transition cancellation value. To achieve this, we will calculate
the derivative of the intensity with respect to the magnetic field around the maximum value. Although
the change in transition intensity may be gradual, the point where the slope of the derivative changes
sign will precisely indicate the B value at which the pair transitions reach their minimum. This problem
requires the use of sub-Doppler spectroscopic methods such as NC spectroscopy, in which the applied
magnetic field can be considered to be uniform.
However, in the experiments it is always more complicated to precisely measure small signals than big
ones; thus the cancellation of transitions cannot be measured directly because of the existence of noise
in any experiment. In other words, as for small peaks the SNR ratio is smaller than for higher peaks,
so it is profitable to measure peaks with bigger intensity. Thus, as described in section 3.3.4 we may
measure transitions (e.g., find maxima) that have a maximum value. If we can find a magnetic field
magnitude for which the transition intensity is maximum, it will mean that we find a pair-transition
cancellation value. The graph of the derivative of the intensity with respect to 𝐵 should be calculated in
the neighborhood of the maximum value, even though the change of transition intensity can be very
smooth, as the change of sign of the slope of the derivative will give precisely the value for which it
crosses the 𝐵-axis; thus will give the 𝐵-value for which the pair-transitions reach their minimum.
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Chapter 4

Magnetometry with thin cells
In this chapter, we present two methods that allow to retrieve magnetic field values in various environments. Both
methods rely on the analysis of spectra recorded using thin cells (either micrometric or nanometric) and may be used
in challenging environments, for example, to measure fields with a strong gradient. The recorded spectra are in very
good agreement with the theoretical predictions.
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4.1 Introduction

Strong magnetic fields (0.1− 10 kG) are necessary for the application of magneto-optical processes using
alkali vapors [23, 67, 159–161]. In strong magnetic fields, which are determined from the conditions
𝐵 ≫ 𝐵0 = 𝐴hfs/𝜇𝐵 where 𝐴hfs is the magnetic dipole interaction constant of the state 2𝑆1/2 and 𝜇𝐵 is
the Bohr magneton (the constants are given in [6, 162, 163]), the total electronic angular momentum 𝐽

and nuclear spin 𝐼 are decoupled [67]. This is called hyperfine Paschen–Back (HPB) regime [50, 67,
69]. In this regime the energy levels are best described by the magnetic numbers𝑚 𝐽 and𝑚𝐼 . The 𝐵0
values for 85Rb, 87Rb, and 133Cs are approximately 700, 2400, and 1700 G, respectively. For 𝐵 ≥ 2𝐵0, the
number of atomic transitions in the absorption spectrum decreases significantly. In the HPB regime,
only 8 Zeeman transitions remain in the spectrum of the 𝐷1 line of 39K, while the probabilities of the 16
remaining Zeeman transitions tend to zero [68]. As shown for example in [61, 164, 165], taking the
second derivative of the absorption spectrum of an atomic vapor allows us to obtain complete spectral
resolution of the atomic transitions with correct reproduction of both frequency intervals and relative
amplitudes. In this work, we will be using this procedure when recording absorption spectra.
In [166], an optical isolator based on a Rb vapor was described using 𝐵 ∼ 6 kG. In [167], interesting
features were found in the saturated absorption (SA) spectrum of a Rb vapor in a strong magnetic field
at the cross-over resonances. In [168], a four-wave mixing process was carried out in a 2 mm-size Rb cell
at 𝐵 ∼ 6 kG. It was shown in [169] that at 𝐵 > 4 kG, only 10 transitions are present in the transmission
spectrum of the Rb 𝐷1 line. In [170], a 40 𝜇m-size Rb cell was used, in which the SA process was studied
at 𝐵 ∼ 6 kG and the laser frequency was stabilized on low frequency-shifted atomic transitions.
Atomic potassium vapors are much less often used than Rb or Cs vapors since even at a moderate
temperature of about 100 ◦C, the Doppler broadening reaches ∼1 GHz. Moreover, the vapor density of K
is very small at room temperature (around 5.8 × 108 cm−3), therefore the hyperfine and Zeeman transition
of 39K transitions turn out to be fully hidden by the Doppler broadening when usual centimeter-long
cells are used to study absorption or fluorescence processes. Laser spectroscopy of 39K was investigated
in a rather small number of works. Saturated absorption spectra of 39K obtained with a 5 cm-long cell
were experimentally and theoretically analyzed in [171, 172]. The magnetically induced dichroism of
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4.2. Experimental study: magnetometry with a 39K nanocell

39K 𝐷2 line in moderate magnetic fields was studied in [173]. Electromagnetically induced transparency
(EIT) in a 39K vapor was realized in [174], where an EIT-resonance with a linewidth significantly smaller
than the natural width (∼ 6 MHz) was formed. An efficient four-wave mixing process in potassium
vapors was demonstrated in [175]. An optical resonance formed on 𝑁 -type level configuration is
described in [176]. SA spectroscopy of 39K 𝐷2 line was realized in [177].
For the formation of a strong magnetic field, permanent magnets made of a neodymium-iron-boron
alloy are used, which create a magnetic field 𝐵 ∼ 4 kG near their surface, with a gradient of around
0.15 G/𝜇m. In [56], selective reflection (SR) of laser radiation from a nanocell (NC) containing a Rb
vapor was used to measure magnetic fields > 1000 G. However, due to the large value of 𝐵0(87Rb) = 2400
G the SR method was not convenient to use for the measurement of magnetic fields < 1000 G, since
the Zeeman components of 87Rb and 85Rb remain partially overlapped. Therefore, the development of
methods for recording homogeneous and inhomogeneous magnetic fields in a wide range is of utmost
importance.
It is promising to use 39K for table-top vapor cell magnetometry setups as its characteristic magnetic
field value 𝐵0 = 170 G is substantially lower than the analogous value for Rb and Cs. Therefore, when
39K atoms are placed in an external magnetic field, important specific features of the behavior of the
Zeeman transitions, such as a strong change in their probability and a significant decrease of their
number for 𝐵 ≫ 𝐵0 (HPB regime) regime [6, 67–71]) can be easily observed by applying a magnetic
field weaker by a factor of 10–15 than for Cs or Rb. (appendix B)
For a 𝐵𝑧-field > 170 G, only 8 Zeeman transitions remain in the transmission spectrum of 39K 𝐷1 line (4
transitions for each circular polarization 𝜎±). Here, we will use these transitions to measure magnetic
fields with a high spatial resolution. It is worth noting that transmission is more convenient than
using SR since the resonances in the transmission spectrum have a symmetrical shape, whereas the SR
technique gives rise to dispersion-like line shapes which are also sensitive to the NC thickness around
𝐿 = 𝜆/2 [77, 79, 140], as thoroughly described in chapter 1.
This chapter is divided into two main parts:

• In section 4.2, we present a method that allows to measure a magnetic field in the range of 0.1 -
10 kG with micrometer spatial resolution, which is relevant in particular for the determination
of magnetic fields with large gradients (up to 3 G/𝜇m). This method relies on the recording
absorption spectra from a NC. We compare the experimental measurement with the theoretical
results obtained using the models derived in chapters 1 and 2 and obtain very good agreement.

• In section 4.3, we present a similar method based on the recording of SA spectra from a microcell
(MC) with a thickness of around 30 𝜇m. The latter allows to form narrow atomic lines in the
transmission spectrum without unwanted crossover (CO) resonances. This method is in principle
easier to implement as manufacturing a MC is much easier than manufacturing the NCs used in
our previous works. The downside of this method is a lower spatial resolution of 30 𝜇m compared
to the micrometer spatial resolution of the NC-based magnetometer.

The work presented in this chapter gave rise to the following publications:

• M. Auzinsh, A. Sargsyan, A. Tonoyan, C. Leroy, R. Momier, D. Sarkisyan, and A. Papoyan. Wide
range linear magnetometer based on a sub-microsized K vapor cell. Appl. Opt. 61 (19) (2022), p. 5749

• A. Sargsyan, R. Momier, C. Leroy, and D. Sarkisyan. Saturated absorption technique used in
potassium microcells for magnetic field sensing. Laser Phys. 32 (10) (2022), p. 105701

4.2 Experimental study: magnetometry with a 39K nanocell

In fig. 4.1, we present the theoretical magnetic field dependence of the 39K 𝐷1 line Zeeman transitions
intensities (probabilities) for 𝜎+- and 𝜎−-polarized laser radiation. As 39K and 23Na share the same
quantum numbers including nuclear spin, the behavior of 39K is essentially the same as that of 23Na
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4.2. Experimental study: magnetometry with a 39K nanocell

a) b)

Figure 4.1 – Magnetic field dependence of the strongest (in the HPB regime) Zeeman transitions of
the 𝐷1 line of 39K. a) 𝜎− transitions. b) 𝜎+ transitions. Transitions having a probability close to zero
for 𝐵 > 100 G are omitted for the sake of clarity as they are not used in this work.
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Figure 4.2 – Transition diagram corresponding to the labelling used in fig. 4.1. a) 𝜎− transitions. b)
𝜎+ transitions.

described in chapter 2. For relatively small magnetic fields1, there are in total 24 atomic transitions
for 𝜎± radiation, meanwhile for 𝐵 > 2𝐵0 only 8 transitions with approximately the same amplitudes
and equidistant in frequency remain in the transmission/absorption spectra when interrogating the
vapor with circularly polarized laser radiation (with respect to the magnetic field direction), meaning
HPB regime is reached, as seen in fig. 4.1. The corresponding transitions are shown in fig. 4.2. The
theory describing in detail the modifications of the Zeeman transitions probabilities in a static uniform
magnetic field has been described in detail in several articles [57, 68], and a complete description was
presented in chapter 2. The procedure used to compute absorption spectra of a NC was thoroughly
described in chapter 1.

4.2.1 Spectroscopic nanocell filled with 39K vapor

A specially fabricated NC with a relatively large area of thickness in the range of 50 − 400 nm was
used. This type of cell is described in detail in chapter 1 and the same cell was used in [68]. The
sapphire reservoir of the cell was filled with metallic (natural) 𝐾 (93.26% 39K, 0.01% 40K and 6.7% 41K)
and heated to a temperature of 140 ◦C during the experiment, allowing to reach an atomic density
𝑁 ∼ 7 × 1012 cm−3.

1Typically of the order of 𝐵0 = 𝐴hfs/𝜇𝐵 ≈ 170 G, see appendix B for numerical data.
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4.2. Experimental study: magnetometry with a 39K nanocell

FI

Ref. channel
M

OSC

PD
ECDL

BS

NC
PM

PD

Measurement channel

PBS

C

Figure 4.3 – Scheme of the experimental setup. ECDL: extended-cavity diode laser (𝜆 = 770 nm),
FI: Faraday isolator, NC: nanocell filled with 𝐾 atoms. The thickness 𝐿 of the vapor column can be
adjusted in the range 120 − 390 nm. BS: beam splitter, PBS: polarizing beam splitter, C: auxiliary
cm-long cell filled with K used to form a reference SA spectrum, PM: permanent magnet, M: mirror.
B is oriented along the laser beam propagation direction (B = 𝐵𝑧e𝑧, k = 𝑘𝑧e𝑧), PD: photo-detectors,
OSC: oscilloscope.

4.2.2 Experimental setup

The experimental layout is depicted in fig. 4.3. A VitaWave extended cavity diode laser (ECDL) with a
wavelength of 𝜆 = 770 nm and a spectral linewidth of ∼ 1 MHz [115] was used. As described earlier, the
magnetic field was formed using a strong permanent magnet (PM) placed near the rear NC window
and calibrated using a Hall effect magnetometer. The magnetic field can be varied by changing the
distance between the PM and the window, as the cell is mounted on a micrometric stage. To form a
frequency reference, part of the laser radiation was fed to a usual cm-size K cell to record zero-field SA
spectra [171, 178, 179]. The signals were recorded by FD-24K photodiodes (PD), amplified and fed to a
Tektronix digital oscilloscope (OSC).

4.2.3 Experimental results

As a first step, the NC thickness in the direction of laser beam propagation was chosen equal to half the
resonant wavelength (𝐿 = 𝜆/2 = 385 nm). The technique for measuring the thickness of an atomic vapor
column in the NC is described in [180, 181] as well as in chapter 1. It has been demonstrated earlier that
in this case (so-called 𝜆/2 method), narrowing of atomic transitions (lines) in the absorption spectrum
𝐴(𝜔) of the NC occurs [61, 68, 79]. To obtain further narrowing of the atomic lines, we usually perform
the second derivative (SD) of the absorption spectrum, 𝐴′′(𝜔) [59, 61, 86, 165].
In fig. 4.4, the upper curve shows an experimental SD absorption spectrum of transitions 𝐹 = 1, 2 →
𝐹 ′ = 1, 2 of the 𝐷1 line of 39K for linearly polarized laser radiation (consisting of 𝜎+ and 𝜎− radiations)
and a longitudinal 𝐵𝑧-field of 267 G. As mentioned earlier, the NC thickness is 𝐿 = 385 nm, the reservoir
temperature is 140 ◦C, and the laser power is 30 𝜇W. There are four transitions that are excited by 𝜎−

radiation located on the low-frequency wing of the spectrum, while the four transitions that are excited
by 𝜎+ radiation are located on the high-frequency wing of the spectrum. The resonances are separated
by nearly the same frequency interval ∼ 150 MHz, which also remains the same for 𝐵𝑧 ≫ 𝐵0. The
middle curve shows a calculated SD absorption spectrum which is in very good agreement with the
experimental spectrum. The lower curve shows the second derivative of a SA spectrum obtained with
a usual cm-size K cell. In fig. 4.5a, experimental SD absorption spectra are shown for 𝐵𝑧 increasing
from 397 G to 794 G. As before, the two groups of 𝜎 transitions, highlighted by the brown and green
boxes are clearly visible. Figure 4.5b shows calculated SD absorption spectra [the full width at half
maximum (FWHM) is chosen to be 40 MHz] for the same conditions as in Figure 4.5a. The inaccuracy
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4.2. Experimental study: magnetometry with a 39K nanocell

in the determination of strong 𝐵𝑧-fields is 5%, arising from the inhomogeneity of the magnetic field
and the mm-dimensions of the measurement head of the Hall effect magnetometer. By measuring the
frequency distance 𝐷 between transitions labeled 4+ and 4− obtained by 𝜎+ and 𝜎− radiations and using
the reference frequency interval of blue 461.7 MHz (obtained by SA, see fig. 4.4), it is possible to obtain a
“calibration” curve which can be used to determine the magnitude of the 𝐵𝑧-field. The curve is presented
in fig. 4.6a. Note that at 𝐵 = 10 kG, we measure 𝐷 = 37 GHz.

Ref.

SD exp.

Theor.

Figure 4.4 – 39K 𝐷1 line spectra recorded for 𝐿 = 385 nm. Red curve (SD exp.): experimental
SD absorption spectrum for 𝜎+ and 𝜎− radiation recorded for 𝐵 = 267 G. Blue curve (Theor.):
theoretical SD absorption spectrum. Lower curve: SD of a SA spectrum for reference. The transition
labeling is consistent with fig. 2.22, 𝜎− and 𝜎+ transitions are shown in the brown and green regions
respectively. 𝐷 and 𝑑 are defined in the text.
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a) b)Experiment T,heory

Figure 4.5 – 39K 𝐷1 line spectra recorded for 𝐿 = 385 nm. a) Experimental SD spectra for 𝜎
polarized radiation recorded for 𝐵 = 397, 500, 654 and 794 G. b) Theoretical SD spectra for the same
values of 𝐵𝑧 . The transition labeling is consistent with fig. 4.2, 𝜎− and 𝜎+ transitions are shown in
the brown and green regions respectively.

A narrow-band distributed feedback (DFB) diode-laser such as the one described in [182] has a linear
frequency scanning range of ∼ 40 GHz. Such type of laser could thus be used for this method of 𝐵𝑧-field
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4.2. Experimental study: magnetometry with a 39K nanocell

a) b)

Figure 4.6 – a) Frequency difference 𝐷 between transitions 4+ and 4− as a function of the magnetic
field. Solid line: theory. Dots with error bars: experimental measurements. b) 𝐷/𝑑 as a function of
the magnetic field. Solid line: theory. Dots with error bars: experimental measurements. In both
cases, the inaccuracy is around 5%. The inset shows the theoretical ratio 𝐷/𝑑 with respect to the
magnetic field up to 𝐵 = 10 kG.

measurement in the range 0.1 − 10 kG. The ECDL we used here has a small linear frequency scanning
range of ∼ 4 GHz, making it only suitable for 𝐵𝑧-field measurements below 2.5 kG. This range of
measurement for the determination of magnetic fields could be increased greatly with the use of a DFB
laser. In [69, Fig. 2] we described a system that allows one to create a 10 kG magnetic field in a nanocell.
Conveniently, the magnetic field measurements can also be carried out without using the frequency
reference. This is made possible by measuring 𝐷 and dividing it by the frequency distance 𝑑 between
atomic transitions 4+ and 1+ (shown in fig. 4.4a). The relationship 𝐷/𝑑 as a function of the magnetic
field is shown in fig. 4.6b. The intervals 𝐷 and 𝑑 between atomic transitions are easily determined
manually. A simple computer program substantially speeds up the data processing. It is intended for
calculating 𝐵𝑧 with the aid of a spectral analysis done on a computer (for this, the data displayed on the
oscilloscope is quickly transferred to a computer). The program finds the significant maxima of the
spectrum. The atomic transition with number 1+, on the high-frequency wing, is singled out as the first
one. Then each transition is assigned in descending order of coordinates. the fourth (4+) and fifth (4−)
maxima, determines the distances (along the frequency axis) between the first and fourth maxima (𝑑)
and fourth and fifth maxima (𝐷), and then calculates the ratio 𝐷/𝑑 . Further, to find 𝐵𝑧 , the file of the
dependence of the ratio 𝐷/𝑑 with respect to 𝐵𝑧 is used (fig. 4.6b).
In [69], it is experimentally demonstrated that HPB regime is fulfilled for the 𝐷1 lines of 85Rb and 85Rb
up to 𝐵 = 7 kG, and there is a good agreement with the theoretically calculated curves. In [183], it is
experimentally demonstrated that HPB regime is fulfilled for the 𝐷2 line of Cs atoms up to 𝐵 = 9 kG, also
showing a good agreement with the theory. For 39K, the theoretically calculated ratio 𝐷/𝑑 with respect
to 𝐵𝑧 is presented in the inset of fig. 4.6b, which shows that the HPB regime is fulfilled up to 10 kG.
For some applications, it is important to record absorption spectra at smaller cell thicknesses. In fig. 4.7a,
experimental SD absorption spectra are presented for 𝐵𝑧 increasing from 440 G to 1110 G. The NC
thickness is, in that case, 𝐿 = 120 ± 5 nm and the reservoir temperature is 155 ◦C. The laser power is
30 𝜇W. The 8 transitions are still very well resolved. Note that for a fixed value of the atomic vapor
density, there is a smooth decrease in absorption as 𝐿 decreases from 385 nm to 120 nm without the
appearance of any additional spectral feature that would pollute the measurements.
Apparently, 𝐿 = 120 ± 5 nm is the minimum acceptable NC thickness since, as shown in [56], for
𝐿 < 100 nm a rapid broadening of the resonance lines occurs. This is due to atom-surface interaction
between the vapor and the NC windows (so-called van der Waals interaction), which leads both to an
asymmetric broadening of the resonance lines and to their frequency shift towards the low-frequency
region of the spectrum [44, 110]. More details regarding atom-surface interactions at small NC thickness
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Figure 4.7 – 39K 𝐷1 line spectra recorded for 𝐿 = 120 ± 5 nm. a) SD absorption spectra for 𝐵𝑧
increasing from 440 to 1110 G. Lower curve: SD of a saturated absorption spectrum for reference.
Transition labeling is consistent with fig. 4.2, 𝜎− and 𝜎+ are shown in the brown and green regions
respectively. b) The red curve has been calculated for 𝐵1 = 2000 G and the blue curve for 𝐵2 = 2007
G. Black curves depict experimental SD absorption spectra for 𝐵1 and 𝐵2, used to measure 3.3 G/𝜇m
gradient when the NC (𝐿 = 120 ± 5 nm) is placed on a micrometer stage at 𝐵1 = 2000 G and shifted
by 2 𝜇m relative to the initial position when 𝐵2 becomes 2007 G. As can be seen, when moving the
NC by 2 𝜇m, the frequency shift is 12.3 MHz, which can be measured well. The inset shows the
slope [MHz/G] of the 𝐹 = 1, 2 → 𝐹 ′ = 1, 2 transitions.

can be found in chapter 1.
Reference [184] provides a description of a Stern-Gerlach type deflecting magnet, intended to deflect
beams of paramagnetic nanoclusters, molecules, and atoms using a magnetic field with a gradient of
3.3 G/𝜇m. Figure fig. 4.7b shows theoretical SD absorption spectra (red and blue solid lines with FWHM
80 MHz and fitted with a pseudo-Voigt profile) and experimental SD absorption spectra (presented by
black dotted lines) that can be used to measure such a gradient if a NC with a thickness 𝐿 = 120 ± 5 nm
is placed on a micrometer stage (magnetic field 𝐵1 = 2 kG) and shifted by 2 𝜇m with respect to the initial
position (the magnetic field becomes 𝐵2 = 2006.6 G). The red curve has been calculated for 𝐵1 = 2000 G,
and the blue curve has been calculated for 𝐵2 = 2006.6 G. The black curves depict experimental SD
absorption spectra for 𝐵1 and 𝐵2. Transition 4+ was chosen for measurements. As can be seen from
fig. 4.7b, when moving the NC by 2 microns (fields 𝐵1 and 𝐵2), the frequency shift is 12.3 MHz which
can be measured well. Note that if the gradient is 2 times larger, then by moving the NC by 1 𝜇m the
frequency shift will also be 12.3 MHz. It is crucial to note that the use of the above-mentioned Hall
effect magnetometer, of which the sensor part has an area of a few mm2, will lead to large inaccuracies
in the determination of magnetic fields with a large gradient. The advantage of our experimental setup
compared to a regular Hall gauge magnetometer is the small size of the gauge, which is simply delimited
by the interaction region and therefore the dimensions of the vapor column. The inset in fig. 4.7b shows
the slope [MHz/G] of 𝐹 = 1, 2 → 𝐹 ′ = 1, 2 transitions, which is ∼ 1.9 MHz/G for 𝐵 > 1000 G and remains
nearly constant in strong magnetic fields.
Different types of magnetometers are described in the reviews [72, 73]. Particularly, magnetic sensors
based on superconducting quantum interference devices (SQUIDs) are able to detect the human heart
and brain magnetic fields on the order of 100 pT and 1 pT respectively, but they require cryogenics which
prevents their miniaturization. Optical magnetometers based on nitrogen-vacancy centers in diamond
are also sensitive to magnetic fields but require heavy temperature stabilization and microwave fields.
Moreover, their operational range is limited by the ground state level anticrossing occurring at 𝐵 ∼ 1024
G [185]. Meanwhile, our experimental setup based on a 39K nanocell is pretty simple and compact,
and has the advantage of being immune to electric perturbations and thermal drift. This work shows
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the advantage of a magnetometer based on a 39K NC in comparison with a commercial magnetometer
based on the Hall effect for the measurement of inhomogeneous magnetic fields. Such type of NC-based
magnetometer with high spatial resolution could be useful for example for high-gradient magnetic field
mapping in nuclear tomography or magnetic field measurement in challenging environments.

4.3 Experiment: magnetometry with a 39K microcell

The manufacturing of the NC used above and described in chapter 1 is technically a more complicated
problem than the manufacture of a MC due to the necessity to provide wide regions where the gap
thickness is of the order of the wavelength and/or half-wavelength [61], meanwhile to form the gap
in the case of the MC, it is sufficient to place thin platinum strips (spacers) with a thickness ∼ 30 𝜇m
between the windows. As manufacturing this type of MC can cause some technical difficulties, details on
the construction are presented [183, Fig. 2]. Such cells can be easily manufactured in many laboratories.
Other constructions of MCs were presented for example in [186, 187].

4.3.1 Micrometric thin 39K vapor cell

Analogously to the manufacturing process described in chapter 1, the windows of the MC were made of
well-polished crystalline sapphire. To minimize birefringence, the windows were cut so that the 𝐶-axis
is perpendicular to their surface. To provide a gap of thickness 𝐿 ∼ 30 𝜇m, thin platinum stripes were
placed between the inner surfaces of the windows. In the lower part of the windows, a hole was drilled
into which a thin sapphire tube with an outer diameter of ∼ 2 mm and an inner diameter of 0.8 mm was
inserted before gluing. “Molybdenum” glass glued to the vacuum system was soldered to the sapphire
tube. Then, filling the cell with natural potassium is carried out the same way as for glass cells.

4.3.2 Experimental setup

FI

Ref. channel
M

OSC

ECDL
BS GP

MC
PMPM

PD

Measurement channel

M
PD

C

BS

Figure 4.8 – Sketch of the SA experimental setup using a MC. ECDL: Extended Cavity Diode-Laser,
𝜆 = 770 nm. FI: Faraday Isolator, BS: beam splitter, GP: Glan polarizer, MC: Micrometric-Thin 39K
Cell. C: cm-long cell used to form a SA reference spectrum at 𝐵 = 0. PM: permanent magnet, PD:
photodetector, M: mirror, OSC: oscilloscope.

The experimental setup is depicted in fig. 4.8. SA spectrum are recorded using the MC filled with 39K,
whose thickness is 30 𝜇m along the laser beam propagation direction. The MC was placed into an oven
with two holes allowing passage of the laser radiation and was heated to ∼ 130 ◦C, providing an atomic
density of 𝑁 ∼ 2 · 1011 cm−3.
A VitaWave ECDL with a wavelength of 𝜆 = 770 nm and a spectral linewidth of 1 MHz [115] was
used. The MC was placed between strong permanent magnets (PMs) with holes for the passage of
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laser radiation. The PMs were fixed on nonmagnetic tables. The magnetic field in the MC was varied
by changing the distance between the PMs. The magnetic field was calibrated using a Hall effect
magnetometer. A fraction of radiation passing through the MC was directed precisely backward using a
mirror (M) (in this case, the incident radiation serves as pumping, while the reflected radiation serves
as probe radiation) to form a SA scheme. Neutral density filters (not shown in the scheme) were
used to determine the optimum pumping and probe radiation powers required for the formation of
narrow atomic velocity-selective optical pumping (VSOP) resonances and reaching their relatively large
amplitude at a small spectral width. It has been shown in [170] that so-called CO resonances are almost
absent in the saturated absorption spectrum of a Rb MC. This, together with the small spectral width of
atomic transitions (∼50 MHz), allows one to use the SA spectrum for the determination of frequencies
and probabilities of individual transitions. As in the previous setup described in section 4.2, a fraction of
the laser radiation was directed to a 1.5 cm-long 39K cell in order to record a SA spectrum at 𝐵𝑧 = 0.

4.3.3 Experimental results and discussion

SD exp.

Theor.

SA

Ref.

a) b)

Figure 4.9 – a) Upper curve: experimental SA spectrum of the 𝐷1 line of 39K obtained using a
MC and linearly polarized laser radiation when a longitudinal magnetic field 𝐵 = 822 G is applied.
Middle curve (SD exp.): SD of the SA spectrum (inverted for convenience). The 𝜎− and 𝜎+ transitions
are represented in the brown and green boxes, respectively. Blue curve (Theor.): SD of a theoretical
absorption spectrum. Bottom black curve: SD of a reference (𝐵 = 0) SA spectrum obtained with a
1.5 cm-long 39K cell. b) Diagram depicting the 8 𝜎± transitions present in the HPB regime in the
uncoupled basis |𝑚𝐼 ,𝑚 𝐽 ⟩. The transitions obey the selection rules Δ𝐽 = 0, Δ𝑚𝐼 = 0 and Δ𝑚 𝐽 = ±1
for 𝜎± radiation. 𝜎+ and 𝜎− transitions are respectively shown in green and brown.

In the upper curve of fig. 4.9a, an experimental SA spectrum of 39K 𝐷1 line obtained using the MC for
linearly polarized laser radiation and a longitudinal magnetic field 𝐵 = 822 G is presented. The reservoir
temperature is 130 ◦C and the laser power is ∼ 1mW. The middle curve is the SD of the SA spectrum.
Since the condition 𝐵 ≫ 𝐵0 required for HPB regime is nearly fulfilled, HPB regime is established.
The curve labeled “Theory” is the SD of a theoretical absorption spectrum which correctly shows the
frequency position of the 8 transitions and their amplitudes (the theoretical model is described in [57,
79] and chapters 1 and 2). Although the NC is filled with natural K (93.26% 39K, 6.7% 41K and 0.01% 40K),
we neglect the transitions of 40K and 41K in the theoretical calculations due do their very small influence
on the spectra. This was reported for K 𝐷2 line in [99, Sec. 3.3.3.]. The lower curve is the reference one
(SD of SA spectrum) for 𝐵 = 0 obtained with the 1.5 cm-long 39K cell. All the possible 𝜎+ transitions
labelled 1+ to 4+ (resp. 𝜎− transitions labelled 1− to 4−) in the uncoupled basis |𝑚𝐼 ,𝑚 𝐽 ⟩ are shown in
green (resp. brown) in fig. 4.9b. All transitions obey the selection rules Δ𝐽 = 0, Δ𝑚𝐼 = 0, and Δ𝑚 𝐽 = ±1
for the 𝜎± transitions. It is important to note that there are no unwanted CO resonances in the SA and
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Figure 4.10 – SD of experimental SA spectra obtained using a MC filled with 39K probed with
linearly polarized laser radiation. The longitudinal magnetic field 𝐵𝑧 is gradually increased from
450 to 890 G. Labelling of the transitions is consistent with fig. 4.9. The frequency distance between
any two neighboring transitions is ∼ 130 MHz, as calculated using eq. (4.1). Bottom black curve:
SD of a reference (𝐵 = 0) SA spectrum obtained with a 1.5 cm-long 39K cell.

SD spectra, while they are present in usual cm-long cells, as seen in the reference spectrum. These CO
also split under the influence of a magnetic field, leading to undesirable overlapping with useful atomic
resonances. They do not carry additional information relevant to our study and would only pollute the
spectra [188]. Their absence is one of the key benefits of using a MC for magnetic field sensing.
The SD of experimental SA spectra obtained with the MC for linearly polarized laser radiation are
presented in fig. 4.10, where the longitudinal magnetic field is gradually increased from 450 to 890 G. As
before, the two groups of 𝜎± transitions located on the low- and high-frequency wing of the spectra are
visible. The lower curve is the reference spectrum for 𝐵 = 0, and the spectra are shifted vertically for
clarity.
In a strong magnetic field 𝐵 ≫ 𝐵0, the energies of the lower and upper levels can be determined by the
expression2 [69]:

𝐸 | 𝐽 ,𝑚 𝐽 ,𝐼 ,𝑚𝐼 ⟩ = 𝐴hfs𝑚 𝐽𝑚𝐼 + 𝜇𝐵 (𝑔𝐽𝑚 𝐽 + 𝑔𝐼𝑚𝐼 )𝐵 , (4.1)

where 𝐴hfs is the magnetic dipole interaction constant of the lower level 42𝑆1/2 (∼230.86 ℎ·MHz) and
upper level 42𝑃1/2 (∼27.77 ℎ·MHz), and 𝑔𝐽 and 𝑔𝐼 are the total electronic momentum and nuclear
momentum Landé factors, respectively. All the constants related to 39K are presented in table B.2
(appendix B). The frequency spacing between any two neighboring transitions estimated with eq. (4.1) is

Δ𝐸 = 0.5𝐴hfs(4𝑆1/2) + 0.5𝐴hfs(4𝑃1/2) = 129.3 MHz. (4.2)

The frequency distance Δ𝐸 ∼130 MHz between two neighboring transitions agrees well with the
experiment shown in fig. 4.10. The frequency slope of both groups of transitions is 𝑠 = ∓4𝜇𝐵/3 ≈
±1.86MHz/G for 𝜎± radiation respectively (chapter 2). The slope 𝑠 is an asymptotic value to be reached
at 𝐵 ≫ 𝐵0. In a similar fashion as in section 4.2, measuring the frequency distance 𝐷 between transitions
labeled 4+ and 4− and dividing it by the frequency distance 𝑑 between transitions 4+ and 1+ (as depicted
in fig. 4.9) will allow to determine the magnitude of the 𝐵𝑧-field. The ratio 𝐷/𝑑 (experiment and theory)
as a function of the magnetic field is presented in fig. 4.11. It should be noted that in this case the spatial
resolution is bottlenecked by the dimension of the MC. A spatial resolution of 30 𝜇m could be fulfilled.
The ratio 𝐷/𝑑 was computed by averaging each time over five spectra to improve the accuracy. Further,
𝐷 , 𝑑 , and 𝐷/𝑑 are compared with theoretical calculations to estimate the value of 𝐵𝑧 . The inaccuracy in

2This is a special case of eq. (2.35) derived in chapter 2 for 𝐼 = 3/2 and 𝐽 = 1/2.
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Figure 4.11 – Ratio 𝐷/𝑑 of the frequency intervals as a function of the magnetic field 𝐵𝑧 . Stars
with error bars: experimental measurements. Red line: theory. The inaccuracy is 5%.

the determination of 𝐷/𝑑 (and therefore 𝐵𝑧) is caused primarily by the nonlinear scanning of the ECDL
lasers over a wide frequency range [115]. Here as well, the usage of a narrow-band DFB laser with a
much bigger linear scanning range would allow one to use this method to determine magnetic fields in
the range of 0.1 - 10 kG.

4.4 Conclusion

This chapter demonstrates the utility of using nanocells and microcells filled with 39K for high spectral
resolution table-top magnetometry. A notable advantage of 39K is its small characteristic magnetic field
value 𝐵0 ≃ 170 G, the smallest among naturally abundant alkali metal isotopes. When HPB regime
is reached, the absorption spectrum of linearly polarized radiation in a longitudinal magnetic field
simplifies significantly: from 24 initial transitions to only 8, resulting in clean spectra that are easy to
analyze. This greatly facilitates the measurement of magnetic fields using magnetometers based on
these cells.
For the NC based magnetometer, two methods are presented for determining magnetic field magnitudes
by recording the absorption spectra of atomic vapors within cells with thicknesses between 120 and
390 nm with and without calibration. This allows for the measurement of both uniform and strongly
inhomogeneous magnetic fields across a wide range (0.1 - 10 kG). Unlike Cs and Rb atoms, which
have numerous overlapping Zeeman transitions, 39K atoms in a moderate magnetic field exhibit fewer
transitions, enabling precise measurements of 𝐵𝑧 below 1000 G. This precision makes the 39K-based vapor
cell magnetometers ideal for various applications including magnetic field mapping for free-electron
lasers (which make use of strongly inhomogeneous magnetic fields), beam collimation in particle
accelerators, metal detection, NMR or nuclear medicine. Most importantly, the small thickness (120 ± 5
nm) of the 39K NC would enable the determination of large magnetic field gradients (of the order of 3
G/𝜇m), useful for example in Stern-Gerlach-type experiments.
We also demonstrate the prospects of using 39K MCs to study the peculiarities of the behavior of
atomic levels in magnetic fields that are lower by a factor of 10-15 than what is needed to observe
the same peculiarities for the Cs or Rb atoms. This is due to the high spectral resolution provided by
the Saturation Absorption technique and particularly the absence of unwanted CO resonances in MCs
(which are present in cm-long cells). These cells are much easier to manufacture than NCs and can be
made following the recommendations given for example in [183]. The magnitude of the 𝐵𝑧-field in a
wide range can also be retrieved with or without a frequency reference, albeit with a smaller spatial
resolution of 30 𝜇m is presented and can be carried out without using a frequency reference. In both
cases, the experimental setups are relatively simple and require only one laser.
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Several different types of magnetometers are described in the reviews [72, 73]. Modern state-of-the-art
magnetometers now achieve excellent sensitivity but are focused on the measurement of extremely
low magnetic fields in shielded environments. Optical magnetometers based on nitrogen-vacancy (NV)
centers in diamond are extremely sensitive but require heavy temperature stabilization and a microwave
coupling field, making them unusable in highly perturbed environments. Moreover, their operational
range is affected by the ground-state level anti-crossing occurring at 𝐵 ∼ 1024 G [185]. Meanwhile,
our atomic magnetometer scheme based on a 39K microcell is simple and has the advantage of being
immune to external perturbations and thermal drift. The advantage of our experimental setup compared
to a regular Hall gauge magnetometer is the small size of the gauge which is given by the size of the
vapor cell. Such a type of magnetometer with high spatial resolution could be useful in various fields
such as nuclear medicine, NMR, and nuclear tomography.
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Chapter 5

Coherent processes
In this chapter, we analyze two different coherent processes in short and long cells: EIT and 𝑁 -resonances. Both
resonances are all-optical and are great candidates for atomic frequency standards and laser frequency stabilization
systems. We first study EIT resonances formed on three-level systems consisting of forbidden transitions of Cs, strongly
shifted from the 𝐷2 line transition frequency. We then perform a comprehensive analysis of the influence of buffer gas
pressure on the contrast and linewidth of 𝑁 -resonances in 0.8 cm long cells. Both resonances are also studied in an
external magnetic field, and the results are compared with theoretical predictions.
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5.1 Introduction

As it was shown in chapter 2 as well as in several papers [55, 57–59, 167, 189, 190], the application of a
strong magnetic field can significantly change the intensities of the Zeeman transitions. High interest
has recently been focused on atomic transitions between ground and excited levels that satisfy the
condition 𝐹 ′ − 𝐹 = Δ𝐹 = ±2, so-called forbidden magnetically induced (MI) transitions [58, 59, 189].
MI transitions are of great interest because, over a wide range of magnetic fields, their probabilities can
be much higher than the probabilities of usual (“allowed”, satisfying the selection rule on 𝐹 ) transitions.
It is important to note that the slope of the frequency shifts (obtained by diagonalizing the magnetic
Hamiltonian chapter 2) as a function of the magnetic field 𝐵 in strong magnetic fields can reach up to
around 4 MHz/G, which is 3 times larger than in the case of ordinary transitions. Thus, the frequency
shift of MI transitions in strong magnetic fields can reach several tens of GHz, which can be useful for
working in higher frequency ranges, for example for the frequency stabilization of lasers on strongly
shifted frequencies [18, 170].
It has been recently demonstrated that electromagnetically induced transparency (EIT) resonances
(see appendix C and [75]) can be formed using a Λ-system made of Δ𝐹 = +2 MI transitions only if
both probe and coupling beams are 𝜎+-polarized. This statement was experimentally and theoretically
verified for 87Rb (MI transitions 𝐹 = 1 → 𝐹 ′ = 3) and 85Rb (MI transitions 𝐹 = 2 → 𝐹 ′ = 4) [137, 191].
However, if the Λ-system is formed by MI transitions satisfying Δ𝐹 = −2, then both probe and coupling
radiation must be 𝜎−-polarized in order to form EIT resonances. This statement was experimentally
and theoretically verified for Cs 𝐹 = 4 → 𝐹 ′ = 2 MI transitions. This is a direct consequence of
magnetically-induced circular dichroism [165].
Another type of resonances, so-called “𝑁 -resonances”, share a majority of their characteristics with
EIT resonances. They were first observed and studied by Zibrov et al. [192] and initially called
three-photon absorption resonances or three-photon EIT resonances due to their resemblance with regular
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EIT resonances. They result from a two-field (probe and coupling) three-photon absorption process
involving a two-photon Raman transition combined with optical pumping (from the probe beam).
𝑁 -resonances are promising candidates for small atomic frequency standards that can be realized with
commercially available diode lasers [193–195], however, they cannot be observed in a nanocell (NC).
This chapter is divided into two main parts:

• In section 5.2, we use for the first time the 𝜎+ 𝐹 = 3 → 𝐹 = 5 MI transitions of cesium as probe
radiation to form EIT resonances in strong magnetic fields (1 - 3 kG) while the coupling radiation
frequency is resonant with 𝐹 = 4 → 𝐹 = 5 𝜎+ transitions. The experiment is performed using a NC
(𝐿 = 𝜆) filled with Cs vapor and a strong permanent magnet. The thickness of the vapor column is
852 nm, corresponding to the Cs 𝐷2 line transition wavelength. Due to the large frequency shift
slope of the MI transitions, it is possible to form high-contrast and strongly frequency-shifted
EIT resonances. Preliminary calculations performed considering Doppler-broadened three-level
systems in a NC are in reasonable agreement with the experimental measurements.

• In section 5.3, we study the formation of 𝑁 -resonances in centimeter long cells. It was shown that
𝑁 -resonances exhibit enhanced contrast and reduced linewidth when a buffer gas, typically Neon,
is introduced in the alkali vapor cell. Despite extensive literature on the EIT process, research on
𝑁 -resonances remains scarce. We use different centimetric vapor cells with varying buffer gas
pressures, spanning from 0 to 400 Torr to investigate how these pressure conditions influence
the contrast and linewidth of the 𝑁 -resonance. Once the optimal pressure range is obtained, we
examine the evolution of the resonance when an external magnetic field is applied and compare it
with theoretical predictions.

The first part of this chapter gave rise to the publication of the following journal article:

• A. Sargsyan, A. Tonoyan, R. Momier, C. Leroy, and D. Sarkisyan. Formation of strongly shifted EIT
resonances using “forbidden” transitions of Cesium. J. Quant. Spectrosc. Radiat. Transf. 303 (2023),
p. 108582

The second part of this chapter has been submitted and is currently (as of June 2024) under review:

• A. Sargsyan, R. Momier, C. Leroy, and D. Sarkisyan. Influence of buffer gas on the formation of 𝑁 -
resonances in rubidium vapors. 2024. DOI: 10.48550/arXiv.2402.09184. arXiv: 2402.09184
[physics]. Pre-published

5.2 Formation of EIT resonances using “forbidden” transitions in the
HPB regime

5.2.1 Probabilities and frequency shifts of the MI transitions of Cs 𝐷2 line

In this work, we consider seven 𝜎+ MI transitions of Cs (𝐹𝑔 = 3 → 𝐹𝑒 = 5, see fig. 5.1). The probabilities
of these transitions increase highly in the range 0.3 - 3 kG and we used these transitions to form EIT
resonances in strong 𝐵-fields. A NC filled with Cs vapor (thickness 𝐿 ≈ 850 nm, approximately the
resonant wavelength of Cs 𝐷2 line [2]) has been used. The advantages of using thin cells, including
strong reduction of Doppler broadening, have been investigated in the previous chapters as well as in
numerous papers [59, 61, 191].
The curves in fig. 5.2 were calculated using the theoretical model described in chapter 2. The block-
diagonal (each block corresponding to a given value of the magnetic quantum number) magnetic
Hamiltonian is built for each value of the magnetic field and then diagonalized in order to calculate the
probability coefficients. This model was presented in several papers, e.g. [57, 58, 190]. The evolution of
the probabilities of MI transitions (labeled 1 to 7, see fig. 5.1) with respect to the magnetic field 𝐵 is
shown in fig. 5.2a. Note that in the range 0.3 - 2 kG the probabilities of the MI transitions labeled 5, 6,
and 7 are the strongest among all transitions occurring from 𝐹 = 3 [59, 189].
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Figure 5.1 – Scheme of Cs 𝐷2 line 𝜎+ transitions between 𝐹 = 3, 4 and 𝐹 ′ = 5. The probe frequency
𝜈𝑝 is scanned across the MI transitions labelled 1-7 (𝐹𝑔 = 3 → 𝐹𝑒 = 5). The coupling frequencies 𝜈𝑐𝑛
(𝑛 = 1, . . . , 7) are resonant with 𝐹 = 4 → 𝐹 ′ = 5 transitions, forming seven Λ-systems. Only the
states involved in the process under consideration are shown. Note that |𝐹,𝑚𝐹 ⟩ is just a notation
for visualization, as the atomic states are better described in the uncoupled basis |𝐽 ,𝑚 𝐽 , 𝐼 ,𝑚𝐼 ⟩ in
high magnetic fields.

a) b)

Figure 5.2 – Magnetic field dependence of the Zeeman transition intensities of the 𝐷2 line of
Cs. a) 𝐹 = 3 → 𝐹 ′ = 5 𝜎+ MI transitions and 𝐹 = 4 → 𝐹 ′ = 5 𝜎+ transitions. b) Transition
|4,−1⟩ → |5′,−2⟩ (𝜎−). This transition forms a Λ-system with transition 7 as shown in panel a) and
in the right inset (see fig. 5.1). Its probability tends to 0 as the magnetic field increases, thus forming
EIT resonances at high magnetic fields requires both probe and coupling beams to be 𝜎+-polarized.
The inset in fig. 5.2b) depicts the decrease of the amplitude of transition 7 as the magnetic field
increases.

The frequency shift slope of the MI transitions, obtained through the eigenvalues of the Hamiltonian, is
quite large (∼ 4 MHz/G) while for usual transitions the typical slope is 3 times smaller. Even though the
probabilities of the MI transitions decrease as 𝐵 increases, they can still be recorded easily at 8 kG. As
noted below, this is because these transitions are formed far on the high-frequency wing where there
are no intersections with other transitions (spectra are presented for Na in chapter 2, but Cs behaves
almost identically).
The evolution of the probabilities of the corresponding seven coupling transitions 𝐹 = 4 → 𝐹 ′ = 5 (𝐴𝑐1

to 𝐴𝑐7 ) that are used to form seven Λ-systems (see fig. 5.1) with respect to the magnetic field are shown
in fig. 5.2a. In the case of 𝜎− polarization, the probability of the strongest 𝐹 = 4 → 𝐹 ′ = 5 𝜎− transition
already tends to zero for 𝐵 > 300 G, as shown in fig. 5.2b, implying that both probe and coupling beams
must be 𝜎+-polarized in order to form EIT resonances.

89



5.2. Formation of EIT resonances using “forbidden” transitions in the HPB regime

5.2.2 Theoretical description of the EIT process

The general EIT phenomenon has been described in several papers, see for example the review [75].
To interpret our experimental results, we used the model outlined hereafter. The starting point of the
calculations is the Liouville - von Neumann equation of motion, which gives the dynamical behavior of
the density matrix 𝜌 .

Figure 5.3 – Scheme of the three-level Λ-system used in the calculations. The total decay rate
Γ33 of state |3⟩ is 1/2(𝛾31 + 𝛾32) [106]. The dephasing rate of coherence between the ground states
is Γ21 = (2𝜋𝑡)−1 where 𝑡 is the time of flight of the atoms through the cell (at the most probable
velocity 𝑢 =

√︁
2𝑘𝐵𝑇 /𝑀 where 𝑇 is the vapor temperature and𝑀 the atomic mass).

For a 3-level Λ-system as described in fig. 5.3 [see appendix C], the evolution of the coherences [106]
read as follows:

¤𝜌32 = 𝑖Ω𝑐 (𝜌22 − 𝜌33) + 𝑖Ω𝑝𝜌∗21 − (𝑖Δ𝑐 + 𝛾31/2)𝜌32

¤𝜌31 = 𝑖Ω𝑝 (𝜌11 − 𝜌33) + 𝑖Ω𝑐𝜌21 − (𝑖Δ𝑝 + 𝛾32/2)𝜌31

¤𝜌21 = 𝑖Ω
∗
𝑐𝜌31 − 𝑖Ω∗

𝑝𝜌32 + (𝑖Δ𝑅 + Γ21)𝜌21 ,

where Δ𝑝 and Δ𝑐 are respectively the detuning of the probe and of the coupling laser to the excited state
|3⟩, Δ𝑅 is the two-photon Raman detuning, 𝛾31 and 𝛾32 are the population relaxation rates and Γ33 is the
total decay of state out of the excited state |3⟩. These parameters are all linked to each other following
the relations that can be found for example in [106]. Γ21, the coherence dephasing rate between the
ground states, is influenced by the geometry of the cell through the relation Γ21 = (2𝜋𝑡)−1, where 𝑡
is the time of flight of atoms traveling along the laser beam at the most probable thermal velocity
𝑢 =

√︁
2𝑘𝐵𝑇 /𝑀 . It can be shown [196, 197] that the Doppler-broadened absorption profile of transition

|1⟩ → |3⟩ is then given by:

⟨𝐴⟩ =
−4𝜋𝜔𝑝𝑁𝑡2

2𝑡1
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√
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|𝐹 |2
∫ +∞

0
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∫ 𝐿/𝑣
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d𝑡

× Im
{
𝑑31

[
𝜌+31

(
𝑡,Δ+

𝑝 , 𝐸𝑝0(𝑣𝑧𝑡)
) (

1 − 𝑟1𝑒
2𝑖𝑘𝑝𝑣𝑧𝑡

)
+ 𝜌−31

(
𝑡,Δ−

𝑝 , 𝐸𝑝0(𝐿 − 𝑣𝑧𝑡)
) (

1 − 𝑟1𝑒
2𝑖𝑘𝑝 (𝐿−𝑣𝑧𝑡 )

)]}
,

(5.1)

where𝑀 (𝑣𝑧) is the one-dimensional Maxwell velocity distribution and 𝑑 is the transition dipole moment.
Due to the geometry of the cell (chapter 1), we consider only a one-dimensional problem where the laser
beam propagation direction 𝑧 is chosen to be perpendicular to the cell of thickness 𝐿. The coherences
𝜌+31 and 𝜌−31 therefore respectively relate to atoms flying with velocity 𝑣𝑧 and −𝑣𝑧 [𝜌+31 ≡ 𝜌31(𝑧 = 𝑣𝑧𝑡)
and 𝜌−31 ≡ 𝜌31(𝑧 = 𝐿 − 𝑣𝑧𝑡)], and Δ±

𝑝,𝑐 = Δ𝑝,𝑐 ± 𝑘𝑝,𝑐𝑣𝑧 . Due to its geometry, the cell exhibits a Fabry-Pérot
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cavity behavior, and 𝐸𝑝0 represents the probe field inside the empty cell:

𝐸𝑝0(𝑧) =
𝐸𝑝𝑡1

𝐹

[
1 − 𝑟2𝑒

2𝑖𝑘 (𝐿−𝑧 )
]
, (5.2)

with 𝐸𝑝 an external probe field, 𝐹 = 1− 𝑟1𝑟2𝑒
2𝑖𝑘𝐿 the quality factor of the cavity, 𝑟1, 𝑟2, 𝑡1 and 𝑡2 being the

reflection and transmission coefficients of the windows. More details regarding the derivation of the
transmitted (and reflected) fields through a nanometric-thin vapor cell can be found in chapter 1 and a
thorough description of EIT in such a cell including laser bandwidth-induced effects was performed in
[196]. When both probe and coupling lasers are on, the absorption profile given by eq. (5.1) will exhibit
an EIT resonance of spectral width [75]:

𝛾EIT ≈ 2Γ21 + Ω2
𝑐/𝛾𝑁 , (5.3)

where 𝛾𝑁 is the natural linewidth of the transition. It is well known that an increase of Ω𝑐 leads to
an increase of EIT contrast. However, it follows from eq. (5.3) that it also leads to an increase in the
spectral width of the EIT resonance. It is therefore necessary to find a compromise value. Estimates can
be obtained from Ω𝑐/2𝜋 = 𝛾𝑁 (𝐼/8)1/2 [198], where 𝐼 is the laser intensity in mW/cm2, and 𝛾𝑁 ∼ 5 MHz,
typical for alkali 𝐷 lines transitions. This gives 𝐼 = 18 mW/cm2 for the Rabi frequency Ω𝑐/2𝜋 = 1.5𝛾𝑁
used in the calculation. We will compare this profile with experimental measurements in section 5.2.4.

5.2.3 Experimental setup
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Figure 5.4 – a) Scheme of the EIT experimental setup. ECDL: CW narrow-band external-cavity
diode lasers with 𝜆 = 852 nm (resonant with Cs 𝐷2 line). FI: Faraday insulators. PBS: polarizing
beam splitters. BS: beam splitter. IF: interference filter. C: saturated absorption spectroscopy unit
for frequency reference. NC: nanocell placed in oven. PM: permanent magnet. PD: photodiodes.
OSC: 4-channel digital oscilloscope. 𝑃ℎ and 𝑃𝑣 stand for horizontal and vertical polarizations. b)
Picture of the nanocell. The oval corresponds to the region where 𝐿 ≈ 𝜆.

The layout of the experimental setup is shown on fig. 5.4. Two extended cavity diode laser (ECDL)
are tuned in the vicinity of the Cs 𝐷2 line, with a wavelength 𝜆 ≃ 852 nm. The Λ-systems shown
in fig. 5.1 are formed by scanning the frequency 𝜈𝑝 of a VitaWave laser (𝛿𝜈𝑝 ∼ 1 MHz) [115] in the
vicinity of the MI transitions 𝐹 = 3 → 𝐹 ′ = 5, while keeping the frequency 𝜈𝑐 from a MOGLabs “cateye”
laser (𝛿𝜈𝑝 ≃ 0.1 MHz) on resonance with one of the 𝐹 = 4 → 𝐹 ′ = 5 transitions. We use a 14 cm-long
Fabry–Pérot (FP) etalon made with fused silica having nearly plane-parallel aluminum coated windows
(90% reflectivity for 𝜆 = 852 nm). This etalon has a free spectral range of 780 MHz. The linearity of
the laser scanning was tested by simultaneously recording the transmission spectrum of the etalon,
and the nonlinearity has been evaluated to be around 1% throughout the spectral range. Since the
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saturated absorption (SA) technique shows quite accurately the frequency position of the transitions,
the shift is then determined using the FP cavity. The presence of velocity-selective optical pumping
(VSOP) peaks allows us to easily adjust the frequency of the coupling laser by slightly varying the input
current of the laser. When the coupling laser is resonant with one of the 𝐹 = 4 → 𝐹 ′ = 5 transitions, an
EIT resonance superimposed on the corresponding VSOP peak is formed. A fraction of about 10% of
the coupling radiation power was sent to a frequency stabilization unit based on the dichroic atomic
vapor laser locking method [199]. Probe radiation is vertically polarized, while the coupling radiation is
horizontally polarized. In the case of a longitudinal 𝐵-field, linearly polarized laser radiation can be
considered as consisting of 𝜎+ and 𝜎− radiations. Since we use mutually perpendicular polarizations, a
polarizing beam splitter allows us to filter the signal so that only the probe radiation is directed towards
the photo-receiver (orange part), while cutting off the coupling radiation. As noted above, in the case of
MI transitions with Δ𝐹 = +2 for the formation of the EIT resonance, both probe and coupling radiations
must have 𝜎+ polarization. A photograph of the Cs NC is shown in fig. 5.4b. Interference fringes are
formed by the reflection of light on the inner surfaces of windows. The region corresponding to a
thickness 𝐿 ≈ 𝜆 ∼ 850 nm is outlined by an oval. It was demonstrated in previous papers [137, 191, 200]
that the use of a NC with thickness 𝐿 = 𝜆 is convenient to record high-contrast EIT resonances, which
is due to its low absorption, even though frequent inelastic collisions of atoms with the windows of the
NC induce a broadening of the EIT resonance. Studies of the EIT resonances were done using a strong
neodymium–iron–boron alloy ring-shaped permanent magnet (PM). Due to the small thickness of the
vapor column, the high-gradient field produced by the magnet can be considered uniform across the
interaction region. The PM was placed after the rear window of the NC, with the axis aligned along the
probe beam propagation direction. The magnetic field in the NC was simply varied by longitudinal
displacement of the magnet, calibrated using a Hall effect magnetometer.

5.2.4 Experimental results
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Figure 5.5 – Probe transmission spectra of the Cs nanocell (𝐿 = 𝜆 = 852 nm). The probe frequency
is scanned so that it is successively resonant with transitions 3 to 7, following the labeling presented
in fig. 5.1). Each spectrum (from 1 to 5) exhibits an EIT resonance. These EIT resonances are
labeled EIT 3 to EIT 7, and the transition to which the coupling laser is tuned is specified. As an
example, for EIT 3, the two lasers form a Λ-system with the probe laser resonant with transition 3
(|3,−1⟩ → |5′,−2⟩) and the coupling laser 𝜈𝑐3 tuned to transition |4, +1⟩ → |5′, +2⟩. The bottom
black line (spectrum 6) corresponds to the case where the probe is scanned but the coupling is
turned off. The coupling powers are respectively 10 and 0.05 mW and the external magnetic field is
𝐵 = 1400 G. Small VSOP peaks are visible on each atomic resonance. Zero frequency corresponds
to the transition frequency of Cs 𝐷2 line.
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Curves 1 to 5 in fig. 5.5 show the experimental transmission spectra of the probe radiation which
contain the resonances EIT 3 to EIT 7 in a longitudinal magnetic field 𝐵 = 1400 G. The NC thickness is
𝐿 = 𝜆 = 852 nm and the temperature of the reservoir is 100 ◦C (to prevent Cs vapor condensation on
the windows1). The coupling and the probe powers are 20 mW and 0.1 mW, respectively. Note that
since only 𝜎+ radiations participate in the formation of the EIT resonances (see fig. 5.1), only half of the
power of these radiations must be considered, meaning 10 mW and 50 𝜇W, respectively. Curve 6 is a
probe spectrum when the coupling is blocked. Since the cell thickness is 𝐿 = 𝜆, small peaks formed by
VSOP resonances are located exactly at the atomic transitions frequencies, as described in [55].
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Figure 5.6 – Probe transmission spectra of the Cs nanocell (𝐿 = 𝜆 ≈ 850 nm). Spectra 1 to 4
exhibit four EIT resonances, labeled EIT 3 to EIT 6, while the probe frequency is scanned across
transitions 3 to 6. The external longitudinal magnetic field is 𝐵 = 1770 G. Spectrum n° 5 is a probe
transmission spectrum when the coupling is off. Small VSOP peaks are visible on each atomic
transition. Zero frequency corresponds to the transition frequency of Cs 𝐷2 line.

In fig. 5.6, curves 1 to 4 are probe transmission spectra containing EIT 6, EIT 5, EIT 4, and EIT 3
resonances for 𝐵 = 1770 G. Curve 5 shows only the probe spectrum when the coupling is blocked. In
fig. 5.7, lines 1 to 3 show the probe transmission spectra which contain EIT 6, EIT 4 and EIT 3 resonances
for 𝐵 = 2880 G. Curve 4 shows only the probe spectrum when the coupling is blocked. The inset shows
the profile of EIT 6 fitted with a Gaussian profile with a full width at half maximum (FWHM) of ∼
35 MHz. There is also a small VSOP resonance which is formed when the coupling is blocked. The
typical FWHM of VSOP resonances is 40 - 50 MHz. Preliminary theoretical calculations (shown in
fig. 5.7b) were obtained following the procedure described in section 5.2.2. The Rabi frequencies of
the coupling and probe lasers are respectively Ω𝑐 = 1.5𝛾𝑁 and Ω𝑝 = 0.06𝛾𝑁 . Reasonable agreement
between theory and experiment regarding the width and depth of the EIT resonance is obtained and the
VSOP resonance is seen. Small discrepancies (asymmetry of the profile and amplitude of the VSOP
resonance) can arise notably from the need to consider neighboring Zeeman sublevels (not shown in
fig. 5.1), and therefore more than three levels, to obtain more accurate results. The amplitude of the EIT
resonance is a factor ∼10 larger than the amplitude of the VSOP resonance, whereas the spectral width
of the EIT resonance is a factor of 1.5 smaller, which is characteristic of the EIT process [191, 201]. Note
that the contrast of the EIT resonance, defined as the ratio of the EIT resonance amplitude to the peak
absorption of the Cs vapor when the coupling is blocked, is at least 40-50%. This contrast level is typical
when a NC is used [200]. The amplitude of EIT resonance 6 is ∼ 50 times greater than that of the VSOP
resonance and is spectrally narrower than the latter. In fig. 5.8 the solid lines indicate the calculated
dependences of the frequency shifts for transitions 1 - 7 (figs. 5.1 and 5.2) and 𝐹 = 3 → 𝐹 ′ = 4 (marked
with a dotted oval) to the magnetic field 𝐵. The black squares with error bars represent the experimental
results. As mentioned earlier, due to the high value of the frequency shift slope for 𝐵 > 3 kG, the group
of MI transitions 1 - 7 is completely separated in frequency from 𝐹 = 3 → 𝐹 ′ = 4 transitions.

1To prevent condensation, the temperature of the windows is slightly higher.
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Figure 5.7 – a) Probe transmission spectra of the Cs nanocell (𝐿 = 𝜆 = 852 nm). Lines 1 to 3 show
four EIT resonances, labeled EIT 4, EIT 5 and EIT 6. The external longitudinal magnetic field is
𝐵 = 2880 G. Line 4 is a probe transmission spectrum when the coupling is off. b) Zoom on EIT 6
fitted with a Gaussian profile (FWHM 35 MHz) and comparison with theoretical calculations. The
intensity of the coupling radiation was 18 mW/cm2. Red: coupling on, black: coupling off. Small
VSOP peaks are visible on each atomic transition formed by the probe radiation. Their typical
linewidth is 40-50 MHz. Zero frequency corresponds to the transition frequency of Cs 𝐷2 line.
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Figure 5.8 – Red solid lines: frequency shift of transitions 1 to 7 (see fig. 5.1) as a function
of the magnetic field. The black squares with error bars represent experimental measurements
performed using absorption spectra. The uncertainties for the measurements were derived from the
non-linearity of the laser scanning which was evaluated to be around 1% throughout the spectral
range. Black dashed lines: frequency shift of 𝐹𝑔 = 3 → 𝐹𝑒 = 4 transitions. For 𝐵 > 3 kG, both
groups are well separated in frequency. Inset: theoretical and experimental absorption spectra for
𝐵 = 6 kG, the frequency shift reaches 30 GHz from the Cs 𝐷2 line transition frequency.

The curves in the inset of fig. 5.8 show experimental and theoretical spectra (calculated by combining
the models presented in chapters 1 and 2) of the seven MI transitions absorption for 𝐵 = 6 kG when
the frequency shift reaches ∼ 30 GHz. Note that the amplitude of transition 6 is slightly bigger than
that of transition 7 (while for 𝐵 < 5 kG the amplitude of transition 7 is bigger, see fig. 5.2a) due to
magnetic field mixing. One of the remarkable features of the 𝜎+ MI transitions 3 → 5′ is that they
are still well recorded for a magnetic field 𝐵 ≈ 8 kG. They are located in the high-frequency wing of
the spectrum, as can be seen for example in [202, Fig. 18], where the frequency shift reaches 34 GHz.
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In that paper, the 𝐹 = 3 → 𝐹 ′ = 5 are not denoted in the |𝐹,𝑚𝐹 ⟩ basis as |𝑚 𝐽 ,𝑚𝐼 ⟩ is generally a more
adequate basis in high magnetic fields. However, performing the calculations in the coupled |𝐹,𝑚𝐹 ⟩
basis still adequately describes the behavior of the Zeeman transitions, as described throughout this
thesis. The above-mentioned MI transitions can be exploited in such high 𝐵-fields as new frequency
markers, for using new frequency ranges, as well as for the frequency stabilization of lasers at strongly
shifted frequencies from the initial transition in unperturbed atoms [18, 170].

5.3 Buffer gas influence on the formation of 𝑁 -resonances

𝑁 -resonances are narrow-band, all-optical Doppler-free absorptive resonances. They were first observed
and studied by Zibrov et al. [192]. Initially referred to as three-photon absorption resonances or three-
photon EIT resonances due to their resemblance with EIT resonances, they result from a two-field (probe
and coupling) three-photon absorption process involving a two-photon Raman transition combined with
optical pumping (from the probe beam). They are obtained in Λ-systems (as illustrated in fig. 5.9). In
this paper, we study the 𝐷1 optical transition of 85Rb. The states involved in the process are thus 𝐹 = 2, 3
and the (unresolved) excited electronic state 52𝑃1/2. The coupling beam is detuned from the excited
state by the ground state hyperfine frequency ΔHFS ≃ 3.036 GHz [3]. When the Raman condition
𝜈𝑝 − 𝜈𝑐 = ΔHFS is fulfilled, a 𝑁 -resonance appears in the absorption spectrum, in the form of an increase
in absorption on top of the usual Doppler-broadened profile. Therefore, 𝑁 -resonances differ from
EIT resonances in that the latter result in a decrease in absorption [74–76, 203]. 𝑁 -resonances are
closely related to Electromagnetically Induced Absorption (EIA) resonances, which have been studied in
vapors of other alkali atoms (Cs, Na and K) [176, 182, 192–194, 204–209]. As in EIT, the linewidth of a
𝑁 -resonance strongly depends on ground-state hyperfine decoherence.

a) b)

Figure 5.9 – Diagram of the Λ-system (85Rb 𝐷1 line) involved in the 𝑁 -resonance process. The
ground state level splitting is ΔHFS = 3036 MHz. a) The probe laser is swept accross 2 → 2′, 3′
transitions while the coupling is fixed ΔHFS higher than the 𝐹 = 2 set of transitions. b) The probe
laser is swept across 3 → 2′, 3′ transitions while the coupling is fixed ΔHFS lower than the 𝐹 = 3 set
of transitions. In each case, the dotted arrow shows the population transfer due to optical pumping,
which is reflected by the amount of grey beads on each of the ground states. The dotted line is a
virtual level.

When an external magnetic field B is applied, EIT and 𝑁 -resonances behave similarly: the number of
components in which they split depends on the hyperfine structure of the system (namely the total
angular momentum F of the lower ground states), the orientation of the magnetic field B with respect to
the laser beam propagation direction k and the laser polarization. It was recently shown in [210] that
EIT components formed in a magnetic field are useful tools that allow the retrieval of both the direction
and magnitude of the magnetic field. In principle, this could also be true for 𝑁 -resonances.
Previous studies [176, 182, 192–194, 206–208] have shown that 𝑁 -resonances exhibit enhanced contrast
and reduced linewidth when a buffer gas, typically Neon, is introduced in the alkali vapor cell. However,
in-depth investigations to pinpoint the optical buffer gas pressure for the formation of 𝑁 -resonances
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have been lacking. Despite the extensive literature on the EIT process (see for example [74–76, 203]
and references therein), research on 𝑁 -resonances remains limited. This highlights the importance of
further investigation. Due to their weak light shift compared to CPT resonances, 𝑁 -resonances are
promising candidates for small atomic frequency standards that can be realized with commercially
available diode lasers [193–195].
Here, we use five vapor cells with varying buffer gas pressures, spanning from 0 to 400 Torr. The
objective is to investigate how these pressure conditions influence the contrast and linewidth of the
𝑁 -resonance. By covering a broad spectrum of pressures, we aim to gain a comprehensive understanding
of the behavior of the 𝑁 -resonance under various experimental conditions. This allows us to observe
how the spectral features behave and provides valuable insight into the optimal buffer gas pressure
conditions required for the formation of a narrow and high-contrast 𝑁 -resonance. Once the optimal
pressure range is obtained, we examine the evolution of the resonance when an external magnetic field
is applied and compare the frequency shift of its components with previous theoretical calculations.

5.3.1 Experiment
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Figure 5.10 – Scheme of the 𝑁 -resonance experimental setup. ECDL: extended-cavity diode laser,
FI: Faraday isolator, PBS: polarizing beam splitter, BS: beam splitter, F: neutral density filter, Cell +
HC: 0.8 cm vapor cell containing a mixture of Rb and Ne (buffer gas) placed between Helmholtz
coils, IF: interference filter, BD: beam dump, PD: photodetector, M: mirror, NC: nanocell for the
formation of reference spectra, OSC: oscilloscope.

The layout of the experimental setup is shown in fig. 5.10. Two VitaWave [115] ECDLs (𝛿𝜈 ∼ 1 MHz)
diode lasers were used. Both lasers were tuned in the vicinity of the 𝐷1 line of 85Rb. Two beams with
mutually perpendicular polarizations were formed, hereafter referred to as probe (𝜈𝑝 ) and coupling (𝜈𝑐 )
beams, using polarizing beam splitters. The probe laser frequency was tunable in order to scan the
unresolved 52P1/2 excited state, while the frequency of the coupling laser was fixed. The probe power
was kept in the range of 0.5 - 1 mW, while the coupling power could be increased up to 40 mW. Roughly
10% of the coupling laser was directed to a DAVLL frequency locking scheme [199], omitted in fig. 5.10
for the sake of clarity.
The probe and coupling beams were combined with a beam splitter and directed to a 0.8 cm-long vapor
cell containing Rb and Ne buffer gas. Several rounds of measurements were performed with cells having
a different Ne partial pressure. In all cases, the temperature of the cell was 50 ◦C, corresponding to
a number density of the order of 1012 cm−3. The photodetector was then used to record the probe
radiation passing through the cell, the coupling radiation being cut out by an analyzer. The cell was
placed in the middle of three pairs of Helmholtz coils, allowing the formation of a weak magnetic field.
A fraction of the coupling radiation (Ref. channel) was directed to a NC with a thickness 𝐿 ∼ 𝜆 = 795
nm [208] to form a reference spectrum, as presented in fig. 5.11 (lower, blue curve).
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Figure 5.11 – Probe absorption spectrum (upper, red curve) scanning the 𝐹 = 2 transitions of
85Rb 𝐷1 line, recorded with a 0.8 cm cell containing a mixture of Rb vapor and Ne buffer gas
(𝑃Ne = 20 Torr). The spectrum exhibits a 𝑁 -resonance when the coupling laser is on, corresponding
to the case depicted in fig. 5.9a. 𝐴 is the 𝑁 -resonance depth and 𝐵 represents probe-only absorption.
The lower (blue) curve is a reference spectrum obtained with a nanometric-thin cell, as depicted in
fig. 5.10.

The red curve in fig. 5.11 is an absorption spectrum of the probe beam 𝜈𝑝 passing through a 0.8 cm cell
(𝑃Ne = 20 Torr) when the coupling beam 𝜈𝑐 is on. The spectrum contains a narrow 𝑁 -resonance with a
FWHM of 9 MHz and a contrast of around 20%. Throughout this section, the contrast is defined as the
ratio of the depth of the 𝑁 -resonance (𝐴) to the probe-only absorption (𝐵) [72]. The contrast increases
with the power of the coupling laser, as can be seen in fig. 5.12, and can reach with this cell a maximum
of 25% (approximately 2.5 greater than the contrast of a 𝑁 -resonance formed in a cell without buffer
gas). For a cell with 6 Torr Neon, the contrast can reach up to 40%.
In fig. 5.9, we present two diagrams of the energy levels of 85Rb 𝐷1 line involved in the 𝑁 -resonance
formation process. Two configurations are presented, depending on whether the probe laser is scanning
the 𝐹 = 2 or 𝐹 = 3 set of transitions. In diagram a) the probe field 𝜈𝑝 , resonant with the transition
between the lower-energy level of the ground state (𝐹𝑔 = 2) and the electronic excited state 52P1/2, pumps
the atoms into the upper ground state 𝐹 = 3 [211], enhancing the probe transmission through the vapor,
ultimately leading to population inversion. The coupling beam 𝑣𝑐 is detuned from the 𝐹 = 2 transition.
If the two-photon absorption condition 𝜈𝑐 − 𝜈𝑝 = ΔHFS is fulfilled, atoms are driven coherently back
to the lower energy level 𝐹 = 2 via a two-photon absorption process [205], followed by a one-photon
absorption from the probe bringing the atom to the excited state. The spectrum then shows a narrow,
all-optical 𝑁 -resonance induced by the three-photon non-linear process on top of a Doppler-broadened
background caused by regular absorption, as it is shown in fig. 5.9. The frequency of the 𝑁 -resonance
can be easily changed by tuning the frequency of the coupling field. In diagram b), a similar behavior is
depicted. The probe field, resonant with the transition between 𝐹 = 3 and the excited state, pumps the
atoms into the lower-energy level of the ground state. In this case, if the condition 𝜈𝑝 − 𝜈𝑐 = ΔHFS is
fulfilled, atoms are driven coherently to 𝐹 = 3, followed as before by a one-photon absorption from the
probe bringing the atom to the excited state. More details about 𝑁 -resonance formation are provided in
section 5.3.3.
Figure 5.12 shows the dependence of the amplitude of the 𝑁 -resonance (𝑃Ne = 6 Torr) on the coupling
power. Five different curves are provided, which were respectively obtained for 𝑃𝑐 = 1, 4, 9, 14, and 36
mW (from top to bottom). The probe power was fixed at ∼ 1 mW in all cases. Since the diameter 𝑑
of both laser beams is ∼ 2 mm, the intensity 𝐼 for a laser of power 𝑃 [mW/cm2] is2 ∼ 32 𝑃 . Note that
reducing 𝑃𝑐 and 𝑃𝑝 to, say, 1 mW and 0.5 mW respectively allows to form a 𝑁 -resonance with a smaller
contrast (a few %) but with subnatural linewidth, as shown in the inset of fig. 5.12. The resonance was

2𝐼 = 𝑃/𝑆 with 𝑆 = 𝜋𝑑2/4.
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5.6 MHz

Figure 5.12 – Evolution of the 𝑁 -resonance for different values of the coupling laser power 𝑃𝑐 ,
recorded with a 0.8 cm cell filled with Rb and Ne (𝑃Ne = 6 Torr). The inset is a close-up on the
𝑁 -resonance obtained with 𝑃𝑐 = 1 mW, fitted with a Gaussian profile with a FWHM of 5.6 MHz.

fitted with a Gaussian profile (which is a good approximation for low coupling powers) and its FWHM
is in that case around 5.6 MHz.

a) b)

Figure 5.13 – Contrast (a) and Linewidth (b) of the 𝑁 -resonance with respect to the coupling laser
power 𝑃𝑐 , each with 5% error bars. The experimental parameters are the same as in fig. 5.12. The
dotted lines are drawn to guide the eye.

In fig. 5.13a, we show the dependence of the 𝑁 -resonance amplitude on the coupling power 𝑃𝑐 . We
observe an increase in the amplitude with the coupling power following a somewhat linear dependency
(the dashed lines are only to guide the eye). However, the increase in spectral width is much weaker with
respect to the coupling power, as depicted in fig. 5.13b. This is important when studying the splitting of
the 𝑁 -resonance in an external magnetic field to avoid overlapping of the different components.
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Figure 5.14 – a) Dependence of the contrast of the 𝑁 -resonance on the buffer gas pressure
measured in 0.8 cm long cells. Each black square (with an error bar) is an experimental measurement
performed in a separate cell with fixed buffer gas pressure. The dotted line is drawn to guide the
eye. b) Probe transmission spectra obtained with 400 Torr Ne. The 𝑁 -resonance is clearly visible
on the red curve, and the second derivative (SD, blue curve) is shown to depict the increase in
transmission.

CO

Figure 5.15 – Probe transmission spectra obtained with a 0.8 cm cell containing pure Rb without
buffer gas when the coupling beam is off (upper, orange curve) and on (lower, blue curve). The
𝑁 -resonance is visible only when the coupling beam is on. The sub-Doppler structure is caused
by the reflection of the laser beam on the inner surfaces of the cell windows. A crossover (CO)
resonance is visible, as in SA spectra [192].

Figure 5.14a shows the dependence of the contrast of the 𝑁 -resonance on the Ne partial pressure, in the
0 to 400 Torr range. The coupling power is 1 mW and the probe power is 36 mW. It can be seen that
the optimal Ne partial pressure is located between 6 and 30 Torr, where the contrast is maximum. It is
interesting to note that this pressure is also optimal for the EIT process, see [74, Fig. 8].
In fig. 5.14b, we present a probe transmission spectrum recorded in a cell with 400 Torr Ne (red curve).
The blue curve is the second derivative (SD) of the region highlighted by the dotted oval. In this case,
the contrast is strongly reduced (≃ 10%), and the SD allows to see the resonance better. The lower curve
in fig. 5.14b is a reference spectrum of the 3 → 2′, 3′ transitions of 85Rb.

99



5.3. Buffer gas influence on the formation of 𝑁 -resonances

1 2 3 4 5 6

27 MHz
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Figure 5.16 – Probe transmission spectra showing the behavior of the 𝑁 -resonance when a
transverse magnetic field (B ⊥ k) is applied. Due to the Zeeman effect, the single (𝐵 = 0) 𝑁 -
resonance is split into 6 components when 𝐵 = 29 G is applied. As expected, the components move
away from each other as the magnetic field increases (𝐵 = 47 G). The 𝑁 -resonance spectra were
obtained with a 0.8 cm cell filled with Rb and Ne (20 Torr Ne). The reference spectrum was obtained
with a NC, as mentioned earlier.

.

It should be noted that despite the relatively low contrast of the 𝑁 -resonance (∼ 10 %) formed in a
400 Torr Ne vapor cell shown in fig. 5.14b, it is still easily recordable. The SA process, used in many
experiments to form reference spectra, can not be performed in cells containing buffer gas (even as little
as 0.1 Torr) [212].
In fig. 5.15, the upper orange curve shows the spectrum of only the probe radiation formed in a cell with
pure Rb vapor, while the lower blue curve is a probe spectrum in the presence of the coupling radiation,
which contains a 𝑁 -resonance with a linewidth of 6 MHz. Since the one-photon Doppler width of Rb
𝐷1 line is ≃ 500 MHz [212, 213], we observe strong narrowing of the 𝑁 -resonance by ∼ 83 times.

5.3.2 𝑁 -resonances in a magnetic field

To study the evolution of the 𝑁 -resonance in an external magnetic field, we placed a vapor cell (Rb +
20 Torr Ne) in the middle of a system of three pairs of Helmholtz coils. This allows to create a magnetic
field in the desired direction while zeroing the laboratory magnetic field. The spectra presented in
fig. 5.16 correspond to the case where a transverse magnetic field (B ⊥ k) was applied to the cell. The
zero field resonance (𝐵 = 0, upper curve) splits into 6 equidistant components, all having the same
linewidth of around 6 MHz. The components move away from each other as the magnetic field increases,
as we see with the spectra corresponding to 𝐵 ≃ 29 G and 𝐵 ≃ 47 G. Under the influence of 𝐵, the
ground levels 𝐹 = 2 and 𝐹 = 3 respectively split into 5 and 7 Zeeman sublevels. Since the frequency
shifts of these levels are respectively ∓𝜇𝐵/3 ≃ ∓0.465 MHz/G [3] (where 𝜇𝐵 is the Bohr magneton),
the states are shifted in opposite directions and the distance between two adjacent components of the
𝑁 -resonance can be easily estimated as

Δ𝜈 =
2𝜇𝐵𝐵

3 , (5.4)

yielding around 27 MHz for 𝐵 = 29 G and 44 MHz for 𝐵 = 47 G, which is consistent with what is seen in
fig. 5.16. Equidistance of the components (as shown in fig. 5.17) is obtained in the small magnetic field
regime (𝐵 ≪ 𝐵0 = 𝐴HFS/𝜇𝐵), where 𝐴HFS is the magnetic dipole interaction constant [3, 67, 214, 215].
The value of 𝐵0 for 85Rb is ∼ 0.7 kG. For higher magnetic fields, i.e. when J and I are decoupled and
|𝐹,𝑚𝐹 ⟩ are not good quantum numbers, the Breit-Rabi formula can be used (chapter 3) [3, 74, 214, 215]
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Figure 5.17 – Frequency shift of the 6 components of the 𝑁 -resonance (shown in fig. 5.16) as a
function of the magnetic field. The lines were computed theoretically, and the black squares are
experimental measurements with 5% error bars. Labeling and line style are consistent with fig. 5.18.

to determine theoretically the frequency shifts of the states.
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Figure 5.18 – Diagram of the 𝐹 = 2 and 𝐹 = 3 energy levels of 85Rb, which respectively split into 5
and 7 Zeeman sublevels when a magnetic field is applied. To form a Λ-system, the coupling and
probe lasers must have the same upper state |𝐹 ′,𝑚′⟩. Ten possible pairs of 𝜈𝑐 and 𝜈𝑝 frequencies are
shown, the pairs for which the probe laser frequencies are the same are labeled 1 to 6. Components
1 and 6 only include a single probe transition.

Figure 5.18 is a diagram depicting the splitting of the 𝐹 = 2, 3 states of 85Rb in a magnetic field. For the
sake of clarity, we did not show the splitting of the 𝐹 ′ = 2, 3 levels of the excited state 52P1/2. In the
diagram, ten possible pairs of probe/coupling frequencies that can lead to two-photon absorption from
𝐹 = 2 with transfer of atoms to 𝐹 = 3 are shown. It can be observed that the probe laser frequencies
are in some cases the same (such groups of two transitions with the same frequencies are depicted
by two arrows of the same color in fig. 5.18). These 6 pairs lead to the splitting of the 𝑁 -resonance
into 6 different components, as seen in fig. 5.16 and 5.17. When B ∥ k, the 𝜎+ and 𝜎− polarizations
form 5 Λ-systems with the 𝐹 = 2 and 𝐹 = 3 levels of the ground state, and the 𝑁 -resonance splits into 5
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equidistant narrow-band components [208]. This configuration is shown in fig. 5.19 for both EIT and
𝑁 -resonances (a longitudinal magnetic field 𝐵 = 3 G was applied). The linewidth of each component is
about 1.5 MHz, 4 times narrower than the natural linewidth. However, it is clearly seen from the upper
curve of fig. 5.19 that the EIT signal is “noisier” than that of the 𝑁 -resonance, which is explained by a
higher contrast of the latter i.e. higher signal to noise ratio (SNR).

-8 -4 0 4 8

Figure 5.19 – Splitting of an EIT resonance (upper, red curve) and a 𝑁 -resonance (lower, blue curve)
into five components in a longitudinal magnetic field (𝐵 = 3 G) with the following experimental
parameters: 𝑃Ne = 6 Torr, 𝑃𝑐 = 1 mW, 𝑃𝑝 = 0.2 mW. Each component has a width of around 1.5 MHz.
The distance between the lower and higher frequency components is 4 × 0.93 MHz/G ≃ 11 MHz.

5.3.3 Discussion

Let us consider the diagram presented in fig. 5.9b (all the following conclusions, with small modifications,
are also true for fig. 5.9a). As mentioned above, the purpose of adding a buffer gas (in this case, Ne) to a
Rb cell is the following:

1. A strong Rb-Ne collisional broadening of the 52𝑃1/2 state occurs [216], leading to greater absorption
of the probe laser and, consequently, to an increase of the 𝑁2 −𝑁3 value, where 𝑁2 and 𝑁3 are the
populations of the ground states.

2. The speed of the atoms is greatly reduced, thereby increasing the time of flight of an atom through
the laser beam, increasing the optical pumping process.

A theoretical consideration of the 𝑁 -resonance formation process is given in [182]. Here, we present a
qualitative consideration of the process according to [205].
The amplitude 𝐴 of the 𝑁 -resonance depends on the two-photon absorption resonance cross-section
𝜎TPA such that

𝐴 ∝ exp[𝜎TPA(𝑁2 − 𝑁3)𝐿], (5.5)
where 𝐿 is the length of the vapor cell. The two-photon absorption resonance cross-section is defined as:

𝜎TPA =
𝜆2

16𝜋2
Γ𝑁
Γ23

(
Ω𝑐
Δ𝑐

)2
, (5.6)

where Δ𝑐 is the detuning of the coupling laser from the excited state 52𝑃1/2, Γ𝑁 is the natural linewidth
of the excited state (Γ𝑁 /2𝜋 = 5.75 MHz) and Γ23/2𝜋 = 𝛾23 represents ground-state decoherence + other
terms that may lead to line broadening [74, 75]. The coupling Rabi frequency, Ω𝑐 , is defined as 𝑑𝐸𝑐/ℏ,
where 𝐸𝑐 is the coupling electric field and 𝑑 is the matrix element of the transition dipole moment of the
𝐹 = 3 → 52𝑃1/2 transition. Estimates of the Rabi frequency can be obtained from [217]:

Ω𝐶
2𝜋 ≃ Γ𝑁

√︂
𝐼

8 , (5.7)
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where 𝐼 is the laser intensity [mW/cm2]. For 𝑃𝑐 = 30 mW, we obtain 𝐼 = 960 mW/cm2 which yields
Ω𝑐 ≃ 62 MHz. Note that if the 𝑁 -resonance is power-broadened, it is possible to estimate its linewidth
with the formula given in [76]:

𝛾𝑁res =
Ω2
𝐶

ΓDopp
+ 𝛾23, (5.8)

where ΓDopp is the one-photon Doppler width [53]:

ΓDopp =

√︂
8𝑘𝐵𝑇 log(2)

𝑚𝑐2 , (5.9)

with 𝜔0 the 𝐷1 transition frequency (here 𝜔0 = 377.107385690 THz) and𝑚 the atomic mass of 85Rb
(appendix B). In our case, 𝛾23 ≃ 1 MHz, which gives 𝛾𝑁res ≃ 8.2 MHz. From equation (5.8), it is clear
that by reducing the coupling intensity, one can obtain a 𝑁 -resonance with subnatural linewidth. An
important fact to note is that amplitude depends on exp (𝐿), therefore, 𝑁 -resonances cannot be formed
at small thicknesses, i.e. in a microcell (MC). However, since the dependence on 𝐿 is much weaker for EIT
resonances, they can even be formed and detected in nanometric-thin cells [92, 218]. Another significant
difference is that, when recording resonance fluorescence spectra during the EIT process, a narrow
dip (decrease) can be observed on the fluorescence peak, while when a 𝑁 -resonance is formed, we
observe a narrow peak of increased fluorescence [205]. Moreover, the increase of absorption exhibited
in 𝑁 -resonance spectra can be changed into a decrease of absorption in the presence of an additional
laser field [219].
It is important to note that the two-photon absorption resonance cross-section 𝜎TPA (eq. 5.6) is inversely
proportional to Δ2

𝑐 (Δ𝑐 is the detuning of coupling laser from the excited state 52P1/2). At high buffer
gas partial pressures, a strong broadening of the excited state occurs [216], resulting in an increase in
Δ𝑐 . Since the buffer gas contributes to the population inversion required to form a 𝑁 -resonance while
simultaneously increasing the frequency detuning, there is an optimum for its partial pressure, as is
clearly seen in fig. 5.14a.

5.4 Conclusion

In the first part of this chapter, we used forbidden transitions of Cs (𝐹 = 3 → 𝐹 ′ = 5, more precisely
𝜎+(Δ𝑚 = +1) transitions) to create Λ-systems allowing the formation of EIT resonances. This was done
in an external magnetic field, as such transitions have zero probability in the absence of a magnetic field.
A NC filled with Cs vapor was used, with a thickness corresponding to the resonant wavelength of Cs
𝐷2 line (≈ 850 nm), and the magnetic field was varied by longitudinal displacement of the permanent
magnet along the propagation direction (fig. 5.4). As expected, when the coupling is blocked, small
VSOP resonances are formed right at the different transition frequencies, while the coupling radiation
allows for the formation of EIT resonances, spectrally narrower and with a bigger amplitude. We
formed EIT resonances with 5 out of the 7 transitions depicted in fig. 5.1. This was possible up to
3 kG due to the big value of the frequency shift, reaching up to 4 MHz/G, therefore leading to EIT
resonances shifted 12 GHz apart from the Cs 𝐷2 line transition frequency [202]. This result is of great
interest as the highly-shifted spectra can prove useful to be used as frequency references [18, 170],
especially taking into account that these transitions are still easily recorded in strong magnetic fields.
As for the theoretical description presented in section 5.2.2, further investigation is necessary, mainly
in order to take into account the effect of neighboring states, and thus include more levels in the
model. The complexity of the manifold and the number of coupled equations make it a challenging
and computationally-intensive task. However, reasonable agreement was already achieved by simply
considering an ensemble of three-level systems. To the best of our knowledge, there are no reports on
obtaining EIT resonances in Λ-systems in such strong fields using the usual transitions of alkali atoms.
We note that much narrower EIT resonances can be attained by using cm-long cells (to lower the effect
of inelastic collisions of atoms with the windows), and by using coherently coupled probe and coupling
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radiations derived from a single narrow-band laser beam [75], but this implies losing the sub-Doppler
structure.
In the second part, we have studied the formation of all-optical high-contrast narrow-band 𝑁 -resonance
in Λ-systems of 85Rb 𝐷1 line using two continuous-wave lasers. In the configurations studied in this
chapter, the 𝑁 -resonance consists in an increase of absorption on top of the usual Doppler-broadened
(and additional broadening if the cell contains buffer gas) profile. We report for the first time the
analysis of 𝑁 -resonances in several Rb vapor cells containing different amounts of Ne buffer gas (from 0
to 400 Torr). It is demonstrated that the optimum of Ne partial pressure lies in the range of 6 - 30 Torr.
The 𝑁 -resonances can be in many ways compared to usual EIT resonances:

1. 𝑁 -resonances show an increase of both absorption and resonance fluorescence, while EIT
resonances show a decrease of absorption and fluorescence.

2. To obtain narrow and high-contrast 𝑁 -resonances, the cell length must be quite large (≥ 𝜇m),
while EIT resonances can be formed in cells as thin as 100 nm.

3. Under the same experimental parameters in the same Λ-systems, the contrast of the 𝑁 -resonance
is higher, meaning the SNR is bigger (see fig. 5.19).

In an external transverse magnetic field, six 𝑁 -resonance components can be recorded (for 85Rb 𝐷1 line),
the frequency positions of which are very well described by theoretical calculations. This statement
is obviously also correct for EIT resonances. According to our expertise, forming a narrow and
high-contrast 𝑁 -resonance in a centimetric vapor cell is easier than forming EIT resonances while
having a high SNR is crucial for applications. This is explained by the strong dependence of the
𝑁 -resonance amplitude on the intensity of the coupling laser shown in fig. 5.12. Thanks to narrow
linewidth and high contrast, 𝑁 -resonances can have a number of important applications (as much as
EIT resonances) in a variety of fields, such as information storage, quantum communication, optical
magnetometry or metrology [74–76].
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Conclusion and perspectives
In this thesis, we have explored the applications and benefits of using nanocells (NCs) and microcells
(MCs) in atomic spectroscopy and magnetometry. Our work demonstrates how these tools can
significantly improve our understanding of atom-surface interactions and the effects of magnetic fields
on atomic vapors.

Initially, wemodeled the cell as a Fabry–Pérot (FP) cavity, allowing us to calculate accurate transmission
and selective reflection (SR) spectra that matched well with experimental data. This enabled us to
investigate atom-surface interactions, identifying redshifts in transition frequencies caused by van der
Waals (vdW) and dipole-dipole interactions. By considering these interactions, we refined measurements
of the vdW coefficient 𝐶3, noting a slight decrease in 𝐶3 at smaller NC thicknesses, which is consistent
with theoretical predictions of retardation effects [80, 81]. This demonstrates the utility of NC techniques
for probing such interactions and suggests potential for further research in quantum optics and atomic
physics.

We also examined the influence of external magnetic fields on alkali vapors, both theoretically and
experimentally. Starting from the Dirac equation, we described the behavior of alkali vapors under
magnetic fields, which, when combined with the FP model, enabled us to simulate sub-Doppler spectra
with precise resolution of the transitions occurring between Zeeman sublevels. We studied a sodium
vapor confined in a NC, highlighting its broader absorption lines due to a larger natural linewidth and
lower vapor pressure. Experimentally, higher temperatures or more sensitive detectors will be necessary
for accurate signal recording.

We also explored transition dipole moment cancellations in alkali isotopes, developing both analytical
and numerical methods for calculating these magnetic field values. As several transitions exhibit a
symmetrical behavior (one is canceled when another one is maximized), we suggested an experimental
procedure relying on the measurement of higher intensity peaks to indirectly determine cancellation
values, using sub-Doppler spectroscopic methods. High precision in these measurements is essential as
they could be used as a standard for calibrating magnetometers or to improve fundamental physical
constants.

In the context of high spatial resolution magnetometry, we showed the advantages of using NCs and
MCs filled with 39K. With fewer overlapping transitions and a small characteristic magnetic field value,
39K-based magnetometers are well-suited for magnetic field measurements with a good spatial resolution,
which could be useful in various applications such as free-electron lasers, particle accelerators, and
nuclear medicine. MCs, being easier to manufacture than NCs, can also be used albeit with a smaller
spatial resolution.

Additionally, we used “forbidden” transitions of cesium to create Λ-systems for electromagnetically
induced transparency (EIT) resonances in strong magnetic fields, achieving highly-shifted spectra useful
as frequency references [18, 170]. While further theoretical work is needed, our results already show
reasonable agreement with experimental data. Finally, we studied𝑁 -resonances in 85Rb, comparing them
to EIT resonances, and observed that 𝑁 -resonances offer higher contrast and a better signal-to-noise
ratio with the use of an additional buffer gas, making them suitable for applications in quantum
communication, information storage, and optical magnetometry.

In the near future, we envisage to clean up the codes and release a (Python) package allowing to
generate spectra of alkali vapors taking into account the sub-Doppler geometry of the cell, similar
to what has been done with ElecSus [162]. We are also willing to release an atlas summarizing all
possible magnetic field values leading to transition cancellations of all 𝐷1 - like and 𝐷2 - like lines of all
alkali isotopes. This would certainly help researchers willing to pursue this road to choose the most
convenient isotope and transition to study. In this way, if precise measurements are performed, several
values such as excited hyperfine splittings could be refined. One can also envisage the inverse process:
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refining the excited state energies would be a good way to reduce the uncertainty of the cancellation
values. Another thing would be to improve the precision of the magnetometer schemes presented in
chapter 4. To do so, based on the work of Klinger [160], it could be a good idea to add a fully open-source
computer interface to the setup and, why not, couple it to machine learning. Feeding it a database
of experimental spectra measured in various conditions, it would technically be possible to make a
measurement and retrieve immediately the magnetic field value. The question is to which extent would
the precision be improved and whether it is worth implementing such a method. Finally, we will carry
on with the theoretical calculations of EIT resonances in NCs. A Python package similar to the one
released by Downes [220] for arbitrarily shaped systems with an arbitrary (but reasonable) number
of levels and lasers is being written. Ideally, we would like to release such a program along with a
graphical user interface.

Overall, this thesis highlights the significant potential of NCs and MCs in advancing atomic
spectroscopy and atomic magnetometry. By refining theoretical models and conducting more and
more precise experimental investigations, we provide research a good amount of useful data for future
research. I am deeply convinced that there are still numerous opportunities for meaningful research
and valuable discoveries in atomic spectroscopy.
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Appendix A

Properties of the angular momentum
In this appendix, we provide a summary of important properties related to the angular momentum that are used
throughout this thesis. After recalling the commutation relations between the components of the angular momentum,
we derive its eigenvalues. Then, we outline the procedure used to couple two and three angular momenta, cornerstones
of the derivation of the fine and hyperfine structures. Most of the discussion is done with the total angular momentum
J, but all the relations and conclusions also apply to other angular momentum operators, namely the electronic spin
momentum operator S, the orbital angular momentum L and the nuclear angular momentum I.
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A.1 Quantification of the angular momentum

A.1.1 Commutation relations

The total angular momentum J in quantum mechanics is a vector operator with components 𝐽𝑥 , 𝐽𝑦 and
𝐽𝑧 obeying the following commutation relations:

[𝐽𝛼 , 𝐽𝛽 ] = 𝑖ℏ
∑︁
𝛾

𝜖𝛼𝛽𝛾 𝐽𝛾 , (A.1)

where 𝜖𝛼𝛽𝛾 is the Levi-Civita symbol, and the indices 𝛼, 𝛽,𝛾 can take values 𝑥,𝑦, 𝑧. With J2 = 𝐽 2
𝑥 + 𝐽 2

𝑦 + 𝐽 2
𝑧

the square of the magnitude of the angular momentum operator, eq. (A.1) implies[
J2, 𝐽𝑧

]
= 0. (A.2)

Equation (A.2) also applies to the other components 𝐽𝑥 and 𝐽𝑦 . The discussion is carried on with 𝐽𝑧 as it
is the most common use case, corresponding to quantization along the 𝑧-axis.

A.1.2 Eigenvalues of the angular momentum operator

From the definition of J2, it is obvious that 〈
J2〉 ⩾ 〈

𝐽 2
𝑧

〉
, (A.3)

where ⟨.⟩ denotes the expectation value. From the mathematical definition of the variance of a discrete
variable 𝑥 , we have that

𝑉 (𝑥) = 1
𝑛

𝑛∑︁
𝑖=1

(𝑥𝑖 − ⟨𝑥⟩)2 ⩾ 0

=
〈
𝑥2〉 − ⟨𝑥⟩2 ⩾ 0.

(A.4)
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Combining eq. (A.3) and eq. (A.4) yields the following very useful inequality:〈
J2〉 ⩾ 〈

𝐽 2
𝑧

〉
⩾ ⟨𝐽𝑧⟩2 . (A.5)

As mentioned before, the 𝑧-axis is chosen as the quantization axis. We focus on 𝐽𝑧 , although the relations
are valid for any cartesian projection. From eq. (A.2), we can define a common eigenbasis of J2 and 𝐽𝑧
such that {

J2 | (𝜅), 𝜆,𝑚⟩ = 𝜆ℏ2 | (𝜅), 𝜆,𝑚⟩
𝐽𝑧 | (𝜅), 𝜆,𝑚⟩ =𝑚ℏ | (𝜅), 𝜆,𝑚⟩ ,

(A.6)

where 𝜆ℏ2 and𝑚ℏ are respectively the eigenvalues of J2 and 𝐽𝑧 , and (𝜅) is a set of quantum numbers
that fully describe the system1. The goal of this section is to determine the values of 𝜆 and𝑚.
With the definition of the expectation value of an observable 𝐴 in a normalized state |Ψ⟩

𝐴Ψ = ⟨Ψ|𝐴|Ψ⟩ , (A.7)

we get from eq. (A.6): {〈
J2〉 = ⟨(𝜅), 𝜆,𝑚 | J2 | (𝜅), 𝜆,𝑚⟩ = 𝜆ℏ2

⟨𝐽𝑧⟩ = ⟨(𝜅), 𝜆,𝑚 | 𝐽𝑧 | (𝜅), 𝜆,𝑚⟩ =𝑚ℏ.
(A.8)

With eq. (A.5), we immediately deduce that 𝜆 ⩾ 𝑚2.
For more convenience, we can combine 𝐽𝑥 and 𝐽𝑦 to form new (ladder) operators:

𝐽+ = 𝐽𝑥 + 𝑖 𝐽𝑦 𝐽− = 𝐽𝑥 − 𝑖 𝐽𝑦 . (A.9)

These new operators exhibit useful commutation relations with 𝐽𝑧 , namely

[𝐽𝑧, 𝐽±] = ±ℏ𝐽± . (A.10)

Applying 𝐽𝑧 to 𝐽± | (𝜅), 𝜆,𝑚⟩ while keeping in mind the commutation relations eq. (A.10) gives

𝐽𝑧 𝐽± | (𝜅), 𝜆,𝑚⟩ = (𝐽± 𝐽𝑧 ± ℏ𝐽±) | (𝜅), 𝜆,𝑚⟩
= 𝐽±𝑚ℏ | (𝜅), 𝜆,𝑚⟩ ± ℏ𝐽± | (𝜅), 𝜆,𝑚⟩
= (𝑚 ± 1)ℏ𝐽± | (𝜅), 𝜆,𝑚⟩ .

(A.11)

We see that 𝐽± | (𝜅), 𝜆,𝑚⟩ are eigenvectors of 𝐽𝑧 with associated eigenvalue (𝑚 ± 1)ℏ. From eq. (A.6), we
have {

𝐽𝑧 | (𝜅), 𝜆,𝑚 ± 1⟩ = (𝑚 ± 1)ℏ | (𝜅), 𝜆,𝑚 ± 1⟩
𝐽𝑧 (𝐽± | (𝜅), 𝜆,𝑚⟩) = (𝑚 + 1)ℏ(𝐽± | (𝜅), 𝜆,𝑚⟩).

(A.12)

Therefore, there exists a function 𝐶±(𝜆,𝑚) of 𝜆 and𝑚 such that

𝐽± | (𝜅), 𝜆,𝑚⟩ = 𝐶±(𝜆,𝑚)ℏ | (𝜅), 𝜆,𝑚 ± 1⟩ . (A.13)

Since 𝜆 ⩾ 𝑚2,𝑚 necessarily has a maximum value. If we denote this maximum value𝑚max = 𝑗 , we can
write the corresponding eigenvector as | (𝜅), 𝜆, 𝑗⟩. However, applying the ladder operator to | (𝜅), 𝜆, 𝑗⟩
cannot yield a new eigenvector, thus

𝐽+ | (𝜅), 𝜆, 𝑗⟩ = 0 (A.14)
𝐽− (𝐽+ | (𝜅), 𝜆,𝑚⟩ = 0 . (A.15)

Using the commutation relations {
[𝐽+, 𝐽−] = 2ℏ𝐽𝑧
[𝐽𝑧, 𝐽±] = ±ℏ𝐽𝑧

(A.16)

1As J2 is hermitian, 𝜆 is real, and same goes for𝑚. The formulation adopted in eq. (A.6) is simply made to be consistent
with the dimensions of J2 and 𝐽𝑧
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allows us to write

J2 = 𝐽 2
𝑧 + 1

2 (𝐽+ 𝐽− + 𝐽− 𝐽+) (A.17)

𝐽± 𝐽∓ = J2 − 𝐽 2
𝑧 ± ℏ𝐽𝑧, (A.18)

and, consequently, using eqs. (A.6) and (A.15), eq. (A.18) becomes

(𝜆 − 𝑗2 − 𝑗)ℏ2 | (𝜅), 𝜆, 𝑗⟩ = 0. (A.19)

An analogous expression is obtained when applying the ladder operator to the minimum value 𝑗 ′ that𝑚
can take:

(𝜆 − 𝑗 ′2 + 𝑗 ′)ℏ2 | (𝜅), 𝜆, 𝑗 ′⟩ = 0 . (A.20)

However, both solutions are compatible only if either 𝑗 ′ = − 𝑗 or 𝑗 ′ = 𝑗 + 1, the latter being impossible
by definition. We thus finally obtain a proper expression for the eigenvalue 𝜆 of J2:

𝜆 = 𝑗 ( 𝑗 + 1) ⇒
〈
J2〉 = ℏ2 𝑗 ( 𝑗 + 1) and − 𝑗 ⩽ 𝑚 ⩽ 𝑗 . (A.21)

Applying the ladder operator 𝐽− repeatedly to | (𝜅), 𝜆, 𝑗⟩ will eventually yield | (𝜅), 𝜆,− 𝑗⟩, or in other
terms

(𝐽−)2𝑗 | (𝜅), 𝜆, 𝑗⟩ = 𝐶− (𝜆,𝑚)2𝑗 | (𝜅), 𝜆,− 𝑗⟩ , (A.22)

implying that 2 𝑗 ∈ N∗. We can now determine the expression of 𝐶± by calculating |𝐽+ | (𝜅), 𝜆,𝑚⟩|2 from
eq. (A.13):

(𝐽+ | (𝜅), 𝜆,𝑚⟩)∗(𝐽+ | (𝜅), 𝜆,𝑚⟩) = (𝐶+(𝜆,𝑚)ℏ | (𝜅), 𝜆,𝑚 + 1⟩)∗𝐶+(𝜆,𝑚)ℏ | (𝜅), 𝜆,𝑚 + 1⟩
→ ⟨(𝜅), 𝜆,𝑚 |𝐽− 𝐽+ | (𝜅), 𝜆,𝑚⟩ = ℏ2 |𝐶+(𝜆,𝑚) |
→ ⟨(𝜅), 𝜆,𝑚 |J2 − 𝐽 2

𝑧 − ℏ𝐽𝑧 | (𝜅), 𝜆,𝑚⟩ = ℏ2 |𝐶+(𝜆,𝑚) |2 .
(A.23)

We can rewrite eq. (A.23) as 〈
J2〉 − 〈

𝐽 2
𝑧

〉
− ℏ ⟨𝐽𝑧⟩ = ℏ2 |𝐶+(𝜆,𝑚) |2 , (A.24)

and we finally obtain

𝐶+(𝜆,𝑚) =
√︁
𝑗 ( 𝑗 + 1) −𝑚2 −𝑚 =

√︁
𝑗 ( 𝑗 + 1) −𝑚(𝑚 + 1) . (A.25)

Carrying the calculation with 𝐽− gives an analogous expression for 𝐶− (𝜆,𝑚):

𝐶− (𝜆,𝑚) =
√︁
𝑗 ( 𝑗 + 1) −𝑚2 +𝑚 =

√︁
𝑗 ( 𝑗 + 1) −𝑚(𝑚 − 1) , (A.26)

hence the final expression of 𝐶±(𝜆,𝑚):

𝐶±(𝜆,𝑚) =
√︁
𝑗 ( 𝑗 + 1) −𝑚(𝑚 ± 1) . (A.27)

In conclusion, we have derived the following useful relations:
J2 | (𝜅), 𝑗 ( 𝑗 + 1),𝑚⟩ = ℏ2 𝑗 ( 𝑗 + 1) | (𝜅), 𝑗 ( 𝑗 + 1),𝑚⟩
𝐽𝑧 | (𝜅), 𝑗 ( 𝑗 + 1),𝑚⟩ =𝑚ℏ | (𝜅), 𝑗 ( 𝑗 + 1),𝑚⟩
𝐽± | (𝜅), 𝑗 ( 𝑗 + 1),𝑚⟩ = ℏ

√︁
𝑗 ( 𝑗 + 1) −𝑚(𝑚 ± 1) | (𝜅), 𝑗 ( 𝑗 + 1),𝑚 ± 1⟩ .

(A.28)

where | (𝜅), 𝑗 ( 𝑗 + 1),𝑚⟩ is usually written | 𝑗,𝑚⟩ since (𝜅) can be omitted and since there is a bijective
relation between 𝑗 and 𝑗 ( 𝑗 + 1).
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A.2 Coupling of angular momenta

Coupling of angular momenta is a very frequent phenomenon in atomic physics. Here, we look at the
fundamental procedure used to couple two and three angular momenta. This is the key point of the
derivation of the atomic fine (coupling of L and S) and hyperfine (coupling of L, S and I) structures. The
coupling of more angular momenta, absolutely possible albeit quite tedious, is beyond the scope of this
discussion.

A.2.1 Coupling of two angular momenta

Let us couple two quantum systems QS1 (having a total angular momentum J1) and QS2 (having a
total angular momentum J2). If QS1 (resp. QS2) obeys the rules derived in section A.1, we can define
according to eq. (A.28) a common eigenbasis | 𝑗1,𝑚1⟩ (resp. | 𝑗2,𝑚2⟩) of J2

1 and 𝐽1𝑧 (resp. J2
2 and 𝐽2𝑧):

J2
1 | 𝑗1,𝑚1⟩ = ℏ2 𝑗1( 𝑗1 + 1) | 𝑗1,𝑚1⟩
𝐽1𝑧 | 𝑗1,𝑚1⟩ =𝑚1ℏ | 𝑗1,𝑚1⟩
J2

2 | 𝑗2,𝑚2⟩ = ℏ2 𝑗2( 𝑗2 + 1) | 𝑗2,𝑚2⟩
𝐽2𝑧 | 𝑗2,𝑚2⟩ =𝑚2ℏ | 𝑗2,𝑚2⟩ ,

(A.29)

where − 𝑗𝑖 ⩽ 𝑚𝑖 ⩽ 𝑗𝑖 (with 𝑖 = 1, 2). The tensor product of the (2 𝑗1 + 1) eigenvectors of QS1 by the
(2 𝑗2 + 1) eigenvectors of QS2 is a possible basis of the total Hilbert space H1 ⊗ H2. There are therefore
(2 𝑗1 + 1) (2 𝑗2 + 1) common eigenvectors of J2

1, J2
2, 𝐽1𝑧 and 𝐽2𝑧 . This basis can be indifferently denoted

| 𝑗1,𝑚1⟩ | 𝑗2,𝑚2⟩ ≡ | 𝑗1𝑚1, 𝑗2𝑚2⟩ ≡ | 𝑗1 𝑗2,𝑚1𝑚2⟩ (A.30)

and is referred to as the uncoupled basis. If we consider the angular momentum of the “total” quantum
system J = J1 + J2, the Hilbert spaceH1 ⊗ H2 can be also described by the following basis:

| 𝑗1 𝑗2, 𝑗𝑚⟩ with
{
| 𝑗1 − 𝑗2 | ⩽ 𝑗 ⩽ 𝑗1 + 𝑗2
− 𝑗 ⩽ 𝑚 ⩽ 𝑗

(A.31)

referred to as the “coupled” basis.

Clebsch-Gordan coefficients

One can go from the uncoupled basis to the coupled via the completeness relation:

| 𝑗1 𝑗2, 𝑗𝑚⟩ =
𝑗1∑︁

𝑚1=− 𝑗1

𝑗2∑︁
𝑚2=− 𝑗2

| 𝑗1𝑚1, 𝑗2𝑚2⟩ ⟨ 𝑗1𝑚1, 𝑗2𝑚2 | 𝑗1 𝑗2, 𝑗𝑚⟩ , (A.32)

where ⟨ 𝑗1𝑚1, 𝑗2𝑚2 | 𝑗1 𝑗2, 𝑗𝑚⟩ are Clebsch–Gordan (CG) coefficients. The opposite transformation is
possible:

| 𝑗1𝑚1, 𝑗2𝑚2⟩ =
𝑗1+𝑗2∑︁

𝑗= | 𝑗1− 𝑗2 |

𝑗∑︁
𝑚=− 𝑗

| 𝑗1 𝑗2, 𝑗𝑚⟩ ⟨ 𝑗1 𝑗2, 𝑗𝑚 | 𝑗1𝑚1, 𝑗2𝑚2⟩ . (A.33)

Since all CG coefficients are chosen to be real, we have

⟨ 𝑗1𝑚1, 𝑗2𝑚2 | 𝑗1 𝑗2, 𝑗𝑚⟩∗ = ⟨ 𝑗1 𝑗2, 𝑗𝑚 | 𝑗1𝑚1, 𝑗2𝑚2⟩
= ⟨ 𝑗1𝑚1, 𝑗2𝑚2 | 𝑗1 𝑗2, 𝑗𝑚⟩ ,

(A.34)
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which implies that CG coefficients allow to pass from one basis to the other and vice-versa. In some
simple cases, CG coefficients are easy to calculate by hand. In general, for a given value of 𝑗1 and 𝑗2, one
can show that we have the following recursive relation that allows for easier computation:√︁

( 𝑗 ±𝑚) ( 𝑗 ∓𝑚 + 1) ⟨ 𝑗1𝑚1, 𝑗2𝑚2 | 𝑗1 𝑗2, 𝑗 𝑚 ± 1⟩
=
√︁
( 𝑗1 ∓𝑚1) ( 𝑗1 ∓𝑚1 + 1) ⟨ 𝑗1 𝑚1 ± 1, 𝑗2𝑚2 | 𝑗1 𝑗2, 𝑗 𝑚⟩

+
√︁
( 𝑗2 ∓𝑚2) ( 𝑗2 ∓𝑚2 + 1) ⟨ 𝑗1 𝑚1 ± 1, 𝑗2 𝑚2 ± 1| 𝑗1 𝑗2, 𝑗 𝑚⟩ .

(A.35)

3𝒋-symbols

In the literature, it is common to encounter Wigner 3 𝑗-symbols. The 3 𝑗-symbols can be written in terms
of CG coefficients as follows:(

𝑗1 𝑗2 𝑗3
𝑚1 𝑚2 −𝑚3

)
=

(−1) 𝑗1− 𝑗2+𝑚3

√
2 𝑗3 + 1

⟨ 𝑗1𝑚1, 𝑗2𝑚2 | 𝑗1 𝑗2, 𝑗3𝑚3⟩ . (A.36)

Wigner 3 𝑗-symbols are in most cases easier to handle than CG coefficients. Indeed, they exhibit
interesting properties. For a 3 𝑗 to be non-zero, all the following selection rules have to be satisfied:

• − 𝑗𝑖 < 𝑚𝑖 < 𝑗𝑖 for 𝑖 = 1, 2, 3,
• 𝑚1 +𝑚2 +𝑚3 = 0,
• | 𝑗1 − 𝑗2 | ⩽ 𝑗3 ⩽ 𝑗1 + 𝑗2,
• 𝑗1 + 𝑗2 + 𝑗3 ∈ N.

The “inverse” of eq. (A.36) reads

⟨ 𝑗1𝑚1, 𝑗2𝑚2 | 𝑗1 𝑗2, 𝑗3𝑚3⟩ = (−1)− 𝑗1+𝑗2−𝑚3
√︁

2 𝑗3 + 1
(
𝑗1 𝑗2 𝑗3
𝑚1 𝑚2 −𝑚3

)
. (A.37)

While describing the same physical phenomenon, 3 𝑗-symbols are often more convenient to work with
because they exhibit a more symmetrical behavior than CG coefficients. For example:

• 3 𝑗-symbols are invariant under an even permutation of columns, while an odd permutation gives
the phase factor (−1) 𝑗1+𝑗2+𝑗3 :(

𝑗1 𝑗2 𝑗3
𝑚1 𝑚2 𝑚3

)
=

(
𝑗3 𝑗1 𝑗2
𝑚3 𝑚1 𝑚2

)
= (−1) 𝑗1+𝑗2+𝑗3

(
𝑗2 𝑗1 𝑗3
𝑚2 𝑚1 𝑚3

)
, (A.38)

• Changing the sign of all𝑚𝑖 gives the same phase factor:(
𝑗1 𝑗2 𝑗3

−𝑚1 −𝑚2 −𝑚3

)
= (−1) 𝑗1+𝑗2+𝑗3

(
𝑗1 𝑗2 𝑗3
𝑚1 𝑚2 𝑚3

)
. (A.39)

Many other symmetries could be listed [128, pp. 244–248]. In our use cases, we encounter rather small
quantum numbers. In the general case, 3 𝑗-symbols can be explicitly calculated with the Racah formula
[221, 222]: (

𝑗1 𝑗2 𝑗3
𝑚1 𝑚2 𝑚3

)
= 𝛿𝑚1+𝑚2+𝑚3,0(−1) 𝑗1− 𝑗2−𝑚3

√︁
Δ( 𝑗1 𝑗2 𝑗3)

×
√︁
( 𝑗1 −𝑚1)!( 𝑗1 +𝑚1)!( 𝑗2 −𝑚2)!( 𝑗2 +𝑚2)!( 𝑗3 −𝑚3)!( 𝑗3 +𝑚3)!

𝑁∑︁
𝑘=𝐾

(−1)𝑘
𝑋

,

(A.40)

where 𝑁 = min ( 𝑗1 + 𝑗2 − 𝑗3, 𝑗1 −𝑚1, 𝑗2 +𝑚2), 𝐾 = max (0, 𝑗2 − 𝑗3 −𝑚1, 𝑗1 − 𝑗3 +𝑚2),

𝑋 = 𝑘!( 𝑗3 − 𝑗2 + 𝑘 +𝑚1)!( 𝑗3 − 𝑗1 + 𝑘 −𝑚2)!( 𝑗1 + 𝑗2 − 𝑗3 − 𝑘)!
×( 𝑗1 − 𝑘 −𝑚1)!( 𝑗2 − 𝑘 +𝑚2)!

(A.41)
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and Δ(𝑎𝑏𝑐) is a triangle coefficient:

Δ(𝑎𝑏𝑐) = (𝑎 + 𝑏 − 𝑐)!(𝑎 − 𝑏 + 𝑐)!(−𝑎 + 𝑏 + 𝑐)!
(𝑎 + 𝑏 − 𝑐 + 1)! . (A.42)

This formulation is convenient for numerical calculations as long as the quantum numbers are small. In
that case, a naive computer program can be written. For bigger quantum numbers, 3 𝑗-symbols can be
calculated using recursive formulas and making use of the symmetries.

A.2.2 Coupling of three angular momenta

Similarly, it is possible to couple three angular momenta such that J = J1 + J2 + J3. This can be seen as
the coupling of two angular momenta, one of them resulting from a prior coupling, ie. either J = J12 + J3,
J = J1 + J23 or J = J2 + J13.

Recoupling coefficients

If we focus on the first coupling scheme J = J12 + J3, eq. (A.32) becomes

| 𝑗12 𝑗3, 𝑗𝑚⟩ =
∑︁
𝑚12

∑︁
𝑚3

| 𝑗12𝑚12, 𝑗3𝑚3⟩ ⟨ 𝑗12𝑚12, 𝑗3𝑚3 | 𝑗12 𝑗3, 𝑗𝑚⟩ . (A.43)

Keeping in mind that J12 is the result of a first coupling following the procedure described in section A.2.1,
it can be shown that eq. (A.43) can be rewritten

| 𝑗12 𝑗3, 𝑗𝑚⟩ =
∑︁
𝑚12

∑︁
𝑚3

∑︁
𝑚1

∑︁
𝑚2

√︁
2 𝑗 + 1

√︁
2 𝑗12 + 1 1

(−1) 𝑗12− 𝑗3+𝑚
1

(−1) 𝑗1− 𝑗2+𝑚12(
𝑗12 𝑗3 𝑗

𝑚12 𝑚3 −𝑚

) (
𝑗1 𝑗2 𝑗12
𝑚1 𝑚2 −𝑚12

)
| 𝑗1,𝑚1⟩ | 𝑗2,𝑚2⟩ | 𝑗3,𝑚3⟩ ,

(A.44)

For the coupling scheme J = J1 + J23,

| 𝑗1 𝑗23, 𝑗𝑚⟩ =
∑︁
𝑚23

∑︁
𝑚3

∑︁
𝑚1

∑︁
𝑚2

√︁
2 𝑗 + 1

√︁
2 𝑗23 + 1 1

(−1) 𝑗1− 𝑗23+𝑚
1

(−1) 𝑗2− 𝑗3+𝑚23(
𝑗1 𝑗23 𝑗

𝑚1 𝑚23 −𝑚

) (
𝑗2 𝑗3 𝑗23
𝑚2 𝑚3 −𝑚23

)
| 𝑗1,𝑚1⟩ | 𝑗2,𝑚2⟩ | 𝑗3,𝑚3⟩ ,

(A.45)

Since the bases described by eqs. (A.44) and (A.45) describe the same physical phenomenon, there
exists a unitary transformation allowing to pass from one basis to the other. One can show that this
transformation reads

| 𝑗1 𝑗23, 𝑗𝑚⟩ =
∑︁
𝑗12

⟨ 𝑗12 𝑗3, 𝑗𝑚 | 𝑗1 𝑗23, 𝑗
′𝑚′⟩ | 𝑗12 𝑗3, 𝑗

′𝑚′⟩ 𝛿 𝑗 𝑗 ′𝛿𝑚𝑚′, (A.46)

where ⟨ 𝑗12 𝑗3, 𝑗𝑚 | 𝑗1 𝑗23, 𝑗
′𝑚′⟩ are the so-called recoupling coefficients, the scalar product between the

eigenfunctions of the two coupling schemes. These coefficients vanish unless 𝑗 = 𝑗 ′ and𝑚 =𝑚′. Using
the properties of 𝐽− from eq. (A.28) allows us to prove that the recoupling coefficients do not depend on
𝑚. The notation can therefore be simplified to

| 𝑗1 𝑗23, 𝑗𝑚⟩ =
∑︁
𝑗12

⟨ 𝑗12 𝑗3, 𝑗 | 𝑗1 𝑗23, 𝑗⟩ | 𝑗12 𝑗3, 𝑗𝑚⟩ . (A.47)
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6𝒋-symbols

The recoupling coefficients ⟨ 𝑗12 𝑗3, 𝑗 | 𝑗1 𝑗23, 𝑗⟩ have different notations. The most used notation is the
Wigner 6 𝑗-symbol notation:{

𝑗1 𝑗2 𝑗12
𝑗3 𝑗 𝑗23

}
= (−1) 𝑗1+𝑗2+𝑗3+𝑗 1√︁

(2 𝑗12 + 1) (2 𝑗23 + 1)
⟨ 𝑗12 𝑗3, 𝑗 | 𝑗1 𝑗23, 𝑗⟩ . (A.48)

In the general case, they correspond to a sum of products of four 3 𝑗-symbols:{
𝑗1 𝑗2 𝑗3
𝑗4 𝑗5 𝑗6

}
=

∑︁
𝑚1,...,𝑚6

(−1)
∑6

𝑘=1 ( 𝑗𝑘−𝑚𝑘 )
(
𝑗1 𝑗2 𝑗3

−𝑚1 −𝑚2 −𝑚3

) (
𝑗1 𝑗5 𝑗6
𝑚1 −𝑚5 𝑚6

)
×

(
𝑗4 𝑗2 𝑗6
𝑚4 𝑚2 −𝑚6

) (
𝑗4 𝑗5 𝑗3

−𝑚4 𝑚5 𝑚3

)
,

(A.49)

where the summation is performed over the six𝑚𝑖 values allows by the selection rules on 3 𝑗-symbols
mentioned in section A.2.1. They can also be computed using the Racah formula:{

𝑗1 𝑗2 𝑗3
𝑗4 𝑗5 𝑗6

}
=

√︁
Δ( 𝑗1 𝑗2 𝑗3)Δ( 𝑗1 𝑗5 𝑗6)Δ( 𝑗4 𝑗2 𝑗6)Δ( 𝑗4 𝑗5 𝑗3)

∑︁
𝑘

(−1)𝑘 (𝑘 + 1)!
𝑋

, (A.50)

where Δ(𝑎𝑏𝑐) is a triangle coefficient [eq. (A.42)] and

𝑋 = (𝑘 − 𝑗1 − 𝑗2 − 𝑗3)!(𝑘 − 𝑗1 − 𝑗5 − 𝑗6)!(𝑘 − 𝑗4 − 𝑗2 − 𝑗6)!(𝑘 − 𝑗4 − 𝑗5 − 𝑗3)!
×( 𝑗1 + 𝑗2 + 𝑗4 + 𝑗5 − 𝑘)!( 𝑗2 + 𝑗3 + 𝑗5 + 𝑗6 − 𝑘)!( 𝑗3 + 𝑗1 + 𝑗6 + 𝑗4 − 𝑘)!.

(A.51)

As the 3 𝑗-symbols, 6 𝑗-symbols have many symmetries. They are invariant

• under any column permutation:{
𝑗1 𝑗2 𝑗3
𝑗4 𝑗5 𝑗6

}
=

{
𝑗2 𝑗1 𝑗3
𝑗5 𝑗4 𝑗6

}
=

{
𝑗1 𝑗3 𝑗2
𝑗4 𝑗6 𝑗5

}
=

{
𝑗3 𝑗2 𝑗1
𝑗6 𝑗5 𝑗4

}
, (A.52)

• if the lower and upper argument of two columns are interchanged:{
𝑗1 𝑗2 𝑗3
𝑗4 𝑗5 𝑗6

}
=

{
𝑗4 𝑗5 𝑗3
𝑗1 𝑗2 𝑗6

}
=

{
𝑗1 𝑗5 𝑗6
𝑗4 𝑗2 𝑗3

}
=

{
𝑗4 𝑗2 𝑗6
𝑗1 𝑗5 𝑗3

}
. (A.53)

Computing CG coefficients, 3 𝑗- and 6 𝑗-symbols by hand can however be a tedious task. Many tables or
online calculators are available. Throughout this thesis, all coefficients have been calculated using a
self-made Python program2.

A.3 Irreducible Tensor Operators, Wigner-Eckart theorem

A.3.1 Irreducible Tensor Operators

Let us consider a spherical vector operator V, sometimes also called a tensorial operator of rank 1,
denoted V(1) . Its three components are

𝑉
(1)

0 = 𝑉𝑧 𝑉
(1)
±1 = ∓ 1

√
2

(
𝑉𝑥 ± 𝑖𝑉𝑦

)
. (A.54)

2https://github.com/momierr/wigner
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They obey the following relations:{
[𝐽±,𝑉 (1)

𝑞 ] = ℏ
√︁

1(1 + 1) − 𝑞(𝑞 ± 1) 𝑉 (1)
𝑞±1

[𝐽𝑧,𝑉 (1)
𝑞 ] = ℏ𝑞𝑉

(1)
𝑞

with 𝑞 = −1, 0, 1. (A.55)

This can be generalized to the (2𝑘 + 1) components of an irreducible tensor operator (ITO)3 𝑇 (𝑘 )
𝑞 of rank

𝑘 : {
[𝐽±,𝑇 (𝑘 )

𝑞 ] = ℏ
√︁
𝑘 (𝑘 + 1) − 𝑞(𝑞 ± 1) 𝑇 (𝑘 )

𝑞±1
[𝐽𝑧,𝑇 (𝑘 )

𝑞 ] = ℏ𝑞𝑇
(𝑘 )
𝑞 .

(A.56)

Such an operator can be built by taking the direct product of an ITO V of rank 𝑘1 with an ITO W of
rank 𝑘2. This gives a relation analogous to eq. (A.32):

𝑇
(𝑘 )
𝑞 =

[
𝑉 (𝑘1 ) ×𝑉 (𝑘2 )

] (𝑘 )
𝑞

=

𝑘1∑︁
𝑞1=−𝑘1

𝑘2∑︁
𝑞2=−𝑘2

⟨𝑘1𝑞1, 𝑘2𝑞2 |𝑘1𝑘2, 𝑘𝑞⟩𝑉 (𝑘1 )
𝑞1 𝑉

(𝑘2 )
𝑞2 . (A.57)

A.3.2 Wigner-Eckart theorem

From eq. (A.56), we know that an ITO of rank 𝑘 verifies

𝐽𝑧𝑇
(𝑘 )
𝑞 −𝑇 (𝑘 )

𝑞 𝐽𝑧 = ℏ𝑞𝑇
(𝑘 )
𝑞 , (A.58)

which yields

⟨(𝛼 ′), 𝑗 ′𝑚′ |𝐽𝑧𝑇 (𝑘 )
𝑞 | (𝛼), 𝑗𝑚⟩ − ⟨(𝛼 ′), 𝑗 ′𝑚′ |𝑇 (𝑘 )

𝑞 𝐽𝑧 | (𝛼), 𝑗𝑚⟩ = ℏ𝑞 ⟨(𝛼 ′), 𝑗 ′𝑚′ |𝑇 (𝑘 )
𝑞 | (𝛼), 𝑗𝑚⟩ , (A.59)

where (𝛼) and (𝛼 ′) denote a set of quantum numbers completely characterizing the quantum system4.
From the recursion relation given in eq. (A.35) by changing the notation ( 𝑗1 = 𝑗 , 𝑗2 = 𝑘 , 𝑗 = 𝑗 ′,𝑚1 =𝑚,
𝑚2 = 𝑞 and 𝑚 = 𝑚′), it is possible to show that the matrix elements of the ITOs satisfy the same
relations as CG coefficients. It is possible to “factor" the dependence on𝑚,𝑚′, and 𝑞, ie. separate factors
depending on the geometry of the system from those representing its physical characteristics. This is
knows as the Wigner–Eckart (WE) theorem:

⟨(𝛼 ′), 𝑗 ′𝑚′ |𝑇 (𝑘 )
𝑞 | (𝛼), 𝑗𝑚⟩ ,= ⟨ 𝑗𝑚, 𝑘𝑞 | 𝑗𝑘, 𝑗 ′𝑚′⟩ ⟨(𝛼 ′), 𝑗 ′∥𝑇 (𝑘 ) ∥(𝛼), 𝑗⟩ . (A.60)

One often finds the WE theorem formulated as follows:

⟨(𝛼), 𝑗𝑚 |𝑇 (𝑘 )
𝑞 | (𝛼 ′), 𝑗 ′𝑚′⟩ = (−1) 𝑗−𝑚

(
𝑗 𝑘 𝑗 ′

−𝑚 𝑞 𝑚′

)
⟨(𝛼), 𝑗 ∥𝑇 (𝑘 ) ∥(𝛼 ′), 𝑗 ′⟩ , (A.61)

where ⟨(𝛼), 𝑗 ∥𝑇 (𝑘 ) ∥(𝛼 ′), 𝑗 ′⟩ is the so-called reduced matrix element, independent of the quantization
axis. The coefficient ⟨(𝛼), 𝑗𝑚 |𝑇 (𝑘 )

𝑞 | (𝛼 ′), 𝑗 ′𝑚′⟩ is 0 unless Δ𝑚 = 𝑞, 𝑗 − 𝑘 ⩽ 𝑗 ′ ⩽ 𝑗 + 𝑘 and 𝑗 + 𝑗 ′ ⩾ 𝑘 . This
gives, for an ITO of rank 𝑘 = 1 the selection rules:

• Δ 𝑗 = 0,±1,
• Δ𝑚 = 0,
• 𝑗 + 𝑗 ′ ⩾ 1.

3A tensor operator 𝑇 (𝑘 )
𝑞 (𝑘 ⩽ 𝑞 ⩽ +𝑘) is said to be irreducible if its (2𝑘 + 1) components are transformed into linear

combinations of themselves under a rotation of the coordinate system. 𝑇 (𝑘 )
𝑞 = 0 unless |𝑞 | ⩽ 𝑘 .

4For example |𝑛𝑙𝑚⟩ for the hydrogen atom.
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Applying the WE theorem to the ITO 𝑇 (1)
0 = 𝐽

(1)
0 gives

⟨𝐽 ,𝑚 |𝐽 (1)0 |𝐽 ′,𝑚′⟩ = (−1) 𝐽 −𝑚
(
𝐽 1 𝐽 ′

−𝑚 0 𝑚′

)
⟨𝐽 ∥ 𝐽 (1) ∥ 𝐽 ′⟩ . (A.62)

Keeping in mind that, as derived earlier, ⟨𝐽 ,𝑚 |𝐽 (1)0 |𝐽 ′,𝑚′⟩ = ℏ𝑚𝛿 𝐽 𝐽 ′𝛿𝑚𝑚′ , and knowing that(
𝐽 1 𝐽

−𝑚 0 𝑚′

)
= (−1) 𝐽 −𝑚 𝑚√︁

𝐽 (𝐽 + 1) (2𝐽 + 1)
𝛿𝑚𝑚′, (A.63)

it directly comes that the reduced matrix element of 𝐽 (1) reads

⟨𝐽 ∥ 𝐽 (1) ∥ 𝐽 ′⟩ = ℏ
√︁
𝐽 (𝐽 + 1) (2𝐽 + 1) 𝛿 𝐽 𝐽 ′ . (A.64)

Generalizing for every component of 𝐽 , eq. (A.62) becomes

⟨𝐽𝑚 | 𝐽 (1)𝑞 |𝐽 ′𝑚′⟩ = (−1) 𝐽 −𝑚
(
𝐽 1 𝐽 ′

−𝑚 𝑞 𝑚′

)
ℏ
√︁
𝐽 (𝐽 + 1) (2𝐽 + 1) 𝛿 𝐽 𝐽 ′ . (A.65)

This relation is also valid for L and S. Another interesting property is that if we take an ITO 𝑇 (𝑘 ) that
acts only on | (𝛼1), 𝑗1𝑚1⟩, one can show that the reduced elements in the coupled basis are related to
those of the uncoupled basis by

⟨(𝛼1) 𝑗1, (𝛼2) 𝑗2, 𝑗 ∥𝑇 (𝑘 ) ∥(𝛼 ′1) 𝑗 ′1, (𝛼 ′2) 𝑗 ′2, 𝑗 ′⟩ = (−1) 𝑗1+𝑗2+𝑗 ′+𝑘
√︁

2 𝑗 + 1
√︁

2 𝑗 ′ + 1 𝛿𝛼2 𝑗2,𝛼 ′
2 𝑗

′
2

×
{
𝑗1 𝑗2 𝑗

𝑗 ′ 𝑘 𝑗 ′1

}
⟨(𝛼1), 𝑗1∥𝑇 (𝑘 ) ∥(𝛼 ′1), 𝑗 ′1⟩ ,

(A.66)

and analogously if 𝑇 (𝑘 ) only acts on | (𝛼2), 𝑗2𝑚2⟩:

⟨(𝛼1) 𝑗1, (𝛼2) 𝑗2, 𝑗 ∥𝑇 (𝑘 ) ∥(𝛼 ′1) 𝑗 ′1, (𝛼 ′2) 𝑗 ′2, 𝑗 ′⟩ = (−1) 𝑗1+𝑗 ′2+𝑗+𝑘
√︁

2 𝑗 + 1
√︁

2 𝑗 ′ + 1 𝛿𝛼1 𝑗1,𝛼 ′
1 𝑗

′
1

×
{
𝑗1 𝑗2 𝑗

𝑘 𝑗 ′ 𝑗 ′2

}
⟨(𝛼2), 𝑗2∥𝑇 (𝑘 ) ∥(𝛼 ′2), 𝑗 ′2⟩ .

(A.67)

The WE theorem is extremely useful when handling matrix elements of different angular momentum
operators. It can also, for example, be used to calculate the matrix elements of 𝑥 = (𝑅 (1)

−1 − 𝑅 (1)
1 )/

√
2 ,

𝑦 = 𝑖 (𝑅 (1)
−1 + 𝑅 (1)

1 )/
√

2 and 𝑧 = 𝑅 (1)
0 in the wavefunctions of the hydrogen atom.
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Appendix B

Properties of alkali atoms

In this appendix, we provide a number of numerical values used in the computations performed in this thesis. These
values relate to the hyperfine structure of various alkali isotopes and are all either taken from the literature or
recalculated. When possible, the bibliographic reference corresponding to the value is provided.

Contents
B.1 Hyperfine structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
B.2 Data tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

B.1 Hyperfine structure

In fig. B.1 we recall the hyperfine structure of Rb, Na, Cs, and 39K 𝐷 lines. The hyperfine splittings are
taken from various articles, see tables B.1 to B.3.
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+14.4
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-188.44

+263.81

+12.815

Figure B.1 – Hyperfine structure of Na, 39K, Rb and Cs 𝐷 line. The energies are rounded and given
in MHz with respect to the fine states.
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B.2 Data tables

In tables B.1 to B.3, we provide recent atomic and optical constants of the main alkali isotopes. These
tables are not meant to be a comprehensive review of the literature, but only a support to help the
interested reader find easily numerical data required in most application cases. Bibliographic references
are provided when available. Most of the data comes from experimental measurements, some parameters
are recalculated. For example, the transition strengths 𝑆𝐹𝐹 ′ between two hyperfine states 𝐹 and 𝐹 ′ are
computed as follows:

𝑆𝐹𝐹 ′ =
∑︁
𝑞

(2𝐹 ′ + 1) (2𝐽 + 1)
{
𝐽 𝐽 ′ 1
𝐹 ′ 𝐹 1

}2
. (B.1)

As it can be verified in tables B.1 to B.3, the transition strengths verify∑︁
𝐹 ′
𝑆𝐹𝐹 ′ = 1. (B.2)

Notation 133Cs Ref.
Atomic number 𝑍 37
Abundance [%] 𝜂 72.17(2) [223]

Principal quantum number 𝑛 55
Atomic mass [u] 𝑚𝑎 132.905 451 931(27) [224]
Nuclear spin 𝐼 7/2

𝐴hfs (𝑛2𝑆1/2) 2 298.157 942 5 [6]
𝐴hfs (𝑛2𝑃1/2) 291.920(19) [152, 153]Magnetic dipole constant [ℎ·MHz]
𝐴hfs (𝑛2𝑃3/2) 50.275(3) [225]

Electric quadrupole constant [ℎ·MHz] 𝐵hfs (𝑛2𝑃3/2) -0.53(2) [225]
𝑔𝑆 2.002 319 304 362 56(35) [163]
𝑔𝐿 0.999 995 87
𝑔𝐼 -0.000 398 853 95(52)

[6]𝑔𝐽 (𝑛2𝑆1/2) 2.002 540 32(20)
𝑔𝐽 (𝑛2𝑃1/2) 0.665 90(9)

Landé factors

𝑔𝐽 (𝑛2𝑃3/2) 1.3340(3)
𝜆𝐷1 894.592 959 86(11) [152]Transition wavelength in vacuum [nm]
𝜆𝐷2 852.347 275 82(27) [226]
𝜔
𝐷1
0 335.116 048 807(41) [152]

Transition frequency [2𝜋 ·THz]
𝜔
𝐷2
0 351.725 718 50(11) [226]
Γ𝐷1 4.561 2(57) [227–229]Natural linewidth [2𝜋 ·MHz]
Γ𝐷2 5.222 7(66)

𝑆𝐹𝐹 ′ (𝐷1)
𝑆33 = 1/4 𝑆34 = 3/4

Recalculated
𝑆43 = 7/12 𝑆44 = 5/12

𝑆𝐹𝐹 ′ (𝐷2)
𝑆32 = 5/14 𝑆43 = 7/12
𝑆33 = 3/8 𝑆44 = 7/24

Relative 𝐹 → 𝐹 ′ transition strength

𝑆34 = 15/56 𝑆45 = 11/18

Table B.1 – Summary of different physical and optical constants of 133Cs, with their respective unit.
When possible, the uncertainty on the value and the bibliographic reference are provided.
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Appendix C

Semi-classical atom-light interactions
In this appendix, we recall the main lines of the density matrix formalism for an ensemble of atoms interacting with a
classical light field. We then build the interaction Hamiltonian of a three-level Λ-system using the dipole and rotating
wave approximations and briefly explain the phenomenon of EIT in the dark state formalism.
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C.1 Density matrix formalism

Let us consider a quantum atom interacting with a classical electromagnetic field [236, 237]. The
well-known time-dependent Schrödinger equation

𝑖ℏ
𝜕

𝜕𝑡
|Ψ⟩ = H |Ψ⟩ (C.1)

describes the evolution of the atomic wavefunction |Ψ⟩, where H is the Hamiltonian of the system and

|Ψ⟩ =
∑︁
𝑛

𝑐𝑛 (𝑡) |𝜓𝑛⟩ . (C.2)

The probability 𝑝𝑛 of finding the system in the state |𝜓𝑛⟩ at any time 𝑡 is given by

𝑝𝑛 = |𝑐𝑛 (𝑡) |2 = | ⟨𝜓𝑛 | Ψ⟩ |. (C.3)

This works very well for single atoms. However, for a large number of atoms, it is better to use a
statistical method such as the density matrix formalism [23, 106].

C.1.1 Definition

For a pure state |Ψ⟩, the density matrix 𝜌 is defined as

𝜌 = |Ψ⟩ ⟨Ψ| . (C.4)

The diagonal elements 𝜌𝑛𝑛 = ⟨Ψ𝑛 |𝜌 |Ψ𝑛⟩ thus represent the probabilities to find the system in a given
state, they are called populations. The off-diagonal terms 𝜌𝑛𝑚 , called coherences, are expressed as

𝜌𝑛𝑚 = ⟨Ψ𝑛 |𝜌 |Ψ𝑚⟩ = 𝑐𝑛 (𝑡)𝑐∗𝑚 (𝑡) . (C.5)

For a mixed state (an ensemble of particles), the density matrix is defined as

𝜌 =
∑︁
𝑖

𝑝𝑖 |Ψ𝑖⟩ ⟨Ψ𝑖 | , (C.6)
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where 𝑝𝑖 is the probability of finding the system in state |Ψ𝑖⟩. The density matrix allows to calculate the
statistical average of a given observable. In experiments, one measures the expectation value of the
observable. The expectation value of an observable A reads

⟨A⟩ =
∑︁
𝑖

𝑝𝑖 |Ψ𝑖⟩ A ⟨Ψ𝑖 | . (C.7)

Introducing the completeness relation1 allows to rewrite eq. (C.7) as

⟨A⟩ =
∑︁
𝑖

𝑝𝑖 ⟨Ψ𝑖 | A
∑︁
𝑛

|𝜓𝑛⟩ ⟨𝜓𝑛 | |Ψ𝑖⟩

=
∑︁
𝑛

∑︁
𝑖

𝑝𝑖 ⟨Ψ𝑖 | 𝜓𝑛⟩ ⟨𝜓𝑛 | A|Ψ𝑖⟩

= Tr(𝜌A),

(C.8)

where Tr(𝜌) = ∑
𝑛 ⟨𝜓𝑛 |𝜌 |𝜓𝑛⟩ is the trace.

C.1.2 Liouville equation of motion

Let us now take a look at the time evolution of the density matrix. The conjugate of eq. (C.1) is

−𝑖ℏ 𝜕
𝜕𝑡

⟨Ψ| = ⟨Ψ| H . (C.9)

Differentiating eq. (C.4) and combining with eqs. (C.1) and (C.9) yields

𝜕

𝜕𝑡
𝜌 =

1
𝑖ℏ
H |Ψ⟩ ⟨Ψ| − 1

𝑖ℏ
|Ψ⟩ ⟨Ψ| H

=
1
𝑖ℏ

[H , 𝜌] .
(C.10)

Equation (C.10) is called the Liouville - von Neumann equation of motion. This formalism is well suited
for the inclusion of statistical effects. An ensemble of moving atoms will be described by the density
matrix 𝜌 (𝑣, 𝑡). Its time evolution is given by the Liouville - von Neumann equation, but the expectation
values of the operators in this case become

A =

∫
𝑀 (𝑣)Tr(𝜌A)d𝑣 (C.11)

where𝑀 (𝑣) is a velocity (typically Maxwell–Boltzmann) distribution. Phenomenological processes such
as relaxation R (spontaneous decay, collisional decay, ...) or repopulation Λ (spontaneous transfer, ...)
can also be easily included in this formalism by including the Lindblad operator L. The Liouville - von
Neumann equation then becomes

𝑖ℏ
𝜕

𝜕𝑡
𝜌 = [H , 𝜌] − 𝑖ℏ {R, 𝜌} + 𝑖ℏΛ

=
𝑖

ℏ
[H , 𝜌] + L(𝜌),

(C.12)

where {𝑎, 𝑏} is the anti-commutator.

1{𝜓𝑛} being an orthonormal basis of the Hilbert space, one has
∑
𝑛 |𝜓𝑛⟩ ⟨𝜓𝑛 | = Id.
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C.1.3 Building the system of equations

To build the density matrix, one may use the formulas from [106, Chap. 6]. The equations for the
populations and coherences read

𝜕

𝜕𝑡
𝜌𝑚𝑚 = − 𝑖

ℏ

∑︁
𝑛

[H𝑚𝑛𝜌𝑛𝑚 − 𝜌𝑚𝑛H𝑛𝑚] − R𝑚𝑚𝜌𝑚𝑚 +
∑︁
𝑛≠𝑚

Γ𝑛𝑚𝜌𝑛𝑛 (C.13)

𝜕

𝜕𝑡
𝜌𝑚′𝑚 = − 𝑖

ℏ

∑︁
𝑛

(H𝑚′𝑛𝜌𝑛𝑚 − 𝜌𝑚′𝑛H𝑛𝑚) − R𝑚′𝑚𝜌𝑚′𝑚, (C.14)

where R𝑚′𝑚 is given by

R𝑚′𝑚 =
1
2

( ∑︁
𝑛≠𝑚′

Γ𝑚′𝑛 +
∑︁
𝑛≠𝑚

Γ𝑚𝑛

)
+ [1 − 𝛿 (𝑚,𝑚′)] 𝛾𝑐𝑚′𝑚 . (C.15)

In this equation, Γ𝑛𝑚 parametrizes the flow of population from state |𝑛⟩ to state |𝑚⟩ at a rate 𝜏𝑛𝑚 = 1/Γ𝑛𝑚 ,
𝛾𝑐
𝑚′𝑚 represents an additional decoherence rate, due for example to collisions. Let us note that
R𝑛𝑛 =

∑
𝑚≠𝑛 Γ𝑛𝑚 for a closed system (which is the case in our studies).

C.2 Interaction with a laser field

The HamiltonianH is made up of two parts:

H = H0 + Hint(𝑡), (C.16)

where H0 is the atomic Hamiltonian in the absence of external radiation, and Hint(𝑡) describes the
interaction of the atom with a time-dependent electromagnetic field E [typically a continuous wave
(CW) laser]. The latter interaction Hamiltonian takes the form

Hint(𝑡) = −d · E, (C.17)

where d = 𝑒r is the dipole operator and E is assumed to be a plane wave

E(r, 𝑡) = 𝐸0 exp[−𝑖 (𝜔𝑡 − k · r)]e + c.c. (C.18)

of complex amplitude 𝐸0, wavevector k and polarized along e.

C.2.1 Electric Dipole Approximation

The Electric Dipole Approximation consists in neglecting the spatial phase shift of the wave over
the effective atomic space. We explain it hereafter in a simple way; a far more elaborated discussion
can be found in [238, Sec. 24.5]. In eq. (C.18), k · r = 2𝜋𝑟/𝜆. The atomic radius 𝑟𝑎 of the “biggest”
alkali atom studied in this thesis (cesium) is 𝑟𝑎 ∼ 0.26 nm. Thus, for wavelengths around 500 nm,
𝑟/𝜆 = 0.26/500 ≃ 5 × 10−4 ≪ 1 and therefore

exp(𝑖k · r) ∼ 1 and E(r, 𝑡) ≃ 2𝐸0 cos(𝜔𝑡)e. (C.19)

One would have arrived at the same conclusion with either the Bohr radius, the covalent radius, the van
der Waals radius, or the atomic radius as they all range from 0.05 to 0.3 nm. The matrix elementsH𝑖 𝑗 of
the interaction Hamiltonian thus reduce to

H𝑖 𝑗 = −𝑑𝑖 𝑗 · 𝐸0 [exp(−𝑖𝜔𝑡) + exp(𝑖𝜔𝑡)] e𝑑 · e, (C.20)

with e𝑑 · e ∼ 1 if the dipole is aligned with the laser field. The matrix elements of the dipole moment 𝑑𝑖 𝑗
are

𝑑𝑖 𝑗 = 𝑒 ⟨ 𝑗 |𝑟 |𝑖⟩ = 𝑒
∫

d𝜏Ψ∗
𝑗 𝑟Ψ𝑖 = exp[−𝑖𝜔𝑖 𝑗𝑡]

��𝑑𝑖 𝑗 �� , (C.21)
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with 𝜔 𝑗𝑖 = (𝐸 𝑗 − 𝐸𝑖)/ℏ the transition frequency between two bare states and��𝑑𝑖 𝑗 �� = ∫
𝑑𝜏𝜑∗

𝑗 (𝑟 )𝑟𝜑𝑖 (𝑟 ) . (C.22)

Let us note that as the dipole operator is an odd function, the only possibility for the previous integral
to be non-zero is to be evaluated between states of opposite parity.

C.2.2 Rotating wave approximation

Using eqs. (C.20) and (C.21) the matrix elements of the interaction Hamiltonian become

H𝑖 𝑗 = −|𝑑𝑖 𝑗 |
(
𝐸0 exp[−𝑖 (𝜔 + 𝜔𝑖 𝑗 )𝑡] + 𝐸∗0 exp[𝑖 (𝜔 − 𝜔𝑖 𝑗 )𝑡]

)
. (C.23)

For near-resonant light, one has 𝜔 − 𝜔𝑖 𝑗 ≪ 1, while the term exp[−𝑖 (𝜔 + 𝜔𝑖 𝑗 )𝑡] oscillates much faster
than exp[𝑖 (𝜔 − 𝜔𝑖 𝑗 )𝑡] because 𝜔 − 𝜔𝑖 𝑗 ≪ 𝜔 + 𝜔𝑖 𝑗 . The rotating wave approximation (RWA), see e.g.
[236, Sec. V. A. 3], then consists in neglecting the fast oscillating terms as they will average to zero on
any physical time scale. Thus, eq. (C.23) may be simplified to

H𝑖 𝑗 = −ℏΩ𝑖 𝑗 exp(𝑖Δ𝑡), (C.24)

where Δ = 𝜔 − 𝜔𝑖 𝑗 is the detuning between the laser field and the transition frequency. The Rabi
frequency Ω is defined as

Ω𝑖 𝑗 =
|𝑑𝑖 𝑗 |𝐸0

ℏ
. (C.25)

In a closed non-lossy system, the Rabi frequency can be assumed real. However, applying the RWA one
may lose some physical effects such as the Bloch-Siegert [239] shift of resonances.
To remove time dependence in the system Hamiltonian H = H0 + Hint, one can find a unitary
transformationU transforming the eigenbasis into |Ψ̃⟩ = U|Ψ⟩, which verify the “new” Schrödinger
equation

𝑖ℏ
𝜕

𝜕𝑡
|Ψ̃⟩ = H̃ |Ψ̃⟩, (C.26)

where the transformed Hamiltonian is

H̃ = UHU† + 𝑖ℏ 𝜕
𝜕𝑡
UU†. (C.27)

C.3 Three-level Λ system

Here, we will briefly consider a three-level Λ system excited by two lasers as described in fig. C.1. This
is the only case we consider here as it will naturally lead to the introduction of electromagnetically
induced transparency (EIT). The reader may refer to the review of M. Fleischhauer et al. [75] and the
excellent tutorial written by L. Downes [220] for a good overview of atom-light interaction in other
systems (e.g. Ladder) and simple numerical methods that can be used to deal with them.

C.3.1 Building the interaction Hamiltonian

The system shown in fig. C.1 consists in three eigenstates |1⟩, |2⟩, and |3⟩ with bare energies ℏ𝜔𝑛 .
Following eq. (C.16), the atomic HamiltonianH consists in the free-atom HamiltonianH0 containing
the eigenenergies and Hint is a perturbation describing the interaction of the atom with the laser. From
completeness and orthonormality, we have

H0 =

(∑︁
𝑛

|𝑛⟩ ⟨𝑛 |
)
H0

(∑︁
𝑛

|𝑛⟩ ⟨𝑛 |
)
=

©«
ℏ𝜔1 0 0

0 ℏ𝜔2 0
0 0 ℏ𝜔3

ª®¬ . (C.28)
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Figure C.1 – Three-level Λ system with two lasers.

If we drive transition |2⟩ → |3⟩ with a control field of amplitude 𝐸𝑐 and frequency 𝜔𝑐 (called coupling)
and we drive transition |1⟩ → |3⟩ with a weaker probe field of amplitude 𝐸𝑝 and frequency 𝜔𝑝 , the
electric field with which the atom interacts is given by

𝐸 = 𝐸𝑝 cos(𝜔𝑝𝑡 − k𝑝 · r) + 𝐸𝑐 cos(𝜔𝑐𝑡 − k𝑐 · r), (C.29)

where k𝑝 and k𝑐 are the wavevectors of the probe and coupling lasers, respectively. Following the
conclusion of section C.2.1, we may remove the terms k𝑐 · r and k𝑝 · r as 𝜆 ≫ 𝑟 so that the electric field
becomes simply

𝐸 = 𝐸𝑝 cos(𝜔𝑝𝑡) + 𝐸𝑐 cos(𝜔𝑐𝑡). (C.30)

Assuming transition |1⟩ → |2⟩ is forbidden and all other states are far enough not to interact with our
system, the interaction Hamiltonian reads2

Hint = −𝐸 ©«
0 0 𝑑13
0 0 𝑑23
𝑑31 𝑑32 0

ª®¬ . (C.31)

We will now switch to the interaction picture using the time evolution operatorU(𝑡) which reads

U(𝑡) = exp(𝑖H0𝑡/ℏ) =
©«
exp(𝑖𝜔1𝑡) 0 0

0 exp(𝑖𝜔3𝑡) 0
0 0 exp(𝑖𝜔3𝑡)

ª®¬ . (C.32)

The unitary transformationUHintU† yields

H̃int = UHintU† = −𝐸 ©«
0 0 𝑑13 exp[𝑖 (𝜔1 − 𝜔3)𝑡]
0 0 𝑑23 exp[𝑖 (𝜔2 − 𝜔3)𝑡]

𝑑31 exp[𝑖 (𝜔3 − 𝜔1)𝑡] 𝑑23 exp[𝑖 (𝜔3 − 𝜔2)𝑡] 0

ª®¬ . (C.33)

The laser field can be rewritten in complex notation

𝐸 =
1
2

(
𝐸𝑝

[
exp(𝑖𝜔𝑝𝑡) + exp(−𝑖𝜔𝑝𝑡)

]
+ 𝐸𝑐 [exp(𝑖𝜔𝑐𝑡) + exp(−𝑖𝜔𝑐𝑡)]

)
. (C.34)

We may easily inject the expression of the field and apply the RWA, ie. getting rid of all the quickly
oscillating terms. Then, reverting to the Schrödinger picture gives for the interaction Hamiltonian

Hint = U†H̃intU = −1
2
©«

0 0 𝑑13𝐸𝑝 exp(𝑖𝜔𝑝𝑡)
0 0 𝑑23𝐸𝑐 exp(𝑖𝜔𝑐𝑡)

𝑑31𝐸𝑝 exp(𝑖𝜔𝑝𝑡) 𝑑32𝐸𝑐 exp(𝑖𝜔𝑐𝑡) 0

ª®¬ . (C.35)

2Atoms with spherically symmetric wavefunctions [106] have no permanent dipole moment, thus 𝑑𝑖𝑖 = 0. This assumption
holds for the species studied in this thesis.

127



We can now separate the dipole moments into magnitude and phase such that

𝑑13 = 𝑑
∗
31 = |𝑑13 | exp(𝑖𝜑𝑝) and 𝑑23 = 𝑑

∗
32 = |𝑑23 | exp(𝑖𝜑𝑐), (C.36)

so that the final total atomic HamiltonianH = H0 + Hint reads

H =
ℏ

2
©«

2𝜔1 0 −Ω𝑝 exp(𝑖𝜑𝑝) exp(𝑖𝜔𝑝𝑡)
0 2𝜔2 −Ω𝑐 exp(𝑖𝜑𝑐) exp(𝑖𝜔𝑐𝑡)

−Ω𝑝 exp(−𝑖𝜑𝑝) exp(−𝑖𝜔𝑝𝑡) −Ω𝑐 exp(−𝑖𝜑𝑐) exp(𝑖𝜔𝑐𝑡) 2𝜔3

ª®¬ , (C.37)

where the Rabi frequencies are defined following eq. (C.25), ie

Ω𝑝,𝑐 =
𝐸𝑝,𝑐 |𝑑13,23 |

ℏ
. (C.38)

In the so-called rotating basis (see eg. [240, Chap. 1] for a full derivation), we may get rid of all
time-dependence and phase factors. Rigorously, the rotating basis |�̃�⟩ is related to Schrödinger picture
|𝑛⟩ by |�̃�⟩ = �̃� (𝑡) |𝑛⟩ with

�̃� (𝑡) = ©«
exp(−𝑖𝜑𝑝) exp(−𝑖𝜔𝑝)𝑡 0 0

0 exp(−𝑖𝜑𝑐) exp(−𝑖𝜔𝑐)𝑡 0
0 0 1

ª®¬ . (C.39)

After easy but tedious calculations, one can rewrite the total Hamiltonian in the rotating basis as follows:

H =
ℏ

2
©«

0 0 Ω𝑝
0 −2Δ𝑅 Ω𝑐
Ω𝑝 Ω𝑐 −2Δ𝑝

ª®¬ , (C.40)

where Δ𝑝 = 𝜔31 − 𝜔𝑝 and Δ𝑐 = 𝜔32 − 𝜔𝑐 are the probe and coupling laser detuning to the upper state
|3⟩, and Δ𝑅 = Δ𝑝 − Δ𝑐 is the two-photon Raman detuning.

C.3.2 Dark state, Electromagnetically-Induced Transparency

On two-photon resonance (Δ𝑅 = 0, Δ𝑝 = Δ𝑐 = Δ), the eigenvalues ofH in terms of the bare states are

|𝑎+⟩ = sin𝜃 sinΦ |1⟩ + cos𝜃 sinΦ |2⟩ + cosΦ |3⟩
|𝑎−⟩ = sin𝜃 cosΦ |1⟩ + cos𝜃 cosΦ |2⟩ − sinΦ |3⟩
|𝑎0⟩ = cos𝜃 |1⟩ − sin𝜃 |2⟩ ,

(C.41)

with tan𝜃 = Ω𝑝/Ω𝑐 and tan 2Φ =

√︃
Ω2
𝑝 + Ω2

𝑐 /Δ. The energies of these states are

𝜆± =
ℏ

2

(
Δ ∓

√
Ω2 + Δ2

)
𝜆0 = 0.

(C.42)

where Ω =

√︃
Ω2
𝑝 + Ω2

𝑐 is the generalized Rabi frequency. Interestingly enough, the eigenstate |𝑎0⟩ does
not contain any contribution from the upper state |3⟩ and does not interact with it. Since |𝑎0⟩ is an
eigenstate of the system, ⟨3|H |𝑎0⟩ = 0 vanishes. Consequently, no interaction can drive the |𝑎0⟩ → |3⟩
transition, and an atom prepared in the state |𝑎0⟩ cannot absorb nor emit a photon. In that case, the
medium becomes “transparent” to the probe beam, hence the name EIT. Population spontaneously
decaying from the upper state |3⟩ can be trapped in state |𝑎0⟩ but cannot be re-excited back to |3⟩. This
is one of the methods used to perform coherent population trapping.
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Title: Sub-Doppler spectroscopy of alkali vapors confined in nanometric and micrometric thin cells
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Abstract: This thesis explores various aspects of 
sub-Doppler spectroscopy, ranging from fundamen-
tal studies of the Zeeman effect to coherent pum-
ping processes. It provides a general overview of 
past and present advancements using thin spec-
troscopic cells of nanometric and micrometric 
thickness. From a theoretical perspective, we recall 
the model describing the interaction between a 
laser and a vapor confined in a thin cell. We present 
a comprehensive theoretical description of the 
behavior of a sodium vapor under magnetic fields 
up to 10 000 G. Additionally, we develop a complete 
theoretical framework for dipole moment cancella-
tion and calculate the magnetic field values at which 
Zeeman transitions of alkali atoms are canceled. 
These values depend solely on physical constants 

and can serve as standards for calibrating magne-
tometers. We also present a magnetometer 
scheme utilizing thin potassium cells allowing to 
measure magnetic fields with high spatial resolu-
tion, potentially beneficial for magnetometry in 
challenging environments. The formation of EIT 
resonances in strong magnetic fields is investigated 
both theoretically and experimentally, showing 
promise for laser frequency locking on strongly 
detuned frequencies. Lastly, we explore the forma-
tion of narrow N-resonances and examine the effect 
of additional buffer gas on their width and contrast. 
N-resonances are promising candidates for atomic 
frequency standards that can be achieved with 
commercially available diode lasers.

Université Bourgogne Franche-Comté
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21000 Besançon

Titre : Spectroscopie sous-Doppler de vapeurs alcalines confinées dans ces cellules minces nanométriques 
et micrométriques
Mots-clés : spectroscopie atomique ; alcalins ; effet Zeeman ; magnétométrie ; procédés magnéto-optiques

Résumé : Cette thèse explore divers aspects de la 
spectroscopie sous-Doppler, allant des études 
fondamentales de l'effet Zeeman aux processus de 
pompage cohérent. Elle offre une vue d'ensemble 
des avancées antérieures et actuelles en utilisant 
des cellules spectroscopiques fines d’épaisseur 
nanométrique et micrométrique. Du point de vue 
théorique, nous rappelons le modèle décrivant 
l'interaction entre un laser et une vapeur confinée 
dans une cellule fine. Nous présentons une 
description théorique complète du comportement 
d'une vapeur de sodium dans un champ magné-
tique allant jusqu'à 10 000 G. De plus, nous déve-
loppons un cadre théorique complet pour l'annula-
tion du moment dipolaire et calculons les valeurs de 
champ magnétique pour lesquelles les transitions 
Zeeman des atomes alcalins sont annulées. Ces 
valeurs dépendent uniquement de constantes 

physiques et peuvent servir de références pour 
l'étalonnage de magnétomètres. Nous présentons 
également un schéma de magnétomètre utilisant 
de fines cellules de potassium permettant de mesu-
rer les champs magnétiques avec une haute réso-
lution spatiale, potentiellement bénéfique pour la 
magnétométrie dans des environnements difficiles. 
La formation de résonances EIT dans des champs 
magnétiques forts est étudiée théoriquement et 
expérimentalement, montrant une faisabilité pour le 
verrouillage de la fréquence laser sur des 
fréquences fortement décalées. Enfin, nous explo-
rons la formation de résonances N étroites et 
examinons l'effet d'un gaz tampon supplémentaire 
sur leur largeur et leur contraste. Les résonances N 
sont des candidates prometteuses pour des étalons 
de fréquence atomique pouvant être réalisés avec 
des lasers à diode disponibles dans le commerce.
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