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ABSTRACT

Offshore wind energy maintenance operations are highly sensitive to environmental
conditions. To be safely executed, an ensemble of limiting parameters are to be below
operability limits for the duration of the operation. This makes maintenance opera-
tions decision-making problems under forecast uncertainty. Current numerical weather
and wave predictions are limited for the full estimation of forecast uncertainty due to
their computational costs. Learning-based methods on the other hand are computation-
ally inexpensive for inference, and can provide an interesting framework for multivariate
probabilistic forecasting. Their low computational cost furthermore permits the integra-
tion of recent in-situ measurements for metocean forecast emulation.

The importance of offshore measurements is highlighted by the thesis results, and a
learning-based method for designing optimal sensors networks is proposed. It is shown
that unsupervised clustering can be used efficiently for the sparse sampling of offshore
wind compared to state-of-the-art methods. This method has been used by the French
weather service to define the deployment of floating LIDAR on future offshore wind energy
tender areas.

This thesis explores deep learning models for the joint probabilistic forecasting of
offshore wind energy operations limiting parameters. The importance of taking as input
both numerical weather predictions and in-situ measurements is shown, and the interest
of deep learning model for assimilating a large amount of input data is demonstrated.
Different probabilistic framework are proposed for the multivariate probabilistic forecast
emulation. A Gaussian posterior assumption, particularly relevant for bi-variate wind
prediction, is compared to a non-parametric generative approach using normalizing flows.
It is shown that the use of normalizing flows can relax any assumption on the shape of
posterior distribution while maintaining sampling and likelihood computation capabilities.

A real case study dataset is built using co-located buoys and LIDAR measurements
on a relevant area for offshore wind energy development. The probabilistic models are
adapted for the joint wind and wave forecasting, for which the non-Gaussian properties
of the normalizing flows is beneficial for forecast reliability. Several approaches based
on Gaussian copulas are proposed to emulate temporal dependency between lead times.
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Normalizing flows-based temporal correlation embedding are also proposed. The use of
normalizing flows for scenario generation proves promising and should be further investi-
gated. Eventually, the different models are evaluated in a new operational value framework
that considers the economic impact of the decision-making based on the forecast. As an
addition to the literature on the topic, a new metric that includes risk taken when oper-
ating under dangerous conditions is proposed. It is shown that the search for an economic
optimum in the probabilistic decision-making leads to higher risk during operations, and
this should be taken into account for forecast selection and evaluation.
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RÉSUMÉ EN FRANÇAIS

Contexte

Dans un contexte global de lutte contre le changement climatique [1], la France fait
face à un défi immense de décarbonation de ses systèmes énergétiques. Cette transition
énergétique historique va faire appel à l’ensemble des énergies bas carbone disponibles, et
l’éolien en mer y tient une place majeure [2]. De par sa position privilégiée et ses diverses
façades maritimes, la France est amenée à jouer un rôle majeur dans le développement de
l’éolien en mer. Les premières fermes éoliennes utilisant des technologies posées ont été
mises en service en 2022 en France, avec un retard conséquent sur d’autres pays européens
comme le Danemark, l’Allemagne, les Pays-Bas et le Royaume-Uni. Pour l’éolien flottant
en revanche, la plus faible maturité technologique et l’immensité du potentiel de capacité
installée en font un enjeu de recherche et développement majeur.

Dans ce cadre, France Énergies Marines, l’institut de transition énergétique français
dédié aux énergies marines renouvelables (EMR) mène avec ses partenaires industriels
et académiques et avec le soutien de l’Agence Nationale de la Recherche des projets
de recherche collaboratifs pour augmenter le niveau de maturité des technologies EMR.
Les projets de recherche émanent directement de problématiques industrielles, et ont pour
objet des sujets aussi divers que l’intégration environnementale, la caractérisation de sites,
l’optimisation de fermes et le design et suivi en service des systèmes.

Un des freins majeurs au développement de l’éolien flottant à travers le monde est la
difficulté et le surcout associés aux opérations de maintenance. A la différence des éoli-
ennes posées, les opérations de maintenance de l’éolien flottant nécessitent de faire des
manœuvres de flottant à flottant. Les mouvements combinés du flotteur et du bateau de
maintenance soumis à des conditions météo-océaniques complexes rendent les opérations
dangereuses. La prise de décision opérationnelle nécessite donc des modèles de prévi-
sions météo-océaniques précis et calibrés sur les paramètres environnementaux limitant
les opérations (vent et vagues en particulier).

Pour répondre aux besoins de l’industrie sur ces questions spécifiques, France Énergies
Marines a lancé en 2021 un projet de recherche collaboratif appelé FLOWTOM (FLoat-
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ing Offshore Wind Operations and Maintenance) en collaboration avec des partenaires
industriels (EDF, Skyborn renewables, Innosea, Jifmar, SBM offshore, Sofresid Engineer-
ing, EOLFI) et académiques (IFREMER, IMT Atlantique). Il a pour but d’explorer des
solutions innovantes de levage lourd de flottant à flottant, et de développer des outils de
prévisions météo-océaniques basés sur l’apprentissage profond répondant aux contraintes
de ces nouvelles opérations. C’est ce dernier point qui fait l’objet de cette thèse qui a
été entreprise en collaboration avec l’IMT Atlantique sous la chaire doctorale OCEANIX,
sous la direction de Ronan Fablet et Pierre Pinson et la supervision de Pierre Tandeo et
Maxime Thiébaut. Elle est soutenue par l’ANR via le projet FLOWTOM et la subvention
CIFRE.

Pour une opération donnée, des limites opérationnelles sur certaines variables environ-
nementales comme la hauteur des vagues ou la vitesse du vent sont définies à partir des
réponses du systèmes aux conditions. Pour prendre en compte les incertitudes de prévi-
sion, ces limites sont dégradées d’un facteur appelé «alpha-factor», estimé de manière
semi-empirique dans des tables de normes calibrées sur la mer du Nord [3]. L’application
de ce facteur de sécurité rend la prise de décision plus conservatrice. De nombreux travaux
récents insiste sur l’importance d’une prise en compte plus complète des incertitudes dans
la prise de décision [4–8]. Les travaux présentés s’inscrivent dans la continuité de ces
études, avec l’ambition de faire le lien entre prévision probabiliste multivariée, prévision
de fenêtre météorologiques, prise de décision opérationnelle, et évaluation opérationnelle
des modèles de prévisions.

L’état de l’art des prévisions météorologiques est basé sur des modèles de prévision
numériques qui simule l’évolution de l’atmosphère en discrétisant l’espace-temps et en
résolvant les équations de circulation à partir d’un état initial estimé. Ces modèles ont
permis des avancées spectaculaires dans les dernières décennies [9], mais sont limités par
leur formidable coût de calcul, notamment dans leur résolution spatiale et dans esti-
mation des incertitudes. L’intégration de briques de modèles basées sur l’apprentissage
profond a explosé ces dernières années, au point que des modèles entièrement basés sur
l’apprentissage profond - modèles end-to-end - ont vu le jour ces dernières années, sur-
passant selon certaines métriques les capacités des meilleurs modèles numériques [10–13].
De nombreuses applications de problèmes inverses [14], de post-traitement pour l’éolien
[15] ou encore d’émulation d’incertitudes [16, 17] ont également vues le jour. Dans ces
travaux, nous explorons des méthodes d’apprentissage profond pour la prévision multi-
variées probabiliste de variables météo-océaniques, en nous situant dans le domaine du
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post-traitement des modèles numériques et l’émulation d’incertitudes.
Par ailleurs, les modèles sont développés selon les contraintes des opérations de main-

tenance en mer, et évaluer dans ce cadre. Ainsi, nous relions les travaux de prévision jointe
vent-vagues de Wu et al. [18], et la prise de décision probabiliste évaluer dans un cadre
opérationnel comme introduit par Catterson et al. [6] et développé par Taylor and Jeon
[7].

A la lumière de cette rapide introduction de la littérature scientifique, les questions
auxquelles ces travaux essaient de répondre sont les suivantes :

• Comment les méthodes d’apprentissage peuvent-elles être utilisées pour
améliorer les prévisions météo-océaniques pour l’industrie éolienne en
mer ?

• Qu’est-ce l’implémentation de ces méthodes implique pour l’évolution
des standards, le déploiement de mesures en mer et l’évaluation des
modèles de prévision ?

Résumé par chapitres

Nous donnons ici un résumé de chacun des chapitres constituant la thèse. Le Chapitre
II.4.3 dresse un état de l’art de la prévision en mer et des opérations de maintenance. Il
s’adresse au lecteur non-familier avec ces notions. Le Chapitre II introduit l’ensemble des
concepts mathématiques utilisés dans cette thèse, et ses fondements méthodologiques.

Les Chapitres III et IV sont données sous la forme d’articles publiés dans des revues
scientifiques internationales. Ils peuvent être considérés comme des travaux de recherche
en tant que tel et comportent des introductions, description de méthodes, résultats et
conclusions.

Le Chapitre III décrit une méthode d’échantillonnage parcimonieux basé sur le clus-
tering non-supervisé de données de modèles numériques. Des recommandations pour le
déploiement de réseaux de capteurs sur les zones de développement de l’éolien en mer en
France y sont données.

Le Chapitre IV décrit le développement d’un modèle convolutif pour la prévision
probabiliste du vent sur l’île de Porquerolles. Il est basé sur l’utilisation du jeu de données
open source Météo Net [19] dont il hérite des limitations.

Le Chapitre V fais le lien avec les opérations de maintenance de l’éolien en travaillant
sur une cible jointe vent et vagues au large de Marseille. La méthodologie pour la prévision
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de fenêtres météorologiques et l’évaluation des modèles dans un contexte opérationnel y
sont détaillées.

Chapitre 1 - Prévision météo-océaniques et opérations en mer

Le travail présenté dans cette thèse est pluridisciplinaire. Il fait appel à des notions de
prévisions météorologiques, de dynamique de l’atmosphère et des océans, d’opérations en
mer pour l’éolien, de mathématiques appliquées et d’apprentissage profond.

Opérations en mer et conditions météo-océaniques
Dans une première partie, nous présentons le contexte général des opérations de main-
tenance de l’éolien en mer, le contexte particulier de l’éolien flottant, et lien avec les
prévisions météo-océaniques. Les opérations de maintenance représentent 30% des coûts
totaux des projets éolien en mer [20]. Pour l’éolien flottant, les mouvements combinés du
flotteur et du bateau rendent plus compliquées les opérations de transfert de personnel
ou de charge lourde (pale, hub, etc.). Différentes stratégies de maintenance peuvent être
implémentées. La maintenance prédictive qui se base sur une estimation du vieillissement
des composants par du suivi en service pour anticiper leur défaillance, et la maintenance
corrective qui régit à la défaillance non prévue d’un composant. Ces deux types de mainte-
nance ne représentent pas le même risque opérationnel. Lors d’une maintenance corrective,
la production de l’éolienne est arrêtée jusqu’à ce que l’opération soit menée à bien. Le
coût associé est lié à la perte de production pendant le temps d’arrêt de la machine. Les
sources de délais sont décrite par [21]: la disponibilité des pièces détachées, d’un bateau et
d’un équipage, leurs mobilisations, et le délai lié à l’attente d’une fenêtre météorologique
en sont les principales.

Les standards de sécurité pour les opérations sont délivrés par le Det Norske Ver-
itas (DNV) [3]. Ils y différencient deux types d’opérations en fonction de la durée de
l’opération. Les opérations durant moins de 72h (Et 96h en contant la marge de sécurité)
sont considérées comme «limitées par la météo», et sont sujettes a des limites d’opérabilité
censées garantir l’occurrence d’événements dangereux sous un certain seuil de probabilité.
Une méthode générale pour définir les limites opérationnelles est décrite dans [22].

Lors d’une phase d’opérations, la décision ou non de tenter l’opération se fait à la
lumière de modèles de prévisions météo-océaniques. Ceux-ci étant sujets à de nombreuses
incertitudes, une méthodologie est mise en place au niveau industriel pour limiter les
risques. Les limites d’opérabilité sont dégradées d’un facteur 0 ≤ α ≤ 1 nommé l’alpha-
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factor, qui rend les limites plus conservatrices et donc limite le risque de conditions dan-
gereuses. Ce facteur est déterminé à partir de critères semi-empiriques et de tables de
valeurs calibrées sur la mer du Nord. Les détails du calcul de l’alpha-factor sont décrits
dans [8]. Des travaux récents proposent des méthodologies pour améliorer l’alpha-factor
pour qu’il prenne en compte la réponse dynamique du bateau aux conditions [4, 5, 18].
L’amélioration des prévisions météo-océaniques et l’intégration des incertitudes dans la
prise de décision sont identifiés comme des facteurs importants de la réduction des coûts
d’opération pour l’éolien en mer [23].

Bases de prévisions météo-océaniques

Dans les sections suivantes, nous donnons des éléments de contexte sur les prévi-
sion météo-océaniques, les mesures in-situ en mer et la météorologie du Golfe du Lion.
Les prévisions numériques rassemblent l’ensemble des méthodes basées sur la résolution
des équations dynamiques de l’atmosphère ou de l’océan sur une grille discrétisée. Ils
ont connus un développement fascinant depuis leur théorisation par Abbe, Bjerknes et
Richardson [24–26], et il est estimé qu’ils gagnent un jour de prévision supplémentaire par
décennie [9]. Le formidable développement des moyens de calculs associé à des progrès
considérables dans la paramétrisation des phénomènes physico-chimiques et a une quan-
tité exponentielle de données d’observation de l’atmosphère ont permis cette prouesse
informatique. L’atmosphère étant un système complexe souvent assimilé à un système
chaotique en très grande dimension, les incertitudes liées à l’estimation de l’état initial
de l’atmosphère et les incertitudes liées aux approximations numériques amènent les sim-
ulations à diverger pour des horizons de prévisions grandissant, limitant dans le futur
les capacités de prédiction. Dans ces travaux nous utilisons le modèle AROME qui est
un modèle de très haute résolution sur la France avec une maille de 1.3 km. Il fournit
des prévision 42 heures en avance toutes les 6 heures [27]. Pour estimer les incertitudes,
les modèles numériques font plusieurs simulations en parallèle à partir d’un état initial
perturbé et avec des paramétrisations perturbées. Le nombre de membres d’ensemble est
un paramètre majeur pour caractériser la complétude de l’estimation de l’incertitude. Le
modèle AROME utilise 16 membres d’ensemble, ce qui est une limitation, tandis que le
modèle européen IFS de l’ECMWF en produit 50. Les prévisions d’ensemble donnent une
idée de la prédictibilité de la situation météorologique en générant des échantillons d’une
distribution postérieure en grande dimension non explicitée.
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Récemment, un grand nombre d’équipes de recherche ont cherché à implémenter des
modèles basés-données ou d’apprentissage profond pour des applications liées à la prévi-
sion météorologique. Celles-ci ont comme avantage d’avoir un coût de calcul bien plus
faible que les modèles numériques, tout en proposant des propriétés non-linéaires très
intéressantes. En revanche, la dynamique de l’atmosphère n’y est pas explicitée et les
modèles peuvent être perçus comme des boîtes noires n’offrant que peu de possibilités
d’interprétabilité des résultats. Nous donnons dans cette section une revue de la littéra-
ture complète en différenciant les modèles relevant de modèles «statistiques», souvent
paramétriques et ne faisant pas appel à des réseaux de neurones, les méthodes utilisant
l’apprentissage profond qui ont essaimé ces dernières années, et enfin les méthodes hy-
brides qui s’attachent à intégrer des contraintes physiques dans leur modélisation. L’intérêt
de ces méthodes pour générer des prévisions améliorées pour des applications spécifique
est évident au regard de cette littérature.

Le lien entre prévision météorologiques et océanique est important. Les oscillations de
surface de l’océan sont principalement dues au vent qui génère par friction de surface des
vagues de gravité. Les caractéristiques de celles-ci dépendent de la durée et la distance
durant laquelle le vent a soufflé sur la surface [28]. Les paramètres considérés dans ces
travaux comme influençant les opérations de maintenance sont la hauteur significative des
vagues définie comme la moyenne du tiers supérieur des vagues observées, et la période
moyenne des vagues. Comme les modèles numériques de vent, les modèles numériques de
vagues (Wave Watch III forcé par AROME utilisé dans ces travaux) sont gourmands en
temps de calcul. De la même manière, de nombreux travaux fleurissent sur des applications
de modèles d’apprentissage pour la prévision des vagues [4, 29–33]. La relation entre le vent
et les vagues étant complexe, certain travaux s’attardent sur leur prévision jointe, surtout
dans des cadres de réanalyse on de génération de séries temporelles historiques [34–37].
Pour la planification des opérations, nous avons besoin de prédire ces séries temporelles
jointe. Ce nouveau besoin n’est traité à notre connaissance que dans les travaux récents
de [38], et constitue une partie importante de la motivation de cette thèse.

Pour le développement de méthodes d’apprentissage pour la caractérisation de sites
en mer, des données de mesures in-situ en mer sont nécessaires. Celles-ci sont rares, pas
toujours accessibles, et sur des durées limitées (campagne HyMeX [39]). La France a besoin
d’installation de mesures pérennes pour que la recherche sur le sujet puisse avancer et pour
favoriser le développement des éoliennes en mer. L’exemple des mats FINO allemands est
frappant, car les données qu’ils produisent sont utilisés dans une majorité des travaux de
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recherche européens sur le sujet. Dans cette thèse nous avons du nous contenter d’un jeu
de données open-source MétéoNet [19] limité pour notre cas d’étude. C’est un exemple
de partage de données qui doit être répliqué. Nous utilisons également des données de
mesure sur l’île du Planier au large de Marseille ou un LIDAR a été déployé par France
Énergies Marines qui fournit des données de grande qualité et dont la durée d’exploitation
doit être prolongée pour bénéficier à la filière.

Enfin, ces travaux sont appliqués au Golfe du Lion, zone propice au développement
de l’éolien flottant et enjeu majeur pour la décarbonation des activités industrielles sur le
littoral. Il jouit d’une situation très ventée dominée par des vents régionaux marqués que
sont le Mistral dans sa partie Est, la Tramontane dans sa partie Ouest, et le Marin qui
est un vent de Sud-Est chargé d’humidité et responsable d’événements de précipitation
intense sur les reliefs littoraux. Le développement de parcs éoliens commerciaux renforcent
les enjeux en mer sur cette zone et doit être l’occasion d’y multiplier les efforts de recherche
pour mieux en caractériser les caractéristiques météo-océaniques.

Chapitre 2 - Background mathématique et méthodologique

Ce chapitre donne un cadre mathématique et méthodologique aux travaux qui suivent.
En particulier, les méthodes d’apprentissage profond et leurs principes méthodologiques
sont présentés. Une introduction à la prévision probabiliste et à son évaluation est ensuite
donnée. L’ensemble des équations et du formalisme développé dans la thèse n’est pas
décrit ici par souci de synthèse.

Bases de l’apprentissage profond

La théorie de l’apprentissage machine a été décrite par [40] en ces termes : «Un al-
gorithme apprend d’une expérience E par rapport à une tâche T et selon une mesure
de performance P si sa performance pour la tâche T mesurée par P s’améliore avec
l’expérience E.». Les modèles d’apprentissage profond sont un sous-ensemble des modèles
d’apprentissage machine qui utilisent plusieurs couches de neurones. Il a été démontré par
[41] qu’ils étaient des approximateurs universaux si leur nombre de neurones est suffisant.
Pour une description complète des principes sous-jacents et des modèles existants en ap-
prentissage profond, le lecteur est dirigé vers le livre de Goodfellow et al. qui fait référence
dans le milieu [42].

Un modèle d’apprentissage est dit supervisé s’il est entraîné en calculant une erreur
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par rapport à une cible. S’il n’y a pas de cible, on parle d’apprentissage non-supervisé. On
distingue dans les types de modèles existants les modèles de régression et de classification.
La régression traite de sorties continues tandis que la classification prédit des sorties
discrètes (assigne les données à des classes). Les deux sortes de modèles sont utilisés dans
ces travaux.

Différentes architectures peuvent être utilisées pour construire des modèles d’apprentissage
profond. Les réseaux convolutifs utilisent des filtres convolutifs pour diminuer la quantité
de coefficients du modèle en partageant les filtres pour toutes les données d’entrées. Ils sont
très utilisés pour traiter les images. Les réseaux récurrents possèdent des cellules internes
qui retiennent l’information des données précédentes, ce qui les rend performants pour
la prévision de séries temporelles. Les perceptrons multicouches consistent en une succes-
sion de couches de neurones complètement interconnectées et sont les briques de bases
des modèles d’apprentissage profond. Enfin de nouvelles architectures dites génératives
bénéficient d’une notoriété grandissante pour leur capacité à approximer des distributions
de probabilité complexes. Parmi celles-ci les flots normalisant utilisent une composition
de transformation bijectives et inversible pour transformer un espace latent simple en une
distribution complexe.

Prévision probabiliste

La prévision probabiliste consiste à prédire l’évolution d’un phénomène incertain dans
le futur. Le développement de modèles probabilistes en météorologie constitue un change-
ment de paradigme dans les années 1980 avec le développement de la prévision d’ensemble
[43]. Pour l’éolien en mer, l’estimation de l’incertitude est primordiale par exemple pour
l’équilibrage du réseau électrique [44], la participation au marché de l’électricité [45], ou
bien l’estimation de fenêtres météorologiques [5]. La prévision probabiliste consiste à es-
timer une distribution postérieure i.e. pour les sorties du modèle. Cette distribution peut
être décrite de manière paramétrique, en prédisant les paramètres d’une distribution con-
nue (e.g. Gaussienne), ou bien non-paramétrique, en prédisant des observations indirecte
de la distribution : niveaux de quantiles, intervalles, échantillons. Enfin pour les séries
temporelles, la prévision peut être désignée pour générer des scénarios comme c’est le cas
pour les prévisions numériques, ce qui peut être paramétrique ou pas, mais qui est en très
grande dimension. Ces différentes approches sont utilisées dans les travaux.
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Évaluation des prévisions
L’évaluation d’une prévision probabiliste n’est pas triviale et nécessite l’introduction de
certains concepts. Le travail de Tilmann Gneiting est une référence pour l’évaluation des
modèles probabilistes [46–49]. Nous référons le lecteur également à l’excellent travail de
Messner et al. [50] qui recense les méthodes pour évaluer les prévisions dans un cadre
énergie éolienne.

Selon Gneiting, un bon modèle de prévision probabiliste doit être «sharp subject to
calibration». Le terme «sharp»fais référence à l’écart à la moyenne, et le terme «calibra-
tion»est lié à la consistance statistique de la distribution prédite. Un modèle correctement
calibré observera 10% des observations tombant dans chacun des déciles de sa distribution.

Au-delà de l’aspect qualitatif des modèles, il est primordial d’évaluer leur valeur vis à
vis d’une application donnée. Comme montré par [51], la valeur d’une prévision pour
la participation au marché de l’électricité diffère de la mesure de qualité. Dans [50],
l’importance de considérer des métriques pénalisant de manière proportionnelle aux coûts
associés les erreurs de prévisions est appuyée.

Chapitre 3 - Design d’un réseau de capteurs pour l’échantillonnage
optimal de la ressource en vent.

Le développement de modèles de prévisions basés sur l’apprentissage profond requiert
la construction de jeux de données conséquents. Pour l’éolien en mer cela repose sur des
séries temporelles de mesures. Partant du constat que ces mesures sont rares et devraient
être développées à grande échelle sur les zones de développement de l’éolien en mer, nous
présentons des travaux pour la construction de réseaux de capteurs pour l’échantillonnage
parcimonieux optimal de la ressource en vent. Nous faisons référence à la littérature
d’échantillonnage parcimonieux, qui propose des méthodes d’analyse de données pour
trouver des points saillants dans un jeu de données. En particulier les méthodes présentées
par [52], [53], [54] sont pris pour références.

En utilisant des données de prévision d’AROME, nous présentons une méthode de
clustering non-supervisé à l’aide de mélange de Gaussiennes (GMM). Un ensemble de
Gaussiennes est entraîné sur une projection des données de vent sur un sous-espace obtenu
par décomposition en composante principales. Cet entrainement fait appel à l’algorithme
d’Expectation Maximization [55], et permet de décrire l’espace en question à partir d’un
nombre réduit de distributions multivariées, en maximisant la vraisemblance des obser-
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vations. Par cette méthode, nous obtenons les centroïdes des distributions qui sont des
points de grilles du modèle portant le maximum d’information. Nous montrons que ces
points sont de très bons candidats pour la reconstruction du champ de vent à partir de
leur seule mesure.

Avec cette méthode, nous proposons une méthodologie complète pour la définition d’un
réseau de capteurs optimal, notamment définissant le nombre optimal de capteurs à dé-
ployer. Les résultats obtenus surpassent largement les résultats obtenus par les méthodes
de l’état de l’art pour ce cas particulier, et nous permettent de donner des recommanda-
tions de réseaux de capteurs pour les 3 principales zones de développement de l’éolien en
mer en France. Dans le futur, l’intégration d’autres variables comme les vagues, ou bien
des variables biochimiques ou en lien avec la biodiversité pourraient être intégrées dans
l’optimisation pour le déploiement de plateformes de mesures multimodales et le suivi en
service des impacts des parcs éoliens (biodiversité, effets de sillages, pollution chimique).
A l’échelle d’un parc, cette méthode gagnerait à être implémentée sur des modèles haute
résolution de type Large Eddy Simulation pour le placement fin des capteurs sur une zone
d’exploitation.

Ce travail a été publié dans le journal Wind Energy Science, présenté à la conférence
internationale Seanergy 2022, et a été utilisé par Météo France pour fournir des recom-
mandations à la Direction Générale de l’Energie et du Climat pour le déploiement de
capteurs au niveau des grandes façades maritimes françaises.

Chapitre 4 - Prévision très court-terme probabiliste du vent sur
le jeu de données MétéoNet

Dans ce chapitre, nous présentons les modèles développés pour la prévision probabiliste
multivariée en mer. Nous utilisons un jeu de données open source de Météo France -
MétéoNet - et faisons de la station de mesure de l’île de Porquerolles notre cas d’étude.
Le but de l’étude est d’explorer l’apport des méthodes d’apprentissage profond pour la
prévision probabiliste à un point en mer non observé. L’importance de différentes sources
de données est étudiée, avec notamment pour idée de corriger les prévisions de modèles
numériques avec des données de mesures récentes des stations côtières voisines de notre
point d’intérêt.

A l’aide de réseaux de neurones convolutifs, nous assimilons des données de modèles
numériques en grande dimension et des données de mesures multivariées des stations
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voisines, en les projetant sur un espace latent d’où sont extraits des séries temporelles de
paramètres de distributions Gaussiennes en sortie. Nous le nommons ConvE-STF dans la
thèse pour Convolutional Encoder for Short-Term Forecasting. Un schéma du modèle est
proposé en Figure IV.5. Nous proposons une hypothèse supplémentaire utilisant des flots
normalisant pour relâcher l’hypothèse Gaussienne du postérieur et nous montrons que
cela amène des propriétés intéressantes pour un coût de calcul raisonnablement plus élevé
pour approximer des phénomènes très non-Gaussiens (ici la discrétisation de la cible). Ces
deux modèles sont comparés avec le point de grille du modèle AROME le plus proche de
la cible, ainsi que deux méthodes de l’état de l’art, les analogues [56, 57] qui utilisent des
situations observées dans un catalogue comme possible futures évolutions de la situation,
et une Gradient Boosting Machine qui est une méthode d’apprentissage automatique
basée sur l’utilisation d’un ensemble d’arbres de régression, et qui est implémentée dans
des travaux de recherche proches [4].

Les résultats obtenus montrent que l’apprentissage profond est capable d’assimiler
une grande quantité de données sans se soucier du pré-traitement, ce qui in-fine permet
une correction bien plus performante des prévisions que pour les modèles de référence.
L’importance des mesures de stations voisines est mis en exergue et ouvre la porte à une
correction proche de l’instantané des modèles numériques. Par ailleurs cette correction
est plus importante pour les vents soufflant depuis la côte, montrant les difficultés liées
aux effets orographiques côtiers pour les modèles numériques et l’apport de données de
mesures récentes en amont dans la direction du vent pour sa correction. Cette étude est
limitée par la taille du jeu de données à des prévisions 6 heures en avance, ce qui ne permet
pas le développement d’un cadre opérations de maintenance, ou des prévisions à au moins
24h sont nécessaires. En revanche elle pose un cadre de développement et d’évaluation
pour les prévisions probabilistes multivariées du vent en mer. La cible de l’entrainement
est un mat de mesure sur une île dont le relief est important. La très grande différence
en performance avec le modèle AROME montre les perturbations dont le site est victime,
qui rend très favorable le post-traitement. La généralisation à un site non perturbé en
mer est importante. Les conclusions sont spécifiques au site et devraient également être
généralisées à d’autres façades avec d’autres régimes de vent.
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Chapitre 5 - Prévision jointe vent-vagues et applications pour la
prise de décision en opérationnel

Grâce à des séries temporelles de mesures de vent et de vagues sur l’île du Planier au
large de Marseille, nous avons construit un jeu de données permettant un cas d’études
réaliste pour les opérations de maintenance de l’éolien en mer. Nous adaptons le modèle
ConvE-STF et son pendant utilisant les flots normalisant au cas de la prévision jointe entre
la vitesse du vent à 100m, la hauteur significative des vagues et la période des vagues, trois
paramètres capitaux pour les opérations. En contraste avec les résultats du chapitre précé-
dent, les prévisions AROME au point de grille le plus proche de la cible se sont révélées
très pertinentes pour la vitesse du vent, et nos modèles n’améliore pas la prévision de la
moyenne (ils sont dans la marge d’erreur). Nous montrons en revanche que l’entrainement
de modèles d’apprentissage profond par rapport à un critère de vraisemblance permet de
prédire des incertitudes bien calibrées par rapport à ce qui pourrait être fait de manière
empirique. Nous montrons par ailleurs que l’usage de flots normalisant dans ce cas est très
bénéfique pour la calibration du modèle, ce qui supporte l’hypothèse selon laquelle il est
bénéfique de traiter ces trois variables de manière jointe, et que la forme des incertitudes
entre ces variables corrélées n’est pas bien décrite par une distribution Gaussienne.

Afin d’appliquer ces prévisions pour la planification des opérations, nous devons obtenir
des trajectoires afin de calculer la probabilité d’occurrence de fenêtres météo. Celles-ci sont
liées à des probabilités de dépassement de seuil sur une fenêtre glissante et nécessitent
donc des échantillons corrélés dans le temps reflétant l’incertitude de la prévision, et un
cadre d’évaluation dédié.

Nous proposons différentes approches pour générer des échantillons corrélés temporelle-
ment de manière satisfaisante. Celles-ci sont dans la littérature scientifique basées sur
l’utilisation de copules [58]. Nous proposons un copule Gaussien obtenu avec une matrice
de covariance empirique pour la composante temporelle et une covariance conditionnelle
pour la corrélation entre les variables. Pour les flots normalisant, nous introduisons deux
méthodes innovantes afin de s’affranchir de l’hypothèse Gaussienne pour la dépendance
temporelle. La première, basée sur un échantillonnage similaire pour chacun des pas de
temps dans l’espace latent utilisant une astuce algorithmique, se montre d’une grande sim-
plicité et est plus performante que la référence utilisant des copules Gaussiens. La seconde
utilise un copule Gaussien dans l’espace latent, mais ne permet pas d’obtenir des résultats
satisfaisants. D’autres travaux récents offrent des pistes de recherche intéressantes sur ce
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point particulier [44, 59].
Les modèles ainsi obtenus sont évalués grâce à des métriques dédiées aux opérations

de maintenance. Avec des hypothèses ad-hoc sur une durée d’opération et des limites
d’opérabilité, la qualité des fenêtres météo prédites est évaluée montrant un avantage pour
les méthodes introduites par rapport aux modèles numériques. Par ailleurs nous introduis
la notion de risque pour l’évaluation de la valeur des prévisions, en partant de l’observation
de [60] que l’utilisation de métrique économique pour l’optimisation tend à pousser les
équipes à travailler dans des conditions dangereuses. Notre cas d’étude corrobore cette
hypothèse, et nous proposons une manière d’augmenter les métrique économique de [6]
par cette notion de risque.

Perspectives

Ces travaux démontrent l’intérêt des méthodes d’apprentissage profond pour la prévi-
sions météo-océaniques et proposent un cadre méthodologique et d’évaluation dédié aux
opérations de maintenance en mer. Le points suivants ont été soulevés et présentent un
intérêt de recherche fort :

• Plus de campagnes de mesures en mer et sur de plus longues périodes sont requises
pour la recherche et le développement de parcs éoliens en mer. Nos résultats pro-
posent des cadres de déploiement qui permettraient d’échantillonner la ressource
en vent à l’échelle des façades maritimes.

• Les modèles proposés offrent un cadre compétitif pour la prévision probabiliste
multivariées des variables météo-océaniques. Ceux-ci doivent être comparés à l’état
de l’art des prévisions probabilistes à savoir les prévisions d’ensemble des modèles
numériques. Pour ce faire un partage plus large des données de modèles serait
bénéfique.

• Des variables additionnelles pourraient être ajoutées aux modèles pour améliorer
les prévisions. Par essence, ceux-ci sont capables d’assimiler une large quantité de
données hétérogènes. Nous pensons aux données de température de surface de la
mer ou de rugosité de surface.

• La génération conditionnelle de scénarios à l’aide des flots normalisant semble
très prometteuse et nécessite des travaux de recherche dédié dans une littérature
scientifique très récente.

• Les cadre d’évaluation proposé doit être implémenter avec des données réelles
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d’opérations de maintenance. La simulation de l’utilisation de ces modèles comme
outil de prise de décision opérationnelle sur des séquences de maintenance réelle
serait un très beau cas d’application et une démonstration de l’importance des
partenariats recherche / industrie.

• L’éolien en mer possède d’autres aspects qui bénéficieraient grandement de mod-
èles de prévision probabilistes. Nous pensons ici à la participation au marché de
l’électricité, à l’équilibrage des réseaux électriques, au contrôle actif des turbines,
à la prévision de la turbulence ou d’événements de rampes de vent. Des cadres
d’évaluation dédiés doivent être développés pour chacune de ces applications.
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INTRODUCTION

General context

Humanity faces unprecedented threats due to its impacts on the environment. Amongst
them, anthropogenic carbon dioxide emissions since the industrial revolution are causing
a global warming and climate change that put ecosystems at an existential risk, and
threatens hundreds of millions of people around the globe [1]. The majority of anthro-
pogenic carbon dioxide emissions results from the combustion of fossil fuels for energy
applications. In 2022, fossil fuels still represented a staggering 80.1% of the global final
energy consumption [61]. The share of electricity in the final energy consumption would
need to increase by 4% per year to achieve net zero emissions by 2050, a prerequisite
for the limitation of global warming to a maximum of 2°C. The massive development of
low-carbon energy sources is then a worldwide necessity for the decarbonisation of energy
systems, and a historic industrial challenge.

Renewable electricity generation regroups energy generation from solar irradiance,
wind, tides, waves, rivers etc. It globally represented 30% of the global electricity produc-
tion in 2022, and is expected to cover 40% of it by 2028 [62]. Solar photovoltaic and wind
energy are the two main drivers in the current increase of renewable energy sources, with
510GW installed globally in 2023, 75% of which being solar photovoltaic [62]. While off-
shore wind energy represented only 0.3% of the global energy production in 2022, mostly
in Europe, it has been estimated that the global bottom-fixed offshore wind energy poten-
tial was 1.5 times the current total electricity consumption, and the floating offshore wind
energy potential up to 11 times [63]. In this context, offshore wind energy will become one
of the main sources of low-carbon electricity globally, and a key technology for mitigating
climate change in the next decades.

The French energy context is a particular case. While the share of fossil fuels in the
final energy mix is 60%, its electricity mix is one of the least carbon-intensive in the world
thanks to massive historical nuclear energy, and large hydro-power capacities. Its carbon
intensity was estimated in 2021 to be 62 gCO2/kWh in contrast with the mean European
carbon intensity of 317 gCO2/kWh [2]. However, there is a need for electrification of en-
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ergy uses. There is an uncertainty in the industrial capabilities for the replacement and
increasing of an ageing nuclear fleet. Furthermore, the hydro-power exploitation is reach-
ing saturation. For all these reasons, the development of solar and wind energy will be the
cornerstone of the French energy transition in the next decades. Offshore wind energy al-
lows the installation of more powerful turbines in very large areas where the wind resource
is greater. France has one of the largest maritime areas of the European Union, with a
variety of wind regimes in the North Sea, the Atlantic and the Mediterranean coast. It
could then become one of the leaders in the global offshore wind energy market. Despite
some delays in the development of the first commercial-scale wind farms, which have been
commissioned in 2022, France still has a key role to play in the worldwide development
of this technology. In particular, floating offshore wind energy, which is to be deployed in
waters that are more than 60m deep requires massive research and development efforts
to reach industrial maturity. That is why the French government awarded 3 pilot floating
wind farms in the French Mediterranean Sea, the first one of which has been installed in
2023 off the coast of Port-Saint-Louis du Rhône. In 2024, the first call for tender for an
industrial-scale 250MW floating offshore wind farm in Southern Brittany was awarded at
a staggering 86.45 e/MWh, showing the rapidly increasing maturity of such projects. In
France, up to 18.5 GW of floating and 40.5 GW of bottom-fixed offshore wind capacity
is envisioned by 2050.

In this context, France Énergies Marines, the French research institute dedicated to
marine renewable energies (MRE), conducts collaborative research projects with its in-
dustrial and academic partners to increase the maturity level of MRE. Its research topics
are raised by industry-relevant issues related to environmental and societal integration,
site characterization, farms optimization and systems design. The collaborative construc-
tion of the research projects then encourages data and knowledge sharing, improves the
industrial transfer of research, and ensures the industrial relevance of the research work.

One of the main difficulties that offshore wind energy faces compared to its land-
based counterpart is the added challenges for operations. The installation, maintenance,
monitoring, decommissioning of offshore wind turbines require the use of specific vessels,
specialized crews in a challenging environment. This brings the operational expenditures
up to 30% of the total cost of projects [20], and more than twice the operational expen-
ditures per MW installed of land-based wind projects. For floating offshore wind energy,
the very possibility of performing heavy-lift operations in a floating-to-floating configu-
ration is still uncertain. Compared to the knowledge acquired with bottom-fixed wind
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turbines, the sensitivity of different maintenance operations to the floater’s motions is to
be estimated and mitigated.

To answer this research gap, France Énergies Marines started in 2021 the research
project FLOWTOM (FLoating Offshore Wind Turbines Operations and Maintenance)
in collaboration with industrial partners (EOLFI, skyborn renewables, EDF, Innosea,
Jifmar, SBM offshore, Sofresid Engineering) and academic partners (IFREMER, IMT
Atlantique). This project aimed at exploring innovative solutions for floating-to-floating
heavy lift maintenance through method-statement validation with basin tests and numer-
ical modelling. It furthermore proposed to explore metocean (meteorological and oceanic)
forecasts models, and how it impacts maintenance costs. The latter was explored through
this Ph.D. thesis, in collaboration with the Lab-STICC at IMT Atlantique under the
OCEANIX chair, with the financial support of the ANR through the CIFRE granting
framework.

Scientific context

Offshore operations are constrained by environmental conditions for their safe execu-
tion. For a given operation, operability limits are estimated based on vessel and floater
response to metocean conditions. The decision whether to carry out the operation is then
based on the compliance of environmental conditions with the operability limits for the
duration of the operation based on metocean forecasts. To account for forecast uncertain-
ties, operability limits are to be degraded by a factor depending on semi-empirical criteria
[3]. This alpha-factor is used because of the lack of reliable uncertainty estimate of meto-
cean variables, and several recent studies advocate for a more comprehensive uncertainty
consideration during operational decision-making [4–7, 18, 64]. This thesis positions itself
in the continuation of these studies, trying to connect multivariate probabilistic forecast
emulation [4, 64], weather window prediction, operational decision-making [5, 18] and
forecast value evaluation [6, 7] to provide a full forecast-to-decision-making workflow.

State-of-the-art metocean forecasts are issued by numerical models of the atmosphere
or the ocean. In the last decades, they have provided results of ever-increasing quality
[9], in particular for uncertainty estimation with the development of ensemble forecasting
[65]. However, they face a high computational cost that limits their resolution and the
number of ensemble members that can be run in parallel. Deep learning integration in
weather forecasts applications has recently drastically increased [66], be it for end-to-end
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model emulation [10–13], model post-processing [15], inverse problems [14] and uncertainty
emulation [16, 17]. In the context of offshore metocean forecast for operations, the low
inference computational cost appears appealing for short-term forecast emulations from
recent measurements. This thesis explores learning-based methods for the multivariate
probabilistic post-processing of numerical predictions of wind and wave conditional to
recent neighbouring measurements.

The development of learning-based forecast models for offshore applications requires
the gathering of a substantial amount of in-situ data, where environmental conditions
can be very complex, and at prohibitive water depths. Such data sources are scarce and
expensive, and their deployment is one of the main barriers to offshore wind energy
research [67]. As a strategic asset for future offshore wind energy development, offshore
wind speed sensing networks should be deployed. Where to place those sensors to optimally
sample the wind field then appears as an important optimization question. In this thesis,
we use a learning-based algorithm on numerical weather prediction data to define optimal
sensors networks for offshore wind speed resource.

The recent literature on wind or wave post-processing using deep learning is flourishing,
driven by the rise of offshore marine renewable energies [68, 69]. The joint post-processing
of wind and wave parameters however has rarely been studied in a forecast configura-
tion, but rather in a historical time series construction perspective [37]. A recent work
from [8] developed a joint wind and wave probabilistic forecast model to be integrated
in decision-making in the form of a response-alpha factor, hence eventually considering a
point forecast for decision-making. In this thesis we aim at building a probabilistic fore-
cast of limiting parameters that could be used for probabilistic decision-making and be
evaluated in the framework described by [6] and [7].

As described in [64], the multivariate probabilistic forecasting problem is an active field
of research. Novel generative architecture bring new possibilities in complex distributions
estimation in high dimensional space which can be used for multivariate probabilistic
forecasting [44], as an alternative to more classical probabilistic tools such as multivariate
copulas [58]. For weather window forecasting, multivariate temporal scenarios should be
generated. The applicability of generative models for scenario generation is still to be
validated, and its quality and value versus classical copula-based scenario generation has
not been studied to the best of our knowledge and is investigated on a real case study.

Considering the above literature, the questions that are investigated in this Ph.D. are
the following:
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• How learning-based metocean forecasting methods can improve opera-
tions at sea for the offshore wind energy industry ?

• What does the implementation of such methods imply for in-situ mea-
surements, standards evolution and forecast evaluation ?

Overview

The work presented in this thesis is cross-disciplinary and requires background in re-
search fields as distant as offshore wind turbines maintenance operations, probabilistic
forecasting, weather and wave forecasting, applied mathematics and deep learning. Chap-
ters I and II are intended for readers who are unfamiliar with these notions. Literature
reviews of the different aspects of the thesis are given in these chapters to help define the
scope of the research work.

In Chapter I, general background is given about the research fields this thesis refers
to. Firstly, the industrial constraints associated with offshore operations for wind turbines
are detailed, especially in connection to environmental conditions, to serve as specifica-
tions for the different experiments. An introduction to wind and wave forecast is then
given, introducing important concepts about numerical modelling of weather systems and
waves. Data-driven methods are also introduced. The complex interactions between wind
and waves are highlighted. A focus is then made on in-situ data gathering for offshore
applications. The meteorological features of the Gulf of Lion, the main study area, are
finally described.

A methodological and mathematical background is then provided in Chapter II, intro-
ducing notations and concepts associated with multivariate time series probabilistic fore-
casting, forecast evaluation and deep learning. All the applied mathematics concepts and
model architecture used in this thesis to build data-driven models are introduced in con-
nection to the time series forecasting of environmental variables. The different approaches
to multivariate probabilistic forecasting and their evaluation framework are detailed. The
economic value of forecasting is introduced, in connection to maintenance operations plan-
ning and execution. Eventually a thorough literature review on data-driven models for
offshore wind energy is given.

Chapters III and IV are given as published articles in peer-reviewed journals. They
can be read as independent research contributions. These two chapters also contain intro-
duction of scientific context, literature review and used methods. Their main conclusions
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are detailed in their last section.
Chapter III presents a data-driven strategy using numerical weather prediction data

to define an optimal sensors network for offshore wind characterization. It is applied to the
main offshore wind energy development areas in France and compared to state-of-the-art
sparse sampling methods. The in-situ measurement of wind and wave is a prerequisite to
the development of data-driven offshore forecast model, and the lack of measurement data
was found to be one of its main limitations. This study is published as a peer-reviewed
article in the open source journal Wind Energy Science.

In chapter IV, a deep-learning approach for the probabilistic post-processing of wind
forecasts at sea is proposed. It uses an open-source dataset to mimic a realistic case
study. Several approaches are compared both in terms of deterministic and probabilistic
metrics. The probabilistic output of the model is expressed as quantile levels, parametric
distribution and generative non-parametric distribution. These approaches and their pros
and cons are thoroughly discussed. It has been published as a peer-reviewed article in the
journal Artificial Intelligence for Earth Systems.

Eventually in Chapter V, the probabilistic forecast model of Chapter IV is adapted to
a more realistic dataset based on combined wind and wave measurements at an offshore
site. It is applied to the joint probabilistic forecasting of limiting parameters for oper-
ations. From this probabilistic forecast, multivariate scenarios are generated to permit
the modelling of operational decision-making under uncertainty. Different strategies are
compared for scenarios generation in terms of quality and value. The definition of forecast
value metrics for offshore operations defines a new evaluation framework and paves the
way for a more comprehensive uncertainty consideration in operational decision-making.

The main results from all the chapters are gathered in the conclusion section, with
discussions on the study limitations and perspectives for future research. Owing to the
fact the manuscript is based on published articles, the mathematical notations can be
redundant from one part to another. Though efforts were made to harmonize them at the
maximum, the notations should be considered chapter dependent.

Outreach and industrial transfer

This thesis work is by construction meant to be transferred to the industry. The
discussions with the FLOWTOM project partners not only helped defining the scope of
work but enlightened the results analysis with operational realism. A workshop gathering
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different stakeholders within marine operations was organized on the topic of decision-
making under forecast uncertainty. Evaluation metrics relevant for operational decision-
making were proposed, and the forecast models were integrated in an online forecast
visualisation platform for the project partners to compare the different decision-making
strategies.

The proposed methodology for offshore wind sparse sampling was transferred to Météo
France, the French weather service, for real case application. They produced recommen-
dations for the deployment of floating LIDAR arrays in the future offshore wind energy
tender areas in France using the results from the model proposed in Chapter III.

A study on the integration of wave data from the published work of Chapter IV was
performed by Oscar Gauvrit, a student from IMT Atlantique during his master thesis
project. I fully supervised the internship, and built on his work to integrate wave data in
Chapter V.

In addition to the two peer-reviewed articles, this work was presented at two inter-
national conferences: the Seanergy conference in 2022 in Nantes, and the Wind Europe
conference in 2023 in Copenhagen.

The research work performed in the FLOWTOM project is to be continued at France
Énergies Marines. I participated in defining the scope of a research project NEMO ded-
icated to offshore wind turbulence measurements and modelling. The deep learning ap-
proaches for probabilistic time series forecasting will be applied to offshore turbulence and
low-level jets predictions for wind turbine active monitoring.

33





Chapter I

WEATHER FORECASTING FOR

OFFSHORE WIND ENERGY OPERATIONS

Preamble

The work presented in this thesis is multidisciplinary. First driven by an industrial
technological barrier on floating offshore wind energy maintenance operations, it uses
mathematical notions from the weather forecasting and applied mathematics communi-
ties. This chapter aims at giving background and related literature on the different aspects
addressed throughout the thesis.

The development of novel deep-learning-based models for metocean characterization
and forecasting is motivated by the challenges faced by the offshore wind energy industry.
In Section I.1, we give background on offshore wind energy maintenance operations to
introduce the framework of this work. In link with the work carried out in the FLOWTOM
project, the specific challenges faced by floating platforms are detailed, thus defining the
scope of the study case. The industrial standards for the operational use of metocean
forecasting bulletins are described, and their identified limitations are the starting point
of the research work. A literature review on operational decision-making under uncertainty
for offshore operations is given.

Section I.2 is dedicated to the forecasting of metocean variables. We introduce notions
of numerical weather prediction, in link with the forecasting of wind speed and waves. The
good understanding of numerical predictions is important to evaluate the added value of
data-driven models. The strengths and weaknesses of state-of-the-art numerical models
are detailed and explained. Numerical weather predictions serve as the main input data
for Chapter III, Chapter IV and Chapter V. It is also the main baseline model for forecasts
comparison in Chapter IV and Chapter V. We then describe state-of-the-art statistical,
and hybrid forecast models as research topics in weather forecasting.

The challenges associated with in-situ measurement at sea, and the different data
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sources used in this thesis are presented in Section I.3, and a brief introduction on the
weather patterns and hydrodynamics of the study area, the Gulf of Lion is given in Section
I.4.

I.1 Weather limited offshore wind energy operations

I.1.1 Background on maintenance operations for offshore wind
energy

Operations and maintenances (O&M) take place throughout the lifetime of an off-
shore wind farm. It comprises all the offshore operations for the installation, operation
and decommissioning of the wind farm. The sum of all costs associated with operations
and maintenance is called the operational expenditures (OPEX), which are estimated to
represent a third of total costs in offshore wind energy projects [20]. The environmental
conditions have an impact on the structures’ fatigue and on the site accessibility, making
the operational expenditure an additional challenge compared to onshore wind energy.

Throughout the different phases of an offshore wind farm, different types of operations
are performed. During the installation phases, several types of vessels are needed for
cable laying, foundation installation (which can require piling or drilling), and turbine
installation (requiring heavy-lift operations). For maintenance operations, crew transfers
are regularly needed and require either a helicopter transfer with landing on the nacelle
deck, or crew transfer vessels. Occasional major component repair require heavy-lift means
(e.g. blade replacement, drive-train replacement). Specific maintenance vessels have been
developed in the last decades for the maintenance of bottom-fixed wind turbines, and
most notably heavy-lift vessels capable of major component replacement on large turbines
up to 15MW [70]: dynamic positioning vessels and jack-up vessels. The latter position
themselves above the waterline to eliminate sea-state-induced movements and can perform
heavy-lift operations in water depths of up to 60 meters. Each operation is different and
is limited by the environmental conditions, most importantly by waves, wind and current,
to be performed safely.

During the wind farm operational phase, different maintenance strategies are imple-
mented [71, 72]. Preventive maintenance relies on the monitoring of the components’
ageing to prevent failures and extend their lifetime through planned maintenance cam-
paigns, either conditioned on the state of the system, or based on regular operations.
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Figure I.1 – Schematic of the different maintenance strategies for offshore wind energy
components.

These strategies are illustrates in Figure I.1.
During a planned maintenance operation, the production is halted only during the

operation. On the other hand, when unplanned failure occurs, a corrective maintenance
is required. In this case, the wind turbine production is interrupted until maintenance is
made. This downtime results in an opportunity cost that represents the energy production
loss. Spare parts availability, vessel and crew mobilisation and weather downtime are then
the main drivers for total downtime [21].

I.1.1.1 Maintenance operations for floating offshore wind energy

Floating offshore wind energy faces significant additional challenges for maintenance
operation compared to bottom-fixed offshore turbines because of the combined movements
of the floater and the maintenance vessel. Dynamic cables for grid connection, mooring
lines and anchors are additional challenges for the installation and are prone to fatigue
and bio-fooling, hence requiring additional subsea monitoring. The floater’s motion due
to metocean conditions might induce supplementary loads on the structure and have
an impact on the turbine’s components fatigue. It is an additional limiting factor for
accessibility compared to bottom-fixed wind turbines. This implies special modelling to
assess the wind turbines workability under various conditions [73]. Turbine motions can
also become a limitation for technicians to work efficiently due to sea sickness with a
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decrease in accessibility of up to 5% estimated in [74].

Floating offshore wind farm are to be deployed in deeper seas, potentially further away
from the coast, hence facing harsher environments. Jack-up vessels can’t operate in water
depth superior to 60 meters. Floating-to-floating operations hence require the development
of dedicated maintenance solutions. For heavy maintenance operations, several strategies
are studied throughout the industry.

• Tow-to-port maintenance strategies require the turbine’s towing to dockside for
performing the operation. This strategy applies to floater designs with limited
draft and guaranteed stability during towing. It also implies complicated con-
nection/disconnection operations and requires deep water quays. The Kincardine
project installed offshore Aberdeen in Scotland had to tow its turbines to Rot-
terdam for major component replacements in 2023, which resulted in important
downtime.

• Heavy-lift semi-submersible vessels have large ballast capacities. They can stabilize
on site by lowering their centre of gravity and perform heavy lift operations in deep
waters. These vessels have extremely high mobilization and chartering costs, and
their low availability make them not scalable for large maintenance campaigns at
the moment.

• Self-stabilized cranes are mounted on movement compensation platforms to can-
cel out the vessel’s motions. These technologies are very expensive and relatively
immature. They might not scale up for heavy lift operations.

• Self-hoisting and turbine-mounted cranes are dedicated cranes that are installed
on the wind turbine or on the foundation. They can perform lift operations in
the wind turbine referential hence getting rid of vessel’s motions impact. These
technologies are relatively immature and require research work to be developed.
Their design interfaces with the wind turbine and floater designs, making industry
collaboration a key development factor.

Turbine mounted cranes could become a game-changer in floating offshore wind en-
ergy maintenance market. They nonetheless face important technological challenges. The
crane build-up on the foundation requires transfer from a vessel and will face operability
limitation specific to the crane, vessel and foundation. The main case study of this thesis
considers the crane build-up of the WindSpider solution on a Deep-C semi-submersible
foundation from the refitted tanker Windsor Knutsen vessel. This case study was the sub-
ject of numerical and experimental studies in the FLOWTOM project. The operational
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sequence and operational limits considered are realistic and issued from the numerical
and experimental campaign.

I.1.2 Weather limited operations

Offshore operational standards issued by the Det Norske Veritas (DNV, [75]) distin-
guish two types of offshore operations, based on their reference duration:

TR = TP OP + TC (I.1)

with TP OP the planned operation time equal to the duration between the last issued
forecast before operation starts, and the end of the operation. TC is a contingency time
that should take into account uncertainties on the operation duration and should cover
any contingency situation. A weather-limited operation verifies: TP OP ≤ 72h

TR ≤ 96h
(I.2)

For unrestricted operations, the weather forecasts are considered not reliable enough to
be used as such, and vessels should be able to sustain extreme weather during operations.
In this case, the environmental limitations are based on extreme values. Weather-restricted
operations on the other hand are to be executed using weather forecasts. Knowing oper-
ability limits and considering the weather forecast uncertainty, one can determine weather
windows to carry out the operation. Though an installation campaign of an offshore wind
farm lasts several months in total, each individual operation is weather limited, and is
depending on environmental conditions for weather window.

I.1.2.1 Definition of operability limits

The basic criteria for carrying out an offshore operation is that the dynamic response of
the system should not exceed a pre-defined limit. This is referred to as operability limits.
The general methodology to compute operability limits for an offshore operation can be
found in [22]. A given operational procedure will have several identified critical events.
The numerical modelling of the system’s responses to all metocean conditions, either in
time domain or frequency domain, should be made to identify the limiting conditions for
each of these critical events. These models can be calibrated by performing a basin test of
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the system. Eventually, an operability region of allowable metocean conditions is obtained
and define the operability limits of the operation. For the installation of a turbine mounted
crane onto a floating wind turbine, a typical critical event will be a contact between the
load and the turbine with a too high relative velocity.

The operability limits are used in the planning phase for the estimation of the total op-
erational expenditures. All the different operational sequences are compared to historical
metocean conditions to compute the mean accessibility of the wind turbine.

During operational phase, the weather forecasts are compared with the operability
limits to decide whether to start the operation or not. The operation can be performed if
the forecast variables are within the operability region.

I.1.2.2 Operational decision-making under uncertainties

During operations, the weather forecasts should be compared with the pre-defined
operability limits. The forecasts used for the operations are agreed upon between all
parties (Developer, vessel operator, maritime warranty surveyor). Operational standards
recommend the use of minimum two different weather forecasts from different models.
The decision is to be taken considering the worst forecast throughout the operation.
The weather forecasts used for decision-making have inherent uncertainties that are not
necessarily detailed. To account for weather forecast uncertainty, the operability limits
are degraded by a factor called the alpha-factor 0 ≤ α ≤ 1 that make the decision-
making more conservative. The alpha-factor methodology is the state-of-the-art procedure
in the industry and is detailed by the Det Norske Veritas [75]. It should ensure that
the operational criteria does not exceed the operability limit of more than 50% with a
probability of 10−4. More details on the computation procedure of the alpha factor can
be found in [8]. Given an operational criteria OPLIM defined from numerical modelling,
the forecast operation criterion OPW F is obtained as:

OPW F = α OPLIM . (I.3)

In Figure I.2, an example of weather window estimation from a point forecast is given.
The operability limit plotted as a black line is degraded by the alpha-factor, resulting in
a more conservative limit in dashed black. The weather window forecast is obtained by
looking from time t to t+ TP OP if the predicted weather is below limits.

In practice, alpha factors are taken in the tabulated values proposed by [75]. These
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Figure I.2 – Illustration of weather window forecasting from point forecast. The given
operability limit is degraded by an alpha-factor, making the decision-making more con-
servative.
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values are calibrated for North Sea conditions and do not take into account the speci-
ficities of the weather forecast used, of the operation or of the geographical specificities.
[75] describe alpha factors depending on the operation duration, the number of weather
forecasts used, the presence of environmental monitoring on site, the presence of a mete-
orologist onboard and the criticality of the operation. It is important to note that the use
of such factors is needed because of the lack of reliable uncertainty estimation in current
weather forecasts. It is specified that subject to reliability, ensemble weather forecasts
could be used to replace the use of alpha factors.

In [18], a novel methodology for alpha factor computation is proposed to take into
account the system’s response to metocean forecast uncertainty. Illustrated on a single
blade installation on a bottom-fixed wind turbine, this methodology shows the impor-
tance of propagating the weather forecast uncertainty onto the system, and finally in
the alpha factor to correctly account for uncertainties. It however requires the reliable
probabilistic forecast of all limiting environmental variables. The prediction of vessel’s re-
sponse to uncertain metocean forecasts is used in [5] as a direct input for decision-making.
The exceedance probability based on probabilistic forecasts is directly used to determine
weather windows. It is compared to alpha-factor-based decision-making and found to be
less conservative, hence increasing the accessibility. Similar approaches are implemented
in [4] with a data-driven surrogate model of the vessel for a crew transfer operation. The
vessel’s response to a statistical probabilistic forecast of wave peak period and significant
wave height is proposed as an alternative decision-making support.

The improvement of metocean forecast models is identified as a key factor in O&M cost
reduction in floating offshore wind energy [23]. The development of dedicated maintenance
solution, the specificities of each floater technology and the higher sensitivity to metocean
conditions advocate for a better uncertainty characterization of weather forecasts for
offshore operations. The development of such methods then paves the way for a more
comprehensive decision-making under uncertainty for offshore wind energy operations.

I.2 Forecasting of metocean variables

Metocean forecasts ar not only essential for the safe execution of offshore operations as
described in Section I.1, but they also impact the development of wind farms, their market
participation, the grid management etc. [64]. In this section, we provide a literature review
and conceptual introduction to metocean forecast models with a focus on offshore wind
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energy applications.
A forecast model Ψ predicts a variable or a set of variables ŷ ∈ R

N from an initial
time t = 1 . . . T and for a period of time in the future. The time t at which the forecast is
issued is called the forecast issue time. The forecast model has an internal computation
time step for discretization called the model time step (typically 1 minute). The forecast is
not expressed for every model time step but has a time step of its own called the forecast
time step (typically 1 hour). The maximum predicted time K is called the forecast horizon,
and the difference between an instant in the future and the forecast issue time is called
the lead time k = 1 . . . K. The frequency at which the model outputs a new forecast is
called the model frequency (typically 6 hours).

In all that follows, we consider a time series of predictions ŷt:t+K between forecast
issue time and forecast horizon, from an ensemble of input data at time t X t. The symbol
X describes the input data, and y the output data. The predictions are depicted with
a hat superscript, and the observed values without superscript. The predictions can be
compared with observations yt:t+K . The term model refers to the operator Ψ that maps
from the input space to the forecast space. This can refer to any kind of model, numerical,
statistical, or neural models.

ŷt:t+K = Ψ(X t). (I.4)

I.2.1 Numerical Weather Prediction

Numerical weather prediction describes the principle of predicting the future state of
the atmosphere by solving the atmospheric circulation equations on a discretized grid in
space and time. This theoretical approach was originally proposed by Abbe and Bjerknes
in the early 1900s [24, 25], and first put into practice by Lewis F. Richardson in 1922 [26,
76]. V. Bjerknes described numerical weather prediction as an initial value problem with a
two-step process: a diagnostic step at which the initial state of the atmosphere is estimated
from measurement data, and a prognostic step during which the atmosphere’s changes
with time is estimated by solving the governing differential equations. The first results
obtained by Lewis F. Richardson were unrealistic and he declared: "Perhaps some day
in the dim future it will be possible to advance the computations faster than the weather
advances... But that is a dream.". He estimated that 64,000 people would be needed to
scan the atmosphere, each person taking care of a grid point. The research field had to
wait for the development of the first computers to provide evidence of the possibility of
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Figure I.3 – Evolution of forecast skill in predicting the 500hPa pressure level for the
Northern hemisphere (NH) and Southern hemisphere (SH). The gap reduction after 1999
corresponds to the variational assimilation of satellite data that compensates the lack
of measurement data in the Southern hemisphere. Reproduced with permission from [9],
data updated by the ECMWF.

creating a skilful forecast using numerical weather prediction.

Since then, enormous advances in computational power and numerical integration
schemes have been made. Furthermore, the quantity of observations of the atmosphere
has drastically increased, leading to a more precise estimation of the initial state of the
atmosphere. The forecast skill of numerical weather prediction is commonly evaluated
using the height of the 500 hPa pressure level, and it is estimated that a day of skilful
forecast is gained every decade, as illustrated in Figure I.3 [9]. Nowadays, numerical
weather predictions routinely solve the circulation equations on grids of kilometric scale
totalling ≈ 108 grid points, for weeks ahead.

Despite great reduction in resolution, the most refined numerical weather prediction
models have a grid size of around 1km and are often regional models. Global models
such as the Integrated Forecasting System (IFS) from the European Centre for Medium-
range Weather Forecast (ECMWF) have grid sizes of around 10km. Such a resolution
does not permit the full solving of atmospheric circulation, and some phenomena have
to be parametrized such as convection, diffusion, or cloud dynamics. An illustration of
parametrized phenomena from [9] is given in Figure I.4. These parametrizations are im-
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Figure I.4 – Schematic of the main physical and chemical sub-grid processes that are
parametrized in numerical weather prediction models. Reproduced with permission from
[9]

portant sources of uncertainty and are an active research field [9].
Numerical modelling is a dynamic system framework, where the predictions are ob-

tained by solving a system of differential equations from an estimated initial state of the
system X t. The system’s evolution can be written as a dynamical system equation

dX

dt
= Φ(X) (I.5)

where X is a vector in the phase space P that fully characterizes the state of the system.
The operator Φ : P → P defines the dynamics of the system. When integrating over
time, the flow operator ψ : R× P → P is obtained such that

ψ(k,X t) = X t+k. (I.6)

For numerical weather predictions, the system state at time t + k, X t+k contains
various variables (wind, pressure, temperature, etc.) at every point of the space-time grid.
The system’s state is subject to physical laws (Navier-Stokes, thermodynamics etc.) that
constitute the model Φ and flow ψ through time integration. It explicitly describes the
expected evolution of the system from an initial state. At each forecast issue time t, an
initial state of the atmosphere X t is estimated, and propagated through lead times k =
1 . . . K in the forecast window with the flow operator. The prediction ŷt+k, k = 1 . . . K is
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extracted from the full state of the system through an observation operator H : P → R
N

such that

ŷt+k = H(ψ(k,X t)) = Ψ(X t) (I.7)

We refer to these models as numerical models or physics-based models.
The chaotic nature of the global weather system implies that small errors in the

initial state or in the model parametrization can grow rapidly and lead to diverging
situations [77]. Some weather situations will be stable for a longer time than others, and
this is true for both local and synoptic scales. Researchers developed in the 1990s the
ensemble method that runs several scenarios in parallel to estimate the forecast spread
and hence the predictability of the weather situation [65]. The different scenarios are called
members of the ensemble, and are perturbed in initial conditions, model parameters or
both. An ensemble prediction from the Météo France model AROME with 16 members is
shown in Figure I.5 to illustrate the process. The deterministic forecast is then a weighted
combination of the ensemble members. In Figure I.5, it can be observed that the spread
between ensemble members grows with the forecast lead-time (i.e. the time ahead of
forecast issue time), showing the uncertainty increase due to the chaotic nature of the
system. Ensemble prediction has become one of the main research areas in the last decades
and is still a major scientific challenge [9].

The very high dimension of the system and the large amount of heterogeneous noisy
measurement data makes the system’s state estimation an important challenge. Data as-
similation refers to the process of correcting a system’s state estimation with measurement
data. The finding of the best state of the system (the analysis state) given observations,
prior information and forecast model is an inversion problem that is to be optimized in
space and time [78]. Around a forecast time step, observations within the assimilation
window are assimilated to correct the state of the system. Operational 4-dimensional
variational assimilation systems (4D-Var) appeared in the late 1990s and led to great
improvements in global weather forecasting [79].

The high-resolution model AROME (Applications de la Recherche à l’Opérationnel à
MEsoéchelle) is the operational regional model of Météo France [27] and is used through-
out this thesis as a reference model. It has a grid size of 1.3km and outputs hourly predic-
tions up to 42 hours ahead. It uses a 3D-Var assimilation scheme on 3-hour assimilation
windows and is initialized from the Météo France global forecasting model ARPEGE (Ac-
tion de Recherche Petite Echelle Grande Echelle) [79] which features a 4D-Var assimilation
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Figure I.5 – Schematic view of an ensemble forecast, illustrated from a 16-members pres-
sure 24h ahead forecast from Météo France AROME model. The initial condition and the
model parameters are perturbed to run N parallel ensemble members. Their evolution
and divergence show the growing uncertainty in the forecast model.

scheme.
Numerical weather prediction is state of the art for weather forecasting and has shown

remarkable progress in the last decades [9]. However, it is still prone to limitations because
of its computational cost and because of the complexity of the system. Model frequencies
are limited by the computational cost: for example, the Météo France AROME forecast
can only be issued every 6 hours for the next 42 hours. Computational cost is an issue
and implies a trade-off between model resolution, model frequency, model horizon and the
number of ensemble members. Current operational ensemble models use tens of ensemble
members (16 for AROME, 50 for EPS) to estimate the forecast spread in the future.
Probability distributions can be approximated from these weighted trajectories, but it is
still a relatively low amount of samples to estimate the uncertainty from, especially given
the dimension of the system.

Eventually for offshore applications, the lack of measurement data impacts both model
calibration and evaluation. The development of offshore wind energy brings additional
challenges to numerical weather prediction. The need for improved metocean forecasts
at different time and spatial scales at sites with low measurement availability is a great
challenge [80]. In particular, the marine boundary layer interaction with the sea surface
is still an active field of research. In [81], authors found similar RMSE for offshore and
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onshore wind measurements but highlights stronger errors in the wind profile. As shown in
[82], the offshore wind speed prediction accuracy is dependent on the height level. Lower
wind levels tend to be more sensitive, highlighting the difficulty of parametrization of
air/sea exchanges. This is coherent with the results from [83], which shows the difficulty
of predicting wind profiles in nocturnal stable and low-level jets conditions. The validation
of numerical weather prediction against measurements is made through LIDAR measure-
ments. The bias in the horizontal wind speed increase with height and is site-dependent
even for close locations as shown by [84]. To overcome these limitations, statistical and
especially deep learning methods are more and more being applied to offshore wind speed
forecasting, as pre-processing, post-processing or end-to-end methods.

I.2.2 Data-driven methods for metocean forecasting

In contrast with physics-based forecast models, data-driven methods do not explicitly
model the weather but they use statistical methods to link a target phenomenon (say
the wind speed at hub height) to an set of input explanatory variables. The development
of data-driven methods is not new but has drastically accelerated with the increase in
collected data and the progresses in computational capacities in the last decades. A data-
driven model is parametrized by a set of parameters Ξ that are to be tuned so that the
forecast errors are minimized

ŷt:t+K = ΨΞ(X t). (I.8)

The model parameters Ξ should minimize a cost function that measures how far the
predictions are from the observations

min
Ξ
L(ŷt:t+K |yt:t+K). (I.9)

Several categories of models can be found in the literature.
Firstly, data-driven methods can be used for the post-processing of numerical weather

prediction. In this case the model ΨΞ is trained to apply a correction to this forecast. The
input X t then contains a set of explanatory variables used for the forecast correction. The
output ŷt:t+K can be set as the residuals of the numerical model, i.e. the forecasts errors,
or as the observations. The use of residuals can be beneficial for forecasts probabilistic
post-processing as discussed in [xie2015normality], since it gets rid of the point-forecast.

Parts of the data-driven models can be used for data pre-processing. Using a set of
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heterogeneous input variables usually implies pre-processing. Dimension reduction is a
widely used tool for large input data, and normalization is an important step for machine
learning based models.

Eventually, recent developments in artificial intelligences for geosciences pave the way
for end-to-end data-driven models, as described in [66]. This means that the data-driven
model fully replaces the numerical model by learning to make forecasts only from observa-
tions. Recent quantum leaps from various teams around the world opened up tremendous
perspectives in the last years [10–13].

A literature review on data-driven forecast models for wind energy applications is
given in Section II.4.

I.2.3 Hybrid methods

One of the main drawbacks of machine learning models for earth system application is
their "black box" nature, that complicates the interpretability and the implementation of
physical constraints. They can be very performant in interpolation, but offers no guarantee
for extrapolation. It implies that the performances of the model on weather situations that
were not present in the training dataset can not be controlled. These are natural features
of numerical models, and recent research work aim at incorporating the knowledge about
the dynamical system from decades of numerical model development into the deep learning
architecture. These are known as hybrid methods [15, 85].

[86] advocate for a joint research effort between machine learning models and data
assimilation. Indeed, data assimilation methods result from decades of research on how to
handle noisy, indirect and sparse data into an inverse model problem and this experience
should be used in machine learning models for earth systems, which must deal with the
same input data. The author notes that data assimilation and machine learning can be
gathered under the same Bayesian framework, highlighting the similarities between 4D-
Var data assimilation and recurrent neural networks. Recent work on the development of
learnable data assimilation schemes for earth systems inverse problems have been carried
out by [87] and applied to satellite altimetry [88], sea surface current and sea surface wind
retrieval from passive underwater acoustics [14, 89]. Deep learning can furthermore be
used for model identification based on observation. [90] use convolutional neural networks
to learn hidden governing laws and hidden variables for sea surface height prediction in
complement of a Quasi-Geostrophic advection model.
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I.2.4 Joint wind and wave forecasting

I.2.4.1 Sea state forecasting

The deformation of the sea surface forms gravity waves, that can be induced by the
wind, seismic activity, or the attraction of the Moon and the Sun. Wind induced waves’
periods range from 1s to 30s and extract their energy from the wind blowing over the sea
surface. For simplicity, In all that follows, we will note "waves" the wind-induced waves.
The energy transferred by the wind to the wave is partially lost to surface currents and
dissipated through wave breaking. The wave field then grows in the time scale of hours
to days under wind forcing. The length of wave growth under wind forcing is called the
fetch, and the longer the fetch, the higher the wave energy [28]. Waves locally generated by
the wind are called wind-waves and have relatively low periods and wave height. Waves
resulting of a long fetch and dissipating their energy by propagating beyond the wind
blowing area are called swell. They can be associated with longer periods and higher wave
heights. An illustration of a bi-modal wave spectrum is given in Figure I.6a.

The characteristics of the sea surface at a certain location is called the sea state and
is characterized by the power spectrum density of the sea surface elevation. It is mainly
composed of a wind-sea generated by local winds and swells from remote winds. The sea
state is an energy spectrum E(f, θ) in frequency f and direction θ, as illustrated in Figure
I.6b. The usual variables used to describe the sea state are the significant wave height and
the wave peak-period. The significant wave height HS is defined as the mean wave height
of the 1/3 highest waves. In the frequency domain, it can be retrieved as Hm0 from the
0th moment of the energy spectrum

HS = Hm0 = 4
√∫

E(f)df (I.10)

with E(f) the univariate power spectrum in frequency obtained from the integral of the
power spectrum in directions

E(f) =
∫ 2π

0
E(f, θ)dθ. (I.11)

It is defined as such because most of the measurement devices used for sea state are not
sensitive to wave direction [91], so it is usual to work with the frequency power spectrum
E(f). The wave peak period TP is defined as the period of the most energetic peak in the
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power spectrum density, as illustrated in Figure I.6a. The mean period Tm is defined as the
mean period of individual waves. Eventually the maximum wave height Hmax is defined
as the maximum observed wave height in a given period of 3 hours. All these variables can
be expressed for the total sea, or for individual systems (wind sea, swell) by clustering the
total power spectrum. Most of the operational criteria for offshore operations are based
on these variables, in link with wave direction and wind direction. In particular, cross-seas
with non-aligned wind and swell components can be problematic for vessels’ operations.

(a) 1D spectrum (b) Directional spectrum

Figure I.6 – Illustration of a wave spectrum at the Planier island location off the coast of
Marseille. The spectrum show a bi-modal distribution with a low frequency swell compo-
nent and a high frequency locally induced component. The wind waves are less energetic
and more dispersed than the swell, showing their local generation.

The forecasting of sea states dates back to the 1950s, for the need of military oper-
ations, and in conjunction with the development of numerical weather prediction. It is
based on an evolutionary equation for the 2-dimensional power spectrum density. At a
given location x and time t, the energy balance equation is

∂E(x, t, f, θ)
∂t

= S(x, t, f, θ) (I.12)

where S(x, t, f, θ) is a source term including the wave generation (wind induced), the wave
dissipation (breaking, wave-ice interaction, bottom friction, bathymetry breaking) and the
non-linear wave interactions [92, 93]. The parametrization of the source term S and the
solving of the energy balance equation in space and time on a computational grid is at
the core of numerical wave modelling. The operational sea state modelling in real time
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is then referred to as sea state forecasting. Seemingly to numerical weather prediction, it
depends on the estimation of an initial state of the system from measurement data. Wave
buoys, drifting buoys and satellite measurements are the main sources of in-situ data
but are still relatively scarce and inequitably installed globally [91]. The wind forcing for
wave generation makes it dependent from numerical weather predictions as input. In this
study we use the Wavewatch-III model (WW3) which is a 3rd generation model run on
an unstructured grid. In the Gulf of Lion a configuration with AROME wind forcing is
used.

The high computational cost associated with numerical wave forecasting motivates re-
search in data-driven models [69]. Deep learning models can be developed and trained as
surrogate models for wave forecasting [30], for model post-processing [31] or for statistical
downscaling [29, 32, 94]. For offshore wind energy operations, dedicated data-driven fore-
cast models are developed to improve the forecast quality [95], or to emulate uncertainty
estimation [4].

I.2.4.2 Topics in joint wind and wave forecasting

The complex relationship between sea state and wind speed time series requires special
care. Despite the wind forcing used as input of numerical wave models, the forecast and
hindcast of wind and wave time series is not performed jointly. Special care is then needed
to construct joint wind and wave times series which are essential for availability analysis for
offshore operations [34–36]. The difficulty of estimating the joint distribution of metocean
parameters increases with the number of parameters to take into account. Furthermore,
the complex relationship between parameters such as the highly non-linear relationship
between significant wave height and wave period that is physically limited by the wave
breaking phenomenon requires the development of specific statistical tools [96]. A review of
statistical methods for the joint wind and wave time series modelling can be found in [37].
Copulas are used to model the dependency structure between wave height and wind speed
in [34] to generate long-term time series for a cable installation campaign in an offshore
wind farm. The joint generation of wind and wave time series is shown to be essential for
the duration estimation of the campaign, as the independent generation leads to unrealistic
time series. Copulas are the most common model for joint time series generation [97, 98].
Markov-switching models can alternatively be fitted to data to generate stochastic joint
time series [99, 100]. Joint estimation of wind and wave is also essential for offshore wind
turbines and foundations design, because of the occurrence of joint extreme events [101,
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102]
In addition to the complex correlation structure between wind and wave time series,

the uncertainty associated with their forecast is also to be taken into account for offshore
operations scheduling. As describe in Section I.1, the forecast uncertainty is still consid-
ered independently for the limiting parameters, and applied as in a pseudo-deterministic
way using the alpha-factor and leading to conservatism in decision-making. The devel-
opment of multivariate probabilistic metocean forecast recently gained interest as a path
to maintenance operations optimization. A data-driven multivariate probabilistic forecast
model for significant wave height and wave period was developed by [4] and expanded in
[64], they modelled the dependency between uncertainties during the scenario generation
with empirical copulas. They show that the addition of temporal cross-dependencies do
not improve multivariate scores. To the best of our knowledge, the only study to deal
with the joint probabilistic forecast of wind and wave is presented in [38] and [8]. An
adaptative neuro-fuzzy inference system (ANFIS) is applied to the multi-step ahead fore-
casting of wave height, wave period and surface wind speed. The relevance of multivariate
probabilistic metocean forecasting for offshore operations planning and execution and the
relative immaturity of forecast models for this application motivated the work presented
in this study.

I.3 Offshore in-situ data

The acquisition of offshore in-situ data is identified as one of the main research needs
for offshore wind energy development in [103]. Offshore measurements are scarce and
challenging but are essential for the development and calibration of offshore forecasting
models. An ideal offshore measurement platform would monitor wind speed at different
levels through the rotor swiping area, wave parameters, sea surface temperature, surface
atmosphere parameters (pressure, humidity, temperature), and current speed. Addition-
ally, biodiversity monitoring equipment should be installed to assess the impact of offshore
wind development.

For wind speed, anemometers can be deployed on offshore buoys, offshore meteorologi-
cal masts or wind turbines structures. Buoys-mounted anemometers have the advantage of
measuring wind speed together with sea state, but at a limited height. Turbine-mounted
anemometers are essential for wind farm operations but are influenced by the structure
and are not available prior to the installation. Offshore meteorological masts permit the
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Figure I.7 – The Planier LIDAR operated by France Energies Marines installed on the
Planier island for the recording of long-term time series of offshore wind profiles.

long-term monitoring of a variety of parameters but are expensive infrastructure and
may not reach rotor heights. The recent development of optical remote sensing instru-
ments made possible the measurement of wind speed up to hundreds of meters. LiDAR
(Light Detection And Ranging) are optical devices that measure the wind speed indirectly
through the doppler shift of laser light backscattered by aerosols carried by the wind [104].
LiDARs can be installed on offshore platforms, on turbine hubs, or on buoys. Floating
LiDARs offer a great potential cost reduction for offshore wind speed measurement com-
pared to meteorological masts [105], though care must be given to compensate the buoy’s
movement. In a recent study, [106] highlight the need for motion compensation algorithms
for error reduction in the turbulence measurements from a floating LiDAR by comparing
the measurements from a hexapod-mounted mobile LiDAR and a ground-based LiDAR.

Satellite-based remote sensing measurements can be used for wind speed and wave
measurements. The sea surface roughness measurements from satellite-based Synthetic
Aperture Radar (SAR) can be used to estimate the surface wind speed with very high
spatial resolution but low temporal resolution. In combination with deep learning models,
it can be used to downscale numerical weather prediction [107, 108], but care must be
given during rain events [109]. Significant wave height can be measured via altimeters,
again with low temporal resolution [91]. Overall, satellite data are formidable sources of
offshore measurements, but require research work to be assimilated in forecast models.
No satellite data will be used in this work.

In the North Sea and Baltic Sea, the FINO platform provide long-term measurements,
and are widely used in the literature for weather forecasts development and evaluation [5,
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33, 95, 110, 111]. In the French territorial waters, no such installation is in place. The main
sources of data come from buoy measurements, island-based meteorological stations and
coastal meteorological stations. Large data acquisition campaigns have been sporadically
organized, such as the HyMeX campaign across Gulf of Lion in 2013 [39] mainly focusing
on sea-atmosphere coupling and heavy precipitation events [112], but they do not provide
long-term time series. The Fécamp meteorological mast, previously private-owned for the
development of the Fécamp wind farm, has been acquired by France Energies Marines to
serve as a research platform dedicated to marine renewable energy in the French North
Sea. In this study, a LIDAR deployed and operated by France Energies Marines on the
Planier island off the coast of Marseille, France (Figure I.7) is used as a target for offshore
wind forecasting. Such infrastructures are key in the development of offshore wind energy.

I.4 Characteristics of the study area

The main study area of this work is the Gulf of Lion, situated in the North-Western
Mediterranean Sea. Being relatively shallow for the Mediterranean Sea with depth of less
than 500m, and having a remarkable wind resource, it is one of the main development
areas for floating offshore wind energy in France with a 4GW to 7.5GW pipeline for
2050. It also features climatic specificities that makes it a challenging area for weather
modelling. In combination with rising financial stakes at sea with offshore wind energy
development, the development of specific post-processing models is necessary.

The Gulf of Lion and the North-Western Mediterranean Sea are characterized by a
complex coastal orography, that drives complex winds. In the Gulf of Lion, there is a
strong predominance of offshore blowing winds namely the Mistral in the Eastern Gulf
of Lion and the Tramontane in the Western Gulf of Lion, that are associated with a
pressure dipole between the Ligurian Sea and North-Western Europe. These winds are
channelled through the Rhone valley for the Mistral and the Pyrenees - Massif Central
channel for the Tramontane [113]. During the passing of atmospheric lows in the North-
Western Mediterranean Sea, sudden wind changes can happen between North-Western
winds and South Eastern winds. The latter are less frequent than North-Western winds,
and are associated with cyclonic conditions, strong winds and waves in the Gulf of Lion
and heavy precipitations.

In a hydrodynamic perspective, the strong wind forcing induce important up and
down-welling phenomenon along the coastal bathymetry, that creates sudden sea surface
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temperature changes at the local scale [114]. This is shown to have a strong impact on
the wind resource in [115], but are hardly modelled in the numerical weather modelling.
Strong changing winds and short fetches create complicated cross-seas with low period
waves and potentially high significant wave heights. These seas can raise very quickly
because of sudden wind ramps and be dangerous for offshore operations. [116] showed
that high significant wave heights are largely underestimated by numerical models.

For all these reasons, the Gulf of Lion appears like an interesting study area, with few
in-situ measurements and high economical stakes. The complex orography, hydrodynamics
and climate make it a challenge for numerical modelling, and data-driven models could be
used to post-process forecasts for specific applications, provided that a sufficient amount
of in-situ data is gathered.
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Chapter II

MATHEMATICAL AND METHODOLOGICAL

BACKGROUND

Preamble

This chapter describes the mathematical and methodological background used in the
next chapters. The mathematical background for deep-learning-based models is given in
Section II.1. A general introduction is given on deep learning models, and a more detailed
description of the concepts used in Chapter III, Chapter IV and Chapter V is given.

We give background on probabilistic forecasting, a very active research field in the
weather forecast community with important applications for offshore wind energy, and
we describe the mathematical tools for parametric and non-parametric methods for prob-
abilistic posterior description. The generation of scenarios from probabilistic forecasts is
then described as an important feature for decision-making problems in offshore wind
energy. The mathematical functions for evaluating the forecasts’ quality is described in
Section II.3 for deterministic and probabilistic forecast, and a focus on metocean forecasts’
value for offshore operations is given.

II.1 Basics of machine learning and deep learning

In this section, we give a theoretical background of the concepts used in the following
chapters. For a thorough description of deep learning architectures and tools, the inter-
ested reader is directed to [42]. A general introduction covering the governing concepts of
deep learning and the main hyper-parameters and training procedures is given in Section
II.1.1. Then, the main architectures used in this study are described in details, namely
Gaussian Mixture Models for unsupervised classification, Convolutional Neural Networks
for large data processing in weather applications, and Normalizing Flows as a generative
architecture for probabilistic forecasting.
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Chapter II – Mathematical and methodological background

Figure II.1 – The ReLU (a), hyperbolic tangent (b) and exponential (c) activation func-
tions are used to introduce non-linearities in neural networks.

II.1.1 General introduction

Machine learning is a sub-category of the larger data science field. It refers to the
development of models f that learn from data to perform a certain task, without being
explicitly parametrized. The theory of machine learning is described by [40] in these
terms : «A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks T, as measured
by P, improves with experience E ». A machine learning model is then associated with a
specific task, and a dedicated cost function that is to be minimized by training on data.

Deep learning models are a subset of machine learning models that use networks of
artificial neurons to approximate complex relationships. They are shown to be universal
approximators given a sufficient number of neurons [41]. An artificial neuron is a function
inspired by the functioning of brain cells, that applies a non linear function g to an input
x

g(x) = σ(wx+ b) (II.1)

where w and b are trainable parameter, and σ is a non-linear function called an activa-
tion function. Common activation functions are Rectified Linear Unit (ReLU), hyperbolic
tangent, exponential function, sigmoid function etc. Activation functions are used to intro-
duce non-linearities in the neuron function. In certain cases, specific activation functions
can be used to force properties on the output: exponential activation for positive out-
put, hyperbolic tangent for output in [−1, 1], sigmoid for binary classification. The three
activations used in this study are plotted in Figure II.1.

Interconnecting neurons together yields to the construction of artificial neural net-
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Figure II.2 – Schematic of the functioning of a basic MLP. The input is forwarded through
layers of neurons, and the loss function is back-propagated to update the parameters of
the model.

works. A layer of neurons connected together is called a fully connected layer. The stack-
ing of fully connected layers is called a Multi-Layer Perceptron, or Feed Forward Neural
Network. A schematic of a 1-hidden layer Multi-Layer Perceptron is given in Figure II.2.

In a Multi-Layer Perceptron, the hidden neuron hm is connected to all the input
xl, l = 1 . . . L such that

hm = σh
m

(
L∑

l=1
wh

mlxl + bh
ml

)
(II.2)

and the output ŷn, n = 1 . . . N is obtained from the hidden neurons hm, m = 1 . . .M

ŷn = σo
n

(
M∑

m=1
wo

nmhm + bo
nm

)
= σo

n

[
M∑

m=1
wo

nmσ
h
m

(
L∑

l=1
vmlxl + bh

ml

)
+ bo

nm

]
(II.3)

with σo
n the output layer activation function and σh

n the hidden layer activation func-
tion. The parameters θ of this simplified model are then the weights and biases θ ={
wh; bh; wo; bo

}
such that ŷ = fθ(x). The output ŷ is then obtained by forwarding

the input x through layers of neurons, with sufficient flexibility to approximate complex
relationships.

Now the success of such architecture is due to the rise of back-propagation algorithms.
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Figure II.3 – Illustration of a gradient descent to find the minimum of a loss function.

Back-propagation refers the to process of computing error gradients with respect to the
weights of the model. Given a loss function L, the weights of the model are iteratively up-
dated using stochastic gradient descent such that for every training step k, any individual
parameter θ of the model is updated as

θk+1 ← θk − ηk
∂L
∂θk

(II.4)

with ηk an hyper-parameter called the learning rate, which controls the speed at which
the gradient descent is computed. High learning rate can induce instabilities while slow
learning rates induce low-convergence and potentially falling into a local minimum. A
common strategy is to implement a learning rate scheduler that updates the learning rate
during the training, to start from a high learning rate and reduce it when getting closer
to the global minimum. In this study we use an exponential scheduler. The gradient is
computed for a loss function computation on a batch of input samples. The batch size
can impact the convergence of the model. The computation of the loss gradient is for
each parameter of the model is easily parallelized and can then be sped up by using
a Graphical Processing Unit (GPU) which is performant at making several parallelized
small computations.

The training of a deep neural network using stochastic gradient descent requires a
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Figure II.4 – Illustration of dropout for a Multi-Layer Perceptron. During inference, with
a dropout rate of 0.3, 30% of the neurons are deactivated.

monitoring for stopping the training. Otherwise, the model can over-fit the training data
perfectly in theory. The validation data is then used after each computation on the full
training dataset (an epoch). The loss function is then evaluated on the validation dataset
without updating the model weights. The training is to be stopped when the validation loss
reaches a minimum, which indicated the instant when the improvement on the training
dataset does not generalized to unseen data and hence the beginning of over-fitting.

Eventually important concepts for gaining robustness for deep learning models are the
weight decay and dropout layers. The weight decay adds a regularization to the model
parameters so that specific ways through the neural networks do not take to much impor-
tance. Dropout layers randomly drop a certain proportion of connections at each compu-
tational step. By adding randomness it forces the model to diversify computational paths
in the model and improves the performance and generalizability (see Figure II.4). Dropout
layers can be used to perform Monte-Carlo simulations and estimate the epistemic model
uncertainty.

II.1.2 Clustering with machine learning

When the target is discrete and un-ordered, the machine learning model is said to per-
form a classification task, where input points should be assigned to discrete classes. When
these classes are known in advanced, the machine learning model is said to be supervised.
On the other hand, when the target data is unlabelled, the task is unsupervised. In this
case, the model is to assign discrete classes to data points, and we refer to such tasks as
clustering problems. An illustration of the classification and clustering problems is given
in Figure II.5.
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Figure II.5 – Illustration of the classification (a) and non-supervised clustering (b) prob-
lems.

The unsupervised data clustering consists in finding patterns in the multivariate data
to organize the data points as clusters, according to a certain similarity measure. Parti-
tional methods aims at describing a partition of the input data by iteratively minimizing
a criterion of the quality of the partition. A thorough overview of clustering methods can
be found in [117]. The most common method for unsupervised clustering is the use of the
K-means algorithm that selects K points in the data, assigns all the data points to their
closest centroid according to a certain similarity measure, and update the centroids of the
cluster from their assign data points. By iteratively updating the K centroids, K clusters
minimizing the similarity can be found. Another classic method is to base the clustering
on a mixture of probability distributions, usually Gaussian distributions. The fitting of
these distributions is usually performed with the Expectation-Maximization algorithm.
Iteratively, an expectation step and a maximization step are computed until convergence.
The expectation step computes the probability for each data point to belong to each
distribution of the mixture, then the parameters of the distributions are updated to max-
imize the likelihood. An illustration of fitting a 4-component Gaussian Mixture Model on
2D data is given in Figure II.6. The number of cluster to fit on the data is a parameter
of the model that needs to be optimized independently.

In Chapter III, we use a Gaussian Mixture Model for the unsupervised clustering
of wind data to determine sample points using the clusters centroids. A mathematical
description of the Gaussian Mixture Model can be found in Section III.4.5.
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Figure II.6 – An illustration of the fitting of a 4-component Gaussian Mixture Model on
2D data with a random start using the Expectation-Maximization algorithm.

II.1.3 Convolutional neural networks

The MLP architecture presented in Section II.1.1 has a number of coefficient pro-
portional to the dimensions of the input data and the hidden layer. For this reason, the
number of coefficient can significantly increase for large input data. The development of
convolutional architectures brought significant improvements in dealing with large input
data, and especially for computer vision problems. Numerical weather prediction data
having very high dimensions in space and time, the use of convolutional architectures is
essential [94].

Convolutional architecture, often called Convolutional Neural Networks (CNN) are
a specific type of architecture that uses convolutional layers to gradually decrease the
dimension of the data by the use of convolution filters. These filters are matrices or
kernels that apply the same weights to all the regions of the image as illustrated in Figure
II.7. By doing so, the number of coefficients in the model is drastically decreased through
weight sharing. A 2D convolution filter has a size (F1, F2), and is convolved through the
input with a certain stride (S1, S2). The input can be padded with P zeros on its outer
limits for example if the size needs to be preserved. If the initial input has size (N1, N2),
then the size of the obtained feature map is (M1,M2) with

Mi = Ni − Fi + 2P
S

. (II.5)

The values hm1,m2 , m1 = 1 . . .M1, m2 = 1 . . .M2 of the feature map are obtained by
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Figure II.7 – Schematic view of a 2D (3x3) convolutional filter with stride of 2 and zero-
padding of 1. The trainable filter w is successively applied to subsets x of the input to
obtain a feature map through a non-linear activation function σ.

Figure II.8 – Schematic view of a 2D (2x2) max-pooling filter with stride of 1. This
non-trainable filter is applied to reduce the dimension if the feature maps while helping
capturing multi-scale features.

multiplying the subsets of the input in the filter window xm1,m2 by the filter weights w,
adding a bias b and applying an activation function σ

hm1,m2 = σ(xm1,m2 ∗w + b). (II.6)

As illustrated in Figure II.9, convolutional layers are coupled with pooling layers,
which apply a simple filter for resizing the data. Typical pooling filters use the max, min,
average or L2− norm functions. Pooling layers are useful for reducing the dimension of
the feature maps, and to allow the extraction of multi-scale features. An illustration is
given in Figure II.8.

A Convolutional Neural Network is then classically composed of a succession of convo-
lutional layers and pooling layers before applying one or several fully-connected layers to
the flattened latent data to obtain the output. A simple 2 layers architecture is illustrated
in Figure II.9.
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Figure II.9 – Schematic view of a 2D convolutional neural network. Successive convolution
and pooling filters reduce the dimensionality of data while limiting the complexity of the
model by weight sharing. Final fully-connected layers map to the output.

Convolutional architecture can be applied in 1, 2, 3 or more dimensions with the same
principle. They have been used in many different applications, and are a key tool for
dealing with spatio-temporal data in metocean forecasting applications as described in
Section II.4.3.

II.1.4 A generative architecture: normalizing flows

The concept of generative modelling is based on the idea that the underlying manifold
of a complex process can be expressed on a simpler latent space from which samples
from the true data distribution can be generated. In other words, generative models learn
to approximate an underlying distribution Y from samples y1, . . .yK ∈ RN . The use of
deep learning for generative modelling recently achieved impressive results for very high
dimension problems such as image generation.

A deep generative model usually relies on a generator network Gθ : RM → R
N that

transforms a simple latent distribution Z on R
M which can be easily sampled (e.g. mul-

tivariate Gaussian) into the target distribution Y . Hence there is no explicit description
of the underlying distribution Y . Let z ∼ Z be a sample from the latent distribution
z ∈ RM . A synthetic sample of the target distribution ŷ ∈ RN can be obtained through
the generator Gθ

ŷ = Gθ(z). (II.7)

The intuition behind the development of deep generative models is that the underlying
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distribution py can be approximated by the distribution pθ obtained by transforming the
latent distribution pz such that

pθ(Gθ(z)) ≃ py(y). (II.8)

This requires the measure of the similarity between the underlying unknown distribution
py ∼ Y and the predicted distribution pθ ∼ Gθ(Z) which is the main challenge for deep
generative models.

Generative Adversarial Networks do not rely on any estimation of the posterior proba-
bility density function and rely on the joint training of a generator that transforms samples
from a latent distribution with M << N into data samples, and a discriminator that is to
separate generated samples from real samples. The joint training of these two components
through a min-max optimization game forces the generator to learn to fool the discrim-
inator and then to generate samples that are realistic given the data distribution in the
training set. This architecture is assumption-free on the target distribution, but is known
to require fine tuning to avoid instabilities during training and mode collapse when the
generator Gθ collapses on a limited number of modes of the target distribution. Though
they have produced remarkable results and advances in generative modelling (e.g. rainfall
nowcasting [118]), especially for high dimension problems, their lack of explainability and
their instability are limitations.

Variational Auto-Encoders use a Bayesian framework to estimate the data distribution
fy. From the data space, an encoder and a decoder are jointly train to map the data dis-
tribution to a simple latent space and back to the real space. The encoder Fϕ and decoder
Gθ are two neural networks that generate the parameters of the conditional distributions
pϕ(z|y) and pθ(x|z), often assumed Gaussian. The computation of the likelihood of the
marginal distribution

py(y) =
∫
pθ(y|z)pϕ(z)dz (II.9)

is often intractable even for simple prior distributions. Variational Auto-Encoders hence
use the Evidence Lower Bound (ELBO) of the distribution to approximately maximize the
likelihood of the reconstruction. The ELBO provides both a regularization term for the
latent space and a reconstruction error for the real space. By doing so, both the encoder
and the decoder can be jointly trained using an approximation of the posterior likelihood.

In contrast with the two most classic architectures briefly described above, Normalizing
Flows (NF) are a relatively new type of architecture that allow for an exact computa-
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Figure II.10 – Illustration of a normalizing flow that transform a base Gaussian distribu-
tion (left) into a complex distribution (right) with 5 affine coupling layers.

tion of the posterior likelihood. It was proposed for variational inference in [119], and
generalized to density estimation in [120]. A normalizing flow Gθ is constructed as a dif-
feomorphism between the real space and a latent space of same dimension M = N . Gθ is
to be differentiable, bijective, and has a differentiable inverse Fθ = G−1

θ . By the change
of variable formula, and using the properties of the Jacobian of a diffeomorphism, the
posterior density py can be obtained as

py(y) = pz(z)
∣∣∣∣∣det

(
∂Fθ(y)
∂y

)∣∣∣∣∣ = pz(z)
∣∣∣∣∣det

(
∂Gθ(z)
∂z

)∣∣∣∣∣
−1

. (II.10)

Using this composition rule, we can construct a transformation Tθ as the composition of
diffeomorphisms T (m)

θ , m = 1 . . .M such that

y = Tθ(z) = T (1)
θ ◦ . . . ◦ T (M)

θ (z) (II.11)

where the posterior distribution can still be explicitly computed as

log(py(y)) = log(pz(z))−
M∑

m=1

∣∣∣∣∣∣det
∂T (m)

θ (z(m))
z(m)

∣∣∣∣∣∣ . (II.12)

A normalizing flow process is illustrated in Figure II.10 with 5 transforms. If we
implement the diffeomorphisms T (m)

θ , m = 1 . . .M as neural networks, we construct a
trainable diffeomorphism between a simple latent distribution Z and a real distribution Y
while keeping explicit the computation of the posterior likelihood. These neural-network-
based diffeomorphism furthermore need to have a tractable determinant and inverse to
scale up for high dimension while keeping a reasonable computational cost.

Starting from the fact that the Jacobian of triangular matrices is equal to the product
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of diagonal elements, two types of transforms have been proposed for normalizing flows
namely coupling layers and autoregressive layers.

Coupling layers

Coupling layers have been proposed by Dinh at al. in [121] and [120]. They natively
construct block-diagonal matrices by splitting the input in two, leaving the first part
unchanged and transform the second part as a function of the first part. A coupling layer
is implemented as follows:

1. the input z(m) ∈ RN is partitioned into two subsets [z(m)
1:n , z

(m)
n+1:N ] with n ∈ J1, NK,

2. the first part of the input is left unchanged z
(m+1)
1:n = z

(m)
1:n ,

3. the parameters ϕi of a coupling function gϕi
are obtained as function of the first

part of the input ϕi = Φ(z(m)
1:n ) with Φ a trainable function, typically a deep neural

network,

4. the second part is computed as z(m+1)
i = gϕi

(z(m)
i ) for i = n+ 1 . . . N .

When constructed this way, a coupling transform T (m) has a lower triangular Jacobian

∂T (m)(z(m))
∂z(m) =

 In 0n

∂z
(m)
n+1:N

∂z
(m)
1:n

∂gϕ(z(m)
n+1:N )

∂z
(m)
n+1:N

 (II.13)

and its determinant is easily computed as the product of the derivatives of the coupling
function

det
∣∣∣∣∣∂T (m)(z(m))

∂z(m)

∣∣∣∣∣ =
N∏

i=n+1

∣∣∣∣∣∣∂gϕi
(z(m)

i )
∂z

(m)
i

∣∣∣∣∣∣ . (II.14)

A coupling layer is often combined with a permutation layer so that all input entries
are transformed when stacking several layers. An illustration of a coupling layer is give in
Figure II.11a.

Autoregressive flows

As developed in [122], coupling layers can be seen as a special case of autoregres-
sive flows. The latter express each entry z(m)

i as a function of the previous inputs z(m)
i =

gϕi
(z(m)

1:i−1). A triangular Jacobian is thus obtained, and a greater flexibility can be achieved.
An illustration of an autoregressive layer is given in Figure II.11b.
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(a) Coupling layer (b) Autoregressive layer

Figure II.11 – Illustration of the forward passes for a coupling layer (a) and an autore-
gressive layer (a) to ensure tractable Jacobian determinant and easy inversion.

Bijective function

Now that layers permitting an easy inversion and Jacobian determinant computation
have been constructed, one needs to choose a bijective function gθ to be implemented
as a coupling function in the transform. As described above, this function needs to be
a diffeomorphism and should offer a tractable inverse an derivative. In Non-linear In-
dependent Components Estimation (NICE) [121], a simple additive coupling function is
proposed, that has a unit determinant and a trivial inverse but does not offer great non-
linear capabilities. In RealNVP (standing for Non-Volume Preserving) [120], this concept
is generalized as affine coupling function, where gϕi

(z(m)
i ) = z

(m)
i exp(s(z(m)

1:n )) + t(z(m)
1:n )

with s and t that can be set as deep neural networks.

Polynomial splines functions [123] and cubic splines functions [124] have been proposed
to increase the non-linear power of the transform. These functions interpolate between
knots while ensuring a monotonic function. In [125], a generalized framework for rational
quadratic spline function (RQSF) is proposed that permits easy Jacobian determinant
computation, easy inversion and great flexibility. It is shown to overcome numerical dif-
ficulties and offer greater flexibility than previous splines functions. An example of a
rational quadratic spline function is shown in Figure II.12.

The rational quadratic spline function is defined by K monotonic knots in [−B,B]
defined by their widths θw

k and heights θh
k . The derivative δk at each knot k are kept
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Figure II.12 – An example of a rational quadratic spline function, its inverse (a) and
derivative(b).

positive. Outside the boundary domain [−B,B], to be fixed in accordance with the data
boundaries, linear tails are implemented so that no samples can be out of bounds. Setting
sk = (θh

k+1− θh
k)/(θw

k+1− θw
k ) and ξ(z(m)

i ) = (z(m)
i − θw

k )/(θw
k+1− θw

k ), the rational quadratic
spline gk in bin k is defined as

gk(ξ) = θh
k + (θh

k+1 − θh
k)[skξ

2 + δkξ(1− ξ)]
sk + [δk+1 + δk − 2sk]ξ(1− ξ) (II.15)

which is analytically invertible and derivable as described in [124]. The parameters of the
transform are then obtained in a coupling or autoregressive layer as

ϕi = Φ(z(m)
1:i−1) = [θw

1:K ,θ
h
1:K , δ1:K ]. (II.16)

The rational quadratic spline function is used as the base bijective function throughout
this study for its flexibility.

Autoregressive neural networks: MADE

In an autoregressive setup, the neural network Φ needs to have autoregressive proper-
ties to ensure that its output for a certain input z(m)

i only depends on the previous input
z

(m)
1:i−1. To achieve this, masked neural networks are used in which connections are skipped

to ensure autoregressive properties. In this study we use the Masked Auto-Encoder for
Density Estimation (MADE) defined by [126] and adapted to normalizing flows by [122].
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MADE is a feed-forward neural network to whom a binary mask is applied to ensure
autoregressive properties by masking connections.

II.1.5 Experimental framework for machine learning based fore-
casts

When training and evaluating forecast models of environmental data, car must be
given to time series auto-correlation and data representativity. We detail here strategies for
implementing train, validation, test splits for environmental data, and cross-validation to
alleviate data reprensentativity issues. A thorough description of deep learning framework
for weather forecast is given in [66].

Train, validation, test split for environmental data

A common practice when developing data-driven models is to split the dataset into
training, validation and testing split. The model is trained on the training split, the vali-
dation split is used for hyper-parameters tuning and over-fitting control, and the model is
finally evaluated on the test split. In order for the model to be correctly trained and eval-
uated, each split should be independent and representative of the actual data distribution
of the dataset.

For environmental data, several difficulty arise. The time series have strong auto-
correlation, which means that the samples cannot be randomly drawn from the dataset to
form the train, validation, test split. Indeed, doing so would yield to spurious correlations
between the splits. Furthermore, the time series have strong cyclic dependencies with
inter-annual (El Niño phenomenon), seasonal, and diurnal variabilities. Each set should
be sufficiently long to be representative of these variabilities. An integer number of year
is often taken as a condition for a representative train, validation, test split.

Eventually, the complexity and chaotic nature of weather systems imply that the length
of the dataset should be sufficient to capture long-term trends. This requires long-term
measurement campaign which is a major limitation for metocean forecasting as describes
in Section I.3. Furthermore the assumption of a stationary climate is to be questioned for
long-term applications due to climate change. All these points should be discussed and
addressed when implementing metocean forecast model.
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Cross-validation

To alleviate the impact of data representativity, cross-validation can be used. It con-
sists in alternating the periods used for training, validation and testing, while maintaining
independence between the sets. Each simulation with a specific train, validation, test split
is called a fold, so the term K-fold cross-validation is used. The error metric obtained by
averaging the errors obtained for the K-fold is called the generalized error, and its vari-
ability indicates the impact of dataset split in the performances of the model. For weather
applications, the number of folds that can be constructed is limited by the constraints
described above. The generalized error is then given either as the standard deviation, or
as a 50 % inter-quantile range around the mean error. It is important to note that this
is not the only source of uncertainty in the scores. For example sampling dependence
should be alleviated with bootstrapping. An exhaustive description of uncertainties for
data-driven models is given in [127]. For the experiments described in this manuscript
however, error variability was found to be largely dominated by splits variability. This is
why the scores variability is only described as inter-quantile ranges or standard deviation
of cross-validation splits.

Cross-validation is common practice in deep learning applications to evaluate the error
variability due to the data used for training and testing. For environmental applications
it is also a mean to evaluate the impact of data representativity. When the variability
in the measure is high, it means that the underlying data distribution in the training,
validation and/or testing set is not representative of the full dataset distribution, and
that the dataset used is to short to ensure satisfying representativity. An example of
cross-validation keeping the temporal correlation and seasonal variability for a limited
weather dataset is shown in Section IV.2 Figure IV.4.

II.2 Probabilistic forecasting

Predicting the evolution of an uncertain phenomenon in the future is the nature of
forecasting, which makes it by essence a probabilistic problem. The development of prob-
abilistic forecast models notably in the weather forecasting field marks a paradigm shift
since the 1980s with the development of ensemble forecasting [43, 47]. The development
of probabilistic forecast models is a theoretical requirement for the optimal use of forecast
products for decision-making problems. In the wind energy industry, probabilistic fore-
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casts of wind energy production is essential for energy systems management and market
participation [44, 45] or for the estimation of weather windows for offshore operations [5,
7].

The uncertainty of a forecast model can be divided into two categories: the aleatory
and the epistemic uncertainties. The aleatory uncertainty refers to all the sources of
randomness in the modelled phenomenon, including but not limited to chaos-related un-
certainties or observational errors. The epistemic uncertainty on the other hands refers
to all the sources of uncertainty from the imperfect knowledge of the system such as
model parameters error. Epistemic uncertainty can be alleviated in deep learning models
by running Monte-Carlo simulations using dropout layers, or by simultaneously running
different architectures on the same input data to generate an ensemble of predictions. A
thorough study on uncertainty quantification using data-driven models can be found in
[127].

A probabilistic forecast model describes the output yt+k as the realisation of a random
variable Ŷ t+k. The probability distribution of this random variable is called the posterior
distribution. Its probability density function is noted f̂t+k, and cumulative density function
F̂t+k.

To describe the random variable Ŷ t+k, several strategies can be adopted. We regroup
the strategies used in the litterature under three categoris: parametric and non-parametric
methods for the time dependent posterior, and scenario generation.

The term parametric refers to all methods that use parametric assumptions for the
posterior. We describe here all the methods that assume this assumption for each pre-
dicted lead time. The time-dependant posterior distribution f̂θt+k

is parametrized with
parameters θt+k that fully describe the law of the random variables.

On the contrary, non-parametric methods predict summary statistics of the posterior
distribution for each time step. Quantiles levels for example can be used to describe the
inverse of the cumulative density function.

We eventually introduce scenarios-based methods that are widely implemented in the
literature. These can be parametric or non-parametric, but have in common that they
describe the posterior distribution as the distribution of the random variable Ŷ t:t+K ,
which samples are multivariate trajectories ŷt:t+K ∈ RN ×RK . Because of the dimension
increase it implies, it requires the use of specific methods that justify this classification.
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Figure II.13 – An example of a 24 hours ahead probabilistic forecast under Gaussian
assumption. The parameters of a Gaussian distribution are predicted for each lead time.

II.2.1 Parametric methods

A simple assumption for approximating a probabilistic posterior is to consider it takes
the shape of a parametric distributionf̂θt+k

, which parameters θt+k are predicted by the
forecast model Ψ

Ψ(X t) = {θt+k}k=1...K . (II.17)

The parametric assumption of the posterior often permits closed-form computations of
the likelihood f̂θt+k

(yt+k), which permits optimization. Some distribution also permit the
closed-form computation of the continuous ranked probability score (CRPS, see Section
II.3). It is associated with sampling capabilities. Since the law of the random variable
Ŷ t+k is perfectly known, samples ŷ

(l)
t+k, l = 1 . . . L can easily be drawn from it.

Common assumptions for the posterior distributions are Gaussian [16, 56, 128–130] log-
normal [131–133], Beta [134], Sinh-Arcsinh [127], Laplace [135], Gaussian Mixture Models
(GMM) [136]. An example with Gaussian posterior assumption is shown in Figure II.13.

In Chapter IV and Chapter V, a multivariate Gaussian assumption is made for the
posterior allowing for exact computation of the likelihood and easy sampling. The relaxing
of this assumption is shown to be marginally improving the probabilistic scores of the
forecast. The multivariate Gaussian distribution is described by its mean µ and covariance
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matrix Σ, and its density function f reads

f(y|µ,Σ) = 1
(2π)|Σ|1/2 exp

(
−1

2(y − µ)T Σ−1(y − µ)
)

(II.18)

for y a realization of the random variable Y ∼ N (µ,Σ). The vector µ contains the
means of the marginal distributions, and Σ the covariances. The matrix Σ has to be
definite positive to be a valid covariance matrix i.e. zT Σz > 0 ∀z ̸= 0. The achievement of
definite positiveness require special care and can become complicated for high dimensional
problems. For low dimensions, the covariance matrix can be decomposed into an unique
positive-diagonal lower triangular matrix L such that

Σ = LLT (II.19)

with L the Cholesky decomposition of Σ. In [137], a Cholesky-based parametrization is
used for the modelling of the temporal covariance matrix for a 10-step ahead tempera-
ture forecast obtained with regression. However, the number of parameters to estimate
for a N-dimensional Gaussian distribution is N(N+1)

2 and becomes intractable for high
dimensional cases. In this case, low-rank parametrization should be considered for exam-
ple when modelling spatio-temporal dependencies such as the Matérn covariance matrix
which is isotropic and stationary [138]. Recent work in the multivariate energy forecast-
ing advocate for the development of low-rank non-stationary non-isotropic covariance
matrices. [139] proposed to generalize covariance functions by allowing their parameters
to vary conditioning on input explanatory variables, hence increasing the flexibility and
explainability of the matrices, but loosing the guarantee of definite positiveness for non-
stationary processes. In this study, the cross-variable dependency per time step is modelled
by a multivariate Gaussian distribution under Cholesky assumption since the dimension
of the problem is low (2 variables in Chapter IV and 3 variables in Chapter V).

II.2.2 Non-parametric methods

To avoid making assumptions on the shape of the posterior distribution, non-parametric
methods can be used. In contrast with parametric methods, they do not rely on parametrized
functions. The most used methods in the literature consist in predicting summary statis-
tics of the posterior distribution such as quantile levels or intervals.

The idea behind quantile forecasting is that a cumulative density function of a random
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Figure II.14 – An example of a 24 hours ahead non-parametric probabilistic forecast. (a)
shows an interval forecast with β = 90%. (b) is a quantile forecast showing the quantiles
5%, 20%, 30%, 40%, 60%, 70%, 80% and 95%.

variables can be approximated using its quantiles. A quantile qα associated with a pro-
portion α ∈ [0, 1] is defined as the value under which a realization of the random variable
has a probability α to be. The quantiles define the quantile function F−1 which is the
inverse of the cumulative density function F

qα = F−1(α). (II.20)

From the predicted quantiles, and interpolated quantile function is obtained using e.g.
cubic spline interpolation is then used [140, 141]. Quantile forecasting has the advantage of
being assumption free, but it requires the training of one model per quantile, resulting in
a substantial computational cost and potential quantile crossing issues. It furthermore has
limitations for multivariate forecasting, since it cannot be used to model the dependency
between variables. It is however a common assumption for the development of probabilistic
forecast models [4, 142, 143].

Interval forecasting is another type of non-parametric model that predict an interval in
which a realization of the random variable has a nominal probability (1−β), β ∈ [0, 1] to
lay in. The interval defined by an upper bound αu and lower bound αl which are indeed
quantiles. A description and evaluation framework of interval and quantile methods is
presented in [144]. Both techniques are illustrated in Figure II.14

Eventually, recent developments in the generative artificial intelligence domain offers
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new methods for non-parametric posterior descriptions. Generative models are designed
to approximate very complex distributions and can be used for high dimensional proba-
bilistic problems such as image or speech generation. In a sense, the posterior distribution
is encoded implicitly in the structure of the model. In Section II.1 we give a detailed
description of generated approaches. Especially, we describe normalizing flows and how
they can be used to approximate complex posterior distributions for forecasting.

II.2.3 Scenario generation

The probabilistic forecasts presented above are issued per lead time, describing the
cross-variable dependency but not the temporal correlation between lead-times. For time-
dependent decision-making problems such as the vessel and crew dispatch for offshore
operations, the temporal evolution is essential [145]. As described in Section I.1, offshore
operations require the forecasting of weather windows during which the environmental
conditions are below a certain threshold. Considering the forecast uncertainty at each time
step independently yields to an incorrect estimation of the probability of weather window
occurring. On the contrary, an ensemble of realistic scenarios is needed that respect the
marginal distributions for each time step, and have a realistic temporal evolution.

Ensemble numerical weather prediction is the most intuitive scenario forecasting tech-
nique. It has become a new paradigm in numerical weather prediction, and it provides an
ensemble of scenarios in a very high dimensional state, modelling boss the cross-variable
and temporal correlation natively through its set of differential equations. [146] use en-
semble forecasts from which density distributions are estimated with a kernel method to
predict the wind power output of an offshore wind farm. The number of members issued
by the ensemble being limited to 10 to 50 for current operational systems, there is a need
to fit a distribution per lead time to have a full probabilistic description. [147] calibrate
the ensemble distribution to fit a Gaussian distribution for the tuple of wind speed. [148]
fitted a Gaussian distribution on the temporal evolution of a raw numerical weather pre-
diction ensemble to increase the number of scenarios and to output a reliable forecast
of power ramp events. Eventually [17] used GANs to generate additional members of an
ensemble forecasts showing promising results. Given the limitations of ensemble numerical
weather forecasts in terms of computational cost, it is appealing to implement statistical
methods for scenarios forecasting.

Another approach is to explicitly model the temporal dependency with a probability
density, but this imply describing a density function in a very high dimension space. A
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common assumption for approximating complex multivariate dependency structures are
copulas. Copulas were first introduced by [149] to describe multivariate distributions with
uniform marginals. The Sklar’s theorem states that any K-dimensional distribution G

with marginal distributions F1, . . . , FK , there exists a copula function C such that

G(y1, . . . , yK) = C(F1(y1), . . . , FK(yK)). (II.21)

Furthermore, if the marginal distributions are continuous, this function is unique.
The copula function then describes the joint distribution between the random variables
u1, . . . , uK with uk = Fk(yk) uniformly distributed on [0, 1]. Several copula functions
can be implemented to model the joint distribution: Gaussian, Clayton, Gumbel, Frank,
Vine. For Gaussian copulas, the only requirement is the construction of a valid (K ×K)
covariance matrix.

If we assume a time series of predicted cumulative density functions F̂t+k, and a co-
variance matrix Σt of dimension (K ×K) describing the temporal dependency, scenarios
can be generated using the following process under Gaussian copulas assumption.

1. L samples {ŝ(l)
t:t+K}l=1...L are drawn from a multivariate Gaussian distributionN (0,Σt)

2. For each lead time k = 1 . . . K, the realizations {ẑ(l)
t+k}l=1...L of the uniform variables

Ẑt+k are obtained using the inverse probit function Φ:

ẑ
(l)
t+k = Φ(ŝ(l)

t+k), l = 1 . . . L, k = 1 . . . K. (II.22)

3. For each lead time k, the samples {ẑ(l)
t+k}l=1...L are then transformed to respect the

marginal distribution f̂t+k using the inverse cumulative density function F̂−1
t+k to

generate predicted samples {ŷ(l)
t+k}l=1...L

ŷ
(l)
t+k = F̂−1

t+k(ẑ(l)
t+k), l = 1 . . . L, k = 1 . . . K. (II.23)

4. The obtained samples {ŷ(l)
t:t+K}l=1...L are then scenarios which marginal distribu-

tions are F̂t+k, k = 1 . . . K, and which temporal dependency is described by the
Gaussian distribution N (0,Σt).

For high dimensional cases, the estimation of a valid (K × K) covariance matrix
can cause difficulties, and [150] proposed a low-rank covariance matrix for minimizing
the number of coefficients to be predicted. For scenario forecasting, one can model the
temporal dependency between time steps that the copulas should describe the temporal
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dependency between time steps, and that the marginal distributions per time step are
predicted independently. This was proposed in [151] for the generation of power produc-
tion scenarios from probabilistic forecasts output. They furthermore proposed a recursive
estimation of the temporal covariance structure. [145] showed that the Gaussian copulas
is appropriate for modelling the temporal dependency for wind power scenario forecast-
ing. Scenario forecasting can also be useful for extreme events prediction, such as ramp
forecasting for power market operations [152].

The above copula structure does not accommodate multivariate temporal scenarios, in
the sense that it can only approximate joint density distribution with uniform marginals
on [0, 1]. For multivariate scenarios forecasting, both the temporal covariance and cross-
variable covariance need to be modelled. For offshore operations, metocean variables and
their associated uncertainties are correlated in time. The wave height resulting from the
time integral of the wind speed, and the wave numerical models being forced by wind nu-
merical models, both variables’ evolution and uncertainty should be treated jointly. Con-
ditional copulas can be developed for modelling multivariate scenarios [153] and temporal
dependent copulas [154] extend the definition of conditional copulas to pseudo-copulas
with non-uniform marginal distributions. To the best of our knowledge, such copulas
methods are not applied to multivariate scenarios generations for environmental forecast-
ing. The wealth of the economic literature on this topic should be considered for future
applications. A thorough review of copulas methods is given in [155].

Alternatively, copulas can be coupled with other methods for handling both the cross-
variable and temporal dependencies. [150] developed a method based on low-rank Gaus-
sian copulas conditioned by the state of a recurrent neural network. The cross-variable
dependency is modelled by the copulas, and the temporal dependency is latent in the
state of the deep learning model.

Recently, the rise of generative models in the deep learning community led to new pos-
sibilities in scenario forecasting. The capabilities of generative architecture in estimating
very high dimension latent distributions could allow for the direct generation of multi-
variate scenarios given sufficient data and model complexity. [44] compared GANs, VAE
and normalizing flows for the multivariate probabilistic forecasting of renewable energy
generation. Though they conclude that normalizing flows are easier to implement, they
do not explicit the temporal dependency, while GANs and VAE are trained to output
trajectories, normalizing flows are trained on a per time lead basis. [59] on the other
hand, coupled a normalizing flows with a recurrent neural network to implicitly integrate
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a temporal dependency in the flows’ conditioning. These novel approaches can be de-
signed to seamlessly generate multivariate scenarios, and are an interesting research topic
for multivariate probabilistic forecasting. We present two innovative methods implying
normalizing flows in Chapter V and compare them to Gaussian copulas based methods.

II.3 Forecast evaluation frameworks for probabilistic
forecasting

The development of various forecasting techniques requires the formalisation of an
evaluation framework. The choice of the metric used for model evaluation is crucial, and
should reflect the actual cost associated with the forecast error. The best model according
to a certain metric might not be for another metric, and several metrics can be combined
to evaluate different characteristics of the forecast.

The models’ performances should be evaluated on out-of-sample data. The datasets
are to be split in training, validation and testing sets, which should all be independent,
and representative of the full distribution of the data. When dealing with meteorological
data, special care should be given to the data auto-correlation, and to cyclic correlation
within the data. Meteorological phenomenon are know to be influence by annual and
seasonal patterns, can have diurnal variations, and are auto-correlated in the range of
several days [66].

The framework for evaluating probabilistic forecasts requires specific metrics, because
a full distribution should be scored with a single observation. Furthermore, the predicted
uncertainty should be representative of the underlying process’ uncertainty. This property
of statistical consistency is called the forecast calibration. The elements of probabilistic
forecasts evaluation can be found in [46].

Eventually, a difference should be made between the forecast quality in the sense of
its performance regarding evaluation metrics, and its value, which is linked to the impact
of the forecast use for a specific application [6].

In this section we describe the statistical tools for computing metrics for the evaluation
of deterministic forecasts and probabilistic forecasts. A thorough description of evaluation
tools for wind energy applications can be found in [50]. We then present the advancement
in forecast value for offshore wind operations.
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II.3.1 Deterministic forecast evaluation metrics

We first describe the metrics used to evaluate single-point forecasts. We consider a
forecast issued at time t = 1 . . . T that issues predictions for lead times k = 1 . . . K of
the target N-dimensional observation yt+k ∈ R

N . The forecast issued at time t for a
lead time k is noted ŷt+k ∈ R

N . For probabilistic scenarios, the associated single-point
forecast is the mean or the median of the predicted distribution. It is important to note
that if the observation vectors contains different variables with different physical units (e.g.
wind speed and significant wave height) they should be normalized before the metrics are
computed and averaged between variables. Alternatively, the metrics can be computed
and expressed per variable.

The metrics are computed per lead time k, and noted accordingly with a subscript k.
If noted without subscript, they refer to the mean value of the metric across lead times.
For a given metric M:

M = 1
K

K∑
k=1
Mk (II.24)

The average difference between the observation and the forecast is called the bias.

biask = 1
T

T∑
t=1

(ŷt+k − yt+k) (II.25)

The bias only measure the ability of a forecast to predict the same mean value as the
observed mean.

The mean absolute error (MAE) is defined as:

MAEk = 1
T

T∑
t=1
|ŷt+k − yt+k| (II.26)

For probabilistic forecasts, the median value of the distribution should be considered for
the mean absolute value. It measures the mean absolute difference between forecasts and
observations. Since errors are penalized proportionally it is suited for applications where
the cost of bad predictions is proportional to the error.

The Mean Square Error (MSE) penalizes outliers stronger by averaging the squared
error between observations and forecasts. The mean of probabilistic forecasts should be
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considered for mean squared error.

MSEk = 1
T

T∑
t=1

(ŷt+k − yt+k)2 (II.27)

The Root Mean Squared Error (RMSE) is a widely used metric and is simply the
square root of the MSE. It has the same unit as the observations space which makes it
more explainable than the MSE.

RMSEk =

√√√√ 1
T

T∑
t=1

(ŷt+k − yt+k)2 (II.28)

The Quantile Score is analogous to the mean absolute error, but it weights differently
positive and negative error.

QSk(p) = 1
T

T∑
t=1

(ŷt+k − yt+k)(1(ŷt+k > yt+k)− p) (II.29)

It is optimized when ŷt+k is the p-th quantile of the distribution and is useful for training
quantile forecasting models.

II.3.2 Probabilistic forecast evaluation metrics

Probabilistic forecasts can be issued as quantiles or intervals, ensemble, or full distri-
butions. We denote f̂t+k the predicted probability density function at time t for lead time
k, and F̂t+k the associated cumulative density function. We give the literal expressions
of the different metrics as function of the predicted distribution for parametric outputs,
and as function of samples of the predicted distribution for non-parametric and ensemble
predictions.

According to Gneiting et al. [46], a good probabilistic forecast should «maximize sharp-
ness subject to calibration ». The forecast sharpness refers to the concentration of the
predicted distribution around the mean value, and the calibration is the statistical consis-
tency between the forecast and the observations. For a calibrated forecast the distribution
of the forecast errors is on average equal to the predicted distribution. In other words,
in the long run 10% of the observations should fall on the first decile of the predicted
distributions and so on.
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Figure II.15 – The CRPS is the integral of the squared area between the predicted cu-
mulative density function (blue) and a step function at the observation (red). A sharp
distribution centred on the observation will have the lowest CPRS.

II.3.2.1 Evaluation metrics for continuous variables

The evaluation of probabilistic forecasts requires the evaluation of both the sharpness
and the calibration of the forecast. A common way of evaluating the quality of a prob-
abilistic forecast is to use single-value scores that should be strictly proper scoring rules
[49].

Univariate forecasts

For univariate forecasts, the most common evaluation metric is the Continuous Rank
Probabilistic Score (CRPS). It evaluates the quality of the cumulative density function
by integrating the squared difference between the cumulative density function and a step
function at the observed value as illustrated in Figure II.15.

CRPSk = 1
T

T∑
t=1

∫ +∞

−∞

[
F̂t+k(y)− 1(y ≤ yt+k)

]2
dy (II.30)

As shown in [49], the CRPS can be expressed as function of the expected values of
Ŷk and Ŷ ′

k , two independent univariate random variables of cumulative density function
F̂t+k, which can be used for ensemble forecasts and forecasts which cumulative density
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function cannot be analytically integrated.

CRPSk = 1
T

T∑
t=1

[1
2E|Ŷt+k − Ŷ ′

t+k| − E|Ŷt+k − yt+k|
]

(II.31)

The CRPS can be decomposed into reliability (REL), resolution (RES) and uncer-
tainty (UNC) [156]. The reliability of a forecast is equivalent to its calibration. Usually,
probabilistic forecasts are evaluated given a single observation point, making the evalu-
ation of the reliability difficult. The resolution of a forecast is the capacity of the model
to discriminate between different situations. A forecast model that issues the same mean
forecast every day has a low resolution. The uncertainty defines the remaining uncertainty
of the underlying process and is independent from the forecast model. The decomposition
reads

CRPS = REL−RES + UNC (II.32)

The ignorance score (IS) also called logarithmic score is analogous to the likelihood
defines in Section II.1. The logarithm function makes it a more discriminatory score than
the CRPS, but can induce instabilities and strong influence of outliers.

IS = 1
T

T∑
t=1

log(f̂t+k(yt+k)) (II.33)

The IS can only be computed for continuous distribution forecasts since the probability
density function cannot be easily computed from quantiles or samples. The IS can nat-
urally be computed for multivariate forecasts when the probability density function is
analytically tractable.

Multivariate forecasts

In a multivariate setup, assuming that all predicted variables are normalized or have
the same scale and units, univariate scores can be used. The CRPS can be generalized for
multivariate forecasts as the Energy Score (ES) [49]

ESk = 1
T

T∑
t=1

∫ +∞

−∞

[
F̂t+k(y)− 1(y ≤ yt+k)

]2
dy (II.34)
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And it can seemingly be computed from samples using the Euclidean norm || · ||

ESk = 1
T

T∑
t=1

[1
2E||Ŷ t+k − Ŷ

′
t+k|| − E||Ŷ t+k − yt+k||

]
(II.35)

As shown in [58], the ES is mostly sensible to 1st moment errors, and is not very
discriminant for correlation structures between variables. The Variogram Score (VS) pro-
posed by [157] is used to score the correlation structure of the predictive distribution, but
is invariant to first moment errors :

V Sk(p) = 1
T

T∑
t=1

 N∑
i=1

N∑
j=1

wij(|yt+k,i − yt+k,j|p − E|Ŷt+k,i − Ŷt+k,j|p)2

 (II.36)

where yt+k,i, i = 1 . . . N are the components of the multivariate observation yt+k at lead
time k, and Ŷt+k,i, i = 1 . . . N are the components of a random vecotr Ŷ t+k distributed
on the predicted multivariate distribution F̂t+k(yt+k). wij are positive weights that can
be assigned if desired and p is the order of the variogram, shown to be optimal at p = 0.5.
In all that follows, the V S(p = 0.5) is considered and noted V S.

In Chapter V, the ES and VS are computed in the scenarios space of dimension
(N ×K). The above equations can still be applied by replacing the random variable Ŷ t+k

in the variable space by the random variable Ŷ t:t+K in the scenarios space.

Evaluate the statistical consistency of forecasts

The evaluation of the forecasts calibration is classically made by graphically analysing
the verification rank histogram or the Probability Integral Transform (PIT) of the fore-
cast. The verification rank histogram is the histogram of the ranks of the observations
in an ensemble forecasting, and is also called the Talagrand diagram. The closely related
reliability diagram is a plot of PIT of the forecast i.e. the observed frequencies as function
of the predicted frequencies. Both graphs are show in Figure II.16. A perfect rank his-
togram should be flat, meaning than 10% of the observations fall in the 10% quantile and
so on. Seemingly, a perfect reliability diagram is a [1 : 1] line showing a perfect prediction
of the observed frequencies. A U-shaped rank histogram shows an under-dispersive model
since too many observations fall in the extreme quantiles of the distribution. In this case
the model underestimates the uncertainty. On the contrary a bump-shaped histograms is
obtained for over-dispersive modes.
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Figure II.16 – (a) an example of an under-dispersive rank histogram from the AROME
ensemble forecast. A perfectly reliable forecast is shown as a dotted line. (b) the same
information presented as a reliability diagram showing the PIT of the forecast.

It is possible to derive a scoring rule from the rank histogram called the reliability
index or discrepancy index [48]

REL = 1
Q

Q∑
j=1
|b̂j −

1
Q
| (II.37)

where b̂j is the observed frequency of rank j.

A multivariate generalization of the verification rank histogram is proposed in [48]. To
compute the rank, we note

x ⪯ y if and only if xj ≤ yj, j = 1 . . . N. (II.38)

Given ŷt+k,l ∈ R
N , l = 1 . . . L L samples of the random variable Ŷ t+k following the

predicted distribution F̂t+k, we define the pre-rank ρt+k,l of the sample ŷt+k,l as the number
of samples ŷt+k,m such that ŷt+k,m ⪯ ŷt+k,l

ρt+k,l =
L∑

m=1
1(ŷt+k,m ⪯ ŷt+k,l) (II.39)

The multivariate rank of the sample ŷt+k,l is then drawn randomly between s< + 1 and
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s= + s< defined as

s< =
L∑

m=1
1(ρt+k,m < ρt+k,l) and s= =

L∑
m=1

1(ρt+k,m = ρt+k,l). (II.40)

In this way, it is possible to represent the calibration of multivariate probabilistic forecasts
as a rank histogram.

II.3.2.2 Event-based performance metrics

When forecasting binary events such as the existence of a weather window for offshore
operations, the observation bt+k is an integer value ct+k ∈ {0, 1}, where bt+k = 1 if the
event occurs, and bt+k = 0 if not. The forecast b̂t+k can be an integer b̂t+k ∈ {0, 1} or a
real value b̂t+k ∈ [0, 1] and then correspond to the probability for the event to occur.

The Brier Score (BS) is equivalent to the mean square error and is a common single-
value score for evaluating binary forecasts

BSk = 1
T

T∑
t=1

(b̂t+k − bt+k)2. (II.41)

The forecast results can be summarized by counting the true positives (TP) when
the event was predicted and occurred; the true negatives (TN) when the event was not
predicted and did not occur; the false positives (FP) when the event was predicted but did
not occur; and the false negatives (FN) when the event was not predicted but occurred.
The counting of these four categories yields a contingency table (Figure II.17 (a)) from
which single-value scores can be defined. The True Positive Rate (TPR) is equal to the
proportion of predicted positive outcomes among the positive outcomes

TPR = TP

TP + FN
. (II.42)

Seemingly, the False Positive Rate (FPR) is the proportion of predicted positive out-
comes among the negative outcomes

FPR = FP

FP + TN
. (II.43)

The Receiver Operation Characteristic (ROC) is the plotting of TPR as function of
FPR for different probabilistic thresholds. The area under the ROC curve is called the
AUC score, and is equal to 1 for a perfectly discriminant forecast with a step ROC curve.
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Figure II.17 – (a) shows a graphical visualisation of the confusion matrix, gathering the
informations about TN, FN, TP and FP for the forecast of the binary event, here a 3 hours
weather window with 100m wind speed < 12 m/s from the AROME ensemble forecast
of January 2023 at the Planier island. The AROME ensemble forecast has 16 ensemble
members, form which the ROC curve is computed and plotted in (b). The hatched area
is the AUC score. A perfect forecast will have a step ROC curve and an AUC of 1.

A random forecast of 0 and 1 would yield to a diagonal ROC curve. An example is given
in Figure II.17 (b).

II.3.3 Value of forecast models for offshore operations

In addition to the metric described above, the application-specific value of the forecast
should betaken into account. [50] advocate for a metric selection as function of the appli-
cation to correctly reflect the forecast value in its optimization and training. [51] showed
that the forecast value can differ from the forecast quality for specific applications, here
a wind power market participation. While for cost/loss situations, an optimal model can
be obtained by training on a specific quantile [158], for some complex applications, no
proper scoring rules can be applied to faithfully reflect forecast value.

For wind power applications, the value of probabilistic forecasts of wind power for
market participation has been an active research field in the last decades [44, 159, 160],
including the human decision-making based on probabilistic forecasts and their different
illustrations [161].

For offshore operations, recent research papers explored the different factors impacting
the cost of offshore operations in link with metocean forecasts and decision-making. [162]
compare probabilistic forecast models of wind and wave conditions using the mean wind
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farm availability, the total energy produced and the total revenue including power losses,
spare parts costs and vessels logistics costs using a full O&M model. Seemingly, [163] de-
veloped a mixed integer linear problem for considering crew dispatch, energy production
and accessibility. Such complex O&M models are difficult to implement operationally and
lack explainability. [99] take the example of a specific operations to compute the mean op-
erability after weather window estimation to evaluate their Markov-witching model wind
speed and wave height. [5] proposed a response-based alpha factor for weather window
estimation, and evaluated scenarios by computing the wind farm accessibility. All these
metrics are interesting for comparing models together, but they can’t be derived ana-
lytically for operational decision-making. [6] proposed and Economic Forecasting Metric
(EFM) based on the cost of predicted a weather window when the conditions are not
workable (Cost of False Below CF B) and the cost of missing a weather window (Cost of
False Above CF A). From this the EFM can be computed as

EFM = CF A + CF B (II.44)

where CF A reflects the opportunity cost associated with production loss when missing a
weather window, and CF B the chartering cost of dispatching a vessel. When considering
the problem this way, it becomes a cost-loss decision-making problem, shown to be optimal
in [7] for a probabilistic threshold of weather window existence

p = CF B

CF A + CF B

(II.45)

that is then dependent on the weather window duration, operability limits, vessel char-
tering cost and wind power production. These papers pave the way for optimal decision-
making under uncertainty, provided that the metocean forecasts are properly reliable.
However, as noted recently in [164], the race towards optimal decision-making for offshore
operations can cause an increase in the number of operations carried out in marginal
conditions, and hence an increased risk on material and staff. In Chapter V, we propose a
theoretical framework to penalize risk in the decision-making process under uncertainty.
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II.4 Literature review on data-driven forecast mod-
els for wind energy applications

In this section we give an overview of data-driven models for metocean forecasting,
with a focus on wind energy applications. We distinguish statistical methods, machine
learning methods and deep learning based methods.

II.4.1 Statistical methods

A fundamental class of models are the autoregressive moving average (ARMA) models
and their variants introduced in [165]. They are widely explored for wind speed and wind
energy forecasting, and often serve as a statistical baseline [166, 167], often for ultra-
short-term forecasting (< 12h), for which the time series dynamic is the main source of
variability. An ARMA model of orders (p, q) is composed of an auto-regressive model of
order p and a moving average of order q

ŷt =
p∑

i=1
ϕiŷt−i +

q∑
i=1

θiϵt−i + ϵt (II.46)

with ϵt, ϵt−1, . . . independent identically distributed random variables, and ϕ1, . . . , ϕt ; θ1, . . . , θt

the parameters of the model. The ARMA models and its variants are stat-of-the-art
benchmarking models for time series modelling. Evolutions of the ARMA model with
generalized autoregressive conditional heteroscedasticity (GARCH) can also be used to
model the autocorrelation of the covariance matrix for probabilistic forecasting [7, 110].
Despite their simple implementation, they have limitations in the non-linearities they can
approximate.

Markov chains are another group of statistical methods that can be used for time
series forecasting. They use a transition matrix to model the probability for the system
to move from a certain state to the next, hence discretizing the system’s state. They have
been used for wind speed forecasting and remain a competitive baseline in recent research
papers [33, 99, 162, 168].

Furthermore, statistical methods are widely used for the data pre-processing in fore-
cast models [169], for data decomposition, dimension reduction or data correction. Wavelet
transform is used to decompose non-stationary signals into a sum of orthogonal wavelet
functions. It is widely used as a pre-processing step for wind speed time series which
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are not stationary [170–173], and wave time series [174, 175]. Another method for non-
stationary data decomposition is the empirical mode decomposition (EMD) developed by
[176], that uses a finite number of intrinsic mode functions applied in the time domain
to decompose the signal. The modes are creating by iteratively linking up the time series
extrema with cubic interpolation, hence creating a series of nearly orthogonal functions.
This method is widely applied in data pre-processing for wind speed time series to extract
wind dynamics at different temporal scales [177–179]. Dimension reduction methods are
useful for high dimensional problems such as weather forecasting. In particular, the sta-
tistical methods presented in this section have limitations for large dimensional problems.
Feature selection is a common practice to estimate the input variables carrying the most
information. Features can otherwise be selected based on their correlation with the output
or using cross-validation. Feature selection strategies look for variables carrying the most
information, while feature extraction methods construct latent variables from the input
variables to carry the most information possible. One of the main methods for feature ex-
traction in high dimension dataset is the Principal Component Analysis (PCA), in which
the feature space is expressed as a sum of orthogonal vectors sorted by explained variance.
These vectors and associated weights are obtained through singular value decomposition.
It is a common tool to reduce data dimension for metocean forecasting [180, 181] and is
used throughout this study.

Eventually analogs forecasting, a simple yet efficient class of models for dynamical
systems forecasting has gained recent interest in the weather forecast community. Given a
certain initial state, one can look into a catalogue of past weather situations for analogs,
i.e. closest situations to the initial state given a certain distance metric. The evolution
of these analogs in time can then be considered as possible scenarios from this initial
state, and a probability distribution can be estimated [56, 57, 182–185]. Analogs can
be implemented without relying on the output of physics-based models and can then
be considered as end-to-end data-driven models. The analogs method is computationally
cheap and is natively probabilistic. However, it requires long-enough catalogues and relies
on the assumption that past weather situations are sufficient to accurately forecast a
phenomenon from its initial state. Analogs are implemented as statistical probabilistic
baseline in Chapter IV.
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II.4.2 Machine learning methods

ARMA approaches are linear and parametric which limits their regression capabilities
in most cases. Learning-based regression models have gained interest as a compromise
between simple time series model and deep learning methods. They rely on the training
of an algorithm to minimize a certain cost function based on training data.

Gradient boosting machines are regression models that use an ensemble of regression
trained with a boosting algorithm [186]. It is described thoroughly in Section IV.4.3, and
is a common statistical model for metocean forecasting. It is applied for the multivariate
forecasting of wave conditions in a deterministic framework in [31], and for probabilistic
forecasting in [4]. It is often combined with multi-quantile forecasting, as applied in [187]
for wind speed forecasting in the GEFCom2014 competition [188].

Many other regression frameworks are implemented throughout the literature such as
support vector machines [172, 189] in which hyperplanes are fitted to high dimensional
data to separate it with a max-margin criterion, or generalised additive models that use a
sum of smooth functions of the input to describe the output. In [4], they are applied with
a boosting algorithm and a maximum likelihood framework to predict the parameters of
a distribution for the probabilistic forecast of waves.

II.4.3 Advancement in deep learning forecasting models

Deep neural networks are a subset of machine learning algorithms that use several
layers of interconnected neurons. Deep-learning-based forecast models have been surging
in the recent years, due to the development and generalization of deep learning tools
such as open-source coding libraries (PyTorch [190], Tensorflow [191], etc.), the use of
Graphical Processing Unit for parallelization and the exploitation of large datasets. It
triggered a wide interest in the forecasting community. We give here a literature overview
on the applications of deep learning for metocean forecasting and offshore wind energy
applications, and a more theoretical background is given in Section II.1.

Deep learning models use deep neural networks optimized by back-propagation to
approximate highly non-linear functions. Provided that they have a sufficient number
of hidden neurons and non-linear activation functions, deep neural networks are shown
to be universal approximators [41]. Once trained, they are relatively fast to run, which
makes them an attractive alternative to physics-based models such as numerical weather
prediction. For all these reasons, they have been widely applied in metocean forecasting
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[68].

Deep learning methods can be used at different stages of a forecast model, as a pre-
processing, assimilation, prediction or post-processing step. Several types of architectures
can be used, depending on the nature of the problem, convolutional architectures for high
dimension data, recurrent architecture for time series, generative models, auto-encoders,
residual networks, etc. All these methods have in common that they are trained to ap-
proximate a non-linear relationship between an ensemble of heterogeneous data and a
specific end-user’s product. In the following paragraph, we provide references of recent
development on deep learning models applied to metocean forecasting and energy-related
applications, giving examples for different modelling stages and architectures. This lit-
erature review is not exhaustive and the interested reader is referred to [68, 192] for a
systematic overview of deep learning forecast models.

Metocean forecasting use a variety of data with spatio-temporal correlation at differ-
ent scales. Convolutional neural networks (CNN) are deep learning architecture that use
weight-sharing to deal with high dimension data with high correlation. They are widely
used to deal with the spatialized data from numerical weather prediction. In [193], a 3D
CNN is used to extract saptio-temporal features from numerical weather prediction for
wind farm production forecast, showing improvement compared to principal component
analysis and 2D-CNN. In [194], a specific architecture of CNN called U-Net is used to
post-process cloud cover forecasts from the ARPEGE model, outperforming operational
regression models using Random Forest at Météo France. The relevance of CNN for deal-
ing with spatialized data make them a regularly used tool in metocean forecasting [32,
130, 143, 195–198]. CNN can be adapted to deal with time series by using causal convo-
lution layers that ensure that only past information is used for forecasting. These models
are called temporal convolutional networks (TCN) and have recently been applied to
metocean forecasting [199–201].

More traditional approaches to time series are recurrent neural networks (RNN) which
have a memory hidden state that is updated at each time step to take into account the
temporal evolution. Long-Short-Term-Memory networks (LSTM) are variants of RNN
that are designed to improve the gradient computation and avoid issues of gradient van-
ishing or exploding in RNN. They feature a cell state that stores long-term information.
Recurrent architecture are common tools for metocean forecasting [171, 180, 202, 203]. [95]
use LSTM, bi-directional LSTM and Gated Recurrent Unit (GRU) for forecasting wind
speed and wave height at an offshore location for accessibility improvement for offshore
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wind farms, showing the capabilities of recurrent networks for extracting information from
input time series. [204] use the power of LSTM to forecast the probabilistic multivariate
renewable energy generation for the next 24h based on forecast weather conditions and
past observations. They show that LSTM can be used to capture both the temporal and
cross-variables correlations. Recurrent architecture can be combined with convolutional
layers to extract both the spatial and the temporal correlation [205]. The impact of wind
speed on wave height is complex and involve different saptio-temporal scales. [29] used a
combination of CNN and LSTM to learn the spatio-temporal dependencies between wind
speed and wave height to improve wave height forecasting at a specific location.

Attention based models have recently gained a lot of interest, in particular for large
language models with the development of the Transformer architecture. Attention mecha-
nism use dynamic weighting with past time steps, allowing the network to select relevant
past time steps [206]. [207] show that Transformers can bring interpretability to forecast
models by highlighting the temporal relationships used for making a prediction. [143] use a
combination of CNN for extraction spatial information, LSTM for temporal information,
and attention mechanism to improve the selection of relevant input features for hourly
probabilistic wind speed forecasting.

Generative methods have drawn attention due to their performances for images gen-
eration. They use deep neural networks to learn the distribution of the observations from
which samples can be generated stochastically. Such methods are useful for forecasting as
they can learn the underlying multivariate distribution of the system by directly maxi-
mizing the likelihood and be used for generating scenarios and probabilistic forecasts. The
main generative architectures to date are Generative Adversarial Networks (GAN), Varia-
tional Auto-Encoders (VAE), Normalizing Flows (NF) and diffusion models. GAN jointly
train a generator that is to generate samples from stochastic noise, and a discriminator
that should differentiate true samples to generated samples [208]. They have been success-
fully adapted for rainfall nowcasting in [118] or ensemble forecast emulation in [17], two
very high dimension problems. However, their adversarial construction makes them sen-
sitive to mode collapse during training, hence requiring careful hyper-parameters tuning.
VAE are deep latent models that jointly train an encoder and a decoder by minimizing the
variational lower bound of the posterior distribution [209]. [210] implemented a recurrent
VAE (VRAE) for probabilistic wind speed forecasting, with the ability of generating full
wind speed sequences. Diffusion models are latent variable models that learn an iterative
de-noising process starting from white noise. They have recently been applied to multivari-
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ate time series forecasting in [211] using a LSTM conditioner for the de-noising process,
showing great performance on state-of-the-art forecasting datasets. Finally, normalizing
flows are a class of methods that use a composition of invertible non-linear functions to
conditionally transform a tractable latent distribution into an arbitrarily complex distri-
bution [119]. They have the advantage of offering an exact computation of the likelihood
of the posterior compared to GAN and VAE. [44] compared VAE, GAN and normalizing
for a renewable energy load day-ahead forecasting from the Global Energy Forecasting
Competition 2014 open-source dataset. The authors showed that NF are more accurate
in forecast quality and value, while being easier to implement than VAE and GAN. A
thorough introduction of normalizing flows is given in Section II.1.4.

Recent advancement in end-to-end deep learning models for weather forecasting have
opened-up completely new paradigms, where numerical models are completely replaced by
deep learning models. For specific applications such as rainfall nowcasting, deep learning
has proved in [118] to increase forecast quality and value up to 90 minutes ahead against
state-of-the-art advection methods. The use of Graph Neural Networks recently brought
a significant breakthrough in the field of end-to-end weather forecasting. Training on a
reanalysis database to predict 227 variables per grid point on a 0.25° grid for 10 days,
the DeepMind’s 37 million coefficients GraphCast [11] significantly improves forecast skill
compared to operational forecast system, while requiring only 1min of single TPU time to
create a 10 days ahead prediction. Recent work at the European Centre for Medium-Range
Weather Forecast describe the first operational end-to-end deep learning based global
weather forecast [12]. Their computational cost is brought down significantly by a team at
the INRIA [10]. This is a strong incentive for continued research in deep learning models
for weather forecasting. [66] identify specificities of weather forecasting problems that
require dedicated machine learning developments: the coupling in large spatio-temporal
scales, the need for uncertainty quantification in a non-Gaussian environment, the auto-
correlation of time series and dynamic correlations in the system, the imbalance of data,
the importance of extreme events and the amount of noisy, imperfect data to assimilate.

A great amount of deep-learning-based forecast papers are dealing with specific datasets
and do not permit a fair comparison between methods [212]. In this context, it is difficult
to conclude which model is definitely the best, as to some extent several architectures
can yield the same range of performances given sufficient tuning effort. That’s why the
existence of competitions and open-source datasets is also paramount for supporting the
development of deep learning architecture for weather forecasting. Weather datasets such
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as WeatherBench [213] developed by Google DeepMind or MétéoNet [19] proposed by
Météo France are representatives of the complexity of weather data. For energy forecast-
ing applications, competitions such as the Global Energy Forecasting Competition [188]
are great steps in the development of forecast models for specific applications. However,
compared to other machine learning communities, the availability of benchmark datasets,
established comparison metrics and thorough specifications is still largely insufficient.
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Chapter III

DESIGN OF OPTIMAL OBSERVATION

NETWORKS OF OFFSHORE WIND SPEED:
A DATA-DRIVEN SPARSE SAMPLING

APPROACH

Introducing the article

Offshore wind project need metocean time series for design, construction and opera-
tions. Wind speed measurements in particular are crucial for power production estimate,
wind turbine layout optimisation, system design, wind turbine control and accessibil-
ity forecasting for maintenance operations. In link with the development of data-driven
methods, long-term in-situ time series should be gathered. Weather patterns have an im-
portant daily, seasonal and multi-annual variability so several years of data are required
to train and evaluate the models. This should anticipated by the installation of long-term
measurement facilities.

At the regional level, the development of offshore wind energy requires the deployment
of large scale observation networks. In France, the wind energy roadmap paves the way
for the installation of 40 GW of offshore wind energy projects across its maritime facades.
Strategical facade documents are issued at the national level to schedule the installation
of successive wind farms. To support the choice of development areas, and to provide long-
term time series to call for tender participants, regional-scale wind speed measurement
networks should be deployed. Offshore in-situ measurements being scarce and expensive,
the optimization of the observation network should be considered. In this chapter, we
investigate the following questions:

* Given a geographical area, how many sensors are required to reconstruct the wind
field?
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* Where to place those sensors to optimally reconstruct the wind speed?
We propose a data-driven approach based on the training of a Gaussian mixture model

on numerical weather prediction data. We define an evaluation framework for this sparse
sampling problem that is adapted to the offshore wind speed reconstruction application.
By using unsupervised clustering on model data, we can find salient points on the model
grid, and we show that the obtained reconstruction error is lower than when using state-of-
the-art semi-empirical methods. The optimal number of sensors to be deployed is discussed
in terms of statistical and empirical criteria. Eventually, we propose optimal sampling
strategies for three of the main offshore wind development areas in France.

This work has been used by the French weather institute Météo France to provide
guidelines to the general direction of energy and climate (DGEC) for their measurement
campaigns. It is published as such in Wind Energy Science as Robin Marcille, Maxime
Thiébaut, Pierre Tandéo, Jean-François Filipot, Gaussian mixture models for the optimal
sparse sampling of offshore wind resource, 2022

III.1 Introduction

Offshore wind energy is key in the decarbonation of the global energy production and
the reaching of net-zero targets as developed in [214]. With 11 million km2 of territorial
waters under French jurisdiction and 20,000 km of coastline, France has an extensive and
windy seafront. It benefits from the second largest offshore wind potential in Europe,
after the United Kingdom with up to 80 GW of foundation-based offshore wind and 140
GW of floating offshore wind that could be exploited according to [63]. Offshore wind
can then be a leading sector for the development of renewable energies in France. The
French roadmap currently plans 1 GW of tender per year from 2024 onwards for fixed
and floating wind farms. This was confirmed and reinforced in early 2022, with 40 GW
of installed capacity envisioned by 2050.

During the development phase of a wind project, the wind resource assessment is a
key step to determine its financial feasibility. It can be carried out with numerical weather
prediction (NWP) hindcast data such as WRF (Weather Research and Forecasting model)
data. However, field observations are necessary to estimate the uncertainties of the models
and to assess higher resolution wind dynamics [215].

LiDARs, standing for Light Detection And Ranging, are remote sensing devices that
measure wind speed using lasers. Floating LiDARs are certified devices for offshore wind
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resource assessment, they are LiDAR units integrated onto a standalone floating structure.
These wind sensors offer the potential for reduced costs compared to meteorological masts
[216], however, they can be expensive to install and require regular maintenance. Their
number and siting thus need to be optimized in order to compose an optimal network
of sensors in an offshore wind development area. Such networks are expected to capture
most of the dominant wind dynamics from a minimum number of sensors.

Numerous efforts have been undertaken in different scientific fields to optimize sparse
sensor siting, a combinatorial problem not solvable by standard approaches such as con-
vex optimization. Sparse sampling is about selecting salient points in a highly dimensional
system. It then requires a dimension reduction of the data, such as the use of Empirical
Orthogonal functions (EOF). EOF analysis projects the original data onto an orthogonal
basis derived by computing the eigenvectors of a spatially weighted anomaly covariance
matrix. Therefore, EOF of a space-time physical process can represent mutually orthog-
onal space patterns where the data variance is concentrated, with the first pattern being
responsible for the largest part of the variance, the second for the largest part of the
remaining variance, and so on. EOF are then very useful for the data reduction of any
complex data set such as climate data. By projecting the original data onto a limited
subset of relevant orthogonal vectors, it reduces the dimensionality of the system and
helps explain the variance of the data. In the past few decades, EOF analyses were used
to study spatio-temporal patterns of climate variability, such as the North Atlantic oscil-
lation, the Antarctic Oscillation or the variability of the Atlantic thermohaline circulation
(e.g., [217–220]).

EOF are often at the origin of methods employed to determine the optimal sensors’ lo-
cations for signal reconstruction. In the field of geoscience, [52] employed simulation results
from different regional ocean models to define an efficient sensor placement. The authors
used the EOF technique to determine the spatial modes of different simulated ocean dy-
namics systems. The extrema of the EOF spatial modes were found to be good locations
for sensors’ placement and accurate field reconstruction. [221] added to the Empirical Or-
thogonal Functions’ extrema (EOF extrema) method a constraint on the cross products
of EOF to select the sensors’ locations, and applied it to Pacific sea surface temperature
reconstruction. Using the same kind of constrained EOF analysis, [222] proposed a data-
driven framework based on a Proper Orthogonal Decomposition (POD) to determine the
optimal locations for power system oscillation monitoring and state reconstruction. In
this study they selected iteratively the locations with highest POD amplitude and lowest
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cross coupling between the modes. In [223], the EOF extrema are used for ocean dynamics
reconstruction, introducing an exclusion volume to avoid redundancy, account for gappy
data and for uncertainty.

[53] proposed a data-driven method based on a QR pivoting greedy algorithm on a
reduced basis to determine optimal sensors’ placements for face recognition, global sea
surface temperature and flow reconstruction around a cylinder. The QR pivoting method
decomposes a matrix into an orthogonal matrix and an upper triangular matrix using
columns pivot. By iteratively selecting the column with the highest two-norm as pivot,
this algorithm for QR factorization is suited for the selection of salient points. In [224],
the QR-pivot decomposition is modified to include cost constraints and is applied on the
three same data sets. The QR greedy algorithm described in these studies is a often used
in recent studies due to its easy implementation.

Recent studies proposed innovative methods to improve the capabilities of sparse sam-
pling. To improve the performance of the reconstruction, [225] proposed a method for grid
augmentation to allow for continuous sensor placement, off-grid sensor selection and con-
vex optimization problem formulation. In [226], the authors took inspiration from insects’
neural activation during flights to derive a sparse sampling method in complex flows to
create an encoder for flight mode classification including both the spatial and temporal
dependencies of the data. In [227], the use of Voronoi tessellation, a method to optimally
partition the space into n cells given n input points using a distance measure d, helps
creating a viable input for super-resolution from sparse sensors using a Convolutional
Neural Network (CNN). This reconstruction technique is then tested on sea surface tem-
perature reconstruction globally, showing the possibility to use sparse sampling on very
high dimension problems.

The optimal sensors’ placement problem has also been investigated for wind energy
measurements applications. [228] uses the QR greedy algorithm described in [53] to de-
termine the optimal locations of sensors to improve the overall estimation precision of the
flow field within a wind farm. In this study, the number of sensors is directly computed
using a user-defined threshold with regards to reconstruction error. A similar strategy is
implemented in this article as presented below. The obtained results show good perfor-
mance compared to randomly selected grid points, with an improvement of 8% in flow field
reconstruction, and shows the interest in applying sparse sampling methods to the wind
energy sector. At even finer scales, [229] uses low-dimensional classifiers applied to the
Proper Orthogonal Decomposition of a LES wake simulation to obtain sensors’ locations
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for the reconstruction of wind turbine wakes. Using the method of sparse sensor placement
optimization for classification described in [54], it shows the interest of sparse sampling
for the control of wind turbines, using a Deep Learning algorithm to predict the wake
fluctuations from sensors’ measurements. Results show that most sensors are placed in
the transition region, and the reconstruction yields to more than 92% correlation between
predicted and real values.

However, to the best of our knowledge, such methods were never applied at the regional
scale for wind energy resource assessment. In our opinion this is due to site selection
procedures at the political level that do not necessarily rely on wind resource assessment
at the regional level, and to smaller required spatial scales at the wind farm developer
level, where only one or two sensors are deployed at the extremities of the area, assuming
spatial representativity. The application of sparse sampling methodologies to offshore
wind reconstruction is an addition of this work. Using NWP spatial wind data as input,
the study proposes an unsupervised clustering framework for the identification of salient
points in the spatial grid, similar to what can be obtain through EOF extrema analysis
in [52] or QR pivoting in [53]. In the application-driven experimental set-up of this study,
the two state-of-the-art methods fail to capture wind dynamics at the regional level.
Unsupervised clustering automatically discriminates points that are too similar, making
it a good candidate for sparse sampling in this case, while keeping the whole method
simple and easily implementable.

The objective of the present study is twofold. For conducting offshore wind resource
assessment of any targeted area:

1. What is the optimal number of offshore wind sensors to be deployed to best char-
acterize the wind resource?

2. What is the optimal location of each wind sensor?

The optimal number of sensors refers to a trade-off between wind field reconstruction
accuracy, and overall cost and computational cost. The optimal locations given a certain
number of sensors is the configuration giving the lowest reconstruction error. The two
aspects are presented in this work, though realistic cost considerations are not covered.

To do so, this paper presents a data-driven method based on NWP data unsupervised
clustering to estimate optimal sensors’ locations for offshore wind field reconstruction us-
ing a Gaussian Mixture Model. It is compared to state-of-the-art methods used in the
above literature (EOF extrema, QR pivoting, randomly selected sensors). The method
is then implemented on three areas identified for offshore wind energy development in
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France. An optimal wind sensors network is proposed for each area, to help for the devel-
opment of offshore wind energy in France.

III.2 Study data set

III.2.1 Study areas

The three areas investigated in this study are located off the coast Normandy, off the
coast of Southern Brittany and in the Mediterranean sea, three major development areas
for offshore wind in France with numerous planned offshore projects, listed in Table III.1,
with future tender processes for respectively 1.5GW of fixed offshore wind, 250MW of
floating offshore wind and 2 x 250MW of floating (expected date of commissioning in
2030).

With water depth not exceeding 50 m (Figure III.1), the area located off the coast of
Normandy area is particularly suitable for the deployment of fixed offshore wind farms.
Current projects will be installed off the coast of Fécamp, Courseulles-sur-Mer and Dieppe
- Le Tréport (Figure III.1). The total capacity of each wind farms will be 450-500 MW
with a starting date of commissioning expected in 2023-24 (Table III.1). In addition, the
French Government has recently announced a new project of a wind farm located 32 km
off the coast of Normandy (Figure III.1). This future wind farm will generate 1 GW. The
starting date of commissioning is expected by 2028.

The area off the coast of Brittany is endowed with water depth up to 100 m which
make it a very favourable area for the development of floating wind farms. The French
Government aims at developing 250MW of floating wind energy in the area (Figure III.1).

Because of its very favorable and regular wind regimes and deep bathymetry, the
Mediterranean Sea has significant wind potential for floating wind energy. This led to the
development of three pilot floating wind farm projects (Leucate, Gruissan and Provence
Grand Large) in the gulf of Lion. These projects will rely on 3 full scale 8-10 MW floating
turbines, whose generated power will be injected in the French power grid by 2022-2023
(Table III.1). In addition, two commercial wind farms with power capacity over 250 MW
each will be in operation by 2029.
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Figure III.1 – Overview of the French coasts with the bathymetry. The color shading
shows the water depth until 150 m. Areas with water depth exceeding 150 m are shown
in white. Black contours are used to identified depth of 1000m, 2500 m and 4500 m.
The three study areas are shown by black rectangles. Each area is presented on different
panels where the locations of the future foundation-based and floating wind farms are
shown with their different stages of development. On the main panel, the dashed black
lines delimit the areas covered by the MeteoNet data set.

III.2.2 The MeteoNet data set

MeteoNet is a meteorological data set developed and made available by Meteo-France
[19], the French national meteorological service. The data set contains full time series of
satellite and radar images, NWP models and ground observations. The data covers two ge-
ographic areas of 550km x 550km on the Mediterranean and Brittany coasts (Figure III.1),
and spans from 2016 to 2018. Hourly 10-meter wind output of the high resolution NWP
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Table III.1 – Characteristics of the foundation-based (Normandy) and floating (Southern
Brittany, Mediterranean sea) future wind farms planned for the next decade on the study
areas [230].

Areas Wind Farm Index in
Fig-

ure III.1

Capacity
(MW)

Number of
wind

turbines

Expected
date of com-
missioning

Normandy

Dieppe- Le Tréport 1 496 62 2026
Fécamp 2 497 71 2023

Courseulles-sur-mer 3 448 64 2025
AO4 call for tender 4 1 000 N/A 2030

Southern
Brittany

AO5 call for tender 5 250 N/A 2025-2030

Med. sea

Faraman - Port-Saint-
Louis-du-Rhône

6 24 3 2023

Gruissan 7 30 3 2024
Leucate - Le Barcarès 8 30 3 2024
AO6 call for tender 9 and 10 2 x 250 N/A 2028-2029

model AROME are available. AROME is operational at Meteo-France since December
2008 [231]. It was designed to improve short range forecasts of severe events such as in-
tense Mediterranean precipitations, severe storms, fog or urban heat during heat waves.
The physical parametrisations of the model come mostly from the Méso-NH research
model whereas the dynamic core comes from the Non-Hydrostratic model ALADIN [232].
The resolution of the AROME grid is 1.3 km. The model is initialized from data assimi-
lation derived from the ARPEGE-IFS variational assimilation system [233] and adapted
to the AROME finer resolution.

For each area of interest, the 10-meter zonal (u) and meridional (v) wind speed are
extracted from AROME. The open-source MeteoNet data set only contains surface pa-
rameters of temperature, humidity, pressure and precipitation, and 10-meters wind speed
(u10, v10), which are considered in this study. The assumption is then made that relevant
measurement points at 10 meters are equally relevant for hub height estimation, though
this assumption should be tested with a suitable data set. Since the focus is on offshore
wind, grid points at land were excluded from the analysis. The characteristics of each area
are then the following:

— Normandy: 4272 grid points (∼ 7 000 km2).
— Southern Brittany: 1837 grid points (∼ 3 000 km2).
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— Mediterranean sea: 3571 grid points (∼ 5 800 km2).
A total of 65 days (∼ 6%) of the 3-year data set are unusable due to largely missing

data. The missing data days are similar for each area and were removed from the analysis.

III.3 Preliminaries

III.3.1 Problem statement

The problem tackled in the presented work is to find D measurement points out of
K NWP grid points to minimize the reconstruction error of the offshore wind field. A
formalism for this sparse sampling problem is proposed in this section.

In all that follows, the full state matrix X refers to the concatenation of zonal and
meridional wind speeds on the K grid points of the model for all time steps. The list of
sensors’ locations γ, which is the output of the methods described in this paper, contains
the locations of the D sensors to sample the offshore wind field. The associated sparse
measurement matrix Y γ corresponds to the measured zonal and meridional wind speed
at the γ locations for every time step.

The formalism developed in this section is applied to the MeteoNet data set presented
in Section III.2.2. The data set is split into a training and testing period. The training
is performed on two thirds of the data set, composed of years 2016 and 2017, while the
methods are scored on year 2018. By taking an integer number of year, the seasonality
bias of weather data is limited.

III.3.2 Reduced order model

The reduced order model used to decrease the dimension of the input data is the
Empirical Orthogonal Function analysis (EOF). Also known as Principal Component
Analysis (PCA), it decomposes the data set onto an orthogonal basis. Practically, it is
linked to the singular value decomposition of a matrix X such that:

X = UΣV T (III.1)

With Σ a diagonal matrix of positive σk singular values, U a matrix whose columns are
the vectors of the orthogonal basis, and V the weights of the associated vectors.

The singular vectors are orthogonal vectors on which the variance of the projected
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data is maximized. The diagonal elements of Σ are sorted per value, and are equal to
the percentage of variance of the data set explained by each principal components. The
variance explained by the first r EOF is then:

∑r
i=1 σ

2
i∑K

i σ2
i

(III.2)

The number of EOF to use in the reduced order model can be set so that the variance
explained by the reduced basis is above a certain threshold.

For the study dataset, EOF of zonal and meridional wind speed are computed. In the
NWP model, the grid points are strongly correlated spatially, hence, only a low number of
EOF is needed to describe the vast majority of the data set variance. The number of EOF
was set to 10, both for the zonal and meridional components of wind so that the reduced
basis explains more than 95% of the total variance for the 3 areas. The Φr reduced basis
is then the concatenation of the Φr/2

u and Φr/2
v EOF for zonal and meridional wind speed,

with r = 20.

III.3.3 Sparse sampling formalism

III.3.4 State description

Let us consider a system described by its time-varying state X(t) that evolves accord-
ing to unknown non-linear dynamics. It can be described on an orthogonal basis {ϕi} (e.g.
the EOF) as:

X(t) =
K∑

i=1
ai(t)ϕi (III.3)

To reduce the complexity of the model, the state of the system can be approximated using
the first r modes:

X(t) ≈
r∑

i=1
ai(t)ϕi = Xr(t) = Φra(t) (III.4)

Where Φr is the reduced basis matrix containing the first r modes, and ai(t) are the time
varying coefficients of the system’s state on the reduced basis.

The given system is then sampled according to a set of index γ = [γ1, ..γD] ∈ [1, K]D,
γi ̸= γj which represents the sensors’ locations. From this, a sampling matrix is constructed
Cγ ∈ RD×K that extracts the D measured locations out of the K grid points of the full
state. The sampling matrix is composed of lines of zero with ones at the sensors’ locations.
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With the canonical basis vectors eγj
= (δγj ,k) ∈ RK , the sampling matrix is:

Cγ =
[

eγ1 eγ2 · · · eγD

]T
(III.5)

The sparse measurement matrix Y γ is then obtained by multiplying the full state X by
the sampling matrix Cγ :

Y γ(t) = CγX(t) (III.6)

III.3.5 Full state reconstruction from sparse measurements

From the sparse measurement matrix, the full state is reconstructed using the coef-
ficients of the reduced basis. A linear model is constructed to link the matrix of EOF
coefficients, a, to the sparse measurement matrix Y γ :

a = βY γ + ϵ (III.7)

With ϵ an additive Gaussian error.

The model fitting is performed on the training split of the data set. Let Y train be the
sparse measurement matrix on the training split, and atrain the true coefficients of the
full state on the reduced basis for the training split. Using the Ordinary Least Squares
formula, the β matrix can be estimated as:

β̂ = (Y T
γ,trainY γ,train)−1Y T

γ,trainatrain (III.8)

On the test data set, only the wind speed measurements at the γ locations are avail-
able. The coefficients of the reduced basis are computed using the least squares matrix
estimated on the training data set:

âγ,recons = β̂Y γ,test (III.9)

And the full state is reconstructed using the reduced basis:

X̂γ,recons = Φrâγ,recons (III.10)
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III.3.6 Reconstruction error

The reconstruction X̂γ,recons is then compared to the reconstruction with perfect
knowledge on the reduced basis coefficients Xreal = Φrareal, assuming that the actual
coefficients of the reduced basis are perfectly known.

The reconstruction error associated with the sensors’ locations γ is then the root mean
squared error of the reconstructed state:

Eγ,recons = 1
T

T∑
t=1

√√√√ 1
K

K∑
k=1

(
X̂

k

γ,recons(t)−Xk
real(t)

)2
(III.11)

The optimisation problem that needs to be solved can then be stated as the minimization
of the reconstruction error over all locations’ combinations γ and number of sensors D:

arg min
γ,D

Eγ,recons (III.12)

III.4 Sparse sampling methods used in this study

In this section, the methods applied for the sparse sampling are described in detail. The
novel data-driven method based on Gaussian Mixture Model is presented together with
the three baselines emerging from the literature review. These are the random selection
of locations (Monte Carlo), the dominant spatial modes’ extrema (EOF extrema), and
the QR greedy algorithm (QR pivots). All the methods described in this section should
output a list of sensors’ locations γ given a number of sensors D.

III.4.1 Baseline methods

The selected baseline methods are emerging from the literature as simple yet efficient
methods for sparse sampling in different situations. They are implemented to compare
their performances with the Gaussian Mixture Model for this specific application.

III.4.2 Monte Carlo simulations

The first baseline consists in picking random sensors’ locations. For each area, and
for a number D of sensors ranging from 1 to 10, a hundred random combinations of
locations γ ∈ PD([1, K]) are considered. For each γ combination of sensors’ locations,
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the reconstruction error is computed. From this ensemble of simulations, statistics on the
reconstruction error are computed.

The median Monte-Carlo scenario for each area and number of sensors is then consid-
ered a benchmark for the study. It also gives information about the spread in reconstruc-
tion error resulting from all possible combinations.

III.4.3 Dominant spatial modes’ extrema

In [52], the extrema of the spatial dominant modes are found to be relevant locations
if not optimal for the reconstruction of the flow field. Those points can be seen as salient
points, that best characterize the spatial modes. It is then intuitive to select those to
reconstruct the full state from the reduced basis. How many extrema are chosen from each
variable and mode is studied specifically in [234], it is empirical and thus case specific.

In the case study of [234], the EOF decomposition gives modes that are highly spatially
correlated. Moreover, in this study, points nearby the coast are influenced by the orography
and show strong variability. Hence, sorting the points per coefficient and selecting the N
first ones will lead to the selection of neighboring points, and/or irrelevant coastal points
for our performance metric.

The extrema are then chosen manually, as performed in [52], from the visualization of
the first EOF for both zonal and meridional wind speed. For each parameter and EOF
rank, the extrema are selected, and discarded if redundant (manual process). Then, they
are sorted per absolute value and per EOF number for the two parameters.

The selected input points from EOF extrema for the Mediterranean Sea are shown
in Figure III.2. From the first to the fourth EOF for zonal and meridional wind, the
extrema are selected if they are not too redundant or close to the coast / border. This
unsatisfactory workflow is a way to ensure minimum relevance for the obtained sensors
array.

III.4.4 QR pivots

The QR decomposition of the reduced basis matrix Φr is the finding of two matrix Q

orthogonal and R triangular superior such as:

Φr = QR (III.13)
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Figure III.2 – Selected sensors for the EOF extrema baseline in the Mediterranean Sea.
The EOF coefficients are displayed as background, and the selected salient points, and
their associated ranks are displayed as red dots. The two columns are zonal (u) and
meridional (v) wind speed, and the rows correspond to the EOF rank.

The Q and R matrix are obtained using Gram-Schmidt process [235], which consists in
iteratively removing each column’s orthogonal projection onto a pivot column. The QR
algorithm can be performed using column pivoting, i.e., at each iteration, the matrix Φr

is multiplied by a permutation matrix P such that the column taken for pivoting has the
maximum two-norm. The decomposition is then:

ΦrP T = QR (III.14)

The permutation matrix P is constructed so that the diagonal elements of R are decreas-
ing. It is applied to the matrix of the reduced basis to identify pivot locations. It then
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contains the ranked index of sensors’ locations to build the sensors’ locations list:

γj = P jj ∀j ∈ [1, D] (III.15)

The QR pivots method is described in [53] as a simple yet efficient method for sparse
sensors’ placement. It is used to determine model data driven sensors networks to recon-
struct flow fields for the flow past a cylinder and the sea surface temperature retrieval,
two situations that are analogous to the case study. It is even tuned to include costs
constraints for the search of Pareto optimal sensors’ placement in [224]. For wind fields
estimation, it was applied to Computational Fluid Dynamics data in [228] to best recon-
struct the flow in a wind farm. All in all, it represents a simple yet competitive baseline
method for spare sensor placement.

III.4.5 Gaussian Mixture Model clustering

The proposed method in this study uses unsupervised clustering of the data to de-
fine sensors’ locations. Gaussian Mixture Models use machine learning to fit multivariate
normal distributions on the data.

III.4.6 Gaussian mixture

A Gaussian mixture model (GMM) is a probabilistic model for representing normally
distributed sub-populations within an overall population [236]. Each Gaussian distribution
represents a group of points, i.e., cluster. The model is a mixture, i.e., superposition, of
multivariate Gaussian components which define a probability distribution p(x) on the
data:

p(x) =
D∑

j=1
πjN (x|µj,Σj) (III.16)

πj being the mass of the Gaussian component j, with 0 ≤ πj ≤ 1 for all j = 1, ..., D and∑D
j=1 πj = 1. N (x|µ,Σ) being the Gaussian density distribution such that:

N (x|µ,Σ) = 1√
(2π)rdet(Σ)

exp
(
−1

2(x− µ)T Σ−1(x− µ)
)

(III.17)

with x being the r-dimensional input vector, µ the r-dimensional mean vector, and Σ
(r × r) the covariance matrix.
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III.4.7 Expectation — Maximization algorithm

The core of GMM lies within Expectation Maximization (EM) algorithm, developed
by [55]. It iteratively modifies the model’s parameters to maximize the log-likelihood of
the data.

The log-likelihood, log(L), of the observations is given by:

log(L(π,µ,Σ)) =
K∑

k=0
log

 D∑
j=1

πkN (xk|µj,Σj)
 (III.18)

Then the empirical means, µj, covariances, Σj and weights, πj of the different clus-
ters are computed. The weights (mixing coefficients) represent the mass of the different
clusters. The mass of the cluster is the proportion of data points assigned to this cluster.
For the first iteration, the mean and covariance matrices are initialized randomly, and the
weights matrix is equal for each cluster.

The second step of the algorithm is the expectation step, E-step. The model param-
eters are updated to increase the log likelihood of the data. For each data point, xk, the
probability that this point belongs to the cluster, c, is computed such that:

rkc = πcN (xk|µc,Σc)∑D
j=1 πjN (xk|µj,Σj)

(III.19)

The E-step computes those probabilities using the current estimates of the model’s
parameters. In this step, "responsibilities" of the Gaussian distributions are computed.
They are represented by the variables rkc. The responsibility measures how much the c-th
Gaussian distribution is responsible for generating the k-th data point using conditional
probability.

The third step is the maximization step, M-step. In this step, the algorithm uses
the responsibilities of the Gaussian distributions (computed in the E-step) to update
the estimates of the model’s parameters. πc, µc and Σc are updated using the following
equations:

πc =
∑K

k=1 rkc

K
(III.20)

µc =
∑K

k=1 rkcxk∑K
k=1 rkc

(III.21)

Σc =
∑K

k=1 rkc (xk − µc)
2∑K

k=1 rkc

(III.22)
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These updated estimates are used in the next E-step to compute new responsibilities
for the data points. This algorithm is applied iteratively until algorithm convergence,
when the log likelihood of the data is maximized. The strict monotony of the likelihood
in the E-M algorithm is demonstrated in [237].

III.4.8 Optimal number of clusters

GMM requires to impose as input the number of clusters in the model. The optimum
number of clusters can be defined through the calculation of the Bayesian Information
Criterion (BIC) score [238]:

BIC = −2ln(L) +Gln(K) (III.23)

with L, the maximized value of the likelihood function of the model, G the number of
parameters in the mean vectors and covariance matrices of the Gaussian components, and
K, the number of data points. The BIC score penalizes too complex models to avoid the
over-fitting of the data set. In this way, it limits the number of components of the GMM
with the G ln(K) term.

The lower is the BIC, the better is the model. However, the curve of the BIC score can
be monotone, and the identification of a minimum, i.e., the optimal number of clusters
can be difficult. An alternative is the calculation of the gradient of the BIC score. The
identification of the optimal number of clusters is hence done by the identification of
an elbow in the curve of the gradient of the BIC score. The elbow is often not directly
associated with one single specific number of clusters but rather encompassed two or three
possible solutions. Thus, one can say that the gradient of the BIC score gives an indication
on the range of optimal number of clusters. An extra step is required to determine the
optimal number of clusters. In this study, this step is done through the determination
of an error reconstruction threshold of the wind field. The number of clusters associated
with the minimum error is considered as optimal for the GMM.

III.4.9 Implementation for the study case

Figure III.3 shows the workflow in this study. A two-dimensional data set composed
of K = 3571 grid points with 20 EOF features is used to feed the GMM. The 20 features
are composed of the 10 first EOF of zonal and meridional velocities. The clustering is
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Figure III.3 – Schematic of the clustering procedure of wind data using Gaussian Mixture
Models. It is illustrated for the unsupervised clustering of the Mediterranean Sea wind
field.

then optimized spatially, so the entries (the grid points) are assigned to clusters, based
on their features (their coefficients on the first 20 EOF). The output of the model is then
a list of labels for each grid points, creating spatial clusters in the study areas.

The GMM procedure will find clusters of grid points that are correlated in the reduced
basis. The centroids of the clusters, i.e., the point of maximum likelihood for a given
cluster, are then chosen to be sensors’ locations, as they are the most representative
points of the clusters:

γj = arg max
x
N (x|µj,Σj) ∀j ∈ [1, D]. (III.24)

III.5 Results

In this section, the methods presented in Section III.4 are implemented on the three
identified areas (Mediterranean Sea, Normandy and Southern Brittany) and compared
with respect to the wind field reconstruction error. A method for the selection of an
optimal number of sensors is described, and the suggested sensors’ locations for the three
areas are given.
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III.5.1 Optimal number of sensors

The number of sensors to place on the grid is an input of the GMM. The BIC score
described in Section III.4.8 computes a trade-off between the likelihood of the obtained
distribution, and the complexity of the model. Being sensible to the likelihood of the model
and to its complexity, it is usually used to determine the number of clusters for the GMM
by finding its minimum. However, there is no guarantee that there will be a minimum
BIC score corresponding to an optimal number of clusters, and there is no guarantee that
this number of clusters is actually optimal for the considered metric. Indeed, this metric
is a heuristic criterion to hint the trade-off between accuracy and complexity, to avoid
over-fitting. If there is no minimum to the BIC score, one can look for an elbow in the
BIC score’s gradient, showing a number of clusters after which the marginal gain of BIC
score is no longer significant. In this study, the BIC score showed no minimum up to 50
clusters, so its gradient was studied. However this technique is not very accurate, and
the results should be interpreted carefully. For example, the knee identification is very
dependent on the cut-in and cut-out of the curve for the definitions of the asymptotes.
Furthermore, the GMM results are dependent on the initialization of the algorithm. As
shown in Figure III.4, the obtained optimal number of sensors can range between 4 and
7, though it shows clear convergence for a number of clusters above 10. The gradient
of BIC score was computed for 20 random GMM initializations for the three areas, and
the mean gradient plotted as dashed line, with its 95% confidence interval as envelope.
The BIC score was normalized to compare the three areas together. Similar trends can be
observed, with stronger gradients in the Mediterranean Sea for the first clusters showing a
bigger underlying complexity. For Southern Brittany, the associated uncertainty is bigger,
showing weaker global minimum for the Expectation Maximization.

While the BIC score gives an indication on the range of optimal number of clusters, it
does not necessarily translate into equivalent reconstruction for the wind fields. Although
the clustering itself might find an optimum of 5 clusters for the Mediterranean Sea, this
can lead to much higher reconstruction error than for the other areas as illustrated in
Figure III.5(a). In particular for the Mediterranean Sea, the considered region is wider
with several different wind regimes, which implies a higher variability. It then seems
natural that more sensors than other areas would be needed to reach the same error level.
Furthermore, the uncertainty on the optimal number of sensors shows an underlying
property of this spatio-temporal data which has strong correlations between points, and
for which clusters are not well separated. All in all, there is a need to cross-validate
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Figure III.4 – The gradient of normalized BIC score is shown for the three areas, for a
number of clusters ranging from 1 to 15. The curves’ envelopes are the 95% confidence
interval obtained from 25 different initializations of the GMM training. The determination
of an optimal number of sensors from these curves is uncertain, ranging from 4 to 6 for the
Mediterranean Sea (shaded area), 4 to 5 for Normandy and 4 to 7 for Southern Brittany.

the computation of the optimal number of sensors. It is then proposed to validate the
number of sensors from the computation of the reconstruction error. Exploring the range
of number of clusters obtained through the BIC score gradient, the final number of sensors
is chosen using a reconstruction error threshold.

To compare the three areas which have different wind regimes, the error threshold
is defined as the reconstruction error of the normalized wind (Normalized Root Mean
Squared Error or N-RMSE). The optimal number of clusters is then computed as the
minimal number of clusters required to reconstruct 75% of the map with an error lower
than the threshold.

It is then up to the final user to define an empirical error threshold to derive the
optimal scenario. As shown in Figure III.5 (a), while the BIC score gradient curves are
similar for the three areas, the normalized reconstruction error is significantly higher
for the Mediterranean Sea for the same number of input points, thus necessitating a
higher number of clusters to reach 75% of the map under threshold. The threshold of
0.2 normalized reconstruction error is shown in Figure III.5 (b). It yields to coherent
results with regards to the BIC score analysis. The final numbers of clusters are then 4
for Normandy and Southern Brittany and 7 for the Mediterranean Sea. This workflow for
the definition of the optimal number of sensors ensures similar performance between the
three areas.
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Figure III.5 – The computation of the proportion of the map under a certain error thresh-
old for the three areas and 20 different GMM initializations allows for optimal number
of sensors selection as the minimum number of sensors required to reach 75% of the map
under threshold (a). The obtained reconstruction error map with the threshold contour
shown illustrates the selection on the Mediterranean Sea (b).

III.5.2 Clustering-derived sensors performance

The sensors’ locations for the base case scenario with optimal number of sensors of 4
for Normandy and Southern Brittany and 7 for the Mediterranean Sea are then computed
on the three areas for the four methods: Monte Carlo, QR pivoting, EOF extrema, and
GMM.

The obtained sensors’ locations are displayed in Figure III.6 as red dots. It can be
visually noted that the sensors array derived from the GMM method (second row) is
more evenly distributed than the benchmark sensors arrays. QR pivots’ locations (third
row) are concentrated near the coast or at the maps’ limits, and so are EOF extrema
(fourth row). It shows how the GMM method allows for homogeneous sampling of the
area, while benchmark methods tend to give too much weight to coastal and bordering
points. This can be either artificial, due to spatial discontinuity at the limits of the maps,
or because of the orographic impact of the coast. Indeed, the wind near the coast shows
more variability, and while those points are contained in wider spatial structures in the
GMM, they can be considered as salient points in the QR pivoting method or in the EOF
extrema.

The resulting reconstruction at different time steps is illustrated as background for
the three areas and four methods in Figure III.6. The first row is the reference case,
reconstructed with perfect knowledge on the 20 EOF coefficients (EOF reference). For
the Mediterranean Sea, this specific time step shows a combined Mistral and Tramontane
winds blowing in the Mediterranean Sea. It is a complex and standard situation with
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different wind regimes, strong offshore blowing winds in the North and West of the Gulf,
and South-Eastern winds on the Eastern extremity. It can be noted that the GMM method
correctly reproduces the intensity of those three phenomenons, while other techniques tend
to overestimate or underestimate their effects.

For Normandy, the benchmark sensors array are largely off target on this specific case,
predicting little to no wind offshore due to their exclusive coastal sampling, while the
GMM method better captures both the coastal low winds and offshore wind cell.

For Southern Brittany, the effects of the sensors array is less clear, possibly explained
by the smaller area, or by a simpler wind regime. However, the GMM method still per-
forms largely better in terms of reconstruction error and wind patterns than benchmark
methods.

Three different metrics are computed for the optimal scenarios on the three areas, and
displayed in Table III.2. Along with the reconstruction error described in Sect. III.3.6,
the error in the reconstructed mean and maximum wind speed are displayed. For the
three areas, the GMM method clearly leads to good reconstruction error and mean wind
speed estimation. However, the EOF extrema method yields to better estimation of the
maximum wind speed for Normandy and Southern Brittany. It illustrates the fact that
the GMM method is good at reconstructing the synoptic situation, while discarding high
variability points that can be relevant for extreme events. Indeed, coastal points that can
have a high variability due to the coastal orographic effects, are selected as salient points
by the EOF extrema and QR pivot, and discarded by the GMM that assign them to a
wider cluster. This is efficient to reconstruct the mean situation in the whole map but can
lead to higher errors on high variability areas.

The proposed GMM method is scored against the three baselines methods on the
Mediterranean sea area, for a number of sensors ranging from 1 to 10. The results are
displayed in Figure III.7, showing the great interest of the clustering derived method com-
pared to benchmark methods for the offshore wind reconstruction from sparse sampling.
QR pivoting sensors and EOF extrema sensors fail to surpass the Monte Carlo simulation
for low number of sensors. The GMM method yield to reconstruction errors systematically
below the minimum of the boxplots (i.e., first quartile minus 1.5 times the inter-quartile
range which is equal to 99.65 % of the data in the Gaussian case.), showing the near-
optimal reconstruction. The benchmark methods’ errors eventually decrease for a high
number of sensors and surpass the Monte Carlo median scenario for 10 sensors. However
it is expected that the different methods should converge for high number of sensors, as
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Figure III.6 – Reconstruction example for the optimal scenario on the three areas, from the
reduced basis (EOF reference), from GMM clustering (GMM), and from the 3 baselines,
QR pivoting, EOF extrema and Monte Carlo. The color grading shows the wind speed,
the black arrows the wind direction, with length proportional to the wind speed, and the
red dots are the locations of the sensors on the optimal scenario, with 7 sensors on the
Mediterranean Sea, and 4 for Normandy and Southern Brittany.

the system is more and more constrained. It is illustrated by the decreasing spread within
the Monte Carlo simulation.

For the GMM curve and the Monte Carlo boxplots, the reconstruction error seems to
inflect for a number of sensors around 7, cross-validating the obtained optimal number of
sensors for the base scenario. It can be noted that the reconstruction error for the EOF
extrema method drastically decreases with the addition of the sixth sensor. As shown in
Figure III.2, the sixth sensor is a central offshore point, while the 5 first locations are near
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Table III.2 – Reconstruction errors computed for the 3 areas and the 4 sampling methods,
including the random scenario displayed in Figure III.6. The best performing method is
displayed in bold for each area. The reconstruction error (RMSE) and the errors on the
max and mean wind speed at each time step are computed.

Area Method Max wind
speed RMSE

[m/s]

Mean wind
speed RMSE

[m/s]

RMSE
[m/s]

GMM 0.94 0.17 0.9
Meditteranean Sea QR pivoting 1.42 0.42 1.77

EOF extrema 1.28 0.2 1.37
Monte Carlo 1.28 0.35 1.41
GMM 2.0 0.1 0.85

Normandy QR pivoting 1.84 0.56 1.83
EOF extrema 0.89 0.42 1.44
Monte Carlo 1.4 0.23 1.08
GMM 1.32 0.09 0.7

Southern Brittany QR pivoting 2.04 0.29 1.33
EOF extrema 0.89 0.16 0.96
Monte Carlo 1.87 0.17 0.93

the coast. For number of sensors above 6, the EOF extrema method then compares to the
Monte Carlo median scenario.

For low and optimal number of sensors, compared to state-of-the-art techniques, the
GMM method allows for the efficient sensors’ placement for offshore wind reconstruction.
The obtained reconstruction errors are displayed in Table III.3, along with the RMSE gain
relative to the Monte Carlo median score. In the three areas, the GMM method improves
significantly the reconstruction error on the base case scenario by 13% for Southern Brit-
tany, and more than 20% for Normandy and the Mediterranean Sea. The QR pivoting
method proves irrelevant for this application with a 50% increase in reconstruction error
in Normandy, and around 30% in Southern Brittany and the Mediterranean Sea. The ex-
trema method is closer to the Monte Carlo median case, though above, probably thanks
to the manual removal of irrelevant extrema.

To visualize the effect of the sensors’ locations, and the origin of the reconstruction
error, the reconstruction error is computed as the root mean square error for each grid
point, and displayed for the main scenario on the three areas in Figure III.8.

The coastal sensors arrays from the QR pivoting method displayed in the second row
do not allow for offshore wind reconstruction, as those points are strongly influenced
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Figure III.7 – QR pivoting method (orange plus), EOF extrema method (deep blue
squares) and GMM method (blue dots) are compared to Monte Carlo simulations, dis-
played as boxplots in terms of wind reconstruction error.

Table III.3 – RMSE and RMSE percentage gain versus Monte Carlo median value for
the base case scenario on the three areas, for number of clusters of 7 for the Mediter-
ranean Sea and 4 for Normandy and Southern Brittany. The bold numbers show the best
performances.

Mediterranean Sea Normandy Southern Brittany
Score RMSE [m/s] | % gain RMSE [m/s] | % gain RMSE [m/s] | % gain
GMM 0.99 | -22% 0.90 | -24% 0.82 | -13%
QR pivoting 1.60 | +27% 1.83 | + 55% 1.33 | + 39%
EOF extrema 1.37 | + 9% 1.44 | +22% 0.956 | +0.3%
Monte Carlo 1.26 | - 1.18 | - 0.952 | -

by coastal effects. Strong reconstruction errors of more than 2 m/s are then obtained
far offshore for Normandy and the Mediterranean Sea. For the EOF extrema method
displayed in the third row, where some offshore sensors’ locations are present in addition
to coastal ones, the synoptic wind regime seems better captured with more homogeneous
reconstruction error. The reconstruction error patterns show the strong spatial correlation
of the input wind data with lower reconstruction errors around the sensors’ locations.
However, the radius of lowered reconstruction error depends on the location. It can be
noted that coastal points in QR pivoting for the Mediterranean Sea have a small radius
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Table III.4 – Final locations selected for the deployment of floating LIDARs in French
offshore wind development areas

Mediterranean Sea Normandy Southern Brittany
sensor # (Latitude [°N],

Longitude [°E])
(Latitude [°N],
Longitude [°E])

(Latitude [°N],
Longitude [°E])

1 (42.775, 5.275) (49.546, -0.242) (47.721, -3.967)
2 (43.25, 4.55) (50.096, 0.283) (47.396, -2.867)
3 (42.725, 4.275) (50.221, -1.217) (47.346, -3.567)
4 (42.725, 3.475) (49.846, -0.767) (47.246, -4.042)
5 (43.175, 5.225)
6 (43.025, 3.675)
7 (42.725, 5.875)

of influence, as opposed to some offshore points in the EOF extrema method. Coastal
areas, where the wind is influenced by the coastal orography and thermodynamic effects,
have lower spatial correlations or higher variability. As such, they are considered by the
QR pivoting method and the extrema method as salient points. But in the end, they
barely help to reconstruct the whole area’s dynamics. It illustrates the importance of
smart sparse sampling for the reconstruction, and the non-adequacy of QR pivots and
EOF extrema as locations for the sparse sampling in this case.

For the three areas, the GMM obtained sensors’ locations are homogeneously spatially
distributed, allowing for good reconstruction on the whole map, though somewhat neglect-
ing coastal locations. The locations, as centroids of clusters, are the most representative
points of maximum likelihood clusters for a given number of sensors. As such, every point
of the map belonging to a certain cluster, it allows for satisfactory reconstruction on most
of the map. On the other hand, the QR pivoting method and EOF extrema method select
salient points that do not necessarily correlate well with neighboring points, hence low-
ering the performance for reconstruction. The inadequacy of the considered benchmark
methods for the proposed problem is then highlighted.

The final suggested sensors’ locations for the three offshore wind development areas
are given in Table III.4. These locations should be considered preferred locations for the
deployment of floating LIDARs for wind resource assessment in the French offshore wind
development areas.
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Figure III.8 – Wind magnitude reconstruction error temporally averaged per grid point
on the Mediterranean Sea (left), Normandy (Center), Southern Brittany (right). The
reconstruction error is computed for the optimal number of sensors determined in Sect.
III.5.1 using the 3 baselines and the proposed clustering method. The red dots are the
grid points used as input for the least squares reconstruction.

III.6 Discussion

In this study, an optimal sparse sampling is proposed using a Gaussian Mixture Model
on high-resolution NWP data from Meteo France’s MeteoNet data set (AROME model).
The method used is simple yet efficient for the optimal sparse sampling of offshore wind
field. Applied to offshore wind resource assessment, it can be a useful tool for the design
of observation networks. It is compared to state-of-the-art solutions that fail to efficiently
sample this specific problem, and a method is proposed to estimate the optimal number
of sensors to deploy. The authors nonetheless raise attention on the following points to
interpret and discuss the obtained results.

The metric that is used to measure the performance of the sparse sampling in this
paper advantages the GMM method, because its homogeneous sampling allows for a
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correct reconstruction of the synoptic situation. Coastal points are not well reconstructed
using the GMM method, but this does not reflect on the scoring. Since the metric averages
the reconstructed wind field’s error over the grid points, a method that performs fairly
good over the entire area is preferred.

As a consequence, both the obtained sensors’ location and its performance are de-
pending on the selected area. In this study, the selected sites are simple rectangles over
the future development areas. But it could be interesting to reconstruct the wind field
and score the performance on specific sites defined by operational limits for example
bathymetry on the Mediterranean Sea, or coastal exclusion area for the three cases. This
could lead to different results, and the sensitivity of the proposed method would then be
studied.

Given the high variability of the wind near the coast and the possible impact on the
obtained results, the 20 first kilometers from the coast were excluded to test the sensitivity
of the methods. It roughly corresponds to the distance to the coast for future offshore
wind parks, and ensures that the impact of the coastal orography is limited. It turns out
that it does not make the state-of-the-art methods more relevant for this application as
they still tend to select bordering points as input points.

Now, in the context of the development of marine energies in French waters, not only
the wind should be considered but other variables such as wave variables, physicochemical
parameters (turbidity, sea surface temperature, salinity) which are important for environ-
mental impact monitoring. The installation of a network of sensors would therefore gain
traction if optimized with regards to multiple variables. A follow-up of this work would be
to include model data for each of the variables of interest, and perform the clustering on
the stacked 10 first EOF of each variable, for the design of a multi-parameters observation
network.

Getting even closer to the industrial reality of the sensors’ network, it would be of
great interest to include a cost function dependent on the location (depth, distance from
shore, other constraints). This method could be declined to find the Pareto optimal sensors
network. The optimal number of sensors would therefore become the number at which
the sensors marginal cost exceeds the reconstruction gain.

The data in this study is derived from the NWP model AROME data, with a 1.3km
grid size and hourly definition. The parametrization of the model offshore is not perfect,
in particular for the sea/atmosphere coupling that can lead to discrepancies in surface
parameters, as shown during the Mediterranean HyMex campaign [239]. The learnt dy-
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namics might then be a coarse description of the reality, and the derived sensors’ locations
be limited for real time wind reconstruction, since only trained on low spatio-temporal
resolution patterns. The obtained locations are in this case optimal only for reconstructing
the dynamics of the NWP model, and the representativeness of the used data compared
to the reality needs to be questioned. It could then be of interest to run such study
on higher resolution data, either from Synthetic Aperture Radar measurements or Large
Eddy Simulations, though on shorter periods, or comparing the reconstruction on a set
of measurements offshore.

Publicly available through the MeteoNet data set, only 10 meters wind speed are used
in this paper. For offshore wind application, hub height wind speed are to be considered
(heavy maintenance, loading, energy production). The described method is agnostic to
the input data, though it would be of interest to validate the obtained sensors network
with 100m wind speed data. It is not direct that the obtained sensor network will be the
same with above 100m wind speed data, since the extrapolation will be depending on
the grid point and the wind speed and direction (changing the sea surface roughness).
The non-linear transformation of data can then change the weight given by the clustering
model at each timestep and grid point.

Seemingly, performing the clustering with the power-curve transformed data can po-
tentially lead to different results. The study focuses on wind speed, as this can apply to
wind energy production but also maintenance operations planning or wind turbine load-
ing. A specific study could focus on wind power, applying vertical extrapolation and wind
power curve. The proposed method can be easily implemented to different data inputs.

The used data set compiles 3 years of data. The model is trained on 2 years and
tested and scored on the third year. It could be of interest to carry the same study
on a longer data set from global reanalysis models such as ERA5. The high-resolution
regional AROME model from Météo France with its 3 years of open-source data from
the MeteoNet data set offers a higher number of grid point, making it more relevant for
the sensor siting on small areas as the ones in this study. The features that need to be
captured by the reconstruction are smaller scale than global models’ grid size. Comparing
the results obtained from the two sources could be of interest.

The used benchmark methods from the sparse-sampling literature i.e., the QR pivoting
method and the EOF extrema method do not prove efficient for the stated problem.
For generalization purposes, this method would need to be compared to state-of-the-art
method on benchmark data set such as the simulated flow past a cylinder used in [53].
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This paper does not aim at generalizing a method, but develops an efficient solution to an
identified problem, for which state-of-the-art methods seem to fail. The sensitivity of the
methods to the size and the choice of the domain could also be considered. It is possible
that the benchmark models would perform better on wider areas, or for a bigger amount
of sensors.

Eventually, the use of Gaussian Mixture Model seems appropriate for the sparse sam-
pling of offshore wind resource. It is an easy method to implement with relatively low
computational cost. It is flexible and can in principle be applied to higher dimensional
systems. This could be of interest for offshore wind energy, allowing the inclusion of envi-
ronmental parameters in the siting optimization. The method also shows good consistency
on the three development areas tested with very different wind regimes. It is however im-
portant to stress the difficulty associated with the optimal number of sensors. As proposed
in this paper, the number of sensors is derived indirectly from an error threshold. In this
context it seems difficult to include cost or environment constraints as such in the sensors
siting.

III.7 Conclusions

A method for the finding of an optimal sensors network for offshore wind reconstruc-
tion is presented in this paper, and applied to three of the main offshore wind energy
development area in France. The sparse sensors’ placement problem is stated on a re-
duced basis of the 3 years AROME prediction of wind from the MeteoNet data set.
State-of-the-art techniques of sparse sensors’ placement for reconstruction (QR pivoting
and extrema methods) are compared to the proposed method, based on the Gaussian
Mixture Model clustering of Empirical Orthogonal Functions of zonal and meridional
wind offshore. By selecting the clusters’ centroids as proposed locations for sensors, the
GMM method homogeneously partitions the domain into spatially correlated clusters. In
this way, the reconstruction error on the whole domain is minimized, leading to a 20%
decrease in wind reconstruction error compared to the median Monte Carlo case. On the
other hand, state-of-the-art methods fail to reconstruct the whole wind field because they
are attracted by salient points with high variability (bordering points). However, these
points are not very spatially correlated to neighboring points, yielding to a reconstruc-
tion error higher than the median Monte Carlo case. The GMM clustering method gives
indications on the optimal number of sensors to deploy, though this estimation should be
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refined either by the integration of cost or environmental constraints, or by the definition
of a reconstruction error threshold.

GMM clustering method seems to be a simple yet efficient solution for sparse sensors’
placement. Applied to offshore wind reconstruction, it allows for the optimal placement of
sensors, and paves the way for smart marine monitoring in the era of offshore wind energy
development. Further work should focus on the technique’s generalization to benchmark
problems, and question the representativeness of the used data set. For wind energy appli-
cations, the multivariate case should be studied for multi-instrumental sensors’ placement,
and the economic constraints should be implemented for the definition of the Pareto op-
timal number of sensors.

In the light of this study, the authors suggest the deployment of 7 sensors in the
Mediterranean Sea, 4 sensors in Normandy and 4 sensors in Southern Brittany at opti-
mal locations to reconstruct the offshore wind field and to help with the wind resource
assessment on these areas.

Meteorological data used in this study are available online through the MeteoNet
data set. The code developed for offshore wind resource sparse sampling using Gaussian
Mixture Models can be accessed through https://github.com/rmarcille/gmm_sparse_
sampling.git

This work was supported by France Energies Marines and the French government,
managed by the Agence Nationale de la Recherche under the Investissements d’Avenir
program, with the reference ANR-10-IEED-0006-34. This work was carried out in the
framework of the FOWRCE_SEA and POWSEIDOM projects.
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Chapter IV

VERY SHORT-TERM PROBABILISTIC

OFFSHORE WIND SPEED FORECASTING

USING DEEP LEARNING

Introducing the article

As described in Chap.III, the deployment of offshore measurement network is expen-
sive and of high importance for wind energy projects. The quality of numerical weather
prediction at sea is limited by the lack of in-situ measurements and the limited coupling
with the oceanographic models. Provided that we have access to an offshore wind speed
time series - e.g. from a future offshore wind farm development site - it is then of interest
to explore the post processing of numerical weather prediction at this specific site. In
this study, we focus on the added value of neighbouring measurement data, and more
specifically coastal measurements. These are already installed, and much cheaper to op-
erate than their offshore counterpart. In the French Mediterranean Sea, offshore blowing
winds are dominant. This makes coastal measurements upwind from the target site and
potentially more informative for the post-processing.

As described in Chap.I, numerical weather prediction have a high computational cost
and are usually limited to a duration of 6 hours between consecutive forecasts. Moreover,
the uncertainty estimation from numerical weather prediction is obtained with ensem-
ble modelling, running several perturbed members in parallel to estimate the spread of
predicted variables. For high-resolution models such as the AROME model from Météo
France, it consists in 16 members, which gives important information about the spread of
the predictions, but is limited for the estimation of the posterior distribution, especially
in high dimensional problems. Despite being limited by current model capabilities, these
two aspects are key for offshore wind farms operations:

• Short-term decisions (1 to 12 hours ahead) are to be made when operating a wind
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farm. Maintenance operations require close to real-time metocean monitoring to
ensure safety and to optimize weather windows use. Wind power prediction for
market participation also requires short-term to ultra-short-term forecasts that
can’t be issued by numerical weather prediction.

• Decision-making at sea is subject to uncertainty. When performing offshore oper-
ations, the risk associated with forecasts errors needs to accounted for and miti-
gated. Numerical weather prediction uncertainty is often reduced to a reliability
index. Using such a restricted uncertainty information leads to conservatism and
is sub-optimal.

Time series models and learning-based models can offer alternatives for these two
aspects. Their relatively low computational cost permits close to real-time forecast and
recent measurement assimilation. They can be designed to produce probabilistic forecast,
hence providing a full uncertainty estimation without post-processing. Deep learning prob-
lems in particular can easily accommodate a large amount of input data which can be
helpful to integrate explanatory variables for the forecast uncertainty.

In this article we propose a deep learning framework for the probabilistic post-processing
of numerical weather prediction at sea. We use an open-source dataset in the French
Mediterranean Sea to simulate the situation of future offshore wind projects. A relatively
short offshore measurement time series is to be predicted from coastal measurements
and numerical weather predictions. Several probabilistic frameworks are proposed and
compared in terms of forecast quality, reliability and computational cost:

* We implement analogs forecasting [56] and gradient boosting machine [4] as state-
of-the-art statistical approaches for probabilistic forecasting.

* We then implement a convolutional neural network approach that can accommo-
date both spatialized numerical weather prediction data and coastal in-situ data
to predict the bi-dimensional wind speed under Gaussian posterior assumption.
We show that the implicit pre-processing of large input data is a key advantage of
convolutional approaches.

* We relax the posterior parametric assumption using normalizing flows, and we
show that it can be a powerful yet simple tool to emulate probabilistic forecasts
without parametric assumptions while keeping sampling and scoring capabilities.

This work is published in the journal Artificial Intelligence for Earth Systems as Robin
Marcille, Pierre Tandéo, Maxime Thiébaut, Ronan Fablet, Pierre Pinson, Convolutional
encoding and normalizing flows: a deep learning approach for offshore wind speed proba-
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bilistic forecasting in the Mediterranean Sea, 2024 [240]. ©American Meteorological Soci-
ety. Used with permission.

IV.1 Introduction

Weather forecasting in offshore environments is challenging due to the scarcity and
sparsity of offshore observations, both in space and time [103, 241]. These limitations
affect data assimilation systems, especially initial state estimation, and validation pro-
cesses. Moreover, wind profiles are challenging [81] and influenced by various factors, such
as air/sea exchanges [82], diurnal variations [83], and site-dependent effects [84], which
are difficult to model accurately. Offshore weather forecasts are essential for marine opera-
tions, especially at locations where in-situ data is scarce. These forecasts inform decision-
making at sea for weather-limited operations. Weather operability limits are computed
from simulation to avoid operation failure, and weather windows with critical parameters
under the operability limits have to be forecast. Forecast errors imply risks of operation
failure, and forecast uncertainty ought to be considered for operations planning and execu-
tion. To deal with uncertainty in the offshore wind energy industry, a factor ranging from
0 to 1 (the alpha factor) is assigned to each weather operability limit [3]. According to [4],
most existing methods rely on deterministic forecasts and the use of the alpha factor to
account for weather forecast uncertainty. This may result in conservative decision making
and sub-optimal planning. As illustrated in [5], probabilistic forecasts can address these
shortcomings. Under the assumption of reliable weather forecast of the limiting param-
eters, the uncertainty can directly be transferred to the probability of operation failure.
When doing so, one can obtain a large improvement in operational hours compared to the
alpha-factor methodology. This requires the reliable joint probabilistic forecasting of lim-
iting wind and wave parameters that impact vessel motions (e.g. Significant wave height,
10-meter wind speed, wave peak-period [34]). The decision-making using probabilistic
forecasts is then cost-optimal compared to deterministic forecasts [6, 7], motivating the
development of probabilistic post-processing of deterministic forecasts.

State-of-the-art weather forecasting systems generally rely on ensemble methods to
assess and describe forecast uncertainty [242]. They generate different scenarios by varying
both the initial state of the system and model parameters to estimate the spread of the
forecast state. The very high computational cost associated with this forecast process
limits the number of members in the ensemble, typically up to a few tens of members. Such
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ensembles cannot fully inform the forecasting uncertainties, especially for local processes
such as strong convective events in South-Eastern French maritime facade (Gulf of Lion)
which is the main study area. The post-processing of Numerical Weather Predictions
(NWP) using statistical and machine learning methods then appears appealing to better
emulate these forecast uncertainties [243].

A large variety of models can be used for the probabilistic post-processing of deter-
ministic forecasts [244]. We can distinguish models based on the description of the prob-
abilistic output. Non-parametric methods such as interval or quantile forecasting [143],
kernel density and ensemble methods, make fewer assumptions about the shape of the
target distribution. For instance, gradient boosting machine (GBM) can be used for the
quantile forecasting of wave parameters [4]. Parametric approaches assume a certain para-
metric distribution for the output (e.g. Gaussian, beta, log-normal) [130] which allows for
analytical computations. Within parametric descriptions, the Gaussian assumption might
be simple, but can characterize satisfyingly the uncertainty of 2-dimensional wind predic-
tion [147]. One can estimate the parameters of Gaussian distribution using analogs of the
observed weather situation [56, 182]. Alternatively, regression and deep learning models
can emulate a Gaussian covariance matrix from a deterministic forecast as developed in
[129] considering a diagonal covariance matrix.

Novel generative deep learning techniques offer innovative methods for the approxima-
tion of complex posterior distributions. Variational Recurrent Auto Encoders (VRAE) can
be used to generate scenarios at a relatively low computational cost [210], but the output
distribution can only be accessed via sampling. VRAE are compared in [44] to Generative
Adversarial Networks (GAN) and normalizing flows for wind power forecasting. Normal-
izing flows are deep learning models based on the composition of parameterized bijective
functions, that transform a simple parametric distribution into an arbitrarily shaped dis-
tribution. It was proposed for variational inference in [119], and generalized to density
estimation in [120]. Compared to analogs methods, it needs no parametric assumption for
the posterior distribution. In addition to sampling capabilities, they allow for exact like-
lihood computation. These two features are advantages compared to quantile forecasting.
In contrast with VRAE and GAN, they are relatively easy to implement and train. In
[59], conditional normalizing flows are shown to be well suited for multivariate time series
forecasting. A fair assessment of their advantages and disadvantages for a real application
in probabilistic forecasting is lacking from the literature.

In the light of the work cited above, this paper addresses the post-processing of numer-
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ical weather prediction and in-situ measurements using deep learning schemes to improve
the probabilistic forecasting of wind speed at sea. Numerical weather prediction act as a
physical prior of the future state of the weather system at the considered offshore location,
while recent neighboring measurements may better inform the actual state of the system.
In this study a parametric Gaussian model and a generative model using normalizing
flows are compared with baseline models (analogs, gradient boosting machine, numerical
weather prediction) to analyze their performances in terms of probabilistic and determin-
istic metrics. Models are also compared as function of the weather situation, to highlight
the advantages and disadvantages of the method for marine operations. Eventually, the
importance of various input data is discussed, to give indications on the required input
data for offshore wind speed probabilistic forecasting.

The dataset used for the experiment is described in Section IV.2. The proposed ap-
proach and its mathematical formalism are thoroughly presented in Section IV.3, before
the baseline methods and metrics used for comparison are detailed in Section IV.4. The
obtained results are shared and analyzed with deterministic and probabilistic metrics,
and as function of weather situations in Section IV.5. A discussion on the limitations of
the experiment is done in Section IV.6 to provide recommendations and perspectives for
future work.

IV.2 Dataset

IV.2.1 Case-study area

To develop the methodology, we consider the MeteoNet dataset [245]. It is an open-
source dataset developed and shared by Météo France, the french national weather service.
It contains time series of weather ground stations data and numerical weather prediction
model over a 550km x 550km region in South-East France. It spans between 2016 and 2018
with 65 days of missing data. Hourly forecasts of weather variables (10-meters wind speed,
2-meters relative humidity, 2-meters air temperature, pressure at sea level) from the high-
resolution model AROME (Applications de la Recherche à l’Opérationnel à MEsoéchelle)
are available. AROME is the operational high resolution model on France operated by
Météo France. It has a grid size of 1.3km and outputs hourly predictions. The ground
station network covers 484 stations scattered over the South-East of France, as shown in
Figure IV.1 (a), with 6-min measured time series of 10-meters wind speed, 2-meters air

133



Chapter IV – Very short-term probabilistic offshore wind speed forecasting using deep learning

Figure IV.1 – Subset of the MeteoNet dataset selected for methodology development.
Coastal stations around Porquerolles target station are selected (a). A geographical sub-
set containing local information from numerical weather prediction is selected to reduce
dimensionality of the input (b).

temperature, station pressure, 2-meters dew point temperature, 2-meters relative humidity
and precipitation.

The study focuses on the Gulf of Lion, which is situated in the North-East Mediter-
ranean Sea, between the cities of Toulon and Perpignan in South-East France. It is con-
sidered one of the main floating offshore wind development areas in France [246]. The
study area is characterized by a strong dominance of offshore blowing winds in the north-
ern (Mistral) and western (Tramontane) Gulf of Lion. Those phenomena are due to an
orographic channeling in the Rhone and Garona valleys with the pressure difference be-
tween the North-East Atlantic (high pressures) and the North-West Mediterranean Sea
(Gulf of Genoa, low pressure). When the high pressures are rather localized over central
Europe, the region experiences strong South-East winds charged with humidity that can
cause heavy precipitation on the coastal areas. These two phenomena are largely driving
the wind patterns in the area and are sensitive to continental forcing and local orography.
They also apply a strong forcing on the hydrodynamics of the region, with large up-welling
and down-welling phenomenon [114].

The target station is the Porquerolles island weather station encircled in Figure IV.1
(a). It is the only offshore station available in the dataset. It is located on the Porquerolles
island’s semaphore, at 135m of elevation on the top of the island. The 14 closest coastal
weather stations in Figure IV.1 (a) are selected to serve as input. The numerical weather
prediction input is reduced to a subset of 2 degrees of latitude and longitude around the
target station to reduce its dimensionality, see Figure IV.1 (b). The correlation between
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Figure IV.2 – Correlation between measured variables at ground stations and wind speed
at the target station.

the measured parameters at the input ground stations and the wind speed measured at
the target station is shown in FigureIV.2. Wind speed at coastal ground stations is highly
correlated to the target station. Zonal wind speed at target station is negatively correlated
to humidity at coastal stations, showing the predominance of eastern wind during rain
events. Temperature is correlated to meridional wind, in link with thermal breezes.

IV.2.2 Numerical weather prediction data

The numerical weather prediction input tensor at forecast issue time t, XNW P
t , is a

4-dimensional tensor in latitude (80 points), longitude (80 points), weather variables (5
variables) and lead times (6 time steps). The input variables available in the MeteoNet
dataset are the 2-dimensional 10-meter wind speed (u, v), percentage of humidity, mean
pressure at sea level and 2-meter temperature. The time step of the model data is 1 hour,
and the last forecast time step is τNW P = 5 h ahead. For each forecast issue time t, the
AROME input has then KNW P = 6 lead times between t and t + τNW P . The variable
and lead time dimensions are merged into a 30-dimensional axis, so the final tensor has
dimensions (80, 80, 30). This data correspond to the deterministic forecast of AROME,
with no information on the forecast uncertainty. In practice, the AROME forecast is issued
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Figure IV.3 – Correlation between AROME forecasts used as input and wind speed at
the target station. The correlation is computed for each grid point. The top row shows
the correlation with the target zonal wind speed (target u), and the bottom row with the
target meridional wind speed (target v).

2 to 6 hours after the initial forecast lead time, so this should be taken into account in
an operational setup. The numerical weather prediction data at the forecast issue time
should then correspond to the latest numerical forecast available at that time.

Correlation between AROME forecasts and wind speed at the target station is shown
in FigureIV.3. Lower pressures on the eastern part of the study area (gulf of Genoa)
are negatively correlated to zonal wind speed at the target station, showing the weather
systems that channel Mistral northwestern winds. Higher correlations are observed for
the zonal wind speed which is more representative of dominant wind systems. Meridional
wind speed is more uncertain and is correlated to humidity and temperature.

IV.2.3 In-situ data

The input data from ground stations contain recent observations from the neighboring
coastal stations. The ground stations input tensor for the forecast issue time t, XGS

t , is
a 3-dimensional tensor in stations (14 stations), weather variables (maximum 6 variables,
depending on the station), and time steps (60 time steps). The input variables available at
each station are the 2-dimensional 10-meter wind speed (u, v), humidity rate, temperature,
pressure at sea level and dew point. It has a time step of 6 minutes, and the last τGS = 6 h
of observations are used as input. The ground stations input is then a concatenation of
time series of KGS = 60 time steps. The stations and weather variables dimensions are
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merged so the final tensor has dimensions (80, 60). In practice, a certain latency is to
be expected to gather these data. Similarly to numerical weather prediction, it should be
considered that the in-situ data is the latest available measurement data.

The output of the dataset is the measured wind speed at the target station. At forecast
issue time t, the target vector yt is a tensor of zonal and meridional wind speed at 10
meters for different lead times. It has a time step of 6 minutes and is to be predicted for
the next τpred = 6 h. The target tensor consists in N = 2 time series of K = 60 lead times
and has dimensions (2, 60).

To deal with missing data, measured variables from the ground stations exceeding
4% of missing data are removed. It corresponds to 3 weather stations and 34 measured
weather variables in total. The resulting entries exceeding 4% of missing data are also
removed (395 entries). Eventually, the remaining gaps in the data are forward filled. They
are then considered as valid data with the assumption that the gaps are small enough to
be neglected.

IV.2.4 Training, test and validation datasets

The dataset is split in three parts for training, validation, and testing phases. These
three datasets need to be independent but representative of the same statistical distribu-
tion [42]. For weather data, auto-correlation at different time scales requires special care
[66]. To limit seasonal effects, 2 years of data (two thirds of the dataset) are used for train-
ing. The remaining third is split for validating and testing (half a year). 5 days are removed
in between the splits to avoid short-term temporal correlation between the datasets. To
mitigate data representativity issues, cross-validation on the train-validation-test split is
performed. The train, validation, and test sets are shuffled into 6 different splits as shown
in Figure IV.4. Results are then computed across those 6 splits. After cleaning and split-
ting, the final dataset contains 2372 entries in the training split, 779 in the validation split
and 798 in the test split. All data sources are standardized with regards to the training
dataset to ensure that all features have similar scales.

IV.2.5 Baseline reduced dataset

The full dataset has a very high number of dimensions. To implement statistical base-
lines that can only accommodate a limited number of features, a baseline reduced dataset
is constructed.
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Figure IV.4 – Train validation test splits used for cross-validation.

The reduced dataset contains:
— The 3 first principle components obtained through Principal Component Analysis

of the zonal and meridional wind speed of AROME inputs, considered separately
and computed on the training dataset,

— The 7 first principle components obtained through Principal Component Analysis
of the measured wind speed at the three closest ground stations for the last 6 hours,

— The last wind measurements at the 3 closest ground stations,
— The wind speed forecast from AROME closest grid point.

A sample from the reduced dataset Xr
t is then a tensor of 15 features and 60 lead times.

The main dataset has dimensions (80, 80, 30) for AROME input and (46, 60) for ground
stations input. The reduced dataset corresponds to 0.5% of the total input data. Principal
Component Analysis is used to extract the most relevant features.

The reduced dataset serves as input for the baseline methods presented below. It then
allows for fair comparison between different approaches. The selected features of this
reduced dataset were optimized to optimize the validation loss of the gradient boosting
machine model in Section IV.4.3.

IV.3 Proposed architecture

This section presents the proposed convolutional architecture to emulate a probabilistic
multivariate forecast from the input data described in Section IV.2. We first introduce the
problem formulation in Section IV.3.1. The convolutional encoding of numerical weather
prediction and in-situ data is described in Section IV.3.2. We then detail the Gaussian
(Section IV.3.3) and normalizing flows (Section IV.3.4) output probabilistic descriptions.
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Eventually Section IV.3.5 gives an overview of the final architecture.

IV.3.1 Short-term wind forecasting at an unobserved location

The goal of the forecast model is to make a wind speed prediction at a target location
using numerical weather prediction and ground stations measurements. For a forecast
issue time t ∈ [1, T ] and a forecast lead-time k ∈ [1, K], the model Ψ parameterized by Ξ
outputs a vector θ̂t+k from the input vector X t such that

θ̂t+k(Ξ) = ΨΞ(X t). (IV.1)

The output vector θ̂t+k is a parameterization of a probability density function f̂t+k of
a random variable St+k from which we can draw samples st+k. The distribution f̂t+k is
transformed into a target distribution ĝt+k through a transformation T . Therefore we map
a sample st+k from the initial distribution into a sample zt+k of the target distribution

zt+k = T (st+k), (IV.2)

with zt+k a sample from the random variable Zt+k with probability density function ĝt+k.
We explore an identity parameterization for transformation T as well as normalizing flows
to account for more complex target distributions. In all that follows, the subscript k refers
to t+ k.

IV.3.2 Convolutional encoding of AROME and ground stations
data

The proposed method uses a deep learning architecture to accommodate the large
amount of heterogeneous input data. A Convolutional Neural Network (CNN) is a type
of deep neural network that uses convolutional layers and pooling layers to efficiently
reduce the dimension of input data. Convolutional layers apply convolution filters to the
input data, capturing multi-scale features. The convolution filter applies the same weights
to the whole input, so the number of model coefficient is reduced. Pooling layers reduce
the dimension of the data by applying sub-sampling functions to groups of neighboring
points [42]. CNN are extensively used in the forecasting literature when dealing with large
numerical model data in 2 dimensions [29] or 3 dimensions [193]. 1-dimensional CNN can
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also be used to deal with time series data [143].
For the offshore wind forecasting problem presented in this work, a large amount of

data is used as input. Numerical weather prediction data are 80 x 80 images for each
time step and each variable. Meteorological variables exhibit features at various scales
that need to be extracted. A 2-dimensional CNN is used to encode the numerical weather
prediction input into an ensemble of latent time series containing useful information for
forecasting. The convolutions are made through space to capture the spatial features,
while the weather variables and lead times are taken as channels.

Seemingly, a 1-dimensional CNN is used to encode the ground stations time series
onto a latent space. The convolution is performed on the time component, so that the
temporal correlations of the time series can be captured. 1D convolutional layers are used,
and the different weather variables and stations are taken as channels.

We apply the CNN to numerical weather prediction and ground stations time series
to obtain 9 latent time series of 60 time steps. Two additional latent time series are
added containing the predicted wind speed at the closest AROME grid point. The final
dimension of the latent space is (11, 60).

IV.3.3 Gaussian posterior assumption

The basic assumption for the proposed architecture describes the target as a 2-dimensional
Gaussian distribution. For a Gaussian posterior the output vector θ̂k contains the param-
eters

θ̂k = [µ̂u(k), µ̂v(k), σ̂2
u(k), σ̂2

v(k), ρ̂u,v(k)] (IV.3)

such that
Zk ∼ N

(
µ̂k, Σ̂k

)
(IV.4)

with µ̂k the mean matrix and Σ̂k the covariance matrix, constructed from the two pre-
dicted variances σ̂2

u(k), σ̂2
v(k) and the Pearson coefficient ρ̂u,v(k)

Σ̂k =
 σ̂2

u(k) ρ̂u,v(k)σ̂u(k)σ̂v(k)
ρ̂u,v(k)σ̂u(k)σ̂v(k) σ̂2

v(k)

 (IV.5)

µ̂k =
µ̂u(k)
µ̂v(k)

 (IV.6)

A 2-layers Multi-Layer Perceptron (MLP) is used to output Gaussian parameterization
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from the latent space. To ensure the positive semi-definiteness of the predicted covariance
matrix, the variances should be positive σu(k), σv(k) > 0, and the Pearson coefficient
should satisfy −1 ≤ ρu,v(k) ≤ 1. A final activation function is applied to the output
of the MLP to satisfy these inequalities. The variances are obtained with the use of
an exponential activation function, and the Pearson coefficient is obtained through a
hyperbolic tangent activation function. The mean values µu(k), µv(k) ∈ R need no final
activation function.

The loss function Lt(Ξ) used for the optimization is the negative log-likelihood [42]

Lt(Ξ) = 1
K

K∑
k=1
− log

[
ĝt+k(yt+k|Ξ)

]
(IV.7)

with ĝt+k the predicted probability density function of the posterior at lead time k. The
negative log-likelihood is a proper scoring rule that has two main advantages. It accounts
for the reliability of the prediction defined through the covariance matrix, and it strongly
penalizes outliers due to the log function.

Using a Gaussian distribution for the posterior provides an analytical expression for
the likelihood which can then be directly computed. For an observation yk and a predicted
2-dimensional Gaussian distribution with parameters Σ̂k and µ̂k, the likelihood is equal
to [42]

ĝk(yk|µ̂k, Σ̂k) = 1
(2π)|Σ̂k|1/2

exp
(
−1

2(yk − µ̂k)T Σ̂
−1
k (yk − µ̂k)

)
. (IV.8)

It is widely used for scoring forecasts versus observations under uncertainty for data
assimilation schemes [183] and as a parametric method for multivariate regression [148].

IV.3.4 Normalizing flows

A generative approach is proposed to account for non-Gaussian distributions while
keeping the computation of the likelihood tractable, and the sampling capabilities. Nor-
malizing flows are generative deep learning models that use a composition of invertible
functions to learn a "flow" from a simple base distribution (here a multivariate Gaussian)
to an arbitrarily shaped distribution.

Given a base distribution h(0), and a series of invertible functions T0, ..., TM , the pos-
terior likelihood can be computed using a change of variables from the base to the target
distribution. The likelihood of the obtained distribution h(M) can then be obtained through
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a change of variable [120]

log
(
h(M)(zM)

)
= log

(
h(0)(z0)

)
−

M∑
m=0

log
(

det
∣∣∣∣∣∂h(m)

∂zm

∣∣∣∣∣
)
. (IV.9)

A sample from the base distribution is transformed to a sample from the target distribu-
tion using the following composition of transforms

zM = T0 ◦ ... ◦ TM(z0). (IV.10)

A bijective function needs to be selected to compose the layers of the flow. In this
work, a rational quadratic spline function is used. As described in [125], it has the ad-
vantage of being highly flexible while staying analytically invertible. Compared to more
classical affine transformations, it can approximate complicated distributions with fewer
transforms. The parameters of the transforms are the knots positions and the derivatives
at each knot. These parameters are obtained through a 2-layers Multi-Layer Perceptron
from the vector θ̂k.

Normalizing flows are implemented as an add-on block to the previously described
architecture, so it transforms the predicted Gaussian distribution f̂k = h(0) into an arbi-
trarily shaped distribution ĝk = h(M) using M = 5 transforms. The number of transform
was optimized as an hyper-parameter through Bayesian optimization. The transform ap-
plied to the Gaussian distribution f̂k described in Section IV.3.3 is then T = T0 ◦ ... ◦ TM ,
and the set of parameters Ξ used for optimization contains the parameters of both the
encoder and the normalizing flows block.

IV.3.5 Final architecture

The final proposed architecture is shown in Figure IV.5. It uses two convolutional
encoder for numerical weather prediction data (2D convolutions in the spatial dimension,
3 layers) and ground stations data (1D convolutions in the temporal dimension, 2 layers)
to project the large amount of input data onto a latent space of dimension (13, 60).
A Multi-Layer Perceptron of two fully connected layers is added with ReLU activation
to obtain a time series of multivariate Gaussian distribution. Final care is given to en-
sure positive semi-definiteness for the covariance matrix with exponential and hyperbolic
tangent activation functions for the correlation matrix.

To avoid over-fitting, dropout layers are added to each of the two encoded blocks. The
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Figure IV.5 – Architecture of the ConvE-STF model illustrated for a forecast issue time
t. Probabilistic forecast at the target station for lead times t+ 1 : t+ k are obtained from
numerical weather prediction XNW P

t = XNW P (t : t + KNW P ) and recent neighboring
ground stations measurements XGS

t = XGS(t−KGS : t). A convolutional encoder outputs
a time series of multivariate Gaussian distributions {f̂k}k∈[1,K] that are passed through
an invertible transform T to output the predicted posterior distributions {ĝk}k∈[1,K].

final model with Gaussian outputs has 2.6 million coefficients. Note that under Gaussian
posterior assumption, the predicted distribution ĝk is equal to the Gaussian distribution
f̂k.

The normalizing flows add-on block is trained together with the main architecture,
transforming the predicted Gaussian multivariate distribution into an arbitrarily shaped
distribution. The transformation is made for each time step and is composed of 10 layers
parameterized with 1 fully connected layer of 128 hidden features. It adds 0.8 million
parameters to the initial model.

The proposed architecture is named thereafter ConvE-STF for Convolutional Encoder
for Short-Term Forecasting. When considering a normalizing flows transformation, it is
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named ConvE-STF-NF.
All hyper-parameters of the ConvE-STF and ConvE-STF-NF models were obtained

using Bayesian optimization presented in Section IV.4.5 to minimize validation loss.

IV.4 Baselines and metrics

We describe below the state-of-the-art methods used as baselines to benchmark the
proposed schemes. Considered performance metrics are detailed in Section IV.4.6.

IV.4.1 Closest AROME grid point

The most straightforward baseline consists in considering the output of the AROME
numerical weather prediction model at the closest grid point (ic, jc) to the target station.
A linear regression computed on the training split is applied to the prediction

ΨAROME(X t) =
XNW P

t,(ic,jc) − β̂0

β̂1
, (IV.11)

with β̂0 and β̂1 computed using ordinary least squares. XNW P
t,(ic,jc) is the numerical weather

prediction wind speed at the closest grid point from the target station. It is a deterministic
output and is noted AROME in all that follows.

IV.4.2 Analogs forecasting

Analogs forecasting is a simple yet efficient statistical method for the forecasting of
dynamical systems with unknown dynamics [56]. From a catalog of past trajectories,
analog situations are looked for according to a certain distance metric. The D nearest
analogs of the current situation are selected, and their trajectories are considered as
possible future scenarios. The analogs are weighted according to their distances to the
target situation, then mean and covariance matrices are estimated from the ensemble of
trajectories under Gaussian assumption.

In this work, the distance metric in the catalog is the Minkowski norm on the variables
of the reduced dataset. The weighting of the trajectories and the estimation of the Gaus-
sian distribution is done under locally-constant assumption using D = 12 analogs (see
e.g., [56] and [182]). Hyper-parameters of the analogs model were tuned with Bayesian
optimization to minimize the validation loss.
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IV.4.3 Gradient Boosting Machine

Gradient boosting machines are tree-based regressions methods that train an ensemble
of weak-learner regression trees to perform a multiple nonlinear regression between output
and input. Such methods are implemented in [4] to create probabilistic significant wave
height forecasts for offshore wind turbine access forecasting.

The gradient boosting algorithm uses the steepest descent algorithm to optimize the
ensemble of regression trees according to a given loss function [186]. Hyper-parameters
are the number of regression trees, the number of splits for each tree and a shrink-
age parameter that controls the weight of each tree in the ensemble. These parameters
were tuned with Bayesian optimization to minimize the validation loss. In this work, a
gradient boosting machine is trained with the quantile loss for each predicted quantile
α ∈ Q = {0.05, 0.15, ..., 0.45, 0.5, 0.55, ... , 0.85, 0.95}, variable n ∈ [1, N ] and lead time
k ∈ [1, K]. For a 2-dimensional output, the full model then consists in 1320 individ-
ual models. The predicted quantiles form a marginal quantile function for the 2 output
parameters for each lead time. The obtained model is noted ΨGBM and referred to as
GBM.

ΨGBM(Xr
t ) = {ΨGBM

α, n, k(Xr
t )}α∈Q, n∈[1,N ], k∈[1,K]. (IV.12)

Overall the output of each individual gradient boosting machine model contains the
quantile prediction ΨGBM

α, n, k(Xr
t ) = q̂α, n, k for a specific quantile α, variable n and lead

time k.
For each time step and variable we approximate the quantile function from the quan-

tiles of the distribution. In addition to second order derivative continuity at the predicted
knots, the monotony of the quantile function needs to be preserved. Cubic spline interpo-
lation is then used [140, 141] to obtain the quantile function from the predicted knots. It is
a commonly used assumption for quantile function smoothing [4, 142]. Samples can then
be drawn from this approximate quantile function to compute scores and generate scenar-
ios. The quantile probabilistic description has the advantage of being assumption-free on
the shape of the posterior distribution. However, there is no explicit formulation for the
likelihood of the distribution and quantile crossing can appear. It also has a substantial
computational cost by requiring one model per quantile, variable, and lead time. It has
no explicit control for over-fitting, as it is only controlled by the hyper-parameters of the
fitting of regression trees.
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IV.4.4 ConvE-STF-reduced

To compare the statistical baselines with the proposed architecture, an additional
baseline model is added. It consists of a similar convolutional architecture as the one of
the proposed model in Section IV.3, but running with the reduced dataset described in
Section IV.2.5 as input. This reduced baseline is noted ConvE-STF-reduced. Its hyper-
parameters are tuned using Bayesian optimization to minimize the validation loss.

IV.4.5 Hyper-parameters tuning

We tuned the hyper-parameters of the different models presented in the following
sections, and those of the reduced dataset in Section IV.2.5, using a Bayesian optimization
framework [247] with the loss metric on the validation dataset as optimization metric.
Using the Python package optuna [247], it relies on tree structured Parzen estimators [248]
to retrieve optimal hyper-parameters within a pre-defined search space. This Bayesian
optimization applies to the following hyper-parameters for the ConvE-STF model: kernel
size, pool size, number of convolutional layers, dropout rates, latent space dimensions,
number of fully connected layers, number of neurons in the fully connected layers, learning
rate, weight decay, learning rate decay rate, batch size. For the gradient boosting machine,
it is applied to reduced dataset features, learning rate, number of trees, maximum depth,
minimum leaf samples and minimum split samples. For the analogs, it is applied to number
of analogs, distance metric and regression mode. Eventually for the normalizing flows, the
number of layers, number of hidden features, number of spline function bins and dropout
rate are optimized.

IV.4.6 Evaluation metrics

Forecast quality is evaluated using an ensemble of deterministic and probabilistic met-
rics [50]. Deterministic metrics compare the mean or median of the predicted distribution
with observations. The mean value of the predicted distribution f̂t+k is ¯̂yt+k and the me-
dian value is ˜̂yt+k. The Root Mean Squared Error (RMSE) and the Mean Absolute Error
(MAE) are used in this work. Both metrics do not penalize outliers as strongly. The met-
rics are computed for each lead time k and noted with a subscript k when given as such.
Global metrics across the dataset are averaged over all lead times and are noted without
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subscripts.

RMSEk =

√√√√ 1
T

T∑
t=1

(yt+k − ¯̂yt+k)2 (IV.13)

MAEk = 1
T

T∑
t=1
|yt+k − ˜̂yt+k| (IV.14)

For probabilistic forecasts, the full predicted distribution should be scored against the
observations. The Continuous Ranked Probability Score (CRPS) is a proper scoring rule
for evaluating the performance of a distribution versus observations [49]. It is a univariate
score that is computed for each variable n ∈ [1, N ] and noted with a subscript n for the
variables. The global score is averaged across variables and noted without subscript. The
CRPS integrates the difference between the predicted cumulative density function and
the indicator function at the observation value.

CRPSn = 1
T

1
K

T∑
t=1

K∑
k=1

∫ +∞

−∞

(
F̂t+k(y)− 1(y ≤ yn

t+k)
)2
dy (IV.15)

When the cumulative density function is not tractable, the CRPS can be computed from
samples drawn from the distribution. Authors in [49] show that the CRPS can be com-
puted from an ensemble of L samples as

CRPSn = 1
T

1
K

T∑
t=1

K∑
k=1

[
1
L

L∑
l=1

(∣∣∣yn
t+k − ŷ

n,(l)
t+k

∣∣∣)− 1
2L2

L∑
l=1

L∑
m=1

(∣∣∣ŷn,(l)
t+k − ŷ

n,(m)
t+k

∣∣∣)] , (IV.16)

with ŷ
n,(l)
t+k a sample l ∈ [1, L] from the predicted distribution of variable n and yn

t+k

the corresponding observation. The CRPS is equivalent to the MAE for deterministic
forecasts [50].

The Energy Score (ES) is the multivariate generalization of the CRPS and can be
computed from samples seemingly to Equation (IV.16) such that

ES = 1
T

1
K

T∑
t=1

K∑
k=1

[
1
L

L∑
l=1

(∣∣∣∣∣∣yt+k − ŷ
(l)
t+k

∣∣∣∣∣∣)− 1
2L2

L∑
l=1

L∑
m=1

(∣∣∣∣∣∣ŷ(l)
t+k − ŷ

(m)
t+k

∣∣∣∣∣∣)] , (IV.17)

with ||·|| the Euclidian norm. CRPS and ES are mostly sensitive to the first moments of the
distributions [58] so the Variogram Score (VS) is introduced. It only scores the correlation
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structure between the predicted variables and ignores the bias. It can be computed from
samples as

V Sp = 1
T

1
K

T∑
t=1

K∑
k=1

 N∑
i=1

N∑
j=1

(∣∣∣yi
t+k − y

j
t+k

∣∣∣p − 1
L

L∑
l=1

∣∣∣ŷi,(l)
t+k − ŷ

j,(l)
t+k

∣∣∣p)2 , (IV.18)

with p the order of the variogram. It is set to 0.5 as recommended by [50], and the
scores V S0.5 is noted V S for simplicity.

Eventually, rank histograms are used to assess the reliability of the forecasts [249].
A probabilistic forecast is reliable if it predicts probabilities that fits with the observed
relative frequencies. In the rank histogram, the quantiles in which fall the observations are
counted. For an infinite number of observations, 1

Q
of it should fall in the α ∈ Q quantile.

The frequency of observed observations are displayed as bar plots and a perfectly reliable
forecast should display a flat rank histogram (i.e. uniform distribution). The multivariate
generalization of the univariate rank histogram can be found in [48].

The Rank histogram is quantitatively evaluated thanks to the reliability index that
measures the mean deviation of the bins to the perfect reliable model. With b̂j the fre-
quency of observation falling below the j-th predicted quantile α̂j, the reliability index is
defined as:

REL = 1
Q

Q∑
j=1
|b̂j −

1
Q
| (IV.19)

IV.5 Results

IV.5.1 Forecast evaluation

Table IV.1 show the generalized scores obtained through cross-validation, with the
best values shown in bold. The results proved to be similar for all training-validation-test
splits. All implemented methods improve the RMSE compared to the AROME forecast,
showing the necessity to post-process the output of numerical weather prediction models
for a specific target station.

Baseline models using the reduced dataset as input are all skillfull at post-processing
the numerical weather prediction with for instance a 26% decrease in RMSE for the
gradient boosting machine forecast. The analogs forecast also improves by 14% the RMSE,
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Table IV.1 – Probabilistic and deterministic metrics of implemented forecast models.
The best obtained scores are show in bold. The bracket scores show the MAE which is
equivalent to the CRPS for deterministic forecasts. The scores are given as mean and
standard deviation over the 6 splits.

Model RMSE [m.s−1] CRPS [m.s−1] ES [m.s−1] VS
(MAE [m.s−1])

AROME 2.60 ± 0.04 (1.98 ± 0.02) - -
Analogs 2.23 ± 0.09 1.20 ± 0.05 1.89 ± 0.07 0.61 ± 0.01
GBM 1.93 ± 0.04 1.05 ± 0.02 1.65 ± 0.03 0.52 ± 0.01
ConvE-STF-reduced 1.93 ± 0.04 1.04 ± 0.02 1.65 ± 0.03 0.53 ± 0.02
ConvE-STF 1.57± 0.04 0.84± 0.02 1.31± 0.04 0.39 ± 0.01
ConvE-STF - NF 1.56 ± 0.07 0.82 ± 0.04 1.29 ± 0.06 0.39 ± 0.02

with a higher variability. The proposed ConvE-STF architecture largely outperforms the
gradient boosting machine by 0.36m.s−1 in RMSE and 0.21m.s−1 in CRPS, achieving a
40% reduction in RMSE compared to AROME. The ConvE-STF-reduced forecast is just
as good as the gradient boosting machine model but is largely surpassed by the ConvE-
STF model using the full input. It highlights the presence of explanatory variables in the
input dataset and illustrates the capabilities of deep learning architecture to process a
large amount of heterogeneous input. The ConvE-STF is 25% better that the gradient
boosting machine at predicting the correlation structure between the outputs as shown by
the VS, showing that the Gaussian description is competitive for the 2-dimensional wind
probabilistic forecast. Eventually, the ConvE-STF with normalizing flows block slightly
improves the scores of the Gaussian output, with a higher variability between splits.

The evolution of the generalized RMSE as function of lead time is shown in Figure
IV.6. Whereas the error clearly increases with the lead time for the AROME baseline, it is
not exactly the case for the other models, for which the error stagnates or even decreases
for the first 4 hours of forecast. The trend is not visible in the AROME baseline, and is
equally captured by analogs, gradient boosting machine, and ConvE-STF methods. The
same error trend is obtained whatever input data is taken as input. It means that the
forecast error is more explained 2 hours ahead than 6 minutes ahead, which can either be
due to diurnal effects coupled with fixed forecast issue times (6am, 12am, 6pm, 12pm), or
lags between closest ground stations and target station. All in all, the proposed approach
largely outperforms all baselines for all lead times.
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Figure IV.6 – Evolution of the RMSE for all models as function of lead time. The top
dashed line is the output of the numerical weather prediction AROME corrected.

The spatio-temporal correlation between the neighboring stations and the target sta-
tion helps correcting the numerical weather prediction in the very short-term. The ConvE-
STF model, with its ability of ingesting a large amount of input data, shows a significant
improvement throughout the forecast window.

IV.5.2 Reliability

In Figure IV.7, the observed quantiles are plotted versus the predicted quantiles as
a rank histogram for all the forecast models. The dashed line represents a perfectly re-
liable forecast. The rank histogram is computed for each train-validation-test split and
the 50% inter-quantile range between splits is shown as error bars, and found to be
the main source of variability in the forecast scoring as described in Section II.1.5. The
gradient boosting machine and ConvE-STF-reduced models show clear U-shaped rank
histogram, which shows underdispersion (i.e. an under-estimation of the uncertainty).
The analogs model, while showing poor deterministic and probabilistic quality metrics,
is reliable though slightly overdispersive. Indeed, the analogs estimate a Gaussian distri-
bution from existing trajectories, which guarantee a certain stability in the uncertainty
estimation. However, the limited size of the catalog used can explain the overdispersion.
The ConvE-STF and ConvE-STF-NF reliability is even more acceptable, with a slight
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Figure IV.7 – Generalized 2D rank histograms obtained on the test set. Perfect model
calibration is showed as a dashed black line.

difference for extreme quantiles. The difference in reliability between ConvE-STF and
ConvE-STF-reduced shows that the choice of input data is of greater importance for
forecast reliability than the choice of the posterior distribution. The ConvE-STF-NF and
ConvE-STF achieve relatively similar reliability patterns with different posterior assump-
tions but same input data and similar architectures.

The generalized reliability index is given in Table IV.2 to quantitatively assess the
models’ reliability. The very high variability with cross-validation shows the sensitivity
of models’ reliability to the training dataset. It highlights the limitations of the obtained
models due to dataset length. The ConvE-STF-NF model is the most reliable model
with a reliability index of 1.4, and the lowest variability. The use of normalizing flows
improves the model’s reliability, showing the interest of relaxing the posterior parametric
assumption for multivariate probabilistic forecast.
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Table IV.2 – Generalized reliability index for all models

Model Reliability index
Analogs 1.6 ± 0.5
Gradient boosting machine 3.2 ± 0.5
ConvE-STF-reduced 2.1 ± 1.2
ConvE-STF 1.5 ± 0.6
ConvE-STF - NF 1.4 ± 0.4

IV.5.3 Data representativity

This study relies on a 33 months-long dataset to develop and benchmark deep-learning-
based post-processing models. Following similar previous studies [198, 210, 250], we aim
to assess the potential impact of the length of training dataset on the generalization
performance of the trained models. We then train and assess the proposed ConvE-STF
models using training datasets of different lengths from 2 months to 2 years as illustrated
in FigureIV.8. Overall, we observe the expected trend, the longer the training dataset, the
better the model performance. In FigureIV.8(a), the RMSE skill score shows that from 60-
days-long training datasets, we train ConvE-STF models which are more skillful than the
AROME forecast. We also note a slower improvement of the forecasting skills from one-
year-long datasets, as well as a lower variability between cross-validation splits. Similar
results are observed for the model reliability in FigureIV.8(b). These results support the
relevance of training datasets covering at least one or two years to retrieve a robust average
improvement through the ConvE-STF models of the AROME forecasts.

IV.5.4 Computational cost

The computational cost of the different models was evaluated for training, inference
and sampling. The deep learning models (ConvE-STF, ConvE-STF-NF, ConvE-STF-
reduced) are trained on a single 32Go NCIDA RTX A6000 GPU. The gradient boosting
model is trained on multiple (60) AMD EPYC 7763 CPU. The obtained computational
costs are given in Table IV.3.

The training of a gradient boosting machine for quantile forecasting requires the train-
ing of a single model for each variable, lead time and quantile. In this study this results
in 1320 individual models, and a heavy model file (348 Mb), requiring multi-CPU train-

152



IV.5. Results

Figure IV.8 – Model improvement with training dataset length obtain with cross-
validation. RMSE skill score versus AROME forecast (a) and reliability index (b).

Table IV.3 – Computational cost comparison

Model Machine Model
size [Mb]

Training CPU/GPU
time [s]

Inference
time [s]

Sampling
time [s]

Analogs CPU 0 0 0.076 0.076
GBM 60 CPU 348 3600 0.0005 1.05
ConvE-STF-reduced GPU 1 45 (0.4 s/epoch) 0.008 0.003
ConvE-STF GPU 10 500 (1.4 s/epoch) 0.015 0.006
ConvE-STF - NF GPU 16 3500 (4.3 s/epoch) 0.018 0.18

ing. The training time is then O(NTQ), with N the number of samples, T the number
of predicted lead times and Q the number of quantiles. Deep learning models are easily
parallelized using GPU, resulting in a training time of ≈ 500s for ConvE-STF on a single
GPU. The addition of normalizing flows implies transformations inversion that adds com-
putational cost for error gradient back propagation, making it 3 times slower to train than
ConvE-STF. Analog methods need no training time, making it a very simple to imple-
ment probabilistic forecast framework. The sampling from the predicted distributions is
more efficient under Gaussian assumption. Normalizing flows transformation makes it 300
times slower than with a simple Gaussian posterior, and the sampling using the empirical
quantile function for gradient boosting machine is 2000 times slower.
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IV.5.5 Probabilistic wind speed forecasts

The quantile description output by the gradient boosting machine is flexible as it
makes no assumption on the underlying distribution. It can in theory capture heavy tail
or multi modal distribution. However, it is limited to the prediction marginal distributions,
and the correlation structure is not explicitly described. This is observed with the VS in
Section IV.5.1. The lack of correlation structure in the gradient boosting machine output
is a drawback for the joint probabilistic forecasting of correlated variables. For the 2-
dimensional wind speed, it can result in unrealistic sampled wind direction. Though it is
hard to measure the impact of the correlation structure with standard statistical metrics,
it is expected to strongly impact the generation of multivariate scenarios for offshore wind
operations weather window forecasting.

In the ConvE-STF and analogs methods, a multivariate Gaussian assumption is made
for the output with (2, 2) covariance matrices. The Gaussian assumption can be relaxed
using normalizing flows in the ConvE-STF-NF model but no clear quantitative effects
are observed in terms of model performance. However, the normalizing flows approach
adds little computational cost to the previous Gaussian assumption. By construction, the
likelihood can be easily calculated, and samples can be directly generated. It can in theory
adapt to complicated posterior distributions with a limited added model complexity. A
sample from the latent Gaussian distribution is passed through several layers of neural
splines [125] to be transformed into a sample in real space. The non-linearities within the
neural spline flows can approximate very complex distributions and are conditioned by
the input data. By doing so, we lift any assumption on the posterior data, compared to
the quantile approach or Gaussian assumption.

The shapes of the predicted distributions from the different methods are illustrated
in Figure IV.9 for two entries in the test dataset. For the first entry (figures (a), (c),
(e)), the gradient boosting machine distribution has heavy tails, showing the flexibility
of the quantiles. For the second entry (figures (b), (d), (f)), it has a very low spread,
probably due to over-fitting. Figures (a) and (b) show multi-modal distributions obtained
with normalizing flows. The distributions shapes are not very different from the Gaussian
distributions in figures (c), (d), but show a discretization in wind direction. This is an
artefact of the dataset, knowing that the wind direction at the target station is measured
with a resolution of 5 degrees. Normalizing flows can partially capture this complicated
relationship between the predicted variables in a non-supervised way. It shows the great
flexibility of normalizing flows for probabilistic forecasting.
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Figure IV.9 – The three different probabilistic approaches are illustrated on two entries
of the dataset. Samples generated from the predicted distribution in the generative case
(ConvE-STF-NF), Gaussian case (ConvE-STF) and quantile case (Gradient boosting ma-
chine, GBM) are scattered on polar plots of wind speed and wind direction. The obser-
vation is shown as a blue circle and the AROME prediction as an orange circle.
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Figure IV.10 – Sensitivity of the RMSE to the number of ground stations taken as input
(a) and to the size of the numerical weather prediction input (b). The dashed line is
the generalized RMSE, and blue error bars show the 50% inter-quantile range over the 6
splits.

IV.5.6 Input sensitivity

The ConvE-STF is trained with different input sets to compare the value of each data
source. The size of the numerical weather prediction domain and the number of neigh-
boring stations are the two main parameters considered for sensitivity. They are crucial
parameters for the method generalization, and they can give indications on explanatory
variables importance.

In Figure IV.10 (a), the sensitivity of RMSE to the number of ground stations used
as input is plotted. A clear trend is identified, with a decreasing RMSE for the 12 closest
stations, and a stabilization for an increased number of stations. This validates the choice
of 12 closest stations as input for the main model. This optimal number of input stations
however is strongly depending on the experimental setup. Firstly, it is site-dependant,
and represents the limit of spatio-temporal correlation between measured parameters and
target parameters. This is function of the distance and position of the neighboring ground
stations, which will be specific for every site. Secondly, it depends on the length of the
time series considered as input. In this study, we limited the length of the neighboring
measurements time series to 6 hours. Longer time series might then exhibit larger areas
of spatio-temporal correlation. Eventually, it is depending on the length of the forecast
window, which is for this experiment limited to 6 hours.

In Figure IV.10 (b), the sensitivity to the size of the input numerical weather prediction
mask is shown. The change in input size (from 20x20 images to 120x159 images) implies a
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Figure IV.11 – Sensitivity of the RMSE to the input data. Blue bars show the generalized
RMSE, and error bars show the 50% inter-quantile range over the 6 splits. Input data
is the combination of neighboring ground stations (GS), Numerical Weather Prediction
(NWP) and closest numerical weather prediction grid point (Closest).

change in the convolutional architecture (2 to 3 layers). A hyper-parameter tuning for the
numerical weather prediction data encoder was made for each input size using Bayesian
optimization as described in Section IV.4.5. The link between forecast error and numerical
weather prediction input size is not as straightforward and can only be discussed for this
specific site. The best performances are obtained with a mask of 2 degrees in latitude and
longitude. It is possible that the larger input area in this specific region does not carry
more information than the smaller input mask. But there is no guarantee that even larger
masks would not bring additional information. In particular, the atmospheric circulation
in the eastern Gulf of Lion is notably influenced by the situation in the Gulf of Genoa
and Ligurian Sea which would require a wider input mask.

In Figure IV.11, we report the performance of ConvE-STF models using different com-
binations of wind data as inputs. We consider three wind data sources: namely, the wind
measurements from ground stations input (GS), the wind prediction from the operational
numerical weather prediction (NWP) for the considered domain, and the wind prediction
from the operational numerical weather prediction (NWP) for the grid point the closest
to the targeted offshore location (closest) (see FigureIV.5). These results illustrate the rel-
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ative importance of the different data sources in the prediction of the ConvE-STF model.
The addition of ground stations input greatly improves the RMSE compared to the two
central bars. It highlights the importance of neighboring measurements as explanatory
variables. From the GS only case, it can be noted that both the addition of numerical
weather prediction input and closest grid point input improve the forecast post-processing.
It shows that information can be extracted from regional forecasts to improve the forecast
at a target station, but that it is hard to capture the forecast at the closest grid point
using convolution neural network.

IV.5.7 Qualitative improvements

The forecast quality of ConvE-STF is analyzed as function of the weather situations.
The RMSE improvement of ConvE-STF and gradient boosting machine models compared
to AROME closest grid point is shown in Figure IV.12. The ConvE-STF model shows
general improvement in RMSE compared to AROME, with a RMSE reduction for most
wind speed and direction. It shows the model’s skills at post-processing numerical weather
prediction in most weather situations.

The patterns are relatively similar for both models, but ConvE-STF is notably more
efficient than the gradient boosting machine for South-West-blowing winds. This can be
due to the processing of a larger amount of coastal in-situ measurements situated upwind
from the target station.

However, both models fail to improve the RMSE for North-East and South-West winds
with an increased error compared to AROME closest grid point. It is important to note
that such winds are relatively rare in the eastern gulf of Lion. Thus, this likely illustrates a
shortcoming of the considered training configurations with two-year-long datasets. When
such wind situations are not present in the training dataset, deep learning models cannot
extrapolate during the test phase for so-called out-of-distribution samples.

IV.6 Conclusion and discussion

This paper proposes a deep learning architecture for the probabilistic wind speed fore-
cast at sea. It uses convolutional neural network to process a large amount of input data
and is compared to state-of-the-art statistical methods. Several probabilistic assumptions
are proposed for multivariate probabilistic forecasting. A Gaussian posterior is compared

158



IV.6. Conclusion and discussion

Figure IV.12 – RMSE improvement between ConvE-STF, gradient boosting machine
(GBM) and AROME. The RMSE improvement (RMSE(AROME) - RMSE(model)) is
shown in color, with blue sectors indicating a RMSE decrease compared to AROME, and
red sectors a RMSE increase. The RMSE improvement is plotted as function of wind
direction and wind speed.

to a normalizing flows and quantile approaches. The proposed method proves skillful at
improving the short-term wind forecast (1 to 6 hours ahead) at a target offshore location,
with a 40% reduction in RMSE compared to numerical weather prediction forecast. Other
baseline methods improve the forecasts by 14% for analogs to 26% for the gradient boost-
ing machine. It stresses the importance of numerical weather prediction post-processing
for offshore applications. Furthermore, the proposed architecture can emulate probabilistic
forecasts with a satisfying reliability.

The proposed ConvE-STF architecture shows the best performance in terms of de-
terministic and probabilistic metrics. It shows an acceptable forecast reliability, with a
marginal gain for a Gaussian assumption compared to normalizing flows. Normalizing
flows addition can reproduce highly non-Gaussian behaviors for a relatively low compu-
tational cost. This can be of great use for multivariate probabilistic metocean forecasting.
Other generative models such as GAN, VAE or diffusion models could probably achieve
similar results, and were not explored in this study. Normalizing flows however provide a
simple yet efficient method to relax the parametric assumption on the posterior distribu-
tion.

The use of deep learning methods allows the integration of various sources of data.
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It permits the use of recent neighboring measurements that have a great impact on the
forecast correction. In the context of offshore operations, it shows the opportunity of
post-processing numerical weather prediction using coastal measurements. Moreover, once
trained, deep learning models run fast and could enable short-term operational decision
making based on high frequency forecasts.

Normalizing flows are used as an add-on block to the ConvE-STF architecture with
Gaussian assumption. The normalizing flows transformations conditioning can be con-
structed in different ways. It is applied in this paper for each lead time independently,
and the sampling is to be done for each lead time. The temporal correlation between lead
times is not explicit. Whether normalizing flows can be used to jointly model the temporal
correlation and variable correlation is still an open question [44].

The considered dataset has inherent limitations. It would be beneficial to comple-
ment the study with an extended dataset. The forecast horizon is here limited to 6 hours
after forecast issue time. In real operational contexts, offshore operations planning and
execution [5], would likely require the extension to 24-hour forecasts. Operational NWP
forecasts fulfill this requirement [9]. Furthermore, latency of numerical predictions and in-
situ measurements should be included in the experimental framework. Our experiments
also assess how the length of the training dataset impacts the forecasting performance
of the proposed deep learning scheme. While we retrieve significant average improvement
compared with the operational NWP forecast using a 2-year-long training dataset, we
also point out limitations for rare events, especially South-West and North-East winds
in our case-study. This is likely a limiting factor for a complete forecast evaluation [66],
however it shows that a skillful data-driven model can be obtained using 2 years of train-
ing data. Related studies applied to wind speed forecasting often use shorter or similar
datasets to train post-processing models [198, 210, 250]. Extending the considered dataset
to longer times series strongly depends on the availability of longer time series of offshore
measurements and requires the deployment of dedicated in-situ observatories [246]. The
availability of ensemble NWP forecasts also seems appealing both as a complementary
benchmarking baseline as well as to explore how deep learning schemes could benefit
from ensemble forecasts as input data [251]. Furthermore, it would be very beneficial to
compare the forecasts’ reliability with the ensemble prediction of AROME to assess the
impact of data representativity on forecast calibration.

Other sources of data could be used to improve the post-processing of numerical wind
forecast. For offshore surface winds, sea surface roughness data through satellite Synthetic
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Aperture Radar (SAR) images provides high-resolution information [252]. To date, SAR
images have a to low temporal availability (2 to 3 days) to be integrated into an operational
post-processing model. Further studies on the impact of marine exogenous variables for
offshore wind forecasting could be considered.

This study could be extended to jointly forecast wind and wave parameters [253].
Potential non-Gaussian distributions are expected between wind and wave parameters
forecast uncertainty. From there, the value of the forecast could be evaluated with re-
gards to probabilistic operational decision making by modelling a realistic maintenance
operation [5, 6]. The model reliability is then a crucial parameter to justify the operational
use of probabilistic forecasts.

This research has been supported by France Energies Marines and the French Gov-
ernment, managed by the Agence Nationale de la Recherche under the Investissements
d’Avenir program, with the reference ANR-10-IEED-0006-34. This work was carried out in
the framework of the FLOWTOM project. It is supported by the ANR project OceaniX.

Meteorological data used in this study are available online through the MeteoNet
data set. The code developed for the probabilistic short-term forecasting is accessible via
https://github.com/rmarcille/conve_stf_meteonet.git [254] and uses code from
Lguensat et al. [56] for analogs, and Durkan et al. [255] for normalizing flows. The pre-
processed dataset is accessible through [256].
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Chapter V

DAY-AHEAD PROBABILISTIC

FORECASTING OF OPERATIONAL

WEATHER WINDOWS

Preamble

Using the models developed in Chapter IV, this chapter presents results obtained on a
realistic dataset for the joint probabilistic forecasting of wind and wave. A dataset based
on LIDAR and wave buoy campaigns in the Gulf of Lion off the coast of Marseille is built
and presented in Section V.2. This dataset gathers numerical weather and wave predic-
tions, weather in-situ data from coastal stations and neighbouring buoy measurements
in the Gulf of Lion. Because of its location next to future development areas for floating
offshore wind energy in the French Mediterranean Sea and its unperturbed wind and wave
measurements, this site is a great study case for forecast models development.

The models presented in Chapter IV are trained and scored on this dataset for a 24
hours ahead forecast of wind and wave parameters. The models adaptations are presented
in Section V.3, with the considered benchmark models. The interest of jointly forecast-
ing wind and wave is discussed in Section V.4, and the validity of Gaussian posterior
assumption is evaluated for the parameters of interest.

A description of scenarios generation strategies is given in Section V.3.2. In partic-
ular, the Gaussian copula assumption is presented and evaluated for this study case.
The possibility to relax the posterior assumptions on the temporal correlation thanks to
normalizing flows is discussed. Several frameworks are proposed and experimented. Even-
tually, the quality of the different scenario generation methods is evaluated. From the
scenario forecasts, value metrics for offshore wind energy maintenance operations are pre-
sented and proposed in Section V.3.3.3. In connection with the recent literature, a research
direction towards an operational risk consideration in the value metric is proposed.
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V.1 Introduction

Offshore operations are sensitive to different environmental variables. In Chapter IV,
the probabilistic forecasting of wind speed is studied in a multivariate setup. However,
most studies applied to weather window forecasting for offshore operations include wave
parameters [4, 7, 8, 33]. To create a forecast model that could be used for the weather
window forecasting, these wave parameters should be included with the wind speed. As
described in Section I.2.4.2, the relationship between wind and wave parameters is com-
plex, and should be modelled carefully. Published work studying jointly wind and wave
parameters are applied to the generation of hindcast time series [34–37]. To the best of
our knowledge, [38] is the only published work to consider jointly wind and wave pa-
rameters in a probabilistic forecast framework. It however focuses on vessel’s response to
uncertain environmental conditions. In our opinion, the link with weather window fore-
casting and decision-making should be further studied. To that end, a realistic case study
is constructed based on two years of co-located wind and wave measurements off the
coast of Marseille. The study site, situated on the Planier island, is particularly repre-
sentative of offshore wind energy sites in the Gulf of Lion. It appears as a prime location
for research studies dedicated to offshore wind energy site characterization in the French
Mediterranean Sea.

The integration of probabilistic forecasts for time dependent decision-making requires
the sampling of trajectories [144, 145]. For optimal operational decision-making, the prob-
ability of weather window should be computed [4, 5]. It corresponds to a probability of
exceedance over a sliding time window, and then requires the use of weather scenarios.
Indeed, the model presented in Chapter IV is trained to output probability densities for
the individual lead times independently. Being able to sample coherently trajectories re-
quires additional model engineering. In Section II.2.3, an introduction to the generation
of weather scenarios is given. It describes the importance of methods based on the use
of copulas [149] in the literature for generating stochastic scenarios [151, 152]. Copulas
are mathematical object that model the high-dimensional dependency between marginal
distributions. A review of copulas-based methods for times series can be found in [155].
However, these methods are limited for multivariate conditional scenario generation for
several reasons. The construction of the copulas does not necessarily allow for likelihood
optimization. For Gaussian copulas, which could in theory be taken conditional to input
data, the construction of the covariance matrix is prone to numerical instabilities. More-
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over, for the weather window forecasting, multivariate dependent time series are required.
Since copulas need univariate marginals, they can not be easily applied in a multivariate
framework. Research work on conditional copulas [153] and temporal dependent copulas
[154] could be promising solutions. To the best of our knowledge, these methods have
never been applied to environmental time series.

Alternatively, the capabilities of normalizing flows could be used to generate multi-
variate scenarios. The recent work published by [59] is an example of how the temporal
relationship between predicted timesteps can be modelled in the latent space. The authors
propose to train a RNN to condition the normalizing flow, which would take as input both
covariates and the latest observations. By recursively conditioning the normalizing flow
in the forecast window, one can train to predict correlated samples through timesteps, by
starting from a random sample for lead time k = 1. However, the training of the RNN
conditioner implies that the target time series is used as input during the forecasting,
making it a one-step ahead forecast framework, which is not the case of this study. The
RNN conditioner should be realistically trained to be able to capture temporal variations
during inference, so a realistic time series should be input.

A more straightforward approach would be to directly train the normalizing flow in
the trajectories space, so that the latent distribution encompasses both the temporal and
variables dependencies. In this case, the normalizing flow allows for the exact likelihood
computation in the trajectories space, and direct sampling of trajectories. However, this
leads in this study case to a latent space of dimension NK, which creates great difficulties
for training. If a multivariate Gaussian distribution is used in the latent space, it implies
the estimation of a (NK × NK) covariance matrix and NK mean vector for each time
step, with a final dimension D = NK(NK+1)

2 which is prohibitive for a full matrix pre-
diction, and requires the use of covariance parametrizations. Additional assumptions can
be made to simplify the latent space, for example a centred distribution, or a separable
covariance matrix with a tractable temporal covariance matrix (exponential, empirical,
etc.). However, it then assumes that the normalizing flows has sufficient flexibility to cor-
rectly transform samples in dimension NK, and that the conditioning input is sufficiently
large and expressive to do so. It becomes likely that the training fails to converge due to
the high dimension of the system. It is the case in the recent work from [44] in which a
comparison of generative approaches for scenarios forecasting is made. The normalizing
flow is constructed as a bijection between a standard normal distribution and the pre-
dicted variable (wind power, solar power and power load) which is conditioned by latent
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variables extracted from weather forecasts. As opposed to GAN and VAE outputs, the
samples generated from normalizing flows have no auto-correlation. The size of the latent
space and complexity of the system prevents the model to be expressive enough to gener-
ate samples with a realistic temporal evolution. However, the obtained scores are better
than with VAE or GAN, this is due to the fact that the temporal correlation does not
appear in the scores computations. While the authors advocate for the easiness of use
and flexibility of normalizing flows and the quality of the obtained forecasts, we consider
that the generated samples should be temporally sound to be used in temporal-dependant
decision-making applications such as weather window forecasting.

The application of probabilistic forecast models to the planning of offshore operations
requires the development of dedicated metrics [50]. These should be representative of the
real costs associated with the use of forecast models. For weather window estimation, the
forecast errors result in added costs if a vessel is dispatched with non-operable conditions,
or if a weather window is missed. From this observation, [6] proposed an economic metric
for forecast evaluation in link with offshore operations. It is shown in [7] that this paves
the way to optimal decision-making based on the probability of weather window. In [164],
other key indicators for offshore operations are described. In particular, they advocate for
the development of indicators in link with security during operations. As described in [60],
the pressure for economically optimized decision-making can lead to increased risk during
operations. This is confirmed by the discussions that took place within the FLOWTOM
project.

This chapter describes on-going research work that bridges all the aspects described
above. A real case-study is constructed from joint wind and wave measurements. The
probabilistic model ConvE-STF is applied to the forecasting of wind speed at hub height,
significant wave height and wave period. Different methods for generating scenarios from
its predictions are explored. In particular, two innovative methods based on the use of
normalizing flows are proposed. The obtained scenarios predictions are evaluated in an
operational framework. A risk forecasting metric including notions of security is intro-
duced.
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V.2 The Planier island as a realistic study site for
offshore wind energy

Similarly to the dataset used in Chapter IV, a dataset composed of in-situ measure-
ments and numerical forecasts is constructed. It is based on in-situ campaigns off the coast
of Marseille, on the Planier island (introduced in Figure I.7). This dataset is referred to
as the «Planier dataset»hereafter. The Planier situation is illustrated in Figure V.1a, and
the measured wind rose for 2023 is illustrated in Figure V.1b. In the directions of the
dominant winds (North-West and South-East), the planier island is at more than 20 km
of any obstacle, making it a fair study site for offshore wind energy. The pilot floating
wind farm Provence Grand Large and its 3 turbines installed in 2023 is in the vicinity of
the Planier, and is dominated by the same wind regimes. The future development area
for call for tender AO6 is illustrated as an orange box and is located further offshore.
This area is supposed to support the development of 750 MW of floating offshore wind
capacity in the next decade. This makes the Planier development site a crucial study case
for the development of floating offshore wind energy in the Gulf of Lion.

V.2.1 Characteristics of the target measurements

Two LIDAR measurement campaigns at the Planier island are used to construct the
wind speed time series. The first one was conducted by the French offshore wind energy
developer EOLFI-SHELL spanning two years in 2016 and 2017 using a floating LIDAR
next to the island, validated with simultaneous island-based LIDAR measurements. The
second one is financed by France Énergies Marines led project POWSEIDOM and has
been gathering data with a fixed LIDAR on the island since December 2022 onwards.
The wind speed measurements are completed with waves time series measured by the
CANDHIS buoy deployed by the CEREMA and Grand Port Maritime de Marseille since
2011 next to the Planier island under the campaign ID 01305. The combination of these
three data sources allowed for the creation of a 650 days long offshore in-situ time series.

The LIDAR campaign result in time series of the 10-minutes averaged wind speed at
different height levels from 40m to 250m above the LIDAR. Since the limiting parameters
for offshore operations are often taken as the 10-meters above surface wind speed and
lifting height wind speed, we consider the wind speed at 100m above the surface for
target U100[m/s]. It might be relatively low for hub-height lifting for future generation
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(a) Map of the Planier development site and the neigh-
bouring offshore wind energy sites.

(b) Measured wind rose in 2023 at
the Planier development site.

Figure V.1 – The Planier development site is a representative offshore site in the context
of offshore wind energy development in the Gulf of Lion. As illustrated in (b), the area
is dominated by North-West (Mistral) and South-East winds. The Planier island is not
perturbed by coast or obstacles in these dominant directions and is situated 21 km from
the coast in the Mistral direction. The pilot site Provence Grand Large and the tender
area AO6 for 250MW + 750MW extension floating wind farms are shown in orange in
(a).
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Figure V.2 – Time series of measured wave peak period (blue) and wave mean period
(orange) at the Planier CANDHIS buoy. The peak period parameter shows discontinuities,
while the mean period parameter is attenuated by lower energy wave systems with lower
periods.

turbines, but it corresponds to a height at which the wind speed can be extracted from
the AROME numerical weather predictions. The wind direction is only available for the
France Énergies Marines campaign. The EOLFI-SHELL campaign is based on a floating
LIDAR and the buoy’s movements have not been recorded sufficiently well to permit for
wind direction correction.

The CANDHIS buoy’s measurements time series contain different spectral parameters
computed from the wave measurements every 30 minutes. The main limiting parameters
for offshore operations are the significant wave height and the wave period. The significant
wave height of the total sea is considered as target, which can be the result of different
wave systems HS[m]. The wave period parameter is a bit trickier. Usually, the peak wave
period is considered. It is defined as the period of the most energetic peak in the wave
spectrum. However, its definition brings discontinuities in the time series, corresponding to
instants when ne most energetic peak switch from a wave system to another. Though these
discontinuities are physically meaningful, and naturally emerge from numerical modelling,
they are hard to capture by a data-driven model, and make the peak-period a challenging
variable for post-processing. To alleviate these effects, the mean period is considered as
the training target and used as operational limitation hereafter Tm[s]. The discontinuities
in the waves peak period is illustrated in Figure V.2.

The data distributions at the target station are shown in Figure V.3 for 2 years of
joint wind and wave measurements. The relationship between the variables is complex

169



Chapter V – Day-ahead probabilistic forecasting of operational weather windows

(a) Tm as function of HS . (b) Tm as function of U100. (c) HS as function of U100.

Figure V.3 – Scatter plot of the target variables in the test dataset. The individual dis-
tributions are shown at the top and right of the scatter plots. The relationship between
wind speed and wave parameters is complex which advocates for their joint forecasting.

and illustrate the fact that the variables are influenced by external factors (fetch for
wave time series, sea surface temperature for wind speed etc.). The chosen variables do
not make a difference between wind waves and swell, which makes their interpretation
complicated. For a data-driven model to capture such complex dependencies, appropriate
explanatory variables should be used as input. By using a combination of spatialized
numerical predictions and environmental in-situ time series from neighbouring sites, we
aim at providing a sufficient amount of explanatory variables to accurately reconstruct
these relationships.

Not only the designed forecast model should jointly predict the wind and wave param-
eters, but it should also predict their joint forecast uncertainty. The interest of predicting
the joint uncertainty between variables is to be discussed further on. Figure V.4 shows the
scatter plot and distribution of residuals for the target variables computed from the fore-
casts of the closest numerical grid point from the numerical wave and weather predictions
(WW3 and AROME). It shows that the forecast error is positively correlated between
the wave period and significant height, while it is slightly negatively correlated for wind
speed and wave period. The relationship between wind speed residuals and significant
wave height residuals is less significant. These graphs depict the error resulting from the
deterministic forecast from numerical predictions. The uncertainty associated with each
of these forecast points might also show specific correlations. For example, if the wind
speed forecast is heavy tailed, i.e. with a risk of high winds, chances are that the signifi-
cant height of wind waves forecast should also be heavy tailed, and that a sample drawn
from the joint wind speed and wave height distribution should show a high wave height
only if the wind speed is high. This advocates for a multivariate forecasting of wind and
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(a) Tm residuals for WW3 as
function of HS residuals fro
WW3.

(b) Tm residuals for WW3 as
function of U100 residuals for
AROME.

(c) HS residuals for WW3 as
function of U100 residuals for
AROME.

Figure V.4 – Scatter plot of the target variables’ residuals for the numerical predictions
in the test dataset. The individual distributions are shown at the top and right of the
scatter plots. These graphs show the interest in jointly predicting the forecast uncertainty
for these variables.

wave parameters. For offshore operations, joint trajectories of wind speed, wave height
and wave period should be generated to compute the probability of weather windows, and
these trajectories should respect the dependencies between variables.

V.2.2 Input data

The input data used for post-processing the numerical forecasts is similar to the one
used in Chapter IV, centred on the new target on Planier island, and mixing wave and
weather inputs. This dataset is constructed thanks to the data shared by Météo France
for the FLOWTOM project. The different sources of data and their positions relative to
the forecast window are illustrated in figure V.5.

The archives of forecast data from AROME model [27] at 0.025° resolution were shared
for 2016, 2017 and 2023. The output of the AROME model on the 0.025° structured grid
results in (241× 81) maps of variables for lead times k = 0, . . . , K with K = 24, with an
hourly time step. The used variables are the pressure at the mean sea level, the humidity
and temperature at 2 meters above the surface, the wind speed at 10, 50, 100 and 150
meters, the wind gust at 10m, and the wind direction at 10 and 100 meters. This results
in an input vector for forecast issue time t0 of dimensions (1, 81, 241, 10, 25) in (forecast
issue time, latitude, longitude, variables, lead time).

In-situ measurements from the Météo France RADOME observation network were also
shared to help post-processing numerical predictions with recent neighbouring observa-
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Figure V.5 – Illustration of the input and target data in the Planier dataset. The numerical
model data is shown in blue and is available at a time step of 1h in the forecast window of
24 hours. Past measurements of metocean parameters from neigbouring stations for the
last 24 hours are used (orange). The target variables at the Planier island are forecast for
the next 24 hours at a time step of 10 minutes.

tions. Measurement data from the 18 closest coastal stations is used as input, considering
when available the pressure, temperature, wind speed, wind direction and humidity rate
for the last 24 hours of observations at 6 minutes resolution. This results after removing
non-measured parameters (The pressure data is not available for most stations) to an
input vector for forecast issue time t0 of dimensions (1, 63, 240) in (forecast issue time,
variables × stations, past time step).

For wave data, the numerical model used is an implementation of the Wave Watch 3
model from the NOAA [257], using an unstructured grid on the French Mediterranean
Sea (Gulf of Lion and Corsica). It is forced using AROME surface winds which showed to
significantly improve the wave propagation due to a better representation of convective
events [258]. The data is available on a 0.01° structured grid, which was downsampled
to 0.04° to reduce the computational burden. The direction of primary swell, significant
wave height of primary swell, wind waves and total sea, the mean period of wind waves
and total sea are taken as input variables. An input vector at initial forecast time t0 from
WW3 then consists in the wave forecast for the newt 24 hours (from t0 + 1h) of these 6
variables on a (76× 51) structured grid. The input vector has dimensions (1, 51, 76, 6, 24)
in (forecast issue time, latitude, longitude, variables, lead time).

In-situ data relies on deployed wave buoys in the Gulf of Lion. The CEREMA net-
work (https://candhis.cerema.fr) is used to provide in-situ informations, though the
used buoys are far more distant to the target than the coastal stations used for wind
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Figure V.6 – Planier dataset construction, with numerical predictions of wave (WW3)
and weather (AROME), and in-situ measurements of waves (CANDHIS) and weather
(RADOME).

and weather. The used buoys are Leucate, Espiguette, Sète (CEREMA, DREAL Occi-
tanie), Revellata (CEREMA, SHOM), Porquerolles (CEREMA), and Monaco (CEREMA,
Monaco, Service des Travaux Publics) buoys. The considered variables are the significant
wave height of total sea, maximum wave height, temporal mean period, peak period, and
spectral mean period, for the last 24 hours of measurements with a time step of 30 min-
utes. The input CANDHIS vector at forecast issue time t0 is then of dimensions (1, 19, 48)
in (forecast issue time, variables × buoys, past time step).

The spatial extend of the input data is illustrated in Figure V.6. The numerical weather
prediction data covers a wider area around the target than selected in Chapter IV, to
integrate in the training information about the atmospheric circulation in the Gulf of
Genoa that is a driver of the local weather and wind.

Similarly to the dataset used in Chapter IV, the length of available data is an issue
for data representativity. The dataset is split into train, validation and test splits. The
training split is taken as 60% of the dataset, which represents a full year. The validation
and test splits are then only 130 days long. Furthermore, the 2 years of available data are
not continuous, and the seasons are not evenly represented as illustrated in Figure V.7.
The under-representation of autumn and winter months can result in data representativity
issues with an under-representation of strong winter events for example. This is alleviated
by using cross validation to alternatively train and test the model on different parts of the
dataset, but surely advocates for longer in-situ times series. To ensure that all weather
regimes are represented in each of the data splits, the data is grouped per quarter, and
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Figure V.7 – Number of samples per month in the Planier dataset after cleaning. The
months of October, November and December are somewhat under-represented which can
induce data representativity issues in model training and evaluation. Missing data are
primarily due to maintenance periods during the campaigns.

each quarter is split in train, validation and test. More strategies for data splits in weather
applications are detailed in [9].

V.3 Methods

V.3.1 Convolutional encoding for the joint probabilistic fore-
casting of wind and waves

With the same notations as Chapter IV, a deep learning model Ψ with parameters Ξ
is built to predict a probability distribution ĝt+k for a lead time k ahead of a forecast issue
time t, given an input Xt. The posterior distribution ĝt+k is taken either as a Gaussian
distribution parametrized by the output θ̂t+k of the model Ψ, or obtained through a
normalizing flows that transforms a simple latent space into an assumption posterior
distribution.

We adapt the ConvE-STF architecture of Chapter IV to the Planier dataset by adding
the same encoding block for the wave input as for the weather input. Input vectors
are encoded in a latent space by individual CNN, 2-dimensional CNN for spatialized
numerical predictions of waves and weather, and 1-dimensional CNN for in-situ time
series from neighbouring coastal stations and buoys. The direct numerical models output
at the closest grid point is stacked to the latent space before a MLP is used to output the
parameters of distribution. A schematic view of the ConvE-STF model for the Planier

174



V.3. Methods

Figure V.8 – Schematic view of the ConvE-STF and ConvE-STF-NF architectures for the
joint wind and wave forecasting of the Planier dataset. Convolutional blocks are added
to handle new data sources, and the posterior distribution is 3-dimensional. The optional
NF blocks are shown in dashed green.

dataset is show in Figure V.8. The optional blocks associated with the normalizing flows
(NF) configuration are shown in green.

The NF configuration lifts any assumption on the posterior distribution. As discussed
in Section V.2, this is important for the joint probabilistic forecasting of wind and wave
variables which have complex relationships, and which forecast uncertainties can be cor-
related.

V.3.1.1 Gaussian posterior distribution

In contrast with Chapter IV, the target distribution should be 3-dimensional since
it describes the forecast joint uncertainty of wind speed, wave height and wave period.
To construct a valid definite positive covariance matrix, it is then required to predict
its Cholesky decomposition. The Cholesky decomposition states that given a Hermitian
positive-definite matrix A, there exists a unique lower triangular matrix with positive
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diagonal elements L such that
A = LL∗ (V.1)

with L∗ the conjugate transpose of L. We then construct the posterior distribution from
a time series of parameters θ̂t+k describing the mean and Cholesky decomposition of
covariance matrix

θ̂t+k =
[
µ̂(t+ k), λ̂(t+ k), α̂(t+ k)

]
(V.2)

with µ̂(t + k) ∈ RN the predicted mean vector, λ̂(t + k) ∈ R+N the predicted diagonal
elements of the lower-triangular matrix Lt+k, ensured to be positive by an exponential
activation function, and α̂(t + k) ∈ R

N(N−1)/2 the non-diagonal elements of Lt+k such
that for the 3-dimensional case

Lt+k =


λ1(t+ k) 0 0
α1(t+ k) λ2(t+ k) 0
α2(t+ k) α3(t+ k) λ3(t+ k)

 . (V.3)

The covariance matrix of the Gaussian distribution at lead time k can then be computed
as

Σt+k = Lt+kL∗
t+k (V.4)

and be a valid positive-definite covariance matrix. The length of the output vector needed
to parametrize the Gaussian distribution is then N(N+3)

2 , which would become intractable
for high dimensional cases.

The model can now be trained to minimize the negative log-likelihood of the observa-
tions given the parametrized Gaussian posterior distribution.

V.3.1.2 Normalizing flows for assumption-free posteriors

As described in Section II.1.4 and adapted to ConvE-STF in Section IV.3.4, the use
of normalizing flows relaxes assumptions on the posterior distribution. The following as-
sumptions are made for normalizing flows in this experiment:

• The latent distribution is assumed a multivariate Gaussian distribution parametrized
as described in Section V.3.1.1. This assumption is still tractable for a 3-dimensional
latent space, but would become intractable for higher dimensions.

• The flow conditioning is made through a MADE network with 1 hidden layer and
256 hidden features.
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• The bijection transforms are taken as rational quadratic spline functions, and con-
ditioned by the MADE network.

• 6 autoregressive transforms are used with reverse permutation operators between
variables.

Constructed as such, the normalizing flow is trained with the negative log-likelihood. It
is computed with the change of variable formula through the flow as described in Section
II.1.4. In this configuration, each lead time is to be sampled independently. Though the
predicted distributions are implicitly temporally correlated, there is no explicit formula-
tion nor any training on it. In Section V.3.2, alternative ways of embedding a temporal
relationship during sampling are explored.

V.3.2 Weather scenarios generation

In Chapter IV, a method for the probabilistic forecasting of wind speed was proposed,
with a probability density function per lead time, both for parametric (Gaussian) and
non-parametric (normalizing flows) frameworks. The obtained uncertainty prediction is
in the variable space. For temporal decision-making problems such as weather window
estimation under uncertainty, both the cross-variables and temporal correlations are to
be considered. An optimal decision-making under uncertainty for maintenance operations
execution requires the computation of an exceedance probability on a sliding time window.
It is then important to generate scenarios from the probabilistic forecast to allow for this
weather window probability estimation.

A scenario is a tensor S ∈ RN×K containing predicted trajectories of the N variables
in the forecast window k = 1, . . . , K. It can be seen as a sample from a multivariate
distribution G(ŷ1,1 . . . ŷN,K), spanning through the variable and temporal spaces. In the
previous chapters, we only considered the marginal distributions in the variable space.
In this section, tools are explored to describe the scenarios distribution G to permit the
sampling of trajectories. For all that follows, the variable-temporal space of dimension
(N ×K) is called the scenarios space.

V.3.2.1 Copulas-based scenarios generation

The modelling of the temporal dependency can be made through the use of copulas, as
introduced in Section II.2.3. A forecast multivariate temporal process (Ŷ t+1, . . . , Ŷ t+K)
is considered, with ŷt+k ∈ R

N a realization of the random variable Ŷ t+k. It describes
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the evolution of the N predicted variables as function of lead time k = 1, . . . K. We
can flatten the variable space to apply a copula to the forecast (Ŷ1,1, Ŷ1,2, . . . , ŶN,K) =
(Ŷ t+1, . . . , Ŷ t+K). The random variables Ŷn,k, n = 1 . . . N, k = 1 . . . K have marginal
distributions Fn,k. Then according to Sklar’s theorem, there exists a unique copula C

such that the cumulative density function G of (Ŷ t+1, . . . , Ŷ t+K) can be written as

G(ŷ1,1 . . . ŷN,K) = C(F1,1(ŷ1,1), . . . , FN,K(ŷN,K)). (V.5)

In this work, we consider Gaussian copula, that uses a NK-dimensional Gaussian distri-
bution ΦΣ ∼ N (0,Σ) with zero mean and Σ covariance matrix. An illustration of the
sampling process described in Section II.2.3 is shown in Figure V.10.

The (NK × NK) covariance matrix describes the correlations between variables in
the scenarios space. The full estimation of Σ scales as O(NK)2 which is a limit for high
dimensional problems. The covariance matrix should furthermore be positive-definite,
which constrains the types of matrices that can be considered. In the following paragraphs,
several assumptions for covariance matrix construction are presented.

Fixed covariance matrix

The covariance matrix can be set to a fixed covariance matrix using the empirical
covariance from training data, provided that the amount of data is sufficient. Given past
observations Y i:i+K , i = 1 . . . t up to time t, the empirical covariance matrix Σemp can be
obtained as

Σemp(t) = 1
t

t∑
i=1

Y i:i+KY ⊤
i:i+K . (V.6)

An example of empirical covariance is shown in Figure V.9. Each visible block in the
matrix is of dimension (K,K) and represents the temporal correlation between two vari-
ables. Only the variables axis is labelled for clarity. It can be noted that the covariances
for each individual variables, as shown in the block diagonal have relatively similar pat-
terns. The significant wave height tend to have higher temporal correlation and is close to
stationarity, i.e. temporal invariance, while the wind speed covariance shows diurnal vari-
ations and is less stationary. Low temporal correlation is observed between wind speed
and wave period, while the other correlations are not neglectable and justify the joint
forecasting of wind and wave.
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Figure V.9 – Visualisation of the empirical covariance matrix computed on the training
dataset. The diagonal blocks show the variables HS, Tm, U100 temporal covariances for
lead times k = 1, . . . , K

The assumption of a fixed empirical covariance matrix computed on the flattened train-
ing data between lead time and variables is named «empirical Gaussian copula »hereafter,
and is noted ΦΣemp . When doing so, the predicted covariance matrix per time step is not
used totally, since only the individual marginal distributions are recovered. The cross-
variables correlations and their time dependencies are fully modelled by the empirical
covariance matrix obtained from training data.

Since this formulation is by nature recursive, [151] proposed a recursive update of the
covariance matrix through a forgetting factor λ ∈ [0, 1], corresponding to exponential
forgetting

Σemp(t+ 1) = λΣemp(t) + (1− λ)Y t:t+KY ⊤
t:t+K . (V.7)

To overcome the limitations of the empirical covariance, [64, 139] proposed parametric
forms of covariance matrix for Gaussian copulas use. In particular for high-dimensional
problems in energy applications, non-isotropic or non-stationary covariance matrices are
required. Such advanced covariance models are not studied in this thesis and would require
further research work.
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Conditional covariance matrix
The empirical covariance matrix aggregates lots of different weather situations, for which
the cross-variables and temporal dependencies can vary. It appears appealing to parametrize
the covariance matrix conditionally to the input.

Recent works in the wind energy literature try to model the spatio-temporal relation-
ships between wind turbines or wind farms [259, 260]. To do so, the covariance matrix can
be split in a spatial matrix and a temporal matrix under separation assumption. For this
study, the covariance matrix can be split into a temporal matrix for different lead times
in the forecast window k = 1 . . . K and a cross-variables matrix for the environmental
variables n = 1 . . . N . A covariance matrix Σ(n, k) is said to be separable if for every
n1, n2 = 1 . . . N and k1, k2 = 1 . . . K, the correlation Σ(n1, n2, k1, k2) can be expressed as

Σ(n1, n2, k1, k2) = Σvar(n1, n2)Σtemp(k1, k2) (V.8)

given covariance matrices Σtemp for the temporal process and Σvar for the cross-variable
dependency. The total covariance Σ is then obtained as the Kronecker product of the two
matrices

Σsep = Σvar ⊗Σtemp. (V.9)

This assumption means that the correlation between the variables does not depend
on the lead time and that the temporal correlation is the same for every variable. In this
work, the cross-variable covariance is predicted per time-step, so it can not be used under
a separable covariance assumption for copula construction as such. We propose to add the
assumption that the cross-variable correlation is constant through the forecast window,
which appears reasonable for environmental variables in a 24 hours window. However
this might be an issue for wind shifts and wind ramps that imply complex responses of
the wave field. In all that follows, we name «separate Gaussian copula»the assumption
of a Gaussian copula with separate covariance matrix. The fixed temporal covariance is
obtained as the mean of the 3 empirical covariance matrices of U,HS, TP . The variable
covariance matrix is equal to the mean of the predicted covariances with unit diagonal.

We note Σ̂
(t+k)
var the (3 × 3) predicted covariance matrix at lead time t + k. We note

yn
t:t+K the 24 hours of observation of variable n from time t in the training dataset. The

predicted cross-variable matrix Σ̂
(t)
var is obtained as

Σ̂
(t)
var =

[
1
K

K∑
k=1

Σ̂
(t+k)
var

]
(1N − IN) + IN (V.10)
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Figure V.10 – Illustration of the sampling process under Gaussian copula assumption. The
covariance matrix in the scenarios space is used to sample temporally correlated scenarios,
which are transformed to follow the predicted marginal distributions.

and is assumed constant for the forecast window from time t. The temporal covariance
matrix is obtained from the empirical covariance matrices of the observations

Σtemp = 1
N

N∑
n=1

 1
Ttrain

Ttrain∑
t=1

yn
t:t+Kyn⊤

t:t+K

 (V.11)

Then the separate Gaussian copula Φ(t)
sep is characterized by the separable covariance

matrix
Σ(t)

sep = Σ̂
(t)
var ⊗Σtemp (V.12)

which cross-variable dependency is conditional to the input data and predicted through
the ConvE-STF network. An illustration of a separable covariance matrix obtained with
a fixed cross-variable covariance matrix and a fixed temporal covariance matrix equal to
the mean of the diagonal blocks of the empirical covariance matrix is shown in Figure
V.11. The total process for weather scenarios generation from separable covariance matrix
is illustrated in Figure V.10.
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Figure V.11 – Illustration of a variable-temporal matrix obtained under separable assump-
tion.

In this case, the temporal correlation is still assumed constant. It is harder to parametrize
due to its high dimension (144, 144), and would require additional assumptions to be con-
ditional to the input. Exponential covariance functions, Matérn matrix or more complex
non-stationary functions could be used, such as the ones introduced in [139]. However, this
adds serious difficulties and instabilities for negative log-likelihood training. The compu-
tation of the Gaussian likelihood requires covariance matrix inversion and log-determinant
computation which can be unstable.

Copulas can be applied to ConvE-STF and ConvE-STF-NF outputs. Copulas ensure
a multivariate dependency in variables and lead times, while maintaining marginal distri-
butions. This means that the inter-variable dependencies predicted with ConvE-STF are
ignored, which is a limitation of the method.

V.3.2.2 Scenario generation with normalizing flows

In Chapter IV, we show that normalizing flows can be used to approximate complex
posterior distributions from a simple latent space. It is natural to think that they can
also be used to generate multivariate time series scenarios. By embedding a temporal
relationship in the latent space, it could in theory be possible to generate multivariate
scenarios while alleviating the assumptions on the shape of the marginal distributions,
the cross-variable dependency and the temporal evolution.

Seemingly to Chapter IV, the normalizing flow can be trained on the variables dimen-
sion, with a latent distribution Z in R

N . In this case, the temporal dependency should
be embedded outside of the latent space formulation itself, and hence can not be used for
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Figure V.12 – Illustration of a Gaussian copulas based sampling in the latent space of a
normalizing flows. The generated samples in the latent space are temporally correlated
and transformed through the flow to output scenarios in real space.

training. In other terms, the optimization can not include the temporal evolution. In this
work, a separable Gaussian copula is used in the latent space for sampling correlated sam-
ples from the K lead times. Latent scenarios with a temporal correlation are generated.
They are transformed through the flow to output scenarios in the real space. However,
when using a multivariate Gaussian latent space in the variables dimension, the copula
assumption does not perfectly matches the initial latent distributions. This might result
in unrealistic generated scenarios. An illustration of this proposed method is shown in
Figure V.12. It is named «NF-latent»hereafter.

Alternatively, we can artificially force the model to sample in the same manner for each
time step by forcing the random number generator of our algorithm before each sampling
step. This is done by the «seeding»process in PyTorch. We can generate trajectories by
fixing the seed to a random number for each generated sample, and repeating the sampling
to obtain the right number of trajectories. By doing so, the sampled vector zk from the
latent distribution Zk will be similarly situated in its distribution as the sample z0 from
the latent distribution Z0. In fact, if Zk1 = Zk2 , then zk1 = zk2 . This artificial temporal
correlation has no reasons to be relevant in the real space, since it is not present in the
loss computation. The loss only depends of the likelihood of the individual samples. An
additional loss could be computed from sampling, for example the ES in the scenarios
space, but this dramatically increases the computational cost of the optimization. It is
illustrated in Figure V.13 and is called «NF-seed»in all that follows.
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Figure V.13 – Illustration of a seeding-based sampling in the latent space of a normalizing
flows. The generated samples in the latent space are numerically correlated by the setting
of a seed for random number generation. The output of this inexpensive sampling strategy
are scenarios in the real space.

These two innovative methodologies are simple ways to embed a temporal relationship
in normalizing flows. However, this temporal relationship is not trainable, which is a lim-
itation. Further studies about temporal embedding in normalizing flows for multivariate
scenarios generation should be done. In particular, recurrent conditioning in the latent
space [59], or full scenarios latent space [44] should be further explored.

V.3.3 Model evaluation

V.3.3.1 Benchmark model

The proposed models are compared with the numerical predictions from AROME and
WW3, extracted at the closest grid point from the target location. This represents a deter-
ministic benchmark model, and is representative to what is currently used operationally
in offshore wind energy based on the industrial inputs gathered through the FLOWTOM
project. We introduce the observation operators HAROME and HW W 3 which extract the
wind and wave forecasts from the closest grid point from the target.

XAROME
t+k,closest = HAROME(XAROME

t+k ) (V.13)

XW W 3
t+k,closest = HW W 3(XW W 3

t+k ). (V.14)
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We construct the closest grid point vector as the concatenation of the closest grid
point from AROME and WW3 inputs

Xnum
t+k,closest =

[
XAROME

t+k,closest, XW W 3
t+k,closest

]
. (V.15)

The numerical model prediction is then corrected using linear regression on the training
dataset

Ŷnum
t+k = Ψnum(Xnum

t+k,closest) =
Xnum

t+k,closest − β̂0

β̂1
, (V.16)

with β̂0 and β̂1 computed using ordinary least squares.
The deterministic forecast from the closest grid point is augmented to a probabilistic

forecast considering forecast errors in the training dataset. We assume independent Gaus-
sian distributions for the forecast variables with constant variance equal to the empirical
variance of the residuals on the training dataset. The observed target from the training
dataset Yt+k,n for forecast issue time t = 1, . . . , Ttrain, lead time k = 1, . . . , K and vari-
able n = 1, . . . , N is compared the forecast vector from numerical predictions Ŷ num

t+k,n to
compute the forecast errors enum

t+k,n as

enum
t+k,n = Ŷ num

t+k,n − Yt+k,n (V.17)

and the empirical variance σ2
num,n is computed as the variance of the forecasts errors on

the training dataset:

σ2
num,n = 1

Ttrain

1
K

Ttrain∑
t=1

K∑
t=1

(enum
t+k,n − enum

n )2. (V.18)

The predicted random variable Znum
t+k is then assumed to follow a multivariate Gaussian

distribution Znum
t+k ∼ N

(
Ŷnum

t+k ,Σnum
)

with

Σnum =



σ2
num,1 0 . . . 0
0 . . . . . . ...
... . . . . . . 0
0 . . . 0 σ2

num,N

 . (V.19)

From this probabilistic model, predicted scenarios can be generated provided that a
an additional assumption on the temporal correlation is made. The empirical Gaussian
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Figure V.14 – Example of prediction from the numerical benchmark model, with deter-
ministic output, probabilistic output in the form of a multivariate Gaussian per time step
with constant covariance, and scenarios generated with a separable assumption.

copula is used as described in Section V.3.2.1. An illustration of the obtained prediction
from the numerical model (Num) predictions is shown in Figure V.14.

V.3.3.2 Evaluating the quality of scenarios

In Chapter IV, the forecast quality is only evaluated by scoring the predicted distri-
butions per lead time. In addition to all the metrics described in Section IV.4 that are
still used in this chapter to evaluate the quality of the posterior distributions, the quality
of the generated scenarios should also be computed.

Multivariate metrics in the scenarios space

To do so, the observed trajectory in scenario space can be compared with generated
scenarios samples and scored using multivariate probabilistic metrics. Considering a set
of L generated scenarios {ŝ(l)

t:t+K}l=1...L, and the observations expressed in the scenarios
space yt:t+K ∈ RNK , the ES and VS can be expressed in the scenarios space as
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V Sscen = 1
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Multivariate rank histograms [48] in the scenarios space can also be used to evaluate
the multivariate calibration. Similarly a reliability index can be computed.

Event-based evaluation of scenarios

Eventually, the scenarios can be evaluated based on event detections in connection to
the target application. In this thesis, the forecast should accurately predict the existence
of a weather window. We consider a certain operation O with duration TO and operational
limits τ O ∈ RN

+ . The predicted probability of a weather window from lead time k onwards
ŷww

t+k is equal to the probability of each lead time i = k, . . . , k+TO being under the limits of
the operation. Writing x ≺ y if and only if xi < yi ∀i = 1 . . . N , we define the predicted
probability of weather window as

ŷww
t+k = P

(
ŷt+k ≺ τ O

⋂
. . .
⋂

ŷt+k+TO
≺ τ O

)
. (V.22)

For a deterministic forecast, this is equal to the product of indicator functions

ŷww,det
t+k =

k+TO∏
i=k

1

(
ŷt+i ≺ τ O

)
. (V.23)

These predicted weather window probability are to be compared to the observed weather
window computed on the target observations in the scenario space

yww
t+k =

k+TO∏
i=k

1

(
yt+i ≺ τ O

)
. (V.24)

By formulating the problem this way, the role of the temporal correlation becomes
clear. If the lead times are considered independent, this probability would artificially tend
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to zero.
The probability of weather window can be approximated from a set of L scenarios{

s
(l)
t:t+K

}
l∈[1...L]

by counting the number of scenarios that show a deterministic weather
window starting at lead time k

ŷww
t+k = 1

L

L∑
l=1

k+TO∏
i=k

1(s(l)
t+i ≺ τO)

 . (V.25)

In the weather window perspective, the forecast output is simply binary, and the
quality of the generated scenarios in that prospect can be evaluated with binary forecast
metrics presented in Section II.3.

V.3.3.3 Forecast value for offshore wind energy operations

In addition to the forecast quality, its value for operational decision-making is to
be evaluated. This section defines metrics based on the probability of weather window
to mimic realistic decision-making. A corrective maintenance case is considered, i.e. the
turbine is stopped until repair, and a fictive maintenance operation is modelled, with
a certain duration TO and operational limitations τ O. The forecast is considered to be
used for decision-making at the time t ∈ [1 . . . T ] when it is issued, for a final go / no-go
decision.

Mean downtime

From time t, the duration before the operation starts is considered as «downtime». If
this downtime is due to metocean conditions forecast above the operational limitations,
it is considered as «weather downtime». It is considered the only source of downtime for
scoring (i.e. crew and vessel ready to go without delay). The proposed methodology plays
a realistic decision-making scenario for each sample.

A critical threshold pcritical is defined - taken as pcritical = 0.5 for «P50 decision-
making». It is the probability threshold above which a weather window is predicted. The
predicted existence of a weather window is a binary variable noted ŵt+k for a weather
window starting from lead time k

ŵt+k =

1, if ŷww
t+k > pcritical

0, otherwise.
(V.26)
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We define kO as the first lead time in the forecast window at which ŵt+kO
= 1. For a

given sample t, the operation is considered a success if in the TO long time window ahead
of kO, the metocean conditions were indeed observed under the operational limitations.
Otherwise, the operation is considered failed for this sample. There are four situations
associated with this binary decision-making problem for each sample t.

1. A weather window is predicted from lead time kO and is indeed observed. This is
a True Positive (TP) output. The downtime associated with this decision-making
is the time before the first predicted weather window lead time.

2. The predicted weather window at kO is a False Positive (FP), and the observed
metocean conditions are above limits. The operation is a failure, the downtime
associated with this decision is equal to length of the forecast window if there was
an observed weather window, and zero otherwise.

3. There is no predicted weather window but there was an observed weather window,
this is a False Negative (FN). The downtime associated is equal to the forecast
weather window.

4. There is no predicted weather window nor observed weather window. No downtime
is associated with this True Negative (TN).

The occurrence of a TP event at lead time t + k is represented by the random variable
TP (t + k) which is equal to 1 if a TP is observed at lead time t + k and 0 otherwise.
The same applies to all other events. Seemingly, the occurrence of a FN throughout the
forecast window is represented by the random variable FN(t : t + K) equal to 1 if a
weather window was observed but no weather window was predicted through the whole
forecast window, and 0 otherwise.

The downtime is noted dt and is defined from these four cases computed on the set of
samples:

dT P
t = kO (V.27)

dT N
t = 0 (V.28)

dF P
t =

0, if ∑K
k=1 y

ww
t+k = 0

K, otherwise
(V.29)

dF N
t = K (V.30)
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which defines a downtime for sample t as

dt = dT P
t 1(TP (t+ kO)) + dF P

t 1(FP (t+ kO)) + dF N
t 1(FN(t : t+K)) (V.31)

and the mean downtime DT as

DT = 1
T

T∑
t=1

dt. (V.32)

This proposed metric is realistic to the actual observed downtime due to the imper-
fect knowledge of the situation and the forecast errors. It represents the generated cost
associated with the decision-making on this specific operation.

Economic forecasting metric

Recent work from Catterson et al. [6] advocate for an economic metric, and they
associate costs to the situations of FP and FN. The FP cost is associated with the cost
of mobilization and operation of a vessel and crew without succeeding in the operation.
This cost is linked with the contracted vessel cost Cvessel = 1000 e/h and fuel cost
Cfuel = 100 e/h of the vessel in question, times the duration of the operation

CF P = CvesselTO + CfuelTO. (V.33)

These costs were set considering a crew transfer vessel for a floating offshore wind farm.
These values are arbitrary and do not intend to be fully realistic due to a lack of industrial
information.

The FN cost is related to the cost of missing an operable weather window, i.e. the
opportunity cost of not selling electricity until the next repair. In [6], it is considered that
the opportunity cost is equal to the energy not sold during the duration of the operation.
We claim that this is not a realistic duration to consider, and that the opportunity cost
should be computed using the mean duration between two consecutive weather windows.
We compute this duration ∆ww as the mean duration of non-weather window periods on
the training dataset.

The cost of FN, CF N , is linked with the turbine capacity Pmax = 10MW , mean
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capacity factor Cp = 0.4 and power price Pelec = 140 e/MWh as

CF N = PmaxCpPelec∆ww (V.34)

Those two costs associated with the frequencies of FN and FP give the Economic
Forecasting Metric (EFM)

EFM = fF NCF N + fF PCF P (V.35)

and can be linked with the expectation of the over-cost associated with the use of a
forecast model for a specific operation.

In all that follows, an operation of TO = 6h is considered, with operational limits set
as

τ O = [τHS
, τTm , τU100 ] = [1, 8, 15]. (V.36)

V.3.3.4 A proposed risk forecasting metrics for offshore wind energy opera-
tions

In a recent review, [164] examine the health and security issues related to offshore
wind energy. They advocate for the development of specific key risk indicators dedicated
to offshore wind energy operations, such as the risk of having a personnel stuck on a wind
turbine after a crew transfer. They give a specific analysis on the risks associated with
weather uncertain decision-making. Based on the work from [60], they argue that the
economic pressure for weather window optimization might increase the risk of performing
operations in marginal environmental conditions. They furthermore mention the increased
difficulties associated with floating wind operations.

Based on these findings, and following discussions with industrial partners in the
FLOWTOM project, developers, operators, maritime warranty surveyors and vessel cap-
tains, we propose a framework to integrate the risk taken in addition to economic consid-
erations in the value evaluation metric.

Let’s define a dangerous event E taking place during an operation. For a crew transfer
vessel, it could correspond to the event of the personnel being stuck on the turbine until
next weather window due to bad conditions. This cost is associated with a certain cost
CE, that could correspond to workers compensation for this event. We set this cost as
an overhead pay for the stuck personnel for 24 hours at 1000 e. Now the probability of
being stuck on the turbine is depending on observed metocean conditions for transfer in
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the weather window. In theory, from numerical modelling, the success probability of the
operation is computed as function of metocean conditions, so a probability of dangerous
event could be computed as function of observed conditions P (E|y). The risk is then
computed as function of the environmental conditions as

RE(y) = CEP (E|y). (V.37)

We then propose to complement the above defined EFM as a Risk Forecasting Metric
(RFM) integrating the risk associated with one or several dangerous output. For FP
weather window, the risk is computed from the actually observed metocean condition,
hence penalizing decision-making that led to operations taking place in dangerous condi-
tions. In our perception of the situation, it reflects more the asymmetry of the decision-
making due to risk aversion. We note E the ensemble of dangerous event considered. The
risk is computed based on the maximum observed metocean condition in the False Positive
predicted weather window for all the falsely predicted weather windows t, kO ∈ {FP}.
The RFM then reads

RFM = fF NCF N + fF PCF P + fF P

∑
E∈E

 ∑
t,kO∈{F P }

CEP (E|yt+kO:t+kO+TO
))
 . (V.38)

In the absence of realistic simulation data for characterizing the probability of a dan-
gerous event, a simple exponential function is used between P (E|yn

t+k = τn
O) = 10−4

and P (E|yn
t+k = 2τn

O) = 1, independently for each metocean variable. The probability of
dangerous event is taken as the max obtained probability through the weather window

P (E|yt+kO:t+kO+TO
) = max

i,n
P (E|yn

t+kO+i). (V.39)

V.4 Results

V.4.1 Forecast quality

The quality of metocean forecasts is evaluated with deterministic and probabilistic
metrics. The ConvE-STF model is compared to the corrected output from numerical
modelling (Num) with empirical uncertainty estimation on the training dataset. The pos-
terior assumption relaxing is assessed with ConvE-STF-NF. The normalized MSE, ES
and VS are presented in Table V.4.
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Table V.1 – Probabilistic and deterministic metrics of implemented forecast models. The
best obtained scores are show in bold. The scores are given as mean and standard deviation
over the 6 splits.

Model MSE ES VS Rel
Num 0.273 ± 0.03 0.584 ± 0.02 0.660 ± 0.01 1.59 ± 0.4
ConvE-STF 0.240± 0.02 0.527 ± 0.02 0.493 ± 0.02 1.31 ± 0.5
ConvE-STF - NF 0.243 ± 0.03 0.526± 0.03 0.485± 0.02 1.12± 0.5

The first observation is that the numerical model is of very high quality, and the
gain of post-processing the predictions with ConvE-STF for this dataset is lower than
for the dataset constructed in Chapter IV. The ConvE-STF forecast shows a MSE 12%
lower than the output of the numerical models. This gain is much lower than the one
obtained in Chapter IV, showing the difficulty to generalize the results for different test
sites with different characteristics. It appears that the normalizing flows addition slightly
deteriorated the post-processing of the model in MSE, because of added complexity and
convergence issues, similar to results observed in the previous chapter.

The log-likelihood training of a posterior distribution prediction on the other hand
greatly improves the probabilistic metrics. Compared to the empirical uncertainty for the
numerical model predictions, the ConvE-STF and ConvE-STF-NF models bring improve-
ments in ES and most notably in VS. The 26% decrease in VS for the ConvE-STF with
Gaussian posterior proves that the correlation structure is important to take into con-
sideration for the joint probabilistic forecast of wind and waves. The slight improvement
with the posterior assumption relaxing with NF shows the non-Gaussian characteris-
tics of the posterior distribution. The interest for relaxing the posterior assumption is
particularly striking when looking at the reliability index that is greatly improved with
ConvE-STF-NF. The generalized rank histograms of the three models are shown in Figure
V.15, and show that the ConvE-STF model tend to underestimate strong events, while
the ConvE-STF-NF is more centred between high and low values. Since the predicted
variables are positive outcomes, the extreme values are only observed for high values, and
the non-Gaussian characteristics are likely to concern more the extreme values. Relaxing
the Gaussian posterior assumption with NF tend to improve the model calibration for
extreme events. The Num model has a poor calibration, with strong over-dispersivity and
extreme events under-estimation.
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Figure V.15 – Generalized rank histograms for the different models. The ConvE-STF
shows underestimation of strong events. The use of NF improves the calibration for ex-
treme events.

The RMSE and CRPS are computed for each variables marginal distributions to un-
derstand the added value of the post-processing, and are shown in Table V.2 and Table
V.3. The numerical model shows slightly better performances for the wind speed than the
ConvE-STF models. With a generalized RMSE of 1.581ms−1, 2% lower than the ConvE-
STF, it is within uncertainty range in the cross-validation results. This is an important
results that shows the site-dependence of the models performances in terms of post-
processing. In particular, the RMSE obtained on the wind speed from AROME model
in Chapter IV for a different site was 2.6m/s, due to site specificities. Indeed, the wind
measurements in Chapter IV were made on top of a small hilly island, with potentially
strong orographic disturbances not well captured by the spatial discretization of numerical
models. It shows by contrast the quality of the measurement site at the Planier island, its
representativeness for offshore site, and the quality of day-ahead AROME wind forecasts
at sea in the Gulf of Lion.

The wave parameters are on the other hand well-improved by the post-processing,
especially the significant wave height with a 14% decrease compared to numerical models
output, but with an important variability between splits in the cross-validation. The
improvement is more consistent when looking at the CRPS for the individual variables,
and is slightly improved even for wind speed.

The evolutions of the MSE and VS across the forecast window are shown in Figure
V.16 for the 3 different models. The improvement in the correlation between variables as
illustrated with the VS is rather homogeneous through the forecast window. The use of
normalizing flows consistently improves the VS, showing that the correlation structure
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Table V.2 – Forecast quality for each individual predicted variable in real values.

Metric RMSE
Variable HS [m] Tm [s] U100 [m/s]
Num 0.177 ± 0.02 0.368 ± 0.02 1.581± 0.04
ConvE-STF 0.152± 0.01 0.340± 0.02 1.616 ± 0.06
ConvE-STF - NF 0.154 ± 0.01 0.340 ± 0.02 1.626 ± 0.05

Table V.3 – Forecast quality for each individual predicted variable in real values.

Metric CRPS
Variable HS [m] Tm [s] U100 [m/s]
Num 0.138 ± 0.01 0.264 ± 0.02 1.175 ± 0.03
ConvE-STF 0.110± 0.01 0.243± 0.01 1.171± 0.05
ConvE-STF - NF 0.111 ± 0.01 0.244 ± 0.02 1.172 ± 0.03

between wind and wave forecast uncertainty can be complex. It shows how a likelihood-
based model training helps capturing important probabilistic features of the joint wind
and wave forecast uncertainty.

The MSE evolution in Figure V.16a shows that the post-processing consistently im-
proves the forecast through the forecast window, up to 22 hours ahead, before it abruptly
increase to overcome the numerical model error. The ConvE-STF capabilities seems to be
limited by symmetrical edge effects at the start and end of the forecast window. These
edge effects are not present in the input dataset, as shown by the dashed blue line of the
numerical models. It is likely that this feature is due to the model architecture that fails
to capture explanatory variables for post-processing the edges of the forecast window.
Further work should be done to assess how this can be alleviated.

V.4.2 Scenario generation of wind and waves

From the probabilistic forecast per lead time analysed in the previous section, proba-
bilistic scenarios are generated to link with the operational decision-making process. The
scenarios are generated using different assumptions. The Num and ConvE-STF models
are combined with a Gaussian copula in the scenario space to generate scenarios. The
covariance of the Gaussian copulas is constructed using a separable assumption described
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(a) MSE (b) VS

Figure V.16 – Evolution of deterministic (a) and probabilistic (b) metrics with lead time.
Edge effects are observed for ConvE-STF models in (a), probably due to model architec-
ture effects. The correlation between variables is highly improved with likelihood training
of ConvE-STF in (b).

in Section V.3.2.1. Samples with uniform marginal distributions are drawn from this cop-
ula, and transformed to Gaussian marginals using the predicted variances and means per
variable and lead time. By doing so, some of the information in the correlation structure
between variables is lost, but the marginal uncertainties are maintained. These two models
are called Num-copula and ConvE-STF-copula.

We compare this state-of-the-art strategy to two newly proposed strategies for nor-
malizing flows. These are introduced in Section V.3.2.2, and try to take advantage of the
non-linear capabilities of normalizing flows to relax assumption on the posterior in the
scenario space. The first strategy uses seeding in the latent space to generate correlated
samples It is noted «ConvE-STF-NF-seed»in all that follows. The second assumption is
to sample in the latent space using the same Gaussian copula assumption as above. This
method is described as «ConvE-STF-NF-latent»in all that follows.

The generated scenarios are evaluated in terms of ESscen and for the weather window
forecasting with the limits described in Section V.3.3.2. The scenarios quality metrics are
shown in Table V.4. With a relatively high variability between splits, the ConvE-STF-
NF-seed outperforms both the Num-copula and the ConvE-STF-copula. It can be noted
that the scenarios generated by seeding the latent distributions show a higher quality than
the ones obtained by latent copula assumption. This is probably due to the fact that the
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Table V.4 – Quality metrics of implemented forecast models in the scenarios space. The
best obtained scores are show in bold. The scores are given as mean and standard devi-
ation over the 6 splits. The BS is computed considering probability of weather window.
The metrics obtained with the direct output of numerical models without uncertainty
considerations is given as Num-det.

Model ESscen BS
Num-det - 0.14 ± 0.02
Num-copula 7.44 ± 0.4 0.084 ± 0.01
ConvE-STF-copula 7.12 ± 0.3 0.075± 0.01
ConvE-STF-NF-seed 7.06± 0.3 0.075± 0.01
ConvE-STF-NF-latent 7.50 ± 0.3 0.080 ± 0.01

latent distributions are fully respected with seeding, which is not the case for the latent
copula. This can lead to the sampling of irrelevant samples in the latent space.

The BS, which is equal to the MSE of the weather window probability, is largely
better for probabilistic outputs that softens the penalization of FP and FN compared to a
deterministic output. The ConvE-STF-copula and NF-seed show a similar BS for weather
window forecasting, while the NF-latent is outperformed by all probabilistic models.

An illustration of the decision-making process based on scenarios forecasting is shown
in Figure V.17. The output of the ConvE-STF is transformed into a set of scenarios, over
which the probability of a weather window starting at a certain lead time is computed.
It is compared to the observed weather window. The last 6 hours of forecast can not
show weather window since the operation duration is 6 hours. They are not considered
for metric computation. The operational limit of wind speed is showed in this figure. The
same illustration is shown but for the ConvE-STF output without temporal embedding
with copulas in Figure V.18. It illustrates the importance of emulating the temporal
dependencies between variables. Though the parameters of the marginal distributions in
the variables space are implicitly correlated through the conditioning, it is not sufficient
to compute weather window probabilities.

The probabilistic forecast of weather window occurrence is evaluated by estimating its
calibration, i.e. its statistical consistency. It is illustrated in Figure V.19. The frequency
of weather window observed for a given weather window probability forecast is plotted for
all models. The weather window under-estimation of the Num-copula and NF-latent, and
over-estimation of the ConvE-STF-copula and NF-seed are illustrated by their distances
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Figure V.17 – Illustration of a weather window probability prediction from the ConvE-
STF-copula. The operability is computed from the generated set of multivariate scenarios.
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Figure V.18 – Weather window probability prediction from ConvE-STF if no temporal
correlation is embedded. The samples are generated independently from each time step.
This impacts the probability of weather window since it is depending on exceedance
probability on a sliding window.
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Figure V.19 – Evaluation of the probabilistic weather window forecasting calibration for
the numerical model and ConvE-STF model. Models above the 1 : 1 line under-estimate
the weather window probability and conversely. The spred of models is higher for weather
windows with probability above 50%.

to the 1 : 1 line. For the Num-copula model, the difference is higher for high proba-
bility weather windows, which are widely under-estimated. For ConvE-STF-copula, the
probability of weather is over-estimated for most windows, with a maximum for marginal
situations around 50% chance of weather windows. The NF-seed model has a very similar
trend to ConvE-STF, with very slightly better calibration, while the NF-latent model
tend to largely under-estimate the weather window probability, showing that the sam-
pling with latent copula creates samples with artificially higher spread compared to the
predicted samples per lead time.

We therefore consider the separable Gaussian copula and seed-based sampling in latent
space two competitive methods for generating probabilistic scenarios. Further research
would be needed to explore temporal embedding methods for normalizing flow. Research
directions are described in Section V.3.2.2.

The models behaviours are very different, though they are not well discriminated
by the ES of the BS. The asymmetry in the consequences of FP and FN events are
to be considered to be representative of the operational value of probabilistic metocean
forecasts.
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Table V.5 – Value metrics of implemented forecast models. The best obtained scores are
show in bold. The scores are given as mean and standard deviation over the 6 splits.
DT is the expectation of the downtime before an operation successfully starts. EFM and
RFM are the expectation of the overhead cost due to FN and FP, without and with risk
considerations.

Model DT [hours] EFM [€] RFM [€]
Num-det 4.5± 1.1 1130 ± 230 1885 ± 1500
Num 4.7 ± 0.8 1140 ± 220 1220± 260
ConvE-STF 4.7 ± 0.8 1020 ± 150 1474 ± 540
ConvE-STF - NF - seed 4.7 ± 1.0 990± 130 1370 ± 290
ConvE-STF - NF - latent 5.3 ± 1.0 1280 ± 310 1980 ± 1280

V.4.3 Operational value

The operational value of the model forecast is evaluated using the metrics described in
Section V.3.3.3, that try to reproduce a realistic operational framework to evaluate the real
impact of using the different models. In particular, for offshore operations decision-making,
the probability of weather window is required. Unless stated otherwise, the decision-
making is based on the P50 of the forecast, i.e. pcritical = 0.5. The deterministic decision-
making from the point forecast of numerical models is taken as a reference and called
«Num-det».

The operational metrics are shown in Table V.5. The mean downtime DT to be ex-
pected when planning an operation at the forecast issue time is the lowest for determin-
istic decision-making with numerical model. This shows how the integration of forecast
uncertainty impacts the weather window estimation and hence the decision-making. The
downtime can be understood as the mean waiting time from forecast issue time before an
operation is carried out successfully.

For a given operation, the use of generated scenarios to compute the weather window
probability will naturally tend to increase the number of FN events, due to the added
stochasticity with the copulas sampling. For a mean value right under the operability
limit, less than 50% of the samples will be above limitations at a certain lead time.
But integrated over the window length, with stochasticity introduced with the temporal
correlation, the number of scenario crossing the operability at any lead time during the
weather window will be above 50%, hence resulting to a ’No window’ forecast.

The EFM penalizes FP and FN events asymmetrically to represent their associated
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costs. According to this metrics, the ConvE-STF-NF-seed is the most efficient for op-
erational planning. However, adding a risk penalty for conditions above limits during
operations adds a strong penalization of FP, and none for FN, which changes the results.
The ConvE-STF-copula being over-confident in its weather window prediction as illus-
trated in Figure V.19, it is more penalized than the Num-copula model by the risk term
addition. This shows the importance of integrating a penalization for risky situation, and
corroborates the conclusions of [60] that the forecast selection with EFM for economical
optimization tends to increase the risk of performing operations in risky situations.

As discussed in Section V.3.3.3, when considering the EFM, the decision-making is to
be optimal when consider a critical threshold pcritical for the weather window probability
to perform an operation. This threshold is shown in [7] to be equal to

pcritical = CF P

CF N + CF P

(V.40)

hence balancing the number of FN and FP events depending on their associated costs.
In this example, the critical threshold is equal to pcritical = 0.31. We can vary the threshold
between 0 and 1 by varying the cost CF P between 0 and +∞ and plot the associated
EFM for different thresholds values. The further away from pcritical = 0.5, the bigger the
incentive to use probabilistic forecasts for decision-making. This is illustrated in Figure
V.20, where the EFM normalized by the sum of CF N and CF P is plotted as function of the
critical threshold. This graphs is proposed by [7] and helps understanding the effects of
the decision-making based on the optimal threshold of the EFM. It shows that the ConvE-
STF-copula model with its over-estimation of weather window probability is sub-optimal
compared to the numerical model baselines at the critical threshold for thresholds between
0.5 and 0.7. Both curves are situated under the curve of the deterministic decision-making
from numerical models point forecast, which emphasizes the importance of considering
the forecast uncertainty in the decision-making under cost asymmetry.

For this case study, the obtained EFM and RFM based on P50 and pcritical based
decision-making are plotted with error bars for all models in Figure V.21. It can be noted
that the pcritical decision-making improves the EFM for all models, which shows that
the weather window probability calibration is acceptable. It furthermore emphasizes the
importance of balancing the decision-making based on the cost asymmetry of FP and
FN. By lowering the probability threshold from which the operation will be planned, the
number of FN is lowered and the number of FP is increased, which ends up reducing the
EFM. It is intuitive that a high stake operation with low vessel mobilization cost should
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Figure V.20 – Comparison of resulting normalized EFM as function of the critical thresh-
old for decision-making. The solid black line represents deterministic decision making. The
added-value of probabilistic decision making is higher for high and low critical thresholds.

be tempted even with low success probability to be economically optimal. On the con-
trary, a low-stake operation with high vessel costs should be tempted only in favourable
conditions with high weather window probability. In this case study, we consider a cor-
rective maintenance with high production losses requiring a single crew transfer to the
platform, which in economic terms should be tempted even for uncertain weather, which
is illustrated by the value of the optimal critical threshold pcritical = 0.31.

However, as illustrated with the proposed RFM that includes a risk penalization, this
economic optimum implies a higher operational risk. The increase of FP implies that more
operations are planned under marginal conditions with observed wind and wave values
above operability limits. While this is only penalized by the cost of vessel and crew in the
EFM, it is penalized as function of the observed conditions in the RFM. Though the risk
function proposed in this work is not realistic, the higher above limits the conditions, the
higher the risk of dangerous events. It emphasizes that the risk taken by offshore crew
will increase with the pressure of economic considerations. This work should serve as a
basis for a more comprehensive inclusion of human factors and operational risks in the
forecast value estimation.
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Chapter V – Day-ahead probabilistic forecasting of operational weather windows

Figure V.21 – Comparison of EFM and RFM for a decision-making strategy based on a
P50 estimation, and a decision-making strategy based on the critical threshold pcritical.

V.5 Conclusions and perspectives

The work on the Planier dataset experiment connects all the previous chapter of this
thesis. The proposed ConvE-STF architecture, and its normalizing flows based extension
are applied to a high quality dataset to evaluate their operational value for offshore wind
energy maintenance.

The Planier LIDAR associated with the CANDHIS buoy measurements proves to be
a very high quality dataset for offshore wind energy research. The AROME wind speed
prediction at hub height is very consistent and proves to be a competitive baseline for
post-processing model development. The WW3 wave forecast as a higher error and can
be improved by post-processing. The length of the dataset is however an issue, and this
highly advocates for longer measurement campaigns and easier access to model and in-situ
measurements from weather services.

The ConvE-STF likelihood training is performant for estimating the forecast uncer-
tainty. The estimation of the joint uncertainty of wind and wave parameters is important
since these variables are correlated. The relaxing of the Gaussian posterior assumption
with normalizing flows greatly improves the reliability of the forecast, showing the rele-
vance of non-Gaussian characteristics of the posterior distribution, especially when dealing
with positive and highly correlated environmental variables.

Operational decision-making requires an estimation of the weather window probability.
It can be estimated from the generation of weather scenarios. The use of Gaussian copulas
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V.5. Conclusions and perspectives

with a separable covariance matrix is a competitive tool for generating trajectories. It
allows for the use of a conditional covariance between variables.

Two approaches are proposed to generate scenarios with normalizing flows which could
in theory relax the Gaussian copula assumption on the posterior. By numerically generate
samples with seeding, scenarios can be generated that are then transformed through the
flow. Doing so maintains the latent distribution per lead time. Though the temporal re-
lationship between lead time has no reason to be realistic using this technique, it showed
the best quality and performances compared to Gaussian copula assumption. This ap-
proach is compared to a model generating samples in the latent space using an empirical
Gaussian copula. Its results are of poorer quality, probably due to non-realistic samples in
the latent space. Several other possibilities are presented, in connection to recent work in
the field of normalizing flows, that should be thoroughly studied for conditional scenario
generation. RNN-conditioned normalizing flows, and full scenario latent space appear like
appealing solutions, while preliminary work proved that they imply important numerical
instabilities.

The operational value of metocean forecast models is to be considered in the forecast
evaluation. Two metrics are proposed in addition to the literature Economic Forecasting
Metric, the mean downtime and a Risk Forecasting Metric that includes probability of
dangerous events. The probabilistic decision-making is shown to be beneficial in economic
terms due to the cost asymmetry. However, we show that it can drastically increase the
risk taken during the operation by pushing crews to operate in marginal and potentially
dangerous conditions. A realistic risk penalization based on real costs and numerical
results for operational limitations and dangerous events should be constructed. By doing
so, a new critical threshold that would include human and material risk in the optimization
could be constructed. We put the stress on the importance of modelling the human factor
and risk taken by crew in the evaluation of forecast model, since operational decision-
making eventually relies on the captain’s decision for vessel safety.

205





CONCLUSION

Results summary

Motivated by industrial considerations, this thesis was dedicated to improving meto-
cean forecasting for the safe and efficient planning of marine operations. The scope of
work has been defined together with industrial and academic partners to specifically an-
swer a technical challenge with innovative forecasting methods. In line with the recent
developments in learning-based tools for weather forecasting, several data-driven methods
were explored to answer the identified research questions and industrial needs.

Operational decision-making under uncertainty has been identified as one of the key
cost reduction factor for offshore wind energy operational expenditures. It requires very
short-term metocean forecasts of a range of limiting parameters, with uncertainty quan-
tification, to be efficient. Current industrial standards degrade operability limits with
semi-empirical factors to account for forecast uncertainty, which leads to excessive con-
servatism. The generation of reliable and high quality multivariate probabilistic forecasts
of limiting parameters is a prerequisite for a more comprehensive uncertainty considera-
tion in the decision-making. It would allow for the use probabilistic thresholds in weather
window estimation.

Many studies apply learning-based methods for wave and weather forecast emulation
or post-processing. For offshore studies, the availability of in-situ measurement data is the
main obstacle to the development of such techniques. From this observation, a method
based on the unsupervised clustering of numerical weather prediction data is proposed in
Chapter III. It proved efficient compared to state-of-the-art data analysis tools to define a
sensors network on offshore areas to optimally sample the wind resource. This study gives
recommendations for the deployment of floating LIDAR networks in the French waters
for the development of future offshore wind farms. It was used by Météo France for the
production of a recommendation report for the French government on this very topic.

Taking advantage of a recent open source weather dataset in France, Chapter IV
explores deep-learning based architecture for the probabilistic forecasting of the wind
components at an island-based weather station. The use of numerical weather prediction
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and neighbouring in-situ measurements as explanatory variables proved beneficial for the
weather forecast post-processing. Convolutional architecture are then essential to handle
the large amount of input data while keeping a reasonable computational cost. It is shown
that the amount of input data that can be used as input is a key factor in the improved
performances of deep learning architecture compared to a learning-based non-linear re-
gression framework based on gradient boosting. The integration of neighbouring in-situ
measurements with deep learning furthermore paves the way to forecast updates near real
time, which could be a game changer for maintenance operations execution. A generative
non-parametric assumption and a Gaussian assumption are compared for the shape of the
posterior distribution. Though normalizing flows bring marginal gain in reliability in this
case, they show important non-linear capabilities and could be of great use for modelling
complex relationships between e.g. wind and waves parameters.

Building upon Chapter IV results, and benefiting from co-located offshore measure-
ments of wind and waves at an offshore site representative of future offshore wind devel-
opment areas, a real case study implementation is proposed in Chapter V. An implemen-
tation of the model built in Chapter IV is made for the joint wind and wave probabilistic
forecasting 24 hours ahead. For this dataset, the offshore LIDAR based measurements are
much less perturbed. The wind speed numerical predictions then prove very accurate, and
are hardly improvable in terms of mean error. The deep learning model however reliably
predicts the joint forecast uncertainty. Given the complex relationship between variables,
the use of normalizing flows significantly improves model calibration, which is a strong
argument for non-Gaussian posterior distributions.

To bridge the gap with the operational constraints of decision-making, scenarios (tem-
porally sound samples) need to be generated from probabilistic forecasts. This increases
significantly the dimension of the problem and requires the use of copulas to model the
dependency. A Gaussian copula based on a semi-empirical separable covariance matrix is
proposed as a baseline representative of the state-of-the-art. Two innovative methods are
proposed for normalizing flows based scenario generation, that embed a temporal rela-
tionship in the latent space. Such methods appear promising to relax assumptions on the
temporal correlation of the posterior distributions, that should be explored further as a
potential alternative to complex covariance matrices for Gaussian copulas.

Eventually, the models are evaluated in a new operational value framework. Building
upon the recent specified literature, it proposes a penalization of the risk taken during
operation to better represent the human factor in decision-making. This point is an im-
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portant conclusion of the discussions held with industrial partners, and results show that
it can drastically influence decision-making. This penalization should counterbalance the
incentives induced by the search of economic optima.

Perspectives

Larger and longer measurement campaigns for offshore research

The two experiments set up in Chapters IV and V highlight the lack of available
offshore measurement campaigns in the French future offshore development areas. Though
the development of data-driven models appears inevitable for a wide range of forecast
applications for offshore wind, they require several years of environmental monitoring
to be correctly trained and tested without data representativity issues. When widely
deployed and maintained for long periods such as the FINO network in Germany, offshore
measurement stations allow for numerous ambitious research studies. The Planier weather
station used in Chapter V should then be maintained and diversified and would then
permit significant research advances for offshore wind energy. The proposed sampling
strategy in Chapter III could be augmented with additional environmental parameters to
monitor such as waves, bio-chemical monitoring or biodiversity observation. A long-term
multi-parameter monitoring network would be beneficial for understanding the complex
impact of offshore wind on the environment, and would be crucial for monitoring climate
change effects.

Thorough comparison of models reliability with operational ensemble predic-
tions

The evaluation of the forecast uncertainty prediction was made throughout the thesis
with the probabilistic metrics introduced in Chapter II. However, a fair comparison with
actual state-of-the-art probabilistic forecast models which are the ensemble forecasts of
numerical models is lacking. These forecasts are certainly limited in the number of ensem-
ble members (16 for AROME in France), but their uncertainty estimation carries physical
information. The proposed deep learning models can capture complex relationships given
enough training data, including complex uncertainty patterns. However, the kind of un-
certainty that ensemble forecasts provide is very different in nature. It would be crucial
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that those two approaches are compared, especially in uncertain weather situations that
can output diverging scenarios. Unfortunately we were not able to access ensemble fore-
casts from Météo France for this project. The ensembles are not accessible online due to
the amount of data that it represents. Archives of ensemble forecasts for AROME only
date back a few years ago, which was not applicable for our case study. This comparison
is a priority for future work.

Forecast improvement with additional explanatory variables

In this thesis, numerical prediction and in-situ measurements of weather and wave
from neighbouring measurement stations are used as input. They contain explanatory
variables that condition the forecast of metocean parameters at an offshore target. The
deep learning architectures have the advantage of being able to accommodate a large
amount of input data, and this should be put to profit to look for explanatory variables
from different data sources. Exogenous variables such as the sea surface temperature, con-
vective potential energy, or indirect measurements of sea surface roughness from satellite
imagery for example could be of great help for explaining some variance in the dataset,
and especially uncertainties in the forecast. Furthermore, the meteorological situation in
the Gulf of Lion is very complex. The choice of input data, spatial masks for numerical pre-
diction input and explanatory variables could certainly be optimized in collaboration with
weather experts of the area. In the proposed models, expert-oriented data pre-processing
could be a great addition. For example, the Ligurian current East of the Gulf of Lion
is a driver of local climate and should probably be better integrated in the input data.
Seemingly, the Tramontane wind blowing in the Western Gulf of Lion and influencing
the strong North-Western events in the study area should probably somehow be part of
the input data. In this thesis, we have been limited by the amount of data that we could
gather. Both for the offshore target and the input data. Through collaboration between
weather institutes, offshore wind experts and forecast specialists, there is in our opinion a
great room for improvement of the presented work. The case study have been constructed
on the Eastern Gulf of Lion, a very complex meteorological area, and are to be tested
on different maritime facades, with different wind and wave regimes. The generalization
of the method is an important perspective of this thesis, with already gathered LIDAR
measurements on all the next tender areas for offshore wind.
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Flexible conditional multivariate scenario generation with generative approaches

The scenario generation introduced in Chapter V is of great importance for temporal
dependant decision-making. It is the case for maintenance operations planning and execu-
tion, but also for a wide range of energy related applications including power production
forecast, market participation, energy systems balancing etc. The toolbox for generating
scenarios is often limited to copulas, which carry strong assumption on the temporal corre-
lation. Gaussian copulas which have been studied in this work can be implemented easily,
but they rely on the estimation of a covariance matrix. For likelihood based training such
as the one proposed, proposing a parametrized covariance matrix is very problematic for
numerical stability due to determinant computation and matrix inversion. These can be
numerically unstable in high dimensions. The use of Gaussian copulas in a multivariate
framework also implies fixing the dependency between variables. In this work, by using a
separable covariance matrix between fixed empirical temporal correlation and conditional
cross-variable covariance, we have been able to partially maintain some conditional cor-
relation between variable. By introducing two novel methods using normalizing flows, we
propose a research direction that unlocks the assumption-free scenario generation with
generative methods. As shown in Chapter V, a naive assumption with a numerical trick for
sampling in the latent space can bring improvements to the scenario generation. Based
on recent literature, we advocate for further research on this topic, for example using
scenarios latent space, or recurrent network conditioners for iterative sampling.

Operational evaluation framework with real maintenance data

In Chapter V, an evaluation framework for the probabilistic forecasting of weather
window for a specific operation is presented. In addition to the economic metric proposed
by [6], we proposed a risk forecasting metric that is to penalize the risk taken during
operations. However, the values used both for the economic metric and the risk metric are
not realistic. The industrial reality of operations is complex and prone to intense compe-
tition which prevents data sharing. Though the collaborative nature of the FLOWTOM
project helps with the integration of industrial constraints, we regret the difficulties in
accessing data. Data sharing is the cornerstone of research and development in offshore
wind development. The rate at which new installations should be built is unprecedented
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to efficiently fight against climate change. With a market maturity still in its infancy,
offshore technologies would benefit from a wider collaboration between different actors.
In addition to more realistic operability limits, durations and costs, it would be very in-
teresting to compare decision-making strategies and forecast models on a real operational
sequence. This would require monitoring and sharing data of a full maintenance sequence
(e.g. planned inspection, blade replacement or installation), and playing a posteriori sce-
narios of decision-making based on different forecasts, both numerically and expert-based.

Offshore prediction from onshore measurements: other relevant metrics for
offshore wind

This thesis tackled the joint wind and wave forecasting for operations planning, but
offshore wind energy is sensitive to a wider range of phenomenon. The introduced meth-
ods should be evaluated for different other applications. Market participation or active
control of wind turbines for example would require the forecast of other atmospheric or
oceanic variables. In a research project led by France Energies Marines called NEMO, the
impact of turbulence on offshore wind turbines and the possibility to characterize it with
LIDAR measurements is being studied. A continuation of this thesis is planned for 2025
with the building of data-driven offshore turbulence forecast models from onshore mea-
surements. The application of probabilistic forecasts to other applications such as power
production requires the development of dedicated value evaluation frameworks. The value
of the forecast model will depend on these evaluation framework and might differ from
application to application. The models introduced in this work are eventually evaluated
on the prediction of an exceedance probability on a sliding window. Their ability to pre-
dict extreme events such as ramp events is not assessed at all in this framework. However
ramp events are crucial for power systems balancing and should be specifically evaluated
for power production forecasts.
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Titre : Méthodes d’apprentissage pour la prévision de variables météo-océaniques : une op-
portunité pour l’optimisation des opérations de maintenance de l’éolien en mer.

Mot clés : Prévision probabiliste ; Caractérisation météo-océanique ; Éolien en mer ; Opéra-

tions de maintenance ; Apprentissage profond ; Mesures en mer.

Résumé : Les opérations de maintenance de l’éolien
en mer sont sensibles aux incertitudes des prévision météo-
océaniques. Les modèles de prévision numérique sont limités
par leur coût de calcul pour l’estimation des incertitudes, ce qui
pousse au développement de méthodes basées sur l’apprentis-
sage profond.

L’importance des mesures in-situ en mer est mis en
exergue par les résultats de cette thèse. Une méthode basée
sur le clustering non supervisé de données de modèle numé-
rique est proposée pour la définition d’un réseau de capteurs
optimal pour la reconstruction de la ressource en vent.

Des méthodes d’apprentissage profond sont proposées
pour la prévision météo-océaniques probabiliste. Nous mon-
trons leur intérêt pour assimiler un grand nombre de données

d’entrée. Une hypothèse de postérieur Gaussien et une ap-
proche générative utilisant les flots normalisants sont compa-
rées. Ceux-ci permettent de relâcher les hypothèses sur la
distribution postérieure, maintenant une capacité d’échantillon-
nage et de calcul exact de la vraisemblance.

Un cas d’étude réaliste est construit sur une zone repré-
sentative pour l’éolien en mer en France. Pour la prévision jointe
du vent et des vagues, les propriétés non-Gaussiennes des flots
normalisants se sont montrées bénéfiques à la calibration de la
prévision. Un cadre d’évaluation représentatif des opérations en
mer est proposé incluant la génération de scénarios et mesu-
rant l’impact économique et le risque lié à la prise de décision.
Nous montrons qu’il est crucial de prendre en compte le risque
dans la sélection et l’évaluation des modèles de prévision.

Title: Learning-based forecasting of metocean variables: a path to maintenance operations
optimization for offshore wind energy

Keywords: Probabilistic forecast; Metocean characterization; Offshore wind energy; Mainte-

nance operations; Deep Learning; Offshore in-situ measurements.

Abstract: Offshore wind energy maintenance operations
are highly sensitive to forecast uncertainty. Numerical weather
prediction are limited by their computational cost for the uncer-
tainty estimation and the update frequency, which is an argu-
ment for the development of data-driven methods.

The importance of offshore measurements is highlighted
by the results. A method for designing an optimal sensors net-
work is proposed using unsupervised clustering. This method
has been used by the French weather service to define future
networks of floating LIDAR for offshore wind.

Deep learning models for the joint probabilistic forecast-
ing of metocean parameters are proposed. Their relevance for
assimilating a large amount of input data is demonstrated. A
Gaussian posterior and a generative approach using normaliz-

ing flows are compared. It is shown that the use of normaliz-
ing flows can relax any assumption on the shape of the fore-
cast probability density while maintaining sampling and likeli-
hood computation capabilities.

A real case study dataset is built on a relevant area for off-
shore wind. The probabilistic models are adapted for joint wind
and wave forecasting, for which the non-Gaussian properties of
the normalizing flows is beneficial for forecast reliability. An eval-
uation framework dedicated to offshore operations is proposed,
including the generation of probabilistic scenarios and the mea-
sure of decision-making economic impact. It is shown that the
search for an economic optimum in the probabilistic decision-
making leads to higher risk during operations, and this should
be taken into account for forecast selection and evaluation.
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